Please handle with EXTREME CARE
This volume is brittle and CANNOT be repaired!

Phetucopy only if necessary
Return to llbrary staff, do not in bookdrci
GERSTEIN SCIENCE INFORMATICN CENTRE

Library staff, please retie with black ribbon and reshelve

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

$S D$
E584

ENGLISH CYCLOPÆDIA.

CONDUCTED BY CHARLES KNIGHT.

NATURAI, HISTORY.-VOLUME III.

LONDON:
BRADBURY AND EVANS, 11, BOUVERIE STREET. 1855.

Luxtios:

-

 (

ENGLISH CYCLOPEDIA.

NATURAL HISTORY.

HABENARIA.

H^{4}ABENA'RIA, a genus of Plants belonging to the nstural order Orchidacea. This genus has a ringent hooded perianth, a 3-lobed catire apurred lip. There are three species natives of Great Britain.

1I. viridis, the Frog-Orchia, has a very short 2-lobed spur, linesr flat 3 -pointed lip, the middle point the shorteat. The flower is green, and the lip of a browniah colour. It is the Peraistylus of Lindley, and the Ifimanfoglossum of IReichenbach. It grows in

paatures.

II. Bifolia, the Lesser Butterfy-Orchis, is distinguished by the lip being linear and entire, and the pollen-massen parallel. The flowers are white. It ia found in beathy places.
II. chlorantha, the Grent Butterfly-Orchis, has the same general characters as the preceding apecies; but the flowers are larger, and the plant is taller and stouter. The pollen-mssses ascend obliquely and converge upwards. It grows in moist woods and thickets.
(Babington, Manual of British Botany.)
HABIROCOMA, a genus of Mammalian Animals belonging to the order Rodentia sind the sub-order Mystricida. Two species were taken by Mr. Darwin near Valparaiso, II. Cuvieri and II. Bennetii. [Hystaride.]

HABZE'LIA, a genus of Plants belonging to the natural order Anonacece. It has a 3-lobed calyx; 6 petals, the inner ones amalleat; the stamens very numerous; the torus convex; the carpels distinct, indefinite in number, long, cylindrical, obsoletely ventricose or torulose, mooth, atriated lengthwise, becoming many-celled by the pericarp growing together ; many-seeded, the aceds elliptical, arillate, somewhat ercet, numerous, shining, one in each of the cells of the fruit; the arillus formed of two white unequal obcordate membranes.
II. Sthiopica has ovate-acute leaves, 3 inches long, 12 to 14 lincs broad, amooth on the upper aurface, and downy beneath; the carpels are pod-shaped, $1-2$ inches long, knotted, striated, quite smooth, with the taste of pepper. The frut has a pungent sromatic taste, and ia often substituted for other apices. It is the Piper Aithiopicum of the shopm, and tho Anona Athiopica of Duval and other botanists. It is a native of Sierra Leone. II. aromatica is another species, yielding a pungent aromatic fruit. It growa in the forests of Guyana, and the fruit is used by the negroes as a condiment.
(Lindley, Plora Medica.)
HACKBOLT. [PUPFINUS.]
HADDOCK. [MOnRELEA; Gadids.e]
HAEMANTIUS. [AMABYLIDACE\&]
HAMATITE, a name given to certain forms of the native Peroxide of Iron. When of a red colour it is called Red Ifrmatite; and when brown, Brown Hamatite. [Jron.]
HふMATOCOCCUS (from aipa, hlood, and коккоs, a grain), a genus of Plants belonging to the natural order of Alyce. It is chancterised by being composed of spherical or oval cells of various sizes, each cell being inveated with one or more concentric vesicles or membranee, multiplied either by diviaion or by granules formed within the parent celle. Several peciea of this gonus have been described. One of the firat observed was the $I I$. sanguincus, which, like the IRed Snow-Plant (Protococcus nivalis), has its cells coloured red; hence the generic name. Several of the species however are of a green colonr, and Kützing and othera on this account have proposed the name Microcystis for this genus of plants.
Nat. hint. DIV. Vol III.

HAMODORACEA.

The species aro found upon moist rocke, on the walls of caverns
and in damp places. [Hed Ssow; I'rotococcos.] (Hassall, British Freshwater Alyo; Botanical and Physiological Memoirs of the Ray Socicty.)
H.E'MATOPS, a name given by Mr. Gould to a genus of Birds inhahiting Van Diemen's Land and New South Wales, and thus characterised by him:-

Bill shorter than the head, slightly curved, without any denticle at the apes, rather compressed. Nostrils longitudinal, and covered by תn operculum; no bristles at the gape. Wings moderate, first quill short, third and fourth nearly equal and longest. Tail moderate, equal or slightly forked. Tarsi moderate, the rather stroug hallux and claw equalling the middle toe sand claw; external toes equal in length. Ensanguiaed spots or marks (nevi sanguinolenti) above the cyes.

Mr. Gould recorled two apecies, Miematopa valdirostris, $\dot{6}_{3}^{3}$ iuches in length (Van Diemen's Land), and $/ /$. gularis, 6 inches long (New South Wales).
H.EMatoples. [Cimadmade.]

HEMATORNIS [Falconide.]
II EMATOXYLON, a genus of Planta belonging to tho natural order Palacea or Leyuminosa. It has 5 sepals united into a permanent tube. The petala, 5 in number, are scarcely longev than the sepals. There are no stamens; the filameuts hairy at the baso; tho anthers without glands; style capillary. The legume is compreaseū, flat, lauceolate, acuminate at each end, 2 -seeded; the sutures indehiscent; the valves bursting longitudinally.

1. Campcachianum, Logwood, a tree common all over tho West India Isands. It is a low spresding tree, with a stem generally crooked and deformed, seldom thicker than a man's thigh; the branches somewhat Ilexuose, terete, covered with whitish dots. In mountain and mois' situntioua it is marmed, but in the plains, or where the tree is stunted, it is furnished with spines below the leaves; the leaves 2 or 4 from the same point (an irregular tough tubercular protaineace), pinnate, sometimes dividing in a bipimate manner st the lowest pair of lenflets; the leaflets 4-paired, shortly stalked, obovate or ubcordate; the racemes at first about the length of tho leaf, afterwards, as the pods form, elongatiug ; the flowers on pedicels half an inch in length, Jellow, and slightly fragrant; the calyx deeply 5 -parted; the lobes unequal, thrice membranous, purplish, decidnous; the tube short, green, and bell-shaped; the petala nearly equal, obovate, wedge-sbaped at the base, scarcely longer than the sepals; the stamens alternately short, inserted (aa alao the petals) on the inside of the margin of the persistent tube of the calyx ; anthers ovate; ovary lanceolate, compressed, 3 -seeded; style projecting bejond the stamens and petals; atigma capitate, expanded; the pods compressed, flat, lanceolate, acuminate at both ends, 2 -sceded, not opening at the sutures, but bursting longitudinally by n division passing down through both the valves. It is chiefly used by dyers. It is a powerful astringent, and may be employed as a substitute for kino, eatechu, \&e. In diarrhoo and dysentery the decoction is used with benefit.

II AMOCIIAlRIS. [ANNELIDA.]
IIAMODORA'CEA, Blood-Roots. Under this name Dr. Robert Brown proposed, in the year 1810, to separate from the natural order Hrilaces the gencra IIcmodorum, Conostylis, Anigozanthoz, Phebocarya, Dilatris, Lanaria, IIeritiera, and IVachendorfia. IIo remarked that they are abundantly different, especinlly in being hexandrous, or in laving the stancns, if only three in number,

13

 seroperale perta of dumiralia, atul mone necur it Prazil and tho Maenara lotomita. The iotivea of swan liver live on the routs of

 leat achul mioss mw. the of llam mont intenme litters knewn is

 simgh dormal fis; ven lirauchioneroun ragn: lower jaw comujreanel, a arnafl oval oforing enil two emall porma uniler ita aympliynia; the reatimal fure jartialiy miverorl with merlme

 of the under jow whils in momel lig the umime when the munth in

 the Heat Irafian iflabele. They ore of momiefmes nize, rarging from

HAdimsw flytyma)
Halllisertillth (Avrimos.)
HAll (4)
ItAile The hairy revringa of the Mammalioz am compomet of

Indli of the hair comint: of a manll conestaped body, the pulp eof and deliate, and ammently made up of blood-vessels and nerveg, and curecti by a rittection of tho mooth lining of the blieath of the lair, ulich is contimued from the cuticlo covering the surrounding -hin. On the whole surface of this bulb the subatance of the hair is neoretal, and as ewh layer which is dnposited puslies that proviously
 projecta lacyomal the okin, aud thance continues to grow free. In the "arly enaliryo the shenth or fullicle it which the hair in afterwasda formal be minne anch, then a delicate vesuel may be traced to its base, where a litele black apot in soon formen, nod thin, as all the other pazex increare, in grodually devolon-al into a hair. Into each hairfoblecle, ne tiurlt has abown, there open tho ducter of one or two little glaun. les which the oily mather is recreted to lubricate the hair and keep it anyple nud firm, and where theme are deficient the same $1^{\text {murpone neerm to to performed by the folliclo itaelf. The annexed }}$ cubs will explain the gebernl moda of formation of hairs, which, it uny lo dherved, is effected in the vane manner on that of horn, mif, and many other extra-vnacular nppendages of animal bodies, namely, by the deposition of succesaive layera of organic matter on the aurfuce of mn abondintly vascular tissue. Fiy. 1 representa an obligue section of the pulp and lower part of the whiaker of a lion, in the Hunterian Musenm, in which a is the toody of the hair, b the conical pulp, and en blood-seamel passing lato and ramifying in it. Aig. 2 is a rection of the skin of the upper lip of a lion, with part of a whisker completely fortned, and mouther in progress of growth, from the ame collection; a in the outer part of the hair-follicle, formed by a deep depression in tho akin; l in its internal coticular lining: e the contained hair; d the sheath containing the vessela and nerves, pasing to the base of the follicle and balb of the hair. fry. 3 in a mection of the nkin, containing a hair from the humaxi acalp, from the figure by Gurlt, in Miiller's 'Archiv fü 1835 :' here n is the thin catiele, b the cutis, c the nabjncent fat, d the ocllular timate, in which the base of the hair-follicle e is seen; f is the hair itmelf. eularged at its hate, and $g \|$ nev the two sebacoous glande. opening intw the sheath.

Fig. 1.

In man tho haim are not, an han hoen generally sapposed, perfectly. cylinhical. Weler hass shewa that they are all more or less flattened, sio that n trmanermo soction presenta an elliptical form, or sometimea; from ohe side lemig grooved, bas the shape of a bean. The hair of th: rilialarra, lworl, and muatichion, and in general all short curly lativ, is inot Hattened. In most instronces flatnese and curlineas are
directly proportionate, and both attain their maximum in the crisp woolly hairs of the negro, which are sometimes as much as two-thirds broader in one direction than in the other. The hair of the negro however, though called woolly, differs considerably from the wool, properly so named, of sheep and other animals: the latter is not apirally curled, but wavy, all its curves being nearly in the same plane; it is much more delicate, and porfectly round, and hence, from its being equally fitted to curl in any direction, is peculiarly adapted for spinning, while the flattened hairs of men have always a tendency to turn their broadest surfaces towards tbe middle of the curl.

Except at their base, into which the conical pulp enters to a variable distance, the hairs are perfectly solid, and in most animals their substance is similar throughout. Weber has shown that the appearance of a central canal ruaning along them, nud of a softer internal than external matcrial, has resulted from microscopic errors, nccasioned by the unequal refraction of light passing through their pounded or grooved surfaces. Only in the lion, zebra, and llama, did Weber find that the internal part seemed rather paler than the outer; in the roebuck and a few other animals he found the cellular structure which has been sometimes erroncously supposed to exist in all hair. The cells are all bexagonal, much like those in the cellular tissuc of planta. The average diameter of hairs from the human head are respectively about $1-300 t h$ and $1-500$ th of an inch, nad hairs often attain a length of 6 or 7 feet in women. Instances are recorded also of the hair of the beard growing to a length of 9 feet. They are generally of the same thickacsa throughont their whole length in man, but in the fiuer kiuds of wool they are of uncqual size nt different parts. Thia seems to indicate an occasional alteration in the size or activity of the pulp, a supposition which is further aapported ly the varieties of colour which the same hair sometimes presents, as in thoso auimals which seem to have gray furs, bat in which each hair ia made up of alternate bands of black and white. In man hawever nothing of this kind occurs; the colour of each hair is uniform, the appcarance of grayness being proluced by a mixture of completely white with dark hairs. The colour of the human hair generally varies with the colour of the irin and the genemi dark or light hue of the akin. Commonly, the darker the lanir the more robust the body, and the coarser the skin and other tiannea; and this holda still more with animals than in man, for not only are white or gray horses less healthy and vigorous that dark ones, but if one or two of a dark horse's legs be white they are always more liable to injury and to disease.

Hairs are capable of movement, and the stauding of the hair on end from alarm is not imaginary. It is found that each bulb of the bair is supplied with a minute muscle, which acts in producing movesnent of the hair. (Lister, On the Muscular Tissue of the Skin, : Mlicroscopical Journal,' vol. i. p. 203.)

Hairs are very elastic; they ndmit of being atretehed nealy onethird of their length, and regain their original leugth almost completely: in proportion to their size they nre very tough and firm. In masses they are impenetrable, except to very grcat violence, and hence one of their uses in the thick coverings of animals; they are also adopted in armour, as for the coveringa of helmets. They are extremely bad conductors of heat, and they are generally found most thick and abandant in animals subject to long exposuro to cold, in whom moreover an ndditionally thick cont is provided at cach winter after the annual sliedding. They are non-conductors of electricity, and when rubbed with almost any other substance so large a quantity of negative electricity is developed that in the dark even aparks may be seen, and the peculiar crepitating sound of rapid little clectrical discharges may be heard. This is especially the case with-the drier hairs of cats, dogs, \&ce ; but the weaker electrical phenomenn may be olserved by rubbing the human scalp. Hair is also remarkably hygrometric, attracting aud retaining in its tissue a large quantity of moisture, in consequence of whieh it becomea flaccid and lengthens, and hence it is used in the construction of the more common hygrometers. It assists also to shield the skin from raoisture by its oily surface, and wheu thick preaeats nlmost an impenetrable barrier to water. Thus serving to isolate the animal from the three most powerful external agents, heat, electricity, and moisture, it is scarcely possible to imagine noy structure better adapted for the external covering of the whole body, whose motiona it is too light to imperle, and to whose buaty it so remarkably contributes.

Ia chemical properties hair resemblea horn, nails, \&c. It is soluble in water at a very high temperature, as ia a Papin's digestor, leaving a large quautity of oil mixed with sulphuret of iron, and some sulphuretted hydrogen. It ia this oil, with the sulphuret of iron, Which given the colour to the hair, and by whese abserption grayness is produced. The iron is most abundant iu the darkest hair, and the sulphur is the ingredient on which the action of the various black dyes for red or gray hair depends. These are all composed of some galt of silver or lead, which, mixerl with some oily or fatty substance in the form of pomatum, insinuates itself into the hair, where it is decomposed and a black sulphuret of silver or leal is formed. Hair is suluble in alkalies and alkaline earths, and for this reason the depilatories in common use are chiefly composed of quick-lime, which however is materially iajurious to the skin at the same time that it
removes the hair. Lair contains a very swall quantity of water, and
whea burnt leaves a large proportion of ashea, containing iron, manganeae, and various salts of lime ; it is owing to these properties that hair is peculiarly indestructible, and has been found unaltered on mummies more than twenty centaries old. It has eveu been supposed to grow after death, but it is probable that, in the few authentic cases in which this is stated, it was owiug to the lengtheuing of the lair by the attractiou of moisture from the body or surrounding atmosphere, and to the more rapid drying and contraction of the adjaceat tissucs.
Little need be aaid of the diseasca of hairs. Possessing neither vessela nor nerves, exccpt at their base, they are rarely altered except by the diseases of the skin itself. [Entopuyta.] Their fall, as it is called, is in most animals annual, but in man seems not to occur except by accident, or after particulsr discases. The process by which it takea place is unknown, but is probably similar to that of the shooting of the quills of the porcupine, by the gralual approximation of the base of the follicle to the surface. Their losa of colour, which is sometimes exceedingly rapid, is owing to deficient secretion of the colouring oil, and cim only. very rarely be remedied. When sufficient moisture is not supplied they sometimes split at their points like bristles; at others they break at the middle of the shaft, snapping off, and learing a bittlo fringed extremity to the stump. The most singular alteration however to which they are subject is that called the 'plica polouica,' from its occurting almost exclusively in some towns in Poland, in which, with so much general disease as sometimea proves fatal, the hair of the head becomes sticky and inatted together, when touched gives extreme pain, and is sometimea said even to bleed when cut. This fact cannot however be regarded as evidence of the hair natarally coutsining vessels, though it indicatea an elongation of the pulp to some distance beyond the skin, just as is the case in dogs, whose whiskers will sometimes bleed if cut very close to the arrface, [Skin.]
(Weber, in Hildebrandt'a Anatomie, vol i.; Gurlt, in Miiller's Archiv für. Anatomie und Physiologie, 1835; Kölliker, Manual of Hunan Mistology, translated by Busk and Huxley for Sydenham Society.)

HAIlRBELI. [Campanula.]

HAIL-GRASS. [AIRA.]
HAlRS. In plants these are long expanaions of the cuticle, chicfly intended to nnawer the double purpose of collectiag moisture from the atmosphere ad of protectiug the surface of a plant from the teo powerful influence of the sun's raya. It is supposed that they are also destined to assist in the couvcyance of certain kinds of sceds through the air, and in other caaes, as in that of cotton, they are specially oudapted for the use of man. That the two first purposea are those for which hairs growing on the surface of plants are intended, seems sufficiently iadicated by the following facts:-

1, commoa hairs of the stem of Dryonia alba, becoming glandular at the base or apex; 2, 3, a mixture of hairs (2) and glands (3) from the stem of Dictamnus; 4, double glands at the point of the hairs of Lysimachia vulgaris; 5, a hair glandular at the apex, from Primuln Sinensis; 6, gland oa the end of the hairs of Sisymbrium Sophia; 7, ene of the yellew glands found ea the bead of the hairs of Scrophularia nodosa.
In all cases haira are composed of leugthencel cells of cellular tissuc, estending from one or more of the cella of the cuticle. Moat commonly they are quite simple, and are mercly formed of several cells of equally diminishing size, placed end to cnd, or of a single cell. Of the latter kind are the long eutangled hairs that clothe the surface of the cotton-seed, and which are manufactured inte thread and linen.

 that she cell, ont of wisch a lair is furmed, inntend of erowing perjersdmuinr tor the ouffece. lescethera in a jarallel dirction, growiug at

The mechamintu of etiuging hairs in tivica, Migamlia wrobs, and the Lonasen fo very intereting. Alwow all atingiug hairn cod in a little ksondotujel wrilling. which in exceedingly brittle, and casily knocked as ty a wach. The onvernal puint, on being promacil againat, exudea lbe incouscras contairal in lbe celle at the lano of the loair, mad will
 bselinezurao betbion are than lant injuriona. The ntiugn of the Lonancere ore taveds avore w. While the l'reina erenain and l. Erenulatal of the fieni I ndime in=luce wounda in which jnin it felt for weekn nod montha - frer unaclaing thetn. The anove dasperoun of all in the Cirica urntoatuma of Hume. eallm in Timor, lhoun hetan, and by the Finglinh
 erpersally fa nlamps wenther, and occandonally death from tetanua is
 toonnful raxembin fotmon knwn.

In the maly itacen of Erow th thanc laim, all of them, prosean an actere circalaison of the map. Syme hairn have their contenten almorbed
 penger cavity. Thin rmarkable phmomenotn takea placo in tho haira of the etslo in Cimponwlarer. Aloo in the clobular allm of

 baire, dimiderulimel l / y mony peculiaritica, bot will repny perual.

A quale frlaste ery and to hare po hairn, but in the case of

 -ith have. In Cablutroch, they ame cotajomed of four or firo cells allar boud in cented owll. whecle merter on the poiut of attachment to the Tilderas or celluher Leyer uf the leaf and afem. An organ of a -imilar hised mervire in fimgairele inlyarv.

The haite of the bheota ruendyfom eonlain apimal veracia. Thin
 - Jetem of the pione and ought rither to ine rgerded an megractu of the loat that an istin haus

In emprequaber of the leirn of filasta laring ats extenion of cellular

 which. lite lirsen, oge forvarul frum the timpice of lark or woml. Whan lloo ico funme of matlor ore minnithal to micmacojical cxamina-
 diomieresith is from U, 11 lok midel tuben of the Jatter, in which no furtaterane are diwervetalid

HAllbSALT. The eftorencenco of native Sulphate of Dagnesia is thus called.

IIAill.TAIL. [Tricnuters.]
HAJF, a name of a renomous Serpent, Culuber Haje of Linneus. [Nala.]

HAKF. [MFRIUCIES]
HABCYCNIDA, a family of Birls belonging to the Fissirostral Trilse, of the onter Inarapores, or Perching Jirds, acconding to the arnten of Mr. Vigors [1smessones.] This family includes the beautiful birita known by the namo of Kingtinhern.
In Willoghby's 'Ornithologs," edited by John llay, the "Kingfisher .Ispida an veterum Alcyon "" is placed at the head of " land-Birds that feed upon Finh."
har, in hin 'Synopmis, giren the bird the mame title and ponition; but the heading variea a little from that of Willughby; for Ray makea the Kingtisher the firnt of his "Aves terrestren, aquas frequevtantes, rontria longin, pincivore."
Brinson arranged the Kingfishere (Martin- Pecheura) in company with the Todice, an the two geners forming the third section of his fourteenth orler, consisting of thone birds which have the middle of the three anterior toen united to the external one up to the third joint, and to the internal one up to the firat.
Linnaus placed the Kingfishers under his order Pica, between Todua and Merops, with the generic appellation of Alcedo, and the following definition:-" Bill trigonal, thick, straight, and long. Tongue fleahy, very short, flat, and acute. Feet gressorial in most."
Latham's second onder, Picr, is divided into throe sections. The thind of these consints of blris with gressorind feet, and consists of the Motmots, the Horrbill, the Kingfishers, the Todies, and the Beo Eatera
lacépide'n thirtcenth mblivision consinta of birils whoso external toen are united almost throughout their length (Platypodes): his seventeenth ordar (which, with the sixteenth, eighteenth, nineteenth, and twentieth, comes ander this subdivision) consists of the genera Alerdo and Ceyr.
Tho tenth nud last family of M. Duméril's sceond onder (Passeresux) connista of the Tenuirasfres, or Leptorhamphes, It containm many genern, the Kinglishera, tho Todice, tho Bee-Eatera, the IUmming-Mirde, the Crevperk, the lloopoes, de.

The fourth order in the method of M. Meyer comprises the genern Meropa mud Alcedo ouly.
Illiger's Ambulatoren furm him scoond order, the first division of which, the sixth in relation to the consecutive vumbers, is termed Angminanfes. This division comprehends tho genera Alcedo and Meropsonly. It is preceled by the Symdactyli, the last division of his fint orice, Scamsores ; and the Syndactyli consist but of one genus, Golbula. It im immelintuly succeeded by tho Suspensi; and Trochilus in the only genus of this division.

Cusier's Syndoctylex, the fifth division of his second order, Pasnereaux, comprise the genera Merops, Prionites (Motmote), Alcelo, Ceyx, Tolka, mid Buceros.
M. Vieillot makes the sylvicole the nccond onder in his arrangement. The second tribe of this onder (Anieolactyli) in male up of numerons fanilies. Tho twenty-fourth consints of the lhec-liaters and Kingfinhers. It in immedintely preceled by the Epopsides, and immediately succeeded ly the Andrialus (Rupicola), the twenty-nixtl (Prionotea) consinting of the Motmotn and Calao (Hornbills).

Tho Alcyons, the seventh ordor of M. Temminck, consist of the Theor Fatern, the Kinglishers (Martin-l'0chears), and tho Kinghunters (Martin.Clianacurs).
In Uhe method of M. Do Blainville h's Scansorey are divided into the Héténolactylen, the Zygodactylen, mal the Syndactyles. Alcedo (Linn.) is the reprenentativo of the latter. In the method of the anme zoologint, as derdoped by M. Lherminier, the Kingfishers (Martin-lecheurn-Alcelo, Lian.) are placed in the first or normal subclan, and form the thirteenth family, coming between Merops and Bucrroz.

Mr. Vigore, in hia paper ' On the Natural Aftinities that Connect the Oriers and Familien of Birds, observes, that if the genas Todus of authorn ine exnmined with reforence to its genoral affinities, an intimate rememblanco will be found between it and the nneceeding group of //aleyonide; nince the only upecien known when he wrote exhibit, the exact representation of a Kingfieher, with the exception of a shorter and more depressed bill. He in of opinion that we aro thun conducted to the Halcyon of Mr. Swaineon, a genus which be thinkn extremely diatiact nud well-flefined (regretting however-and with juatice-that the name liad not been retained for that group of the family which inchudes the European Kingfiaher, tho birl known to tho nneients under that name), and from that geuns to the Dacelo of Ir. leach, until, io the mono alender bill of Alcedo, is found an aproroaching conformity to the more delicately-nhaped billa of the succeeding family of Meropidar. In the gronp of Halcyonide he places the Gallmia of lhrianon, which, thongh dintinguinhed from the groups of which Mr. Vigors in treating loy its nygodactyle fect, and as such arranged by modern writers among the true Scansores, was, Mr. Vigors observe in continuation, originally included in the genus Aleedo by that great manter of natural affinitien, Linnege, on account of the identity of the general atructure and cconomy of both gronps. Hers

Mr. Vigors thinks that it must necessarily be placed, if we look to natural affinity rather than the strict dictates of artificial arrangement; and with it he fancies may be placed some apparently conterninous groups, Capito of Vicillot, and some of its affinities, \&c., of which the toes are equally disposed in pairs. The relationship of all to the true Scansores may, he says, be accounted for by the consideration of that tendency which opposite sides of a circle of affinity generally evince to appronch each other. The very difference however between the feet of Alcede and Galbula (which two groups, at the same time, he adds, it must be remarked, agree more intimately in every particular of the leg and foot, except the scansorial disposition of the toes, than Gallula accords with any of the Scansores in the same characters), is lost in a speeies of Gallula which Mr. Vigors had lately inspected from Brazil, where one of the hind toes is wanting, and where the foot thus exactly corresponds with that of the threetoed IIalcyonidex, or the genus Ceys of M. Lacépede. The singular and beautiful species of the Linnaan Alcedo, the Ternate Kingfisher, which Mr. Vigors characterises as a genus under the name of Tanysiptera, show, in his opinion, the equal approximation of that genus to Galbula, and a devistion from its own type, its tail deserting the shortened character of that of the true Kingfisher, and assuming the lengthened and graduated conformation of the same member in the Paradise Jacamar and the other loug-tailed Gallulte. Having now arrived at the last family of the tribe, Mr. Vigors directs us to look for that connceting affinity which will lead us back to that other family of it with which he commenced his observations. Here again, he remarks, the universally-ackuowledged relationship between the Halcyonide and the Meropidee leaves him nothing to observe. He refers to the gradually-attenuated bills of Alcede and Gullula, and the inereasing length of the tail in the latter genus, as softening down the differences by which these families, unitel by general labits and economy, aloue appear to be separated. Thus the cireular succession of affinities by which the tribe of Fissirostres returas into itself appears to Mr. Vigors to be complete.
The fifth and last family of M. Latreille's secoud order (l'assereaux) consists of the Bee-Eaters, Motmots, Todies, Kingfishers, the genus Ceyx, and the Hornhills. The fourth family comprises the Tenniros. tres, and the Scunsores (Grimpeurs) form the order whicla immediately follows the Prasereaux.
Prince Bonaparte, in his 'Tabella Analitica de' Generi' ('Specehio Comparativo,' 1827), makes the tribe 4 mbulatores immediately follow the tribe Scansores. The first family of the Ambulatores consists of the genera Alccio and Merops.
In M. Lesson's 'Projet' the third tribe (Syndactyles) of the first order, Insessores or Scansores (Grimpeurs), includes four families, in the following order:-Meropidee, Ifalcyonidee (Aleyonées), Rupicolidee (Rnpicolees), and Buceride.
In the 'Table Méthodique,' at the ead of his 'Manuel,' Lesson makes the family Mcropide comprise the genera Merops, Alcedo, Dacelo, Ceyx, Syma, Todiramphuz, Momohes, and Buceros.
Mr. Eyton, in his arrangement, published in his 'History of the Rarer Species of British Birds' (1836), makes his fouth family (Tenuirostres, Cuv.) of his second order (Passeres, Limn.) consist of three divisions:-1st, the Anisolactyli, Temm.; 2nd, the Syndactyli, Cuv.; and 3 rd, the A reyonce, Temm. The latter division contains the genus Alecdo, Ray, whilst Merops is arranged under the Syndactyli.
Mr. Swainsen, in the first volume of his 'Classification of Birds' (I836), when treating of the Syndactyle foot, allows the term to be good, if limited to such feet, with united toes, as are of a different formition to all others; and would not, even if the toes were free, come under auy of the defuitions which he had previously given. Such a form of foot, he says, will be found in the geacra Merops and Alcedo, containing the Bee-Eaters and Kingfishers, to whose feet, 'par excelleuce,' he limits the term Syodactyle. "The habits of these two groups," continues Mr. Swainson, "as far as concerns the use of their feet, are nearly the same, for in neither are theso members ever employed but to rest the body. The kinggisher watches patiently from a fixed station, generally a maked twig overhanging the water, for anch fish as come within its reach; and then, after a time, flies to another station, where it alights and remains. The feet, from not being used for walking or standing, are consequently very small, and the toes inperfectly developed: there are three in front and one behind, but two of the former might alnost be reckoned as only one, since they are united together even to the commencement of their respective claws; the inner toe is not half the length of the others, and seems rudinentary; it has a claw, and is rather noore detached at its tip than the other two ; in some, as in the three-toed Kingfishers, this inner toe disapears. The hinder toe is very short, and scarcely longer than the inoer one; the scales of the whole fout are so thin and transparent that they cau seareely be seen in the small species by the nated eye. Those who have seen so much of the true Kingfishers, so scarce in Eiggland but so common in Tropical America, know that they never perch upon any other than small or slender branches; and this we may infer from the shape of the foot. The two outer anterior tocs are very long, so that they would completely clasp two-thirds of the circumference of a small branch, the other third being eubraced by the hinder toe. This fact is further confirmed by the unusual flatacss of the solcs of all, snd by the acnteucss
of the claws, which from being but slightly eurved would not upon a small branch come into contact with the wood; the union of the three anterior toes, by producing considerable breadth of sole, gives an unusual degree of steadiness to the bird, highly conducive to its remaining very long in one position. Thus we see that the foot of the Kingfisher, which at first appears so very imperfect, and so totally useless for ordinary purposes, is that which is most of all suited to the habits and the wants of the bird. The Bee-Eaters, like the Swallows, feed upon the wing, yet, unlike those birds, they never perch upon the ground; at least we can affirm this of the European species (Merops Apiaster), whicb visits the island of Sicily every year in great numbers, and remains for near a month, on its passage from Afriea to middle and southern Europe. During this period we have sought fer many years every opportunity of detecting these birds in their resting position, but never were successful iu finding them otherwise than on the tops of the olive-trees, where they rest immoveable until they again dart off for another long excursion. It is indeed obvious that they could not walk, for their feet are much the same as the Wood Kingfishers (Dacelo), with this ouly difference, that the three anterior toes are difided the whole length of their last joint, the scales being rather more conspicuons."
In the second volume of the same work Mr. Swainsou speaks of the Halcyonilde, or Kingfishers, as obviously connected with the Meropilet, next to which he arranges them. These comprise, he observes, several well-marked genera, agreeing among themselves in the great length of their bill and in the extreme shortness of their feet. These characters, he adds, it is true, belong also to the true Bee-Eater; but a remarkable difference in econony is developed in the Kingfisher. "We have seen," continues Mr. Swainson, "that the Goat Suckers, Swallows, and Bee-Eaters traverse the air to search after and pursue their prey; their wings are consequently sdapted for loug and continned flight; but the family before us have a different economy, and therefore a different organisation. The whole of the genera are sedentary, watching for their food from a fixed station, which they only fuit as soon as their prey approaches sufficiently near to come within the sweep of their wings; if unsuccessful in their first attack they do not pursue their game, but return agaiu to their post, and patiently wait for another luckless straggler; if their first attack is successful they retura with their victim to the same station, and then proceed to swallow it. Every one knows that these are the habits of the European Kingfisher (Alcello ispula), and travellers affirm that the Kinghunters (Ifalcyont) pursue the same method in the forests of the Old World. But it has unfortunately happened that systematic naturalists, totally unacquainted with the natural habits of the other genera (nearly all of which are confined to 'rropieal America), have fancied they were clinabing-birds, and have consequently placed them in other orders whose organisation and economy are widely different. Thus the Jacamars iu the 'Redne Animal' are placed after the Hornbills, and the Puff-Birds (Tamatia) are associated with the Cuekoos."
The following eharacters are assigned by Mr. Swainson to the Ifalcyonide: - Wings rounded, not formed for rapid flight. Feet very feeble. Toes in pairs. He makes the family consist of the following gencra and sub-genera:-Genus Tanutia, comprising Tamatia, Cuvier; Capile, Viellot; Lypornix, Wagler; Monassa, Vieillot; and Brachypetes, Swainson. -Genus Halcyon, Swainson, including Dacelo, Leach; Malcyon, Swainsou; Syma, Lesson; Todiramphus, Lesson; and Cevx, Lacépède.-Genus Alceda, Linnens, comprelending Alcedo; Ispida, Swainson; Tanysiptera, Vigors; and Alcyone, Swainson.-Genus Lanzrotila, Swainson.-Genus Gallude, Linneus (Brisson, we suppose, is meant; Limmens has no such genus).

Tamatia (Tuff-Birds).-Dill straight, compressed. Nostrils defended by lorg stiff incurved feathers and bristles. Rictus strongly bristled. Toes versatile, as in Cuculus. (Swainson.)

Under the article Banarts is a figure of Tamatia macrorhynchas, with Mr. Swainson's description of the habits of the Puff-Birds in generad. In his 'Classification of Birds,' vol. ii., the zame author states that the Hermit-Dirds (Moncessa) lave similar habits, and frequently rise up perpendicularly in the air, make a swoop, and return again to their former station.

The sub-genera he characterises as follows :-
Tamatia.-Bill moderate, thick, conic; tho tip but slightly bent. Tail narrow. Conirostral. T' maculuta, 'Brazil. Birds,' pl. 11.
Capito.-Bill long; the tip abruptly bent, so as to form a hook. Tail narrow. Dentirostral. C. leucotis, 'Brazil. Birds' 11. 11; C. somnolcnius, ib., pl. 9.

Lypornix.-Bill moderate, defended by very long bristles. Both mandibles nearly equal. Wings very short, rounded. Thail narrow. Tenuirostral. L. striata, 'Brazil. Dirds,' pl. 34; L. rubicula, ib., pl. 25.

Monassa.-Bill as in Lypomix, without the basal bristles, but with short setaceous feathers. Wings short. Tail lengthened, and very broad. Scansorial. M. leucops, 'Brazil. Birds,' pl. 12.

Brachypetes.-Bill as in Lypornir, but shorter, higher, and more curved; the margins greatly iuflexed. Wings long. Tail short and even. Fissirostral. B. tenebrosa, 'Brazil. Birds,' pl. 35.

All these are inhabitants of the New World.
Halcyon.-Bill long, very straight, cylindrical ; the sides widened;

 $1-$

 rons: noter

 k reanelo - 1 .

 have io the prote (which jo vers shami), amo loage than the lower manntituc, which is carisaind brow and norex, sad re:t therp wite joint which is liaged in the croore ratuatel of the nefer rambible :

 burkwants lower ajore annot tive ere Eaket. Thims and forath

 estattal rmall apra llesmal
 the isp at the kall to the estransit of the fas! The bill \# Evebes

 (luemin)

A lepmon, who entabliopat thin fram simte that it hatadia the

 3.rolnlunc from ita cr.

 (raiben Nimi, soll trelre in Dumber. Tarsi clongaich, Euserate, and retucalated. (Leavon.)
M. Lessor, who established this natural growp, states that ther lire in the islands of the South Seas. Ther inhanit the womls, and perch almost constantly on the cocos-palme (cucotiers). Their mourishtwent is only couppod of small tites (moueberons), which they seize when the insects come to pitch on the spathes charged with the tlowers of the palus. The islanders name them d-tatare. They were sacred binis, and it was forbidden to kill them vader sevene penalties. Their sinins were offred to the great gol Ora.
T. acer: Alcedo tuia. (in. and Lath; Alcedo sacra, Gon. and Lath. : Sacred King'a-Fisher, Lath. Total length, 8 inches 6 lines; bill, "ll lines from the commissure to the point; tail. 3 inches. Bill black, white at the origin of the lower mandible; summit of the head ouvered with browuishegreen feathers, which form a sort of hood (celotte), separated by a large whise streak which rises on the front, passes sbove the eyea, nad continuea behind the occiput. A large black line (traic) spriugs from the ere, and taking a tinge of green and then of brown, forms a bonler to the white line and circumscribes it. Throat, breast, and all the upper part of the body pure white; a very large, whitizh, demicollar, waved (sinuole) with light browa and rery light chestnut, occupies the upper part of the mantle, and is bondered with black; the back, corerta of the wings, rump, upper part of the tail and wings, are uniferm blojsh-green; the greater yuills are brown and blae on their external bonler; the other quills (remiges moyennes) terminated with brown. Tail Urown below. Tarsi black. The rings extend to the upper third of the tail.

Sacted King'ulisher (Todiramphus sacer).
M. Lesson, whose description wo have selected, snys that the species is very common in the Islands of Otaheite, or Taheite, and Lorabora. It perches on the cocoa-palrns, and the natives call it O-tatare. Jts night is short, and it is not timid. It lires on the insects which the bonied exudations of the cocoa-lowers attract. This species and Prittacm Tahilensis remain constantly on the cocna-nut trees, which form girlles on the shones of all thoze islanda.

Dr. Lathan remarks that his Sinered King's-Fizher has been found in Dusky Bay, New Zenlaud, where it is ealled Ghotark.

Ceys.-Bill entirely straight, long, n little tlattened vertically, th" mandibles of equal height, krooth on their edges, having each a ponnded arite on their middle aml the points equal and blont: nostrila bsasl, oblique, and anall. Third equill the longest. Tail very short, the fathers elightly unequal. Tarsi shert, delicate, witl ouly threo elender toes, of which the two anterior are strongly united, and the hind toe free. (Jeston.)
M. l.asson remarks that the genus is founded on the Ileedo iridac. Byla of Latham, of which the Martis-Picleur de l'ilo de Luçon of Sonnerat is euly regarded as a variets. He also notices the ('ey.r asurea, Alcedo azurea of l.atham, nul) the (eys. Meninting (Alcerlo Birw of Horsfied ?). He remarks that (! acurea mas killel on the edge of the harbour of Dorery, in New Guinen, and that Latham indientes Norfolk Ialaud, anul Ieewin, Port Jackson, ss its linbitats. The C. Meninting (Meninting. Watn, or Burung-Biru of the Javnnese), whieh he conaiders identical with Alechlo Bemyalemis of Eilwnils, inlabits, be asja, the banks of the amall etruams mound the barbour of Jerery, at New Guinea
Dr. Horsefeld acscribea the Burung-Birn as hy no means unconmo: in Java He obeerval it ehiefy in the iuterior, in Jow situations: but it was alao found in tha maritine riatricts Its habita and manners Were thoee of the Enrnpant Kingfisher. It darts in aloort rapid fighta along the eurface numong rivuleta nnd lakes, emitting as it mosea phrill counds in a bigh kry. These monds are so stroug and
acute, that when the bind is near ther strike the car in an unpleasant manner. It is not unfrequently oheersed perched on irees on the bunks of ricule:s, and jts furl cousists of swall fishes and of aquatie insecte ("Zool. Jesearches iu Javin')

Sounerat describes his second species of Kingfisher, from the Isle of Luçn, as abou: oue-thind less than the Kingtisher of Furopes, and as one of the most brillant of birls. The whole head, the neck bohind, the sides of the neck, the back, the rump, and tail, are of a deep lijae; the wiogs inligu-blue, approaching to black, but a brigh aad shiuing border of blue surrouuds each feather; the thront, the ueck, the belly, and the under part of the tail are white; the bill is vers long: of a carmine-red, "dont la nuance est foible," the feet are red; "thato" adds Sonuerat, "which especially characterizes it, is that it has but three toes upon each foot, two before aml one bedizul." ("Vorage a la Nourelle Guinée.')

Le Martin-Dedseur to tile de Tuçon, Ind apecios (copied from Sonnerat's plate, which was mparenty tulken from an iltstuffed specimen:

Mr. Swaiuson refers to this plate, only under the name of Cey. prinlactyla as an example of the genua.
Alcello--Bill very straight, comprosed its whole length; the tip of both mandibles acute, and the upper one not iuclined, commissury perfectly straight: feet syodactyle. all the tarzal seales obsolete; tail rery alort; feet with three taen bufore and one behind, claws sinuple; culmen of the hill sharp, carinated, nul simple; immer mul hinder toes of equal langth. Thespecies indahit only the Ohd World. (Sw.)
A. ifpula, Linn. This is the Vartin-l'eheur of the French; and also Pescheur, Martiuet Jescheur, Tartarin, Irtre, ani Moudier,
 tare ded Ite, Naruzu l'escatoro. L'retlo dl Siasta Marim, and Vitriola,

Whesber tho almeciee ta ono of the hirda named "AAxtair (Halcyon) or Ahaven (Aleynot-for wene of the learmed doubt whether the wonl
 meane ralupmerily made out though the better opinion meesin to te that it it the inamis sterei of the lireak poologine. Jolon asd
 (asal liamon meeran to arew with therta), conaioler it an douhtful which of cor lanlo wan theant by the Haleron of the ancient, whome acten fderellayn whe lireoling over ita fuctical floating nent have become revieptend

It the the folluwing chamactern - lith blackinh-brown, revlifinh at the fere. Ih bund each ere to a patch of light omnge-brown, succeerled by a Whie vibe: from encla comer of the under umadible procects a difolk of verliter-blue, tingel with verdigriagreen; crown of tho beed derp olloregren, the fonthem tipped with vertigriagreen; from the anpoe of the aeck to the thil in in Atrijp of verditer-blue fonthern, stonewl in morse aboles with venligringreen: chin and throat yellowishwhite; lement, lelly, and vent onage-bruwn, jalest townela tho ender talleverts; Lail greeninh-blue; the whath of the fenthers tseek: lexe Jule cilo-red. (iselby.)
 otier acs: the eoloura aloo are deejer mud more of a green almade.

Kimptuber (Aleado inpida)

Retiog mile the falle of the flowtur cradlo in which flaring tho Helcgund laya the hirol wa maid to rear ith young, we nhall find that amtbolderive lave difered not a little an to the actual nent of thin Inlimost lime. l'rodant myathat it maken itn nont in holes in the awhen of chefe, Which it moonpen to the depth of 3 fret, nul in holen in the letike of rivere, chiefy thome which lerfore lrelouged to the whter. ras: asul he ntaten the number of the eggn to the from five to nine, of a mone trantiful traparmet white. The meat. he adda, im very fetill.
 $0 \rightarrow \infty$, or Sute lialegon, In which the latter ntatern that it remetnliled
 that if whe bollew within, that the rotrance wan very uncrow, mo that If is ohould rione, the ma would oot enter; that it reaiated any violedre Ifrom inon, but gichlel to a hlow of the hatal, and when thin loroken
 of the thenion (thelane), ana finh ar, uatuvil-for the biril liven of find. Aravende thotis ceate ilim mumier of rigen at fiveor therealrouta (" 11 int.

 Uast mueh of tho dracrijution atoose quitod wertian follofimbled on troib. Tha form of them neat, be retnaske, agroves alenont cenctly with ubo curiemse ecromint of it ty coult Zannam. "Tlic anatoriala, which

 oterve it itrowel with the lewm nati matra of fiols, the fragmenta of the fored af tho comper asml the goung, asbit theon whon dray that it in in bed bleb fromernata the ma suat bort confino their illean to our

 chitese. Arougela mole hue rofmerratione in the rant, and allown that

 hatch. roiarto for the matro flanc to lay m mecriol sima." Siuw, it will

given a very good deacription of tho excavated hole, he apenks with cantion of tho collection of finh remainm therein; for though, hemays, of tho "neaglie di jreci" with which the nest wha covered, "reatrano vagamento introcciate," he ndim, "mar forsie non tono cosi disposto oul arto, lrenal per accidente," showisg that he thought their disposition about tho neat wan prubably more the result of accidont than denigts.
Muntagu, in hia 'Ornithological Dictionary', Raya that the bird Eencrally taken possension of a rat'a hole to deposit its eyga; he then pruceeda an followa :-"The many curioun necounta which havo been given of the nest of this binl induced ua to tike some pains to dincorer tho fact. Tho renult of our researches are (is), that the hole chosen whreed in io alwayn ascending, and generally 2 or 3 foet in the bank; at tho end in mooped a hollow, at the bottom of which is a quantity of amall fish-wones, nearly half an inch thick, mixed in with the enrth. This in undoubtedly the castings of tho parent bind, and not tho yonng, for we lave found it even before they have egyn, nod have every remon to beliere that both male and femalo go to that spot, for no other purpose than to eject this matter, for nomo time before tho femalo begin to lag. nnd that they dry it by tho heat of their bodios, an they are freguently known to continue sia the hole for hours, long before they have agga. On this dingorged matter tho female lays to the number of neven egg, which aro jerfectly white and trauparent, of a noort oval form, weighing about one dram. The hole in which they breed in by no means fouled by the castings; but before tho young are able to fly it lecomes extremely fetid by the feces of the brool, which is (are) of a watery maturo, and cannot be carried awny by the parent birdn, as in common with most of the amaller apecien. In defect of which, instinct has taught them to have the entrance of their labitation ascending, by which means the filthy matter mins off, and may frequently be seen on the outside. We never could obervo the old linda with angthing in their bills when they went to feed their young; frum which it may beconcluded they eject from their atounch fur that purpose.
Mr. Selby, nfter noticing the ejection of bones and other indigestible parta, in pelleta, by the mouth of these birde, goes on to ntate that they breed in the banks of the atreams they bunt, either digging a hole themelves, or taking possession of that of a water-rat, which they afterwarels colarge to nuit their convenience. He then proceeds ns follows:-"The bearing of the hole in always diagonally upwares, and it pierees two or three feet into tho bank. The aest is composed of the nowe mentioned pellets of fish-bones, ejected into a small cavity at the farther end of this retrent, and upon which the egga are Inid, to the number of six or seven, of a tmaspareut pinkishwhite." He then quotea the remarks of Montagu on the sloping direction of the hole, and the use of that direction in carrying away oflemaive matker. ("Illuatrations of British Ornithology", vol. i.)

Mr. Rennie, in hia edition of Montagu's 'Jjetionary, observen, that from the ligh authority of Montagu, the descrijtion above given has lwen copied by erery recent writer, with thoexception of Temminck," Who asyn nothing on the suhject, nud Wilaon, who saya ("Am. (Irn.; iii. (0) (), of bim lelted Kingfisber (Alcelo Aleyon), that "its nent is neither constructed of glue nor fish-bones" Mr. Rennic then proceedn thum:-"We are certain of the fact that thia will apply equally to our own kingtisher. In the bank of a stream at Lee in kent, wo linre been acquminted with one of these nests in the anme hole for everal anccessive nummers, but no fror from the exurice of fish-bonea ejocted. as in done by all hirds of prey, being dried on purpose to form the neat, they are neattered about the floor of tho hole in all direction, from ithentrame to ita termination, without the least onder or working up with the enrth, nud all moint and fetid. That the eggs inay by nceilent be lnill upon portion of these find-bories in highly frobalile, an the floor in mo thickly strewed with then that no vacant Ajut might the found, but thoy nasuredly are not by design built up into a neet. The holo is froun 2 to 4 feet long, eloping upwarda, narrow at the entrance, but widening in the interior, in onler perbapa to give the bints room to turn, aud for the anme apparent reanon tho egga are not placod at the extremity. I nm not a littla sceptical na to jtn momotmen melecting the old hole of a water-mb, which in the deally caemy to ite exge and young; but it acoms to indicato a dialiko to tho labour of digging. It fremuents tho ramo loble for a series of yeara, aud will not abandon it, thougld the neat be repeatedly plundered of the ergm or young. The accumblation of cant-lonnes in one of them old holos has Irerhapngive origin to the notion of the nest being formed of them.'

Mr. Gould, in him "Birds of Eiurope," atates that tho egge aro dejromited in a holo, xuch the thone nbove allinded to, ly the fernale, without making any newt.

Small fiab, much an stickleloack and Minnow, form the food of the Kingtaher frincipally, but M. Temminck nul Mr. Jennie say thant the bind will nlyo cat fry or spawa (frai), blugn, worme, and leechea

It aita immovenble on norno overhanging twig, watching for its
"Mat Trmminck (' Manuel," 1420) pays that the bird nentem in bolea in the marth, mona frequently in thone mbandency by the water-zate, along the abrupt hanke of rivera, mifirs under the romb of treen, in the hollows of treen, sad *omerime in the holen of rucke, and that it layn from nix to cight eggs of a luatruve white.
prey, and when it has secured a passing fish by n sudden dash, beats it to death against a stone on the ground, aud then swallows it. At other timea it will hover suspended over the water, and dart on its prey, but the bird usually makes its nttack from a station. The editor of the last edition of Pemant states that it has been seen balancing itself over the water in which a great many of the amall, round, shining beetlee were swimming swiftly in circles (Gyrinus natator?), and which it makes ite prey.

This species, when adult, appears to be mute except nt the geason of pairing ; but the young are very clanorous, and frequently betray their retreat before they leave the nest-which they do not quit till they are fully fledged-by their cries. Before they provide for themselves, which they soon do, they sit on some branch while the parents fish for them, and on their approach with food are very noisy.

The flight of this bird is most rapid; it darts by like an iridescent gleam.

Temminck states thint Alcedo ispida occurs more in the sonth of Europe than in the north. Io Holland, he says that it is not widely spread. Mr. Selby says that it is generally dispersed through Europe, and that our birds differ io no respect from those of the same species in Asia and Afriea, as he has had an opportunity of examining specimens from both continenta. M. Temminck observes that the most common of the three species of Kingfisher must not be confounded with our A. impida, though it differs but littlo from it. The Common Kingfisher is in resident with ua, as it is in Italy and other European constries. Mr. Gould Bsys that the young in the British Islands sppear to have habita of partial migration, as they wander from the interior along the rivers to the coasta, frequenting in the autumnal sad winter monthe the mouths of small rivulets and dykes near the sea; but more particularly along the line of the southern coast and the shorea of aljacent-inlets. We may here remark, that in the "Portraits d'Oyseaux" of Belon, the following quatrain is jrinted under the cut of the Common Kingfisher:-

> "Le Martinet-Pescheur falt na demeure Fn temps d'hyrer ao bord de l'occan: Et en eaté aur rivlére ou eatan : Et de polsson sc repaist à toutc heure."

It may be imagined that a bird of which so many marvellous storics have been told, under the idea of its being the Malcyon of the sncicnts, whose so-called nest, the Halcyoneum, was aupposed to be endowed with medical properties, did not entirely escape the attention of the superstitious moderns. Thus its dried body was said to preserve woollen cloth from the moth, and if suspended by a thread from the ceiling of a room with doos and windows closed, to turn its bill towards the quarter whence the wind blew.

Barabas, in Marlowe's 'Jew of Malta,' enys-

> " But now how stands the wind!
> lato what corner peers my lialcyon's bill?
> Ha! to the east ! ges."

Kent ('King Lear,') when, in his answer to Cornwall, he is rebuking gach 'slavea' ss the 'Steward,' declares that they-

> "Reapge, affirm, and turn thelr Ilalcyon beaka With every gale and vary of their masters."

Mrs. Charlotie Smith atatea that ahe once or twice saw a stuffed bird of this species hanging from the beat of a cottage-room na n weather-vnne to show the way of the wind. It has lately been acen in a similar position at lootleg near Southampton. In the same part of the country some of the common people faney that if a dead Kingfiaher be auspended hy the bill it will turn its breant according to the ebbe and flow of the tide. The bird was also aupposed to be a protection againet thunder, to increase hidden treasure, to bestow grace and beauty on the person who earried it, and to renew its plumage, dearl as it was, every season by moulting.

With reference to the question na to what opecies was meant by Aristotle, the resder ahould be aware that another Kingfisher, Alcedo riulis of Linneun (Iypida (?) Swainson), occurs in the islands of the Grecian Archipelage, though Africa nnd Aaia nppear to be its more particular localitiea, I'he species is figured in Mr. Gould's beautuful work on the "Birds of liurope.'

Iopida-IIabit of Alcedo. Culmen obtuse, somewhat flattened, and margiped on each side by an indented groove. Tail longthened, mounded. Inner toe much longer than the hinder. Claws either deeply notched, or eleft, eo as to present two acute unequal points. (Swainson.)

Geographical Distribution.-Chiefly the New World, (Swsingon.)
Mr. Swainson, who, in his "Clasaification of Birds,' gives the habitat above staterl, describes two apeciea, Ispida giganfea sud I. bicincta, in his birds of Western Africn. Ile statea, and with reanon, that among the lngest-sized Kingfishers that have long been imperfectly knowu and incorpornted in our ayatems, there is the greatent canfusion, not only as to the characters of the hirda thenselves, but likewise in regard to their native conntries. We lave therefore, kunwing the aceracy of Mr. Spainson'e pencil, copied his figures of /Ialcyon cinnamomina, Ispida giyantea, and Alcyone Australia (the latter from Mr. Swainson's figure in the 'Zoological Hlustratione,' with the aid of a pecimen in the Musen of tho Voolegical Society of London), wat. Hist. HV. vof, HI.
as the best, if not the only mode of coureying to the realce the forms that he would designate under the names of Ifalcyon, Ispida, asd Alcyone.

Above, cinereous, spotted with white; chin and cheeks white, immaculate; breast with a broad rufous collar; head above black, crested behind.

It is a native of Senegal.

Tanysipierc.-Bill rather short, eomewhat thick, straight, acute; nostrils oval. Tail graduated; two middle tail-feathers lougest. (Vigors.) Mr. Swainson gires ludia as ita labitat.
T. Dea; Aleedo Dea, Limn. ; Ispide Ternatana, Briss. Above, intense blaek azure, white bencath; head and wing-coverts cacrulean; tail-feathers white margined with eacrulean, the two middle ones carulean, with their apices club-ehaped and white. (Vigora.)

Alcyone-Bill as in Aleerlo; but the feet with only three toes. Australin. (Swainson.)

 - Lere 1: in egurrol atsil itra mionl ma ill ado nearria)

Ary the Allogtafis.
I: fe fontrel in Auntrulia

 trea- foren the leranclace of which it darth on its jorey in the water leberelho and in wravetures completely immerned by tho velocity of itn ibewar
 Ahntal; the cormanaro azol culmea curval; the upper margina fablugg over the liwer. Nuntrin membenuaceous; the nyerture nombl,
 and finl quille cural. (Sumerly.)
I. shightimeha.

by sher gnound being menwed with the beantiful wiags of their victimg the Indy mono of which they devour."

Mr. Swainem further obarven that in all the gronps of thin family previoumly noticed the bill is invarinbly comprensed on the sides, and kencrally of conaderable length: but iu Gublende grandis a change from thin meructure in fint dincovend, and we nee a bill considerably booml and depremeel; that charactes, in short, which is in unison with the next fanily, acconding to Mr. Swainmon'm arrangement, mamely, the Trogonidir.

1; jumulisea, Swallow.Tailed Kingfaher, Folw, ; Paradise Jncamar, Lath. Sizo of a lark; colour golden-gneen; throat, neck, nnd lesser wing eoverto white; lieal violaceola hown; bill and feet, tho latter of which are finthered to the twes, black; two intermediate tail. feathery longeat.

It is a native of Surinam.

HALD'SLA (named in homour of Steplen Hales, D.D., author of "V"getable Staties,' de.), ingenus of llauts belonging to the natural orier Nypacerr. It has a monoputalous corolla ventricosely campanulate, with a 4-lobed erect bonier; the stamens 12 to 16 ; flaments cumbined into a tube at the lense, nud alnate to the corolla; the anthetw oblong, erect, 2 -celled, delliseing lengthwise; the ovary inferior; that aty aingle; the stigna simple; the fruit a drupe, which is dry, ohlong, with $2-4$ winged anglen, terminated by the permmnent style; the celle 1 -nceded, with the perdn at the bottom of the cells. The
 jurlicellnte drooping white flowers. Thingenus has been made the byte of ma criler Hatesiacea by D. I hon, who is fullowed by Link and nitiers.
II. Primplera, Common Snowdrop-Tree, lins ovate, lanceolale, mumbinatol, almply norrated leaves; the fruit with four winga. Thia dant in a tree, growing from 15 to 20 feet high, and in a native of woth Curolim. It han fine white flowers, from 3 to 10 in a fascicle, Jrmoping nixd rememblimg thone of a mowdrop. The wood in hand and weined. It in onn of the hameat and also one of the bambament uf tho Americati Jechluoun tren. The rate of growth for the first fivo or in yearm in froms 12 to 18 inches a year. It ripens its seeds frecly in thin country, and it may be propagated from these or imported nealn There in nuther npeeies, F. diphera, which is also an American Hant, but Jover not ntta in to great a height sa the last. M. parrifora in a mative of $1{ }^{\circ} \mathrm{lorida}$, and in nujprosed liy some botaninta to be merely a manall dowervl varinty if the firat. They will grow in any common garden mill, amiluny be projugnted by alipm from the root, ns well as from nevda.
(Ihn, Dichlamyilcoun Mants: London, Encyelopatia of Treen and Shrmba.)

HALFFHBAK, [F゙nox.]
HAI.I.JE:TV゚S. [FAB.cosid.e.]

 [Jomernes]

Halidnys. [Fucacer.]
Ha'LieUS. [Pelecanide.]
HALIME'DA, a portion of the genus Corallina, Lina., for which Lamarck had used the name Plabellaria, is thus styled by Lamouroux. ('Exposition Méthedique des Genres.') The artieulatious are flat or compressed, rarely eylindrieal, almost always flabelliform; the axis fibrous, surrounded by a thin cretaceous substance.
halimus. [Maiads.]
HALIO'TIDA, a family of Gasteropodous Mollusca, to whieh the ohells commoaly called Ear-Shells, or Sea-Ears, belong. Mr. Swainson, in his first series of ' Zoological Illustrations,' observes, when writing on the Small-Holed Californian Ear-Shell (IIaliotis Californiensis, 1820-21), that "the definitions given by conehologists up to that time were so imperfect that they had left our knowledge of these shells nearly the same as in the time of Linnacus. Seventeen speeies only are enumerated in Mr. Dillwgn's work; although thirty-four have fallen within my own observation during the last few months."
Linuacus, who records the saven species known to him under the generie appellation of Haliotis (Sea-Ear), describes the animal as a Slog (Limax), and the Shell as ear-shaped and open (pateas), with a lateral hiddea spire, and the disc longitudinally pierced with holes (poris). He places the genus between Nerita and Patella.
Cuvier, in the first edition of his 'Regae Animal' (1817), makes the Ormiern (Haliotis of Linneus) the first genus of his sixth order of Castropods, Scutibranchiata. [Gasteropoda.] He observes that it is the only genus of the order which has its shell turbinated, and that among these sort of shells that of the Ormiers is remarkable for the excessive amplitude of its aperture, its flatness, and the smallness of the spire, which is seen from within. This fortn, he alds, has cansed it to be compared to the ear of a quadruped. Cuvier dividea the genus into the following sab-generd:-1, the Haliotids, properly so called (Haliolis of Lamarck); 2, the Padolli of De Moutfort; 3, the Stomatice of Lamarck. The Ormiers are immediately followed by the Cabochons (Capulus of De Montfort-Patclla Mungarica).
Lamarck ('Animaux sans Vertèbres,' 1817) arranges the genus Haliot is, which is immediately preeeded by Stomatia, as the last geaus of his Macrostomes. The following is his definition of /Ialiotis:-
"Shell ear-shaped, most frequently flattened; with a very short spire, sometimes depressed, nearly lateral. Aperture very ample, longer than it is wide, entire in its perfeet state. Dise pierced with holes disposed on a parallel line near the left-hand border, the last commencing with a notch.'
The same zoologist makes the following observations on the genus as restricted by him :-"The Haliotids constitute a very beautiful genus, rather numerous in species and remarkable for the singular form and the brilliant naere of their shell. They havo received the name of Sea-Ears, because they in fact represent sufficiently well the form of the cartilage of the ear in man. Their shell is an oval-oblong, flattened in general, slightly spiral near one of its extremities, and furnished with a row of holes disposed on a curved line near the lefthand border and parallel to it. As the animal increases in growth, it forma for itself a aew hole on the edge of tho anterior part of the shell; this hole eommeuces with a notch which sarves to give a passage to the siphon of the animal, and is afterwards completed; when another is formed posteriorly. In its natural situation, and when the animal crawla, this shell may be considered as a reversed basin with its convexity upwards. Its circumference is then considerably exceeded by the very large foot of the auimal, and the spire is found on the posterior part of its boly. Following the description of the Ormier (the animal of the Hatiotis) given by Adanson, I had supposed that the branchise of this animal were exterior, like those of the Phyllidians: bat M. Cuvier lass undeeeived me by showing me that they are hidden in a particular cavity. Maliotis therefore belongs to the family of Macrostomes. With regard to the tentacula, it has not perhaps really more than two. But as it is not uneommon (assez frequent) among the marine Trachelipods to find the eyes carried each upon a tubercle which springa at the external or posterior base of the tentacula, these tuberclea are apparently more elongated here than elewhere : in this case the two larger tentacles are the saterior ones." Lamarek records fifteen spoeies, including IIatiotis dubia.
Mr. Swainson ('Zool. Illustr.,' lst series) remarks that "the genus Padollus of Montford (De Montfort?) restiug entirely on the unevennems of the outer lip, without any knowledge of the animal," appears to him an unnecessary distinction, for such, he observes, is the character of all young shells, sud also of mature ones, whose outer surface in rugged or uneven.

De Montfort (1810) gives the following generic characters for Padollus:-Shell free, univalve, in the form of so ear, piereed with one or two holes; aummit spiral, flattened, dorsal ; aperture oval, wide opea (évasée), entire, perpendicular; left lip reflected and treachant; back covered with an epidermia, having a gutter in the middle and in the direction of the spire. He gives as the type of the genus Padollus rubicundus, and proceeds nearly as follows:-"In armanging this ahell as intermediate betweea the Sigareti the Stomatior and the Maliotides, we consider that we have been able to eatablish upon it a new genus. Sufficiently similar to the Iraliotides by its general contour (l'ensemble de sea formea). it in in aome manner nevertheless approximated to the Stomatic, inasmuch as it has very
few holes; but it presents, more than almost any of these shells, is spiral gutter, hollow in the interior, elevated on the back, placed in the middle and curved in the direction of the spire. This hollow, or gutter, is iadependent of the curved and serial line of holes, which are nearly all obliterated. The right-lip is nlso more opened out (s'épsaouit aussi d'a vantage), it juts out and festoons (festonue) over the left lip towards the summit, and to the height of the spire : the interior offers au irideseent and undulated naere. Exterually it is of a briek-red, and the summit, io consequence of losiag its exteriorcaleareous and coloured coat, is nacreous. The back is finely striated and reticulated, and the suceessive periods of growth are very strongly marked there. There is no doubt that the obliteration of the holes of the Padolli are a consequenee of the absence of some organs, with which the Haliotides must be eminently provided, and it is even probable that the single hole which notches their border serves duriug the life of these mollusks to lodge a fold of the border of the mantle, rolled into a tube and serving for rospiration; a tube which we shall find anong many of the spirivalve mollusks."

Considering the time at which De Montfort wrote, there is much good reasoniag in this passage; it mnst be recollected that he evidently gave his deseription from a young shell; for he says iu the course of it that the shell sometimes reaches more than an inch in its greatest diameter.

Dr. Leach (1814) adopted De Montfort's distinction and name. The doetor says that this genus is readily distiagnished from Naliotis (Eir-Sheli) by the irregalar form of the outer edge or lip; the dise, he adds, has fewer perforations and the spire is placed farther ou the back. He states in conelusion that the animal is unknown, but is probably not very unlike that of the Ear-Shell.
Mr. G. B. Sowerby ('Genera of hecent aud Fossil Shells'), observes, that with the exception of a few that are commonly kuown by collectors and Limneans as Imperforate Ear-Sthells, the genus IIaliotis has not wuffered any dismemberments. "Au attempt," eontinues Mr. Sowerby, " has indeed been inade by Moutfort to separate from the genuiue IIaliotides two or three species uader the name of Padollus, in which he has been followed by Leaeh, but as far as respects general adoption this atteupt sppears to have been as uasuccessful as it was unnecesssry. Not so the separation of the Imperforate IIaliotides, which are easily distinguished by wanting the row of perforations so very charseteristic of the true Maliotis."
The Otidea form the first family of Scutibruncliata, the third order of Paracephalophora Ifermaphrodita in M. De Blaiuville's arrangement ('Manuel de Malacolugie,' 1825.) The frst genns of this family is Inaliotis, divided into four sections, and including the genera Padollus and Stonatia.
M. Rang ('Manuel,' 1529) continues the Ormiers (Macrostomes of Lamarek, Otidea of De Blainville, Auriformes of Latreille) as the first family of Scutibranchiuta (Curier); but he makes it consist but of oue genus, Haliotis (Linaxus). The genus Stomatia of Lamarck he places under the sigarets of De Férussac, as well as the genus Slomatella of Lanarek, which he seems to consider as including the Podollus of De Montfort. The Sigarets in this arrangement are made to form the niuth family of the Pectinitranchiata of Cuvier.

In Cuvier's last edition of the 'Regne Animal ' (1830), the position and arrangement of the Ormiers remains as in the first edition, with the exception that in the last edition the Scutibranchiata form tise eighth order of his Gastrupods.
In the preseut state of our information it will pertaps be as well to select the arrangement proposed by Cuvier, aud in great measure alopted by M. De Blanville. M. Kang, in his description both of stomatella (including Patollus) and Stomatia, says, "Auimal unknown."
Malic'is (properly so called; Hatiotis, Lambrek).-Animal.-One of the most ormanented of Gastropods. All round ita foot to its mouth there is, at least in the mure common speeies, a dunble membrame cut out into leaflets (feuilages), and furnished with a donble row of filaments. On the outside of its long tentaleles are two cylindrical pedieles for earrying the eyes. The rasutle is deeply divided on the riglat side, and the water, which passes by means of the holes in tho slell, can, through this slit, penetrate into the branchial cavity; along its edges again are also three or four filanents, whieh the animal can also canse to come out through these holes. The mouth is a short proboseis. (Cuvier's description for all Gmelin's IIatiotidces, except II. imperforata and 11. perversa.) Borly oval, very much depressed, hardly spiral behind, provided with a large foot doubly friuged on its circumferenee. lleal depressed; tentacles a' little flattened, joined (connes) at the bare; eges earried on the summit of prikmatie peduncles, situated ou the external side of the tentacles. Mantle very delieate, deeply divided on the left side; the two lobes pointed, forming by their junction a sort of canal for condueting the water into the branchial cavity situated on the left, and inelosing two very long, unequal, peetinated branehize (peignes branchiaux). (De Blainville.)
Animal oblong, depressed, furnished with a large head and a short proboseis, at the extremity of which is the mouth, eontsiaing a tongue armed with points (siguillons); teutacles two, long and cylindrical; eyes on pericles, implanted at their external base, a little baekwards. Mantle short, deliente; foot very large, oblong, furbished all round with a double row of festoons agreeably cut out or pinked (dewoups).

 ousul ("Canaloure, lialkry, rul. it
Shell oscrova, very much impreamel, trote it lean ornd, with a very

 priese or nmwarplofe bulter, paraild to the lefs aille, merving for the
 Lar icoptreainu, tumbials, anl wal. Ile thamillec.)

A. conmiotug of afecine whace dime in pomblof furwands nud piercel with a merim of holea, vary huch in alze and aliape.
The gerneral forsu may be imagined from that of Infolivis tulerculata,

Malwedu emberniada.
a, animal and abell; by hiserber of abefl.

Haio Pes rinataforo.
anderempere of thorip amers

 F-rary

 at liversacy nad depsey, wad han keen found (that in, the sheld) on the
 that, ab the prement evidente, thim наecien cannot with propriety be conamileral a antive of unr own coanta, thought the dead shella are oonctimes thrown up on our nouthera hhores after violent storns.
 opercula, adtere, like the frateller, ley applying thoir under parte to the surface of the moka 'Thoy are generally found wear the water's ealge, nal, according to Lamarik, go during the fine summer nights to feed on the herbage which grows hear the shoure.

An an article of foul thin genus is by wo means to be despiaed. Wo hare eaten Ilathotis tuhct chlata. nad when served by ugood cook it is tender and ampil. The large lealy fout, if not properly ynanged, is upt to be tough. The jrople of Guerney and Jersey ormanent their honses with the shally of this specien, clisposing them frequently in quincunx order, and plaeing them so that their bright interior may catch the raye of tbe sun. We have often thought that some of the largo abl mpletalit intertropical specied, whose exterior, after remoring the outer coat, tuke a prolishamost equalling the matural brilliancy of the insidu, might be converted into disles for holding fruit: if mounted with goul taste, their indescribnble iriderence would materially add to the richnefs of an elegant table. As it is, the nhells of H. tuberculafa are extensively med for making mother-of-pearl ornauments, expecinlly in ormamotiag lapior mache articles. For this purpose greab quantities are taken to lyirmingham.
13. Species whose disc, besiden the series of holes, is mised by a large parallel rill, hollowed interiorly, and whose anterior border is mone or lass irncgular.
I'mbllus (De Mont fort).-M. De Blainville refers to Maliotis canalictlatf (limuncck), as the example. The figure in Knorr, referred to by lamarch, is red externally, and has the elevated rib; but the shape of the nbell is longer thun that of Palollus scalaris (Leach), and of other f'udulli which we lanvo neen. The specimen reconled by Dr. Gray in the Appendix to the "Narrative of a Survey of the Intertropical and Wustem Coasts of Australia, performed between the yara 1515 nud 1820, by Captain lhilip Parker lining, R.N., F.R.S., "tc.: vol, ii., nad which Mr. Gmy notices an the largest he ever saw, measurnl $3!$ by 21 inclies We have seen the shell, and never saw ma larger a specinuri. Ir. (iray records it as Padollus rudicundics of 1he Montfort, with the synonyms of Padollus scalaris, Leach, and Haluotis tricosfulis, Lamarck.

Padolius rubicmadws (?).
Lamarck, on the authority of M. Leschenault, asys that his Maliotis wicomalia inhabits the seas of Java . The fine specimen brought to lingland hy Captain King was found upon Rottnest Island, on the west const of Anstralin, sual is now in his cabinet. It has only three loles, the anterior onea, open. All, both those which are closed and thows which are open, are very highly elevated, and so is the curved lougitudinal rib. The laft honher externally is very much raised and nodulnum, looking nt first might ne if it had anculaer row of holes which lad leen closed; lut it was evidently always imperforate.
C: Specios whore dise is not piereed, but hollowed longitudinally by a lecurrent canal.
M. We hainvillo siven an un exmmple of his section C. Jaliotis dubia of lamarck. It will be char to the observer that the aniumal proteoted by mach mhillm the tho next, must exhibit some differences from that of a true Jaliotis.
11. Specien Whone dine is not giereed, and which offer the two gutters toredier, hat mproximated, no as to leave extermally a decurrent rib hetwern then.
Stomatia (1.amarck).-Cirvier, who says that the animul of Stomatia in much lerm ommasonteil than that of haliotion in of opinion that this form conmucta the IVahutides wjh certain Tarlinea.

Mr. (i. Sowerby (' (ingurat of Recent and Forsil Shellm, No. xix.) abnersis that lamarck, in hin olporvations upon Stomatella, tella ns that in rearect to thoir gencral form those shella ajpear to be nearly rulated to the sfonatre; and that they are prineipally distinguiahed ly the tranamerno ridge and tho elevated outer lip of the stomatia. l pern a rareful "ammintion however of tun meciea, Mr. Sowerby was malile to dincover nay diffrence in the onter lip; Aus he remanks

 verne ridyer. ly which tho dater clarnetarisen Siomatia; no that Mr. Suwerby duen nut lind any gencric difference whatever, find has there-
fore united the two Lamarekian genera under the appellation Stomaiia. He thus eharacterises the genus thus reformed:-Shell pearly within, mostly coloured externally; suborbicular or long, generally ear-shaped and depressed. The spire, in most species, prominent but not produced nor elongated; sometimes very small, marginal and inconspicuous. Apertare mostly longitudinal, in some species nearly orbieular, in others much elongated, slways very large; its edges entire, united at the upper part, and scarcely modified or altered in form by any portion of the last volution. Volutions from two to four. Muscular impressions two, seldom distinct, nearly marginal, and in the open part of the shell.

Mr. Sowerby goes on to state that Stomatia appears to be related to Haliotis, and is therefore rightly placed by Lamarck among his Macrostomes. One of its species is arranged by Linneus, he adds, as a IIaliotis, under the name of $/$. imperforati (Gmel.). Mr. Sowerby does not pretend to diseuss the question of their resemblance to Lamarck's Turbinacees; but only observes that in general form some of them approach very nearly to some of Lamarck's Monodontes. The Stomatie, he states in conclusion, are marine, sud he says that all the species he has seen were brought from the East Indies aud Australia.

Stomatia has been found at a depth of seven fathoms, adhering to Meleagrince and corals.

The following genera are referred by some writers to Maliotide, Broderipia, Scisurella, Pleurotomaria, Murchisonia, Trochotoma, Janthina. [TCHBiNid.e; Janthinid.e.]

HALISPO'NGIA. According to the structure and composition of the numerous species of Spouges, they may be divided into genera If, in accordance with the observations of Dr. R. Grant, we cousider sponges in three groups, one having a horny tubular structure, another containing calcareous spiculx, s third containing siliceous spiculx, we may adopt the three generic types, Sponyia, Culcisponjia, and IIalirponyia, of De Blainville.

Malispongia is thus characterised :-Mass more or less rigid or friable, of irregular figure, porous, traversed by winding canals, which eud in openings scattered over the surface; substance subcartilaginous, supported by simple siliceous epicule.

The species exhibit various external forms, encrusting, branching, or foliaceous. Dr. Fleming includes them under the title /falichondria. [Sponghadz]

HALITHE'A, a genus of marine Dorsibranchiate Annolids belonging to the family A phroditide. [Anselidn.]

HALKET, a kind of Seal. [Phocids..]
HALJI'RHOA, the name proposed by Lamouroux for a group of Fossil Polyparia, referred by many writers to Alcyonia. The spheroidal figure, contracted base, deep central pit, and pores on the surface, appear the characterż most relied on by Lamouroux. Goldfuss gives characters for the genus Siphonia of Parkinson, which may include the two species mentioned by Lamouroux from the vieinity of Caen and the Vaches Noires Hallirhoa costata of Lamouroux is found in the Greensand of Normandy and Eagland.

HALLOYLITE, a Mineral named after Dr. Omalius d' Holly, a French geologist. It is a hydrous silicate of alumina. It occura massive and earthy, resembling a compact steatite. It yields to the uail and may be polished by it. It has a white or bluish colour. Adheres to the tongue, sind small pieces become transparent in water. It is found at Liege aud at Dayonno in France. It has the following composition:-

$$
\begin{aligned}
& \begin{array}{l}
\text { Silica } 39.5 \\
\text { Alamina }
\end{array} \\
& \text { Water. } \\
& 34 \cdot 0 \\
& 26.5
\end{aligned}
$$

HALLOYSITE. [Halloybite.]
 HALMATURUS. [Kavgaroo.]

HALO'DROMA, Illiger's name for a genus of Sea-Birds allied to the l'etrels and Albatrosscs. [Larid.e.]

HAL, O^{\prime} NIA, a genus of Fossil Plants, allied to Lepidodendron, and occurring in the Coal Formation. [Coal Plants.]

HALORAGA'CELE, Hipurids a small group of Exogenous Planta, many of which inhabit watery places, and all of which have minute inconspicuous flowers. In consequence of the calyx being superior, the embryo without much albumen, and some of them laving four petals, they are often considered to form a peeuliar section of Onaru. cere, or if separated from that order, are at least stationed in the immediate vicinity of it. Upon this sapposition, they are looked upon as an imperfect coudition of the Oasgraceous type, bearing the samo relation to it as Sanguisorbere to Rosacee, Chamalauciere to Myrtacea, or Minosece to other Fabacert. But in the present uncertainty regarding the true affinity of many natural orders of plants, we must not consider this a settled 1 wint. On the contrary, it is not improbable that IIalorayacee constitute an imperfect form of the great Epigynons.group of Exogens, of which Gnugracere are only one of the members. What renders it peculiarly difficult to determine the real affinity of this little group is, that as it is now constitnted, it offers striking modifientions of development both in the organs of vegetation and those of fructification. While Halorayis has a stew with a complete vascular organisation, and regularly constructed leaves, Myriophyllum has its vascular system reduced to a rudimentary con-
dition, and in some of the species the leaves themselves appear ouly in the form of filiform ramifications; and in Hippuris, the development of the vascular system of both stem and leaves is still further reduced. In like manner in the flowers, IIaloragis has four petals, eight stamens, four stigmas, and four cells to the ovary; Praserpinaca has no petals, three stamens, three stigmas, aud three cells to the ovary; and Mippuris has no petals, one stamen, one stigma, aud bat one cell to the ovary. This latter genus is a common plant in the marshes and meadows of this couutry, where it is vulgarly called Mare's.Tail.

Common Mare's Tail (Hippuris vulgaris).
1, a single flower, with its bract, much magnified; 2, a vertical section of the ovary, showing a single orule hasqiap from the apex of a single cell; 3, a vertical section of a ripe frait, showing the seed saspended ia the iaterior, and the dicotyledonoas cmbryo.

Damp places, ditches, and slow streams in Europe, North America, Southern Africa, Japan, China, Australia, and the South Sea Islands are the resort of this order.

HALOSCIAS (Fries), a genus of Plants belonging to the nadural order Cmbellifore, aud the tribe Seseliner. It has a calyx of 5 small persistent teeth; the petals ovate with an inflexed lobe aud short claw; the fruit elliptical, terete, or slightly dorsally compressed; carpels with five sharp somewhat winged ridges; interstices and commissare with many vitte; seed not cohering to the earpel, without vittie. One species of this genus is a native of (ireat Britaiu.
II. Scoticum, Scottish Lovage, is fuund on rocks on the sea-coast of Scotland and Northumberland. It has an herbaceous stem, tinged with red, from 12 to 18 iuches high.
(Babiugton, Manual.)
HALTICA, s genus of Insects belonging to the order Coleontera, and to the tribe Galerucite of tho family Cyclica. It iucludes the insects called Black Fleas, Turnip-Flea, or Turnip-Fly. The species of the genus Haltica are remarkable for their power of lesping, which is effected by means of the peculiar formation of their very thick hind legs. They are anong the smallest of beetles, and are variously coloured with green, brown, or yellpw, often brightly shining. Some destroy the eabbage, others flax, others tobacco, or hops; but the turnip is the greatest sufferer from the ravages of these little ereatures, which, thongh sraall in size, are many in number.
The species found on the turnips is the Π. Nemorum. It is abont one-eighth of an ineh long, is rather flattened, and of a brassy-black colour, thickly dotted; the wing-cases are greeuish-black, with a palo yellow broad line on each, the base of the autennae and legs of a paler colour. The eggs are deposited on the under side of a rough leaf from April to September: They hatch in two days, and the larva attain perfection in sixteen days. The clurysalis is fixed in the earth a fortnight. They love sunshine, warmth, and fine weather, and eat away the surface of the young leaves of the plant with voracity. The larva feeds within the full-grown leaf, in which the egg hats been laid and attached by its parent, but does little or no misehief to the growth of the plant. It is the buetle which destroys the first
emonds leare or coiglalons of the turiip. It wessts out the turcip crup inde a Freat distaoce, and lime towaril it even againat the wind. If socule by tust asm duriag the day retiren under the cotytalon. The parven inerctare in lue men in the carlicat fue daye of Feliriary. asil do pot dimplear tefore the end of Cetasmer, but they do not food semeth ater the later elal of tieptember. There ane fire or aix liromia ef thee ta equstiot. Imeises tho $/ I$. Vemormm, the $/ I$. similis and U. Rame are ales destructive ho turnijua

The sentruction causeal by thren insects may to conceival, when, no

 Wente bave disectal thrir attertion twath to the inguiry intus the habits of the animal aral the fodiag a remedy for the minchief it cauner Ashainalle amay on the sulyert have ken publiehed in the Entomo-
 Agricollera! Exciety of Fuglabi,' ly Mr. J. Curtin, which may be catioulted with airantape by the farmer.
Atacte the pronelire which Lave been proprosel are fumigation, -atrank with wrak brioe, etreping the mend in brine, applying lime and awe to the land, and the application of wormwood lecoction and noilduen The last has been greatly recommended in Cernany, nod there is an ewey ou the mubjech by \dot{M}. Wundram of Torste, Hapover, is the 'Tmsenctions of the Royal Agricultural Society of V'ienni.'
The rapid growth of the turnip plant in the bent remedy, and in enler to ereure thia pleaty of ared of the ammo age ahnuld be nown. I wep diexing asol burning the land when the chryalides are in it are gead fractive. Sowing the anrface of the moil with gas-lime two or there morninge after the aed has been sown has been recommended w Whe most affectesal remedy.

HALIMKINITHAS. Inder thin generic name Sternberg ('Flom der Vormeti') and limon ('Lechan Gcogboatica') include several njecies of Fomal Funoid Mank, found in the slaty Oolitic rocks of Stonesfield noll solemberen.
HALISITHE; the name given by Fincher to a genus of Fossil Combe nyonymou with Catesipora of Goldfume As having priority, it In adeptesl by lkronn in his ' lethien (imgnontica.'

HANASERADS'CE':F: H'ifen-/Iazela, a very nmall group of woody Eixuetman llage, ehanacterimel br baving a aperior ealyx, n defimie number of atamen half of which are uanally aterile, a a cellent unarg, and an exnlorgo in the midat of horny albumen. There ar caly three sebera in the garden of thia conntry. Jlamameita, Trichodadua, add Fobergill. Some of the apecien aro lange foreat-trom. atonling grenl timiner, lust nothing is known of any other neffil Iroperty its the onler. The onder is related to Bruniacer, Cornaccr. edil serifragacec. The opecien come from North America, Japan, 1 Bina abel the contral jarta of Malagacar and Sonth Africa. The Lersoln of Hamamalu lioginiós aro oily abil catable. The lenroa and Lart are Fery antringeti and alm contain a peculiar acrid essentisl oil.

HAMITEA, armun of "xphalopodona Mollamen proposed ly Mr. Jame Nowerty. (' Mineral Coocholygy of (ireat Ifritain.') It includen - esly fiensil arecie Accunling to the original viewa of Mr. Sowerly,
 of bonk of miphon bout in one flane, with parallel hut unecianl
 appar almaye taperfict: and when l'rifemor Philtipe foumd in lork. ohire masy foeslo, in other reapects lerfectly revombling Jomitea dewrile-1 lit Mr. Sowerty, rolleal in a plane apiral, the volutions in
 eraizbt elomation (like Spurwhet, he externded the noo of the term.

In the "Tranevetotin of the 'imegralhimal keciety of France,' Junc,
 Coyselopeda, whech mighe Io nonoidervi the spiral part of Ifanitea
 Xr. Hee erlig bas monaly limen Imel to very oimilar remulta, and han

 deninge detervore from Troparam, I'romerncites, or the epiral jarta ef

 Reorra b) enstnonite remaibe to be further examinel

Ifoeates of the typical forme seceur nt frilkatane. Hamary, and other

 HAMstsill [10werva]

IIANIITHF: iv"nrinoervens.]

Haltills (Memistern.]

 arteolo en apposimation in etimatiog tho haritomen of mincrala, and wending to wich it io elpreared in numbiern The aulentancen which
he unea aro nuch as ard easily obtained in a state of purity. They ñe:-

1. Talc, white or greeninh.
2. Tack, white or greeninh. and scmi-tranalucent.
3. Calcarcone apar, cleaveable.
4. Fluor-mpar, which cleaves perfectiy.
5. Apatite, the maparagna-stonc, froia Salzburg.
6. Ahularia.
\%. Rock erystal, limpid and tranaparent.
7. Topaz.
8. Corundum, from Bengal, with amooth fractured faces.
9. Diamond.

Any mineral which neither seratches nor is scratched by any one of the subutances above nained, is stated to possess the degree of handness expressed by tho number opposite that mineral. Thas, wipponing a body neither to ncratch nor to be scratched by fuor-spar, its hardness is represented by 4 ; but if it shonld scratch fluor-apar, and not Apatite, then its harduess is stated to be from 4 to 5 .

Another method of trying the hardness of minerald is passing them very gently over a fue hard file, nad judging by the touch and appear. ance of the file as to the degrec of hardness. [Mineralogy.]

HARF: [LEIUS.]
HARF-HR,LIA [CAMPANURA.]
HARE'S-EAR [BEHLEUACX.]
HARELHA. [DUCKS.]
HAIFAN(: [STRIG:D.f..]
HARMODYTES, a genus of Tubular Stony Comls, proposed by Fischer and adopted by Bronn. The same species were afterwards designated by Goldfuss Syrinyopora, a name generally adopted.

HAISMOTOME (Andreolite; Ercinite). This mineral occurs in' attached cryatala, genorslly intersecting each other lengthwiso. Priinary form a right rhombic prism. Cleaveage parallel to the primary planes, and to both the diagonals of the prism. Hardnesn, 4.5. Colour, grayish-reddish, yellowish-white. Fracture uneven. Lastre vitreous, and sometimes pearly ; streak white. Speeific gravity, 2.35 to 2.4 .
lly acida, unless heated, Harmotome is ecarcely acted upon. Befors tho blow-pipe it fusts into a clear glass. It occurs at Strontian in Scotland, and at Andreasberg and Obarstein in Germany.

The analyses of this substance do not greatly differ in general. Tho Harmotume of Strontian yielded, by the analysis of Mr. O'Connell-

HARPA. [E:NTOMostomata.]

HARI'AliUS. [Faiconid.e.]
HAlRI'A'LID.F, an extensive family of Coleopterous Insects of the rection Gicorlephaga, the apecien of which sro distinguished by the tarsi of the two anterior pairs of legs being dilated in the malo sex.

In these insects the tibia of the niterior $f^{\text {nir }}$ of legs have always a deep noteh on the inner side; the head is almost always short and rommded in front; the thorax is generully bromder than long, somewhat convex, lint elightly narrower behind than before, and nearly mual in widih to the eljtra. Tho body unually approaches more or less to a cylindrical form; the elytra aro slmost alwnys monded at the apex, and never truncated at this part. They are usually found under atonow.

Of tho family /Iarpalidir, Dejean, in his 'Species Général des Coleoptères,' onmmeraten 27 genera: othors however have been discovered nince the publication of that work.

The number of species known in probably upwarda of 500.
The most convenient way perhnjm of grouping the genera of this fanily in to taks, in the firnt place, the form of tho mentum as a guile. We then find alinost nll the apecies divided into two great grompa, thome in which the mentum is amply cmarginated, and those in which there in a small projecting procean in the middle of the emnrgimatiun. lbeaides thene there aro certain apecies (the vatural aituathon of which ia perhaps nomewhat doubtful) which bave the menenin trilolenl, ame thene are others in which the moutum in hibrolved.

The varioun genern dencribed by Dejean aro an follows:-
Section I.-Mentum trilobed.
Gcnus 1. Prlecium (Kirby), contnining 2 apecies, both inhabiting the lifazila.
2. Piripue (Hüpfner), containing 2 species, one of which is from Catiformia, the other inhabits Mexico.

Section II.-Mentum bilobed.
Genus 3. Jromeroderus (IVejean), of which thero is ane species from Austrulia.
4. Cyrlonomus (Latreillc), containing 2 spocies, one from Iodia, the other from Senegal.

Section III.-Mentum emarginate, sad without central tooth.
Genus 5. Daptus (Fischer); 2 species. Found in North America.
6. Cratognathus (Dejean); 1 species. Probably from Buenos Ayres.
7. Agonoderus (Dejaan); 5 species; three of which are from North America, one from India, and one from Senegal.
8. Barysomus (Dejean); two species from India, and one from Mexico.
9. Amblygnathus (Dejean); 5 species. All iuhabitants of Csyenne.
10. Platymetopus (Dejean); 10 species. From Africa and India.
11. Selenoyhorus (Dejean) ; 69 speeics. From North and South America.
12. Avisodactylus (Dejean); 23 species. Chiefly from Enrope and North America.
13. Bradybanus (Dejesa); 3 species. From Senegal.
14. Stenolophus (Megerle); 22 species. Almost sll Enropean.

Section IV.-Mentum emargiaate, and with a small projectiug process in the middle.
Genus 15. Cratocerus (Dejean); 1 species From Brazil.
16. Somoplatus (Dejean); 1 species. From Senegal.
17. Axinotoma (Dejenn); 1 species. From Senegal.
18. Acinopus (Ziegler); 6 specica. Chiefly European.
19. Cratacanthus (Dejean) ; 3 specics. From North America.
20. Paramecus (Dejean); 2 species. From South America.
21. Gcodromus (Dejesn); 1 species. From Senegal.
22. Hypolithus (Dejean); 18 species; the greater portion of which inhabit Africa Four are from South - America
23. Gynandromerphus (Dejean); 1 species. From Italy and South of France.
24. Ophonus (Ziegler); 45 species. Chiefly Enropean.
25. Narpalus (Latreille); 134 species. From Europe, Asia, Africa, Amcrics, and Australia.
26. Geobanus (Dejean); 2 apeoies. From the Cape of Good Норе.
27. Acupalpus (Latreille); 46 species. Chiefly Enropean. There sre however species found in all the other quarters of the globe.
23. Teirogonoderus (Dejean); Africa, India, and South America. One species is found in North America
29. Trechus (Clairville); 22 species. Chiefly European.
30. Lachnophorus (Dejean); 4 speries; three of which are from South America, and one from North America.

For the characters of the genera and speciea above allnded to, we must refer our readers to M. Dejean's work which has been quoted, and for the British species to Mr. Stepheos's 'Illnstrations of Britiah Entomology.' We lave followed Dejean in restricting the family Ifarpalida to such species only as will come under the definition given at the comriencement of this article. Two very distiact groups are included io the family Marpalide as defined by Mr. Stephena.
(Stephens, Illustrations of British Entomology; Dejean, Species Giniral des Colcopterce.)
HARPES, a genua of Fessil Crustacea [Trisomites], from the Devonian Strata.

HARPY-EAGLE. [FA1.Conid.e.]

HARPYA. [C'HEIROPTERA.]
HARIPIA, [Falconidse]
HARKIER, the English name for the hound employed in hunting the Hare. The size and breed of the Harrier depend upon the taste of the owner, and that is most frequently regulated by the nature of the country in which the pack is to hunt. Mr. Beekford, a great suthority in such cases, says, "The hounds, I think, most likely to ahow you aport sre between the large slow-hunting harrier and the little fox-beagle; the former are too dull, too heavy, and too slow; the latter too lively, too light, and too fleet. The first, it is true, have most excellent noses, and I make no doubt will kill their game st last if the day be long enough; bnt you know the dsys are short in winter, and it is bad hunting in the dark. The other, on the contrary, fling, dash, and are all alive; hut every cold blast affecta them, and if your country be deep sad wet it is not impossible that some of them may be drowned. My hounds were a cross of both these kinds, in which it was $m y$ endeavour to get as much bone and strength io as stnall a compass as possible. It was a difficult nuclertaking. I bred many years, sad an infinity of hounds, before I could get whst I wasted. I at last had the plessure to see them very handsome manll, yet very bony; they ran remsrkably well together, went fast enough, had all the alacrity that could be desired, and would hunt the coldeat acent."

Hare-huuting, it has been said, ia generally followed by sportsmen in the decline of life; though when the district is tolerably open, and the hare 'fliea the country, there ia often opportunity for a good horse
and bold rider to show themselves. But these capital runs come 'few and far between,' sad the old fox-hunter can seldom brook the chsnge. In a close or woody district, the constant repetition of the same scene, and the discovery that in consequence of a sudden donble of the hare s rustic upon his galloway who knows the country is frequeatly as near the hounds as the man who is mounted on a firstrate hunter and has taken some daring leaps, prove rather disgusting both to the srdour of youth and the experience of sge.

HARRIER (Ornithology), a name applied to certain Hawks (Circus). [Falconide.]

HARRINGTONITE. [Mesole.]
HARTITE, a Mineral occurring crystsllised. Primary form an oblique rhombic prism. Cleavage imperfect. Colour white. Lustre somewhat greasy. Translucent. Hardness $1 \cdot 0$. Specific gravity 1•046. Found at Oberhart, in Austria. The followiog is an analysia, by Schrötter :-

Carbon 87.473
Hydrogen 12.048
99.521

HART'S-TONGUE. [SCOLOPEYDRIUM.]
HASSELQUUSTIA, a genus of plants named by Linnæus in honour of Frederick Hasselquist, M.D., his pupil, who travelled in the Holy Land. It belongs to the natural order Umbellifera, and to the tribe Tordylinere. The species closely resemble those of Tordylium, and are regarded by some botanista as monstrous forms of this genus.

HASSELTIA, a genus of Plants belonging to the natural order Apocynacer. It has a 5-parted permanent calyx ; a corolla with the tube contracted in the middle; the throat aaked; the limb campanulate, 5 -parted, and.contorted. The stamens sre juserted in the thrust. Anthera large, cuspidate, callons at the back, adhering to the stigma; the ovary double, surrounded by a fleshy ring; styles 2 ; stigma clspate; follicles 2, distinct, and loog; seeds with a stipitate coma at the lower end.
II. arborea is found in Java, nesr Tjampiam. It is a handsome tree, with oval leaves, rather acuto at each ead, smooth above, paler and a little downy on the under side. The flowers are large, yellowishwhite, in axillary fascicles. In Java the milk obtaiaed from the trunk by incision, mixed with honey and reduced with boiling water, is employed ss a powerful drastic for destroying the tape-worm; it is however spt to produce inflammation of the intestines, and in some cases has proved fstal.

(Lindley, Flora Medica.)

HASTINGS SANDS. The middle group of the Wealden Formation, which constitutes the uppermost part of the Oolitic system in England, is thus named from its characteristic development around Hastings in Sussex. In the Hastings Sands we may distioguish four divisions, which lie in the following order:-

The Horinam Beds

The Tilgate Beds

The Tilgate Beds
The Ashburnbam Berls

FFawn-coloured sand and friable sandstone: good flagstone occurs here. Sandstones often calcareous, with varions grits and conglomerates, restiog od blue clay. These have yielded a considerable number of organic remains, plants, Mollusca, fishes, and reptiles of gigantic dimenaions. [lquanodon; Hybaosaurus.] White sand and friable sandstone, alternating with clay.
Nodules and beds of limestone, alter: natiog with clays sud sandstoues.
The axis of elevation, or furest ridge of the Weald of lent and Sussex, is chiety formed of Hastings Sands, which rise in Cruwborough Beacon to 804 feet above the sea. [Geolocy.]
(Mantell, Tilyate Forest; Fitton, Geology of Hastings, \&c.)
HATCHETINE (Mineral Adipocire). This substance occurs in thin llakes in the cavities of the ironstone of South Wales. It is very soft, somewhat granular io appearance; translucent; colour yellowiab-whito or greenish; not elastic; inodorous; combustible. it melts at 170°, nud is soluble in ether.

Accurding to I'rofessor Johnston it consists of -

100.534

HATTERIA. [Draconina.]

HaUSMANNI'TE. [Manganese.]
HAUYNE (Latialite), a Mineral occurring in detached rhombic dodeeahedral crystals, also granular and masssive. The primary form is the cube. Cleavage parallel to the diagonal planes of the cube, indistinct. Fracture uneven. Brittle. Hardnesa, 5.5 to 6.0. Specific gravity 2.68 to 3 . Colour when opaque indigo-blue, when translucent blue or bluish-green; streak white; lnstre vitreons. The massire varieties are amorphous; strncture granular, compact. When heated in an acid it becomes gelatinous and trausparent. Before the blow-pipe it fuses with borax into a clear glass, which becotnes yellow on cooling. This miaeral is found in the cavities of lavas and in tha

 Limelia，tho natuermi frotn Mastuo yuhleal－

HATmFINCll．（rocvornastorte．）
HAWK．（ドatcostion）
HAWK．YUTII．［srmsGBDE］
HAWR．Writil．Heracity．

HANTHOHN：［C＇Matente］
 of ite eryotald，hut in clescritel as laving ats oblique riombic prism． It mestre with $/ / \mathrm{rmband}$

HAYISiNt：（Nomondiofe），M Miberal nccurring in globular masea of a Almone otructurm，havitg esternally a brow：colur；when lireken theot tasemen alpear to be furnsed of now white delicate fibros，inter－ －oren．curved，and knotted The lustre in atin－like，and the fibres
 of exallarevie slate，with bnilisut and grefect cryataln of Glauberite， －birb ane anctituee penetrated by the fibees of this mineral．Found th the province of Tarapuan l＇cru．The following in an analysin （afor dryirg a： 130° F＇abr．）：－

11．AY－TIT．［Sirnme］
Haztile［l＇ontita］
HAZbifstit，the frolt of the wihl hing of Corylas drdlana， nanchagel abal wandurured ly cultivation．It differs from the domentacal varietum woly in leing stualler and rather more harily． ［Comrles］

HEAD）［Brais：Skeletos．］
HfiAHISIC（FER］
Hfidll is the ceneral ongan of the circulation，and by its nlternate ematractionemmililatathonesercion the principal power by which the＂ thoowl is movel throughs the borlies of the higher noimala its anatonar abol phymallagy will Iom sambo mopt eanily intelligible by con－ malernge firet the princijul varieties of the circulation or other motion of nutntive suif which ncurr in the mained kinglom；bearing in raisoll that the main objecte for which much a motion is required nere a comenat eupply of flond mingitel for their matrition to all parta of the louly，and ite mgular expment to the influence of atmonpheric air， that by the preame of reppiration it may be fitterl for maintaining the Ife of ithe animal．

The simplese inode by which a diatribution of nutritire fluid is rected io liy mane of ramification preceoding from the stomach or ingentinal cuibal to varione jarta of the bodys，which oceum in the pmigia，／afoorm，intestinal worme，Rehini，Verfune，and other zoo－ phopee．In wll them the digeativecanal and the circulating ryatern form that otre apparatas：the forol，whioly in the hiqher animala rwoure a cranjplicaled frocen of anaimulation leforv it in fitted to

 －Liver the canada anming latas the dianatite caviey，esmetly like thome
 1，ly prombeal ly them thotion of cilisu which lize the lution，list are lows minute to lee dimeerned in hll
 lonwerer cilia hater Imess ohmorved，as in the enme of
 lom olotown lo，exiot anil tocane the curgenta ob odred in many of tho firmomecer．（＂Quartarly Jourgal ul Maromonical Science：vol．ii．［1．284．）
In the frianarmp and mome of the Tirmatula a ＂garatan rameular pyotern lian treen dimenrered in
 fietner the main touk ham the shape of an oval froge（a．b，C．f），ferm which capillary networkn arim and contnmuncats frevis together，and with a doral ramion tratel（o）．
Thes reanle bavo tran men contractiop and
 tramb it le reimel．

 abow in the nosit drawivg．These are iwo train interal vraadn

Altervate thutions of the lloond may ho seen in theso ressels：at one moment the lateml ressel (b, b) ，nid the central (a, a, a) ，with the communicating branclsen between them，nro seen filled with blood； while the other lateral reasel（ r, c ）and its branches nee empty．In the next moment c, c and its branches nre filled，while a and b are cmpty；no that one lateral vessel，and the central one，are alwaye ofpored in action to the other lateral one．The central continues meting with one of the lateral for 20 or 25 pul－ artions，and then its relation changes and it nets in muison with the other．During the contraction of a Interal vessel the blood evi－ dently flows from it through the iniddle trans－ verse vessels over to the other aide，and in the next moment returns The contraction pro－ ceedn gradually from behind forwards，so that π wne（as it were）of blood is seen pasping from one cond of the lateral and of the central versel to the other，and then returning in the contrary direction through the other Jateral vessel．In this manner it is probable that a coustant circulation is maiutained along the aides of the animal，and its direction seems to le clinged after cvery eight or thirteen pulsa－ tions．The samo general type of circulating system is found in earthworms and all the other Annclida．

Hitherto nothing has been seen which could fairly be called n heart，nor have the vessels presented any characters by which they could be separated inte systems of arteries and veins， for all alike secm to perform at different times the functions of both．A more distinct division of the parts of the circulating system is found in incects．They have a large vessel（ a, a ）run－ uing along the back，divided by numerons con－ strictions into a scries of communicating cavities， between which chere are laternl openings through which the blood is received，and which are guarded by ralyes to prevent the blood from flowing out．Through this，which is commonly called the dorsal artery，but which may rather be regarded as a series of ventricles，the blood passes from behind forwards，diverging into shall atreama，one of which flows to each of the notenne，feet，\＆e．No distinct vessels can be detected in which theene minor currents may run；they seem simply to pass thruagh the various tissues，and having nrrived at their desti－ uationa，to form there into archen，and return and empty themselven
 into abdominal ves sela b, b ，which may be regarded as veins， and through which the blood flowing from before back． wand is returned into the dersal artery through the com－ munications which exist between them Hual the poaterior part．This is algo the plan of the circu－ lating ayntem which with rarious modifi－ entions prevails in the Arachnidn and the lower Crustarca．

In the ordem al． ready mentioned no xpecinl arrangernent of vessels has been found for the purpose of exposing the blood to the influence of the air．Either the whole or part of the blood undergoes re－ apiratien on the whole siliface of the body， or nt the trachere，or the veaicles arranged in especial systema for that purpose．In thoke which fullow however，we whall observe a xcparate and compli－ cated reapimary apparatua；nod that the form of the lieart and its large venela are adapied in accurate corresprondence with that of the gills or lunga，and according an the wholo or piart of the hlood is required to be expmed at each round of the circulation to the influence of the air．

The simplest kind of a heart, forming a defined cavity, is found in the larger Decapoda, snd some other Crustacea. The annexed sketch represents the heart and large arteries of the lobster. There is a single cavity or ventricle (a), into which the arterial blood flows from the gills by vessels which unite inte two trunks, whose orifices (b, b) are protected by valves. Six main arteries procecd from the heart; the three anterior (c, c, c) go to the head; two from its inferier part to the liver; sad the largest of all (d) from its posterior part. This last gives off a superficial snd a deep artery to the tail, sud then curving forwards under the sternum, gives branehes to the feetand deep arteries to the head. From these the blood returns by veins into a number of venous sinnses which lie st the sides by the articulations of the legs with the ebest, and all communicato together. From them branchial srteries proceed, which run on the outer edge of the gills, and pass through capillary vessels in them, terminating in branchial veins which unite into two trunks that open into the heart.

In most of the Mollusca the blood flowing through the branchial veins, instead of being poured directly into the ventrical, is received first into sn suricle, presenting the first instance of a heart with more than one cavity. In most of the Gastcropoda and Pteropoda the auricle is single; in the biralves the auricle is mostly
 double. In the latter division, the blood, collected from the syatemic vcins into one venous reservoir, before going to the gills passes by numerous branches into a spongy tissue consisting of lacunte, which Bojanns calls a lung, and others a kidney. From this a few branches pass at onco into the suricles, but the greater number go as branchial arteries to the gills. In the brachiopods the systemic ventricle is alse double, each cavity giving rise to an aorta. In these cases, although the auriclo is donble, it is not to be regsrded as representing the two anricles of warmblooded animsls, of which one receives the bloorl from the system, the other from the lungs, since here the two aurieles have the name function, and there are two for the sake of convenience. In the oyster they are united into one cavity. But the most singular form of heart in this class, and one of much interest an presenting all the cavities separated, which in higher classes are united in one borly, is that of the cuttle-fish. The blood passes in it from a systemic or central ventricle (a), through the aorta superior (b), and inferior (c), aud is thence

distribnted thronghout the body, whence it is collected into six vence carm (d, d, d, d, d, d), which open into two branchial suricles (e, e), conducting into two branchial ventrieles (f, f) by which it is forced through branchial arteries (g, y, g). Fron the extremities of these it in received into branchial veins, of which that of the left side (h) is here shown, which open into the two systemic anricles (i, i), conducting agnin into the syatemic ventricle (a). Here then we have the NAT. HST. DIV, VOL. III.
frst appearance of a separste heart for the respiratory circulation, and the elements of all the compound forms which we have now to notice.

Ameng vertebrate animals the simplest form of heart is found in Fish. They have a single auricle (a, a), which receives the blead from the trunks of the veins of the whole body (b, b), aud communicates with a single ventricle (c), which forces the blood into sn arterisl trunk with a contractile bulb (d). Frem this trunk all the branchial srteries (e,e) arise, and passiug on each side in arches to the gills, divide there irto capillary branches. The blood thus aerated passes on, and the arches again unite inte a common trank (f), the true aorta, which runs along the under surface of the spine, and sends the blood to s.ll parts of the body. From these it collects again into the systemic veins (ℓ, b), by which it is carried back to the auriele. The same type of formation is found in the reptiles which have gills, as in the
 Proteide in their adult state, and in the larve of many which at that period also breathe by gills.

In Fish all the blood is subjected to the reapiratory process before it passes to the body: in the lieptiles, which breath in air, aud have therefore a mach more complete exposure of the blood to it than fish, who breathe only the sir that is dissolved in the wster, only a part is exposed before entering the general circulation, but the modes in which this is effected vary greatly. The annexed sketch represents the circulatory system of the Frog in ita perfect state. It has a single ventricle (a), from which arises a single aortic trunk (b), from which proceed the two pulmonary arteries (c, c), conveying that part of the blood which is to undergo respiration to the lungs (d, d), whence it is returned by pulmonary veins ($(, c)$. From the same aortic trunk four otherarteriesarise, two of which, forming arches, uaite to form the dorsal sorta, while the two uppermost are distribnted to the head and upper extremities. From the terninations of these arteries in all parta of the body the blood is cullected into large venous trunks, which open into the double suricle (f, f), from which the aersted blood
 from the lungs and the impure blood from the system pass separately into the common ventricle, in which they are intimately inixed. In other reptiles the ventricle is more or less completely divided by a septum, which in the Crocodilus lucius separates it into two distinct eavities, one connected with a pulmonary, the other with a systemic aorta; in some others the septum is nearly complete, snd the mixture of the two kinds of blood is supposed to be prevented by a valve: but in the rest of the order the septum is so small that the bleod must necessarily be mixed. In all of this order however the abdominal aorta, which rins along the spine, is formed, as in the frog, of two arches, and in these which have separate ventricles a branch procoeds from each to form it, so that while the heal and upper extremities are supplied with pure arterial blood from the left sille of the heart, the lower pertion of the body receives a mixed bleod from the left side and the right.

Hav!y, wo ertive at the mapileto doulime cirenhation of Man

 at ibe twasp freen that reize of bll parts of the lonly by two lange

the palmonary veine, whieh onen into the lin nuricle, from which it pacerto the tho left veutriclo, thence through the mingle norta inte all parts of tho nywern, and again into tho veius aul right suncle

We moy now conoilet the anatomy of the hoart, and tho chinf flaenerener of the circulation, in Mno. The heart in of a somewhat comical form, laving th bame directend backwarls towardn the guine, cod ita poiot forwarte downwarim, and to the left aide, no that at each contrackion it may two felt neriking between the fifth and sixth ribs, aluest four inclire from the midulle line. It reates upon the diaphragm (a, el, the sunmeular fartition betwonen the cheat and abdornen, and
 to the diaphemen at ifer rialst aike and behind by the inferior eara, Whoch ponamen throush that innacle at the aprerture b; nut whove wind hehrod ti in fixet, though more loonely, to the upper and hack pourt of the chest by the reat of ita grat vesiselm, which there

 thomeg the rasie of ath motions in limited by the fericandintm, or roronbramasalage in which ls in containel, nud which clonely surmundx 1: 4: all thom Whan the lamart in expomel by cutting open the frunt of the pericartum, it in mens to be divided along ite front ntul moat coners mofsee by a binc runbing from the midille of ita base down-
 the wabler and thateremerace, lmoth of which nee traced out by two
 Which tho watin of the lieart shelf are mupplime with booml, indicate the paathuns of the erinam or partition by which the ventriclean are divilal froter rach uther. Ae the liame, aloure amil on cach sile, two

 oriow "rubt manclo (d) abd ventricio (o) ont the right gision and front

 forsml the teo pearly of themene aize. The right anteriur, or fulmonary.
 luage (A, h). Ulo Ioft fromermor, or ayntmaic, for that through the toms

 *ada and the whom view if the bank purt and niten of ita interior

 extrembition: nol the lower lowling to the vann mara inforior (b, b). by whoth all the thend in conveymi from the slmbinm and luwer
 ruascalar fhrm emtitrusons with thome of then muricle itmelf, and that of the inforver ears is pamially guantod lig of lhin armilunar mem-

 fised in mas, that the mant doengion =ill simmet reactiy apply to then.
bramun foll called the Eantachian valve, varying much in nize and often mooh tom. The left side of the cavity, on tho partition which anpratex it from that of the right suriche, fresents an oval depression (the foran ovalia) surrounded hy an clevated border, indicatiog the situation of the formmen ovale, through which during the foctal stato tho blook, which wan prevented by the Fuatachian valve from passing into the ventricle, was conveyal lirectly from the right into the left nuricle, and thence into the left ventricle. Lastly, at the nuterior and left anglo of tho cavity unother and tho largest aperture (c) is seen, which leads into the right ventricle, mul has attached to its aides a membranouz curtain (d), by which it in ocemionally closed, aud which in callet the tricuspid vire. The general form of the eavity of the right auricle in that of n qumlrangular anc, from the right nad interior part of which a sumall lattemed triangular procesa atands out, from the remote similarity of which to the ear (auria) of a dog the cavity Hus received ita name. Ita interior in tolerably amooth behind, by the oritice of the superior cavn, on the partition, and about the openimg ink the ventricle; but to the right and front aide, about the auricular appendage and the inferior cava, it is rendered uneveu by prominent bands of mukeular fibres (the musculi pectinati) which secm to madiate from the nuricles.

Proceoling in the courne of the circulation, a cut shonld be made from the right auricte through the ajerture lending from it into tho right ventricle, and along the front of the heart pearly to its apex; and then nother from the end of the first upwards into the pulmonary artery, an it mises from the front and upper part of the ventricle. 3y raiwing the jortion thus cut out, a completo riew of the cavity of the right or pulmonary ventricle, and of its commanication with the nuricle, will be seen. The cavity of the right ventricle has a somewhat conical form, with ita base uppermost; that part of its walls Which in formed hy the septum projecting somewhat into it. Its walls are rendered extremely irregular by prominent badels of muscular tibrea crossing each other in every direction, and inclosing spaces of parioga size and form, which after death are generally found filled with congulated blood entaugled in and adhering to them. Hero and thare atand' ont short columan of muscle projectiog into tho interior, and pointing towards the right auricle; these are called columaso

carne:r, nul they have nttached to their nummita fine tendinous conla (chorday tontinpe), which pasy thence to be attached to the edgea of the curtain-like nembrno (the tricuspid ralve) which guarrla the urifien thet ween the nuriclo and ventricle. Thin orifiee in of a brondly wsol form, furrounded by n ring of firm dense tissue, to the whele interior circumference of which is nttached the fold of membrane, atreagth"neel by tentinous fibren, forming the valve. Tho edges of
this valve are very irregular, but it may be roughly divided into three principsl portions (whence its name), the largeet of which lies so as to separate this orifice from that leading into the pulmenary artery. If this valve be pushed inwards towards the cavity of the ventricle, as in the larger of these figures of the mitral valve, of which the conatruction though eimilar is more simple, it will lie nearly flat against the walls, and would in this position present no obstacle to the psssage of a fluid from the auricle into the ventricle; butif, on the contrary, it be pushed from the ventricle towards the auricle, ite edges will be found to meet so as to close the orifice as in the smaller figure. This we shall see is the mode in which it acts during life.

From the front and upper part of the ventricle a smooth short passage leads to the origin of the pulnonary artery (e), which is attached firmly to the dense rigg to which many of the muscular fibres of the ventricle are affixed. At their union, and at the very orifice of the pulmonary artery, three little valves (the semilunar, sigmoid, or pulmonary valves) are seen, of a semilunar form, attached by the whole length of their convex edges to the walls of the artery, and hanging loosely in it with their free festooned edges directed upwards, inclosing behind them three small spsces, where the artery bulges somewhat outwards. If one looks from the cavity of the ventricle along the interior of the artery, and blows gently into it, the valves will be seen to lie nearly flat against its walls, snd will offer no obstacle whatever to the passage of any fluid in that direction; bnt if one looks and blows in the opposite direction, from the artery down into the ventricle, the valves will fall inwards, s that their edges will meet, and they will completely close the tube of the srtery, so that, unless driven with force sufficient to rupture them, no fluil conld pass into the ventricle. It is evident that if the artery be circulsr the edges of these semilunar membranes could not exactly meet to close it, but wonld leave a little space of a triangular form between them. This is filled by three little bodies, the corpora arantii, one of which is attached to the middle of the edge of each valve, and which at the same time that they effect this afford a strong point of attachment for the tendinous fibres by which the valve is strengthened. The pulmonary artery proceeds upwards, and to tho left, in front of the other vessela; and after a course of about an inch divides into two branches, one of which turis sharply round to go to the right lung, while the other goes straight onwards to the left. In these organs each artery divides into nucserous branches, which become smaller as they become nore numerous, and terminate in a most delicate network of vessels, ranuifying on the wulls of the air-celle, from which, after the blood which they contain has been exposed to the air, it is received into equally delicate pulmonary veins, snd through them conveyed in gralually increasing branches to the four main trunks of the pulmonary veins, which open into the left auricle.
It woudd be useless repetition to describe in detail the left posterior or aortio ventricle and auricle, which differ in no important particular from the right. The walls of both cavities on the left side, and all the parts contained in them, are thicker and stronger than those on the right; the orifice between them is guarded by a valve which has only two principal divisions, and is thereforo called the mitral valve; and the aortic semilunar valves have larger aud more prominent bodies (corpora arantii) on their edges. The aorts (f) proceeds opwards, and to tho right side, then arches backwards and to the left, and, turuing over the main air tube of the left lung, passes down along the spinc, at the lower part of which it divides into two large arteries (the common iliacs), which supply the pelvis and lower extremitiea. From the upper part of its arch it gives off the main trunks of the head and upper extremities in three large trunks-that most to the right, called arteria innominata (g), is the common trunk which divides into the right carotid for the right side of the head, and tho right subelavian for the right srm and eide of the neek and chest. Next to it is the left carotid (h), and next the left subelaviau (i), of which the diatribution is similar to that of those on the right side.
During life, the blood, returning from the whole body by the veing which unite to form the two vena cava, enters the right auricle and gradually distends it, at the same time that the blood returning from the lungs by the pulmonary veins enters the left auricle and distends it; when completely filled, a kind of vermicular motion is seen commencing at the point of each auricle, which is rapidly propagated along their walls, and simultancously empties the contents of the one into the right snd of the other into the left ventricle. The ventricles are no sooner completely filled than they contract suddenly and with much grester force than the auricles, and propel the blood into the pulmonary artery and sorta. They drive it indeed in all directions, bat in each ventricle there is but one orifice into which it can find a passage, for that by which it entered is closed by the valve surrounding it. The same contraction of the walls of the heart which propels the blood serves to raise and fix the valves by which its regurgitation into the auricle in prevented; for as soen as any blood is forced under their elges they are lifted up and pressed towards the auricles; and they would be forced iuto them, but that when they have arrived at such an elevation as to close the orifice they are restrained from passing farther by the chordse tendinces, which are attached at one end to the edges of the valves, and at the other to the summits of the columno
out into the cavity of eacis ventricle. The length of these little tendons is exactly measured to the distance to which the valves may be allowed to flap back, and as the columne carneæ contract so as to narrow the cavity of the heart, and ferce the blood out of it, they tighten and fix the edges of the valves against which some of the blood is forced, and thns keep them stesdy, till the ventricles being emptied their walls relax and permit the valves to be forced down again by the next current coming from the auricles. The blood ferced into the artery pushes on that which was already there (for the whele circulating system is throughout life completely filled), and distends the lower part of the vessel, which by its elasticity recoils, and coutracting would tend to force the blood as well back into the ventricle as forward into the branches. It would accomplish both, and half the power of the ventricles would be thus wasted, but that the semilunar valves, which are prevented from sdhering to the walls of the arteries as well by their form as by the little projecting bodies on their edges, as eoon as any blood gets behind them, are pushed down and close the pascage into the ventricle. The whole of the blood is therefore driven on along the arteries, displacing that which had just before been thrown into them by the ventricles, and itaelf in turn displaced by the next succeeding wave.

Through the arteries it is distributed to all the body, and returned by tho veins; but the veins of the intestinal canal and the organs connected with it unite into a large trunk, the vena porte, which, instead of at once entering the heart with the others, passes into the liver, and there again divides into minute capillary vessels, from which the bile is secrated, and which pass into the ultimate divisions of a series of hepatic veins, which collect into three or four large truuks which open into the vena cava inferior just before it passes through the diaphragm to enter the right auricle.

A peint of much interest is the consideration of the changes which the circulating system of man and the higher animals undergoes in the various periods of their life in the foctal and in the perfect state. At the very earliest periods it has been clearly proved that in the embryoes of both man and the ligher animals the first appearance of the motion of any nutritive fluid is in the form of a circular canal running round the edge of the area in which the future development of the animal is to be effected-an arraugement in sone measure analogous to that of the Planarice, and those of the lowest animals, in which a circulating system is first added to the digestive. The first appearance of a heart is in the form of a loug tubular ponch, lying beneath the epinal cord, analogous to the dorsal vessel of the insects. The first trace of a eeparate rcepiratory system is in that of gills, for at very early periods of fotal life fiesures may be seen by the sides of the neck, in birds and many Mammalia, and therefore in all probability they exist in mav, beneath which srches of vessels run from the anterior part of a single heart, and collect at their opposite extremities into a single aortic trunk; an arrangement most closely analogous to that of fish. After this, and to the end of foctal life, the arrangement is adapted to the respiration by a placenta, previoue to the possiblility of the action of the lungs, which are only formed for respiration in open air. The purified blood coming from the placenta circulates in great measure through the liver before it enters the right auricle by the inferior cava; from this cavity it passes straight through the foramen ovalc, over the Eustachian valve, into the left auricle, whence it is conveyed into the left ventricle, and by it forced through the aorta and its three principal branches to ihe head and upper extremities, whence it returns by the superior cava to the right auricle, and passes through it (without mingling with the other current going through it from the inferior cava to the left auricle) to the right ventricle. From this it is carried into the trunk of the pulmonary artery; but as the luags are at present incapable of performing their functions. it is conveyed through a direct passage, the duatus arteriosus, from the pulmonary artery into the aorta, just below the origin of the left subclavian artery; and from this part it passes along the aorta through the chest and abdomen, and is conveyed through the trunks of the iliac arteries to the placenta, to be again purified. Thus there is a single auricle, but through the right side of it two currents are constantly running in opposite directions; and two ventricles, one forcing the blood to the head and upper extremities, of which the former is at this time peculiarly active in development, while the other forces the blood through the ductus arteriosus to the placenta, and therefore now, as duriag perfect development, may be regarded as the respiratory portion of the heart. At this time the two ventricles, having nearly cqual extents to force the bloed through, are of nearly equal size. After birth the left becomes much larger, and is thus cnabled to accomplish the more extensive purpose of propelling the bleod through the whole body. Directly sfter birth changes commence which in a few days convert the arrangements for the fœtal circulation into these adapted for the circulation of the completelyformed animal : the foramen ovale is completely closed; the ductus arteriosus becomes consolidated; the branch of the umbilical vein, which had passed directly into the inferior cava, is obliterated; and the terminations of the iliac arteries which had carried the blood to the placenta contract, gradually elose, and are ultimately traceable only in the form of deuse selid cords.

We may now consider the powers by which the motion of the

Whene itw verisime af the limet contract they not alortemed, and Imeron martu=at, bander, ant firmer. The beart lying lexacly in ita
 nevily, reando from the thend which thon vertriclea foren out; itm

 ibo ben hrmat, and whels be ilmont riactly coincilent with tho pulse follall tho what dithe redataton, or dantale, of the sentriclem they
 en mermpasial ith cretain mubide If tho car be placed directly, or on a oteldonapm, che or thear tho part whero the besurt in fele beating, a manal lake that of a erathe herathing io heard coincidently with the izapula of the heare Thim in immediately followed by a second wound, Wbich so olocter, abmerer, puone llefisent, like the falling lack of a light talre. covibcidenty with which the heast mertas bo fall bink froms the
 the firsi long miand in main licarl. They take place in regular rloyelim. thralurg the wirsle perint uncupiell hetween each two itopulkes of the lewer into foner fars, the firme mound woubl ocengy two, tho necoul war. asat the prause uthe.

It to unberwary in allude to farions explanation given of thene monme. Tbry wero made the aubject of an uxtenave serian of exprerisoeste by a cevenuitson of the Itritiah Anaciation, which wero reported et the menting in Instimad 1 mb\%. From theme and other experimenta - may conclorle that the tirat mund ia promluced bj the vibrationa af the mancular fitarm of tha verutricien during their contaction, and hige the rouls of the blinel throuph tho narnow panagea leading to the mara atol pulnonary artery, ansintal in a very alight degree by the gibration of the berat etriking agnime the chest. The mecond mound is in alt frolntalaty the result of the falling hack and comeopuent texatot of tho memilumar valven when tho blowl jut expellont from the vebtricles regurgtate. The muserajon of actions in the beart has Leve alearilus) : the cuntraction of the muricles is corinedident with the panco. fort thear iermicular and alighe contraction dion not proiluce any andible vibrations: the pame linen till the ventriclea are conphesely dotandenl by tha coutraction of tho auriclea: then comen the forv: mand cuibcinbaty with the veutricular contraction, the forcing of the blumal into the arterien, the elembion of tha valvea to prevent
 -recrom, the juaplen of the beare ngainst the wall of the chest, the
 1-rioul bog the palme at the wrint add other partandintat from the heart. thats. the acomil mound on lirand coineitently with the relaxntion of stom vertoiclea, the fallug dowis of the salven to permit tho bhood to pan from the auriclag into the ventricles, mod to prevent ita pakaing troses the arterim lowh anto the ventriclen; nul the manh of thood fromi the aspubes arta, the verntriclea, which continues through the whole bane of the wownd momal and the juame.

At rach eontracian of the veutriclen a very inrge proportion of tho Mowd wheh they containel in expelled into the arterion, and a very Hate rater thow back into the aurichen, eapecinlly the right, before the vairen are completely cloact, prowlueing tho alight dintation of the robe care which suay often bo aren at each eontmetion of the - motricior At mach contmetion of tho auricles also it is probable limb nosme Momel towa hark intos the cava and phlmonary veina, for Uliey are wan dinenndenl rather more muddenly nt thin time than can
 Whand in thens. llowever, so latge a portion of the beart's power is

 encouss in rairulabirg ita apooust de enoh conternction of the ventricles almat an ontuce aurl a half of blow in foreed into eneh

 Letapmal entegy of a elierji it man of Ciret, and in thome of doga from

 -bich io prodataly alwot an mempenta average, arul if an ounce nual a balf lem firmat from tho ornencion as rach puitation, of which, on an averacto shero are ill fer minusen in purtion of thomel will go the
 bowever a mornembe olower rate than wo mighe deduro from the

 esorese ansuiary powira. Tliat the linart han however an fuhume
 11. effect in eagy in the inctaten of the curront which it hall wet in

in the smaller ones by the mane increave nt a acarcely apprecinhle interval; in the capillaries, by the occasionat polsatile motion which may lo seen in them, when, nfter an nuimal has been largely bled, its transparent parts are examined with the mieroncope, and this though the licart is aeting very weakly. Instly, in the reins we find its intluenco still exerted; for if the main artery and rein in a limb be expresed and inolateal, and tho lntter be wounded, the tlow of blood from the orifico may bo oxactly regnlated by comprenming the artery, that is, by preventing, to agreater or less extent, tho blood from Howing to the vein with the impulse given to it by the heart. Thero nre cares ngaid in which the veins have distinctly pulsated, and the pulationa hinve liect clemply proved to have been commanicated from the hoart through the capillaries. To these we may ada that the mpidity of the current in the arteries, veins, and capillaries, is always in direct proportion to the strength and frequency of the rentricular contraction, and always more rapid in the parts near them than in those remote frou the lieart; that it ceasen in all the inatant the lerart in removed, or its influence on a part cut off by dividing the main matery; chat in old persons, in whon the whole arterial system of the lower extremities is sometines ossificd and renderel incapable of contraction, the beart alone is sufficient to maintain the cirenation through tho affected parts; while, on tho contrnry, when the heart's power in by any canse wenkened or interfured with, partinl stagnation rand an extremely lagguid motion of the blood is found in all the orgnam. In cases of nispended avimation no motion of blood catu tre proluced till the heart begins to act; but when this is the cane, it han of jeself sntficient power to get all the blood of the body in a'corrent.
'luee are so many proof that the contraction of the ventricles has n share in propelling the blood throughout the whole course of the circulation; lut the heart also assista, by the enlargement of its cavitien after their contraction, which, whether it be the effect of mere clanticity, or of an netive power of dilatation, certainly takes place with grent force. The heart, in short, acts at once as a forcing nind as a sucking.pomp. The proofa of this are, that the auricles, and atill more the rentricles, dilate,

1, trusk of the nthery; \therefore, barpe branchen
 aterratively becomalap amalies and rmaller until they lerminate In 4 , the capillary thancher. growing wider, on that if no sdelitional impulse le given to it, it will becomo slower an it locemmes more distant from the lieart, sn cffect to which the friction of the blood ngainat the walls of the ressela will nimo contributo. The effect of both these causes however is so slight thint M. I'oiseville lias found that the foree of the current of blood in nil notcrien aufliciently large to be experinunted on ia relatively the arne; that in the aota, for exatuple, hears the anme relation to its diameter as that in the artery at the wrist does to its diameter. Thus and with moro foree thun they could be distended by the blood being impelled into them; that the currenta observed in living animala ne often becn to be increased coincidently with the dilatation of the auricles; by the velocity of the flow of blood from the auricles into the ventrieles being disproportionate to the degree of contuaction of the former.

From the heart the blood is poured into tho arteries, a series of ranifying tubes through which the current is diatributod, divided into a groubully increasing number of streams, which progres. rircly diminish in size, till it arrives at a network of the most minute cauals, the capillaries. Ao a general rule, when an arterial trunk divicles, the aum of the diameters of the branchea is grater than the diancter of the truak-thas in the annexed diagram (in which the arrows indicate the courae of the blood), the sum of the diameters of the branches 2,2 , is greater than that of 1 , and the uum of thene of $3,3,3$, greater than that of 2 , from which they ariнe. lience the arterial ayetem las been compared in form to a cone, of which the heart is at the apex-and the flremm of blood will be like a current grmioally
the diameter of an artery may be taken a measure of the forcc of the current of blood in it. It does not appear moreover that the direction in which a braneh is given off from the trunk has any appreeiabls influence on the velocity of the current in it-most frequently the brauches of arteries are given off so as to form an aente angle with the continued trunk as 2, from 1, 2,-but often they separate at right angles, and less frequently so as to form obtuse angles. Neither can the effeet of the tortuosity of an artery be caleulated, though there can be little doubt that, cateris paribus, the current in it will be slower. An important point in the arrangement of arteries is the frequent union, or anastomosis, of branches with each other. The purpose of this is evidently to prevent any part being cut off from its cupply of blood, by the compression or obliteration of one of its arteries. Hence it is that even when the main artery of a limb has been tied, the nutrition has still been amply effecten by the current of blood being diverted into the collateral channels, which subsequently become enlarged. [Aneurish, in Arts Δ ni Sc. Div.]
The chief property of the arteries by which they affeet the eirculation is their extreme elasticity. It is by this that when dilated they contract on the blood that had been forced into them, and propel it in every direction-and that when elongated they again shorten, and that when empty they remain open and tubular. The ehief effeet of the action of this elasticity is the gradual conversion of the jetting pulsatile motion which the blood receives from the forcible and successive contractions of the rentricle into an even and ateady current. The elastic contraction of any part of an artery after its distension can have no general influenee to aceelerate the blood, for it would press that fluid equally in all directions, and thus would retard the current coming from the heart to any part to exactly the same degree that it accelerated that passing from that part towards the veins-the one influence exaetly nullifying the other.
To convert the pulsatile motion however into a unifurm one no more admirable property conld have been imagined than this elasticity, which by continually acting to contract the arteries (which are always during health in a state of slight distension) maintains a propelling force upon the blood during the intervals in whieh the ventrieles are at rest. If the elastic power were not exerciaed, we ahould see, on opening an artery, a jet of blood, and then a pause, then another jet, followed by a second stoppage of the current, just as when by the successive strokcs of a piston we force water through a rigid tubethe jets of blood being coineident with the contractions of the ventricles, and the pauses with the intervals of their dilatation and rest. But the arteries being elastic, when the impulse of the ventricles, which at the same time distends them and forees a jet of blood through an orifice in them, ceases, their elasticity, making them contract, ferces some more blood out of the oritice, and thus makes the stream from it continuous. In the arteries near the heart indeed the force of the ventricular contraction is so great that it predominates over that of the elastic contraction; and the current, though contiauous, is irregular, presenting a succession of jets-but as we reeede from the heart, this predomiance becomes less, the succession of jets becomes less distinguishable, and in the veins we find a perfectly equable stream. An artificial contrisauce for effecting the same object, nsmely, the eonversion of a series of motions of a fluid into a contionous one, may be seen in an organ. The air is forced into the wind-chest by a series of strokes of the bellows, and if the walls of that chest were fixed it would issue from it into the orgad-pipes in the same intermitting manner; but the top of the chest is moveable, and is loaded with weights (proportioned to the size of the instrument), so that it maintains a constant and steady pressure on the air below it, which therefore, though driven in luy a succession of small forces, passes out into the organ-pipes under the influence of the single ferce from the top of the cheat in a continuons steady current. A similar arrangeroent is employed in fire-engines, where the elaatic power is the air which partly oceupies the chest into which the water is forced. [Fime-Engine, in Abts and Sc. Die.]

We have eaid that the arteries are dilated slightly by each eolumn of blood poured out by the ventricles: from this arises their pulse, which may be said to be owing to the dilatation of the arteries produced by the wave which is propagated along the column of blood contained in them. One may form an idea of what is here called the wave by observing a ripple in a running strenm. There are in that case two different motions of the particles of the fluid : they move all together, with an absolute change of place, and this constitutes the strean ; but again, they move separately; one particle or series of particles rises, and the next falls, and as the first falls again, the mecond rises-this constitutes the ripple or wave. In it the partieles undergo only a relative and temporary change of position, fer they all return to rest in their former places, as is shown by any light body that may be foating in them, which merely rises to the top of the wave, and again desceuds to precisely the same $\mathrm{p}^{\text {lace }}$ as it had before the wave arrived. So in the circulation there is a constant stream runaing through the vessels, and at every contraction of the ventricle an impulse is given to that part which is next the heart, producing a wave which is propagated with incalculable rapidity through all the arterics, and cauees at ench part of them a slight dilatation as it passes within them. The repeated centractions produce a series of
presses an artery, it feels the tedeney to dilatations, in what is called the pulse. The degree of dilatation is so slight that its existenee was much dipputed; but M. Peiseuille has proved that in the larger alteries it is equal to about $1-11$ th of their average diameter. In feeling the pulse however we pereeive a greater impulse than so slight a dilatation could produce, beeause the finger flattens the artery, and therefore we feel the force of the wave over a large part of its circumference, and we increase its velocity by diminishing the size of the ehannel. From thia description it will be evident that the characters of the pulse by which the conditions of health or disease in any person are decided will depend on two eircumstanees- the state of the heart, and that of the artery itself. The frequeney of the pulse will depend entirely on the number of contraetions of the left ventricle in a eertain time, and hence the varieties of frequent, slew, irregular, and intermitting pulses are entirely referrible to the heart. The size and degree of contraction of the artery will prodnce the fulloess or smallness, the hardness or softness, and all the other characters which are determined by the touch rather than by mere counting.

But the arteries have another power besides that of their elastieity, by which they influence the eireulation, thongh the mode and extent of its operation are less elear. This is the power of contraction which they possess during life, and which is sometimes, but erreneously, called museular. The vital eontraction of the arteries differs from the muscular contraction, in being slew and gradual, in not being at all times excitable by any of the stimuli that exeite the museles to contract, as mechanieal irritation, electricity, \&c., but following generally some peculiar influence, as that of cold, or some particular local exeitement, as inflammation, \&c. From elastie contraction it is distinguished by being exerciaed only during life, and then teoding to reduce the artery often to a smaller calibre than its elastieity would, so that on the complete cessation of life the artery dilates to the size which its elasticity, the censequence of its mechanical structure, would in any circumstances tend to give it. It must be regarded as an instanee of that vital contractility which is observed in many tissues quite distinct frem the muscular, as in the skin, the dartos, \&c. It is best seen by exposing an artery during life, and cutting it direetly aeross; the orifice will then contract slowly, but powerfully, till it is completely closed, either at its very extremity or at a short distance within the tube; if the animal be killed the artery will remain elesed for soms time, but will then again gradually dilate under the influence of its elastieity.

It dees not appear certain that this vital contractility of the arteries exercises any constant influence on the circulation; but, on the centrary, the immediate eessatien of the flow of blood from a vein and in the capilaries, when the influenee of the heart is cut off by tying the main artery (after separating the collateral vessels), or by removing the heart, and the possibility of exactly regulating the velocity of the current in the vein of a part by permitting or preventing the supply from the heart, Beem sufficient to prove tho reverse. There are many occasions however in which it evidently acts, and in none more impertantly than in cases of wounded arteries, in which it is among the mort effectual means of arresting hemorrhage. [11.exomrhage, in Arts Δ nu Sc. Div.] It is shown also in the paleness and ahrinking of a part when exposed to eold, and in the swallness of the pulsations theu felt in the main artery; and Sebwann has seen the diminution in size of the arteries in the mesentery of a frog, when cold wasapplied. It is prebably the prineipal eause of the enr ${ }^{\text {ti- }}$ ness of the arteries after death; for as they will contract long after the beart has ceased to act and to ferce blood into them, they will pour much of that which they centained into the veins, in which it will bo retained by the valves. Hales found that this power of contraction resisted the passage of stimulants during life threugh the arteries; for a much larger quantity of water could be driven with a given force through the vessels of a part than of brandy, though the latter passed mest easily after death. For some time too after the heart hat ceased to act, this power is sufficient to resist the injection of fluids into the vessels, and hence in making preparations it is advisablo to wait a few hours after death, that the fluids may run with more ease along the arteries.
It is probable that the vital contractility of the arteries is principally useful by regulating, according to their need, the supply of blood to certain organs, for it seems to exist in the greatest degrec in arteries whieh run mest tortuously and which are distributed in parta requiring oecasiobally increased supplies or velocity of blood, as the apleen, \&c.; perhaps too it is exerted in maintaining the pertal circulation, which can receive but little assistance from the heart, whose influence must be nearly expended in fercing the bleod through the capillaries of the digestive apparatis. However, it must be acknowledged that at present we only knew that such a power exists ; the anount and manner of its action are quite problematieal.
Much is undoubtedly due to the influenee of the capillaries on the circulation. They ferm a dense network of extremely minute tubcs, in which the arteries seem to terminate and the veins to arise; fer their delieacy prevents the possitility of diseovering any such structure as could deeide to which set of vessels they belong, and indeed it is only by observing that the currents of blood-globules pass in regular directiens, that we can prove that they are canals with detinite memblanous walls. [Blood.] When the circulation is examined
ta the weto of the fuot of a fnes frous which the anticxed highly. enaroisol detela the eate:n, or in the trangarent parte of other

 move parte 18 a confuod multitude, As in tho reseld which are ouffientily Lage to aimit several to pasa together, at others in only - viaghe line where the ratel is but little lagger than the globule itelf. Here aud there a globuly in scen to low checked in its course. wif the conal were som narrow for ite pasange: then it turns a littie, aber agan roile ob. The curtenta rungenerally in the same direction In the same ramelo, all truling to a larger branch, which may he regaital as the oxnumencement of a vein, and setting out froms the monute ote ternunation of the artery. The capillaries are the most delkate of all oreanic tiwues, zoranuring from 1.2000 h to $1.5000 \mathrm{th}^{\mathrm{h}}$ of an inch in aliacorter: they exint in all tisauen of the body, varying in arrastatant oaly in the greater or leee clusenesn of the network whet they form, snd wf which the meshea are in nome orguns so Gne an not ko excoml in width the diameter of the capillaries themelomeso is the cane in the iria and luiga It in through these vessels that all tha inaportant prucrenes of secretion. tutrition, and absorption are effectal, for there is no nufficimt evilence for believing in the exict moo of a eill taore miunte nerims travereal wuly by the colourles, garte of the bloul, and which mome have deacribed as vasa nerusa, Ssen exbaluska, de but hitherto no peciso obecrationa have been cosele of the manuer in which these processea nee perfurmed; no Fworea cas in disemvered at the sides of the eapillaries for the parkage ofluade, which it in therefore probable is effected by aimple traneudaesen: norr can any open terminations be sces, for all ajpear to arise from artenes and termirate in reina
The infuche of the minntent artericen and veins, aud of the capid. terina, un the circulation, ja beat acen in the phonomema of local actum, as intammation, bluahing, torgesence, se. If the web of a frog: foxt placol in a meroscope be itritated, the capillaries are neen alowly costracting, no an mometibes to jrevent the flow of blood strongh them, and if the atimulua lie so great as to produce inflamtastion, then thry dilate, and a larger number of globulen in scen [asaigg along thein with grat rapidiey. The asme may be meen in the human eye. the vermin in the fromt of which are so minute that they sive no colour so it : lint if ther bo irritateal by a particle of dust, at once thry ditate, and mere ifoni-globulea entering them, they are seen at terenous comalo fillal with blool. Ou a larger male one neen, after a mond or "ther injury, the parte arouad grow rediler, and awell frome the afles of boont to ita capillarien; nod if the intlammation whe in a gare whel cats be comparel with another nimilar one, as in the band. ano feelo that the pulac is fuller and atronger on the injurud than on the mant adde, imiticatiog that a larger quantity of ibloud ia peang through at. A atill more evident accumalation of blood is arom ta in blabhage is thich, from a mental impreaxion, in an instant ail the minute waole of the face, tuck, homd, \&c., becume distended
 thons, asil wo have other casw in which a derereme of the quantity of
 Whats hate lacome ungrow, an in the gilla of tailpulea, the boring of deer, Ac All urac cimulantuicra are cleariy aulfogent to prove that, iodopadeat of any influmece extediang froms the heart or arteries,

 drtasubeled, whelor it te effetell ty an alteration in the propelling

 futmon of tio thenompan which attend thin circulation, isilepentent of the bears, hae loess ufered tiy frofomer loraper of New liopk:

 subve. for the malio of which they have hoth an athinty, bot thia *thents io atronger ia one liquid than in the other, a movement will

 realt oceurs when the cuit in drawn, net into a ningle tube but ints
 ture bo previaraly maturatedil with the fludid for which it has tlielens degree
of attraction, thin will be driven out and replaced by that for which it has the greater affinity, when it is pernitted to alusorb this. Now if in itn passage through the porvuas solid the liquid undergo auch a clange that its affinity be diminiskel, it is obvioun that, according to the principle juat explained, it munt bo driven out by a fresh aupply of the original liquid, and that thun a continual movement in the eame direction would we produced. Now this is precisely what meelua to take place in an organined tissue which is permeated by a duid, butween whose particles and those of the tissute which it penetratef, atlinities exist which are concerned in the formative changes that have ulready occurred, and thus in the circulation of the nutritive fluid there in a cunstaut attraction of its particles towards the walls of the vessels, aud a continual series of chauges produced in the fluid as the reault of that attraction. The fluid which has given up to a certaiu tissue some of its materisls, no longer has the same attraction for that tissue; and it is consequently driven from it by the cuperiur attraction then possepsed by the tissue for auother portion of the fluid which is ready to undergo the same changen, to be in ite turn rejected for a fresh supply. Thus, in a growiug part there must be a couatantly renewed attraction for that' portion of the mutritive fluid which has not yet traversed it; whilst, on the other hand, there is a diminished attractiou for that which bas gielded up the nutritive materials required by the particular tissues of the part; nad thus the former is centinually driving the latter before it. But the Huid which is thus rejelled from oue part masy still be attracted towarils aunther, because that purtion of ita contente which the latter requirea may nut yet have been removed from it, and in thie manner the eurrent may be maintained through the whole capillary network until the liquid has been eutirely taken up by the tissues which it permeates."
"The evurce of the movement being thus attributable to the furmative actions to which it is subservient, it is obvioue that it must bo effectell by any exterual agencies which quicken or retard these; and it in thus that the iufluence of heat, cold, and electricity upou the rate of the dluw seems most readily explicable." (Curpenter, 'Principles of Plyyaiulozy.')

It will be seen that these elementary facts may be emploged to explain the nature of the capillary circulation, and bere again we way quete Dr. Carpenter's explauation of the phenomena:-
"It will be coureuient tu take the respiratory asstem as an example of ita application ; since the changes to which this is subservient are mere simple than those which take place els where. The venous blood tranemitted to the Junga, and the oxygen in the pulwonary cella have a mutual attraction, which is satistied by the exchange of oxygen and carbonic ncid that takea place through the walls of the capillarivs ; but when the blood has become arterialised, it no longer has nuy such attraction for the air. The venous blood therefore will drive the arturial bluod before it in the pulmonary capillaries, whilst reapiration is pruperly going on ; but if the supply of oxygen bo interrupted, so that the blood is no longer acrated, no change in the aftinitien taken place while it traverses the capillary network ; the hlood coutinuing venons atill retains ite need of a change, and ita aturaction fur the wallh of the capillaries nad its egross into the pulmonary veins in thus rekisted rather than aided by the force genernted in the lung*. In the systemie circulation the chapgea are of a much more complex nsture, every distinct organ attracting to jtwelf the peculiar substances which it requires as the spaterials of its own nutritiou; and the nature of tha nthaitioe thue generated will be consequently different in cach case. Hut the saue law helds good in nll iustances. Thun, the blood conveyed to the liver by the portal vein contains the materials at the expense of which the bile-secreting cells are developed; conkequently, the tissus of the liver which is principally made up of these cella poseenses a certain degree of affinity or attraction for blood containing thcas materials, nod this is diminished so soon as they have been drawn from it into the celle nround. Consequently, the blood of the portal vein will drive before it into the hepatie vein the blood which bas already traversed the capillaries of the portal aystema, nud which has given up, in doing so, the elementa of bile to the aolid tissuen of the liver. We are now prepared, therefore, to understand the generul primciple that the rapidity of the local circulation of a part will depend in great measure upou the activity of the functional changen tuking place in that part-tho heart's action, and the atate of the gevicul circulation remaining the same. When, by the heightened vitality, or the unusual exercise of any organ, the changes whieh the blood naturally undergors in it are increased in amount, the affioities which draw the arterial Llood into the cajpillaries are stronger, and are more npeedily nati-tiod, and the venous blood is therefore driven out with increased cuergy. Thus, a larger quantity of blood will paxs through the capillaries of the part in a given time without any calargement of their calibre, sud even though it be somewhat dimininied; but the nize of the srteries by which it is conveyed soon undergoes an incrense in the supply of blood, alogether irreapective of any change in the heart's action. This principlo has lodg been knowin, and has been expressed in the concise adage, "Ubi stimulus ibi duxun; which those physiulogists who maintain that the circulation in maintitined and governed by the heart slone, caat into unmerited ueglect."
Following the course of the circulation, we come now to the veing,
which may be regarded as the most passive of the parts engaged in it, though they are coastructed se as to permit many important external ngencies to act upon the motion of the blood. While the arteries form a series of branching cansls in which the main eurrent is diverted into streams whose number increases as their individual aize decreases, the veins are made up of a serics in which a vast number of currents graduslly unite into others whose number deereases as their size increases (as shown in the aunexed figure), and which all at last meet in two great tronks - the veux cava. In addition to other peculiarities of structure, the veins hare volves (5, 5, 5), very similar to those at the origins of the arteriea, which are arranged in pairs, or in threes, at different distnnces, in the course of nearly nil those veins in which the blood has to rise ogainst the power of gravitation. Their simple use is evident: the blood, returning slowly through the capillaries, and much of the force of the henrt being expended in propelling itso far, would be apt to retrograde, or remain stationary, if the weight of the whole column in the veins bore down upon the arteries, and through them on the heart. As soon however as a portion is raised into n veib, when it teuds to return to the arteries it forces down the valves, which close the canal of the vein nad support the blood above them, till another portion rising sends it onwards. Thus, while they permit the blood to pass without obstacle towards the heart, they entirely prevent it from retrograding; and if it were stationary, the column of blood would be like a stream braching ont, and divided by a number of clesed locks in which the portion of fluid hetween any two is prevented from exercising any influence on the portions adjacent to it.

The veins, like the arteries, are elastic, and this power is oceasionally exerted in recovering them from too great distension; they too have s vital contractility whose influence is remarhably shown in their shrinking when cold is spplied; but its effects have beeu even less calculated than in arterice.
We have seen that pressure exerted equably on all parts of the walls of sa artery would foree the blood as much in one direction as the other, so that it could be of no use in accelerating the circulation; but from the arrangement of the valves equal pressure on the veins lins a very different effect, for it will be prevented by them from producing any retrograde current towards the extremities of the arteries, and thus the greater part of the power excrted will be gained in favour of the flow of bloorl towards the herrt. Such pressure is exercised by the muscles aurrounding the veins; ns they contraet they compress the veina, and thus foree the fluid to flow in the only possible direction, amely, towards the heart. Their influence in this wry in shown in the grenter tendeney to disensed and pertonnent dilatation of the veins immedintely under the akin snd other parts remote from tho munclen, than in the deep-seated branches in which this varicose ntate (as it is called) very rarely occurs, nlthough the number of valves in the former is nlways much greater; in the benefit derived by aupplying the place of muscles by artifieinl pressure on the veins by bandagex, dc.; by the increased fullness of the veine, and veloeity of the eurrent commonly seen in bleeding when the bleedingstaff is compressed nod moved about in tho hand; by the general acceleration of the circulation by muscular exertion; nul, on the contrary, by tho tendeney to stagnation and swelling of the veins
in the indolent, or those whose muscular systems are greatly debilitated.

But a still more important influence which is permitted by the presence of the valves is that of atmespherie pressure. It aets prineipally in respiration. Wheu the chest is expanded for the purpose of inspiration, it is evident that the atmosphere will press with equal weight on all parts to fill up the vacuun thus produced. From withont it will pass at once ioto the most open courso through the trachea into the lungs, which it distends; but at the same time the blood will be foreed towards the heart and the great vessels contained in the chest, and will assist in filliog up the vacuum to a degree directly proportionate to their volume as compared with that of the lungs. An experimental proof of this influence in the veins (for in the arteries its effect is prevented by the valves at their origins) is afforded by introduciag a tube into the jurular vein of an auimal, and placing its opposite extremity in a ressel full of fluid. At every inspiration the flud will be seen to rise, and at every expiration to descend a little, indicating first a suction towards the heart, and uext a slighter expulsion of fluid from it. It is seen rulso in cases in which the hrain is exposed by removing a pertion of the skull; and in eascs of Hervia Cerebri [Head, Induries of, in Arts and Sc. Div.], in which, in addition to its slight elevation by the pulsation of the arteries at ita base, the hrain is seen to enlarge and rise at every expiration, and to become flattened at every iuspiration. All these pheaomeda are still more evident when a strong inspiratory effort is nade, as in sighing.

As inspiration draws the blood in to the chest, so expiration acts by compressing all the large vessels to force it out of that cavity away from the heart. Its principal influence uust be exerted on the arteries, for the blood would be prevented from passing far aloug the veins by their valves. In the nrteries (and to a less extent in the veins) it is seen to net in the increased velucity of the current that issues from a wound; in the fulluess of the vessels of the face nud other parts during a strong expiration, or when holdiug the breath, coughing, or sneezing, actions which are sometimes the causes of rupture of the smaller vessels, nad preduce an evident alteration in the pulse.

Atmospheric pressure on the veins mist also act to some extent in filling up the vacuum which the sudden contraction of the ventrieles must produce in the pericardium. Of course the lavgs will exprnd, and in part effect this by pressing the pericardium towards the heart; but nt the same time the blood will tead to rush towards the maricles and dilate them, so that they may fill up the vacant space. Dr. Barry proved this farther, by showing that if a tube be introduced into the sac of the pericardium, without sllowing any nir to enter with it, at fluid placed in it will lie seen to be drawn towards nad driven from the sac at cach contraction and dilatation of the ventricles.

Such are the powers concerned in the circulation, and the principal effects which they produce. The influence of each is certain, but what is its extent, and what are the cireumstauces under which it is chiefly exercised, cannot be aceurately determined. In order of importance, the contraction of the ventricles must mumoubtedly be placed far highest; then would come the auricular coutraction, the ventricular dilatation, the auricular dilatation; then inspiration, expiration, nad the cavity in the perienrdiun when the ventriclea contract. All these assiss at all times in moving the blood; the elasticity of the arteries tends at all times to equalise the velocity of the carrent, while their vital contraction aud that of the veins, the sction of the contents of the capillaries, and the muscular pressure on the veins, would also seem to exercise an important influence.

One of the most interesting eaquiries in connection with the heart is its development, to which we have before alluded, and on which considerable light has been thrown by modera research. The circulating system which has been described is not perfected until the moment of birth; and, as hefore observed, in its several transitory stages of growth it resembles permadent forms of the cireulating apparatus amongst the lower animnls. As the egg of the bird affords the best means of studying these changes, we give an outline of them, from Dr. Carpenter's 'Playsiology :' -
"At an carly period of incubation the yolk is found to be enveloped by ngerminal mernbrane, composed of distinct cells, which is divisible into three layers; and a thickened portion of this is easily distinguishable, at which the enbryo will be subsequently evolved.
"The middle lnyer gives origin to the circulating system, and is therefore termed the 'vascular' layer. The thickencd portion of this that surrounds the germ soon becomenstudded with numerous irregular points and marks of a dark yellow colour; aud na ineubation proceeds these points become more apparent, and are gradundly elongated into amall lines, which are united together, first in small groups, wad then into oue net-work, so as to form what is ealled the 'vaseular area.' A large dark spot of a similar kind is seen in the situntion to be subsequently occupied by the heart. These dark points aud lines are formed by eollections of blood-corpuseles, which originate in the tranaformation of the cells of the enbryo and of the germinal membrane; and the rows and narsses of blood-dises seen at first to lie in mere chnnnels, the walls of the heart nud blood-vessels that subsequently inclose them being of later formation.
" From the first however a definite plan is pereptible; tho
arteoth of capillarine that in formml over the vawcular area being
 -bibe the homet is collectel from then by the circular vanoun ninus - luch lowade the acea, ant is neturnet to the embryo ty the venoun
 the embery, a well an in the vaccular area, no differvice in at first porreivol lietwen the characker of the arterien aud thone if the vias and thre ane onty to le diatiaguished hy the direction of the earrents of blowal rirculating through them.

Hut at alaut the fourth or firth day of incubation the conts of the arterin latiu to appear thicker than thome of the rwinn, and the distinetson between them oown bewome evilent. After the priacipal reacla aro formed, the development of new ones appears to take placo in two modes, acoonting as they are to occupy the internases exiating among thom jeriously formet, or are to exteud thenselves into outgrowiog jarth In the firt of these cases the uew capillarics ajpear to be formed. like the orikinal onew, from stedlate cells [Capitishifs], When jrolongations meet the reasla jo which the bloot is already circulatiog, ovalenve with them, and thun receive the current into their own cerities, to tranamit it to some other vesael. Hut in the second, tho Dew seenls are formed catirely by extennion from those already esisting. Thin takes place in the following mote:-Suppose a line, or arch, of capillary rexacla pmaing below the edge, or aurface, of a part th which new material has leen superadded; the vensel will at firmt perent a alight didstation in oue, and coincideuty, or shortly after, it asoother point, as if its walls yielded a little uear the edge or surface The elight pouches thus forined gratoally exteod, as bliod canala, or verticula from the origioal veasela still dinecting their course towards the edge or nurface of the new naterial, and crowded with blowleorpuncles, which are pushed into them from the maiu etreana slill exteuding, they converge, and meet; the partition wall that in at first formed by the meoting of their closed euds clears away, and a perfect arched tube is furused, through which the blood, divergiog from the main or former atram, and then ryjoining it, may be continuously propelled. Thin lant process may bo seen in the gruming jarth of the tail of the tailpole, in the development of the filamentous cills and legt of the water-dewt, io the firat evolution of the extrmitues of the embryoen of higher animala, and in the formation of new atructuren in the fully-developed organism, either for the repair of injurien or as the result of morbid processes. In mome instances it would njpear that the wall of the newly-forming vracl gives way, and that the blood-corpuscles escape froin it into thee jarvochyma, at firnt collecting in an undefued mass, but soon manfeoting a definite direction, and coming into comection with asother portwo of the arch, or with nome adjacent ressel. Thun, then, a channel, and not a veavel, in formed; and it is probably in thas way that thowe jamagea aro excarnted, which tako the place of datinet sevelm in many of the lower triben of animala, and also, coording to Mr. F'aget, in some of the softer and least onganised gruwtha in tama.

The first rulimeut of the heart appears about the 27 th hour, and in a tases of cella, of which the indermost soon break down, so as to form a tubular cavity; for eome time it is simple aud uadivided, esterding bowever through nearly the whole length of the embryo; bot the gmaterior part may be regarded an corresponding with the future auricle, since prolungations may be perceived extending from that part into the trannparent area, which indicate the place Werce the veins nubnopucntly enter. Although the development has promelert thin far at alout the 35 th hour, no motion of fluid in seen io the heart or vemoln until the 35th or 40 th hour. When the heart, which may lo considered as annlogous at thin period to the dorsal ved of the Anmelida, first begine to pulate, it contains only colourIten puid misel witha fow globulen. A movenent of the dark blood in the circumferevce of the vancular aren in at the same time geroeved. Dus thin in incleperdeut of the coutractions of the heart, anal it in in: ubsil a mubsequent period that nuch a communication to cotaldubel loetween the heart and the distant vearels, that the dark Aund contansed in them artiven at the centenl cavity, and in propelled by its palections Than fact, which wo hove just neen to poosesn a riry linjmitat lmanng on the theory of the circulation, end which bu tren denied th minm observers, apicars to have been positively eatathabions by the lotent rewearchen of M. Yon Hace.

The contraction of thim dimal veasel (fin) oo it may be termed)
 Ttande bealf :o the antatios; but between the 40th and 50th hours a mparation in its paren roay bo otemerval, which is effecterd by n conatrictan mand the mididle of the tule: and the dilatation of the jrotecine forthin lerrine an auricular mac, and that of the nuterior a Trotricular ravity. lietwaen the solh and enth hours the circulation of then lifowi in the rancular area lecomen more rigorous, and the action of the rentricle is no longer contipuman with that of the auricie. bat memat to nucerel it at a mopase periol. At tho mane time the tule of the bomart become mome nud mome butht together until is in dmblitel. an that this ongan now theormen much phorter
 portion of the trunk we which it in ailinevinemety rentrictal. The onnes made of then curres wheh thm tutme preacuta is that which sotequeotly lecume the ales of joint of the beart, and between

The 60th and roth hours this in seen to project forward from the lireast of the embryo, much in the aituation it subseqnontly occupiea. Atrout the eame time the texture of tho nuricle differs considerably from that of the ventricle, tho muricle containing the thin and membranous walls which it at first porsessed; while the ventricle has lecotuo ntronger and thicker, both its intermal and external aurfaces being marked by the interincement of muscular fibres, as in the higher Mollueca. About the 65 th hour the grade of development of the heart may be regarded as corresponding with that of the fish, the aoricle and ventricie being quite diatinct, but their cavities are as yet quite aingle. The heart of the \log at the 2 lat day bears a great resemblance to that of the chick at the 55 th or 60 th hour; it consiats of a membrnnous tube twisted on itself, and partially divided into two principal cavities, besides the bulb or dilatation which at thim period in found at tho commencemeut of the aorta, and which correspoods with the bulbus arteriosus of fishes.

Having thuc traced the evolution of the heart of the chick up to the grade which it presents in fishes, we may now inquire what is the condition of the other parts of the vaecular aystem nt the same time. At the end of the sceond day the primitive arterial trunk in seen to have divided into two canals, which reparate from one another to inclose the pharyox, and then unite again to form the sortic trunk, which passes down the spine. During the first half hour of the thind day a second pair of arches is formed, which encompasses the pharynx in the same manner; nad townrds the end of the third day two other pairs of rascular' arches are formod, so that the pharynx is now encompassed by four pairs of vessels, which unite again to supply the general circulation. Theae evidently correspond with the branchial arteries of fishes, although no reapiratory apparatus is connected with them; nod in fact the distribution of the vascular system of the bird on the fourth and fifth days exactly resembles that presented by many cartilaginons fishes, as well as by the tadpoles of the Batrachia. The first pair of arches is obliterated about the end of the foarth day, but a pair of ressels which is sont from it to the head and neighbouring parts, nud which afterwards remaius as the carotid arteries, continues to be aupplied through a communicatiog vessel from the second arch. While the first pair is being obliterated a fifth is formed behind the four which had previously existed, nud proceods in the same manner as the fourth from the ascending to the descending aorta. On the fourth day the second arch also becomes less, and on the fifth day is wholly oliliterated, whilst the third and fourth become stronger. From the third arch, now the most anterior of those remaining, the arteries are given off which supply the upper extromities; and the vessels of the bead are now brought into connection with it by means of the communienting braches, which previously joined the third with the secood arch. When these vessela arc fully developed, the branches by which those arches formerly sent their blood into the aorta shrink and gradually disappear; so that about the thirteenth or fourteenth day the whole of the blood aeut through the two anterior arches is carried to the head and upper extremities, instend of being tranamitted to the deacending aorta as before. Thore now only remain the fourth and fifth pair of branchial arches, the developinent of which into tho aorta nad pulmonary arteries will be deacribed in connection with the changes which are at the same time going on in the heart. Daring the fourth day the cavities of the heart begin to be divided for the separation of tho right and left auriclea and ventricles. About the 80th hour the commencement of the division of the auricle is indicated externally by the appearance of a dark line on the upper part of ita wall, and this after n few bours is perceived to bedue to a contraction which, iucreasiug downwarde across the cavity, divides it into two nearly spherical sacs. Of these the right is at first mach the larger, and receives the great aystemic veins; the left has then the ruspect of a mere appendige to the right, but it subsequently receives tho veine from the lungs when these organs are developed, and attains no incressed size. The septum between the auricles in by no meana comploted ot once: a large aperture (which subsequently becomes the forminen ovale) exists for some time at its lower part, so that the ventricle continues to communicate freely with both auriclea. This passage is often closed hy the prolongation of a valvular fold, which meets it in the opposite direction ; it remains pervious however until the animal begins to respire by the lungs, and sometimes is not completely obliterated even then. The division of the ventricle commences some time bofore that of the auricle, and is effected by a sort of duplicalure of its wall, forming a fissure on its extorlor and n projection on its interior; and thus a septum is gradually developed within tho cavity, which progressively acquires firmneas, and rises higher up, until it reaches the entrance to the bulb of the aorta, whers some communication exists for a day or two longer. At lest bowever the divieion is complete, aul the inter-ventricular septum thecomes continuons with the inter-auricular, so that the heart may be regariled as connpletely n double organ. The progresaive atagen prenented in the dovelopment of thia soptum are evidently amalogoun to its permanent conditions in the various speoies of reptiles; but it muat not be lost aight of that in all roptiles the interauricular roptum in firnt developed, and that it in completely formed in many instances in which the inter-veutricular eaptum is absent or imperfect. The changes which occur in the heart of tho Mammalia are of n jrecisely ximilar character, and as they take place more slowly
they may be watcbed with greater precision. Soon after the septum of the ventricles begins to be formed in the interior a corresponding notch appears on the exterior, which as it gradually deepens readers the apex of the beart double. This notch between the right and left ventricles continues to become deeper until about the eighth week in the buman embryo, when the two ventricles are quite separated from one another except at their bases; this fact is very interesting from its relation with the similar permanent form of the Dugong. At this period the internal septum is still imperfect, so that the ventricular cavities communicate with each other, as in the chick on the fourth day. After the eighth week however the septum is complete, so that the cavities are entirely insulated; whilat at the same time their external walls become more connected towards their bases, and the noteh between them is diminished; and at the end of the third month the ventricles are very little separated from one snother, though the place where the notch previously existed is still strongly marked."

We msy now finally trace the distribution of the arterial trunks to their final modifications, hy which the creature is enabled to become an air-breathing animal. The first, second, and third branchial arches are replaced by the brachial and carotid arteriee, and loose all commnnication with the primitive arterial trunk except at its commencement, when the third pair of arches arisee with the other trunks from its dilated bulb.? This remaios as a single cavity even after the ventricles have been separated. About the fifth or sixth day the bulb in the chick becomes flattened, and its opposite sides adhere together, so as to form two tubes running side by side; one of which uoites with the left, the other with the right ventricle. The one on the left becomes the ascending aorta, that on the right the pulmonary artery.

A knowledge of the changes which go on in the development of the heart ensbles us to explain some of the malfornations to which it is subject. For an account of these see Cyanosis; and Heart, Diseases of, in the Arts and Sc. Div. For further information on subjects connected with the structure and functions of the heart, see Artery; Cafillary Vesskis; Blood; Blood-Vessels; Vein; Heat, Animal; Respiration; Lungs; and Food.
(Carpenter, Principles of Physiology, General and Comparative; Carpenter, Manual of Ifuman Physiology; Draper, On the Forces which Produce the Organisation of Plants; Todd and Bowman, Physiological Anatomy; Owen, Lectures on Comparative Anatomy; Lehmann, Physiological Chemistry.)

HEAR'T'S-EASE. [VIOLA.]
HEARTWOOD. [AlBURNUM.]
HEAT, ANIMAL. The conversion of the food of man and the higher animals into nutriment for the body is attended with changes which produce an evolution of beat, which constantly maintains the temperature of an animal at a poiut above or below, according to circumstances, the temperature of the medium in which it exists. The degree of beat possessed by animals not gifted with the power of locomotion is very amall sbove that of surrounding media, and iu this respect resembles the heat given off by plants. [HEAT, VeaE. Table] In proportion as animals posaess the power of locomotion they evolve heat from their bodies. This arises from the fact that where the muscular system is most exercised there is greateat demand made upon the nutritionary processes going on in the system. We should therefore expect to find that the quantity of heat developed in the invertebrate animals was less than that in the vertebrate class. Infasoris are for a time crpable of reaisting cold; for when the water in which they are contaided is frozen, the animalcule is observed to live for a time in a little uncongealed space which the caloric from its body prevents freezing. Joln Hubter found that various forms of Annelida, as leeches and worms, and several of the Mollusca, exhibit temperatures higher than the surrounding media. As might have been anticipated from their sctivity, the Insects of all the iuvertebrate auimals exhibit the highest temperature. They have been lately the subject of experimeut by Mr. Newport. He found that they possessed a temperature above that of the medium in which they lived, varying from 2 to 9 degrees. With respect to the temperature of the different tribes, Mr. Newport observes, "Our previous observations lead us to suticipate the fact, that the volant inseets, in their perfect state, have the higheat temperature, while, on pursuing the inquiry, it is found that thoso epecica which have the lowest temperature are located on the earth. Among tho volant insects, those hymenopterous and lepidopterous species have the highest temperature which pass nearly the whole of their active condition on the wing in the open atmosphere, either busily cngaged in the face of day despoiliog the blossoms of their honied treasures, or flitting wantonly from flower to flower, and breathing the largest amount of atmospheric influence. Of these the hive-bee, with its long train of near and distant affinities, and the elegant and sportive bntterflies, have the highest. Next to these are probably their predntory enemies the hordets and wasps, and othera of the asme order; and lastly, a tribe of insects which have slways attracted attention, and in general are located on the ground, but eometimes enjoy the volant condition-the ants, the temperature of whose dwelling has been found to be considerably above that of the atmosphere. Next below the diurnsl insects are the crepuscular, the highest of which are the sphinges and moths; and almost equal with
FAT IIIBT. DIV. VOL. III.
them are the Melolonihe." In Insects which live in societies the temperature is still greater. Mr. Newport found that a bees'-nest in a chalk batk had a temperature 14 to 16 degrees above that of the atmosphere, and 17 to 19 degrees above that of the bank.
Amongst the vertebrate animals, Fishes and Reptiles have the lowest temperature. Dr. Davy, John Hunter, and othera, have found that fishes have a temperature of from 0.7 to 2.7 degrees above the surrounding medium.
In man the temperature of the accessible parts of the body, as the mouth, axills, \&c. is usually between 97.7° and $98 \cdot 6^{\circ}$. The human blood is said to have a temperature in bealth varying from 1006° to 101.75°; in disease it rises from 106° to 109°. In healthy persous the temperature is said to attain its maximum during the day, and to fall from $1 \cdot 1$ to $2 \cdot 7$ degrees during sleep. Dr. Davy fouud that the temperature of the interior of the body is 2.7 to 3.6 degrees ligher in tropical than in temperate climates. Most of the Mamnalia have a higher temperature than man, and Birds develop a greater quautity of heat than any other class of animals. This arises from the nutritionary changes going on in the bird iu order to support the enormous muscular power which it is compelled to exert during flight. The followiug is a table of temperatures, as given by Rudolphi and Tiedemann, for several Birds and Mammalia :-

There is now no question that the cause of animal heat is the chemical changes which are going on iu the nutrient fluid of the body. During the act of reapiration a large quantity of oxygen gas is taken into the luugs, which is absorbed by the blood. In this flud it meets the various compounds of carbon which have been taken in with the food; and the consequence is a union of the oxygen with the carbon, and the formation of carbonic acid gas, which gas is given out when the blood again reaches the luage during expiration. [Foon; Respiration.] When carbon and oxygen unite out of tho body, heat is the result, and the same thing occurs when they unite in the rody; and it is through the mediun of this change that the bodies of animals are raised to a given temperature by the circulation of the blood through the aystem. It has been calculated that there is more oxygen absorbed than is given out of the system in the form of carbonic acid gas: it is probable that this enters into combination with hydrogen, forming water and other compounds of hydrogen, nitrogen, and carbon, and thus contributes to the raising of the animal heat.

This theory of animal heat explaine many well-known phenomena; as for instance, the slight independent warmth of the foctus, aad of those young animals which aro born in an imperfectly developer condition. The low temperature of persons with morbus ceruleus, where the hlood is only imperfectly oxygenated, and the cold experienced by aged and debilitatod persons in whom a small quantity of blood circulates alowly; as also the inereased temperaturv observed in persons labonring under attacks of inflammatory diacase where the blood circulates rapidly, are also confirmatory facts. Tho phenomena slso exhibited by tho hybernation of animals are explained by this theory. During the period of hybernation, when the blood is circulating only slowly and respiration is almost suspended, and the oxygenation of the blood is feebiy performed, the temperature of the animal is low, The observations of lallas and others show that hybertation is prevented by a temperature of from 50° to 80°, whil-t it is induced in those animats which exhibit it even in summer by the application of artificial cold.

Th. peosucetive if trat in aloo defrewient on the man of the - minalos of the lisal atel the matilisy whth which thog circulate.
 of cegra in alisuibiatiol in the same ratio, and the circulatiou liecomen
 the ofties haml, Hownl cootaining an excran of ghobulea, lut which is circuintel trea Alowly, derelogme leas heat thas llow which containa a waller propertion of globulea but which io more rapidly circulatexl, for tione ong feo may to connomed in the latter than in the former cons

- Thr metamonthomia of the blowal and the geacral change of matier leal in atill anotibes monollary monime of heat. It has leen obown ly bouitlet that all wolid looliop, nmanie and ionreauic, undergo an eleration of kunmerature when moistencal with different euida in orkanic anlotances it may amount to from 11° to 18°. Sibre the act of metamorphonia is alwaya effected through hurnid momionsioce, thin mource of bent muat he reganied an of grent impertaimes, conn if it be not actualls identical with the catalytic

Carjenter, Principles of Gracral and Comparalive Phymiology; Sitson. Mndical Chin isery, tranalated hy Day.)
HEAT, VEGFALILE. That plants poneess a temperature higher in wiater than that of the nir which murounda then is known by the obrinum fact that onow melta at the frot of a tree emoncr than at a diotance from it: that the tempereture in lower in summer ie equally well proent by the colduest of the flaid which is diselanged from many vibee and vine-like planta when sut acrose. These phenomena haver lmon examieed with care by meveral observers: John llunter formod that a therwometer whoee buth, was phugeal II inches deep in the crunk of a walnus-eve generally indicated in the antumn a higher temprenture than that of the esturnal air loy 2 or 3 degrees ; Schöpf at Sew York, and Hierkander in Swaicn, l'ictat, and Maurice, mul variour cher otherters, have obtained similar reaults; they have ponod even suterm and hulter with a temperature higher in winter than that of the esternal air by 6 or i degreen Reanm., while on the cther band from the pyring to the autuma it is lower.

The former fact accounts in mome tnenulre for the power paseessed by wome plante of resinting cold in winter, and for the protection given to the uffer parth of trees by heaping etraw up ngainat their trunks in winter. I huring every neaton of the year Irees are nbsorlivg water from the earth; water when aboorbed parts with its heat very sowly through the carloonated matter of a trimk; in winter the Lexapernture of the earth, which deterninea that of the water it conkina, in uniformly higher than that of the atmosphere, nud conmpuently the temperatume of the iuterior of n tree is also highor, in proportion to the difference between the hent of the roil abid that of the air. Ja the prring and summer, on the contrary, the rarth in cooler than the air, and the temperature of trees is cooler ajo.

Three enzoiderations throw nome light upen the effects of frost upen treer A gompe tree in, raterin paribun, affected more than an old upe of the mane njeciea; either because its roots derive their food frora a emaller dintanice uader the mill, or lecause the hent obtained frum the eoil in moner parted with on account of the chinness of the bark and the monllues of the whisle make. Unhealthy trees, which aleo nuffer in like manner, may be suppmeed to do mo in conequenco of tho weaknean of their power of jumping warmer fluid up from the cail in wimter.
liviepetulently of thin mource of lient in regetablen, there in another that demprea attention. Whenser uxggen combinea with carbon to form carturtic acifi, an extrication of heat takes phace, bowever minute Ube amonut; auch a combination oecurn much thore extenively
 at any other tillie. At the firnt of theze periondaratrication of heast Later phace to a convidrable amount. an in rebarked in the germinathon of hariary heapord in romnn. proviounly to laing manufactured
 not leing confinol in clome camer, the licat in lont an noon an it in din-
 Soiserure fouble the tomperature of the mata fowers of the common gevent, at toturen ; and s rictock in the morning, half a centiarole dagre higher than that of the nit: nud thone of the tuberose
 of fonere expond within cloee camen that thin phenomenon in particu.
 heo ten remarkmol as ite gronieat intennity. Damarck, Senebier, nut is iasololly. found Wir flowera of Arim marulatum. betwion 3
 than the nstertal air. Shath fomula a differevee of 1 to 5 dagreen

 rest aseare that at munriwe the apenthor of Arum cordifudium ncipuirn
 atomathare Filedig. Mrean Vrolik and Vricae nt Amaterinan, ant

The following taltere of cxjarimenta on thin nuljact liy Inotrochet

Tame 1.
Obervations nade on the diurnul variations of heat in the steme of Euphorlia Lathyris.

Ilour of Day.	1evialion of Thermonetectide Nicedle.	l'roper heat of Llant abore the Almowphere.	Tempersture of thic Atmosphere.
31b Junc, 6 m.m.	11	$\begin{aligned} & 0 \cdot 160^{1} \text { Fahr. } \\ & 0 \cdot 108^{3} \text { Yabr. } \end{aligned}$	68.240 Pahr.
$8 \mathrm{a.m}$.	3	0.324 , Yahr.	62-84 ${ }^{\circ}$ Fhhr.
9 a.m.	3	$0 \cdot 324$ Yuhr.	62-42 Pahp.
. 10 mm.	4	0.450 Fahr.	$02 \cdot 60{ }^{\text {² Pabr. }}$
11 am .th.	1	$0 \cdot 300^{\circ}$ Yahr ${ }^{\text {c }}$	$02.90^{\circ} \mathrm{Pmbr}$
12 noon.	31	$0 \cdot 358^{\circ}$ Fshr.	63-14, Pahr,
$1 \mathrm{p} . \mathrm{m}$.	31	$0 \cdot 610$ ' Fahr.	63.50 \%ahr,
2 p.m.	41	$0 \cdot 500^{3}$ Pabr.	$63 \cdot 80^{\circ}$ Pahr.
$4 \mathrm{l} . \mathrm{m}$.	3	0.216° Fahr.	$68 \cdot 68^{\circ}$ Fahr.
0 p.m.	1	$0 \cdot 108^{3}$ Fthr	$63.50{ }^{\circ}$ Fahr.
$8 \mathrm{p} . \mathrm{m}$.	$\frac{1}{1}$	0.1554° Fuhr.	62-96 ${ }^{\circ} \mathrm{F}$ Phr.
$9 \mathrm{p} . \mathrm{m}$.	1	$0.027^{\text {² }}$ Falur.	62.60 ${ }^{\circ}$ Palar.

The next table gives aowe results of experiments on different yncica of planta.

Table II.

Natnce of Plants.	Ilaur of Maximum of Vital lleat.	$\begin{aligned} & \text { Derintion } \\ & \text { of tho } \\ & \text { Xeedie } \end{aligned}$	Maxtmum of Vital Heat.	Temperatere of the Atmonphere
Roar cabisa -	10 arm .	$3 \frac{1}{2}$	0.380 ${ }^{\circ} \mathrm{Fr}$	$71.60^{\circ} \mathrm{Pr}$
Allium Porrions .	$11 \mathrm{am} . \mathrm{m}$.		$0.210^{\circ} \mathrm{Fr}$.	$74.34^{\circ} \mathrm{Fr}$
Rorago nfficinalia	12 noon.	131	$0 \cdot 160^{\circ} \mathrm{Fr}$.	$60.20^{\circ} \mathrm{Fr}$.
Auphartia Lathyris	$1 \mathrm{pm} . \mathrm{m}$.	54	$0.610^{\circ} \mathrm{Fr}$	63.30 $0^{\circ} \mathrm{Fr}$.
raparer somniferum	1 p.m.	$3 \frac{1}{2}$	$0.980^{\circ} \mathrm{Fr}$.	${ }^{6687} 3^{\circ} \mathrm{Fr}$
Cactus Aagrliformis	$1 \mathrm{p} . \mathrm{m}$.		$0 \cdot 216^{\circ} \mathrm{Fr}$.	67-10 $0^{\circ} \mathrm{Fr}$
Helionthus annmua	1 p.m.	$3{ }^{3}$	$0 \cdot 396^{3} \mathrm{Fr}$.	36.64 ${ }^{\circ} \mathrm{Fr}$.
Impaticus dolsamina	1 p.m.	1	$0.190^{\circ} \mathrm{Fr}$.	$60.80^{\circ} \mathrm{Fr}$.
Ailonthus glandulosa.	$1 \mathrm{p}, \mathrm{m}$.	$2 \frac{1}{3}$	$0.290^{\circ} \mathrm{Fr}$.	$71.60^{\circ} \mathrm{Pr}$.
Cumpanulis mediunt	$2 \mathrm{p} . \mathrm{m}$.	5	$0.358^{2} \mathrm{Fr}$.	02.16 $6^{\circ} \mathrm{Fr}$
Sambucus nigra.	2 p.m.	$8 \frac{1}{2}$	$0.360^{\circ} \mathrm{Fr}$.	$66.74^{\circ} \mathrm{Fr}$.
Lilium candidum	$2 \mathrm{p} . \mathrm{m}$.	41	$0.304^{\circ} \mathrm{Fr}$.	$63.10^{\circ} \mathrm{Fr}$
Anparagma officinnlis	$3 \mathrm{p} . \mathrm{m}$.	4	$0.450^{\circ} \mathrm{Fr}$.	$53.6{ }^{\circ} \mathrm{Fr}$.
Iactuen antira. -	3 p.m.	11	$0.160^{\circ} \mathrm{Fr}$	$71.91{ }^{\circ} \mathrm{Fr}$.

The hour of masimum variad from 10 am . to $3 \mathrm{p} . \mathrm{m}_{\mathrm{m}}$, and the temperature varied from about oue-tenth to rather more than half a degree Fahrenheit. In the case of Fungi the following reaults wore obtained :-

Table III.

Nemes of Plants.	Deviation of the Nectlo.	Heat of Fungux above the Air.	Temperature of the Atmosphere
Agaricua eburwrwa	31	0.36° Fabr.	68.90 ${ }^{\circ}$ Pahr.
Agaricur colubrinus	13	$0.18^{\circ} \mathrm{Fahr}$.	68.30° Fahr.
Agarieus annularins	15	0.18^{2} Fibr.	03.50° Fahtr.
Matetus errias . .	\%	0.81° Pahr.	06.74° Pahr.
J.ycuperdow hirlum	4.	0.47° Pahr.	$70.06^{\circ} \mathrm{Pahr}$.

heath. [Carduns; Emeace.k.]

HFATHER. [ERICA.]
HEBRADENJMON, a genus of Planta belonging to the natnral onder Clusiacre. It was established hy Professor Graham of EdinLurgh, for the Gnmboge-Tree of Ceglon. The gamboge of commerce ta known by the namea of Ceylon and Sian gamhoge.
The gamboge of Siam in in eylinders, either solid or hollow, usually called pipes: it in supponed to bave thin form from being eo rolled, or from being poured into the hollow of bamboos, nccording to Lierrtemant White, in his 'Visit to Cochin China.' It in usually of the hent guality, but Mr. Percira has shown that some very impure is occasionnlly in tha form of pipes. As this pipegnmboge is usually expmrted from Singapore, it has been doulsted whether it was actunlly the produce of Siam ; but we have specimens from Mr. G. Swinton, which were sent to him direct from Siam when ho was chief secretary of the ludian governmint, as the produce of that country, and which are identical with the best pipe-gamboge of commerce. The only information reapecting ite preparation which we possemse in that given to Kicnig by a Catholic priest, who officinted as such to the Catholica of Cochin China, and who stated that the inspissated juice obtained from lireaking the lenven and young rlirubs, an well as the fragrant lignurn aloes, ia given as a tribute to the king of Siam by the Christiana rexilling there. The treo munt therefore be common, and probably near inlanlited placta, and therefore very likely to be oxycarpus Corhinchinrnsin of l.onreiro (now referred to the genus Garcinta), who manes it from ita neid fruit, and deacribes it as cultivated in Cochin China. We have apecimens of a plant something aimilar to this in the form of ita Jearea from Mr. Malcolmon, collected by him in Rangoon, which be thought inight be the gamboge plant, as it contalned a yellow
purcstive juiee in the rind of its fruit. Dr. Graham thinks that the Siam plant may be a nearly allied species of the same genus as the Ceylon plant.
The Ceylon gamboge is usually considered inferior ; that which forms an artiele of commerce no doubt is so: and we have been informed by one of the prineipal merchants of Ceylon that finding the gamboge there very cheap, he had been induced to purchase and send it to England, but had not been able to sell it from its inferior quality. No doubt however some of very excellent quality is produced in Ceylon by the tree which has been called Mebradendron cambogiondes, and Mrs. Colonel Walker deseribes it as "brilliant and excellent," and "as good for water-colour drawings as any she ever used." Dr. Graham ascribes its inferiority to want of care in preparing the article for market; though it is yet doubtful whether the Ceylon gamboge of commeree is all yielded by this tree ; but Mrs. Walker on one occasion, in passing through a forest of these trees, saw all of them with the bark cut off in various phates. Dr. Christison has shown that there is sll but an identity of composition with that of Siam; and its medicinal effects are precisely the same, as proved in Ceylon by Dr. Piteairn, and by Drs. Graham and Christison in Edinburgh.
This plant, though new named, js far from being new. Dr. Graham considera it to be identical with the Carcapuli of IIerman, the Cambogia gutte of Linneens, the Garcinia Morella of late authors, and the Stalagmitis cambogioides of Moon's 'Catalogue of Ceylon Plants.' The last name-might have been retained, as it was originally intended for it, had it not been discovered by Mr. Brown that the speeimens in the 'Banksian Herbarium' collected by Koenig, and from which Murray's character of the genus and species was establisherl, consist not of one, but of two distinct plants, the flowers of Xanthochymus oralifulize being stuck by sealing wax upon a branch of what appenrs to be this Ceylon plant. The genera Stalagmitis and Xanthochymusare therefore one genus, as was previously iuferred by Cambessedes, who has retained for it the former, as the prior name.
The genns llebradendron has dicecious flowers, the male having the calyx menbranacenus, 4 -sepalled, persistent; corolla 4 -petallen! ; stamens monadel phous; column 4 -sided; sathers terminal, opening by the eircumcision of a flat and umbilicate terminal lid. The intloreseence of the fenale tree is similar to that of the male, the dlower white and a little larger, with a germen precisely in miniature of the fruit, and surrounded (iike it) with several (ten?) abortive stamens. The berry is many (4.) celled ; cells 1 -seeded, surrounded at the base with some free abortive stamens, crowned ly a lobed and muricated sessile stigma; cotyledons fleshy, unitel; radicle central, filiform; trees with entire leaves.

1, a floweriag branch ot Hebradembrou cambugioides; 2, a floner ze.a frem below; 3 , a flower seca laterally; 1, anther with hte umblicate lid.

The species called /I. cambogioides forms a molerate-isell t.ec, with the leaves obovate, elliptical, abruptly sub-aeuminate; the male flowers clustered in the axils of the petioles on short single flowered peduneles; sepals yellow on the inside, yellowish-white externally; petals yellowish-white, red on the inside near the base; berry about the size of a cherry, round, with a firm reddish-brown external eoat and sweet pulp; ripe in July. It is enlled in Ceylon Kana (eatable) Goraka. G. canibogia is called simply Goraka. The gamhoge is used by the natives both as a pigment and medicinally. Mrs. Walker deseribes it as being eollected by cutting pieces of the bark about the size of the palm of the hand early in the morning. The gamboge oozes out in a semi-liquid state, but hardens on exposure to the air, and is seraped off by the eollectors next morning.
This tree is found in varions parts of Ceylon, but not very abundantly near Colombo. In a tour through different parts of the island, Mrs. Walker writes: "We found the Ceylon Gamboge-Tree several times in forests distant from the habitation of man, which proves the tree to be indigenous." Colonel Walker writes to Dr. Wight, that "it is found in great abundance along the western aud eastern cosst in the neighbourbood of Battoeola; bnt it slso grows inlaud, where it could not have been planted by the Dutch. Its favourite abode seems to be low sandy ground, as about Kanderaane, Negombo, and towards Chilaw ; alse, 100 miles inland, at so high an elevation as 2000 feet above the sea." Gurcinia clliptica, a native of Silhet, and G. pictoria of the $W_{y n a d}$ district, are thought to be other species of this, gemus.
Lesides the above species there is probably anothicr belonging to the same genus or to the same group of a larger geuns, which appears to yield a very good kind of gamboge. It is the Garcinia pictoria of Roxburgh, and
II. pictorium of Lindley and other botanists. It is a tall tree, about 60 feet high, of a conical shape, and very full of branches. The bark is pretty thick, scabrous and rameus on the outside, of a dark ferruginous colour, intermixed with mauy yellow specks, and through its substanee, particularly on the inside, considerahle masses of gamboge are fonnd. The young shoots are somewhat angular, smooth pelished, of a deep greeu colour. The leaves are opposite, shortpetioled, eblong, ventricose, rather acute, entire, smooth on both silles, and of a firm texture, from 3 to 4 inches long, by $1 \frac{1}{2}$ or 2 inches broul. The calyx consists of two unequal pairs of coneave obtuse leaflets, permanent. Petals 4, oval, longer than the ealyx. Anthers frem 10 to 15, oblong, -2-lobed, and seemingly fertile. Ovary superior, round, 4 celled, with one ovule in each, attached to the axis a little above its middle. The Lerry is the size of a large cherry, oval, smooth, very slightly marked with four lobes, crowned with the sessile 4-lobed verrueose permanent stigma. Roxburgh says he received frequent samples of the gamboge of this tree from a correspondent at Tellicherry, and miformly found it, even in its crude unrefined state, superior in coleur while recent, but not so permanent as that from China. The tree grows on the highest parts of Wynad in ludia.
(Lindley, Flora Medica; Royle, Materia Medica.)
HEDENBERGLTE. [AUGTE.]
HEDERA, a genus of Planta belonging to the natural order Araliacev. The ealys has an elerated or toethed edge. The petals 5 or 10 , not calyptrate and cohering; stameus 5 to 10 ; styles 5 to 10 , converging or consolidated; the berry 5 - or 10 -eelled.
II. IIelix, lvy, is a common plant all over Europe, elinging to trees and walls. It has a stem elimbing with roet-like tibres; leaves coriaceons, smooth, shining, 5 -angled, or 5 -lobed, the upper or old ones ovate aud acute; urnbels simple and downy; leaves anstcre and bitter; berries bitter, aperient, and emetic. It is mentioned as a sudorific, and was once reputed to prevent drmukenness and to dissipate the effecte of wine. The berries are black at maturity. The Howers are yellowish, and appear late in the season, and, in conscquence, are much resorted to by bees and flies when little other food is to be had.
lt is found commonly wild in England, and is dispersed through many distant parts of the Old World, lying between the Canaries and Europe on the west, and the northern parts of Chima on the east. In the Camaries it aequires its largest size, being what is called in English gardens the Irish or Giant Ivy, which grows so much faster than tho European form. In the north of India, and indeed occasionally in Italy, the berries, instead of being black as with us, are bright yellow, and it is supposed that this is more particularly the Mcdera of the Roman poets. The leaves vary much in form, and there is a kind which never runs or ereeps upon other plauts, but merely forms a compaet bush.
II. umbellifera is a native of Amboyna. It has a slirubby unarmed stem; leaves on long stalks, lanceolate aeuminate, distantly serrated; peduncles 16 , trifid and unbellate; partial umbels eapitate, roundish. It yields a blackish or dull-brown resin with a very powerful aromatic cansphorated smell. It is called 'Sarura' in Amboyna. There aro 50 speeies of Ivy eummerated, all of which are of easy culture.
hedghe-hog. [ERLnaceus.]
HEUGLEMUSTARD. [Sisymbitum.]
HEDGLSSPARROW. [Sylviades.]
inedyiphane. [Lead.]

 mon l: boe juclen caly, with the menernth linear aubulate and unarly njul, the curulla widh lange vexillum, amd oliliyuely truncate: Aoal znarls hoager than the wing"; the nlamenn diadelphous; the
 wheth are cuasectal hecther in the iniddle, athl therefore the suturen wre conves un lath videa The apocie are herba or uuder-mhrulas.
 trenng mewraco prites of lange purple, white, or croam-coloured
 -tualier getmets. The Sainkfid, /I. omberychis of chler writers, now fisme the gean (modeghe, which slitfers from Ifelymarum in the Irsestree outuseting of many joints, not of one juint, at in that geuus. [1) (abserchar]
 wath is: farm of efliptic or romadinh lenflets, which are pulezent lanath abl wo the margina; the apile or racentes of fowera are us sie. crowilal: the when of the flower twice the length of the calyx; the legumes gilalirous, with 25 orticular prickly joints It in a native of stasa abal Italy. It hat aleep red or white flowers In Calabria Hib phast krown will in groat abundance, and horeen abl mulea are fod with it. It grow well in our ganlens, but probabiy would not rate a gimal fodd croplo.
// frumorwo hy an erect mbrubby atem, the leaves with 5.7 pairs of wherrate clliptic obume leatleta, which are clothed with jubercence
 handiy lougrs that the calyx; the rexilhum the length of the kecl; the juinta of the legune wrinklod; the nerven alighty echinate. It io a buture of siliman in andily places. It ha a pale purplo flower, and to arery hastombe plant. Hornen eat it with avility, and it may le maile nofful in fixing kabd, in which is grown ruadily.
II. Marlenew lan neunulant ntems; tho leaflets oblong, elothed on Joilh murface with caurmwht pili; the mtipules sheathing; the joints of the logume ranavencly wrinkleal and pilose. It in a native of areic Arocrica and almut the Niokatchewan, on the Fagle and JedInct Hilla The Huwerh are laree abl of a red colour. This was dowabial an a lipuorioc plant ly Sir A. Mackenzie, and umed after hams. The whule plant has an areet tante.
H. dimarer in unerl in Cochin thina as a ntomachic, and II. alpinum in uned in siberia for the name purpose. The $/ 1$. sennoides of Willdeinow. uow ermocaryen ocenoides. lias a root which in used in ludia as - home asul atmolant. Tho II. Ahagi of Linneus in the Alhagi Manrorum of roceut writury. It is anjuluy ahrub, and from itabranches riuslem a wneeq mulwance like manas. II. tuberosum of Roxburgh, f"marm luberon of the Candolle, grown in tho Circar Mountaine. The reitin are weyl hy the natives as poultices for owellings of the joserta.
All the apreies of the gensua /Redysarmm may be cultivated. They thrite in a bight rich moil, the jercenaial morts may be increased hy
 moner in all cimit berder.

1Pondley, flura Morlica; Jon, Dichlanydeous Jlants; Burnett, "lothunarif Aherany.)
 racrip. It ban heminjurrical campanalate calyx, bracteolated at the loner. with mis ercet lobera and as many alteruating horn-nhapeed FHarat atigios: futale th, altornate with the erect lobem; atamen 12, ․oncwinat ojusi: svary menale, nearly globone, 4 -celled; caphule noliodel wathin the calys; aredin mumeruus, minute, and winglean. tilobroun locrlacenou glante. Jemuncle l-Gowered, shorter than the (Aly.
II. Mincofona in found in New Spain on the volcano of Jorulla. It lise tornate of uffumite leavem, the upicer of en alkernate, on very ahort
 It an atowerfill andunfic and iliurctic. The Mexicaus consider it a - alualio rumpicine, abl (all it linuchinol.

 [l'rietma]

 ean, atal foll with tho miturg of thoman in the cveluing. "himgenan

 - hosey fruan in the moth of tinnoper the nurth of Africa, nad a few

petal. It in a ontive of Frauce, Italy, Spain, Purtugal, and Turkey, and in fonud in Anglemy and Jerses in Great lbritain, but io a very rane plant.
II. cannm, the Hoary Sun-Hose, is diatinguinhed by ita shrubby apluarance, without atjpulea, and having terminal bracteated racemen. The flowers mo gellow and manll. It is a native of the south of France and Germany, nud is rarely fonnd in Great Britain.
II. rulyure, tho Comtaon Rock-liose, is a procumbent slirub, with atipulea, bracteated racemes, the atyle langer than the ovarium, and hent at the base. The flowers are yellow, nad bloom from May to September. It is a native of Enrope, and is found in Great Britain in dry hilly pastures.

There is a very besutiful rariety with dunble pale yellow flowera, which is much cultivated liy foriats. The stamens, if tonched io the sumhine, apread slowly, and lio down upon the petals.
II. Breveri is a Britinh plant. It has obstase obovate leaves, without stipules; racemes without bracts.
II. polyfolium in found in Devonshire and Somersetshire. It in a hoary plaut, with stellate pubescence; the leaven opposite, ovateoblong, or oblong-linear; the repals tomentose, inner ones obtuse.

Aluost all the apecies of //edianthemum nro elegant plants, of hardy growth, and easily eultivated. They grow best in a light sandy eoil, aud whould be protected during the winter in a frame.
(l)un, Dichlamydeous Plants; Malington, Manual of Britioh Bolany; Loudon, Encyclopedia of Trees and Shrubs.)

IIELIANUS, n geaus of Fishes belouging to the Scienidar, a family of A canthopterygii.

HELICARION. [Hflicid.E.]
HELI'CID.E, a family of Ga
IELII'CID.F, a family of Gasteropodous Mollusca to which the land Shell-Sonils are referred.
lir. J. F. Gray, in his paper on 'Streptaxis' ('Magazine of Natnral Hintory,' vol. i.), observes that zoologista have divicled land-shells into novernl gencra; but that the late Baron Férussac united mont of them into n ninglo geous, ns ho wished to cstablinh as a rule that all the genera of Mollueca should be alone characterised by some pecnliarity in the nnimal. "Tho increased knowledge," continues Dr. Gray, "of the animal has shown that some of the apeeies which he (Ferussno) referrel to tho genns Helix have very different animals from the typical kinds; and it is probable that eventually several of the genern catallished beforo his tiue (which he attempted to set aside) will be found to be truo genera, necording to his own theory. The knowledge of the animal, and the history of soverna specloa which were unknown at the time he wrote his oystem, have ahown that several of the chaructera which ho considered as of generic importanee are cammon to other species belonging to quite differeut groups. Thns we now know that some Jelices (Curocolla intersicolor, Balea Chemnitzii, and nome others) are rivijparous, as well as the Parfula; that the degree of development in the lower pair of tentacles is variable in the different apecies of Pupa and Vertigo; and that to aeparate the latter genus from the former, on acconut of the partial obliteration of these organs, has the effect of dividing very nearly allied species. I am inolined to think that these and numeroun similar facta, which must be well known to every practical conchologist, ahow us that we are warranted in establishing genera from any jeculiarity in the structurv or form of a seriea of ahella, as well as on a peculinrity in the animal alone; eapecially when we consider how very few of the animals of the different apecies which we are called upon to arrange are or ever can be known; and also, na we conatantly find by experience, that every peculiarity in the form or structure of tho shell is tho indication of some peculiarity in the habit or organic structure of the naimal which formed it, and warranta ita $e]^{n}$ mation from the rest of the species of the family."

The organisation of this group of animals may be illustrated by the ntructure of the large Roman Snail (Ifclir Pomatia), of whieh there nre neveral preprationa in the musenm of the Royal College of Surgeons in Jondon.

Nutrient Organa.-In the Pliyniologial Series-Gallery, No. 301, in n jreparation of the Helir Pomatia, Limn., showing the form of the month and tho part which performa the offico of teeth. This is a dentated horny aubatance, of a dark colour and arched form, situated tranaveraly above tho aperture of the mouth, and forming, as it were, the margin of the upper lip; the lower lip is divided by a vertical fianure. No. 302 of the nme series showa in the head of another Shell-suail the anne ntructure of mouth. No. 767 shown the soft parts of I/elix Pomatia, nud the alimontary canal has buen iojected with nize and vermilion; so that the anlivary glands, frotn their white colour, may be dintinctly perceivod upon the parictes of the stomach. There glands are of n tintiened, elongatod, and irregular form, and of a conglomerate atructure; they may be seen diminishing in breadth as they extenl upwards towards the pharynx, where their ducts terminate. Here nlso the aemicircular dentated horny jaw, the courne mid termination of the alimeutary canal, and the pasition and form of the liver, are well diaplayed. The next preparation (No. 768), which exhibits the month, cesophagus, and stomsch of the rame precien, flows the junction of the two malivary glands at their lawer "sinmities, and the termination of their ducts. The osophagus and atomach being laid open, their interual structure is seen. ('Catalogue" -Ginllery, vol. i.)

Circulating System.-In the Shell-Snail (Helix) the heart is situated on the right side of the posterior third of the pulmonsry sac; and in the Slug (Limax) it is situated st nearly the middle of the posterior surface of the pulmonary sac, and protected above by the rudimentary shell, so that this part of the atructure in these animals is, as in other points, nearly allied. The preparation in the College Museum, No. 882 (Gallery), is a specimen of Helix Pomatia with the shell removed in order to show the heart, which is situsted on the left side of the dorsal aspect of the body, near the posterior part of the branchial sac. The pericardium is laid open, and the heart being injected, the suricle, from its thinner parietes, is seen of a rcd colour ; a bristle is passed behind the ventricle, snd the sorta masy be seen ramifying over the liver. No. 883 is a specimen of Limaic ater, Linn. (Slug), to show the heart situated in the middle of the back. ("Catalogue "-Ganery, vol. ii.)

Respiratory System. - In the same scries the soft parts of Helix Pomatia are prepared (No. 1081), to show the pulmonary aac, which receives the air by an anterior orifice on the right side of the neck. The ade is laid open from that orifice to tho opposite extremity; and the roof of the cavity, upon which the pulmonary artery or continuation of the veins of the body ramifies, is turned back to exhibit the reticulation of the vascular and respiratory surface. The parts are iojected with size snd vermilion. No. 1082 is a similar specimen, with the left parietes of the pulmonary sac removed, and the orifice by which the air is admitted and expelled left entire. No. 1083 is the portion of the vascular parietes of the pulmonary sac removed from the preceding preparation, and inverted to show the ramifications of the pulmonary vessels. These are continued from the veins of the body without the interposition of the propelling ventricle. No. 1084 is a similar preparation. No. 1085 shows the roof of the pulmonary sac of another Melix Pomatia, with the vessel injected; and in No. 1086 there is, in a similar specimen, a bristlo inserted into the rectum, which terminates close to the orifice of the pulmonary sac. ('Catalogne'-Gallery, vol. ii.)

Brain, Nervous System, and Senses-In the same series of the same collection is a preparation of a Slug (Limax rufus, Linn.) -No. $1304-$ laid open longitulinally along the back to show the nervous system. The viscera are removed. "In this," says l'rofessor Owen, "as in other Encephalous Mollusks, a well-developed ganglion is situated above the cesophagus; it is of a transverse shape, slightly enlarged at its extremities, and supplies the antenne, or horns, and the eyes. The cesophageal nervous ring is completed by a larger gangliun below the tube, from which numerons nerves radiste to supply the body. The principal nerves are the two inferior ones, which extend on either side the mesial line of the ventral surface straight to the opposite end of the body, giving off nerves to the muscular disc, or foot, from their outer aides. A sinall unsymmetrical ganglion is formerl on the nerve, which supplies the heart and respiratory spparatus." No. 1305 is the same species of slug laid open along the ventral aspect, and the viscera removed, to show more especially the subcesophageal gangliou and its nerves. A bristle occupies the place of the cesophagus. No. 1306 exhibits the nervous system of a Black Slug removed from the body. ("Catalogue'-Gallery, vol. ii.)

Touch.-In the Shell-Snails the sense of touch will be readily supposed, by agy one who has observed the motions of a common gardensnail, to reside enpecially in the ventral disc, or foot, and the lower tentacles. In the museum of the College we find, No. 1391, a specimen of Helix Pomatia prepared to show the different character of the surface of the skin in the exposed and protected parts of the body: in the latter it is thin and smooth; in the former, thick, vascular, and rugose. No. 1392 is a snail injected, slit down the back and eviscerated, to show the vascularity of the foot. No. 1393 is a snail injected, with one pair of tentacles, which serve as special instruments of touch, extended. Here too the pulmonary cavity is laid open. (Catalogue'-Callery, vol. ii.)

Sight. - In the gallery (Physiological Serica) of the same rich museum is a preparation of a IIelic Pomatia (No. 1756), with the posterior tentacles or horns extended, showidg the eyc-specks, or ocelli, situated at the side of the extremity of each liorn. "In this position, although destitute of appropriate muscles, the eyes have the advantage of all the mobility with which the tentacle itself is endowed; and by the admirable construction of the ssme part, they are defended frou external injury by being retracted and inverted, tagether with the extremity on which they are supported within the cavity of the tentacle, as in a sheath." (Professor Owen, "Catalogne,'-Gallery, vol. iii.)

Swammerdam describes the eges in detail ; lut some are of opinion that the organs above alluded to are not eyes. Sir Everard Home denied that they were visual orgsos; and so does M. Gaspard, who allows the snail nes senses, save those of taste and touch, the latter of which he admits it to possess in an extreme degree of delicacy. See M. Gaapard's 'Memoir on the Plysiology of Helix Pomatia.' (Majendie's 'Journal de Physiol.,' tom ii. p. 295, et seq. ; and an abstract of the pajer, with notes, by T. Bell, Esq., 'Zool. Journ.!' vol. i.) See also Mr. Brayley's paper 'On certain Orgaus of the Helicide, usually regarderl as their Eyen, \&c.' ('Zool. Journ.,' vol. ii.)

Generative Functions. In the common Shall-Snails (Helix), the male and female sexual organs are complete in one individual, but it
requires a reciprocal junction of two iudividuals to produce a fruitful impregnstion. The situation of these organs is at the snterior orifice of the neck; and st the time of congress a sharp horny or glass-like excitatory sppendage is protruded, apparently for the purpose of stimulus. Some assert that these appendages are absolutely shot out from the body of one snail inte the body of another, and engravings even exist where two snails are represented at a distance from each other reciprocally darting these spicnla amoris, some of which sre seen actually in the intervening space, and others on the ground. There is reason to doubt whether the spiculum amoris is ever thrown we have had opportunities of exsmining the common garden shellsnails frequently when engaged in the reproduction of the species, and have never seen the hard excitatory appendage thrown from the body of the snail. Colonel Montsgu, it appears, is of the same opinion. He admita the existence of the apicula in the animsl of Helix aspersa, as well as I. nemoralis (or at least some of them); but " that they are missile darts," he continues, "we have much reason to doubt, though it is natural to suppose the animals are furnished with them for the purpose of stimulating each other to love, because it is only at that season they are fouud to possess them. If such are ever discharged at each other, we have been extremely unfortunate in our observations, for in no one instance could we ever find the dart penetrated, though at the time the animals are close the point may irritate; but it is neither sufficiently strong nor sharp-pointed to penetrate the tough skin with which these animals are furnished; and indeed the extremely viscid secretion with which they are so copiously provided adheres so strongly to the spiculi (spicula), when wholly projected from the body, that they are for a time held by it. Perhsps we may be told hereafter that this tough excretory fluid is used as a cord to regain these darts after they have been discharged; but such we shonld hold equally fabulous with much of the accounts related by various authors. These celebrated love-darts are sub-pellucid, white, and very brittle, about one-fourth or three-eighths of an inch in length, and somewhat. triangular like the blade of a small aword.' ('Testacea Britandica.') Dr. Maton often observed these spicula, but never saw them actually projected from one to the other.

Where the reproduction is by means of eggs, as it is in the great majority of Melicide, these are either enveloped in a skin, and round, as in the common gardeu-suail, or provided with a hard calcareous shell, generally of a white or of a dirty-white colour, as in Achatina and Bulimus. [Bchimes.] These hard-shelled eggs are generally oval ; in other instances they are round. Specimens of these eggs, some whole, some showing the young shell included, aud others showing it bresking out of the egg-shell, are now in the British Musenm (from Mr. Broderip's collection). In the museum of the College of Surgeons are several preparations, showing the organs of gencration in the shell-snail.

Power of repairing Injuries.-The power which snails, in commou with other Testaceous Mollusks, possess of repairing their shells, is known to most observers, snd requires no commeut; but the extent to which these animals will repair lesions of the soft parts, and even reproduce some of the principal ones after they have been deprived of them, is deserving of notice. The works of Schoeffer, Spallanzani, lionnet, and others bear testimony to the wonderful vis vito in these animals, snd its energy in replacing parts, the deprivation of some of which must, it might have been previously thought, have been followed by immediate death. Spallanzani cut off one of a sosil's horas: it begau to bud agaiu in about 25 days, and eontinued to grow till it was equal in length to the other. He removed part of the head: in course of time the part was renewed. Not that this was always the case in those instances where the entire head had been taken off; but even in these instances the snail often rccovered, and at the eud of a few months appeared with a new lead in all respects equal to the old one. The snails so treated retired into their shells the uoment the operation was over, and there they coucealed themselves for weeks and even months, covering the aperture with the parchment-like secretion so well known to those who have seen this temporary sort of operculum. When forced out for examination at the end of 30 or 40 days, some appeared without any marks of renewal ; but in others, especially in those cases which had the advantage of warm weather, there was a fleshy globule towards the middle of the trunk, soft, and whitish-ash in coleur. At this period no organisation was detected iu the globule; but in 8 or 10 days the globule becaue larger, rudiments of lips were seen, sad of the smaller horns, mouth, sud tongue. A membranaceous substance was observed fixed in the npper jaw: this proved to be the new tooth. The parts then becano further developed and more conspicuous, occupying a greater space, and in two or three months the injury was so completely repaired that the lighter colour only of the new head served to distinguish it from the old one. These experiments were confirmed by others, by Gerardi among the rest.

Hybernation.-M. Gaspard remarks that in our temperate climate, as soon as the first autumoal chills are felt, about the commencement of Octoher, generally, Ifelic Pomutia becomes indolent, loses its appetite, and associstes in considerable numbers on hillocks, the banks of ditches, in thickets, hedges, and such places. In a day or two the animals cease feeding, expel the last contents of the intcstines, and theu hide thomselves under moss, grass, dead leaves, or tho liko
subtent llite racin forma fors iterif，with the nubatior gatt of the
 the nerity it rularge and escatabe ly turning itaclf round on＂．very wabe，ther miage blach arainst the sideo of the cavity，and at lant

 the aperture of the ebell to pearly a lurizontal pomitions，it atope．The
 enaptetely ta conver the cullar of the tuastle，which is at this perioul very white：arm then ingligea a quatity of air，after which it clomen
 in fortual with ita nucus，atsl interjumal leetwent the matile and asy eatramene muletasce lying abire．The mantle then secreten a yuantsty of rery whito Buil wer ita whole nurface，which seta uni－
 corverity almathalf a lane thick．When tha i hambuct，the animal －rgarstes ite mauth from it by aturbiber ansl atronger mucous mecre－ tion：and ather a fow bourn exjelling a jertion of the air it had pretioualy inopirol，s is ensbled to alirink a listlo farther into the bbal it buw fuma anuther latuina of mucus，expirea more air，and then metare farther intar the nhell．In thim way mometimea a fourth， Efh，and cren misth partition are formed，with interusediate cells falled with air．Such ia M．Gmaparlín acoount，but Mr．Bell remarks that it dime nut cuppletely explain the manner in which the excava－ tion io formed．＂it je not by the preaure of the foot，＂mays the
 principally effectevi．A large puantity of vary viocid mucus is secreted wo the umber murface of the font，th，which a layer of earth or dead Irave adberes ；than io turnot on one aide，and a fresh socretion being thrown oust，the layer of carth tmixed with nutus is left．The anitual then take amither layer of earth on the bottom of the foot，turns it alm to the juat where ho insende ta furm the wall of his habitation， and lrare it in the astne masuer，rejeating the frocess until the carity in anficiently large，aml thas making the aiden smooth，even， asoll compact In forming the dome ur arch of the form，a similar methol in uned，the fiost collecting on itm under nurfaco a quantity of rarth；and the asimal turning it upwarla，leaves it by throwing out froh nucua，and this ia repeaterl utstil a periect nour ia formed．As 1 have very often watched thin curious procera， 1 amo ortain of the facta ita retrusiug viry carefully a prortion of the rowf mon after ita completion，I was erabient to see the formation of tho operculum．In about an hour，or eren leas，after the hytwornaculum in coveren in，the whote nurface of the cullar of the mantlo instantaneounly jours out the calcarcuas merretion in considerable yunatity．This is at firat as Auhl as thick crean，hut very moon acquirea exactly the consistence of lind litre，leing excemojecly mollosice and temasious；and in about an lo．，ur aterr it ia parared ont it in perícetly molicl．＂

M．Gapmand etaten that the latrour of each individual continuca for abant two ur thene dayn；lint that the whole of the month of October is occupich liy the gecurend eloning of tho nhells of the species．He ald．that abonat the lwinning of Λ pril the hybernation ceases．＂Thu
 marl cealy comprebeudel．The air which in contained in the different celle，and wheh had been expired un the animal withdrawing itself fastier and fartier into the mbell after the fortantion of the operculum， is agmin ianjifel，and each neparate membrnoous partition broken by the premure of the himder jarts of the foot projected through the reasile When it artive at the calcarcoun operculum．the animal， mosilug last eflort，lumen and detaclien ita mont obtue angle．Then meinusing by latile and little the engo of the foot between the shell and the＂gerculutu，it forcon the lather off，or brunk it nway．＂ （＇Almenct of M．timpanl＇n Hemoir；＇l，y T．Bell，Emy．，I＇res La S．， Zoeshenical Jouryal，＇wi．j．）
W．uow joneral iog give oketh of the viewn of aystematista with Trarl tay tha numenate tinlwe of animalm．
The genua hanas（Nluga）in placoll by limineun at the head of the

 －raratmi by hifn from hamar．Buth laind and fresh－water tentaceona ratmigeln wote aeminthed urier this geaue，which mands between Turto armi lierves．
 Duokn，cmasintal if the sluga，loimara（Lomar of Lammelun，including

Cintor Mrioz Buvier arrangen Helies，burian（Ilclicolimax）

Then come the＇lawilur（Turimo gerreram，T．bidene，Linn．，dec．）．

Call．

 abd lanemg eglimitrocroun tontacles．Their shell he chameterimen © eprinalor．harifa tus prijectiog jarte on ita exteriar execput the
 rerugeal or reflectent cotwarila Ho dividee thif，the first fatnily of hie I＇tyriphaguat（llant－kating）Trachelijook，into the following rextiont atil！gicera－
（a）Four Teutacles
IJdix．C＇uracolla，Anostoma，IIelicina，I＇up，a，Clousilia，Bulimus， tchatina，Succinea．

（b）Two Tontaclea．

Auricula nud Cyclostoma．

M．de Feruanac makes the fourth acil fifth orders of Gastropods onnsiat of tho l＇ulmonifurous Giastropoda without an operculum （I＇ulmonis rans Opercule），aud tha Pulmoniferous Gastropoda with al oprereulura（l＇uluonés Uperculés）．

The furth order couninte of the following sub－ordera nad genera ：－ 1st Sub－order．Geophila．
The lnt Family of this order consista of the different genera of Sluga，mid of Parmacella，Testacella，Ac．

The and Fanily embraces the following genera of Suails：－Meli－ carion，／Idicolimar，／／elin，Vertijo，Partula．

2ul Sub－order．Gehydrophila．

3rl Fanily（Les Auricules），Carychium，Scarabus，Auricula，Pyra－ midella，Turnatella，Pedipes．

3rd Sub－order．／Iygrophila．

This aub－order consists of the Limueana，or Water－Suaila，auch an limmert，Planorbie，d．．

Thu fifth onder contains two fnmilies：－

1nt．Tho Helieinians（／Ielicina）．

2ul．The Turbicinians（Cydustuma）．

Tha Pulmobranchiata form the first order of M．De Blainville＇s Paracephalophora Monoica，tho secoud sub－class of the second class （＇arcephalophora）of his Malacuzoa．

M．Do Blainville givoa tho following description of the Pulmo－ branchiata：－

Organs of respiration retiform or aërian，lining the roof and floor （plafond）of the cavity aituated obliquely from left to right on the origin of the back of the nuimal，and communicating with the ambient tuid by a nomall ronnded orifice．pierced on tho right aide of tho swollen（runfid）border of the mantlo．All these animals are more or less framed for breathing air；tho greater part are terrestrial；some live on the banks of fresh waters，and others on the aca－bauks（rivage （les mers）．None bury thumaclves in the mud，with the exception of the Limnnceans，during the rigorous season；all are phytiphagous． Some of them are known in nll lands．

M．De Blainville divides the Pumbobranchiata into the following families ani genera ：－

1st Family，the Limnaceans（Limnet，Physa，Planorbis）．
2nd Fanily，the Auriculacenns．（Pcalipes，Auricula，Pyramidella．）
Snd Fanily，the Limacinians．（Succinea，Bulimus，Achatina， Clousilia，Pupa，Tomoyeres，／Iclir，Melicolinax ：－Tealacella，Parma－ cella，Limacella，Limar，Onchidium．）

M．Latreille divides the l＇ulmonéa，his fourth order of his firat section of Gastropode（the Herumphrodites），into the following families and genera：－
lst Fatuily，Nudilimaces，（The Slugs，and Parmacella，Tita－ cella，\＆e．）

2nd Fanily，Géocochlides（Uclicarion，Vierine（Helicolimax）， Succined，Idilix，Carocolla，Anostoma，Papa，Chondrus（Gremaille）， Clausilia，Bulimus，Achatina，I＇eriojo，P＇artula．）

3r．l Family，Limnocochlidos．（Carychium，Scaralus，Awricula， C＇onotula，Cassidula，Limnert，Physa，Planorbis，A ncylus．）

The second section，the Dicocious Gastropods，consisth of his tifth order（Pacupones），and containa two families：－1st，the Helioinides （／lelecina）；2nd，the Turbicines（Cyclostoma．）

M．Jnag，in his＇I＇nblenu Méthodiquo，＇makes the Limaçong of Férunare（Trachélipodes Colimncén of Lamarck；Limacioés of Do Hlainville；（eeocochliden of Latreille）the recond famlly of the Pulnoás laoperculés of Férussac（Pulmabranches of De Blaiaville）．

M．Jang，following the F＇errisnac，thus，with some slight altorationn， defines and arranges the family ：－Aninal clungatod，having the body diatinct from tho foot，and forming a twinted spiral，rarely furniahed with a cuirams，lut always showing a fleshy collar which oloses the shell．I＇ontaculn to thu number of four，rarely two，the upper ocellated．Dilmonary envity placed forward，and opening in the thicknems of the collar．Organa of generation unlted in front；vent near the rempiratury orifiec．Shell alwayn apiral，very variable in form，receiving the animal inore or leas completely．Terrestrial．

Terracenocs．

A．A cuirass aud a collar．
Genem，litrina，Jiaparnaud．（Helicolinax and IIelicarion of Fértazac．）

B．A collar without a cuirass．
（ienera，Hedix，Muller（helir，Succinca，Amphibulimus，Acavue， I＇dylonech，Tomigerca，A umatoma，C＇urocolla，Bulimus，Achatina，Poly－ јhстиs，I＇им，C＇lausilia，\＆c．，\＆c．Fér．）
(\dagger) Itedundantes．
\pm Voluatas：－Melicoides．
I. Sub-genus. Helicophanta, Férussac.

Peristome simple.
1st Group. Fitrinoides, Fér. (Helix brevipes, is.).
Peristome thickened and subreflected.
2nd Group. Vesiculce, Fér. (IT. Cafra, \&c.).
$\ddagger+$ Evolutate:-Cochloides.
II. Sub-genus. Cochlohydra, Fér. (Succinea, Drap.; Anephibutima, Lam. ; Amphibulimus, Montf.). $(\dagger+)$ Inclusce.
\ddagger Folutata:-1Helicoides.
III. Sub-genus. Helicojena, Fér. (Helix, Linn.). Columells solid and twisted. lst Group. Columellate.
a. Peristome simple. (Ifelix naticoides, \&c.)
8. Peristome reflected or thickened. (Helix Jamaicensis, \&c.) Shell perforated.
2nd Group. Peiforate, Fér. (Helix ligata, \&c.).
Shell umbilicated; umbilicus entirely covered. a. Shell globulose or aubtrochoid.

3rd Group. Acavi (Helix aspersa, \&c.). Shell imperferate.
f. Shell somewhat depressed (surbaissée). 4th Group. Imperforate, Fér.

1. Mouth rounded ; peristome open. (Helix guttata, \&c.)
2. Month sinuons; peristome atrougly reflected. (IIelix, squamoza, \&c.)
3. Mouth turaing over (rersante) ; columellar border sinuous, flattened, snd subdentated. (IIelix cognata, \&c.)
IV. Sub-genus. Helicodonta, Fér. (Tomogeres, Montf.; Anostoma, Lain.).
1st Group. The Grimsces, Personate, Fér. (Ifelix dentiens, \&c.).
Aperture defended by one or more elongated and iuternal laminx. 2nd Group. Lamellata, Fér.

- Many lamina. (Ifelix carabinaia, sc.)
** A single lamina. (IIelix labyrinthica.)
Peristome furnished with large teeth, one of which at the base of the columella furme a gutter.
Srd Group. Maxillata, Polydontes, Montf. (ILelix imperator; de.).
Mouth reversed, furnished with elevated folde, the impressions of which are visible outwands.
4th Group. Anostomes, Fér.; Anostoma (Iflix rinjens, \&c.), Sireptaxis, Gray.
Interior border of the aperture furnished near the peristome with elevated longitudinal folds, the impressions of which are visiblo outwards.

5th Group. Impresse (Helix cepa, \&c.).
V. Sub-genus Helicigona, Fér.

Umbilicus covered.
1st Group. Carocolla, Montf. (ITelix angistoma, \&c.).
Umbilicus masked or visible.
2nd Group. Vortices, Ok. (Helix marginata, \&c.).
VI. Sub-genus. Lelicella, Fér. Peristome reflected.
1st Gronp. Lomastomea, Lomustoma, Fér. (Helic carascalensis, \&c.). Peristome simple.
2nd Group. Aplostomes, Aplostoma, Fé.

- Verticilli. (Helix lineata, \&c.)
*** Hyaline. (IIelix olivetorum, \&c.)
*** Pasciate. (IIdix candida, \&c.) Peristome bordered.
u. Shell horn colour or brown, nearly unicoloured, rarely fascisted, often hairy ; peristeme rather spread ; epidermis caducous. 3rd Group. Hygromanes, Fer. (Helix cinctella, \&a.)
f. Shell whlte or reddish, very much ormamented with bands or small vivid-coloured liues; epidermis insensible, never hairy; sometimes carinsted; peristene bordered but not spread. 4th Group. INeliomanea, Fér.
** Sheil somewhat depressed or globulose. (IFelix groyana, \&c.)
** Shell trochoid snd s little carinated. (Ifelix pyranidata, \&c.) VII. Sub-gemas. Ilelicostyla, Fér.

Columells straight ; peristome simple ; shell subdepressed. lat Group. Aplostomen, Aptostoma, Fér. (ILelix misella, \&e.).
Columella twisted, truncated as it were at its base, or furnished with an internal ayiral rib, forming a gutter, and appearing under the
form of a tooth or callosity.

2nd Group. Canaliculata, Fér. (IIelix delicatula, \&c.).
Columells flsttened, without either tooth or Ismina, forming a sort of gutter st its intersection with the penultimate whorl; peristome reflected.

3rd Group. Marginatce, For. (Ifelix studeriana, \&c.).
$\ddagger \pm$ Erolutata.—Cochloides.

* Mouth generally toothless.

Columella aolid.
a. En filet, not truncated at its base.
VIII. Sub-genus. Cochlostyla, Fér.

Peristome reflected.
1st Group. Lomastomes, Fér. (Helix metaformis, \&c.). Peristome simple.
2nd Group. Aplostomes, Fér. (Helix Dufresniz, \&e.).
B. Columells solid, flattened, and truncated at its base.

+ Shell conic, or very ventricose; sperture eulsrged.
IX. Sub-genus. Cochlitoma, Fér.

Shell conical ; mouth short; anterior border sdvanced. 1st Group. The Rubans, Fér. (IIelix exarata, \&e.).
Shell ventricose; mouth very large; external border in a vertical direction.

2nd Group. Achatince.

$\dagger+$ Shell ovoid or turriculated; mouth elongated and narrow.
X. Sub-genus. Cochlicopa, Fér.

Shell ovoid; mouth long; exterior border in a vertical directiou.
1st Group. The Polyphemes, Moutf. (Helix Priamus, \&c.).
Shell turriculated; mouth short; external border s little advaneed. 2nd Group. Styloides, Fér. (Helix fulminea, \&\&.).
SLell perforated or umbilicated; umbilicus masked or uncovered; peristome simple.
a. Whorls of the spiro equalised; the last whorl shorter than the others united.

> XI. Sub-genus. Cochlicella, Fér.

Ouly group, Turrite, Fér. (Helix conoidca, \&c.).
B. Last whorl of the spire generally larger aud Fonger than the others united.

XII. Sub-genus. Cochlogena, Fér.

+ Peristome simple or thickened, but with sharp elges.
a. Shell umbilicated; columella straight.

1st Group. Umbilicata, Fér. (Helix flamnata, \&c.).
β. Shell perforated; columella twisted.
2nd Group. Perforata, Fér.

* Shell oblong. (IIelix fazciolata, \&c.)
** Shell ovoid. (Helix costulata, \&c.)
$+\dagger$ Peristome reflected or dentated.
Mouth creacent-shaped, without either teeth or folds ; peristome reflected and regular; columella $t_{\text {twisted, }}$ perforated; last whorl of the spire sometimes shorter than the others united.

> 3rd Group. Lomastomes, Fér.

* Last whorl of the spire larger and longer than the others united, shell ornamented with vivid colours. (Helix Favannii, \&c.)
** Last whorl shorter and less than the others unitet; shell unicoloured. (Helix Beticata, \&e.)
Mouth short, crescent-shaped; peristome aimple or thickened and regular; columells twisted, more or less projecting and bent, or furnished with a plait whieh turns upon it aud makes it appear subtruncated; umbilicus mssked or exactly closed; last whorl.of the $\mathrm{s}_{\mathrm{i}} \mathrm{ir}$ ire sometimes shorter than the others united.

4th Group. Helicteres, Fér. (Achatinclla, Sw.).
${ }^{*}$ Shell coniform. (Helix valpina, \&c.)
** Shell turriculated. (Helix tarritella, \&e.)
*** Shell uvoid. (IIeli.c tristis, \&e.)
Mouth angular at its extremities, or overlaid suporiorly, often narrowed by the sinuosities of the exterual border; columella large, more or less spiral, and forming a plait more or less projectiug in the sperture. Peristome thick and reflected; last whorl of the spire longer and more convex than the others united.

5th Group. Stemoteides, Fér. (IIclix Auris Lcporis, \&e.).
Mouth crescent-shaped, rather angular at its extremities, most frequently furnished with short teeth at the peristome, which is bordered or a little opened out or reflceted; never any lamine ; columella twisted, hollow, flattened at its base, or forming a protuberance; generally perforated.
bth Group. Dontostomen, Fer.
(*) Last whorl of the spire harger aud longer than tho others united. (IIflic Auris Boris, \&cc.)
(**) Wiboth of the wiore mamiond, ofan preseal and narrow. (lldior terghe. Ac.)
("or) Nouth griesally furmibled with teeth or lamiar.

1. Witbout gutters ; jeriaturne geberally not contimulus.

Xlll. Subemath CocAlculonta, Fér.
Shell eytindrical.
Jot Gmupr P'mpa, Fér. (Helis, l'ra, sc.). Shell fusifurm.
:sml Grvap Cernalea, Fir. (Melix Moricamdi, We.).
-. thm or toro gutiera: peristnme gederally continuouk
XIV. Subgenus Cochlodina, Fír.

- stedl right-handel.

4 Mouth wilbout tecth or laminae.
Peristome not continuous
iot Iiroapl. Iupoiloa, Fér. (Heliar Carinula, \&c.). I'eristome continuous.
asal Group Tracheluiles, Fér. (Helir Slonnii, Ne.).
\&: Musth armed witli great plaita or elongatal tecth.
(IAClix.
(iaryonemas.)
*" Shell lefthanded.
South without any lation. (Balea, Gras.)
Inl Gnoup Anomales, Fér. (Helix perrersa, \&c.).
Mouth armed (with lamine, one of which perfurnas the part of an rlasic ol-reulus).
the (inup chamalia, Draparnand (Helix torticollis, kc.).

Datnors

Cirneta Verigo (Muller). - Animal elongaled, demicylindrical, with a rather largo piral body and a collar eloaing the shell; only two tentacled, long, obconical, retractile, numed at their extremity; arifice of the pulmonary cavity mpon the collar and to the right, appoximated by that of the rent; organs of generation united and wowing their orifice near the right tentacle. Oviparous.
Shell cylsedrical, very apiml; aperture atmight, in the direction of the asia, hort, often ilentated; peristome often minuous and reflected; rigtit or left handed (dextral or ainiatral).

Pariala (f'ert-Animal clongated, demi-cylindrical, with a rather larao apiral bwiy: a collar clowing the sheli noll carrying the orifice of the fulmonary cavity on the right and at the exterana angle of the aperture; iwn tentaclen only, cylindrical and retractile, ocellated on their murnmil ; organa of getnration united (1), howigg their orifice near the righe teotacle. Uvovivi ${ }^{\text {arones. }}$

Shell wral, $\mathrm{p}^{\text {ointal ; }}$; pire conical, last whorl consex and longer thas the otbera united, whorlm of the apire 4 to 6 ; nperture atraight in the direction of the axin, alsort, mometimes dentaked, or furnisbed with eleratel laminas ; perintome commonly very much reflected, with the eljo in the mano vertical plane; coluncellar nite or lij callone nt it lane; rextral or ninintral.
M. Ilanga thirl family of Inoperculate l'ulmoniferous Molluaka conkiotn of the Auriculen of Firuphan (Auriculacen of De Blainville; A servelufe of (iray; limnocechlidem (â collier) of Latreille). Theno are rither efrmetrial or marine, and one has been announced as furiatile. They cumprehend the genera Carychism, Auricula (A nri-
 To theo isay tre adiled chilino, Gray; Acmea, IIrtiunua; and Marimala, King. Nune of shme can be considered to belong to the Hfiredie. properly moalled.

The fonarth fotaily, the limneana of Iamarek (Limnacea of De Itantille: Idmaserochlulen (withous a collar) of latreille), is entirely Antiatile, ontoioting of the getien Plonorbis, Limnora, or, as lamarek write it. dymnow, and /hymo. Ajperma, Flem., and Amphijmplea, Nila Thin familly cannot be ennailered in belonging wo the /lelicida, properly mo calluel.

Than unter I'nlmanín Operculion of F'emane (Trachélipomen Colimacén ef I antarek: Pecunibranchom uf fuvier: Chinmobranchen Cricontomen
 Ias in
 n falmonary cority momising the ambient thud by a lange opening
 an मifforme ismivaluala
 rekerwna ur luipty. All teriverrial.

 Hrimioa, which wan at one time confonadrel with the Colimacég of

 fectinilmachane, lecaune thery arm relnteol to thofirat with reference on the argune of rapiration, atm to the meonul with reference to the mpration of the mera

Iat Family.
Helicine of Frrussac (Helicinides of Latreille).
Animal furniahed with a collar, and two filiform tentacles carrying the eyes at their exterual base upon tuberclea.
Shell nore or leas globuloae, with a demi-oral aperture, and the columella tranaversal and delicate. Operculum horny, sometimes calcarcous externally.
M. Rang obsurves that M. Do Férussac established the two familiea of Jeliciniana and Tubicinians for two genera nearly approximated, and that it would be perhaps more convenient to units them, the difference between them being really not very remarkable, exoept in their teataceoun envelope ; but Mr. Gray has pointed out that one has an annular and the other a spiral operculum. See also the Rev. M. G. Berkeley'a "Memoir' bereinafter alluded to.

Genera. Ifelicina, Lam. (Oligyra, Say; Ampullina, De Blainville). -Animal very apirnl, furnisbed with a proboscidiform head and a linabiated muzzlo; tentacles filiform, carrying the eyea at their extended base on tubercles; foot short, rounded, with a transverse anterior furmw; pulmonary cavity opeuing in front of the mantle by meana of a large tranaversal alit.
Shell sub-glohulose or conoid, a little depressed, not umbilicated, with a low spire, an aperture demi-oval, or nearly oval, the peristome reflected into a hordur (bourrelet), the left lip ealarged upon the umbilicus, which it entirely covers; columella transversal and planulate. Operculum horny, sometimes alightly calcareous externally; lines of growth concentric.

Helicina was established by Lamarck, and placed by him among his Colimacés. M. Rang is of opinion that the genera Ampullina of De Hainville and Oligyra of Say ought to be referred to Ifelicina, an opinion which seema to be in uuison with that of M. De Blainville himself, who has arranged both these genera under Helicina in his 'Manual.' Dr. Gray has published a valuable monograph of the genus in the first rolume of the 'Zoological Journal,' and the late Rev. Langdown Guilding has recorded some other apecies, with plates of the suimal, in the same work, vol. jii.
The delinition of M. De Férussac's necond family, the Turbiciniana, is-Animal without a collar, provided with two tentacles, ocellated at their external base.

Shell conoid, more or less elevated, with a roundish aperture and continuous borders. Operculum calcareous.
Cyclostoma (Lamarck). - Animal very apiral, furniahed with a proboscidiform head, which bears two cylindraceous tentacles, convex, or awollen at their summit, contractile, and ocellated at their external bare: foot elongated and oblong; pulmonary cavity communicating with the exterior by means of a large slit at the auperior and anterior part of the mantlo; position of the male organ indicated by a tentaculiform appendage situated at the right side.

Shell conoid, discoid, or turriculated, more or less elevated, with a sharp or mammillated summit, having all the whorls rounded; aperture round, with continuoun and reflected borders. Operculum calcareous, with concentric lioes, summit subcentral. (Rsng.)

The apecien of Cyclostoma are very numerous, and many of them are very beautiful. Mr. G. B. Sowerby has added considerably to the catalugue. They are principally the inhabitants of temperate or warm climates; thero ia one English apecies, C. elegans. The ruader will find an excellent paper on the natoray of thin apecies, by the IRev. M. G. Berkeley, in the 4 th vol. of tho 'Zoological Journal.'
M. Rang adds to these Pulmoniferous Operculated Molluaks, the fosail genus-

Fervesina, Grateloup (Strophostoma, Deshnyea).-Auimal unknown. Shell oval, nulglohulose ; aperture round, bordered, oblique, simple, toothles, turned over from the aide of the spire; umbilicua moro or leas large Operculum! (Rang.)
M. Rang remark that M. (rnteloup established this genus for n fossil ahell from IMax, which seema at the first view very near to A nostoma, but which M. Grateloup, from the examination of ita eperturc, conaiders as more approximate to Cyclostona. M. Kang statea that he participatea in this opinion, which the knowledge of the operculum can alone confirm; anl he goes on to observe that M. Deshayea, doultless not baring neen the publication of thia genus in the first number of the "Iulletin of the Limmean Society of Bordeaux, hail aubsequently published it under the name of Strophostoma. Three or four apecies are known.

Some may have doulta an to the propriety of placing these operculatel pulmoniferoua terreatrial molluaks under the family llelicide. Hut wo lelieve, wotwithstanding the difference of the operculum. that their genem! orgnuiaation will warrant their being so placed; and that the terrestrial ahell-anaila may without violence be placed in ono great family, which may be subdivided into the Ifelicide without opercula, and the J/rlicider with opercula.

Before we conelude thia part of the subject, we must draw the reader'a atteotion to the fullowing arrangement proposed by. Dr. J. F. Gray:-

Terrestrial.
Tentacles retractile. Eyen pedicillate.
Gnsteropodous. Limacide.
Tmehelipodous. Helicida.

Aquatic.

Tentacles contractile. Eyes sessile. Trachelipodeus (mantle thick-edged). Auriculidce. Trachelipodous (mantle thin-edged). Limnreade. Gasteropodous (mantle shield-like). Onchidiade.
With regard to the arrangement, Dr. Gray has since corrected that of the first divisien, because the distinction between the first two familics, though it is that used by Lamarck, Cuyier, and others, is, in his opinion, srtificial, aud of little importance: and the knewledgs which he has since acquired of the nuimals of several genera which were before unknown, have shown him that the character which De Ferrussac pointed out as the distinction between Arion and Limax (but which many succecdiag naturalists have considered of little importance) is even of more importance than was accorded to it by De Fcrussac, affording a good character for dividing the Land Pelmonobranchens Mollusca into twe families. Thue, he observes, the Arionidee are characterised by having a gland on the end of the tail (which, in the gasteropedeus genern, is preducci beyend the mantle), and they have the orifices of the organs of gencration on the right side immediately under the respiratory hole; whilst in Helicidee there is ne gland en the end of the tail, snil the erifice above referred to is just behind the base of the upper right tentacle. There is also, be states, an impertant difference in the nervous syatem between the twe families: in the first, the under part of the infra-gular ganglion is 6-lobed, whilst it is only 4-lobed in the Linaciule. Dr. Gray is further of opinion that at present only a few gencra, as Arion and Melicarion, Fér., Nanina, Gray, and Stenopas, Guilding, can be referred with cortainty te the Arionide; but he thinks it very probable that, when the simimals of other shells are known, many of them may be found to belong to that family.
Geographical Distribution and Habits.-The Melicidac are moat widely diffused over the eurface of the carth; scarcely any countries but those where the climate is surpasaingly rigorous are without some species of the family. Many of the shells are strikingly beautiful in form and celour, and these are mostly the inhabitants of intertropical countries. Some of the genera (Achatina, for instance) attaiu a very large nize, and lay eggs in proportion. Helix aspersa, the commen Garden Sanil, is distributed over a large portion of the globe. It is found, for instance, at the foot of Chimborace, in the forests of Guyana aud Brazil, and on all the coasts of the Mediterrancan in Eurape, Asin, and Africa. Hclix Pemalia has bcen nataralised with us, and is still found in some conntries. The first importation is attributed by some to Sir Kenelm Digby. Merrett mentione it na a British inhabitant before his timc. A moist and rather warm atate of the atmosphere secms most congenial to this family. To avoid great dry heat they get under stones, under old trunks of trees, leaves, \&c., aud some of the species will burrew inte the earth for protection against it. A slewer will bring them forth in such numbera sometimes, the smaller species especially, as to induce the belief in some cascs that it has been raining snails. Most of the species hybernate.

Utility to Man.-The Helicide, from their voracity, are very injuriens to the agriculturist and horticulturist; but there can be no doubt that the larger species are good food. We know that they were a favourite digh with the liemans, whe Lad their 'Cochlearia,' where they were regularly fattened with new wioe boiled down and meal (sapa et farre, \&c.) (Pliny, 'Hist.,' lib. ix. c. 56.) Helix Pomatia is used ns food in many parts of Europe duriag Lent, sud the suails are kept in an escargotoire (snaillery), which is generally a large place boanded in, having the floor covercd half a foot deep with herba, wher the animals fatten. Many are familiar with the passage in lliny (loc. cit.), who, on the anthority of Varro, relates the incredible size to which the art of fattening had brought the suails. There must, one should think, be some mistake in the text, which saye-"Cujus artis gleria in eam magnitudinem perducta sit, ut octoginta quadrantes caperent singularum calices." Pennant, referring to this and to Varre ('De Re Rusticai"), says, "If we sheuld credit Varro, they grew so large that the shells of some would hold ten quarts! I'cople need not admire the temperance of the aupper of the younger Pliay ('Epist.,' lib. i.; Epist., xy.), which cousisted of only a lettuce a-picce, three snails, two eggs, a barley cake, sweet wine snd snow, in case his suails bore any proportion to those of hirpiaus."

The following cuts, and those given under Bubimulusand Bulimus, will sfford the reader an idea of seme of the forms of the Melicide: - Partula, Anostoma, Curocolla, Clausilia, Strcptaxis, Balea, Vertiyo, Cyclosioma.

Partula Australis.
KAT. HLS\%. DIV. VOL. III.

a, Carocolla albiabris; t, Pupa tiva; c, Pupa Chrysalis, with the animal.

a, Clausilia Mucuscarchsis; b, the same, broken, to show the claneium, c.

Sragnene evalimer．

Ialm frogibia，basintincl．

 niag inticl．

 ome rigount ；bowing the allemate contraction of the two siles of the animal＂： ：or．
The following in a list of the genera and species of British／／elicielec eiven in Furbem and Ilmky＇s＂Britinh Mullusea：－

bifrines \boldsymbol{y}－llacida．	11．fuecrs．
\％oniles cellarius．	II．jutchella．
\％．alliarrius．	II．rolundata．
C．mutiole／ms．	／1．unbilicata．
\％．jurmes．	II．рудіпита．
\％．raslosenduo．	Ilslimus acuius．
	h．Luachinamensis．
C．escaralme．	7．obseurus．
\％．cryofallialies．	I＇upa umbilcter．
Helur apeerin．	I．Muscorvin．
／／．Pumusia．	I＇．Anglica．
11．A ibmetoras．	f＇secale．
II．Contiama．	J＇celentula．
II．（＇amtansisgri．	I．minutissima．
／1．nemarale．	
II．Pesiraca	P．mberriotu．
11．eimynu	I^{2} ．antirertigo．
／f eajerritos．	I^{\prime} prmilla．
If rricelormm．	I＇．Venotio．
If solocalmin．	Matea fromulis．
J．Dijuicisha．	C\％umilua laminasa．
／1．rufarros．	C．lijdicata．
／／mospiofn．	\therefore pricatulir．
II．rerelata．	C．migricars．
／／orrirsh．	Zua iubrica．
11．Inmollitis	Aseers irulena．
11．armionta，	sucrmen jutria．
II．fura．	S．oblonga．

 town of then ma leoth liviag nad fomil．Uther mecciceliare alno been fonmed fomil．

 ance and oulonring of $\mathrm{U}_{\mathrm{m}} \mathrm{m} / \mathrm{sis}$ ，combined with n dentition remerablimg ：bint of Cuho or I！umela，bat diterrisg from both the latter gesera in

The larace interam central lohe of the npiner carnivorons woth．＇Ihe が＂मиs is thus clumeterimed by Dr．Gray：－
lacimors（primores）$\frac{6}{6}$ ；canines（Inniarii）$\frac{1-1}{1-1}$ ；molars $\frac{5-6}{5-6}$ ．
Hend elongated．Feet short；solea of the fuet nearly naked to the lied；toen $5-5$ ；claws atrong，the auterior unes long and compressed． Tail cylindrical and moderate．

There are two quecies，H．mosehata from China，and H．Nepalensia from Nepani．［Mustaniok］
HL：LIO＇lORA，a genua of rtony Pulypiaria，established by De Blaia－ ville，from observations of Mesers Quoy and Gaimnrl on a recent sprecies called by Lamarck Pocilopora creiulea．

It is charncterised as followa：－Animal short and cylindrical，pro－ vided with n simple circle of thick tentacula， 15 or 16 in namber， contained in vertical or diverging cylindrical cells；cells immersed， intermally crenalated by imperfect radiating lamellae，united into a calcareons mass，which is regularly porous in the intervala of the cella The cornl is found attached to varions bodies．

Three recent apecies are mentioned by De Blainville，all from warm sear One of the fossil species（IIeliopora porosit，De BL．；I／．inter－ stincta，lironn）sbounds in strata of the Silarian system；othens occur in the chalk and in tertinry deposits．（＇Manuel d＇Actinologie．＇）

HEILIORNIS，Bonaterre＇s name for a genus of Water－Birds（Grébi－ foulques of Buffon），which have lobated feet like the Coots and Grebes， but with a greater development of tail，and they have sharpar claws． ［Podos．］

HiJIOTROPF．［Biood－Stose．］
 semus of Ilants belongling to the natural order Ehrefiacecc．It has a salver－sbaped corolla，with the thront usually uaked，but in some apecies bearded；the reginents of the limb furnished with a single fold or a tooth between each；tho stigena sub－conical；thes carpels 4，I－celled， combined，closed at the base，without any manifest receptacle．The species are annuml or shrubby plants，with altermate lenves，and circinate apikes of amall blae or white flowers．
1I．Perurianum，leruvisn Heliotrope，or Turnsole，山as a shrubby stem，petiolate oblong－lanceolate wrinkled leaves，terminal hranched apikes；the tube of the corolln lardly the length of the calys． The mouth of the corolla is intersected with five plicatures of a purple－lilac colour，with a greenish throat．It is a shrub，growing one or two fect high，and is much cultirated on account of the scent of its dowera，which resembles very much the smell of the vanilla or cherry pie．It is a native of Peru．

II．Europerm，the European＇I＇urnsole or Heliotrope，lins an herba－ ccons erect stem，with ovate flat－lined finely tomentoso leaves，the lateral spikes solitary，the termimal ones conjogate，the calyx spread－ ing in tlic fruit－bearing state．It is a nativo of the south of Europe and the regions of the Csucasus．The flowers are aweet－scented．Tho leaves were formerly used medicinally．

II．villozum has an herbaceons erect very villons stem，with ovate， llat，villous leaves；the spikes lateral，terminal，solitary，and conjugate； the corollas large；the calyx spreading in the fruit－bearing state．It is a native of Grecce and of the islands of the Archipelago．It luss large white cordlas with a yellow tbront．This nppenrs to bo the ＇HAlotporiov μ f＇ja of Dioscorides（iv．190）and the JI．supinum，tho －H 入ıotpóriov piкpóv．

Upwarla of $\$ 0$ species of this genus have been enumerated．They me natives of the warmer parts of Europe，Asia，Africa，and Anrerica， and are fomm in A ustralia．They do not posseas any active properties，

Many other ppecies besidea those here described have aweet－scented flowers，and are cultivated on that account．Some of them are con－ numed in large quantities ly perfamers for the sake of their volatile oil．They are astringent und almo mucilaginous，and poultices mado of the leaves have been applied to cancerons and acrofaloun sores．It is mupposed that tho plant used for the eure of warts，and called Feroucuria，belonged to thin genum．In their cultivation the slarubby anil pernuinl kinds will be fomd to thrive in any kind of rich light suil，mul cuttings will root readily in anad under a hand－glass．Itho Ciuropean amual opecies may be propagated from seed sown in an upen border，whilat the tropical anumal specics muat be sown upon a hot－bed before being panted out．
（1）on，Dichlamydeous Plants；Burnett，Oulinea of Datany；Frars， Sympmis Plant．F＇lore Clemsicu．）
116：lad（Limmens），a genus of Pulmoniferons Molluaca，ombracing the varioun forms of animals called Suniln The following are the charneters of thia genus：－Shell apiral，opaque，or tranalucent，solid or thin，noore or leas glotrose，in some discoid，smooth or aculptured： surface variously coloured，but seldom covered with a polished epidermis；mouth lunnted，thickened within，nimple or toothed； perintous frequently refexed．Animal moderstely large in propor－ tion to sbell ；head with four developed tentacles ；mantle not reflected on alsell；tail lanceolate and never truncate；foot often amplo； tongue with the edge tecth ecrrate．（Forbea and Hanley．）
I＇he apecien of this genus，at the approsch of winter，or in very dry weather in anmmer，recede into their shell，avd secrete n quantity of mucus，which forma a covering over the aperture．This thickened mattor，which the enimal lias the power of throwing off by producing fresh concus within，is called an＇epiphragu．＇The power of forming
this kiud of epiripragm was supposed to be confined to the Land Mollusca, but it is now known that the Pond-Snails (Limneas and Planorbis), when left dry by the evaporation of the water in which they live, have the same power of thickening the edge of the lip, and forming a distinct epiphragm. [Helicide.] We shall now subjoin the deacriptions of some of the most common British species.
II. aspersa, the Common Snail. The shell is obliquely subglobose, beneath the epidermis pale fawn-coloured, with four (usually interrupted) chocolate-brown bands. This is the commonest and one of the handsomest of British suails. It is found wherever there is vegetation, but is more especially addicted to gardens. This snail is collected and sold in Covent-Garden and other markets as a cure for diseases of the chest. It is prepared by being boiled in milk. Large quantities are collected, and sent every year from this country to the United States of America, where they are said to be regarded as delicacies. They are packed in cagks, in which way they travel very well, as they fix themselves on one another aromad the circunference of the cask, leaving a vacant space in the centre. At Newcastle-uponTyne the glassmen hold a snail feast once a year, when large quantities of this species of smail are consumed.

If. Pomatia, the Edible Roman Suail, or Large-Shelled Snail. The shell is solid globose, coarsely wrinkled lengthways, most minutely striated in a spiral direction; pale-tamuy, with rufous bands. The animal is of a general brownish-gray, speckled with whitish and brown granulations.
This apecies in Great Britain is nearly confined to the chalk districts of the south of England. It has been found as far north as Wiltshire. There is a notion prevalent that it is not an original inhabitsnt of England, but that it was introduced by the Romans, who were famous for its culture. [Gericrose] There is no evidence to prose this, and it is fonnd in Sweden, where the climate is much more rigorous than our own. Its great necessity is chalk, and where this substance prevails it is found. This snail is eaten in this country. Lister says, "They are boiled in spring-water, aud, when seasoned with oil, salt, and pepper, make a dsinty dish." Dr. Turton says, "After the auimal has been extracted there remains at the bottom of the shell a glairy transpsrent matter, which affurds one of the best and most durable cements in nature, resisting every degree of heat and moisture.'
II. Arbustorum, Shrub-Soail. Shell brown, closely marbled, with small linear paler markings, usually one-banded; outer lip white and reflected. This suail is very generally distributed in woods aud in damp gardens throughout the British Isles. It is remarkable for being found higher up the sides of mountains than any other British species. In the Alps it nearly approaches the snow-line.
II. Cantiana, the Kentish Snail. Shell depressed, globular, seraitransparent, bald, open; adult, pallil above, rufous below, and towards the lip, periphery not angulated; outer lip edged within; umbilicus moderately large. It is chiefly found in England in locslities south of the Thames, where it occurs amongst brambles aud by hedges thronghout the whole district. It has been taken in the west of Eugland.
If. Carthusiana, Gibbs's Snail. Shell rather small, depressed, whitish, bald; mouth margined within by a milk-white rib; umbilieus minute. This shell is only found on the cbalk downs of Kent and Surrey. It was discovered by Mr. Gibbs in 1814.
II. nemoralis, the Garden, Girdled, or Brown Snail. The shell is depressed globose, imperforated when adult, with or without coloured bands, not marbled; outer lip reflected; pillsr lip callous, retiring.
The species thus characterised enobraces the II. hortensis and II. hylirita of other naturalists. Messrs. Forbes and Hanley, in the 'Britiah Mollusca,' say, " We have folluwed Pfeiffer, Deshayes, \&c., in reuniting hortensis and hybrida to the typical nemoralis, not being able to detect any peculiarity in individuals of the dark-mouthed form vhich is not likewise represented in the whitemouthed variety, between which extremes the hybrida is the comecting link.
II. virgata, Zoned Snail. Shell depressed turbinate, amooth, banded; bands not linear; upper whorla for the most part with only a single zone above the suture; mouth usually livid red; outer lip edged internally.

This species is found in pronligions numbers in many chalk and limestone district:. It is also found in larger numbers near the sea. On the chalk off the coast of Kent it occurs frequently in great profuaion. It is widely liffusen and is found in the same localities thruaghout central and southern Enrope.
IF. cricetorum, Heath-Snail. Shell depressed, semi-transparent, not regalarly strinted, banded with brownish-yellow ; mouth small, outer lip acute, not cdged with colouring matter; umbilical region caprcious.
This snail profers calcareous soils, and is often abundant on sandy soils near the sea. It is very widely diffused through the British Isles, ranging to the north of Scotland.
II. hispida, Brittly.Snail. Shell reddish horn-coloured, more or less depressed; outer lip elged below, with white internally; umbilicus moderately large.

The species II. depilata and II. concinna may be regarded as varieties of this species. It is an abundant species, on waste places, by hedges, and under atones in all parts of the lritish lales.
H. sericea, Silky Snail. Shell depressed, globular, pallid, transparent,
clozely downy; spire more or less raised; umbilicus decidedly small. It is widely distributed, and appears to be most abundant in the neighbourhood of wet mossy roeks. "It is more frequent in the west and south than elsewhere." (Forbes and Hanley.)
II. fusca, Brown Suail. Shell depressed, subglobular, alnost imperforatel, not minute, transparent, umber-coloured, wrinkled; outer lip acute.

It appears that this delicate and well-marked species is peculiar to the Eritish Islauds. It is found in bushy places in many parts of England and Ireland.
I. pulchella, White Suail. Shell depressed, minute, white ; mouth nearly circular, its edge flatly reflected. The animal is milky white. It is very generally found in Great Britain. It lives under stenes, in walls, and on the ground often in dampisi places. A ribbed variety has been described uuder the name of 11 . costeta.
II. umbilicata, Open Suail. Shell small, dark brown, unpolished, merely wrinkled; whorls five, of slow incrense; umbilicus large; mouth small; outer lip acute. The animal is dusky, nearly black. It is the Zonites windilicatu of Gray. It is abundant in many localitics on the faces of rocks and walls, or under stoues in dry places.
II. pygmea, Pigmy Snail, resembles the last, but smaller, paler, more transparcnt, more compressed, composed of four turus at most; the mouth less circular. It is found in wet places, among deall leaves in ditehes, and by springs. It is often overlooked on account of its minutencss.

For a list of species of Melir found in Great Britain see Helicide. (Forbes and Hanley, A History of the British Mollusca; Dr. Turton, t Mameal of the Land and Fresh- Wrater Shells, edited by Dr. J. 1.. Gray.)
hellebore, black. [Helleborus.]
hellebore, White. [Veritrum.]
ILELLEBORUS, a genus of Plants belonging to the natural order Ranunculacer. It has 5 permanent sepals, rounded, bluot, large, often herbaceous; petals 8 or 10 , very short, tubular, nectariferous, narrowel to the base; stamens 30 to 60 ; stigmas terminal, orbicular'; capsules leathery; seeds arragged in two rows, elliptical, umbilicated.
II. niger, Christmas Rose, is found in the shady woods of the lower mountains of many parts of Europe. The plant is herbaceous, with a perennial blackish-coloured rhizoma, tuberculated and scaly, from which descend numerous thickish radicles. The leaves are all radical, with long cylindrical and spotted foot-stalks, pedately divided, with the lobes from 7 to 9 , oblong-lanceolate, sometimes cuneate-obovate, largely serrated towards their apices, and arranged apparently along the forked terminations of the petiole; they are stiff, almost leathery, of a dirty green colour, smooth above, paler and reticulate benesth. The sespe is aborter than the petiole, furnished with two or three oval bracts, often simple and single-flowered, sometimes forked and 2 . flowered. The flower is large, terminal, white, with a tinge of pink, tho most conspicuous part being the petaloid calyx. Of this the sepals are 5 , ovate and permanent; the petals, 8 to 10 , are small, greenishcoloured, tubular, tapering towards the base, with the limb tubular, bilabiate, and their outer margins terminated in a tongue-shaped lip; stamens numerous, longer than the petals; ovaries 6 to 8 ; stigmas terminal, orbiculate; capsules follicular, leathery; seeds many, elliptical, umbilicated, arranged in two rows. It is a narcotic acrid poison, and was long supposed to be the genuine Black Hellcbore of the aacjents. The fibres of the rhizoma are the parts used officinally.
II. orientalis is found in mountainous broken ground in Greeco and the Levant. It has a black thick rhizoma, with cylindrical fibres; the radical leaves are stalked pedate, downy beneath, their segneents almost sessile, oblong, acutely serrulate; stem taller than the leaves, corymbose, $3-5$-flowered; floral leaves subsessile, palmated, the lobes 3 to 5 , oblong-acute, serrulate; calyx purple, with oval very blunt sepals; capsules 5. The root was formerly much celebrated in mania, epilepsy, and dropsy. It is still used in tho Levant, and is called 'Zoptane' by the Turks. It is acrid and vialently cathartic.
II. viridis is found in the woods and thickets of Europe ou a chalky soil. It has a black fleshy rhizoma, with numerous long stout fibres; the leaves are a bright deep green, quite smooth, pedate, the cauline ones subsessile and palmate ; the serments oblong, undivided, entire at the base, somewhat serrated at the apex ; stems often forked, one foot and a half high; the flowers are few, terminal, and axillary, stalked, mostly solitary, drooping, green in every part; the sepals are roundish-ovate; capsules 3 to 4 , short and wrinklell. This is said by Stevenson and Churchill to be the best substitute for II. oricntalis, thengh less active.
II. fotidus is found in thickets and waste ground, chiefly in a clalky soil, in the more western parts of Europe. It has a leafy many flowered stem; the leaves are stalked pelate, of a livid green colour, quite smooth, with linear oblong or lanceolate serrated segments, the upper ones gradually losing their blade, and changing into pale lanceolate entire bracts; the flowers are numerous, panicled, and drooping; petals nearly erect, staincd with dull purple abont the cdges. It is similar in its effects to II. nifer. The leaves are emetic and purgative. They have been strongly recommended as a vermifugo against the large round worm (Ascaris lumbricoides). The fresh root of Hellebore applied to the skin induces iuflanimation anil

HILAMSTHIA, a grans of Phint telouging to the matural orier eivmanitip, to the mulborder ciehoracer, noul the noction scor=onerer. It han the phyllarice in one now, rqual, with equal subulate mploreaked

 at the end, and with a monder lwak longer than itself; pappus in meral nown feathery. Therm in but one aperice inhabiting Great IErtain, Il. edroibes, iliv Ox Tongue. It in a flat from 2 to 3 feet in beight: the branchen, etem. Iraver, and infolutere are covered with
 hombat the aper. It in frund on dry Latika; and blossoms in July, Ausuot and Epember. (Babingion, Manal of Dritioh Motany.)

HRHMNTHOCOHTON. (Als.ak)
HELOLCLS (Fiten.)
Hfionilis, gentit of lants levouging to the natural order Melamthacor. It line a ippried perianth; segments narrow, mether unofual, whitue, not atriatel or herbaceous, nor imliricating; stamens
 inte; anthera reniform, with confunt cella ; capsule separating into 3 enangeelled follicles; accla comprestenl, winged at the apex, or wingleve

The nrecion of this genus contanin veratria. The /I, officinalis of Son, it jo well known, han heco employed for obtaining this nubstayce. This plant differ frum /hedonias, and Dr. Lindley has described it noder the name of Aetgrofa officinalis. [Cemanit.A.] The other pracies of Ifromines ued hedicimally nre as follows:-
If. frigides (Veralrum frigierm, Sclilectendal). It is found io the al pine region of Mount Ovizata in Mexico. It ia a poisonous plant, and called Saroeja by the Mexicans.
11. eryehropperma is a nstive of the Unitel States in moist gituations, on tiver banke, and high mountaine. It io used in the aouthern atates of America for destroging fice.
II, diona, Enicorn" Horm and Devil's-Bit of the Americana. It is found in wet meadows and boga, and in hilly and mountainous regions in the l'nited States. It is bitter, and is used as an anthclmintic adit tonic.
(Lidilloy. Flora Melira.)
HELOT1LI.E. (Leach), n fanily of Culeofterons Insects of the metion Heteromera nad nub-rection Stenclytra. Distinguishing charac-torn:-Heal short, obtusely terminated anteriorly; mandibles notched at the apex; antennic placel near the eyen, generally filiform, or uearly so, or slightly thickened at the apex, where the joints are short; the lineal joint of the antenne bidden above by a projected margin of the bead; the third joint long; terminal joint of the maxillary [wiln large ant securiform; cycs emarginated anteriorly; lega modorato; the jrenultinate joint of the tarai generally simple or but slightly cuarginatal; claws simple; body usually couvex, and of an oral furn.

The larre of theso insects live in rotten wood, upon which they feel: they are of a cyliudrical form, land to the touch, and have six mmall legn, attachect. two to rach of the thoracic segments. The jerfect inmecta are, like the larva, alno found in rotten wool, or under the bark of treca; they are rather alow in their movementa, nad generally alorned with inctallic coloura
In the genun //elopa, as it is now rentricted, the joints of the nntenne are mome what compreased; the two lazand joints nee aloort, the third is long: the two or three terminal joints aro abort and obconic, the but joint is the mhortest; the intermediato joints are moleratels long nat vearly cylindrical. The thoms aipmanches to a square form, or in alighely atenuatod buind, and is cloacly applied to the elytra: the boaly is of au otheng aval forsu.
11. caraboidea, at inanct very alundant in various parla of Eag. lamd, will aford an example of this genua. It is ruther less than half an inch in length, of an eval form and deep brown colour, having a bronze glow in cereain lighta; the upprer eurface of the borly ia forly gancturnd, and man the atrixe if the elytra. Thie insect is

II. Corsifes io asmetber precies of thin genus, which is common Io many prasto of Englamb. This inect is nearly three guarters of an inch in langth, and if a ringet ducembur. It ja gencrally found Io oul yohlaml willowetres. The larra in cylinitrical in form, of a Johlowiah-whin chour, asd has two recurval hook on the ternimal entnomit of the bualy.
Lipande of eisty praciea of the gonum Iflops aro cmumerated in entalingue, and thene aro chiefly conthed to kurope and North droerica

 Timbliffere and to the trive A muminecr. It hane n caly x of 5 teeth or cto ine fruit the petale ovate, entare, with a etraight or incurvel npiculus: the fruit orate op offonz; the carpela with f filifime prominent equal ridgee; the intervico with single ritur, the cargophore entire. There ore 3 liritish epracien of this genus:-
II nedifores. with than lafets oftusely aerrate: I/. repene, with the leaketo roundish orbte, hineyully and acutely incionscrate;
and If. inandatum, with the leaflets of the lower leaves divided into cap inlary segments. The first is a mative of lirooks and ditches, and is frequently miafaken for the water-cress. [Stux.] The second is a mre phant in Great Britain. Tho last specice is found in ponde
(Misbington, Mannal of British Botany.)
HF:INELLACEEE (Lindley), n natural onder of Plants belonging to the Fungales, and equivalent to Berkeley's order Asconycetes. The senera included in it aro eubraced in Fries' cohort Hymenomycetca. [Ficsut ; Hymenonycetes]
Hl:LViN, a crystallised Mincral of which the primary form in a culse. Cleavige paralle! to the plaues of tho regular octohedron, impintinct. Fracture unoven. Harlness 6.0 to 6.5 ; scratches glass. Colour, pale wax and grecuinh.yellow. Streak white. Lustro resinoun, vitrooresinous; trauslucent; trangasent on the edges. Specifio gmaty, 3.166. It is found at Schwareenburg in Saxong.

Before the blow pipe or charcoal it melts with offervescence into a glolale of the samu colour as the inineral; in the oxidising fasme the colour becomes deeper and the fusion in more difficult ; with borns it viclds in transparent glass often coloured by magganere. Analysis by imelin:-

.272
Glucina
1.445

Protoxide of Manganesc
29.34

Sulphuret of Manganese
14.000

Loas hy curcinatiou
1.155
$97 \cdot 232$
HFIWWNGIACEJE, Melwingiads, nn order of Dichinous Exogenous Plants, represented by one species Helvingia Rusciftora. This plant is a native of Japan, whero its young leaved are eaton. It is a shrub with alternate stipulato leaves, and fascicled flowers. Decaisze, whe first constituted the order, regarled it as alliod to Hamameliclacere. But its minute embryo and unisexusl flowers remove it far from this onder, whilst its inferior fruit and scod bring it near to Garryacer. It has an indirect allinity also with Santalacea. (Lindloy, Trgetable Kingdom.)

HENATITE. [HzMATITE]

HEMERIPUS. [Elatemine.]
MEMERO'BIUS, n genua of Insects of the order Neuroptera and section Planipennes. Tho genus, as eatablished by Linnæus, has been dismembered by subsequent entomologists, and is now eqnivalent to a family distinguished by the filiform anteune and by tho number (four) of the palpi of the ingects included in it. They hnve soft alcader bodies, much exceeded in length by the large reticulated winga, which, when the animal is at rest, are deflexed. Their eyes are globular and vividly metallic. The larroo are ferocious in habit, and prey upon plant-lice, seizing them with their powerful jnws and sucking their pres to denth. When full grown, they spin and onvelop themselvea in a gilken cocoon. The eggs of hemerobii are deposited on plants, and are pendunculated, so ns to resemble fungi, for which they have somctimes been mistaken. These inscets range from Europe to Australia, and there are many species natives of the British Isles.

HEMEROCALLIS, n genua of Plads belonging to the natural order Liliacer. It has a campanulate corolla, seated on a cylindrical tube; the stamens are bent down; the capsule is 3-edged; the root is composed of thick fibres; the lenves are scattered, linear; the flowers are largo, yellow or ycllow-brown. The species are called Day-Lilies. II. fara is a nstive of Germany, and M. fulra of Italy. Several apecien are cultivnted in onr gandens, ns \boldsymbol{H}. disticha from China. \boldsymbol{H}. sichendidi from Japan, II. speciosa, and II. graminea.
hRMICARDIUM. [Coscimacea.]
HEMICl'DARIS, a genus of Fossil Echinodermata, from the Oolite. HEMICYCLO'STOMA, M. De Blainvillo'a name for the fourth family of his order Asiphonobranchiata, tho latter being the second orler of the first sub-class (Paracephalophora dioica) of the class Paraceshalophara, the second class of his Malacozoa. [Nemitide.]
ILEMIDACTYLUS. [Geckotid.x]
hemiones [rquides]
HENIPNE'USTES, n genus of Fossil Echinodermata, from tho Chalk-Marl.
IIEMIPODIUS. [TETRsonide.]
HEM1'l'TERA (from $\dot{\eta} \mu$ i, half, and $x+e p b y$, a wing), one of tho orders of the class Insecta.
The order IIcmiptera, acconing to the twelth edition of the 'Systena Nature' of Linneus, coutaina inaceta which ngree in having ineomplete metamorphosies (that in, the larva and pupa both poseess the power of locomotion, and bear a great resemblance to the perfect insect), and also in having tho superior wiaga generally coriaceous, and the inferior membranous. Thun Linnene included in this order the Cockroachea, Locuats, Grasahoppers, Bugs, Cicala, \&c. Tho lakt-mentioned insecta, the Buge and Cicado, however differ very materialy from the former, insamuch as they posases a nuctorial instead of a masticatory mouth; and ns these latter characters have been considered of great importance by all the more modera entomologistn, the term Hemiptera has been restricted to such iusects as havo imperfect metamorphosis and a auctorial mouth.

This defnition will inelude the Linnacau genera F'ugoria, Cicala, Notonecta, Nepa, Cimex, Aphis, Chermes, Cocous, and Thrips, snd these, with the addition of the genus Pulex, constitute the order to which Fabricins applies the name of Ryngota. Without the last-mentioned geaus they constitute the order Hemiptera according to Latreille, Burmeister, sad 'most of the foreigu entomologists; and the orders Hemiptera and Honoptera according to Leach, Stephens, M‘Leay, and several other British authors.
The Hemiptera are divided by Latreille into two sections; to the first he applies the name of Meteroptera, and to the second that of Homoptera. [Homortera.] The IIeteropters a re characterised by having the rostrum attached to the fore part of the head; the elytra coriaceous with the extremity membranous, folding one over the other when at rest, and the first segment of the trunk (or the prothorax) the largest, and forming the most conspicnous part of the thorax. The second section, Homoptera (which by many of the English entomologists is regarded as an order), is distinguished by the proboscis being sttached to the lower portion of the head, near the chest; the elytra almost always of a uniform coriaceous texture, with their inner margin straight aud contiguous: the three segments of the thorax are united in a mass, aud the first is frequently shorter than the second. All the insects of this section feed exclusively on vegetable juices. [Homortera.] We shall at present coufine our remarks to the first section, or to the true Hemipterous insects.

In the greater number of the Heteropterous Ifemiptera the hear is small, situated on the same plain as the thorax, or nearly so; the fore part is somewhat produced ; the cyes are of moderate size, very convex, and hence project rather suddenly from the sides of the head: between the eyes there are in many species two ocelli, or simple eyes; the antennc are of moderate size, composed of long joints, few in number, and situated in front of the eyes: the part usually termed the thorax in descriptions, but which is in fact the prothorax, is of moderate size, oftea broader than long, and very frequeatly produeed on each side, so as to form an angular projection; the scutellum is large, generally triangular ; but in some (the Soutellerit, for ingtanee), it assumes the form of the body, and is so large that it completely covers that part; the body itself is often flat or concave sbove; convex and more or less distinetly keeled bencath; when the wing.s are closed the upper part of these insects generally presents a flat or slightly convex surface, and is seldom very coavex. The legs are of moderate size, or not unfrequently long. In certain groups (tlie Coreide) the posterior thighs of the males of many of the species are remarkably large, and many liave the tibix also large, often broal and compressed.

The proboseis springa from the fore part of the head, and when not in use is suddenly curved downwards and backwards, and lies close to the ander surface of the thorax and between the fore pair of lege. It consists of a jointed process (a), which is grooved upon the upper side, and in this groove thero are four seta (b), or bristle-like organs, which are covered above, at their base, by another appendage (c), which is supposed to be analogous to the upper lip or labrum of mandibulate insects; whilst the four setz probably represent the mandibles and maxilice, and the jointed process the labrum. In the figure, the aeta (b) are represented as diseogaged from their sheath (a), and the labrum is lifted up. Whea in the orlinary position these organs form together a tube, by means of which the juices of plants or animals are extracterl and coavered to the cosophagus.

The Heteroptera are divided by Latrcille into two families; the firat, or the Geocorise, are characterised as having the antenuse free, loager than the head, and inserted between the eyes and near their anterior margin. The tarsi are 3-jointed, but the first joint is sometimes very short. The second family, to which the name of IIydrocorisce is applied, have the antenno ioclosed and hidden in a groove beneath tho eye; the tarsi have but two distinct joints, sod the eycs are generally very large.

The species of the family Geocorise are for the most part found on the leaves of trees or small plants ; some there are which do not quit the ground, and there are others which live upon the surface of the water. The genera IIydrometra, Gervis, sud Velia afford exsmples of this mone of life. [HyDnometnime.]
The insecta belonging to the second family (IIydrocorisa) live, as their name implies, in the water, and they prey upon other insects.
The two families which have just been characterised are by most entomologista regarded as sections or subsections rather than families; the latter is in fact an aberrant group, the former containing by far
the greater portion of the species. legarding them therefore as sections, they may be divided into the following families :-

Geocorisce.
Family 1. Soutelleridu.
Family 5. Cimicide.
2. Pentatomide.
6. Reduviide.
3. Coreide.
4. Acanthiille.

IIydrocoriste.
Family 1: Nepide.
Family 2. Votoncticle.

HEMIRAMPHUS. [Eson.]

HEMITRAGUS. [Capre.e.]
HEMI'TRYPA, a genus of Fossil Polypiaria, in the limestone of Devonshire, allied to Fenestellu. (Phillips.)

HEMLOCK. [Conıum.]
HFMLOCK, WATER. [Cicut..]
HEMP. [Cannadis.]
HEMP-AGRIMONY. [EUPATOHIUM.]
HEMP-NETTLE. [Gadeopsis.]
HENBANE: [Hyoscyamus.]
HENBIT. [LAMIUM.]
HENIOCHES. [Chetodon.]
HENNA. [Lawsonis.]
HENSLOVIA'CEA, a very small natural order of Exogens. of this onder there is but one genus, Hensloria, and three or four species. They are all natives of the hot and damp parts of the East Indies. They are all trees, with opposite entire exstipulate leaves, and minute racemose apetalous flowers, with as many authers sessile in the sinus of the calyx as there are lobes of that organ; a 2 -celled many-seeded ovary, nud a single style.

In his 'Vegetable Kingdom' Dr. Lindley says of this order:"After vain attempts at settling the true place of the genus IIenslovia in the natural system, some specimens with ripe fruit, for which I am indebted to Mr. Griffith, place the question nearly at rest. The habit of the plant was evidently that of Viburnum; but its superior ovary and indefinite ovules forbade any reference to Caprifoils. But HyIrangeads differ from that order mainly in their indefinite seeds, small quantity of albumen, and constant tendeney to produce a superior ovary. Henslovia agrees with them still further; the flowers are polygamous, the seeds are wiaged, which is also the case in Hydrangea cordifolia and others, and the albumen is wholly deficient. The chief distinction consists in the complete sdhesion of the styles into one undivided cylinder; but in Hydrangends we have the same pecu-

 criter."
 Amoma enesumaly an haver-Worta, have receised thin nasace la hia

 $\mathrm{y}+\mathrm{ml}$]
HARATITH [Martian]

 fa the opmion of the latter, cotablinhing the panange betweet the
 whach they mernhle in the dioperition of their chelin (Inanna); and
 menthel of the orgnization of the month. The carapace in large,
 the belpatise regiuna are very large, and the leranchind resions very ornall The frum in marrow, Atraight, rather projecting, and placel a giowl dest alwe the level of the lateral thorler of the carapace, which prolunge itaelf umber the ordita to roacla the nitlon of the buccal frame. The orfine are suanl. circular, ath phaced on the mane level with the frode The interual antenas aro monnewhat nomat, and are lewt back very mbllituely unater the front. The "sternal anteman occuly the intartal angle of the orbita, which they mepante from the anteoury pmis : their lanlary jaint in narrow, hot rather long; the seeond is, on the conitory, nemall, ami their terminal stern in nearly rudimentary. The bucal fratbe, which ia tery tharrow furwarla, and nearly regularly triangulas, prolonga itaelf beyont the leved of the lower tordier of the corinta, and to entirely mecupied by the external jaw feet, the third joms of which in tringular and terminated internally by a straight atige, ubaler which nre concealel the remaining joints. The stemal Hastion ta oval, nal present nothing remarkable. The anterior feet atm atrong withone leing large, and are capalble of a close and exnet Ayplication agninut the lower nurface of the loody, where they are entifely conceslofl: the haud in suroounted ly a crent, aud the claws are rather incliged downwarls and inwards. The remaining feet aro if modernte length, and the ablemen is divided into seven joints in Luth mexem.
The only apmeien known, Hepatus fasciatus (Cialappa angustata of Fantrieiun: Cancer princeps of Herbat; sud catappet angustata of Howel, and II. Chulensis, are inhabitante of the consta of Auserica: the fretharing tren found is the north aud nt the Antilles; the second untha corst of Valjaraino. (Milne-bilwarlas)

 fornoly aro andaguiderid ly the want of tongues the wings being fofloted. ling and narrow. and the thorax devoit of creat. Their Inrus here in the interior of veghtalden, wh whinle thay feed, or in nome inesanera thay liwe to the gromblay fuod opon the rewta if plants; they aro dealy, naked, and havil aix thomecic, cight aldomianal, and

The principat -rum comtainel in thin fasmily are llepialus, Cosons, suypac. and hemerril.
In the gemero Mrpalwa (rablricisa) the antemne are much aloorter than the tharns. Whe winge ary, lertig and marrow, the prosterior pair
 the rawne of glatic:
llounino flamwi, an insect comominly koown ly the natne of Ghost-

female is sometime 3 iaches in wiltla. The malo is of an immaculate silvery white colour above, and Lnown beneath. When on the wing, which is usually in the evening about twilight, it is seen with tolerable distinctness if below the eye, on account uf its white colour; but upon a slight change in its position, when the darker colour of the underaide of the winga is opposed to the eye, it suddenly diasppeara; hence probally arises the name which has been applied to it.

Mr. Stephens, in his ' British Entomology,' however accounts for the mane in auother manuer; he says it is "very common in grassy places in the middlo of Juae, and not unfrequently wet with in ehurchyarls, whence its name of Ghost.Moth." The female Ghost-Moth is rery dismimilar in colour to the male; jndeed auch in the case in all this species of hepialus. The anterior wings are of a buff yellow colour abowe, with spots of a doeper hue; the under winga are palishLrown, having a faint pink-tiat.

Five or six other apecies of this genus inhabit this country.
(Stephens, Illustrations of British Entomology.)
HERACLN:'CM, ingenus of Plants bolouging to the natural order l'mbellifere and the tribe percedancer. The calyx consists of 5 minute teeth, tho petals abcordate with an inflexed point, the outer onea raliant. There are thirty four species noticed, but only one of these is found in Great Britain, nad few are applied to any useful purpose.
/I. Sphondylium, Cow-Parsnip, or Hog.Weed, has ternate pinnato leaves, the leallets lobed or pinnatifil, cut, and serrated. The stem is about \& feet high, the lower leaves very large, and the flowers white or redlish. It is a mative of Europe, and probably of Siberin, and is found plentifully in the meadows and hedges of Great Britain. The whole plant alforls wholesomo nad nourishing food for cattle, and is collected in Sussex for fattening hogs; hence it is sometimes called Hog-W'eed. Cows and rabbits are also fond of it, and horses will sotnctimes eat it, but it does not appear to be se agreeable to them. The Kamtsclatkadales and lussians are in the habit of using the shoots and leaf-stalks as food, after the rind; which is bitter, has been tikea off. They collect large bundles of tho plants, and during the process of drying the stalks become covered with a saccharine etlorescence, which is esteemed a great delicacy. The Russians distil an nrdeat spirit from the stalks thus prepared, by firat fermenting then in water with bilberries. The seeds of the plant are diuretic and stomachic, and exhale a powerful odour.
11. pullescens has teruate leaves, somewhat pubeacent beneath; the leatlets toothed and pinnatifid; the umbels of many rays; involucre from 1 to 2 leaves; the fruit elliptic baving the dise rather villous. It is a native of Taurida in shady places, and of the Caucasus in alpine places. The young shoots are filled with a sweet aromatio juice, which is caten by tho nutives of the Caucasus ja a crude state.
II. Pyrenaicum has large leaves, tomentose beneath; the leaffets lanceolate, toothed, or ternate; the involucre of few leaves; the joung fruit covered with long hairs; the matured oues glabrous and nearly orbicular. It is a native of the Eastern and Central Pyrenees, and of ltaly. D. Don thinks that this plant is identical with the H. gummiferum of Willdenow, which was supposed to yield the Gum Ammoniacum of commerre. Don bas however identified the plant which yields this gom, and has placed it in a new genus. [1orema.]
All the species of Heracloum grow well in auy soil, and aro easily propagated by seeds or by dividiag the root.
(Don, Fichlemydeous Plants; Burnett, Outlines of Botany; Rabington, Manual of Britixh Botany.)
HEMBARIUM, the mane given to epecimens of Plants when they have been collected and dried. Tho possession of an herbarium is nlmost essential to the study of aystematic Butany, as it is impossible to cultivate at once the larger proportion of the species of plants which inhalit the earth's surface. The use also of an herbarium will be found constantly to supply the place of recent plants. Hence nall iersons who study botany poseess thembelves of an herbarium more or less extensive aceording to the rauge and nature of their atudies. The following lints for forming an herbarium are chiefly derived from l'ruforgor Balfont's valuable 'Class.look of Botany:' -
The specimens to bo dried and kept in tho herharium should, if possible, be gathered in fine weather, and free from external moisture. In aclecting thom care should bo taken to hare the plants in a perfect state of grow th, with all the parts from which the characters of the orler, grimk, or species are taken. The entire plant, where practicable, Hhould bo preecrved. Of course this is impossiblo with trees, lut the completer the apecimens the better for study. In treen, portionn of the branches, with the leares, flowera, and fruit sloould be taken, and, where possithe, sections or small portions of the stem, routa, ${ }^{8 c}$. In the case of tall and alender grasses and sedges, they may be folded once or twico backwards and forwards, to mako roou fur then on a single shect. Thick branches, roots, stems, \&c. may be mplit to allow of pressuro. In plants with diocious flowers, both the utaminiferous and pistilliferons flowera should be obtained. Some planta, as species of the genue Rubus and Salix, demand that both floweriug and leafing ahoots should be gatbered. In glueing the plants on to tho paper, eare must be taken to oxpose bolh si les, so that all jarts of the structure may be seen. Carcful dissections of plants usy be dried and fastencd on to paper, and there will facilitato
subsequent examination very much. All bad, doubtful, iujured, or imperfect specimens should be rejected.

In collecting plantsatrowel will be found useful, and when gathered they should be placed in a tin box or vaseulum till they are trangferred to paper. Some plants require drying or pressure immediately. Under these circumstances, Dr. Balfour recommends a field-book, consisting of some bibulous paper strapped between two pieces of bosrd, into which the plants needing drying may be thrust at once.

The paper employed may be ordinary blotting-paper, but the papermakers have made a paper for botanical use which may be more advantageously emplosed. Iu London, Bentall's drying-paper is used; there is also another paper used in Scotland, called the "Edinburgh botanical drying-paper.' It is made in sheets 18 inches long and 11 inches broad. This paper is included between boards. These should be exactly the size of the drying-paper. Several sets of boards of varying thickuesses should be employed, and pressure masy be applied by means of a weight or straps. The latter is the most easy process whilst travelling. In order that the plants may dry freely, various suggestions have been made for making boles in the boards or forming them of a kind of framework, by which the air would pass throngh.

In putting down the plants the following plan should be pursued :"A parcel of not less than four sheets of paper is put on one of the outside boards, then one or more specimens are laid on this sheet according to their size. The specimens should be spread out carefully, their natural habit being preserved as far as pussible. When plants require to be folded, the slips of paper already mentioned are passed over the bent portions so as to retain them in their position. Having placed one specimen or set of specimens on the sheet, another parcel of not less than four sheets is laid over them; and in doing this the leaves snd other parts are arranged with the hand or the forceps. The same process is repested until a dozen or more such parcels hare been arranged one over the other. Then a thin board is iuserted, and other parcels of paper and specimeus are arranged above it, until they are exhausted, or until the bundle is of sufficient size. Another such board is then laid on the top, sad the whole is subjected to pressure. The paper is changed after twelve hours' pressure, the plants being lifted by mesns of the forceps and plsced in dry parcels of psper, while that which is moist is hung up to dry. The intervals between the ehsnging of the paper may be increased or diminislied according to circumstnnees" Very succulent and wet plants require frequent chauging and muclı drying. Most specimens will dry in eight or ten days. Sncenlent plants need to be killed first by imaneraion in boiling wster. Aquatic plants and wet plants should be placed in a napkin and pressed before they are put into the paper. The moist paper will dry in ten or twelve hours. Along with the plant a label should be inserted, with sll particulars known about the specimen, as where gathered, what elevation, \&c.

When the opecimens are thoroughly dry a selection is made for the herbarium. These should be fastened by means of thin fine glue on thick wide paper, 17 inches long and $10 \frac{1}{\text { inches broad. The nsme of }}$ the plant, its locality, or any other particulars, may be then written on the psper. In order to preserve the specimens from the attacks of insects, sc., they should be touched with a strong solution of corrosive suhlimate in camphorated spirit, or in a solution of nsphtha (half a drachm to the ounce). The sheets may then be arranged in a case, according to their geners or natural orders.

Fruite, specimens of wood and bark, large roots, lichens snd algae on rocks and stones, may be arranged in drawers, glazed cases, or glass jurs Succulent fruits and roots are best preserved in a strongsolution of malt snd water, or in pyroligneons acid, diluted with 3.5 parts of water, or in alcohol. In some instances a solution of 4 ounces of bay ealt, 2 ounces of Lurnt alum, and 5 grains of corrosive sublimate, in 2 quarts of boiling water, has been used with advantage. These jars are best covsred with a stout piece of catoutchouc tied round the neck.

For the preparation of apecimens for the microscope, see Microscope in Arts axd Sc. Div.]
HERB-PARIS. [PARIS.]
HERCINITE. [SINEL.]
HERDERITE, a Mineral, which occurs in crystals embedded in fluor at Ehrenfriedersdorf in Saxony. Primary form a right rhombic prism, Cleavage parallel to the lateral planea, and in the long diagonal of the priam. Frncture small, conchoidal. Hardness $\overline{6}$. Colour grayish and yellowish-white. Streak white. Lustre vitreo-resinous; nearly tranaparent. Specifie gravity, 2.985 .

HERI'ADES, a genus of Hymenopterous Insects of the section Mellifera (Latreille) and family Apider. Distinguishing characters:Borly elongated, slender, almost cylindrical, that of the males with a small cavity beneath near the apex ; mandibles triangular; rasxillary palpi 2-jointed.

The little bees belonging to this genus, we are informed by Latreille, make their nests in holes in old trees; we presume that, as in the genus Chalostoma, the holes are made by the bees themselves.
II. campanularum, a species very common in various parts of Eugland, is about s quarter of an inch in length, of a black colour, and sparingly covered with grayish hairs. This little bee is by far tho
smallest British species known of the family to which it belongs; it is common during the summer and antumnal months in the flowers of the various species of Campanula, and apparently is never foundi a the flowers of any other genus of plants. "The males are often taken asleep in these flowers; their abdomen is theu doubled, so that the tnbercle with which its base is srmed fits iuto the cavity near the anus."
(Kirby, Monographia Apum Anglier; Latreille, Genera Crustaccorum et Insectorum.)

HERMAEA. [NUDimRANChiata.]
HERMAPHRODITE. [MONSTER.]
HERMASIA, a genus of Plauts belonging to the natural order Paronychiacea. It has 5 sepals; 5 filiform petals iuserted with the 5 stamens on a perigynous ring; 2 stigmas nearly sessile; fruit 1 seeded, indehiscent, membranseeous; lesves opposite. The species are insignificant plants. Three have been recorded as natives of Great Britain. One, II. hirsuta, is a doubtful native; the other two are very iare.
H. glabra has a prostrate herbaceous stem, with clusters of sessile flowers coalercing on the lateral branches into a slightly leafy spike. It has been found in Suffolk and Lincolushire in England, and iu West Kerry, Ireland.
II. ciliata. The sepals are tipped with a large bristle; the elusters of flowers are distinct, sessile, and axillary. It has been found at Lizard Point, Cornwall.

HERMINIUM, a genus of Plsnts belonging to the natural order Orchiducear and the tribe Ophrydinere. The perianth is bell-shaped, segments all erect; lip 3-lobed, tumid beneath at the base; without a spur; glands of the stslks of the pollen-masses exserted, naked. II. nonorchis, the Musk-Orchis, is a British species. The stem is about six inches high, snd the spike of flowers is dense and slender ; the sepals are ovate and greeuish. (Babington, Manual.)

HERMIT-CRAB, the common English name for the well-known crustaceans that occupy the empty turbinated shells of testaceous mollusks. [Pagurus.]

HERNANDIA. [HERNandiace.e.]
HERNANDIA'CEA, a natural order of incomplete Exogenous Plants. It has monocious or hermaphrodite flowers, with an involucellum in the pistiliferous and hermaphrodite flowers; a petaloid ealyx, tubular, 4-8-parted, deciduous; definite stamens inserted into the calyx iutwo rows, of which the outer is often sterile, with the anthers bursting longitudinally; the ovary superior, 6 celled, with a pendulous ovule and peltats stigma; a drupseeous fruit with one seed, which is pendulous; the embryo is inverted, withont albumen; the cotyledons somewhat lobed, shrivelled, and oily. The species are trees with alteruate eutire leaves, and flowers srranged in axillary or terminal spikes or corymbs.

This order has been constituted by Blume. It contains ouly two genera, Hemandia and Inocarpus. These were sometimes referred to Myristicacea, from which they differ in the absence of albumen from their seeds. Their longitudinal suthers distinguish them from the Lauracec, in which order they bave also been placed. Their affinity is undoubtedly with Thymeleacere, from' which they differ only in their drupaceous fruit, lobed cotyledons, and the involucel to some of tho flowers.

Hernanelia, the typical genus of this order, was named after Hernandez, a naturalist sent out to Mexico by Philip Il. of Spsin ; and it is said to have been given to these plants, which linve large leaves and little flowers, in allusion to the great opportunities afforded to this uatumlist and the little use he made of them. The eharscters of this genus are the same as the order.
H. sonora is a tall ercet tree, with corlate peltate leaves, yellowish panicled flowers, a lurge iuflated sueculent caly x, with a small roundish entire mouth. It is a native of the various parts of the East and West Indies, and has obtained its name ' nonora' from the noise made by the wind in whistling through its persistent involucels. The bark, the seed, and the young leaves of this tree are slightly eathartic. Rumphius says that the fibrous ronts chewed and applied to wounds infected with the Macassar poison, act as an effectual cure. The juice of the leaves is employed as a depilatory. It destroys the hair wherever' it is applied, and this without produeing pain. The wood of this species is very light, snd Aublet says that the wood of I. Guiancnsis takes fire readily from a flint and steel, and may be used as tinder. Several species of Hernandia are mildly purgative.
(Lindley, Natural System; Lindley, Flora Mcdica; Burnett, Outlines of Botany.)
HERNSHAW, or HERONSHAW, a natne for the Common Heron. [Ardea.]
HERON. [Andea.]
HERON'S-BILL. [ERODIUM.]
HERPESTES (Illiger), a genus of Digitigrade Carnivorous Mammalia allied to the Civets. It is the Ichncumon of Lacépede, Geoffroy, and others; the Mangusta of Olivier and others; snd the Mangousto of the French.

It has the following eharacters :-Feet short, with 5 demi-palmated toes, armed with elaws which are slightly retractile; tongue furnished with horny papilla; ears smsll ; a voluminons simple pouch, which does not contain odorifcrous matter, and at the bottom of which the
rent is pieccel. lody very much elongated; tail long, utrong at jts than Hairy of the fur aniulated. Dretal formula:-

$$
\text { locieore, } \frac{6}{n} \text { caniben, } \frac{1-1}{1-1} ; \text { molare } \frac{6-6}{6-6}=40
$$

The following cut 1 F゙. Curier) exhitita the aldition senerally of the Civela, Jchncutzon, Cennela, and /'omdormri; fur, thungh there nro jartacular blfermece, they aro nut sufticient in the opnion of F. Covier tu demand mejamas alle stratious of the dental system of thos:

Tecth of telancumon (Ifrepestes).
Mr. Sentinet has notical mome peculinrities in the dentary gynten of theare animale In /I. fusciatwe and /I. Fianbianus he found the following arrangemant:-

$$
\text { lucinorw, } \frac{6}{6} ; \text { caniuen, } \frac{1-1}{1-1} ; \text { molar, }, \frac{5-5}{5-5}=26 .
$$

The incimon wate mandl, nimple, and regular; the canines of monderate nize: ther firnt the false molars of the normal fontn; the third carmanier of ruther amall nize, compared with itas ambuguo in genera numer Necmically carnivorons; mad the lant two, in bath jnws, tulnerraiuns. Tho ruslimentary falae molar mentiousd by F^{*}. tuvier was,
 sbernce low owing to the nge of thonpecimena examitued an he remarks, fur lim iella un that wine were evialently young animnla, though arrived at alult ajer. Ita rutire almener wan further evonfirued by the situntion rit the terth rapectively in tho reciprocal prosition of the jawn, the fres inforior falbe molar filling up the entire vacant nance between
 "This agetern." writex Mr. Wenmett, " liffern conmikerably from thit nectilad in flergentes hy F. ("nvier ('Ilent den Manmiffer,' i. 49),
 follawing howerer in erually foreign th the acconsta of both these wathota, and, wem but shl the cieher charnctern mo perfectly accoriant with throm of fierpeetes, would decidrally indicate a new genum.
 - tout of intmrogation, he I havo only been shlo to exmmine a aingle - jerimer.
"Mengen (') riflicollis (/f ritfindlis, lienncti). Dental formula :-

$$
\text { "lncimore, } \frac{1}{6} \text { : canisea, } \frac{1-1}{1-1} ; \text { molary, } \frac{6-1}{7-7}=42
$$

"The incierat atul canifna have nothing lemathalle eithor in form or maminer. The firat falme melar an either jaw in tutherculous; the encombund thut conais: of rome large conical fang in the centre, and a atnaller interde ont rach nide of it : then follown the camanaier, and wher it two sulorenloth torth in the ulymer mod three in the lower iaw. The firs: of these in the ulver jaw lin lange and triangular; the
mecond short and bruad, its latitulioal dimensiona more than doubling its longitudinsl; the three of tho lower jnw are small, simple, rather distant from each other, nud of cylindrical form. This is a system of dentition which as far an I am awno is altogether peculiar, and If confirmed by the exunination of other apecimens will undoubtedly form the type of a new genus. Perhsps further and more rigid oxamination may evan detect different npecies from the different localities, an nereinens hare arrived for the Society from Travancoro and Bombay, unl one from Malras, at the liritish Museum."

The species of the genus //arpestes are found in Asin and Africa.
Arrangenent and Natural Hintory.-Linnmus, in his last edition of the 'Systemn Nature,' gives ane species of Ichneumon under tha name of l'irerra Ichneumon, his genua l'irerra being placed between the Cats (Fclis), and Weascls (Mustela). It standa as tho first species of the genus, and three varicties are noticed, one of them with a query whether it may not be a distinet apecies. The first of these varieties is aridently the eclebrated Iggyptian Ichneumon (Ichncumon Pharaonis of Gooffroy, Iferpestes Pharaonis of Deamarest and others).

Gmelin gives three species, namely-Firerra Ichncumon (the Egyptian), V. Ifungo, and, apparently, F. cofra.
j'ennant places it anoug the 'Weesels'
Cuvier gives the form (Les Mangoustes) a position between Paradoruruz and Ryzana (the Suricates).

Dr. Gray arranges the Ichnoumona (IIerpestes, llliger) under the Fclille, in his fourth sub-family Iiterrina, between Genetia (Cuvier) and Crossarchus (F. Cuvier).

Dr. Fischer places the form, under the name of Mangusta, between Mfphitis and Crossarchus: he enumerates nine apecies.
M. Lesson, in his 'Manuel,' arranges it, under the name of Ichncumon, betweeu Genctia and Crossarchus.

Mr. Swainson's 'l'irerina,' Musk-Weasels (Fivergince), form the first sub-family of his family Mustelida. Herpestes, which is placed between Cymictis and lirerra (Linnaus), is the second genus of that gub-family.
II. Ichreumon, the Ichneumon (Ichncumon Pharaonis, Viverra Ichneumon, a, of Linneus). The fur a mixture of chostnut-brown and yellow, each hair being annulated with those two colours; the feet nud muzzle black or deep chestnut; the tail terminated by a tuft of long lairs.
This appears to have been one of the sacred animala of the ancient. Egyptinns; and wo read in Herodotus (ii. 67) that the Ichncuta (ixvevtal), which the best critics consider to be aynonymonte with Ichneumons, were, as well as dogs, buried "in holy repositories." There is no good reason to doubt that it is the lchneumon (1) Xevejuav) of Aristolle (' llist. Anim.', ix. 6; vi. 20, 35), Diodorua Siculus, Strabo, Flian, and others; and as little that it is the Ichneumon of Pliny. Aristotle (ix. 6) relates, that when the Ichneumon sees the serpent called the Asp or Aspic ('A $\sigma \pi / s$), he does not sttack it till ha has called to his assistance other ichneumons, and in order to defend themselves from the venomous bites of the snake, they cover themselves with mud by rolling on tho earth after having dipped themaelves in tha water.
lling ("Hist. Nat.,' viii. 24), gives a somewhat similar sccount. Diodurus and Strabo relato a much more marvellous feat; nor is l'liny slow to lend his aid in spreading the wonderful tale, how, when the crocodile is lulled aslcep with open jaws, the Ichnoumon darta like a weapon down his throat and gasws his catrails ("erodit alvum"). ("Hist. Nat.; viii. 25.) It may be thought hardly worth while to refute sueh a fable; but it was long entertained as credible, nud it may not beamiss to turn to Sonnini's observations on this point, mors especially as they contain somo interesting remarisa on the habita of the animal. "Much," says Sonnini, who speaks of the lelneutnon as one of those animala which the Egyptiana have domesticated, "has been writteu concerning it, nnd much of this writing. has been fabulous. It was one of the animals held sacred in ancient ligypt. Honours were rendered to it on its death; it was maintained with the greatest solicitudo during lifo; funds wore set apart for its мupport ; they served up to it, as to cats, bread stecped in milk, or finh of the Nile cut down into morsela; and it was generally forbldden to kill any of the race. Olject of tho worship of a celebrated people, the pretended protector of tho most aingular country in the world against a neourge tho most griepous to an agricultural nation, a ntrunger and uaknown in our climaten-what a field for the production of the marvellona! Accordingly it has not been spared. The greater part of travellera lave seen the Mangouste without examining it; and with their minds prejudiced by tho storica which the ancients and tho moderns have spread respecting it, they havo succeasively copied their relations." Sounini then, after a compliment to lluffon, and a statement that he had had it in his power to observe the Nangouste in its native country and in ita atate of liberty, proceeda as follows :-" With very great diapositions to famliarity, the Mangoustes are not altogether domestic in Egypt. Not only do they now rear none in their habitations, but the inhabitants heve not wen the recollection that their anceators reared any. Most probably thin those which Iselon and Irosper Alpin assert that they had aeen - Inmenticated were merely a few inrlividuala preserved rather as objects of curiosity than for sny useful purpose; for if they huat away rate and wice, they likewiae scize upon the poultry; and this appetite
would more thav overbalsuce the good which they could do in purging the houses of noxious avimals, which cats would destroy more certrinly and with less inconvenience. Having some resemblance in their habits to weasels and polecats, they ferd upon rats, hirds, and reptiles. They ramble about the habitations of meu; they even ateal into them, in order to surprise the poultry and devour their eggs. It is this natural fondness for eggs which prompts them frequently to scratch up the sand with the intention of discovering those which the crocodiles deposit there, and it is in this manner that they prevent, in reality, the escessive propagation of these detcstable animals. But it is aboolutely impossible to ahstain from laughing, and not without reason, when we read of their leaping jato the extended mouths of the crocodilea, of their slidiug down into their belly, and not returning till they have eaten through their entrails.* If some Mangoustes have been seen springing with fury on little crocodiles presented to them, + it was the effect of their sppetito for every species of reptiles, and no"stall that of a particular hatred, or of a law of nature, in virtue of which they would have been specially commissioned to check the multiplication of those amphibious animsls, as many people have imsgined. \ddagger It had been equally reasonable to say that paturc placed Mangoustes on earth merely to prevent the too rreat propagation of chickens, to which they are far more hostile in reality than to crocodiles. And what proves more clearly that men have been mistaken in ascribing such intentions to nature respecting Mangonstes is thisin more than half of the northern part of Egypt, that is to say, in that part comprised between the Mediterranean Sea and the city of Siout, they are very common, although there are no crocodiles there; whilst they are more rare in Upper Egypt, where the crocodiles are, in their turn, more numerous. The Mangoustes are nowhere more multiplied than in Lower Egypt, which, better cultivated, more inhabited, more humid, ant more shaded, presenta also more abundantly the means of supplying them with prey and with food, and, I again repeat it, crocodilea never appear there.'

Vgyptian Ichncumon (Ichneumon Pharaosis).
That Belon saw this Iclaneumon in Egypt there can be no doubt. That accurate observer, in the 'Portraits,' gives a figure of it superscribed "Portrait de I'Ichneumon, que lea Egypticns nomment Rat de Pharaon." Leneath is the following 'quetrain :'-
" Voy ie portrait du Rat de Pharaon,
Qui chasse anx ikats, comme fuit la Belette:
An demenrant fort cautcleuse beste,
Qui autrement est nommée Ichneumon."
Hasselquist mentions the Firerra Ichneumon, the Ichneumon of the Nile, as met with in Upper and Lower Egypt, living, during the inundation of the Nile, in gardene and near the villages, but, in tho dry season, as dwelling in the fields aud near the banks of the river. He says that it creeps slowly along, as if ready to scize its prey, and that it feeds on plants, egge, and fowls, killing the latter in the night, when it frequents the villages. He states that in Upper Egypt it searches for the eges of the crocodile, which lie hid in the sand on the shorc, and ests them, preventing by that means the increase of that dangerous animal. "The Ichneumon," be continues, "may casily be tamed, and frequently goes about the honses like a cat. Mr. Barton, who has been the English consul nineteen years in Egypt, has kept a tame one for neveral years. It makes a growling noise, and harks when it is very angry. The Arahians call it Nems. The Frouch in Egypt, who give everything they don't know names of their own makiag, have called this lat de Pharaon, which Alpin and Belon have followed, and called it Mus Pharaonis (the Mouse of Pharaoh). The resenblance it has to a monse (Mus terrestris) in regard to the colour and hair might have induced igaorant people who know nothing of natural history, to call it a mouse; hut I cannot conceive why they should call it 'Pharaoh's Mouse.' The Egyptians were too intelligent in the time of Pharaoh to call it a mouse, having knowledge enough to give true descriptions and significant names to all nstural bodies; nor is it at this day called Phar by the Arabs, which is the name for mouse, but they call it Nems. What is related concerning ite entering the jaws of the crocodile is fabulous." Hasselquist travelled during the years 1749-50-51-52: Sonnini's travela commenced in 1777, and terminsted in 1780. In the Arabio used in the neighbourhond of Tangier, whence two specimens were sent by Mr. Drummond Hiny to the Zoological Society of London, Herpestes Pharaonis is called Serro.

- Sonninl's noten. 8ee almost alt the sacient authors, sad, among the moderna, Maillet, Jaana, and others.
† Maillet, 'Descr. de i'Egypte.'
\# Mallet, \&e.

Mr. Bennett, in his account of a specimen of Herpestes griseus kejt in the Tower, says that on one occasiou it killed no fewer than a dozen full-grown rats, which were let loose to it in a room sixteen feet square, in less than a minute and a half.
The story of the Ichneumon Mungo, or Mungos (Fiverva Mungo of Gmelin), having rccourse to the plant Hampaddu Tansh, or Mungoroot, as an antidote when bitteu by serpents in its encounters with them, will be found in the 'Amonitates Exotice' of Kxmpfer, who says (p .574) that lie had one of these amimals which slept with him, and followed him about like a dog through the city and fields.
11. badius, the Ratlamuchi, is a netive of South Africa. Dr. A. Smith, in the work above quoted, says that II. badius appeared restricted to sandy districts abounding in brushwood, and in these was occasionally seen running from one copse to another. He states that it is extremely shy, and flies with great rapidity on the approach of man to its hiding-places. Nothing except the remains of insects were found in the stomachs of those which were procured hy the expeditiou; but Dr. Smith adds, that, if the natives are to le believed, $/ I$. badius feeds with avidity also upon lizards, snakes, mice, \&c. Lucan and Rumphins both notice the skill of the Ichneumon in seizing serpents by the throat so as to aroid injury. Lucan, who names it Pharias, describes its attack on the Egyptian asp elegantly and at length (iv. 724).

Dr. J. E. Gray atates that there are two very distinct varictiea of this species. The one described by Dr. Smith is of a red bay, the hairs being of a uniform colour except a few just over the shouldernape, which have a black subapical ding. The other has most of the hairs of the back and sides with long white tips edged below with a black band, giving the back a grizzled appearance.

The following species are given in the 'British Muscum Catalogue: :-

II. Widdringtonii, the Andalusian Ichueumon. South of Europe; Sierra Moreua.

II. Caffer, Cape Ichneumon. South of Africa.
II. Mutgigelta, the Mutgigella. Abyssinia.
II. Smithii, Dr. Smith's Ichneumon. Cape of Good Hope.
II. apiculatus, Brown-'Tipped Ichneumon. . Cape of Good Hopc.
II. Javanicus, the Garaugan. Java.
II. griseus, the Moongus. India; Neprul.
II. Nyula, the Nyula. India; Nepaul.
II. paludosus, Brown Ichneumon. Cape of Good Hope.
II. brachyurus, Malacea Iehneumon. Malacca.
II. punciulatus, Spotted Ichbeumon. South Africa; Natal.

This last specics has been recently described by Dr.J. E. Gray, who says it most nearly approaches II. Mutgigella.

HERPETOLOGY (from 'E $\rho \pi \epsilon \tau \dot{\nu} \nu$ and $\lambda o \gamma \dot{s}$), the branch of science which treats of the structure, habits, and classification of leptilcs. [Reftile; Allioator; Crocodiles; Amphibia; Ophidia; Chelonia; Ichthyosadrus; Plesiosaurus; Pterodactyl; Sauria; Boide.]

ILERLERITL, a Nineral occuring in reniform masses. Clesvage in three directious, affording rhomboidal fragmenta with curved faces. Colour pistachio- emerald- sud grass-grecu; streak yellowish-gray. Hardness 4.0 to 4.5 ; brittle. Lustre vitreous to pearly, snd shining on fresh surfaces; translucent. Specific gravity $4 \cdot 3$. It is found at Albarradon in Mexico. The following is an analysis by Herrera :-

| Carbonic Acid | . | . | . | 31.86 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Peroxide of Nickel | | | | |
| Tellurium . | . | | . | 12.32 |

This mineral io probably a mixture rather than a definite compound. HERRING. [CLUPEIDFE.]
HERSCHELLITE, a Mineral which occurs in attached hexagonal crystala, associated with Phillipsite, in the cavities of trap, and also in granular Olivine. Primary form a rhomboid; cleavage not ascertained. Fracture conchoidal. Harduess 4 to 4.5 . Specific gravity $2 \cdot 11$. Translucent or opaque; colour white. Found at Aci Reale in Sicily. [Chabazite.]

HF'SIONE, the name of a genue of Dorsibranchiate Annelida, with a short but rather stout body, composed of a few ill-dcfined rings. A very loug cirrhus, which probably executes the function of branchix, occupics the upper part of each foot, which has also another lower one and a pasket of fine bristles. The proboscis of Hesione is large, and without either jaws or tentacles.

HESPERIDIUM, one of those fruits which, in common botanical language, is confounded with the word Bacca [Bacca], but which indicates a differcnt structure. It has a tough separable rind, the sceds hardly lose their attachment when ripe, and the celle readily separate through the disrepiments. Of this nature is the fruit of the orange, which is the type of the Hesperidium. [FRUFT.]

HESPTRI'IDA (Stephens), an family of Lepidoptcrous Insects of the section Lepidoptera diurna of Latreille. They have the following characters:-Antenne terminated by a distinct club, geverally with a minute hook at its extromity; tibiee with two pairs of spurs, one at the apex, and the other near the middle; claws very small, bifid; body thick; wings small, the posterior pair with a groove to receive the abdomen. The larvo are pubescent, or naked, and have a large head; pupa smooth, inclosed iu a web.

Thowe !ut]. bustertice have a lagro liead, ant a thicker body and -atate -ing than the moro trpical apeciea; they are usorover at obere destighualial from then ly their jowanaing two jaire of npurno ure spera, to the less; their tlight in short and in frequent jerks; hence ther liave meirell fie atuse of skijpere
II. Foranea io alent ane bach and a quarter in width; the winga ase of rich lorumaishoyellow abore, with the outer magine deep. trown; the anterior wing are upoted towanh the apex with yellow, nond hare an oblong lilack dash near the bace; the postcrior wiagn hare aume indiatinet epota

This butterty. which is very conmon in varions parts of Iinglaul, and te chiefty furmi on the borifen of woods, will afford an exsmpto of the tribe of which we are treating.

There are meral cther precien of the fanaly Hesperiiffer found in shis country, of which the Thymele alecotus may be noticed. This is a litelo black butterty with numerous nilver-like npots, nod is known by tbe Findioh caknoluginte by tha name of the Grizaled Skipper.

HE, 'sl'kills (from 'Hesperu,' the evening), a genus of Plants belonging to the antural ordor Crmafero, and the tribe Sisymbrece. The Lowern canit a weet fragrance during the night, and hence the genue derives its uame. The pode are ipladrangular, or sub-compressed, the ralven kecled and nomewhat nwerved, the aceds in nosingle row. There are only three aprcies enumerated, and none of these aro wande use of by man but an ormamental and sweet-scented plonts
IV. matrowalus, Bame' V'iolet, is the only British species; it has an ecect brancleal atem, orrate lanceolate leaves, and large landeone lilac frefrant Bowen The lalien of Germany have pots of this plant placnd in their apartments; heuce it hat be n called Drme's Violet. Parkingon calle it Queen'm Gilliflower; and Gerard, Damask Vielet.

All the apeciea thrive beet io a light rich soil, and require tha same ireat ment ha moat other tarly garden-plants.
(Ihon, Jichlamyteom Punts: Pabiagton, Manual.)
HF:TEJROBlRANCHIA'TA, M. De Bhinville's namo for the feurth orter of his Acejhalophora.

The let Fandily (Ancillinns) in divided into two tribes: 1, Simple Amidiana, of which Biprapillaria and Fodia aro examples. [Brparile tamsa; Fon1a.] 2. Aggregated Ascidiank, an example of which is Rooryilua. [TEsicita: Butntupin.se]

The emil fandily consinta of the Snlprocens, and is alan divided into two triten: 1, the simple ($B i j$ hora, dic.); 2, the Aggregato (Pyroroma). [Satica]

HFTFHO CEHCAL, the torm chosen by M. Agasiz to express a freuliar form of the tuils of tishen, which ntfonis n very obvious, and, on far an yet nypeare, a very correct indication of the geological age of formations Among existing fishes the tail in either nimple, as in the cel, hifuncate, as in the malmon, expandel to a ronnd figure, as in the wrame, or unequally bilobste, as in the shark. It is to this latter irrogular from of tail that the term Heterocencal is applied : the others, by way of distinction, are ealled Homocercal.

The feculiarity of the Heterocercal Finlues is that the vertubml column rusa along tho upper caudal lobe: in the other forme of tail it la gytactrienlly placed with reapect to the poaterior finay expmu. ninn. H. dganiz han found thin peculiarity of the tail, which is lenst contmon among living finher, and confinej to particular groups, to lowng to every puecire of finhen, of what ver group, and however diffring in cuar realiecta, which cocne in atrata older than the Enolitic ystmo. while in and above that nyntern Ifomocerenl forms Bligar. It lo therefore a characterintic of geological time; and rmong the corsjecturen an to the relatione of this form to physical conditions
of the ourfare, or law of the animal conotny, we prefer the opinion of the uifare, er laws of the nnimal econotay, we prefer the opinien
 finhez which lived in early goological periodr. Some of the finher of and wran hffrmace in the arrangerbent of the scalen thercon, but Without (we belseve) the characteriatic continuation of the vertebral colomn into the ugime lobe. Three may be thought to mark the gradual tranition from the Heterocercal to the ordinary typer of

 which, in matier ferionla of the history of the globe, were exclusively predrominant.
(Agasels, Recherches sur bes Poinone Fusiles.)

HETEHO'CFRUS, n genus of I'entamorous Coleopterons Insects catabliehed by lose Latreild places it in his secoud soction of his family Claricorses, and forms of it a tribe under the name of Acanfiospoito, on account of the dlattened broad limba armed with spinces. These bectles have small oval depressed bodica, and eleven-jointed nutenne, tho last six articulations forming a cylindrical club. They live in mand or mud, by strentas or among marshes, burrowing in the ground by means of their spinous tibise. When disturbed or alamed they come out of thoir holes. The larve live in the asme nituations with the perfect insocts. Sevoral apecies are found in Britain.

Hbiteroclin. [Manoasese.]
HE:'TERODON, M. De Blaiuville's name for a genus of Dolphing The term Heferodon had been applied by M. De Beanrois to a geuus of noryents placed by Cuvier under hia great genus Coluber. [Ceraceas.]

HETEROGANGLIA'TA. The Ifeteroyangliata of I'rofessor Owen comprise all the Mollusca of Cuvier, with the exception of the Cirriperlia.

HFTEROGYAA [HYMENOMERA.]
IIETERO'MFRA, tho second section of Coleopteroua Insects in the arrangernent of Latreille, including auch as have five articulations in tho lirst four tarsi, and four in the two poaterior. They are all vegetable feeders. Latreille divided the Heteromera into four groups :

1nt, the Meiasoma, dusky or black insects, for the most part apterous and having hard elytra, which are often anchylosed. Their jawa are furnished with a hook, their claws nee simple, and their eyes are oblong and depressed, a character which indiratea nocturnal habits. They live in sand, or under stones, and often in cellars and vaults. They ane very tenacious of life, living many months after being transfixed by a pin and placed in the cabinet. Doubtless this is owing to tho quantity of fat in their bodies, which much exceeda that found in allied ingects, and enables thein to aubsiat for a long period without food. They are found in all parts of the world. The gen ra Pimelia, Blaps, and Tenebrio are types of as many tribes annong the Melasoma. Tho Darkling Beetle, Blaps mortivaga [Blais], and the Meal-Worm, Tenebrio moditor, are familiar British examples.
2nd, the Taxicornes, insects without hooked jaws, with more or leas square bodies, hard elytra, wings, short antenna, and feet adapted for running, furnished with simple claws. They live under the bark of trees, or in the fungi parisitical on their trunks. A few live on the ground onder stones. The genera Diaperis and Coryphus are types of trjbes in this division.

3rd, the Stenelytra, which differ from the preceding in the structure of the anteuna, those organs being perfoliate or clarate in the Taricornes, but aimple among tho insects of the present section. In other respects they are similar. The genern Mylops, Cistella, Dircaa, Wdemera, and $17 y c t e r a$, are typea of tribes. They mostly inhahit wood. The Q'demera are found on flowers: they fly well.

4th, the Trachelicles, bectles having triangular or heart-shaped heads, remarkable for being pedunculated. Tho neck ia not retractile. Their borlies are soft, nad furnished with wings, protected by flexible elytra. The jaws are not furnished with hooks, aud the claws are bifid. Lagria, Pyrochora, Mordella, Anthecus, Moria, and Meloe are types of tribes in this division. In tho tribe of Canharidea, of which Meloe is the type, are found the Blistering Beetlea, which wero probably the insects known to the ancients nuder the name of Buprestis, and regarded as poison to cattle nud oven to man. [Canthazides.]

IIE'TEROMYS, a genus of Animsls belonging to the order Ilodentia. The genus in described as having the cheek-pouches of the Jamsters, the goneral form of tho body and tail of the Rats properly so called, and the dorsal flattened spines of Echimys, Geoff. (Loncheres, Hliger). Tho dental syntem is unknown; feet with six callosities below, and five toen, the internal too very amall. (Lesson.) II. Thompsonii, Lesson (Cricetus anomalus, Desm.; Mus anomalus, Thompon; Dasynotus anomalus), the Spiny-Pouched liat. It has the habits and in of the size of n rat. It is a native of the island of Trinidad. (See Linn. Trens, vol. xi. p. 161, t. 10.)

J1:TEHOPODA (Lamarek), the fifth onder of the Gasteropodous Mollusca accorling to Cuvier's arrangement. They are distinguiahed from all other Mollusca by their foot, which, instead of forming a horizontal disc, is compressed into a vertical muscular lamina, which they use as a fin; and on the edge of which, in soveral species, is a sucker in the form of a hollow cono that represents the disc of the other orders. It embraces the gonera Carinaria, Allanta, and Firolon [Atianta; Carisaria.]

IWTEIRO'PORA, a genus of Polypiaria, proposed by De Blainvillo to include ajecies of the genus Ccriopora of Goldfuks, which have unequal cellules. From the Chalk of Maestricht. (Manuel d'Actinologie.)

IIETEROPTERA. [HFmipTEAA.]
IfETEROPUS. [Hachorodidas]
If ETEROSITE. [Manganese.]
HEUCHE'RA, a genus of l'lants named in honour of John Henry de Heucher, professor of botany at Wittemberg, and the author of the 'Hortus Wittenbergensis.' This genae belongs to the natural order Sarifrapacea, and conkists of about sixteen specics. It has a permanent 5 -eleft calyx with an imbricnted sativation; undivided ammewhat unequal petals; 5 stamens; 2 stylen, very long, distinct, tho length
of the stamens, eveutually diverging; the capsule cromned by the withered flower, st the lower part united to the calyx, 1 -celled, dehiscing between the styles. The species are herbs with leafless stems, radical leaves, and racemose or panicled flowers.
H. A mericana, Alum-Root, has rough scapes and leaves, and the whole plant pubescent; the leaves on long petioles, somewhat 5-7. loked, toothed; the inflorescence elongated, panicled; the lobes of the calyx short, obtuse; the petals lanceolate, the length of the calgx; the stamens much exserted. This plant is a native of North America, where it has obtained, on account of its astringent properties, the name of Alum-Root. It contains tamnin, snd it is to this principle that its astringent character is to be ascribed. The other species contain tannin, but are not used for any purpose in the arts or medicine.
(Don, Dichlamydeous Plants; Lindley, Flora Medica.)
HEULANDITE, a Mineral occurring crystallised and massives Primary form an obligue rhombic prism. Cleavage parallel to the oblique diagonal of the prism, very distinct. Fracture nneven, slightly conchoidal. Hardness 35 to 4 . Brittle. Colour white, brown, gray, jellow, and red. Translucent, transparent. Luatre vitreous, pearly on the cleavage planes. Streak white. Specific gravity $2 \cdot 2$. The massive varieties are granular. It is found in Scotland, Ireland, Iceland, and the Faroe Islands, usually lining cavitics in trap rocks.

Before the blow-pipe it fuses with ebullition and phosphorescence into a white opaque globulc. It does not gelatinise in acids.

The following are anslyses by Thomson and Rammelsberg:-

Jincolnite is a form of this mineral.
HLANS, Lacépède's name for the Grallatorial Bird called the OpenDeak or Open-Bill, A nastomus of Illiger.

HIATELLA. [Pyloridia.]
HIBBERTIA. [Dilleniacear.]
HIBISCUS, so named from one of the Greek names (ißioкos) of the Mallow, a genus of Plants belonging to the natural order Malvacece.

The specios, upwards of 100 in number, of this genus, are chiefly herbaceous, though of a large size, but a few are perennial and arboreous. They abound in the hot parts of Asia and America, and also in Africa and the tropical islands; a few extend into Europe, North America, and to the Cape of Good Hope. II. Trionum, which occurs in Europe, is also found in Cashmere.

The genus is characterised by having an exterior many-leaved calyx; carpela united into a five-celled capsule; valves with the partitions in their middle; cells many-seeded, or very rarely containing only a single sced. The species are remarkable, like the family to which they belong, for abounding in mucilage, and for the tenacity of the fibre of their bark, whence several are cmployed for many economical purposes in the different ceuntries where they are indigcnous. The ahundance of mucilage in some of the species renders them usefnl as articles of dict, as the uaripe fruit of M. esculentus, the Okro or Gombo of tho West Indies, which is emplojed both for thickening soup and as a vegetable; so in India $I /$. longifolius, there called lam Turai, is aitilarly employed, and much approved of by many Europeans, but objected to by others on account of its clamminess. The calyxes of 11 . Saldariffa as they ripen become of a red colour and are pleasantly acid, whence in the West Iudies the plant is called Red Sorrel. The calyxea are employed there, as well as in India, for making tarts; and a decoction of them, sweetened and fermented, is described in Browne's 'Jamaica' as a cool and refreshing drink, much used in many of the sugar islands. II. Syriacus and II. Rosa Sinensis are known as ornamental plants; the flowers of the latter are employed for blackening the eyebrows, as well as leather, both in lndia and China.

The apecies of Hibiscus are chiefly useful for the tenacity of their fibre, and hence several are employed in rope-naking. Thus I. cannabinus is cultivated everywhere in India in the rainy season for this purpose, and ita fibre is often imported into Europe as a substitute for hemp. It is known lyy the name Sun in Northern India, Ambaree in Western India, and Mesta Pat in Bengal. In the island of Otaheite rope and atring are manufactured from the bark of II. tiliaceus, which la also made into matting of a white colour, and of different degrees of finedess. Forster atates that the bark is slso sucked as an article of diet, when the bread-fruit fails there: it is also ao employed in New Caledonia. Indeed the mucilage which all these plants contain will no doubt afford some nourishment. In the West Indies, the whips with which the slaves were lashed were made from the fibres of 11. arboreus (Mohoe or Mohaul). The bark of so many species of thia genus being used for its tenacity, it is impossible to eunmerate all. Dr. Roxburg particularly recommends the cultivation in India of $I I$. strictus, in consequence of its long, fine, and strong fibres, of a beantiful glossy white appearance, and as likely to be an advantageuts Pubstitute for auch as are alrendy cultivated for this purpose.

Hibiscus Abelmoschus, so called from Hab-al-Mooshk, the Aratic
name of its musk-scented seeds, is now often named Abelmoschus moschatus, and formed into a new genns. Its seeds are said to be added to coffee in Arabia, and are in India employed as a cordial mediciDe. The plant abounds in mucilage, and is employed in the process of clarifyiug.

HIBO'LITHUS, one of De Montfort's subdivisions of Belemnites.
HIBOU. [STRIGD.E.]
HICKORY, [Carya.]
HIERA'CIUM, a genus of Plants belonging to the natural order Compasitce. The heads are many-flowered, the involucre imbricated with many oblong scales. Fruit terete, angular, and furrowed, with a very short crenulated margin. There are nineteen British species of this genus, but none of them are valuable on account of the properties they possers.
H. Pilosella has a leafless single-headed stern; elliptic-lanceolate or lanceolste leaves, hairy above, glabrous beneath. The flowers are of a pale lemon colour with a red stripe on the back. It is fonnd on dry banks and elevated places.
II. alpinum has lanceolate leaves narrowed into a foot-stalk, entire or toothed; the involucre is covered with long silky hairs, and the florets externally hairy and of a bright yellow eelour. It is found on rocks in Great Britain.
(Babingten, Manual of British Botany.)
HIERAX [FALCONDDE.]
HIERO'CHLOE, a genus of Grasses belonging to the Phalaridece. It has two glumes, nearly equal, membranous, 3-nerved, abont as long as the flowers; 3 flowers, the lower with 3 stamens, the upper palea with 2 keels, the upper flowers with both stamens and pistils; the stamens 2, the upper palea with 1 keel. One species of this genus, the H. borealis, has been found in Great Britain: it has an erect panicle, glabrous pedicels, and flowers without awns. The stem is about a foot high. It has only been found in Scotlaud. (Babingtou, Manual of British Botany.)
HIERO-FALCO, Cuvier's generic name for the Gyrfalcons. [PALCONDD.E.]
HIGH7EA, a genus of Fossil Plants from the Isle of Sheppey. (Bowerbank.)

HIMANTHALIA. [FUCACEEL.]
HIMA'NTOL'US, the generic name for the Long-Legged Plover, Longghanks, or Stilt. [Scolopacide.] The term is also applied by Minller to a genus of Microzoaria.
HINNITES. M. Defrance gave this name to a few fossil species of Conchifera Monemyaria, which occur in supracretaceous strata; one (H. Dubuissenii, of Sowerby) is found in the English Crag.

HIPPA. [Hippides.]
HIPPA'LIMUS, a genus of Zoophyta proposed by Lamouroux. Goldfuss supposes that it may be included in his genne Scyphia. It is fungiform and pediculated, with pores on the upper surface only, and a dcep central pit. From the blue marls of the department of Calvados. HIPPELAPHUS. [Cervidex.]
HIPPIDES (Latrcille), Hippa Tribe, Hippians of Milue-Edwards, a family of Crustacea. Milne-Edwards thus describes these Crustaceans belonging to his family of Pterygura. The tribe is composed of a small nuuber of anomurous crustaceans which appear to be especially framed for burrowing in the sand, and which present extraordinary forins. The carapace is logger than it is wide, and very convex transversely, presenting always on each side a great lamellar prolongation, which more or less covers the hase of the feet; it is truncated posteriorly, and appears to be continnons with the anterior portion of the abdomen, which is very wide and lamellar laterally. One of the pair of antenne is always very long. The external jaw-feet do not present a conformation like that which is observable in the greater part of the crustaceans treated of in the prior part of Milne-Edward's gystem; they have neither flagrum (fonet) nor palp, and their last three joints are very well developed. The sternum is linear, and the feet are imperfectly extensile; those of the first pair are monodactylous, or subeheliform, and those of the two or three succeeding pairs are terminated by a lamellar joint proper for burrowing. Tho posterior feet are filiform, semimembranous, recurved forwarils, and hidden between the lateral parts of the carapace and the base of the preceding feet. The penultimate ring of the abdomen is always furnished with a pair of false feet, terminated by two more or less oval ciliated blades or lamina; but these appendages have a forward curvature, and are not applied kgainst the seventh segment so as to form with it a fan-shaped caudal-fin, -ss in the Macrura. The vulve are on the first joint of the third pair of fect. The branchise are disposed on a single line and inserted by a peduncle which riscs nesr the lower third of their interoal surface.

This tribe is divided into three gencra, which Milne-Edwards distribates as follows:-
stbman (fishricurat- Mast analogoun of any of the tribe to the founar. we well by their getseral form an hy the dipusition of their foel. Thest carmisece. which is etraight frum boforo backwarela, an! evares traspermely, ionly a little prolonged abore the bate of tho foct: it in tommusted antoriurly by a nearly mtraight lmoter, which oncuptes the whole wiolds; t is of an orni abape, posteriorly and stonesty nercheal for the incortion of tho almbineca. A amall incaial point repments the nutrum. The ochlar peluncles are large and lamellar. whilot blow eyon mitnated on their external bonler, are extermely amall. The internal antenne are rars laspe, nod they aro seramantei lor a aingle multi-articulate filanent longrer than the body, alighty Ontened abel celtatod on ita entam. The external antennes. laoertid bearly on tho wane line ad the imternal, are laree, mbort, an i
 juithe Thmextemmal jax fert aro noow or lexa peliform; their secont and third juiwsare almont cyliultical, aml the terminal portion formed by the thre that joinu is wanctimea an longo and almost na large, an ebe banlary porton. Tlie feet are aloort; the tirse pair are termionted by a large hand rather nubcheliform than cheliform, the moveablo
 ararely projecta, and comsequently diven nut really constitute nu termorealile finzer. Th. three following jaira are mearly of the amo form, and tervinsto in a folciforin joint. The pronterior feet are mitucut silform. The fiat riug of the abolomen in amsil, and receivent itan nuich of the carapace: the necon il in, on the contrary, very lange, amd prament on mach airle a cungilerable lamellar prolongation, which rioles a lathe on the carngace. The thind and fourth abolominal seg. secot alimioish frogreagively, but are noarly of the name form as tho necond: whale the finth, nixth, and seventh aro very narrow, and proment mo lateral prolongation; the aisth aupporta a pair of false natatary foct, terminated by two ovnl latuine; and the aeventh hat the form of a nearly circular lamina (Milue-Fiwarin)
Albmana. "ymandiany lie taken as an exanople. The length of the campece io IU liucs It inlarlite the ecan of Ania

Romipes (latrvillel-Carapace nearly megularly oral, coneex, and leas than ofoce aut nutuarter ma long on it in wile; front mother large and truscated: wrlathmincirculat, and their axtarmal angle mbeh mone projectag than the frubt. The oplithatmic ring in covered above by ltom frons, but in rat marroumberl thy the carapace; the ocular pedunclos arco compmeed of twe movenblo portiona, uno banilary, which in -Lusat anol obunt, the rother torminal, ryliuhtrical, mender, carrying at thentrmbly a very amall imporfectly retractile cornom; the eyen, in
 Inaragmele, but alranom ant mererle a littic by the motion of the levilary fortion of their perluncle. The internal antumare aro inserted briow lito pana of thomerular perduncloa. aurl are rery large; their bealary partion in cornpmal of three joint nenrly of the name aize, aral then terminal jortion moninte of two long fitamenth which are
 are inerad whthin the internal, nearly on the sane line, and under the Lateromononor celge of the rampace; they are alort but very large : their firns jont in much wiler than it in long; the necond and the third are tearly of the mane diruemanom, and the ancceeding joiden diminish rajidly in volume. The buccal frome is not closed
auteriorly. The oxternal jaw-fect nre wile and abort; thoir firat joint is nearly flnbular, and carries neither palps nor flagmom; the aceon! joint, which is so large in the linachyura, is rudimentary here; and it is the third, which, becoming very large and nearly oval, constitutes nolely the apecies of operculuat formed ordinarily by the seenad and thind joints united ; the three last jointa form a eort of large claw, which applies itself against the anterior border of the third joint. The jawroot of tho acconil pair are equally destitute of the tlagram, but have a flabelliform falp; it is the maue with the anterior javefeet; their palp in lamellar, dilated anteriorly and disposed nearly as in the Ocystomes. The jaws of the nocond pair present nothing remarkable; those of tho first pair are very auall. The manlible, which ia strongly deatilated, is furniahed with a palp compueti uf two smail lamellar joints, separated from the body of the namlible by a lige membmons furmow the aternm is linear. The - nterior feet are long; their aecond and thinl juints are ealarged; but the last three are cylindrical; and the last, which is nearly as long as the preceding oue, is alightly thatened, pointed, and incupablo of being lrent back upon it. The two following pairs are large, and terminated by a large hastiform lamina; the fourth pair are beld by a suall nearly conical joint. Tho lifth pair are slendor, loug, and membranona, and are bent back upon the lateral prolungation of the carapace. The last thoracic ring, which aupports these appendages, it complete above, moventhle, ani not covered by the carapaca, so that it might be eavily taken for the first ablomimal aemment. The abdomen is very large, and presents on ench aido a lanellar oral prolongation which ridos upon the carmpace; its anterior bonler is notehed for the lodgement of the second abdominal ring, which ia oval; the third and fourth segmente diminish progressively in volumo; the fifth aud sixth are equally small, but are soldered together; and tho seventh has the iorm of a great triaugular jamina, tho length of which exceeds that of all the rest of the ablomen. The first threa riogs in the fetate are furnished with simple oviferous filaments; the fourth and fiftl, riugs are without appondages, while the aixth ring earrica a Fery large pair of false matatory feet, terminated by two rained oral pates which are ordinarily bent forwards. (Miluobilwarda.)

Remipes testulinarius may be givan as an example. The length of the carnace is nbout 15 lines. It inhabits the coasts of Auatralia.

Ilipa (Fabricius). When Fabricius eatabliahed the genus it was much more extennive in its linuts, and at present it only contains thone llippians whose external antenue are terminated by a long and stout multi-articulate filament. Body oval, or rather ellipsoid, being rather less wibe forwad than backwand. Campace truncated poateriorly, very convex tramasorsally, and presenting towarde tho saiddlo a tranaversal curved furrow, which indicatea the posterior tenuity of the stomachal region; its latero-anterior border in concave, but lts latero-ponterior borler is sery convex. Tho rostrum is small and triangular, and on ench eide of ita base is a notch which exponea tho insertion of the ocular peduncles and the internal antenare, and which is bounded externally by a projecting tooth which mernees above the internal edge of the great nitenne. The ophthalmie sing, which is covered in its mesial part by the rontrum, ia of a horse-shoo shape, and ita two extrenitieg are exposed; the ocular peduncles, inserted at ita extremity, are composed of three pieces, and of these the two bailar, which are very short, are bent under the carapace in tho form of V, and tho last, which is alender, cylindrical, and very long, adrancea between the internal and external antenna, and terminatea by a mmall pyriform enlargement which carries the cornea. The internal antennse aro of torlerate size, and their basilary joint, which in cylinilrical and a little curved downwarda, is hardiy larger than the nucceeding one, which in furniahed on the external side with a atrong tooth directed forwaria; tho third joint is short, and givess inmertion to two multi-artienlate atemlets (tigelles). The external antenier are very large, but casily escajo observation, for they are
ordinarily bent backwards and hidden almost entirely between the month and the external jaw-feet. The first joint of their peduncle is small and but little apparent; the second is large and srmed anteriorly with two spiniform teeth, the externsl of which is mueh the strongest ; the two succeeding jeints are small, and form by their union a globular mass, whence springs a last peduncular joint, which is cylindrical, sod supports in its turn the multi-articulate terminal filament, which last is very large, nearly of the length of the carapace, and fringed externally with a double row of long hairs. The external jaw-feet are of considerable size and operculiform, but their first two joints are very small, and it is the third only which preseuts that disposition; the last three joints form a long, delicste, and lanellar appendage, which is inserted in a notch of the external angle of the preceding joint, and is bent back under its internal edge, but does not constitute a claw as in Remipes. The palp of the two pairs of succeeding jaw-feet is terminated by a lamellar enlargement. The feet are short, and hilden under the carapace; the first pair are atout and applied against the mouth, termiuating with a ciliated nearly oval limina. The tarsus of the two succeeding pairs of feet is lamellar and hastiform, and that of the fuurth pair is stout, conical, and very short. The posterior feet, which are long, membranous, and very sleuder, are bent back between the lateral part of the carapace and the base of the preceding feet. The last theracic ring is not free and exposed as in Hemipes; but the first joint of the abdomen is nearly of the same form, and the succeeding rings present also the disposition already noticed in these crustaceans, (Milue-Edwards.)

Hippe Emerita is the best example. The length of this species is from 1 inch to 15 lines. It inhabits the coasts of Brazil.

MIPPOBOSCA. [Hippososcid.e.]
HIPPOBOSCIDAE, a family of Dipterous Insects belonging to the section Pupipara or order Momaloptera, containing the Forest-Flies, which exhibit such remarkable variatious in their typical structure that they have been regarded by some authors as forming a distiact order. The head is received inte a cavity io front of the thorax; it is divided transversely into two parts, the anterior or smaller of which mupports the mouth and two small tubercles, almost innbedded at the lateral angles, being rudimental anteune. The meuth is composed of two curved setee, inclosed in a tubular canal, covercd by two narmow elengated coriaceous plates, regarded by Latreille as palpi. The ocelli are wanting. The bolly is short, flat, and very coriaceous; the wings are either large or entirely wanting; the neryures of the anterior margin are very strong, but they are effaced behind. In the winged species a pair of haladecrs are also present. The lega are very strong, and terminated by robust curved claws, which are toothed beneath. The abdomen is composed of a continuous leathery-like membrane, capable of very great disteusion, which peculiarity is owing to the remarkable circumstance that the young of these insects are singly nourished within the body of the parent, where they not only acquire their full size, but actually assume the pupa state, under which form, like very large egge, they are deposited by the femalc. This egg-like cocoon is at first soft and white, nearly as large as the abdomen of the parent fly; but by degrees it hardens, becomes brown, of a rounded form, snd often notehed at one end, which is covered by a shining kind of cap, which is detached on the insect's assuming the perfect state. This cocoon is moreover entirely destitute of amnular incisions, in which respect it differs from those of otber Dipterous Insects. It is composed of the uncast skin of the larva, beneath which the insect becomes a real inactive pupa, with the limbs of the perfect insect laid along the breast, as in other species which underge the strict caarctate apecies of transformation. M. Réaumur was the first to discorer theso curious particulars; snd he was so anxious to observe the develop-
ment of the insect from these singular eggs, that he carried them in his pocket by day and took them to bed with him st night, in order that they might have a uniform degree of warmth; great was his surprise therefore when, instead of grubs as he expected, perfect flies were produced.
These insects are interesting in their habits. They live exclusively upon quadrupeds and birds; the horse is especially subject to the attacks of one of these species, hence called Hippobosca equina. This species is the type of the genus Hippobosca, in which the eyes are large and distiuct, heiug placed at the sides of the head; the autenne are in the shape of turhercles with three dorsal seta; the wings are large. Mr. Curtis observes that these flies move swiftly, and hike a crab, sideways or backwards; they are very tenscious of life, and live principally on horses, attaching themselves to the belly between the hind thighs and under the tail, where they are less protected by hair. It is remarked by Latreille that the ass fears them most, and that horses suffer very little from them. In the New Forest they abound in a most astonishing degree. Mr. Samouelle says, "From the flanks of one horse I have obtained six handsful, which eonsisted of upwards of a hundred specineus. They abound most on white and light-eoloured horses."
The other genera are:-Ornithanyia, Craterina, Oxyptcrum, Hemobora, Melophagus, Feronia, Lipotepna, and probably Braula. Of these the first three are British, and are fonnd upon various birds, the Craterina hirundinis depositing its egg like a cocoon in the nest of the swallow, where it receives all the necessary. warmth; for which it repays the poor swallow by sucking its blood." The wiugs in this genise are vcay long and narrow. The genus Melophagus comprises a single species, M. ovinus, which is destitute of wings, aud attacks the sheep. It is of a dark reddish colour, with the abdomen whitish. It is commonly called the Sheep-Louse, aud is so tenacious of life that Ray states that it will exist in a fleece twelve months after it is shorn, its excrements efeu giving a tinge to the woel, which is very diffieult to be discharged.
 Plants belonging to the natural order Lobeliacece. It has the limb of the calyx 5 -parted with linear segments; the tube of the corolla long, straight, entire, with the limb 5-parted, pearly equal; the stamen-tube projectiug, completely monadelphous and syngenesious; the stigma sloped, the capsule 2-celled, 2 -valved, many-secded.
M. longitore is the only species. It is an berbaceous plant, with short axillary pedicels, mucronate or coarsely toothed leaves, with long slender white flowers. It is a uative of Jamaica, St. Domingo, Cuba, and Martinique, in dsmp places and by the side of streams. This is oue of the most poisonens of plants. If the juice only accidentally touches the lips or eyes it produces a buruing inflammation. Horses are violently purged after eatiog it.
(Don, Dichlamydeous Plants; Lindley, Flora Mcdica.)
hippocampus. [Smanathide.]
HIPPOCEPHALOI'DES. By this name Plott and other writers understood the inuer casts of certain equivalved Conchifora, especially Trigonia.
HIPPOCRA"TEA, a genus of Plants belonging to the natural order Hippocrateacece, so named after Hippocrates, and which might therefore be expected to contain many useful or medicinal plants. But it is not so. 'The specics consist of moderate-sized trees, which are found in the hot parts of the world, as in the tropical parts of Anerica, in Sierra Leone, the warmer parts of India, and the Island of Timer. The genus is characterised by baving the calyx 5 -leaved, but very small ; petals 5, usually hooded at the apex; stamens 3 , anthers 1 -celled, opening transversely at the apex; carpels 3, samaroid, bivalved, valves keeled and compressed; seeds winged from the funiculus being widely expanded. The fruit of some of the plants of the family is eatable; but the seeds of one species only of Hipporatea are mentioned as being of any use; those of II. comosa, being oily and aweet.
lilppockatea'cere, a small natural order of Exogenous Plauts remarkable for the presence of three mouadelpheus stamens in a pentapetalous flower. The fruit consists of from one to three cells, and is frequently exteuded at the back in a membranous manner, so as to resemble the samera, or key of the ash-tree. The species are woody, and often climbers; they inhabit Africa, the Mauritius, and the tropicsl parts of Anverica; iu geaeral they are of no importance for economical or medical purposes. The fruit of Tonsella pyriformis is eaten in Sierra Leoue. The nuts of Hippocratea comose are oily and sweet. They are called in the French Weyt Ladia Islands Amandier du Bois. In Brazil othcr species have eatable fruits. The order has 6 genera and 86 species. They are related to Chailletiacetc, Celastracere, Malpighiacec, and Aceracec.
HIPPOCRE'P'S' (from 'm $\pi \pi s$, a horse, and $\kappa p \bar{\eta} \pi t s$, a shoe, an account of the curved shape of its pods), a geaus of Plauta beleuging to the natural order Leguminosc, the tribe Hedysarece. It has diadelphous stamens, an ncute style; the legume curved, with numerous 1 -seeded joints; the seeds cylindrical or compressed, oblong, curved, fixed to the niddle part of the joiut, and therefore the umbilicus is in the middle of the curve. The species are herbs, or under-shrubs, with unequally piunate leaves and yellow flowers, which are sometimes solitary and axillary, sometimes sessile, but usually disposed in nmbels on the tops of the axillary peduncles.

1. a sover expanded; 2, section of the mame, shewing the ovary.

If. Holearim, Minorea Jlorse Shoe Vetch, is a nhrubby erect plant, whe the perduncten longer than the leaven, bearing an umbel of dovery at the afex, the legumen glabroun, a little arehed. It in a native of tha lainad of Mhorca. It in a jretty plant, worthy of cultivation, but requires the greenhone in winter. It grows well In a soil componerl of loam mul pent; and cuttings strike readily under a hamelglana.
11. comova, ('ommon llorseshoo Victel, has the pods ambellate, their jointn rough, eursed, neither dilnted nor bordereal, glabirous; the pedunclen longer than the leavea. It is a native of furope, mod Io foum on dry clalky banke in Great Britain. It is also found in the noth of Africa.

There are mern or right more apecien of llorse Shoo Vetch. They are all worth cultivation on account of their benuty. Tle perenaind apeciem are adapleal for rockwork nul banka, nul inay be propagated by elividing the rook The nnuual erecies ahould bo grown from merde, which mas bo mown early in ajring.
(Iron, Jichlamydroc's Panta: Pabington, Manual of Arifish Incany.)

Hildonabositis, a genun of Fiahen belonging to the family Plemromectular. The two rym are os the right mithe. The jawn anit pharyox arm armed with nharp and monge tecth; the bowly clongated. The aperion ane Enown by qheir loing nonnen num louger than thone

If. rmigans, the Halitut, llalilmt, or Fietan, in the only Ifritinh pperien It is a very frepurnt firh in the nurthern dinhurien, and in common on tho crantin of Norway, fepland, and treenland. They nre obtainal in lanew quatution by the inbabitante of the torkueya. In

 lowinn markete The furm of then baly In dongated, the aurface arometh, covervel with amall oval-whaged moft malm; the lateml line archal orer the pretemin fin; the colour compread of differeat ahalea varging from laght limow to duaky brown; tho aurface of tho under aile profedy asporith and white.
(Vartall, fircuah liuhes)

HIfival
 Charmeterierd ly mitary os ilen, apmaloun fluwem in apikee, aud hracta
 Manchineol-Trec.
II. Womranilla, the Manchinecl-Trec, is n flant which han as bad
an Anerican reputation as that of the Upas-Tree in the Indian Archijrelago lt ia a tree of very considerable size, and of a handsome anpect, belonging to the antural order Euphorbiacer, nad among the unow poisonous of all known vegetable productions. The leaves are alternate, ovato-acute, aerrnted, and mhining, with a roundish depressed gland between the blade and the petiole. The fowers are small, untsexual, and arranged on slemuler nxillary apiken, the lowermont only being female, all the others male. The male flowers grow in elusters, and Luve each a amall calyx of two sepala, containing a tetrandrous column of stamenk The females have a calyx of three nepala, a round ovary erowned by aix or even reffexed atigman, and containing as many cells. When the fruit is ripe it is a fleaby yellowish-green round body, rery like an fiuropean crab-apple. The tree is common in the West Iodin Inlands, although jains have been taken to extirpate it. In zome places it forma thick woods, as ypon Sandy Island, near Tortola, to the excluaion of all other vegetation, for not a blade of grass will grow beneath its branches. The whule plant abounds in a milky jujee of the most venomous deseription: dropped on the skin it produces a sensation of severs burning, followed by a blister; and the fruit, when bitten, causes dangerous inflammation of the mouth. This is denied by some of the Weat Indian settlers, bat is undonhtedly true, according to the clder Jacquin, and to the more reeent testimony of Sir Robert Schomburgk, who suffered geverely from having tried the experiment of eating the fruit. Jacquin however asserts that to sleep beneath the ahnde of tho Manchineel-Tree is not dangerous, as is commonly reported. But Sir Robert Schomburgk says that if rain passes through the branches and drops upon the ekin of a person below them, it produces severe inflamanation, and that the dew which falls at night causes the same effects, as he saw in cortain cases which came bencath his own observation; but he aids that it nets differently upon different jersons, he himself not suffering any inconvenjence from rubbing the juice on the skin. But while the dangerous qualities of this tree are thus undoubted, it is sery uncertain whether the poisonous quality which, it is believed in the West Indies, the landcrabs acquire from the Mnnchineel-Tree is really owing to that cause. Jacquin denjes it, and Sir Robert Schomburgk could obtain no proof that it is so ; all that is certain is, that land-crabs aro frequently fonnd under the shade of manchineel woods, and that those animals are often poisonous. The wood of this tree is represented to bo of fine quality, handsome, and well suited for cabinct-makers' purposes.

Manchinedretice (llippomane Maratitia).
1, a ripe fruit ; 2, a tranaverac nection of the name; 3, w male floker; 4, a female flower; 3, an ovary.
H3PMO'NOF, a genua of Doraibranchiate Aunclida, considered by Mcearn. Andouin nuil Milne-Edwards to appronch the genus A mphinnme. /fipponize is dreprived of a caruncle and has only a singlo packet of bristle to cach foot, and a single cirrhus.

HIPPOTHAE, a genns of Plants belonging to the natural order Elcagnacea. It has diccious flowers with ovate scaly bracts. The stameniferous fowers have a perianth of two leaves arlhering by their points; the stamens have four very shert filaments; the pistilliferous Howers have the perigone tubular and cloven at the summit; the stgle is short, the stigma elongater; the nut 1-seeded, clathed with the large coleured berry-like perigone.

The only species of this genus is the M. rhamnoides, Sea-Buckthorn, which is a small shrub found on the east and south-east ceasts of Great Britain, and other parts of Europe. Ths acid berries yielded by this plant are ofteu eaten as a salad both in this country and in France. This plant slso yields a colouring matter, which is used for dyeing yellow. Although in this country the berries are innocuous, they seem to exert a deleterious influence, or are supposed to do so, in some of the countries of the south of Europe. They are said to be a favourite food with the Tartars, and the fishermen of the Gulf of Bothnia eat them with their fish.
(Babington, Manual of Britisk Botany; Burnett, Outlines of Botany.)
HIPPO'PODA, a genus established by Messrs. Quoy and Gaimard for a marine floating Mollusk which M. De Blainville considers ideutical with Protomedea of Iesueur's manuscripts, and places under his (M. De B.'s) Physograda. [Acaleph.e.]

HIPPOPO'DIUSI, a fossil genus of Conchifera Dimyaria proposed by Mr. J. Sowerby in the "Mineral Cenchology of Great Britain.' It includes only one British species, H. ponderosum, which is found in the Lias.

HIPPOPOTAMUS ("Inжоs and rotdutos), the Roman name for the River-Horse, and rotained by modern zoologists as the geueric appellstion of the animals of that Pachydermstous form.
Dental Formula:-Incisors, $\frac{4}{4}$; canines, $\frac{1-1}{1-1} ;$ molare, $\frac{7-7}{6-6}=33$.
Cuvier remarks that there is no animal that requires to be more studied at different ages than the Hippopotamus, in order to acquire a perfect knowledge of the molar teeth, which change their form, their number, and their position; and, in his 'Ossemens Fossiles,' he goes into minute detrils of those changes.

In the upper jaw the first incisor is conical, straiglit, and a little worn on tes internal side; the second is equally conical, but curved inwards. The canine tooth is short, and cut, as it were, obliquely, in conseqnence of its abrasion againet its opposite. The four molars which succeed the canine are strictly false molars. The first is very maill, is shed as the animal advances in age, and is not reprorluced; it is separated by an interval from the rest of the molar teeth. Thesc,
nearly of tha same size, are also shed during the youth of the animal, are replaced by others, and the first teeth are more complicated than tha secoud. When these, the true and permanent molars, are worn by use, they exhibit the form of a trefoil on their crowns. The three last resembls each other generally: they are counposed of four large tubercles spproximated in pairs, and conical befors the points are worn by attrition consequent on mastication. After the first effects of abrasion they each present, by the contour of the enamel, the figure of a trefoil, or, in other words, three lobes dispesed more or less regularly in tha form of a triaugle; but as the abrasion proceeds and the tooth is farther wom down, they exhibit the form of a cross with a dise in the middle.

In the lower jaw the first inciser is long, subcylindrical, terminated in a point, and a little worn on its external side. The seooud is of the same form as the first, but much smaller. The cauines are enormous tusks sharpened into a somewhat chisel-like edge, the polished and abraded internal surface of which presents a shapa inclined to elliptical. The molars form a continuous series; the first and the second ars false molars, the first boing the smallest, and dropping as the animal advances in age, never to be replaced. The four succeeding teeth exhibit the same general forms as thoss of the uppsr jaw. The first, which is smaller than the others, has an anterior isolated tubercle: tha succeeding teeth ara nearly of the same size, and have alsa an isolated tubercle, but it is posterior.

Cuvier makes the first section of his second family of Pachydermatous Msmmifers (Ordinary Pachyderms) eonsist of these which have four, three, or two toes; and these he separates into two great genera, the IIippopotami and the Hogs [Suidse]. The Hippopotamida are further characterised generically as having on all their feet four toes, which are nearly equal and terminated by small hoofs (sabots), an immensely massive body destitute of hair, very short legs, a belly trailing against the ground, an enormous heal, terminated by a large tumid muzale which incloses their great anterior teeth, a short tail, and small eyes and ears. Their stomach is divided into many compartments. They live in rivers, on roots and other vegetable suhstances, and are feracious and stupid. The genus is placed by Liuncus among his Belluc, between Equus and Sus. Dr. J. E. Gray brings it under Elephantide, his third family of the fifth order, Ungulata, as a genus of his sub-family Hippopotamina, and has suggested that the form is allied to the Halicoride.

The autamy of these creatures is in accordance with their bulk and unwieldiness.
Tha skeleton of the IIippopotamidee spproaches that of the Ox and of the Hog ; but it presents differences which distinguish it from that of any other animal. The skull, whilst in the connection of the bones and the arrangement of the sutures, it hears great similitude to that of the Suide, has its own peculiarities, which render its form extraordinary.

The number of vertebre are 7 cervical, 15 dorsal, 4 lumbar, 7 sacral, and 14 coccygial $=47$. The atlas and the axis, besides the ordinary articular faceta, have each two others also towards their dorsal aspect; but takeu as a whole, the cercival vertehra approach nearest to those of the Hog. Thare is nothing very remarkable about the rest of the vertebre, cxcept that their bodies are rather flat. There are 7 true and 8 false ribs of a side $=30$, nearly as much arched as those of the Rhinoceros, but distinguishable from them, 88 well as from those of the Elephant, in as much as they are much wider and flatter at the part nearest to the vertebre thau at the opposite end. The anterior part of the sternum is compressed into a ploughsharelike shaps ant very much prolonged into an obtuss point below the first rib. The rest is depressed, and tha number of pieces is seven. The scapula may be easily distinguished from those of the Rhinoceros and Elephaut, being larger than that of the first and less than that of the secund, and also differing in form. In its general aspect this bone reminds the ohserver a littlg of the scapula of the Hog, but approaches nearer to that of the Ox in the mors essential characters of the suine and articulating surface. The bumerus besrs a singular resemblance to that of the Ox; while there is some slunilitude to that of the $I \mathrm{O}$, which is however less in proportion towards the bottom. The radius and ulua are anchglosed at an carly age, leaving on the outside only a rather deop furrow which occupies only three-fourths of the length of the radius, and on the inside a simple aperturo towards the upper fourth part. These bones of the fore-nrm resemble those of the Ox very much, but those of the latter are more elongated, and the articular facets of the lower head of the bone are, in the lastnamed animal, less oblique. Thers are in the carpus points of resemblance to the Hog; but its characters distinguish it bath from that quadruped and the Ox. In the metacarpus all comparison with that of the Hog ceases. The pelvis is easily distinguishable from those of the Elsphant and Rhiuoeeros, from the sraaller width of the ilia in the Hippopotamus, and other differences. Ths Ox perhaps approaches it mors closely in these parts; but, besides other discrepancies, the lower part of the pelvis and especially the oval holss are much more elougated in the Hippopotamus. The sacrum is very large, but the bones of the pubis project but very little. The femur, which possesses a ligamentum teres, is well-shaped and straight, the shaft nearly equal throughout, regalarly cylindrical anteriorly. The great trochanter, which is compressed laterally, does not exceed the height of
the bred of tbe lone: the nemall trochanter in momlernte: there is no thimp, as in the lhinoceros, the Tapir, and the Horfe. Iht ita prino djol reomblaber is to the femora of the great ruminanta; though the upper heal of tho hone in moch more detached nad more apherical, and the lower heal is much wider, mpecially behind. These differencem will mant ln dintinguinhing it from the femur of the 0 s ; that of the Girate, which. leing of the rane nize, might more roadily tw imstaten for it, may to known hy fta more approximnted uperer

organ in employed in extracting from the conree and ill-prepared load the greateat nmount of nutritise matter. The stommeh of a full-grown Hipmpotamur in raid to be caprable of contrining fire or six bushele, and the large intentine is of a kire commenmarate with such a capncity, for it in stated to be eight inchea in dimmeter. The Hippopotnmus mentioned by Mr. Burchell ('Travels in South Africa') was considered to be ouly half grown, but threo bushels, nt least, of halfchewed vegetables wero taken from its atomach and idestines.

The time of gestation of the llippopotamus is stated to te aine

a, seen from above; b, seen from below; r, lower jaw acen from abose.
jecting intermal edge of the lower artienlating anface. The femur of the llog more reecmbles that of the Hippopotamus in the upper part, but snuch lens below; nud jta dimencions preveut the prossibility of a mintake. The whia is short and atwut, alusest boyond that of any other quadruperl, especinlly at the extremities. It npproaches nearest to that of the 0x, but the latter in more elongated, aud differs in other reapects. Tho tibin of the H og in nlso mone elougated in com. parinos, mad offern oblier diacrepancies. The filuth is very aleuder, and in througbout very dianant from the tibia, except nit the two extremities The mallicolnr bowe in anchylosed to the lower extrenoity. Tho cancua is framed priucipally on the plan of that of the suida.
months; but this does not seem to be necurately ascertained. The birth takes place on tho land; and on the slightest alartn both parent nud young take to the water. Thunberg, during his visit to Caffraria (1:73) was assured by an eye.witness that he, having watched, when on a hunting party, one of these animala which had gone upfrom a neighbouring river to calve, lay still with his company till the calf was produced, when one of tho party fired and shot the mother dead. The llottentots immediately rushed from their biding pluce to take the ealf nlive, but its instinct saved it, for it made for the river, and escaped. The male specinen nour (1854) in the Gardens of the Zoological Socicty, Regent's Park, wns with diflieulty caught, though only two daya old. The food of the llippopotamus consists of water-plants

Skeieton of Hippopotamua.

From the atmeture of the tecth we are led to the inference that the grantity of recetable nutmtance kubrnittel to the netion of the digentive mgans of the /fipmopolamider munt bo sery great in proportwin to the nexumanoms axtricied froto the mapa. The prineiple on which tho juwn and colld are conntructed serns to be a prineiple for pataly bariog and dividing, tout not corominuting, tho hard and tough veretalife which firms the miaplo food of the animal. The $j=$ an are m vonatioctart that the procena excented lye then in more a brulalng than ariming provem. The forml thereforn when itnom. mattel to the utomach has undergune but little nlecration, and that
and thoro which grow on the banks of the rivers which it haunts, The time of fceding in pincipally in the night, and theso enormous animaln, when in the neighbourhood of enltivated lands, do inealeulable damage, not only from the quantity that they actually conaume, but the atill greater quantity that they apoil and lay waste by their crushing bulk. As they are able to remain benesth the aurface of the wher for somo time, there must be nome muscular arrangement for cloning the nostril, such as we see in the Seals. Hasselquiat, on the nuthority of ' n credible permon' who lirnd twelro years in Ezypt, states: "1, that the hido of a full-grown Hippopotamus is a lom for
a camel. 2, that the River-Horse is an inveterate enemy to the Crocodile, and kills it whenever he meets it. 3, that the River-Horse never appears below the cataracts in Egypt, " wherefore the inhabitants of Upper Egypt only can give any account of it. The Egyptians, he adds, very seldom bring the hide of it to Cairo; and, he continues, it is impossible to bring thither the living animal. 4, the RiverHorse does much damage to the Egyptians in those places he frequents. He goes on shore, and in a short space of time destroys an entire field of corn or clover, not leaping the least verdure as he passes; for he is voracious, and requires much to fill his great belly. They have a curious manner of freeing themselves, in some measure, from this destructive animal: they remark the places he frequents most, and there lay a large quantity of peas; when the beast comes on shore, hungry and voracious, he falls to eating what is nearest him, and filling his belly with the peas, they occasion an insupportable thirst; he then returns immediately into the river, and drinks upon thess dry peas large draughts of water, which suddenly causes his death; for the peas soon begin to swell with the water, and not long after the Egytians find him dead on the shore, blown up, as if killed by the strongest poison. 5, the oftener the River-Horse goes on shore, the better hopes have the Egyptians of a sufficient swelling or increase of the Nile 6, the Egyptians say, that they, can almost distinguish the food of this animal in his excrements." Some parts of this relation (that regarding the peas, for instance) may be considered as bordering upon the marvellous, but there are others which there seems to be no good reason for doubting. The alleged enmity to the Crocodils can hardly be considered to be well founded.
In Professor Smith's 'Journal' (Tuckey's ' Narrative of an Expedition to explore the River Zaire, usually called the Congo, in South Africa") we find it stated that they " landed in a beautiful sandy cove at the opening of a creek behind a long projecting point. It is called Sandi-Sundi. An immense number of Hippopotami were seen bere. In the evening a number of Alligators were also seen." This association wonld be hardly consistent with hostility. Captain Tuckey also sase, "The Hippopotamus and Alligator seem to be numerous." The usual mode of capturing the animal is by a pitfall, by the natives st least, but the colonista near the Cape use the rifle. The two killed by Zerenghi, in the yesr 1600, frequenterl the neighbourhood of the Nile, near Damiettr. IIe stationed men upon the Nile, who, having seen two of theese animals go out of the river, made a large ditch in the way through which they passed, and covered it with thin planks, parth, and herbage. In the evening, when returning to the river, they both fell into the ditch. Zerenghi immediately hastened to the place with his janizary, and they killed both the beasts by pouring three shot into the head of each with a large arquebus. They almost instantly expired, he adds, after uttering a cry which had more resemblance to the bellowing of a buffalo than to the neighing of a horae. Captain Tuckey observed Iippopotami with their heads above the water, "snorting in the air." In another part of his ' Narrative,' he says, "Many Hippopotami were visible close to our tents at Condo Yauga, where we were obliged to balt, and to wait some time for a canoe to pass. No use firing at these animals in the water; the only way is to wait till they come on shore to feed at night. During the night they kept a continual grunting like so many hogs, but none of them came on shore, though we had a constant wateh on the beach." Sparrman, who gives a ludicrous account of the terror which seized him and some of his companions on the rush of one of these animals towards him from the river, thus describes the noise made by one of these 'sea-cows' at Great Fish River:-"At half an hour after eight, it being already very dark, a sea-cow began at intervals to raise its head above the water, and utter a sharp, piercing, and, as it were, very angry cry, which reemed to be between grunting snd neighing. Perhaps this cry may be hest expreased by the words 'hëurh, hurb, heoh-heoh :' the two first being uttered slowly, in a hoarse but sharp and tremulous sound, resembling the grunting of other animals; while the third, or compound word, is sounded extremely quick, and is not unlike the neighing of a horse. It is true, it is impossible to express these inarticulate sounds in writing to any great degree of perfection; but perhaps one may make nearer approaches to it than one can to the gutturopalatial souode of the llottentot language." Le Vaillsnt had an opportunity of watehing the progress of a lippopotamos under wster at Great liver. "This river," says he, "contained many hippopotami ; on all sides I could hear them bellow and blow (mugir et souffler). Ansions to observe them, I mounted on the top of an elevated rock which advanced into the river, and I azw one walking at the bottom of the water (marcher et re promener au fond de l'eau). But I remarked that its colour, which when it is dry is grayish, and when it is only humid and moist appears bluish, seemed then to be of a deep blue. I killed it at the moment when it came to the surface to breathe. It was a very old female, and my people in their surprise, and to express its size, called it the 'grandmother of the river.'" ('Second Voyage.') Mr. Barrow, in his journey into the interior of Southern Afries, when he reached the mouth of the Great Finh River, saw towards the evening a vast number of Hippopotami (Sea-Cows of the Duteh) with their heads above the surface. Several paths male by these animals led from various parts of the -That it was found in lower Egept ia the year 1600 appeara by \%ereaghi'n aceouat above girea. Haselquist travelled in the gears 1749-52.
Nat. hist. div. vol. ill.
river to a spring of fresh water aboutt a mile distant. To this spring they went in the night to drink; the water of the river for soms distance from the mouth heing salt. According to Dampier and others, the Hippopotamus, when wounded or irritated, is violently ferocious, and has been known to sink a boat by its bite.
For a long time it was considered that there was but one species of living Hippopotamus; but some naturalists sre of opinion that there are st least two. Before we enter into this part of the subject we shall give a slight sketch of the history of the Hippopotamus from the time of the aucients.

If the Hippopotamus be the Beliemoth of Job (ch. xl.), we must refer to the well-known verses 15 to 19, both inclusive, as the earliest description of the animal. But the identity is by no means satisfactorily ascertained. The vulgate uses the term Behemoth, and the Zuirich version translates the word by 'Elephas.' In the edition of the Bible, 'imprinted at London by Robert Barker, printer to the King's most excellent Majestie' (1615), Behemoth is the word in the text, with the following annotation :--" This beast is thought to bee the elephant, or some other which is unknowen." Bochart, Ludolph, Scheuchzer, and many others hold that the Hippopotamus is tho animal meant; while not a few of the learned have written in support of the Elephant. Curier snd others think that though we may believe with Bochart that the Hippopotamus is intended, the description in the book of Job is too vague to characterise it. Good comes to the conclusion that some extinct pachydermatous genus was probably represented by the term; and some have lately even gone so far as to contend that Behemoth and the Iguanodon of geologists are identical!

Herodotus (ii. 71) gives a most incorrect description of what must be regarded, from the context and other evidence, as the Hippopotamus. This description is borrowed almost entirely by Aristotle, who has not however given to the animal a horse's tail, which Herodotus bestowed upon it; adding, correctly enough, that its size was that of the largest oxen.

Aristotle (' Hist. Anim.,' book ii. chap. vii.) thus describes the Hippopotamus :-"The Hippopotamus of Ligyrt has a mane like s horse; a bifureated hoof like the ox; a flat visage or muzzle; an astragalus like the animals with cloven fect; projecting teeth which do not show themselves much; the tail of a hog; the voice of a horse; and in size it resembles an ass. Its skiu is of such a thickness that spears are made of it." Now, there is enough in this curious description to lead to the conclusion that Aristotle meant no other than the Hippopotamus; there is also quite sufficient to show that he never saw the animal, and that he trusted to the wild accounte of others. We trace however the descriptions of Herodotus and Aristotle in many of the figures of the animal which were publiehed after the revival of letters; for it is worthy of remark that notwithstanding the highly erroneous descriptions of ancieat suthors, some of whom must, one would think, have had an opportunity of seeing the animal, the portraits of it by ancient artists on eoine, \&e., are, almost without exception, far from bad representations of the animal. But to return to the ancient authors
Diodorus (book i.) comes much nearer to the truth in his description, at least as to the size of the Hippopotamus; for he says that it is five cubits in length, and in bulk approaches to that of the Elephant. The teeth are not badly characterised by the same author; but ho still leaves to the animal the cloven hoof and the horse's tail.
Pliny says of it (book viii. 25), after trcating of the Crocodile and Scincus, "Major altitudine in eodem Nilo belua hippopotamus editur," and he gives it the bifid hoofs of the ox, the back, mane, and neigh of the horse, a flattencd muzzle, the tail and teeth of the boar, adding, that though they are hooked they are less noxious-"uugulis bifidi quales bubus, dorso equi, et jubâ, et hinnitu, rostro resimo, cauda et dentibus aprorum, aduncis, sed minus noxiis." In slort he seems to have followed with very little exeeption the account given by Aristotle, without attending to that of Diodorus. Pliny aulds, that helmeta and bucklers are made of its skin, which are impenetrable unless they are softened by moisture, sod ho speaks of its feeding on the crops "depascitur segetes," aud its caution in avoiding suares. In his 9th book and 12th ehspter, on the covering of aquatie animals ('Tegmenta Aquatilium"), the varieties of which he enumerates, he rays, "Alia corio et pilis teguntur, ut vituli et hippopotami;" thus making it hairy like the seals, which we take to be neant by 'vituli;' and yet, with all this monstrous error, he himself (book viii. 26) speaks of M. Scaurus as being the first who had shown the hippopotamus, together with five crocodiles, at Kome, during his wdileship; finishing the account however by making the former animal a master of one departruent iu the art of healing, in consequence of his habit of letting blood by pressing the vein of his leg against some very sharp etake when lis obesity requires such relief. We know moreover that Augustus exhibited one of these animals on occasiou of his triumph over Cleopntra. (Dion., book li.). We shall ouly further refer to the account of Achilles Tatius (book iv. 2), which is, notwithatanding some errors, perhaps the most correct ; and shall proceed to notice that, under the later emperors, a considerable number of Hipponotani were introlucel into the looman shown. Thus Antoninus exhibited some, with crocodiles, tigera, and other
 of thean with his owa hame Helimenmatu and the thind Gurlian
 thele affet, for acenaling to Marellinum Ammianus (lerok yaii. 15) asd whest the race of Hippopmotami had dimprennel from ligypt nioce tive lime of the emarrur Julian. Favourable cirenmatanceq bowever mant have opprated th reptore it, ns we enllect from the account of Tervighi alwo alludel to amd othera. That the animed
 - Fotege". "Those which are found in the diatrict of Sapromin are eacral. but in other paris of Fefylt they are not considered in the wame light" - Sunhini ("Travela in U"pier anal lower Fofypt'), whe puatre this pacake, and almo ono from l'manamias (trmh iv. 33), goen on to atate that theon animalo laid wate whole conntrios by ravages an foarful an their rine wan mormonn, nud that they were oqually fommilathe to man with the ermolili. From the terror which they iropirel, they were, he aser'a, cemerally bowed upon as the armbul of Typhon, that giant who hai prazul death and dextraction among the aleitien which were womhjpuli in that yunter; thes were, he adis of courae the emblem of misclinnce and of cruetry, and the particular wormip of them at laprenis must have been practiaed moldy with the view of oppeaning or averting their rage

We have mentionerf that with fow cexceptions, if nit with ane only, the representationm of the ancient artiste have been found faithful to nature when conpame with the aloheriptions of ancient maturalinta and authore. The caception in the figure copied by llamiton
 the fect ane reperented an cloven, and the lower tunde are Ro enomonat as to renter it imposmible that they mondil be covered by the lija, wheresu tha largely developed mumale and its conseynent concealment of the tuakn aro portayerl upon muse of the anciunt figures and coins. W'e do nut cunsider the figure found ly lelzoni on au exception, lecaume, as the anthor of the nmusing book on Fgyptian Antiquituen ubuerrea, the denimner nometimes placed on one animal a lare taken from another, and that mentioned by Belzoni was a calf with the head of a Hippoputamus. Thoush the dictails of the toeth and fect are not corret in the figuro on the plinth of the statue of the Nile formerly in the Vatican, and nfterwanis taken to the French Minenm, ith general contwur is gook; and the noimal occurs in other culptures and in moasica very characteristically represented. Some of thras, that of the Vatican nbove mentioned, for instance, may have given rive to the story of the enmity borne twarals the erocedile by the lijppojetamun, which in that seuppture holles a erocorlite in ita mouth. On meabias sall coins of the Roman ruperors the Hiptopotamus often apporm, sometimes with the crocodile, sometimea without Thome of the enperors Trajun, IImirian, and Philip, or rather of Marcia Otacilia Severa, l'hilip's wife, will occur to some of gur realern

In toone morlern times we have the deseriptions of Isidore of Serille, Vincent do lheanvain, Albertun Magnua, James of Vitry, and all more or lea fabulous; but Alsiallatif given a very good account of the animal. Iklon and Gilliun however seem to have been the first among the mulcras who actually maw, or at least who have recorded that they maw the animal alive. They both anw it at Constantinople, and feriapa they raw the same. Sonaini seema to doulnt whether the nnimal which belon naw wan e hippopotamus ("Travels in Epper and lawer Feypt, vol iii.), and (upotes Mathiolus, who phenks very alixitingly of lirlon: but a perumal of that accurate observer's werount will, we think, kntiafy the mont serupulous that he wnw a living llippopotamum ; he evarn alludea to the aliferences between the figurea of that animal on auciont works of at and the specimen which be had lefore his cyes, mul rectifien the error in the figure on Whe plirth of the atatue of the Sile, which has five toes inatead of four. Of the seeth indewl he only remark that they approach to throe of a horne Gesurr doem lithe but quote belom; and without detaning the reaitre with tha deacripetion of Vareughi, who is above alladal to. which ware gemm, or the compilation of Alilrovandue,
 Palas (Curler thinke, ly l'romper Alpinun), ir thag goul descripition and mome scenmen relrcecutstion given by Fulius lohuma, we come is Judnlph, who, in his "Hiatory of lithopia,' givm an entire figure

 amp the earn are rather long. bichow this in n figure of "the windiorse', fistemg up hin beal alowo the watar: thence cillol the riverthorme try tho Cirecke" The lival and neck alane ane visibile; lout the riaggation and expmure of the taceth are contianod, nand the Araftaman, lig hengherning the neck, hawl, and carm has given a much trone borwelike charnetor the the fingre. Thevamst, in his. Voyage to the lavane, very fairly deacrilowan imlividual killed in him time

 Thoir thatare and form ape them. The amimal in fienp fromem, houlcatect, with
 tail nod roice of a borpme. In rige it in whater ge the greatemtox. The skin in
work of Prosper Alphun was published, and obscured the aubject again by giving a representation of two atulfed skins, the one of a Inrge femnie animal, and the other of her fotus, which he had acen in the house of the Pasha of Cairo. These were tho skins of two Hiplopmani, but the skulls hal been withdrawn, and the abeence of the projecting teeth led Pronper to the concluaion that he had at last found in thia, which he tuok for a diatinct cronture, tho animal repronented by the ancient artists, forgetting, or more probably not knowing, that when the Hippopotami of the present duy keep their mouthe closed no tooth is vinible.

We need not detain the reader with a roference to the figures and dezeriptions given by other zoologints, na Grew. A. Jussieu, Daubenton, Pallas, lution, \&c., but shall come at once to Limareus, and this will bring un to the question of the geographical distribution of the genur, and of the nnumber of specias.

Limmeus, in his Inst trlition of his 'Systema Naturs,' gives only one speciex, Hipponatamus amphibius, and places its habitat "iu Nilo et Bambolo Afrite, et ad ostia Auviorum Asie."

Africanppears to be the only quarter of the globe in which this furm exists; nud though Onesicritus (Arrinn, 'Indic,' c. 6) places tho Hippopammas in the Iulus, Stratuo (690, 707, Casaub.) seeme to prefer the testimony of Aristobulns in contrudiction of the fact, and l'aumnias (iv. 31) ngrees with Strabo. Cuvier, who has collected alnost all tho learning on this subject, well observes that no traveller of erchit has ripurted that it has been found on the continent of India. Ile remarks that Buffon gave no eredence to tho testimony of Michael Jnya, who states Chinn to be ous of the localitios; he observen that it is nearly without authority that Linureus supposes the animal to oceur at the mouthe of the rivers of Asia, and is of opinion that M. Fanjas appears to be well authorised in denyiug that it is to be fonad on the continent of India

Marsten includes the Hippopotamus among tho animals of the islamls of Sumatra and Jara; but Curier ('Ossemens Fossiles") enters into nu inturesting discussion, well worthy of the perusal of the reader, to show that Marsden is mistaken; and in addition to his arguments, he briags forward the fact that Messas. Diard and Duvaucel, who travelled orer a considerable part of Java and Snmatra in lifferent directions, cond not find a Hippopotamus, "though they succeedad in ohtaining two species of Rhinoceros and a Tapir. Upon the whole evidence at present known, it seeme to be eatablished that the geographical distribution of this pachydermatous form is confined to the great rivers and lakes of Africia.

We now come to the question of how many epecies of Hippopotamus at present exist.
M. Desmoulins ('Journal de Plysiologie', \&c, par F. Magendio, tome v.) gives osteological reasons, drawn principally from the differences in the skull, for distinguishing at least two species of Hippopotamus. And upon the whole it must be allowed that he appears to be borue out in liis position that the distinctions between the two apecies, one of which he designates as the Hippopotamus of the Cape (II. Capensis), and the other as the Hippopotamus of Senegal (II. Scmegalensis), are as strong as those on which Cuvier founded his specific reparation of the Fossii Mippopotamue from that of the Cape. M. Desmoulins is further of epinion that it is not impossible that the lIjppopotamus of the Nile differs specifically from the other two. The exterual differencea do not appear to be considersble, if any. M. Desmulins indeed remarke, that of 40 Hippopotami seen by M. Caillaud in the Upper Nile, two or three were bluish-black, all the others reddish; and M. Desmonlins cven hints that there may be two species in that river. The latter ailds that of the two Hippopotami of the Cape possessed by the Parin Museum, one is black, tho other reddish; but he considers that the numerical disproportion obrerved between the individuals of the two colours in the Nile can hardly almit of a sexunl solntion. We have examined several skulls of Ilippopotami, and nome of them certainly present mauy striking difurences; but it ahould be remembered that mafo inferences as to apecific distinction ean only. bet drawn from a very extenaive examination of akelctons, combined with unguestionablo data as to the locality, age, and sex of the anlijects examined.
With regarl to the supposed two Nilotic species, thero is reason for comiderable doubt; nor is much weight to be attached to the allegel difference of colour. The animal in the water and out of it presents a vary different appearance; nad, to pay nothing of the posaibility of a differnee in the cise of sex, there is cvery probability that aome change in the colour may tako place as the animal aivancea in age:. We bave neen the remark of Le Vaillant as to the differcnco of colour when the akin is dry, when it is only moist, and when the aninal in full life in walking at the bottom of the river.

It need hanlly be obaerved that the lRomana must havo derived their Hipyopotani from Northern Africa; and ns we have given Spammanis dekeription, among other, of the noise made by the aouthern nnimal, we may be excused jerhnpa fer remarking that Burckhandt ('Travela in Nubia') deacribes the voice of the Hippopritanum ar a harm and henvy sound, like the ereaking or groaning of a large wooden door. Thim noine, he says. is made when the animal raiwes ita luge lual nut of the water ami when he retiren into it again. We may alnes ald, with regnril to the alleged diappearance of the Hijpopetamus from Iower ligypt, that, as Cuvior remarke, the French
savans attached to the expedition to Egypt, who ascended tho Nile above Syene, did not meet with one.

We new come to an interesting period in the history of the Hippopotamus, its arrival in Europe in modern times, and its appearance for the first time within the historieal period in Great Britain. On the 11th of December 1849 Mr . Mitchell comminieated to the Zoological Society, at its evening meeting, the fact that a live Hippopotamus had been seeured for the Gardens in Regent's Park. Ile then read the following extract from a letter, addressed to him by the Hon. C. A. Murray, dated Cairo, November 16th, 1849 :-
"It is with the greatest satisfaction that I communicate to you the intelligence that I have succeeded in obtainiug for the Society a live Hippopotamus. It is now in a yard at the back of my house, and apparently in perfect health : yon cannot be more anxious than 1 am that I may be able to keep it through the winter, and send it to you safe in the spring. It is only five or six months old, and still lives entirely on milk. I think a fresh importation of cows will be neceseary in Cairo, as our little monster takes abont thirty quarts of milk daily for his share already. H. H. Abbas Pasha has been most liberal in having the animal brought here at his own expense from the White Nile. A lieutenant and a party of ten Nubian soldiers formed his escort; a beat was built on purpose for him, and the viceroy sent him to my house in charge of the chief offieer of his palace. I may also mention that, by his Highness's orders, another offieer with a party of soldiers, is still out on the White Nile charged with the duty of securing a young female for us, so that I am not without lope of sending you the pair together."

In another letter the same gentleman writes-
"The Hippopotamus is quite well, and the delight of every one who aees him. He is as tame and playful as a Newfoundland puppy; knows his keepers, and follows them all over the court-yard: in short, if he continues gentle and intelligent, as he promises to be, he will be the most attractive object ever seen in our garden, and may be taught all the tricks usually performed by the elephant."
had then been born about two days. It was so small that, in his delight at having accomplished the pasha's order, he seized it in his arms, and would have carried it to the beat, which waited on him, had not the slimy exudation which is lavisbly poured forth from innumerable pores in the skin of the young Hippopotamus rendered it so slippery, that he was entirely unable to retain his hold. The animal, haviug thus slipped from his grasp, all but escaped into the Nile, where the mother doubtless was lying near at hand. The hunter, however, with the presenee of mind which characterises a good sportsman, seized his spear, and with the sharp side-hook, which bas been in fashion in Egypt for three thousand years or more, he suceeeded in arresting the headlong phonge of his prize, without inflicting greater injury upon him than a skin-wound, which is maked by the scar upon his ribs to this day.
"The long voyage down the river was suecessfully accomplished in a boat which had been built for the purpose by the vieeroy's order, and "Obayseh,' as they named the Hipperotamus from his birth-place, was safely delivered, in November 1849, after a journey of four months, into the care of the Hon. C. A. Murray, through whose powerful influence the viceroy had been prevailed on to exert his power and assist the Soeiety in an olject for which all exertions of their own had failecl.
" Obaysch spent his first winter in Cairo, under the charge of his present intelligent keeper, Hamet Saaff Camana, a Nubian Arab whom Mr. Murray engaged for the purpose. In May 1850 proper preparations were made, with the obliging co-operation of the direc. tors, in tho Peninsular and Oriental Steam Navigation Company's ship Ripon, for the transport from Alexandria, and on the 25 th of that month the first Hippopotamus which had breathed on English soil since the delnge was landed successfully on the quay at Sonthampton, and liberated in the Gardens, from his travelling house, at ten o'eloek the same evening. On emerging from the door of it he followed Hamet, who has scarcely ever left him during the whole voyage from Cairo, into the building which had been prepared for him, and instantly

Hippopotamus.

The animal referred to in the abovo letter arrived in England on the 25 th of May. The following aceount of its capture and habits in the Gardens is aken from Mr. Mitchell"s 'Popular Guide' to the menagerie of the Soeiety. A house and two tanks have been expressly bnilt for the accommodation of this animal :-
"Siuce the imperial exhibitions in the Circus at Iome, no. living Hippopotamus has been imported into Europe. except the young inale which the Society posseases. The difficulty of obtaining such an animal may be coojectured from the fact, that after the viceroy of Egypt had determined to prosent one to the Society, it became neeesmary for his Ilighneas to rleapatch an expedition to the Upper Nile for the purpone of making the capture, and that anccess was only achieved nfter two thouand miles of the river had been ascended. In the month of July, 1819, the chicf huntsman of the party, in searching the reedy margin of ao island in the White Nile, called Obayssel, at last discovered a little IIfpopotamus calf, which, is he conjectured,
indulged in a long-continued bath. The ten hours which elapsed between his removal from the steamer at Southampton, and his arrival in the legent's Park, is the longest period during which he has ever been without access to water:
"The slow respuration of the Hippopotamus enables him to remain for long intervals beneath the surface, and the organisation both of the ears and nostrils are beautifully adaptal for this condition of his existence. The enormous size to which these animals grow has been recorded by every African traveller, and is sufficiently indieatod by the skulls which are found in almost every museum. An adult male in goorl condition, measuring five feet at the shoulder, would eertainly have three times the present bulk of Obaysch, who has most probably grown quite as fast under the treatment he has experieneed as he would have done in his uative river.
"The principal food of the Hippopotamus in his natural state aplears to be young grass, grean cern when it is to be obtained, browse
of shrulo. asd probably moun of the great waterplaste which abound tis the Afromen rivera
 lay, chafre corm, rute, and grown foxl. For the furnt yome ho wan feal
 and theso in wa dunbt whatever that any of the grent animaln,

 busazer. The Africas Folephant and tho African latavoceron aro still wabed fur tho sinciety ${ }^{\prime}$ ecollection.

The Hijpmpatamuis now only exists in Africes; it in found in the rivern of the mutth aud wot, to well su in the Nile; and thero is also in a.othe of tho wreterti rivery a figuty upeciea, of whoe kull a cast way fromertel the sure ty ly the Jate Jr. Mortun of the United States."
 Dilases io forin, lut it died a few monthenfter its arrival.
 is:oreserg\% anmal wat nafely dejosited in the Gardens of the Zocolohiond suciety. At thin alate it was about four montha ohd, and weighed alase a tonk. It wat fed by its keeper opening ita month with his liaml, which hue shrust Jown ita throst, covered wilh milk and cornnomal. It wam uncertaineal that this creature was not insensible to natame, abll when ary one of the mumicinne on board the versel in whels it was linought, playol him inntrament near it, she invariably raimed her lical un the ntutulo of lintening. The keeper, nlmo an A rab phaterliaraser, whe in the hatit of exciting then attention of his charges by a tusd of numbral call, which it sumbered hy vibrating ite great lulk for abol fro wiel evident pleasure, becping time to the ineasure of Lbaterer a mong.
The umen of the H ippopotiana to man are ourtainly not many, but When we lowk the chormous ripping elised like canimes of tho lower jaw, assl the lower incimut formed for uprooting, we cannot but think that aucll an nuimal must be an active agent in cleariug rivers from the greatere whterphatas which aight in time, if left undisturbed, go far bo conser: the rannimp strean into a sluggiah swamp. Hith rorand ta miunr detailn, the flesh of thin Wasser Uchas is much entecmed on wats neticle of food. In the firme cataloge of the African Museum wo rrand that it in gouch in rejuest buth mmong the matives and the conloninis, aul that the cpicuros of Cape Town do not diadain to uso their intlingee with the conntry farmern to obtain a preference in the ratler of Sar Cow's Sjreck, tis the fat which lies immediately under the enin in callend when naltud numb dried. Nor are the whips which are made of the akin of the llippopotami of the Nile thonght lightly of in the meighonrmg conntries They are maid to bo male by cutting the fresh minin iutu trimgular atrijes some five or six feet in length: obe entremity of the mirip in pointed, and it gradually widens till the breafth at tho oppowito extremity is equal to the intended circumfercuce of the luath of the whip. The strip is then rolled up so as to furnn moort uf conical pipe, is tirmly tiexl to keep it in jlace, and dried ien the man. Whon all in firimbed a light ame elastic whip is producod. Hut tharo in tw fart of the hipmputamisa in more request than the great canita tretls, the ivory of which is so highly valued by dentiats for makuth artificial teeth. No other ivory keepe its colour equally well. *and thene canine teeth are importerl in great mumbern to this country (where soore are nent in the firnt instance than anywhere else [rerbmonf (or thim prorpome, and mell at a very high price. From the dioneliepand the ivery, the weight of the tooth, a portion only of which I* avaitalife for the artificin] purpone above mentioned, is lieavy in fropmerton to in lualk: and the article futehes, or did fetels, upon an arrage, minnt thinty nhillingn. more or lem, per pround. One of tho afecshe dantisutions prointal ont ly M. I cmanoulins in the conaparative
 call Hee mitestion of the curious whe deal its thesp tecth to this coreumatabe and the fulera alowe quoterl.

Fursil /Iiporopatami.

 which ard now estimet. Aimenget otherng tho folluwing have been

 I'rof,nacor (1)was with I/ mojor, Cuv. The fullowing notice of this

" Ifs gioncants rotronperetioly towarla the dawn of the scientife

 fin hite mamat the jow and ecels of a rlimocerion, much of the

Clatlam, in the inmance which he describes, hal yiched 'hippopotanic remains.' 'Wihen wo consider,' he says, 'the great distanco from the Melway to thu Nilo, or other rivers near the tropics where these kind of animals are now known to inhabit, and when we havo no nuthority from the Pentateuch to conclude that any extraordianary cunvulmon of nature had impellod animals at that period from their native regions to countries so remote, so we have no natural inferenco for concluding that the deluge was the cause of this phenomenon. Taking into coneideration the geological features of the stratum of the river soil, he concludes 'that, as the hippopotanus is known to be the inhmbitant of inudily rivers like those of tho Nile and tho Medway, it shund therefore argue that this animal was the inhabitant of those regions when in a stato of climaturo to havo admitted of ita oxintence.'

This conclusion is essentially correct, though based in the prosent instance on wrong premines: neither the organic remaina from Chathan, any more than those from Chartham, having appertained to a 'river- or sea-bred creature.' The geaus of land-quadrupeds to which these fossils nctually belonged is nevertheless at thu present day an much confined to the tropics as the hippopotamas, No long time elajsed before true hippopotanic remains were found in the sane deposits which had yielded the bones and teeth of the rhinoceroses. It was most probably from fresh-water marl that the entire akull of the hippopotamus wis obtained, which is stated in Leo's 'Natural Hiatury of Lancashire' to have been found in that county under a peat-bog, and from which work Dr. Bucklsud has copied the figure given in plate xxii., tig. 5, of the 'Reliquia Diluvinna.' From the indication of the second pre-molar in this figure we may, I think, diseern the greater separation of that tooth from the third pre-molar, which forms ono of the marks of distinction between the fossid and recent hippopotamus. Mr. Parkinson, in the third volume of his 'Organio Remains,' 4to., 1811, p. 375, treating of the Hippopetamus, says, 'In uy visits to Walton, in Fissex, 1 have been suceessful in obtaining some remains of this animal.' These fossils are now in the museum of the Royal College of Surgeons, and are referriblo to the extinct speoies aubsequently determined by Cuvier in the second edition of the 'Ossemens Fossiles,' under the name of Hippoputamus major. The first specimen, cited by Mr. Parkinson as'an incisor of tho right side of the lower jaw,' is the great raedian incisor, which when entire must have boen 18 inches in length. It has lost much of its original animal matter, aud is considerably decomposed. This tooth may be distinguished from the straight iuferior tusk of the Mastodon by its partial investment of canmel; or when this is lost, as in the decayed apecimen from the till at Walton, by the tine conceutric lines on the fractured surface of the ivory, the corrempoudiug surface in the tusk of the Mastodon presenting the decussating curvilinear strie. The second specimen from Walton in thus described by Mr. Yarkinson :- 'The point of an inferior canine tooth or tusk, measuring full nitu inches in circumference, and having seven inches in length of tritursting surface.' From the great size of this tooth it is very likely to have belonged to the samo animal to which the preceding tooth belonged. Besides the longitudinsl stria aud grooves observalle in the ensinel of its sides and inferior parts, it is characterised by stroug transverse rugous markings, which are placed at nearly regular distances of sbout two inches, and are observel to exist in the same manner on the fragment which joins to it. The third specimen duscribed in that work in a fragment of the left lower canine tusk of a young hippopotanua; it had scarcely somo into use, and the pulp cavity extends to near tho apex of the conical and unworn crown. From the absence of the transverse rugona markings in the enamel, and tho roundness of the cireumference of this first-formed portion of the tusk, Mr. I'arkinson was indaced to smapect that it uight havo belouged to tho small hippopotamus; but similar modifications are ohservable in the recently protruled task of the young African hippopotamus, and are doubtless tuo to the immaturity of tho individual of the fossil species which yielled this monall tusk.

Mr. P'arkiuson ange, " Remains of tho Hippopotamus have been found, 1 am informed, in some parts of Gloncestershirc,' and prior to tho publication of the third volumo of the 'Organic lRemains,' Sir Everard Home had deposited in the musenm of tho Collegu of Surgeons a tooth-the third pre-molar, right side upper jaw-of the Mip lopotamus mujor, Cuv., which had been dug up in a field called Burtiohl, in the parish of Leigh, five miles west of Worcester. Mr. Strickland's valuable observations on the fluvintile deposits in the valley of the Avon, have confirmed these indications of the remains of the hijpopotamus in that lucality, and have thrown much light on the eonditions under which tho extinct species of that now tropical genus of l'achyderma formerly existed in the ancient watera that deposited those saorlm. Mr. Parkinson lastly cites the remarknble discovery by Mr. Trimmer of the remains of the hippopotanus in tho fresh-water deponits at lirentfonl, an account of which Mr. Trimmer afterwards communicated to the Royal Society, with excellent fignren of the principal fossila of the hijpopotamus and of those of the mamuoth, rhinoceros, and a large deer therewith associated.

Then mpecimens were collected in two brick-fiolds; the first about half a mile morth of tho Thames at Kcw Bridge, and with its surfaco nbout 25 fect abovo that river at low water. The atrata here are:int, sunly loam, from aix to acven feet, tho lowest two feot alightly
calcareous; this yields no organic remains. 2nd, sandy gravel a few inches thick, with fluviatile shclls and a few bones of land animals. 3rd, loam, slightly calcareous, from one to five feet ; between this and the next stratum peat frequently intervenes in small patches of only a few yards wide and a few inches thiek : here bones and horns of ox and deer occur, with fresh-water shells. 4th, gravel containing water; this stratum variee from two to ten feet in thickness, and is always deepest in places covered by peat; in it were found the remains of the mammoth, teeth of the hippopotamus, and horns and teeth of the aurochs. This stratum like the fresh-water deposits at Clacton, with similar mammalian fossils, rests upon the Eoeene London clay, the fosssils of which are, as Mr. Trimmer correctly observes, 'entirely marine.'
"The first stratum in the second brick-field is a sandy loam, calcareous at its lower part, eight or nine feet thick, in which no organie remains were observed. In the second stratum, consisting of sand, becoming coarser towards the lowest part, and eoding in sandy gravel from three to eight feet, ' were found always, within two feet of the third stratum, the teeth and bones of the hippopotamus, the teeth and bones of the elephant, the horns, bones, and teeth of several species of deer and ox, and the shells of river fish. The remains of hippopotami are so extremely abundant, that in turning over an area of 120 yards in the present eeason,' (1812) 'parts of six tuaks have been found of this animal' Mr. Trimmer adds, that 'the gravel stones in this stratum do not appear to have been rounded in the usual way by attrition, and that the boucs must have been deposited after the flesh was off, because in no instance have two boues been found together which were joined in the living anitual ; and farther, that the bones are not in the least worn, as must have been the case had they been exposcd to the wash of a sea-beach.'
"When the flesh and ligaments of dead hippopotami decomposing in African rivers have been dissolved and washed from its bones, these will become detached from one another, and may be separately imbedded in the sedimentary deposits at the bottom of the river with out beeoming mueh water-worn in their course previous to entombment. Although therefore the bones of the Brentford hippopotamus were imbedded after the flesh was off, the individual to which they belonged might not have been transported from any great distance, the phenomens being perfectly in accordance with the fact that the animal had lived and died in the stream with the fresh-water mollusk, the shells of which characterise the sedimentary deposit in which its bones were subsequently buricd.
"All the well-abserval phenomena attending the discovery of hippopotamic remains, have concurred in extablishing the truth of the conjecture of Douglas, that sueh animals, though now tropieal, were formerly inhabitiats of these regious. Additional arguments, as novel so ingenious, in supprort of the same couclusiou have been deduced by Dr. Hureklauf, frum his examination of the cavo of Kirkdale, and of the remains of the quadrupeds, including the hippopotanas, which he discovered in that remarkable depository of organised fossils. Of the great amphibious Pachydern, he eites six molar teeth, aud a few fragmenta of canine aud incisor teeth, 'the bext of which are in the possession of Mr. T'harpe of York.'
"These tecth of the hirpopotamus therefure, like the teeth of the mamuoth, associated with then in the Kirkdale Cave, prove that they were young and inexperienced individuals that had fallen into the clutches of the co-exinting, predatory Camirora, which made that cave their lurking place, and perfectly coincide with the conclusions which Dr. Buekland thas enunciates:-"The facts developed in this charnel-house of the autediluvinu forests of Yorkshire, demonstrate that there was a long succession of years in which the elephant, rhinoceros, and hippopotamus had been the prey of the hyanas, which, like themselves, inhabited Eugland in the period immediately preceding the formation of the diluvial gravel; and if they inhabited this country, it follows as a corollary that they also inhabited all thuse other regions of the northern hemisplere in which siwilar bones have been found under preeisely the same circumstances, not mineralised, but aimply in the state of grave-benes imbedded in loan, or clay, or gravel, over great part of northern Europe, as wellas North Ameriea, and Siberia Fossil remains of the hippopotamus have been found in some abundance, aud io a more perfeet state than those in the fluviatile deposits of the valley of the Thanes and Avon, in the formation of elay and sand with lignite beds, also of fresh-water origin, that overlie the Norwicll Crag upon the eastern coast of Norfolk.'
Remains of the extinct Hippopotanus havo been found in other caves in England beesides Kirlslabe, as at Kent's Hole, "'oryuay, and at Durdham Common. The shells which were fouad by Mr. Strickland with the remains of this animal, indicate that no great difference of temperature existed from that which we find at the present day. The remains of I. major are not uncommon along the European shore of the Mediterranean. No remains of it have been found in any fart of Asis. In the fossils from the Sewalik Hills, found by Dr. Falconer and Captain Cautley, there is a representative of the hippopotamus with six incisive teeth in the lower jaw. For this forn the nubgeneric name Mexaprotodon has been proposed. We have no evidence of the Hippopotanos having existed ufon our planet anterior to tho pliocene division of the tertiary period; and the
ancient extinet species, like that of the recent form, seems to have been coafined to the eastern hemisphere.
hiPPOPUS. [Tridacnide.]
HLPPOTHE'RIUM, the Lame of an extinot species of Mammalia allied to the Horse, found and described by Professor Kaup, from the strata of sand at Epplesheim, dear Altzey, about 12 leagues south of Mayence, referrible to the second or Miocene period of the Tertiary Formation.
HIPPOTHOA, a geuus of Auimals belonging to the family Polyzoa. It is characterised by a confervoid polypidom, adhereut, and creeping, calcareous, irregularly branched, the branches frequeatly anastomosing, formed of elliptical cells linked to each other at the extremities; aperture lateral near the distant end. Dr. Johnston ezumerates three British species, H. catenularia, H. divaricata, and U. sica. They are found encrusting ahells and other objects in dcep water.
HIPPOTIGRIS. [Equide.]
HIPPU'RIS (from linnos, a horse, and outpa, tail, from the resemblance of the stern to a horse's tail), a genus of llants belonging to the natural order Halorayacece. [Haloragacee.] It has the calyx-limb very minute, obsoletely 2 -lobed; no petals; one stamen; a filiform style lying in a chaunel of the anther ; the stigma simple, acute; the fruit nucumentaceous, 1 -celled. Three species of this geuus have been described. Of these, M. vulyaris, the Common Mare's-Tail, is found abundantly throughout Europe aad North Ameriea. It has linear leaves, 6.12 in a whorl, and callous at the point. It is found in ditches and lakes. In deep water the submersed leaves are flaccid and pellueid, and not callous at the points. This plant is very common in Great Britain in stagnant waters and slow streams. (Babington, Manual of British Botany.)

HIPPURITES, a name given by Fnorr and Schroeter to a Fossil Coral (Cyathophyllum cerutites, Goldfuss) of the Eifel Transition Limestone. Guettard also used this title for a lamelfiferous coral.
By Lamarek, Defrance, and other writers, this name is given to a somewhat problematical group of fossils found in litestones of the Oolitic age which flank the Alps in the Untersberg, near Salzburg, at Regensburg, \&e., in the Chalk of Yerigord, Alet, \&c.

Lamarck places Hippurites with Belcmnites, and Orthoceratites among the Cephalopoda. (‘Conchyliolagie: Nouv, Dict. des Seienees Nat.') Latreille takes nearly the same view as Lamarck. ('Familles Naturelles' du 'Regue Amimal.') Raag, referring to Batolites and Raphanistes of Montfort, and Amplexus of Sowerby (which is certainly a lamelliferous coral), introduces the genus anong the acephalous Rudista, according to the views of De Blainville.
Thestructure of the Rullista has been studied by M. Ch. Desmoulins and M. Deshayes, and the location of Hippuriles in that group anay, ou their competent anthority, be definitively adopted. Considered as a bivalve shell, whose valves are exeessively unequal, one may be deseribed as cylindrical, conical, or curved; the other as Hlat, or tumid externally, and operculitorm. The lamine of the large valve are sometimes separatel, as in some spondyli, and subjeet to such convolutions on one part of the circumference as to eause tho appearance of longitudinal siphons immersed in the shell. These are arguments, but very insuthieient ones, for comparing Hippurites with Cephulopoche. The shell is tibrous, or rather formed of prismat: cells, of a 6 -sided figure, in a lougitudinal direction, which lave been compared to the cellular structure of the shells of Baldens. The shells are sumetimes attashed side by side, as two portions of a coral. The internal eavity is far from correspondiug to the external figure of the shell, and the cast in this cavity has beco called Birostriles.
The athundance of these fossils in certain ealcareous bases of the Chalk or top of the Oolitic formation in the Pyrenees, the Untersbery near Salzburg, the Bellunese, \&c. is extraordinary, so that partieular strata receive from the circumstance the name of Hippurite Limestone.
HI'P'CAGE, a genus of Plants of the family of Malpighiaece, better known by the name Gerthera, given it by Schreber in honour of the celebrated Gertner; though the name assigued hy hinself, as prior, is now alone admitted. The genus contains only two species: one, II. Madablota, figured by Sonnerat under the latter name (' Voy.' ii. t. 135), which is common in the forests of many parts of India; the other, H. obtusifolia, is found in China, but eosutnonly cultivated as an ornamental plant iu Judia. Buth speeies are remarkable for their great size as elimbers, aseending to the tops of the loftient trees, and hanging dowa in elegant festoous of white flewers.
HIRCUS. [Carrese.]
hillingG, a local name for the Salmon Trout. [Salmonide.]
HIRUDINE'LLA, a uame given by M. Bory to a genus of Micro. zoaria.

hirudinides. [Annelida.]

HIRUNDINID.E, a family of Birds belonging to the order Insessores, and the division Fibsirostres. They include the species of birds known by the name of Swallows and Martins. Mawy of these are inhabitants of the British Islands. The following are the forms degeribed in Yarrell's 'Itistory of British Birds:'
Hirundo.-Deak very short, depressed, and very wide at the base;
afper mandible currol duwnwanta at the point; the entawn ele vatert;
 abracter, Hires in frumt, one lelainil: dawn eurved; wings loug and jobritcsl.

> If rasicu, them Swallow, the Clituncy-Swalluw

If wrftes, the Martin, the Martin-Swatlow, the Ilouge. Martin.
JI. Fumsen, the Sumb-Martin, the Jhak-Martin.
Cogulas bank very mant, trinarahar at ita lave, wille, concealeal. depin omen, faje exteluding beyoml the ryea; upper mandible bowkend at the fant: wamerila bongitetinal, near the ringe of the lacak, open, the alge日 raimet, adad formabed with atoall fenthera: tasxi very short; the four, all drectad forwanlo and entirely divinbel; clawn whort, - lomeg anil currel: winge rery long; the lirse quill-feather a litele alinter than the fecomil.
(nfore, the Swift, the Swif Swallow, the Common Swift.

For an account of the wher samberg of the fanily, see Swam.ow TMine

HISINGFIUTK [TMRAEATE]
HISTOLACB (ioros null doses), that department of reience which mabrem lhe facta rolating to the ultionte atructure of the parts uf flamta and abimala Theme facts lave been uabally compredecmided wimer the tern Geaem Anatomg, hut more recently it bas bernfound convenient ta ube the terna blintologe. It in only recently that this worl crubll le needed, for the obmersationa upon which tbo acicuce in foumbed have oaly bern mate xince the extensive employment of the microw ofe $1 t$ may le raid to lave originated with Marcellus Malpigit (1620.04) and Anton ron Leeuwenhoek (1622-1723) at the liane whon maguifying ghmees were firt conatructed of such a kiod as ben be unful in olnarring the atructare of plantandanamala The uleimate compomation of organimal bonties was nuknown to ancient - iververn, on well as thoze wholived in the middle nges. It is true That printutle and (ialen apeak of homogeneons and heterogencuns part of the lomelr ; and Fallopiun, at the beginning of the 16 th century, blefined atill more accurately the dien of what are now called the tinsuan of the body, yet the more minute atructure of these parts was
 Maljughi and Leenwerhook litthe was done townals unravelling the itumate dracture of the tisuuce till the begimning of the present combry. Wio can only jnime to much men as Fontana, Muys,

 mot thll tho year Inol that a cumnected view of the tissues of the buwion lome wat given to the world, in muth a form as to lay the poustationim of what is now enldat the keinace of Histology. "Tho "Anatornio (iomombe (l'arix, Isol) of lichat wow in fact the lirat
 en mach that lichat comeributed now observations on this subject,
 Calcol ationtaina in the ismportases of the subjoct, and to tho fact that it lay at the homalatuan of all phymiologioal and pathological itryinimex.

In the firvetinn of hotany, the prement century witnessed the obare

 wo the tinnem of phanta wam muloo by Nlack, in the syth wolume

 asul a greatar vinure atil intarent was given to theac than they had

Tlie pronte of these uhaervation wern communicated in 1837 to Reliwatio, wha, mlouck witl than renemblance between the ectla of natimaln null thom of planta, concriverl the inlea that the mame hintory

In the yoar lage in fart tha denomatration by 11. Th. Schwann
 "ryamana, nam uf than corigin uf thair hinhor mpracturen from eliese

 of grant value in a pupely mejentific puint of view, inamuch ns a
great deal which Schwana only indicated or alortly advorted to, as the genesia of the cell. the import of the nucleus, the development of the higher tisaues, their chemical relations, \&c., has received a further development, but all this has not amounted to a step so greatly ln culrance as to conatitute n new epoch. If, without pretensions to preacience, it be pertnitted to speak of the future, this condition of Kistology will last as long as no esseutial advance is mado towards peactrating more deejly into orgnaic structure and becoming acenainterl with thosu elements of which that which we at present hold to be gimple is comprosed. If it be possible that the molecules which constitute cell-menharanea, muscular fibrila, axilo fibre of nerves, Sc., should be discovered, aud the laws of their appoxition and of the alterations which they undergo in the course of the origin, the growth and tho activity of tho present so-called elementary parta, should be made out, then a new era will commence for Histology, and the discurcrer of the law of cell-genesis, or of a molecular theury, will be ns much or more celebrated than the originator of the doctrine of the compoaition of all animal tisaues out of cella.
"In characterining the present position of Histology nud of its objects, wo must by no means forget that, properly speaking, it conniders ouly one of the three nafects which the elemeutary parta present to observation, namely, their form.
"Microscopical anatomy is concerned with the understanding of the microscopic fonns, and with the lnws of their structure and development, not with any general doctrine of the elementary parta.

Composition nud function are only involved so far as they relate. to the origin of forms and to their variety.

Whaterer else respecting the activity of the perfect clementa and their chemical relations is to be fuund in IIstology, in there either on practical grounds, in onder to give gome useful application of the morpholugical coadivions, or to complete them, ns, from its intimate allinuce with the subject, it is added only because phyaiology proper doce not nfford a duo place for the functions of the elementary parts.
"If Histology is to attain the mak of a science, its first need is to have as broml and certain nn ohjective basis as possible. To this end the minuter atructural characters of animal organisma are to bo examined on all siders, and not only is fully-formed structures, but in all the earlier period from their firat development.
"When the morphological elements have been perfectly made out, tho nest object is to diseover the laws necording to which they arisc, wherein one taust not fail to have regard also to their relntions of componition mul function. In dincoverng these lawn, here as in the experimental sciences generally, contimual observation separates more and more, anong the eollectivo anses of scattered facts and obnervations, the occasional from the constant, the necidental from the essential, till at lant n series of more and more general expressions of the facts arisea, from which in the end mathemanal expressions or formale proced, and thue the lawe are enumerated.
"If wo inquire bow fire Histulogy has katisfied these requirementa, and what are its prospects in the immediate futore, the raswer fanst the a modest one. Sut only dow it not joaseess a ningle law, but the materials at ham from which such whald be derdaed are na yet relatively so scanty, that mat pen nny comsilerable number of genern $j^{\text {rnjpasitions a }}$ andar well founded. D ot to apeak of a complete knowlenge of the minuter stracture of mamals in general, we no not acquainted with the ntractare of a aingle ereature throughout, not even of man, although he has ben so frequeatly the oliject of iavestigation; and therefore it has hitherto been impowsiblo to bring the selence endentially nearer ite goal. It would however he unjust to overlook and depreciato what we do possess; nind it may at any mate bu whild that we have açuired n rich atore of facta, and a few more truatworthy propositionn 'o indicate only the more important of thu fonmer, it may le mentioned that we have a very auflicient acyuaintance with tho perfect elementary jayts of the higher auitnads; and that. we alno undermand their develument, with the exception of the chastic tixsure, nad of the elements of the teeth aud honow. The mode in which these are mited into organs has been less examined ; yet on this head also much has been mided of Inte, especially in man, whose indiridual organs, with tho execption of the nervous aystem, the bigher organs of zense, and a few glands (the liver, hloudvabcular glants), havu been nimost exhaustively inveatigated. If the liko progress contime to be made, the structuro of the himan landy will in a few years be so elearly mado out that, except perhaps in the nervus aydem, nothing more of importance will remain to bo slono with oor present moden of investigation. With Comprarative Hintology it ia otherwise: hardly commoneed, not jeary but theader will be needed to carry out the necossary investigationa. Whoover will do gwod work in this field must, by monograplas of typical forma cmbracing their whole atructure from the earlient jeriokls of development, obthin a general view of nll the divinions of the naimal kingelom, and then lay the methods above described strivo to develop their laws.

- As regards the general propositiona of llistology, the acience has male no majortant progress sinco Sehwann; however, much Lats been attained by tho contirmation of tho brond outlines of his ductrines. 'Ilee pusition, that all the higher animals at one timo consiat wholly
of cells, and develop from these their higher elementsry parts, stands firm; though it must not be understood as if cells, or their derivatives, were the sole possible or existing elements of animals. In the same way, Schwann's conception of the genesis of cells, though considerably modified and extended, has not been essentially changed, since the cell-nucleus etill remains as the priacipal factor of cell-development and of cell-multiplication. Least advance has been made in the laws which regulste the origin of cells and of the higher elements; and our acquaintance with the elementary processes which take place during the formation of organs must be regarded as very slight. Yet the right track in clearing up these points has been entered npon; and a logical investigation of the chemical relations of the elementary parts and of their molecnlar forces, after the manner of Donders, Duboie, Ludwig, and others, combined with a more profound microscopical examination of them, such as has alrealy taken place with regard to the muscles and nerves, and further, a histological treatment of emlaryology, anch as has been attempted by Reichert, Vogt, and myself, will assuredly raise the veil, and bring us step by step nearer to the desired though perhaps never-to-be-reached end."
In accordance with the plan of this work, the Histology of each separate organ of the body will be found in the general article devoted to that organ.
The tisules or texturee of the body enumerated in the article Asatomy will be found under their respective names; and in the afticles Thisues, Vegetable, and Tissues, Animal, will be found an account of the relations and gencral physiology of the textures of the body.

Necessary aids to the study of Histology are the microscope and booke. Under the article Microscope, in Arts and Sc. Div., the nature of thst iustrument and the mode of using it will be described, as well os the various forms adspted for histological purposes.

We refer here to some of the more important works and papers to be corsulted on this subject.

Kölliker, Manual of IIuman IIstology; Sharpey. General Anatomy, in Quain's Elements of Anatomy; Beale, The Microscope, and its Application to Clinical Medicine; Todd and Lowman, Physiological Anatomy; Gerber, Elements of the General and Minute Anatomy of Man and the Mammalia; Goodsir, Anatomical and Pathological Obsertations; Hassall, Microscopic Anatomy; Bowman, On the Structure of Voluntary Muscle (Plill. Trans., 1840) ; Kieroan, On the Structure of the Lirer (Phil. Trans., 1835); Mandl, Manuel d'Anatonie Générale; Mohl, On the Vegetable Cell; Owen, Lectures on Comparative Analomy; Quckett, Lectures on Mistology; Schleiden, Principles of Scientific Botany; Schleiden and Schwann, Microscopical Researches (Sydenham Society) ; Cyclopedia of Anatomy and Physiology: Robin, Histoire Naturclle des Végétaux Parasites; Carpenter, Principles of Physiology, General and Comparative.
(Quarterly Journal of Microscopical Science.)
HOAZIN. [Cracide.]
HOBBY. [Falcosides.]
HOCCO, a name employed by Buffon, Latham, and others, to designate aome of the Curassow Birds. [Cracid.s.]

HOE. [Squalide.]
HOG. [Suld.e.]
HOG-MEAT. [Boerhantia.]
JIOG-PLUM. [Srondiace.e.]
HOLASTER, a geaus of Fossil Echinida, proposed by M. Agassiz to include species once ranked as Spatangi. Spatangus subylobosus (Leake). S. planus (Mantell), and S. hemisphericus (Phillipa), are examples. The epecies occur almost exclusively in the Chalk Formation. [Echinodermata.]
HOLCUS, a genus of Grasses belongiog to the tribe Avenea. It has 2-Howered glumes, the lower perfectly awnless, the upper usually stameniferous, with a dorsal awn; the palew hardening on the fruit. There are two British epecies of this genus. 1I. lanatus has the upper glume obtuse, apiculate; the awn smooth, except for a short distance from the tip." It grows in meadows and pastures. II. mollis bas the upper glume acute, and the awn rough throughout its whole exteut. It grows in thickets or open places on a light soil. The II. cernures of Willdenow, and the II. sorghum of Linnens are now refurred to the genus Sorghum. [Sonenum.] Fraas refers the Mécurn of Theophrastus (' Hist. Plant.,' viii. 1, 3, 7, 10) to these grasses, and not to the Setaria Italica, as had been done by previous nuthors.
(Babington, Manuul of British Botany; Fraas, Synopsis Plant. Florce Classicue.)
HOLETUA. [Trachearia.]
HOLIMUT. [Hippoelossus.]
HOLIGARNA, a genus of I'lants belonging to the matural orler A nacardiacere. The berries of II. longifolia are manufictured in India into a well-known black varnish.
HOLLY. [ILEx.]
HOLLYY SEA. [FRYNOIUM.]
HOLLYHOCK. [ALTHEs.]
HOLMESITE. [CLINTONITE.]
HOLOCANTHUS. [Cintodon.]
HOLOCENTRUM (Agarsiz), the uame of a genus of Fossil Ctenoid Finhea from Monte Bola. [Fisk.]
HOLOCENTRUS, a genus of Fiahes belonging to the family Scom-
berida. II. niger of Lacépède is the Centrolophus pompilius of Cuvior and Valenciennes. [Centrolophus.]
HOLO'PTYCHIUS (Agassiz), the name of a genns of Forsil Ganoid Fishes from the Carboniferous Limestone of Burdie House near Edinburgh, and other localities. [Frsn.]

HOLO'STEUM (from $\overline{0} \lambda o s$, all, and $\partial \sigma \tau \epsilon \in \rho$, a bone, an antiphrasis applied to this plant becanse it is soft and unlike bone), a genus of Plants belonging to the natural order Caryophyllacece, and the sub-order Alsinece. It has 5 sepals; 5 petals, toothed at the end; 3 , 4, or 5 stsmens; 3 styles; a subcylindrical many-seeded capsule, opening at the end, with 6 teeth. The species of this genus are her'ss with nothing to recommend them for use or cultivatiou. One species, \boldsymbol{H}. umbellatum, is British. It has nmbellate flowers, pubescent viscid peduncles, the pedicele reflexed after flowering, the leaves ncute, elliptical, or elongate. It is not a common plant, but has heen found on old walls and dry places at Norwich, Bury St. Edmuuds, Eye, and Yarmoutb. (Babington, Manual of British Botany.)

HOLOTHURIA. [HoLothuriade.].
HOLOTHU'RAADA, a family of Animals belonging to the order Echinodermata.

Linnaus, in his last edition of the 'Systema Nature' (the 12th), gives the following definition of his genus Molotharia, which he places under his Vermes Mollusca, between Tethys and Terebella:"Body free, naked, gibbous; vent (anns) termiual. Tentacles numerous at the other extremity (tentacula plura in alterî extremitate). Mouth situated amoug the tentacles." He records 9 species. Gmeliu, in his edition (13th), increases the species to 23.

The following is Lamarck's defivition of Holothuria:-" Body free, cylindricsl, thick, soft, very coutractile; with a coriaceous skin, which is most frequently papillose. Mouth terminal, surrounded with tentaculs divided laterally, subramose, or pinnated. Five calcareous teeth in the mouth. Vent at the posterior extremity." He gives 10 species of Molothuria; but he separates other Holothuvice of authors iuto the genera Pistularia and Priapulus. These three genera are preceded by Actinia, and followed immediately by Sipunculus. The place therefore assigned by Lamarck to IIolothuria is among the Radiated Animals, in his third section of which, the Fistulides, he has arranged the tribe.
Curier gives the Holothuria a pesition among the Pedicillated Echinoderms, making them follow the Echinida. Priapulus is placed by him in the next order, the Footless Echinoderms. He gives a good outline of the anatomy, referring to the excellent work of T'iedemann.
M. De Blainville's Echinodermata form the first class of his Actinozoa, and the first order of that class consists of the Holothuridea, which are followed ('Actinologie,' 1834) by tho Echinidca, his second order. M. De Blainville thus defines the Holothuridea:-
"Body more or less eloagated, sometimes suhvermiform, soft or flexible on all sides, provided with tentacnliform auckers, often numerona, very extensible, completely retractile, and pierced by a great orifice at each extremity. Mouth anterior, at the bottom of a sort of funnel or prebuccal cavity, sustained in its circumfereace by a circle of fibro-calcareons pieces, and provided with a circle of arbuscular appendagee, more or less ramified. Veut terminating in a sort of cloaca opening externally by a large terminal orifice. Generative organs terminating externally by a single mesial orifice at a littlo distance from the anterior extremity, aud nearly marginnl."
M. De Blaiuville observes that Bianchi appears to have been the first who came to the conclusion that this form ought to be approximated to the Echini, and in fact ames one species, Echinus coriaceus; nn opinion which was adopted by Blumenbach and most of the modern zoologists, when they made the Holothuria a division of their Echinoderize with the Echini and Asterice; some however, following the idea of Pallas, consider that they should be placed near the Actinice.

The author last quotcd remarks that the organisation of these animals is not yet completely known, notwithstandieg the labours of Bohatsch, Miller, Vahl, Forskahl, Moaro, Tiedemann, and Delle Chinje. In addition to thees names we would call the attention of tho reader to the drawing and description of IIolothuria tremula, Linn., left by John Hunter. The drawing is beautifully engraved, aud, with the description, will be found in the 1st vol. of the Descriptive and Illustrated Catalogue of the 'Physiological Series of Comparative Auatony, contained in the Museum of tho Reyal College of Surgeons in London,' pl. iii. The following parts are diatinctly made out, namely :1, The mouth, iu which the bristle is introduced. 2, Appendiculin creca, which surround the mouth, or fances, into which they enter, and which Mr. Hunter supposes to be salivary glands and ducts. 3, A large onc, lower down, jnst at the heginning of the intestinal canal. 4, The whole tract of the intestinal canal, which is of considerable length. 5 , The dilated part of tho intestine, or rectum, or what seems to answer the eame purpose as the dilated part of the gut at the anus in a bird. 6, The anns. The use of the parts to which we next have to advert, thongh the parts themselves are most clearly demonstrated, scems to have been more the sulject of coujecture with Mr. Hunter. 7, Two branching bodies almost like a tree, which consist of a duct with ita branches, and which open into the dilated part of the rectum. These Mr. IInnter auspects to bo the kidneys, from their opening
nimilap to the kilders in binde turtles, te. There ane mall oblong lenlies near the oforing of the principal trimk into the rectum. s, A vat aumber of hollow rount tubem, all eatering into one duct. which opese at the heul. These will be leat seen iu another pinte which will be publiabed in the faciculas of the catalogue relating to generntion. 0, Vismela which weem to have neither beginning nor end, munewhat like the rona portarum: "they aprenr," adds Mr. Hunter " (n) be collecting at one chal while they are ramifying st the other tut which in the collecting rul, and which the ranifring, I do not know; howerer it in pamible one end is the aborbing ayntern, the other the arterial. Whenever there is n leart one commonly can make out the notion of the blood from and to that riscus; but Where we are deprived of that guide it becomes difticult to determine." 10, A distinct veacl from the furmer. These parta are indicated in the prate.

The preparation No. $n \& 4$ (Phymiolmgical Serien-Gallmry) in the nowenm of the Roysal College of Surgrons, is the specimen of Holotheria fremmb laid open, and the alimentary canal and generatice tubes turned axide to show the neppiratory organs, which have been injected. These organ consist of two elongated, hollow, ramifieel jinoses, commencing by a common orifice from the closed cavity, and extending towards the opposite end of the body. One of them is in more immealinte connection with the alimentary canal. and in abundantly supplied bs ramificationa of the inteatinsl vessel, the conteate of whichare thom hrought into necesary communication with the mea-water introduced into the tubular liranchis from the clonca The other aill in more cloxely attached to the parictes of the booly and probably acrvea to airnte the vessels of that yart. ('Cat.', vol. ii.) To this Irofeseor Owen adde, that in the description of the Molothuria abore quoted, Mr. Hunter attributea to these organs n more limited ahare in the great excretory functions than they undoubtedly perform, regardiog them, from their connection with the cloaca, as annlogoun to the kidneys of the higher animaks. Distinct urinary organs are not lowerer, obaerves the Irofessor, developed until we arrive at a rouch higher proint in the meale of organisation than the Jfolothuria and itn congeners attain to; the preparation is therefore placed in the rempintery merien

In his 'Britinh Star Firhes,' Proferwor F. Forbes makes the following general observations on this family:-

A Holohwria may be regarded in one light as a soft Sca-Urchin, in another an a radiated nnimal, approximating the Annclides. The ralintion of the surface is more or less complete in all the genera of Holoheriada: the interusl orgnniantion in mostly bilateral. The akin in ununlly mof nind leathery ; in a few genera strengthened by calcare oun or horny spincs. Five arcuucs of suckers reparate the body into an many longitudinal aegmenta, which in the majority are of equal or narly mual dimensions. In some the aucken are developed only on one nite, what the animal when ereeping presenta in a manner a back and a belly. The suckers are similar to those of the true ntar-fishen and men-urchins. lhesiden progresaion by menns of these wuckers, tho Holothwrialle move an Annelilea, by the cxtenaion nad contraction of their louliea They have a mouth anil an anoa, each termiual, and placel at opronites extremities of their bodies. The mouth is surmonded ly phanome tentacula, the number of which, when they are conplete, an anay, n multiple of five: but as theae animala are nimgularly mulject to the lone or abserse of parts in individuals of the varioan apeciea, much confuaion has urisen from the establishment of nuppomititioun apcies from charncters founded on nbnormal numbers of the parta.

The tentacula are ramose cirrhi; they can be retracted within tho mouth, and sometimus when in captivity the minnal will not exsert them for daga together, though otherwise active. They are drawn in with the akin, abd when we cut open a /folohoria haviug jta tentacula retractal, we find them io the centre of a dental circle. The circle of treth in aralogena tus that of the Firhini. The cesophagus parseas throumh it, and opotan iate, a more or lika musenlar atomach, from which an intontism, "flen very complicrind, proceenta to tho prosterior extrmity of the looly, where it openn into a funnel-ahaped cloacum, into wheth alon "fen the two treelike rempintory ongane There is n *ancular rincim (abill nemm my a nervoln cord) antrounding the mouth, mad rearla are datributed from it to varioum parta of the bomly ami

 tionon con ofom nide of tho mouth in certain apecien Thia her regarels an n inalmporiform thberele or nucleus. Tho ovaries are in many
 mhich open at uno aide towarla the "perer extremity of tho animnl. Them buarenurface of the abismal's akin in linerl with powerful longitedibal and tranateran mamelon, hy umban of which the creature conorater ita lanly and lengthenm it ont in many directiona, changing ita form in a woplerfol mannere. Sometimen the crenture ejecta all jta vicora, or lonfata the lamly with ita monvulnive contractions. It in uanaily atmerd that the fiofolomerir do an whenever they are taken, but ench in trat the cane. I bate never mecn the namal diagorgy itn intetione, Imt aperimethe of thaty macica have I menen in which there
 thergh it mennol, when takn, alive and bealthy. It is antoninning
how long they can live deprived of the noost essential parts of their organian. Sometines they are found wanting the reapiratory organs, and sometimes the generative tubes are deficient, and these deficiencies no frequently occur that we ahould be extremely ahy of proclaiming differences in the internal structure of nfecies; and when we see genera and apecies (as has been the care) anntomically defined from the want of respiratory trees or geaital tubes, we should be extremely cautious about admitting such, and rather regard such wants an accilental deficiencies jn a few rpecimens than as organjo peculisrities

The Molothuriade are generally distributed through the sens of the globe, but aro congregated in greatest numbera in the Eastern seas. On our shores they are rare and unattractive animaln, not often scen even by the zoologist; but abroad they sre very abundant and in some places uned as food. Of one genus, the Trepang, many specjes are eaten. In Mr. F. D. Bennett's interesting 'Account of a Whaling Voyage round the World,' we are told that there are two kinds of Trepang ahuadant on the rockn at Raialin, and that they are very indolent animnls. 'When handled,' arya Mr. Bennett, 'the Trepang contracts its body in a longitudinal direction, and should its tentacles be expanded they are instantly concealed; but no noise or agitation of the surrounding water will excite theae symptomn of alarm, or cause any attempt to cacape. They usually lie exposed in the shallow water, though we linve very often seen them buriod in beds of coralsand, their plumy tentacles being alone exposed, and floating in the water above, apparently as a lure for prey. Some may also be observed lying on the rocks, their bodies completely encrusted with coral-anod, which nay either have been accumulated by a previous burrowing, or thus used as a diaguise. It would appear to bo partly the instioct of the animal to take its prey in ambush, but what that prey is, na well as the entire cononsy of these moluscs, remains a perplexing mystery. Their intestines invarinbly contain many hard and solid unsses of madreporic rock or tree-coral, some of them more than min inch in length, and all moulded as pellets to the calibre of the intestinal canal.
" It is difficull to sny how these ntong bodies have been obtained by the Trepang, though it ja easy to conccive thint they may be rendered serviceable as autriment, by the assimilation of the animal matter they contain. It is this animal which the Malays of the Oriental Islea seck so diligently for the suppls of the Chins market, where it obtaius s good price if well preserved.
"It is employed by the Chineso in the preparation of nutritiona soup, in commou with an esculent sea-weed, slinrks fina, edible birds'nests and other materinls, affording much jelly." Jrager says the intestines arc extracted, the animal then boiled in sea-water and dricd in smoke.

The Britiah Molothuriada bolong to four families, namely :-
lst. The Psolida, or Ascidian Holothuriada, noimala approaching the Mollusca in their form, and having a noft cireumscribed disc like the foot of a Gasteropodous Mollusc, on which the suckern are placed for progression. [Psolides.]

2ud. The Pentacte, which havo the suckers arranged in five regular ruws, and ne more or leas angular in form. [I'entactiz.]

3rl. Tho Thyoncs, which have the auckers scattered all over tho surface of the body. [Tuyonks.]
4th. The Synapla, in which there are no suckers on the body, the oral tentaculs being the only representatives of those organs. [SYNaptas.]
D. Blainville refers the difficulty of tho diatinction of the apociea of Holothuriada to the folluwing, among other causes:-

1. The genemal form is extrumely variable. When the animal is in a state of tranquillity in the enjoyment of all its facultios at the bottom of the water, it is, in the greatest number of cases at least, very much olongnted, often cylindrical, and alnost vermiform : on tho contrary, when in a state of repose, it becomes much ahorter and orlinarily more courex in the middle than at the extremitics. When it is irritated, whether in or out of tho water, the contractile action becomes strouger, nud the snimal can no longer be recogaised. But it is expecially when it has been plunged in, apirit, that the form differs totally from that which the living animal cxhibits.
2. The size, the form, and diatribution of the more or less mam millated tubercles which are aumerously rpreal over the skin, appear to M. De Blainville to offer too grent a number of variations to permit of their being emploged in distinguinhing apecific character.
3. The tentaculiform suckers, which have their exit through tho pares or holes in the akin, aud by means of which these animns attach thennelven to munnarine bodies, are, in a certain number of speciea, sprend nearly equally over the wholo superficies of the borly; hut in others they are accumulated on the lowor surface, without order, in a detcrminste order, or are disposed in doublo serios upon five longitudionl linex, as in M. pentacta.
4. The inoro or leas terninal position of tho two orifices may, M. De Blainville thinks, be takes into conaideration advantageously.
5. Some zoologists, and among others M. Lesueur, says M. Do Blainville, attach a great importance to the number of the tentacular appenlages of the mouth, and to their form nud mode of division; but, M. In l3ainville fears, erroneoualy, for he has been ponitively ananed that the nort common apecies of the Meditermacan, H. fabulong, whieh is fount in hundreds at Toulon, varics much, both a to the nimber and terminal divisions of these organs.
6. It seema to M. De Blainville that a better character may be drawn from the form of the circle of the solid pieces of the mouth, which is conatant, as he believea, in each speciea; it is however difficult to employ this teat.
7. To judge from a considerable number of Molothurise ‘ubulosce neen by M. De Blainville, colour in these animala is very variable, in intensity at least, passing from a nearly deep black to a reddish bordering upon whitish.
8. With regard to dimensions, besidea the difficulty of measuring the snimals when captured, it appears that they vary considerably in size, doubtless from age.
M. De Blainville finally, after a caraful analysia of the different species described by authors, joined to his own observations upon seven or eight species in a living atate, distributes these animals into the following fire sections, which ho conaiders to be aufficiently matural, and some of which may be establiahed as genera:-
$\left(\begin{array}{l}\text { Flattened, with auckers below . . . Curieria. } \\ \text { Subprismatic, with inferior anckers . . Moiothuria. }\end{array}\right.$

Body
Subprismatic, with inferior anckers
Moiothuria.
Fuiform, with scattered auckars
Vermiform, with pinuated tentacles Thyone. Fistularia. Cucumaria.
A. Specica whose rather ahort body, more convex and harder above than below, is provided with tentaculiform anckers only on that side, and with fairly developed buccal appendages; the two apertures more or less auperior. (Cuvieria, Péron; Psolus, Oken.)

Ex. H. Phantapus. Scarborough Ascidia of Pennaut. ('Brit. Zool.')
B. Species whose coriaceous and rather elongated body is subprismatic; the belly aufficiently diatinct from the back, and alone provided with tentaculiform suckers, acattered throughont its whole extent; the buccal appendages in general but little ramified; the month aub-inferior. (Holuthuria, Lam.)
Ex. H. tubulosa.
C. Species whose body, in general elongated, but little coriaccous, cylindrical, or fnaifor'm, is entirely covered with retractile papille, and whose buccal appendages are very large. (Thyone, Oken; Ifulleria, Fleming.)

Ex. II. papillosa.
D. Vory soft species, hut little or not at all coriaceons, very long and vermiform, cylindrical or aubpentagonal, provided with cirrhiform papillæ, which are very amall, scattered, and with the buccal appendages uaually regularly pinnated.

Ex. II. vittuta.

E. Speciea sufficiently coriaceous, smooth, in general short or moderately elongated, regularly pentagonal, with tentaculiform suckers in 10 rows, two at each ambulacral angle. (Cucumaria, SeaCucumbers.)

Ex. 1I. Cuситis.

More recently Measrs. Jager and Brandt have given a classification of the I/olothuriade. The characters upon which the aystem of Messrs. Jager and Brandt resta are the following:-

1. The absence or the preseace of tentaculiform anckers, which M. Brandt, as well as M. Jeger, calls fect, in common with many zoologiats.
2. The reaemblance or diasemblance of those organs.
3. The existence or absence of the posterior and internal aquiferous, branchial apparatus, which thej name lungs, with good reason, hecause the smbient fluid penetrates therein.
4. The disposition of the tentaculiform suckers at the surface of the body, all ronod it or on certain partis only, in regular series, of variable unmber or irregularly acattered.
5. The freedom or the adhesion of the respiratory aquiferous tree, divided by M. Jager into the intestinal lung and the locomotive lung.
6. The last aod least important character is drawn from the form of the tentacles which eurround the buccal aperture, which leads M. Jwger to his nub-genera and tribes, and M. Brandt to his genera and sub-genera. M. Jager forma, says M. De Blainville, in fact three groups only, which he considera as sub-genera, Cucumaria, Ticdemanniu (Fistularia), and IIolothuria, which he separates into six tribes, Mulleria, Bohalschia, Cuvieria, Psolua, IIolotiuria, and Trepang, this last being in truth lacld doubtful in the system of M. Brandt, as M. Jeger himself considered it.
M. Brandt's divisions reaolve themselves into seven gromps:-
7. Pentastichor, answering to M. Da Blainville's diviaion E (Cucumaria), and subdivided according to the free or fixed state of the aquiferous trce.
8. Sporadipode, confounded by M. De Blainville with the Holothurice properly so called, from which ha says they do not differ really, excepting that the tentaculiform suckers with which the body ia covered are similar both above and below. This division contains only two genera, established upon the distinction of having the tentacula sheathed or not.
9. Hippopodle, compriaing M. De Blainville's division A, separated into two genern, Cuvieria and Palus, containing each two species.
10. The Apneumones, which were regarded by M. De Elainville as belonging to the genum Fistularia of Lamarck, to the number of four
*AT. HIST. DIV. VOL. IIL.

1, Holothutia Thantapus; 1 a, its buceal appendages. 2, Holothuria papittoan; 2 a , a branch of its buccal appendages isolated. 3, Holothuria vittata. 4, Molothuria Cucumis. 5, Holothmria tubulosa; $5 a$, its oral cxtremity; $5 u$, its anal extremity; $5 c$, some of the cirrbi, of the natural size.
or more, the laalf of which are doubtful, and containing ouly, for M. Brandt, the genus Oncinolabes.
5. Schizopode, which are diversiform specics more or leas elongated, in which the tentaculiform suckera are diaposed in three or five lougitudinal rows; these form but two gencra, each eontaining one apccica only.
6. Heteropode, corresponding to M. De Blaipville's divisions B and C, that is to say, to him Ifola/huriee properly so called, and to his Mulleries, of which M. Brandt forms seven genera.

All theae are Ifolotherice pcdatce, but
7. consists of tho Non pedator, forming a great part of M. De Blainville'a diviaion D, that ia to say, the genms Fistularia of Lamarck, eeparated into three principal genera, two of which, provided with aquiferous treca, are distinguiahed by the form of their body, and the third has been named Synap/a by Escholtz.
M. De Blainville, in his 'Nonvelles Additions et Corrections' to his 'Actinologie,' published in 1834, gives the following amendel divisions, which he aubdividea, retaining many of the gencric names of Jæger and Brandt.
A. The Viemoform Huluenwrice (fiembaria), which have the lurly clomgted, mof, vermiform, and the tentacular suckers very muall ur eres null. Throo diviniona

1. Witbout nuckem, tentacula pinnativl. (Symapta, Facholtz)

- Without wockere, tentacula jionatifil. (CAirotola, Fucholez)

3. Very manll suckers dinpumed in five Innda (Onciolubes, Ifraote)
In The Ascadiforan Holoshmior (1'solus), whose luely is, on the contrary, whort, coriaccuas, convex sbove, flathened below, with sujerior ather than terminal orifices.
4. Skin ar it were muanoun (Curieria, Péron.)

II Skin rugome, but sort (Psolw, Oker.)
C. The undinary or Vercilliform Holotherip. whose body is anffciectly clougated, sofficiently moft, nuleylindrical, and covered thrughont with tentaculiform suckers, the lowest of which are Junger.

> 1. Vent (anua) langely open. (Holothuria.)
> 5. Vent plaited. (Bohalechia, Jager.)
> 3. Vent cloed with five teeth. (M/ulleria, Jeger.)
7). Holothmicr, whose boly is more or leas elongatel; the lower tenftacular muckera louger than the upper oues, nad disposed in longitwdinal acries in a determinet number.

1. Suckera in threv rows (Stichopus, Mrandt.)

2. Suckera in five rowa. (Diploperideris, Brandt.)
I. The Cwemiform Holatheriar, whase borly is but little clongaterl, more or lese fusiform, pentagonal, with tentaculiform suckers forming five ambulacra, one on each angle. (limods)
3. Teatacnlar auckera very small or null. (Liosoma, Brandt.)
4. Suckere very visible.
o. Tentaclea plonatel. ramose. (Clododactylus, Brandt.)
b. Teutaclea pinnatifid. (Dactylota, Brandt.)
F. The sipnacaliform Jwhetheria. Body more or less suddenly attenuated lackwards, of an illdefined pentagenal form, without either ambulsera or anckers (f). Tentaclen aimple, short, and cylindrical, an in the Acrinice. (Molpadia, Cuvier.)

1. M. II olohmroides. (Cuvier.)

2. M. musculus. (Kisbo.)

When M. De Ilaioville saya that he has uever leand that any of there aniuada were of much utility to mankind, but that M. Delle Chinje doen indeed inform us that the poor inhnbitants of the Neapolitan coants eat them, he appearn to have forgotten the great orjeutal trafic carried on with sone of the apecies, as an article of food, nuder the name if Trepang or Tripang, Biche-de-Mor or Beche-de-Mer. ("aptain Flindern fell in with a floet of Malay proas at the English Compans's Jilazis, north coant of Australia, wear the Gulf of Carpentaria (1 503), and was informed that nixty proas belonging to the raja of Iboni, and carrying one thoakand men, had left Mmcassar with the worth-weat nuonsoon, two montlin lefore, on an expedition to that evast. "The object of their experlition," writes Captain Fliaclers ("Poyage to Tcrm Australia'), "was a certain marine animal called T'repang. Of thin they gave me two dried apeeimens; snd it proved to to the Jlechede-Mer, or Sea.Cucumber, which we had firat seen on the refa of the caut coast, and had afterwarla hauled on shore so plentifully with tho neine, eaprecially in Caledon Bay. They got the Trepang by diving, in from three to eight fathoma water; and where it is abondant, a man will bring up eight or ten at a time. The mode of fremerring it in thin :- the animal ia aplit down one girle, boiled, and premell with a weight of ntones, then atretehed open with alipm of bamboo, driet is the mun, and afterwarch in mmoke, when it in fit to le pot away in ling a, but reguirea frequent expomire to tho suru. A thounaoll trepanga anke a 'jieol' (of about 125 Dutch poumda); and one hondred picola aro a cargo for n prow. It in carried to Timor, and mald to the Chincme, who nect thern there; nal when all the prowa are arecubled, the tleet returna to Macamar. liy Tidior seemed of le meat Tirnor-lanet; for when I inquirel concerning the Einglinh, Inutch, and J'ortugueme there, P'obanano (Captain l'lindera's iuformant) knew nothing of them: he hand hearl of Coepang, a Dutch nettlement, bot eail it wha on another inlanl. There are two kinds of Trepang: the black, called lhatoo, is mold to the Chinese for forty dollare the gionl: the white or gray, callesl Koro, in worth no moro than twenty. The Janino menn ble blat we found upon the coral reefs near the Sorthumberland Inlands; and, were a colong catabliahed in Troad Sound or ShambiWater Thy, it saight trerhap derive conaiderable Elrantage from the Trepang. In the (iolf of Cnrpentaria we did not olmerve abs other than the Koro, or Gray Slug."

Capeain I'hillip J'arker King, who quoken m purt of the above pasange ("Sirvey of the Intortrupical (comath of Auntralin'), found a Heet of Malas proan in the lay at tioplaug (1818): it hal jumt returned from an unvoccomful voyage on the muth connt of Timor iu mearch of trpuane Dramah, Un principml rajn of the flect, gave Captain King the followlog loformation rewnetiug the corat of Auntralia, which the raja had frmuently vinited in tho cosumand of a fleet that mamally

proas (but Captain King thinks that this number is perhaps very unoch exaggerated) anuually leave Mncasmar for this fishery ; it sails in Janumry, during the western mousoon, and coasts from islind to islaud, mitil it reaches the north-east eud of Tinor, when it steers south-enst and south southerast, which courses carry them to the const of Australia; the body of the fleet then steers castwarl, leaving here and there a division of 25 or 16 proas, under the command of ant inferior raja, who leads the fleet, and in alwaya implicitly obeyed. His pros is the only versel which is provided with a compass; it also has one or two swivels, or small guns, and is perhaps arined with rasskets. Their provisions chictly consist of rice and cocon-uuts; and their water, which during the westerly monsoon is easily roplenished on all parts of the coast, is carried in joints of bauboo. "After having fished along the coast to the eastward until the wenterly monsoon breake up, they return, and by the last day of May each detached fleet leaves the coast, without waiting to collect in one body. On their return they steer north-west, which brings them to some part of Tinor, from whence they easily retrace their utepa to Macassar, whero the Chinese traders meet them, and purchase their cargoes. At this time (1815) the vilue of the trepang was from forty to fifty dollars a picol; so that if each vessel returns with 100 picols of trepang, her cargo will be worth 5000 dollars Besides trepang, they trade in sharks' fins and lirds' nestas, the latter being worth about 3000 dollars the picol." [Swallow Tnibe.] To this Captain King appends a note, stating that in 1822 the value of the trepang was much less, the price having fillen to 25 dollars the picol.

In Crawfurd's 'Indian Archipelago' it is stated that the Slug, or Trepang, is bonctimes as much as two feet in leugth and from seven to oight isches in circumference; a epau long and two or three inches in girth is however the ordinary size. But the qumlity and value do not clepend upon its size, but upon properties not discernible by those who have not had much experience in the trade. In shallow water the animal is taken out by the hand, but in deeper water it is sotnetimes speared. When taken, it is gutted, dried in the ann, and amoked over a woodfire. The fishery is carried on from the western shores of Now Guinea snd the southern shores of Australia, to Ceylon inclusive. Indeed within the last few years it has been euccessfully prosecuted on the shores of the Mauritios. The whole prodice goes to China. In the market of Macassar, the great staple of this fishery, not less than thirty varieties are distiaguished, varying in price from 5 Spanish dollary n picol (133 d lbs.) to fourteen timies that price, each variety being distinguished by well known names. The quantity of trejaugg sent minunlly to China from Macassar is nbout 7000 pieols, or 8333 cwt. ; the price usually varying from 8 dollars a picol to 110 and 115 dollars a picol, according to quality. There is also a considerable export of treprang from Manilla to Cantou.
(M'Culloch, Dictionary of Commerce, articlo Tripany.)
HOMALIA'CEAE, a small natural order of shrubby Exogenous Panots with polypetalous flowers, a row of glauds in front of the segments of the calyx, many perigyuous stamens, and a 2-5-atyled ovary, with as nany parictal placenta as styles. The species chiefly inhabit tropionl countries; they have small starry flowers, and are of no known utility. Brown cousidurs them nenrly related to Pussiforacea. Lindley places them near Cucurbitacer, Loasacea, Cactacea, nod Onagracea, There are 8 genera and 30 species.

I, an expanded flower ; 2, an ovary with its iwo styles.
HOMALUS (Milue-Edwarls), a genus of Animala belonging to the onler Crustacca. It embraces the true Lobstera. Mine-Edwards has nuticed certain diff rences which induce him to separise the true

Lobsters (Husnarus) from the Crawfishes (Astacus), and to combine the geners Astacus, Homarus, and Nephrops in one small group, which he designates as the family of the Astacians (Astacida). These he considers as forming the passage between the Cuirassed Macruraus Crustaceans and the Salicoques, or Shrimps, but as differing sufficiently to require separation. In the general form of the body the Astacide spproximate very nearly to the Salicoques, but they have not, he remarks, like them, branchix composed of lamina piled one on snother; these organs being formed by an assemblage of small cylinders more or less long, and brush-like, as in the greater part of the Cuirassed Macrura, which the Astacians also resemble in the hardness of their tegumentary skeleton; but their sternum is not enlarged into a plastron, and the nervous ganglions correaponding with the two thoracic rings are distant, and united by rather loug double cords.

The body of the Astacians is elongated and a little compressed; the sbdomen is very large, but st the sanne time less developed in proportion to the thorax than it is in the Shrimps. The carapace terminates snteriorly by o moderate rostrum, which overhangs the base of the ocular peduncles. The antenne are inserted nearly on the same transversal line; those of the first pair are of moderate length, their peduncle is straight, snd their terminal filaments two in number. The external or second pair are much longer, and their peduncle is furnished above with a movesble plate, which is snalogous to the spiniform appendage in the Paguri, as well ss to a similar but much larger plate which is found in the Salicoques. In the Astacians this appendage is hastiform, and never entirely covers the last peduncular joint situated below, and it is even rudimentary. The buccal apparatus presents nothing remarkable; the external jaw-feet are elongated, but bent back upon the mouth; their second joint is much larger than those which succeed, and they do not assist in locomotion. The first pair of feet are very large, and terminsted by a large didace tylous claw ; the last four pairs are of moderate length, and nearly of the same general form, exceptiog that the second and thinl pairs are provided with a small didactylous claw, sod that the last four are monodactylous. The abdomen is nearly of the same size throughout, and presents on each side a lamellar prolongation, which descends 60 as to incase more or less completely the base of the false feet. The last segment is very wide, and forma, with the two platee of each of the sppendages of the sixth ring, a great caudal fin, all the pieces of which are nearly of the same length. The external plate of this fin has a transverse joint towards its posterior third part. The false natatory feet are clongated; in the male the first pair are styliform, nearly as in the Brachyura, while the others aro terminated by two large foliaceous plates with ciliated borders, s condition which belongs to the whole of these feet in the female. The branchise amount to twenty on each side. They are disposed in threc rows, 80 as to form vertical bundles separated by flabelliform sppendages, fixed to the base of the feet. These last-rnentioned appendages are very large, snd are only wanting in the posterior feet.

This family corresponds to the genus Astacus of Fabricius; and M. Milne-Edwards, adopting the division established by Dr. Leuch in founding his genus Nephrops, further separates the Crawfishes properly so called, from the true Lobsters thus:-
$\left\{\begin{array}{l}\text { Rostrnm depreased, and armed with } \\ \text { one tooth at moat on each side. Last tho- } \\ \text { racic ring moveable. }\end{array}\right\}$ Astacus (Crawfishes).

But the neparation thus further carried out by M. Milne-Edwards does not depend on external distinctions only; for there are great differences in the conformation of the internsl orgsus of generation and digeation, as compared with that of those essential parts of the animal economy in the other Astacidce. Thus M. Milue-Edwards remark, that in the Crawfishes the duodenal portion of the intestine presents on ita internsl surface a great nurober of small villosities, and is not clesrly separated from the rectum, which ia smonth internally; while in Homarus the duodenum is smooth within, the rectum is plsited internally, snd there exists between these two parts of the digestive tube a kind of circular valvule; the posterior caecal appendage of the intestine, which is seen at the extremity of the duodenum of the true Lobsters, is wanting in the Crawfishes. The liver is composed in the Crawfishes of small cracal tubee, which are comparatively much more elongated, and its anterior lobea are less developed; the testicle ls very small, and is composed of three lobes, whence spring the very long and tortuous deferent vessels, whilst in the true Lobsters these mecreting organs are very much elongated, extending from the head into the abrlomen, presenting no mesial lobe, but a simple courmisnure, and only giving rime to very short deferent canals.

The Astaci, which are all fluviatile, consist of the species A. Aluriatilis [Astacus], A. Bartonii, A. afinis, A. Australasiensis, A. C'iliensis, and A. Blandingii(1).

The Homwri, which arc all marine, consist of the species II. vulgaris, the Common Lobster [Astacts], H. Americanus, with its immense claws, and H. Capensis, accordiug to M. Edwards, who considers the Astacus scaber of Fabricius as identical with H. Capensis. The species A. carvescens, A. fulgens, A. fulvus, are unknown to M. Edwards, and considered doubtful by Latreille.

Nephrops (Leach).-Body more elongated than that of the Crawfishes; rostrum slender and rather long, armed with lateral teeth like that of Homarus. Eyes large and reniform. Lamellar appendage of the external antennæ wide, and long enough to extend beyoud the pedancle situated below. Feet, first pair long and prismatic; succeeding pairs with a compressed manus. Nothing remarkable either in the sbdomen or in the buccal appendages. Branchix disposed as in Homarus.
N. Norvegicus, the Norway Lobster, Cancer Nortegicus of Linnens, is occasionally taken in the seas around the British Islands. It is one of the most beautiful of the larger Macroura. Its gederal colour is pale-fesh, rather darker in parts; the pubescence is light brown. It is geverally considered a northern species, but Mr. Bell says he has received specimens from the Mediterranean. It is found on the coast of Norway in large quantities, and is also frequently taken on the coasts of Scotland, and sold in the Edinburgh and other markets. It is taken in Dublin Bay, and is very common in the Dublin markets. It may also be occasionally seen in the London shops. It is said to be the most delicate-flavoured of all the Crustaced. Forms of the Astacidee are found fossil. [Cbostacea.]

Nerway Lobster (Nephrops Norregicus).
HOME. [Raide.]
HOMELYN. [RAIDD.]
HOMOCERCAL. Fishes with symmetrical forms of tails are thus named by M. Agassiz, in contradistinction to Heterocercal. [Heterocercal.]

HOMOLA. [Homolid.E]
HO'MOLIDA, Homola T'vibc. The IIomolians, according to the system of M. Milne-1idwards, are the second tribe of the Apterurons family of the Anomurous Crustaceans, and their place is between the Dromians and the Raninians.

The carapace is sping, and armed with a rostrum. Internal pair of antenne without a pit, and incapable of bcing bent back upon the front. Jaw-feet pediform. Feet of the second, third, and fourth pairs very long; fifth pair very short, and of no service iu progression. Sternal plastron enlarged. Claw terminating the anterior feet, composed of two fingers in the ordinary form. Tarsi of the three following feet styliform. Posterior feet more or less completely prehensile.
N. Haro filwanis thun divide the trile into three germera

	Sub-chelifornu and quadrulaterma	puade ; carapace?	Homolat.
Hunnulama buring the panterlur fexe	('heliforn, and bidulen umider the	$\left.\begin{array}{l} \text { Carapace triangu. } \\ \text { lar; roatrun very } \\ \text { much elonobed. } \end{array}\right\}$	Lithouls.
	linerral parte of the carapace.	$\left.\begin{array}{l} \text { Carapace circu- } \\ \text { lar: mustrum ru- } \\ \text { limentary. } \end{array}\right\}$	Lomis.

Homola (l, each).-Carapace longer than wide, nearly quadritateral ; the etumaclat regions modying the whole brembth of it auterictr, wall the foranclaial regions, though not prolonged nbore the base of the fert, very lapge ; latrral jartionn of carapace vertical. Front narmow. mexl alvincing an an ta form n masall rontrian ; on each side of its base * Lange comic tumth dinceal forwand. Urbits extremely incomplete, evon wathin, where the articulation of the ocular pednactes is naked; they are warcely limitel wiphout, and are continoed with a inrge mblique azal very superticint pit, against which the eyes are applied. Uonlar peduncles eylindrical, and divided into two portions-one ioterind, nlender, abd elongated; the other atont, short, and terminated by then eye. luternal anteune not ladged in pits; their basilary joint mourly folohalar nad alvanoing below the insertion of the ocular preflunclea; the two nuccernting juints wry long, the third, as in the flochedura, nal’uaring two very manall multiarticulate filameuts. Fixternal antumbe inacted bearly on the patue lithe as the internal; at thair liane a lange mulatory tuberelo, which is nometimes extremely projectana: Bheir tires jount eylindrical, rather atont, and moderately lonaz; tho seound shenaler mad very loag; the thind very short; the termanal filament very fong. Buceal frame qualrilaternl. External jaw-foet bearly $\mathfrak{l n}$ liform, their three last jumes being large, and nearly
 phamen monch reacnuling that of the Dromians, nut not containing the genital parta Fect vary long; firat pair terminated by a uearly cylimincal haud, Gfth pair rived mon the bnek atad aubeheliform. Almonsen very wide in the male an well as the femate, and composed of nevorn hatinet jointa; in the fenabe the tirst ring carries a pair of rery minut alpremelagen ; thowe of the four succerding segments are of He matar formas an the frachyom: the peandtimate ring bas no
 21 the et.rmal lidnatron, na in the Brarhyura, are bollowed in the hasilary juiut of the third pair of fect. Thes disposition of the braachat in entually rewarkable: there are 14 on each side; the firnt in laid ncruss (an travera) under the bare of thr fucceeding ones, and fixerl the the kew of the second jaw-foot; but the others are nil dirocseal ulmuety $u p$, nul are fixed the the circumference of the vault of the minowe (hro in inserte I at the ring which carries the jnw-feet of the nacond pair. two nlowne the bave of the external jww-font, three on carla of the iwo succoerling ringa, abl two to the pernaltimate ring.

The "lecies isulalit the sean of tumope.
/J. apanffram las its lamby covered with yellow hais; length about 1) lawe It in fumat in the Hoditerrancan Sea.

Il 'uriren: the $1 /$ inverarrious hapictus of Aldrevabdus, and is

 preent tirne the ficheates hase lwasp arrabiget rmong the Weyrhyncha on account of the formi of ther remernin: lout her namerin that it in not

Wear, he sign, the groatest analogy to the Apterura, sum expecially to Homola: but they establish the passage between these cruataceaus and hiryus.

Carapace triaogular or rather beart-ahaped, its upper surface distinctly limited by a thick and spiny bonler. Rostrum horizontal and very long; its base covern the insertion of the eyes, and the anteriur boriter of the carapace is very atrort. No orbits; but a stont conio tooth in seen at the place orlinarily occupied by the exterual angle of thono cavities. Ocular pedunclea very ahort. Iuternal antenno inserted far from the mesial line, below and within the eges; their firat joint nearly cylindrical; the two aucceeding of moderate length, and the ternimal filaments of the sume conformation as in the Brachyura. Extermal antenna inserted more backwarda and outwards than the preceding; their basiary joint entirely mortised between a prolongation of the lateral border of the buecal frame and the anterior border of the carapace ; the secoud carrien a conlo tooth externally, the last joint of the peduncle is long and slender, and finally the multinticulate stem is rather long. The buccal frame is net distinct, except laterally, where its bordera are atraight. The external jaw-feet are pediform, and their second joint, which is atout and ahort, carries internally a atrongly-toothed prolongation. The thorax presents a disposition different from that of the crustaceana which precede this genus in the system, but which is general in the succeeding family (Plerygura) ; its last ring is not soldered to the preceding, but free, nud even moveable. The sternal plastron is linear between the first pair of feet, but becomes very wide afterwards, and presents complete transverse suturea between the last three segments; in the interior of the thorax there ja no posterior sella tureica nor meain apodeme, nor aternal camal. The feet of the firat pair are modernte and cylindrical; the three succeeding pairs are very long and equally cyliudrical; fimally, those of the fifth pair are extremely amall, and bent back in the iuterior of the liranchial cavitien; they are cylindrical, and terminated by a small claw with flattened nad extremely bhort fingem. The abdomen is large, triangular, and bent back against the plastrou; jts basilary part is completely solidified below, but in the terminal half it is only furnished with corneocalcareona isolated plates, which appear to represent the six last ringa In the female, oviferous blaments seem to exist ouly on one side of the abdomen.
As in the other Anomurous Crustacenns, the vulva are not aituated on the aternal flastron, but occupy the basilary joint of the third pair of feet. The branchise are disposed as in the rest of the tribe.
L. arctica.-Length of carapace about 5 inches; colour, reddiahyellow.

It inhabits the northern seas.

lithodes arctica (femnle).
a, left external jaw-foot; b, abdomen; c, foot of the finh pair.
Lom is (Milne-Filwands).-M. Mine-Edwards remarks that the small crustacean on which he has founded this new genus has been coufounded up, to the present time with the Porcellane, to which it in fact bears a reamblance in its general form, but from which it differn in many important particnare, such as the eonformation of the tail, the antenne, dc. Hegives the following getserie character:-

Carapaee doprespen, narrowed anteriurly, and truncnted poateriorly, it does not reach beyond the middle of the base of the third pair of feet, aud the rest of the dorsal aurface of the body is occupied by the lase of the rbdomen. The front is truncated, and arined with a small meaial touth; there are no orbital pits, ant the ocular peduncles have the form of wo great tringgular joints, which touch each other on their internal edge, and carry the eyen at their exterual angle. The intermal antenne are moderato; their first three joints are cylindrical, and torminate by two manll fifaments. The external suteuna are insurthed on the outside of the eyea, and nearly on the same line; they re large, n:1 I termiualed by it atout multiartlculate atem furnished
with long hairs at its lower border. The external jaw-feet are pediform; their third joint has no noticeable dilatation, and the thrce succeeding.joints are very stout. The sternum is large, and the last thoracic ring is not soldered to the preceding. The first pair of feet are very large, very wide, and extremely depressed; the carpus is as large as the arm, and nearly quadrilateral ; the claw is stout, ahort, and nearly horizontal. The three aucceeding pairs are ahort, stout, and terminated by a nearly conical joint; the fifth pair are very slender, and bent back above the others in the branchial cavity. The abdomen is very wide but lamellar, bent back below the sternum, as in the Porcellanc, and presento no vestiges of appendages belonging to the penultimate ring.
M. Milne-Edwards says that he knows nothing of the manners of these small crastaceaoa, of which ouly one apecies is knowo, namely, Lomis hirta (Porccllana hirta of Lamsrck). The above only is covered by very short and close-aet hairs, and the hands are nearly ss large as the carapace.

It is aupposed to inhabit the seas of Australasia
HOMOLONO'TUS, the name of a group of Trrilobites, as they are generally called (Palcaderna, Dalman); in which the tripartite character of the dorssl crust is almost lost; for which reason Mr. Miller called it Monolobite. M. Knightii occurs is the Upper Silurian Rocks of Eugland, and a similar specics at the Cape of Good Hope. Trizobites.

HOMOPTERA, one of the sections into which the clasa Insecta is divided. According to Leach, Stephens, snd aome other anthors, the section Homoptera is regarded as su order ; but in Latreille's arrangement it forms the second of the two great aections into which the order Hemipterc is clivided. The insects of this group are thus characterised by Latreille:-Koatrum arising from the lowest part of the head near the chest; the elytra, almost slwaya tectiform, are of the same consistence throughout, aemi-membranous, and aometimes resembliag the wings; the three segmeuts of the thorax are bleuded, and the first is often shorter than the following.

In tha typical /Iomoptera the head is large, broader than long; the eyes are large, and there are ocelli, or simple eyes, between them; the antenne aro minute, composed of but few joints, sud terminated by s seta; the rostrum is a slenkler jointed process, which, like that of the IIemiptera, lies close to the chest; the legs are of moderate aize; the hinder tibie are usually apined; the body is convex above and flattish beneath; the wings are semi-mernbrasous, the anterior pair often opaque, sometimes transpareut, and always of a uniform texture throughout. The larva are active, and reaemble the perfect iasect, excepting that they posaesa no wings; the pupse are also sctive, but possess rudimentary wings.
These insects feed upon vezetahle jnices. The females are formished with an ovipositor, composed of three denticulated blade-like processes, which are lodged in a groove in the sbdomen. By meana of this ovipositor they pierce holes in vegetsoles, in which they deposit their eggs. Many Homopterous Insects poaseas the power of leaping by means of their posterior pair of legs.

The section or orler IIomoptera may be divided into the following families, most of which are analogoua to Linnoan genera, or nearly so:-

Family I. Cicadide (Leach) compriscs those species in which the antennx are 6 -jointed, where there are three ocelli on the upper aurface of the head, and where the tarsi are 3 -jointed.

In these insects the winge sre usually transpareut, and have dark nervures ; the undes are fornished with an apparatus, situated st the base of the abdomen on each aide, by means of which they create a monotonous musical sound. They are usually of large aize (some measuring as much as 7 inchea in width when the wings sre expanded), and for the most part iohahit hot countries. But one apecies is found In Eagland, the Cicada hematoles of authors, an insect about 2 inches in width, with tranaparent wings having black nervures, and their basal portion red; the anterior margin of the fore wing is also red; the body is black, but with the margin of each segment red; the lega are red, varied with back. This, which is the largest Homopterons lusect found in Fingland, is not uncommonly met with in the New Forest, in Mamphire.

Family 2. Fulyoride (Stephens). - Antenna 3-jointed, inserted beneath tha eyes; ocelli two in number; tarsi 3 -jointed.

The insecta of this family have generally the fore part of the head produced, and varying in form according to the apeciea. They do not possess the power of creating a aound, nor do those of the followiog families. [Foluora.]

The above two families constitute the section Cicadaria of the 'Regue Animal.' The Fulgorit latemaria (Linn.) will serve as an illustration of the necoml. This curious insect is sn inhabitant of Brazil. It is abont 5 incles wide, sand 24 inchea long, of a yellowiah colonr mottled with black, and having a large ocellated apot on each of the under winga.

Family 3. Cercopidre (Leach).-The antenne 3-jointed; tarsus 3-jointed; ocelli two in number; aatemux situated between the eyes. [Cicadflla.]

Fsmily 4. Poyllide (Stephens).-Autenne with 10 or It jointa, of which the list is terminsted by two setat logs formed for leaping; tarai a-jointed; both gexes winge.l.

Family 5. Thripide (Stephens). - Antennex 8 -jointed; rostrum minute; tarsi terminated by a vesicular joint, and without claws.
Family 6. Aphide (Leach).-Tarsi 2 -jointed; antenure with seven joints; rostrum, in both sexes, with three diatinct joints; females generally apterous. [APHIs.]
Family 7. Coccidee (Leach), Gallinsecta (Latreille).-Tarsus with but one joint and one claw; the male sex destitute of rostrum, and possessing but two wings; the female apterons, snd furmished with a rostruin; antenne generally 11-jointed. [Coccide.]

> Fulgoria taternaria, half the natural size.

HOMOPUS. [CuElonia.]

HONEY, HONEYCOMB. [Bee.]
HONEY.PUZZARD. [FALCONid.zi.]
HONEY-GUIDE. [Indicatorine.]
HONEY-LOCUST. [Gleditscuia.]
HONEY-STONE. [Mellite.]
HONEY-SUCKER. [Nectarinide.e.]
HONEYSUCKLE. [Caprifoliacea; Lonicera.]
HONEYSUCKLE, FRENCH. [Hedysarum.]
HONEY-WARE, a name given to Alaria esculenta, known in Scotland as Badderlocks.

HONKENEJA, a genus of Plants belonging to the natural order Caryophyllacece, and the aub-order Alsince. It haa 5 sepals, 5 large petals, 10 atamens alternsting with glands, 3 styles and valvea, and very few large aeeds.
II. peploides is a British species found on asndy sea-coasta. It has ovate-acute sessilc leaves, fleshy, glabrous, and 1-nerved; the petals obovste; sepals ovate-obtuse, i-merved, shorter than the petala; the atems are dichotomous, procumbent, rhizomatous; the flowers proceed from the forks of the stem frequently diocious; cajsules large, globose; seeda few, and large.

HOOD-CAP. [Phocid.E.]
HOODED-CROW. [Corvid.e.]
HoOPEIR. [Craninda]
HOOPOE. [lROMEROPIDE.]
HOP. [HUMULus.]
HOPEITE. [Zine.]
HO'RDEUM, the geaus of Plants to which the corn called Barloy lselongs. It is distinguished from Triticum, or the Wheat genus, Ly its apikelets having only oue perfect floret in cach, aud by its glumes being somewhat unilateral and bearded; Rye, or Secale, differa in having two perfect florets to each spikelet, and in the same siditional circumstances as Triticum. As many as 15 species of Hordeum are disting uished by Professor Kunth, the latest writer upon the subject; in addition to which there are many varieties. The species are found wild in various places in both the Old and New World : as many as eight iohabit America. In the application of their botasical names to the cultivated barleys there is aome confusiou, one writer diatinguishing four speciea, another aix, snd some a greater number. It does not appear possible to determine, upon existing evidence, which of these opiniona is most correct; the probability however seems to be that there are not more than four, or at the utmost six species, which may be readily distinguished by atteution to the following circumstances: -The 1-flowered apikelets of Barley grow in tlirees, on opposite aides of the ear. If all the spikclets are perfect, the grains of corn are therefore necessarily arranged in six lines or rows; these rows any be very distinctly arranged, as in II. hecustichum, or they may be disposed in an irregular manner, as in $/$. Aydiceras. But if the lateral spikelota of each psrcel are imperfect all along the ear, the middle apikelet alone producing a grain of corn, the grains in that case will be in two rowa ouly, as in H. distichum and H. Zeocriton. Ot these two distinct forms there are aome in which the graiu adheres to the palew, or husk, as in Common Burley, and others in which the grain is free from the Inak, as in Naked Barley. It is generally suppored that barleys of the second kind are mere varicties of those of the tirst kind; but there is no proof of the correctness of the opinion, and probability ia against it. Iheae characters and a few others being attended to, cultivated barloga may be arranged under the following heads:-

- Two-luwal harleya

1. H. diacian (lian. 'spill., 125). Far cyltndrical : awna almost pasallel with the esr: grain mhering to the huak. Thia is the Comtoon Summer-larley of Fiogland, and that which cultivators neem to juvfer: ith earm ano pot molage an those of H. herastichum, but the grine are bearier. In in commonly stated to be a native of Tartary. [oluoel C'besmey found it wild in Mesopramia, upon the banks of the Fuphrita
 Far cylinircal; wumatmost parallel with the ear; graina loose in the buck Siaked larley, apeciea but little cultivated now, in of unknown arixin. It ia adid to hare brea introduced into Fingland in the year 1869 : but it in reporal to have promerved its characten unaltered from time immemorial in whe parts of Europe.
2. I. Zeorritom (Linn.,' Sp. Pl.,' 125). Fars conical ; nwna sprealing way from the ear, in a flabelliform manner; grains adhering to the bus. From the oprewliag direction of the awns, the ears of this latley acquire much bronder figure at the top than at the bottom, on Which account it has been called Battledore Barley; it also bears the name of Surat-laricy. It is little celtivated is Eugland, because of the bortaess of its ntraw; ite native country in anknown.

* Six-Rowed Barleys

1. H. Aenupiohsm (Linm, 'Sp. Pl.,' 125). Fars cylindrical; awns very lonk, rough, and rigid, rather sprealing away from the ear; grains athering to the husk. It dow not appear in what way the 11. Fulgare of Livnaus differm from this Professor Lowe has justly remarkel that there in no kuch thing as a barley with the grains Krowiug in four rown, the circumstance by which Limmeus defined his II. rulgore, and that all wuch appearances are merely imperfect atates of 11. herautichum. The native country of this species is unknown : it is the lere, Bigs, or Winter Barley of farmers, and is particularly valuable for ripeniag quicker than the Common Two-Rowed Iarloy; ita grains ane however lighter, and it is cousidered an inferior apecies to the lut To northern nations with short summers it is however invaluable.
2. 17. gymno-heraricham (Lowe's 'Elements of Agriculture,' p. 238). Fiar eylindrical; swus sery long, rough, and rigid, rather spreading nway from the ear; grains loome in the huak. The origin of this, the Nited six. Howed lsarley, is unknown. It is extremely productive, and in mone parta of Europe it ia reckoned the most valuable of all. Tho firench call it, on account of ita good qualties, Orge Céleste.
1. II. A.ficeras (Roylo' Mnnuscripts). Eara cylindrical ; florets arranged in a cunfumed manaer, not in rown; awna soft, thort, hooded, and bent downwarda; graius loose in the husk. A most curious apecien, found in the northern parta of Iulin, and probably in Tartary, na ite graina tave boen ment to Eagland under tho namo of "Tartarian Whent." lin appearance is more that of wheat than of borloy, and itn makel grains anist the resemblance. It is however a gennine apecies of Joodem. It appessa to be a productive plant, but little is as yet koown of ite quality in this climste.

Of nome of the apecien there are many varicties, the mont atriking of which ane thome called 'Black Barleys,' on account of the dark colour of their huak. They are not of mitliciont importance to require particular notice, except in works trenting of agriculture in great demil. (Bablery, in Armaso Sol 1)ro.]

HoRNBFEAM. [CAMPISUK]
110HSBLLLAS, a family of Hirila named after the genus Buceros - Ilmarrida. They connlituto a family of binda, the construction of whom bill arrent the attertion at firnt aight, and ornithologiats linve not been eatinely agreed an to the situation which the form ought to vacupy in the acrica.

It ia not at all improbable, from the geographical distribution of the apecien, that mone of the apecien were known to the ancients; but whether the Tragopan* of Pling and Solinon, of the Trayopormenes of lomponinn Mela, belonged to this genon ia not clear. That the
 nut ualakely. Aldrormodus, Jonaton, and lbontiuat give the form the asme bande, me don Hay and Willughby; the latter of whom given two
 the aploflatist of Corrus Indicis, and another an C'ormus rostro-cormuto. letiver piccived the bill of one (which he figuren) frotn Kinnel, under the name of Catan. The demeribuios of the bial said by Jonston and ntber to lave tren killel an if wan flying, when the Chrintinus beat the Turk at the battle of lapanto (Ninuactum), agreem well with the charactera of the genum.

Itrambly give the llornlilla tho mame of Hythocorax, following, not fmperotably, Cloming who ajeake of one of them under the title of cirti Marmi genma.
 Himindba, grosa /haneron, under the ficce, between the Toucans (ham-

Tho Trapptea of malern monineleta lo pallimacroun bird, conmidered by

13- Ralmakeror misis."
phicilos) and Bajahaga. The feet he defines to be gressurial. Guelin leaves Buceros in the amme position.

Itatham also places the Hornbills among tha Pica, Pies, with walking foet.

Lacéperle remores the forin far from the Toucans, placing it at the head of his Platypodes and ju his 16 th order (bill dentilated), with the Monots, in his scocond division of his first sub-class of birds, or thane which have three anterior toes, nud sometimes a hind toe, sometimes none.
M. Duméril's second family of his second order, Passereaux, or Passerius Birds, cousists of the Dentirostres, or Odontoramphes, including two of the Hornbills, Monots, I'lant-Cutters (Phytotoma).

Illiger's Ientirastres come between the Passerine Birds and Crows, and belong to his second order, A mbulatores, or Walking Birds.
Cuvier places the Buceride at the end of the Syndactylous Passerine Birels; they are immedistely preceded by the Todies (Todus). Next to the Bhecridet, in his aystem, come the Scansorial Birds (Les (irimpeurs), headed by the Jacamars (Galbula, Brima), which aro followed by the W'oodpeckers. He speaka of the Buceridce as large birds of Africa and the Indies, whose enormous bill renders them so remarkable, and connects them with the Toucans, while their carriage and habits bring them near to the Crowz, and their. feet are those of the Bee-Eaters and Kingfiahers.
M. Vieillot arranges the Jornbille and Momots in his family of Prionotes, in the second tribe (Avisolactyli) of his second order of birds (Sylvicola).
M. Tetnminck introduces the Ifornbilla among the Omnivorous Birds, tho second order in his arrangement.

Mr. Vigors places the Buccride in the aberrant group of hia Conirostres. Fregilus, in the opinion of that ornitholugist, by its curved and slender bill, leads immediately to the Birda of Paradise, which, in conjunction with the Epimachus of Cuvier, terminates Mr. Vigors's family of Corvide, and hepa, Mr. Vigors thinks, we shall find the passage from the Corvida to the Buceridu. He apeaks indeed with cousiderable hesitation as to the gituation of Epimachus, but obsorves that, being more united in its front toes than the Corride in general, it holds a middle station, in respect to that character, between the two groups; while in the length and curvature of its bill it approsches, in conjunction with many of the Paralisea, to some of the extreme specion of the Bucerida, among which, he remarks, the Buccros nasulus of Dr. Latham may be instanced.
"We thus," вays Mr. Vigors, "arrive at the singular family of Buceridue, winich geems to draw neat to the preceding groups in itd food and habits, as far at least as we can conclude from the very imperfect accounts which are transmitted of them. From thostrength also of the formation of these birds, and the powers with which they are endowed, thes beem to assert a title to a place in the vicinity of the group, which is typical in the tribe. In one particular howaver wo may detect a doviation from the more perfect atructure of that type. The fore toes of all are atrongly united at the base, the external being joined to the middle as far as to the socond articulation ; an imperliment which mast considerably interfere with the free action of the member. This deficiency is, on tho other hand, retrieved by the superior robustaess and muscular conformstion of the whole limb. An anslogous defect, and an analogous mode of compensating for it, is observable in the Ostrich, a birl also, it is to be oberered, closely allied to the typical group of its own family; and in both instauces we may pronounce the devistion from the more regolar of perfect conformation to be a defect rather to the eye of the observer, an infringement upon what ho would conceive to form the 'beau-idéal' of the typical character, than a dofect in reality. Wo may here delay a moment to observe upon tho canses that assign so totally remote a station from the present to the Todide, Meropide, and IIalcyonide, whose gressorinl feet, as they are tochnically called, are of precisely the same structure as those of lluccras. In them, the deficiency, accompanied by a correspanding weakneas of the whole member, is real, and of sufficient conseguence to deprive the hind of the neans of usiag its lege and feet to alvantrge. The force and powern of thege parts are in fact tranaferred to the wings, which are chua endowed with a moro than unusl share of strength, in order to atfond tho bird a more than usual assistance in the sërinl mode of aceking its food which it is assigned by mature. In the Buceros, on the other hand, the gressorial feet are accompanied by a superior robuatness, which counterbalances their inferiority in form. And henoe the family may cousintently maintain its station in the vicinity of the more perfectly formed and typical groups of the Inscasores which ano now betore us. The tendency, already observed, which opposite points of the circle in which a series of aflinitics is united have to approach each other, accounts for the resemblance here jointel out between these otherwise discordant groups, nnd acrves to explain the reason why the abalogoun relation between them bas been miataken for a relation of aflinity by aystemstic writers, so far an to induce them to arrange all the gressorial birds in one connected \&roup. Besidow the gemus Buceros, Lina., the protuberance on the bill of which varies in almoat every poasible shape in which fancy can embraly it, the preseat family includes the Momotus of M . Briman, which accords with the entire of that genus in ite gressorial feet, and with soveral epecies of it, as tho genua now atauds,
in the curred bnt somewhat shorter and more attenuated bill." [Момот.]

In his remarks on the succeeding order, Scansores, Mr. Vigors observes, that besides the deviation from the more perfect formation of the foot in the Buccride, which prepares us for the more considerable deviation that takes place in the same particular among the Scansorial Birds, the large and disproportionate bill of that family is carried on to the Ramphastide, the first family of the Scansorcs, according to Mr. Vigors.
M. Latreille arranges the Hormbills among the Syndactyles, the fifth family of his second order (Passereaux, or Passerine Birds), in company with the Bee-Eaters, Momote, Kingfishers, \&c.

In the method of M. De Blainville, as carried out by his pupil MI. Lherminier, the Hornbills appear among the Normal Birds (first sub-class), and as the 14 th family, between the Kingfishers and the Toucans.
M. Lesson, in hia 'Projet," places the Bucerider as the last family of his Insessores, or Grimpeurs, artanging it in the third tribe (Syndactyles) of that his first order. The other families of the tribe are the Bee-Eaters, Meropida; Kingfishers, Halcyonida; and Cocks of the Rock, Rupicolide.

Mr. Swainson arranges the Buceride among the Conirostres, together with the Corvida, Sturnide, Pringillida, and Musophagide. After noticing the peculiar conformation of the bill in the Buceride, be observes that in some of the species that organ is without the basal protuberances, ao that they bear the nearest affinity to the Toucans, belonging to the Scansorial tribe, which is joined to the Conirostral. He considers that we have no bird which actually unitea the two families in so perfect a manner as that by which the Toucans are blended with the Fissirostres through Prionites; and he remarks, that we should expect that a bird which mighe conduct us from the Toucans to the Hornbila would be of large size, and that it would present us with some of the gay colours peculiar to the Toucana, both in its bill and plumage; but that its feet should no longer exhibit the scansorisl structure, inasmuch as that, as he has before remarked, we see, in the little power possessed by the Toucans of climbing, that nature is about to quit the scansorial structure. There is good reason to believe, he thinks, that such a bird is in existence, although at present only known to modern writers by a drawing executed in India, in the collection of Mr. Smith. Both Dr. Latham and Dr. Shaw, he adds, describe this bird under the name of the Crimson Hornbill, and he considers that the figure published by the latter carries internal evidence of its suthenticity. Mr. Swainson sees in this bird the crimson colour, the long tail, and the dorsal collar, so prevalent in the genus Pteroglossus, joined to a miniature Toucan's bill, with a distinct band at the base, like the Ramphastos Trucanus, yet with the feet of a Hornbill. That this bird, and probably other andectant species, will hereafter be discovered in the vast and atill unexplored regions of Central Asia, Mr. Swainson does not doubt. He speaks of the Hornbilla as a small family, of which perhaps the typical form is now only known; and he looks upon them as being as much isolated as the Toucans and the Parrote. He adverts to their enormously large bills, generally furnished with an appendage or excrescence on their top, the use of which, he says, is unknown; nor has, he adds, the internal structure of this member been fully ascertained. The feet, he remarks, are generally so very short as to appear calculated only for perching. "United." continues Mr. Swainson, "to the Scansorial Birds by means of the Toucans, they would scem to represent the Rasores; but the structure of their feet, more imperfect than any of the families in this order, forbide the supposition. This opinion we had long entertained from theory, but it has recently been confirmed by a singular fact in their economy, cormmunicated by an officer long reaident in India. It seems that all the species of Buceros he has met with in a live state are constantly in the habit of throwing their food up in the air and catching it before it is swallowed." This propensity Mr. Swainson considers to be an incipient development of the fissirostral economy. We have only to add, that Mr. Swainson does not admit inta the family of the Buceride the Momots (Prionites), which he places under a lino drawn at the end of the family of Trogonide. ('Classification of Birds.')

Some light will be thrown on the proper place of the bird in the animal series by the following account of the anatomy of a young Buceros caratus by Profeseor Owen :-The tongua was very short, of a trisngular form, and very smooth. The air-cella were very large, and that in front of the neek contained the ossophagus and the trachea. Tho cesophagus, as in the Toucan, was very wide, and of nearly equal diameter as far as the gizzard. The gizzard was thieker in its eoats and of a more elongated form than that of the Toucan: its cuticular lining was very tough, and disposed in longitudinal ridges. After the duodenal fold the remainder of the intestinal canal was disposed in two similar folds, and then extended along the middle line of the back to the cloach. There were no caca. The conts of the inteatines were atronger than is usual in birda, and the dismeter of the canal was more considerabla, diminiahing however gradually from the cornmencement of the illum, as far as the beginning of the rectum, and thence becoming wider to its termination. The whole lengtho of the intestines was \&f feet; that of the bird, from tho cad of
the bill to the vent, being 2 feet 2 inches, of which the bill measured 7 inches. The liver had tha usual two lobes, of which the right was the largest. The gall-bladder was of considerable size. The pancreas, of an elongated slender form, had a small oval enlargement at its commencement at the lower end of the spleen, and a flattened oblong mass or head at the bottom of the duodenal fold : it accompanied the duodenum throughout its length, being folded on itself similarly to the intestine. Its secretion was convejed inta the intestine by three ducts; one from its head, which entered the duodenum at the bend of the fold; the others from the elongated lobes, which terminated close together at the end of the fold between the insertions of the hepatic ducts; an arrangement corresponding with that which exists in the Heron. In the cloaca the rudimentary bladder was little more than a line in width, and the ridges bonnding it above and below were confined to the back part of the cavity. The bursa Fabricii (which Professor Owen regards as anslogous to the glandular pouch found in so many other classes) was of a triangular form, large, and surrounded, as usual, by a capsule of muscular fibres.

The muscles of the mandibles consisted of a digastricus, or of a muscle analogous to it , destítute, as is usual in birds, of a middle tendon, a temporal muscle of moderate size, and pterygoidei externi and interni, proportionally more developed. There is also a strong ligament occupying the place of the masseter, and a second, destined to prevent dislocation backwards, which passes from the zygoma directly backwards to the condyle, or articulate depression of the lower jaw. Disproportionate as this apparatus seems to the moving of ao large a borly as the bill of tha Hornbill, it is yet fully adequate, the weight of that organ by no means corresponding with its size. The cavities in the bones, the arrangement of the columns supportiog their parietes, and the air-cells, produce at tha same time lightness and strength.

With respect to the other parts of the skeleton, Professor Owen particularly noticed the extension of the air-cells into the distal bones of the extremities. He remarked that Mr. Hunter observes how, in the Pelican, the air passes not only into the ulna and radius, but "into those bones which answer to the carpus and metacarpus of quadrupeds." In the Hornbill the air passes also into the bones corresponding to the phalanges; and in the posterior extremity that it permeates the tibie, tarsi, and phalanges.

Professor Owen concludes by some remarks on the affinities of the Hornbill as deducibla from its amatomy. Its neareat approach is to the Toucan. The Toucan however, in the want of a gall-bladder, agrees with the Parrots; the presence of that organ in the Horubill places the bird in more immediate relation with the Crows. The disposition of the intestines in long and narrow loops also agrees with the Raven. The tongue, so remarkably varied in form and use among the Scansores, resembles in the Horabill that of the Carnivorous Birds. ('Proceedings of the Zoological Society of London,' 1833.)

Buccros.-Bill long, very large, compressed, more or less curved or falcated; base smooth, elevated, or rather surmounted by a casque or

Head ef Rhiaoceres Ilornbill (Buceros Rhinoctros).

belract-lite protalesence; edges of the madible amooth or notehed ; froint enoweth; interior of the bill, eapecially the upper mandible avd catyue. Very cellular; nowtril Lakal, ou the surfoow of the beak, in a furrow, suall, wowewat round, open, piereed in the vurneuna wubplabe of the lill, corered at the baw by a mematianc. Feet stort, atrume, momeular ; sole of the foot laree. Wings moderate; the first thre qualle grabluated; tho fourth or fifth the lougeat. [limins.]
The arecien of Aucroe are fonnd in the Old Wiurld, Africa, India athit ite falarde and Now (ininen.
Ilontion, in his alencrijution of lain Corrus Indicus (Bucems IIydrocorar of Lanneup), natiro of the Molncear ani haoda, ryn" "More Corvi
 mod pulimimum mucibun inyrinticis avile vescatur; iisque jasigne damaun infert Cinco corum quopuse delicata est, ot asan saporem a parta jlane aromaticnus babet (it walka like the erow of our countries, but differs much in diaposition from our crowa, inastunch an it ferils not on carcasem, but moat expecially on mutmegs, and that greedily, doving agnent deal of danage en them. Their flenta also is delicate, atol when rosuct has sumaronatic fawour from thair food)." Of the
 it liven on tho cancunew and inteatises of animals, and that it waits upon the humtern who kill wild catte, bonrs, and staga, to gorge itmelf with tho cutraila of ehose animank Willughby, in hia acconnt of "Thontiua his Indiau Ihaven," anym, "It walks after the manomer of our liaren, but differs from it in mature and disposition, in that it feeln got upmon cartion or diadl carcassea, but chietly upon nutmega, of which it is rery greely, making great destraction of that fruit, to tho nomall decriment of the owners. Its thesh is very delicate, and briog roastal hath a plain armatical relish, contricted from its food." Of The IIorned Indian IRavea, or Topan, called the lihinocerot Bird," ho asyn," Thin horned bir.l, at it casta st strong maell, so ic hath a fonl look, moch exceefing the Ennopean liaven in bigness.
It lires upon carrion and garbuge, that is, the carcaases and entmils of animala." Ihoth these parkages are taken from lhuntius, as the reader will perceive. Cuvier considers them as omnivorons-"Jhs preunent touts norte do nourriture;" and he states that they eat tember froit, hunt mice, small binds, and reptilen, and do not even disdain carcanea. The late Major-General Thounts Jtardwicke, who coneributed on laggely to onr acquaintance with Indian animala, in treatiog of $/ \%$. galeasm ('Linn. Trans,' vel. xiv.), gives the following deacription of the habits of the Horabilla:-"The progressive motion of the lirisls of thim genus, although their feet are formed for walking, in alwayn liv jumping or lopping. I lave keptecremal species alive, nad they all moven is the mame manner. In a atate of nature these hirin, in thim part of Indin (Malaces), live on wild fruits. In continement they feed frecly on plantains and on boiled rice. At night they perch with grest necurity, thongh tho largeners of the foot reema firtter muiterl to remt on the srounil." M. Lesson sums up tho labits of the llornbille than:-Thome of Africa live on carrion; thone of the Fiant Indica week for fruila, engecially mutmega, and their flesla nequires from them a delicious finour. Their tlight is performed by repeated aerokea of the wiogn, and the air which they displace, joinerl to the clattering of their mandiblea, occanions a great and very diaquieting noim in the foresta, when the cause in unknown. Thia noise, capable of inmpiring teror, dies not ill rememble thome flaws of rough and mululen wimin ("smins de vent bmaques et subits") which ariae so anmpectedly between the tropich, and blow so violently. The hisuropmans eatalifinel at the Molucens think that the furrown which are fern on the lull of the Horubilln are the remult of age, and that each furmw niguifion a year; whence the name of Jerarrogel, which they give en them lirda. Br. Swainmon Nemarke that the Hornbills are gromaioua noiny birdn, getherally of a very large aizo, and are grontricted to the Ohl World; that they are onnnivorum, feeding both on animala and vegotalym: that fomo bowever mem only to partake of the later fomp : while wherm, uron the authority of le Vaillant,
 wan vimatred tor lwe saoto nttinehoal to nuimal thas to vegetable food,
 11. Thin it whal awallow entirn, after mporzing it twite or thrice with the hill: abol the cauting wron noticed. I'rofezarg Owen however adde than l'ativer ling bonos tratimomy to ita regurgitating habita,

Phefore we procerel to give cxamplom of tlie family an it here atande, that io, th crominting of tho trus llormbills alone, wo may remark that
 veratabla fownl, while othern live on carrion, wh tam been amarted, them ruay lim enow groumda for "lovating nuch noweies to the rank of

 who lim mont muccemafully dimajuterl the nhacurity in which the

 mprima
A. Whineoreras, Mhinmeron Iorthill. Thin specien in to be found in mont colloction*. And thouyh there may be mane wariety from nge nud circumatancoa, the bill will iow endrally fumbl in lecalmat 10 inchen Inge arme of a gellowinth. white, the Hpper wandibin red at the base, the lower linck. The laorn, or cambe. varimel with hlack shid white,

The body black, of a dirty white below and ponteriorly; tail about 12 inches, the feathers white at the base and tip, black in the middle; fect and clawa abscure gray.

It is a native of India and the Indian Ialands (Sunda, for instance).
B. carafus. Throat, car-corerts, circle round the cye, and a narrowband at the occipital edge of the protuberance of the beak, black; ucck dirty atruw-colour, the feathers of the back of the neck elongated body and wings black, greater coverts anl quill-feathers tipped with white; thighs, upper and under tail-coverta, white; as is the tail also, with the exception of a broad black band about three inches from the tip; beak yellowish, inclining to acarlet at the tip, under mandible black at the base; tarsi black. (Coulul.)

The food of the Auceros cavatus, like that of other Hornbills, con minte of froita, berrica, tlenh, and even carrion ; in abort, it may be conaidered as atrictly otnnivorous. (Gould.)

It is a native of India, the Himalaya Mountains, Java, and most of the islanda of the Indian Archipelago.
The species of Buceros are very numerous.
HORNBLENDE, a Mineral belonging to the group of the Anhydrous Silicates of Magnesia. An account of its general characters and formation is given nader Averre. It is aubject to numerous varieties differing much in appearance, arising from isomorphism and crystalliaation. Alumins enters into the composition of some of them, and replaces part of the other ingredients.

The varieties are divided into light and dark coloured.
To the light coloured varieties belong Tremolite or Grammatite. It comprises the white, grayish, and light-greenieh alender cryatallisations, usually in bladea or long cryatala, penetrating the gangue, or aggregated into coarse columnar forms. It is sometimes nearly translucent. The epecific gravity is $2 \cdot 93$.
The light-green varieties are called Actinolite. Glassy Actinolite inclodes the bright glassy cryetals of a rich green-colour, ususlly long and slender, and penetrating the gangue like tremolite. Radiated Actinolite includes olive-green masses, consisting of aggregations of coarse acicular fibres, radisting or divergent. Asbestiform Actinolite resembles the radiated, but the fibres are more delicate. Massive Actinolite consists of angular grains instead of fibres. The specific gravity is 3.02 to 3.03 . [Actrinolite.]
Asbestus is also included under thia division. [Asbestus.]
To the dark-coloured varieties belongs Pargasite, a term which is applied to dark-green crystsls, short and stout, of bright lustre, of which Parga in Finland is a notable locality.
The term Hornblende is applied to the black and grecnish-black crystala and massive specimens. It contsins a large per-centage of oxida of iron, and to this owes its dark colour. It is a tough mineral. Pargasite and Hornblendo both contain alumina.
The varities of Hornblende fues easily with some ebullition, the pale varieties forming a colourless glasa, and the dark a globule more or less coloured with iron. Hornblende is an essential constituent of certain rocks, as aycnite, trap, and hornblende-slate.
Actinolite is usually found in magnesian rocks, as talc, steatite, or serpentine. Tremolite occura in granular limestoue and dolomite ; Asbestus occurs in the sbove rocks, and also in serpentine.
(Dasa, Manual of Mineralogy.)
HORNBLENDESCHIST. Under thia term MCulloch ranks s variety of mineral aggregates in which hornblende sbounds, and which are mostly but not universally of laminated atructura. Horne-blende-Schist is commonly associated with gneias, less frequeutly with micaschist, and seldom forma alone any conaiderable mountain masses. It follows the contortions of gneiss, and is traversed like it by granite veins. (Glen Tilt.) Hornblende is rarely associated with argillaceous slate, as in Ben Lair, in Skiddaw, Cader Idris, and near the granites of Cornwall. In these cases its origin may perhaps be due to the action of the contiguous heated granitic masaes, and auch rocks may be considered 'metsmorphic.' They are considerably different from the Hornblende-Schists of Glen Tilt, Iona, and Rossshire. (M'Culloch on 'Rocks.')
HORN-EEL. [AMMODTTES.]
HORNE'RA, a ganua proposed by Lamouroux to include a small recent stony Polypifer, which Solander ranked among the Millepore8, and Lamarck among the Retepores. Like the latter genus, it has cells on one aide only: they are armanged almost in quincunx, on diagonal lines; the oppoaite side is slightly furrowed. (Lamouroux, ' Tableau Méthodique.')
HORNET. [VESPIDE.]
HORNETMOTH. [SPHTNOTD.E.]
horn-FiSh. [Synonathide.]
hORN-POPPY. [Glauctum.]
hornstone. [Quartz.]
HORSE. [Equids.]
HORSECHESTNUT, the Azculus Hippocastanum of botanists : it is asid to derive its name from the practice among the Turks of feeding their horses on the seeds of this tree. [Escculus.]

HORSE-RADISH. [Cochlearia.]
horsetail. [Equisetum.]
HORTIA, a genus of Plants belonging to the natural order Rutacce. II. Braziliana possesses in its bark properties resembling those of Cinchona, but in a leas degree.
IIORTULIA. [BoIDe.]
hot-sprinas. [Getsers.]
HOTTO'NIA, a genus of Plants belonging to the natural order Primulacer. It has a 5 -parted calyx, divided almost to its base; tha seeda, with the hilum, close to one end ; the atamens, 5 , inserted and included in the tube of the corolla; the capeules many-seeded and 5 -valved, with 10 teeth.
II. pahustris has the flowers whorled, stalkef, and sested upon a long solitary cylindrical common peduncle, the corolla longer than the calyx, the leaves pectinated. It is a native of Great Britain in ponda and ditches, and is called the Water-Violet. The leaves are submerged and crowded; the flowers rising above the water are of a parple and yellow colour. It ia a pretty plaut, but possesses no useful available properties.
(Babington, Manual of British Botany.)
NAT. EINT. DIV. VOL IIL

HOUND (from tha German Hund), a name generally applied in the British Islands to those varieties of the Dog which are employed in hunting the Deer, the Fox, the Hare, and the Otter, by acent. Tha hound employed for following depredators, and used so much in the old Border times, was called a Blood-Hound. [Blood-Hound.] The Grayhound, which follows its four-footed game by the eya [GrayHoUND], is not a hound in the proper acceptation of the term adopted by aportsmen; for that appellation is confined to those varieties of the Dog which are trained to that species of chace called Hunting, which implies that the dogs ao employed follow their four-footed game by the acent principally.

In addition to the Blood-Hound,-the Stag-Hound, the old Southern Hound, the Fox-Hound, the Harrier [Harrier], and the Beagle [Beacle], were the hounda of greatest note. Some of these varieties, the old Southern Hound for instance, which was alow but very sure, and with a fine deep-toned voice when it gave tongue in earnest, are gradually disappearing; and indeed the pace required now in most kinds of hunting, except otter-hunting, but eqpecially in fox-hunting, has brought into demand a breed of hounds whose fleetness requires the best and fastest horses. The old fox-hunter of the early part of the last century would find himself 'nowhere' on a good day in Leicestershire, could he now be present. His horses and hounds were bred with a view to endurance rather than apced; and if he were to appear at a modern 'meet,' he would see that an entire revolution haa taken place in the system. Whether this is an improvement is a quastion which will be answered differently, according as the respondent may prefer the old-fashioned slow hunting, where all the sagacities of the hound were minutely developed, not without a good deal of 'music,' or the rspidity which makes a good run now-a-days very like a race. The young, bold, and well-mounted rider will generally prefer the latter.

The Southern Hound, which is aupposed to have been of very high antiquity in Britain, is large in aize, strong, snd of majeatic aspect, long but round in the body, decp in the chest, and his ears are long and aweeping. The tone of his cry is deep, rich, and mellow. He will hunt the coldest scent, and persevera long after lighter hounds have given it up; but he is very slow. The suthor of 'lRural Sports' saw a pack of these hounds in Lancashire, where they were kept to hunt hares, and the least of them stood twenty-two inches. The huntsman went with a pole on foot.
As a contrast we may notice the celcbrated match made between Mr. Barry and Mr. Meyuell to run a coupla of each other's fox-hounds a drag, from the rubbing-house at Newmarkct town-end, to the rubbing-house at the atarting post of the Beacon-course, for five hundred guineas. The match came off on the last day of September, and was won by Mr. Barry's Bluecap and Wanton, which came in very close to each other; Mr. Meynell's neareat hound, Richmond, being beat by upwards of a hundred yards. The ground was crossed in eight minutes and a few seconds; and of sixty horses that started with the hounds only twelve were up. Cooper, Mr. Barry's huntsman, came in first, but it is asserted that the mare that carried him was completely blind at the conclusion of the run. The famous Will Crane, who rodo Rib, a king's-plate horse, was ouly in the twelfth. Colouel Thorntou's Merkin, which was sold in 1795 for four hogaheada of claret, the seller to have two couple of her whelps, ran a private trial of four milea in seven minutes and half a second.
Our limits will not permit us to go into the details of this, to many, interesting subject; aud we must refer the reader to Somerville's 'Chace, Beckford's ' Thoughts upou Hunting,' 'The Sportsman's 'Cabinet,' Daniel's ' Rural Sports,' the Sporting Magazines, and, most especially, 'Nimrod,' for further information.
HOUND'S-TONGUE. [Cynodlossum.]
HOUSE-LEEK. [Crassulace.x; Sempervivum.]
house-martin. [Hirundinide.]
hoUSE-SPARROW. [Passer.]
HOVINIA, a genus of Plante belonging to the natural order Rhamnacee. The peduncles of II. dulcis become extremely enlarged and aucculent, and are in China in much eateem as a fruit, resembling in flavour, it is said, a ripe pear. Some species are astringent.
howlet. [Strigide.]
HOYA, a genus of Plante belonging to the natural order Asclepiadaceer. It has a 5 -cleft rotato corolla. Coronet of appendages depressed, 5 -leaved; leaflets apreading, fleahy, with the inner angle extended into a tooth lying upon the anther. Anthers terminated by a membrane. Pollan-masese fixed by the base, converging, compressed. Stigma not pointed, or scarcely so. Follicles smooth.
II. viriditora is a native of Coromandel, Sylhet, and the Nilgherry Hills. It has opposite, atalked, broad, cordate, or ovate leaves, not sinuate at the base, pointed, membranous, smooth, from 3 to 4 inches long; petioles from 1 to 2 inches long; umbela lateral or axillary, simple, many-flowered. Flowers numerous, green, with pedicela as long as the peduocle. Corolla flat; crown of appendages turbinste, truncate. Anthers reflected over the atigma. Follicles horizontsl, obtuse, about 3 or 4 inches long, and 4 inches in circumfereuce. The root and tender stalks proluce nausea, and promote expectoration. The leaves peeled and dipped in oil aro used by the natives of India as a discutient in the carly stages of boils; wheu the disease
is arone afloncual they aro chufluyed in the same way to promote anp frunthers
 of theser ringest duwere, which. from their curivu wax like appenraser five nur to the satue of Wias. llathte.

H1's.AS sirtilfix [Mas.]

 regotallise and utamive; the cryatalline form is undeterniund. Fracture useren, entelay. Colour hrigheinheyellow; dasoil of lustre;
 nuRicient to merath gypunt, but in acrutcherl ly mica.

It in immoluble in water. but dianolven in nitric aed without efferrearmece, and ingart. a yellow colour to it.

The mamive variety occura in mall thatinh reniform pieces, of a fino adrely etracture; colour grexuinligellow.

Analynim by lhivero:-

$$
\begin{aligned}
& \text { lusalie acid } \\
& \text { livituside of irun }
\end{aligned} . \quad . \quad . \quad 46.14
$$ 100.

HLMBOI.DTJT\&: Thin mineral ia a Bonomilicate of Lime, and is therefore a variety of hatholue, unless indeed it be identical with it, Which han beev fuppoed to the the case. It occurs cryatallined. lrimary forn an oblique rhombic primen. Clenvage parallel to the ohligue thagonal of the prinm; fracture conchoidal. Hambess 4.5 to 50. Colone white and yellowish-white; strak white. Lustre vitreous, transparent, tramacent; opaque. Specific gmvity 2.09.

Found in tho Tyrol, in the Harz, in North America, and near Filioluantion

H1'MHBA'CF:F:, //umiriads, a natural order of Plants belonging to the Syncarpung group of l'olymetalour Fixgena. It las the followingernential characters:-The calyx is in 5 divisions; the fetals altersuat: with the lobes of the calyx and equal to them; the stamens hyjogyrona, four or many times an numerous as the petals, monadelpibum; the anthermerelled, witha flemby connective, extended beyond the two lubes: the ovary superior, usunlly nurrounded by an auricular or tomethed dime, 5 -celled, with from one to two suspended ovales in each cell; the atyle minule, the atigma lobed; the fruit drupaceane, with fire or fewer cells; the sed with a membranous integument, the embryo atraiche, oblong, lying in thesly albumen; the maljele superior. The plank belonging to the order aro trees or alorubs abounding in a reminour juice, with alternate mimple coriaceous exstipulate leaves, and axillary coryinha of tlowers.

The atfuitice of this order are not well mate out, In their albuminunin aroln and shender embryo they arree with styracece, as also in their halmanis wool. They renemble Meliacee very much in habit nod los elseig fructification, but the nathern and seeds of Humiriucers differ very asach from thow of Mclincece. Von Martins compares this onder with Chlmacen, whint Limbley thinks that their real affisity in with A wrisumaceir: "an affinity," he ohserven, "jndicated by their informocence, the texture of their stamens, their disc, their winged jetiolam, and their balmanic juices." There are three genera belonging to thil orilor, /lumirum, Ilelleria, and Saccoglortia. All are natives of tim trophical paren of America.
f/arnifiom (frotn Uumiri, the Guynneso name of one of the grecien)
 ntmoc, an annular dime on-lobed, the atigian 5 -lobed, the fruit containing as colled nut, the cells 2-needed. II. Batsamiferum in n inm thent in twight, with ovate oblong leasea halfelasping tho nevin, with a securratit nerve on tho bock, the indonsecnce longer than the lonvem, the jeedunclenmoooth as well an the petales. This tree 10 a hatise of bingata lta hark is thick, and nbounds with a red

 arl agrowalim orlour. The nogroom and nativen of Gugama use the
 in buiding their lumere Wr have rac necount of the conponition of

 Wixul, ron mocotant of the colume of the wowl. Il. foribundum in a trra 20 or 30 fert high; the trank wherit wourded yields a fragrant ymilow lingar talenta, known ly the name of halaram of Umiri,

 Tratilion jubera.
(tandlog. Disfmet Syatem; Hurnett, Gullinod of Botany: Don, (hollommineme Illonta.)

Mए.M1TE: Thin mineral mocura in attacliod cryntaln, the primary form of whach in a right rhombic prism. Cleaven readily jnrallel to

 shal bowth, mometimes narly colourloar Tranalucent, tramparent. sterak wita, lositro rifmion lloaterl by the blow-pipo it beemonen orenue, but be not funible; with burar it givea a tranaparent
gise

IUUMMING IBIRDS, the name of a brilliant family which includes the amallest of Birds [Thochasides]

H1"MULUS, a genus of l'lants belonging to the natural order trticacet. It has tho following characters:-Flowers dioccious Males witls the perinath partud; stamens 5 ; femules with the perigone scale-like, open, hidden by tie scales of an oval catkin; stigmas 2, elungated.
/I. Lipulus, the Hop, twines round hedges in many parts of Eiurope. It is truly wild in Fiugland, and is also found apparently wilrl in the United Staten of Ancrica. It has rough opposite cordate loberl loaves, sud numerous greeniab-white flowern, of which the sexea are distinct. In the malo the flowern form loose drooping panicles, and cach conaiata of 5 sepals, 5 stamens, and a convex contro representing the ovary. In the female the flowers are arranged in little axillary stalked scaly tufta; each conaists of a maked ovary, with two pprealing downy stigmas, and is incloaed ly a concave bract. These bracts increase in size after the flowering is pant, are collected into a loone head of imbricated scales, within which are placed the small seed-ressels, or sceds, as they are usinally called.
The female flowers, termed concs, strobuli, or catkins, of thia plint, when ripe, constitute the Hops, which, independent of their employment in brewing, are of considerable utility in medicine. The mature hops consist of a nomber of imbricated membranous acales, laving the fruit at their base: the surface both of the scales and of the fruit is atndiled with aromatic glands, which prepare a material bearing considcrable resemblance to the pollen of the anthers, and termed Lupuline. This is the most valuable part, as in it reside the essential properties of the Ilop: it possesses a cellular structure, and in the cells are contained volatile oil, resin, a bitter principle, with tamin, and a trace of malic acid, with acetate, bydrochlorate, and sulphate of ammonia.

The Ifop (ITumulus I.upulmes).
1, a branch of the female plant; 2, a branch of the malo plant; 3 , a malo flowre; $4, n$ hend of young female flowers; 5 , a bead of ripe flowers and frult In the mate of Joph.

The superiority of the IIop, as an ingredient in our malt-liqnors, denends upon the fact of its containing within itself aeveral distinct and independent elementa of activity, which the bitter herba that have st different times been omployed as a aubatitute do not possess. Tho litter principlo imparts to the bevorsgo a tonic quality and an agreeable thavour; while at the rame time an aromatio iugredient sdds n warnuth und atimnating property, and modifies the bitterness: it likewine contains an astringent principle (tanain), the effects of which are to precipitate the vegetable mucilago, and thus to remove from the beer the active principlo of its fermentation : every sttempt therefore
to substitute an ordinary bitter for that of the Hop must necessarily fail, unless a compound can be so srtfully constructed as to contain in due proportions the principles of bitterness, astringency, and sroma

The aromatic bitter gives to the Hop a very marked power over the digestive organs when debilitated. A narcotic property has also been ascribed to this article, which is denied to it by some writers, who attribute the intoxicsting power of beer entirely to the alcohol and carbonic acid which it contains. Yet there can be no doubt that tincture of hops, and even extract of hops, possers sedative powers, and often procure quiat and sleep, where opium cannot be borne. Decoction does not seem to be a judicious mode of preparation, and sbould not be practised. Lupuline has been administered alone, but this does not posseas any advantages over the common plan. [HoPs, in Arts and Sc. Div.]

HURA, a genos of Plants belonging to the natural order Euphorbiacea. It has monocious amentaceous flowers; the male flowers have a truncate calyx; bumerous stamens united into a solid column; female flowers with 1 style; stigma with 12 or 18 rays; capsule with 12 or 18 cocci.
H. crepitans, Sandbox-Tree, is a native of the West India Islands, Mexico, and Guyana. It is a tree abounding in milky juice. Leaves cordste, acuminate, entire, or very slightly toothed, stalked, smooth, coriaceous, with simple vaine passing from the midrib to the margin in a curved direction, within a quarter of an inch or so of each other, and connected by numerous oblique veinlets; stipules large, ovate, leafy, deciduous; petioles as long or rather longer than the leaves, with 2 glands at the apex. Male flowers srranged in an erect long-stalked axillary conical catkin, composed of imbricated 1 -flowered scales; calyi short, urceolate, truncate ; column of stamens surrounded in the middle by 2 or 3 rows of tubercles, each of which bears an anther on its under side. Female flower solitary at the base of the male peduncle, or near it; calyx urceolate, entire, or dividing eventually into 3 parts ; stigma very large, discoidal, peltate. Fruit a depressed umbilicated woody capsule, about the size of a middling apple, with from 12 to 18 furrows, which separate into as many cocci, which fly asunder, each opening into two valves with great elasticity when dry sod fully ripe. The milk is so venomous as to produce blindness in a few daya after touchiog the eye. Seeds a violent drastic dangerous purgative. Aublet atates that negro slaves to whom one or two seeds had been administered in the form of an emulsion, were nearly killed by them.
hURAULITEE. [Manganese.]
HURO'NIA, the generic name assigned by Mr. C. Stokes to certain remarkable articulated bodies, of a partially radiated structure, found in the transition limestone of Lake Huron by Dr. Bigsby. Until lately these fossils were referred to the group of Polypiaria, but from a careful atudy of epecimens more complate than those which he first observed, Mr. Stokes has found that the parts represented as lamelliferous corals are really only the siphuncular portions of shella of Cephalopoda, which may be included in the family of Orthoceratites. The structure of the siphuncular parts in these and other chambered phella from the limestone of varioua parta of North America, has led Mr. Stokes to propose two other new geners, namely Actinoceras and Ormoceras, whose characters, as well as those of IIuronia, can only be Well traced in comparison with the ordinary $\begin{gathered}\text { etructure of Orthaceras. }\end{gathered}$ [ORTHOCERAs.]

HU'RRLA, Daudin's name for certain Indian Colubers, the scales or plates on the base of whose tails are constantly simple, and those of the point double.

HUTCHINSIA, a genus of Plants belonging to the natural order Cruciferce, nemed in honour of Miss Hutchins. It has an entire elliptical pouch; boat-baped valves, keeled, not winged at the back; seeds 2 in each cell; petals equal; filaments aimple.
II. petrcea is a rare plant, found on limestone rocke in Great Britain. It has pinnate leaves; a branched leafy stem; petals scarcely longer than the calyx ; pouch ohtuse at both ends. The stem is from 2 to 4 inches high. Flowers amall.
(Babington, Manual of British Botany.)
HYA-HYA. [TABERNEMONTANA.]
HYACINTH, a Mineral, consisting of silica and zirconia, transparent, and of a red colour. [Zircos.]

HYACINTHUS, a genus of Plants belonging to the natural order Liliacere sad the tribe Scilleas. One of the most common of our garden planta is the H. orientalis. The genua formerly included two mpecies of British plants, which sre now referred to the genera Endymion and Muscari. [Endymon; Muscanf.] For the culture of theee planta see Hyacinth, in Arts and Sc. Div.

HYENA. [HYENINA.]
HYANA-DOG, an animal found in the south of Africa, more eapecially the Cape. In aize and form it is smaller and more slender than either the hysens or the wolf. It is the Wild Dog of the settlers at the Cape. M. Temminck first described it as a hyenar (IIycena picta), but subsequently regarded it as a species of dog. Desmarest considered it a apecies of Canis, and recorded it as Canis pictus. Brookes gave it the geoeric appellation of Lycaon; and Fischer, in his 'Addends of Emeodanda,' quotes it as Canis Lycaon, snd, in liis ' Index Nominum,' refers to it as Lyccoon tricolor of Brookes. Cuvier places it arnong the dogs. Dr. J. F. Gray places it amoog the Canina in his order Felida. He calls it lycaon venaticus, and gives the fol-
lowing synonyms in addition to the above:-Canis aureus, Thunherg; Canis Hycnoides, Cuvier; Hyona venatica, Burchell; Kynos pictus, Ruippell; Lycaon typicus, A Smith. It is also known by the common names Simir and Melbia.

In the number and form of its teeth the Hyæna-Dog agrees with the dogs, as well as in its general osteological atructure, which presents a remarkable difference from that of the hyæua. Externally it is distinguishable from both the hyenas and the doge in the proportional length of its legs and the form and proportions of the body. There is no mane as in the hymars, and the tail reseubles that of some dogs. The head is byæna-like, and, like the hyanas, it has only four toes to each foot.

Its colour is reddish or yellowish-brown, variously mottled in large patches along the sides of the body and on the legs, with black and white intermixed. Nose and muzzle black, with a strong black line passing from them up the centre of the forehead to between the ears, which are very large, black within and without, and furnished with a broad and expanded tuft of long whitish hairs arising from their anterior margin, and filling up a considerable part of their concavity. Beneath each of the eyes a lighter patch. Tail moderate, covered with long bushy hair, and divided in the middle by a ring of hlack, below which it is nearly white, as are also the fore parts of the legs below the joint. Mr. Bennett, who thus describes the animal, had an opportunity of secing a liviog specimen in the Tower of London ; hut he observes that their colours and markings are subject to variation in different individuals, though their general disposition and appearance are similar.

Mr. Burchell, who brought to this country the first specimen, and pointed out the distinguishing characters, deacribing it under the name of Hycena venatica, ststes that it hunts in packs, at night by preference, but frequently in the day. He describes it as swift, fierce, and active, so that only those saimmls which are gifted with great fleetaess can eacape from it. It attacks sheep openly and fearlessly; it approaches oxen and horses more cautiously, advancing upou them by stealth, biting off the tails of the oxch, and injuring the horses, especially young colts, es severely that they rarely survive.

Mr. Burchell's specimen continued ferocious though he kept it chained up in his stable-yard for more than a year, and the man who fed it " dared never to venture his hand upon it." It however became familiar with a dog, its companion. Tha Tower specimen arrived with a young Cape lion, with which it agreed perfectly till the lion became too strong and rough in his play, when the Hyæna-Dog was associated witl a Striped Hyana and two Spotted Hyenas, and all lived tolerably well together in the same dea.

Mr. Swainson gives the name of Hyana-Dog aa the English synonym of Proteles. [Aard-Wot.f.] The auimal which is the subject of this article he describes under the name of Lycaon, the Hunting Dog. He arranges both under the family Felide, where they had been previously placed by Dr. Gray.

Two very fine specimens of this animal are now living (I854) in the Zoological Gardens, Regent's Park. They ars young, and excessively playful, scldom allowing each other to rest a single moment.
HYANANCHE, a genus of Plants belonging to the natural order Euphorbiacere. 11. globosa yields a fruit which is collected by the Cape Colonists, and when powdered is used as a poison for hyonas by beine rubbed over meat.
FIY ANINA, the name of a family of Digitigrade Caroivorous Mammalia, distinguished by haviag their fore legs looger than their hind legs, by their rough tongue, great and conicsl molar, or rather cutting-and-crushing teeth, projecting eyes, large ears, and a deep and glandular pouch beneath the anue.

Dental Formula :-Incisors, $\frac{6}{6}$; canincs, $\frac{1-1}{1-1}$; molars, $\frac{5-5}{4-4}=34$.
The false molars, three sbove and four below, are conical, blunt, and very largc. The upper flesh-tooth (caruassière) has a small tubercle within and in front, but the lower one has none, and presents only two trenchant points. The whole of the dental and molar organisation, and indeed the whole craoial structure, appears to have been formed with a view to the bringing into the most avaidable action the formidable natural instruments which enable the IIyænas to break the hardest bones.
Dr. Buckland gives the following account of the feats of a Capo Hyans which he saw at Oxford in the travelling collection of Mr. Wombwell, the keeper of which confirmed in every particular the evidence given to Dr. Wollaston by the keeper of Exeter 'Change, and noticed in "Reliquie Diluvianæ," p. 20 :-"I was enabled," kays Dr. Buckland, "to observe the animal's mode of proceeding in the destruction of bones. Thashin-bone of an ox being preeented to this Hyana, he began to bite off with his molar teeth large fragments from its upper extremity, and swallowed them whole as fast as they were broked off. On his reaching the medullary cavity the bone split into angular fragments, many of which he caught up greadily, and swallowed entire. He went ou cracking it till he had extracted all the marrow, licking out the lowest portion of it with his tongue: this done, he left untouched the lower condyle, which containe no marrow, and is very hard.

I gave the animal succeesively threo
whim-tmoses of a bheep; he anapped themasuader in a moment, dividing each in two parte only, which ho awallowed entire, without the strallest mastiontion. in the keeper putting a apar of wood two frebes in diameter into bis den, be cracked it in piecen as if it had Leen couchwowh, ans in a minute the whole wan reduced to a mass of pliners The power of hia jaws far exceerled any suiual force of the kuod I ever awo exerted, ard reminded me of cothing no much an a trimer': crubine-mill, or the seivores with which they cut off bans of

The acoumpanylng figuren will give the reader some itles of the armatad ance devoted to the attachment and developiocat of the muncle dentined to move the powerful jawn These muscles, aided by the muscles of the neck, are mo atrong that it in almost impossible Lo drag from their vico-like grip that which the animal has once meizod. Cuvier rmmarkn that their rfforts in this way sometimes produce anchylumis of the cervical vertelbre, and that this han given rise to the awertion that 11 rivas have but a single bone in the neck. IHe alen atates that their oame nuong the Arabn is the aymbol of atublomames. The tongul in rough. Tho fect have four tocs each, like thow of the suricatem. The same suthor nums up their character by aying that thay are vorscioun nocturmal animals, inhabitiag cayerna, living for the nount jate oll carcames, for which they ransack the tomb, and that they aro tho ubjects of an infonity of muperstitious
trallituma

[^0]

Skull of Striped 1ismana; profice. (Cuvier.)

- Skull of Spotted IIyma, seen from above.

The strength of theso aumals and their power of dragging away large bodies is strikingly exemplified in Colonel Denham's narrative. At Kouks he relates that the Hyonas (Dhubba), which were everywhere in legiona, grow so extremely ravenous thst a good large village, where lie sometimes procured a draught of sour milk on his duckahooting cxcursions, had been attacked the night before his last visit, the town albsolutely carried by storm, notwithstanding defences nearly six feet high of branclics of the prickly tulloh, and two donkeys, whone fleah these animals are, according to our suthor, particularly fond of, carried off, in mpite of the efforts of the people. "We constantly," continues Colonel Denham, "heard them close to the walls of our own town at nights, and on a gate being left partly open, they would enter and carry off auy unfortunate animal that they could find in the atreets." From the mane narrative it appears that it was necessary to protect the graves from the attacks of these rapacious brutes. Mr. Toole's grave lad n pile of thoms and branches of the prickly tulloh, several feet high, raised over it na a protection againat the flocks of hyrenas whileh nightly infented the burying-places in that country.

Linusus, in hia last edition (12th) of the 'Systema Naturx,' places the IIyens under the genus Canis, between the Wolf and the Fox, and deacriben the Striped Hyana ouly as Camis //yana, with sufficient. accurncy. lifismon had already given the form a gencric distinction under the name of //yrena.
Gmelin, in his edition, adds the spotted species under the nsme of Canin crocuta, nad places theae lyacnas between the Crmis Thous and C. cureus, tho latter being tho Jackal; but l'ennant had previously deacribed both specien in his synopsis under the title of 'Hyrua,' and as the Striped aurl Spotted Myanas, arranging the form between the 'Dog' and the 'Cat,' namen which he uses an gencric distinctions for those carnivorour types, in the largest sense.

Curier makea the Hysaas the last subdivision of the Digitigrades fullowing hin Civotn (Viverra), and immediately preceding the Cata (Pc liu). He deacribes the suldivision as containing the most cruel and moat carnivoroun animala of the claks, and as compriaing two genera (which he doen not distinguikh), adding that tliree species are known, pamely, L'Hyène Itayéo (Canis Hyana, Limn.); L'Hyèno Brune (IIyona brunnea, Thunberg; M. villosa, Smith) ; and L'Hyčo

Tsehetée (Canis crocuta, not of Linnæus, as Cuvier quotes it, but of Gmelin).

Dr. J. E. Gray, in his method ('Annals of Philosophy,' 1825), brings the Hyanas under the family Felide, which he divides into two seetions; the first consisting of those genera which have no tubercular grinders in the lower jawa; the second consisting of those whieh have tubercular grinders in both jaws. The first sub-family of the first gection (whieh also iueludes Felina) is Hyenina, consisting of the genera Hyana (Brisson) and Proteles (Cleoffroy). [AAnd-Wolf.]
M. Lesson arranges the genus Hyona under his third section of the tribe of Digitigrades, which section consists of those genera which are without a small tooth behind the great molar of the lower jaw. Its situation is between Proteles and the Cats (Felis), and three species are recorded, the same as those mentioned by Cuvier, but two of them with different names; thus, the Spotted Hyæna is termed Hyana Capensis (Desm.), and tha Brown Hyæna, or Hyène Brune, is named Hyana rufa (G. Cuv.).

The species are entirely confined to the Old World, Africa, and Asia

Hyona striata, the Striped Hyæna. This is the "rauva and Hyæna of the ancients; the Canis Hyona of Linnæus; M. striafa of Zimmermsn; II. vulgaris of Desmarst; and II. antiquorum of Temminek. II. orientalis, of Tiedemsnn, the Hooandor of Buffon, Bennett, and other writers. Ground colour uniform brownish-gray, rather darker above than beneath. Sides marked by sevaral irregular, distant, transverse, blackish striped or bands, which are more distinet on the lower part. Towards the shoulders and haunches these stripes become oblique, and they are continued in regular transverse lines on the outside of the legs Front of the neck, muzale, and outsides of the ears black ; the latter broad, moderately long, and nearly destitute of hairs, especially on the inside. Hairs of the body long, particularly on the back of the neek, snd on the apine, where it forms a full snd thick mane, which may be said to be continued even upon the tail, the latter being furnished with strong tufted hairs of considerable length. Mane and tail both marked with blackish spots or stripes, variously and irregularly placed. Individuals vary much in colour and markings. (Bennett.)

> Striped Hyxna (Hyena striafa).

It seems uncertain whether this is the animal alluded to in the Bible. Some translate the words rendered in our copies of the Moly Scriptures 'the valley of "eboim" (1 Sam. xiii. 18 ; Nehem. xi. 34) ats 'the valley of Hyrnas ;' and the 'Seventy' render the words given by the Kinglish translators as 'a speckled bird,' and 'a bird of divers colours ' (Jer. xii. 9), as 'the eave of the Hyrena,' ミrfinasov'rainns, while others would aubstitute one of the Hebrew letters eomposing the word in Samuel for another, and make the reading 'vipers,' as if certain atresked serpents were meant. Bochart (and Seheuchzer seems to agree with him) show that by the Tarbhua, or Treboa, the word occurring in the ninth verse of the twelfth chapter of Jeremiah, the Hymur was intended, and, if this opinion be correct, there can be little doubt that "the valley of Zeboim" means 'the valley of Hyaenas.' Dzuba aud Dubba sre, it appears, Arabic names for this spaeiea.

Whatever may be the opinions as to the Striped Hyma being alluded to in those parasges of Seripture which we have quoted, there can be ne doubt that it is the "Taspa of Aristotle ('Hist. Anim.,' vi. 32 ; viii. 5) and the Greeks. The most monstrous fables were rife respecting this animal, and the extent to which they bad reached may be supposed when we find Aristotle (vi. 32) taking pains to demonstrate the absurdity of the assertion that the animal was bisexual, or * true hermaphrodite. Ho rleclares that the genital purts of the male resemble those of the wolf and dog, and that the part which bad been taken for the female organ is an opening with an imperforste bottom placed under the tail. Thil, as we have secn, is characteristic
of the genus. Aristotle describes the parts with great minuteness; but notwithstanding his securaey, we find Pliny (viii. 30, and xxviii. 8), and Elian (i. 25, and vi. 14), stating not only that the Hyæna is bisexual, but that it changes the sex, being a male one year, and a female another. It is true that Pliny, in the passage first quoted, after stating-"Hyænis utramque esse naturam, et alternis annis mares, alternis feminas fieri, parere sing mare, vulgus credit"-adds, "Aristoteles negat." But he leaves the subjeet there; and continues in such a strain, in both the books quoted, that his suthority has been eited in support of these and other sbsurdities. Thus we are told that magicians looked on it with the greatest admiration, as possessing the magical power of alluring men.

It would be a waste of time and space to enumerate all the wonderful powers that were attributed to it; but among other seeomplishments it was said to imitate the language of men, in order to draw to it shepherds whom it devoured at leisure, and to have the power of charming dogs so that they beeame dumb.

The animal does not seem to have made a part of the Roman shows till a comparatively late period. The third Gordian appears to bave been the first who so introduced it; ten are said to have made their sppearance at the games given by the emperor Philip, about a.d. 247.

The early modern naturalista repeated the fables of the aneients. Even Bélon, who was a good observer, gives "Le Portrait de la Civette, qu'on nommoit anciennement Hyæua." This figure is by no means bad for the time, and beueath iu the small quarto volume 'Portraits D'Oyseaux, Animaux,' \&e., \&c., is the following quatrain:-

> "Voyant ceey, tu voy de la Civette Le vray portrait: qui rend abondamment Par son eonduit le muse, pour exerement, Odcur, que plus à sentir on soubaite."

And this is the more curious when we find the same author ('Aquat.') giving a very fair cut of the Striped Hyena (which Gesner, Aldrovandus, and Jonston eopied) as the sea-wolf, an amphibious animal, satiating itself with fish, and seen on the shole of the British Ocean.

Pennant notices the propensity of this species to violate the repositories of the dead, and greedily devour the putrid contents of the grave. He also states, that it preys ou the herds and flocks; but adds, on the authority of Shsw ("Travels'), that for want of other food it will eat the roots of plants, and that it will feed on the tender shoots of palms. He speaks of it as an unsociable animsl, solitary, and inhabiting the chasms of the rocks, and says (also on the suthority of Shaw), that the superstitions Arabs, when they kill one, carefully bury the bead, least it should be applied to magical purposes; as tho nock was of old by the Thessalian soreeress-
"Viscera non Lyncis, non direc nodus Ityend Defuit."
"Nor entrails of the spotted Lynx she Lacks, Nor bony joints from fell Hyænas' backs."-Luean-Rowe.
After referring to the wild opinions of the ancients on this subject, he remarks, that it is no wonder that an ignorant Arab should attribute to its remains preternatural powers.
"They are," continues Pennant, "eruel, fierce, and untamcable animala, with \& most malevolent aspect; have a sort of obstinate courage, which will make them faee stronger quadrupeds than themselves. lixmpfer relates that he eaw one which had put two lions to fight, regarding them with the utmost coolness." ('Synopsis Quadr.') This is a somewhat extraordinary translation of a passage in the second faseiculus of K'mmpfer's 'Amcentates Exatice,' where he relates that he went to see a male Hyana (Kaftaar), whieh a certain rieh Gabr, or fire-worshipper, kept as a euriosity, the animsl laving been taken $w^{\text {hen }}$ a suckling. It was muzzled by means of a rope fasteued round its jaws, led ont, and the rope lengthened so ss to enable the animal to run more freely; and kxmpfer goes on to say, "Narrabant Gabri, sie frenatum nuper se opposuisse duobus leonibus, quos, adspectante sereuissimo," in fugain verterit." Kæmpfer gives a figure which, though rude, cannot be mistaken for any animal but a Striped Hyana. l'emant seems to have been aware of his misconstruction, for afterwards, in his 'History of Quadrupeds,' he stops at, "put two lions to flight," omitting, "regarding them with the utnost eoolness."
In the last-mentioned work Pennant remarks, that it will venturo near towns; and quotes Niebuhr as authority that it will, about Gambron, in the seasen when the inhabitants sleep in the open air, sunteh away children from the sides of their parenta.

It has been the custom, among other fabulous assertions, to stato that the Hyrena is not to be tamed : now, as Mr. Bennett observes, in the 'Tower Menagerie,' there is acarcely any animal that subrnits with greater facility to the control of man. lle speaks of the docility and attachment to his keepers manifested by the Striped Hyiena, especially when allowed a certain degreo of liberty, which the animal shown no disposition to aluse, though those which are carried about from fair to fair in elose euravans are surly and dangerous from irritation and ill-trestment. The individual Fhieb Mr. Bennett Gigures was remarkably tame, and confined in the same den with one

* The king of Persia, apparently.
of the Auscrican Lrary. [MEas] Colunel Syken ('I'roc. Kook. Soc.;" 1sjo-jl) retzarine that thin apecien, Turruin of the Mahrattas, is
 ratsot 0 a bog. Other travellers aprak of the liyrena being susceptible of dosventrabsus and perforning the duty of watch-doges

Tbe stroped Hysum in found in Sin, and Nurtiernand Central Africa, she mountamar of Caucaun, nod the Altaic Chain, Asiatie Tubley. Syria, l'ermin, harbary, and Senegal, and evea as low as the Cape There are liviug specimen in the Gardens of the Zowogical tworicty at the Hegret'm l'ark.
H. marmasa (Hioubohlt), the Spotied Hyama This apecies is the Ther. Wiolf of the columint at the Cinge: C'anis croesta of Eirxleben atil Giselis: Hyana crowea of Vammerthan; Jyyrna Cajontis of Instmarest; ('rocmen macklata of Gray. Geaner has a figure of thin ajecte devouring a dog; and tho Sputhed Zilio Hywua of Jonston alluars to owe if origin to the same aumal.

Spuited Hyana (Hyarna mackitata).
Curiet remarka that thia and the preceding lyyena are eutirely distunct aprecifically, notwithatandiug their generic resemblance, both externally mod in the akeleton. The Spotted llyma has, he observes, nu mane on the back, and inntead of atripes hits only round or black minte wore or lews mattered. He states that the last lower molar in the Spotted IIywna ia aimply comprested and bilobated with a heel or frucest behind, whilst the Striped Hycua has in aldition a particular talercle on the internal surface of its posterior lobe; there are also other onteological difiereveres, which the reader will fiud pojuted out iu the 'Unecmena Fusnilex'

Size rather lew than that of the Striped Hyena. Mozale ahort, but nut wo abrupuly truncated. Firn short and Urond, nearly quadrilateral. Colour yellowinhshrow, the whole borly coverel with numeroua mpota of a deeper brown, tolerally uniform in size, but maretime nut very distinctly marked, and ocasionally arranged in lungituanal rown. Hair phorter than in the Striped Hyena; and though louger on the neek and in the central line of the lack than dinwhere, it doen not furm mo dintinet and well-furnialsed amane na that of the Striped Hyama Tail blackiah-brown, covered with loug bubly hame. (bernett.)

It im lound in the moth of Africa, and especinlly the neighbourbood of the Cape of Good Hope. Lenson nud uthers say that it in found erenen lughan l'arbary, but thin in doubtful. Ludohph, in his 'Ethiopia,' or rather the tranlator (i. 10), nayn, "The liyarne, or the Cracuta, nemrakin to the wolle, is the most vumcious of their wild beants; for Whe not only by night and by atenlth, but openly and in the daytime, preym opod all menemerta with, men or cattle; and rather than fail, dign rluwn the walla of hounea and ntablen. Gregory described her to loe meckled witl, black and white sjota" To this in appended the fullowias tute:-"lugot between a Hyana and a Liomesa: Ramiliar us Ethouria See "Solinum" 1.65 , mad Snlmatius upon him." There in a liriug apecimen in the Gardenn of the Zoological Society, at the lirgeutia l'sulk. It came from South Africa.

Ximnerunn wre the writern who have treated of the babits of this dastructuve aumal. Le Vinllmis, Sparmann, nud other travellers give very mierenting mocounts of its manuers; list we nelect the statcment nuale in the tint cutalngre of the African Nammun (where it is rambed II. mormlata), which was dimpersed in 1838 . because we think that tho atwour carrien intermal ovilleuce of ith having procredial from the 1 -n of the eminent and nccurato wologint under whome raturn nuperiumurfence that colloction wan made. The cataHene, then, neaten thint thote are two arecies of Hyarn is South Airica, arnd that the Spottaxl hyarua, or 'lige r-W Whe of the coloniata, 1e surte bumerona and buore widely diffuned thas the other qpecien, which han the nume of tho Strmanfo or Const-Wolf, mud in sumo more vuracuma asme deniructive, not whly devooring noch abimals an it

 vuracity of tha craturn than thome that are in full heralth; the Later, by their rapul Hight, majiriag their enemy with a courage of which by nature be in lentutute; wherean the mickly face himge and

attack, that he uaes all the grimace and threateniog he can command to induce them to run, nad nover dares to attack them unless they do so. "The character of this hyana," continues the author, "makea His destruction an object of no simall importance to the farmers, whose ingenious anare for hin call forth amazing cunning and dexterity on the part of the animal to render them of no avail. The more common methoda employed againet beasts of proy, such as apring-guns, traps, de. do not aucceed in his case. During his nocturunl wauderinga he minutely examinea every object that prenente itself to hia notice with which he is not perfectly faniliar; and if he we reason to auspect that it can injure him, he will turn back and nanke lia way in an opposite direction. Thus conls or leather thonga, which are often laid scross the footpatha the hyana is accustomed to travel upon, and which are attached to the triggers of loaded guan, with the deaign that his contact with the thong may cause the discharge of the gun in hia direction, are very carefully examined by him, and the usual result of his examination is his deciding against troating hiuself in contact with them. The farmers have so often observed this result, that they now very rarely stempt his destruction by this means, but occasionally succeed by substituting for cords the delicate atems of creeping plants, which are regarded by him without suspicion until he has actually suffered through them. Many other ingenious methods, anggested by the necessity of the case, have been adopted by the farmers for the destruction of byauas; but a description of them, though clsewhere desiruble, would here be out of place. This species seldom, if ever, woves abroad during the day, but passes that period in a state of repose, either in holes in the ground, or in retired sitoations densely covered with bush. Night is his favourite scasou for seeking his food; and towanls nightfall hia howlings are regularly hearl, anoouncing to the various animala the approach of their voracious enemy, and thus unsbling many of them to escape his wiles. The propensity this beast has fur howling seems therefore to be dimadrantageous to him ; aud if his almost contionous noise be not intended to put the animals upon which he preya upon their goard, its actual purpose is scarcely conccirsble. Some have surmised it to be his call to creatures of his own species; but that this is not the case is certain from the fact that hymana are heard to utter their supposed call even while separating from each other farther and farther as each cry is attered; in addition to which it may be remarked that it is contrary to the habit of this animal to Lont in company, or even to congregate in large numbers, save when assembled by the temptation oi an abundauce of carrion. A still further proof that the hyæns's ery is oot a friendly call to his own species, may bo found in the fact that when individual hyauas bave fuoud a dead snimal they cease to utter their melancholy howl, as if in fear of calling participators of their feast."
It appears from the above interesting account that the Spotted Hyans pats in practice "all the grimace and threatening he can command" to induce the objects of his attack to run: in other words, his plan of attack is fonnded upon intimidation. May not hia howls be intended to inspire terror and shake the nerves of the animals within hearing of the doleful nocturnal sounda?
"Itill lstely", adds the author in conclusion, "hyanas were in the habit of paying nightly risits to the strects of Cape Town, and wero regarded as very useful in carrying away the animal refuse, which might otherwise have becn disagreeable. This however no longer wecurs, partly perhaps from better regulations now existing in the town, had partly from the uumber of these animals having very greatly decreased. Even now however individual hywnas occasionally approach the town, and their howlings are sometimes heard under Table Mountain, and in other directions, during the nights. In the countrics inhabited by the Kaffira they are very wamerous and daring, generally approaching the villages doring the night, and attempting, either by atrength or stratagem, to pass the wattles by which the houses are defended. If they be thos far successfol, they next cndeavoor to enter the houses, which they sometimes accomptish, in which case they not unfrequently carry off some young child of the fauily. Scara and marks on various parts of the bedy often testify to the traveller how daugerous a foo the natives have in thia animsl."

Mr. Steedman, in his "Wanderinga and Adventures in the Interior of Southern Africa, givea most appraling accounts of the rapacity of the Spotted Hywna. He atates that Mr. Shepstone, in a letter from Mamboland, relates that the nightly attacks of wolvea, as the tiyxnas are generally called, have been very destructive amongst the chitdren and youth; for within n few moutha not fower than 40 inatances came to his knowledgo whorein that least had mado a most dreadfnl havoc. "To show clearly," says that gentleman, "the preference of the wolf (apoted hyman) for human flesh, it will be necessary to notice that when the Manbookies build their bouses, which are in form like beehives, and tolerably large, ofteu 18 or 20 feet in diameter, the floor jo raised at the higher or back part of the bouse, until within 3 or 4 feet of the front, where it suddenly terminates, leaving an area from theuce to the wall, in which every night the calves are tied to protect them from the storma or from wild beasta. Now it would be natural to suppose, that should the wolf enter, he would seize the first ohject for his prey, espocially as the natives always lie with tho fire at their feet; but notwithstanding this, the constant practice of this animal has becn in cvery instance to pass by the
calves in the area，and even by the fire，and to take the children from under the mother＇s kaross，and this in such a geutle and cautious manner，that the peor parent has been uncenscieus of her loss until the cries of her little innoceat have reached her from without when a close prisoner in the jaws of the monster．＂Mr．Shepstoue then particularises two instances within his own knowledge，one of a boy abont ten years of age，and the other of a little girl about eight， who had been carried off by this species，and wretchedly mangled， but recovered by the attention of Mr．Shepstene and his friends Notwithstanding this ferocity，the Spotted Hyæna has，it is stated， been domiciliated in the houses of the peasantry，＂among whom，＂ eays Mr．Bennett，＂he is preferred to the dog himself for attachment to his master，for general sagacity，and even，it is said，for his quali－ fications for the chase．＂

H．villosa the Strand－Welf．In a communication to the Zoological Society of London（1833），Dr．Andrew Smith stated his belief that the Striped Hyrena does not inhabit South Africa；its plsce being occupied by the H ．villosa，which bears，when young，considerable resemblance to that species．II．villosa was first described by Dr． Snith in the＇Transactions of the Linnæsn Seciety．＇This animal was considered by Cuvier as identical with L＇Hyèoe Brune（ \boldsymbol{H} ．brunnea of Thunberg），which is queted by M．Lesson as Hyène Rousse，（II．rufa， of Cuvier）．In the list of the specimens of Mammalia in the British Museum，this animal is regarded as a variety of M ．striata．The following are the dimensions of a specimen in Mr．Steedman＇s col－ lection：－

From the nose to the roet of the tail Height at the shoulder
Height at the croup
Fect．Inches．
4
4
0
$5 \frac{1}{2}$
10
5
$9 \frac{1}{2}$
2

Length of head from nose to occiput
Length of the ear．
Length of the tail to the extremity of the vertebre
Length of the tail with hair
2

Southern Africs，but is by no means so common as the Spotted Hyæna．The young specimen mentioned above was obtrined alive with twe others in the neighbourhood of the Nieuveld Meuntains，a consider－ able distance in the interior of the country，which shows，as Mr ． Steedman observes，that the species is not so strictly confined to the vicinity of the sea－coast，as its name＇Straand－Welf＇would imply，or as the accounts of travellers would lead us to imagine．
The Straand－Welf devours carrion and such dead snimal substances， whales fer instance，as the sea casts up：but when pressed by huuger its habits seem to resemble those of the other species，for it then com mits serious depredstions on the flocks and herds of the colonists， who hold its incursions in great dread．Mr．Steedmsn，whe states this，says he saw a very fine specimen，which had been shot by a farmer residing in the vicinity of Blauwberg，and was informed that it had destroyed three large calves belonging to the farmer．He adds， that it is ssid to be a remarkably cunning animal，retiring to a consider－ able distance from the scene of its depredations to elude pursuit，snd concealing itself during the day－time in the mountains，or in the thick hush，which extends in large patches throughout the sandy district in which it is usually found．

II．rufa，the Brown Hyæna，It is the Crocuta brunnea of Gray； II．fusca of Geofiroy；the II．crocuta rufa of Fischer，and the II． brunnea of Thunberg．This species is a nstive of South Africa，snd has been taken at Natal．There is a liviug specimen at present in the collection of the Zoological Society in Regent＇s Park．

Possil Hycenas．－Fessil Hyænas occur sbundantly in the third peried of the Tertiary deposits（Pliecene of Lyell），especially in the ossiferous caverns．Dr．Buckland gives the following localities for the remains of Hyenas io caves or fissures ：－Kirkdale，Plymouth，Crawley Rocks，near Swansea，Pavilsud Caves nearSwansea，district of Muggenderf，district of the Harz，Fouvent in France，Sundwick in Westphalia，and Köstritz near Leipzig．Those found in the superficial loam or gravel are stated to hsve occurred at Lawford near Rugby，at Herzberg，and Osterode，Canstadt near Stutgardt，Eichstadt in Bavaris，and the Val d＇Arno near Flerence．The fossil species named sre H．spelcea，Goldf．； H．spelcea major，Goldf．；M．misca（Hyène Rayée Fossile），M．De Serres； M．intermedia，M．De Serres ；H．Perrierii，Brav．，Croiz．，and Job．； II．Arvernensis，Brav．，Croiz．，and Job．；snd II．dubia，Brav．，Creiz．， and Job．Of these the only species which has been found in the caves of great Britain is the 1／．spelea．As the discovery of the bones principally of this animal in the caves st Kirkdale were amongst the first to attract attention smong the numerous extinct Mammalia which formerly lived in Great Britain，we give an extract from Dr． Buckland＇s description of that remarkable locality．
＂Both the roof and the fleor for many yards from the entrance are compesed of regular horizontal strata of limestone，uniuterrupted by the slightest appearance of fissure，fracture，or stony rubbish of any kind；hut farther in the roof and sides become irregularly arched， presenting a very rugged and grotesque appesrance，being studded with pendent and roundish masses of chert and stalactite；the hottom of the cavern is visible only near the entrance，and its irregularities， though spparently not great，hsve been filled up throughout to a nearly level surface by the introduction of a bed of mud or lesmy sediment．There is no alternation of mud with any repeated beds of stalactite，but simply a partial deposit of the latter on the floor beneath it；and it was chiefly in the lower part of the earthy sedi－ ment，and in the stalsgmitic matter beneath it，thst the animal remains were found ：there was nowhere say black esrth，or sdmix－ ture of aumal matter，except an infinity of extremely minute particles of undecomposed hone．In the whele extent of the cave only a very few large bones have becu discovered perfect；most of them are breken ixto small sngular fragments and chips，the greater part of which lay separately in the mud，whilst others were wholly or partially invested with stalagmite；and others again mixed with masses of still smaller fragments，and cemented by stalsgmite，so as to form an osseous breccia．In some few places where the mud was shallow and the heaps of tecth and bones considerable，parts of the latter were elevated some inches above the surface of the mud snd its stalagmitic crust，and the upper ends of the bones thus projecting， like the legs of pigeons through a pie－crust，into the void space above， have become thinly covered with stalagmitic drippings，whilst their lower extremities have no such incrustation，and have simply the mud adhering to them in which they have been imbedded；a horizontal crust of stalagmite about an inch thick cresses the middle of these benes，and retains them firmly in the position they occupied st the bottom of the cave．A large flat plate of stalagmite，cerresponding in sll respecta with the above description，and containing three long bones fixed so as to form almost a right angle with the plane of the stalagmite，is in the cellection of the Rev．Mr．Smith of Kirby Moor－ side．The same gentlemau has also，among many other valuable specimens，a fragment of the thigh－bone of au elephsnt，which is the largest I have seen from this cave．The effect of the loam and the stalagmite in prescrving the bones frem decempesition，by proteeting them from atmospheric air，has been very remarkable；aome that had lain uncovered in the cave for a long time before the introduction of the loam were in various stages of decemposition，but even in these the further pregress of decay sppears to have been arrested as soen as
they lacmane covernl with it，amel in the greater sumber little or no
 Lakers piame 1 have found on immerning frapmenta of theme hones iu arded thll tho fiomplate and carlonate of lime were removed，that smasty tho whole of their origiual gelatine has teen premervel．
＂A Anderoun cance uf animal rennaina proacrued from decay by the protection uf amilar dilpuial mud occur on the cont of Pinex near Wialcon，and at lawfonl，near Itughy，in Warwichahire．Here the bonea of the mane pecies of clephamt，rhinocrron，and other thiluvial animala mecur in in thto of frahmon and perfection even exceeding that of thome in the cave at kirkinle，and from n mimilar cause， namely，their baving lieen guanled from the nccess of ntmosplieric air， or the jeroolation of wner，by the argillaceoun matrix in which they have hern iublodifed；whilat other bones that have fain the samw leugth of time in diluvial mad or gravel，and have been moliject to the conmant percolation of water，have host their compactueas and strength whel great part of their gelatine，nod are often ready to fall to pheces on the alightent conch，and thin where the beta of clay and gravel alter－ nate in the amme quarry，in int lawforl．The botiom of the cavo on firat removing the nud was found to be atrewed sll over like a dog－ kenoed，from one enil to the other，with hundrede of teeth and bones， ur rather spliotered fragments of bones of all the saimals above rDumernted；they were found in greatest qusutity noar its mouth， nimply because its area in thin part was mont capacious；those of the langer noimalm－elophnnt，rhinoceroa，\＆c．－Wers found coextensively with all the rent，cren in the inmost nod manlleat recerses．
＂Scarcely a aingle bone has escaped fracture，with the exception of the antragaiunand other hard and solid bones of the tarnus and carpus jointa，and those of the fect Dn some of the bowes marks may be traced which，on mpplying ono to the other，nppear exnctly to fit the form of the canise tecth of the bywns that occur in the cave．The hyanas bouen have been broken and apparently gnawed equally with thom of the other animnla．
＂Ileapm of amall pplintern，and highly comminuted jet angular fragmenta of bones，mixed with teeth of all the varieties of animals nbore cunncrated，lay in the bottom of the den，occasionally adhering together by atalagmite，nud forming，as has been before meationed， an onsous breccin．Many insulated fragments also are wholly or partially enveloperl in stalagmite，both externally mad internally． Not one akull in to be found entire ；and it in so mare to find a largo bone of any kind that has not been more or less broken，that there is no hope of obtaining the materials for the construction of a single limb，and atill leas of an entire akeleton．The jaw－bones also even of the hymuan are boken to pieces like the rest ；nad in the case of all the maimala，the number of tectla and solid bonee of the tarsuannd carpus in more than twenty times as great sa conld have been supplied by the individuals whome nther thoues we fudmixed with them．＇
Ir．Buckland continues：－
＂Mr．Gibonn alone collected anoro thm three hundred canine teetb of the byena，which at least must have belonged to seventy－five individualm，nod，alding to these the crninc teeth I hnve seen in other collectionn，I caunot calculate the total number of hyaenas of which there in evidence at lean than two or three hundred．The ouly remnins that have been fund of the tiger upecies neo two large canine teeth and two molar teeth，exceediug in sizo the largent lion＇s or lengal tiger＇n．There in one tunk only of n bear，which exactly resembles thome of the extinct liras apelirus of the caven of Germany．
＂In inany of the most highly＂prenerved apecimens of teath and bonem there in a curioun circumatance，which before 1 visited kirkdale had ernvinced tno of tho exintence of the den，samely，a partial polish nod wraring away to a conniderable depth of one side only：many utraight frammenta of the langer honen have one entireside，or the fractured edgea of une nille，rulbed down and worn completely smooth， whint the chromite mide and end of the anmo bonea are wharp and untouchm，in the mano manuer an the upper portioun of pitehing atenta in the nerecta lecome rounded and polinhed，whilat their lower parta retain tho exact form nand miglen which they posseasod when firmt hid down．Thin caus only lee explained by referriog tho partial Amatruction of the molid bone to friction from the continnal treading of the bymmen and rubling of their skinn on the side that lny upper－ moat int the bottom of the den．＂

The apecien of 11 yann whone remaina have been found in moch large numbern in the caven at Kirkilnle nul rither parta of thia country was Amt detmmined by Curior．It diflern clanfly in it larger and more mount proportionm：the mapula in narrowior in proprortion to ita artimber extrenity，nod the delenid crent of the humerun is longer and nemnger．
＂In the bumeroun momeinem，＂naya Pmfernor Owen，＂of the Fobsil Hyama from lritinh localitiem which I have exnonined nod compared in public and private collection，I linem not hitherta retected moy clametran indicativa rif n apecien diatinct frotn the Hyome apelera； the differmer＊obmerred have bien thomo only of nizo mul dentai demalopment，depmeding on diversity of anx and age．of that fonail Mracm which in more nearly altied to the Striped llyana（Ilyona Nomprarwana，（＂hrintol）mo traco has preament iturlf to my nutico． It alipeam in liave twois monfumb to the michlle of Friuce，Languedoc， And fialy．Finwil momina of the Itymar have been dimoovered by MM．Pater and Purand in the tortiary atrata of the Sewnlik llille；
and，what is more remarkable，wero reprenented in the ancient Fauna of South America by a specien which itm dincoverer Dr．Lund has termed JIycena neogaa，＂（Owen，British Fosnil Mammals．）

HYALF：＇ID E．a fmmily of Pleropoda，nccording to the nystems of Lamarek and Cuvier，but belonging to the fruily Thecosomata（order Aporobranchiata）of Dollainville．M．Rang，in his＂Tableau Métho－ dique，followa De Ferrumac in moking the Ilyalfider a funily，and enumentes the following genera as componing it：－Cymbulia，Jimacina， Ilyakra，Cleodora，Curicria，Euribia，and Payche．
The following are the charmeters of the frmity：－Animnl furninhed with a head，but it is not distinct，with a thiry natatory nombrane amaller and intermediate at the ventral part；mouth situated at the bottom of a cavity formed by the union of the locomotive organs．

Shell nearly alwnys prenent，and very variablo in form．The shell is absent in the genur Pryche．

Cymbulia．－Cuvier describe the Cymbulic as baving a cartilaginous or gelatinuum envelope in the form of a bont or alipper，beset with points in longitudimal rows；and the animal itself as possessing two great wings of a vascular tissue，which are at once branchire and fins， and between them on the opee side a thind smaller lobe，which is three－ pointerl．The mouth with two small tentacula is placed between the wings，towsids the shut side of the shell，and above two small eyes and the orifice of generntion，whence issues an intromissive male organ in the form of a small proboscis（trompe）．The timnsparency of the texture permits the observer to distinguish the heart，the brain， and the viscern through the envelopes．

M．Rang gives the following chsractera of this genus：－Animal oblong，gelatinous，transparent，furniahed with two oyen（？），two tentacles（？），snd a mouth in the form of a proboscis（trompe）：Two Interal fins，which are large and rounded，carry the vascular net of the branchia；they are united at their base，on the posterior side，by an intermediate appendage in form of an clongated lobe．

Shell gelantinose－cartilaginous，oblong，in the form of a slipper， entirely covered with a delicate and hardly visible membrane，with a superior opening，long and truwated at one of its extremities．

Cyminlia．
a, a, Ans ；b ，the Interme liate lobe；i，the riscers，neen through the e shell ； h ，the shell．

The following is Mr．G．B．Sowerby＇s representation of Cymbulia （＇Geners，＇No．39）．

a，the antmal in the whell，seen from above；b ，the shell，seen edgewire； ，the mbill，seen from above．
M. Rang further observes that this curious and very iacompletely known genus only contains a single species, which is found in the Mediterranean Sea; and he adds that he only knows it by a drawing communicated to him by Cuvier, who remarks ('Regne Animal') that in the figure given by M. De Blainville ('Malacelogie,' xlvi. 3) the animal is placed in the shell the wrong way ("en sens contraire du reritable"), and that his (Cuvier'a) description rests on recent and repeated observations made by M. Laurillard. M. Deshayes confirms this remark as to the inverse position of the animal, and says that he has had occasion to verify it often.
M. Rang in 1829 knew but one species. M. Deshayes, in his edition of Lamarck (1836), enumerates five. The species known to M. Rang must have been Cymbulia Peronii.

Limacina (Spiratella, De Bl.).-Animal elongated anteriorly, turned into a spiral form behind; branchix in the form of plaits on the back; mouth furnished with two amall appendages, which are united by one of their extremities to the anterior border.

Shell very delicate, fragile, vitreous, spiral, net carinated, turning rather obliquely ea itself, with a circular aperture and simple bordera. (Rang.)

Curier is of opinion that the Limacince ought, according to the description of Fabricius, to bear a strong relationship to Pneumoder. mon; but their body is terminated by a tail, which is twisted spirally ("centournée en spirale"), and is lodged in a very delicate shell, of one whorl and a half, umbilicated on one side and flatteued on the other. Cuvier adds that the snimal uses its shell as a boat and its wings as oars when it would swim on the surface of the sea. The same aather remarks, that the only species, Clio helicina of Phipps and Gmelin, is scarcely less abundant in the icy eea than Clio boreatis [Curo], and is considered as one of the principal aliments of the whale. He abserves that he does not know whether the animal figured by Mc. Scoresby, of which M. De Blainville ('Malacologie', pl. xlviii. bia, f. 5) makes his genus Spiratella, is in reality, an M. De Blainville believes, the ame animal with that of Phipps and Fabricius. M. Raag considers Spiratella of M. De Blainville as syonymous with Limacina, of which M. Rang atates that but one species is known, and says that it weuld be intereating to have new accounts of it. He speaks of its inhabiting the North Sea, its prodigious abundance, and the possibility of its serving as food for the whales. Phippa mentions it as being found in innumerable quantities in the arctic seas, and describes its body as of the size of a pea, rolled up into a spire like a helix, and its ovate, obtase, expanded wings as being greater than the body. The followiag cut is taken from the figure of M. De Blainville, who founds his genus (which he places under his family of Pteropoda, between Allanta and Argonauta) on the materiala furnished by the Rev. Dr. Scoresby, and cousiders his Spiratella as synonymous with Cavier's Limacina.

Spiratella Limacina of De Blainville.
Mr. G. B. Sowerby givea a figure ef a Limacina (' Genera of Recent and Fossil Shells,' in the same number as that which contains Cymbulia) from Messina He describes it as a thin, fragilc, spiral, discoid shell, umbilicated on both sides, and carinated on the back and below, with a membranaceous lamellar kecl, and he says that it has externally much the appearance of a very diminutive umbilicated Nautilus.
M. Deshayea, in his edition of Lamarck, remarks that the Limacince, of which M. De Blainville formed hia genus Spiratella, have in fact much analogy with the Cleodores; and that they are Cleodore whose ahell is spiral, and not swimming Gastropods, like the Carinarice and Atlanta. M. Deshayes goes on to state that he has many individuals preserved ia spirit, which he owes to the generosity of Dr. F'leming, that he has examined them with attcntion, and that they have not the projecting foet of Atlanta, nor a fin-like foot, but twe lateral fins of the form of those of the Cleodorce. He adda that they have no teatacles, and no eyes, but a mouth in the shape of a triangular slit at the summit of the angle which forms the fins. The shell is not closed by an eperculum as that of Atlanta is. The anus and the organs of generation have their issue from the right side, below the fin and at its base. M. Deshayes is of opinion that the genus ought to remain among the Pteropods, where it was placed by Cuvier and Lamarck.

Spiralis.-Shell thin, transparent, of several spiral whorle, coiled to the left, spire elcrated or depressed, surface emooth or reticulated, mouth sngulated below or canaliculated, sometimes prelenged into a spine-like curved beak. Animal elongated, spiral; head not distinct; two fin-like expanmions united at their base by an intermediate lobe bearing an operculum; branchix in a cavity formed by the mantle. Operculum vitreous, very thin and tranmparent, of few wherls.
Thin genus was constituted by the naturalists attached to the exploring ship Bonite, for somo very small Pteropods they met with
during their voyage. They are distributed through all seas, and are equally present in the Atlantic, the Indian, sud Pacific Oceans. Three species of tnis genus have been recorded as British, S. Flemingii, S. Mac Andrei, and S. Jeffreysii. They are all very rare.

IIyalca.-Animal glooular or oblong, furnished with two lateral expansions more or less clongated backwards; the intermediate lobe of a demi-circular form ; two very short tentacles, hardly distinct, contained in a cylindrical sheath; the aperture of the mouth provided with two labial appendages; orifice of the anus at the right side of the mantle; that of the male orgah in front and within the right tentacle; that of the female organ on the same side, at the point of separation of the two parts of the body; branchix pectinated on each side in a particular cavity.

Shell horny or vitreous, transparent and fragile, in form of a slipper, straight or recurved, with an anterior opening, and split laterally, tricuspidated backwards. (Rang.)
M. Rang remarks that this beautiful and interesting genus, the anatomy of which has been made known by M. Cuvier and M. De Blainville, is perfectly distinct from those which approach it. He speaks of the Hyaloge as very'small animals, spread over all the seas of the torrid zone aud a great part of those of the temperate zones, and of the occurrence of the same species on the mest opposite points of the globe. He adds that the discovery which he had made of mauy apecies, enc in a fossil state, had cansed him to divide the Hyalace into the two following groups: 1. Globuloser.-Shell subglobular, having the lateral slits nearly as long as itself, and the appendages placed very much backward. II. uncinata, \&c. This group, he says, is the most numerous. 2. Elongatce. - Shell elongated, having the Lateral elits short and the appendages advanced. H. trispinosa, \&c.

He states that at the time be wrote five species completed the group, and gives the following figure of a Hyalaa.

Itynlata.
a, fins ; b, intermediate lobe; c, mouth ; e, lateral expansions ef the mantle ; i, viscera, seen through the shell; h, the shell.

Cuvier deacribes IHyalcea as having two great wings, no tentacles, a mantle alit at the aides, lodging the branchia in the bottom of the fissures, and covered by a shell equally slit at the sides, the ventral surface of which is very convex, the dorgal flat and longer than the other, and the transversal line which unites them behiud furnished with three pointed deutilations. In the living state, the animal projects by the lateral slits of the shell filaments move or less long, which are productions of the mantla. Cuvier concludes by observing that the species most known (Anomia tridentata, Forskahl; Cavolina natans, Abildgardt; IYalcea cernea (tridentata), Lamarck) has a small yellowish demi-transparent shell, which is found in the Mediterranean Sea and in the occan.

Inyalea tridentatr.
a, the anterior berder, sbowing the mouth.
M. De Blainville; who has published a monegraph of this genus in the 'Journal de Physique' sad in the 'Dictiounaire des Scicnces Naturelles,' states that it contained at that time (1825) from five to six species, all of which appear to be the inhabitants of warm climates. He considers the genus Clandiolus of De Montfort as belonging te the IIyalkece, and quotes the obscrvation of M. Defrance to that effect with approbation.
M. Deahayes in his edition of Lamarck (1836) observes, that in the comparison which the latter makes of the Hyalace with the Conchifers, he had remarked that they approached so cloacly that he had found it proper to place the IIyalcece at the head of the Mellusks. Lamarck had auffered himself to be seduced by an analogy rather apparcat than real. It is not with the Lamellibranchiate Conchifera, continues M. Deshaycs, that the IIyalcere should be compared, but
var. hist, DIV. vol ilf.

WiLb the linchiopmals, an inferior elase of animala [Buscmomoda]; for the /lymiote aud the lirachioporda are placed in the aliell in the mame way. Wr timl, he wharres, in the Myatrete the two valven of the Trubrafuide muldered together; and, in heooming free, the animal has clond the unto of sto great ralve, and the shell has left a passage alwage open for the ciliated appendagen, elanged into locomotire orgase This coroparimon, saga M. Deshayca, woulil appear sufficiently jush and get it in not Lpos the examination of the two grouja we are won conrineed of their dinemblance in all the esventinl parts of their organieation. To this we beg to add, that it will be probably ditheult to entablish any essentinl diference in the organisation of the two groups except upon the higher development of the aervous syatem, and the presence of a head in Hyalora. M. Deshages enumeratea ilxtion mecoat apeciea exclurive of Ifyahera carpidata, which, be raya, is not a true Hyaliea, an losc, Do Roinsy, and Lamarck believed, but a Ctrodora. Measra lhang, D'Orbigny, Lenueur, nud Quoy and Gaimard, bava principally contributad to the number of precter
II. tridentata in the Anomia tridentata of Forsknhl, Gmelin, and Ibiliwn: Hyalers papilionacea of Bory de St. Vincent; I. cornea of Ite Ruinag. M. Deshages kecpe Lamarek's synonym with n query - Moneculus telcmus (!), Linneus. It is n native of the Maditerranean and the reas of warm elimates. The size scarcely reachen that of a small hazel-nut.

In the 'llistory of British Mollusea,' II. trizpinosa is ndmittel, a apecimed having been taken by Mr. Ioobert lall at Youghal in Inland.

Clcodora-Cuvier remarks that the Cleodorce, for which Brown originally founded the genus Clio, nypear analogous to the Ilyoldece, in the nimplicity of their wings and the absenee of tentacles bet ween thern : thrir conic or pyramidal shell, he adde, is not slit on the sides; and he quoten M. Rang's genera and sub-genera
M. Deahayer, in his edition of Lamarck, staten that the Cleodore are much more nllied to the Hyalace than the Chos, appronching the former not only in haring a shell, but also in the form of tbe animal, Which hears a great resemblanee to that of Hyolra. It is not antonishing, proceeln M. Desliages, to see Lamarck, who had approximated the Cleodore to the Clioncs, indicate not very natural relations to the fonner; for when be wrote but a very emall number of speciea were known, and he could hardly foresee that the aspiduons researches of Mespre Quoy asd Gaimard, llang and D'Orbigny, should have contributed to throw so much light on the Pteropods in general, and the Myalire and Cicolore in particular. If we have before us a sufticient umber of species belonging to the two last-pamed genera, we shall wre them hend into each other zo as to make it impossible to Jme the line betwen them. It is thus, continues M. Deshayes, that we proced by insensille degreen from the globular to the lanceolate species. A globular Hyalra seems formed of two nnequal valves molderel tagether, leaving between them a principal anterior alit, and also lateral mitita, sonietimes without commonication with the nperture, and sometimea forming the prolougation of this part. The posterior extremity is prolonged into a spine, which is ordinarily short, sometimea straight, and nometimen curved. Taking these specias of ifyalua an the commencument of the genua, M. Deshayes points out tha following alterntions of their characters in tho rest of the series. At firat the pmonterior extremity is reen to be elongated, and in this case the two pirte of the shell are flattened, become nearly equal, and, if in orme of the apecies there remnins the trace of posterior lateral slite, for the mont part these nlita rine sufficiently to bo in continuation of the aperturo. Thin nuerture is always tranaveras nud parrow, as in the 1 yandere properly no called. When the shella are thas elongated, whe have their poaterior estremity curved: others have it atruight, an in the clecelore. Thene lant are clongated mone nod more, and in pmpertion an thin clungatinn "xiate the aperture is eularged, and the Lateral alite premeremively liminish, are reduced to aimple inflexions, and at lant entionly dimappear. Thene changea in the form of theas Abelin are not, M. 1enhayem observes, more extraordinary than those to which he hagdrawn attention in other gronp, and principally in the Arephaloun Molluak If, coutinues the same nuthor, the mimala evincife with threse modifications in their exterial form, their interunt nireaniastion offere hat hittle alteration; and he citen the nuthority of Mowro. Qurif and Gaimard, who asecrt positively that the lanceolate Closdoren difer in nothing camentially from the Hyalece properly so called. This M. Tenlayea considern na the more important to him, lumanuch an be in theneby confirmed in the opinion which he had lous eniertained an to the analogy of the llyater nud cleodorer.

The following in M. Rang's definition of Cleodora:-Animal of an ublong or elongatel form, furninbed with an intermediate denicircular foin, but haring no lateral expansiona; mantle open in front; lunachiar and urgan of generation jncompletely known.

Shell fragile, vitremus, in form of a sheath or case (galne ou cornet), mote on beta minted ponteriorly; aproture very large, nearly alwaya without a ahe, and withont latemi appronlagen
The amone roologiat baving, am he atater, obtained mang new species, and atudied their urganimation, dividea the genus into the following anly genera:-

1. CTeodore pmperly mo calleal.--Animal of an oblong furm, having tha mantle very much lilated and adraoced on cach side.

Shell pyramidal, nugular, very much dilated antoriorly, with a very large aperture, canalieulated on each eide, and rarely alit.
M. Rang makes this sub-genua comprise (1829) five apecies only, two of which he considers as very doubtful.
C. lanceokata. Stell compressed, slongated, lanceolate; mperture dilated.

It inhabits the seas of warm elimstes.
The following figure will coover a general idea of the form of the animal and shell.

Cleodora pyramidata.
a, animal and thell; b, shell, scen edgew lae; c, shell, seen from above.
M. Deshayes, in his edition of Lamarck, records 13 species, besiden Hyalea cuspidata.
2. Cresis (Rang).-Animnl very alender; tho mantle not dilated on its sides, fins generally rather amnill.

Cresis.
a, fins ; b, latermediate lobe; c, mouth ; i, viseera, acen tarough the ahell; h, the shell.

Shell very alender, fragile, and diaphanous, iu the form of a straight or eurved care (cornet), with an nparture almost alwagn as large as the ohell itself, nad generally without a canal; no lateral appendnges. M. Kang, who gives thie description, anys, that ba formed thia subgenus fir some vary small new molluske, which he frequently met with in the middle of the ocean, and to which he unites, by analogy, the gencra baginclla of Dandin, and the Gadus of Montagu, known in the fossil state; and M. Rang reckons 9 species.
3. Tripter (Quoy and Gnimard).-Animal oblong, fleshy, eantractile, furnimhed with two amall lateral fins, and surinounted by a membranous veil of the same form and size as thay are.

Shell dinphanoun, vitreous, in form of a eylindrical aheath, rounded posteriorly, with a circular opening, horizontal and dentilated on its borders.
M. Rang observas that thia genus la eatablished on a single species, and that he is inclined to believe that the nombranous veil deacribed by Marsrs. Quoy and Gaimard ia nothing more than the intermediate lohe cominon ta all the Pteropoda of the family of Hyalacide, and he thinks that this aub-genus ahonld be united to the preceding.

Curieria (Rang).-Animal olongated, furniahed with two rather large fius and with nn intermediate demieircular lobe; the azteriot branchite situntcd at the ventral part, and at the basa of the intermediate lobe; organ of genaration incomplately known; the mouth furnished with dentiform pieces proper for mastication.

Ovrieria.
n, finn; b, intermedinte lobe; e, mouth; e, gills; $;$, riscera, neen through the ahell ; f, ovaries; g, heart; h, alell; d, prosterlor cuvity of the eliell.

Shell in form of a eylindrical ensa, rather flattened nenr its aperture, which is beart-shaped with mharp edges; the side opponito to the
aperture shat by a diaphragm which is convex exterually but not turminal, being surpassed by the walls of the cylinder.
M. Rang remarks that he established this curious genus on a apecies equally common in the Indian Sea, the ocean, and the South Sea.

Euribia (Rang).-Animal furnished with two horizontal fins, at the base of which is the mouth; the intermediate lobe is very small and of a triangular form; body globular, short; gills and organs of generation unknown.

Shell cartilagino-membranous, delicate, transparent, regular, and in form of a reversed cap (calotte).
M. Rang states that there is only a single species which he has not been able to observe aufficiently, but which presented well-defined generic characters.

Psyche (lang). -Shell absent. Animal enveloped in a membranous mantle, furnished with two rather long fins, but which do not appear united on the ventral side by an intermediate lobe; branchico overspreading the fins.
M. Rang established this genus on a species from the seas of Newfoundland (Terre-Neuve); he adds that Mr. Inyoaud brought back from his Indian voyage some drawings of Pteropods which appear to be referrible to it.
M. Deshayes says that be is led to reject many genera propozerl some years since by M. Rang, in the 'Anaales des Sciences Naturelles,' ns well ms in his 'Maquel,' under the naue of Cresis aud Cuvievia. 31. Deshayes observes that M. lang has comprehended under his subgenus Cresis a living shell named Gadus by Montagu, and some other tossils placed by Lamarck in the genus Dentalium. [Dentalium.] Although M. Deshayes is as yet uncertain as to these apecies, he a lopts the opinion of Lamarck as preferable, because, he says, M. lang has contested it only on the supposition that they had been defined after the mutilation of their posterior extremity, which, being uaturally short, only presented itself as apen by accideut. This view taken by M. lang, he continues, is not founded on any good observation, and he says that he has seen a sufficiently large number of individuals perfectly preserved, to bs ablo to affirm that their posterior extromity was open when the animal was alive. These shells then, be states in conclusion, do not belong to the Pterogods, and are more probsbly Dentulia. This opinion is a very strong one, and, coming from the quarter it does, is deserving of all respect: but as M. Raug Las justly the reputation of a good observer in this department of natural history, we have thought it right to lay before the reader the deacriptions and figures given by him.

Fossil IHyahide.

M. Rang, as we have seen, mentions one fossil species of Hyalca, and Mr. G. B. Sowerby states that the genus occurs in a fossil state in Sicily. M. lkang notices the fossil analogus of Cleodora from l'iedmont; if Vaginclla and Gadus are to be considered as belonging to this family, they toust be added. The last-mentioned author says that he has detected a fossil species of Curieria in the sleell sand of l'iedunont, where it hal been collected by the elder De Luc. M. Deshayes, in his tables, enumerates two fossil (tertiary) of Hyalcea and three of Clesdora," tertiary also; of the latter he records Cleadora lanceolata as a species formd both livin; and fosil (tertiary).

HYALITE, a Mineral, a variety of Opal. [Siltca.]
HYALOSIDERITE, a synonym of the Mineral Cbrysolite. [Curysolitre]

IIYAS, a geaus of Brachyurous Crustaceans belonging to the Maia family, [Mamderi]

IIY'BODUS, a genus of Fossi] Fishes placed in the order of Ilacoidians by M. Agassiz ('lkecherches sur les Poissons Fossilcs,' vol. iii., tab. 3, 9, 10). The information which M. Agassiz has collected concerning this extinct grulup of fishes appears to bo considerable, yct only in a few instances (from the Lias of Lyme Regis and Bristol) hats he been able to recoustruct the whole skeleton. In consequence, the spinous rays and the teeth of one species raay be, and probably are, described under different specific uanes. The species of IIybodus are supposed to amount to 22 , and extend from the New Red.Sandstone (Gres ligarro) to the Chalk inclusive. They present analogies to the genus squalus of limnens, iu the teeth and spinous rays; it appears that there were two dorsal fins, each having spiaous rays, not differing more than in receat apecies of fishes with two spinous dorsal fins.

11YBIRID. This term is generally applied in natural history to the produce of two organic beings supposed to belong to different suecies. It is not in all cases that animals or plants of different species will breed together, and where offspring occurs it is genemally regarded as indicative of a closer relationship or affuity between the species. Une peculiarity of all hybrids is their inability to continue the characters of both parenta. Although they are known amongat birds and higher animals to produce fertile offspriug, yet in the course of time the tendency to the claracter of the origimal species of one or othor of the first larents in no strung, that the hylirid character is lost. Amongat plants the sanic law holds good. 'Ithe knowledge of the fact that the pollencells of one specles of plant will produce casbryoes with the ovulpar another is often used in loorticulture for the purpose

[^1]of producing new forms of plants. [Hybridasation, in Abts and Sc. Div.; Reproduction in Plants; Reproduction in Animals.]

HYBRlD PLANTS. [Slexes of Plants.]
HYDA'TICA, a genus of Fossil Plants (probably aquatic) from the Coal Formation. (Artis.)

HYDATIDS. [Entozon.]
HYDNOCARPUS. [Flacourthacee.]
HYDNO'PORA (Fischer), a genus of Polypiaria, nearly synonymous with Monticularia of Lamarck. Goldfuss ranks some of the species under his somewhat indefinite group of Astreca.

HYDNORA. [CYTINACEA.]
HYDRA (Linneas), a geuus of Polypiferous Animals, including the Fresh-Water Hydra, or lolype. It has the following technical defiuition:-Polypes locomotive, single, naked, gelatinous, subcylindrical, but very contructile and matable in form; the mouth encircleal with a single series of grauulous filiform tentacula.

As of all the forms of polypiferous animals the Mydra is the most interesting, we give an abstract of their history, from Dr. Johnston's 'Brilish Zoophytes:'
Leeawenhoek discovered the IIydra in 1703 , and the uncommon way its young are prodaced; and an anonymous correspondent of the Royal society made the same discovery in England about the same time; but it excited no particular notice uatil 'Trembley made knonn its wonlerful propertics about the year 1744. These were so contrary to established experience, and so foreign to every preconceived notion of mimal life, that by many they were regarded as impossible fatucies. Leading meu of our learned societies wore daily experimenting on the creature, and transporting it by careful posts from one to another, while even ambassadors were forwarding to their respective cuurts early intelligence of the eugrossing theme. The Hydre are found in fresh waters onls. They prefer slowly-running or almost still water, aud adhere to the leaves and stalks of submerged plauts. The body is exceedingly contractile, and heace liable to many changes of form; when contracted ít is like a tuberele, a minute top, or button, and when extended it becomes a narrow cylinder, being ten or twelve times longer at one period than another, the tentacula changing in size and form with the body. On the point opposite the base, ane in the centre of the tentacula, we obscrvo an aperture, or mouth, which leads into a wider cavity, excarated as it were in the middle of its body, and from which a narrow canal is continued down to the sucker. When contracted, and also when fully extended, the surface appears smooth and even; but in 'its mildle degree of extension' the sides seem to be minutely crenulated, an effect probably of a wrinkling of the skia. The tcutacula encircle the mouth and radiate in astar-liko fashion; but they seem to originate a little under the lip, for the mouth is often protruded liko a kind of small snout ; they are eyliudrical, linear, or very slightly tapercd, hollow, and roushened, at short and resular intervals, with whorls of tubercles, which under the mieroscope form a very baautifal and interesting object.

Each teuticulum forms a sleuder membranaceous tube, filled with an thbuminous nearly flud substance, intermixed with some oleaginous particles; and at certain defiuite places this substance swells out into tubercles or denser wartlike nodules, which are arranged in a spiral line. Every module is furnishen with several spimigerous vesicles, used as organs of tonch, and with a very singalarly constructed organ for catching the prey. The organ of touch consists of a fine bac, inclosing another with thicker parietes, and within this there is a small cavity. From the point where the two sacs coalesce above there projects a long cilium, or capillary spine, which is non-retractile and a]parently inmovable. Surrounded by these cilia, aud in the centre of the nodulc, is placed the captor orgau, called the 'hasta;' this consists of an obovate transparent sac, immersed in the nodule, with as suall pperture even with the surface. At the bottom of the sac, and within it, there is a saucer-like vesicle, on whose upper depressed surface is seated a solid ovate corpusele, that gives origin to, and terminutes iu, a calcareous sharp saritta, or arrow, that ean be pushed ont at pleasare, or withdrawn, till its point is brought within the sac. When the Ilydra wishes to scize an animal, the sagitto are protruded, by which means the surface of the tentacula is roughened, and the prey moro easily retained; and Corda believes that a poisosi is at the same time injecterl-a conjecture offered to explain the remarkable fact of the almost instant death of the prey. The nodules of the tentacula are connccted together by means of four nuscular fibres, or bands, which ran up, forming lozenge-shaped spaces by their intersections. These are the extensor muscles of the tentaculum. They are again joined together by transverse fibros, which Corda believes to be adductor muscles, and to have also the power of shortening the tentacula. But it may be doubted whether this muscular apparatus is of itself oufficient to effect the wonderful extensibility of these organs -from a line, or, as in II. fusca, to upwards of eight inches; and to produce this degree of elongation, it seems necessary to bave superadded the propulsive agency of a duid. Water flowe, let us say by suction, into the stomach through the oral aperturo, whence it is forced by the vis-a-tergo, or drawn by eapillary attraction, into tho canals of the tentacula, and its curront outwards is sufficient to push bufore it the soft yielding material of which they are composed, until at last the rusistance of the living parts suffices to arrest the tiny il Jod, ol the tabe has becoure too fine in its bore for tho almiscion of
water atsepuated to ita smallest posable stream-how inconceivably meader may inteed bo imagiaed, but there ia so thrend fine cuough to equal is, mering that the tentiventa of M. fueco, in teusion, can the comparni tu hothag groseer than the scarce visible filaments of the gematurer" wob

The Ifylro, though ununlly found attached, can neverthcless more fnum julaco to jlace, which it doen clither loy glidiug with imperceptible njuw nes on the baes, or ty stretching out the body and tentnenta to the utmost, fixing the lntter, and then contracting the body towards the point of fixture, loosening at the mame time its hold with the base; and by reverring thene actions it can retrograde. Its ordinary posithon necma to bo pendaut, or nearly horizun:al, hanging from some dowing leaf or weed, or atretching from its ajdes. In a glass of water the creatum will crawl up the sides of tho ressel to the surfaco sud lang from it, monctimes with the bouc nud scmetimes with the tevtacula downwarla; and again it will lay itself horizontally. Its locomotion is very slow, and the disposition of the zoophite is cridently sedentary: but the contractious mud mutations of the body are very rivacious, whild in meizing and masteriug its prey it is eurjrisingly nimble, scizing n worm with as much eagerness as a cat catcbes a mouse. It enjoys light, sud expatads more freely under its inftuence; bence wo gencrally tiud the JIydra nenr the surface and in mballow water. The Hydre are very soracions, feeding only on living nimals. In confinement howaver Trcmbley found they might be fid on minced real, fish, or beef and mution. They will sustain long fasta with no otber ebange than a paler colour indicates. Small worms, crustaceans, and insects seem to form s favourite food. Sometimen two polyp will aeize upon the same worm, and most monaing is it then to winese the struggle that ensues, eometimes reaulting in the awallowing of the wenker polyp by the stronger, which however is aoon diggorged with no other loss than hin dinner. Thin ia the more curious when contrasted with the fate of the worms on which they feed. No sooner are they seized than they evince every aymptoin of phinful euffering, but their contortions are merely momentary, and a certain death auddenly follows their capture. How this effect in produced is atill a matter of conjecture. Worme are in ordinary circumstances most tenacious of life, and hence one is inclined to supmose that there must be something poisonous in the Mydra's grapp. To the Eintomosiraca the touch is not equally fatal, their whell evidently protecting them from the poisonous seeretion. The Hydraiechefly celebrated on account of its manner of propagation. Is in like zooptytes in general, moncecions, and every individual posecsen the 1 wor of contiuning sud multiplying its race, prineipally however ly the process of subtivision. luring the summer seasun A large tulicrcle arises on the aurface, which lengthening and enlarging every hour, io a day or two develops in regular succession and in unccoaive pairn a meries of teutacula, and becomes in all respects cacept in size nimilnr to its parent. It remains attached for eone time, and grown and fceda, and coutracts and expands after the fashiou of ise pareat, watil it is at length thrown off by n process of exfolintion or aloughing. They develop with great rapidity in warm wenther, and manctimen the joung ones themselves bred other, and they again a third or fourth generation before they become se parnted from the wriginal jarent. Trembley found that an individual of H. grisea producal 15 young oure in two months. In sutumn the Mydra generaten by internal oviform gemmulen, which extrude from tho body, aud lie during the winter in a quiescent atate, and are stjmulated to colution only by the returnitg warnth of the spring. Few observations have been made on these ova, so that their atructure, source, zonner of encape, and condition are acarcely known.
Tbene are the modes in whieh the Jydra natarally maltiplies its kind, but it can le increamed by artificinl sections of the body in the ame tamaner that a perenuial plati can ly shoots or slipa. If the body be halved in any dircction cach half in s abort time growa to a Jerfect $11 y$ dra; if it in cut into four or cight or even minced into forty fireow, rach continues alise, and develops n new animal which in inelf cajmblo of leing multiplied in tho satse extraordinary manner. If the nection of male leagth wise oo ns to divide the body into two or inure Alipm connected merely by the tail, they nre apeedily reunited anto a firrfect whole, or if the piccen are kept namuler ench will becomo a perfet jolyp. if the tentacula are cut nway, new onee aro quickly prodiced, and the liptotif parta are not long without a new body. When a phece in cut ont of the borly the wound ppeedily heala, abden if excited thy the atmultum of tho kuife, young polyis aprout from the wounl more mbumantly; when a polyp ia introduced by the tanl inton ancelber body, the two anite nosl forro one individual, and *hen a limall in lopt off, it may mafely be ingrafted on the boty' of may uther which may chance to want one. And tho creature auffer nothmp ituelf ly all these apmarently crucl operations; for before the Lare of toany minutes the upper half of a crose nction will expand ita tritaculambl catchatry on uaul, nul the two portion of a lougiturlinal Atriazob will afler an hour ar two take food abdretain it. A polyp cut thansermely in three $\mathrm{p}^{\text {arth requiren four or five daya in mummer }}$ and longer itn crobl weather for tho ianidilo piece to jroduce a liend and a tail, and the tail part to get a landy and lueat, which they do in pretty much the eane tume Abl what in atill more extraorlinary, polgpentorluced in thin masace grow much larger and are far more prolafo in the way of their uatural inerease than those which were
never cut. When much things were first announced, when to a little worm the attributes of angelic beinga wero assigned, and the wild fictions of antiquity realised, it is not wonderful that the vulgare disbeliored, when naturalints, fumiliar with all the mirncles of the insect world, were amszed and fiat not what to do.

The following are Britioh species of thin genas:-
II. riridis (Palypen Verds of Trembley), is of a grass-green colour. The body cylindrical or insensibly marrowed downwards ; tentacula 6 to 10 , shorter than the bodg. It ia commonly found in ponds and still waters. The polyps of this plecien difler from the following, not only in colour, bat likewise in their 'arms, which are much shorter in proportion to their bodies, capable of but little exteuaion, and narrower at tho root than the extremity, which in contrary to the other species. Their arms were so short they could not clasp round a very small and slender worm, but seemed to pinch it fast till they coald master and devour it, which they did with as much greediness as any. It was first observed in England in the spring of 1743 by a Mr. Ducnne of Essex. It appears to be a hardy animal, and is casily kept for a length of time in a phial of water.
II. vulgaria is of an orange-brown or yellowish colour, body cylindrical, tentacula 7 to 12, as long or longer than the body. It is found in weedy ponds and slowlyrunning weters This does not exceed H. viridis in size, which it resembles alno in its habits and form. It is always of an orange-brown or red colour, the intensity of the tint depending on the nature of the food, or the state of the ereature'e repletion. Every part of the body is generstive of young, which msy frequently be seen hanging from the pareat at the alme time in different stages of their growth.
II. allemuata is of a light oil-green colour, the body attenuated below, with pale tentaculs longer than itself. It is found in ponds, and in Yetholm Lough, Roxburgbehire. This is a larger animal than U. rulgaris, aod comparatively rare, less sensible to external impressions, and of a more graceful form. Its colour is a pale olive-green, with paler tentacula, which are considerably longer than the body, and haug like silken threads in the water, waviog to and fro without assuming that regular cireular disposition which they commonly do in 1. viridis. Dr. Johnston says be has not observed more than one young at a time, which pullulated from near the middle of the body, and after this has attained a certain growth the polyp has the appearance of being dichotomously divided.
11. aligactis (Polypes à Long Bras of Trembley) is brown or griseous; inferior half of the body suddenly attenuated; tentscula several times longer than the body. It is found in etill waters in England, rare. ln s pond nt Hackuey; and in a pond at Cranmore, near Belfast, Septenber 1812. The tails of these sre long, elender, and transparent, and when placed under the mieroscope n long etraight canal may be seen passing from the body or etomach to an opening at the end thereof; these are rather lighter coloured than H. vulgaris, and bave ecldom more than 6 or 8 arms, but those capable of great extension. It mny be worth while to call attention to the remarkable resemblance of the Iyydra fusca to the Cucullanus cirratise of Müller, which is an intestinal worm.
(Johnston, Mistury of British Zoophytes; Landeborough, Popular IHistory of British Zoophytez; Trembley, Mémoires pour servir a CHistvire d'un Genre de Polypes d' Eau douce, the Hague, 1743; Baker Natural History of the Polype.)

HYDRACHNA. [Trachearia.]
HYDRACTINIA. [HydROMA.]
HYDRALES. [Endogens.]
HYDRANGEA. [Hydrangeacee.]
HYDRANGEACEE, Mydrangcads, a natural order of Exogenous Plants consistiug of shrubs, winh perfectly opposite simple leaves, smooth er downy, with simple hairs, destituto of stipules, sometimes erecping aud rooting like ivy. Flowers uaually in cymes; those in the centro male, the marginal often sterile, and furnished with larger petals than the others. Calyx adhering more or leas to the ovary, 4. or 6-toothed. l'etals 4 or 6 , inserted within the edge of, the calyx, deeiduous. Stamens 8 or 12, in two rows, inserted in the orifice of the calyx, dintinet, deciduous. Anthers oblong or roundish, pollen with three longitudiunl furrows. Ovary more or leas adherent to the calyx, consisting of from 2 to 5 carpels, adhering by their sides, and furming an incompletely 2 - or 5 -celled cavity; placente dietinct from ench other, but touching with many anatropal ascending or horizontal ovules; styles as many as the carpels, perfectly distinet, diverging, with aimple reniform stigmas. Fruit a capsule erowned by the permanent diverging styles, 2 . or 5-celled, with a number of minute becds, sometimes indefinite, sometimes few, in consequence of the abortion of n part of the ovules. Tenta thin, membianous, petted, occasionally expanded into n wing. Embryo orthotropal in the axie of a small quantity of acehy nlbumen. The relationship between Ilydrangends and Suxifrages is admitted hy all eystemntists, who have in general united theus in the same order. Lindley places this order betwceu Saxifrajacee and Cunoniacco, and near Philadelyhacea nod Caprifoliacce. It differs from Mensloviacece mainly in its indefinite seeds, small quantity of albamen, and conatant tendency to produce a superiur ovary. Uut of the apecies hitherto discovered, all of which inhabit the temperate parta of Asia and America, two only belong to the southern hemisphere, and twenty-three or about
one-half to China and Japan. Tha species are fonnd naturally in moist ahady places. None of them sppear to be of much use to man.
Hydrangea is a well-known genus of hardy shrubs, of which one species is commonly cultivated for the sake of its beantiful flowers. This plant is a native of Chins and Japan: it was originally observed in the gardens of Canton by Loureiro, who took it for a primrose, and called it Primula mutabilis. It was next met with by Commerson, a French traveller, who named it Hertensia, in compliment to Madame Hortense Lépeante. Thunberg referred it to the genus Viburnum, and Smith called it by its present name, coupling with it the nams Hortensia of Commerson, converted however into Hortensis. When this plant is hardy enough to survive the winter, it grows to a considerable size, and when covered by a multitude of its very large ronnd heads of rosy flowers, becomes a magnificent object. But as it is rather tender, we more commouly ses it grown in pots, by which its beanty is much diminished. To have it in perfection it should be plantad in the open ground in rich soil; during winter it should be covered with a mat well stuffed with straw. As soon $2 s$ it begins to mors its buds in spring, it should be unpacked, and during sammer it should be most abundantly supplied with water. We have known a large plant receive as much as 100 gallons of water daily. If thus trested, the Hydrangea is without a rival in the shrubberies of this country. The blus colour which the flowers of this plant now sssume does not indicate a distinct variety, but is ouly owing to the soil in which the plant is made to grow containing a greater qusntity of iron than usual. Other apecies are II. arborescens and II. quercifolia.
The leaves of II. Thunbergii are dried in Japan and used as a kind of tea, which for its excellence they call Amartsja, or Tea of Heaven. There are 9 genera aud 45 species of this order.
hYDRARGYRUM. [MERCURT.]
hydrastis. [Warvera; Ranoncolacese]
HYDRIDEE, a family of Snakes belonging to the Colubrine suborder of Dr. J. E. Gray's arrangement, and the first section of this sub-order, which includes the Mydrides sud Boido. [Bonse.] It is thua characterised:-Belly covered with narrow elongate shields or scales, nearly resembling those of the back.

The following is a synopsis of the genera, and a list of the species, compilad from the Catalogue of the specimens of Snskes in the British Museum :-
Mydride.-The ventral shields narrow, hexsgonal or band-like; the hinder limbs not developed; the eyes and nostrils superior, vertical, the latter valvulsr, generally phaced in the middle of a shield, with a slit or groove to its outer edge ; fangs moderate, intermixed with the maxillary teeth; pupil emall, round; tail compressed or conical. They live in the sea or salt-water lakes, or in fresh watcr.

Synopsis of the Genera.

I. Tail compressed (except in Acrochordus). Delly keeled, with two rows of small acale-like slields, often united together into a single, rather broad, 6 -sided shield.
A. Head ehielded to the nape. Nasal shields very large, with a large, operculated, superior nostril in their hinder edga; the frental ahields two pairs, small; loreal shield nene; labisl shields high, large. IIydrina.
These are the true Sea-Snakes. Thsy coil themselves up on the ahore, snd appear to lire on sea-weed, and lay their cggs on the shore. They are often found asleep on the surface of the sea, whers they are easily canght, for they cannot descend into the sea without throwing themselves on to their backs. This srises spparently from the necessity of expelling the sir from their large lungs. Thay sre often thrown ashore in the surf, and are occasionally carried up rivers by the tide, but they cannot live in fresh water. Their hite is venomous, and they are held in great dread by fishermen wherever they occur, on this account. In spite of their renomons properties, one species nt least, the IIydrus (Pelamis) bicolor is aaid by Cuvier to be eaten at Taheite.
a. Scales square or 6 -sided, placed side by side.

- Head elongate, depressed.

1. Pelamis.
P. bicolor. Pacific Ocean.
P. ornata. Worneo.
** Head mederate, rather compressed; gape moderate.
2. Lapemis.-Head moderate, short, rounded in front; dorssl scalcs aquars ; ventral ahield bread, 6 -sided.
L. curtus. Madras.
L. Mardurickii. Borneo.
3. Aturia, - Hend moderate, short, rounded in front; dorsal scales 6 -qided ;"rentral shield 6 -sided.
A. ornata. Indian Seas.
A. Belcheri. Now Guinca,
4. Microcephalophis.-Head amall; acalca 6 -sided; ventral ecales kecled.
M. gracilis, the Kadel Nagam. Madrss.

Pclamis bicolor (IIydrus bicolor, Schn.),
6 Scalcs orate, 6 -sided, imbricate, keeled, or with the kesl reduced to a tubercle on the centre of the scales; head sud gape moderate.

* Labial shields accupying the greater part of the lips; the eyes over the fourth, or rarely over the third, or the fourth or fifth shield; ventral shield uuited.

5. Enkydrina.-Rostral plates narrow, erect; lower linear, sunken; nssal narrowed in front; ventral shield flat; head moderate, short; eyes moderate.
E. Bengalensis. Mndras.
E. Valakadyen. Madras.
6. Ifydrophis.-Rostral brosd, transverse; lower triangular ; nasal truacated or notclsed in front; rentral shicld flat; head short; eyes small.
II. obscura, the Shootur Snn. Madras.
II. Lindsayii. China.
II. fusciata. Indian Ocean.
II. nigrocincta, the Kerril. Bengal.
II. doliata, the Black-Headed Kerril. Australia.
II. subcincta, Shaw's Chittul. Iudian Ocean.
II. sublavis, the Chittul. China and Indian Ocean.
II. mentalis, the Pale Chittul. Indian Ocean.
M. ocellate, the Eyed Chittul. Australian Seas.

If. spiralis, the Shiddil. Indian Ocean.
H. subannulata, the Ringed Sea-Snake. India.
II. aspera, the Rough Sea-Suake. Singapere.
11. cerrulescens, the Bluish Ses-Snake. Bengal.
7. Chitulia.-Rostral brosd, transverse; lower triangular ; nasal truncated or notched in front; ventral shields flat; head clongste, depressed ; eyes large.
C. inomata. Indian Occan.
C. fusciata. Indian Ocean.
8. Ferilia.-Tostral broad, transverse; lower triangular; nasal truucated in front; ventral shield broad, couvex, forming a slight keeled ridge; ths hinder ones with a keel on each sids; head short, shelving; scales very large, broad, 6 -sided; eyes rather large, over third and fourth labial ahiclus.
K. Jerdenii, the Kerilia. Madras.

* Labial shield occunying tho front half of the lip; eyes over the fifth or sixth shield; hinder part of the facs covered with small seales; veutral scales generally 2 -rowed, forming a keeled ridge, some united in pairs into 6 -sided shields.

9. IIgdrus
II. major, the Scasnake India; Australia.
II. annmlates, the Kinged Sea-Snake. Singapore.
c. thally coreral with anouth polinhal imbricato seales; head as lapge as the tody; ventral shichlerather large, transerme, smouth, folled ugether amd kecled.
10. Tomoguter.-IIend with regular ahields; euperciliary michlds simple; ventral shimele rutire.
T. Eychonrii ludian Oeens.
11. Soghanahydra--Head slijelds numerou* ; superciliary shields 3 wr 4 : rentral whiclds nick col bulind.
\& ju**o, Jukes's Iy protrophis. Darnley Inlanda.
B. Head corered with seales, like the body; noatrila aurrounded by a sumll, continuous ring: eyen murrounded by a acrics of amall acales; lablad shiedds small, with a larger meries above them; pupil round; ventral ahichls very amall, scale-like, geparated on caid aile of n keeled ridge. The species are all inhabitanta of rivers Aerochordina.
12. (Acroydras.-Tail comipresed, sword-shaped, prehencile; body fusiform, curend with amall rhombic geales, with a ceatral tubercular leel.

C: gnanulatue, the Cherayitua. Madras.

 \therefore asmulaine Mabriw.

Cherndrus granulatal (Acrorhordua gasciatus, sioas).
13. Acrobsordus. - Thil conical, tuןering, moderate; borly fusiform, coterel with :ricurpid nealen.
A. Jaranised Jhra
11. Tail conical, tapering Ihelly munded benesth, with more or lees
loroul landlike hhielda liven or ponds.

 pomina : uonerila its a ring of amall scales; ecales kecled. ErpeBowina.
16. Eirpetom.
E. Untaculu, the Firjeton. [Einrates]
B. Ilend shielded; tuil with two series of shields beacath; nostrils between two shields; abdomimal shields. broad, keeled on each side; scales smooth. Bitiana.
15. Bitio. - Head small.

B. hydroides.

C. Heal fhielied; scales striated, and keeled or smooth; tail conical, tapering, with two series of shields bencath; nostrils in centre of a large nasal shield, with a groove to the outer side; veatral
" shields rouaded (or rarely slightly keeled on tho sides); froutal shields 3, rarely 2 or 4 , all smalh. Cerberina.
a. Crown scaly; occipital rudimentary; froutals 4; anterior pair very small.
16. Cerberus.-Scales keeled, atriated; hinder labial shield low.C. cinereus, the Karoo Bokrdam. India.
C. acntus. Borueo.
C. rnicolor: Ithilippines
C. australis. Australia.
l. Crown shielded; occipital moderate.

- Head distinot, dupressed ; froatals 4; anterior pair small; rustral rounded.

17. Ferania.-Seales smooth; seveath upper labial low, with a largo shield over it. F. Sieboldii. Beugal.

* Ilead distinct, depressed; frontals 3; anterior trabsverse; rostral rounded.
+ Fourth and fifth hinder labial shields small or divided.

18. Homulopsis,-Scales kecled.
II. buccala. Java.
II. IIurdwichii. India.
19. Phytolopsis.-Scales smooth. P. punctota. Iudia.
t+ Ilinder labial large, like others; acales keeled; rostral rounded.
20. Lranops.-Scales truncated, strougly keeled, striated; eje over fourth shield. L^{\prime}. angulatus. Tropical America.
21. Tachynecles.-Scales truacated, strougly keeled. 7. Leopardina.
22. Tropidophis.-Scales ovate, keeled, atriated; cye orer fourth an l fifth bhield.

7'. Schistestes, the Chittee. Ceylon.
23. Myron.-Scales ovate, slightly keeled, amooth.
M. Richardsonii. Australia.
M. tritittutus. India.
24. Helicops.-Scales ovate, polished; of back and tail keeled.
II. carinacaudus. North Amorica.
$+\dagger+$ Hinder labialn large, like others; scales emooth; rostral rounded.
$25 . H y$ rirhina.-Sercuth labial large; eye over fourth and fifth labial ; loreal distiuct.
M. plambea Borneo.
II. Havdwickii. Peuang.
II. Aer, the Ular Aer. Bornco.
II. bilincata. Chiaa.

Jf. Chinensis. China
II. Bennetlii. China,
26. Farancia-The seventh labial large; eye over the third and fourth Is inal.
F. jaaciata, the Wampan-Saake New Orleang.
27. Mydrops.-The serenth labial large : eyes over the fourth labial; reatral shicld broad; body thick; loreal none. II. Martii. Brazil.
28. IIygina.-The seventh labial large; eyes over the fourth labial; ventral khield narrow ; body sleader; Joreal none.
II. fusciata, Demerara.
29. Ilinades.-The seventh labial short, small ; eye over third and fourth labial; loreal none.
D. plicatilis. New Orleans; North America.
** Head moderate, depressed; frontal 3 ; anterior elongate, erect,. between the atanals; seventh smooth; rostral rounded.
30. Fordonia.-Scalen broad, rhombic; ventral shield rounded; loreal noue; oye over third labial. F. leucobalia. Timor.
F. zuicolor. Borneo.
31. Gerardit-Scales broad, rhombic; rentral shields rounded; eyo over fouth miceld; loreal equare.
(i. bicolor, the Gerard. West Indies,
32. Hipistes.-Seales parrow, flatteuad; ventral shields keeled at each end; loreal nquare. II. jasicatus. Wcst Indies,
**" Ilead indistinet; frontal 4 ; auterior 4-sided, rather amaller; scales smouth; body cylindrical.
33. Abastor.-Body cylindrical; loreal shield none; auterior frontal 4-sided; posterior ocular 2
A. erythrogrammus, the Striped-Wampum. North America.
34. Raclitia.-Head small, conical; body subcylindrical; anterior frontal very small, triangular; loreal distinct; posterior ecular.
R. Indica. India.
35. Miralia.-Hear small, conical; body compressed; frontal plates 2 pairs; loreal none; pcsterior ocular 2. M. alternans. Java.
**** Head moderate, depressed ; frontal shields, 2, small, lateral ; rostral shield angular, higb, erect, between frontals and nasal.
36. Ficinia.-Head small; rostral plate large, produced between the froatal, angular and recurved in front.
P. olivacea. Mexico.
***** Head small; frontal shields 2, transverse, baud-like; rostral triangular, subangular.

37. Prosymna.

 P. meleagris. Guinea.D. Hearl covered with small scales; tail with one row of shields beneath; abdomioal shield broad, rounded, smooth; nestril in a shield, snterior, sublateral; scales granular, with rows of keeled scalen. Xenodermina.
38. Xenodermits.

X. Javanicus, the Gonionote. Jsra.

Dr. Gray says, "The separation of the specimens of this family Into species and genera is attented with great difficulty; the form and number of the shields of the head, lips, temple, and chin are liable to great variation, not only in the different specimens, but often in the two sides of the same individual. The two ventral series of scales are, in the same speeimen, sometimes separatc, and at other times united into a shield; and many specineps have a series of small triangular shislds on the edge of the lips, between the sutures of the lip-sbield, not found in other individuals of the same species.
"The diatribution of the colours on the borly appears to be one of the most permanent characters of the species; but this becomes less listinct in the older specimens, and is often lost in the specimens that have beea carelessly or long preserved in a museum."

The existence of this family of Water-Soakez has undoubtedly given rise to the notion that a large Ophilian, which meets the popular view of a Great Sea-Serpeat, cxists. In all cases however the reports of the existence of such a creature hare been traced to the capture or sight of aome other animal, or to the exaggerated representations of some other natural object. The IIydride amongst the Ophidia are of comparatively small size, seldom equalling the Boides in this respect, and falling far short of the enormous dimensions popularly attributed to the Great Sea-Serpent. [Boid.e; Orimin.]

HYDRILLA. [HYDROCIARTDACE.E.]
HYDRO'BATA, Vieillot's name for the Water-Blackbirds, Cinclus. [Merulid.e.]

HYDRO'BATES, Temminck's name for the Sea-Ducks. [Deces.]
HYDROBOLACITE, a Mideral, occurring in small needle crystals, which appear to be flat six-sided prisms. Its colonr is white, with apota of red from silicated peroxide of iron. Hardness similar to that of gypsum. It is tranalucent. The specific gravity is 1.9 . Found in a collection of Caucasian minerals. The following is an snalysis by Iless :-

HYDROCANTHERA, a tribe of Insects belongiag to the Pentamerous family of the Coleoptera. They sre all aquatic in their habits. The principal sections are the Dytiscidee and Gyrinida. [Dytiseid.e; Grainides.]

HYDROCIIARIDA'CEAE, Hydrocharads, a small matural order of Endogenoua Planka inhabiting ditches, lakes, and rivers in various parts of the world. They have tripetaloideous flowers, often soparate aexes, and an inferior ovary. The latter character cuts them off from Alismacee and Butomacere, to which they bear some resemblance in labit. Fallisneria spiralie, a plant of this order, is remarkable for its apiral flower-stalk, which enables it to accommodate itsclf to the depth of the stream in which it fleata, se as always to keep its flowers above water when it is necessary. [Valisneria.] It is in the learcs of this plant that a peculiar movement io the interior of the cell called Cyclosis [Crclesis] was originally cbscrved. The same movement is also seen in the cella of IIydrocharis Morsus Raner and Anacharis alsinastrum, and is probably present in the whole of the order. The specica are natives of fresl-water in Furope, North America, and the East Indics. One specics is feund In Egypt (Damosonium Indicum), and two Vallisncrias in Australia. Nothing is known of their uses unless that the fruit of Einhalus is eatable, and ita fibres capable of being woven. According to Agardh, Ctilia and Boottia are eaten in India as potherbs.

Inydrocharis Morsus Rance.
1, a portion of the plant, with flowers, leavea, and stem; 2 , a maie flower; 3, a female flower; 4, a section of the ripe fruit; 5 , a seed, with a part of the esta stripped off to show the embryo.
The Janji of Hindustan, the Vallisneria alternifolia of Roxburgh IIydrilla of Hamilton, is one of the plants used in India for supplying water mechanically to sugar in the process of refining it, "as clay is used in the West lndies to permit the slow percolation of water." Lindley places this order near Naiadacece, Pistiacece, and Bromeliacec. It has 12 genera and 20 species.

HYDROCHAR1S. [HydROCHARACEE.]
HYDROCH(ERUS. [Hystricid.s.]
HYDROCOTYLE (from víwp, water, and кotú η, a cavity), a genus of Plants belonging to the natural order Umbelliferee and to the suborder Orthospormece. The calyx obsolete; the petals ovatc, entire, acute, with a straight apex; the fruit flaty compressed from the sides; the carpels without vitte; the five ribs or nerves nearly filiform, the carinal and lateral ones usually obseleta, and the two intermediate ones joioed. The species of this genus are generally bog-herbs; but few of them are under-shrubs. The umbel is single, surrounded by a few-leaved involucrum; the flowers sessile or pedicillate, white.
Upwards of ninety species of plants have been referred to this genus. It is not however improbabls that a more attentive study of them will lead to the distinction of otleer genera amoogst them.
II. vulgaris, Pennywort, has peltate orbiculate double crenate leaves; umbels eapitate, of 5 flowers, often prolifereus: fruit emargioate below. This plant is a native of Great Britaia, and througheut nearly the whole of Europe, in marshy bogigy places, and on the margins of rivalets on a peat soil. This plaot is commonly called Peanywort, oa aecount of its leaves lying flat on the gronal and having the size and form of a piece of money. It is also known by the names of Water-Pennywort, Sheep-Killing Penuygrass, White-Rot, Fluke-Wort, and Sheep's-Bane. These latter names it has obtained on account of its being supposed to prodnce the rot and other diseases in animais that feed on it. This is however an error, as tbis plunt will not produce disease in snimals; but it occurs in damp moist situations, where animals that feed are likely to be attacked with rot and other diseases. It is in this way that other marsh-plants, as the species of Droscra and Pinguicula, have been supposed to cause diseasc in shesp aud oxen.

Of the large number of species of this genus few if any are used in the arts or medicice, and none of them are sufficiently ornamental to lead to their cultivation. II. Asialica is aaid to be used in India as a diuretic, and occasienally as a culiaary vegetable. II. umbcllata is recommended by Martius as a remedy in hypochondriasis, but on
what Erounch io not ntated. The fresh juice acts an an chnetic. It is mill to promer an aromotic odsur and an agrecable tate. The npecies of Ilyirotegle are cavily cultivated; they must all bo kept moint. The etoreportulsouse and frame Liad should bo grown in pots placed in jans of water.
(Ihno. /hiehlanginom Plante: Burnett, Ouflines; Rabington, Manual of RrubuA Rofong.)
Mribitocrov, a genus of Finlaes belonging to the Malacopterygii Ablominales. Tho precien are very numeroun. They hare the point of the muzte formed hy the intermaxillaries, the maxillaries nearer, lefore the eyed, and coupleting the aperture; the tungue and vomer mooth, the jawa with conical teeth, and the large suborbital covers the cteck like an oprerculun.

A large dutater of epecies inhabit Brazil. They are also found in the Nile.

HIIMRODICTYOS. [Atc.e.]
HIllkOlld, a name given to a section of the order Polypifora, embracing furna resembling the fresh-water /fydra in the aimplicity of their oraniantion. The following is llr. Johnston's arangement of the families of British Zoophytes referred to the Hydroida:-

- Orizace or bulbulea naked, bud-like, pullulating from the
baces of the tentacula

Tubularimx, Fhmberg (Tubmlaria, Linneus; Tubulariader, JohnSbon: let Tubularem, Van Benclen).

Fimily I, -Polype maded, or with ooly a rudimentary polypidou. Corynider.

+ Polypa maked.
The tentacula ecatered. Clara.
The tentacula in one row. Iydractinia. ++ Polyps with a loony cuticle.
The tentacula with globose tips Cioryne.
The tentacula filiform. Cordylophora.
Family II.-Polypidom fistular; the tentacula whorled. Tusulariade.
+ The tentacula in a single whorl. Eudenelriun.
t+ The tentaculs in a double whorl.
l'olypidom rooted. Tubularia.
Pulypilom unrooted and deciduone Corymorpha.
- Orinaca in the form of horny capsules or vesicles acattered on the polypidoms, and deciduous.
Semularina, Fihrenberg (Sertularia, Liddxus).
Family 111.-Cells of the polyp sessile. Sertulariadu. + Cells biscrial.
Cella alternate, tubular. Halecium.
Cell sasiform, everted. Sertularia.
Cella conico-tubnlar, appressed. Thuiaria, $\dagger+$ Cella uniserial.
The branclalets plumone or pectinate. Plumularia.
The branchleta whorled. Antennularia.
Family IV.-Pulypecells on ringed stalks. Campanulariadir.
Cellm alternate, campanulate. Iaomedea.
Cella irregular, or whorled. Campanularia.
... Polyp jropagating by hudn and ora, which dovelop themacives on and in the body of the parent.
Hydrina, Ehrenberg (Hydra, Linneua; Inydraider, Johnston). Une gemas ouly. J/yira. [llyona; Porvirfera.]
 of Sonsperalun fixogenoun l'lanth, which aro by mont authors united with Hydrenhylacer. [11mmoburshackat] They are weeda fuhabiting the fiant Indien, with alternate glamblar or stinging Iraten, minogetaloun regular fowen, with a gyrato inflorescence, definte ntamenn, a muperior polsmpermoun 2- or 3 cellen fruit, and eedn with the emblyo lying in the mildst of flesliy albutnen. In their gymate inflorencrine tbey correapond with Borayinacta.

 anter Hemydera. Thin fatoily wan cstablinhed by Dr. leeach, and is thu characerried :- Itontrum with 2 or 3 distinct joints; labrum try ploart; esem moderates: feet very long, formed for walking on the water, with the clew rninute, inmerted laterally into a thesure on the extriaity of tho umbinal joint of the taname.

Than gemera /lydromesia, fierris, nidl lictia of I.atreille belong to thia family. Thom neccew whiel Invo metaceumantenua, the head prolongril intes a mout and receising the rumtrum leneath, belong to tho forst of theme thro genern, of which the Jydrometra atagnorum will corve an an illumtratian. Thim insect in nlout 3 -sthm of an inch in length, and not browler than an ordinary mized jin, of a black or brown colour, with pale brown lega, and jevery common on ponda and dikhee, generalls uear the mareid. Like the other apecies of the

1, a flower, seen from bencath; 2, a stamen; 3, a ripe seed-veseel; 4, a section of a seed, showing the crabrya.
family IHydrometrida, it possesses the power of walking upon the surface of the water: it differs however from those of the tro remaining genera, inasmuch as its morements are comparatively slow.

In the genus lelia the antennx are filiform, 4 -jointed, the first joint the longest, the remaining joints long, about equal to eseh othor, and bent at au anglo with the first; rostrum 2 -jointed; legs moderato, and uearly equidistant.
F. rirulorum (Latreille) is a very common insect. in this country, frequeuting runniog streams, and runuing on the surface of the water with great rapidity. It is about 1-4th of an inch in length, and 1-12th of an inch in breadth; of a black colour, the body red, spotted with black, the thorax brown, with two rhite apots, and the elytra each with four white spots.
The principal chnracters of the genus Gerris are-Antenne filiform, 4-jointed, the basal joint ncarly as long as the remainiog three; rostrum 3-jointed, legs long, the sccond pair the longest, and inserted far from the first.
G. Paludum is about 5-8ths of an ineb in length, and 1-12th of an inch in breadth, of a brownish-black colour above, and silvery-swite beneath. Thin insect is very abundant, and its peculiar habite of darting sbout on the surface of the water must have attracted the attention of all persons. Its food appears to consist chicfly of such insects as are blown or accidentally fall into the water, which it seizes with its fore legs.

HYDROLELTIDEA, Watershiclels, a natural order of Exogenous Plants (Cabombacere of Torrey, Gray, and Lindley). The species are aquatic plants, with floating peltate leaves Flowers axillary, solitnry, yellow, or purple. Sepals 3 or 4, coloured inside. Petala 3 or 4, alternate with the sepals. Stamens definite or indefinite, lypogynon, arising from an obscure torus. Anthers linear, turned inwarde, contimous with the filamenta Carpels 2 or more, terminated by a short style. Ovules orthotropal, peadulons. Fruit indehiscent, tipped by the hardened atyle. Sceds definite, pendulous. Jimbryo minute, 2 -lobed, ioclosed in the fleshy sac of the amnion, at the apex of the uucleus, and external to an abuodant fleahy albnmen. There can bo no doubt of the near relationship of these plants to the Water-Lilies. They are American water-planta, found from Gugana to New Jersey, and also on the coast of Australia beyoud the tropics.

I/ydropeltis purpurea is said to be nutritious, but slightly astringent. The leaves are employed as a remedy for phthisis and dysentery.
(Lindley; Yegcable Kingdom.)
HYDROPELTIS. [II rDROPELTIDE.E.]
HYDHOPHANE. [SuLICA.]
II YDROPHI'lIDAE, a family of Coleopterous Insects establisheil by Leach. The insecte of this family are included by Latreille in him rection Palpicornes. They have gencrally nine joints to the antenne, but sometimes only 6 ; the terminal joints always form a perfoliated knob; the maxillary palpi nre very long and sleader; tho
body is usually oval or rounded, convex sbove and flat beneath, or nearly so : the tarai are 5 -jointed, and the mandibles bidentate.
The principal genera of the family Hydrophilida may be thus characterised :-
Genas Hydroïs.-Antennæ with the terminal joint acuminated; sternum produced into an acute spine, which reaches considerably beyond the insertion of the posterior pair of legs; seutellum large; labrum entire; tarsi of the four posterior legs compressed, and furnished with bifid claws. The male sex has the anterior tarsus dilated.
Hydroils piceus (Hydrophilus picews of the older authora) is one of the largest beetles of this country, measuring about one inch and a half in length. It is of a glossy black colour and oval form, convex above and flat benesth, and has the elytra somewhat pointed at the apex. This insect is not very uncommon in stagnant watera in certain parts of England. It lives near the bottom of the water, and may be said to walk rather than swim in that element. The female insect deposits her eggs in a little nest composed of a gummy substance, which is ejected from the sbdomen, and in this nest the eggs float until they are hatched. The larve, which are of a lengthened form and brownish colour, live in the weter.
Genns Hydrophilua (Leach).-Lsbrum emarginated; mandibles internally ciliated; antennæ with the terminal joint somewhat obtuse and obliquely truncated; sternum terminating in a slightly acute spine, which scarcely reaches beyond the insertion of the posterior legs; claws dentated et the base; the anterior tarsi simple in both eexes.
Hydrophilus caraboides (Linnæus), a common insect in some parts of England, and like the species which is given as an illustration of the preceding genus, lives in stagnant waters. Its form is oral, convex above, and flattened beneath; and the elytra are rounded posteriorly. It is of a glossy black colour, sometimes with a bluish or violet hue, and about three-quarters of an inch in length.
The genus Spercheus (Fabricius) is chiclly distinguished by the antenne, which apparently sre only 6 -jointed; the clypeus emarginate; the maxilla with the external lobe palpiform : tibia smooth. The body is very convex.
Spercheus emarginatus (Fabricius) is about a quarter of an inch in length, and of a brownish colour sbove and blackish beneath. It lives in stagnant waters, and has been found adhering to the roota of plants. As yet this has always been considered a very uncommon insect in England.
Genus Berosus (Germar).-Eyea prominent; clypeus entire ; apparently 8 -jointed, the terminal joint large and somewhat globular; thorax very convex; the elytra broader than the thorax, sud also very conver ; posterior tarsi cilisted.
Berosus luridus (Stephens) is less than a quarter of an inch in length, of an oval form, and grayish-yellow colour. The head is of a brassy green colour, sod there is a spot of the same hue ou the thorax. The elytra are striated. This species is common in ponds, \&c. in various parts of England.
Genus Hydrolius (Leach).-Antennx 9.jointed, the terminal joint somewhat compressed and acuminated; clypeus entire; scutellum small; sternum simple; eyes small and not prominent; claws simple.
The species of this genus are usually of amall size, of an oval or rounded form, and always very convex. Like those of the preceding genera, they live in ponds snd ditches, and appear to prefer stagnant wsters. Mr. Stephens, in his 'Illustrations of Eritish Eutomology;' enumerates 25 apecies.

HYDROPHIS. [HyDRIDE]
HYDROPHITE, a Mineral, a variety of Green Serpentine containing vsnadium. It occura amorphous, Ita fracture is irregular. The colour is mountain grecn. Soft. Specific gravity $2 \cdot 65$. It is found at Taberg in Smaland. The following is its analysis:-

HYDROPHYLLACE E, Hydrophyls, s nstural order of Exogeuous Plants, consisting of small trecs, bushes, or herbaceous plants, often hispid. The leaves sre often lobed, alternate, or the lower ones opposite. The flowers arranged in gyrate racemes or umilateral spikes, or occasionally solitary and stalked in the axils of the lesves. Calyx inferior, persistent, deeply 5 -cleft, the recesses usually sugmented with reflexed sppendages. Corolla monopetalous, hypogynous, regular, shortly 5 -cleft, between campanulate and rotate, rarely funnel-shaped. Stamens 5, epipetalous, alternate with the segments of the corolla, inflected in restivation; suthers versatile, 2 -celled, tho cclls parallel, dehiscing longitudinally. Ovary superior, simple, I- or 2 -celled, stylsa 2, long ; atigmas 2, terminal ; placentes 2, freo st their back, or nnited to the shell of the ovary, with two or many amphitropal ovules on their inner face. Fruit capsular, 2-valved, sometimes 1 -celled, with a large placents filling the capsule, sometimes somesat hint. DIV. vole iht.
what 2 -eelled, with the dissepiments incomplete. Seeds reticulated; albumen abundant, cartilaginous; embryo conical, with its radicle next the hilum. For many years it has been considered that Hydroleacees was a distinct order from Hydrophyllaceer, but recent botanists recognise so little distinction between them, that they ara now both included in the above defiuition. Dr. Lindley places

IIydrophyllum virginicum.
1, an entire flower; 2, the ovary; 3, a ripe secd-vessel; 4, a scetion of a mature seed.
Hydrophyllacece near Primulacea, Plumbaginacere, and Boraginacere. Some of the species are cultivated in gardens for the sake of their gay flowers, but none sppear to possess useful qualitiez of say importance. They are mostly found either in the north or south provinces of America, aud are not known much beyond that continent. Nama and Hydrolea are found in the Esat Indies. In' the United States a decoction of IIydrophyllum Cunadense is one of the many remedies for snake bites. Mydrolea is bitter, and the leaves are applied as a poultice in India.

Many of the species, especially those of the genera Nemophita and Eutoca, are heautiful objecta, and are extensively cultivated in our gardeos. There are 16 genera aud 75 species.

HYDROPHYLLUM. [HydROPHYLLACEE.]
hYDROPIl'ER. [Elatinaces.]
HYDROSAURUS. [IGUANide.]
HYDROSTATICA. [Acalepies.]
HYDROTALCITE, a Mineral, occurring massive, investing Steatite iu foliated masses. The colour is white. Streak the same, with a pearly lustre. Transparent. It is flexible, with a soapy feel. Hardness 2. It is found at Snarum. The following is its analysis :-

HYDRUS. [HyDRIDE.]

HYLA. [Ampilbia.]
HYLACTES, a genus of Birds eatablished by Captain Philip Parker King, li.N., fer a form allied to Megapodius, with the following characters :- Biil sub-clongated, rather thin, with a sub-emarginate apex; nostrils basal, longitudinal, tho membraue subtumescont, and covered with hairs down the middle. Wings very short, rounded; fifth quill longest. Tail sub-elougated, graduated. Feet strong; tarsi rather elongated, ocutellated in front; toes and claws elongated,
the lntter mather niroug nowl nub-compreated; lanllux very atrong, jucurubene
Fox. Hydseryos Turnai. lt inlambite the Ialand of Chilow aud J'ort

 cormed by him in tho forent of Tilgate, And thonce termed tha FonestLakanl. The romain upon which this genus was characterised were auphevlded in a block of stone th foet by $2 \frac{1}{1}$ feet, and consisted principally of lones of the trunk. A chan of five cervical nad five dorsal verichran with corraponding ribw, nud four detacherl vertebre, were Viajble: an were the coracoidn nat omoplates of both mides. There wan a peculiarity in the atructure of the last-mentioned parts which, in the opininin of $\mathrm{Dr}_{\text {. Mantell, warrantad the neparation of this Saurimu }}$ from all recent and fomil genern ; for the $/$ /ylicosatur had the omoplaten of a cruodile with tho comeridn of a lizard. Tluere was also a aibll more extaonfinary osteological atructurs, consisting of a series of apinous bony apopldymen, which varied from 3 to 17 inches in length, mod from if to inchea in widul. These maintained a certain paralIflimm with the vertebral colnun, in if they lind occupied a line along the lack. Itr. Mantell anggested that these processem might be the remainn of a dermal friuge or serration, with whieh, as in some recent " Irecien of Sauriank, tho lack of the Forest-Likard might have been momed; but bo at the samo time noticed many amatomical peculiarities which Imil him to besiente in determining positively that theso purts hal formed much appendagen. He wext entered upon a careful examiration of the reanons why they conld not be processes of the vertebre. Ir. Mankell also dincoverod many dermal bones, which served to support the large scalus, in the atone: he funlly proposed the geuns as depending for ita claracters on the peculiarity of the sternal ajpmatats and the apinou* frocekses. "lhe paper in which the reming of this lage extinct Laurinn were described was read before the Geological Societr of landon in lecember, 1832.

Jr. Buckland ("Bridgewater Treatine') is of opinion that thin extince Saurian was prolably about 25 feet long, and speaks of its most preculiar character ne comajnting of the remains of the series of long flat aml pminted bones, which, Dr. Buckland thinka, neem to have formed in enormoun dermal fringe like the horay spines on the back of the modera Iguan (1)r. Mantell, Geology of the South-East of Finglaal,' Svo, Lonhon, 1833.)
The remains of revernl mpecimens of this extinct roptile nre now, with the nut of Dr. Mantell'a collection, in the British Museum. The original kpecien dpacriled lyy Ir. Mantell has been named $I I$. Oweni. (Mantell, 'ferrifactions and their Teachinga.')

HV゙lO'BATES (from UA"Báms, wood-walker, or one that goca through woods), Illiger'm mane for the Long-Armed Apes, or Gibbons. The general characters of these Apes as to dentition and form agree with thume of the Orangs ; but there is aome modification of the dental ayamin in the (ibuma, which have nlao longer anterior extremities and have praterior callowities, though they hare no tail. The vermiform apperndis of the cocenm ia also shorter.

Sental furmula:-lncinorn, $\frac{4}{4}$; canines, $\frac{2}{2} ;$ molars, $\frac{10}{10}=32$.
In the upper jaw the first incisor is large, terminated lys a straight line, wom oblingsely within, and ent tmasversely by the impression of the lower incinor; the recond is smaller than the first, and worn oblizucly on tha side of the eanine, which is wider than it is thick, treachant on itm posterior bonler, and presents two longitudinal furmwn on ita intermal nurface, neparated from each other by a projocting rib, the ponterior furrow leing larger aud deeper than the matarior one. The two mext teeth nre false molars, and the second is rather langer than tho firat; but buth are compoged of blunt tuberelea, one on the catemal and the othor, mondler, on the internal border. Thin thren mext roulars, which inerowe gradually in size from the first to the lime. lave thonme form ; they are compued of four tuberclea, twos of eolind nise on tho extermal nad two on the intermal hander, the puaterior intmrele lming amaller than that which preceden it: these tuberelmaro forumbl liy furrown, which tivide tho tooth unequally:

In the lower jaw the firme incimor in annall, rand terminated by a ntraight lize: thee ecentid is rounded on itn extermal aurface, terminnted in a point, and ntremptbened on ita inturnal aurface by a lougitudiual rit, whinh thickesn it in the millle. The canime in more equal in ite dimanaionn than that of the otber juw, and i tarminated ponteriorly
 furmow mad the rib, which ame funal in the other. Tho firme falmo molar, which ia placed chlipumy, bam only n aiugle point; the econd
 antarior than in tho pomberior lominer. Thme molarm nuecerd, which

 tringreles pomaterint.
F° ("urarr tiken thia trje of inntition from tho Simmang, and says shat it in ales fonnd in the Wow. Wiow nand buko.
 are plaral tis ars ervet pontum their uljer extromition reach the grousind.

are tho banots of theso creatures, and they are rarely seen at a distance from them. Gregarious, but sby and timid, they keep up a howling concert, rescmbling in this respect in rome degreo the Howling Monkey of America, and hnring some of them guttural arcs like that tribes. In the forest the activity of certain specios is great, and they make way on the trees with their long arms and lengthened feet most rapidly; bnt when surprised on open plain ground they are altogether as helplesa. Otber apecies (the Siamang, for instance) appear to be more sluggish; but theno make good ume of their acuto oyea and ears, and are generally off before the enemy approachea near cnough for a cmpture.

Tecth of Mylobotes, Zucreased 1-Gth. r. Cuvier.
In confincment they are gentle, and seem capable of great attachmeut to those who are attentive to them. Dr. Burrough gives a most interesting account of three individuals of the sprecies called Hoolock (/Iylobres Moolock), which he had no opportonity of observiug in that

Wow-Wow (Ifylubpers ogilis), mate.
Rtate. One of them, a male, Ahowed n mont nmiable nod docile dise poaition: and a young femme, which died early, was equally gentle and parific. The Sinmang kept by Sir Stamford Raffles was, according to Dr. Horafield, very tame and tractable, and was never happy unless it was in the company of some peraon. Mr. George Bennet gives
a lively description of the affectionate manners of another of these apes towards those who made its captivity light by their kindness.
H. agilis, the Wow-Wow, or Active Gibben, may be taken as an example of the genus. "It has the forehead very low; orbitary arches very projecting; face blackish-blue in the male, and brown in the female; in the former a white band over the eyes, which unites with the whitish whiskers. Hair of the bedy fine, except about the neck, where it is lenger and inelined to be woolly and curled; upper part chocolate-brown ; back and fore part of the thighs yellewish-brewn, but the eolour varies a geod deal according to the sex and age, the young being paler than the adnlts and aged, and the very young uniform yellowish-white. Height about 2 feet 7 or 8 inches. No guttural sac.

Wow-Wow (Ifylobates agilis), female and young.
It is very agile in its habits. As soon as they reach the forest they set pareuit at defiance, awinging, leapiag, and throwing themselves from tree to tree with great rapidity. Netwithstanding the want of the guttural gac they howl in a manner very nearly resembling the Siamang, which has one.

In captivity they are not very lively, as might be expected, from the impossibility of their exertiog that freedem of metion on which their vivacity in a state of nature ao much depends; but theugh timid they are soon re-nasured, take pleasure in being caressed, and become familiar and even playful.

This species is found in the forests of Sumatra, where the species is named Ungapati.

The Siamang of the Malays, Simin syndactyla of Sir Stamford Rafles's "Catalogue of a Zoological Collection made in Sumatra' ("Linn. Trans,' xiii. 241), Pithecus syniluctylus of Desmarest, Ifylobates syndactylus of F. Cuvier, has a peculiar formation of the hands or feet of the lower extremities, the index and middle fingers being united as far as the middle of the second phalanx. This peculiarity would seern to indicate a generie distinetion, notwithatanding the similarity of the teeth and skull to these of the rest of this tribe. These Sumatran Apes, sluggish sud timid as they are, exhibit streng maternal affection; for though, if any of the troop are wounded, the rest abacond and leave them to their fate, the mother will remain with her little one if it is hurt, and will sufler berself to be captured rather than abandon it. The females are also generally very attentive to their offepring, according to the accounts given by Messrs. Diard and Duvaucel.

The following npecies are given in the 'British Museum Catalogue':-
IIylobates /fooloch, the Hoolock. It is the Simia Heoleck, Harlan; II. Seyrites and /I. Coromandus, Ogilby; /I. Howoch, Lesson. Anam (1).
II. agilis, the Onngha; Pithecus agilis, Desmarest; II. variegatus, Miiller; H. Naflesii, Geoffrey; H. Dar, F. Cuvier. Iblack specimens are marked from the Himalaya, and browu from Malacea
/I. Jatr, the Gibbon; flomo Lar, Linnaeus;. Simia longimana, Selsreber; S. albimano, Vigors and Horsfield; Le Grand Gibbon of Buffon. It is a native of Malacca.
II. leuciscus, the Silvery Gibbon, or Wow-Wow. Simia leucisca, Schreber, Moloch, Audeb. Malacea.

HYLOBIUS. [CURoclio.]
HYMF'N゙NA (from']lymen,' in reference to ita twin leaflets), a genus of Plants belonging to the natural order Leguminosce. It has a calya furnished with two bracts at the base; the tube turbinate, coriaceous;
the limb 4-5 parted, deeiduous, with two lobes sometimes united into ene; 5 petals nearly equal, glandular; 10 stamens, distinet, inflated in the middle; the style filiform; the legume woody, oblong, many. seeded, containing fecula; the embryo straight. The species are trees, with bifeliate leaves, and corymbs of white or yellew flowers.
H. Courbaril, Lecust-Tree, or Gum-Anime Tree, has oblong ovate leaflets, unequal-sided, and unequal at the base, endiug in a long point; with the legume obleng, compressed, yellowish, shining. It is a fine lofty spreadieg tree, and grows in the tropical parts of Ameriea and in Jamaiea. The seeds are enveleped in a cellular mealy substance, which is aweet like honey, and is eaten by the Indians with great avidity. When fresh it is slightly purgative, but by keeping it loses this property. Adecoction of this substance, when allowed to forment, forms an intoxicating drink resembliug beer. From between the principal reots of this tree there exudes a fine transparent resin, of a red or yellewish-red colour, and which is collected in large lunips and seld under the name of Gum Anime, or Gum Animi. This resin resembles amber, is very hard, and sometimes contains leaves, insects, or other ebjects imbedded in it, which remain in a perfect state of preservation. It burns readilý, emitting a very fragrant amell. Dissolved in rectified spirits of wine it mskes one of the finest kinds of varnish. According to Lindley this resin is called Jatahy, Jatchy, or Copal, and, in Minas Geraës, Jatoba. Courbaril is the name of the tree in some parts of South America. In countries where this tree grows the resin is used modicinally, and has also been employed in that way in Europe. It acts as a stimulant when taken internally, and as an irritant when applied externally. In fumigation it has been employed for persons labouring under asthma and dyspncea. Dissolved in spirits of wine or oil it is used as an embrocation in rheumatism. Internally it has been recommended as a substitute for guaiacum, in vcuereal disease, and chronic rheumatism. The inner bark, either in the form of ticcture or decection, is administered as a vermifuge. The curaderes have a methed of mixiog it with sugar and rum, 80 as to make a very agreeable emulsion or syrup. The wild bees are foud of building their nests in the trunk of this tree. The timber of the old trees is very hard and tough, and is in great request for wheelwork, partieularly for cogs. The wood is so heavy that a cubic foot is said to weigh a hundred pounds: it takes a fiee pelish.

Several other species of IIymenca are deseribed, but of these comparatively little is known. The Copal of Madagascar, and probably of the East Indies generally, is furnished by II. rerrucosa. The LecustTrees of the Weat have long been celebraterl for their gigantic stature, and other species are the Colessi of South American forests. Some of them are, aceording to Martiua, 84 feet in circumference at the bottom, and 60 feet where the beles become cylindrical.
(Don, Dichlamydeous Plants; Lindley, Flora Medica.)
HYMENO'CERA, Latreille's mame fer a genus of Maerurous Crustaceans belogging to the tribe of Alpheans, in the family of the Salicoques, or Shrimps, secerding to the system of M. Milue-Edwards, whe places it between Atya and Alphews.

IIYMENODICTYON. [Cinchonacese]
HYMENOMYCETES, the first sub-erder of the Fungi, a uatual order of Plants. [F'UNGI.] They are characterised by their reproductive organs, called the hymenium, being naked. This sub-erder is divided by Fries into four tribes [Fuxar]; by Berkelcy into six tribes. Those of the latter are-Pileati, Clavati, Mitrati, Cupulati, Tremellini, and Sclerotiacci.
The tribe Pileati contains the following British genera:-
Agaricus, in which the hymenium consists of plates radiating from a common centre, with shorter ones in the interstices, composed of a double closely-conneeted membrane, more or less distinet from the pileus: the veil is various or absent. [Agaricus.]

Cantherelluz has the pileus fnrnished below with diehotomous, radiating, branched, subparallel fulds, not separable from the tleah, aometimes anastomosing or obsolete.
Merulius has the hymenium veiuy, or sinuoso-plieate; the folds not distinct from the flesh of the pileus, forming unequal angular or flexuous perea. [Merulius.]

Schizophyllum has the gills radiating frem the base, eomposed of a felded membrane, which is ruptured along their edge; the two portions of the fuld being revolute, beariug asei enly on the onter surface.
Declatec has the hymenium compesed of anastomosing gills, or flexuous elongated pores formed out of the corky substanee of the pileus. Polyporus has the hymcnium cencrete, witly the substance of the pilens consisting of subrotund peres with their simple dissepimenta.
Boletus has the hymenium distinet from the substance of the pileus, eonsisting of eylindrieal eeparable tubes, with oblong sporidia. [Boletus.]
Fistulina lins the hymenium formed of a distinct substance but conerete with the fibres of the pileus; the tubes at first wart-like, semewhat remote, elosed, radiate-fimbriate, at length approximated, ulongated, open.

Hydnum has the lymenium of the same substance as the pileus, comprosed of free spine-like processes.
Sistotrema has the lymenium somewhat distinct from the pileus, composed of irregularly-disposed eurved and gyrose lamellate teeth.
frper hat the hymenium conerete with the substance of the pileus, torn into distinct spines, disposed in rows or in a reticulate manner,
their basen conuetel whether by lamellate, sinuous, or porons folds ; tho aci Nesmer, nituatext only on the toothed procensen.

Radulum has the hymenium tubereulated; the tubercles nhapeless. proptabling pajulla or mole momewhat angular mpines, more or leas obtuen, dintant, dimtinet or irregularly fameiculate, the inner subatanoe hombenemum with the receptacle; the asci oceupying indifferently sll parta of the hymenium.
fhedora has the hymenium homngencons and conerete, with the pileum monoth, rennmomigone, wriskles interrupted, dinposed irreguSarly, miraight or tesunua bearing asci all over.

Thrlequora hat the hymenium homogeneous and conerete with the pilcum even or papillate, the whole surface beariag asci.

Of the genera dgaricus contains by far the greatest number of apreiea Un thin acount it has been found necessary to chass the nrecies unter various nubogeners. The following table contains the aubgriera of Firien arranged in newen series:-

Leиcomporия
Lamella unchangentlo: veil variablile or none; sporidia white.

1yporhodius.
lauclla chargeable in hue; veil nome; sporidia rose-coloured.

Inocybe.
lamelle chnngeable; veil springing longitudi

Ayaricus.-
latuella mimple, unequal, juiceleen, persinterst, diacretefrom the pileun. nally from the innate fibres of the pileus; sporidia tawny brown.

Derminus.
Lsmellx discoloured; veil floccose; sporidia subferruginous.

Pheootus.
Amanita.
Sepiota.
Limacium.
Tricholoma.
Clitocybe.
Omphalia. Collybia.
Mycena.
Omphalia.
Meиrotus.
Cliptopilus.
Eccilia.
Leptonia. Volanea. Inocybe.

Pholiota.
Mebeloma.
Mlammula. Naucoria. Galera. Tapinia. Crepidotus. Pratellarius.
Lamelle changeable, uebulous; veil various aporidia dark brown.

Pratellos.

Lanelle changeable, lix, nebulous; veil lloccose; sporidia brownish purple.

Coprinarius.
Jolvaria.
Palliota.
Gomphus.
Hypholoma.
Prilocybe.
Psathyra.
Coprinarius.
Veil partial; lamellic lax; nebulous; sporidin black.

Most of the epecien included under the neries lecucosporiss are reatable, ant contain thome apecies which nre mentioned as edible in the article Asaracts it almo contains tho various species of A manita, which are among the largest amd most remarksble furtos of the fungi. A. Consarea in remarkable for ita beauty. but not so much so as for the traditional b.olief that it wan in a dish of these mushrooms, which wre regarlowl by the lfomana sa one of the greatest luxuries of the table, that Agripina adasinintered poison to her husband Clsudiue I'smar, in onler to lianten leer mon'a accesaion to the imperial power. A. mwecarin pmanaken an intosicating or narcotic property. It is unot liy the inhobitanta of the nortlocastern parta of Asin in the name nammer su wine, lorandy, arrack, apruce, \&e, are by other notions One large or two minall funsi is a common dose to produce a pleasing intesication fur the whole of the duy. [locent.]
 of theme 333 are nativen of the liritiwh Imande.

Fighst Almeien of the א'num Cianthareltus inlabit Great Britain. Tho
 wownand maturen, it han a ixerutiful orange colour and an strong small. C. cibarius, the Common Chanterelle, in common in woodn in then nummer and autamn. The jilena in of a pale jellow coluar, and the whole plant han an agromalin amell like that of apricota. Ou the continent of Fiurope alian furgum in eaten, but in mot often ured in Great Britain. It ia however dangeroas when enten raw, and should alwsys to amikn. Thooy form a delicirna ingredtent in rich gravica,
Onm of the apercive of Merulum han loen suppomel to be the caune
 of thin enotrem mative of Cireat Britain.
(bf sehaophyllum bat one afrecion bas bern found in Great Pritain, the s. commene. It in a very beautiful fungua, and has been found in alirome every part of the world.

The exhum firblatea has treen an namok from the remarkable sinuo-
 conmonly on oak treen or atumpanil roote of that wood. It is an
astringent, nud has been applied to wounds to arrest hamorrhage. It is commonly called "the lungs of the onk," and was formerly on this account used as a remedy in phithisis. It la at the present day sold in Covent Garden market for that purpose. There are aeveral other apecies of this genus which are iudigenoun in Great Britain. D. suareolens ie a northern plant. It yields an agreeable perfume.

Upwards of forty apecies of the genis Polyporus are found in Great Britain, and many more European species have been described. Many of the species are used in arts and medicine. P. igniarius has long been fruned as a styptic. Amadou, or German Tinder, is made from this plant by separating the porous hymenium from the harder parta, and steepsing it in a colution of nitre after it has been beaten into a soft spongy state. Mrny other species of Polyporus may be used for the same purpose. The Laplanders also use them for applying the nctual cantery in the same way as the Japanese and Chinese use the moxa. When they suffer from pain in the limbs, they pull the fungum in pieces, and placiog it on the skin, set fire to it and allow it to burn away till it blisters the skin, when it acts as a counter-irritant. P. offcinalis is a cathartic. P. sauveolens bas a pleasant suell. Some of the species secrete acids, and boletic, fungic, and oxalic acids have been obtained from them. P. squamosus is one of the largest of British fungi, weighing sometimes as much as $30 \mathrm{lbs} . P$. destructor is one of the fungi found on decaying timber when it is attacked with what is called dry-rot.
Many of the plants formerly included under the genus Boletus are now referred to Polyporus. Berkeley cnumerates sixteen species of the genus Boletus ss natives of Great Britain. [Bolervs.]
The genus $H y d n u m$, although named after îf $y u$, the truffle, includes a different series of plants. The hymeaium is formed of apinous bodies which give to the apecies of this genus a very formidsble appearance. Hence they are called in the conntry spine-stools, prickle-stools, ke. Several species are nstives of Great Britain. Some are eatable, but caution should be used in their selection. De Candolle saye thst those which have a dark colour are dangerous.
The genus Fistulina has one representative in Great Britain, F. hepatica, the Pipe-Stool. It grows upon the trunks of old oaks and other trees. It is eaten in France. When cut into it is beautifully marbled with red and white atreaks resembling a five piece of beef. It is called in France Foie de Bocuf, Langue de Boeuf, Glue de Chêne, \&c. It has an acid taste, but is rather tough. It has been known sometimes to attain the weight of 30 lbs.
The genera Sistotrema, Irpex, Radulum, and Phlebia are small genera, and not used as food, or in any other way. Thelephora is an extensive genus, and forty-two apecies are indigenous in Great Britain. They are common on decaying branches of trees, \&c., and exhibit a variety of colours.
The tribe Clarati, which are distinguished by a aingle or branched vertical receptacle, embrace the following British genera:-Clavaria, Culocera, Geoglossum, Spathularia, Mitrula, Typhula, and Pistillaria. These planta, in their branched and club-ehsped forms, resemble the cornls, and were actually placed by the older naturalista in the same class. Some of the species of the Clarati are edible. All the Clavaria are esteemed as food. C. rugosa has an agreeable flavour like that of the common mushroom. C. fara and C. pyxidata are prized on necount of their taste. C. cinerea is the apecies most commonly eaten on the Continent.

The Mitrati have a bullate, filiform, margined receptacle. They embrace five British genera :-Morchella, Melvella, Veapa, Leottia, and Vibrissea.

The genus Morchella yields the esculent fungus morel. [Mormu] Three species are found in Great Britsin. There sre also three Britiah species of Melvella as that genus is at present defined. The species of Melvella are edible. A. crispa is considered the best species for esting, but none of the epecies, foreign or British, are poinonous.

The tribe Cupulati, which has a patelliform margined receptacle with a euperior hyracnium, contaius the following British genera:Peziza, Putellaria, Ascobolus, Bulgaria, Ditiola, Tympanis, Cenangium, Stictis, Cryptomyces, Cyphelia. Of these Peaiza is the most extensive genus, coutaining upwards of 300 species, of which 106 nre natives of Graat Britain. Somo of these plants are very remarksble from the regular cup-like form nind tie deep colours they present. $P_{\text {. }}$ coccinea in perhaps the most elegant plant belonging to the nstural order of Fungi. The outer surface of the cup which it forme is white and clowny, whilat the ingido is of the richest carmine. It frequently grows on aticks covered with moss, the green colour of which forms a beautiful contrast with the white and crimson of the Pezias. $P_{\text {. }}$ cruginosn las a decp green colaur, and possesses the property of staining wood on which it grows of the same colour as iteclf. The Pesizec are not generally eaten, but none of them are poisonous.

The fifth and sixth tribes of the Hymenomycetes arc the Tremellini and Sclerotiacei. The Tremellini embrace six British geuera. [Trswhidisi.] The lritish genera included under Sclerotiacei sre Pyrenium, A crospermum, Sclerotina, Periola, and Spermocdia. These nre among tho lowest forms of the Hymenonycetous Fungi, and include species which are found attacking the various Ccrealia, producing the diachre called ergot. [Engot; Spermoedin.] An neconnt of the remaining forms of the Fungi is given under Gastenomycetes.
(Burnett, Outlines of Botany; Berkeley, English Flora, vol. v.; Fries, Systema Mycologicum.)

HYMENOPHYLLE E, a family of Ferns including the British genera Hymenophyllum and Trichomanes. The fronds consist of branehed veins, each accompsnied throughout by a membranous wing or margin ; a cluster of capsules, nearly spherical, is seated on one of these veins whieh projects beyond the edge of the leaf, the cluster being inelosed in a kind of cup-like involucre.
I. Trichomanes has thecæ on an elongated filiform reeeptacle within a cup-shaped involucre of the same texture with the frond.
T. radicans, Babington, the Bristle-Fern (T. speciosum, Wildenow), has fronds three or four times pinnatifid, glabrous; segments uniform, limear; involucres solitary, ia the axils of the upper segments; setw at first included, ultimately very prominent. The frond in fact consists of hard wiry branehed ribs, each furnished throughout with a rather membranous wing. Rhizome blaek, downy, very long. Fronds rather triangular, very much divided, from 4 to 8 inches long. Involncres scarcely winged.

This is a very interesting fern, on sccount of its beauty, its rarity, its susceptibility to iajury from exposure when in cultivation, aud its entire absence from all European countries or islsnds, with the single exception of lreland. In texture as well as in scent it resembles some of the marine $A \lg \boldsymbol{c}_{\text {e, }}$, and it has been observed to assume a life-like appearance on being immersed in water after being kept perfeetly dry for years. At the present time this plant is to be found nowhere but in Ireland, though formerly it is said to have grown at Bell Bank, in Yorkshire. It has been lately supposed by some botanists that there are two Irish species of Trichomanes, the Killarney and the Glouin Caragh planes. Mr. Newman however believes the latter to be merely a variety of T. speciosum, and calls it T. s. Andrewsii. It differs from the former in having lanceolate fronds and winged involucres. It is found in very dasnp shady places. No other fern will thrive well in a case with the Trichomanes, the treatment required for one being destructive to the other. The Trichomanes will live or even grow lazily in a glass with other ferns, but will never attain a vigorous gtate of growth.
II. Hymenophyllum has the thece on a narrow subclavate receptaele within a 2 -valved involucre of the game texture with the frond.
II. Tunbridgense, the Tunbridge Filmy Fern, has pinnate fronds, pinne distiehous; segmenta linear, undivided, or bifid, spinosely serrate ; involucre compressed, spinosely serrate; rachis broadly winged. It is slender and delicate, the rhizome very long and thread-shaped. Pinnes, rachis, and involueres in the same place. Valves of the involucre adpressed throughout the greater part of their length, slightly gibbous at the base. It is found amongst moss and in shady places, on the surface of rocks and stones, io many places in England, Wales, and Ireland. This plant is the Trichomanes Tunbridgense of Linnæus, Hudron, and many of our earlier authors.
II. Wilsoni, Wilson's Filmy Fern, has pinnate fronds, pinnee recurved; segments linemr, undivided, or bifid, spioosely serrate; invoIuere intlated, entire, rachis slightly bordered. It resembles the preceding apecies, but the pinnze cyrve backward and the involueres forward. The valves of the involucre are convex or gibbous throughout, twuching only by their edges, whieh are quite entire. The range of this species seems to be much more extensive than that of M. Tunbridgense; it also appears to be a more northern species, and generally to prefer a greater elevation; still the two plants are often intermixed, partieularly about the waterfalls in the vicinity of Killarney, and it is frequently very difficult to distinguish the one from the other. (Newman, British Ferns.)

HYMENO'PTERA, one of the orders into which Insects are divided. Hyrnenopterous Insects possess four membranous wings, of which the anterior pair are the larger; they have all the usual parts of the mouth well-developed, that is to say, they possess labrum, labium, mandibles, maxillx, and two pairs of palpi; besides the ordinsry eompound eyes, they are furnished with three ocelli, or simple cyes, which are usually situated on the vertex of the head. Their tarsi are 5 -joiated. The females are provided with au ovipositor, consisting chiefly of three elongated slender processes, of which two serve as a sheath to the third. This ovipositor, in many apecies, is so organised that it can not only perform its ordinary function, but serve as a weapon of defence, and is the part which in bees and wasps is called the sting: in these inseets it is barbed at the apex. The antenus are generally filiform or setaceous. The mesotborax and metathorax are well-developed; the prothorax is narrow.

Insects of the onder IIymenoptera undergo what is termed complete metamorphosis, that is, the larva is unlike the perfect insect, and the pupa does not porsess the power of loeomotion. The larvec of some of these insects very mueh resemble those of the order Lepidoptera (3utterflies and Moths), but differ in the number of their legs, de.: thene feed upon jlanta. [SEcurimera.] The larve however generally njeaking are destituto of legs, and do not possess a distinct head; and these are for the most part fed by the parent insect, or, an in the case of bees and wraps, by the neuters. In the pupx, all
the parts of the perfect insect are visible, since they are inelosed only in a delieate semi-transparent membrane.

In the imago or perfect state most Hymenopterous Inseets live upon flowers, or at least often frequent them, some for the purpose of gathering honey, and others find them a convenient resort wherein they may prey upon the less powerful species of their own elass.

The comparatively simple neuration of the wings will serve to distinguish insects of the present order from those of the order Neuroptera, where the wing is divided by minute nervures iuto an infinite number of little eells resembling network; whereas, in the species of the order Hymenoptera, the basal portion of the wings is furnished with longitudinal nervures only, and the apieal portion is divided into comparatively few eells, and these nervures and cells are so uniform in species nearly related to each other by affinity, that the absence of some, or even a slight differenee in their form, has afforded good characters for the definition of groups. It is to Jurine that we are indebted for this diseovery and a very successful applieation of it. We may remark that the modifieations of the marginal and cubital eells aud their nervures are those whieh have been ehiefly employed by this suthor in characterising the various groups. The following figures from Mr. Schuekard's work on 'Fossorial Hymenoptera,' represent one of the anterior wings of a Hymenopterous Inseet, in which all the nervures and cells are present.

1, atigma ; 2, radial or marginal cell ; 3, first cubital cell ; 4, second cubital cell; 5 , third cabital cell; 6 , fourth cubital cell ; 7 , first discoidal cell; 8 , sccond discoidal cell ; 9, third discoidal cell; 10, first apical cell; 11, second apical cell ; 12, costal cell; 13, exterue-medial cell; 14, interno-medial cell; 15 , anal cell.

n, costal nervure; b, pest-costal nervure; c, externo-medial nervure; d, anal; e, posterior margin ; f, apical ; g, radial; h, h, h, transverse-cubital; i, i, recurrent ; j, transverso-medial ; k, discoidal; l, subdiscoidal.
The order $M_{y m e n o p t e r a}$ is divided by Latreille into two great sections, to whieh he applies the name of Terebrantia and Aculeata. In the species belonging to the first of these sections the female sex possesses a distinct ovipositor, whereas in the second the ovipositor is replaced by a sting. Many of the ants however form an exeeption, since they do not passess a sting, and defend themselves by ejeeting an acid liquid. In the Aculeata the antenna are always simple, and composed of 13 joints in the males and 12 joints in the females. The palpi are generally filiform; the maxillary, often the larger, have 6 joints, and the labial are 4 -jointed. The abdomen is composed of 7 joints in the males, and 6 jointa ia the females. These two great sections, of which the principal eharacters have just been given, are again subdivided, the Terchrantia into two sub-sections, and the Aculeata into four.

The firt sub-seetion of the Terebrantia, to whieh Latreille applies the name of Securifera, is thus eharacterised by that author:Abdomen sessile, that is, it is closely joined to the thorax, of which it appears to form a continuation, and does not possess free motion. The fernales are provided with an ovipositor, whieh is most cem. monly serrated, a a not only used to deposit their eggs, but to prepare a place for their reception. The larva have always six borny legs, and often others whieh are fleshy. This sub-seetion contains two families, the T'enthredinidee and Urocerata.

The seeond sub-section, or the Pupivora [Pupivord], have the abdomen attached to the thorax by a slender stalk, whieh is often very long, and admita of free motion. The larvee are slways destitute of feet, and for the most part parasitical and earnivorous. This group is divided into six families: Evaniales, Ichncumonides [Ioнneumon], Galticolo [Gallicole], Chalcidites, Oxyuri, aud Chrysides [Curysidides].

We now eome to the sub divisions of the second great seetion, the Aculeata. These are four in number, the Meterogyna, Fossores, Diploptera, and Anthophita.
In the Heterogyna the speeies are many of them composed of three kinds of individuala (as in the Hive-Bee), males, females, and neuters. They have the antenure geaiculated, and the ligula is small. Some live in society, and these possess the three kinds of individusls, of which the males and females are provided with wings, aud the neuters are apterous. The Auts (Formica, Linn.) beloug to this section.
[ANT: Fukubcise] The remaining Heterogyna are solitary, and there aro best t wo kiods of individualn; the tnalen arv wingel and the feruales siteroue The sateonas are outher filiforn or netaceuls. Thinaccion in notapred chiedy of the Linuavan genus Murilla.

The fousors comprime thone spocien, posecasing a ating, of which all the individualn are furuiahed with wiugn ; they do not live in nociety, bad conmyumaly there aro but malea and femalen; the lega are formed for ruming, and in very many for burrowing, and heoco the vance which has lex'n applied to them. The tongue in alway more or len widenen at the extremity, aud not alender and elongated. They

 3. Rembridir [HzmaEx], cuataining thoae ppecies in which the fondhorax in tmaverso and narrow, elongated laterally, and extending to the law of tho anterior wings; lega moderate or short; head, when riowel from above, broaler than long. the eges exteoding to the pmeterior margin: abolonen conical ; labrum distinot. Of ehis family three genera are characterimal by latreille:- Bculbrx, Monrdula,

 lieal is generally very large, nearly mquare when viewed from nbove; the antenas are often thick near or at tho apex, and the ablomed iz oral. It contaias the following genem:-Trypaxylon, Gorylea, Crabro, Nıgmm, Celia, Diodontw, C'rratophorus, Pissalircus, Penphredon, Cemonus, Mellines, Alysson, Msen, Arpactus, Mimesa, Cerceris, and J'Ailantams.

The lhplopera containa thoso apecies which have the superior wing folded longitulinally when at nest. The antenne are unaally geaiculated in thin group, and thickened at the extremity. The eyes are cmarginated, and the prothorax in prolonged posteriorly on cach sinte to sbe origin of the wioga. The anterior wings possess two or thre clocel cubial cellis, of which tho second receives two recurrent nervane The body is sonooth, or nearly ro, and almost always variel with black and yellow coloura. Many of the species live iu mociety, and have three limes of individuals.

Latruille rlivides this tribe into two families the Masarides and the Vespariot. The Waap and Hornet are faniliar esamples of the mections hiploptera [VESPID.E.]

The lat tribe, the Anthophila, or the Bees, are distinguished by tho zreatly elongatod maxillie aud labiun, which form the proboscis unet in collecting honey. They have the two posterior legs generally furmenl for collecting and conveyiag polleu. The first joint of the tarsi of these leys is vory large and much compressed. The harve lure upon howey and prolleo collected by the pareat insect. The perfect ineect feels upon honey. [BeEE; Melassa.]

11Y MENOSO'MA, Dr. Leach's name for a genus of Brachyurous Cruntaceana [l'ssormeriass.]

HyODOS, a genus of Fiahes belonging to the farnily Clupeide. The mpecies nenemble tho Herring. They are found in the fresh watern of North Auserica.

HIVUSC'VMUS, A genna of Planta belongiag to the natural order Nolankecr, among which it is distinguished by haviog an irregular corolla mit on one aile, a 5-toothed permanent calyx, and a capsule upening by a transverse lid.
H. niger, llenbane, is a hionnial, lairy, clammy, branched, fotid flant, from one to two feet high, growing in wate and uncultivated phora It has oblong stera-clasping coarsely-lacerateal leavea, dull yellow flowers travermed with livid purple veins, and a large spiay calys. Whon in fruit, the whole of the upper gart of the plant is oncupied by the large aprearling apiny calyxen arringed in 1 -sided leafy npiken it in wild in Englaml in calcanoons нoils. Tho leaves and mods are ofliciosl. The leaves should be collected when the plant 1s Anwering. The lower leavea are large and have ahort petiolea; the upper arm maller and seanile: they aru more or leas decply ninuster ginnatifi, or touthed, woft to the touch, hairy, slightly riacid, and of a krayimerecen colour. Ulour rliagrecable, atupifying; taste lumbsmous, iлnиеоиs, monewhat acril. Both odour and taste are moch dininialued by drying, which should be quickly performed, and Lie larmprenervel in well-cloned veasela, in a conl dry place; 100 darts of fremh leaven lly iut, 14, and 10 lbat of fresh herb yield by caroful manajement tonncen of inapinated juice, or extract, which in
 Luon it anay im an prepared no to knep for acyural yeara with its 'funlitmennimpared. An insect, Cimex Ilyoscyania (Limm.) in apt to alhack the leavea, and remior theon unolem. The virtuca are dependent on the preanen of / y yocyamia, which however is mon casily obtained from the morla The mede are staall, Anttened, kidney-shaperl, with minute dute and impontations on the aurfaco; of a gellowish.gray collour When liruined thry ceolvo an oblour of henbance. Tante oily, bater. liy enprumion they yield a fat oil, and also furniah n very pormplal cetract, se well na Hyracyamia. Thin alkaloill orystallimea in eiellated wescular eryatala, with a sulky lustre; but it more gener-
 drial it u lovend of odour, hut when moint, and particularly in na impura and colourmal mullitiom, the orlour in highly diwagrceable, ntupafyng, and telmocor-like. Ita nction, oven in very mmall 'puantity, is extronely narcotio and fatal, liko nicotinc. It killa momo alowly than omia, and ararcely canses conrulmions. Aplilied externally the
the cye, eren in very minute quantity, it causea great and enduring dilatation of the pupil. Cats to which it has been given have been observed to gnash the tecth and fosm at the mouth.

Myoscyamus, when taken by a person in health, prorluces disorder of tho nervous system, inducing symptoms greatly resembling laysteria, if the dose be moderate; but if large, it causes all the phenomona of narcotic poisoning, such as result from other solanaceous planta, particularly congeation of the ressela of the brain with coma. Administered in medicinal dosea to persons with disturbance of the nervous bystem, it lessens the irritability, quicts the circulation, and when morbid wakefulaess exista, diaposes to sleep. It possessen a superiority over opium in many instancea, as it docs not conatipate the bowels, but rather acts as a mild laxative. This circunstance often renders it a valuable agent in allaying pains and other distress ing aymptoms incident to females in particular states of their aystem. Tincture or a well prepared extract is a good form of exhibition; but probably some of the salts of Hyoscyamia will be found the most eligible mode of administration, or a tincture of tho seads may be nsed.
In amse of accidental poisoning, the stomach-pump should bo used, or an emetic of sulphate of zinc be given; if the brain should appear much oppressed, venesection insy slso be resorted to.
In seme parts of the Greek continent the stalks of II. allum are used ngainat the toothache. They are dried sad empleyed instead of tobacoo for smoking.

HYPANTHO'ClRINUS, a genus of fossil Crinoilea, from the Silurian Strata.

H YPERICA'CE, T, Tufans, a vatural order of Polypetalous Exogenous Plants, with an imbricated oalyx, polyadelphous stamens, aud a many-cellod many seeded ovary, with several styles, which are usually quite distinct. The leaves are often marked with pellucid dots, and there is in many species, in addition, a number of black dots which occupy some part, usnally the margin, of bath leaves and flowers In all cases the latter belong exclusively to the xauthic serics of colour.
The species inhabit various parts of the world, both within nad without the tropics; they are especislly common in the southern States of the North American Union. They are found on mountains and in valleys, marshes and dry places, meadows, sad heaths. Many are objects of ornament, but they are little cultivated because they have frequently a disagreeable hircine odour. They are generally ustringent, and in some cases, as in the genus Fismia, yield a substance so much resembling gamboge as to have acquired in commeroe the name of American Gamboge.

In tho United States a stomachic is prepared from Elodea virginea. Cratocylon Mornachuchia is slightly astringent and diuretic. The position of the order is between Clusiaces and Reaumuriacece. It is also allied to Saxifragacece. There are 13 genern and 276 apecies,
HIPE'RICUM, a geuus of Plants belonging to the natural order Hypericacce. The calyx is 5 -parted, or it has 5 нepala; 5 petals; 3 stylos, and a 3 -celled capsule. The flowers of the apecies are mostly yellow. There are 13 British gpecies of this genus, nod 172 are eaumerated by Don as growing in various parts of the world. St. John's Wort is the cotnmon name of all the species.
II. maculatum lias an erect quadrangular stem, elliptical orate obtusc leaves with a few pellucid dota, reflexed ovate lanceolate sepals having pellucid streaks, obtuse petals with purple atreaks and dota beneath. It is the II. quadrangulun of Fries; nad is found in moiat places by ditches and rivers.
11. perforatum has an creet 2 -edged stem, ovato or elliptical leaves with numerous pellucid dots, authers with black dotn, the styles as long as the capsale. It is found in largo quantitien in Britain and throughout Europe; also in the north of Asia and Africa. The flowera are of a bright-yellow colour, dotted and atreaked with purple; when rubbed they emit a powerfal lemon-like scent, and stain the fingers with dark purple. The whole of the plant coutaios a powerful volatile oil, which ia aromatic and possibly astringont, though m yet it has been but little used in mediciae. Itw sensiblo qualities however, and the few inatances in whioh it has proved beneficial, entitle its virtues to a further trial. When boiled with alum this plant yields a gollow dye, which is used for colouring wool. The common prople of Germany and France gather thia species of St. John's Wort with great ceremony on St. John's day, and hang it in the winduwa and about their houses as a charm against cvil apirits, atorma, thunder, and all other calamitica, mistaking the meaning of some medical writers who fancifully called the plant Puga Damonum, from a notion that it was a remedy in maniacal disurders. At one time the people of Scotland used to carry it about their persons as a protection ngainat witehorsft and onchantmont, aud theg fancy it prevents ropy milk by milking apon the fresh herb. Cows and gonts will eat the plant, but horses and sheep refuse it. It is the "Aoxupor of Dioscorides (iii. 162). It is found at the present day on the high Lilla of Attica.
H. lariusculum has a mooth herbaceons atem, rather diatant obtuse leavea full of pellucid dota; the lewer leaves narrow and lanceolate, segmenta of the calyx cqual, nearly linear and acute. It is a native of 13 razil, in the provinces of St. Paul and Minas Geraẽs, where a decoction of the leaves is used as a remedy against the bites of serpents.
II. crispum has a round branched stem, sessile lanceolste leaves, sinuately waved at the base, full of dots, small blunt eepals. It is native in the regions of the Mediterranean, and is the " $\Upsilon \pi$ ќponov of Hippocrates ('Morb. Mul.' i. 610) ; also of Dioscorides (iii. 161), and the Hypericon "quod alii chamsepityn, alii corion appellant" of Pliny (xxvi. 8; xxvii. 4, 5). At the present day it grows near the sea in Attica.
II. perfoliatum, the 'A $\nu \delta \rho \delta \sigma a \mu \mu \nu$ of Dioscorides (iii. 163). It has n 2-edged atem; ovate clasping dotted leaves; fringed and dotted sepals and petals, and sessile flowera. It is a native of Italy.
H. Coris has a shrubby erect round stem, linear lesves in whorls, with revolute margins, and a bluntish linear calyx. It is the Kopis of Dioscorides (iii. 174), and the Coris of Pliny (xxvi. 3). This species is a pretty little shrub, native of the Levant, and in dry places in the south of Europe.

HI. organifolium is distinguished by its ascending downy stem, ovate blunt and pubescent leaves full of pellucid dots, numerous stamens, and many black dots in the corolla. It is a native of the East, about Constantinople, Thrace, and Armenia, and is frequently found on high mountains in company with $I I$. perfoliatum. It is probably the 'Anparov of Dioscorides (iv. 5), and undoubtedly the Ageratum of Pliny (xxvii. 4).
H. Olympicum has elliptical lanceolate leaves full of pellucid dots ; a round stem, and withering corolla and stameas. It is a native of Mount Olympus and of China. Frass thinks it probsble that this is the Пo入є μ untov of Dioscorides (iv. 8).
Most of the species of Hypericum are showy, and deserve cultivation. The hardy herbaceous kinds will thrive in any common gardea soil, and are easily propagated by dividing the roots or by seeds. Those that require the greenhouse or frame will thrive best in a mixture of loam and peat, and atrike root readily in sand uuder a bell-glasso
(Don, Dichlanydeous Plants; Babington, Manual Brit. Bot.; Fraas, Symopsis Plantarum Flora Classica.)
hYPEROODON. [Cetacea.]
HYPERSTHENE. [AUGIE.]
HYPERSTHENE ROCK. This is mmong the rarer varisties of those igneous aggregates which by many geologists are grouped together under the title of Trap. Dr. M'Culloch, who first noticed Hypersthene Rocks in Skye sad Ardusmurchan, describes three varieties:-

Hypersthene with Compact Felspar.
 Hypersthene with Common Felspar.

Hyperstheee with Glassy Felspar.
In largeness of grain it varies from large-grained granite to ordinary greenstone, or is even as fime as basalt; the Felspar is of various colours. It passes to common greenstone.
In Skye it forms the Cuchullin Mountains ; part of the monntain of Carrock Fell in Cumberland is also formed of it; s dyke of Hypersthenic Trap was noticed in Radnorahire; it occurs also in Cornwall. In the Valteline M. Necker has pointed out the passage from Hypersthenic Sienite to Granite.
HYPHAENE [PaLmaces:]
IIYPNEA, a genus of Plants belonging to the natural order Ceramiacea, or Rose Tangles. In the Greek Arclipelago medicinal qualities as a vermifuge are attributed to II. musciformis.

Several species furnish lodine, which gives them their peculiar odour.
HYPNUM. [MUscales.]
HYPO'CHCERIS. a genus of Plants belonging to the natural order Composite, to the sub-order Cichoracea, and to the section Hypocheridece, which has a scaly receptacle and a feathery pappus. The heads are many-fowered, the involucre is oblong and imbricated, the fruit glabrous, muricated, and beaked; the psppus in two rows, the outer ahort aud setaceous, the iuner long and feathery. There are two British species of this geaus- I.glabra, with oblong dentate-sinuate lesves, and $/ /$. radicata, with runcinste obtuse leaves. They are found on dry and gravelly places and wasto plsces. (Babington, Manual of British Botany.)
HY'POGENF, s term in Geology, implying 'nether-formed' (from $i \pi d$, below, and $\gamma \in \nu$, the roat of ripvopat, which signifies 'birth; or 'formation'), proposed by Sir Charles Lyell as a substitute for the word Primary. He affirms that "the popular nomenclature of geology, in reference, to the rocks called Primary is not only imperfect, but in a great degree founded on s false theory; inasmuch as some granites and granitic schists are of origin posterior to many Secondary rocks. In other wordn, mome primary formations can already be shown to be newer than many secondary groups-a manifest contradiction in terma."
As far an Oranite is concerned, this remark is eutirely true: its origis is proyed to be independeat of say particular epoch, nod it has been long thrown out of the modern catalogue of primary rocks. As applied to granite, Mr. Lyell's emeadation is exactly equivaleut to the term l'lutonic used in Bronguist's classification; but when the term Hypogene is uged to include the primary stratified rocks, a particular hypothesis of their origin is tscitly assumed, which many geologists think not nufficiently established.

It in asnumed in this hypotheais that the primary strats have acquired their present mineral anpect, not through any circumstances peculiar to their original formation, and nupposed to be characteristic
of the physical agencies exerted in the earlier eras of the world, but through the subsequent agency of heat and chemical forces in those regions, and under those circumstances where the Plutonic rocks are genersted. The term Primary implies only that the rocks so named are the earliest we can trace in the crust of our planet; and as geological classification is mainly founded on succession of time, and the relative antiquity of strata can be determined as a fact, it seems unlikely that the well-known designstions of Primary, Secondary, and Tertiary Strata will be abandoned, though, as expressing the subterranean origin of certain properties and conditions of mineral masses, the word Hypogene appears very suitable.
(Lyell, Principles of Geology.)
HYPOPITY'S. [Monotropa.]
HYPOXIDACE A, Hypoxids, a natural order of Endogenous Herbaceous Plants, with a tuberous or fibrous perennial root. Leaves always growing from the root and crown, nowhere else, linear entire, plaited, of a dry texture. Scapes simple or branched, occasionally very short. Flowers complete, hermsphrodite. Perianth petaloid, adherent to the orary, 6-parted, with the sepals coarser then the petals. Stamens 6, inserted into the base of the segments of the perianth; filaments distinct; anthers turned iawards, 2 -eelled, erect, opening lengthwise. The number of the plants of this order is very inconsiderable. Those that are known inhabit the Cape of Good Hope, Australia, the East Indies, the tropics of America, and the warmer parts of the United States.
The roots of Curculigo orchioides are somewhat bitter and aromatic and are employed medicinally in ladia. The tubes of C. stans are eaten in the Marianne Islands; those of Hypaxis erecta are employed by the aborigines of North America in healing ulcers and against intermittents.
(Lindley, Vegetable Kingdom.)
HYPSIPETES. [LaNiad.e.]
HYPSIPIRYMNUS. [Kangaroo.]
HYPUDAEUS, the more correct mode of writing IIipudeus; but the latter form is generally used by the French zoologists.

HYLAX, a genus of Mammalia of small sizc, but of grest interest, in cousequence of the peculiarity of their organisation, which has led modern zoologists to assign them a place nmong the Pachydermata, though their exteraal appearance, wheu curaorily examined, would seem to point out their relstionship to the Rodentia, smong which they have been erroneously classed.

Dental Formulan-Incisors, $\frac{2}{4}$; canines, 0 ; molare, $\frac{7-7}{7-7}=34$.

Cuvicr observes that there is no epocies of Mammalia which proves more completely thau J/yru.c the neccesity of having resourse to
anatony for the determiation of the true relationa of animala. To that great soologist we are indebted for tho fact that the quadrujeed under conalderation in true J'achyderm, and, notwithatanding the asollaces of it proportiona rauat beregarded as intermediate betwen the Ilbinoeroe and the Tapir. The reacmblances which the Mymer Leara tw tho former of theme may the traced, according to Cuvier, an far m the omeous itructure is concerned, is the general form of the truak, in the first place. The Ilyrax han 21 ribe on each aide, a number auperior to that poameand by any other quadruped, the Unau excepled, which has 23 ; aud thow which, afur Myrax, have the the mont, belong precisely to the onler of Pachyderns, in which Curier would arrange it. Thun the Filephant and the Tapir have cach 20; the Khiooceros han 19 ; the Solipedn Lave 18 . The greator part of the Iodeota, on the contrary, have only 12 or 13; and the Beaver, which hae the mont, has unly is. As regarda the lumbar vertebre, the remmblance begine to be moro distant, for the Whinoceros has ouly 2 , followed by t macral and 21 or 22 caudal; while Hyrax has 8 lumber, "~cral, and 5 coccygeal. Tho difference becomes more marked in the form of the pelvis; for the oam ilii are very wide in the Hhlooceron, and sufficiently uarrow in the Hyrax; but the analogy reappean in the femora, which exhibit a very marked commencement of a thind trochanter, and is continued is many respects in the formation of the foet But it is in the booy mtructure of the head that the Ifymax departs from the conformation of the Jodents, and approaches tho Pachyderum, particularly tho khinoceros. It is true that an the nowe of the Hyrar han no horn to support, the nasal boves have not received, as in the Ihinoceros, the thickuess necessary for carrying that defonnive organ; but the maxillary booes differ at once from those of the Rodenta by the anallnews of their exteut, and the inferior aize of the suborbital hole, which ia generally very lange in that order. Jo the number of the upper incisor teeth (2) the Myrax remembles both the Kodenta and Fhinaceros unicornis; but the number of lower incisors is four. The upper incisorn of /Iyrax are not formed, like thoes of the Hodents, in the alinpe of a quadrangular prism, or in that of a cylinder corved and terminated by atruncation or a conner enge. Tbey are triaugular and terminate in a poist, recalling to the oberver the canines of the Hippopotamus The lower incisors are laid forward like those of the Hog; they aro flat and dentilated in youth, but soon become worn by attrition against the upper incisors. The molare represent those of the Mbinoceros, both in number and form, to that, were it not for the size, they might be mistaken for each other.

Molar Looth of Hyras, magnified. Cuvier.
The condyle of the lower jaw in very different from auything oferrable mong the Rodenta, in which it is cotapreaned longitudinally. In the Jyrar it io compreased tranaversely, an in the Pachy-
although in truth trabeversal, eaters into a deep hollow of the temporal bonew, and permits of no other motion to the jaw than upwands

skull of Myrar. Cuvier.
and downwards. After alluding to the form of the condyle and the dentition in the Kangaroos and Phascolomys, Cuvier goes on to remark that one of the most constant characters among the Rodents in the not having, at a certain age, more than a single parietal bone without suture, with two froutal bones, directly contrary to what occura in man. In Hyrax, as io the Pachyderms and Carnivora, there are two frontal and two parietal bones. The zygomatic arch is constructed differently from tliat of the Rodents, and more conformably with that of Rhinoceros. In the molar teeth the construction and direction is rather that of the Pachyderms than of the llodenta

In Hyrax the number of toes (four before and three behind) is precisely the sane as in the Tapir. It is true, Cuvier observes, that some Rodents, and particularly the Capybara [Hystricide:], have the same number, and that the last phalanges of the latter approach the flattened form of those of the Pachyderms; but their more clongated and free toes anoounce the family to which they belong. The Myrax has the toes united by the skin down to the nail, as in tho Elephant and 1hinoceros, and even more than in the Tapir and Hippopotamus.

Such are ooly a few of the leading points of agreemont and disagreement in the bony structure of H yrax, as considerod relatively to the llodents and Paehyderms.
In 1832 Prefessor Owen read to a meeting of tho Zoological Society of Loodon an account of the suatomical structure of Myrax Capensis, which, while it was confirmatory of the anatomical description of Pallas generally, gave some additional facts, which will be readily apprecisted by those who will compare his observations with the original description of Cavia Capensis, in tho 'Spicilegia' and 'Miscellanea Zoologica' of Pallas.

The apecimen, which was a full-grown male, had lived in the Gardens of the Society through the groater part of the summer, and died in tho winter repository therc. The length (skeleton) from the ante-

Bheleton of Myraz. Cuvier.
derma, and in wll the other Ifolinora which are not Hownen, boing appilied benidm io, a plane murfare of the comporal bone. wherely a motion, moro or lean liorizontal, from right to loft, and from left to rigtt in permitted: and it in thin that eminently diatinguinhen the articulation from that of all the Camirora, whero tho condyle,
rinr aurface of the upper inciaora to the vent was I foot 51 inchea. The duodenum wan not so Jonsely connected with the back part of the nbelomen as in tnoat of the Rodenta; but it had throughout ita course one entire investasent of peritonpum. At its commencement it wan not dilated, an in many Rodents. The cocum scemed at firstsight
to have a great analogy to that of the Hare aad other Rodents, being sacculated, and distended with a blackish pultaceous matter; but in form one would compare it rather with that of the Tapir, its magnitude arising more from its breadth than its length. The dilated part of the colon was bent in a sigmoid form, and the remainder was convoluted on a broad mesocolon, aod at a distance of two feet from the dilated part (when unravelled) terminated between two conical coca in a second dilated intestine. These singular coeca are minutely deecribed by Professor Owen, who then makes the following observa-tions:- "In looking through the vertebrata for an analogens formation of the intestimal cannl, we shall find the IIyrax standing almost alone in this respect: among the Mammalia it is only in a few of the edentate apccies that the double coccum is to be met with, as, for example, Myrmecophaga didactyla, Linn., and Dasypus 6-cinctus, Linn.; whilst in birds, although the donble cocum mere geverally prevails, yet an additional single cocum, anterior to these, has only been found in a few species. This structure however completes the analogy, quoad the number of creca; but, with respect to function, the cases are widely different: the single anterior coenm of Hyrax evidently performs an important part in digestion; while in the bird it exhibits merely a trace of a structure peculinr to embryonic life. I should consider however the double cocum of Hyrax as indicating an affinity to the group (Edentala) which intervenes, in the aystem of Cuvier, between the order it was originally placed in, and the one to which that great naturalist has transferred it. And it is interesting to find that while the facies of Hyrax so far simulates that of a liodent as to lave deceived the older naturalists, and to have conccaled from them those unerring indications of its alliauce with the Pachydermata which the onseous eystem exhibits; get that nature, as if in confirmation of her abborrence to the saltus, had left in the juterual structure of this singular animal an impression borrowed from the type of the Edentata."

Professor Owen further remarks that although the stomach of some of the Rodenta, as the Common Rat, and of the Edentata, as the Manis, exhibits a particular cuticular lining, yet it is among the Pachyderms that this structure is most prevalent. In Hyrax twothirds of the stomach, ou the cardiac side, are lived with a thick white and wrinkled cuticle.

The liver had the samo form and number of lobes as described by Pallas. The middle lobe had the usual two nutches, iato the left of which the coronary ligament entered ; hut the right contained no gallbladder, which in Hyrax, as in some of the Rodenta and many of the Pachyderm, is deficient. Professor Owen observed that a compensation for this deficiency was however in aome measure appareut in this animal ; for the hepstic ducte, inmediately on learing the lobes of the liver, dilated into three globnlar receptaclea, the united capacities of which would have equalled a moderate-aized gall-bladder. Profeasor Owen also observed that, in Pallas's 'Spicilegia Zoolegica,' the peculiar insertion of the ureters is described with a note of admiration, and he stated that he was not aware that a parallel atructure bas since been discovered in any mammiferous namal possessing a urivary bladder. It in not however, he addcd, precisely in the fundus or summit of the bladder that the ureters open: they enter between the muscular fibres at the back part of the fundua, at the angles, analogous to the situation at which the Fallopian tuber enter the human uterus; but they rum obliquely downwards and inwards for two lines before they terminate, leaving however a full inch of space between them and the orifice of the urethra. Fer what purpose this structure is designed in Ayrax, or whether the urine undergoes say change in consequence of it, is uncertain. "The chief peculiarity observed in the muscular aystem was a modification of the digastric mascle of the lower jaw, which arose, as in the A rmadilloen, from the upper part of the sternum inatend of the occiput or temporsl bone; and was inserted into the whole ramus and angle of the lower jaw ; it was of remarkable atrength, being as large as the stervo-cleido-mastoideus in man. It is this nuacle which occasions the peculiar fuluess of the neck in the Hyrax." (Owen.)

In 1835 Mr. Martin dissected a mecond specimen of //yrax Cayensis, preaented to the Society by Mr. Budnton Read. The total length of the animal, which was a young male, was 1 foot 4 inches, that of the head being $3 \frac{1}{2}$ inchea ('Poceedings of the Zeological Suciety' for 1835.)
Kolbe sppears to be the firat modern author who has noticed the Hyrax of the Cape; sod he mentieus it as a Marmot, a aame adopted by Voamaer and Buffon, the latter of whom also applies to it the term Daman, of which we shall presently have to speak. Blumenbach left it among the Rodents; and Pallas, who first gave a methodical and anatomical description of it, placed it uuder the genus Cavia, oberving however that it differed remarkably from the congeners with which he arranged it. Linnzeus gave the form the pame place in his aystem noder the name of Caria Capensis. Pennant does not mention the animal in hia 'Synopsis,' but in his 'History of Quadrupeda' he figuree it as the Bristly Cavy, with the synozyms of Agnus Filiorum Israfl, 'Prosp. Alp. Egypt.; Daman Inrael, Buff. ; Ashkoko, Bruce; Hyrax Syriacus, Gmel, and Schreb. Hermann however was the first who entablished the genua, and gave it the name of IIyrarr. Pennant also noticea the form under the appellation of Cape Cavy (Caria Capensis, Pallas). Gmelin ruaken IIyruct the last genus of the Gtires, anel records two speciem, namely, IIyrax C'apensis and II. Syriacus. We have seen the place assigned to it by Cuvier Dr. nAT. HIBT. DIV. VOL, HII .

Fischer arranges Hyrax under the order Belluce, between Elasmotherium, an extinct genus, and Dicotyles; he gives three species, Hyrax Capensis, H. Syriacus, and II. Hudsonius, Schreb. (Lipura Hudsonia of Illiger). The latter is not a Hyrax. Dr. Gray places the genus in his sub-family Rhinocerina, belonging to the family Elephantido, the thirl family of his order Ungulata, observing that Hyrax is allied to Caviina, and giving the form a position between Rhinoceros and Lipura and Elasmotherium. M. Lesson arranges Hyrax under the order Pachyderms or Belluce of Linuæus, between Elasmotherium and Dicotyles. Mr. Swainson ('Classification of Quadrupeds,' 1835) places Hyrac Syriacus, the Rock-lablit, next to Rhinoceros; and, after quoting Cuvier, remarks that "there is an obvious relation of some sort betweeu this singular genus, of which three species are now known, aad the Glires; but whether of analogy or affinity it is impessible to determine: for the present we place it as the gliriform type of the Pachyderms upon the sole authority of what M. Cuvier has said of its feet." In the next paragraph Mr. Swainson treats of Meyalonyx. In the arrangement according to astural affinities, at the end of the volame, IIyvax is the last of the Pachyderms, the first 'tribe' of the order Ungulata. The next tribe is 'Anoplotheres,' and the first geuns of that tribe Sus.

The generic characters of /Iyrax are as follows:-Conformation of molar teeth like those of Rbinoceros. Two streng incisors without recurved roots in the upper jaw (and two small canizes in youth). Body covered with thick hair, and beset here and there with erinaceous bristles. A simple tuberele in lieu of a tail. Six teats, two pectoral and four ventral. Four toes on each foot before, and three behind. Dental formula given in col. 174.
H. Syriacus, the Drman, the Hyrax of Syria, is brownish gray above, and has the lower parts white; a yellowish tint interveacs between the two colours: the head aud feet are more gray than the body. The separate hairs are ringed with yellowisb, black, and white. The skin, where it is exposed, is of a blackish violet. Length about 1 foot; height about 11 inches.
This npecies has been supposed to be identical with the Ashkoko, or Askoko, of Bruce, who says that it is found in Ethiopia, in the caverns of the rocks, or under the great stones in the Mountain of the Sun, behiud the queen's palace at Koscau. It is also frcquent, he says, in the deep caverns in the rucks in many other places ia Abysainia; and he remarks that it doen not burrow nor make holes, like the rat and the rabbit, nature hoving interdicted this practice by furnishing the animal with feet the tees of which are perfectly round, soft, and pulpy, the Resly parts projecting beyond the nails, "which are rather broad than sharp, much similar to a man's uails ill grown; and these appear to be given him rather for the defence of his soft toes than for any active use in digging, to which they are by no means adapted.'

Bruce states that, "in place of holes, the animal seems to delight in lesa close or more airy places, in the mouths of caves or clefts in the rock, or where one projecting, and being open before, affords a long retreat under it, without fear that this can ever be removed by the strength or operations of man." He describes it as gregarious, aod says that frequently several dozens of them sit upon the great atones st the mouth of caves warming themselves in the sun, and coming out to enjoy the freabness of a sumaner evening. "They do not," he continues, "stand upright upon their feet, but seem to stesl along as in fear, their belly being nearly cluse to the ground, advancing a few ntepa at a time, surl then palnsiog. They have something very mild, feoble like, and timid in their deportment; are gentle, and easily tamed, theugh when roughly haudled at first they bite very severely." The same author says that these quadrupeds are found plentifully on

Moant Labanoe, and that be lins also neen them among the rocka at The Plaman Inomantarium, or Cape Mahommed, which divides the Filanize from the Hermpolitic Gulf, or Gulf of Surz. They nocmed to bum to be the anme in all placer: but, if there was any difference, theoe ur the Mountain of the suu were anperior in aize and fatuess. lle knpt one mase time, and gives an interenting account of its habits
 X

The eaprive precimen notical by F. Cuvier hat the nppearance and mornewhat of the habith of the Hodentn, rescmbling the Npermoghif. It wan quick, lisely, netive, inquivitive, and trited to get into
 -xpouing alternately diffrent parta of ita body to the man. In cold wentlone is ernjpperl itmelf up in ita hay or litter.
If. Copenom, tho Klaplas. The following aceonst of the habits of
 The thape of (bomillopm, inhabiting the hollown and crevices of rocks, lmoth en the nommita abil miles of hilla, as well in near the rearibore, overs a litile almowe high-water mark. It appears to live in families, and in fernarkally shy is its wild state. In winter it $j *$ fond of coming
 - ammer of enjoying the breeze on the top; but in both instancen, as well w when it feern, a fentinel is on the look-out (generally an old male), which gives notice, ontally by a wirill prolonged cry, of the approach of danger, or even the lenst movement of any auspicious object it livea on the young whoota of shrubs, the tope of Howers, harba and grake, farticularly of all those which are aromatic; which recomona the beoremity of punching the animal ns soon ns killed, in erder to male it fit for eatiog. Thentotonchan of those sbot by Mr. Hemab were aluay much dintended with food acarcely masticated. "A friewd ut mine," euntinues Mr. Read, "kept two young ones alive for mome time. which lecame very tame; they would find him out when lying on the eofn or in bed for they were anffered to run abont the hoinme, and, climbing up. shelter themselves on his breast withia his wainkont, or creep, under the bedclothen at his back, and, lying quint, "pjoy the warmith. The one bought home by Mr. Henuah, when allowiod to run onconfined about the room, was inclined to be wocinble, but was restleum nud inquisitive, climbing up nad examining every peron or tbing in the cabin, and startling at any noise, which coumed it inntautly wron and hide itnelf. But from confinement it became asage and marling, and tried to hite when anything was put noar in case. Ihoth wild and in reseraint it is remarkably elcan in its halita, al way frequenting and depositing itadung in one place. From ita fainely rying in ita aleep we may conclude that it dreans. I have adon hearil it clawing it foon by night, when everything has heen guict, and after going juto ita alceping namertment. Jn its food it was pleamed with variety, eathe tirnt a few len vee of one plant and then of anothrr. and greerlily licking malt when given to it. In its pasange home the foml war lodina com bruised, bread, raw jotato, and onion, with a mall quaneity of water, which in drinking it partly lapped and partly mucked op. It wa very sensilule of colif; for when a caudle wa jlacml mar the ham of ita cage it rendily acknowledged the little wartuth given out by turning ita aide, and aitting atill to receive the fall beriefit of vier rajof heat I am inclinel to think that the femsle doee not fruluce biore than two young ones at a time. from having ollaerved in mevoral inatancen but two following the oll ones. Its narne at the ('nue in the Barm". which in I believe the Dutch for n
 netad to be an extremely quick and netive little animal, akipping along the -helving Imgen of the werhanging cliff, nud darting with incredible nwifnem mothe holen nud crevicen of the rucks, by which it frequently clucles the grap of itn purnuera, It is anid to be preyed upon by the Jionf, hyienam, and antae of the hindu of prey of Africa. The 'Catalogue of the Arrican Museum' itates that Aquila rulfurina resorts exclusively tos high mugred mountainm, where it preys num /Iyvar Capensis, the Ihamy of the Caperolunint

Mr Peal nayn that the fleah of the Cape IIymx in very like that of A rubhit in Eavour. Homprich matan that both the uatives of Arabia and the tommof the enjer rogrll the urine of the Myrax as medicinal.

The terme (Shnghan or Saplanin) in to be found in the following
 axa. 2n. In war Fingliph tangation now in uke this word is rendered "coney." and 'onnimes' in all the pramagea quoted; anll mo it in in Ibabre Farker" Jibile (ififo). In the Jigurine vernion, an giren by
 the Volgate, given ly the mame muthor, "choemgylha, Io

 Pulaste in given-" monten exce-bi corrin: petra refugiun horinaceis" fllingerioga). In I'rov. xxx. 26, the Tigurine veraion in printed " Boniculh. gens minima jotena, sttamen in petra domiciliun suom milncant." with the following nots to Cuniculi: "Quidem murem montanurn eman putant, at vilrtur lic quadrare." The vulgate is printed " I-puerulun, pleba invaliota, qui rollocat in petra cubile suam."

We have onn that the Hyrox han been termed Daman by the French zowliginew. Dr. Slons apmaka of the Daman Jarael as "an animal of Hount Libanum, though common in other placen of thim conntry" (Peleatine). "It in a harmlenn creature, of the eame aize
and quality with the rabbit, and with the like incurvating poeture and dinpusition of the fore teeth; but it ia of a browner colour, with amaller eyes and a hend more pointed. The fore fect likewise are short, and the hinder are nearly as long in proportion as those of the jerboa. Though thin animal io kaown to burrow mometimes in the ground, yet, as its unual remidence and refuge is in the holea and clefte of the rocks, we have so far a more presumptive proof that this creature may be the Saphan of the Scriptures than the jerboa. I could not learn why it wan called Daman Israel, that in Israel's Lamb, as those wordn are interpreted." I'hough there is error in thia deseription such as might be easily made by a casual obnerver, there can bee no doubt that. Ir. Shaw, in the passage quoted, alluded to the IIyrax: the worda Daman Isracl are probably mistaken for Gammen or Gannim Israel, as we ahall presently have occation to notice; "animal quoddan bomile, cuniculo won disainile quod agnum filiorum Israel nuacupant." ('Prosp. Alp. Agypt.')

Dr. Harris states that Jerome, cited by Bochart, bays that the busiv are a kind of animal not larger than a hedgehog, resembling a mouse and a hear (the latter, Dr. Harris aupposes, in the clumsinesa of ita feet), whence in Palestine it is called Aprrouus, the Bear-Mouse; that there is a great abundance of this genus in those countries, and that they are wont to dwell in the caverne of the rocks and the caves of the earth.

The 'Seventy' translate 'Saphan' by 'xouporpúnciol' in all the places quoted. This term, compounded of Xoipos, a hog, and pó́v $\lambda \eta$, a grunting, points curioualy enough to a pachydermatoue form. Bruce, in his travela, describes the Syrian Hyrax, as we have eeen. He adds:-"In Amhara this avimal io called Ashkoko, which, I rpprehend, is derived from the singularity of those long herinsceous hairs, which, like small thorne, grow about his back, and which in Ambara are called Ashok. In Arabin and Syria he is called Israel's Sheep, or Gannim Jarael; for what reason I know not, unless it be chieflyfrom hia frequenting the rocks of Horeb and Sinai, where the children of Ismel made their forty years' peregrination: perhape this nama obtains only amoug the Arabians. I apprehend he is known by that of Saphan in the Hebrew, and is the animal erroneounly called by our translators Cuniculus, the rabbit or coney." Of this opinion are Pennant, Cuvier, and others among the zoologists ; and though M. Lesson, in the introduction to hia 'Manuel,' speaks of the rabbit (lapin), "which is aupposed to be the Schaphan of the Hebrews, although it is more probable that it was the Rat of Pharoah (Rat de Plaraon)"-on what grounds he does not state-as a probibited animal (Levit.; Deut.), there can be little doubt that the Shaphan, the "feeble folk" that "yet made their houses in the rock," belonged to the genus IIyrax.

In the Gardens of the Zoological Society there are three species, named $I /$. Capensis, H. Syriacus, and H. arborcus. The last is from Western Africa.

HYSSOP. [Laminces.]

HYSTATITE. [ILMENITE.]
HYSTRICID AE, a family of Animals belonging to the order Rodentia. According to Mr. Waterhouse (" Natural History of Mammalia') it has the following characters:-Molar teeth :-; ; the muffle, or terminal portion of the mazzle clothed with small hairs; the skull with a large antorbital opening, through which a portion of the masseter muscle passes, as well as the infraorbital nerve; the lower jaw with the angular portion joined to the outer (not the under) surface of the bony covering of the inferior incisor; tibin and fibula distinct The family is essentially a South American group; it may be divided into six mioor sections, or sub-familice, namely, Hystricina, Dasyproctina, Echimyina, Octodontina, Chinchillina, nod Cavina; of these, the most highly-organised division which includes the Porcupines (Ifystrix of Linueus) has a wide geographical range, having representatives in the fuur quarters of the globe. With the exception of two apecies, the whole of the apecies forming the remaining five aub-families are excluaively found in tha New World, being chiefly confined to Sonth America: two or three species in the Webt lndian Islanda, and about the anme number in Central America form the exceptions.

The nembern of tho sub-fsmiliea Hystricina, Dasyproctina, and Echimyina increase in number towarda the tropical portions of Sonth America; whilat in the fouthern parts of that continent, the lesa highly-organised species only are found, these being nembers of the remaining three anb-fanilies.

On the western side of the Southern Anden, but one of the subnectiona nlluded to har reprenentatives-the Octodontina.
The relations of the sub-families of the IIystricide may be expresed by arranging them an follows:-

"By this mode of placing the groups," aays Mr. Waterhouse, "we
wish to express that the Agoutis (Dasyproctina) in their characters, partake of those of the three groups to which they are approximated; that certain members of the section Echimyina lead off to the Hystricina, whilst others approach more nearly to the Chinchillina; and lastly, that the Octodons are nearly related on the one hand to the Echimyina, and on the other to the Chinchillina: they bear the same kind of relationship to the Echimys group as do the Arvicole to the True Rats"

The following is the character of the sub-family Caviina:-Molar leeth rootless, divided by folds of ensmel so as to form lobes baving acute sagles; the series of molars on opposite sides of the upper jaw coaverging, snd rearly meeting in front; incisor teeth comparatively short, those of the lower jaw not being extended backwards as far as the spriuging of the angular portion, or descending ramus; four toes to the fore feet, and three to the hind; tail wanting, or rudimentary; opper lip entire; a strongly-developed horizontal ridge on the outer surface of the lower jaw ; the angular portion of thie jaw produced much beyoad the condyloid portion, descending below the level of the dental portion, and with a curved lower margin; clavicles wanting.
The Cavies have almost invsriahly been associated with the Agoutis (Dasyprocta and Cielogenys), and frequently the animaly of both divisions hare been linked together under the sectional name Subungulata, by the more recent writers, who thus adopt Illiger's nsme for the section and his views regarding it.
The nature of the affinity which exista between these two groups is by no means so near as is gencrally supposed.
Both groups belung to the same great fanily; and besides the characters which are peculisr to this fanily, the species of the genus Dasyprocta may be said to sp prosch the Cavies, from the circumstance of their having the same number of toes to their feet, snd being almost (or entirely) destitute of a tail; but this is weak evidence in favour of the supposition that there exists a very uear affinity between the genera apsocisted under the name Caviina and those arranged under the head Dasyproctina, such an affinity, in fact, as is indicated by the arrangement of these two groups in a section apart. A certain degree of importance must be given to the characters thus referred to, when we find them combined with numerous other peculiaritics exhibited in the structure of the teeth, skull, and skeleton, as in the Caviina, but evidence of a distinct minor type, in the structure of these parts will be educed when we treat of the Dasyproctina.
Dolichotis, Desmarest; Mara, Letson.-The limbs are long, the ears fully balf as long as the head, pointed, broad at the base, and deeply emarginated behind; tail very short, and recurved; metatarsus with the anterior half clothed with hairs on the under surface; the hinder half as well as the beel, naked ; molar teeth small, compared with the bulk of the ekull; the three foremost of the upper jaw and the three hindermost of the lower, divided by folds of euame], each into two equal lobes; the last molar of the upper jaw three-Jubed as well as the foremost of the lower jaw.
D. Patachonica, the Patagonian Cavy; Caria Patachonica, Shav; Dasyprocta Patachonica, Deemarest; Chloromys Patagonicus, Lesson; Mara Mogellanica, Lesson; Dolichutis Patagonica, Wagner. Fur dense and crisp ; on the upper parts of the bead and body gray, on the sides of a yellow rust-colour; chin, throat, and abdomen, white ; rump black, but with a broadish white transverse band crossing immediately above the tail; limbe for the most part rusty yellow, but grayish in front. It inhabits Patagouia, ranging from about $48^{\circ} 30^{\prime}$ to $37^{\circ} 30^{\prime}$ S. lat., on the east coast, snd exteuding iuto La Plata as far north as Mendoza.
"The Patagonian Cavy," Mr. Darwin observes, "is found only where the country has as desert character. It is a common festure in the landscape of Patagonia to see in the distance two or three of these Cavies hopping one after the other in a straight line over the gravelly plains, thinly clothed by a few thorny buabes and a withered herbage.
"Near the coast of the Atlantic the northern fimit of the species is formed by the Sicrra Tapalguen, in $37^{\circ} 30^{\prime}$ S. lat., where the plains rather suddenly become greener, and more humid. The limit certainly depends upon this change, since near Mendoza ($33^{\circ} 30^{\prime}$) four degrees farther northward, where the country is very sterile, the animal sgain occurs
" 1 ts sonthern limit is between Porte Desire and St. Julian about $48^{\circ} 30^{\prime} \mathrm{S}$. lat. From the wame eource we leam the following particulars relating to this Hare-like Cavy. It is a burrowiug animal, but when found in the eame districts with the Viscacha it will avail itself of the excavations of this latter suimal for a retreat. The Patagonian Cavies wader at times to great distances from their homes, add usually two or three are seen together on these occasions. The animal in itt mode of running tnore nearly resembles the Rabbit than the Hare, and though its limbsare long it does not run very fast; it selfom squats after the manner of the Hare, is very shy and watchful, and feeds by day; and in connection with this circumstance I may mention that the eyes, like those of the Kangaroos, are defended from the direct rays of the sun, by well-developed eye-lashes, which is not the case with ordinary Cavies.
"It generally produces two young at a birtb, and brings forth in
its burrow : its flesh is white when cooked, but rather dry and tasteless. The lorg lege and rather long erect cars, combined with the geaeral form of the head, and the short recurved tail, bave caused this animal to be very generally mistaken for the Hare, by casual observers; and we have pointed out certain other characters in which the resemblance is further carried out; it nevertheless is a Cavy in all the more essential details of structure.
"For size it greatly surpasses the common Hare, full-grown individuals weighing from tweuty to thirty pounds, and indeed the Patsgonian Cavy must rank amongst the largest of the Rodent tribe, though far surpassed by its aquatic congeuer, the Capybara."

Cavia, Klein; Anœma, F. Cuvier; Les Cobayes, Cuvier.-The limbs short and the ears likewise short; feet naked beneath; molar teeth nearly of equal size, each molar with two principal lobes.
C. rupestris, Rock-Cavy ; Kerodon Moco, F. Cuvier; \boldsymbol{K}. cinereus, Geoffroy; Cerodon rupestris, Wagaer. Nails of the toes short, obtusely poiuted, aud scarcely projecting beyond the large fleshy pads with which the toes are terminated; fur soft, its geueral hue gray, tinted with rufous on the hinder part of the back; throat white, chest whitish; abdomen white suffused with pale orchreous yellow; sides of the face tinted with rufous; binder part of the posterior limbs suffused with chestnut red; fore legs and tarsi whitish, tinted with rufous. The Rock-Cavy inhabits Brazil in rocky situations.
According to Prince Maximilian it inhabits the interior of Brazil, and is confined to rocky districts, where it seeks its retreat in holes amougst the fragments of the rocks. It is frequently met with at Belmonte, Rio Pardo, and Rio de St. Francisco (all nearly under the 16th parallel of south latitude), being found near the rivers, but always in the higher parts of their course. Its flesh is said to be well flavoured, on which account it is sought by the Indians, to whom it is known by the nane of 'Hokê,' and by the Portuguese it is called 'Mokô.' The C. rupestris is superior iu size to most other Cavies, stands higher on its legs, and is remarkable in its group for the comparative softncess of its fur, aud the structure of the nails of its toes.
C. Spuizi, Spix's Cary. Incisor teeth yellow; general colour of the animal gray, with a somewhat indistinct brownish tint on the back; the epace between the eye and the ear whitish, a white patch behind each car, and the throat and abdomen likewise white. It inbabits Brazil, Rio de Jaueiro, Bahia, and the neighbourhood of the A mazonas.
The yellow colour of the incisor seeth, and the general gray hue of the fur, combined with a distinet white patch behind, and a second in front of esch ear, are the leading elaracteristics of the species.
C. Boliviensis, Bolivian Cavy; Gulea Musteloides, Mesen. Incisor teeth of an orange-yellow colour; general hue of the fur gray, with a very faint yellow tinge; throat and abdomen white ; feet whitish. It inhabits Bolivia, occuring ouly at great elevations. Meyen informs us that the lofty plains ou the pass of Tarna to the Lake of Titicaca, as well as those of Tajori (on the Ancles $18^{\circ} \mathrm{S}$. lat.) are inhabited by immense numbers of a small animal, which burrows and so undermines the ground, that every step of the horse was attended with danger. The animal was se shy that he was unalle to proeure a specimen; aud inded it was only seen from a distance. It is descrihed as laving a long and slender body, of a brownish red colour on the upper parts and pale on the under. 1ts length without including the tail appeared to be about eight iuches. To this auimal Meyen gives the name Galea Musteloides.
The characters of the genus Gatea are derived from a skull found by Meyen at the entrance of one of the burrows of the little aumal just referred to, and judging from Meyeu's figures and descriptions it probably belongs to the Rodent uaued C. Boliviensis.
C. australis, the Southern Cavy ; K'credon Kingii, Bennett. Incisor teeth white; head short, tarsi loug; fur rather soft, its general bue gray, by no means dark; the eye edged with white, a whitish spot behind the ear ; the chin and edge of the lower jaw likewise white. It inhabits Patagonia, from about the 39th parallel of latitude down to the Strait of Magalhaens. This little gray Cavy according to Mr. Darwin is common along the coast of Patagonia, from Rio Negro to the Strait of Magalhaene.
It is very tanee, commonly feeds by day, and is said to bring forth two young at a birth. At the Rio Negro it frequents in great numbers the bottora of old hedges, and at Port Desire it takes up its abode amongst the ruins of the old Spanish buildings.
M. D'Orbigny observed the southern Cavy as far north $8 \mathrm{~s} 39^{\circ}$ S. lat., which it appears is ita extreme range in that direction; aud this suthor states that it lives in familics, and digs deep burrows in the ground, preferring sandy declivities which are more or less overgrown with busbes; its burrows are raid to bave severnl outlets. The food of the southern Cavy consists of seeds and green herbsge, and it has been observed to ascend trees to feed upon their fruits.
C. Aperca (Linnæus), Restless Cavy, or Guinea-Pig (Aperea Braziliensibus, Marcgrave?). Domesticated it is called C. Cobaya by Marcgrave, Schreber, and Desmarest ; Mus Porcellus, Linn. ; Variegated Cavy, Shaw; Cochon d'Inde, Buffon. The Wild Guinea-Pig has the incisors white; fur long and somewhat coarse, on the upper part of the sides and body distiuctly pencilled with black and dirty yellow ; chest graybrown, throat and abdomen pale dirty-yellow, or sometimes browngray. It inhabite the banks of the Rio Plata, and extends uorthward into Paraguay, Bolivia, and Brazil.

Acconling to Mr. Jarwin the animal is known by the name of A proa, and it is escroliuntr cumtnou in the neighbourbood of aeveral Wwan on the lanke of the lio Plata, cometimes frequenting the sand hillorke of the loakreniwn formenl of the Agare aud Opuntia; but
 Where thoment dry it mater a burnow, but otherwiso it lies concondel atnatar the ho thape. If pemeraily comes out to feed in the
 ance sin the morninge. In lhalivin, Mr. Bridges states this animal is confumb to the low fimp, asil in this rexpert differa from the Caria
 that unowmon in fielifa in the neighbourhord of Chuquixaca and
 by which the firlila are ineloserl.
Dr. Wrugger myp that the Aperea is found throughout Paraguay. and extenide sontiwanl on far as $35^{\circ} \mathrm{S}$. lat, he ha himself not only maet with the aninal (with which he in well nequainted) in those parts, but likewise in Hraxil, twith in Rahia mal in Pernambuco.

In Parmoun it echemlly frequente moist situations and near the fonders of foresta, but it never occurs cither in tho foreats or in the open fielule. It liven in litele mejetion (according to the mameauthor) of from nix to fifteen individuals, in the impenetrable groves of Irourelis: : and ita premence is detected by unamerous little beaten pathe which it formanangat these plants. It feeds early in the moraing and nfter anset in the evening, but never atrays far from its bouse. The Ajerea brecis but once in the suar, and then has but we or two young. in this and other grounds Dr. Rengger thinks the Aperea is not the origin of the Domeatic Guinea. Pig.

C: Icmopyga, the White- Rumped Cavy. Incisor teeth white; on the upier parta of the animal of mixed brown black and browniah-yellow coloura: thnoat, chest and nblumed white. It inhabits Brazil.

Hydiochrraf. Brisenn; ('apybaia. Marcgrare; C'rpyigoua, D'Azara; Cochon d'Ean of Ines Marehnia; Irahbo of Gumilla, Capivard of Froger, Capiguara of Itubritzhof, Cabiai of Buflon, Xiimpoon of the Botocude Indiases.

$$
\text { Dental formuln :-Iuciarrs, } \frac{2}{2} ; \text { molara, } \frac{4-1}{4-4}=20 .
$$

Molara componual, the poaturior teeth the langest, and formed of nomerous latuine, which are sinaple and parallel ; the lamine of the anterior molars forked.

Treth of Cupybara. F. Cuvire.
At a meeting of the \%orlogical Society of lourlon (1832), I'rofemor Owon, on the urranion if exhiniting a large old irsnium of the Capy . bara belonging w, M. In la Fons, remarked, that jes lanps the most entranionney inotance of the enlargenl visw which result from un-
 by Cuvier'p Kold murciation of the affinity of the Fijphant to that order ul the Mammatia which containm the mont minhte forma of

 thonl aralagy botwern the thelars of the laodent and those of the Fileghat, biniofly, hont the nomber of tranverae laminge increasen as the jaw culargea whage, the whole unminer not coming into use at ance
"Iu the Capybara," sags Profensor Owen, "the posterior grinders, like those of the Elephaut, preseut a greater number of componont lamina than the auterior ones, which are of earlier formation. Thowe of the upper jaw, according to the figure and deacription in the 'Ossemens Fossiles' (V. pl. 1, p1. 24), are composed of eleven lamine, of which all but the first, which is notehed externally, are mimple. In the figure too. it is worthy of observation that the last or eloventh lamion is imperfect, and exhibits a construction noalozous to the imperfectly-formed lamine or dentieles in the elephant's grinder, utuely, a division iuto component columas. In the work of F. Cuvier, 'Sur len Dents dea Manmiferes,' the nmmber of laminse in the bust grinter of the upper jaw of the Capybara is stated as 'onze ou doaze ; ' but elcven only are exlibited in the figure, and we may suppose therefore the doubt as to the precise number to be fonnded on uncertainty as to the propriety of considering the finst deeplynotched lamins as single or double. In the eraninm in the Colfege Musenm the number of the lamina is twalve, the forked one being regarded ue single. In M. De la Fons's specimen the alveolo clearly indicate that the number of laminae of the last molar had boen thirteen, with the rudiment of the fourteanth; the extent of the grinding surface is however proportionally longer than wonld result from the additional lamine alone; for as these lamina do not cease to grow so long as the animal lives, they increase in thickness as age adrancus." ('Zool. Proc.')

Mr. Morgan ('Linn. Trans.' vol. xvi.) describes the stomach an formed by a single membranous bag; and, as in other mammiferous vegetabla feedera in which this simple form of stomach is found, the coscurn as large and complicated in proportion. Finding nothing requiring particular notice in the reat of the alimentary canal, Mr. Morgan proceeded to examine the structure of the mouth and throat. After noticing the considerable extent of the grinding surfaces of the molar teeth, he remarks thst it must be obvious how necessary such an arrangement of parts must be to the health of the aoimal, when the uature of its food and the simple structurs and limited functions of its most important digestive organ are considered, a provisiun being thus made for the proper mastication of the hard regetable ubbstances upon which the animal must occasionally eubsiat. But Mr. Norgan found another structure, undescribed up to the time when le made bis examination, by which the process of parfect mastication ia rendered indispensable to the passage of the food from the mouth to the atomach. This structure, by which the possibility of swallowing any portion of unmasticated nutriment is prevented, is shown in an extraordinary formation of the velum palati noollis, or soft palate. In other animals this membrane generally forms an iuperfect flonting septum, suspended from the back part of the roof of the palato, and interpesed between the cavity of the month and pharyux, but it was found in the Capybara and in some of its congevers to be much wore extensive in its attachments, and different in its form and uses, On separating the jaws the mouth appesrs to terminate io a nearly blind pouch; for the communication with the pharyox seems as if shut by a strong metabrane of a funnel shape, the concavity of which recedes towards the throst. "This membrane is an extended velum palati attachal to the whole eircumference of the fauces and root of the tongue, sud is prevented from forming a complete septum by the existence of a snaall ceutral circular aperture, by which a communication between the mouth and the pharynx is established for passage of food; so that through this small meubranous funnol, or strainer (if I may be allowed the expression), it is physically impossible that any cousiderable portion of unmasticated nutriment should find its way; by natural means, from the mouth into the alimentary canal; and from this circumatance the first process towards digestion must be renderod certain and complete; for the grosser purticles of food must rutnain in the mouth from the interposition of the membranous siave or straner, which is thas placed between the organs of mastication and those of digestion. Mr. Morgan observe that the same proviaion for the complete masticatiou of all eolid substances, previous to their being swallowed, will be found in others of the same group, but he confines his well-executed descriptions and figures of the anatomg of these parts to the dissectious he had made of the Capybara. To thene descriptions and figures we refer the reader, oftering only the conclusion to which Mr. Morgan comes as to the use of this conformation of the velum palati : this appears to him to hava reference to the digestive organs, and to be confined almost eutircly to the process of deglutition."

The nizo of the lamina in the posterior molar tceth, and the increase in their namber, indicate some spproach to the pachydermatous form, and wa find among nome of the earliar zoologists who have noticed it A digposition to approxinate it to the hoga. Thus Maregrave says (I'ino,' book iii.), "Capylara inter porcos aquaticos siva fluviatiles recipitur, yuia figurs et osturs limulum porcum emulatur.' Brisson': uane Hydrocharux, Water-Hog, aud Des Marchain' Cochon d'Einu, point tho кame wing. Limmeus, in his last edition of the 'Syetema Nature' (12th), arranges it uader the geuus Sus (Belluce), as S. Hydrochecris, and immedintely after the S. Tajacu, or Peccary, next to which animal it is placed in l'isu's Maregrave. I'ennaut iu his 'Syuopsis,' calle the Capybara, with Kiver Hog (Wafcr, in Dampier), as oue of the aynonyms, the Thick-Nosed Tapir; but in his 'History of Quad. rupeds' he makes it the first species of his genus Cary, siving it a
place immedistely before the Guidea-Pig. Gmelin (13th ed. 'Syst. Nat.') places it smong the Glires, as the last spenies of the gevus Cavia, immediately sfter the Guinea-Pig, C. Cobaya; by which arrangement the animsl comes next to the Beaver (Castur). Cuvier maskea Mydrocherus a genus of his Rodents, giviag it a position between Lagomys and the Guinea-Pig. Fischer briugs it under the Glires, between Lagomys and Dasyprocta. Dr. Grsy places it in the order Glires, family Leporide, вub-family Ifydrocherina; Hydrocherus being the only genus of that aub-family, which atands between the sub-families Caviina and Dasyparcina. M. Lesson arranges it between Kerorton and Cavia (Glires). Mr. Swainaon also places it st the head of the Csvies, Caria (Glires).
H. Capybara (Cavia Capybara of Gmelin, Sus Hydrocheris of Lin nevas) is the ouly species.

Capgbara (IIydrocherus Capybara).
It is confined entirely to the New World, and fonnd in the neigh bourhood of the great rivers in Brazil, Goyana, and Paraguay; some sar thast it is found as ligh as the Isthrous of Darien.
Maregrave states that the Capybara lives upen herbs and fruits; that it is s nocturnal anitasl, awimming across rivers and torrents in aearch of food, and raiaing such s horrible clamour as to have terrified the narrator before he kuew the canse. He says that they wsader in infinite congregations about the banks of the rivers, nud as they are slow of foot, that they save themselves from the huntera by awimming, though, notwithatsading, imenenae uumbers are killed. Peusant, who quotes Muratori, aays that -it runs slowly, swims and dives remarkably well, and keeps for a long time under water; feeda on fruits and vegeo tables; ia very dexterous in catching fish, which it brings on shore aod eats at jts case; aits up and holds its prey with its fore foot, feeding like an spe; takes its food in the night, snd comnits great ravagea in gardena, keeps in large herds, and makea a horrible noise like the braying of 3 n ass.
Some part of this last account seems rather highly coloured. We doubt very much, from the atructure of the teeth and digestive organs, the alleged fact of its feeding mueh on fish; though Bewick, who givea by no means a bad figure of the animal, places a newlycaught fiah before it, probably on the suthority above quoted.
Maregrave apeaks of the flesh as aufficiently good food, eapecially if it be roasted : he says indeed that inasmuch as it yields in dignity to that of wild and domeatic hogs, the head of the Capybara only ia considered a delicacy. Penanat, on the contrsry, in the acconat above alluded to, says that it grows very fat, and that the flesh, which is tender, is eaten, but it is added that the flavour is oily and fishy. Cnvier hawever apeaks well of it. "C"est un bon gibier," says that anthor in his 'Rezne Animal.' The majority of authors speak of it as being ensily tamed sad growing familiar ; but one of the Capybsras which died at the Regent's Park was very morose to atrangers, and all endesponrs at conciliation were answered by stampings, cries, snd malevolent attempts to strike with the fore feet and hesd. There is at pressnt (1854) a specimea in the collection, which, slthough not very familiar, exhibita none of the malevolence of the first specimens. The habits of an animal howcver canoot be judged of from an individual ahnt up in a cage, deprived of all the accersories that make its life agreeable in a state of nstore, and with a temper ruined by constant irritation, diaappointment, and ill-health. Thoae whe apeak of the Capybara as being easily tamed had nost probably opportunities of observing the inanoers of some of these quadrupeds where they were allowed thst certain degree of liberty and indulgence without which an attempt to gnin the confidence of animals is generally hopeleas.

Professor Owen observea (${ }^{\text {Z Zoolngy }}$ of the Voyaga of H.M.S. Beagle,') that it is interrating to find that the continent to which this interesting aberrant form of liodent is peculiar, should be found to contain the remaina of an extinct genus, characterised ty a dentition which closely rezemblea the Rolent type, but manifesting it on a gigsotie seale, and tending to coroplete the clanin of sffinitizs which links the Pachydermatous with the Rodent aud Cetaceous orders. [Toxodon.]

The nest sub-fawily in Mr. Waterbouse'a arragement is the Chin chillina. An account of them is giveo onder Cminchimid.s.

Sub-family Octodontina.-Molar teeth rootless, having but a single indenting fold of enamel on either side or rarely with an extra fold on the inner side of the molars of the lower jaw; zygomatic srch with sngular process on the lower edge; hind feet with five toes or with sometimes four.
The apecies of this section inhabit the middle and southern parts of Sunth America, occurring on both sides of the Andes. They are of small size, the largest known species scarcely surpassiug the Common Squirrel in bulk. Some live slmost entirely underground, snd have the fore feet atrong, and armed with powerfnl claws, fitted to their burrowing habits; others are found at the roots of treea, occasionally climbing atnoagst the branches of the shrubs of which the hedgea are formed, or even (though rarely) asceoding trees.
The Uctodontina bear the aame kind of relationship to the Echimyina so do the Arvicolina of the northera hemisphere to the troe Rats: they agree with the Echimyina, in fact, in all essential points, but differ in having the molar teeth rootless, sud almost alwaye of a more aimple structure. Accompanying the rootless molar teeth, we find that the incisors are slmost alwsys brosder, snd relatively less deep from front to back; and convected with these differences, the structure of the skull denotes increased powers in the muscles of mastication, the zygomatie areh being atrouger, and the temporal fosso more extended; generally in proportion as the incisor teeth increase in size, the cranium assames a broader and shorter form, is more contracted between the orbits, and has the cerebral cavity propor tionstely smsiler, and it is in those species which burrow and live almost entirely miderground that theae last-mentioned peculiaritics are carried to the extreme.
From the other two sub-familiea of Iystricide, which sre characterised by rootless molar teeth-the Caviina snd Chinchilline-the Oetodons may be distinguiahed by the hind feet being always provided with five well-developed toes. The presenge of a distinct tail will prevent the Octodons from being confoonded with the Csvies; and this organ being elothed with short haira in the Octorlons, gives to these snimals a very different appearance to that of the bushy-tailed Chinchillas. The skall and deatition likewise furnish good diatingoishing characters. The palate, as will be seeu on comparing it with those of the Cavies sud Chiuchillas, is lesa contracted between the foremost molar teeth, the molar bone bas a distinct augular projection on its under side (as in the Echimyina), sud there is the same strong unsenlar ridge ruaning obliquely forwsrds and downwards from the hinder root of the zygoma on the outer aurface of the molar bone. The molar teeth are nsually indented on each side by a single fold of euamel, and the crown of one of these teeth approachea nore or lesa nearly to the form of the fignre 8. The most marked exception is found in the lower molars of the genus Habrocoma, Five genera having well-marked distinguishing characters, are iacluded in the present aub-family : their chief external peculiaritiea are ss follows :-
I. Fore feet with four toes; ears very long. Habrocoma. [Habrocoma.] II. Fore feet with five toes.
A. Ears large, or of moderate size.
a. Tail as long as the body, alightly bushy at the extremity. Octodon.
b. Tail ahorter than the body, clothed throughout with small adpressed hairs. Schizodon.
B. Ears very sundl, almoat entirely hidden by the fur of the head.
a. Inciaor teeth moderately broad; nsils to the toes of the fore feet atiortcr than the toes. Sualacopus.
b. Incisor teeth very broad; naila to the toes of the fore feet longer than the toes. Ctenomys.
Octodon, Bennett (Dendrobius, Meyen).-Esrs moderately large; tail nearly as long as the body, with long hairs at and near the point; five toes to the fore or hind feet; the clsws amall; incisor teeth moderate as to width, or somewhat narrow, convex in front; molar teeth each with a single indented fold of enamel on either side; the hinder half of the upper molsrs much narrower than the anterior portion; a small vertical plate (to proteet the infra-orbital nerve) within the ant-orbital opening of the skull.
O. Deyus, Cuming'a Octodon; Sciurus Degus, Molina; O. Cuningii, Bennett, Wagner; O. pallidus, Waguer; O. Cumingii, Tachudi (\}); Dendrobius Degus, Meyea; Chilian Squirrel, Shaw. Fur loag and moderately aoft; upper parts of the body pencilled with blaek and pale brownish-yellow; sides of the body cliefly of the latter colour; abdomen dirty yellow; feet white, faintly tinted with yellow; tail dusky above, dirty white beneath; the long hairs on the apicle third, black, or dusky. It inhabita Chili.
According to Mr. Darwin this species of Octodon may be aeen by hundreds in the heedgerowa and thickets in the central parts of Chili, where they make burrows close together, leading one into the other. They feed by day in a fearless namaer, and are very destructive to fildds of yonag corn; when diaturbed, they all run together towards their burrows, the aame way that rahbita do in Euglaod when feediug outside a covert. When runuing they carry their taila elevsted; and often they say be seen aeated on their haunchea, like squirrels. Aecording to Molina they lay up a store of food for the winter, and do nut become durmant. According to more than one author, the

Othefur in eren ocranjopally to climb amongat the liranches of the busher Mis. Rrutern infurvin un that Cuming's Octodon bas a very estralel rangre that grutuman having luct with it an far north an -3" N. hat, mend muthwant to the $\$ 3$ th parallel. In the provibere of Coquialo, whem the country in aterile, the litelo animal takes up ita abade anounget the lowecentonea on the minem of the nomitamm, and in frepuraty siow with in the holess of the ('hinchillar. Ita find consikes of the lierthge which grown at the rove of the hedges; in the winter twousha, whess premeal by bunger, it feeds upon the tender bark of We Nimona Cisreno, and ata ins that of the C'estrum fishyu. Mr. Ifrahea is meliued to believe that it breedn hut twice in the year, and atater that it han from four to wis young at a birth.
0. Lindyosn, Invigeain Ectonlon. Fur very long and moderately soft: upper parta of the animal atrongly peacilled with brown-yellow abal black, the black prevailing on the back; nbutoused white, muffused with fule brown, yellow, or crasu-colourm; tail indistinctly tufted, dunk, excelturg at the base bencath, where it in thirty white; feet grayinh-white, It iulubite Clili, the prorince of Colchagua.
(i. givenien, Irormouse Uctentou. Fur soft, ashy gray on the upper parta of the borly, and white on the under; tail brown-black beneath Wo the estremitr, which in monowhat tuftert; fect white above.
©huodun. - Fars maderate size: short tail, clothed thruughout will obort haim: fore feet atrong, the claws about equal to the toes in length; iucimor teeth atout; molara ench with a simale deep fold of enamel on either side, divitling the tooth into two ovsl-khaped lober, the lone diameter of whichare placed transwersely, the lobes equal iu nide, or very wearly to. excepting in the hindermost molar of each jaw, in which the posterior lobe in considabably sualler than the rest; whull strupg, rather ahort and broacl, with a separate small cadal for the infrowtital iserve; toem 5-5.
S. facu, Brown Schizuton. Fur talerably long, moderately roft, amb momewhat glumy ; it मूeueral lue deep brown, pencilled black and yellow-lrowu; abdomen of a pale dirty yellow hue; feet duskybrown. It inhabita the Sunthern Aades, cavtern side.

Mr. Bridgen, who dincovered this animal, informs us that he met with it in the Valle de las Cuevas, un the eastert side of the Ander, akout wis leagune from the volcano of Jeteroa (about $75^{\circ} \mathrm{S}$. lat.), at an elevation of from 5000 to 7000 fect lits favourite abode is stated to to in gramay situations near the mountain streanse In certaius parta the ground in completely undermined by the burrows of these lithe mimala, sul whitht riding over these the horses of Mr. Brielges's party frequenty plunged into the ground nlmost up to the hock. The valley inhaliter' by the schizorlun are no elevated that they are coneted with nuow at leant four montlos during the vear, and Mr. Imagen in inctiued to believe that, like the spalacopus, the Schizodou Lay up, atore of food for the winter. It is a nucturnal animal, and it would appear liven almont entirely underground.

Smaloonyw, W'ggler ; P'urghagomys, F. Cuvier; Pammoryctes,
 hentary; tail mont, and clothed with short baise: the nails of the toen of the fore feet mather morter than the toes: incisor teeth moderately bruad, thope of the upper jaw distiuctly directed forwards as well an downwarda; molar tceth with the crowne absped like the figure S, the materior and the phaterior lobea being equad, excepting in the lant cootls, the intenting fold of the enamed of one sitce of ench tooth mot heecting hat of the opponite side; hindertaont molar in ench jaw manller than the reat, and with the powterior lube wmaller than the anterior one.
\therefore Popprgn, I'uphig'm Sialacopua: Poephagomys ater, l . Cuvier: Watabouse, bikoux, and Gervain; Psammoryrtes noctiragu*, I'oppig and Wugher. Fur poft aud very gloany, black, with an admixture of parple trowis, the bruwn bue mont dintinct on the under jarta of too abimal; incimor tectla pale yrllow, or yellow-white in front. It

Ctenomya. Le Whais villo:- - Bar ruthementary; eyememall; tail short; fure fect large and powerfol, and armed with nails, which exceed the
 cuaver is fromes the lower pair that at the same part; molara with iwo uriegual lolas, the bimtermont molar of each jaw much manler than the rent, ne arly cyladrical; akull very atrung, whort, and broad, the enciphel pontion wuch dilated, no meparmio canal fur the infra. orbatal aserve bivoraphical rauge: from Buazil wentward into Bolivia, and motitwarll to she Serait of Magallaneno. It lives underground.
 poryualm, lachewnteis. Fisr mofn, fine, and rather short, of a doep shewe gray best the akin mul bright rusty-brown extermally; on the worlar fate of the animal houever the larira are runty white at the
 Lat, whirh lastar are of a blackinli-hrown colour; hairs of the moruaparion wolerably long. It mhabjem lisazil, I'araguay, La l'lata, asul Halivia
There are three uther mecien, C : Dolivionsis, G. leucodon, sul C. Mayclianicua

Subfaraily themyona (Vochyminler, lkmaparte).- Molar teeth com-
 horec with a dhatuct angular pruccea on the lower edge; both fore and hiad feet with bre hem.
(iengraphical Dirtribution.-One apecies of this section is found nt the Cape of Good llope, and a second in Weatern Africa. With these exceptiona the group io confined to South America and the Weat Indian Islands In South America the pecies of Echimpina are only known to occur in the northern aud central portions; Paraguay aljears to be their southern limit. On the west slde of the Cordilleran none bave been found.

Cupronys; Isodon, Suy.--Molar teeth rootleam, encls upper molar with a mingle deep fold of enamel on the inner aide and two deep folds on the outer; incisor teeth narnow and convex in front; muffle broad, with a mexial longitudianl groove; upper lip slightly eleft; ears moderate; tail of moderate length, and somowlast aparingly clothed with hairs, which da not hide the acaly skin; feet naked beneath, and covered with small tuberclen; mails of the toes large, and much curved; pupil of the ege vertical. But two epecies of this genus are known; they inlinbit the island of Cuba.
C. pilorides, the Short-Tailed Capromys; Ioodon pilorides, Say; Capromys Fournciri, Deamarest. Tail shorter than ithe body; fur long, very harsh to the touch, atrongly pencilled with black aud rich sellow, or, on the hinder part of the body, with yellowish rust colour; enra, muzzle, throat, nud chest, white, or nearly white; abdomen rusty yellow; toes whitish, or white; tail well clothed at the root with rust-coloured hairs, spsringly clothed with brown hairs beyond.
C. prchensilia, Prebensile-Tailed Capromys. Tail nearly equal to the head and body in length; fur moderste as to texture; on the upper puta of a mixed gray and rufous tint; neck yellowish; forebead, cheeks, sud throat yellow-white; chest and abdomen white. Tsil rufous at the bnse. Toes clothed with whitish hairs It inhabits Cuba.

The Copromys prchensilis is known in Cuba by the nams of Hutia Carabali, and is said to coufine itself to parts of the forests wbich are remote from the babitations of man, snd to be more shy and less tameable than the Ilutia Congo, or Cipilorides. Like the last mentioned apecies it is un expert climber, and, according to M. Ramond do la Sagra, it coufines itnelf to the uppermont branches of trees. The tail is prehensile at the extremity; and the animal, assinted by this organ, in ensbled to cling with security to the small twigs of the trees, or to the parasitic plants with which they sre overgrown, and amonget which it ususlly conceals itself.

Plagiodontia.-Molars rootless; those of the upper jaw with a single deep fold of cnamel on the iuner sids, running obliquely forwards and iuwarls from near the posterior angle of the tooth, and a second deep fold entering from the outer side, near the anterior angle, and running in na opposite direction; molars of the lower jaw each with two deep folds on the outer side; toes $5-5$; ears small ; tail mhort, destitute of hair, and with a sculy skin. Jhut one species of this genus is known, P. (Edium. It inhabits the Island of St. Domingo, and is evidently very nearly sllied to the Capromys of the neighbouring island. Its whort and naked tail, combined with certain differences observable in the structure of the molar teeth, furnish the chief distinguishing characters.

Myopotamus; Mastonutus, Wesmael.-Molar teeth semi-rooted, of which the bindermost in each jaw are the largest ; cach upper molar with two external and two internal deep folds of enamel; the lower molars with three internal folds and one indentation entering from the outer aide; incisor teeth very large ; palate much contracted between the front molar teeth; hind fect webbed; tail of moderato length, sparingly clothed with short hair.

Tceth of Coypu.
M. Coypus, the Coypu, Mus Coypus, Molins ; N. Castcroides, Barrow ; Vyoputanus Coypus, Commerson, Geoff. ; Hydromys Coypus, Geoff.; Potumya Coypor, Dusmarest; Myopotanus Bonaricnas, Hengger; Mastonotus Pupelairi, Wesmacl; Guillinomys Chilensis, Lesson; Quoiuya Azara; Coypu llat, Shaw. Eara of moderate size; tail nearly equal to
body in length; fur long; the under fur very dense and soft; upper parts of the animal pencilled with dusky and brownish yellow, in about equal proportions; sides and under parts with the prevailing tint, brown-yellow; tip of mazzle and chin white; a yellow patch immediately beneath the ear-opening; feet dusky-browu.

Immatnre Specimens. - General hue rich brown, on the aides of the body inclining to yellow.
The Coypu is very nearly equal in aize to the Reaver, and bears a conaiderable superficisl resemblance to that animal; its tail however is cylindrical, has a scaly akin, and is acantily elothed with hairs, short and stiff, like that of the lit. It inhabits the rivers and streams of a great portion of South America, occurring on both sides of the Andes. On the eastern aide it extenda from Peru southward to the Rio Chupat, in $43^{\circ} 20^{\prime} \mathrm{s}$. lat. In the eastern portions of Brazil the Coypu was not met with by the Priace of Nieuwied. On the weat side of the Andes this animal rangea, aceording to Mr. Darwin, from the valleys of Central Chili ($33^{\circ} \mathrm{lat}$.) to $48^{\circ} \mathrm{S}$., or perhaps even somewhat farther, but doee not extend to Tierra del Fuego. In the Chonos Archipelago, Mr. Darwin atates, these animala, instead of inhabiting fresh-water, live exelnsively in the baya and channels which extend between the innumerable small islets of that group. They make their burrows within the foreat, at a ahort distance from the rueky beachea.
The inhabitants of Chiloe, who sometimes visit this archipelago for the purpose of fiahing, atate that the Coypus here do not livesolely on vegetable matter, as is the case with those inhabiting rivers, but that they sometimes eat shell-fish. The Coypu ia said to be a bold animal, and to fight fiercely with the dogs employed in ehasing it. Its flesh is white and well flavoured. At Buenos Ayres an extenaive trade is carried on in the skins of the Coypus, there called Nutrias, or Otters.

Cercomys.-The molar teeth of equal size, or very nearly so; the crowns of a rounded form ; those of the upper jaw with a deep fold of enamel entering from the inner aide and ocenpying the outer half of the tooth; molars of the lower jaw like those of the upper, but with the areas and enamel fold reversed in position; feet uormal ; tail long and scaly; ears moderately large; fur moderate as to texture.
C. cunicularius, tho Cercomys. Ears moderately large; tail about equal to the head and body in length; tarsus long; fur moderate as to texture; its general tint deep-brown; the sidea of the body of a paler hue, and the under parts impure white. It inhabits Brazil.

Petromys-The molar teeth very nearly equal in size and rooted; their crowns of a quadrate form, placed obliquely in the jaw, so that the inner front angle ia the most forward; each tooth with a siugle indenting fold of enamel on either side; the folds of opposite sidea meeting in the mesial line of the tooth; incisor teeth amall and compressed, rather deeper than wide, and flat in front. Borly elothed in fur of the ordinary kind; ears rather small, hairy; feet amall; toea 5-5; the thumb exceedingly small, but provided with a mmall nail. Tall about equal to the boly in length, well covered with moderately long hairn, which graduslly increase in length towards the apex of the organ, whers they are longest.
P. typicus, the Petromys. Fur moderately long and soft; prevailing colour rufou brown; head (with the exception of the muzzle, which is rufous) and fore parts of the body grayioh-hrown ; throst inclining to white; abrlomen palish rufoun-yellow; tail of the eame colour an the body st the root; the remaining portion black. It inhabits Sonth Africn
Dactylomys. - Four caen to the fore feet, and theae armed with short conver nails; the intermediate pair of toes long. The series of molar
teeth of opposite aides of the unper jaw converging aud nearly meeting in front; all the molars relatively large; those of the upper jaw each composed of two separate lobes, which are contracted and pointed on the inner aide of the tooth, and broad, and with a deep fold of enamel on the outer side; the foremost molar of the lower jaw with one external and two internal folds of enamel, and the remaining molara each with two lobes, of which one, forming the hieder part of the tooth, is narrow and transverse: the other is broad on the inner side of the tooth, where it has a deeply iadentiug enamel fold.
D. typus, the Typical Daetylomys; Echimys dactylinus, Geaffroy, Desmarest, and F. Cuvier; Loncheres dactyliaa, Fischer. Hairs of the fur long and somewhat harsh; upper parts of the body freckled with blick and yellow; under parts, as well as the head and feet, dirty yellow-white; the hairs ou the upper surface of the head very long, especially towarda the hinder part; tail longer than the head and body taken tegether. It is probably a native of Brazil.
Loncheres; Nelomys, Jourdan, I. Geoffory, and Pictet; Phyllomys, Lund.; Isothric, Wagner.-Short and broad feet; ears gomewhat small; molar teeth rather large, and longer than broad; those of the upper jaw each with two prinoipal traesverse folds of enamel, ofteu completely dividiag the tooth; aud those of the lower jaw with one exernal and two iuternal folds of enamel. Palate narrow, most so between the foremost molara.
L. cristata, White-Crested Loncheres; Echimys cristatus, Geoff., and Deam.; L. paleacea, Illiger and Lichteustein; Nelomys cristatus, and N. paleaceus, Geoff.; Myoxus chrysurus (Gilt-Tailed Dormouse), Shaw; Hystrix chrysurus, Schreber. Upper parts and sides of the body covered with broad apines; general colour brown; dark on the back, reddish on the sidea of the body, and pale on the abdomen; upper surface of the bead white; the hairs on this part stiff, and very long, especially towards the occiput; region of eye and occiput black; tail black, with the apical half (or more or less) white. It iuhabits Guyana and Para.
L. Blainvillit, the Black-Tailed Loneheres; Nelomys Blainvillii, Jourdan and Geoffroy. General hue of the animal bright ainnayellow; chin, throat, and in fact the whole of the under parts, pure white; fore feet also white; hiud feet yellow; tail nearly as long as the head and body together, and with black haira, excepting at the root, where the hairs are of the aame yellow hue as those of the body. It iohabits Brazil, in the vieinity of Eahia, and ia likewise found in a small islaud (island of Deos) off the coast of Bahia.
L. armata, Strong-Spised Loncheres; Mus hispidus, Liehtenstein; Nelomys armatus, Geoffroy. Upper parts of the body armed with strong aud broad spinea; tail about equal to the budy in length, with spinea on the upper surface at the ront, and seattered small whitish hairs beyond; general hue brown, but pencilled with yellow; under parts dirty pale yellow; muzale rufous. It inhabits Guyana.
L. obscura, Dusky Loneherea. Brown freckled with yellow; belly yellowish; tail equal to the head and body in length, and provided with very ahort scattered hairs. It inhabits Brazil.
L. picta; Nelomyy pictư, Pictet. Brownish-white; a large oblong brown patch on the upper aurface of the head; back and ahouldera, as well as the tail, brown; but the latter with the terminal portion, and likewise the baaal portion beneath, dirty white ; tail rather longer than the head and body taken together. It inhabita Bahia and Brazil.

Echimys (Echinomys), Wagner.-The feet narrow and moderately long; upper molar teeth with one internal indenting fold of enamel, and one or two folda on the outer side.
E. Cayennensis, Cayenne Eehimys ; E. setosus, Geoffroy ; E. Myosuros, Lichtenatein; E. leptosoma, Lichtenstein and Brants.; Mus cinnamomeus, Lichtenstein; Loncheres anomala, kühl ; L. Cayennensis, Fiseher; E. longicaudatus (?), Rengger; Echinomys leptosoma, Waguer. Tail nearly as long as the head and body together; ears large; tarai long, upper parts of the body chielly covered with spines; sides likewise with spines, but with a considerable admixture of hairs; upper parts of the snimal of a duaky brown colour; aides of the body, aud more especially of the head, suffused with rufous; under parts white. It inhabits Guyana and Brazil.
E. albinninosus, White-Spined Echimys. Tail acaly and with ahort hairs; head, upper parts and sides of body, with apines, those on the upper parts black at the extremity, and those on the flauks white; general hue on the upper parts brown, and of the flanka rufous; the whole under parts are pure white. It inhabits Bahia and Brazil.
E. hippidus, Strong-Spined Eehimys. About equal to the Black Rat (Mus Rattus) in aize; tail very nearly equal to the head and body in length, and well covered with longish hairs, exeepting at the base; ears small; broad and strong spines cover the whole upper parts and sides of the animal, commencing on the baek of the bead; upper parta rusty brown; feet, sides, and under parts of the body, ruatcoloured. It inhabits Bahia and Brazil.
E. brachyurus, Short-Tailed Echimya; E. spinosus, Deamareat and Rengger ; Mus rpinosus, Lichtenstein; Loncheres rufa, Licht. Spines narrow and hidden by the fur; ears moderate; tail about as long as the body; taraus long ; general colour rich brown (peneilled black and rufous) ; under parts dirty white; feet dark brown. It inhabita I'araguay and Bolivia.
E. inermis, the Spineleas Echimys. Feet moderately long; tail rather shorter than the head and body taken together, and clothed
with lous luara, which entimis binde the meales; fur moft, and without any misture of mof hirs; arberal hue bruwnyellow; under parto yellowinh-whita It iubabite Mahia and Rrazil.
A enfricola, the Caratiebimyn; Nelonya antricola, lund.; K. oproides, Linud. Jiody stout: the muszle thick: carn phort; tuil long, and well-clothed with haim: upper parta of the mimal grag. brow an, with an mimisture of runtry yellow: undar partin white; the luarm of the fur hamh and alpreamed. It inhabita the interior of lirazil.

A mlacodun-Four tome to the hind feot; tall short; incisor keeth very linowil, those of the upper jaw with one internal fold aml two eztertal folle of euamel; whull short and broad, with tho occipital exst much clevitisd, a sortical pinte ou the upper part of the antenior ront of the nygonatic arch, furming the outer bonmary of a groove fur the infraurbital cipening.
A. swonderinums, the Aulacodun, or Ground-Hat, Rody covered With fite and briaty hairs on all parts; general bue brown, pencilled with black and yellew, or nometmen with dirty yelluwish-white; asil duaky above, whitinh below, It inbabita Sierra-l, eove, the neighbourlwoul of the Ginminia, and South Africa.

Subefamily fanyproctina, - Animals with nemi-rooted molara arranged is parallel serien, the cranium elongated; nanal bone lestitute of a donecuding process on the lower ealge; a tolerably dintinct postorbilal proces forued chiefy by the frontal bone, but in part likewine by the mqumonal ; nespula with the emargination in the fore parts of the mpine, but morlerntely deep; clavicles wauting; fect formed for running, with the tocs $5-3$ or $5-5$, tertuinated by antrmolid nailn with ove but little archeal; tail rudimentary; body clothed with hair only; no almixture of apines. Jiabitat, Sonth America-ranging frow the northernmost parts mouthwarl to Paraguny and Boliria; occurs likewise in some of the West India Islands. The speciea of this subefamily will ba found under Acocti and Cselocress.

Sub-family Hyurricina - This sub-family embraces tho animals faniliarly knuwn an I'orcupinea

The genue Hystrax of Linnaus embraces those Rodents whose covering conointa, for the mont part, of a kind of offenaive and defenaive armour, in the shap of spines or quilla, inatead of bairs.

Cuvier, who jlacen the Porcupines between the genus M yopofamus atill the genus hefyus, observes that they are to be recognised at the firm glane by the atiff and pointed apinea with which they are armed, after the manner of the Hedgehogn anong the Carmassiers. Their dolarn are, ho proceeds to state, four in number, with a flattened crown, sariously modifed by layers of cuanel, u bich Jeave deep intervals: their tougue is rough with apiny scales; their clavicles are too - taill to be applied to tho stemum and omoplate, and are only anapeuded by lipamants Many of them live in lurrowa, and have much the habita of liabhite Their grunting voice, joined to their large and truncated muzale, han, bo faya in conclusion, caused them to be comfered to the Hog, whence their French oame Pure- Fpic, aud, he might have edded, their lingliah eppellation.

130 divilen the group into- l, the l'orcupines properly no callenl (Hyatris crmato, Limn.); 2, Atherure, Cuv. (Hyatvis fasciculata, Jind.);
 Corsdona (Synact beren, F. C'uv. ; Hyosir greherrilin, Linn.; and Hyatrix - madreso, Itiehe).

Dr. J. F. Giray maken the Hyapricidre the second family of the onder Glores, with the followink clanacter:-Cutting teeth two in each jaw, lower trunchted: grinderm 4-4 in each jaw, rooted, compound; tongue and buly coverd with mpines; claviclen none.

+ Trail alrort.

1. Hyptrix. 2. Acanthia.
t+ Tail clongated.
2. Firythiom, 1. Siygurun. Simhurnes, F. Cuv. (Synatheresf). This fanily im placetl ly Dr. J. F. Gray letween the Murider and laparider.

Mr. Watorlimier, id hia tabialar view of the diatribution of the Ficalenfra, laid beform the Zowlogical suciety of London, in November.

 America one (fichersom); to Afrien one (hlyatrox); to ladia and the
 Aturica alal thin Wi at lusian Inlands lie given five, namely, three of corrolatien and two uf symuthores.

In han "Nintural Hisfory of the Mammalia' (1848), Mr. Waterhoune pive the armagement which we lave followed in this article.
Hyaros, lambi- - Thing fans in dintinguished by the bead being more or lom cunros, aud ly the levelopment of the bones of the nose, wheb arm rosy much astuded; temporal and orbital fome very mball : parictal homen deprrmaed, occipital and angittal creata projecting very muets. tall nloort, mot prebemale; fect plantigrade, the anterior tetradecyle, the pomberior pantadactyle, armed with large maila
M FF. "uvier givan to the I'orcupines (Hyatrix aud the Acanthiona) the following

Dental fortaula :-Incimorn, $\frac{2}{2}$; molarn, $\frac{4-1}{4-4}=20$.

Tecth of Mystrix. F. Curier.
II. cristata, the Itálinn or African Porcupino, or Common Porcupine. When full grown about two feet in length; longest apines exceeding a foot. General colour grizzled dusky-black, resulting from su intermisture of various ahailea of white brown, and black. Upper part of the lead and neek furniahed with a crest of long lighter. coloured hairs capable of being raised or depressed at pleasure. Hair on the muzzle ami limba very short, almost black on tha limbs; that of tho neek and under parts browniah, and of considerable leugth. On the fore part and aidea of the neck a whitiah band; all tha remain. ing parts of the back and sides, jacluding the rump and upper parts of the hinder legs, armed with spines, which ara longest on the centre of the back. The apinea almost of the thickneas of a goore-quill in tha middle, aupported at the base by a alender pedicle, and terminating in very sharp pointa, striated longitudiualjy, and ringed alternately with black and white; the rings an iveh or more broad. Their uaul position in lying nearly lat unon the body with tha points directed backwards; wheu tho animal ia excited they are raised by means of tha anbcutaneous museles almost at right angles with the body; and then preaent a very fomidabla aprearance. They are not capabla of being detached by the animal. 'Ilie tail-quills are, as it were, cut off in the middle, uind consequently open at the ends, abd produce a loud ruatling noise when the animal agitates its tail. (Benueta)

This is the "Torptg of Aristotle and the Greeks; and, according to Agricula, the 'Akaseoxotpos of the latter; Mystrix of the Romans; Jntrice of the Italiann; Poreépie of the Freuch; Stachelschwein, Dornachwein, and lorvopick, of the Geruans; and Porcupine of the British.

The Iorcupine in a nocturnal animal, sleeping in jta burrow during the day, sud coming forth at nightfall to seek its food, consisting princijally of roots, fruita, and tender leaves. Thumberg ntates that ito usual food near the Capo, where it in called Yzer-Varken, is the root of that beautiful plant tha Calla Aithiopico, which grew even in the ditches about tho gardans; but be adda that it will frequently deigu to put up with calibagen atod other vegetables, and nometimes commite great depredationa in thore gardena, Tha atory of its power of alootiog its quills to a distance at ita enemy, in merely glanced at by Ariatotle ('Ilist Anim.,' ix. 39), but dwelt ujon by P'liny with hin unual love for the marvallous." ('Hint. Nat,' viii, 35.) Filian, Oppian, and Claudian bave repented this talo with exagerations. In suddenly raising bin apiny armour, a loose quill may be detached by the l'urcupine; but the power of ejaculation to a distance does not exint. There are usually several openings to tha Poicupine's burrow, and It hybernates, but only for a short time Mr. Bennett quotes Thunberf, not without olnervation on his credulity, for the use whlch he was told the Ceylonese l'orcupine makes of the tailequills. Thunberg was infortoed that it had " A very curious method of fetching water for its young, Danuely, tha quilin in the tail are said to be hollow, and to have a hole at the extrumity; and that the mimal can bend them in such a manuer an that they can be filled with water, which afterwards is discharged in the neat among tha young.'

Pennant says, " These animals produce a bezoar ; but according to Seba, only those which inhabit Java, Sumatra, and Malacca. These bezoars were very highly valued, and have been sold for five hundred crowns a piece. It has also been pretended that a stone was procured from the head of this animal infinitely more efficacious than other bezoars (Tavernier); but this may be placed among the many impositions of oriental empirics." In September, 1833, the Secretary of the Zoological Society called attention to a young Hystrix cristata which had been recently brought forth in the menagerie, being the first iustance of such an occurrence in this specics, and respecting which he aduled that observation of the young while sucking confirmed the correctness of Blumenbach's statement that the nipple is nearly axillary.

Common Poreupine (IIystrix cristata).
" Histrices," says Pliny ("IIist. Nst.,' viii. 35), "generat India ct Africa." Agricola, in his book 'De Animantibus Subterraneis,' remarks, "Hoc animal gignit India et Africa, unde ad nos nuper allatum cat." Pennant states that it inhabits India, the sand-hills on the south-west of the Caspian Sea, Southera Tartary, Persia, Palestine, aud all parts of Africa. He adds that it is found wild in Italy, and is brought into the markets of llome, where it is caten; but that it is not originally a native of Europe. (For this last he quotes Agricola.) The specimens from Italy are generally rather smaller, and have shorter quills.

Colonel Sykes has described a species uuder the name of Iystric leucurus (Sayal of the Mahrattas) as Hystrix caudd albe. He states that the animal appears to be distinct from the European species, which it closely resembles in form and covering. It is nearly a third larger. All the spiues and open tubes of the tail are entirely white, which is not the case in IIystrix cristata. The spincs of the creat also are so long as to reach the insertion of the tail. The ears are much less rounded, and the nails are shorter, infinitely deeper, and more compressed, and with deep channels below. The white gular band is more msrked; and, finally, the Asiatie speeies is totally destitute of hair-spines, where wanting, being replaced by strong bristles eveu down to the naile. ('Zool. Proc.,' 1830, 1831.) Mr. Hodgson notes this species among the Mammalia of Nepaul, as inhabiting the central and lower regions. ('Zool. Proc.,' I834.) Mr. Waterhouse gives the two following species of $/ 1 y$ ghtrir:-
H. Hodgroni, Crestless Niepsul Porcupine; II. alophus, Hodgson. Genemal hue brown-black; head brown; in the visible portions of the quills the black prevails over the white, but numerous very long and slender quills are almost entirely white, the spiny bristles which form the chief covering of the animal are rather long and slender, and have long hair-like points. It inhabits Nepaul.
II. Jaranica, Java Porcupine; Acanthion Javanicum, F. Cuvier snd Van der Hoven ; II. fasciculata, Muller; IL. Wrevispinosa, Wagner; Acanthion Javanicum, Gray. Body for the most pare coverel with stiff and nomewhat depressed spines, which are distinctly grooved on the outer surface, and have prickly points; under half of the back and the tail covered with quills, the quills rather short, those at the ced of the tail hollow, and Jeclinnculated; general tint brown (or sometimes black), freekled with dirty yellow; the stouter quills brownish-yellow, with a sub-terminal broad dusky ring; the longer and more slender quills with the exposed ends dirty-yellow. It inhabits Java, Sumatra, and Borneo.

Atherura, Cuv. (Acanthion! F. Cuv.).-Neither the head nor the muzzle convex; tail long but not prehensile; fcet like those of Hyztrix.
A. cri/ofata, IIystrix fasciculata, Shaw; Le Porcépic à Qucue en Pinceau, Buff.

Cuvier describen this specics as having the minincs of the hody hollowed into a furrow forwards, and laving the tail terminated by a fasciculus of horny flattened atrips (lanieres comées aplaties), constricterl at intervals (etranglees d'espace en enpace).

Mr. Bennett ("Cardens and Mroageric of the Zoological Socicty') remaiks, that although tolerably described and figured by Buffon, this
species had been lost to science until within two rears from the time he wrote (1830), when it was recovered almost simultaneously both in its original habitat and in a very distant quarter of the globe. Sir Stamford Raffles, he observes, had cursorily referred to it, and he presumes that the authority on which it was formed into a new genus by Cuvier was a skeleton and skin transmitted from India by M. Jiard in the ycar 1823. Nesrly at the same time, he tells us, a living individual was brought to England and presented to the Zoological Society by Lientenant Yidal, who accompanied the expedition for the formation of the projected colony at Fernando Po, where these animals were found in such plenty as to afford as staple article of food to the inlabitants. It has been conjectured, he adds, on very probable grounds, that they are not indigenous in the island, but had been brought thither from the East by the Portugucse, who were formerly settled there; but he obscrves that the space interposet between the two regions can scarcely be regarded as conclusive evidence of their having been introduced into the colony, while there are such striking instances of animals common to India and the west of Africa as are furnished by the lion, the leopard, \&c.
Mr. Bennett proceeds to state that in the teeth and in the organs of motion it corresponds, as Baron Cuvier has noticed, with the Common Porcupine, from which it differs chiefly in the form of the head; the line of its profile, instead of being elevated into a curve of large extent, passing in almost a straght direction from the occiput to the extremity of the nose. In these respects, Mr. Bennett remarks in continuation, it agrees with F . Cuvier's genus Acanthion, founded on this very character observed by the latter on two ekulis presersed in the Paris Musenm, the one from Jara, the other, in all probability, from Africa. These coincidences would liaye induced Mr. Bennctt to consider the two genera as identical, were it not that Baron Cuvier has omitted all mention of that established by his brother, although the matcrials for comparison were fully at his disposal. F. Cuvier morcover euunerates them both in his genera of Mammalia.

Mr. Lennett further obserses that Linncus founded bis IIystric macroura on Seba's figure; but Buffon having quoted neither Seba nor Linnseus, Dr. Shaw took it for granted that this was a different animal, and consequently gave it a new name- I. fasciculata. Mr. Bennett entertained however but little doubt, notwithstanding some trifling discrepancies in the figures, that Sir Stamford Raffles was right in his conjecture that they both represent one and the zame species.

The following is Mr. Bennett's accurate description:-"The differences between this speeies and the Common Porcupine are obvious at the first glance. Its geueral colour is nearly the same, but with less interuisture of brown. The upper parts of the body, the outer sides of the limbs, and the liead, neck, and face, are of this dusky hue; but the under parts, inside of the timbs, fore part of the neck, and throat, are of a grayish-white, with the exception of a darker band which crosses the breast in front of the fore legs. The spines commence upon the back of the head, where they are little more than an inch in length, and extend to the root of the tail, occupying nearly the whole of the back and sides. The longest are scarcely more than from four to five incbes in length, and extend to the root of the tail, occupying nearly the whole of the back and sides. They are mostly white at the base and black towards the extremity, but many of them are black throughout, and others blaek above and white bencath. Als of them are marked on the upper surface by a deep and broad groove rumoing the whole of their length, and terminate in very sharp peints. The skin in which they are implanted appears perfectly white, and where the spincs are most numerous is scarcely furnished with a single hair. A few slenderer spines rumning into long black bristles are occasioually intermixed with the others. The greater part of the tail is bar? both of hairs and spines, and covered ouly by flat blackish scales disposed in rings, the tip alone being surmounted by a tuft of long flat bristles having the form neither of hairs nor of quills, but bearing a close resemblance, as Buffon has aptly remarked, to narrow slips of parchment cut in an irregular manner. This tuft is of a whitish colom, and about two inches in length. The entire length of the body in our specimen is little more than a foot, and that of the tail from four to tive inches. The whiskers are very long; the eycs small and black; and the ears short, round, and naked.'

The anthor last quoted states that, like the rest of its tribe, this species sleeps during the day, and becomes in some dcgree active only on the approach of night. Its intelligence, he adds, is equally limited, and its manners equally fretful with those of the commen species, like which, "it raises its spines when irritaterl or disturbed, starnps with its feet upon the floor of its cage, and swells and loots big in its defcnsive armour."
It is found in the Celebes Islands (Scba) ; Asia (Liun.); Malay Peninsula (luffon); Ifles of the Indian Archipelago (I'ennant); Sumatra (Sir Stamford Raffles); Fernaudo Po (Vidal),

Frethizon (F . Cuvier).-Cranium flat ; muzzle short and not convex; tail moderate; quills short and half hidden in the hair.
E. dorsutum; Hystric dorsata, Linn. Lars short, hid in the fur; head, body, lega, and upper fart of the tail covered with soft, long, dark-hrown hair; on the upler pat of the head, back, borly, and tajl, mumbers of sharp strong quills, the longest on the back, the lenst towards the head and eides, the longest three inchen, but all hid in
tho hair ; iskermised are sorde atiff ntrageling haira, three inchen Juperer than the reab tijped will dirty-white; under mide of the tail White; four tee on the foro feet, five lebind, each armel with loug clawa hollowed on their under sille; the form of the body in exactly that of a bearer, but in not half tho mige. One which Mr. liaka brought frow Newfoumdlad sram about the sizo of an lase, but mete compacty made; the tail about aix inches loag. (l"extanh)

Tho following in from F . Cuvicr'a figure of the tecth of Eirchison, Symetshers, mili ishigurms.

Tecth of Erehtion, \&e. F. Cuvier.
These animala rary in intensity of colour. Penamat alludes to one cutirely white in tho prossession of Sir Ashton Lever.

This is the Curia Mudsonis, Klein; Mystrix Mudsonius, Brisson; M. piloum, Catesly ; M. doreato, Linnteus; L'Urson, Bufton; Canada Porcupine, Fornter, Pennant, and others; Cawquaw of the Cree Indiana: and Ooketool of the Eisquimaux.

The Cauadn Yorcupine is a aluggish animal. Hearne says that the Iodians going with packets from fort to fort, often see them in the trees, but not having occnsion for them at the time, leave them till their return, aud ahould their nbsence bo a week or ten days, they are E 1 re to find the porcupiocs within a mile of the place where they had bsfore mean them. Jr. Ilutchins states that, in walking, the tail is drawn alogg the anow, making a leep track, which is often the means of betraying the animal; but that its haunts aro most readily diacovered by the barked trees on which it has fed, which if barked the mane winter, are aure signa of their vicinity. They are, he says, unually found on the branches, and, on approaching them, they make a erying noine like a child. Then the treo is cut down, and the abimal killed by a blow on the nose. Sir John Riehardson informs un that thin specien in found on the banka of the Mnekenzie, as high As lat. 67°, and that, accordiug to American writere, it rangen as fitr month an lą 37°. He ndda, that it is said to be very rare in Virginia, but to to numerous in wome Iarts of Kentucky; and that it is reported to havomultiplied grentls, of late yeara, near Oncida Lake In the atato of New lork. (Cozzens) Sir John Kichardaon further waten that in the Fur Conntricn it ia nost numerous in sandy districts corered with the Pinus Bankziana, on the bark of which it delights to feed; that it alno eata the bark of the larcla and apruce firs, and the budn of variun kindn of willow; aul that, in the more southern duntrich, It in mid ta feed chicfly on the lark and leaven of the Pinus Conadensia ant Tilia glabra, nnd to be fond of mweet apples and young inaiec, which if mats in n mitting posture, liolding tho food to its mouth with the fore-rawn "It in," continues Sir John, "readily attacked by the Jurlian dogn, and mon killed, but not without injury to ite anailanta, for ita quilla, which it erects when attacked, are surgh, with minate terth directerl loackwardn, that have the effect of ressdering thin memingly weak and flesible weamon n very dangerous whe Their pointa, which are fretty alarp, hnve no mooner insinuated therametren ints the rkin of no mallant, than thoy gralually bury thermelvea, and sracel onwards until they cane denth ly wounding pone vital oram. These yigen, which are detacherl frum the porcupine by the alightent touch, and probalily by tho will of tho animal.

women carcfully pick them out, seldom fail to kill them. Wolves occasionally die from the same causc. The Canada Porcupine makea its retreat amongst the roots of an old tree, and in eaid to pass much of its time in sleeping. When disturbed, it makes a whiniog or mewing noise. It wairs in tho latter end of September, and brings forth two young ones in April or May. Its flesh, which tastes like flably fork, ia relinhed by tho Indians, but is soon nanaested by Luropeans. The benea are often deeply tinged with a greenish-yellow colour. Like other aumals which feed on conrso vegetable substances, it is much infested by intestinal worms. The quills or spinen are dyed of arious bright colours ly the untive women, and worked into shotpouches, belts, shoes, and other ormamental articles of dress." ("Fauna Boreali-Anericana.')

Symethorez (F. Cuvier).-Muzzle large and short; head convex in front; spines sluort ; tail very long, naked at the end, and prehensile, like that of an Opossum (Sarigue) or of a Sapajou; fect with only four tocs, armed with claws.
S. prehensilis; IIystrix prehensilis, Linn. Nose short and blunt; long white whikers; leneath tho nose a bed of small spines; top of the bead, back, sides, and baso of the tail, covered with apines; the longest on the lower part of the back and tail, 3 inches in length, very sharp, white, barred near their points with black; adhero closely to the skin, which is quito naked betweeu them; are shorter and weaker as they approach tho belly; on the breast, belly, and lower part of the lcgs are converted into dark-brown bristles; feet divided into four toes; claws very long; on the place of the thumb a great protuberance; tail 18 inches long, sleader, and taper towards the end; the lnat 10 inches almost naked, having only a few hairs ou it ; has, for that length, a strong prehensile quality. (Pennant.)

This appears to wo the Cuandu (major) of Marcgrave and Piso; Orico Cachero and Espinho of the Portuguese; Hoitzlacustzin of Hernandez (?); the Brazilian Porcupine of suthors.
The Brazilian Porcupine appears very much to resemble the Canada lorcupine in its lanbits, living in roods, eleeping by day, and feeding on fruits, \&c. by night. Marcgrave states that its voice is like that of a sow. The quills are stated to lave the same penctrating and destructive quality as those of the Canadian species. It is a sluggish nuinal, climbing trees very slowly, and bolding on with its prehensile tail, eapecially in its descent. It grows very fat, and the flesh is said to be white mad well-tasted. Our cut is taken from a living specimea in the Gardens of the Zoological Society, Regent's Park.

Erazilian Porcupine (Syncetheres prehensitia).
The genus sphigurus appears to be founded on the Coni of Azara.
Fonsil Mysricida.-Cuvier ('Osmenens Fossiles,' vol. v. jart 2, p. 518) atates that Mr. I'entland found in the Val d'Arno, uear San Giovanni, in the raue sandy beds which contain so many boncs of large quadrupela, a molar toeth exactly resembling that of a great jrorcupine, but which appeared to be fossil. Remaina of Porcupines have leen found by Messros Falconcr and Cantley in the Sewalik Hills.
11ร゙STl!
[ANTHINA. [JANTHINDE.]
ibacus. [Sctllablans.]
IbALIA. [Galifcoles.]
IBE'RIS, a genus of Plauts belonging to the natural order Crucifere. It consists of aunual, perenvial, and slightly shrubby species, chiefly inhabiting Europe, and particnlarly the northern shores of the Mediterranean Sea. It has the pouch ovate or ronndish notehed; valves bost-shaped, winged at the back ; seeds one in each cell ; petals unequal, two outer ones largest; filaments simple. Two are found in the north of Europe, one of whieh, I. amara, is Lritish. The species aro remarksble, among other things, for their flowers growing in close corymbs, and being much more developed on one side than the other, next the cireumference of the cerymb. This irregularity, connected with either a pure white or a rich purple of varying tints, gives the plants a strikingly beautiful appearance; and hence they are in many cases eultivated in gardens as objects of ornament, under the name of Candy.Tuft, in allusion doubtless to their having been first procured from Candia. 1.sempervivens and I. Gibraltaricas are particularly well-suited for beantifying rock-work.
IBERITE, a Mineral, allied to Gigantholite. [Gigastiolites.]
ibex. [Caprex.]
ibis. [Abov-Hannes; Taxtalide.]
ibla. [Cirripedla]
IBYCTER. [Falconide]
iceland-Moss.. [Cetrarla.]
iceland-spar. [Calicareous Sparb]
ICE-PLANTT. [Mesembryanthemumi]
ICE-SPAR. Transparent Crystals of Felspar, Anorthite, and Ryacolite are called by this namo.
ICHNEUMON. [Heriestes.]
ICHNEUMON, a genus of Insacts belonging to the order IIymenoptera, section Terebrantia, and fanily Pupirora, in the arrangement of Latreille. The genus, as defined by Linnons, ineluded such pupiverous Mymenoptera as are furnished with veined wings (the anterior pair presenting in their disc several complete or closed cells), filiform or setaeeous ribratile antenne eomposed of a great number of artieulations, and an ovipositor of various leugth and complicated structure. The Linnean genus now constitntes a group ineluding a great many well-marked genera and au immense assemblage of species. All these are remarkable for the habits of their larve, which are parasitic in the bodies of other insects. These bodies the perfect Iehneumons perforate by means of their ovipositors, and there lay their egge. This destructive habit gave rise to the name by which they are known; a comparison being drawn between them and the Egyptian Ichneumon (Ilerpestes Ichneumon) [IIerpestes], the quadruped celebrated as the destroyer of serpenta and crocodiles.

The history of these insects has attracted much attention among naturalists, and many elaborate memoirs have been written upon them. The purpose they serve in the economy of wature has been well described by Kirby and Spenee: "The great body of the ichnenmon tribe is principally exployed in keeping within their proper limits the infinite host of lepidopterons larvor, destroying, however, many inseets of other orders. Sueh is the activity and address of the Ichneumenidce that scarcely any concealment, except perhaps the waters, can secure their prey from them; and neither bulk, courage, nor foroeity avail to terrify them from effecting their purpoee. They attaek the ruthless spider in his toils; they discover the retreat of the little bee that for safety bores into timber, and though its enemy iehneumon cannot enter its cell, by means of her long ovipositor she reaches the helpless grub, which its parent vainly thought secured from every foe, and deposits in it an egg whieh produces a larva that destroys it. In vain does the destructive Cccidomya of the wheat conceal its larve within the glumes that so closely cover the grain; three species of these minute benefactors of our raee, sent in mercy by Heaven, know how to introduee their eggs into them, thus preventing the misehief they would otherwise oceasion, and saving mankind from the horrors of famine. In vain also the C'ynips, by its magie tonch, produces the curious excreseences on varions trees and plants, ealled galls, for the nntriment and defence of ita progeny; the parasite apecies attached to it discovers its seeret chamber, pierees its wall, however thick, and commits the clestroying egg to its offepring. Even the clover weevil is not safe within the legumen of that plant; nor the wireworm in tho earth from their ichneumonidian foes." (${ }^{\text {I }}$ Introdnction to Eutomology,' vol. i. p. 267.)

The development of these parasites within the bodies of other inseets wat for a long time a source of mueh apeculation among early philosophers, who fancied that oceasionally one animal had the power of becoming transformed into another. The eggs of the genns Ophion are of a aingular form, being somewhat bean-shaped and attached near one end to a long alender and eurved pedunele, by which they are attaehed to the body of the vietim. The larva itrelf, when batched, retains this position, and thus lives upen the juices of the
insect it attacks. The larve which reside like intestinal worms within the bodies of caterpillars, as the Mierogasters, which infest the eaterpillars of the white bntterly, carefully avoid tonehing the vital organs of the ereature they inhabit, living only upon the fatty matter until they attain their full size and are ready to assume the pupa state, when they pierce the skin of the eaterpillar (which soon dies), spin for themselves ceeoons beneath its body, and undergo their transformations. The larve of the majority of these insects spin a silken eacoon, in which they nudergo the pnpa state. In some eases this is rendered unneeessary by their peenliar habits, as for instanee, the Aphidii, whieh undergo their transformations within the indurated skin of the $A_{p h i s}$ of whieh they hare devoured the interior.
The perfeet inseets are found flying smongst trees and plants, and especially freqneating the heads of umbelliferous flowers, wheuee they derive a great portion of their nourishment. Some species whese females are furnished with a very long ovipositor are found on the trunks of trees, stumps of woad, \&e., evidently searching for wood-ating larce, in which they deposit their cggs; whereas those which have short ovipositors, seek external-feeding larve for the same purpose. When taken in the fingers they immediately diseugage their terebra from the sheath and attempt to sting, cansiug a elight irritation for the moment, but so trifing is it that it is evident no very powerfnl poison ean be introduced into the wound. They tly very rapidly. M. Wesmael has described a remarkable gynandromorphous specimen, having the head and thorax with the organs attached thereto of the female sex, while the abdomen and its sppendages are masenline. In the last Linucan edition of the 'Systema Natures' 77 speeies were described as belonging to the geuns IChneumon.

Hodern naturalists have elevated the geuns Ichrecumon into a family Ichneumonider, which is again divided into two sub-fsmilies Genuince and Adscitce. The former comprises the largest species of the family, and is not only distiaguished by having two reeurrent nerves, but also by laving the nerve which separates the first cubital or submarginal eell from the exteraal diseoidal eell, either entirely er nearly obliterated, whereby thess two eells become confuent. No genuine Ichneumon has yet been deseribed in which this strneture does not exist. Moreover the seeond cubital or snbmarginal cell (the area specularis of Fallen) is very greatly reduced in size, being sometimes petiolated, bat often entirely obsolete. It is in this minnte area, or in the space which it should typieally occupy, that the seeond recurrent nerve is inserted. M. Wesmael also adds tha existecee of an articulation between tho second and third dorsal segments of the abdomen.
Amougst the Ichneumonidue may be noticed the genera-Pimpla, in whieh the evipositor and its sheaths are often greatly elongated, being in some exotic opecies 3 or 4 inches lang; Ophion, having the abdomen greatly compressed and sabreshaped; Euccros and Joppa haviag the antemne dilated in the middle (of the former genus males ouly have been observed); and IIellwigia, having the antenne strongly clavate at the extremity in both sexes. The interesting genus Agriotypus is remarkable for its long eurved petiole to the abdomen, spotted wings, and spined seutellum; the radial eell is short, whence, as well as in the form of the abdomen, it appeared to Latreille to form the counceting link between tho Ichneumonidre and $P_{r o c t o t r u p i d c e . ~ I t s ~ p a l p i ~ a n d ~ t h e ~ c u b i t a l ~ e e l l ~ o f ~}^{\text {a }}$ the fore wings however evidently prove its affinity with the true Ichneumonidee; although Mr. Halliday, on aecount of the want of articnlation between the seeoud and third dorsal segments of the abdomen, has formed it into a distinct family; but this latter eharacter is proved by such genera as Chelonus, Sigalihus, \&e., to be but of secondary importance amonget the Ichncumenitde.

Ichneumonides Adsciti, or Bracenides, are characterised by having only one recurrent nerve, which unites with the nerve almost always present, cxtending between the first eubital and externo-diseoidal cells; the seeond submarginal eell being often as large as the preceding, and not receiving a recurrent nerve; and the non-existence of articnlation between the second and third dorsal segments of the abdomen.

In Agathis and some Microdi and Microctoni the nerve between the first cubital and externo-discoidal eell is obliterated, as in the genuine Ichncumon. M. Wesmael divides this snb-family as follows :-
*Endodontes. - Maving the teeth of the mandibles direeted inwardly; the mandibles meating together whea shat. Divisible into-

1. Polymorphi.-Clypeus entire; abdomen 6.7-jointed; posterior part of the vertex convex, second submarginal cell (when preeent) large.
2. Cryptogastri.-Clypeus entire, posterior part of the vertex convex; abdomen dorsally presenting not mere than two traneverse sections; second aubmarginal cell (wheu present) large.
3. Areolurii.-Clypeus entire; vertex more or less emarginate behind; abdomen 6-7-jointed; sceond submarginal cell (when present) very small.
4. Cy:Vustumi--Cly atu deeply notehed, leaving a circular aperture letween it and the jawn ablomen gencrally oi- jointed; second aulataginal coil (when present) large.

- Erodomer.-llaving the tweth of the mandibles directed outwanls the wandibles when elogen not touching each other. Mr. Halliday adua an a dintinct mob fomily the Aphidii mul allied genera, which have the articulation botween the pecond nimd third alntuminal Negmenta dexible. Mr. Westwond however reganis them as a group equiralent with Wesmael's other soctiona, and which it might perhaps In more natural to arrange either before or after the Pulymorphi, with which they are uaited by Wermael.

The habits of the I. Alsciti, or Braconides, present no bronl distinction from the rest of the family. Many of the genera present preculiarities of structure, as for instance the coalition of the dorsal egments of the abolomen in C\%elonus, Sigalphus, Rhifigaster, and the gapng masulibles of Alyoia; the rostrated front of Agrthis, and the existence of a stigma on the front marein of the posterior wings of the maden in Heteropplus and Hecabolus.
(Wesiwool, InPraluction to the Morlern Classification of Insecte.)
IClINOXILIL's (from Txvos, a footstep, restige, and кdpros, a fruit, in n ference to the slender follicles), n genus of Plants belonging to the natural order 1 pocynacea. It has a alver-shaped corolla, S-cleft calyx, and inclosed ntumens; sagitate anthers, free from the utigma l'he opecien aro climbing shrubs with opposite leaves; the tlowers in limached termianl panicles, white, nad inodorous.

1. frutrserns has a twining stem, oblong-lanceolate leaves tapering to both ends, axillary peduncles very long amd racemose. It is a native of Ceglon and Nepand. The lowers are small and purple; the leaves deep green above and palle beneath. According to Dr. Rogle, it is monuctumen unerl in Indin as a substitute for sarsaparilla, und it is almo mentioned by Afzelius in his 'liemedin Guinensin; as a medicinsl 1 lant.
2. frograns has oblong lanceolate leaves tapering to both enda, and axillary tuichotomous spreading peduncles. It is a untive of Nepaul, and has lange hapdsome thower.
J. Affelii is a glabrulus shrub with twining stems, oval ncute leaves at the buse, offong or lanceolate as they appronch the top. The corollar are "White nad sweet-*cented. It is a native of Sierra Leons, and about the river lancla, in woods and anong bushes.
3. Lourerrii has a frutescent them, ovate oblong leaves, lateral s-dowered peduncles. It is a native of Zanzibar. All the speciea of Ichnocarpins grow well in a mixture of loam, peat, and sind, and cuttiugs strike realily in mand under a hand-glass.
(I)on, Dichlamydeous Plants: Lindley, Flora Medica.)

ICHTHYOLOUV. the branch of seience which compreheuds a knowledge of the atructure, mature, nud forms of Fishes is thus called. The general structure nud cliwsilication of Fishes is treated of in this work under the leead of Fisns, and all the more important nod liritish genera will to foust under their generic manes, or the families to which they beloug, as Aywodires; Comyphena; Clurembe; sucialidi:

JCHTHYOIHTHALMMTE. [Abophrlate.]
 gencric name given by Mr. Kunig to the extinct fowsil animal noticed ly the late Sir Fiorard Home, wider the apmellation of Proteosaurus,

We are indabted to Sir Henry De la lueche and the Rev. W. D. Conybeare principally for pointiag out and illustrating the structure of this extrondinary creature; and that at a time when the materials were far mare manty than they are at the present day. Dr. Jiger, Mr. Jlawkin, IIr. Bucklaul, Sir lhilip de Malpas Grey Egerton, and I'rofener 9 wen, have all coutributed to throw light on the organisation of a bein; that han long ceayed to exint; sud the nuatomy oud auimal economy of this tymut of tho neas of former ages is now nearly as wellkorsu at that of the porpoise which revela in the ocean that washea ble mhoret of our existing continents and ishndm. We ought Alus to mald that we are decply julebied for an early knowledge of the remadin of than crazture to the indefatigable excrtions of a ladyMan sumag, of Leyno liegin, who diligeatly collected the first remaine of the bones of the IChihyosturius from the cliffs of Lyme Jengia
"If," write Dr. Jhockawl, in his "Bridgewater Treatise," "we examitue theme crratures with a view the their cajmbilities of locomotion, nul the mana of offence and defence which their extmordinary utracture aflorded to them, we nhall find combinations of form and medhatical contrivancen whilh are now diapensed through various clamen sud urlem of exinting nuimala, but are no longer united in the
 in combins if with the teeth of a crocmile, the head of a lizand with the verteltre of A finh, null the nternum of at Grailhorhynchus with the pelllen of a whale, flin gencral ontline of an /chithyosaurus must baro moat nearly resmbled the moblem porpoine and grampus. It hasl fuar liroal fect or goldhen, and terminated behind in a long and powerful hail. some of the largent of these reptilea munt have cacomel thirty feet in leayh." We whall now enhleavour to give a sketeh of the ergatiation of these limalioanurians.

The patcology of the heal agrees in many prointa with that of the croconlile, but the orlist of the ege in much larger, and the nostril is
not, as in that genus, placed near the point of the enout, but near the anterior angle of the orbit, is in some other lizards. The toeth, which in some cases amount to a hundred and eighty, are not incased in deep and distinct sockets as in the crocodiles, though the rudimenta of an alveolar separation may be traced in the small ridgee between the teeth running aloug the furrow of the maxillary bone in which they are set. The succession of teeth is managed much after the asme manner at that which obtains in the crocodilea [Cnoconicid.s], the young tooth budding up at the base of the old tooth, where, as it grows, its lsteral pressure sets the absorbents at work; the base of the old tooth is thus partially removed, and, as the now tooth adrances, is finally diaplaced to make room for its moro effioient successor. The elongated jaws in which these instruments of dentruotion nre arranged are made up, as in many of the crocodilen and the other lizards, of many thin bony plates, so as to produce a union of lightness, elasticity, and strength. "It is obvious," says Dr. Buckland, in the interesting work above quoted, "that an under jaw so slender an! 180 much elongated ns that of a Crocodile or Ichlhyosaurus, and employed in eciaing and retaining the large and powerful animala which formed their prey, would lave been comparatively weak and liable to fracture if compesed of a single bone. Each side of the lower jaw was therefore made up of six separate pieces, set together in a manner which will be best understood by a reference to the figures. This contrivance in the lower jsw to combine the greatest elasticity and strength with the smallest weight of materials, is similar to that ndopted in binding together several parallel plates of elastic wood or steel to make a crossbow; snd also in setting together thin plates of steel in the springs of carriages. As in the carriage-spring or com-pound-bow, so also in the compound-jaw of the Ichthyosaurus, the plates are most numerous and strong at the parts where the greatest streagth is required to be exerted; and are thinner and fewer towards the extremities, where the service to be performed is less severe. Those who lunve witnessed the shock given to the head of a crocodile by the act of suapping together its thin long jaws, must have seen how liable to fracture the lower jaw would be were it composed of one bone ouly on each side: n similar inconvenience would have attonded the same simplicity of structure in tho jaw of the Ichthyosaurus. In each case therefore the splicing and bracing together of aix thin flat bones of unequal length aud of varying thickness, on both sides of the lower jaw, affords a compensation for the weakness and risk of fracture that would otherwise have attended the elongation of the snout. Mr. Conybeare points out a further beautiful contrivance in the lower jaw of the Ichithyosaurus, analogous to the cross-bracinge lately introduced in naval architecture."

Hitherto the structure of the skeleton of the Ichthyosaurus is, as wo have seen, sauroid; but we now come to a part of its bony frame, and a very principal part, which is formed on the ichthyoid or fishy type. The vertebral column, consisting of more than one hundred vertcbre, each of which is hollow and fashioned after the manner of those of fiahes, to facilitate the progress of the animal through the watery medium in which it existed, is constructed for a swimming, not n walking animal ; and the sauroid type is here departed from in favour of a conformation demnnded by the habits of the animal. A peculiarity in this part of the structure is noticed by Sir E. Home, the anaular part of the vertebra being neither consolidsted with its body, as in qualrupeds, nor connected by a suture, as in crocodiles; but romnining nlways distinct, and articulating by a peculiar joint, resembling a compressed oval ball-and-socket joiut. Mr. Conybeare obscrves, in addition, that this mode of articulation co-operates with the cup-shaped form of the intervertebral joints in giving flexibility to the vertebral column, and assisting its vibratory motions; for had these parts been conaolidated, as in quadrupeds, their articulatiog processes must linve locked the whole colucan together, so as to rcuder auch a motion of its parts impossible; but by means of this joint every part yields to that motion. (Buckland, 'Bridgewator Truatise.')
Sir lhilip Egerton, in his paper 'On Certain Peculiarities in the Cervical Vertebric of the Ichthyosaurna, hitherto unnoticed' ('Geol. Trans.; 1836), has demoustrated that the first and second cervical vertebre (in some species at least) are anchylosed; and he further notices a very remarkable fenture which at once distinguishes these vertcbra from the other boues of the spinal columa. He shows that on the under surface of each bone there exists an unusual enlargement in the form of a solid wedge-ahnped process, placed tranaversely to the smaller diamater of the vertebres. By this mrangement four triangular plance are produced. "The first nad largest ia based upon the lower anterior hargin of the atlantal socket, having its apex directed downwards and backwarda until it meets the apex of a eimilarly-shaped though smaller plane preceeding downwarda and forwarde from the poaterior inargin of the atlas. The third, of like shnye nud aize with the secoud, extends from the anterior margin of the axis, and joins the apex of the fourth, which inclines forwarda from the posterior portion of the ssme bone. This fourth plape is considerably sinnller than the others, and corresponds in siza with a fifth, placed on the anterior border of the third cervical vertebra. When therefore the three anterior vertebre are in thair natural position the arrangement of the five planes is as follewa:-the first aud largest occupies the lower frovt of the atias; the eecond and
third, by the union of their bases, produce a triangular socket on the uuder surface of the atlas and axis; and a seeond smaller socket is formed between the axis and the third vertebra by a similar disposition of the fourth and fifth planes." Sir Philip adds that the second bone of the series is frequently found with the atlas snd axis, and is not uncommonly fixed in its position by anehylosis. The third bone he states to be of rare occurrence, in consequence of its diminutive size, and ho thinks that in some species it is probably altogether wanting. He designates these bones as Subvertebrsl Wedge-Poues. The reader will find in the same interesting memoir many valuable observations on the structure and articulation of the cervical vertebres, the com bined result of which, snd of the reduction of the intervertebral cavities, niust, as Sir Philip remarks, bave been a considerable increase of power in this part of the spinal column ; and he further ststes that, proceeding from the lumbser vertelres towards the head, the column attains its minimum diameter about the fifth cervical vertebra, from which point to the occiput it increases in size very rapidly.

The ribs appear to be constructed more upon the sauroid type, for they are continuous along the vertebral column from the head to

Lower jaw of Ichthyosaurus. Dr. Backland.

the pelvis; they are slender snd mostly bifurcated at the end, and many of them are united in front across the chest. Intermediate bones, analogous to the sternal and intermediate costal cartilages in the crocodiles and the sternocostal arcs in Plesiosaxius, united the ribs of the right side to those of the left. Dr. Buckland is of opinion that this structure was probably mubservient to the purpose of introducing into their bodies an unusual quautity of air, the animal being by those means enabled to remain long beneath the water without rising to the surfice for the purpose of breathing.

In the sternum we find a combination of bones admirably adapted for resistance. Of this part of the bony framework Mr. Conybeare saya, "The form of the sternal sreh and the broad surfaces of the clsvicles is such as to impart great strength to the chest, coabling the animal to hreast the most disturbed waters, and affording an extensive surface for the attachment of powerful muscles to assist in moviog the anterior extremities;" and Dr. Buckland remarks that the bones composing this arch are combined nesrly in the same manner as in the Ornithorkychus of Australia, which seeks its food at tho bottom of lakes and rivern, and is obliged, like the Ichthyosaurus, to be continually rining to the surface to breathe air. To this sternal arch the anterior paddles are articulated; they are nearly one-half larger than the posterior paddles, snd in this part of the structure the cetaccous type sppears to have been followed. Tho short snd stout humerus is

Sternal areh and anterior paddles of Tehthyosnurus. Dr. Buekland.
followed by the bones of the fore arm ; and these are succeeded by numerous regularlydisposed polygonal boues, exceeding, in some species, the number of one hundred, which form the paddle or fint. In form these boves differ both from the phalanges of lizards and whales,

The bones of the pelvis elosely resemble those of the erocodile, and, as Sir H. De la Beche aud Mr. Conybeare observe, the femoral bone and posterior paddle are altogether analogous to the humerus and anterior paddle ; but, coutrary to the development of tho posterior extremities of quadrupeds in general, they ane very consilerably smaller, nesrly in the proportion of one to two.

Dr. Buckland, with refereuce to the posterior extremities, or paddles, observes, that these are wanting in the Cetaceans, and that they possibly compensate for the absence of the flat horizontal tail with whieh those animals are furuished. In a paper, 'On the Dislocation of the Tail, at a certsin Point, in the Skeletons of many Ichthyosauri,' read by Professor Owen, before the Geological Society of London, tho author commenced his observations by referring to the skeleton of the existing Cetacea, and pointing out how slight is the indicztion afforded by the caudal vertebre of the large terminal fin, which forms in that class so important an organ of locomotion; and the improbability that its presence would have been suspected had the Cetacea been known only by their fossil remains, in cousequence of the fin having consisted entirely of dccomposable and unossified material.
He stated that the depressed flattened shape of the terminsl vertebre, which gives the only indication of the horizontal fin (and which character is not present in all the (etacea), is not recognisnblo in the skeletons of the Iehthyosauri and Plesiosauri; but he proeceds. to describe s condition of the tail in the skeletons of the Ichlthyosauri which, he conceives, affords an indication of a structure iu tho extinct animal analogous to the tegumeutary fin of the Cetacca, and whieh has not been suspeeted by the suthors of the conjecturallyrestored figures of the Ichthyosauri already publisbed. The condition alluded to is described as an abrupt bend of the tail, abori one-third of its whole length distant from the end, snd at the 30th eaudal vertebra in the Ichthyosaurus communis; the broken portion continuing beyond the dislocation as straight as in the part which precedes it. As there is no appearance of a modifieation of structure in the dislocated vertebre, iudicative of the tail having poseessed more mobility st that point than at any other, and as the dislocation has takeu place at the same point in seven specimens examined by the author, he conceives that it must be due to some cause operating in a peculiar manncr on the dead carcass of the Jchthyosaurus, in consequence of some peculiarity of external form, while it floated ou the surface of the sea.

A broad tegumentary fin composed of dense but decomposable material, he observed, might have been attached to the terminal portion of the tail; and such a fin either by its weight, or by presenting au extended aurface to the beating of the waves, or by attracting predatory asimals of strength sufficieut to tug at, without tearing it off, would oecasion, when decomposition of the connecting ligaments had sufficiently far advanced, a dislocation of the vertebre immediately proximste to its point of sttachwent. The two portions
of the tail, with the rest of the keleton, would continue to be hel! tepetber by tho dena caturior integument, antil the rupture of the pricter of tho abdonen at momo yielding point had set froo tho faem gederatal by putrefaction; aud the ekeloton, having under. fone certain fartind dislocations, from the lecomposition of the more Fielling ligunent, woulh subicle to the bottom, nul trecomo imberdied in tho medimentary deposits, exbibiting the fracture of tho Lall alluded tu.

Treatise (pl. 14), which shows a largo mass of fish scales, chiofly referrible to the Pholidophorus limbatus, intermingled with copmolites throughout the entire region of the ribs, and in the mono matured coprolites themselves. Dr. Buckland, to whom wo are indehted for the history of these curious bodies, says, speaking of tho intestinal caurl of the Iehlyyosauri :-" Beaides the spiral structure and consoquent shortness of the emall intestine, we have additional evidence to show even the form of the minuto vesacls and folde of the mucous

With respect to the relative position of this conjectured caudal tegunentary fin of the Irhthyomumun, Professor Uwen could not perocivo sny ioflication of its horizontality in the forms of the vertebse which he surposes to have supported it ; and he regards the superadilition of posterior paldles in these air-breathing marine animals an a compenation for the nbsence of that form of fin which is mo emential in the Cetacen, for the purpose of lringing the head to the murface of the mea to inhale tho air. On the other hand a vertical candal fin eerma eapecislly required by the short-nceked and ntifinecked /ehthyouari, in order to produce with sufficient rapidity the lateral morements of the head, which were needed by those predatory inlabitanta of the ancient deep; while in the Plesiosaurus auch a fio would be unnecersary, in consequence of the length and mobility of the neck; and Profestor Uwen concluded by stating, that in those skeletons of Plesiosauri in which the tail in perfect it is strnight, and presents no jodication of the partial fracture or bend which is so common in the tails of /chthyoszuri.

Figures of the thils of five specimens of Icichyosauri, belonging to the species $/$. communis, I. fenuirostris, and I. intermedius, accompnined the paper.
l'rueper Owen lian since ascertained that the terminal candal vertetrac of the IChthyosatrus are compreased or flattened from side to side in a remarkable elegree; a cirenmatance, ho observes, confirming the accuracy of the conjecture of the verticality of the candal fin, and the beat proof perhaph of its acturl presence in the living animal.

That tho /cheryourati enjoyed the nense of anclling in a considerable degrec can liandly be donbted from tho atrocture and position of the noatriln, nor in there any renson for supponing that they were not gifted with the senme of tasto; but their power of vision must have been great, and indeed Dr. Buckland justly speaks of the enormonm mannitade of the eye ns very much exceeding that of any living animal, mal m luing the most estrondiosry feature of the head. He alludea ro a whall of Ichehyonturme platyotion in the collection of Mr. Sohmon at lirintol, and remarks that in this specimen the longer dinmeter of the orbital cavity measures fourteen inches. The eye lias, an Mr. Conybeare nemarkn itn selerotica composed of a bony or rather mealy mbatance, anbelivilled into thirteed plates, as will be seen in the cut (cola 201, $20^{* 2}$), where two of these platenare represented scparately. Mr. Conybrare, in tho parazge to which we hase referred, gocs on to atato that he had then before hito tho cyo of a middle-sized lizand from liertiany, which hea atructure cxactly nimilar, excepting that the phatea wero more numeronm: thin, be ataten, was jointed ont to him hy the late Mr. Miller; nud lim ndld that the Chamelcon nud Iguana havo wimilar omeoun latainec, man the Tortoise, but that in thin latter naimal they furs, na in binln, the naterion dis. This confurmation was highly impertant to tho ndjuntinent of an organ whose functions were demamild loths above and below tho nurface of the water. [Boms] Tha menm of hearing mplparm to have heen sufficiontly cleveluped, and that of tonch wan probably nbout upon a par with the wonations of the moxlern cetacens.
An mintroun oxpaimion of tho jswa, which were ao constructed na in lowar the whock of the roont riolent enllision, nul were furnished with a conmtart mucceanion of teeth. formeed an orgnn of reizure well fittod 2 the voracity of an noimal that not ooly preped upon fishea and cobler tonarino mintala, bot, like the ravcomin pike of our freshWatorx, foll upmo ith own congedera and even peecies. 'fhe prey was
 With the cavity of the lowly, aud the contenta were thence male to panthroumh an intatinal cimal which appeara to bave reacmbled, ne Dr. Juckiand otomerten, the gimal intertinca of arsmo of the nwifteat and mont voranionum of our surclatith fialien.
 Farious :pecimena, like that in the Oxforl Muanom, from the lias at I, jta Hegin, and figured by Ir. Duckland in him 'Bridgewnter
membrane by which it was lined. This evidence consists in a eorica of vascular impressions and corrugations on the surface of the coprolite, which it could only have received duriug its passage through the windings of this flat tube. If we attempt to discover a final causo for these curions provisions in the bowels of the extinct reptile inhabitants of the seas of a former world, we shall find it to bu the same that explains the existenco of a similar structure in the modern vorncious tribes of sharks and dog-fishes. As the pecnliar voracity of all these amimals required the stomnch to be both large and long, there would remain but little space for the smaller viscera; these are therefore reduced, as we hare scen, nearly to the state of a flattened tnbe, coiled like a corkserew around itself; their balk is thus materially diminished, whilst the amount of nbeorbing surface vemsins almost the same as if they had been circular. Had a large expnnsion of intestines been superalded to the enormous stomach and lungs of the Ichthyosaurus, the consequent enlargement of the body would have diminished the power of progressive motion, to the great detriment of an mimal which depended on its speed for the capture of its prey. The abore facta, which we have elicited from the coprolitio remains of the Ichthyoscurri, sfford n new nad curious contribution to our koowledge both of the austomy and labits of the extiuct inhabitants of our planet. We have found evidence which enables us to point out the existence of beneficial arrangements and compenations even in those perishable yet important parts which formed their organs of digeation. We have ascertained the nature of their food and the form and structure of their intestiual canal; and have traced the digestive organs through three distinct stages of descent, from a largo and long stomach, through the spiral coils of a compressed ileum, to their termination in a cloaca, from which the coprolites descended into the mud of the nascent lias. In this lias they have been interred during countless nges, until snmmoned from its deep recesses by the labours of the geologist to give evidence of ovents that passed at tho bottom of the ancicut seas in nges long preceding the existence of man." ('Bridgewater Treatise.')

Coprollice of Iehthyonmurus. Dr. Ducklabd.
a, Magnifed scale of Jholidophorws limbatus inbedded thereis (internat view); b, external view of the mane.
The external integument appeara to have been a simple naked akin unprotected by any defunce; it probably resembled in some degreo the dermal covering of the ectnceana.

The strueture of these reptiles have been sometimes referred to as
supporting the doctrine of the transmutation of species, and these animals have been regarded as transitionary forms from the Fish to the Reptile. Professor Owen thus refers to this opinion, in his 'Report on British Fossil Reptiles,' made to the British Association in 1839 and 1840 :-
"The nearest approximation to the organisation of fishes is made by the Ichihyosaurus, an extinct genus which appears to have been introduced into the ancient seas subsequent to the deposition of the strata inclosing the remsins of the thecodont lizards. The ichthyic characters of this genus of marine Saurians are not of a very important kind, being limited, like modifications of the mammalian type in whales, to a relationship with locomotion in water, while all the modifications of the skeleton which are connected with the respiratory, digestire, or generative functions, are conformable with the highest or Sanrian type of reptiles-such as the crauial anatomy (the large size of the intermaxillary bones excepted), the dental structure, which corresponds with that of the posterior teeth in alligators; the articulation of the neurapophyses to the bodies of the fertebra; the complicated pectoral arch; the sternum, and complete abdominal cincture of ribs, \&c. The circle of numerous imbricated sclerotic bones reaches its maximum of development in the Ichthyosaurus; but this is an exaggeration of a structure feebly shadowed forth io some existing Saurians, and more strongly shown in birds, rather than a repetition of the simple bony sclerotic cup in fishes. By no known forms of fossil snimals can we diminish the wide interval which divides the most sauroid of fishes from an Ichthyosaurus. This most cxtraordinary reptile is a singular compound in which ichthyic, cetaceau, and ornithic characters are engrafted upon an essentially Saurian type of structure. The Ichthyosaurus is thercfore just such a form of animsl as might be expected, were specific forms unstable, to demoustrate a mutation of characters or some tendency to wards a progressive development into a higher and more conaistent type of organisation; nor is the field for testiog the transmutation theory less ample than the subject is favourable. Wo have the opportunity of tracing the Ichthyosauri, generation after generation, through the whole of the immense series of strata which intervene betwecu the new red-sandstone and the tertiary deposits. Not only however is the generic type strictly adhered to, but the very species which mado its first abrupt appearance in the lowest of the oolitic serics maintains its characters unchanged and recognisable in the highest of the secondary strata. In the chalk formatious, for example, the genus Ichthyosaurus quits the stage of existence as suddenly as it entered it in the lias, and with every appreciable osteological character unchanged.
"In the different spccies of the Ichehyosaurus founded upon minor modifications of the skeleton, several appear contemporaneously in the strata where the geaus is first iutroduced; and those which remain the longest manifest as little change of specific as of geueric characters. There is no evidence whatever that one species has succeeded or been tho result of the transmutation of a former species. The tenuirostral fichyosaurus cxisted at the same time, and under the same external indluences, as the stronger and shorter-jawed Ichthyosaurus communis; jost as the tenuirostral Delphinus Gangeticus co-cxists st present with the short-jawed porpoise.
"If the relative periods of existence of the different Enaliosaurian reptiles wero not well ascertaibed, and room were allowed for conjecture as to their succcssive appearance on, this plauet, it would be ns easy as seductive to speculate on the mctamorphoses by which their organic framework, influenced by varying conditious duriog a lapse of ages, miglst have been gradually modified, so as to liave successively developed itself from an Ichthyosaur to a Plesiosaur, and thence to a Crocodile.
"We may readily conceive, for example, the fish-like charncters of the vertebral column of the Ichilyosaurus to lave been obliterated by a filling $u p$ of the intervertebral cavities through ossification of the intermediate elastic tissue, and the Plesiosaurian type of vertebra to be thus acquired. The normal digits of the fin might be supposed to become strengthened and elongated by more frequent reptation on dry land, and thus to cause an atrophy of the supermumerary fingers; phalanges of a more saurian figure might have been produced by the confluence of a certain number of digital ossicles; the head might be shortened by a stunted growth of the intermaxillary bone, and thus be reduced to Plesiosaurian proportions. The tectli might become more firmly fixed by the shooting of bony walls across their interspaces, ss in the young Crocodiles.
"If we now clongate the bodies of the vertebre, reduce some twenty pairs of snterior ribs to hachet-bones, place the fore paddles at s correspouding distance from the liead, and the hiod paddles proportionately ncarer the taid, little more will be required to complete the transmutation of the Ichthyosaur into the Plesiosaur. If next, in adaptation to a gradual ehange of surrounding circumstances, the jaws of the Plesiosaur become lengthened to the proportions of those of the Tenuirostral Ichthyosaur, but at the expense of the maxillary instead of the intermaxillary bones, preserving the socketed implautition of the teeth; if, to balance the elongation of the jaws the neck at the same time shrank to nearly its former Ichthyosaurian proportion, with some slight modification of the P'lesiosaurian type of the Vertebrw; if a further developmeut and a more complete separation
of tho digita of the fore and lind members were to tako place, so that,
they might serve for creeping as well as swimming; if the exposure of the surface to two different media, and of the entire animal to perils of land as well as of sea, were to be followed by the ossification of certain parts of the skiu, and the acquisition by this change of a dermal armour-such we might conceive to be the leading steps in the transmutation of the l'lesiosaur into the Teleosaur.
"And if the three forms of extiuct Saurians, whose changes of spccific and geueric characters have thus been speculated on, had actually succeeded each other iu strata successively superimposed in the order in which they have here been hypothetically derived from one another, some colour of probability might attach itself to this hypothesis, and there would be ground for searching more closely into the anatomical and physiological possibilities of such transmutations. Ichthyosaurus, Plesiosaurus, and Telcosaurus are however genera which appear coutemporaueously on the stage of vital existence: one neither preceded nor came after the other. How the transmutation theory is to be reconciled to these facts is not obvious; nor to these other, viz., that the Teleosaur ceases with oolite, while the Ichthyosaur and Plcsiosaur continue to coexist to the deposition of the chalk, and disappeat together alike unchanged ; the Ichthyosaur manifesting as little tendency to develop itself into a Plesiosaur, as this to degrade itself iuto the more fish-like modification of the Enaliosauriau type."

One of the finest collections of the remains of these auinals existing is that in the British Museum. Altogether "there are about thirty very fine specimens, includiog the most iuteresting of the separate cranis, paddles, rertebral columns, \&c., besides a great number of isolated bones, parts of skulls and jaws, coprolites, and other remaius of Ichthyosauri." (Mantell.)

The following are the species of this genus which have been at present made out:-
I. tenuirostris (Cooybeare). It is characterised by the great length and slenderuess of the jaws, which resemble in this respect the maxillary organs of the Gavial, or Teleosaurus. The length of the mouth is produced by the clongation of the intermaxillary boues aud of the deutary bones of the lower jaw. The malar bone is remankably long and slender. The cranium is flat, and the orbits are very large. The tceth slender, 60 to 90 on each side the upper jaw, and 60 on each ramus of the lower jaw. The auterior extremities, or paddles, are much larger than the posterior pair, and very stroug and massive. The shafts of the humerus and femur are relatively long, and their distal ends broad. This species attains a length of 13 or 14 feet; the largest teeth are an inch and a lalf iu leugth. It wss named by Mr. Hawkins I. chirostrongulostinus (Round-Boned-Paddle Fish-Lizard). It is figured iu his remarkable work on these creatures.
I. intcrmedius (Conybeare). The teeth are more acutely conical thsu in I. communis, and the strix less prominent, but are less sleuder than in the preceding species. The maxillary portion of the skull is relatively shorter, and converges more regularly to the frout than in I. communis, and the teeth are longer, more slender, and numerous. This species has becu the most commonly found, aud ranges throughout the Lias formation of Englaud. There are two aplecimens in the British Muscum, one 7 feet in leugth, the other 6 feet.
I. longipennis. The spccies thus uamed in the British Museum is from the Lias of Whitby in Yorkshire. Dr. Mautell says that he is not aware of any description of this species.
I. communis (Conybcare). The skull is wide behind, and rapidly contracts to the base of the jaws, which are prelonged and sub-compressed. The tecth are relatively large, round, conical, and longiturlinally furrowed, the base being expanded and deeply grooved, 40 to 50 ou cach side the upper jaw, and 25 to 30 in cach ramus of the lower jaw. The auterior paddles are three times longer than the posterior pair, aud are proportionately broader, and contain a greater number of ossicles than in other species. This character induced Mr. IIawkins to call it I. chiropolyostinus (Many-Boned-Paddle FishLizard). There are 8 metacarpal boues and 212 ossicles. The humcrus is relatively shorter and stouter than in any other species. It has 17 sclerotic plates to the cyc. This is one of the larger species of the genus, as some of the specimeus indicate a length of 14 feet. It is supposed this species had a large tegumentary caudal fin, which is rendered probable by the laterally compressed form of the terminal cauclal vertebre, as first ascertaincd by Sir Philip Egertou.
I. platyodon (Congbeare). This is the largest of the specics, and specimens have becn procured 30 feet in length. The orbit in some specimens is 1 foot in diameter, and the teeth $2 \frac{1}{2}$ inches in length. The teeth are distinguished by tho form of the crown, which is conical and subcompressed, and has is sharp ridge on each side; tho base is not grooved as in the tecth of I. communis. This character of the tecth suggested the specific name. The dental formula is $\frac{45-45}{40-40}$. The vertebro are about 120 in number. The anterior and posterior paddles are cqual in size. This structure induced Mr. Hawkins to name this species I. chiroligostinus (Few-Boned-Paddlo lish-Lizard). Tho humerus is short in proportion to its breadth. The femur is proportionately larger than in other spccies.

1. lonchiodon (Oven). The tecth are more slender in proportion to their length than in tho other species. Their baso is cyliudrical and regularly fluted; the transverse section of the crown is nearly circular, not compressed. The jublde is relatively less than in the last speciea.

A preciosen of thin mecioy in the Britind Muncum raeasures 15 fect in leaget, mad was attaned by Mina Auning at lyme legia. The grome hatesee of this fomil consinte in the fact that tho parts of the tw hyoincesere in atate of premervation.
I. Nomgrasers A piecimen from Whitly is nbout of feet in length. If bas a renarkabiy slemer and elongatel muzzh. It is not otherwine in a mell-proervel condition, nud Dr. Mantell nage that it in not iegural erilemsribed.

1. fa'irous (kinig). It in characterimed by the great brealth of the fore part of the cranium and the large size of the parictal formen. The jerifbery of the vertebre in fanter than in those of other apecies. The upper portion of the circle of aclerutic plates remains in tho urbit in the apecinen in the Mureum.

With ryarl to the geological dintribution of theso animals, they bound throughout the Lias and Oolitic Formations. The chief repo--itory lam been hitherto comidered to be in the Lias ne Isyme legis, lust, An Ir. Wuckland stases, they abound along the whole extent of thisformation throughout Eingland, frous the coasts of Doriet, through Somerset and Teicestenbire, to the const of Yortshire. The Lias of Germasy and France contains them. "Tho mage of the genus
 Murchellalt, and wo have extended through the whole of the Oolitic prinal iato the Cretaceous Fornation. The most recent stratum in which any remains of this genus have yet leen found is the Chalk Marlat lhuver, whene they liavo been dixcovered by l)r. Mantell: I have found them in the (iant meer Benson, Oxon." ("lbridgewater Treatise.')

1-HTHIUSLA'GUNES (Thipleel), one of the many names (as AyPyem, Von Mayer; Solenites and Tellinifes, Schlotheim; Trigonedbucs, lharkinson; iafadites, Germar) which bave been given to tho bair of shelly borlics found in many of the Ooolitic llocks, and not unfreymently in the mouths of Ammonites at Solenhofun, во as to prove their connection with the animal which inhabited that shell. 1iy diuple:'h and Volsz they were conceived to form an operculum. The tuo valven meet on n nitait toothless hinge-line, their freo edges forming tho remaining two vides of a triangle roundod at its apex. The wubntance of the shell is tranaversely fibrons; its inner surface eoncentrically atriated with lines of growth. (J’arkinson, Org. IRcm., ph. siiL fin $9,10,12$.

1'CICA, genus of Plants belonging to the natural order Burseracere. It han a rmall obtusely 5 -twothed calyx; 5 petals inserted under the sliec, recurved, mernile, valvate; 10 нtamens shorter than the petala inmerted with them; a cup-ahaped disc with 10 crenatures at the margin; a mesaile s-celled ovary with two collatern pendulous ovules in cach cell; a very thort atyle ; a 5 -nugled stigman; a globose obtuse 1.3 celled drupe with thick and fleshy discepinents; resinous seeds without albunch. The specien are shrubs or trees with unequally pianate leaver, and white tlowers seated on panicled racemes which are terminal or axillary.

1. heferophylla has ternate or pinuate lenves, with stalked, ovate, acumisated, entire, simply veined leatlets; the racemes simple, rather aborter thas the leaves. This plant is the I. Aracouchini of Aublet. It is a tree 50 fret in height, growing in Guyaua, on tho bauks of the river Couron, where it is called hy the matives Aracouchini. IV'sen ad inciaion in mate in tho bark of thia tree a yellow balanaic arubatic tuid exules, which retaim its 日uidity a long time after expmore to the air. This tluid is uned by the Guyanese as an npplication to wounds A resin is foumd also in the recels, and the natives of lisyana carry the nuta about with them on aceount of the secnt they give out. Theac nuta they often and as presents to their frieuds. Tho Caribe nime us the exudation for mixing with oil, with which they ausint their bodies
2. hoprajhyila ham 5-i-atalkevl ollong acuminated leaflela, with the racomen few flowerer), nobutwht corymbone, and sis tinacs phorter than the pretiole, It in n mmall tree, a native of the woods of Guyana, where it in called Arbre dipheens. The wholo plant is sweet-scented,
 It in bursed an a perfumn, and uned st a remedy in dysentery. Tho perdh are contained in th viachlpulp which bardens into a gray resin, and in uned by the natives for burning an a perfume. The Carib name of thin tree in Aronams.

Three now nereral ajecien of Jeica, all of which yidld the rame tranoparat Auin, seos mbling turpuntine in may of its propertice. 1. Jicurilo, a bativo of tirazil, yichla a rumin, which is brought into the narket umber the hatne of Gum Filemi, hut is net tiso true ghan of that amme. I. flecantra in fomma in the woond of Guyasa, where it in callerl (hifen. The duidl which exudes from it yields on eraporation a remin. f. alfasuak grown in Gaynda. There are two varitien of than tree, known loy the name of White Cedar and lied Codar. Tha later in a rery durable wood, and is used formaking buramelodal furnuture, Imata, canoer, se.
(|an, b, Jochlomyaleous I'lants; Burmett, Outlines of Botany; livalley, Flom Medira.)

ICosa'Nolita, one of the clamen In the acxual ayatem of Thotany

 of etasnems ne"erte if inter the ealyx.

letrilcts. (sterasman)

ICTIDFS, a name given by M. Valenciennes to the Beuturonge, a genus of Plantigrade Mammalia, which F. Cuvier had previously referred to the genus Paradoxurus. It is the Arctictis of Temminck.
F. Cuvier, in his 'Dents des Mammiferes,' states that he published, under the namo of Paradoxurus albifrons, iu the 9 th volume of the "Mérnoires du Muséum,' the figure of an animal which had been scot to him from Calcutta by M. Alfred Duraucel; and that he conjectured, from the external charnctere nud the general physiognomy, that the animal which it represented belonged to the genus Paradox: urus. Having subsequently examined the teeth (an examination which hostates ho owed to M. Valencieunes, who had found the skin aul the head of the anitaal in the cabinet of Brussels, and had obtained them through the complaisance of the director, M. Drapier), F. Cuvier states that there is much resemblance in tho dentition to that of Puradoxurus. Ictides belongs, he thinka, to the family of Civets, which is characterised by a tubercular molar tooth in the lower jaw, and by two similar molars in tho upper jaw; and he thinks that it is 'anns contredit' most approximated to Paradoxurus, though it approaches Procyon nearer than that genus, that is to eay, the teeth of /ctides show an incrense of thickness, and have become more tuberculous. He places it between tho Civets, \&c., and the Suricatea.

Cuvjer, who gives Ictiles a position between Ailurus [Pasda] and tho Coatis (Wasua), says that it still bears some resemblawce to Procyon in its dentition; but he remarks that the last three molars of the upper jav are much smaller and less tuberculous, and that this is especially true of the last of all in cach jaw, which is very small and uearly simple.

Dr: J. F. Gray gives Arctictis as a synonym of Ietides, in his subfanily livertina, the fourth of his family Felide.
M. Lesson thinks that the genus approaches nearer to Procyon than to Paraloxurus, hut he arranges it between A i/urus and Paradoxurus.

Mr. Swanson, adoptiug Temminck's name, which, if it appeared fisst with a generic description, ought to be retaiued, makes the form the first genus of his family Didelphide, or O_{1} ossums, observing that it is not marsupial.

It has the following characters:-Mead rather short, muzale pointed; eare, which nre small, tufted with loug hairs; tail long, hairy, prehensile; feet with five toes on each foot.
Dental Formula:-Incisors, $\frac{6}{6}$; caninex, $\frac{1-1}{1-1} ;$ molars, $\frac{5-5}{5-5}=30$.

The author of the 'Analytical Notice of Books' ('Zool, Journ.,' vol. ii.) says, when reviewing the 'Histoire Naturelle des Mammiferes,' Nos. xli.-l., that between the Viverrine Family and that which is composed of the Racoons and Bears there had existed a considerable gap, which is now in a great measure filled up by the newly discovered forms, the Benturong and the Pauda. The external appearance, he remarks, of the Ietides corresponds in some degree with both that of the civets and racoons, having the plantigrade motion of the latter and the slender snout of the former. It is indeed completely plantigrade, and has on cach foot five toes stmed with strong compressed claws, apparently adapted for climbing. "Its tail, the thickness of which at its commencement is almost monstrous, is prehensile beneath, without being terminated by a naked skin, like that of Ateles, but resembling entirely the tail of the Sajous. The eye, like that of the domestic cat, has the pupil vertically elongated; the habits of the lctides are consequently nocturnsl. The ears are mall and rounded; and the nostrils are surrounded by a muzzle, which is divided into two portions by a deep sulcus. The baira are long and thick, and a peculiar character is given to the phyeiognomy by the monstaches, which are very voluminous on the lips, the eyes, and the cheeks, and by the pencil of long and numerons hairs which terminates the ears. The cry is intermediate betwecu those of a cat and a dog." The species are found in India.
I. albifrons. Fur gay; haira long, silky, black at the base, and white in their extreme third, ahorter on the head and limbs; sides of the snout, forehead, pencils of the ears (which are edged with whitc), black; upper part of the snout and forelead white; iris jellow; belly gray, with shorter hairs than those on the upper parts of the body. Size, that of a very large domestic cat. In snother specimen the sides of the snout, and the tail, its extremity excepted, were gray. It inhabits Bootan, Nepaul (Káchar: though they occasionally occur in the central region of Nepaul. Hodgson).

Sir Tbomas Stamford Raffles describes the gait of this Benturong as low and crouching, the body being long snd heavy, and the legs short. The tail, thick at its insertion, gradually tapers to the extremity, where it curls upwards. In climbing trees the animal is assisted by this tail, which is strong. One that was kept alive many years by Major Fsrquhar partook both of anlmal and vegetable food. "Slow in motion, and timid in digposition, the animal sleeps much during the day: the night is the season of its comparative activity. Two other species have been described.
ictinia. [Falconide]
idALIA. [NEDBbancmita.]
IDE, a Fish. [Leveciscus.]
IDIA, Lamouroux's name for a genus of recent Polyparia, allied to Sertularia (Lion.).

IDMO'NEA, \& genus of Animals belonging to the order Polyzoa, described by Lamouroux as closing the group Milleporide. It is ramose, the branches triquetral in section, celluliferous on two faces, cells prominent in transverse rows. One species, the I. attantica, inhabits the British seas. Several have been found fossil in the Oolite and Calcaire Grossier. [Polyzos.]

IDOCRASE, a Mineral, also called Yesurian, Pyramidal Garnet, \&e. This mineral occurs crystallised and massivo; the crystals are either attached or imbedded. Primary form a square prism. Cleavage parallel to the primary planes, distinct, and less so parallel to tho diagonals of the prism. Fracture uneven, slightly conchoidal, or rather undulated. Hardness 6.5. Scratches glass readily, and even quartz. Colour various shales of brown, black, gray, blue, green, and yellow. Streak white. Lustre vitreo-resinous, transluccnt, and transparent. Thefraction double. Specific gravity 3.08 to $3 \cdot 4$. By the blowpipe it is fusible with ebullition into a yellowish transparent globule, and with borax gives a glass tinged green with oxide of iron.

The massive varieties aro smorphous; the structure is fibrous, gramular, or compact.

Idocrase is met with both in primitive and volcanic countries. It occurs in the masses ejected from Vesuvius: the crystals are sometimes of large dimensions.

It was found originally in the neighbourhood of Vesurius, and since in many other parts of the world. Different varieties have been called by different names : thus, Cyprine is cupreous or bluc Idocrase ; Joboite, greenish-yellow; Egeran, found near Eger, in Bohcmia, is of a liver-brown colour; Xanthite, found at Ainsty, New York. The following are anslysee by Klaproth and De Kobell :-

	Klaproth.		De Kobell.
Silica.	35.50	42.00	35
Alumina	$33 \cdot 00$	16.25	22
Lime .	$22 \cdot 25$	34.00	36
Oxide of Iron	$7 \cdot 50$	$5 \cdot 50$	5
Oxide of Manganese	0.25	Trace.	
	98.50	97.75	98
	Yesuvius.	Siberin.	Musea.

IDOTEA. [ISOPODA.]
IDRIALIN, a Mineral Resin of a grayish or brownish-black colour, with a grayish lustre, occurring in the Cinnabar mines of Idria

IDYA, Oken's name for those leröes which aro formed after the manner of Beröe orata. [Acalficue.]

IDYIA (Rafinesque), a genus of Crustacca to which Desmarest slludes, among other such genera, as knowing nothing of them beyond their names.

IERAX. [Falconide.]
IEREA, the generic name of a fossil Polypifer from the blue clays of the Vaches Noires (Calvados), described by Lamouroux, who is doubtful of its affinities, but ranks it among his Polyparia actinaria. Bronn places it among the Siphonice.

IGNATIA, s genus of Plants belonging to the natural order Loguniacere, One of the species of this genus, I. amara, sields the St. Ignatins's Beans of India, where, under the name of Papeeta, they are said to be a remedy for cholera. No proof has been afforded of their efficacy in this disease, and Dr. Lindley ('Vegetable Kingdom ') says that convulsions and giddiness are known to follow their exhibition when given in an over-dose.

IGUANA. [lguanide.]
IGUA'NIDA, an extensive family of Ssurians, of which the genus Iguana may be considered the type. Messrs. Duméril and Bibron, in their 'Erpetologie' (1837), treat of these reptiles under the name of Lézards Iguaniens, ou Sauriens Eunotes. In 'the Catalogue' of tho Specimens of Lizards in the British Museum,' the Iguanide with the Agamide [Draconina] constitute the tribe Strobilosawra.
Defore giving the genera and species as arranged by Dr. J. E. Gray, we give a sketch of the organisstion of the Iguanida.
The skull is always articulated by a single condyle situated below the great occipital formmen which opens a passage for the nervous chord. The confguration of the besd presents great differences, dependent on the conformation of the bones of the cranium, the face, or jaws.
The number of cervical vertebre is most frequently six, and this region is generally short, but it is strong. There are often articulated trachelian apophyses, which are in reality the rudiments of ribs. Tho dorsal vertebre, meaning by that term the vertebre which carry the ribs, vary much in number in the different genera. The first lumbar vertebre are like the dorsal, except that they are withont the articular facets which characterise the latter. Generally there are but two pelvic vertcbre, which carry the ilenm or pelvis. The ribs are in gencral slender, weak, rounded, and of the same form, though they vary in their curvature, according as the trunk is cylindtical, depressed or compressed in the thoracic region. The first or anterior ribs are joined to the lateral parts of the sternum, or to a series of small bones which occupy tho lower part of the breast; or they are united to each other on the mesial region ncarly in the same manner as in the chameleous, for this disposition occurs in Polychrus and Anolis. In the Dragons the posterior ribs are free and prolonged in the thickuess of the ekin of the sides, in order to sustain the sort of parachute extended on the lateral parts of the body between the antcrior and posterior limbs. All the specics of the family have two pairs of limbs always apparent, and terminated by toes, the number of which varies but little. Their conformation and respective length have been nsed as generic characteristics principally in the case of Anolis, and some others which have offered some particularities, such as Sitana. The presence of a shoulder formed of two bones, and that of a plyis, scparates these Saurians from the Serpents.

The general form of the body and the disposition of the skeletor scarccly vary, except in the proportions of the different regions of the spinal column, especially iu that of the tail and in the configuration of the vertebra, the spinous and transversc processes of which correspond to the external state of compression or depression. In tho greatcr number of species, as in those of Lophyrus, Basiliscus, P'olychrus, and Iguana, the region of the back presents a well-defined projection, sustained by the series of spinous apophyses which often form that crest which has caused Messrs. Duméril and Bibrou to namo the family Eunotes. This disposition is most manifest in Basiliscus and Agama; whilst in Stcllio and Uromastix the dorsal spines project but little. The bodies of the vertebre which constitute the tail are mucb shorter in those species in which that part is not long, Phrynocephalus for instance, than in those which have it excessively prolonged. In these last, take Iguana and Anolis for example, thero is another peculiarity, namely, that the bodies or central snd cylindrical parts of the candal vertebrec, which are large and dilatcd at their extremities for articulation, have, at the same time, the mesial portion more slender and fragile, so that it is in this portion that fracture often takes place, which is followed by a reproduction and consequent deformity which the tail often in that case presents. M. Roussean (rère) found in the skeletons of those Sauriaus which had undergone mutilation of the tail a long cartilaginous cone in lien of distinct vertebres; aud Carus has remarked, that the spinal ohord is not renewed in this cartilaginons stem, which is produced in lien of the caudal vertebre.
With regard to the senses, sight and hearing appear to be very well developed in this family; and taste seems to be present in a very fair degree, but not smell; tonch moderate. The cyes of all the Iguanians are furnished with moveable lids; the orbit in which they are placed varies in its extent and in conformity with the limits which result from the boncs of the faco and cranium. The greater part have a supcriliary arch, which is sometimes tuberculous and very projecting, as in $O_{i} h$ ryocssa sud Mypsibatcs. Messrs. Duméril and

Jutron tate, thas up the the tho when thoy wroto they knew of no pecies in which ntwervery hud detected a liucar pupil, though it is aenested Hat mune aro nocturan. With the exception of somo gonern, Otocryptis adil /hrysocrpialus io particular, in which the tympanuma
 leas eulangel at its cxtorual arifico on a lovel with the surface of the beal; pornctinea, an in mono mocier of Agama, it in only a simple alt, the entrase of which is protected by mome pointed and as it wro aping scalea. The wengo of amelling doen not acem to bo tnuch doveloped in the Surianngenerally, but in the family nader convideration it appears to be at a very low rate, for there is no nafractuosity tis the air-inun: the esternal orifices of the nostrila liavo but littlo bumaitis, and aro very emall. They aro situaterl gemerally nuar tho axternity of tho wuzze, nud approsch exch other above; they open withia the tanuth hy a simple rlit to which the tonguo miny bo applied, sonl secur friuciablly, if sot ontirely, destined to nid in reapiration.
The tongue in in genemal short, large, nud mobile nt its extremity; but it is not deeply divided at ith end, which is free. The baso is nu: fetrachend into n shenth, and this is a charneter which distinguishos it in marticular from that of the Varaninus and Chameleons. Wrgler las employed the term Pachuglosti to denote this dimposition. The organ in alwaya humid, nod covered with a glatiuous secretion: its popilla, which vary in form, being in somo instances conical, nud in uthers scaly, or laid like tiles (ontuilees), in a alirection from the front huckwanle, appear to bo destined for the perception of sapid subutances: but ita principal oftion neems to be to direct the movement of the fool anbmitterd to the nction of the teeth, and to nssist in deglatition. The oy hyoiles, to which it is fastened, presenta important motiticationa in aliforent genera. Its horns are much prolouger in some apecies, and servo to support the dewlap, or lougitudinal fohd of the integumenta undor the neck nud jaw, in Sitana, Rasiliscus, Iraco, dc., and especially in Anolis, as particularly noticed nud demonstrated by Mr . T. Bell.
The organs of digestion present nothing very remartable in this family. The stomach peons to bo n contimuntion of the cesopharns, but the fibres nud wrimkles are mont often in nuother direction. There in to true carlin. The rentriculus, properly so called, is often conical, and the pylorus is not distinguishable excopt by it slight marrowing, which is rather clongated is .Sellio, lguana, \&e. In Polychres, Cialooper, and hyriocephalus, the pylorus is lut little marked, on account of its elartaess mul the thinues of its parictes. The intestines vary in length. In ppecion which have the tail very long, as the Iguanas, the extent of the digentive tube is not much more than one-third of the tutal length of the spiond columan. There is no npparent distinction, in mone casen, cridont betwon the small and large intestinos, so that thene in oftern crecma, as in C'ordylue, Aguma, nul Sitana; whilst
 true culde-mac at the termination of the small intestine where it opens into the greater canal. The pancrens is voluminous in Jguane, fstiurue, and Lyroocrphalus. The form and situation of the apleen vary. It in most frepucutly placed at the midhle of the mesentery, under tho stousach; monotimes on the right, as in Iynana; sometimes on the l.ft, or at the mithlle of the lower portion of the stomnch, as IA obmervabla in the greatent number.

The nggana of circulation and respiration present no remarkable differunco from thane of other Saurinas, nand the same may be said of thenngam of generation.

The integumenta prement varions modifieations. We Jase tho palyedroun tulerches of lirammatophorms: the mpines nf the neck in Agrana: thome nf the tal in fhryphor"in, Strobihurus, Stenocercus, I'romostix, and Trochyryelus: the carimated senles of ophryocsasa, Iapmartus, Tropideycaser, and Jicphymotes; the cutaneounexpansions of the different regions of the dorsal and candal creat in the greater number of genura, but enpecially in Jguena, Jsiaurus, and Basiliscus; thown of the nape on the oceipnt in Corythophanes nud Basiliscus; of the flask in IMoro and feflisinurus ; nud of the neck, under tho form of a dowlap, in sifana, breseo, and homans: or in the laternl parts in front of the alonillem, tu in Chlamylosaurus. The pores, whother of the shighs, monetime in a simplo lime, Rontimes in two longitudinn] ant phatlal rown, or in frotut of the ann, nee employed by Mesure.
 table. The tom aro in general vougated and terminated by crooked mailn: A rodie alone prexenta n inculiar dilatation undor the ponultimate phalanger. The alogeter tho tued and the naila, tho less nimble the animal.
 thay have fonnd the ventricnlan of many aprecies dilled with dobris of
 which len them to the conclumion that many are lumbivenom: bint they reanark that thim in mearealy in aceontance witla the form of the tanth. Butie of whinh lave talercular crowna, nor compond of

 inumlated eavamialia, and sheir aromed mail awnat them in climbing
troos nad pursuing the smaller maimals on which they oecasionally prey.
Tho Iguanide nro all inhabitants of warm climates. Only one belonga to Furope, the Common Stellio, whichia found also in Afrien sud Asia. Sovernl inlasbit Australia.
The geaus Iguana is tho type of this fannly. This name was given by Lamrenti to a genus of Saurinan, in which ho included varioua forms, such as Agama, Lophyru, Calotes, \&c. Daudin separated from this licterogeneous colloction Agama, Draco, and Basiliscus; nud Wragler, atriking out the worl Iguana from his nomenclature, divlded the genus Jguana as left by Daudin into the cenera. Mypsilophus, Meiopoceros, nud Amblyrhynchus. Messrs. Duméril and Bibron restors the name. The genua Iguana, an adopted by them, includes /lypsilophus and A mblyrhynchus of Wagler, nud is thus characterised:-
A very largo thio dewlap (fanon) undor the neck. Ceplanlic platen polygounl, nuequal in diameter, flat or carinated. A double row of small palatal teeth. Maxillary teeth with their edges finely dentilnted. A crest on the back and tail. Toes long and unequal. A single row of femoral pores. Tail very loug, slender, compressed, covered with amall equal imbricated carianted senles.

Common Iguana (Iguana tuberculata).
Thoy give the following description of the genusis thus modified:The species composing this generlo group nro prineipully remarkable for the cutancous prolongation which constitutes over the whole extent of the lower part of the head nad neck a rery deep and very thin clewlap or pouch, the free border of which describes a curved line, aud is dentilated at tho part nearost the chin. The akin is irregularly folded on the sides of this dewlap, behind which there is anothor transversal fold which is obliquely prolonged upon ench Ahouher. Tlacre are also cuticular folds on the lateral regions of the neck nod trunk. The head of the lgunnas is moderately long, and has the form of n pyramid with four faces. The neck is slightly compressed. The upper part of the body is convex and ronnded, tho under part flatened. Tho limbs are long. The toen unequal, nusd sonctimes denticulated on their edges; the five toes of the posterior foet aro gmaduated; tho third and tho fourth of the band aro equal in leagth. Tlao tail, which is very long and very alender, is fattened slightly from right to left from its origin. The top nud sides of tho hend are protected by polygonal scales varying in size, nuong which some are convex, some flat, some carinated, nud some even strongly tuberenlous The subocular regions however are only furnished with mall angular roundish seales with n slightly convex aurface. It is worthy of remark that the part of the akull which is situnted between the orbits is protected by two longiturlinal series of large angular Hlates, whinst in Metopoceros and Cyclarns this same part of the cranium in paved with amall polygonal scales. A row of strong, nugular, obloug, sad often carimated scales adheres to tho lower edge of the orlital circle. The lipa are furnialied with large aealy plates, Which are ordimatily qualrangular. Thero is aleo ou each branch of the lower jaw a row of large nealea, the last of wid is enormous in some cnuer, preacnting n diameter the quarlmple of that of the nthers. Thas kenkes which eover the upper part of the neek and the body aro slightly imbricated. They aro amall, square, or lozenge-slinped,
surmounted by a keel which does not divide them in the middle, but which extends from their infero-posterior angle to their superoposterior angle. In stnfed individuals, the skin of which has been distended, there is sround the seales of tho upper part of the body a circle of small grains which recalls in a degree the mode in which the scaly covering of the Varanians is formed. The lower part of the neck is paved with seales, which are smooth and multifaced. There are rhomboidsl and imbricated scales on the dewlap. On the other parts of the body are rhomboidal tile-like scales (entuilés), and those among them which are not carinated are fonnd opon the thighs, the soles of the feet, and the under side of the toes. The inferior region of these is protected by a band of enlarged seutellations which are inmbricated, sad surmounted with thres keels, of which the middle one is weak and the lateral odes very prominent. The upper part of each tos is covered by s single row of scsles; but each side of the lateral parts of the anterior toes has two rows, whilst the external side of the posterior toes has three, making six rows of scales on each anterior toe, and seren on each posterior toe. Desides being imbricated the scales of the tail form vertieillations, or complete rings, which ceass to be distinguishable when they reach towards the extremity.

All the Iguanas have femoral pores, the number of which raries according to the sex, as Messrs. Duméril and Bibron suppose; and they think that the number would in that case be less in the females than in the males. These pores, which are placed in a siogle row, are surrounded by small scales disposed as the petals of a flower aro disposed round its disc.
The Iguance have the upper parts of the body surmounted by a paleaceous crest of some height, which is continuons from the naps to the extremity of the tail. This crest is composed of strongly compressed scales, which are pointed and sometimes curved backwards, gradually diminishing in height as the end of the tail is appronehed. The nostrils are situsted on the sides of the muzzle, and yery uear the extremity; their aperture is large, and opened in the middle of a large scale, which forms a convex circle aronnd them, and gives them a tubulons appearance. The tympanal membrane extended over the auditory opening is rery large and cireular.
The teeth of the Iguane, which have an especial interest on account of their resemblance to those of the extinct Iguanodon [Ictanodox], vary according to the ages of individuals; and Messrs. Dumerril and Bibron state that they are assured that fewer exist in young subjects than in adult individuals. The first twelve or fonrteen maxillary teeth, both above sad below, sre nesrly rounded, pointed, and a little arched; sll the others are narrow and compressed, with an angular summit, which is very finely dentilsted on its edges. They are net, Dr. Buckland observes, lodged in distinct sockets, like the teeth of crocodiles, but fixed along the internal face of the dental bone, to which they adhero by one side of the bony substance of their root.

Tecth of Iguana. Dr. Buckland.
There is a double row of small teeth en each side of the rault of the palates.
The Igusnas are berbiverous, and indeed the structuro of their tecth would lead to the conclusion that herbs formed their staple. Mesars. Duméril and Bibron never found snythlug but leaves and flowers in the stomachs of the individuals which they opeued. Mr. Broderip, esw a living Iguana sbout two feet long in a hothonse at Mr. Miller's nursery-gardens near Bristol. It had refused to eat insects and other kinis of animal food, until hsppeaing to be near nome kidncy-bean plants that were in the honse for foreing, it began to eat their leaves, and was from that time forth supplied from these plants. Dr. Luckland, who quotes this, states, in sddition, that in 1823 Sir Edward Delcher found in the island of Isabella swarms of Iguanas that appeared to be omnivorous; they fed voraciously on the egga of birds and the intestines of fowls and insects. The Ignanas livg a great cleal in trees, and will take to the water, swimming with ease. Mr. Broderip saw an lyuana enter and cross a small pond in the Zoological Gardens at the Regent's Park. The fore feet wers motionless during the passage of the animal across the water. Several specimens of thess animals have from time to time been in the collection of the Zoologieal Society in llegent's Park.
The specics of Iguana sre found in Mexico, South Amcrica, and the Antilles. Some are cousidered as very delieate food.
There are only three specics admitted by Messrs. Duméril and Bibron:-

1. tuberculata is the Common Iguana. This speeies has been described by a great many namea. Thus, Spix, in his work on the 'Reptiles of Brazil', has, uuder tho nadres of I. squamosa, I. viridis,
I. ccerulea, I. cmarginata, and I. Lophyroides, represented 1. tuberculata of Laurenti, L'Iguane Ordinaire d'Amerique of Cuvier, the Common Iguana, at five different epochs of its life.

The figures will give some idea of this animal, which is yellowishgreen below, snd above of a green more or less deep, becoming sometimes bluish, and at others of a slate colonr. In general there are on the sides of the body brown stripes or zigzags edged with yellow. There is frequeutly a liue of the latter colour traced obliquely on the front of the shonlder. Some individuals are sprinkled with brown; others have the limbs spotted with brown on a black ground. The tail is surrounded with large brown rings, which alternate with others of greeu or yellowish. Leugth seldom exceeding five feet.
It inhabits a great part of Sonth America, and also the Antilles.
It is considered excellent for the table. Delicatissima and sajitilis. sima are among the specific names that have been assigned to it. It is not however decmed very wholesome, and is even considered injarious to those who have suffered from certain diseases.

a, Heal and anterior extremity of Igtana tuberculata, two-fifths of the natural size; b, hiad foot, same size.
Wagler makes this spceles the type of his genus $17 y / 1$ silophus.
We present s synopsis of the other genera and species of this family from the 'British Musenm Catalogue :' -
I. Body compressed, covered with rings of squarish small often keeled scales. Perchers.
A. Nostril lateral, below the eye-ridge; tocs slender, simplo; back not elested; interparietal plate small.
a. Throat compreased, toothed in front; third and fourtlı toes nearly equal; eyes prominent.

1. Polychras-Fetnoral pores dintinet; scales of thack and eides equal F. mamoratma, the Camaleao; Brazil and West Indiea.
2. Starfope-Femoral pores none; scales of sidea larger. S. anomalue, the linzilias Chatueleon.
3. Crosroptime-Scales cireular, sumoth; tail-end revolute. U. Jiantisri. 1trazil.
4. Exjhymors-Scalee rhombie, kedel; hend 4-eided. E: Fusingerii, Fitainger'a Ficphymotes; Ibazil. E. thilulatuo. the Wireal Eephy: mote; Ifrail E. demenratris, the Blunt-Headed Ecphymote; Mesion E. acutimatios, the Eephymote; Brazil.
5. Latmanctus-Scalen rhombie, keeled; head dilated and rounded kehinit. L. longipes, the Long-Legged Laiemanetus; Mexico.
6. Sontril lateral; wes simplo or fringod; back crested; interparietal plate mall.
a. Femoral jores distinct.

- Throat-puuela large, compressed; tail compressed.
C. I.juana-Scales of back moderate ; throat-pouch toothed in frout. I. Inberculata, the Conanon Iguana; West ladies. I. rhinolophus, the Helumperon lguans; St Christopher's, West Indies I. delicatisaima, the Naked-Necked Iguaza; Tropical America

7. Alupencen.-Scales of back very minute; throat-pouch simple in frout. A. Ricardi, Aloponotua; st. Domiago.
-- Thruat rather dilatable, witha erosa. fold behind; middle hind toe toothed on the outside.

+ Tail compressed with uniform keeled scales.

8. Drachylophus-Head-shields lat; femoral pores 1-rowed. 1 . facciatus, the landed limeliglophe; South America.
9. Metapocerca.-Head-shielda glat; central froutal with a horn; fenoral pores 2 -rowed. M. cornume, the Horned Iguana; St. 1komlaga.
10. Trachecephalur.- Head-shields convex; hinder outer toe short. T. ancriacufus, the Rough Head; Charles Ishand, Galapagon.
11. Oreacephatma.-Heal-whields conical, rery rugose; the outer Linder twe elongate. O. cristatus, the Marine Oreocephalus; Galajagon. H Tail with rings of npinose scalce.
12. Cyelura.- Headrhields amall, with 2 rown of large shiells on the muzxle ; tnil compressed. C. M'Leoyii, M'Leay's Cyclure; Cuba C'. nubila, iso Clouded Csclure; Mexico. C. Collii, Colly's Cyclure; Jatanica
13. CYenowowra.-Head- and muzzle-shields small, uniforn; tail roumdinh, crented. C': ocanthura, Shaw'n Ctenosaure; Califormin, Weat Indiea, Tropical America. C'. pectinata, Weigmann's Cteuosbure; Mexico.
14. Enyaliosaurus.-Ilend- nul muzzle-shichls small, uniforin; tail deprcamed, with o longitudinal apinose ridgen. E: quinguccarinatus, the Arased-Lizand; Detherara.
b. Fetnoral pores none.

- Hinder toen fringed on the side, outer welled at the base; throat with a cross-fuld bebind.

15. Bailiiecus.-Head elongate, with an erect erest behind; the beck nad thil with a fir-like erest. 13. Americantu, the Babilise; Tropical Amerim, Gugana.
16. CuryiAcolua.-Heal clongate, with a low compressed crest lehiad: buck and tail with a low toothed crest. C. rittotus, the Corgthasole; Honduras
17. Thymanodacylus.- Head लhort, with n low toothed crest, consex lirhind: lyack and thil with a low toothed crest. T. Lilineatus, the Lilged Too : South America.

- Toen all nlemider, simple, or Alightly serrated on the sides ; outer hind wes quito free; bead whort.
4 Uccijut cornpreared and produced behind; throat pouch compreased.

1. Corythophanes.-Nape erreted; thront-pouch toothed in front. C. Gibata, the Cory thoplane : Mexico.
2. Chamurforyme.- Napere not erested; throat-pench simple. C. Herwanderio, the Gualiapmicalt; Mexico.
t+ Oocipnt convex; throat with a erow.fuld belind.
2(0. Inyotiwo-Tail ronnd, nat cremterl; toen all nimple. E: rhomh.fir, the Lazenge.Marked Enyaliun; South Americh. E. Uulincatue, tha Two Streaked Engaliun; I'meil.
3. '3.Aryozem-Tall eamprened; himpler toen mlightly serrated on

C. Nomtril mumpror, above the soridge, mulnpical; tom dilnterl under the lage joint lint one, very unequal, nad united trgether at tho base; throat-jwuch diatinct, largely dilata-
 sllotiact.

a. Scales of belly granular.

22 Chanatrolis, - lack and tail with a houy creat; toos dilated. c. Formandenu, the Culan Clammeolin; Culam

6. Soalen of the bells imbricated, flat.

28. XijAnamese -Tora dilated; tail with a luany crest, X. relifer, the Crestod Atomlia N. Ricundin, Ricordin Anelin: St. Wowingo.

29. Ducigtom.-Tea dilnied; lack aud tuil with n ercot of com-
prossed neales D. equedris, the Fquestrian Anolis; Cuba D. Eidrardsii, Edwarde's Auolin; Jamaica.
30. Rhinooaurnu.-Toes dilated; back with n olight fold formed of two serics of small senden ; rostral plate horizontal; nose produced. R gracilis, the Sharp-Nosed Anolis; Babia.
31. Anolius.-Toes dilated; back pimple, or with a slight crent formed of two series of small scales; rostral erect; nose rounded. A. Leachii, the Large-Cheeked Anolis; South America sud West Indies. A. occipitalis, the Ocejpital Anolis; West Indies. A. lincatue, the Lined Anolis; Martinique A. Cepedii, the Alligator Anolis; West Indies A. marneratus, the Marbled Anolis; Martinique. A. porcatue, tho Kidge-Nosed Anolis; Cuba A. principalis, tha Carolina Anolis; North Anerica. A. favescena, the Yellowish Anolis; North America. A. Richardii, Richard's Avolis. A. punctatus, the Dotted Anolis; Brazil. A. nelutosus, the Clonded Anolis; Cuba nod Texae. A. lineatopus, the Lineated Anolis. A. maculatus, the Spotted Anolis; Weat ludies. A. pulchdlus, lhe beautiful Adolis; Martinique. A. vermiculatus, the Vermiculated Anolis; Cuba. A. Atenodactylus, the Sleuder-Toed Anolis; Jamaica A. reticulaltu, the Netted Anolis; Tropical America A. fusco-auratus, the Chilian Anolis; Chili. A. ancus, the Bropzed Anolis; Tropical America. A. Iucius, the PikeHeaded Anolis; Cuba A. Coulotii, Goudot's Anolis; Martinique. A. punctatue, the Green Anolis; Brazil. A. bullaris, the Red-Tbrouted Anolia; Martiuique. A. Yalencienii, Valencienoe's Anolis.
32. Acantholis.-Toes dilated; back simple, with scattered tabercles. A. Loyniana, the Acantholis; Cuba
33. Draconura.-Toes nearcely dilated; back simple; tail round. D. nitene, the Shining Draconure; Surinam. D. chryolepis, the Golden Drnconure; West Iudies.
34. Norops.-Toes slender, not dilsted; back simple; tail round. N. auratue, the Golden Norope; Surinam.

11. Body sultrigonal or depressed. Terrestrial.

D. Body subtrigonal, covered with large generally keeled scales, directed obliquely towards the back; hend generally shiclded, superciliary and interparietal shields distinct; throst smooth, or with a cross fold behind; toes simple.
a. Caudal and dorsal ocales similar.

- Femoral pores distinct; interparietal plate large.

30. Tropidolepis.-Back not crested ; throat with a fold on each side; nostril superior, subapical. T. undulatus, the Waved Tropidelepis; North America T. Torquatus, the Collared Tropidolepis; Mexico. T. formosus, Mergmann's Tropidolepis ; Mexico. T. spinoous, the Spinose Tropidulepis. T. horridus, the Horrid Tropidelepis; Mexico. T. grammicus, the Spotted Tropidolepie; Mexico. T. microIelidotus, the Small-Scaled Tropidolepis; Mcxico. T. variabilis, the Variable Sceloporus; Moxico. T. aurcus, the Bronzed Sceloporus; Mexico. T. ecalaris, the Spotted Sceloporus; Mexico.

- Femoral pores noue; anal pores distinct, marginal; back and tail not crested; interparietal plate small.

31. Leiodera-Nostril lateral on the face-ridge; scales of the sides of the neck nud back largo; rhombic sides aimple. L. Chilensis, the Chilinn 1eiodera; North Chili. L. Grarenheratii, Gravenhorst's Lefodern ; Chili. L. gracilis, the Slender Leiodera; Valparaiso and Jatagonin.
32. Lriolamus.-Nostril lateral on the face-ridge; scales of the eides of neck granular, of back rhombic, sides simple. L. cyanogaster, the Blue-Bellied Leiolomus; Valdivin. L. Bellii, Bell's Leiol:mus; Cbili L. Dilronii, Bibron's Leiolemus; Cbili. L. linratus, the Livented Leiolemus; Chili. L. nigromacidatus, tho Black-Spotted Leiolemus; Chili and Coquimbo. Lh inconticuus, the Inconspicuoun Leiolcenus; Chili. L. pictue, the Paiated Leiolomus; Chili anal Valparaiso. L. Conuia, the Dotted Leielamus; Vrlparaiso and Chili. L. signifer, tho Helrew-Marked Leiolounus; Peru. L. maculatus, the Small-Scnled Leiolauus; Peru. L. Fitzingerii, Fitzinger's Leiolcmus; P'ntngonias L. Darwinii, Darwin's Leiolamus; Nortl I'ntagonin L. Kingii, Captain King's Leiolecmua; Patagonin, L. I'eigmanii, Weigmann's Leiolemus; Bahia Blanca, Peru, MonteVideo, nud Minldomalo.
33. Ptydogerus.-Nostril lateral on the face-ridge; acales of tho nock gmuular, of back rhombic; side with a creat of keeled scales. I'. pectinatus, the Pitygodere.
34. 'roctotretus.- Nostril abose the face-ridge; scalea of the neck granular, of back rhomblie; small sides simple. P. multimaculatus, the Proctotrete; lnhia Mlauca, and Yatogovis.
\cdots Femoral and anal porea none.

+ Interparietal plnto linear, small; bead shields rather regular.

35. Leiocrphalus.-Dnck and tail crested; scales of throat, back, sud thil, rhomble, moderate. L. Herminieri, Herminier's Roquet; Martimique. L. carinatus, the Kcoled Roquet; West Indies I. M'Leoyti, the Cuban Roquet; Cubn. L. Schreibersii, Schreibers's 1tonquet ; ' 'ubn. L. Grayni, Gray's Roquet; Charles Istand aud Gala. 1arow. L. ornatus, the shoulder-Spotted Roquet; Tropical America.
3f. Stenorcrus.- Dack and tail lowly erested; scales of back rhombli, of the thil large, apinose. S. rosciventris, the Stenocere; Bolivin.

3i. Trachycyclus.-Back and tail not crested; scales of back rhombic,
of tail large, spinose. T. marmoratus, the Trachycyclus; Brazil and Rio Grande.

†+ Interparietal plate large; back or tail crested.

38. Taraguiva,-Back not crested; scales of back small, of the throat granular ; tail round, with a slight crest, and moderate seales; car toothed in front. T. torquata, the Taraguira; Rio Janeiro and Prazil. T', Darvoinii, Darwia's Taraguira; Brazil and Abrolhos Iulet. T. Smithii, Smith's Taraguira; Brazil.
39. Microlophus.-Back and tail lowly crested; scales of the back uaequal, small; tail with moderate scales; the car toothed in front. M. Perurianus, the Microlophe; Peru, Copiapo, and Iquique.
40. Oplurus.-Nape with a small crest; scales of back large, of the sides small; tail round, with rings of large ajimose scales. 0 . Broziliensis, the Brazilian Oplurus; Brazil.
41. Strobilurus-Nape, back, and tail, slightly crested; scales of back moderate; tail with rings of large spinose scales. S. torquatus, the Strobilurus; Brazil.
42. Uraniscolon.-Nape and back lowly crested; scales of the back large, rhombic; sides of body and throat simple; tail round, slender, with moderate scales, slightly keeled above. U. pictum, the Painted Uraniscodon; Brazil.
43. Plica.-Nrape aud back lowly crested; scales of the back small; sides with two folds; the throat with groups of spines; tail round, slender, keeled abore with moderate scales. P. umbra, the Plica; North America (?) and Georgia (?). P. punctata, the Dotted Plica; Tropical America.
E. Body dep:essed, with small scales; back rarely crested; tail conical.
a. Sides rounded; femoral and preamal pores nene; eycbrow scales small.
44. Leiosaurus.-Tail with granular scales; scales uader the eye all small. L. Bellii, Bell's Leiosaurus; South American L. fasciatus, the Landed Leiosaurus; South Anerica.
45. Diphokemus.-Tail with graoular scales, with an elongated scale under the eye. D. Darwoini, Darwin's Diplolemus; Patagonia D. Bibronii, Bibron's Diplelemus; South America and Chili.
46. Tropidurus.-Tail round, with rings of large scales; nape lowly crested, interparietal (\%). T. cyclurus, the False Quetz Palea; Brazil.
47. Liranocentron.-Tail depressed with rings of large scales; घape not crested ; interparietal small. U. azureum, the Doryphore; Brazil.
b. Sides rounded ; femoral and preanal pores dibtioct, near vent.
48. Phrymaturus.-Tail round, with rings of large scales; the aape not crested. P. Palluma, the Palluma; Chili.
c. Sides with a slight foll ; scales uniform ; body roundish.
49. Calligaurus.-Ventral scales smooth; femoral pores distinct. C. draconoides, the Callisaurus; Californin.
50. Tropidogaster.-Veatral scales 3 -keeled; femoral pores noze. T. Blainvillii, the Tropidogaster.
d. Sides serrated ; body very depressed; femoral pores distiuct.
51. Phrynosoma.-Head spinose; back and tril with scattered tubercular scales. P. Douglasii, Douglas's Phrynosoma; Califoraia. P. orbiculare, the Tapayaxin; Mexieo, P. Blainvillii, the Crowned Tapayaxio; California. P. cornutum, the Texian Tapayaxiu; Arkansas, North America, and Texas.
IGUANODON (Iguana and ósoús (osbovoos), a tooth), a genus of extinct Reptiles of large aize, discovered by Dr. Mantell, and named by him from the resemblance of its teeth to those of the recent Iguana. As the discovery of this animal is oue of great interest in the records of British Palicontology, and illustrates the success attendant upon accurate investigation iu this department of human inquiry, we give the history of it in Dr. Maptell's own words:-
"Soon after my furst diseovery of bones of colossal reptiles in the strata of Tilgate Forest, some teeth of a very remarkable character particularly excited my curiosity, for they were wholly unlike any that had previously come under my observation; even the quarrymen, accustomed to collect the remains of fishes, shells, and other objects imbedded in the rocks, had not observed fossils of this hind; aud, until shown some specimens which 1 had extracted from a block of stone, were not aware of the presence of such teeth in the stoue they were constantly breaking up for the roads. The first specimen that arrested my atteution was a largo tooth, which, from the wora, smooth, aud oblique surface of the crown, had evidently belonged to an herbivorous animal; aud so entirely resembled in form the corresponding part of au incisor of a large pachyderm ground down by use that I was much embarrassed to account for its presence in such aacient strata, in which, according to all geological experience, no fossi:" remains of Mammalia would ever be discovered; aud as no known existing reptiles are capable of masticating their food, I could net venture to assigu the tooth in question to a sauriau.
"As my friend Mr. (now Sir Charles) Lyell was about to visit Paris, I availed myself of tho opportunity of subnitting it to the examination of Bron Curier, with whom I land the high privilege of correspondiug ; and, to any astouishmont, learnel from my frieud,
that M. Cuvier, without hesitation, pronounced it to be an upper incisor of a Rhinoceros.
"I had previously taken this tooth, and some other specimens, to a meeting of the Geological Society in Loudou, and showed them to Dr. Buckland, Mr. Couybeare, Mr. Clift, aud other eminent men who were present, but withont any satisfactory result; in fact, I was discouraged by the remarks that the teeth were of no particular iuterest, as there could bo but little doubt they belonged either to some large fish allied to the Anarhicas Lapus, or Wolf-Fish, the crombs of whose incisors are of a prismatic form, or were mammalian teeth obtained from a diluvial deposit. Dr. Wollaston alone supported my opinion, that I had discovered the teeth of an unknown herbivorous reptile, and eucouraged me to continue my researches. Ancl, as it to add to the difficulty of solviug the enigma, somo metacarpal bones which I soon after discovered in the same quarry, and forwarded to Paris, were declared to belong to a species of Hippopotanus. Subsequently a dermal horn, or tubercle, from the sane stratum, was declared by competent authorities to be the lesser horn of a Rhinoceros; and Dr. Buckland, with the generous kindoess which marked his character, wrote to guard me against venturiog to publish that these teeth, bones, and horn were found in the 'irou-sand formation,' with which the Tilgate beds were then classed, as there could be no doubt they belonged to the superficial diluvium; aud as the upper beds of the conglomerate in which thesc first speeimens were fouud was only covered by loam and vegetable earth, there was no clear stratigraphical evideace to support a contrary opinion. Other specimens however were soou procured by stimulating the diligent search of the workmen by suitable rewards, and at leagth teeth were obtained which displayed the serrated edges, the longitudinal ridges, and the eutire form of the unused crown. I theu forwarded specimens and drawings to Baron Cuvier, and repaired to London, and with the aid of that excellent maa the late Mr. Clift, ransacked all the drawers in the Hunterian Museum that contained jaws and teeth of reptiles, but without finding any that threw light on tho subject. Fortunately, M. Samuel Stuchbury, theu a young man, was present, and proposed to show me the skeleton of an Iguana, which he had prepared from a specimen that had loug been immersed iu spirits; and, to my great delight, I found that the minute teeth of that reptile hore a closer resemblance in their geueral form to the fossils from Tilgate Forest than auy others with which 1 was able to iustitute a comparison. It was not however until I had collected a series of specimeus exhibiting teeth in various stages of maturity and detrition that the correctness of my opimion was admitted, either as to the character of these deutal organs, or the geological position of the rocks in which they were imbedded." ('Petrifactions and their Teachings.')
From their first discovery the teeth of this amimal have excited the greatest amount of interest on account of their peculiar structure. In his report to the British Association, on the 'British Fossil Reptiles,' l'rofessor Owen gives au elaborate account of their structuro and fuactions:-
"The tecth of the Iguanodon," says the Professor, "though resembling most closely those of the Ifuana, do not present an exact maguified image of them, but differ in the greater relative thickness of the crown, its more complicated external surface, and still more essentially in a modification of the iuterual structure by which tho Iguanodon equally deviates from every other knowu reptile. As in the Igukna, the base of the tooth is elongated and contracted, while the crown is expanded and smoothly convex on the inner side. Wheu first formed it is acuminated, conppressed, its sloping sides serrated, and its external surface traversed by a median longitudiual ridge, and coated by a layer of enamel; but beyond this point the description of the tooth of the Iguanodon indicates characters peculiar to that genus. In most of the teeth that have hitherto been found three longitudinal ridges traverse the outer surface of the crown, one on each side of the median primitive ridge; these are separated from each other, and from the serrated margins of the crown, by four wide and smooth longitudiual grooves. The relative width of these grooves varies in differeut teeth; sometimes a. fourth small lougitudinal ridge is developed on the outer side of the crowu. The marginal serrations which at first sight appear to be simple notches, as iu the Iguana, present under a low magnifying power the form of transverse ridges, thenselves notched so as to resemble the manmillated margins of the unworn plates of the elephant's griuder. Slight grooves lead from the interspaces of these notches upon the sides of the marginal ridges. These ridges or dentations do not extend beyoud the expanded part of the crowa; the lougitudinal ridges are continued farther down, especially the mediau oues, which do not subside till the faug of the tooth begins to assume its subcylindrical form. The tooth at first increases both in breadth and thickness; it theu diminishes in breadth, but its thickness gocs on increasing; in the large and fully-formed teeth the fang decreases in every dianeter, and sometimes tapers almost to a point. The smooth unbroken surface of such fings indicates that they did not adhere to the inaer side of the maxille, as in the Iynuna, but were placed in separate alveoli, as in the Crooodile and Megalosaur; such support wonld appear indeed to bo indispensable to teeth so worn by mastication as those of the lyuanodon. The apex of the tooth soon begins to be woru away, and it would appear by many specimens that the teeth were retained
until nearty tho whole of the crown had yielded to the daily abravion. In theecteels bowerce the deep excaration of the memaining fang phainly leapeata the progrean of the muccomional tonth prepared to supply the flace of the wornout grinder. At tho enrlier stagen of almuions olintp edge in manimained at the external jart of the tooth by diean of tho ensmel which covern the aurface of the crown; the promisent rilgen ujon the murface give a simuoun contour to the middle of the cutsing elge, whilat its niden are jacged by the lateral eestations: the adnetation of thin admirable dental inntrument to the cropping. and cotuminution of weh tough ragetable food as the Clabsarion, and eimilar planta, which ano found buried with the Igeanofow, in pointed mut by Dr. Muckland with his usund felicity of Juntration in him "Mridgewater Trentine", val. i. 1". 2to. Whens the crown in wurn away beyond the enamel it prewenta a lrond and nenrly Lorizontal grinding surface; and now another dental subatance is Lrought intu une to give an inequality to the surface; this is the omified reninant of the pulp, which being firmer than the purrounding dentine, forms a maglst transere ridge in the middle of the grinding gurface. The tooth in this slage has exchanged the functions of an incinos for that of a molar, and is prepared to give the final compromion, or comminution, to the coarely divided regetable mathere.
"The marginal edge of the incinive condition of the tooth, and the median ridge of the molar ntage are moro effectually entabliahed by the introduction of a modification into the texture of the dentine, by which it in resolered fofter than in the existing Igwance and other reptilcs, and more emily worn away; this in effected by an arrest of tho calcifying proces along certain eylidelrical tracte of the pulp, which in thum cuatimuel in the form of medullary canaln, analogoun to thow in the noft deatine of the Megatherium's griader from the central carily, at pretty regular intervala, parallel with the calcigeruus tulen, acarly to the murface of the tooth. The aselullary canals ratiate froru the intermal and latiral eiden of the pulp cavity, and areconfined to the dentine forming the correspondiag walls of the Wotb; their diameter is 11250 th of an inch; they aro separated by pretty regular interrals, equal to from e to S of their own diameters; they mometimen divide once in their coume. Fach medullary canal is a urrounded by a clear apace; its casity was occupied in the section deacribed by a sulutance of a deeper yellow colour than the rest of the dentive. The caicigerous tubes prenent a dimmeter of $1.25,000$ th of anituch, withintengaces equal to sbout 4 of their diameters. At tho fint part of their course near the pulp carity, they aro bent in strong Ludulationm, but afterwands proceed in alight nad regular primary curven, or in acarly etraipht lines to the periplaery of the tooth. Whens riewel in a longisudinal section of the tooth, the concavity of the primary curvature in turned towardn the buso of the tooth; the lowent tulew are luclised towarks the root, the reat have a genemal direction at riglst agglem to the axis of the tooth; the few cnleigerous tuben which procevel vertically to the apex are soon worn away, and can be men only in a fection of the apical part of the crown of an droompletely developed tooth. The mecondary undulations of each sooth are regular mul very tuinute. The branchen, both primary and nccublary of the calcigerous tubes, are rent off from the concavo nide of the main indectiona; the sointo mecondary branchen are remarkwhle at certain parta of the tootl for their flexnous ramifications, andetotacoce, and dilatations into minuto calcigerous cells, which take place along nearly pamalled linen for a lisaited extent of the course of the main tubes The nppearance of Interruption in the course of the calcigeroun tubew, occnioued by thin modlication of their mecoudary brusulsen in repremented by the irrexularly dotted thacto in the figure. Thin monlification must contribute with the naedullary cabaln, thongh in a minor degree, in producing that ineyuality of tezture and dennity in the deatine, which rendere the urowd asil thick woth of the lymanodon moro efficient ny a triturating

instrument. The aramel which inrenta the laarier dentine, forming the outer vide of the torth, freectith the maure dirty peculiar brown
colour when viewed by trannmitted light as in most other teeth; very minute and scarcely perceptible uadulating fibres, running vertically to the surface of the tooth, ane the only structure I have been able to detect. The remnius of the pulp in the contracted cavity of tho completely formed tooth aro converted into a denee but truo osseous aubstance, chamcterised by miaute raliated eells, whose long axis in parallel with the phane of the coucentric lumellae which surround tho few and contracted mednllary camals in this substance. The anicroscupical examination of the structure of the Iguanodon'a teeth thus contributes additional evidence of the perfection of their adaptation to the offices to which their more obvious eharacters had indicated thens to hare been destined.
"To preserven trenchant edge, a partial conting of enamel is supplied, and that the thick body of the tooth might be worn away in a more regularly obligue plane, tho dentine is rendered softer as it recedes from the camelled edge by the sinple contrivance of arresting tho ealcifying process along certain tracts of the inner mall of the tooth. When nttrition has at leugth exhausted the enamel, and the tooth is limited to its fuaction as n griuder, a thinl substauce bas been prepared in the ossified remuant of the pulp to add to the efficiency of the dental jnstrument in its final capacity."

The size of this giant of the Weald in former ages was enormons. In Dr. Mantell'e collection there is a portion of a femur 22 inches in girth in the genallest part. The thigh bone then of the Iguanodon exccedeci in bulk that of the largest elephant, and its length is on good grounds calculated to have been from 4 to 5 fect. Dr. Mantell carefilly compared the bones of the Jguanodon vith those of tho Iyuana, and by taking an average from eight neparate parts of tho reppective skeletons, he gives the following as the dinensions of tho former:-

Tho thigh bone of the Igmanodon is considerod by Dr. Mantell to bo twenty times the size of that of a modern Iyuana: but as animals do not incrense in leagth in tho sano matio as in bulk, it does not follow that the Iguanorion attained the length of 100 feet, although it probably approached 70 fect. (Buckland.) On the swout of this monstrous reptile was a masnl horn, and its alpearance must havo realised tho wildest poetical fictions of dragons of old.

> Ninal horn of Symanodon, two-thirdn of the natural slace.

In tho lleport nbove alluded to, Professor Owen gives his reasons for doubting if the Igmanodon was so large an animal as is inferred by 1)r. Mantell.
"From the comparison," hesays, "which the few connected portions of the akeleton of the Iguanodon cuable us to mako botween tho bones of the extrenities and the vertebmal column, it is evident that the hind legn at least, and probably almo the fore legs, were longer and atrouger in proportion to the trunk than in any existing Saurian. Ono can ecarcely nuppress a feeling of surpriso that this striking characteristic of the Iguonodon, in common with other Dinosauria, whould have been hitherto overlooked; since tho required evidenee in only na nssociated vertebm and logg bono of the samo individun, or a comparison of the largest detached vertebre with the lougest femora or laumeri. This characteristic is bevertheless one of the most important towarls a restoration of tle extinet reptile, sinee an approximation to n truo conception of the size of the entire animal could ouly bo made after the general proportions of the body to the extremities had been aseertained. But it in very obvious that the exnggernted resemblauces of the Iguanodon to the Iyuana havo migled the palseontologints who have hitherto publinhed the results of their calculation of the size of the Iyuanodion; and heace tho dimensions of 100 fet in length, arrived at by a comparison of the teeth and
clavicle of the Iguanodon with the Iguana, of 75 feet from a similar comparison of their femora, and of 80 feet from that of the claw-bone, which if founded upon the largest specimen from Horsham, instead of the one compared by Dr. Mantell, would yield a result of upwards of 200 feet for the total length of the Iguanodon, since the Horsham phalanx exceeds the size of the largest of the recent Iguana's phalanges by 40 times. But the same reasons which have been assigned for calculating the bulk of the Megalosaumes on the basis of the vertebre apply with equal force to the Iguanodon. Now the largest vertebra of an Iguanodon which has yet been obtained does not, as has been before stated, exceed $4 \frac{1}{2}$ inches in length; the most common size being 4 inches. The intervertelral substance is shown by the naturally juxtaposed series of dorsal rertebrex in the Maidstone Iguanodon to be not more than one-third of an inch in thickness. All the accurately determined vertebre of the Iguanodon manifest the same constancy of their antero-posterior diameter which prevails in Sauriaus geqerally; the discovery of the true character of the supposed lacertian vertebro, 6 inches long, removes the only remaining doubt tbat could have attached itself to this important element in the present calculation. I'he cervical vertebro of the Iguanodon, when discovered, if they prove to differ in length from the known dorsal and caudal vertebre, will be in all probability aomewhat shorter, as they are in the Hylæosanr, and in all known Crocodiles and Lizards. It remains therefore to discover the most probable number of the vertebre and the ribs; and especially the variation in both structure and size which the ribs of the Iguanodon already obtained demonstinte to have prevailed in the costal series, renders it much more probable that the number of the costal vertebme would resemble that of the Crocodiles, than that of the Sanrians or other Lizards with unusually numerous dorsal vertebre, and which possess ribs of a simple and uniform structure, and of nearly equal size. The most probable number of vertebre of the trunk, from the atlas to the last lumbar inclusive, calculated from Crocodilian analogies, would be 24 vertebre; which is also the number possessed by the Iguana. Twentr-four vertebre estimated with their invertebral spaces at 5 inches each, give 10 feet; if to this we add the length of the sacrum, namely 17 incbes, then that of the trunk of the 1 guanodon would be 11 feet 5 inches, which exceeds that of the Megatherium. If there be any part of the skcleton of the Iguana which may with greater probability than the rest be supposed to have the proportions of the corresponding part of the Iguanodon, it is the lower jaw, by virtuc of the analogy of the teeth and the substances they are adapted to prepare for digestion. Now, the lower jaw gives the length of the head in the Iguana, and this equals the length of six dorsal vertebre, so that as five inches rather exceeds the length of the largest Iguanodon's vertebrom yet obtained with the intervertebral space supcradded, on this calculation the length of the head of the largest Iguanodon must have bcen 2 feet 6 inches. In the description of the candal vertebre it has been shown that the Iguanodon could as little have resembled the Iguana in the length of its tsil as in the anatomical characters of any of the constituent vertebre of that part; the changes which the series of six caudal vertebre present in the length and form of the spinous processes, and in the place of origin of the transvers processes, indicate the tail to have been shorter in the Iguanodon than in the Crocodile. Assuming however that the number of caudal vertebre of the Iguanodon equalled that in the Crocodile, and allowing to each vertebra with its invertebral space $4 \frac{1}{2}$ inches, we obtain the leagth of 12 feet 6 inches for the tail of the Iguanodon.

"The same obaervations on the general form and proportions of the animal, and its approximation in this respect to the Mammalia, especially the great extinct Megatherioid or Pachydermal specics, apply as well to the Iguanodon as to the Megalosaurus."

Since the original discovery of the teeth in Tilgate Forest, acveral other portious of this renarkable animal have been found. The most interesting of these were discovered by Mr. Bensted, of Maidstone, in a green-sandatone quarry near that town. Other remains have also been ohtained from the Wealden of Sussex and the Isle of Wight. On some of these remains Dr. Mantell thus remarks :-
" A recent discovery however supports the idea first suggested by the stupendous size of the bones of the extremities. In a block of calciferoua grit, picked up on the sea-shore, I have laid bare a chain of eleven caudal vertebre, belonging to the middle region of the tail, and the bodies of these boneg, instead of being abbreviated, as the shortness of the known anterior caudals led us to infer, are elongated, as in the corresponding part of the skeleton of the recent Iguana. The leagth of four of these vertebre is equal to that of five dorsals, and their spinous and transverse processes are so well developed as to ahow that the tail must have becn greatly prolonged, prohabably in the mane rlegree as in the existing Lizards. The length of the fomur of this individual is equal to six caudal or eightanterior dorsal vertairge.
"It is therefore, accorling to the present state of our knowledge,
not at all improbable that the largest Iguanodons may have attained a leugth of from 60 to 70 feet. Although some important points in the osteology of the Iguanodon are still unknown, we may safely conr clude that this stupendous reptile equalled in bulk the largest herbivorous Mammalia, and was as massive in its proportions; for hiving exclusively on vegetables it must have had the abdominal region greatly developed.
"Its limhs must have been of proportionate size and strength to sustain and move so enormous a carcass; the binder extremities in all probability resembled the unwieldly contour of the Hippopotamus or Rhinoceros, and were supported by strong short feet, protected by broad ungular phalanges; the fore feet appear to have been less bulky, and adapted for seizing and pulling down the foliage and branches of trees; the jaws and teeth demonstrate its power of mastication, and the character of its food; while the remains of coniferous trees, arborescent ferns, and cycadeous plants, which are found imbedded with its remains, attest the nature of the flora adapted for its sustenance."

Whatever may be the differences of opinion as to the precise size of this creature, all writers agree as to the great iuterest attaching to its existence in this part of the world during the deposit of the great fresh-water beds that characterise the geology of the British Islands.

The remains of the Igranodon ao carefully collected and treasured by Dr. Mantell are now in the British Muscum, where they will ever remain a monmment of his perseverance and skill, and a means of enabling the student of natural history to come to his own conclusions on the debateable points its structure has raised. To his account of its atructure Dr. Mantell adds some physiological inferences as to the atructure and cconomy of the Iguanodon, with whioh this notice may bo appropriately closcd.
"In iustituting a comparison between the maxillary organs of the Iguanodon and those of the existing herbivorous Lizards, with the view of obtaining some physiolagical deductions from their peculiar osteological characters, we areat once struck with their remarkable deviatiou from all known types in the class Reptilia. In the A mblyrhynchi, the most exclusively vegetable feeders of the Saurian order, the alveolar process, beset with teeth, is continned round the front of the mouth, the junction of the two rami of the lower jaw at the symphysis presenting no edentulous interval whatever, aud the lips not being more produced than in other reptiles; for these creatures chip off and bruise their food, and caunot grind or masticate it: in the Iguanas, as previously shewn, the same character exists. In the carnivorous Saurians the tecth are also continued to the symphysical suture on each side. The extinct colossal Lizards offer no exception to this rule; in the acrodont Mososaurus of the Chalk, and in the thecodont Megalosaurus of the Oolite and Wealden, the jaws are armed with teeth round the anterior cxtremity. In short, the edentulous, expanded, scoop-shaped, procumbent, symphysis of the lower jaw of the Iguanodon, has no parallel among either existing or fossil reptiles, and we seek in vain for maxillary organs at all analogous, except among the herbivorous Mammalia.
"The ncarest approach is to be found in certain Edentata, as for example in the Cholocus didactylus, or Two-Toed Sloth, in which the anterior part of the lower jaw is edentulous and much prolenged.
"The correspondence is still closer in the gigantic extinct Mylodon, in which the symphysis resembles the blade of a spade used by unffdiggers, aud has no traces of incisive sockets; and were not this part of the jaw elevated vertically in front, and the two rami confluent, it would present the very counterpart of that of the Ifuanodon.
"The great size and number of the vascular foramina distributed along the outer side of the dentary bonc, and beneath the horder of the symphysis, in the Iguanodon, and the magnitude of the anterior outlets which gave exit to the vessels and nceves that supplied the front of the mouth, indicate the great development of the integuments and soft parts with which the lower jaw was invested. The sharp ridge bordering the deep groove of the sympbysis, in which there are also scveral foramina, evidently gave attachment to the muscles and integuments of the under lip; while two deep pits for the insertion of the protractor muscles of the tongue, manifest the mobility and powerof that organ. There are therefore strong reasons for suppesing that the lip was flexible, and, in conjunction with the long flesky prehensila tongue, constituted tho instruments for seizing and cropping the leaves and branches, which, from the coustructiou of the molars, we may infer constituted the chief food of the Iguanodon. The mechanism of the maxillary organs, as elucidated by recent discoverics, is thns in perfect harmony with the remarkable characters which rendered the first known teeth so enigmatical ; and in the Wealden herbivorous reptile we have a solution of the problen, how the integrity of the type of organisation peculiar to the class of cold-blooded Vertebrata was maintaiued, and yet adapted, by simple modifications, to fulfil the conditions required by the economy of a gigantic terrestrial reptile, destined to obtain suppert exclusively from vegetable substances, in like manner as the extinct colossal herbivorons Eidentata, which flourished in South America ages after the country of the Iguchoden and its inhabitants had been swept from the face of the earth. Thus in the unlimited production of successional teeth at every periad of the animal's existence, in the modo of implantation of the tecth, and in the comporite stritcture of the lower jaw, oach
ramun cosvioting of aix dintinct elementw，tho Saurian typo of orgnni－ astion is unequiracally masifent；whilo the intimate atructure of the deusal orgasin apiruchen that of tho Slothe，aul the aub－niternate arrangetment and revernal pioition of the upper and lower nerien of teeth correpond with that of the Ihuminanta；and again，the cilentoloun and prolongerl yrsphyin，ant tho great developoucut of the lower lip and the integument of the jnwe，an indicated ly the nize not namber of the rameular foramina，preacut astrikimg nalogy to the Billentoba They who doubt the correctuess of this interpretation abould remenker that it is in thin order of Nammulia that wo fmel tho mearest apprasch to the figtidio；in the ncaly covering of tho whin， the imperfectum of tho dental aratem，the malluens of tho inain， and the loug contionnece of the musenlar fibto nfter death，which are memay frealencen of onmanation，po to apenk，that indicate a atep townala that clan of which the lguanodon alpears to have beeta the highest type
＂If the opinion freviously advanced the correct that the anterior part of the mpinal colum comminted of convexoconcave，and tho doral of planocosicave vertebrs，the mulut Iquonolon tnunt harc approseled in thin part of ith wleleton，an well ss in its smerum，in ifn manive femorn，with their lange medullary caritien，trochnutera，
 to that if the large lecticoroun Mammalin．Tho position of the hinder limlen（1）we thighn aut legs）in relation to the pelrin，camot le accuratels determined frum tho dnta nt present obtained；but the form of the head and shaft of the fomms，and the clinracter of its articulationa and procemes so closely resemblothuse of tho largest Pachvilerm，as to nugeest the iden that（unlike the reat of ita claes） the figmanodon lual the bouly nupported an in the Manmalia，and the ablomen mandencel ligher from the ground than in any exinting Sauriang．In tinc，we have in the／gmanolon the type of the terrestrial Herbrorn，which is that remote eppoch of tho carth＇s phsaical history， termed l＇y geuldgints＂tho A ge of leputilen＇occupied the amme relative station in the acale of being，and fulfilled the enme general purposes in the economy of nature an the Mastodonn，Mammothe，nod Mylodona of the Tertiary perion，sud the exinting I＇nalisderme．＂
（Owrn，Rejort on Ihitish Fowril hephiles；Minatell，I＇drefactions and their Teorhingn：Muckland，Bridgeteafor Tratiac．）

HL゙し゚M．［1sthatiske ］
ILF．X is a name given to two sery different plants．An that of n precien，it indicatea the Fivergrect Oak of the South of Europe，or Quencm／les：as that of a genam，it belonge to the Common llolly， llex Aymifolimut，the type of the natural order dquifoliacere．This latter phant，which countituten so beautiful a fenture in tho winter cenery of many parim of jingland，nad whone sarlet or yellow berries remer it 10 unnemal a decoration of churches（hence tho anmo Holly－ Tree，or lloly－Trec）and dwelling houses at Christman time，is in（ireat Itritain 11 ond the mon northern limita within which it rauges in n wild etate．it in lowever at thone limits that it nttains its greateat nize and lwanty；but it occasionally auflers from gewere wintern．It in common ta tho niddle of Fiurope，sul the mouthern aide of tho range of the Caucanns，where it in only a Lush，and it probably extends far to the eantwrid．It in chdefy whlued an a abelter in winter，and su ormanental tree，but itm fone－grained heavy compret timber in used for $\begin{gathered}\text { groat musuber of ameful purposen，enjecially by tho turner nad }\end{gathered}$
 aro carved out of it wood．It in almo employed medicinally；the lemera and lark nonam febrifugnl powern of a ntronglymarked character the now nad tho bark are naid to le diuretic nul expecto－ rars，lase tho terrica lave tho dincredit of being poisonous，produciag ［umbetime and violmt emetic etfecta．
 fies couprebento n large number of niecion，tho most remarkable of whech are the J．Ihatorsicn，or bromllenved epecien of Minoren，a very lamalornm kint，which in landy in the middle sud nouth of Foughand：the f．romiforia，or（＂amenm－Tree of the North Americam，
 f＇oraguagrasia，or Mak＇l＇latit，of whono lemven a very largo con． atamption takom place in Somth America，umber the mome of Ter of ］＇arngump．［Tra，l＇shageat．］The lenten arm dricd，nul afterwards nandlike lie tra of the Chisem．（hosolon，Arhoremm britannicum．）
 an rerigonally conmttuted by lirougrinct in hia work on the Tritobiece． Tho candal glate in one latec cobsex part，aforly currenpondiag to the antorior whiflel．Ferona the Traumition Strata of Clariatianis， Untrugutha，As［Thumbra］
 Manta，chieffy conoinsing of lirrbaceoun weclu，found is tho tempersto farta of the world：they ditter from Amarantace in mothing exeept haring mifulon and a tendency to promuco petals；from Alamacere in dittle more than having atipulem；and from forlulareor in their mepala not bersig in yaira，Thin oreder in ane of thoe which brenk down the lurata letwecti Irolypetatotan and Apetaloun planta，and prove how otisirely artificial are auch divinjona Tho apectea aro often con apicuoun，elecinlls when dried，for their nilvery，atiputem nad alaning enlysen，wad aro monetimmen lutiful microcopic oljectan；but they are tom omall to be intorenting in nuy othar way，and aro of no known une．They ancur to varion garts of tho world，eapecinlly in tho
commeries Lordering on the Mediterraucan．The order embrnces af genera and niont 100 rpecien．A fers occur nt the Cape of Good 1lope，and acveral are found in America．Thollritish representativen are Corrigiolo，I］ermiaria，and Illecebrum．［Combgbola；Ilescebrum．］

Illorebrum rerticillatum．
，a rair of leares，with the intervening fipulea；2，a flower，seen from above；3，a Rower cut opers．
ILLIECE＇BIKUM，a genus of Plants the type of the natural oriler Heccbracece．It lins 5 sepals slightly cobering at the base and horned nt the back．I＇etals absent or 5 ，subulate，inserted with tho 5 stamens on Ω perigynous ring；$n 1$－celled 1 －seeded furrowed espsule bursting along the furrows．Tho onty species is a small trailing shrub with opposito leares hnving scarious stipules at the base．
f．verlicillatum，Whorled Rush－Grass．It has a trailing glabrons ntern，roundish leaves，verticillnte whorled white minute flowers．It is foumd in bogs nud wet marshy places，chicfly in Cornwall aud Devonshire．Tho seeds of this shrub should bo planted in moist kituation，rnd，if nllowed to now theruselven，will gpring up regu－ larly every season．It is worth cultivation on nocount of the delicacy nud benuty of its blossoms．
（Babington，Manual of British Botany；Don，Dichlamydeous

I＇lan（a．）

H．LICEA：［Wisyeracese］
ILII＇ClUM（illicio，I nllure），a genuth of Planta，so named in con－ anquence of their sery agreablio aromatio fragrance；they belong to the Wiuter＇n Bark tribe．These sre now generally described na a separate fanily under the sunmo of IHinteracer，and are distinguished ly their doted leaves and aromatic properties from dfognoliacea，of which they sre sometimes mado a section．The genus／llicium is clanacterised by having from 3 to 6 petaloid sepals； 27 petala arranged in several rowa below the numarous stamens and pistila． The capaulea are dinposed in a cireular manner，and open upwards； crich contaiss a siuglo shining seed．Tho species nro few in number， but widely diatributed．Two nre indigenous in Floridn；nud the others in Clima nad tho neightrouring imlands．I．Fioridanum is a redflowered njeciea，of which the leaves aro very fragrant，and tho cmpnales amell of anio，though more faintly than the Chinese species． Tho bark las been propoeed ns a substitute for cimmon and nasanfras burke J．paimiforum also，n hativo of North Amerjea，has nimilar properties，eaprecially in ita lenves．

Tho mont important npecies howevor is I ．anisatum，or the Anisech－ Tree of Chimn，of which the fruit is exported from Canton，nud well known in conmerce by the namo of Stat Aniac．In Indin they noo enlled hadinu Khatat，or Chincac Auine．Henco tho namo ladinue，by which they are chiedly known on tho continent of burope，whero they are more employed than in this comery；being eatemed，ns in the liant，for their sromatic and carminative propertics．The amell and taste of both the capaule nud seed being liko that of nuisced，n volstilo oil in dintilled from them，which may bo employed for all tho purposen of the oil of nisoed：it is anid to gire tho flavour to Anisette de lbordenux and to Aninette do Hollnarle．The Chineno uso it in mubatance both as a condiment and n stimulant medicine amb burn it as incenne in their tomples．The troo flourialace in Chinn nall momo of tho lhilippino Inlands，and is found also in Japan， whenco Sicbold has described a new npecies．M Perrotet nan mentionn that thero in an undeacribed apecien at Manilla，whieh is thero called Sandil；that its leaven are mixed with their ten and contec in the l＇hilippinea，and that a liqueur in likewise prepared from its fruit．

ULLUDIETRFE，
［13．13S1A．］

ILMENITE. [Titanidm.]

ILUANTHUS. [Actiniade.]
ILVAITE, a native Silicate of Iron, identical with Yenite. [Iron.] imber. [Colymbide.]
imbricaria. [Sapotacee.]
IMPA'TIENS, s genus of Plants so called from the sudden snd elastic force with which they burst their capsules; henee 'Noli me tangere' is the nsmo of one of the species. Another is well known as a highly ornamental annual by the name of Balsam, whence the natural family to which it helougs has heen called Balssminacere. [BarsaminACER.] The genns is especially an East Iudian one, though single species extend into Europe, Siberia, and North America. Linuæus was only acquainted with 7 or 8 species; but Dr. Wight, iu the 'Madras Journal,' vol. ii., states that not less than 100 species are now known, and almost entirely from the mountains of the peninsula of India and the Himalayas; in those from Silhet as far north as the Sutlej, and in 30° N. lat., at as great elevations as 7000 feet. They are absent from the plains of India; some are found on the Malabar coast, little elevated above the sea, but only during the monsoon. Dr. Royle has ststed that they sre only found in the Himalayas during the rains, and hence inferred that the muisture and moderate temperature, as well as the equability of both during the rainy season, is ss favourable to their growth as the beat and moisture of the peninsula; but Dr. Wight has since ascertained that the species are chiefly found at elevations of 4000 and 4500 feet, in a season where there is moisture combined with a moderate but equal temperature. These facta are important as showing the influence of climate on vegetation; and useful as affording hiuts and principles for the cultivation of these plants at a lower temperature thau is necessary for the plants of the plains from the same latitudes, though great success has been attained in the cultivation of Balsams in this country.

IMPERATO'RIA (so named from its supposed imperial virtues in medieine), a genus of Plants belonging to the natural order Umbelliferce. It has no calyx ; obovate petals, contracted into an inflexed segment; the fruit flattened at the back, with a dilated flat horder. The species are glabrous perennial herhs, with erect hollow terete stristed stems. The nobels are large and componnd, and the flowers white:
I. Ostruthium has a tuberous fleshy and somewhat creeping root of an aromatic and acrid nature; the lower leaves biternate, the upper ones leas compound; the flowers are small, and of a white or pale flesh-coloured hue. It is a native of Europe and Newfoundland in damp meadows and woods. This species is the Masterwort of old English herbalists, and the root has bcen much celebrated as an antidote against poisons, a diuretic, and sudorific; and Lerango affirms that an infusiou of it in wine has cured agues which have resisted quinine. When chewed it excites a copious flow of saliva, aud acts as an agreesble stimulant to the gums. It is recommended in ceses of rheumatic toothache, and is cultivated in many places for the London market.
I. angustifolia, the Narrow-Leaved Masterwort, has biternate leaves, oblong leaficts, stteuuated at the base and deeply scrrated. It is a nstive of the Alps and Piedmont. The blossoms appear in June and July, and are of a white colour. The speciss of this genus are of easy culture, and may be propagated either by dividing the roots or from seed.
(Don, Dichlamydeous Plants; Lindiey, Flora Medica; Burnstt, Outlines of Botany.)

impeyan. [Phaslanide.]

impregNation. [Reproduction in Plants; Reproduction in Animars; Stamen ; Pistil.]
I'NACHUS, a genus of Brachyurous Crustaceans, placed by M. Milne-Edwarls under his tribe Macropodians. [Machorodians.j]

incisors. [Dentition; Teeth.]

incus. [Ear.]
INDIA-HUBBER, the common name of a vegetable compound which is found in all plants with a milky juice. It is also known by the nsme of Caoutchouc.
The existence of a milky juice in many plants, which flows from them when their tissues are wounded, is a fact that has been familiarly known from time inamcmorial. It is however only a matter of recent discovery that this milky juice characterises certain families of plants. Although the great majority of plants which yield this juice in abundance are tropical, yet they are not without their European representatives. The Spurger, Dandelion, and Celandine of our road-sides are instances. The farnilies of plants which furnish this milky juice in the grestest abundance are-Moracece, Euphorbiaceet, Artocarpacece, Apocynacee, Cichoraces, Papaveraceer, Campanulaces, aud Lobeliacees.

This juice, which is called by botanists 'the milky juice,' because it has an appearance similar to milk, las also the physical constitution of that fluid. It is an aqueous liquid, charged with soluble matter, in which float globules of a substauce insoluble in water, and which are by their tenuity held in suspension in the liquid, hut for which they have no affinity, in the same manner as hutter is held in suspension by milk. From the differenee of the refractive powers of these two suhstances, each of which taken separately would be colourless or transparent, arise the opacity and white colour of the two: hence the compound is pruperly called a ' milky juice.'
The anslogies which this juice exhibits with the milk of animals and NAT. HIST, DIV. VOL 4 II.
vegetable emulsions are seen in the manner in which it acts when left to itself. Run out into the sir, received and preserved in close vessels, it separates itself into two layers, as milk itself would do. The watery part very soon has an insoluhls part floating upon $i t$, whieh colleets together and swims at the top as cream swims upou milk, and which forms nearly the half of the entire mass. But with these physical resemblances the analogies cease. That which in milk and in emulsions produced from seeds collects on the surface of tha aqueaus liquor is, properly speaking, a fatty body, containing oxygen in its composition; while the kiud of cream which swims upon the milky juice is a compound of carhon and hydrogeu.

This substance has long been known to the natives of both the Old and New World, in Hindustan and South America- It was not however till the expedition of the French academicians to South Anterica in 1735 that its properties and nature were made known in Europe by a memoir upon it by M. de la Condamine. This notice excited little attention; and subscquently notices of this substance were sent to the Freach Academy in 175 I hy M. Fresnan, and iu 1768 by M. Macquer. At the latter end of the last century and the beginning of the present it was brought into this country in small quantities, where, on account of its being used for rubbing out black-lead pencil marks, it acquired the name of India-Rubber.
Although after its application to the water proofing of garments its cousumption gradually increased, the importatiou into the United Kingdom in 1830 appeara not to have been more thau $50,000 \mathrm{lbs}$. In 1842 the import of this article had increased to between 700,000 and $800,000 \mathrm{lhs}$. Up to the present time the consumption of IudiaRubber has prodigiously increased; and one port alone in South America is said now to seud to Great Britain nearly 4000 ewts. annually. To the large consumptiou in the United Kingdom must he added that of America, where the application of Caoutchone has been much more general and successful than even in our own country.
The particular species of plants which are employed for procuring India-Rubber are very numerous, and it is probable that many yield it which are not yet known to botanists. The tree which supplies most in Continental India is the Ficus elastica, s tree belonging to the order Moracees; it is exceedingly abundant in Asam. All the species of Ficus yisld Caoutchouc to a greater or less extent in their juices, and even the Common Fig (Ficus Carica) of Lurope contains it. Species of Picus produce the Caoutchouc brought from Java; aud F. radula, F. elliptica, and F. prinoides ars amongst those mentioned as affurding a portion of that brought from America. Next to the Moracese the order Euphorbiacese yields the largest quantity of Caoutchouc. The Siphonia elastica, a plant found in Guyana, Brazil, and extending over a large district of Central America, yields the best kinds of India-Rubher that are brought into the markets of Europe and America. To auother order, Apocynacect, we are indebted for the Caoutchouc which is brought from the iglands of the Indian Archipelago. The plant which is the source of this substauce in those districts is the Urceola elastica, a climbing plant of very rapid growth and gigantic dimensions. A single tres is said to yield, hy tapping, from 50 to 60 lbs anoually. Mauy other plants of this order yield Caoutchouc, and of those given on good authority we may mentionCollophora utilis aud Cameraria latifolia, plants of South America; Vahea gummifera, in Madagascar; and Willughbeia edulis, in the Fast Indies. To this order belongs the Cow-Tree, or Hya-Hya (Taberncemontana utilis), of Tropieal America, which yields a milky juice that is druak by the natives of the district in which it grows.
The Caoutchouc, whilst it is in the tissues of the plant, is evideutly in a fluid condition; but after its separation from the other fluid parts its consistence becomes changed, aud it forms a solid mass similar in its exteroal characters to vegetable albumen. In this state it is dense and hard, but may be separated and rolled out so as to form a slicet rcsembling leather. It has nany interesting and peculiar properties. Insoluble in water and in alcohol, it dissolves in ether, in the sulphuret of earbon, the fat oils, and the liquid carburets of hydrogen.
It is soft and elastic at the ordinary temperature, hut at the temperature of 2° above the freeziog point it acquires the hardness of wood. A temperature of 100° softens it without altering its form. It then unites with itself with the greatest facility, aud two pieces recently cut apart re-1unite so as to reader it impossibla to discover where the juuction has taken place. But a higher temperature, approaching 150°, changes it into an adhesive substance, which on cooling does not recover the primitive properties of Cauutchonc.
In the state of recent coagulation, and whils still in a pulpy coudition, Caoutchouc possesses a degres of plastieity which admits of its receiving, by means of moulds, the most varied forms.
The greater part of the Caoutchouc of commerce is obtained by the natives of the countries in which it is produced in the form of shapeless masses, collected at the foot of the tree which has been incised or cut for the purpose of extracting the juice from it, or solidified in a trench made in the earth, and coagulated in this rude mould in voluminous masses, which often resemble the trunk of a large tree. A part of it however possesses other forms which the rude art of the natives attempts to communicate to it. They model with plastic clay figures of animals, imitations of the human foot, aud par-shaped bodies; sud then dipping these moulds in the thiekener Caoutchouc, and reuewing the connection when the first coat is
molidified loy exponure to the air, they ottain, ly loreaking the mould aonl gostime it out in fragtocuts through nn opening jroperly arrangerl, bolluw thaks, fygrem of mimals, rowigh slippere, ic. They thus make Conuchous rerve for the manufacture of objects for which we qunclven cumpy animal nembrues and leather.

Imindiubler in obtained from both the thd and New World. The Eut Indies ouppliad the original apecimena men in Furope, and have erer mive been a source of napply to tha lbritish rumrictas. It comes pribeigally from Java, and is offen glutinous, and is less esteemed in commerce than that furnished by the equatorisl regious of America Cirmt quantition of Caoutchouc aro imported into Furope from Mexico, frous Suath Auerica, aul enpecinly from the province of Iara in Brasil That wheh cones in the whape of buttles is generally preferme ; and when it is pure, and the different coats which comprise it aro well united, is teay be emplayed immediately for many purposes. But in ofen hajpena that the conte which form the pear-shaped nansea are bally uniteal. It then becomes neceswry, in order to make ure of them, to work it up by a process of kneating, so as to obtain it in a colerent or bomogenevus unes. This operation becomes especially iudinpenable when, as moxt commonly hajpreus, the Caoutchouc is in largo impure maven, and mixed with sand aud the debris of vegetatle matier. Thrse impurities de not entively proceed from the monlds matc in the earth into which the juice bas been allowed to exude, and in which it has been left to thicken and solidify; but their quantity and their presence betwen the conts of the pyrifurn maeses show that the impurity in mainly to be attributed to frand. The Caontchouc thum obtainel is not applicable to any use until it has undergone a previous purification.

The purification of the Caoutchouc is nccomplished by submitting the itopuro Caouthouc to the nction of cylindersfurnished with teeth turaing in oppomite directionm mud with uneyual velocities, which calso it to uadergo s Wiud of mastication. lby this treatment the Caoutchoue beconses mofened without being lipuified, and a homogeneour mas in formed which in cut in the form of rectangulsr blocks. which leing asaiu cut, coustituto these stanll parmllelopipedons used by drauphtmen to rub out the marks of black-lead pencils. This tue wa in fiugland for a long tirve the only one to which this subntance was applied, but this limited use was far from indicating the enkent to. which Caontchonc las been employed in the last thirty yearh, or the multiplicity of services it has been called upon to perform for manitary anil industrial jurjous. To rub out pencil-marks, to furm the rude wippers which scemed well miaptel to the Indian wilet, but to which a furm acceptable in Furope lisd not been ind partad, were in fact the ouly unes to which Caoutchous was applied up to ls?

The relstionn of Caoutchuve to the functionn of the plants in which it in found are net udentoml. Many fallacions views have beou wered on this nulyect. Schulzo of Jerlin, who has written most estenairely on thim subject, regralerl it an a prideiple in the juices of planta agaloggon to the fibrine of the bloud, but hia viow with regand to the unilky juice of planta nad the luticifervun tiksue are now generally allowed to be erruneoun It in not improbable that Canuichono in formed as the result of the deoxidation of cellulose, or some other ternary constituent The clsemical composition of Cnoutchone is Hylrogeu and Carloon. In whant proportion they exist is not known. When diatilled, Caoutchoue yiclils oils which have a cuaporition similar to oil of turpertinn- C_{3}. II , or $\mathrm{C}_{1 r} \mathrm{H}_{\text {a }}$
(heyorts of the Great Fifhicition of 1851, Clan XXVIIII., by Dr. Lankenter; Schleillen. Principles of Scientific Botany; Gregory, Handlow of Organic C"hemisery.)

INHAX tolss. [\%E.a.]

IN]lAS ox. [thovity]
INJMAS sllut. [Marsatacele]
 hardoen $\delta 0$ to $\delta \cdot 3$. It meratchoe glasm. 'lhe colour in white or grayish; lustre aloining: trasalucent; specife gravity 2.04 . It is infuaible by tha blow pipe, and gelatinimen in ncidn it oceurs assocanked with Crarnes, Felopar, Fibrolsee, and Hormblende.

INIDGO. [Jxthoteres.]
 feymonow, ismgeneun in the equinoctial parta of Auin, Africa, moll America, and celebrated for some of the mpecion yiclding ludigo. The nacelen are mont 130 in mumer; all wremali herlaceoun or ebrubty jlanta The leaves are usually pinuate; the blowerm monall and japilionaceoun, in axillary clumters of a jurple, blue, or white colsur. Thle calya is \langle-eleft; egmenta ouvte: vexillum roundiah, etbargimate: keel furnimhol with a aubulate mour on Inoth ajilem Stamora lialejphoua (9 and I). Lagume coutinuoun, one or more acolenl. Seoala unually truncated, meparsted by cellular apurioun partithin. There in monne alifliculty innacertaining all the cultivated apacien, an the mologect in umally neglected both by waturalinta mad cultivatora.
7. Inociona In the necies generally cultirnted in India, whence it ban leen introducell both juto Africa and Anerica. It is culfruticose, erech Lranched: leaven piunate: leaflets 5 or 6 pairn, long-obovate, carcely pubescent; racemes of flowern axillary, shorter than the
leaves. Legumes approximatel towards the base of the rachis, nearly eylindrical, slightly torulone, deflexed, and moro or less curved upwands; sutures thickened; seeds about 10 , cylindrical, truncated at both ends. This species is sometimes callerl Indigo Frane and French Indigo in the Weat Indies, It is mad to be found wild along the sands of Senegal. ('Flore de Senegambie,' vol. i. p. 178.)

1. Anil. From the narne it mighi be inferred that this was an Asiatic plant; but it is said by De Cundolle to grow wild in America, and to be cultirated in both Indies, as also along the Gambia in Africa. The name Anil, which has pased into the Spanish, has evidently the same origin as tho Arabic Neel, or Nil. The Spaniands and Portugueas, who had found the way to India by two opposito coursea, must there have become acquainted with Indigo, and adopted its Iudian name: they were the first to manufacture it \ln Amerieathe Portuguese in Brazil, and the Spaniands in Mexico. This species is charscterised by an erect suffruticose stem; leaves pinnate in 3 to 8 pairs; leaflets oval-oblung, scarcely pubescent on the under surface; racumes axillary, shorter than the leaves; legumes compressed, not torulose, deflexed, curved, with both eutures thickened and prominent, 10 - to 12 -seeded. Messrs, Wight and Arnot gtate, "We have not sufficient inaterials to enable us to determino if I. Anil be a distinct species. We know of no distinguishing eharacter, unless it is to be found ju the fruit, and the descriptions given of that part in the two species differ in different suthors." But the suthors of the "Flore de Senegambie' consider them distinet, as do most botanists.
I. carrulea (Roxb.). This is a new species described by Dr. Roxburgh, and called Karneeli in Telinga by the natives of the peninsula of India. IIt btates that from the leaves of this plant ho had often extracterl a most beautiful light Indigo, more so than he ever could from the Commor'Indigo Plant, or even from Nerium tinctoriam, and in a large proportion. He says it is an erect shrubby species, growing in dry barren uncultivated ground, to tho height of 3 feet, and higher io good garden soil. It flowers during the wet and cold seasona. The leaves are pinnste; leaflets 4 -paired, obovate, emarginnte; racemes rather shorter than the leaves; legumes reflexed, curved, contracted between the seed, hairy ; from 3- to 4 -geeded. De Candolle inquires whether this be sufficiently distiuct from I. tinctoria. Dr. Roxburgh states that it comes near to I. argcntea, Linn. The process be alupted for extracting Indigo from this plant was similar to that practised with the leaves of Nerium tinctorium, or the scalding process.
I. argentea is a species usually stated to be a native of India, and the authority of Dr. Koaburgh might be cited for the fact; but Mesars. Wight and Arnott state that 1. argentea of Linnaens is not found in India. It is the speciea cultivated in Egypt and Barbary for the aske of its Iudigo, and, according to Humboldt, also in America The Indian species which has been confounded with it is I. paucifolia of Delille, which has alternate leaflots, and linear, slightly compressed, torulose legumes. I. argentea is shrubly, with round branches, which By rear of a silky whiteness from nppressed pubescence; leaves pinnate, 1. to 2-paired; leallets opposite, obovrite, silky-pubescent; racemes bhorter than the leaf; legumes pendulous, much compressed, torulose, casescont; 2- to 4 -needed.
I. disperma. This, accordiog to Humboldt, is also one of the species cultivated in America, and seen among tho most ancient bicruglyphical paiutings of the Mexicans Dr. Bancroft considers it as the apecies called Guntemsla Indigo, which yields fine pulp, but is less profluctive than other specjes. The atem is herbaceous, weak; tho branches round; leaves pinnate, 4- to 6-paired; leaflets ellipticoollong, smooth; racemes sleuder, larger than the leaf; logumes suund, subtorulose, muerounte; 2 -seoded.

I'lanta of other genera are also employed for obtaining Indigo-as I'rightia (Verium, Roxh.) tinctoria, Marsilenia tinctoria, Galeya tincforia, but especially the first two. Dr. Jhneroft (vol. i. p. 190) also mbluces Spilanthes tinctoria, Scabiosa succisa, Chciranthus fenestralis; also a opecies of Bignonia and a Thbernemontana, on the A frican coast, with Amorpha frulicasa nind Suphora linctoria, as all yielding a blue dje, or coareo norts of indigo. [JNDtGo, in AkTs AND SC. Div.]

IN10U. [1, methone.]
INFEHOLBANCHIATA, the third order of Gasteropodous Molluaca, in the syatem of Cuvier, who deacribes them as having nearly tho form anl orgauiantion of Doris and Tritonia, but remarks that their brauchia, instead of being placed on tho back, are arranged in the form of two loug suites of leatlets on the two sides of the body under the advanced border of the mautle. Je records two geners, Phyllidia and Diphyllidia.

Phyllidia-Mantle naked, aud most frequently corinceous; no ahell. Mouth a small proboscis, with a tentacle on ench side; two other tentacles corne forth above two small cavities of the mantle. Orgaus of genemtion under the right side furward. Heart towards the middle of the baw. Stomach simple, axembranous; intestino short. (Cuvier.)
M. De Blainville describes the body of the genus Phyllidia as oblong and rothre convex; the head and the foot hidden by tho border of th: mantle; four tentacles, the two upper ones retractile in a cavity which in at their base, tho two lower buccal; mouth without an upper tooth; a lingual denticulated masa ; branchinl laminse all round the lower border of the mantle, except in front; vent at the posterior atal ruesial part of the back; orifices of the organs of gencration in a commun cubercle at the anterior fourth of the right side.
P. pustulosa is a native of the Indian seas, where the other species bave also been found.

Phyllidia pustulosa.

Diphyllidia (Linguella? Leach).- Eranchix nearly the same as in Phylidia, but the mantle is more pointed behind; the head, which is demicircular (la tête, en demi-cercle), has on ench aide a pointed tentacle and a alight tubercle; vent on the right aide. (Cuvier.)
M. De Blainville thus describes Linguella, which both Cuvier and himeelf seem to consider as identical with Diphyllidia.

Body oval, very much depressed, the mantle projecting beyond the foot on all sides, except in front; head uncovered. Branchial lamellx oblique, and only occupying the two posterior thirda of the inferior border of the mantle; vent inferior, aituated at the posterior third of the right side; orifices of the organs of gencration in the same tubercle, at the anterior third of the amme aide.

Jinguella Elfortii, De Blainv. (Diphyllidia Brugmansii? Cuv.). M. De Blainville says that the locality of this animal is unknown. Cuvier aaya that Linguella Elfortii appears to him not to be different from his Diphyllidias Brugmansii.
M. De Blainville further says that it is probable that the genus establiahed by M. Rafinesque under the name of Arminia does not differ much from Linguella. In his 'Additions and Corrections' to his 'Manuel' he says that M. Otto has discovered a speciea of Linyuella in the sea of Naples.

Linguella Elfartii. De Blainville.

M. Rang observes that Diphyllidia, Languella, and Arminia being identical, Cuvier's name should be preaerved : the two subsequent names should consequently be omitted.

Messrs. Forbes and Hanley, in the Appendix to the "History of British Mollusca, give an account of the taking of specimens of Diphyllidia lineata in the Shetland Isles and at Whitburn in Durham.
M. Rang included the fresh-water Aucylus in this group. It has however pulmonic sacs, and belongs to the Limneado.

INFLORESCENCE, in Plants, is the manner in which their flowers are arranged. A flower bcing a borly analogous to a leaf-bud, with a similar origin, and capable, under particular circumstances, of reverting absolutely to that condition, it follows that the branching of that part of a plant which bears flowers abould be of the same nature as that which bears leaf-buds, and therefore not in need of special explanation. But as the formation of the flower out of the materials of a leaf-bud is accompanied with many deviations from the habitual development of its parts, so is the disposition of the branches of infloreacence often in a similar way a deviation from the habitual method of arranging those parts.

In the study of the inflorescence of plants it should never be forgotten that it is entirely dependent on modifications of the axis. For the purposes of arrangement it may be considered as regular or centripetal, and irregular or centrifugal: in the former all the parts are formed successively without interruption; iu the latter the parts are subject to various interruptions and derangements in the progress of their formation. In centripetal inflorescence the external flowera

of a dine, or the lowermost of a cone, are first developed, and consequentiy first expanded; and hence the course of unfolding proceeds from the circumference to the centre, or, which is the same thing, from the base to the aper. In centrifugal infloreacence the axis of growth is arreated in its progreas by the formation of a flower-bud, an at a, in the accompanying diagram; two lateral points then develop from below a, and lengthen to b, where a new flower-bud appear, and stope tho growth; two other lateral points aro produced from
below b and lengthen to c, where a new flower-bud again arrests the progress of development; and ao on. In this case it is clear that a in the centre, being first formed, will expand before $b b$ and ccce; that $b b$ will in like manner open before $c c c c$, and in the same way all the others : hence the order of expansion of the flowers is from the centre to the circumference. To this kind of inflorescence the word Cyme is usually applied. It occurs in the Common Elder, the Laurustinus, \&c.

The centripetal inflorescence, in its simplest atate, is merely a branch bearing flowers instead of leaf-buds, as in the Hyacinth and the Ornithogalum. If the flowers are sessile, it is then called a Spike; if stalked, a Raceme. If the branch of the spike or its axis is ao much contracted as to become a broad disc, as in the Dandelion, or Daisy, or common Artichoke, the inflorescence is called a Head or Capitulum; if the aame thing happens to a raceme, the Umbel of Astrantia, Fennel, Parsley, \&c., is the result. Let the flower-stalks of the raceme be branched or racemose, and the Panicle is produced.

The following is a survey of the kinds of inflorescence and their names, from Professor Schleiden'a 'Principles of Scicutific Botany.'
A. The Solitary Flower, as terminal or axillary flower (Flos Solitarius, terminalis vel axillaris). The latter may be situated in whorls, aud then form a Verticil (Verticillus).

B. Simple Inforescence.

a. Inflorescentia Ceutripeta.

1. The Capitulum. The undeveloped axis is here usually enlarged upward, with a fleshy or spongy aubstance, and the more so if the number of flowers is very great. It may be more minutely designated as aimple, discoid, cupulate, lageniform, conical, and cylindrical, as it approachea nearer to one or another. The last form then passes gradually into the apadix. Special varieties are :-

* The Calathium (Anthodium, Ehrh.; Flos Compositus, Linn.), a many-flowered capitulum, whose aingle flowers stand in the axils of more or fewer stunted bracts, and are surrounded with one or more circles of atcrile bracts, as in the family of the Compositce.
** The Cxnanthinum, Nees (Hypanthodium, Link.). Exactly like the preceding inforescence in some Urticacece. The cup-ahape of the peduncle in Picus is no distinction, since it is wanting in Dorstenia; and it exists in some Compositce; the same may be said with regard to the aterile bracts, which are as much atunted in Dorstcnia as they are clearly present in Ficus.

2. The Spike (Spica) in very various forms. The kinds are :-

* The Catkin (Amentum), diatinguished by the fact that it falls off entire, or by its imperfect flowers. The male inflorescence of Cupuliferc, Salicacew, Betulacea, and some few other plants.
** The Spadix, a closely crowded spike, or partially a cylindrical capitulum with fleshy peduucle ; in Aracea, Maize, and some other Grasses, and in Palma, in the last of which it is often compound (Spadix Ramosus).
*** The Cone (Strobilus or Conns), a cylindrical capitulum or aolid apike, on which the individual foliar organa become woody scalea; as in the Conifere, the Casuarinacea, the Betulacece, and some others.
**** The Spikelet (Spicula), the aimple inflorescence of the Grasses and Cyperacea; namely, a few-flowered apike, whose flowers have no bracts, surrounded at the basis by one or tivo sterile bracts (Glumx).

3. The Umbel (Umbella) in the Umbellifera; when compound tcrmed Umbellule (Umbellula).
4. The Raceme (Racemus) occurs in very different forms; it is usual to distinguish in it -

The Corymb (Corymbus), a pyramidal raceme.

β. Inflorescentia Centrifuga.

5. The Cyme or False Umbcl (Cyma), is a corymb with Inflores. centia Centrifuga.

That only singular cases are distinguiahed in these is a proof of the totally unscientific patching together of our terminology. The compound raceme, the compound umbel, and capitulum, with inflorescentia centrifuga are all called a Cyme (Cyma), which is contrary to tho commonest scientific laws. De Candolle bas further applied the term Cyme to the inflorescence of the Boraginacect, which, on aocount of the peculiar manner in which it unrolla itself, he terma Cyma Scorpioides; and he adds the flction, that the undermost firat-blooming flower is really the terminal blossom, and the second, the terminal blossom of aide axis, is developed in a disproportionate debree, \&c. From the rolling up there is just as little to be deduced as from tho same phenomenon in the leaves of Ilicus and Cycadacea. The position of the bracts, as seen in Cerinthe, contradicts this fiction; and the hiatory of the development, which can alone determine the point, appears to prove that here a one-aided raceme or apike is present, whoso unrolling is only a peculiar aituation of the buds.

C. Once-Compound Inflorescence.
 a. Pure or Homomorphous.
 * Inflorescentia Centripeta.

6. The Spike of the Grasses (Spica), several spikes united in a spicate arrangement, as in the Grasses; the component apikes are termed Spikelets (Spiculx).
\%. Thy Ciunbel (lubelin). Linbela uniud in undela; tho componenta are termal liublellules (Umbellulie).
Sound corminology would have long ago rejected theme wordn, and exchanged them for Suica aud U'mbella Composita.
7. Tbo l'micie (l'micula); see Nio. 11.

None of the remaining combiuations deserve special names, and may probably be clanewd anoug thon mentioned under 9 and 11.

- Inflorescentia Centrifuga.

9. The Cyme or Falan Uimbel (Cyma); sce No. 5 and Nu. 14.
10. The Abtucla; No No. 10.
a. Mixed or lleteromorphoun.

- Inforescentia Centrifuga

Sec No. 14.

- Indorescentia Centrijeta

Sec No. 11.

D. Mayy Timea Compound Inflorescence. Inforescentia Centripeta.

11. The I'anicle (Panictala), overy many-branched inflorescence; in lirame univemally, and otherwise only in developed pedicels.
1:- The Thyne (Thyrsua), n manicle. with veryahort pedicela; with the exceprion of (irassen, found aluost universally.

Buth ternm are applied also to once-compound inflorescences. 1ho Cundolle wes tho serin Thyrsus for thoe in which loflorescence Conurifags aul Centripeta ary mingled; others differently; all arlititarily.
13. Thy Anthurua, an inforescence that has the kind of aspect of that of the A maranhus candarus or the Chenopodiacer.

- Inflorescentin Centrifugh

14. The Cyme (Cymn), aleo in manifold combinstions, in which howeter we not comider whether the side ramification follow the Inflorencency Centripeta or Centrifuga in longer pedicels.
15. The lbanch (Fasciculns), a manifold cumpound cyrae, with short pedicel, and rather crowded.
lis. The Anthela, all kinda of inflorencencen in the Juncacce and Cyperarer.
1\%. The Glumerule (Glomerulus), many intorescences that appear almont like a capitulum, and connint only of ill.formed, imperfect dowern, an in motoc Chemopodiaced, Lreicacer, and Juncacea.

We subjoin Jrofemor schleinen'a cloning remarks:-
"I lence overy one with thinking facultien to draw for himself the awl conclurion which the preceding nurrey afforla; and 1 think that I line not whefend mynelf to any one who in acquainted with our literat ure agninet the charge that the foregoing in a frivolous vagary of ing humour. Huper firnt attempted a ncientific developasest of the uffores ence. So one that 1 know of has followed him, except lindley. lhysiologints meem not to have accounted it of sufficient inforisnce Syatematian have too much to do with their herbarin, and it is much eavior to coin a new word than to study ninutely the jingremive developurient through n large series of plants. For the make of thoo unacguninted with thene mastters 1 will insert the following ruansjlen:-In holma corniculafu, Koch ('Syn. F]. Germ.') bas a (Capitulum, Kuntls ('rol. Berol.'), an Umbella, Reichenlech (' FL. Exxcure."), actually a Fruciculua. To Eriophormm raginalum Kunth given n Spica; Koch, a spicula For Cladimm Mariscus Kunth has Linbellic Axillarea et Terminalen; Koch, Authele Axillares et Terminalra; Verclsentach. C'yuso Axillarea et Terminalen; in /solepisapina Kireh han spiculia in Favciculun aggregatis; Kunth, Sjicia Conc.lonimatia 1 have liere omitteal the French nad English botanista, ore tha mathot would hare been atill uore glaring."
 animula fonnt in water, which are comonouly called Animalcules.

The iturention of the microncon hy llooke revealed the existencu of myrude of living crmaturen whone prenence was before unknown; mon iha inatrument ban bhow that a drop of water, though it inay appear to the sakes eye to tre perfectly clear, in perhapa nwarming wilh laving leinga filurenlerg (whwo laboura have prineipnlly concolmated w the hoowlralige of the truo nature and metucture of the bafunory anitnaicules) han itemerileed mpecien whichare not larger than from i.juserh to 1 ogmoth of an late in dinmeter, and which aro erasa:ril from onm another ly intervale not greater than their own are. A cubic incla of water nayy thua conemin more than 800,000 anulions of thewe beinge, mamatiog them only to ocenpy onefourth of sea apace: and a atoglo drop (rueanuring not more thath a line in diwnoter) filaced under tho snicnomcope will be meen to hold so0 malliona, an monnt perhap nearly equal to the whole number of Liminn lesngen in the nurface of our glota.

If a emple arop of water thon warms with life, wlast incalculable masuloma of mimalculea ununt bo contained in overy ntagrant poud or Jake. alol it thm acm.

Whew limha 1a artanged all the organianal lecingm known to him in the
 cintily underntewl k, malilo him to dintribute theus according to their relationa in tis eoraral clasem; he therefore placed them at the end of bindant clane l"ermes, in a gedum which be denominated Chons. Uito Frederick Muller firmt efarated them en a diatinct order; sad
as the greater number of animalcules had been detected in llquids, in which regetable or snimal matter hal been dissolved by infusion, be gave them the name Infusoria. Miller described many species, and acquired π considerable knowledge of the structure and organisation of these minute beings ; but he did not base his arrangement of the different genera on their varieties of structure, but only on the differences of their externsl form. Gmelin, in the 19th edition of tho 'Systems Nature,' adopted Müller's arrangement, as also did Lamarck and Cuvier, who only altered the divisions and subdivisions of the class without changing the mode of arrangeinent or adding any new facts reapecting the structure of these saimals. Bory de st. Vincent formed a new classification; but he also based his system on their external forms, which lster investigations have shown to possess little importance as distinctive characters, for two species very unlike io external form may be almost identical in internal structure.

No dew facts of importance respectiog the organisation of the Infusoria were discovered after the publication of the work of Muiller in 1773.7 , till Professor Ehrenberg of Berlin directed his attention to the subject. He mmle numerous observations on the internal structure of these nnimals by means of feeding them with particles of colouring matter, which he diffused in the water which contained them. 'Ihe substance which he found to answer this purpose in the most satixfactory manner was pure indigo. It was necessary to use colours not chemically combining with water, but only diffusible through the fluid in a state of minute subdivision, so that the coloured particles might be seen passing through the body of the animal.

The result of Ehrenberg's labours was given to the world in his great work entitled "Die Infusionsthierchen,' in which he described upwards of 500 species of thesc minute beings. When first published this work seemed so complete and so exhaustive of the subject, that it was some years before any one doubted cither the correctness of the observations or the soundness of the conclusions of its author. The improvement howevcr of the microscope, and the extended uss of this instrument, have recently brought a large number of observera into the field, sad many modifications of the views of Ehrenberg lave been introduced. We present here n summary of the conclusions arrired at by Ehrenberg, as a fit starting-point for a history of the more recent views of naturalists and comparative anntomiats on the subject of the Infusoria:-

1. All the Infusoria are organised, and the grenter part of them (probsbly all) are highly organised bodies,
2. The Infusoria constituto two very natural classes of animsin, according to their atructuro, which classes admit of subdivision upon the same principle.
3. The exiatence of the Infusoria in the four quarters of the globe, nnd the nea, is proved; as aloo that of individusls of the same species in the most opposite ends of the world.
4. The geographical distribution of the Infusoria. upon the esrth follows the laws observed regulsting that of other aatural bodics.
5. Most of the Infusoria are visible to the maked eye; many are risible as moving points; sud tho size of the body does not exceed in any case 1.12th of an inch.
6. The minute invisible Infusoria, in consequence of their immense and swarming numbern, culuur large tracts of water with very remarkable hues.
7. They give risc to one kind of phosphorescence of the sea, though in themselves invisible.
8. They compose (though aingly invisible) a sort of mould, through living in dense and crowded masses.
9. In a cubic inch of this mould more than 41,000 millions of single animals exist, and constitute moat likely the chief proportion of living botics upon the face of the earth.
10. 'I'he Infusoria nre the mont reproductive of organised bodies.
11. From one of the known propagntive modes of the Infusoriathat in, self-division-a continual destruction beyond nll idea of the in invidual, and n mirnilar interminable preservation and extension of it, in air nud water, cusue, which poetically border upon eternal life and growth.
12. The copulation of Gemmar, which perhaps includes the hitherto-unnolved polyembryonate riddle of the seeds of all plants and regetable formation, is solved in the family Closteria. [Desmidef.]
13. The Infusoria, in consequence of their silicions shells, form indentructiblo eartha, htones, nud rocky masses. [Diatomaces.]
14. With lime and nodla we can prepare glase, and swimming bricks, out of inviaiblo animalcules; use them as flints; probably prepare iron from them; and use the 'mountsin meal' composed of thein as ford in hanger. [Berompill.]
15. Tho invinible infusoria sre sometimes hurtful by causing the death of fiah in ponde, deterioration of clear water, sad boggy smella; but not, as has been supposed, in giving rise to malaria, plague, snd other maladiea.
16. The Infusoria appear to be (as far as is yct known) sleepless.
17. The Infuroria partly disapjear by the deposition of ovs, sad thereby underyo, jassively, various changes of foria.
18. The Infu*oria form inviaible intestinal worms in many animsle, and in man, even if the Spermatozoa are exduded from amongst them.
19. Tho microscopic Infusoria hava also themselves internal and extermal paranites.
20. The Injusoria possess a comparstively long life.
21. As the pollen of the pine falls yearly from the clouds, in the form of sulphur rain, so do the much smaller animalcules appear (from being passively elevated with the watery vapour) floating in a live state in the stmosphere, and sometimes perhsps mixed with dust.
22. In general the Infusoria maintain themselves pretty uniformly against all external influences, as do larger organised bodies. It is true that they sometimes consume strong poisons without immediate injury, but not without an after-effect.
23. The weight of the invisible Infusoria, light as it is, is yet calculable, and the most gentle current of sir or draught can play with their bodies as with the vapour of water.
24. The evident and great quickness of the motion of Infusoria is reducible as follows:-IIydatina senta moves 1-12th of an inch in 4 seconds, Monas punclum the same in 48 seconds, while Navicula gracilis takes 26 minutes and 24 seconds to progress the same distance.
25. Linnæus said 'omnis cslx e vermibus :' eithèr to maintain or deny 'omnissilex, omne ferrumve, vermibus,' would be at the present momeut unjust.
26. The direct ohservations as yet known, upon the theory of 'generatio primitiva,' are wanting in necesamy strictaess. Those oloservers who profess to have seen the sudden origin of the minutest Infusoria from elementary substances, have quite overlooked the compound structure of these organic bodies.
2%. The frequent wonderful changes of form of many Infusoria are yet to have thoir limits, and the laws guverning them defined.

25 . The power of infusorial organisation is instinctively shown by the strong chewing apparatus, with teeth, which they possess, aud their exhibition, likewise of a complete mental activity.
29. The study of Infusoria has led to a more distinct and conclusive notion of aniunal organisation generally, sad the limits which circumscribe the animsl form, from which all plants and minerals, that waut the animal organic system, are distinctly separated.
30. Finally, it results from these inquiries, that experience shows an unfathomableness of organic crestions, when attention is directed to the smallest space, as it does of stars, when reverting to the most immense.

Under the class Infusoria Ehreuberg embraced two very different forms of sumal life. This he did not fail to apprehend, and he divided them into Polyyastrica and Rotifera. The latter divisiou included the animals known by the name of Wheel Animalcules. The Polygastrica, so-called from the supposition that the typical forms possessed a number of stomachs, iucluded all tho remsining species of Infusoria.
Subsequently to the first publication of his views, Ehreaberg separated from what he calls the true Infusoria several families of snimalculcs which were formerly included in the same class. The principal genera thus separated are Spermatozoa, Cercaria, and librio, which are now cousidered by some as part of the class Entozoa, and are divided into two families, named Cercariades sud Vibrionides.

The Cercarice found in vegetable infusions have an ovoid or cylindrical body, furnished with a tail, which is not so long as in the Coosperms; and in some of the species a mouth, and eye-like specks of a dull red colour have been observed on the anterior part of the body. The family of the librionide, so-named from their dartiug or quiveriog motion, includes the eel-like microscopic animalcules which abound in stale paste, vinegar, \&c., together with others which are parasitic on living vegetables, where they have excited particular attention, from the damage which they occasion to ears of corn, as the Vibrto Tritici, which iufests the grains of wheat, and occasious the destructive disease called ear-cockle, or purples. The Vibrionida, as well as the Cercariada, are said to differ from the true Infusoric not ouly in the absence of internal stomachs, but also of external cilia, which prevents then from exciting any curreuts when placed in coloured water.

On sccount of the difference in the perfection of structure between the two principal groups of infusory animals, they have been separated and placed in distinct divisions of the animal kingdom by some naturalists. Professor Owen makes the Polygastrica the lowest class of the sub-kingdom Acrita, and places the Rotifera in the division Nematoneura. Dr. Grant scparates them in the same manner, placiug the Polygastrica in his lowest group Cycloneura, and the Rotifera anong the Diploncura. Ehrenberg, who retains both forms of Infusoria in one class, subdivides the sections Polygastrica and Rotifera into many minur groups, which are founded upon the modifications of different organs: first as to the form of the intestine, whether it is straight or curved, complete or imperfect; secundly, he considers the varieties of the organs of mastication or dental apparatus; thirdly, many of the Infusoria have the iuteguments naked; others are furnished with a crustaceous or horny covering; but both among the Rotiferce and l'ulygastrice the naked and coated mpecies are intinstely connected together, and very often entirely agree with one another in internal sud exterual structure, with the single exception of the consistency of their covering. These characters however, though not separsting the animals into distinct divisions, are used as subordinate mesns of classification: sud Ehrenberg has
formed two parallel series, named Nuda and Lovicata; whieh correspond to certain of the Gymnodes and Crustodes of Bory de St. Vincent. The uumber of loricated Polygastrica is very small, but among the Rotifera they bear a nearer proportion to the naked species.
An account of the Rotifera will be found under the article Rotifera. We here proceed to give Ehrenberg's classification of the Polygastrica.

Class Phylozoaria polygastrica.

Swimming animals, without vertebre, apodal, having sometimes a tail, and very often scattered vibratory or rotatory cilixe: having no heart, but vessels extremely delicate (ténus), reticulated, transparent, and deprived of proper movement; often rudimentary eyes, with red pigmentum, indicating a nervous system, which however is not apparent; mouth nude or surrounded by vibratory cilix, and communicating with several ventricules; the phalanx apparent, and generally nasmed; no branchix; organs of generatiou filiform, reticulated, and granular; no distinct male organ ; gifted with power of reproduction by spontaneous division.

Legion 1. Anentera.

Mouth communicatiug with several stomachal vesicules; no snus, yo intestinal tube.
Order 1. Nuda.
Body without envelope.
Order 2. Loricala.

Section 1.-Gymnica.

Body not ciliated; mouth with or without cilise; no pseudo-pediform prolongations.
§ 1. Gymnica nuda.
Fam. 1.-Monadina.
Form of the body coustant, reproduction by simple transverso division.
A. Without tail.
c. No eyes.

* Month truncate, termiaal and turned forwards in swimming. \dagger Individuals solitary. Genus Monas.
t+ Individuals solitary when young, sfterwards aggregated and again liberated.
§1. Gymnica loricata.
Fam. 1.-Cryptomonadina.
Envelope membranous, sub-globu. lar, and oval.
A. Simple.
a. No eyes.
* Mouth ciliater.

Geaus Cryplomonas.
** Mouth nude. Genus Gyges.
aa. With a red eye.
Genus Lagenula.
B. Compound, or reproducing by internal division.

Genus Pandorina.

Monas ntomos.
Genus Tvella.
ttt Individuals solitary when young, dividing crucially. Genus Polytoma.
** Mouth direct, truncate, and turned different ways in the animal's movements.

Genus Doxococcus.
*** Mouth oblique, without edges, and bilobate.

Genus Chilomonas.
aa. One red eye.
Genus Microglena.
B. With a tsil.
b. Body cylindrical.

> Genus Bodo.
bb. Body angular.
Genus Vrocentmen.
Fam. 2.-Vibrionina.
Borly elongate, constaut in shape, dividing into many parta, mouth terminal (?)
A. Body filiform, cylindrical, bending itself in undulations. Genus Vibric.
B. Body filiform, rigid, and rolling itself in spiral.

Fam. 2.-Closterina.
Euvelope round, when rigid, seps rating spontancously iuto two or four parts by transverse divisions, and open at each end.

Genus Clostcrium.
[Desmidelis.]
b. The npiral plare.
(Nenus spiredincme
\& The ryimal helical.
Genus Spinillum.
C. Bodr ulloog fuaform, or fili.
form, neither undulated nor
turoed apirally.
Genu Bacterivm.
Fing. 3-Astarica,
Borly elongnted, becoruing poly. morphic by contraction, often cyliodrical or fusiform, nad spoutancounly dividing itaclf
in longitudinal or olliquo
diration.
A. No restiger of eyen

Geulls Abraía.
B. Dintinct rudizneutary ejea
b. Une eye.

- A Ril.

Gentas Euglena.

* So tail.

Genus A mllyophis.
U. Two eyea

Genus Distigma.
Section n-Fivilricha.
Tods cilisted; mouth ciliated or utade; no prendo-pediform proloosations.

Fpifricha nula.
Family 4.-Cycladina.
A. Tolly with vibratory cilie.
a. Cilie in nlmple rowa, longitu. tudinal or circular.

Genus Cydidium.
ea. Cilis meattered.
Geaus Panforichym.
B. Bory deprived of cilise, but faroished with hairs not vibralile.

Geaun Chatomonas.

Epitricha loricata.
Frenily 3.-Peridina.
A. Simple

Genus Ieridinium.
B. Compound, reproduced by inlerior diviaiou nod rupture of the envelope.
b. No eyce

- Envelope compresserl.
- Gedus Conium.
* Envelope globular.
+ Cilinted.
Geaus IVarox.
†† Tentaculnted.
Genur Spherasira.
W. With oyed

Genus Eudorina.

Section 3.- Sacudopodia.

Doly furoinhed with rariable peculo-pediform prolongations.

Preudopodia nwda.
Fimily 5.-A mebar. (icaun Amela.

Psesdopodia loricata.
Family 4.-Bacillaria. [DatoEacers.]
The envelope dividiog with the animal.
A. Free, never fixed.
a. Solitary or agglomerated

- Finvelo oblong. Genus Naricula.
- Einvelope wider than long. Genus Eitaztrum.
an. Linited in form of ribnats. polymorphoms the iudiviilurla of the group have sonse freedotn of movement without becoming detnehed; cisirank equally thick throughout, and prismatic.

Geums Bacillaria.
aan. United in buudlen, and not polymorphous, afterwards disunited.

Gebun Firagillaria.
aana. Liaited inn fan shape, with. out font; cuirans thicker in front.

Cenus Fixilaria.
f3. Fizel when youg, nfterwande free.
4. Sumaile.

Genum Symeira.
Lb. Pedicellated. often dichotomoun by ramification; body reduced below, cunciform.

Geaus Gomphonema.
44. Pedicellated, often dichoto. moua; bolly contracted to-

1. Dintoma rulgaris; n, natural aixe: b, c, magnifed, 2. Dintoma Suartaii, mannlised; a, end view. 3. Fragillaria unipunctatn, magnified.

Legion 2.-Enterodela.
Mouth and anus diatiuct, opening into an intestine, round which are grouped the atomachal resiculi.

Section 4.-A nopislhia.
Mouth and anus contigunus.

Anopiothia nula.
Family 6.- Vorficellina.

1. Body pedicellatod, fixed, afterwards detached, becoming often dichotomour,
a. Perlicle simple or branched, contracting into n spiral.

- Peliclosolid, the interior musclo indistinct.

Genus Vorticella.

* Pedicle tubular, tho interior musclo often distinct, becoming arborescent by the spontaneous divisions of the aulmal.
+ Animalculn of the same group similar.

Genus Carcherium.
$+\dagger$ Animalcula dissimilar in the same group.

Genus Zoocladium.
aa. Tediclo not contrnctiog in npiml, rigid, with no interior tube.

Gcnus Eiristylis.

B. Body not pedicellnted and free.
b. Cilie in a single crowu.

Gonus Trichodina.
bb. Cilis in a spiral row con. ducting to tho mouth.

Geaus Stentor.

> Anopisthia loricata,

Family 6.--Ophrydina.
A. Body aurrounded by gelatine and not pedicellnted.

Genus Ophrydinm.
B. Borly iuclosed in a membranous sheath.
b. Pedicellated.

- Shenth sessilo. Genus Tintinnus.
* Shenth pedicollated.

Genus Cothurnia.
2b. Not pedicellnted.
Genus Vaginicoia.

Section 5.-Enantiotreta.

Mouth and anus terminal and opposite, reproduction effected by transperse division.

Enantiotreta nuda. Family 7.-Enchelia.

A. Mouth terminal, direct, obtuse, generally ciliated; division of the body transverse.
a. Body not ciliated, nor with hairs.

- Simple.

Genus Enchelys.

* Double

Genus Disoma.
$a a$. Body with vibratory cilie.
Genus IIolophrya.
aaa. Body with cilim not vibratory.

- Subglobular.

Genus Actinophrys.
** Disciform.
Geaus Trichodiscus.
B. Mouth terminal, oblique, often ciliated.
b. Body without cilia

* No prolongation of the anterior part.

Genus Trichoda.

* Anterior part prolonged into the form of head aud neck. Genus Lachrymaria.
8b. Body ciliated. Genus Leucophrys.

Leucophrys patula, with some of the gastrje cavities full of tood.

Enantiotreta loricata.
Family 7.-Colepina.
Envelope oval or cylizdrical. Genus Coleps.

Section 6.-Allotreta.
Mouth and anus terminal and opposite, reproduction effected by longitudinal and transverso divisions.

Allotreta nuda.

Family 8.-Trachelina.
Mouth inferior, anus terminal.
A. Mouth uaarmed.
a. No circle of cilise in front.

* Upper lip or frost elongate, cyliodrical or depressed, projonged into a narrow trumpet form.

> Genus Trachclius.

* Upper lip short, depressed, sad dilated obliquely. Genus Loxodes.
** Upper lip compressed, subcarinate, or tumid. Genus Bursaria.
aa. Front with a ring of ciliz. Gcuus Phialina.
B. Mouth armed with hooks. Genus Glaucoma.
Family 9. Ophryocercina.
Anus iuferior, mouth termial. Genus Ophryocercus.

Section 7.-Katotreta.

Mouth and snus not terminal, reproduction as in the preceding section.

Katotreta nuda.
Family 10.-Kolpoda.
Body smooth or ciliated, unarmed.
A. No eyes.
a. A short retractile prohoscis.

* Body partially ciliated.

Genus Kolpoda.

* Body ciliated obliquely all over.
Genus Paranaciam.
aa. No probescis.
* Frent and tail contracted. Genus Amphileptus.
* Frout oblong, tail contracted. Genus Uroleptus.
B. With eyes.

Geuus Ophryoglena.
Family 11.-Ocytrichina.
Body ciliated and hairy, or armed with styles or straight spiculie aud hooks.
A. Body hairy, no styles or hooks. Genus Oxytricha.
B. Body with hooks and no styles. Geaus Kerona.
C. Body with styles and no hooks. Genus Urostyla.
B. Body with styles and hooks. Genus Stylonichia.
At the time this classification was drawn up, the distinctions that limit the vegetable and animal kingdoms were less perfectly understwod than at present. One of the first members of this group of organised beings that was withdrawn from the auimal kiagdom, was the Desmidec, which are now geaerally recognised as plants. [DesmiDEEE.] The group of Pseulopodia loricata must also be placed amongst doubtful creations, although many physiologists do not hesitate to group them amongst plants [DIatomacese], whilst the groups Monadina and Volvocina have recently undergeue the most searching iuvesitigation, with the result that many of these forms are more decidedly vegetable than animal in their character. [Volyox.] Some have even gone further than this, and Agassiz in the "American Journai of Science,' for 1852, thus writes to Mr. Dana :-"You may remember a paper I read at the meeting at Cambridge, United States, in August 1849, in which I showed that the embryo which is hatched from the egg of a Planaria is a genuine poljgastric animalcule of the genus Paramecium, as now elarncterised by Ehrenberg. In Steenstrup's work on the 'Alternations of Generation' [Generations, AltemnaTION OF], you find that in the extraordinary succession of alternate geuerations, euding with the production of Cercaria and its metamorphosis into Distoma, s link was wanting-the knowledge of the yourg liatched from the egg of Distoma. The deficiency I caanow fill. It is another Infusorium, s genuine Opalina. With such facts before us there is no longer any doubt left respecting the character of all these Polygastrica-they are the earliest larval condition of worms. And siace I have ascertaiued that the Vorticcllos are true Bryozoa, and botsnists claim the Auentera as Alge, there is not a siagle type of these microscopic beings left which hereafter can be considered as a class by itself in the auimal kingdom." Few naturalists would perhaps indorse this statement of Professor Agassiz. The Vorticellce are not yet admitted as members of the family Bryozoa [PolyzoA]; nor are sll the Anentera of Ehreaberg regarded indiscrimiuately as Algre. The passage however indicates the direction in which inquiry is gradually breakiag up the great polygastric family of Ehreuberg. It is nevertheless very certain that many of the species enumerated by Ehrenberg are only trausitionary forms in which the same being xists. To no one has this department of scieuce been more indebted than to Dr. F. Stein, whe in his recent work, entitled' Die Infusiensthiere auf ihre Eatwickelungs-Geschichte untersucht' (Leipsic 1854), has given the result of 8 long serics of investigations on this subject. 'The following is a summary of Dr. Steiu's researches, as recorded in this volume. (It ought however to be premised that Fucke, Dujardin, and Siehold lisd previonsly pointed out that the great mass of the Polygastric Infusoria were much simpler than Ehrenberg had supposed, and that the iuterual organs he had described were referrible to the general conditions of unicellular organisms, whether animal or vegetable.)
"In a glass in which were contained a great variety of ciliated Infusoria, and among them slso numerous individuals of Euylena rividis, Eacus, and Edeses, Dr. Stcin remarked, after the lapse of some days, the formation of a thin film on the surface of the water, composed of an interlacement of confervoid filameats and Oscillatorice. This film swarmed with Euglence, nany of which had lost their beaks. and crawled about with a worm-like movement among the Confervics
and Owillatorice filamenta Besides thos he discovered, to his great joy, a great many trasparent gelatiooun or quite soft oysta, whieh mometimes containal only a aingle Eivglena contracted joto a globular form; estoctimes two of a bemispharical form appreseed together. The eacyated Aroglewr prored to be atill living, inasmuch as they mored about in the cysta, and if the eysts were ruptured the previously globular iodividualn reesumed their pristino elongated figure, nod conwled about in the same manuer as the other beakless individuals among the Conferma.
"For what purpoe wat this encysting! Tha cynt was evidently intended for eomething more than a coffin. Farther observations soon ahowel that the eacyatiog proces of the Euglene had really reference to their multiplication. The proced however appeared to be differout in Euglenal frum that in Ciregarina, inasmuch as in the latter case two individualm are conjoined lefore the cyst in developed, whilst in the Baglenar the case is formed usually around but ose; for whore two individuals were foubd isclosed in a eyet, it was at once appareot that they had proceded from the division of an originally single individual Whilst thue iuvestigatiog the Exylence hie notice was also directed to other forms of Infoseria coutained in the same water, such ar Parameciun asrelia, Prorodom nireus, and Holophrya discolor, the latter two of which apecies lie frequently observed incloned in welldefined gelatinous cysta; and nn these Infusoria belouged to quite another prineipal division of the clase, he legan to hope that the proces of lecoming encyated would probably turn out to be of general occurrence in the infusory world.
"This prored to be the case, and the work then proceeds to describe the way in which Dr. Stein was led to detect the connection between Epineylie plicatilis with a "pecies of Ehrenberg' geuus Acineta, an observation which pointed the way in his future rescarches One of his carlieat additional ubaervation was that of the heterogencons generation of Epiafylis cigitalis. In this specien be traced first the metamorphonia of the Epistylis into an Acincta; and, secoudly, oberred in the latter the extriordinary fact of the developmeut and evolution of a Tricodina, a discovery whieh Ehrenberg has attempted to explain by the supposition that the Tricodina had been previounly awallowed by the Acincta. Dr. Stein's important researchen are contiauod through the fanily of the Vorticellimer, and his observations given upon Actinophry;, Podophrya, the genus Tricodina, and on the nature of the Opalinar, the propagation of the Chlorogonium euchloruns and I'orficella microaroma, and particularly upon the guiescent condition of the latter Infumoria; upon Spirochona gemmipara sad 8. Schentenii, and upon the A cineta state of Dendrocometes paradoxus, Zochamnimm apine", 太c. dc. ('Quarterly Journal of Microscopical Science,' July, 1854.)

At the present tine it would usdoubtedly bo premature to atste that no organismn ought to be referred to Ehrenkerg'a elass Polyyastrica. It would however le jrobably better to aubstitute the term Protozoa, to receive organisme having an animal character, and yet presentiug the sane simple conditions that we find amoagst the Nasfochince, and other groupe of lowly-developed plants Wo may atate generally that Ebrenberge Polygattrica embrace the following groups of beiugs:-

1. True plants, an in the lesmidear (Closterina), Volvocina (Cryptomonadina). and momo othern [Desmidess]
2 Organinens which the weight of evideuce at present assigus to the regetable kingdom, as Thiatomacere (Bacillaria, Pragillaria, \&c.), and a large number of the Monadina and Jibrionina.
2. The ova of Eintozoa, as Cercoria and othera, aud probably even of higher animala
3. Miucte formm of animala referrible to previounly entablisbed groupe : thia meetna to be the case with the whole of the lorticellina, which may with nore propriety probably be referred to llydroid thau to aty oliser form of polyjiferoun aniumata.
4. Dojartin han jointed out the ideutity between the etructure of organiana like A morta witb nuch forman lhiflegia and Arcella. In all theme crenture there in no trace of mouth or digentive cavity, nud the entire lrody is a ningle cell or an aggregation of cells. which derives It nutnineut by abootption from without. I'rofesmor Kolliker hee moently deacribed the method hy which oue of theme eneatures, the Actinopheys, takm its foorl:-

A" regardn the vegetable function,", magn the I'rofermor, "the mode in which the Acrinophrya is nowrialied in wace of tho highemt nud juont ejwial intersel. Although the creature han meither mouth norntomach, yet it takes io polid nutriment and rejocts what is imsigeatible. 'Thin minacle, for mo it may abracast he called, in than effected with ruinute (Euntacrann (Roriferro, minnte apwies of hyncere, the young of C'yclops, dc.) and tha lower Alge (thatomacrif, njonem of tisucheria, Clonterium, Ace). Whien in its progrean through the water it mpproaches one of these little plante, or whien ass Jnfmsoriwm hian crnue inth proximity with it, lioth plait and aniumal. as mon wa they tonch one of the tentacuiar filamenta, unimally alhem to it Niow, an the filament with it prey alowly shortems itoolf, and the latter njpronchen the -urface of the booly, all the nurrounding filameutar apply theinelven upon it, tending their pointe together mothat the capitive lecomen gradoally inclomed on all sidea Acconding thall aljersinace, there filamenta almo becone more or lean ahortened. In thin way the mornel If gradually brought to the aurface of the torly, the filament by which it was acized being tinally oo much shoruwed as to disappear alw-
gether, and having, as not unfrequently happens, relinquished its hold upon the prey, after the latter has become edcompsased by the surrounding filmmenta. These gradually apply themselves more and norv closely together around it, forcing it towarda the aurface of the body.
"The following proceeding now takes place:-The mpot of the aurface upon which the eaptured animalcule is lying slowly retracts, and forms at first a shallow depresaion gradually becoming deeper and deeper, in which the prey, mpparently adherent to the surface and following it in its retraction, is fioally lodged. The dapression by the continued retraction of the substance now becomes deeper; the imprisoned animalcule, which up to this time had projected from the eurface of tho Actinophrya, disappears eutirely within it; and at the aamo time the tentacles, which had remajned with their extremities applied to cach other, agaio erect themselves and atretch out as before. Finally, the depression acquirea a flask-like form by the drawing in of its margin, the edgen of which coalesce, and thus a cavity closed on all sidee is formed in whieh the prey is lodged. In this situation it remains for a longer or shorter time, gradually howover approaching the central or nuclear portion, and at last passing entirely into it, in onder to await its final destination. In the meanwhile the external portion of tho Actinophrys regaios in all respects its pristine condition. The eugulphed morsel is gradually digested and dissolved, as is rendily seen by its change of appearance from tima to time. If antirely soluble, as for instance an Jnfusorium, the apace in which it is contained contracts as tha dissolution of its contents goes on, and finally disappears nltogether. Should there be howaver an indigestible residue (a mambrane composed of cellulose, a portion of chitine, a abell of a Lynceus, or case of a rotifer, \&c.), a passage for its axit is formed, and it is axpelled by reaewed contractions of the homogeneoun substance, sud in the same direction, or nearly so, as that which the morsel followed in its istroduction. The passage and the opening through which the expulsion was effected disappear again without leaving any trace."

In the Actinophrya we have an snimal closely resembling the creature which johalits the shell of the large family known now as Foraminifera [Foraminifera], aud Dujardin anggests that the loricated forme of Diffugia nind Arcella are transitions to the more decided forms of Foraninifera. Heuce he proposes to includa several forms of Ehreubery's Infusoria, with the Porominifera or Polythalamia, under the term Rhizopoda. Little therefore is left us to say of what may be regarded as true Polygastrica. They all appear to have a dintinct mouth or entrance to the cavity of tha body, and this is usually ancrounded by vibratila cilis, as seen in the euta of Monas alomos and Leucophrys patula. These cilia apparently bring the food to the mouth of the avimal. An ansl orifice is described by Ehrenberg in the majority of species When fiacly divided soluble colouringmatter as carmine or indigo (a^{\prime} writer in the 'Microscopical Journal' recommends the red pigmeut which lines the cornea of the common house-fy) is introduced into the water in which they are contained, the traneparont body of the avimaleule is speedily seen to be atudded with coloured globules, oonsisting of su aggregation of the particles of colouring matter. Ehrenberg regarded these globules as diatiuct sacs, which ha supponed were given off from a central inteatinal cunal, as seen is Leucophrys palula. Regarding these ancs as so many stomachs, ho gave thein the name of Polygastrica (many-atomached). It is however still a question as to whether in any case these massea are contained in a distinct sac. The whole body of the animalcule is often covered with vibratile cilis (see cut of Lewcophrys), and it is to the constant action of these organa that the varied movousenta of these snimalcules are due [Cilia.] The movements thun effected are perfectly autornatic, and in no way connected with any intelligent counciounisess. All the movoneuts of these animals ary not due to eilia, as tho whole of the tissue of the animal is observed to contract in Amaba, A mphileptus, aud the stalk of the liorticellina.

Athough Elirenberg has deseribed a complicated npparatus for reproduction, no iastances of conjugation are recorded amongst the true Polyyastrica. Their modes of multiplication are by fiesion and gemmation. In a large number of cases a simple divinion of the uaicellular orgauism into two equal parts tukee place. This process guen ou no rapilly that, acconling to Ehrenberg, a single Paramecium wuld produce $265,000,000$ of cells in a single month. From aumbogy we must suppone thia process would not go on continunlly, and, us in plante, wo munt rugaril the separate cells thus produced as belongiag the the same individual. Further ohecrvation is probably ouly nersled to demonatrate the existence of a union of two cells-a aperm cell and a germ cell-as ís now known to be almost universal in the vgetable kingdom. In the account above given of Stein's researchea it will be ecen, that it is not improbable that one of the modea by which thene being are enabled to epring ouddenly into existence, is tho prodaction of wiuter-egge, or reproductive bodias of a kind that will remist the influence of an sbsence of moisture from the apots is which they ordiuarily abound.

The true jolygastrica neem universally diffused. Wherover organic matter exints in a rlecomposing atato, there they abound. They exist in incrediblo numbers in the waters of the ocean, jn rivern, lakea, londa, poole, and ditches. They are found in the secretions of the higher nnimala, and even in wan. Wherever the organic elcments,
carbon, hydrogen, nitrogen, and oxygen, are capable of uniting to form water, carbonic acid, snd smmonis, there they masy be expected to be found. The composition of the liquids in which they are found seems to determine the forms they assume. One set of forms inhsbits saltwater, another fresh. Every mineral spring has its peculiar inhsbitan. The sulphureous springs of the Pyrenees, the chalybeate waters of the Rhine, the siliceous, calcareous, and aluminous waters of Europe, all contain them. They sre found with the red snow of the Alpe anel the poles, snd with the Conferva thermalis of the hot springs of Aix and Baden. They arealways accompanied with plants. Perbaps it would be wrong to call sny beings animsle that are not found feeding on plants, as it seems to be s law of organic existence that planta should subsist on mineral mstters, and animals on organised mastters.
What are the uses of these beings? To this question Professor Owen gives the following reply:-"Consider their incredible numbers, their univerasl distribution, their insatiable voracity, and that it is the particles of decaying vegetable and snimal bodies which they are appointed to devour and assimilate. Surely we must in some degree be indebted to those ever-active invisible scavengera for the salubrity of our atroosphere. Nor is this all: they perform a still more important office in preventing the gradusl diminution of the present smount of organised matter upon the earth; for when this matter is dissolved or suspended in water, in that state of comminution snd decay which immediately precedes its final decomposition into the elementary gases, and its consequent return from the organic to the inorganic world, these wakeful membera of nature's invisible police are everywhere ready to arrest the fugitive organised particles and turn them back into the ascending stream of animal life. Having converted the dead and decomposing particles into their own living tissues, they themselves become the food of large Infusoria, as the Rotifera, and of numereus other amall animsls, which in their turn sre devoured by larger animals, as fiahes; and thus a pabulum, fit for the nourishment of the highest organised beings, is brought back by s short route from the extremity of the realms of organic matter.
"There is no elementary and self subsistent organic matter, ss Buffon taught; the inorganic elements into which the particles of organic master pass by their final decomposition, sre organically recomposed and fitted for the sustensnce of snimals through the operations of the vegetable kingdom. No animsl can subsist on inorganic master. The vegetable kingdom thus stands, as it were, between animal master and its ultimste destruction; but in this great office plants must derive most important assistance from the Polygastric Infusoria. These invisible animacules msy be compared, in the great organic world, to the minute capillaries in the microcosm of the animal body, receiving organic matter in its state of minutest subdivision, snd, when in full career to excspe from the organio system, turning it back by a new route towards the central and highest point of that system."

Fossil Infusoria.

Many of the species of the Polygastrica of Ehrenberg, are covered with s siliceous shield or shell, which is quite impenetrable. These forms are those which sre now recognised as belonging to the Diatomacea. [Diatomace.s.] The forms of Infusorin which sre found fossil belong chiefly to this section. They are frequent in sll the varieties of wster which hsve been exposed to sir and light, snd in all the conditions of this element between the extremities of terrestrisl temperatures, not absent even from snow, ice-covered streams, or the ejections of volcanoes, they have been recognised in all the regions of the globe. Lakes, rivers, and the sea are in places richly replenished by them, and their ailiceoua integuments falling through the water accumulate into extensive deposits. In regard to such accumulations in the sea, we have the evidence of soundings by Csptain Sir J. Ross in the course of the antarctic voyage ('Annsls of Nat. History,' Oct. 1845) and Ehrenberg's examinstion of the deposits st Cuxhaven; snd their sbundance in fresh wsters is mstter of uaiverasl occurrence. These deposits consist of the siliceous integuments of the Infusoria, snd as only a amsll proportion of the families are protected with siliceous coverings, and as the waters which nourished them contain but little silica, while the deposits are very extensive, we naturally associste with these facts the ides of long elspsed time.

On turning to the marine snd fresh-water deposits of earlier date, this impreasion of the long duration of natural agencies becomes much heightened. When, conducted by Ehrenberg, we find beneath the Bohemisn Mountains, and in the plains of North Germany, pleioceue deposits many feet in thickncss, composed of little else than the thin flinty lorica of Microzoaria, sud following Professor Rogers and Mr. Dailey, who dug up myriads of other forms from the meiocene strats of Virginia, while Msntell snd Reade exhibit to us Infusora from the chalk and the Kimmeridge clay of England, we must add to the historic time during which it can be proved these organisms have lived the large indefinite geological perioda of Cainozoic and Mesozoic formations.

The aource of the siliceous matter which enters the organieation of these being is not difficult of discovery. Most of our freshwaters contain silica, though not in sbundsnce, derived, it is probsble, from the decomposition of felspar and other mineral silicates. Silicato
nat mist. Div. vol. III.
of soda and silicate of potash, thus oocasioned, may by intermediate vegetstive processes yield the silica in a state suitable for being organically solidified. In the hot waters of volcsnic foci, silica is dissolved sbundsntly, and it is necessary to keep this fact in view while considering the extensive flint beds in chalk, the thick Polierschiefer beds of Bilin, and other siliceous masses, the result of organisation. The distinction of marine snd fresh-water races, which runs through sll the larger animals and plants with such regularity as to be termed s law of nature, obtains also, but less absolutely, in the Infusoria. Some species live both in fresh and salt water, and many at the junction of rivera with the sea. By comparing the living oceanic snd lacustrine races on a large scale, enough of difference appears in their siliceous shields to authorise conclusions more or less positive ss to the marine or fresh-water origin of infusorial deposits which contain identical or anslogous forms belonging to earlier periods. Thus the rich deposits of Richmond in Virginis sppesr to hsve been formed beneath the sea; the famous deposits of Bohemia, Berlin, and Santa Fiora contain admixtures of mariue and fresh-whter tribes; while those of the Bann, in the county of Down, and Gainsborough and Bridlington, contain a more considerable proportion of fresh-water species.

Infusoria of marine or mstuary origin have been found in a fossil state very extensively in Europe, Asia, Africa, and America. Ehrenberg has described many species from Greece (Zante and Egina), Italy (Caltasinetta and Cattolica), snd Africa (Oran), which occur in calcareous marls, referred by Ehrenberg to the age of the true chalk deposits. These deposits sre very extensive iu Africa, occupying the whole coast of Oran snd large tracts in Egypt snd Arsbia. (Portions of this tract hsve however been described by M. Rozet as tertiary.) In the undoubted white chalk of Denmark (Rügen), of Frauce (Meudon), of Eugland (Gravesend snd Brighton), Infusoria also occur, but less sbundantly. North Americs has yielded a great varicty of marine or partly marine Infusoria, especially at Richmond and Petersburg in Virginia, st West Point in Convecticut, Rhode Island, Massachusetts, and Maine. Brazil has also yielded similar deposits.

Infusoria partly of marine and partly of fresh-water erigin have become familiar to us in the Polierschiefer (pelishing slate) of Bilin snd Planitz in Bohemis, and of the Habichtwald near Cassel, the Bergmehl of Santa Fiors in Tuscany, the white msrls it the peat of Franzenbad near Egra in Bohemia, the peat deposits of Gainsborough in Lincolnahire, and at the base of the Mourne Mountains in Ireland. We find them to occur slso in considerable plenty, but in limited distribution, in the lacustrine deposits of the east coast of Yorkshire. The Mauritius is added to these localities by Ehrenberg, and New Zealand by Mantell, all the occurrences belonging to supra-tertiary eras.
Infusorial remains are very unequally congregsted. The siliceous marl (Kieselguhr) of Franzenbad consists raainly of Navicula viridis (fig. 6), now recent ; that of the Mauritiue, of Bacillaria vulgaris (fig. 7); that of Ssn Fiora, of Synedra capitata (fig. 9); while that of Bilin is composed of Gaillonella distans (fig. 8) slmost exclusively. (Ehrenberg.)

Infusoria sre mentioned in the moya (volcanic mud) of Mexico, and in the edible clay of the river Amazonas, by Ehrenberg; in the rocksalt and the marl which accompany it at Cardona in Spain, by Marcel de Serres; they sre assumed by Ehrenberg to enter largely into the composition of flint, which indeed readily shows Xanthidia and Pyxidiculce. The bog-iron ore (Raseneisenstein) common near Berlin is composed chiefly of Gaillonella ferruginea. A kiud of semiopal lying in nodules in the Polierschiefer of Bilin is composed of the same siliceous reliquiæ (Gaillonella) as the true polishing slate, but they are cemented together snd filled by infiltrated siliceous paste. With the Gaillonella Ehrenberg finds spicule of sponges. The Precious Porphyry O_{2} al of Kaschau, and the Serpentine Opal of Kosernitz in Silesia, has appeared to Ehreaberg of analogous composition. The following tabular view given by Ehrenberg of some of these facts will be useful :-

1. Bergmehl
2. Kieselguhr
\} Newest Formation.
3. Polierschiefer
4. Saugschiefer

Tertiary Formation
5. Semiopal of Polierschiefer

The above consist entirely or partly of the shells of Diatomacer.
$\left.\begin{array}{l}\text { 6. Semiopsl of the Dolerite } \\ \text { 7. Precious Opsl of the Porphyry }\end{array}\right\}$ Pyrogenous Rock.
figures of some of the forms most frequent in a white deposit from Richmonrl may be taken :-

1. Direyarla fibwha, A. Actinoryclus senarius. 3. Coscinadiscus radiafus. 4. Treeratinn farme. S. Gaillonella suleata.

And for comparison the following outlines of mixed marine and freab-water species common in the Polierschiefer of Bilin and tho Pent and Kicselguhr of Franzenbad, Egra, San Fiora, \&c.

7

9

6. Vicrinula viridin. 7. Dacillaria rulgaris. 8. Gaillanella distane. 0. Symodra capitata, 10. Campylodiarus rlypratus.

These are tertiary forma, and below in a mpecimen of a group re'orrel to the recent genum Xanthidium, and frequent in the flint nodules which occur in chalk.

> 11. Jamilidium ramnonm.
lint of apecien of Infumerin from the Kimelgubr of :imnzenbal :Niaricula riridie (pleutiful). N. gibea, N. fulsa, N. librile, (romyho.
 IWrim), N. viridula, N., striniuln (now living in the nea, the second alas liven in the Carlahial water), Gatllonella varians (1).
sprecien of Infumvia in the feat-Ing of Franzenbad:-Eunotin gronulata (plentuful). Nivricwla riridug (rare), Bacillaria rulgarin, Cocranfis meduluta, fomphonema paralornem.
specing which occur in the Kimalgnlar of Mauritius:--Bacilluria rulgarial (pleutiful), It mnjor, Naricula fulva (?), N. giliba, N. bifions
(living near lerlin).

In the Bergmehl of Santa Fiora :-Symedra capitata (plentiful); with this are S. ulna (living both in fresh-water and the sea), Navicula inrqualis, N. capitata, N. riridis, N. gibla (fresh-water species); N. viridula (living in the Baltic), Eunotia granulata, Navicula follis (extinct), Cocconeis undulata (unarine), Gomphonema paradoxum, G. claratum, 0. acuminatum (living near Bertin), Cocconema cymbiforme (freshwater), Gaillonella italica, Spicula of Spongice, or Spongilla.

In the Polierachiefer of Bilin:-Podosphenia nana (plentiful), Gaillonella distans, Naricula scalprum, Bacillaria vulgaris ! (probably all marine!)

In the Leaf Tripoli:-Gaillonella distans (plentiful), Podosphemia nana, Bacillaria vulgaris ? (probably marine.)

At Jann, in the county of Down, Captain Portlock found under Peat Naviculce, Bacillarice, Eunotic, with fragments of Achnanthes and Confervo. ('Microscopical Jonrnal;' 1841.) At Gainsborough Mr. Binney found under Pest abundance of Gaillonella. At l3ridlington, in white and brown Marls, Eunotia serra (1), Bacillaria rulgaris, Naricula incequalis, N. viridis, N. phoenicenteron, Cocconema lanceolata, Campilodiscus zonalis, \&c.
The North American localities hare yielded to Dailey and Ehrenberg a large cataloguo of Distomaceous Infusoria. Ehrenberg enumerates-

> Amphiphora-one species.
> Cocconema-two species.
> Eunotia-seven species.
> Fragillaria-three species.
> Gomphonema-four species,
> IIimantidium-one species.
> Navicula-cighteen species.
> Staurosira-two species.
> Tabellaria-three species.

With these are three forms of Spongoid Spicula and two species of Thylacium.
These are mostly derived from beds lying under Peat-
The lichmond earth (of miocene date) yields-
Coscinodiscus radiatus and other
species (fig. 3) .
Actinocyclus senarius and others
(ig. 2) .
Naticula, several species Gaillonalle
Dictyocha fibula (fig. I)

Mr. Quekett has found several of theso recent in the North Sea. Mr. Lee has discovered Coscinodisci and Dietyoche in the Baruacle and Scallop.

In the chalky marls of Oran, Sicily, Greece, \&o., occur many living forms, as-

> Actinocylus-ten species.
> Amphitctra-two species.
> Biddulphia-one species.
> Cocconema-one species.
> Coscinodiscus-seven species.
> Diclyocha-four species
> Eunotia-two species.
> Gaillonella-one species.
> Grammatophora-four species.
> Haliomma-one species.
> Naricula-six species.
> Striatclla-one species.
> Symedra-one species.
> T'essella catena-one species.
> Triceratium-one npecies.

In the white chalk and flint of Europe, snd aleo liviug-
Fragillaria rhaldosoma. Gravesend.
P. striolata. Gravesend.

Gaillonella aurichalcea. Riigen.
Peridinium myrophorum, Graveseud.
Nanthidium furcatum. Graresend.
X. hirsutum. Gravesend.

Dr. Mantell han been unable to discover fragillaria in the chalk of Gravonent, but Xanshidia oceur in tho chalk of Dover. ("Ann. Nat. Hist.,' Aug., 1845.) Gaillonrlla aurichalcea has beon regarded as sn Oscillatoria; and it appenrs doubtful whether the so called Xanhidia of the flints and chalk are really to be referred to that fresh-water genus

From the preceding notices we may gather as genoral facts the sccurrence of the remains of siliceous Infusoria in the following stratifications:-
Cainozoic period $\left\{\begin{array}{l}\text { Recont Fluviatilo and other nedimenta, } \\ \text { lacustrine depogits of the Jik period. } \\ \text { Deposits of the 'Lelim ' period. } \\ \text { Miocene Tertiarics } \\ \text { Eoceno Tertiarics. }\end{array}\right.$
Mesozoic period $\left\{\begin{array}{l}\text { Chalk deposita } \\ \text { Oolitic deposits. }\end{array}\right.$

The relative abundance of the Infusoria in these neveral deposits is inversely as their antiquity; they are rare in the oolitic and cretacsous
rocks, and abundant in the upper tertiaries. It is true that Ehrenberg, by assigning to the cretaceous era the calcareons marls of Oran, Sicily, and Greece, gives a large catalogee of Mesozoic Infusoria, and that in favour of such reference of those marls are the Rotalice, Textilince, \&c., which occur both in the true chalk and in such marls. But on the other hand, remembering the loag scale of geological time through which these genera of Polythalamiee extend, and taking iuto consideration the fact that some species which occur in the chaik of Europe are quoted by Ehrenberg from unquestionably miocene strata in America, we shall hesitate to admit those richly infusorial marls as truly coeval with the white chalk, in which comparatively very few remains of the group eccur, and these not of the sane species as those which abound in the other depoaits.

Another point on which the authority of Ehrenberg has not been received without hesitation, is the absolute specific identity of a large propertion of the fossil and recent Infusoria. The previous discoveries of geology had prepared an easy admission for the opinion that many of the tertiary forms of Infusoria were undistinguishahle from living races; such is the fact in regard to all the invertebral races; but with very few and those not always allowed exceptions, the secondary strata had been found to contain only extinct forms of life, till Ehrenberg cammined the minute Polythalamice, and found many of them similar to living types, and confirmed this inference by independcnt researches among the Infusoria. Supposing these opinions of the Prussian microscopist to be confirmed by future inquirers, we shall find that they involve no infraction of the relations of zoological forms to geological time, which have been established from examinations of the other classes of the animal kingdom. The systems of life in each successive system of strata are not separate and distinct creations, but successive terms of a creative series ; each of these terms is compound, and (to speak exactly) its constituent quantities (the several classes, orders, families, genera, or species) have their own coefficients and exponents ; that is to say, have their own times of duration, their own periods of abundance, their own peculiar relations to earlier and later organisations.

A rule drawn frem Fishea cannot be applied to Mollusca; a law based on Crustacea cannot be received for Microzoaria, without acrupulous examination; and palrontology is full of examples of the unequal periods of duration which belong to the different organisations, and the unequal degree of development and unequal geographical diffusion which characterise these organisations at the same epocha and during the same periods.

Admitting the autherity of Ehrenberg's determination of species, we find another curious and unexpected result-the frequent, if not general, admixture of marine and fresh-water tribes in the comparatively level regions of Europe. In the plains of North Germany, round the Bohemian and Harz Mountains, in Tuscany, and Yorkshire, we find this admixture of supposed marine and supposed fresh-water races in the supra-tertiary deposits. Is this to be explained by supposing those deposits to have happened while the relative level of land and sea was different from what it is at present, and the sea was near to the place of deposition, so that by some of the many natural medes of diffuaion which are effective in this class of life the organisma of the sea might be carried into lakes, as well as mixed in æstuaries, and along the course of languid rivers? Probably so. The deposits of Infusoria which now happen 80 abundantly at the mouth of the Elbe are mostly derived from the sea; and it has been found in the river Hudson that apecies once imagiued to be truly marine live in juxtaposition with the species of fresh waters. Thers may probably be, in a class of beinga associsterl with silicated waters, a greater independence of the saline qualities of water than in other races which have little need of silica, and which require the extrication of lime from a state of solution in the waters which they inhabit. In confirmation of this view we find the Spongice of the sca matched by the Spongilla of fresh water, each extracting silica from the liquid, but the calciferous Polypean races of the ocean are almest unrepresented in our inland lakes and streams.
(Ehrenberg: Die Infusionsthierchen; Memoirs of the Berlin A cademy, and Translations in Taylor's Scientific Memoirs; Reade, Quekett, Roper, Brightwell, Gregory, and others, in the Microscopic Journal, and Quarlerly Journal of Mieroscopical Science; Mantell, Medals of C'reation and Annals of Natural Mistory; Pritchard, Infusorial Animalcules; Owen, Lectures on Comparative Anatomy; Carpenter, Principles of Physialogy; Dujardin, IIistoire des Zoophytes Infusoires; Stein, Dic Infusionsthiere, \&c.)
INGA, a genus of Plants belonging to the natural order Leguminowe, which, though it has been separated from Mimosa, yet contaius upwards of 100 species. These are found in the tropical parts of Asia, Africa, and America. They are Gintinguishad by their legumes being broadly linear, compressed, and l-celled. The seeds are usually covered with pulp, more rarely with farinaccous matter or a pellicle. The species form shrubs or trees, and are commonly unarmed. The flowers ure in spikes, or are capitate, and of a red or white colour. From the number of species in this genus, as well as in Acacia and Mimosa, and from their having been removed from one to the ather, there is some confusion in the synonyms. A fow of the useful species have been further separated into the genus Parkia; but many still remain which are important in the countrics where they are indige-
nous, either for astringent properties, like many Mimosas and Acacias, or for the edible nature of the fecula or pulp which surrounds their seeds. Thus I. cochliocarpus has bitter and astringent bark, which is used in tanning and also in medicine. It is taken to Portugal, where it is called the Brazilian Bark, and used even as a substitute for that of the Cinchona. Martius distinguishes from this species, which he calls I. Jurema, another which he has named I. astringens, and of which the bark has similar properties. The bark of these trees ia considered by some authors to be the Cortex Astringens Brasiliensis of old pharmacopocias. 1. salutaris is another astringent species, a native of New Granada, of which the bark is much used in the form of devoction for various complaints in which astringents are indicated, and for the same purposes as Ratany Root. Sorme of the species, as before mentioned, are esteemed for the sweetish edible pulp with which their seeda are surrounded, as I. dulcis in India and I. insignis in the province of Quite, where it is called Guabo, or Guabas, but Pacaes in Peru. So I. Camatchili, according to Perrotet, is similarly esteemed in Manilla, and I. Faroba in Western Africa, in the neigh bourhood of the Senegal. I. vera contains tannic acid, and is one of the numerous leguminous plants used for obtsining Catechu. The pulp of the fruit of this species also is purgative. I. faculifera yields in its pods a laxative pulp called Pois-Dous in St. Domingo. It has a sweet taste. The pulp also of the pods of I. tetraphylla is sweet and mucilaginous. (Lindley, Vegetable Kingdom.)
inia. [Ceitacea.]
INOCE'RAMUS (Sowerby; Goldfusa), a remarkable genus of Fossil Conchifera monomyaria, allied to Crenatula, Gervillia. \&c., originally named by Mr. J. Sowerby in the ' Linn. Trans.' The name Catillus was given to the larger species by M. Brongniart. The two valves approach to equality; both are convex ; the hinge-line straight, often extended into a wing, and thickened with many transverse grooves to receive a divided ligament; shell fibrous; beaks recurved. Inoceramus dubius occurs in the Lias; I. concentricus in the Gault; I. Cuvieri and many other species in the Chalk.

INSECTA, one of the classes of Invertebrate Animals. The Latin term Insecta, like the Greek Entoma, which has heen applied to these animals, has reference to the insected or divided appearance of the body; hence the English name Insect, the French Insecte, and the German Insect. Invertebrate Animals are divided by Lamarck into two groups, which be calls Animaux Apathiques, and Animaux Sensibles. The latter, or the Sensitive Animals, contain six classes, of which Insects are the first. According to Latreille's arrangement in the 'Regne Animal,' the class Insecta forma the third great division of articulated animals-articulated referring to the innumerable joints of which this class of animals is composed.

True Insects may be thus defined:-Articulated animals pessessing six legs, two antennx, two compound eyes; a small brain at the anterior extremity of a double medullary cherd. Circulation effected by a pulsating dorsal vessel provided with numerous valves. Respiration by trachea, which form two lateral trunks, and ramify through the body; generation oviparous; two distinct sexes; adult state attained through a series of metamorphoses.

Insects generally possess two pairs of wings; the trunk in the adult animal is usually composed of three chief parts, the Head (Caput), Thorax, and Abdomen; or the trunk of an insect may be described as conaisting of thirteen segments, of which one coustitutes the head, three form the thorax, and the remaining nine compose the abdomen. The head includes the organs of sensation and manducation, and its principal parts have received the following names:-the Clypeus, Vertex, Occiput, Genæ, Cauthus, Gula, Oculi, Stemmata, Antennæ, and the Trophi.

Fig. 1, the Hornet, magnified ; a, the head (caput) ; b, b, the tharax ; c, the abdomen; d, d, antenna.

The Clypeus is that part of the upper surface of the head which joins the labrum. It is called by Kirby nasus, and in the Lamellicorncs it is usually the forcmest part of the head when viewed from above.

The Vertex is the summit of the head.

The Unaput is tho hiader portion of the bead, or that adjuining the ihorex.

Gense (the cberks). "Those jarts which lie on the outer side of tho anterior half of tho cyen and interveno alno between them and tho madidibula." (kirby).
Cindibun a namo applied by kirby to a procens of the hend which cycroachies ufon tho eyem
The ere it certain insects in encroached upon by a narrow process of the lieal in auch a manner on to render it kiducy-mhaped, inatead of ith onlisary round form, and in sume inmataces this organ in divided ty the canthun into ? wo garth.
cula, tho hindermost jortion of the head benoath.

Fig. \#, Heas of Hornch, magnlfed; a, the elypeun; δ, the vertex; c, c, the egen (oculi): d, the eycleta (otemmata): c, the antenna; f, f, wandibula. fig. S, the same, riewed from benesth; p, the occipat; A, the gala.

Octuli (the cyen). These are altont invariably two in number, pleced one on cach Eido of the head, and composed of hexagonal lenses
Stemmata (the ojclets), minuto simple cyes They may boseen in the orden Mymenoptera, Orthoptera, aud Memiptera, snd aro generally placel rertically on tho head. The larvae of Coleopterous lusects gencrally posseas thers, and they aro usually placed on each side of the head close to the antennas.

Antennz, jninted ongaus, two in number, mont commonly springing from tho upper arface, or aide of the head near the eyes. These organs vary much in every way, not only in the various ppecies of insecte, buit in tho sexes of the name rpecies they often differ.
There is much difference of opision as regards the use of these organ. Sonso hare come to the concluaion, from anatomical researches, that they aro organs of hearing, whilst others maintain they are organs of tonch or smell. Whari however we nee so much difference in tho structuro of the sntemnse in insects, and perceire that nome use them in touching eurrounding objecta, sis is the case in many of tha Hymenoptera (jarticularly the Ichncumonide, and Bees and Anta), whilat cthers carefully aroid no doing, wo are naturally led to the conclusion that they aro uned for different purposes. It in certain that insects poomens the menme of amell, but in those insects which froman it apparently in tho highest degree we can trace no similarity in the atructure of tho antenne. A Siljha, a Staphylinus, and a comnon tly, ajpear to bo equally attracted by the acent of a piece of fuisinf theat, and yet their autanue bear un resemblance. The mame remark will apply to the antennat of thone insects which emit nound; the Grmabopper, the Sphinr Airopos, many of the Ccrambycidae, and uumerots. other innects might bo enumerated which emit voluntary mumit, hut their nntenna do not differ from thone of the apecies to which they are mont clomely allied, and which emit no sound that wo ana jucceive. Ae riganda tonch, thero can be no doubt that the antrinse of many inmects are uned as orgaus of touch, and it appears highly probable that, through the menns of the antenne, some insects can ferceice the tate of tho atrooujhero. The delicately plumed antennse of the guat, and of the nocturnal Lepidopterons lusects, mersn to be wrll fithel for recciving impunaniona of this pature. The argumenta in favour of their leing organa of hearing are also at leant worthy of atcontion. [ANTESNA.]

An Antenna may le dirided jutas the following parts:-
Turubua, the carity or mocket in which the base of tbo antenua in planteml.

Scapha, the firat and in many cnece the mont conmipenous joint of the mientian

Jivicallina, the weond folnt of the antenma
Clisrola, the trmainins joint taken togother,
 when uand to sumstate that protion of the anterna bet wen the long I aeal juint, or tcapum, and tho (Cluh (callel Capitulum or Clava), which In thome inacte uaually terninaten the anterna.

The princifal mulification in the form of antenme aro figureyd and

The Tryphi, or parta of the mouth (called by Fabricina Inatrumenta Cilmana), canniat of pix grincipal purtiona:-The Labrum, labium, Mandibulep, aror Maxillie.

The labrum, or urger-lip, in a cormeoua pate, which termimaten the heal anteriorly, and covers the muth above; its jomerior margin is uniteal by a mefnbranous linge to tho clypeuk.

The most common form of tho lahrutn ia regresented in fig. 8 ; it

Fig. 6.

Fig. A, parts of the mouth of a Water-Beetle (Dytiseus marginalis); a, Labrum ; b, f, and g, lablum- b, palpiger ; f, mentum; g, stlpes; h, h, nusndibula ; i, i, maxilie; j, j, max!llary palpi; k, jugulum. Figs. 5 and 6 , the palpiger, highly magnified (5 , front view ; 6, alde rlew); c, lingua; d, d, paraglosse ; e, palpi-labiales. Fig. \%, parts of the Mouth of Amphimalla solstitialit. Corresponding letters reter to the same parts as In figs. 4,5 , and 6 .
is however very variable in shape, and in the Lamellicornes a tribe of Beetles which feed upon vegetable aubstances, inatead of being of tho ondinary horny texture, it is soft and membranous, and hidden beneath the clypcus (fig. 9, a). In some of the Cicindelida (predaceous insects) it is more or less elongated and notched at the sides and apex (fy. 10). In the genus Cicindela a small projecting tubercle zay be observed on the anterior margin of the labrum. In the Hornet (Veapa Crabro) the labrum is produced in front into an elongated pointed process (fig. 11). In the Lepidoptera it is extremely minute, and the $1 /$ emiptera jossess a long, slender, and pointed labrum.

Figs. 8, 9, 10, 11, and 12, labram, or upper-lid, of various lisects.
The labium, or under-lip, is opposed to the labrum, and geucrally wrvea to cloac the month bencath.
The labium in a very complicated organ, consisting of several parts whichare varionaly developod in the different triben of inaects, de. There in much confuaion in the nomenclaturo of these parta, especially In regaria the portion which is to be conaidered the true labium ; for although the whole apparatue is often called the labium, get when treated of in detail most authors agree in applying this term to some particular portion, but differ as to which particular portion the turin miall be applied, and consequently the ncigbbouring parts are differently named. The confuaion has arisen from tho circumstance of cntomologinta baving applied the name labium to the whole apparistua, and likewise to a particular part of it. We shall thereforo use
the term labium to express the whole apparatus, aud describe the several parts under the three heads Palpiger, Mentum, and Stipes.

Fig. 13, Labium and maxille of the Hornet. Fig. 14, Labium of Cerambyx mosehatus. Fig. 15, Maxilla of the same iasect. Fig. 16, Labium and maxille of a Locnst. Fig. 17, Lablom of another species of Locust. In all these figures the letters refer-b to the palpiger; c, lingua; d, paraglossw; c, palpi-labiales; f, mentum ; j, cardo of maxilla; k, stipes of ditto; l, palpifer; m, lacinla; n, galea; a, palpl-maxillarcs.

Palpiger, or palpi-bearer. This name was first applied by Mr. Newman ('Entomological Magazine,' vol. ii.) to a portion of the part called lingua by Kirby, and labium by M'Leay and others. It will be naed in this article as the name of the whole apparatua to which the labial-palpi are attached, including the lingua, paragloase, and palpi-labiales.

The aeveral parts of the labium therefore will be thus divided :-

$$
\text { Labium. }\left\{\begin{array}{l}
\text { Palpiger (b). } \\
\text { Mentum (f). } \\
\text { Stipes }(g) .
\end{array}\right.
$$

If we examine the underside of the head of any insect in which the varioua parts of the mouth are well developed, the palpiger will be readily distinguished from the other two portions of the labium by Its bearing a pair of palpi, the palpi-labiales. In Dytiscus marginalis, a common water-beetle, the palpiger is of a square form, or nearly ao. The broad piece furnished with briatly hairs along its anterior extremity is the lingua. On each side of this piece there is a small plate (apparently divided), which has ita posterior margin recurved, so as to lie close to the underside of the lingua, and furnished with a fringe of hairs. Theso small pieces we conceive to be the analogue of the parts called by Kirhy paragloase, and which are distinct in the becs, wasps, sc. They also appear to represent the two leaf-like appendagea at the apex of the palpiger in Cerambyx, the lingua here being nearly obliterated, and consisting only of an extremely minute divided process furnished with hairs.

The palpiger is not very distinct in the Iymenoptera; its appendages however are often greatly developed. In the hornet the lingua is very large, broad, and divided at the extremity; the paragloases are also large. The labial palpi are long, and composed of four joints. The lingus in many bees is of great length, and the paraglosex are often long. The labial-palpi in tho typical bces are flattened, and have the basal joint long.

Orthopterous Insects have a well-developed palpiger : the lingua, paraglossæ, and palpi are distinct.
Mentum, or chin, by which we mean the part so called by MCeay, Westwood, and indeed most modern authors, but which is the labium of Kirby and Newman. The mentum is the piece below the palpiger, and generally articulated to the stipes by a membranous hinge. Thia part ia very variable in ahape, and is consequently often referred to in descriptions of insects, or rather in definitions of the genera. It ia generally distinct in mandibulate insacta.

In Dytiscus marginalis it is of a transverse form, and emarginated on the fore part. In the hornet, as well as in the bees, the mentum is long, and nearly cylindrical.

Stipes. This name is applied by M'Leay to that piece which is below the mentum. It is the mentum of Kirby, the 'pièce prebasilaire' of Straus-Durckheim, and the insertio of Mr. Newman.

The atipes is generally aoldered to the jugulum, so that its boundaries cannot be detected. Such ia the case in the water-beetle, the head of which is aelected to illuatrate thia article. Its lower boundary is indicated in the figure by a dotted line. In the common Cockchafer (Melolontha vulgaris) however it forms a well-defined piece. In Amphimalla solstitialis (fig. 7), an allied insect, it is also distinct. In the Hymenoptera the stipes is amall, and generally of a triangular shape.

The Mandibles (Mandibulx) come next under consideration. These, the representativea of jaws, are situated immediately below the labrum. They are two in number, and have a vertical motion.

In the Mandibulafa the mandibles are almost invariably of a hard horny nature, often of a triangular form, or nearly so, and furnished with pointed processea (which have been compared to teeth) on their inner side.

In Carnivorous Insects the mandibles are usually of moderate length, aharply pointed, and armed internally with acute processes. Woodboring insects, such as the Cerambycido, have short stout mandibles; and in those insecta which feed upon vegetable substancea (the Phyllophagi, \&c.) the mandibles often preaent a broad grinding surface on their inner side near the base.

Figs. 18, 19, and 20, Maxille of various insects.
The Maxille, or feeler-jaws, like the mandibles, under which they are placed, are opposed to each other horizontally. They are joined at their base to the labium, and distinguished by their giving attachment to the maxillary palpi, on which account Mr. Newman has applied to them the name of feeler-jawa. The maxillw are variable in form, and hence the charactera of genera and larger groupa are not unfrequently derived from them. A perfect maxilla presents five distinct portions-the Cardo, Stipes, Palpifer, Lacinia, Galea, and Palpi-Maxillares.
Cardo (the hinge) ia a small piece, often of a triangular form, upon which the maxilla aits. It ia the Insertio of Newman.*
Stipes (the stalk). Kirby applies this name to the "corneous base of the maxilla, below the palpus," and in his detailed account of thia part refers both to the palpifer and another portion which is generally aituated within the palpifer. We shall confine the name stipes to that part of the maxilla which is joined to the cardo, and is either within or below the palpifer. It is the Maxilla, or Diac, of Mr. Ncwman. \dagger

Palpifer. This part, to the summit of which the maxillary palpi are alwaya attached, is usually a narrow piece running parallel with and joined to the outer aide of the maxilla at the base.

Lacinia (the blade). This is the chief part of the maxilla. It is situated above the stipes, is usually of an elongated pointed form, and furnished with briatly hairs along ita inner margin, and generally has one or more pointed clawa at the extremity: these clawa are called the Ungues. The name Lacinia is applied to thia part by Mr. M'Leay, and according to Kirby it ia the Lobus Inferior.

Galea (the helmet), or the Lobus Superior of Kirby, is a lobs which is attached to the palpifer, and lies between the galea and the maxillary-palpi. It is jointed in the predaceous beetles, and resembles a palpus.
*Mr. Newman has applicd a new name to thls part without sufficient reason, since it is well defined by Kirby. The name insertio in also objectionable, since it might create confusion, the same name having been alse applied by Mr. Newman to a part of the labium.
\dagger By the same rule that we do not apply the name lablum both to the whole labial apparatus and at the same time to a part, we reject the nams maxilla as applied to a yart of the maxillary apparatus.

Pulp-Maxillam (the maxillary palpi), joinod organs, two in number, one to each maxilla, situated on the outer side of the maxillee and apriming from the palpifer.
In the onder /hipera the maxilla are long, eledder, and pointed. In the Mraipera they are aill moro eleader, reacmbling bristlea. The long alender probomeis of the lepidopsera consints of the maxillic. Iu the onder Hymenopere the maxille are usually large, and when closed form a aheath which covers the varions parts of tho labium.

The oval apparatug, or Trophi, of the various Haustellate orders of lneeta have each neceived namea from Mr. Kirby. In the order Hemipera the oval instrument is termed the promuscis. The amo part is termed the Probowis in the Diptera, Antlia in the Lepidoptere, and llontulum in the Aphanipiera. The several parts representing the mapdiblea, maxille, labium, ic, have also received additional names in ewch of theso ordern, but we hare already sufticient.

The term Thorax is epplied to all that pert of an insect which lies betwren the head and the abdomen, and to which the lega and wings are attached.
1.g. :1

Fip. 21. Larma, phowing the three aegacmit of the thurax and the mlae acg. meate of the sbdomea; a, the thorax; b, the ebdomen.

We have before said that the thorax is composed of three segments; these are generally distinct in those larve which do not resemble the perfect inect and which posseme legs-such as the larra of the Lepidopera, Coleoptera, and certain IIymenoptera (Tenthredinida): hero each of the negmenta in question possesses a pair of legs.

Fls. 2:.

Flr. 1.

17r. 23.

Jarte of themas of Waters Bemte (Dyfiarwe morginalie).
Fin. 82. the woder alda of the prothoral, called prontertum. Fig. 23, the nofipir aite of the memothoras, called meeototum: a, the meutefium; b, b, banal jortions of the eljtin. Nig. 24, posterior view of the same: e, one of the middle i=1r of leaw. Fy. 25, under alife of the metathorax, called metanternum.

The term Irotharas in applied to the foremont of the thoracic negment, Menothorax to the next, and Metathorax to the hinder one, or that which jolos the sblomen. In the perfect insect wo find the three simplo Lioracie ring of the larrso replaced by the same
number of segments, but each divided into several distinet parts; these three segmenta however are never uniformly developed, but generally two of them are more or less perfected, and exert an inverne influence on the thind, and sometimes one of the segments is greatly developed at the expense of the rerbaining portions.
The Prothorax bears the anterior pair of legs and is articulated to the head. It is large in the Culeopiera, and is the part called thorax in descriptions of insects of this tribe; it is likewise well developed in the Orthoptera and Hemiptera. In the Lepidoptera it forms a narrow ring, which is easily diatinguished by the acales with which it is covered being erect, those on the next segment being adpressed. In the Mymenoplera the prothorax sometimes forms a distinct nock, but gencrally it is a narrow plate, and extends back on each side to the base of the anterior wings.
The upper surface of this segment is termed by Burmaister the Pronotum, and by Audouin and M'Leay the Tergum of the prothorax. The latter authors stato that the tergum, wheu perfect, is composed of four parte, to which M. Audouin gives the names Prescutum, Scutum, Scutellum, and Postscutellum, so named accordto their succession, commencing at thst nearest the head of the insect. These parts however are seldom to be seen, unless it be in certain Orthopterous Insects.
The underside of the prothorax is called by Burmeister and Kirby the Prosternum, and by Audouin the Pectus of the prothorax. To the prosternum the legs are attached, snd hence this part is always tolerably well developed.
Besides the above parts there is an internal piece called the Antefurca.
The Mesothorax, or middle segment of the thorax, is more complicated than the prothorax, owing to its giving attachment to the anterior pair of wings in addition to a pair of legs. The mesothorax is well developed in nearly sll jnsects, sod in the order Diptera attains ita largest size, and indeed forms the principal part of the thorax. Its upper surface is termed by Burmeister the Mesonotum (Tergum of Audouin), and the under part the Mesosternum (Pectus, Audouin).

Fig. 26, upper view of thorax of Vespa Crabra. 1, prothorax; 2, mesoths. rax ; 3, metathorax. $1, a$, ecutellum; $2, a$, seutum ; $2, b$, squamula; 2, $c_{\text {, }}$ scutellum; $3, a$, prescutum ; $3, b$, seutellum; $3, c$, postecutellum.

Fig. 2i, shice view of thorax of Texpa Chabro. The flgurea and lettera refer to the asme parts an in fig. 26, to whleh may be added-1, b, proxecutum and scutum; , e, sitation of the anterior palr of legs ; $2, d$, aternum ; 2 , e, situa. thon of the middle pair of legn; 2,f, altuation of the anterior pair of wings ; $3, d$, metantersum ; $3, c$, sitantion of the posterlor palr of wings ; $8, f$, inecrtion of josterior pair of Jegs; 4, ebdomen.

At its maximum of development it consists of four pieces above and eight below, to which Audouin spplies the names Prescutum, Scutum, Scutellum, and Postscutellum, to the upper pieces, or tergum; and Paraptera, Sternum, Episterna, Epimera, snd Medifurca, to the mesosternum. The metathorax, as it bears the posterior wings, is well developed in those insects which possess them, but where they are wanting, as in ths order Diptera, it is of small size. Its upper surface is called Metanotum, and the under surface Metasternum. When perfect it contains the same number of parts as the mesothorax. To this segment are attached the posterior pair of legs.

The various parts of the thomx will perhaps be better understood by their being placed iu a tabular form, thus-

Thorax

Prothorax.	$\begin{array}{cl} \text { Tergum, or } \\ \text { Pronotum. } \end{array}\left\{\begin{array}{l} \text { Præscutum. } \\ \text { Scutum. } \\ \text { Scutellum. } \\ \text { Postscutellum. } \end{array},\right.$ Furca, called Antefurca.
Mesothorax.	$\begin{array}{cl} \text { Tergum, or } & \left\{\begin{array}{l} \text { Pressutum. } \\ \text { Scutum. } \\ \text { Mesonotum. } \\ \text { Scutellum. } \\ \text { Postscutellum. } \end{array}\right. \\ \text { Pectus, or } & \left\{\begin{array}{l} \text { Psraptera } \\ \text { Sternum. } \\ \text { Episterna. } \\ \text { Epimera } \end{array}\right. \end{array}$ Furca, called Medifurca.
Metathorax.	Tergum, or Metanotum.Pectus, orPrescutum. Scutum. Scutellum. Postscutellum. Metasternum.Paraptera. Sternum. Episterna. Epimcra,

From the thorax we are naturally led to the wings and legs of insects.

The greater portion of the insect tribe possess four wings; some howerer only possess two, and others are quite destitute. These organs consist of two membranes applied closely together, and inclosing numerous nervures or hollow tubes which contain trachea.

The various descriptions of wings may be described under the following heads-Elytra, Tegmina, Hemelytra, and Halteres. The term elytra is applied to the anterior wings. "When they are without nervures and uniformly of a thicker and harder substance than membrane," they are peculiar to the Coleoptera. [Coleoptera.]

Tegmina is the name applied to the upper organs of llight when of a uniform corisceous texture, and furnished with nervures as in the Orthoptera. [Orthoftera.]

Hemelytra, the upper organs of flight when they are coriaceous at the base snd membranous at the apex, as in the Ilemiptera. [Hemiptera.]

The Hslteres ars two minute organs situated behind the wings of Dipterous Insects, and supposed to represent the posterior wings; they conaist of a slender stalk with a round or oval knob at the extremity. [Diptera.]
The Legs in true insects ars invariably six in number, but in certain butterflies the anterior pair are minute. Each leg consists of a Coxa, Trochanter, Femur, Tihia, and Tarsus, all of which parts are figured and described in the article Coleortera."

The Abdomen. Although the nine segments which compose the abdomen are generally distinct in larva, we seldom find more than seven or eight visible joints in the perfect insect, the remaining one or two being generally hidden, and is fact converted into parts of the organs of generation. The number of segments to the abdomen nometimes differs in the males snd females of the sams insect, as in the Aculeate IIymenoptera. As these segments in the perfect insect bear no organs of locomotion, they are of a more simple structure than those of the thorax, consisting chiefly of an upper plate called the Dorsum, and an under plate called the Venter.

The substance of the abdominsl segments is slmost invariably less hard and more lexible thau that of the head and thorax.

In the Coleoptera snd IIemiptera, where the upper parts are protected by elytra, or hemelytra, they are softer than on the under surface whicl is exposed. In certaiu species however where the elytra do not cover the abdomou they are of the same substance throughout, as for instance in the Staphylinide and several minor groups of Coleopterous Insects. The articulation of the abdomen to the thorax offers anne curious modifications, some of which are constant throughout whole groups, and hcuce afford distinguishing characters. When the sbelomen is closcly applied to the thorax it is termed aessils; and when the first segment, or more, is narrow and elongated, and forms a kind of stalk, it is termed petiolate.

The abdomen is often furmished with sppendages at its extremity; thus in the Earwig (in which Mr. Westwood discovered one more than the usual number of aegments) there is a pair of forceps which serve as weapons of defence, and in the male sex of Panorpa, where the aper of the abdomen is considersbly elongated, there is also a pair of forceps. In the Dragon-Flies there are small flattened sppendages, and likewise in the Staphylinidre, which are called Stylets, Indsed the various kinds of appendages are too numerous to be here described, but are noticed in the accounts of the various groups of insects contained in this work. The modifications of the ovipesitor are likewise noticed where they occur in the different groups. When it is of a long and compressed form it is termed ensate; and when it consists of several tubes retractile within each other, like the pieces of a telescope, it is called telescopiform. The term aculeiform is spplied to this organ in the Hymenopterous Insects.

We now come to the internal anatomy of insects.
The Digestive System of insects is well developed, and consists of an intestinal canal, in which a crop, gizzard, stomach, and small inteatine are generally distinct; but, as in the higher orders of animals, thess parts vary according to the naturg of the food.

Fig. 28

Fig. 28, Intestinal canal of Cicindela campestris: a, ©sophagus; b, crop; c, gizzard; d, stomaeh; e, e, bepatic vessels ; f, small intestine.

In a predaceous beetle (Cicindela) the intestinal cansl passes nearly straight through the body, the cosophagus dilates into a wide crop, which is succeeded by a minute gizzard, and then by the stomach, which, as well as the crop, is covered by numerous minute follicles; at the pyloric extremity of the stomach the hiliary ducta pour their eecretion into the cavity through four orifices, which are situated two on each side. The small intestine is short, sud opens into a wide colon which terminates the cansl.
In a vegetable-feeding insect the stomach is very voluminous and much convoluted, and the biliary ducts are proportionately long. In the common cockchafer these ducts have the secreting surface increased by innumerable minute seca.

The salivary glands are distinct in many insects.
The circulation of the blood in insecta is carried on in part by means of distinct vessels, and in part by channels excavated in the tissues. Its central organ is the dorssl vessel, which is segmentally divided; the compartments are separated by valves, which do not allow the blood to pass in any other direction than from behind forward. This segmental division however in the perfect insect does not extend into the thorax, the dorsal veasel in that region being converted into an artic trunk, which carries the blood onwards, that it may be distributed to the bead and thoracic appendages. From these it returns bsck wards along the limbs and hody to re-enter the dorsal vessel, sither hy veins which open into its several chambers, or by larger vessels that collect the whole to convey it into the posterior chamber. In its course however it is brought into very close relation with the air that is conveyed through the whole interior of the body by the complex tracheal apparatus; for it appears from recent observations that the blood not only bathes the exterior of the air tubes, but moves through that space between the onter and inner membrancs in which a spiral filament winds (as in the spiral vessels of plants) to keep them from being closed by lateral pressure.
These sir-tubes form a complex system, which is distributed with
the mont elatorato minntenexn throughout the body, commencing from Literal Stigmath, or breathing pores, of which each negment normally contsine a pair, though some of them are frequently clomed up, no that the number is grealy reduced. lsetween all the parts of the aystern there is the freast communication; and in mome parts of it, eapecially in inmecta of rapid tlight, wo find the airtules dilated into largo nirace, which both merve an reacrvoirs of air and contribute to diminian the apecile grarity of the body. By this extraonlinary development of the mapiratory syitem the apparent imperfection of the circulating apmasatus is compenated, winco the chief demand for a very rapid movement of tho blual in animala, which (like birds) put forth a wast amount of muscular energy and activity, arines not so much out of the demand for gutrition an from the necessity for a constant supply of oxgen to the lisace, which in bere provided for ty the penctration of tho air itself into their substance.

Fig. 29. Nerrown Syxtem of the Common Cockehafer (Mriolontha rulgaris). My. 30 , Nerrous Syftem of a Caterplliar, of L.arra.

The nerroun ayatera in insects consista of n double nervous chord, which in aituated in the ventral portion of the borly (being the reverae In thin reepect to tho vertebrato animala). Thin double chord is joined at intervala by ganglin, which in larve correspond in number to the jointa of the body, namely, thirteen. As the larva is about to asmume the pupa atato the abduminal ganglia grndually appronch the thorax, and conequantly are nearer to each other, a circumutance owing to the longitudinal contraction of the segmenta at thin time, at least nuch is the ean in Iopidopterous larric. In tho pupa atate the ganglia aro atill thore approximatuxl, and the nervoun chorda are curved and dintortal: the mame number of ganglia however are gemerally to be found ; but in the imago atato of Coleopterous lumecte everal of the ganglin baro beome confuent, so that the number in conniderably roduced. In the Common Cockchafer (Melolontha rulgarin), which may bo taken the an illuatration of the general character of the bervoun ayetem in inancta, therv is one large transverse ganglion lo the beal, conniating of two chief portiona joined laterally, mud whioh are exparwled on their onter ajdo to form the optio lobe. From thin large traniveno gasglion the two nervoun chomla extend downward and lankwarda, and form a riog which oncireles the casophagun, beumth which they are unitarl by the necond ganglion. These two gangla wother mend off the nervea whieh auplly the varioun parts of the heal and ite nppediagen, tha trophi, antennee, do. From the lower part of the mecond kanglion the nervoun chonds are continued to the thome, where wo tinit thrce large ganglionic masme, from which all the nervea which atiplly the thorax and abolomen have their nrigin.
The development of the orpanm of menme, and enjecially of the vimsi apyaratum, attaina high ligree of developrnmut. The cyes are bere acxymgntam! inh, large comproumil mamen, unually of menrly beminpherical form, which aro me large an the occupy a considemble part of themide of the bead. The ntructure of eachin individual eye
 tring to a focu the rayn which impingen uron it in the direction of ith own axim, and by the molo in which tho ningh gyen of each heniapharical mana are lantomed, tha rangu of vimon is extended in every difection, althongh the gen themelves are perfactly motionleat Thia raultiplicatron of cylindrical egea precincly nimilar to each other to gain an end, which in anewered in vertebmied animala by a aingle globular fye, embowed with the power of mation on either sine, is in remarkalla ancondation with tho geneml jlan of atructure,
charncteristio of the Articulata, and is mometimes carried to a most wonderful extent; the number of ningle eyen in a common HouseFly being 4000, in the Cabbage-Buttertly 17,000, in the Dragon-Fly 24,000, and in the Mordella-Beetle 25,000 . Besiden the great comjround eyer most lnects have a few viuple eyos diaposed on the top of their head, in tho narrow apace between the aggregato masses, which appar to be of conaiderable use in direoting their upward flight. 'hero can be no doubt that insects are possessed of the sense of heariug, for though the preciae organ which is subservient to it las not been determined, there in ample evidence that they are guided and influcnced by sounda, one of the most atrikiog instances of which is that the male of some insects (euch as Cicade, Crickets, \&c.), eunit peculiar sounds, which attract the females to them. These sounds aro produced ontirely by mechanical means, and cannot be regarded as vocal. It would scem probable, as has been hinted above, that some part of the base of the antenne is the auditory organ. There is similar evidence that insecta possess the sense of smell; thus the Flesh-Fly deposits ita egga in the thick fleshy petala of the Siapelia (Carrion-Flower), deceived by its odour, which resembles tainted meat. The sonse of touch is very dehicate in some insects; such is the principal purpose of the antenma, and the feet in some cases are furnished with peculiar organs, such as a soft cushion or a delicate expanded sucker, that is adapted to receive tactile impressions from the substances to which it is applied.
The muscular system of insects is highly developed, being entirely made up of the striated muscular fibre in its most perfect form, and consisting not only of muscles for the contraction and elongation of the truak by the approximation or eeparation of its segmenta, but nlso of numerous muscles which give motion to the legs and wings. In ineects of rapid and powerful flight these latter are so highly developed as almost to fill the cavity of the thorax. The joints are for the most part constructed so as to admit of but two kinds of inorcment, namely, flexion and extension; and the muscular spparatus has consequently not that variety of action which is seen where the ball and socket joint, which permits movements of circumduction, takes the place of the simple hinge joint. Nevertheless there are no nnimsls which surpass insects in command over the organs of flight. "Even the swallow cannot match the dragon-fly, which often cludes ita feathered pursuer as it can fly backwards and forwards, right or left without turning. When we compare the apace trasersed by an insect in a given time, with the dimensions of its body, we find it vastly exceeds the similar ration in the bird, and thus we peroeive that the locomotive powers of insects are far higher than those of any animal whatever.
"This power is most remarkably developed in the orders Neuropteras (Dragon-Flies, T'ermites, de.), and Hymenoptera (Bees, Ants, \&c.), and it is remarkablo that those are the very orders in which we find the most extraordinary manifestation of those instinctive tendencies, the high development of which, with an almost complete absence of intelligence, is a striking characteristic of the articulated series in gencral, and of the class of insects in particular.
"These tendencies may be considered as dependent upon an association between sensory impressions and inuscular movements, whioh arises from the original constitution of the nervous systems of these animals ; and they may thus be regarited as nocessities of their nature, not in the least indientive of intelligence, design, or voluntary choice on their own parts, but rather indicating the wiae adaptation, by which they have been constructed to work out plans of most admimblo elabornteness with the most wonderful perfection. Now these and all other instinctive actions have for their object the maintenance of animal life, as distinguiahed on the one hand from the mere organic life of planta, and on the other from the mental or psychical life of higher beings. Aud thus, if we consider tho animal kingdom in holding an interinediate position between the vegetable world on the one nide, nad the domain of mind on the other, we ahould be led to regard the class of innects, and eapecinlly the ordera Neuroprera nad Hymenoptera, an ita typo." (Carpenter).

Insects are endowed with grent powers of multiplication; this is accompliahed with only one exception, by means of the eexual process of generation. Tho exception referred to is that of the Aphis [Aphis], which is capable of propagntion by a procesa that appears to be analogous to that of gemmation amonget the lower animaia

The egge of insects ane extremely variable in ehape: the more common form is oval ; they are bowever often round, ametimes cylindrical. Those of the common white butterfly are conical. In many montha they are lenticular. The cggs of Hemerobius and several other insecth are placed upon footstalks.

The nurface of the eggs in generally amooth or nearly so, but it not unfregucntly harpens that they aro uneven, and display a great varicty of neulfture.

White, yellow, and green are the predominant colours of the egge of ineects : they are deposited in various aituationa, but always where the young larve may fiad appropriate food when hatched. Thua we often find them attached to tho leaven or stems of plants. The Ichncumonider deponit their egga in or on the bodies of caterpillars, aud their larvae when hatched feed upon these animals.

No insects come furth from the egg in their perfect condition, and their state in many cuses at the time of their being hatehed is quite

Fig. 33.

Fig. 34.

Figs. 31, 32, 33, and 34, Eggs of various insects.
embryonic, so that it is usually not until a series of very considerable changes have taken place in external confguration and internal structure, together constituting what is known as the Metamorphosis that the complete development of the specific type is attained. The amount of this metamorphosis, and the mode in which it is accomplished, vary considerably in the different orders of insects; but these etages are usually marked out more or less distinctly in the life of each individual. The term 'Larva,' in the ordinary language of Entomology, is applied to the insect from the date of its escape from the egg, up to the time when the wings begin to appear; the term ' Pupa' is in like manner employed to mark the period during which it is acquiring wings; and from the time when these and other organs characteristic of its perfect state are complete, it is spoken of as the "Imago." The grade of development however at which the insect comes forth from the egg is very different in the seversl orders and families. In all cases the embryonic mass within the egg is first converted into a footless. worm, resembling the higher Entozoa or the inferior Annelida in its general organisation, but possessing the number of segments, thirteen, which is typical of the class of Insects. Such, in the Diptera and Mymenoptera, and in some of the Coleoptera, is the condition of the larva at the time of its escape from the egg; and it is remarkable that many of the larvec of the first of these gronpa resembla Entozoa in their parasitic habits. The head in larve of this kind, which are known as maggots, differs but little from the segments of the body, the eyes in many cases not being developed, and the mouth being furnished with a mere suctorinl disc. In the Lepidoptera and most of the Coleoptera however, the larva at the time of its escape possesses the rudiments of the three pairs of thorscic legs, although they are little else than simple claws, save in the carnivorous beetles; whilst in addition to these, several of the abdominal segments are furnished with fleshy tubercles or prolegs, generally to the number of four or five pairs, which are peculiar to the larva state. In such larva, which are commooly designated as 'Caterpillars,' we ohserve a remarkable equality in the different scgments both as to size, form, and plan of construction, which reminds us of the Annelida. The alimentary canal occupies nearly the whole of the cavity of the body, and passes without flexure from one end of it to the other. The compartments of the dorsal vessel, the respiratory organs, tho dervous centres, and the muscular bands, are repeated with great regularity, and there is as yet no distinction between the thoracic and abdominal portions of the trunk. The head however is usually protected by a horny covering, and is provided with simple or clustered eyes like those of the higher Annelida and Myriapoda, snd the mouth is furnished with powerful cutting jaws for the division of the food, which is

fig. 35, a Colcopterous Larva (Telephorus). Fig. 36, Larva of an Iemipterous Insect (Zelus). Fig. 37, Larra of a Diptereus Iosect (Culex). Fig. 33, Larva of a Lepiloptereus Insect ($S_{d} h i n x$).
usually rezetable in ita nature. In the Orthopterous and Hemipterous ordsre however, these stages of development are passed through within the egg, and as the young insect does not cmerge thence until

HAT. Hist. DIV. VOL. III.
it has attained a higher grade, in which it presents a close resemblance to its parents in almost every particular save the want of wings, it cannot be regarded as haring the characteristics of a real larva. This is the case too with some of the Coleoptera, in which we find a considerable variety as regards the stage of davelopment at which the ambryo quits the ovum. In the true larva condition, the whole energy seems concentrsted upon the nutritive functions; the quantity of food consumed is enormous, and the increase in the bulk of the body is very rapid. During this rapid growth the caterpillar throws off and renews its epidermis several times, but the larva of the Hymenoptera and Diptera do not undergo this exuviation until they pass into the pupa state, their integument being soft enough to yield to the distension from within.

The principal variations in the larve of insects have been arranged in the following tabular form by Messrs. Kirby and Spence ('Introduction to Entomology,' vol. iii.) : 一
I. Larvæ without legs.
i. With a corneous head of determinate shape.

Coleopterous and Hymenopterous Apods-Culicida. Some Tipularice, \&c., among the Diptera.
ii. With a membranous head of determinate shape.
(Muscidce, Syrphidce, and other Diptera.)

II. Larvio with legs.

i. With legs only and without an anal proleg.
(Neuroptera and many Coleoptera.)

1. Joints short and conical. (Elater, Cerambycidle.)
2. Joints long and subfilifurm. (Staphylinus, Coccinclle, Cicindela, \&c.)
ii. Prolegs ouly. (Many Tipularice, and some subcutancous Lepidopterous larva, \&c.)
iii. Both legs and prolegs. (Lepidoptera, Serrifera, and some Coleoptera.)
3. Without claws. (Serrifera, \&c.)
4. With claws. (Lepidoptera, \&c.)

In the Pupa state insects exhibit two principal modifications: those which in general form resemble their larro, and those which are wholly unlike their larve.

Fig. 39, Pupa of a Lepidepterous losect (Sphinx). Fig. 40, Pupa of a Buttes. fly. Fig. 41, Pupa of a Bectle.

The former of these divisions Burmeister subdivides into incomplete pupx and sub-incomplete. Incomplete pupa are those without alary appendages: to these belong tha Lice and Bugs (Pediculus and Cimex lectularius). Sub-incomplete pupa are those which possess rudiments of wings. These comprise all the pupa of the winged genera of the orders Hemiptera and Orthoptera.

In the second division, comprising those insects in which there is a complete metamorphosis, the pupa, with very few exceptious, is iusctive, and does not take the least nourishment. They are divided into Pupa Coarctata, or those which are covered with a case in which no traces of the future insect can be perceived, as in Musca and many other Dipterous Insects; Pupa Obtecta, where the thorax and abdomen are distinct and inclosed in a horny case, as in the Lepidoptera; and l'upa Incompleta, wherc the parts are covered by a membrane, but distinct, as in the order Hymenoptera and some Dipterous Insects.

In the Coleoplera, Lepidoptcra, IIynenoptera, Diptera, and some Neuroptera, the pupa state is one of complete inactivity as regards all manifestations of animal life; although the formative processes are carried on with extraordinary energy. The imperfect laxvo of these orders are truly embryonic in their condition; and the processes of development which were commenced in the egg, and which wero then only carried far enough to enable the larva to come forth and obtain their own nutriment, are now continued at the expense of the food which they have collected and stored up within their bodics; so that the passage into the pupa state in such cases may be fairly likened to a re-entrance into the egg. The pupa is inclosed in the last skin exuviated by the larva, which, instead of being thrown off, dries
up, ad resuains to coraso the proper akin of the pupa that is formed lasemeth it; and in aldition to this, it is frequently protecterl by a wilken cocoon, the countruction of which was the last act of larval life. The duration of the pupa condition, and the rate at which the derclopmeonal chansen take place, vary considerably in diferent cases - mome inmects remaining in this state for years, while others pass through in in a fow days or hours ; in both canea however wo perceive that as ingportant intuence in exerted by external temperature. As tho alate of the pupa is one of rapid tranmition it cannot be said to have aay characteristic onmaiation. The assumption of the imago, or perfect typ of inmect life, in alwsys narked by an exuviation of the lutegumeut which coreral the pupa and with this are cast ofr all the reatigen of the organ peculiar to the lurva state, while the wiogn, the true lega, the componal eyed, the antenam, the complete znaticating or fuctorial appratus, sud many otlaer organs are now revealed for the firat time in all those whose pupa condition was inactire. The wiugs however are seldom ready for use at tho time of the insect's emersion from tho pupa-care, being usually soft and moint, hangigg loosely at the sides of the body, and having none of that rigidity which in requisite to give them power of aerving as organ of impulnion in the nir. It is not uatil the insect has forcibly injected the erachea with air-by taking aeveral full inapirations, and then unking an expiratory effort whilat the spiracles are closed-that the winge ere expanded; they then soon become dried up by expoaure to the air, and by the cesantion of the circulation wbich previously took place within them, and from that time they are the chief instaumeuta of locomotion in all insects in which they are fully developed. The autritive apparatua of the Imago is far less developed relatively to the muncular, nervous, and sexual orgaus than it is in the preceding conditions; and its subordination to the offices of these is shown by the fact that many ineects take no food whstever after their last change, the wole purpose of their existenco in their perfect state being the propagation of the raca by the generative process. In many Inatauces the duration of the imago atate is very brief, even when that of the preparatory periods has been very loug, as in the case of the Ephemero (Day-Fly), which usually dies in a few houre after its lant change; allbough the term of its previous life as a larva and an active pupa has not been less than two or three gears: and eveu when the length of the life of the perfect insect is much greater, as in trea, waspa, \&c., it seeme to have a special relation to the nurture of the offigring, which aro tended and supplied with food during the whole of the larrs atate. In the Ant tribe the neuters do not acquire wiogn; and some of theus, which are two or three times the size of the reat, and are momewhit differently formed, are chameterised as 'soldiem, their special office being the defeuce of the nest rather than the nurture of the young. Anoug the Termites (White Auts) however the alliem appear to be pupaearrested in their development, whilst the 'worken' bave the characters of permanent larve. In the Aplerons ordern of insech wo find some tribes undergoing a regular nochonorphosin, which is complete in every respect save the noudevelonnent of the wing Thun, the larre of the Pulex (Flea) aro footles worma, which afterwards pase into the pups state, apinaing for themelves asilken cocoon; in thia they remain inactive for about twelve dayn, after which the image comen forth, haviug the rudimeuta of wings attached to the scoond and third segments of the body, though without any proper distioction of thorsx mad abdomen. Tho Pediculus (Louse), Podura (Spring.Tail), nad some ather Aptera however uaderio no metamorphoain, coming forth from the egg in the condition in which they remsin all their livea, aud this being far from the type of the perfect iusect. (Carpenter, ' I'riuciples of lhysiology.')

We now come to alreak of the clanaification of Insects. As the varions order of innects are noticed under their respective headiogs, at prewat we mball confine ouraclvea to the arrangement of theac orders.

The ordem of lameta hare been so variously arranged by different authorn, that to give an outline of the viewn even of tho more celabraied would occnpy much pace; wo will therefore eelect the mont dintinguinhed of theme pyotemn:--Firatly, that of Linumus, whose subdivinjun am founded upon the nubatance and position of the wings; next, that of Fiabriciun, where the partm of the mouth have been selected in the divinion of thim elans into orders; then that of Bur meinter, where uo particular part or character han been chosen, but whem the ordern are ostablished upon an aggregate of characters; aud larely, thas of Mr. Wentwoorl.

The orlere of innecta are thus characterised by Liunous:-
Superior wing cruntaceoun, with a atraight
Suprerior wing nemberumaceoun, incumbent
All the wings with ncalen
All the wing inembmnona, thil unarmed
All the wing membranous, tail aculeato
Two poisers in the place of the posterior pair of wing.

Colcoptera. Hemiptera Ceridoptera. Neuroptera. Hymenoptera.

Diptera.
Apicra.
Wibluat either wings or elytra
lasects ara divided by Fabricius into-

1.-Ineeth with Biting Mouths

1. Elewherata - Maxilia free, uncorered, nud palpigeraun (Colcogitera)
2. Ulonata, - Maxilla covered by au obtuse galca or lobe. (Orthopteru.)
3. Symistata.-Maxilla geniculate at the base, and connate with the labiun. (Seuroptera, de.)
4. Piezata.-Maxilla corncous, compressed, often elongate. ($/$ ymenopteras)
5. Olonata.-Maxilla corneous, toothed; two palpl. (Libellela.)
6. Mitosala. - Maxills corneous, vsulted, not palpigerous. (Myriopoda.)
7. Unogata-Maxillse resembliug ecissore. (Arachnida, part.)
8. Polyyonata,-Palpi mostly six; many maxille within the labium. (Tsopoda.)
9. Kleistognatha.-Many maxille without the labium, closing the mouth. (Brachyurous Decapod Crustacea.)
10. Exochnata,-Maxille many without the labium, covered by palpi. (Macrurous Decapod Crustacea.)

11.-Insects with Suctorial Mouths.

11. Glossata,-Mouth with a apiral tongue between reflexed palji. (Lrpidop:era)
12. Ryngota,-3outh with a rostrum having a jointed sheath. (Hemiptera, Latr.)
13. Antiata.-Mouth with n haustellum without joints. (Diplera, A noplura, and Trachean Arachnida, Lstr.)

Burmeister'a System.

I.-Insecta A metabola.

The larra resembles the perfect insect, yet it wants winge, if the perfect iusect be wioged; the pups in this case has its rudiments. It runs about and eats.
a. With sucking mouths, which consist of four fine setae lying in a aliesth; palpi are wanting; four biliary vessels, and generally a free prothorax.

Order I.-Hemiptera.

b. With mandibulate mouths; mandibles and maxillo distinct, the latter having palpi, and generally distinct large supcrior lip.
a. Four unequal winga; the anterior pair leathery, or like parchment, the posterior pair folded longitudinally, and also once transveraely; prothorax always free; many biliary vessels.

Order 2.-Orthoptera.

B. Four generally equal and rarely unequal wings, never folded, or sometimes none at all. In the first the nervires are usually reticulsted, and there are generally many biliary vessels; in the latter case there are four biliary vessels attached to the intestine; prothorax sometimes free, sometimes not.

Order 3.-Dictyoptera.

11.-Insecta Metabola

The larya consists of thirteen eegments, either with or without legs; tho pupa is iunctive, or, if it moves, it takes no food.
a. Four equally large or equally long winga with reticulated nervures ; mandibulate moutha; few biliary ressels, rarely more than cight; prothorax always free.

Order 4.-Neuroptera.

b. Wings always unequal, tho posterior pair sonuetimes wanting, rarely all.

a. Mouths adapted to sucking.

a a. Instead of posterior winga thero are pediculated knobs; yet the wings are sometimes wholly wanting; four biliary vessels; larva without feet; a soft proboscis with neveral scter and a pair of palpi; prothorax not free.

Order 5.-Diptera.
l b. Four wings generally covered with acales; six biliary vessels; Iarva with feet and a diatinct head; maxille forming a npiral tongue; prothorax not free but small, and closely connected with the mesothorax.

Order 6.-Lepidoptera.

B. Mouths with cliatinct biting mandibles.
a a. Four naked wings tmversed by ramose nervures; larvio generally without head and feet, but nometimea with both; many biliary vessels; prothorax not free.

Order 7.-Mymenoptera.
l b. Anterior wings in the form of horny elytra; larvo with head, with or without feet; four or aix biliary vessels; prothorax always free.

Order 8.-Coleoptera.
The first and second of the nbove classifications are by no manns natural, nor were they intended to be mo by their raspective authora.

The former was established when entomology was, comparatively speaking, in its infancy; and although Fabricius possessed a more intimate acquaintance with insects, yet he contended that an artificial claseification shonld be adopted till further discoveries bad cleared the way for their satisfactory development. We cannot feel surprised therefore that these systems should have been superseded by others more modern.

The system of Burmeister is founded upon philosophical principles; we are not however prepared to agree with him in all instances. We allude more particularly to his order Dictyoptera, the species of which ought, we think, to be incorporated with the Orthoptera.

The following arrangement is that given by Mr. Westwood in his 'Introduction to the Modern Classification of Insects:-

Class of Hexapod Metamorphic Insects.

Sub-class, Mouth with Jaws.
Sub-class, Mouth with a Sucker.
(Autliostomata, W.)
Order, Diptera.
? Osculant order, Momaloptera.
? Osculant order, Aphaniptera.
Order, Heteroptera (including the Water-Bugs).

Order, IIomoptera.
Order Lepidoptera.
Order IIymenoptera.
? Osculant order Strepsiptera.
Order Coleoptera.
Osculant order E'uplexoptera.
Order, Orthoptera.
(Thrips ?)
Order, Neuroptera.
Order, Trichoptera (Phryganea
alone).
The mutnal affinities and likewise the grade of perfection of the various orders, may be expressed by arranging them in the following succession :-

$$
\begin{array}{ll}
\text { 1. Iymenoptera. } & \text { 5. Memiptera. } \\
\text { 2. Coleoptera. } & \text { 6. IIomoptera. } \\
\text { 3. Orthoptera. } & \text { 7. Lepidoptera. } \\
\text { 4. Neuroptera. } & \text { 8. Diptera. }
\end{array}
$$

The number of species of Insects is much greater than that of any other class, and they are probably as numerous as all other forms of animals put together. Although possessed of extraordioary locomotive powers, they are each and all distributed within as certain bounds as the most stationary animals or plants. Indepeudent, then, of its great interest as a part of philosophical zoology, the study of the range and specific centres of the forms of insect life becomes of great importance as an aid in the definition of tribes, genera, and species.

Climate and the extension or form of land are the chief iofluences regulating the distribution of insect life. The constitution of the soil affects it also, but in a secondary manner, through its influence on the vegetation, on which many insects feed. When from the intervention of tracts of water, of mountain barriers, or other causes depending on ancient geological events anterior to the origin of the existing Fauna of the earth, tracta of land presenting exactly similar conditions of climate and soil are placed far apart, we then have, not a repetition of the same forms among their insect population, but a representation by similar forms. This we see also in the Fauna of the several zones of climate belting mountains at different heights. Man's agency and the transporting power of currents of wind modify the distribution of many species of insects. In the following brief glauce at the distribution of the principal genera of insccts, examples of all these influences will be met with.

Coleoptera.-From the facility with which insects of this division may be preserved and trasported from place to place, we have more detailed accounts of their distribution than of any of the species of other orders. The Cincindelide are dispersed over most parts of the globe, the typical genus being cosmopolitan, whilst other groups are more limited. Among the Carabidee are many genera peculiar to Europe. Chlenius, Agonum, and Amara, are common to both liemisphercs. Marpalus and Brachinus are cosmopolitan. Cnemacanthus occurs in Africa and Chili. The Carabida of Western Asia agrec remarkably with those of Europe. Erichson has remarked that Carabi are Fery constant to certain soils: the vertical distribution of the species is also very constant. The water-bectles allied to Dytiscus, itself universal in the Old World, are mostly European : several of the species live in salt or brackish waters. Gyrinus ranges from Northern Europe to Australia. The Bhachelytra have their chief centre in Europe. The typical genus Staphylinus appears however to be represented everywhere: many species occur in South America. A species of Aleochara is found in Van Diemen's Land. Elater and Buprestis, types of families, are both cosmopolitan: the species are often local, and their distribution depends, in many cascs, on that of certain plants on which the larva prey. Among the Firc-Flies (Lampyride) the genus Lampyris, which is European, is represented in the tropics by Photinus, and in the New World by Aspisoma. The Maluchii are found everywhere, except in Sonth America. Ptinu, a genus chiefly European, has asingle representative in Australasia. Of the Necrophayi, the gencra Cryptophayus, Stronyylus, and Silpha are found everywhere, ranging from Britain to China, and from Brazil to Lapland. Hister, the type of a family, is also a cosmopolitan genns. Byrrhes belongs to the northern lemisphere, and has its chief centre in Europe. Among the Coprophagous Lamellicornen, the geuus Aphodius, thongh represented in most countries, is chiefly developed
in temperate regions; whilst Ateuchus, on the other hand, is mainly tropical. Geotrupes is cosmopolitan. Copris ranges to Australia, where however it is confined to the north coast. Scarabous is subtropical. Pelidnota is American. The beautiful Cetonice appear to be of umiversal distribution. The strange forms of Goliathus are South African. Of the cockchafers, Melolontha is cosmopolitan; Macrotops and A noplognathus, confined to Australia; Hoplin, with one exception, Furopean ; Amphicoma is Mediterranean ; Aaisoptea and Serica are natives of the warm and temperate regions of both hemispheres, whilst Euchorus, occupying the same range, extends beyond in a northern direction. Of the Melasoma, Blaps and Pimelia, both extensive genera, have their chief development in the warmer regions of the Old World. Of the Stenilytra, Helops is cosmopolitan, Edenura European. Of the Anthicidce the numerous species of Anthicus are chiefly inhabitants of temperate regions. The Blistering Beetles of the genus Melöe are very generally distributed.

Of the ten thousand species of Weevils the great genera Centorhynchus, Cryptorhynchus, Calandra, Otiorhynchus, and Clionus are all cosmopolitan. Platysomis and Cyphus are South American; Brachycerus, South African and Mediterranean. Brentus,'mainly confined to the tropical regions of both hemispheres; A pion and Rhynchites, chiefly European. The distribution of the species of weevils depends in a great measure on that of plants.

The most beautiful and vividly coloured forms of Longicorn Beetles are mostly tropical. The presence of forests determines that of many of the genera. Of the seventy genera of Cerambycida, the typical one, Cerambyx, is cosmopolitan. Others have defined centres, as Clytus in Europe, Trachyderes, in South America.
Of the Chrysomelince, the typical genus Chrysomela is cosmopolitan. Tho presence of certain plants determines the distribution of the species. From this cause, species of limited distribution are sometimes multiplied far from their aboriginal centres. Thus Galeruca calmarienzis, introduced from Europe into America, multiplied se at Baltimore in the years 1838 and 1839, that the elm-trees of the district were eaten bare by their larve, and probably they will henceforth become a constant annoyance iuthe New World. Lema and Donacia are instances of cormopolitan genera having distinct centres in temperate climates. Cassida, on the other hand, has its centre in the tropics.

Of the Trimera, Coccinclle are found everywhere. Eumorphus is Indian and Polynesian.

Orthoptera.-Though by no means an extensive order either as to genus or species, the Orthoptera are of very general distributiou. Representatives of the genera Gryllus and Acheta, the grasshoppers and crickets, are found in most countries. The Locusts are mostly exotic. The strange Phasmie are mostly tropical, as are also the greater number of Mantida, known popularly as 'walking leaves.' The Cockroaches, Blattce, are very general, and have been greatly diffused from their original centros by unintentional human ageucy. The Earwig tribes, Forficulidle, including more than fifty species, are in great part European, but range cven to Van Diemen's Land.

Erichson notices the curious fact respecting the Orthoptera of Van Diemen's Land, that only one fourth of the species are completely winged and capable of flying.

Newroptera.-The number of known specics in this order is shori of one thousand. The section of Plicipennes is almost cutirely European; the genus Macronoma, including species from Madagascar and Brazil, is an exception. The Planipennes, a great part of the genera of which division are now considered by many naturalists Orthopterous, have a much more varied distribution. Thus the Myrmelionide are cosmopolitan, the Perlo and Nemoura chiefly Enropean, the Panorpee characteristic of the temperate regions of both the Old and and New World, the Termites of the tropics. In the section of Subulicornes, the Ephemericle are European; the Eshnide, cosmopolitan; as also the truc Dragon-Flies, Libellula, of which near two hundred species are known. Other allied genera are more limited.
Hymenoptera.-Among the sting-bearing species, the true bees are characteristic of the ancient continent, those now dispersed in America having been traosported from Europe. The genera Centris and Euglosala are cxclusively Anterican. Nomia is Asiatic. Allodape is south African. Andrena, Xylocopa, and several other extensive genera, are cosmopolitan. A great many genera of wasps are peculiar to South America. The auts are most developed in Eiurope. Bembex is a tropical genus. The terebrating IIymenoptera are both very numerous and widely distributed, especially the great genus Ichneumon. Certain genera forming the family oryure are exclusively European, as are also a great part of the numerous fawily of Chalcididce. Cynips is European, and the greater number of Tentheredinida.

The distribution of the Strepsiptera depends on that of the insects on which they are parasitic.
Lepidoptera. - When the distribution of tho butterfies shall have been worked out, it will doubtless prove very intercsting. At present our knowledge of this subject is imperfect. The Papilionide are very numerous specifically, and for the most part tropical. Some of them possess great ranges. Thus certain specics of Picris are found over all Europe, and great part of Asia and Africa. Other forms are constant to mountainous regions. Of the Nymphalicle the greater number and more gorgcous forms are tropical. In this fitmily there
aro ema remmantule imbance of estenaive diatribution of apecies. Thue Inasess (urdmi (a common lritimh butterfy) is found in every rart of the world, and V'anexa Alalanta ranges over all Europe, part of A and Africe, and to North A merica In tho remsiuing tribes the typical genera ano nlwost niways conmopolitan, whilat others have mone limited ancas

The ijntrnjider and Zygenidle are in great part European; the Ciuninidar montly tropical.

Amone the Motha, the Phenenide aro cliefly European, and tho kpecien are usually widely dineributer. Thim appears to be the caso Ano with the other families of Nocturunl Lepidoptesa, probably rather in conerquence of our iumerfect knowledge of exotic forms, than hocauce it in really so, fur wo tud types and species in distant regions whereser they hare been even casually explored, as in the instance of A nimetic lunsia, where tho researelien of Eversmann among thesoinsects have brought many new forma to light.
I) peend. - One ling of the described rpecies of two-winged lies (about eight thourand) belong to tiurope. This diapropertion arises from our comparatise ignorance of the exotic forms. Tho small group of (trmithongeider, paraites on quadrupeds and lirds, has representalires of all its genera in kurope, the few remaining species being natire of enstern Anis, Westenn Africa, Auatralia, or Brazil. Tho thim formiog the family of Ifucidie inelude a great number of genera, both European and exotic, the former beiog inost prolifec in species, nome of which have wide ranges. The Syrphide are in the same eategory. The genu Chrysopu, equally developed in Europe and America, nnd repremented in n less legree in Africa and Asia, does not appear in Auntralia nor in the inlandsof the Pacific. Tabanna is twore widely distributed. Ommadius, a genus of Asilidie, has its menbers in sll parts of tho world. A great many genera are peculiar to fouth America, and several to Africa, hot, woody, and moist regions farouring their diffunion. Tipula, prepenting numerous nud varied forms in mont parts of tho worli, ia exeluded from Australia and the I'acific, which region seemn to be the lesat prolific in Dijptera. The npecios of Cinath, Culex, are very generally distrituted.

Hemipders.-Of the two grent divinions of this order, the Homogtera nod the Heteroptera, tho first in the gmallest and also the most tropical. The dintribution of the insects comprising them depends mainly on the Fauna and Flors of the countries they inhabit. Thus eachapecien of Coccus aphis has a rango correspondent to that of the plant upon which it feeds; and of the Corrrife and Lygeidee with the preaence of their favourite animal food. Among the most interestissg of the families of I/rmiptera are the Clicadeider, of which the genun Tettigonia inclutea 200 specien, centred in Anserica, but having nembers nlaw in the Old World; the f'ulgoride, or Lantern-Fliee, very genemlly diatributed through warm climatea; Sculclleride, remarkable for brilliancy, aro montly equatorial: and C'inex, of which the only truempecien in the common bed-bug, n pest apread over all Europe. Uf the Aquatic IVemupera, Cierris and liepuare cosmopolitan; Pelognua and the S'oconcelulir, enoutly European; Galgulus and Mononyx, American; and lluhobaice, equatorinl.

Thyoanura, - An yet the distribution of these minute insects has been mearcely attended to. Tho npecien of Lrpisma rango from Einrope to China J'oduro and Smynthura noo kurojean; a single specie of the lant named genus oceurn in North America.

Anoplera. - These dinagreeal,fe parasitu have lately been honoured by tho attention of mome excellent naturalists, enpecislly Deang aud (ivilt Their dintribution corremponds with that of the animals upon which they are found. Of the equally anooying order Aphanipera threefourthn of the known npecies are European. The Common Flea in a comopolite, and tho Chigo is coufaed to South America.

Fossil Insects.

Until within a few years the occurrence of insects in a fossil state coull only be subatatutiatel by reference to a amall number of localitien, nituated (an at Aix in l'rovenc.) among lacustrino tertiary strata, or (an : Stonmafeld in Oxforlabire, nud Solenhofen in Franconias) among marine Uolitice ledn; but Mr. I'restwich has added traces of Colomptera from tho Coal Formation of Coalbrook Dale, and Mr. Siricklansl parta of Veuroptera from tho Lias of Warwickshire; Wr. Ihickland obtaina Verroptera from the Oolite of Stonesfield, and Mr. Imalic portion of insecta lelonging to various antural orders from the Ioim of somernethhire, Gloucestershire, nud in the Wealden depmate of the Vinle of Wardourin Wilte, and the Vale of Aylesbury.
still the number of fornil inecta, whether we eatimate individuals or "jacion, in very maall comparod to the probable number of anciently exinting mace: "arcummance quite explicablo by refcreace to the Henomenn which are now takivg place in mature; for of upwarda of 12, (NW) liritialampecim of insects there in reason to believo that but a very minnte jroportion in busiel and preaerved in lacustrine, antuary, or marione dipmota now in progncas. Only one elytron of a amall beetle wam almerved in a depmest of the Filephantoidn em in Yoskshire, and one merl of momo umbellate plant, along with huadreda of shells which inhatital the lake.

No drultt vant mumbers of inrecta, wabdering by caprice or drifted by wind, paen from the whore and fall iuto the sen-as we learn from the firat voyage of Cook, who mailind through myriad of innecta, nome on the wing and others in tho wnter, evea thirty lengues from land off
the coast of South America,-but few of these escspe the watchful finny races, or ever reach the bottom of the sea.

In like manner we find land insects heaped in profusion by winds on certain tracts of fresh water, and borne down the course of rivers by inundationa ; aud these cases, by the nid of particular suppositions, such as evaporation or slow draining off of the water, may offer the nearest analogy to the facta actually observed in the greater number of insect deprosits.

The oceurreace of fossil insects, especindly in marino strata, is therefore to be regarded as an exceptional case, and this makes tho circumstances brought to light concerning them remarkable and difficult of interpretation. We find however from Mr. Brodie that tho insects lio in a certsin bed or mass of thin beds in the Lias; similarly they occupy particular layers in the Oolite, the Wealden deposits, and in the tertiary accumulations of Aix, Oeningen, and Auvergne. In the latter region the calcareous incrustations gathering on the indusia, or larra-cases, of Plaryganide have caused the formation of a peculiar limestoue, called Indusial Limestone.

In the following summary of the groups of foasil insects in Creat Britain the most recent stratifications come first. The catalogue commences with the Elephantoidal era. The authorities and localities nre given for ench case. (Morris's 'Catalorue of Fossils;' Brodie's 'Fossil Insects;' Lyell, in 'Qeol. Proc.;' Phillips, 'GeoL. Yorkshire;' Stricklnad, in 'Mag. of Nat. IIist.;' Buckland, in 'Bridgewater Treatise;' and 'Gcol. Proc.')

1. Ossiferous Fresh.Water Deposits. (Pleistocene.)

Elytron of a Chrysomela. Bielbecks, in Yorkshire. (Phillips.)
Remains of Copris lunaris. Mundesley, Norfolk. (Lyell.)
Hemains of Donacia. Mundesley, Norfolk. (Lyell.)
Remains of Marpalus. Muadealey, Norfolk. (Lyell.)
Remains of Coleoptera. Senthwold, Suffolk. (Alexander.)
No truly aquatic beetle is mentioned among these. Donacia haunta aquatic plants. The others are strictly terrestrial. They must have been drifted into the dakes in which the Planordis, \&c., lived.
2. In the Cretaceous System, no insects have yet been found.
3. In the Wealden Strata of the Vale of Wardour. The specimens found by Mr. Brodie and examined by Mr. Westwood were:-

Land Coleoplera, of the families Carabide (?), Harpalida (!), Staphylinide (1), Buprestuhe (?), I'enebrionide (?), Elateride (l), Curculionide (?), Cantharidse (1), and Helophorida.

Aquatic Colcoptera, of the families Mydrophilidee (?) and Dylicide (?) (Colymbetes).

Orthoptera, of tho genera Acheta and Blatla.
Memijtera aud Momoplera, including land-tribes, as Cimicidre, Cicada, Cercopis (larva), Aphides, \&c., nod the aquatic races of Velia and Mydrometra.

Neuroptera. - In this water-bunting order occur Libellula and Aishna, Corydalis, Libellulide, Termes (!), and Leptocerida. Trichoplera (?), Phryganide (?).
Dintera. \rightarrow Simulium (?), Platyura (7), Tanypus (7), Chironomus (?), Culex (1), Tipulidec (1), \&e. (Aquatic larva) Empide (1).
4. In the Oolitio Strata insects occur in the laminated probably littoral beds of Stonesfield and sume other localities in Gloucestershire and near Batl. Dr. Hockland has described soveral speecios in the 'Gcologienl I'roceedings' and in his 'Bridgewater Treatise on Geology,' and Mr. Brodie has added others. The remains are chiefly elytra of Coleoptera and wings of Neuroptera. The following is abstracted from Mr. Brodie's list :-

Coleoptera, of the families Prionide, Buprestide, Pimeliids (?), Chrysamelide (?), and Coccinellidre.

Neuroptera.-Memerobioites giganteus. (Buckland.)
5. In the Upper Lias : at Dumbleton and Churchdown. (Frodie.)

In tho Lower Lias: above the bone-bend of Aust Cliff, Wainlode Cliff, \&c. on the Severn; Coombe IIill, Cracombe; Hasfeld, Corsewood Hill, \&c., in Gloncestershire. (13rodie.)

Mr. Westwood bas examined 300 specitucns of insects from the Lias Leds.

Coleoplera, of the families Buprestide (!), Blaterida, Curculionide or Chrysomelide, Carabiula, T'elephorida, Melolonthida, \&c.; a species of (iyrinus (I).

Orlhoptera, including Gryllide and Blathda.
Memintera and Homoptera. Cicaula (3), Cimicille (?).
Ticuroptera. These are the best-determined of the fossil groups, owing to the structure of the wings being clear and characteristic:-

Libellula Brodici (Brodie), is found in Upper Lius, at Dumbleton,
Gloucestershire.
L. I/opuri (13rodie). Strensham, Worcestershire.

Agrion Buckmanni (Brodie), in Upper Lias at Dumbleton.
Aighna luessina (Strickland). Bidford, Warwickshire.
Orthophlebica communis (Westwood). Wainlode, Forthampton, Strenslam, Cracombe, Bidford.
Hemerolius (1) Higginsii (Brodie).
Chauliodes. Hasficld, Streusham, Bidford.
E'phemera. Strensham.
Diptera.
Aslits (?) ignolus (Brodie). Forthampton.

It is in the Lower Lias beds that the insects are most abundant. They occur in this part (between the ordinary lias limestones and the bone bed) so extensively as to justify the application to this genus of the term 'insect limestone' used by Mr. Brodie. As a whole the Lias insects appear to contain larger proportions of aquatic tribes than the Wealden. There is no decided evidence amongst them of the prevalence of a warm climate at the time and in the place of their existence. They are ususlly of small size, not so entire as to forbid the supposition of having been drifted (the Neuroptera may have been less drifted than the Coleoptera); and if there were islands or high coasts sdjacent these might nourish, and in time of floods send down the small coleopterous insects to be imbedded with the fucoids, oysters, and Modiolee of the coasts, and ferns and other plants of the land and streams.
6. In the ironstone nodules lying in the Carboniferons deposits of Coslbrook Dale Mr. Prestwick has discovered Coleoptera, Curculioides Ansticii (Buckl.), C. Prestvicii (Buckl.); and Sir R. Murchison ('Sil. Syst.' p. 105) mentions an insect to which the name of Corydalis Brongniarti is assigned. It is very possible that the laminated limestone deposits of Burdio House, near Edinburgh, and Ashford, in Derbyshire, may yield insect remains older than any yet meutioncd; and seeing the frequent connection or proximity of fossil insects to fossil fishes it may be worth while to search the lower beds of the mountain limestone, where the rich fish-beds occur in it, on the Avon, in Caldy Island, and in Fermanagh. The fish-beds of the magnesian limestone (marl slate) may also be indicated for further research. A very interesting addition to the fossil insects of Aix has becn made known by M. Coquand. It is a butterfly, and has been carefully examined by M. Boisduval, who has been able to recognise perfectly its generic and specific characters. It belongs to one of those genera the species of which are not numerous, and are at present confined to the islands of the Indian Archipelago, or the warmest countries of the Asiatic continent. It belongs to the genus Cyllo-it is an extinct species-and is unmed C. sepulta. M. Boisduval las cxamined the other fossil insects of Aix, and differing both from Curtis and Marcel de Serres, refers them to the extra-European gencra, and to extipet species.
(Kirby and Spence, Iatroduction to Entomalogy; Westwood, Introduction to the Modern Classification of Insects; Burmeister, Manual of Entomology; Insect Architecture, Transformations, and Miscellanies, in Library of Entertaining Krowtedge; Newman, Grammar of Entomology; Westwood, Entomologist's Textbook; Episodes of Insect Life; Curtis, Illustrations and Descriptions of the Genera of British Insects; Stephens, Illustrations of British Entomology; Carpenter, Principles of Physiology; Newport, Papers on the Structure of Insects, in Philosophical Transactions, and Transactions of Linnaan Socicty; Newport, article 'Insecta,' Cyclopredia of Anatomy; Catalogues of Insects in British Musenm; Insecta Britcranica.)

INSECTIVORA. [CaRNIVORA.]
INSECTS. [Insecta.]
INSECTS, FOSSIL. [Insecta.]
INSESSO'RES, the name given by Mr. Vigors to the Pcrchers, the secoud order of Birds in his system, sud, as the families of which it is composed are very numerous, he classes them in comprehensive sections or tribes, which he thus denominates:-Fissirostres (Cuvier), Dentirostres (Cuv.), Conirostres (Cuv.), Scansores (Auct.), Teauirostres (Cuv.).
The Fissirostres, according to Mr. Vigors, include the Mevopide, the IITundinide, the Caprimulgider, the Todida, and the MIalcyonide.

The Dentirostres include the Muscicapide, the Laniado, the Merulida, the Sylviade, and the Pipride.

The Conirostaes comprise tho Fringillida, the Sturnida, the Corvider, the Bucevide, the Loxiade.
The Sonnsores consist of the Ramphastide, the Paittacide, the Picida, the Certhiade, and the Cuculide.

The Tenuinostres are composed of the Nectariniade (?), Cinnyride, Trochilida, Promeropida (?), and Meliphagide (?).

Mr. Vigors finds the following parallel analogies by which the tribes of the Insessores represent the different orders of the class.

Of these the Conirosires are considered by Mr: Vigors the typical group. ('Linn. Trans,'s xiv.)

Mr. I1'Leay conccivcs it to be demonstrated that, so far as relates to the anslogies existing in nature between the orters of Mam. malia and Aves, the Primates ought to be placed as analogous to the Insessores. Both are omnivorous. ('On the Comparative Anatomy of Certain Birds of Cuba'' by W. S. N'Leay, in 'Linn. Trans.' xvi.)

Mr. Swainson, in accordance with his opinion that the primary
divisions of every circular group are five apparently, but three actually, gives the following table as illustrating the

Circle of the order Insessores, or Perchers:-
$\stackrel{1}{\text { Typical }}$ Circle. Bill more or less conic, strong, slightly or not at all notched; month without $\left.\begin{array}{l}\text { bristles; feet robust, formed both for } \\ \text { perching and walking. Omnivorous. }\end{array}\right\}$

Conirostres. perching and walking. Omnivorous.
2. $\int \begin{gathered}\text { Bill shorter and more compressed, } \\ \text { with s ditinct }\end{gathered}$

Subtypical
Circle. with a distinct tooth-like notch; mouth $\left\{\begin{array}{l}\text { geuerally defended by bristles. Insecti- } \\ \text { vorous. }\end{array}\right.$

Dentirostres.

Bill entire; feet very short, not adapted for walking; position of the
3.

Aberrant $\left\{\begin{array}{l}\left.\begin{array}{l}\text { toes various. } \\ \text { 1. Feet formed for } \\ \text { climbing. } \\ \text { 2. Bill long; tongue } \\ \text { extensile. Suctorial. }\end{array}\right\} \text { Scansores. } \\ \left.\begin{array}{l}\text { 3. Bill broad at the } \\ \text { base. Feed upon the } \\ \text { wing. }\end{array}\right\} \text { Fissirostres. }\end{array}\right.$

Cirtipedes.
Circle.
climbing.
$\left.\begin{array}{l}\text { 2. Bill long; tongue } \\ \text { extensile. Suctorial. }\end{array}\right\}$ Scansores.
$\left.\begin{array}{l}\text { 3. Bill broad at the } \\ \text { base. Feed upon the } \\ \text { wing. }\end{array}\right\}$ Fissirostres.

The table of analogies set out by the same author is tho same in substance with that of Mr. Vigors, differing only in the order in which the tribes and orders are placed. Mr. Swainson, who excludes Man from the Zoological circle, considers the Iasessores to be analogous to the Quadruazana.

The Dentirostres, according to the last-named author, include the families Laniade [Laniadex], Merulidee [Merulidet, Sylviadee [Sylviadse], Ampulidee and Muscicapidee [Muscicapldse], with their subfamilies.

Ilis families of the Conirostres are Corvide [Corvides], Sturnidee [Sturnide], Fringillide [Fbinoillides], Musophegida[Musophagide], and Buceridae [Hornalis.s], with their sub-families.

Under the Scansorcs he comprises the Rhamphastide [Rhampiastidse, the Psittacidee [Psittacidex], the Picide [Picide], the Certhiade [CEnthindes], aud the Cuculide [CuCulidet, with their sub-familics.

The Tenuirostres are made to contain the Meliphagidce [Meniphagide], the Cinnyridue [Cinnynide], the Thochilider [Trochilidez], the Promeropide [Promeropidx], sud the Paradisiadae [Birds of Paradise], with their sub-families.

The Fissirostres comprise the Meropide [Meropidex], the IIalcyonidee [Halcyonide], the Trogonide [T'nogonidex], the Caprimulgide [Goatsuckers], and the Mirundinide .[Swallows], with their subfamilies.

INSPIRATION. [Respiration.]
INTESTI'NA (Intestinanx), the second class of the Radiata, or fourth division of the animal kingdom, according to the classification of Cuvier. In the 'Regne Animal' this class is divided into two orders, Cavitaria and Parenchymata, which include all the Entozoa of Rudolphi; but the term Intestina, if retained at all, should beapplied only to the true Intestinal Worms, or thoso parasites which live in the intestines of other animals, and should exclude the Entoza which are found in the cellular tissue and substance of the different viscera of the body.

The order Cavitaria ('vers intestinaux cavitaires') of Cuvier corresponds to the fifth order Nematoidea of Rudolphi, and the group Colelmintha of Owen. The Parenchymata ('vers intestinaux pare1.chymaieux') includes the other four orders of Rudolphi, Acantho. cephala Trematoda, Cestoidea, and Cystica, and corresponds to Mr. Owen's group of Stevelmintha. [Entozs.]

INTESTINAL WORMS. [Entozon.]
INTESTINES are that portion of the digestive cansl into which the food is received after it has been partially digested in the stomach, and in which its further assimilation, the separation and absorption of the nutritive matter, and the removal of that which is cxcrementitious, take place. In an adult the intestines consist of a convoluted tube of from 30 to 40 feet in leugth, and are, from the difference of their diameters in different parts, divided into Small Intestines, which comprise about the first four-fifths, and Large Intestines, which constitute the other fifth of their length. The former again are divided into the Duodenum [Deodenum], into which the ducts from the liver and pancreas open, and in which the chyme from the stomach is converted into chyle [Digestion; Chyle]; the Jejunum, in which the absorption of the nutritive matter of the food is principally effected; and the Ileum. The large intestines are divided into the Ccecum, Colon, and Rectum.

The walls of the intestinal canal are composed of three principal coats or membranes. The exterior, which is smooth and polished, is called the peritoneal, and its principal use is to permit the frco motions of the intestines within the abdomen, and of their several convolutions against each other, by rendering the effect of friction as slight as possiblc. [Peritoneum.] Next to and within the peritoneal coat is the muscular; which is composed of two layere of fibres; an external, in which they are directed longitudinally, and an internal, of which the fibres encircle the intestinc. By these the motions of
the intertines aud the propulalon of their contents are effected; the longitustimal fibres eending to ahorten each portion of the canal, while the cincuiar cuntract itw diameter; nud the two nets together pro ducing a motion of the tubo nouewhat like that of a worm, whence it Lan rereweal the matuc of vermicular motion. leveath these layers, adal meparateal from then liy a itratum of cellular tisane, which has been mometime called the fourth or nerrous cont, is the mucous abombrane, which is the most inportant fart of the intestimal canal.

The siructure of these cones of the intestines has been most care fully observed by meanar of the asicroscope. The minute structure of the integtines correaponds to a conniderable cxtent with what is mot with in the atomach. Ihere are howerer differencen of structure eqpecially in the mucous coat of the intestines. We shall describe first the mumeular structure, and in doing this wo shall follow Professor Kalliker in his "Manual of lluman listology.'

The muscular coat of the amaller intestincs is somewhat thicker in the duadenom and the upper portions, than in the lower; it has io general a thicknes of $\mathrm{f}^{\prime \prime}$ - $\mathbf{1}^{\prime \prime \prime}$, nad is composed only of lougitudinal and imusverse fibres. the former are always less developed, and do not form a continuous layer, since they are very few or entirely absent alomg the attachment of the mesentery; they are usually most diatinct upon the free border, though avmin here they may be readily torn away with the serona membrane, so as at once to leave the second layer exponed. The latter is complete and continuous, consisting of circular bundles, which not uncommonly anastomose at very scute sagles.

In the large inteatines the longitudianl fibres are reduced to the three ligamenta coli, muscular baods of $4^{\prime \prime \prime}-6^{\prime \prime \prime}$, or even $8^{\prime \prime \prime}$ broad, and $f^{\prime \prime \prime}-f^{\prime \prime \prime}$ thick, which commencing upon tha coecum aro united upou the sigmoid flexure into a single longitudinally fibrons layer, thinner than in the mall intestines, and more eapecially developed in the duplicatores, which are known under the name of the plice migmodeax. All the fibres belong to the smooth or non-stristed nystem of muscular fibres. Many of them present knot-like enlargemeuth and frequently zigzag flexures, which produce the trausversely ntriated appearance of the entiro bundles of such muscles so frequently wet with in spirit preparations. The arrangement of the futecells in the different strata is simply this, mutually spplied in their length and brealth, and colierent:-Tbey are united into thin muscular kand, which when inverted with a coating of connective tiksur, and frequently also united into secondary bundles, conatitute the thicker or thinner musular tunies of the different regions; which, again are Eurrounded and separated from the contiguous parts by considernble layers of councctive tismue.

Bluod-veasola are very abundant in the amooth muscles; and their capillarien, of $0.003^{\prime \prime \prime}-0.004^{\prime \prime \prime}$, constitute a charncteristic network with rectavgular meyhea. Nothing in kuown about the lymphatics; nor are the relation of the nerves yet ascertained, except that Ecker ban oberved the division of tive nervous tubules in the muscular tunics of the ntomach of the frugnad rabbit.

The mucoun membrane of the nmall intestines is thinner than that of the atomach, but more complex in its structure, inasmuch ss berides the tubular, or licberkuhaing glatnds it presents n great number of permanent folds and villi, also imbedded in its substince, peculiar cloaed follicles, the no-called molitary and l'eyer's glauds, and, in the nubmucoun tianue of the duodenum, Brunner's glands. The mucoun membrane connint of connective tissue which is internally homogeneoun, or indintinctly Gbrillated; except where certain glands exint there is lut little nubmucoun tinnue, so that it is pretty closely connected with the unacular tunic. Upon tho inner surface of the mucons menbrano there reate a cylinderepithelium, whilat exter ually towariln the nobmucous timate it in bounded by n layer of amooth mumelen dincoverevt by Brucke, which meanures at most $0 \cdot 0155^{\prime \prime}$. They are dinpomed longitudinally and tranaversely, but in man their alight elerolopmont renderm it often very diflicule to diacover them.

The rillio of the anall intratiuce are whall whitiah elevationa of the lunermoat pertion of the murous membrane, readily distinguishathe with the noked eyc, and which diatributed upou and between tho valvula conniventea through the whole extent of the manll intestines, frim the pylorue to the marp alge of the ileococal valve, wre met wo clowe together sa to give tho mucuas metnbrane ith well-known velvety appearaice. Thoy aro ment numeroun (50 to 40 upon n кquare line) in the diodenum and jejunum, lem wo in the ileum (f0 to 70 upon

 ge" In breath. In the jrjumum they nipar for the mont pait in in anical nod flatened; frequently they are even foliated or cylindrical, clarate, or filuform, the threa later forma predomi. nating in the jrjunum. The length of the villi in from $\mathbf{y}^{\prime \prime \prime}$ - bl'", the $^{\prime \prime}$ trealth from $f^{\prime \prime \prime}-\operatorname{son}^{\prime \prime \prime}$, or cenen $\mathrm{i}^{\prime \prime \prime}$, tho thicknean in the flattenerl forme 1 :

The villi are componed of two portiona, a dreper cont lelonging to
 of the former, or vilum proper, ia nituilar to that of the entire villum; it in minaply a mold procean of the muroun metmbrane containitug bool. remela, lymphatica, and aronoth muacles, whom matrix, through which a varisble mumber of roundinh muclei arn menteral, in general exhibita no morphological fenenliarity mono deciled than that of the mucous membrano ltaelf, yet muat inont undoubterlly the regnaled na a meta-
morphosed connective tissue without any intermlxture of elastio tissuc. The bloodressels of the villi are mo mumerous that when well injected those whose epithclium has been detached become coloured throughout; and in living nnimala, or in those which have just been killed, ench villus if viewed from above appears as a rod dot aurrounded by a clear risg. In man every villus contains a close network of capillariea of $0.003^{\prime \prime \prime}-0.005^{\prime \prime \prime}$, with rounded or elongated nuclei, which lice immediately bencath the homogeneous external layer of the matrix, and is supplied by one, two, or three small srteries of $0.01^{\prime \prime \prime}-0.016^{\prime \prime \prime}$. The blood is msually carried back directly into the larger trunks of the submucous tissue by a veiu of $0.022^{\prime \prime \prime}$, whioh loes not arise as in animals, by the arching round of the artery, but proceeds from the gradual confluence of the fivest capillaries. The relations of the lacteals in the villi of man, have not hitherto been perfectly made out; for nlthough the majority of investigstors are inclived, like the older observers, to suppose that they commence by onc or two cocal branches, jet reccutly several observers have contended for the view that they origivate in a filiform manner. On this subject Professor Kölliker remarks that in the human subject he has never succeeded in meeting with villi distended with chyle, and in empty oncs, be has been uusble to obtain any decisive evidence; on the other hand, in animals, he feols certain that in many cases only a single lacteal which has a cocal and frequeutly enlarged end, and whose dianncter is much greater than that of the capillarien, traverses tha axis of the villus. He says be believes that all the narrow cylindrical and filiform rilli will be found to present this coudition, but that, ou the other hand, the number nud modo of origin of the lacteals may possibly be differcat in the broad aud foliaceous forms.
In addition to these organs the villi also contain, as Bruicke discovered a short time ago, a thin laycr of longitudianl smooth muselea, situated more ceutrally round the lacteals; these however are not nlways diatinct in man, they produce contracticus of the villi, which are fery erident innmediately after death, and which, according to Brucke, are also perceptible in the living animsl. They have in all probability an important induence over the propulsion of the ohyle and of the venous blood in the villi-always supposing that there is no objection to the assumptiou that they perform repeated contractions during life. Nothing is known of nerves in the villi. The epithelium of the villi and of the rest of the surface of the mucous membrane, although it is very intimately united with the deeper-seated parts during life, only becoming detached accidentally or by disease separates very readily in the dead aubject, and can ouly be observed in perfectly fresh portions of intestine. It consists everywhere of a simple layer of cylindrical cells alightly unrrowed below of $0.01^{\prime \prime \prime}$ $0.012^{\prime \prime \prime}$ in langth and $0.003^{\prime \prime \prime}-0.004^{\prime \prime \prime}$ in bresdth, whose contents are usually nothing but fine grauules, and an oval, clear, vesicular nucleus, provided with one or two nucleoli. During life, these cells, which agrec in all their chemical characters with the deeper cells of the oral epithelium, are so intimately united, that even after death their contours in a longitudiunl view, are at first either not at all or ouly indistinctly distiuguishable, though on tho surfaco they have the appearance of a beautiful mosaic. The cylioders only becorne quite distiact when they are either apontaveously or artificially detached, a process which usually takes place in such a manner that they hang together in continuous portions, all the cells covering a villus, sometimes coming off together like the cslyptra of a moss.

The adilition of water to these cella produces a separatiou of the cell-contents from tho brond end, giving rise, in sepsrate cells, to the appearance of a membrane thickened upon one side, and, in serics of cells or entire villi, to that of a peculiar atructureless coat, like the cuticle of planta; by ita longer action, however, or by that of the intestinal fluids, the hursting of the cells produces apertures in them or they become dintended into large pyriform clear vesicles.

We may here refer to the changes which the epithelial cells and the villi in general undergo during digention. The most striking circumstance is the occurnonce of fat-globules in different parts of the villi, which may nlways be observed daring the formation of a fatty milk-white chyle. The ruccession of the morphological stops is as follows:-The fat contained in the chymo at first enters only isolated epithelial celle in different jegions of the villi, so that in each we soon observe a large ovato shining drop.

The number of these fat-cells rapidly increnses, and then the villi acquirc a very peculiar appearance, often as if beact with pearls, from the irregular alternation of cella filled with fat, and conscquently bright and whining, with those which are empty and pale. In the cud all the cells liecome filled with these drops, and the epithelinm appears quite dark by transmitted, but whitish by reflected light giving its napeet to the whole villus.
With the repletion of the cutire cpithelial covering of the villus, absorption commencon, but up to this time nothing has entered the lactials. This however soon takes place, and the first indication we olnerve in the breaking up of the large drops of fat in the cells into many tolernbly minuto fatty molecules. When this has occurred thane dropis penctrate by degrees from all sides into the parcnchyma of the rillus itaelf, fill it more aud more, and at last enter the central lactinl, whose whole length they eventually occupy. In the meanwhile, freali fat has been continually passing in from the intestiun canal, not in the form of large drops however, but henceforward in
small molecules or drops of the same kind as those which were at first developed secondarily in the cells. On the other hand, at a subsequent period, we not uncommonly meet in the iuterior of the villi with large round drops, which appear especially inclined to form censiderable accumulations at their apex. In man the process is probably the same as in suimals. These observations demonstrate that fatty matters are abserbed as such, aud are not saponified; on the other hand, it cannet at present be certainly stated how it is possible that they peaetrate tha membrane of the epithelial cells, the parenchyma of the villi, and the walls of tbe lacteals.

The whole process may be compared to the imbibition of an emulsive fluid, such as ailk, by a perous body; and the fatty molecules of the chyme are probably absorbed simply in consequence of their being carried along with its fluid part. Whils digestion is geing, on, we frequatly find the whole parenchyma of the villi densely tilled with small nuclei, here aud there surrounded by cell-membraneseletnents which are never entirely absent in a villus, but are at other times far fewer, and particularly are not to be distinguished in its interior.

The small intestines contain tro kinds of true glands; 1 , tubular glands, which are dispered over the whele mucous membrane; 2, racemose glands, in the submucous tissue of the duodenum.

The Racemose Glands, or as they are commonly named, after their discoverer, Brunner's Glands, form, st the commencement of the duodenum, upon the outer side of the mucous membrane, a continueus layer, which is best developed snd thickest close to the pylorus, where it constitutes a considerable glandular ring, and extends about as far as the aperture of the biliary ducts. If the two layers of the muscular tissue be dissected off a stretched or distended duodeuum, the glands may readily be recognised as yellowish flattened bodies of $1^{\prime \prime \prime}{ }^{\prime \prime}-1 \frac{1_{2}^{\prime \prime \prime}}{}$ (on the average $!^{\prime \prime \prime}-\frac{1}{2}^{\prime \prime \prime}$), with their angles rounded off, which inclosed within a little connective tissue, lie close to the mucous membrane, and sead short excretory ducts into it. In their minute structure, Bruaner's glands, the terminal vesicles of which measure $0.03^{\prime \prime \prime}-0^{\circ} 06^{\prime \prime \prime}$, even $0^{\circ} 08^{\prime \prime \prime}$, agree perfectly with the racemose glands of the mouth and oesophagus. Their secretion is an alkaline mucus, in which no formed elcments are contained, having no digestive action upon coagulated frotein compounds, and probably merely subservient to mechanical ends.

The Tubular, or Lieberkiihnian Glands (cryptre mucosx), are distributed aver the whole small intestines including the duodedum as innumerable straight uarrow coce, which occupy the entire thickness of the mucous membrane, snd are frequently slightly enlarged at their extremities, though hardly ever dichotomously divided. The best idea of their aumber is ollained by viewing the mucous membrane either from above or in vertical section, under a low power. In the latter case we see the coca standing clese together, alunost like palisades; in the former we observe that the glands do not occupy the whole surface, but only the interspace between the villi; here however they exist in such numbers as to leave no intervals of any width, the mucous surface between the villi appearing pierced like a sieve. Lven on Peyer's patches, and over the solitary follicles, these glands are to be met with; but in man they leave those portions of the mucous membraue which lie immediately over the centre of the follicles free, and therefore are arrauged like wings around the follicles.

The length of the Lieberkühnian glands equals the thickness of the mucous membrane and variea from $3^{\prime \prime \prime}-y^{\prime \prime \prime \prime}$; their breadth is $0.028^{\prime \prime \prime}$ $0.036^{\prime \prime \prime}$, that of the ir aperture, $002^{\prime \prime}-0.03^{\prime \prime \prime}$. They are cumpesed of a delicate homogencous membrana propria, and of a cylindrical epithelium, which even during chylification never, like that of the intestine, containg fat; their cavity is filled during life by a clear fluid secretion, the so-called intestinal juice, which however becomes rapidly changod after death, or on the addition of water, so that the glands appear to be filled with celle, or with a granular mass.

The most important of the Closed Follicles are l'eycr's patches (glandula agminatar). They are rounded flattened organs, invariably situated along that surface of the intestioe which is opposite the mesentery; they are mest distinct upon the inner surface, where they appear as rather depressed smooth spots, without any very sharp dotinition, but they are also recognisable from the exterior by the slight elevation to which they give rise; by tranamitted light they look like mere opaque portions of the membrnne. These patches are usually the most abundant in the ileum, but they are not uncommonly to be met with in the luwer part of the jejununf occasionally they exist in the upper portion close to the duodenum, and evea in the inferior horizonial pertion of the duedeaum itself. Ordiaarily there are 20 to 30 of them; but when they are found higher up there may be as many as 50 to 60 ; but they are always most clesely set in the lowest portion of the ileum. The dimensions of the separate patches are in general the larger the closer they are to the coccum; their length is usually $5^{\prime \prime \prime}-16^{\prime \prime}$, but uasy diminish to $3^{\prime \prime \prime}$, and increase to $3^{\prime \prime \prime}-5^{\prime \prime \prime \prime}$, or evels 1^{\prime}; their breadth varies from $3^{\prime \prime \prime}$ to $5^{\prime \prime \prime}$, or $9^{\prime \prime \prime}$. Where the patches lie the valrula conn ventes are usually interrupted; in the jejuanm however these fulds are also to be met with upon the Peyer's patches and in the ileum; rows of clusely-set villi often take their place. More minutely exsmined, overy Peyer's patch is seen to bo an aggregation of clozed follicles of $\mathfrak{y}^{\prime \prime \prime}-4^{\prime \prime \prime}-1^{\prime \prime \prime}$ in diancter, either
rounded or slightly conical towards the intestiual cavity, which lie partly in the mucous nembrane itself, partly in the submucous tissue; and are on the ene sitle not more thau $0.02^{\prime \prime \prime}-0.03^{\prime \prime \prime}$ distant from the muceus surface, while on the otber they are in immediate contact with the muscular tunic, which is here somewhat more closely united with the mucous membrane.

Viewed from the interior of the intestine their most striking feature in man is the presence of many small rounded depressions $\frac{1^{\prime \prime \prime}}{\frac{1}{3}} \frac{1}{8}^{\prime \prime \prime}-1^{\prime \prime \prime}$ apart, which currespends with the separate follicles, and whose floor is indeed readered slightly conver by the latter, lut which present na villi whatever. The remainder of the patch is accupied by common villi, or by reticulated follts, and by the apertures of the Lieberkiihuian glands; the latter are disposed around the slight elevations produced by the follicles iu circlets of 6 to 10 and more apertures, the coroax tubulorum of authors.

The Solitary Follicles (glandulxe solitarix) resemble the separate elements of Peyer's patches so closely in size, contents, and general structure, that there is no reason for considering them as distinct, particularly as the number of follicles is subject to all possible varieties, and since, in animals at least, we find Peyer"s patches with $2-3-5$ follicles. In man, as all writers justly agree, their uumber is exceedingly inconstant; sometimes not one cau be found, whilst in other cases the whole intestines, as far as the margins of the ileococal valve, is thickly beset with them; or, lastly, they may occur in the ileum and jejunum, but in no very great number. Their entire absence must probably be cousidered abormal, since they are constant in newly-bern children, being mere abundant in the jejunum than in the ileum. The miliary vesicles however, which are often met with in immense quantities in the small intestines and stomach in catarrbal affections of the alimentary tract, may very probably be entirely or partially pathological, since the occurrence of such follicles has been demunstrated in other organs also (in the liver, according te Vorhew). The selitary fellicles have the same structure ns the elements of the patches, only they eccur also in the usesenteric border, and support villi upon their intestiual surface, which is usually somewhat convex.

Professor Kölliker expresses himself as decidedly opposed to the notion that the follicles of Poyer's patches have any apertures. Of their functions he says:-"They and the follicles of the intestine in general appear to me to be closed glandular organs, analogous to the eplenic fellicles, the tonsila, and the lymphatic glaads, which contain peculiar elements and a vascular network. In these a constant development of cells takes place, and at the same time substances are elaborated from the plasma, supplied by the bloodvessels, and perlaps also from matters not of a fatty nature, absorbed from the intestine, a part of which in all probability is at once takcu up by the internal bloodressels, whils the larger proportion is excreted, and absorbed ly the lymphatics."

The structure of the mucous membrane of the large intestines agrees 80 closely with that of the small iatestines, that it need not be described separately. With the exceptiun of the rectum it has no proper folds, for the trausversely fibrous wuscular layer also enters into the plice sigmuidere. The villi are absent from the edge of the ileoccecal valve. The glandular organs are Lieberkithn's glands ard solitary follicles. The latter are arranged close togethar in the pro. cessus vermicularis, and are very frequent in the rectum and coccum, and are also usually more abudant in the colon than in the small intestives. [Digestion; Food; Stomach ; Bile; Liver.]

Intestines, sMall. [lntestines.]
INTRICA'R1A, a small Polypifer from the Oolitic rocks of Erance, allied to Cellaria.

INULA, a genus of Plants belonging to the natural order Composite and the sub-order A steracee. It has a many-flowered heterogamous head. Florets of the ray female in oue row, sometimes by abortion sterile, usually ligulate, sometimes somewhat tubular and trifid; those of the dise hemaphrodite, tubular, 5 -toothed; invelucre inbricated in several rows; receptacle flat el somewhat convex, anked; anthers with 2 setce at the base; achenium without a beak, tapering, or in I. /helenium 4 -cornered; pappus uniform in ons row, composed of eapillary roughish seta.

1. Helenium, Elecampane, is found in pastures in various parts of Europe. It is a native of Great Britain. It has a thick branehing root, which is aromatic, bitter, and micilaginous. The stem is 3 feet high, leafy, round, furrowed, solirl, branched, and most downy in the upper part. The laves are large, ovate, serrated, nad veiny; downy and hoary at the back, radical, 1 -stalked; the rest sessile, clasping the stem. Flowerheads solitary at the downy summits of the branches, 2 inches broad, of a bright yellow colour; the scales of the involucre broad, recurved, leafy, fiuely downy on both sides; rays very numerous, long, and narrow, cach terminating in three unequal teeth; achenia quadrangular, smooth; pappus roughish; receptacle reticulated, not quite snooth or naked. Varions preparations of the boiled root have been recommented mixed with sugar to promote expectoration and to strengtheu the stomach. Some think a spirituous extract contains most of its aromatic and tonic properties. The plant is generally contained in rustic gardens on account of its many reputed virtues. Inulin, the peculitur property contained in the root, is a white powder, like starch, is insoluble in cold, sud soluble in hot
water, from which it is deponited on cooling; and this distinguishen it from starch. With iodine it gire n greenish.yellow compound, which in not permabent Innlin is distinguinbed from 8 am by its incolubility in culd water, and by not giving saccholactic acid when digestel in mitric acid.
I. Conyoa has the leaficts of the iovolncre all linear. Leares orntelanceolate, downy, denticulate; lower leavea narrowed into a footstalk; forets of the ray aubligulate; fruit terete. It is the Conyza spuarrosa of Smith The teto is from one to two feet high, leafy; heads corymbose The flowern yellow, those of the circumferenco between tubular and ligulate, deeply dirided on the inner side. It is found on calcureous milh in Great llritain, and is known by the name of l'loughunan'a Spikenard.
I. crithmoiles has the leaflets of the involucre linear, taper pointed; learea fealiy, limear, obtuse, or with three points. The stem about a foot high, alightly branched near tho top, ench branch terminating in a wlitary heal with an orangecoloured dise and yollow rays. It ia found on rock: aud in mudly ralt marshes by the sea. It is called Golden Eumpline.

INULIS. [Ixtra.]
INUUS, a genus of Monkegs [Qeavrumasa.]
INYOLC'CRUM, in llotany, is nny collection of bracts round a cluster of fowers. In umbellifereur plants it consiats of aeparate nartow bracts placed in asingle whorl; in muny composite plants these organ: are imbricated in several rown. If the bracta belong to a reconalary serice of the infloresenoe, as in the partinl umbels of an miaceons jlast, or In the sulitary flureta of Eehinops, they form an involucel. The most niggular states of the involucrum is that which in found in the genera Costanea, Pajus, Quercus, de., whero it forma a cup, or cloacal cover, remarkable in the European species of those genera, but anach mora so in the apeciea of Iadia
IULITH:, a Mineral, also called Dichroite and Cordieritc. It belonga to the group of anhydrous silicates of alumina. It crystallises in rhombic mad hexagonal prisms, adel usually oceurs in 6- or 12 -sided prism, or dixeminated in masses without distiact form. The clearage in indistinct ; but the crytals aro often separable into layera parallel to the lase. The colour is of rarions slindes of blue-often deep blue in the dircetion of the axis, and yellowish-gray transveracly. The utrak in nacoloured. Luntre and appearance inuch like that of glas. Tranmarent to translucent. It is brittle, nud has a hardneas of To 7.5 . In apecificerarity ia 2.6 to 2%. A specimen from Connecticut, L'aited States, had the following composition:-

Refore the blow pipe it funes with difficulty to a blue glass resembling the mineral. It is dintinguinhed hy this property from blue quartis, for which mone it conld be mistaken.

Iolite in found at Honlenmain in Lhavaria, Arendal in Norway, Cabo de (inda in Sipain, Tunaberg in Fiuland, alao in Greenland, Ceylun, and the United Statea It is occanionally cmployed as an ormaniental stone, and when cnt it presents different nhaden of colour, hence one of its manea, Dichroite (sixpone). Iolite refers to ita videt colour (ióers).

When lolite is exposed to the nir and moisturo it uadergoes a gradual alteration. It aboorbs water, and becomes converted into a Gydrate. It then anumea of folinted micaceon structure rezenbling talc. Hydroma IWlue. Chforaphyllier, nnd Emarkite are names that hare boen given to altered lolite, aml Pahlunite and Giganfholitc havo probably the sanse orisin.
(I)ana, Mincralogy.)

IOSE, or, as it in mometimes writien, JONE, n pramitic genum of Crustacenna, placed by loxmarent nuder the Rropoda, hut by Latreille, who eatabliabed the nubgenum, under the Amphipoda. The latter fonneled his meparation on the figure given by Montagu under the
 observen that it prometith particular characters which place it at a dintance from all the other forms of the onler. The body in composed of about fifteen jointe, which are only ta lre distinguinised by latemal Inciaions in the form of tecth. The four nutenma nre very mhort: the external ones, longer than tho two othern, are only visiblo when the animal in seon on the back. The firat two megments of the body In the female are each provided with two elongated femby lattencel oar-like circhi. The fect are mort, hiddun under the body, and booked. The lat nix megrenth no furnimhed with lateral flemhy elongatal fanciculatel appendages, which are simple in tho malen, but in the furm of arn in the other aex. At the posterior extremity of the incly are mis other mprendagen, whiel are simple and curverl, two of them lociog looger than the othern. The abulominal valven are very large, cover all the lower phart of the bolly, and form a pleccies of recoptacle for the eggs.

Thlo parneite hiden itelf unler the ahell of Callianasa suberranea [Calliaxasas], and there forma a tumor on one of its nidea Montagu extracted lt, and kept it alive for nomo days The femalea are always accompanied by their males, which are rery inferior in eize, and fix
thenselves firmly upon the ablominal appeadages of tho former by means of their claws Latreille, whose account wo have given, speaks of it as rare, and remarks that in its habits it approaches to Bopyrue. [1sorod.L] (Montagn, 'ILinn. Trans.')

IONIDIUM, a gonus of Plants belonging to the natural ordor riolacer. It has 5 sepals not prolonged at the base; corolla unequal, 2 -lipped, cousiating of 5 petals, the lowest of which is very large and unguiculnte : atauens 5, hypogynous, unequal, the two anterior having nnthers that are often appendiculate; capsule protected by the permnnent scpals; petala and stamens few, or many-sceded. The species nre herbaccous plants or shrubs.
J. Jpccacuenha is a native of the forests of Brazil. It has alternate lanceolnte ovate leaves, serrated, acuto at each ond; stipules ovatolanceolate, nente, membranous, rihbed in the middle; sepals semipinnatificl; lower petal very large, traneveraely elliptical. The roots are emetic, and are often collacted as a eubatitute for the true Ipecacunnha.
I. l'oaya is found in fields in the western parts of Minas Geraes, and elsewhere in Brazil. It is a very slanggy plant. The stem suffruticose, usually simple; leares ailternate, eubsessile, ovate, somewhat cordate at the base, rather acute, obsoletely toothed ; stipules lincar, scarious, quite entire, hardly perceptible; lower petal very large, broadly obcordate; filaments bearded on the outsideat the apex; membranous process of the nuthers very emall. Roots emetic, and like the last species aubstituted for trne Ipecacuanha.
I. microphyllum is found at Quito near the foot of Chimhorazo. The stoms are somowhat quadrangular, smooth on the angles, downy on the sides, filiform, erect, apparently not above one foot ligh, if so mnch. The leaves are all opposite, ovate, wedge-shaped, and entire at the base, with two or three coarse serratures on each side towards the point, covered sparingly on each sido with short fine down; the etipulea are membranoua, linear-ovate, acuminate, louger than the very short petioles; flowera amall, nxillary, solitary, and erect; peduncles filiform, slightly downy, twice as long ns the leaves; sepals ovateacute, with alittle fine down along the middle of the back; lip panduriform, that is, naguiculate, roundiah, emarginate, with tho claw almost rhomboidnl from the projection of its sides at opposite points. It is stated to be a opecific ia Elephantiasis tuberculata, the "Mnl do San Lnzaro' of the Spanish Americans, and 'Cocobay" of Jamaica. Dr. Bancroft speaks most favourably of its effects in this disoase. It is known by the name of 'Cuchunchully' in its native country. There is somo difference of opiaion as to the exnct species which furwishes this prepration.
I. parvintorum has roots extremely like Ipecacuanlat in appearance and properties.

1. Grericaule is a Brazilinn plast. It is emetic, and a porder of the root rubbed up with sugar aud milk furnishes an agreeably owcet modicine.
I. treticafolium is also an emotic of the same country.

IOltA, or JO1RA, a genus of Birdy established by Dr. JIorsfield, and placed by Mr. Swaingon among hia Brachypodince, or Short-Legged Thruahen. [MEnULid.f:]

Il'ECACUANIIA. [Cepmaelis.]
IIH.EROCEHA. [BonnoHUs.]
IPOMAA, a genus of Ilmats of tho natural family of Convolrulacee, which ia very clonely allicd to Conrolrulus, or Bindweed, whonce has been derived its nawe. From the more minnte inveatigations of modern botauists considerable changes have taken place in the nomenclature of tho species somctimes referred to this genus and sometimes to other nenrly nllied genern. M. Choisy, who has most recently exmmined the Oriental Conrolrulacea, exeludes many species unually referred bere, nod forms the genus of tho species of Ipomea nnd Conrolvulus of ruthors. Jpomaca has a 5 -nepaled calyx, a canspanulate corolin, with firo atamens included within it; atyle aingle; ntigma bilobed; lobes capilate; ovary 2 -celled; cells 2 -needed ; capaule 2 -celled. The apecies are very numerous, and found in the tropical parts of Asia, Afrion, and America. A few ascend tho mountains in much latitudes.
Most of the apeciee are ornamental; othera have been removed to Quamoclit, Argyreia, Pharbitis, \&c., and ono of the most useful as an nrticle of diet in tropical countrien, to Batatas. B. edulis produces the tubers so well known by tho name of Sweet Potatocs. [Batatas.]
I. Turpethum is found in the Einst Indies, Mrlayan Archipelago, Australia, Timor, Otaheite, Friendly Lalands, Marianne Islands,

Tinian, \&c. Its root is perennial. The stems twining, several fathoms long, from 3 - to 4 -sided, a little downy, with winged angles; leaves stalked, varying in form from cordate to linear, all pointed and lobed, or angular and downy; peduneles axillary, dowuy, manyflowered; flowers large and white; bracts oval, concave, velvety, deciduons; ovary seated on a large glandular disc; stigma 2-lobed; capsules involved in the dry calyx, absolvtely 4 -sided, 2-celled, opening at the apex by a kind of operculum; seeds round, black, one in each cell. The root has been long employed in India as a common purgative. The bark of the roots is the part employed by the matives, as it contains all the active properties; they use it fresh, rubbed up with milk. About six inches in length of a root as thick as the little finger they reckon a common dose. (Roxb.) It is reckoned an excellent substitute for jalap, and is free from the namseons taste and smell of that drug. The plant is a native of all parts of continental and probably of insular India also, as it is said to be found in the Society and Friendly Isles and the New Hebrides.
I. macrorhiza is supposed to be the Convolvulus Jalapa of Linnens. It is a plant inhabiting the sandy soil of Georgia and the Carolinas, with white insipil farinaceons roota, weighing from 40 to 50 lbs . It is said to possess no puryative properties, but, hke Batatas, consists chiefly of saccharine and farinaceous matter.
I. pandurata is common in North America, in sandy fields and by fences, from Csnada to Florida. It is the Meehameek of the Indians. It has a very large root, 2 or 3 feet long and as thick as the arm, of a yellow-ochre colour. The stem is downy; leaves on long stalks, broadly cordate, entire, acuminate, slightly repand; peduneles many flowered, cymose longer than the petioles ; corolla large, campannlate, white, dull purple towards the base; stamens white, the length of the tube. The powdered root acts like rhuburb; it requires to be given in larger doses than jalap. It has an American reputation as a remedy for calculous affections, and in cases of gravel.
I. Purga (I. Jalapa of Nuttall) is found on the eastern deelivity of the Mexican Andes near Chiconquiaco, and near San Salvador on the eastern face of the Cofre de Perote, at an elevation of about 6000 fect above the sca; and on the momntains near Orizaba. It has a tuberous deshy root, with numerous roundish tubereles. Stem smooth, brownish, very slightly rough; leaves stalked, the first hastate, the succeeding ones cordate, aenminate, mucronate, smooth; peduncles axillary, 2 -flowered, twisted, the length of the corolla;

sepals obtuse, mucronate, smooth; corolla purple, with a loug somewhat clavate tube, and an undulated limb with 5 plaits; flaments smooth, unequal, longer than the tube of the corolla; anthers linear, projecting ; tigma cajutate, deeply furrowed ; eapsule 2 -celled; cellis 2 -seeded. It han long been employed as a medicinal sgent, and
is considered by the triders in jalap to be extremely similar in quality to the true plant; and as it is the more abondant and larger of the two, at least in some districts, the probability is that it also forms a part of the imported samples of this drug.
I. Orizabensis is native of the temperate parts of the state of Oaxaea. It has a tuberous fleshy root, with numerous oblong tubereles; stem twining, green and hairy; leares cordate, acuminate, mucronate, hairy, the earliest oues hastate; peduncles 2 -3-flowered, twisted, three times as long as the corolla; sepals oblong-obtnse, mucroante, hairy; corolla purple, campannlate, with a regular tube inflated in the middle, and a wary limb with 5 plaits; stamens shorter than the tube, hairy at the base; capsule 2-celled; cells 2 -seeded. Tho Spanish name of this plant is Jalapa Macho.
I. tuberosa is found in Jamaica, where it is called Seven-Eared or Spanish Arbour-Vine. The root is tnberons, as large as a man's head; stems 200 or 300 feet long, purplish at the extremities; leaves smooth, downy beneath, palmate, or 7 -lobed; the lobes much smaller at the side than in the middle, narrow, lanceolate, acnminate; peduncles many-flowered; flowers pale yellow, sweet seented; eapsule as large as a walnut, membranous, shining, brown, 2-eelled, with two black or clark-brown shaggy triaugular seeds in eaeh eell. All the parts are purgitive. Dr. Barham thinks scammony might be obtained from it.
I. cathartica is found in moist plaees in St. Domiugo. The stems aro twining, smooth, and herbaceous; leases large, distinct, longstalked, broad, oval, cordate, smooth, and 3-lobed; the two lateral lobes oval, shorter, acute; the terminal oval lanceolate, acuminate; peduncles axillary, usnally I-flowered; flowers large, deep bright-red; tabe of the corolla thick, inflated, contracted and eylindrical at the base, an inch and more long, pale green; the limb broad, 5-lobed; stamens shorter than the corolla ; stigma capitate. The roots furnish a resinons substance used as a purgative in St. Domingo. Its use is not however very safe, as it is apt to produce excessive purgation.
(Lindley, Flora Medica; Royle, Materiu Medica.)
IPS, a genus of Insects belonging to the order Culeoptera, to the section Pentamera, and the family limpida. The body is of an ollong. oval form and depressed, with the third joint of the antenne longer than the second, and the club large and rounded. The species are generally found under the bark of decayed trees. They are ehiefly confined to Europe. The British species, of which there are four or five, are rare.
IRIDA'CEE, Ifids, a natural order of Endogenons Plants, usually with equitant leaves, and a rhizoma or cormus for their stem, but

Lenves and fluwers of Sisyrinchiom striaftim. 1, the stamens; 2, the ripe fruit.
mom particularly characterimed by having thee atanen, the anthers of which aro lurmel outwand, and an luferior ovary. The genern aro numseroun, and wome not well defined; ther inhabit the tompernte parts of the world in preferenco to the bottest, where they are cotramatively more. The fris and thocus are representatives of the pealomimant northern form of the oriler, as Gadiolus and Jrin are of the groera prevalent in tho eouthern laemisphere. All the pecies ane afficiently ormamental to deservo cultivation, and masy are of atriking bexuty. They ane principally natives of the Cape of Good llope, or of the midulle parta of North America and Fiurope. A fow only are funnd within the tropices Acrid, purgative, and cmetic propertios are met with in momo plants of this onder. Somo are Eragmat and ammatic, other supply starch and insterials for dyring. The position of the onder is between IHemodoracece and Amarylfidicent. It bas 53 genern and 550 apecies. [lus.]

IRIDEA. [ALo.r.]
IRIDINA. [Coxchscra.]
IRIINUM. [PLstiscx.]
IHIDOSMINE: This name is given to a compoum of the metals Irillium and Onanium, found in the platinum mines of lussia, South America, and the Fast Indica. Thu cryatala are lexagonal priams of A pale utecl-gray. It occurs in flat grains. Their composition varios. One saricty oontains rholium. They are distinguished by the odour of оямімй.

11:1s [トゥг]

11115 , n genus of Planta, the type of the natural onder fridacece. It ha tubular perianth with a petaloid membranous limb, the segtrenth of the repala revolute, often hended, thoso of the petals erect and converging; 3 wtamene, concealed beneath the lober of the atyle; the atyle 3 -parted near the upper end with petaloid aegments overarching the authern, anil benring o olipued tmasverso stigma below their enta; the capsule 3 -oelled, bursting through the cells into three valres, coriaceous, with nutacrous flat or round and fleaby reeds.

1. rersicolor, Blue Flag, has sworl-hhaped strinted leaves, theathing at the hame, n stem 2 or 3 feet ligh, round on one mide nad scute on the other, and bearing from 2 to 6 tlowers. This plant is a nativo of *wamperal wet meadows in the Uuitel States. The rootstock has a nauscoun acrid tante. It acta as a cathartic, aud its action is attedeal with griat depreasion of the nervons system and prostration of atrength. It also acta upon the kidneys, sad is useful in cases where linretien are indicated.
2. Jwend-acorvs, Y'cllow Flag, has sworl-alanped lenves; the stem round: ferinath bearilesa, its inner aegmenta narrower and shorter than the atigman. It in a native of wet places in Great Britain, lirance, Germany, nul mont countries of Europe. Tho rootatock is arrial, and pmaceasan custic and purgativo action. The seeda when romated are paill so form a good mubstituto for coffee.
f. Forembina, Flormane Irin, has broad and ammewhat falcate leave, ahortar theo the atem, the petale two inches long and one inch lumal, refesed at the elge and mother plaited towards the base. The dried roontoch in known in the bhopa under the name of orria-root. The plant in a native of the mouthern parta of Europe and the ishande of the Meliterrancm. The rootstock has an anomatic odour anil aubacrill laste, and in employed as a dentifrico. It enters into tho comporition of Jumpinin tinctume and tooth-powder, and other popular dentifrices It was at ono time used in medicine and almiterl into the liritimh pharmacopecina. The fresh rootstock acts as a prorzativa, and was also cmployed as an expectorant in diacasen of the chent. When drical and turmed into mmall balla it is used for isauopran. Accorlins to sibthorp thin plant in found in Grecec at the prement ray. It in the "Ipar of Hippocrates ("Morb. Mul.', 2, 6i3) nud

J. fulodmoma, Stinking Fogg, has aword-ahoped learea, the stem
 an the atigras Thin prant is a native of ifreat Britain aud other pare of Finmpe. It has n p"culiar mmell, which some have compared tor roant bef, but which tw othera mgkenta much lesa pleasaut asmociationg it in the "Ipur depia of Theophrastun ("llist. Plant," 0,8) and $\mathrm{E}_{\text {tid }}$ of Thummriten (1.12).
I. Pubrona lana betrabinal bavea, the megmenta of the perinnthacute, the porath tuberome. It in not a common plant in liurope, but has lan maturalinal at Penzance in Cornwall, woul near f'urk in Ireland.

Many utber ajemeien of lris lave beell demeribed. J. Cirmanica hana limen umed for the mame phirgomen an J. Fimentiona, and they are crobandervel ley momn brotanint as filentical. The grota of many of theras cositaini ntarch, and linllam anya that the recota of fo dichofoma arm raters is sileria I. edwlin in raken ly the lhothotote of Africa, whore it ie callod itenkjes, All themomecies are cultivated in garcleun on arcousut of hanilminno miows flowera
 Flora fircera: Inhington, Sanmal of Braith Bohany; Burnett, emplonet of Motana.)

Ilfon. Of all the metala iron in the mont widely diffured, the moat abundant, atal the mont uneful. It in fouml nat only intermixed with mola, and runtained in rockann mineralm, but it in futul in animal

Iron oscum ramly. if indeed at all, in unture in the metallic atate,
for almost the whole of it that has been found occurs as meteorie iron containing nickel, or in meteorie atones. It has however been atated that it haa been dincovered in situncar Canaan in the United States; it there occurn in a vein two inches thick ln chlorito schist, Alled with native iron. It appeare that this iron is traversed by graphite. les muceifie gravity is 5.95 to 6%. The Uralian Mountaina yield a kind of astive iron which la nccompanied with platinum.
The greatest quantity of iron ia found either combined with oxygen, oxygen and carhonic ncid, or with aulphur; the last mentioned is net however worked as an ore. The beat iron-ores are oxides, which occur in prinitive countrien, where they genemlly form very large beds, such as those of Sweden; but the greater part of the jron-ore of Britain is an impure carbonste.
The properties of iron nro, that it is grayish-white with a tint of blue ; it is extremely ductile, so that it may be drawn into wire finer than the humnn hair, but it cannot be beaton into very thin leaven. It in of all metals the most tenacions, for a wire 0.787 of a line in diameter is capnble of supprorting a weight of nbout 550 lbs.
Iron is susceptible of n high polish. It is combustible when minutely divided, as in the state of filings, which is shown by aprinkling them in the flame of a spirit lamp. It is very hard at common temperatures, and this property may be increased by ita being heated and then auddenly cooled ; it then howerer becomes brittle. It requires a most intense heat to melt it, but when heated to redness it becomes soft and pliable, and possesses the valuable property of 'welding', that is, two pieces of red-hot iron may be made to unite by bammering. Its texture is fibrous Its guecific gravity is about 7.7%, but this varies in some degreo accordiug to the extent to which it has been lrawn, rolled, or hammered, and it is increased by fusion. Iron, or ratuer steel, is capmble of being rendered permanently magnetie, a property which no other metal possesses but nickel: when heated to redness this property is lost, and a loadstonc suffers the same loss just below visible ignition; while a steel magnet loses its polarity when sulijected to the temperature of boiling almond-oil. Iron has great alfinity for oxygen and sulphur, and some other clementary bodies, aud combines with them in various proportions.

Meteoric Iron. - There have been found in different parts of the earth large masses of native or motallic iron, of tho history and origin of which nothing very accurate is known; but they are regarded as being of meteoric origin, for it is invariably found that, like the iron which occurs in meteoric stones, this metallic iron contains nickel, nnd no such compound or mixture ia found in the earth in reins or beds; and in point of fact two masses of such iron were soen to fall at Hradschina, near Agram in Croatia, io 1751. They contained 3.5 per cent. of nickel. Similar masses have been found in Africa, America, and Siberia. That in the last-mentioned part of the world was discovered by Professor I'allas: it weighed $1600 \mathrm{lbs}_{\mathrm{s}, \text {, had a cellular }}$ atructure, and contained crystals and grains of a green substance of a vitreous appearance, which lave been stated to be Olirine or Chrysolite. This irun contains only 1.5 per cent. of nickel. One of the largest masses is that found in Peru by Don liubin de Celis; jt weighed 15 tons, and contained nickel. This was also the case with the knives which Captain Parry oltainod from the Eqquimanx. The largest quantity of nickel containel in nny specimen was about 10 per eent.

Meteoric Iron sometimes occurs crystallised; the primary form is the cube, and it is atated to have beeu found in regular octohedrons. It has no apparent clearage. Fracture hackly. Hardness 4.5 . Specifle gravity 6.48 to $7 \cdot 768$. Opaque. Listre metalic. Colour pale steel-gray.
Oxides of /ron.-The protoxide of iron does not occur in nature except in combination, ame usumlly with carbonie acid; in this form it is found in minernl waters. The one which most nearly mproaches it is Maguetic Iron, sometimes called Oxydulous Iron inn Octohedral Iron. This ore is found crystaline, massive, and arenaceous. The crystala occur attached nul imbedided. The primary form in n cube, but it is gonernlly met with in the form of the regalar octohedron. Cleavago parallel to the plaucs of the octoledron, but not obtainable in some varictica. Fracture uneven or conchoidnl. Hardneas 5.5 to 6.5. Scrateles tluor-spur, nud is scratched by quartz. Specific gravity variously atated from 4.4 to 5.094 . Opaque. Lustio nutallic, oceasionally bright. Colour iron or steel-gray. Streak black. Obeys tho nugnet.
The masaive varicties are nmorphous; structure granular to compact. It is of this variety of iron-ore that uative loalatonen consist. This ore occura in varions parts of the world, especially in the north of Europe, aud it is of it that the hest Swedish iron is made, and so also in tho iron which yields the wootz ateel of the linst Indies. It is generally found in primitive countries. Thin ore frequently contains titanium; but the varieties have not boen well diatinguinhed. Ily the blow-pipe it becomea brown, nud loses its magnetic property, but doo not fure.

It consiats of $28 \cdot 4$ of oxygen and $71 \cdot 6$ of iron, which are oqual toTwo equivnlenta of Serquioxide of Irou . . 8 One equivalent of Protoxide of Iron . . . 36
There aro several orea, which posecss very different nppearancen, that aro altogether componed of the sesquioxide or peroxide of iron, nal which are principally the Oligite lron Ge and tho Hematife.
lligiste Iron; Sprcular or Micaccuur Lron.-This occums crystallised and masaivo. 'lice cryatals are attached; the primary form is a
rhomboid. Cleavage parallel to the primary planes, and perpendicular to the axis in seme varieties. Fracture uneven, conchoidal. Hsrdness 5.5 to 6.5 ; scratchea phosphate of lime; is scratched by quartz. Specific gravity 5.0 to 5%. Lustre metallic. Colour steel- and irongray; the surface frequently iridescent. Obeys the magnet slightly. Streak red sad reddish-brown. It is found in the islsud of Elba snd in many other paits of Europe. It also occurs in the lava of Auvergne in France, and in that of Vesuvius.

Göthite, $P_{\text {yrosiderite occurs in rery thin transparent crystalline }}$ plates in the carities of black Hematite. Colour brownish-red, by reflection yellewish, in a atrong light of a brilliant red. Lustre adamantine. It occurs in England snd in Germany. The former yielded by analysis-

> | Peroxide of Iron |
| :---: |
| Water |
| 89.2 |

Iron Frolk consists of very thin brownish-red scaly particles, which have a greasy feel, and stain the fingers. It is found plentifully in Devonshire and Lancashire, and wss ascertained by Dr. Henry to be pure Peroxide of Iron. The massive varieties are amorphous; structure foliated.

Red Hematite occurs in globular and botryoidsl masses. Structure fibrous, radiating, opaque. Specific gravity 4.7 to 5 . Lustre externally sometimes metallic, sometimes dull; internally, nearly dull. Colour externally red; grayish-red, \&c., internally, and streak red. It occurs in large quantity at Ulverstone in Lancashire, snd in other parts of Grest Britain and Europe. According to D'Aubuisson it consists of -

Brown Hematite; Hydrous Oxide of Iron; Brown Iron Ore, occurs in attached crystals and massive prisme. Primary form a right rhembic prism. Cleavage parallel to the short diagonal; fracture uncertain. Hardeess 5.0 te 5%. Specific gravity 3.93 . Lustre ada. mantine; nearly opaque; translucent. Colour brown of varieus ohades. Streak yellowish-brown. Occurs in Cornwall.
Maesive varieties globulsr, reniform, and some of the varieties of brown and yellow clsy ironstone. Stalactitic, structure fibrous, or fibro-laminar. Sumetimes occura in pseudomorphous cryatals. It occurs in most parts ef the world Analysis by D'Aubuisson:-

Franklinite is a mixture of the peroxids with oxide of zinc. [Fraxklinite] Ilmenite contains iron and titanium. [litaxions.] Carbonate of Iron; Brown Spar; Spathose Iron Ore.-This occurs in attached crystals and massive. Primsry form a rhomboid. Clearage parallel to the primary planes, distinct. Fracture imperfect conchoidal. Hardsess 3.5 to 4.5 . Specific gravity 3.6 to 3.829 . Transparent, translucent, opaque; lustre vitreous, inclining to pearly; colour white, yellow, red, and brown of different shades.
Massive varieties tabular, structure fibrous; betryoidal aud globular (thess being called Sphacrosiderite), atructure fibrous, diverging; amorphous, atructure foliated, granular, cempsct. Found io Cornwall, Scotland, and Ireland, snd in other parts of Europs; aud also in America.

Before the blow-pipe it blackens and becomes magnetic, but does not fuse; in the reducing flame it coloura boras bettle-green, and in the oxidating yellow; diasolves in acids with effervescence. Analysia, by Beudant, of the hexahedral variety:-

Carbonic Acid
Protoxide of Iron
Oxide of Manganes
38.72

Oxide of Manganese $59 \cdot 97$

Lime
Clay Iron-Stone, or Aryillaceous Iron-Ore, consists cssentially of carbounte of iron mixed with varieus proportions of earthy matter; on an average carbonate of iron forma about one-thirel of the abundant clay iron-stone of England, Walea, aud Scotland. It occurs in beds and In cosl deposits; it is found sometimes is globular masses, and also columnar.

Thomaile is a carbonate of iron from the Siebengcbirge. Junkerite is common apathie iron. Mesitine Spar is a carbonate of iron and manganeae ; so also la Oligon Spar.
Sulphur and Iron exist in combinstion in enormous quantities; the compounds which it forms sre called Magnetic Iron Pyrites, Iron Pyriles, and White Jran Pyrites.

Magnetic Iron Pyrites, Protosulphuret of Iron, occurs in imbedded hexagonal crystals and massive. Primary form a rhomboid. Cleavage parallel to all the planes, of a regulsr hexagonal prism; fracture uneven, sometimes concholdal. Hardness 3.5 to 4.5 ; scratches calcareous spar, aud is scratched by felspar. Specific gravity 4.63. Opaque;
lustre metallic ; colour brosze yellew mixed with red; streak grayish black. Obeys the magnet but feebly. 'Soluble in dilute sulphuric acid; when exposed to the blow-pipe on charcoal is cenverted into oxide of iron. Occurs at Kongsberg iu Norway and Andreasherg in the Harz. Analysis by Hatchett:-
Sulphur
36.5
Iron .
$63 \cdot 5$

Massive varieties amorphous, structure foliated, graumlar, compact. Found in Cornwall, Wales, Germany, North Anerica, \&c.

Iron Pyrites; Martial Pyrites; Persulphuret, or Bisulphuret of Iron, occurs in attached and imbedded crystals, and massive. Primary form a cube. Cleavage parallel to the primary plaues, distiact. less so parallel to the planes of the octehedron. Fracture uneven, sometimes conchoidal. Hardness 6.0 to 6.5 ; scratches felspar, snd is scratched by quartz. Colonr brass-yellow; streak brownish-black; lustre metalic epsque.

Massive varieties amorphous, structure granular, compact; globular and stalactitic, structure fibrous or columnar, radiating; aurface frequently reddish brown, owing to the loss of sulphur and acquisition of exygea. It sometimes contains gold ; the pyrites of Anglesey, Swedeu, snd Bohemis contains selenium.

By the blow-pipe sulphur is expelled, and magnetic oxide of iron remains. It is scarcely acted upon by dilute sulphuric acid, but nitric acid dissolves iron and deposits sulphur: Analysis by Hatchett :-

$$
\begin{aligned}
& \text { Sulphur } \\
& 5215 \\
& \text { Iroa } \\
& 47.85
\end{aligned}
$$

Iren pyrites occurs abundsntly in every part of the world. It is frequently found in the form of parious fruits. The amerphous occurs sometimes to a grest extent io coal-beds. Very large crystals occur in Cornwall and South America. The massive varietics in general more readily become oxidised and converted into sulphate of iron than the cryatallised, and hence it is largely employed in preparing copperas. The sulphureta are not used for obtaiuiug iron ou account of the difficulty of separsting the sulphur. The bisulphuret is principally used for procuriag sulphate of iron, sulphuric acid, and sulphur. It is also used in preparing alum.

White Iron Pyrites occura in attached crystals aud massive. Primary form a right rhombic prism. Cleavage parallel to the planes of the primary form. Fracture uneven, granular. Harlness 6.0 to 65 ; acratches felspar, is scratched by quartz. Colour various shades of jellowish, greenish, and grayish-white; streak grayish-black; opaqus; lustre metallic.

Massive parieties botryeidal, reniform, stalactitic, and amorphoue. Structure diverging, fibreus, or columanar. It is found in Corswall, Derbyshire, Bohemia, and various other mining districts. Accordiog to Berzelius it consists of -

Arsenical Iron Pryrites, or Mispickel, consists of a mixture of iron, arseuic, and sulphur. It occurs in rhombic prisms, with cleavage parallel to the faces. The colour is silver-white ; streak dark grayishblack; lustre shining. A cobaltic variety contaius 4 to 9 per cout. of cobalt in place of a part of the iren. Miapickel is found mostly amongat primitive rocks, sud ia commonly asseciated with ores of lead, silver, iros, or copper. It is abundant st Freiburg and Munzig, on the contineut of Europe, and in Cornwall in England. It is also found in the United States in many places. Leucopyrite is an arsenical iron without oulphur, found in Styria, Silesia, Carinthia, and the Uuited States.

Chromate of Iron is a compound of chromic acid, protoxide of irou, and slumina and magnesia. [Chromium.] It occurs usually iu scrpentine rocks, in imbedded masses or veins.

Columbile is a native columbste of the oxide of iron. [Columarte.]
Wolfram is s combination of iron, tungsten, and manganese. [TENGSTEN.]

Green Copperas, or Green Vitriol, is a sulphate of iron. It crystallises is the form of scute oblique rhombic prisms, but generally occurs pulveruleut or massive. The colour is greeuish to white; lustre vitreuus. Taste astriugeut, sweetish, and metalic. It is brittle, and has s hardoess of 2. Ths specific gravity is 1.83 . It becomes maguetic before the blow-pipe. It yields a greeu glass when fused, and gives a black colour with gallic scid. By exposure it bccomes covered with a yellowish powder, which is a persalt of iron. Green vitriol occurs as the result of the decompesitiou of iron pyrites. The old mine of Rammelaberg in the Harz near Goslar is its most noted locality, but it is foued whercver pyrites is exposed to the air.

Coquimbite, or White Copperas, and Yellow Copperas, are names of two sulphates of the peroxide of iron. Pittzite and Fibro-ferrite are allied compounds. Apatelite is another contaiuing but 4 per cent. of water.

Foltaite is a doublo sulphate of iron, alumina, potash, nud water crystallising like alum in octahedrous. It occurs at the Salfatara near Naples.

I'horpatate of Iron - Virianite. It occurs in modified ollique prisms, wish clearage in one direction highly perfect. It is also found radiated, reniform, and globular, or an continge. The colour is deep blue to great. The eryatals are unually green at right nagles with the vertical asie, asd bho parallel to it. ilhe ntruak is bluish; lustre pearly to vitreves: transpareat to tranaluceat; opayue on exposure. The thin Iasmine are flexible. It ham a harduess $\mathrm{I}^{\circ} \mathrm{j}$ to 2 ; and a specific gravity of $\because 60$. It liss the folluwing comprosition:-
Protoxike of Iron
Mhomboric Acid
Water . .
49.4
23.7
259
100

It loses its colour before the blow pipe, dissolves in nitric acid, and affonts water in a glasatube. It is found with iron, copper, and tin onn, nad wanctimes in clay or with bog ironore, at St. Agnes in Cortiwall, Iheteomai, the gold mines of Foröspatak in Transylvana, aut in the l'nited sitates
flue Iron-Earth is an earthy variety. It contains 30 per cent, of phomphoric acid. Anglarice ia a variety from Auglar in France.

Triyhyline is an andiglrons phosphate of iron aud manganese, with sume lithia It oecurs at Iurleomaia in Bayeru in cleavable masses of a greenisl gray or bluish culour.

Cucartne is a hadsome mineral. It is a plasphate of iron and alumina, and occurs in radiated silky tufts of a yellow or yellowishbrown colour. It in found on brown iron-ore in Bohemia, and with epecular iron in the Cuited States.

Corghoriderife is another yellow phosphate of iron from Greenland. It occurs in rebiform mases.
liren Iron-Sone (Kraurie), Alluandite, Mflanchlor, and Beraunite are manes of plasophates of the peroxide of iron.
Oxalate of lron occurs native. It is a soft jellow earthy mineral of rave occurrence. It blackens instantly in the fame of a caadle. It is found in Bohemin, and is aupposed to liave resulted from the decomposition of thos onders of nuch plants, such as Cactucece, which naturally contain oxalic neid.
silicates of Iron- There are soveral compounds of silica and oxide of iron, none of which are of special interest in an economical point of view.

Iledenlergiue is a sariety of Ausite. [Augite.]
Iron Chrysolite differs from ordinary chrysolito in containing oxide of iron in julace of magnesia.
fropyre in a llack glassy amorphous mineral found in granite. [Impraz] Its harduens is 6 to 65 .

Iraite (called nlmu Licrrite and Ilraite) occurs io rhombic prisms, often with the nitlen much striated or futed; its colour is black or browniahtblack, atreaked with greenish or browninh-black. Its hardnen is 8.5 to 6 . Its specific gravity, 88 to 41 . It contaias from 50 to 55 per cent. of oxide of iron, with if per cent. of lime, and 29 per cent. of nilica. it fases to a black glolmle. It in found in the fisland of Ellua in lange cryntallisationa, alm in Norway, Siberin, aud Silesia.

At Cumberland, in Hhorle Inland, lenite oceurs in alender black or browuinli-black eryatals in duartz; alat in lissex county, New lork.
The following aro hyuroun species, giving oft water when heated in a tube lefore the blowipe :-

- Nowfonite ami J'inguife aro eartly, almoat like clay, of a yellowish or areveninh colour.

C'hloropal in a much hanler species, of a greenish-y ellow or piatachiogreen corlour.
Girenycsite, Thuringite, Kinchlite, and Kirsanite are other allied npeciea.
birean Eiarth includea diferent compounds of a green earthy appearanow olbe firects Farth oceupying eavities in amygdaluid is near clolorite. It in a silicate of the peroxide of iron, with some potirh, mughem, shel wher; oftell with of her ingredients.
the firen firaing of the ficenamel of New Iersey consiat of -

Alumgerile, ('rumatraleier, Anthasiderier, Polyhylrite. Niteroschisolite, Chosmounte, Nolymumplonn, aud dylific are names of dark brown or thack njecion
'rorvionic lan a fibroun atructure mach reacmbling Asbestus, and in fregurntly malled thur Ashmpise. Coloar laventerblue or leckgremplo. It harilum in 4, assl its apecitie gravity is 32 to 33 . It is found in kiotlient Africa.
fyrionmahir recoury in lexagonal prinma, with a perfect basal rlearano and s pmoly murface. Coiour jale livertirown, grayish, or gremmah. Ite liarlisean is 4 to 4 ; and its anecific gravity 3.8 . It contans 14 ber conat. of chlogidl. of iron, and givem ofl fumes uf untiatic acist before the blownitue.

Jrom Zralive in a hydroma milicate of the oxidea of iron and mangatrese, formung incoutationn at a mine near liveyierg.
Arenalrs of from Cube Wre occurs in cubes of dark green to brown ath real coloure. It is rif an mhanantino luatre, not very diatiact, with a greeni-h or lrowniel atreak. Its harduess is 2.5°;
and ith specific gravity 3. It is a bydrous arseaste of the peroxide of iron, containing 38 per cent. of arsenic ncid. It is found in the mines of Cornwall; also in France and Saxony.

Scorodite crystallises in rhombic prisms, modified. It is of a pale leck-greed or liver-brown eolour, with a colourless streuk, of a vitreoum lustre incliaing to subadamantine; subtrapsparent, or मearly opaque. Its Lardnesa is 3.5 to 4.8 . Specific gravity, $3 \cdot 1$ to 3.3 . Scorodite is a hydrous arsenate of the peroxides of iron, containing 50 per cent. of arsenic acid. It comea from Saxony, Cariathia, Cornwall, and Brazil. It occurs in miaute crystala near Edenville, New York, with arsenical byrites. The namo of this species is from the Greek, oxdpotov (gurlic), alludiag to the odour before the blow-pipe.

Iron Sinter is a yellowish or browaish hydrous arsenate of the peroside of iron, containing but 30 per cent. of araenic acid.

A ratno-Silerite is another fibrous arsenate, coataining 34 per cent. of arsenic acid.

Symplesite is a blue or green mineral, aupposed to be an aracnate of tho protoxide of iron. 1ts crystals are right rhomboidal, with a perfect cleavage. It bardness is $2 \cdot 5$; and its specific gravity is $2 \cdot 96$. It is found in Voigtland.
(Dama, Mineralogy.)
IlRON-1SARK-TRLEE. [EUcatyptus.]
ISAlRI A, a genus of Fungi, belonging to the division Thichosporei, and the tribe Isareii of Léveillé. It is characterised by a compound, molid, capitulated, or elongated receptacle. The species are found parasitic upon caterpillars and the larva of varioua insecta. Robin enumerates the following species:-

1. Elcuteratorum has been found upon the Carabide in the autumn of the year.
I. Aoccosa, upon the larvo and chrysalides of Bombyx Jacobaca.
J. strigosi, upon the chrysalides of Noctua Upsilon.
I. arachnophila, upon small epiders belonging to the genus Gcomeira, in the autuma.
2. leprosa, on the chryaalides of Noctua instabilis.
I. Iartasica, observed by Robin upon an unknown spider, in the autumn.
I. crassa, upon decaying chrysalides.
I. sphecophila, upon a dead hornet.
I. exoleta, upon the larya of a moth.
I. Arancarum, nn American species, found on spiders in Carolina.
3. Sphingum, also found in America, upon the caterpillars of the silk-worm moths.
I. gigantea, found upon a Mygale in the island of Cuba
(Robiu, Jistoire Naturelles des V'égétaux Parasites.)
ISATIS, a genus of Plants belonging to the natural order Crucifere and the tribe /satidea. It has a laterally compressed pouch, I-celled, 1 -seeded, valves keeled, eventually separating.
I. dinctoria, Dyer's-Woad, has the radical leaves oblong, erenate; pouch abrupt, smootb, thrice as long as broad. It is a rare plant in eultivated and waste land in Great Britain. It yields a blue dye, long known aud used in this country. It was beforo tho introduction of indigo a plant of cousiderable importance commercially, and it was exteusively cultivated in Somersetshire, especially about Glastonhury, which town received its name from the Celtic word 'Glas,' siguifying ' Blue.' The ancient Britoua aro said to bavo painted their bodies with the blue colour obtained from this plant.
(Babington, Manual of British Botany.)
ISCHY'ODUS, a geaus of Fossil Fishes included in Chimara by Agnasiz.
ISERINE. [TITANIUM.]
ISINGLASS. [Gelatis.]
ISNARDIA, a genus of Plants maned by Linnmus in meinory of M. Autoino Dante Inuard, member of the Academy of Sciences. It belongs to the natural order Onagracea, and las a 4 -cloft calyx, 4 petals, 8 atamens, and a filiform style, with a clavate or crueiform stigma. Thero is one British apecies of this genus. 1. palustris has a procumbent rooting glabrous stem, opposite ovate acuto leaven, terminating in a petiole, axillary solitary asasile flowers, with the petals absevt. It is found in pools and marahes in Europe, Siberia, and Pursia, and in Sussex in England.
I. alternifolia has an erect branched steas, alternato leaver, ralluer scabrous on the margins, and hoary bencath. It ia a native of Virginia and Carolima, in marshy places, and has oval yellow petals. The root ia used as an ensetic, and ia called Bowman's lioot.

None of the species of this gonus posaess qualitics which entitlo them to cultivation except in botanical gardens. They may however be renred in a hot-bod, and then planted in an open border in a moist nituation.
(Don, Dichamydeous Plants; Babingtou, Manual of British Botany.)

ISOCA'RDIA, a genus of Conchiferons Mollusca. Linnacus placed the form under Chama; Broguidre arranged it among the Cardite. Lamarek, who made it the Jast of the genera of hla Cardineces, neparated it from the last-mentioned genus, giving it the generic bame at the head of thin article. Mr. G. B. Sowerby ('Genera of Recent and Fonsil Shells') thinks that this separation was effected with good reason, becnuzo the involute divaricate umbones of Isocardia, and its conseduently dichotomous ligament runuiug iu each ralve to the polat
of the umbo, serve to distinguish it from the other Cardites of Bruguiere. M. De Blainville, under the name of Isocardium, inserts it between Tridacna and Trigonia among his Camacées. M. Rang retains it in the same family, but restores Lamarck's origiual termination of the name, and places it between Caprina and Tridacna.
M. Deshayes, in his edition of Lamarck, remarks that the Isocardice have in truth large and contorted umbones like Chama and Diceras, but that they are regular and alwass free, while the true Chamee are adherent and irregular. From the Cardice, he observes, they are to be distinguished, both as respeets the shell and the animal. In Cardita the lobes of the mantle are separated throughout their length, and are without sipheos. In Isocardia the lobes of the mantle are united posteriorly, and provided with two sloort siphons, or rather perforations, which may be compared with these of the Cardia. Here doubtless, says M. Desbayes, the Isocardise approach the Cardiz; but when the foot and the form of the branchix in these two genera are compared, the distinction is obvious. In the Cardia [Coschace.s], the foot is cylindraceous, very logg, and bent in an elbow-like form in the middle; in the Isocardice, on the contrary, it is flat, subquadrangular, and rather short.
Isocardia has the following characters:-Animal more or less globular, having the borders of the mantle fringed with very fine tentacular papillo, leaving a rather large opening between them at the lower part, and united posteriorly by a transverse delicate band, pierced with two orifices surrounded by papilla, one for the vent, and the other, lower, for respiration; foot of moderate size and treochant.

Shell sometimes with nn epidermis, very convex, globulose, hesrtshaped, equivalve, inequilateral; umboues divaricated, and widely divergent, curved forwards and outwards, and slightly spiral; hinge composed of two flattened hingetceth; ligament external, forked at one of its extremities; muscular impressions very distant.
I. Cor, the Heart-Shell, has been taken on the British coasts.

The Rev. Jsmes Bulwer, from whose figure in the "Zoological Journal,' vol. ii., the two figures below are taken, saw the animal when io sea-water, and in the position represented at No. I. The fcelers, or ciliated fringe of the upper orifice (the largest) of the mantle, moved slowly, as if in searcli of foorl. Haviog remained in this situstion about ten minutes, water was ejected with considerable force from the lower orifice, which had till then remained motionless. The expulsion of the water appeared to be effected by a sudden contraction of the muscles, because this was never done without the valves nearly closing st the same instant. After a few scconds the valves gradually returoed to their open position, and remained quicscent as before, till the water was again ejected with a jerk; this alternating process was repeated during the whele time his specimens (which were trawled up in very deep water on the east const of Ireland) were under his examiuation, but at shorter intervals on receiving fresh supplies of mea-water. The animal appeared to Mr. Hulwer to be inscnsible both to sound and light, as the presence or abeence of either did net at all interrupt its movements; but its sense of fecling appeared to be very delicate. Minute substances

Heart-Shell (Isocardias Cur).

1, valyes open, to show the animal and tho feclers or ciliated frlage of the upper and lower crifices; 2 , one of the values, showing the aamal with its pharp-edged foot and the muscular Impresslons.
dropped into the orifice of the mantle instantly excited the animal, aod a column of water strongly directed expelled them from the shell; with so much strength was the water in some instances ejected, that it roze above the surfitce of three inches of superincumbent fluid. ('Zool. Jour.,' vel. ii.)

Shell of Isocaraia Cor, ralres elosed.
Lamarck recorded four species, including Isocardia semisulcata. M. Deshayes, in his edition of that author, adds four others, reckoning that species: making eight in all, recent and fossil.

The species are found in the European and East Indian seas, and thoge of Australia. They have been dredged up from mud and sand at depths ranging from 10 to 20 fathems.

Eossil Isocardice.

Mr. G. B. Sowerby remarks ('Genera of Recent and Fossil Shells') that several fossil species are given in plate 295 of Sowerby's 'Mineral Concloglogy;' one of which is from the London Clay, and the other from Kelloway's. Mr. G. B. Somerby, in a note, states that a fossil species slso occurs in the Crag, which so nearly resembles the I. Cor that le knows not wherein the specific difference consists; and, in the text, gocs on to state that according to Brocchi ('Conch. Foss. Subap., ii. 520), two varieties of 1 . Cor are found in a fossil state in several parts of ltaly; but as a subject upon which much diversity of opinien exists is here brought into question, he would recommend an attentive and comparative re-examination of the fossil with recent specimens, before the incuirer comes to an absolute decision upon this point. Ancther fossil species, he observes, is found at liacenza, namely, I. arietina, Lam. ; and he has figured I. Batsachiana (Defr., 'Dict. des Sciences Naturelles'), a new species found by M. De Basoches de Falaise, in the district of Coutances. He thus concludes bis remarks upon the fossil species of this genus:-"We think we may venture to express onv opidion that all the fossil specimens published in various books, and existing in various collections, are not distinctly charac terised Isocardie, but only the casts of the insides of other bivalves the best distinguishing character is in the groove formed for the extension of the liganent from the hinge to the umbo. It is incumbent on us to mention that in Isocardia the line to which the mantle is attaehed, passing from one muscular impression to the other, is cutire."
M. Deshayes, in his Tables, records two living species and thrce fossil (tertiary) ; and I. Cor as both living and fossil (tertiary).

Mr. Lea places his genus Mippayzs (of which be gives an engraving) under the family Cardiacea. ('Contributions to Geology', Svo., Philadelphia, 1833.) He states that he has in vain endeavoured to Place this shell in onc of the cstablished genera. In its general charaeter he says that it approaches most closely to the I. Cor, but that it cannot be plaeed in that genus, being destitnte of teeth. It bears, ho adds, some resemblance to the genus Inoceramus; but, he continues, the linge in that genus " eloses by a series of oblong' fossets," and besides it is very incquivalve. In its natural order he thinks that it seems to follow the genus Isocardia, and he proposes to place it in that position. Hipputyus occurs in the Claiborne beds (tertiary of Alabama-Eocene of 1 yelll).

Other species of facardia have buen found from the Oolitic beds upwards, but they resemble more closely tropical species than 1. Cor.

ISOCRINITES, a genus of Crinoidea. (Goldfuss.)

I'SOETES (from Zoos, equal, and *oos, year), a Cryptogamic genus of Plants belonging to the natural order Lycopodiacese. The capsule of the plant does not open, and the fructification is inclosed within the swolleu base of the leaves; it has sporules of two kinds, which are attached to filiform receptacles. Tho organs of fructification in
this plant are ataall casce, which are situater in the anglea formed by the union of the leaves ame the contracted ntem; those seatel in tho axillae of the outer "r infrior havem no dividel into three cavitien, containing abont fing npherical boolica (granules); the cases in the axilla of the intemal ur superior leavea are divided hy numerous tranavese parettons into many cavities, all of which are filled with an impalpally fine powder, in the early stoges of its development white, but askempuently becoming black.

The pperie of hocesegrow at the bottons of ponds and lakes, and are maid to affort exeellent food for tinh. They are called Quillworts from the ruxh or quill-hke ayperance of the leaves.
I. Incuerie, Qullwort, has subulate robndish-quadraugular lenves with four longiturinal jointed tubes. The rhizoma of thin plant is a Wuat taber; the leavea are slender, broad, and fant at the base. but elne where betwren cylidrical and qualrangular. It is fonnd in Great Britain at the bothan of lakes and pouds in hilly districts. The otructure of the fructification of this plant, and other species of the genum, in coly imperfectly understood. It is on thia nccount referred to Maralleacea by nome authors, and made to form nn independent onler by others linilly refers it to Lycopodiaccet, and observen, " 1 follow We Candolle and Irongniart in referring it here." Delite hns published anl account of the gonaination of Iroctes selacea, from which it appears that ite sprorules aprout upwards and downwards, forming an intermediate solid body, which ultimately becomes the stem or cormus, but it is not stated whether the points frous which the ascendiog and deacending uxes take their risc are uniform; as no aualogy in strurture is discoscrable between these sporules and needs, it ju proballe that they are not. Delile points out the great affinity that exinta between loofen and Lycopodium, particularly in the relative position of the two kinls of reproductive matter. "In Lycoperlium," be rays, "the pulverulent thecee occupy the upper ende of the shoots, amd the granular thecae the lower pista; while in fooetes the former are found in the centre and the latter at the circomference. If thin comparimon is groul, it will sfford some evidence of the identity of nature of those thecie, and that the pulverulent oues are at least not anthers, an lias been auplosed; for in footes the pulverulent inner thecie have the same organisation, even to the jresence of what has luen called their stigma, as the outer graunar ones; bo that if Isopes has neses, it will offer the singular fact of its anther having a stigma.'
(Babington, Munual of Eritizh Botony; Newman, Mietory of Britioh Ferma: Bindler, Suttral Syetern; Burnett, Outhines of Butany.)
ISONASblit, a genus of lianta belouging to the matural order Sapotacer. It in dintinguished by the etamens being all fertile, and twice an numerous an the lolves of the comolla.
I. "iatha (Howher), the "iutta-Percha Tree, has its leaves on long stall", ohorntewhong, with a short point golden beneath; flowers axillary faccicked; stamenm 12. This tree is a native of the Malayan Archipelago.
The nubutance yiellal by this tree, and deagnated by the name of Gista. Percha (propouncel 'Pertala'), is, like Caoutchonc, a carburet of hylrogen, nud isomeric with that substance, and posesses a great
ounhler of the properties which characterise India lubber [1. NumKechapg), but exhathits certain special properties which admit of its luring apdiced to particular usen to which caoutchonc is not adapted. suta. Percha pownessen an givat au imlextructilility by menns of cheraical agestat an caoutchouc. It han an intermediate consiatence between that of lenther and wrod; it in capable of being softened ly hrat, and of reganing its primitiog cousintesce on cooling. It is therefore at the same time capable of taking and of retaning the mont I clicate impresaiong. The inportant unea to which it has been latterly aplpind are colly the firwrumeren if those to which it will bo adapted
 loneletien moch mure circamperiledi) does nut prosent an obatnele ts it

Whilat theplauta which fuminh caontchouc abound in the whole of the ermerrial oone which exteninh between the trepica, the Isonenders
 any whers rempit in errtain ginto of the Malayan Archijuclago, nad up
 Singanion. It whe l, wonghe for the firat time inte, bingland in the

 nispular propretera, ite cagy banapulation, nut the uners for which tho प्रalaya etmples rel it. The moat common cmployment of it was for whip: and if wan lig the introluction of a horen-whip mate of this Whatmance that ita existence was fir the firat time kuown in Europe.
 Fixhbution of 1 ish, provel that the antive of the country in which the f. Gumagronaknow alan how to nppropriate it to the mannacture of lifformat kiolp of vaem, and that European induntry bas little more to do than to imitate their promeresea.

The importation of Guth. Percha into Fingland, where the employment of this sulatance first drew attention, was in is 45 ouly $20,500 \mathrm{lha}$;
but in 1548 it had increased to above $3,000,000$ lhas; and during the last five years the importation has amounted to n much larger quantity, and one which herins to cause aome apprehonsion as to the possibility of the supply nufficing for the requirements of the novel usea in store for it in the futere. It is true thast during its use Quttalercha is but little cousumed, nud the waste from the articles in this material, submitted to a proper softening, can be made to serve new uses; neverthelcss its constantly increasing consumption, added to the barharous manuer in which the proluct has hitherto been extracted, may well justify some apprehension.
During the first fers years of the employment of Gutta-Percha it was the custom to cut down the tree for the purpose of obtaining the juice, which, lef to itself, very soon allowed the Gutta-Percha to separnte and congulate of its own accord. There is reason to hope that European industry will soon be cubbarked in the cultivation of this product, and that the Niato (which is the name that the Malays give to the tree which produces Gutta-Percha), multiplied by means of a regular culture, naturalised in other countries than those to which it is indigenous, and worked by regular incisions, which will only take from the tree a portion of its juice without hindering its development, will be the neans of furnishing at a low price a substance which is destined to render notable aervices to industrial and domestic economy.
The Gutta.Percha which arrives in Europe in the form of lumps of some pounds weight is far from being pure. The natives of the Malayan Archipelago make uo scruple of iutroducing into it atoues, earth, \&c.; the presence of which in the iuterior of these blocks remlers a purificatiou indispensable, which purification bowever is capablo of beiug attained without much manipulation.
Indestructille by water, and at the same time a bad conductor of electricity, Gutta-Percha has been found available for inclosing the metallic wires employed in the electric telegraph; and the use of thie substance may certainly claim ita share in the success of the aubmarino telegraph, by means of which London and Psris and the other great cities of Europe are now brought within a fuw minutes of each other.
It may be conceived to what a variety of forme a substance can be turred which, becouing ooft without adhering at the teuperature of boiling water, regains nt the ordinary temperature tho slight elasticity and the conaistence of leather. [Gutra-Percaa, in Arts and Sc. Div.]
ISO POUA, Latreille's name for the fifth order of the class Crustacea. The Ioopoda, accordiug to that zoologist, approach the Lamodipola by the absence of mandibular palpi, though they are removed from then by ecveral points; the two anterior feet are not anmexed to the head, and, like the succeeding ones, depend upon their particular seguent. The feet are always fourteen in number, unguiculated, and without any vesicular appendage at their base. The under part of the tail is fornished with appentages which are very apparent, and in the form of leaflets or vesicular purses. Of these the two first, or external ones, ordinarily cover the others, either totally or in graat part. The boily is generally Hatteued, aud wider than it is thick. The mouth is composed of the same pieces iss in the Crustacea, which precede it in M. Latreille's system, but iu the order before ua those which answer to the two superior jaw-feet in the Decapoda present more the appearance of a lower lip terminsted by two palpi. Two of the antennic, the mesinl ones, are almost obliternted in the last geucra of thin order, which are all terrestrial, aud differ besides from the other by their respiratory orgaus. The male sexual organs are iulicated inost frequently by the presence of linear or filiform appendages, and sometimes by hooks placed at the internal origin of the first subcaudal laminec. The females carry their eggs under the breast, either betwcen the scales or in a membranous pouch or sac that opens to afforl a passage for their young, which are hatehed with the form nud parts propor to the specica, and only cant their skin as thoy increase in size. The greater number live in the water. Those which are terrestrial have ueed, like other C'rustacea that live out of water, of a certain degree of atmospheric humidity, in order that respiration may to carried on, and that their branchice may be in a fit state for performing this function.
Mes.rs. Victor Audouin nad Milne-Edwayds have atudied very carofully the organisation of the Isopoda, tho Ligie cepecially. It appears from their observation that the heart has the form of a long vessel extended above the dorsal rurface of the intestine. Its nuterior extremity gives off three arteries, as in the Decepoda. The laternl brameliso may also be seen directed from the heart towarda the feet. At the eflge of the two first articulatious of the abdomen, or tail, this orgm receives, both right and left, small canals (the branchiocardiac vessels), which seem to come from the brauchia. According to the demonstrations of these zoologists in the case of the Ligic, it would appear that the venons aystem is lesa complete than in the Mncrurous Decapola; end that the blood driven from the heart to the diffrrent parts of the body passes into lacuns, which the organs leave betwen them nt the lower surface of the body, and which have a free communieation with the different reasels of the branchix. The hood, after having traversed the respiratory spparatus, returns to the heart in traversing the branchio cardiacal vessels. This disponition would establinh the passage from the circulating ayatem of the Decapodous C'rustacea to that of the Branchiopoda. According to

Cuvier, the two anomalous chords composing the mesial part of the nervous aystem of the Onisci (and probably of the other Isopoda, and even of the Amphipoda) are not entirely approximated, and may be well distinguished throughout their length. There are nine ganglions, without counting the brain; but the first two and the last two are so approximated that they may he reduced to seven. The second and the six following furnish the gerves to the seven pairs of feet; the four anterior feet, although analogous in the order of succession of the parts to the last four jaw-feet of the Decapoda, are really feet, properly se called. The segments which inmediately succeed, or those that form the tail, receive their nerves from the last ganglion. These aegmenta may be considered as simple divisions of a single segment, represented by that ganglion; and we accordingly see that the number of theze posterior segments variea.

The following is the arrangenent of M. Latreille :-
The order consists of six sections.

1. Epicarides (Latreille). - These are parasitical Isopoda, which, according to 3l. Latreille, are without either eyes or antenas ; the males however have eyes, though the females are blind. The body is flat, very small and oblong in the males, but much larger in the females, taking in their case the form of an oval, which is narrowed and a little curved posterionly, hollow below, with a thoracic border, divided on each side into five membranous lobes. On this border the feet, which are very small and unfit either for walking or swimming, are aituated. The under part of the tail is furnished with five pairs of small ciliated imbricated leaflets, answering to as many segments, and dispesed in two longitudinal rows; but the posterior extremity is deprived of appendages. The mouth presents distinctly only two membranous leaflets applied one upon the other, of the same consistence, and quadrilateral. The lower concarity, forming a sort of flat basket, is filled with egrs. Near the place of their issue is constantly found an individual, which is presumed to be the male ; but M. Latreille adds, thst the extreme smalluess of its size seens to forbil the possibility of copulation. According to M. Desmarest, this Individual is furrushed with two eyea; its body is straight and nearly linear. One sub-genus only belongs to thia aection.

Bopyrus (Latreille).-The most common species is B. Crangorun. Those whe are in the habit of eatiog prawns will probably have observed a tumonr occasionally presenting itself under the carapace on one of the aidea, which is bulged ont On lifting this part of the shell, the parasite will, in auch casea, be discovered immediately under il and upon the branchice. We have frequently detected the bopyrus, but on whatever species of prawn it has been found, we have never remarked that the animal to which it adhered was more meagre than its fellow, though this perhape may have arisen from the prawn not having been long aubject to the visitation of the parasite. But there is another reason why the prawn should not anffer much from the adhesion of the parasite. The author of 'Hore Entomologices 'informs us that he has lately found three specimens of Bopyrus (females) with their backs turned to the branchis of the prawns; and he is of opinion that they and other cruataceous parasites which adhere to the anterior parte of fishes and Crustacea, fix thems:lves there for the aake of the currents (produced by the branchie in reapiration), which bring with them the auimalenles on which the parasites feed,

Bopyrus Crangorum.
a, the npper nide; b, the animal nern in profile; c, the under side; d, one of the feet, much magnifeel (female) ; p, tmall individual, conaldered as the main, apper nille; f, the same, lower aide; g, carapace of a I'rawn deformed on the right afden by the presence of lopyrus, (Desmarest.)
B. Crangorum is found on Palemon servatus and Palemon squilla, but moat frequently on the former.
M. Risso has described anotler apecies, under the female of which he states that be found 800 or 900 living young ones.
2. Cymothonda (Latreille).-This section comprises those Isopodes which hare four very apparent antenne; these are setaceous, and nearly always terminated by a plmiarticulate stem. These crustaceans have eyes, a mouth of the ordinary formation, vesicular branchia, disposed longitudinally in pairs, a tail consistiug of from four to six segments, with a fin on each sile, and the anterior feet most frequently terminated by a strong but small nail or hook. These Isopode are all parasitic according to Latreille; but Serolis appears not to be a parasito. Sometimes the eyes are mounted on tuberclea at the summit of the head. The tail is composed of only four segments.
Serolis (Leach). One species only known, S. Fabricii (Cymothoa paradoxa of Fabricins).-Antenuse placed on two lines, and terminatel by a pluriarticulate stem. Under the first three segments of the tail there are hetween the ordinary appeadage three others, which are transverse, and terminated posteriorly in a point.
M. Desmarest describes the animal thus:-Superior antenux formed of four jointa, larger than the first three of the inferior antenne; the last joint composed of many others, and smaller. Iuferior antenne with five joints, the first two amall; the third and fourth (principally this last) elongated; the fifth composed of many others, smaller, Secoud pair of feet having the penultimate joint enlarged and the nail or claw much elongated; the sixth pair ambulatory, rather spiay, and having the nail slightly curved. Anterior appendages of the belly, or branehial lamino, formed of two equal parts, which are fuliaccous, rounded at their extremity, furnished with hairs at their basc, placed upon a common pedunele; the two posterior and lateral appendagea small and narrow, especially the interior one, which harilly projects.
This is a very interesting naimal, and has been considered to offer some resemblance at first sight to the extiact form of the Trilodites, [Thiomites.]

Serolis Fatricii.
a, back; b, under surface, slowing the union of crustaccous legs with the membranous branchix ; c, magnified view of branchiw.

This creature has been found at Tierra del Fuego, Straits of Magalhaena (Banks), and Senegal (Dufresue). Captain Phillip Parker King, R.N., colleeted many speeimens on the east coast of Patagnnia, and also at Port Famine, in the Straits, where Captain King saw the beach covered with dead apecimens. He also observed them alive awinmit. g close to the bottom among the sea-weed. They moved slowly and gradually, unlike a slirimp. He never saw them swimming near the aurface: their lega acemed adapted for swimming and crawling on the bottom.

Cymothou (Fabr.)-Anteance nearly equal in length; eyes bnt little apparent; last segment of the tail squared, and the two pieces terminating the lateral fins linear, equal, and styliform.

Cymothoa astrum.
a, upper side; b, lower side.

Iediyophilus (Latrellle: Verocila, Lironcer, Leach).-Antennse of equal leagih, atml eyes not rery viaible; last begment of the body nearly trinmgular, with two piecen erninating tho latemal fius, in furts of leattets or blales: tho exterior of these ia greatent in Nerocila, asad of the same nize as the othem in Lironeca.
M. Latreille olmerven that in the fuur following mubgenera the superiur abtennace are manifestly ohorter than the inferior.
Many, ar well an the C'ymothore, linve all the feet termimated by a |nwerits and sinongly-arched bail (onglet); tho last eighe are not apiny; the eyen arealwaye dintant and convex. Theme, in the method of Dr. Leach, furm three geacra, but M. Jatreille is of opinion that thes may be united under one aub genas, namely:-

Cumolira (leach; Anilocera, Olencira, of the mame). -In those Cunolirrt, deaiguated by Mr. Jench as Mencire, tho llades of the fins she narron nud armed with prointa In those named by the samo zuologint ot milocme the eatermal blate of the fins is longer than the interind one: the inveme of which is the case with the Canolira, in which, besilles, the eyes are but very little granulated, while they are very senmilly granulated in Auifocra.
N. Latrifle remarkn that in the three following aub genera the pecond, thiral, and fourth feet only are terminated by a very btronglecurval basi (onglet), and the layt cight aro pping. The eyez ordinarily have but little convexity, and are large and converging anteriorly.

Chnolira (Anilorro) Gupensit.
.Fga (heach).-Two first juinta of the auperior antenne very large and compresacd.

n, upper side; b, antertor fons; r, fomterifor foot; d, under aide.
Rocinella (Leach), - Two first jointa of the superior antenne nearly cylmirical, but approanhing tho Figr in their large and anteriorly approsimatorl cyen.

Conilina (locach).-Antemon an in tocimel?a; but the egesare amall and dintant; and the enfgen of the Emgmenta are nearlg straight, nud not falciforn abd promimeut.
 whort, Lail of nix mogmenth; dintinguiehed fromall tho precodiug by their great and projecting jawn. Only one specien.

Gindina (lomel). -length of the lower antemme aurpasing the hall of that of the booly. Sir megunente in the tail.

Nelocirn (layla). - length of lower antonne an in Cirolana. Five ecgmenta only in the tail. Cortim of the eyes smooth.
finrydice (Icach), - Remetnbling Nifocira in the number of the candal mgronen, but differing from that form in jea granuloun cye
31. Iatreille in of opinion that thin sub-genus consmeta wo to thone whone eyem are formed of amall graiun, or which have thone orgnan

N'clocira Svainsomii,

same horizontal line, consisting of four joints at most, sll the fect ambulatory, aud the tail composed of six segments. Such a form is-

Limnoria (Lench).-Tho only living apecies known ja L. terebrans, which, nlthough only two lines in leugth, is nevertheleas highly injurious in consequence of its multiplieation and its habits. The rapidity with which this little crustacean pierces the tiaber of ships makes its attacks not only miselievous hut alarming. The pier at Southampton and also that at IFerne Bay, hase ouffered from the sttacks of thia crustacean. It rells itself up like a wood-louse wheu it js saized. It is a native of all the liuropean acas.
3. Sriseromides (Latr.).-The Isopoda comporing this section have four very distinct antenne, which are either aetaceous or conical ; and, with the exception of Anthura, they are alwsys terminated by a stem divided jnto many small joints, and short. The lower auteuns, which are always the langest, are juserted onder the lewer part of the first joint, which is large and thick. The mouth has the ueual furm. The branchie are resicular or boft, naked, and dispesed lougitudinally in pairs. The tail has ouly two complete and moreable segments, but hss often impressed transverse lines upon it, indicating the vestiges of other segmeuts. Ou each aide of its posterior extromity is a dim terminated by two leaflets, the lower of which is moveable, while the upper one is formed by an internal prolongation of the common support. The branchial appendages are curved internally; the joternal side of the first is accompanied in the msles by a small Knear and elongated piece. The nnterior part of the head, situated below the antennæ, is triangular, and in the form of a reversed heart. Some have an oval or oblong body, contracting ordinarily into the form of a bowl. The anteouse ara terminated by a pluriarticulate joint, and the lower ones at least are bensibly longer than the head. The lateral and poaterior fina are formed of a peduncle and two blades, composing, together with the last segment, a fan-like fin. In these the impressed and trausverse lines of the anterior segment of the tail, always shorter than its successor, or the last, do net reach the lateral borders. The first joint of the superior antenne is in the shape of a trinngular battledore (palette). The head eeen from abovo forme a transsersal bquare. The lenflets of the fius are very much tlatteued, and the intermediate piece, or last segruent, is eularged and rounded laterally.

Zuzara (Leach).-Leaflets of the fins very large, tho upper of which is ahortest, sepamated from the other to form a border to the last segment.
S_{j} haeroma (Latr.).-Losflets of moderate size, equal, and applied one over the other.

In others the impressed lines, or tranaverao sutures of the anterior segment of the tail, attnin the lateral border and cut it. The first joint of the superior natema forma an elongated palette, which is aquare or limear. The leafleta of the fins are ordinarily narrower

Niesa bidentatn.
and thieker than in the preecding; tho exterior sometimea (as in Cymodocca) envelopen the other: their point of junction reamblen a
knot or joint. Sometimes the sixth segment of the body is sensibly longer than the preceding segments and the succeding one. One of the leaflets of the fins only is projecting.

Niesa (Campecopcea, Leach).-Sometimes the sixth segment of the body is of the length of the preceding segments, and of the succeed. ing one, as in Cilicea, where one of the leaflets of the fins only is projecting, the other leaning against the pesterior border of the last segment.

Gilicra Latreilli.
Cymodocea (Leach).-In this form the leaflets of the fins are projecting and directed backwards. The sixth segment is not prolonged posterierly, and the extremity of the last segment has a small blade in a notch.

Cimnodocea Lamarekii.
Dynamene.-Resembling Cymodocea in the projection and direction of the leaflets of the fins, but having the sixth segment prolonged backwards, and the last with a simple slit only, there being no blade.

Others again, as Anthura, have a vermiform body, and the antenna, hardly so long as the head, consisting of four joints. The leaflets of the posterior fins form by their disposition and approximation a sort of capsule. The anterior feet are terminated by a monodactyle claw.

Anthura dacilis, magnifed.

4. Inoteide: (Leach). -This scetion consist of Isopoda whose antenno are four in number, but upon the same horizontal and trans-

Hoter tricuepidata,
verse line; the lateral ones are terminated by a stem ending in a woint, gradually decreasing and pluriarticulate; the intermediate NAT. HIST. DIV. VOL, III.
antenne are short, filiform, or a little the largest towinds the end, and 4 -jointed, none of the joints being divided. The conformation of the mouth is the same as in the preceding sections. The branchice are in the form of bladders, white in the greater part, susceptible of being blown up, capable of aiding in swimming, and covered by two blades or valrules of the last segment, adhering laterally to its borders, longitudinal, biarticulate, and opening in the middle by a straight line, like a folding door, The tail is formed of three segments, the last of which is much the largest, without appendages at the ond or lateral fins. These Crustaceans are all marine.

Idotea (Fabr.),-All the feet strongly unguiculated and identical; the bedy oval or simply oblong, and the lateral anteune shorter than the half of the body.

Stenosoma (Leach).-Differing from Idotea in the linear form of the body and the length of the anteune, which surpasses the half of that of the body.

Stenosoma lineare, natural size.
a, lamine of the under part of the abdomen.
Aiclurus (Latreille). -Very remarkable for the form of the secend and third feet, which are directed forwards, and terminated by a long bearded joint, unarmed or feebly unguiculate; the two anterior feet are applied upon the mouth and unguiculated; the last six are strong, ambulatory, thrown backwards, aud bidentated at their extremity. In the length of the antennx and form of the borly Arcturus approaches Stenosoma. M. Latreille (1829) says that he never saw but one species, A. tuberculatus, brought home from the North Seas by one of the last English expeditions to the North Pole.
5. Asellota (Latreille). - The fifth section consists of Jsopoda with four very apparent antcnue which are disposed on two lines, and are setaceous and terminated by a pluriarticulate stem. There are two mandihles, four jaws, ordimarily covered by a species of lip formed by the first jaw-feet. The branchiee are vesicular, disposed in pairp, and covered by two longitudinal and biarticulate but free leaflets. The tail is formed of a single segment, without lateral fins, but with iwo bigd needle-like processes, or two very short appendages in the ferm of tubercles at the middle of its posterior border. There are other lamellar appendages situated on its inferior base, more numerous in the males than in the feroales, and these serve to distinguish the sexes.

Asellus (Geoffroy).-Two bifid needle-like processes at the posterion extremity of the body; eyes distant; superior antenure at least as long as the peduncle of the inferior antennar. Hooks at the end of the feet entire.
A. aquaticus is very abundant in fresh stagnnat waters, as in the pools about Paris. It moves slowly when not terrified. In the spring it comes forth from the mud, in which it has passed the winter. The male, which is much larger than the female, carries her about for a space of eight days, bolding lier by means of his fourth pair of feet. When he quits har she is pregnant with a great number of eggs, inclosed in a membranous sac placed under ler breast, and opening by a longitudinal slit to give passage to the young,

Oniscoda (Latreille).-These, the Janive of Dr. Lench, differ from the Aselli in the approximation of their eyes, in having their superior antenno shorter than the peduncle of the inferior ones, and in the hooks of the tarsi, which are not bifid. M. Latreille remarks that the only species known (Janiora maculosa of Leach) lias been found on the coasts of England anong the sea-weeds and Ulve.

Jotra (Leach).-'This form, in the place of the ncedletike processes (stylets) at the end of the tail, has only two tuhercles. M. Latreille remarks that only a single species (J. albifrons, Leach) las been found,

Arellul aquaticus (Idofea aquatica, Fabr.), female, magnified. a, upier alde; δ, under side.
and that it is very common on the linglish coast, under stones and nmong the sea-weed.
6. Clomontross (Onisciler, Latreille).-This, the last section of Iropoda, according to the artangement of M. Latreille, consista of those forma which have indeed four antenne, but the two intermediate onea are very amall, little spparent, and conaist of two joints at most : the lateral antenne are setaccous The tail is composed of six segments, with either two or four needle-shaped appendagea at the ponterior border of the lowt segment, and without lateral fins. Some are aquatic, others terrestrial. In the latter the first leaflets below the tail exhibit a row of amall boles, where the air penetraten to the organs of renpiration there inclosed.

Some have the aixth joint of their nntenno, or their atem, 60 compred that in counting the small articulations of this part the total number of all the jointa is nine at least. These are marinc, and consint of two mub-genera.

Ligia (Falir.).-Stem of the lateral antennte composed of a grent number of small jointn, and two very projecting stylets, reparated at the end into two brnelien, at the posterior extremity of the body.

Ia ocranien in very common on the mea-conat, where it may bo acen erecjing on the rock or on nearwalla When an attempt in made to pelan it, the snimal quickly folds ita feet and teen itself drop.
Tylos (latreille), -Tisemences to lavo the faculty of rolliag thems molven up. The Iant megment of the body in lemicircular, abd oxactly fille tho notch fomned by the proceding. The posterior sppendagen are rery anatl nam cmtirely lnferior. The matennm liave only nine jointa the turt four of which cornpomo tho stem. On each mide in a tubercle refrementing ono of the intermediato antennes; tho intermodiate apace in clevated. The branchito aro venicular, imbricated, and coverm hy latnism.
T. A mandilio, an inhahitant of the Mediterrancan, inay be taken as an examjulm.

Phloweias (latreille). -I Iatersl sutenne sivided into cight jointa and expmed at their liake. The four ponterior npumages nearly equal.

Cloportio, properly no called: Oniscia, Lism. (Wood-lice).-Fight jointe to the Jaterat antenme, but their hane in covered; and the two external ajpemelagen of the tail are much larger than tho two intermal ones. Thear animala frequent dark and retired julacen, much an caven, rellan, halen in walle, tic., and aro alm fonnd under itones and old loga. Their fored crasimba of decayed veretahte nod animat subntances; and they ecarcels erer cenne forth from their retrenten excejt in rainy or mant weather. They move alowly when not in danger. The egga
are inclosed in a pectoral pouch. The young at their birth have a thoracic scgment, short, and consequently ouly twelve feet. Thene Crustacea were formerly used in medicine; but they no longer form part of the Materia Medica.

Wood-Louse (Oniseus murarius).
Porcellio (Latreille).-Distinguished from the true Wood-Lice by the number of joints of their lateral antenom, which are only eeven. In other respects Porcellio resombles Oniscus.

Armadillo (Latreille).-The posterior appendages of the body are not projecting; the last segment is triaugular. A small blade, in form of a reversed triaugle, or more large and truncated at the end, formed by the last joint of the lateral appendages, fills up on each side the void between the segment aud the preceding. Lateral antenne with ouly seven joints. The upper subcaudal scales are pierced with a row of small holes.

Armadillo pustulatus.
a, expanded; b, relted up.

Such is the arrangement of M. Latreille.

Lamarck divided the lsopoda into two great sections: the first consiating of those which have the branchiasitusted under the tail, and comprising two subdivisions; the second composed of those which have their branchico placed under the anterior part of the abdomen, between the feet.

Under the first he arranged the genera Armadillo, Oniscus, Philoscia, Ligia, Asellus, Illotca, Spheroma, Cymothoa, Bopyrus, Typhis, Anceus, Praniza, Apseudes, and Jone. Under the second he included the genera Leptomera, Caprella, and Cyamus.
M. Desmarent also divided the lsopoda into two great sectiona, with many subdivisions.

His firat section, which ho mskes equivalent to the Phytibranchisto Isopods of. Latreille, consists of the genera Typhis, A nceus, including Gmathia of Leach, Praniza, Eupheus, and Ione.
His accond section, which he makes equivalent to the Pterggibranchos of Latreillo, comprises the genera Jdotea, Stenosoma, A nthura, Serolis, Campecopea, Nasa, Cilicaa, Cymodocea, Dynamene, Zuzara, Spheroma, Eurydice, Nelocira. Cirolana, Conilera, Rocinclla, Eiga, Canolira, A nilocra, Olencira, Nerocila, Lironcca, Cymothoa, Limnoria, Asellus, Janira, Jera, Ligia, Philoscia, Oniscus, Porccllio, A rmadillo, add Bopyrus.
M. Milne-Edwarda (edition of Lamarck, 1898) etates, in a noto to that part of lamarck's definition of an Isopod Crustacean, 'mandibules eana palpes, that Lamarck, Latreille, and most authors are in error when they nasign thia character to the Isoporla, for in a great number of these Crustaceans the mandibles sre provided with a palpiform stem, entirely resembling that which may be seon in the greater part of tho Amphipoda.

ILo further romarka that the reapiratory lamella situnted under tho abdomen are harlly over branchia, properly oo called, but only one of the branches of the falec feet become membranous and vasculsr, an in one of the nppendages of the thoracic feet in the A mphipoda. The female of lone, he obsorves, exhibits an exception, for ahe carries ramose branchim on each eldn of the abdomen.
M. Minc.Edwards, in his notes, further states that thono Crustacea whose rerpiratory appendages are placed under the thorax (which Lamarck calla abdomen) ought not to remain in the order of lsopoda, but lelong to the Inemodipoda of M. Latreille. The egg.pouch he lescribea as being formed of the flabeltiform appendages, which have become foliaccoun, and are raised againet the aternum.

The same acute zoologist (loc. cit.) sasg that the Iropoda, properly so called, are Edriephthalmous Crustaceans, whose abdomen is never rudimentary, and carries below fire pair of false branchial feet, having all nearly the same form and the same functions. The appendages of the perultimate ring (or the false feet of the sixth pair) have a form and use different from those of the preceding. The thorax, composed in general of seren rings, but sometimes having ouly five, carries nearly always seven pair of feet, which are often furnished with a foliaceous palp, serving to protect the eggs and young, but they hardly ever carry a vesicular appendage proper for respiration, as in the Amphipoda and Lemodipoda. Finally, the conformation of their buccal apparatus varies, and the greater part of authors are in error when they assign to them as a character the possession of mandibles deprived of palpiform appendages.
M. Milne-Edwards is of opinion that the Isopoda form three natural families, namely, the Idoteidians, the Cymothoadians, and the Cloportidians, and he thus distinguishes them:-
A. Jaw-fcet operculiform, and deprived of a palpiform stem, or only shewing the vestiges of it.

* Thoracic feet ambulatory; last segment of the abdomen smaller than the preceding segments; intermal antennic rudimentary.
These form the family of -

Cloportidians.

** Thoracic feet anchor-like (ancreuses), last segment of the abdomen nearly always much larger than the preceding segments; internal antenna in general well developed.
These form the family of -

Cymothoadians.

AA. Jaw-feet palpiform. Last abdominal ring much more developed than the preceding ones; all or nearly all the feet ambulatory.
These form the family of -

ldoteidians.

In this classification, says the author, the family of the Cloper tidians has the same limits as in the method adopted by Lamarck, and comprises the Tcrrestrial Isopods.

The family of Cymothoadians is composed of the Parasitic Isopods, and comprehends Cymolhoa of Lamarck, Ione, Anceus, and Typhis.
The family of Iloteidians consists of Marine Isopods not parasitic, and embraces the genera Idotea, Spheroma, Anlhura, Asellus, dc. [Crlistacea.]

Possil Isopoda.-M. Latreille states that Professor Germar had sent to M. le Comte Dejean the figure and description of a small Fossil Crustacean which appeared to him (M. Latreille) to be referrible to the sub-genus Limnoria; and he fnrther remarks that Oniscus pragustafor, figured in Parkinson's work, comes near to that species, or at least appears to belong to the ame section.
M. Desmarest ('Histoire Naturelle des Crustacés Fossiles') enumerates two fossil apecies of the geuns Spherome: one, S. antiqua, found in a fragment of white fine-grained calcarcous stone, analogous in that respect to the Pappeheim stoue, but of which he knows not
the origin; the other, S.Margarun, from the horizontal beds of grecu the origin; the other, S. Margarun, from the horizontal beds of grecn
fissile marl (marne verte fissile) at Montmartre, above the gypseous beds, mingled with Spirorbes.

ISOPYRE, a Mineral which occurs amorphous in granite. The fracture is flat and conchoidal. It is brittle, with a hardness of 5.5 to 6 . The colour is velvet- or grayish-black, occasionally dotted with red. The colour of the streak is greeuiah-gray. It slightly obeys the magnet. Lustre vitreous; opaque or slightly transculent. The specific gravity is 2.9 to 3 . It is with difficulty acted upon by acids, and fuses before the blow-pipe. It oconrs in the granite of St. Just, near Penzance, in Cornwall. Accordiog to Turner's analysis, it consists of -

ISO"TELUS, a genus of Fossil Cinustacea (Trilobites) from the Silurian strata, especially of North Americi. (Green.)
1SOTOMA. [Lobeliacee.]
ISPIDA. [HALCYONIDE.]
isTIO'PHOlir, a family of Bats. [Cueneoptera.]
ISTIU'RUS', a tenus of Saurians. [tivanide.]
ITABALLI. [Vociryacear.]
ITABALLI. [Vociryaces.]
ITACOLUMITE, a Micaceous Granular Quartz with which gold and topaz are associated. It is found in Brazil. [Diamond.]
ITCHMMITE, [Acarid.e.]
ITTNERITE. This Mineral oceurs crystallised in rhombic dodeca. hedrons and massive. It has a compact structure. The fracture is imperfect, conchoidal, passing iato uneven. Hardness 5.0 to 6.0 .

The colour is bluish or ash-gray. The lustre resinous to vitreous. Specifio gravity 2.3. It forms a jelly when put inte acios, and fuses per se before the blow-pipe, with effervescence of sulphurous acid, into an opaque blebby glass. It yields by analysis-

IU'LUS, a genus established by Lionxus for such Insecta Myriapoda. as מow form the order Chilognatha (хєỉas, $\gamma v \alpha^{\prime} \theta_{o s}$), the first division of Myriapoda in the arrangements of Leach and Latreille. The Chilognatha have crustaceous and usually cylindrical bodies, formed of numerens unequal segments, very short feet, each terminating in a single hook; a vertical rounded bead, furnished with two mandibles, which are either thick and robust or united with the labium and elongated. They have no palpi. The anteune are two, very ghort, either slightly thickened towards their extremities, or filiform throughout, and composed usually of seven, more rarely (as in the genus Spheropeus) of six jeints. Their eyes are smooth and vary greatly in number. These animals move slowly and with a gliding motion. When disturbed, they roll themselves up spirally, or into a ball. They feed on decomposing animal and vegetable matter.
The position assigned to the Chilognatha, at the head of the Myriopoda, by Latreille and others, has been disputed by Professor Brandt and by Mr. Newport. The following remarks on this subject by the latter naturalist, of all hiving zoologists the most competent to decide in questions affecting this difficult class, are taken from his catalogue of Chilognatha in the British Museum, published in the 'Annals of Natural History for April, 1844,' and afford iu a brief compass much information respecting thess curious animals.
"The Chilognatha, have usually been regarded by naturalists as the first order of Myriapoda, partly in consequence of the more compact form of the head, and its similarity to that of the larva state of hexapod insects, and partly from the general form of their hodies beiog similar to that of the larva. This was the view taken of these animals by Latreille, Leach, Gervais, and some others, and very recently by Lucas. But a different and, as I believe, more correct view and arrangemeut have been followed by Professor Brandt, who regards the Chilopoda as the first, and the Chilognatha as the second division of the class. Although I cannot entirely agree with Brandt in his division of the Chilognatha into masticating and sucking species, becanse, as Lucas has recently remarked, there are species even among the Chilopoda which have the external organs of nutrition fitted only for taking liquid food, as in the little Scolopendrellu, I fully agree with him in the superiority of the Chilopoda, as an order, over the Chilognatha, notwithstanding the less compact structure of the head in the former. The gencral characters of the Chilopoda certainly point them out as the most perfect animals of the osculant class of Articulata. The more compact fiame of body, the reduced numbcr. of the organs of locomotion, the greater activity, aud the preda. ceous habits of the higher species, approximate the Chilopoda to the predaceons insects on the one hand, and to the Arachuida on the other. The form of the head, in the two divisions of Myriapoda, seems to have reference chiefly to the particular habits of the species. Thus, in these which seize their prey and subsist like the Arachnidans on living objecta, those segments which in reality compose the whole head are not all anchylosed together, but are in part freely moveable on each other, and thus allow of a more prelicusile fuuction to the large forcipated foot-jaws, the true mandibles of the Articulata. Some naturalists have believed that these foot-jaws in the Chilopoda are not the true analogues of insects and of Chilognatha; but I am satisfied, by recent examinations, that this is truly the ease. In the Chilognathe the foot-jaws have the form of trie mandibles, because the habits of the species require that compact form of the organ which alone can be subservient, not to the scizing aud piercing of living prey, but to the grinding or comminuting of more or less solid vegetable matter, on which most of the genera of C'hilognatha entirely subsist. In all other respects, both in their internal as well as their external anatomy, and in their physiology and mode of growth, the Chilognatha aro decidedly inferior to the Chilopoda. They seem to conduct us down to the Annelida from the vegetable-feeding Crustacea, as the Chilopoda do from the Arachaidans to the same class."

The Chilogoathous Myriapoda are found in all parts of the world, certain genera however affecting certain geographical divisions. Thus the species of Glomeris are European; those of Spirastreptus and Spheropous African and castern. The genus Iulus, is its most limited sense, iucludes European, Asiatic, and North American species. Iulus terresiris is a familiar British exarople.

A synopsis of the genera of Chilognatha will be found in the third part of the niueteenth volume of the 'Linnean Transactions," appended to a valuable menoir on the Myriapoda by Mr. Newport. Professor Brandt's papers on these animals are published in the
－Tramaction ad IProcedin：of the Imporial Aca lemy of St．I＇etern．

HOML．［Trexm．］

WY゙．［HLDRRS］
FY゙，Grotisin．［SEm\＆a．］
l＇Alde＇s，a form of herbivurous Mammifer，placed by Mr．Ogilby ubiler hia farmily Marchidue．

IXOHF゙（Acsntos：？
1XULYTtion Minema liesin foum with othere in brown conl．
IXO＇IlA，a genum of l＇lants belonging to the tribe C＇inchonarece and the genun Rubincre，ow named，it is mplosed，from the Intiau god lswarn The genua is characterimel by hoving a small f－toothed calyx：condla I－pelated，funcl－ahaped；tube lung，with the four switsean in its mouth：orary g－celled，l－seoded；atylo siogle；berry
drupacoous，Inferior，2－seeded．The species are numerous，and chlefly confined to India and the Oriental Archipelago．They form shrubs or anall trees，with opposito leaves，and stipulen ariaing from a broad basc，but acuto at the apex．The flowers are in terminal corymbe， and are usually red，but nometimes white，and are generally highly eruatnental，whenco acveral are cultivated in our hothouses，where thes require to be kept in a moiat heat to thrive well．Some of the afrecies are used medicinally，but not to sny extent．Dr．Horsfield mentions／．coccinea as employed in Jara as a stimulant，and Rheede two or three other species；but none appear to be poasessed of any very active properties．

Kios，a genus of Birda established by M．Temminck，for those Thruehes which have the bill sherter than usual，and embracing the greatest part of the Brachypodine and nearly the whole of tho Crateropodime of Smioson．

J．A＇Blllé，tho name or a genns of＂rallatorlal or Wading Birds， called．Nyccerios by Limmus．It is thus characteriaed ：－
Bill long，conical，nuooth，rabust，compresserl，and pointed；upper mamilblo trigotal and acraighe，the lower thicker and turned up． Veal and neck hore or leas bare of fenthers．Anterior toes united at the buse by membrane．Nize gignutic．

Tho percies are fond in South Americn，Western Africa，and Australnia lis habits are almost eutirely the same with those of the Storks There are three apecies known，distributed geographically mabove

M．A mericana may be taken as an cxample．
Thin bird is rery large in nize，white；the heat and neck（excepting tho occiput）without feathem，nud covered with a black skin，which oeconea reddinh towards the lower part．On the oceiput are a few white fenthern Bill and feet black．

It in found in South America，where it fregnente the borders of lakes and marshea，preying on rentilea and fish．

Wyeteria imericana．
 Ing do tho matural arder ligmomiareos．It han a 5 ．Woothed calyx，nome－ timen entime．conolla woth a alast tulve or entopanalate throat，nul a
 of a 6itls；lotwo of anthem lisaricate；cajralo ovate，rather ligncoun． The epmern are treas，natirem of thath Ancrica．They have blowy pabiciel hmainal fowern fling linve vary mueh the habit of the Enm loarmi dercian．
 tivaloll in miawo io thin mesnatry．

 Oustires of Boxamy）
AACAhF：（Ahaf，iten）
－ACCHLCS，or IACBillés，the matne of a gemus of Monkeysapplicel
by Geoffioy，Desmarest，and others to the form denominated Mapale by Illiger，Ouistitis of the French，the type of which may be con－ videred to lhe the Simin Jachus of Linneas．

M．Geoffroy treats them as a farnily divided into two sub－genera （llapale and Midas），under the name of Arctopitheci；but the term A retopithecus has been applied by Geaner to another animsl，probably the Three－Toed Sloth，whilst the latter uses Galeopithecus to designato the Sagoin．
The characters of Jacelsus are：－Upper intermediate incisors larger than the lateral ones，which are isolnted on each side；lower incisors elongated，narrow，and vertical，the lateral ones longest；upper cauine teeth conical and of moderate size；two lower ones rery small．
Dental Formula ：－Incisors，$\frac{4}{4}$ ；danines，$\frac{1-1}{1-1}$ ；molara，$\frac{6-6}{6-6}=36$ ．

Tceth of Jucelens，four times larger than nature．F．Curler．
Size small，muz\％le sliort，ficial angle about 50° ．Head round， prominent at the occiput；the fire fingers armed with elawa，with the execpitinn of the thumbs of the posterion extremitlea，which are funthed with mails；thumb of the nutcrior extremities in the same direction the the fingers ；fur very soft ；tail full and handsome．

The apecier nre nativen of South Anericn．Jow Ludolph，who figurea two in his＇Hiatory of Ethiopia，＇could have been so far minled an to place the form in that purt of the world，does nut appear．

The specien，which are not few，havo been separated into two sec－ tions：llae firnt consinting of those whiel have an annulated tail，as
J. vulgaris; and the second of those whose tail is not anuulated, as J. melanurus.
J. rulgaris appears to be the Simia Jacchus of Linmeus and others; Callithrix Jacchus of Erxleben; Hapale Jacchus of Illiger and Kuhl; Cercopithecus Jucchus of Blumenbach ; Cagui, Sagouin, Sagoin, Sanglain, and Sanglin, of Edwards aud various authors, the latter terms being probably derived from Sahuim, the name by which it is said to be known near Bahia; Ouistiti of Buffon and the French; Striated Moukey of Pennant.

Length of body about 8 inches; tail rather more than 11 inches; colour olive-gray, darkest on the head and shoulders, where it becomes nesrly black; tail and lower part of the back barred or annulated with pale-gray; lower parts of extremities brownish-gray. Face of a flesh-colour; two tufts of pale hair spring round the ears; front claws hooked and thick.

It is a native of Guyana and Brazil. The habits of the genus generally are squirrel-like, thongh they are, occasionally at least, carnivorous. J, vulgaris, in a wild state, is ounaivorous, fceding on fiuits, roots, needs, insects, and little birds or nestlings. The individual (ia captivity) from which Edwards took his drawigg fed upon biscuits, fruit, greens, insectia, snails, \&c., aul once, when loose, it suddenly snatched a Chinese gold-fiah from a basin of water aud devoured it: Mra. Kennon, to whom it belonged, after this gave it live eels, which frightened it at first by twisting round its neck, but it soon mastered and ate them. Mrs. Moore, of Rio Janeiro, sent a living specimen of J. jenicillatus, which was said to hava been obtained from Bahia, to the Zoologicsl Society of London, with the following note :-" Like most monkeys, it will eat almost anything; but its chief aad favourite food, in its wild state, is the banana. It is a very delicate animal, and requires great warmth; aud its rery beautiful tail is in this respect eminently conducive to the comfort of the little creature, who, ou all occasions when he requircs warmth, rolls himself up in the patural boa with which Providence has in its wisdom endowed him."

The Ouistitis, or Sanglins, not unfrequently breed in coufiuemeut. Edwards notices a pair that bred in Portugal, and F. Cuvier posgeased two which had young. Three littlc ones were born, and the female soon ate off the head of one; but the others begianing to suck, she becarne careful of them and affectionate to them. The mate seemed more fond of them than the mother, aud assisted her in her care of them. Lady Rolle addressed a letter to the aecretary of the Zoological Society of London (February, 1835), giviug an account of the birth of two young ones, the produce of a pair of Ouistitis (J. penicillutus, Geoff.) in her ladyshin's possessiou. The parents were obtained in London during the preceding summer, and the goung were brought forth on, the lat January. Oue was born dead, but the other wss surviving at the date of the letter; being then about six weeks old, and appearing likely tolive. It was overy day put on the table at the dessert, and fed upon aweet cake. Lady Rolle stated that the mother took great care of it, exactly in the manner described by Eulwards in his 'Gleaning.". It was observerl that young of the pame speciea had been born at the Suciety's Garilens, but not living, and that a female in the collection of the president, the Earl of Derby, at Knowsley, had produced, about the same time as Lady Nolle's, two
living and healthy young ones, which were then still thriving. ('Zool. Proc.')

Dr. Gray places the form among the Anthropomorphous Primates, in the family Sariguide, and in its last sub-family (the 5th) Harpalina (Hapalina?), which is immediately preceded by Saguinina.

Mr. Swainson, who arranges it under his family Celidd, gives the group the appellation of Mouse-Monkeys, because the large cntting teeth in the lower jaw strongly iudicate, in his opinion, " a representation of the order Glircs."

JACK. [Esox.]
JACK-IN-A-BOX, a name given to a species of Hemandia, in which the seeds make a noise when shaken in their pericarps. [Hernandiacee.]

JACK-OF-THE-HEDGE. [ERYsimom.]
JACK-SNIPE. [SCOLOPACID.E.]
JACK-TREE. [Artocarpus.]
JACliAL. [CANEs.]
JACKDAW, the well-known English name for Corver Moncdula of Linuæus. [Convide.e.]

JACliSAW, one of the provincial Eaglish names for the Dun Diver. [Decks.]

JACOB'S-LADDER. [PoLemonith.]
JADE, a name which lass been given to several Miuerals which resemble each other but little, excent in colour, and thercfore it is one which it would be well slould fall into disuse.

Serpentine, Nephrite, and Saussurite have all been described under the name of Jacle. Iu, or Chinese Jade, is supposed to be Prelnite. JERA. [Isoroda.]
JAGER. [LARID.E.]
JAGUAR. [FELIDS.]
JALAP'. [IPOMEA.]
JAMLSONITE, a Mineral which occurs crystallised and massive. Its specific gravity is $5: 564$. It consists of -

JANIA. [Corallinace.e:]

JANIPHA, a genus of Plauts belonging to the natural order Euphorbiacece. lt has monccious flowers; calyx campanulate, 5 -parted ; petals wanting ; stamens 10 in the mala flowers, filaments unequal, distinct, arranged round a disc. In the female flowers the style is one; stigmas 3, cousolidated into a rugose mass; capsule 3-coccous.
J. Manihot (Jatronha Manihot of Linnous) is a native of Brazil. It has an oblong tuberous root, as big as a child's head, full of a wheyish venomous juice. The stems are white, brittle, having a very large pith, and several knobs stickiag out on every side like warts, being the remains of the foot-stalks of the leaves, which have dropped off, usually 6 to 7 feet higb, with a smooth white bark; branches crooked, and have on every side near their tops leaves irregularly placed on long terete petioles, broadly-cordate in their outline, divided uearly to their base into 5 spreading lauceolate eutire segments, alteruata at both extremities, dark-green above, pale-glaucous beneath; the midrib strong, prominent below, and there yellowish-red: from it there branch off several oblique veins, connected by lesser transverse ones ; stipules small, lanceolate, acuminate, caducous; panicles, or compound racemes, axillary and terminal, 4 to 5 inches long, bearing sometimes all male or female flowers, st other times these are mixed on the same peduncle; pedicels with small subulate bracts at their base. Male flowers swaller than the female. Calyx purplish ou the outside, fulvous-brewu within, cut about half-way down into five spreading segments; disc orange-coloured, fleshy, aunular, 10-rayed; stamens 10, alter"uate with the lobes of the disc; filaments sherter than the calyx, white, filiform, free; anthers linear, oblong, yellow. Female flowers of the same colour as the male, deeply 5 -parted; the segments lanceolate, ovate, apreading; disc an aunular orauge-coloured ring, in which the purple ovate furrowed ovary is imbedded; style short; stigmas 3, reflexed, furrowed and plaited, white; capsule ovate, 3 -coruered, 3 -coccous; seeds elliptical, black, sbining, with a thick fleshy funiculus. The expressed juice is dangerously poisonous. Fecula of the root harmless when separated from the juice and exposed to heat. It is called Cassava-a principal article of diet in South America. The nutritious substance known as Thpioca is the Cassava differently prepared and granuated. [food.] These preparations are obtained by crushing the roots after the bark bas been removed, and straining off tbe water, when the mass is gradually dried in pans over the fire.
(Lindley, Flara Medica.)
JANL'RA (Okea), a genus of Acalephe, apparently ncarly allied to the Callianise.

JA'NTHINA, or IANTLINA, Lamarck's name for a genus of Turbinated Testaceous Mollusks of remarkable habits.
Linnens placed the form among the Helices, under the name of Helis Janlhina, between H. perrersa and H. vivipara; and he was aware of its pelagie distribution.

Ismarck arranges it next to Natica the last genus of his

Neritarean. betnews whels fatuily and the Mnerontomen it appears in

Curier amjens tos tho Jonthiner a flace among him Pectinibraueliate Gantsomenta tetween tho I'grammeller and the Jeritir.

1he Balarillo elevate the grotip into a fauily, unter the name of Oxptomes, being the fint andlas: of hin order Asiphosubremchiata. This family comean next to the llemicyclontomes, which comprise the Nerila te.
Ml. IRang nanken Janthina n genus of the Trochoids of Cuvier, giving it a ponition between Ampublarin, Jnm., nad Litropa, llang.
Thin genus han the fullowing charact.ra:-Animal with a very lange heml and a foubonclifiform mazale, at the exerenity whereof is the mouth, furnimhed with two vertieal nubcartilaciuoua lipa (which nre armen with long and very marps points curved inwards), nod with a lingund endagemant (raflement); tentacles two, conical, pointed, not rery contractile, nal very diwtant, each bearing at its lase n rather long perluncle, which in oculated keneath its extremity; foot oval, dirided into two parta, the naterior being concare nud in the form of a cupping glase (vcntouse), the intter bistencd, thick, nud fleshy; matatory appendages lateral, rather large and fringed; respimtory cavity very open, and contrining two pectianted branchia; orifice of the ovary at the bottom of thin avity; exciting male organ very small and on the right aide.
shell ventricuer, globular, or conoid, very fmgile, with a low spire, and the last whorl larger than all the rest together; aperture large, subtrimggolar, with dinuajted borders; the columella straight and long, forming the whole of the left bonter or lip; right border or lip trenchant, sud often notched in the midille; colour of all tho zpecies hitherto discoverel violet, tnore or leas intense.

Operculum modified into a vesieular appendage, which ecrves to oupend the naiman at the nurface of the water, and which ndheres to the posterior and flealy part of the foot.

Common Oceanic Shedl (Jantlina fragilisj. Shed with the anban, the flost expanded.
a, bead; b, tuouth ; e, tentacles; d, cjes; e, borter of the mante at the entrance of the lranchlat cavity; f, foot, the poaterior parl, which in fat; g. lateral expansion of the mantle, provided for suimming; k, fool, anterior part formolng a port of pouch ; i, bunch of aerated veniclen, serving to atispend the mollune al the ausface uf the water; m, eggs auspended under the veoleolar burch; n, mhell. (Hang.)

The geographical dintribution of thin genus is very extennive, the form having leen met with in the four quarters of the world fonting on the ocean or driven on the whorea by tempeats. It han occurred on the coasts of our own islands, but thero in reason for thunking that it in not to be found in very cold latituden. In warm climntes it is very plentiful.
Sir livernal Lome publinhed ln the 'Philosophical Traunactions' for 1817 a parer which in rppended (Appendix. No. iii.) to Captain Tuckey": 'Siarrative of the Expelition ment to explore the River Zaire, unually called tho Congo, whercin ho deneriben and figtures nomong other osa of Mollusen, "r lermes testacen, na he denominates then, the cameratril niplon of /lfior Jumhinn (pl. xiii., figs. 1, 2, 3, 4, 5, 6). "Thim nimal," robarrers Su Everarl, "not living at the bottom of the wew, liko the lireme lesfarea in generul, cleposits ita ova upon its
 the whell of the Janthong caught in the voyage to the Congo fortunately han the orn me If"pmiuvl." Anl ho then rifera to the drawings of Mr. Ihant, engravel as nbove quaturl.

In the th vel. of the 'dourual of the l'hilmelephin Acalcmy' will Pe formal 'Remarky on tho Flontiug Apparatun and other preculiaritices of tha gemun Janthina; by lhyuall Conten, M.1). I'hla highly intereating laper, the remult of the author'n I monal obecruationm during a royan to the Fand India, chtallinhen the correctness of Cuvier's renark, that nonnatonical connection exints between the muinmla and the nirerella of their float; hut loes not cermbomete the view of Sir Eiverard an to the camerne d nidua orn the mhell whiels lic naw with no much atinfartion. Ir. Conatem jlacel sume Jonthiner in a tumbler of

 manar- Tha fomt was advatucer upan the remaining veachon wintif It wat then exprandent to than uttormost, noll thrown tack upon the water, like tho fro: of a linnomers when it hegitu to mwin; it wan then contracted at the celgon, mid formeal into the abmpe of a bool, incloming
a glubule of air, which was slowly applieal to the oxtremity of the slunt. I'here was now a vibmory movement throughout the foot, and when it was aguin thrown back to renew the process the globula was found inclosed in its nowly-made envelope. From this it results that the meurbrane inclosing the cells is secreted by the foot, and that there is no attachment between the flont and the animal other than that arising from the nice adaptation and adjustment of proximate aurfaces. Ir. Costes staters that the Hoat varies in different apecice. In Janthian frogilis ho describes it as conver, subcarinate abovo and concave beneath, straight, nad compored of large vesicles: in J.globosa ha found the vesicles amaller, and the float flat both above and bencath, added to which it is formed by the reunion of one of the edges into a spiral and nearly circular disc. In J. exigua it was straight, nartow, and fattened, nad the vesicles were small. Along the under surfuce of the float a little line of pearly flbres was remarked, to which nre attached the eggs of the nuimal.
Although Dr. Contes had no opportunity of observing the eggs of J. fragilis, he is strongly inclined to believo that the eggs figured nud described in 'Phil. Trans.' as nbove alluded to, belong to some other marine animal; and ho grounds his belief on the dissimilarity between those figures and the eggs of J. glubosa and J. exigua. In these two species the eggs are contained in little membranous bags of some consistence, which aro attached in rows to the pearly fibrea of the under surface of the float by small filamentous pedicles similar in appearance to the fibres. These baga are covered with minuts gelatinous conical emineuces, and are partially divided by incomplleto septa, as may be seen by the aid of a powerful lens. In J. exigna, the division is very partial ; but in J.glabosa it gives to the whole sac a cbambered nppearance. It would seem that the animal consumed conviderable time in depositing its eggs, for the bags neareat to the extrenity of the float were coustantly found empty, while the centrol bags contained young shells fully formed: those towards the noinal were flled witb eggs. The probability is, that the young animals when hatched ascend the float of the mother, and thas gaining access to the surface, construct the elements of their future support.
M. Rang, who also notices Sir Everard's statement, mentions it as certain that Janhina deposits its eggs sometimes in considerable number, as he has had occasion to remark, under the float, where they are attached by means of small pedicles; and he goes ou to say, thint the animal nhandons them, together with the Hoat, which is then charged with their prescrvation. M. Rang adds, that ito is possible that, at this epoch, the natatory appendages of the mintle, being sufficiently developed, permit the animal to use them for swimming, and thus supply the loss; or one must suppose that these animals have the faculty of replacing the float. That they bave that faculty we have above seen.

Browne, in his 'Natural History of Jamaica,' gives by no means a bad account of the flonts of these animals, many of which ho encountered between the Bermodas and the Weatern Ialands, in his voyage from Jamaica. Ho s.1ys, "I have observed many of tho vesiculat themselves swimming upou the surface of the water, which induced me to think that they were thrown off as the crentures retired." Sloane also saw these occanic sunils, and figurea them.

In Jannary, 1833, Dr. Grant exhibited to a meeting of the Zoological Society of London numerous specimnns of J. tulyaris, Lam., nnd of Velella limbosa, Lam., both animals of rare occurrence on the Englinh const, and chiefly met with flonting in tropical or wnrmer seas. I'hey Were obtained by him at the beginning of September, 1832, in Whitsand Bay, close to the point of the Land's Ent, Cornwall, where they were thrown in great numbers on the saudn, after a storm of three days continuance fiom the north-west: they munt, he observed, consequeutly have been flonting before they were directed to the const lig the storm, in latitudes at least as high as that in which they were found. Dr. Grant regarla it as probable that neither of theso nuinala in capable of diacharying at will the gascone fluid by which they are mupported on the surface of the sen; otherwise, in such n vialent and continued tempest ny that which atranded thom, they would have empticel thac vesicles aud have sunk to the stiller buttom. ("Zool. l'roc.') Browne on the other hand says, mpeaking of the flont, "This raises and sustains it while it pleases to continuo on the surface; but when it wants to return, it throws off its bladder nud sinkk."

Lamarck pinces Janthina nmong the Plant-Einters: but in the comanuaication ly Dr. Grant obove noticed, it is suggested that Jenhina, a predaceous Gastropod accompenying Jelclla, as there described, may prey upon it, and nequire from it the blue colouring matter of its shell.
Seveml nuthors apak of the beantiful purple liquor which the liviog animal diftuses when it is touched.
J. firagilis, Common Ocennic Suail, has the shell pale; body whorl angulated; the base flattened, strinted, nod deep violet; aperture broader than long ; outer lip deeply emarginate. (Swainson.)

It occurs in warm and temperate climates; eeveral instances are recorved of its capture on and ncar the Dritish Ialands.
J. cxigui las been found on the English and Irish cossta.
J. pallida is n npecies nearly allied to J.globosa. This specios is

Mr. Swainson, who, in his 'Zoological Illustrations,' has given beautifully correct figures of J. fragilis and J. globosa, justly remarks that the ahells are so brittle that it is rare to find them perfect.
M. De Blainville is inclined to think that those shells which are notched be long to females.

Shell of Common Oceanic Saall (Janthina fragilis).
Fossil Janthince.-Mr. G. B. Sowerby ('Genera') states that he has never seen any fossil species of this genus, nor is be aware that any exist, but he refers to a fossil engraved in 'Min. Con.,' pl. 10, which bears a very near resemblance to $i t$. The fossil is named, in the valuable werk alluded to. Helice carinata, and the solid gray limestone near Settle in Yorkshire is aaid to be the locality..

JASIONE, a genus of Plants belonging to the natural order Campanulacece. It has a 5 -leaved rotate calyx, sathers colering at the base, a hairy trifid etyle, 2-celled capsules, opening by a large and somawhat valvular pore at the base. There is but one British species of this genus-
J. montana, Sheep's Scabious, has a simple roet, bluntish oblong wavy leaves, and etalked flowers. The atems are from 6 inches to 2 feet long, pilose, simple, or branched, leafy below, bare and glabrous above, and ascend from the crown of the root. The flowers are small, in terminal bracteated heads, having a light blue corolla.
(Babington, Manual of British Botany.)
JASMINA'CELE, Jasminworts, a natural order of Monopetalous Exogens, deriviag its nams from the Jaminum, which forms one of its genera. It is one of the very few orders of that clase with regular diandrous flowers, and is only to bo mistaken for Oleaceer, which have a valvate corolla, and which otherwise are scarcely differcnt. Only five genera of this order lave yet been discovered, the priacipal being Jasminum itself, which consists of a large number of species, sometimes fragrant, sometimes scentless, erect or twiniag, inhabiting the hot or temperate regions of Europe, Africa, and Asia, including Australia, but hardly known in America. The order is characterised by having opposite or alternate, simple or compound exstipulate leaves; moocopetalous flowers, the segments of whose corolla are imbricated, and seldom correspond with those of the calyx; two stamens, and a superior 2 -celled faw-seeded ovary. The species, about 100 in number, are chiefly valued for their fragrance; a few species have been regarded as bitter and astringent. [JAsmincm.]

Common Jammine (Jasmintm officinale).
1, al ongitudinal section of the corolia; 2, a longitudinal section of the ovary and calyx.

JASMIIVUM, a genus of Plants belonging to the natural order Jasminacere. It has a tubular 5-or 8-cleft calyz; a 5- or 8-parted corolla; stigma 2-lobed or bifid; berry didymous, having one of the lobes usually abortive; sceds withont albumea. The species are usually twining shrubs, Leaves simple or compound; petioles articulated; flowers white or yellow.
J. Sambac, Single-Flowered Arabian Jasminc, is a twinigg plant; tha
leaves almost sessils, membranous, from cordate to oblong, acute or obtuse, glabrous ; berries glebular; branches, petioles, and peduncles downy. It is a native of the East Indies. The flowers generally form small trichotemous umbellets, white and fragrant. The berries are black. A perfume, known as Oil of Jasmine, is obtained from this spacies.
J. angustifolium, Narrow-Leaved Jasmine, is a native of the Coromandel coast. It is a twining bright plant, with ovato or oblong leaves, smooth, of a sbining deep-greeu colour. The flowers are large, white, with a faint tinge of red, star-shaped, having a peculiar but very pleasing fragrance. The bitter root of this species, ground small and mixed with powdered Acorus Calamus root, is considered in India as a valuable external application in cases of ringworm. The plant being constantly covered with leaves of a bright deep-green, sometimes as small as those of Box, render it always beautiful and well adapted for screening windows and covering arbours in warm climates.
J. officinale, Common Jasmine, is a native of the South of Europe It has opposite leaves, pianate; leaflets ovate-accuminate; buds erectish. The plant is glabrous, the branches angular. Calycine segments 5 , subulate; corolla white, 4- or 5 -cleft, sweet-scented; the terminal leaflet is the longest. The Common Jasmina has been a faveurite wall-shrub from time immemorial. Its native country, as well as the date of its introduction, are unknown. Gerarde in 1597 says it was in common use for coveriug arbours. There are gelden and silveredged leaved varieties of the Common Jasminc, as well as a double flowered variety.
J. grandiflorum has opposite pinnate leaves, leaflets bluntish, the outer ones 3-to 5 -confluent, buds horizontal. It is a native of the East Indies, and greatly resembles J. oficinale, except iu the size of the leaflets and in the exterior ones being confluent and the flowers larger aud reddish underneath. Both this and the former species yield the true essential ail of jasmine of the shops.

The leaves of J. undulatum are slightly bittcr. The roat of J. pubescens is thought to be elexiteric.
(Lindley, Vegetable Kingdom.)
JASPER. [QUARTZ.]
JASSA, a genus of Amphipodous Crustacea, established by Dr. Leach.
The general characters resemble these of Corophium, Latr.; but differ from them as well as from those of Podocerus, Leach, in the considerable size of the hands of the first four feet, which are oval ; those of the second pair being the greatest, and armed with toeth more or less numerous on the internal border. Eyes not projecting.

Dr. Leach records two species, one, Jassa pulchella, from tha south ceast of Coruwall, where it was feuad in the midst of sea-weed; the other, Jassa Pelagica, found near the Bell Rock, Scotlaad.

JATROPHA, a genus of Plants belonging to the natural order Euphorbiacea. It has monocious flowers; a 5 -parted or lobed calyx ; corolla 5 -parted or ahsent; stamens 8 or 10 , with unequal menadelphous filaments; styles 2, bifid or dichotomous; capsuls 3-coccous.
J. Curcas, Physic-Nut, is a very common small tree, or bush, on the coast of Coromandel. The bark is smooth and light ash-coloursd; leaves scattered, stalked, broad, cordate, 5 -angled, smeeth, about 6 inches each way; petioles round, smooth, 4 to 6 inches long; stipules absent; panicles terminal or from the exterior axils cymose, bearing many small yellow flowers. The male flowers at the extremities of the ramifications on short articulated pedicela, and the female ones in their divisions with their pedicels not articulated. Bracts, a small one below each subdivision of the panicle, and generally one pressing on the calyx; calyx 5-leaved; corella 5 -petaled, campanulate, somewhat hairy; discof 5 glandular bodies round the base of the filaments; filaments 6, the central one very thick, columnar, the 5 exterior ones filiform towards the base, adhering to the central one, all erect, and a little longer than the calyx ; anthers 10, sagittate, equal: 5 supperted by the large geoeral filament, and 1 by each of the others. The leaves are rubefacient and discutient; warmed and rubbed with castoroil, they are applicd by the natives of India as poultices. The seeds are violently conetic and drastic ; their expressed eil is reckoned a good application in itch and herpes, and alse, a little diluted, in rhenmatism. The milky juico is considered detergent and healing; it dyes lineu black. The oil boiled with oxide of iron forms a varnish used by the Chincse for covering boxes. In large doses the seeds are energetic poisons.
J. glauca is found in Arubia Felix. It has leaves from 3-5-lebsd, mucronate, serrate, tecthed; petioles naked; stipules palmate, with setaceous branched divisions, glandular at the apex. The sceds yield a stimulating oil recommended by the Hindoos as an external application in cases of rhaumatic and paralytic affections.
J. glandulifera is a native of the East Indies. The leaves about the extromities of the branchlets are alternate, petioled, aud geuerally palmate; the lobes frem 3 to 5 , oblong, serrate, with each serrature ending in a short green glandular-headed bristle; stipules bristly, many-cleft, each division ending iu a glandular head; panicles terminal, about as long as the leaves. Male flowers most numerous and terminal, small, of a pale yellowish-green colour. The female flowers few, and subsessile in the divisions of the panicle. The pale or
wher molouml thin juice which exiden from a freah wound in enploged thy the Hindoom an ancluarotic to remowe films from the eyea

J．mulcoifla in a uative of tropical Americo It has pinmate 11．
 ntipulow metacmoum，multitid；fowern corymisae，Bcarlet，with coloured pralicele The meda are one of the beat of all etmeticn and prirgativen， acting hrukly，but without inconvonimee：their ctlects auv readily alayed ly the alministration of a glasn of good white wine．
J．Ninchot in now referted to the genas Jamipha．［Javitua．］
（lindlay．Flora Medica．）

JAy．［Convons］
JEFFE：RSONITE，a Mineral belonging to the pricties of Augite． ［ATMITE］

JFiFFIRF：VSIA，a genas of Mollusca belonging to the family Litro－ rimula，estahlished by Mr．Alter，atd mancel after Mr．Jedfreys of Swamea．The species were originally refercel to Rissoa．Furbes and Hanley give two apecien，J．diaphana add J．opalina，as inluabiting Britinh geare

JFlUS：［Food．］
－ERBOA．MCRID．E．］
JFIRFALCON，or GYIR－FALCON，the English name of the Fotco Iflandicus of Lathmm，Gcrfant of the Firench，Hebog Chwyldro of the Weleh．［Fatcosin．z：］
JF：HICHO，ROSE OF， s name applied to the A nastatica，a genus of l＂anta lelonging to the natural order C＇rucifera．This genus has the following charactera：－Silicle rentricose，with tho valves bearing each ar appendage on the outaide at the end；petuls obovate．There in Lut one species－

A．Juerachuntisa，the Rose of Jericho，or Moly lioge．Tho whole 1／last in masall，the atem lerached，dichotomona；the leaves oblung of ovate，marrowed at the base into the petiole；the pods some what pubescent．The leaves fall off from tho plant after flowering，and the bramehes and branchlet become dry，hard，and ligneous，and rise upwants and bend inwarls at their points；hence they becone con－ tracted isto a globular form，and in thia atate the plant is with facility removed from the and by the wind，and blown from the denert flacen whero it growninto the sea．When the plant is inmmersed in water the limaches gradually expand，and the pods opea and let ont the meeds，which are again thrown on the shore by the tide．This plant long preservea the pow of expanaion when inmersed in water， lience many wonderful atorice are told of its influence．It is called Kaf Maryad，or Mary＂Flower，in Jalestine，where it is believed that this phant opresed at the time of tho listh of our Saviour．It is a native of the arill wastea in Eggyt near Cairo，also of Jalestine nad Lharhary．If grown on the roofn of loones nod on rubbish in Syria， nad un the sanaly corata of the Red Sea．
（Bhun，Imichlonaydrows PMants．）
JFiT，a vaiety of Conl，which occura sometitnes in elongated reni－ form manmen，and monutimes in the form of lumaches，with a woody forncture ；fracture concloidal ；soft and lerittle；apecific gravity but little greater than that of water；luntre brilliant and reainous；colour velvet black；opaque．It is found in Saxony，nad alao in the l＇ruesian matier－mines，in detached fragmente．The finer sorta are used for the manufacture of ormamenta and trinkets，and the coarser kinda an fuel； it buma with a grecnim famo aut a Atrong bituminoun maell，and leaven a sellowinh amp．［Cons．．］

JOHANSITE［［BaNICM．］

JulNT．FIRS［GNersces：］
JONF：SIA，a genam of Planta of the tribe Casoive，and of the ratural family of foguminomer，which wa namal by Jr．Roxhurgh in honour of Sir William Iloben，who，in the midnt of hin moneroun ＂ether avocatione，fund tinue to pry atemen to Indan planta．The ppecien aro few in aumiter，nud indigenous in the inlauls of the Malaran Archipelago，an woll nu on tho contemen fruntier of lbengal， that ing in sultert nat lower Anan．They form treen which nro higlaly orammental froin their landmome shining abruptly pinuate leaver，and from the alowy nature of their crowidel racenten of thowers．
 Ly the nane which bun teen mupted ly lotanista to dintinguinh it an aypeck fr．Joahurghpaya，and we can in a great monaro coin－ cule with lam in＂praion，＂Whern thin tree in in full blonom，I slo not think thow whole vegotalile kingilom aftoris a more benutiful object．＂ （ ${ }^{\prime}$ Flora ludica，＂ii．jo．220．）

 Fiaugeriun I＇lanta，connjkting of treen or ahrulon havingeatable nuta and anomewhit remoun leaven．Tho former aro the walnutes aral hickory mata of the markes；the firat produced by the genua Jughas， the latier by that calleal（aryo．The leaven are altarnate and pins． natod：the fowera unally moneciona，thone which are malo collected in cathims The endre of the latter conmints of a few seales attached obliquely to a sinicle iract，sod surnuauding a variable number of ataurdis；that of the femalen in muperiur．The ovary in l－celled，and has one wolitary erect ovule，which clangen into a 4 lobed accd，with
crompled cotyledon，inclosed in n 2．ralred nut，clothed with a fleshy cpicarp．The Common Walnut（Juglans regia），a native of Persia，in well known lor its excollcut tinber，from which musket－atocks（and formerly cabinet－worl）are manufactured，for its agreemble whole－ some nutn，and the sweet drying oil which they furninh when pressed． （arya albn，the White Hickory，beas nuts like those of the walnot， only smaller，smoother，sud with a thicker sholl，and furnisher a valuable tough elatio white timber much emplojed in tho conatruc－ tion of carriages and other velicles．Other species of Hickory are also eaten，especially the Peccan Nut，tho produce of Carya oliva－ formis，n small nod delicate sort，Although the fruit of theec plants is caten，it contains a purgative principle，which renders some of the species cathartic，as in the case with J．cuthartica and J．nigra，two Forth Anerican apocies；and even the common walnot prorticipaten кo much in this quality，when the fruit is young，that a laxativo con－ aerve well known in domestic anediono is prepared from it．J ． nigra，the Black American Walnut，is a tree of remarkable size and beauty．

The apecies aro chiefly found in North America，a few are East Indian，one apecies a nativo of Perria and Cashmere，another of Cancasus，nad a third of the West Iadia Islands．There are 4 genern and 27 apecies．
JUGGANS：a genns of Plants belonging to the matural order Juylanducer．All the species are largo trocs．The flowera are unisexual，and thoso containing tho stamens and pistils are found on the same tree．The stameniferons Howcrs are arranged in cylindrical drooping solitary catkius，which ore developed from buds borne by shoots produced the ycar previon to that in which the catkin appears． The calyx is composed of 5 or 6 scales．which are attached to a bractea at a distance from its base and tip．The stamens are from 18 to 36 in uumber．The pistiliferons flowers are solitary，or only a few in a group，and are terminal on a shoot developed in the asme year．The calyx is ovnte，including tho ovary，and adhering to it，except at the four－toothed tip．The petala aro 4，small，and inserted into the frea part of the calyx．The ovary has oue cell，and one erect ovnle．The stigmas nre two or three，and flealy，scaly，with glands．The fruit a drape．The covering of the nut is a fleshy huik of one piece that bursts irregularly．The nut is woody，consisting of two valves．The secd single，erect，lobed，wrinkled．There are four species of Juglana， three of which are natives of North America aud one of Asia．The gemus Carya，to which the hickory－trees belong，was formerly included nuler Juglans，but was separated by Nottall．The species of Juglans are much more rapid in their growth than those of Carya，and are furnished with only aimple aments．

J．regia，the Rognl or Common VFalnut．Tree，is tho oldest and the best known of the species．Its leaves are furuished with from 5 to 9 oval glabrons obscurely－serrated lenflets．The fruit is oral，and seated on a short inflexiblo peltuncle．The nut is rather oval，and aneven．It is a nativo of l＇ersia，in the province of Ghilan on the Casima Sea．It was also seen by Lourciro in the north of Chins； and I＇ullan，who saw it in Taurida nud south of the Cancasus，supposed it indigenous there．

Noyal or Common Walnue－Trec（Jugiuns regins：
1，a catkia of male flowera；2，a slagle male flower；3，a cluster of female flowern．

The Wislnut－Tree was known to the Greck noder the name of Peraicos，Basilicon，and Caryon．It is uncertain at what time it was first cultivated in Eerope，but it wam cultivated by the Romans before the death of the emperor T＇iberius It wood was much valued by
the Romans, and the nuts were also eaten. There is no history of the introduction of this tree into Great Britsin, but it is now very commonly cultivated in this country, although it fails to propazate itself by its seeds. It is only however in the southern and middle parts of England that the walnut brings its fruit to perfection.

The walnut, when full-grown, is a large handsome trce with strong spreading branches. Its trunk is thick and massive, and covered with a deeply furrowed bark; the branches arc of a gray colour, and smooth. The leaves, when bruised, give out a very peculisr aromatic odour, and in the heat of summer this scent is sometimes so powerful as to produce unpleasant effects on persons who approach thess trees. The foinge is graceful and light, and of a bright yellowish-green colour, which contrasts well with trees baving foliage of a darker shade. Its leaves are almost the latest to appear, and the first to fall. It grows very rapidly and vigoronsly in the climate of London, and trees will attain a height of 20 feet in ten years. It sends down into the earth a large tap-root, with numerous branches, and, on account of the size and streagth of the roots, there is no tree more able to resist the effects of wind, or batter adapted for exposed situations. It is said that plants will not grow under its shade; this probably arises from the bitter properties of its leaves: when they are not allowed to accumulate, the shade of the walnut does not appear more injurious than that of other trees.

The uses of the walnut are very various. Before the introduction of mahogany and other woods, the wood of the walnut was held in higher estimation than that of any other European tree. It is on this account that it was so extensively cultivated in this country and on the continent three or four centuries since. The timber of the walnut is light, a cubic foot weighing when green $58 \frac{1}{2} \mathrm{lbs} .$, and when dried scarcely 47 lbs . When the tree is goung, the wood is white, and in this state very much subject to be worm-caten; but as the tree grows older, the wood becomes more compact, and is of a brown colour, veined and shaded with brown snd black. In France and Germany it is still much used by turners, cabinet-makers, joiners, coachmakers, and musical-instrument makers, who prefer the wood which has grown on poor hilly soils. The wood of the roots is the most beautifully veined. One of the most important uses of walnuttimber is the making of gun-stocks. For this purpose it is well adapted on aecount of its strong lateral adhesion, its lightuess, and its not being liable to splitting or warping in the working. The demand for walnutwood for this purpose was immense during the last war on the continent, and it was stated iu 1806 that France required 12,000 trees amnually for the makiug of guns. The government of France still maintaius large plantations of waluut-trees for supplying her army with gun-stocks. In England the walnut has seldom been used except for the higher-priced fire-arns, but such was the demand for it for that purpose at the beginning of the present century, that single walnut-trees were sold for as much as $600 /$. This led to the importation of walnut-timber from the Black Sea, and also of the timber of the black walnut from Ameriea, so that the cultivation of the tree as timber is almost at an end in England.

The walnut is of more value at the present day on account of its fruit than of its timber. In almost every stage of its growth the fruit of the walnut is used for the table. When young, green, and tender, it is pickled and preserved with the husks on. About the end of June they may be preserved with or without their husks. "The green and tevder nuts," says Gerarde, "boyled in sugar and enten as suckade, are a most, "pleasant and delectablo meat, comfort the stomach, and expell poyson." When they are about half ripe, a liqueur is distilled from them, which is considered to possess medicinal properties. In August, before they are quite ripe, the French eat them in what they call 'cerneaux,' scooping out the kernel with a knife, and eating it with vinegar, salt, pepper, and shallots. When the nuts are fully ripe, which is generally at the end of September or the beginning of October, the kernel, deprived of its jnvestiug skin, is eaten in great quautities. As long as the skin can be easily removed they are a nutritious and healthy artiele of diet; but when they get dry, so that their skins stick to them, they become indigestible. In no part of England do they constitute au important articlo of diet, but in many parts of France, Spain, Germany, and Italy, people live during the seasen of their ripening almost eutire!y on walnuts. A great number of the walnuts eonsumed in Englaod are of foreign growth. In 1831 there were imported from France and Spsin 23,578 bushels, which then paid a duty of 2% per bushel. As they are now free of duty, the importation is not registered. On aeeount of the large consumption of the fruit, both as an artiele of diet at home and for exportation, the walnut-tree is still largely cultivated on many parts of tho continent. The district of the Bergstrasse on the Rhine, between Heidelberg ansl Darmstadt, ia alnost entirely plauted with walnut-trees. Livelyn atates that such is the importance attached to the growth of this tree, that "in several places between Hanau and Frankfort in Germany, no young farmer is permitted to marry a wife till he brings proof that he is a father of a stated number of walnuttrees; and the law is inviolalily observed to this day for the extraordimary benefit which this tree affords the inhalisitants." The fruit of the walnut is commonly gathered by thrashing the tree with a long pole. By many this process is thought to be benefieial to the tree, and barren walnut-trees are often thrashed to make them bear:
Nat, bist. Div. voLi, ill.

But although barren trees may be mads to bear by reducing the excessive growth of their shonts by breaking them off, it is no proof that the same process is good for healthy-bearing trees. The natural process of separating the froit from the tree is undoubtedly the best, and gently shaking the branches till the fruit falls bas betn recommended by many walnut-growers as much preferable to thrashing. The nuts should be gathered at the time they easily fall out from the husk, and then exposed to dry for a day or two in the sun. The best mode of keeping the nuts fresh for eating is to bury them in dry soil or sand, so deep as not to be reached by frost or the heat of the sun, or by rain: or they may be placed in dry cellars, and covered with straw. "When the nut is to bs preserved through the winter for the purpose of planting in the following spring, it should be laid in a rot-heap as soon as gathered, with the husk on; and the heap should be turned over frequently in the course of the winter." (Loudon.)

The albumen which constitutes the bulk of the seed of the walnut contains an oil, which is used in large quantities, especially on the Continent. It is obtained by reducing the seeds to a pulp by means of a stone wheel and basin, and then expressiug the oil, first without heat and then by the application of heat. The oil requires great care in keeping, as it becomes tainted by slight changes in the state of the atmosphere. That which is cold-drawn keeps best, and is alone used for the purposes of diet. It has however always the taste of the walnut, which is to some persons disagreeable. The oil obtained by heat is used by artists, and also for lamps. Artists use this oil in mixing white, or any delicate colour ; and they prefer it on account of the rapidity with which it dries. In copper-plate printing also, in Paris, walnut-oil is considered indispensably necessary in order to oltain a fine impression, whether in black or in colours. For this purpose the oil is prepared in various ways, according to the several eolours with which it is to be mixed. In all cases it is reduced in bulk by boiling or by setting fire to it, so as to reduce it to the required consistency. One bushel of nuts, it is said, will yield about 7 lbs of this oil. The mass which is left after the oil is expressed is mads into cakes, and used as food for swine, sheep, and poultry, and in some places it is made into candles, which give a tolerably good flane.
The husks and root of the walunt both yield a dye, which is much used by gipsies and theatrical performersfor staining the skin brown. It is also used by cabinct-makers and joiners to stain white and yellow woods of a dark-brown or black colour, like that of the walnut. In the preparation of the dye from the husks they should be allowed to rot, and then boiled in water, adding to the decoction fresh water, according to the celour required to be produced by the solution. The sap of the walnut-tree contains a large quantity of saccharive matter; aud in soms countries the trees are tapped for the purpose of obtaining the sap, which by evaporation is converted into sugar. It is also in many parts of Eurcpe and Asia fermented snd made into wine, and a spirit is also distilled from it. The leaves of the waluut, as well as other parts of the tree, contain a large proportion of alkali in them; and in some parts of France they are collected and burned for the sake of the potash contained in the ashes.
The bark of the leaves, the husks, and the oil of the walnut havo all been used in medicine, and had at one time a great reputation. All parts of the plant, excepting the albumen of the secd, possess a bitter principle, which acts as a tonic and an anthelmintic, and hay been its great recommendation as a medicins. Cowley, in his 'Plants,' sums up the virtues of the waluut in the following lines:-

On barren scalps she makes fresh honours grow.
 Her timber is for various uses good:

The carver she supplies with aseful wood.
She makes the painter's fading eoloars last.
A table she affords us, and repast.
E'en while we feast, her oil our lamp sopplies.
The rankest poison by her virtues dies;
The mad dog's foam and taint of raging skies.
The Pontic king, who lived where poisons grew,
Skilfal in antidotes, her virtges knew."
Anglers cmploy an infusion of the leaves or husks for pouring upon the earth, in order to procure worms, which it speedily brings to the surface.

There are several distinct varieties of the walnut cultivated. The J. maxima is known by the large size of its uuts, and is called tho Double Large French. The nuts are twice the size of any other ; but iu drying the kernels shrink to half their size, so that they ought to be eaten as soon as they are gathered. This is a fine hatsome tree with large leaves, but its timber is not so durable as that of the Common Walnut.
J. r. tenera, the Thin-Shelled or Titmouse Waluat, has very thin shells, so much so that birds of the titmouse family pierce them with their bills, and eat the kernel. The fruit of this variety is considered the best for eating, and it also yields the largest quantity of oil.
J. r scrotina, the Late-Leaved Walnut, is a very desirabla variety in distriets where the frosts are severe in spring. Its leaves do not appear before the end of Jume, and it ripens its fruit as carly as the other varicties. There is a variety known in Norfolk and Suffulk by the name of the llighflier, which is said to yield the best nuts of
oy of the kinglish rarietien soweral other varieticen are enomerated in coutinental lints: abd in the "Fruit Catalogue of the llorticulturna Society for 1532 " nine verieties were recorded as growing in the garden of the stociety.
J. migra, the Back Waluat.Tne, has leavea with from 13 to 17 lrafets, which aro unequal at the beke, nerrated, and somewhat downy. The fruit inglobose, roughish, with minute prominerat frints, situnted urou a mbort indexible perluncle. The nut is ghoboze, somewhat compnesed at the pider, ridged, and furrowed. Thin is a North American trea, and is furund in all parts of the I^{\prime} nited fitates, as far as $40^{\circ} 50^{\circ} \mathrm{N}$. Ist. It is abundant in the foresta about Dhiladelphis, and in uset with from Gualsen to the banks of the Mississippl, throughout an extent of 2000 milen. It is one of the first treea that was inthorluced fron America to linrope, having been lrought to Fingland by the younger Tralescant in 1056 . The Black Walnut is a rapid.growing ine, aud attains a height of 50 or 60 feet in ebout forty years It benna fruit in this country, but it is very much iuferior to that of the Eiuropenumalnut. The wood of this tree is ised almont for the mame purpones as that of the last. It ia heavier, atronger, sunceptible of a finer polinh than the Europeau dyecies, and is not eo liable to to attacked ly worms.
J. cineiva, the Gray Wralunt or Butternut-Tree, Jns 15 to 17 leaflete, rounded nt the banc, serment, and tomentoso bencath; the petiole villoun ; the fruit oblong-ovate with a taper tip, downy, and covered with mosll tranmarent vesiclea containing a viscid matter. The nut in oval with very prominent irregular ridges. This tree is from North America It in found in Lpper and Lower Canada, aud in the temperate region of the United States. This treo attains in its native regions a height of about 50 or tio feet. Although it was introduced iuto this country about the sane time as the last species, there sre rery few large alecimen at the present time. The kernel of the uuts In thick and vily, and moon becomes rancid, and hence probably the names of Butter-Nut mad Oil-Nut. The wool in used in the districts where it grow for the same purposes as the last Its bark possesses comiderable medicinal powers, and is used in the Cinited States as a purgative ad ne an application in toothache. Its leaves also are so acrid that they are employed, when powdered, as a substitute for cantharidea.

All the suecien of walnuta are best propagated by the nut, which, when the tree is intended for ornament or timber, ahould be sown in the place where it in winhed it should remain, as the large tap-root of thene trea is likely to be injured by removiug them, although with great care they may be succeasfully transplastech. When trees nre planted for the nake of their fruit they are mostly increased by budding, grafting, and moruetimes by layering. "The most approred and nuccerfal morle of budding, and which is the one chielly adopted on the continent, in that calleal' the 'tlute' me' wod; in performing which an entire ring of bark, coutaining one of more buds, ia exnctly fitted to the upper extremity of the stock, which is also clenuded of its bark; ahould the stock be larger than the ring coutaining the bods the ring requires to be slit up, but if thia axcerda the stock, then a amall portiou requiren to be cut out so ns to make it fit. Mr. Kinight also Invarimbly nucceded in budding the walnut hy using the minute huds tbat are found at the base of the annual shoots of this tree, which, as be agn, 'aro almunt concealed in the bark, and which rarely if ever vegrtate, but in the event of the deatruction of the large prominent budn which occupy the middle and opposite ends of the annual wood.'" (Selby.) Theme he inacted on yearly ntocks which grew in pots, the vegetation of which had been retanded by expoaing them during the apring and ear! laart of tho sumner in a northern aspect, until the arove-mentioned buin were formed on the curront year'm ahoots of the treen inturded to the propagatexl, when the pots containing the young flanta were brought into a forcing house, and there bidded. There in no tree that requirea lean pruning than the walnut, nnd where lango branclea am cut off it j a alinow invariably followed by a decay of the tre at the prot where nbscinsion wan performed. The best noil fur the walumt in a drep, ntifish, iry lantomed lonm. It will thrive howerer almot ang where, prowided tha moil in frce from maggnant movisure. The liest froit in ubtained from trees growing on calcurenum a oils.
I'revione ta the time of the pullication of Nuttall'a ' Genern of North Aurrican I'lante, the rarioun apocien of North American treen alled Hickury were raganled an precjea of the gentun Jugland. These Nutall referred to a new genus Carya. [ciallya.] Thise is another npecien, formerly refurred to Juglans, null called J. frowimifutia, that Kurith ham made inton a grath called l'teocaryo. It difern from Jugiam in its fruit having two winga, and in the embryo not twing moompanied hy alhumen. It in a mative of moint wordin at the foot of the Cincana, add hence called f. Conecasica. It in a amall tree with an ample buahy lical, athaining a bicight of 30 or 40 feet. Its leara are alternate, very large, commonly having 19 leafeta, which are oblong, ifnticulate, with blint tecth. liach of the lonflets has
 io ficeat liritam, biat in well whated for wamall garilene nud norboritumn an an examplo of the riatural oriler Jughandacerr.

JUGULAI: VFilNS, the large renous trinks by which the greater part of tho blood is returned to the heart after having circulated in the head, face, and neck. There are two on eneh side, an external or superficinl, aud an internal or deep. The external jugular lics on each mide just under the akin, and extends from near the angle of the jaw to the middle of the clavicle, behind which it opens into the subcinvian sein. It convegs the blood of the confluent atreams from the jaws, temples, and front aud sides of the neck, and of some of those from the face. The intemal jugular, which is far langer than the exterual, lies deep in the neck, by the side of the carotid artery. It receiven all the blood from the skull and the brain, from the eyes and ears, and from the scalp, face, tongue, palato, pharyux, \&c. The intemal jugular veins extend from the base of the skull just in front of the vertebral eolumn, down the neek, to some depth behind the clavicles, whera they unite with the subclavian reins, by which all the blood is brought from the nrmas and upper part of the cheat and neek to form the vene iunominate, which by their union form the vena cara anperior, whieh opens directly into the right auricle of the heart. [Ilfart.]

JULIS, a geuus of Fishes belonging to the family Labrida. The head is minooth; cheeks nnd gill-covers without scales, the lateral line bent suddenly downwards when opposite the end of the dorsal fins. In other respects this genus resembles Labrus. [Labridse] An example of a very beautiful species of this genus, known under tho name of the Rainbow- Wrasse, was described by Donovan ns taken otf the coast of Cornwall. It is the J. Meditervanca of Risso, the J. rulgaris of Fleming and Cuvier. This fish is most remarkable for its varied colours. Its baek is greenish-blue; the longitudinal band is orange; beveath that are lilse-coloured bands on a silvery ground; the head is varied with brown, yellow, blae, and silver; the dorsal fia orange, with a purple spot on the membrane connecting the three spinous mys. (Yarrell, British Fishes.)

JUNCA'CEAE, Rushcs, a small natural order of Endogenous Plants, so mamed from Juncus, the Rush, whiel, is considered its type. It is principally composed of obscure herbacoous plants, with brown or green glunaceons hexandrous flowers, nad would perhaps be with moro propriety considered a seetion of Liliacere than a separate order. It forms one of the transitions from complete Endogens to the imperfect glumaceous form of that class. The species are ehiefly found in the colder parts of the world, some even it the eoldest; two existing iu the ungenial elimate of Melville Island. Some however are known in the tropics. Eight are mentioned as inhabiting the tropical parts of Australia. They are only employed for mechanical purposes, as the rush and others. There are 13 genera and 200 speeies. [Rususs, in Aats and Sc. Div.]

1, a flower nyread open; 2, a capsute; 3, a aced out through its lenger axis, nhowling the cmbrya.
JUNCAGINA'CLiAs, Arrow-Grasses, a small and unimportant onler of limlogenous Planth, consiating of marab plants with thin minute acaly tlowers formed of 3 sepala, 3 petals, and as many ntamenn, which ere opposite then. Their ovaries are 3 or 6 in number, contain each one or two ascending ovulea, and when ripo form a dry truit. Tho ambryo lins a lateral slit for the emisaion of the plamule, on which nccount they are regarded as allied to Aracere. The kenns Schenchacria in a tranaition from Arrow-Granses to liushea. Triglochin is the commonent genus of the order, and inhabits the fresh or kalt mamher of most parts of Europe. Marshy places in most parta of tho world may be expected to indicate traees of this
order, which is found in Enrope, Asia, North America, the Cape of Good Hope, and equinoctial America.

1, Triglochin palustre; 2 , a flower magnified; 3, a spike of ripo fruit; 4 , a ripe capsulc; 5 , a section of ons of the cells of the capsule, with the seed inclosed in it.

Potamogeton occurs in ditches and awamps as far north as Iceland. The root of Potamogelon natans is said to be eaten in Siberia; the foliage of others is regarded as a styptic. There are 7 genera and 44 species.

JUNCALES. [Endogens.]
JUNCUS, a genua of Plants belonging to the natural order Juncaceer. Thia genus is distinguished by its inferior perisnth, composed of 6 glumaceous leavas; its 3 -celled 3 -valved capsules, the seed-bearing dissepiments of the valves being in their middle. The species are numerous, and are found mostly in moist boggy situations in the colder parts of the world : several are however inhabitants of tropical regions.
J. effusus, the Soft Rush, and J. conglomeratus, the Common Rush, are used in many parts of the country for plaiting into mata, chairbottoms, and for constructing smsll toy-baskets. The wicks also of the candlea known as rush-cadlea are made from the pith, or more properly speaking the soft inner portion of the atem of the sane species, which is chiely composed of cellular tissue. The species is cultivsted in Japsn like rice entirely for making floor-mats.
Rushes of various kinds form frequently very troublesome weeds in agriculture. They grow best on rich land that is wet and cold. They msy be destroyed by covering them ovcr with dry materials of various kinds, as ashes, lime, and drift from roada; but the best mode of getting rid of them is to fork them up by the roots in the summer, and after letting them lis for a fortnight or three weeks to dry to burn them. This however will be found only a temporary mode of getting rid of them unless the ground on which they grow is well draioed.
JUNGERMANNIA'CEA, Scale Mosces, a rather exteasive natural order of Cryptogamic Plants, or Acrogens, reaembling mosses iu appearance, but very distinct from them in many points of structure. Their foliage is much more cellular ; their sced-vessel, or theca, splits into four valves, has no operculnm, nnd instead of a central column has a number of tubes, each furnished interuslly with a double elastic apiral thread, and called sn elater, to which the spores stick, and by the aid of which they are supposed to be dispersed. The species inhabit the trunks of treea, damp earth, or even the young shoots and leavea of other plants in hot moist climates. Some have the atem and leaf formed into a frond, or thallus, resembling that of a lichen, but more commonly the specics have leaves with stipulea at their base. A large number of genera has of late been formed ont of the uld genus Jungermannia, but the opinions of botnuists are much divided as to the value of these new divisions; and they have not been generally adopted. Hookcr's 'Monograph of the British Jungermannixe' givea a valuable account of the apecies inhabiting these ialands. A mere recent account of the whole European genis is to be found in Nces von Lisenbeck's 'Naturgeschichte der Europäischen Lebertnoose,' 2 vols., 8 vo., with plates.

The following is a synopsis of the genera :-
Sub-order Jungermannex.

Metzyeride.
Metzyeria.
A neuride. Trichostylium.
Aneura.

Haplolacnides.
Blasia.
Symphyogyna.
reellia.
Diplomitridu.

Hollia.
Codonide.
Fossombronia.
Jubulide.
Lejeunia.
Phragmicoma,
Frullania.
Physananthus.
Ptychanthus.
Madotheca.
Radula.
Ptilida.
Ptilidium.
Trichocolla.
Mastigophorida. Sendinera.
Schisma.
Trichomanidle.
Physiotium.
Herpetium.
Lepidozia.
Mastigobryum.
Calypageia.
Geocalycida.
Gongylanthus.
Geocalyx.
Saccoypna.
Jungcrmannide.
Gymnoscyphus.
Cheiloscyphus.
Harpanthus.
Gymnanthe.
Lophocolea.
Jungermannia.
Plagiochila.
Gymnomitride.
Alicularia.
Acrobollos.
Sarcoscyphus.
Gymnonitrium.
Haplomitriun.

Anthoceros.
Cladobryum.
Sub-order Anthocerotece.

Jungermannia nemorosn, highly magniffed.
1, a branch in fruit; 2, a leaf, with sori upon it; 3, the contents of those sori ; 4, the calyptra, before it is burst by the theca; 5, abortire thece, in a very young state; 6 , claters.

JUNIPER. [JUNIPERCS.]

JUNI'PERUS, a genus of hardy evergreen woody Plants, beloug. ing to the natural order Coniferce. Its distinctive character cousists in ita femals fructification being succulent, consolidated, and reduced in the number of its parts below what is usual in the order to which ths genus belongs. Like other Coniferce, its fruit is composed of scales representing carpels spread open, and collected in a spiral mamer round a common axis, But they are not more than six ia number, generally three, and when ripe are fisshy, and consolidsted into a body resembling a drupe. In the language of the Pharmacopeia they are berries, in that of botanists thsy are termed Galbuli.
About 20 species are known, the most impertant of which are the following :-
J. communis, the Common Juniper. This is a common bush, with long narrow sharp-pointed leaves, which are coucave and glaucous on the upper side, but convex and green on their under, and with blackish fruit. It grows wild in all the northern parts of Europe, and, as is said, in North America also and the north of India, but it is doubtful whether the plants called Juniper by travellers in
the Himalara Nounhains are not eome other apecies Occasiomally the Juuper lecomes a small tree．The fruit is used in comsiderable quantime in the preparation of giv，and in medicine as a powerful diunctic；a kind of beer called geoerrette is also wbained in some porte of France by fermentins it with barley．Thle wonly＇gin＇and
 of Juoiper，oblained from the tialluli，is naid to be a ureful diuretic．

J．©bian，the Savin．This species in readily kuown from the last by its leaves being anall，scale－like，an！pressed close to the menm，besides which，ita fruit is a light hluish－green．1：furms a compact gloony－looking bush，in some cases spreading near the ground，iu utbers ae，juiring the atature of a low tree．It is found widd io the niddle of Fiurupe and the west of Asia，inhabitiag the thont sterile soil，and is frequently met with in this country iu slirub－ beries Like the common Juniper，it is a diuretic and uterine atimulant．For thin purpose it is often used criminally，but whilst it ofen lestroys life it selflom accumplishes the oljest for which it is takeu．Oil of Savin is n local irritant，producing blisters when applied to the akin：wken interanlly it is Irastic and eroetic．
J．Fimpiniona，the Red Cedar：Jutwithstandiug its popular name this in not generally the plaut that gields the cedar wood used by cabinetmakers and pencil manufacturern，the bermuda cedar being principally so cupluged；its timber however is of great excel． lence and darability．It is a uative of North America，from Cedar Ialand in Lake Champlin as far as the southern sitle of the Gulf of Mexico，chiefly preferring the vicinity of the ren．In general it is a large lumh；but in favourable situations，sud in such a climate as that of Virgiuia and Carolina，it becomes n tree 40 feet ligh．The branches of this species are erect，the lesves arranged in threes， small，acalelike，and but little spreading；the fruit is deep blue， coverel with n mealy reainous powder．A great many fine planta oecur in this country；it is not however with us an object of aoy importance to the forester，except for the aake of variety．

J．Bermmliana，the Bermuda Red Cedar．Very little known in Great lleitain，iu consequence of its not bearing the climate without protection．It is a mative of the Bermudas，where it becomes a large iree，with a soft fragrant wood，the value of which is well known frous its tse iu cabinet－work and the manufacture of pencils．It has， when foung，loag narrow spreading leaves growing in threes，but so the branchea of old trees they become shorter，are placed in fours， and thus give the ehoots a fourcornered appearance．

Of the other Juniper，J．excelsa and J．Chinensis are handsome hanly trees；J．Lusidaniza，the Gos Cedar，is also of great beauty， because of its drooping habit and light gray branches，but it will not live long in England except in the warmest of the southeru counties； nad J．Phanicea is a handsome bush：the others are of little momeut．

JUSKERITE．［1ヶоェ．］
JURA KALK，the German equivalent of the Oolitic system of England．

JURGON．［Zarmonia．］
JUSTI＇Cl A ，a geuus of Fxogenous Plants beloaging to the natural order Acanthacer．The species of this genus iuhabit all the tropical parts of the world，preferring however damp woods to dry and opeu plains．It is especially in the forests of Brazil and India that they occur．Many of them are never woody，some are bushes or small trees，and a small number are valued by gardeners as objects of orm－ ment．As limited by Linneus，the geuus comprehended a very discordant collection of species；modern writera have accordingly broken it up into many new gencra．As now limited，Justicia itself scarcely contains a plant of any importance．

As among the species now removed from Justicia to other genera there are some which are useful as medicinal agents，especially in ludia，it may be as well to mention them here，instead of referring to genern which are not get generally known．Thus J．Adhatoda，cele－ brated in Sanscrit works by various names，as Vidiumatri，Vasika， \＆c．，has been called Adhatoda Jasika，and is chiefly estecmed as a demulcent in coughs．J．nasuta is now Phinacanthrs commumis，and is much employed in Indian medicine，especislly for the cure of ring－ worm and other cutaneous affections，mixed，according to Dr．Rox－ burgh，with lime－juice and pepper．It is also one of their remedies for snake－bites，but is no doubt inefficacious for such purposes． Andrographis（formerly Justicia）paniculata is the best known and probably tho most valuable of all，as one of its nances，Muha－tita． implies Chief，or King of Bitters；it is also very commonly called Kalup－nath，and well known to Europeans in the peninsula of India hy the name of Creyat，or lireat，and has been prescribed with benefit as a bitter in this country．It forms one of the ingredients of the Drogue Amerc，which is well known in India，and at one time ohtained considerable repute as a curo for cholera；but it can be useful ouly as a stimulant and tonic．

K
 of mome authorm，of which tho apecies are indigenous to the iAlants of the Archipelago aud tho southern parts of the continent of India，an Besgal and the dintriets on its castern frontier．All aro furninhed with tuberoun roots like the turmeric and ginger plants． The spikeng of the flowers are sloort aud rising from the root，in mone slocies befure，in others with，and nestled among the leaves；all are lighly ornamotal，and K° ．rofunda，called by the matives Bhooi －＂hanam，or Ground Clampn，is much cultivated in garlens on account of the beauty nal fragrace of itn tlowers．It was supposed to yield the round Velloary of the shope，but incorrectly，na Dr．Iooxburgh thiske，ninee le considers hiv C＇urcuma Kedoaria to be the plant．So \AA ．Galuny，was，equally incorrectly，long supposed to yield tho Gimangen of the mope［inalasoas］It is a native of the mountain－ oun dintrict beyond＇hittagong，nul thero called Kunuth，and is coltivated by the Mugn：ly them it is molld to tho people of hengal， Who use it an an ingrealient in their betel．The toota pooseek na agreabli fragrant maell，and a komewhat warn，bitterinh，aromatic tante．The linilloon use them，areorlin；to Dr．Bexburgh，not only
 ancording to the enme antharity，uned as a medicine for cattle by the parple of limagal．

KAllALO．［SAmsbers］

KAKOXESE：a Miseral scourring in manall cryatale，which appear In be enicled prisun tornitmatel by pyramide，dipposed in radiating
 mel．The luntre alliy，nometimenadnuantin：Adberen to the tongu＂， ant han an eartly ameth．
It incurs in elayey brown iron－atone at Zhirow，in Duhemia，Atalyais by Nifeintnan：

When placed on a hot coal it cmits a green phosphoric light，and before the blow－pipe on charcoal decrepitates：with borax forms a deep green－coloured glass，and with soda a blackish mass．

KALLE，SEA．［C＇masbe．］
KALI，the name of the Maritime Plant from the ashes of which soda is obtained by lixiviation；and from the name of this plant， with the Arabic article al，is derived that of a class of substances possessing peculiar properties，which are called alkalies．Kali was also formerly etaployed to desiguate the alkali Potash．
KALIPTRITE，a Mineral consisting of the axide of iron，manganese， and zine，with wester nud silica．
KALMIA，as genus of Plauts named by Linneus in honour of Peter Kalm，professor at Abo in Finland，belouging to tho natural order Ericacec．It has a small 5．leaved calyx，a cyathiform corolla， with an angular very open limb，having 10 niches it its sides．The capsules 5 －celled and may－seeded．The species are evergreen shrubs， with alteruate or verticillato lenter．
K^{\prime} ．latifolia has its leares on long petioles，scattered or threo in a whorl，smooth and green on each side．It is a nativa of North America from Canada to North Carolina，on the sides of stony hills．It has various names in the United States，Laurel Ivy，Spoon－ Wood，Culico－Jush，\＆e．The flowers nee rell，and when in blossom have a rary clegant appearamce．The leaves of this species are said by larton to be poisonons to man aud beast，but their action can be but feeble and unimportant，for animals are known to feed on the phant without any evident cffect．Bigolow howover states that the fleah of pheamats baving eaten this plant has produced some chser of severe disease attributablo to this canse alone．Tho flowers of the K ．latifolia exude a large quantity of sweet nectarous juice， which is greedily collected by bees and wasps，but the honey firmod from it is imjurious to man，and the juice，if arallowed by itself，will produce an intoxieation of an alarming kind．Λ brown powiler which adheres to the shoots and branches is used as a sternutatory liy the Americans．
κ^{*} ．anguatifolia，llaulm－leaved Kulmia，has petiolate leaves，acat－ tered or three in a whorl，oblong，obtuse，rather rusty beneath； corymis lateral，bracts linear；peduncles and calyxes clothed with glanidular pubescence．It is a nativo of North America from Canada to the Carolinas，in hogs and swamps，and sometimes in dry monn－ tain lands．It is a shrub 7 or 8 fect iv height，with dark red flowers，

It is called Sheep-Laurel in North Americs, as it is aupposed to be very injurious to aheep. Several varieties of this plant with lighter and darker flowers have been described. There are several other species, all of them natives of North America. They are all remarkable for the irritability of their stamens, and esch of the stameos has a little cavity formed for it in the corolla, to serve as a protection to the anthers.
They are handsome shrubs when in blossom, and are great farourites in gardens and ahrubbcries. They grow best in a peat aoil, or they may be planted in a very aandy loam or vegetable mould. They may be propagated by layers or aeeds. When the seeds are used they ahould be sown early in the spring in flat pans or pots filled with peat-earth, and very slightly covered over; the pots may be then set in a close frame, or in the front of a hotbouse, till the plants come up, when they may be tramsplanted to other pots, which ehould atand in a close frame till they have struck root; they should then be hardened to the air by degrees.
(Don, Dichlamydeous Plates; Buructt, Outlines of Botany.)
KAMMERERITE; a Mineral, coasisting of a hydrous silicate of slumins snd maguesia which occurs crystallised and massive. The common form of the crystal is a 6 -aided prism. The cleavage is perpendicular to the axis only. Cleavage plancs have a pearly lustre. Colour, that of eome cryatals, which, by daylight is 80 dark that their red colour is acarcely perceptible, appcar's by candlelight quite red. Massive variety, usually composed of fine lamine. The colours are sometimes dark violet-blue, sometimes jellowish or grcenish, or greeaiah-white. Tranalucent ou the edges, particularly after immeraion in water. Fracture compact, fine-grained, becoming splintery or leafy on the less compset rarieties; flexible. Dull, or of a greasy lustre, often glistening. When scratched it gives a light peach-blossom red or almost white streak. Harduess 2.0 to $2 \cdot 5$. Specific gravity 2.64. Found in the Ural Mountains. Analysia, by Hartivell :-

KANGARO0; the common nsme of the animals belonging to the genus Macropus, and the family Marsupiata. [Mansurista.]

KANGAROO APPLE. [SOLANUM]
Kaolin. [Clay; Felspar.]
KARPHOLITle, a Mineral which occurs in minute crystals and in stellated silky fibres, It scratches fluor-spar, and is scratched by felspar. Colour wax or atraw-yellow. Lustre of the crystala vitreous; of the fibres silky. Specific gravity $2 \cdot 93$.

Before the blow-pipe on charcoal it fusea into a dark glass, which becomea darker in the interior flame. With borax it melts into a transparent glass, which in the exterior flame has a manganese colour, and in the interior becomes greenish. The following are analyses by Stromeyer and Steinman:-

Silica	Stromeyer. $36 \cdot 154$	Steinman. 37.53
Alumina	$28 \cdot 669$	26.48
Oxide of Mangancse	$19 \cdot 160$	17.09
Oxide of Irou	$2 \cdot 290$	$5 \cdot 64$
Lime	0.271	
Fluoric Acid	$1 \cdot 470$	
Water .	10.780	11:36
	98.691	$95 \cdot 10$

KARPHOSIDERITE, a Mineral consisting of a hydrous phosphate of iron, which occurs in reniform masaea. Its atructure is granular, compact. Fracture unevea. Hardness $4 \cdot 0$ to 4.5 . Specific gravity 25. Colour pale and bright straw-yellow, and streak the same. Lustre resinous. Feels greasy. Opaque. When heated in a tube gives off water, and a rapour which reddeas litmos paper.

Lefore the blow-pipe, per se, it becomes black, and melta into a globule which obeys the magnet; with salt of phosphorua, it forms a black reoria. It is found at Labrador.

KAWRIL. PINE. [AgATHL.]
KEELISG, a Fish. [Moribud.]
KELLIADA, a family of minute Mollusca belonging to the Lamellibranchiate Acephala. Forbes nad Hanley place this family between Lucinide and C'ycladide. The British Kelliader embrace the gencra Montacuta, Turtowia, hellia, Lepton, and Galeonura. [Montacuta; Turtonis; Lefpton.] The genme Kellia las two Eritisb representativea, K^{\prime}. auborbicularis and K. nitidu. They are ambll but clegant bivalvas, living in the crevices of rocks, or on shells or nea-weeds, epinaing a byssus, or lying free. There are about a dozen species knowu in different parts of the world. This genus, from which the family takes its name, was named after Mr, O'Kelly of Dublin.

KEMAS. [CAPMEA,
KEMMESMENERAL. [ANTIMONT.]
KE:'RODON (F , Cuvier), a genus of Rodentia, bcaring in some
respects resemblance to that of Cavia, but differing both in the locomotive and masticatory organs.

$$
\text { Deutal Formuln :-Incisors, } \frac{2}{2} ; \text { molars, } \frac{4-4}{4-4}=20 .
$$

Tecth of Rerordon. F. Cuvicr.
The molars all resemble each other, and are composed of two equal parta, each of a triangular or rather cordiform abape, united on the external aide of the tooth, sud aeparated on its internal side. These triangles, or 'hearts,' are each surrounded by their enamel and filled with bony matter, and their separation produces an angular notch partly filled with cortical substance.
When F. Cuvier wrote but one apecies, $K_{\text {. }}$ Moco, was known, and this was discovercd by Prince Maximilian of Neuwied, and noticed by him under the name of Curia rupestris. The fur is ash-gray mixed with reddiah-yellow, blackish above and whitish below. Size, smaller than that of the Guinea-Pig.
This speciea was found in the rocky places of the interior of Brazi., near Rio San Francisco.
In 1836 Mr. Pennett exhibited to a meeting of the Zoological Sacicty of London a Rodent scnt boan among the animals collected by Captain Phillip Parker Kiog, R.N., during bis survey of the Strait of Magalhaens, and preaeated by him to the Society, which Mr. Bennett regarded as a second species of Kerodon, and for which he proposed the name of K. Kingii. It was chiefly distinguishable from that discovered by Prince Maximilian by its more uniform colour. Excepting a alight dash of white behind the ear, and a longer line of the same colour marking the edge of each branch of the lower. jaw, the animal is cutirely gray; the upper surface being distinguisled from the under by a greater depth of tint, and by the intermixture of a free grizzling of yellow and black. The crowns of the molar teeth, as in the typical specics, consist of bone surrounded by two triaggles of cnamel, the bases of which are connected by a shortt line of enamel passing from one to the other, all the lines bcing slender and shapply defined.
This apecies was found at Port Desire, on the eastern coast of Patagonia, ('Zool. Proc.,' 1835.)
Mr. Waterhouse refers the genus Ferodon to Cavia. [Hystmeides.]
KEROLI'TE, a Mineral, consisting of a hydrous silicate of alumina and maguesia, which oceors massive and reniform. Structure lamellar or compact. Colour white, yellow, or grean ; atreak white. Fracture conchoidal. Hardoess 2.0 to $2 \cdot 25$. Lustre vitreous or resinous. Tranaparent, translucent. Specific gravity $2 \cdot 0$ to $2 \cdot 2$. Feels greasy, but doea not alhere to the tougue. It is found at Frankenstein in Silesia, and at Zöblitz in Sixony, and also in New York and New Jersey, United States. The following is an analysis by Pfaff:-

Magnesia $16^{\circ} 0 \mathrm{e}$
Water
31.00

KESTRFL [FaLConine]
KEVPI:I, in GrelogT, the German term for the upper portion of the New Rel-Sandtone furmation. It is supprosed by some geologists that certain sandstones in Warwickshire, Woreostershire, and other jacts of Eoghand, correspond to this group of strath. Rewains of reptilen are cail to have been found in it near Warwick.

KHAYA, a genue of Plante of the natural fannily of Cedrelacer, which is often made a tribe of the Meliacee. Khaya contains only a ainglo apmeies, K. Sonegalensis, which has been well figured in tho - Flore le Soneganlie,' i. t. 32 . It forms oue of the largest and handromest of the treen which are found along the banks of the Gambia aud in the valleys nenr Cape Verid. It attains a height of from $\$ 0$ to 100 feet, and is alto one of the most common of the trees of the format, being calleal Cail ly the negroes, and Cail-Cedra by Furopenas The wood is of fine quality, reddish-coloured like that of manogany, which belongs to the same natural family. The bark is remarksble for its bitterness and felrifuge properties, and is taken by the negrocs in the form of infurion and decoction, as a cure for the feren wo prevalent in their country.

KIANG. [EquD.e.]
KIDNEYS are two ghands lying in the lumbar region, on each side of the pinal columa. They are composed of umberless and delicate tubular ranifications, on whose walls there is a fine network of capilJary arteries and veins, and which are all collected into ono mass of a firm fleshy consintence, inclosed in a fibrous capsule.

The ureter, through which the urine secreted by the Lidney is conveyed to the bladder, dilates at its extremity into a wide pouch, the pelvin of the kiduey, which is divided into several portions called calyces. Into each calyx a nipple-like process, or papilla, projects, at whose extremity there are several minute orifices, each opening into a very five canal, which, as it is continued ioto the substance of the kidney, ranifies and becomes tortuous. On all these canals, or tubuli uriniferi, minute bloorvessels ranify, and secrete the urine, which is conveged from the tubuli into the calyces, and from them through the jwivis and the ureter ioto the bladder.

The papille, and the conical bodies called pyramids, of which they are the extrenaities, being chiefly composed of the cxcretory canals, are nearly white, and of a firm dense structure; but as the tubuli ramify, their branches separato in a somawhat radiating mannor, and the bloorlvessels filling the intermediato spaces between them give to all the exterior part of the kidneys a deep red-colour, and a softer and more fleahy consistence. Henco the kidney in generally described as divided into a cortical, or vascular, and a medullary or tubular portion.

The general etructure of the kidney toay lee best shown by making a mection from its couvex border into the pelvir. The surface of each part then prementa neveral whitish conical bodies, the pyramids, whone rounted apices, the papille, project into correaponding tubular calycea, nod whose basen are surrounded by the vascular cortical substance. In the latter uo dintinct arrangement of vessels can be seen, but there are mattered irregularly through it minute granular bodies called the acini, or corpuscles of Malpighi, which are composed of delicate tortuous arterien

In the carly embryo of Manmalia cach papilla, with the tubules opening on it and ita bloolveasele, forms a separate body; but during growth the neveral renculi are united into one mass, their original mparation leing however indicated by the moru or less deeply lobulated form of the urgan in various animala, and occasionally in man. [Unisahy Ststex; Ubine]
kHLLAS, the local mame of a group of rocka in Cornwall, ronked by geologints with the Clay-slate, or Grauwacke slate of other countrick The toru in perhapm most properly applied to denote fiaile argillaceonn rockn, such as aro unually callod clay-slato; but it is often "xtembed to stier earthy componuld allied to these by geologiral I" wition. (Congbeare, Aun. Ilhil.; vew neries, vel. vi.) Near granite the killna is nupposed by many goologinta to undergo great alterntionn of clarmacter, to become 'metanorphic,' кo na to assume more or lean of the chanctern of pyrogenous rocka. Ju theace 'altered' rocknlien a grat part of tho mineral wenth of Cornwall ; tin and copper reios almond in them, as w.ll as in the contiguons gravite, to whye influence their mineral chametersare akeribed. Dr. Borlase, in bla work 'On the (;eslogy of Conuwall,' anigus to these rocks the tetle of Cirmutianise.

KldifsNitE, a Mineral wheh occura hoth crystallisel and masive. The erynala are imperfect : the primary ferma njeara to he a rhombie primo. The elenvage in pmallil the the lateral facen sul short diagonal. Fracture uneven. Structure lamellar. Colour greenimisad brownish. gellowe. Strakk yellowih white. Lantre glimmering, dull, vitreous. Tranalucent 9 pinue. specifie gravity 2.699. Harduen 4.0 ; acratched ly the knife. Frangible.
It recura in granite veina at Killeny near Dublin, nad in atated by Dr. Thomans tes conquint of -

Potanh $30 \cdot 60$
6.72

Oxine of Iron
Water .
1027
$-95 \cdot 6$

By the blow-pipe it beoomes white, wwells up, and fuses into a oolourless enamel.

KING-CRAB. [LIMULUS]
KING-FISH. [LAmiRIs.]
KINGFISIIERS. [HALCYONID.E.]
KINGLET. [Regules.]
KiNGSCLERE, a village in Mampshire, remarkable for the exhibition of the Greenssad Formation in the midst of the elevated chalk downs, on the line of an anticlinal axis passing east and west. The anticlinal axis passes through the middle of a valley (hence called a 'valley of elevation') in which the greensand appeara; and it might seem on a first view that the discontinuity of the chalk was aimply owing to elevation and fracture, but by considering the areas and slopes of the strata, io plans and sections on a true scale, it will immediately appear that a considerable mass of chalk must have been removed by denudation. For the knowledge of this intereating 'valley of clevation' wa are indebted to Dr. Buckland. ('Gleol. Trans,' 2ad neries, vol. ii.) Sir Charles Lyell has contemplated it in connection with the more extensive denudation of the Weald of Kent ahd Sussex. (Principtes of Geology.)

KINGSTON, n Fish. [SQUalid.f..]
KINIXYS. [CIELONLA.]
KINKAJOU. [Viverrid.s.]
KINO. [Pterocarpes.]
KiNOSTERNON. [CuElonia.]
KIRWANITE, a Mineral consisting of silicate of iron, \&c. It occurs filling cavities in a kind of basaltic rock. The torture is fibrous, fibres diverging from a centre and forming brushes. The colour is dark olive-green. Opaque. Hardness 20 . Specific gravity 2.941. It is found on the north-east coast of Ireland. The following analysis is by R. D. Thoorson :-

KITE. [Falconidas.]
KITE. [Ruosmus.]
KITTA. [Corvider]
KITTIWAKE. [LaRIDe.]
KLEY, a Fish. [Morriou.]
KLIPPSPRINGER. [ANTILOPEE.]
KNAPPIA, a genus of Plants belongiog to the natural order Graminacece. It has an inflorescence, with a somewhat one-sided raceme. The flowers solitary; glumes not keeled, and blunt. It has 2 palex, which are acarious, very hairy, obtuse, unequal, and without awns. There is lut une species of Knappia-
K. agrostidea, an elegant but very amall grass, with a small fibrous root, having numerons stems and short rough leaves. The epikea are slender, consisting of from 5 to 10 mostly sessile alternste spikelets. It is found in sandy maritime pastures, but is a rare grass.
(Babington, Manual of British Botany.)
KNAP-WEED. [Centatrea.]
K NAUTLA (named after Cliristopher Knaut, a German botanist), a genus of Plants belonging to the natural order Dipsacere. The inner calyx is cup-shaped, with radiant teeth, the outer one forming a thickened wargin to the germen. It has a 4 -fd corolla, a fruit with 4 sides and 8 little depressions, the receptaclo with spinous acales shorter than the involucre.
K. arcensit, the Field Scabious, has its lower leaves simple, the stem-leaves pinnatifid, tho inner calyx with 8 or 16 somewhat-awned tecth. The stem rises from 2 to 3 feet in height, is slightly branched, and with but fow learea. The flowera are purple, in large convex long-stalked heads. This is the only British species of this genus, There are a few species of K"nautia natives of Europe.
(Babington, Manual of British Botany; Don, Dichlamydeous Plante.)
KNIBHH:LITH. [Manganese.]
KNOT. [SCOLOPACID.E.]
KNOT-GRASS. [PoIYGonum.]
KNOTWORTS. [Inmeebmacex.]
KNOWLTO'NIA, a genus of Plants belonging to the patural order Remenculacer. It has 5 sepals, from 5 to 15 petals, with the margiue naked. The stamens and ovarica numerous; many 1-seeded aucculent fruits, not pointed by the style, which is deciduous. The species are 1 -seded percunial herbs, with greenish-yellow flowers.
K. vesicatoria is a plant which has the nppearance of an umbelliferous perennial. It has biternate leaves, the segments somewhat cordate, rigid, and smooth, the lateral obliquely truncato at the base. The umbela are nearly simple, and few-flowered. The leaves are uncd ns vesicants in the Cape of Good Hope. There are four other speciea, natives of the Cape of Good llope, where these plants grow in abundance. They will thrive well in a misturs of losm and jeat, aud may be increared either by dividing the root or by seed.
(1)on, Lhichlamydcous Plants; Lindley, Flora Medica.)

KOALA. [Marsciplata.]
KUBELLITE, a Mineral resembling sulphuret of antimony, but is taore brilliaut. The atructure is radiated, crystalline. Strenk and
powder black. Specific gravity 6.29 to 6.32 . It is found in the cobalt-mine at Huena in Sweden. Analysis by Setterberg :-

Sulphuret of Lead
Sulphuret of Bismuth
$46 \cdot 36$
Sulphuret of Antimeny
Sulphuret of Iron
Sulpharet of Copper
Gangue
33•18
$12 \cdot 70$
4.72
1.08
$1 \cdot 45$
$-99 \cdot 49$
KOBRE'SIA, a genus of Planta belonging to the natural order Cyperacea. It has the spikea aggregate; the lower flower pistiliferous. the perigone of one acale inclosing the germen and covered by the glume. The upper flewer staminiferous without any perianth. There is but one species of this genus, K^{\prime}. caricina, which has an erect atem from 6 to 12 inchea in height, alender leaves shorter than the stem, from 4 to 5 apikes aggregated at the summit of the atem, and from 6 to 8 flowers. There is often an abortive stamen at the base of the nut. This plant is found throughout Europe and in Great Britain, oD moors in Yorkahire, Durbam, and Perthshire. (Babington, Manual of British Botany.)

KOBUS. [Antilopee.]
KOELE'RIA, a genua of Planta belonging to the natural order Graminacece. It has unequal glumes, the upper one with 2 or 3 ribs, shorter than the spikelet, which is compressed. The outer palea is nerved, keeled, and acuminate; the seed loose, and the atyles terminal. There is but one British species of this genus:-
K. cristata has a cempact panicle, apiked, oval, and isterrupted below, the outer palea 3 ribbed and acute; the leavea narrow, rough at the edges, and ciliated. In dry places the leavea are much shorter than the stem; in damper places elongated, and often nearly as loug as the stem.
(Babington, Manual of British Botany.)
Kogia. [Cetacea.]
KOLLYRl'TE, a Mineral consisting of a hydrous silicate of alumina, which occurs massive. Colour white. Fracture earthy. Nearly opaque. Lustre somewhat vitreous. Hardness 325 . Specific gravity 2.06 to 2.11. It is found at Schemnitz in Huagary, and in a leadmine on the bank of the river O_{o}, in the Pyrences. The following analysia is by Berthier :-

KONIGA, a genus of Planta belonging to the natural order Cruciferce. It has an oval compressed pouch, from 1 to 2 seeds in each cell, simple filaments, and 8 hypogynous glands. But one British species of this genus has been discevered, K. maritima, which is a procumbent plant, with bipartite hairs, linear-lanceolate acute leaves, oval peinted glabrous pods. It is the Lolularia of Kech, and the Glyce of Lindley: The flowers are white and aweet-scented. (Babington, Manual of British Botany.)

KONIGITE, a Mineral consisting of sulphate of copper which is insoluble. Arisurigite is one of the same apecies.

KOODO. [ANTILOPEN.]
KRAMERIA, a genus of Planta belonging to the natural order Polygalacere. It has 4 or 5 sepals, irregular, coloured, spreading, deciduous; petals 5 or 4, irregular, smaller than the calyx, the three inner uoguiculate; stamens 1, 3, or 4, hypogynous, usequal; ovary 1-celled, or incompletely 2-celled; atyle terminal ; stigma simple; ovulea in pairs, suspended. Fruit between hairy and leathery, globere, covered with hooked prickles by abortion, 1-seeded, iudehiacent. The speciea are spreading many-stemmed underahrubs. The leaves alternate, simple, entire, or 3 -foliate, 8preading; racemes simple, spiked.
K. triandra ia found on dry gravelly and sandy hilla in Peru, flowering all the ycar round. It is known by the name of Ratanhy Root. It is a suffruticose plant, with a horizontal very long and branched root, with a thick bark, reddish-brown outside, red inside. It has a nocumbent atem, much branched and taper; the branches are from 2 to 3 feet long, when young, silky; leaves alternate, ressile, oblong and obovate, acumicate, entire, hoary on each aide; flowers solitary, axillary, and stalked; calyx silky externally, amooth and shining inside, of the colour of lac. The two upper petals are scparate, spathulate, the
two lateral roundish and concave ; the drupe is dry and hairy, barred, with dull red hooks. The extract of the plant is atyptic and tonic, and operates pewerfully upon tumours, resolving and restoring tone to those parts. When administered internally the extract of Ratanhy is apt to be rejected by the stomach till three or four doses have been taken. It is best to take it in the form of pills. It is commonly used in Peru as tooth-powder.
(Lindley, Flora Medica.)
KRAMERIACEE. [Polygalace.e.]
KlRAURITE. [Iron.]
KRISUVIGITE. [Konigite.]
KROKYDOLITE, a MiDeral containing ailica and iron. It occura asbestiform, fibrous, and compact. Colour lavender or indigo blue. Streak lavender blue or leek green. Lustre ailky. Opaque. The fibrous variety is flexible and elastic. It is found on the Orange River in Southern Africa. The following is an analyais of the fibrous variety by Stromeyer --

KUPFERINDIG (Indigo Copper, Blue Copper), a Mineral which occurs in apheroidal masses, presenting superficial indications of crystallisation. Colour dark blue. Fracture uneven. Hardness about 2.0. Lustre faintly resineus, Opaque. Specific gravity 3.8. It is found at Sangerhausen in Thuringia, and also in the volcanic rocks of Veauvius, in black or greenigh blue incrustations. Its analyais by Walchner afforda-

KUPFERSCHAUM, a Mineral containing arsenate of copper, which occurs crystallised. Primary form a right rhombic prism. Occurs in rhomboidal plates, which present perfect cleavage parallel to the faces of the rhomb; generally in amall aggregated and diverging fibrous groups of a pale apple-green or verdigria-green colour. Streak paler. Hardoess 1.0 to 1%. Lustre pearly on the faces of the rhomb. Translucent. Flexible in thin laminac. Specific gravity 3.0 to 3.2 . It is found at Matlock in Derbyghire, in the Bannat, at Lebether in Hungary, in Siberia, the Tyrol, and at Saalfeld in Thuringia. Its analysia by Von Kobell affords-

KYANITE (Cyanite, Disthene, Sappare). This Mineral occurs crystallised and massive. Its primary form is a doubly oblique prism. The cleavage ia parallel to the facea of the primary furm. Fracture uneven. Hardness of the aharp portions sufficient to scratch glass. Colour white, yellow, and various shades of blue and green. Streak white. Lustre vitreous, pearly. Transparent; trauslucent. Specific gravity $3 \cdot 6$.

By the blow-pipe it is infusible, and merely becomes white even in a very srong fire; with borax it readily diasolves into a colourless transparent glasa. The following are analyses by Laugier and Arfwedson:-

It is found in Switzerland, in Scotland, and many other parts of Europe, and also in North and South America.

LABEC (Cuvier), a gonus of Fiahes belouging to the family Cyprinide. The speciea of thia genus resemble the true Carpa in having the dorsal fin long, but they do not possess the strong epine of the anal aod dorsal fins. The lips are very thick and fleshy, and more or leas crenulated. There are no cirri. An illustration of thia genus will be found in the Cyprinus Niloticus of Geoflroy St. Hilaire ('Poisnons du Nil,' pl. xi. f. 2.) The Cyprinus fimbriatus of Bloch, 'Schn.;' p. 441, sp. 24, and the Catostomus ciprinats of Liavieur, also
belong to the genus lubeo, which has no representative in this European seas.

LAB1A. [Fonsiculides.]
Lablatas. [Lamacene.]
LABMDOURA. [Fohficulld.sis]
LABlDUS. [Métillide.]
LABLAB, a name, it is said, of Egyptian origin, which has been adopted by botanista to designate a genus of Papilionaceous Leyuminosce
of the eribe Ithamoler. Thin geuns, like lhotichos, from which it hae tren exparated, is twinting climber, with lesves componed of then large frafles. The fluwern are in racemen, and cither white or parplecoluard. The legumen are large, acimitar-alinged, that, and compremed, tubereblarly muricated along the nuturen, nod having the needn meparaled from otse nnother by tranaverse partitions. It in on neconnt of these reedu and legumen that tho apecies are valued and cultioneal in hot countries anch an India, Figypt, and the Weat India lolanda, me well as in China. In India Jo. ralgaris and L. culeratus are chicfly cultivated in the ming beason in gardenn, and may be conifleral the analogucn of the French nad kiduey beans of European gandena

LABlBA DOMTE (Labmilor Filspar, Claucoliec), a Mineral which occurs in rolled or imbedbled crystallise massen Ita cleavage is parallel to the jumen of a dunbly-obliqise prism. Frncture uneven, conchoidal.
 ly quertr Colour white, gray; riclsly iridescent. Lustre vitrous. Tranducent Sperific gravity 9 rity to 2%.
When powdered and heated in muriatic acid it gelatinises. On claamal before the blowepipe it fuse into a compact glass, with a brilliant frncture.

It in fund on the coast of Labrador, and in Devoushire imbediled in a trap rock. It is probably n varicty of Allisc.

The following in an analyais of the mineral from Labrador:-

1.A BHAX (Curier), a genus of Finkes of the section Aconthopterygii and fanily Percide. The fishes of this genus are closely allied to the true I'erchen, but tnay be diseinguished by the opercular bones being covered with acales, the alsence of denticulations on the suborbital and interopercular bones, the operculum being terminated by two apinee, and likewise by tho tongue being almost cntirely covered with minnte and closely-set teeth. There are two dorkal fins.
Io Lmpms (Curier), a tixh commonly known in this country by the natne of the lhase, and sometimes called the Sea-lace, is abuadant in the Nediterrancan; its tleah being excellent food, it has been long known, and was called by tho Tomans Luphos, and by the Greeks Jaibrar.

Tham laan in not unfrecpurntly anct with on unr wwn woren: it is
 a with larger mize. The wiper justa of the land and body are

 pinous, nul thome of the pecond leing tlexibio: the nealea are of inoulerate alze.
 lanemof the 1 nitad Ntatex, almo lelongn to the frement gemur, and inderd
 ia nolormen with arym or cight longiturlimal hack linem on a nilvery
 the L_{0} mocronatus of Cuvier and Vniencienmen, which difirs from the
former in having no black lines on the sides of the body, and in being of namaller nize and deeper and ahorter form,
LAA'IBRIDA (Labroilles, Cuvier), according to Cuvier's "IRegne Animal,' a family of Fiahes of the order Acanthopterygii. The fishes belouging to this family are of an ollong form, covered with acales, usually of large size, formed of simple lanime, and with the external or ponterior margin smoath; they have a single doranl in eupported in front by apinous raya, each of which in generally furnished with a membramons appendage; the jaws ano covered by thick lleshy lipe; two upper plaryugeals are attached to the cranium, and, together with a large lower pharyngent, are armed with teeth, which are large and rounded, oometimes pointed or laminated, and generally very strong. The intestimnl cunal is withont coce, or when these appersdages are present they are of amall size, and there is a simple and strong natatory hadder. The following are the genera contained in this family :-
labrus jroper, the characters of which are-opercula and preopercula withont spincs or dentations; cheek and operculum covered with scalce; lateral line straight, or nearly so. Of this genus, the apecies of which are called Wrnsses, we have eeveral examples on the british corat.
I. maculatus, Boch, the Ballan Wrasse, is not unfrequently met with on various parts of our coast; it is about 18 inches long, of a red colour above, pale-orange beneath, and adorned with bluish-green oral spots; the fins and tail are green, with n few red sjots, the dorsal fin is spotted at the base. The length of the head compared to the whole length of the fish is as one to four, and the depth of the body is equal to the length of the bead. The fin-mys are-dorsal, $20+11$; pectoral, $15 ;$ ventral, $1+5$; anal, $3+9$; caudal, 13 . Besides this species Mr. Yarrell describes, in his 'History of Ihitish Fishen,' the following : - L. lineatus, the Green-Streaked Wrasse; L. varieyatus (Gmel., Linn.), the]lue-Striped Wrasse; L. retula (Bloch), the SeaWife; L. carncus (Bloch), the Red Nrarse; L. comber (Gmel. Limu.), the Comber IVrasse.

Ballan Wrasse (Lalyns maculains).
Cheilimu, Lacip.-The species of this gemas differ ouly from the trus Sahnri in laving the lateral line juterrupted opposito the end of the dorsal fin, and commencing again a little below the break. Tho scales on the tail are large, and cxtend on the fin. These fishes imbinbit the Jadian Ocean, and are very heautiful in colonring.
Iachnolaimur, Cuv., may be thas characterised:-Anterior spines of the doral fin with long flexible filamenta ; phargngeals furnished with a villons membrane, with ronaried llat teeth on tbe hinder part. The known species are from America.

Julie, Cuv., is diatinguished from habrus proper by the head being entirely amooth and without scales, and the lateral line being suddenly bent opposite the end of the dorenl fin.

Julis Mediterranea, Risso (J. vulgaris, Cur.), the Jainbow.Wrasse, has been eaught off the British const; but it appears here to be ncarce, though a well-known fiah in the Mediterramean. It is of a slender add elongnted form, and remarkable for the elegant distribution of its colours, which change according to the light and position: on each aide of the body is a bromd dentated stripe, extending from the head mearly to the inil, of a ailvery and fulrous colonr. The finrays are - dorkal, $2+13$; anal, $2+13$; caudal, 13 ; pectoral, 12 ; and rentral, $1+$ + . A mpecimen describerl by Donovan, which exceeded neren inches in lengels, was cnught off the cosst of Cornwall, nad is the only recorled instance of the accurrence of the species on the Britinla conat.

Hainbew Wrase iftite ildiferyanea).

The species of the genus Anampscs of Cuvier differ from those of the genus Julis in having two fist teeth in each jaw, which project and curve outwards.
The genus Crenilabrus of Cuvier has the general characters of Labrus proper, but the margin of the pre-operculum is dentated.
Creniabrus Tinca, Flem., called the Gilt-Head, Connor, \&c., is found on many parts of our coast, and indeed is one of the commonest species of the family Labriduc we possess; it is from 8 to 10 inches in leagth; tho upper parts are marked with alternate red and bluish longitudinal lines; below the lateral line the colour is bluish-green, spotted with dull red; head brownish-red, with undulating lines of an azure-blue colour; dorsal, caudal, snd ventral fins bluish-green, spotted, and lined with red; pectorals pale and immaculate; greatest depth of the body very nearly one-third of the entire length.

Gilt-Ilead (Crenilabrus Tinea).
The works on British fishes contain three other specics of the present genus. The Goldsinny (C. cornubieus, Risso), the Gibbous Wrasse (C. gibbus, Flem.), sud the Scale-Raycd Wrasse (C. luscus, Yarrell). [Cremilabrus.]
In the genus Coricus, Cuvier, we find the same characters as in Crenilalrus; but the mouth is protractile, though not quite in so great a degree as in the next genus, Epibulus (Cavier), where the species have the power of extending the mouth to a great degree: in the fishes of the last-mentioned genus tho head and body are covered with large scales, which extend both on the caudal and anal fins; the lateral line is interrupted, and there are two long conieal teeth in each jaw, behind which the teeth are comparativcly small and blunt. The only species known (Epibulus insidiator) inhabits the Indian Ocesn. Clepticus (Cuvier), which is the next genus in succession, has for ita distinguishing eharacters-the snout small sad cylindrical, which may be suddenly protruded like that of Epibulus, but which is not so long as the head: the teeth are minute, the hody oblong, and the head obtuse; the lateral line is coatinuous, and the dorsal and anal fins are almost entirely euveloped by scales. But one species is known (the C. genizara, Cuvier), and this is from the Antilles.
In the genus Gomphosus (Lacépede) the muzzle is ramarkably loog and slender, owing to the prolongation of the maxillsry bones; the head is smooth, as in Jutis. The species inhabit the Indian Ocean.

Gomphasus virid is, Beunett ('Fishes of Ceylon'), is found off the coast of Ceylon, and is of a dark grecu colour: the pectoral fin is marked with a black stresk.

Comphosus riridis.
$X_{y r i c l i t h y s}$ (Cuvier).-The fishes of this genus are of a compressed form, and lave the profile of the head high and nesrly vertical : the body is covered with large scales; the lateral line is interrupted; the jaws are furnished with a range of conieal teeth, of which thase in the centre are the longest; the pharynx is beset with hemispherieal tecth. The compressed form and almost vertieal profile of the head caused the older authors to arrange thene fiblics with the Comphance. The Xyrichthys naracula (Coryphema novacula, Linn.), or Lazor-Fish of the Mediterrancau, affords an example of this geuus: it is of a red colour, irregularly striped with blve.
Chromis, Cuvier.-Withs the thick lips, protractile intermaxillaries, pharyngea! bones, filaments to the dorsal spines, aud the general appearance of a Ledbrus, theso fishes have the teeth in both jaws and on the pharyngeals slender and tlickly set, or, as Cuvier described them, 'en carle,' but in front of theso there is a range of conical teeth. The vertical fins are flamentons. The ventral fins are often prolonged into loug filamenta. The lateral line is intorrupted. A small species of thingrnas, which is of a chesthut-lorown cotour, is
common in the Mediterranean; it is the Sparias chromis, Linn. Another species is found in the Nile, the Labrus Nilcticus, Hassels, \&c. The genus Cycllat (Bloch, Schn.) differs from Chromis in having the body more elongated, and in having tho whole of the teeth very slender and thickly set, like the pile on velvet, and forming a broad band : it contains numerous species. The genus Pseliops (Cuvier) differs from Chromis in hsviag the head compressed, the eyes placed near to each other, and the ventral fins much elongated.

Malacanthus, Cuvier.-In this genus there are the general characters of Labrus ; the maxillary teeth are nearly the same, but the pharyngeal teeth are 'en carde,' as in Chromis. The body is elongated, the lateral line continuous, the operculum is produced posteriorly into a little spine, and the long dorsal fin has but a small number of slender and flexible spines in front. Oue species is found in the Antilles, which is of a yellowish colour with irregular transverse violet stripes, and has a cresceut-shaped tail: it is the Coryphenca Plumicri of Lacépède.

Scarus, Linn.-The species of this geuus, commonly knowu by the name of Parrot-Fishes, are remarkable for the convex and rounded form of the jaws, which are beset with several series of scale-like teeth, which are so soldered together, that they usually appear to form solid masses of enamel: these teeth suceeed each other from behind forwards; those at the base, being the most recent in formation, in time replace those above, and themselves form the cutting edge. When alive, the fleshy lips nearly cover the teeth. In general form and in the large scales with which the body is covered the ParrotFishes resemble the true Labri; their pharyngeals, like them, sre furnished with tecth, but they consist of transverse lamine.

Head of a Parrot-Flsh (Scarus), and the jaws, natural size.
These fishos are chiefly confined to the seas of hot climates, and are of very brilliant colours, which last circumstanee, combined with a fancied resemblance between the mouth and the beak of a parrot, has given rise to the name of Parrot-Fishes. Some of them have a creseent-shaped tail, and of these there are a few in whieh the forehead is very gibbous; in others, the tail is troneated. Cuvier has separated from the Parrot-Fishes, uuder the geveric name Calliodon, those speeies in which the lateral teeth of the upper jaw are square and pointed, and in which there is an interior range of much smaller teeth in the same jaw; and lastly, M. Cuvier has established the genus Oldax for the reception of those Labroid Fishes whieh spproach the genus Labrus in having the lips thick and fleshy, and the lateral line continuous, and the jaws composed like those of Scarus, but which are however flat and not gibbous, and are covered by the lips; the pharyngeal teeth are as in Labrus. The Scarus mullus of Bloeli (Sehneider) belongs to this genus; the fish is found off the coast of New Lealand, is of a blackish brown colour, snd furnished with small scales.

LABROIDES. [Labride.]
LABRUS. [Labmide.]
LABURNUM, the common name of the European trees named by botanists Cytisus alpinus and C. Laburnum. It is a native of the $A l_{p s}$ of Europe, and is well known in gardens for the beauty of its pendnlons racemes of beautiful yellow flowers. The sceds of Laburnum contain a poisonous substance called Cytisine ; and the wood, which is olive-green, hard, and compact, is occasionally used by the turner. for ornamental purposes. [CYTLSUs.]
LABYRI'NT'HODON, a genus of Fossil Reptiles from the Ncw RedSandstove strata. (Oven.) [Ampibia.]
LAC. [Coccides.]
LACE-BARK TREE [DAPHNE.]
Lacerta. [Sauma; Lacertiade]
LACE'RTIADA, or LACELRTIANS. Under the family name Lacertians Cuvier arranged-
1st. The Monitors aud their subdivisions, namely, the Monitors properly so called, including the Ouarans of the Arabs (Varanus), \&c.; the Dragous (Orocodilurus of Spix, Alla of Gray), and the Sanvegardes (Monitor of Fitzinger and Amciva).

2nd. The Lizards properly so called.
This second group comprises, according to Cuvicr, tho genera Lacerta, Algyra, and Tecchyltromus.
Messrs. Duméril and bibron make the Varanians, or Sauriens Platy-

KAT. IIIST. DIV. VOL. II.
note (Ifrond-Ilackel Saurians), a family which comen immodiately aner the theckotians in their 'Erjuétologie.' Thoy allow that tho Vambiana ane nearly allied (ont tria graudu mpports) to tho Lacertians, at modified by them, and rest tho distinctions of the former family from tho later-1nt, on the promeno in the latter of polygonal seales which oover the heal: 2nd, on the form of the ecales of the back and of tho lelly, wind their noncompreased tail; and and, on the form and disporition of the tecth, which arv not diatant, obtuse, and conical, but placel on the same live, and trenchant at their summit in the antero-josterior direction.
Fior an acoount of the systematio arrangennent of tho Lizards and their congeners, see Suvust.

IaChisels [CRotaladen]
IACMRYMAI, GLANDS. [EVE.]
LACISTEMA'CEAF, Lacistemals, a small and obscure natural order of incompleto lixogeuous llants, containing a fow arborescent pecies, inlashiting the woods of tropical America, in low places. In apjearanos they reacmble the genus Celtia; and in structure they npprowh very wearly to C'reicacee, from which Von Martius first dintinguished them. The principal charscters on which the orler is foundad are tho dehiscent 3 -valved fruit and amentaceous inflorescence. Nothing is known of their propertica. There aro two genera and rix apecien

A branch of Dacistema serrutatum in flower and frutt. I, a flower with its ealjx; 2, an orery whin the double atamen below it; 3, a tipe truit.
LACTEAIS, a met of absorbent vegsela which take their origin in the villi of the inteatines, and are the principal means by which the food, io the form of chyle, ix conveged into tho blood. [Absomesit Shatex; Ingention; Cithe; [intestisfe.].

LaCTUCA, a genus of Mlants leelonging to the natural ordor Cumpositer, the nub-order Lignliflurce, the tribe Cichoracer, nnd the anb-tribe Lacfucar of Do Candolle. It has a cylindrical imbrieated iuvolucre, with the ncales meunl ranoun at the margin, and few-fowered; tho recepthele naked; the achenium compressel, wiugless, with a long filiform leak; the pappuan hair-like in soseral rown
L. vircan, Acrid Lettuce, has leaves with a priekly keel, horizontal, oblong, auricled, and claping, mationate, dedtate or sinuated, the beak white, cqualling the fruit, which is black. This plant in found on hedgea, oll walla, and tho kkirts of fields throughout Farope. It yioldn a milky juice, which when procured nad driod has the name Gactucaricum. This mubstance in ales $]$ rocurel from the Garden Lettuce (La sativa), and iu the 'Sondon I'harmacogwin' the L. satica is the only plant recognimel for nupplying thim nubstance. Dr. Christison remarka:-"The Loudon Collego howevcr, and many cultivatora, are wrong in rentricting themelven to the garden lettuce for the preparation of lactucaricum. F'roun inforantion communicated to me moceral yearn ago by Mr. Duncan, chenint and druggist in thia clty (Filinturgh), who ham often male lactucaricum on a large seale, it appeara that the l. virom yiclda a much larger quantity, and that tho produco is of a superior quality. Nor is there any reason for drealiag the narcatio propertics of the wild lettuce, the acientific name of which lan given rime to an exaggerated nation of its activity. The resulta obithined by Mr. Duncan have leen winco confirmed by thone of sehaltz in Cicronny, who fombl that a single plant of the ganden lettace yieldm only 17 grainn of lactucaricum on an average, while a plast of wild lettuee yields no lext than 50 graing." Mr. Juncar hag mates the olmervation alao that, "although the milkinens of the jaice increnaes till the very close of the time of flowering, namely in the wild lettuce till the inouth of October in this climate,
the value of the laotucarionm is detariorated after the middle of tho period of inflorescence; for subsequently, while the juloo becomes thicker, n material decrense takes place in the proportion of bitter extract contained in it" For an aocount of L. satira and its nases an a salad ree Lertuce, in Ants Avd Sc. Drv. This plant appears to have been cultivated amonget the Greeks, and also used in medicine. It is the ©pióak of Dioscorides (ii. 165); nlso of Theophrastus. Several varicties of the Garden Lettuce were used both among the Greeks and llomans as salads
L. Scariola, Prichly Lettuce, has the leaves with a prickly keel, perpendicular, arrow-shaped at the base and clasping, sinuate, the beak white, equalling tho pale fruit. It is found plentifully iu waste places in many parts of Europe, but is a rare plaut in Grest Britain. It has a stem from :2 to 5 feet high, leafy aud panicled. Its juice is not so acrid as that of L. rirosa, but posacses the same properties. It ja found on the higher hills of Greoce, and is probably the Epidak dypla and Epidakivn of Dioscorides. The Epidaniv of Theophrastus (i. 8 and vii. 3) and of Galen (lib. 2), according to Fraas, is the L. coriacea of Schultz.

There are two other British species of lettuce: L. saligna, with a white elongated beak, twice as long as the fruit, the upper leaves entiro, acuminate ; and L. muralis, with the beak much shorter than the fruit.
(Babington, Manual of Britiah Botany; Fraas, Symopsis Plantarum Flora' Classica: Christison, Dispensalory.)
LACTUCA'RICUM is a substance obtained from the Lactuca rirosa, being the inspissated milky juice of the plant, and which is at first white, but afterwarda by exposure to the air aud sun coneretes and becomen brownish. The juice of the leares only should be collected before the flowering has begun. Puncturing the leaves is the best mode of procuring it.

Other plants are often mistaken for it, as Lactuca satira, L. augustana, L. quercina, L. Scariola, Sonchus oleraceus, nad Dipsacus sylvestris.

According to Kliuk, Lactucaricum containg lactucic acid. It yiolds by distillstion its odour and taste to water, which thus acquires somo of the virtues of the plant. The inspissated concreto juice is said to resemble opium in its nction, but is much feebler. In pulmonary diseases it is sedative. The common Garden Lettuce (Lactuca satira) also possesses sedative properties, and eaten towards bed-timo has been said to procure rest in cases of morbid vigilance, or to allay pains of the stomach. [Lactuca.]

LACUNA. [LITTOMNiDE土]
LA'DANUM, sonctimes written Labdanum, but incorrectly, as it is the Ajbavo of the Grecks and the Ladun of the Arabs. It ia first meutionod by Herodotus (iii. 112) as procured in Arabia, and used by tho Arabs for fumigation. The word is not Groek, but an Arabic word with a Greek termination; the Greoks also used the word $\Lambda \hat{\eta} \delta o s$ to indicate the shrub which produced the Ladanum. This gum-resin is produced by several species of Cistus, the Klotos of Dioscorides, though the namer and description are often confoumled with those of the Kigaos, or Hedera. C. ladaniferus, C. Creticus, C. laurifolius, and C. Ledon, Lam., are usually mentioned as tho species which are indigenous in the Grecian Islauds, in Spain, Italy, and the sonth of France. That obtained from the Levant ia the most celebrated. The juice exudes upon the leares and branches of these shrubs, and is collectod, according to Tournefort, by meana of an instrument resembling a rake, with leather thongs instead of teeth, which is drawn over the plant; and as the juice adieres to tho thougs, it is afterwards soparated. Ladanum is also deacribed by Dioscorides as being collected from the beards of goats which had been feeding on the leaves of Cistus. (Compraro Iferodot., iii. 112.) It is now seldom employed for nny purpose, as it ia with difficulty obtained of a sufficient degree of purity from the adulteratious to which it is subjected; one analynis yiclding 72 parts of ferruginous saud, and another 86 of resin, out of 100 parts. The purest kiud, seen only in the places whare it is produced, is described as blackish, homogencous, and tenacious, casily softening under the fingers, sud even sticking to them; having a grayiah fracture, which however becomes black by exposure to tho air; rather a bitter taste, and a very ngreeable stuell from the presence of a volatile oil. It was formerly employed as a stimulant, more recently as an expectorant, and is estoemed evon in the present day by the Turks as a perfume, and used for funigntion.

LADY-13IRD. [TRIMERA.]
LADY'FERN. [AspamuM.]
LADY'S-SLIPI'liR. [Cvimaredume]
LADY'S SMOCK. [CabDamine.]

L.tMMACTUS. [louanids.]

LAMOII'PODA, Latreille's fourth order of the Crustacca, placed by him betwecn the A mphipota and the Jropoda. Ho describes them ns being the only forma among the Malacostraca with seasilo cyes (Edriophthalmia) whose posterlor extremity does not present dintinct brauchix, and which have lasrdly any tail, the two last feet leing inserted at that end, or the regment to which thoy are nttached being followed by uet more than one or two other joints, which are very amall. They are also, he states, the only oucs in which the two anterior fect (which agree with the second jaw-feet) mako a part of the head.

The Lamodipoda of Latreille hare all four setaceous autenne carried upon a peduncle of three joints, mandibles without palps, a vesicular body at the base of four pair of the feet at least, beginning with the second or third pair, reckoning those of the head. The body, which is most frequently filiform or lincar, is composed (reckoning the head) of from eight to nine joints, with some small appendages, in form of tubercles, at its posterior and inferior extremity. The feet are terminated by a strong hook. The four anterior feet, of which the aecond are the greatest, are always terminated by a monodactylous claw. In many the four succeeding feet are shortened, less articulated, without any hook at the end, or rudimentary, and not at all fit for ordinary use.

The females carry their eggs under the second and third segments of the body, in a pouch formed by approximated scales.

The Lemodipoda are all marine, and Savigny considers them as approaching the Pycnogonicloe, and making, with that form, the passage from the Crustacea to the Arachnia.

Latreille brought the forms under one genus, Cyanus, with the following sub-divisions and sub-generic appellations.

1. Filiformia (Latr.).

Body long and very slender, or linear, with lougitudinal segments ; feet similarly clongated and slight; stem of the antenne composed of many small joints.

Leptomerct, Lstr. (Proto, Leach).-Feet fourteen (reckoning the two annexed to the head), complete, and in a continuous series. (Latr.)

In the Leptomera (Gammarus pedatus, Mull., 'Zool. Dan.') all the feet, with the exception of the two anterior onea, have a vesicular body at their base. In tho Proto of Leach (Cancer pedatus, Montague, 'Trans. Linn. Soc.,' ii.) these appendages are peculiar to the sccond feet and the four succeeding ones.

Leptomera peclata may be given as an example.

Leplomera pedata, magnificd.
Naupredia, Latr.-Feet ten, in a continued series; the second and two succeoding pairs have a vesicular body at their hase.

The species are found on the coasts of Europe, France, \&c.
Caprella, Lam. - Feet ten, but in an interrupted series, commencing with the second segment (inclusive), and not reckoning the liead. This segment and the following one have cach two vesicular bodies, and are totally deprived of fcet.

The species are found is the northern and temperate European oceans.

The Lamodipoda of this section keep among the marine plants and mpongen, and walk like caterpillars, turn frequently with rapidity on themselves, or set up their hodies, vibrating their antennse at the same time. In swimming they curve the extremity of the body,

2. Oralia (Latr.).

In this subdivision the body is oval, with transverse segments. The ntem of the antenna appears to be inarticulated. The feet are short, or have but little length; those of the second and third segments are imperfect, and terminated by a long cylindrical joint without hooks; at their basa they have an elongated vesicular body. These Letemodipoda form the sub-genus.

3. Cyamus, Latr. (Larunda, Leach.)

M. Latreille states that he has secn three species, all of which live on Cetacea, and the mast known of which, Cyamus Ceti (Oniscus Ceti, Linn.; Squilla, Degeer ; Pycnogonum, Fabr. and Sav.), is found also on the Mackerel. The fishermen term it the Whare-Louse (Pou de la Baleine). Another apccies, very anslogous to the first, wss brought back hy Delalande from his voynge to the Cape of Good Hope. The third and much the smallest is found on the Cetaccans of the East Indian seas. (Latr.)
M. Desmarest gives tho Lamodipoda the same position as M. Latrcille, and divides them also into two sections.
 The first, consisting of Leptomera, Latr. and Larn. (Proto, Leach; Caprella, Iam.); the second of Cyamus (Cyamus, Latr. Laro.; Panope,
Leach; Larunda, Leach).
M. Desmarest remaris that M. Latreille never saw the Leptomerie themselves, and that he has separated them from Caprella and Proto from published figures only.
M. Milne-Edwards makes his Legion of Edriophthalmians comprise the Amphipoda, Isopoda, and Lamipoda.

LAGANA. [ECHINIDE.]
LAGENA'RIA (from 'lagena,' a bottle), a genus of Plants belong. ing to the natural order Cucurbitacce. The flowers are monœcious, the calyx csmpanulate, with subulate segments shorter tban the tube. The corolla is white, with obovate petals spreading below the edge of the calyx. It has five triadelphous stamens, the fifth one distinct; thrce subsessile grannlated stigmas, obovate compressed seeds, tumid at the margin, 2-lobed at the apex.
L. vulgaris, Common Bottle-Gourd, is a musky-scented plant, and clothed with a soft down. It has a climbing stem, with tendrils from 3- to 4 -cleft. The flowers are stellated, spreading, and in clusters; the fruit in shape like a bottle, when ripe of a pale-yellow colour, sometimes six feet in length. When dried it becomes hard, and is used to coutain water; it is then of a pale bay-colour. In its wild state this plant produces a poisonons fruit, and Dr. Royle states that a very intelligent native doctor informed him that cases of poisoning have occurred from eating the bitter pulp in the district where it grows. Some sailors also are said to have died from drinking beer that had been standing in a flask made from one of those gourds.
These injurions effects seem howerer to be removed by cooking, for Don says that the poor people among the Arabians eat it boiled with vinegar, or fill the shells with rice and meat, and so make a kind of pudding of it. The pulp of the fruit is often employed in poultices: it is bitter and purgative, and may be used instead of colocynth. This species grows abundantly in Egypt and Arabia; the Arabians call it Charrah; it thrives wherever the mountains are covered with a fit soil. There are three other species cnumerated by Don growing in Guimea and the East Indies.
L. idolatrica is held in grat veneration by the Hindoos in their religious ceremonies.
(Don, Dichlamydeors Plants; Lindley, Flora Mcdica.)
LAGENORHYNCHUS. [CETACEA.]
LAGENORHYNCHUS. [CETACEA.]
LAGERSTRGE'MIA, a genus of Plants of the natural family of Lythraceet, which extends from the Malayau Archipelago into China and Japan, as well as along the foot of the Himalayau Mountains to the northern parts of India. The genus was nsmed by Linneus in honour of Lagerstrœm, who was director of the Swedish East India Company and imported many interesting plants from India and China The species are few in number, but most of them highly ornamental in nature. L. Reginee especially forms a small tree and is conspicuous from its large rose-coloured flowers, of which the petals, standing out on rather long claws, more fully diznlay the varied outline of its undulated limb. The bark and lcaves are accounted purga. tive and hydragogue, the seeds narcotic. L. Indica and L. parviflora are small and shrub-like, and suited to our hot-houses, but all require moisture in the season of flowering.

LAGIDIUM. [CHinchillane.].
LAGOMYS. [LEPORIDE.]
LaGOPUS. [Tetraonide.]
LAGO'STOMYS, or LAGOSTOMUS, a genus of Mammalia belong. ing to the order Rotentia and the family Chinchillide. L. irichodactylus is the Viscacha, or Biscacho. [Chinchillin.w.] The accompanying figure was taken from a specimen in the Zoological Gardens Regent's Park.

Viscacha, or Bischaco (Lagostomys trichodactyltes).
LA'GOTHRIX, M. Geoffroy's name for a genus of South American Monkeys, thus characterised :-

Dental Furmula :-Incisorn, $\frac{4}{4} ;$ caniner, $\frac{1-1}{1-1} ;$ molans, $\frac{6-6}{6-6}=36$.
Facial angle alout 80°; muzzlo projecting; head round; oxtremitien proportionerl to the body; anterior hands provided with a thumb; tail ntrongly prelienaile, and having a part of its extremity naked Lelow ; hair stroug and eurly.
Two apecies are reconled, L. Humbohllii and L. canws.
The first of theee, or the Caparro, was found by Ilumboldt and
 ion to the westward. Size about 2 feet 2 inches without the tail. Head round and very large Hair long, atrong, and uniform gray, the tin black. Face naked and black; mouth beset with long stiff bristles Tail rather longer than the body, prehensile, naked at the extremity. Habits gregarious; frequently seen raised on the hinder extremition.

It was found ou the Rio Gunviare, one of the tributary rivers of the Orinoco.

The other species has shorter hair, and is of the size of the Sapajousai (Celus Copucinus, Desm., Simia Capucina, Linn.).

It in a natire of Brazil.
Dr. Oray places the form in his faunily Sariguida, and in the second sub-family of it, namely, Atelina.
Mr. Swainon arranges it in the family Cebidu, between Myccies and Aides.
LAGOTIS [Curanilid.e.]
LAGISIID.E (Lagriarize, Latreille), a family of Coleopterous Insects of the ection Hecromera, the characters of which are :- Elytra noft; lieal and thorax considerably narrower than the elytra, the latter almost cylindrical, ovate or quadrate, and truncated; antenna inserted near an emargiantion of the eycs, either filiform or inseusibly larger towaria the apex, the terminal joint being loager than the preceding, capecially in the malea; palpi thickened at the tip; terminal joint of the maxillary palpi of the form of a reversed trangle; femora oval and clarate; tibie long and slender; those of the anterior legs often curred; penultimate joint of the tursi bilobed and the claws simple. The genus Layria (Fab.), contains those species in which the antenna are gralually thickened towarla tho njex, and have tho last joint ovate; the fore part of tho bead in but littlo producod, but behind is prolonged and elightly rounded; tho thorax is almoat eylindrical or mquare.

Ono njecies of this genus cxints in Eugland, tho Lagria hirta, an inmect not unfrequently found in hedges and woods, aud apparently mont abuadant on the white thorn. It is about $4-12$ ths of an iach in length, of an oval form, with a narrow head and thorax; these, as well an the borly fencath, the antenne, and the legs, are black; the elytra are dirty yellow, moft, and pubescent. The body of tha malem in rather narrower than that of the females, and the autenna are loager.

The genus Statyra (Latreille) also bolongs to the preseat family, and cousinta of apecion which have the body more elongated than those of Layria propec; the antemne are filiform, and conaist of almose cylindrical joints, the Innt of which is very long and pointed; the head is conviderably produced in front of the eyes, and is abruptly narrowed behind; the thorax is longer than broad, somewhat ovate, but truncated befon and behind; tho elytra are acutely terminated.

The line a denotes the nataral olye; b, the antenna; r, the tarmus of the fore and midtle pair of legn; t, the tarmui of the posterio: pair of lega,
LAGU'RUS (from darár, a hare, and olpd, a tail), a genus of l'lants lwlonging to tho natural order Graminucert. It has a apikel jmilele, 1-flowered, mearioun glume endiug in a long fringed reto. Tho outer paloz cad in two long actac and with a doranl geniculated twinted awn.
L. oratue in the only periea, and ham atem from 4 to 12 iucleses in height The laven are broal nad lanceolate, the mikoa ovate and prbeecent. It is found in sandy places in Guernsey aud on the continent of Finmpe.
(Babidgton, Manual of Britials Botany; Koch, Plora Germanica.)

LaITH. [Merlanaus.]
LaLo. [Ã́nansonia.]
Lama. [Llana.]
LaMANTIN. [Cetacea.]
LAMBRUS, Leach'e name for agenus of Brachynrous Crustaceous Decapoda.

LAMB'S LETTUCE. [Valerianella.]
LAMELLARIA. [VELUTINIDAE]
LAMELLIBRANCHIA'TA, De Blainville's third order of Acephalophora (Acéphales Testacós of Cuvier).
Da Blaiaville makes this order conaint of the following families:Ist, Ostracea (Oyntors, \&c.); 2nd, Subostracea (Spondylue, \&c.); 3nd, Margaritacca (I'ulsella, Mallcus, \&c.); 4 th, Mytilacea (Mussels and Pinnas); 5th, Polyodonta, or Arcacea; 6th, Submytidacea (Anodon, Unio, Cardita); 7th, Chamacca; 8th, Conchacea; 9th, Pyloridea; 10th, Adesmacea (Pholas, Terclo, Fistulana, \&c.).
M. lang eoparates the order into two divisions :-

I. Monomyaria.

Families:-1st, Ostracés, Cuvier (Ostrcadx) ; 2nd, Pectinides, Lam. (Pectinidx); 3rd, Malléacés, Lam. (Malleida); 4th, Aviculós (Ariculida).

11. Dimyaria.

Families :-5th, Arcacés (Arcadit); 6th, Mytilaces (Mytilida) ; 7th, Submytilacés (Submytilide: fresh-water, Anodon, Unio, \&c; Naiades of Lamarck and Lea: marine, Cardita, Cypricardia, \&c.); 8th, Chamacea (Chamada) ; 9th, Conchacea; 10th, Pyloridea; 11th, Tubicolés, Jam. (A spergillum, Clavayella, \&c.). [Conchipera; MoLLósca.]

IAMELLICORNES (Latreille), one of the sections of the order Colcoptera. The insects of this eection have fire joints to all the tarsi. The antenne are inserted in a small hollow in front of the ejes, short, usually composed of nine or ten joints, the lant of which nro largo and fat, and open like a fan. [Coleortera.]. The number of these lamellated joints varies, but there are generally three. The clypens is usually very large, and the labrum is small and hidden beneath the clypeus. The anterior tibim are dentated externally, and the posterior tibie are often more or less denticulated. The mandibles of some of tho epecies are membranous.
The larva [CoLEorTEMA] is soft, of a cylindrical form, or nearly so, and has a large vortical head. There are six omall legs attached to the thoracic segments. The body is always bent. When about to assume the pupa k ata the larvic inclose themselvee in an oval case formed of particles of earth, rotten wood, or other surrounding substances, which are cemeated by a glutiaous matter. Somo of them live ia the ground, and feed upon the roots of plants, and others live in decayed animal and regctable substancos, upon which they feed. The perfect insects also feed upon theso substances (many of them are found in dung); othera feed upon the leaves of plants, or on the flowers.

Latreillo divides the Lamellicomes into two great tribes, Scarabaides and Lucauides. [Scabamaide; Lucanide.]

LAMELIIROSTRES, Cuvicr's namo for the great family of the Analider. [J)ucks.]
LAMMA'CEAF, or I, ABIA'TA, Labiates, a very extensivo and inportaut naturnl orler of Exogenous Plants, with irregular ungymmetrical monopetalous flowers, and a 4-lobed ovary, changing to 4 seed-liko monospermous fruits. It is teclmically allied so nearly to Borayinacece ns to differ apparently in littlo except having regular flowers; but in nature it belongs to a different series of vegetalion. The leaven of Lumiacee are uniformly opposite, and their stems square or nearly so, and in the greater part of the order the flowers are digjosed in short opposite elusters axillary to leaves, and appearing in conkequence as if in whorls.
The apecies are generally aromatic and tonic, a property that is in mont cases owiag to the scerotion of a rolatile oil in little oysts or glands occupying the leafy organs. Tho aromatic qualitics are familiar to us in tho Snge, Marjoram, Tliyme, Basil, and similar plants, commoaly cultivated for the service of the kitehen, ns condiments; of Lavender, so much ralued for its peculiar fragrauce; of Mint and Peppermint, well known for their stimulating power, and of many others. Betony, Ground Ivy, Horelound, and othors are examples of the bither tonic qualitios of such plants; Rosemary appears to havo the specific property of atiffening the hair and encouraging its growth; its oil is that which gives the green colour to bear's grease and such pomatuma; and Cat-Thyme (Teucrium marum) and Cat-Miat (Nepeta Cotaria) seen to be genuine feline nphrodiaiacs.

Plants of this onder are distributed over all the warmer and tempernte parts of the world, geaerally being herbaceons, and yever excecding the size of small bunhes. Mr. Bentham has giveu an elaborate view of their geographical diatribution, from which it appears that out of 1714 pecies 1030 belong to the Enatern homisphere, and 049 to tho Western; 8 only are Aretic; 80 inlabit tho tomperate parta of Fumpe, 190 Spain, 149 the llimalayan Mountaina, and only 157 the Equinoctial regionn of both the Old nad New World, and those are chiefly mountalu plants.
Linneus diatributed the genern of Lamiacca through his Didynamia, Cymnospermia, and Liandria Monopynia. Writers on tho natural sgetem have devised much better modes of arrangement; the most
perfect and recent is that of Mr. Bentham ('Labiatarum Gencra et Species,' London, 1832-36, 8vo.)

There are 125 genera and 2350 species of this order.

Leal and flowers of Salcia pratensis.
1, the ovary, opon the four lobes of which a part of the character of this order depends.

The British genera of this order are numerous. They are divided by Eabington into the following tribes:-
I. Menthoidec.-Corolla bell-shaped, nearly regular; stamens dis'ant, straight, diverging upivards.

I. Mentha.

2. Lycopus.
II. Monardea.-Corolla 2-lipped; stamens 2, fertile, parallel under tho lip of the corolla.
3. Salvia.
4. Saturciince.-Corolla 2-lippen ; stamens 4, distant; cells of anthers separate, divergent, connective, dilated.

> 4. Origanum. 5. Thymus.
IV. Melissincre.-Corolla 2-lipped; stamons distant; anther cclls connected above.

7. Mclissa.

V. Scutelherice--Stamens approximating, parallel under the upper lip of the corolla; calyx 2 -lipped, closed in fruit.
8. Sculclleria.
9. Prunella.
VI. Nepelec.-Stamens approximating, parallel under the upper lip of the corolla, 2 inferior shortest; calyx tubular.
10. Nepeta.
VII. Stachyclece.-Stamens approximating, parallel under the upper lip of the corolla, 2 inferior longest; calyx tubular, or bellshaped, spreading in fruit.

11. Mclittis.	15. Seachys.
12. Lamium.	16. Ballota.
13. Leonurus.	17. Marrubium.
I4. Galsopsis.	

VIII. Ajugoidec.-Upper lip of corolla very short, or split and deeply bifid.

18. Tcucrium.

10. Ajuga.

The genera are described under their respective names.
J.AMINARIA. [Alese.]

LAMINARITES. Brongniart, claasing Fossil Puci according to the analogy they offer to recent tribes, uges this term for one specics found in the accondary strata of Aix, near La Rochelle.
LA'MIUM, a gonus of Plants belonging to the natural order Labiate. It has a 2 -lipped corolla, the upper lips arched, lower lip trifid. The lateral lobes minnte, tooth-like, or obsolcte, rarcly
elongated. The anthers approach in pairs, and forming a cross, burst longitudinally. The calyx is 5 -toothed and bell-shaped, the teeth nearly equal. This genus includes the Dead, Blind, and Dumb Nettles of our peasants, so called from their resemblance to the Ureices in many points, except their stings.
L. amplexicaule has roundish cordate obtuse leaves, the lower ones stalked, the upper ones sessile and clasping. The teeth of the calyx are longer than the tube, at length connivent; the lateral lobes of the lower lip of the corolla toothless; the nuts senall, and of an obovateoblong shape. It is found in sandy and chalky fields in Great Britain, the north of Africa, and Middle Asia.
L. intermedium has reniform, cordate, obtuse leaves, and is distinguished by the teeth of the calyx being longer than their tube, hispid, and always spreading. The lateral lobes of the lower lip of the corolla with a short tooth; the nuts twice as large as those of the former species, and of an oblong shape. This species is common in Scotland, Sweden, and the north of Germany.
L. purpureum has a pale purple corolla, spotted with red, the lateral lobes of the lower lip having two teeth. The nuts oblong, or about twice as broad as long. It is found in Great Britain and Sweden, where, according to Linnæus, it is boiled and eaten. It was formerly used in medicine, but is not now prescribed.
L. incisum has but one tooth in the lateral lobes of the lower lip of the corolla. It is a British plant, and is likewise found in France, Germany, and Sweden.
L. album is distinguished by having the calyx-teeth as long as the tube, all separated by acute angles, the upper one distant from the others. The corolla has three teeth, and is large and white. It was once used medicinally, but is now disregarded. Like L. purpureum, this species is eaten in Sweden as a potherb. It is found in Great Britain and the southern parts of Europe.
L. maculatum has the calyx-teeth longer than their tube, the three upper ones separated from the others by broad obtuse angles; the lateral lobes of the lower lip of the corolla with one tooth. It is found in Great Britain and on the continent of Europe.
L. striatum has deeply-cut ovate leaves, the corolla three times as large as the calyx, which is glabrous. It is a native of (ireece in waste places, and is supposed by Fraas to be the Aєukàs obpetv'n of Dioscorides (iii. 103).

There are several other specics of Lamium, growing chiefly in the southern parts of Europe. They are not worth cultivation for ormament, but will easily grow in any soil or situation, aud are to bc propagated either by division or by geed.
(Don, Dichlamydeous Plants; Babington, Manual of British Botany; Fraas, Synopsia Plantarum Floree Classice.)
LAMNA, a genus of Squaloid Fishes. Fossil in the Chalk, Londou Clay, \&c., and recent. [Squagide.]

LAMPERN. [PETROMyzon.]
LAMPREY. [PETROMyZon.]
LAMPRIS, a genus of Fishes belonging to the family Scomberida. It has an oval body greatly compressed; small scales; a single elevated and elongated dorsal fir; sides of the tail carinated; tecth wauting; branchiostegous rays 7.
L. guttates, the Opah, or King-Fish, has been taken on the British coasti. It is a very rare fish, and as beautiful as rare. The uppe: part of the back and sides are of a rich green, reflecting both purple and gold in different lighte, passing into yellowish-green below; above and beneath the lateral line are various round yellowish white spots, from which the fish reccived the name of tuna. The irides are scarlet; all the fins bright vermilion. It has been remarked, ou account of these showy colours, that tho Opah looks like one of Neptuce's lords dressed for a court-day.
This fish was formorly referred to the genus Zeus, and called Z. Luna and Z. imperinlis.
LAMPROTILA. [HALCYONIDE.]
LAMPROTORNIS. [STURNIDN.]
LAMPY'RID N (Lampyris, Linn.), a family of Colcopterous Insects of the section Malacodermi. The insects of this family have five joints to all the tarsi; flesible clytra; the body usually elongated and somewhat depressed. The thorax projects more or less over the head; the mandibles are usually small, and terminated in a sharp point ; the penultimate joint of the tarsi is always bilobed; the claws are simple, and the antennic are approximated at the base.
The family Lampyrida contains the following genera, and some others of minor importance.

Lycus, the distinguishing characters of which are-fore part of hoad prolonged into a snout; antennse acrrated; elytra most commonly dilated in the middle or towards their posterior part. One of the species of this genus is found in England, the Lyycus minuefus, Fabs.; it is about a quarter of an ioch in length, and of a black colour, with the exception of the elytra, which are brilhant red and have raised atrie.

Omalisus, (icotf.-Antenne simple, the second and third joints much shorter than the following; head not scnsibly prolonged in front; joints of the tarsi elongated and nearly cylindrical; the penultimate joint heart-shaped; elytra tolerably firm.
O. sutularis resembles in colouring and sizo the insect last described; the suture however is black. It inhabits Fiance.

Lampyris- - Hesul no: praduced in front, hidden benenth the thorax; eyen in tho male sex very largo ; anteana whort; femalew apterous. To thin genua lelonge the Glow-Worm (Lampyris nuctiluca, Latr.). This inenet in rather thore than balf an inch in length, of a blackish colour, the thomax is margined with dusky-red), tho legs add the edges of the ergmenta of the body of the kamo colour. The fumale momblew the unde, but in quite destitite of wings, and the terninal mementa of the minlonten beaenth are yellowinh; the thorax is semicircular; the torly in very roft, of an oblong form, pointed at the extremity, and composel of 10 regments. The male Glow-Worm is raid to cmit the phouphorescent light in a nlight degree, but it is chictiy the females from which the brillinat light procectls which wo so often eco on banks. tweneath hedges, and in various other situations. Thim light procectis from the under part of the abdomen and near the tip, and it njpleare that the animal has tho power of varying its intennity. Glow.Worms will live, we are informed by latreille, a long time in vreuo, and in different kinds of gases, the nitrous acid, muriatic and sulphurous gasen excepted, for in theso they soon expire. When placed in hydrogen gas they sometimes detonate. If the luminous portion of tho sbdomen be removed, it retains its luminous property for same time, and whea spparently extinct it may be reproducel by foftening tho matter with water. The insects emit a brillinat light if immersed in warm water, but in cold water it in extinguished. The femalos being apteroua, nad consequently restricted in their powers of locomotion, and the insect being nocturnal, it is supposed that the light emitted by the femsle is for the purpose of attracting the other sex. The larve have been kept alive for a considerable time, by tho writer of this article, during Which they lived upon suails, killing those of the largest size; sometimes they would neize a annil whilst crawling, aud when the naimal retired within it shell, they would still keep their hold, nnd allow themselves to be carried into the shell with the snail, and although they becamo eaveloped in the mucous secretion, it very seldom appearel to adhere to their bodies. Upon being tonched or disturbed in any wny they emitted the phosphoric light, but not to so great degree as the perfect insect.

LAMPrRIS. [LAMrymDes]
LANARKITE, a Mineral consisting of sulphatocarbonate of lend. It occurs in long sleuder crystals, single or aggregated into fibrous maner. The primary form is an abliquo rhombic prism. Colour greenish, yellowimh, or grayish. Streak white. Harduess 2.0 to 2.5 . Lustre nearly resinoun, but pearly on the cleavage planes. Transparent, tranulucent. Specific gravity 6.8 to 7 . It is found at Lead Hills in Scotlnad. A makire variety has been mot with in Siberia. Tho fallowing is its analyais by Brooke :-

$$
\begin{align*}
& \text { Silphate of lear } \\
& \text { Carbonate of Leal }
\end{align*}
$$

$16 \cdot 9$
LANCELIFT. [Braschiostoma.]
LANCE'OLA, n genun of Crustucca entablished by Mr. Say on a ringle apecies, Ianceda pelagica, two fenales of which only he appears to havo neen taken on the coast of America in the Gulf Stream. M. Deamarent in of apinion that the genus belongs to tho Amphipola from ita venicular obloag brauchire, to the number of ten, placed at the laternal bere of the feet, except those of the first and seventh [airy, and that it especially appronches P hronima in its caudal appendagen, which connist of three jairn of lanceolate stylen, which are double and supported by depressed lincar peduncles nonexed to the nillea by three ringe which compone the tail. Its mouth, provided with two triarticulate filiform palpasad bifid jaw-fect, bears analogy to that of the choportes. Itagencral form is that of the genus Praniza (which M. Desmareat conaidera to be an Iapod); its auteuma, compemal of four jointh, have the last joint not divided, and the inferior antenne are the longest. The superior antemae have their base hidden. The eyen aro elongated; the frunt is concave; the feet aro 14 in number, and nimple; the two firat jaira are compressed, and the sixth In the lougent The head is ahort and tranverse. Thu body is soft, atul covered with membranoun integumeuts; the tail is depressed, narrower than the bowly. nnd ita terminal segment is attenuated between the ponterior caidal styles.

LaND-RAB. [Gecamernce]
LANDAKIA. [Dmaconisa]

IANIAD.F, n family of Birde including the Shrikes, or ButcherDima (Jonime, linu.).
Simberen ghacen hin genua Janike nt the end of his first ordor, Accipiefer, immeriately following the Owl (Strix). The l'ice form the mucceeling orter.
Cuvier makeq the lieg Grichese (Janius, Linn.) the first great genus of his Dentirostra, his necoud ordor ; the Oisenux do lroie (A ceipit'cs, Dinnt) being hin first.

Vignre obmerven that in the characters of the notched, depressed, aod angular bill, and the strong haira or vibrismo that surround its tace, an well an in their manaere, tho Mucicopide partially correspond with the Laniade, from the carlier families of which they chiefly difer ja their mferior power and robuatnean. Entering among the Laniada by the genun Tyrannus (Cuv.), which unites them with the preceding Xneicapida, and from which he would neparnte it chiefly
ou nccount of the strength of the bill, wherein the character of a Shrike ia more conspicuous than that of a Flycatcher, Vigors proceeds hy meana of Pacria (Cuv.) sud Artamus (Vicill.) to Dicrurus (Vieill., the Fork-Tailed Shrikea of the Old World, where the base of the bill is still depressed and wide, as in the groups just quoted, but the apex grailually more compressed. Hence, be remarkn, we are led by some intervening forms to tho still more compressed bills of Sparactes (Ill.) and the true Lanius of nuthors, which by its short, compressed, and atrongly-dentated bill exhibits the type of the family. "Here," continues the author, "we are met by some conterminous groupe, among which Falcunculus (Vioill.) is couspicuous; nnd hence we descend by intermediate gradations to the more leugthened and slender-billed「anga (Cuv.), together with Prionops, Laniarius, and Thamnophilus of M. Vieillot, which bring us in contact with the Thrushes. The extremes of the family will be found in the Graucalus and Ceblepyris of M. Curier, which by their bills, in some degree depressed at the base, lead back to Tyrannus and the other broad-billed groups which commence the family. This last-mentioned genus, Ceblepyris, has latterly been arranged among the Thrushes; but I feel inclined rather to leave it in its original station among the Shrikes, from the peculiarity of its tall-coverts, which form themselves into a kiod of puffedout cluster on the back. This character seems to prevail among the Laniade more generally nnd in a greater degree than in other birds: in one species of the family, the Puff-Backed Shrike of Africa, now rendered so familiar to our cabinets from our connection with the Cape, this singular protuberance is carried to 60 great an extent as to form an npparently artificial sppendago to the back. In the genus before us this peculiarity seems even still further developed in the well-known conformatiou of the same tail-coverts, their shafts being elongated and projected beyoud the webs in stiff and sharpened points. On looking to the general affinity which the extremes of this family bear to the Musicapidac, and through them to the Fissirostral Birds of the last preceding tribe, we may perceive tho character of feeding on the wing esrried on to the Tyranni, the fork-tailed Dicruri, nnd more particularly to the Artami, or the Pie-Grieches Hirondelles of the continental writers; while the depressed bill of the same Fissirostral tribe is partially preserved in the groupa justmentioned, together with that of Ceblepyris, which meets them at the opposite extreme of the circle of affinity:" [MERULide; Muscicapides]
In allusion to the rapacious habits of the Laniade, Mr. Swainson observes, that the comparisous which have been drawn between them and the Falcons are no less true in fact than beautiful in analogy, remarking that many of the Falconida sit on a treo for hours watching for such little birds as come within reach of a sudden swoop, when those birds of prey pounce on the quarry, seize it in their talons, bear it to their roost, nud devour it piecemeal. These, he adds, are precisely the manners of the true Shrike; yet with all this, the struoture of the Falcons and Shrikes, and their more intimate relations, are so different that they cannot be classed in the same order, though they illustrate that syatem of symbolio relationship termed sualogy, which, in Mr. Swainsou's opiuion, pervades creation; but the two groups are, he remarks, in nowise conuected, and there is consequently no affiuity between them. The following, according to him, nre the very decided exterual characters of the typical groups :-
The short and strong bill is abruptly hooked st the end, and the notch is so deep as to form a small tooth, more or less prominent, on each side. This projection, Mr. Swainson remarke, is analogous to the teeth of quadrupeds, so far as it enables the bird to take a firm grasp of its food, and is used to divide it into pieces: the claws also, as instruments of capture, are peculiarly fine and sharp in the typical group, and this charactor pervades more or less the whole family. The mode of darting suddenly on their prey (rather than hunting or searching for it) is most prevalent in those groups which are nearest related to the Flycatchers, whoae genersl weakness however confines their depredations to the smaller insects-larger and more powerful tribes being the food of the typical Slurikee.
Mr. Swainson arrauges the Laniade in five divisions or subfamilies :-1, The Tyramine, or Tyraut-Shrikes; 2, the Ccblepyrinc, or Caterpillar-Shrikes; 3, the Dicrurince, or Drongo-Shrikes; 4, the Thamnophilinc, or Bush-Shrikes; and 5, the Laniance, or True Slarikes According to Mr. Swainson's views the first three of these kub-families coustituto the aberrant circle, or that in whlch the character of the Shrike is least conspicuous. The fourth is the subtypical; aud in the fifth the lanine structuro is most perfectly develojed.

Tyrannince.

Sub-Family Character.-Bill very straight, short, depressod its whole length ; the culmen not arched, but the tip nbruptly hooked. Nostrile and rictus defended by brintles. Feat short, small, and elender; Interal toes equal, or nearly so ; claws long, elender, fully curved, and very ncute.
Locality.-America only.
Genera-Ptilogonys, Sw, ; Chrysolophus, Sw. ; Saurophagus, Sw., with its sub-genue Megastoma, Sw.; Tyrannes, Vieill, with its sub. genua sifrulus, Sw. ; nnd Tyrannula, Sw.
Mr. Swainson observes that the connection between the family of Shrikes and that of the Flycatchers ($M u s c i c a p i d e$) by means of the

Tyrannince is so perfoct that it is difficult at present to determine where one terminates and the other commences. The Water-Chats of Brazil pass by such imperceptible degrees into the leseer TyrantShrikes (Tyrannula), that although an observer on the spot might, he remarizs, draw s distinction, an ornithologist scquainted only with dried skins is st s loss to distinguish their remote ramifiestions. "The Water-Chats (Fluvicolince)," says Mr. Swainson in continuation, "which seem to connect the Tyrant-Shrikes to the Flyeatching family, or the Muscicapidee, like very msny other tribes, bave their plumage black and white variously blended, but without any mixture of green. The Lesser Tyrants (Tyrannula), on the contrary, are all of an olive-coloured plumage; that colour, in short, which is most adapted for concealmont among foliage, and therefore suited to their manner of life: between these however we find some eurious birds, which borrow the habita of both groups. The species called by Latham White-Headed Tody, for instance, is black and white: its general resort is on the sides of marshes, where it perehes upon the reeds, snd darts on passing insects in the samo manner as a true Tyrant-Shrike; this we have ourselves repeatedly witnessed. Azara sass that it likewise chases insects upon the ground; so that we have thus in this one bird the manners of both groups exemplified. Whether this, or the Tyrannula ambulans of Brazil, which lives on the greund like a lark, constitutes a generic type in this division is st present uncertain. The Lesser Tyrants (Tyrannula) are spread over the whole of America, where they represent the true Flycatcher (Muscicapa) of the Old World : both have nearly the same manners; and so closely do they resemble each other that they can only be distinguished by their feet, tail, and wings. From these we may pass to the Trus or Greater Tyrants, by s little sub-generic group (Milvulus, Sw.) hsving very long forked tails. The habits of the typical Tyrants intimately resemble those of the lesser, but they feed upon larger insects more suited to their own size : serne imitate the Kingfishers, by diving iu the water; and they will oveu prey upon small reptiles. The species, which are numerous, ewsrm in tropicsl America, where they are overywhere seen, perchad upon naked branehes, sud uttering st short intervals a sharp and monotonous cry. The Tyrants are bold and quarrelsome birds, particularly during the season of incubation; the male will net then suffer any birds to come near its nest, and beeomes so infuriated against such unconscious intruders that it will stack both hawks and eagles, with a determination not to be resisted, until thay arc fairly driven away."

Ceblepyrine.

Sub-Family Character.-Bill brosd at the bsse, but destitute of long bristles. Rictus nearly smooth. Wings pointed; the three first quills graduated. Feathers on the rump very thick, aud apparently apinous. Tail with the centre emarginated, and the sides rounded. Fcet shert; lateral toes unequal.

Locality.-Warm lstitudes of the Old Werld.
Genera.-Ceblepyris, Cuv.; Oxynotus, Sw.; Campephaga, Vieill., with its sub-genus Phenicornis, Sw.; and Erucivora, Sw.

Mr. Swainson is of opinien that the passage from the TyrantShrikes to the Cellepyrine is sufficiently marked by the Mexican genus Ptiliogonys, which brings them very close together. The Ceblepyrince are eonfined to the Old World; but, according to that auther, not a single species had yet been found in Europe. They live upon soft caterpillars, for which they search among the foliage of high trees, as Le Vaillant, who first called attention to the group, pointed ont. Mr. Swainson remarks that nearly all the species are distinguished by the fcathers on the back, which are very thiek set; and when tho hand is passed over them in a direction towards the head they feel as if intermixed with little sharp spines cencealed beneath the surface. This singular construction, he adds, is seen alse in the Trogens, and, in a leas degree, in the families of Orioles and Cuckeos. The genus Plecenicornis, in his opinion, unites this division to the Tyrants.

Dierurince.

Sub-Family Character.-Bill compressed towsids the end; the culmen gradually arched and bent over the lower mandible. Feet short. Tail lengthened, generally forked. Wings long, and more or lass pointad. Locality.-The warm latitudes of the Old World.
Genera-Tephrodornis, Sw.; Melasoma, Sw.; Ocypterus, Cuv., with its sub-genus Analcipus, Sw.; and Dicrurus, Vieill.
Mr. Swainson holds that we are led to the Dicrurine, or DrongeShrikes of Le Vaillant, by those eaterpillar-eatchers (Erucivora, Sw.) which have only a few seute festhers on their back; or that the geuus Orynotus may possibly effect this junction. The Drongoe, he states, are fly-catching birds, having their bill bath compressed and depressed, and the mouth furnished with vcry stiff long bristles. "These," says Mr. Swainson, in continuation, "are entirely unknewn in Amcrica, where they seem to be represented by the Fork.Tailed Tyrants (Milvulue, Sw.): like thern thay have the tsil, almost universally, long and forked; and they associate, se do the American birds, in flocks, semething like Swallows, parauing insects upon the wing in every direction. Bees appear to be n favourite food with theso birds, as they are likewise with the King.Tyrant of North America (Tyrannus intrepidus). Some are ornamented with little reeurved eresta in front of the head; others have the ncek-feathers pointed, and of a rich motallic hue;
moat have the tail remarksbly developed; and nasrly all are of a uniform glossy black celour : hence it becomes very difficult to distinguish the species, which in truth are mueh more numerous than has been generally imagined. In the genus Analcipus we first bave a few bright celours. Only three epecies, natives of Madsgascar and the Indian Islands, have yet been discovered; they lead us to the SwiftShrikes (Ocypterus, Cuv.), so named from their very long wings; but in Tephrodornis these mombers again become like those of the Drongos. This latter genus is very remarkable; for, by the bristly nature and the incurved direction of the frontal feathers, we have a clear representation of Chetoblemma, and sll those bristle-fronted birds which are analogical to Prionops and Dasycephala."

Mr. Swainson remarks with regard to theso three groups, which form, sccerding to him, the aberrant sub-families of the Laniade, that the approximation of the Dicrurince to the Tyrannince has been thought so strong and so decisive that one ornitholegist supposes they aetually pass into each other; and ho thinks that this union is net only highly probable, but what we should uaturally expeet; in which case the three aberrant groups would form their own circle.

Thamnophilince.

Sub-Family Character.-Lateral toes unequal; the outer connected to the first joint of the middle toe. Claws bread, and net very acutc. Biil lengthened, abruptly hooked at its tip; the tooth prominent.

Geuera.-Thamnophilus, Vieill. ; Malaconotus,Sw.; Prionops, Vieill.; Colluricincla, Vig.
Mr. Swainson remarks that the babits of the Thamnophilince, or Bush-Shrikes, are strikingly opposed to those of the aberrant divisions, as he terms them. The Bush-Shrikes, he tells us, live among thick trees, bushes, and underwood, where they are perpetually prowling about sfter insects and young and sickly birds, and are great destroyers of cggs. They neitber seize their prey with their claws, nor do they date at it on the wing; the former therefore are thick and rather blunt, and the wings are so short as to indicate very feeble flight. The bill, which is the cspturing instrument, is always stout, mueh more lengthened'than in the True Shrikes, and very abruptly booked at the end, which is armed with a strong tooth.

Only one species of Prionops (P. plumatus), according to the same suther, was known until lately, and that is common iu Senegal, where it is said to search for terrestrial insects in humid eituations benesth the surface: it has a peculiar crest of rigid feathers falling baek on the head, but also reversed over the base of the bill, and completely protecting the nestrils and the sidcs of the meuth. Mr. Swainson looks upon this bird as forming the point of union between the BushShrikcs and the Forked-Tailed Shrikes, or Dierurinee, the singulsr strueture above-neticed being partially develeped in the genus Tcph. y'odornis.

Thamnophilus, which Mr. Swainson regards as strictly typical, shows, be observes, the perfection of that partieular strueture which distinguisbes the Bush-Shrikes. The bill is very powerful ; snd altheugh many of the species far exceed a thrush in size, others are not mueh larger than a wren. The group is stated to be confined to the hotter latitudes of America, where the species are very mumerous. Though the plumage is thick, the texture of the feathers is very soft and lax. The colours are sombre, but often elegantly varied with dark band.s and white spets. Mr. Swsinson looks upon the genus Malaconotus as representing these birds in Africa; and he observes that, although they were long eonfounded with then, their distinctions are very decisive, the African group being distinguished for the gaiety and brightness of their plumage; the brightest crimson, combined with glossy black or elear green, with orange or yellew, decorating most of the spceifs. Others howcver have the sombre colours of the Ameriean group, but they aro never banded: and a few so nearly approach the Laniane that it is very difficult to distinguish them otherwise than by the great inequality of their lateral tees, the inuer one being always much sherter thau the outer; and the latter often 80 comected to the middle toe that the feet are partially syudactyle. The Australian genus Collurisoma (Colluricincla?) be thinks, probably represents the tenuirostral type.

Laniana

Sub-Family Charscter.-Lateral toes equal and free. Claws slcnder, acute. Bill generslly shert, with the tooth very promineut.
Genera.-Lanius, Linn.; Telophonus, Sw.; Chetoblemma, Sw.; Nilaus, Sw.; and Falcunculus, Vieill.
Mr. Swainson is of opinion that the precise passage between the Thamnophilince and the Laniance seems to be effected by the genus Chatoblemma, a remarkable form diseovered in South Afriea by Mr. Burchell. This, Mr. Swainson observes, is the only short-billed Shrike that has the frental feathers stiff and directed forwards upon the baso of the bill: in that respect, as well as in the length of its wings, it presents, in his opinion, a curious aualogy to Prionops amoug the Bush-Slirikes.

The same author remarks that as the genus Lanius is pre-eminently typical, not ouly of its own fandy, but of the whole tribe of Dentirostres, or toothed-billed birds, cvery country in the world persesses exsmples of it: even in Australia the True Shrikes are, he states, represented by a peculiar type, tho Folcunculus frontalis, which however, instcad of watching for its prey, and devouring birds or
grawhopperm, by inpaling them upon thoras, and feeding on them at leisure, the the Truse Shrikes, climben anong the branches of trece nud derours the hari-coated beetles which lark benenth. Here, he oberven, in a bind having the form of a Shrike and the labits of a Woompecker. This Australian Shrike, as being the acansorial type of the lamianor, becomer, ill Mr. Swainnon's opinion, the repreacntative of tho Tituice, and bas the crest nod nearly the snme colonred plumaco as the genus farm. This anajogy, according to his views, is further indicated hy the grat wize of the hind toe, which in so unumally large, an oneo to evince the climbing habits of the bird, as affrmal by lewin. Nor is thin, in his opinion, the only analogy indicatal hy the colourn of this Apeciea, for in the Bentivi Tyrant (Samrophagus sulphrotus, Sw.), he secs a bird in all its mont atriking peculiarities of jlumage coloured like the Falcunculus cristatus, with thim difference only, that in one the back is olive-brown and in the other olivergnen. "Now," continues Mr. Swainson, "it is precisely nt thin point whero, acconding to our theory, the circle of the Slarike fanily is closed; mud thus these two genera will stand in juxtapaition. Certain howerer it is that of all the Tymats, the Bentivi is that which nost resembles a Trae Shrike; not so much perhaps by its genemd structure as by its living upon reptiles, and even carrion, and thus becoming, like the shrikes, both insectivorous and carnivorour"
Of the two other genera comprised in this aub-family, Telophonks and Nilaus, tho former, according to the same author, bears such a strong resemblnoce to the typical genus Lanius, as well as to Malaconolim, that, without a knowledge of the true characters of theso three groure, an ornithologist many bo much perplexed in detecting their easential differcaces, "The geaus Lanius," says Mr. Swainson, "as alremly meotioned, is chieflyknown in its outward appearance by its ahort and atrongly toothed bill: but there is another elaracter equally important, which all writers have hitherto overlooked-this in to befound in the equal length of the lateral toes and the nenteness of the claws. Now this structure of foot is also found, with a diminution hardly perceptible, in Telophonus; but then the bill is lengethened, so as to give these bitds at the firat glance an appearance of being Malaconoti. This union of charncters is just what we should expect in much birja as were to repreacnt the Bush-Shrikes in the circle of Lanianer; for although the bill is moderately leagthened in T. collaris, and remarkably so in T. longirastris, still the culmen is regularly curved, and not abruptly hooked nt the end, as io Malaconotur. We lave no remaining doubt, in whort, of the immediate union of Telo. phonu with the pre-eminently typical genus Lanius, this union being effected by the Corvine Shrikea in one division, and the T. leucogrammirus in the other. The second typo is Nilaus, at present composed but of one apeciea: it has the bill much liko that of a True Shrike, hut considerably attenuated; and the general orgauiantion of the bird is weaker than in any otber genus This, we think, is the tenuirostral type of the circle; if so, it will consequently ntand between Chretoblemma and Palcunculus. We have already fhown io what respect this latter genus may be viewed as uniting the whole of the ahrikes into one circular family; but as we have ventured so far as to trace out the manller circle of the IAInianc, the ornithologist may well inquire in what manner Falcunculus can be actually united to Lanius, neeing that its outward atructure, no leas than its scansorial habits, wre mo different Now this naion is effected by a singular bird of Brazil, long bandied nbout (to translate an expressive French plirase) in pyatema, from the Tanager family to the old genus Lanius, and then ngain to Thamnophilus: its structure was so peculiar, that some years ago we placel it ar the type of a supposed genus, under tho name of Cyclaris: a more minnte nalyain however of this sub-family, und more capecially the receat discovery of ('heloblemma anong the uncxnmined birda of our friend Mr. Burelself, has quite eatianied us that thin is not one of the prominent types of the Loniamer, but only an abermat apecies of Fialcunculus; we therefore cancel the anne of Cyclaru, and fropose for this bird the name of Palcunculus raviamenais."

The following is Mr. Swainson'a table of analogies of this family:-

Tribere of

Analogien.
Sub.Familien of shatken.
Terchere.

Ceminasters $\left\{\begin{array}{c}\text { Bill lengthened; compressed feet, } \\ \text { ntrong mbust }\end{array}\right\}$ Thamnophiline.
Scamorrs.. Fect very hhort, hinh the lewgthend . Dicrurina.
Tenairatren $\left\{\begin{array}{c}\text { Dill wenk, mouth monooth; feed only } \\ \text { on soft mbutancen. }\end{array}\right\}$ Cblepyriner.
liwimatra. Jill hroad; feed upon the wing . . Tyramina.
"Fivery ofm," obaerves Mr. Swaingon, "munt have perecived the Tramblane, broth in form and halits, between the Trae Shriken and the Falorin, ard that lanima, which is the firat division or genum, in typiral of the wholo family. The akulking thievish propenajtich of the lhanh-Narike (Thamnozhilino), and the jaym (which beloug to the
 birdu, in tha exdamoel; ance it is meen ly tho nhove table, that these two grouph inutially repreacnt cach othr. The very great develop.
ment of the tail in noarly all the Drongo-Shrikes (Dicrurince) is also one of the most remarkable distinctions of gallinaceous birds and of the acansorial tribe, which latter is cminently characterised by the peculiar length of the hind-toe and by the tail-feather ending in fine points : all these characters are found in the Drougoa, but in no other shrikes. The soft and tonder food of the Caterpillar-Catchers (Ceblepy. rinc) evinces that oven the Tenuirostres-a tribe living chiefly upon juices-may be represented by insectivorous shrikes; while the great depression of the bill which has caused the Tyrants (Tyrannince) to be confonnded with the Flycatchers, their constant liabit of capturing their prey upon the wing, aud the recorded fact that more than oue species dives in the water, all remind us of the fissinostral ewallows and the aquatic onder of Natatores.'
Before dismissing his account of this family, Mr. Swainson makes the following remarks upon the genern Vanga und Platylophus-two modern genern, ho observes, that appear to enter within its limite, but whose true situation he suspects is very different. "The name of Vanga," saye Mr. Swaiason, "was given by Juffon to a aingular and very rare bird of Madagascar, as big as a jay, but with a long abruptly hooked bill like a Thamnophilus. It has beon usual to placo this genus, as well as that of Platylophus, in the same group: but when we find that even Ml. Cuvier joins them with the large llushShrikes, and soveral of the African Malaconoti, in his genus Vanga, we immediately perceive that a group so composed is entirely artificial. The resemblance between V. destructor and the smaller species of Barita-which latter are obviously crows-is so perfect, that a suspicion has always existed in our mind that both belonged to tho corvine family. As we have seen, in the genus Falcunculus, an Australian ehrike assume all the manners of a woodpeckor, may not Vanga, Barrila (Barita), \&c., by analogy of reasoning, be true crowa, disguised under the economy and much of the structure of shrikes ? Again, does the Vangae (Vanga) of Australia and that of Madagascar beloug to the same genus, or even to the same natural group? The only specimen of this latter bird known to exist in collections is in the Paris Museum, but in too injured a state to allow of this question being answered. On the other hand we happen to know, from unquestionable testimouy, that the V. destructor of Australia kills and eats small birds, in the same manner as the Eutopean epecies; and that it is actually called a Buteher-Bird by the colonists. Yet this, after all, eeems to us only a relation of analogy, juet as in the case of Mnictilia, which, although it climbs like a Certhia, is merely a representation of those scansorial birds, and truly belongs, by affinity, to the circle of warblera. Since our last observations upon Vanga were jublished, we have been fortunate in procuring two or three apecies, which so connect the Australian Vangce with Barrita (Barita), that we no longer hesitate to place them all in the corvine family (Corvide); where also we now nrrange Platylophus, since it certainly has a greater resemblance to Vanga destructor than to any of the SoftBacked Shrikes (Malaconoti). This alteration does not however interfere with auything we have said regarding Platylophus being a rasorial type : as auch it remains, but morely tills that station in another circle. Platylophus, in short, has all the ontward aspect of a jay, combined with that of a shrike; while its remarkable crest indicates to which of tho primary types of nature wo should refer it." ('Classification of Birds;' see also 'Zoological Journal,' vols. i. and ii.; and 'Fauna Boreali-Americana,' vol. ii.)
Prince C. L. Bonaparte, in his 'Specchio Comparativo' (1827), places the genus Lanius between the genera Vireo and ITurdus. In his 'Geographical and Comparative List of the Dirds of Europe and North America' (1838), the Prince arranges the Lanida between the Muscicapida (its last aub-fumily being I'reonince) and the Corvide. In this arrangement the family consists of the sub-family Laninc, which is composed of the genera Lanius, Linn, and Enneoctonus, Boie (Lanius, Vig.).

Mr. G. IL. Gray makes the Laniadre (hia fifth family of the tribe Dentirostres) cousist of but two sub-families-the Laniane and the Thamnophilince.

Laniante.-Genera, Kieroula, J. E. Gray ; Corvinella,Less; Lanins, Linn.; Collurio, Briss.; Eurocephalus, Smith; Oreoica, Govid ; Fal: cunculus, Vieill.; Cyclarhis, Sw.; Laniellus, Sw.; Telophorus, Sw.; Nitaius, Sw. ; Nopothera, Mull. ; Prionops, Vieill. ; Colluriocincla, Vig. and Horsf.

Thamnophilincr-Genera, Thamnophilus, Vieill.; Cymoilainus, G. 1 . Gray ; Pityriasis, Jess. ; banga, Buff. ; Laniarius, Vieill. ; Dryoscopus, Boie; Chaunotus, G. R. Gray; Cracticus, Vieill.
I'he Dicrurince are placed by Mr. G. JR. Gray as the last sub-family (the 6 th) of the Ampelide; and the Tyrannine occupy a position as the third sub- family in the fawily Muscicapide.
The Laniadec in thia nuthor'a arrangement come botween the familios Ampelides and Corriule (the firat fauily of his tribe Conirostres. ("List of the Genera of Birds.' 1840.)

The European rpecies of Laniale are Lanii exculitor, meridionalis, minor, collurio, and rufus, the two last belonging to the genua E'nneoctonur, Boie.

We proceed to illustrate this family with the typical genus
Lansus.-Itill vory ahort, strongly hooked; the tooth very promineut ; wings moderate, somewhat pointed; tail rounded or olightly graluated; lateral toes free and equal; claws acute. (Sw.)

Lanius Excubitor, Linn., the Butcher-Bird, may be taken as an example.

Old Male.-Head, nape, and back, fine bright ash; a large black band passing beneath the eyes and covering the orifices of the ears; lower part pure white; wings short, black; origin of the quills and extremity of the secondaries pure white; two external tail-feathers white ; the third black towards the centre, the fourth terminated by a great white space, and the fifth by a less extensive space; the two middle ones entirely black; bilk and fcet deep black. Length 9 or 10 inches.

The Young Male resembles the female.
Female.-Upper parts less bright ash; lower parts whitish, each breast-feather terminated by a crescent of bright ash; less white at the extremity of the secondaries, and more black on the origin of the tail-feathers.

IIcad and Foot of Butcher-Bird (Lanius Excubitor).
Varieties.-1. Nearly perfect white, only the black parts are lightly shadowed out by deep ash.
2. More or less varicgated with white. (Temm.)

This is the Castrica palombina and Averla Maggiere of the Italians; the Pic-Griche Grise and Pie-Grisatre of the French; Torn-Skade of the Danes; Wiarfogel of the Swedes; Klavert of the Norwegians; the Berg-Aelster, Grossere Ncuntoder, and Gemeine Würger, of the Gcrmans; Greater Butcher-Bird or Mattagess of Willughby; Mountain Magpie, Murdering lie, Great Gray Shrike, Shreek, and Shrike, of the Dritish; and Cigydd Mawr of the Welsh.

In England this species is only an oceasional visitor, nor are we aware of any instance of its having bred here. "The Gray Shrike," says Mr. Yarrell, "has been obtained in several southern and western countics. In Surrey, Sussex, Wiltsbirc, Dorsetshire, Devonshire, Worcestershire, and Cheshire; and I am informed by Mr. Thompson of Belfast, that it has occurred in one or two instances in the North of Ireland. A specimen shot near Belfast is in the collection of Dr. J. D. Marshall. North of London, it has been killed in Suffolk, Cambridgeshire, Norfolk, Yorkshirc, Cumberland, Northumberland, and Durham. No Shrikes appear to have becn seen cither in the islands of Orkney or Shetland; but the Gray Shrike is included among the birds of Denmark, Norway, Sweden, Lapland, Rusain, and Germany. In Holland it is rare; but it is rather a common bird in France, and remains there throughout the year, frequenting woods in mummer and open plains in winter. It is an inhabitant also of Spain, Portugal, and Italy." ("British Birds.') Prince C. L. Bonaparte notes it as common near Rome in winter. ('Specchio Comparativo.')
"This Bird," writes Willughby, "in the north of England is called Wierangle, a name, it scems, common to us with the Germans, who (as Gesner witnesseth), about Strasburg, Frankfort, and elsewhere, call it Werkangel or Warkangel, perchance (saith he) as it were Wurchangel, which literally rendered signifies a 'suffocating angel.' In other parts of Germany it is called Neghen-Doer, that is, Ninekiller (Enueactonos), becausc it kills nine birds before it ceases, or every day nine. Our falcouers call it the Mattagess, a name borrowed from the Savoyards, which is by Aldrovandus interpreted a Murthering Pie." Dr. Brookes writes tho northern name differently, "Called in Yorkshire and Derbyshire the Were-Angel." The food of thia epecies, which haunts buslies, the akirts of woods and plantations, consinta of mice, field-micc, frogs, small birds, lizards, and bcetles. "Although," saya Willughby, "it doth most commonly feed upon insects, jet Joth it often set upon and kill not only small birds, as finches, wronn, \&c., but (which Turner aftirns himself to have seen) cven thrushes thenselves: whence it is wont by our falconers to be reclaimed, and male for to tly small birds."

Mr. Yarrell states that the Gray Shrike feeds upon mice, shrews, small birda, frogs, lizards, and large insceta. In the 'Portraits des Oyseaur' (1557), where, by the way, it is called Falconcllo, the bird is
represented upon a field-mouse, with the following quatrain bencath its likeness:-
"Ceste Pie est la moindre de corsage: Au demeurant, elle vit de Souris, Rats, et Mulots, qui'sont par elle pris Parmy les cbamps, gastaas bled et fourrage."
So that it seems to bave been considered a useful bird in France. It derives its name of Butcher-Bird from its habit of suspending its prey, after it has deprived it of lifc, upon thorns, and so hanging it up, as a butcher does his meat, upon its sylvan shambles. Mr. Yarrell quotes part of a letter from Mr. Doubleday of Epping, who states that an old bird of this species, taken near Norwich, in October, 1835, lived in his possession twelve months. It became very tame, and would readily take its food from its master's hands. When a bird was given to it, it invariably broke the skull, and gencrally ate the head first. It sometimes held the bird in its claws, and pulled it to pieces in the manner of hawks; but seemed to prefer forcing part of it through the wirea, then pulling at it. It always hung what it could not eat up on the sides of the cage. It would often eat three small birds in a day. In the spring it was very noisy, one of its notes a little resembling the cry of the kestrel.

In the 'Booke of Falconrie or Hawkinge' (London, 1611), we find the Matagesse immediatcly following 'the Sparrowhawke;' and at the cnd of 'A generall division of hawks and birdes of prey, after the opinion of one Francesco Sforzino Vyncentine, an Italian gentleman falconer,' we hare the following account ' of the Matagasse :-
"Though the matagasse bee a hawke of none account or price, neyther with us in any use; yet neverthelesse, for that in my division I made recitall of ber name, according to the French auther, from whence I collected sundries of these points and documents appertaining to falconrie, I think it not beside my purpese briefly to describe heere unto you, though I must needs confesse, that where the bawke is of so slender value, the definition or rather description of her pature and name, must be thought of no great regard;" and then the Matagrasse is described.
"Her feeding," continues Turberville, the writer of "The Booke,' "is upon rattes, squirrells, and lissards, and sometime upon certaine birds she doth use to prey, whome she doth intrappe and deceive by llight, for this is ber devise. She will stand at pearch upon some tree or poste, and there make an excceding lamentable crye and exclamation, such as birdes are wonte to doe being wronged, or in hazarde of mischiefe, snd all to make other fowles believe and thinke that she is very much distressed, and staudes needefull of ayde, whereupon the credulous sellic birdes do flocke together presently at her call and veice, at what time if any happen to approach neare her, she out of hand ceazeth on them, and devoureth them (ungratefull subtill fowle!) in requital of their simplicity and pains. These hawkes are in no accompt with us, but poor simple fellows and peasants sonetimes do make them to the fiste, and being reclaimed after their unskillful manner, do beare them hooded, as falconers doe their other kinde of hawkes whom they make to greater purposes. Heere I cnde of this bawke, because I neither accompt her worthe the name of a hawke, in whom there resteth mo valour or hardiness, ne yet deserving to have any zore written of her propertic and nature, more thau that she was in mine author specified as a member of my division, and there reputcd in the number of long-winged hawkes. For truely it is not the property of any other hawke, by such devise and cowardly will to come by their prey, but they love to winnc it by main force of winges at random, as the round-winged bawkes doe, or by free stooping, as the hawkes of the tower doe most commonly use, as the falcon, gerfalcon, sacre, merlyn, and such like, which doe lie upon their wing, roving in the syre, and ruffe the fowle, or kill it at the encounter."

With reference to the art which the Matagasse is here said to practise in order to eutrap other birds, a device attributed to the ButcherBird by other authors, the communication of a writer in "The Naturalist' becomes interesting. He states that his first acquaintance with this bird was occasioned by hearing notes not entirely familiar to him, though they much resembled those of the Stonchat. Following the sound, he soon discovered the utterer; and, whilo listening to his surprise, the original notes were discarded, and otbers adopted of a softer and more melodious character, never however prolonged to anything like a continuons song.

Sir John Sebright, in his interesting 'Observations upon Hawking,' when treating of Passage Hawks, states that the Slight Falcons (Falco gentilis) which are brought to this country in the spring, to be used in flying herons, are caught in the preceding antuman aud winter on tho beaths near Falconsweard, as they pass towards the south and east. These hawks are taken, he tells us, by placing in a favourable situation a small bow net, so arranged as to be drawn over quickly by a long string that is attached to it. A pigeon of a light colour is tied on the ground as a bait; and the falconer is concoaled, at a convenient distance, in a hut made of turf, to which the string reaches. A ButcherBird (Laniws Eecubitor), "that is, the Warder Butcher-Bird, from the look-out that he keeps for the falcon, is tied on the ground near the hut, and two pieces of turf are so set up as to serve him, as well for a place of shclter from the weather, as of retreat from the falcol. The
NAT. HLST. DIY. TOL III.
falconer employn hiuself in mome sedentary occupation，relying upon the vigilance if the butcher－bind to warn lim of the abproach of n hawk．This be uever faile to do，hy mereaming loudly when he per－ ceives his encung at os dintauce，and by runing under the turf when the hawk ilrawn near．Tho falconer is thus prepared to pitl the net the moment that the falcon has jonuced upou the pigeon．＂
The west in generally built on trees，ant is framed of grass－stalks， rovi，hat mose，with a lining of down or wool．The eggs，from four to six，or，according to Temminck，from five to soven，are bluish or grayinh－white，apotted on the larger ent with light－brown and ash．

Butcher－Bird（Lanius Exeubitur）．
In captivity，Bechntein states that，if the bird be captured when it in old，inice，hirejn，or living insects may bo thrown to it，taking care to leare it quite alone，for as loug as nuy one is present it will touch notbing；but ns soon as it has ouce begun to feed freely，it will eat fresh meat，aud even become necustomed to the univeral paste．An ounce of rucat at lemut in eaten st a mead，and there should bo a forked branch or cromed stickn io its cage，across the angles of which it thrown the mouso or any other pres，and then darting on it behiud frotn the oppomite sille of the cage，devours every morsel．The same author otaten tbat it may beanily taken if a nest of roung bircls ery＊ ing from hunger bo sunpended to none lime twigs，and that in autumn aud winter it will nometimen dart on birks in cages which are outside the window．Bechstein further remarks，that，like the Nuteracker， it can imitate the different noter，but not the songe of binds．Nothing is more agrecable，nccorling to him，than its own warbling，which much reacmblew the whistling of the Gray Jarrot：its throat at the time being expanded like that of the Green Frog．1le rdda，that it is a gront pity that the biril only ninge during tho phiring reasou，which In from Mareh to May，nad crets then often epoila the beautiful melody of ita song with nome harah discondant notes．

LASIOBElRCS．［S゙CmmRaNcmata．］
1．ASNE：LH．［F゚alcomione］
1．A＇sillim，a genum of llants belonging to the natural order Mdiacur，establimbed by the late Dr．Jack，and formed of the Lansium of 1 tumphe，1，1．151．t．54，which is the Lansai of Marsdeu＇s＇Sumatra，＇ phe r．phell，and the Langal or Jameh of the natives of the Malay Inlanda．ITluin forman ono of tho highly－antenned fruita jeculiar to the Melegan Archinelagn，or what wan kermed Judin Aquoan ly old writery， thengh manoticed in many wurk where we might expect to find it
 fartaxl；corolla is petall．．1，petala rounclimh．The tube formed by the union of tho ntamem im mulnghone，with its mouth mearly entire， baving the 10 anthwre included within it．I）vary＂reelled，cells with
 s－crllom，s－meceled，with，one or two cells only perfectimg their reed； mala cotrloped in a monitmanarent pulpy thaic or aril，exalbumi－ poin；erifleduon unewral，jeltete，the nhort ralicle lecing inserted inta their contre．The lanmeh formen a monlemte－aizel tree with wincritose branclica．Laven nlternate，pimate；leafteta 7 to 9 ，nlter－ mate，elort－pedicellenl，elliptie－oblong，very mounth；the young leaven
 from tise truak and naked branchen，at first ruberwet，afierwarin drompligg ly the weight of tho fruit．The fruit in of non agreenble tante，according to Maralen，though the akin containa a colouring juice，extremely hither，mul which in apt to thint the fruit if not olened with care．

The Ayer－Ayor in mother fruit po nearly remembling the Lanacls in mont jormiculira that Ir．Jack，hasitating to rauk it an a myecies， mentions it as a permanent and well marked variety under the name var．B．Lo aftowm．The fruit of tho Ayrr－Ager in rounder，and the
pulp more watery，and dissolves mone completely in the mouth than the Lanseh．Both aro Lighly estecmed by tho Malays，and are equally agreeable to the European palate．The juicy envelope of the seeds is the prort eaten，and the tasto is cooling and plemant．（＂Linuran Trankactions，＇xiv．p．114．）

LANTA＇NA，a geuus of Plants belouging to the matural order lerbenacea，named from ono of the old names of 「iburnum，which some of the species somowhst regemble in habit．They are ofteu stated to be confined to America，but a species is found in Arabia，and two in lndia．They form amall or inoderats－sized shruba，often with rugose aromatic leaven，and a somowhat peculiar odvur in the clustered flowers，which are either pink，yellow，white，or changeable．Piso states that three apecies，which are confounded together in Prazil under the nsme Camara，are there used for making medicnted baths for disenses of the skin．Martius states that the flowers of some species aro employed for making demulcent driuks iu catarrbal affections， L．macrophylla is cmployed in infusions as a stimulant，and L．pseudo－ Thea as a subatituto for tea

LANTERN－FLI．［F゚ULGOMs．］
LAOMEDEA，\＆genus of Polypifera，cstablished by Lamouroux to include species rauked by previous writers as belouging to Serlularia． ［Sebtularids．］

LAI＇IS－LaAZULI．［LazULITE．］

LadPLISIA．［Tectibranchata．］
LAPPA，a genus of I＇lants belonging to the natural order Composila， the sub－order Tubulitore，the tribo Senecionilece，and tho sub－tribe Carduinea．It has an equal and many－fowered homogamous head，a globose involucre，with imbricated coriaceous scales．The receptacle is rsther tleshy，flat，nud with stiff fringes；the corollas are J－cleft， regular，aud with a 10 －uerved tubo；the stamens have papillose fila－ ments，with authers terminating in filiform appendages；the fruit is obloug，laterally compressed，smooth，and transversely wrinkled．

L．minor has a tapering leshy root，an erect steu， 3 feet or more in height，solid，leafy，round，and with many wide－spreading branchea； the leares sre stalked，broad，heart－shsped，and，being 3 ribbed at the base，somewhat hoary and downy beneath；the florets aro axillary， with their anthers aud stigmas purple．When in flower the involuere readily breaks from the stalk，and is known in the country by the namo of a Bur．It adberes to the coats of animals and the hair and clothing of those who pass by，nad it is almost impossible to becomo free from it without breaking the scales asuuder and seattering the fruit．The root is reckoned tonic，aperient，and diuretic．It has bat some reputation in the form of a decoction in rheumatism and diseases of the skin．Sir Robert Walpole recommends it as a remedy in gout， and some havo used it as an excellent substituto for sarsaparilla．The fruit is bitter and slightly acid，and has been preseribed as a diuretic． It grows in waste places throughout Furope and the west of Asin．
L．major and L．tomentosa are specics which are found in Germany and Switzerland，but are not used in the arts or in medicine．
（Lindley，Flora Mcdica；Koch，Synopsis Florce Germanice．）
LA＇PSANA，a genus of Plants belonging to the natural order Composite，the sub－order Lizulitora，the tribe Achoracea，and the sub－tribe Lampsance．Thera is but one Britislı species of this genus－
L．communis，Nipple－Wort．It has dentate or lobed stalked leaves， the lower leares lyrate；the iuvolucres ghabrous and angular；the stem panieled．The ntem is from one to three feet in height，branched alove，with yellow small－headed florets．It is found in waste nucul－ tivated land，and derives ita common name from its reputation In villago medicine as a soothing application to iuflamed nipples，and is used in many of our provinces as an external application in wounds and ulcerations．

L．futida is n species of thin genus which grown in Switzerlaud aud the regions of tho Alps．
（Babington，Manual of British Botomy；Koch，Synopsis Florce Germanice．）
LaljWiNG．［Chamadmadat］
lanch．［Aния．］
LARDIKA＇BALA，a genus of I＇lauts belougiag to the matoral ordos Menispermacere，and named by liuiz and Pavon after Michael Lardizaln， of Uribe，a Spanish naturalist．It has dioccious nud polygamous flowers．The sepris and petals disposed in a ternary order in 2 or 3 serics．The stamens 6，monndelphous；berrics 3－or 6－celled，the cells many－seeded．The pulp of the fruit sweet and eatable．It has leaves 2.3 ternate；the Jeallets obloug，neute，unequal at the base，n littlo toothed；two large unequally corsante bracts situnted at the baso of the peduncle．Thim plant is a twining slarub，a native of Chili in woond at Concepcion，also in Peruabout Arnuco．It lans an eatable fruit，which in gathered and sold in tho markets of Chili sud Peru． The pulp of the fruit in sweet and grateful to the taste．It is called in Pern Aguil－boguil nad Guilbogui；and in Chili by that of Coquilvochi． L．Iritcrnata and L．trifoliata are elimbing planta，natives of Chili aud Peru，but their fruits nre not eaten．（Don，Dichlamyleous Plants．）

LALIM\％ABALACEE，Lardizabalads，a small watural order of llanta，containing 7 genera and 15 specics．The species are twining smooth shrubs with alternste compound leaven，without stijules． lacemen нolitary or clustered ；dowers coloured white，lilac，purple，or leep yellow，nometimes fragrant．The sepals of tho male plant are 3 or 6 in 2 rows，deciduoun；［etals 6 in 2 rows，opposite the sepals，the immer
ones srialler, or gland-like, or absent. Stamens 6, opposite the petals; filaments united into a tube, or even distinct; anthers turned outwards, rarely inwsrds, 2 -celled, opening by a longitudinal slit. The female flowers as before, but larger, with 6 very imperfect stamens. Carpels distinet, 3, rarely 6 or 9 , 1 -celled, with a short style and a single stigma. Two of the genera inhahit the cooler parts of Sonth America, the remainder are from the temperate parts of Chima. Burasaia is the only tropical form. These plants appear to be harmless. Some of them are eaten by the natives of Japan and India.

LarDizabalads. [Lardizabalaceze]
LA'RIDE, the nsme given by Leach to the family of Birds vernacularly known as Sea-Gulls, Sea-Mews, or Gulls, belonging to Mr. Vigors's fifth order Natatores.
Willughby, in his 'Ornithology,' under his section (vi.) 'Of SeaGulls, called in Latine Lari,' says in his first chapter of that seetion entitled 'Of Gulls in Genersl'-_" Gulls are a whole-footed fowl, with an indifferent long, narrow, sharp-pointed bill, a little crooked at the end; oblong nostrils; long and strong winga; short legs; small feet (for they do not 8 wim much); a light body, but invested with many and thick-aet feathers; a carrion carkasa, the fat that is aticking to the skin (as in other birds); much upon the wing, very clamorous, hungry, and piscivorous.
"These we divide into two kinds:-Ist, the greater, which have tails composed of feathers of equal length, and an angular prominency or knob on the lower chsp of the bill underneath to atrengthen it, that they may more atrongly hold fishes; 2nd, the lesser, which have a forked tail, and no knob on the bill (or, he adds in a marginal note, 'but a very amall one'). Both kinds may be divided into pied or particoloured, and gray or brown.'
Willnghby places the Gulla between the 'Douckers, or Loona, called in Latine Colymbi;' and the 'whole-footed birds with broad bills,' the first members of which sre 'the Goose-kind,' commencing with the Swan.
Rsy's 'Synopais' places the Gulls between the Colymbi and the 'Aves Palmipedea rostro in extremo adunco, non zerrato,' Avis Diomedea (Albatross), Shearwater, Puffinus, \&c.; and he describes them as "Palmipede Birds, with a narrow, sharp, but not hooked (adunco) bill, long-winged, and much given to fight (volaticec), cslled Lari, in English Guls or Sea-Mews, and in aome placea Sea-Cobs," with the following definition:-" "The marks of Gulls are a strong, oblong, narrow, and acute bill, which is a little curved at the extremity, but in the smaller apeciea straighter; nostrils oblong; wings oblong and atrong; feet amsll; body very light, clothed with many and thick feathers; and to be clamouroua, much on the wing, hungry, and piscivorous."

He divides the Gulls into three sections, namely :-

1. The Three-Toed Gulls, 'Lari tridactyli, sen postico digito carentes;'
2. Four-Toed Gulls, 'Lari tetradactyli, aeu postico digito donati, and
3. Fork-Tsiled Gulls, 'Lari minores, cauda forcipata' (Terns, \&e.).

Brisson placed in his twenty-third order (consiating of birds with four toes, the three anterior joined together by membranes and the posterior separate, and with a toothless bill), the Gulls, Petrels, Puffins, Terns, Seaskimmer, or Rhyncopsalia (Rhynchops, Linn.). \&e.
The second division of the third order (Anseres) of Linnæus consists of those web-footed water-fowl which have an edentulous bill, and the following are the geuera of that order :-Rhynchops, Diomedea, Alca, Procellaria, Pelecanus, Larus, Sterna, and Colymbus.
M. Lacépède's second sub-class of birds consists of those which have the lower part of the leg denuded of feathers, or many toes united by a large membrane. The first division of this sub-class comprises those birds which have three anterior toes, and one toe or none behind. In the first aub-division, the first order (the twentysecond rockoning from the beginning), consisting of palmiped wsterbirds with a hooked beak, we find Diomedea snd Procellaria, among other genera; and in the third (twenty-third reckoning from the beginning) sre placed, also smong other genera, Rhynchops. In the fourth (twenty-fifth reckoning from the beginning), with a straight and slender bill, we have the genua Sterna; snd, in the next but ons (twenty-Reventh), bill tumid (bec renfle), we have the gonus Larus, the intervening genus being Recurvirostra (Avosets).
M. Dumeril's third family (twenty-second in the series), consists of the long-winged Palmipedes, snd includes Rhynchops, the Terns, the Avosets, the 1'etrels, the Albatrosses, and the Sea-Mews.
In the method of M. Meyer, we find the first sub-order (Conirostrcs) of his eloventh order, Natutores, comprising among other genera those of Sterna, Larus, and Lestris.
The Long-Winged Natatores (Longipennes) of Illiger consist of the geners Rhynchops, Sterna, Larus, and Lestris; and his Natatores with tubular nostrils (Tubinares), of Procellaria, IIaladroma, Pachyptila, and Ihiomulea.
Cuvier's Long.Winged Palmipedes comprise the Petrels, Albatrosses, Gulls, Terns, and Rhymehops.
The fourth family (Pelagians) of M. Vieillot's first tribe (Teleopodes) of the order Natatores consist of Sterconeria, the Gulls, Terns, and Rhynchopa.
M. Temminck places the whole of the Palmipedes in one order.
M. De Blainville'a Natatores consist of the Macropteres (Gulls), the

Syphonorhiniens (Petrels), the Cryptorhinien8 (Pelicaus), and the Colymbiens. In his method as developed by M. Lherminier, the Gulls (Larus) and the Petrels (Procellaria) are placed in his first aub-class, or Normal Birds.
Mr. Vigors ('Natural Affinities that connect the Orders and Families of Birda,' 'Linn. Trans.' vol. xiv.) states that Phaéton, a genus belonging to the immediately preceding family (Pelecanidce), bears a considerable resemblance in general appearance sud habits to Sterna, belonging to the aucceeding family of Laride, the structure of their foot alone effecting a separation between them. Even here however, he remarks, we may observe the gradstion that exists between the feet of the two families; the web that unitea the toes of the Tropic-Bird, as well as of the Frigate-Bird, being but half the size of that of the Pelecanidec in general ; and thus their foot preserves a connection with that of the Terns, where the same membrane is equally contracted. "We thus," coutinues Mr. Vigors, "enter the family of Larile by means of Sterna, with which Rhynchops (Linu.) most intimately aceords in habits snd external characters, notwithstanding the dissimilitude of the bill. The Sterna Anglica, or Gull-Billed Tern of Colonel Montagn, couducts us from these genera to the groups which compose the Linnæan Larus, now justly aubdivided into two genera, the Lestris (ILL.), and Larus of anthors. From this group we are led to the geuera Diomedea (Linn.) and Haladroma (IIl.), which are chsracterised by the absence of the hind toe, by means of the species Larus tridactylus (Lath.), where, though the hind toe is not absolutely deficient, as might be inferred from the speeific name, there appears but the rudiment of one, or rathor a atump without a nail. The last-mentioned genus, Haladroma, originally belonged to the Procellaria (Linn.), and was separated from it by its tridactyle foot. Eveu in this character however it forms a passage from L arus to the groups that compose the genuine Procellaric, all of which are distinguished by the singular peculiarity of having no true hind toe, but a nail adhering to the tarsus in its plsce. We thus arrive at the Petrels, separated into the gronps of the Procellaria (Anct.), Pachyptila (lll.), Pupinus (Ray), and the seetion denominated hy M. Tomminck Les Potrels Herondelles. These two latter groups appear to lead us back to the Terns, or Sea-Swallows, from whence we started. The whole of this family, which corresponds with the Longipennes of M. Cuvier, is distivetly characterised by the strength and expsnsiveness of their wings, with the aid of which they traverse immessurable tracts of the ocean in search of their food, sud support their flight at considerable distances from lsad, seldom haviag reeourae to their powers of swimming. We may thus discern the gradual auccession by which the characters pecnliar to the order deseend from the typieal groups that swim and dive well and frequently, but make little use of their wings for flight, to the present groups, which are accustomed to fly much, but aeldom empley their powers of swimming, and never dive. The family of Laride may thus be observed to stand at the very extremity of the order ; and it assumes, ss I bave already observed, in conjunction with the other extreme groups, moch of the habits of the land birds. A portion of the group before us, the Petrels, seem even to employ their feet in their own element as if on land, walking as it were on the surface of the waters. We have thus arrived at the termination of the last family of the order, and have to look for ita connectiou with the first. This link is immediately supplied by the before-mentioned genus, Pachyptila, in which the bill, broad and depressed at the base, assumes the charaeter of that of the Anatide. There is indeed \& considerable approximation aud interchange of character between the two groups. The bill of some speeies of Ansc• may bo observed to become gradually less broad and more compressed, so as to bring them elosely to the Petrels; while again the weh.that connects cheir toes is equally curtailed in extent, until in one species, the Semipalmated, Goose of Dr. Latham, figured in the supplement to his 'Synopsis,' we may observe no greater web than may be zeen among many of the Sternce. Ou the other hand, the ssme membrane is so extended in some of the Petrels, as to equal the most dilated web observable among the Anates. We may slso add that the divisions of the Procellarice, as they approach the Anatide, becomo gradually more nocturnal in their habits, and thus adopt a character cemmon to a great portion of the latter family. Here then in the fifth and last order of birds we perceive the families of which it is composed following each other in a regular serics of affinities, which returns into itself with a continnity similar to that which has been equally apparent in cvery other great department of the class."
M. Latreille places the Gulls, Puffing, Pelecanoides, Petrels, Albrtrosses, Terns, Noddiea, Pachyptila, and Rhynchops, in his third family (Longipenncs), of his seventh order (Palinipedes), belonging, with the Echassiers (Grallatores), to his second seetion, Aquatic Birds.
Prince C. L. Bonapsrte, in his 'Tabella Analitice de' Goneri' ("Specchio Comparativo'), makes the Longipennes the first family of his order Anseres. He divides the family inte two sections:1. 'Narici senza margine rilevato,' consisting of the genera Rhynchops, Sterna, Larus, and Lestris; 2, 'Narici tubulose,' containing the genera Procellaria and Diomedea.
M. Lesson, in his 'Projet,' makes the Palmipeles (Natatorcs) his eighth order, being the third of his second section, Aquatic Birds. In the 'Table Méthodique,' at the end of bis 'Msuucl,' his fourth family of Palmipetes is named Laride, and cousists of the genera

 rangel by II. Lenand betwoen the f'ekeanwhe and the Analider, Which form has las: fanily.

Mr. Foyton, iu hin 'Catalogue of Britimh Pinla,' eaumemtes the fullowing geuern and subtebera an ountituting tho farnily of Longi-penatu:- Genua, Procellaria, Linn: culigeuern, Pnftinus, Iky;

 Lach.

Mr. Swainman, who refers to Mr. Vigornis armingement above nuticed. apraks of the fandiof an coustituting a much more numerous family than cilber of the three (idymbider, Alcide (Alcadec), or Pelicander (felecanalir) preciously advertal to by him. The ntructure of the lardir tow lic cousidern to to toore perfect in a general wease, althoogh inforior in than particular conatruction which constitutes the jerfection of the onler, manely, the power of awimaning and aliviag. The winge, be renurke, are very loog; and the feet, alchough wobbed, casive these bride to walt about with perfect easd on the shore in manch of food; the hiad too is rery amall, wometimes ranting; but the loge are nearly as long an in momu of tho Wiading Birds, of which he conaders thern to bo the reprosentativer. The bill he noticen as kcing olealler, unocb compresand, and as gralually but not abruply bent After referring to their gregariou and omnivonoul habite, their tolemble facilaty of awizaming their inability to dive, and their great lewer of tight, Mr. Swainson notices the goturn in tho following onder, and expreces him views in the following terme:
-The Torts, or Sea-Swallows (Serma), conatitute the fiesirontral type; they have remarkably loug Finga and alcader billa; tho tail in forked; and the plamage generally in a of a deliente pempl-white, with move or loa black upull the head: the speciea are numerous, and oceur in
 wthough jossosing much of tho genoral bubits of tho terus, in cmincutly diatinguinumb by the siogular form of its bill, the upper rasadible of which is comsiderably shorter then the under, And appeara o if one-thind of the leggth bind been broken off: throe mpecien lave leen deacribel, th which wo ald a fuurh: they ekim orer the surface of the ocean with grast awifuess, nd scoop up mall mariue insects ado otber maimala The True or Typical Gulls (Larus) aro n numerous race, dimpersel in overy clime, aud no elosely remembling ench other in plumnge, that many of the specien are cren now but imporfectly underatood; they bear a closo reacmblance in general nipearance to the terna, but the bill in strunger, anl tho upper mandible much mone curvel wowarde the end : masy are of large vize; and all are voraciots derouren of finh, and of every tosriuc asimal, dead or alive, whlch in cant upoo tho ahoro; they particularly abound in northern Letitudes, but erem to ravge orer the whole word of watere The Itarnitic (iulla (Leatris) are the raptorial reprementative, and are almone condmed to cold region: they are known by their ntronger conformaLum, their aliferent aluaped bilh, and the rough ecalea upon their feet; thewe bicia, like the frigato cormoraten, derive their chief nupply of fowlly robling their more fechlo cougenern; they purawo tho largest kulla, mad make them slingorgo or relinquish' their hard-carned ganic 'Tho tiack twed and the arctic grulla belong to thi group, and both aro nocaionally neen on the trorthern ahores of britain. Tho genum f/wmedia (fhomandea) inchuden the well-known and gigantic albatromee, the mont jowerful and bulky of the whole fauily; they are oceanje binde, liring alenost countantly out at moa, but aro mono particularly aburdatut in the I'acise Oceats: wo have no examplon in Iritain, or inded in Fiurope: the extent of their ontepreml wing is enormone, yed their faght, excrit in atorngy weather, is by an meana lony; like all the rajacious liond of the comn, they am most voracioun, and their Acsl is rank aus replaire. The genca Jlatairoma omprise such of the allmatronem an have than bill ujure remombliug that of tho pretrels, While they arres with the former in locing dentitute of a hiat tow; but otsly one or two aprecien liave an yet been clandy ancertained. Thio Trae I'retrla (l'rocellorwa) have the lower mandible trumeatell; we have a mative cxample of thia genue in tho f゙ulane (\boldsymbol{P}. glacin!is), but nearly nll the rat inlalitit thentarctic mgana; thang are continually out at
 Virnach name of l'fis l'icrre in derivel frotn their habita of walking on the whtar liy than belp of their wing the thicar. Water l'otrol and enmm othen liave lmen matiatod umber tho viry ubjectionable name of f'winm, from the ditmatit conatruction of their nuatrilesan of the lower mandibile. there in une aprocion, the Finglish l'ullin (P. Anghorm. Tems.), which eppearn to le confined to the burthern consta of Sinclanal. The gerus Thalizesulromn. Vig., differn from tho other jeimla, by haring the lega longer end the loill momewhat shortor: it in crompowl uf thew muad lingh well known to mallor by the rulkar gammof Mother Cary. Chichena Wie may hare almo montion tho muberoun fischyjetion, an being that furm which, of ell thin family, ahown the neame: slimach to the Anafirlo, with which we eummenced the circlo. thom tijl rutaine the genral form of the jomerela, lut the
 firmiohel with terils like laninas. The mont merrant typo of the
 anahogen to the famiogion: thia we hare neser yet neen, but Tem-
mlack and othern consider it has an affinity with the terns. The circle of the larider, wo less thau that of the matatorial order, has now been tracel, and we can only rogret that our limited space prevents us from laying before the realer motne of the rery many nnalogies by which thim arrangement in confrmed."

In the 'Synopaia' at tho ead of the same volume, Mr. Swainson make the Gulls a sub.family under tho name of Laridle, with this defiaition: "Fret lengthened, formed both for walking and awimmiug;" the sub-fnmily conaints of the following genera and sub-genera:-Xerna (Teras), inclulliug Sicrna, Lina.; Thetassites, Sw.; Phaeton, Linn.; Phynchops, Lima.; nud Garia, Brinson; Larus, Linn. (Culla); Lestrin, IIL (Jager); Diomedea, Limu. (l'etrels), ineluding Procellaria, Lhomedea, Libn. (Albatross); Ilulairoma, lll.; Thalassidroma, Vig.; Pachypila, Ill.; And Hromas, l'aykull.

Javing given a general sketeh of tho views of authors respecting this extensive fanily, we shall hem confine ourselvee to the Gulls only, includiog in that term the genera Xema, of leach; larus, of Linmens; and lestrin, of Temminck.

Xema (Leach), - lbill short, Bleuder, straight, laterslly compressed, its tip bent down; tho lover mandiblo somewhat angulated beneath; nostrils very sleuder, linear; legs menter; tibin naked on the lowor part ; tail forked. (Gould.) Jeagel about 14 inchee.
X. ridibundu (larus ridibundus, Lina.). Summer plumage. Bill naked, skin round the eyc, legs and feet, lively-red; head and throad deep-brown, betwecu chocolate-colour and black; shoulders and back gray; outer edges of the quilla (with tho exception of that of the first, which is black) white, extremitics of all but tho first black, slighty tipped with white; ramp, tail, nud under surface, white.

Winter plumage like nummer plumage, saring the head, which is gradually changed from the deep colour above-mentioned to pure white, by a process which Mr. Yarrell has proved to be different from moulting. ("Traus, Zool. Soc," vol. i. 11. 13.)

Young of tho Year.-Colour of Lill and tarsi moro obscure; top of the bead and earcoverts mottled with brown, which is alno the colour of the back and ehoulders, each feather baving a lighter wargin; tail broadly edged with black. (Gould.)

Xema ridihwniws (odult in summer plumnge, and soung of the year). Gould.
This bird in tho Moncto Riouno on h Capuchon Bran of the French; Gabbinuo cinorizio col llontru o colli l'iedi rossi, Gnimone, and Corvo 13ianco, of the Itnlians; Inughing Gull, Pewit, or Blackenp, Sca.Crow, and Mire-Crow, of the linglimh; lis Nijas Bendlu of the Wielnh.
The old birde in their complete wintos plumago are, Jarne cinc-
 Brima; Dionle lachucre im Winter Kleirle, Lainler, \&e.; Kleive Zae tnecuw, Sepp.: (inbbiano (cucrino, null Gablinan Moretta, "Stor degl. C'ec. ; and lRed-1egged Gull of Lathan.

In the mumner or nuptial plumage the hird in Aarus ridibundus,
 1Bicume, 13uff. Kchwnrakopfige Mere, 1helhst., \&e.; Bruinkop Mecuw, Sepp.; Gabbinno Moretta, 'Stor. degl. Uce.;' nad Black-1lealed Gull of T.achams.
Tho young of the jear are Seerna dencura, Brown Tern, and Brown Gull of Jatlanir.

Thas young in their moule and in winter are, farms cepthropus, (Imol. ; la l'ctite Moucte Grise, Mrims, Jarus canesceas, Wechet.; IRev-Iegged Gull, I'can. "Arct. Zool.;" Ilrown-1leuled Gull aud Red. Legged (lull variety, Iatham. (Tcrmm.)
The foorl of thin apecich commate principally of innecta, worma, npawn, and fry, mul amall fiflica lis linhite it reamblen geucrally the other (iulli, but it walka leetter. The neat, contrary to the nidificrition of the other Gulln, which gonemilly form their neats on tho ledgen of rockn near the sen, is placed, an in the case with other liemor,
in low situations, such as meadows in the neighbourheod of the sea or æstuaries, amoug the berbage on the ground. The eggs, which vary much, are generally of a deepish olive, spriakled with large brown and blackish spots.
They inhabit rivers, salt lakes, and fresh-waters; in winter only on the shores of the sea; a bird of passage in Germany and France; very abundant in Holland st all seasons of the year. (Temminck.) Mr. Selby says tbat in Britain they are very regular in their migratory movements (for such their departure to and from the sea-const may properly be termed), and that their return in spring may, in some cases, be calculated upon almost to a day.
Selby spenks of the eggs of this bird as being well flavoured, free from fishy taste, and, when boiled hard, as net easily distinguishable from those of the Lapwing, for which they are sometimes substituted.
The young, he adds, are alse esten, altheugh net held in such high estimation as they formerly were, when great numbers wore annuslly taken and fattened for the table, and when the Gullery (or summer resort of the species) produced a revenue of from $50 l$. to $80 l$. to the proprietor. These are the See-Gulles of the ancient great festivals. In the Heuseheld Book of the fifth Earl of Northumberland, begun in 1512 , these See-Gulles are smong the delicacies for the principal feasts or hin lordship's own 'mecs,' and they are charged at one penny or thres-halfpence cach.
In Willughby's time the price was higher. He mentions a colouy of these birds "which yearly build and breed at Norbury in Staffordshire, in an island in the middle of a great pool in the grounds of Mr. Skrimshew, distant at least thirty miles from the sea. About the beginning of Mareh hither they cone; about the eud of April they build. They lay three, four, or five eggs, of a dirty green colour spotted with dark brewn, twe inches leng, of an ounce and a half weight, blunter at one end. The first down of the young is ashcoloured and spotted with black ; the first feathers on the back after they are fledged are black. When the young sre alnost come to their full growth, those cutrusted by the lord of the seil drive them from off the island through the pool into nets set on the banks to take them. When they bave takeu them they feed them with the eutrails of beasts, and when they sre fat sell them for fourpence or fivepence a piece. They yearly take sbout one thousand two bundred young ones, whence msy be computed what profit the lord makes of them. About the end of July they all fly away and leave the island."

Dr. Plott, in his 'Staffordshire,' adds to the history of the birds that bred in Pewit Pool, in the parish above mentioned, that they weuld breed on no etber land than that of the proprietor of that place, and that on the death of the owner they deserted the poel for three years, but only retired to anather estate belonging to the uest heir. The doctor was fond of the marvellous.

Larus--Bill of mesu length, strong, straight, cultrated, the upper mandible having the tip incurved ; symphysis of the upper mandible atrongly angulated, and ascendiug thence to the point. Nostrils placed in the middle of the bill, lateral, eblong, narrow, and pervious. Tongue pointed, with the extreme tip eloven. Wings long, acuminated. Tail even, or slightly forked. Legs placed near the centre of the body, of mean length and atrength, with the lower part of the tibie nakel. Feet of feur toes, three before and one behind ; the three in front united by a membrane ; the hind one short and free. (Gould.)
L. marinus, Linn.; Geeland Noir Manteau of the French; Grest Black-Lacked Gull, Great Lhack and White Gull of Willughby (the provincial nama is Cobb); Gwylan rudd a gywn (Wagel) of the Welah.

Great Black-Escked Gull (Larus marinus). Adult, ${ }^{\circ}$ In winter plumage.

Periect Winter Plumage of Old Birds.-Summit of the head, region of the eyes, oceiput, and nape, white, but all the feathers marked on their middle with a longitudinal stripe of bright brown ; front, throat, neck, all the lower parth, back and tail, pure white; top of the baek, scapulars, and the whole wing of a deep black, shaded with bluish ; quills towards the end of a deep black, all terminated with a large white apmee; secondary quills and scapulars terminaterl with white; bill whitish yellow, angle of the lower mandible bright red; naked
border round the eyes red; iris brilliaat yellow marbled with brown; feet dirty white. Length' 26 or 27 , inches; females 24 to 25 inehes. (Temminck.) Willughby's specimen measured, "from tip to tip of the wings distended," 67 inches.
M. Temminck observes (1820) that in this state the species had never been described. Willughby and Montagu however had each described one (the latter author in his 'Dietionary,' 1802) aldnest iu the perfect state, and it is now beautifully figured in Mr. Gould's great work on 'The Birds of Europe.'
Summer or Nuptisl Plumage of Old Birds.-Summit of the head, region of the eyes, occiput and nape, pure white without any brown; naked border round the eyes orange; rest of the plumage as in winter. In this state it is Lavus marinus, Liun.; Le Geêland Noir Mantean, Buffon; Mantel Meve, Bechst.; Black-Backed Gull, Latham, \&c. (Temminck.)

Yeung of the Year, and those One Year Old.-At this period the birl is Larus nẹvius, Linn. ; L. marinus junior, Latham; Le Goêland Varié ou Grisard, Buffon;' and Wagel Gull, Latham. (Temminck.)
The Young of the Yesr have the head snd the front of the neck grayish-white covered with numerons brown spots, which are largest on the neek; the feathers of the upper parts are blackish-brown in the middle, all bordered and terminated with reddish-white, which colour forms transverse bands on the coverts of the wings; lower parts of a dirty gray, striped with large zigzags and brown spots; feathers of the middle of the tail more black than white, the lateral ones black towards the end, and all bordered and terminated with whitish; quills blackish, a little white en the poiut; bill deep black; iris and naked circle brown; feet livid brown.
After the First Year to the Age of Two Years.-All these coleurs change no otherwise than that the blackish-brown and yellow of the middle of the feathers occupy gradually less extent, giviug place to pure white, which then surrounds all the feathers; the white begins to predominate over the gray in the lower parts, which lave gradually less of the brown spots; the head becomes pure white, and the point and base of the bill assume a livid tint.
At twe years, on the autumnal moult, the mantle is defined; it is then blackish, varied with irregular brown aud geay spots; the white becomes pure, and only sprinkled with a few spots; the tail is pervaded with black marbliags of varied forms; and the bill assumes the red spot with black in the middle,* the rest of that organ being livid white speekled with black.
At the third autumnal moult the plumage is perfect.
The young vary accidentally in having all the plumage grayishwhite, with deeper spots, and spots very feebly indicated; the quills whitish. Sick individuals put on these appearances, as well as the greater part ef these which are kept in eaptivity. (Temminck.)
This species is very sbundant in the Orcades and Hebrides; common in its donble passage on the coasts of Holland, France, aud England; lives in the north; never or very sccidentally found in the iuterior or on fresh waters; rather rare in the Mediterrauean. (Temminck.) Common in many parts of the north of Europe, but does not appear to extend, at least in any considerable numbers, to very high latitudes, as Csptain Sabine, in his 'Memoir of Greenland Birds,' states thst it was ouly once seen in Baffin's Bay, sud Sir John lichardsou never mentions it. Met with, but by no means plentifully, upou most of our coasts, usually aloue or in pairs, and rarely in a flock of more than eight or ten together. (Selby.) Ameriea (near Philadelphia), not very rare. (Prince C. L. Bouaparte.) United States. (Audubon.)
Fish, living or dead, fry, carrion, \&c., form the food of this species, according to Temminck, who adds that it rarely feeds also on bivalve shell--ish. "It is," says Selby, " of very veracious appetite, and preys upon all kinds of animal substance that may happen to be cast ou shore. It also keeps a close watch upon the lesser gulls, whom it drives from any food they may have discovered, appropriating the whele to itself." Mentagu notices the damage it docs to fishermen by severing and devouring the largest fish frem their hooks, if left dry by the ebbiug of the tide. Flight slow, but bueyant. Cry strong sud hoarse, to be heard from a great distance when the bird is on wing, and most frequent in the spring and brceding season. Very wary; keeping by the shores of the sca, whieh it only quits accidentally. Nest on the roeks, Temminck says, in the regions of the Arctic Circle. Captain Sir James Ross however, in his Last Expedition of Sir John Ross,' does not mention it. Eggs three or four, very deep olive-green, with great aud small blaekish-brown spots. (Temminek.) Like those of the Herring and Lesser Black-Backed Gulls in colour and markinga, but are larger. (Selby.) The author last quoted says that its breeding-stations in Britain are the Steep-Holmes and Lundy Islands in the Bristol Channel, Souliskerry in the Orkneys, tho Bass Rock in the Frith of Forth, and one or two other stations upon the Scottish coast. Mr. Gould says that it also breeds in the marshes at the mouth of the Thames, making a nest on tho ground of reeds, rushes, and flag-leaves.

* The individual described by Willughby as the Great Black-and-White Gull (Larus ingens marinus Clusii), and hereinbefore noticed, seems to have been in thls stage of plamage, or rather moro varied. Willughby took 'a plaise entire' out of its otomach. He also mentions another (whieh he supposes was a young one) with the head and neck particolonred of black and white, and tho back and winge paler.

Lumit (Catarnactas, Rayl Catarracta, Aldrov. 1).-lsill moderate, liard, atruaz, cyliodrical, rery comprosed, hooked at the point, the upper tnandible corered with a cero, the under mandiblo with an angle an tho ioferior edge. Soutrils appruaching the point of the bill, diagotal tarrove, clowat on their ponterior part, and perrlone Tarmi longe makel aboro tho knec. Freet having throo wee before, cotirely pratwated; hisd toe rery mall; maile large and bookel. Tail alightly rounded, two middle feathers clongated. Wingr, first quill-fontber longet (iould.)
\mathcal{L} paninitime Old of bolb Seses in Perfect Plumage.-Front Whtids; on the summit of the bear a sort of hoot of blackishbrowa, terminating at the oociput; thruat, region below the oyer, all the ecck, the bromet, the lelly, and sbdomen, pure white; on the flanks come mbecoloured undulationn; lower corerta of tho tail, back, wing and caudal foathors, unifurm very deep ashy-brown, ginduating intu Whelith on the end of the quillm and tail-feathers; the two long tailfeathert ternimated in a loose point (eu pointo ereadthée); baso of tho bill bluinb, proint black; iris brown; foet doep black. Jongth 14 or 15 inchea; the long feathers exceed from $\$$ to 5 or 6 inches. (Tetnm.)

In thin utato M. Temeninch considers it to be Larms parositicur, Linn., Gmel. : Cubaracta parasifica, Rete; Stercorarime longicaudu, Brina, 1. lable a longuo Quenc, Dufi, : Stercoraria di Cola Longa, "Stor. degl Uec ; D Die Polmowe, Lepechin; Siruntmere, Beohst. Aretic Hird, Eilvarde ; Arctic Gull, I_metham.

Middle Age--All the upper partm epotless ashy-brown; lower parts a nhale brighter, equally spotless ; interior lase of the quills and the upper part only of the caudal fealhers pure white, the reat blackinhbrewn: the two long feathers gradually diminishing towands the end, which in terminated in a very loose joint; bill and feet as in indi. riduala with perfect phumage

In this state the bind in Larme crepidatus of the first edition of M. Temminct": "Manuel;" Le Stercoraire of Briseon; Le labbe on le Stercoraire of Buffon, cspecially [ll. Enh. 891, aud more especinlly lidw., \& 149. (Temm.)

Arctle Goll (Lestria parantiome).

Yonng of the Year at the Time of their Leaving the Nent-Top of the head deep gray; miles and upper part of the neck lright gray, *priaklol with lrown longitudinal mota ; a black npot before the eyes; lower past of the oeck, back, neapulara, mmall and great coverts of the wing umber brown, ench feather louing lordered with yellowinh-brown, and onen with redlinh; lower parta irregularly variogated with deep brown atd gellowish-hrown on a whitinh ground; almomen and tail. corerta nifijed traunvermels: quidl nut tail-featherm blackish, white at Uheir ban aod internal harlm, all tenninated with white; tail rounded only; ban of the lill yellowiwh-green, Whack towarls tho joint; tami bluiah-ah; lase of tho ween anil membraten white, tho reat black; pontarior mall oflem white. (Terman.)

Io thels atate M. Ternminck conmiderm the liont to be farus cropidalus, Omelin: Catarracta (Catharncta) Coyjhis, Mruntich; le labbo ou Secronraire of authorn: Iabla h Courte Queue, Cuv.; and BhackTowf llull of Latham and lennant: Yr Wylan Yngnfn of tho Wolah.

Mr. lioulul, whom ligure wn lave eogicel, maje that he believes the birit th quention to be the erue J'arositicme of limnietn, Buffou, mul Temminck; aul alhoush Mr. Goult thinka it probnile that the omacion unlegzen variationa in plumage mimilar to thone of Deafria Rirhardmona, he in by no mpanm alde, from hin own knowledge, to neate thim to lma tho cane, an In all the njecimenn which ho had opportranithon of examiniug the marking wero clear and flecidect, the hirim exhiliting a well flefiond, Hark-ooloured cap on the hemb, light under frate, and very lung mildle tail feathern

Localilier Sharen of the Ialtic, Norway, and Steden; mprealk itedf habitally in the intering on lakes ablivern; of periomical or ancileutal pamenge in Commany, IIollanl, France, And Switzarlaud, where the joune only ordinarily aro meen: the old rurely wander. (Tamminck.) "Io ita young state, an tho flack.Tom) Gull (Jarue erpiviafen) of authirn, "hie "pecien," writen Mr. Selby, "in not of unfregnent occurrenor, during the autumal monthe, uprif the northern
const of Fingland, to which it is attraoted by the Gulls that follow the moaln of herring on thelr appmach to the shallows for the purpose of depositiog their apawn. Like the other Skuas it obtaina the greater part of ita mubsistenco by continual warfare on the above-nentioned binis, vigoround pursuing and harasiong them till they are conpelled to dingorgy the food proviounly swallowed. In this oocupation its dark phumase and rapid tight are oertain to attract the attention of the apectator: and theroaro few probably who have visited the coast of Soothand and tho northern diatricts of Enghand who have not witnessod and admired the serinal evolations of the Teazer, and the diatress of its unfortumate objecta of attack. It is but very rarely met with beyond tho preciucta of the Shotland and Orkncy Isles in its adult state, and ouly one iustance bus accurrel within my own observation, manoly, on an excumion to the Fern lslands in the month of May, when two of these binds tlew ahead of tho boat in a mortherly direotion, and which were perfectly lintinguishable by their leugthened and slouder middle tail-feathers, and the black and white of their plumage. This Skua does not appear to be a grermanent resident in any part of the Britimh dominions, for Low, in his 'Fauna Orcadonsis,' describes it as a mignatory bind, arriving there and in Shetland in May, and dopart iug in autuma, or as soon us tho duties of reproduction havo been etfected." Mr. Gould mays that be has not been able to ascertain whether it broed, among tho British Isles, and adds that it is certainly of rare occurrence. Ita natural labitat, he thinks, is more coufined to the north, namely, the shores of the Baltic Sea, Norway, and the Polar regions. Alt our Aretic voyagers mention it, down to Captaia Jamen Hoss inclusive, nad it ajpears to be common in tho Polar Seas of Euroje and America.
The account given by Mr. Selby above will prepare the reader for the priucipal source whence this and other Jiger Gulls derive their subsistence, namely, by pursuing and buffeting the peaceable gulls aud compelling them to reuder up the produce of their toils. But they also feed on fisb, insects, and worms, and Temminck particularly mentious the Janthina, or Oceanic Suail, as forming a part of its susteuance. In truth no animal substances seem to come auiss to it. Mr. Richaris, of her Majesty's ship Hecla, saw this bird feeding on the bodies of some young children whosegraves of ice had vanished ou the thats, noar lgloolik, on tho 2lat of June 1823.

Tenminck says that it uestles wot far from the sea-shore. Sellyy, who states that it breeds upon sevend of the Orkney and Shetland Isles, and that it is gregarious during that period, informs us that the situatious selected nro tho unfrequented heaths at some distance from the shore, and that the nest is composed of dry grass and monses. The eggs are two of a dark oil-green with irregular blothes of liver-brown; aud Mr. Selby adds that the bird at this time is very courageous, and, liko the Common Skra, attacks overy intruder by pouncing and striking at the head with its bill and wings. Occasionally it eudeavours, according to the aane authority, to dirert attention by feigning lameness iu the same mauner as tho l'artridgo and the Lapwiug. In the Appendix to Parry'm 'Voyage' (1819-20) this 'Aretic Lestris' is stated to be equally nhundaut in the islands of the Polar Sea as iu Batiu's Bay. Captain Edward Sabine, who drew up the account, states that it is frequently met with inland, soeking its food along the watercourses which occupy the bottom of ravines; differing in this respect from tho l'omariue Lestris, which is exclusively a sen-bird.
The following is a list of tho British Luille, according to Yarrell :-
Sterne Caspia, the Caspian T'ern.
S. Moysii, the Sandwich Tern.
S. Howallii, the Roseate Tern.
S. Dirundo, the Commou Teru.
S. arctica, the Aretic Tern.
S. Icucopareia, the Whiskened Tern.
S. Aughea, the Gull-billed 'lern.
S minuta, the Jeceser T'ern.
S. fiesipes, the Btack Tern.
S. lewcoptera, tho White-Winged Black Tern.
S. atulila, the Noddy 'Tern. [Stersa.]

Larms Subini, Sabines Gull.
d. minutus, tho Little Gull.
l. capistratus, the Maked Gidl.
l. ridihnendus, the Black-Jeaded Gull.
h. atricilla, the isaughing Gull.
J. ©riducylus, the Kittiwak Gull.
L. churncus, the lvory Gull.
C. canme, the Common Gull.
I. Jerlandicne, the Iceland ('ull, or I, ergor White-Winged Gull I. fuscua, the l.egeer Jilack-Backed Gull.

1. "ryenfatum, the IJerring Giull.
2. nurinus, the Great Black-lhacked Gull.
L. glaucws, the Glaucous Gull, or Iarge White-Winged Gull.

Ifatria cataracter, the Common Skua.
4. pronarinue, the l'omerine tikua.

1. Nichardsomii, Kichardnon's Skun.
L. Buffuriz, Buflon'a \$kua

I'rorellaria glacialia, the Fulmar Petrel. [Procellania.]
I'sfinus major, the Greater Shearwater.
I': anylorum, the Maux Shearwater, [Purfinus.]

Thalassidroma Bulwerii, Bulwer's Petrel.

T. Wilsonii, Wilson's Petrel.
 T Leachii, the Forked-Tailed Petrel.

T. pelagica, the Storm Petrel. [Thalassidroma.]

LARK. [Alacda.]
LARKSPUR. [Delphinium.]
La'RRIDEE, a family of Hymenopterous Insects of the section Fossores, distinguished by the labrum being either entirely or partially concealed, and the mandibles deeply notched on the inner side near the base. It contains the following genera:-1. Palarus (Lat.), in which the antennæ are very short, and are gradually thicker towards the apex: the cyes are closely approximated posteriorly, and inclose the ocelli: the second cubital cell is petiolated. 2. Tachytes (Panzer), antenne filiferm, the basal joint slightly incrassated, the rest cylindrical ; superior wings with ons marginal cell, slightly petielated and three submarginal cells, the third narrow and oblique ; mandibles with a dentate process on the inner side near the base. T. pompiliformis is about $2 \frac{1}{4}$ lines in length; black, with the basal segments of the abdomen red. It is not an uncommon insect in various parts of England. 3. Larra : this genus differs from Tachytes (which is Lyrops of Illiger) in having no toeth on the inner side of the mandibles at the base; the eyes not being approximated posteriorly, and the metathorax and abdomen being decidedly larger. 4. Dinetus: eyes converging posteriorly; antenne filiform in the female, with the first joint incrassate, in the malo larger, with a deep lateral impression, the four following jeints eubmoniliferm, aud the five next slightly compressed and convoluted, the remaining three filiform; superior wings, with one appendiculated marginal cell, and three submarginal cells. But one species of this genus has been found in Englaud. 5. Miscophus (Jurine) has one marginal cell, which is not petiolated, to the superior wing, and twe submarginal cells, the second being petiolated; the antennx are filiferm in both sexes. There is but a alight projection at the base of the mandibles. M. bicolor (Junine) is the only species found in England, where it is apparently rare. (Shuckard, Esacay on the Indigenous Fossorial IIymenoptera.)

LARVA, a term applied to that state in which an insect exists immediately after its exclusion from the egg, and which precedes the pupa state. The animals commonly called Grubs, Maggets, and Caterpillars ars larve. Grub appears to be a general term analogous to larva; the term Maggot is most generally applied to the larva state of Dipterous Insects; and Caterpillar, in the most common acceptation of the term, is used to designate the larra state of Lepidopterous Insects. These three terms however are used in a very vague manuer.
The most atriking difference perhaps which cxists between the larva and the perfect insect consists in the superior powers of locomotion and consequently better developed skeleton posseased by the latter.
Though larrae nerer possess wing, they vary much as regards the development of the locomotive organs, and as these are more or less perfect, so do the larve resemble or recede from the insect in its imago state. Hence Messrs. Kirby and Spence divide larve into twe sections: those which, in general form, mere or less resemble the perfect insect; and those which are unlike the perfect inscct. The larvec of both sections moult, or cast their skin, several times during their progress to maturity; the number of moults varies according to the species, and the period intervening betwecn the moults depends upon the length of the insect's existence in the larva state. In these moults, not only is the whole external covering of the insect cast, but even the lining of the intestinal canal and of the tubes of the tracher is shed.
The greater portion of the larve of the orders rthoptera, Hemiptera, and Homoptera, excepting that they have no wings, bear a considerable resemblance to the perfect insect, and hence belong to the first of the sections just mentioned. As however the muscles which serve to support and give motion to the wings are attacked to the skeleton of the therax, so, as might be cxpected, we find this part in the perfect insect more unlike that of the larva perhaps than any other ; and agaiu where (as in the imago state of scutellera) a portion of the thorax is greatly produced behind and serves to pretect the wings when folded,--the larva, haviog no wings, docs not possess this peculiarity.
Belonging to the second division, in which the larva does not resemble the perfect insect, are the orders Hymcnoutcra, Colcoptera, Neuroptera, Lepidoptera, and Diptera.

The larva of IIymenopterous lasects arc usially of a short ovate form, and short and fleshy substance, devoid of legs or distinct head, and the body lies in a bent position. In the Tenthredincte (Latreille) however we have a remarkable exception, the larvie of these insects not only being furnished with six legs attached to the thoracic scgmenta, but also pessessing a great uunber of prelegs. These prolegs are usually sisteen in number, and attached in pairs to the abdominal segments; in some there are but fourteen, and in others only twelvc prolegs. The larra of the Tenthredincter very much rescmble those of Lepidopterous Insects, but differ in the grcater number of their prolegs; the heal is large, vounled, flattened in frent, and vertical in position; the body is always bent under, and when touched they roll themelves up like the Iuli. In the genus Pamphilius (Lat.), the larva possesses six thoracic legs, Jut no prolegs.

The larve of the Coleoptera are most commonly of an elongate, cylindrical, or slightly depressed form; the thoracic segments are almost always provided with six legs, and there are seldom any prolegs on the abdominal segments. The head is furnished with mandibles, maxillæ, labrum, labium, and antennæ, aud very frequently with ocelli. The parts of the meuth and the antenux however do not resemble those of the perfect insect. The anteunæ are usually very small, and cempesed of but three or four distinct jeints. The ocelli of the larva are replaced by compound eyes in the perfect insect. The thoracic segments are often protected by a horny plate on the upper surfacs: the prothorax, which is usually the largest, is generally so protected. The legs, of which these segments bavc each a pair, are of moderate size in mest larve of this order, and compesed of a cosa, trochanta, tibia, and tarsus; the last however appears to be represented by a small jeintless claw. The body is often seft, but sometimes, like the thorax, protected by horny plates, as in some of the Carabide, Silphide, \&c. In the Carabidac, Staphylinider, and indeed many families, it is somewhat depressed. In many of the Heteromerous Insects it is cylindrical, of a coriaceous texture throughout, and the terminal segment is often furnished with herny appendages at the apex, and one or two prolegs beneath. The larve of many of the Elaterides are also of a coriaceous texture and cylindrical form, and the terminal segment of the abdomen is generally furnished with horny appendages. These appeudages are indeed very commonly met with in Coleopterous larve. In these species belonging to the sections Lamelicornes, Rhyncophora, and Longicornes, however, we have not met with them, and the body is always of a soft and fleshy texture. The larve of the twe last-mentioned sections have extremely minute legs.

In the order Neuroptera the larve very much resemble in geueral appearance many of those of the order Coleoptcra: they always possess six thoracic legs, but seldom any prolegs. In the Case-Worms (Trichoptera) and some others there are a pair of prolegs attached to a terminal segment of the abdomen.

In the order Lepidoptera the larve (or caterpillars) are soft and fleshy, and usually of a cylindrical ferm. They possess 6 theracic legs and generally ten prolegs. The prolegs vary in number, and are attached in pairs to the under side of the abdeminal segments; but none are ever found ou the 4th, 5 th, 10 th, or 11 th segments. In the larves of the Geometree there are but four prolegs, two of which are attached to the anal segment, and the other two to the ninth. Some of the Tinnce have but two prolegs, and these are anal. In the genus Apoda (Haworth) the larver have no distinct prelegs, but in their stead a number of small transpareut shining tubercles, without claws. "The prolegs of almost all lepidopterous larze are furnished with a set of minute, slender, herny hooks, crotchets, or claws of different lengths, somewhat resembling fish-hooks, which either partially or wholly surround the apex like a pabissde. By means of these claws, of which there are frem 40 to 60 in each proleg, a short and a long onc arranged alternately, the insect is enabled to cling to smeoth surfaces, to grasp the smallest twigs to which the legs could not possibly adhere; a circumstance which the flexible nature of the prelegs greatly facilitates." "When the sole of the foet is open, the claws with which it is more or less surrounded are turned invards, and are in a situation to lay hold of any surface; but when the animal wishes to let go its held it begins to draw in the skin of the sele, and in propertion as this is retracted the elaws tnrn their points outwards, se as not to impede its motion." (Kirby and Spence.)
The larve of Diptereus Insects are fer the most part soft and fleshy, and without legs; none have true jointed legs: some however have prolegs. The head is usually soft and indistinct, but in certain species the head is semewhat corneous, and of a determinate shape. [1nsects.]

LARVA'RIA, the name of a group of Tertiary Fossils, proposed by M. Defrance. (Blainville, Actinolegie, p. 442.)

LARYNX is the organ of the veice; its framework is composed of fivc cartilages, which are capable of being moved on each ether in various directions by muscles, so as to act upon two elastic bands, on which the voice essentially depends, and which are called the vocal ligaments.
The first, the Thyroid Cartilage (fy. 1), consists of twe plates (a, b) of dense tough fibrocartilaginous substance, of an irregularly quadrilateral form, which are united at the lower part of their anterior edges (c, c) at an angle of about 60°. The prominence of this angular union is felt in the front of the throat, forming what is called the Pomum Adami, at the sides of and behind which the form of the cartilage may be easily traced out with the fingers. The pesterior edge of each platc bcars at cach angle a process or horn ((d, d, c, e), by which the thyreid cartilage is attached ly ligaments above to the hyoid boue, and below to the criceid cartilage.
The Cricoid Cartilage (fig. 2) has somewhat the form of a signet ring. It is inclosed within the angle of the thyroid cartilage, beueath whose lower edge the front and narewest portion (a) of its ring may be felt, with an interval of about a quarter of an inch betwcen them. It has an articulating surface on each side, by which it is moveably connected with the inferior lorns of the thyroid cartilage; and two ether smooth convex surfaces (b, b) on its upper and posterior edge, by which it is articulated with the two arytenoid cartilages.

The Arytenold Cartilages havo each tho form of an irregular trianpalar pymenid (fif.3). They aro placed upon the upper odge of the Gronel jart of liso cricoid cartilage, just within the mont expanded par: of the angle furmed ty ther receding platem of the thyroil. The lues (\quad) by which each is articulated with the cricojil is alightly concave, ferfeculy mouth, and capable of moving to a certain extent in every direction.

The Ejpiglotin (fig. f) is of a somewht orate form. It is nttached by ite alex to the angle of union of the plates of the thyroid cartilage, and project obliquely backwarla and upwards over the cricoil and arytinoid cartilages like n shich, guarling them from the contact of forcign bodies pating from the month,

Theme cartilages are connected chiefly by elastic ligament, whieh is arranged in band of rarying thickness througliont the whole of the larrox, uniting the upper edge of the thyroid cartilage to the os hyoilen, and its lower edge to the cricnid cartilage: passing also from the argtenoid cartilages to the epiglottis, nnd uniting the rings of the trachensad bronchi; affording to all a firm but gielding connection, and candowing them by its elastieity with the power of resouncling in accondance with the ribrations originating in the voenl hignments.

The Vocal Ligarneuten are two narrow bands of highly-elnotic tissue, stretched between the anterior angle of the thyroid and the nuterict sorfaces of the the regtenoill cartilages. The mubstanee of which they are conoposed in a yellowinh dense fibrous tissue, which is placed in thowe itarts of the bexly where a permanent elanticity is required, man the plyares between the laminie of tho vertebres, the conts of

rinht reresl higuntint is Irawn: a, a, a in the untline of the thyroid castilace. of which part of the loft side in removed; b is the cricoid cartilap:", anle the arytencial cartilage of the right nide; d, d in the vocal lianmost. In sig. is the viow of the vocal ligamenta (u) in Laten an ormis fonatiove; they are attacheal nateriorly tu the inside of the thyroit cartilnge at b, mat puateriorly to the frowt of the arytonesil cartalagen (r, r) l'atuess them in the sperture through which welireather the glottin (1): it in bumalel denterionly by the inner
 aho inner releon of the vacal ligamomet When ret reat, an during quict breathing, the glottion is of ghomenhat lancerbato form (fig. If, an cutherel ly the dotai, lut when spending or aingitug it in very much

 arratated aytomencally and atlacheol to corroponding pointa on ench mirfe of the largita. mat their namen are compunaded of those of the car:blage ors whel : ber are inamerl, an follows

 patt of the criccist cartilage: and at the wher, to the lower enlge of the thyrend, juet licorare ita lown harm. Its fibres are dircted ufow ania sumblackmarin, sued its immedinte netion would therefore bo to approxitate the molamerne elgen of the thyroid and cricoin cartilagen. hat the thyroill in ixal wh rach mide by aligament pamisig from ite inferior bern :e the nile of the hemal part of the cricoill (fig. $5, f$),
and the crico-thyroid inuscle will therefore produco a notatory motion of the cricoid cartilsge around tho horizontal axis drawn through f. When the anterior edge of the cricoid cartilage is thus raised townrds the anterior angle of tho thyroid its posterior and upper part will be movel backwards and downwands to n greater distance from the front of the thyroid; and if the arytenoid cartilages be fixed on the top of the ericoid, they will of course move with it in the same direction. The distance between their anterior edges nod the angle of the thrroid (fig. 5) will thus be increased, nud tho vocal ligaments (d, d), which nre attached to those points, will bo proportionally stretched.
The Thyro-Argtenoidei (fig. 6, c, c) are nttached anteriorly by the sides of the angle of the thyroid cartilage to the onter side of, and above, the rocal ligaments, nad posteriorly to the anterior angles nud outer edges of the nrytenoid cartilages. Their simplest nction will therefore be to ajproximste the same points which the preceding muscles reuder nore remote; they will thus shorten nud relax the vocal ligamente. Some of their fibrea extend on each side for a short distance above and below the vocal lignments; those below have the power of narrowing the necess to the glottis, while those nbove the ligaments may compress together the sides of the larynx directly over the glottin lastly; there nre other fibres which are nttached to the outer edges of the vocal ligaments themselvea.

The Crico-Arytenoidei Postici (rig. $5,6, \zeta$) areattached to the posterior surface of the ericoid cartilage (a, a), and pass obliquely outwards, to be inserted into the outer angle of the nrytenoid cartilages. In contracting thercfure, if the arytenoid cartilages be moveable, they will draw their nuterior angles outward, and thus increase the width of the glottia; but if the arytenoid cartilages bs fixed by other muscles, the erico-arytenoidei postici will merely draw them backwards and stre:ch the vocal ligaments.

The Crico-Aytenoidei Laterales (fig. 7, e) are atheched on the one hand to the inner sides of the cricoid cartilage (a), and on the other to the outer angles of the nrytenoids (b); they rotate the Jatter inwards, so as to npproximate their front portions and marrow the nnterior part of the glottis.

The Posterior Arytenoid Muscles (fig. 9, c, c) lie behind the ary: tenoiel cartilages, and consist of fibres paesing transversely and obliquely from one to the other. They therefore simply aplroximate these bodics, nud narrow or elose the back part of the glottis.

The simplest actions of all these muscles in regard to the voice may therefore be thus stated: the ericothyroidej stretch the vocal ligno ments; the thyro-argtenoidei relax thein; the crico-arytenoidei postici open the glottis; the crico-arytenoidei lnterales nad the arytenoidei postici narrow or close it.

A land of muscular fibres nay lie num nentioned as passing from the nrytenoid cartilages to each side of the epiglottis, nad thus serving to Iraw down the lntter so that it may corer the glottis more closely than when left to its own clasticity.
lelow, the larynx opens into the traehea (fiy. 10, 8), which in continued into the cheat, and there divides into two branches, the bronchi, whose ramifications mal terminations form the nir-passages and aircelln of the lunge. The lungs, being exnetly contained in the cnvity of tho chest, are compressed by the contractions of its walla. The walla of the clase are therefore the fower by whieh the nir is forced from the lusgn throngh the glatis for tho productions of the roice, nud it in by their more or less powerful contraction that the varions degrees of intensity of the samo noto nre produced. The trachea in compesed of a nericm of eartilaginous incomplete ringe which are united behiad by museular fibres, abd are connected togethor by longituminal clantic bands. It is thus enpable of variations both of length, browlth, fad lension; nul of entering juto vibrations with the column of sir contained in it, noll of manisting in communicating thosen ribrations through its brancles to the walle of the chest.

At the upper firat of the trachea the wind pipe gralually narrows towardn the glotian (nce view of itw section infig. 12); nall nbove the glotidn it nudulenly dilates, so that the elges of the elastic rocal ligamenta $⿴$ eanl out from the wall of the larynx, and have space in which they may vibrate frecly, like the lipe in the mouthpiece of a trumpet. About half manch higher the passage ngain contracta, so mo to fortm n harrow recess on each nide, directly nbove the vocnl cords, Thin is called the ventricle of the laryne, nad the prominent Landa fobove it are called the falsc rocal cords, or the upper ligancuts
of the laryns. They are formed of elastic tissue, like the inferior or true vocal ligaments, but in less quantity, and mixed with fatty tissue, so that they do not vibrate 80 freely. The walls of the ventricle are capable of being approximated by some of the fibres of the thyrosrytenoid muscles, which are thinly distributed upon them; and thus the recess may be nearly oblitersted, and the upper ligaments brought almost into contact.

The highest part of the larynx is formed by two folds of membrase passing from the arytenoid cartilages to the epiglottis (fig. 10), forming an oval aperture which admits of variations of size by the action of the muscles already mentioned. At this aperture the larynx communicates with the upper and most expanded part of the pharynx, the cavities of the mouth and nose, and the frontal and other sinuses which oper into the latter. These sinuses are walled round by bone, but the pharynus and its communications with the mouth and nose, as well as the external apertures of the two latter cavities, are in great part muscular, and may be thus subject at will to alterations of form, size, snd tension.

The larynx has been compared to a variety of tousical instruments, and it will be seen tnat in its different parts it unites the principles of several. In its essential vocal apparatus it most nearly resembles the reedinstruments, as the reed-pipes of the organ, the clarionet, \&c., or rather a modification of them, in which the vibrating body is not fixed in its dimensions as a metallic tongue, or a reed, but consists of a lamina of elastic membraae, capable of varied degrees of tension, ms well as of alterations in its length. No mosical instrument has yet been constructed on this principle, unless we conaider as such the various kinds of trumpet in which the vibrations are produced by the air impelled against the edges of the lips, rendered more or less tense by the action of their orbicular muscle. The principle has been spplied in the formation of artificial

1, 1, Os hyoides; 2, 2, Thyroid eartilage; 3,3 , Cricoid cartilsge; 4, 4, Arytenoid cartilages; 5, Epiglotis; 6, Aperture of commuaication between glottis and pharyax; 7. 7, Rings of trachea; 8, situatioa of transverse posterior muscuiar baads; 9, 9 , portion of trsehea cut opea from behind. larynges by Biot, Cagniard de la Tour, Willis, \&c., who have chiefy used caoutchonc membrave; and by Müller and Henle, who have employed besides either the vocal ligaments themselvee, or lamine of the elastic coat of an artery. The most complete examination of the subject is that male by Müller, and published in the first part of the second volume of his 'Physiologie des Menschen.'
It is evident that by adapting to one of the open extremities of a tube two portions of thin elastic membrane, so that their opposite edges leave a narrow space in the middle, through which the air blown into the other end of the tube may pass and excite vibrations, one obtains an imitation of the essential vocal appsarstus of the larynx; the trachea being replaced by the tube, the vocal ligaments by the bande of elastic membrame, and the glottia by the space between them, while the parts above the glottis may be imitated by adapting tnbes of different sizes and forms sbove the membranes.
In such an apparatus Mr. Willis found ('Cambridge Philosophical Transactions,' 1832) that in order that two lamine of elastic membrane inclosing a narrow interval should produce sound, the parts near their edges must be parallel to cach other. Applying this law to the case of the laryny, he observes that something more is necessary for speaking or singing than a certain degree of tension of the vocal ligaments, for they are always more or less tense; and even whien their tension is increased, and all the cartilages are in the position for produciag sonad, we may yet breathe quietly, the edges of the vocal ligaments not being parallel.

Fig. 12 representes two vertical
 tiansperse sections of the larynz, the continued line indicating the pesition of itn parts when not sonnding, the dotted line the same parts NAT, illst, div. vorio ifi,
in the vocalising position, in which the edges of the ligaments sre parallel to each other. Mr. Willis considers it to be one of the functions of the thyro-arytenoid muscle to place the liganents in this essential position.

When the vocal ligaments are thus placed, the modulations of the notes are effected by the changes in their length aud tension; for, like those of other elastic membranes stretched at both ends, they follow in many respects the same laws as cords. [Corn, in Arts And Sc. Drvi] Thus, the degree of tension being the same, the height of the note is inversely as the length of the membrane; and the length being the same, the height of the note, as expressed by the number of vibrations, is directly as the square root of the power employed in producing the tension. The application of these laws to the vocal ligaments was experimentally proved by Müller. In a part of his experiments on the dead larynx he succeeded in producing the complete scale of notes and halfnotes through a range of $2 \frac{1}{2}$ octaves, by gradnally increasing the tension of the vocal ligaments by weights appended to one of their extrenuities. The weights produced exteasion in the same direction in which the crico-thyroid muscles act, when, the arytenoid cartilages being fixed, they throw thera backwards with the cricoid as already explained. If instead of etretching the vocal ligaments they were left to their own elasticity, or still more relaxed by artificial means, in imitatiou of the action of the thyro-arytenoid muscles, still lower notes could be produced.

In the course of these experiments Miuller found that the tones of the dead larynx, which in the lower notes clesely resembled the cheetnotes of the human voice, were very apt, as they ascended in the scale, to assume the characters of the falsetto voice. He was thus led to discover the mode in which the latter class of notes (whose origin had long been the subject of great doubt) is produced. In sounding the chest-notes, and in the common voice of speakiag, the whole vocal ligamente vibrate, and with them part of the ventricles, and of the thyro-aryteaoid muecles; but in the falsetto notes it is only the thin edges of the ligaments which are thrown into vibrations. He found also that he could prevent the tones of the chest-notes from breaking into those of the falsctto, as he ascended in the scale, by compressing the part of the larynx immediately below the glottis, in imitation of the action of the lower fibres of the thyro-arytenoid muscles.

As in all reed-instrumente, the velocity of the current of air exciting the vibrations of the vocal ligaments has an influence on the note prodnced; thus Miiller found that the natural note of the vocal ligaments at a given tension could be raised to its fifth by blowing with increased force. He believes that in singing the same note with varied degrees of force, a compensation is effected by lessening the tension of the ligameats in the same proportion as the velocity of the current is increased; but it seems more probable that the tension of the liganents is always the same for the same note, while it is the office of the epiglottis to prevent the notes from rising with the increased force of the air. It may effect this on a principle discovered by M. Grenie (Magendie's 'Précis de Physiologie,' i. 253), who found that to remedy the inconvenience arising from the ascent of the note when the current of air blown into a reed organ-pipe was increased, it was sufficient to place within the pipe directly over the reed a supple elastic tongue, which shielded it very nearly in the same mancer as the epiglottia covers the vocal ligaments.

Minller found that sounds were most easily produced from the deal larynx when the saterior angles of the arytenoid cartilages were in contact, so that only that part of the glottis was open which is bounded by the vocal ligaments. The tension of the ligaments being fixed, the same note could be produced whether the glottis were widely open or nearly closed; but it is probable that, though not essential, the varying apertures of the glottis are auxiliary to the complete snd pure sonnds of the different notes; for Msgendie (l. c., p. 247) distinctly saw it become narrower as the notes emitted by a dog were higher; and in singing high notes one clearly feels that the air passes through a narrower aperture and with more difficulty than in singing the low notes.

The notes prodnced at the glottis are subjected to modifications in timbre, strength, and purity, by the parts connected with tho larynx both above and below the vocal ligaments. To illustrate this, one need oaly refer to the difference of tone which may le drawn from a clarionet-reed when it is only attached to the month-plece, and when the mouth-pieco is fixed on the body of the instrument. This part of the subject has been particularly illustrated by M. Savart, Mr. Wheatstone, and Mr. Bishop. It is well known that in all reed instruments, unless the tube or body be adapted to the reed so as to be capable of the same number of vibrations as it is, there is always a discordance of sounds. If for example the tube be unalterable in length, while the reed ie capable of varied modifications of pitch, the sonnds will be irregular in intensity, and iu some parts of the scale will be totally extiaguished. Thus it is that in organs, in anch pipe, the tongue and the tabe have to be adapted to each other, and that in clarionet-playing mach of the perfection of the tone depends on the adaptation of the pressure of the lips on the reed to the length of the tube as determined by the number of holes covered by the fingers. Savart ('Jourual de Physiologie,' t. 5) has shown that if the walls of the tube, instead of bcing fixed in their dimenaions like those of reedinstruments, be capable of varying degrecs of tension, an extraorlinary
varicty and fulncar of notos may be produced; and that the ohrill whitele of tho binleall (with which he compmed the larynx) in, with the mane mential principlo for the original formation of sound, cunveracl into a fuli round tone. In the human boly such a tube -siota on both nidea of the glotik, and is in both parts capable of variction in teanion, nize, and form. Thun tho urnchen may be acted oa by ita pronterior munclen and ith clastic bands; and to a far greater estent the garts abovo the glottis will vary in their condition. In e:nging an mocending malo of notea, if the finger be placed in the interval betwecu the manglo of the thyroid cartilage mad the front of the hyoid boac, it will be found that as tho notea emitted become higher the interral diminimes aod the whole laryux risen. Thus the tube shove the glotin is abortenod, junt as in sil wind-instruments the boaly is shortencd by opening the holes at their sides, or by puating one part of the tube withia another. At the samo timo tho tips are drawn in and compressed, the arches of tho palate approximated, the uvula tighteoel, the lack of the tonguo nand noft palate drawn near each other, and tho oral aperture into the laryux constricted, nll teading together, by a diminution of the size and an increase of the teasion, to accord with the dimininhed leogth of the tube, that their vibrations may be in correspendence with those of the vocal ligamenth As the voice passes through the descending scale, the opposite changer occur ; the vocal higamenta lengthen and are less tense, the larynx descead, the carity of the mouth is expanded, and all the tisues are relaxed. Hence it is that the singer, when his voice is exerted in it highest noten, fecla the greatest fatigue in the parts about the ralate and plarynx; while in singing the lower notes he remsins unwearied far longer, and at last feela fatigue chiefly in the muscles of the chest.
It in dificule to determine the circumatances on which the differances of the timbre of the voico in different persons depend. The difference between the malo and femalo voices is probably owing to tho comparative nhortners of tho rocalligaments in the latter. According to Muller their arerage leogth iu man is 181 millimetres, in womsn only 123 millimetres, or nearly as 3 to 2 . Hut to account for the differences of tenor and bnsh, or of soprano and alto voices, no good evidence han yet been collected. The average compars of the voice is two octavex, but in different parts of tho ecale in different persons; thus a lames voice commonly has ita lowest note four or five notes lower than a tenor, wlifo in tonor has ita higheat notefrom four to fire notes abore the highest note of tho bass roice. A soprano voice again has it lowent note at zesrly tho same part of tho scalo as tho highest note of a lans voice ; and thun the whole compass of tho human voice, from the luwest of the bans to the highest of the moprano, would be nearty four octaves. The voices of children renemble very nearly thone of womet, but in malea a remarkable change takes phace at fulerty, when the soico in mid to crack; the chango from the abrilh tretiln voice of the boy to the fuller and rounder tone of the man is pometitses perfectal altnost nuddenly; but in mont cases it is for somo time in probrea, wavering betwcen the two oxtremes, deep, and manly Nuring quies enunciation, but when any exertion is uned, suddenly nearting up again to tho whrill tones of boyhood. In olld ogo, the eartilagea of the largne becoming bony, the ligaments hard nad unyielding. and it zonacien pale and powerleas, the voico comptetely ilters; it irembles an if thero wero not anflicient strength in tho mancles to mandatin a duo teusion of tho vocal ligaments; it becomes liarnle and monotonoun, and

Turaing agaln townrde chllalah trebie,
 I'prea and whitles io the eound."

Much yet remain unknown of the actiona of tha varioun parts of the laryax, hut mough has been mid to prove that it in jertapa tho mont frefect piece of complex mechanimm in oxintenco. Judging of it, ne wo munt do, by comparimsh with the imperfect contrivances of art, It in nont poomible that wo nhould be shin to dincern all the beautien of an instrament which in a pace of about six inchea by two inches fremincen a range of noted of between two and three octares, all of jerfoct clearnean and harmony, and with n tone far superior to any yot known-which in eaprable nt the rame time of giving a wide range of expreanion, and waried degreen of power-of executing dillicult and intricate jasagee with tho greatent mpidity and dintinctnesa-and whioh above all will lat for yean without need of repair, and in oven improved by judicious uee. The larynx fulfin alf thin, nud is leaslem anberricat to other function of vital importance to the whole lomy. In umathing for exanpio, itn exquinite mennibilly in immedintely -xcited by the contact of niny forcifn mubance, or of a delctorions Fan, and the phettin in firmily elomal by the thyro-arytenoin muncles, wiprevent the matraneo of the noxionm looly inte the lumge. The narne nction rocura an we awaliow each jortion of our food, to pre. vent any of it pamink into tho lumg: abl if a jortiolo by accident tornch the platide, mughing ia excitenl to enmure ith mpealy removal. Again, wheu almout to makn a vloient exertion, m man first olrnwa a full brath, and fixm hin chat that he may have a firm wupport for all the mueclen of hin limbs then anno lituo munclem anint in thia artion ly
 being formil from the cheat, howevergreat the excrtion of tha muncles nitached to lta wallo.

LASEFIL, Gum. IResin highly cotcemed among the ancionta. It had
become rare even in the time of Pling, but it ia described by Dioscorides (lib. iii. c. S4), and atill more fally by Theophrastus under tho
 Stapel a most elaborato dissertation may be neen, in which apparently almost overything that occurs respecting it in ancient authors is brought together. Though the whole plant appears latterly to have been callod Silphion, this namo was originally that of the root. The stem of the plant is callod mayúdapis by Theophrastus, the leaf $\mu a ́ \sigma \pi \epsilon \tau o v$, the need фúdiov. These names are however diffenently appliod by other authors. Laser was subsequently called Lasaron, and was applied to tho juice mone. This was in such high estimation us to hare been sold for its weight in gold, having many marvellous properties ascribed to it, but it was probably useful only as a stimulant to some of the functions and as an untispasmodic. The couutry where it was produced has been clearly laid down as the Cyrenaioa legio, and the phyaicians of Cyrene, we know, eariy attained a high reputation. Theophrastus gives n wider extent of distribution aloug tho north of Africa, stating at the samo timo that the greater portion was collected near the Syrtes. Dioscorides gives Syria, Armonia, Media, and Libya, as tha countries thenco it was procured. The produce of this plant having been so valuable, it neccsearily became a considerablo source of revenne, and was represented on the coins of Cyrene; another is represented in the abovo edition of Theophrastua, with the head of a beardless man on tho obverse, while a third is described as figured in Vivinni's 'Flora Libyca,' in which the figure is bearded, but in all the plant is exactly the samue.

From tho descriptions aud representations of the plant on thoso coins there can be no doubt of its being ono of tho Umbellifera, and it has successively been thought to be Lascrpitium Siler and gummiferum, Ligusticum latifolium, Ferula tingitana, \&c. But as the natural bistory of the countries becomes investigated, whence the ancienta obtained the substancos they have deseribed, these doubts givo way to certainties, or very near approximations to the truth. Della Cella, who travelled in the Cyreuaica in 1817, having found an umbelliferous plant on tho mountains of Cyrene, and tho only one at all resembling the representation on the coins, would appear to have finally determined the question. This plant has been described by Viviani in his 'Vlora Libjea,' and named Thapsia Silphion; it is very closely allied to T. garganica of De Candolle, and a description of it may be seen in Dr. Lindley's 'Flora Medicn,' p. 52. The root is said to yjeld a juice, which, according to the testimony of the natives of the country, is possessed of very valuable medical propertios. M. Pacho, who travelled subsequently in the same country, thinks he has found the Laser, or Laserpitium, in Cyrenaica and Marmarica, aud has called the pinnt Laserpititm Derias. ("Voyage dans la Cyrenaique," Paria, 1827.)

There appears however to hare been from the earliest times two kinds of Laser. Thus lliny, "Diu jam nou nliud ad yos invehitur laser, quam quod in Persido nut Modia et Armenia nascitur largo, sed multo infra Cyrenaicum." Jioscorides also states eome to have been procured from Armenia and Medin. Ilence it is probable that some aimilar aubstance was aubstituted for the more highly enteenned Cyrenaican juico when this became scarec. Thero can be very little doubt that Asmfoutida was at one time aubstituted for it, at least sinco the time of the Arabs, for Avicenna describes his Iluteet, which is assafocida, is of two kinds, onc fictid, aud the other fragrant, the latter from the 'regio Chirunna' in the Latin tranalntion; white Anjidan, which are tho needa of the aspafoctida plant, aro translnted Lascryitium, That assafoetida was na article of export from Persia in very carly times wo know, from seeing it noticed in tho Sanscrit 'Amara Kosha,' whieh in at least of as early n date ns tho commencement of the Christian era. The juice nnd need of tho asanfoctida aro likewise both used as medicinat substances, nnd the former estoemed even as a condinent hy Aaintic natives. While tho root of the Silphium, which grew on laropamiana with pinca, is mentioned by Arrian as afforijug food to numerous herda of cattle. This has been etated by Mr. Moorcroft to be the case, oven in tha presont dny, with mother Unbelliferous Ilant in tho same ropions, that is Prangos pabularia, which in thercfore conjectured by Dr. Royla to be one of tho kinde of Silphinats. [Silinuma]
LASERRIITIUM (the name of the ancient Silphium), a genus of l'lante belonging to the miturnt order Umbelliferce. It has a calyx with n b-tootherl rim; tho petale oborste, emargiuate, with an inflocted lobo ; tho fruit compresserl from tho brek, or somowhat taper, 8-winged, that ia, the half fruits with five primary filiform ridgea, aud four winged acconlary onen; a vita in the dannal below each soconday ridge. Tho nuecien aro herbaceoln plants, with $2 \cdot 3$-pinnato leaves, and eutire thothed or cut segmonta; many-ragod showy umbels; the involucres many-leaved; the flowera white, rarely yellow.
L. glabrum, glatronn laserwort, has bipinnate leaves, quito glabrous in every fart; the leaflets obliquely cordate, here nad there mueronnto and toothed; leaves of the involncre netaccous; wings of the fruit egual, rather curled. Thin plant is n nativo of mountainous districts of Enrope in dry and ntony places It attains a height of 1 or 2 feet on the A! m , but in cultivation in a much larger plant. The root is filled with n guts renia, which is nerid, bitter, nind even nomewhat: caratic. It ia raid to be n violent prigative. Tho French call it Turbith aux Montagnem and Krux Turbith.
L. Siler has bipinnste quite glabrous leaves; leaflets lanceolate or oval, quite entire, mucronate, sometimes confluent, and then 3-lobed; the leaves of the involucre and involucels linear-lanceolate, slightly awned, acuminste, the winga of the fruit narrow. It is a native of the mountains of the middle snd south of Europe. The root is extremely bitter, and yields an aromstic resinous substance which has been supposed to be the Silphion or Laser of the ancients. [Silphium; Laser.] L. Siler is supposed by Frass to be ideatics] with the Aryogtikól of Diescorides, 3,51. Sibthorp found this plant in Greece. L. gummiferum, a native of Portugal and Spain, also yields a gum-resin. There are several other species of Laserpitium described, and many of them yield a gum-resin, which is one of the secretions of the order to which they beloug.
(Lindley, Flora Medica; Don, Dichlamydeous Plants; Frass, Synopsis Plantarum Floree Classica.)
LASTREA, s genus of Ferns, belouging to the tribe Aspidicce. It has a reniform indusium attsched by the sinus, the veins distinct after leaving the midrib, and not uniting with those of the adjoining pinnule. [Aspidiom.]
L. Thelypteris, Marsh Fern, has pinnate fronds, linear-lanceolate; pionx slightly downy, but without glands. The lobes are entire, blunt, appearing acute on the fertile fronds from the revolute margins; the rhizome creeping. It is found in marshy and boggy places in Great Britain.
L. Oreopteris, Sweet Mountain-Fern, has pinnste fronds, the pinne linear-lanceolste, pinnatifid, glandular beveath, grudually decreasing from about the middle of the frond to near the root; lobes oblong, flat; sori marginal.
L. Filix mas, Male Fern, is known by its subbipinnate fronds, obtuse and serrated pinnulcs, sori near the central nerve, lateral nerves furked. It is found on woods and banks in Cumberland and Yorkshire.
L. cristata has linear-]anceolate subbipinnste fronds, short triaugular oblong pinnstifid pinnæ; pinnacles serrated, the lowermost lobed, and almost pinnatifid; lateral nerves of the lobes with several branches. It is found in boga and boggy hesths in Norfolk, Notting. hamshire, and Cheshire.
L. spinulosa has the segments of the fronds serrate, and spisose mncronate; stipes clothed with broad roundish concolorous senles.
L. rigida has its fronds triangular, lanceolate, bipinnate, snd glandular; segments of the pinnules 2-to 5 -toothed, not spinulose; stipes clothed with long-pointed concolerous scales. It is found at Inglebrough, Arnside Knet, and near Settle in Yorkahire.
L. dilatata is distinguished by the stipes being clothed with long pointed scales, with a dark centre snd diaphanous margin; the froads are arched, often drooping, coavex. It is found in woods and on banka in Weatmoreland.
L. Fonisecii has a triangular blpinnate frond; the stipes clothed with long, narrow, laciniated, concolorous scales. It is the Nephrodium Fonisecii of Lowe. The frond is elongate, triangular, concave below. It is sweet-scented, and is found in damp places in Grest Britain.
LATA'NIA, s genus of Palms of the tribe Borasainece of Martius, which has been o-called from the name, Latanier, of one of the species L. Borbonica, indigenous in the Isle of Bourbon. The other species, L. rubra, a much smaller plant, and remarkable for ita redcoloured leaves, is a nstive of the Mauritius. Both are moderate sized, with all the leaves of a palmate fan shape, the flowers yellow, and the drupes yellowish coloured. The leaves, like these of other palms, are employed by the natives for covering their huts, as well as for msking fans and umbrellas. The leaf-stalks sre split and employed for making baskets, sieves, \&c. The fleshy part of the fruit is astringent, and the kernel bitter and purgative; and the sap is possessed of remarksble antiscorbutic properties, according to the atatement of French authors.
LATHYRUS, a genus of Plants belonging to the natural order Leyuminosc, and the tribe Viciea. It has a campanulate 5 -cleft calyx, the two upper lobes the shortest. Stamens diadelphous; style flattened, dilated st the apex, shaggy or downy in front; legume ublong, many-seeded, 2 -valved; seeds globose or angular. The specics are usually climbing herbaceous plants; the stipules half-sagittate; leaves cirrhose ; leatfets 1,3 pairs; peduncles axillary.
L. Aphaca is a common European field plant. It Is a little smooth pale glancous green annual, branchiug from the root into several weak stems, either procumbent or climbing by means of numerous alternate simple tendrila, each of which aprings from betwecs a pair of large stipules of a broad srrow-ahape, nearly entirc. There are no true leaves or leafleta, except that now and then near the roet, a pair of an elliptical shape on one or two rudiments of teadrils, very rarely on a real tendril, may be observed, but these soon wither away. The flowers are solitary on long simple stalka, accempanying some of the teadrils, amall, drooping, and lemon-coloured. The bracta are in pairs, awl-shsped. The teeth of the calyx long and lanceolate, ribbed. The legume sbout an inch in length, somewhat cylindrical, smooth, with about six round seeds, which are somewhat narcotic, and produce excessive headache if caten abundantly in the ripe state. When joung and green they may be caten without inconveuience, like green peas. It is a British species.
I. Cicera is a native of Spain. It is a ncarly amoath plant, with preading winged stems; the lestlets 2, linear-oblong; tendrils

3 to 4 ; stipules half-sagittate, lanceolste, somewhat toothed, ciliated, the length of the petiole, which is not membranous at the edge; peduncles 1-flowered, longer than the stipules; bractlets very small; calycine segments laaceolate, leafy, almost three times as long ss the tube; corolla red; legumes bread, oblong, irregulsrly reticulated, channelled, not winged at the back; seeds 3 -cornered, somewhst truncate, brown, and smooth. The seeds are poisomous, sad the flour with which they are ground up is rendered unfit for use.

There are 9 British species of this genus mentioned by Babington in addition to L. Aphaca.
L. Nissolia is known by its leaf-like petioles, without leaves or tendrils, and with minute stipules.
L. hirsutus has linear-lanceolste leaflets, and globose tubercular seeds.
L. pratensis has many-flowered peduncles, and subulste calyx-teeth; the flowers are of a bright ycllow; the hilum small and oblong. It is found in moist mesdows and pastures.
L. sylvestris has a winged stem, many-flowered peduncles, the leaves of one pair of linear-lanceolate, or lanceolate leaflets; calyx teeth triangular, subulste ; seeds compressed, smooth, and half surrounded by the hilum. The broad-lesved varieties ofteu pass for L. latifolius.
L. latifolius is known by the leaves consisting of one pair of elliptical pointed leaflets; the seeds tubercular, rugose, one-third surrounded by the hilum. It is a doubtful native.
L. palustris has the leaves composed of 2 or 3 pairs of linearlanceolate acute leaflets; the secds a quarter surrounded by the hilum.
'L. maritimus has sn angular stem, not winged; the leaves of 3 to 8 pairs of oval leaflets; stipules large, oval, cordate, hastate. It is a rare plant found on pebbly sea shores.
L. macrorhizus is known by its simple winged stem; the leaves having two or three pairs of eblong or lanceolate blunt apiculate leaflets, without tendrils; cylindrical pods. It is the Orobus tuberosus of Smith.
L. niger has a branched stem, not winged; the leaves of 3 or 6 pairs of lanceolate or oblong leaflets, without tendrils; stipules linear, subulate, the lower ones arrow-shaped.
(Babington, Manual; Lindley, Flora Medica.)
LaTIALITE. [HAUYNE.]
LATROBITE, a Mineral, which occurs crystallised aud massive. Primary form a doubly oblique prism. Cleavage parallel to all the primary planes. Colour pale rose-red or pink. Fracture uneven. Hardness $5^{\circ} 0$ to $6^{\circ} 0$. Lustre vitreous. Translucent. Specific gravity $2 \cdot 72$ to 2.80 . Found at Amitok Island, Labrador, and in Finland. Analysis by Gmelin :-

Silica										
Alumina	.									

LAUMONITE, a Mineral belonging to the group of Hydrous Silicates of Alumina. It occurs in oblique rhombic prisms. The cleavage is parallel to the acute lateral edge; also massive, with s radiating or divergent structure. The colour is white, passing into yellow or gray. Lustre vitreous. Hardness 3.5 to $4^{\circ} 0$. Specific gravity 2\%. It coutains-

It is found exclusively in Amcrica. The best specimens aro obtsiaed at Peter's Point, Nova Scotia.

LAUNCE. [Ammodytes.]
LAURA'CEA, Laurels, a natural order of Apetalous Exogens, consisting entirely of trees and shrubs, inhabiting the warmer parts of the world, and in mest cases aromatic, on which account several are mentioned in works on officinal plants. The best known species in Europe is Laurus nolilis, the Sweet Bay, a beantiful evergreen, whose fragrant leaves are commonly employed to flavour confectionary. [LAUnUs.] Other products of the order are cinnamon and cassia; sasssfras, whose bark has great reputation in North America as a powerful sudorific; Pichurim beans, sn indifferent substitute for nutmegs; and finally, not to mention other useful substances, camphor, obtained by the Chinese from the Camphora officinarum by means of dry distillation. [Camphora.]

In geucral it may be expected that the trees of this order are valuable as aromatics and stimulants, although but a comparatively small number has yet been brought into use. They are knewn by the peculiar structure of their flowers, which have no corolls, stsmens in one or several rows, often in part gland-like and sterile, a simple I-celled superior 1 -secded ovary, and especially by the anthers bursting with recurved valves. [Cinnamomum; Laurus; Nectandra; Benzoin ; Sassafras.]

There are 46 geners and 450 species of this natursl order. Its position is near Thymelacece snd Cassythacea.

bathetichemmi. [Cerasc:]

LALHE'S, a grean of Plauts belonging to the patural crder Lannacerp, to which indeed it has given ita name. It iucludes as a - precies one of the most celebrated tree of autiquity, aud until recont times nome of the trant elegnot aud useful of the vegetable lingious, an anang them were the treen yiclding the camphar of Japau, Cinuasmon, both of Chiaa and of Ceylon, Cassia bark aud buda, the Malabathrum Icaf of the aucienta, with the leas known Culilawan and Sinfoc harka, as well an the American Persea, lichurim, and Siamafran. Mont of these are however now placed in distinct geners lyy the latest authors who hare paid attention to the subject, as Neos von Frenbeck and Blume.

1. Cumphorifora of Kxmpfer, now the Camphora afficinarum of Nees, in a native of Japan sud of the proviuco of l'okien in Cbina, and alao of the ishand of Formoss, whence, according to Mr. lheutes, the chief portion of the camphor of connomere is brought to Cauton. Authe wood is maid to be raluable, the root, refube wood, and senstler brauches are cut into chipa, corered with a little wister, and the camphor sepmeated by sublimation [Cavprora.] It is necessary to distinguish this camptor from that produced in Lhoraeo and Sumatra by Diptero. carpus, or Irydualanop Canyhora. [Dryobalayors.]
The kinde of cinnamou are not so clearly settled, as there is both a Ceglon and a Chincse cimatnon. The former however is no doubt prodveed by Cinnanamum Zeylanicum, and the latter by the C. aromaticum of Nees. This cidnamon is of superior quality, at least mome of it, and is preferred by the Chineso to that of Ceglou, aud anid to be produced in Cochin Cbina chielly in tho dry sandy districts lying northeweent of the town of Faifoe, between 15° and $16^{\circ} \mathrm{N}$. lat. Mir. Crawfurd ('E"mlassy to Siam,' p.478) informs us that there are 10 varicties of it, and that it in not cured, like that of Ceylon, by freeing it from tho epidermis, Dr. A. T'. Thomson gives this as one of the characters by which cassia may be diatiaguished from cinuamon. It in posaible therefore that aome of it may be imported into Europe and nold an cassia, though Mr. Marshall shates that the cassia-bark of the abope in only a coarse cinnamon obtained from the thick roots or large branchen of the cinamon tree.

Cansia-Dulk, or Flores Lauri Cussic, are the dried receptactes of nome precies of thin family, by some supposed to be the allove c. aromaticum: lut it has been pointed out by loureiro, and is named c. Inwreirii by Nees It is a native of Cochin China towards Lao?, nud of Japan. [Cassia.lictos.]

It han pometimes been doubted whether the substances we now call Cinommon and Cansin are exactly the mane thiugs as those to which the ancienta applicd these names it is very certain that the aubatancen which Gormed such highly-enteemed articles of commerce buat have jrasensed mome remarkable physical and sensible propertics not comben in froducts beyond the tropica. The aromatic principho in that which in most conapicuous in the products of the tropical zone, and if found probably in taust of the mulatances which the ancients obtained frona the enat-at least Dioncoriden has deacribed thom all thether. It would wo difficult even with onr present knowledge to find any other nubmencea which would equally well naswer the nncient Arscriptiosh, witbout going atill farther east. The Greek name of cinwaman in Kurduasor, which Herolotua saya his countrymen learnt from the lbuenciany; and the Hebrew name, wo know, is Kinnemon. It in retanabable thet the Malay mane in Kayuamana, which Mr. Maraball ange in mometimea pronounced as if written Kinima-Mauik Hy the Hindoom cimanoons ia called Dar-Cheence, iodicating that they obleaned it from the C'bineac; aud l'rofemer Wilaon han lately proved that there wan commerce ly sea with Chisa at a very early period, amb, what in atll more retrarkabio, that the mavigatore were lindows.
Tha Cohlawan Bark, oflen writtod Culibaban, or Culitlawan, raid to be derived from ' kolit,' bark, and 'lawna,' clove, in some measure reaerabiea Cineia. It in one of thome which han been known in Europe aloce cho lifh century, but it han leen litte uned in modern timea, though Whune deacriber it an ponsenmel of remarkable propertien in curing disenera Amalyzel by M. Schlon, it wan found to gield a reain, a polstule oil, and a biter extractive aubetunco. A volatilo oil whaned from it in Ambogna in used an a atimulant, accorling to labillardiara It wa f.rnerly emplojed in Fiuropo an an aronatic atimalant, and mut io unfal io conon whero nuch remedies are indicated. The tree yieldiog it in a native of Amboyna, and in callod Cinnememutn Culalawas by Blame.

1. natulis of linnacue, tho lasuret, or Sweet lany, now nlone remaine in tho cenum laurua. It in a native of the north of Africa nal mouth of tiuroper, and of Ania; at leant it han lieen mo fong anturalicel in theme muntrine that it would be difficult to sacertain whenge it was origimally intrumaced. It th the Δ dom of the Greck and in known
 The lerrien are evelu foado in Inulina bazaara by the mane llubalCilar.

It attaina a height of 80 or 30 fect, and in cultirated in gardena, not ouly on sccount of j en clegant appearauce, but alno for tho aromatic Imagrance of iln deaven, which nro evergreen, innceolate, wary at the margin, and quite arnooth. The duwern are small, four or five elnatered togetber in the axiln of the learea, of a yellowinh. White colour, and dottad. The fruit in mmall, orate, dark-purple colouren, and in litalemuerubent it in endowed with nomatic propertica an well an
the leavca, whence both have long been used in medicine as stimulants and carminatives, as well as a futty oil expressod from the seed, which however, retaining a portion of the volatile oil, ham a fragrant smell. The term 'bachelor' has by zome been supposed to be derived from tho former practice of crowuing candidstes for honours with baydeaves and berries, whenco the terms Baccahureus nad Laureato

1. A flowerlng branch of Laturus nobilis; 2, one of the flawerm, much magntfied; 3, a elamen, with a pair of giands on jta fiament, fod the anther opening by two recurved valven; 4, a secd; $5, \mathrm{a}$ nection of tho manc, cxblbiting a minute embrya.
IAVA, in Gcology, the most genoral designation of the mioeral substance日 which are crupted in a suelted state from rolcanic vents. Tho situation of volcanoes now extinct may often be recognised by their molidified producta, cern when the chemeteristic conical figure of volcanic soouda has been lestroyed by timo; and it ie commonly supposed that "volcunic rocks' may be distinguished from 'traf' rock," the effects of heat in sucient geological periods, by zome peculiarities of aggregation, which appear duo rather to the dissimilar eircuastsuces under which tho lava was solidified than to any exkential difference in tho cheorical constitution or mincral consponcut.

Dr. Dauleny prefenta the following gencral vicw of the appearance nad heat of lava:-"When observed as near as poasible to the point from whence it insucs, it is for the most part a memilluid mass of the cousiatence of boncy, lut sometimes ro liguid as to penetrate tho fibre of wool. It soon cools externally, and therefore exhibits a mough miequal aurface, but, as it io a bad conductor of hest, tho internal soass remaina liquid long after tho portion exposed to tho air bas becone nolidified. The temperature at which it contidues fluid is conmiderable enough to melt glased nod gilver, and has been found to render a certain mans of lead lluid in four minuteo, which, phaced on rellant irm, required double that time to cuter into fusion." ("On Volctanes.")
lanam vayy oo much in chemical composition and mineralogical appeet, that it might neen imposilide to reduco them to a general rule. Yet as atnong the older products of heat wo distinguish two principal group depending on the relstive abundance of felgman and hornblende (or bagitr), no nenoug the producte of modern volcatuoe a similar coneideration clears away twuch of the perplexity which belonge to this sulyjech

Accoriling to Yon Buch, almort all lavam are to bo viewed as a modification of traclayte, consinting concutially of felspar and united with titaniferoua irom, to which they owe their colour and their power of attracting irou; they geucrally contain glasy felapar; aud often inclono augite, Icucite, ltornblende, mica, olivine, apecular iron, and many other minerala, develope ily cryatalisation from the fused
mass. Trachyte, ono of the most prevalent of ail volcanic products, consists chiefly of felspar (90 per cent.), and includes almost every conceirable modification between porphyry and obsidian.

Basalt, another of the characteristic volcanic rocks, contains, besides much felspar, a considerable admixture of augite or hornbleode, and is rich in oxide of iron, sometimes titaniferous.

If lava were wholly felspathic it would consiat principally of silica, alumina, and potash, as in column 1, the sverage of seven analyses of felspar: if wholly hornblendic, as in column 2, which expresses the composition of hornblende from the Vogelsherg, according to Bonsdorff; if wholly angitic, ss in column 3, which is the analysis of black augite from Stna by Vauquelin.

	(1.)	(2.)	(3.)	(4.)
Silics	$64 \cdot 0$	42-2	$52 \cdot 0$	$51 \cdot 0$
Alumins	$18 \cdot 9$	$13 \cdot 9$	$3 \cdot 3$	19.0
Lime	$0 \cdot 8$	$12 \cdot 2$	$13 \cdot 2$	$9 \cdot 5$
Magnesia	-	13.7	10.0	-
Potash	13.7	-	-	-
Sods		-	-	$4 \cdot 0$
Oxide of Irom	$0 \cdot 8$	14.6	$14 \cdot 7$	14.5
\&c.	-	-	6.8	-

The fourth column gives, for comparison, the result of Dr. Kennedy's examination of the compact lava from Catania. Sods, sn ingredient of compact felspar, appears more frequent in lapas than potash, which belongs to common felspar: magnesia is not common, its place in the chemical aggregste being probably occupied by oxide of iron. [Avgite.]

Trachyte is conjectured by Dr. Daubeny to be derived from granite ; and some volcanic products present in their chemical composition a remarkable analogy to that of granite. Obsidian, of which a specimen from Hecla yielded to Vauquelin-

is by the same writer spoken of as derived from trachste.
In comparison with this we may place the composition of granite as calculated by Sir Henry de la Beche from its constituents, namely :-

The certainty with which the mineral iugredicnts of lava can be identified depends principally on the degree of crystallisation which circumstances have permitted, and this on the rate of cooling and pressure to which the melted masses have been subjected. There is in lava every degree of variation, some specimens being of granitic, and others of earthy, compact, resimons, or vitreous texture. Yet in most cases the method of mechanical analysis proposed by Cordier will determine, what very often a leos detects, the real mixture of various minerals in what seema homogeneous mass. According as felspar or augite predominates, volcauic rocks have been classed, by Cordier and most writers, as trachytic and basaltic. Mr. Scrope ('Journal of the Royal Institutioo,' vol. xxi.) has proposed an intermediate group to be called graystone. He states that in trachyte, felspar (or its substitute) exists in the proportion of 90 per cent. and upwards, in graystone more than 75 per cento, and in basalt less than 75 per cent. The specific gravity of trachyte is abont 27 , of graystone 3.0 , of basalt even 3.5 ; differences which correspond with their chemical composition. The colours yielded by thesc rocks, when melted by the blow-pipe, afford a good test for the fine-grained sorts. The glass from trachyte is light-coloured and nearly transparcnt; graystone gives a darker glass with grecn or black spots; basalt is changed to a dark green or black enamel. According to conditions of solidification,-in water, in air, or in fissures of the earth,--the minerals which occur in lava are variously distributed so as to give it porphyritic, amyglaloidal, or concretionary claracters; and the masses sppear compact, porons, cellular, vesicular, cavernons, spumous, or fismentous-and all these circumstances are observable in glass sud other products of srtificial heat, which are snbject to unequal rates of cooling and under different circumstances. [Volcano.]

LAVANDULA, a genus of Plants belonging to the natnral order Lamiacere. It has a tubular calyx nearly cqual, 13 or rarely 15 -ribbed, shortly 5 -toothed, with the 4 lower teeth nearly equal, or the 2 lower narrower, the upper cither but a little broader than the lateral ones, or expanded into a dilated appeodage; the upper lip of the corollit 2-lobed, lower 3-lobed, all the divimions nearly equal, the throat nomewhat dilated; stamens didynanous, diclinatc.
L. spica is a native of the south of Europe, of which thers are two varieties, if not distinct species, termed Z. latifolia and L. angustifolia. The former is also called Spike Lavender, or simply Spike, and the oil which it yields differs considerably from the oil of L. angustifolia, or L. vera, and is termed oil of spike, or foreign oil of laveader. This sort is much less fragrant, of a deeper green colour than the oil of the true lavender, and is merely used in paintiag, or to adulterate the genuiae oil, which is so extensively employed in the preparation of perfumes.

The flowers of the L. angustifolix are the parts employed in medicine. They should be collected before they are expanded, ss they are then pessessed of a more powerful aromatic odour and a hot bitterish taste. By distillation they yield an oil, which is yellowish, but by rectification becomes nearly white. It has the agreeable strong odour of lavender, and a burning bitterish taste. It is very limpid, but becomes thicker by time. The specific gravity is varisbla; that of the rectified oil is about 0.872 . The freshly-rectified oil of lavender acts on litmus psper, reddening it mors powerfolly than when s year old. In the cold it deposits a lavender-eamphor, or stearopten. It is often adulterated by cil of turpentine and oil of spike. The oil dropped on sugar relieves slight spasms of the stomach; when diffused by alcohol in water it constitutes the spirits of lavender. The compound tincture of lavender is useful in similar cases, and is the lest means of covering the disagreeable taste of alces.

LAVATE'RA (in honour of the two Lavaters), a genus of Plants belonging to the natural order Malvacere. It has nmmerous styles, a double calyx, the outer one being 3 -leaved, the inner 5 -leaved; the capsules orbiculsr and many-celled; the cells circularly arranged, and I-seeded.
L. arborea, Tree Mallow, has a wooded stem, the leaves 7 -angled, plaited, and downy; the pedicels aggregate, sxillary, I-fowered, and much shorter than the petiole. It is a native of Italy, Spain, Portugal, the north of Africa, sud the Capary Islands, on maritime rocks; also in Britain, in the Isle of Wight, on Portland Island, in Cornwall, and Devonshire. It is the Madá η of Theophrastus ('Hist. Pl.," i. 5 ; i. 14).
L. Neapolitana has an herbacsous scsbrous erect stem, with roundish 7 -nerved leaves, and 7 blunt crenated lobes: the pedicels axillary and aggregate, the involucel shorter than the calyx, the lobes of the calyx acuminated. The flowers are blue with obcordate petals. This species is a native of Naples, by the sea-side, and is much cultivated in our own gardens as an ornamental plant.
L. Ollia has a shrubby stem, rather scabrous, from distant fascicles of hairs; the leaves sre soft, woolly, 5-lobed, the upper ones 3-lohed, with the middle lobe elongated; the uppermost leaves are oblong, alinost undivided, the flowers solitary and sessile. It is a native of Provence, in hedges about D'Hières.

None of the species of Lavatcra are of any importance or value, excepting as ornamental plants. Many of them are hardy, easily cultivated, and well adapted for shrnbberies. Tha greenhonse and frame species will thrive well in a mixture of loam and peat, or any light soil; they may be planted out during the summer against a south wall, and if protected in the winter by a mat, will generally survive throughont the year. The perenuial species grow in any kind of soil, and may be propagated either by dividing the plants at the root or by seeds. The ammall and biennial kinds should be sown in the open border during the spring. The species chiefly worth cultivation in gardens are L. Obia, L. Alava, L. umyuiculata, L. Neapolitane, L. Cretica, L. Lusitanica, and L. trimestris.
(Don, Dichlamydeous Plants; Babington, Manucl Brit. Bot.; Fraas, Synopsis Plantarum Plorce Classic(e.)
LavENDER. [Larandula.]
LAVENDULAN, a Mideral which oceurs amorphous. Colour lavender blue. Streak paler blue. Lnstre greasy, inclining to vitreous. Hardness 2.5 to 3%. Occurs at Aunaberg in Saxony, with cobalt and iron-ores. Accorning to Plattner, it contains arsenic, and the oxides of cobalt, copper and nickel, and water.

LAVER, a substance sometimes used as food, consists of the fronds of marine plants belonging to the genera Porphyra and Clva.

Purple Laver is furoished by Porphyra laciniata and P. vulyaris, two species common on rocks and stones in the sea on many parts of the British const. They derive their botanical name from their beautiful purple or violet colour, which is produced entirely by the multitudes of spores, arranged in twos, threes, or fours, with which the whole frond is Gilled.

Grcen Laver is the Ulva latissima, a very common plant in the sca on rocks and stones, not ouly in Great Britain, but also ou the coasts of India, Australia, the Cape of Good Hope, and South America. According to Lightfoot, the Scottish Islanders ascribe to it anodyne properties, aod bind it abont the temples to assuage the pain of hcadache in fevers, and to procure nieep.

In the Western Isles of Scotland, we are informed by the same anthority, the inhabitants gather it in the month of March; and after pounding and stewing it with a little water, eat it with pepper, vinegar, and butter; others stew it with leeks and onions. In England Laver is usually stewed and rendered palatable with lemonjnice; to many persons it is however nanseons, and it has been suggested that its introduction to fashionable tables was the sly
coutrivance of some nerlical practitioner who wiehed to preacribe it for the beucfit of him acrofoloun patients. [Abis]
(irnville, Alerr Bridannater.)
IAWSOXIA, geuns of Plank belonging to the natural onler Loythracerr, which, convistiag of only one or two species, way be found in mont Oriental regions in gardens or in fiehl cultivation. Tho Renus is characterised by baving a 4 -partite calyx, 4 unguicolato petals, 8 olawem, a mesile ovary, the capmule scarcely dehiscut, or rather forming a globular membranaceous 4 -celled berry, with severm angular peedo in cach cell.

It in disputed among botanists whether thin genus consists of one or of two mpreje: in the latter case, one 乍weies being armed with Horma, wan called L. spinoro, and the other being without noy, was named Lo inermis, by Linureus. De Candolle has followed Lamarck in auiting then together undor the name L. sllo, stating that when young the plant is unarmed, but when older becomen thoruy from the liandening of the mmaller branches.

The natives of North Iudia distinguished the unarmed apecies by the name lhoolke, or flowering Mhendee. It is a much smaller plant, hut flowers most abundautly. The thoroy speciea is called Mhendee; thin, beades beiug a larger plant, contains a greater proportion of colouring matter, and is extensirely cultivated in the ricinity of Siduurn, near tho north-west bank of tho Jumas. The flowers of woth nre corymbose, white, and powerfully fragrant; the leaves smooth, opponite, oval, lanceolate. To the latter species or variety the Arabic name llinua or llenua is more eapecially applied, which, in many of thoir medical works, an in that of Serapion, is described under that of Al Kanna, where it is interesting to observe lie quotes the deacription hy Dioscorides of Kurpos, as applicable to this plant. This Kupros, or Cyprus, is anoreover supposed to be the Copher of Seripture. ('Cantiel.,' i. 12). Besides the similarity of name, no Ilaut in more likely to lave beed alluded to in the above passige, as to other in more highly esteemed or mora frequently employed than the Hinua, and it would appear to havo been applied to the same purposen from very romoto antiquity. All oriental travellers describe the use of thin plant by Asiatic women in dyeing their nails sud the tijn of their dugers, as well as the soles of their feet, of an orange hue with the leaven of tho Hinna, lt is also used by the men for dycing their bearda, tho orange colour being afterwanda converted to a deep black by the application of indigo. That this plant wras similarly ued from very early timea is highly probable from the nllusiods to it by ports, na well an from nome of the Egyptisn mummies appearing in if tho naila bad beeu similarly dyed.
I.A'ZULITE:, LAI'IS IA'ZULI, a Mineral which occura cryatalline and manive. Primary form of the crystal a cube, but occurs in imbertded rhoubic dodecaludrona. Clearage parallel to the planes of the dodecaliedron. Fracture uneven. Hardnesa $5 \cdot 5$ to 60 . Colour azure and differvat shades of blue; streak paler blue. Lastre vitreous, trasaluceut, opayuc Specific gravity $2 \% 0$ to 2.94 . It intumesces before the blow pipe without fumiog. It occurs at Salzberg and in Styria, almo in the Linitod Statea

Manaive varicty smorphoun, nometimea in grains, imbedded. It fusen on charcoal, when pure, into a white glass. It is brought fron I'enia and China, and in comploged in the manufacture of ultramarine. The following aro analyses by Gmelin and Fuchs:-

Gwelia.
Silica .
Abmina
Inme
Cola and I'ritanla
Gide of Irutu
Manticeia
Bulphoric Acill

19.0	Phomphorio Acid
110	Alaminn
16.0	Mrenesin .
8.0	Silica .
4.0	Protoxide of Iron
2.0	Water .
2.0	

41.81 35.73 9.34
$2 \cdot 10$ $2 \cdot 10$ 2.64 6.05

620

27.68

It meme improbable that no differcut reaules ahould bo obtained frous the ame infmemb. Itr. Thonnon admite the jresence of phos. phoric acid: the aumbais by fiucha in therefore raont probubly the cortret one.
 colour, and in of comnidemile brilliancy whes frenh nurfacenare formed by cutting; if it lon not beetu croled too rajidly, it in so mon, that eren when in piecen of connulemblo thicknem is may bo canily bent. It moila alightly, and leaven on paper or cloth a mask after friction maembling that of plumbago. It njecific gravity in 11.445 , but when Impure nex greater than 11882 leal inay be reduced to thin
 onctenth of an lurh iu diametre lreakn with a weight of 30 lba it fore at abous 612", and when alowly coold cryatallines in octabe. drojare It in wot a rolatile metal, for in close vennele it may bo liraterd to whenem without aubliming. When expoed to tho air It mbortion ensyen and carloonic acill hlowly, and acquirem a muperficial evoting uf carbonate of lead. In dintulled water whicli lian been freed from and kole from the contact of the sir, it undergece oo change; bot if it the exjomed to air and water, it is oxidimed and converted into carlmote of leal with comaillentile rapidity; this cartonato hon the appeantec of miante ahining brillinnt scales

The ores of lead, strictly apreaking. are few in number; indeed the
ouly one whlch can properly be consldered an a working ore is the Sulphuret, but there are various combinations of lead occurring in uature, of which we shall give a brief account.

Native lead is of very rare occurrence, and in some cases of very questionable origin. It has been found in amall masses in the lava of Madeim, and also in the neighbourhood of Alaton in Cumberland; it is in small globular masses, imberdded in galena, or sulphuret of lend, and a slaggy substance, accompanied with blende and crybtals of quartz.

Protoxide of Lead: Natire Massicot.-This occurs in amorphons masses Fracture earthy. Brittle. Specific gravity $8 \cdot 0$. Colour yellow. Opaque. Externally dull, interually of a semi-metallio lustre.

It melts readily by the blow-pipe, and, according to Dr, Jolun, it consists of -

Deutoxide, or Sesquioxide of Lead: Native Red Lead: Natire Minium.-It occurs amorphous and pulverulent; colour carmine red. Harducss 2.0 to 2.5 . Specific gravity variously stated. Dull. By the blow-pipe on charcoal it is reduced to the metallic state. It is supposed to arise from the decomposition of sulphuret of lend and the oxidation of the metal. It occurs in Yorkebire, Susbia, Siberia, and aome other places. When used in the arts red lead is artificislly prepared.

Chloride of Lcal: Cotunnia: Cotunnite-It ocours in small flat colourless crystals in Cornwall, and at Vebuvius in acicular crystals of an adnmantine lustre inclining eometimes to pearly or silky. Specific gravity of the chloride from Vesuvius 1.897.

It fuses by the blow-pipe, and is soluble in a large quantity of water, and, according to Berzelius, consists of-
Chlorine 2548
Lead . 74.52
100

Di-chloride of Lead: Berzelite-It occurs in crystalline masses, with a fibrous and radinted structure, on earthy black ore of manganesc. Harduess 2.5 to 3.0 . Specific gravity 7.0 to $7^{\prime} 1$. It is found in the Mendip Hills in Somersetshire. According to Berzelius it consists of -
$\left.\begin{array}{llllllllll}\text { Lead } & & & & & & & & & \\ \text { Chlorine } & & & & & & & & & \\ \hline\end{array}\right)$

Sulphuret of Lead: Galena.-This nlmost universally diffused ore occurs in attached crystals and massive. Primary form the cube; the cleavago easy, parallel to its faces. Fracturo couchoidal. Hardness 25 to 2%. Scratched by carbonate of lime. Colour lead-gray. Lustre metallic. Opaque. Specific gravity 7.568 . The massive varieties are amorphoun, tho structure gramular, and compact.
By nitric acid it is converted iuto white insoluble sulphate of lead. By the blow-pipe on charcoal the sulphur is first dissipated, and then metallic lead is obtained.
In Comwall and Scotland tho veins of this ore traverse primary rocks. In Derbyshire it occurs in voins or beds in transition rocks, It very commonly containa a considemble portion of silver, and is often mixcd with small quantities of some other metala. Galens is very commonly associated with calcareous apar and fuor spar, blendo, calamine, carbonate and sulphate of barytea, and in Greenland with cryolite and apathose iron.
The deponita of this ore are remarkable for their extent in the United Staten. They nbound in what in called the 'cliff limestone' of the states of Missouri, lllinois, lown, and Wisconsin. The lead of commerce is obtained from this ore, and it is often worked for the silver it contains. Tho following is its analynis by two aminent chemists:-

Lead
Sulphur
Iron
Dr. Thompzon.
85.13 Leal Deudant.
13.02 Sulphur • . . 19.6
0.60 silp
1.0
$88 \cdot 65 \quad 100.0$
Scleniurel of Lead, or Clarsthalite-It occurs masbive. Structure granular. Colour leal-gray; resembles fine graioed sulphuret of lead, but in mofter, nud rather more blue. Lustre metallic, but rather dull. Opmque. Specific gravity from $7 \cdot 187$ to $7 \cdot 697$. When beated in a tube mention sublimes; by the blow-pipe on clarcoal it burna with a blue llame, and the peculiar odour of selenium. It occura in tho Ilarz. Acconding to the namiynis of Rose, it consista of :-

> Selenium
> Lead .
25.59
74.81
-99.40

The above are the principal nativo binary compounde of lead. We proced to notice those which aro composed of an acid and oxide of
lead, remarking that it is the protoxide only which oombines with acids.

Carbonate of Lead: White Lead: Ceruse--It occurs crystalhsed and massive. Primary form a right rhombic prism; cleaves parsllel to the primery planes. Fracture conchoidal. Hardoess 3.0 to 3%. Brittle. Colour white, sellow, gray, and grayish-black, sometimes tinged green or blue by ores of copper. Lustre on the cleavage planes adamantine, on the fracture surfaces resinous. Translucent, transparent, aud doubly refractive. Specific gravity 6.3 to $6^{\circ} 6$. Phosphoresces when powdered and thrown on hot coals. Soluble in nitric acid with effervescence. By the blow-pipe on charcoal decrepitates, becomes yellow, snd is reduced. Massive vsrieties smorphous; structure columnar, granular, compact. The following is its analyais by Dr. Joha :-

> Carbonic aeid Oxide of lead O.5

It occurs in mest lead-mines and is sometimes used as an ore of lead. The white lead which is uaed in paint is made artificially. Caledonite is a compound of the carbonatea of lead and copper.
Sulyhate of Lead: Anglesite.-Occurs cryatallised and massive. Primary form a right rhombic prism. Cleaves parallel to the primary planea. Fracture conchoidsl. Hardness 2.5 to 3.0 . Colourless generally, but has acmetimes shades of yellow, green, gray, brown, nod black. Lustre nearly adamantioc. Transpsrent, tranalucent. Specific gravity 6.23 to 6.31 . It occurs in Anglesey, Cernwall, the ILarz, \&c. The following is an anslysis by Klsproth ; -

$$
\begin{aligned}
& \text { Sulphurie Acid } 24.8 \\
& \text { Oxide of Lead } \\
& \text { Water }
\end{aligned}
$$

Dioxylite is a compound of carbonate and aulphate of lead, so also Leadhillite.
Phosphdte of Lead : Pyromorphite.-The primary form is a rbomboid. It commonly occurs in bexagonal prisms, and clesves parallel to its planes, and to the truncations on its terminal edges. Fracture imperfect, conchoidal, uneven. Hardness $3 \cdot 5$ to $4 \cdot 0$. Colour various abades of green, yellow, brown, and gray. Lustre resinous. Transparent, translucent. Specific gravity 6.911 to 7.098. It occurs also botryoidal snd reaiform. It occurs in most lead-mines, especially in those of Saxeny and the United States. The following is an analysis by Wöhler.

$$
\begin{aligned}
& \text { Phesphorio Acid } \\
& \text { Oxide of Lead } \\
& \text { Muriatic Acid } \\
& 82720 \\
& 1592
\end{aligned}
$$

Helyphane is an arseno-phosphate of lead and lime.
Oxide of Lead also occurs in combinstion with certain acids whose bases sre metallic.
Arseniate of Leall: Gorlandite.-Occurs in crystals and massive. Primary form a rhomboid; usual form an hexagonal prism, which cleaves parallel to its lateral planes. Hsrdness 3.5 to 4.0 . Colour pale-yellew, yellowish and reddish-brown. Lustre resicous. Transparent, translucent. Specific gravity uncertain, atated variously from 5.0 to 6.4 , sad 6.9 to 7.3 . It is found in Cornwall and in Frauce. The following is the analysis by Wöhler:-

It also occurs reniform. Structure compact, opaque. Lustre resioous. Colour brownish-red. Found in Siberia.
Chromate of Lead: Crocoisitc.-Primary form on oblique rhombic prism. Cleavage parallel to the lateral planea of the primary form. Fracture conchoidal. Hardness 25. Colour aurora-red. Lustre adamsntine. Translucent. Specific gravity 6.004 . It occurs also massive:-Amerphous. Structure columuar, granular. 1 t is found in Siberia and Brazil. The following is the analysis by l'faff:-

$$
\begin{gathered}
\text { Chromie Aoid } \\
\text { Oxide of Lead }
\end{gathered} \cdot . \quad . \quad . \quad . \quad . \quad .32
$$

It is the chromeryellow of artists, and is made for their purposes artificially.

Vauquelinite is a chromate of lead and copper, of a dark-green colour.

Molyldate of Lead: Carinthite.-Primary form a square prism. Cleavage parallel to the primary planss. Fracture slightly undulating. Hardnesm 3.0 . Colour different shades of yellow, greenish, and red. Lustre resinous. Tranalucent. Specific gravity 6.69 to 6.76 . It rarely occurs massive. It is found chiefly in Carinthia, but also in North America, \&c. The following is an analysis by Berzelius:-

> Molybdic Acidl Oxide of Lead $60 \cdot 86$

Tungstate of Lcall: Scheclate of Leall.-Primary form a square prism. Cleavgge parallel to the plancs of the prinary form. Frac-
ture conchoidal and shining. Hsrdness 3.0. Colour yellowish-white and brownish. Lustre resinous. Translucent. Specific gravity $\mathrm{S}^{\circ} 0$. It is found in Bohemia and Cariuthia. The following is the aualysia by Lampadius:-
Tungstic Acid
Oxide of Lcad
${ }^{51 \cdot 72}$
$41 \cdot 28$
-100

Vanadiate of Lead: Johnstonite: Vanadurite.-Occurs crystallised and in small globular concretions. Primary form a rhomboid. Fracture conchoidal. Brittle. Colour straw-gellow to reddish-brown. Dull, opaque. Specific gravity 6.99 to $7 \cdot 23$. It is found st Tsmpico in Mexico, and Wanlockhead inScotland. The following is the analysis by Berzelius :-

$$
\begin{aligned}
& \text { Vanadiste of Lead } 74.00 \\
& \text { Chloride of Lead } \\
& 4.00 \\
& \text { Oxide of Iroa } \\
& 0.63
\end{aligned}
$$

Chloride of Lead: Cerasitc.-Has a white, yellowish, or reddish colour, nearly opaque. A pearly lustre. Its specific gravity is 7 to 71 . Cotunnite is another chloride of lead. It occurs at Vesuvius in white acicular crystals.

Corneous Lead is a chloro-carbonste of lead occurring in whitish adamantive crystals, and found in Derbyshire and Germany.
Plumbo-Resinite is a protoside of lead, alnmina, and water. It is found st Huelgot in Brittany, and in a lead-mine in Beaujeu, also in the mines of Missouri.

LEAD, BLACK. [Gnaphite.]
LEAD, RED. [Сhromím.]
LEAD, WHITE. [Lead.]
LEADHILLLTE. [LEAD.]
LEAF. Amongst the higher plants, the whole of their parts can be traced to modifications of the Leaf or Axis. What is not axis is leaf, and what is not leaf is axis. In the lower plants no such distinctions exist, as the tissues are not formed into leaves and their homologues. Althengh so common an organ, the leaf is not easily defined, sad those who sre inclived to enter on the eubject wonld do well to consult Schleiden in his 'Principles of Scientific Botaay.' We shall here follow Schleiden in cur description of the structure of this most important organ.

Leaves (Folia) may be divided iato Annual (Folia Annua) and Perennial (Folia Perennia) ; the former sgain into Deciduous (Folis Decidua), which live only in the early part of the period of vegetatiou; Yearling Leaves (Folia Annua scnsu stricto), which live through the whole period; and Late Leaves (Folia Serotina), which are not perfected till toward the close of the period. With few exceptions every plant has temporary leaves, namely, the cotyledons and frequently those next following them. The Orchidacece, some species of Cuscula, and some Cactacees are the only plants at present known with certsinty to be destitute of cotyledons. Others, for instance the Rhizanthece, have not yet been sufficiently investigated. Many plants are wholly destitute of leaves betwecu the cotyledons and the perluncles of the flowers, as, for instaace, all the Cactacece, excepting Peireskia, snd some epecies of Opuntia; in others these are aurual, as in Alnus, or peremnial, ss in Pinus. The floral parts, the leaves last perfected, cxist in sll Phanerogamous Plants.
When the leaf emerges from the axis it is a little conical body, the base of which gradually comes to occupy the eutire circumfereace of the axis, a stem-embracing or Amplexicaul Leaf (Folium Amplexicsule); or it shares the circumference of the axis with one or more other leaves, which have originated with it on the axis in the same plane, Whorled Leaves (Folia Verticillats); or, lastly, it is confined to a small portion of the circumference, without any other leaves srising from the axis in the same plane, Scattered Lcaves (Folin Sparsa). These three positions of the leaves upou the axis are, most undoubtedly, the primary ones occurring in the plant. We find the first in the cotyledon of the Monocotyledons; the second in the cotyledons of the Dicotylcdons. But if we disregard, in the Monocotyledons, the character of embracing the stem, only looking to the fact that one leaf alone is formed at one level ou the stem -if wo trace the further devclopment of the leaves of Monocotyledons, snd of those of most Dicotyledons, since in the latter it is only in a few groups thst the later leaves are formed in whorls-we find that the great majority of plants have scattered leives. If every vegetable axis be regarded as a cylinder, the bascs of the leaves must admit of being connected by a spiral line. More minute iuvestigation, then, shows that the distances of the bsses of the leaves on this spiral are not without law; but a certain regularity may be observed, and, in fact, the angle (angle of divergence) made by two planes, passing through the middle of the axis and the bawes of two adjacent lcaves, which angle therefore is the measure of the distance of these leaves from each other, is on an average $187^{\circ} 30^{\prime} 28^{\prime \prime}$, consequently a number bearing no ratio to the circumference of the stem $\left(360^{\circ}\right)$; so that no two leaves ever can be exactly in the same vertical line. In the course of the entire axis the distances of the turns of the spiral slter, but always regularly, sometimes even ou account of aceidental influences; and thas from the simplest fundamental condition procecds an infinite multiplicity of modes of manifestatiou, oven
when the rariue form of the axin ile not interfere. Compare but tho neette of lenven of Semperirum tectormm, the stalk of lilium Nortagon, a bhut of fopmins difatatis, a cone of Abies creelsa, ind the fruit perluacle of Ifeloanfoms annums, which latter exhibita the the ular prantion of the leases esen through its fruit which originate from axillary buda

Hu thim nubject the student mould conmult the following workn:-
lor. Schimper,' lencription of Symphytum Zesheri, de, in 'Geiger's Mag. fur Pharmacie: bo xxix. p. l, et ney.

Ir. A. Iraun, "Comparative Imerarches into the Arrangement of the Scalen ia the Fir Coucs' 'sc. Nov. Act. Acal. C. L. N. C. T. xiv., sol. 1. DR 193-402

Dr. Sibimper, Fakays on the Possibility of a Scientific Compre. henion of the l'onition of Leaven,' dc, Published by Dr. A. Braun, '57ors Jabry.' xviii., No. $11,11,12$ (1:35).

Land A. Mravaia, 'Mémoires nur la Diaposition géométrique des Feubllen et des laforencences, précélés d'un Résumé des Travaux des M\$. Sthimper et Braun sur le méme Sujet, par Ch. Martina et A. Bravais. P'ariн, 153.

The primary form in which the leaf makes its appearance in, as abose ntated, always that of a little conical boly which is pushed out from the axis; ite ulterior form depending entirely upon the arranger aneat of the new cella, nind the expmasion of already existing cella, and the leaf is as little confined to s definite circle of forms as any other of the ongan, except the ovule or seed.bud. It may be globular, ovate, elliptical, nuil printuatic, as well as filiform, strap-like, and flattened in its expanmion, and, by the greater accumulation of the cells in the middle than on the borders, or more flattened mode of expansion in the middle than on the borders, the plane surface may also produce concave forma The mont striking forms of this hind are called Youchen (Anci), at in Sarracenia, C'ephelotus, and l'tricularia. One of the raost frequent forms, which in usually lad down as the aormal form, is thim-the upper part is developed iuto a plane, the Blade of the Iocaf (Lnmina), the lower into a filiform part, the petiole or Icaf Stalk (Petiolns), and in the latter may freguently be distimpuibhed, ntill lower down, a nomewhat thickened or expanded portion, Sheathing Portion (Para Vuginalin), with which the leaf partly or wholly cmbraces the axis This latter portion is freguenty, enprecially in compound leaver, awollen into a greater thickack (feoty), nad is then called the Cushion (l'ulviaus) of the Jeal or petiole. As a genernd rule, the flat leaf is so darcloped that ite surface look more or less upwand and downward, rarely so that it Coricers have theec direction, so that the axim lies in the plane of the leaf, an, for inatance, in many Australinn Myrtacece. It is very diferent from thin when a the diaf of the usual development makes n balf tura on ita bave, mo that ita surfnces are thum also placed vertically, an, for exmmle, in Lactuca Scariola. One condition, which has already beea nentioned when peraking of the axis, occura also in the leal, and here liccomen of wuch grester importance. A Joint (Articu. latio) is fornad rancly (or never?) in the Monocotyledons, frequently in the Dicotyledon, berween the leaf and the axis, in consequence of which the leaf in, nftern certain tiuse, thrown off from the axim. while is other casen it gradually dion mad lecays ou the axis itself. Thin true noticulation in often repenteal in the continuity of one and the mano leaf, either only so that a juint in formed between the petiole mat the laminn (for example, in Corw, Dionora), or in auch a manner that in the flat subdividell Leasen (Folia I'innatimecta, Inlmatisecta, da.), erery lofe in coanected to the main body by a joint. Theae latter are calloll Compound Leaven (Folis Componita), and, accorling to the aulalivinion. Nigitate, or lianate (Folin Digitath, Pinnata, \&e.). The efparnta jurta are natned lemflet (Foliola), and the part conbecting all these in the Common l'etive (Petiolua Communis). The lraflote can of cunree manume all the forman of the leaf, in particular thay may lo egain ecparated intolamina, petiole, and pulvinue In nome Auntralian acarian (for inatance, Acacia heterephylla) the first lrayen are conpround; they gradually form fewer and fewer leaflets, till at lant the fart correpranding to the common petiole slone remaina, which Lletu ajr-arn an anermendicular plate, and in callal a Phyllorlium, to diatinguinh it from the uther perfect leaves of the mame plant.
The pouchem or pitechern which oceur in Vepenthes. Sarracenia, C"phatedan, Ituchulia fagheninna and IV. clarata, Marcyraria, Noranta, I'irweularia, te, are not yet frerfectly underntool. The prouches apherently prement thro fiffernt typa:-1. In Sirracrnia it in the luwer fart of the leaf which eshititn n furm rewimbling n comucopia, while at the uptrer horter rung out a fat expanaion (the lamina of the leaf emparatol from the prouch ly a dreppincinion on earb wille. The lower half of the intermal surface of the pench in elotionl with hairn
 pinclier ahaped ariactuse is borno upon n long petioble, winged below. then uflen trudrallak, and carrien upon ita upler larder an articu. latal (') lamios, which uriginally clomen the pitcher liken lid. The inner morface in closthed in the lower part with little pmpiller of very Iflicate runcrifent rellular tianue, while ntove the "pidermin prujecta down urar thmen like the eaveq of a houme. In luoth the casity in formed frupo thon Irat in wuch a manner that the clomed bame of the jouch corregmond to the thane of the leaf (wirracena). or lice fuite

the leaf. Crphalotus appenrs to possess a structure similar to that of Aarracenia. In all the plants mentioned the pouch conatitutes the man body of the leaf. 2. In Marcgraria and Norantea, on the other hand, according to Lindley, the pouches are formed by the stipules. 3. In litricularia many separate portions of the divided leaf unite to assume a very complicated form of pouch. Originally these form a little shortly-stalked somewhat cornet-shaped body in the angles of the divinions of the leaves. In this little body are especially developed the under side and the inner border of the orifice (which does not increase much in size), so that the full-grown pouch presents itself as a roundish and somewhat lsterally-compressed body, which above is continuoue by one angle with the stem, while the othor exhibits an orifice, which forms a little funnel projecting inwards. The external orifice of this funael is closed by a kind of bearl growing on the upper borler; the lower part of the internsl surface of the funnel is clothed with elegant hsira of rarious forms, but very regularly arranged, while the internal surface of the pouch exhibith peculiar hairs, consisting of two cells, each running out into a longer or shorter arm.

In lcaves, as in plants in general, all forme are possible, and almost all actually existing-strict btereometric forms excepted. The terminology depends cither on comparison with mathematical figurea, or with objects presupposed to be fumiliar in common life. There is no aoientific rule for this; asthetic tact alone must be our guide. But within the limits of certsin vegetable groups certain circles of forme do exclusively occur; and under the guidance of accurate observation we can here establish more defimite modes of nornenclature, which however are only valid for these definite groups.

If the Cotyledon of most Monocotyledons is examined we find thet in its gradual dovelopment it completely incloses the Termianal Bud (Plumula); indeed that the exceedingly delicate soft celle of the two borders of it become in part so firmly wuited that they may be regarded as grown together, only a little fissure, which exists in all Monocotyledons, remaining. In germination the developing bud has not room to protrude through the little fissure, so that it pushes the borders of it more or less forward, and then these appear as a peculiar appenilage on the middle of the Cotyledon, ss a membranous expansion of the border of the lower part of the leaf, or as lubes on its base. Similar conditions also occur frequently in the later leaves. In the Dicotyledons a like condition presents itself not unfrequently; cither the bordera becone expanded like a membrane on the base of a petiole or stalk-like lenf, or the emergiag bud lifta up a longer or shorter mombranous sheath, or peculiar lobules are forused on the base of the petiole, sometimes assuming the form of leaflets, and even connected with the pectiole by an articulation. In all cases, without exception, they are, from the course of the development, parts of a leaf developed priacipally at its base, and in their essential nature wholly identical atructures throughout all the Phanerogamia, though they may vary most abundantly in their appearance. They have acquired very different names. In the Grasses these parts are called the Ligule (Ligula): in other Menocotyledons, sumetimes Vagina Stipularin, if large and rising free trom the lowest part of the leaf; Vagina I'etiolaris, if amall nud showiug itself first higher up the leaf: in the Dicotyledons, 'Petiolus Alatus, Stipule Aduatae, if on the margins of the leaf-stalt ; Ochrea, if shenthing, as in the Polygonacea; or Stipulen (Stipula), if appearing like special lesfleto stationed besido the bise of the petiolo: lastly, in the floral leaves, Foruix, Coroan, Nectarium, \&c, as in Iychnis, Boraginacar, Varcissus, dc. They occur as stipules, especially in componad leaves, where aometimes they mone aro developed into a that aurface, while the leaf itself merely forms a filiform process-for exnmple, in Lathyrus Aphaca. At the base of the leafleta of compound leavea also-little lobes eoruetimes occur, which, perhape originating in the same manner, are called Stipelles (Stipella).

Every leaf, as already observed, originatee as a little conical papilla at a definite point on the cireumference of the axis. Even the sheathing leases are produced in this manner, and at tho point which corresponds to the middle line (the midrib) of the future leaf by legrern, and as it is pushed up further from the axis tho parts of ite circumference take part more and more in the development, and thas the bune of the leaf gradually becomes broader, until it completely surroumals the axis. If the development of cells, or the expanaion of exiating onca, continues on the borlers of the base of the leaf beyonl the degree required to surround the axis, the nowly-formed, still soft, and almont gelatinous cells of the two borders of the base of the lear becone applied to one anether, and become united as firmly as the cells of a continuons tissue; in this way the lower part of a leaf then becomen a closed undivided whole surrounding the axis, If the lateral production of cells is nmall, and the uniou takes placo relatively early, this closed portion forms a louger or ahorter shesth, clomely cmbracigg the nxis (vagimn clausa), as in many Grasses. If, on the contrary, the lateral cell-production or expanaion is coneiderable, and occurs relatively late, so that merely the base of the leaf forma a fint projecting border round the nxia, the leaf is said to have the atem growing through it (foliam perfoliatum)-Bupleurum perfoliatum, for exmiple. When the nxis in angular, nud producen thin more or less frojecting plates upon these angles (the so-called winged axis, axia alatus '), a similar process may euter into the bud in euch a way that
a flat leaf is connected at its base with the simultaneously-developed wing or angle of the sxis, ae that the full-grown leaf appeara to be directly continueus with this. Such a leaf is said to run down the axis (folium decurrens), as in Carduus, or, by a wholly uafounded fiction, a leaf blended by growth with the axis (axis folio adnatus). Where several leaves arise simultaneously, or almost simultaneously, at about the same height upon the axis, the bases of the leaves become gradually approximated during davelopment; and here it may readily happen that they approach se close that the same process occurs between the bases of two different leaves, as has been already described in the two borders of one and the same leaf. Thus it happena, that leaves, which in their origin and at their summits are free and isolated, in their ulterior development and at their bases form an undivided whole (leaves grown together, 'folia connata'). The leaves of Lonicera Caprifolium afford an example simplest and easiest to trace. Two foliaceous organs which originate one above the other on the aame axis (as the petal and atamen), or a leaf and the bud developed in its axil (as the hract with the floweretalk in the Lime) may grow together one above the other in the same way.
A process almost diametrically opposite to this may occur, where a leaf is developed, but becomes suddenly arrested in its development in a way as yet unknown, whether through mere mechanical pressure or some other cause, by the more rapid and powerful development of the contiguous leaves; so that either the little original papilla cscapes notice, on account of its relatively minute size in the full-grown part, or the little promivence actually becomes effaced by the aubsequent devalopment of the part, or, finally, the little rudiment of a lesf dies and gradually decaya. In this case the leaf is said to be abortive: an instance easily traced is afforded by the third perigonal leaf of Carex, which aborts in this way, while the two others form the so-called Utriculus; and not only may whole leaves become abortive in this way, but even individual portions of a leaf of which the rudiments already exiat : thus it is not st all rare for the so-called atipules to become disproportionately developed in the rudimentary leaf, while the proper leaf, restraincd in its growth, gradually disappears from aight. The Bud-Scales (Ramenta) on the perennial buda of Corylue avellana may serve as examplas, being in fact nothing else than the atipules of an abortive leaf.

The same influence to which the parts closely crowded in the bud are subject, may merely cause the unsymmetrical development of the t wo halves of a particular foliar organ, so that one side, or that part of the leaf lying on one side of the midrib, assumes a form different from that of the ather half, of which the epeciea of Begonia afford a striking exsmple.

The nascent leaf consists, like all nascent parts of vegetables, of cellular tissue; detcrminate cords of cellular tissue are first gradually organised into vascular bundles; and in fact this process proceeds from the vascular bundles of the axis, and advances gradually into the leaf. In many foliar organs, especially the parts of the Hower, no vascular bundles are ever formed. The vascular bundles of the leavea are distinguished by the most inconveniently chosen cxpressions, Nerves or Veins (Nervi, Veare). Ribs (Costic) is a more correct expression. In Monocotyledons with undeveloped internodes, the whole of the vascular bundlea tozether (?) of the internode, bounded above by the leaf, pass into the leaf. In all other plants, many at least of the vascular bundlea entering the leaf are minor twigs of the vascular bundles of the axia; in the Dicotyledons proceeding exclusively, in great part, from the borders of the loop of the vascular bundles of the axis. The course of the vascular bundles in the leaf depends essentially on the form of the latter. In flat leaves, petioles, or vaginal pertions, the vascular bundles lie in one plane; in relatively thick leaves, \&c., they lie scattered (I'alma) or in a circle (species of Alie, Mesembryanthemum). The vascular bundles rarely run separately through the whole leaf (as in the last-named) : they montly anastomess in various ways with each ether by lateral branchea; frequently in the petiolc, in such a manner that all the vascular bundlas enteriog it unite into a single one, and then eeparate again in the blade of the leaf. The form of the combinations is very varied : in many Monocotyledons the branches aro ahort, going off at right angles; in othera, and in meat Dicetyledons, more varied, so that a net with polygonal meshes is formed.

The vascular bundles of the leaves are progressive bundles: and they are se formed that (regarding the leaf as passing off horizontally from the axis) the oldest parts lie above, the youngest below. In the lower part also a cambium layer exista in the Dicotyledone: in the lower part liber-bundles accompany the vascular bundles, and in the under part the vaacular bundles, in relatively thin and flat leaves, project above the surface (probably in consaquence of gradual development), while the upper part of the leaf appears level.

The parenchyma of the leaf is developed in the most varied manner; in general, in thick selid leavea, it is composed extcrnally of small crowded cells centaining more chlorophyll, internally, of larger and looser cells filled with aqueous juices. Very often the outer layer passes into a tissue, the cells of which are clongated in a direction vertical to the aurface of the leaf, are applied elosely, almost without trace of intercellular passages, and thus are pretty slarply distinguished from the rest of the parenchyma, and occur in the whole of the periphery of the leaf, not only in round and tringutar leares, but also in flat
oncs, as in many Australian MCyrtaccer. In flat leaves, especially of Dicotyledons, there is very often a separation into two lajers, the upper of which has the cells elongated perpendicularly to the aurface, as just mentioned, filled with much chlorophyll, while the lower is composed of looser, globular, or, still more frequently, spongiform parenchyma containing little chlorophyll. In thick coriaceous or fleshy leaves, for instance in species of Ficus and Peperomia, one or more layers of cells containing little but watery juices, often lie between the upper layer and the epidermis; more rarely, in like manner, at the under surface of the leaf.
Besides these there appear at given places, or disperscd in the parenchyma, according to special peculiarities of the plant, apiral fibrous cells, very thick, and closely porous cells, and cells containing peculiar juices and crystals. Milk-vessels and passages, receptaclea for gum, oil, and resin, are also found, and isolated liber-bundles, the last especially in the thin elongated leaves of Monocotyledoos. Aircanals and air-cavities are found in the leaves; the last very regularly and beautifully arranged.
All foliar organa, soon after their origin, exhibit a delicate epithclium, which, in plants vegetating under earth or under water, is converted in time into epiblema, and iu those vegetating above the surface is converted into epidermis. Some parts of dowers are clothed with a peculiar sort of covering, holding an intermediate atation between epithelium snd epidermis. [FLower.] To the epiblema stomata sre wauting. The epidermis is commonly provided with them. [Stomates.] In flat horizontal leaves they are very frequently wanting on the epidermis of the upper side, and they are usually only found where a thin or spongiform cellular tissue is prescnt beneath the epidermis; in floating leaves, on the contrary, the upper epidermis only has stomatn, and through the upper layer of condensed elongatad parenchyma air-canals pass into the under and thinner lager of parenchyma; as eccurs slso in leaves that are surrounded with dense eloggated cellular tissue. All parts usually known as nppeudages to the cpidermis are also found occasionally ou the leaves: even the cork structure is sometimes found on the petioles of longeuduring leaves, as, for example, in some epecice of Puthos and Ficus, as well as on the leaves of Crassula, Bryophyllum, \&c.

The celle of the epidermia are usually filled with a clear watcry fluid, which on the under aurface of the leaf is sometimes coloured (red). Thay mare rarely present crystals, and yet more seldom offer any peculisr matter, as resin, or the like. The form of the epidermiscells is determined by the ferm of the leaf; long slender leaves usually present their epidermis-cells elongated iu the same direction. The lateral walls of the epidermis-cells are often curved in the fortn of waves, but this peculiarity has been too little investigated to be explained at prescnt.
The following is a complete view of the foliar organs:-The floral parts of a plant are diatinguished from the other foliar organs, and are termed Flower-Leaves (Phylla), whilst other leaves are termed True Leavea (Folia sensu stricto).

1. True Leaves (Folia).

A. Seed-Leaves (Cotyledons), gencrally round or flat, fleahy, little divided, aud never compound.
B. Stalk, or Stem•Lcaves (Fulia Caulina). Their forms arc very various, as has been shown in the foregoing paragraphs. These immediately following the Cotyledona are nsually simple; the next more perfect; and again, as they rise into the viciuity of the bloasoms, they become again more simple. Faliform leaves, or parts of leaves, when they twine around foreigu objects, are termed Tendrils (Cirrhi), as in Pisum, Clemativ, \&c.; those which are stiff and pointed are termed Spines (Spina); very concave leaves that cxhibit the form of a cup or pitcher are termed Pouches (Asci), as in Nepenthes, Sarracenia, Utricularia, \&c. According to their various pasitions they are again distinguished from the True Leaves generally :-
a. Leaves of the Infloreecence (Folia Floralia). Indistinguishable from the stcm-leaves, but bearing in their axila a blossom or a simple inflorcacence.
b. Bracts (Bractce). Leaves different from the stcm-leaves, and bearing in their axils a blossom or a simple iuflorescence; for iustance, the scarlet-red leaves of the Salvia Morminum. To these belong the Glumæ of Grasses, which are simply two bracts (which have coumonly no blossoms in their axils), and the leaves which surround the eapitula of the Compositce. A number of bracts, inclosing an iuflorescence, are alse termed an Iuvolucre (Involucrum). The quickly-drying bractex of the Compositce are termed Scales, or Chaff ('Maleac), a word altogether superfluous.
c. Bracteoles (Bracteolac), distinct from the stem learcs, and atanding beneath the blossom, but opon its axis; for example, the twe leaves under the blossom of the Aconitum, \&c.
C. Bud-Scales (Tegmenta). The very simple, mostly membranous, and quickly-falling euter lcaves of a bud which remains for a length of time unexpanded. (See hercafter, under the Bud.)
2. Flower-Learcs (Phylla).
A. Perigonial Leaves (Phylla Perigenii).
A. Sepals of the Fipi-Calyx (I'bylla Epicalyeis).

C: Sopals (Sepala).
D. Petale (Petala).
E. I'sudo- Petala (l'arapetala).

F'. Stamens (Stamina).
6. Peudo-Stamean (l'uratemoner).
17. Carpela (Carpulla).

In contuection with the Jcaf we mar meak of the Bud, the organ from which the lieaf is develogeal
The Bud is the cull of a main or secondary axis, as yet undeveloped, but capablo of dovelopment. We may distinguinh-i. The Terminal Itud (cemma Terminalia), the emal of a developed axia, itself capablo of dovelopment :- The Axillury Bhel (Gemma Axillaris), the end, capable of alerelopnent, of a scondury axis newly arising, according to law, in tho axil of a loaf; siuce reveral bude may arise, without irrgularity, is one axil, that which develops most vigoroualy is termed the main bud, tho othern accossory buds (gemena axiliaris primaria and ncceakoria). 3. Lastly, the Adventitious Buds (Gemnine Adrentitisu), formed at the cnd of any (secondary) axis capable of lotelopment, arising irregularly on the plant. In all these we dis. tisguinh buds contiaually progressing in deselopment (gemma regetatione continua) from buds whose regetating activity rasts for a time after their development into a hud (gemma vegetatione interrupta). Again, buds are distinguished into those which, in the natural courme of regetation, aparate themselves from the parent plant sud becomo iudepeudent plasts (gemmao plantipara), sud those which Alwaya resnain in connection with tho pareut plaut (gemma ramipara). Finally, buda are dintinguished according to their contents: there are the Flower-liuls (Genimat Floripara, alabastrue) ; the Leaf-Buda (Gemma Folijpare); aud Mixed-Bule (Gemme Mixtie).
With the exceptiou of the true tuber in Solamum and Helianthus(?), and of the Tuber Budn (Tubercula), nll tuds have a determinate number of rudimeatary foliar organs These foliar organs are folded in specific waya (vernatio), and have a definite position in relation to each other. From the origin of the foliar organa, it follows that when aeveral ariae at the ame beight, they will always be at some time in aucha pusition that their cdges will be in coutact (rernatio eimplex, foliatio ralsata). Thin position ofted peraista duriny the whole period of the buid remaining as such; it is however changed by various circumstances, not yet clearly undentood, but which appear to be caused by the iadiculual development of the separate leaves. In the vernation the folluwing main forma may be distinguished: the foliar organa are either curled ap in the direction of their length or their breadth, or they aro compreveel together in irregular fulda (vernatio corrugativa). In thone lases that are curled up leugthway wo distinguish alarp folele from thowe which sake rounder eurves.
Schleiden gires the following nomenclature of the kinds of Vermation and Foliation:-
A. With sluary folida
a. Vermatio Duplicativa Simply foliled together (furwards) upon the upper surface of tho leaf, as in Quereus, Tilio, and the lamina of Lirtadendron.
b. Vernatio lieplicativa. Folled in the samo way backward ofon the under aurfaco of the lear.
e. Veruatio Implicatira The two borders folded in aharply forwarda, wis the jerigone of Clematis.
d. Vernatio I'licatira Many longitudinal folda, no in ecen, though not quite perfectly, In fogmanil Carpinus, but letter in Alchemilla, and leent of all in J'onicmm gricalum.
A. With roualed folle.
a. Vernatio Convolntiva Simply rollmup, as in Calla aud Prumus.
4. Vernatio lavolutiva With both edgea equally rolled up furwarda, an in Jlinna and Populus.
c. Vernatio lletulutiva Holled backmarla in a minilar manoer, os neen in sialux and dierinon.
In learea curled asd folded hogether the crons winj, the mont inn. portant rlistiactions oceur.
a. Vernatio Inclinativa Incurved furward, as in the petiole of Itreodendion andllicprationa.
b. Vermatio Ileclinatira lecurvel bnckwania, m in Aconifum.
r. Virnatio Circinala Ifolled upformand from the joint to the brec,
na in Cycas.

In the Foliation we dintlugulals tho ponition of the foliar organn in relation to one another, in general, from the pomition of iatividual circlay of foliar orgasa with geaject to ench uther. Wisth regard to the hent of theme, the conititions have been poluted out.
A. Follatio Vialrata When the leavea only wach withont covering each ather with their borier.
a. Foliatio Valvata neusu whicto, In Vermatio Slenplex. Flower in Aaprelia.
6. Foliatio Induplicatlra (7), in Vernatlo Duplleativa.
c. Foliatio Implicativa, in Vernatio Implicativa, as in the parigone of Clenatis.
B. Folintio Amplexa. When each leaf embraces all those within it.
ct. Foliatio Convolutiva, in Vermatio Convolutiva, as in Prunus Armeniaca.
b. Foliatio Equitane, in Vernatio Duplicativa, as in Iris.
C. Loliatio Seminmplexa. When ench leaf embraces with one edge, and js embraced on the other.
a. Foliatio Contorta, in Vernatio Simplex (more than throo leares), as in the lower of Dianthus and Linum.
b. Foliatio Obvolutiva, in Vernatio Duplicativa, as in Lychnis.

1. Foliatio Quincuncialis. When fre leaves so lie that between tro external quite uncovered ones, and two inner quite covered ones, the fifth is so interposed as to cover one of the juner leaves with one edge, and to be covered at its other edge by one of the extermal leaves, as in the flower of Rosa.
E. Foliatio Connata. When the leares of a circle are so perfectly and intimately grown together that on the fall developrnent they become luptured from their common beaik, and fall away like a cap, as in some calices, for instance, Eucalyptus, Eschscholtzia; aud bracts, as in Aponogefon distachyon, \&c.
Some of the above forms are given in the following wood-cut.

2. Applicative, or appecseed (Tiscum album). 2. Conduplicate (Cerasus communis). 8. Imbricaso (Syringa culgaris). 4. Fquitant-Tcrcte (Vaccinium Vyrtillus). 3. Equitant-Anelplal (Iras germanica). 6. Equitant-Triquetrous (Carer paludonn). 7. Obvolute, or Semi-Amplexal (Saponaria officinalia). 8. Gyrate, or Circinate (Drosera anglica). 9. Involute (liola odorata). 10. Equitant.Tctraquetral (Some Careses). 11. Ihicate (Titio rimifra). 12. Invelate (a variaton) ('yyrus Malus). 13. Revolute (Polygonum l'croicaria). 14. Coavolutc, or supervolute (Irunus Armeniaca).
Fibally. In respect to the position of individual circles of foliar orgman with reapeet to one mother, the folloring have been dintinguiahed:-
A. Fuliatio Alternativa. When the members of the one circle stand before the internpacen occurriag between the mombers of another circle, as iu the calyx, corolla, and stamina of Lysimachia.
B. Folintio Opprositiva. When tho members of one circle stand before the meratura of nother eirelo.

We mny now rpeak of the particular Forms of Buder

A. Iluds developing in uninterrupted vegetation. There may alao bo termed open buds, because they beldom or never exhibita alosed form, since in these the leaves are gradually developed to the perfect form and size, from the perfect rudiments contained in the bud. Yet in these bude the foliation is nlways such, that the youngest and tendernat parta are defended from the influenco of the atmoaphere, and almost wholly lnclosed.
13. Duds with regetation dormant for a certain time.

1. Buds of Shoots.

a. Terminal nad axillary buda of perennial planta, with periodically clormant vegetation. Of these we are only intimntely nequainted with the native trees of our woodn and forcats. It is characteristio of these, that the young learea, which aubsequently come to perfection in the more developed axis, are enreloped whilat in the bud by stipnlef, which nown after the development of their leaf fall away (stipula
decidux), as in Liriodendron, or in leaves or stipules of simple structure, of which the laminar portion is abortive (tegmenta) : and there are varieties amongst these, so far that either only the external or inferior leaves, or stipules, appesr as coverings of the buds, as in Fagus; or the coverings of the bud seem to be continued into the interior of the bud, but alternate with leaves capable of perfect development, which lie between and are covered by them, as in Acer. The coverings of the bud are for the most part tough, and slmost leathery; they are often filled and coated over with resinous juiees, and then mostly fall off in the development of the bud, but they also oceur thin and herbaceous in texture, and even ehange quickly into dry thin membranes, which mostly remain upon the plant; these last are seen in Pinus.
b. Adventitious buds of perennisl plants, with vegetation periodically dormant. They are only distinguished from the foregoing by the mode of development. Each stem, whethera common one or a root stem, can develop a bud. These buds are caused, not only by aceidental and intentional wounding of the stem, but also by the inclination of plants to develop buds at certain places. Many plants exhibit upon their bark peculiar little groups of lax roundish celle, which originally lie under the epidermis, which however is soon destroyed above them, lesving thern bare (lenticellix). The result of this exposure is, that at these places the bark is rent by the distension of the bough or stem; hence the newly vegetatiog part of the bark comes in contact with the air. It is prineipally at the edges of the rent bark that the adventitious bude are found.

2. Propagative Buds.

a. Bulbs (Bulbi) are monocotyledonous stems, with undeveloped nternodes, which gradually die away from below upwards, and therefore remain always very short, with perennial leaves, whose vaginal parts die away and inclose thin membranes, the sheaths of the inner leaves still living, and always fleshy and thick (bulb-scales); or more rarely die away speedily, and leave bare the latter, as in Lilium. They are formed either immediately from the embryo, and then the shoathing part of the cotyledonary leaf becomes the first bulb-scale; or they are formed from the axillary buds of the bulb, or from the axillsry buds of the stems which have sprung from the bulbs, as in Lilium bulliferum: Jess frequently they are from adventitious buds on leaves or other parts. We distinguish :-

A. The Leafy Bulb (Bulbus Foliozus).

1. The Tunicated Bulb (Bulbus Tunieatus), where many sheathing parts are closed round, or embrace the axis pretty broadly, as in Myacinthus orientalis.
2. The Scaly Bulb (Bulbus Squamosus), where many shoathing parts, relatively slender and short, are seated on the axia, ns in Lilium candidum.
B. The Solid Bulb (Bulbus Solidus), when the bulb is formed of one single living sheathing part.
l. Bulbels (Bulbilli). To plants not perennial by means of a bulb (only Dicotyledonous?), the axillary buds are sonetimes developed into bulb-like forms, in which the leaves are only developed as thiekened sheathing parts, and the buds separate from the parent plant by the dying away of the supporting stem or stalk, and become independent plante, as with Dentaria bulbifera.
c. Tubers (Tubera). On underground stems the axillary buds (of attenuated scaly leaves) are sometimes developed in such fashion that the entire axis of the bud beeomes thickened, fleshy, and of a knobhy form; the leaves are quits in rudimentary condition, or scarcely to bo recognised, whilst the axillary and terminal buds remain eapable of development, aud after the dying away of the stems of the paront plant form new stems, as in Solanum tuberosum.
d. Tuber-Buds, Tubereles (Tubercula). Many plants form small tubers above the earth; seldom (if ever) indeed as axillary buds, but frequently as adventitious buds, and especially on foliaceous organs, from which new independent plants develop as soon as they are separated from the parent plants: sometimes this is a speeifie peenliarity, as, for instance, the tubers of the speciea of Amorphophallus and other Aroidec: sometimes they arise in certain plants particularly readily in consequence of injuries, as, for instance, in the Gesneriacece, on the broken surfuce, after cutting a leaf-nerve at the edge or the point of the lear.
e. Pseudo-Tubera (Tuberidia). In some plants a single, frequently an axillary, bud is transforned in a peculiar manner. The parenchyma of the axis of the bud, which is situated over the vaseular surface, suddenly becomes exceerlingly expanded in a solicl and tuberenlated form, by mesns of the sudden commencenent of new formation of cells in isolated groups of cells; in the axillary bud this only occurs on one sido (as in onr native Orchidect), since, on the other side, the pressure of the stem prevents such distension. In A ponogeton distachyon, the thick fleshy cotyledon with the end of the root proves a correaponding obstruction; hence here also the development of the pseullo-tuber is only one-sided. In the Dablias, on the contrary, the tuberenlar development is equal on both sides. The masen of cells cnters between the base of the cotyledon and the new
adventitious roots, arising at a very early period almost immediately under the cotyledon, and which, through the formation of the pseudotubers, become gradually removed far away from the cotyledon.
We may now add a few words on the function of the leaves. Works on botany are full of speeulations on the functions performed by these organs. Without entering on this history we may say that the whole of the functions performed by the leaves may be summed up in the word exhalation. The sap is brought up from the soil by the loss of water from the leaves. Hence this function of the leaves is necessary to the nutrition of the whole plant. It does not bowever follow as a consequenee of this faet that the leaves send down nourishing materials into the stem and branches.
It is also frequently stated that the leaves take up carbonic acid. Under eertain circumstanees there can be no doubt that leaves absorb as well as exhale, but this is not their constant funetion. It depends on the condition of the atmosphere; when dry and the sum is shining the leaves exbale water, but if these conditions are not present, if the atmosphere is moist, and there is little or no heat and light, then the leaves absorb.
The following extract from Schleiden's 'Principles of Scientifio Botany' supplies some of the data on which recent physiologists base their view of the leaf being simply an organ of exhalation.
"From those parts of plants which are exposed to an atmosphere whieh is not already perfectly saturated with moisture, a continual evaporation of water goes on. The process is purely physical, and, according to aeeurate investigations, it appears to proceed uninterruptedly, aceording to the dryness and motion of the atmosphere, with the temperature, and the amount of surface exposed to evaporation. It is highly probable that the epidermis permits of no passage to the evaporating water, but that, the evaporation oeeurring in the neighbouring intereelhular spaces, it eseapes through the stomates when they are not closed by too strong evaporation and consequent relaxation. From this cirenmstanee the exhaled water is never quite pure, but it contains always a small admisture of vegetable substanees which cannot be aeeurately analysed.
"Besides this evaporation of water, we smnetimes find in a very damp atmosphere, and especially in the ease of plants that bave already exhaled very mueh, a taking up of moisture, espeeially through their green parts; but our observations on this fact have been too little aecurate and purposelese to admit of a precise explanation of the process.
"The study of vegetable exhalation in general requires a repetition and improvement of the experiments made uponit. We need a set of experiments which slould show, with the greatest exactitude, the difference between the quantity of water absorbed and exhaled, from which we might decide the quantity used for the nourishment of the plant. If the amount of oxygen exhaled with the water was also obtained, we should probably be able to arrive at eonclusions respeeting the nature of the chemical proeesses earried on within the plant. We have yet to aseertain the relation of the exhalation of the water to its absorption. The fact of its absorption (by other means than the root) has been established by Hales, but we are still quite in the dark as to the manner. An aecurate knowledge of these relations is so mueh the more to be desired, as the evaporatiou and absorption of water with the tension of the vapour must exert an influenee upon the absorption or oxhalation of the several kinds of gases. Yet iu the experiments made upon the 80 -called respiration of plants, this has been lost sight of.
"We know nothing of the preeise types through whieh exhalation is effeeted. To myself it appears improbable that the liviug epidermis should be permeable to water and the vapour of water, except through the stomates.
"It is an established fact, that all evaporating water carries with it some portion of the matter which it held in solution. This is seen in the vapour of the oeesn. It is probable that no water exhaled from plauts is sbsolutely pure. But no aceurate analyses have been made on this point.
"The natural consequence of this exhalation of water from the green parts of plants which are exposed to the air, is the continual concentration of the juices in the cells which lie next the evaporating surfaees. By this the endosmose of the eells which do not exbale undergoes a change, of which we shall have to speak hereafter.
"The information which we possess respecting the exhalation of plants is chiefly found in the experiments of Hales, Guettard, Sennebier, Schiibler, and Neuffer.
"The strange tendeney al ways to attribute to vitality something different from the physical powers, bas iutroduced into the doetriue of the transpiration of plants a distinction between evaporation and exlalation; the first being supposed to take place in dead plauts and the last in living ones. I can find no distinction in this case in the facts, but merely in the words.
"I will here add some facts upon the quantity of water exhaled by plants.
"Aceording to Hales, a sumflower cyaporated daily 1.25 lbs . of water : now let us allow to each of these plants $4 \square^{\prime}$ apace of soil; then upon the old llessinn acre there would stand 10,000 plants, which in 120 days would exhale $1,500,000 \mathrm{lbs}$ of water.
" α cabbage eshaled in tivelve hours of the day 1 lb .6 oz . of water;
now if, acconlerg to llock, cach plant occopies $5^{\prime} \square^{\prime}$ of mil, and if wo rekon an luferior expenditure for the night, yot the phats ou an acro would exhalo 1,200, voo lew of water in 120 daya.
"A dwarf pranerce, according to Malew, exhated in 10 hours of the day $1 \$ \mathrm{lb}$. of wester. Allowiog for each auch trew 20 口' of soil, the irem of an acre would exhale $\$, 600,000$ lise of water, and probably another thinl of the quantity might be mulded for the grane letween the thec, whlch would thake for the acre nlmost $5,000,000$ lbs. of water.
"An acre of $\$ 0,000$ myune feet, phanted with hopan, exlated in 120 daye $1,280,000$ lhe. of water through the hops alone.
it A muare foot of oil corerel with Poa annua exhaled, aeconding so Schubler, daily, on an sverage, during the summer, 33.12 cubis mehen of water: thus an acro of meadow land would exhale about e, 000 0 , (000 llus."
The sobject of the fool of planta sal the general proceaser of nutrition in the vegrable kingdomis dewcribed under the article Sap.
L.REANORA. [LatCuENS]

1,KC'THID.A'CE.F., fecyth, sa important but emall natural order of 1hante with singular fruite, and very large fleahy flowers, inhabiting the wooln of South America. They are regarded ly De Candolle as a maction of Mypfacere, from which they differ in their leaves being alserpate, and not dottet, the stamens monadelphous, and extended on one side, in an unusual manner, into a broml lobe, which covers over the ceatre of the flower like a hood. They are untives of the hotlest parta of Sonth America, empecinlly of Guyana.

Among the phate belongiag to this order aro the following, which deserve particular notice:-

Lerythis ollaria, A tree inhabiting the forests of Cumana and Brazil, with a hard woody fruit as large as a child's hend, and opening by a lid like tlint of a jar or urn. It contains numerous large seeds, which are catable.
L. Kapweajo, a large Guyana tree, with alternate oval leaves 12 inches long, and racenea of large flesby red rud white fowers. The frnit is lund, woorly, urn-mhaped, and about 4 ineles brond by 6 inches high; is containa munurous seeds as large as almonds, and quite as agrevable When frewh. They are mometimen seen in the fruiterers shops in London, where they are called Sapmeaya Nuts.

Herthalletio ercelan, already desuribed. [Bz:RThoni.etm.]
Comronpifa Ciminnensis, or Camon-Thall Tree. This plant takes its name from itn large hearg woody fruit, whicb, according to Aublet, is about the size of a 36 -pound thot, and although uru-shaped like the othern, doen not open by its lid, but is broken by its fall, or lies on the ground till it rote, lefore the seeds can extricate themselves. Tho towes are very largo and baddsome, deep rose-colour and white; the tree in of great nize, with a truak often more than 2 feet in dinmeter. The fhells of the fruit are ued as drinking vessels.

Mower of Cancon-Rall Tree (Oourompien Guiamensis),

Frult of Cannon-Ball Tree (Couroupita Guianensis).

LEDERERITE. [Chabazate]
 LFDFRITE: [TITANIUM.]

LFDUM, a genus of I'lants belonging to the natural order Ericacer. It has n minute 4 -toothed calyx, 5 spreading petals, from 5 to 10 stamens, anthers opening by two pores nt tho npex. The capsules are subovate, 5 -celled, 5 -valved, stalked, and dehiscent at the base. The seeds are furnished with a membranons wing at ench extremity.
L. latifolium is a small evergreen shrub, with an irregularly branelsed stenn. The branches nad under surface of the leaves aro woolly; the calyx is rery minute; the corolla white, with obovato obtuse petala. It has veen commended as at stomachic; but an infusion of tho leaves in beer renders it uwusually heady, and produces headache, nausea, and even delirium. Pallas bowever says that they have been used with advantage in tertinn agues, dyseatery, and diarrhoa. They have an aromatic bitter flavour. 'I'bis species is a native of the swamps around Hudson's Bay, Labrador, Greenland, and various parts of the United States.
L. palustre has linear leares, with revolute margins, clothed with rusty tomentum beneath; it lans 10 stamens, longer than the corolla. It is a native of North America, in the awampa of Canada and Now York, also the North of Liurope, Denmark, Silesia, de L. pulustre bas somewhat similar properties to thoso nscribed to the former apecies. In Germany a kind of beer is mado from its leaves, nud it has also been reoommended as a febrifuge. This species was formerly admitted into tho catalogue of British plants; but Mr. Babington considers that it has no claim to appear there, and has omitted it accordingly.
L. Canadense has ovate petiolato leaves, white beneath; the llowers disposed in terminal large umbellate corymbs of a white hue. It is a uative of tho swamps of Canada. A peat soil or a very sandy loam answers best for tho cultivation of the species of Ledum, and they are readily propagated by layers or by seeds. The seeds should be nown, and the seedlings afterwands managed in tho same manner as the Madodendron.
(I Hon, Dichlamylcous Plants; Buruett, Oullines; Babingtou, Manual of Britigh Rotany.)
l.EECH [ANBEt.DA.]

LEEK. [ALCaUM.]
THERLSIA, a genus of Crasses belonging to tho tribo Oryzece. It Lun 2 palcec compressed, keeled, and awnaless, the lower one much broader ; atigana protruding from the side of the florets; nut inclosed in the palece.
L. oryaoides bns in patent paniclo with wavy branches, spikelets trinndrous, half oval, ciliated on the back. It is a creeping plant with a stum one to two feet ligh, never procumbent, and rooting at the joints. Tho leaves are broad and rough-edged, the uppermost lorizontal at the flowering seasou; pauicle rarely, if ever, protruded in thin country, mostly inclosed in the sheath of the uppermost leaf. It in found in marnh ditehes in Sussex and Hampshire.

LFOUMINOSA, or FABACFAF, n very extenaive naturnl order of l'lants, consibtiag of herbaceous plants, shrubs, or vast trees, extremely variable in appearance. The leaves are alternate, zoost commonly compound, oceasionally marked with transparent dots ; petiole tunid ut the baso; stipules 2 at tho baso of the petiole, and 2 at the haso of each leafet; pedicels usually articulated, with 2 bractlets under the flower; calyx 5 -parted, toothed, or eleft, inferior, with the odl segment nutcrior, the segments often unequal and variously conluned; petals 5 , or by abortion $4,3,2,1$, or none, inserted into the base of the ealyx, cither papilioanceons or regularly alreading; tho odd petal, if any, posterior; stamens definite or
indefinite, perigynous, rarely hypogynous, either distinct, or mona. delphous, or diadelphous, very rarely triadelphous; anthers versatile; pistil simple, superior, 1 -celled, 1 - or many-seeded, commonly cousisting of a single carpel, but occasionally of 2 or even of 5 carpels; style simple, proceeding from the upper margin; stigma simple; fruit either a legume or a drupe; seeds attached to the upper suture, solitary or several, occasionally with an aril ; embryo with or without albumen, either straight, or with the radicle bent upon the cotyledons; cotyledons either remaining underground in germination or elevated sbove the ground, and becoming green like leaves, alwass very large in proportion to the radicle, and very often amygdaloid.
The most common feature of Leguminous Plants is to have what are called papilionaceous flowers, snd when these exist no difficulty is experienced in recognising them, for pspilionsceous flowers are found nowhere else. Another character is to have a leguminous fruit : and by one of these two characters all the plants of the order are keown. lt is remarkable however that one or other of these distinctions disappears in a great many cases. Cesalpiniece have an irregular flower with spreading petals and stamens adhering to the calyx; others have ne petals at all, or some number less than five, while Mimesece have perfectly regular flowers and indefinite hypogynous stamens. Detarium, Dipteryx, and others, instead of a legume have a fruit not distinguishable from a drupe. This last circumstance is easily to be understood if we bear in mind that a legume and a drupe differ more in name than reality, the latter being formed on precisely the same plan as the former, but with this modificstion, that its pericarp is thickened, more or less fleshy on the outside and stony on the inside, 1 -seeded, and indehiscent. Hence some of the regular flowered geners with distinct stamens may be said to be rosaceons in flower and legumineus in fruit. Simple therefere as the diagnosis of this order usually is, Brown is perfectly correct in assertiug that, until he indicated the differeace of the position of the odd lebe of the calyx in Leguminous Planth and Roseworts, no positive character had been discovered to distinguish the one order from the ather. Very few double flowers are known in this order; those of Spartium junceum sud Ulex Europera are the most remsrkable. Two ovaries are common in Wistaria Sinensis, and the same phenomenon is to be seen, sccording to De Candolle, in Gleditschia. On account of these and other circumstauces, De Candolle assumes the carpel of Leguminous Plasts to be solitary by sbortion, and that a whorl of 5 is that which is necessary to complete the symmetry of the flowers.
In consequence of the highly irritable nature of the leaves of many of the plants of this order, and of the teadency to irritability discoverable in them all, some botanista have placed them st the extremity of their system, in centact with the limits of the animal kingdom. For observations upon the nature of this irritability see Dutrochet, 'Sur la Motilité, Paris 1824, in which the auther endeaveurs to show thst the motion is the effect of galvanic sgency; and the same writer's 'Nouvelles Recherches sur l'Exosmose,' in which he silters the explanstion of the manner in which galvanism produces the motion, adhering however to his opinion of that subtle principle being the real agent. It is more probsble however that thisse movementa are connected with the inherent irritability of the protein common to all plants.
In many respecta this order is one of the most important which the botanist can study; more especially as it serves to show how little real importance ought to be attached to dehiscence of fruit in determining the limits of ustural orders. What may be called the normal fruit of Leguminous Plants is a legume, that is to say, a dry eimple carpel, with a suture rinning slong both its margins, sa that at maturity it separstes through the line of each suture into twe valves; but every conceivable degree of devistion from this type occurs. Arachis and many more are indehiscent; in Carmicheclia the valves separate from the suture, which remains entire, like the replum of Crucifera; in sll Lomentaceous genera, such as Ornithopus, the valves are iudehiscent in the line of the suture, but sepsrate transversely; In Entada a combination of the peculiarities of Carmichotia and Lomentacere accurs ; in IIcematoxylon the valves sdhere by the suture and split along the axis; and finally, Detariun, Dipteryx, and atbers, are true drupes, in no respect different from those of Amygdalece.
The geographical distribution of this order has been considered with great care by De Candelle, from whom the substance of what follows in borrowed. One of the first things that atrikes the observer is, that if a number of genera of Leguminous Planta have as extensive a range as those of other orders there is a considerable number of which the geographical limits are clearly defined. Thus, the genera of Australia are in most cases unknown beyond that vast island; the ksme masy be said of north and South Anerica, and the Cape of Cood Hope; and there are 14 or 15 genera unknown beyond the limits of Europe and the neighbouring berders of Asia and Africa. About 92 geners out of 280 are what are called 'sporadic,' or dispersed over different and widely-spparated regions, such as Tephrosia, Acacia, Glycine, and Sophora. The species are feund mere or less in cvery part of the known world, with the exception of the islsnds of Tristan d'Acugna and St. Helena, aeither of which do they inhabit; but they are distributed in extremely unequsl proportions. In general they diminish sensibly in approaching the polc. This will be ajparent from the following table:-
Europe, with the exception of the Meditermaran. 184
Siberia 129
United States 183
Caina, Japan, snd Cochin China 77
Levant
Levant 250
Basin of the Mediterranesn 463
Cansries 21
Arabia and Egypt 87
Mexice 152
West Indies 221
East Indies 452
Equinoctial America 605
Equinoctial Africa 130
Australia 229
Isles of Southern Africa 42
South America beyoad the tropics 29
Cape of Geod Hope 353
South Sea Islands. 13
This distribution, if condensed, will give the followiog results:-
Equinoctial Zone 1602
Beyond the Tropics to the North 524

Siace the time this calculation was made the order has been prodigiously enlarged and a very considerable number of species has beea added to those from the tropical parts of America, Australia, and the Cape of Good Hope. Nevertheless the calculation, with these exceptions, is instructive as a general sketch of the statistics of this branch of Ceographical Betany. The Leguminous order is net only smong the most exteasive that are known, but also one of the most important to man, whether we consider the beanty of the numerous species, which are among the gayest-coloured and most graceful plants of every region, or their applicability to a thousaad useful purposes. The properties of the order are very various: some are nutritious, others tonic and astringent, others purgative, and some poisonous. The plants supply timber, fibres, gum, dyes, sad various other economical articles. There is however to be borne in mind, in regarding the qualities of this order in a genersl point of view, that upon the whole it must be considered poisonous, and that these species which are used for food by man and animale are exceptions to the general rule.

The species amount to come thousands, and are conveniently divided iuto three sub-orders, Papilionacea, Casalpiniew, and Mimesece.

Papilionacea, Pulse section, have what are called papilionaceous flowers, that is, of the five petals one is large, broad, spresd open, and called the standsrd; two others are parallel, cenvex, or slightly spreading, and called wings; and the two remsining ones are slso parallel, but uaited by their anterior edge so as to form a body not ualike the keel of a boat, after which it is named. In all these plants the stamens are definite in number, and inserted with telerable distinctuess into the calyx ; but while many are diadelphous, others are monadelphous or decandrous; the fruit is either a legume, a lomentum, or a drupe, or some form intermediate between the first and last. It is here that the great mass of the order occurs, especially in the colder parts of the world. Peas, beaus, clover, saintfoin, lucern, liquorice, indigo, medicks, and trefoils, lupines, and aumerons other common European genera, beloug to Papilionacece.

Indignjera Anil.
1, Standard; 2, wings; 3, keel of the flower; 4, calyx ; 8, diadelphous sta; ens; 6, legume.

Mauy apecies are tonics and motringenta, and othere gield a kibil of gumn, and among thoee that yield dyes í the Baftisea finctoria, the Wild Imaligo of Anserion.

In a very large number of apecies narcotic propertica have becn dimorerel.
The doseription of the neful genera will be foumed under thi ir pepectivo beals, auch as Astracales, lictes, Culutea, Chtises,
 MzLioters, ThiptoLomes, se. da

The nub-order Cersalyinicer have the petals apread out, aud nearly equalsimed, with diatinct unequal atamens; they may le conaidered the regular form of the oricr, while Papilionacer are the irregular form. Their fruit is usually a legurue, but nutalways. The Cizsia, which furoinhen the sensa-lenves of the slaps, in the most iuteresting among them; to thia mub-orler also belong the Tamarind and Atgarolin fruite, tha tree yielding logwood, 1 razil-woorl, Sappan-wood, ic., and Hymenca, from which gumanime is procured.

I'ungative propertics are the great claracteristic of this sub-order. Senna is their mose remartable produat. Some of theun yield dyes. The Jacust-Trees of North Anerica belong to this order, and are celetrated for their gigantic etature. The principal apecies are deecribed ander Cassh, Cematosia, Curampa, Heyatoxilos, Hymestia, bodnia, Tayamindes, de.

Cussis elongata.
The abboriler Mimosur have unall regular fluwera collected into besho, bumereun often indefinito ntancos, namally hymgynoun, nusl a legrme. Thay are anknown in cold countrion in a will state, but in the hutter parin of the world thoy forman atrikingly heautiful portion of the recelation. Firmon the much greater I-ngth of their ntamean, their petaln, and the clunterel compact armagement of their flowera, the latter often resemble thache of silk, of the mone vivill colomes, Intortaingled among the leaves. Tharir lark in unually antringent, with a froument internisture of gum. The gumn Arabic, sencgal, Shas, and wherm, amp proluceal by different apecien; catechu in the extract of the antringent lark of Acacia C'atechn, and rome woonl im naill to lre the binter of morne Momase inhabiting the interior of lipazil. One of the macat atriking, pletermena atnong the flanta of thin orler in the excoonive irrichlility oberralle in the learea of certain apecies of
 Sonative I Ianke It ia however a apmeial [woculiarity, and mot one of geteral recurmice; unlem the folding up at night of the lenver of the whofle malrorimer lom rogreded an an intance of the same irritable duality in a low degres.

The afecifs of thin order ano aleacribed under Acacia, Estada, Minosa, de.

Mimosa pudica.
1, a flawer, mnch magnified; 2, a legume.
In 1845 Mr . Fentham made the following estimate of the numbers of geuera aud spocies belonging to tho order Leguninose.

LAEGUMiNOSITES, a genus of Fossil Fruits, from the Isle of Sheppey. (Bowerbnuk.)

LEMUUNTITE, n Mineral conaisting of silicate of alumina and soda. It occurs massive. Its colour is flesin-red, the mass when broken exlibiting two parallel white lives near the centre. Vuder the microacope it appeara to be composel of minute scales. Harduess 3.75 . Trannlucent on the edges. Specific gravity 1\%53. Before the blowpipe it fuses into a white cuamel. It is found at Glenarm, county of Antrim, in an nmygdaloidal rock. Analysis by Dr. I. D. 'Mhomson: -

LEiomeila. [louaside.e]
LEIODON. [Sal居A.]

LEIOLFIIS. [Abasa; DRACosisa.]
hefosailkus. [tounanar.]
heitotililit, a gemun of birila calabliwhod by Mr. Swanson, with the following gencric elaracters:-bill much compressed; culmen gradually curved; noatrils large, membranaccona; tail moderate, deeply forted.
L. furcafus ('PI. Col.' 287, f.1.: India). The genus belongs to Mr. Swainson' nub fanily leiotrichene (Silky Clintterers?), being the first of hin family Anpelide (Fruit-Enters, or Clatterers), [L. riotnicuans.s.]

La:IOTItICliA'N.E (Swainson), a rub-frmily of the Ampolide, a family of Hirils. It in thus defined by Mr. Swainson:-LLegs large, robust, ayndactyle; lind toe longer than the outer; wing slort and rounderl; bill atrong; the gonya ascending.
The only other kerlus Insides $\begin{aligned} & \text { aciathrix placed in this sub-family by }\end{aligned}$ Mr. Swainon in I'feruthins (Sw.), to which that nuthor gives the following generic characters:-bill short, compressed, thick; the tip ahriko-hke, hooked; culmen arched; gonyn ascending; nostrils basal; the nperture round: gape wilde; rictus slightly bristled; wings very whort, rounder ; tail ahort, broad, rommled; the tips ohtuse; tarsi nmooth, pale. ' \quad. erythropterus, Gould's 'Century of IIimalaga Birdn,' [1. 11 (Ianius erythropterius), India, is an example.
LEMMING. [MUHDE.]
LFMMIS. [MCHDE.]

LEMNA, a genus of Plants belonging to the natural order Aracece, and the sub-order Lemnece. It has a 2 -flowered membraneous urceolate spathe; the male flowers consist of 2 stamens; the fruit is reticular and indehiscent; the fronds are without distinction of stems or leaves; the flowers appear just below the margin of the frond. Several species have been described. They are all iuhabitants of stagnant waters, and are known familiarly by the name of Duck-Weeds. The following are the British speeies:--J. trisulca, with lanceolate fronds; L. minor, with compressed obovate fronds; L. polyrhiza, with roundish-obovate compressed fronds; L. gibba, with obovate hemispherical fronds. (Babington, Manual of British Botany.)
LEMNIAN EARTH, occurs in the Isle of Lemnos, whence its name. It is found massive. Fracture earthy. Dull. Has a meagre feel. Soft. Opaque. Colour grayish or yellowish-white. Falls to pieces when put into water. It was formerly used in medieine under the name of Terras Sigillata. According to Klaproth it consists of-

LEMON. [CITRTS.]

Lemur. [Lemuride.]
LEMU'RIDSE, a family of Animals belonging to the Quadrumana. Linneus, in his 'Charaeteres Mammalium,' defines Lemur, the third genus of his Primates, thus-"Dentes primores inferiores 6." In the body of the work ('Syst. Nat.') he characterises the genus as follows :Upper incisors (primores) 4; the intermediate ones romote; lower incisors 6, longer, prominent (porrecti), compressed, parallel, and approximate. Caviaes (laniarii) solitary, approximate. Molars nnmerous (plures), sublobate, the auterior oncs longer and more acute. The genus consists of Lemur tardigradus, L. Mongoz, L. Macaco, L. Catta, and L. rolans. To these speeies Gmelin added L. Indri, L. Potto, L. murinus, L. bicolor, aud L. laniger.

Cuvler remarks that the Makis (Lemur, Linn.) comprehend, according to Linncus, all the Quadrumana whieh bave, in the one or the other jaw, incisors whieh differ in number from four, or at least otherwise directed than in the Moukeys (Singee). This negative charaeter, Cuvier observes, could not fail of embracing considerably different beings, and did not even colleet all thuse which ought to be together. He goes on to notiee that M. Geoffroy has established in this genus many divisions mueh better eharaeterised. These animals have all the four thumbs well developed and opposable, and the frst hind finger or toe armed with a pointed and raised nail or claw, whilst all the other nails are flat. Their fur is woolly; their teeth begin to exhibit pointed tubercles fitting into each other (engreuant les uns dans lee autres), as in the Inscctivora. The following groups are adopted by Cuvier :-

1. The Makis, or Macaucos, properly so called, L cmur.
2. The Indris, Lichanotus, Illiger.
3. The Loris group (Slow Lemurs, Stenops, Illiger).
4. The Galagos, Otolicnus, Illiger.
5. The Tarsiers. I'arsius.

Dr. J. E. Gray arranges the Lemuridec as the third family (Quadrupedoid) of the order Primates (Linn.), and he thue characterises the family:-

Griuders 6-6 above, 5-5 below; nostrils terminal; extremitiea free; first finger of the hind feet armed with reeurved clawa.

+ Head long ; grinders blunt.

1. Lemurina: genus Lemur, Linn. 2. Lichanotina: genera Indrie, Lacép. ; Lichanotis (Lichanotus), Ill.

$\dagger \dagger$ Head round.

3. Loridina: genern Loris, Geoff. ; Nyaticebus (Nycticebus), Geoff. 4. Galagonina: genera Otolicnus (Othlicnus), Ill.; Galago, Adams; Cheirogallus (Cheiroyalews), Geoff. 5. Tarsinn :' genus Tarsius. 6. Cheiromina: genus Cheiromys, Cuv.

Mr. Swainson makes the Lemurider his third family of Quadrumana, with the following eharacters:-
Form approaching that of quadrupeds; cutting teeth, $\frac{4}{4}$ or $\frac{4}{6}$; canine, $\frac{1-1}{1-1}$; grinders, $\frac{5-5}{5-5}$ or $\frac{5-5}{4-4}$, obtusely tubercular; head long, triangular; nostrils terminal; eara generally concoaled, very amall.

The following genera are eompriscl by the author last mentioned under this family:-Leenuer, Linn.; Indris, Laép.; Lichanotus, 111. ; Scartes, SW.; Stenops, ILI.; Otolicnus, Geoff.; Cephatopachus (Tarsius Bancanus, Horsf); Tarsius, Storr; Aötes, lumboldt; Galcopithccus, I'allas; Cheirogalcus, Geoff.
The author of 'The Natural History of Moukey8, Lemurs, and Oposiuma' ('Library of Entertainiog Knowledge,' vol. xlii.) divides the Mammals with opposable thumbs into three sections, like Storr;
and the author's arrangement is almost the same, differing only in the removal of the Simiadie or Prosimia, as Storr calls them, from the second to the third section in cousequence of observations made since Storr's time. The author observes that the coineidenee is the moro remarkable inasmueh as the arrangement of Storr was unknown to him till long after the publieation of his own views. [Cemermopod.] The author makes his second section of Cheiropeds cousist of the Quadrumana, or those whieh have opposable thumbs on both fore and hind hands; and he divides the seetion into two sub-divisions, the first consisting of the Simice (with anthropoid teeth), and the seeond of the Lemuride (with abnormal teeth). The genera arranged by Lim under this last sub-division are Lichanotus, Propithecus, Lemur, Otolicnus, Cheirogaleus, Stenops, Tarsius, Cheiromys and Galeopithecus.
Dr. J. E. Gray's sub-family Lemurina contains the true Lemurs, or Масаисоя.

The geuus Lemur, properly so called, is thus characterised:Incisors, $\frac{4}{6}$; canines, $\frac{1-1}{1-1} ;$ molara,$\frac{5-5}{4-4}=32$.

Teeth of Lemur, more than one-third larger than nature. Fs Cavier.
M. Qeoffroy maintains that the number of incisors in both jaws is equal, coinclding with the number iu the Monkeys, the two outermost of the six, which are larger thau the rest, being, according to him, the true oanines; whlle the teeth commouly called canines are, in his oplion, only the flrst series of molars. "This conjecture," says Mr. Bennett, "unquestionably derives considerable strength from the fact that wheu the animal closes its mouth the supposed canines of the lower jaw pass behind those of the upper, a position direetly eontrary to that which they uniformly assume in every other animal that is furnished with that kind of teeth."

The muzzle is very pointed; the tail very long, the fur woolly and soft, and there are two pectoral mamme. The atrincture of the hands and nails is mentioned above. (Cuvier's deseription of the Makis.)
"The whole of the genus thus characterised," writes Mr. Bennett in his ' 'lower Menagerie,' "are natives of Madagascar, and of two or three of the swaller islands in its immediate vicinity. They appear to occupy in that remarkable and very imperfectly-known eountry the place of the Monkeye, none of which have get been deteeted within its precincts. They are eaid to live in uumerous troops upon the trees, and to feed upon fruit and insects; but their habits in a state of nature have not yet been observed with suffieient aceuraey to eaable us to form any clcar idea of their mode of existence. In eaptivity they are particularly tame and good-tempered, fond of being noticed, delighting in motion, and leaping with surprising agility. They are bowever in some degree noeturnal, and when undisturbed pass a considerable portion of the day in sleep. If alone they roll themaelves up in the form of a ball, and wind their long tail in a very curious manner round their body, apparently for the purpose of keeping themselves warm, for they are naturally chilly, and delight iu basking in the rays of the sun, or in keeping as close as possible to the fire. When two of them are confined together they interlace their limbs and taila after a singular fashion, and placing their heads
in wuch a fosition an that each mang, if diaturbed, see what is goong on trhimd the other'a back, fall counfortably anleep."

There aro mereral apecien, and all that wo have seen, some of them rery beautiful. and exhibited in the Zoological Society's Cullection at the Megent'a Park, hanre been very mild.

Lalhofrone, the WhiceFrontal Leumer, may be taken ats an example

The fur in rudils or bronzed.gray above, whitinh below; male with the froue whive; female with the mame late of a deep gray and a binck longitudiaal line on the top of the hemul. M. Jesmon remarks that the female is the Maki d'Anjouas of M. Geoffroy St-Jilaire, and tho Dati aux lied Fauves of Brisson.

White-Frobted Bemur (Lemur albifrona).
The boundiog elanticity of thia apecies, when familiar and quite at it eace, is wonderful. It pitches, after a leap of many yards, ao lightly an handly to attract the uotice of the ear when it slighta. If it take a leap froms n table to the back of a diatant chair, or even to the upper angle of an open door, it never mikeen its hold. Cnder the pminte of the fingers are elnatic cushions, which no tloubt assist it in merforming thene feats. It in a very affectionato suimm, and a mont nouning cotnpanion. Our limitn will not permit us to indulge in an account of ono which we kept, and which was suffered to go at Inrge. When tired with playing about in the evening, ite favourito perch wan on the inatep of the uppermoat lez of him naster, an he ant crosnlongel before the fire. Jlaving obtainell leave, he uned to take his wat, wryp his boarlike thil round his shoulders and back, sad enjoy Lin nap.

In the catalogue of the 'Specimens of Mammatia,' in the collection of the Britint Museum, tho following apecien of Lemmride are found :-
le Morarg, the linfell liemur. A native of Mallugatar.
C. Could, the linge Tailed Macauco. Almo a native of Miulngasear.
I. ruter, the lied lemur. From Madngasenr.
I. albifroms, then npecien immerilued above.
f. mignifrom, the llack.Fronted Macanco. Malagancar.

1. cononatm, the 'rowned Mncaveo. Malagancar.

All themenncies of trmur were living in the grorlenn of the Foological tixciety in legmat J'ark in is io. In addition to theto the following nimeien are glren la the Society'n lint:-

In oflimanas, the White-llanded lacturnr. Madagnear.
 A rubryfrowe the lienl Frontevl Jemar. Mniggancar.
 Io Mongoz, Mongozheim. Maulngnear.

1. A jјmлenau, Anjounn l, ernur. Mmingucar.
A. miger, lilack lotnur. Madagracar.
 of hin mentul order, Polficata, of Mammalia including the genera
lame and Diyctictima of Beoffroy, Mren and . yrficalma of limoffroy.
Mr. Henoets, in him 'Gardmen and Menagerio of the Voological Erciety, obuerion that in an enrly mernoir on the fanily to which the firmet time intonthome minorn, M. Geoffray St. Hilaine dividel it for the firat time into thow minor groupe of which it wan mont obviounly comINowl. Ibin: Mr. Smact nomarkathe M. (ieolfruy han nince carried the principle of nublirumion in a atill greater cetcrit by mparating the Slow. I'aced lanar frotn the mendre loria, with which he hat pre. viously anocimend it, ia orler to form from it abil mome other doutiful mpecien the genan. Iyricems. Mr. Ibennett cannot perceive nny
 to each other, and diffring in wo urore ceneutial charncters than the
somewhat greater length of the noso and of the limos in the one than in the other. For this reason Mr. Benactt prefers M. Geoffroy's older arrangernent, and proceed, in accondanco therewith, to describe the Slow-Paced Lemur ma apecies of Loris, which be conaiders to be a well-marked and cireumscribed natural genus, differing from the lemurs of the same suthor in many highly important characters. Mr. Bennett adds, that it is to be regrettel that M. Gcoffroy should aot lave applied the intter uame to the species to which it was originally given by Linnaus, and to which alono it is, in Mr. Bennett's opinion, in any degree applicable; the Madagascar auimala at preaent camprehended under it not presentiag, he obaerves, even one of those characters on which Linneus himself states that his generic namo is founded.
"In common with the latter group," saga Mr. Bennett in continua. tion, "the genus Loris forms part of that division of the Quadrumanove order which is esseutially distioguished by an unequal number or irregular disposition of the incisor teetl in the two jaws; terminal nostrils with ainnoos openings; and a long subulate or sickle-shaped claw upon the fore-finger of the hinder hands, all the rest of the wails being flat and rounded like those of the greater part of the monkeys aud of man. The Loris differs from the other genern of this family in having four incisors in the upper jaw, placed in jairs with s vacant space between, and six in the Jower, directed obliquely forwards; canines of moderate size; twelve molars above and ten below; s short rounded head mud little or no tail. Sometimes, it would appear, the lateral incisors of the myler jar, which are always amaller than the others, are either entirely wanting or so miuute as not to be easily seen. Bat M. Geofroy was easbled to detect them in the identical specimeu which Vosmaer had declared not to posseas them: and it is by no means improbablo that future investigators may ascertain their existence iu the stuffed individuals sent from Java by M. Jeschenhault, of which M. Gooffroy has made a uew species, principally on sccount of the supposed absenco of these teeth. In addition to these primary characters, the Loris are distinguished by largo prominent cyes, placed in front of tho liead and at no great distance from each other; short ears, scarcely rising through the hair with which they are invested; a rough tongue; uostrils projecting beyond the mouth and surrounded by a naked mazzle; and thumbs widely separated from the fingers, both on the fore and binder hauds."
Cuvier states that tho Loris have the teeth of the Makis, only that the points of the molars are sharper; s short muzale (musesu court d'un doguin); a slender body; no tail; great approximated cyes; and a rough tongue. Their nourishmeat, he asys, consists of insects, small birds or quadrupeds; sometimes their progression is excessively slow, and their habits nocturnal. Sir Anthons Carlisle, he adds, found at the base of the arteries of the limbs the same division into emall branches as exists in the true sloths. To this part of their organisation we shall presently allado more at largo. Cuvier remarks that two apecies are known, both from the linat Indies-Lo Loris Paresseax, ou Le Paressenx do Bengale (Lemur tardigradus, Linn.), and Le Loris Grile (L.yracilis); the latter, he remarks, has the nose more raiaed by a projection of the intermaxillary bones, and upon this difference of the nose M. Geoffroy has mate of the first-named species his genus Nycticebus, and of the second his genus Loris.
M. F. Cuvier nssigus the following deutition (that of the Great Galago) -

$$
\text { Incisors, } \frac{4}{6} ; \text { canines, } \frac{2}{2} ; \text { melars } \frac{6-0}{5-5}=36
$$

-to the Small Galago, the Slender Loris, the Cingalese Loris, the Slow. Paced Loris of Letnur, nad the Dwarf Lemur, with hardly more than very alight cxceptions, which are only manifested in the incisors and false molars.
The following aro the generle characters of Loris and N'yeficcbut, Geoffros:-

Loris.-F'our upper incisorn ; mix lower incisors inclining forwarda; lacal round, eye very large, limbs very slender, wo tail; four manman coming from two manmary flats ouly. Tho tibia louger than the femur; cara short and liniry.

$$
\text { Incisora, } \frac{4}{6} ; \text { canines, } \frac{1-1}{1-1} ; \text { molars, } \frac{6-6}{5-5}=30
$$

Apecies,-1. Loris Grèle, Lonis gracilis, Gcoft; Le Loris, Buffon; Ie Tardigradu, Sebn. 2. Lorim le Culon; Loris Ceylonicus, Fiach.
The locality unsigneal to both there specion is Ceylon; but, sccording to M. Jesson, neither Geollioy, Dosmarest, nor F. Cuvier admit the mecond apecies, regarding it ai a simplo variety differing hardly at all from harien gracila.

N'ycficdinn--Head ronnd; muzzle short; eyen very large; cars short nod hairy; a tail more or less long; extremities atrong and
rubunt rubunts

$$
\text { Incinora, } \frac{6}{2 \text { or } 4} ; \text { canluca, } \frac{1-1}{1-1} ; \text { molara }, \frac{6-6}{5-5}=84 \text { or } 36
$$

The frecica are-N. Rengnlensis; N. Juranicus: bnd N. Ceylonicus. All from the Finst larien.
Wo lare allopt Mr. Bennett'n whew of the subject, and take the sleniler Loris aud the Slow-Paced Lorin, or Slow- Paced Lemur, both
of which are confounded by Linnæus under the name of Lemur tardigradus, as examples of the genus Loris.

Loris gracilis, the Slender Laris, has the visage produced and dog. like; forehead high above the nose; ears large, thin, and rounded; body slender and weak; limbs very long and slender; thumb on each foot more distinct, and separate from the toes; on that and the three ontmost toes are flat nails; on the interior toe of every foot a crooked claw; no tail; the hair on the body universally short and delicately soft; the colour an the upper part tawny, beneath whitish, space round the ejes dusky; on the head is a dark-shaped spot with the end pointing to the interval between the ejer. Length from the tip of the nase to the anus only eight inches.

Pennant, whose description we have given, states that notwithstanding the epithet (tardigradum) given in Seba, who has figured the animsl (male and female) in the 3 sth plate of his first volume, the Slender Lemur is very active, asconding trees most nimbly, and having the actions of an ape. "If," gays Pennant, "we credit Scba, the male climls, the trees and tastes the fruits before it presents them to its mate." Seba himzelf observes that the epithet 'tardigradum' is misapplied. Others say that it is a melancholy animal, silent and very slow, sleeping in the day sud only swakiog in the evening, and living on insects, fruits, and eggs. There is a living specimen in the gardens of the Zoological Society, Regent's Park, London.

Sleader Loris (Loris gracilis).

L. tardiyradus, the Slow. Paced Lcmur.-The most accurate description known to us is that given by Mr. Bennctt:-"Tho Slow.Paced Lemur," he says, "is an auimal of small size, scarcely equal to that of a cat. The largest individual yet noticed appears to be that seen by Pennant, who states its length at no lcss than 16 inches from the nose to the extremity of its back. Its proportions are short and thick-set; and the apparent clumsiness of its form is much increased by the manner in which it usually cantracts itself iuto a kind of ball. Its head is broad, flat, and rounded, with a slightly projecting and pointed muzzle, in which the nostrils are perforated laterally. Its eycs sre large and perfectly orbicular, and furnished with transverse pupils capalle of bcing eutirely clozed during the lay, and of being very largely dilated at night; their inner canthus is situated so low towards the nose that the motion of the cyelids appears to take place in a rliagonal instead of a horizontal direction. The ears are short, round, widely open, but buried in the fur; aud the tail is merely a rudiment of a few lines in length. The hinder limbs are considerably longer than the fore. Tho wholo of the body, with the exception of the muzzle and hands, is thickly invested with long close woolly hair of a decp ashy gray with something of a brownish tingc. A deep brown or chestnut hand passes along the middlc line of the back, and is accompanied on cither side by a faint grayish stripe, expanding on the back of the head into a still lighter patch. The dark middle stripe dividcs on the head into two branclees, each of which is again subdivided, the posterior division passing transveracly across the foreliead and inclosing the car, the anterior crossing the eye obliquely and extending to the angle of the mouth. Betwcen the two, above the outer angle of the cye, is a large white spot. Wach of the eyes is surrounded ly a ring of dusky black, between which a narrow white line passes from the back part of the head to the tip of the nosc, which, with the exception of the naked muzzle, is also white. The lntter, together with the naked parts of the hands, is of a livid Aleshcolour with a tinge of black. On the under surfaco the fur is of a lighter gray than above."

There are some parts of the organisation of this auimal that require more particular notice.
Sir Anthony Carlisle injected the asterial syatem of a Lemur tardiNAT. HIST. DIV, VOL. III.
gradus, and upon tracing the course of the vessels, so as to make a dried preparation, which is now in the Mruserm of the Royal College of Surgeons in London, he found that au unusual appearance of distribution was exhibited by the large trunks of the subclavian and external iliac arteries. He shows that immediately after the subclavian has penetrated the axillit, it is divicled into 23 equal-sized cylinders, which surround the principal trunk of the artery, here diminished in size to an inconsiderable vessel. These cylindrical arteries, he obscrves, accompany each other, aud divide with the ulnar and radial branches, being distributed in their route upon the muscles, each of which has one of these cylinders. The other branches, for example the radial and ulnar, proceed like the arteries in general, dispersing themselves upon the skin, the membranes, joints, bones, \&c., in au arborescent form. The iliac artery, he tells us, divides upon the margin of the pelvis into upwards of 20 equal-sized cylinders, surrounding the main trunk, as described in the axillary artery; these vessels are also finally distributed as in the upper extremity; the cylinders wholly upon the muscles, and the arborescent branches on all the other parts. The cylindrical arteries, be adds, do not divide into equal-sized cylinders, but are distributed as iu the generality of animals.

> Slorr-Paced Lemur (Loris (Nycticebus) tardigradus).

Sir Anthony concludes by observing that it would be of some importance in physiology to ascertain whether the other slow-moving quadrupeds have any peculiar arrangement of the artcries of those limbs. This solitary fact, he romarks, is hardly sufficient for the foundation of any theoretical explanation of the slow movement of these muscles: if however it should be corroboratcd by similar circumstances in other animals, he thinks that a new light may be thrown upon muscular motion, by tracing a connection between the kiud of action produced in a miscle, and the coudition of its vascularity or supply of bloor.
Mr. Baird, iu his interesting paper in the "Magazine of Nat. Hist.,' vol. i., 1829, remarks that all the known Mammalia close their cyelids in a direction upwards and downwards, and in general the npper . cyelid is the one possessing the greatest degree of motion. He found however that in his Slow. Paced Lemur the eyelids were brought together in a diagonal direction, or outwards and inwards, which gave the animal at the moment of slutting its eyes a most peculiar look. It was the under or outer cyelid that had the greatest degree of motion, the upper or inner one heing almost fixed ; and he concludes that the orbicularis oculi must be very powerful. After the death of the animal, and when Mr. Baird had left this country on a sccond voyage to India, the eye wrs dissected by Dr. Knox, who fouud that the peculiar movement of the eyelids above described did not depend on any peculiar structure, but merely on the greater degree of strength of the orbicularis muscle.

Mr. Baird also observed another peculiarity in the species. "Beneath the tongue proper," says he, "if I may so call it, which is somewhat like that of the cat, though not rough, is another tongue, whitecoloured, narrow, and very sharp-pointed, which le projects along with the other one when be eats or drinks, though he has the power of retaining it within his mouth at pleasure." Mr. Bard however had not been able to sce any particular purpose to which he applied it ; but he saw him usc this double tongue when eating flies, of which he was cxceedingly fond, snapping them up most eagerly wheu presented to him, and catching them himself when they were reposing in tho evcuing upon tho walls of the room.
Little or nothing certain appears to bo kuown of the labits of the Slow Lemur of Bengal in a state of naturo, except as they may be inferred from those which it exhibits in captivity. In this latter state
many goon onwerrers have narrowly watchel it, and have recorled eheir olareritions

Vommer receired one in June 1"e9, and kept it in his chamber. It alept all lay till the erening, not waking (it being summer) till halfpast eight It was shut up in an oblong cage, recured with iron bars, and cusstantly alepts sitting on its hinder parts close to the bars, with ite brad trought forwands between its forefeet, which wero bent agaion ith bolly. In this attitude it hell on atrongly to the wiros with its himel fect, atsel oten by one of the anterior feet as well, which induced Vosmaner to think that the animal ordinarily alept in trees attachend to the branchos When nwakened it muved very slowly, and alwars the aame from the commencement to the end, dragging itaelf frout bar to lar, granping one above with ita foro fout or rather hami, and not quitting ita hoth till it had alowly but very powerfully -ized another with one of its naterior feet or hands The same Nowness marked ite creeping on the ground, along which it dragged one foot after the other, an if it lad been paralytic. In this mode of progresoinn it raisel ita body but very litule, so little, that as it dragged itenef forward the beily was frequently not more than the breallh of a finger from the ground. It was sain to attenpt to drive it by putting a prick through the bars; for it would not quit its hold, and if pushed too roughly, ita ouly defence was biting the atick. As the evening apprunchool it awaked by degrees, like one whoge sleep is broken after long wate hing. Its first care was to eat, for the day had been dedicated to repose. After its repast, which it dispatched with comparative celerity, the remains of its former meal were evacuated. The feces were in small pelleta like aheep's dung, nud the urine had a strong dinagreeable odour. The eea-caplain who brought it orer etated that it fel od rice boiled very thick, and that it hal uever been seen to Jrink.
Voanaer, imprened with the belief that his animal would not refuec a different mort of ferd, gave it a leafy limetree purig: this it rejected. Froith, such an pears and cherries, were moro to its taste. It willingly ate dry lread and biscnit; but if dipped in water would touch neither. Wheu offered water it smelt it, but drank, not. Egge were n fnvourite diet. "Il aimoit a la fureur les ceufa," are the words of Vosmner, who, concluding from its appetite for eggs that it would eat birds, gave it a live aparrow, which it instantly killed with a bite, nad ate the whole very greedily. He gave it a live cockchafer, to try whether it would eat invects: it took the offering in its paw, and devoured it completely. Vomacr afterwand gave it n ehaftincla (piston), which it ate with much relinh, and aferwards alept for the remainder of the day. He oftea naw it atill awake at two houra past midnight; but from half past nix in the morning its sleep was so nound that its cage might be cleaned without dinturbanco to its repose. If forcibly nwaked daring the day in onder to wize it, it was s'xed and bit the stick; but with a very slow motion, repeating the ery ' ni , ai, ni,' drawing out the ai each time into a plaintive, languid, and trembling note, in the anme manner as in reportel of the American Slotha. When it wat thus haramed for a long time, and thorougbly roused, it crawled two or three timee round its cage, and then alept ngain.
The epecimen obmerved by Sir William Joues was a male, na Vormaer alrears to havo been; and sir Willian thus gracefully describe ita habita:-"In his manuers he was for the most part gentle, except in the cold meaon, when his temper seerned wholly changet; and his ercator, who made him so sensible of cold, to which he munt often havo been exposed even in his native forenta, gare hinn, prolably for that rewen, his thick fur, which we rarely one ou anisana in thene tropical climatos: to me, who not only constantly fed him, but bathed him twice a week in water necommodated to the meanonk, and whom he elearly dintinguinied from others, he was at all timea grateful; but whon 1 disturbed him in winter, he wan unally indignaut, and seemed to reproach mo with the unearinesen which he felt, though no powiblo precentiona had been omitted to keep him in n 1 'mper degres of wanath. At all times he wha pleaned with laing nicokel on the heal nad thront, and frequently anfernl to to touch hia extremely olary, leeth; but nt all tumes bisturapre wan quick; and when be wan unseamomably dinturked, the expreened a little rementinent lis an obwcure murmur, like that of n muirrel, or a greater degreo of diqudanure ly a peovish ery, enpecially in wintec, when to wan often as fierce, on being much tmportuned, at aby beant of the noobla. From lalf an hour nfecr sumrine to half an hour befom munaet he Alejt without internimsion, rolled up like a belgelog; and, an anou an lie awuke, ho bergan to prepare himmelf for the labount of his approaching day, licking aud droseing himmelf liken eat, an operation which tho dlexibility of hin neck and limbs etabled him to perform very completels: lie was then reads for a alight breakfant, afer which ho commonly took n nhort nap; but when the wun wan quite met, be recoverell all hin vivacity. His ordinary food wan the aweet frult of thin country; plantaing always, and mangoes during the menoon; but be refuned peachen, and was not fond of mulberries, or even of guaiavas: milk he lappect cagerly, but was contentel with; plain water. In genernl he wan not voracioun, bnt never aplearel nitiated with kruashoppern, and panaed tho whole night, while the lot rearon lantod, in prowling for them: when a graebopper, or any insect, alightell within hin reach, hin eyea, which be fixed on hin jrey, glowell with uneommon fire; nad having drawn bimself back, to epring on it with greater force, he meized his victim
with both his fore paws, but held it in one of them while ho devoured it. For other purposes, aud sometimes even for that of holding his food, ho used all ling parse, indifferently, as hands, and frequently graspod with one of them the higher part of his ample eage, whlle his three others were eeverally engaged nt the bottom of it; but tho posture of which he seemed fondest was to cling with all four of them to the upper wires, his body being invorted; nnd in the ovening he usually atood erect for many minutos, playing on the wires with his fingers, and rapidly moving his body from side to nide, as if he hat found the utility of exeroiso in his unnatural state of confinement. A little beforo day-break, when my early houra gave me frequent opportunities of observing him, he secmed to solicit my atteation; and if I presented my lingor to him, ho ticked or nibbled it with great gentleress, but eagerly took fruit when I offered it, though he seldom ate much at his morning repast: when the day brought back the night, his ejes lost their lustro nad strength, and ho composed himself for a slumber of 10 or 11 hours.
little friend wns, upon the whole, very engaging; and when he was found lifeless in the same posture in which he would naturally havo slept, I consoled myself with belioving that he had died without pain, and lived with as anuch pleasuro as ho could have enjoyed in a state of captivity."

Mr. Baird, in the paper nbove quoted, gires an account of one of these Loris (locria, a clown, Dutch; asme in Ceylou, according to that geotleman). Mr. Baird's spocimen was a male, nud was obtained at Pulo-Penang (Prince of Wales's Island). When Mr. Baird wroto, he had been in possession of the animal upwarde of niue months. Its foorl consisted of fruit and small animals, such as birds and mice. The plantain was the fruit of which he was the most fond, and was the ouly food Mr. Raird saw him eat when he first got hin into his possession. The necks of fresh-killed fowls formed the major part of its sustennuco during the voyage. It was particularly foud of amall birds: these, when put into his cage, he killed speedily, and, stripping off tho fenthers, 800 n devoured them, eating the bones as well as the flesh. Veal was preferred to all other butcher's meat, and it was fond of eggs; meat boiled, or otherwise cooked, it would not touch. Sugar appeared to be grateful to its palate, snd it ate gum-arabic. "As flesh is not always to be had quito fresh (the only state in which it is acceptable to him), he has for some time past been fed upon bread sopped in water, and sprinkled with eugar; this he eats readily, and acems to religh it much. M. Vosmaer mentions that his mnimal eat dry biscuit, but refused it if moistened with water; neithor would it ever taste water. This is completely st variance with the habits of my animal, for he not only eats moistened bread, but laps water liko a cat. When food is presented to him, if hungry, he seizes it with both bands, and letting go with his right, holds it with his left all the time he is enting. Frequently, when feeding, he grasps the bars in the upper part of his cage with his hind pawa nad hangs inverted, apluearing oxceedingly intent upon the food he holds fast in the left hand. He is exceedingly fond of oranges;"-in this the nnimsl resermbled a domesticated Lemur albifrons once in our possesgion; -"but when they nre at all hard, he seems very much puzzled how to extract the juice. I hare, upon such an occasion, seen him lie all his leagth upon his back, in the bottom of his cage, nad, firmly grasping the piece of orange with both hands, equeeze the juice into his mouth." Mr. Maird, nfter nuticing the cry mentioned by Vosmaer and Sir W. Joucs, says, "When the cat annoya him, which she does very frequently by leaping over hizn, he repeats the cry nearly a dozen times: it in always however expressivo of anger. Ho has sleo another sort of ery expressive of eagerness to oblain anything: this is much gruffer in sound, not slarill nor loud, but appsrently made by forcing the air out of his noetrils. Ho likes much to be atroked under tho chin and throst, aud slao under the arms, turning his bead round to tho hand like a cat, and lifting his arm, stretching it out beyond his heal. Though not a very seosible nuiund, he is atill ovidently capable of fecling kindness nad showing resentmont. He allowa his throat nad foro nrms to bo stroked, but refuges to let tbe mane liverty be taken with his lower limbs. F'ur some time while in China, a littlo Chinese dog was bis companion, sleeping in tho namo cage with hinn; nud, with the exception of a few occasional jars, they lived vory comfortably together. Ae the dog grew up howevor they were sepirated. A cat, the only animan in the house besides himself, has mado snany overtures to him, and when he is allowed to get out of his cage, he is followed up and down the room by his feline companion, who evidedtly winhes to maks hin her playfellow. Any undue familiaritiea however on her part are met with sa immediate repulse from him; and, one time, when patting him rather incautiounly with her foot, he bit her so severely, that she now, though ovidently winhiug to be on good terms with liin, keeps at a safo distance. Thin mance cat has, siace thin, become more familiar, Thongh not daring to npproach him, she follows him wherever ho gres, to his great nanoyance, nad renders herself an object of his abhorrence. He eries ont on her approach, and is sadly tantslised by her plagful trick of leaping over him. He seems to be rather a social animal notwithatanding. A largo japauned tray attracts a good deal of him attention. Seeing his image reflected in it, ho walks before it, and trien to grapp his own image. Finding his efforts ineffectual, he imitates the action of the chilli, by peeping behind it, with xpectation
to see the object there. Before a looking-glass he shows the same regard and curiosity." In most respecta, the rest of Mr. Baird's description agrees with those of Vosmaer and Sir W. Jones.
M. D'Obsonville's memoir is very interesting, but offers no differences sufficient to justify the insertion of his account of his specimen at length. The little animal, which enjoyed comparative liberty, being suffered to go at large, appeared to him to be very inuch attached. He used to caress it after giving it food ; and the marks of sensibility upon the part of his favourite were, taking the end of his hand and pressing it to its bosom, fixing, at the same time, its halfopened eyes upon his.

One that Pennant saw in London, slept holding fast to the wires of its cage with its claws, as above described, and he states that the inhsbitants of Bengal call the animal Chirmundi Billi, or Bashful Billy. Sir W. Jones says of it, "The Pandits know little or nothing of the animal : the lower Hiudoos of this province generally call it Lajjibanar, or the Bashful Ape; snd the Mussulmans, retaining the sense of the epithet, give it the absurd appellation of a cat; but it is neither a cat nor bashful; for though a Pandit, who asw my Lemur by day-light, remarked that he was Lajjalu, or modest (a word which the Hindoos apply to all sensitive plants), yet he only seemed bashful, while in fact he was dimsighted and drowsy; for at night, as you sce by his figure, ha had open eyes, snd as much boldness as any of the Lemures poetical or Linnean."

In a state of nature there can be no doubt that its habits are, for the most part, arboreal ; and that it takes its prey by night, seizing that which is living, such as amsll birds, mice, and insecta, by surprise, probably whilst they are sleeping; and varying its diet by having recourse to fruits.
"As to his country," asys the suthor last quoted, "the first of the Rpecies that I saw in India was in the district of Tipra, properly Tripura, whither it had been brought, like mine, from the Garrow Mountaine; and Dr. Anderson informs me that it is found in the woods on the coast of Coromandcl : another has been sent to a member of our society from one of the eastern isles; snd though the Loris may be s native of Silin, jet I cannot agree with M. de Buffon that it is the minute, sociable, and docile animal mentlonod by Thevenot, which it resembles neither in size nor disposition."
It has been found in other parts of the peninsula of Hindustan; and in Java, Penang, and Ceylon.

The genus Galago, Geoffroy, has the following dental formula, which is generally given by authors thas :-

$$
\text { Incisor, } \frac{2}{6} \text { or } \frac{4}{6} ; \text { canines, } \frac{1-1}{1-1} ; \text { molars, } \frac{6-6}{5-5} .
$$

In the species which we sclect to illustrate the form, Dr. Andrew Smith found the dentition as follows :-

Incisors, $\frac{4}{6}$; canines, $\frac{1-1}{1-1}$; falso molars, $\frac{2-2}{1-1}$; true molars, $\frac{4-4}{4-4}=18 \mathrm{in}$ each jaw.

skull and Tecth of Galago Mohnli. Smith.
a, front view of akull; b, back view of same; c, lateral view; d, front vilew of the anterior portion of upper jaw; e, lateral view of lower jaw. All the figures natural dize. Smith.

Tho head is rounded, muzzle short, oyes very large, ears very large. Feet pentadactyle; sll the nails flat with the exception of the first digit of the hlnd fect, which is armed with a oharp gubulate claw ;
two teats; tail very long, loose, and villous. The species are found in Africa, to which Mr. Swainson adds India.

a, Bassl riew of sknll, exhihiting the tecth; b, lower jaw. Both fignres double the natural size. Smith.

The habits of these crestures are arboreal. The great size of the orbits will at once strike every observer. The large development of the eyes requires such spacious receptacles; and this development is necessary on account of the nocturnal habits of the genus. The food of these animsls consists of soft fruits, and, from the structure of the teeth, probably of insects also. They are fond of vegetable gum, and their large ears are said to be closed when they sleep, but to be opened upon their hearing the least noise.
G. Moholi, Smith.-The upper parts of the head and neck, the back, the sides of the body, and the outer and hinder surfaces of the extremities are intermediats between a pearl and yellowish-gray colour; the back is finely brindled, from the dark colour of the basal portion of the fur being here and there seen through the surface tints; the exiremitica sre of a lighter hue than the other parts enumerated, and their outer and hinder surfaces are distinctly tinted with yellow; the middle of the face, the lips, the sides of the head, below and bchind the eyes, the chin, throat, sbdomen, and the upper surface of the fingers, white; inner surfaces of extremities white, tinged with yellow. Tail glossy; the colour intermediate between yellowish-brown and cochineal red; the fur is throughout of the same colour; that of the other parts is a dark slate-colour except at and near its surface. Ears flesh-coloured; and the down, which is very sparingly scattered over theiv outer burface, is pure white. Eyes deep topaz yellow; the palms of the hands and under surface of the fingers are of a flesh-colour tinged with brown. Figure slender and elegant. Head broad, subglobular, and anteriorly terminated by a short, high, and almost pointed nose. Eara large, barc, and patulous, their tips rather narrow and slightly rounded; the outer margin of each ear has two faint emarginations, and the internal or anterior surface of each is distinctly marked with four or more transverse ridges; the eyeballs and the pupils large; anterior extremities short and slender; posterior ones long, rather robust, and each is terminated by foul fingers and an opposable thumb, the tips of which are dilsted and dcpressed ; the nail of the forefinger of each of the hinder extremitics is narrow, convex, considerably elongated beyond the soft parta, and obtusely pointed; all the other nails both of the anterior and posterior extremities small, thin, flat, roundish or ovate in form, and not extended to the points of the fingers. Tail cylindrical, slender towards the base, much thicker towards and at the tip, which arises from the fur being longer on those parts. On the hend, body, and extrcmities, the covering consists of a very fine short woolly fur, which on the tail and the upper surface of the fiugers is rather harsher. Palin of the hands and under surface of the fingers naked. (Smith.) Length from nose to tip of the tail, 16 inches. It is found in Southern Africa, and probably Western Africa.
The first specimens observed by Dr. Smith were upon trees close to the Limpopo River, in about 25° S. lat., and from that parallel he
continned to obeorve others as the expedition travelled. They were rery ackire, apringing from branch to branch and tree to treo will extrandinary facility, nud always seized the branch on which thoy latendal ta reat. In their mannere they conmiderably remembled the monkey particularly ingrimaces and gesticulationa According to the matiens, tho precies in cutirnly nocturnal, nud rarely to bo seen duriug tho thy, which the animal grenda in the tacse which it has formed in the furks of branches or in cavilies of decayed trees; and in theso beata, conatructed of son grash, the fumales l,ring forth and rear their roung (renerally two at a birth). Dr. Smithatates that the fool of tho Moholi connists principally of pulpy fruita, though there is reason to beliese it also consumes inacets, ns remains of the latter were diseovered in the atomachs of neveral individuals which ho cxamidet.

Muholl (Galngo Suholis.
Dr. Smith for the reanous atated if his work, conaiders this auimal different frotn $\%$. Sineyalonsin. Ile girea an claborate amatomical drecription and goml figures of the more important nul interenting jurte of linim animal.

In the "British Mumenn Catalogue" the following apecies of Galago nen found:-
(i. Senemensia, tho Suminal Galago. From Gambia, Western Africa
fi. Alleni, tho Black lialago. From Fernando l'o.
(i. minor, tho Littlo (inlago. From Madagmear.
feradiciem (IEnnett). - Finco nomewhat longthened. Limbs nub.
 panertect.

$$
\text { Incipom, } \frac{1}{8} ; \text { caniuch, } \frac{1-1}{1-1} ; \text { mulam, } \frac{4 \cdots 1}{3-3} \text { (?). }
$$

 (Ineliven): the catituen conic, cumbremed, with the anterior and fineterior margina acute: the firat uppar molar amallent, tho aecond tanger, and looth conic: the thimb nentely tuberculate, the tuberclea Pring two externally and one iutermally; the fourth like the proceling, Ita internal suberolo milier lagere than the reat (aboent in the young apecimeta) : tho lower mointa cosulst of two, conic nul equal, nod n Hurde enternally acutely bitulerculated, nut whe intermal tubercle; the rent almerit.
I. Ticuffoyi (fonnett) in of a chentnut colour, paler below, with a
 Sierra leama. A live mecimen of thin muimal exinen in tho Gardetan of the Zowlogical sucirty of Latulon.

 avil tracrilom tho homil an ronnted, with a projecting muzale; the nomtriln laternl, amall, nitnous, with an internedinto gromve exteonding on the uppor lip: the tongere rongh with minnte papiltie, rather large, thin, and rowndeal at tho tip, mul furninlied lepath with a tonguolike apperulage, which is aborter than the tongue itnelf, amel tiruibatem
in about nix rather long lanceolate procosses, forming a pectinated tip. The eyes are small, round, aomewhat lateral, and oblique; the cars moderate, open, and slightly hairy both within snd without; the body rather slender, and the fingera moderately long. The index on the forehands is excessively short, the first phalanx beting coucealed, and the ungueal phalanx (the only platanx freo) being barely large enough to support a rounded unil, which did not exist on the apecimen, but of which there waa an apparent cicatrix; nails of all the other nnterior fingers flat snd rounded; those of the hinder hands mimilar, except that of the fore finger, which, as in the Lemurs generally, is long, subulate, and curved. Tril of moderate length, covered with hairs resembling those of the body. Hsirs generally long, son, and woolly, cach of them mouse-coloured at the base, rufoua in the middle, and paler at the tip; some fow tipped with white. This arrangement produces on the upper surface snd on the ontside of the limbs a chestnut hue, slightly mixed with gray; the under surface is paler. Muzzle and chin almost naked, and having only a few scattcred whitish hairs. Length of the head two inches and two-tenths; of the body six inches; of the tail one inch and sixtenths, or, including the hairs, two inches and three-tenths. Breadth of the head in front of the ears one inch and four-tenths; distance between the cyes fourtenths; from the anterior angle of the eye to the end of the nose scven-tenths; from the eye to the ear fifteentrentieths; length of ears behind five-teuths, of their aperture eightteuths, breadth tive-teuths, Elaborate measurements of the anterior and posterior limbs are given by the author, to which we refer the reader.

The animal is described as slothful and retiring, eeldom making its appearance except in the night-time, when it fceds upon vegetables, chiefly the Cassada. It is known to the colonists of Sierm Lcone as the Bush-Dog.

Mr. lennett remarks that the genus is rendily distinguishable from the other Lemuride by tho compurative length of the tail. In this, lie observes, in the moderste elongation of the face, in the moderate size of the cars, in the equality of the limbs, and especially in the extreme shortuess of the indox of the snterior hands, reside its ossential characters. The latter character is regarded by Mr. Bennett as especially important, and be considers it as indicating its typical station in a family, sll of which are distinguished from the neighbouring gronps by a variation in the form of the index or of its appendages. "In the Lemaride generally," rays Mr. Bennett in conclusion, "the nail of the index of the linder hands is elongated and claw-slaped, aud unlike those of the other fiugers, which are flat, as in the Moukoys. This is frequently accempanied by an shbrevistion of the index of the fore hands, which becomes in Loris (Geoff.) very considerable, and is in Perodicticus carried to its maximum, that organ being here almost obsolete." ('Zool. Proc.,' 1831.)

Of Cheiroyaleus but little is known. M. Geoffroy characterised the genus from the drswings and manuscript of Commerson. Ho gives tho following generie characters:-Heal round; nose and muzzle short; whinkers long ; eyes large and prominent; ears short and oval; tail long, fall (touffue), cylindrical, aud curlod (enroulé); mails of the thumbs fat, and all the other mails subulate; fur sbort.
The threo species mentionsel in Commerson'a manuscript notes aro - Cheirogaleus major, C. medius, and C. minor, all from Madagascar. M. Geoffroy thinks that the species lastnamed is Galago Madagas. cariensis.

Two species are named in 'the Britisla Muscum Catalogue,' C. Smithii and C. typicua, both from Madagazear. [Licuasotus.]

LLENTIBLLARIA'CLA,H, Butter Horts, a amall monopetalous order of lisogenour Plants, resembling Scrophulariacea very nuch in sll respects, except that their seeds are arranged upon a free central placenta. They aro uatives of tharshes or rivulets or fountains, in all parts of the worle, especinlly within the tropics. Pinguicwa vulyaris has the property of giving consistence to milk and of preventing its separatiug cithor into whey or cream. It is by the nee of the learea of this plaut that the solid milk of the Laplsuders is prepared. There are 4 genera snd 175 species of this genus, all of which aro herbnceong planta, living in water or marsbea, chiefly withiu the tropics, The apecios of Genlisea are exclusively Brazilian.

LENTll. [L゙нvem.]
LEXZINITLS, a Minmal consisting of ailicate of alumina. It occura masive. Fracture earthy, Sometimes slightly conchoidal. Hardnesa I\%; easily serstelsed by the point of a knife. Colour white. Luatre rather greany. Translucent, transgarent on the edges. Specific gravity 1.8 to $2 \cdot 10$. When put into water it divides into uumerons atmall translueent bits, which, when tuuched, fall into grains of great hariluess; by heat loses 25 per cent. in weight, and becomes land enough to scratch glass. It is found at Jifeld in Prussia. Dr. John's aunlynis gives -

$$
\begin{aligned}
& \text { Silica } \\
& \text { Alumina } \\
& \text { Whater }
\end{aligned}
$$

37.5
37.5
25.0

LKO. [FEADD.s.]
LEO'DICE. [ANNFLIDA.]
JEONILAJDITE, a Mineral occurring erystallised. Primary form

Pinguicula culgaris.
I, an anther ; 2, the glandalar ovary, with a two-lebed stigma, of which ene of the lobes is much larger than the other.
an oblique rhombic prism. Cleavage very perfect, parallel to the lateral planes. Colour white, yellowish, and more rarely brownish. Streak white. Fracture uneven. Frequently coated with brownish or black powder. Hardness 3.0 to 3.5 . Lustre pearly, especially on perfect clearage planes; on the fractured surfaee vitreous. Translucent on the edges. Specific gravity 2.25 . Fonad near Wolfstein in Rhenish Ravaria. The following is its analysis by Dr. Delf:-

LEONTICE, a genus of Plants belonging to the natural order Berberidacece, the root of one species of which is used at Aleppo as a substitute for soap, and is regarded by the Turks as a corrective of overdoses of opium.

LEONTODON, a genus of Plants belouging to the natural order Compositc. The heads are many-flowered; involucre double, the inner row erect, outer of few short lax or adpressed imbricated phyllaries; fruit sub-compressed, muicated, and suddenly contracted above, produced into a filiform beak.
L. T'araxacum, Dandelion, is a well-knowu plant found in dry places, in bogs or damp places. It has runcinate toothed leaves; fruit linear, obovate, blunt, and squamosely muricated at the summit, longitudinally striated with a loug beak; stalks single-headed, radieal; florets yellow; leavez all radical, very variable, glabrous or slightly hispid.

The following varieties are considered as species by De Candolle, hut are described merely as varieties by Babiogton. L. Tavaxacum of Smith is known by the outer scales being linear, deffexed. T. lavigatum bas its outer scales erect, patent, ovate. T. erythrospermum has the outer scales lanceolate, depressed, or patent. L. palustre with tho outer scales ovate, acuminate.

The root, leaves, and flower stem (scape) of the Dandelion contain much milky juice; but the root ouly is employed in medicine: though the leaves by blanchiug can be rendered fit for use as a salad, retaining then only a moderate degree of bitterness. The root of plants which are three or four years old should alone be collected, and at Midsummer; as young plants or roots collected in spring merely contain a reddish mncilaginons juice, while those of older plants taken up in snmmer have a brown, bitter, and saline juice. Those from rich soil are not so potent as those from a poorer land. The root nay either be speedily and carefully dried for preservation, or the expressed juico may te inspissated, and so form what is termed the extract.
The chemical constitution is a pecaliar titter principle, grumous sugar, and inulin, and probably some important salts.
Either an iufnsion, decoction, or extract possesses sedative, deobstruent, and diuretic properties. In chronic subacute inflammation of the ntomach or liver, culargements of the liver, or spleen, it proves more beneficial than almost any other vegetable remedy. In many cases of dropsy, particularly connceted with obstruction of tho liver, it has often succeeded when all other diuretics have failed. It is very extensively employed in Holland to obviate the effects of the intermittents or agues common thace, and with the greatest advantage. Tho extract, unless very carefully prepared, soon fcrments and spoils.

There are 14 European species of this genus described in Wood's 'Tourist's Flora.'
LEONU'RUS (from $\lambda \epsilon \epsilon \nu$, a lion, and oijpá, a tail), a genus of Plants belonging to the natural order Labiatce. The anthers approximate in pairs, with parallel cells and naked valves. The upper lip of the corolla is nearly flat, the lower one trifid, with the middle lobe obeordate. The calyx is tubular and 5 -toothed; the nuts flatly truncate.
L. cardiaca, Mother-Wort, is a bitter herb, with a pungent unpleasant smell. The stems rise from two to three feet in height; they are wand-like, downy, purplish, aud quadrangular. The leaves are long-stalked, somewhat downy, and of a dark-green colour. The lower leaves are the broadest, and deeply jaggen, the upper ones 3-lobed, and those about the summit lanceolate and undivided. The corolla is of a purple colour, aud externally hairy ; the calyx rigid and pungent. It is found in hedges and waste places in Great Britain, all over Europe, aud the middle of Asia. The reputed tonic powers of this herb as a remedy in palpitations of the heart and cardialgia, or heartburn, are now disregarded : from being used however in the last complaint it derives its name. It has been extolled by the Russians as an autidote to canine maduess, and bees are fond of the honey contained in its flowers.
L. marrubiastrum has elongated pubescent branches, oblong-ovate deeply-toothed leaves, the calyx nearly glabrous, and the corolla small, white or pale-rcd, and shorter than the calycine teeth, which are subulate, spiny, and diverging. It is found in waste places throughout Europe and Asiatic Russia.
There are 8 species of Leonurus described by botanists as growiog chiefly in Europe and the north of Asia. None of them are very ornamental, and being biennial plants the seeds ouly require to be sown in the open ground.
(Don, Dichlamydeous Plants; Liudley, Flora Medica; Babington, Manual of British Botany.)
Leopard. [Felide.]
LEOPARD'S bane. [ARNICA.]
LEPADITES, one of the many names of the supposed bivalvular opercula of Ammonites, found at Soleuhofen, termed Trigonellites by Parkinson, Solenites by Schlottheim, and Aptychus by Meyer.

LEPaS. [Cirripedta.]
LEPEDOLITE, Lilac Mica, a Mineral which occurs massive, and, is usually composed of small flexible thin scales. The fracture is uneven. Colour pearl-gray, peach-blossom, rose- and purple-red, and greenish. The scales, which are sometimes hexagonal, are translucent. Specific gravity 2.85 . Before the blow-pipe it melts into a spongy semi-transparent white globule. It is found in granite near Rosena in Moravia, at Perm in Russia, at the Isle of Uton in Sweden, and in North America.
Analysis by Dr. Turner of the red variety from Moravia:-

LEPIDIUM (from $\lambda \in \pi i s$, a scale, in allusion to the form of the pods, which resemble little scales), a genus of Plauts helonging to the uatural order Crucifere, and the tribe Lepidinee. It has a roundish or oblong pouch, either notched or entire, compressed valves, keeled or winged at the back. There is but one seed in each eell; the filaments are simple The species consist of herbs, some of which are shrubby, with small white flowers. This genus is divided into seven sections, the first of which, Cardaria, is so called from the heart-shaped form of the silicles. To this section belong
L. Draba. It has oblong leaves, entire or toothed, the lower ones narrowed into a foot-stalk, the stem-leaves sagittate and amplexicaule, the style as long as the dissepiment. It is native in the south of Europe from Spaiu to Tauria, and from Greece to Paris. It was introduced into Great Britain probably by foreign seed, aud is now found in the hedges of Kent.
L. sativum, Common Garden Cress, belongs to the section Cardamom of this genus. It has orbicular pods, variously cut winged leaves, and smooth branches. It is native of Persia sad the island of Cyprus in coru-fields. There are three varieties of the spccies: the Broad-Leaved Cress, which is cultivated chiefly for reaing young turkeys; the Curled Variety, which is sometimes uscd as a salad, but is considered preferable as a garoish; and the Common Plain-Leaved Cress, which forms one of our earliest spring salads, aud has a peculiarly warm and grateful relish. All the varieties are raised from seed, of which on3 ounce will serve for a bed 4 feet square. Cress should be raiscd four or five times a month, so as to have the erops delicately young iu succession. When raised in the open garden it should be sown carly in March, and if the weather be cold it should be covered either with matting or a frame during the night. Cress is often raised on porous earthenware vessels of a conical form, having small gutters ou the sides for retaining the seeds. These are called pyramids: they are somewhat ornameutal in wintcr, and afford repeated gatherings. This spocies is the $\Lambda \in \pi i \delta i o n$ of Dioscorides, $2,203$.
L. samperirio hat doway learea, the upper ones toothed, the lower onea oblong and narrowed into a footstalk, tho stem-lesres lancoolate, magitate, asd amplexicaule It in dintinguished from the other aprecies by the jouch loing ovate, rongh, and covernd with minute scalea, motchen and roumed at the end, the atyle mearcely longer than the sutch. Is grows on dry gravelly moil in Great britain.

1. lasifolimm ha orato lanceolate leares, serrnted or entire; the pouch in oval and downy. It has numeroun amall flowers in compound loufy panicled clunters It is a native of Furope, also of Algiem, and uf mermal parta of Fimbanl, gencmally near the sen. It has a very hot Liting taste, aud has been used instemi of hormoradiah, occasionally as a malal. The poor peoplo are in the lanbit of eating it as a condinent to their fuod: Lence it has acquired the mame of Poor Man's Iepper.
 dypie of Hioscorides, 2, 147 , although it is usually referred to the Brawira crefica. It is also the Lepidium of Pling, 20, 17, 19, 8.
The gnearhouse xpecies will thrive well in any hind of light soil, and are readily propagated by euttings planterl under a haud-glass, or by secela The hardy perenaial sprecies, by divining at the roots or by keedr, will grow io muy kind of soil. The harly anounl kinds only require to bo bowa in tho openground. None of the epecies are worth cultivating for omament.
(I)un, Dichlamydeous Mants; Babiagtos, Manual of British Botany; Frau, Synopsia Flome Classice: Burnett, Outlines of Botany.)

LEPIDUDENDRUN (λ etis, n scalo, aud séspon, wood), an importast geass of Fuasil Planta, in the examination of which Sternberg ("Flora iler Vorwelt'), Brongniart ("V'egëtaux Fossilea'), aud Lindley ("F'omil Flora") hare mignalised their abilities, not without success, though nomo uncertainty get sttaches to the botanical relations of thees ingular apecimens of the flora of carlier nature. M. Bronguiart in 1522, and again in his 'Prodromo' (1828), referred the Lepidodendra to the natoral group of Lycopodiacer, pointing out bowever their analogien to Cyculea and Conifore, and assigned the following characters:

Stems dichotomoue, corored near the extremities with simple linear or lanceolate leaven, inserted on rbomboidal areolie; lower part of the stemn Jraflese ; the arcolic for their insertion marked in the upper part with a tranverse cicatrix, of n deltoid figure, the lateral nugles acute, the inferior angle obtune or wanting. Tho form of the eicatrix of the leares in the estritial character of the genum; it indicates that the leaves were nearly trigonal at the base, becomiog plane at some dintance therefrom, with a atroug midrib. A rounded cicatrix dis. tinguinhen the leaf-bues of etigmaria, which was perhaps an aquatic plant of tho matue natuma group as the terrestrial Lepidodendron.

Lepidndendron Elembergin. Brongniart. (From the 'Fowsil llora,'pl. 1.)
The atemat than namerl and chamacteriacrl attain tho aize of 40 or :O fect in lagth. with o diameter exceeling 3 fert: their whole musface is cotered by shomboidsl eminencen, armugerl in apimi rown, eisen firment a beatiful quineuncial ormament. In the opinion of M. limingniart the mode dif divimion (lichotomonn) of the ntera nime the forn of the lravea determine a great affuity lectween then lepridodendra and hevegodencerr. Tho growth ef tho bein lio comparen to that of Cycodecr, an!l tho form of tho reproductive organn (comen) thow enalogy in Coniferer, and expecially A raucarias.
Dr. Ilyrlley, in the fine rolume of the 'Fonal Flors of Cireat Britain,' afler liacuosing the brotanical relation of Jepiuludendra as far an tho facts theo collected mllowed, thus expremen hin opinion:-"Upon tho
whole, we are led to conclude that the lrepidoleadron genue was not exactly like cither Coniferce or Lycopodiacee: but that it occupied an internediate atation botreen these two orders, approaching more nearly to the latter than the former."

A great addition to the dsta requisito for determining the problem of the true characters of Lepilodendron was made by the Rev. C. V. Harcourt, who discovered a apecimen in which the internal atrueture of a brach was perfectly observable, nad which, when cut thin and polished, cleared up many important points. Mr. Witham, the authors of the 'Fossil Flora, and fimally M. Bronguiart, have publiahed dravings and descriptions derived from this precious fragment. Dr. Liudley and Mr. W. IIutton ('Fossil J'lora,' ii. p. 51) consider their former view entirely confirmed by this discovery. "It had a ceutral pith, a vascular sheath surroundiag that pith, and fistular passages in its cortical intogument: thus far it was Coniferous. But Ra no trace can be found of glandulsr woody fibre, it can searcely be said to have had noy wood, and it is uncertain whether it had any bark. . . . Its pascular system was confined to the middle of the stem and to the curved passages emsonting from it : the stem consistod of lax cellular tissue, which became more compact towards the outside, and it had a very powerfal communication between the bases of its leaves and the central vascular syatem: thus far it was Lycopodiaceous." Spiral vessels are stated to be scen round the central cellular tissue; and (tals. 113) it is further said, "the genus was more nenrly related to Coniferce thsn to Lycopodiacea."
M. Brougniart, renewing his investigations with the sid of these new facta, evidenced by Lepidodendron IJarcourlii, ndopted a different view coneerning tho vascular system of the stem, for he supposes the eentral cellular tisaue to be eatirely surrounded by a aarrow zone of large vessels, "ravés transversaletaent' (by Dr. Lindley considered as a loose cellular tissue), as in Lycopodiacea and Ferns, without medullary rays, and of which the exterior parts go off in bundles to the lesves.

From the whole discussion he adopts the conclusion that by the interior structure of the stems, as well as by their exterior form, their modo of ramification, and the srrangement of their leaves, the Lepidodendra agree almost completely with Lycapodiacea, and may be regarded as arboresceat groupe of that family, which contains in the living creation only small and humble plants; nor does it appear that lis conviction is weakened by the comparison of these elongated (cylindrical) fossil 'cones' (Lepidostrobi), which are by most botanists referred to Lepidodendron, with the nnalogous organs of Lycopodiacea and Coniferc. [Lepidostrobt; Coal-Plints.]

The apecies are pumerous, and confined to the older strata, and specially abundant in the Coal-Formation,
(Brongniart, Mistoire des Fegétaux Fossiles; Lindley and Ilutton, Possil Flora of Great Britain.)
LIEPIDOGASTI:R, a genus of Fishes belouging to the Subbrachial Malacoperygii, and to the family Cycloptcrida, or Discoboli. [Disconoli.] The genus Lepidogaster is distinguished by its smooth body without acales; dorsal and ansl fins opposite and nenr the tail ; pectoral fina large, descending to the inferior surfnec of the body, nud by an ertension of the membrane eurrounding an oval dise; ventral fins united by a membrane which extends circularly under the belly, forming in second concave disc.
L. Cornulicnsis, the Cornish Sucker, Jura Sucker, and Ocellated Sucker, Cyciopterus Lepidogcister of Iennant and L. biciliatus of Risso, is occasionally soen on the Cornish coasts, and has been taken on the coasts of Autrim nnd Clare in Ireland. This fish is emall, a spocimen deacribed by Mr. Couch not being more than two inches nud a half in length. It adheres with its sucker to almost any aubstance presentod to it, and even to the human lasid. The general tint of this fial is a pale fleah-colour, with apots and patches of carmine about the upper and under surface of the jaws, around the eyes, on the top of the head, sides of the body, and nbdomen.
I. binaculatus, the limnculatod Sncker, is a second British species, Thin fish is rarer than tho last. It has been taken on the southern coasts of Great Britain. It seldom exceeds threequarters of an inch to an juch in length. Its general colour is a earmine red; pale fleshcolour underucath, with a light-coloured patch botween the eyea, and otherwise liabla to aomo variation in the markings: the two npots on tho aides not always very obvious. It lives jn deeper water than the last apecier.
(l'nrrell, Britioh Fiwhes.)
LEI'llOGONIS. ['ALCOMD.E:
LFI'IDOKlSOKITLE. [Cötmitu]
LI:PIJOLFPRUS, a genus of Fishes belonging to the family Gudider. It is closely rolated to the genus Morrhua, to which the Common Cod belongs. The nuborbitals nre united with the nasal bone, and form a depressed inuztle, ndvancing before the mouth, which however retains ita mohility. The head nud body havo hnrd spinour ucalea; the ventrala are n little on the throat; the pectoral of mean nize; the firat dorasl ligh; tho scoond dorsal, aunl, sud cnudnd unitell tho jaws short; the teuth fine and short. The npecies inlabit deop water, and utter a grumbling noipo when taken out of the water. Two npecire are knowo. They inhabit the Mediterrancan and Atlantic.

LEEIINOL,ITE. [MICA.]

LEPIDOMELANE [Mica.]
LEPIDOPHYLLUM. Foseil Leaves whieh occur in the coal formation are thus named by M. Brongniart. They appear to have been sessile, simple, entire, lanceolate or linear, traverssd by a single simple midrib, or three parallel nervures, and without seeondary nervures. (Some of these belong to Lepidodendron, others to Stigmaria.)
LEPIDO'PTERA, one of the Orders into which Inseets are divided, called Glossata by Fabricius.
This order is composed of those insects which are commonly known by the vames Butterlies and Moths, and which possess four wings, usually of large size, and covered with a multitude of minute scales, which to the naked eye appear like powder. The nervures of the wings are not very numerous, and are disposed chiefly in a longitudinal direction: a small tippet-like appendage is situated on each side of the thorax at the base of the wings, which appendages are called by Laireille Pterygoda. The antennæ are almost always distinct, and are composed of numerous minute joints. The parts of ths mouth are formed into a proboscis fitted for extracting the nectar from flowers, or conveying other juices to the essophagus. This proboscis, when not in use, lies spirally folded beneath the head and between two palpi covered with bair, which are usually direeted forwards and upwards, and whieh represent the labial-palpi. The proboseis is called, in these insects, Antlis by Messrs. Kirby and Spence, Spiritromps by Latreille, and Lingus according to the nomenclature of Fabricius; and is composed of two sub-cylindriesl tubes, which vary greatly in length in the different species of Lepidopterous lnsects, and between which there is an intermediate one, formed by their junction, whioh is effected by mesns of a series of hooks inoseulating one with another like the lamine of a feather. It is through this central tubs that the juices are conveyed, the lateral tubes being intended, as it is supposed, for the reception of air ; they are called by Messrs. Kirby and Spence Solenaria, a name however which is not wanted, since the two tubes in question represent the maxille, and are furnished with minute maxillary-palpi at their base. The mandibles aud labrum in these insects are reduced to mere rudiments. The head, thorax, and abdomen are always more or less covered with hair; the former, besides the ordinary compound eyes, is sometimes furnished with simple eyes or stemmata; these however are generally hidden by the hair of the head, and, according to M. Dalman, do not exist in the diurnal Lepidoptera. Of the three seginents of which the thorax is composed, the first is usually distinet, though small ; the others are confluent; the scutellum is triangular, the apex of the triaugle pointing towards the head. The abdomeu is composed of six or seven distinct segments, and is attached to the thorax only by a small portion of its diameter. There are only two kinds of individuals, males and females.
The principal modifications of the larvo, or caterpillars, of Lepidopterous insects are noticed in the article lnsecta.
The food of the larve almost always consists of vegetable substances, generally the leaves of plants; some live in rotten, or rather, dead wood, upon which they feed; others feed upen animal substances, and are tery destructive to furs, woollen goods, feathers, \&e.; and the larra of a species of moth (the honeycomb moth, Galleria cercana) subsists upou wax, living in bee-hives."
The pupæ, or chrysalises, are incapable of eating or locomotion, and are termed obtected; they usually approach somewhat to an oval form, but are pointed more or less at the posterior extremity. The shape of the pupw however varies much according to the species; and those of butterflies-often present numerous angular projeetions, and sometimes exhibit brilliant metallic colours. The parts of the perfect insect, such as the head, thorax, segments of the abdomeu, wings, and lege, can be distinctly traced. Various modifications of the pupa state of the present insects are noticed in the separate articles on species which are described.
Latreille divides this order into three principal groups, according with the three Linnæan genera Papilio, Sphinx, and Phalena. To the first group he applied the name Diurna; Crepuscularia is used to designate the second; and the third group, or that corresponding to Phalena of Linnwus, is called by Latreille Nocturna.
The group Lepidoptera Diwrna comprises those species which fly by day, called Butterflies, in which the antenna are terminated hy a knob, or at least somewhat suddenly thicker at the extremity; the anterior margin of the posterior wings is simpla; the wings are usually erect when the inseet is in a state of repose; the larvo have 16 legs; the chrysalises are always uaked, attached by the posterior extremity, so that the head hangs downwards, and have usually angular projections.
The Lepidoptera Crepuscularia are distinguished by the antenna being gradually thicker from the base towards the extremity, and forming a prismatic or fusiform club; the extreme tip is sleuder, pointed, and often recurved. The winge are in a horizontal position when at rest, or a little inclined; the posterior wings have a rigid spine at the antcrior margin, which is received into a hook on the under surface of the superior wings. The caterpillars have 16 feet, 6 of which are
*This larva forms galleries in the bonegeomb, which are invariably inclosed by a strong silken web, serving to protect it from the bees; and as the moths inerease rapldily in number, the hive is of necessity soon deserted by its proper inhabitants.
thoracic, 8 abdominal, and 2 ansl ; and many of them have a hornlike process on the upper side of the last segment. The pupe are never angular like those of butterflies, but are generally smooth, and sometimes furnished with small spines. The perfect insects generally fy in the morning, evening, or afternoon.

The Lepidoptera Nocturna have the antennæ setaceous, or diminishing gradually from the base to the apex, often serrated or pectinated, especially in the msle sex: the wings during repose are horizontal or deflexed, and sometimes convoluted and inclosing the body; the posterior wings, as in L. Crepuscularia, have a rigid seta on their anterior margiu, which hooks into a corresponding groove in the anterior wings. The larve differ much in form, and in the number of feet they possess, varying from 10 to 16 . They frequently inclose themselves in 8 coeoon before assuming the pupa state. The pupa is most frequently smooth, but is sometimes furnished with spines, and in some instances it is hairy.

The perfeet inssct almost always fies by night or after suuset. In soms speeies the females are apterous.

LEPIDOPUS. [Tenioides.]
LEPIDOSTROBI. Detached petrified conez which are scattered through the various strata of the Coal Formation have been thus named. Thay are obviously organs of fructifieation, and have therefore belonged to some of the arborescent plants whoss remains they accompany. Such of them as are preserved in the nodules of iron-stone, or are otherwise mineralised without pressure, alone offer the means of ascertaining to what existing families of plants they are most nearly allied ; for in those that are crushed flat in the shales the internal structure is wholly destroyed. Many of the better-preserved specimens have bcen sliced, polished, snd examined with the greatest cars; but this expensive operation has hitherto thrown little light upon the true nature of the objects investigated. This is owing to the fact that the three couditions necessary for their eomplete illustration have never been displayed by oue specimen, and ths most important point, ths nature of the organs of fructification, has hitherto wholly escaped observation in all. Every one being an aggregation of organs of some kind it becomes necessary to ascertain, not ouly the arrangement of these organs, but the naturs of the tissues conuposing them, and their contents, before satisfactory conclusions can be drawn as to their relationship to any of the vegetable remaius they accompany, or to whatever existing order of plants they are allied. The thres necessary conditions are these :-

1. The arrangement of the individual organs of fructification, of whieh the coue is an aggregation, and the nature of the scales supporting them. These are characters sometimes displayed on the fracture of the specimen by ordinary means, though rarely, from the parts appearing to have suffered partial decay previous to or during petrifaction. The imbricating apiees of the scales, which lie over one another like thoso of a pine cone, are geuerally removed with the matrix wherein the fossil is embedded.
2. The tissues, or anatomical structure of the various organs composing the cone: namely, of the central axis, which is a continuation of the stem of the plant; of the scales, which being inserted into the axis support the individual male or female organs; and of the latter themselves. These tissues ean only be displayed by slicing fossils in the very best state of preservation, and in such as are changed into a more or less transparent mineral. Specimens of this description aro exceedingly rare.
3. The two preceding considerations are sccondary to the remaining one-the nature of the contents of the cones. There may be stamens or male organs-ovaria or female ones-or, lastly, eapsules containing reproductive spores (which are peculiar to plants having no sexusl aystem); for these three kiuds of organs all occur arrauged in the form of cones, undistiuguishable from one another by any exterual marks. Up to the present time no carboniferous fossil cone has ever been known to supply this great desideratum, without which we can arrive at no exact conclusion as to whether thess curious objects aro elusters of flowers or fruits, or ars the spore-bearing organs of flowerless vegetables, as mentioned above.
Specinens of Lepiclostrobi are mostly found in seams or uodules of clay iron-stone, and are vory highly mineralised, sometimes containing crystals of iron, and the cavities in their substance being filled with white carbonate of lime and magnesia. Those which are nost conplete always form the nuclei to nodules of elay iron-stons; others again, including sll in which the spores are preserved, have occurred as broken frustules withiu stems of Lepidodendron elegans and other species of that genus. Usually the fragments of Lepidostrobi are not more than half an inch long, and very frequently are mere dises; so that though there is often the appearance of one several inches long, and traversing the whole length of the fragment of Lepidodendron, it will geuerally be found that this is owing to two being placed each at an extremity of the truncheon, and opposite to oue auother. [See Figure, Coal Plants.] That all were exeeedingly brittle caunot be doubted, for no modern cone of any natural order could bo broken up iuto the shallow dises which many of these fossils present. It is diffieult to aceount for the presence of these fragments of Lepidostrobi in the stems of Lepidodendron; we can but conjecture that the trunks of the latter were erect stumps, whose interior was hollowed out by decay-that these stumps were covered with water in which
were frabtaents of Lepidostrobi and other vegetablo matter, which wero thus wathel into tho etumps. This suppoaition is founded on the folluwing cwosiderations:-
4. The ntumps of Lepidodendron appear to have been rooted and ercef, and to havo receivel the cone fragmenta into their cavity as fers fronds find their way into the nxis of sigillarier. Were the stompemere prostrate portion of atems it in evident that cones would lave his lurizontally in them, and that 18 washing or drifting could have imluced tho fragmenta of these cones to lio with their axes parallel to them, or could hare intruduced so many into one trunk; and the latter would certainly lare been materinlly compressed han they received on one oide the pressure of the superinchmbent sbales

2 The stomps muat hare been submerged, and tho fragments quietly deporitel from the water. Hant the concs fallen from an overlanging furent they would have alighted in all manner of irregolar promitions, and in some cases overlain one another, which is uever the cam.
3. Tho deposit appears to have been effected by tho gradual subsillence of the wnter, and not by a aulden rush or current. This again is proved by the non-interference of tha concs, and their uaifurmly vertical position with reapect to the Iepidordendron.

It is hard to account for the accession of so large a volumo of water ne would submerge these stumps and deposit these fragments, and yet exhibit no sigas of drifting in its course. The sudden fall of a irupical torrent of rain ou a hepidodendron forest, in which were hollow aturaps of theso trees, must at onco suggest itself. This rould both carry down the Lepidoatrobi from the trees and float up the fragmenta on the ground, depositing them together in the stumper. Another effect of arich a fall would be to break down some of the older treen, whose decaying stumps would be prepared to inclose other Lepidoserolion the precipitation of the next similar torment. The estrense fragility of the Lapidosfrobi displayed by theso specimens is very eatiefactory, as the Lepidodendrons of which they aro the fruit wo cloubt partwok of this character, which is eminently favourable to a salid decoraponition and intimate union with the silt or mud which is the hasin of the elny-ironatone in the one case, and the formstion of a homagencous bed of regetable matter, such as the coal presents, io another. The extmordinary abundanco of the fragments too anggeats a mont vigoroum regetation, for they must indeed have been profuely ecattered to be deposited in such numbers within narrow cylinders ioto which no current nppears to have been directed.

It in worthy of retaark that no fern-leaves aro contained in any of thene Lapidodindron aterna; and their nbsenco is the moro singular front their leing commonly 'leposited along with lranches of Calamites, sc., in the crect etumps of Sigillaria resting on the coal-shales. Thin is no doult connceted with the well-known fact of the Sigillaria otumps being filled with mandatone, or the rame materials as those empoojng the stratum above the whalen they root into; whilst the fosail $L_{\text {- pulolendron of the clay ironntone seama is of the samo mineral }}$ an that wherein it in imbedded. Were tho fragments of Iepridontroli wanhed into their inclasing atumps by any current, that agent would In all protability have trausported the remaina of other planta to the namo apol The perfect preservation in which these fragmenta ocenr must be attributad to the protection alforded them by the surrounding Lepidndendron bark. That the circumference of the latter has been nubjected to preanuro may be infrrel from the flatteniag of the praninences to which the leaves were athachod. This jreseure was thoreoter rery coniderable, no may be proved by comparing the erennese of their nurface with that of a piece of fepidodendron bark fusiliard without presmure, and imbelded within the ntem along with the L-pidomrobi.

If theer conea be exnmined with reference to the known contemporanoong fowila which accomprany them, it will nppen impornible to deny their having the reproductire organa of Lepirlodendron, not only from their memeciation with the fragments of that genm, because the arrangemene of tho tisolie in the axin of tho cone cutirely acconds with that of tha ntem of Japuloriemilom. Iust as we find in modern cones of Lyeromentioser arnl contierer that the nxis in a continnation of the branch, which bearn learin motitied into orgama adapterl to alpport abd protect tho parta of fructilicatims. The mont pasitive evidenco that can bo wifluced of Japioloafond belonging to a genins alliod to loympalimon in aforlal by thenjertion, the jrerence of which not only rermenen them from E'yesider, (iungevir, or augy athet order of flowering ghane, bist firmoly refern them th the family uf hyopodiacce. It is well known on bestuinte arit only that conmare for from being pectuliar ta non natural aroler of flanta, but that thrit waterme form in mo iudi. eation cither of their emperm or of then afinitien of the planta which fromucal them. Acourdingly we find tlat I?. Lindley, the firnt finglush olwerver who pulaliahiel nuye extended viewa on the nafinitien of themerlanta. angerate the probatulity of their lecing referrible cither
 Hower, after fracribing tho nature of apurions conea which have no melation tos tha mproluctive ongan of the plant, su in the commona onne tuaring willow, tha larel, de, and thone produced liy the punctum of an ifuwet, an in a genua inlabiting Term del Fuegn, where a cone in formed ly this meann from . leaf, nayn:-"Somo of the

Iron oücephalum, of which it is impossible to may whether it be a Lepidastrobus or the apex of a brnoch coowded with short leaves. Were the Fuegian plant to oceur in a fussil state ths probability is, that its cones would bo regarded as undoubted reprodnctive organs, and the plants themelves bo referred to Coniferce."
(Hooker, On the Structure and Affitics of Lepidostrobi, in Transaccions of Geological Surtey of Great Britain.)
LEPIDOSTEUS, a genus of Fishes belonging to the family Clupeida. The apecies are natives of tropical America. They are remarkable for their long teeth, which have their anterior surfaces rasp-like; the scales are very hard, liko stonc. The dorsal and ansl fins are opposite, and far back. The intestiae has two folds aud numerous caca; the alrbladder is cellular. Tho species of this genus are interesting, with those of Polyplerus, as being the only living representatives of the rist numbers of extinct roracious fishes whose remains are found in the various secondary formations. [Polyirtellus.]

LEI'IGONUM, a geaus of Plants belonging to the natural order Paronychiacece. It has 5 flatish sepals; petals 5, entire, as long as the calyx ; stauens from 5 to 10 ; styles 3 -or 5 ; fruit 3 - to 5 -valved, manysceded, valves fewer than the sepsls, or alteruato with them.
L. rubrum is found in sandy ficlds near the sea in Great Britain. I't has a round stem, flat leares linesr-pointed, capsules about equalling the ealyx, rather ehorter than tho slightly declining fruit-stalks; seeds triangular, obovate; with a thickened rough border; stem procumbent.
L. marinum lias a compressed stem, fleshy loaves, bluat apiculate, capsules exceeling the calyx, much shorter than the declining fruitstalks; secds roundish, usually surrounded hy a membranous atriated wing; the root is almost woody; stem glabrous or glandular, hairy. It is found on the sen-const.
(Babiugton, Manual of British Botany.)
Lilly 1 'TUS, a genus of Fossil Ganoid. Fishes, abundant in the Oolitic strata. (Agaviz.)
LEPISMA. [T'Mrsasuna.]
LEP'ORIDE, a family of Rodentia, the type of which may be considered as existing iu the Cummon Hare.

Liuntous characterised his genus Lepus, the second of his order Glirce, ns having two incisor teeth (deutes primores 2), the upper ones double, the interior being the least, and he placed the following under it, nancly, Lepus timidus, L. cuniculus, L. Capensis, and L. Brasiliensis. Gmelin added several species, some of which had no claim to a place amoug the Hares.

Cuvier characterised the Ilares as having tho proper incisor teeth double; that is to say, each of them has, behind, another smaller one. Their molars, to the number of five, are formed each of two vertical lamine soldered together. In tho upper jaw there is a sixth, which is simple and very small. They have five toes before and four behind, no enormons crecum, five or six times larger than the stomach, and furnished within with a spiral lamina (lame spirale), which runs throughont its length. The interior of their mouth and the bottom of their feet are furnisbed with hair, like the rest of their body. He divider tho group into-

1. The Hares, properly 80 called, which have long cars, a short tail, the hind feet much longer than the fore feet, imperfect clavicles, and tho suborlital space in the skeleton piorced liko net-work (en resean). The species are, he observes, rather numerous, and so much alike, thst it is difficult to dofne them.
2. Of Lagomys, lis 2nd division, he says that the species composing it lave tho cars moderate, the legs not much difforing from each other, nearly perfect clavicles and no tail: they have hitherto, be adds, been ouly found recent in Siberia, snd fossil remains of an ubkuewn species have been detected in the Osscous Breccia of Corsica.

Dr. Gray's third family of the order Gircs is named Leporide, and is thus defined:-

Cutting teeth two in each jaw, or four in the upper one, lower one subsubulate; grinders numerous, rootless; ears generally large; tonguo often lairy : cyes large; claviclea none; fore fect short; hinder ones long; tail nouc, or very short, lairy; fur soft.

+ Cutting-teeth four above.

1. Leporina, geuus Lepus ('). 2. Lagomina, genus Lagomys.
$+\dagger$ Cutting teeth, two above.
2. Cariina. genern Kerodon, F. Cuv. 4. Iydrocharina (Hydrochocrina (!), genua IIydrocharns (Hydrochcerus), Brisson. 5. Dasypercyna (Dasyproctinn P), gencra C'ulogenys, Jllig., Dasyporca (Dasyprocta ?), Illig., Dotichotis, Deem.
Mr. Swainson defines the genus Lepus thus:-Cutting teeth $\frac{4}{2}$, the
 lower teeth square; grinders $\frac{6-6}{5-3}$, composed of two soldered vertical platen; n sixth, very suall, in the upper jaw ; soles of the feet hairy ; anterior feet with five toes; posterior with four ; tail very short, turned upwapla.
L. timidus, the Common Hare.

Lergomye, Geoff., Mr. Swainson appears to give as a sub-genus of Lejus.

The sub-family Leporina seems to be strictly natural, consisting entirely of those apecies, and they are not few, which are usually known by the name of Hares and Rabbits.

$$
\text { Incisors, } \frac{4}{2} ; \text { molars, } \frac{6-6}{5-5}=29 \text {. }
$$

Teeth of Commoa Hare (Lepus timidus). F. Cuvier.
L. timidus, the Common Hare, which is generally considered as the type, is too well known to need description, and it will suffice to state that it is the Nayes of the Greeks; Lepus of the Remans; Lepre of the Italians; Liebre of the Spaniards; Lebre of the Portuguese; Lievre of the French; Hase of the Germans; Hans and Haze of the Danea; Hara of the Swedes, according to Mr. Beli; Hara of the Anglo-Saxons; Yagffarnog, Ceinach, of the Wolsh; Maukin of the Scotch.

The usual weight of a full-grown Hare is 8 or 9 lbs ; but one is mentioned in 'Loudon's Magszine' of extraordinary size: 'this weighed $13 \mathrm{lbs} .1 \frac{1}{2} \mathrm{oz}$.
L. Hibernicus, the Irish Hare. The Earl of Derby appears to have been the first who drew particular sttention to this species, aud it was rescribed in the 'Proceedings of the Zoological Society' by Mr. Yarrell in 1833. Mr. Jenyns gives it as a variety of the L. timidus; but Mr. Bell ('British Quadrupeds') atates that a careful examination of several specimens has assured him that it is not merely a variety of the Common Hare of Eugland, but that it is specifically distinct. He mentions the following differences of character:-The Irish Hare is somewhat larger; the head is rather shorter; the ears are oven ahorter than the head, while those of the Eaglish Hare are fully an inch lunger; the limbs are proportionally rather shorter; aud the hinder legs do not much exceed the fore legs in length. The fur is slao remarkably different : it is composed exclusively of the uniform soft and shorter hair which in the English species is mixed with the blacktipped long hairs that give the peculiar mottled appearance of that animal; it ia therefore of a uniform reddish-brown colour on the back and sides. The ears are reddish gray, blackish at the tip with a dark line near the outer margin. The tail is nearly of the same relative leogth as in the common apecies.

It further appears that L. Mibernicus is the only Hare found in Ireland, which may account for its remaining so long unnoticed; fer opportnnities of compsrison could not have been very frequent. Its fur is considered valueless.

Whether the Irish Hare will take the water willingly does not appear; that the English Hare is, occasionally at least, an accomplished and bold awimmer is manifest from the following account related by Mr. Yarrell in 'Loudon's Magazine' (vol. 5) :--"A harbour of great extent on our southern coast has an island near the middle of considerable size, the nearest point of which is a mile distant from the mainland at high water, and with which point there is frequent communication by a ferry. Early one moming in apring two hares were observed to come down from the hills of the mainland towards the sen-side; one of which from time to time left its companion, and proceerling to the vory edge of the water, stopped there a minute or two, and then returned to its mate. The tide was rising; and after waiting some time one of tham exactly at high water took to the sca,
and swam rapidly over in a straight line to the opposite projecting point of land. The observer on this occasion, whe was near the spot but remained unperceived by the hares, had no doubt they were of different sexes, and that it was the male that swam across the water, as he had probably done many timea before. It was remarkable that the hares remained on the shore nearly half an hour; one of them occasionally exsmining, as it would seem, the atate of the current, and ultimately taking to the sea at that precise period of the tide called slack-water, when the passage across could be effected without being carried by the force of the stream either above or below the desired point of landing. The other hare then cantered back to the hills."
The female goes thirty days with young, and produces from two to five at a birth; these'are born well covered with hair and with their eyes open. The leveret quits the mother and provides for itself in less than a month, and is capabla of breeding when it is a year old.
The Common Hare sometimes varies accidentally; there is such a variety in the muscum of the Zoological Society of London. All attempts to promote a breed between the hare and rabbit appear to have been hitherto fruitless.
L. wariabilis, the Varying Hare, or Alpine Hare, of Pallas, which changes the colour of its coat with the seasons, requires a short notice. The fur, which is full and aoft, is in summer gray intermixed with silky hair of a yellowish brown; the ears are tipped with black, and the under parts are light gray. The tail ia white beneath and gray above. As the winter approaches the fur gradually becemes white, except that on the lips and the tips of the cars, which remains black. In the 'Edinburgh Philosophical Journal,' vol. ii., is an intereating account of the process as it occurs in Scotland, from which it would seem that the winter change of colour takes place without any removal of the hair, as in the Ermine; and somewhat in the same way that the change is effected on the head of the Black-Hcaded Gull, Xema ridibundus, and in the feathers of other birds. "About the middle of September," says the writer in the 'Journal,' "the gray feet begia to be white, and before the month ends all the four feet are white, and the ears and muzzle are of a brighter colour. The white colour gradually ascends the legs and thighs, and we observe under the gray hairs whitish spota, which continue to increase till the end of October; but still the back continues of a gray colour, while the eyebrows and ears are vearly white. From this period the change of colour advances very rapidly, and by the middle of November the whole fur, with the exception of the tips of the ears, which remain black, is of a fine shining white. The back becomes white withiv eight days. During the whole of this remarkable change in the fur no hair falla from the animal ; hence it appears that the hair actually changes its colour, and that there is no renewal of it. The fur retains its white colour until the month of March, or even later, dependiug on the temperature of the atmosphere; and by the middle of May it has again a gray colour. But the spring change is different from the winter, as the hair is completely shed."
L. Cuniculus, Linn, the Rabbet, Rabbit, or Coney; Coniglio of tha Italiana; Conejo of the Spanish ; Coelhe of the Portuguese; Kaninchen of the Germans; Konyn or Konin of the Dutch and Belgians; Kanin of the Swedes; Kanins of the Danes; and Cwningen of the Welsh, is known to every one.

The fertility of the animal may be imagined when it is remembered that it will begin to breed at the age of six months, and produce several brooda in a year, generally from five to seven or cight at a time. Pennant says:-_" Rabbits will breed saven times a year, and bring eight young ones each time. On a supposition that this happens regularly during four yeara, their numbers will amount to $1,274,840$." The young are blind at their birth, and nearly naked.
The fur of the Rabbit is in considerable demand, particularly for the hat trade; and at one time the silver-haired varieties, or ailversprigs, fetched three shillings a piece, for ornamental liuings to cloaka, \&c. ; in Pennant's time however the price had fallen to sixpence.

The following additional species of Lepus are found in the 'British Museum Catalogue :'-
L. Altaicus, from the Altai Mountains.
L. arcticus, the Rekalek, or Polar Hare. Labrador.
I. Tolai, the Tolai. Siberia.
L. macrotus, the Indian Hare. Nepaul.
L. diostolus, the Woolly Hare of Tbibet. Nepaul.
L. Douglasii, the Marsh Hare. California.
L. Kurgosa, the Lasa, or Khargosh.
L. Vermicula, the Irish Rabbit. Ireland.
L. Cupensis, the Vlakte Haas. Cape of Good Hope.
L. arenarius, the Barrow Hare. Cape of Good Hope.
C. saratilis, the Rock Hare. Cape of Good Hope.
L. Bennettii. Califoruia.
L. Americanus, the Wawproos, or American IIarc. North America. L. Eyypticus, Egyptian Hare. Egypt.

The subfamily Lagomina consists of a single genus, Lagomys, which has the mazzle acute, the ears short and somowhat rounded, the soles of the feet hairy, the claws falcular, and no tail.

Incisors, $\frac{4}{2}$; molare, $\frac{5-5}{5-5}=26$.
 Hape, of the liunematwot tho Volga: Tachotachot, or litaltaknu, or Hio Ilarting Muow of the liartars; liualm of the Knlmucs; Calling Hane of l'onnant) laa tho hend longer than usual with bares, and chlchly covered with fur, eren to the tips of the none; numerous lairs in the whiakers; ears largo and roundol; laga very short; soles furrvi treneath; its wholo cont very aon, long, and smooth, with a thich long fine down benenth of a lnawnids-lead coluur; tho hairs of the asae coluur, towanla the cula of a lipht gray, anl tipt with Hack; the lower part of the bouly loary ; tho sides assl ends of the fur yellowish. Length about 6 inchen; weight from $3 f$ to 41 ounces; in winter searely ${ }^{2}$ If ounces (1'alls; ; Penuant.)

Calling IIare (Lagomys pusillus).
It inhabits tho south-eastern parts of Bussin, nad is found nbout all the ridges spreading from the Eral Mountaina to the south, about the Jrtiuh, and in the wemtern parts of the Altai Mountains, but nowhere in the liant beyond the Oty. (Pallas; lennant.)
It delights in the moat sunny vallegs and hilla, whera the herbage In plentiful and delicate. The Calling llares choose these localities when in the vicinity of a wood, which will afford them a ready refuge lu the cane of dauger or alarm. Their burrows, especially thoso lelongiug to the oll ones aud to females, are curious and intricate, so well concealed amid the mhrubs of rome dry spot that detection is very difticult; and to increane tho difficulty the auimal is said to drop ita excremensa under some buals, that they may not betray ita abodo, which would almost defy nearch were it not for their poenliar ory or call. Thin in dencribed as being like the piping of a quail, but doeper, and no loud an to be hearel at the distance of half a German mile. It in repeated at junt intervala, thrice, four times, and even ajx, at night and monning, but seldom in the day, unless the weather be eloudy. Woth the male anel fernalo emit this note, but the latter is silent for wome time aftur she ha given birth (in May) to her young, which aro born neked and hisud, and are carcfully attended to by tho mother, who covers thein up warn with the casy materials of her nest.

The sub-family Cariina, which lan the following dental formulaIncimern, $\frac{2}{2} ;$ Molnan, $\frac{4-1}{4-4}=20$-is often veforred to Hystricide. [1H2Tarcadic]

The fullowing apecies of Lagomya aro reconled in the 'Ilritiah Numeum Catalogue :-

To primerpa, the little Chlef. North America.
I. alpinu, the Lavajac. Siberia.
L. Noyldi, the Indian Sulgan. Ilimalaya.
L. Nipalensis, the lled-Shouldered Sulgan.
L. rufiacens, the Ileddish Sulgan. Cabul.

Nepaul.

Fossil locporider.

Of the genus Lepus the following apocies are named:-L. diluvianus, Haro of tho Caverns, Cuvier, Buckland, Pander, nud D'Alton; L. priscus, Hare of tha Ospoous Breccias, Curier, Fossil Harea and rabbits are also rocorded by M. Bourdet, M. D'Orblgny, M. Riseo, M. Wagner, Messrs. Croizet and Jobert, and Messrs. Marcel de Serrem and Pitorre.

The following fossil spocies of Lagomys are recorded:-L. Corsicanus and L. Sardus, from the Osseous Breccia of Corsica and Sardinia reapectively. Other remains of Lagomys nre noticed by Cuvier, Wagner, M. de Serres, Misso, Chaluriol and Bouillet, Croizet and Jobert, Jravard, Sedgwick (Oeningen beds), and Murchison. All tertiary.

Of the Agouti (Dasyprocta of Illiger; Chloronys of F. Cuvier) remains are noticed by M. Bravard and M. Eiclawald in tertiary beds.

LEPTACAN'THUS, B genus of Fossil Placold Fishes occurring in the Carboniferous and Oolitic strata (Agassiz.)
LEPTENA, a subdivision of the great family of Fossil Brachiopoda, proposed by Dalman to includo speciea which Mr. Sowerly named Producta. Its use is at present moro restricted, and has become rather indefinite. Leptana lata, of the Silurian syatem, may be regarded as a frequcut type. The species are extinct, and are confined to Paleozoic strata.

LE'PTIDES, a sub-family of Dipterous Insects of the family Brachystoma (Macquart). The family of insects to which the present aection bolonge is distinguished by the proboscis being short and membranous; the lips terminal and thick; third joint of the antenne sisaplo, often spatulate; stylet often dorsal; abdomen usunlly with five distinct sagments. The wings have commonly one submarginal and threc posterior cells. The family Brachystoma is divided by Macquart into four tribes or sub-families-Xylotome, Leptides, Dolichopada, and Syrphiula.

The first, or the Xylotoma, are distinguished by the third joint of the antenne being conical, by the wing having two aubmarginal cella, and by the tarai being furnished with two small cushions.

Iu the aub-family Reptides the nutenna are inserted near the base of the head, and have generally a terminal atylet; the tarai are furnighed with thrce sinall cushious; the femora are clongated; the winga have two submarginal and generally five posterior cells. This group contains six genera, of which one (Clinocera) is distinguiahed from all the other Leptides by its possossiug only threo posterior cells to the wings, the remaining gencra haring fiva.
In the genus Leptis the liead is depressed; the palpi are generally decumbent, with the second joint conical and the third joint short and generally conical. The thorax has a distinct tuberelo; body conical and transparent. The species inhabit Eurepe. Tho Leptis vermileo (Musca vermileo, Linn.) has been sejurated from Leptis proper by Macquart, and forms tho type of his genus Vermileo, diatinguishod chielly by the body being clongated and depressed, the frat joint of the antemne elevated, and the last conical and horizontal in ita direction.
L. vermileo of Fabriciua, or Vermileo Degecrii, Macquart. This Fly is about 4 or 5 liuos in leugth, of a yellow colour, having four black streaks on the thorax, and five ranges of black spots on the body; the wings immaculate. The larva somowhat resembles the stick-like caterpillar of the Gcometre, and is nearly of a eylindrical form, but narrower towards the anterior extremity of tha body; the posterior extremity is furaished with four fleshy tubercles. It lives in sandy districts, forms excavations in the moil, at the botton of which it secreter ltself either wholly or partially. If an insect falls into its trap it rises suddenly, clasps the insect with its body, and having sucked all its juices, bends itself in the form of a bow, and by suddenly relaxing throwa away the remains.

Tho next genus, Chrysophila (Mscquart), has the body furnished with velvet-like hair, the palpi elevated and with the second joint cyliudrical, the third being generally oopical ; thorax without a distinet tubcrele. Several species are found in Europo. The gouus Spania, which is the next in succession nccording to Macquart, has but two distinct joiuta to the antenne; it contains but one species. The genus Atherix has the third joint of the antenne distinct; the stylet is genemally dorsal; the borly depressed. All the species of this genus are liuropean.
Tho third aub-family, Dolichopoda, is distinguished by the eecond joint of tho palpi being unembranous, depressed, and covering the base of the proboscis The stylet of the nutenare is sometimea dorsal and sonsetimea apical ; the eyen are generally soparated in both sexes; the abdomen is somewhat cylindrical, or approaches a conical form ; winga decumbent, without any discoidal cell, and generally posseasing four posterior cella

The siyrihidee are b very extenaire group, and although gired by Mnequart aa n division of him family Brachystoma, cortainly constitute a nection of higher value than a sub-family. [Synpinden]

LEI'TOCE'PHALUS, a remarkablo fiah of the Eel tribo, discovered on the Britinh coast in Pennant'n time, and since observed ins' he

Mediterranean. The Leptocephalus Morrisii is a small, slender, and compressed animal, as thin as a piece of tape, and at first sight resembling a marine worm. The head is extremely small and short, the eyes large, the jaws furnished with numerous minute teeth; the pectoral fins and gill-openings very small, and the anal and dorsal fins connected with the tail. The outline of the body resembles that of the Lancelet (Branchiostoma); but the organisation of the Leptocephatus is that of a perfect fish. Mr. Yarrell describes the vertebre as having no spinous processes. It lives among sea-weed.
(Montagu, in 2nd vol. of the Wernerian Memoirs; Yarrell, British Fishes, vol, ii.)

LEPTOCLINUM. [Botrylimes.]

LEPTOCONCHUS ($\lambda \in \pi \tau \delta s$, thin, and $\kappa \delta \gamma \chi o s$, a shell), Rüppell's name for a genus of Pectinibranchiate Gasteropodous Mollusca. The genus is thus characterised:-Head of tae animal with an elongated proboscis, but which is entirely retractile ; mouth without any apparent armonr; tentacles two, flattened, triangular, short, united at their internal base, supporting the eyes at one-half of their length on their external side. Foot moderate, mascular, without any operculum. Mantle with a circular border, without ornament, and with a slight prolengation on the left side. Branchial cavity with a rather large aperture, the gill composed of a single comb formed of triangular laminx close set one against the other: at the bottom of this carity is found the orifice of the ovaria, whence (in the month of July) the eggs come forth in numerous bundles (par paquets nombreux), each enveloped in a viscous sac, which is flsttened, elliptical, and three lines in length. In the middle of the branchisl cavity is the orifice of the anus. On the right side of the neck, a little behind the right tentacle, there is another orifice, which may have some relation to the male organs of generation.
Shell subglobular, delicate, fragile, translucent, with a low spire, which is nearly effaced by the encroachment (surcroissement) of the laminx of the last whorl. Aperture large, suboval, with its twe extremities turned contrariwise, so that the aperture has some resemblance to the letter S reversed ; the two margins not united, the right one delicate at all ages, and a little expanded anteriorly as in adult Janthince. No columella. No umbilicus.
L. striatus, Riippell. The shell of this species, which served Riippoll for the type of the genus, is a rather dirty milk white; it is furrowed externslly with numerous longitudinal undulated lines very much approximated. Length of adult, $14 \frac{3}{4}$ lines; breadth, 121 : young, $7 \frac{1}{2}$; breadth, 6.

Shell of Leptoconchus striatus. 1, anterior view; 2, viow of the back,
It inhabits the Red Sea, where it is found imbedded in the cslcareous mass of Polyparia, and having no communication with the water except by a moderate epening. These corals prove almost always to to be a species of Meandrina (M. Phrygia) in which Magilus, Venerupis, de., occur.
Ruippell is of opinion, from the few words of M. Rang concerning the young of Magilus, that the last-named naturalist had before him the genus sbove described. Rüppell netices the following distinctions between Leptoconchus and Magilus. In the former the margins of the shell are always disunited; in the latter they are always united. The animals of the two genera are distinguished by the possession of an operculum in the one (Magilus) and its absence in the other, and by the difference in the proboscis; nor is the siphon of the Mayius present in Leptoconchus.
Ruppell suggests thst Leptoconchus approximates to the Janthince. The number of the tentaclos, tlie oval proboscis, the mantle deprived of a siphon, the pectinated branchix framed of crowded pyramids, and the absence of an operculum, favour this approximation, as well as the analogies of the shell; but he adds that he is perfectly aware that the difference of the habitations of the two genera is too great to allow of a reliance on this suggestion. ('Transactions of the Zoological Socicty of London,' vol. i. ; 'Proceedings' of the same Society, 1834.)

LEPTO'LEPIS, a genus of Fossil Ganoid Fishes, occurring in the Liassic strata

LEPTOMARHA. [Lemadipoda.]

LEPTOMERIA. [Sastalacee.]
LEPTON, a genus of Acephalous Lamellibranchiate Mollusca, belorging to the family Kelliadre. This genus is closely allied to Kellia. Only three species have been described, two of which, L. squamosum and L. convexum, are Britigh. L. fabagella has been
taken on the shores of the United States. The species are all sinall and rare.

LEPTOPHI'NA, the name given by Professor Bell to a sub-family of Serpents belonging to the family Colubridec. It is thus defined:Head elongate, broad behind, narrowed before; the anterior part covered with nine scutre. Eyes large. Gape wide, somewhat waved. Maxillary and pslatine teeth; no poisonons fangs. Body very slender, slightly depressed. Tail very long, slender, the point acute. Dorsal scales oval, elongate, loose ; caudal scales very small, closely arranged. Abdominsl senta very long; subcaudal scuta small, indistinct.
The genera Dryinus snd Leptophis are included in this family, of which Dryinus auratus and Leptophis purpurascens may be regarded as examples.

Dryinus auratus. Bell.
"The whole of the serpents composing these genera live," saym Mr. Bell, "in woods, entwining themselves amongst the brauches of trees, and gliding with great rapidity and elegance from one to another. These hsbits, combinod with the graceful slenderness of their form, the beautiful metallic reflection from the surface in some epecies, and the bright and changesble hues in others, place them amongst the most interesting of the serpent tribc. Their food consists of large insects, young birds, \&c., which the extraerdinary size of the hoad, the width of the gape, and the great dilatability of tho neck and body, enable then to swallow, notwithstanding the srnall size of these parts in a state of rest. In a specimen in my possession of Dryinus auratus, for instance, the length of which is 4 feet 9 inches, the diameter of the neck is hardly 2 lines. When the skin is distcnded either by food or during inspiration, the scales are separated from each other, snd the skin, which is of a different colour, becomes visible in the interstices, producing a curious reticulated appearance. Notwithstanding the poisonous mark was affixed by Linnæus to the only species of Dryinus known to him (Coluber mycterizans, Linn.), it is well ascertained that they aro all of them perfectly harmless; and it is asserted of that species that the children are in the habit of taming and playing with them, twining them round their neeks and arms, and that the snakes appear pleased at being thus caressed."

Dryinus (Merrem).-Upper jaw much lenger than the lowor. Rostrum very narrow, more or less acute at the apex, which in some species is distinctly mucronate and moveable. (Bell.)
Mr. Bell records six species, three of which are American, Carolina,

Mexico, and Liraxal ; and the other three Asiatic, two from the liast Iadien and oue from tho imand of Java.
D. anatia, Yelluwish gray, shiuing with pale gold colvur, dotted with whitia and black; rostrum mbobtusc. It is a native of Sexicu

Lusuphi (Bell).- Rostrum obtuso; upper jaw projecting, but very - lighty leygond the lower.

Mr. Hell reconfs three ejecies, three from the Fast Indies, nut one frous Anerica (Carolinn). To theac ITr. Gnay oubwequently added two
 collectes by the expedition nader Cajuain l'hillijs learker King, 1R.N. ("Surrey of Atuatralia")
 groca, gilidel; a bueral nud dorsal line of a paler lunc; bead obtuse. It is found in the lisut Iudiess ('Kool. Jourual,' vol. ii.)

I.EITTRHIISS. [LMTTOIHNA.]

 Imenging to tho family Cuculider. Eismaplo: Istuosomum afer; Cucnlus afor, ©imel.; Fitolian Cuckoo of shaw, noticed by the late
 mollochal in the (3angen Iectween (inleuthan menarea, mad in the Vindhyims Hillm letween the lmeter phaco nul Gurrils Mundela on tho Serbidia ("\%opl. I'roc.: 183031.) Lieutemant Colonel Syken rabo leweriher and noticen it in him intureating ("ataloguont occurring in the Ilukhun (Irecan), Jut an laing rarc. ('Voul. I'roc., 1832.)

1. FirTostusa. [Cvevasto.i.]
 altenatels on opywaito millem uf the raclion of I fluwer and in auperior rudinent. (ilumen 1 or 2 epponite to the rachia, cartilaginous, covering the fower. 1'alme ncarioun. Sitigman fenthery,
buincarralue linn a cyludrical nulvalate upike; 2 glumem equalling or nliphsly longer than the flowera; atom from 2 to 6 inchen long: Wrike long, curvel whes dry. In a variety of thin apecien, ho filiform io, the nguken arm much more ilender, filiform, ncarcely nt all curved. It growa in nandy malt-mamalica.

L,ElBisTA, A Gow of leptilen lelonging to the family Seinciar, entablinhed by Mr. Thell, atul than cbamcterined by him:-Ilend acutated; no eyelids; enrm hidden uuder the akiu. Dody slender;
the wenles nuootli and equal. Feet four ; tho nuterior little, very short, and didactylous; the posterior longer, and tridactylous. Vent simple, memicircular; no premnal or femoral porea.
L. lincala is bronze-green, paler beneath, with two dorsal and two lateral black lines. It in a ostive of Australia.

Mr. Bell obacrves that this new genus agrees with Gymnophthalmus, Morr., and Ablephariu, Fitzing., in the sbsence of eyelids, but diffors from both in the number of its toes lu addition to this difference in the structure of the feet, it is, he adds, remarkably distinguished by the want of external ears, and by its elongated and anguiform body; characters in which it agrees with Saiphos, Gray. The lastnamed genus, he remnrks, howeser, possesses eyelids, nad differs also in the number of its toes from Lerista. ('Zool. Proc.,' 1833.)

LERNEA. [LERNEAD.E]
LERNEADF, the sccond order of the legion Paciloneda amongst the Entomostracous Crusfacea. [Entomostraca.]

This order is chamcterised by Dr. Baird in his 'History of British Entomostraca' as follows :-Month suctorial ; thorax not artioulated ; feet and other organs bolonging to thoracic negment nearly rudimentary ; no eyes; body very outre in appearance.
The existence of the Lernece seems to have been known to the ancients. Aristotle informs us, in his 'Historia Animalium,' that the tunuy and sword-fish are tormented by a sort of worm which fastens itself under the fin, snd causes such irritation to the animal that it often leaps out of the water nud falls on board of ships. Pliny repeats the assertion almost in the words of Aristotle. Oppianus, in his poem 'Alieuticon,' describes the sufferings of tho poer tunny and sword-fish in moving language, and asserts that the fish are frequently killed by their pigmy assailants. Athenrens repeats what his predecessors had written before him ; and Salvisnus, in his 'Aquatilium Animslium Historia,' 1554, quotes at length the passagss bearing upou the subjoct from Aristotle, lliny, Oppisuue, and Athenmus. Rondeletius, in his 'Libri de Piscibua Marinis,' 1554, repeats for the sixth time Aristotlo's nud Pliny's accounts of this parasite of the tungy and sword-fish; and to prove his personal knowledge of the little animal in question givea a figure of a tunny, with the parasite attached, ucar the pectoral fin. Ile says it adheres so tenaciously, that it cannot be shaken off by any agitation of the body of its host.

Conrad Gesuer, in his 'Historia Animalium - De Aquatilibus,' 1558 , enters largely into the history of this parasite.
loocone, a Sicilian gentleman, in his 'Recherches et Observations Naturelles,' published at Amsterdam in 1674, informs us, that at Messina his attention was called by M. Scilla, n famous painter and natiquary of that town, to the fact that the Xiphias, or Sword-Fish, was Well known to the fishermen on the coast to be tormented by a parasite which they called Sanguisuca. The only information he received was that the motion of the creature was like that of a gimlet in plunging itself into the flesh of the fish. He succeeded however in obtaining a specimen, which he describes and figures. They bury, hesags, their whole hend or trunk in the flesh of the eword-fish. They are not generally confined to one part of the body, but always on such plsces as that the fin of the rnimal cannot reach them. Boccone refers this species to the Oisiros, or Asiltes marinus of Gesner, \&c.

In 1746 Linmeua, in his 'Fanna Succica, first edition, describod a parasitic animal found upon the Cyprinus Carassius, "whoso blood it sucks" He entablished from this species the genus Lernca. In his 'Iter Wast Gotha,' 1747, ho notices another species found on the gilla of n species of Gadus; and in his sccond edition of the 'Fauna Suecica,' 1761, hendds n third, as inhabiting the gills of the salmon, which had been figured and described by Gisler, in the 'Act. Holmens.' (Kongl. Vetensk. ITandling.) for 1751, under the mane of Pediculus Salmonis. In tho 'Syat. Nat.,' 12 th edition, 1766 , he rdds a fourth epecies to the list, nud up to that tine these four constituted all that Linneus almitted into the genus Lernen-a genus which, since his time, notwithranding tho difficulties attending its invcatigntion, has increased n hundredfold, and nuw constitutea a large family. So bizarre in appenranco are these Lernecr, that limueus had no idea that they belonged to the Crustacea; on the contrary, he places them amongst the worms.
"Of all the curious crentures which the naturalist mocts with in his resenrehes," mya Dr. Johnston, "there are nono nome phadoxical than the Jernce; none which nre more at varisnce with our notions of nnimal conformation, rud which exhibit less of that decent proportion between a budy and its members which constitutes what wo choone to enll हymmetry or beauty." It is no wonder then that, with the meanty knowledge le had of their linbits nad history, Linneus hlould have conadered their proper place in the system of nature to bo amougst his Mollusca; animals bclonging to his class Jermes, and characterined by him, from the softness of their body nud the vant of n mhell.
In 1517 (Cuvier allopted the view taken by loose, ond in his 'Regne Animal ' flaced the lecrnece among the intestinal worms.
There is nothing very instructive in this detail of the difficulties felt by mytematic writera in knowing or determining where these curious nud at first aight bizarre-looking animala should be placed. Little was known of their lisbits, manners, or mode of propagation, and though their ncar relntiong with the Caligi had been observed by nevern authors, they had not eaught to resolve the queation by
deeper anatomical researches or investigations into their mode of life and habits. Their true position however was soon about to be aseertained. Soon after Cuvier had published the first edition of his celebrated work, the 'Règne Animal,' a French physician at Havre, M. Surriray, made the important discovery that the ova were contained in the long filaments suspended from the abdomen, and that the young when born bore no resemblance to their pareut, but on the contrary were extremely eimilar to the young of the Cyclops. De Blainville recorded the fact in the 'Journal de Physique,' 1822, in bis excellent article ' Lernea,' and fully admitted the truth of Surriray's statement. In this srticle he remarks the near approach of his last genus among the Lerneader to the last of the Caligider, and traced the almost insensible gradations by which we are carried from that genus to the Caligus itself, thence to Argulue, and through it to the Apus and other Branchiopods. He still retained them however amougst the Epizoa; and Desmarest, in his 'Cons. Gév. sur la Classe des Crust.,' 1825, appears to hsve been the first to distinctly refer them, as a group, to the elass Crustacca.
In 1826 Messrs. Audouin and Milne-Edwards discovered a parasite upon the Astacus, or lobster, the Nicothoe; and in the course of their observations upon the history of this curious Siphonostome they came to the conclusion, reasouing from analogy, that the Lernere were real Crustaces that "became monstrous after they had fixed themselves" upon the auimal which was to serve them with nourishment.
Kroyer informs us that several German zoologists, as Nitsch, Leuckart, and Schwegger, had advanced similar opinions, theugh it would appear, from his leferenees to their observations, upou very insufficient grounds. Zoologists however were gradually coming to the conclusion that thesc fantastically formed creatures were in reality crustaceous. But it is to Alexander Vou Nordmana, an eminent Prussian naturalist, that we are indebted for a complete and satisfactory solution of our doubts upon the subject. In his work, ' Mikrographische Beitrage zur Naturgeschichte der Wirbellosen Thiere, Berlin, 1832, he has confirmed the observations of Surriray upon the young when first hatched from the ova, shown the dissinilarity which exista between the male and female, and thrown mueh light upon the anatomy of this interesting group of animals, especially with regard to the structure of their mouth and feet. Since the publication of his exeellent work his observations have received still further confirmation, additions, and corrections by three zoologists of considerable reputation-the well-known entomologist Burmeister; an Austrian naturalist, Vincenz Kollar; and the acute observer Rathke.
The form of the animals belonging to the Lerneades is cery variable. " Respecting this," aays Kroyer, "it is not easy to say anything general. The remark only forces itself upon every observer, that the exterior of these animals is often so highly fantastieal, that we are disposed to admire the freaks of nature in brioging forth sueh forms. But it is evident, that when continued observations and investigations have put us in possession of the condition of these forms, we shall see here, as everywhere else, that singularity resolves itself into regularity:"
For the most part the skin, or external envelope, is soft and flexible, but there are many species in which it is somewhat of a cartilagiuous consistence. Nordmann has discovered that it cousists of a threefold structure ; an external layer, tolerably firm and elastic ; next, a very loose and soft eellular tissue; and finally, a third layer, composed of a number of muscular fibres crossing each other in leagth and breadth, and having in consequeves a retieulated appearance.
We ean generally trace, more or less distiuctly, a divisiou of the body into two parts; the first of which, the smaller of the two, forms the head, and the other the thorax. This latter is generally of considerable size, whilst the sbdomen, in almost all the species, has becoms very nearly rudimentary. Attached to the head, in the greater number of the Lerneade, we fiud one pair of antenne, and two pairs of footjaws, by means of which they attach thenselves to their prey. In a few ws find no antenne, and only one pair of foot-jaws. We find no appearauce of eyes. The organs corresponding to the thoracic feet of the Siphonostoma are variable in form, but in general are almost rudimentary, sometimes indeed altogether wantiug. It is this very rudimentary state of the ergans of motion and other appendages that forms the principal mark of distinction between the Lerneader and the Siphonostoma. The mouth, according to Kroyer, has generally the ahape of a blunt spherical snout, plaeed on the most advanced portion of the head, and terminating in a roundish opening, though in some of the genera it is in the form of a slight elevation merely, and is placed at a considerable distance from the anterior part of the head.
The manuer in which these animals fasten themselves to the fishes upon which they live rarics much. In some it is by means of the foot-jaws alone, which in these species are strong and of a hooked form. In others it is by means of two long appendages springing from the upper part of the thorax, one on each side, and uniting at the tip, formiug at their junction a sort of round button. In a third set, again, the organs of attachment are a series of horns or appendages proceeding from the side of the head.

The females are generally furnished with large external ovaries, containing numerous ova. The intestinal canal is very distinct, extonding through the whole body. It is cyliodrical, and wideus towarda the middle of its length into a stomach. The motion in
movements to both sides, occurring to the number of from about 60 to 65 in the ninute ; besides a sort of peristaltic motion, or an alternate contracting and lengthening itself upwards and downwards.
Nordmann has described what he considers may be the liver and brain, and has pointed out the heart. This latter organ eontracts and expands regularly, but no blood-vessels are to be seen, the blood flowing freely about in the hollow of the body and arms. The blood is a clear watery-like fluid, composed of three kinds of globules, differing in form and dimensions. The internal ovaries lie on each side of the intestinal canal, and open by means of a canalis deferens on each side of the inferior portion of the thorax, where the exterual ovaries take their origin.
In general it is only the adult female of the Lerneadec that we are in the habit of observing, and in an animal whose organs of motion and perception for the most part ars merely rudimentary, and whose existence is strictly stationary, the manner of hife must be very simple. Immoveably fixed upon the fish which serves it for food, its existence depending upon the life of its, host, it requires neither feet to transport it from place to place, nor eyes to guide it in its search for fresh abodes. In fact, the whole of its active existence consists in the two operations of taking food, and prepagating its speeies. We find them in all instances mere or less deeply fixed in the tissue of the parts upon which they have taken up their babitation, and often so deeply lodged, that little else but the oviferous tubes are visible exterally. There they remain, living at the expense of their host, these that inhabit the branchix or are deeply fixed in the soft tissue of the bodies, drinking up the blood; and the others which are fixed less deeply, and take up their abode under the fius and such places, sucking the slimy juices of the skin. As they are never seen to change their place of resideuce, the question naturally occurs-how did they come there originally? Having no feet to propal them through the water, and no eyes to guide them, even if they possessed the faculty of transporting themselves from one place to auother, how is it that we thus find them fixed upon these fishes, mature and possessing ova? Blainville answers this question by saying, " 1 t is difficult to coneeive how these animals, which spring from eggs, are fixed upon fishes without admitting that in their young age they possess a little motion." M. Surriray had at that time demonstrated to Blainville the existence of the joung when just hatched; but less importance was attached to this discovery than it deserved; and it was not till Nordmann corrobarated the fact, and followed it up by his more patient researches, that we were enabled to answer the question fully.
The circumstance that the Lerneade soon die after being takeu from the fish that has served them for nonrishment and a habitation, certainly throws great difficulty in our way of observing the developinent of the young; but we now know that when hatched, and for' some time afterwards, the young lefnealce are nimble and active, and possess both the organs of motion and the faculty of using them. When they first come out of the egg they are of an oral shape, and very much resemble the young of the Cyclopide. They possess a large eye, situated in the centre of the auterior and upper part of the body, and are provided with two large pairs of swimmiug-feet, and a pair of jointed antenna. As in the Cyclopidee, these young Lcrnecede east their skin repeatedly before they arrive at maturity. After the first moulting the body is seen plainly divided into two parts, the anterior of which is furnished with three pairs of hooked feet, and the posterior with two pairs of swimming-feet. No doubt there aro a good many stages of development to go through before they assume the mature form, but it has not yet been possible to follow them out. It is not the least curious part of this history of these singularlooking animals that the young shonld thus stand on a higher stage of development than the mother; and that their progress from youth to maturity should be in the directly opposite ratio to that of all tho other Crustacee. At what period of their existence they fasten themselves upon their prey is at present unknown; but no sooner apparently does this happen than the eye disappears, and the feet either disappear also, or are transformed into other organs. In some they are changed into foot-jaws, by means of which they fix themselves upon the body of the fish they select for their habitation. In others they are trausformed into long and strong prolongations like arms, whieh uuite together either at the tips only, or from the roots all the way up to the point, where they send forth a short horny stem, that widens into the shape of a round button, and which, when buried in the skin or flest of the fish, forms sueh a strong attachment, that the Lerneade cannot be detzehed without beitg torn, or by being earefully dissected out. Most probably the species in whieh this development takes place first farten themselves to their foster-mother by the foot-jaws, as the first-mentioned set do, and after being buried in the flesh, these organs assume this peculiar formation, otherwiss it is difficult to conceive bow such an instrument could peuetrate deeply into the body of the fish. A third mode of transformation of the fegt appears to be into a series of horny branchlets developed ronud the mouth, and which, when they have penetrated deeply into the soft parts of their host, serve effectually to retain the parasite in its place. The adult Lerneache show, with the exception of taking food and haying eggs, very few and feeble sigus of lifs, whether attached to the nourishing animal or when separated from it. Many of the genera show no external signs of life at all after scparation from their foster-mother;
othere nove their jown for an mort poriol, or their hand may be meen whave lessurely in different direction for a little timo and then
 a mingular phenomenon that noboly else hail before noticel. When he louclied an indivilual, it muirtal, he maya, "from the vent a tramaneut etrean of thill to the diatance of a foot and a half, and thia it rejeated sereral times one after another."

That part of the hiatory of the larnedede which in connected with their aexial relations and propagation is atill involved in wuch ohecurity ; but the eletada wo havo received from Nommann and Kroyer with regand to the malioa are no leas singular than many of the other curious parts of the history of theso naimals. Hy some of the earlice wherrern it was aupposel that those individunla which had not ovifcrona tubes wero malca, while others inagined that they were hermaphroliten Nuither of the opimionn however will atand the test of idnary. Tho ovaries of the female, nfter tho eges have attained naturity, bumt and diwapear, and thua, as Kroyer observes, "the Lemer which toalay was conaidered a fetanle to-morrow might be mandol as a malc." In the course of iovestigating different specjes of Lerncadit Nonimnun dimovered, in several instancen, small bodios melherigg to the generstive organs of the femalea, which on closer innpection prused to be animals that differed very much in appearance frotn the female, and, ou the contrary, bore considemble resemblance to the goung ones in the first atage of their development. These, he weliered, were the males, aud though Durmeiater has thrown great doubta as to the eatire accumey of Nordmann's observationa, his statementa a to the fact of these noimala being unales are borne out by Kruyer and others. It is probable, an Nordmann remaska, "that the malea and females are mixel together when they cone out of the egge, but that thuy develope themaelves differently at the last change of ekin." They contime to thow uniformity in regard to the form of the bead, and tho form and situation of tho parts connected with it, but they want the apparatus for attaching thenaclees which the femalea ponesa, laviog inetend two paira of atrong hooked feet. They differ conntantly in the form of the other parts of the body, and show a remarkatile diversity from the female with renpect to size, being very much sunaller. These male bear a atrong reacmbladee to each othor, even in different genera, in which the females are very unlike. This fact and the frectling, namely, the great dilference of size, have been cupidered by Burneiater as strong oljections to the truth of Nordmann's conclusions. It is true many experiments and careful anatotnical inventigations are still wanting to establish concluaively the facta mastated by Nondmana, but atill the observations made by him uph ode or two genern leave little room to doubt the truth of the opiniom, as regand theac individuals at least. Kroyer considera that the Ierneadre are at a very carly age capable of breeding, though it in not yet known at what stage of development exactly they become *. Certaid it is we ree, in mall apecimens of somo of these nnimats, small orarien atol a fow cega contained in them, whilst as the fomalea facrease in aize the orarice becons larger and the cgge moro numerous. Durmeinter affirma that the Lerneader only propagato once, and tho ovary continuea to increase in aize, and the eggato increase in number, till they become mature, and that then the parent Jerned has played her jart Knoger doubts this; and the oppoaito opinion holds beiter with the analogs of the other Eintomostracous Crustacea. But upon this poitut direct experiments are wanting.
3. Milne-Filwardn Jivides tho Lerneader into three familiex, characteriacd by the manner in which theac parasiten attach themselvea to their prey. Some fix themmelve by means of great brachiform appendagea. unital together wwardn the end, and terminated by a horny medran imutam. Vthern allacre by their jaw-feet, which are armed with very nimong hookn. Dehern again attach themaclven by the whole head, which in furminime for this purponos with horny prolongationa of rarione furmat "The firat eorreapond to the Lerncopoda of M. do Whanville, mal are draignated an lermolmedian ; tho eecomel have tho gente ehondrarnnthus for their type, and form M. Milne-Edward'a farmily thondracanthiann: and tho thinl ho sienominates Lerncoceriaus, becatum the grnan Irmoocera belong4 to that family, and the name recalla non of their principal claractern. Wiah regaril to the eatablinh. ment of generic slivimiona, and the charactern of givecica, ho can only, he otwrex, refer, in the greater number of instancen, to the mode of anganimation in the femalen; for the malen are nearly entirely unknown in him, and, In hiln deacrijtionm, the fernalcs are designated, unless the contrary in mucifled.

(7ondmanthiame.

Tho fornale Cliomiracanthiats fix themelvea umon their prey by the aill of mail anclondikn jaw.feet insertad at the naterior exeremity of
 for the ame uec. and lave the torm of ordinarily two-oared feet of extmme amalluman, or tlealay loben, freo ot their extremity, and not prohenaile. The heal in in genemal tolernbly dintinct from the thoma. and mearls al waye carriea a jair of nuternene and two paire of unciform and anchar-jikn jaw fret On tho milum of the month may le onlinarily perceivel a rair uf appernlagen, which reprement the meconl pair of jaw feet, and which are mometimen anchor like, nimilar to the othera, bot are offen rudimentarg. Tho month in sometimen nituated very far behind the anterior jaw foct, and is armed with mall nplendagen
repreanting the mandibles. Tho number and disposition of tho appeulages corresponding to the thoracic feet vary; sometimes two pairs only are to be countel, sometimes three, and oven four. The oviforous tubes apring from the posterior edge of the body, so that the ablomen is rudimentary, and is only represented by one or two sunall median tubercles. The male is often found attached under the auns of the female: he in extremely amall, and does not resemblo her in the least, but differm little from the males of the succeeding family. (Milne-Edwards.)

Gener, Selius, Bthon, Clarella, Cycuus, Tucca, Poniculus, Lernanthrapks, Chondracanthus.

Sclins cousists of bot one species (S. bilohus), found on the branchiso of the dotted Polynioe; nor does E Ehon comprise more, consisting only of A. quedratus, found on a Serranus, nod nbout a lino in length. Clatella has two species-C. Hippoglossi, found on tho Holibut, and C. Scari. (yensus has only one species (C. gracilis), feund on the branchise of a cod fiah; and this is the cnee with Tucce, which has only one (T. impressus), found on Diodon Hystrix. Peniculus bas but one (P. Fistula), found on Zrus A per: Leman(hroptus cousists of two species, separated by M. Milne-Edwards into two sections-L. pupa, found on a Brazilinu Platax, nnd L. paradoxuc, found on the Mullets. M. Milne-Edwards remarka that 1. Musca (Do Blainville), found on a Diodon from Manilla, belongs to his first section.

Chondracanthus is separated by M. Milac-Edwards into two sections, with sub-divisions, and contains seven apecies:-C. comutus, found on several flat-fish (P leuronectes); C. crassicornix, found on a wrasse; C. Solea, found on soles; C. Trigle, found on gurnards; C. Meriucci (from which the C. Xiphia of Cuvier dees not appesr to M. MilneEdwards to differ, and to which he thinks Lernea radiata of Müller, found in the buccal cavity of Coryphatace rupestris, appears to bo very close); C. Zci; and C. Delarochiana, the last found upou the Tungy.

Chondracanthus cornutus.
a, femalc, magniffed after Nordmann; b, male seen in profle, and more highly magnified; e, the same seen from below; d, heat of the female seen from below; r, mouth atill more highly magnificd.

Lerucopodinus.

In tho femnles of this group tho head is formed nearly as in tho Chondracanthians, that in to say, distiuct from the thorax, furnished with a pair of notenne, nud armed with two pairs of nachor-like jawfeet; but the anterior jaw-feet are less proper for sorving theno small Crustaceans for attaching themselves to their prey, and tho thorax, which carries neither feet nor fleshy appendages similar to those which represent tho two first pairs of thoracic members in the preceding diviaion, give origin to a pair of very large brachiform prolougations, which unite together, fometimes at their baso, somotimes towarda their extremity only, nul terminate by a borny button, by the aid of which the parasite strongly adheres to the animal on which It has eatablished its dwelling. These orgnas of adbesion appear to replace tho first pair of thoracic limbs.

The male of only a amall number of Lcrneopodians is known, and where known differs extremely from tho female. Ho has the body divided into two very distinct parts ; one anterior, tho cephalic, which carries the nateone, r pair of naterior unciform jnw-feet, tho sucker, and, farther back, two pairs of well-leveloped appealages, which represont the posterior jaw-feet nud the arms of the fomalc, but which hare the form of atout liands carried on a cylindrical peduncle, and terminated by a sinall ill-formel pincer. The young undorgo the orilinary metanorphoses (Milno-Edwards.)

There are aix genera:-Busanistes, Achthercs, Brachiclla, Tracheliastes, Lerncopoda, and Anchorella.

Jinsaniblea comprises two apecice:-D. Ifuchonis, found on tho gillcover of the Ilnches (Salmo Jucho), and B. salmonet, found on tho Gmyling. M. Milno-Lidwarls states that Lerneopoda Brongniartio (De llaninville) belongs to thia genus.

Achihere conaints of but one npeclen (A. Percaram), found on the fins of the river Perch and of the Sandra. Longth about two lides.

Brachiclla comprises five specice, distributed into two sections, with sulwlivisions :-B. Thynni (length about ten lines, of male about half A line), found on the gilln of the Tunny; B. impudice (length about four tinep, of male about a third of n line), found on the gills of the

Haddock (Gadus EElefinus) ; B. bispinosa (about three lines in length male unknown), found on the gills of the Sapphirine Gurnard (Trigla Hirundo); B. rostrata, closely approaching the preceding, found in the Greenland Seas upon Pleuronectes pinguis; and B. Lophii, found on the gills of the Sea-Devil; Tead-Fish, or Frog-Fish, at Naples.

Tracheliastes has three species, divided into two sections:-T. polycolpus, found on the fins of the Chub; T. maculatus, found on the scales of the Bream; and T. Stellifer, found on the branchial arches or within the mouth of Silurus Glanis.

Tracheliastes polycolpus. Mitnc-Edwards.
a, femste magaified and seen from above; b, the same seen on the side, and deprived of the oviferoas bags; c, anterlor extremity of the body more highly magnified; d, appendage representing the second pair of jaw-fcet; e, mandible; f, larva of the same; g, second age of the larra.

Lerneopoda consists also of five species, divided into two sections:L. stellata, found on the fins of a Sterlet in Norway; L. clongata (about two inches in length), found fixed to the eye of a Shark in the Polar Seas; L. Carpionis, nearly spproaching the preceding, found on the Salmon in the nerth of Europe; L. Galei (length about three lines, male about the same size), found on the fins of a Tope Shark (Milandre); and L. obesa (about two lines in length), found upon Squalus Acanthias, the Picked-Dog, or Hound-Fish.
M. Milne-Edwards thinks that L. Dalmanni, found on Raia Batis, the Skate; I. bicaudata (about tro lines long), found on the Red Gnrnard; and L. salmonea, belong to this genus. The last species does not seem to M. Milne-Edwards to be determinable specifically, and he makes the same remark on the Lernaca found by Hermann on the Dace.

Of Anchorella five species are recorded, distributed into two sec-tions:-A. emarginata (about six lines long), found upon the gills of the Wolf-Fish (Anarrlicas Lupus); A. brevicollis (about four lines long), found fixed on the anal fin of the Variable Cod-Fish (Gatlus callarias) ; A. ovalis (about two lines long), found upon the Red Gurnard; A. rugosa (sbout three lines long), found on the Wolf-Fish; and A. uncinata, found on the gills of divers Gardi.
M. Milne-Edwards is of opinion that Lerneomyzon pyriformis and L. pinnarum (De Blainville) belong to this genus, as well as Leince adunca of Strom and $L_{\text {. anomala of Abdilgaard. }}^{\text {a }}$.

Lerneocerians.

The female Lerncocerians, like the Chondracanthians, fix themselves to their prey by the anterior extremity of their body only, and have no brachiform thoracic appendages serving for this purpose, as may be seen in the Lorneepodians; but the srming of their mouth is far from having the form which this apparatus offers among the Chondracanthians, and the whole head of the parasite is plunged in the tiasue of the animal on which it establishes its dwelling, and is there retained by horny prolongations, of varied form, which spring from its posterior or occipital part. In general the head is not very distinct from the thorax, and scems to he completely deprived of antenne; the mouth is simed with but one pair of jaw-feet, which are simple and unciform. The feet, when they exist, are of extreme smallness, and sometimes no trace of them is to be perccived. The portion of the trunk which is situsted behind the point where the oviferous tubes take their origin, and which reprosents the abdomen, is, in general, much more developed than in the othcr females of the same order.

The male of the Lerncocerians is unknown, except in very few species; and, where known, seems as imperfect as that of the Chon-
dracanthisas: his body is globular, offers no distinct thorsx, and does not carry rudiments of feet behind the appendages which represent the jaw-feet. The metamorphoses which the young uudergo are analogous to those of the other Lerncocerians. (Milne-Edwards.)

Genera,-Penella, Lerneonema, Lerneocera, Lerncea. -
P enella consists of four species, divided into two sections :-P. sagitta (about four inches long), found on Lophius marmoratus; P. filosa, and P. Blainvillii, the last found on the Flying-Fish (Exoccetus volitans) ; and P. Sultana (about an inch long), found in the mouth of Cavenx Ascensionis.

Lerneonema, also divided into two sections, comprises three spacies:-L. Lesuerii (about two inches long), found in the American Seas upon the Flying-Fish; L. monilaris (about an inch long), found fixed to the selerotic coats of the eye of the Sprat (Clupea Sprattus) ; and L. abdeminalis (about twenty lines long).
M. Milue-Edwards states that Lerneocera Surriraiis (De Blainville) belongs to this group, and that it much resembles the preceding species, but is distinguished by the brevity of the abdominal portion of the body; and he is of opinion that the genus Sphyrion of Cuvier is too imperfectly known to enable him to determine its natural affinities, though it appears probable to M. Milne-Edwards that its place is between Penella and Lernea.

Lerneocera comprises four species, divided into two sections and sub-divisions:-L. cyprinacea (about eight lines long), found in Sweden on Cyprinus Carassus; L. esocina, L. cruciata, found in Lake Erie, on Cichláa anea (Lesucur); and L. radiata, found on Clupea Tyrannus, United States of America.
M. Milne-Edwards thinks that Lerncea ocularis of Cuvier belongs to the second section of the genus Lerneocera. It is found fixed to the eye of Herrings.

Lernea consists of two species, eacb placed in a separate section :-L. branchialis, found on the gills of several species of Gadi, in the North Sea; and L. multicornis.
M. Milne-Edwards states that L. cycloptevina is distinguishod from L. branchialis by certain tubercles abcut the bead and neck. He remarks that M. Kroyer has represented it without horns, but he thinks that arose from the mutilation of the animal observed by M. Kroycr. This parasite is found in the Greenland Seas on Cyclopterus spinosus.
-The subjoined cut, from Sowerby's 'Miscellany,' shows the external appearance of a sprat infested by these Lerneans. Mr. Sowerby namos the parasite Lernca Spratte (Lerncea Spratti). These crustaceans are stated to bo luminous at night; and the fishermen say that the shoal is often headed by fish so infested, which they call Lanthorn Sprats.

Lerneans in situ on a Sprat.
The following is Dr. Baird's arrangement of the British specics of this family :-

> Tribe I.-Anchorastomacea.

Females.-Attached to their prey by means of their foot-jaws, which are stout and armed with strong hooks. One pair of antenux; generally very distinct. Theracic feet nearly rudimentary, or represented by appendages of considerable size, but differing in form from ordinary feet.

Males.-Free and unattached; very small, aucl differing totally in appcarance from the females.

Family Chondracanthidee.
Organs representing thoracic feet, in form of considerable-sized, cartilaginous-looking, not articulated appendages; generally three pairs in number. Three pairs of foot-jaws.

Genus 1.-Chonelracanthus.

Two pairs of foot-jaws prehensile, the third nearly rudimentary. Appendages of thorax representing the feet, in form of digitated, but not articulated, and not setiferous lobes or tubercles. Oviferous tubes very short, broad, and flattened.
C. Zei llody ohort, and rather thick. Head rounded; antenne ahort, and rather broad ; neck marrow, short. Thernx carrying on the under aurface two pairs of small appendages, each consisting of three divislon or fingern, and furnimed laterally with three pairs of longer prolocgationa, of many division, the terminal one on each side larger than the others, ant embracing the oviferoun sacs; the upper part of the thoras in cosered with short, conical, sharp-pointed spines Alalomen radimentary. Oviferoua sads flateneal, containing many manall ora

It in found wlbering to the gills of the Zeus foler.

Gearar 2.- Lernentomo.

Foot-jsw and thoracic nppendages as in Chondracanthus. Oviferous tubes long, either club-shayed and stout or alender and twisting.

1. I. cornuta. Female:-Head oral, rather clongnted; nntennie flatemeal, of conxiderable aize, and projecting. Thorax elongated, club-alaped; anterior portion parrow for about n thind of ita leagth, the cther twu thint much broader, nad terminating posteriorly in two aharp lateral tubercles of moderate length, and a middle one representing the abdomen, which is nearly quite rudimentary. Two pairs only of thoracic appendages are visible, occurring at the upper portion of the narrow part, each divided into two digitations, and situnted at n whort diatance from cheh other. The oriferous ases are of considemble size, cylindrical, and about two-thirds the length of the body. length uearly 3 linea.

Male:-Smewhat pyriform in shape. Ilead very large, awollen. Thorax conical, divided into five argments, and terminated by a rudiIncutary ablomen nemel with two small hooks. Antenne slender, sotaceon, projecting from the anterior extremity of the head, and undernenth them n pair of hook-hhnped foot-jnws. Mouth rituated far lack, and prorided with mandiblen; and bohind the mouth two cther pairn of foot-jawn are viaible. Following these we observe two
 of a line.

It in found on the branchise of a sole.
2. L. arellina. Female:-Dedy bomewhat square-bhaped. Head mall, and situated at the end of a long and slender noek; it is rounded at the anterior extremity, mal a little below the natenna exhibite on each side a romul lobe or tubercle. The antenne and foot-jaws are very amall. The neek nearly cqunls in length the rest of the body. The thorax is brond, nod of a somewhat quairsugular whape, with a deep indentation on each side about the middle of its length. On the upper half we see two pairs of prolongations or aymendagen, cact divided into three digitations; and on the lower half there are thme smaller nppendages, but simple, not digitated. The ponterior anglon of the thoras are prolonged also into short harma or appentagen, which are alan aituple. The abdomen is in furm of a abot suberele, with a rounted blunt point. The oviferons aces are of about the length of the whole ruimal, of considerable size, and cylisidrical.

The male in Eimiler, acoorjing to Milne-lidwards, to that of Chomdrocanthes (Iernentoma) cornutus.

It in found attached to the braschise of the Trigla.
3. L. Iophii. Female:- Body rnther eloggate, and somewhat gibloun Ilead amall, having oo each nide a amnll horn-ahaped anpendage dirceted a littlo obliquely backwardn. Antemme smanll, conical, and mlighely curved. Thurux divided into four prortions by as many contractionf. The firat uarrow like a nock, baving on the upper portion a mort apine, and on the under aurface n prir of nppendages or prolongation of two divinions or digitationa; the second is somewhat pantrilateral, with ohe the midille line of tho back two conical tulerelensud on the sides two whera, the upper pair the longer, aml baviog on the umier murface a phir of appendagen of twe digitations; the third part in lenger than the preceding, and han the anme tuberelen and prolungation, End in addition a amall apine on the muperior portion. and in the meainl lise of the under surface; the fourth portion is rather the langest, with iwo horma or tubercles on the upper marface, n third on the napelim line of the under surface, and on cach niden long terminal prolongation, rather blunt Alelomen in foma of a whort tubencle in the centre of the ponterior part of the thorax. Orifrroun tuben very long, alender, and twiatel. Length, 6f linew: hrandth, of line.

The male in rery mimilar to that of the Chomlrarenthue cornufus alranls ilacribed.

It in found on the laphiss piscatorims, in the prowches.

Trite II.- dnchoramryacea.

Attached to their prey lig meanm of two long appendagen which erion from the thoras. They unite toge ther cither at the bam or nenr the tip anly, and terminnte there in a rounded knob like n lutton, by meana of which the animal maintaiun lta hold of the part to which it has nttachel itrelf. No thoracle fect, or they nre repreaented by thene arm-shaped nppendagea

Malea in general differ very much in appearance from the femslen, leing greatly amaller and unattached.

Family I.-Lerneopodada.

Arm-shaped appendages long, wide apart from each other at their hase, and united only at the tip.

Genus Jernzopeda.

Fomale.-Body genorally elongated, oval. IIead short and thick. Two pairs of foot-jaws, well-developed, and placed near each other. Exterual ovaries of moderate length and cylindrical.
Male.-Body divided into two nearly equal portions of an oroid shape; one representing the lead, the other the thorax. Much smaller thin the female.

1. L. clongata. The head is very distinct, of a horny texture, orate, depressed, broad at the base, and obtusely pointed in front, resembling very much the shape of the hody of the common SpiderCrab. The accond pair of foot-jawa is large and well developed, consisting of a large rounded oval brasal joint, and a more sleuder curred hooked terminal one, with a pretty atrong tooth on its inner edge. The head is united to the body by n short narrow neek; the thorax is long aad narrow, of a nomewhat club-ahaped form, and gives origin to two long cylindrical arma, which conaiderably exceed the leaglh of the body. At the posterior portion, which is somewhat truncate, we see tro amall lobea; and on each side of these apring the ovaries, which are about tho length of the entire body, thick, straight, and cylindrical.
Longth of wholo animal nearly 3 inches. Head, one line and threequarters. Body, 71 lines. Arma, one inch and one line. Oraries, one inch and one line and a half.
A specimen of this arctic apecies whs fonnd attached to the eje of a shark caught on the English coast, and brought to London in the winter of 1848 .
2. L. galei. Female:-The head is oral, depreased, and of a hard horny substance; the thorax is long, rather slender, and somewhat cylindrical, narrow where it is attached to the head, and broadest at its posterior extremity. The arma are slender, and nearly the length of the thorax. At the posterior extremity of the body are two amall lobes, between which, on the middle line, is a amall tuberele representing the abdomen. Orarian tubes of moderate length, not quite equal to the length of the thorax.
Length of the whole hody, including arms, about three-fourths of an inch.
Male:-Body divided into two portiona, of an oroid form, and nearly of equai size; the upper half represents the bead, and carries n pair of antenne, nad two pairs of foot-jaws of considerable magnitude; the lower half, representing the thorax, has at its posterior extremity two sub-globular nppendages a little longer than those in the female.

The female was found attached to the cavity posterior to the vent of the Squaluagaleus.
3. I. salmonea. Limmens's deacription of thio species, ns far as it goes, is very good :-"Body ovate; thorax obcordate; the two arms linear, npproximated." The head ia rather amall, aomewhat bulging out at the back part, broader there, and rather sharp-pointed at the anterior extremity. Frons the base of the head spring the two arme, which nro rounded, nud slightly shorter than the body. The thoma is lyriform nnd short, and nt its lower extremity we see two minuto cminences. The ovarian tubes are of considerable thickness, eylindrical, and about the same leng th as the whole animal.

The colour of the animnl is white. Length about half an inch.
It is found in the gills of the Salmon, in the Loudon markets.

Frmily II.-A nchomelladre.

Arm-shaped appendngen very shert, and uaited to each other from the base, su as to resemble a single organ.

Genue Anchorella.

Femnle:-Body in general short, nid somewhat swollen. Head suall, mad situated nt the extremity of a long neek, which is generally curved backwards. 'T'wo pairs of foot-jaws well developed, aud a Usird rudimentary. Antonne rudimentary. Ovarian tubes of moderate length, and cylindrical.

The male diffens in appearance very much from the female, and is very amall.

1. A. uncinata Female:- The body of the animal is thick, oblong, of a milk-white colour, smooth, and opaque. liead very nmall, aitunted at the extremity of a long aleuder neek, which has a wrinklod appearance, nud is nearly the length of the thorax. The armes apring from the upper portion of the thorax, and are menther ahort, terminnting in a ronnded knob or button. At the poaterior portion of the thorax there in on the middle line a small protuberance reprementing the abdomen. The ovarian tubes are cylindrical, atraight, smoeth, and about the length of the body. Length from 6 to 8 linea.

Male :-Body globular, terminated in front by a mall conical eminence, nt the extremity of which is the mouth, and having at its bare one pair of rudimentary appendages, and a pair of rudimentary foot-jaws. On the middle of the body, on the inferior surface, thero
are two pairs of large hooked claw-like members. Length, one-fourth of a live.
The female fixes itself to the fins and gill-covers of the Cod and Haddock, aod ia most probably the most common species of our aeas. (Johnston.)
2. A. rugosa. Body nearly of a square shape, a little emarginated on each side. Head small; neek alender, and nearly cylindrical. A rounded tubercle on the middle line represents the abdomen. Ovaries rather larger than the thorax, nearly cyliodrical, or slightly clubshaped. Leogth, about 3 lines.
Found in the mouth of the Gadus cellarius.

Tribe III.-Anchoraceracea.

Females:-Attached to their prey by the anterior extremity of their body only, thrusting the entire bead into the tissuea of the animal to which they adhere, and being retained there by means of a kind of horns, which are various in form, and spring from the posterior part of the head. No antenne. Only one pair of foot-jaws, which is simple and hooked. Feet either very small or often wanting altogatber.

Males:--Very small. Body glot lar, and more imperfect than in the preceding tribes, having no distinct thorax, and no rudimeats of fect bebind the appondages which represent the foot-jaws.

Family I.-Penellade.

Sevcral pairs of feet aituated on the under surface of the body near the bead, but very small and rudimentary.

Genus Lerneonema.

Body long, slender, narrowed anteriorly in the form of a neck, which is terminated by a swollen head furnished with two or three simple curved horn-bbaped appendages. Alsdominal portion of body of inconsiderable length, and simple. Oviferons tubes long and slender.

1. L. spratta, the Eye-Sucker. Body slender, considerably larger at the posterior extremity. Head of tolerable size, rounded, and prorided with two narrow rather hooked horns at its back part, directed backwards. The head is connected to the body by means of a long aod very slender cylindrical neck, which is furnished with about a dozen constrictions, which make thia part of the body appear as if it were beset with an equal number of rings or knobs.

A sbort distance beneath the head it is very narrow, gradually increasing in size as it joins the body. Abdominal portion small, blunt, and obliquely truncate. The ovarian tubes are very long and slender, about as lovg agaio as the whole body of the animal. Length of the body about an inch; ovaries one inch add a half.

It is found attached to the eyes of Sprats.
2. L. encrasicoli. Body cyliodrical, shorter than the preceding, and of about the same size at both extremities. The neck is long and slender, quite amooth, and destitute of the constrictions which mark 80 decidenly the preceding species. The neck is white, and the body is of a brown horny colour.

The abdomen is like that of the preceding, and the ovarian tubes are long and slender, at least twice the length of the body. Turton describes the ovaries as "clear white." Perhaps they may be so in the living animal, but in the specimena preserved in spirits they are of exactly the same colour as the body. In one specimen however one of the tubes is broken, and the ova have escaped, and io this the tube is white. Length of the body about half an inch; ovaries fully one inch.

It is found attached to the bodies of the Clupea encrasicolus and C. sprattus.

Family II.-Leincoccrade.

No vestiges of feet on under surface of body, nor any appendages representing them.

Genus 1.-Lerneocera.

Rody long and slender; head furviahed with horn-shaped appendages, which are simpla and symmetrical in form. Ovarian tubes straight, add of moderate length. Abdomen very small.
L. cyprinacea. Heal furnished with four horn-shaped appendages, which are somewhat long and alender. The two onter or posterior are bifureated; the anterior simple.

The thorax is very slender anteriorly, forming a long neek, but becomes much broader posteriorly, and when it terminates in the small aldomen appears obliquely truncate. The ovifarous tubes are cylindrical, and rather long. The length of the whole animal is abont 8 lines.

It is found on the sides of the Carp, Bream, and Roach, in many of our ponds and rivers, in great abundance.

Genus 2.-Lernea.

Body more or leas twisted, and outré in appearance. Head furnished with horn-shaped appendages, which are irregularly bravehed. Ovarian tubes twisted into rouod masses, and placed under the posterior portion of the body. Abdomen of considerable size.

NAT. HIAT. DIV. VOL IIL.

The genus Lernea is now restricted within very small limits. Established by Linnæus upon the L. branchialis, it is at the present day confined to that species and one or two others.
L. branchialis. Head rounded, and furnished with three hornshaped appendages, cach of which is divided at the tip into thres short branches.

The anterior portion of the thorax is long, cylindrical, and very slender, like a long narrow neck, while the body itself is very much swollen in the middle, and abruptly twisted upon itself in the form of the letter S.
The abdominal portion of the body is long, blunt at the extremity, and of considerable size. The ovarian tubes are slender, and rery much twisted.

The whole animal is about an inch and a balf in length, and is of a very firm consistence, being hard and horny.
It is found on the gills of tha Cod.
(Baird, History of British Entomostraca; Milne-Edwards, IIistoire Naturelle des Crustacés.)
LESTRIS. [LARID.E.]
LETTUCE. [Lactuca.]
LEUC ETHIOPES. [ALbinos.]
LEUCHTENBERGITE, a Mineral occurring in large but not perfectly developed crystals in the form of the rhomboid. Colour yellowish in masses, but in thin lamiare white. The texture lamellar. Lustre pearly. Tranaparent in small crystals. Hardoess between calc-spar and selenite; is impressed by the nail. Feels greasy. Specific gravity $2^{\circ} 71$. It is fonnd in the Schischminsk mines in the district of Slatonst. The following is its analysis by Komonen :-

LEUCI'SCUS, a genus of Fishes of the family Cyprinide, and section Abdominales. Thia genus, which was established by Klein, contains numerous speciea, of which the Roach, Dace, and Bleak afford familiar examples. The characters which distinguish them from others of the Cyprinidet, or Carp tribe, consist in the comparative shortaess of the dorsal aod anal fins, and the want of atrong apiny rays at the commencement of either, the simple lips, and deficiency of barbules about tha mouth. The varioua species of Leuciscus are divided into two sections, according to the position of the dorsal fin. Firstly, those in which this fin is situated immediately above the ventral, as in the Roach, Dace, \&c., and, aecondly, those species in which the dorsal fiu is placed above the space intervening between the ventrals and anal, as in the Chub, Rud, Bleak, \&c.
L. rutilus, Cuvier, the Roach, is common in most parts of Europe, swims in large shoals, and frequents rivers, lakes, \&c.; preferring somewhat atill and deep waters, feeding upon worms and aquatic vegetables. It usually attains from 12 to 15 inches in length. The length of tha head, compared with the whole leogth of the fish is as one to five; the depth, at the commencement of the dorsal fin, is to the body alone (without the head or tail) as two to five. The number of the fin-raya arc-dorsal, 12 ; pectoral, 17 ; veutral, 9 ; anal, 13 ; and caudal, 19. The scalea are large, aud the number forming the lateral line is 43 ; the number of scales in the oblique line is 11; the colour of the back and upper part of the head is bluish-green or dusky green, becoming lighter on the sides of the body, and shaded into silvery- vhite on the belly. The dorsal and caudal fins are dusky, tinged with red; the anal, pectoral, and ventral fiua arc bright-red; the iridea bright-yellow.
L. rulyaris, Cuvier, the Dace, is more slender and elongated than the Roach; the scales are proportionately amaller; the mouth is more deeply cleft, and the eye is not so large. The length of tho head compared with that of the head and body, not including the tail, is as two to nine; the depth of the body, compared to the whole length, is as ode to five. The number of scales composing the lateral line is 52 : there are eight scalea in the obliqua liue above it, nod below the lateral to the ventral fin there are four. The dorsal fin commences rather bchind the middle of the body, whereas in the Roach it is exactly half way between the nose and the base of the tail fiu. The colouring of the upper part of the head and back is dusky-blue, becoming paler on the sides of the body, and shaded into silvery-white on the belly. The dorsal and caudal fins are pale-brown ; the pectoral, ventral, and anal are almost whita, but tinted with palered. The fin-rays are--dorsal, 9 ; pectoral, 16; ventral, 9 ; anal, 10 ; and caudal 19. The habits of the Dace are very similar to those of the Roach. It is found in Italy, France, and Germany, as well as our own country, generally frequanting the deep clear water of quict streams.
" L. Dobula, Cuvier, the Dobule," saya Mr. Yarrell, " is found in the Oder, the Elbe, the Weecr, and the Rhine, as well asin the amaller strcams which rim into them." As yet however but ouc specimen has been found in this country, and was fortunately caught by the author of the 'History of British Fishes,' while fishiog, in the month of August, 1831, in the Thanes, below Woolwich. It is of a slender
forms, and the cales are of moderate size, 30 forming the lateral line, abovo which there arv it in an oblique line uader the dormal fin, and below the lateral line there are 4. The length of the hend, compareal with that of the head and boily alone, in as two to nine, and the depth of the bouly in ryual to the length of the hemi. The dorsal in courmences about half-way between the anterior edge of the age sud the bese of the tail-fin. The colouring in the same as in the Daec, exceptligg that the pectoral, rentral, and anal fius are pale orangered. In the number of the fin-rays it agrees with the Dace.
L. Lascadiriensis, Yarrill, the Graining. Pemant appeay to be the first author who noticed this fish, but its characters were never claarly defined until Mr. Yarrell'e account appeared in the "Transactiona of the Limniean Suciets,' vol xvii, p. 7, pl. 2, fig. 1. .M. Agassiz having examined the apecies when in Eagland, immediately recognised It as an inhabitant of aome of the lakes of Switzerland. In this country it appeara to bo chiefiy, if not wholly, confined to the Mersey and some atreame connected with that river, where it is met with in considerable abundnnce.
The alult Graining is from about 7 to 9 inches in length: the length of the head, compared to the whole length of the body and thil, is an one to six; and the depth of the body, compared to the whole length, as one to five; the nose is more rounded thau in the Dace, the oye in rather larger; the preoperculum is lees angular, the donal live is less convex, and the scales aro rather larger and wider. The doral funcommences exactly half-way between the point of the nose and the base of the Lail-fin. Thero are 48 scales in the l..teral line, those in the oblique line from the dorsal fin to the lateral live are 8 in number, and below this line to the ventral fins there are 4. The top of the head, the back, and upper part of the sides aro of a palcodrab colour tinged with bluishrel, separated from the lightercolourel inferior parts by a well-defined boundary-line. The irides are gellowinh-white; cheeks and gill-covers shining silvery-white, tiuged with yellow; all the fins pale yellowish-white. The fin-rays aredonsal, 9 ; pectoral, 17 ; ventral, 10 ; anal, 11 : and caudal, 19.
L. Idue, Cuvier, the Ide, a species which is found in Norway, Sweden. Denmark, Russia, and some other parts of Europe, is said to have been taken at the mouth of the Nith. Its form is notnewhat bulky, compared will the other speciea here described. "The head is large, and appeara somewhat truncated ; the muzzle blunt ; the mouth small, without heeth, as is the case also with the other species of this extensive family; the upper jaw rather the longer; the eye of moderate nize: the doral line convex; abdominal line almost straight; the scalen of the body large; the lateral line curred in its descent from the upper edge of the opercalum to the centre of the body. The finmya in number neo-dorsal, 10 ; pectoral, 17 ; ventral, 11 ; anal, 13 ; caudal, 10; vertebra, 11.
" In colour the irides are atraw-yellow, the pupils black; forebead, nape, and back. very dark bluish-black; the sides bluish-gray; the belly white; pectoral fin orange; ventrals immediately under the donal fin, rel in the middle, tho first and last rays white; base of the anal fin white, the other part red; dorsal fin snd tail gray ; sll the raya branched." (YarrelL)

1. Cophalus, Flem., the Chub, is of a moderately elongated and thick form. The greatest depth of the body is contained four times and a half in the entire length, and the thicknens is equal to two thirds of the depth. The muzzle is somewhat obtuse, and the gapo large. The nealen are large; the nuniber forming the lateral line is 44. Abose thin there are 6 scalen in the oblique line to the dorsal fin; and below the lateral line there are 3 in the oblique line to the ventral fin. The dornal fin comanencea half.way between the point of the nose and the bave of the tail-fin; and the ventral commences in the same rertical line as the dorial. The fin-rags are-dorsal, 10; pectoral, 16 ; ventral, ϑ; anul, 11 ; and caudal, 10 . The colour of the upper parts In dulkygren, the aides of the body and belly silvery-white; the lateral malea aro dothed with black: on the cliceks aud gill-covers there in a kollden hue; the iridea are very pale yellow ; dorsal and candal fins danky ; pectoraln pale ; anal and ventral fins tinged with red, with the exception of the two or three last rays.

The Chul in comanon in many of the rivera of this country, often frequenting holen near the rootn of treen. lt lives upon insects and worma, apawn in Ajril and May, and rarely attains a weight excreding five pounda.

The remalning precies of Leuciecur belong to the necond divinion; that in to my, they have the dormal fin placed above the interrening "pace between tho anale and the rentral.
L. rrythophthalmus, Curier, the liud, or hed-Eyc, Nomewhat renemblen the lloach in form; its borly however in higher and thicker, and in listinctly raised at the fore part of the dormal Gun, so as to form an obtuan angle. The greateat depth of the body in mather more thas ore-fourth of the mitire leagth, and the head in one-fifth; the thickness in Dot half the depth. The anout is ohtume, the mouth math, the lower jawn slightly excoeding the upper in length. The ecales are lare : the number matained in the lateral line la nbout forty. In an ollique line anconding to the dormal fin there are neven, and lielow the lateral line to the sentral there are four. The doreal fin commences balf.way letween the point of the nose nnd the end of the eliorter hil.rags The fin-ray" aro-doreal, 10 ; pectoral, 15 ; ventral, 9 ; anal, 13 ; caudal, 12. The upper larts are of an olivaceons colour
tinged with green and blue; the sides and the belly golden-orange; irides orangered; dorsal and candal fins dusky; pectorals pale; aual and ventrals tinged with red, excepting two or three of the last rays.

The Rud is found not uncommonly in rivers and other deep watere in various parts of England. It spawas iu April or May, and feeds. upou worms, Mollusca, and vegetable substances.
L. carulcus, Yarrell, the Azurine, a beautiful species, first described by Mr. Yarrell, from specimens received from Knowsley in Lancashire, approaches the Roach in shape, but is more tapered anteriorly and posteriorly, and is at once distinguiched by its colour, which is slateblue abore and ou the sides of the body, with the lower parts silverywhite, and by the position of the dorsal fin. This commences half-way between the eye and the end of the fleahy portion of the tail. The fins are white, the dorsal and caudal inclining to dusky. The greatest depth of the body is rather more than the cntire leugth, and the head is equal to one-fifth of the length. The scales are rather large; the number contained in the lateral line is about forty two. In an oblique line, from the dorsal fin to the lateral line, there are seven scales, and below the lateral line to the origin of the ventral there are three. The fin-raye are-dorsal, 10 ; pectoral, 15 ; ventral, 9 ; anal, 12; caudal, 19.
The ouly locality in England in which this fish is found is in the township of Knowsley. Mr. Yarrell however is informed by M, Agassiz that it is an inhabitant of some of the Swiss lakes.
L. alburnus, Cuvier, the Bleak, is of a more slender and elongated form than eithor of the preceding. The tail is very long and deeply forked. The greatest depth of the body is equal to one-fifth of the entire length, and the grestest thickness is about half the depth: tho lower part projects beyond the upper. The scales are of modorato size, the number contained in the lateral line being about forty eight. The dorsal fin commences half-way between the anterior edge of the eye and the end of the short central rags of the tail: the anal fin commences in a vertical line under the base of the last rey of the dorsal, and occupiee half the space between its commencement and the base of the tail. The number of fin-rays are-dorsal, 10; pectoral, 17 ; rentral, 9 ; anal, 18 ; caudal, 19. The geveral colour is silvery-white, which is sladed into an olivaceous green on the upper parts; all the fins are whitish ; the irides are silvery.
The Bleak is a small species, rarely attaining eight inches in leagth, and is usually about six or seven inchea long. It is common in many parts of Europe, as well as of this country, usually occurring in the same streans as the Ronch and Dace; it swims in great shoals, and spawns in May. The position of the fin, sad colour of the eyo and fins, render it eary to distinguish the spocies from the Dsce, which it approaches nearest in gencral appearance.
L. phoxinus, Cuvier, the Minnow, or Minim. This pretty little fish, a well-kuowa inbabitant of most of our running streams, appears to depart somewhat from the typical species of Leuciscus. Its form is slender and rounded, the greatest depth being sbout one-fifth of tho entire leugth, and the thickness cqual to half the depth. The fine are proportionately large, especially the dorsal, ansl, and caudal. Tho last is not very deeply forked, and has the extremities somewhat rounded. The doral fin commences about half.way between the anterior edge of the eye and the end of the fleshy portion of the tail. The lateral live is atraight from the tail to above the origin of tho ventral fin, when it rises gradually to the upper edge of the operculum. The fin-rays are-dorsal, 9 ; pectoral, 16 ; ventral, 8 ; anal, 9 ; and caudal, 19. The top of the head and back are of a dusky olivo colour; the sidea of the body are paler and mottled; the belly is white and of a fine rosy pink tint in the summer, varying in intensity according to the vigour of the fish; the irides and gill-covera are silvery; the dorad fin is palo brown; the other fins are palcr, excepting the tail, which is light brown, with a dark brown apot at the base of the rays.
The scales of several of these fishes havo been used in the manufacture of artificial pearls. "On the inuer eurface of roach, dace, bleak, whitebnit, and other fahes," writen Mr. Yarrell, "is found a silvery pigment which gives the lustre those seales possess. Advantage has been taken of the colouring matter thus afforded to imitate, artificially, the oriental pearl. When this practice was most in fashiou, tho manufactured ornamenta bore the name of patent pearl, and the use was universal in the bead-trade for necklaces, ear-drops, \&c. At present it seems confued to ormaments attached to combs, or amnll beads arranged with flowers for head-dresses. So great was the demand formerly at particular times, that the price of a quartmeasure of fish-scalcs has varied from one guinea to five. The Thsmee fishermen gave themselves no trouble beyond taking off the side ecales, and throwing the fish into the river ngain; and it was the custom for hawkera, regularly, before selling any White-Fiah, as they were called, to supply the bead-makers with the scales. The method of obtaining and using the colouring matter was, first cerrying off the aliue and dirt from the scales by a ruu of water; then, soaking them for a time, the pigment was found at the bottom of the vessel. When thus produced, small glass tubes were dipped in, and the pigment injected into thin hollow glass beads of various forms and sizes. These were then spread on sieves, and dried in a current of air. If greater weight and firmness were required, a further injection of wax
was necesssry. Of this pigment, that obtained from the scales of roach and dace was the least valuable; that from the bleak was in much greater request; but the white-bait afferded the most delicate and beautiful silver, and obtsined the highest price, partly from the prohihitory regulations affecting the capture of this little fish, the difficulty of transmission, and rapid decomposition."
'History of British Fishes.')
LEUCITE (Amphigene), a Mineral which occurs imbedded in lavs, in trapezoidal crystals and massive. The primary form is a cube. The cleavage is parallel to the planes of the cube and the rhombic dodecahedron. Fracture conchoidal, undulating, shining. Hardness $5 \cdot 5$ to 6 . Scratches glass with difficulty. Colour yellowish, grayish, or reddish-white. Streak white. Lustre vitreous. Trsnspareut, translucent, opaque. Specific gravity 2483 .
ts Massive variety amorphous, granular. Reduced to powder, it renders vegetable blues green. Before the blow-pipe alone it is infusible; with borax difficultly forms a clear glass.
Analysis by Klaproth, from Vesuvius (No. 1), and by Arfwedson, from Albano (No. 2) :-

LEUCO'JUM, n genus of Plants belonging to the natursl order Amaryllidacece. It has a 6-parted perisnth, bell-shsped; the segments all equal, and thickened at their points; the stamens equal.
L. cestirum, the Summer Snow-Flake, has s many-flowered spathe; a style thickened upwards. The height is from 2 to $2 \frac{1}{2}$ feet. The flowers are white and drooping; the tips greenish. Leaves broadly linear, kecled; scape 2-edged; spathe usually ss long as the flowers. It is found in wet meadows in Great Britain.
LEUCOPHANE, a Minersl occurring crystallised in four-sided prisms, but is seldom regularly crystallised. Cleavage imperfect in three directions. Colour pale dirty-green sad deep wine-ycllow. Transparent and oolourless in thin fragments. Lustre vitreous on cleavage surface. Hardness 3.50 to $3 \% 5$. Specific gravity $2 \cdot 974$. It is found st Langesundfiord in Norway. Its analysis by Erdmann gives-

LEUCOSIA. [OxTSTOMA.]
LEVYNE,'a Mineral occurring crystallised. Primary form nn acute rhomboid. Cleavage parallel to its planes. Fracture conchoidal. Hardness 40 . It ecratches carbonate of lime. Colour and streak white. Lustre vitreous. Translucent. Specific gravity $2 \cdot 15$. When heated it yields water, and becomes opaque; swells up when hested on chnrcoal; with phosphoric salt gives a transpsrent globule, which contains a nucleus of silica, and becomes opaque on cooling. It is sinspected to be merely a variety of Chabasite. It is found in Irelsnd, Farie, and some other places. Analysis by Berzelius :-

LEYCESTE'RIA, a genus of Plants belonging to the natural order Rubiacece, named after the late W. Leycester, Esq., of the Bengal Civil Service, who paid much attention to horticulture in India. The genus consists of only a single rpecies.
L. formosa is a native of the Himalaya Mountains, at elevations of from 6000 to 7000 and 8000 feet, in Nepaul and Sirmore, where it grows among oaks and pines, and is thercfors well suited to the climate of England, where indeed it may be seen growing in great luxuriance in some gardens, and showing that many othcrs from the same situations are equally suitable to this climate, which is not the case with many shrubby Lubiaceous plants. It forms a large and very showy shrub, with numerous luxuriant smooth and cylindric fistulous shoots issuing from the root, which are of a purplish colour. The leaves are opposite, ovate-lanceolate, and glaucous; the flowers white, with a tinge of purple, arranged in drooping raccmes, which are furniehcd with colonred foliaceous bracts.
LI'ALIS, a genus of Reptiles.
LIAS, in Geology, the name of a series of argillaceous and
calcareous strata, forming the basis of the Oolitic System. The term was originally spplied, in the south of England, to the cslcareous beds which are at the bettom of the thick argillaceous deposits, now ranked in the Lias Formistion. The lime burnt from the lins of Aberthaw, Bath, and Barrow-on-Sosr, has the vslusble property of setting in water. [Oolitic Srstex.]
Libeldula. [Libellulide]]
LIBELLULID EE, a family of Neuropterous Insecta, of which the Common Dragen-Fly is the type. The Dragon-Flies have horny strong mandibles and maxillw, covered by the labrum and labium; their tarsi sre 3-pointed; their wings are equal; the posterier extremity of the abdomen is furnished with hooks or peculiar appendages. The size, beauty, and habits of these insects have rendered them favourite objects of study with the entomologist. In the larrs state they live entirely in the water, engaged in nuceasing war with other insects, which by singular devices they entrap and devour. Their pupa state is also passed in water, snd, contrary to the usual habit of insects, is a period of activity and locomotion. They are then furnished with an extroordinary mask, formed out of that part of the head which replaces the lower lip, and by which they cover the jaws and the whole under part of the head. They use it to slarm and seize their prey, projecting it at will. Whea perfect insects they become inhabitants of nir, and are endowed with extraordinary power of tlight and precision of movement, performing astonishing evolutions. Their habits continue as ferocious as they were before. When taken and imprisoned they have been known to devour their own bodies! Several valusble monographs have been published on these interesting insects by De Geer, Roesel, Vander Linden, and Charpentier ; but the most important is that of M. de Selys Longchamps, entitled 'Mouographie des Libellulidées d'Europe.' In this work 6I species are described, arranged under the genern Libellula, Cordulia, Lindenia, Gomphus, Cordulegaster; Eshna, Anax, Caleptery.c, Lestes, Sympecma, and Agrion.

In the arrangement of Westwood ('Introduction to the Medern Classification of Insects') the genera of Libcllulidec inhaliting Great Britain are grouped under two sub-families, Libellulides snd Ayrionides. The following table exhibits the chief characters of the British genera :-

Sub-Family 1.-Libellulides.
Anax (1 species); anal sngle of posterior pair of wings rounded. Ashna (7 species); ansl sagle of posterior pair of wiags more or less angulated in the male.
Cordulegaster (1 apecies); anal angle of posterior wings strongly angulated.
B. Ocelli in a line; eyes remote . Gomphus (2 species).

Cordulia (3 species); ansl angle of posterior wings angulated in the male.
C. Ocelli iu a triangle

Libellula (15 species) ; anal augle of posterior wings roundeu in both sexes.
Sub-Fumily 2.-Agrionides.
Agrion (13 species) ; stigma rhomboidsl; areolets mostly quadrangular.
Lestes (3 species) ; stigms oblongoquadrate; sreolets mostly pentagonal.
B. Wings coriaceo-membranous ; \} stigma obsolete

Calepteryx (4 species).
LI'BER, the inner bsrlk of a plant, is a layer consisting of woody tissue, cellulsr rubstance, and vessels of the latex, forming a compact zone immediately spplied to the wood. The woody tissue of which it is composed quickly becomes. thick-sided, by the sddition of interal ligneous strata, the consequence of which is that such tissue in this part is more tough than elsewhere. Hence it is usually from the liber that are extracted the fibres employed in making cordage or linen-thread: tbis at least is its source in hamp, Hax, the lime-tree, the lacc-bark, and the many other Exogens which furnish thread; but in Endogens, which have no liber, as the Cocoa-Nut, it is the ordinary woody bundles of the leaves, stem, and husks of the fruit from which the fibre used for ropes is procured. It is said that certain Exogeos, such as Menispermacece, have no liber. ('Comptes Rendus,' v. 393.) In many plants a new lsyer of liber is formed annually, comtemporaveously with a new layer of wood, but this is by no menns universal ; on the coutrary, the osk and the elm increase their liber slowly and irregularly. [Bark.]
LIBETHENITE, Phosphate of Copper, a Mineral occurriog in small octohedral crystals and in radiated masses. Primary form a right rhombic prism. Colour dark green. Streak green. Fracturo uneven. Hardness 4.0. Transparent, translucent. Lustre resinous. Specifio
gravity 3 a it is fouod at Libethen In Huggary. Ita analysie ly Berhier gives-

Pbosthoric Acin
25%
Oxitle of Copper 03.9
Winter
1.HIT'NIA (Leneh), a genus of Brachynrous Crustacea. [Mands. $]$ LICHANOTUS (Hliger), a genus of Cbeiropeds, or Quadrumana (Indri of Lacepedle, Geofroy, asd others), belonging to the family Lemurider.
The Indris aro inhabilante of Madagascar, nud two species only seem generally recogeised, namely, Indri brericaudatus of Geoffroy, Lamar Indri of Cimelin; nud I. longicaudatus of Geoffroy, L. laniger "f Gmelin, 1 . laniger of Fischer. Cuvier indeed recognises but ono apecies, namely, that farst above named, and says in a noto that the other requires consideration (" a besoin d"etre revu").
Ir. Fincher adopts both ueder the unmes of I. Urecticaulatus (Geof.) and I. laniger, marking however the latter ns doubtful.
M. Lasson, in his 'Jinnuel,' also gives both species under the generic nanze of Indri (Laopede), and the specific names of /. brevicaulatus Geoff. (l.'Indri, sonnerat), and I. Congicathatus, Geoff. (Le Maki Fauva, Buffu; Lo Maki it Bourre, Sonnerat); with the following dental formula:-Incisors, $\frac{4}{4}$; canines, $\frac{1-1}{1-1}$; molara, $\frac{5-5}{5-5}=32$; the sume number recorded for both epecies by Fischer. M. Temminck ("Manrmalogio") notices only one species.
Dr. Gray phoce Lichanot us and Indris io his sub-family Lichanotina, between Lemurisa aud Loridina, in lis third family Lemuride, which in the first in his secoed or Quadrupedoid section of his orler Primates. (${ }^{\text {Andala of Philosophy, }{ }^{\prime} \text { 1825.) }}$
Mr. Swainson confines the geveric term Indris (Lacépede) to tho Lamur laniger of Gmelin, asd that of Lichanotus to the Lensur Indri (Unelin). To both Mr. Swainson arsigns the anme number of incisors nod grinders as that above stated; but he gives canine teeth $1-1$ to Lichanaus only. Me pilaces these two genera between Lemus (Lion.) and Erartes (Sw.), in the family Lemurider. ('Classification of Qualrupeds,' 183.3.)
M. (ieoffroy ("Magaz Encyclopedique") observes that there are four cutting teeth in the upper jaw, not two, as mentioned by Sonnerat.
$F^{\text {F }}$. Cuvier states that the dental system of Jndri in only kuown Lo him from the extrenity of the jows, which offers in the upper jow iociors like thone of the leed lemur, a canine tooth very much curved aod catirely like two faleo molara which are found inmedintely neat wit, and which have only a singlo point; in the lower jaw two incinorn only, the firnt very narrow, and the necond wider, but both couched forwards ("couchfes en avant"), liko those of the Makiw or True lemura, the canine amall, and resembling a false molnr which follown it, which lan only a Ringla point, nad which is much wider before than behim, thickesing from the external to the intermal edgo.
Tho figuren and deacriptions of these two speciea are given by Somerat in his "Secoul Voyage," nul neem to we the aource whence the subseguent necounts have been priacipally taken.

Mask or Tallies Indrh.
The firat. anticon by Pemant an the Indri (under the title Mancaneo), in leacribol an a larar nuimal so fort high, entirely thark, except on the face. Which is grajialh, on the lower inrt of the abtamene, where a grayiah casp frevalo, nod on the ramp, wheld in white. The face in atalel to be of a longthened dag. like forn, tho cara rather mhort lut much tuftel, the har or for nilky and thick, curly in some parta. The
asils are mid to be flat but pointed, and there is no appearance of a tail. Like most other Lemurides it is a native of Madagascar.
The animal is described as gentle and docile, and as being trained when young for the chase, an doga are. Its note is skated to resemble n child's crying, whence not iemprobably ita Madagasoar name Indri, which is said to aignify Man of the Wood.
The other species, Flocky Lemur of Sbew, is stated to be 1 foot 9 inches from nose to end of tail, the tail being 9 incher. The colour pale yellowish ferruginous above, and whito benenth; the tail bright ferruginous. The fur extremely soft, and curled deeprest about the loins. Face black; eyes large and greenish-gray. The animal is described as having two fore teeth in the upper jaw and four in the lower, and pentadactyle foet, with long claws, except the thambs, which are furnished with rounded unila.

Dr. Shnw observes that Pennant, in the last odition of his 'Hietory of Quadrupeds,' seems to think this animal no other than the Lemur Monyoos, or Woolly Mrucauco ; but the Doctor adde, that if Sonnerat's description be just, the eppecies muat certainly be a different one from L. Jongooz.

Dr. Shaw in of opinion that Le Petit Makis Gris (Buffon, 'Supp.,' tom. vii. p. 121, 11. 34) and the Autro Espèce de Maki (Buff., 'Supp.,' tom. vii. p. 123, t. 35) are smaller varieties of the Flocky Lemur; but this view does not seem to be ndopted by tha moro modern zoologists. Skelctons and skine of the Indria would be an acquisition to our museums, aud wonh clenr up doubtfu] points. [Lemunmen]
LICHIAS, Dalman's name for n group of Trilobiles, forming a division of the great genus Asquinus of Pronguint. [Tallobites.]
LICMEN isLandicus. [Chithaba.]
LICHENIN, a peculiar vegetable product, sometimes called Lichen Starch. It is obtained from the Cetravia Islandica, the Icelaod Moss, which is to be cut amall and infused in eighteen timea its quantity of cold water, in which about a quarter of an ounce of carbonate of potash in dissolvel for overy pound of the liverwort cmploged. After romaining twenty-four hours the infusion is drained from the liverwort without pressuro: it is then to bo repeatodly washed with cold water, and nflerwarida boiled in nine times its weight of water down to aix; the decoction is atrained nad the liverwort squeezed while bot; a gelatinous white aubstance is soon formed, which, after being dried gently on cloth, becomen of a dark colour nud hanl. Being rediseolved in bniling water nod ngain strained, it gelatinises.
When pure it in white, and it retaina water; but on drying it becomen yellowinh. In thin plates it is tramparent. It is tough, tastalen, nearly inodoroun, awells up when jut into cold water, but dinsolved aparingly in it. With hot water a gelatinous solution is oltained, which in lecomponed, nad yields a precipitate with di-acetate of lead, nud with solution of iodino gives either a dingy green colour, or, n. in atnted hy some nuthors, a bluo one, aq atirch doce
hlCHFNO'PORA. The Fosiln ranked under this title by Defrance are thonght by Do Mainville to bo young Reteporr. ("Actinologie," [. 407.$)$
IA'CHENS, or LIVERWORTS, a largo and important matural order of inpperfectly orgnnised Ylanta, belonging to the class Cryptogamia. The ajeciea sro numerous, nud aro employed in the arts as pigments, and as articles of food. It in priocipally in the former respect that they are of economical interest, in consequence of the grent consumption of Orchall, or Arebil [Ancume, in Ants Asd Sc. Div.], Cudbear (faciden tartareu), and others by the dyer; the estimnted value of the sunual imports of thene plants being from 00,0001 to 80,0000 . [Comisab, in Auts asd Sc. Div.]
Lichens nre percmuial plants, requiring free access to light and nir, of the mosst aimple organisntion, forming irregular patehes upon the aurface of atoncs, trees, the carth, and other bodies. Their atructuro
is imperfectly cellular, without sny trace of vescularity. The cells of which they consist are apheroidal or cylindrical, tubular or fibrous, empty or filled with a grumous matter, in a loose and indefinite state of aggregation, but generally consolidated into two strata, the one external or cortical, the other internal or medullary. The membranous or other expansion, which in these plants consista of a combination of stem and leaf, is of the most unequal and uncertain degree of development, in some speciea appearing like misshapen leaves spreading over the surface on which it grows, in other cases risiug up as a stem of various figures; but slways more or less unsymmetrical, and in many instances constituting little more than a stain upon the face of a tree or rock; this body is a frond, or, as it is technically called, a Thallus. The fructification of Lichens consists of a round or linear, conrex or concsve cup, called Apothecium, or Shield, at first closed, but alterwards expanding and producing a nucleus (stratun proligerum) in which are embodied the gpores. The shield is surrounded by a border (excipulns) which originates either from the substance of the thallus (thsllodes) or from the base of the shield itself (proprius), or from both (thallodes and proprius).

The prevalent principlea found in Lichens are a peculiar kind of starch called Lichenin [Licuenis], a bitter secretion, and a reain combined with an unctuous colouring matter, yielding purple, yellow, and brown dyes. In consequence of their bitterness some have been employed as febrifuges, as Variolaria faginea, Parmelia parietina, and several others.

The following cut shows the various stages of development in the Lichens of this country.

Luchens in fructification, in varions stnges of development.
1, Comea barbata, with a stem and rudimentary leaves; 2, 3, Cladonia pyzidata, in the same state, but with its leaves disappering; 4, Mamalina calicaris, with the stem nenrly lost, and the shiclds borne upon Irregular unssmmetrical expansions; 5, Shicta herbacea, with the stem entirely lost, and the leaves mprending over the surface of the ground; G, Parmelin pallescens, with the atems and leaves consolidated, and forming only a crust with a definite margin; 7, Opegrapla scripta, in which nothing is formed excepl the ictter-iike frucIIfienthor.

Lichens are distributed over all parta of the world, forming in the polar and similar regions a food for animals and man. Cladonia ranifferina supports the Itein.Incer; Cetraria Islandica furniahes the nutritious Iceland Moss of the druggiste' shops; and various specics
of Gyrophora, under the name of Tripe de Roche, form a part of the supply of food scautily furnished by nature for the Canadian hunter. In warmer countries they scquire a firmer consistence, and appear to form sccretions of a peculiar kind in much greater abundance than in the northern parts of the world. Orchall, for example, grows in Grest Britain snd the Canaries, and botanists can detect no external differences between the plants of these two countries; yet in the former its dyeing matter is secreted so abundantly that Canary samples fetch from 250l. to 350l. a ton in the market, while the English are unsaleable.
The order consists of between 50 and 60 genera, with about 2400 species, which are divided by Fries into 4 sub-orders-IIymenothalami, Gasterothalani, Idiothalumi, and Coniothalami : to these some systematists add Bysactere. [Byssacest.] These are again subdivided into several tribes, each tribe comprising several genera

The tribe Usneacece is characterised by having an open disc, and being destitute of an hypothsllus. It embraces the genera Usnca, Ererina, Raccella, Ramalina, and Cetravia. Several species of Usnea are known by the common names of Jupiter's Beard, Tree-Beard, \&c., on account of their hair-like sppearance. They are amongst the most common of the Lichens which cover the trunks of aged trees, and give to them a picturesque appearance. Usnea plicata is a common species on old trees, park-palings, \&c., and has been recommended as a remedy in hooping-cough.

The apecies of the genus Everina sre common in Grest Britain, One of them, E. pronastri, has a peculiar power of imbibing and retaining odours, and on this account is in much request as an ingredient in perfumed cushions and sweet-pots. It has been recommended as a remedy in pulmonary affections. It is frequently found on the oak and other trees. Evelyn says of it :-"This very moss of the oak that is white composes the choicest cypress-powder, which is estecmed good for the head; but impostors familiarly vend other mosses under that name, as they do the fungi for the true agaric (excellent for hrmorrhages and tluxes), to the great acandal of physic." It is said that E'. vulpina is poisonous to wolves, hence its name, but little is known of its real properties.

The genus Ramalina is found associated with the last two on the trunks and branches of trees, especially of the fir, the birch, the ash, the oak, the sloe, and the hawthorn. Lightfoot 8ays that tho R. scopulorum "will dye e red colour, and promises in that intention to rival the famous Lichen Roccella, or Argol, which is brought from the Canary Islands."

For the properties and uses of the species of Roccella and Cetraria see Archel, in Arts and Sc. Div., and Cetraria.

The tribe Parmeliacece is characterised by a horizontal thallus. To it belong the genera Peltigera, Sticta, Borrera, Parmelia, \&c.
Two of the species of Peltigera, P. canina and P. aphthosa, have been used in medicine: the former as a remedy in hydrophobia; the latter is boiled in milk and administered in the thrush.

The species of Parmelia are exceedingly numerous; one of the most common throughout Europe is the P. parietina, Yellow Moss. The thallus and shields are both of a yellow colour; and Lightfoot says, "It is sffirmed to dye a good yellow or orange colour if mixed with alum." It has also a very bitter taste, which has caused it to be used as a tonic in medicine, and it Las been recommended as a remedy in intermittent fever. P. tartarea (Lecanora tartarca) yields the dye known by the name of Cudbear. [Parella.] P. Pasella (Lecanora parella) affords the substance known as Litmus, or Lacmus. [Lifmus, in Arets and So. Div.]

One of the species of the genus Sticta, S. pulmonacea, has been used as a sukstitute for the Iceland Moss. [Cemraria.] It is used in Siberia for giving a bitter flavour to beer. It is a native of Great Britain, and is found on the trunks of trees in mountainous distriots, almost entirely covering them with its large shaggy fronds.

A species of Bovrera [Borrera], B. furfuracet, is reputed to bo astringent and febrifuge. It is found on the trunks and branches of old trees, especially when decaying, and on old pales.

The tribe Lecidince cmbraces the important genus Cladonia [Cladonia], and slso Cenomyce and Scyphophonus, which are often only regarded as subgenera of Cladonia. The S. pyxidatus and S. cocciferus are elegant lichens, having their spothecia elevated above the thallus in the form of little cups, those of the latter species being coloured scarlet. They have both been used in medicine as astringent and febrifuge.

The tribe Spluerophorece contains the genera Spharophoron, Plocaria, and Isidiam. They are an excecdingly elegant group of Lichens, but the species have not been much used for economical purposea. Isidium corallinum is said to be rich in colouring matter.

The genera Endocarpon and Porina beloug to the tribe Endocarpece. The species of the former genus are found on rocks and stones, whilst those of the latter are intereating as forming distinguishing marks between various kinds of barks used in medicine. Fée, in his 'Méthode Lichénographique,' has endeavoured to apply a knowledge of the various species of Lichens to the distinguishing not only between the bark of differcnt species of Cinchona, \&c., but also betwcen good and bad barks of the anne apccies.
The principal genus of the tribe Verrucarince is Verrucaria, of which the specics are very numerous. [Verrucaria.]

The tribe Gropdilcer is remarkable for the furms which the apothecia nausmo, bearing a rosemblance to the letters of Eastern alphabets This may bo seen in Opegropha scripen lo fig. 7. As an indication of the ralue of the lichens in distinguishing the various apecien of Cinehona thark, Fé ntate that the Graphis interrupta is ouly fonod on the hark of Cinehona lancifolia. Although the study of tho Lichens on the officional barka has not produced all the adrantages anticipnted by Fic, thero can be no donbt of ita ralue in many cases, Heferring to this eubject, Burvett observes:-"Until the publication of Fóe's tnemoir on the Cryptogamic F.piplistio of the officinal barks, the atudy of the Opegraphas and their allies seomed to be one rather of speculative amusement than of practical utility. But now the case is wholly changed, since there graphic planta, these living letters, written by nature's hand, ane shown to constitute inscriptions legible by men. Alwaya curious inded, and admirable eren to the least tutored eye, did the examination of these mimic charactera appear; and as fancy traced the likeness to rarious Oriental eigns, so wero theae littlo plants called Scripturo-Worts, some llebrew (Opegmpha Miclraica), nome Chineso (Arthonia Sincnsigraphia), and so forth. But, like the hieroglyphica of the Egyptian faues, their meaning was buried in obscurity, and to little guessed at, that it often was doubted whether they had any nocruts to revenl. They were sourcen of wouder rather than wislom, until the Young and the Champollion of the vegetable world arove, and by means of a natural losetta-Stone deciphered these hitherto unknown mauuscripta, and taught us to peruse this part of the sacred Scriptures of creation." The tribes Calycide and Pulveraride embrace several genera, amongst which are Lepraria, Coniocybe, \&c.
(Burnett, Outlines of Botany; Lindley, Natural System; Lindley, Flora Medica; Fries, Lichenoyraphia Europira Reformata.)

LI'CINUS (Latreille), a genus of Coleopterons Insects included in the great group Curabus of the older nuthors. The genus Licinus is placed ty Dejean in his section Patellimanes, and, together with the genera Dicalua, Rembus, aud Badister, constitutes a little bection or wub-family, distinguinhed from other Patellimaves by the went of the tooth like process in the earargination of the meuturn.

In the gealus Rembus (Latreille) the threo basal joints of the anterior tanyi are dilated in the male sex: the terminal joints of the palpi are elongated, nomewhat ovate, and truncated at the npex; the mandibles project bat little, are alightly arched, and pointed; the thorax is narrower than the elytra, which are almost parallel.
But two or three ppecies of this genas (the Carabus politus, and C. impressus of Fabriciua) are known; they nro found in the East Indica, and are of a black colour.
Genon Jhierelme (Bonelli) mas bo distinguished by the following characters :-terminal joint of tho palpi becuriform; labrum emarginated and having a longitudinal impression; anadibles projecting but little, without internal denticulations, alighitly arched and pointed; thorax nearly equare; elytrm moderately long, parallel or nomewhat ovate; the thre basal joints of the anterior tarsi nre dilated in the male sex. The apecies of licelus appear to be confined to North Atserica, sod about 12 or 15 are described. They aro in general of a colerably large size, avcraging perlapss about three-quarters of an ineh in leagth, or ratber less. Some of tho species nre of a beautiful purple or bluish tint ; they are however most commouly black.
Genua Licinn. In this genus the head is broad, ahort, and rounded; the thorax is genernlly of a rounded form, nad the body depressed and orate; the labrum is phort, and emarginatel in front; the corninal joint of tho palpi is securiform; the madibles aro stout, ahort, oltumely pointed, and dentato intertally; the two basal jointa of tho anterior tarni aro dilated in the male nex. In Dejenn's 'Catnlogue den Colfopures' there are 12 npecies of the present genus enumerntell, brarly all of which inlabit Europe. Three apecies inkabit thia country. (Steplienin' ' H1 Luntrations of British Entomology.')
The oran Badister (Clairrille) ia distinguished by the mandiblea being abort and obtunc ; the three banal jointa of the nuterior tarsi dilatel in the balo are': the ternumal joint of the palpi elongatol, a, anal, and enmewlat pointest ; the head rounded, nad the thorax cordiform. Of this genum five njecies nre anumerated by Dejean, nll of which inbalit Eurofe. Their manall nize howerer renders it probable that refy mang more will bo dincovered; nlready na groat a dumber 24 that given ly Dejean has been found in thin country, somo of which ara mrainly unkuown to that author. The genua Trimorphus of Mr. Stephesnalyearm not to be aufleciently dintinct from hadister.
 natnod by luanphius, from the Maceranar name of tho apecien L.
 i. jeftrita, in demaribed by l)r. Inxlurgh na a mative of tho inountainone and womly parta bear Chithagoug, which acparntea thant jomeince from the Birman territorien. Both ajecies aro annall, with paltrato monewhat fanahaped learep, but of little uane. liumphiua decritea tha narrow leareat of hia tree nu being formetl into piper for ntoriving tominace, whils the broaler are cmplinged for wrapping up fruit, and for ather fomeatic unas

Lifinloity, a Mineral containing carlonate of uranium and lime. It in fonnd arar Allianople in Turkey, and occura in mammillary moeretions of an arpllegreen colour.
LIEVはITE: [1mos.i

LIFE [VITALitr.]
LIGAMENTS, in Anstomy, the organa by which the varioue articulations of the animal body are held together. [Abticulation.] They are generally very strong mombranes, and in their structure and composition resemble teodons. [Thnnos.] They are in most instances attached to two bones, aud assist in the formation and strengtheoing of the joints. Ligaments are of various forms: some complotely oncloso the joint as in a case or capsule, and are then called Capsular Ligaments, as is seen in the knee, hip, and shoulder joint; others form straight bande passing from one bone to another; whilst others, agnin, are ingerted into the heads and carities of bones within the jointa. The ligaments are principaly composed of the modification of areolar tissue called Fibrous Tissue. [Abeolar Tissue]

LIGIA. [Isoroda.]

LIGNiN is tho substance which remains after a plant or a portion of it has been treated with wator, weak alkaline and acid solutions, with alcohol, and ether, in order to dissolve all the matters soluble in these agents.
Lignin, properly speaking, conatitutes the ekeleton of the trunk and branchea of the tree. It varies, in different kjads, as to its colour, hardness, texture, and spocific gravity; and it is probable, on account of theso differences, that its composition also varies. The texture of lignin is alweys porous, because it contains longitudinal vessels, and it is casy to aplit it in the direction assumed by them. The pores of lignin, when fresh, contain the juices of different substances. During the drying of liguin the water evaporates, and leaves the matters dry which it held dissolved. It is on this account that wood contracts, in dryiug, in breadth, but preserves its length. It is commonly admitted that timber in geoeral consists of ninety-six parts of lignin and four parts of the substances which were held in eolution by the evaporated moisture.

When lignin has been dried, it is a non-conductor of electricity ; but ou account of its porous nature and the deliquescent substances which it contains, it acquires moisture when exposed to the air, and then becomes a conductor: this absorption may be provented by varuish. It is well known that wood ewims in water: but when deprived of air it becomes heavier and sinks in it; its epecific gravity then varging from $1 \cdot 46$, which is the apecific gravity of fir, to that of 1.53 , the apecifio gravity of oak nod beech. Wood is gradually decomposed when exposed to the simultaneous infuence of light, air, nad water; but under water it may be preaerved for an almost indofinite period, as is proved by tho trunks of treas which have been found in a perfect atate buried in the bottom of peal-mossea, and which must have been there from a period anterior to history: also when it is kept perfectly dry it is not subject to decsy. The wood inclosing Egyptian mummies is found in good preservation, although some of it muat be about 3000 yesra old.

When wood or lignin is treated with chlorine, it becomes white, but does not dissolve. Concentrated sulphuric acid in the cold converts it into gum; and if the mass thus obtained be boiled with water, it is changed into grape sugar. When treated with sulphurio acid, it is decomposed, becomea black owing to the separation of charconl, while sulphurous and carbonic acid gases are evolved. When treated with strong nitric acid, oralic acid is obtained; when boiled in coscentrated bydrochloric acid, it becomes first reddish, then brown, and nfterwards black, without being soluble either in the noid or in water.
The caustic alknlis dissolved in a large quantity of water act but feebly ou wood; but if aswdust be treated with an equal woight of hydrate of potash dissolved in a little water, it awells, yields water with an empyreunatic smoll, and a homogeveous liquid is formed; when this has coolod, it is of a blackish brown colour, and contains oxnlic and acetic acids, with a anbstance resembling soot treated with an alkali. When wood is heated in iron crlinders with the necessary nrrangements for the condeosation of tho volatile products, a great variety of important substancea are oltained, besides charcoal: in this way are procured acetic acid, commonly called, till purifed, pyroligncons acid, pyroxilic ajirit, creasote, and tarry matter.
Some botanical and chenical writers distinguish from this substance cellulose, but as they both form the investing walls of the celle of plants it is probmble thes aro modifications of the eame chemical compound.
Cellulose may be procured from all the parts of plants without exception, by dissolving (by certain ro-agents) the other substances ansocinted with it. Pure cellulose is easily obtained from the pith of the eller-tree, or from very young roots. The aubstances most commonly arsocintod with it are, Btarch, gum, fate, reains, vegetable nlkalica, salta, bugnt, and the peculiar woody matter termed by Payen matier incrustante, or liguin of the other writers. After the removal of thene subatancea by extraction with alcolol, ethor, dilute potash, hydrochlorio acid, nud water, the celluloso, which was previously solid and dense, ansumes a spougy nppearance. An a proof of its entatant componition, it is wortliy of montion thent the following subatances, proviously purified in this matter, gnve similar resulte, namely, the ovuln of nlunonds, of npples, of the Ifelianthus annuus, the any of cucumbera, tho tiasue of the cucumber, the pith of the elder-tree, the pith of the Siachynomene paludosa, cotton-wood, tho
leaves of endive and of Aylantius glandulosa, the tracheæ of the Musa sapientum, films from the pith of oak-trees, cellulose from cowdung (the cow fed with meadow-grass), the internal tissue of the leaves of Agare A mericana, the skeleton of a wasp's nest, the perisperm of the Phytelephas, extracted lichen, membranes of the Chara, \&c. From theae and various other subatancea, the purified cellulose always gave a result approximating to the fermula $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{21^{\circ}}$. It is thus spparent that the proper tissue of all plants leaves a substance which is identical for all of them,-a substance which contains carbon and the elements of water, which is isomeric with inulin, and therefore easily convertible into starch and sugar; and that in its turn it may easily be produced from dextrine [Dextrine; Starch], the change consisting only in ths loss or gain of the elements of water. It has been ahown by Von Baumhauer that sulphuric acid or diastass will convert cellulose into dextrine. It ia also by the sama process converted into starch. Heace it is concluded that the cellular aubstance is closely allied to starch, dextrine, gum, and sugar, causing their production in the rcgetable kiagdom, and no doubt being itself produced from one of them, namely, from dextrine. It is therefors of great importance to the animal body. It explains the nourishing power of those plants in which the incrustation of the cellulose ia prevented by artificial means, as of greena, endive, sea-kale, \&c. The cellulose of these plants, being easily converted into dextrine, may fairly be reckened amongst the substances which are most serviceable in maintaining the vital functions of animala.
Further, as cellulose exists ready formed in the youngest parts of plants, it belongs, together with protein, to the first vegetsble products of the food of plants ; and, further, it follows that from cellulese, or from vegetable substances similarly formed, especially from one soluble in water, namely, dextrine, starch, gum, and sugar ars occasionally formed. In many parts of plants we find atarch, eapecially in the Lichens, which consigt for the mest part of cellulose. In many fruita containing a large propertion of cellulose, there is much sugar. Thesa different substances may be produced from the same cellulese, simply by a change in its physical character and a new chemical arrangement of its constitnents. Cn the other hand we observe that fleshy fruita, from being sugary, become mealy when kept through the winter; this being a converse change of sugar inte cellulose. Hence, as Mulder remarks, "ws may consider the cellular plants as consiatiug chielly of celluloss and of protein-compounda; tha vascular plants containing in addition the incrusting or real woody matter. These together are the most indispensable constitueats of plants; they ara found everywhere and in all their organa. Cellulose is to plaats what gelatin is to animaly; they form together the cells in theae two kingdoms. In the cells both of plants and animals protein-compounds are either deposited in solid particles or are disselved in the liquids with which their organs are permeated. In plants the cell-walla are thickened by the woody matter; in animals the cells contain fat and other substances ; in animals, as well as in plants, the cellular substance is the chief agent in connecting all the other existing organs."

Mohl and Schlaiden haveshown that the cellular membrane of many parts of plants ia coloured blua by iodine, just as if it centained starch. This apparent identity of reaction would lead us to infer that cellulose can often be modified as it were into starch, though atill retaining the appearance of cellular membrane. The similarity of the chemical constitution of these two substances renders their coavarsion apparently easy. For I eqiv. cellulose $\left(\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{21}\right)=2$ eqiv. starch (C_{24} $\mathrm{H}_{20} \mathrm{O}_{20}$) +I eqiv. water (HO). Hence, by a aeparation of water and a re-arrangement of the molecules, cellulose may be converted into starch; and conversely, by tha absorption of water, starch may be cenverted into cellulose. Cellulose is the basia of the substance called Gun Cotton, which again on being dissolved in ether forms Collodion.
(Mulder, Chemistry of Animal and Vegetable Physiology; Gregery, Organic Chemistry.)

LIGNITE. Fossil wood carbonised to a certain degres, but retain ing distinctly its woody texture, is thus deaignated. A. greater degres of change constitutes Cannel and Common Coal, in which the original structure of the coastituent plants can only with difficulty be traced; a less change belengs to Pent.

Dr. M'Cullech observes :-"In ita chemical properties Iignite holds a station intermediate between peat and coal ; whila among the varieties a gradation in this reapect may be traced; the brown and more organised klnds approaching very near to peat, while the mors compact kinds, such as jet, approximata to ceal." ('On Rocks,' p. 636.)

His synopsis of Lignite runa thus:-
A. Jet. Hard, compact, with pitchy lustre.
B. Surturbrand. Less compact and more brittle than jet.
C. Moor Coal of some authors. Friable.
D. Bovey Coal. Fibrous, the vegetable texture very apparent, celeur brown or brownish-black.
E. Cologne earth, earthy and pulveruleut mass. The thick ness said to be 50 fcet.
P. Basaltic Coal. Of variable structure; some parts like wood, others like coal.
Lignite often occurs in beds of conaiderabla thickneas and extent, and supplies to particular districts a bad subatitute for coal. It is often
accompanied by iren pyrites (Alum Bay), lies in alternsting series with arenaceous and argillaceous beds, and is aometimes covered by freshwater limestons (Käpfnach), and presents many analogies with coal; but in general Lignite is most plentiful in the tertiary strata, and Coal among the older rocks of the secondary series.
In the Isle of Wight (Alum Bay) Lignita beds (the wood coniferous) occur amidst the sands and clays of the lower part of the (Eocene) tertiary strata; in a dapression of the surface near Bovey Tracey, Devon, a mers conaiderable deposit of lika nature occurs under several alternating beds of clay and gravel of considerabla thickness. (De la Bechs, 'Geel. Manual.') These deposits deserva attentivs comparison with the peat moors of high and low situations in England, with and without buriad forests, with the Lignite Coal of the Sussex Wealden, the Coal of the Yorkahire Oolites derived from Equiseta, and tha Coal of the older rocks in which coniferous wood appears an abundant ingredient.

According to Brongniart ('Tableau des Terrains'), at least threo dcpeaits of Lignite of different geological ages may be diatinguished in the series of tertiary strata, namely, the Lignite of Switzerland, of Mont Rouge, and of Aisne (all of Eocene date, according to Lyell's classification). Among the secondary strata one deposit ia noticed by Bronguiart, namely, in tha Iala of Aix, belonging to the Lower Greensand, and occurrences of less importancs in the Wealdan of Sussex, the Kimmeridge Clay, Lias, and Grès Bigarre. Hardly any of tha clays of the Cretaceous or Oolitic formationa are deficient of jet, which sometimes forma considerable floors (as near Whitby), but generally lies in small portions.

The plants occurring in all these deposits are terrestrial; in the Swiss and French Liguites thers ars remains of palms; in the Meissner there are coniferous weods. Mammalia occur, especially iu the Swiss Lignites, at Käpfnach, near Zürich, where Mastodon angustidens, M. Turicense, Beaver, Rhinoceros tichorhinus, and other remaina arc mentioned by different writers. Ons of the most characteriatic genera of the animals found in Lignite (Tuscany, Styria) is the Anthracotherium.

LIGULATE FLOWERS are such as have a monopataleus corella slit on one aide, and opened flat, as in the Dendelion Lilac.

LIGUR1'TE, a Minaral. Its primary form is an oblique rhombic prism. Colour apple-green. Streak grayish-white. Fracture uneven. Hardness abeve 5.0 . Lustre of the surface of fracture between vitreeus and reainous. Transparent and translucent. Specific gravity 3.49. It is found on the banks of the Stura, in the Apennines of Liguria. Its analyaia, by Viviani, gives-

LIGUSTRUM, a genus of Plants belonging to the natural order Jasminacea. It has a fleshy fruit, the berry containing two membranous 1 -seeded nuts. The calyx is short, tubular, and 4-toothed; the limb of the corolla 4 -parted, and spreading; stamens two, wioh short filamenta. The species are shrubs or low trecs, natives of Europs and Aaia.
L. vulgare, Commou Privet, has elliptic lanceolato glabrous leaves; compound racemes; sweet-acented flowers, white at first, but soon changing to a reddish-brown. The berries are dark purple, almost black. It is a bushy sub-avergreen shrub, growing in hedges and thicketr in Great Britain, and native of the south-west of England. This plant was formerly called Prim, or Primwort, from its being used for verdant aculptures, or topiary-work, and for primly cut hedgea. The commen English name Privet seema to have been given to it frem ita being frequently planted to conceal private placea. Iu German, Dutch, Danish, and Swedish it is called Ligaster ; in French, Troĉue; in Italian, Ligustro ; in Spaniah, Alhsna; and in Portuguese, Affena. It ia probably the Emipaia of 'Theophrastur, 'Hist. Plaut.' i. I4. In point of utility and ornament few ahrubs exceed the privet. Its chief use is to form hedgsa either for shelter or ornament. It bears cutting well, and is not liable to be disfigured by insects; having fibrous roots, it robs the ground leas than almost any other shrub. It is one of the faw plants that will grow in the smeke of London; it alse thrivea under the drippiag of other treea. The wood is hard and fit for timber. From the pulp of the berriea a rosecoloured pigment may ba prepared; with tha addition of alum they dye wool and ailk of a geod durable graen. The following variatios are those found chiefly in our gardena:-
L. v. leucocarpum, tha White-Berried Privet.
L. v. xanthocarpum, the Yellow-Berried Privet.
L. v. chlorocarpum, the Graen-Berriad Privat.
L. v. sempervirens, the Italian or Evergrean Privet.
L. v. variegatum, tha Variegated-Leaved Privet.
L. v. angustifolium, tha Narrow-Laaved Privet.
L. Sinense has lanceolate tomenteas leavea, white flowers, and very small brown berriea. It is a native of China, near Canten.
L. Japonicum ia a native of Japan, with oblong ovato grooved leaves, and white flowars growing to ths height of 6 or 8 feet.

Io poicutwon has elliptic acutc leaves，hairy beneath，as well as the braschlets Flowem erowad，almost sessile，spieate，diaposerl in a thyree，hariag the axis very loniry，and minute bracteas．It is an erengreen shrul，nativo of Nepaul，on mountains，growiog from ito 8 feet in height．

All the apecies of Privet are of easy culture，and will grow in any kind of soil．Cuttings root without difliculty：L．lucidum requires some prusection in the winter．
（Don，Dichlamydeous Plants；labington，Manual of Broitish Botany； Fraar，Synopsis thore Clasica；Louclon，Encye．of Trees and Shrubs．）
L．I＇（iじじ心，Do Moutford，a genus of terrestrial Testaceous Mohusca belougiog to the family IIelicida．Dr．J．E．Gruy（＇Zool．I＇roc．，＇1834） describes a species from Africa（L．tenuis），a ad observes that in ahape it in most like to the young of Ifelix flammigera of Férussac，but differ in colour，in tenuity，and in the shaje of the front of the pillar－lip．

LILAC．［Stm\＆ㅎa．］
LILIA＇CF．E．，Lilywort，an important natural order of Endogenous Planta，containing mauy of the most beautiful of that class of the regetable kingdom．A large proportion，especially of those of cold countries，coosists of bulbons plasts，produeing anuually a stem which berinhea after having produced its leaves and Howers；others have an annual durntion with perennial fleshy roots；and s few acquire，in warm conutrica，a stem of rery considerable size，as the Dragon－Tree （Pracerna lraco），of which there is an ancient specimen in Tencriffe with a stem many feet in liameter．

The tlowers of Liliacoous l＇late are generally large and showy， enpecially in thone with anoual stems，sa the Lily itself，the Fritillary， Hyacinth，Star of Bethlelnern，dc．；but when theyacquire au arborescent Etem the size of the flowery contmcts，so that the largest treen among them have the smallest flowers．Their leaves are always quite simple and undivided，and usually have the veins of the leaves running atraight from the brue to the apex；but in some Dracsenas they diverge from the midrib to the margin，as in the Plantain．Amoug other lindogens they are readily known by having a flower of 6 coloured piecea， 6 stauens with the anthers opening insards，and a superior 3 －celled ovary chauging to a 3 －celled fruit．

 acteion of a tive ficit，bowing the celis and arede．

This order in divided into seversl sections，of which Dr．Lindley gires the following account in hia＂Vegetable Kingiom：－

Tulipen are the folin of duaicu，and they may be justly regarded as the type of the order of Lilien．Bulbs ：amuad stems little or not
at all branched；flowers nsually larife sad gaily coloured，without tmembranous spathes，but axillary to leaves but littlo changed，the calyx and corolla and their parts ecarcely united，although often arrauged in a tube；anthers swinging lightly by the fine－drawn point of a stiff filament；and finally a dry seed－vessel－acparate the group from all that follow．They are anongst the gayest of our gardon fowers，as Tulips，Fritillaries，and Dog＇s－Tooth Violets tectify．One of them，the Lilium chalcidoaicum，a plant that covers the plains of Syria with its scarlet flowera，is most memorable from having been selected by our Saviour as the subject of allusion in his Sermon on the Mount．

The Ifemerocallect，or Day－Lilies，differ from tho last in nothing except their calyx and corolla heing so joined to each other as to form a tube of conspicuous length，and in their want of a bulb in many instances．The Agapanthus and the fragrant Tubcrose are the more remarkable among them；but Funlia，IIcmerocallis，Blandfortia，and the Velthcinias and Tritomas，are also species of familiar occurrence． Phormium，which yields the celebrated flax of New Zealand，with its hard perennial leaves and panicles of yellow flowers，must be con－ sidered to connect the present divieion with that of Aloes．There is so little to separate Aloinct，or Aloes，from the Day－Lilies，that scareely anything cau be named except their succulent foliage，and even that disappears in lucca，which has the hard leaves of Phormium， with whieh however its distinct sepals aud petals forbid its being associated．

With the Scillec，or Squills，we reach a division of the order abounding in beautiful epeciea，all of which are bulbous，with annual stems．Their peculiarity consists in tho anthers not being so lightly attached to the filaments as in Truliper，and in the leaves from whoee axils the fowers proceed acquiring a membranons condition．

Conantherece are Squills with the ovary partially adhering to the calyx and corolla，and springing from tubers，not bulbs．They offer a direct transition to Amaryllids．

Anthericer，or Asphodels，agreo with the last in Laving tubers or fleshy fascicled roots，and not bulbs，but their osary is free；they are therefore tuberoue fibrousrooted Squills．Chrysobactron，a genus gathered by Dr．Joseph Hooker in Auckland and Campbell＇s Islands， is described as dicecions，but apparently is polygamous，The fruit in these three last orlers is a capsule．

Aphyllanthcec are plante with the habit of Rusher，and the bracts so membranous and closely imbricated as to give the appearance of Xyrids when the Howers are past．They eem to form a connection between Lilies and some plants of the Juncal or Xyridal Alliances． The genera have been very insufficiently cammined．Xanthorrbaeas， called Grass．Trees in Australia，are very different in habit from the remninder ：their shrubby stems，which eumlato small palm－trees in appearsuce，bear tufts of long wiry foliage at their extremities，from the midst of which rise very long cylindrical spikes of densely－ compacted flowers，rcsembling Bullrushes．［Tyיнa．］

Asparajece are Lilies with a encculent fruit．They consist of plants extremely dissimilar in appearance，the Common Asparagus and the Lily of the Valley being associated under this title．In genemal their leaves are broad；in the genus Cordyline they even acquire the expanded form and diverging veins of the Amomal Alliance：their stems，although among the dwarfest that the Lilieg comprehend，are in tho Common Asparagus branchod and of considerable sizo，and in the Dragou．Treos they acquiro the dimeusions and age of large trees． A tendeney to the eeparation of sexes occurs here on the part of the geuus Ruscus，but it is not carried so far as to constituto a diclinous structure．

With respeet to Aspidistrea，concerning whose structure wo have very insufficieut information，they are principally kuown by a largo mushroom－shaped stigma．Thoir foliage is that of Zingibrraceer， Their flowers are dingy purple or green，with a campanulste periauth， ou whose sides the stanens are iuserted．In many respects they are very like Orontiacea，to which perhaps they ought to bo reforred．
In like manner tho Ohhiopogonce，or Teat－Worts，have a folingo hardly belonging to Lilies，Peliosanthes Tcta rescmbling a Ginger more than a plant of this order．They are remarkable for their needs bursting through the sides of the ovary at a very early period，growing freely though exposed to air，and finally nequiring the succulent appearance of a tuber．It is very uneertian whether they have any claims to the rank of Lilies．
The geograplical limits of this order are as wido as its differences of structure．Upon the wholo however the speeies are much more abundant in temperate climates than in the tropics，where they chiefly exist in an arborescent state．Aloes are mostly found in the southera parts of Afriea；one species is a native of the West Indies，and two or three more of Arabia and the East．Dracanas，the most gigantic of the order，attain their largest size in the Canaries；a ID．Draco there is described is being betwoen 70 and 75 feet high， 461 feet in circumference at the base，and was known to have been a very aucient tree in the year 1804．The northern flora compreheuds for the most part plants of the genern Scilla，IIyacinthus，Allium，and Ornitho－ gulum．In the liant Indies Lilyworts are raro；in Australia they form a distinctly－1narked feature of the vegetation；aud in New Zealand they are represented by the Phormium，or Flax－Bush．A very considerable number are employed for useful purposes．Among
them are those whose fibre is strong enough to furnish cordage, such as P. tenax, New Zealand Flax. The Onion, Garlie, snd Leek, long known as articles of diet, Chives, Shalots, and Rocambole, are species of the genus. Allium. [Allicm.] Aloes and Squills indicate the value of some Liliacese in medicine. As purgatives the Aloes are in extensive use. Resinous matters are yielded by some speeies, whence they have been useful in dysenteries. Of thesa the most celebrated is Dragon's Blood, a tonic astringent resin. The poots of Asparagus racemosus and A. adscendens are both employed medicinally in Northern India Polianthes tulerosa, or the Tuberose, is well known for its delieious fragrance. Other species are found to contain specisl properties, which render them servicesble to man in various ways.

There are 133 genera in this order, and 1200 species.
(Lindley, Vegeiable Kingdom.)
Lillales. [Endogens.]
LI'LIUM (the Latin Lilium and Greek Neípoov), a genus of Plants the type of the natural order Liliaceca. It has a perianth of 6 leaves spreading or reflexed, with a longitudinal nectariferous furrow st the base of esch; sn undivided style, capitate stigma, and flat seeds. The colour of the flowers is either white, yellow, or red.
L. candidum, Common White Lily, has lanceolate seattered leaves attenuated at the base; a bell-shaped smooth corolla; the petals of a beautiful shining white on their inside, ridged and not quite so transparent or luminous on their outside. The flowers are large, white, and in a cluster at the tep of the stem. It blossoms early in the summer, sud has been cultivated in our gardens from time immemorial. Great doubts had existed respecting the native habitat of this species, till Mr. Hawkins, the friend and companion of Dr. Sibthorp, fonnd it growing wild in that classical and celebrated spot the Vale of Tempe. It is the kpipor of Theocritus ('Id.' 23) and of Dioscoridee (3, 106). Both Pliny and Ovid have alded their testimony to the general admiration in whieh this plant has been universally held. The flowers have a pleasant sweet smell, and were formerly used for medicinal purposes, particularly as an anti-epileptic and anodyne. A water distilled from them had reputation as a cosmetic, but the odorous matter they contain is eo exceedingly volatila that it is impossibla to preserve it, as it is wholly earried off by evaporation. The roots only are found svailable in medicine, and they are frequently employed as emollient poultices, owing to the mucilaginous matter which they contain. It is however doubtful whether they are more efficacious than poultices formed of bread or farina. Gerard prescribes the lilyroot internally in dropsies, and for this purpose brcad was mada of barley-mesl with the juies of the roots instead of water, and eaten for a considerable length of time. This species, as well as others, is cultivated in Siberia, and eaten as the potato. The secnt of the Lily is exceedingly powerful, and peculiarly distressing in some cases. Murray mentions an instance of death ensuing from exposure to the odour of this plant.
L. bullifcrum, Bulb-Dearing or Orauge Lily, has linesr-lanceolate scattered leaves ; a bell-shaped ereet corolla, glandular and rough on the inside, downy without. The flowers are large and haudsome, of a beautiful red or orange colour, pale on the outside, and without nay scent. The bulb is composed of numerous thick white looselyimbricated scales. This apecies, and L. chalcedonicunt, is probably the kpivov of Theophrastus ('Mist. Plant.', 6, 6), and undoubtedly the $\eta \mu$ ррокaldls of Dioscorides (3, 127). It is a native of Italy, Austria, and North America.
L. auperbum, Superb Martagon Lily, has a revolute corolla, the lowcr leaves whorled, the rest scattered. The flowars form \& brached reflezed pyramid, and are large and handsome, one at the end of each branch, red or yellow with dark spots; their smell is disagreeable. The bulb is as white as ivory. It is a native of North America, whence it was imported by Mr. Peter Collinson in the year 1738.
L. Martagon, Turk's-Cap Iily, has whorled elliptic lanceolate learcs, a pubescent scabrous stem, nodding fowers, and a reflexed perianth. Though not a native of Great Britain it is nsturalised in copses in many places.

The species enumerated aro those most commonly cultivated in our gardens, each of which has many varieties and sab-vsrieties. They are capable of being propagated by planting the offsets of the roots and by sowing seeds to obtain new varieties. Every year the roots produce many offsets, which however, unless greatly wanted, are better left on for two or three years. The proper time for separating them is in summer and autumn, when the winter is past and the stalks decayed, cither by taking them from the mother-bulbs in the ground, or ramoving the whole and dividing the offsets from the main bulb when uncovered; they should then be planted in beds a foot asunder and thres inches deep, to remain a year or two ; the large roots set again in the borders singly. The sowing of seed is chiefly practised to obtain new warieties of Martagons; it should be done in the autamn, soon after the seed is ripe, in pots or boxes of rich light sandy earth, with holes in the bottoms half an inch deep. The pots or boxes should be placed in a sheltered position during the winter, and refreahed often at first with water. The plants will appear iu the opring; in August they should be transplanted into nursery-beds in flat drills an inch deep and three or four inches asunder. After having grown in this situation till the August or September following
they should be again transplanted into another bed, and at greater distances; after which they may be finally removed into the pleasureground. The bulbs should be planted singly, as they soon increase by offbets into large bunches. All the species and varieties of Lilium sre valuable as plants of ornament for the beauty of their flowers, which have a noble appearance. They are proper for the pleasureground, snd if planted with judgment succeed each other in blooming upwards of thrse months. The Common White Lily, the OrangeLily, snd Martagon will thrive under trees. The Orange-Lily also answers well for smsll gardens and confined situations in towns and cities.
(Babington, Manual of British Botany; Fraas, Synopsis Plantarum Ftore Classica ; Rees, Encyclopredia.)
Lily. [Liliem.]
LILY-BEETLE. The Crioceris merdigera, a species of Coleoptera, is thus named. [Criogerid.e.]
LILY-ENCRINITE. [Excrinites.]
Lima. [Pectinibranchlata.]
Limacelda. [Limax.]
LIMACIDE. [Limax.]
Limacina. [Hyaleide.]
LIMACI'NEA, M. De Blainville's name for his third family of Pulmobranchiata, the first order of his second sub-class, Paracephalophora Monoica. M. de Blainville thus defines the family, which comprises the genus Helix of Linneus :-
Auimal very variable in form; the head provided with two pair of tentacula completely retractile into the interior, the posterior pair longest, earrying the ayes on their extremities; one tooth in the upper lip; the lingual mass small, and covered with a skin beset with microscopic teeth.
Shell of a form as variabla as the body of the aninal, rarely subampullaceous, often normal, oval, or globular, sometimes turriculated, pupaceous, or discoid, almost constantly without an epidermis, rarely hairy (velue), with the summit always blunt; the aperture round, semilunar, oval or angular, but never notehed.
M. De Blainville adds, as an observation, that all the animals of thie family are terrestrial; and that, with the exception of Testacella, sll feed on vegetable substanees.

Thy following are the genera comprehended under the Limacinea in the 'Malacologie' of the author above quoted:-
Succinea, comprehending also Amphibulimus of Lamarck.
Bulimus, comprehending also Butimulus of Leach.
Achatina, compreheuding also the genera Ligurs of Denys de Montfort, and Polyphemus of the bame author.

Clausilia.
Pupa, comprehending also the genera Chondrus of Cuvier, Gibbus of Denys de Montfort, Vertigo of Müller, and Partula of De Férussac.

Tomogeres of De Montfort (Anostoma of Lamarek).
Helix, comprehending the genera Carocolla, Lamarck; Iberus, De Montfort; Caracolus, De Montfort; Acavus, Dコ Montfort; Helicella, Lamarck; and Zonites, De Montfort.
Ifelicolinax (Vitrine), iueluding the genus Ifelicarion of De Ferussac : Tretacella, Parmacella, Limacella.
Limux, including the genera Arion, De Férussae; Philomique of Rrfinesque; snd Eumèle of the last-named author.

Onchidium, including Veronicella, Blainville. [Helicides; Limax.]
LIMAX, the Latin name for those air-breathing naked Gastropodous Molluses, so injurious to the agriculturist and horticulturist, vernaeularly known by the name of Slugs.
Linneus employed the term Limax as a generic appellation for the Naked Slugs, placing the genus at the head of his (Vermes) Mollusca, and eonprehending under it cight species, all terrestrial excepting the last, namely, L. papillosus, to which he assigns the European Oceau as a locality, adding that the animal is submarine, sad should probably be rather referred to the genus $D_{\text {oris. }}$

The following is the defiuition given by Linnæus:-
Body oblong, repent, with a fleshy shield abore and a longitudinal flat dise below. A dextral lateral foramen for the geuitals and excrements. 'Hour tentacles ahove the month. ('Systema Nature,' ed. 12, 1767.)
In addition to this employment of the term, Limmeus used the word Limax to designate the soft parts of most of the genera of his (Vermes) Testacea, indeed of all that progress upon a flattened dise or foot, marine as well as terrestrial ; for the very imperfect informatiou of the time when he wrote did not euable him to make those distinctions which modern zoologists have pointed out, aidsd by more copious materials, and by the labours of aecurate zootomists and observers bestowed upon those matcrials. Thus we find in tha 'Systema Natnre :'-"Conus. Animal Limax."-" Cyproce. Animal Limax."-"Bulla. Animal Limax."-"Volita. Animal Limax," In short, the suinnal of each genus of his 'Univalvia spirit regulari,' with the exception of A ryonauta and Nautilus, is stated to be a Limax; and the same animal is also assigued to Patella, which stands at the head of his 'Univalvia absquc spirit regulari.'
Cuvier, in the first edition of his ' Regne Auimal' (1817), plaees the 'Limaces' (Limax, Linn.) at the Lead of his Pulmonés Terrestres, nearly all of which he describes as having four tentacles; two or three only of very small size not having exhibited the lower pair-" n'ont

太AT. HIST. DIV. VOL. II.

Fa

lalane voir lo paine inferienra." Thove among them, he adds, which have no apparent whell formed, according to linmeus, the genus Limar, which Curier nulmlivides into the grouph of tho Limacen or Slugs properly so called (Limour, Linn.); the Testacellos (Teafocella, Lam.); and the Parmacelles (Parmacella, Cur.). In the last edlition of the 'Itame Animal (1830), be adda uader himax the nubdiviaions dis. tissuinhed by Do F゙'sussac, namely, A rion and l"ajinshus.

Ifs both edition ho describes the 'Limacea propremeut dits' as haring an elongated body, and for a mnutlo n fleshy compret diac, which occupies the auterior part of the body alone, and covers the pulmonary carity only. This dinc coutrina, lie mulds, in many speciea, a monall oblong ned flat ghell, or at least a calcareous seetetion in lieu of it The orifice of reupimen is on the right side, towards the frout, and the anun in pierecl at ita ponterior border. The four tentacles are put forth and withdrawn by uncolling themaelves (en ae déroulant) like the fingers of gloven, and the hend itself can be withdrawn in part under the dise of the mantle. The organs of generation open nader the right upper teatrele. There in but one jaw (upper), in the fomm of a dentilntevl crescent, which serves them to ganw with much roncity the herha rud fruitn to which they do so much damnge. Their stomach in clongated, ainjule, and membranous.
Lamarck (') Jintoin Naturelle des Animaux bans Vertebres,' tom. ri. jath ii. 1s으) thus defiues his Limaciens:-Branchive ereeping (rampantes), under the form of a rascular net upon the wall (paroi) of a particular cavity, the aperture of which is a holo which the animal contracts or dilatem at its pleasure. They respire the free air only.

The ame zoologist remarks that the Limacians constitute a natural family nad n very remarkable one, inasmuch as the anianals which compone it nre the only onea among the Gastropods whose respiratory organ, which is truly branchial, breathes nothing but free air, and he thence namen them I'neumobranches. These molluses, he continues, aro naked or nearly naked. Their body is elongated, creeping upon a ventral diac which is not separated from it, sad bordered on the aides by n manto which is most frequently very narrow. Origiaally from the waten (originnires des eaux), they live habitually in their nelghbourhood; but somo iuhnbit, nerertheless, places which are at a dintance fron tha water, but nearly always in cool and humid localitien. They have accustomed theuselves (ils as sont accoutumes) to breatho air with their branchice; so that this habit has become a accensity to them. Hors it in, for the first timo, as regards the molluach, that the free air is the fluid lireathed. This fluid penetrates by a hole, and without either trachea or broachise into a particular carity which is not divided iato many partitions (loges) or cellules, but on the walla of which little lace-like vessels or a vascular network (I]es cordonacts ou deo lacis do raisseaux) creep in divers forms and receive the influcnee of the respration. A similar or analogous cavity in founl in a great aumber of the Trachelipods; but in thoso which rewrive air only, the induence of this fluid, being very superior to that of water, requires in tho organ preseated to it only a very manall murface Thua the vacular laceliko work (cordonmets vascu. lairea) which erceps over the walls of the cavity, nad which in that renpect resemblea he same jarts in the I imaciane, project very little; whilst in thone which respire water only the cavity oflers very projecting and vancular parta (nueh as pectinnted lamina of ditferent nizea) to the influence of the fluid reapired. The branchial cavities of which we are neenking, even that which in ndapted for breathing air only, canunt be reatonably confounded with a lung, which is a reapiratory organ of a particular fanhion, ndapted to orgamisationa of a auperior onder, an organ which is embentially cellular, and into which tho duinl reapired in introduced at least by an interonl trachea, and often liy bronchime baiden. Thin modification, then, of the respiratory ofna han peculiar claracters which liranchite or gilla, whatever be their form aud wiluation, aceer offer. If, in order to determine the name or the kind (esprece) of a reapirntory organ, that organ in considerol ouly with refrence to the fluil rexpired, then all animaln which reapiof free nir uny bo maill to poamenn a lung; but if, in ordor to facilitate the aturly of the diferent modifications of organs which entre for reaplration, and in orcicr to meizo the means which naturo ban employed to eflect tlin frogresuive composition of tho namal organiantion an well an ith perfection, ono considers the charactern proper to exch nort of rempimatory organ, it will then be evilent that no toolluwe nor any other invertebrati animal reapirea by meang of a lung, althoush many nmong them renpire the free air. Besides, indefaniantly of tha particular nad well known atructure of evory lung, ithe air never penctraces rxeryt by the mouth of the animal, whilat in every rmpimiory organ dintinct from a lung the flud reapired, whatarer it be, im niway" introfluced liy another parage. To confound nlyect, no differcot, mach of which in appropriated to the degreo of oreanisation to which it lelomen, aul can ooly exiat in an organiantion of that dectec. is, in our opinion, to render the knowledge of the orime of onturn in her jromluction impmaible. In fact, in the courad of the noimal kinglom, nuch a function could not bo executerl except hy an argao or eyatem of orgats differently roodifierl, becaues it must The it relation with the ntato of orgnoination of which it forma a part.

To return, continuea inmanck, to the partieular object befom un, I will may thas bmaclase, alabough thing preamt themselvea unler a multitule of forma and different witustionw, never rememble, notwith.
standing, a lung. This reapiratory organ, then, is peculiar; and we know that it has tho powor of labituating itself to respire air. In fact many Crustaceans which live nearly constantly on land respire there this last fluid ouly with their brauchie. If the Colimaces, as well as the Limueams, have a branchial cavity aimilar to that of the Limacians, and breathe the free sir only, this cavity is also the same as that of the Molanians and other Trachelipods which breathe water only. But in the first the respiratory organ presents a small surface only to the fluid respired; whilat in the socond the organ in question offers a much larger extent of surface. In each case these organs aro always branchial, but adapted to the power of the influence of the fluid respired, and situated in analogous cavities.

Thus far Lamarok, who concludes by comprehending under his Limacians the following five genera:-Onchidium, Parmacella, Limax, Testacella, and litrina.

The second section of the Limacineans of M. De Blainville, or those which have the anterior bonder of the mantle enlarged into a species of buckler, the shell being wull or nearly membranous, consist of tho genera Vitrina, or Helicolimax, Tcsfacella, Parmacella, Limacella, Limax, and Onchidium [Limacinea]. With regard to the marine species, which Cuvier has approximated to these, M. Do Blainville observes that they constitute his genus Peronia in his order of Cyclohranchians. [Nudibranchiata.]
M. lang arranges the Limaces of Ferussac (Limnciens of Lamarek, Limacines of De Blainville, Nudilimaces of Latreille) as the first family of tho Pulmonés Inoperculés of De Fórussac (Pulmobranches of De Blainville), and makes it consist of tho geaera Onchis, Fér.; Onchidie, Cuv.; Peronia, De Blanv.; Onchidium, Buchanan; Veronicella, De Blanv.; Vaginulus, Do Fer.; having a general cuirass,

The geners Limacella, Blainv.; Limax, Lnm. (including Arion, Fer.) ; Parmacella, Cuv.; which have a partial cuirass: and

The genus Tcstacella (including the Plectrophore) of Férussac, which is without auy cuirass.
M. Deshayes makes the following remarks on Lamarck's classification of this group of Mollusca :-"We have already censured in the method of Lamarck the scparation of the Gastropods and the Trachelipods-a separation artifieial and useless, especially as regards the grand aeries of molluscs, where this division is the less tolerable, because there it is that the passage of the Gastropods, properly 80 called, and of the Trachelipods is effected in the most imperceptible manner and by moans of a curious serics of modifications. Cuvier, who, in his memoir on the Limaces and Helices, has justly advanced the proposition that there scarcely exist any zoological characters proper for the distinction of these two genera, could not coincide in the opiaion of Lamarck, and in this he was wisely imitated by the greatest number of zoologists. M. de Ferussnc collected into two orders all the airbreathing molluses, according as they were or were not provided with an operculum. Those which are operculated are few, and consist of two genera only, which we find among the Trachelipods of Lamarok. Those which are not opereulated comprise a considerable number of genera grouped in families. The first is that of the Limaces, corresponding exactly enough with the family of Limacians of Lamarck. It comprehends however twelve genem, whilst that of Lamarck only contains five; but when wo come to examine attentively these different genera admitted by M. da Ferussac, wo moon pereeiva that many aro too uncertain to be definitely adopted. M. De Blainville himself has rejected many of the genera of this family which he had at first adopted; and in his 'Ireatise on Malscology' he lass reduced them to five. M. Cuvier, in the last edition of the 'Regno Animal,' has not adopted more than the genus l'agimulus, to which M. De Blainville has given the name of Peronia, which occasions a sad confusion in nomenclature. It will suffico thon to add the genus Vaginulus to the family of Limacians of Lamarck, to render jt as complete as the most positive obaervations require."

Dr. J. E. Gray js of opiaion tlint at present only a few genera, as Arion and IJelicarion, Fér., Namina, Gray, and Stenopus, Guilding, can be referrod with certainty to the Arionida, though he thinks it very probablo that, when the animils of other shells are knowa, many of them may be found to belong to that frmily. In this state of our information wo shall confine ourselses in this nrticle to those forms of the naked truly terrestrial Limacide, which are for the most part popularly known under the wame of Slugs, nnd shall notice the genera with extcrual shells hader their respective titles, though wo quite agree in the principla of the general similarity of the zoological charscters of the Limaces and IIdices, nud tho almost imperceptible gradation of form among them. [ItElicinan]

Faginulus (Férussac). Animal oblong, clongated, often very slender in ita ntate of exteusion, convex above; a cuirass covering the whola of the body, cxtending beyond it, and forming in front a sort of hood, wherein tho head can be withdrawn; mouth armed with an upper jnw; four contractile tentacles, the two upper ones long and oculiferous, the anterior ehort, and, as it were, palmatod or bifurcated at their extremity ; the font oblong, clongnted; the reapiratory cavity towards the middle of the body liaving its orifice behind, at the extremity of a long camal, and eeparated from the anus by s membrane ouly: organs of generation very diatinct on the right, the male organ being near the amall tentacle, and the orifice for the egga towards the middle; no terminal mucous pore.

Shell null, there being neither rudimentary internal sbell nor calcareous concretion." (hang.)
V. Taunaisi (Onchidium lave, Blainville), may be taken as an example.

Paginulus.
a, the animal contracted (under side); b, the animal extended and in progression.
The genus Vaginulus is found in East aad West Indies. M. Rang, who remarks that they hare been said to be both terreatrial and freshwater, states that he never met with them in Bourbon and Martinique, except in the wooda and gardens under old fallen trunka.
There is great confusion about the nomenclature of Onchiulium, Peromia, Veronicella, aod Vaginulus. Cuvier observea that Vajinulus is different from Onchidium, with which M. De Blainville has united it, at the amme time that he has detached the true Onchidia, to form his genus Peronia. It appears in fact, as M. Deshayes observes, that M. De Blainville has made of the marine Onchidia of Cuvier his (De Blainville's) genus Peronia, which he places in his family Cyclobranchitta near Doris, and that he collects the freah-water species under the genus Vaginulus, to which he unitcs hia genus Veronicella, which last he has himself rejected.
Limacella (De Blainville).-Animal clongated, sub-cylindrical, provided with a foot as long and as large as itself, from which it is separated only by a furrow; enveluped in a thick ekin, forming at the anterier part of the back a sort of buckler for the protection of the pulmenary cavity, the orifice of which is at its right border; the orifices of the generative apparatus distant, that of the oviduct at the posterior part of the right side, and communicating by a furrow with the termination of the male organ, situated at the root of the right tentacle.
L. Elfortiana is a good example.

Limacella Eifortiana.
Limax.-Animal oblong, more or less elongated, dcmi-cylindrical, furnished with a cuirass at the anterior part; head sufficiently distinct, retractile under the cuirass, carrying two pairs of tentacles equally retractile, terminated in a rising (bouton), the upper pair loug and oculiferous, the lower pair ahurt; foot great and oblong, the pulmenary cavity aituated under the cuirass, and opening under its right border ; orifice of the anus at the posterior border of that of the respiratory cavity; organa of generation united and showiog themselves at the rizht side anteriorly, near the great tentacle; sometimea a terminal mucous pore. A rudimentary internal shell, or calcareous concretions in the thickness of the cuirass.

Such is the general definition of Limax by M. Rang. He observes that M. De Ferussac acized on certain ndomaliea in the characters of these molluacs, which led the latter to separate a certain number, out of which he forms his genus Arion. M. Rang observes that this distinction has not been adopted by M. De Blainville, excepting for the establishment of two sections; but M. Rang thinks it better to form the whole into two sub-genera, namely, Arion, Férussac, and Limuc, the latter consisting of the slugs properly so called.
M. De Blainville divides the geuus Limax into four sections: the 1st cossisting of those species in which the pulmonary orifice is very anterior, the tail carinated, and the rudiment of the shell most evident. This section consists of the Gray Sluga; Limax griseus is given as an example.

The 2 ad aection consists of species whose pulmonary orifice is more posterior; the tail net carinated, hollowed at its extremity into a blind sinus, and the rudiment of the shell gravulous. This section consists of the Red Slugs (genus Arion, De Férussac). The example given is L. rufus.

The 3rd section consista of species whose buckler is not distinct, and which have the ocular tentaclea club-shaped, and the others lateral and oblong (geaus Philonique of Rafinesque). The example given is L. Oxyurus.

The the section comprehends those apecies whose buckler is not
distinct, and which have the two pairs of teatacles cylindrical, nearly on the same line, the smaller ones being betweeu the greater (genus Eumeles, Rafinesque). The example given is L. nebulosus.

The two last sections are not noticed by M. Rang ; and Cuvier is of opinion that the two genera recorded by M. Rafinesque are too imperfectly indicated to be admitted inte his (M. Cuvier's) work. M. Raug also declinea to admit them till there is more information on the subject.

Sub-genus Arion.-Respiratory orifice situated comparatively forward, towards the anterior part of the buckler, which is rough (chagrinée) and contains small calcareous concretions. There ia a termioal mucous pore.
A. rufus, De Fér., Limax rufus, Linn. This apecies is sometimes nearly quite black.

Red Slug (Arion rufus).
Sub-gemus Limax.-Respiratory orifice situated comparatively backwards; the buckler is marked with fine and concentric strix, containing a testaceous rudiment which is solid but without any volutatury impreasion. There is no terminal mucous pore.
L. antiquorum, De Fér., L. maximus, Linn., Gray Slug.

Gray Slug (Limax antiquorum, De Fér. ; Limax maximus, Linn.).
a, Internal shell; b, the same enlarged; c, intcrnal view of the shell from another individual.

The geographical distribution of this genus ia very wide; but the northern and temperate countries of beth continests eeem to be plagued with a greater number than those of the torrid zonc. They are found in Africa, and have been noticed at each extremity of that quarter of the globe. Messrs. Quoy and Gaimard describe some from Australia, and M. Rang aaw them in India and in the island of Mauritius.
The specica of this genus can bardly be of any direct utility to man, with the exception of the supposed virtues of a decoction or 'bouillon' of Red Slugs in disorders of the chest, whilst the injury which they inflict on the gardeu and the field is most devastating, notwithstanding the number of birds which prey upon them. Gardeners are constantly racking their invention to free themsel ves from these devouring hosts. Quicklime, soot, fine coal ashes, nud saw-dust have been used as defences for young and tender plants. The virtue of the first is soon exhausted and the slugs do not care much for the second after a while, but if the aoot be plentifully and frequently reuewed it will keep them away in great measure. Coal-ashes, not too coarse, and saw-dus' annoy them by sticking to their fuot and impeding them.' A stout coarse horsehair line, auch as is used for hanging clothes out to dry, coiled round the stems of wall fruit-trees and atretched along the wall, will operate as a protection to the fruit from both suails and slugs, iu consequence of the bristly surface presented to them, and which they shrink from encounterisg. Care must of course be taken that they do not get under it. Watering eveniog and morning with strong fresh lime-water is aaid to have a good effect, for it penetrates about the roots of the plauts and into the earth, where they lie hid. Thin slices of any vegetable of which they arc mere fond than of the crop to be protected will allure them, and they may be thus killed by, acores early in the morning by dividing them suddenly with a sharp instrument. The dead bodies should be left on the spot as a bait, for we have aeen the living alugs preying upon the exposed bowels of the dead ones, most probably attracted by the half digested vegetablo matter. Ducks destroy great numbers of thcso pests, whilst they improve themselves, but they are apt to trample down a young and delicate crop of vegetables.
M. Deshayes, in his edition of Lamarck, remarks that the great gcnus Limax is not so easy to study as might be aupposed; the colour of the species is easily modified, and everything leads to the belief that they have been multiplied by those authors who havo attached too much importance to these characters. M. Deshayes presumes that the Europeas apecies are less sumerous than some aaturalists suppose. In passing from the north to the south the Limaces undergo modifications aimilar to those undergone by other Mellusea; and when we have under our eyes a series of modifications impressed upon a species which has lived under differout circumstances
with regand to temperature, and when we remark that theme modifications ane capable of being relucel to constaut lawn, we nay believe that modifriog apencies which liavo acted with so much jower on certain races hare lad an equal effect on others; and we may foresee, by an induction not at all forced, the future resules of observation on this wubject If wo sec, in fact, precies of Ifelices modified wo may lelieve that gimilar modificationa hare taked place in tho Limoces. These modifications are doubtles less easily recognisel it tho lastmentioned genus; for there is no molid kell by means of which they may be traced. In this state of things M. Desinges is of opiaion that the only means which science offers for the distinction of the different *pecies of Limar coming from the warm and cold regions of Europe are to be found in a ininute dissection. A comparison resting on the form and disposition of certain internal organs would lead, he doubts not, to satisfactory remulta. Curier, continues M. Deshayes, in his suatomical mensoir on the Jdelices nad Limaces, has dousonstrated all the analogy which exists between these two genern Thas those zoologiats whom labhits of olwervation enable them to discover tho ordinary march of nature might expect to see filled up tho considerable interval, in referenco to the shell, which would seem to exist between tho two genera. The Marine Molluses have already offered, If not in the anme family, at least in the same group, a pheuomenon mufficiently similar to that which is exhibited among the Limaces suld Jlelices. In many of the species of Limar we find no traco of a shell; in others some calcareous grains are observed in as sac included in the thickness of the buckler, placed abore the lieart and brauchia. These graius agglutinated constitute in a considerablo number of species a flat calcarcoun plate, entirely internal ; soon wo find this plate coming out abd showing somo of its parts externally, whils the remainder is etill embedded in the thickness of the mantle, but its freo extremity begiua to be triated spirally. Thin aub-interual shell, quite incapable of containing the least part of the numal, incroases gradually, changes its place when the organ of respimtion cbsnges its situation, and fiaishes by joasesing by very insenaiblo degrees a derelopment sufficiently considerable to contain tho entiro animal, as in certain loitrine and in all the Jlelices. Of the different degrees which exist between these tro extremes of the series of these different modifications zoologista havo mado no many genem.
M. Deshaye concludes his obserrations by remarking that the hintory of the limaces is at the present day become very considerable, and be finde it itnprosible to exhibit a complete riew of it; for even the greateat brevity would lead him to orerstep tha limits which be necestarily imposed on blmaclf in editing the work from which wo have quoted. Ilo refers tho reader partienlarly to the memoirs of Cuvier for the amatomical part, and to the great work of Do Ferusase for the bintory of the genum, the distiuction of the epecies, aud the discuraion of their characters

The rader will Gind parts of the orgauisation of some of the Simaces in the Museum of the Jloyal Collego of Surgeons. Numbera 2297 to 2309 (Gallery), both inslusive, exhibit the generative aystem of the Slogn Numbers 2303 to 2311 , both inclusive, illustrate the namo ystem in the Snaila (Jfelir). No. 2315 in a specimen of tho apiculum monoris or calcarcoun dart of a Suail; and Numbers 2516 to 2849 , both inclusire, are illustrative of the coitus in Mclic capersa.

Parruacella_-Animal elongated, oblong, demi.cylindrical, covered on the middle of the back by a rounded oblong fleelas cuirass, which fo tongreat exteut frec in front; head sufficiently distinct, cartying two pain of retractilo tentaclen, tho ono auperior, long and oculiferou", the other anterior and hoort; foot large and oblong; reapiratory earlis uader the ponterior part of the cuiranh, operiag, as well as tho saun, by a common malution of continuity under its right border, a littlo hack warla; orifice of generntion single, near the right teatacle.

Shell fattenel, calcarcoun, with a membranous epidermis, oval, wightly bent is the direction of ite width, with a anmmit marked by a deep sinum on tho right side poateriorly, placed in tho thicknews of the cuiran, above the rempimary envity. Curier retnarke that the ahell exhibita behind a mlight commencement of a splre.
De Bhainvillo divides the genus joto two rection: tho first consiatiug of specien whome tail in not carinated and whono shell is subspiral (example, P. Tamnaini and f. Jalliolum, Ie Fér.); the necond npecies which are moro deprowed, tho tail carinated, aud the ahell seutiform (example, J'. Miricri.)

Io Maidrille ("Malacologie') obecree that only two species nre known, one from South Amerien, the other from Iernia Species are his "IRgne Anlmal," noticem tho species firnt known, P' Ohicri, and magn that there in mother from l'rasil (P^{\prime}. Pallukum, 1) P For.), and some cthers from the Indim, mraning probsbly the liant luelica M. Mang, Who remark that the J'armacille form a very natuma genua, very clowely appoximating to the Slogn, ataten that in thrizil they inhabit the wonda, toot that at Hourlma amil Marlagancar ho never found then except upon rocke near fresls-wnter torrenth lle muld that Olivier brouzht the firnt apeclinen from Mrmopotania, amd that it wan this which nerved for the snatomical remearchen of Cuvier, under tho mame of P. Oirieri; that lio Firunac han deocribol another muler the mame of f'. J'olliolum; and that le (M. Itagg) brought back froun hly royage in the Inlian Seas two othern, one of which, F. Ran. gianm, han veen described hy M. Do Firumac as an Arion ('Bull. dea

Sciences,' February 1827); this was from the Isle of Bourbon and Marlagascar.
I. Oliricri may be taken as an example. It is a native of Mesopotamia.

> farmacella Olirieri.
M. Deshayes (ind ell. Lank, tome vii., 1836) does not ald to the single species gircu by Lamarck, namels, P. Olivicri, Cuvier, (P. Nesopotamie, Oken); but he states that nn animal coming from Brazil had been sent to M. De Férussac, and auatomised by M. De Blainville; nnd had been nssigned by those authors to the genus Parmacella. This aninm, according to M. Deshayes, offers nevertheless remarkable differeaces in the disposition of the organs of generation; but he thinks that these characters do not appear sufficient for the establiehment of a genus. Sinco then, he adds, Messrs. Webb and Bertholet, who hare explored the Canaries with such scrupulous attention, havo observed there n molluse closely approaching the Parmaceller, and especially that from I3razil, and in their aynoptic Prodromus ('Ann. des Sci. Nat.,' Marel 1833) thoy havo proposed to establish for it a genus under the nane of Cryptella; but M. Deshayes ststes that he waits for the description and figuro before he proneunces on its admissiou or rejection.

The little fisli the Lancelet was at first referred to the genus Limax. [Bnavemostoma.]

LIMBILITE, a Mineral so called by Saussure, which occurs in the voleadic hill of Limburg. It is found in irregular grains. Structure compact. Hardness 6.0 to $5 \cdot 0$. Scratches glabs easily. Celour honey-yellow. Melts into a black enamel.

LIME, one of the Farths, an oxide of a mctal called Calcinm. It combines with various scids, forming conspicuous materinls of the earth's surface. Vith tho exception of nitrate of lime, none of the native salts of lime aro soluble except in minute proportions. They give no odour and no metallic re-sction before the blow-pipe. The principal native ealts are-Sulphate of Lime [Grisum; Anhyonire], Carbonato of Lime [Cabcareous Spar; Ahragonite], Magnesisa Carbonate of Limo [Dolomite], Phosphate of Lime [Apatite], and Fluoride of Calcium, or liluate of Lime [Ficon-Spar].

In addition to theso the following salts of time have been observed:-

Ocalate of Sime. It occurs crystallised. Its primary form au obliquo rhombic prism, and from one-tenth to one-fourth of an inch long. Colourless. Fincture conchoidal. Harducss rather less than calcspar. Very brittle. Iastre similar to that of sulphate of lead. Transparent to oprque. Specific gravity I.833. Supposed to have come from Hungary. Its nualysis, by Sandell, showed its composition to be oxalnte of lime with ono equivalent of water.

Haycsiae, or Hydrous borate of Lime, found in South America.
Jydroboracire, a Hydrous borato of Lime aud Magnesin
Nitrate of Litac, found in tho form of a whito delicate eftlorescenco. It occurs in caveras io many parts of the world, and is used for the manufacture of gunpowder.

LIM1: [Cituus.]
LIMLA, OLALATE OF, [LINE]
LIME-TREE. [TiLis.]
LIMESTON:. This term in applied to a great variety of earthy compounds, in which earbonnte of lime is tho predominant ingredient. I'he chemical, molecular, and structural characters of limestone are extremely interesting to mineralogy, nond deserve from geologists a greater share of nttention than has usually been giren to them. In regard to the chemical composition of limestones, we may notice that. some, sa statuary marble, are nearly pure carbonate of lime; others, an the dolomitic rock of the Alp, contain a certain proportion of carbonate of magucaís ; and somo aro penetrated by bituminous matter, as the black marbles of Forkshire. Limestoues also rary in quality, and becomo debased by sdiaixture with sand, clay, oxido of iron, pyrites, \&c.; so that there is in fact a renl gradation from limeatone to schint, to sandstone, to shale, to ironstone, \&ic. Limestones have a crystalline nggregation, ns statuary marble, and generally the limestouch mixed with primary aystems of strata; or they are composed of small crystalline grainm, as the magnesinn limestone of Mansfield in Nottinghamaire; full of romd concretionary parta, as the oolites of Portland, Lath, and Oxford; earthy, as chalk and some magnexian limentones; or compact, as the lithographic stone of Solenhofen. Tho limestone rocks of Building llill, Sunderland, rememble a coral reef. The beds of calcareous rocks are of every thickness, from a mero lamian to nome yards thick; they are trsversed by divisional planes more or less regular, and very thick beds assume
a prismatic structure, as in Yorkshire. The colours of limestone vary indefinitely. When argillaceous matter is mixed with the calcareous basis of the rock, the colour generally approaches to blue; magnesian and oohitic limestones are often jellow; primary limestone and chalk are generally white; the Tiree marble is red; some of the Derbyshire and Kilkenny marble is black; and there are many reined and particoloured marbles, as those of Babbacombe, Sienna, \&c.

Limestones contain a very large proportion of the organic bodies which diversify the stratified rocks, few except the early primary limestones being wholly deficient of shells, corals, fishes, \&c. Occasionally shells and zoophytes contribute to the beauty of particular marbles, as the shell marble of Carinthia, Purheck, \&c., the crimoidnl marble of Derbyshire, and the coralliferous limestone of Weardale. [Mountan Limestone Formation.]

LIMNAA. [LimNEAD.E.]
LIMNEADA, a family of fresh-Water Testaceous Mollusca, consisting of the genera Planorbis, Limncea, Physa, and Ancylus.

Two of these forms (Planorbis and Limncea) were iocluded by Linmens under his great genus /Ielix; the third was arranged by him among the heterogeneous assemblage of testaceous animals, which he placed noder his genus Bulla. Ancylus is placed in this family by Forbes and Hanley. Miiller separated the first of these under the name of Planorbis, and the eecond under the name of Buccinum, a name already pre-occupied by Lindaus for a genus of Marice Testaceous Gastropods entirely different, and Lamarck changed the name to Lymnaca, or, as it should be more correctly written, Limncea. Adanson appears to have been the first who established the genus aftertwards named Physa by Draparnaud, and the former gave it the appellation of Bulin. Bruguieres followed Müller as far as regards Planorbis, but he placed the other two forms under his genus Bulimus. [Bu'Lumes.]

Lamarck collected thesc three genera in the following order, Planorbis, Physa, and Limncea under one family, his Lymuéens, with the following definition:-

Amphibian Trachelipoda, generally deprived of an operculum, and having flattened tentacles. They live in fresh-water, and come to respire the air at the surface.

Their shell is spirivalve, most frequently amooth on the exteral surface, and always having the right edge of its aperture sharp, and not reflected.

The general opinion secms to be that these three genera are well associated in forming the family Limnocado.

Cuvier, though he gives them no common family name, places the three genera together, observing that the Planorbca are the faithful companions of the Limnexe in all our atagnant waters.
M. De Blainville makes his first family of Pulmobranchiata (Limnacea) consiat of these thrce genera; and M. Rang, retaining Lamarck's vame, places the Limneens, consiating of the same gevera, as the fourth family of the Pulmonés Inoperculés of FĆrussac (Pulmobraches of De Blaiaville).

Mr. G. B. Sowerby howerer is of opinion that the genera Physa and Limnea ought not to be separated. He observes ('Genera. Limnea,' No. 8), that he finds himself obliged eitleer to unite two genera which have appeared distinct to Lamarck and Draparnaud, and which have been adopted by some succeeding writers, or, contrary to his wishes, and, 25 he thioke, to the interests of conchological science, we must not only separate the Physa from the Limnare, bat we must also adopt Dr. Fleming's Aplexa, and Dr. Leach's Myxas, each of which would, as far as we yet know, only contain one species. These, he adds, arc all fresh-water shells; and the only describable difference in the shells, except mere specific differences, consists in the Aplexa and Physa being beterostrophe shells, while the Linmea and Myxas are dextral. Greater differences he acknowledges are found in the auimals, chiefly in their tentacula and in their mantles; the Myxas of Leach and the Physa of Draparnand having the power of extending the edges of their mantle over a large portion of the external part of their shell, which the Limnea of Lamarck and the Aplexa of Fleming have not, while the tentacula of all but Physa are compressed and triangular, and even in Physa they are compressed according to Lamarck, though filiform : in all of them the eyes are found at the iuternal base of the tentacula, supported on very short tubercular pedicles. He concludes by uniting the whole of these geuera uader the geveric appellation of Limner, and divides them into four sections, thus :-

1. Shell very thin, subglobose, pelished; internal lip dilated; aperture ovate, dextral. Animal with the mantle reflected; the tentaclee short and trigonal. Myyras, Leach's manuacript; Melic glutinosa, Monts; Limnrea glutinasa, Drap.
2. Shell thin, ebovate, polished; internal lip dilated, the aperture ovate or ovato-lanceolate, pinistrnl. Animal with the mantle reflected; the tentacles subulate. Physa, Jamb.; Bulla, Lino.
3. Shell thin, oblong, polished; the internal lip equalling the extomal, the aperture lanceolate aurl sinistral. Animal with the mantle not reflected; the tentacles trigonal. Apleca, Fleming; Jhysa, Drap.; Bulla hypnorum, Linn.
4. Stell thin, generally oblong, rather solid; the aperture oval and dentral, the inner lip equalling the external one. Animal with the mantle not reflected, the tentacles compressed and trigonal. Lymncea, Lam. ; Melir, Linn.
M. Deshayes rejects this opinion, and retains Physa as a genus, for reasons which the reader will find under that head in this article.
Returning to Lamarck, we find him remarking upon the cause which led to the peculiar organisation of his Lymnéens, in accordauce with one of his favourite fanciful theories. It would seem, says he, that those fluviatile Trachelipods, which inhabited waters of little depth, such as those of small rivers, ponds, and marshes, which are exposed to the accident of being dried up, were often reduced to live in mud more or less desiccated. They then found themselves forced to habituate themselves to the air, to breathe it. This habit haviag modified their branchix, like those of the Colimacés, is become to them a matter of necessity; so that though living in the water, they are now obliged to come from time to time to its surface in order to breathe the free air. This circumstance in their manner of life seems to have had its influence in rendering an operculum useless to them ; and they are in general deprived of one. Those fluviatile Trachelipods, on the contrary, which we know to be unable to respire anything but water, have all an operculum.

It is only necessary to reflect for a moment on the principle involved in these suppositions, to reduce them to their true value.

Leaving his theoretical views for his practical observations, we find Lamarck thus neatly pointing out a leading character for distinguishing the family. "The Limneans have only two tentacles; they are flattened, and never oculated at their summit. ${ }^{3 \prime}$
M. De Blainville thus defines his family Limnacea:-

Body very variable in form; two tentacles enivently contractile, carrying sessile eyes at the internal side of their base.

Sbell delicate, with the external border constantly trenchant.
He further observes that the animals of this family are always found in fresh waters, stagnant or running, often at their surface, and sometimes in their depths. The shell he remarks, presents very variable forms. He arranges the genera in the following order :-Limncea, Physa, Planorbis.
M. Rang gives a more exteusivo definition of the Limnaceans of Lamarck (Limnacea of De Blainv.; Limoocochlides, without a collar, of Latreille), thus:-

Animal elongated, having the body distinct from the foot, and twisted spirally backwards; never any buckler (or cuirass), but a collar formed all round the neck by the edge of the mantle; head surmounted by a sort of veil which is very large; tentacles two in number, the eyes differently situated at their base; pulmonary cavity showing its orifice upon the collar; organs of generation separated; snus near the orifice of the lung.

Shell always complete, very much rolled up (trìs earoulée), delicate, and with the external border or lip trenchant.

All fluviatile.
M. lang arranges the genera in the following order:-Planorbis, Linncea, Physa. This is the order given by Cuvier, and, as far as these three genera are concerned, by Draparoaud, who however makes Ancylus intervene between Planorbis and Limneus.

Planortis.-Animal elongated, conpressed, slender, and very strongly rolled up; head furnished with two tentacles, which are contractile, setaccous, very long, and ooulated at their interbal base; mouth furnished superiorly with a cresceut-shaped tooth, and belory with a liugual mass armed with small hooks, and surmounted by a sort of veil which is short and notched; foot oval and rather short; respiratory orifice on the left, upon the collar, and approximated by that of the anus; organs of generation separate, on the same side; the male organ near the tentacle, and the ovary at the base of the collar.

Shell rather delicate, sinistral, very much rolled or coiled up on the same plane; concare on each side, the spire rcentrant (rentrant); aperture rounded with a sharp barder, and interrupted by the convcxity of the whorl which precedes it. (Rang.)

Ilanorbis. Shell and Animal, and egge.
a, Mlanorbis carinatus ; b, mass of cggs of Planorbis cornens on a leaf.
The species are widely diffused. Very few fiesh watera, cithex running or atagnant, are without some of the species.
M. Rang remarks that the geums Plemorbis ofters a curious anomals, namely, that the animal as well as the shell is sinistral, and cousequently the orifices, instead of being situated on the right side, as in other Gastropods, are placed on the left.

Mr. Sowerby (Geners, No. 4) remarks that the principal peculiarity in this gesus appears to him to consist in the fact that the shells of the genus are what are called reversed, a fact doubted by some, who bave described the species as umbilicated above. A careful examination of many of the species in a living state satisfied Mr. Sownby
that the animala carry their shelle in a directlon opposite to that of the generabity of turbinated mollosca, aud that the beart is placed in the Planorkes on the right aide, and tho rempiratory orifice on the left, exactly the reverne of their ponition is most others. Hut, he further observen, the knowledge of the aninal is not indispeneably necessary to prose this, as tho shell itself carries the demonstration, it leing only needful to obecrve ou which eide of the well the very npex of tho apire is to bo seen; if we tako that sile for the upper, in conformity to the atrict rulea of amalogy, it will, ho remarkn, be evident that themperture if on tho lefelanil mile. Mr. Sowerby bad for a lons time euterninel great doubt about the identity of some of the fosal apecies, which he is now satinfied are reverned shella, in the amon unamer as the otber Planorted, ilthough tho lower part of the dist in almont tat and carinated ot itsedge, and therefore beara n con alderable rescmblance to the flattened spire of some land shells, particularly the Jielix albella.

3r. Sowerby thua defines the genus Planorbis :-Shell discoid with n depreased apire, whose npex is alwage distinct: its whorls turn from right to left so that whe-u the spire is hell upwands and the sperture seen, it it on the left-hand alde. The abella are ventricose, frequently carinated, cither above or below; tho aperture is entire, its breadth equan to its length, sometitnes greater but (Mr . Sowerby believes) never leas; sometimes tho peritreme, or lip, is thickened and expanded, and it. lower part is alwaya extended forwnind : the umbilicus is very much expanded, and there is no operculum.

Mr. Sowerby further remarks that amo epecies, particularly when young, aro corend with n laniry epidermis
M. 1)cshayes (ed. lasunck, toru. viii., 1838) does not make any allusion to Mr. Sowerby' oherrations; but bo comee to n very differut conclusion. The Phaneties, may he, ma nll naturnlists know, are diacoll ahella, generally delicate and fragile, found in abundance in ataganut waters Some of the apecies are mo much fattencd that they seem perfectly fymmetrical, so that it is difficult, in these last at leant, to dietinguide the upper surface from the lower. This difficulty brings with it another, namely that of determining whether the apecles are dextral or sinistral. Thes intereating questions had not been iloeply dincused when M. Desmonlins pnblighed (1831), in the ' T'manactions of the Linnean Socicty of IVordeaux,' a well executed and very extenaive memoir, in which he examinea these different questions "In my preceling worka," continues M. Deshayea, "I have not perlapi attached sufficient ituportance to those researches for which it wam necesary to examine the living mimala, but nevertheless in 1524 I disposed conchologically of n part of the difticulty by saying, in my work ou the fosmils of the I'aris basin, that the upper side of the Jlanurber may be diatinguished from the lower by means of the oblupuity of the aperture, the upper part of which is most prowinent (avance). Thin modo of distinguinhing tho upper surface from the lower, aud of placing the ehell in its normal position, once sranted, it becomes casy to recognise which npecies nre dextral, and which ninintral. liy theso mesns wo perceive, as M. Desmoulins has very well denonntrited, that uesrly all the known apeclos of Planorbes, both living and fowail, are dextral; even those which the most estecnuel authora lual judged to to niniatral, from the depth of the unbilicus. But if by the obmervition of the aperture we come to the "conclumion that the shell of the Planorbes is dextral, n difflculty presenta itself, mamely, that the numals which inhouit these dextral shella are winintal, if we jurgo by the ponition of tho three orifices which the fulmoniferom mollumen exhibit exteriorly. Thum Cuvier han well remarked this tranmposition of tho orifices in Planorbis cornem, and linn not benitated to declare this mpecies sinistral, contrary to the opinion of limmens, of Miller, and of Dramarnaud, who mate that the riecien in umbilicated nbove. Cuvier corroborates hin opinion by an important fact, manely, that the boart in ou the right side an J"ianorbu, whilat it in on left in textml ahella of other genera; but Cuver ilul uot peay allention to tho organ of digention: findiag the leart on the right and the urificen on the left, he came to the concluaion that flunorbis cornous in sinistral; lue ought noverthelesm to have meen, befure ho aleliverel thiq definito julgment, in what real praition tho ongans are it iv to this puint that M. Dermoulima has eanecially applied himmelf, sud be mav that all the organs of digention and grocration remain in the pmition which they hohl in the dextral tunlluman, and that tho orificen only have na anormal ponition. "lhun the obact ratiom of M. Demmonlinn explain how, in tho gemas Planortin, Aplesarancen places nituintral animal in a dextral whell (a phenomenon whach we conaot conceive) and huw, in reality; the numand is dextral कa well an ith abell, and that there in no other derangement in the relationalip of these orgnize exempting in regan wo the heart, nul the termination of the digentivo orgath and thono of g"neration."

Tho mpeima aro mumerotm Lamarck reconled twelve receut grecien, inclosiog P'. Lornu Areew, which in not a Manorlsis, lut a discoid
 ten mote in the last elition of lamarck; Conral, Tromehel, and liroderip have canh deacribod one in mddition; nul new npecien are brought bomo loy alrnont ercery expedicion. M. Itang entatas that he hen known forlividuals of l^{\prime}. Leucobioma collected nt seize near loordeaux, by M. Huriou, whero tho animaln hol closed the abell by n kiber of opiphrazura analogoun to that of the Heloces.
P. cornce (Jflix cornea, Linn.). Shell opaque, plano-depressed
above, widely umbilicated beneath; of a horny or brown-chestuut colour; tho whorls truns versely etristed.

Shell of Pinnorbis corncus.
This, the largest living species of Jurope, if not the largest generally, is found in sluggish rivers and stagnant waters, such as old water-courses and drains in low swampy nituations. Thus it is plentiful about Oxford. Montagu sage thit it is certainly more local thau it is described to be by la Costa, who states that it is commou in all ponds, rivers, and lakea throughout Eugland. This, adds Montagu, is far from being the case, slthough it is sufficiently plentiful in somo parts, and he states that ho nover found it further westward than in Dorsetahire, where, about Warcham, it is abundant. Janarck records it as mu inhabitant of France in the rivers, and very common, about l'aris, in that of Gobeling.

Montagu, as well as others, have observed that thia specics yjelda a benutiful purple dyo (whence perhnps De Férussac's name, P. purpura), all attempts to fix which, either by ncids or astringenta, have hitherto proved ineffectual. The inside of the mouth of the shell in fine apecimens is occasionally of a colour approaching to violet.

Physa.-Animal of an oval form, more or less spiral; head furnished with two long tentacles, which nre setaceous and oculnted at their internal base; mantle with two lobes digitated on the edges, which can bo turned back so as to cover a couniderable part of the ehell; the foot is long, rouuded anteriorly, pointed posteriorly; the reat of the organisation as in Limnea, with the exception that the orifices are gonerally on tho left.

Shell generally siniatral, oval, elongated or nearly globular, smooth, delicate, nud rery fragilo; the aperture ovnl, a littlo narrowed behind; edgo of the right lip sharp; columella r little twisted, but without any plait; spire more or less shup nud elongated; the last whorl larger than all the others conjoincd. (lasig.)

a, Physa hypnorum ; b, mass of e巨ge, nataral alze; c, the name, magnifed.
The geographical diatribution of tho species is very extensive. Speeles havo mlrealy been fuand in tho tranquil fresh waters of nll tho four quarters of the globe. Europe has soveral species, and tho furm occurs in Americn, in Africa (there bein" little doubt that the Bulin of Adanon in a Phyna), in Australia, where it was found by M. Quoy, and in tho imlen of hourbon aud Mauritius, whence it was brought by M. lang. Dr. Gray bas named two suecies from tho East lodien mud ano from lern.

Mr. Q. 3. Sowerby, an we brro already seon, unites Physa and Limnora, making the latter include the former for the reasons above given. 3F. Jang, who notices their inhabiting the same places as the Limmara, nud their rememblance in organisation, observen that the nuimn of /hysa in diatinguished from that of Limuca by the form of ita teutaclen, an in the shell by its gonernlly siniatral diaposition like that of the Planorbes. Ho alno notices tho observation of M. De Blainville that there exint dextral apecies.
M. Deahnyen, in his edition of Lamarck, remarks that the genus Physa, entablished nt firnt by Admason uuder tho nnmo of Bulin, was not definitely introduced till I raparnaud presented it anew under the nano whicli it atill benrs. Admanon, he continues, hand too much argacity not to perceive the relatiunghip of hin Bulin with the Planorbes, and fails not to insint upon this point, nlthough ho points out the characteristic differences of the two gonera. After somo ubservntiuns on tho doukts of naturalints as to the snalogy presented by tho antmals of Planorbis and those of Physa sud Limnern, and the absence of doubt as to the distinguishing characters of the two last-mentioned genera, M. Deshayes thas continues:-
"Certainly, if we consider the shells only, there is s very great resemblance between a Physa sud a Limnera, but all the Physce are sinistral-the Limncere are dextral; the Physee have a polished and shining shell, because the animal has its mantle lobated and turned back upon the shell, which is not the case in Limnoea; the animsl of Physa carries on its head elongsted sud narrow tentacles, like those of Planorbis, and not triangular and thick ones, like those of Limneea. These characters seem sufficient to retaiu the two genera in the system, and consequently to reject the opiuion of Mr. Sowerby, who unites them in his genera."
Lamarck recorded four species of Physee (recent). M. Deshayes, in the last edition of the 'Histoire,' increases the number to ten; snd he regrets that M. Michaud has given no detail with regard to some species indicated as found in France, but which do not appear to live there Ife observes that Lamarck has recorded two Physce (P. castanea and P. subopaca), the first from the Garonne and tha last from the environs of Montpelier, which M. Michaud does not mentiou. M. Deshayes adds, that we must probably couclude, from the sileuce of M. Michaud, that these species have not been found, and that Lamarck, deceived by a false indication, has given them a babitat not theirs. Conrad has described an additional specics.
P. fontinalis, Drap. (Bulla fontinalis, Linn.). Shell sinistral, oval, diaphanous, smooth; of a yellowish-horn colour; spire very short and rather pointed.

Shell of Physa fontinalis.
It is found in England, Frauce, and North America (Claiborne, Alabama). Coarar.
Colonel Montagu ('Testacea Britannica') notices tha species as not uncommon in stagnant pools, as well as running waters, in many parts of the kingdom, and as most frequeatly found on the under part of the leaves of squatic plants. He gives a description of the animal, and says that when in motion it covers a great part of the shell with a this pinnated membrane, thrown out on the right side, cxtending quite behindsnd partly on the left side, covering the smaller volutions: this membrane (mantle) is, he says, very decply divided, or digitated, the points of which meet and sometimes intersect on the back of the shell, and it is so transparent as acarcely to be distinguished but by the assistsace of a glass. The foot he describes as long and narrow, and the foramen on the left side, "as must be the case with all the animala of this kind inhabiting heterostrophe shells." Colonel Montagu concludes his remarks on this species as follows:-"It has a very considerable locomotive power, and transports itself by adhering to the surface of the water, with the shell downwards, against which it crawla with as much apparent ease as on a solid body; and will sometimes let itself down gradually by a thread affixed to the surface of the water, in the manner of the Limax filans ('Linn. Trans,' iv. 85, t. 8) from the branch of a tree. The property of crawling under water against its surface is not wholly confined to this species; but we know of no other testaceous animal capable of suspending itself uoder water in the sama wsy except a species of Litiopa. [Litrops.] It has the power of throwing its shell sbout in an extraordinary manner, either in defeuce or to remova obstructions, continuing at the same time fixed by its foot. Probably this singular motion is sometimes occasioned by a minute species of Hirudo (Gordius inquilinus, Müll., 'Verm.') which infests this and many other fresh-water testaceous animals; tweuty or more may be eeen adhering to its sides like slender white flaments."

Limnea (Limneus, Limneeus, Lymncea).-Animsl of oval form, mora or less spiral ; head furnished with two flattened triangular tentacles, carrying the eyes st their base, on the interual side; mouth furnished with sn upper piece for masticstion, surmounted by a sort of very short veil ; foot oval, bilobated snteriorly, narrowad pesteriorly ; orifice of the pulmonary cavity on the right side, on the collar, in form of a furrow, and capable of being covered by a fleshy appeudage which borders it below; snus on the side; organs of generation distant, the orifice of the male intromissive organ bcing under the right teatacle, and that of the vagins at the entry of the pulmonary cavity.

Shell delicate, fragile, of an oval oblong, with a spire more or less sharp and elongated, snd on aperture longer than it is wide, ovsl, sometimes very large, with a sharp edge, not continuous, on account of the convexity of the preceding whorl; on the columella an oblique Mait. (Rang.)
M. Deshayes observes (last edition of Lamarck), that the animal of Limncta presents peculisr characters. Ou the head are two triangular tentacles very much eularged st the base, and having the eyes rather projecting on the upper and internsl part of that hass. The head is Parge and flattened, neparated from the foot by a shallow furrow. The foot inclines to oval, termianted in a point posteriorly, and delicate and flattened on the sides. The mantle, closed auteriorly and narrow, forms a sort of collar, as in the Helices. There is a great carity behind ita border. The uppar wall of this cavity, delicate and transo
parent, is covered ou its internal surface by a very well-developed vascular net-work, destined for respiration: it is near the aperture of the mantle, and a little below it, that the orifice of the anus is seen.
The Limncece appear to occur in almost sll parts of the world, but the form is most seeu in the temperste and northern regious.

Iimnea stagnalis.
Fresh waters, especially these which are stagnant, are the resort of the Limncere; in such situstions they abound, feeding on the aquatic plants ou whose stems they creep, and coming to the surface to respire the air. Here they may often be seen in a reversed position, and probably maintained in it by the air iu the branchial cavity. Like the Physce they have the power of locomotion when so situated, aud may be observed moviug their ventral disc, as if they were employing it against a solid surface, whereas the snimal ouly touches sn extremely thin lamins (so to speak) of watcr, which offers sufficient resistance for its progression. In the reproduction of the species the animals are employed somewhat differently from the Helicide and Limacider. though, like them, each individual is furnished with both male and femsle organs of generation; for the same Linnexa is capsble of serving at the same time as a male for a second and as a female for a third, sad by this conuectiou of one individual with two others a continuous chain of soma leagth is not unfrequently produced. Ne. 2313 of the fifth or allotriaudrous series of preparstious illustrating the principles of geueration, in the museum of the Roysl Collega of Surgeons in London ('Cstalague,' vol. iv., 'Physiological Series'), exhibits the soft parts of the generative, anal, and respiratory orifices of Limncea stagnalis, and shows how this Gastropod differs from the Limacides and Helicidee in the separation of the sbovementioned orifices from one snother. The number of eggs is very great, and they are deposited on stones, stems of vegetables, \&c., in elongated masses euveloped in a glairy substanco, which is ssid to increase in proportion to the development of the eurbryoes. For details on the repreduction and embryogeny of these Molluscs we refer the reader to the works of M. Pfeiffer and of M. Dumortier; also a paper by Mr. Hoff in the 'Transactions of Microscopical Society,' 1854.
The recent species sre numerous: Lamarck recorded twelve, including L. columnaris, which is considered to be au Achatina; Deshayes, in the last edition of Lamarck's 'Histoire,' has added eight more; Bean aud Troschel have cach added one.
L. stagnalis. This is Helix stagnalis, Linn.; Buccinum stagnale, Müll.; and Butimus stagnalis, Brug.-Shell ovatc-acute, ventricose, thin, pellucid, substriated longitudinally, of a horny colour; the last whorl subangulated above; the spire conico-subulate ; the aperture large.

Limnea stagnalis.

a, the snimal in the shell ; b, mass of egge, mngnified.

Montagu observes that it is frequeatly covered with a green epidermis, and sometimes a concreted stony mattor that almost obliterates the upper volutions; he adds that some suthors have made this shell into two or three species, apparently from size only.

It in found in the freeb alugginh or staguant watere of Eugland, Frauce, dc
L. auricnlaria. This la Jclix anricularia, Linn.; Buccinum Auricmb, Mull.; Bulimus auricularim, Brug.-Shell ampullaceous, veutricome, ornte, thim, transparent, of in horny colour, marked with very delicate closesce lougitudinal strive; the mire very short nud ncumianted.

It occurs in the samo plncea with L. stagnalis.

Limnaa ouricularia.

The fullowing is a list of Britinh species of Limnorada from Forbes* and Hanley's ' British Mollusca:'-

Phyaa
Limnaces:-
${ }_{p}{ }^{3}$ fonsinalia.
P. hypnorum.

Planorbia:-
${ }^{7}$. cornewe.
P. albus.
P. glaber.
P. namilus.
P. carinatus.
P. maryinatus.
P. vortex.
P. Spirorlin.
P. contortus.
P. nifidus.
P. lacuetris.

Powsil Linneade.

Planorbis-M. De Blainville ('Malacologie') mentions the number of fomil ajpecies an four or five, adding that Defrance, who inereases the number to eighteen, acknowledges that the fossil state of some of them is doubtful; he notices four as annlogues. Mr. A. B. Sowerby ("Genera') staten that several fossil apecien noound in the distinctly fresh-water ptrats of the Isle of Wight and the neighbourhood of Pasis, where they aro very abuudant, and aecompanied by as great n profunion of Limnca and aome other decidedly fresh-water shells.

Latnarck records only three fossil species, nor loes ho mark any of the recent apecics as occurring iu a fossil atate. M. Deshages, who iu hin Tables (Lyeli) tnaken the number of species 23 living and 26 fossil (tertiary), recurla in the anme place the Planorbia corneus, $P_{\text {. margina- }}$ iw, f^{\prime}. carinatus, P^{\prime}. ppirorbis, and I^{\prime}. niticlus as both living and fossil (tertiary). We cannot find P. marginatus in Lamarck'n first edition nor in that mlitort by M. Demhayes (tom. viii) in 1838 , exeept as a gnonym to I. complenatus. In this last work the followiog recent apecien are markel by M. Deshayen an occurring iu a fussil etate:I'. cornews, I^{\prime}. pirorlin, P. vortes, ${ }^{\prime}$. contortus, P. nitidus, P. compla. natus, aud labeostomu, on the authority of M. louillet; and the number of fonil apocies in rade to nroount to aine. Dr. Fitton, in his 'Stratigraplacal aurl J.ocal IDistribution of Fossila,' in tho atrata below the chalk, notices nn ladistinct npecies of I'lanorbis (l'urbeck, Oxfordahire and Buckm).

P'hyon-M. 1te Mainville, in his 'Malscologie,' utates that it would prear that no phym had at the tituo of him puhlication been found fomil. M. Ihenhayen in lis Trublen (hyell) kiven the number of npecies an nine living ani one fomil (tertiary) : in the last edition of Lamarck the number of recent npecien given in ten; but the oumber of fosail apecien in the anmo an that atated in the Tablen.

Limmera --M. de Bninville ('Mnlacologie') remarke that if it were clear that the njecien of thin senum entablinhed hy geologista, nad among othern by Meann I.naiarck, liman, Bronguiart, Sowerby, and We Firnalac were true, there would be nt least ewenty fossil njecies in France alone; lat he adde that M. Defrance doen not earry the number furtier than ten, two of which (from the I'laimatia) nre amologues accorving to Brucchi. Mr. G. 13. Sowerby, who unites the genera Physa and Limanora, olperten ('Genem') thint wevernd fomil precies of thin grame oceur abumbatly in conpany with rarioum Paluiline nud Planorles in the frobbewter formations; thene, ho alda, occur in the neightourhond of Porin, atal in the uper and lower of thene formations at Ilealco Hill, sul in other parth of the Iale of Wight. He almo found then paringly "in the mixed atratum commonly ealled the "pper Marine Formation, between the two," but ho believen that thoy da not nceur in any other. Jawnrek noticed but one npecies as funsil, namely, Limnara palmeris, thin lreing in hin opinion renlly the namlogue of the recent precice of that umede. M. Denluagea in hia Tablen (Lyell) gives the number of Limnere of fifeen living aud twenty-
soven fossil (tertiary), and the specios I. peregra, L. auricularis, L. rivalis, and L. jalustris as both living and fossi] (tertiary). In the Inst edition of Lamarck the following recent apecies are marked by him as also occurring in a fossil state:- L.palustrif, La ovata, L. peregra, and L. minuta. L. auricularia is not marked as fossil in this edition, and we do not find L. rivalis as a apecies in either. The number of atrietly fossil apecies recorded in the last edition of Lamarck is eleven, and in that edition M. Deshayes remarks that a sufficieutly great number of Limnece are found in a fossil state, but that up to the time wheu he wrote no speeies was recorded ln the beds below the tertiary, and even in these the Limnece only appear in the lower fresh-water. 3trata. They show themselves, he adds, iu the upper beda of the Pariss Calcaire Grossier, and are also reeggnised in nearly all the Lacustrine deposits, not ouly of the Parisian epoch, but also in the two great tertiary groups that surmount it. Dr. Fittou, in the table above quoted, records a Limnca (with a note of interrogation) as oocurring in the Purbeck atrata, Oxfordshire, in the malm, Garsington.

Ur. Lea, in his 'Contributions to Geology' (Svo. Philadelphia, 1883), notiees the tnfaceoua lacustrine formation of Syracuse, Onandaga county, New York. He found the aubstratum which lined the side of the canal to consist of a calcareous marl of a whitish colour, bordering on that of ashes, friable, and rather soft to the touch. A subsequent analysis by Professor Vanuxem proved it to be nearly pure carbonate of lime. Numerons perfect epecimens of the gevera Limnea, Physa, Paludina, and Ancylus were obtained, all being analogous to the species inhabiting at that time the fresh-waters of that region; and Dr. Lee states that it was evident that the deposit was caused by the drainage of the lake. The specimens were found to be completely bleached, and were generally in an unbroken state. "A lacustrine formation of so recent a nature," saye Dr. Lea in continustion, " as this appears to be, is not, I believe, of frequent occurrence. It is the result however of one of those causes which are now in action; and another instance might be mentioned, in which the effect of this cause, though striking, has not advanced to that period when it would make a finished deposit; 1 mean the emall lake, or pond, in in Sussex county, New Jersey, well known by the descriptive name of Milk Poud. Here countless myriads of bleached shells of the families Lymneana and Peristomiana, analogous to the species now iuhabiting the adjacent waters, lioe and form the shores of the whole circumference of the lake, to the depth and breadth of many fathoms. Not having visited this interesting lake myself, I repeat what has been communicated to me by intelligent scientifie friends who have examined it, and on whose report the most implicit reliance may be placed. Such is the quantity of bleached shells now remaining there, that thousands of tons of these small species, in a state of perfect whiteneas, could be obtained if any useful purpose required the removal of them. For agricultural purposes this mass might prove of great utility. One friond, I remember, meutioned to me that he had obtained a sharp pointed pole, which he inserted ten or twelve feet perpendicularly into the mass, on the shore, near to the edge of the water, without its laving passed through it. As far as can be ascertained, this mass acems to form the whole basin of the lake, and it may at eome future nud perhaps not fnr distaut period form a tufaceous lacustrine deposit similar to that of Syracuse."

LIMNORIA. [ISOPODA.]

LIMO'NIA, a genus of Plants belonging to the natural order Aurantiaces, so called from the original Indian names, Neemoo and Leemoo, of the Lemon. Several of those described nnder this geaus by Dr. Roxburgh have been referred to Atalantia and Glycosmis. The species still included are rather beterogeneous in nature, and will probably require further separation. As most of the family abound in essential oil, so the leaves of some of the Limonias are fragrant, und the fruit, though small, of L. acidissima and L. cvenulata is very acid. L. laurcola, referred to this genus by Dr. Wallich, in his 'Plantex Asiat. lar.' t. 245, ia remarkablo as the only plant of this fanily fonnd on the tops of cold mountains. The people of the Himalnyas, remarking its bighly fragrant leaves, fancy that it is by feeding on them that the musk-decr acquires its atrong and peculiar flavour.

LIMONITE. [InON.]

LIMOSA. [SCOLOPACID.E.]
LIMPET. [PATELLIDEE.]
LIMPET, FHESH.WATER, [ANCYLUS.]
LIMUl.US, n geuus of Animals beloaging to the order Crustacea, and which, on acyount of its anomalous characters, M. Milac-Edwarda placed in a fnmily by itself, which ho called Xiphosura. He arranged these at the eud of his nyatem, next to the suetorial Crustaceans. Ho observes that the singular animnls which compose this small group are so remuto from all the other Crustaccans that some naturalista havo been inclined to exclude them altogether from that class, and nrange them among the Aruchoide, aud that in entirely rejecting this opiniou it becomen uecessary to isolate them ss much as possible, and to form a phrticular nub-class, which is connected with that of the Branchiopola and that of the Tribohites, but is distinguiahed from those Crustaceans nad all the other animals of the same class by the character of ith organiantion. The natural positior then of these Xiphosures should, in the opinion of M. Milne-Edwards, havo been wear the Brachiopoda, but lic has preferred the place which he las
assigned to them, in order that he might not break the connection which unites sll the Mexillated Crustaceans.
The body of these animals is described by M. Milne-Edwards as composed of three portions-a cephalo-thorsx, an abdomen, and a tail : the two first portions sre each covered by a horny shield, and the third assumes the form of a long stiletto. The cephalo-thoracic buckler, which represents the carapace of Apus [Bivoculus] add of the superior Crustacesns, is the largest: it is convex above, concave below, and rounded in front and on the sides, whilst posteriorly it is deeply notched for the reception of the base of the sbdomen. On its npper surface is an unequal epace, slightly or net st all convex, which is circumscribed in froat and on the sides by two curved crests, and occupies behind the whole length of the straight portion of the posterior border articulated with the sbdomen. This space, which may be termed the occipital region, is subdivided longitudioally into three lobes by two furrows which curve inwards anteriorly; and on the median lobe may be also remarked a median ridge or eleration more or less distinct, at the anterior extremity of which is a small smooth tnbercle having the sspect of a sterma, and on each side of which in fact is a very small smooth eye. This conformation led Latreille and athers to attribute three stemmata to these animals. Towards the middle and on the outside of the lateral ridges which circumscribe the occipital region on each side are situsted the composite eyes, which are of an oval form, and exhibit hexagonal divisions on their transparent cornca. The anterior and lateral or marginal region of the cephalo-thoracic buckler forms in front and on the sides a very inclined plane, and presents nothing remarkable; the only point that requires notice is, that posteriorly it is prolonged beyond the occipital region, во as to coustitute on each side a sort of horn directed backwerds.
The second buckler, or sbdominal portion of the body, is much less wide than the preceding, but long also, and of an inequil iteral hexsgoaal form, whose posterior border is more or less concave. Its anterior border is articulated with the posterior border of the occipital region of the carapace, and its latero-anterior edges corleapond to the oblique borders by which the marginal region of the same buckler is terminated bchind. The latero-posterior borders, which are in general longer than the preceding, form with these last a very olduse angle, and present a series of eight tecth separated from each other by six depressions, in cach of which is inserted a large moveable spine whose point is directed backwards. Above, this abdominal buckler is convex and divided ioto three lobes, of which the two lateral are very large, and the median lobe narrowed behind and separated from the preceding by two rows of small depressions. From the middle of the posterior border of this second portion of the body springs a long stylifurm picce, which, being eitusted above and behind the anus, should be considered as the annlogue of the caudal ring.
On the lower aspect of the body appears snteriorly a flat and triangular surface, which is on a level with the frontal border; but in the rest of its extent the cephalo-thoracic buckler is deeply excavated for the lodgment of the feet. These last immeliately surround the buccal aperture, and are so disposed that their basilary joint performs the functions of the mandibles snd jaws of the ordinary crustaccans, whist their internal branch is elongated in order to constitute an ambulatory and prehensile member: there are six pairs of these feet. The first, termed Mandibles by Fabricius and Latreille, and Palps by Cuvier, are much smaller than the others, snd situated before thic mouth, near the median line: they arc inserted on an unequal membranous eminence which fulfle the functions of a labrum, and are composed of three jointe, the two last of which are disposed so as to constitute a claw. The four following pairs of feet, or rnther jawfeet, much resemble each other, and are eaclı composed of six joints: the firat of these joints is very large, and terminates on the inside by a lamellar prolongation, armed with strong spines, and performing thic function of a jaw: there is also, under its internal and anterior angle, a small moveable piece. The succeeding joints constitute an elongated and alightly-compressed foot; and in the females the penultinatc joint is prolonged below the last, so as to furm with it a claw with equal branches: this is sometimes the same in the male; luat in some epecies of Limuli this sort of haod is wanting in the feet of the second and third pair, the prolongation representing the immoveable finger not boing developed. The sixth pair of feet differs much from the preceding: their basilary joint is larger, terminates ou the internal gide in a toot hed surface bearing some resemblance to that of a grinding mendible, and cerries at its external angle a flabelliform appendage. Sometimes there exists a small lamellar appendage at the extremity of the fourth joint, and the next joint carries on its anterior borler meny of those subfoliaceone and elongated lamine which hide nearly entirely the succeeding joint, as well as the small didactylous band wbich terminates it Lastly, between the base of these feet, at the postcrior part of the thorax, are two small lamellar picces which are obtuse at the end, and furnished with spines, which seem to be the vestiges of a seventh pair if limbs. The abdomen is hollowed out into a rather deep cavity, which is very analogous to that in Spherome and many other Isopodia. In this cavity are lodged the abdominal false feet and the branchis fixed to their posterior surfacc. There are six pairs of these members, but the most auterior are not distinct, and are united on the melian line, so as to conatitute a great foliaceous and nearly
circular valve, but which is truncstcd anteriorly, and which entirely covers the succeeding false feet: in each half of this operculum are to be distinguished one or two basilary pieces and two terminal lamine, which represent the two branches which ordinarily terminate these orgsns: oue of these pieces, situated near the median line, is small, and sepsrated from that of the opposite side by a fissure; the other is very large: finally, on the superior or posterior surface of this first pair of false feet the two orifices of generation are found. The succeeding false feet are equally foliaceous, and united on the median line throughout the whole extent of their basilary piece; but the two brauches which termidate each of these organs are free and more developed. The intorval branch is composed of two joints, the first of which is quadrilateral and elongated, the second foliaceous and oval. The external branch is represented by a very wide lamina, which is rounded externally, and resembles that of the operculum. The two external thirds of the posterior surface of the basilary portion of these limbs are occupied by a great gill formed of a considerable number of lamine, or rather of cutaneous folds, disposed transversely, and piled one on the other like the leaves of a book. These leaves adhere to the false feet throughout the length of their base or anterior border, and are free in the rest of their extent. They are triangular, with a curved berder, and increase in size from the upper extremity of the branch to its base, so as to give to this last the form of a pyramid, the posterior ridge of which is curred, the two free surfaces convex, and the hasc rounded. The free edge of each leaf is furnished with a small horny band destined to sustain it, but throughout the rest of thicir extent these folds are membranous: there are about 150 of them in each of the first pair of pills, and a few less in the succecding gills; the last las only about 130 .

Limulus Moluccamu, reduced one-fourth, and seen from above.
a, position of the two smooth cyes; b, b, lateral composite eycs; c, c, respiratory apertures.

The mouth, situated towards the posterior third of the lower surface of the cephalo-thoracic buckler, is surrounded, as has already becn noticed, by the feet, the basilary joint or haunch of which is armed with spines or teeth and dispesed so as to serve for the work of mastication. This aperture is infundibuliform, and continued with the digestive tube, which is directed at first clirectly forward, then curves upwards and backwards, and proccels in a direct line to the extremity of the abdominal buckler, where it presents anew a suall curvature in its conrse to the anus. The first portion of this canal, directed forwards and situated below the intestine, constitutes

29
the awophagua: it is narmow, rather long, aud furnialsed internally with longitodiaal plaita The stomach in represented by the corver and anterior portion of this eame tube; it in small and directerl vertically; ita walls are veryflealy, mad puckered (fronçea) intermally; na internal furrow weparatea it from tho cosophagun, and its pyluric exiremity manases iu ferm of a cone in the cavity of the intentinc, mo an the colntituto a species of valunle. The thind portion of the iutestinal tabe occupien nearly the wbole length of the body, and repremente the duorlenum, or chylific rentricle: it is cylindrical, ntraigh, and has towards ith two extremities bome traneverse folds of che anternal zumbbrate, and nore or lesw projecting papiliae. On each aicle, a little above the lovel of the nuuth, are two small circular orifices, which lelong to the hiliary npparatus, snd its poeterior estromity is mudfealy contracted io urder to its continuation with the fourth portion of the digeative tube, which ong be considered as the inteatinum rectum. It in very ghort, plaited longitudimally in its interior, aud curved duwawards at its extremity in order to reach the anua, which is situnted in front of the insertion of the caudal sword. 'lhe liver fills in the cephalo-thorax the space situaterl between the intestine and the murcles of the fent : it extends alsu into the abdomen, and in cumposed of blind and contorted canals, which are continued with the exeretory conluite, the four trunks of which open in tho anterior jart of the duodenum.

 f. opervilar lamina formed by the firat pule of folue fert, and coreting the tranchiforate fre ; f. luranchitr, or gillin; h, caudal atylet, or dphold firmernm. Mlime.tistontio.
B. Come uit the emeond poir nt jaw.imet. Milue-Filuaria.
 Edivarta.
4. Thie of the branchifernas falee fert. a, branchlat.

The heart bears much resemblanoe to that of the squille. [STomarona.] It is a loug dorsal ressel with teshy walle, which present on each sile seven tranaverso apertures furnished with valvules, and which give origin to various arteries.

- The nervous systen cousists in a medullary ring which surrounds the wiopliggun, gives origin to the cephalo-thorncic nerves, and is coutinned backwards with a stout cord, from the posterior part of which the rbdominal nerves apring.

The organa of generation open externally by the apertures at the base of the first pair of false feet. In the femaje these orifices each communicate with an oviduct, which when arrived in the thorax is divided intu two branches, the ramifications of which constitute the ovary and embrace the liver. In the male, in place of the vulve, there is a small cylindrical jepis. ('Histoire Naturello des Crustaces' 1840.)

Such is the statement given by M. Milne-Edwards of the organisation of this highly interesting form.

1'rofessor Owen, in his 'Huuterian Lectures' (1843), has drawn attentiou to certain points in the structure of these animals. He states that the Xiphosura, typified by the Limulus, or Molucca Crab, have the head and thorax more completcly blended together than in the true crabs, which they resemble in the general form of the body; but that they are peculiarly distinguished from all other Cruatacca by having the office of jaws performed by the first joint of the thoracic legs, which surround tho mouth. The large cephalo-thoracic segment is, be remarkn, protected above and laterally by an expanded crescentic shield obscurely divided by two longitudimal impressions into three lobes, supportiog the organs of vision on their highest part. The tergal parts of the segments of the second division of the body are also blended, he observes, into one trilobate elypeiform piece, their original separation being indicated by the braochial fissures, sud the number of the segments by that of the lamelliform appeodages attached to their inferior surface. The termiastion of the intestine beneath the last segment of the second division of the body of the Limulus proves, in Professor Owen's opinion, that division to answer to the abdomen in the Malacosiraca; but admitting the eessile eyes to indicato a distinct segment, not more than sixteeu segments can, he remarks, be determined by the appeudages to enter into the composition of tho entire crust of the Limulus, ineluding the sword-shsped appendage, which is adalogous, in the Professor's view, to the last or post-ansl segment of the bigher Crustocea, and coasists of a single modified segment.

Irofessor Owen theu adverts to the small Entomastraca, in which the number of the thoracic sud abdominal segments generally exceeds that in the Malacosfraca, and adduces, as nn example, the Branchipus (Chirocephalus) staynalis [Branchsoroda; Chirocernalus], which has eleven thoracie segments nud nine sbdominal or caudal rings, besides a dietinct head protected by a thomeic shield. In the Isaura, in which this shield is developed, as in Cypris, Daphnia, and other Entomostraea, to the extent and in the form of a bivalve shell enveloping the whole body, the nomber of thoracio and abiominal segments exceeds, he remarks, twenty-four.

These observations relative to the regmeats of the Crustacca aro interesting when considered with reference to a race of that class of which no living analogue exists; and he thos points out the value of this part of their confornation as applicable to the subject:-
"The distinction between the Einomostraca and the Malacostraca in the nomber of the segments of the body is of the first importanco in determining the aftinities of the nucient extinct Crustacea called Thilobitea. These remarkable naimals were alinost the sole repreeentstives of tho prefent class in the periods which intervened letween the deposition of the carliest foasiliferous strata to the end of the Coal Formation. They appear to linve been without anteana and feet; the structore of the tergal part ouly of their body-segaents is yet known; but these are grouped together to form a distinct bead, thomax, and ablomen or tail. The head is formed by a large semicircular or creacent-shaped shield; the thorax consists of from ten to fifteen aegments, sud the abdomen or tail includes at leust eight aegmente in this Calymen (Prep., No. 208), in which it is bent under the thorax, as in the Crab; the abdomen, post-abdomen, or tail, as the third eegment is variously termed, coutaine fifteen fettered seg. ments in Asaghus caulahus: the regments of botly thorax and abulonen are sery similar to each other, and gradually dcerease in aize. They are divided liy two longitudiand furrows into three lobes. The hemd supports a pair of large compound eyes situnted near the eiden, like the large cuter pair of eyes in tho Limulus, which they resemblo in form and atructure.
"The Malucostraca are divided into two groups, accorling to the attachment of the eyes: those with immoreable sessilo eyes form the Eilriophthaima; those with movenble peduncnlated eyes the Jodophphetma.
" The lower organimed or Eidriophthalnone form of Malaeontracous Crustacea resemble tho Tribluice in the not-confluence and oniformity of the aegmenta of the thorax nud ablomen. Certain genera, ss Scrolis and Bogyrus, lave the tergal ares of tho eegmente triloberl; but they excoed not tho characteristic number in the Malacontraca, and the seven ringe of the thorax are clearly indicated in each by the seven paire of atticulated feet which they support, nlthough these are
very small in the parasitic Bopyrus. In the Cymothoa the seven thoracic and seven abdominal segments are more distinctly characterised."

With regssd to the nervous system and senses Professor Owen, after slluding to Cuvier's description of that part of the organisation in the Common Crab, Mr. Swsn'a illustrative dissections and beautiful plates of the same, and the able display of the corresponding airucture in the Maia by Audonin and Edwards, observes that an analogous concentration of the nervoua system, but with interesting modifications, has been described by Professor Van der Hoeven in the Limulus, or King-Crab. the most gigantic form of the Eatomostracous tribe, and probably the only exiating genus from which we may derive an iusight into the organiantion of the extinct Trilobitic Crustaceans. Professor Owen was therefore induced to put the well-preserved specimens of Limulus given to the Colleger of Surgeons in London by Mr. Boot, of Boston, United Statea, into the hands of Mr. Goadby, the anatomical assistant to the college, whose beautiful dissections and preparations will be found in the museum of the College.

Professor Owen observes, in his Lectures, that the large lateral compound eyes of this crustacean are sessile. The cornea, he proceeds to state, is divided into a considerable number of small circular facets, each of which corresponds to an ocellus; and the optic nerve, after its long courte as a simple chord without forming a ganglion, divides near the eye into a pencil of fine filaments, which severally receive the impressions from their respective ocelli, of the aggregate of which the large lateral eye is composed: the two small simple medinn oyes, which are almost in contact, command the space before the head which is out of the range of the large compound eyes. Each simple eye, he further informs us, receives its distinct nerve from the anterior apex of the corresponding cerebral lobe.
"In the fessile eyes of the Edriophthama, as, for example, in the Serolis, the inner layer only of the cornea is dirided into hexagonal faceta, corresponding with the number of the conical crystalliue lenses of the compound eye. But in the Trilobites the cornea preseuts the same subdivided surface as in the Limulus; and the position of the two eyes agrees with that of the corresponding compound pair in the large exiating Entomostracan. The eyes are more elevated in the Trilobites. In the A saphus caulatus the cornea is divided into at least 400 compartments, each supporting a circular prominence; its general form is that of a frustum of a cone incomplete wowards the middle line of the head, but commanding so much of the horizon in other directions, that where the distinct viaion of one eye ceases that of the other begins. In the Mandibulate Crustacesns, distinguished by having their compound eyes supported on moveable peduncles, the form of the corneal facets varies; they are square in the river CrawFish, hexagonal in the Hermit and Common Crabs. There is a conical crystalline lens behind each facet imbedded in a small vitreous humour, upon which the optic filament expands, and each ocellus is lodged in a pigmental cell, which likewise covera the bulb of the optic uerve; the cavity containing the compound eye is closed behind by a membrane continnous with the inner layer of epiderm, and pierced for the passage of the optic nerve. In the Podophthalmons Crustacea there is generally a spacious furrow or cavity, in which the eye can be lodged and protected, and it is termerl the orbit. In one or two apecies the cye-stalks project beyond the margins of the carapace." (Owen.)

The same acute observer, speaking of the organs of digestion of these large crustaceans, which form the only genus represented by species which co-existed witl Tinlobites, remarks that the Limuli differ from all other living Crustacea in their organs of mastication, which are the modified hard joints of the five posterior pairs of legs: the first amall pair, serving to bring the food to the month, are supported on a rudimental labrum. He refers to the discovery by Mr. Charlea Stokes of a distinct subquadrate labmm deeply emarginate anteriorly in Asaphus platycephalus [Trinomites], and renarks that the nearest approach to this the only known part of the trophi of the Trilobites neems to be made by the Entomostracous genus Apus, in which however the labrum is truncated. A few of the lowest orgauised Crustacea, as Caligus, Nymphom, and Pycnogonon obtain their aliment, he adds, like the Epizoa, by suction.

After referring to the structure of the mouth in the Malacostracous Crustacea, add pointing out that the alimentary canal is most simple in the Suctorial Crustaceans, in which it presents no noticeable difference from that in the Epizou, the hepatic sppendages however being more localised and better devcloped, he thus describes this part of the organisation in Limulus:-

In the Limulus the mouth is situated nearly in the centre of the inferior surface of the great cephalo-thoracic scgment; the cesophagus is continued from it in a very unubual course forwards, and expands into a stomach, which is aituated at the anterior part of the head. This orgsin ia abruptly bent upon itself upwards and lackwarda, and in continned by a gradual diminution of diameter, as appears upon an external view, into the intestine, which passes backwards, with a elight vertical bend, to the base of the penultimate abdominal regment. When we examine the interior of the alimentary tract, the distinction between the stomach and intestine is effected, as Van der Hoeven has shown, by a conical valvular pylorus, which projects into the cominencement of the intestine. The stomach is lined by a very dense and corrugated horny mombranc. The hepatic mass which, with
the generative glands, fills the greater part of the cephalo-thoracic cavity, pours its secretion into the commencement of the intestine by two ducts on eacli side." (Prep., No. 477, A.)
In the heart of the Crustacea we may trace a gradational series of forms, from the elongated medisn dorsal vessel, to the short, broad, and compset muscular ventricle in the lobster snd the crab; and in all the Crustacea, as in all the other articulate aninals, the heart is situated immediately beneath the skin of the back, above the intestinal tube, and is retained in situ by lateral pyramidal muscles. In the lower, elongated, slender, many-jointed species of the Edriophthalmous Crustacea the heart presents its vasiform chameter: it its broadest and most compact in the crab.
"In this series," says Professor Owen, "we may trace a geaeral correspondence in the progressive development of the vascular as of the nervous syatcm, concomitant with the concentration of the cxternal segments, and the progressive compactness in the form of the entire borly. But there is a remarkable exception to this concomitant progress in the Limulus, indicative, with the general condition of the instruments of locomotion and respiration, of the essentially inferior grade of organisation of that genus, which, as has already been observed, seems to be the last remant of the once extensive group of Trilobitic Crustacca which swarmed in the seas of the ancient secondary periods of the earth's history.
"We have seen in the compact and broad existing representative of those extinct gigantic Entomostracans, that the nervous system exhibits a concentration of its principal cential mass around the mouth, analogous to the condition in the common crab, but with a ganglionic double chord continuing from it. The heart however is far from presenting a correspondiag degree of concentration: it remains an elongated fusiform tube, extending parallel with the intestine from the pylorus to the rectum : it is contained in a pericardium with thin membranous walls, formed by the central sinus of the venous system, and it reccives the blood from that siuus and from the branchial veins by a series of from seven to ten lateral vertical slits, defended by valves as in the higher Crustacea. An aortic trunk proceeds from each extremity of this heart. The anterior aorta is tho largest, and immediately divides into three branches. The middle and smallest branch passes forwards to the anterior edge of the cephalic shield, following the curve of its middle line, and supplying the small median ocelli in its course. The two larger lateral branches form arclies, which curve down the side of the stomach and the cesophagus, giving branches to both those parts and to the intestine, and becoming intimately united with the neurilomma of the cesophageal nervons collar. They unite at the posterior part of that collar, and form a single ressel, which accompanies the abdomiual nervous ganglionic chord to its posterior bifurcation, where the vessel again divides. Throughout all this course the arterial is so closely connected with the nerrons system as to be scarcely separable or distinguishable from it. The branches of the arterial and uervous trunks, which accompany each other, may be defived and studied apart.
"The posterior aorta is chiefly destined for the supply of the sword like tail of the Limulus: the first part of its course is wavy, to adapt it to the strong inflections of that appendage. The aerrated is mixed with the venous blood in the heart, and is propelled in that mixed condition throughont the body, in the Limulus as in the lobster."

With regard to the generative apparatis, Professor Owen observes that most of the small Entomostraca carry the impregnated ova in appended ovisacs, like those of the Lemere. [Lerneade.] These sacs are not developed, he remarks, in the Limulus, which also differs from the smaller Entomostraca, inasmuch as the ovarian mass interblends its lobes and processes with those of the liver: the oviducts, he adds, form more frequent communications with each other than in the higher Cirustacea, but ultimately terminate, like the vasa deferentia, by two distinct but continuous orifices on the back part of the first abdominal lamelliform appendage.

The Limuli undergo in their youth considerable changes of form. At first there is no sword-like or styliform tail, which in the adolt Limulus equals, at least, the rest of the body in leagth; their abdomiaal buckler is rounded postcriorly, and the last pairs of false feet are not developed. M. Milne-Edwards observed this in tho embryos on the point of exclusion from the egg, at which period the abdomen supports only three pairs of appendages.

The species of Limulus inhabit the sea, and sometincs come upon the sandy beaches. They are found in the Indian and Japaneae seas, and in the Atlantic, on the coast of North America; but they do not appear to have a higher range than $44^{\circ} \mathrm{N}$. lat., and scem confined to the northern hemisphere. Their food consists of animal substances; and when stranded, they often bury themselves in the sand as a protection against the heat of the sun, which is soon fatal to them.
M. Milnc-Edwards remarks that Leach, it is true, has restricted this generic name of Limulus to those species the whole of whose feet are cheliform, and has proposed a new genns, under the designation of ed, Tachypleus, for those whose anterior feet are monedactyle; but hejer observes, it is now well known that this last character is only met ho with in the male of certain Limuli, aud does not coincide with other wia
a anficient havis on which to foumd a gonnric division. M. MilueEdwande thus arranges the aprecies kuown to him, five in number:-

Sicetion I.-Species whawe second and thirl pairs of jaw-feet (two first moirs of latreille) are monoflactyle in the male, nud in wlich the moveable spiues of the interal borler of the abtomen are of two morts, namely, very lung and very short.
L. Moluccanus, the Molucen or Common King Crab. The cephalothoracic buekler in regularly rounded nnteriorly in both sexes, and ntwe showing three ruwh of suall spiniform points, situated one on the tealian crest, the othere on the crests which aeparate the occipital region from the lateral regions: the posterior nad lateral bordern fintly dentilated. The abduminal buckler amouth abovo, and terminated by two very short teeth, the internal bonier of which ia vary loug, and the extermal border (compreliended between the point and the insertion of the lint apine) very short ; tooth of the latero-anterior borler moderate, and situated townils the midhle of that border; moverable apines of the latero posterior bonder moderate, and all nearly of the same length in the male; the first three rather long in the fetuale; but the lant three extremely short, and much wider than they are long. Caudal atylet triangular, sping on its upper border, and slightly concare on ite inferior nurface. Last 1 nir of jnw-feet furuished towaris the ebd with four elongated nppendages, which are lamellated, Hattened, and mublanceolate. (Milue-Vdwards.)

This is the Cancer Noluccanus of Clusius; C. perreraus of Rumphins ; Limalus Polyphemus of Sabricius; L. gigas of Nüller; and L. Moluccanus of Latruille.
M. Milne-Eiwanla is of opidion that Leach's L. Latreilli probably kelonga to this species, as well as L. tridentatus of tho same anthor.
L. Moluccenus is apparentls the Cancer fagored by Bontius in the firth book of his 'Sntural and Medical Iistory of the East lodies,' I^{1}. 83 , in which he notices its aworl-like appendage, and states that if any incautions fisherman is wounded by it the pain is like that caused by a moorpion, alding, that its fesh is not so delicate as that of the other Crabs. The chapter is headed by the following versea, which refer to the painful wound inficted by the tail.

> Quisquis eablati aeraisti tela Pagnari
> Dince meo exemplo mersum vitare dolosos,
> Dente leoniae quos aula volabilin infert A tergo, eb pejus relinet fors cada veuenum."
L. vircscens. M. Milno-Edwards atates that this species, the female only of which in known to him, bears a ktrong resemblance to L. Molucconus, but is dintinguiahed from it by the conformation of the posterior fet, the penultimate joint of which in extromely ahort, and nurrounded at ite lase with seven spines, which, inatead of being tlat, very touch elongated, and rather wide, are rounded, conic, and very much pwintel. Than firat four pairs of feet were broken in the ooly individual whieh M. Milac-Elwarda had examined, so that he could not verify the character indicnted by M. Latreille, the namer and deacriber of the specien, drawn from the monodactylous confornation of the second pair (the first pair of Latreille). It is nlao worthy of note, M. Milne-Filwands nidd, that the cephalo-thoracic bucklor is leat convex than in the preerding species.

The amme nuthor observes thint the Limulus premerved in the Paria Mumcum uoder the name of Polyphemus hefrodactylus, Inme, nod ticketed ly latreille, seems to him to be tho malo of the preceding apecien; Lut tho abecnce of the posterior feet prohibits positivo certainty on thin point.
L. Lomyispina. M. Miluc-lidwardn notleen thin as n apecies closely approximating to l. Moluccanus, but having the teeth or posterior angles of the almominal buekler larger and more regularly trinn;ular; tho cxtermal bumper of thewo teeth being nearly no long as the internal borler, and their base much leas wide than the njace left botween them and oceupied liy the candal ntylet. Upper surface of the atrdomen covernd with hmall apinen; the tooth of its latero-anterior borider harec, mal mitunted very near that which acpanatea that border from the latero ponterior border ; moveable apinen of the six pairs in the malex and of the first three faira in tho female very long; last there paire rery Alont, but aharp in the female. Caudnl stylet trinugular, athl uping on ite bomlera. Frontal border of the male strongly metchel and minuoun, no ns to appear trilobate.

It in found on the conate of dapan, nal prolinbly of China.
Thin is th. Khbuto Gani (IfelmetCrab) of the Jnpanese; Un-Kiie, or Cini-do-lasme, of the Chinese.

Section II.-Specier in which the third pair of jnw-feet are cheliform in both erven, and in which the moveable spinea of the latron aterior borter of the abdumen diminish gradually in length in beth malo and femate.
a. Second pair of jaw fret monolactyloun in the male. Cnudal netglet tramgular and apiny un ito uper tomenter.
I. Folyhtonus. Ciphalo thoracie buckler more convex than in tho proceling apecirs, and yremorving for a longer perionl the neven npine a nituntad on ite ulyer aurface. l'onterior teeth of the shalomen very large and repreasiting an equilatoral triangle, or even being longer than they arm wille at their liseo. The moveable npinen of the laterofooterior border are moderate, and sitnilar in both eexea; the three
teeth of the median lino project mure than in the proceding apecies, nud tho caudal atylet is less long. (Milno-Edwards.)

It inhabits the Atlantio Owean and the coaste of North America and the Antilles.
This is the Arameus marinus of De Laet; Cancer Moluccanus of Wormina; Monoculus Polyphenas of Linneus, but he confounda under this name both the Oricntal and American apecics; L. Oyclops of Finbricius; L. Americanus of Leach; Pulyphemus occidentalis of Lamarck; and L. Polyphemus of lanzani.
John De Laet, in hit 'Novus Orbis' (1633), gives a very fair figure of this species in the 19th chapter of his second book, and atatea that the arms of the Indians (Almonchiquosy) of 'Wijngaerden Eylsudt,' in 'New France,' are lances, clubs, bowa and arrows, which, for want of iron, they aharpen with the crustaceous tail of the monstrous fish Signoc, Siguenoc, or Araneus marinus, by which name the Limulus thero engriven ia known to the Indians and Dutch. De Laet givea a good description of it, nod eays that it loves the shallows, and is mostly taken in restuaries, of various sizes, not a fuw having a tail exceeding a palm in length.
M. Milne-Edwarda observes that L. Sowerbii of Leach is a variety of this apecies, having the last median touth of the upper aurface of the abdowen more projecting than it is ordinarily to be aean in adults.
a a. All the jaw-feet cheliform in the male, as well sa in the
female; caudal atylet rounded above.
L. rotundicauda. Cephalo thoracic buckler wiler than in the preceding species, lcas convex, and deprived of the series of small spines between the great teeth of its upper surface, but with a great number of these apiniform points scattered on the occipital region; terminal teeth of the abdomen short, and having thoir internal border about twice as long sa the external border; the moveable spines nearly as in the preceding. Csudal stylet obscurely triangular, with rounded borders. (Milne-Edwands.)

It is found in the Moluceas.
It is the Cancer marinus perversus of Soba.

Fossil Limuli.

The fossil forms of this group, contemporaneous as some of them were with the Trilobites, to which they hear so strong a relationship, are among the most interesting. One fossil apecies, Limulus trilobitoides, Bucklaud, from the ironatone of the cosl-formation, Coalbrook Dale, figured on plate 46 of the 'Bridgewater Treatise,' is very trilobitic in appearance, snd in the carly atate of the animal, bafore the development of the caudal atylet, the resemblance must have been atill mure atriking; nor will it eacape the observation of our paleologienl readers that aome of the Trilubites ars furnished with a long candal appendaga.

Limulus, as Dr. Buckland remarks in the work above noticed, has been found fusil in the coal-formation of Stafforlshire sod Derbyshire, and in the Jurassic limestone of Aichstadt, near Psppenheim, together with many other marine cruatacesue of a higher order.
M. Milne.Edwards noticea the numerona apecies which have been recoriled. That figured by Desmarest under the name of Limulus Halchii (Cancer perrersus of Walch and Knorr) is found, ho ohserves, in the lithographic alate of Solenhofen and Pappenheim. In MilneEAlwards's opinion it nppronches Limulus longissinus more than any other existing epecies, but nppoars to have the latero posterior prolongations of the cephalo-thoracic buckiler less developed, and the abdomen wider, with its latero-anterior borders very short; as to the moveable spines, thoy are, he reunarks, six in number, nivd are all long and slender.

Other fossil Limuli have been discovered not only in this formation, but also in the Muschelkalk nad the Jurassic limestono, by Count Munater, who has given figures of them in the excellent work of Van der Hoeven on the Limuli; but M. Milne-Edwaris thinka that these fossila have not been as yet described with anfficient details to enablo unturalists to assign specific charactera to then; and be confoes limself to the obaervation that Limulus intermedius, Munater, found at Solenhofen, nud Linulus brevicauda (brericaudatus 1), Munstor, found at Aichatadt, are remarkable for the form of the nbdomen, which representes a rhomboid rather than a hexagon, its snterior border being nearly confounded with its latero-anterior borders. Limulus ornatus of tho snme nuthor, in the opinion of M. Milne-Edwards, appears to aypronch Limulus Walehii closely, but presente a much deeper furrow throughont the length of the caudal atylet.
M. Milue-Edwaris finally calls attention to Limulus crilobitoides, Bucklaud, above mentioued, remarkable for the apiniform prologgations of the lateral angles of the cephalo-thoracic buckler and many other charneters.
IINA'CEEE, Flaxicorta, n amall uatural order of Ilauts, related to Cisfacerr, from which it differs in having no ovary with many cella, containiug one or two aceds oach, several ntyles, a definite number of atamenn, \&. © nid to Gcraniacere, from which the separate styles and feceliar fruit of Linarcer abundnatly soparate that order. The definition of Linaccat may be briefly expressed thus: polypetaloun, hypogynous, monalelphoua exogens, with a broken-whorled calyx; s mnny-celled many-atyled ovary, containing one or two pendulous ovulea in each cell, and a capaule splitting at the point into as many
valves as there are cells. The fruit is remarkable for having each of its carpels divided into two cells by a spurious dissepiment originating iuside the back, so that in reality each cell is 2 -seeded, although from the presence of this spurious partition it seems to be 1 -seeded.

But altbough Linacece approach the two orders already named in the structure of the organs of fructification, the vegetation is essentially differeut, the leaves being alternate, free from all trace of a volatile secretion, and destitute of stipules, and the nodes of the stem not being capable of disarticulation. The whole order contains but two genera, Linum and Radiola: the former comprebends many species, the most important of which is common flax, Linum usitatissimum, the woody tissue of whose stems is so valuable for its toughness and fineness, and whose seeds furaish linsced oil. [Flax, in Alis and Sc. Div.; Linum.]

LINA'RIA (from λ lvov, flas, owing to a similarity in the leaves), a genus of Plants belonging to the natural order Scrophulariacece. It has a 5 parted calyx, a personate spurred corolla, the lower lip 3 -fid with a prominent palate closing the mouth. The capsules open by valves or teeth at the top. The species are annual or perennial plants, very rarely small shrubs, and the flowers of a bcautiful appearance, racemose or spicately racemose at the tops of the branehes.
L. Cymbalaria, Iry-Leaved Toad-Fax, has roundish heart-shaped leaves, 5-lobed and glabrous; the stem procumbent, slender, and rooting. The flowers are solitary, axillary upon long stalks, and of a pale blue colour. It is a native of Europe, chiefly on old walls. It grows abundantly in Italy and Sicily, and is found in Great Britain. There are severa! varieties of this species.
L. Elatine, Halbert-Leaved Toad-Flax, has ovate bastate leaves, the lower ones ovate, the peduncles glabrous, stem procumbent, and the spur straight. The flowers are solitary, on long slender stalks, small, and of a yellow colour, with the upper lip purple. It is a native of Europe and Africa, and is found in chalky corn-fields in Great Britain.
L. spuria, Spurions Toad-Flax, has roundish ovate entire leaves, the spur curved upwards, the peduncles hairy, and the stem procumbent. The appearance of this plant is similar to the last, but the flowers are larger, and the whole plant not so slender. It is a native throughout Europe in corn-fields, and is found in Great Britain.
L. minor, Smaller Toad-Fiax, is distinguished by its linear-lanceolate leaves, which are obtuse, glandular, pubescent, and mostly attenuate. The flowers are solitary and axillary, the peduncles three times as long as the calyx, and the sueds oblong sulcatc. It is found in sandy comr-fields throughout Europe and Great Britain.
L. Peliseriana, is known by its racemose flowers, which are of a dark purple colour with darker veins. It is astive of the south and middle of France and of Great Britain.
L. repens, is distinguished by its lanceolate scpals and angular seeds with transverse elevated lines. The flowers are of a bluish colour, the stem erect, branched, and leafy. The seeds are much smaller than either of the fellowing species. It is found on calcareous soils, particularly near the sea, iu Great Britain.
L. Itulica has scattered linear-lanceolate leaves, lanceolate oblong sepals, and orbicular scabrous seeds, with a membranous margin. The corollas are of s deep yellow colour. This speeics is found plentifully in the west of Eagland and near Cork, iu Ireland; it is also native of Switzerland, Italy, and Hungary.
L. rulyaris, has ovate-acute glabrous sepals, shorter than the capsules and the spur. The flowers greatly resemble those of L. Italica, but sre twice the size. In Worcestershire this plant is called 'Sutter and Fggs. Gerard names it Wild-Flax, Toad-Flax, and FlaxWeed. It abounds in an acrid oil which is almost empyreumatic. Taken inwardly, it induces nausea. It has been advised in drepsy, but Haller and others disapprove of it. When united with milk the juice is a poinon to flies. The flowers are employed in some places to give a yellow colour.
The whole of the species of Linaria have an elcgant appoarance, and are thereforesuited for flower-gardens. They grow well in common garden earth, but prefer a dry sandy soil. The sceds of the annual species require to be sown early in the open border where they are intended to remain.

Jinaria has slso been adopted as the generic name of seme species of birds. [Linota.]
(Don, Dichlamydeous Plants; Babington, Manual of British Botany.)
LINAR1TE, a Mineral consisting of Cupreous Sulphate of Lead. It oceurs cryatallised. Its primary form is an oblique rhowbic prism. Colour deep azure-bluc. Streak pale blue. liracture uneven. Hardness 2.5 to 3.0 . Lustre vitreous or adamantine. Transparent, translucent. Specific gravity 5.3 to 5%. It is found at Linares in Spain, and at Lead Hills, Scotlantl. Its analysis by Brooke gives-

$$
\begin{aligned}
& \text { Sulphate of Lead } 74.4 \\
& \text { Oxide of Copper } 18.0 \\
& \text { Water . . } \\
& \begin{array}{r}
18.0 \\
4.7
\end{array}
\end{aligned}
$$

lincolnite. [Heulandite.]

1. INGUELLAA. [Infrhomanchtata.]

LI'NUULA, a genus of Brachiopodous Mollusca, of which several species have becn found fossil. They are found in the Siluriau, Old Red Sandstone, and Green Sand rocks. [Buacmionoba.]

LI'NKIA. Nardo has proposed this name for a group of Stelleridia included in Asterias by Lamarck. (Agassiz, on Echinodermata, 'Ann. of Nat. Hist.' vol. i.)

LINNET. [Linota.]
LINOSYRIS, a genus of Plants belouging to the uatural order Composito. The heads are not radiant; florets all perfect and tubular ; receptacle naked, pitted; the pits with clevated dentate margins in the British species; phyllus imbricated; pappuspiluse; fruit compressed, silky, without a beak.
L. vulyaris is an berbaceons Plant, found in middle and southern Europe and in Great Britain. It has linear glabrous leaves, corymbose heads, the involucre lax; the stem from 12 to 18 ioches high, simple and leafy; leaves single ribbed, smooth or scabrous, very numerous, more or less dotted: flowers yellow. It grows on limestone cliffs. It is the Chrysocoma Linosyris of Smith.

LINOTA, a genus of Birds belonging to the family Fringillidee. The genus is thus defined by Yarrell :-Beak straight, conical, pointed. Nostrils basal, lateral, concealed by short feathers. Wings long, somewhat pointed; the first, second, and third feathers nearly equal in leugth. Tarsi short; feet with lateral toes of equal length; the hind toe and elaw as long as that in the middle; claws slender, acute, and curved. Tail forked.
L. cannabina, the Common Linuet, is a hard-billed singing-bird, which though well known under one or the other of its various sppellations to cvery English bird-catcher, has, in consequence of the changes of its plumage and the names applied to it when it appears under those chauges, given rise to much confusion in our systems and catalogues, and cousiderable error among the learned as well as the unlearned.

Mr. Selby, in his ' British Ornithology,' says of the 'Common or Brown Linuet-Fringilla camabina, Lina. :-"This hird has been considered by most of our authors as two distinct species, under the titles of the Common or Brown Linnet and the Greater Redpole. This error has evidently arisen from the altered appenrance it bears at particular ages, and during the different seasons of the year. These changes in sll probability bad not been suspected, as they certainly had not been traced by the earlier naturalists; and, on the authority of their reputation, succeeding writers sanctioned such mistakes, withont giving themselves the trouble of further investigation, till Montagu, who united practical research with scientific knowledge, professed (in the 'Ornithological Dictiouary') his convictiou of their forming one species ; and my own observation and experiments tend to confirm his upinion." Giving all due praize to Montagu and Mr. Selby for their diligence and acuteness in rectifying an error which seens to have been going on from the time of Willughay to the time of the publication of Bewick's 'Supplement,' we must say a word in favour of one of the fatbers of Natural History at the revival of letters. A little investigation would have proved that of Bélon at least it cannot be said that the changes of plumage had not been suspected nor traced by him. That acute observer, in his 'Histoire de la Nature des Oyseaux ' (Paris, 1555), says, in bis description of La Linote, or Linotte, "Les Linotes ont la poictrine et le dessus de la teste, grande partie de l'année, de couleur entre rouge et orengée : car elles ont lors la couleur si vive qu'elle resemble ad du sang; mais cela est seulement sur la fin du printemps;"-having previously described the wore sombre state of plumage.

Willughby, whose 'Oraithology' was cdited by Ray, and contains mauy observations by the latter, devotcs a chapter' (xi.) to the subject ' Of the Linnet.' The first section of the chapter is headed 'Of the Linnet in General,' and is as follows:-" The characteristic notes of this kind are-1, a size of body something less than a chaffinch; 2, a testac sous or earthy colour, mixed of cinereous and dusky or brown; 3, a tail a little forked; 4, a peculiar colour of the outinost feathers of the tad, namely, brown, with white borders or edges; 5 , a sweet note. Of Linnets we bave observed four sorts in England:-1, the Common; 2, the Greater Red; 3, the Lesser Red; 4, the Monntain Linuet." Here is probably the principal origin of the subsequent confusion. These four limets are afterwards described and distinguished at length in the same chapter under the names of "The Common Linnet, Linaria vulyaris." "The Greater Red-Headed Linnet, Linaria rubra major:' 'The Lesser Red-Headed Linnet, Linaria rubra minor.' 'Tbe Mountain Linnet, Linaria nontana.'

Bechstein, under his description of the Commou Linnet (Fringilla cannabina, Linn.; La Linotte, Butf.; Der Hänfling, Bechst.), states that, instructed by long experience and the observations of many years, he hopes to show in his description that the Common Linnet (Fringilla Linota, Linu.), the Greater Redpole (Fringilla cannabina, Liun.), and, according to all appearance, the Mountain Linnet (Fringilla montano, Limn.), are one and the same species. With regard to the idcutity of the two first-named species, ornithologists are now generally agreed: with regard to the last the better opinion is against Bechstein, and in favour of the Mountain Linnet being a distinct species.
M. Temminck, who observes ('Manuel d'Oruithologie') that Iringilla cannabina and Frangilla Montium have boen often confounderl, and that he has endeavoured to distinguish them by a small number of characters placed at the head of the short descriptions and of tho synonyms, applies the same mode of distinction to Fringilla linaria
and F. Mon!imm, which he reonark have almo been confoundel. The -hort character given by him to his Gron- Bec I inote (Fringilla canme. bina, lino.) is " Hill ahort, of the width of the front, blackinh; thront whitiah, marked in the middle by aome brown ppota;" and he thus deacriben the various etatea of plumage, and the ayuonyma of the bird under esch.
Old Nate in the Spring.-Fenthere of the front, of the breast, and of the lateral jarts of the latter, of a crimson-red, terminated by a narruw bonler of rong-rel; thront and frout of the neck whitish, with lougitulimal brown markingn; top of the head, nape, and sidea of the nect of a pure anh; back, scapulara, and wing-coverta, chestnat-brown; flanke redilish-brown; middle of the bedly and absomen white; some of the quill black, tondered extermally with white; tail forked, black; the feathera edged externally with white and bordered internally by a large white apace; iris lrown; bill deep-blainh; feet ruddy-brown, more or les pale. langth 5 inches.

Hale after the Autumal Moult, at the Ago of n Full Year.-On the top of the head large black ppots: the back redilish, with spots of chenthut-bruwn, bonlered with whitish-hnown; breast red-nsh brown, or red-brown, with bonders of whitinh-red; brown apots well marked on the flank, upper tail-coverts black, bordered interunlly with white nod externsily with gragish-red. (On raining the fenthers of the front and those of the breast the traces of the red colours which ornnment the bind in the apring may be seen.)
In this mate M. Temuidek conmiders it to bo Fringilla Linota, Guelin; Iatham, 'Ind.; v. 1, p. 45\%, sp. 81; la linote Ordinnire, Buffon, 'Oik. v. 4 נ. 5s, t. 1; Id., 'M. Enl.' 151; f. 1 ; Géraril, Tab. Flémı.,' v. 1, p. 158; Cormmon I.innet, Iath., 'Syn.,' r. 3, p. 302.
The female, which does not change colour after arriviug at the adult atate, is maller than the male; all the upper parts are of an ashyyellowish, apriukled with blackish-brown apots; wing-coverts of n taruimed red-brown; lower parts bright-reddish, but whitish on the middle of the belly, and eprinkled on the danks with bumerous Hackiah-bruwn apota

Young malea till the spring have the top of the head nud the back roddish-brown, marked with deep.brown lanceolate apots; cheek and nape ashy; all the lower jarts of a slightly redhlish-white, marked on the middle of the throat aud on the breast witl2 loogitudinal spots of a deep brown- large reddinh-brown spots on the sides; nud large lanceolate blackinh spots on the coverts of the tril; feet flesh-colour; lave of the bill livid-blue: it in then the bind given by Meger, "Vög. leutachl,' and by Frisch, 'Viog., t. 9, f. A nond IS.

For the old birds, male nud femnle, M. Temminck bringe tozether the fullowing aynonyms aul refurences:-. Fringilla cannabina, Gmel.,
 'raun. Suec., lo. 247, No. 226; La Grande Linotte de Vignes, Buff." 'Oin,' v. f. p. 58 : la., 'I'l. Fnl.' 485, f. 1 (the male putting on his plumage), and 'In. Finl.' 151, f. 2 (the very old male, under the false name of J'etite Libotte de Vignes); 1d., "Jl. Fnl.' 151, f. 1 (either n female, or perlapa a male in nutumn) ; Gérard, 'Tah. Fléra.,' v. 1. p. 190: Greater Hed-Headed Linnet or Jedpole, Iath., 'Syn,' v. 3: p. 304; IU. 'Supp.; p. 176; Bluthainfling, Dechat., 'Naturg. Deut.' v. s. p. 111 ; Id., 'Takschenb.', p. 121: Meyer, 'Tasachenb.,' v. 1, p. 363; ld., 'Vog. l'eut.', v. 1, t, f. 1 nod 2 ; Friach, 'Vög.' t. $9, f .1$ and 2 ; Naum. 'Vug.' t. 5. f. 10 (old male) and f. 11 (femnle); Vlasvink, "Sepp. Nederl. Ving,' v. 2, t. p. 157 ; Montanello Maggiore, 'Stor. degl. Uce.' v. 3, pl. 357, \%. 1.
In the thind part of him 'Manuel' (1885) M. Tetuminck adds the following referctices and aynonyma:- Atlan du Mnnuel,' pl. lithog. (male); V'ieill., 'Fanu Franc.' p. 87, pl. 38, fign. 2 and 3; IRoux. 'Uruit. l'rovenc.,' v. i, p. 14s, tab. 91 (old male in the apring), nad 92 (male in antumn); Fichten unl luach Bluthainfling, Jrehnn. 'Vög.
 (male in moult); Naum., 'Seue Aung., tub. 12].

Jeturaing tu the two first partn of M. Temminck's 'Manuel,' we find him oberving that the varietiea of the young described ly Neyer ander the letter c and that under the letter cought to be arrang.al uader Primgilla Moncium.
M. Temminck remarkn that thim lind monlen but onee a year-in the nutumn; lut neverthelew tho spring or napitial phamage ie of n Beautiful red tint on the limal and lireant. He ameriben this to friction and the action of the air, which wiar away the sombre and anly trovien of the fenther, and cause the red colour, dartinlly hidden in winter undir the anhy edgen with which thene feathern aro terminated, ton appenr in the apring. He ndda that one may conceive that age and the more or leas dimtant time of monlting lany vary this plumage preatly.
Them realer hownior aheuln not forget the changes of colour that larrell and othern linve shown to take place in the plumage of birla without chaoge of feather, and where friction could hardly have been thengent.

Mr. Silly. aftar tha remarkn already quoted, proceedn thua: "Mr. liewick however, in the Sorplement to his work on "liritinh Fiedn. atill contuane to trelieve in the eximence of two dintinct nfecien; for mo wo bunt underdand hitu (nlthough he bas brought the aynonyma of the twornhmaned njecies together), since in a note. following the demeription ami figure of him (ireater Jedpole, or lirown Limnet, ho mag that '1t leaes tho red breast in autumn, and regains it
in mpring; in this it differs from the Gray Linnet, whose planinge remanins the kame at all seasons." '"rom lis dencription of the Gray Limact (the unual Northumbrian name of thin bird), as given in the first volnue of his work, it can be no other than the Common or llrown Linnet of a partieular age, although he has attached to it the Linnean ajnonyme of the Ieseer IRedpole. " If," continues Mr. Selby, "Mr. Wewick'a observations on the plumage of the linnet were mado upon caged birds, I am not surprined at his assertion of its always retaining the amme appearance; fur I have repentedly verified the fact of its never acquiring noser confinement those brilliant tints whiel diatinguinh it at a particular period of the rear when in a atato of liberty. I will adduce onc inatance atrikingly to the point in question. For some particular purpose of observation a linvet was ghot more than two years ago, towarde the close of aummer, when the plumage showed its most perfect nuptial tint; and, happening to be only wingerl, it was put into a cage, where it soon became familiarised to its aituntion, and still continues. Abont the usual time, in the antumon of that year, it moulted, and acquired the winter dress of the Common Liunet, which it has retained ever since, without dis. playing at the accustomed scason any of the brilliant red that aderned it in the wild state."

Mr. Selby, who gives in his great work the figures of a male bird in anmmer phaiage, and of the natural size (pl. 55, fig. 3), and of a female, uatural size (Ibid., fig. 4), collects the following nynonyms for this apecies:-

F'rimilla cannabina, Linn., 'Sybt.' j. p. 322, sp. 28.
Gros-Bec Linotte, Temm., 'Man. d'Oruith.,' v. i. p. 364.
Greater Kedpole, or Brown Linnet, Mont., ' Ornith. Dich'
The Linnet, Iow, 'Faun. Orcad.'. p. 63.
Greater Kedpole Finch, Shaw, 'Zool.;' 9, p. 516.
Fringilla Linota, Gmel., 'Syst.' i. p. 916 ; Lath., 'Ind. Oruith.', 1, p. 457, sp. 81.

Syn. of
young
male after
1st autumnal moult. (Ang.), 258 ; Briss., 8. p. 131, 29.
La linotte Ordinaire, Buff, 'Oie.;' v. 4, p. 58, t. 1 ; Id., ' Pl. Eul.' 151, f. 1.
Common Linuct, 'Br. Zool.,' No. 130; Lewin 'Br. Jirds,' 2, t. 83; Lath.. 'Syn.' 3, p; 102, 73; Pult., 'Cat. Dorset,' p. 12 ; Walc., 'Syu., t. 221.
Gray Linuct, Bewick, 'Br. Birds,' 1, p. 171.
Fringilla cannabinct, Gmel., 'Syst,', 1, p. 916 , sp. 28 ;
Lath. 'Ind Orvith.' Lath., 'Ind. Oruith.' v. 1, p. 458, sp. 82.
Syn. ol
adult
male in
nummer plawage. p. 91, A. 2; Will., p. 191, t. 46.
la Grande Linotte de Vignea, Buff., 'Ois,' 4 p. 58 ; Id., 'Pl. Enl.,' 485, f. 2, old male under the title of 1'etite Linotte dea Vignes.
Bluthionfling, Bechst., 'Naturg. Deut.', 3, p 141 ; Id., 'Tasschenb. Deut'; 3, p. 141 ; Id, "Tusschenb. Deut,'p. 121 ; Meyer, 'Trasschenb. Deut.;' 1, p. 163 ; t. 9, f. 1 sind 2.

Syn. of
adult
mate in
muminer
plumage.
Grenter Redpole or Red-IIeaded Linnet, ' 13r. Zool.,' 1, No. 131, t. 54 ; 'Arct. Zool.' 2, No. 161 ; Will. (Ang.), 200 ; Lewin, 'Br. Jirds,' 2, t. 84; Lath. 'Syn.' 3, p. 304 ; Id., 'Sup.,' p. 167 ; Wale., 'Syn.' 2, t 222 ; Mult., 'Cat. Dorset.' p. 12 ; Bewick, ' Br . Birds.,' 1, t., p. 173; Id., 'Sup.,' p., t. 22.
Mr. Gould, in his beautiful work on the 'Birds of Europe,' figures a male in the spring or nuptinl plumage, and a female of the natural nize, under the name of Linaria cannabina (Le Groa-Bec linotte, Conmon or Brown Linnet), and refers to Mr. Selby principally for the account of the changes of plamage. He also notices the confusion which formerly obtained about this epecies.
M. Temminck states that the bird varies accidentally to pure white; whitish, with the wings and tail as they are ordinarily; the colours reebly traced on the plumage; a part of the body whits, or variegated with white fenthers. All the jlumage blackish, or more aombro than orlinary; the feet often red. He saya that it ia then Pringilla aryentoratensia, Gracl., 'Syet,' 1, p. 918, 81. 69; Lenth, 'Ind.' 1, p. 100, ${ }^{17} .8^{7}$; Ie Gentyl de Strasbourg, Buff., 'Ois,' 4, p. 73 ; 'Gérard, 'T'ab. Eléin,' 1, p. 194.
This bird is rery abundant in Ilolland. (Temm.) Very common throughout liritain, extending as far ns to the Orkneye, where it is nbundsut. (Selby.) Indigenona to the British Islauds, over the whole of which, and Furope geuerally, is is plentifully dispersed.
(Gould.) Erzcroum in Turkish (Gould.) Erzcroum in Turkish Amnenia.
In Britain it resorts to wuste lands and commons in the upper parts of the country, where it breeds. It assembles in winter in very large flocks, and descends to the sea-coasto, where it remains till pairing. time stimulaten it to acek the uplands. The food of the Linnet couniats of stmall seeds pencrally; those of the cruciform planta are fnvourites. The neat is built in a low bush, most frequeatly in furze, of tooss and atalke of graks interwoven with wool and liaed with hnir and feathers; egge four or firc, bloish-white dotted with purplish-rod. (Sclby principally.)

The bird is provincially termed Greater Redpole, Rose Linnet, Gray Linnet, Lintwhite and Lintie. Belon is of opinion that this species is the bird named Salus by the Latins, and Airiows by Aristotle, in the 15 th chapter of his 19 th book ('Hist. Anim.'). The French and German names have been given above. It is the Fanello of the Italians, and Llinos and Llinos Bengoch of the Welsh.
The Common Linnet is prized for its sweet song, and has been taught to imitate the human voice. The Hon. Daines Barrington mentions the celebrated talking linnet at Kensington. He heard it repeat the words ' pretty boy.'
L. canescens, the Mealy Redpole, is the L. canescens of Gould and Eyton, L. borealis of Macgillivray, Fringilla borealis of Temminck. This bird is not so common as the last; it has however a wide geographical range. It is found as far worth as Greenland, and is very gencral in the northern regions of Europe, Asia, and America. The beak is larger than the Common Redpole, but it is not so large a bird as the Linnet. It measures about $5 \frac{1}{4}$ inches. From the carpel joint
to the end of the wing $2 \frac{1}{3}$ inches. The first, second, and third quillfeathers nearly equal in length, but the first and second rather longer than the third; the fourth feather two-twelfths of an inch shorter than the third. The irides are duaky brown; in winter the feathers of the forehcad dark red; back of the head, neck, upper part of the back, and the smsller wiog-coverts, a mixture of dark and light brown, the iniddle of each feather being the darkest part; the smaller wingcoverts tipped with dull white, forming a whort bar; the greater wing-coverts uniform dark brown, with broader ends of dull white; lower part of the back, the rump, and upper tail-coverts mealy or grayish-white, with a few dark-brown atreaks; tail-feathers grayishbrown, with light-hrown edges, the two in the middle short; the form of the tail deeply forked; the chin almost black; the cheek, carcoverts, neck breast, belly, and nader tail-coverts pale brownish white, streaked with darker brown, except on the middle of the breast and belly, which are plain; the dark streaks are largest on the flanks; the legs, toes, and claws dark brown.
L. linaria, the Lesser Redpole, or Common Redpole, is the smallest of the British Linnete, and is even a trifle smaller than our diminutive Siskin. This is more especially a winter visitor to the southern counties of England, appearing in amall flocks from Michaelmas till April; but it is not often seen in the south of England in suminer. It is at once distinguished from the Mealy Redpole, last described, hy its smaller size; and though not attractive from its notes, which are little more than a lively twitter, its sprightly habits and engaging confidence render it a general favourite, since it is of all the small birds one of those that are most easily tamed. In some of the northern counties of Kiagland, and in Scotland particularly, this little bird is resident all the year; during the summer it retires to the underwood that covers the bases of our mountains and hills, and that often fringes the banks of our precipitons streams, in which sequestered situation it breeds. The eggs are four or five in number; their colour pale bluish-green, spotted with orange-brown principally towards the larger end. The young are produced late in the season, and are selulom able to fly before the end of June or the beginning of July. This little bird is common in Ireland and Scotland. It inhabits Demmark and Scandinavia generally; and so hardy is it, that it is a permanent resident in the Fur Countries of North America, where it may be seen on the banks of lakes and rivers in the coldest weather. The heak is brown, the upper mandible pale-brown; the irides dusky-brown; forehead deep red; the head, neck, back, winc-coverts, rump, and upper tail-coverts, a mixture of dark and light brown, the centre of each feather being darkest; the outer feather only of the small wingcoverts tipped with wood-brown; all the feathers of the greater coverts tipped with pale-brown, forming one conspicuous bar. Quill-feathers brownish-black, the primaries with a very narrow edge and the laterals with broader edges of pale wood-brown; tail feathers not so deeply forked or near so long as those of the Mealy ledpole, hut similar in colonr. Chin with a patch of black; cheeks, sides of the neck, sides of the bresst and flaoks, with dark-brown atreaks on pale-brown; the breast atrongly marked with vermilion-red; belly nud under tailcoverts dull brownish-white; legs, toes, and claws, brown. The whole Jength of the hird is 4 inches. From the carpal joint to the end of the wing, 28 inches. The first three quill-feathers nearly equal in length, but the sccond is the longest; the fourth one-twelfth shorter than the third. The females are without the red on the breast, and the dark-colourel parts about the head are rather brown than black.
L. Montium, the Mountain Linnet, or Twite. It is distinguished from the Common Linnet, and from both the Iadpole Linnets, by the greater length of its tail, which gives this lird a more elongated and slender appearance; and it is further distinguished by baving a reddish tawny throat, but does not exlibit any red colour either on the head or breast at any season of the year. There is however a tinge of red on the rump of the male in summer, and in the general character of the plumage of both sexes there is considerable aimilarity tos that of the otber species of the genus. The Mountain Linnet, as its name would imply, prefers high hills and mountains, or at least an interchange of moor and fell. It is not uncommon in certain localities in Ireland. It is plentiful in the Hebrides; and the Rev. Mr. Low staten that it remains in the Orkneys all the ycar. The eggs are bluislowhite, sarked towarde tho larger and with light brown and
purplish-red, sometimes with a few blackish spots. The Mountain Linnet inhabits Denmark, Norway, and Sweden, but is said to be rare in Russia, particularly in the eastern portions. It is observed periodically on its psssage in Germany and France, and some are said to remain and breed in the mountains of Switzerland. It is found in Provence, at Genoa, and even as far sonth as Rome in winter; but retires to the northern mountaius to breed in summer. The beak is yellow, and hence the term 'flavirostris' has by some authors been attached to this species; the irides hazel; the forehead, crown of the head, ear-coverts, neck behind, back, and wings, are of two shades of brown, the darker colour pervading the middle of the feather, the lighter wood-brown colour on the edges; the greater wing-coverts only tipped with pale wood-brown, forming one bar across the wing. Quill-feathers brownish-black, the primaries with narrow edges, the tertials with broader margins of pale brown. The rump red; upper tail-coverts like the back in colour; tail-feathers brownish-black with narrow white external edges, and broader light-brown inner marginy; tail deeply forked; chin and throat uniform reddish yellow-brown, without streaks, but streaked on the sides of the lower part of the breast and flanks with dark-brown; lower part of the breast, belly, and under tail-coverts dull brownish-white ; legs, toes, and claws very dark brown. The red colour on the rump is a sexual as well as a seasonal assumption, peculiar to the male only in summer. The whole length of the bird is 54 inches; but the body being slender, and the tail-feathers lengthy, this bird has a more elongated appearance than the Common Linnet, or the Mealy Redpole. The female is without colour on the rump, and is also lighter in colour on the back; her beak, less decidedly yellow at the base, is dusky-brown at the tip. Young birds like the females are lighter in colour generally, and are thus distinguished from old males.
(Yarrell, British Biods.)
LINSENERZ, a Mineral consisting of Arsenate of Copper. Its primary form is a right rhombic prism. It occurs in octohedral crystals. Cleavage parallel to the primary planes. Colour light-blue and occasionally dull-green. Streak pale-blue or green. Hardness 2.0 to 25. Lustre vitreous. Transparent, translucent. Specific gravity 2.926. It is found near Redruth, Cornwall, and in Hungary. Its analysis by Dr. Thomson gives-

$$
\begin{aligned}
& \text { Arsenic Acid } \\
& 43 \cdot 39 \\
& \text { Oxile of Copper } \\
& \text { Water. } \\
& 26 \cdot 69
\end{aligned}
$$

LINU'CH1A. Eschscholtz gave this gencric name to certain forms of the Linnean genus Medusa. ('Actinologie,' p. 289.)

LINUM, a genua of Plants which gives its name to the small family of Linaceo, and is characterised by having 5 diatinct sepals, 5 petals, 5 stamens, and from 3 to 5 styles, which are either distinct from the base, or unitod as far as the middle, or even the apex. Capsule globular, divided into 10 cells, each containing a siugle seed. Herbs or small shrubs; leaves entire, without stipules; flowers having the petals falling off shortly after flowering. The species are chielly found in Europe and the north of Africa, but a few likewise in other parts of the world.
Fev of the species of Linum are of any importance, except that which bas been an object of culture from the earlieat times of which we have any record, that is L. usitatissimum, the Flax Plant, which is valuable as well for its seed, as for the ligueous fibre of its cortical layer, which forms the tow spun into yarn and woven into linen cloth. It is distinguished by its glabrous capsules within the sepals; ovate pointed ciliated lanceolate leaves, and solitary stem. The flower is blue; stem from one to one and a half feet high; sepals 3-nerved. It is a native of Great Britain.

It has been semetimea asid that cotton is the substance from which cloth was made in Egypt in ancient times. Catton was no doubt known to the Hindoos at very early periods, and may have formod an article of commerce to Egypt from India, but that it was not much used is proved by wone of the mummy cloth, which has been examined by the best microscopes, being found to be composed of cotton. The sced is valuable for the condensed mucilage contained in its seed-coats, while the almond contains a fixed oil, valuable for burning, and in the arts as a drying oil ; the oil-cake is used for fattening cattle. Linseed is extenaivoly imported from Russia, Italy, and Egypt, for crushing, but of late years it has been imported in largo quantities from India for the same purpose; this is found to yield a larger proportion of oil than Russian linseed, and the commerce will no doubt continue to increase. Seed is also imported from Holland, America, and other places for the purpose of rowing, as it is fonnd to yield a finer and more abundant crop than the British seed. It is curious that the Hindous make no use of the ligneous fibre; but the plants, though they there produce fine seed rich in oil, are very dwarfish, and maty not therefore be found profitable culture for a people who have cotton in such abundance, and who wove it into cloth in ages when even linen was unknowa in Enrope.
L. angustifolium is fonnd in sandy and chalky places. It has downy capsules within the sepals, elliptical, pointed, ciliated; leaves linear-lanceolate; stems numerous. Flowers of a pale blue; stem one or two feet high.
L. perenne has obovato-obtuse sepals obscurely 4 -nerved, glabrous,

Flex-Mant (Lihum usifntissimum).
1, the monablubous etamess, highly magnified; 2, the ripe eapsule, aplit at its cad lato ralver.
leaves linear-lanceolate; stems numerous; fruit-stalks crect. Flowers blue; atem one to two fect long, erect, or decumbent. It is found in chalky places in Great Britain.
(Babington, Manmal of Brifish Botany.)
LION. [Fri.id.f.]
LIIPAlls. [Disconont]
L.IV'LE. [Ammose Tisser..]

LIQL'IDAMIBAl, a geums of lianta belonging to the natural order Bolsamifur of Blume, which has been altered in Balamacea by Dr. Lindley. The pane is derived from 'liquidum,' fluid, and 'ambar,' the Arabic name of amber. The goous in closely allied to the Willow and l'lane triben, but dintinguished from both by its 2-lobed 2.celled many-neded capmules, and their albumioous embryo. The species are only three in number, all forming fine treen, and occurring in Jara, the Lerant, and North Anerica.
L. styrucifun in the apecien found in Mexico and the United States, in the latter of which it ix called Sweet Gum, and forms a large and fine tree, beariug rome resemblance to the lenaer maple (Accr campeatre) : the wood is of a bard texture and fine grain, and makes havdnome furniture, but the tres in more noted for the fragrant liquid reain which exinlen from incinions in the atem, though not very copiounly. This in called liquidanlanr, Oil of Liquidambar, and Copmin Haleam, which lans a pleasant balsamic odour, and an aromatic bitter tante. Thim brooming dry and opulue, forms what is called Suft or White liquidambar, which resembles very thick turpentilue, han a frebler olosur than the liguid balam, and contains less volatile sil, but more inenzoic acid.
L. oriontalis in a mall trce, a native of Cyprua and other parta of tho Fant Indica; wan introduced into tho dardin dea Planten, l'aris, from Suy ma, abl in andil woccur along the led Sen Dr. loococke, as quoted by Dr. limlley, ntaten that it in called X ylon Effendi (tho Wood of our lood). in Cyprun, where it prolucen an excellent white turpetine, enpecially liy jucinions mate in the lark. It in thin mabance Frlape which is alluded to in coany works by the name loosa malla or mallon, deacribed ma lamanuic fluhl prombuced upon the ialand of Cabroen, at the upper end of the led sea mear Calemen, wich is three daya journcy from Sucz. but there are no recent necounta of this sifintance, which in thought by mome authors to be procured from the following кресiea.
L. altingia of Blumo is a native of the foreata of Java, at clevationa of 2000 th 3000 fect above the level of the nea It forman a gigautie tme, with bask haring a bot and bitteriah tante, giclding a frogrnut Paleatn, or liquid atorax, the Raramola of the Malaynu Arehipelago, bloughathare is no proof that the liguid storax known in Eurmoe in obtained from it, sal it denea not grow hear tho localitirs whence liquile atorax han ao long beet obtained. It in therefore probahle that aome portion in whtanenl try troiling the branches of Seyroxe officinate, or acting "pon thetm with oil, epirit, or najuthn [Strmax, in Ahts Axti Se. IHv.j

The subject in interesting an connecterl with amrient commerce, inas.
moch as old writers mention a liquid with the solid storax. By the Araba the fommer ia deacribed under the name Mia-Saileh, Jiquid xtorax ; and the latter, Mia-Yabseh, solid stomx. Both are described by Serapion under the head Mibs; by Avicenna under the several liends of Lubnee, Astaruk, and Milar. The name Mia-Saileh, with tho affix 'rus' (juice), would appear to be tho origin of the Malayan Raxamoln, and thus one which has been varionsly corrupted.

LIQUORICE. [Gi.reyrinza.]

LIMIOCONITE. [COPPER.]
LIRIODIVNDIRON (from λ elpiov and sévopoy), a genus of Plants belonging to the natural order Magnoliacece. The characters of the geuns are is follows:-Carpels 1-2-sceled, ilisposed in spikes, indehiscent, deciduous, driwn nut into a wing at the rpex; calyx of three decituons eepals; corolla of 6 petals forming a bell-sbaped fower.
L. tulipifera, the Tulip-Tree, White-Wood, Canoe-Wood, TulipBearing lijg-Tree, Virginisn Poplar, and Poplar, is tho only apecies of the genus. It is a handsome trec, with large 4-lobed truncate leaves resembling a ssddle in shape, sud large elogant flowers coloured with green, yellow, and orange. There are three varieties of this tree described: the L. I. oltusiloba, which has its leaves with blunter lobes than the original apecies, and on account of the yellowness of the wood is callod Yellow-Wood, or Yellow-Poplar. The L. t. acutifolia has the leaves amsiler and more acutely cut than the other varieties. The J. t. flara is known by its flowers being entirely yellow.

This tree is one of the nost magnificent inhabitants of the forests of the temperate parts of North Anerica. According to Michanx, the northom limit of this tren is the sonthern extremity of Lake Champlain, in 45° N. Int; ; and its eastern limit is the Connecticut River, in $72^{\circ} \mathrm{W}$. long. It abounds in the middle states of the North Anerican union, in the upper parts of the Carolinas and of Georgia, and is still more abundant in the western country, particularly Kentucky. These trees sometimes attain a height of 120 feet or more, sud their trunks measure 20 feet in circumference. The most common dimensions however are from 70 to 100 feet in beight, and from 18 idches to 3 feet the dinmeter of the trunk.

It is uncertain at what period the Tulip-Tree was introduced into Europe. In England it was cultivated by Compton at Fulham in 1688. Evelyn, in his 'Sylva,' referring to it, says:-"They have a poplar in Virginia with a very peculiar-shaped leaf, which grows well with the curious among us to a considerable ststure. I conceive it was first brought over by Jobn Tradescant, under the nsme of the Tulip-'Tree, from the likeness of its flower; but it is not, thst I find, taken much notice of in any of our herbals. I wish we bad more of them, but they are difficult to elevate at first." Thes are now planted very generally in Europe, having a geographical rango from Berlin and Warsaw on the north to the shores of the Mediterranean and Naples on the south, Ireland on the west, and the Crimen on the east. In this country many of the trees have attained a height of 70 or 80 feet, nad a circumference of the trunk of 6 or 7 feet. The trees blossom in Great Britain, but do not ripen their seeds, although they do in many parts of the continent.

The timber of the Tulip-Tree is aeldom used in Europe, as the tree is too much valued as un ommant; but in America, where it is so abundant, it is found to sield a light conspact fine-grained wood, which is useful for many purposes. It is easily wrought, and receives a good polish. It is used by cabinct-and coach-makers for making fumiture and the panels of carriages. The lndians of the west country prefer this tree for the coustruction of their canoes. In America the bark of this tree has a reputation an being a substitute for the cinchona bark; and in 1792 Dr. Young of Philadelphia published a paper on its remedial agoncy in the 'American Museum.' The bark han a bitter and an aromatic taste, properties which probably depend, as in other barks, on the possession of an alkaloid and an essential oil; but it does not jet nupear to have been chemically examined.
The best mode of propagating the Tulip. Tree is by seeda, which whould be ohtained from the native country of the tree. These should be sown in henth soil, yery fino mould, or sandy loam, and kept moist in a shady situation. When the secds are sown in autumn, they mostly come up the following spring; but if they are not sown till the spring, they remain a ycar in the ground. The varieties of thin plant may be propagated ly budding. grafting, or inarching. This tree does not bear transjlanting well, nor the use of the pruning-knife.
(Loudon, Arborctum et Frutictum Britannicum, vol. i.; Don, Dichlamydeous Plants.)

IISSA. [MAnD.En]
IISSOMUS. [ELATEnides]
LISSOTIRTTON. [AmPIIBA.]
LISSURA. [Hymax.]
LISTERA, n genus of Plants belonging to the natural order Orchidacre. It lias a ringent perianth; a deflesed 2 .lobed lip; tho atigma tmanverse; rostellum elongated, entire, acute, with a minuke glolose appendage at ita nomewhat reflexed apex; column very short.
L. arafa. Tway-Blade, in found in woods and pastures in Great Britain. It han 2 opposite orate leaves, the lip bifid, the columo with n creat which includes the anther; the stem a foot high; spike elongated, very lax; flowers mmall, and greenish; leaves large.
L. cordata lian 2 oppoaite cordate leaven, 4 -lobed lip, column without
a crest. Height 3 to 5 inches. The stem is slender. Flowers very small, in a lax spike, and of a greenish colour; the lip with 2 basal and 2 terminal linear lobes. It is found on turfy mountainous moors in Great Britain.
(Babington, Manual of British Botany.)
LI-TCHI, or LEECHEE, a fruit commonly sold in the markets of China, and occasionally brought to England It is the produce of the Euphoria (Nephelium) Litchi of botanists, a tree belonging to the natural order Sapindacece. The eatable part is a pulpy flesh, which covers a stone inclosed in a hard dry tesselated prickly pericarp. The Rambutan and another fruit, called the Long-jen, or Longan, sre yielded by species of the same genus. The Chinese cultivate many varieties of esch.
LITHOCARPUS, a genus of Plants beionging to the natural order Corylacece. Blume tells us that his L. Javensis is called Papau Batu, or Stonc-Bark, because of its hardness. [Corylacees.] (Lindley, Vegetable Kingdom.)
LITHODENDRON, a generic name of some Zoophyta, proposed by Goldfuss to include Caryophyllia and Oculina of Lamarck, snd adopted by many geological writers in a rather vague sense. De Blainville rejects the term. ('Actinologie,' p. 34%.) The species ranked by Dr. Goldfuss in the group of Lithodendra offer many diversitios of structure, and lie in strata of various antiquity ('Petrefacta Europen '), especially in the Transition and Carboniferous Limestones.
LITHODES. [HomoLide]
Lithodomus. [Mytilide.]
LITHOMARGE, a Mineral which occurs massive. It is spheroidal. Colour white, gray, red, yellow, blue. Streak shining. Structure compact. Soft. Dull. Opaque. Unctuous to the touch. Adheres to the tongue. Specific gravity $2 \cdot 2$ to $2 \cdot 5$. It is found in Cornwall near Redruth, in Saxony, aud some other places in Europe. Friable Lithomarge occurs in scaly glimmering particles, which are phosphorescent in the dark. It is found at Ehrenfriedensdorf in Sasony. The analysis by Klaproth gives-

32.0
$21 \cdot 0$
1.5

98
LITHOPHA'GIDE, a name applicable to all Marine Conchifera, Mollusca, Radiata, \&c., that penetrate stonez, masses of madrepore, and other hard corals, forming therein a nidus for themselves; but more particularly spplied to the Conchifera. [Clavagella; Gastrocheva.] This boring however is not confined to the Conchijera; for Petricola has the power of perforating certain rocks to a limited extent: nor to the Mollusca generally; for some of the Echinidice (Radiata, for instance), are known to make ghallow basin-like ledgements in the rocks whereon they dwell. The means by which these animals bore has been the subject of anxious discussion and observation for many years. It hss been attributed to various causes. These may be divided into chemical and mechanical. The ehemical causes ascribed are two, first, a secretion of a chemical or acid substance, by which the rock bored is supposed to be dissolved, and second the influence of carbonic acid in the liquid forning the respiratory currents. The first set of chemical re-agents have not been found to exist, and the last will not account for boring in wood, clay, and sandstone.
The mechanical csuses describcd are also several. The moving round of the shell is one; the use of the tongue, which contains giliceous particles, is another; whilst a third theory ascribes the boring to the action of particles of sand between the shell and the rock. It is not impossible that all these causes may be in operation in different animals, but at present no one is regarded as the universal agent.
In the 'History of British Mollusca,' Messrs. Forbes and Hanley have given a full account of the various theories advanced, and from this work we borrow the materials of the following sketch :-
"All the pecies of Pholas are endowed with the remarkable power of perforating varions substances of considerable hardness, such as stone, shale, or wood; some indiffcrently, some selecting one or other for their habitations. They sre never naturally found free. This habit of boring is common to the whole tribe of which Pholas is the type, and is presented slso by certain members of other tribcs. The majority of Lamellibranchiato Mollusca may be said to be borers, so far as the power of burying themselves in sand, clay, mud, or gravel can give them \& claim to such appellation, but the boring of the pholas, Teredo, Xylorhaga, Pholadedea, of the Gustrockena and its allies, and of certain species of Mytilide, appears to be effected by very different means. The question how the boring Mollusca excavate their dwell-ing-places has long been discussed, and is still at issue among nsturalists, and the name P holas (from $\phi u \lambda \epsilon \omega$ to bore) [?] was applied by the sncienta to certain shell-fish whose power of perforating the eolid rock attracted thoir notice. A shell-fish is mentioned by Athencus under the name of Plolas, probably not one of the members of the genus now so called, but the Lithodomus lithophagus, or Date-Shell, which is very abundant in the scas of Greece, and used by the people for food, whilst the trne Pholades are very scarce in the Ægean, and not likely to have attracted popular attention. The earliest observa-
tions made upon the boring of Pholas were those by the celebrated Réaumur, one of the most excellent of practical naturalists. They are published in the 'Memoirs of the French Academy' for 1812. He figures the Pholas candidus in its cavity, aud attempts to account fo1 its presence there. He remarks that it is always found in cavities either of soft stone or clay, that these are made by the efforts of the animal itsclf and by means of its foot, for when it was placed by him upon soft clay, it buried itself in that substance by the action of its foot. He argues that they bore only in soft clay, and that their presence in stone (soft stone, which he terms 'La Banche,') is owing to the former being petrified around the Pholades. He shows that the dimensions of the cavity in which the full-grown Pholas is found, are, as compared with shell and aperture, such that the former must have remained in it since it first perforated, and could not have cbanged its habitation. He states that the young are always found in clay and the old in stone, and concludes that the stone is only clay petrified by means of a viscous matter derived from sea-water. It need not be said now that Réaumur's observations sad conclusions were fallacious, but as a first step in the inquiry they had great merit.
"Mr. John Edward Gray, in an iuteresting paper on the habits of Mollusca published by him in the 'Philosophical Transactions' for 1833, gives his opinion on this question. He holds that Pholades, Petricola, Venerupis, and Lithodomus bore into shells and calcareous rocks by dissolving them. His reasons for holding this opinion are several :-1st, Because the animals of most of them are furnished with a large foot more or less expanded at the end; 2nd, because the holes fit the shell in Petricola and Gastrochena, so as to prevent rotation and the use of the asperities on its surfsce; 3rd, because all borers are coverd with a periostracum (thim in Teredo, Pholas, and Lasea, thick in Lithodomits), which would be rubbed off during the operation of boring ; 4th, because though some borers have spiny shells others have smooth ones; 5th, because all bore into calcsreous substances, wood excepted, and iuto sandstoue only when it has lain a long time under the sea and become as soft as clay. These objections of Mr. Gray to the mechanical theory are some good, some bad; several not consistent with a correct knowledge of the babits and structure of the genera he quotes. The same naturalist, in a paper on the structure of the Pholades in the first volume of the 'Zoological Journsl' for 1825, held an opposite view to that quoted above; for he here maintaius that the Plolades bore by means of rasping. Dr. Fleming's most recently expressed opinion on this subject is in favour of rasping and rotatory motion.

Among the best memoirs on the subject of the boring molluses is that by Mr. Osler, pnblished in the 'Philosophical Transactions' for 1826. It is entitled ' On Burrowing and Boring Marine Amimals,' and contains the fruit of much careful and original observation. According to this gentleman, the instinct to bore is exhibited at a very early stage of the animal's life. He found Pholades completely buried when so minute as to le almost invisible. He regards the curved processes or apophyses within the shell of Pholas as characteristic of an animal which bores mechanically by employing its shell as a rasp, holding that the shell is the chief instrument by means of which Pholas bores. He remarks, with respect to Pholas candidus, a species whose habits he obscrved with great care, that it is by means of the anterior and lower part of the shell, which is thicker and spiny, the boring is cffected. He considers the peculiar arrangement of the muscles, and the suppression of the ligament in this genus, as peculiarities in its organisation connected with its perforating habits. Teredo, he bolds, bores in like manner with Pholas, and by the same means, effecting the stroke during the operation by the contraction of the posterion adductor muscle.
"Tise boring of Saxicava however Mr. Osler maintains to be effected by very differsnt meaus, most probably by an acid solvent. Its hole is not round; and if there are siliceous particles in the stone they are left projecting into the cavity. Mr. Osler was unable nevertheless to detect any direct evidence of free acid, either by the test of litmus paper, or by any experiments he could devise. The account given by Mr. Osler of the operations of Pholas when boring is so circumstantial that we quote it in his own words:-
"The pholas has two methods of boring. In the first, it fixes itself by the foot, and raises itself almost perpeudicularly, thus pressing the operative part of the shell upon the substance to which it adheres. It now proceeds to execnte a succession of partial rotatory motions, effcted by the alternate contraction of the lateral muscles, employing one valve only, by turning on its side, and immediately regaining the erect position. I have observed that this method is almost exclusively employed by the very young animals; and it certainly is peculiarly adapted for penetrating in a direction osarly perpendicular, so that they may be completely buried in the shortest possible time. It may be observed that the posterior extremities of the valves are much less produced in the very minute Pholades thau they afterwards become; and thus the time required to complete a habitation is still further diminished; but when the Pholades have cxcesded two or at the most thrce lines in length, 1 have never observed them to work in the manner I have described-the altered figure of the shell, and the increased weight of that part of the animal behind the hinge, would prevent it from raising itself so perpendicularly as at first, independent of the narrow space it occupies. In the motions
required to enlarge ito habitation the adductors perform a very exacintial part. The animal being attached by the foot bring the anteriur jait of the shell inta contact. The lateral muselea now contract, and raining the posterior adductor bring the dorsal margins of the valses into contact, so that the strong rasp-like pertions are suddenly separated, and acmpe rapidly and forcibly over the substance un which they press. As soon as this is effected the posterior extreraity minks, and the stroke is immediately repeated by the successive coniraction of the anterior miductor, the lateral, and the posterior adductor muscles.
'The particles rubbed off, and which in a sloort time completely elog the shell, are removed in a rery simple manner. When the projected syphon is distended with water, the Pholas closes the wrifices of the tubes, and retmets them suddenly. The water which they contained is thus ejected forcibly from the epening in the mantle, and the jet is prolouged by the gradual closure of the valres to expel the water contained within the shells. The chamber occupied by the ruinial is thus completely cleansed; but ns many of the particles washel out of it will be deposited before they rench the mouth of the hole, the parange along which the Pholas projects its syphon is constantly found to be lined with a soft mud."
"Ina valuable paper ' On the Anatomy of the Lamellibranchinte MolIusca,' gublished by Mr. Garner, in the Ead vol. of the 'Zoological Transactions,' that excellent observer has some short remarks on the means by which Pholacand other molluses bore. He mentions that the boring is cffected by currents produced by vibratile cilia, aided in some cases by minjing. Ho remarks that the valves of Lithodomus are not adapted for mechanical boring; that the crypts of Saxicuva are not circular; that the valves of Teredo probably do wot correspond to the bore; that Pholas conoieles is often found in hard timber, though its valves are not adapted for any boring or filing. He farther observes,' There is a cartilage between the two small spinous processes of the hinge in the Pholas candidus; in other species of Pholas which have no rudiment of it, and allied genera which have a particular character of articulation, 1 consider the motion of the valven as but n secendary cause in the perforation of the substances in which the avimals are found.'

Mr. G. 13. Sowerby objected to the notion that the cavities of Pholas were produced by rotatory motions of the shell, siuce they are fitted to the latter, sad since some of the shell benes are externally smeeth. He nlso objected to the notion of a molvent. Mr. W. Thompson, in his paper 'On Teredo,' expresses his belief that the anoothly rounded termination of the cell made by that animal is due to the action of a solvent supplied by the proboscis, which thus acts ns a pioncer in mining the passage that is afterwards increased to its final dimensions by the boring netion of the primary valves."
1)r. Drummond, in his 'Letters to a Voung Naturalist,' suggested the possibility of the animal of the boring molluses decomposing the man-kalt ns its wants may require, and applying the liberated muriatic ucid to the solution of the calcareous rocks.
M. Deahnyes, in his work 'On the Mollusca of Algeria,' maintains that the Trrelo bores by means of a bolvent. The foot he regards as a specinl secreting organ. M. F. Caillaud holds a similar opinion with renpect to the perforating power of animals of the genus Claragclla. In the 'Aumbes des Sciences Naturelles' for 1839, M. L. A. Necker jullimhed some very intereating and impertant observations on the mineralogical mature of the shells of Mollusca, in which he points out Hofferences of etructure as indicated by polariastion of light. In it ho has the following observations on the subject in question:-" It is very remarkable that two genera of perforating shella, the pholas and the learapis, madiate strongly calcspar. Thus the asperities which roughen their shells may, with the nid of the acids with which they are providel, excavate the calcareous rocka inhatited by them. The notion that their ghella are formed of calcapar seems to render imposequally hard with the bodica perforating. But now that we know thene alells are componed of arragonite, it in phain that they can act mechanically even on the hardeat limestones."
Sir Henry de la theche has given a table of the specific gravity of some nhella an obmerved by himelf, in which he states that of pholas cribsata to be des, and of number of other bivalves nud univalres to bo nearly the anme; indieating a conntitution which, nllownce being made for nmeunt of animal matter, approximates their shells much more nearly to arragonite than to ealcapar, the iormer having a specific gravity of 2.03 and the latter of 2.31 .

Mr. Albany Hancock lias put forward one of the most definite nimi important pinitions ever expresped on thin disputed question. Hos atites that-"the excavating inatrument of P holos and Terelo in fummen of the nuterior portion of the numoal, in the surface of which ate cenlmeduled ailiceos particles. The partiches lenetrating tho whin give to it much the character of raping-paper. The whole forma a rubbing marface, which, being ajplied clon+ly to the bottom fof the cavity "y the alliesion of the foot, enables the anitual to rub down abal mos jenctrate plade, chalk, wool, or even the hardeat limeatomen nul marlile siaricura rugom in almo furninhed with thaping muface covered with niliceous particles. This nurface however in thim speci-s is formed catirely of the naterior portion of the mancle, the marginn of which being united are so much thickened, forming a sort of cushion capable of conaiderable protrumion at the
will of the animal. The foot is small, and, passing through a much. constricted orifice, gives origin to a byssus, which anchors the ehell close to the base of the excaration, and thus holds the rubbing apparatus in immediate contact with the part to be excavated.'
lo summing up all these theories, Messrs. Forbes and Hauley give it as their opinion that "the chemical one, so far as a aecreted aolvent is concerned, bears the least exmmination in the case of the Pholadide. Tho substances perforated are wood, limestonca hard and soft, argillaceous shales, clays, sandstone, and, in the case of a Pholas in the magnificent collection of Mr. Cuming, wax. The netion of a secreted aolvent that would act indifferently on all these substances is, at present at least, purely hypothetical, and aince all attempted tests hrve failed to detect nn acid, gratuitously so; for we can hardly suppose that any of those whe have taken this view of the canse wonld maintain that the animals have the power of secreting different acids at will, according to the subatance they have to attack. Yet this notion has been most favoured by oaturalists who, sceptical as to the perforating power of auch fragile instruments as are the shells of many of these creatures, endowed the animals with supernatural chemical qualifications. Even good experimental observers, Mr. Osler for one, whilst they proved that the Pholas could bore mechanically by the rotation of its valves, could not free their minds from the prejudice in favour of a solvent.. The important statement put forward by Mr. Albany Hancock respecting the instruments by which Mollusca bore, and which, so far as Gasteropoda are concerned, appear to furnish us with a true explanation, namely, that it was effected by means of siliccous particles variously arranged in certain portions of the animal's body, led us to hope that a better cause than any yet alleged had been diacovered. But we cannot bear it out with respect to the Pholadide. We can find no such particles in the mantle of Teredo, nor have any been noticed by Home or Deshnyes, or by the most recent observers, Frey and Leuckart, who paid especial attention to the structure of the tissues of this genus. Nor could we, though aided by the anatomical and microscopical skill of Mr. Buak, detect any siliceons particlea in either the mantle, foot, or siphon-tube of Pholas candidus. If present in any epecies therefore they are exceptional, so far as the genus Pholas and its allies are concerned. The shells of several British species of Pholas and that of Pholadida have been chemically examined by our friend Mr. Trenham leekes with a negative reault as regards the presence of particles of silex in their substance, where, after the statement of Mr. Hancock respecting the structure of the mantle, we thought they might possibly be fouud. On the other hand, taking into consideration its mineralogical nature as atated by M . Necker, there is no reason for supposing that the shell of the Pholalidee is so weak a perforating instrument as some have fancied. With its peculiar form and the saw-like asperities of its surface, eapecially of its antial extremity, it is well adapted for nn auger when wielded fresh and elastic by its well-muscled inhabitsnt, whose foot in all the members of this tribe, even in Teredo, where it is least developed, seems especially organised to serve as a fulcrum. We have uo evidence that they perforate any substances essentially harder than their ohellis, or so hard. The randstones in which they occasionally occur are either friable or marly when fresh, though cabinet-specimens seem so solid. The explanation of Necker accounts for their perforations in the hardest limestones. Wood, wax, and other aubstances in which they occur, offer no difficulty. The atatements put forward respecting their bering in lava and granite have long ago been ahown to bo mistakes. That they exhibit a rotatory motion during the action of boring has been proved by competent observers; and the cavitiea they excavate, if examined fresh, invariably show traneverse groovings, which could have been caused only by such motions. Currents of water act in motion by cilia doubtless aid materially the animal's operations, and poasibly may be the means by which the larvae effect their first lodgment; but considering the arrangements of the parts of the body in the adoli animn, it seema to us that Mr. Garner's view of their being the primary cause of the perforation, whilst the rasping of the valves is aecondary, should be reveraed. Such currents must be most effective in clearing awhy loosened and loosening particles. If there be any chemical action niding, it must be due to the carbonic acid set free during the respiratory process. Evidences of a secreted solvent there is nene."

We proceed in this article to the examination of some of the excavating lamellibranchiste Conchifera which are most remarkable for their boring powers.

Venerupis.-This form is placed by Mr. Garaer in that section of the Dimyaria (with two ndductor muscles) which is distinguished by having the branchite mited medianly; and the characteristic of Vene. rapis, as given by the smme anthor, is to have the tubes large, and the fout short and prominent behincl.
Th anmal is ollong, rather thick, lanving the borders of the mantle nimple, nlightly open before for the [msmage of a compreased and clonsated foot; tabes two in number, rather long, uvited in a considerable portion of their length, and having their oritices radiated; branchice little and unequal ; labial appendages very small.
Shell solid, ntriated, or radiated, a little elongated, gaping posteriorly, more or leas irregular, equilateral, very inequivalve, the aisterior side being alwaya shorter than the posterior side, which is generally truncricd as it were, the other being nore or less rounded; umbones
marked, nearly contiguous ; hinge composed of slender, approximated, and nearly parallel teeth, two in the right valve, and three in the left, or three in each; posterior ligament a little elongated, and in great part external; muscular impressions oval, the posterior one the most rounded, both united by a pallial impression deeply excavated posteriorly.

Such is the character given by M. Rang, who apparently restricts the generic name to those species which excavato stones, \&c. "The shells," says M. Rang, "which compose this genus are lithophagous, aad excavate in stones and madrepores cavities moro or less propor tioned to their form sud to their volume, wherein they lodge themselves, and out of which when adult they cannot go, the aperture of the excavation being too small to admit of their egress. They are without an epidermis, and generally of a dirty white.'
M. Do Blaioville, who knew not the animal when he published his 'Malacologie,' divides the genus into thres sections: the first exemplified by Venerupis Irus; the second by V. Rupcllaria (Rupellaria, FL. de Bell.) ; third, by V. lamellosa (Petricola, Lam.) ; and he remarks that if the system of 'engreuage' of the species of excavating Venercs be regarded rigorously, wo should be compelled to establish as many geners as there are species. Ho adds that he has chosen Venerupis from among the denominations proposed for soms of these genera, because it well indicates that the species composing it are Teneres of the rock.

Mr. G. B. Sowerby ('Genera,' No. xxviii.) notices the difficulty of ascertaining any distinguishing character between the Lamarckian V'enerupis and Venus Pullastra and V. decussata, and othars, except in the apparent habits of the animals; a difficulty which had prevented him from endeavouring previonsly to clear up a point to which his attentiou had been frequently directed, but which he thinks he has at last overcome. "It is well known," continues Mr. Sowerby, "that J"enus perforans, Mont., Yenerupis perforans, Lam., and some of its cougeners, live in cavities perforated in chalk and limestone rocks, and that the Venus Pullastra, V. decussata, and several other species that resemble them in geoeral form and appearance, are found buried in the sand; an apparently well marked difference therefore exists in the habits of their respective animals. We think however that we have evidence to prove that there exists in reality very little difference, and that the cavities in which Lamarck's l'enerupes live are rather the natural consequence of the action of the sea-water iu conjunction with some of the excretions of the animal upon the chalk or limcstone, than of any power of the animals themselves to pierce independeatly of such action; so that the difference is really only in the nature of the shore on which the very young shells are accidentally deposited, those which are thrown upon a saudy bottom burying themselves in the sand, and such as are deposited upon limestone or chalk producing a cavity in which they live." Mr. Sowerhy then proposes to unite together under oae appellation Lamarck's Venerupes, and the following of his Veneres:-V. Malabarica, V. papilionacea, $\overline{\mathbf{V}}$. adspersa, \bar{Y}. punctifera, V. turgida, V. littcrala, V. sulcaria, V^{*}. textilc, V. texturata, 1. geographica, V. rariflamma, 1. decussata, 1'. Pullastra, V. aurea, V. virginea, and some others: and for tho genus thus constituted he proposes the nawo of Pullastra, rejecting the term Venerupis, or Venerirupis, because it would convey the false idea that at least the greater number of the species were iuhabitants of rocks. [Veneridsi]
M. Do Blainville and M. Rang, as we have above seen, restrict the genus Vererupis to the species that excavato rocks.

Lamarck makes his Lithophages consist of the genera Saxicara, Venerupis, and Petricola; and quotes the opinion of M. Fleuriau de Bellevne that boring shells generally do not pierce stones by the attrition of the shell sgainst the stone, but by means of a softening or dissolving liquor which the animal sheds a little at a time.

Lamarck observes that it is not his intention to assemble under this family of Lithophages all the boring bivalves, or all that pierce stones; for, as ho truly saye, such an assemblage would be rather extravagaut. He refers to shells equally excavating with his Lithophages, which cannot be separated, sonc from the Veneres, others from the Modiole, others from the Lutrarice, others again from the Carditce, and remarks that it is not of these that he is then treating. His Lithophsges consiat of those shells, among the boring or excavating conchifers, that gape more or less anteriorly, and have the posterior side short, rounded, or obtuse, with the ligament of the valves always external, which live habitually in stones, and for the receptiou of which he then knew no particular family, or any family to which they might conveniently be approximated. He observes that he nevertheless places rmong them some species the Labits of which were not known to him. To this M. Deshayes adds in the last edition (1835) a note stating that upon the same ground that it would not be rational to establish a genus or family for the Modiole, or tho Cardite, which pierce stoncs, it would not be right to reject from the family of the Lithophages shells which do not perforate, but wherein we uevertheless find all the essential characters of the spccios which it contains. For this reason it would be coavenient to approximate the Byssomyce and the IFiatelle to the Saxicava, and to leave in this genus species which do not perforate. M. Deshayes (loc. cit.), who does not appear to have seen tha observations of Mr. Garner and Irofessor Oweu above alluded to, refers to the discussions relative to the means by which perforation is brought about by certain acephalous molluscs. Some
authors, he remarks, have supposed that the attrition of the valves against the stone sufficed to wear it away by degrees, and that thus the animal formed a lodgement sufficient to contain it. Olivi, he observes, who was of this opinion, grounded it on the fact that he pretends to have observed that perforating molluses can attack lavas or other rocks which are not calcareaus. "Since this assertion of the Italian author," contiuues M. Deshayes, "no well made observatiou has occurred to support it, whilst, on the contrary, a great number of proofs have been collected showing that perforating molluscs are never lodged except in calcareous stones. This mode of life renders very probable the opinion of M. Fleuriau de Bellevue, who believed that the animal was provided with an acid secretion, by meaus of which it dissolved, in proportion to its growth, the walls of the cavity which it inhabits. An observation of my own is that the greatest number of perforating molluses are contained in close-fitting cavities by no means made to permit of rotatory motion; that they are oval when the shell is of that form; and that we almost always see rising between the umbones of the 'palves a calcareous crest which forbids any movement of rotation." M. Deshayes then proceeds thus:"Many zoologists havo believed that there was but little necessity for preserviug the family of the Lithophages. M. Do Férussac places the Saxicaver in the neighbourhood of the Gastrocheence and the Solens, and he places the Venerupes near the Vencres. M. De Blainville has adopted a ncarly similar opinion. We do not admit it any more than that of M. Do Ferrussac, and we shall preserve the family of the Lithophages as Lamarck established it in this work. We rest our opinion on the knowledge of many animals belonging to the three genera Saxicava, Petricola and Venerupis; they are bonod by a common relatiouship (par des rapports communes); thus the mantle, which scarcely opens for the pasaage of the rudimentary foot in certain Saxicava, opeos a little more in the Petricolc, and more still in the Venerupes. The foot follows a nearly analogons development, always remaining however proportionally smaller than in other molluses in which this organ is necessary for locomotion."

Lamarck says of the Tenerupes, or Venuses of the Rock, that they seem in fact to have a hinge analogous to that of the Veneres, but that nevertheless a slight difference in the disposition of their cardiaal teeth suffices to eaable us to recognise the genus. They arc, he adde, lithophagous or perforating shells which are very inequilateral, and which are uot distinguished from Petricola, except in having three cardinal teeth at least in one valve.
"The greater part of the Venerupes," observes M. Deshayes in his commentary on this genue, "differ scarcely from the Petricoles; they offer most frequently three cardinal teeth in one valve, two and rarely three in the other. When in some individuals one of these teeth is abortive, which often happens, the same species may be comprised in the two genera at ouce. The auimals of the perforating Venerupes are scarcely to be distinguished from those of the Petriculos; auly the mantlo is a little more slit aud the foot a little longer. In the Feneres these parts are different; and this proves that it is uecessary to keep separated two genera which Cuvier and M. De Blaiuville have thought it right to unite or approximate. We do not preteud to dispute, nevertheless, the analogy which is evideutly exhibited between certain Venerupes and the Veneres. We think that the Vonerupes ouly ought to be withdrawn from the geuus aud placed among the Veneres, because the snimals are in fact similar; only some plunge themselves into hardened mud, whilst others live in the sand. Aud although they may enjoy the faculty of perforating stone, this would not be a sufficient reason to reject them from the Veneres, because we have seen that in a great number of genera belougiag to very distant familie there exist perforatiug species; thus we may well conceive that there may be perforating Veneres, but that does not hinder us from admitting a genus Venerupis, the characters of which appear sufficient to us."

The number of recent species of Venerupis is 19 , and their range is wide. Species are found on the coasts of England and France, in the Mediterranean, in the South Seas, and in those of India, China, and Australia.
V. perforans is the Tapes Pullastra of Wood, the Venus perforcans of other authors. Shell sub-rhomboidal, concentrically striated, ruuning iuto strong wrinkles or ridges at the auterior side; sometimes, though very rarely, with very fing longitudiual strice; colour light-brown; umbo very near to one end, swall, aud turued : little sideways; the louger side much truncated; hinge with three teeth in each valve, oue of which is small, tho others loug, slender, and curviug outwards; middle tooth a little bifid. Inside smooth, white, with generally some purple at the truncated end; margin plain; valves moderately coucave. Length rarely exceeding $3 \cdot 8$ ths of an inch, breadth more thas 5-8ths.

Montagu, whose description this is with very slight alteration, says, that with respect to shape it is difficult to fix auy as a permanent character; it is however; ho adds, most frequently sub-rhomboidal; sometimes nearly as long as it is broad, generally straight on the frout margin, but in some instances deeply siuuous or indeuted.

It is very common ou the coasts of Eugland. Lamarck records in variety smaller and narrower, with sub-striated lamellæ, from the coasta of Frauce, on the authority of M. Fleuriau de Bellevuc.
V. Irus is a common species on the British coasts.

a, from Nontagu's figure ; b, from the whell.
Fassil V'encrupis-M. Deshayes in his 'Tshles' (Lyell), maken the number of living apecien eight and of the fossil apecies (tertingy) six. He aloo quotes 1", Irma as being found both liviug and fosal (tertinry).

P'efricola, Iam. (including Rupelleria, FL. de. Bell.)-Animal oval, thiek, eapecially at the upper part; mantle with sinaplo bordere, which are a little dilated in front, where they form a rather small opening for the parmago of a tongue-shaped and feeble foot; tubes amall, in the slappo of cones, truncated nt their sommits, eeparated for twothirin of their length, and finely radinted at their orifices; branchis small.

Sliell rather delicate, without an opiderrnis, white, radiated, orsl, nubtrigonal, gaping anteriorly, more or lens irregular, equivalve, inequilsteral, the anterior aide much shorter than the posterior side; umbones not projecting much, and contiguous; hinge composed of small cardinal teeth not diverging much, one of which at least is bifid, to the number of two in one valve, and ono in the other, or two in each; ligament external, posterior, short, and convex; muscular inpressions oral, united by a pallial luapression which is often not very distinct, and han a rery deep and rounded excavation ponteriorly. (Itang.)

Mr. (3. I. Sumerby obmerves ('Genera,' No. xq.) that the genum Petricola, on it manda at prement, is composed of several shella which Lamarck thought suffciently differeut to form two genern, his J'efri.

Cola and Rupellaria, tho first with two cardinsl teeth in one valro and one In the other, the second with two teeth in each valve; but Mr. Sowerby entirely agreea with lamarck in the proprioty of uniting thom. He in not so well satinfied with the place assigned by Lamarck to this and some other geuera which form the hollows in stone wherein they dwell; and he thinks that a great degree of eimilarity in external figure and appearance, as well as habit, should luve brought them nearer to the Pholadidie.

The geographical extension of Petricola is nearly coequal with that of lenerupis, as far as the localitios of that genus are recorved; and rather numerous on tho coasts of the warmer parts of Anerica. (Cuning.) Alao found on the Gallapagos Islands. (Cuming.) The spueien are about 30.

Their habita also are much the same with those of Venerupis, in the same rock with which, and in its clone neighbourhoor, Petricola is ofen found. Mr. G. B. Sowerty sucaks of the cavities in which they live as belog evidently of their own working, though on account of their form they cannot possibly have been produced by a rotatory motion, for they are exactly of the shape of the shell itself, and a very little larger. Pericola has beon found at depths rauging from the - urface or near it to a depth of 11 fathoms.

The foregoing cuts, from Mr. G. B. Sowerby's 'Genera,' represent some of the forms of this genus.

Fosil Petricola. - The number of recent species given by M. Deahnyes in his 'Tables' (Lyell) is 13, but many more have been described since. The uumber of fossil (tertiary) he places at 10 , and gives the species P. ochrocleuca, P. lamellosa, and P. atriala as both liring and fossil (tertiary).

Coralliophaga (Cypricardia, part, Lam.).-Shell oval, elongated, finely radiated from the summit to the base, cylindrical, equivalve, very jnequilstoral, the dorsal summits very anterior and but little developed; linge consisting of two small cardiusl teeth, one of which is subbifid, in front of a eort of lamellar tooth, under a rather weak external ligament; two muscular impressions, which are amall, rounded, aud distant, united by a narrow pallial impression, a good deal excavated posteriorly.
M. Do Blainville established this genus for some species of living slells placed by Lamarek anong his Cypricardice, and which appeared to the former to be npproximated to the Veneres. M. De Blainville states that M. Deehayes had caused bim to remark shells of the same species as that cited by M. De Blainville as the type, and which bad modified their forms so as to resemble a Lithodomus in which they had lived.
M. lang thinks that this genus is well distinguished from the Cypricardict, because, in one part the excavation of the muscular impression anuounces that the animal las tubes, whilst the other shows that it perforates.
C. carditoidea, Blain.; Cypricardia coralliophaga, Lssm.; Cardita Dactyles, Brug.; Chama coralliophaga, Gmel. It occurs in the masses of madrepores and other corals at St. Domingo. M. Rang observes that it is in the masses of madrepores so cummon at the Antillen that the species of this genus should be sought for.

The apecics here figured na rucent is also noted by Lamarck as fossil in Itnly, under the name of Cypricardia coralliophaga.

Clotho (fonail only).-Shell oval, nubregular, stristed longitudinslly, mpivalve, and nubequilnteml hinge formed of a bifid tooth, curved brek into a look, rather louger in oue valve than in tho other; ligament external.
C. F'aujasii. This, the only apeciea that appenrs to be known, was detected by Faujas in the shella of C'ypricardior, which were still lying it the atone which they had eroded when alive. M. De Blainville aud M. lang both adopt the genus; but the former asys that ho had not ubnorved it himaelf.

Lingulina.-Shell longitudinal or traniverse, irregular, not gaping, equiralve, subequilateral; umbones aufliciently developed nad croded; linge formed by a cardinal tooth, which is short and subbifid in each valre, sud an obloug margiual furrow or depression, divided into two jarta by a contraction; ligameut subinternal, and inserting itself in these depressions; muscular impressiona clongated; pallial linpression not flexuous (lang.)

It is maid to have been found in the seas of Senegal.
l. tranescian may be tuken as an exsmple.

Clotho Faujasii. a, magnified.

Cnguina evanstcrea.
Saxicava-Auimal elongated, subcylindrical, having the mantle closed on sll sides, prolonged backwards by a long tube, double internally, a little divided at its summit, and pierced inferiorly and anteriorly by a rounded orifica for the passage of a small, elongated, lelicate, and pointed foot; mouth moderate, lahial appendages small; branchial lamine for the most part free, and very unequal on the same side.

Shell thick, solid, covered with an epidermis, elongated, rounded in frout, truncated as it were posteriorly, gaping, irregular, equivalve, very inequilateral, the posterior side being much longer than the anterior; umbones not very distinct; hinge without teeth or with two reparated tuberosities more or less developed; ligament external; muscular impressions rounded and a little approximated, united by a small straight pallial impression, very narrow, and occupying the middle of the valve. (ling.)
M. De Blainville and M. Rang place the genus among the Pylorideans. The former is of opinion thast it differs little from Glycimeris.

Mr. G. B. Sowerby ('Genera,' No. xxp.) includes in the genus Saxicava shells which, he observes, have had, in conformity with the various vicws of authors, at least six different generic names. He apologises for tho conclusion to which he has come in contradiction to so many great suthors, but gives the following reasons for his opinion. He premises that it will not be disputed that Solen minutus of Chemnitz and Montagu, IFiatclla arctica of Daudin, Cardita arctica of Eruguière, and the Byssomya of Cuvier, are one and the same specics; and that Leach's Pholeobius iucludes as distinct species of the same genus the Selen minutus of Montagu and the Mytilus rugosus of Linnous. "Now the former of theye," continues Mr. Sowerhy," is Fiatella arctica of Lamarck and Turton, and the latter Saxicava rugosa of the same authors: thus all the six genera are reduced to one by Dr. Leach, whose authority is indisputably very great in such matters; we do not however proposc to our readers to take it as conclusive, but will state that we possess, as Dr. Lcach did, a series of specimens, the young ones of which are more regular in shapo and mere atrongly mpinose than the older, snd are to all intents and purposes /Iiatella arctica, or Solen menutus; and the older specimens, losing the strongly-marked double rows of spines, though always
retaining indications of them, and assuming a much less regular form, become characteristic specimens of Saxicava rugosa; the hinge teeth of the younger specimens may be advanced as an argument against the identity of these shells: it is however well known that in many shells, particularly those that are irregular, the teeth become obsolete with age: thus if the hinge teeth, the general form of the shells, or the double row of spines, cannot be depended upon as generic distiuctions, the Lamarckian geuera Miatella and Saxicava, and bis Selen minutus, merge into one: to show that the shells described as distinct species under either of these generic names are identical is not important to the present work; it is therefore sufficient to observe, that in all irregular shells that are either found attached to or imbedded in rocks, corals, roots of sea-weeds, \&c., the general form cannot be taken as a character; and we believe the Mytilus procisus and several of the Saxicaved described by Lamarck and Turton to be merely variatious of S. rugosa, than which there is perhaps no shell more subject to variety of form.", To illustrate this exposition Mr. G. B. Sowerby gives in his 'Genera' the following figures of Saxicava r'ugosa in different stager of its existence.

1, the young shell; 2, inside, showiog the teeth; 3, a full-grown specimen of the same; 4, the inside, showing the muscular impressions.

The distribution of the species is very extensive. The Northern Ocean, the Britannic seas, the Mediterranean, the South Seas, Australasia, and the warmer coasts of America, are recorded as localities.

Mr. G. B. Sowerby remarks that the Saxicave are frcquently found upon the outside of oysters, protected by their irregularities, and in the clefts of rocks or corals, roots of sea-weeds, and perforating oysters, chalk, limestone, and hardened clay. Those, he adds, which themselves perforate the hollows in which they live are more regular. than uthers.
Mr. Garner states that the crypts of Saxicava are mot circular : hence M. De Bellevue snd Mr. Osler, in this instance, believe them to be formed by the phosphoric acid secreted by the animal, and they suppose this animal to inhabit those rocks only which are composed of carbonate of lime, which last supposition Mr. Garner declares to be not correct from his own knowledge.
Mr. G. B. Sowerby observes that the species of this genus are not numerous, aud that they are not easily distinguished from each other, as the reader may imagine from the confusion which has prevailed on this subject. Lamsrek recorded five species. Of the first two of these (S, migosa and S. Gallicana), one, according to M. Deshayes, must be suppressed, being in reality only a variety of the other. S. Australis and S. veneriformis, Lamarck's fourth and fifth species, are identical, as we have already sceu. To these M. Deshayes adds S. Guerini, from the Mediterranean, and S. vomboides (!) as recent species. Mr. G. B. Sowerby ('Zool. Proc.,' 1834) has added three recent species collected and brought home by Mr. Cuming.

Fessil Saxicava.-M. Deshayes, in his 'Tables,' gives the number of fossil species as 11, all from the tertiary. He notes two species, S. minuta and S. Pleladis, as both living and fossil (tertiary).

For the specics of Phelas and Lithodomus, see Mytilides and Pholadide.
LITHOPHYTA. [Polypifera.]
LITHORNIS, s genus of extinct Fossil Birds, described by Professor Owen in the 6th volume of the 'Geological Transactions.' The most conclusife evidence of tho existence of birds at the period of tho
furmation of the andy Euglinh tertiarice is afforiod by the remaina of this bind. Some of thene are now in the Hunterian collection, snd consist of a sternum and ancrum, two of the most characteristic parts of the skeleton of bird. In him 'British aud Fosuil Mammala and Birda. I'rofeswor Owen anys: :-
"The IIunterina fossil includer, with the mutilated atemum, the sternat ende of the two corncoid bones, a dorval vertebra, the lower end of the left fonur, and the proximal end of the corresponding tibis, portions of two othor long bones, and a few fragments of the aleader ribs; all of which are cemented together by the gray iadurated clay usually attached to Sheppy fuasils. The eutire keel and the posterior aud right margins of the ateraum are broken away; but the obvious remain of the origin of the keel and the length of the sternum forbid a reference of the fussil to the Struthious, or strictly terrestrial order.
"The lateral extent and conrexity of the body of the sternum, the preseure and course of the secondary and intermuscular ridges, and the commencement of the keel close to the anterior border of the sternum, renore the fossil from the Brachypterous family of WebFooted Birls, nad lead us to a comparison of the fossil with the corresponding parts of the ekeleton in the ordinary birde of fight.

- Sufficient of the aternum remainy for the rejection of the Gallinacea, and thoe Grallatorinl and Pasecrive birds which have that bone deeply incised; and the field of comparison in than restricted to such species ar have the eternum either entire or with shallow pobterior emarginations. Between the fossil and the corresponding parts of the skeleton of auch birds, a cloee comparison has been instituted in regard to many minor details and modificationn; ns, for example, the secondary muscalar impreseions and ridges on the broad outer convex surface of the aternum, its costal margin and anterior angle, the form and extent of the comooid grouve, the conformation of the sternal end of the coracoid bone, together with the form and relativo size of the preserved articular extremities of the femur and tibia.
" Hut, without repeating all the dotails of these comparisons, it may be Bufficient to state, that after purnuing theur from the Sea.Gull and uther aquatic apecien, upwards through the Orallatorial and Passerine under, omitting few of the njecies nad none of the genera of these orders to which belong lritish birds approaching or resembling the fousil in aize, the greatest number of correspondences with the fossil were at length detected in the skeletoun of the Accipitrine epecien The reemblance wan not however sufficiently close to admit of the fuanil being referred to nny of the existing native genern of Kaptorial linda

The breadth of the proximal cnd of the comcoid remored the fosnil from the Ow le (Strigidet), and the ahaft of the mame bono was tow slender for the Falconide; tho fomur and tibia were likewiso relatively weaker than in mont of our liawks or Buzzards. But in the small Turkey- Vulture (Cathartes Aura), bealdes the eamo genernl form of the bones, so far as they exist in the foskil, there is the same degre of development, and the same direction of the intermuscular rifge on the under surface of the atenum, which divided the origina of the first and second pectornl inumeles. The outer angle of the frozinal end of the corncoid it produced in the same degree and form, and a mimilar intermuncular ridge in present on the auterior and towarila the outer part of the coracoill.

The preserved extremitien of the femur nnd tibia bave tho same conformation and nearly the wame relative size in the fossil as in the exinting Catharfer. In this genum nevertheless there is a deeper slepresion on the outer aurface of the aternum external to the coracoid proove than in the fossil ; but thin difference is less marked in some of the large Inteurider. The vertebra, the shaft of the coracoid, and the prenerved portions of the ateraal ribm are relatively more slender. The fomil moreover indicnion n mazaller apecies of bird than is known amongat the exinting l"ultarider.
"The anterior or inner wall of the coracoid groovo is broador, the anterior angular promene narrower, and the body of the aternum moro convex than in the IIeron or Ibittern; and the proximal end of the cormeold has a different form in the fosil. In the Sea. Gull the keel rimes foom a more curved surface of the sternum than in the fosail; the inner wall of the corncoid groove in broaller; nad the outer angle of the ateroal etad of the coracoid ham a different form and position.
"I regret that I have not yet hall the opportuuity of comparing with this interesting pecimen the meleton of the maall buropean Neophron (Fister Perchopieru), but in the meanwhile I deem it best to retain the aub-generic dintinctive aprellation originally proposel for the EGome opecies of bind represented by the grement very remark. able llunterian foreil."
I'rotewar O wen proposes to call the rpecies Lithornis rulfurinus, the Vulture-like Lithomik.
 reference to the hard merda or nuta), a getins of Planla belonging to the natural onder /horaginacert. It has a deeplycut calyi in fivereg. mente, a funnel-anped conolla, with a naked or minutely ${ }^{5}$-ncaled throst. The filaments are rrry whort; the atamena included in the tube. The nuta are mooth or tulercular, stony, and attached by their truncate fat base to the bottons of the calys.
L. officinale (Gromwell), has an erect much-branched atem, lanceolato acute veined leaves, with tuberclen and alprewed briatles above, hairy
beneath; the thront of the corolla has minute scales within, and is of a pale yellow or greenish colour. Tho nuts are white, shining, and very hard, two or three riponing in each calyx. They were eatoemed in ancient times as an infallible lithonthriptic; their virtues in thin reapect are however entirely imeginary. This apecies is a native of Eumpe, Asia, and North America. It is found in dry and atony places iu Great Britain, but apariogly.
L. purpureo-cerwleum han berbaceoun stems, the barren ones prostrate snd ereeping, the others erect. The leaves are lanceolnte, acute, and scabrous, of a dark-green, with revolute margina. The flowers are showy and large, at first red, and afterwards of a bright blne. The nuts are white, bighly polished, and hispid. This epecies has no scales in the throat of the corolla, but merely fivo longitudinal downy folds. It is a native of Middle and South Europe, of the Cancasua in woody mountain places, and of England and Wales in chalky soil.
L. arrense, Bastard Alkanet, or Corn Gram well, has an erect branched stem, lanecolate leaves, rather acute, hairy, and subciliated; the calyx a little shorter than the corolla; the puts tubercular, wrinkled, poliched, and of a pale-brown. The throat of the corolla is destitute of scales, ns in the former apecies. The fowers aro white and emall; the root of a bright red, communicating its colour to paper. It is a native of Europe, Asia, Africa, and somo parts of North America, and is found plentifully in the cora-fields of Great Britain.
L. tincforium has berbaceous procumbent stems, lanceolate obtuse leaves, bairy calyxes a little shorter than the tube of the corolla. The upper leaves are balf-clasping, the lower ones on petioles. The flowora sessile in simple or conjugate leafy ypikes; they are of a fine blue colour with a white throat. It is a native of Spain, South of France, Italy, and liungary, iu sandy sterile places.
L. tenniflornm has an herbaceous erect branched stem, lanceolate obtuse hairy ecabrous lesves, the lower ones opposite; the calyx is shorter than the tube of the corolla, conniving when bearing fruit. It is a native of Egypt and of the island of Cyprus, and has the habit of L. arcense, but is much smaller. It is the Nefom $f \rho \mu \mathrm{on}$ of Dioscorides (iii. 148), and the Lithorpermum of I'liny (xxvii. 74). L. apulum is the

All the species of Lithospermum are noted for tho atony hardness of their pericarp, which lave the brittleness and lustre of porcelain. This nembrane when anslysed is found to contain nearly 60 per ceat. of eathy matter, which is more than is known in any other organised substance. Acconding to Spenner, L. officinale is the ouly true Lithospermum, none of the other species having a crown of scales in the throat of the corolla. The perennial and herbaccous species are plants of rery easy culture, requiring hardly any care. They are always propagateal by soed, which may be sown is the open ground. The nonual species ehould be treated as grcenhouse plants, and the shrubby kinds mny be grown on rock work or on wall-tops, where they will maiutain theroselven if allowed to scattor their seeds. They do very well in pots nmong other alpine plants, and cuttings of them may be rooted under a hand-glass. In general they are however short-lived and apt to rot.
(Don, Dichlamydcous Plants; Babington, Manual of British Dotany; Burnett, Oullines of Botany.)

LITHOSTIBOTION, the namo given by Llwyd, and adoptod by Fleming, to some fossil 'Msdrepores,' as the Lamelliferous Corals are cominonly termed, which appear confined to the older atrata (eapecially Mountain Limestone). They are included in (yathophyllum of Goldfuss by I'rofessor Phillips ('Qeology of Yorkshire,' vol. ii.), and is Columnaria by Iblainville ('Actinologie,' p. 350).

LITHOTIRYA. [Cimaipeda.]
LITI'OPA, a genus of Pectinibranchiato Mollusca, established by M. Rang, with the following characters:-

Animal transparent, npirsl, furvished with n rather short and narrow foot, and a head provided with two elongated couical tentacles, with the eyes at their external base.
Shell not thick, horny, with a slight opidermis, slightly transparent; conoid; the whorls of the epire rather rounded, the last whorl larger than all the others put together, the apex pointed and furrowed loogitudinally ; aperture oval, wider anteriorly than it is posteriorly, bordera disunited, the right bonder or lip uniting itself to the left without forming a very distinct notch, but ouly a deep 'contour,' in the place of one; loft lip returnigg inwards (reutrant ca dedans) so as to form n projection with the noterior extremity of the columella, which is rounded, arched, and a little truncatod anteriorly. No operculum.

M. laug plscen this form between Janthina and Phasianella, and wherves that the habits of this Pelagic Mollusc are very curious. He Hates that he had many years ago observed the sholl, but time had nut permitted him to study the animal. M. Bellanger, captain in the French wivg, was the firnt who recognised it, but that gentleman
unfortunately had not studied its external organisation; he ebserved however the singular fact that this animal, which lives upen floating plants, quits them sometimes, but holds itself fixed by a thread. [Licrescide] .M. Rang dissected some specimens preserved in spirit of wine given to bim by that officer, and detected some small glairy masses which apperred to M. Rang to be attached to the foot, and which were easily drawn out to considerable length. M. Rang loeked is vain fer an operculum, the sbsence of which establishes a great differeace between this genus and Phasianella, and has described two species, different as regards the shell, but with apparently similar animals.
M. Rang observes that the genus Litiopa, like some others, preves that it is net pessible to establish divisiens founded on the presence or absence of an operculum.

LITTORELLA, s genus of Plants belonging to the natural order Plantaginacer. It is menœcious; the male flowers stalked; sepals 4 ; tube of the corolla cylindrical; limb 4-parted; stamens hypogynous; filaments very long. The female flowers sessila; sepals 3 ; corolla eblong, narrowed at both ends; atyles leng; capsules 1 -seeded.
L. lacustris, has white flowers; the fertile flowers sessile; stalks of the male flower one or two inches long; lesves all radical, linear flesby, somewhat channeled. It is found on the margin of lakes.

LitTorina. [Littorinide.]

LITTORINID E, a family of Gasteropodens Mollusca living in the sea or in brackish water. The animals are bisexual ; they bave muzzleshaped hesds provided with tentacular and sessile eyes. Their tongues are long, and armed with transverss bsnds of teeth, each row consisting of a broad and hooked ceatral denticle, flanked on each side by three oblong hooked laterals or uncini. The branchial plume is aingle ; the foet has a distinct linear duplication in front, and a groeve along the sole. The form and appendages of the eperculigerous lobe afford important generic distinctions. There are no neck-lobes or lateral cirrhi. The mantle exhibits traces of a rudimentary canal, or respiratory fold. Members of this group inhabit all regiens of the sea, but by far the greater number live near the shore, sad a very considersble pertion of them are found between tide-marks.
Littorina.-The species have turbinate sholls, solid, sub-cenic, or aub-glebese, with a shert spire; surface smoeth or spirally groosed, protected by a mare er less developed epidermis; mouth subcircular, peritreme eatire, outer lip sharp-edged, columellar lip expanded, imperforats ; operculum pyriform, corneous, of few rapidly-increasing whorls; the spiral nucleus laterally placed.
The animal las a muzzle-shaped head, with two tentscula, bearing the eyes en bulgings at or near their external bases; no neck-lobes; operculigerous lobe without filamentaty processes; foet rounded at both extremities, grooved below for the two posterior thirds of its length; branchial plume single. They all live strictly between tidemarks, and many of them can exist without inconvenience in localities where the sea oaly occasionally eprinkles them with its spray.
The Littorince, or Periwinkles, to call them by their popular name, are distributed through the seas of all climates. Fossil species are enumerated likewise from all fermations, even the most ancient, but many are placed in this genus which ne donbt beloug elsewhere.
L. Neritoides is suall, smooth, ovate, conic, usually mere or less black; whorls much sholving, flattish, or merely convex ; spire short but acute; mouth angularly contracted pesteriorls; outer edge of the pillar-lip but little if at all concave; threat very dark. The shell is found on the very edge of tide-marks, and often at considerable distances sbove it, where enly the dash of the spray can moisten it with seawater. It is common on cur rocky shores all round Britain and Ireland, and is distributed all round the coasts of Europe, and extends threugh the Mediterranesa.
L. littorea is solid, not smeoth, yet rarely ridged; whorls not rounded, but mere or less flattened; base and pillar not so produced, and aperture not so filled up anteriorly, as in L. rudis; outer lip joining the body at an acute angle, and more arched below than above; pillarlip net peculiarly broad, usually white, its inner edge for the most part well arcusted. This is pre-eminently the Periwiakle of our shores, a name aaid to be a corruption of 'petty-winkle.' In Suffolk they are called 'Pinpatches.' Great quantities are sold in London, and eaten on many parts of our coast, after being boiled, when the animal is extracted by means of a pin: This is a poor man's delicacy, but by no means to be despised. It inhabits the third sub-region of the littoral zone or belt, between tide-marks, that of which Fucas articulatus and F. nodosus are the characteristic plants, and is found in every district along our shores.
L. rudis is solid, rarely ridged; whorls rounded; spire acute, more or less short; mouth small, mere or less roundcd, not coutracten above, but lesse日ed at the base by the broad confluence of the pillar and outer lip, which latter is rather mere arched above than below, and joins the bedy at nearly right augles; base gencrally a little produced. This strong shell closely resembles the preceding, but does not attain to its size, and chiefly differs from it in the rounduess of its well-defined propertions. The colour ranges from yellowishwhite to orange, and is either uniform or banded with about two or three zenes of liver-colour or chocolate, of which one at least is broad. The animal differs from that of the preceding species in being of a lighter bue, with the exception of the head, which is more uniformly dusky. It is found almest evcrywhere on steny and rocky shores,
often in considerable numbers, though net strictly gregarious. It inhabits the first and secoud sub-regions of the littoral zons; those of Fucus canaliculatus aud Lichina, ususlly belew the next species, and always within the reach of the tide. Its continental range is like that of Littorea.
L. littoralis is semi-globose, solid, smooth, or at most striolate, the general surface flattish; body bluntly subangulated above, peaked below in the young; spire remarkably depressed, its whorls not rounded; pillar-lip decidedly bread. The animal is usually of a bright-yellow coleur; but occasionally, as in a specimen taken in the Isle of Man, is tinged with dusky, and has the tentacula and muzzle nearly jet-black. This species is abundant all round the British and Irish coasts, living on Fuci between the tide-mark, but more especially inhabiting the third sub-region of the littoral zone, that of Fucus serratus, where it is found in company with Trochus cinerarius. It, ranges aloug the shores of the Northera and Celtic proviaces oa the Eurepean side of the Atlautic.

Messrs. Forbes and Hanley admit the following additional species in their 'British Mellusca'": -L. fabalis and L. palliata. L. patula, L. tenebrosa, and L. saxatilis they are disposed to ragard as L. rudis.

The other British geners of this family are-Lacuna, of which there are the following species:-L. pallidula, L. puteolus, L. vincta, and L. crassior; Assiminea, including two species, A. Grayana and A. littorea; Rissoa [Rissoa]; Jeffreysia [Jefrreysia]; and Shenea [Skenea].
LITUITES, a group of Fossil Cephalopoda, confined to the strata of the Silurian and older systems. The shell is partly straight and partly convoluted, nearly as in Spirula (Lam.).

LIVER. The liver is the secreting organ or gland by which the bile is formed. Its existence has been traced very low in the scale of animals; and parts supposed to have been an aualogous function have been fouad in insects, but their nature is at present a disputed question. The differences in regard to size, form, and colcur, which the liver presents in the higher animals (Mammalia, Birds, Reptiles, Amphibia, and Fishes), are of no great importauce.
In man the liver is a large solid viscus, of a reddish-brewn or mottled red and yellow colour, situated immediately beneath the diaphragm, in the right bypechondriac and partly in the epigastric region of the abdomen. [Abdomen.] When enlarged, it can be felt by the hand applied below the ribs on the right side. It is flattened in the vertical direction, is thinner at its anterior than st its posterier border, and its outline, when viewed from above, is irregularly ovoid. The upper surface, which is convex, is applied to the diaphragm; the lower, which is irregularly concave, lies above and in centact with the stomach, large intestine, and right kiduey, has attached to it the gallbladder, and presents two deep furrows, which divide it into seversl compartments, termed by anatomists lobes. Of the furrows, cae rumning from before backwards (the longitudiual fissure) transmitted, during uterine life, the ressel which conveyed the blood from the placenta to the heart of the fæetus; it afterwards contains merely the cord-like remains of that vessel, new impervious in the greater part of its estent. The second furrow, in the under surface of the liver, is called the transverse fissure, since it cresses the former at right angles, lying however chielly to its right side; it serves to allow the entrance of blood-vessels and nerves to the liver and the exit of the bile-ducts. Like other viscera of the abdomen, the liver receives an investment from the lining membrane of that cavity, the peritoneum, which, being reflected from it at different points, forms broad bands connecting the liver with surrounding parts.
The substance of glauds generally is constituted of minute ramified or convoluted canals, closed at their radical extremity, and communicating only with the principal duct, by which the secretion is conveyed away, and of a great number of blood-vessels which surround the above-mentioned canals in their whole extent, and afford the component matters of the secretion; thess matters find their way into the interior of the glandular canals, not by distinct openings from the blood-vessels, but by transudation through their walls. In the human subject all other glauds than the liver receive one kind of blood ouly, namely, arterial blood, from which the components of the secretion are derived, and the organ at the same time nourished, and the only veins are those which convey away the same blood after it is rendered venous by the changes it undergoes in the gland. But the liver, like the lungs in man and the kidneys also iu some animals, receives two kinds of blood-arterial blood in small quautity, destined principally for the nourishment of the gland, and veuous blood in much larger quantity, from which the bile is priucipally formed. The vessel which brings the arterial blood, the hepatic artery, is small, and comes off the aerta [Aonts], together with the arteries supplying the stomach, spleen, duedenum, nid omentum. The venous blood is brought by the portal veiu, a large vessel resulting from the union of all the veins returning the blood from the spleen, omentum, pancreas, aud gallbladder, and from the viscera directly engaged in the function of digestion, namely, the stomach and intestines. The hepatic artery and portal vein euter the liver at the transverse fissure or furrow of its inferior surface, where the bile-duct issues, and ramify together with the brancles of that duct through the substance of the organ. After the materials for the nutrition of the liver itself, and for the secretion of the hile, have been derived from the blood of the two sets of ressels already meutioned, it is returned to the geueral circulation
by a thind set, the hepatic veing, which isune from the liver at its poaterior bonder, and itnmediately enter the inferior rena cava near the heart.

The nltimate arrangement of these differcut blood-versela in the liver is very peculiar : it wha firet accurately described by Mr. Kiernan. When the substance of the liver is wrn, it is aeen to be composed of innumerable granules of about the size of a pin'a head; each of these contains the elementa of a liver. They are connected most intimately with the branctea of the hepatic rein, a amall twig of which in contained in tho interior of each, while on their exterior aurface and in their interstices run branchen of tho portal rein, hepatic artery, and biloduct. The mass of each granule or lobule is constituted in great part of a elose networt of cajillary blood-ressels, which communicate on the exterior with the small branches of the portal, and on the interior with the twig of the bepatic rein. The blood brought by the portal vein therefore is ponred into the capillary network of each granule or lobule of the liver, and, after yielding in it the countituonts of the bile, in receired into the bmuches of tho bepatic vein, whence It is tranamitted to the general vascular syatem. The branches of the hepatic artery mon lecome rery minute on the exterior of the lobules, and few can be traced into their interior; it is probable that, after having nourished the coats of the vesela and ducts, and other tisames of the liver, the blood of the liepatic artery is poured into the miunte network formed by the ultimate division of the portal vein, and contributes with the blood of that vein to yield the constitueuts of the bile.

The form and diaposition in the liver, of the primitive radicles of the eecreting cauals or bile-ducta, have been tho subject of much discuation. Dr. Handfield Jones, in a paper in the 'lhilosophical Trausactions, arrives at the following conclusiona :-
"The liver in all vertebrate animalm anny be regarded as consisting of a secretory parenclyma and of excretory ducts. The aize of the excretory apparatus bears only a small proportion to that of the secretory.
"These two portions of the liver are not continuous with one another, but are disposed ximply in a relation of juxtaposition.

The action of the liver weems to consint in the transmisaion of bilo as it is formed from cell to cell, till it arrives in the neighbourhood of the excretory duct, by which it in absorbed. This action is probably alow and sery liable to be interfered with, contrasting reroarkiably with that of the kidner, where a particular apparatus is added to insure completenean aud rapidity of action. The secretion of the hepatic cells is rery liable to be retained within the gland, either in the cells or in a frec state. Thia circumstance, n well n ita structural relationa, pecma to jooint out the liver as approximating to the class of ductlees glanda.
" For the amme reason it is highly probablo that a part of the ecretion of the cells is directly aboorbed into the blood which traverses the lobuler"

From an extensive meries of researches in all clasem of lertebrata, IIr. H. Jones come to the conclusion that the excretory system of the liver nlways terminaten in closed tubes. He describen the ducts of the ahecp's liver, which in all emential particulars agrees with that of man and the pig, an follown:-
"In the minuteat bnachea (of the biliary ducte), which seem to be approaching their termination, and which can sonnctimes be cxamined and isolated in the most antimfactory manner, the epithelial particles are remarkably modified; they can mearcely bo aaid to exiet as sepsrate individualn, but rather their nuclei, which are often large and diatinct, aro ect close together in a subgranular or homogeneous basinnubatance. In ducta where thin condition of epithelinm exiats there is mildom any lintivet trace of basement-membrane, the margin, though auficiently oren, yet exhibiting the bulging outlines of the component unclei; atill les in there any proper fibroun cont, though the ducts may be more or lean involvel in the filamentary expanaions of the capaule of Glimon. Duct of thin character haro unually n diancter of about 1.1 ourth of an inch; they can nometimes be followerl for a conoiverable dintance without being acen to give off any branchen, or to diminish moch in calibre. Their morle of terminating in various : everal have beet dintinctly noen to terminato by rounded and closed extremitien, which hare nearly the ame diameter as the duct itenelf; othern enem to lome their tubular chanacter, their nuclei become lesa clowely mot together, and the uniting aubmance mon faintly granular stad indefinite; the duct in mort gradually ceasen, loaing all doterminate atructure. In mome of rather minute aize, 1.3000 th to $1.2000 \mathrm{th}_{\mathrm{h}}$ of an inch in diannter, the exterior form remaina diatinct, but the canal is almont obliterated by the close approximation of the nuclei of the opponite walle These nerncturea now dencribed I believe to be truly the terminal branchea of the hepatic duct, from which they certainly originate. They arem gralually to lay amide the meveral component tieanes of the large ducta, the fibronn coat blending with the ranificalions of tilizooria capoule, the lanement-mombrano imperceptihly caning, and the epithelium trecoming remolved at lant into its airaple fuorlamental nuelei.

It in important to remark that $\ln \mathrm{n}$ dog Dr. H. Jones fonnd liliary matter in the interlobular fisuren. From the fact that in the contenta of the hepatic ducta of man and the aheep, extracted by meana of a forcega and without injuring tho organ, hepatic cella may two detecterl, Mr. Wharton Jones ('Ihil. Trans,' 1848) drawe tho conclusion that
the hepatic cells are cndogenous cells, anawering to the opithelium of other glands

The view taken by Dr. H. Jonos that the liver is easentially of the same order as the 'ductless' glandn, and should be placed in the sacao category as the Peyerian follicles, splecn, \&c., is probably correct. In fact, startling in this yow may at first appear, a very olear tranation between the Pegerian follicles, \&c, aud the liver is affordel by the tonsila, which on the one hand are identical with Peyer's follicles, in so far as they are solid rascular networks whose zneshes are filled by a morphologically indifferent tissue; while on the other hand, without differing from tho liver in this reapect, they resemble it in having these elements arranged around diverticula of the inteatinal mucous membrane.

The biliary canals, reduced in number by successive re-union to two tubes, one from tho right, tho other from tho left lobe of the liver, issue at the thansserse fissure of ite under surface, thore soon unite, and form one main trunk, the hepatio duct. After running a ahort distance, together with the portal veiu, hepatic artery, and nerves, in a quantity of dense cellular tissuo inclosed within the fold of the peritoneum that connects tho liver with the stomach, the leaser omentum [Peritonficic], the hepatic duct meets and unites with the duct of the gall-bladder, or cystic duct. The tube resulting from the junction of the hepatic with the cystic duct is called the Ductus Communis Choledochus: it is about $3 \frac{1}{2}$ inches in length, and termiastes by openiug, together with the duct of the pancreas, into the portion of the intestine named Duodeuum, at the distance of a fow inches from the stomach.
'I'he Gall-Bladder is a pyriform mombranous asc, lodged in a shallow depression at the inforior surface of the liver, which communicates, as wo hare stated, with the excretory duct of the liver, by means of a tube called the Cystio Duch. At times, when a supply of bile is not required in the intestinsl causl-for instance, during fasting-tho bile flowing from the liver is impeded in its progress through the ductus communis choledochus into the intestino, and is consequently obligod to regurgitate through the cystic duct into the gall-bladder, which serves as a temporary reservoir for the secretion, diacharging it again when the presenco of bile is required in the intestine to aid the digentive process. At the neck of the gall-bladder, close to its termination in the cystic duct, the lining membrane forms a spiral fold, which seems destined to retard the flow of the bilo from tho reservoir. The gall-bladder is not constantly present; the animals in which it does not exist are for the most part, though not universally, herbivorous, and such in which digestion is constantly going on, and a reservoir for bile consequently not required. But many herbivorous animala have a gall-bladder; and sometimes, where it is absent, the bile-duct presents n considerable dilntation of its cavity near the intestine : such ie the case, for example, iu the horeo and elephant.

The functions of the liver are inoportant. The analyeis of the fluid which it secretes shown that it frees the bood from an excess of matlers composed of carbon and hydrogen; and by this means, and probably also by effocting eome changea in the matters which have been added to the blood during its circulation through the viscera of the abdomen, tho liver assists in preparing that fluid for the nutrition of the body. Tho bile seems slao to have a direct influence in the formation of the chyle, tho vutritive fluid derived from the food; snd some of its ingredionts serve as a matural atimulus of the poristaltic action of the intestines [Bu.e.]

The liver is developed upon the amme plan as the other glands.
According to the latest observations, particularly of Biachoff and Remak, the development of the liver may be thus best understood:"The primary ridiment of the liver, which appoars at a very early period (nbont the 65th to the 58th hour in tho chick; in Mammala after the Wolflian bodies and the allantois), consista of two masses of colln, an oxternal, proceeding 'from tho fibrous membrane of the intestine, aud an internal epithelial, whioh at first form a simple and afterwarda a dichotomonsly divided rac. Solid processes, the hopatic cylinden of lemak, ano now developed from tho opitholial lamina, which, as in tho inteatine, conaista at first of round cells, probably in many layers, by the multiplication of its calla, and extend into tho outer lamina, branching out nad annatomosing, while at the same time the cells of the outer lamins included in the meshes of this network multiply and become nucceasively changed into ressels, nerves, connectivo tinsuc, \&c. The difficulty is to say how this peculiar roticulated parenchyma of cella and rudimentary vesseln becomes ultimately arranged as we know it to be. In the tirnt place, as regarde the hepaticeell net-work, to which by a continual new development of cell. fresh processes are added, which unite into new networks, so that the hepatio-cell net-work of tho adult liver is tho direct progeny of the original reticulation. Moro detailed information conceroing the acparnte atepa of the formation of the hepatic-cell net-work ia at preaent wanting; yet from what ia known it would appear to take place in somewhat different modes. Sometimes, in the subsequent otages, frce cylindrical processes of the hepatic-coll net-worl do not exist to any extent; but it would appenr to increase by the continual addition of new menhea at ite edgen, perhapes alno by the constant elongation of tho existing columna of hepatie cella and the developmont of fresh anastomoses between them; this is, if I have obaerred rightly, the case in man, where even in the seventh woek I did not succeed in clearly distinguishing free
hepatic columns. At other times free terminstions of the hepatic columns are apparently developed for a considerable period, perhsps until the whole organ has nearly arrived st perfection, their formation appearing to precede by some time that of new snastomoses, as is the case in the chick and otber birds, and, sccording to J. Müller, in a few mammals; in the latter of which, sccording to Miller's figures, the hepstic columns are grouped in lobes. These free superficial hepatic columns may perhans throw some light upon the meaning of Weber's and Krause's statements respecting the biliary ducts with coeal ends upon the surface of the liver. With regard to the bilisry ducts they sre nothing but secondary excavations of a part of the primarily solid hepatic columns and of the lsrger internal tracts, which border upon the original epithelial diverticulum, and which all consist of many series of cells. The excavation commences in the common biliary duct, proceeds towards its branches, and must bs conaidered to take place exactly as in other glands, namely, either by solution of the inner cells of the rudimentary structures, or by the excretion of a fluid between them, and the consequent production of a cavity. In this mode of regarding the matter, there is only one point for consideration, namely, that according to Remak all the hepatic columns, even the largest, form anastomoses, whilst, as is well known, the biliary ducts ramify without anastomosing. The only solution of this difficulty consists in assuming that the ansstomoses of the primary largest hepatic columns do not continue in the course of the further development, but that they sre re-absorbed, a process which has its snalogue in many phenomens of foctal growth. In msa alone might we find an exception, for it seems that the snastomoses of the right and left hepatic duct, in the fossa hepatis, described by E. H. Weber, sre perfectly well explained by Remak's observations, and are simply the cmbryonic anastomoses of the rudiments of these canals, which have attained to some though no very great development. The mode of origin of the fibrous membranes of the biliary dncts becomes readily comprehensible, if we reflect how the net-works of hepatic columas and the fibrous lsyers of the liver interdigitste; so that layers of connective tissue, \&c., might be readily formed around the hepatic cylinders from those elements of the fibrous layer which are nesrest to them. The further development of the vessels, nerves, \&c., presents no difficulties, taking place in the same way as in other organs. The gall-bladder in the chick, according to Remak, is s process at first solid, of one bepatic duct, which subsequently becomes hollow and rapidly increases in eize. I saw the folds of its mucous membrane as early as in the fifth month in a human foetus. The investigation of the liver is best undertaken in the pig, in which animal the distinct demareation of the lobules greatly facilitates the comprehension of the relstions of the secreting parenchyma to the ressels and hepstic ducts. The hepatic cells may be isolated with the greatest case in all animals, either singly in series or in reticulated frsgments; but to comprehend rightly their collective arrangement, no better moans exist than the making of finesections in a fresh liver with the double knife, for which sections made off hand with a razor, cven in a liver previously hardened in slcohol, pyroligneous acid, chromic acid, \&c., are by no means sufficient substitutes. We do not mean to say that the hepatic cell net-work cannot be scen at all in this manner, for it is visible even in opaquo sections of liver by reflected light, but merely. that no complete view can thus be obtained. The finest hepatic ducts aro not readily found, though a csreful search in nearly all sections, which include many lobules, will almost certainly detect scattered fragments of them, readily distinguishable by their small polygonal cells, st the edges of the lobules, and long exsminations may perhaps eventually discover such a fragment in connection with the hepatic cell net-work, which however I have not yet succeeded in doing. The coarser bilisry ducts present no difficulties. Their glands are seen readily, partly with the naked eye, partly by the use of dilute caustic soda. Weber's soastomoses of the two hepatic ducts in the forsa transversa sre visible in good injections. The vasa aberrantia in the left trisngular ligament and in other localities are resdily porceived even without injection on the addition of acetic acid or of csustic soda. The nerves and lymphatics of the liver are, except their finest portions, easily seen in man. The blood-vessels require good Injections, for which purpose, in the human subject, I especially recommend children's livers, in which the distribution of the arteris hepatica in the serous coat, on the vessels, \&c., is beautifully distinct. The capillary net-work of the lobes may readily bo filled with fine injection, and a series of excellent preparations of this kind by various manters of the art are cuerywhere to be met with."
(Valentin, Tert-Book of Physiology; Carpenter, Manual of Human Physiology: Kolliker, Mamual of IHman Histology.)

LIZARD. [SAURTA.]
LIZARD-SLEKER, a namo given to the species of Saurothera, a genus of Birds, [Cuculidsin]

LLAMA (Auchenia of Illiger; Lama of Cuvicr and others), the generic name for that form of the Camelide which is confuncd to the New World. Dentition:-

$$
\text { Incisors, } \frac{2}{6} ; \text { Csnines, } \frac{1-1}{1-1} ; \text { Molars, } \frac{5-5}{4-4}=30
$$

The difference between the dentition of the two nub-families of Camelida, Camelus and Auchenia, appears to consist mainly in the SAT. HIST. DH: VOL, III.
absence of the two small pointed teeth, which are found in the interval or 'bar' between the canines and the molars in the Camels, from the jaws of the Llsmas. Thus the Llamas have four false molsrs, as they may be termed, less than the Camels. In other respects the dentition of the one is, as nearly as may be, the dentition of the other. The following cut exhibits the dental arrangement of the Dromedary, and will convey a sufficiently accurateidea of the same partsiu the Llamss, if the spectator will suppose the absence of the four teeth above mentioned. The difference was considered by F . Cuvier to be of such amsll importance that he has not considered it necessary to give a figure of the dentition of Auchenia.

Baron Cuvier observes, that the Camels and Llamas differ in many noints from the Horned Ruminants. Considered as a whole, the head of the former presents a Darrower and more leugthened muzzle (un museau plus aminci), a cranium larger in proportion, orbits placed more forward, and the edges of those orbits more prominent, in consequence of the tomples being more sunk.

In the Llama the bones of the nose are short, and their extremity notched; their base is slightly enlarged; the lacrymal bone is but little advanced upon the cheek, and leaves a wide space between its anterior angle and the upper external angle of the nasal bone. It does not cover the orbitary part of the maxillary bone, hut stops above the suborbital interoal hole; nothing of the vomer is to be seen above the spheno-pslatine hole, and a small portion of the pterygoid internal apophysis scarcely shows itself there. The prietal bones are soon united into a single bone much wider than it is long; the posterior suture of which remains, nevertheless, before the occipitsl crest. The temporal wing of the posterior sphenoid bons has a descending prominence, sud its pterygoid wing terminstes in a sharp point, which projects more than that of the pterygoid apophysis. The tympanic bones are compressed, but project very much; the occipital erest is well marked.

The true Camels, according to the same author, have the occipital erest still more marked and the temples still more sunken than they sre in the Llamas, and almost as much as they are in the Carnassiers. The occipito-temporal suture is very much in front of this crest. The bones of the nose are of much less width at their bases, snd there is a great space between the small membranous portion which exists at their angle and the lachrymal bone, which is extremely amall on the cheek; it does not reach in the orbit even to the alge of the suborbital interual hole. There is, as in the Llama, a small membranous space between the lachrymal, frontal, and palatine bones, which advances to that spot by a small tongue-shaped portion. The wing of the vomer shows a small portion above the analogous hole of the spheno-palatine bones. The internal pterygoid apophysis does not exist except towards the point of the wing: it does not rise till it reacles the borly of the sphenoid bone, and there is no space between the wing of that bone and the wing of the palatine bone.

In all other respects, as regards the hend, the Camels and Llamas offer a singular resemblance. The sockets of the incisors are smaller than in other Ruminants, and the canal analogous to the pterygo-
palatine terminates in the palato by more numerous holen. The oval bole in amaller. Internally the floor (plancher) of the cerebral carity in much more united than it is in the Deer and the Sheep; the clinoin ponterior apophysen form together only one manall plate; and the region where the optic nerves are lodged is nemrly on a level with that of the pituitary gland.
The interior teeth of the Camela exhibit a conmidernble difference from thow of the other Inuminanta : they hare, in the tirat place, both aluve and below, the firnt molar, or rather false molar, detached from the othern, and situnted forwarla, as we have seen above; and which, from ite imolated position and pointed form, puts on the appearance of a canine tooth. They have moreover a true canine tooth implanted at the nnterior border of the maxillary bone. This tomoth becomen in aged rubjecta developed like the canine of one of the great Carnasaiers. bastly, they have a truc upper inciaive tooth implanted in the intermaxillary bone, and thin aloo pute on the form of a canine tooth: thus the Catnels neem to have io the upper jow thive canines on each aide. In the lower jaw they bave only the eight ordinsry incisors; but vesides that the detached molar jerforms tho office of a caniue twoth, the external incisor has a pointed form, and rises to interlock (a'engrener) between the ujper canine and incisor: this then again reprement a canine tooth, and in the old camel it has the entire appearance of a atrong crnine of a Carnackier.
"In tho llamas," contioues Curier, "whilst they bare, like the (Camels, only five molars in a serien, and often pven only four below, I do not fund the detached anterior molar, or at least I must think that it falla rery carly; but the upper canine and inciaor, nud the external incisor below, are diaponed as in the Camela, and are only more compreamed and treachant at their edges. In both these anbpencra the lower incisors are large, strong, a little unequal, and lifected forwarda"

The metntarnal and metacarpal bones of the Camels and Llamas nre eamily recognised, becanse they are divided higher than in the retber luminante, and well above the articular pulleys. In the Camela the scaphoilt and cuboid bones of the taraus are not soldered, and always remain diatinct. The two edges of the rotatory fulley (pontio rotulienne) of the femur are in the Catnel nearly equal, as in the Hog. In the liuminanta generally the ulna is senreely more than an appendage to the radius, but the distinction generally remaina marked throughout the leagth of the bones, though they beeome soldered hy nge, an in the Ox, Deer, Sheep, and Gazelles: in other cases the ulna dinappearn soon after panaing the olecranon, as in the (iratfe, nud still inore in the Camel. In the Camels mad the Jlamas the tuberosities of the upper lieal of the humenim nre not clevated as in tho other Buminame With regarl to the pelvia, the Camel has the external angle of the lachium pointed and without truncation, and the apinal angle large and rounded; but this lant is nas much and more advanced than the other. The ponturior front of the pelvis is enlarged, aud its ponterior bordey much more like that of the Horse; and no it is in the Llama ('Onnemenr Fomalear.')
l'rofenor Owen has detecterl an ostcological character, not noticed by Cuvier, which peculiarly marik the Camelider, nmely, the absence of the perforations in the tranwerse processen of the cervical vertebre for tho tinammimsion of the vertebral arterien.

In the etructure of the atomach tho Conclider extribit a marked diference from othor Ruminants [Caspatio], and though doubts have beco thrown on the fact, the ntomach of the Jhama is formed upon the mane peculiar principle an that which governa the development of thin rincua is the Camel. Sir Everand LIome maintain, that though a portion of the mornach of the Llama is, an it wore, intended to reamble the reservoin for water in the Caincl, these have no depth, are only superficial ceile, aud have un mumenlar apparatus to close their mouthe and allow the molid fow to lath into the fourth cavity, or truly digesting atomach, without going inte theme cella. I)r. Knox, on tho contrary, han whown that the real diffirencen between the atomachas of the L,lanan and Camela aro much lera than bad been imagined. The truth in, that in making observationn on parth of this demeriptionn great dead dependa upron the care taken to keep the borly of the mibject in a fixerl praition. Thun we find Mr. Spooner, on the occasion of his reading his noteen on the pomemortem examination of a dromedary that died in the Garden of the Zonological Society, obsorving that though he found nothing to mili to the nccounta alrearly given by Jaubenton and Sir Fa Home, the cella of the firat envity in the subject on which lie wan reading centained food: and he wan therefore induced to auggest that doulits inight be entertained of the correctneas of the ponerally recrival opioion, that thene naca are deatined to act an remproirs for fluida.

Ifon thin, Irofeator Owen ntated that be mlen hand found in the cella of the ntomacha of llaman which he had fignected trore or lenn of food; but he nuggested the probnbility that thim might have been forced inta, them by tnoving the animal about after death, when inuseular power being almliabed reaintance to the adminaion of foorl ints the cella would have ceamed. He added, that in the innetance of the camel which was killed wore yearm aince at the lioyal College of Sirgeona (the jarticuJarn of the exnmination of wheh have been pubtialied lyy Sir Fi. Home) the celle of tho mocond and fint cavitiea of the stomach were formd to be filled with water only: in thint case the anitnal had been kept
killed three hours afterwarda, and was opened without being moved from its erect position. Mr. Cox, on the namo occaion, suggester that the existence of food in the cella in the instancen referred to sight perhap be accounted for by the fact that the adimala in question had been kept for many years in this country, where they woro st nll times provided with wator : under these circumstances a receptacle for the preservation of tluid would not be called into use; and the cells baring therefore ceased to be applied to that purpose the muncular power of their apertures would haro been consequently diminished. Colonel Sykes added that on examining, in India, the stomach of a catnel ho had found tho cells devoid of food. ('Zool. Proc.,' 1832.) Profeasor Owen informn us that the camel killed at the Collego of Surgeona had been a long time in England; but the function of the whier-cells was not altered, as the oxperiment clearly proved.

The student, if he be disposed to doubt at all, will have hia doubts on this point cleared up by an exnmination of tho parts in the Museum of the Royal College of Surgeons, prepsred by Professor Owen; and, an this part of the subject is peculiarly interesting, we proceed to give a description from the pen of that gentleman of the preparationa there preserved. No. 506 B (Phyaiological Scries), is the stomacls of a foctal Llamà (A uchenia Glama, Desmarest). This aingular form of ruminating stomach, observes Professor Owen, is peeuliar to the Camel tribe; it in in somo respects simpler than that of the horned ruminants, and in others more complicated. Like the stomach of the small species of Moschus (No. 554), the pralterium is less distinctly separated from the abomasus, and at this early period of exiatence it exhibits in the Llama a similar deficiency of the characterintic lamine. The reticulum however is much more complex, each of the larger alveole being develoued into many smaller ones, a structure partially indicated in the reticulum of the Goat (No. 564), and more strongly marked in that of the Ox (No. 464 A). There are moreover two grouple of cells developed from the rumen, which differ from those of the reticulum in being shnllower, and being visible from without, giving a sacculated character to those parts of the paunch. The several compartments of the etomach have been laid open in this preparation to show their communications with each other and the character of their inner surface. The rumen is lined with cuticle, but is wholly destitute of the villi which characterise it in the horned ruminants. It is partislly divided into two compartments by a strong fasciculus of muscular fibres, which, commencing on the left side of the cardiac orifice, traverses the paunch longitudinally. On the right side of this ridge about fourteen smaller inuscular fasciculi pass off at right angles, and these ridgen are connected by atill amaller fasciculi, running tranerersely betwoen them at different distances from each other; the quadrangular spaces which result from the above arrangement of fisciculi are partly closed by a production of the lining membrane, leaving a circular aperture in the centre of each aquare for the passage of liquide into the cells beneatly. The compartment of the prumeh to the left of the great longitudinal ridge terminates in two kicculi, at what may be consjdered the cardiac extremity. The sacculus nearest the asophagus is simple; the one farthest from it is developed into a series of cells, of a smaller sizo but of precisely similar construction to those on the opposite side of tho paunch-a series of smaller unuscular bands pasaing off at right angles from the larger one, which reparates the two sacculi, snd these lesser bands being connected by transverse fasciculi, in the intervals of which the cella are developed. The reticulum, or water-bag, is laid open, showing that the cells are situated between a eerics of parallel muscular fasciculi, ns in the rumen; but their further subdivision is carried to a greater extent, and their orifices are not guarded by membranous productione. The external muscular cont of this carity is so disposed that ita exterior is smooth and uniform, and the cells are ecarcely vinible from without. The cesophagus is laid open, so as to show the muscular ridge which trapermes it longitudinally, and winds round the upper part of the reticulum to terminate at the orifice of the pealterium. "It in obvious," continues Professor Owen, "that by the contraction of this fnsciculus, all communication between the first two cavities and the wesophagis would be cut off, and the remasticated food would be conducter, as in the horned ruminanta, into the third cavity. A slighter degree of contraction would cut off the communieation with the rumen, and allow the pasage of fluids direct into the reticulum, or water-bag, which probably takea place when the Camel or Llamn drinka," A free commnnicstion however subsists between the water-bag and pannela. A porcupine's quill is paseed through the oblique canal leading to the third cavity; thin cavity in the Canel is a nmall sacculun, diatinct from and intervening between the reticulum and panaterium ; it is not so distinct in the Llama; but on a clore inspection, the inner inembrano nearest tho orifico abovo-mentioned may be neen to be produced into ridgen, which are arranged in a reticulate or alveolar form ; and an a similar atructure is more diatinctlyoherrable in the Camel, this cavity was considerod by Daubenton an the true naaloguc of the reticulum, nud the water-bag as a peculiar mupreatrlition. The remninder of the atomach in the foetal Llamn may be aeen to form one elongated contimmons cavity, bent upon itrelf at ite fower thirl without jugie or lamine, the latter being afterwards leveroped at the cardinc half of this cavity. The pylorus is a small tranneme aperture protected by a large oval protuberance. Tho
duodenum is considerably dilated at its commencement. No. 566 C exhioits a small portion of the stomach of an adult Llama, showing the canal which passes along the upper part of the reticulum, and conducts the ruminated food from the œesophsgus to the third csvity. The muscular fibres of the greater ridge, forming the upper boundary of this canal, are displayed: some of the fibres wind round the aperture of the third cavity, while others return and pass into the lesser ridge. It is these latter fibres, observes Professor O wen, which, by a forcible contraction, draw up the orifice of the third cavity towards the cardia, and close the communication between the œsophagus and water-bag. The commencement of the reticulum, analogous to the third or supernumerary cavity in the Camel, is kept distended by a bristle. No. 566 D is a portion of the greater group of cells from the paunch of an adult Llama. The cuticle which lines these cells is turned down, and the subjacent membrane removed, to show the muscular fibres of the larger fasciculi, and also those of the lesser coonecting bands, which are distinctly muscular, and evidently calculated to close the orifices of the cells. Professor Owen further observes that, after death, when these contractile parts have ceased to act, the smaller matters contained in the paunch, such as grains of oats, \&c., may pass into these cells; but their contents he always found to be chiefly fluid. No. 566 E is the reticulum, second cavity, or true water-bag of the Llama. This cavity, Professor Owen remarks, is not lined with cuticle, as in the horned ruminants; the other differences are pointed out in the description of the following preparation. The muscular fibres of two of the larger ridges have been dissected; they form by no meass such powerful fasciculi as in the corresponding ridges of the paunch-cells. The middle fibres in each ridge become tendinous; but the lateral fibres continue muscular, and pass off to the different connectiog ridges, frons which they spread over the entire circumference of the cells, and constitute the secoud or internal muscular tunic of this part of the stomsch. On the opposite side of the preparation a portion of the external laycr of fibres is exhibited. ('Catalogue,' vol. i.)

We here see that the structure in this very essential part of the organisation is similar in both the forme of the Camelidee, and that the Llamas of the New World, as well as the Camels of the Old World, are provided with the means of prescrving fluids in cells appropriated to that office. Such a provision is consistent with the localities and habits of both; for if the parched deserts wherein the lot of the Camel is cast require such a modification of the stomach, the Llama, whose stronghold is the mountain-chain that traverses the southern parts of America, and which is found high up on the Andes, often out of the reach of lakes, requires little less.
Professor O wen, in his interesting paper 'On the Anatomy of the Nubian Giraffe,' states that the actiou of the abdominal parietes in rumination is much stronger in the Camel than in the Giratle; and he observes that it is a singular fact, and one which has not hitherto been noticed, that the Cameline Ruminants differ from the true Ruminants in the mode in which the cud is chewed. In the Camels it is ground alternately in opposite directions from side to side: in the Oxen, Sheep, Antelopes, and Deer, the lower jaw is ground against the upper in the same direction, by a rotatory motion. The movements may be successively from right to lcft, or from left to right, but they are never alternate throughout the masticatory process, as in the Camels: and here again, he remarka, in the rotatory motion of the jaws of the Giraffe, while masticating the cud, we have evidence of its affinity to the Horned Ruminants. ('Zool. 'Trans.,' vol. ii.)

With regard to external characters, we have, both in the Llamas and the Camels, the long neck and comparatively small head, and the prolonged moveable upper lip, deeply fissured vertically; we miss, in both, the naked muzzle, and find the apertures of the nostrils mere fissures capable of being shut at pleasure. The differences io the dentition have been slready noticed; and though we look in vain for the humps of the true Camels on the backs of the Llamas, yet there is, according to Molina, a conformation in the latter resembling thast excrescence, and consisting of sn excess of nutritious matter, in the shape of a thick coat of fat uoder the skin, which is absorbed as a compensation for occasional want of food. The most marked difference appears to exist in the structure of the feet; and this difference is, as We shall presently see, demanded by the several localities and habits of the two groups. No structure can be imagined more admirably contrived for the support and passage of an animal over arid sands than the elsstic pad which forms the sole of the Camel's foct, and on which the conjoined toes rest.

But the problem to be solved was the adaptation, in an animal of generally similar structure, of a foot to the exigencies of the case. The pad which connects the toes of the Catnel beneath would have afforded no very sure footing to an animal destined to climb the precipices of the Andes; and we accordingly find, in the Llama, toes with strong and curved nails, completely separated from each other, aod each defended by its own pad or cushion, so ss to present the most perfect modification of the parts with a view to firm progression, either in ascent or descent, whilst there is nothing in the structure calcutated to impede great rapidity upon comparatively plain ground.

Considerable doubt is still entertained as to the number of species belonging to the genus Auchenia, and we shall endeavour to trace soms of the accounts given, beginning with some of the carlier

Camel's Foot ; skin removed.
Foot of Llama, with the skin on.
historians and zoologists, and continuing the inquiry down to the present tine.

The Spaniards, when they conquered South America, found the Llama, which acems to have been the only beast of burden possessed by the natives, to whom it likewise gave food and raiment; for the flesh was eaten by them, and the hair or wool was woven into cloth. We cannot be sturprised that so useful an animal should have been called by the conquerors a sheep, especially when we recollect the qualitics of its flesh and of its wool; and accordingly we find the Tlamas described as sheep by the earlier Spanish writers. Thus, Augustin de Zarate, treasurer-general in Peru in 1544, in his account of the conquest, speaks of the Llama, as it was observed in the mountains of Chili, as a sheep of burden. He says that in situations where there is no snow, the uatives, to supply the want of water, fill the skins of sheep with that fluid, and make other living sheep carry the skins; for he remarks that these Pernvian sheep are large enough to serve as beasts of burden. De Zarate evidently had the eye of a zoologist, for he says that these sheep resemble the camel in shape, though they have no hump. He states that they can carry about a hundred pounds or more, that the Spaniards used to ride them, aud that their rate of travelling was four or five leagues a day. His description appears to be that of sn eye-witness, and bears upon it the impress of truth. When they are tired, aays De Zarate, they lie down, and the load must be taken off, for neither beating nor help will make then get up. Their weariness is manifested in a very disagreeable way when a man is on one of them; for our author says that if the bcast is pressed on under such circumstances, it turns its head and discharges its saliva, which has a bad odour, into its rider's face. He speaks of them as of great utility and profit to their masters, praises their good and fine wool, particularly that of the species named 'pacas,' which have very long fleeces; and shows that their keep costs little or nothing, either in money or trouble, for they are satisfied with a bsndful of maize, and are able to go for four or five days without water. He declares that their flesh is as well-flavoured as that of a fat Castilian sheep, and notices the public shambles for the sale of it in all parts of Peru then frequented by these animals. But, he remarks, this was not the case on the first arrival of the Spaniards; for when an Indian killed a sheep at that time, his neighbours came for what they wanted, and then another Indisn would kill a sheep in his turn.
The Llama soon found its way to Europe; for we find, in the 'Icones Animalium' (Gesner, \&c.), a figure of oue with a collar round his neek, led by a man, apparently his kecper. This figure is by no means badly executed, and is given as the Allocamelus of Scaliger, who speaks of it ss an animal 'in terra Gigantium' (Patagonia probably), with the head, the ears, and the neck of a mule, the body of a camel, and the tail of a horee: "Quamobrem ex Camelo et aliis compositum 'Aл入oка́ $\mu \lambda \lambda \frac{1}{}$ appellavimus." The figure, it appears, was taken from a print, with the following aecount:-"In the year of our Lord 1558 , on the 19 th day of Jmne, this wonderful animal was brought to Middleburgh (Mittellurgum Selandiæ), having never before been seen by the princes of Germany, nor recorded by Pliuy nor other ancient writers. They said it was an Indian Sheep from Piro (perhaps Peru), a region nearly 6000 miles distant from Antwerp" Then follows the description, from which it may be gathered that the animal was either a brown Llama or a pied one. The neek is stated to have been very white, "cygneo colore candidissimum," and the body rufous, "rufurn aut puniceum."

Johu de Laet (fol., Leyden, 1633) appears to have collected most of the Spanish anthorities up to bis tinie. He quotes Garcilasso as raying that the domestie animals of the Perovians are of two kiads, the greater and the less; which the Peruvians, as a common nume, call Llama, that is, cattle or sheep (pecudes) ; thus the shepherdssay Llama Miehec. They call the greater cattle (majus pecus) Huanacu-
hatan, on account of itn amilitude to the wild animal which is numed Huanacu, and from which it liffers in colour only; for the demextic 1 laman (demesticom pecun) aro found ef varioun celoure, like the horec; bat the wild lanma in only of one colour, like chestnut. The greater kind have a great resemblance to a Camel, except that they wast the hump, and are not so lagge. The nuall kind (minua pecua) they call Paco-llama, and thisa is only fed for is feeh and its weol, which is the best and leagest, as it is unequal to the carrying of burieas
Do lact then turns to Acostn. "Perru," nays the latter, "has vothing better or more useful than its cattle, which our countrymen call l'crurian aheep, but which the Peruvian, in their tongue, name Blaun; for they bring large profit, and are kept for next to nothing (rilisimo alitar). The catle furnish the natives with wool for their vestmenta, like our sheen, and are used by them as beasts of burden. There is no necessity for shoeing them, guiding them by a rein, or feeding them with onts; for these animals serve their masters gratuitounly, being content with the wild herbs which they meet with everywhere. There are two kinds (apecies)-oue which is woolly aul calleel Paco by the matives, the other covered with a slight fleece (villis levibus) only, and nearly naked, whence it is more fitted for carrsing burdena, called Guauaco. They nre rather larger than sheep, but lens than heifers, with a loug neek like camels, lofty lega, and a compact borly : the colour ia surious, for some nre white, some black, nome brown, and some pielald (versicolores), which they call Moromeri Their flesh is good, althongh rather gress (spissior), but that of the hambs is muci the best and the most delicate; but they are rarely killed, because they are of by far greater uase as beasts of burden, and their wool nerves for making cloth. Thia wool the barbariaus clean, spin, and weave into garuents; but it is of two serts, one coarser and mere common, which they call Havasca, the other finer aud more loose (absolutior), which they call Cumbi (according to Garcilasso, Compi): from this last they weave varieua curtains and hanginga (nulen et periatromata) of most elegant workmanship, which last a long time, and in splendour do net yield to silk; nay, what is wonderful for barbariana, they are so neat in their weaving that the elegauce is nearly equal throughout, nor is the web or woof ever apparent. The ancieut Peruvian menarehs kept up many werks for weaving Cambi, the principal artificers in which lived at Capnchica, on the bank of the lake Titicaca. These woola they dyed with the juice of varioun herbs, according as the nature of the work required. But moat of the Peruvian barbarians are cunning in this weaviag, and have in their huts instruments adapted for the art; and from these wheep they draw most of the neeossaries of human life. By far the greateat use of these animals however is in carrying burdena; for sometimes 300 , monetimea a drove of 1000 , carry various articles of merchandiwe, tkinm of wine, chocolnte (cocam), maize, Chunno, and guicknilver to l'otosi nad the other miues and towne." Acesta then Hpeaks of their employment is conveying silver from Potosi, \&c., and olserven that he ham often wondered how droves of these animals, nonctimen conaisting of 1000 , sometimes of twe ouly, and not unfrequently Inden with 3000 bars or plates (lamine) of silver, werth 3000 duchta, thould make their way, accompnaied by a fow bartarians only, who direct them, and load and unlond their burdena, and harily attended by one or two spaniard, paning the uight in the open air and without a guard-and that go nafely that a bar is acarcely ever missed, such is the security of travelling in Jeru. "The burdeu of ench beast," continues Aconta, "arnounts to 100 lba and nometimes 150 lbs , which they carry three or at the mont four leaguea a day, according to the length of the journey. lut their letalera know their stationa, where food and water for their catte aboond; here thes pitch their tente, and mandent their benutas When however they have only oue day'a journey to make, the Lhamna are able to bear a load of even 200 lban , or to move forward ha many na elght or ten leagues. Thene animala rejoice rather in a cool than in a fervill umperature, and therefore they are propngatel inamenely in the mountaise, whilst they fail in the plains, on accomen of the toos great hent. The bahd nheep (calvum pecua), or Guanacoen, are of a fawning (vernile) and gentle aspect: often, ns they walk along, they stop nad regard the pusersby without any expremsion of fear or jucmare, mo nttentively with erected neek, that it indificult to abmain from laughter; monetimen they are so muddenly terrified, that they run off the the mountain precipices with the proatest mwiftnem, oo that it in necemary to moot then to mave their fuadn. The l'acoes alno beconc no enraged nometituen, or are ao wearied with their burdens, that they lie down with their burlen, and cannote bo tade to rine either by threate or blewn; whence in proverb has
 this there in an teetter remedy than for the condmetor thentop and nit down by the animal, until ly his Handinhmente be prevaila on the animal to rise apontancously."
It forther nupeans that the Jlaman are mudject to acab, chlled by the harmanina 'carnchen,' which ledeadly not ouly to the animal which han taken it, Int apread by contagion among the thock, to that almont tho only renady in itamediathly to bury the deceamel animnl. Garcilasso however snemationa other remedien: the munt powerful in atated to to a very nimile ube, nausely, anointing the affected parta with lard (adipe nuilla). The prico of a llama varics in ilfferent provinces; but the barbarian who jomsensem two or three is considered nufficiently
rich. Garcilasse adhs that the Peruviang, before the arrival of the Spabiards, did not millk their focka, which give that aecretion very sparingly, and only in sufficient quantity for their young; neither did they make cheeses of their milk.
De Laet then proceeds to state, that besides these domestic herds, Peru produces certain wild animals which are not easily to be seen in other parts of the New World, except in the neighbouring country of Chili. Some of these are called Guanaco, or Haunacu, from a similitude to which the domestic kinds obtained the same name. The flesh of these is good, according to Garcilasso, but not so good as that of the domestic Haunacu Llamas. The males keep a look-out on the highest hills whilst the females are feeding in the ralleya; and when the former observe the approach of men from afar they neigh almost like a horse to warn the females. If the men como nearer they flee, driving the females before them. The wool of these ia ahert and rough, but it is notwithstanding used by the barbarians for making cloth. These auimala are taken in snares and nooses. Others again are called Vicuinas: these are not very unlike geats, except that they have no horns, and are larger, and are of a leonine colour or more ruddy; these live in the highest mountains or groves, and leve the colder regions, but especially the solitudes which the Peruvians designate by the common name of Punas; ueither are they annoyed by snow or frost, but are rather recreated thereby. They go in flocka, and run most swiftly. Sueh is their timidity, that at the sight of men or wild beasts they hurry inatantly into inaccessible or hidden fastnesses. There were formerly a great number of these animals here, but they are now become much more rare on account of the promiscuous licence iu hunting. Their wool is very fine, aud like silk, or rather like the wool of the Beaver, and the natives deservedly estimate it highly: for besides other properties, it is also said to resist the heat and impart coolness, wheuce it is especially used for caps. Next to these come the Tarugas, or Tarucas, which are larger and more swift than the Vicuñas, and of a more burnt colour, with pendulous and light ears: they rarely collect in herds, and generally wander about the precipicea siugly. Garcilasso says that these are a species of Deer, but less than those of Europe. They were inuumerable in the time of the Yncas, so that they entered the very towns; nor was there any deficiency of their fawns and does. Thus far De Laet, who saya that all these animals produce bezoar stones, of which those of the Pacoes and Guanacoes are the smallest and lowest in estimation, whilst those from the Vicunas are rather larger and better, and those of the Tarugas the best of all.
We now turn to Hernandez. We find in the Roman edition (fol. 1651) a figure of the Pelon 1chiatl Oquitli, Ovis Peruviana, with a description. Both figure and description leave no doubt that the brown Llama is the animal reuresented. There is a very leng commentary, well worth the attention of the curious reader. Of thia 'Aries sive Ovis Peruviana,' two kinds are mentioned: the first like the auinal represented; the other small and stunted (parvae et pygmex), with short legs, but atrong and able to carry domestic burdens, such as water, com, \&c. Another kind, the Pacoea, are atated not to be se corpulent. In the catalogue of Hernandez the Pclon Ichintl Oquitli is called Peruichatl.

Marcgrave gives a figure of the long-wooled and larger Llama, under the name of Ori-Camelus. In some parts it is not bad; in others, the muzzle and fore fect for iustance, it ia monstrous. He says that the larger kind of Ovi-Camelus in called Paco. His description is worth consulting; and he says, among other atatementa, that they bore the cars of these 'sheep,' and run ropes through them, by which their masters manage them and lead them where they please. He then gives another figure, much better executed than the other, of a aecond species, which is nearly naked in regard to fleece, aud is only cevered by a light and ahort one (calvum pecus of De Lnetl); and mys that it partly resembles a camel and partly a deer, so that it might be well called in Greek tлaфокdиплos.
We gather then from these aud other early writers that there wero three kinds of these animals-Guanacoes or Huauacoen, Pacocs, and Vicuñas-the term Llana being applicable to each of them, and merely signifying cattle or sheep, but these kinds are by no means clenrly defined. "Until the last half century," rays Mr. Bennett, "the great unajority of unturnliats, inchuding Ray, Klein, Brisson, and Lineaeus, concurred in redueing them to two species-the Llama, or Gususco, conmonly nmed an a beast of burden; and the Paco, or Vicugna, cultivatel for its flesh nud its wool. Of thia opinion was Buffen when he wrote the hintory of the Llamn nud the Pace; but the observation of living nuecimena of the LInma and the Vicugna, and the communiention of the Abbe Beliardy on the aubject, induced him afterwards to ndmit the latter animal ay a third species distinct from the preceding. In thin he wis followed by Molina, who, in his 'Natural Jistory of Chili,' neparnted also the Guanaco, nnd added a fifth species, the Hueque, or Chilime nheep of the older nuthora Gmelin, Shaw, and nlmant every nubsequent compiler, liave adoptod these five apecies without exnmination, giving to them much synonyms as they could pick ul almoat indincriminately from the writers on the natural his. tory of America, and thum creating a mass of confusjen which it would be both vain asd uaeleas to attempt to unravel." ("Gardens and Menngerie of the Zoological Society.')
l'enuant gives an mecice the Llama, the Vicuina, the I'aco, the

Guanaco, and the Chilihueque, but gives figures of the two first oaly.
F. Cuvier makes the number of species three-the Llama, the Paco, and the Vicuñs; M. Lesson gives the same. Dr. Fischer records the same three and a fourth, Auchenia Arucana (Chilihueque), as doubtful. In his 'Addenda et Emendands' he notices L. IIucraca (Auchenia Ihunnaca, Hamilton Smith; Cervocamelus of Jonston) with a query if it is not a mere variety of L. Peruanc. As a synonym to Lama Paco he adds Auchenia Paco (Hsmilton Smith), Camelus Gruanaco (Traill). To Lama Vicuña be adds Auchenia Vicugna (Hsmilton Smith), less than the former; and to Lama Arucana, A uchenia Arucana (Hamilton Smith).

Mal Drowa Lamma. F. Cusier.

Mr. Pennctt observes that it seems to be the generalopinion smong the leading writers of the present day that the subdivision of the genus las been carried to too great sn extent. He thinks that F. Cuvier is fully justified by the imperfect accounts of Molina in rejecting as species the Quanaco and the Hueque of that writer. Mr. Bennett states that he should have little hesitation in proceeding still further, for he is strongly inclined to agree with Baron Cuvier in regardiug the Paco as a mere veriety of the Llsma with the wool more amply developed; snd in considering the Vicuña as the only animal of the group that deserves to be ppecificslly distinguished from the latter. Skeletons of both the Llama nad the Vicuña are preserved in the museum of the College of Surgeons, London.
The Cordillera of the Andes, below the line of perpetual snow, is the region inhsbited by these creatures. They are found in Peru (but not in Mexico) and Chili principslly, though now much reduced
in number; iu Columbia nud Paraguay they are mere raro. Most of the navigators to the Straits of Magaliaens and south-western coasts of America mention Guavacoes from early times down to the expeditions under Captain King and Captain Fitzroy inclusive, and the flesh of these animals has afforded a salutary refreshment to the crews.

Brown Lluma, exhibited in England.
The habits of the Llsmas may be in a great measure gathered from the descriptions of the Spanish writers above given. In a wild state they keep together in berds, sometimes of oue or two hundred, feeding on a sort of rushy grass or reed called ycho, which grows on the mountains, and it is said never drinking when they have sufficient green herbage. They resor't to a particular spot to drop their dung, which a good deal resembles that of a goat, sheep, or giraffe, a lanbit which is often fatal to them from betraying their baunts. Modern observers have noticed the careful look-out that they keep, and the rapidity with which they Hee, then turn to gaze, and again swiftly gallop off. Moliua says that the Guanacoes leave the mountains, where they passed the summer, at the beginning of wiuter, when they desceud to the plains. Hero they are bunted down, at least the young and inactive, with dogs by the Chilians. During the chace they are said frequently to turu upon their pursuers, neigh loudly, and then take to their heels again. Another mode of cspturing them by the Iudians is for many bunters
to join and drive thern inton uarrow pasa, neroca which corls havo leen drawis about fuer feet from the ground, with bits of eloth or wool tied to them at amall distances, sobnewhat in the way adopted by ganlenern to keep small bink from the seeds This apparatus with ita pendant trumpery frightens the animala, and they get together, when the hunters kill them with atones tied to the end of leathern thonge If theremomy (iuanacoea among them they leap the corde, and are followed by the Vicunar. Those that wo lave seen in captivity have been wlerably mild and tame, but very capricious, nceepting biscuita and such delieaciea from visitors, bet ejecting a copious shower of sulive in their faces at the lenst real or fancied affront. This bower, though sufficiently uapleaknt, han not, nis far as our experience goes, the acrid and blistering properties ascribed to it by some authone

We neal not here reprat those uses to which these animals have been applied liy man. Cords and sucke, as well as stuff for pouchos, Aca, are fabricated from the wool, and the establishments for their unnefacture in this country employ thousands of artisuns. In Mexico the bones are converted into instruments for weaving the wool. Nor is even the dung neglected, for it in used as fuel. These animals seem to lave been to the aborigines what the reindeer (with the exception of the milk) is to the Laplander. Surrounded by herds of such animals which required almost no care, and by the spontaneous procluction of the soil, the Indian had no incentive to improvement. Humboldt has as cloquent passage on this subject. "When we attentively examine this wild part of America, we seesa to be carried back to the tirst ages when the earth was peopled step by step; we nppear to anist at tho birth of human societies. In the Old World, we behold the pastoral lifo prepare a people of humtsmenfor the agricultural hife In the Sew World, we look in vain for these progressive developments of civiliastion, these moments of repose, these resting. placen in the life of a people.

Those apecies of ruminating animals which constitute the riches of the people of the Old World ane wantiog in the New. The bison and the ransk-ox lanve nut yet been reduced to the domestic state; the enormons multiplieation of the l.lamaand the Guannco have not produeed in the natives the habits of the pantoral life." These multitudes aro nirealy lessened, and the form itself will probably ere long be extinct. Civilisation has brought with it the animals of the Old Continent. The horse nud the mule have almost entirely auperseded the Llamas as beasts of burden, nnd the mbeep and the goat, in a great measure, as contributors to the food and raiment of inan.

The White llama, according to Feuillee, is asid to have been the preniding deity of the natives of Callao, before that province was anacxed to the eupire of the lincar.

The maniarity to the Pamel nppearn to have strick every writur who has ereacet of the d.lama
linnerua placen the genus Ciomelus at the heall of him Pecora, and mates filama and forvs alweies of that gemms Ciamdus is followed by Moachus.
l'enmant also arrangea the Jolama and Paeon, Ne under his geuus Camel, which is placed between the Musk and the Hog.
Gmelin retains the Linuaan arrangement, adding three (oo called) species to those recorded by linuæus.
Cnvier places the great genus Camelus at the head of the Ruminants, and makes it consiat of the Camels properly so called, and the Llamas (Auchenin). Camelus is followed by I/oschus.
M. Lesson arragges the Llamas as the third genus of his Camelees, the two first being Camelur and Mericotherium. This third and last genus is immerliately succeeded by the Moschinees.
1)r. Fischer, followiag Liunzeus, places Camelus at the head of the Pecora; that genus is followed by Lama, and Lava by Mosehus.
Mr. Ogilby (1836) gives the Camelidic as the first family of the onder Ruminantia, with the following characters:-
Feet subbisculeate, callous beneath, toes distinct at the tip from the sole; no epurious hoof, no horns; incisor teeth, two above, six below. T'wo genera:-

1. Camelus, whose characters are:-Taes conjoined, immoveable; muzzle furnished with a ehiloma, the upper lip (labrum) divided; lnehrymnl sinuses, none; interdigital pits, none; inguiasl follicles, none; teats, four.
2. Auchenia.-Toes disjoined, moveable; muzzle furnished with a chilowa, the upper lip divided; lachrymal sinuses, none; interdigital pita, none; iaguinal follicles, none; teats, two.
Mr. Ogilby goes on to state that the Camelide form what Mr. M'leay would call an sberrant group. "They differ essentially," observes the former, "from other Ruminants in the gtructure both of the organs of locomotion and of mastication, and their generic dise tinctions consequently depend upon characters which have no application to the remaining groups of the order." On the other haod, the principles of generic distribution which subsist among the rest of the Ruminantia appear, in Mr. Ogilby's opinion, to furnish negative characters only when npplied to the Camelide; but though neeesanrily expressed negatively, the abseace of lachrymal, inguinal, and interdigital sinuses forms, in reality, positive and substantial characters; and as such should be introduced iuto the definition of these as well as of other genera, in which they unavoidably nppear in a negative form. The Camelider, in Mr. Ogilby's arrangement, are imnedintely followed by the Cervide. ('Zool. Proc,' 1836.)
Dr. Gray makes his sub-family Camelina, the third of his family Burillo, consist of Camelus and Lama. He recoguisee four species:I. Vicugna, tho Vieugna; L. Gunacas, the Guanaco; L. glauca, the Llams ; L. Pacos, the Alpaca

No fossil species of Auchenin has yet been discovered; but Mr. Darwin brought home from Suuth America the remains of a most interesting animal nearly allied to the Llamas, which I'rofessor Owen has characterised under the name of Macruchenia. [Macravcuenia.] The cervical vertebre in this form present the same character in the absence of the holes for the rertebral arteries in the traneverse processes as in the Lhmas and Camels. (Owen.)

LOACII. [Cobitis.]
LOADSTONE, a name given to Mazuetic Iron-Ore. [Inos; Magnetism, in Ants and Sc. Div.]

1,OASA'CLEA, Loasads, a small natural order of Polypetalous lixogens, consists of herbaceous and frequently annual plants covered over with stiti hairs or atings, which produce eonsiderable pain by the wounds they inflict. They have alternate lubed leaves without stipules; large yellow, red, or white flowers; numerons polyadelphous stamens, within which are atationed aingular lobed petaloid nppendages, and an inferior ovary with parietal placenta. The iruit in a dry or fleahy eaprule, with the valyes sometimes twisted spirally. The onder is nearly allied to Cucurlitaceu, Homaliacee, and Cactacee; nll the known apeciesare American, and the greater part from Chili sud Peru. The genera in gardeus are Loasa, Mleufelia, and Blumenbachia. It has 15 genera and 70 species.

LOBlid.IA, ngenua of llants belonging to the natural order lobeliacer. The limb of the calyx is 5 -parted; the corolla Irregular and tubular; the tube slit on the upperaide, and ventricose at the base; the limb bilabiate; the filamenta are syngenesions; anthers either all hearded or the two lower ones only; the eapsule is 2-celled, 2-valved, many-sented, dehiscing at the aprex.
L. inflata, Indian Tobacco, in an numual plant, growiag in most dig. trich of North America. In lieight it in from 6 inclses to 2 or 3 foet. The small planta are nearly simple, the large onen mueh branched; the root fibroun; fem erect in the full-aized plant, mueh branched, augular, very bairy; the corolla is buish-purple; the tube prismatie and cleft nbove; the segmeuts apreading, acute, the two upper ones lanceolate, the threo lower ones oval. The seeds are ummerous, small, oblong, sull browa. The leaves are oval and obtuse, and have sn undulated and irrogularly-Loothed margin, rough surface, and slightly pilome below, jonsessing a tante which gralually becomes acrid and pungent. The inflated capsule possess the same virtues.
I'Le sction on the buman ayetem is nearly the same as that of tobacco when chewer, prombeing a copions llow of aliva, and if awallowed in a conaiderable dose causing great relaxntion of all muscular atructures, including the heart and arteriea, accompauied with

- Tumid upper lip contiouous with the nose or nostrlt.

Loasa grandifora.
1, one of the appendages within the stamens; 2, an ovary with all the sepals cat off except one; 3 a transverse section of the orary, thowing the parietal placentation.
dehility and cold perspirations, and also paleness of the surface. In large dosea it provea decidedly poiaonous. It frequently acts as an emetic and expectorant when given in amall and regulated doses.

It has been found eminently useful in warding off or cutting ahort a paroxysm of asthma, either taken internally in aubstance, or in the form of an otherial tincture, or inhaled aa amoke along with aromatic herbs. It has been foupd beneficial as an expectorant and relaxant in hooping-cough, but neither in it nor asthma docs it prove more than a palliative, or afford more than temporary relief; as auch however it is very serviceable in some nervous affections with irregular action of the heart. [Llobella, in Arts and Sc. Div.]
L. siphilitica, growa in the United States. It ia a bright but rather pale-green perennial growing about 2 feet high; the stem is crect, angular, very alightly hairy; leaves ovate-oblong, acute at each end, rather wavy, unequally gerrated, alightly hairy; raceme terminal, leafy, cylindrical, denae; pedunclea bracteolate, hairy, ahorter than the acuminate hairy bracts; calyx leafy, with ovate acuminate hairy segments half as long as the tube of the corolla, and reflexed at the sinns; corolla decp-blue in the tube, paler in the limb, the lower lip of which ia convex and white at the base; all the aegments ovate and acute; the tube of the atamens deep-blue, elevated through and beyond the dorsal alit of the corolla. The whole plant has a rank mmell. Itia root is acrid and emetic, and has been used as a remedy for ayphilia; it has the reputation of acting as a speedy cure for this disease, but European practice doea not confirm its American reputation.
L. Dortmanna has linear entire leaves of two parallel tubes, the stem aimple and nearly uaked; the root-atock fleahy, with filiform runners; leaves blunt, from 1 to 2 inches long; stem 12 to 18 inchea high; the flowers are light blue, diatant, in a simple raceme, slightly raised above the water, the rest of the plant subrnersed. It is found in lakes with a gravelly bottom in Qreat Pritain.
l. urens has a nearly upright stem, the lower leaves obovata or oblong, mlightly toothed, upper ones lanceolate serrate, flowers in long terminal racemes; the atem from 12 to 18 inches high, leafy, branched, angular, and roughish; racemes erect, aimple, and lax; flowers of a light-blue colour. It is found on heaths near Axminater, Devonshire.
(Babington, Manual of British Botany; Lindley, Flora Medica.)
LOBELIA'CES, Loveliads, an important natural order of Monopetalous Firogena, differing from Campanulacece in having irregular fowern and syngenesious atamens, but otherwise resembling them
very nearly; of these two charactera the last is the most absolute, Isotoma, a lobeliaceous genus, being so called because ita flowers are regular. The species principally inhabit the warmer parts of the world; in Europe they are rare, in North America much more common, especially in the southern staten, and they are abundant in the hotter countries of South America. Many are fonnd at the Cape of Good Hope and in the north of Iodia; their favourite haunts being damp wooda or aituations freely supplied with moisture. They abound in a milky juice, which in all is acrid, and in aome so intenaely ao as to produce dangerous or aven fatal consequences when applied to the surface of the body or taken internally. Among the moat virulent is the Hippobroma longiflorum, a Weat Indian species, and the Lobelia Tupa, a Chilian plant now common in gardens. Nevertheless certain species have proved in skilful hands valuable curative agents, especially the Lobelia iuflata, or Indian tobacco. [Lobelia.] Many of the plants of this order are cultivated in gardens for the make of their brilliant blue or acarlet flowers: white and yellow are rare in the order. There are 27 genera and 375 species of the order.
LO'BIPES, Cuvier's name for a genus of Wading Birda (family Longirostres, Cuvier), the type of which is Tringa hyperborea, Linn. The genus is identical with Phalaropus of Vieillot.

LOBOITE. [IDOcrase.]
LOBOPHY'LLIA. A portion of the Animala included in Lamorck's genus Caryophyllia ia thua named by Blainville. [Madrephylincea.]

Lobster. [Astacus; Crustacea; Homarus.]
LOBULA'RIA, a group of recent Zoophyta, aeparated from the Limnæan Alcyonia. [Alcyonides.]

LOCOMOTION IN ANIMALS. The constitution of a vast assemblage of animalis requirea that they should possess the power of moving from place to place in search of food, and for a multitude of other objects incidentsl to their sphere of action.

In order to effect this object it is requisite that the framework of animals which are deatined to move on the earth ahould be more dense, and posaess greater atrength, to enable them to bear the ahocks incidental to terrestrial progression, than that of these species which move in air or water. The bony framework of the higher orders of animals, such as man and other Mammalia, is composed of a great number of pieces which are hinged together at the jointa in such a manner as to allow of more or less mobility, according to the purpozes they are intended to fulfil. Thus, the lega and arms are united to the trunk by a ball-and-socket joint, a species of union permitting the greateat possible freedom of motion. The knee, elbow, and ankle, on the contrary, are furnished with the hinge-joint, which admits of motion back and forward in one plane only; but, although the movementa of these joints are thus in some measure reatricted, greater precision ia aecured.

The vertebral column, which comprehenda the bones of the back, is composed of a long chain of bonea, acting as a flexible lever to support the head, neck, and trunk, and forming the convecting link between the several parta of the body. For this purpose the movements of each of the geveral bonea of the back upon each other are reatricted; but, in consequence of the great number of joints witi which the apinal column in man is furnished, it has a cousiderable degree of motion. The extremities of these bones which terminate in joints are tipped with a very hard, smooth, pearly-white, opaque aubstance, termed cartilage, lined with a delicate thin membrane, called the synovial membrane, which secretes an oily fluid inte the joints; ao that the limbs, in their movemeats upon each other, are protected from friction throughout the life of the animal.
The elastic cords which bind the bones together at their joints are termed ligamenta, and such is their strength that hones are often broken without the connected ligamenta being torn or injured.

The long bones which aupport the trunk of an animal above the aurface on which it moves are hollow cylinders, a form which presenta a longer surface for the attachment of the muscles by which the limbs are moved, and confers greater strength with less expenditure and weight of material than if they were solid. It is found that the lateral strength of two cylindrical bones of equal weight and length, one of which is aolid and the other hellow, are to each other as the diameter of their transverse gections. For instance:-let a, b, d, c, figs. A, B, represent the figures of the two bones; then, the streugth

of the tube $d c$ is to that of the solid αb as the length of the diameter $d c$ to that of $a b$. In consequence of this principle it was long aince
observed by Galileo that the strength of bodies is augmonted in n thonsand ways without increasing their weight; and that if a wheatutraw, which supports the ear which is hearier than the whole stalk, were made of the amme quantity of matter, but solid, it would break or bend with far greater ease than is now found to bo the case. The feathern of binis present, as well as the bonen of mimala, similar prorimion for the combination of atrength, lightness, and economy of materinl. It must however be borno in mind that neither tho atrength of bodies nor tho size of nuimala can bo increased with the sama quantity of matter withont limit; becanss when the diameter of the tube exceela certain dimensious it bocomes so thiu and fragile as to break without offering any aensible resistance.

The bonen, ligamente, and joints of anitnals are denominsted the passive organs, nad the muscles the active organs of motion. The bones aerve the purpose of leven, which are acted upon after tha principle of what is called the first, accome, and third orders of lover, so nnmed acconding to tho relative positions of tha prop or fulcrum, the power, and the resiatance or weight.

The power of tho muscles which move the limbs is so great that if tho resistance to their action be aufficiently strong, they are often known to break the bones upon which they act. It is in consequence of the great force which the muscles are capable of axerting that they are generally attached to tha banos very near the axin of the joint about which the bona moves. The advantage of this disposition is, that a greater power of the muscle is mado equivalent to a grenter velocity in the morement of the limb. The action of the biceps muscle affords a good example of this principle. In the annexed Gigure (1) we observe that this muscle p is attached to the bone of the fore arm at a, very near the axis of tha elbow-joint f, the effect of which in that in raising the weight in the hand b to b^{\prime}, the muscle moves the poiut a only to c; but then, as tho distance between b and b^{\prime} is much greater than the distance from a to c, it is manifest that a very small contraction of the muscle is sufficient to produce a very great range in the movement of the extremity of the limb.

In this case the muscle in acting under a mechanical disadvantage owing to the obliqnity of its direction, and its proximity to the joint but, an it in endowed with great power, theso circumstances do not conatitute defects. On the contrary, not only can tho limbs bo moved upou each other with much more velocity, but tho aymmetry and benuty of proportion in tho human figure are preacred. It is moreover maid that mancle cannot contract upon itself beyond one-fourth of ith ontire length; ao that its work mint of necessity be done by acting in mome nuch mnnner as we find in the caserifredy mentioned.

An tho musclea havo tho power of contracting throughout ucarly their wholo length, they aro capable of alrawing the moveable parta attached to thom at both their enda; for cxnmple, wo can, with the asmenet of munclea, eithor leend the thigh upon the body, or body upon the thigh. If the muscles hasl not been endowed with tha power to move the limbs mider a mechanical disadrantago with the relocity they flo, the aledge and the hammer, now wo daily in use, would have bers inatruments of no ralue to tho mith, nor tho axe and hammer to the carpenter; and the numberlers usen to which mpid motiona nf the limbe aro applied must bave heen effected by Bome other meaun. The figure of the arm afforla an illuntration of the principles of the thinl onder of leser; that i , the power of tho mancle in applied between the weight b and the fulcruna f; and the power of tho innacle fin to tho weight b, on the leagth of tho line bif to tho length of the line $f c$: from thin proportion we can rendily find the power of the munclo when the weight in known.

If wo aelect four animala of the mane order, haring minilar figures, whow dimensions of one kind are as $1,2,3,4$, tho weikhts of the noimaln and of all their correapoming parte will the an the eltber of theen numbern; that in, an 1, $8,2 \overline{7}$, 6f; but aince it is fouml that the foree of a muncle dependa on the number of ita fibrea, thia foree must increane in the ratio of ita tmonrerae mection, that in, ne the mquare of one of the dimennions of the animal, or an 1,4, 5. 14 . The contractile fonce of tho munclea in n healthy man, acconling to 1)r. Young, in equiralent to about 500 lbo for esch Noliaro incl of the nurfaco pre. nentorl by their transverace nectiona. We may then eamily understaul from the preceding remarkn why it in that the mont powerfulmen havo their muacles mont doveloped; and why the largent anumeleas are placed in thome parta of the bonly where thay aro nulijected to the greatest quantity of work. For exstuple, tho forec of the muacles that close the lower jaw in man in entimntad $n t s, 00$ ltw, indered the fores of theme musclea in woll known to be anficient to crumb the forndeat
teeth when a hard substance is plsced between them. Somo ladividusls are capsble of holding batween tho teeth and of supporting by the lower jsw 240 lbs and upwards. In many of the lower animala, auch as the Carnirora, the muscles whieh close the lower jaw are much stronger and more developed then in insn, as is exomplified in tho ease with which tho lion and tiger lacerato their prey.

It is well known that the quantity of labour which the muscles will endure, and the length of time they will continue to act, increase, within certain limits, in proportion to their daily exercise. If the muscles of the arms or legs, or any others, be called auddenly into action for a longer period than that to which they bava been accustomed, thay soon communicate to the individual a sense of weariness, and evince a diaposition to yield to the action opposed to them, and, unless they are allowed some repose, mischicf speedily succeeds. Jut when their action is very gradually increased day nfter day, it is abserved that the bulk of the muscles, and oonsequently their power, is augmented. For it has been already stated thist the force of muscles is directly proportioned to the square of the surfaces which they presant on making transverse sections through them: and if we take the eatimate of Dr. loung for the basis of a computation of the additioual force they acquire by exercise, we shall find that an increase of a quarter of a square inch in a single muscle is equivalent to a gain in strength of 890 , or 125 lbs Now, as a great number of muscles act at the same time in moving the limbs, it follows that they must all become enlsrged, in proportion as they contribute to produce that motion. It is therefore practicable, by gradunlly increasing the exercise of the different muscles of the body daily, and thereby augmenting their bulk, to attain a vast incrense of nnimal strength; and when we consider that health is the result of such exercise, if it is not carried too far, no stronger argument can be adduced for its adoption. But there is a limit to the amount of exertion which the muscular system will bear : if that limit is passed the muscles lose their rigour, and Inssitude and a flaceid state supervens. Experiment tenches us how long the muscles masy be continued in action, and the quantity of force which they are capable of expending daring thst period. We have before atated that the weight of the body is proportional to the cube, nnd the power of the muscles to the aquare, of some one of its dimensions: for instance, in two similar-formed men, whose heights are respectively 5 and 6 feet, the muscular power of the former to that of the latter will be as 25 to 36 , but their waights will be as 125 to 216 , or as 25 to 43 very nearly; the weight therefore increases much more rapidly than the muscular power, and consequently a small man is stronger, in proportion to his size, than a larger one. The same law holds good in all animals of the same kind. In persons predisposed to corpulency, and who neglect to use the proper means of checking it, the quantity of fat continues to incrense nud the muscles to decreasa in volume until thay exhibit the deplorable phenomenon of an inability to mova even their own weight without prin and difficulty : for it is fonnd on dissection that the quantity of muscular fibre is less, and the fibrea themselves more fiaccid, in fat persons than in others.
The attitudes nad movements of erery animal depend on the position of the centre of gravity and base of support. When a man standen erect a plumb-line passing throngh his centre of gravity will fall between his feet. It is a sulject of mathematical inveatigation, when tho fect are equally advanced and equally iuclined (as in fig. 2)

Fig. 2.

to determine the nugle a $b c$, which they mnat form with the prolongation of the line joining tho bcels in order to afford the greatest base of support. In general, whero the loga nre perfectly vertical, it will be found that the line joining the centre of the hecla is just equal to the length of the foot, and in thim caso the required angle will be 60° exactly; as tho hecls approach each other this angle diminishes, and whon they aro close together it is rather more than 45°. Opera dancers, besides curving the body, cmploy their arms to bring the ceutre of gravity over the base of support, which is often limited to the ball of the great toe of one foot; tho weight of the raised leg and font in ala concerned in producing the equilibrium of the body in renting on the other foot. Ropedancers une a long heavy polo for the amo purposc: the polo is grasped by both hands, and carried nearly at right angles to the axis of tho rope, as the centro of gravity must le contimally brought over the very narrow base which the rope affords, and the ropo itself, if slackened, having a motion both Jateral and vertical, and being at a considemble height above the ground : the process of rapedancing requires great muscular nctivity aud preciaion in the attituden of the body to seeure the performer from falling. The celebrated Madame Saqui, as is well known, lont her life by a fall from a rope. The centre of gravity has always a tendency

- The centre of gravity of any boily is that point upon whleh the body, acted on only by the force of gravity, wilt balamec itaelf tn all positions; consequently, If a line or plane which panaen through the eentre of gravity be supported, the body will be anpported in all posilloas.
to oscillste on each side of the rope, and the eye of the performer is fixed on one end of it , by which means he is enabled to keep his body steady, and moreover, when bis centre of gravity falls on the left side of the rope, a sufficient portion of the pole is shifted to the right side in order to restore the equilibrium. A long rod is then a very good auxiliary for keeping the body steady in positions of difficult equilibrium, such as walking over narrow parapets, or wooden bridges thrown across rivulets without a hand-rail, which may often be met with in country districts. When a porter carries a burden, the

Fig. 3.

attitude of the body must accommodate itself to the pesition of the common centre of gravity of himself and his lead. Thus, in the above figures it will be observed that when the man stands upright the centre of gravity of the man G falls within the base of support, and if his load L falls without the base, as does likewise g, the common centre of gravity of the man and load, the consequence would be that he would fall backwards; but this is prevented, or which is the same thing, the point g is brought within the base by the man bending his body forward. The reverse happens when the load is carried in front; as, for instance, by the laundress, whose basket is carried in front, as in fig. 4. In this case, instead of beading forward,

Fig. 4.

as in the former case, the body is thrown back, in order that the centre of gravity common to the woman and the basket may be brought within the base of support. In these and similar cases the person will be prevented from falling when the line $G g$ multiplied by the weight of the man is equal to the line $g L$ multiplied by the weight of the load. When a person atoops to place a load, such as a pail of water, on the ground, the hips are thrown backward so ss to bring the point g within the base of suppert. Just as the pail resches the ground the common centre is for a moment however beyond the base, and there is great danger of the body falling forwards, which is sometimes prevented by the person instinctively clinging to the edge of the pail. Corpulent persons are observed to walk very erect, in order to throw the centre of gravity immediately over the hip-joints, upon which the body rotates, as in fig. 5. They are also observed to take very short steps, and walk more slowly than others.

The erect attitude, which contributes, amongst many other things, to distinguish man from the lower animals, is chiefly owing to his organisation, and not the effect of mere mental development. It is found that animals instinctively adopt that position of the body which enables them to bear their own weight with the least expenditure of muscular labour, and that in all other positions the suppert of the body becomes irksome. Let us now turn our attention to what takes place in the erect posture in man. The position in which the muscular force is least expended is that in which the bones of the skeleton, and all other parta, are poised upon each other at the joints about which they move: the muscles is this case have merely to perform the office of keeping the superincumbent parts exactly balanced. When a man stands erect, with the eyes directed horizontally forwards, or alightly inclined upwards, the centre of gravity of the head liea vertically over the centre of the joint that connects the head with the ncek: alno, the weight of the body and head is equally supported ou the

जAt. hiet. DIV. VOL. IH.
hip-jeints; these again, with the thighs, rest on the centres of the knee-joints, and these on the elastic arches formed by the bones of the foot which are placed on the ground. Thus, in fig. 6 it will be

Fig. 6.

Fig. 7.

seen that the vertical line x, y, passes through all the points just enumerated; and, whilst the body is erect, there is required only sufficient muscular power te keep it balanced on the joints, and the joints from bending. Now, to show that the several parts are most easily supperted in the erect position, let us see what happeas when the body is horizontal. Take the head, for example. The centre of gravity of the head G (fig. 7), instead of lying vertically above the joint of the neck g, as when erect, is distant from it by the leagth of the line Gg, so that the muscles whicls keep the head in the horizontal position have to support it with a mechanical disadvantage at the end of a lever $G g$; and it will be found that it canaet be sustained in that position, even for a short period, without great fatigue, which is not felt in the erect pesture. It will also be ohserved that the eyes would he directed towards the ground, so that a man could not look horizontally forwards without difficulty, nor vertically upivards at all, both of which actions are essentially necessary to the pursuits and habits of the human race. In the lower animals the case is quite different; for, if we take the herse as an example, we find that the centre of gravity of the head is brought nearer the joint uniting the head with the neck in the herizontal than in the erect position. From the position of the eges in the head, if the animal were standiag erect on its hind legs, it would look directly upwards, and could not direct them to the ground. These cousiderations, alone are sufficient to enable us to come to the couclusion that man is not organised to move as a quadruped, nor quadrupeds as man ; aud moreover, in the posture of the quadruped, the whole sole of the humau foot would not reach the ground, but the toes only; and he would become a digitigrade, instead of being, as he is now, a plantigrade animal. In the position of a quadruped, also, if the hands and arms were employed to contribute to the support of the head and trunk, shey would no loager be free to perform all those various offices to which these organs are manifestly adapted.

There is a considerable difference in the figure of the vertebral column of man and of the lower animals; in the former it is constructed to bear the greatest weight in the erect, but in the latter in the herizontal pesition. In man the vertebral column (or, as it in more commonly called, the back-bone) is divided, from the head to the lower part of the loins, into 24 joints. Between each bone of the back there is a very elastic substance interposed, of such a nature as to bear the pressure of the bones without injury, to enable them to be twisted and beut upon each other without comiog in contact, and thus to avoid the injury that weuld result from firction. It might be suppesed at first sight that a chaiu of boues, piled upon each other, separated by so many joints, and capable of moving in various directions, would be a weak and imperfect organ, when considered as a pillur to support the head and body: this, however, is by no means the case; for, independently of its office in upholding the head and truak, each bone is hollow, so that the vertebral column forms a tube for the passage of the spinal marrow or cord, which it encases, and protecta from external violence, in all the varied occupations of life. Destined, then, as the benes of the back are to protect so impertant an appendage of the brain, and to support the weight of the head and trunk, special care has been taken by the all-wise Creator to construct each bone with sufficient strength for these purpeses; we ceasequently find the bones of the neck, which have the least weight to bear, the smallest, and that they gradually increase in size down the back to the loins, where they are the 2 K
largest. Fiach bone of the bsck is bound so strongly by ligaments to the one above and below it, and its figure is so constructed to lock iuto the adjoining bones, that 110 common foree will disunite them: iudend, so firmly are the bones of the back bound and locked together, that a fore sufficieut to crush tho body of the bone will alone meparats them. A fracture of thim kind is, accordingly, one of the most erious accidenta that can befal a man, and, in lact, deatly

Yig. 8.
 most commonly resulta from it. The verteural column is not straight, but curved ia three 1]acer, as thown in fig. 8 . At a, the neck, the apinsl column lies in front of the vertical line $x y$; nt b, the back, part of the column supporting the shoulders lies behind the same line; aud at r, the loins, the columu again lies in front of it. Now, it may be imagined by aome persous that this curved condition of the back is a defect and a source of weakness, but it is, on the contrary, a condition of security and strength; for, the jars iucidental to walking, leaping, and heavy blowa, coming vertically on either extrenity, are thus transmitted obliquely through the whole columin, so that much of their violence is lost, Moreover, it has been found by Euler that an clastic rod, when alightly curved, will bear upon its end a much grester weight than if straight; and if the number of small curves be three, the weight it will sustain will be tho equare of three, with one added, or 4×4, that is, 16 timea greater than if it were straight. Now, if we may consider it admissible to apply this principle to the human vertebral column in bearing a burden on the head in the erect posture, we shall see that, in this posture, a man is capable of carrying, or rather supporting, such a load as would almost break the back in a prone position.

We observe that the bonea of the back, or vertebral columa, are also curved in the lower animals; but, instead of forming several curves in opposite directions, as in man, it forms one large arc, which in couvex upwards, when the apine of the animal is directed horizontally. This form of the bones of the back in quadrupeds is conmpicuous in the Ruminantic and Pachydermata; for instance, in the Rhinoceros, ns secu in fig. 9 , the whole of the column lying between

Fig. 0.

z and y form one large arch with ith concavity directed dewnwards; and, an each bone which entern into the componition of the arela is bound to the adjacent bones by ligament, or fibrous cord of great strength, any force or load laid upon the back of the raimal, in ite natural frone position, by tending to bring that portion of the spine lying between x and y into antraight line, tightens these cords; and thue tho mpine ituelf in capable of bearing as much, or perlaps more weight thau the limb of the nuimal could carry in its natural popition: lut, if the load were laid on the top of the ppive, instead of acrose i, on the nupposition that the body of the animal assumed an erect posture, the arch of the back woulit increase, and the apine would to broken by tho same loand which it would easily bear when laid crom it. Here, then, we have another illustration of a qualruped requiring a prone ponition deriver from the courtitution of ita verteleral column. ladependently of thif, if we were to examine the relative panitions of the joints, wo slould find that, whon a qualruped is placed in an erect posture, a vertical line passing through the centre of gravity of the head and the nxin of the joint which unitea it ts the trunk, does not, and cannot pana through the centre of gravity of the nimal. GF, and the hip. knec, sud ankle jointh at the mane thme, an in man; neither can the horizontal line $x y$ bo brought to coincide with the vertical line $x^{\prime} y^{\prime}:$ and, that therefore, the ercet position of a quadruped in not that of least expenditure of muecular action, whicl we maintain ia the position natural to every anlmal in the act of atanding.

The human body in eupported during progrewion on one or both lesm, and the conditions of ite locnmotion differ from those of sluont all other animala. We may observe that when locanntion takes place, the contre of gravity of the body must be lowered from the ponition
in which it is found when stabding perfectly frect: and for thin purpose the legs are furnished with three joints, the first of which connecte them to the trunk, the second is the hinge-joint of the knec, and the thind is the ankle.joint, the structure of which partakes of the hingo-like action of the knce, but has also a small extent of lateral motion. It is owing to the power of flexion and extension of the legs that it is possible to carry the centre of gravity of the body alurost in a perfectly horizontal line and with a uniform velocity. The length of the legs in man, if measured from the hip-joint to the ground When standing erect, in found in most persons to be greater than the leugth of the reat of the body above that point. Of the three joints of the leg, the first, or bip-joint, allows it only to moro forwards; the secoud, or knee-joint, allows it only to move backwarks; and the thind, or ankle-joint, either backwards or forwards. In fig. 10 we

observe the greatest length the leg can assurne by the complete extension of all its joints, this length bcing the distance botween a, tbe haad of the thigh-bone, and c, the convex surface of the anklejoint. In $f y$. 11 we have the least length of the leg, produced by the aimultanoous flexion of all the joints, but this bending of the leg is evidently much greater than is necessary in the act of quickest walking, during which the bending of the leg is as represented in fig. 12; so that the range of motion in the aeveral joints of the legs is grester than is necessary for the common purposes of walking, but is essental to some other attitudes. It will be observed that the length of the thigh-bone is nearly equal to that of the leg from the knee to the ankle, and in consequence of the opposite directions in which the

Fig. 13.
limbs nove upon the joints, we are ensbled to perform the following curious function:-If the heel be raised from the ground abont 41^{8}, so that the body resta on the ball of the foot only, the centre of gravity may be made to deacend in a vertical line by bending all the joints of the lega simultaueouely (fig. 13): in reference to tho figure
will show how this is accomplished. The entire range of the kneejoint being, in round numbers, 144°, the least angle that can be formed between the leg and thigh is 36°; and siace the distance from the bip-jeint to the knee when beat is equal to the distance from the knee to the ankle, the hip-joint a will always be found in the vertical lins $x y$, and whea tîe knee-joint is fully bent, that is, when the leg and thigh are inclined at an angle of 36°, each of the angles at the base of the equilateral triangle ab c will be 72°; now, the utmost ferward range of the leg upon the ankle is only 31°, therefore the heel must be raised 41° in order to throw the legsufficiently forward to make the angle between itself and $x y$, the vertical line 72°, by which means the point a will have descended to the lowest pessible position in that line. This is a property peculiar to the structure of the human frame. In the act of standing both legs concur to the support of the trunk, and for this purpose alone there is a considerable expenditure of force employed to keep the centre of gravity of the body above the ground ; and we all knew that in standing for a considerable length of time great weariness is experienced; and although the force exerted in standing is less than in walking and running, it is nerertheless eatimated te be equal to the height of the centre of gravity multiplied by the weight of the body.

In walkjig, as well as in running, we may divide the body inte twe portions: first, the portion which constitutes the burden to be borne, consisting of the trunk, head, peck, and arms: and, secondly, that which supports the burden, and propels it along, consisting of the lega. In walking, the trunk, with its appendages, is carried forward on the heads of the thigh-bones, like a red poised leagthwise on the tip of the finger; and we knew that if the finger be meved onwards when the rod is poised vertically, it will fall backwards, and that it must be inclined forwards to preserve its pesition on the finger, indeed its inclination must be very nicely adjusted to prevent it falling as the finger moves forwards, and this inclination must be greater as the movement of the finger is increased; and if the wind moves in an opposite direction, a still greater inclivation of the rod becomes necessary; and those who have made the experiment must be aware of the difficulty, unless after much practice, to keep the rod thus balanced from falling. Now, the human body is balanced on each leg alternatels, in a manner precisely similar to and subject to the same conditions of equilibrium as the rod ; the truak must therefore be inclined forwards during pregression, and its inclination must be greater or leas, according to the velocity of the movement and the resistance of the air. It is for this reasen that we see persons inclining their bodies very much forward in walking agaiust a strong wiod, and almest erect when walking in the rame direction as the wind. Bearing, then, these principles in mind, we can easily understand why it is that every movement of the arms, head, neck, and trunk, and every pesition of the legs, require a simultaneeus mevement of all the rest of the hody to keep the whole poised on the heads of the thigh-bones during walking.

The measures of the inclinations of the trunk due to different velocities have been taken by Messrs. W. and E. Weber. The arms, being attached to the upper part of the trunk, and considerably above the axis of metion, or line through the hip-joiats, and being woreover free to move in almost every direction, except in that which would tear them from the body, contribute a great deal towards keeping the trunk in a state of equilibrium on the legs, and thus dispense with that large amount of muscular force which would otherwise be required for that purpose: hence in walking we observe the arms in constant motion, oscillating back wards and forwards at every step, and we find, on more closely inspecting the order in which they move, with respect to the legs, that whilst the right leg swings forwards, the trunk is turned round herizentally on the bead of the left thigh-bone; which tends to advance the right shoulder before the left; but this is counteracted by the right arm, which swings backwards, and by the left, which at the same time swings forwards, and the combined effect of these two motions is to neutralise the twisting of the upper part of the trunk on the legs during each step. A cerresponding effect takes place when the left leg swings forwards; so that a good walker can move witheut any sensible twisting of the bedy, which is however generally apparent in the female ses, arisiog from the greater distance between the heads of the two thigh-bones in them than in males. The swinging of the arms then is attended with considerable advantage; for not only do they lessen the amount of muscular exertiou, but give a grcater freedom to the attitudes assumed by the trunk in walking and a mere easy style of movement, and a graceful gait results from their well-regulated oecillation. When the arms however are made to describe very large curves externally to the vertical plane in which they swing naturally, a trick which youths are prone to, under the erroneous idea of thereoy adding to the manliness of their appearance, the effect is in reality extreme awkwardness, for the shoulders are thrown alternately forwards, and much muscular strength is wasted, as may be rerified by any one who tries te walk in this manner for a loag time and at a mpid pace.

In walking, the centre of gravity does not meve in a perfectly horizontal line, but is raised and depressed during each step. Weber found, by an apparatus desigaed for that purpose, that in ordinary walking, when the length of the step taken was 2.39 feet, the mean elevation and depression was $1 \cdot 1$ inch, and this quantity of vertical
motion was very nearly the same whether the speed was increased or diminished. In walking on the ball of the foot the mean elevation and depression of the trunk did net exceed 0.8 inch.

We have already mentioned what quantity of force is necessary to be expended to support the body in standing; but in walking, each leg has not only to sustain in its turn the whole of the superincumbent parts, with the additional weight of the swinging leg, but to push the bedy forwards, and for these purposes the force is very considerable. The resistance to the forward movement of the body arises from the friction of the joints, the friction of the sole of the foot upon the ground, sad of the air, but the principal resistance is that of the advanced leg when it reaches the ground.
It has been always supposed, until a very recent period, by those whese business it is te study the structure and operation of the several ergans of animal bodies, that the swinging of the legs in walking and ruoning depended on the action of the muscles. It has however been discovered by Messrs. W. and E. Weber that the leg swings after it has been raised from the ground by the force of gravity alone, and that it obeys the same laws as the pendulum of a clock. In fact they regard the supporting leg as the substitute for the weight of a clock, and the swinging leg as the substitute for the pendulum, each leg exchanging its office successively. We have here, then, an illustration of the conuection between the laws which govern the solar asstem and those which gevern the locomotive actions of the organs of human beings.

Now, as the leg swings according to the laws of the pendulum, and moves forwards without the active interposition of its muscles, we must see how much the economy of the power whieh is destined to enable us to move upon the earth has been provided for in the formation of the human race; for were the muscles of the legs employed in this movement, their foree would soon be exhausted, and we should be able to move over a very limited space in a long time.

It is well known that a short pendulum will vibrate much quicker than a long one, and that the time of one vibration of the pendulum of all clocks is regulated upon this principle ; but to be more precise, the times of the periedic oscillations of any tro penduluns are respectively as the square roots of their length. By applying these principles to the swinging leg of a man in walkiug, we can easily uaderstand why persons with short legs take more rapid steps than persons with long legs, and why males and females rarely step together, unless the former accommodate the length of their step to the time of the latter.

Those who have studied the theory of walking have found it conse* nient to divide the time of a step into two pertions, namely, that in which one leg and that in which both legs rest on the ground; at least this arrangement has been adopted by Borelli, Weber, and Bishop. In walking it is necessary that there should be at least one foot always on the greund, and there is no instant in which the body is not supported either by one or both legs. Iu running the case is different, as wo shall hereafter see.

Ths period wherein both legs are on the ground is shorter than that in which the trunk is supported by one leg only. During the time the body is supported by one leg the other leg swings from behind forwards; and, being again placed on the ground, the first interval ends, and the other, namely, that in whieh the body is supported by both legs, begins, and terminates with the raising of the other leg. The time that the body is supported by both legs diminishes contioually as the velocity is increased, and when it vanishes altogether, as in quickest walking, we arrive at the common limit of the quickest pace in walkiag and the slowest in running. Thus the two states in which the body is supperted either by one or beth legs alteruate in such a manner that one begins at the instant the other terminates; and it is found by experiment that only in very slow walking is the time wherein both legs are on the ground equal to half that in which one only supports the body.

We will now endeavour to illustrate the preceding remarks by means of a diagram. In fig. 14, which may be cenceived to be a borizontal Fig. 14.

plane, let us suppose the upper series of lines to represent the left leg, the lewer series the right, the straight lines the leg resting on the ground, the eurved the leg swinging, and the letters $a, b, \& c$;, to denote the different periods of movement in walking. During a both legs are resting on tho ground, and at the beginning of l the left leg rizes from the ground, and swings forward until c commences, when both legs are again on the grouud. During d the right leg in its turn rises and swings from behind forwards, whilst the trunk is supported ou the left leg, represented by the upper straight line, At a^{\prime} both legs are again in eontact with the earth; at b^{\prime} the left leg again rises in its tura, and swings as before; and thus the two legs alterante their offices in suecession. We ebserve that tho period a, in which both legs are on the ground, is about half of b, during which the left'leg is
oncillating, and the figure is consequently an illustration of yery slow walking, agreeably to what has been already mentioned. It should also be retnarked that b, the period of awiuging, is the middle of the apace $\frac{1}{2}, b, \frac{c}{2}$, which together constitute a aiugle slep, In fig. 15 an outline of the human skeleton is represented in twelve positions as designed by Professor Weber, on a scale of one-tenth the natural size of man. The simultaneous relative poaitions of the Lead, trunk, and lega are preserved at each of these twelve instants, no viowed through a revolving optical instrument like a stroboscope, which has been adapted for thin purpose by Stampfer. By means of this instrument the consecutive positions of the trunk and legs may be taken at very minnte intervals of time, a subject of great importance to the sculptor
described. This excellent figure is necessarily complicated owing to the number of positions depicted, but it is easily understood if studied with the attention it deserves.

In vary alow walking the centre of gravity is borne along in a more elevated position than in quick walking; indeed, whatever tend to elevate the centre of gravity tends also to decrease the velocity of walking ; for the leugth of the hindmost leg, which is nearly the same in all paces, is equal to the aquare root of the sum of the equares of the height of the centre of gravity from the ground, and of the length of the step; and consequently, the shorter the step the greater is the height of that centre, and vice versh. This is observable in corpulent persons, aud in porters bearing burdens on the head and shoulders the scientific law being thus confirmed by experience.

Fig. 15.

and painter of animals, but which under ordinary circumatances could not te accompliabed. In fig. 15 the mumbern 1, 2, 3 whow the right leg on the ground, and the left leg swinging in malvance of it, junt befure it reaclsen the earthat the end of the ntep seen at uunber 4. Tho numberw 5,6 , and $\overline{7}$, which are omitted to prevent confusion, are the succenvive praitions of the two lega resting on the ground before the next atep commeucen with raining the riglit leg: during this period the centre of gravity moves forwand, and the right leg when raised is as it were left behind, nud is fouud in the position of number 8 . Numbern 9,10 , aod 11 show the successive ponitiona of the right leg awinging behind the left; and 12,13, 14 ita positions when it overtakes and passen tho left leg, until it reaches the last position, number 15 , which corresprond with the number 1 of the other leg, na above

In slowest walking, the swinging leg parses through a less curve than in quick walking. In fig. 16 we observe the leg is placed on the ground in advance of the vertical line pasaing through the head of the thigh-bone ; and as a vertical line passiog through the centre of gravity falle behind the base of support, the posterior leg cannot be lifted from the gronnd until the awinging leg lias partially awung back agaiu iuto a vertical position. During this period, both lega being on the ground, the thane of the step is a maximum, because the duration of a step consists of the time employed by the swinging leg in describing its curve, and the time wherein both legs are on the ground, both which quantitics increasc as the velocity diminishes. In this case the straight lines, a, fig. 14, have the greatest relative length with respect to the curved lines, b.

In quickest walking, the advanced foot reaches the ground in the vertical line which pssses through the head of the thigh-bone, as in fig. 17. Here the centre of gravity being entirely supported by the forward leg, the hinder leg is in a condition to rise from the ground the instant the other reaches it, and the time wherein both legs are simultaneously on the ground becomes evanescent. If the joints of the legs did not possess, as we have seen, a considerable freedom of motion, we should not be ensbled to vary our speed as we now do, becsuse as the length of the step increases the height of the centre of gravity decreases; and to accomplish the latter, the forward leg must be much more bent when it reaches the ground than in slow walking, as seen in figs. 16 and 17, the velocity of the man in fig. 16 being ittle more than one-half of that in fig. 17. It is also in consequence of

Fig. 17.

the power we possess of bending the legs that we are enabled to move the centre of gravity nearly horizontally, and thereby to meve with a much greater velocity than we could do if our limbs were inflexible; for a man with inflexible wooden legs is restricted from walking beyond a velocity within very small limits, however great may be his muscular power. For exsmple, when a man is walking with wooden legs, as in fig. 18, the ceatre of gravity describes small ares of a circle, of which esch leg is slternstely the radius. Now, sccarding to Dr. Young, if the velocity could be sufficiently great to create a centrifugsl force exceeding that of gravity, each leg would be raised from the ground Immedistely sfter touching it, which would constitute running; for in walking the body is always supported either by one or two legs; and suppesing the inflexible leg to be threo feet iu
length, the centrifugal force would become equal to that of gravity when the velocity in walking became equal to that which a heavy body scquires in falling through half the length of the leg, or one foot and a half, which is very nearly ten feet in a second, or seven miles in an hour. This then is the extreme limit of velocity which a man could reach with weoden lega, or with legs whose joints have been rendered useless by disesse; but in reality he cannet move with snything like this speed, because he must place his swinging leg on the ground as much before the vertical through his centre of gravity as the other leg is behind it, and therefore his steps must be very short, sad taken st a greater mechanical disadvantage than in the slowest walking of ordinary persons. In consequence of the flexibility of the legs, the path taken by the centre of gravity undulstes without forming any abrupt angles during its elevation and depression, as seen in fig. 20, where the sctual prth resulting from the flexibility of the limb is delineated; whilst in fig. 19 we see the sbrupt manner in which the centre of gravity movea, and the curves begin and terminste; and we csn readily imagine the jars to which the trunk would be subject in locomotion if the legs were destitute of joints at the knee and ankle.

Fig. 18.

Fig. 10.

Fig. 20.

The greatest velocity with which a person can walk (unless by an enormous expenditure of muscular action, which could not be maiutained) is when the time of s step is equal to half the duration of the motion of the swinging leg; that is, the time which elapses from the raising of that leg until it is sgain placed on the ground, having described half its arc of oscillation, the hind leg during the same time pushing the trunk sufficiently forward, so that the centre of gravity may be vertically over the base of support, ss in fig. 17. Hence, if we suppose the leg capable of describing its arc freely in 730 of a second, the least time of the step will be $\cdot 730$ divided by 2 , or $\cdot 375$ of a second. When the swinging leg is first raised from the ground the trunk propels the head of the thigh-bone horizontally forwards, and communicates a retrograde motion to the lower extremity of the leg in the direction of the tangent of the curve in which the leg oscillstes This retrograde force tends to retard the movement of the leg forward, and vould masterially lengthen the time of a step, but the leg being at the same time bent, and consequently shortened, to allow it to swing freely sbove the ground, its movement is thereby ss much sccelerated as the retrograde action teads to retard it, and the result is that the log swings in the same time as if these accelersting and retarding influences did not exist. The velocity in walking then, in the same person, depends on the time taken in making each step, and on the length of the steps; and hath of these are sgain dependent on the height at which the centre of gravity, or the besds of the thigh-bones, are carried above the ground; for as the beight of the latter diminishes the length of the step is increased and the time of the step is decreased, and vice versi. The velocity of walking in different individusls depends grestly on the relative propertions of their framework, and on the vigour of their muscular system; but it must be borue in mind that it is always the hind leg which has the work to accomplish, and by throwing it into the required position, and regulating its extension, the speed may be adjusted to the figure of the individual. It is indeed owing to the dimensions of the several organs concerned in locomotion, and to the habit of the individual in applying them, that esch person has a step peculiar to himself, so that the very sound produccd by the contact of the foot with the ground is sufficieut to enable us to recognise the approach of individuals with whom we sre familiar long before we see them. Compared with numerous species of the lower animals, the velocity of man in wslixing is very inferior. The best constituted persens are incapable of acquiring a speed of little more than five miles in au hour ; and even at this rate of motion they are quickly exhausted. Our expenditure of muscular pewer for
the accomplishment of every atep is very great, even when walking on a perfoctly horizoutal path; but it beoones mnch greator when ascending iaclined nurfaces, such as climbing the sides of hills and monntains. Under these circumatances the mpeed is diminisherl, and the musular power is expended in raising the body upwarls. During this perim the number of rexpirations, as well as the number of pulnations of the heart in a second, nuginents, and a feeling of languor and fatigute communicatea to the pedestrian the conviotion that he las done as much work as his system will sustain without danger of over-fatigue and too great a prostration of atrength-a condition from which it often takea a long time to recruit. On the other haud, a due exercise of muscular action in walking is necessary, as we have slready scen, to the healthy aud vigorons play of the several organs of the human body.

We now come to consider limning. The object of calling into action the locomotive organ as we employ them in rumning is to acquire a grater velocity than can be attained in walking. investigation it is found that the same motions of the body recur after each double step as in walking. In running, the time of action is divided into two preriods, in one of which the body is supported on one leg, and in the other it is not aupported on either, and this constitutes the principal difference between runaing and walking; for in the latter the borly is always aupported either by ode or both legs.

Let no now conaider the motions of the lega in runving, as we have before dove in walking, and for that purpose let 118 trace their action frow the beginning to the end of a step. When the hinder leg, on which tho truak was supported, haring been extended to its greatest length, is raised from the ground and begins to swing forward, we observe that the foremost leg has not yet reached the ground, so that both legn are found awinging at the sane tine during a portion of the ntep. When the foremost leg reaches the ground, which it does in a vertical position, the trunk is supported on it, and the hinder leg contioues to oscillate forwards, whilst the supporting leg, having turned on the ball of the foot as on a pivot, becones atretehed to its extreme leagth, and is in its turn raised from the earth before the swinging leg has reached it; and when the latter is placed on tho ground and in fully elongated, so as to be on the point of rising again, a double atep has been accomplished, the single step evidently ending at the moment when the other leg reached the corresponding poaition. The effect of both lega swinging nimultaneously, though for a very mort period, is, that in runving the duration of the step is less than the time of the lanf-orcillation of the leg, whilst. in quickest walkiug it juat cxactly equals it, and in ulow walking it is greater than this seni-oscillations. These effects will perhaps be made more intelligible by the nunesed fig. 21, where a representa slow walking, the etraight

Hiz. 1 .

r
portions of the line being the timea when both legs are on the ground ; 6 repreneuta quickest walking, wherein each leg nucceeds the other in nwingiog without interruption; and c running, wherein ono leg begins to awing before the other hos finished swinging. The forcea which are comployed in running, like those of walking, consist of extension, gravity, and reaintance
Wo are not able to propel the centre of gravity horizontally in runniog, though the undulationa are found by obeerration to be less than in walking for it in clear, that na noon as both legs are lifted from the ground it munt fall during mome portion of the time it in unmpported, and no form n merien of curven. If the legs were inflex. ible the centre of gravity would leacribe a veries of corvea as in fig. 18. The moveroents of the boaly in walkiog and running more nearly rememblo each other acooriling as the times wherein both lega are on the ground in the former canc, nul both lega are in the air in the latter, are diminimhed; nod the liusit to which each of these notions continually approachen $i n$, when the body is never withont mupport, but that mupport in mefer more than one leg. An the reaint anen of the air to the motion of the lumaly in greater in moning than in walking, the tmonk in more inelinell in tho prath of wotion, to keep it In a ntate of equilibrium.

In order to fiod the amoment of the rettical undulations of the body in maning, the Mesom. Weber viewel the runner thougha telencope adapted for the purpone. They entimated the undulation of the body to be from three-fourths of an inch to an inch and a quarter, and the time of a atep to be from one-fifth to one-fourth of a second; of thix tirne the bordy mwinga freely in tie air one-tenth, and fall one-fifteenth of a necoud. If we calculate thin mpace through which tho bouly falla in the mane time by the law of falling bodies, it will bo found that the centre of gravity desocads about eighterenth of manelu.

It han been neen in fig. 14, that in walking, tho period during which the truak in wupported is longer than that ln which the leg whilnt swinging is supported by the trank, Now, in runaing, the reverse
takea place, and the time in which the leg is resting on the ground ia shorter than that in which it hagge manpended from the trunk.

We will now illustrate thene periods by a diagram. In fig. ge let the upper line represent the motion of the left, sud the under line that of the right leg, in tho act of running, the curved portions being the periods of the log swinging in the air, and the atraight portions

Fig. 22.

the periods of its resting on the gronud, which periods are defined by the cross lines. The numbers 1,0, denote that one or aeither of the legs is on the ground. The line between the first spaces I and 0 , at the left end of the figure, indicates the beginning of a step corresponding with the description slresdy given, thast it, the justant when the left leg is raised from the gronnd, and before the right has reached it.

We observe that the chords of the curved lines, which represent the periods whilat the legs are owinging, are sensibly longer than the straight lines; and if we remember that the resting leg rises from the earth before the other touches it, we at once see that it could not be otherwise ; and it also follow, from the same reason, that the straight lines ehowing the portion of the step when the leg is on the gronnd must be equidistant from the extremities of the curves respectirely opposite to them.
In running, the square of the length of the extended leg is equal to the sum of the squares of the horizontal space described by the centre of gravity duriug the time the one leg rests on the ground, and of tho height of the centre of gravity from the plane of motion at the end of that time.

When the forward swinging leg reaches the ground at the end of each step, it mnst be in a condition to receive the falling trunk, and be prepared to project it from the ground, to swing again in the air ; for this purpose the centre of gravity must be in the vertical line passing through the head of the thigh-bone and foot; for if the centre fell behind this line, the runner would fall backwards; and if before it, he would fall forwards. Such being the law which is found to regulate the attitude of the body and leg in running, it is a matter of considerable jmportance that artists should understand this principle, togetlier with all the other laws by which the locomotion of man and animals is governed. It was in consequence of his being ignorant of, or not attending to, these laws that some of Flaxman's figures were drawn ao unlike the reality, which is the inore to be regretted because his drawinga of the haman figure are considered as atudies by young artists. We give an illustration of this in fig. 23, which represents a

Fig. 23.

man in the act of running, where the line a c di, which passes through the centre of gravity, liea far behind the foot (b), the base of support, and being therefore unsupported, the man would fall backwards. In fict, no person can be in the position of Flaxman'a figure whilat in the act of ronning without falling to the ground. The same fisult is observable in fig. 24, another of Flaxman's designs, intended to repreecnt a msu junt on the point of running: the line through the contre of gravity fallm belind the foremost foot, and cousequently if the hinder leg be mised, the man must inevitably tumble backwards.

In running, the length of a step, increase much more rapidly than the time of it decreasen, und hence we chielly gain by pasing over a

greater space in a given time. Messrs. Weber found that when the time of the step was 0.301 , the leugth was about 1 foot, and when the time was diminished to $0^{n} \cdot 268$, the length of step was about 5 feet, so that with a decrease of only thirty-three thousandths of a second the velocity increased by more than a five-fold proportion. In fact the time of a step in running differs scarcely in a perceptible manner from that of quickest walking, it being nearly equal in both cases to the duration of a semi-oscillation of the leg.

Running requires a vastly greater expenditure of muscular force than walking, and cannot be long maintained withont completely exhausting the strength.

It appears that a man usmed Jackson some years ago ran a mile in 4 minutes and 54 seconds, so that he passed over rather more than 18 feet in a second, or at the rate of 12.3 miles in an hour, a velocity very rarely exceeded.
Leapiag, Springiog, or Jumping,-In leaping, the object to be attained is different from that of runuing. In the latter we aim at taking the longest step in the least posaille time, but in the former we want to take the longest possible steps without regard to their duration, and the longer the step the greater will be the time in takiag it. In lcaping with both legs at the same time, as in figs. 25 and 26 , there must

Figs. 25 and 26.

be a pause between each step, and this is not resorted to as a node of progresaion, but rather to accomplish a single step of great length; for the expenditure of muscular action is so enormous, that a succes. sion of steps with both legs, alternately resting on the ground and lifted from it together, is rarely had recourse to, except for such purposes as leaping acrogs rivulets or narrow chasms, descendiug abrupt surfaces, \&c.

When the object in view is to maintain a mean noiform progressive motion by leaping, the legs jaterchange their offices alternately as in runaing. The step in leaping, like that in running, may be divided into two periods, during the firat of which one leg rests on the ground, nupports the body, and propels it upwards and forwards; and during
the second period, both legs swing in the air simultaneously. The undulations of the ceatre of gravity are greater in leaping than in walking or running, in consequence of the body being projected higher into the air, whereby the swinging leg is enabled to pass beyond the vertical line through the centre of gravity, and to perform the whole of its arc of oscillation before it is placed on the ground; whereas in runaing it is arrested at the instant when it arrivea at the vertical position; and this constitutes the principal difference between the two motions.
If we begin the step, as in running, at the moment when the hinder leg, being fully stretched, projects the trunk upwards and forwards, and itself quits the ground, we find the other leg still swiaging, which it continues to do for a much longer time than in running; after the latter has reached the earth, it rotates round the ball of the foot, and from being in an oblique position in front of the body, it comes inte a similar one behind it, the two extreme oblique positions forming equal angles with the vertical. The first-mentioned leg has been all this time swinging, and so continues after the other has left the ground, and at length it comes to the earth obliquely, and rotates into the position with which we commeaced our description.
As the swinging leg is suffered to perform an entire oscillation, it follows that the duration of the step is greater in leaping than in running, but in consequence of tbe greater length of the step, the velocity in the former is not so much less tban in the latter as might have been expected. For example, let us suppose the leagth of the step in ruaning, as is found by experiment, to be 5 feet, and the time of the step to be $0^{\prime \prime *} 268$, slso the length of the step in leaping to be 6.485 feet, the corresponding time of which is $0^{\prime \prime} \cdot 404$, then the velocity in running will be to the velocity of leaping as $\frac{5^{\circ}}{0^{\circ} 268}$ to $\frac{6.485}{0.484}$, or as
1 to 0.718 . Thus we observe the velocity of leaping to be less thau that of rumaing, both being estimated at the greatest speed; but then in leaping, the steps, being taken in greater time, do not excite the pulsations of the heart, or increase the namber of respiratory movements so much as in running; aod persons when fatigued with runaiug find that if they wish to relieve the respiratory and arterial systems without materislly slackediag their speed, they can accomplish this object by converting the running into a leaping movement, better than by converting the quick into a slow running.

It is found much safer to descend the sides of steep hills with rapidity by means of small leaps than by running, because in the former the foot may be placed on and pressed against the ground in advance of the trunk, and so arreat its motion and prevent the body from falling to the ground, which cannot be done in running.

The movement in leaping, being of all the foregoing motions most under control, is varied by the peculiar manner in which the step is made, and is therefore not so susceptiblc of accurate demonstration as those of walking and running.
The laws which regulate the locomotion of man admit of mathematical analyais, and those of walking and ruaning are found to be as fixed as those which govern the solar sytsem.

Having given an outline of the mechanism by which the human race perform their movements from place to place by means of their locomotive organs, and having also detailed the leading principies by which these movernents are effected, we shall now turn our attention to the means and methods by which the locomotion of animals inferior to man in the scale of organisation is performed. It will be convenient to take in succession the lower animals in classes as grouped by zoologists, and begin with those which are most nearly allied to man. It is true that by this arrangement we shall have to pass from bipeds to quairupeds, and trace our steps back again to bipeds; but these objections will not embarrass our subject, as would the grouping together of snimals of widely different classes whose organs of motion are very dissimilar, although they perform movements which involve some of the laws common to each. In following the plan already indicated, we arrive at a group of animals which excite no common degree of interest in the minds of zoologists, namely, the Quadrumana. If we take a glance at the solid bony framework, as represented in figs. 27, 28,29 , we shall at once see, without being acquainted with anatomy, that the general outline is nearly the same in all the figurea, and that there are many parts in commou, or having bones of similar figures, in each of the three skeletoos. Upon closer inspection however we shall perceive that some bones are commou to the three: some have additional bones, such bas an extra pair of ribs; other bones, again, are common between figs. 27 and 28,27 and 29 , and 28 and 29 . On comparing heads in figs. 30, 31, and 32, we observe that the face and jaws are much more extended anteriorly in the chimpanzee (fig. 31) than in man (fig. 30), and that they are still further prolonged in the orangoutan (fig. 32) : the proportion in each may be obtained by taking in each case the length of the lines $x y$. We see alao that the forehead is lower and the head flatter in tho orang, and still more so in the chimpanzee. The head of each turns by a hinge-joint on a pivot at y; and in the erect position the distance of $x y$ is least in man, greater in the chimpanzee, and greatest in the orang : and, as the force neeessary to support the head in standing erect is proportional to the weiglat of the parts multiplied by their distance from the axis of motion in the dircction of these lines, it follows that the power
to support the head is least in man, and grentent in the ornng-ontan. Again, we see that the proportionn between the length of the arms and legnare different in each; the armin are longeat in proportion to the beight in the orang, bhorter in the chimpanzee, nud shortest in man. Tho loge aro longent in man, leas in the omag, and least in the chimpanze. In the orang wo observe that the armanearly reach the
nole is much narrower and turn inwards, and the outer margin of the foot only prosses the ground.
In man the lieel projecta a considerable distance behind the axia of motion in the ankle-joint, and acts as a powerful lever in raising the weight of the body on the toes, wherean the bone of the heol is ahorter in the chimpanzee, and shorteat in the orang; also in consequence of

[Skelctone of Man and Monkegs.]
ground in mtandiag; nlso that in man the spine has three natural curven, but io the other two. there in but one, the consequence of which is than the head ia thrown forwardn in front of the vertical line $x^{\prime} x$, and the heade of both orang and chimpanzeo are supported n the erect promition at a mechanical diemivautnge, proportional to the
the inward direction of the soles of the feet in the latter animal, the muscles act on the beel with less effect than in man; added to which the muacles which raiso the body on the foot are much smaller aud weaker than in man. But the greatest peculiarity in the hinder extremities of the chimpanzee and orangoutan is, that the juner toe of

Fiz. 32.-gitill of Otankroutan.

Fle. 30.-Stuil of Man.

Fig. 31.-Skull of Chlmpanzec.
[\$kulln of Man and Monkeya.]
line x (figy. 25 and 29). Ibut one of the greatest freculiaritien exinting between man amil the other two suimsla is in the atructure of the feet In man the entire mole of the foot in either io contact with the ground, or, owing in iln arched figure, the weight of the whole body is equally distributed over it; but in the chimpanzee and orang tho
the foot is nttached in an oblique manner, so as to move, like a thumb, in a direction excentric to that of the other toes; whereby the foot in these animals answers the double purpose of a foot and a hand. In the performance of the latter function, the inversion of the solo of the foot, which obstructs plantigrale movement, tends in
perfect the organ as an instrument of prehension, and sdspts it for climbing trees. Thus we find these snimals are endowed with four hands; and hence their generic name of Quadrumana. The limbs, being thus organised, may be used either as those of bipeds or of quadrupeds during progression. When the legs only are employed in locomotion on the ground, they obey many of the same laws as those of man, and the reader is referred to the account given of them in the preceding part of this article for the general principles; but the mechanical structure of the chimpanzee and orang-outan renders their gait peculiar, and their power of progression on two legs is inferior to that of man. We observe amongst the higher orders of Quadrumana that in walking the long arm of the orang is frequently placed on the ground to prevent the trunk and head of these snimals from falling forwards, This is chielly owing to the single curve of the spine having its concavity anteriorly, the effect of which is to throw the shoulders and head forwards, so that the weight of these organs falls in front of the vertical line passing through the joints on which the legs move. The muscles of the legs of the Quadrumana having far less power than in man, they walk more feebly, and their bent figure gives them the attitude which is assumed during decrepit old age in the human race. If we descend further in the scale of species, we find some of the Quadrumana, such as the Cercopithecus, furnished with long tsils. The tsil in this order of monkeys may be considered as a fifth organ of locomotion, and is of essential service in the act of climbing. The strength of the tail in some species is sufficient to enable the animsl to suspend its solid weight to the limbs of trees, lesving the hands nearly free to perform many of the offices necessary in procuring food, and often to enact performances accompanied with grimaces, for which many of the monkeys are remarksble. Few of the monkeys below the orang-outan walk on the lower extremities alone, but they move on their four arms precisely like quadrupeds, as the Red Howling Monkey in fig. 33. The lemurs, perhaps, never

> Fig. 33.-Med Howling Monkey.
attempt to walk erect, and they are less capable of doing so, by their organisation, than the ligher orders of Quourumana. Now, although the monkeys are denied the erect attitude and power of moving as bipeds, like man, still they move with great facility as quadrupeds; thus distributing the weight of the body on four pillars of aupport, instead of two; besides which, by mesiss of their four hands, they can climb trees with a facility and precision which would cause the most ggile school-hoy to despair of outstripping them even for an instant. The long arms of the gibbons enable them to pass from tree to tree with wonderful rapidity, so that if they are inferior to man as bipeds, they outstrip him in moving in woods of such density that impediments present themselves at almost every step, snd of such a nature as tends to obstruct the progress of the pedestrian. Indeed the conversion of the foot into a hand in these animals, instead of being a sign of degradation, has been asserted by some foreign naturalista to be no proof of inferiority in a zoological point of view; and in support of this opinion it is ssid that in certain districts (as the Landes of Aquitaine) the peasants, who obtain their livelihood by collecting, the resin of the Pinus maritima, and who are termed 'resiniers,' acquire a power of opposing the great toe to the others like a hinder thumb; but ou this subject Professor Oweu remarks, that "supposing the extent of the motion of the great toe to be sufficiently incrensed by constant habits of climbing, or in connection with a congenital defect of the upper extremities, still it does not appear that the os calcis (that is, the bone of the heel), or other bones of the foot, have lost any of the proportions which so unerringly distinguish man from the ape." Indeed, whether we turn our attention to the figure of the head, the length of the arms and legs, the structure and figure of the spine, or more especislly to the conformation of the foot or hand in man, compared with those organs in the Quadrumana, we see differences which at once (at least in the eye of the zoologist) distinguish man from the highest of the lower animals; and, if these claracters are prominent in the framework, still more conspicuous are the mental qualities which elevste and distinguish man far above all other beings inlabiting this earth.
The Bat. [Caltroptera.]-Bata present locomotive organs of a very NAT. HIST. DIV. VOL. H.
peculisr construction. Destined like birds to move in the air, their skeleton is adapted in conformity to that purpose. The bones are light, the body small, the arms and fingers greatly developed, to afford a great number of points for the attachment of the delicate membrane of which the wing is partly composed, as may be observed in the annexed figure (34) of the Short-Eared Bat. The hand of the bat rotstes outwards and inwards like the wing of a bird, so that when the wing is folded the little finger lies on the smaller bone of the fore arm. The thumb is not included in the membrane of the wing, but projects beyond its margin, where it forms a hook for holding objects. The four succeeding fingers support the membranous wing, which when expanded presents an extensive surface for striking the air during flight. The legs are small, twisted, and so weak as to be incapable of supporting the body when on the ground. The toes, terminating in sharp claws, are well adspted for grasping elevated objects, to which the animal suspends itself in an inverted position; by this means it can easily launch itself into the air on the slightest slarm.

As the bat is incspable of chasing and capturing its prey on the ground, snd its fool is cliefly composed of insects taken on the wing, it requires the sttainment of a much greater velocity of movement than it would be able to accompligh by means of its lower extremities, were they even much stronger than they are. It has, therefure, been furnished with a peculiar sppsratus adspted to serial progression. The principles of its locomotion msy be best atudied in connection with the locomotion of birds. [Flyino.]

Quadrupeds.-The movements of quadrupeds differ in priaciple from those of bipeds, and also from those of hexspods (Insects).
In all quadrupeds the axis of the trunk is directed more or less horizontally, the angle of inclination depending chiefly on the difference between the length of the anterior and posterior extremities, In some animals-the giraffe, for instance-the fore legs are the longest, and the axis of the trunk inclines upwards; in others, such ss the hare, grayhound, and especislly the jerbos and kangaroo, the hinder limbs preponderate in length: the axis consequently (supposing the animal to stand with the four feet on the ground) inclines anteriorly downwards. The difference between the lengths of the anterior and posterior limbs produces a very sensible effect on the movements of such animals.
In quadrupeds the weight of the body is transmitted to the ground by means of their four legs, but we shall find on examination that they do not all bear an equal share of the burden, and that the different species present a diversity of structure which influences their movements very perceptibly. In the elephant, for example, the legs are nearly straight, a conformation which enables the animsl to support the mass of its body with the greatest mechanical advantage : but, great as it is well known to be, the strength of the bones and muscles of its legs is far from being in proportion to the mass of its body when compared with that of many smaller quadrupeds; and we consequently find that the speed of the elephant is not proportional to its bulk.
Quadrupeds move their four legs either singly and successively, or in various orders, which correspond with the different velocities of the animal. These different kinds of movement of the legs are known under the terms walkiog, trotting, galloping, and leaping.

As everybody is familis with the horse, we shall select that animal to illustrate the manner in which the locomotion of quadrupeds in general is effected. The subject possesses more or less interest to most persons, yet of the millions of people who are in the daily habit of seeing the horse in motion, how very few consider the means by which the movements of that valuable neimal are performed. Let us suppose the horse to be standing on its four legs, as in fig. 35 , number 4 , and that it commences the walkiag step by moving its left hind leg, as in number 1; this having been advanced and placed on the ground, the right fore leg is next raised and advanced, as in number 2, and laving been placed on the ground, tho right hind leg performs a similar movement, and the legs of the animal are in the position number 3 lastly, the left fore leg is advauced, and placed in the position of number 4. These four movements complete the step, and during the series the centre of gravity of the animal passes over a corresponding space. This is the order io which nearly all quadrupeds move their legs in slow walking; but some authors do not coincide in this statement, amongst whom is Borelli, who has figured the horse as moving both the legs on the same side at oace in walking, as some horses are taught to do in the amble, and as the giraffe is known to do naturally.

A little consideration will clear up the error juto which Borelli and others have fallen respectiag the horse. It will be observed from the foregoing statment that the left hind leg moves firat; the right fore leg recond; the right hind leg third; and the left fore leg fourth. Now if we do not analyse this order of motion from its commenceasent, we may easily be deceived; for in walking by a horse, the two legs appear indeed to move together on the same side, but this arises from the continuity of the series of movements, which we find begins with the left hind leg, and terminates with the left fore leg; the movement of the right fore leg being in like manner followed by that of the right hind leg; which continuity of movement, if not carefully discriminated, gives an impression that the animal moves both legs on the same side simultancously.

The Trot.-In trotting the horse moves its legs in pairs diagonally: thus, if tho legs ad (fig. 36) be raised and adranced first, the legs it e
rig. 36.
 will be mised the instant those desiganted by a d reach tho ground. On the other hand, when the lega $b e$ are raised before tho legs a d reach the ground, there is a minuto interval during which all the legs are raised above the ground at the samo time. In trotting each leg moves rather moro frequeatly in the anmo period of time than in walking, or nearly $a s 6$ to 5. But tho velocity acquired by moving the legs in paira, instead of consecutively, depends on tho circumstance that, in trotting, each leg resta on the ground a short time, and swioga during a long oue; whilat in walking, each leg swiugs during a short period, and rests during a comparatively long one. In walking, the trunk oscillates Interally, wheress in trotting it oscillates vertically; but in each of these kinds of movement there appeara to be a slight motion of the trunk of the animal both laterally and vertically.

It may be observed that the yertical lino traversing the base of sopport passes through tho horse in auch a manner as to leave by far the greater part of the weight of the body to be supported by the two fore leg..

The Gallop.-In galloping, the horse adopts threo different methods of using its organk of locomotion, which aro dietinguished by tho number and the order in which the feet reach the groubd.

First order of Motion. - When a horse begins to gallop, on the right, the left hind leg reachen the ground first; the right hiad leg nad left fore leg next follow at the ame tinc, nul the right fore leg lant. This is called the gallop of three leata.

Second order of Motion. - If the four lega reach the ground in succession, the left hind foot reaches the ground firat, the right hind foot meond, the left fore foot third, and the right fore foot fourth. This is the gallop of foar beata, sometimes denominated the canter. This orier of movement is not alapited for great speed, but iann agreeable motion in riliog on horseback for ladien, or for gentlemen who ride lazily or badly.

Thirl onier of Motion.-In thim kiod of action the horse moves the lega in the same order an in trotting; that in, the left lind and right fore feet reach the ground eimultancoump, then tho right hind and left fore fect. This in the order ia which the feet move in racing, sud whenever the greateat specd ia required. It is called the gallop of two beata.

Leaping.-In leaping, the home mines the fore legn from the gronnd, and projecta the lody upwands and forwards by the hind legn alone. It is well known that they leap riruleta, hedges, and ditches wills great care, cven under the lurden of henvy riders; but to accomplisis
this an onormous expenditure of muscular action must be required : since the muscles which produce the effect act at a great meehanical dimndvantage.

Horses which are constituted for great speed havo the shoulderjoints direeted at a cousiderable angle with the arm. Snintbell han given the relative proportious of the soveral parts of the akeleton of the celebrated race-horso 'Eclipse,' together with the angles of inclination aud range of motion belonging to the joints of the legs. Accord. ing to his account, that horso, when galloping at liberty, and at its greatest speed, passed over tweaty-five foct at each step: these strides were taken two aud a half times in a second, being at the rate of about four miles in six minutes aud two seconds, or forty miles in an hour and tweuty eeconds.
Those quadrupeds are best adnpted as beasts of burden, or to take long and often repeated journeys, which have the anterior and posterior limbs of nearly equal leugth, such for instance as tho horso, ass, camel, and many othor animals, and thesa have also the power of ascending and descending hills with ease and safety. But such is not the caso with those qualrupods in which the length of the anterior and posterior extremities is remarkably disproportionate. The hare, for example, has tho hinder legs much longer than the anterior ones; the consequenco of which is that, wheu pursued, it can often outstrip the grayhound in running up the sides of hills; but in descending it must run in a ztgzag direction, or it vould tumble over. The rabbit presents the same conformation. In the jerboa and kagaroo the length of the posterior lega predominates exceedingly over that of the anterior, and their modo of progressiou is effected by a succession of leaps produced by the sitaultaneous action of thoir hinder catremitics. When pursued the jerbon is anid to clear nine feet at each leap, and so rapidly that the Cossacks, though mounted on the feetest horses, aro unable to overtako it. In these leaps the body flies through the air with the legs inclined backwards, as in fig. 3 , number ${ }^{7}$.

Fig. 37.

In the kangaroo the length of the hind legs is uearly double that of the fors legr, which is a disproportion far too great to permit thent to move with the same advantago as other quadrupeds. Whon the kaugaroo rests on its four legs the head and truak incline to the ground, as seen in number 8 . They usunlly sit on the two haunches, nsiug the tail as the thind leg of a tripod, as in number 0 .

Amongst the Ruminantia, tho deer and the antelopes are beantifully orgaaised for speet ; but as they move on the same principles as the horse, we need not stops to dwell on them.

It may be remarked that those animals which are least furninded with the means of defence, and are least protected, are often endowed with the greatest speed of motion, such as the hare, antelope, deer, \&c. Ou the other hand, the lion, tiger, leopard, and caruivorous quadrupeds which aro endowed with great streagth, have not the npeed of tho sbove-mentioned animals. This slows that, with the same aumber of locomotive organs, the opeed of an animal depends on other conditions besides mere strength. The atructure of the several joints; the relative length of the different portions of the limbs; the proportiou which the length of the limbs bears ts that of the body; the angular diaposition of the limbe with respect to each other; the distances at which the muscles act with respect to the axes of the juints; all coacur to modify tho speed of an animal, iudependently of its muacular power.

Birds.-As birds aro constitnted for tlarec kinds of locomotion, that ia, in air, in water, and on dry land, it is obvious that they must havo organs edapted for these severnl kinds of progression. Their arms, which form tho wings, are not orgnnised to be employod for prohenaion, is in man, or for moving on them in the manner of quadruped. Birda sto casentially bipeds when moving on aolid surface; and as the feet of birin aro so conatituted that the toes only reach the greund they miny be denominatod Digitigrade Bipeds.

The head, neck, and body of the bird are poised upou its legs in such a manaer that the head may be elevated or depressed without danger of its falling. Those portions of the body situated in front of the legs tead to depress the head towards the ground, and those situated behiud the legs tend to raise the head in the opposite direction; the weight of these parts being equal keeps the budy balanced on the heads of the thigh-bones, which are not only the points of support of the body, but likewise the axis of motion on which the body turns.

We observe in most birds which move entirely on the land, such as the turkey, pheasant, partridge, and numerous others, that the axis of the body is inclined to the horizon, the head being the most elevated portion of the whole auimal. As a lino passing through the heads of the thigh-boncs is the axis on which the body moves and is supported, the centre of gravity of the body must pass through that axis, or the body of the animal would rotate on it. We know, by daily experience, that the beam of a weighing-machine is made to turn on a pivot; and that if unequal weights be attached at the extremities, as loaded scales, for instance, the arm will be depressed in the direction of the greatest weight, and the arm on the opposite side of the beam will be elevated; but if the weights be equal the beam will remain stationary. Now, the body of the bird is poised similarly to the beam and weights; and it is curious to observe the methods by which the equilibrium of the borly on the legs is maintained.

The head of the hird, being placed at the extremity of the neck, which in many species is very long aud mobile, acts as a weight placed at the end of a long lever, whose length is the diatauce of the head from the axis already mentioned, about which the body of the animal turns. Now, as the distance of the head is varied by every change in the direction of the neck, the mechanical effect is the same as the shortening or lengthening of one arm of the beam of a weighingsachine would produce; that is, the force increases in proportion to the increased length, and vice versa. The vertebre of birds aro firmly joined together, and do not move on each other as they do io man and in quadrupeds, so that the animal cannot twist and turn its body on itself to adjust the trunk on its legs, and it is only at the extremities of the trunk that the paits are moveable. The tail when spreal out like a fan furnishes a large surface to strike the air, and in this manner its action is important to some birds wheu walking, as is rery conspicuous in the moorhen and others. The head, neck, and tail then are the parts employed in keeping the trunk of the bird poised on its legs in such a manner that it can stand very steadily, and walk and run without falling; thus we observe that whilst the animal moves the head, neck, and tail are in constant motion. The length of the legs varies considerably in different kinds of birds, and controls the velocity of their movements very seasibly, as does also the mode in which the legs are employed. Cranes and herons whilst walking swing one leg partly round the other, that is, one leg in swiuging describes a portion of a circle around tho other which is resting on the ground. The Giallatores are furnished with loug lega, which being deatitute of feathers are well calculated for walkiag in water and for making long strides in search of food. Thero are many other birds which move one leg at a time, whilst the other aupports the body, the two legs interchanging their offices alternately, as in human progression. Thus, when the bird walks slowly the body is supported
finches, aud others, do not move the legs alteruately, but simultaneously, performing a succession of small leaps. This mode of progression is common to birds which are furnished with very short legs, a circumstance which would make the step excessively short if performed by moving the legs alternately in the ordinary manaer. Even this method however does not caable them to advance with much celerity, and on the least alarm they adopt the more ready and effectual mode of escape by takjug wing.

In the parrot, cuckoo, and woodpecker the internal toes and thumb are turned back wards (fig. 38), a structure which enables these birds to grasp objects in the manner of a hand. By this means also they have the power of climbing trees with great facility, during which action the tail is frequently

lig. 38.-Foot of Woodpecker. employed to aid in keeping the axis of the body in a vertical position as in tig. 39.

Fig. 39.-Green Wooupecker.
Some birds, such as the ostrich, emu, or cassowary, are not cuduwed with the power of flight, the weight of the body, compared with the size of the wingr, being too great to enable them to sustain themsclves in the air; but in walking and running they fir surpass all other birds. Their legs are of enormous length, a construction which cuables them to take steps of great maguitude with cousiderable rapidity. The ostrich (jig. 40) runs with amazing speed, and can outstrip the fleetest Avabian horse.

Vig. 10. -IIunting the Ostich.
duriug a short period by both legs, aud during a longer period by oue; lut if the bird adopts a very rapid pace the body is supported by one legonly at a time, as one leg rises the instant the other reaches the ground; but at no period of walking are both legs raised at the game monent from the ground, as that would constitute runuing or hopping.
Mopping. birds, such as blackhiris, sparrows, the various kind of

Next in size and specd to the ostrich are the cassowarics. Of those iu Australia the speed excecds that of the swiftest grayhound, and the length of their legs is very considerable.
In fast walking the hinder leg, having been extended to its greatest length, is raised the instant tho head of the thigh-bone in the forward leg comes vertically over the foot, and the position of the two legs at the moment the hind leg is about to be raised is such that they form
with the leagth of the step a right-augled triangle, so thant the height of the head of the thigh-bone from the gronnd and the length of the oxtended leg being given the length of the ntep may be fonad. In very quick running the forward leg, which supporta the body, is much bent, and the centre of gravity of the body brought nearer to the ground. This is necesary in orler to nccomplish the greatest leugth of slep in the least portion of time ; the time of each step is nlso diminished in running by the hind leg being raisel before the forward one renchea the grouad, oo that the biud leg performe a prortion of its are of oncillation whilst the body moves through the air unsupported ly either leg, and the birl is thue alternately supported by one leg during a abort period and left sltogether unaupported by either leg during a louger period, as in man.

As we find that the oatrich in apeed excels the horse, and the cansowary the grayhound, which are reckoued aroong the swiftest of quadrupeds, we nt once perceive that these birds do not require the aid of their wiags to raige them in the air in order to escape from their enemies; mad if the intelligence of the ostrich were in proportion to jts apeed the mounted Arab would never be able to overtake it in the clanse, but as it directs its flight in a circular instead of a straight course, as in fig. 40 , its pursuer takes advantage of its ignorance of one of the most simple geometrical facts, namely. that the nearest path between two distant points is a straight line. Hence it appears that though its anfety absolutely depends on the knowledge of the course it should take in flight, it has never solved this importaut prohlem; nud, notwithatanding its greater bulk of brain, it is far inferior in point of eagacity to the dimunitive bee, and many other insects which dipplay cousiderable skill in the geometrical construction of their bsbitations, and are known (by careful observation) to take the shortent road in their flight from one place to another.

The Lizards nud Crocodilea present diversified organs of motion. Amougat the former, the gecko is supplied with a peeuliar pneumatic npparatua in the feet by means of which it has the power of exhausting the air beneath the toen, and is thus emabled to clind vertically the stnooth surfaces of walla, nud to walk in an inverted position along the ceiling of rooms. This provision is advantageous to the animal when pursuing the insects on which it preys. In many of the lizards, such on the elameleon, the tail is in like manner used to secure them nore ateadily on the branchen of treen: the hand is furnished with two thumbs opposite to three fingers, and the foot with three thumbs opposed to two fingers. By this arrangement the animal is endowed with considerable facility in taking lold of the branches, being thus proviled, as it were, with four hands.
straicht line, and from this causo may be easily avoided by man shonld the be pursued by oue of these amphihious monsters.

Tho Tortoises are slower than the crocodilest reptiles. Like tho Intter, they caunot twist tho body on itself; and the ponderous caso within which thoy nre inclosed, and which they drag along with the body, resists the freedom of motion of the lega nt thoso points whero they pass out of the solid case at a and b in the following figure (41). This renders their pace exceedingly slow. Their carnpace or alield serves however to protect them from injurien arising from tho tread of heavy quadrupeds, and is essentially nseful to them during their occupation of burrowing. They move on the priaciples of mamaniferous quatrupeds.

Fig. 41,-Amborna Box-Tortoise.
Serpents.-Wo have seen that the crocodiles and tortoises possess littlo or no power to turn their bodies to the right or to the left; and also that it occupies the last-named animals a long time to change their course from one direction to auother. Scrpents, on che contrary, have a very great range of latoral motion; and indeed, destitute ns they are of legs, were the bonea of the baek as immoveable as thoso of the tortoiso, they would be deprived of the porver of locomotion ; but being endowed with very great mobility of the vertebre, they aro enabled, notwithstanding the want of lege, to climb trees, to run with considerable speed on the ground, and to swim rapidly in risers aul lakes. The scales, which aro seen on the belly of the naimal,

1Hg. 42.-Minged Smake.-Viertical motion.
The C'rocorifics are fumished with four lega, nud can walk and run enable it to lay hold of fixed objects on the grouncl, and by the on molidn like mammiferoun qumlrupedn. The bones of the neck mal altermato elongation and coutraction of the body, it glides along with

Hig. 43.- IIngril snake. - lateral motion.

Inck are however no lockeel together thast they camot turn or twint the body nidewny oxcept in an exceelingly limited degree. They are consequently obliged when unoing rapidly to keep in nearly is
great celerity. There are aeveral waya in which serpenta move, but the mont common are tho vertical and tho lateral modeg, seen in fiyn, 42 mal 43.

The Frog, like the crocodile and tortoise, has not the power of t wisting its body; it moves by a succession of leaps. It is said that the bull-frogs, which are sbundant near the great lakes of North America, can leap 6 feet at a bound, and repeat these leaps so rapidly, that they cannot be captured without great difficulty. They will leap over walls 5 feet in height. The hyla, or tree-frog, has each of its toes furnished with a concave dise, which acts as a sucker; and by this means the animal has the power of laying hold of the branches of trees with considerable force, and can leap from brauch to branch with great agility. It is by means of the hind legs, which are much longer than the anterior, that the body is projected; the movements are jerformed on the same principle as those of the kangaroo and jerboa

In descending the scale of orgsuised beings we shall pass from Ophidian reptiles to the Gastropods, such as the IIelices, or Snails, and the Limaces, or Slugs. The movements of these animals are well known to be exceedingly slow. The suail, after creeping from its shell a, expands its body in such a manuer that the shell lies poised upon its back (as in fig.44).

$$
\text { Fig. } 44 .
$$

The shell is carried with the animal in all its perambulations, and the body is withdrawn into it on the slightest alarm, or when in a state of repose, leaving the foot b^{\prime}, b only, which is in contact with the surface on which it treads, without the shell.

The single foot of the suatl is moved by numerous muscular fibrea, by means of which it is successively expended and contracted at various portions of its dise; so that when one portion of it has advanced, and laid hold of an object on the plane of its motion, the next is drawn forward, and so ou in succession, until every portion of the foot has advanced; but the length of each step is so small, that the suail takes a long time to walk over a path not more than a foot in length. The mosements of slugs are performed in a similar manner, and although they have no house to carry on their back, their progression is also very slow. They appear to move with greatest frcedom over regetable substances, but cannot easily traverse fine loose soils; because the segments of the foot cannot find on such moveable surfaces the requisite fulcrum whereby to drag the body along. Gardeners avail themselves of this peculiarity to preserve tender plants from their ravages, by strewing loose ashes, or, what is still better, dry sawdust, over the beds. These Gasteropods secrete a viscid fluid on their track, which enables them to climb the walls of houses in a vertical path. The adhesive fluid, when dry, reflects the light, so as to present a shioing silvery appearance, with which most persons (at least those who live in the country) are familiar.

Crabs.-Theso animals are, it is well known, ineloged in a solid case, or shell. The body is usually either nearly square or a pearshaped figure, and the tail is not so long and liexible as in the lobsters. They are furnished with five pairs of lcgs, which are attached to the under sicle of the trunk, in that portion of it termed the cephalo-thorax. The hinge-like joints of the legs not having their ases of motion perpendicular, but either parsllel, or oblique to the mesial axis of the trunk, they are unable to walk direetly forwards, but move on solids either in a lateral or in a retrograde direction. Some species, such as the Laud-Crsb, or Cencer cursor, run with considerable rapidity. It is even said that they are capable of running with such speed that a man on horseback has great difficulty in keeping pace with them. According to Labat, "these animals not only live in a kind of orderly soeiety in their retreats in the mountains, but regularly ovee a year march down to the sea-side in a. body of some millions at a time. The sea is their destination, and to that they direct their mareh with right-lined precision. No geometrician could send them to their destined atation by a shorter course: they neither turn to the right nor to the left. They will attempt to seale walls to keep the unbroken tenor of their way. They are commonly divided into three battalions, of which the first conaists of the boldest and atrongest males. These are pioncers, who marel forward to clear the route, and to face the greatest dangera. The main body is composed of females, which never leave the mountain till the rain has set in for some time; they then deacend in columas of 50 paces broad and 3 miles deep. Three or four dsye after this, the rearguard follows, consistiog of males and females, neither so robust nor so numerous as the fomer. The night is the chief time of proceeding; but if it rains by day, they do not fail to profit by the occaion. When the sun is hot, thes make a universal
halt, and wait till the cool of the evening. They are sometimes three months in getting to the shore." The order in which the five paira of legs of the erabs move in walking and running does not appear to have been accurately observed.

Spiders.-The Arachnides, or Spiders, are furnished with four pairs of legs (the female being provided with an additional pair for the purpose of carryiog her eggs). The legs of the different species of spiders vary considerably with regard to length, but the order in which they move appears to be the same. The joint which connects the legs to the body is a kind of ball-and-socket joiut, which gives the animal the power of turning the limbs in various directions, but all the other joints of the legs are on the priuciple of the hinge-joint, thus seeuring firmness and precision in movement. The extremities terminate in cither a single or double hook for the purpose of prehension.
The apparent complexity of the motions of the limbs of these snimals is dissipated by first investigating the order in which they move the legs on one side, and afterwards that of those on the opposite side. By this means it will be found that the spider advances first the fore leg, then the fourth, then the third, and lastly the second leg; that is, in the order 1, 4,3,2. (Fig. 45). By com-

Fig. 45.

paring this order with that of the legs on the opposite side, when acting simultaneously, it will be found that they begin by moving the first right leg, then the fourth left; then follow the first left, and the fourth right; then the third right, and the second left. The first two scts of legs are thus moved consecutively in the order $1^{\prime}, 4,1,4^{\prime}$, a mode of progression which resembles that of quadrupeds: the remaining legs move in pairs simultaneonsly, namely, $3^{\prime}, 2$, and $3,2^{\prime}$; and thus it is found that whilst the legs of one side of the animal are moving consecutively, in the order $1,2,3,4$, the legs of the other side are moving in pairs, in the order $4^{\prime}, 1^{\prime}, 2^{\prime}, 3^{\prime}$. Most persons are aware of the facility with which spiders spin the beautiful but fragile corrl, by means of which they safely descend from heights that would be fatal to larger animals unprovided with some means of breaking the shouk which would result from a fall from such elevations. In deseending their newly-spun thread, they suspeud the body to it by one of the hind legs : an returning by the same thread, they mako use of three legs, the first two on one side, and the first or second ou the other. The spider is endowed with the power of running with considerable speed on its web, in the chace and eapture of its insect prey; and is capable of leaping a considerable distance, many times its owu length. It throws its thread across chasms, and thereby forms for itself a suspension-bridge in an incredibly shorter period of time than our most eclebrated engineers are capable of accornplishing; thus showing that, inferior as the spider is to man in strength and organisation, it has yet been amply provided by an allwatehful and omnipotent Creator with the meaus of tranaportiug itself from place to place, and of procuring its sustenance. The same condage which serves to give it a ready passage across cavities which could not otherw ise be traversed withut great labour aud expenditure of time, serves also as the best material with which to weave its net for entrapping its prey.

Iuscets.-Mauy insects are endowed with the triple powers of walking, runuing, and leaping on solids; of flying in the air like birds; and of swimming in water like fishes. For these manifold purposes it is obvious that they must possess a peculiar organisation. To enable them to move on solids they are furnished with six legs: the first pair is attached to that part of the trunk called the prothorax; the second pair to the reesothorax; and the third pair to tho metathorax, which is the last segment of the thorax. In some insects the legs are artienlated to the trunk by a ball-and-socket joint; in others by a hinge-
joint: the succeding portions of the limbs are linked together by hinge-joint". The axes of these joints nre turned at right angles to each other, so that they liave the power of executing movements in different plases, somo ia a vertical, and others in a horizontal direction. When the perfect insect walks, it is observed to mose three of its legs simultaseously, whilst the other three remain on the ground, supporting the body and urgiog it forwards. The fect which move simultancously are the fore aud hindermost feet on one side, and the middle foot on the opposite side; consequently the whold of the six feet are moved to accomplish two steps. In the first morement the legs $1,2^{\prime}, 3$ (fig. 46) remain on the ground, whilst those insrked $1^{\prime}, 2,3$ are raised and adranced, to take n new position on the plano of support : afterwards, whilst the legs $1,2,3$ support the body in a similar manner to those which preceded them in that office, the legs $1,2^{\prime}$, 3 are raised, sud again advanced ; and ly the alteruate actiou of the aix legs in the order just described, the jregression of the insect whea walking is sccomplished. The extraondinary power with which insects are chdo wed of walking with perfect case and security up the smooth polished surface of glass, and in an inverted position on the ceiliggs of rooms, is found to depend on different varictics of etructure. The fect of the honse.fy are found to be fur-

nished with two anembranous suckers, as scen in fig. 47; nud in the Bibio folrilis there are three of these suckers, as showa in fig. 48. These suckers are membranous sacs, which are acted on by numerous muscles, so that when the foot is placed on a smooth surface the suckers become cularged by means of their muscles, and s vacuum is produced. The presalire of the air without becomes by this means sufficient to kecp the fout finaly preased on the surface to which it is applied. We here see the reason why the house-fly chooses the smoothest sarfaces of an apartment to walk upon, unless it happens to be moving horizoutally; for if the surfaces were rough, the vacuum under the feet would not be perfect, and it would fall. In other instances the hajrs are found hooked, whilat nome insects secrete a viacid substance, which causes theen to alleere to thic objects on which they are placed. Many insecta, as the ty, are in the larva state destitute of legs, but cven these contrive to drag themelyes along by the alternato expansion nad contraction of their bolly. We are familiar with an instance of this kind of movement in the margot commonly found in the hazel-nut. As soon as it in out of the shell it strides along; but, its trunk being cylindrical, it frequently rulle over in its courne. Other larve, not content with the slow progren made liy the incthod above-mentioned, mise the central portions of the borly high above the plane of bupport, and by means of alternately estessing and contracting the body, take stops of considerable length. This kind of anoverucat is shown in fiy. 49. The

d

Fig. 19.

trunk is first drawn formaril from a to b, and the lyeal is then extended from eto ob: and than at each ntep these larwe pass over a ypace equal to " b or $c d$. During this process many larve, such na the frometro, prin a ilken thread, the length of which is consequently the measure of their progreas made in walking.

Leapiog. Many insecte, such as the dea, the grasshopjer, and the cricket, are capmble of performing oxtraordinary leapis compared with their bulk. In all the leaping insecte the hioder lege greatly exceed the rest in length and atrength, nod it is in consequence of the leagth
and power of this pair that insects are capable of projecting themselves to the great distances they are known to traverse. The legs are first bent as much as possible, nad then ouddeuly expanded with great forec, so as to propel the body through the air. As the grasshopper resides amongst the long grass of neadows, anch a node of progression is requisite to enable it to pass over the rugged surfaces surrounding it on all sides; and we well know with what ease and unerring precision this little creature leaps from point to point.

Worms,-Amongst the Annelider, or Worms, we find a great diversity of form, and of locomotive organs, sujted to the habits and economy of each animal. Some live entirely on land, others reside in water, nad are excellent swimmers. The Lumbrici, or Earth-Worms, being those with which people generally are most familiar, will be selected to give an ides of their mode of progression. The body of the esth. worm is cylindrical, and nearly of equal dismeter from head to thil. It is supported by numerons rings encircling the long axis of the trunk throughout, and each ring is furnished with eight conical spines, which are called into sction when the animal walks. Between these rings two sets of muscular fibres pass from ring to ring, one set of muscles passing longitudioally, nad the other set obliquely. By the aid of these fibres the body of the suimal can be either lengthened or contracted, as also twisted in varions directions. When touched, the worm immediately assumes the form of the letter S. In walking it expands one portion of the body, and contracta the next successively, so that it requires s series of expansions and contractions throughont its entire length to accomplish n single step. For this reason the progress of the worm is very slow, not being capable of effecting muro than about the rate of 30 feet per hour.

For a further account of the special movements of animals see Flving; Stivming.
[In this article we have had the advantage of using the greater portion of an admirable series of articles which sppeared in the 'Penny Magazine,' and which were written by Mr. J. Bishop, F.R.S., a gentleman eminent for his physiological sttaiomente, snd the suthor of the profound and original article on 'Motion, in the 'Cyclopadia of Anatomy and Physiology.']

LOCUST. [LocUsta.]
LOCUST-TREE is the Robinia Pseudacacia of botanists, a North American forest-tree. [Robinia.] The same name has also been given to the Ceratonia Siliqua, the Carob- or Algaroba-Tree, which is found in tho Lerant, nod bears large pods filled with nutritious pulp.
LOCUSTA (Gcoffroy), n genus of Insects belongiag to the order Orthoptera and the section Saltatoria. The species of this genus have been recently referred by Engliah authors to the geaus Gryllus. [GrymLidxi] The terms Locust nod Grasshopper are applied to various insects of the order Orthoptera, and belong to a section of that order to which Latrcille npplied the name Saltatoria, on account of the power of leaping which they posscss. The insects belouging to this section are remarkable for the great size of the thighs of the posterior pair of lege, which are generally very long, and adapted for leapiog. The males of some of the species make s elrill sound by the friction of the elytra. The part by which the sound is created is situsted on the inner side and near the base of eacl elytra, is often transparent, and has been compared to a piece of talc. In other species the sound is produced by the friction of the thighs against the elytra.

The rection Saltatoria containg three families, to which the names Achelide, Gryllide, and Locustide are spplied by Dr. Leach. The thmily Achetidee is thus defined :-Elytra horizontal; wings longitu. diually folded, often produced beyond the elytra; tarsi 3.joioted. This frmily contains the genera Ciryllotalpa of lay, Leach, aud others, of which the Mole-Cricket (G. rulgaris) of this country affords nn example, nud Acheta of Frabricius, which is the Grylles proper of the 'Regne Animal.' The Common Cricket in our honses (Acheta domesfica) belongs to this genus. The gencra Tridactylus nud Myrmecophila arc also included in tho present fanily. In tho family Gryllidat the wings are disposed in nn oblique manner when folded, the tarsi are d-jointed, the antenne are long and setaceous, and the oviduct is exserted in the female, of n long nod compressed form, and recurved.
Tho insects of this family form the genus Locusta of tho 'Kegue Animal.' The Acrida (Gryllus, Locusta) viridissima is the largest among the British species of the present group. This insect is not uncomenon in some parts of lingland, and is nbout two iaches in length, and of a bright green colour. [GuriLios.s.]

The fanily Locustide is distinguished by the following characters :Winga when felded meeting at an angle; tarsi 3 -jointed; antenna filiform or ensiform ; oviduct not exserted. The Loctestide of Dr. leach are comprisal in the genus Acridium by Latreille. Unfortunotely there is much confusion as regards the names of some of the geocra and mul-geucra contained in this as well as the other families above noticed. Names originally applied to large groups are restricted to kmaller nections, and as entomologiste differ in opinion as to which particular division shall retain tho original name, the same names are uned to designate different groups; hence the references made to I.atreille's portion of tho 'Regne Animal.'

The frincipal gencra contained in tho family locustide are tho following:-
focusta (Leach), in which the hinder lega are about equal to the whole body in length, and the nntenne filiform or termianted in a
club. Upwards of twenty speeies of this genus are enumerated by Mr. Stephens in his 'Catalogue of British Insects,' and it is to this group that the Gryllus migratorius of Linncus belongs, a large speeies which has occasionally been found in Britain, and which in some parts of Europe sometimes multiplies to such a degree as to devastate large districts. Africa at all times appears to bave been peculiarly subject to the ravages of these insects. Of their extraordinary devastations in this portion of the globe we have records from the earliest authors, and the works of the most recent travellers confirm them. Mr. Barrow in his "Travels" states, that "in the southern parts of Africa an area of nearly two thousind square miles might be said literally to be covered with them. When driven into the sea by a north-west wind they formed upon the shore for fifty miles a bank three or four feet high, and when the wind was south-east the stench was so pawerful ne to be smelt at the distance of 150 miles." In Messrs. Kirby and Spence's 'Introduction to Entomology' numerous accounts of a similar nature will be found. In some parts of Africa they are cooked and eateu by the natives. The natives of Senegal are said to dry them, nnd, having reduced them to powder, use them as flour.

Gomphocems (Leach). Hinder legs exceeding the body in length; antenne capitate, having a spoon-shaped club in both sexes; anterior tibixe simple. This genus contains numerons species, six or seven of Which are found in England. They are usually of small size, and, together with the smaller species of the preceding geum, are commouly called Grasehoppers.

Acrydium (Leach). The species of this genus may be distingmished by the large size of the scutellum, which is produced posteriorly, and covers the wings. They are found on hot sandy banks.

Pneumora (Thunb.) has been established for the reccption of certain African Locustido, which have a membranous pellet between the terminal hooks of the tarsi, the antenna filiform, the posterior legs shorter than the body, and the abdomen vesicular-at least in one of the sexes.

Proscopia of Klug contains numerous npterous species peculiar to Soutl America, in which the body is long and cylindrical, the head destitute of ocelli and prolonged anteriorly, the antenne short and filiform, the posterior legs long, and approximated to the intermediate pair, which aro remate from the anterior pair.

LODESTONE. [LOADSTONE.]
LOCUST'ELLA. [SAlicaria; Sylviad.er]
LOGANIACEAE, Loganiads, n natural order of Exogenons Plants, consisting of shrubs, herbaceous plants, or trees. It is characterised by having opposite eutire leaver, usually without stipules, which adhere to the leaf-stalks or are combined in the form of interpctiolary sheaths. The flowers are racemose, corymbose, or solitary; the calyx valvate or imbricated, inferior 4- or 5 -parted; corolla regular or irregular, 4.5- or I0-cleft, with valvate or convolute æstivation; stamens arising from the corolla, all placed upon the samo line, and not always symmetrical with the divisions of the corolla, pollen with 3 bands; ovary superior, 2-celled; ovules absent or solitary; fruit either capsular, 2-celled, with placentæ finally becoming loose or drupaceous, with I- or 2 -seeded stones, or buried with the seeds immersed in pulp; seeds sometimes wioged, usually peltate, nlbumen fleshy or cartilaginous; embryo small, with the radiele turned towards the hilum or parallel with it. All the species are either tropical or inhabit countries near the tropics, a few in Amcrica and Australia forming the only exceptions. It would be difficult to name a more poisonous order than this, of whose qualities the celebrated Nux Vomica may be taken as the representative. Notwithstanding the active qualities of these formidable plants, some are used iu medicine with great adrantsge. Several of the species of Strychnos are uscd in the east as remedies for various diseascs, and the seeds of Ignatia amara, St. Ignatius' Beans, are employed in India for cholera. Spiyeiia yields also several species which are employed for useful purposes. The order consists of 22 genera and 162 spccies. It is related to Apocynacea, Gentianacere, Cinchonacere, and Mhizophoracere. The uses of the species will be found under their respeetive heads, Spigelis; Strycusoz, \&c. (Lindley, legetable Kingdom.)

LOGWOOD. [HAMCATOXYLON.]
LOLIGO, a genus of Cephalopodous. Mollusca belonging to the tribe Teuthider. It bas a firm fleshy eylindrical elongated body, towards its posterior extremity flanked by two triangular fins, which run to the tail. The locomotive apparatus is formed of two oblong margined pits placed at the base of the funnel, and of corresponding linear prominent crests on the inner margin of the sleeve. The eyes are covered by an epidermic expausion piereed with a small opening; no lacrymal sinus. There are ten arms, two of theus tentacular, insperfectly welbed. Pen corneous, flexible, lanccolate, ns long as the borly, terminating in an obtuse point. The Cuttle Fishes of this genus are known popularly by the name of Squids, Their spawn is conveloped in oblong gelatinous tubes, numbers of which are found adheriseg to a common mass by their lower extremities.
L. vulyaris has fins flanking two-thirds of the body, and forming an oblong rhomb. The body of this handsome animal is cylindrieal anteriorly, tapcring, and gradually contracted from some distance in front of the middle to the caudal extremity. The angles of the fins are obtuse: these organs extend quite to the tail, and join there. The lead is short and broad, not over prominent in the region of the eyes. The eight ordinary arms are stout and rather short, slightly webber
together at their bases; on their inner side they are furnished with two rows of oblique suckers with eccentric openings, of which the horny hoops are armed on their broader side with teeth. The tentacular arms are long, stoutly pedunculated, and furnished at their laneeolate extremity with suekers, large centrally, small towards their tips, and ranked in fours. The general hue of the animal is bluish, with purplish specklings, which are numerous and areolated in the centre of the baek, and are elose set and dark on the head and hiuder portions of the tentaculn; bencath it is yellowish-white. The pen is lanceolate; that of the female is said to be broader and more obtuse than the male. The jaws are brown, with white tips. The hody grows to a length of nearly a foot and a half; the head and arms add about half a foot to the total length. Dr. Johnston says it makes au excellent bait for cod, but does not occur in sufficient numbers to be used by our fishermen. The ink is jet-black. It appears to he generally distributed around the British lslands, though met with only occasionally.
L. medic has an elongated subulate body, produced and acuminated posteriorly ; fins narrow and rounded. This cuttle-fish is supposed to be the Lesser Calamary, or Teveís of Aristotle, an opinion opposed by Professor Forbes. It is a much elongated animal, subeylindrical anteriorly, diminishing gradually posteriorly, and much prolonged and pointed at the tail. In specimens preserved in spirits its extremity is singularly sharp and produced; the neck pargin of the back is prolonged into a sort of obtuse lobe; the fins are widely apart, above long, somewhat rounded, broad anteriorly, tapering and converging behind, aud becoming decurrent on the tail; the lead is short, very prominent in the region of the eyes, and is crowned with rather short lauceolate very unequal arms, provided with double lows of suckers; these arms are very mueh squared at their edges; the tentacular arms are short in proportion to the length of the body; on their lanceolate extremitics there are two rows of large suckers, and two rows of smaller ones outside; the mouth is surrounded by an angulated membrane. It is a transparent glassy creature when alive, speckled with dots of red or purple; the pen is lanceolate, narrowing above.
l. Marmorce has a shorter and stouter body than the last species; tentacular arms langer; tail not much produced; the arms are short nud stout, and provided with two regular lows of suckers; the tentacular arms are borue on long peduncles, which can reach to a level with the middle part of the fins; the length of the body and ordinary arms is about four inches. The skin appears to have been strongly dotted with purple or red. Some naturalists affirm that L. Marnore is only the female of L. media.
(Forbes and Hanles, History of British Mollusca.)
LOLIGOPSIS. [SEPLAD.E.]
LO'LIUM, a genus of Grasses, containing a few species common in many parts of the northern hemisphere, It is known by the spikelets being many-flowered, distichous, contrary to the rachis, sessile. Flowers not bearded at the base; glumes 2, nearly equal, one of them very often deficient in the lateral spikelets, herbaeeous, awnless; palea 2, herbaceous; the lower coneave and awnless, or awned under the apex; the upper with two keels. Stamens 3; ovary smooth; styles 2 , very short; stigmas feathery; hypogynous scales 2, fleshy, eutire or 2-lobed ; rachis not jointed.

1. perenne, the Common Ray-Grass, or Rye-Grass of the farner, with lauceolate awnless spikelets whieh are longer than the glume, a naked stem, and a perennial root. This species is oue of the most valuable of our pasture grasses. [liye-Grass, in ABTS AND Sc. Div.]
L. temulentuin, or Darnel, with elliptical awned spikelets, straight awns longer than the palee, glumes the length of the spikelet, and an amnual root. Of this species mention is made not only in all parts ce Europe, hut in Japan, Australin, China, and Sonth America; it is remarkable as being the only well authentieated instance of a plant belonging to the order of Grasses, in which marcotic or even deleterious properties have been found. The grains are said to produce intoxication in man, beasts, and birds, and to bring on fatal convulsions. According to Christison, darnel, when mixed with flour and made into bread, has been known to produce headiehe, giddiness, somnoleuey, delirium, convulsions, paralysis, and even death. A few years ago, the same author tells us, alinost the whole of the inmates of the Sheffield workhouse were attacked with symptoms supposed to be produced by their oatmeal having been aceidentally adulterated with Lolium; and a case is on record of a small farmer near Poitiers in France haviag killed himself by persevering in the use of darnel flour for making bread; his wife and sorvant, who direontinned to eat it, eseaped, but were violently affeeted with vomiting and purging.
L. Italicum, Italian Iiyc-Grass, las the spikelets 9 -14-flowered; outer palea with a long awn; root with leafy barren shoots; the margins of the young leavez iuvolute. It is cultivated in britain.
L. linicola has $7-11$-flowered spikelets, execeding the glumes; onter palea longer than its awn or awnless: no barren shoots. The stem is ercct. Onter palea cartilaginous below, narrower than tho inner, tumid in front. It is founcl in cultivated fields in Sussex and Yorkshire.
(Babington, Manual of Brelish Butany.)
LOMA'TO'CERAS. M. Bronn has given this name to a generie group embraeing eertain of the Linnaan Grapiolithi [Graptonatmus] instead of Priodon, which had been assigned to them by Nilsou, but
previounty employed by Cuvier for a genus of fishes. Cruptolithus scalaris sind θ. sagittarim, limn., belong to this group, which as far as set known is confined to the Transition Strata, in which it oecurs in Norway, Zohemia, France, North Mermany, Shropslife, \&c., generally accompuying trilobites. (Brann, Lethaca Geognamica.)
1.OMIS. [Hostordo.in]

LONCHE'RES, Illiger's name for a genus of Rorlent, iucluding Eichimys of Geoffroy, a species of Hystrix of Schreber mud others, nud a apecies of Myarus of Zimmerman and other*. [IIvstnicid.in]
1.ONCHOPTEHIS, a genus of Fossil Fems eatablished by M. Adolphe Bronguiart. The species belong principally to the Coal Formation, but one, lonchopteris. Mautelli, is found in the Wealden deposits and in the Greensanal.

The leaves are multipinnatifid, the pinuules adnate to the rachis, marked by a midrib, and equal retioulated nervures, and uniform areole [COML-Phants.]

LONCHU'IA, a genus of rimgillille, separated from fringilla (Temun.) by Lient.Colonel Sykes.

The bill in strong, short, broad; mandibles entire, the upper one extending in an angle on the forehead, and with it forming tho arc of a circle. Wings moterate, subncuminate; first quill very short and subspurious; the second, third, and fourth nearly equal and longest. Tail gradunted, lancoolate; middle tail-feathers a little exceeding the others in length. Fect sooderate, rather slender.

Colonel Sykes observes that the peculiar spear-head form of the tail, and the ridge of the upper mandible and the forehead, forming a segment of tho same circle, together with the labits of Lonchura nisoria, L. Chect, and I. leuconota, afford sufficient characteristics for their separation. Colonel Sykes adds that the Gros-Bec Longicone of the Ill. Col. 90 (Emberiza quadriculor, Jatho), belongs to the same group.

The three species are found in the Dukhun (Decem). The first two are recorded as found only in the Ghauts.

1. Cheet (Sykes) is described as of a pale cinnamon-brown; the body below and the rump white; quills and tail-feathers deep brown. Irides deep red-brown. Female with the colonrs less intense. Leugth of the body 38 inches; of the tail 2 incbes.

Colonel Sykes atates that these birds live in small families, and that ho frequently found them in posscssion of the descrted wests of the 'loceus Philimpensis; their own nest, which he exhibited on a subse"uent occasion, is a perfect bollow ball, made of a delicate Agrostis, with a lateral hole for the entmace of the birds, It was found in the fork of a branch of the Mimosa Arabict, and contained ten oblong noinute white egga, not nuch larger than pena, being gisths of an inch long by ${ }^{2}$ this in diameter. The ery of the bird is 'cheet, eliect, cheet,' uttered simultanenusly by llocks in flight. (' \%ool. Proc.')
1.ONJON CLAY. The most considerable of the Tertiary Formations of Grest Britnin is thus desigusted, from its development in the valley of the Thames under and around the metropolis, It may be viewed in three parts, occupying the following series:-

Upper part, "Bagshot Sand,' in which several remarkable fiahes lave been noticed.

Niddle part, 'Joudon Clay,' containing s few bands of sand, nodules of septaria, and multitudes of marine shells.

Lower part, 'Plantic Clays nul Sanda.'-Vrarious colourel clays and nanda, with lignite, and marine, sustunry, and fresh-water shells. [Tentiant System.]
JoNDON Prtjlit. [SAxipraan.]
LONDON ROCKET. [Staymbmum.]
1.0NGICOItNES, the fourth fanily of Tetmmerous Coleoptera in latreille's armagenent of Insects. It includes it vast number of large and beantiful Beetlea, all remarkable for the length of their anteana, which in many mpecies are severn timen longer than their lowlim. They inlabit wooln, where the females dejosit their egga heneath the bark of treen, effecting the operation by menus of a long, ntrong, horny oviponitor with which they are provided. The females are unually langer than tho maleq. The larve live benenth the bark of trees or in the woon, in which they bore deeply and do mueli danager Tho grentent ankmblage of njecios and the largent forms are found in South A racrica; but longicorn Bectlea are very generally dimperacd. Thin fanily in divicleal into three great gromps, of which the genern Prionus, Cirandyx, amh Lemomare the reapective types.

LONGIIFSNFS, Cowiera fanily unane for the long-winged Oceanic birda (Giranda Voiliern), much an the I'etrols, Alhatrosaen, de. 'The genera which he includes in thia fanily are procellarie, Juthous, Ilalodroma, Pachyphila, and Dhomelea. [1moshroniser; Abastuoss; lammer ; jererivis.]
 (Oineanx dollivage), in which lo includen the geners Ibin, Numeniun, Nicoloyald, Khynchira, Limona, C'alidrin nod Tringa, Arenaria (Calodorir, Yig.), Pelilno, Falcinella (Erulia, Vicill.-Scolopar pygmota, Jiun.), Warhetes, Hemijuslama, Eurinorleynchus, Ihataropus, Strepailas, Totantes, Labijed, sund Himantopm-the grenter part of which, an he observen, Wrand come under the great Linnean genua Scolopur. He remarka that one can hardls place the A rompa, liecurrirontru, limn., in any other poaition than at the cud of tho longirontres. [heolubacilu.E.]
1.ONICH'JtA, a genus of Plants named nfter Adsm Jonicer, a German botanist, who was born in 1523 and died in 1586 . He prac. tined as a phynician st Frankfort-on-the-Main, and wrote a Merbal,

Which was merely s compilation of what had been done by othera. There is also a John Lovicer mentioued who wrote a commentary on Dioscorides.
This genus is the type of tje natural order Caprifoliacec, and has the tube of the calyx 5 -toothed, the corolla tubular, campanulate or funnel-shaped, with a 5 -cleft usually irregula limb; 5 stamens; a filiform style; a capitate stigua; 3-celled berries, and crustaceons secds. The species are enect or climbing slarubs, with opposite exstipulate leaves aud axillary flowers. There are about 60 species of Ionicera, most of which have haudsome flowers and emit a delicious perfume.
L. Caprifolium, Goatsleaf, or Pale Perfolisto Honcysuckle, has ringent whorled terminal and sessile flowers; deciduous obtuse leaves, glabrous on both sidos, the upper leases connate perfoliate; the style glabrous. It has a twining atem, with white or purplish flowers and orange-coloured berries It is a uative of the middle and south of Europe, and is found in woods and thickets in many parts of England and the south of Scotlaud.
L. Periclynenum, the Woodbine, or Houeysuckle, has elimbing branches, the leaves all separate, deciduons, aometimes downy, glaucous bencath, ovate, obtuse, attenuated at the base, nuper ones the smallest; the heads of flowers all termiunl ovate, imbricated; the flowers riugent. The flowers are pale yellow; the berries red; and accompanied with permanent bracts. This plant in esrly times was supposed to possess powerful medical properties, but it is not now used. It is however extensively cultivated in the gardens and shrubberies of Europe on account of the delicions perfume of its flowers. This plant is the true Woodbins of the poets, and Milton has applied to it the name Twisted liglantine. This plant has obtaiaed the name of Woodbine, a corruption of wood-bind, from its habit of twisting round the steias of trees.

Thus Shakspearo says-

'So doth the woodbine, the sweet boneysuekle, Gently entwist the naple."

The uame Honeysuckle is derived from the babit of children, who draw the corolla out of the calyx and suck the collected honey from its nectary. Several varietics of this plant are recognised by botanists, All these are beautiful climbers and very fragrant; and trained against a wall, twining round a pole, or climbing and rambling amongst bushea, are very ornamental in gardens. It is a native of middle Europe, and very abundant in some parts of Great Britaia.
I. Xylosteum, Fly-Honeysuckle, has 2-flowered woolly peduncles as long ss the fowers; the calyx-limb deciduous; the berries slightly connected at the base; the leares oval, downy; the stem erect. The flowers are of a pale yellow, and the berrics ars scarlet. It is a native of nearly the whole of Europe, in thicketa, hedges, and rocky places, and by the sids of woods. It is found in the same situations, but is a rare plant, in Great Britain.
L. Tartarica, the Tartarinn Honeysucklc, has a glabrous erect stem; cordato-arnte sub-acute lenves; the peduncles shorter than the leaves; the berrics distinct when young aud nearly globese, but at length connate at the base; flowers rose-coloured, short, somewhat gibbous at the base; the fruit black, with one of the berries usually abortive; the peduncles 2 -flowered. It is a native of Tartary; and is one of the most hardy of European shrubs, growing in the open air in the gardens of St. Petersburg and Stockholm. It is very common in British gardens, and is valued much on account of its early leafing and flowering.
L. Iberica, the Georgian Honcysuckle, is an erect plant, with petiolate, cordate, reundish, tomentose, or pubescent leaves: the perduncles 2 -flowered, shorter than the leaves, the bracteas oblong, cilinted; the berries globose, blood-coloured, joined together to the anddle; the ofarium tomentose. This plant is anative of Georgin, about Teflis, and is n neat little bush with which to form garden-feuces.

All the species of Lonicera may be cultivated, and are well adapted for gardens, shrubberies, de. The climbing species may be trained on trellis-work, or in arbours, or against walls. 'I'be opright hardy species sre bent adapted for shrubberies. They will grow in any common garden soil, and may he projagated by cuttings planted in autumn, cither in a sheltered situation or under a hand-glass, according as they are more or less tender.
(1)on, Dichlamydcous Plants; Loudon, Arborctum et Pruticctum: Jabington, Manual of Nritish Motany.).
1.OON. [CoLsmumb...]

1.O'PlllAD.is, a family of Fishes of the order Acanthopferygii. Tho fishes of this family (which forms the Pectorales Pediculées of (Cuvier) are diatinguished by the bonestof the carpus being elongated, nnd forming a kind of arm, which supports tho pectoral fins. The pkיJeton is remicartilaginons, The family containa four genera: Lophius (Cuv.), Antennarius (Commerson), Malthe (Cuv.), and Butrachus (Bloch., Schn.).

Lophine is thum characterised:-Skin without scales; the ventral fins situated in front of the pectorala: opercule snd branchiostegous mys enveloped in theskin; gill-openiug situated behind the pectorals; bramehiontegous membrane forming a large purse-like cavity in the axilla; two distinct dorsal fins, in front of which are oome free rays
produced into long slender filaments: head broad and depressed, extremely large in proportion to the body.
L. piscatorius, the Angler, or Fishing Frog, is thus described by Mr. Yarrell :-"The head is wide, depressed ; the mouth nearly as wide as the head; lower jaw the longest, bearded or fringed all round the edge; both jaws armed with vumerous teeth of different leagths, conical, sharp, apd curving inwards; teeth slso on the palatine bones and tongue; three elongsted unconnected filameats on the upper part of the head, two near the upper lip, one at the nape, sll three situated on the middle line; eyes large, irides brown, pupil black; pectoral fins broad and rounded at the edge, wide at the base; branchial pouches in part supported by the six branchiostegous rays. Body narrow compared with the bresdth of the head, sod tapering gradually to the tail; vent about the middle of the body; the whole fish covered with a loose skin. The number of fin-rays are:-Dorsal, 3 spinous and 12 soft; pectoral, 20 ; ventral, 5 ; anal, 8 ; and caudal, 8 . Colour of the upper surface of the body uniform brown; fin membrsnes darker; under surface of the body, ventral and pectoral fins, white; tail darkbrown, almost black."
The Angler is ususlly sbout 3 feet in leugth, but has been known to measure 5 feet. It lives at the bottom of the water, crouching close to the ground; and by means of its rentral and pectoral fins it stirs up the mud and sand in such a manner as to concesl itself from other fishes. The long filament at the tip of the nose is elevsted, and the glittering sppendage st its extremity is said to attract the smaller fishes as a bait; and when they are sufficiently near they are seized by this voracions fish.

In the genus Antennarius there is the same sort of free rays on the head, the first of which is slender, often terminated by an appendage; the following rays, augmented by a membrane, are sometimes much onlarged, and at others are united to form a fin. The dorsal fin occupies nearly the whole extent of the back; the body is often beset with cutaneous appendages. These fishes, says Cuvier, by filling their enormous stomachs with air, expand themselves like a balloon; their fins enable them to creep on land, where they can live for two or three days, the pectorals, from their position, performing the functions of hind feet. These fishes inhabit the seas of hot climates.
The species of the genus Malthe are remarkable for their projecting snout, beneath which the mouth, which is of moderate size and protracted, is situated. The body is studded with bony tubercles, snd the dorsal fin is small.
The fourth and last genus of the present family, Batrachus, is distinguished by the following characters:-Head horizontally flattened, broader than the body; the mouth deeply cleft; operculum and suboperculum spinous; the ventral fins narrow, inserted under the throat, sad containing but three rays, the first of which is broad and elongated. The anterior dorsal fin is short, and supported by three spinous rays; the posterior dorsal is long, sud supported by soft rays; the ausl fin, which is ojposed to the last, is also supported with soft rays. The lips are frequently furnished with filaments. The species of this genus keep themselves hidden in the sand to surprise their prey, like those of the genus Lophius, and the wounds inflicted by their spincs are said to be dangerous.

LO'PHIODON, an extinct genus of Mammalia, nearly approsching in the structure of the teeth to the Tapirs and Rhinoceroses, and in some respects to the IIppopotamus, separated by Cuvier from l'alsotherium (with which, as well as Anoplotherium, it is closely connected) under the name at the head of this srticle. M. De Blainville named the geuus Tapirotherium.
Loophiodon differs from Palatherinm in that the lower molar tecth, instead of exhihiting a continuous series of double crescents running longitudinally, have trausversal elevations (des collines transversales), more or less oblique. Cuvier gives the following as tho generic characters of Lophiodon:-

1. Six incisors and two canines in each jaw; seven molars on each side of the upper jaw and six in the lower, with a vacant apace between the canine and the first molar: points in which they rescmble the Tapirs.
2. A third elevation (colline) on the last lower molar, which is wanting in the Tapils.
3. The anterior lower molars are not furnished with transversal elevations as in the Tapirs, but present a longitudinal series of tubercles, or a conical and isolated one.
4. The upper molars have their transversal elovations morc obligue, and in this respect approach the Rhinoceroses, from which they differ by the absence of crochets on these elevations.

The dental formula of Lophiodon then will be-

$$
\text { Incisors, } \frac{6}{6} ; \text { canines, } \frac{I-1}{1-1} ; \text { molars, } \frac{7-7}{6-6}=42 .
$$

The rest of the osteology of this extinct form indicates the affinities above-mentioned; but many parts of the skeleton are still unknown, and particularly those esscutial portions the nasal bones and those of the feet, the number of tocs not being ascertained.

No less than 15 species are recorded, 12 of which are named. They belong to the first great frcah-water formation of the Eocene period of Lyell; and if we are to judge from snalogs, and the other animal remains (those of reptiles especially) with which they are
associsted, they must have lived in a temperature suitable to the existence of Crocodiles and fresh-water Testudinata (Enyys and Trionyx:), creatures which at present inhabit warm climates.

The localities are-Issel for three species, one of which is also found at Epplesheim and another also at Argentoo and Soissons; Argenton for three other species; Buchsweiler for two more; Montabusard for two more, one of which is also found at Ganuat; Boutonnet near Montpellier for one; Orenburg for one (L. Sibiricum of Fischer) : these species are named. Others have been found at Argenton, in the Laonnois, near Paris, and near Frankfurt.

1, lower back molar, from the great species of Lophiodon of Argenton (Cuvier); 2, upper molar, (back) of the same (Cuvier') ; 3, canine tooth of the same (Cuvier) ; 4, incisor teeth of the same (Cuvier).

In the 'Règne Animal,' Cuvier places Lophiodon between Palcortherium and the Tupirs. Professor Owen, in his 'British Fossil Maromals,' refers Lophiodon to the Tapiroidc, and describes a species from teeth found in Great Britain. He calls this species L. minimus.

LOPHIUS. [LOMHIADA.]
LOPIIOBRANCHII, a family of Fishes in which the gills, instead of being pectinated, are separated into small rounded tufts, which are arranged in pairs along the brauchial srches, and covered by a large operculum, so fixed as to leave ooly a single small orifice for the passage of the water outwards. The Pipe-Fishes, Syngnathus, Mippocampus, Solenostomus, aud Pegasus, are the genera included in this family. [Syngnathide.]

LOPHOGNATIIUS. [Draconina.]
LOPHOPHORUS. [Pavonid.s.]
LOPHORINA. [Birds of Paradise.]
LO'PHOTES, a genus of Falconidec established by M. Lesson; but that term having been previously employed by Giorna to desiguate a genus of Acauthopterygious Fishes, Mr: Gould and others adopt the title Lepidogenys, proposed by D_{1}. J. E. Gray for this gcnus. Mr. Could describes a spccies among his Australian birds uader the name of Lepidogenys cristatus. The form is somewhat allied to Perais. [Falconide.]
LOPHOTES. [T.ENIOIDES.]
LOPHOTUS, s name applied by G. Fischer to a genus of Simiale.
l_OPHU'RA, a genus of Saurians established by Dr: Gray, but changed by Curier for lstiurus, because in his opinion the term Lophura comes too near to tho term Lophyrus. [lavanides.]
LO'PHYRUS, a genus of Birds. [CoLumbind The term is also employed by Duméril to desiguate a genus of Saurians (Ayama giyantea, Kuhl.), and by Latreille as a name for a genus of Hymenopterous Insects.
LORANTHACEIE, Lorunths, a uatural order of Exogenous Plants, referred by most systematic writers to either tho polypetalous or monopetalous sub-class, but by others regarded as more closely in allinace with the apetalous Santalacece and Protcacce. They are in 2 M
nearly all capes true parmites, growing upou the branches of trees, below whore bark they insert their roots, incorporating them with the wood, and feeding upon the rital juices of the planta which they attack. The principal marks of distinction in the structure of Loranthaces are a l-celley inferior fruit containing a niegle erect ovule, a fruit consiating of a peculiar viscid matter resembling birdlime, and a valvate corolla with the stamens opposite the petals. There is but one species, the Common Mistletoe, liscum album, found wild iu Fugland; a species of loranthus occurs in the south of Linrope; but in the hot dry parts of tropical countries the apecies abound, swarning over the branches of trees, of which they often form a conspicuous feature, with their long clustered gaily coloured flowera. Aa in this country the Mistletoc docs uot injure in any considerable degree the plant which it attacks unless it exists in unusual quantity, so in ladia, where loranthi are common, the iojury sustained by vegetation is accordiug to the reciprocal size of the parasite and its stock. Mr. Griffith states that a species called Loranthus Scurrula, which is genemily attached to Melatoma malabathrica or other shrubs, frejuently destroys them to a cousiderable exteut; others which are minute in comparison with the stock, especially such as grow upon trees, produce 110 appreciable injury.

Although the nature of the pericarp of plants seldom forms a part of their ordiual distinctiona, yet it is here employed-for this reason, that the viscility of the fruit and the parasitical babits of the order are dependeat ou cach other. The seeds sticking by their owa glue to the branches on which they fall insure to the young parasite, when it begius to grow, a suitable substance in which to puab its roots; and as the viscidity of the fruit causes the greater part of it to catch upon branches before it falls to the ground, the young plant would die immediately after germination if it were not a parasite, and thas the race would bocome extiact.

Mr. Griffith has shown ('Linn. Trans.' x viii. 7) that in Ioranthus and Fiscum the ovules are uot formed till after impregation has taken place- n most curious and before unheard-of fnct.

The order seems to be equally dispersed through the equinoctial regions of both Asia and America, but on the coutineut of Africa to bo much more rare, only two haviog been yet deacribed from equinoctin! Africa and fire or six from the Cape of Good Hope. Two are natned from the South Seas and one from Australia; but this number requires doubtless to be exlarged. Three ouly are known in Europe. Nuytain Noribunda, a very beautiful shrub with large thyrses of bright orauge-colourcd flowers, is a singular instance of a plant of this parasitical order growing on the ground. Such in the abundance of the orauge-coloured blossom that the coloniste at King George's Sound compare it to a tree on fire; bence it has gained the aame of FireTrec. The bark of the tree is usually astringent, as in the Common Miatletoc. In medicine they are of little value. There are 23 genera and $\$ 12$ apeciea.
(Lindley, lingedallc Kingdom.)
1.OLANTMUS (from lorum, 'a strip of leather,' and avoos, 'a flower,' in allumion to the loug linear shape and leathery substance or the petals), n genus of I'lants the typo of the natural order Loranthacece. It has diccious or hermaphrodite flowers, the calyx cup-shaped, adaste, with an entire border; the petals 5 or 6 , linear, reflexed; the stamens inserted into the middle of the petals; the filaments short, anthen Elobose; tho etslo thickiah; the stiguna aimple; the berry globosc, l.celled, 1 -seeded. The species are evergreen shruby parasitical on trees.
L. Eiveropen, the Eiropean Lomathus, is a glabrous anuch-branched plunt; the branclien terete; the leaves opposite, petiolate, oval-oblong; the meemes ternimal, nimplo; tha flowers diacions, of 6 petals. This plant in an evergreen parnsitical plant, aod has the habit of tho Common Mintletoe (liocum album). It is n native of the southern parta of Furope, and is found on the onk, but inhabits no other trce. "Thin circumantance," myy Burnett, "has led some naturalists to nuplose the Loranthue to have been the Mintletoe of the Druids, and to beliere, m it is not now indigenous to Britain, that when Druidism wan auppresed every vestige of that stupendous superstition was so eninpletely swept away that even tho sacred plant was extirpated here." The fact however of the nearcits of the mintletoc upon the oak renders it frobable that it wai on thin account inore sought after, and thus contributed to make it an object of superstitioa. Several other rpecies of foranthu bave been deacribed, but nowo of them me casily cultirated on account of their parusitical liabita. The scede of the Ioranthi, like thome of the Mintletoe, contain tannin, and are astringent. I. Repandrus in used for dyoing black in Chili.
(Burnett, Oullines: Loudon, Arboretum et Prusticatum.)
LOHICA'IRIA, a abdirinion of the LInatean genum Cellaria, proponel by Lamouroux. It is almo emploged by Linnteus to denignate a gennm of Malacopterygioun Fishath
l.ORICATA, the name applied by Merrem and Fitringer to the Crocouliles, Emydonauriana of De Blaintille. [Crocounidis]
L.OHIS. [LIMCRID.*)

LOIVY. [Datriachume
LOSS, a peculiar lomy deponit in the valley of the llhme, and extending to come brealth beyond that area, which may be conjectured to be analogoua with accumulation in valleyn of South America con. thining the Mrgatherimm, aud with other 'valles formation' in
different parts of the world. It borders the valley-plain of the Rhine, reaching, though not continuously, from Sclafflasusen to Cologne, cnters many of the lateral dales, lies against the hills, and constitutes hills itself. In the line between Basle and Bingen it occupies the loft bauk by Worms, Oppenheim, Flonheim, Ac., and the right bank by the Schwarzwald to Easle. Compared to the ubual character of diluvium, the Löss is a fine-grained deposit; fine cand, clay, and calcareous earth, easily pulverised, and containing some nodular concretions, constitute the mass of the deposit. It sometimes (at Heidelberg) alternatea with gravel.

Jriucipally in the upper parts of the Lïss are found shells of land, fresh-water, and marsh Mollusca now living in the vicinity. Theso sometimes retain their colour. Bones and teeth of quadrupeds usually met with in diluvium occur locally in Löss, as at Weinheim and Bensheim. These bones appear sometimes to have beeu drifted to their present repositories, as at Rixheim, where upon and in cavities in the fresh-water tertiaries bones of stag, rhinoceroe, hyena, elephant, horse, \&c., occurred. Cannstadt yiclded bones and teeth of elephant, rhinoceron, tiger, hymena, wolf, bear, stag, roebuck, oxen, horses, boar, mouse, hare, birds, and remains of vegetables. (Meyer, 'Palwologica.')

Between Strasburg and Sulzbad the Löss reaches 600 Frencls feet above the aes, and on the Kaiserstuhl I200 feet, au elevation supposed to bo explained by the volcanic character of the vicinity. The thickness of the Löss is stated to reach 200 or even 300 feet. Near Audernach, Löss alternates with volcanic sediments (Trass), but generally overliea them, and in some places fills old craters (as the Roderberg, near Bonn).

The deposition of Löss in the upper Rheinthal has been often viewed as the effect of a lako aupposed to have cxtended from Basle to Mayence, and to have been drained by the opening of the narrow gorge at Bingen; but from the continuation of this deposit below that gorge, the elevation it has attained on the flanks of the Siebengebirge, and otber circumstances, Mr. Lyell, who has specially examined the subject, proposes a different hypothesis. He thinks that the whole country drained by the Rhine has undergone changes of level, such that after haring formerly stood for some unknown period with nearly its actual height and physical features, it experienced a great and general depression, $s 0$ as to receive river deposits in great abundance; and that it was again raised, 60 as to permit the partial re-excaration of the ancient valleys, and the removal of much of the fluviatile sediments: what remaina is the Löes.
(Meyer, Palcologica ; Lyell, in Edinb. Philosophical Journal, I834, and Principles of Geolony.)

LOTA, a genus of Subbrachial Malacopterygious Fishes belonging to the tribe Gadida. It is distinguished by having an elongated body, with dorsal fins and one anal fie, a chin with one or more barbules.
L.molra, the Ling, is a very valuable fish, scarcely less so than the Cod. Large quantities are takeu among the Western Ialands, the Orkneye, on tho Yorkshire coast, and the Scilly Islands; and may be traced nearly ail round the Irinh coast. The fishing for them is by hand-lines and longlines; and besides a portion that is consumed fresb, the fish are split from head to tail, cleaned, salted in briue, washed, and dried, but the demand generally falls ehort of the quantity cured, and the hardy fishermen are but poorly requited. The ports of Spain are the markets supplied; and so valuable an articlo of commeree was Ling considered formerly that an Act for regulating the price of Ling, Cod, \&e., was passed as early as the reign of Edward III. The air-bladders, popularly called Sounds, are prepared ecparately, and with those of tho Cod-Fish are sold pickled. The roes, which are of large eize, are alao used as food, or preserved in brine, are sold to bo usod for attracting fish. Tho liver produces oil, which is used by the poor to aupply the cottage lamp, also as a medicine. In Zetland the principal fishing for Ling is from May to Auguat. On the Yorkahire coast the young are called Drizalea. In Cornwall they are caught in January and February, and their fevourite haunts are about the margius of the rocky valleys of the ocean.

The Ling in excecdingly prolifio, and has a most voracious appetite, feeding on young fish, not sparing anything that bas life, and tho proy is swallowed whole, so that no great art is required to catch it. It is tenacious of life, and survives great iajury. Mr. Couch says he ouce snw a Ling that had swallowed the usual large hook, shaft foremost, of which the point hal fixed in the stomach, and as the lino drew it, it turned round, entered the opposite side of the stomach and fastened the organ together in complicated folds; yet having escaperl by breaking the line, it survived to swallow another hook aud was taken neveral days after.

The most unual length of the Ling is from three to four feet; Pennant mentions hasing heard of one which measured seven feet; and Mr. Conch has known them weigh 70 lbs.

The body of the ling is slender, more clongated than that of the llake; roundish; head flat; gapo large, lower jaw shorter than the upper, with a single barbule at ita extremity; teeth in the upper jaw amsll, and very numerous, those in the lawer jaw longer and larger, forming but a single row; lateral tinc atraight, scales small, firmly adhering to the skin; two dornal fine of equal height, the first ehort, commencing near the head, not pointed as in the Hake, but with most of the rays eveu; second long, immediately behind the first, reaching
nearly to the caudal ; the posterior portion the most elevated; vent in a line with the eighth or ninth ray ef the second doreal fin; the fin immediately behind it is long, resembling the second dorsal fin, and terminating on the same line with it; caudal rounded at the extremity. The back and sides are gray, inclining to olive; sometimes cinereous without the olivaceous tint; belly silvery; ventrals white; dorsal and anal edged with white; candal marked near the end with a transverse black bar ; the extreme tip white.
L. vulgaris, the Burbelt, or Eel-Pout, is the only British species of this numerous family of fishes that lives permaneatly in fresh water, and prefers in this country slow running rivers; but it is neither so generally known, nor so much esteemed and eacouraged, as from the goodness of its flesh it deserves. It is said to be fould in various psrts of the north of Europe, Siberia, Asia, and India. In this country it is rather local. It occurs in the Cam, and in some of the rivers of Norfolk and Lincolnshire. The Trent produces it, and Nottingham market is occasionslly supplied with samples for sale. The Burbolt is not unlike the eel in some of its habits, concealing itself under stones, waiting and watching for its prey, which consists of aquatic iasects and young fishes, ander arches sad near eddies, into which such small and weak animals are likely to be brought by the current of the water. It feeds prineipally during the night, and like the eel is most frequently caught by trimmers and night-lines. The Burbolt is sometimes called the Coney Fish, from its habit of lurking and hiding itself in holes like a rabbit. It spawns in Februsry and March, is very tenacious of life, and is said to have lived a considerable time iu a cold and damp situation, fed on small fishes and raw meat. In this country it has been known to attaia the weight of $4 \frac{1}{2} \mathrm{hs}$, but a common weight is about 2 lbs . The flesh is firm, white, and of good flavour, and is by some considered superior to that of the ecl. As the Burbolt is extrcmely hardy, it might be increased in any quantity, while the value of the fish would amply repay the trouble and cost of the experiment. It would thrive well and multiply in large lakes. The length of the fish is from one to two feet; the head depressed, smooth; jaws equal; chin with one barbule; the gape large, with small teeth above and below; eyes of moderate size; gill-opening large; the length of the head as compared to that of the body as one to four; the form of the body cylindrical, compressed posteriorly; the first dorsal fin is small and rounded, the second elongated, reaching nearly to the tail; beth dorsal fins nearly uniform in height; ventral fins placed rery forward, narrow, and pointed; the pectoral fins large and rounded; the anal fin begins on a line behind the commencement of the second dorsal fin, but ends very nearly on the same plane; the tail oval and alightly pointed; the colour of the body Jellowish-brown, clonded and spotted with darker brown, and covered with a mucous secretion; the under parts lighter; the lateral line indistinct and straight; reales small; the fins partaking of the colour of the part of the body from which they emanate, those of the lower surface beigg much the lightest.
(Yarrell, British Fishes).
LOTUS, a genus of Plants belonging to the natural order Leguminosc. It hus a calyx with 5 nearly equal teeth; keel ascending with a narrowed point; the wings are conniveat at their upper margin; longer filaments dilated upwards; style kueed at the base, filiform, subulate; pod linear, many-seeded, 2-valved, imperfectly divided by transverse partitions.
L. corniculatus, Common Bird's.Foot Trefoil, is found in pastures and on dry banks in Great Britain. The claw of the standard is obovate, transversely vaulted; calyx-teeth straight in the bud, subulate from n triangular base, the poiats of the two upper ones converging; heads 5-10-flowered. The plant is glabrous or slightly hairy; stem asceading; leaflets obovate; stipules evate; angle between the two upper calyx-teeth rounded.
L. major has the claw of the standard linear ; calyx-teeth spreading like a star in tho bud, subulate from a triangular base, two upper ones diverging; heads 8-12-flowered; leaflets obovate; stipules roundish-ovate.
L. angustissimus is found in the south of Eagland, near the sea. It has the claw of the standard linear; calyx-teeth straight in the bud, mubulate; pod lidear, eight times longer than the calyx; beak straight; head about 2 -flowered.
L. hispidus is found near the sea in Devonshire and Cornwall. It has the claw of the standard subulate; calyx-tseth straight in the bud, subulate; pod rugose, terete, twice as long as the calyx; beak elongate, gataccous, beat downwards; heads few-flowered ; leaflets obovate-lauceolate; stipules balf cordate; stem procumbent. There are many other Furopean species of this genus, none of which are of any importance.

(Babington, Manual of British Botany.)

LOTUS of the Ancients. The plant or plants referred to by classical风uthors under the name of loius is a subject which has engaged the attention of numerous commentators as well as of botanists. To the difficulty of ascertaining the identity of a plaat but imperfectly described has in this case been added thast of the same nane having been applied to several very distiact plants. Fee, the latest author ('Flore de Virgile'), onnmerates no less than eleven to which the name Jotus was applied: it is unnecessary herc to enumerate more than the most remarkable. Of these some are herbaceons, others perennial. Araong the former are the L. sativa and L. sylresthis of Dioscorides:
the first, be states, is also called L. trifolium; it is supposed by some botanists to be Melilotus aficinalis, and by others to be M. ccerulea. Dr. Sibthorp has fixed upon M. Messanensis as the plant.

The L. sylvestris of Dioscorides, also called L. Libyon, a native of Libya, and abont two feet high, with leaves like those of $L . \operatorname{trifolium}$, and fruit like that of Fenugreek, is thought to be the Trigonella elation of Sibthorp, which he found in Asia Minor and in Cyprus. Both kinds are described by the Arabs uader the name of Hsndachocha, or Hund. kookee, with Garch and Thusf as other Arabic names. From the great number of similar plants of the tribe of Lotece, which are em. ployed by Asiatics as articles of diet or as medicines it is impossible, without specimens, to identify either of the above, but they are probably allied to the Melilotus.
L. Agyptica, or the Egyptian Lotus, is no doubt one of the Nym. pheacere, being described as spriaging up in Egypt in fields inuadated by the river, with n stem like that of the Kóapos, or Egyptian Bean (Nelumbium speciosum), sud a white liliaceous flower, which rises out of the water at sunrise and sinks down again at its setting; a capsule like that of the poppy, in which are contained seeds which the Egyptianz roast and make into bread; with a root which is likewise eaten, both in a dressed and undressed state. The plant is no doubt the Nymphea Lotus of botanists; but as in the most ancient monuments a bluecoloured lotus is likewiso represented, there is no doubt that the Egyptians were also acquainted with the Nympheca corrulea. At the present day the seeds of several Nymphras roasted in sand are eatea by the natives of India, as are likewise the stalks and the rootstocks, which is srid to have been the case with the Egyptian speoies. As the flowers of the Nymphecacece are so highly esteemed by the Hindoos, and notices respecting them constantly occur in their poetry and my* thology, it is possible that an Eastern legend may have given origin to the transformation of the nymph Lotis flying from Priapus into the 'aquatica lotos.' (Ovid, 'Metsmorph.,' ix. 341.)
The Egyptian Lotus however is not so celebrated as another less. known tree, to which exaggerated description has assigned a fruit of the most delicious kind, upon which the Latophagi lived, and which, when strangers had once tasted, they ceased to wish to return to their native country. This is specially described as a tree, but there is no doubt that several have been confounded under this name. One is described both by Dioscorides and Pliny as a native of Italy of great size, forming excellent wood, with fruit about the size of pepper and resembling that of the cherry. This description applies very olosely to the Celtis australis, or European Lets or Nettle-Tree, which is one of the largest timber-trees of the south of Europe, with wood of considerable hardness and toughness. It produces berries abont the size of small cherries, and with long stalks like them, eaten both by birds and children.
This however comes far short of the character of the Lotus of the Letophagi, of which the best description, according to Sprengel, is that of Polybius, who states that it was a moderate-sized thorny tree, with leaves like those of Rhamnus, but broader; that the fruit at first was like the white berries of myrtle, but became as large as an olive, of a reddish colour, and containing a small nut; taste sweetish, resembling that of figs or dates; and that a wine was prepared from it. That this tree was a native of Africa we know from the Lotophagi, who employed the fruit as their chief food, being a people of the African coast near the Syrtes. (Herod., iv. 177.) Arabian autbors, in their translation of the works of the Greeks, give the syononyms in both languages, and we have, in the chapter of Serapion, retranslated into Latin, 'De Loto Arbore,' the name Sidr, or Sidar, given as the Arabic name of the tree, and Nabach, Nibuk, or Nabk as that of its fruit. This name has been long known as that of a species of $Z i z y$. phus, and has been applied by botanists to one species, Z. Napeca. Dr. Shaw, in his 'Travels in Barbary,' figures a species of Zizyphus, which he calls 'Seedra Arabum, quee et Lotus Verterum.' It is a prickly branching shruh, with fruit of the size of a wild plum, and of a sweetish taste and saffron colour. He found it sold ia the markets, cattle fod with it, and a liquor drawn from it. Desfontaines also found this Z. Lotus on the same coast, and has fully described it. Mungo Park found a species of Zizyphus in the interier of Africa, which forms a large tree with yellow farinaceous berries of a delicious taste. The matives, ha says, convert them into a sort of bread, by expesing them soma days to the sun, and afterwards pounding them gently in a mortsr until the farinaceous part is separated from the stone. This meal is then mixed with a littlo water and formed into cakes, which when dried in the sun resemble the swectest gingerbread. It may be added, that the fruit of several speeies of Zizyphus is eaten in Iadia. One kind, commonly known by the name Ber, forms a moderate-sized tree ia a cultivated state, with oval fruit of a yellowish or reddish colour, and about the size or somewhat smaller than a common plum, which is much esteemed. The taste is mild and sweet, with a slight degree of acidity, probably coming nearer to the taste of dates than any other fruit. In Persian works Berree and Jharree are given as its Hindustanee, Kinar and Khial as its Persian, and Sidr as its Arabic name, with Nebbe for the fruit. The fruit of the wild kind is dricd and pewdcred, as was done with the Lotus of the Lotophagi. This powder, in Arabic, is called Savikoon-Nebbek; in Persian, Arud-i-Kinar ; and in Hindoo, Ber-Choonee.

LOU'GH DIVER, a nams for Mergus albellus. [Ducks.]

Lol'sk [Prmennes: Asornema.]
LOLSE PLANT. [AME]
LOUSE.WOIRT. [PEDCHLARIS]
LOYAGE [Haloscise]
LOVE-APME [SOLANEX.]
LOAA-13ARK. [Cinchosa.]
LONTA. [1, oxhas, M]
LoXl'AD.t. Mr. Vigors's naza for a family of Birds placed by him an the extreme of the tribe of Coniratres, which is the thirl tribe of his /marsoores, or l'erching Mindn, and intervenes betwees the Dentirsastral and Scapsorinl tribes in his aystem.
Mr. Vigors remarks, that notwithatanding their inferiority of aize, somo apecies of tho family may be abrerwed to equal even the Ilombills, Allowanco being made for their relative proportions, in tho ex treme ealnrzement of the bill. "The curved nod nerrated bill of the latter frmily" (Hornbills), mags Mr. Vigorx, "perceptibly shortening itself, as we have perceiver in Monotus, is atill carried on to a corresponding group in the present, the Phytotona, Gmel., where these characters are preserved, though the curve is slighter aud the serration less strong. United to that genuaby sonae intermediste but uncharacterised species, the Coccolhraustes, Briss., conducts us to several groups, among which Potylus, Cur., Serobilophaga, Vieill., the true Loxia of authors, and f'ritlirustro, Teman, may be distinguished; whence we pass to the whorter billed groupa, mong which Colius, Linn., and Cissopis, Vieilh, may bo partieularised. These are but few of tho natural geuera which abound in this extensive family. Many interveuing species, posteaking stroug genuine distinctions, may be introduced among these grouph, which at length terminate in some of the shorter and strongerbilled apecies of the Linnean Tanagers. These, it will be remembered, commenced the present tribe (Cuniroxtres) by their union with the S'rimyillider: and thun bero alno the circular succession of aftivities extend aninterraptord through the whole sub-division." ("Natural Affidities that Convect the Orders and Families of Birds,' 'Linn. Trana," rol. sir.)

Mr. Swainnon ('Classification of Dirds') appears to reject the family altogether; for wo find Jhytotoma among the Phytofumina, a subfnmily of Muophagida: Coccolhraustes under the sub-fanily Coccothroustinue: Pitylus under the sub-family Tanagrine; Strobilozihaga nader the 'Geueric uames not adopted;' Loxia and Psittirostra in the nub-family Pyrrhulinar: Culius in tho sub-family Colince (family Musophoyider) ; Cisappus (Cissopis) cancelled; and the Tanagers under the sub-family Tanagrine: the sub-familics, with the exception of the two placed undor the Musphayider, being arrangel under the family Fringillide. Mr. Swainson'月 Conirostres (his second tribe of Insessores) connist of the families Corrida, Sturnider, Fringillide, Jnsophayider, with their nub-families, nud Buceride.

The most important genus is Loria, of which M. Temoniuck retarks that its characters exclule all other apecies, being proper to the CrossLills only. Illiger, he obrerves, in his 'Prodrumis' is slso of this opinion.
Loria (Crossbill),-Bill moderate, atrong, very much compressed; the two mandibles cqually curved, hooked, and the elongated pointa croasing each other. Nostrila bassl, lateral, rounded, concesled by laniss directed forwards. Feet with three toes before and one behind, mnterior twes divided. Wings moderate, the first quill longest. Tail forked.
3. Ternminck, who gives the above generic character, recorls two mpecien, b. Plytiopsiltacus nud L. currirostra, in his second cdition (1s20), and L. levcoptera in his third part of that edition (1835). The Hame three epecien, the firat uader the name of h. pineturum, are reconted hy Mr. Swnidon.
The npecies are founl in the north both of Europe and America. Ooe gnecien howerer, L. currirostra, in found in inpan as well as in Eilrope.
L. rurrirustra, the Common Crobnbill. lluffou pleak of the bill in thene liodn an an crror and defect in mature-a deformity. If he had ever kept these birils in a cage, he would moon have found that no instruatent could have imen bettar ndapted to the work required of it ; and if thag had cerer ridited bit orchards he would have been convinced th hin cost of ita efficacy in mplitting fruits for the purpose of getting at the kerncta.
Mr. Yisrell han well illustrated tho utructure and moving power of thin orgnn, which, conjuined with the feenline tongue, witl be found a innat perfect and brautiful piece of thechanim for ataining the end in riew.
"The I enk of the ("rombill," (J. currironfers) writem the author lant mentioncel, "in aluggather unique in its form; the mandibes do unt lie upon each other with their interal edgen in opponition, an in other birde, but curve to the right nadleft, nut alwayn in oplomite directioun to ench other. In mome siacinuen the upper manablo is tarned to the right, the lower mamdible curved to the left; in othera, the ponit:on of the mandithen in reveraed an to their direction. In the mirecimea I exnmined the uficer mandible curved downwardx and to the left, the under fortion turncel ujwarde noll to the right, When lording the heat of this hird in soy hagers, 1 found 1 cquld bring the point of the under mavdible in a lune underneath nud touching the joint of the upper, but uret beyom it townila the left pide; whilo on it own aidn the proint gamel with ease to the distance of 3 -sthe of an
incl. The upper mandible has a limited degree of motion on tho cranimm, the suporior maxillary and nasal boues being united to the frontal by flexible bouy lamina."

llead of Crossbill.

Mr. Varrell then proceeds to the details of the snatomy, which he illustrates by the seven figures copied below. He first notices the peculiarity of the form, as well as of the magnitude of the processes of some of the bones of the head in this bird, and points out that the pterygoid processes of the palatize bones are considerably elougated downwards (fig. 3, a) to afford space for the insertion of the large pterygoid muscles. The os omoideum (fig. 3, b) is strongly articulated to the os quadratum (fig. 3, c), affording firm support to the movenble portion of the upper mandible. The jugal bove (fig. 3, , $l d$) is united to tho superior maxillary bone io front, and firmly attached by ita posterior extremity to tho onter side of the os quadratum. Thus, whens the os qualratum is pulled upwards and forwards by its own projer musclen, the upper mandible is elevated by the forward pressure of that bonc.

1. Skuil of Crosabil, shle riew ; a, temporal muable; b, freat pramidal murele.
2. Head rewed trom below; b, great pyramldal musele; c, e, pterggoid muselen ; d, d, graciles museles.
3. Jlad vewed from the slde; D, plerygold process; b, os omoldesm; c, os quadraton: $\pi_{\text {, }}$ d, on jugnic.
4. Ifead viewed foon bebind; a, right temporal mancte; b, great pyramidal muncle.
5. Jower Jaw, side rlew ; n, cavity for articulation; b, b, coronold procenseb.
f. Tongue, men from ntove; a, horny mcoop; b, b, extenner master.
6. Tonk"1e, nido view: o, horny moon; b, extennor muncles; e, flexor moncle. (Vartell, "\%ool. Journ., vol. ir.)

In most other lirds tho inferior projecting process of the as quadratnun, to whleh the Jower jaw in srticnlated, in nomewhat lincar from befure backwards, and compressed at tho sides, permitting sertical motion only upwards and downwards; but in the Crossbill
these processes are spherical (fig. 3, c), and the cavity in the lower jaw destined to receive the process is a circular cup (fig. 5 , a) : from the union of these two portions there results an articulation with all the motion and flexibility of the mechanical ball-and-socket joint.

The lower jaw is very strong and the sides or plates are elevated the coronoid processes (fig. $5, b, b$) are prominent, and to these, as well as to the whole outer side of the plates, the temporal muscle is attached. In a head of this bird which had been divested of all the soft parts, Mr. Yarrell found that, on slidiug the lower jaw laterally ppon the other, as performed by the bird, before the coronoid process is brought into contact with the pterygoid process on its own side, the extreme points of the mandibles were separated laterally to the extent above meutioned (3.8ths of an inch).

The right side of the liead was that to which the lower jaw inclined in the specimen examined by Mr. Yarrell, and on that side the temporal and pyramidal muscles were considerably larger than those on the left (figs. 1, 2, 4, a, b), indicating by their bulk the great lateral power which the bird is capable of exerting. The pterygoid muscles (fig. 2, c, c, on each aide were unusually large, the great distance to which the articulated extremities of the lower jaw were removed affording ample space for them, and as the food of the bird cousists of small seeds, a narrow pharynx is sufficieut for the purposes of deglutiton. For depressing the lower mandible three muscles are called into action; but only one of these, the great pyramidal (figs. 1, 2, 4, b), which covers two other small ones, the triangular and square muscles, is visible. All three have their origin on the occipital portion of the cranium, and are inserted by strong tendons on the under and back part of each extremity of the lower jaw, behind the centre of motion; they consequently, by their simultaneous contraction, raise the point to which they are attached, and depress the anterior part of the mandible. The lower parts of the ossa quadrata are pushed rather forwards by this compression, with the help of two small muscles (not figured), but whose aituation may be explained by a refereuce to fig. 3. One of these, a small flat muscle, arises from the septum of the orbits behind the small aperture in the septum, and passes dowuwards for insertion upon the projecting atyloid process of the os quadratum; the second is a small pyramidal muscle, arising also from the eeptum, anterior to the other muscle; and passing downwards and backwards, is inserted upon the os omoideum : both these, when they contract, pull the os quadratum forwards, and so elevate the other mandible. Thus the depressors of the lower jaw, and the elevators of the upper jaw, act together to separate the mandibles. To close them, the temporal and pterygoid muscles elevate the lower jaw, assisted by the slender slips (fig. 2, d, d), which, extending forwards to the superior maxillary bones, act in concert by bringing them down. To work the lateral motion, the great pyramidal muscle on the right aide pulls the extremity of the lower jaw, to which it is attached, backwards, the pterygoid muscles of the left side at the amme time powerfully assisting by caryying that side of the lower jaw inwards.

Mr. Varrell then quotes Mr. Townson, to show the adaptation of these parts to the wanta of the bird in feeding. "The great piueforests, such as the Hartz in Germany," says Mr. Townson, "are the natural places of residcuce of the crossbeaks, and the seed of the cones of these trees their food; and it is to pull out the seeds from between the squame, or scales of the cones, that this structure is given them. Their mode of operation is thus:-they first fix themselves across the cone, then bring the points of the maxille, from their crossed or lateral position, to be iramediately over each other. In this reduced compass they insimuate their beaks between the scales, and then opening them, not in the usual manaer, but by drawing the inferior "maxilla sideways, force open the scales or squame." It is at this stage of the proceediog, observes Mr. Yarrell, that the aid of the tongue becomes necessary; and here again we have another instance of beantiful adaptation. There is articulated to the anterior extremity of the os hyoides, or bone of the tongue, an additional portion, formed partly of bone, with a horny covering (figs. 6, 7, a). This is narrow, and abont 3 -8the of an inch in length, extending forwards and downwards, with the sides curved upwards, and the distal extremity shaped like a scoop somewhat pointed and thin on both edges, the proximal extremity euding in two small processes elongated upwards aud backwards above the articulation with the bone of the tongue, each process haviug inserted upon it a slender muscle ($f y, 0,7,6$) exteuding backwards to the glottis and attached to the on hyoides; and these muscles, by their contraction, extend and raise the scoop-like point. "Underneath the articulation of this horny grooved appendage," continues Mr. Yarrell, "is snother small musele (fig. $7, c$), which is attached at one extremity to the os hyoides, at the other to the moveable piece, and by its action, as an antagonist to the upper muscles, bends the point downwards and backwards; whilst therefore the points of the beak press the shell from the body of the cone, the toogue, brought forward by its own muscle (genio-hyoidcus) is eoabled, by the additional muscles described, to direct and insert its cutting scoop beneath the seed, and the food thus dislodged is transferred to the mouth: it will be seen by a refcrence to the first figure, that when the mandibles are separated laterally in this operation, the bird has an uninterrupted view of the seed in the cavity, with the eyo on that aide to which the under mandible is
curved." So much for Buffon's "error aud defect of nature, and deformity."

Loxia curvirostra has the following characters:-
Adult and Old Male.-Principal colours of the plumage ash strongly tinged with greenish; front, cheeks, and eyebrows gray, with ycllowish and whitish spots; back, small coverts of the wings, and scapulars greenish ; rump yellow; lower parts yellowish-green; abdomen gray, with deeper spots; wing- and tail-feathers blackish, bordered with greenish; great and lesser coverts bordered with yellowish-white; iris and feet brown; bill horn-colour. Length, about 6 inches.
Male from its first Moult to the Age of One Year.-All the upper and lower parts of the body brick-red, more or less tinged with greeuish and yellowish; wing and tail-feathers black, bordered with reddishgreen; lower ooverts of the tail white, with a great brown spot in the centre.

Young of the Year.-U Upper parts gray-brown, clouded with greeuish; rump yellowish; lower parts whitish, with longitudinal brown and black spots.

Female. -In all ages differing but little from the young; the plumage is clouded with greenish and yellowish tints. Neither in this species nor in L. Pytiopsittacus does the female ever assume the red livery, which is only peculiar to the male after its first moult up to the age of one year.

Loxia curvirostra (male). Upper figure, young of the year; lower, advic.
Such is M. Temminck's description in the second edition of his "Maquel' (1820) ; but iu the third part (1835) he states that the priucipal tints under which the male presents itself are more or less of a brick or vermilion-red, the middle of the belly being whitish. The males of a year old are of a taraished-red, of a yellowish-red, of a greeaish-yellow, or tarnished-yellow elouded with reddish. The old females have the upper part of the body deep gray, the rump of a yellowish-green, the lower part of the body of a bright-gray clonderd with greenish. M. Temminck adds that he has seen males with the summit of the head, belly, and rump of a beautiful yellow, with a large brown band behind the eyes, and the rest of the plumage like the old female. M. Tcmminck says (in the same part) of the genus generally, that the red or reddish livery of the males is not, as had been erroneously believed, peculiar to a limited period of life, but is the perfect state of plumage in the male sex : after queting M. Brehm's proofs of the nidification, M. Temmiuck goes on to state that the old males have a red plumage; the young a reddish plumage, reddishyellow, or yellowish; the females a yellowish-green, and the young a gray or grayish plumage.

- Mr, Gould ("Birds of Europe') observes that in the minds of many naturalists some doubts still exist, and that they existed till lately in his own, as to whether the rich rosy-red colouring assumed by this bird is characteristic of the breeding season, or the permanent livery of the adult male. He states that duriog his recent visit to Vienua he had an opportunity of observiug both sexes in every stage, an examination of which afforded him abuadant proofs that the red plumage is acquired duriog the first nutumn, for he saw many lately fledged that had their plumage thickly spotted; others that had partially lost their spotted appearance, and had partly assumed the red colouring; and others that had their feathers entirely tinted of this colour; while the adults, as mest ornithologists have stated, were characterised by a plumage of olive-green, which appears to be permaneut.

This bind is Laria enreirosfa of Linnmua; Bocco in Croce, Crocione, and Crosiero, of the Italians; Bee Croise and Bee Croiad Commun of the Freneh; Fichten Kreuzschaabel, or Kreutzechabel, and Mittlerer Gebirgw-und-Fichten-Kreutsschasbel, of the Gerinans: Kruisvink of the Netherlanders; Mindre Koramabb of the Scandinavians; Crossbill, Cummon Crossbill, or Shell-Apple, of the Finglish; aud Gylfingroes of the Welsh.

Willughby, who noticea its change of colour, says that it is a most voracious bird; much delighted and foeding very fat with homp-seed. "It also," he adds, "loven fir-kernels. . . . They say that with one atroke of its bill it will in a trico divide an spple is halves, that it may feed upon the kernels, by that means doing a great deal of mischief in orchands." Mr. Towneon, who kent some, states that the degree of the lateral power of theas birds in surprising; that they are fond of exercisiug it for mere amusoment; and are therefore not a little mischievou*. "My peta," rays the Jast-mentioned author, " would often come to $m y$ table whilst I was writing, aud carry off my pencils, little chip-boxes in which I occasionslly kept insects, and other similar objects, and tear them to pieces in m minute. Their mode of operation is by first pecking a little hole; in this they insert their bill, and then split or tear the object by the Isteral force. Wheu 1 treated them, as I often did, with almouds in their shells, they got at the kernel in the same manuer; first pecking a hole in the shell, and then enlarging it by wrenching off pieces by the lateral power." Mr. Yarrell-who, in his paper in the 'Zoological Jonmal', from which we have taken the organigation of the bill, ohserves that, notwithstanding Buffon'a ansertion to tho contrary, they can pick up aud eat the anallest seeds, and shell or husk hemp and similar seeds-gives the following interenting account of tho habits of a pair in captivity. We must premise that Willughby also remarked that whon kept in cages they climb up and down the ailes with their bills and feet, after tho manner of parrots. "My friend Mr. Morgan," says Mr. Yarrell, "kept a pair of these birds for nonse time, and had opportunities fur observing their curious habits. They were impatient under confineanent, and restles, climbing over the wires of their cage, by the use of their beak and claws, like parrots. One of their principal occupstions was twisting ont the ends of the wires of their prison, which thoy accounplished with equal ease and dexterity. A short flat-headed uail that confined aume strong net-work was a favourite object on which they tried their strength; and the male, who was asually pioneer in every now exploit, succeeder by long-continued efforts in drawing the nail out of the wood, though not without brenking off the point of his beak in the experiment. Their unceasing destruction of cages at length brought npon then sentence of banishment. During the period of their captivity n complete change took place in tho colour of their plumage, without the sliedling of n single feather."

The neat is generally placed in the fork of a lofty branch in fir and other teree; it is built of moss, hehens, and other euch materisls, and lined with feathers. Liggs four or five, grayish or dirty white, with irtegular bright mool-red patches at the larger end, and sinaller apecks dispersed over the remaining portions. Temblinck says that in Livcuis it builds in the month of May, but the general period of nidification mentioned by suthors is during the winter or very early in apring. Whilat they are at work on the fircones their note in a gentle tritter, and they may be seen climbing about tho branches like parrota; but they are said besides to linve a pleasint aong, Which is only poured forth in the winter months, or at the scason of incubation.
M. Bechm decares that the nidiftation and laying of eggs takea phace io all seamon, and he attributes this peculiarity to the compamtive nbundance or menreity of food. It appeara to be certain that Crombilla nake their besta in December, as well as in Mareh, April, and May.

1dacalities--(iermany, Poland, Sweden, de., America (?), and Japan, in which lant locality it is ealled Inuga. P'rince C. L. Ronaparte noten it as very mare nud! accilental in Italy, appearing only in the coldeas winter near llome; but as not rare in Philndelphin in the winter. It can only be consideral as no occasional vinitant to the Writiah Inlanda. Willughby asay, "Sometimes they come over to ua, and in the weatern part of England, equecinlly Worecsterahire, make bad work, apoiling a great deal of fruit in our orchards." About tho commencement of the present century a large flight came to the south of Ireland in the autuma, and didmuch danage to the applen, de.; numbers of these birds were taken ausl kept in cages at that time. Mr. Selby uoticea the inomense flocks that vinited linglad and Sootland in Is21. They apread themselves through the country, and were to bo seen io all woods and flastations where the fir-tree abounded. Their first appeamnce wan in the early part of Jume, and the greater part of the flock seemed to commint of fenales and the young of the year (the malen poxseming the rel plumage nanumed from the firat monlt to the cad of that year). Many of the fomalem killed ly Mr. Selby howed plaiuly, from the denuded atate of their breasta, that they hal been engaged in incubation ame time previoum to their arrival; which circhmatance, he observes, agreea with the necount given of the carly proml at which they breed in higher latitudea. They continued in lsritain till toward the autumn, but kejt moving northward, for Mr. Seligy foumd them in September particnlarly aboulatit in all the fir-track of seotland after they had nearly dieap
peared south of the Tweed. Since that time (he writes in 1825) none had come under his observation. He alludes to the great havoc they commit in the apple nad pear orelards in their occasional visits to the south, by splitting the fruit in halves for the sake of the inclosed plps. Mr. Hoy, of Stoke by Nayland, in Suffulk, who gives an intereating account of the habita of these birds, eays that from 1821 to the middle of Mny, IS22, Crossbills were very numerous in thnt county, and, he believes, exteuded their flights into many parts of Eaglaud. (Loudon, 'Magazine of Nat. Hist.,'January, 1834.) Mr. Knapp notices its occasional visits in amall parties, and the damage it does to the orchard. He saya that a pair was brought to him very early in August, sind the brensts of tho femnle being nearly bare of fenthers, as is observed in sitting birds, he thinks it is probable that she had a nest in the neighbourhood. There are a fow instances recorded of its breeding here.

The flesh of the Common Crossbill is well flavoured. Mr. Gould saw in the bird-market of Viennn multitudes of Crossbills exposed for sale with swallows, martins, and many others of the amaller birda, for the purposes of the table; of these the Crossbill appeared to be eapecislly in request from its superiority of eize and its swoet and well-tasted fleah, to the good qualitios of which Mr. Gould beara testimony. The same author notices it as seeming to be of all the smsill birds the least distrustful of man, and states that whou foeks arrive in this country numbers are taken by a bird-limed twig attached to the end of a fishing-rod.

LOXOCLASE, a Mineral belonging to the anhydrous silicates of Aluminar. It has nearly the form of Felspar, but is distinguished by a clesvage parallel with the longer diagonal. It contains 8 per cent. of soda and 3 per cent, of potash. It is found at Hanmoad in the state of New York, in company with Pyroxene, Graphite, and Calespar.

LOXONE'MA (Phillips), a group of spiral Gasteropoda. The species occur in Silurian, Devonian, nud Carboniferous strata. (Paleooooic Fossils of Deronshire.)

LOOYDIA, or LLOYDIA, B genus of Plants belonging to the antural order Siliacere. The perinath is persistent and patont; stamena ingerted at the base of the perianth; anthera eroct; style filiform; stigms trigonous; seeds angular above, flat beneath.
L. aerotina is astive of Welsh mountains. It is a rare plant, but is found on Mount Snowdou. The root-leaves are semicylindrical; stemleaves dilated below nud sheathing; flowers mostly solitary, nectary π transverse plait. Tho height of the plant is 5 or 6 inches. Stem and lenves springing separately frous the root; iston-leaves several, short; flowers white, with reddish lines internally.
(Babington, Manual of British Botany.)
LUCA'NID.E, the family of Stag-Beetles, a name popularly applied to these insects on account of the very largo nnd powerful mandiblea with which the nales are furniahed. These in tho genera Chiasognathus and Pholilofus equal the eatire length of the body, and in the Lucanus cerrus of our owa country nre very formidable instrmments of offence. They live during the day in the truuks of troes and old wood, sud take flight at dusk. The females are sluggish, nad not so numerous as the anales, which fight with great ferocity among thomselves for possession of their mates. Tho larva, which ia supposed to havo been the nuimal called Cossins by tho Romans, and esteemed by them as a delioncy, lives in tho willow and the onk, and romains untransformed for geveral years. When full grown it forms a cocoon of the duat of wood which it has ground down hy its powerful jaws, and after remaining somo time as a pupe it uadergoes its final transformation to pass a very brief portion of its lifo as a perfect insect. Some of the foreign genera of Stag. Beatles are remarkable for their brillinnt colouring. In Jritain we have four species, which belong to as many genera. (Westwood, Introduction to the Modern Classification of Innecta.)

LUCE. [Esocibex.]
LUCFiRN. [Mencago.]
LUCFRNARIADK, s family of Helianthoid Anthozoa, including the aingle genus Lucernaria, which is characterised nmongst nll other Iolyps by its species having the tentacles arranged in little tufts. The body in somewhat campanulate, nod fixed when nt rest by a marrow diec or atalk; the mouth is quadraugular, in tho centro of an umbellar expausion; the tufta of tentacula aro arranged nround the expanded margin of the month.
Three species aro described by In. Johmston as inhabiting the British corsts.
L. fuscicularis hns the pedunele of the borly produced; tufts of tentacula in pairs, aloout a hundred in each. Professor L. Forbos says it is common in Yetland, and has been funod on various parts of the British coast. When irritated in the dark it gives out brilliant flashes of bluinh phorphorescent light.
L. auricula lias a eampanulate dise, with eight tufte of tentreula with intemnediate tuberelea.
l. campanulata han a aub-beraile catnpanulate body, eight tufts of tentaclea, without intermediate tubercles. It inhabits sea-weed at low-water mark. It has been taken nt Torbay, Berwick, the Iale of Wight, rud other parts of the Engliah coast.
lir. Johnston gives the following account of this apecies :-
"It is about an inch in beight, of a unifoma liver-brown colour
smooth, adhering by a circular disc, above which there is a deep stricture, or short peduncle; the diac even, streagthened by an interior cartilaginous lamina, which rises up the short peduncle, and forms a miauta hollow firm centre. The margin of the oral expansion is somewhat thickened, and divided into eight equal arms, each furnished with a tuft of numerous short tentacula tipped with a gland, and brighter-coloured than the body. The interior is hollowed liks the blossom of a flower, the square extensible mouth projecting in the centre; and in the space between the arms there is a complicated structure composed apparently of two series of foliaceous processes, arranged on each side of a white line, that seems to spring from the sides of the mouth.
"These processes are formed by the complicated foldings of a thin membrana attached by one side in the manner of a mesentery; there are no vessels in the membrane, but some portions of it exhibit when magnified a kind of net-work of irregular cells, and the outer and free edge is bounded by a thread-like line. The white central line which divides them is formed of small roundish bodies arranged in two or three close series, and soms of these ova can at times he traced aloug the margin of the circumferenca to the tentacula.
"The latter are cylindrical, and terminated with a globular head, which is seemiagly imperforate. The stomach is a loose thin plaited extensible bag, having attached to its inner surface numerous filiform ceca, that, after their removal from the body, retain their irritability for a long time, and writhe themselves like a lot of worms."

Dr. Coldstream says of it:-"I find the animal very hardy; it is constantly in a state of expansion, and does not coatract except when very rudely handled. One spacimen has lived with me for thres weeks, although the water has not been very often changed. When I first procured it, the two rows of spots running from the mouth along each arm wers prominent, and of a dark reddish-brown colour. Since that time they have increased in size, and hava become studded with numerous white oval bodies which I supposs to be ova. I see some of these have made their way into tha web connecting the arma, but I have not observed any expelled from the body."

In his 'History of British Zoophytes,' Dr. Johnston makes the following observations on the general structure and habits of these curious animals:-
"The Lucernarice are of a gelatinous consiatence. The skin, or corium, is smooth and thickish. After covering and giving form to the body it is reflected over the oral diec, and incloses within the duplicature formed by this reflection the internal viscera. The body is more or less distinctly campanulate, and is prolonged inferiorly into a pedicle, very variable in length, which has its bottom conformed into a sncker. "From this point four ligaments, probably of a muscular nature, rise up within the peduncle, dividing at the expansion of the body into eight distinct fasciculi, one proceeding to each arm. These fasciculi are composed of long parallel fibres, are analogous to the lamelle of the Actinice, and like them divide the body into eight equal compartmente, for the inner fold of the corium is intimately connected with them on beth aides. The vermiform ceeca lis in thess compartments, and the ova appear also to be generated in them, but whether they have an appropriate ovary is doubtful.
"A specimon which had undergone a certain degree of putrefaction and dissolution exhibited these ova forming a complete circle round the mouth, with rows running up the arms to the base of the tentacula. The ova were proportionably large, roundish, or oval, and irregularly grouped. The change produced in the appearance of the tentacula was considerable, for the globular apex had disappeared, and all had assumed a linear or conical figure, the centre filled with an opaque granular matter forming a dark speck at the apex, and covered with a clear mucous skin. The vesicle preaented pracisely the same structure, but no aperture was visible in either part.
"The Lucernario can swim with soms rapidity in the water by alternate dilatations and contractions of the body, but they are usually found adherent to sea-weeds, the first species in a dependent position, the two latter invariably erect, so that Lamarck is in error when he describes the mouth as being inferior. When in a state of expanaion faw marine worms exceed them in beauty and singularity of form; when contracted they are shapeless, and easily overlooked. They feed on small crustaceous animals brought within reach by the tide, and to arrest them more certainly the tentacula are widely displayed; but no sooner have they felt the prey than they instantly contract, envelope it in their joint, embrace, and carry it. to the mouth by an involution of the wholo marginal circumference. I have found that the glands with which the tentacula are tipped perform tha office of suckers, as Lamarck conjectured, and thus retain their captives with greater certainty."

Mr R. Q. Couch says, "Their mode of progression differs under different circumstances. If intending to move to any great distanco, they do so by loosening their attachments, and then by various and active contortions they waft themaelves away, till they mest with au obstruction whers they rest; and if the situation suits them, they fix themselven-if not, they mova on in the same manner to some other spot. If the change be only for a short diatance, as from one part of the leaf to the other, they bend their campaaulate rims, and bring the tentacula in contact with the fucus, and by them adhere to it.

The foot-8talk is then loosened and thrown forward, and twirled about till it meets with a place to suit it; it is then fixed and the tentacula are loosened, and in this way they move from one spot to another. Sometimes they move like the Actinice, by a gliding motion of the stalk. In taking their prey they remain fixed with their tentacula expanded, and if any minute subatance comes in contact with any of the tufts, that tuft contracts, and is turned to the mouth, while the others remain expanded watching for prey."

LUCINA. [Lucinidex.]
LUCINID A, a family of Conchiferous Mollusca. The species have a free-closed orbicular shell; hinge-teeth 1 or 2, laterals 1-1, or obsolete; interior dull, obliquely furrowed; pallial lina simple; muscular impressious 2, elongated, rugose; ligament inconspicuous, or sub-internal. The animal has msatle-lobes open belew, with one or two aiphonal orifices behind; the foot elongated, cylindrical, or atrap-shaped, protruded at the bass of the shell; gills one (or two) on each side, large and thick, oval; mouth and palpi usually miaute.

The animals belongiog to this family are distributed chiefly in tropical and temperate seas. They live in sand or mud, and are found from the shallowest parts of the sea to the lowest depths at which life can inhabit its abysses. Woodward, in his treatise on 'Shells,' includes the following genera in this family:-Lucina, Corbis, Tanoredia, Diplodonta, Ungulina, Kellia, Montacuta, Lepton, and Galeonura. The four last genera are referred by some authors to the family Kelliade (Forbes and Hanlsy). [Kelliade.]

Lucine has the fellowing characters:-
Shell auborbicular, inequilateral, with amall pointed oblique umbones. Two divergent cardinal teeth, one bifid, and which are variable or disappear with age. Two lateral teeth; the posterior ons more approximated to the cardinal teeth. Two very separato inuacular impressions, the posterior of which forms a facial prolongation, which is sometimes very long.
M. Deshayes observes, that ths genus Lucina, as Lamarck and Bruguicres perceived, is very natural ; the shells have a particular contour (facies); they are obicular, the interior surfacs of the valves is puactuated or striated, sometimes deeply; the pallial impression is always simple, which is an essential character of the genus, as well as the form and position of the muscular impressions. When the genus is studied by meaus of a great number of apecies, one soon perceives that the hinge varies much, and that tha characters afforded by this part in other groups are here but of small value. Some species have the hinge toothless, others have one or two cardinal teeth, at first obsolete or rudimentary, afterwards larger and mora constant. To these cardinal teeth are added, according to the species, the anterior or poaterior lateral tooth; and the hioge is not complete, that is to say, is not provided with cardinal and lateral teeth, except in a small number of species. Notwithstauding these continual variations of the hinge, ons may perceiva that the 86 species, both recent aud fossil, actually known, bear so natural a relation to each other, that they could not be better placed alsewhere, neither could they conatitute other genera. Some zoologiats, after the example of Cuvier, retain tha genera Lucina of Bruguierea and Loripes of Poli. But M. Deshayes observes, that though the animals of the principal Lu;ine are not known, one may ceaclude by analogy and from the ressmblance of the shells, that the identity of the two geners cannot be well contested. He therefore thinks that, as it is not convenient to retain beth genera, and as that of Bruguieres is beat known and as old as Poli's, Bruguieres's name should be preferred.

Liunous placed the greater part of the Lucince among bis Veneres. In separating these genera, Bruguièras, Lamarck, aud the other conchologists left among the Veneres soma shells which have all the characters of tha Lucince.

The number of species recorded by M. Deshayes in his 'Tables' is 20 recent and 59 fossil (tertiary) : of these L. tigrina, L. punctata, L. columbella, L. divaricata, L. lactea, L. gibbosula, L. squamosa, L. radula, and L. amphidesmoildes are noticed as recent and fossil (tertiary).

Mr. Lea adds six apecies from the tertiary of Alabama.
In a receut state Lucina has bcen found at depths varying from 5 to 11 fathoms in sandy-mud and mud. Species occur principally in the seas of warm climatea.

Woodward gives 70 recent species and 200 fossil, and the locality the Upper Silurian Rocks.
The following species are British: L. borealis, L. spinifera, L. divaricata, L. flexuosa, L. leucoma, L. ferruyinosa.

Corbis has an oval ventricose subequilatersl shell, with concentrically sculptured margins, denticulated within ; hinge-teeth 2, laterals 2, in each valva; pallial line single, umbonal area with an oblique furrow; muscular impressions round and polished; pedal acara close to adductors. The animal has the mantle open below, doubly fringed; foot long, pointed; siphonal opeuing aingla, with a long retractila tubular valve; lips narrow; palpi rudimentary; gills aingla on each side, thick, quadrangular, plaited, uaited bohind. Thero ara two receat apecies inhahiting the seas of China, India, Australia, and the Pacific. There are 80 fossil specias chiefly in tha Lias.

Diplodonta has a smooth suborbicular shell; a doublo rather long submarginal ligament; hinge-teath 2-2, of which the antarior in the left valve and posterior in the right are bifid; muscular impressions
polished, anterior clongated. The naimal has the mantle margins nearly plaiu, united; pedsl opening large, rontral; foot pointed, hollow ; palpi large, free; gilli 2 on each nide, distioch, the outer oval, ioner lroadest in front, uaited behind; branclial orifice small, simple; anal larger, with a plinin valve. D. rotundata is found iu the 13ritish scaa There are 12 recent species found in the West Indies, the Mediterranean, lled Sea, India, Auxtralia, and America. Fossil apecies have also been found in the tertiaries.
(Forbes and Hanley, History of Britioh Mollusca; Woodward, Redimentary Treatise on Leecn! and Foasil Shells.)
LUCU'LiA, a genus of Plants belonging to the natural order Cinchonacer, tribe Cinchonere, and sub-tribe Eucinchonea; thus indicating the close affinity of this genus to that of the trees yielding Peruvian Bark, or true Cinchonas, in which indeed the only known epecies, L. gratissima, was placed by Dr. Wellich and figured in his 'Tent. Fl. Nepsl,' t. 21.
It is foond in great nbundance on Nag. Urjoon and some of the other emaller hills in the valley of Nepaul; also at Bechisco and Koolakan. It delights in exposed rather naked situations, blossoming, according to the situntions where it is found, nearly the whole year round. It is also found on the Pandooa Hills in Silbet, flowering in the month of September. As seen by Dr. Wallich it attaine a height of 16 feet, but he was informed of ita growing to a larger size. It has been introduced into and has flowered in this country; but from tho niture of the climste where it is indigenous, it is only sulted to the greenhouses of Eugland. Its locality and affinity are interesting, particularly when coupled with the prevalence in the same mountains of two other genera, Ilymenodiclyon and Mymenopogon, beloaging to the same sub-tribe Eucinchoner, and therefore equally allied to the true Cinchonas; nll indicating the part of the Indian territory where these raluable plants might most certainly be grown, and yield a profitable srticle of commerce. "It is impossible to conceive anything more beautiful than thin tree when covered with ita numerous rounded paucles of pink-coloured very fragrant large blosaoms." (Wallich, 1. c., p. 30.)

LU'CUMA (a nstive name for oue of the apecies), a genus of Plants belonging to the natural order Sapofacete. It has a 5 -parted calyx; a 5 -cleft corolla; 10 stamens, 5 of which are aterile and 5 fertile, alter nating with each other; an ovarium 5-10-celled; the fruit 1-10-seeded; nuts or seeda bony, narked by a large umbilical areola without albumen. The apecies are trece, yieldiag a milky juice, with scattered entire coriaceous lesves, and I-flowered axillary or intersl peduncles.
L. Mommosa, the Common or Mammee Sapota, has obovate-lauccolata oblong-cuapidnte glabrous leaves, with solitary fowers. This plant grows from 50 to 100 feet in beight. It is a native of the tropical parts of South America, nod of many of the Weat India Islands, where it is also cultivatel. The fruit of this tree is eaten in tho Weat Indies. It is of a large size, oval-shaped, and covered with a brownish rough akin, under which is a soft pulp of a russet colour, very luscious, and which, on account of ita thavour, is called Nintural Marmajade. I'. Browne calls a variety of this tree Bully-Tree, because it grows the tallest of nll the trees in tho woods of Jamica.
several other epecies of this gepus have beca described. They are all mativen of various districts of South America, and yield edible fruitusinilar to the preceding species. They were at ono time referred to the genun Achras, the species of which also yield edible fruits. [Achuas.]
(1)on, Dichilamydeous Plants.)
h.UDLOW HOCKS. The apper part of the Silurian System of Sir Roxlerick Murehison is thus designated. They include the three following terma :-

Upper Ludlow hock, a thick mans of launinated arenaceous deposite, maviom acyuiring conviderable bardness, and suggesting the notion of having leeu deporited ua a maddy sedine ent; from whicin circumstance it has almo been called Mudstone by Sir 1 l . Murchison. It is very rich in fumilt.
Aymeatry limentone, n concretionary nad polypiferoun limestonc, of local oceurreace nad small thicknees, macrely peparating the other terme. Many fomila.
lower ludlow hock, diefly an argillaceotas, shanly, and flaggy deporit, with a few calcareving nodules, yielding aleells.
The limestone of Wenlock and builley lies below. [Snumas srathe. 1
bifria, a genus of Plante belonging to the natural order Cucurbitococe. The male flowers are pavicled am yellow; the tube of tho calyx heminplerical, megmenta longer than the tube; petale dintinct, dropying of by the basc; stamens 5 , distinct; nathers very wavy. The fermale flowers are nolitary; the tube of the calyx ohnong, elavate, negmenta horter than the tubo; stanens nbortive; stiguan reuiform; gourd ovate, 3 -celled, fibrous, internally operculato.
L. amara is fonal in hedges and dry unealtivnted places in the Fant Indica. It has aeveral atema, elender, ruming to n great cxtent, but with few imaneher, pretty amooth, 5 -xided ; tendrila 3 cleft ; leaves Alighty 5 --lobecl, rough; ntipules axillary, solitary, cordate, with glandular marks on onc aide. Male flowers pretty large, yellow, on long erect axilingy racennes; the pedicels with a glandular bmet near
tho baec, and articulated a little aburo it. Feluale flowera rather the base, nud articulated a little abovo it. Female flowers rather
larger, axillary, bolitary, pedunculated; fruit obloug, 3 or 4 iuches long, asd 1 inch in diatneter, tapering equally towards each end,

10-angled ; when ripe dry, gray, and filled with dry fibres; the operculum deciduous; seeda blackish-gray, with elevsted minute black dote; every part is extromely bitter. The fruit is violently cathartie aud emetio; the juice of the rossted young fruit is applied to the temples to cure headache by the natives of India; the ripe seeds are ueed either in infusion or eubstance by them to romit and purge.
L. Bindaal is a native of Hindustan. It is a climbing dicecious plant ; the leaves are toothed and 5 -angled. Male flowers in racemes. Female flowere solitary; fruit round, echinate, with long, etraight, ciliste briatles, It it considered in northern India a powerful drastio in cases of dropey. The leares of L. aculengula are a favourite potherb of the natives of India, and sre esteemed very wholesome.

LUG-WORM. [AREMCOLA.]
LUIDIA. [Echizodermata.]
Lumachelle. [Marble.]
LUMBRICARIA, a genus of fossil Annelida, from the Silurian Strata of Tyrone. (Portlock.)

LUMBRICUS. [ANsElida.]
LUMINOSITY OF ORGANIC BEINGS. Organic bodies under certain circumatauces become luminous, and upon the supposition that this appearsace depende on the combustion of phosphorus at a low temperature, the phenomenon has been called phosphoreacence. This luminosity is very constantly developed under the same circum. stances in both animsis and plspts, It is observed both during the decomposition of the bodies of plants and animals as well as whilst they are still liring. The oldest observations on this subject were made on the wood of trees whilst in a etate of decay. This however takea place only under peculiar circumstances. it generally occurs when the wood of trees is buried in the earth whilat they are in a green etate, and does not take place when wood is allowed to decompose in the usual way and in free contact with the air. It is also found that the phosphorescence does not take place when the wood is allowed to decumpose in a damp place. Wood exhibiting this property will retain it for s long period when kept in a dry place. Albrecht observed luminosity in a tree during the night at a spot where one of ita branches had been torn off. Decaying fungi have been often observed to emit this light. Travellers in tropical climstes have oberved that when plauta containing a milky juice are wounded, the juice frequently becomes luminous, whilst it is descending the sides of the tree. The cause of this phenomenon in decaying plants is probably owiag to a alow decomposition of the tissues attended with a union of oxygen gas, but what determines the development of light under these more than other circumstances is still unknown.
In living plants luminosity has been frequently observed. It is most constant amongst some forms of fungi, eapecially of the genue Rhizomorpha. In the coal-mines in the vicinity of Dresden the species of Mizomorphec are so numerous as to "dazzle the eye by the brilliant light they afford." [Byssacee.] The light from decaying wood, as also from tho liring Rhizomorphic, continues although they are immersed in irreapirable gases, liuseed oil, phosphoric acid gas, oxygen, \&c. The phenomenon in both the living and the dead plants is probably due to the same cause.
Another class of planta in which light has been observed is the Mosses. Several species of the genus Schistostega, which grow in caverne sad other damp places, have been observed to give out light. Mr. Babingtoo and other botanists have observed it in this country in the S. pennata; whilst Funk, Braudeoburg, Nees von Esenbeck, Horaschuche, Struve, Unger, Bridel-Briderei, and Agandh, have obsorvod it on the contivent of Europe. The two latter nitribated this light to a small-alga, which Bridel-Briderei called Catoptridium omaragdinum, nad Agardh called Protococcus amaraydinus, which they supposed was parasitic ou the moss. Unger bowever has examined the moss nccurately, and finds thant at certain Reasous the utricles of thin moss assume a globular form, nud being partly trausparent, the light is rofracted aud reflected in anch a way as to present a laminosity on the surface of the vesicles.
Another class of these phenomena is that which is exhibited by the flowers of some plants. Tho first observation on this eubject was recorded by Linuacus, and made by his daughter Christina Linnè. She wha walking iu the garden oue hot aummer's evening, wheu sho observed the flowers of Tropecolum majus to give forth a atream of light. This was attributed by many to an optical illusion, but the fict has siace been repeatedly observed on thia as well as other plants. We are not perbaps in a position to say this was not an optical illusion; but if it was, oue would expect that it should be more conatant. It has also been seen by several observera at the same time in differcnt positions, and when one has eeen it, the othere bave seen it also. A correspondent of the 'Gardener's Chronicle,' Oct., 1843, kays, "I hasce frequently observed the luminous appearance of gardon flants, and have looked for it in each aucceeding aummer on the doublo marygold, and more especially on the Poparer pilosum, the hairy red poppy, in my gardon at Worcestershire. In the evening after a hot dry day, the flashes of light have afforded much amusement to myself nad others." It is to this phenomenon that Coleridge nalludes in the following lines:-

[^2]Decaying animal bodies frequently emit a lumiuous appearance, which has generally been attributed to the presence of phosphate of lime in their skeletona, which become decomposed and yield phosphorus when exposed to the action of organic compounds in a state of decomposition. It is to this cause that the luminosity of putrefyiog fish is attributed. But the emission of light is a very coustant phenomenon of many of the invertebrate animals under peculiar circumstances. Thus during warm weather, when a vessel passes through the ocean, the waves frequently exhibit a diffused lustre with here and there streaks and atars of a brighter light. This occurs in our own climate, but the phosphoreseence is much more brilliaut in tropical seas. Pöppig, in his 'Reiee in Chili, Peru, und auf dem Amazonstrome,' describes this phenomenon in an equatorial sea. "Whilst one side of the vessel is still illuminated by the last fading rays of the evening aun, and the opposite side darkened by the shade of the salls, the sea in this direction already becomes brilliant. One spot after another begins to be illuminated, indistinet stripes of light commence glimmering from greater depths, till at last, with the appronch of night, a new creatiou seems to be called into existence. These illuminated beings move in various directiona, sometimes appearing like sparks, sometimes like a radiating ball of fire, at others darting through the dark surface of the water like a rapid flash of lightning. A great number of these beings are undoubtedly true night animals which conceal themselves during daylight in the dark deptha of the ocean."
These lighta in the sea are principally produced by various species of the family Acalephe, or Jelly-Fishes. [Acalepize] The light emitted by these animals seems to be due to the aecretions on the surface of their bodies, for when thia secretion is removed it retaina for aome lours its luminous character, and will even impart it to milk or water. But this property is not confined to the Acalephes ; many species of Polypifera, oome of the Eckinotlermata, and tho lower forms of Mollusca also exhibit this appearance. Some few of the Crustacea and even Fishes have been observed to possess the same property.
Amongst insects this phenomenoo is not uncommon. Those which poseess the greateat luminous power beloug to the Coleoptera, the Beetle-Tribe, and of these the two families represented by the Fire-Fly-the Elataride, and the Glow-Worm-the Lampyrider, are the most distinguished. [Elateride; Laspymbde.] Some of the species of the tribes of Myriapoda and Annelida give out light occasionally, as lhe Centipede and the common Earth-Worm.
(Megen, Pflanzen-Physiolcgie, Mand ii.; Carpenter, Animal Physiology; Lankester, in Gardener's Chronicle, 1843).
LUMME, a name for the bird called the Spcckled Diver, or Speckled Loon (Colymbus Areticus, Linn.). [Colymbidze]
LUMPSUCKER [DIscobor,]
LUMP-SUCKER. [Discoboli.]
LUNGS, the organs of respiration in the higher animals. In man, whoae lungs may be taken aa a type of those of all Mammalia, they are thua formed:-The trachea, or windpipe, is a rounded tube continued from the larynx [Larynx], and commencing about an inch above the upper edgo of the breast-bone. Its front and sides are chiefly composed of portions of cartilage forming about thrce-fourths of ringz an eighth of an inch wide ; and its back ' part consists of transverse and longitudinal fibres of elastic (and, according to some, muscular) tissue. The rings are connected by tough cellular and elastic tissues, and by numerous strong longitudinal bands; and the whole tube, as well as its farthest ramifications, is lined by a mucous membrane continued from the larynx, and covered on its free surface by a fine epithelium composed of cells with vibrating eilike attached to them. [CiLia.]
The trachea dividea into two main branches, the bronchi, one of which goes to each lung, and in it divides into smaller aud smaller brinclics, whose structure is in all essential respects similar to that of the trachea. (Fig. 1.) Around the extremity of each of the finest hranches of the bronchial tubes there are arrauged a number of delicate rounded cells or vesicles, all opening into the end of the branch, but having no communication with each other. On the walls of these cella the blood circulates in the minutest capillary divisions of the pulmonary artery and veins, and it is :llso in these cells that the air, which is admitted to them through the bronchial tubes, comes ncarly into contact with the blood. For the mode in which the blood is conveged to the lungs see the article Hzart. The pulnonary artery nrising from the right ventricle carries to the luugs all the blood that has becu circulating tbrough the body; one main branch goes to each lung, and, accompraying the bronchus, divides, like it, to extreme minuteness. At the last its branches terminate in the capillaries, which are arranged in the most delicate network on the walls of every pulmonary cell. Each of these cells is about $\frac{1}{d}$ of an inch in diameter; the capillary veasels are about moto of an inch in diameter; and the network which they form is so close that its meshes are not more than $\boldsymbol{\pi}^{\mathbf{b}} \boldsymbol{\sigma} \sigma$ of an inch wide. In its passnge through these the blood midergoes the changes which convert it from venous to arterial, and render it again fit for the msintenance of life. [BLoon.] From the capillaries it passes into the pulmonary veins, and through them to the left side of the heart.
Kölliker in his 'Manual of Human Histology' gives the following recount of the bloodvessels of the lungs:-"They occupy," he aays, "A unique position, inasmuch as they posscss two complete vascular Nat. hist. Div, vol. II,

Fig. 1.

1, larynx; 2, trachea; 3, right hrenchus: 4, left bronehus; 5, left lung, the fissures denoted by the twe lines which mect at 6 , dividing it into two lohes, and the smaller lines on its surface marking the division of the lobes into lobules; 7, large bronchial tubes; 8, miaute brenchial tubes terminating in the air-cells or resicles.
systems for the most part distinct from each other-that of the bronchial vessels, for the nutrition of certain portions, and that of the pulmonary vessels for the fulfilment of their proper function. The branches of the pulmonary artery follow pretty nearly the course of the bronchial tabea, which are most usually placed below and behind then, with this difference, that they divide dichotomously with greater frequency, and consequently diminish more rapidly in diameter. Ultimately a twig goes to each secondary lobule, which then subdividea into atill finer ramuscles, in general correspondiug in number with the smallest lobules, and supplying the individual air-cells. The course of these finest lobular arteries, as they may be termed, is very easily traced iu injected, inflated, and dried preparations; and it is apparent that, whilst traversing the uniting tissue between the lobules (infundibula), they supply not oue lobule alone, but always two, or even three of them with finer twigs. These penetrate from without, upon, and between the air-cells, divide repeatedly while running iu the larger elastie trabecule, anastomosing also occasionally, though not regularly with each other, or with branches of other lobular arterics, and finally terminate in the capillary plexus of the air-cells. This plexus, which is one of the closest existing in man, as estimated in moist preparations, presenta ronuded or oval meshes $0.002^{\prime \prime \prime}-0.008^{\prime \prime}$ wide, and vessels of $0.003^{\prime \prime \prime}-0.005^{\prime \prime \prime}$ in diameter. It lies in the wall of the air-cells at a distance of about $0.001^{\prime \prime \prime}$ from the epithelium, in the middle of the fibrous tissue, and is continuous, not only over all the alveolx of oue of the smallest lobules, but also, at all eveuts in the adult, is partially in conncetion with the ploxuses of the contiguous lobules. The pulmonary veins arise from the above described capillary plexus, with roots which lie more superficial than the arteries, and more externally. On the smallest lobules these run decply between them and unite with other lobular veins into larger trunks, which proceed in part with the arteries aud bronchial tubes, in part more isolated by themselvea, through the pulmonary parenchyma.
"The brouchial arteries gre distributed, firstly, to the greater bronchix, whoae ressels present the same conditions as those of the trachea, then to the pulmonary veins and arteries, the latter of which iu particular possess an extremely rich vascular plexus, whicls may be traced as far as branches of $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ and less; lastly, to the pheura pulmonalis, the branches destined for which are some of them given off even at the hilus and in the fissures between the main lobes, some also from the vessels accompanying the brouchix coming out between the secondary lobules. Small vessels moreover which are not derived from the bronchial arteries pass on the pulmonary ligaments to the pleura."
The lungs are thas mainly composed of air-cells and of branchea of the pulmonary artery and veius. Each Jung is divided into two or three large portions ealled lobes (the right lung has almost always three lobea, the left two lobes), each of which receives one of the main divisions of the bronclus, artcry, and vein; and these are again divided into lobales, the ontlives of some of which are marked by the angular figures on the surface of the lung. Lastly, the cells are grouped together in still smaller lobules not more than a quarter of an ineh in diameter.
The lungs are placed io the two principal cavities of the chest. The auncxed figure (fiy. 2) represents tho bony frame-work of the elest, bounded behind by the spine and the ribs as far outwards as their angles, in front by the sternum, or breast-bons, and the cartilages of the ribs, and on each side by the bodies of the twelve ribs. The space which is left below in the skeletou is, in the entire subject, filled up which is left below in the skeletou is, in the entire subject, 2 N

F 1, spinal column; 2, rihe; 3, cartilages of ribs ; 4, sternum.
by tho diaphragm, n largo muscle represented in fig. 3 whose form mas be roughly compared to that of the expanded patt of an umbrella

Vig. 2.

1, earlifen of the thorax; 2, pertion of eavity of the abdomen; 3, lateral or muacular portione of the dlaphragm; 4, central or tendinous portion of the llaphragm.
laving ita concavity lownwarla The diaplamgm forms n movenble partition hotween the cavity of tho cheat null that of the nbdomen, permiting only the jumage of cerlain voskeln, de., from the one to tho otlser. Jly itw slemme contrwetiona and rolnxations it increases and ditainishem the capracity of the chort.

Tho npacen between the several ribw aro filled by tho intercostal mumelon, of which two aro ropronatmed in fig. 4. Detwoen cach two ribe therearo two layers of anucle, the filires of each of which crosn thone of the other. The fibren of the nuter lager. which are repmemented letween the two upper ribw in tho nnnexed figure, puan obliquely from mbovo downwarin, and from hehind forwarels; thom of the inner lager, here drawn between tho two lower ribn, pass With a nimilar obliquity from before lackwards.

The upper nperture of the chent between the mpine, firat ribm, and - temum (fig. 2) in that at which tho trachen paesen into tho client to the lunge, nul at which the great arterien of the leal, beck, nal arms pan out of the chent from the norts. The pacen left betwern theme and tho lonem are occupicel by the emophanga, hy eertain munclen num nerven, by the grmat seins of the upper part of the loody, and by cellular tinnue.

The whole chent thas forma a cavity clowed on all niden, bat permitting the panang, of certain tuben (the trachm, mophagen, Mout.
vessels, de.) through its walle. This cavity contains within it three subordinate cavities; the middle one contains the heart in the pericarlium, and each of the two ot the sides contains one of the luage These re called the pleural cavities.

Each lung is as it were lung into the cavity appropriated to it by its bronchus and by the trunks of its pulmonary artery and veins, which, inclosed together by cellular tissue, form what is called the root of tho lang. Tho lung exactly fills the cavity in which it is placed, so that their surfacos are everywhere in contact, or separsted only by tho very small quantity of fluid necessary to keep them sufficiently slippery to move upon each other without dificulty. For the sake of more easy motion, the wall of the cavity is lined and the surface of the lung is covered by a finc smooth membrane, the pleura, which is arranged like other serous membranes [Membnanes], that in, having lined the cavity, it is refiected upon the root of the lung, fund then passes over its surface and those of its great divisions or lobes.

Fis. 3.

1, trambea; 2. right lung; 3, left lung; 4, flssures dibling each lung lato larke portoss (3) termed lobes; 6 , smaller drialona termed lobales; 7 , pericurdium; 8 , hear!; 0 , aorta; 10 , diaphragas separating the cavity of the thorax from that of the abtomen.
Tho pleumal cavities nre completely closed on all sider, so that no nir ean conter them, but the lung in each commonicates with tho extermal nir by its bronchus, which leads to tho trachea mud larynx ; nnd hence, when the chent is culargel by the contraction of the dinplargm, the eleation of the ribs, fie, the air passes not into the eavity of tho cheat, but though tho windpipe into the interior of the lung. It in as if one had a pair of bellows with the valve closed, and the tisise of the nozale opening, not as it ubually docs, fate all the
space inclosed by the boards and leather, but into a bladder contained within that space. In this case, when the haudle of the bellows is raised so as to enlarge the cavity, the air will pass into the bladder, and distend it so as to keep it everywhere in contact with the interior of the cavity containing it.

The acts of breathing are-inspiration, by which air is drawn into the lungs, and expiration, by which it is again expelled from them. In inspiration the muscles that are attached to and form part of the walls of the chest contract, and by raising the ribs and stermum, and flattening the diaphragm, increase its capaeity. The air within the lungs (which are never empty even after the deepest expiration) is thus for the instant rarefied; but by the proportionally increased pressure of the atmosphere upon the upper part of the larynx, a fresh quantity of air immedintely passes into the air-tubes, and maintains the equilibrium of pressure between the air within and that without the lungs.

As soon as the action of the museles of inspiration has ceased, expiration commences; the lungr, distended in inspiration, contraet by their own elasticity, and expel a volume of air which in ordinary circumetances is equal to that which they had just previously received. As fast as they contract they are followed by the walls of the chest, which collapso partly by their elasticity, and partly by the pressure of the atmosphere upon their exterior, which, when the lungs begin to contract, is no longer exaetly balaneed by the pressure exerted through the medium of the lungs upon their interior. The lungs having thus contracted to a certain extent, the parts are restored to the same condition as before inspiration, and in ordinary circumstances that action is soon again commenced.

The enlargement of the cavity of the chest in common inspiration is thus effected: the diaphragm (figs. 3, 5) contracts; its muscular fibres, which are attached on the one hand to the interior of the lower ribs, the tip of the sternum, and the front of the spine, and on the other around a tendon (4, fig. 3) in its middle, shorten, and thus (as the first set of attachments are fixed) they draw down the middle of the muscle, lessen its convexity towards the chest, make it flatter, and press its under surface upon the contents of the abdomen, so that the abdominal walls become more prominent. At the zame time, or just previously, the intercostal museles contract; the two upper ribs, being quite or nearly fixed at one end to the spine, and at the other to the upper part of the sternum (fig. 2), serve as fixed points towards which the upper intercostal muscles contracting draw the second ribs; these being thus fixed, the second pair of museles contract, and draw up the third ribs; and so on through the whole of the ribs, the lowest serving, at the same time that they are drawn upwards, for fixed points, towards which the diaphragm, contracting all round its tendon, may draw down its middle part and become flatter.

The effect of the contraction of the intercostal muscles is not so much to approximate the ribs (which would decrease the capacity of the chest) as to force them further outwards and forwards, and thus give the chest a greater width and depth at each part. In fiys. 2 and 4 it is seen that the ribs desecnd obliquely outwards and forwards from the spine, and then ascend towards the sternum. They inerease in obliquity as they are taken from above dowawards, and, except the four last, they also increase in length in tbe same succession. The length of the are represented by each rib from the spine to the sternum is fixed, for the substance of the ribs is bony or cartilaginons, and almost unyielding; when therefore one rib is fixed, and the intereostal muscles between it and the one next below it contract, they must not only draw the latter upwarde, but must also turn it somewhat outwards, and raise the sternum, whiel is fixed to its anterior cxtremity. The direction of the rib becomes less oblique, but its leugth remaining the same, the distance from the spine to the moveable sternum must be increased at the same time with the distance from each rib to the corresponding one on the opposite side.

13y these actions the cavity of the chest is increased in every dircetion; in height by the descent of the diaphragm; in width by the tnrning outwards of the ribs; in depth by the ascent of the sternum. In quiet inspiration the greater part is effected by the diaphragm ; in decp inspiration not only are all the museles already mentioned contracted, but a number of others capable of raising the ribs are called into play, and the capacity of the chest is thus yet further increased in the manner just clescribed.

In their medium state the lnngs of a person of ordinary size aurl in good health contain about twelve pints of air; in perfeetly easy breathing about a pint is drawn into them at eaeh inspiration; but from this the quantity may vary to as mueh as seven pints, aeeording to the force of inspiration, inerensed as it is, for example, when preparing for a great museular effort, or during singing, or before coughing.

Quict expiration does not need any muscular exertion; the elasticity of the lungs, of the cartilages of the ribs, and of the other parts distended in inspiration, is sufficient to restore them all to their previous state. A limit is set to the collapse of the Iungs by the myielding timsues of the walls of the eliest. These cannot follow the contracting lange beyond a ecrtain exteut, and the elastieity of the lungs is not enfficient for them to overcome the inbalanced pressure of the atmosphere upon their interior, which it would be necessary for thera to do before they could contract from the interior of tho walls of the
chest. If a wound be made into either pleural cavity, the lung at once collapses completely, and expels nearly all the air it coutained; for in this case the atmospheric pressure being admitted alike to the exterior and the interior of the lung, its elastieity has but little to overcome, and the air-cells and tubes immediately contract to the smallest size of which they are capable. By the same means, when both pleural eavities are opened at once death speedily follows, in consequence of the collapse of both lungs and the suspension of all breathing.

The limit which the rigidity of the walls of the chest sets to the elastie collapse of the lungs is never reached in ordinary respiration, nor in extraordinary cases, except by the influence of other expiratory powers besides tbose of the lungs. These powers are supplied chiefly by the museles of the abdomen, which contract with great force, and through the medium of the contents of the abdomen force up the diaphragm to an unusual beight into the chest, at the same time that certain muscles capable of depressing the ribs and sternum draw them down and decrease the capacity of the chest in its depth and width. Efforts of this kind are observable in coughing, sneezing, and all other strong expiratory acts.

For an account of the chemical changes accompanying these actions see Respiration.

The development of the lungs has been recently investigated, and the following is Kölliker's summary of what is known :-
"In the Mammalia the lungs appear a little after the liver, in the form of two hollow protrusions of the anterior wall of the pharynx, which are in close apposition, and soon become furnished with a common pedunele - the rudiment of the larynx and trachen-and in the composition of which the epithelial tube and the fibrous membrane of the intestine take an equal share. In the further course of development there springs from the extremities of the original protrusions a continually-inereasing number of arborescent processes, which differ entirely in what may be observed in most other glands. From their first formation they are always bollow, and in the sisth month the air-cells are developed from their invariably elavate dilated extremities. During this growth of the glandular elements the interior epithelium extends itself by spontaneous multiplieation of its cylindrical cells (probably by division), whilst at the same time the fibrous layer surrounding them also grows, and finally coustitutes the fibrous membrane of the bronchix and air-cells, together with the vessels and nerves. In the second month, in the human embryo, the large pulmonary lobes are already formed; and besides them smaller divisions also, $0.16^{\prime \prime \prime}$ in size, may be recognised, originating in the dilated extremities of the bronchix, which even at this time are considerably ramifed. As development proceeds, and the ramifications of the bronchio are multiplied, these gland-grauules, as they are termed, become more and more numerous, and ultimately, in the fifth month, are aggregated so as to form smaller lobules of $0.24^{\prime \prime \prime}-0.48^{\prime \prime \prime}$ in size, each of which in all probability is produced from a single glaud-granule, or bronchial termination, of the second month. Each of the gland-granules of these lobules, whieh correspoud with the secondary lobules of the future lung, by continued budding, finally constitutes a primary lobule, which, with air-cells of $0^{\circ} 025^{\prime \prime \prime}-0^{\circ} 03^{\prime \prime \prime}$ in size, first becomes distinetly visible in the sixth month, although up to the time of birth new alveoli are constantly superadded. In the new-born child the secondary lobules measure $2^{\prime \prime \prime}-3^{\prime \prime \prime}-4^{\prime \prime \prime}$; the alveoli, before they are filled with air, $0.03^{\prime \prime \prime}$, and after the first inspiration, $0.03^{\prime \prime \prime}-0.04^{\prime \prime \prime}-0.06^{\prime \prime \prime}$; the latter at this time appear to exist in the same number as in the adult, the further increase of the lungs proceeding only from the expansion of all its parts.
"Tise investigation of the lungs," continue the translators of Kölliker, "presents no real difficulty, except iu one point; that is, with respect to the relation of the pulmonary eells to the terminations of the bronchix; but here the difficulties are very considerable. In recent preparations it is obvious that the air-cells communicate in many ways, and in any case that they are not merely terminal on the extremities of the bronehie. If it be desired to investigate the whole subjeet, iuflated and dried lungs (it is better in an inflated long to tie off an end and dry it by itself), or corroded preparations, or lungs injected with uncoloured substauces (wax and resin), are most suitable; and with such a definite result will be obtained, after a geries of observations. Before the injection of the bronehix is proceeded with the air must be exhausted in the air-pump, for which purpose also, though less conveniently, a well-fitted syringe may be employed. The iujection of the bloodvessels is readily effected, and the preparation should be kept wet; sometimes when injected with opaque material, sometimes following the processes of Sehröder and Harting, with transparent substanees (Prussian blue, \&c), dried preparations are to be preferred. The air-cells aud bronehic, the larynx and trachea, are readily examined. Tbe epithelium of the air-eells is obtained ju large quantities in every sectiou througl the lung, as well as ciliated cells, If it be wished to study the alveoli, the air must previously be carefully removed. These are best displayed in man, in whom also all other parts, such as cartilage, elastic elements, uruscles, and glands, are easily obtainable."
(Kölliker, Manual of IIuman Mistology, translated for the Sydenham Society by Busk and Huxley.)

LUNG-WORT. [lugaronamia.]

LUNULITES. [Cellarisa.]

1,Ul'EA. [PORTESines]
LUPI'NUS, a very extensive genus of hardy annual, pereunial, and half-shrubby Plants, belonging to the natural oder Leguminoser, commonly cultivated in gardens for the sake of their gaily-coloured flowers. The species inhabit Europe, the basiu of the Mediterranean, and the temperato parts of both North and South America, especially of the former, where they are extremely shundant; but they are unknown in a wild state throughout all the tropics, except on mountaids, and in the prineipal part of Asia, Australia, and South Africa. Figurea of great numbers have njpeared in the volumes of the 'Rotanical Register and Magazine,' and there is a monograph of the genus publizhed at Lund by the younger Agardh in 1835 , under the uame of 'Synopsis Generis Lupini.'

The calyx is profoundly bilabinte; corolla papilionaceous, the rexillum with reflexed sides, aul the keel acuminated; the stamens monadelphous, with the tule or slienth entire, 5 of the anthers are smaller, rounder, and earlier, and the other 5 oblong and later; style filiform; stigma terminal, roundish, bearded; legume coriaccous, oblong, compressed, obliquely torulose; cotyledons thick, but converted into leaves at the time of germination. The species have digitate leares, constantly composed of from 5 to 15 leaflets, very rarely simple. The leaflets are complicated before expansion, and while asleep, or through the night. The flowers are alternnte or verticillate, ressile or pedicellate, disposed in racemes and spikes, with one bractea under each pedicel, and with two bracteoles adhering laterally to the calyx, which are caducous, or wanting. It is a very extensive genus, and many apecies are cultirated in our gardens for the purpose of decoratiog flowerbeds.
L. albus, the White Lupine, has alternate pedicellate flowers destitute of bracteoles; the upper lip of the calyx entire, lower one tridentate; leaflets obovate, obloug, usually 7 or 8 , villous beneath. It in a native of the Levant, and is cultirated iu the south of Europe. The flowers are white, and almost sessile. It is grown in Italy and some other parts of the south of Europe as food, nlso in Franee, on poor dry plains, as an ameliorating crop to be ploughed in for the sake of improving the land. This is sn ancient Roman practice which existed in the time of Pliny.
L. Termis, ligyptian White Lupine, bas alternate pedicellate bracteolate flowers; the upper lip of the calyx eatire, lower one eomewhat tridentate; leaflets 5 or 6 , obovate, oblong, villous bedeatl. It is a native of Egspt. The flowers are white, but with the vexilhusu tipped with blue. Termis is the Armbic name of the plant. The yeduncles after being peeled are eaten raw, and the aceds are boiled ns other pulse by the Arabians. The Greeks, who called them Thermos, cmployed Lupines not only as an article of food, but mediciually, esteeming them vermifugnl and cmmenagogue, de. (Dioseor., lib. i., c. 132). What apecies was cultivated by them is unknown; their wild Thermon is nupposed by Sibthorp to be the L, ungustifolius. The two specicn most common in Grecec now ure L. hirsulus and L. pilosus.

Lupines are said to derive their name from 'lupus,' a wolf, because of their derouring the uubstance of the land on which they are grown.
(Don, Dichlamydeous Plan/s.)
LUPONIA. [CxPMEID.s]
LUPUS. [CANis.]
LU'RIDEE, a name given by Linurus to one of his natural onders of l'ladts. It is equivalent to Solanacee of modern botadists. [Solasaci:a:]

LUTRA, a genus of Mammalia belonging to the family Mustelide. The njecies are known by the common name of Otters. They furm a uatural group of Carnivorous Animals whose lanbits are aquatic, and whose food is fisl. The common term Otter is applied to two forms and nearly allied : the first, lueluding the River-Otters, Lufra of Storr ; the wecoud, the Sea-Otter, Enhydiat of Fleming. We nhall first deacribe the genue Lutra. In the skull ef Lutia the suborbital loole is larger tlian It in in the lind gers, the grisons, and the martena, almost us larye, indeed, is it is in the rodenta; their muzzle is whorter, and the anterior part of the cranium between and lehind the orbits more compact; their tym.

skelcton of European River-Otter (Lutra crulgaris).
janic cavitien are less convex; their entire cranlum more depressed, and ita base wider and flatter. The lachryanal bone is entirely within the orbit, and its aperture is above the interior suborbital hole. 'Jhe circular arerture is blemed externally with the apheno-orbital hole, but internally it is separated by a considerable interval from it by a bony plate: The internal pterygoil proses is molderod. The whole akull han a gool deal in common with that of the Seal (phoca rifulina) ; and ite relationhip is to be traced in the shore menzle, the
compression of the interorbital region (which in carried atill farther in the seal), the width and flatness of the cranium, and the flatness and enlargement of the whole inferior region, with the exception of the tympanic cavities, which in the seal are large and convex.

In the other parts of the akeleton there is nothing needing a detailed description, tho variations being such as might be expecterd to suit the habits of an aquatic, caruivorous, hairy quadruped. Thus, the articulation of the limbs admits of such freedom of motion, that the animal can turn them in almost any direetion, and bring them with ease on n line with the body, so as to act like fins.

The teeth of the Otters are sharp and strong, and the tubercles of the molars sery pointed, a modification necessary to secure the prehension and apeedy destruction of their agile and slippery prey. In the length of the intestines there is a difference between the Common Otter and the Sea-Otter; the latter, like the seal, has very long intestiaes. Sir Everard Home gives the length of the intestines of the Ses-Otter as twalve times that of the animal; but those of tho Common Otter as only three times and a quarter the length of the animal. ('Pliil. Trans.') Professor Owen however informs ub that in a female Common Otter dissected by him, the inteatines were 9 feet 6 inches, the body from nose to vent being 1 foot 5 inches; and we should expect, physiologically, to find longer intestines in a Common Otter than in one of the land Ferce.

The kidney is lobulated or conglomerated, consisting, in fact, of an aggregation of small kidneys, connected by cellular substance; but these small kidnejs are not so numerous as in the seal and porpoise. (liome, on the 'Sea-Otter,' 'Phil. Trans.'). In the Museum of the Royal College of Surgeons (Physiological Series, No. 2519) is a preparation exhibitiug the reproductive organs of a male of the Common Otter.

The genus Lutra has the head compressed; eycs rather large; ears very short; whiskers very stiff; tougue rather rough; body very much lengthened; legs short; the feet with five toes and webbed; tail long, stout, fattened horizontally, aud covered with short hair.

$$
\text { Iucisors, } \frac{6}{6} \text {; canines, } \frac{1-1}{1-1} ; \text { molars, } \frac{5-5}{5-5}=36
$$

L. vulgaris, Erxleb. (Mustela Lutra, Linn.). This, there can be littlo doubt, is the "Evuסpls of Aristotle and the Grecks, and the Lectra of the Romans. It is the lodra, Lodria, and Lontra of the Italians; Nutrin and Lutrn of the Spanish; Loutre of the French; Otter and Fisch Otter of the Germans; Otter of the Dutch; Utter of the Swedes; Odder of the Danes; Dyfigi of the Welsh; Balgair, Cu-domn (Brown Dog), and Matadly, of the Northern Celts; and Otter of the Euglish.
The head and nose are broad and fat ; neek thick ; body elongated; tail broad at the base, compressed horizontally, and tapering to a point; the eyes, which are not larac, aro placed comparatively near to the nose; the ears are very short, and the anditory opening rather natrow; the moutli is small, and the lips are capable of being firmly closed together; the whiskers are very long; the legs very short, strong, stout, and muscular; the 5 -toed feet are furnished with strong broad webs, like those of water-fowl which have these accessories best developed. Hence Somerville terms the Otter 'goose-footed.'
The colour is brown (deepest on the upper parts), with the exception of two small patches of whito on the lips, ono on each side of the nose.
This species varies much in size. The leugth of one sent to Mr. Pell from Sutherlandshire was 2 feet 1 inch sad 6 lines. Mr. Macgillivray notes the length of two males; one measured 42 inches, and the other 39 inches. By the same nuthor, the length of a female is given at 40 inchos. These pucasuremonts are from the nose to the point of the tail. Mr. Bell atates that the usual weight of a fine male Engliah Otter is from 20 to 24 lbs , aud that of the female about 4 lbs. less; adding however that Peunant records one found, in 1791, in the river lea between Stratforl and Ware that weighed 40 lbs.
The matural food of the Common Otter is fish, for the chace and capture of whiel its whole frome is beautifully adapted. How nileutly is the water entered! Tho eyes are so placed that whetber tho animal is swimming below its prey, behind it, above it, or beside it, their situation, or, at most, the least motion of the head and neck, brings it within the sphere of the pursuer's vision. The whole frame work of the animal, its short fin-like lege, oary feet, and rudder of a tail, enable it to make the swiftest turns, may, alinost bounds in the water, aceording as the rapidity of its agile prey demands a sudden downwaril dive, an upward spriog: or a side snap. The short fur, which is close and fine, kepp the boily at a proper temperature, and the longer and outer haira lirected backwards cuable it to glide

through the water, when propelled horizontally by its webbed feet beneath the surface, noiselessly and speedily. Easy and elegant in its motions, there are few objeets mere attractive in menageries than the pond, especially if it be kept clean and supplicd with clear water, wherein the Otter is seen to hunt its living prey. Wheu it has seized a small fish, it instantly leaves the water and devours it, begiming with the liead, whilst the body is held between the fore paws. Larger fish are licld down by the paws, and the head and tail are ofteu left uneaten. The havec made by these animals iu the rivers and ponds is great; for they will go on killing, and eat but a small portion of each fish, if it be large, when they find pleuty of prey. When fish is scarce, and it is pressed by hunger, Mr. Bell states that the Otter has been known to resort far inland, to the neighbourhood of the farm-yard, and attack lambs, sucking-pigs, and poultry. Mr. Macgillivrsy tells us, also, that it has been known to attack young domestic animals, and the latter zoologist found the stomach of one, which was killed in June, filled with a curious collection of larvex and earth-worms. The period of gcstation is said to be nine weeks, and the number of young produced varies from three to five. The Otter's places of refuge near rivers and lakes are beneath the roots of trees or in holes.

But it must not be suppozed that the Common Otter is, as it has been asserted, confined to the fresh-waters. They are knowu to frequent the sea in the north of Seotland, and to hunt far out. In the south of England (Connwall) the Otter will go a mile from the shore in the summer and good weather after its prey, aceording to Mr. Couch. On the sea-shore, rocky coves with scattered blocks, hollows, and eavities under large stones are its haunts. These Marine Commou Ottcrs must not be confonnded with the Sea-Otter (Enlydra).

That the Common Otter is capable of demestication and attachment we have ample testimony. Albertus Magnus, Aldrovandus, Gesner, and ethers attest this. Every angler will remember the passage in Walton, where good Mr. Piseator is anxious to ponsess himself of ene of the young otters which the liuntsman, after the death of the 'biteh otter,' had found:-"'Leok you,' says the huntsman, 'hercabout it was she kennelled; look you, here it was indeed, for here's her young ones, no less than five; come, let's kill them all.' 'No,' exelaims I'incator, 'I pray, Sir, gave me oue, and I'll try if I can make her tame, as I know sn ingenious gentlcman in Leicestershire, Mr. Nich. Seagrave, has done; who hath not ouly marle lier tame, but to eateh fish, narl do many other things at pleasure." Buffon, who could be as bard of belief in some joints as he was credulous in otherr,
disbelieves the Otter's eapability for domestication. The teatimony above notieed has beeu confirmed by a cloud of modern witnesses. Goldsmith mentions an otter which went into a gentleman's pond at the word of command, drove the fish up into a comer, and having seized on the largest brought it out of the water to its master. Daniel, Bewick, Shaw, record instances of the animal's docility in this way. Mr. Bell and Mr. Macgillivray both corroborate the fact. The latter has collected the following anecdotes:-"Mr. M'Diarmid, in his amusing 'Sketches from Nature,' gives an aceount of several domestieated otters, one of which, belenging to a poor widow, when led forth planged into the Urr or the neighbouring burns and brought eut all the fish it could find. Auother, kept at Corsbie House, Wigtonshire, evinced a grest fondness for gooseberries, fondled about her keeper's feet like a pup or kitten, and even seemed inclined to salute her eheek, when permitted to carry her freedoms so far. A third, belonging to Mr. Monteith, of Carstairs, was also very trme, and though he frequently stole away at night to fish by the pale light of the moon and associate with his kindred by the river side, his master, of course, was too generous to find auy fault with his peeuliar mode of spending his evening hours. In the morning he was always at his post in the kennel, and no animal understeod better the secret of keeping his own side of the house. Indeed his pugnacity in this respeet gave him a great lift in the favour of the gamekeeper, who talked of his feats wherever he went, and avowed besides, that if the best cur that ever ran 'only dsured to girn' at his protegé he would soon 'mak his teeth meet through him.' To mankind however he was much more civil, snd allewed himself to be gently lifted by the tail, though he objeeted to any interfereuce with his snout, which is probably with him the seat of honour." They are however dangerous pets; for, if offended, they will bite grievously.
The capacity of the Otter for domestieation being proved, there is no doubt that the animal might be trained to cateh fish or assist in fishing. Fer this purpose Mr. Bell states the following method has been recommended :-They should be procured as young as possible, and be first fed with small fish and water. Then bread aud milk is to be alternated with the fish, and the proportion of the former gradually increased till they are led to live entirely on bread and milk. They are then taught to fetch and carry, as dogs are trained, and when they are brought to do this well a leather fish stuffed with wool is employed as the thing to be fetched. They are afterwards exercised with a dead fish, and chastised if they attempt to tear it. Finally they are sent into the water after living fish.
As an article of food, though the flesh is rank and fishy, the Otter was net rejected by the Roman Catholics. Their church permitted it to be eaten on maigre days; and Peunant saw one in the kitehen of the Carthusians near Dijou, under preparation fer the dianer of the religious of that rigid order, who, by their rules, are prohibited during their whole lives from eating flesh. Mr. Macgillivray states that he knew a man in Harris who procured a considerable number every year, when the skins were more in request than now, and who generally ceoked the flesh, of which Mr. Macgillivray onee partook with the family. It was "dark-eoloured, rank, sapid enough, but not agreeably so.;" aud under the skin was a layer of fat, as in the Seals, which might, he adds, render it pleasant food to a Greenlander or starving Ilebridiza.

Earosean River-Otter (Lutra eqlgaris).
Before refcring to the undoubted varieties of this species, it is uecessary to notice an Irish Otter, which Mr. Ogilby has elevated to the rank of a species, under the name of L. Roensis, on account of the intensity of its colouring, which approaches ncarly to black botl on the upper and under surface; of the less extent of the pale colour beneath the throat, as eompared with the English L. vulgaris; and of some differenee of the ears, and in the proportions of other parts. The inarine habits of the animal, which is fouml chiefly in hollows and
caverns formed by seattered mases of the baaltic columns of the east const of Antrim, where a price is set upon its head, in consequence of its destruction of the malmon, strengthen Mr. Ogilby ju this opinion, frum which Mr. Bell differs, observing that Mr. Ogilby states that he had not had an opportunity of comparing it with the Common Otter, that he (Mr. Bell) does not find in the stuffed apecimen presented by Mr. Ogilby characters sufficiently distinct to lead to tho belief that it is move than a very dark and handsome varicty, and that two skins of Ketland otters (which are equally marine in their habits) presented to him (Mr. Isell) are almost as dark-coloured; Mr. Bell adda that these skins aro larger than those usually found in England, and that the fur is nearly as fine at thoso imported from America.
The variety spotted with white is supposed to be the 'King of the Otters' of tle Scotch rulgar, who hold that it bears a sort of charmed life, io so far that its denth is nover unacompanied by tha desth of a man or some other living creature. The skin is considered precious as an antidote against infection, wounds, and the dangers of the sea. Une of these spotted otters is in the Museum at Paris, near which place it was found. Mr. Macgillivray says that ho has heard of whito ottery, but had uever eeen an alhino.

In the older sunals of aporting in this country otter-lanuting holds no inconsiderable place. Somerville describes it at some leagth and rith much unction in his fourth book ('Chace') towards the ond. It is uow fast dying away, but is still kept up in some places, as in Wales and Scotland. '1'he pretty vignette at the close of Mr. Bell's interesting history of the Otter was taken as one of the memoranda of a day's eport in Glanorgnnshire. Mr. Macgillivray informs us that Mr. Lomare hunted the Dumfriesshire rivers in 1833, 1834, and 1 S 35 , and that Lord John Scott keeps a pack of otter-hounds for the streans in l Roxburghshire.
The Common Otter is found generally throughout Europe.
L. Nuir has the fur deep-chestnut, lightest on tho sides; lower part of the neck and cheeks, as well as the throat, reddish bright-brown; above the eyo a ruddy yellow or yellowish-white spot.
This is the Nir-nayie of the people of Pondicherry, and is probably the species scen by lishop Heber, who passed a row of nine or ten large and very beautiful otters, tethered with straw collars and long etriugs to bamboo stakes on the banks of the Matta Colly. "Some were swimming about at the full exteut of their atrings, or lying half in and half ont of the water; others were rolling themselves in tho aun on the sandy bank, utteriug s shrill whistling noise as if iu plag. I was told that most of the fishermen in thia neighbourhood kept oue or more of these animsls, who were almost as tame as dogs, and of grent uso in fishing; sometimes driving tho shoals into the nets, sometimes bringing ont the larger fish with their teeth." Another proof, if any were wanting, of the feasability of taming these aminsls aud rendering them useful to man.

It is a native of the East Indies. Colonel Sykes notes, in his list of Mammalia obtained in Dukhun (1)eccan), "Lutra Nair, F. Cuv., Juhl Marjur, or Water-Cat of the Mahrattas. The Otter of Dukhun differa ouly from the Nair in wauting the white spots over the eges, in laving a white upper lip, and in being somewhat larger." ("Kool. I'roc.,' 1830.31.)
I. Capcnsis (genus Aonyx of Lesson), the Cape Otter, has the fur noft, full, and thick, chestuat-brown, deepest on tho rump, limbs, and tail, brighter on the sides, and brownish-gray upon the heal ; under part of the body whitc. Length 2 feet 10 inchea from the muzale to the tail, which is 1 foot 8 inches.
M. lesson allows that this species, which he lans elevated to the rank of n genum, possesses the same general characters as the Lutree, such as the dentary aystem and form of the body; and makes the difference solely consint in the form of the foct nad toes, which he yaym are lasedly joined by a membrane. He atates that tho aecond toe would acem coujoined to the third throughout its first articulation. These toes are both more elongated than the succeeding ones, and all the toes aro without claws, or rather, a vestige of a rudimentary nail is only observed on the secoud and third toes of the posterior feet. He recorla the species as Aonyr. Delalamlii (L. inunguis of G. Cuvicr and F. Cuvier), 'Dict. Sc. Nat.' but Cuvier, in his last edition of tise '1Legue Animal,' writing on the Cape Otter((I. Capensis, F. Cuvier), remarks that the white of the throat, the aiden of the heal, and of the neck, is more pure than that of the Javancas Simung (L. Leptoner, Horstield), and that there is some of this colour at the end of the nose; but, he addu, what most diatinguishes it in that (at a ecrtain age at lsant) it has no nails, a charseter on which M. Lesson established his genus Aony.r. Nevertheleas, continues Cavier in conclusion, young iudividuald have been brought from the Cape which have naila, and it remains to be proved whether these are of the mame npecies. This Grecica haunta the alt poola of the seashores of the Cape, and lives on Gish and crustaceans.
I. Canadenain (Sabine), the Canala Otter; the loutre de Canala of linfon; Bandoter of Warden; Common Otter of lenmant ("Aret. Yousl.'); Lutras Brasiliensie of Harlan; the American Otter of Godiman; Neckeek of the Cree Indiaus; and Capucen of the ialiabitants of Nootka.

Sir John Jichandson, who gives these nynonyms, states suecinctly the various opinion of authors as to this apecies, and concludea ly following Colonel Siabine' opinion that it is peculiar to the northern districts of America.

It has the fur above and below shiping brown, and inuch resembling that of the Beaver. Size much larger than that of the European Otter, Lutra vulgaris. Length from nose to tip of tail (which is 18 inches) about 5 feet.

In its habits and food Sir John Richandson atates that the Canada Otter resembles the European apecies. In the winter senson it frequents rapids and falls for tho advantage of opon water; and whon its usual haunts are frozen over it will travel to a great distance through the snow in search of a rapid that bas resisted the frost. When seen and pursued by the hanters, as it is on these journeys, it throws itself forward on its belly and slides through tho anow for several yards, leaving a deep furrow behind it. This movernent ia described by Sir John as being repented with so much rapidity, that even a swift runner on snow-shoes bas much trouble in overtaking it. It also doubles on its track with much cunning, sad dives under the snow to clude its pursners. When closely pressed it will turn and defend itself obstinately. When Sir John Jichardson's party wore at Great Bear Lake, in the spring of 1896, these otters robbed their nots which had been set under the ice a few yarda from a piece of open water. They generally carried off the heads of the fish, leaving tha bodies sticking in the not.

The female brings forth one litter in the year, consisting of two or three.

The Mackenzie and other rivers nearly to the Arctic Sea are tho common residence of this otter. There appears however to be no difference between the skins obtained on tho shores of the Pacifio and those in the neighbourhood of Hudson's Bay. ('Fauna BorealiAmericana.')
The fur is valuable, and a considerable article of commerce; jt varies with the scason. In summer the hair is very short, and then it is almost black; in winter it becomes a rich reddish-brown, with the exception of the grayish spot under the chin. Tha fur is nearly as fine as besver-wool, but not so long, and consequently ia not ao well sdapted for felt. Sir John Richardson says that 7000 or 8000 are annually exported to England.
L. Brasiliensis (Ray). It bas the fur short and close, of a bright ruddy ycllow deepening into chestnnt towards the extremity of the limbs and tail; lower part of the neck and throat pale yellow. Length, male, 3 feet $6 \frac{9}{4}$ inches; tail, which is very thick, 18 inches. The largest female possessed by D'Azara was 34 inches long, includiag the tail, which was 15 iuches. Another measured 36 inches, 12 inches for the tail.
M. Lesson states that this is the only otter which is deprived of tho glandular apparatus round the nostrils.
This is the Lobo de Rio (River-Wolf) of the colonists; but D'Azars observes that it is wot n wolf, but nu otter, belonging to the same fnmily an the Earopean species, from which it differs; and be accordingly calls it Nutria. It is tho Mustela Lutra (Brasiliensis B) of Ginelin.

D'Azara says that this speciea lives in troops, which sometimes, rising to the surface of the water, lift their hesds and bark like dogx, with a hoarse voice, iu a menacing and snapping manner, without however injuring voyagers or swimmors. Each family seema to possess a separate domain. It spends nearly as mnch time in the water as it does upon land, where it devours the fish which it has taken, and rears its young in holes which it excavates in the bayks. The same author was informed by the Payaguas lndians, who sail continually up aneI down the river, and are better acquainted with this animal than others, that the female brings forth two at a birth covered with hair, and that many females bring forth and rear their young at the same time and in tho same place, their usual resort throughout the year. The motions of this otter are generally slow, nud it dregs, as it were, its belly and muzzle along the ground: when it runs it is not at all swift.

D'Azara further states that a neighbour of his purchased a young whelp which at aix months old was 34 inches long. It was permitted to run loose about tho house, and was fed with fish, flesh, bread, mandioca, and other food, but it preferred fish. It would walk into the ftreet and return, knew the people of the houge, came when called by name, and would follow then like a dog, but its short legs soon failed it, and it soon grew weary. It would amuso itself with dogs and cats as well as with their masters; but it was a rough play-fellow, and required to be treated cautiously, for it bit sharply. It never harmed poultry or any other nuimal excepting sucking-pigs, which wero not anfo within its reach, and it would have killed them if it had not been prevented. It entered all tho rooma, and slept always below the bed, was very cleanly, and always visited ono particular spot for the deposit of its excrements.

According to D'Azarn it inhabits the Jakes, rivern, and rivulets of Paraguay, who at first stated that he did not believe that it entered anlt-water, and that its geographical mago did not extend to the river 1'lata; but in his French abridgoment ho states that the species is found in that river.

From M'Culloch's lists it appears that the number of otter-skins exported from Quebec in 1808 amonited to 7230 , at 11 . per akin. In 1826 tho numbers were less, 1698 having been exported from that placo in that year. In $1829,14,862$ wero imported into lBritain: of these 39 came from Germany, 13,104 from the British North American
colonies, 1707 from the United States, 2 from Buenos Ayres, and 49 from all other places. They were almost wholly re-exported to Germany and the Netherlands. Mr. Bell states that the number of otter-skins imported into this country in 1830 was 713,115 ; in 1831, 494,067 ; in $1832,222,493$; and in 1833 only 23,889 . In 1850 the importation did not exceed 18,000.

Fossil Otters.-Jäger notices the remains of a Lutra in the Bean iron-ore (Bohnerz) of the Rauh Alp (tertiary) ; and Messrs. de Serres, Dubrueil, and Jean-Jean record an extinct species (L. antiqua) in the bone-caverns of Lunel-Vieil. The form was also detected in the Puy-de-Dome by Messrs. Croizet and Jobert. The remains of L. vulgaris are common in the fens of Cambridgeshire.

Enhydra-Dr. Fleming gives the following generic character of the Sea-Otter under the above name:-Six incisors above, and four below. Tail much shorter than the body. No anal scent-bags.

In Cook's ' Voyage' it is stated that a young Sea-Otter was brought on board with six lower incisors. Steller and succeeding systematists give four as the number in the lower jaw. Sir John Richardson suggests that two of the lower ones may drop out before the animal becomes adult.

Ths fur is thick, woolly, and very soft, with the addition of a few silky hairs of a lustrous black; most of the upper parts are of a deep velvety maroon-brewn, and the anterior parts silvery-gray. Body elongated; tail short and stout; hinder feet very short.
E. marina is the Sea-Beaver of Krascheninikoff; the Sca-Otter of Cook, Pennant, Meares, Menzies, and Godmsn; the Kalan of the Kamtchatkadales; Mustela Lutris of Linneus; Lutra marina of Steller, Frxleben, and Harlan; Loutre du Kamtchatka of the l'rench.

Sca-Otter (Enhydra marina).
Captain Cook, in his last voyage (chapter on King George's Sound Nootka), says: "It might have been sufficient to have mentionsd that this animal (the Sea-Otter) sbounds here, as it is fully described in different books, taken from the accounts of the Russian adventurers in their expeditions eastward from Kamtchatka, if there had not been a small diflerence in one that we saw. We for some time entertained doubts whether the many skins which the natives brought really belonged to this animal ; as our only reason for being of that opinion was founded on the size, colour, and fineness of the fur; till a short while before our departure, when a whole one, that had been just killed, was purchased from some strangers who came to barter; and of this Mr. Weber made a drawing. It was rather young, weighing only 25 lbs.; of a shining or glossy black colour, but many of the lairs being tipt with white gave it a grayisle cast at first sight. The face, throst, and breast were of a jellowish-whits or very light-brown colour, which in many of the skins extended the whole length of the belly. It had six cutting teeth in each jaw ; two of those of the lower jaw boing very minute, and placed withont, at the base of the two middle ones. In these circumstances it seems to disagree with those found by the Jussians, and also in not having the outer toes of the hind feet skirted by a merabrane. There geemed also to be a greater variety in the colour of the skins than is mentioned by the describers of the Tussian Sea-Otters. These changes of colour certainly take place at the rlifferent gradations of life. The very young ones had brown hair, which was coarse, with very little fur underneath; but those of the size of the entire animal which came into our possession, and just lescribed, had a considerable quantity of that substance; and both in that oulour and state the Sea-Otters seem to remain till they have attained their full growth. After that they lose the black colour, and assume a deep brown or sooty colour; but have then a greater quantity of very fine fur, snd scarcely any long hairs. Others, which are suspected to be still older, were of a chestnut-brown; and a few skins were sean that had even acquired a perfectly yollow colour. The fur of these animals, an mentioned in the lusaisn accounts, is certainly aofler and finer than that of any others wo know of ; and therefore the cliscovery of this part of the continent of North America, where so
valuable an article of commerce may be met with, cannot be a matter of indifference."
The Sea-Otter haunts sea-washed rocks, lives mostly in the water, and approximates to the seals more than to the otters in its habits. The food is fish. The female brings forth on land, and notwithstand ing the general marine habits of the animal it has been occasionally seen very far from the shore.

It is found in the North Pacific, from Kamtehatka to the Yellow Sea on the Asiatic side, and from Alaska to California on the American coast. (Richardson.)
The fur was eagerly sought after, and is still prized, but not so highly as formerly. Coxe quotes Pallas for the fact that the old sud middle-aged sea-otter skins were sold at Kiachta by the Russians to the Chinese at from 80 to 100 roubles a skin, or from $16 l$. to $20 l$. each Sir John Richardson observes that the trade was for a considerable period in the hands of the Russians, who, soon sfter the discovery of the north-west coast of America by Behring and Tschirikow, sent mercantile expeditions there. The passage above quoted from Captain Cook's "Third Voyage' drew the attention of the English, and both private merchants and the India Company sent vessels to collect skins on the American coast and transport them to Canton. Pennant's hint at the profitable trade which might be carried on with China by a celony, were it possible to penetrate to that part of America by means of rivers and lakes, seems not to have been lost. Sir Alexander Mackenzie having traversed the centinent of America and reached the Pacific, his partuers in trade established fur ports in New Caledonia and a direct commerce with China; but, as Sir John Richardson remarks in couclusion, the influx of furs into that market soon reduced their price.

LUTRARIA. [Pyloridea.]

LUTRICOLA. [Pyloriden.]
LU'ZULA, a genus of Plants belonging to the natural order $J_{u n-}$ cacece. It has a 1 -celled 3 -valved capsule, without dissepiments, with three seeds at the base of the cell. Several species of this genus have been described.
L. sylvatica, the Great Wood-Rush, has linear-lanceolate hairy leaves, the panicle sub-cymose, doubly compound; peduncles elongated; segments of perianth bristle-pointed, as long as the ovatc mucronate capsule; filaments very short; seed minutely tubercled at the end. It is the Juncus sylvaticus of Hudson. It has an underground woody stem.
L. Fosteri has a 1 -flowered crect peduncle, with both flower- and fruit-style equalling the stamens; capsules acute; seeds with a straight blunt crest.
L. Borreri has a peduncle 1-2-flowered, the upper ones reflexed after flowering; style equalling the stamens; filaments about half as long as the anthers. The seeds are as large as those of L. Fosteri, and with a loug crest folded back upon the seed.
L. pilosa has peduncles 1-3-flowered; capsules bluut, scarcely as long as the periauth; seeds with a falcate crest.
L. campestris has a panicle of 3 or 4 ovate, dense, sessile, or stalked clusters; filaments much shorter than the anthers; seeds nearly globular, with a basal appendage. The root of this species has a popular reputation as a diuretic, and is used in China and the north of Europe.
L. multiflora is known by the filaments heing about as long as the authers; seeds nearly twice as broad, with a basal appendage.
L. spicata has a panicle with an oblong lobed nodding spike. It is found in mountainous districts.
L. arcuata has a sub-umbellate panicle of few 3-5-flowered clusters Cl long drooping peduncles; the stam is slender, 2 to 5 inches long. It is found on the highest summits of the Cairngorum and Sutherland Mountains. All the species here described are British.
(Babington, Manual of British Botany.)
LYCAON. [Hyens-Dog.]
LYCESTA, Wavigny's name for' a genus of Ciustacea which M. Desmarest views as coming very near to the genus Mcera of Leach.

LYCHNIS (from גúXvos, a lamp), a genus of Plants belonging to the untural order Caryophyllacere, and to the sub-order Silenew. It has a 5 -toothed naked calyx ; 5 petals, clawed; 10 stamens; 5 styles; the capsules 1 -celled, or half 5 -celled, opening at the top with 5 or 10 teeth. The species are smooth, hary, or woolly herbs, with terminal corymbs of flowers, rarely solitary.
L. Chalcedonica, the Scarlet Lychnis, is a smoothish clammy plant, with corymbese flowers in bundles; the calyx cylindrical, clavate, ribbed; the calyx 2 -lobed, the carpophore long; the leaves lanceolate, slightly cordate at the base, and clasping the stem. This plant, which produces scarlet, rose-coloured, or white flowers, and is a great favourite in our gardens, is a native of Siberia aud Japan. Several varicties of this plant have been named.
L. grandiflora is a glabrous plant, the flowers solitary or ternate, terminal and axillary; the calyx terete, clavate, ribbed; the petals lacerated; carpophore elongated; the leaves ovate, almost sessile. It has large beautifu! scarlet flowers, and is a native of China and Japan.
L. Flos Cuculi, lagged Robin, has deeply 4-cleft petals, with a very short carpophore. It has rose-colomred petals, and is an abundant plant in the moist meadows and pastures of Great Britain, as well as the whole of Furope.
L. resperfina, White Compuon, ham the petals labf.bifid, and the calss-tech of the fortile flowers linear-lanceolate, elongated; the capsule conical; the teeth ereet. It in a common jlant in the hedge-bankn of Fiurope. Thim and the following species are froquently regarded as varielies, amd then named 1 . dioica.
L. dourna, leal Campion, has the petals half-hiful; the calyx-tecth of the fertile shower triangular; the enjsule nowrly globular: the teeth reflesed.

The other l3ritish species of the genus Lyychnianare-L. Githago, the Corn-Cockle, a pretty plant hlossoming in corn-fields from June to September; R. alfind, found on the mombtans of Forfarshive; nud C. V"iscoria, a rare jlaut.

Many of the forcign species mo cultivated in our gardens. They thrive well in a light rich lonmy boil, and may he propagated by cuttings or seed.
(1) on, Hichlanyilom Plants; Babington, Manual of British Botany.)

LiClCM, a genus of Plants belonging to the natural oriler Solanaceer. It ham an weenhate calya regularly 5-toothod, or irregularly : Wacleft; permanent corolla fummel-rhaped or tubular ; limb 5 . or 10 -cleft, or toothed, imbricate in ustivation, sometimes plicate; stamens ${ }^{5}$, usually exsertend ; filaments bandeal ant widencd at the base; stigma feltately ilepresecul, or enpitate, bisulente; berry ronndish, 2 celled, propped by the permanedt enlys; placeutar adnate ; seeds numerous, reniform. The apecies are trees or ahrubs usually spinose. Corallas white, ycllow, roseculoured, purple, blue, or scarlet.
L. Fiurunam las erect loose bratches; buds spinescent; leaves fasciclet, obovate. lanceolate, obture, or ajnehulate, bent obliquely; tlowere twin or folitary; corvila funnel-ghaped; atamens exserted, but shorter than the limb. It is a native of the south of Nurope and the north of Africa: in the Grecinn lslands common in lediges, but seareely indigenous. The calys is 5 -cleft, mptured at the aide: the corollas pale violet, reticulated with rel veins; tube greenish. Clusius say that the young shoots are eaten in Spain with oil and rinegar.
L. Barlurmen has depentent brauches; buds apiny; leaves lanceolate, that, giabrous, neute; flowers twin, extra-axillary, pedicellate; corolla funnel-shaped; stausena exserted, about equal in length to the limb. It is a mative of the north of Asia, Africa, and month of Europe. There in a varicty having pale corollas and yellowish red berries.
There are about 30 specics of this genus describen, many of which are to he found in our gardenm. Ihey are commonly known by the aame of lox-Thorn.

1. I'ClC'M. Jany ancient authors, and among others Dioscorides, lescribe under the above name a snbstance a used in medicine, which is stated to be of two kinds; one obtained from lycin and Cappalocin, and the other from India. The former is said to be the proluce of a thorny shrub called flyacactutha. The latter is stated to be more ralunble and ctlicacious as a medicine, and to be produced also by a thorny ghrub which is called Lonchitis.
Mont morlera suthors have stated these planta and the substance they produce to lie totally unknewn others consider species of Jhamnus, or the Common Box, to be alluded to. Prosper Alpinus thought Bericris Crefica to be one of the plants; while Garcias ab Orto thonght Catechu to be the substance, and Acacia Cutechu the flant yideling it it in possible that some species of Rhamum, as \%. infccturius, of which both the root, wood, and berries possess medicinal properties, and which are in the preaent dny used for dyeing yellow, may have formed one of the kind of Lyeimm, ns it is common in the conntries where the fint kind is said to lave been produced, and some meciom of hammus vere by the olfer botanists called Lyrium. Though there is nucertainty abont the hyeium of Asia Ninor, that of ladia fecunel to lave been quite unknown matil the publication of a japra' 'On the Jycium of Dioscoriden,' by Dr. Royle, in the "linnacan Society"s Tansactiona' for 1s33, where it is atated Har: Niere in no proof that Catechus was the Aúntov'swonán (Lycium Indirum) of the anciouts: in fact in incompatille with the evidence alluced on the auloject from Orimbal writers. The Greek author wh modicine laving becal tmandatel into Arabic, num from this Janguage into lernim, and therer, wath mulitione, forming the works now in new in India, we may expret to find in them anme trace of Lycimm ; not in fact in that called Maklana-al. 1° dwioh, lonufyon is nentioned as
 lawfyon in cridently written fur laokyon, througla an error of the tranacriber in a diacritical print, in the ann" way that filafoos (Philip of Macedon) lam lecen changed in momo of these work into Filakous. Thin is furtlier evillent indeefl from referoing th the latin tramsationa of tempion and Avicema, Where lladat mul Fexd.Zuhuruj are
 or Herziar (the namo word as Hadal) in dencritued an leing of two kinde: one from India, of which the llindon mame ja Jusot; and the other fron Atabin. The leraian mane Feel \%uhreh is qranalatal in our Lowe dictionarjen 'Imosthorn,' that in, f'yracomber. 'The hest kutul of Jhame in mad, in the Makhzun-nl- Itwinh, whe brought from

 lenmed that looth the woml Dar.llulh and the extact linnot were imported into the phaing of India frum the llimalnyas On travelling in thene monntain, and on wishing to be shewn the plant which
produced the wood called lyar-lluld an well an that from which the liusot was procurod, speciea of larberry were immediately pointed out, nud it was stated that both the wood and the extrset wero procured indifferontly from Berberis Asiatica, B. asistata, B. Lycium, and 13 . jinnala. On cutting into the wood of each, and hnving some couverted into extract, be fonnd both to correspond in every respect with what he had bonght in the plains uuder the name of Dar.lfold and Rusot. The estract Rusot is procurable in tho bazzara of India, being much employod by the native practitioners of medicine in India, as an external application rubbed over the swollen eyc-lid cither simply or in combination with opium and slum and a little water or oil, both in incipient and chronic inflammation of the eye. The wood of larborry being employed both in Finrope and Indian an n yellow dye, it has been suggested by Mr. E. Solly, in a paper read before the liogal Asintic Society, that the root, wood, or extract might be imported from India for the use of the manufacturen of Europe. This notice may appear dispropertioned to the importance of the anbject, but it is interesting ns showing the knowlealge which the Grecks had of the products of India, at the same time that it proven the great extent to which the induence of their own work has spread.

LY'CODON, a genus of Ophidian Reptiles, of which L. Capensis, Smith (L. //orstokii, Schlegel), may be taken as an example. This snake in shining greenish-brown above, head without variations, and the scales along the middle of the back less distinctly marked with white apectas than thoso of the sides.

Dr. Smith, who recorded this species in 1S31, in tho 'South African Quartedy Journal,' figures and describes, in the 4th mumber of the 'Illustrations of the Zoology of South Africa' (1838), a variety of a shining blackish-green colour above, tinged with purple, the heal reticulated with white lines, nurl the scales white at the tips; greenish. yellow below; eyes livid-green. leagth from nose to thil 12 inches; of the tail 2 inches.
The wricty above dencribed was found aumong deeayed wood, near a small stream, immediately beyond kurrichane, about $25^{\circ} \mathrm{S}$. lnt.
"When," continues Dr. Smith, "by the removal of some of the rotten masses, the reptile was exposed, it moved slowly among the remaining ones in searels of a place of concealment; and when it was intcrrupted in its shlvance, it eimply coilewl itself up withont manifesting any diaposition to resist the opjosition offerod; a similar course I had previously obretwed others of tho sane species pursue when attempts were made to secure them; and neither fid the one here describel nor the others ever movo with any considerable mpidity, nor appear anuch in fear of their assailants. All the specimens which I have seen of this species were obtained in damps situations, and never remote from localitien where they conld rapilly nod without much excrion conceal themselves if necessary; and in the latter respect they resmblomost of the innocuons minkes of South Africa, which are not embowed with the powers of rftecting rapid movements."

WCOPJiRnACLAN, or GASTLROMVCETES, an order of Planta belonging to Lindley's Allinnce Pungales, characterised by haring the spores generally quaternate on distinct sporophores; hymenium incloaed in a peridium. [FLsal.]

J, MOPlilinON, a genus of Fungi, emitting when burat, either by violenece or matural dehircence, a quantity of dust-like seeda or apores, Whenee the species are commonly called Puff-izalls. The old botaniats enllected untor this name n varicty of plants, very different from enels other in many respecta, nlthough agrecing in the circumstance junt mentioned; recent writers have distinguished them as so many dintinet genera The mhly two which it in necessary to mention here are the Common Putf Balla, which burst irregularly, and the Starry Poffllalla, which aplit in n definite atellate mamer." "'hey are each inlabitants of meatlows, pastures, woods, lawna, \&e., nud nome of the speciea are excceangly common. When the Common l'utfliall, L. grimmatuin, firet ajpeara, it forma a whitish ball, looking like a common catable mushroom, but by degrees it changea colour, becomes brown, and tenring irregulaly at the apex, diseharges a elond of brownish Just, consiating entirely of its apores. The Geastera, Starry l'ufflallu, are much lege common; instead of burnting irregularly at the apex when ripe, their outer rind separates into a definite number of loben, which apread open, curve backwards, and at last elerate upon their centre a bag containing the spores. No use has eper been mate
of any of the Lycoperdons, except in the case of L. giganteum, a very large indehiscent species, often msny feet in circumference, and filled with a leathsome pulpy mass, which has been empleyed as a styptic, and for tinder.

LYCOPODIACE E, Club-Mosses, s natural order of Vascular Acrogens, consisting of plants with creeping stems or corms, which produce leafy brauches somewhat resembling Mosses. The leaves are small, sessile, and imbricated or verticillate; the fructification occurs in the axil of leaves and often in a spike-like form, and censists of kidney-shaped 2 -valved cases, which contain sntheridian or spermatozoidal cells, and roundish or 4 -sided bodies called oophoridix, opening by two vilves, and containing four large spores. In the interier of the latter a pro-embryo is developed, in which archegonia are produced, and thereafter impregnation gives rise to the germiuating bedy. The species are natives beth of cold and warm climstes, and are abundant in the tropics, especially in insular situations. There are about 200 of them. Some have emetic and purgative properties. The pewdery matter contained in their fructification is inflammable. This family has an especial interest from its resemblance to an extinct race of gigantic plants found in the cosl beds, and called Lepidodendron.

Evidence is daily increasing which renders it probsble that a large proportion of the coal in this and other countries hss been deposited through the agency of plants belonging to this natural order, or closely allied to it. (See British Associstion 'Report,' 1854.) [Coal Plants; Lefidodendron; Lepidostrobl]
(Balfour, Classbook of Botany.)
LYCOPODITES. The affinity of many fossil plants to some of the various genera composing the Lycopodiacece is very distinctly pointed out by M. Brongniart, both in the 'Prodrome' (1828) and in the 'Histoire des Végétaux Fossiles.' Such of these as agree in the following chamcters are ranked under the titls of Lycopodites.

Branches pinnate; leaves inserted all round the stem, or in two opposite rows, not leaving distinct and circumscribed cicatrices. Several species are described from the coal depesits and oolitic formations. We give belew a drawing of part of Lycopodites falcatus (Phillips's 'Qeelegy of Yorkshire') from the Oolitic shales of Gristhorpe near Scarborough. [Coal Plants.]

a, leaf magnifed, to show the direction of the nervures.
LYCOPODIUM, a genus of Plants belonging to the natural order Lycopodiacece. It has I-celled 2 -valved capsules, containing powder, or 3 -valved, containing I to 4 granules.
L. claratum, Common Club-Moss, has scattered leaves, incurved, with a filamentous point; spikes stalked, 2 or 3 together, cylindrical; scales ovate, trisngular, membranous, finely incised, serrated. The stem is prostrate and long; branches short and ascending; spikes on long atalks, pale-jellow; scales on the stalks irregularly disposed in whorls. The powder contained in the spore-cases is highly inflammable: shaken out and collected it is employed under the name of Lycopode, or Vegetable Brimstone, on the Continent, in the manufacture of fireworks, and in pharmacy to roll up pills, which when coated may be put in water without being moistened. The plant has long been used as an emetic; a decoction of it is said to be serviccable in removing I'lica I'olonica.
I. annotinum has scattered lanceolate leaves; spikes sessile, solitary, terminsl ; scales roundish, with on alternsted point, membranous, and jagged. 'The branches are rather long and erect, eacli year's growth is marked by a spot where the lesves are adpressed. The spikes are cylundrical, grecuish-ycllow, not persistent. It is found on stony mountains in Cumberland and Caernarvonshire, and is common in the Highlands of Scotland.
L. alpinum, Savin-Leaved Club-Moss, has leaves in four rows, imbricated, acute, keeled, entire; spikes sessile, solitary, terminal; scales ovate-lanceolste, flat; branches erect, clustered, forked, level-topped. The stem is prostrate and long. Fertile branches, usually twice dichotomous, each division ending in a short cyliudrical yellowishgreen spike, rather thicker than the branch. It is found on elcvated mountains in Great Britain.
L. Selago, Fir Club-Moss, has leaves in cight rows, crowded, uniform, linear-lanceolste, acuminste ; capsules not spiked, but in the axils of the common lcaves; stem erect, forked, level-topped. The stem is mhort, erect, or slightly decumbent, densely leafy. Occasionally in sheltered positions the stcm becomes elougated. In the Highlands of Scotland it is made into an irritating ointment, which is applied with alvantage to the neighbourhood of the eycs as a coulter-irritant. Jnternally administered it acts as an emetic and cathartic. Linureus may the Swedea find the decoction serviceable as a detergent lution, and in destroying the vermin that infest cattle.
L. inundutum and L. selaginoides are the other British specics, both found in boggy places. The most remarkable species is the L. rubrum of Chamisso, Yatum condenado, Great Devil. Sil William IIooker,

NAT, HIST. DIV, VOL. LII.
who calls it L, catharticum, ststes that it scts most violently as a purgative, and has been administered successfully in Spanish America in cases of elephsntiasis. According to Vsstring, Club-Mosses are likely to become of importance in dyeing: he asserts thst woollen cloths boiled with Lycopodiums, especislly with L. clavatum, acquire the property of becoming blue when passed through a bath of BrazilWood. L. phlegmarice is reputed sn aphredisiac. L. squamatum is remarkable for its hygrometrical properties, rolling up into a ball when dry and expanding when moisture is applied.
(Balfour, Classbook of Botany; Babington, Manual of British Botany; Lindley, Vegetable Kingdom.)

LYCOPSIS, a genus of Plants belenging to the natural order Boraginacecesnd the tribe Anchusca, which have their 4 nuts placed on a hypogynous disc, with an excesated spacs surmounted by a tumid ring at their base.
Lycopsis has the calyx in 5 deep segments; the tube of the corolla curved; the limb oblique. The species closely resemble those of Anchusa, except in the sbove characters.
L. arvensis, the Bugloss, has lanceolste erose-dentate very hispid leaves; the calyx of the fruit is bell-shaped, erect. The flowers are small and blue. The whole plant is very hispid, with strong hsirs, each rising from a scaly tubercle. It is common in the fields and hedges of Great Britain and Europe.

LYCOPUS, a genus of Plants belonging to the natural order Labiate. It has a 4 -fid corolla, scarcely longer thau the equal 5 -toothed caljx; stamens 2; anther-cells parallel or ultimately divergent; 2 upper stamens wanting, or rudimentary, or rarely perfect.
L. Europerus inhabits wet ditches and sides of ponds, and is known popularly under the name of Gipsey-Wort, because gipsies are said to stain their skins with its juice. It has stalked ovate-obloug leaves, glshrous or pubesceut, opposite. Flowers small, in dense whorls. It is found on banks of streams and ditches in Great Britain.

LYCO'RIS, Savigny's name for a genus of Dorsibranchiate Annclida (Nereids, properly so called) of Cuvier.

LYCUS. [LAMPYRIDE.]
LYDIAN STONE. [Flinty Slate.]
LYGODYSODEA'CEA, a natural order of Plants closely allied to Cinchonacere. It differs from this order in possessing an ovary composed of two confluent carpels, 1-celled, with two ovules, and a single style; the pericarp, brittle, bursts in four directions frem the base, not adhering to the seeds, 1 -celled; two free placenter rising up between ths pericarp and the back of the seeds; two seeds pendulous from the apex of the placentr, with the embryo straight, folisceous, compressed ; the radicle short, iuferior. The species are twining shrubs, and have single stipules between the petieles.

This little order was constituted by Bartling, hut was afterwards examined by De Candolle, who thought there was no reason for sepsrating it from Cinchonuccoe. "According to De Candolle, what Bartling calls pericarp is calyx, and his seeds are carpels, and consequently all the most remarkable features of the order disappear, with the exception of the absence of the albumeu." (Lindley.) This is a subject that merits further iuvestigation. The only genus of this order is Lyyodysodea, of which two species, L. foetida and L. ciliria have heen described. They are both natives of Peru and Mexico.

LYME-GRASS. [Elymus.]
LYMNEA. [Limneade.]
LYMNO'REA, a genus of Fossil Zoophyta, proposed by Lamouroux ("Expos,' p. 79). Also the name of a genus of recent Medusa. (De Blainville, Actinologie, p. 290.)

LYMPH, the fluid found in that part of the absorbent system of the higher animals called Lymphatics. [Absorbent System.] The lymph, with the chyle [Digestion], is carried into the thoracic duct before being peured into the circulating fuid. When taken from the lymphatics it forms a colourless or yellow fluid, which is only red when blood-globules are accidentally mixed with it. Its reaction is usually alkaline; it coagulates from 4 to 20 minutes after its discharge. Floating about in it can be seen fat-globules and small granular bodies, such as are seen in chyle, and also the true lymph-corpuscle.

Lymph is very difficult to precure in its pure coudition-henee the varicty of descriptions whicls have been given of its character and coutents. The chemical constituents of the lymph in general are very similar to those of the blood without its red corpuscles. The substance which spoutaneously coagulates in it is perfectly identical with the fibrine of the blood. The albumen of the lymph has the same general properties as that of the blood. According to Geiger the lymph coutains a large quantity of the strongly basic albuminate of soda, which, in the absence of other alkaline salts, communicates no alkaline reaction to the solution, and even when cosgulated retains much alkali. Tho fat of the lymph is in small quantities, aud that fer the most part in a saponified form; chloride of sodium is the prepouderating mineral ingredient. Lymph contaius a larger amount of water than blood. In human lymph Marchand found 96.926 and L'Heritier $92 \cdot 436$ of water: in the lymph of horses the quantity has been found to vary from 92 to 98 parts in 100.

The elementary granulcs fonnd frec in the chyle and lymph are immeasurably minute. They are said by H. Müller to consist of fat and a protein cuvelope. They are very inuch more sbundant in chyle
than in lympli．lhestles these Fiolliker alescribes free nuclei from （）001＂＂－（N）2＂／in size：these aro found principally in the lacteals， und never in the tboncio duct．The Jymph－corpuseles，or eliylu－ corpuselem－for they both have the amme cinnacters－are found every． where in the lymph．Tiney are rounded pula cells $0.0025^{\prime \prime \prime}-0.0055^{\prime \prime \prime}$ in diameter．When exnmined in their antive floid they appear homo－ fenevas or tiacly granular，sod coutain on ustally indistinet transparent homogeneons wightlyglistening round uselens．On the addition of water the nucleus and conteots are readered turbid by a grauular deposit；nud on that of ncetio acin they become transparent and pale， axlibitiug the stronglogramulatel coutracted unelei with extreme distinctuesa，hursting at the manc time nad nilowing the contents to escape．This change also frequently takes place in the amaller cells ou the addition of water，preeded by the apperance of clear albumi－ nous drops lusize，quantity，and shape the ！ymph－corpuscles present diversities according to situation．With regned to tho origin of the lymph－corpuscles，l＇rufessor Kölliker says they are formod like cells，by the development of membraues uround free nuclei，n process which is effected，in the first place，in the commencement of the lymphatic vessels，but niso，nad chiefly，in the vasa efferentin of the lymphatic gland．Tu this is nded the multiplication of cells by division，which does not slway take place．
The importance of the lymph－corpuscle in relation to the blood has been pointed out by Mr．Wharton Jones in n paper on the＂Blood－ Corpuacle＇in the＇Philosophical Transactions＂for 1846．In this menoir lie sags ：－＂The lymph－eorpusele of the＂ortebrata is identical with the corpusele of their blood．In the Ovipnrous Vertebrata it vectur，like the corpuscle of their blood，in the three phases of granule－ cell，wacleated－cell，and free celleform nucleus．The only differeuce that exists between the corpusele of the lymph and the corpuscle in the blood in，ha regards the Oviparous licrtebrata，the little degree of coloration which the coloured stage of the nucleated cell as yet pre－ Nents；nad he regards the Mammifora，the mmall degree of coloration which the coloured stage of free cellieform nucleus has yet attained．＂ In the same paper Mr．Jones describes what has since been observed by other jarestigators，that the lymph－corpuscle presents n power of moving its cell－wall similar to that possessed by rome of the lower furms of plauts and mimals，as the Amabe，Fostochinece，\＆c．

From these observations it will be obvious that the old notion that the function of the lymphatics was to carry the offete natters of the tissues into the bloorl is erroneous．The chemical nualysis of the lyafil，as well as the uature of its morphological elements，forbids this view．Lehmann，it his＇Playsiological Chemistry；concludes from bin amalyses of the blood and lymph，that＂the function of the lymphatice consists not merely in conveying those parts of the tissues whieh have become effete into the blood，from which after undergoing furtber changen they are separated by the organs of excretion，but also in elaborating the still plastic portions of the blood into cells，namely， the blood corpuseles；for how，if this were not the case，could cells occur directly in the lymph if it merely carried off the disintegrated renamins of the tissucs？For what purpose would its action through the lymphatic glanals be suspended，or at nll eveuts considernbly impedel，if the nbsorbeuts were not，like the lactenls，organs for the elnboration and formation of the blood？＂
（Kolliker，J／anual of IIuman IIistoloyg，translated for Sydewham society；Lelhmon，Physioloyical Chemistry，translated for Cnvendish Sucicty．）

LYMIHATICS［ABsomberts．］

1，1O＇NSIA，a genun of Conchiferous Mollusca belonging to the Myaceoua group Mr．G．13．Sowerby has described two sjecies：one， L．picla，found by Mr．Cuming at the imland of Muerte attached to piarticlen of mad in cleven fathoms water，and which becomes rather irregular in furn as it increases in size；and the other，L．brevifrons， fund at sit．Itelena，in mady mud，at deptha ranging from six to eight frthonn，nttached to Inuticles of saul．
 lifl fefented by very lung brintlem，and both mandiblea nearly equal， the winga very mort mal rounded，and the tail hariow．［Haccyosidesi］

W「1UUIUUA．［Black－Cuck．］
 which，with jaws like those of E＇unicc（Cuvier），or even more numeroun than in that form，nad often noegunl in number，have only three tentarlea，hud cirrli for branchiac．［ANNEtiDA．］

I．＇silMAClll＇A，n genua of llanta belonging to the natural order finmulncer．It bian a sparted calyx，a rotate corolla with meareely any tube，nud a partad limb；the ntameumaro inmerted at the base of the corolla，now nro 5 in number；the capmules open with of valves．

I．thelrsyfora in diatiaguifhed by ita axillary atalked denne racemen； its loares are oppusite nad lanceolnte；the corolla in divided almo to tha loage into barrow petaln，often reparated by m minute tooth，which ns well on the calyx in yellow，eroted with orange．It in foum in marnhea in the north of Fingland．

L．eulgaris has an crect atem，with compond terminal and axillary paniclea ；nunte or ovate－lanccolnte leavea，nearly pemile，or 3 or 4 in a whorl；the petals are entire，with glabrous edges；the stamens b ，nud
combined for half their length．This apecies is the L．pusnctata of нomo botaniata，nud probably thes vaıudxiov＂Andor Xpuaceiotr of Dios－ corides，Jib．iv．cap． 3.
L．Nummuluria，Money－Wort，has a prostrate creeping stem，solitary asillary bowers，orate－ncute ecpals，fund glandulne filnments connected at the base；tho leaves are opposite，roundiah，and shortly stalked； the pedunclea ahorter than tho learea．It is found in damp places in Grent Britaiu．

L．nemorum has linear－lnoceolnte sepals，smooth distinct filnmentr， nad opposite ornte－ncute leaves．It is found in woods and damp shady places in Great Britain．L．atropurpurca is the Auनtudxtov＂Avoos Muppor of Dioscorides（lib．iv．cap．3）．
（Frmas，Synopsis Plentarum Florce Classicce；Babington Manual of Brifish Botany．）

LY＇SMATA，Risso＇s name for a genua of Macrusous Decajod Crustacea allied to the Shrimps
LYSTRONICHUS．［Cistelides．］
LYTHF［MERLANGUS．］
L｀THRA＇CEAE，Ioosestrifes，a matural order of Polypetalous Exogens，the essential character of which is to have a tubular calyx with conspicuous complete ribs，petals inserted into the orifice of the calyx，stamena apringing from jts base or middle，and a superior poly－ spermons ovary．They are most near Melastomacece and Onagracer． The order contains few plants of nny iuterest．Some of the genus Lagcrstromia are liandsome Indian large－flowered bushes，represented in South America by Diplusodon；fow Ammannias bavo acrid leares， which act ns vesicants when applied to the skin；and the Jenne dyo used by Oriental women for their nails is the juice of the fruit of Larsonia．Iythrum Salicaria，the subject of the following cut，is an Euglish type of the order．It is also found in Autralia，nud has been prescribed in diarrhcea．

1，a fower－bnd；2，a calyx cut open and uhowlag the insertion of the stamens； 3 ，a transverse section of an ovary；4，a ripe capsule，with its four valves．

LYTHIRUM（from λ viopov，＂black blood，＂from tho purple colour of the flowers），n genua of Ilants belonging to the natural order Syeh－ racer．It lias a tubular cylindrical calyx，with from 8 to 12 teeth； from 4 to 6 of the teeth are broader than the rest and erect，the alternate ones belng aubulate nad opposite to the petals．It has from 4 to 6 petals and a rcry bhort atyle．Tho capsules aro 2 －celled aud may－necded．

L．Salicaric，Purplc Loosestrife，has lanceolate leaves from a cordate base，and whorled．The flowern are in whorled leafy apikes，almost sesnile．It in a native of Europe，in ditches nud watery placen， especinlly nbout tho margins of ponds and rivers，and is found in liritain very plentifully．The colour of tho flowers varies from crimson to purplo．The herbage is generally almost smooth，and of a dark－ green，but in dry situations it becomes honry and downy，or in some degroe hairy，as well as more dwarfy in stature．This specica is the Syenmachin of Pliny，lib．xxv．cap． 7 ；lib．xxvi．cap 12， 14.

L．hyssopifolia bas nlteruate linenr－lanceolate blunt leaves．The
flowera are axillary and solitary, with twe minute aubulate bracts. The calyx teeth are all short, and the stamens are usually six in number. The flowers are small and of a light purple-celour. The whole plant is glabrous, and is found in damp places in Great Britain.
L. Hunteri, Hunter's Purple Loosestrife, is a native of the East Iadies. The lenves are opposite, the calyx tubular and 6 -lobed, the
stamens 12, and the style subulate. The petals, 6 in number, are of a very beautiful red-coleur, and are used for dyeing in India. The hardy pereuuial species of Lythrum are handsome garden-flowers; they grow in any common soil, and are easily propagated by dividing at the root. The seeds of the annual kinds require to be sown in moist situations in the spring.
(Don, Dichlamydeous Plants; Bibington, Manual of British Botany.)

M^{1}AASTRICHT ROCKS. The rock of St. Peter's Mountain is generally of a granular texture, and to geologicsl observers preseuts a sort of middla character between Chalk and particular parts of the Calcaire Grossier of the Paris basin. The geolegical relation thus suggested is confirmed by the organic remains, which, with many points of apecific resemblance to the ordinary fossils of the chalk, exhibit likewise some generic relatiens to the Tertiary series. Accordingly, the place in the ecale of strata now assigned by commen consent to the Masstricht Recks is in immediate superposition above the Chalk of England, and at some small intersal below the Calcaire Grossier of Paris. It may be considered as an upper part of the Chalk Formation, and is paralleled by observed eases in the south-west of France. It is primeipally to Dr. Fitton (' Proceedings of Geol. Soc. of Louden,' 1829) that English geologists owe the establishment of this important classification.
St. Peter's Mountain is rich in fossils, seme of which lis in flint nodules, and others in the stone. A few years ago the bones of soms ruminant quadrupeds were offered for sale at Maastricht, and were described as from this hill, but they did net really belong to the ancient rock. The genuine remains are however very remarkable; in particular the great aquatic reptile, imagined to be a crocodile by Faujas St. Fond, but determined to have other analogies to the Lacertiadice by Cuvier, who named it Mossasaurus: vertebre of this animal have been found in the chalk of England and Sweden. A very large species of marine turtle (Chelonia) has also been completely examined by Cuvier from this loeality. Beautiful teeth of fishes, shells of Nautili, Baculites, Belemnites, Mippurites, Inocerami, Ostreec, Echinida, Terebratule, and Polypiarica may by seen in some of the interesting collections at Maastricht, and go far to prove the truth of the prevalent opinion, that the etrata of St. Peter's Mountain are more allied to the Chalk than to the Calcairs Grossier-the newest of the Secoudary, rather than the oldest of the Tertiary rockg.
(Dr. Fitton in Geel. Proceedings and Transactions; Meyer, Palcologica; Yon Dechen, Handhuch, \&c.)
Mácaco. [Lemorde.]
MACA'CUS, a barbarous word founded on the term Macaco (written by the French Macaque), which, according to Cuvicr nud the author of ' Natural History of Monkeye, Lemurs, and Opossums,' appears for the first time in Marcgrave's ' Natural History of Brazil,' as the native appellation of a kind of monkey found in Congo and along the coasts of the Gulf of Guinea. The nuthor of the 'Natural History of Monkeys,' \&ec, observes that its application to an Asiatic species, of a genus totally distinct from that to which the animal properly bearing it really belongs, is one of the many eimilar errors of nomenclaturs committed by Buffon, at that time indeed unavoidable from the very limited knowledge which naturalists possessed on the eubject of specific distinctions, and especially from the coufusiou which reignod in the geographical part of zoology.
Lacépède seems to bavs been the first who Latinised this term, and he was followed by other French zoelogists as well as by those of sther countries. The Ouanderow or Wanderow appears to be censidered the type of the genus, at least it stands at the head of the heterogeneous species comprehended under the title.
Thus Cuvier arranges under the Macaques the following Simiade: Silemu, Sinica, S. radiata, S. cynomolyus and S. cynocephalus, S. Rhesus, S. nemestrina, \&c.
Dr. J. E, Gray arranges the genus as the last of his sub-family Cercopithecina (family Ilominide).
M. Lesson, who makes the characters of the geurs consist in a facial angle of from 40 to 45 degrees; in a very stroug development of the supraciliary and oceipital crests; the presence of pouches and callesities, and a tail more or less long, gives as its dental formula that which is common to so many of the Simiade, namely:-

$$
\text { Incisors, } \frac{4}{4} ; \text { caniues, } \frac{1-1}{\mathrm{I}-1} ; \text { molars, } \frac{5-5}{5-5}=32 \text {; }
$$

and he arranges under it the following species:-Silenus, Sinicus, S. carbonarius, S. radiatus, S. cynomolyus, S. Rhesus, S. nemeatrinus, and S. apeciosus.

Sir William Jardine adopts the genus with tho following species:Macacus Silenus, M. Sinicus, M. radiatus, M. сynomolgus, M. Rhesus, M. nemestrinus, and M. niyer.

Mr. Swainson, who also adopts the genus, gives the specics the Fuglish appellation of Ape-Baboons; and he conaiders that they are
distinguished by an elongated muzze, as in $M \Gamma$. curbonarius, much more promiuent than in the Cercocebi, and by a tail nnere or less lengthened; he is also of opinion that they differ from the Cyanocephali (Cynocephali) of Cuvier; or True Babeone, because their nostrils "open obliquely on the upper part of the muzzle." Mr. Swainson thinks that the ferm of these animals, neverthcless, shows a strong resemblance to the Cercocebi, which is further increased by their possessing a tail; although this member is generally so short that it seldem equals a third of the langth of the body. The muzzle, he observes, is so much elongated, that the facial angla dees not exceed 45 degrees, and the canine teeth are strong and large. Ho further remarks that it deserves attention, that some of the species (as M. Silenus, M. Sinicus, aud M. vadiatus) are remarkable for having crests, which either assume the form of a mane or of a radiated tuft. The Chiness Bonnet-Monkey has the hairs dispesed in this mauner, while its elengated muzzle, in Mr. Swainson's opinion, is very characteristic of the genus, and he states that the form of these animals separates them widely from the menkeys: it is, hs says, strong and compact, while their dispesition is cunning and mistrustful. He concludes by remarking, that the crested species inhabit India, and that the others are Africsn. ('Nat. Hist. and Classification of Quadrupeds.')

The auther of the 'Natural History of Monkeys, Lemurs, and Opossums' rejects, for substantial reasons given in that work, the genus Macacus, and applies the term Baboons, as usually understood and applied in the English language, to a group of Simice co-ordinate with the Apes and Menkeys, as described by him, distinguished from the Apes by the equality of their members, their cheek-pouches, and isehial callosities; and from the Monkegs by the ehort robust make of their bodies and extremities, their tubercular tails, too short to execute the functions usually assigned to that organ, and the mountain rather than sylvan habitat which this conformation necessarily induces.
"The most prominent of these traits of structure," continues the author, "the abbreviated or tubercular naturg of the tail, is the idea usually attached to the word Baboon, and it is certainly the most promivent and characteristic attribute of the group; since, as we have frequently had occasion to observe, tha comparative development of this organ, if not the immediate cause, is at all events the most certain index of the habits and economy of these animals:" and ha makes the Baboons thus defined comprise two distiuct genera, Papio and Cynocephalus, respectively confined, with one or two exceptions, to the continents of Asia and Africa.
The author then introduces to the reader's notice the genus Papio as the last and lowest of the groups which inhabit the Asiatic continent and the great islands of the Indian Archipelago, and which appear to occupy in these regions the situation which ths Cynocephali fill in. Ifrica. Of the forms placed by the author under this genus the Wanderoo and Gelada (Papio Silenus and P. Gelada) are the only species in which the tail acquires any length : it never reaches, bs remarks, beyond the houghs, ner is it ever cmployed to assist the progressive motious of the animals as among the Cercopitheci. These species therefore, he thinks, cannot be separated with any kind of propriety from the Papios with tuberculous tails, mercly on account of their comparative length; because that organ, though rather more developed in the Wanderoo and Rhesus than in the Magot and Papio niger, is still greatly abbreviated as compared with the tails of the Cercopitheci, and entirely devoid of influence as an element in the habits and economy of animal life.

Reverting to the arrangement of the author of the 'Natural History of Monkeys, \&c., we find the Papios divided into two amall groups, distinguished by the greater or less length of the tail on the one hand, and its tuberculous form er total absence on the other; of the latter. the well-known Magot, or Barbayy Ape, is an example, and the Wanderoo (Macacus Silenus of authors, Papio Silenus of the author of the 'Nat. Hist. of Monkeys') is an illustration of the former.

The Wanderoo has its hair deep black threughout, with the exception of the long beard or mane, which descends on each side of the face in the form of a ruff, extending downwards over the chest, and varying frem an ash-gray to a pure white. The upper part of the face between the eyes naked aud flesh-coloured; the muzzle perfectly black. Cheekpouches large, callosities of considerable size, and fesh-coloured. Tail abeut half as long as the body, and when perfect, which in captivity is not often the case, terminating in a brush of tufted hairs. (Bennett.) lt is the Lion-Tailed Baboon of Pemant.

It is an inhabitant of tho penimsula of India, Ceylon (!) (Knox) 3. Dorancel saw the animal in the menaferio at Bartacpore, and states, according to F. Cavier, that the Indians give it tho wame of Nil IRandar, or perhapa, as the nuthor of "Nat. Hist, of Monkeys" observes, more properly Ny l or Neel Ihander, signifying tho "darkblue or black bhunder' ; but this, continues the last-mentioned tuthor, evidently refers merely to the colour of the hair, and can acarcely be the real appellation of the animal, which, oot being is native of Bengal, is not likely to havo a Bengalee nauno.

Fouther Viacent Marin given the following quaint account of this species:=" There sre found," says the Pudre, "four sorts of monkeys On the coast of Malabar; the firat is quite black with glossy lair and a white bensol round tho chin, measuring rather more thas a palin in length. The other monkeys pay to this so profond a respect that they are humblo in his preseuce, as thoagh they appracinted his superiority. The princes and mighty lords hold him in much estimation for his entownents of gravity, capacity, and the sppearance of wisdom alowe every other monkey. Ile is readily trained to enact a variety of ceromonios and atfected courtesies, which lie goes through with no graso a face nal no perfectly, that it is a most wouderfol thing to seo them oo exactly performed ly an irrational creaturc."

The general posturo of the species is on all-fours or sented, in which ponition it unually takes itn fond, either by the landa or by bringing the month to it lta firmt operation in feeding is genernlly to fill the cheek-ponches." It meep"n "ither on it side or sitting, bent forward, and with the heal on the breast. Those which we havo seen in captivity have calibited varied temperaments. Ono in particular was all life, npirit, and ainchief, while nnother was melancholy and staid in ita deportment; sul yet the bealth of both these animals nppeared to bo equally good, nor was there auach difference in their ages.
The following nuccies of Macacu are given in the '3nitinh Mnscum Citalogue:

> 11. radintur, the Zati, or Copped Macaque.
> If. Sinicus, the Mungn, or Bonnet-Mncarue.
> M. nemeatrinus, the Brull.
> M. cynomolyus, tho Macaque.
> N. Mhcous, the Rhesus.
> M. Unopm, the Oinopr.
> M. गресіопия.
> M. Juncus, the Magot.
> M. nigrr.

In the same Catslogue the Wanderoo is referred to Silmus viter:
In hin " British Fomal Mammaln,' Profesmor Owen describen n apecien of Macacus under the title of M . cocenus; treth of this extinct apecies having been foum in the Tertiary clay at Kynon, near Woodbridge, Suffolt.

- Hirat mouthel, last awallowed."-Llamief.

The following is given by M. F. Cavier as the dental developmen of tho Macaques aud Cynocephales, and is taken from the Chinese Bonnet-Monkey (Macaque Bonnet Chinoin).

Teeth of Mencacns, \&e.
MACAQU1\% [Macacus.]
MACAUCO. [1, EMURDDA']
MACAW, [Psittaciden]
MACE, [MYmstica.]
MACH ELRUM, a genus of Plata belonging to the natural order Jeyuminose. One specios, M. Schomlurgkii, produces tho Itaka Wood of Guyana, remarkable for its brown nud black strenks, on which sceonnt it is amployed in cabinet-work.
MACHAlRODUS. [FRMD.E.]
MACHE'TJ:S, Cuvier's name for the Ruff (Tringa pugnax, Linn.). [Scolopactore]

MACKluliil [Scommir]
MACLE: (Chiastolite), n Minersl occuring crystallised. Its primary form is a right rhombic prism. Cleavage pamillel to tho lateral faces of the primary form. Tho crystals appear to bo composed of two substances: one of a Jellowial white, sometimes translacent, and of a glassy fractare; the othor bluish black, opaque, and dall.' Fracture acaly, slightly conclooidsl. Harduess 50 to 5.5. Streak white. Jastre vitreoun, or vitreo-resinous. Speeifie gravity 2.914.
The white portion is infusible by the blow-pipe, but becomes whiter; with borax it fuses with difficulty into a tmasparent glase. Tho black portion fuses into a black glass Nitric acid dissolves it entirely.

It occurs imbedded iu clay-alato on Skiddaw in Cumberland, in Wicklow, iv the Pyrences, and in many other placem.

It yields, by the samysis of Laudgenbe:-

Oxide of Jron 2.70
Whater
$0 \cdot 27$
$105 \% 5$
MACLALiRA, a genus of Panta lelonging to the natursl order Moracea. The fruit of M. auruntiaca, the Osage Orange, is as large as the fist, orange-coloured, and filled with a yellow fontid slime, with which the mative tribes smear their faces whed going to wase

The wood of M. tinctoria is the dye-wood called Fustic; it centains morine, a peculiar colouring substance; ita fruit is pleaaant, and uaed in North American medicine for the same purposes ss the black mulberry in Europe. According to Martius, both the other apecies of the genus yield fustic in Brazil. (Liudles, Yegetable Kindgom.)

MACLUREITE, Condrodite, Brucite, a Mineral, occurring imbedded in rounded masses, the larger of which present occasional crystalline appearances of rhombic prisma with dihedral terminations. Cleavage parallel to the lateral planea. Fracture uneven. Hardness 6.5. Specific gravity $3 \cdot 15$ to $3 \cdot 25$. Colour ycllowigh or brown. Lustre vitreous. Becomes negatively elcctrical by friction. Tranaparent, translucent.

Infuaible by the blow-pipe, but becomes colourleas. With borax fuses into a transparent glass, colouped by oxide of iron. Not affected by acids.

It occurs in New York and New Jersey, and also at Pargas.
Anallyaes-No. 1, by D'Ohsser, from Pargas; No. 2, from New Jersey, by Seybert:-

MACO'MA, Leach's name for the Venus tenuis of De Blainville, and similar speciea. [Veneminde.]

MACRA'SPIS (M'Leay), a genus of Coleepterous, Insects of the section Lamellicornes, and, according to Lstreille's classification, belonging to the third diviaion of that group, the Xylophili. The genera Macraspis and Chasmodia constitute two closely allied groupa of the family Rutelidox, the species of which inhabit the warmer parts of Sonth America, and are remarkable for the large size of their scutellum. They are of tolerably large aize (averaging about threequarters of an inch in length, or rather more), usually very smooth and glossy, and often exhibit brilliant colours, green, brown, and yellow being the most common hues observable in the various apecies. There are some however which are of a glossy-black colour, and others which have yollow markings on a black ground (Macraspis quadrivitlata, Olivier). The borly is of sa ovate form (the head and thoras having an outline continuous with that of the abdomen, or nearly so), convex above and beneath. The sternum is produced anteriorly into a pointed procass, which projects between the anterior pair of legs.

In the genus Macraspis the mentum ia longer than brosd, elightly contracted snteriorly, and without sny fringe of hairs on the anterior margin; the mandibles are almost triangular, and have the apax pointed and notched; the maxilla have several denticulations.
The genus Chasmorlia (I'Leay) is chiefly distinguished from Macraspis by the obtusely terminated mandibles, which have no notch at the extremity; the maxillas having a tuft of hairs and only two denticulations, and the mentum being of a somewhst ovate form, distinctly contracted towards the spex aad furnished with hairs. The claws of the tarai are simple, whereas in Macraspis one of the claws of cach tarsus, at least of the four anterior legs, is bifid.
The insects of these two genera fly by day about trees, emitting a humming noise, and feed upon flowers. Collections formed in Brazil usually contain many of these inscets.
Dejean, in his 'Catalogue des Colcoptères,' enumerates 26 species of Macrospis and 5 speciea of Chesmodia.

MACRAUCHE'NIA, Profeasor Owen'a name for a large extinct Mammiferous Animal, referrible to the order Pachydermata; but laving affinities with the Ruminantice, and especially to the Camelide.

The remains on which the lrofessor founded this genus included two cervical vertebre; seven lumbar vetebre, all more or leas fractured; a portion of the sacrum and oasa innominata; fragments of the left acapula; of the right radius and ulos, and right fore foot; the right femur nearly entire; the proximal and distal extremitics of the right tibia and fibula; and a metatarsal bone of the right hind foot. These pertions of the skelcton were discorered by Mr. Darwin in an irregular bed of sandy aoil, overlying a horizontal accumulation of gravel on the routh side of Port St. Julian, on the east coast of l'atagonia, and belonged to the same individual.

Professor Owen observea that what is described as a perforation of a aingle transverse proccas in a cervical vertebra is essentially a space intervening between two tranaverse precesses, a rudimental rib, snd the borly of the vertebroc, and the Professor alludes to the manifestation of this structure in the cold-blooded Saurians sad in the Ormithorhynchus. He observes that the Ciamelide differ not only from the other Ruminants, but from sll other existing Mammalia, in the absence of perforations for the vetelaral arteries in the transverse processea of the cervical vetebre, the atlas oxcepted; and though it is true that in other Mammalia the two trsnaverse processes are manifeated on each side with their extremities united by s diatiact cartilage, this appears in the foctal tate only, for the cartilage afterwards becomes ossified and anchylosed to them. After referring to the atructurcs of the
inferior transverge process, or its representatives, in the Hippepotamus, the Marsupials, snd the Giraffe, Professor Owen proceeds thus:-"In the long cervical vertebre of the Camel and Llama the upper and lower transverse processes are not developed in the same perpendicular plane on the aide of the vertebre, butat some distance from each other; the lower transverse processes (fig. 1, a) being given off

Corvical Vertebre (1,2) of Mucrauchonia, and (3,4) of Auchenia, one-half natural mize.
from the lower part of the anterior extremity of the bedy of the vertebra; the upper ones ($f i g .1, b$) from the base of the auperior arch near the paaterior parts of the body of the vertebra. The extremities of these transverse processes do not become united together, but they either pass into each other at their base or continue throughout life separated by an oblique groove. This groove would not howerer afford sufficient defence for the important arteries supplying those parts of the brain which are most essential to life; and accordingly the vertebral arteries here deviate from their usual course, iu order that adequate protection may be afforded to them in their course along the neck. From the aixth to the second cervical vertebra inclusive in the Auchenio, and from the fifth to the secoud inclusive in the Cameli, the vertebral arteriea cnter the vertebral canal itself, along with the apinal chord, at the postcrior aperture in each vertebra, run forwards on the entside of the dwa mater of the chord, between it and the vertebral arch, and when tley have thus traversed about two-thirda of the spinal canal they perforate respectively the superior vertebral lamioc, and emerge directly beaeath the anterior oblique or articulating processes, whence they are continued along with the spinal chord into the vertebral canal of the succeeding vertebra, and perforate the aides of the anterior parts of the superior arch in like manner; and so on through sll the cervical vertebre until they reach. the atlas, in which their disposition, sind consequently the structure of the arterial canals, resemble those in other Ruminants. The two cervical vertebre of the Macrauchenia present precisely the structure and disposition of the bony cauals for the vertebral arteries which are peculiarly characteristic of the Cametide among exiating Mammalia." Fig. 2 ahows the groove and orifices of the canal tor the
vertohml artery in a section exponiag the apinal canal. I'rofesmor Owen then goen on to show that the vertebre of the Macrauchenia also closely reserable the middle cerrical vertebre of the Vicunn and Lama in their elongrated form; approaching tho Auchenial division of the Camelider, nul devinting from the True Camels in tho relations of the langth of the body of the vertebra to its bondth and depth, and in the much smaller size of the inferior processes. The nuthor observes that, excepting the Giraffe, there is no existing Mammal which possesses cervical vertebre eo long as the Macrauchene; but that the cervical vertehre of the Giraffe differ in the situation of the perforations for the vertebral arteries, and iu the form of the terminal noticular surfnces. Woth the cervical vertebre describod by l'rofessor Owen are of the shme nize, and cach measures 6t inches in extreme length, 2 inches 10 lines in breadth, nud 2 inches 4 lines in deptl. Among the peculiarities of structure, a umall longituliual process (hig. 2, c) is giren off immediately below the baso of tho miterior frocess, sud this is not observablo in nuy of tho cervical vertebre of the Giraffe or Camelide. In tho form of the articulating surfaces of the loodies of the vertebre, the Macrancheno devintes from the Girallo nad Cansel, but resembles the Auchenice. The anterior articulating surface is convex and almost hemisplaeric in tho Giraffe and Camel, whilst the posterior surface is proportionally concave, so that the vertelrow of the neck are articulated by ball-and-socket joints, yet not, as in most rejtiles, with intervening synovial carities, but by meana of the concentric liganeatous invertebral substance characteristic of the Mammals. The degree of convexity nnd concavity in the nrticular furface of the bolies of these vertebrae in the Llannand Vicuna is much less than in the Camels, and tho former consequently carry their necks more atiffly and in a ftraight line. The anterior articulating Furfnce in Macrauchenia is less convex than it is in the lhama, nud the posterior surface is less concave. From an analysis of the comparative structure of theso vertebre in the Camels, the Llamas, and the Macrauchene, Professor Owen infers that the latter carried its neck in the snme atiff and upright position as is msuifested in the Llamas.
Ihore is not in the collection a fragment of dorsal vertebrec, ribs, or stermum; but the seven lumbsr vertebre form a consecutive series from the same individual as that to which the cervical vertebre lelongel; anid though these lumbar rertebree do not possess such distinctive chametera as those of the neck, they contribute not unim. portantly to the illustration of the osteology of the animal sud its aftimities. No existing Inchyderm has more than six lumbar vertebre; the Camela nud IJamas only, smong the Ruminnita, possess seven; nul here Professor Owen discovered modifications of form in which the Macrauchene deviates from the Camelide nnd npproaches the llorse ami Hippopotanus. In the Macraulenia, as in the Rhinoecros, Tapir, Ilippoputamus, and Horse, the transverse processes of the last lnmbar vertubra are of considerable thickness and extent, and sre joined by cuarthrosis to the transverse processes of tho sacrum; but the bony atructure of these joints would indicate that they were not subject to be ohliterated by anchylosis.
Sufficient of tho acrum and ossa innominata remsin to enable Profersor Owen to atnte that the sacrum was anchylosed to the ilia: the lower boundary of this nuchylosis is marked below hy an external ridge, and by vascular cambs and grooves in the substance of the bone, ar in the Hippopotamus.

1.ant lundar vertebra of Maerauclimia, onc-thits matural nixe.

Of the remaining portions, the anchyloned fore arm nul \log, nul tho fore foot aro the most chnracterintic. Tho jortion of tho mentehrachium which in preserved presents a condition of the radins and ulna intermedinte to thoso which reapectively claracterise the same bones in tho Pachydermand Cameds In the former the ralina and ulam are neparate bonem, nnited in the mame proxition ly a ligament, but ao organimeal that tho movement of aupination cannot be effectod. A lony confluence join these bonea partially in the orlinary laminnata, but thin rarely extenda to the proximal extremitios Ju tho Comel Aud the Jama tho anchylonia in complete, no that no trace of the original meparation of the radius and ulan is perceptiblo; and the olecranon, or elbow, appears as a mero process of the radiun The anchylomia in Macrancheria in also complete, but the boundary-line is clearly defined, and the proportion whicheach of the bonen contributes to the grent articulating surface for the distal end of the humerus is canily distinguiahable.

I'rifern or Owen goes on to remark that the confirmation of the close aftinity of the . Macraurhenis to the lnachydermatoun order, which the atructure of the cerrical vertelore nbove might havo rendered very roubtful, is afforded ligy the bones of the right fore footo

Proximal extremtty ef anchylosed ulna and radias of the Macrauchene, one. fourth natursl size.

Tbese are in so perfect n condition as to make it certain that the Macranchene had three tocs on the fore feet, sind not more; and that the fully-developed matacarpol bones are distinct, and correspond in number with the toes, not being anchylosed into a single cannon-bone ns in the Ituminants. The bones preserved are the matacarpale, proximsl phalinges, and middle platanges of each of the three toes, sind the distil or ungueal planlanx of the innermost toe.

a, boace of the sight fore foot of the Macrauchene, onc-fourth matural size; b, second anit hati, or ungueni phalanx, one-half natorat size.
The author obserres in continuation that the hones of the leg of the Nacrauchene cxhibit the smme transitional structure as is afforded by the defmable limitg of the anchyloned bones of the fore nrm. In the I'achyderms tho fibuln in entire and distioct. In the Ruminnats (the small musk-decr excepted, nud, in min inferior degree, the elk) the fibula appears only as a short contiouous process sent down from the under part of the extemal condyle of the tibia. In the Camelide the only trmee of tho fibula in a atill moro rudimental stato of this process, whilst in the Macrauchene the fibuln ia incleed entire, but it is conduent with the tibin through mearly jts whole extent. The fibula and tibin are distinct bones in both the Paloothere and Anoplothere. It in to the former genus, nod capecially to Paleotherium magnum, that the Macmuchene preaents the nearest approach in the general form of the tilia, the principal leg-bone; but in the Macrachene the tibia is relatively shorter nud thicker and etraighter, nad leas cxpanded
at its extremities, especially the upper one, than in any of the Palrcotheres.

Of the few bones of the parts which are preserved the astragalus is fortunately one. Professor Owen has compared this bone (which he justly anys is the very one that an anatomist would have chosen bad his choice been limited to a single bone) with the astragalus of the Giraffe and other Ruminants, the Camel, the Auoplothere, the Hippopotamus, Rhinoceros, Tapir, and Palrothere ; and he comes to the conclusion that it is with the Pachyderms having three toes to the hind foot that the Macrauchenia agrees in the maia distinguishing characters of this valuable bone. The results of a paper of minute detail, great research, and happy combination, are thus summed up by the Professor:-
"Thus we obtain evidence, from a few mutilated bones of the trunk rad extremities of a single representative of its race, that there once existed in South America a Pachydermatous quadruped, not proboscidian, which equalled in stature the rhinoceroses and hippopotamuses of the Old World. But this, though an interesting and hitherto unsurpected fact, is far from beiag the sum of the information which is sielded by these fossils. We have seen that the single ungueal phalanx bespeaks a quadruped of the great series of Unyulata, and this indication is corroborated by the condition of the radius and ulna, which are fixed immoveably in the prone position. Now, in the nagulated series there are but two known geaera-the Rhinoceros and Palceotherium-which, like the quadruped in question, have only three toes on the fore soot. Again, in referring the Macrauchenice to the tridactyle family of Pachyderms, we find, towards the close of our analysis, and by a detailed comparison of individual bones, that the Macrauchenia has the closest affinity to the Palootherium. But the Palcotherium, like the Phinoceros and I'apir, has the ulna distinct from the radius, and the fibula from the tibia; so that even if the Parisian Pachyderm had actually presented the same peculiarities of the cervical vertebre as the Patagonian one, it would have been hazardous, to aay the least, while ignorant of the dentition of the latter, to refer it to the genus Paleotherium.
"Most interesting indeed will be the knowledge, whenever the means of obtaining it may arrive, of the structure of the skull and tecth in the Macrauchenia. Meanwhile we cannot but recognise in the anchylosed and confluent state of the bones of the fore arm and leg a marked tendeacy in it towards the Ruminant order, snd the siagular modifications of the cervical vertebre have enabled us to point out the precise family of that order with which the Macrauchenia is more immediately allied. In first demonstrating this relationship it was shown in bow many particulars the Camelidee, without losing the essential characters of Ruminantia, masifested a tendency to the Pachydermatous type; and the evidence which the lost genera, Macrauchenia snd A noplotherium, bear to a reciprocal transition from the Pachyderms to the Rumiannts through the Camelides, cannot but be viewed with extreme interest by the zoologist engaged in the study of the natural affinities of the animal kiagdom."
"The Macrauchenia is not less valusble to the geologist in reference to the geographical distribution of animal forms. It is well known how unlooked-for and unlikely was the annonncement of the existence of an extinct quadruped entombed in the Paris Basin, whose closest affinities were to a genus (Tapirus), st that time regarded as exclusively South American. Still greater surprise was excited when a species of the genus Didelphys was discovered to have co-existed in Enrope with the Palaotherium. Now, on the other band, we find in South America, besides the Tapir, which is closely allied to the Palæothere, and the Llams, to which the Anoplothere offers many traces of affinity, the remains of an extinct Pachyderm, nearly akin to the European genus Palcotherium; and lastly this Macrauchenia is itself in a remsrksble degree a transitional form, and manifests characters which connect it both with the 'Tapir and the Llama."
(Zoology of the Voyage of II.M.S. Beagle, 1839.)
MACROCEPHALI. [AMMONITEs.]
MACROCHE'ILUS, a genus of Fossil Gasteropoda, proposed by Professor Phillips ('Paleozoio Fossils of Devon') to include several species which occur in the Devoaian and Carboniferous atrata.

MACROCYSIIIS, a genus of Plants beloaging to the natural order Fucacca, and the tribe Laminarida. The enormous fronds produced by M. pyrifera bave been spoken of by many navigators. They appear to be from 500 to 1500 feet in length; the leaves are long and narrow, and st the base of each is a vesiclc filled with air, without which it would be impossible for the plant to support its cnormous length in the water, the stem not bcing thicker than the finger, and the upper branches as slender as common pack-thread. This plant was seen by Dr. Joseph Hooker in $61^{\circ} \mathrm{S}$. lat., in large vegetating patches wherever the water was free of icebergs.

MACRODA'CTYLES, Cuvier's name for a family of Wading-Birds (Echaseiers) [Grallatores], which have very long feet, formed for running over marshy or water plants, or even for swimming, especially in those numerous species which have the fect fringed or bordered. There is not howevcr sny membrsne between the bases of their toes, not cven between those of the external oncs. The bill, which is more or less compressed on tho sides, is leagthcued or shortened according to the geners, without however arriviog at the fiueuess or weakneas of
Curicrs preceding family. [Lowarmostnes.] The body of these birds
is also singularly compressed, a conformation which is governed by the narrowness of the sternum : their wings are moderate or short and their flight weak. The hiad too in all is rather long. Cuvier observes that this family has been divided into two tribes, according to the presence or absence of the spur on the wing; but he adds that this character is not without exceptions. The following genera are arranged by Cuvier under this family, which terminates his order Echassiers:-Parra, Palamedea (including Charina), Megapodius, Rallus, Fulica (including Gallinula and Porphyrio), Chionis, Forst. (Vaginalis, Lath.), Glareola, Gm., Phonicopterus. Cuvier's sixth order, Palmipecles, immediately succeeds this family, which is somewhat heterageueous, and composed of birds whose habits are not similar. Pheenicopterus cannot be said to be without auy membrane " between the bases of the toes," \&c., for its anterior toes are united to the nails by a lunated membrane. [Ducks; Colymbid.e.]

MACRODIPTERYX. [Goat-Suckers.]
MACRODITES. [Foraminifera.]
MACROGLOSSA. [Cheinoptera.]
MACRONYX. [ALAUDINE.]
MACROPHTHALMUS. [GoNOPLACIDx.]
MACROPIPER, a genus of Plants belonging to the uatural orderPiperacea. M. methysticum, the Ava, is the most celebrated of the narcotic Pepper-Worts. It has cordate acuminatc many-acrved leaves; solitary axillary spikes, very short, pedunculated, aud spreading. The rhizoma is thick, woody, rugged, sud aromatic. It is used in tincture against chronic rheumatiom. Macerated in water it forms an intoxicatiog beverage, of which the Otahetians make use as a medicine; they make themselves drunk, after which very copious perspiration comes ou: this lasts three days, at the end of which time the patient is cured.

MACROPODIANS. [MacRofodide.]
MACROPO'DIDA, a tribe of Brachyurous Decapodous Crustacea, being the first of the family of Oeyrhynchi (Milne-Edwards), and nearly corresponding with the genus Macropus of Latrcille, remarkablc for the enormous length of their feet, which has obtained for them the name of Sea-Spiders and Spider-Crabs.

Form of the carapace various; but in general triangular, very often not extending upon the last thoracic riug; the anterior feet short, and nearly always very slender: those of the succeeding pairs always more or less filiform; the length of the second pair often nine or ten times the length of the post-frontal portion of the carapace, and alvays much exceeding the dauble of that portion; the succeeding feet in geaeral very long also; the basilary joint of the externa antenne nearly always constitutes the major part of the lower wall of the orbit, and proceeds to solder itself to the frout. In the greater portion of the tribe the third joint of the external jaw-feet is incliaed to oval or triangular, loager than it is wide, and does not support the succeeding joint on its anterior sud internal aagle, as in the other Oxyrhynchi. (Milne-Edwards.)

The localities of the Macropodidee are considerable depths in the sea, where they hie hid among the sea-weeds; they are also found on oyster-banks. They walk slowly and unsteadily. The weakness of their claws must render them not formidable to other marine animals, and the probability is that they live priacipally on Annelides, Planarice, and small Molluscs. (Miloe-Edwards). Several species of this family have been exhibited in the Aquavivarium in Regent's Park, but like other deep-sea creatures, they soon perish. For a short time thay are very lively, and the awkwardness of their gait and habits out of water quite disappeara when they are plunged in deep water.

This tribe is sometimes called Leptopodiade, after the genus Leptorisdia.
Leptopodia (Leach), established st the expense of the geners Inachus of Fabricius, and Macropus of Latreille. M. Milne-Edwards observes that it is very remarkable for the general form of its body and the excessive leagth of the feet; and states that it presents in an exaggerated manner all the distinctive characters of the family and of the tribe to which it belongs.

It has the carapace nearly triangular, and not covering the last ring of the thorax; rostrum styliform and of enormous leagth; eyes large and not retractile ; internal antennæ, when folded back, followiag the longitudinal direction of the body; first joint of the exterual antennæ very long and completely confounded with the neighbouring parts of the shell, the second inserted at a considerable distance in front of the orbits and below the rostrum; epistome much longer than it is wide; third joint of the jaw-feet nearly triangular, aud carrying at its external angle the succeediag joint, which is very much developed. The sternal plastron as long as it is wide, but very much narrowed between the first pair of feet, which are very sleuder and extremely loag, but less than any of the rest; the length of those of the second pair equals nine or ten times the length of the post-frontal portion of the carapace; abdomen in both sexes composed of six joints, of which the first, which is very much developed, and as long as it is wide, occupies the dorsal surface of the body, while the last is formed by the soldering of the sixth and seveuth abdominal rings. (Milue-Edwards.)

The species are found on tho coasts of America and of the Antilles, as far as is at present known.
L. sagiltaria, Leach (Cancer seticomis, IIerbst. ; Inachus sagittarius,

Fabricius); of which we auljoin a drawing, may be takon as a good exatuple of this geuus

Latreillid (Rana.).-Carnpace triangular, truncaked anteriorly, and not covering the lant ring of the thorax; epistomo much longer than it is wide; scoond and thirl joints of the external jaw-feet very narrow; foet filiform and very long; abdomen of the fenale of five jointa only, though the sutures of two others may be distinguished; structure of that of the male not known.
L. cleyans is the only species knowu. Carapace smooth, frout armed abovo with two large divergent horns, and with a spine clirected forwards between the antenose; feet of the last four pairs with the third joint apiny, the penultimate joint a little dilated above towards its extremity, and the tarsus very short; abdomen armed with six spiner, two of which are situated on the tnedian line and four acar the edges. Length about an inch. Colour gellowish.
It is foumd on the consts of Sicily.
M. Milne-Fidwards thinks that the Maia scticornis of Bosc should be placed near this species.

Achans (lench).-This genus is very nearly allied to Stenorhynchus And Inuchus, font is distinguiahed from all the othor genern of this fanily by the form of the posterior feet and some other eharacters.
Thec carapace in, os in the greater part of the family, not extending on the last regment of tho thorax, nearly triangular, and convex on tho bmachial regions. liostrmm aearly null; eyes not retractile, and curved upon rather long peduaclen; first joint of the extermal antennow soldered to the front and Advancing above the level of the internal canthas of the ejes; the pecond joint inserted on the sides of the montrum sud entirely exposed above Jepistome acarly square; third joint of the external jaw-fect longer than wide, nearly trinugular, nud giving attachment to the succecding joint near its anterior and external angle, Stemal flatrou suddenly uarrowed between the anterior feet, which are klender nud short, while those of the eucceeding pairs are litiform; the accoud pair are wearly twice and a quarter longer than the post-frontal portion of the carajace, nul terminate by a styliform nul entirely ntraight joint; the nucceeding feet are much shorter, nod the terminal joint of the last four is lange, conomessed, and falcifom. Abdonen conmphed of six joints in both sexes. (Miluc-kdwarda.)

Acherns ham litherto been fooml only in tho British Channel.
A. Cranchis is the only mpecics of the genus. The rostrum is formed uf two wamil triangular terth, aod not extending begood tho gecond joint of the extermal nutenate; a pline on the anterior face of tho oenlar pedunclon; genital and carlini regions clovated in the form of tuberclea; feet with very long hairn, nad hooked. Leugth from 6 to 8 linen. Colour brown.

It in fonm at Finmosth in Figgand, and the mouth of the Rance near St. Malo. Tho xpecien liven among the sea-weola and oysters.

Senorhynchum (Iamarck; Jatrehlle).- Carapace tringgular, and not prolonging fivelf above the lant thoracic ring. Jontrum advanced, tifin, aml sharp; orbith circular, eyen mather projecting and not retractile. Intermal anteman capable of being folled tack longitudi. mally, and the fosacta in which they are lorlged not completely sejarated from rach other; the finc joint of the external antenne confounded with the neighbouring parth, and very uarrow; the second ineerted on the nidem of the rontrun, sund the third mueh longer than the nocond. Fipintome longer than wide, and the jeterygoutomian regiona radimentary; buccal fanue lnnger than it in wide External jaw-feet narrow, third joint oval, and the fourth rather long; nternal plastron narmow letween the anterior feet, lut afterwardm wider, and freaentiog on the mollino line on nuture which ercupies the lant megment of it ; fees uf the tirst [air shont, but much Jarger than the succeding
ones, tho claw (manus) which terminates it convex, and the fingers a little curved inwards; four last pair of feet filiform and extremely long; the length of those of tho second pair equal fivo or six times of the width of the carapace; the others become progreasively shorter; their penultimato joint is a little dilated towards tho end, and the last joint is atyliform and a littlo recurved. Abdomen in both sexes composed of six jointa, the last of whieh is formed by the union (soudure) of the sixth and aeventh rings (Milne-EXwards)

The rpecier of thin genus are found in the liuropeas seas.
S. Phalangium (Cancer Phalaagium, l'ennant; Cancer roatralus, Linu.; Macropus Phalangium, Latreille; Macropodia Phalangium, Lench). This specics is found on the coasts of the Enflish Channel.

S. tenuirostris, Bell (Leptopodia tenuirostris, Leach), the Slender Spider-Crab, is Also found on the l3ritish coasts.

C'omposcia (Leach; Latreille).-Carnpace couvex and nearly pyriform, but truncated anteriorly; rostrum rudimentary and scarcely reaching beyoud the internal canthus of tho orbits. Eyes supported upon pedancles, which are 1ather long, recurved anteriorly, nad very large at thoir base; they aro cappblo of being reflected backwards, but they are not retmetile, for there in no post-foraminary orbital cavity for lodging them, their extremity being ooly protocted by a spine of the lateral part of tho carapace. Tho iuternal anteune aro raflected a littlo obliquely forwards; tho fossets which lodge them have this particularity, namely, that they are not separated, as they are ordi. unrily, by a longitudinal portion, and form only a quadrilateral cavity. The first joint of the external antenna is long and delicate, and is continued nearly as far os tho rostrum, carrying at jts extremity a moreablo stem, which is consequently completely exposed. The ejpistome is nearly square, and the external jaw-feet aro very much elongated, and ouly close the month imperfectly. The feet ne slender and very long; in the female tho first pair are tho sliortest, and aro not stouter than the succeoding ones; thoso of the third, the fourth, and the fifth pair aro a littlo longer, and aro also terminuted by a cylindrical mail slightly curved downwards. Form of the fect of the male, and disposition of tho abdomen in this genus, not kown. (Milne-LDWards.)

The species are found in the sens of Asia.
C. retusa may be takou as an example.

Eurypodius (Guérin).-A genus forming in certain points a passage between the Macropodiana already noticed, nnd some of tho Maide, such aa IIalimus ouritus; approaching the intter in tho form of the feet, and resenbling the former in the length of those nembers and in the disponition of the cyes.

The carapace triangular, twico as long as it is wide, rounded posteriorly, narrow auteriorly, convex and unequal above; rostrum formed by two long mul borizontal horna; eyes carried on pedunclea of moderato length nad not retrnctile; disposition of the internal and extemal notenne ncarly the mame ns in Stenorhynchus, Inachus, \&c. ; epistome wider than it in long; third joint of the external jawfeet nearly square, as wide as it is long, and decply notehed noteriorly and intermally, in order to givo inacrtion to the succecdiog joint. Anterior feet of tho length of the borly in the male and much aborter in the female ; they aro a littlo convex, and the fingers are slightly curved inwards; tho anceecding feet are very long, their third joint is cylindrical, but the fifth is compressed, and dilated below; its greatent width is below the middle; the finger is large, recurved, very sharp, and capmble of being bont back agninat the lower edge of the

Camposcia retusa. a, details of bead.
preceding joint, after the manner of a sub-cheliform claw; the length of the second pair of feet is nearly twice and a half that of the postfrontal portion of the carapace, and the succeeding feet diminish successively in length but very little; abdomen composed of seven juints in both seres (Milne-Edwards.)
E. Latreillii. This species is found in the Falkland Islands.

Amathia (Roux).-This genus agrecs in some respects with the Pericera of Latreille; indeed the aspect of both is the same, but the external antenne of Amathia have not the peculiar disposition which ia visible in Pericera, and the space which the orbits leave between them is scarcely wider than the base of the rostrum, whilst in Pericera it is more than double,

It has a carapace in the form of an clongated triangle with a rounded base; its upper surface and its borders beset with enormous spines; the rostrum, which is terminated by two large divergent horns, nearly as long as the post-orbitary portion of the carapace. Eyes small, and partially protected by a spine which occupies their external canthus, but, as in the preceding genera, they are not retractile and alwaya remain projecting. External antennæ presenting nothing remarkable; the basilary joint is long, very narrow, and soldered to the front; the stem is inserted under the rostrum, at some distance before the level of the eyes; it is very slender, and its first two joiots are of equal length; epistome large, and nearly as long as it is wide; the third joint of the external jaw-feet is dilated outwards, and truncated at its two internal angles. The first pair of feet are shorter than the succceding ones; they are filiform in the femsle, and a little convex or swollen in the male; the succeeding feet are long and filiform; the second pair are more than thrice as long as the postorbitary portion of the carapace, without including the posterior spine; the others are much shorter, their terminal joint is long, sharp, and without either apines or teeth on its inferior surface; abdomen composed of seven joints in both sexes. (Milne-Edwards.)
A. Rissoana. Carapsce armed with thirteen enormous spines, three of which elevate themselves from the stomachal region, one from the cardial, and the others occupy the border of the buckler; one on the intestinal region, three on each side upon the branchial region, and one upon ench of the hepatic regions: there is a small spine in front of the eyes, nud a larger one at the anterior angles of the buccal frame; feet, as well as the carapace, covered with a sort of down; length about two inches; colour yellowish, with two spots, red upon the front. It has been found at Toulon.
NAT. HIST. DIV. VOL. IM.

Inachus (Leach).-This genus, as established by Fabricius, comprehended nearly all the Oxyrhynchi, witl the exception of the Parthenopida. The genus is now much restricted.

The carapace is nearly triangular, not much longer than it is wide, and highly embossed above; rostrum very short, disposition of the eves different from that in the previous genera in the system of M. Milne-Edwards, the peduncles being capable of being reflected backwards, and being lodged in an orbitary cavity, which, though not deep, is very distinct; internal antenoæ without anything remarkable: the first joint of the external antenne soldered to the front before the internal canthus of the cyes, and the second sdvanced on the sides of the rostrum; epistome rather wider than it is long: third joint of the jaw-feet much longer than it is wide, nearly of the form of a triangle, with its base in front, and giving attachment to its succeeding joint near its anterior and external angle; sternal plastron narrowed suddenly between the feet of the first pair, and with its length not equal to its greatest breadth; fjet of the first pair very small in the female, but very large in the male, and sometimes thrice the length of the body; the claws always pointed and curved inwards. The succeeding feet cylindrical, slender, and more or less filiform; the second pair, always longer than the first, are three or four times the length of the post-frontal portion of the carapace; the others diminish successively in length, and all terminate in a very long cylindrical joint, which is pointed and but little or not at all curved. The abdomen is composed of only six distinct joints.

All the species are small, and have hitherto been found on the coasts of Europe, particularly those of Eagland and France. In the latter country they have been taken both on the northern and Mediterranean shores. They often haunt coves where there are oysters, and all of them have the body covered with down and hairs, to which sponges and corallines attach themselves; colour brownish. (Milne-Edwards).
M. Mine-Edwards divides the genus into three sections: the first containing one species, having the stomachal region furnished with five spines or tubercles, including one (median and posterior) very strong, and four small ones anteriorly on a transversal line.
I. Scorpio (I. Dorscttensis). It has been taken in the British Channel, \&c.

Inachus Scorpio.
a, male ; b, female ; c, abdomen of male ; d, abdomen of mature female; e, ablomer of immature female.
The second section consists of I. Dorynchus and I. thoracicus, and the third of I. leptochirus. The last is a British species.
Eyeria.-This genus is Asiatic in its geographical distribution, and M. Minne-Edwards divides it into two sections: the first with the third joint of the external jaw-feet decply notched at its anterior and external angle (E. arachnoides aud E. IIerbstii), and the second with the third joint of the extcrual jaw-leet not notched at its anterior and internal angle (E. Indica). [Ligeria.]

Doclea (Leaeh).-Carapace nearly globular, hairy, and more or less beset with spines; front raised, and the lateral edges of the carapace, instead of joining the orbits, directed towards the anterior border of the buccal frame; vostrum short and very narrow; the orbits directed obliquely forwards, and entirely lodging the eyes, which are very small, and have no trace of a spine at the anterior angle of their upper bordev, a character which renders then casily distinguishable from the Lilinice. The basilary joint of the external antenne advances much beyond the internal canthus of the cyes, a ad terminates nearly in a point under the front, to which it is intimately united;
the recond joint of thes antenuar is short, and placed near tha elge of the rostrun: the thind and the fourth joints sre very amall. Fpistome very little slevelonet, man much wider than it la long; tho thind joint of tho exterval jaw-feet is nearly square, alightly dilated outwanlw, and rather lecply notelsed at the intermal and anterior angle; sternal plastron nearly circular; the anterior feet weak and very suall, not more than once and a lang of the length of the oarnpace; the land nearly cylindrical; the succeeding feet very long, though not alwaya equaling those of the Eyeriar, elender, and cylindrical; their temuianting joint loug mul atyliform; the aecond pair from twico to thrice as long as the post-frontal portion of tho carapace, sud the nucceating pairs diminishing progressively. The nblomen varies; sometimes only five fistinct jointa are to bedetected in that of the fomale; sometimes there are aeven, as in the male.
M. Milue-lilwarsis, who gives the specifie character hero stated, observes that the Ductece bear the greateat mualogy to the Eiferior, and establish the passage between thore Macropodidee and Libinice which belong to tho tribe of Maiiader. [Mand.e.]

The epecies aro found in the Indian Seas.
1). Rissonie, whose locality is unknown, is gived as an example.

(Milne-lidwards, Mistoire Iufurelle des Crustacés; Dell, British Stull-Eyed C'rusfacca.)

MACHO'PONA, a geuus of Fossil Fibhes, proposed ly Agassiz. The aprecier belong to the ('retaceous Strata.

MACRUPTERUS. [1OCKS.]
MA'CluOPl'S, tho rclentific name for the Kangaroos. [Manserasta.] The term is also used by M. Tatreille to deaiguate n genus of Lirachyuroun lecapod Crustaceans. [Machorodidx.]

MA('hojrhamphes. [Scolopacides.]
MACRORHIINUS. [Phocıu.r.]
MAClzOSE'MlU'S, a genus of Fossil Fislees, proposed by Agaswiz. From the Golite.

MACBOUllA, or MACRU'lRA, the scientific mame for that section of Crmatacenas which lave the abdomaen, usually called the tail, long, iu contrndistinction from that section (Bhackyura) which hatse the tail shurt. The Cormon Lobster is an example of a Macrurous Crustacean, aud the Commun Crab of a Brachyurous Crustacean. [Cncestacea.]

MACROXUS. [Gcommant]
MACTlRA. [Covehacr.a.]
MADATUS. [CHEBHOHTERA.]
MAllH:R. [Rema.]
MA'DIA, a geaue of South Americnn JIorbaceoun Piants belongiug to the naturnl order Componiter, one of the apecies of which, s/. atica, in of value for the oil yielded by ita meda upon presaure. The geana fornan tho typo of Madica, n divinion of the Senecionideoun Tribe of 1)e Candulle, and in dintioguinhed among ita congeners by ita roundinh 1-rowed involucre, the hracta of which are keeled and envelop tho graina, by a plade receptaclo prlenceous at the mangin mud onked in the middle, and by its bald achenia, which have four or fivo anglen, atad taper to tho bane. M. artion, which forma the only specien, is an upright hairy glandular viscid Chilian aunual, with oblong entire leaven, half raplexicinl, opmonite at tho bottom of tho atem aud nitermate st the top; tho flower-lacala are racemome, sul the fluwers pale yellow. It lan long hera cultivatad in Chili, and apparently ju © alifurnia, for the rake of ith oil, which in of excellent quality. It ban aloo nttracted sttention in burope in consequence of Mr. hoseh, the sunerintendent of the gardenn of tho King of Wurtemberg, having succeanfully cultivated it in Germany on a large acale. He fonnd that m crmpard with raper foppien tho naount of oil yielded per Germand acro was an followa :-

Jape yiclla 249 lbm of nil per German acre.
Poppiea yielda 2 ef 1 ll . of nil jer German acre.
Madia yichls 412 llos. of ail per Germasn acre.
Tbin oil doem ruot congeal at 19 below zero of léaunur, but only becomes a littlo less fluicl, whicla makes it a valuablo matcrinl forkeep-
ing machines in order. The seeds are sown in October, and from four to six pounds are required per acre (German). The crop in of the easiest management, sad tho only precaution to be taken by tho cultivator, which it is important to nutice, ja that tho seeds must bo thrasbed out soon sfter the crop ia cut, otherwise the glutinous stallis, when heaped up, fermeut aud injure the neods.
(Gardener's Magazine, March, 1839, p. 142.)
MADOQUA. [ANTIlores.]
MADHASTKEA. This name is given by Do Blainville to a subsection of the Madrephylian, includiug Asfraa, Bichinastrra, Oculina, and Branchrestroc. He attachea but little importanco to it as a division. [MADRKFiMy.LIEA.]

MADREPHYLJIEEA, tha first section of the Stony Zoantharia of De lilainville, who styles tho other acction of this family of Zoantharia, Madreporfa. [Madnfronata.] The Linnxan genus Madrepara included nearly all tho species, and obviously required analysis, the more so that geological naturalists referred to the same geuus a vast number of prevjously unknown forms, and thus encumbered recent and impeded fossil zoology, and prevented any right notion of the successive forms of zooplyytic lifo on the globe.

Solander proposed some useful divisions of this unmanageable genus, derived from the growth of the coral. Lamarek established many important gevera, especially characterising some fossil groups. Lamouroux also laboured to improve the classification. Goldfuss has sinco described additional fossil groups; and M. De Blainville has reorgmised tho labours of his predecessors, with a special regard to tho soft animsl parts figured and described by Lesueur, Quoy, Gaimand, and other voyagers.
The Madrephyllixa of this writer seldom acquire that highly ramose figure which belongs to the Lamarckian gencra Madrepora, Pocillopora, \&c.; they are furuished with cells of various figure, nlways however radiated by lamella, which are frequently uumerous. There is no general distinctive character of the soft parta, or 'polypi,' as they have usually been termed. Tho fullowiag are the principal genera of this group :-

Cyclolites (fossil).-Animal unknown; solidified by a calcareous polypidom, of a short, sinple, orbicular, or elliptical figure, isttened, and marked with concentric lines below, convex above, with a great number of very fine entire lamelle, convergent to a sublacunose centre.

Lamarck founded the genus; Goldfuss includes it with the Fungire. Only fossil apecies aro knuwn; they occur in the tertiary and upper secondary strata chiefly. Mr. Lonsdale notices it in tho Silurian system.
C. numismalis (Madrepora porpita, Lino.) may bo taken as an exrmple. (Goldfure, tab. 14, fig. 4, a, b.)

F'ungia -Animal gelstinons or membranous, geverally simple, depressed, orbicular, or oval; mouth superior, transverse in a largo disc, which is covered by many thick cirriform tentaculn; the dise is solidified intermally by a calcarcour aolid polypidom, of a siuple figure

(seldon complex), ornamented nbove by a star of radiating aculeated lanclia, and below by aimple rugose rayn.

There are about nine recent (mostly from Indian Seas), and as many fossil species. De Blainville srranges them in three groups : simple and circular; simple and compressed ; complex and oblong.

The animal, according to Quoy and Gaimard, is very like that of Caryophyllia; it covers the upper face, and returns over the lower, so thst the whole polypidom is internal. M. Stutchbury has described the growth of this coral in the "Linnæan Transactions."
P. patellaris (Ellis and Soland., t. 28, figs. 1-4) may be taken os an example.
Montlivaltia (fossil).-Animal unknown; solidified by a calcareous polypidom of sub-conical or pyriform figure (fixed); transversely wrinkled below; enlarged, excavated, and lamellato-radiate above. From the Oolite of Csen. Goldfuss refers it to Anthophyllum of Schweigger; and De Blainville says it is closely allied to Cyclolites.
M. caryophyllata (Lamx., 'Zooph.' t. 79, figs. 8-10) is an example.

Polyphyllia.-Animals numerous, confluent, with a rather prominent mouth, lobed st the margin; numerous tentacula, not round the mouth, but scattered on the surface of a fleshy part, which entirely envelops and incloses a calcareous solid polypidom, which is a free oval elongated plate; sbove rather convex, and covered with lamellar ridgen, which are denticulated, prominent, very slender, and transverse, but without stelliform disposition; below rather concave, and roughened by close-set tubercles.
The whole mass is free on the sea-bed.
Fungia talpa of Lamarck ('Actinologic,' pl. 52, fig. 1) belongs to this genus.

Anthophyllum.-Animsi unknown, containing a calcareous polypidom of a conical or pyriform figure, fixed in the lower part, enlarged, flattened, excavsted, and multilamellous in the upper part. This genus includes fossil species from ancient rocks, snd appears imperfectly distinguished from Turbinolia unless the species of that genus were all free, which is at lesst doubtful.
A. Guctlardi, Defr., is an example.

Ehrcuberg unites in ons genus Monomyces, the Anthophylla, Montliraltic, and the two first groups of Fungia.

Turbinolia.-Animal simple, conical, ribbed caternally with larger and smaller ribs; terminated above by a mouth begirt with numerous tentacula, and solidified by a calcareous polypilom which is free, conical, furrowed externslly, attenuated to one extremity, enlarged at the other, and ending in a large shallow radiated cell.
Most of the species are fossil: they occur in rocks of all ages, particulsr species belonging to each; but if the genus is not very obscurely characterised, the use of the term is not very accurate. According to De Blainville, the recent T. amicorum has twenty-four ribs; but this number is exceeded vastly in some of the fossil species referred to the genus; and in others there are fewer than twenty-four.
Diploctenium of Goldfuss is a compressed Turbinolia, according to De Dlainville.
T. amicorum, Bl., from the South Seas, may be taken as an example. T. borealis and T. milletiana are found in British seas.

Turbinolopsis (fossil).-Animal unknown, solidifed by a calcareous polypidom, of a simple turbinated fgure, and free. This polypidom is lacunose, furnished above with radiating lamella, united at short equal intervals, and marked externslly by longitudinal flexuous striæ, inclosing between their united edges vertical Jines of pores or cella.
M. Lamouroux describes this genus. It has been since adopted by Mr. Lonsdale for specimens which occur plentifully in strata below Old Red-Sandstone. ('Silurian System,' by Murchison.) De Dlainville appeary to think it should be reunited with Turbinolia, but he had not examined the specimens noticed by Lamouronx.
T. ochracea. Lamouroux. 'Gen des Polyp.', t. 82.

Caryophyllia.-Animsls actiniform, subcylindrical, provided with a mimple or double crown of short thick perforated tentacula, which project from the surface of stars or cylindriconical cells; cells furnished with radiating lamella internally complete, externally striated, and aggregated into a solid couical polypidom, fixed at the basc. The species are grouped according to the simple or fasciculated character of the mase. There are both recent and fossil examples of each group.

Lamarck is the author of this genus, distinguishing it from Turbinolia snd Oculina. He has been followed by nearly all zoologists; but Goldfuss has reunited Caryophyllia snd Oculina into his genus Jithodendron.
C. Cyathus (Ellis and Sol., t. 28, f. T) is an example. It has occurred in the Britinh seas.

Jhrenberg divides this genus, and forms the following new ones:-

Desmophyllum. Example, C. dianthus.
Cyathina. Example, C. Cyathus.
Cladocera. Example, C. calycularis.

Sarcinula.-Animals unknown, contained in cells at the end of long cylindrical tubes; cells lsmelliferous, stelliform; tubes stristed externally, parallel to the axis, united by a cellular transverse mass into a solid calcareous polypidom, whose upper and under surfaces are plane and parallel.
This genus, established by Lamarck, includes both recent and fossil species. It seems to bear the same relation to Caryophyllia that certain tubular Astroce bear to the ordinary forms of that genus. There is no sufficient reason for the conjecture of De Blainville, that Lithostrotion of Llwyd should be referred to this genus: it has more resemblance to the following group, with which indeed De Blainville las joined it.

Columnaria (f,ssil).-Animals unknown, contained in shallow multi-radiate stelliform cells, at the ends of prismatic tubes; tubes aggregated, contiguous, more or less parallel, forming by their union a solid thick calcareous polypidom.

This is a genus of Goldfuss, established on fossils of the Transition Strata.
Stylina (fossil),-Animals entirely unknown, contained in radiated cells at the end of long cylindrical vertical tubes; tubes furnished internally with distinct lamellie, which radiate from a solid more or less prominent axis, and are united by a cellular mass 80 as to form a stony polypidom, more or less extended, thick, and echinated above.

A genus of Lamarck (originally named Fascicularia by him), which includes perhaps only one species. The prominent axis occurs however in several madreporic fossils not usually referred to this genusas certain Cyathophylla of Goldfuss. Sarcinula conaidea of this author is ranked by De Blainville as a Stylina.

Cateripora (fossil).-Animals unknown, contained in tubular cells; cells terminal, often oval, furnished with radiating plates, and united laterally into a calcareous polypidom, which may be described as of a conical figure, fixed, composed of vertical anastomosed lamellæ.

Tubipora eatenulata of old writers is the type of this Lamarckian genus, which, with some surprise, we found to be, as De Blainville states, really a lamelliferous coral. He draws this inference from examining s fine specimen, at Bonn, of C. escharoides, which he considers the only species. It is peculiar to the Transitiou Rocks, though not perbape to the Silurian System.
C. escharoides (Lamarck; Goldfuss, t. 25) is an example.

Fischer's genus Malysitcs is identical with Catenipora.

Syringopora (fossil)-Animaln unknown, contained in long nubflexturs tubular vertical cells; opening of the cella round, terninal; numerous mall horizontal tubuli branch off from the cells, and unite loy anstomosia the whole ramified mas into one polypidom.
Gulafuss is the author of this genus, the species of whielu were, by wher writers, always ranked as Tubipora. In our owo examinations of Syringopora, from the Carbonifervus Limestone (S. rammbasa ($)$, fuldinss), we have hal renson to think the interior of the tubes had formerly been radiated; but tho trices of the lamellie are nover elear, or even certain. The species belong to Silurian and Carboniferous IRocks chiefly, lerhaps not exelusively.
※̌, vert:cellata (Goldfuss, t. 25, f. 6; A. geniculdte, Phillips, 'Geol. of Yorkalire,' ii. t. 2, f. 1) maty be taken as an example.

Syrangopora geniculata.

Dendroulhllia. - Anmals aetiniform, furoished with a great number of lifid tentacula, in the midst of which is a polygonal mouth; the cells containing the animals are rather deep, and radiated by mumerous prominent lamelle ; the polypidom which these compose is wiflely atthehed, arborescent, striated externally, lacunoso internally, and truacate at tho extremitics. Tho speeies are both recent and fossil.
D. ramata (Sol. and Ellis, t. 3S) is an example.
hodophyllia.-Animals sctiniform, furnished with many cylindrical tentacula; cells conical (fometimes elongated or sinuous), with a sub"ircular opening, laciniato-lamelliferous, terminating the few branches of the piflypidom, whiel is fixed, of a turbinated shape, externally Atriated, and internally lacmose.
The species were included in Lamarek's genus Caryophyllia; the foseil sinceies are chiefly from the Oolitic Formation.
L. Cardus (C'aryophyllia Corduus, Lamarek) is an example.

Mcandrima. A dimala more or less confinent, in ono surface, in long minuous series, linving each a distinct mouth and lateral series of very flort tentacula, contained is slanllow cells, which are not really meparate, but form by their lateral union sinuons valleys; these valleys are furnibhel on ench side of the mesial line with tranaverso sub prathel lamelle, endiug against rilges which separate the valleys; the whol" calcareous polypidom is fixed, simple, turbiniform when young. auel glubular when old.
This gernus, entablished by Lamarek, is universally adopted by \%opopytologists. Tho recent speciea leloug to the ludian or South Athntie neas. The fossil species aro few, and chiefly belong to the Oolitic Formation.
M. Chedthte (tillis and Sol., t. 1f, f. 1) may be taken as an example.

Neandiser de dulica.
a, entire nazure relloced; b, partion, naturab fize.

Dictyophyllia (fossil),-Animala unknown, contained in polygonal rather irregular celle of a considerable size; cells separated by partitions denticulated on both sides; the calcareous polypidon which results is fixed, deeply reticulated on the surface, and encrusts other bodics. The base of the cells is finely tuberculated.

The beat marked species is D. reticulata, whieh is found in the chalk of Maastricht. Goldfuss, t. 21, fg. 3.

Agaricia-Animals wholly unknown, contained in celle, which often appear incomplete or confused, and sublamellar internally : they constitute by their union a stony polypidom, fixed, formed of flatteued foliaceous irregular expansions, stelliferous on one side only.
The recent species are not numerous. We receive them from the Indian Ocean and the South Sea. Goldiuss refers somo fosails to this genus.

A, cucullata (Ellia and Sol., t. 42, f. 1, 2) is an example.
Tridacophyllia-Animals actiniform, confluent, very depressed, calarged, and attenuated to a finely crenulated edge; mouth central, a little tuberculous, but without tentaeula; cells deep, irregular, foliaccous in the borders, lamellato-radiate, and denticulato within, externally and irregularly striated; tho polypiferous mass thus formed is calearoous, foliaceous, not porous, striated, turbinated and fixed at the narrow part.

Iamarek ineluded the prineipal species (T. Lactuca) in his genus Paronica; another he named Explanaria aspera.
T. Lactuca (Ellis aud Sol., t. 54) is an example.

Monticularia.-Animals unknown, contained in cells imperfectly eircumscribed, sometimes even confused or confinent: the lamella of these cells are very prominent, very distinct, rather numerous, and diverge from a tubercle; the mion of the cells is marginal and in ono surface; the polypidom is calcareous, very lacunose and polymorphous: sometimes it encrusts other bodies, is agglomerated into a heap, or spreads in silusous cxpansions, striated externally.

This genus of Lamarck is supposed to bo identical with IIydnopora of Fiseher. The recent species are from the Indian seas. Mr. Lonsdale refers a fossil species of the Silurisa system to this genus.
M. excsa (Sol. and Ellia, t. 49, f. 3) may be taken as an cxample.

Pavonia-Animals without tentacula; the cells which contained them confluent, conical, small, rather oblique, furnished with many very close Jamellw disposed irregularly, though sometimes in series; the polypidom thus composed is solid, fixed, running into various agglomerations and expansions, with sharp edges.

The recent species are from the last and West Indian seas. The few fossil species are from Transition and Oolitic Formations.
P. bolctifurmis (Ellis and Sol., t. 32, f. 3, 4) is an example.

I'aronia boletiformis.
Tho followiog genera, namely, Astrca, Echinastice, Branchastrca. and Ocalime, are grouped by De Blaioville under the sub-sectional title of Madrastrea :-

A stroza.-Animala short, more or less cylindrical ; moutl rounded, placed in the midnt of a dise covered with few and mather short tontacula; cells shallow, lamellie radinting, and forming by their union a fixed polymorphoun polypidon, which often encrusts other bodies, or is agglomerated on itself. This great genus is divided into the following section.

Section A. Astrecides of Quei and Qaimard.-Shars round and often diajoined.
A. calyeularis (Caryophillia calycularis of Lamarch), from the Mediterranean, is an exanple.
Section 13. Meaudriniform Adract-Stars distinct, unequal, oblong, more or leas difluent, forming encrustin: or agglomerated masses.
A. Ura may bo taken as an exnmple.

Section C. Gemmastrca.-Stars circular, very distant, prominent, abd forming encrusting nuassea.

These are chiefly fossil.
A. Lucanianct, Defr., from the Oolite of Desançon, is an example.

Section D. T'uloastra. - Calls tubular, vertieal, moro or lese distnnt, with a round opening, the edges being hardly prominent, and radiated ly a moderate number (12 to 24) of complete lamellas. This section includes many recent and fossil species.
A. farcolata (Ellis and Sol., t. 53) may bo taken as an example.

The animal in described by Quoy and Gaimard.

Section E, - Cells roundish, approximate, sometimes irregular, rather shallow; the lamellæ very distinct, cutting, complcte, extended over the rounded interatices; mass encrusting or agglomerated.
A. Ananas (Ellia and Sol., t. 47) is an example.

Astraza Ananas.
Section F. Siderastrcea.-Cells auperficial or shallow, iudefined, with numerous very fine laurllæ, radiating from an excavated centre, and continued to meet or even to join those of neighbouring cells.
A. sidorea (Ellis and Sol., t. 49) may be taken as an example.

The fossil species are numerous, especially in the later Secondary and Tertiary Rocks.
De Blaiuvilla makes several groups of them according to the manner of their growth.
Section G. Dipastrea.-Of a globular figure; cells profound, infundibuliform, sub-polygonal, contiguous, with common partitiona, which are elevated, sulcated, and echinulated on the edges.
A. dipsacea (Lamarck; Madrepora favosa, Ellis and Sol., t. 50) is an example.
Thera are fossil specica ln the Secondary and Tertiary Strata
Section H. Monecastrata. - In thick masses composed of tubular cells, which acquire a polygonal figure from juxta-position; their edges not prominent ; the cavity not deep, furnished with aumerous lamellse united to a solid prominent axis. The known species are fossil.

Section I. Favastrea.-In a thick mass composed of large polygonal excavated cells, pluriradiate, dcpressed in the ceatre, and hollowed towards the margin. (Acervularia of Schweigger; Cyathophyllum of Goldfuss.)
Goldfuss's generic name is much employed for fossils of the Silurian Rocks.
Recent, Astrca magnifica; Indian Sea: Fossil, A. Baltica, De B1. (A. Ananas, Linn.) are examples.

Mr. Lonsdale las proposed a new genus, allied to Cyathophyllum; and from its vesicular internal structure calla it Cystiphyllum. From the Silurian Rocks.
Section K. Strombastraca.-In corticiform masses composed of infundibuliform polygonal radiato-lamelliferous cells, which are proliferous, or succeed one another vertically. Goldfuss calls the group Strombodes. Its distinctuess is doubted by De Blaioville.
Strombodes pentagonus, Goldfuss, fossil, in the North Americau limcatone, may be taken as an example.
Section I. Cellustrcea.-The apecies of this group differ from the Dipsastrece principally by the fineness of their radiating lamelke, and by a peculiar cellular structure. The fossil species are fonud in Tertiary Strata
A. incerta (Sol and Ellis t. 47, 3) is an example.

In concluding his examination of the great genus Astreca (which includes several other genera adopted by Goldfusa, Schweigger, \&c.), Do Blainville acknowledges the probable imperfection of the arrangement above given, and notices the transitions which it presents to the generic groups of C'aryophylia, Pavonia, Oculina, \&c. Perhapa notil the relation of the lamelliferous cells to their contained polypi is koown from a very general investigation of recent types, zoologists will do wisely not to propose new genera from ill-underatood apecimens of ancieut corals.

Echinastrea.-Animals unknown, contained in raised cells which are strongly radiated, rather irregular, echinulated, and occupy only the upper surface of the coral. The mass is either fixcd or free, expanded into a lobate or reflexed plate, internally echinated, striated, but not porous externally.

Dart of Explanaria, Lamarck, is included in this new group, as well as Echinophora of that author.

E: ringens (Lamarck) may be taken as an example.
Branchastraca.-Animala unknown; tha cells which contained them are of a cylindrical figure, channeled internally, prominent, radiating from the general masa, and united into a ramose, cylindrical, solid coral. Only one specice, B. limbata (Goldfuse, t. 8, f. T); from the Jura Limestone, Suabia.

Oculinco-Animala unknown, contained in regular, round, radiated cells, suore or less prominent, and srattered on the surface of a solid, compact, arborescent, fixed polypidom.
Lamarck establighed the genus; Schweigger has united it to Astrea, and Goldfuss to Caryophyllia.
O. axillaris (Fillis and Sol., t. 13, f. 5) is an example.
O. prolifera has been taken in Zetland. [Polyprimera.]

MADREPOR AA, the second section of the Stony Zoantharia of De Blainville, and placed by him after Madrephyllica. [Madnephylifea.]

The corals of this section are generally arborescent, with small partially lamellifarous cells, and constantly porous in the interatices and walle of the cells. This last is the most important character. The Lamarckian genus Madrepora included many of the geners of De Blainville.

Dentipora.-Animals unknown; cells deep, circular, mammillated, furnished with 10 dentiform lamelle prominent towards the margins, scattered in the polypidom, which is compact, expanded, its par'ts anastomosing together, and echinulated with strong interstitial tuberclea.

The species are ranked with Oculina by Ehrenberg and earlier authors.
D. virginea (Ellis and Sol., t . 36) may be taken as an example.

Astrcopora.-Animals unknorun (probably provided with a single crown of 12 tentacula) : the cells which contained them are prominent, manillary, internally sulcated, and irregularly gcattered on the surface of the polypidom, which is extremely porous and echinulated, enlarged into thin expansions. Astrea myriophthalma of Lamarck belongs to this genus.
Sideropara.-Animals unknown; cells deep, immersed, circular or sub-hexagonal, with six deep notches at the border, and a prominent central axis, irregularly diapersed on the arborcseent, palmated, finely granulated, but not porous polypidom. Several of Lamarck's Porites are placed in this group. S. digitata is an example.
Siylopora.-Animals nnknown; cells with few lobes at the circumference, internally striated, with a pistilliform axia, irregularly aggregated into an arborescent or subpalmatcd fixed polyparium, whose interstices are porous and cchinulated.

This group of Schweigger is not cousidered as neally generic.
Coscinopors.-Animals unknown; cells infundibuliform, quincuncial, forming the openings of eapillary tubea laterally adherent iuto an attached polyworphous polypitom.

This group, established by Gollfuse, is ranked by that author near to Refepora. Thero is apparently no evidence that it shouhl be placed smong the Madreporia.
U. infundibuliormis (Goldfuss, fll. 9 anci pl. 30, f. 10) is an example.

Gemmijorn-Animals without tentacula; cella deep, cylindriesl, chamelled, and almost lamelliferous within, prominent in a mammil. lary furm on the surfsee of a fixed, porous, prborescent, or laminiform polypidom. Several of Jamarck's Eirplanarie come into this group.
(i. uncaenterina (Fillis and Sol., t. 43) may be taken as an example.

Gcomipora mesenterina, diminished. a, portion, natural size.
Montipora.-Animala actiniform, short, provided with small tentacula to the number of twelve, placed in a single series; cells very minall, ronuded, impressed, regular, with few internal grooves. l'olypilom inernsting or agglomernted, very porouk, much cehimulated, and marked ly mammillary prominences on the free surface. Some of 1-amarck's Porites are included in this genus.

Joriles rerrurosa, Lamarek, an Australasian geaus, is an example.
Mudrepora. - Animals nctiniforn, mather short, with twelvo simple

Ifualepora alurnianatides, riminishet.
a, termination of one of the branches, natural aize.
tentaculs; cells deep, prominent, scarcely stelliferous, irregularly scattered on the surface, and accumulated toward the terminations of the polypidom, which is very parous, arborescent or frondescent, and fixed.

This restricted genus ineludes sevcial recent species, and a few fosmils.
M. abrotanoiles, Lamarck; M. muricata, Linn. (Eillis and Sol., to 5\%), is an example.

I'almipora.-Animals unknown; cells very small, uncqual, completely immersed, obsoletely radiated, scsttered; polypidom fixed, collular within, very finely porous and reticulated externally, expanded in a palmate or digitated form.

Tho genus includes Millepora alcicormis of Liuntus and others like it.
M. alcicornis, Linn., may be taken as an example.

> Millcporn alricornis.

Heliopora.-Animals short and cylindrical, with a crown of 15 or 16 broal and short tentacula; cells eylindrical, vertical, or subdivergent, immersed, interually crenulated by partial lamella; polypidou largely porous in the interrsl of the cells.
II. carulea (Madrepora carulea, Ellis,and Sol., t. 12, f. 4 ; Pocillopora carulca, Lamarck), a species fron the equatorial seas, is an example.

Melioporn earulen.
A fossil sprecies in the Transition Limestone (Asprea porasa, Gold.), usually ranked in this genus, is pat in l'orites by Fhrenberg and laonsdale. (Murehison's 'Silurian Region.')

Alecogora.-Animals actiniform, with 12 simplo tentacula; cells

deep, polygonal, irregular, unequal, internally tuberculiferous, with perforated or reticulated parietes, echinulated on the terminal edges; polypidom porous, cellular.
A. relepora; Madrepora retepora, Linn. (Ellis and Sol., 't. 6t, f. 3-5), may be taken as an example.

Goniopora.-Animals sctiniform, elongated, cylindrical, with a crown of more than I2 simple tentacula; cells polygonal, internally sulcated, echinulated on the edges; polypidom extremely porous.

One recent specjes (G. pedunculata of Quoy and Gaimard).
Porites.-Animals urceolate, with 12 very short tentacula; cells polygonal, unequal, imperfectly defined, incompletely radiated by filamentous pointed rays, with echinulated intervals; polypidom diversiform, porous, and echinated. This is a genus of Lamarck, but some what contracted by De Blainville.
P. clavaria, Lamarck (Ellis and Sol., t. 47, f. I), is an example.

Poriles clataria.

Seriatopora.-Animals without tentacnla (?); cells immersed, ciliated on the edges, but not internally lamelliferous, ranged in longitudinal scries on the cylindrical branches of a porons finely ramified polypidom. This is a genus of Lamarck modified. It includes only a few species, much like the type, Mudrepora seriata, Linn.: figured in Ellis aud Sol., t. 31, f. 1-2. Ehrenberg ranks them with Millepores.

Pocillopora-Animals withont tentacula (?); cells small, shallow, subpolygonal, echinulated on the edges, and sometimes rather lamelliferous within; towards the terminations of the branchiog polypidom the cells are contiguous and adherent, but separated by granular interstices near tho base of attachment. The polypidom is not porons.

Lamarck catablished the genus, which is generally adopted. Ehrenberg doubts if there be any tentacula.
P. damicomis, Lamarck, recently found in the Iudian Soa may be taken as an example. P. interstincta has been found in the British seas. [Polypifera.]

MADREPORITE (Anthraconitc; Columnar Carbonate of Iime)a Mineral occurring in roundish mssses, the structure of which is columnar and diverging. Fracture indistinctly lamellar. Hardness $3^{\circ} 0$; yjelds casily to the knife. Colour grayish-black. Lustre vitreous. Opaque, or only translucent on the edges. Specific gravity 2.7 . It is fouod in Norway at Stavern, in transition rocks; at Gyphytta in alum slate; in Greenland, and in Salzhurg.

The fullowing analysis is by klaproth:-

MENU'RA, or MENU'RA, Dr. Shaw's and Dr. Latham's name for a siogular genus of Birds, whose place in the system has occasioned some difference of opinion among oruithologists.

In 'An Account of the Eoglish Colony of New South Wales, from its first settlement in January, 1788, to August, 1801, \&c., to which are added somo particulars of New Zealand, compiled by permission from the manuscripts of Lieutenant-Governor King; aod an Account of a Voyage by Captain Flindera and Mr. Bass, \&c., abstracted from the Journal of Mr. Bras, by Lieutenant Collins of the Koysl Marines,' dc. (4to. 2 vols., 1802, London), it appears that in January, 1798, in consequence of the determination of certain Irishmen to go ont for the discovery of a settlement for themselves, the governor, after ineffectually trying corporal punishment, determined, with a view of checking the spirit of emigration, to couvince these Irioh by their own experience of the danger and difficultics which attended it, and accordingly he causcd fonr of the strongest snd hardiest among them to be chosen by themselves, and properly
prepared for a journey of discovery. They were to be accompanied by three men, upon whom the governor knew he could depend, aud who were to lead them back whon fatigned and exhansted with their journey over the worst and most dangerous part of the country. A conspiracy to murder the gnides was discovered, and counteracted by the addition of four soldiers to the guides, and on the 14 th they set off from Paramatta. On the 24th the soldiers returued with three of the deputies, who, having gained the foot of the first mountains, were so completely sick of the journey, and of the prospect before them, that they requested to return with the soldiers, whose mission here terminated. The three persons who had been seut out with the Irishmen returned on the 9th of February. "On arrauging their courses and distances on paper, they appeared to have travelled in a direction south-west three-fonrths west ahout 140 miles from Paramatta. They brought in with them one of the birds which they had aamed pheasants, but which, on examination, appeared to be a variety of the Bird of Paradise. The size of this curious and handsome bird was that of a common hen; the colour a reddish-black, the bill long, the legs black and very strong. The tail, about two feet in length, was formed of several feathers, two of which were the principa, having the interior sides scalloped alternately of a deeper or lighter reddishhrown inclioing to orange, shadiog gently into a whito or silver colour next the stem, crossing each other, and at the very extremity terminating is a broad black round finishing. The difference of colour in the scallops did not proceed from any precise change in the colour itself, but from the texture of the feather, which was alternately thicker and thinner. The fibres of the outer side of the stem were narrow, and of a lead colonr. Two other feathers of equal leagth, and of a bluish or lead colonr, lay within those; very narrow, and having fibres only on one side of the stem. Mauy other feathers of the samo length lay within those again, which were of a pale grayish colour, and of the most delicate texture, resembling more the skeleton of a feather than a perfect one." Lieutenant Collins then gives a figure of the bird " from the pencil of a capital artist," which seems to have been handed down from author to anthor, and is indeed upon the whole correct, with the name of M cenura superba.
M. Temminck arranged the form under his order of Insectivorons Birds (Insectiveres), among the Thrushes, giving it a position between Cinclus and Pilla.
Cuvier does not differ much in his views from M. Temminck; for he places it among his great gronp of Passereaux (Cuvier's second order), and it stands in the 'Regne Animal' in the following relative position: Oriolus, Gymnops, Menwa, Motacilla.
M. Vieillot differs almost entirely from both Temminck and Cuvier; for, though he includes it in his second order, which corresponds with the Insessores of Mr. Vigors, the Lyriferi staud in M. Vieillot's 'Analyse' at the extremity of that order, and near the gronps of Columba and Penelope.
Illiger, in his 'Prodromus,' arranged it among the Rasores.
Before we proceed to a consideration of the views of more modern authors, it is right to put the reader in possession of Cuvier's description, with his reasons for classing Manura as he did. Hesays that the size of the bird (a little less than that of a common pheasant) has caused it to be referred to the Gallinaceous Birds, but that :4 helongs evidently to the Passerine order from its feet, whose toes (excepting the first articulation of the external and middle toe) are separated, while the form approaches the Thrushes (Merles) in the structure of the bill, which is triangnlar at its base, elongated, and a little compressed, aud notched towards its point; the membranons nostrils are large and partially covered with fathers as in the Jays. Moxnure, he adds, is to be distinguished by the great tail of the male, which is very remarkable for the three sorts of feathers that compose It. The twelve ordinary feathers are very long, with loose and very distant barbs; two more in the middle are furnished on one side only with close-set barbs, and two external oues are curved in the form of an S , or like the branches of a lyre, whose internal barbs, which are large and close-set, represent a lroad ribsnd, while the external ones are very short and do not become enlarged till towards the end of the feathers. The female has ouly twelve feathers of the ordinary structure.
Mr. Vigers ('Linn. Trans.,' vol. xiv.), who alludes to the position assigned to the bird by the authors above mentioned, places it at the extreme of his third order (Rasores), among lis family of Cracide. [Cracide.]
M. Lesson speaks of the position of Mcenura as far from being fixed, and thongh he follows Cuvier in placing it among the Passereaux, he observes that some authors think that it would stand better at the side of Megapodius, in the Gallinaceous order. After quoting the words of Cuvier given above, he says, "The Manura has then been arranged sometimes among the galliuaceous birds nnder the name of Lyre-Pheasant, or Pheasant of the Woods, and sometimes at the end of the Calaos [Honsbill], and the Hoazins [Cracides], as M. Vieillot classed it, while, scientifically speaking, it is near the Thrushes that Manura ought to take its place, though it departs distinctly from them in the form of the body."

Mr. Swainson ("Classification of Birds"' vol ii. 1837) allndes to the place assigned to Mcenura aud Meyapodius by Mr. Vigors, and says that they certaiuly accord more with that family than vith any other
gronj of thie Gallinacer. Mr. Swainson observes that both these genern have the feet uncommonly large, and that both seem to repreaent the scannorial genua Orthonyr, a birl indeed nearcely larger than n aparrow, but agreeing in the very remarkablo scansorial character of haring the three fore toes of nearly the same size. "If," continnes Mr. Swainson, "t the Cracidre, ns we believe, is the acansorinl family of the Rasores, this ningular analogy in precinely what we should expect in two groups representing the same tribes," In the synopsin at the ead of the volume Mr. Smainson cancels tho term Cracide, and aubstitutes in its place the family Megapodince (Megapodida !), remarking, that as bo has overy reason to believe, from an attentive atudy of thin family, that Crax is an aborrant gemm, he has thought it better to curreet his former error, nud to name the whole from that group which is one of tho chief types; mid he makes Menura the first genus of his 'Family Megapodincr, (irentfoots,' with the following generic character:-Bill moderate, ctepressed at the base, straight; the tip obsoletely notched. Nostrils maked and placed near the iniddle of the bill. Feet very large, atrong, nad robust; nearly all the nnterior toen equal ; the clawa enormous for the size of the hird. obtuse, and slightly curved. Wings short. Tail very long, lyreshaped ; the feathers singularly developed. The typical or conirosital form of the whole family.
M. superba (M. Lyra, or lyrata, M. Wow Mollandix, Shaw, Jath., M. Paralisea, Vieili.) is the only apecies known.

lioutenant Culline, in the work aboro quoted, gives, towarda the end of hin second volume, "a more minuto and ormithological dencrip" tion (with which lie lamel been "favoured") than that stated above," The second demeription is as fullown. "The bill of thie bird, which han been named the M. muperba, is atraight, having the nostrila in the contre of the venk. Tbe lase of the upper mandible in furninhed with lanirn like feathra turning down; the upper mandible if at the lane, numewhat like that of the pigeon. The eyo in a dark hazel, with a bare space aromml it. The thromt and chin are of a dark rufous colour ; the reat, with the lmaly, of a dugky gray. The fenthera on the rump ere longer than thome of the boty, and more divided. The colour of the wing:, which are concavn, is clark rufou". The loga and claw are large in proportion to the bird, partioularly the clawn. The ontward tur is comecterl with the midille one an far an the first joint. The tail in long, mind comoponel of thre lifferent nort of feather, of which the urim nitle is of a dark gray, with ferruginous spota. The
first two lower feathers, which are n little curved in two directions, are benenth of a pearly colour, enriched with several creacent-shasjed apncen, of a ricls rufous and black ealour. The lamine are unwebbed, turned round toward the extremity, aud ornamented with a binck bar, the breadth of no inel, and fringet at the end. The ahart of tho second, which is likewise long, is fringed with long bair liko filaments; and the third, which is also long and curved, is plumed on the janez side only, except at the extronity, where there are a few aeparated filnments of a dark gray colour.
"The female If, superbe differa very lithle from the male, except in the tail, which is composed of twelve featlers, a little curved and plumed, laving the npper side dark rufous nud gray, and the under of π pearly colour."
The more modern descriptions of the tail of the female state it to be simply brown, and composed of long miform feathers, which are straight ind gradusted.

Some of the tali.feathers of Mienura superba.
Notwithatanding the sombre lues of this extraordinary birl, the magnificenco nad peculiar structure of the beantiful tail of the inale. which initates the form of an aneient Grecina lyre, give it a auperb appearance.

New South Winlea, principally in tho forests of Eiucalypius and Casuarina whicl cover the Bue Monntains, and in their rocky and retired avenues, is the liabitat of this bird.

Lientennut Collins snys that "the following particulars relating to theas birds were observed by persons resideat in the country, and who wero eyc-witacases of what is here told. They frequent retired nod innccesable parta of tho interior; have been seen to run remarkshly fant, but their tails are so cumbrous that they caunot fly in a direct line. They sing for two hours in the morning, beginning from the time when they guit the valley, uatil they attain the summit of the hill, where they scrape together asmall hillock with their tail spread over them, imitating successively the note of every birl known in the country. They then return to tho valley." If dependence could be placed upon this necount as fres as relates to the singing, it would assist tho viewn of thone who would place Manura near the Thrushes; anong the gallinaceoun biris, singing, in the common receptation of the worl an applied to birls, in not known. But this nort of statemente, taken an they montly nre from the relation of those who aro not very careful an to tho troth of their coromunications, if they can only surprise and please their nuditors, must be received with many
grains of allowance. The singing is not corroborated by subsequent observers.

Mr. Caley informed Mr. Vigors, that from the observations he was enabled to make on these birds during his stay in Australia, it was his opinion thst they were gallinaceous. Mr. Caley generall! found them in flocks, and for the most part on the ground. M. Lesson states that they come forth in the evening and the morning, remaining quiet during the day on the trees whereon they perch. He says that they are becoming more and more rare, and that he only saw two skins during the whole of his stay at New South Wales. Mr. Swainson informs us that ehief-justice Field, of Gibraltar, who was long a resident in Australia, assured him (Mr. S.) that Mcenura in all its habits was a gsllinaceous bird, living on the ground in small societies, and being very fond of rolling in the dust.

Mr. Bennett, in his 'Wanderings iu New South Wales,' \&c., remarks that this Native Wood-Pheasant, or Lyre-Bird of the colonists, the Béleck-Beleck and Balangara of the aboriginal tribes, is abundant about the mountain ranges in all parts of the colony. The tail-feathers are detached entire from the bird, and are sold in the shops at Sydney in pairs Mr. Bennett observes that the price was formerly low; but now that the bird, from continued destruction, has become rare, their tails fetch from 20 s. to 30 s. the pair. About the ranges however of the Tumat conntry, where they have been seldom destroyed, they are more frequently seen.

The same author states that it has its young in December, the gcason when all the wild suimsls in the colony are produced, and can be then procured with facility. "It is," sajs Mr. Bennett in coutinuation, "a bird of heavy flight, but swift of foot. On catching a glimpse of the sportsman it runs with rapidity, sided by the wings in getting over logs of wood, rocks, or any obstruction to its progress; it seldom flies into trees, except to roost, sad then rises only from branch to branch: they build in old hollow trunks of trees which are lying upon the ground, or in the holes of rocks; the nest is formed merely of dried grass or dried leaves scraped together. The female lays from twelve to sixteen eggs of a white colour, with a few scattered blue spots. The young are difficult to eatch, as they run with rapidity, coucealing themselves among the rocks and bushes. The Lyre-Pheasant, on descending from high trees on which it perches, has been scen to fly some distance. It is more often observed duriog the early hours of the morning, and in the evenings, than during the heat of the day. Like all the gallinaceous tribe, it scratches ahout the ground and roots of trees to pick up seeds, insects, \&c. The aborigines decorate their greasy locks, in addition to the emu feathers, with the spleadid tail-feathers of this bird, when they can procure them."
Mr. Bennett laments the rapid disappearance of the races of animsla found in a vew country, and which are pursued, whether useful or dangerous, even to extermination. He states that io the settled parts of the colony the harmless kangaroos and emus are rarely secn, when they might easily be domesticated sbout the habitations. "The same remark," he adds, "applies to the Lyre-Phcasant. Why are they not domesticated, before, by extermination, they are lost to us for ever 1"

MERA, Dr. Leach's name for a genus of Amphipodous Crustacea. M. grossimana, Leach (Cancer Gammarus grossimanus, Montagu) ' Linn. Trans,' ix. tab. 4, fig. 5, is very common on the English ceasts, where it is found noder stones aad rocks at low water.

MAGI'LUS, De Montfort's name for a genus of Testaceous Mollusca, the form of whose shicll varies very much according to its different stages of growth and the circumstances in which it is placed.

The genus was placed by Lamarck among his Annelida, in the family Serpulacea, containiog the genera Spirorbis, Serpula, Vermilia, Galeolaria, besides that uuder consideration.
M. De Blainville arranged it among the Mollusca (fanily Cricostomasa), between Siliquaria and Valvata, observing at the same time that Guettard clearly saw the relation of the form to Vermetus.

Cuvier, in his last edition of the 'Regne Animal,' gives it a position between Vermetus and Siliquaria, in his seventh order of Gastropods (Tubulibranchiata).
M. Rang remarks that, when he was secking the auimal in India, he was struck, like M. De Blainville, with the adalogy which the genus presents not only to Vermetus, but also to nany other gencra of Pectinitranchiata. This analogy, M. Rang further observes, is especially remarkable when a young iodividual whose shell has not yet become tubular is examined.
M. Kang states that he saw some fragments of tho animal, aud that it is certainly a Gastropod. In his description however he notes the animal as unknown. Dr. Riippell states that it is furnished with an operculum.

Shell.-Young: Fragilc, with an epidermis, pyriform, ventricose, with a short apire of from three to four turns; aperture longer ${ }^{\circ}$ than it is wide, oblong, without any notch anteriorly, where the lip nevertheless forms an angle. Jr. Riuppell thinks that M. lang, when be wrote the above description, had
 before him the young of feptoconchus. shell of Magilus (young). Adult: The last whorl abaadoning altogether the spiral form to Nat. LLST. DIV. VOL. HI.
produce an elongated tube, which is irregularly sinuous, or irregularly contorted, conical, compressed laterally, especially on the side of tho base of the shell, carinated beneath, and free; aperture elliptical.

Shell of Magilus (old).
When in this state the shell presenta all the characters of a regularly spiral univalve. The animal establishes itself in the excavations of Madrepores (Astrece, \&c.), and as the coral increases aronnd it the Magilus is obliged, in order to bave its aperture on a level with the surrounding surface, or near it, to construct a tube, which is more or less eccentric according to circumstauces, the growth of the coral determining the length of the tuhe. As this tube goes on increasing the animal sbandons the spiral for the tubular part of the shell, and in this operation it leaves behind no septa, or partitions, but secretes a compact calcareous matter which reaches to the very summit of the spiral part, and is deposited from time to time as the tube is lengthened; so that in an old specimen the posterior part of the shell presents a solid and almost crystalline mass : iudeed the fracture of this mass is radiated snd saccharoid. One species only, Magilus antiquus, is known. The colour is white, more or less pure. [Leptoconchus.]

MAGNESIA, the Oxide of the metal Magnesium. Magnesia, as well as several of its salts, occur as minerals. The sulphate and nitrates of magnesia are soluble, and lave a bitter taste. The other native salts are insoluble. The specifio gravity of all the salts is below 3 .

Shep hardite, also called Brucite, is a hydrate of maguesia. It occurs rarely, in hexsgonal prisms, generally in laminar masses, and fibrous. Its primary form is a rhomboid. Colour white, greeuish-white. Streak white. Lustre pearly. Transparent, translucent. Hardness $1 \cdot 0$ to 1.5. Specific gravity 2.33 to 2.63 . It is found at Hoboken, in New Jersey, North America, and in the island of Unst, Shetland. Bruce, after whom it has been mamed, gives as its composition-

Magnesia

Water

$$
70
$$

30
-100
Nemalite is a name given to a fibrous form which coutains some iron and carbonic acid. It occurs with the first form in North America.

Sulphate of Magnesia is the well-known Epsom Salts. It is often found in solution in mineral spriugs, also in sea-water. In some places it has been found erystallised. At Helderberg it occurs as an efforescence, and it is called Hair-Salt. [Eisomte.]

Magnesite, Carbonate of Magnesia, occurs in acicular crystals, massive, and in powder. Its colour is usually white, occasionally grayish and yellowish. The massive varieties sre found amorphous, reniform, nodular, and stalactitic. Iracture splintery, or fat conchoidal. Its hardness exceeds that of calc-spar. It is dull, nearly opaque. Specific gravity 2%. It is found in several parts of Europe, as Styria, Moravia, Spain, and Silesin, in ludia, and at Hoboken, iu Now Jersey, Nortb America. Its aualysis by Rammelsberg gives-

Carbonic Acid
$52 \cdot 214$
47.786

Jludnomagnesile in a mamo given to an enrthy white pulverulent bydroum carbomate of magucsia found at lloboken, New Jeraey, North Allerica.
Borate of Magmesio, Boracile, is a common form of inaguesian minemal. [Bonos.]

Dismpe of Magnesia occurs in whits deliquescent efllorescences, arsuciated with nitrate of lime, in limestme enverns. It is used in the manufnctury of saltpetre.

Polyhalitr, a brick-red aline inineral, consists of the sulphates of line, potash, and ingguesia, with 6 per cent. of water.

Magursile is a phosphate of magneain, from Snlzberg, in Germany.
Rholizite resembles Boracite. It occurs with the red tourmaline of Siberia.

D/aynesian Alum occurs masive. Ita structure is fibrons, also conspact. Colour and streak snow white. Lustre shining. It is found at Cince Verd, in Southern Africa, where it covern the floor of a grotto to the dejeth of six inches. Its nalysis by Stromeyer gives-

Magnesian Pharmacolite occurs massive. Clenvage foliatel in one dircetion. Colour dirty white, or honey-yellow. lardacas 5 to 6. Brittle. Lustre waxy. Specific gravity 2%. Found at Liaghanaliyttan in Wermeland. Its amalysis by Kithu gives-

The silicates of magnesia are an exceedingly numerous group of minerals. They enter into the following:-Tale, Chlorite, Serpentine, S'ephrite, Mecrachaum, Schiller Sjur, Pyroxene, IIornblende, Chrysolite, (Mondrotite.
MAGNESIAN LIMESTONE, or Permian System, is the mame given to the rocks which innmedintely underlie those of the Triassic or Upper or New Red-Snndstone series of Eugland. In Russia a large group of deposits of this date exista, and is marked by distinct peenlinritics. The nbundance of carbonate of magnesia is characteristic of part of the suricm-henco its sanme. The Magnesian Limestone rock in seen to greatest perfection in Fingland between the rivers Tyue and Teen, between tho rivers Wharf and Dan, and between this last river sud Nuttinghan. Wo mention these parta of the great line of magnenian linestone in the morth of linglaud for the purpose of pointing ont mome interesting differencea in the composition and other characters of the rock. It is in the middle part of the course here indicated, from north to south, that the stratification of the rock is most developed. Between the Dun and Wharf, aud for some space north and aouth of these rivers, this limestone accurs in fact in two rocks meparated from each other by beds of red and bluish clay, with gypsum (indintinguinhable from some of the upper or Keuper marls of the Red. Sandstone Fonnation): but in the nerthern and southern parta this difference doem not obtaill. Of tho two linestones thus separated the upper oue has but a limited extent (Smith's 'Geological Map of Yorkwhire") ; the lower one is alnost uninterrupted from beyond tho Tyne noarly to the Trent. The upper rock is nbout 12 yaris thick; the lower oue renches 50 yards, or perhaps in some cases 100 yards: the upper one containe nlmost no rongneain, and lime burnt from it ia extenmively ernployed in agriculture; the lower ono is very often comjoased of atomic ageregations of enrbonato of lime and carbonato of monencmin, and, both nestone and when burnt to lime, is more uncful in lmilding. Its mote of agregation varics extremely. 'In many nituntion (Thorp Arch, in Yorknhire) it is a moft powdery stonc, travarevl pevarthelen by willa of enlcarcous apar; about Talcaster, and generally leetwern the Nind and the lhus, it ia a firm though hardly compmet rock, oftern trawerned by apmry veiba nud fall of irregular eryatallined caritieq the cryataln nre generally carbonato of lime, monetimes mixed with oxide of iron. In a fuw cases maphato of baryten appears in the form of veins dividing thin rock, as at llurldewho, nenr Ferrybrilge, \&c. Still leme commonly thin veina of caro bonate of coppuer (monsetimen apmarently cpigene, on mulphuret) line the jointa of the rock abuat Newton Kyme, near Talcanter, and in other places.

Sone of the heat buildingetone of thin dencription in dug in the gumrrios of 1 luddieaton, liroalsworth, and Wirmsworth, aul it is kencrally really or searly an atomic combination of carbounte of lime and carlmanto of mageaia, a fast determinod by the late Itr. Henry of Manchenter.

A further meato of arrangement of the materinla of thin rock is noticed in neveral focalitien betweve the Aire and the Dun, where the rockn manne locally nod for limited nema the oolitic texture; and, finally, as one of the mont valunble buildingontoues in the range of the magaesian limentona, my te aigunlised the white limestono of lache

Abbey, which in that noble ruin bas atood the ravages of time better than almost any freestone of the north of Eagland.

Farther south the grain of the rock changen; it becomes continually more and more crystalline, nad from Bolsover to Nottingham the magnesian limestone may be described, with little inaccuracy, as a real dolomite, partially debased by small adanixtures of sand. The amall rhomboidal crystals of this rock are very evident in specimens which we collected many years ago at Mansfield Woodhouse and ncar Nottingham. The stone used for building the present Houses of I'arlianeat consists of the magnesian limestone from this diatrict.

A crystalline structure of the magnesian limentone rock is however not confined to the southern portion of its ragge, though there it in manifested in connection with very uacful qualities in architecture. In the county of Durham we find it exhibited in the purely calcareous rocks of Hawthorn Hive, near Easington, in the romantic, contorted, and broken cliffs and pionaclea of Marslen, and in the singular coralloidal quarries of Building Hill. At Mareden it is curious to notice in near contrast, in the cliff, the flexible lamionted limestonc, and in the detached pinancles an equally laminated rock traversed by complete planes of crystalline atructure. What does this teach ? obviously, the important fact, that, since its deponition in lanina, the sedimentary mass of carbonate of lime bas been subject to \& new molecular arrangement, which, prodominating over the original structure, has readjusted the particles and generated a new structure. In the same vicinity are brecciated rocks, which seem to require the hypothesis of reaggregation of fracmented portions of previously-indurated maguesian linestone beds. Thus various are the aspects of the mineral aggregation of the magnesinn limestone of England. These diversities belong almost exclusively to the lower rock, for the upper lamianted non-magnesian portion is usually of a uniform close texture, except in the lower beds, which are somewhat cellular (and of little value to the lime-burner) at Knotingley.

It should be added, that the general colour of the magnesian limestone (lower portion) is white, yellow, rich pale-brown, or reddish, while the upper rock is commonly of a gray, smoky, or purplish bue. This rock is usually interstratified with thin clay partings, the lower one very rarely.
The specific gravity of magnesian limestone is usually greater than that of common carbonate of lime. This however may bo overlooked in the asual incomplete mode of trying such experiments, anless the observer makes the easy correction due to the absorption of water by many of these stones. Tried in powder (for example, by Lealie's process), the magneaian limestones of England betray by their weight their affinity to the dolomitic rocks of the Alps and the Eifel, thongh the iutraduction of the magnesin is probably not at all due to tho same cause in the two cases. [Dolomite.]

Professor Sedgwick, in his admirable memoir in the 'Geological Transactions,' on the Magnesina Limestone, has pointed out clearly the most common organic fossils of this rock. We shall only observe here, that in respect of fishes (Mollusca nad Zoophyta) this rock shows an extreme analogy with the Carbaniferous System. Its place, by mineral analogies, may bo rightly fixed in the Pocilitic System; but by tho aflinities of organic existence it will be classed with the more nucient rocks. Let any one, for example, contrast its mariae fossils, whether derived from Durbam, Yorkshire, or the Thuringerwald, with those of the Muschelkalk; the former are seen to be analogons to forms common in the Mountain Limestone, the latter to those of the Lias. In neither caso is the resemblance perfect; the species are not identical, but the result abovo announced is unvquirocal, and must soon be felt in geological classification.

Tho following is a list of the fossils in this formation as given in Teunant's 'List of Iritish Fossils ':-

Polyparia. Tubuliclidia spinifcra Fenestella anceps. F. Miustracea. F. ramosa.

Crinoidea.
Encrinus ramosus.

Brachiopoda.

Terebratula clongatu.
T. suffata.
7. Schlotheimir.

Alrypa pectinifcra.
Spirifrr undulatus.
S. nultiplicatus.
S. cristalus.

Productus horridus.
I. Morrizianus.
${ }^{1}$. spiniferus.
Lingula Mytiloidca.

Dimyaria.

Allorisma clegans.

Schizodus obscurus.
S. parallelus.
S. truncatus.
S. rotumlatus.
S. parcus.
S. undatus.
S. pusillus.
S. minimus.

Nucula vinti.
Arca tumida.
Mytilus acuminatus.
M. septiferus.

Modiold costata.

Monomyaria.

A ricula spduncularit.
A. keratophaga.
A. antiqua.
A. inflata.
A. Binneyi.
A. discors.
A. Gervillia.

Pecter pusillus.
Ostrea pruille.

Gasteropoda.	P. elegans.
Natica minima.	P. glaphyrus.
Pleurotomaria carinata.	P. longissimus.
P. nodulosa.	P. macrophthalmus.
Turbo Mancuniensis.	Platysemus macrurus.
T. minutus.	P. parvus.
Macrocheilus symmetricus.	P. striatus.
Loxonema rugifera.	Acrolepis Sedgwicki.
L. Urii.	Pygopterus mandibularis.
Rissoa pusilla.	Colacanthus granulatus.
R. Leighii.	Reptilia.
R. minutissima.	Paliresaurus Cylindrodon.
R. Gibsoni.	P. Platyodon.
R. obtusa.	Piscrs.

The Magnesian Limestone assumes a variety of forms simulating those arising from organic causes. Amougst these aro the round naseses which are found on the coast of Durham. At a distance these masses look like cannon balls, and the rock ir which they occur has obtained the name of Cannon-Ball Limestoue. In many parts the rock lass a pisiform or oolitic appearance, from being cemposed of small round bodies. These little masses, when submitted to the microscope, afford no evidence of having been deposited from organic causez. They are evidently concretionary, and have probably been slowly deposited from a solution of the magnesia and lime of which they are composed.
"In the quirries of Askern and Campsall, round or oval projections are scen, which vary from a pin's head to seversl feet in circumference. The layers of which they are composed are continuous with those of the limestone, and seem to be formed by some foreign substance serving as a nucleus upou which the limestone is deposited layer after layer; in some cases, the nucleus may bo formed by the escape of carbonic acid or other gas, for I have frequently observed that the protuberance is hollow within.
"There is another class of bodies which have a conoidal form, the base being always uppcrmost; their size ranges frem that of a pea to that of a large pear; they are not continuous with the layers of the limestone, but lie in distinct cavities, frem which they may be removed almost entire, by a blew of the hammer. The cavities in which these bodies are found have probably been at first made by the rotatory action given by running water to a small stone, or other substance, whilst the limestone was forming, a fresh deposit having nfterwards taken place from the water : cavities of this kind may be frequently seen in streams running over loose sand, or other matter.
"Another striking feature in the physical character of the magnesian limestone is, the existence, in some places, of an immense number of cavitics, which are frequently lined with beautiful crystals of carbonate of lime; some of these cavities are very small, as in the oolitic limestones; they are to be seen at Smeatou several feet square : the greater proportion of them contain crystals, and vary in size from a marble to an orange. Some geologists imagine that these cavities have been formed by the deposition of the rock upon gelatinous nnimal bodies, which, being gradually removed by decomposition, have left their mould or cast behind; others suppose that they have originated from the escape of gaseous matter, which, whilst the rock was bardening, was incapable of rising to the surface. By the subsequent passing of water, charged with carbonic acid, through these cavities, many of them would become enlarged by the dissolving power of this gas over the limestone.
"The productions called Stalactites and Stalagmites are often found in the dislocated and over-hanging portions of Maguesian Limestoue; the former are long, depending like ieicles; the latter are flat, and thinly extended over the surface of the rock. At Askeru many beautiful specimens of stalagmites have been taken from the quarry." (lankester, 'History of Askern.')
The Magnesian Limestone series may be traced in the north of France and in lsurgondy, but is most fully developed at Mansfield is the Thuringian Forest, in the district of the Harz, and in Franconia. Throughout the south of France it appears to have no representative, and is most likely altogether absent. When most perfcctly expanded, the whole weries is divisible into two groups, the lower one for the most part argillaceous, and the upper calcareous, aud the series then rests immediately upon the conglomerates of the Rothe-todteliegende.
The upper or calcareous portion in Germany is called Zechstcin, and is chiefly a compact limestone, but the highest beds are marly consisting of, 1st, a grayish; bluish, or greenish clay, called Letten, often contaioing rolled fragments of dolomite and crystals of gypsum. This reposea on a fetid limestone called Stinkstein, which is a compaet or gramatated rock of a blackish-brown or greenish colour, nad extremely bituminous, giving out an offensive odour when struck or rubbed. The lower bed of the Zechstein is called IRauwneké, and connists of a lisrd but cellular magnesian limestone, aboundiag in long, irregular, and narrow cavities, which nre most numerous whero the bed attains a considcrable thickncse, but are almost obliterated in
the thinner and more compact portions. The whele thickness of the Zechstein is rarely more than 20 or 30 yards.

Of the schistose beds, which form the base of the Magnesiau Limestone series, the lowest is sandy, and forms a kind of transition from the underlying saudstones. It is of no great thickness, and is succeeded by a bituminous band, remarkable for great uniformity both of mineral character and fossil contents, being traceable over a considerable district in Germany, and forming an excellent geological horizen for an extent of at least 250 miles. According to M. D'Aubuisson one-tenth part of the mass of this bed cousists of bitumea aud carbon; and althougb not more than a foot iu thickness it contains so considerable a quantity of iron and argentiferous copperpyrites as to be worth working as an ore, whence it has received the name of Kupfer Schiefer, or Copper-Slate.
The lowest bed of the magnesian limestone group is called, from its lithological character and relative geological position, the Lower New Red-Sandstone; but it might very fairly be associated with the upper coal-measures, for it contains numerous remains of extinct vegetables not to be distinguished from species found throughout the carboniferous system. It differs somewhat however from the coal-grits in mineral composition, being nore discoloured with exide of iron, besides being chiefly made up of conglomerate, in which quartz and decomposed granite abound. This conglomerate, although in its lower portion exceedingly coarse, passes upwards into a fine-grained sandstone, and so by fieer sands mixed with marl shows a gradual transition to the upper aud marly beds. Beds of freestone are sometimes but rarely found altcrnating with the fine sands and clays of this division; and the naass is altogether very irregular both in thickness and extent, appearing to have presented an uneven surface at the commencement of the deposit of the more recent magnesian limestones, and in some places to have undergonc considerable degradation before those beds were superimposed. The irregularity thus described as affecting the lower strata must have been owing, in all probability, to subterranean movements disturbing the bed of the ocean during the period of their depesition. The marls associated with the fessiliferous bands in the county of Durham are also sometimes bituminous, and traces of bitumen occur in thin bedded compact limestones of the same geological date.
The lower new red-sandstone, or Rothe-tadte-liegende, as observed in Germany, is perfectly similar in slmost all respects to the contemporaneous beds in our own ceuntry, being made up of cearse conglomerates alteruating with marls and shaly beds, the conglomerates being generally composed of fragments of the neighbouriag erystalline rocks, cemented by a fine ferruginous and sometimes argillaceous sandstone. In France this deposit is exhibited wrapping round the old rocks which form the central axis of the Vosges. It consists of a coarse incoherent sandstone, generally of a red but sometimes of a bluish-gray colour, alternating with shaly and micaccous marls, the whole formation being extremely variable both in its mineral character and in the extent of its development. It passes insensibly into the upper beds called the 'Grés des Vosges,' or Voages Saudstone, there bcing no intermediate bed of maguesian limestone.

The Permian system of Russia exactly corresponds to the maguesiar limestone and lower new red-sandstone of our own country; but it has been judged advisable to give a distinct name to the continental group, and the district in which the rocks are most perfectly exhibited being included in the ancient kiogdom of Permia, that name has been selected for reasons similar to those which induced Sir R. Murchison on a former occasion to apply the term Silurian Formation to a group typically exhibited in the regiou of the ancient Siluri. The Permian district extends for about 700 miles from north to south along the western or European flanks of the Ural chain, and for nearly 400 miles between those mountains and the river Volga. The strata within this area are described as lying in an enormous trough of carboniferous limestone, and theugh occasionally thrown into anticlinal axes of some length, are often traceable for great distances withont any break or interruption of the sequence. The Permian rocks of Russia cousist of a great number of distinct strata of very varied lithological character. They are cemposed for the most part of white limestones with gypsum and rock-salt, of red and green gritstones witl shales and occasionally copper-ore, and of magnesian limestones, marlstones, conglomerates, $\&$. The whole series is fossiliferous, and coutains the remains of extinct animals and vegetables, greatly resembling those of the carboniferous period. In the Russian beds also there have been discovered reptilian remains like those of the Bristol magucsian conglomerate, and fish identical with the species from Durham and from Mansfeld in the Thuringian forest.
(Sedgwick, in Geological Transactions; Smith, Geological Map of Yorkshire, \&c. ; notices of contemporaneous deposits in the midland and southern counties of England occur in Murchison's Silurian System ; Conybeare and Phillips, Geoleyy of England and Wales, \&c.; Ansted, Elementary Course of Geolgyy.)

MAGNESITE. [Magnesia.]
MAGNET, NATIVE. [IRon.]
MAGNO'LIA, a genus of Plants named in honour of Pierre Maguol, who was professor of medicine and prefect of the botanic giarlen of Montpellier. He was born in 1638, and died in 1715 . Ife gave an account of the plants growing wild about Montpellicr, in a work
entitled 'Botanicum Monspeliense; son Plantarum circa Monspelium nacentium Imdex,' Svo., 1686 . This work, illustrated with plates, as well has ono published in 1659 with the title 'Prolromas 1 lintoria Generslis Ilantaruta in quo I'lanta per Fatilias dispoututur,' was arranged according to a natural aystem of his own. In suother work embrscing the plants growiag in the Montpellier Garden, entitled 'Hortus Regius Monspeliensis,' he has arrauged the plants accorling to the aystem of Tourucfort.

The genus Mognolia is the type of the natumal order Magnoliacea. It has a calyx of 3 deciduoun sepals that resemble petala; the corolla is comprosed of 6 to 2 petals; the stamens and pistils numerous; the carpels are diaposed compactly in spikes, opersing by the external nagle, 1 -2seeded, jermanent ; the seeds baecate, somewhat coriate, pendulous, hanging out beyond the carpels by a very long umbilical white thread. "J'se aqucies of Magnolia aro trees or shrubs, with alteruate, ktipulate, deciluous, or evergreea simple leaves, and large terminal pelitary odoriferous flowers. Thes are all natives of North America and A sia.
M. grandiflora, Great-Flowered Magnolia, or Laurel-lay, is an evergreca tree, reaching sometimes a height of 70 feet. It has oval-oblomg coriaceous leaves with the upper surface shining and the under surface rusty; the flowers erect, with from 9 to 12 petals expanding. I'lis plant is one of the tallest and handsomest trees of North Ameriea. It has large palegrcen shining leaves nearly 10 inches long, with large white flowers. It has been cultivated in Fingland for the last century, rat in this country attains a lieight of from 20 to 30 feet. Several varieties of this apecies have been named and described. Amongst the most constant and best known varieties aro-1, M. g. obocata; 2, M. 2. Exoniensis: 3, M. g. arguatifolia; and 4, M. g. precox. The tirst is known in the Carolinas by the name of the Big Laurel; the becond is the Exmouth Magnolia; the third and fourth are varieties which have been produced in France.

In the cultivation of this species a deep sandy loam, dry at bottom, and arplied with regetable mould, suits all the varieties. In planting it against a wall, almost sny aspect may be chosen exeept a north-enst. This plant may be propagated by stoola, which should bo laid down in autumn, and require two years before they are fitted for separation. They are theu potted, and kept in pits or under glass during the winter. It may be also propagatel by seeds from America.
M. glauca, deciduous Swamp, Magnolia, is an almost deciduous plant, with obtuse elliptical leares, glancons on the under surfice; the flowera from 9.12 -petalled, contracted; the petals ovate, concave. This species is a tree risiug from 15 to 20 feet it height. $1 t$ is a uatise of North Anerica, in low moist swampy ground at a little distance from the sea, from Marabehusetts to Florida aud Louisiana. This flant is also cultivated, and a number of varieties have been lescribed. The bark has a bitter and aromatic odour resembling nemsafras. On this account it has becn used in America as a substitute for other aromatic bitter barkn ns Cascarilla, Cauella, \&e., and, it is said, with great sucecs. Although not much used in Europe, very favoumile reports of its efficacy in chronic rheumatism, ague, sud remittent fever have been given. All the species of Magnolia possess mure or less the properties whieh are most evident in M. gtauca. When used, a tincture made from the bark, feeds, or cones is equally efficacious. It is said that when the tincture in roade from the leaves and cones whilat green, it is more efficacious. In America this tree is known by the names White Lamrel, Swamp Laurel, Swamp Sasafras, Sweet lbay, nad leaver-Trce. The last uane is given to it on account of the fondncss of the beaver for it. The flowers are of a eream colonr und have a sweet seent, which Kalm says may be smelt at a distance of three : nilen. The flowers are followed by red berries, which give the tree a liandsome appearace. The berries are steeped in brandy nul uned sa a dumentic medicine for various complaints.

1. umbrella is a deciduous tree with lanceolato spreading leavea, the wilalt ones anontly, the younger ones pubeseent nuderneath; the petala \$-12, "xterior ones pendent. It is a mative of North America, in the Corvinan, Gcorgia, Virginia, and Now lork. The leaves are one to two feet long, placed ut the chals of the branehes in a circular manner, nonewhat in the form of an umbrella, from which circumstance it las lreen callod the limbella-7ree. JThe wood is suft and mpongy, and on the monntain of Virginin is ealled Elmwood.
M. acuminato, a decidumas tree with ows acumimate leaves, the nomber surface pubescent, the liowra witls from if to 9 pelals. It is a native of North America, from I'ennaylvania to the Carolinas. The flowera are laryo, 3 or 4 inches in diameter, of a yellowish colour, mined with fant blue or pea-green, Lut not remarkable for their beanty. The fruit in about 3 inchea long, and rearmbles a senall risumber, whence in Amerion it in calleal Cucumber'Tree. A tincture is ruale of the fruit, and in used in camen of rheumatism. Soveral Farietice of thin plant lave been deacriberl. It in often used in the London marnerice as a atuck on which to engraft the other npecies.

Thereare movernl other niecien of this magnifieent geunm found in the formate of North Americe, ah of which aro valuct in Great liritain for ornamental culture. The beat known of theso are M. rordatu, the liest-1 eaved Cucumber-Tree, with yellow flowern ntreaked with red, and laving a dinagrecable odour; and M. auriculate, Indian I"hyile, or Long-Lensed f(ncumber-Tree, lasving whito fowers and a bitter bark, which is uned as a medicine by the Indians.
M. Yulan, or M. conspicua, a decidnous tree with obovate abruptly acuminated leaves, the younger ones pubemcent, expanding after the flowers; the flowers erect, $6 \cdot 9$ petalled; the styles erect. This plant attains a height of 30 or 40 feet ir its mative country, but reaches only 8 or 10 feet in our gardens. It grows in China, where it has been cultivated since the year 627. Its native name is Yulan. It is a very showy tree, having white flowers sometimes suffused with purple, which give out a most delicions perfune. It blossoms in this country from February to April, and is diatinguished from the other species by the flowers appearing before the leares. It is not quite so hurdy as the American species; still, unless the weather is unpropitious, it will put furtl an abundance of blossoms during the dreary months of February and Mareh.
M. purpurca, the Purple-klowered Magnolia, is a deciduous shryb, with oburate-acuto reticulately-veined leaves, almost smooth; the flowers erect, of 3 sepala and 6 obovate petals; the styles very short. This plant is a native of Japan, and seldom attains atgreater height than 10 feet. The bark when bruised has an aromatic odour. The flowers are more or less purple without, and always white within. It is a very ormamental species and worthy of cultivation. Tho best situatiou for it is against a wall, when its branches will reach from 15 to 20 feet.
In their cultivation the hardy kinds may be treated in the anme way as M.grandiflora. The Chinese kinds are often inarched or budded on M. oborata. When the plants are replanted after layering or propagation by seed, neither tho roots nor leaves ought to be cut off, otherwise they will not succeed so well.
(Don, Dichlamydeous Plants; London, Encycl. of Trees and Shrubs.) MAGNOLIA'CEEE, Magnoliads, nn important natural order of albuminous polypetalous Exogenous Plants, consisting of bushes and trees, inhabiting the temperste parts of both the Old and Now World. They have the numerous diajoined earpels and hypogynous stamens of Ranunculacee, to which they are closely allied; they diffor not only in their arborescent babit, bat in the young leares being enveloped in stipules, eitner horn-like and convolute, or bivalved, which are thrown off as the leaves unfold. The flowera are usually large and sweet-scented, and the leaves are firm, broad, and large, in consequence of which many of the species are objects of cultivation in all civilised countries. In England, where they are exotics, they are among the most highly-valued of ornamental plants, aud every species which ean bear the climate, or which will thrive in oonservatories, has been collected with great care, whenever opportunities havo offered, so that few now remain to be imported. Among the most

A branch of Thlauma prmila.
1, a head of ripe fruit with the sredn langing down by their eards; 2, a ver lical nection of a serd, shewing the minute embryo lying in cepioun altumen.
ornamental of the bardy kinds are the Magnolia grandiflora of Carolina; M. glauca, of which there are many varieties; M. macrophylla, the flowers of which are among the largest in the vegetable kingdom; and the Tulip-Tree, Liriodendron tulipifera, a large tree with singular truncate leaves. In Bengal the air is often perfumed with the fragrance of the Tsjampac, a species of Michelia; while in China and the Malayan Archipelago others are equally well known for their ornamental characters. Nor are the plants of this order lese useful than beautiful. It is probable that they are all valnable for the febrifugal qualities of their bark. N. glauca is among the best bitter and sromatic species known in medicine, and the Tulip-Tree affords to the North American settler a substitute scarcely inferior to it.

The genera Talauma and Magnolia have the very singular property of dropping their seeds out of the back of the seed-vessels when ripe, allowing them to hang down, each suspended by a long extensible elastic cord, composed of delicate spiral vessels.

In consequence of the seeds of Magnoliacece containing sn abundance of oil which often becomes rancid soon after they are gathered, it is difficult to traneport them to a considerable distance in a liviog state. The best method of succeeding in that object is to pack the seeds in earth as soon as they sre ripe, pressing them close and securing them in a box. Under buch circumstances they will preserve their vitality for several months.

There are 11 genera and 65 species of this family.
MAGONIA, a genus of Plants belonging to the natural order Sapindace. The dowers are polygamous; the male flowers have a 5 -parted unequal reflexed calyx; petals 5 , linear, and unequal; disc unequal between the petals and stamens, on one side long and donble, in the other short, simple, and rugese ; stameus 8, diclinate. Hermaphrodite flowers as in the male, but stamens much smaller sad not diclinate; ovary 3-celled, many-seeded; styles curved; stigms 3-lobed; capsule large, woody, 3-valved, loculicidal; seeds large, tlattened, surrounded with a wing; hilum in the edge. The species ars trees with a corky bark; leaves alternate, abruptly pinnate, without stipules; flowers panicled.
M. pubescens is a small tree common in the western deserts of the province of Minss Geraes in Brazil. It has downy branches; leaflets 8 , ovate or oblong, sessile, deeply emarginated and downy; the flowers in a terminal sessile or stalked panicle from 9 to 16 inches long; calyx downy, yellowish-green; petals linear, obtuse above, in the middle smootll and dark purple, at the edges and point downy and green; fruit a large, woody, globose, 3-cornered, somewhat depressed capsule, with 3 valves, 3 cells, and many seeds. The ashes of this plant are extremely alkaline. The bark is used for subduing the swellings produced.in the skins of horses by the stings of insects. The lesves of this species and M. glabrata are poisonons to fishes.
(Lindley, Flora Medica.)
MAGPIA. [Convide.]
MAlA. MaHDes]
MAIAD.E. [MAIDE.]
MAIAN'THEMUM, a genus of Plants belonging to the natural order Asparagacece. It has a 4 -parted perianth; the segmente horizontally patent or reflexed, deciduous; stamens 4 ; style 1 ; stigma blunt; berry 2 -celled; celle 1-seeded.
M. bifoliurn has a stem with two alternate, stalked, triangular, cordate leaves; the stem is from 6 to 8 inches high; root tiliform; leaves very deeply cordate; rsceme termiual, resembling a spike; flowers small; seginents reflexed; berry yellow with brown spots. It is found in woods in the north of England.

MAID, a Fish. [Ralides.]
MAIDEN HAIl, the common name of the Adiantum Copillus Feneris, a fern found wild in many parts of Europe, on damp shaded rocks. It is the Adianton ('Aס́íavrov) of the Greeks, and has probably gained its trivial name from its having formed a part of the preparations used by the ladies for stiffening their hair. (Dioscorides, l. iv. c. 13\%.) [ADIANTUM.]

MAIGRE. [SClevids.]

MA'IlDAE, or MAIADE, a tribe of Crustacea, the second of the family of Oxyrlayrchi, according to tho ayatem of M. Milne-Edwards. It is composed of Brachyurous Crustaceans, whose carapace, nearly always very spiny, is, with some exceptions, much longer than it is wide. Rostrum generally formed of two elongated horns. First joint of the internal antennæ but little doveloped; that of the extermal antenne, on the contrary, very large, and soldered with the neighbouring parts so as to be confluent with them; its extemal border always constituting a considerable portion of the lower wall of the orbit, and its anterior extremity united to tho front before the level of the internal carthus of the eyes. The moveable stem of the antemne always of considerable length. T'he epistome generally considerably wider than it is long, whilst the buceal frame is longer than it is wide. The third joint of the external jaw-feet is as wide as it is loug, more or leas dilated on the external side, and truncated or notched at its anterior and internal angle, by which it is articulated with the fourth joint, which is very small. The anterier fect of the female are in general lardly larger or longer than the others, and sometimes they are cven shorter. The same conformation obtains in some of the males; but in gencral the first pair of feet in these last are longer and much larger than the sccond pair, and their length sometimes is equal
to twice that of the carapace; they are directed obliquely forwards and outwards; the hand is never triangular, and the immoveable finger of the claw is not inclived downwards, so as to form a decided angle with the lower edge of the hand. The succeeding feet are generally of moderate length; these of the second pair are most commonly onee and a half the length of the post-frontal pertion of the carapace, but they are never twice as long as that portion; those of the third pair are hardly ever more than once and a quarter as long as the post-frontal portion of the carapace, and the other feet shorten in succession. The abdomen is ordinarily composed of seven distinct joints in both sexes; but sometimes this number varies in the different species of the same geaus. (Milne-Edwards.)

The genera and species of this family are numcrous. We shall describe the prineipal genera:-

Libinia (Leach).--This genus has the greatest relation to Doclea and Pisa, between which genera it establishes, in the opinion of M. MilneEdwards, a nearly insensible passage. The general form of the body in Libinia approximates closely to that of Doclea.

Carapace very convex above, in general nearly circnlar, with its orbito-frontal portion placed sensibly above the level of its lateral borders, which are prolonged towards the mouth rather than towards the external canthus of the eyes. Sometimes the carapace is elongated a little, and bears a cousiderable resemblance to that of some of the Pisce. Rostrum emall, narrow, and notched in the middlo: the front, measured between the orbits, is much narrewer than the anterior extremity of the buecal frame; the anterior angle of the superior orbital border is projecting, but never reaches beyond the basilary joint of the external antenno ; the orbits are nearly circular, and directed very obliquely forwards and outwards; their external angle is formed by a large compressed tooth, which is separated from the rest of the wall of this cavity by two fissures; one superiel and very narrow, the other inferior aud more or less open. The stomachal region of the carapace is but little developed, but the branchial regions highly so; and their lateral border, which is armed with spines and very much curved, is directed towards the anterior angle of the mouth. The eyes are small and very short; the bastary joint of the external antenne is short, but very much developed, and always wide in front, a disposition which occurs in Pisa, whilst the contrary is to be remarked in Doclea; the second joint of these antennæ is stout, short, cylindrical, and inserted on the sides of the rostrum at a distance nearly equal from the orbit and the antennary fosset; the third joint is rather smaller than the second, and the fourth is very slender and very short. The epistome is very small, and the whole of the antennary region is not more than half the length of the buccal frame. The external jaw-feet and the sternal plastron have the same form as in Pisa. The anterior feet are much longer than in Doclea, but lass developed than in Pisa; they are always nearly of the same size as those of the second pair, and in general are much shorter even in the males; the hand is very uearly cylindrical, and has little convexity; the pincers are rounded or trenchant, snd finely deutilated, and touch nearly throughout their length, a disposition which is rare in the Pisce. The remainjag feet much resemble those of the Pisce, except that their last joint is longer, and never armed below with horny spines, as in them; the length of the feet diminishes progressively, and those of the second pair are not more than abont once and a half as long as the pest-frental portion of the carapace; they are in general much shorter, and this character suffices to distinguish the Libinice from the Doclec. I'he abdomen is composed of 7 joiuts in each of the sexes.

The species of this genus are fonnd in the seas of America, as far as is known.
M. Milne-Edwards divides the genus into two sections: the first consisting of species which have the anterior and external angle of the basilary joint of the external antenna obtuse, and not prolonged beyond the level of the internal one, and the slit of the inferior orbital border very narrow; the second consisting of epecies which have the anterior and external angle of the basilary joint of the external antenur spiniform, and prolonged much beyond the level of tho iuternal angle, and the slit of the inferior orbital border very wide.

Lilinia spinosa belongs to the sccond eection. The body is entirely covered with a short and brownish down, and it is about four inches (French) in length.

It is found on the coasts of Brazil.

Merbstia (Milne-Edwards).-Intermediate between the Libinice, the Pise, and the triangular Mithraces.

The carapace is more triangular than in Libinia; the stomachal region nearly as much developed as the monnchial regions. Rostrum small, hardly longer than it is wide, aud formed of two flattened horns, which are pointed and divergent, and the base of which oceupies all the width of the front. Orbits oval-shaped, and directed obliquely forwards, outwards, and upwards; their superior horder with two small fissures, which terminate anteriorly in a small spine, less projeeting than that situated below, and belonging to the basilary joint of the external antennæ; their inferior border is complete, and presents only a emall fissurc. Eyes large and retractile. Disposition of the antemary region, the jaw-feet, the sternal plastron, and the feet, essentially the same as in $\boldsymbol{P}_{i 8} a_{\text {. The }}$ tarsi of the last four feet present suall horny spines placed irregularly.
M. condyliata is the only species known. It has the body covered

a, under bide of head in detail ; ", ubdonen of female,
with a thin and fine down, is about two inches in length, and of a reddish colour.

It inhabita the Mediterrancan.

Iferbatia comdyliapa.
Pisa (Leach). -Tho earapnce is gradually narrowed anteriorly for alront three.fonrtha, and ita latero-anterine borders prolonged obliquely in a searly straight lino up to a suall distance from its posterior forler; the murface very convex ; the regions in general sufficiently dintinct, and the stomachal region in particular very much developed; tho front wider than the buecnl frnum, and armed with four homs directed forwards, the two external of which oceupy the anterior extremity of the muperiororbital bonler, and the two middle of which form the romtrum, which is always at leant once and a half as long an it in wide: eyencarried on very mort pedunclen, and bent backwards in the orlitm, which are of an oval mhape, nud directed outwards and downwarlm; the upreer border of theme cnsiticm with two slits. neparated from each other loy n triangalar tooth, and their externn nugle mituated rather below than nlove the lateral border of the carapace, which in there termimated; the orbitnl border interrupted below hy a largo notela; the intermal nateanan without any peuliarity; the banilary joint of the external antenne much longer than it is wide, unly alightly narrowed forwardn, and exceeding the level of the internal cantlum of the egen, but completely hidhen above by the miniforn bralongation of tho nuperior orbital border; the necond joint of the antenam mlender and cylindrieal, and juserted at a distance nearly equal from the antennary fonset and the orbit, a little without the level of the external border of the rontrum, no an to slow itself leetween thim prolongation and the interal hornm of the front; the third joint manil and cylindrical, nad the fourth rather long; antenpary region nearly of the sive of the buccal frame, and the epintome large and nearly mpuare; the econd joint of the external jaw-feet prolonged from the intarmal mide much beyond the level of its external angle; and the third joint mueh longer than it in wide, ntrongly dilated ontward, and deeply notched at itm anterior and internal angle; stemal plastrou longer than it is wide. In the female the
anterior feet are in general nearly of the samo leugth as those of the second pair; but in the male they are remarkably longer and stouter; the hand is convex, and the fingers trenchant, and finely dentilated on their terminal moiety; the remaining fcet are cylindrical, and of moderate leugth; those of the second pair are not innch longer than the post-frontal portion of the carapace; the length of the other feet diminish succesaively, and, in nearly all the species, their last joint is furnished below with small horny points, which aro placed very regularly on one or two longitudimal lines, like the tecth of a comb; abdomen composed of zeven distinct joints.

The whole of the boly of the Pisce is ordinarily covered witl bairs, which are recurved at the end, and catch up foreigu bodies which they touch; it in not vare thereforo to see these crustaceans covered with sea-weeds and sponges. This disguise most probably answers the double purpose of enabling them to surprise their prey and of protecting them from their encmice.
Nearly all the species live in the European Seas at considerable depths, and are often dredged up by the fishermen. After spriog.tides they are frequently found bidden under stones at low-water. They are not used as food.

The species arc divided into two sections, dependigg on the absence or presence of spiniform teeth on the upper border of the third or third and fourth joints of the Jist four pairs of feet, \&c. The first of these sections in separated into two subdivisions, dependent priscipally upon the roudded or triagular form of the posterior portion of the carapace.
P. tetraodon, the Four-Horned Spider Crab, is two or three inches in length, and has the body entirely covered with a kind of down and some crooked hairs; it is of a brownish colour; the lateral margin with four spiues, the posterior part of the carapace rounded withont spines; a suall tubercle near the posterior margin. This species is very common on the Finglish and French coasta. They are found concealed under the long hanging Fiuci which clothe the rocks at souse distance from the shore. Like all the slow-moving Crustacea they are frequently covered with Fuci. Their movements are exceelingly slow and measured, but they seize their prey easily and hold it firmly.

Your-Ilorned Sphler-Crab (tisa tetrandon).
a, male $; b$, female ; c, abdemen of fcmale ; d, abdomen of malc ; r, sntenna; fo peetipalp.
P. Gibbsii is slso a British species. It has'no spines on the lateral margin. It is found on the southern coasta of Devon and Cornwall. Lissa (Leach).-Very much resembling Pisa, and perhaps ought not to have been separated from it. The diatinguishing characters of Lissa consist in the disposition of the rostrum, which is formed of two lamellose horns, truvcated anteriorly, and wider anteriorly thsn they sre st their base, and in the absence of spines on the tarsi.
\dot{L}. chiragra is the only species known: its length is about two inches, and the colour an intense red; the feet are furnisbed with some hairs, but the trunk is unarmed.

It is found in the Mediterraneao, snd is said to have been taken on the coast of Cornwsll by Mr. Swaidson, but it is not mentioned in Bell's 'British Crustacea.'

a, abdomen of female; b, abdomen of male; c, antenna.
M. Milue-Edwards remarks that L. fissirostris of Mr. Say scems to benr much analogy to IIyas araneus; but Milne-Edwards cannot be certain that it belongs to the same genus from the author's description.
IIyas (Leach)-Approaching very nearly to Pisa, and especially to Iterbstiu, but casily distinguished by the form of the first joint of the exteroal antennæ, which, instead of being cylindrical, as in nearly all the Oxyrhyochs, is flattened snd enlarged on the external side. Carapace rather large, especially anteriorly; rostrum, which is formed of trizngular horna that are flattened and convergent, moderate, and leaving the insertion of the moveable sten of the external antenne completely visible; front large; orbits directed a little forwards; edges not spiuy, aud with a single fissure above ; extermal edge of the basilary joint of the antenne straight, and reparated from the external portion of the orbit by a very large notch; the third joint of the extermal j jw-feet a little dilated outwsrds; feet disposed as in Pisa, except that the four last psirs are longer, sud have no spines on the inferior aurface of the tarsua.
II. coarctata (Leach). The carapace of this species is strongly contracted beneath the external orbital angles. Length about two inches. Colour yellowish.

It has been taken in the English Channel.
II. araneus haa the carapace not contracted behind the post-orbitnl bastiform process. This is also a british species, and, with the exception of Maia Squinado, is the largest of the family found in the Ibritish Fauna.

Naxia (Milne-Edwards)-Establishing, in the opinion of M. MilneEdwards, the passage between the genera Lissa and Chorinus of Leacls. General form of the body as in Pisa and Lissa, and the disposition of the rostrum very analogous with thst whiel is proper to Lissa. Naxia is however distinguished from the preceding genera by the disposition of the antenna suld orbits. Carapace nearly pear-shaped; rontrum much resembling that of Lissa; orbits very Emall, nearly circular, deep, and marked with a fissure above snd below, but without any hiatua at their inferior border; basilary joint of the external sntenno wide, but narrow forward, very much advanced, and completely hidden by the rostrum snd the suterior angle of the superior orbital border ; -the moveable stern of these appendages inserted under the rostrum, near the antennary fosset, and not beyond the edge of the externsi border of that prolongation, as iu Pisc. Epistome very large. N. serpuliferc (Pisa serpulifera, Milnc-Edwards). Length shout 4 ioches. Body covered with a brownish down, and the carapace often

a, male; b, female.
encrnsted with Flustro, Serpulce, Sponges, and the like. It is brought from Australia.

a, under side of the head in detail; b, one of the protiudiag points, with the cje in profle; c, abdomen of the femate.

Chorinus (Leach).-Carmpace longer and marrower than it is in nearly all of the Maiide; but in geneml form not differing much from Pas. liostrum formed of two great pointed horizontal horns. Eyen metractile, and the orbits directed outwards and downvaris; finst the lower wall of these cavities in very incomplete; basilary juint of the external anteune narron, their moveable stem inserted unlar the rostrum, sud in great part concealed by it. Epistome, jaw-feet, stemal plastron, and sbdumen, disposed nearly as in Pisa; auterior fect lungest, expecially in the malea, and tho claw strongly curved inwarda, dentilated and pointed, but a little hollowed out into a sort of gutter; the succeeding feet are cylindrical; those of the last thred pairs of moderate length, but the secoud pair are very long: in tho male they are in general once and a half or even twice as long as those of the third pair.
M. Milno-Filward divides the Rpecies of thin genus into two sections: the first consisting of those which Lave the muperior orbital border rcarcely marked, and formed by three apines, the anterior ono very large, and the two posterior rudimentary; the aceond consinting of those species which haro the superion border lamellose nud advanced.
C. Heros is the only species of the first section. length from two to three inches, or rather morc. Jostrum, sides of the carapace, and four hast mir of feet, hairy. Colonr yellowishred.

It is tuken in the aers of the Antille. .

Cliorizns llirus, reduced one-hais.
Mithrax (Leach).-Carapace always a little convex above, and a nood deal aarrowed forwands; disposition of the different regions as in the other Uxyrhynchs; roatrum bifid, generally very short, and acimatad from the internal canthus of the eyes by a mather consider. able aface; orbits nearly always armed with two or three spincs at Cheir superior bomer, one at their extermal angle, and one or two at their inferior lorder; latero-anterior bundera if the carapace spiny, or at leme tow thed; internal notenne bent a little obliquely outwarla, and tho frontal portion of the partition which separates them armed with a recurvel spine: basilary joint of the extermal antenme large, and nearly always armed forwarda with two strong spines; the second joint of these appedslace is, wh the contray, marrow and cylindrical, and jnmertod on the wides of the rostrum, nearer the antemary fosset than the orbit; third joint mesrly su large and as long ns the second; the terminal sumb articaliated atem rather mhort. Jixternal jaw-feet premotina mothing remarkable; aternal platron nearly circular; nnterion feet genemlly in the male lumger and stouter than that of the mecond pair, the linnd or claw always stont and convex, tho pineers dintant at thoir bame, enlarged at the end, lemply hollowed inter a aponm-nhape, an! terminated by a semicircular trenchant edin; feet of the recond pair niwnt ance and a quarter na long the the pont-frontal
 tarai mort, hooked, and often armed with sombe pints at thwir inferior surface. Andmu"n generally formed of aeven jointa in both sexps; but wnatimen unly four are to be prevecived in young females, the secunl. third, fourth, nul fifthagments being mollered.
M. Mihe-Wilwarla remarks that Mithrax establimes some connection Letwoen the fanily of tho Oxyrlignche and that of the Cyelometonens. "Ihn arecien sre found in tho nen of America for the mont part, where ming of the apreies attain to a considerable aige.
M. Mine Filluarils divides the gemum into two rectiona: the first comantitg of thase speries which have the andwrior edge of the orlit aracil with ktrong spines; the recond, of thane which have the superior border of the orbit manmenl. The firat of these apetions in forther subdivided into two nub-genern, the first sub-genus cousinting
of thoso triangular speciea whose but four fect are not ajiny; and the second aub-genua, of thone trunvermal spacies whone last four fect aro arraed with spines. Tho wecond section coutains the third subrgenus, consisting of the depressed species.
M. dichatomus is about two inches in length. Culour, yellowish. It is found on tho coasts of the Palearic Islanda.

a, under part of the head ; t, abdomea of the male; c, termination of one of the posterior fect.

Paramithrax (Milnc-Edwards)-Establishing, in the opinion of M. Milue-Edwards, the passage between Mithrax nud Maia.

General form of the carapace very closely appronching that of the triangular Milhraces. Rostrum formed of two stout horns, and considerably less wide than the front, which. in its turn, has nearly as much extent as the buccal frame. Orbits ornl-shaped, their upper border arched forwards as in the Make, and with three stroug spines posteriorly separated by two notches more or less deep; their inferior border widely notched or incomplete. Eyes retractile, with slender pedunclea, which are rather long and recurvel, as in the Maice. The autennary region and antemary pita resembling those of the Maic. Basilary joint of the external antenme large and armed with spince, one of which (the external) advances in general beyond the bonler of the front, rud separates the orbit from tho insertion of the movenblo atem, which is not coverod by the front. Bixternal jaw-fect and sternum nearly as in the Maier. Anterior fect of modernte strength, aud terminated by pointed and rouuded claws, which aro not dentilated its in Pisa, nor hollowed into n spoon-shape as in Mithrar. The succceding feet are cylindrical, very little or not at all spiny, and of variable length, accordiug to the species; there are no small horny pointa at the luwer end of the last joint, as in most of the Mithraces.

Tho species are Australasinn.
M. Milne-kidwaris divides Paramithrax into two sections:- the first consisting of those specics which have the orbits very incomplete below, and whose eyea do not reach to the external angle of the craitica; the sceond, of those whase orbita have ouly one notch below, and whose eyes, when turned back, touch the external orbital angle. P. Peromit is an example of the finst section, aud P. Qaimardii of tha second.

Maia (lamarck).-This genus was established by the anthor of tho 'Animanx sans Vertebres," for the reception of the generg duachus. nul Parthrnope of Fabricins, or, in other womd, for all the Oxyihynchi froperly so called. More modern authors lave cut the Lamarekinn genid down to the group formed by the small number of epecies which may be arranged in close approximation to $N /$. Squinado.

Carapaca about a fourth longer than it is wide, nud mueh narrowed anteriorly; itw upper an?face is rough, with multitudiuous tubercles nud spinen, and the reginn aro not strongly marked on it ; rostrum horizontal, nud formed of two divergent horns; the latero-anterior burder of the carapace armed with strong spines ; orbits of an oval Whape, rather deop, nul with their muperior borier, which is elovated and rombded anteriorly, divided behind by two fissuros. Internal nutenne exhibiting nothing reararkable, lut the portion of the front which separates their foshets or pits is prolonged joto a strong curved mpine, which is lirectod downwards, First joint of the external antemae very large, and constitnting moro than half of the inferior flon" of the orbit, which it only exceeds anteriorly a very little; its extremity is arned with two stont pinen, and carries the succceding joint int its muprior and external bover, wo that the moveable stem of these appendages aprings in the intermal cauthus of the cyes. Epistome
wider than it is long; buccal frams the same. Second joint of the external jaw-feet prolonged a good deal, from tha internal side. Sternal plastron nearly circuls - , and its median sutura, although sufficiently long, only occupying the last thoracic ring. Firat pair of feet not a great deal shorter than the othera, slender, nearly cylindrical, and terminated by in claw, the fingers of which, nearly styliform, nre never hollowed into a spoon-shape nor dilated towards the extremity, snd present few or no dentilations. Length of the second pair hardly exceeding once and a half the width of the carapace; the succeeding feet gradually shorter ; their terminating joint is atyliform, and preaents neither spines nor dentilations on its inferior border. Abdomen conaisting of aeven distinct joints in both sexes.

The species are found in the seas of Europe.
MI. Squinado, the Corwich, or Spinous Spider-Crab. Body covered with hooked bsirs; length four or five inches; colour reddish.
It is a native of the British Channel, the oceanic coasts of Europe, and the Mediterranean.

Corwich, or Spinous Spider-Ctab (Maio Squinado), redneed.
b, fermale (joung) ; c, abdomen of female; d, abdomen of male ; e, antenna : f, pedipalp.
This species is often dredged up, and the fishermen sometimes eat it, but its flesh ia not much esteemed. It was considered by the ancients to be endued with reason, and was by them represented suspended from the neck of Diana of the Ephesians, as an emblern of wisdom. It is also figured on ancient coins and medals. We take frem Bell's 'British Cruatacea' the following interesting communication from Mr. R. L. Couch, on the habits and reproduction of this species:-
"This is the most sbundant of all the crabs found on our coast, but it does not make its appearance so early in the season as the Conmon Crab, the Lobster, or indeed any other; it is rarely found earlier than May, but from that time till the end of the fishery in August snd September these orsbs make their appearance in vast numbers, to the great vexation of the fishermen; for it is found that from the time these begin to enter the pots the more valuable kinds considerably decreass in number, and this is supposed to arisc from their restless activity. No sooner are they in the crab-pot than they are continually in motion, scrambling from ous part to another, and in this way frighten the Crab and Lobater, and prevent them from entering. In the spring and early part of the summer they lis concealed bercath the aand in decp water. About May they leave their places of conccalment, but never come into aballow water, as does the Common Crab; the latter is often found in crevices of rock, or bencath atones left by the receding tide, but this is never the cass with the Corwich. They shed their spawn about August or September, at some short distance from the shore, probably in the sands. In thin too they differ from the Common Crab, for even when the spawn is quite mature for ' casting' they enter the pots as readily as at suy othcr time; whilst, on the other hand, it is a very rare occurrence to catch the Common Crab with spawn, unlesa it ba with a dredge-net. It would seem either that they grow vory fast or that the young differ considerably in their habits from the larger ones; for whilst it is very common to find specimena measuriug nime or ten inches in the length of the carapace, it is very rare indeed to get one less than thros inches; and a fisherman tella me that after many years fishing he caught one about the size of a balf-crown, which was the smallest he ever saw. The ora, when quite ready for shedding, are about the sizs of a very small mustard-seed, and of a reddigh-lirewn colonr, besprinkled with small dark spots.
"After kecping them suepended in sca-water for twenty-four hours some of the ova dropped from their attachments, and soon after the FAT. MIST. DIV. vol. Mil.
young ascapad, and this evidently by their own exertions, as distinct motions were easily observable under tha microscope whila they were yet inclosed. When they first escaps they are, as it were, rolled on themselves, the caudal extremity being bent on the body; but this is soon changed for a different position.
"I could detect no spine on the anterior part of the carapace, which was quite smooth, but marked with dots. The eyes ars asssils and large; the claws, pweticularly towards the extremity, covered with minute hairs."
Micippa (Leach).-Post-frontal portion of the carapace nearly quadrilateral, slightly convex, rounded backwards, and hardly narrowed anteriorly; its fronto-orbital border is straight and very wide, and its lateral horders are armed with spines. Rostrum lamellar, and directed vertically downwards so as to form a straight angle with the axis of the body and the epistome. Orbita placed above and on the sides of the rostrum; at their superior border a deap slit; ocular peduncles retractile, rather long, narrowed in ths middla, and prolonged to the extremity of the corvea. The stem of the internal antenne in bending back remains vertical, iustead of becoming borizontal, as in nearly all the other brachyurous crustaceans. The basilary joint of the external antenure very large, and wider in frout than it is behind; the second joint of these appendages is inserted against the edge of the rostrum, at a considerable distance from the orbit. The third joint of the external jaw-feet is extremely dilated on the external side, and very deeply notched at the point where it articulates with the succeeding piece. Sternal plastron nearly circular. Feet cylindrical and of moderata length, there being little difference in size snd length between the first and succeeding pairs. Abrlomen consisting of seven distinct joints in both sexes.
The species occur on the coasts of the Iudian Oceay.
M. Philyra. Length about 2 inches; colour yellowish. It is found in the Indian Ocean and on the coasts of the Isle of Frauce.

Mricippa Philyra.
Criocarcinus (Guérin).-The principal characters of this extraordinary genus are found in the diaposition of the orbits and of the eyes. The orbitary cavities have nearly the form of a long and truncated tube directed outwards; but they do not sheath the eyes as in Pericera, for the ophthalmic ring advances nearly to their extremity, and the ocular peduncle, which is long, slender, and, liks that of Maia, is inserted so as to be completely exposed, and to be capabla of reflection backwards, and of applying itself throughout ita leugth against the external border of the basilary joint of the external antenna, at position in which it is concealed under the post-orbital spincs of the carapace.
C. superciliosus (Cancer superciliosus Herbst). Length 18 lines.

Paramicippa (Milne-Edwards).-Approaching ncarly to Micipul. Carapaca nearly as wide aa it is long; rostrum beut lack below, and the lateroanterior borders armed with teeth. Disposition of the external antenne nearly the same as in Micippa, except that the sccond joint, which is placed on the same level as the upper part of the front, is flattened, enlarged, very short, and triangular or heart-
haper. The dipposition of the eyes is very different, for they cannot be refected backwards, and there is no post-foraminal orbitary cavity; their peduncle shoots much beyond the edges of tho orbit, and pre seots the same disposition as iu the Criocarcini, except that thoy aro immoreable. Form of the external jaw-feet the same as in P isa; but the epistome is extremely short. The feet are short, those of the wecond pair hardly longer than the post-frontal portion of the carapace; tho succeeding feet are gradually shorteucd. The abxlomen of tho female in composed of seven joints
The only certain locality of the species stated by M. Milno-Edwards is the IRed Sen.
P. tubcrculosa. Thero are some hairs on tho feet, and oren on the carapace. Colour brownish.

Ite locality is unknown.
Pcricera (Latreille)-Bearing mnch resemblance to Pisa, but differing from that genus in many characters, and especially in the dispositiou of the orbits. Carapace very much clongated, and more or less triangular, a little convex and unequal abore. Rostrum horizontal, and formed by two great conical horns. Front very wide, and occupying nearly twieo as much space as tho base of the rostrum. Orbits circular, very small, ond extremely deep, directed outwards, and entirely filled by the ocular peduncles, which are inclosed therein as in a sheath, scarcely proceed beyour it, and caunot be reflected forwards or bsekwards; their upper border is very much produced, and presents a fissure. The basilary joint of the external antenne is very large, and presents nearly the samo dispositions as in Micippa, for it is much wider in front than it is behind, and terminates by a very extensive transversal border, which is soldered to the front or the sides of the rostrum. The position of the movenblo stem of the external antemne varies a little; sometimes it is inserted nudor the rostrnm, sometimes a little outside the lateral border of that prolongation, but always very near tho antenvary fosset, and very distant from the orbit Disposition of the external jaw-feet, as well as that of the sternal plsstron, the feet, and the abdomen, nearly the same as in Pisa.
Tho species are found in the seas of the Autilles, as far as is yet known.
M. Milne-Edwarde dirides the genus into two sections. The first, consisting of those species in which the anterior augles of the auperior orbitary border are prolouged into a strong spine, which much exceeds the basilary joint of the external antenne; the second, of those species which have the terminal tooth of tho basilary joint of the external antenate going mueh beyond the anterior angle of tho superior orbital border.
P. cornuta, M. Miloe-Edwards (Cornejo comuto, Parra; Cancer cornudo, Herbst ; Maia Taurue, Lam.), Horned Crsb of IIughes, who describes the whole animal as "corered with brownish plushy hairs." lengtb from 3 to 4 inches.
It is a native of the seas of Barbadoes and the Antilles.

I'ericera cormuta (reduecd one-fourth).
Senocinops (Latreille)-Appreaching Pcricera, tho prineipal differruce being in the dinposition of the eyes. Carapace narrow, very usequal, and furuinhed ponteriorly with in large triangralar prolengation, which covers the insertion of the abdomen; rostrman formed of two atyliform nad divergont horns; upper border of the orinit arment with a horn analogous to that of the rostrum, but directed howe ohliquely. Ocular atetns delicate. iwmoveable, and vory projecting; internal antenne perenting nothing remarkable; first joint of the external antenua much longer than it is wide, the second slender, and inserted under the rostrum a little in front of tho level of tho eyes. Fpistotne nearly squaro, and tho third joint of tho external jaw-feet dilated towards the external nad auterior angle. Feet slender and cyliodrical : in the female those of the first pair are hardly stouter than the othera, and nre much saialler than those of the second pair. Ablomen of the female compoed of five joints only, the three ring which precede the lant being poldered together. Neither Herbst, latreille, M. Guérin, nor M. Muluo E'dwards appears to have cxamined a male,
S. cervicornie, Latr. (Cancer cerricornis, Herbst), is the only specios known. Length from about two to three inches,

It is a native of Mauritius.

Stenocinaps cervicomis.
a, under side in detaii; b, termination of one of the frat palr of feet; c, termiation of one of the succeeding fect.
Menathius (Milno-Enwards)-With mueh of the habit of Pisa, and establishing tho passage between that genus and Malimus. Carapaco about onec aud a half as long as it is wido, very much uarrowed anteriorly, and of the form of a triangle rounded at its base; rostrum formed by a large pointed procese, which is placed on tho median line of the body, and oecupies about a third of the total length of the carapace; the antcrior angles of the orbits surmounted by a large pointed and horizontal tooth directed forwards; the borders of these cavities without fissures, and exactly surrounding tho base of the ocular peduacle, which is ohort and but little moveable. Tho disposition of the external antenne, of the external jaw-feet, and of tho thoracie feet, the same as in Pisa, except that there exists on the lower surfaco of the tarsi two rows of horny points. The abdomen of tho male composed of seven distinet joints; that of the femalo of five only, of which tho penultimate is formed by tho ooldering of three ring.
M. Monoceros. Length about 10 lines. Rostrum fringed with hairs Colour brownish.

It is found in the Red Sea and tho Indian Ocenn.
ILalimus (Latreille).-M. Milne-Edwards looka upon this genus as establishing the passage between the Eurypode, the Piscr, the Mencethii, and the next genus.

Carapace, including the rostrum, about once and a half as long as it is wide, and convex above; rostrom adranced, and formed of two divergent horns; superior orbitary border jrojecting, and the latero. anterior borders of tho carapace nearly always straight, and armed with strong npines; eyes not retractile, and oxceeding considerably the edgea of tho orbit, which in prolonged backrards, with a groove which representa the post-formminary portion; first joint of the external antenne very long, meraight, and nearly of the anme width at its extremity as at its base, the insertion of the moveable stem of these appendages not covered by the rostrum. The epistome very large, aud nearly square; third joint of tho jaw-feet strongly dilated outwardly; piterygostominn regions very anmull; anterior feet slender, and of moderate length in the male as well as in tho female; the suceced. ing feet long, slender, and compressed, their penultimate joint enlarged below, and truncated like a subohcliform elaw. Abdomen of tho
male composed of seven segments; that of the adult female of five segments.

The apecies are found in the Indisn Ocesn.
H. Aries. Length about an inch.

Halimes Aries.
a, head in detail; b, ese; c, pedipalp.
A canthonyx (Latreille).-Carspace nearly as elongated as in Halimus, but less convex, and much less apiny; rostrum horizontsl, and formed of two flattened and divergent horns; orbits circular, snd occupied entirely by the base of the ocular pedunole, which passes beyond them remarkably. Disposition of the antenne, of the epistome, and of the jaw-feet nearly the same as in Halimus. Feet abort and stout; those of the last four pair very much compressed; fifth joint enlsrged helow, notched near the end with a hairy tooth, agsiuat which the finger is bent back in manner of a claw; those of the second pair show this structure most clearly.

The form ia widely apread. Species are recorded from the Mediterranean, from the Antilles, and from the Cape of Good Hope.
A. lunulatus. Length about 8 lines; body smooth, with some fasciculi of bsirs on the front; colour deep greeu. It inhsbits the coasts of Provence and the Bsy of Nsples, where it is found in crevices of the rocks overbung with Algce.

n, head in detail; b, ese; c. termination of foot of seeond pair; d, antenna.
Epialtus (Milne-Edwards)-Establishing in some respects, according to the opinion of M. Milne-Edwarda, the passage between Doclea and Acanthonyx, but much more nearly approximated to the latter. Carapace between circular and hexagonal, scarcely longer than it is wide, regularly convex snd smooth above; rostrum narrow, triangular, snd little or not st all divided; latero-anterior borders of the carapace very short, and forming with the lateral borders a very open angle; eyea very short, and not projecting much beyond the orbit, which is circular and with entire bordors: but the eyes neverthelesa appear sunceptible of being recurved a little backwards; antennary region very amall; moveable atem of the external antenno inserted under the rostrum, st a considerable diatance in front of the orbit, and the bavilary joint of theas appendages ncarly triangular, and very narrow at its extremity. It would seem to form the whole of the lower orbitary wall. The second joiut of theae antenne is a little enlarged, and nearly twice as long as the third; epistome small snd aquare;
external jsw feet- large, and their third joint nearly square, not aensibly enlarged externally, and only a little notched st its anterior and internal angle, where it joins to the succeeding articulation; the sternal plastron nearly circular; anterior feet ratber strong, and the clawa stightly apoon-shaped; the aucceeding feet cylindrical, and on their penultimate joint a amall qetiferous tubercle more or less projecting; their last joint is furnished below with two rows of small apines, and has but little flexibility: the tubercle is only well spparent in the poaterior feet; the gecond pair are much longer than the othera: segments of the sbdomen varying from six to seven in the male.

The apecies are found on the coasts of Chili, as far as is yet knowu.
E. tuberculatus, Length 3 or 4 four lines; colowr brownish-yellow. It is a native of Cbili.

Epialtus tuberculatus.

Leucippa (Milne-Edwards).-M. Milne-Edwards aees iu Leucippa much analogy to Acanthonyx, and he is of opinion that the former eatabliabea in some points a passage between the Maians aud the Parthenopians. Carapsce resembling that of Eurynome, save that instead of being unequal and beset with apines as in them, its aurface ia perfectly amooth; its length exceeds its width only a little, ita anterior portion is nearly trisngular, and its latero-anterior borders are projecting and trenchant; rostrum horizontal, projecting, very wide, and formed of two lamellar horus; orbits incomplete, so that the eye cannot be hid therein completely; the superior border of these cavities ia straight, and goea to rejoin the bage of the first tooth from the lstero-anterior border of the carapace, so as to form a triangular notch; the external edge of the basilary joint of the external sntennæ constitutea the iuternal portion of their inferior wall or partition: but backwards and below they are limited by nothing, and it may be said that there is no post-foraminary portion of the orbit; the eyea are amall, and carried on a very ahort peduncle : when they are folded backwards they only reach a little beyond the transversal line, and they are applied on the augle of the lateroanterior border of the carapace; the first joint of the external anteunæ is straight throughout its length; the second and the third sre completely hidden under the rostrum, and tbis last is nearly twice as long as that which precedes it; cpistome not very much developed; external jaw feet with their third joint very much dilated outwards, aud slightly truncated at ita anterior aud internal angle; feet short, compressed, and surmounted nearly throughout their length by a trenchant creat; abdomen of the femsle composed of seven segments, and covering the whole of the sternal plastron: that of the male unknown.

Thia form, ss far as is known, belongs to the Pacific Ocean.
L. pentagona, the ouly species, is about four lines in length; colour pale-gray (female).

a, under view of the head, magnified.
(Milne-Edwards, IIstoire Naturelle des Crustacées, \&c.; Bell, British Stalk-Syed Crustacea.)

MA'LABATHRUM, a name which occura frequently among the writings of the ancients, and which was applied to a leaf imported from India, whence it was likewise called ϕ í八入ov 'I $\nu \delta \kappa \kappa \delta \nu$, and also simply Folium. It was employed by them both as a modicine and as a perfume. From it there was prepared both an oil and a wine by maceration of the leaves in these menstrua. Many fabulous atatementa accompany the earliest accounts, as that of Dioacoridea, by whom it is atated that by some they are thought to be the leaves of the Indian Naud; that they are moreover found floating on Iudian marabea, aud that they grow without roots (lib. i., c. 11), and that (lib. ii. c. 10) it is by feeding on them that the animal affording the Onychia, or Unguis Odoratus of the aneients, becomes aromatic. In the worka of the Arabs Saduj is giveu as the aynouyme of Malabathrum; and Saduj, both in Peraian worka and in India, is applied to Tej-Pat, or the leaf of the Tej, which is a species of Cinnamomum, C. albiflorum, growing in the dense foresta of the valleys of the Himalaya, which extend from Rungpore to the Deyra Doon in 30° N. lat. Dr. Hamilton found the same name applicd to a very nearly sllied species, the
C. Tamala. Hoth specics moet probably yield the leaves which were so highly estecmed ia ancient timea, and are still as exteasively employed in eastern countries, and may be found in every Indian bazaar under the names of Tuj, or Tej-Pat, or by the Arabic name of Saduj-Hindee. They nre analogous in all respects to bay-leavea produced by the Laurwe nobilis, and are in fact tho bay-learea of Jadia The name Malabathrum no doubt is derived from Tamala-putra, or Tamala-leaf, as was first indicated by Garcias: "Appellant autem Indi folium Tamulapatra quan vocem Greci et Latini imitantes corrupte Malaliathrum nuncuparunt." These are brought from the interior of alnost insccessible foresta, and necessanily stripped from tho brauches for the facility of carriage ; beuce most probably originated the fables with which their early accounts are accompanied.
Malacanthus. [Labridie]
malachite [Comer.]
MALACHIUSI, s genus of Plants belonging to the natural order Caryophyllacete. It has 5 sepals; 5 bifid or entire petals; 10 stamens and 5 styles; the capsules opening with 5 bifid valves
M. aquaticum, Wster Chickweed, Las a documbent atem, angular, ascending, and coveryd with glandular bairs; cordate-ovate leaves, acuminate, seasile, the luwest one stalked; flowers ecattered, solitary, in the forks of the stem; petals bipartite, rather exoeeding the calyx ; capsule exceediag the calys. It is usually found in wet places in Great Britain.
(Bsbidgton, Manual of British Botany.)
Malacolite, or malakolith, a Mineral belonging to the Pyroxeno serieg, [Avgite]
MALACO'LOGY. The science of Molluscous or Soft-Bodied Animals (Maraxds and Adoos) includes the knowledge of such snimsla, whether protected by shells or entirely neked, and their distribution into classes, pub-classes, fsmilies, genera, and species. In this more exteuded and philosophical view of the subject, the science of Conchology may now be considered as merged; and the more modern classificationase based upon the anatomy of tho soft parts and tho habits of the naimals, as well ns upon the structure of the shells in those molluscous forms which have that protection. [CoscnoLogr.]
The shell-collector of former dasa looked upon his drawers, if they were rich in rare epecies or varieties, as containing an assemblago of gems; and indeed the enormous prices given for fine and scarce shells, joined with the surpassing beauty of the objects themselves, almost justified the view which the possessor took of his cabinet of treasures. They were to him really "Les Delices des Yeux et de l'Esprit;" and the energetic zeal with which he collected and the sacrifices that he made to procure a fine and perfect Many-Ribbed Harp, a Gloria Maris, or Cedo Nulli, among the cones; an Aurora, or Orange-Cowry, a Filute audica, or Folufa Junonia, \&ic., were only comparable to the extravagances of those visited by the tulip mania when it was at its height. But though they were the delight of his eyes, they were, iu nine cases out of ten, little inore to the owner of them : thoy were mere trinkets on which he looked dotingly without knowing, and acareely wishing to know, the organisation of the animal whose akeleton only was before him. This innocent trifing came st last to be viewed in ita true light by somo collectors worthy of better employmeot, who put off childish things, and went doeper into the subject. Lister, Adanson, Linnæus, Poli, Cuvier, Lamarck, De Blainville, aud others, gave dignity to this department of zoology, and gradually raised the science to its proper rank; whilst the comparatively imperisiable nature of the covering of the testaceous mollusks became, in the hands of such men as William Smith and hia followers, among the most valuable records by which the stratification of the earth's crust could be demonstrated, and its geological history deciphered. Grofogr.]
We must first examine what animals are included under the general name of Mullusca, or, if M. De Blainville's term be adopled as being the more comprehensive, Malacozoa, or Malacozoaria.
Tho Maláxia of Aristotle, his "Oatpea, or 'Oatpaxóбєpua, and his Ma入axdappaxa, are distinguished by hin from the fishes as not having, like the latter, blood; which mult be underatood as meaning that they were withont rei blood. Tho Maגdikia are further described as having all the fleshy parts external and the solid or firm parts internal, and are thun distinguished from the 'Oatpanéfefpa, which are defined as having the flealy parts internal and the folid parts exterual. The Majaxdotpasa are described as also having the nolid parts of thoir bodics external, and the soft and flenhy parts internal, but as being protected externally by a crust instead of a shell, and liaving ambulatory feet.
Thus the Mardxia snd 'Oarpaxdiopua of Aristotle, who is followed by illian and the Greck naturaliats generally, correspond with the inked and Testaceous Mollurcus of the moderne.
Pliny and the aucient Latin zoologists employ tho same denominathons as the Greekn, though they have tranalated them by the terms Molliaf for the Naked, and Testacea for the Shell.protected Mollusce.
Upon the revival of lettere, we Cind Belon, Roudelet, Genuer, and Aldrovadius adopting the denominations of the ancicnts, nud Jonston, in his general compilation, continuing the amme under the general terma of Exanysia, or Lixanguia aquatiea; and the more particular ones, as appilcable to the animals immediately under consideration, of Mollia, or Mollweca, and Testacea, or Conchyha.

Our countryman John Ray, who has justly been called the Precursor of Limnæus, and whose systomatic riewa on the aubject of zoology are well worthy of the sttention of the etudent, appeare to have bean the first who applied the term Fermes, or Worms, to all Invertebrate Animals (with the exception of Iusects aud Crustaceans), whose blood or circulating fluid is white, and who employed the term Vermes (Mollusca) and Termes (Testacea) to denote the divisions of Aristotle.
Lister, in hig 'Synopsis Methodica Conchyliorum,' cannot be considered as hasing done much as a syatematist, and though that zoologist gave the anstomy of many molluscous animals, as had been done by Fabius Columna before him, snd Willis, Swammerdam, and othera after him, little appears to have been effected for a principlo of classification resting on their external organisation or their form, and still less for one resting on their internsl atructure.
Linoxese, in his 'Nutural Division' of Animals into three sections, depending on the atructure of the heart and on the circulating fluid, makes his third seation consist of those animals which havo an unilocular henrt without an auricle (inauritum), and a white and cold circulating fluid (sanic frigida, albida). This section he separates into two sub-dirisions: the first (Anlennata) consisting of the Insects (Insecta) ; the second consisting of the Worms (Vermes).

The following is his definition of his class Vermes:-Cor (heart) uniloculare, innuritum, sanie frigida. Spiracula (respiratory organs) obscura. Masille (jaws) multifaria, varie variis. Penes (intromis. sive gencrative organs) varii Hermaphroditis Androgynis. Sensus (organs of sensation), tentaculs. Caput nullom, vix Oculi, non Aures, Nares. Tegmenta (eovering or integument) calcarea aut nulla, nisi spian. Fulcra (organs of support or motion). Nulli Pedes ant Pidma.
The class so defined-and the very definitions will show how very limited the knowledge of the structure of such animals was in the time of the writer-consists of tho following orders in the 'Systems Nature':-1, Intestina; 2, Mollusca; 3, Testacea; 4, Lithophyfa; 厄, Zoophyta.

The order Mollusca consists of tho following genera arranged in the subdivisions here given :-

Mollusca

a. Mouth above. Animal fixing itself by its base.

Actinia. Ascidia.
B. Mouth anterior. Body perforated with a small lateral foramen. Limax. Aplysia. Doris. Tathis, or Tethys.
γ. Mouth anterior. Body surrounded anteriorly by tantacles. Holothuria. Terebella.
ס. Mouth snterior. Body brachisted, or furnished with arms.
Triton. Sepia. Clio. Lermera. Scylkea.
e. Mouth anterior. Body pedated.

Aphrodita. Vercis.
§. Mouth below, central.
Medusa. Asteria, or Asterias. Echinus.
Iu the abovo assemblage of animals we find a very heterogencous arrangement; Mollusca, Radiata, and the genus Lerncea (which last belongs to Crustacca) [LeRnsadsi], being there collected together.
The order Testacea, 'Testaceous aimple Mollusca, covered with a calcarcous sholl,' consists of the following subdivisions and genera :-

Testacea.

- Multivalvia.

Chiton (Animal Doris). Lepas (Animal Triton). Pholas (Anima Ascidia).

* Bivalvia : Concus.

Mya (Animal Ascidia). Solen (Animsl Ascidia). Tellina (Adinal Tetlys). Cardium (Animal Tethys). Mactra (Animal Tethya.) Donax (Animal Tethys). Venus (Animal Tcthys). Spondylus (Animal Tethys). Chama (Animal Tethys). Arca (Animal Tethys?) Ostrea (Animal Tefhys). Anomia (Auimal Corpus Ligula, emarginata, cilista, ciliis valvule superiori affixis. Brachiis 2, linearibus, corporo longioribus, conniventibus, porroctis, valvula alternis, utrinque cilistis, ciliia affixis valvulis utrisque). .Mytilus (Animal Ascidia i). Pinna (Animal Limax).

** Univalvia Spira regulari: Cochlex.

Argonauta (Animal Sepir). Nuutilus (Animal-'Rumph. Mus.;' t. 17, (. D). Conis (Animal /imax). Cypraa (Animal Limax). Bulla (Animal Limax). Volua (Animal Limax). Buccinum (Animal Limax). Strombus (Animal Limax). Marex (Animal Limax). Trochus (Animal Limars). Turbo (Animal Limar). Ifelix (Animal Linax). Nerita (Avimsl Limax). Maliotis (Animal Limax).
*** Univalvia absque Spira regulari.
Patella (Animal Limax). Dentalium (Animsl Terebella). Serpula (Animal Terdella). Terodo (Animal T'crebclla). Sabella (Anims Nereis).
This arrangenent makes each of the genoric characters reside in the shell, which is treated as the habitation of the 'auimal.' Auy one who cxamincd this method soon found that it was impossible to affix any definite ides to many of the iahabiting animale, and but a vague
one to most. To the bulk of the Bivalves, or Conchæ, a Tethys is assigned as the animal; to the bulk of the Univalves with a regular spire, a Limax or Slug, which last is stated to be the animal of Pinna amoug the Bivalves; and yet the wonder is how Lianæus approached so nearly to a natural arrangement with the acaoty materials-for scanty they were when compared with the information that we now possess-which formed the groundwork of his classification. Upen this system slmost sll acientific collections of shells were arranged till within these few years; and so bigoted were many of the followers of this great man, who would have been the first to remodel his srrangement as new light poured in upon him, that every attempt at adopting the views of Cuvier, Lamarck, sad others, and even those of Bruguiere, founded upon the structure of the animals, was for a long time resiated, and almost resented as a presumptuous attempt at genus-making.
Daubeaton had read to the Academy of Sciences at Paris a memoir on the systemstic diatribution of ahella, in which, whilst he admitted that an acquaintance with these alone might suffice for arrangement, he remarked that a knowledge of the animals, or aoft parts, was indispensable for forming a complete system of conchology and a natural distribution of these exuvix. But though this indefatigable anstomiat broached this opinion, be does not appear to have carried his plan into execution.
Guettard aeems to have been the first who carried out the auggestion of Daubentou; for in 1756 he read a memoir inserted in the 'Transactions " of the same academy, snd therein eatablished upon aound principles the neccasity, in forming a classification of ahells, of having recourse to the animals, or soft parts which they inclose, and a part of which the ahells are. He did more; for he well characterised, upon the principle advocated by him, several genera, eapecially among the Univalvea, as they were then called. And although ho acknowledges that his information with regard to the Bivalves was not sufficient to aable him to carry out his views in the same manner with regard to them, he observes that they roust be suaceptible of being characterised with reference to the animala, or aoft parts, as well as the Bivalves. Guettard further pointed out the division of shells into Terrestrial, Fluviatile, and Marine, and paid particular attention to the presence or absence of the operculum. There can be little doubt that these ohservations determined D'Argenville to add to his second edition of 'Conchyliologie' (1757) a number of figures of the animals, or soft parta, under the asme of Zoomorphoses: these, it is true, are many, if not all of them, very bad.

The principles of Guettard were in the same year (1757) more extensively applied by Adanson in his 'Histoire Naturelle du Sénégal -Coqnillagea." He distinguishea all the external parts of the animals and the shells. In the Univalve ahells, as they were then called, or, as Adanson denominates them, the Limaçons, he peiuts out the whorls (spires), the apex (sommet), the aperture, the operculum, \&c.; and im the Bivalvea, under the name of Conques, ha treatea of the valves, which he terms battans, and notices their equality or inequalitywhether they shut close or gape at any point-the hinge, and the number and form of the teeth composing it, with the cavities which they form-the ligament, considering it as to form and aituation-the muscles, or rather muscular impressions, with regard to their figure, gize, and number; the nacre, \&c. Out of the modifications of these parts of the bivalve ahell he forms divisions as-five dependiag on the variations of the hinge; three depending upon the relative situations of the ligamant externally, internally, \&c.; three depending upon the modifications of muscular attachment, namely, 1at, Conques with one muscular attachment; 2nd, Conques with two muacular attachments; and, 3rd, Conques with three muscular attachments; and threa depending upon the preseace or absence of the nacre and its modifications.

In the snimals, or soft parts, of the Limaças, he directs his atteation to five principal parts :-

1. The Tcotacula, or tentacles, which he aames horns (cornes), and which he conaiders with regard to their number and shspe as furnishiog specific charscter, according as they are abseat, or as there are two or four, or according to their conical or cylindrical form, the abaence or preaeace of convexity (renflement) at their origin, and their situation at the root, or at the extremity of the head.
2. The Eyes-thcir ahaence or preaence; and in the latter case, their gituation upoa the head at the internal side of the root of the tentacles, behind the tentacles, towards their internal side, at the origin of the tentacles on their external sida, above the root of the tentacles on their external side, at the middle of the tentacles on their externsl side, and at the summit of the tentacles.
3. The Mouth, as provided with two jaws without a proboscis, or with a proboscis without jaws.
4. The Trachca, or respiratory orifice, as forased by a aimple hole situated on one of the sides of the animal, or by a loug pipe which lase its exit near the back
5. The Foot, according as it is divided by a transverse furrow at its anterior part, or not.

The Conques are regarded by Adanson with refercace to four príncipal parts, namely :-

1. The Mantle, which may be either divided all round into two lobes, or divided on one side only, or form a sac, open only at the two opposite extremities.
2. The Trachea, or tuhe, which may be either aiugle, and in the form of $8 n$ aperture, double in the form of apartures, double in the form of aeparate and distinct pipes, or double in the form of united pipes.
3. The loot null, or not appearing externslly, or appearing externally.
4. The Byssus, or Threads, which exist in some species, and do not exiat in others.
The shells which he had observed at Senegal are figured and distributed generally in the following order, under two families:-

Family I.-Limaçons.

Sectiou 1. Limaçons Univalves.
Genera:-Cymbium. Bulinus (Physa of the moderns). Coretus (Planorbis of Guettard). Pedipes (Auricula of Lamarck). Cochlea (Bulimus of Bruguière). Lepas (Patella of modern authors, and also embracing the Chitons). Haliotis. Yetus (Voluta of Lamarck, Cymba of Broderip). Terebra. Porcellana (Marginella and Oliva of authors). Cyprcea. Peribolus (young of Cypraza and small Marginellee).

Section 2. Limaçons Operculés.
Genera:-Strombus (Conus of the moderis). Purpura (including, with the true Purpurce, Dolium, Cassidaria, Murex, Strombus of the moderns, some Mitra, \&c.). Buccinum. Cevilhium. Jermetus. Trochus. Turbo. Natica. Nerita.

Family IL.-Conques.
Section 1. Conques Bivalves.
Geara:-Ostreun (Ostrea of the moderns). Jataronus (Spondylus (?) of the moderns). Perna (including Mytilus, Modiola, Avicula, Pima, and Cardita). Chama (including Jenus, Cytherea, Maetra, Cardita, and some of Solen; but apparently none of the Chame of modern suthors). Tellina (Donax of the moderns). Pectunculus (including Cardium, Arca, and some true Pectunculi of Lamarck). Solen.

Section 2. Conques Multivalves.
Geuera:-Pholas. Teredo.
Such is the 日ystem of Adanson ; and although it presents errers, which would very probably have heen avoided by so good an observer if he had lived at a later period, when this branch of knowledge became better known, we must allow him the merit of being the first who practically applied the priuciple of clasaification based on the structure of the aoft as well ss the hard parts, or, in other words, on the organisation of the animal and shell.

Geoffroy, a phyaician of Paria, applied the aame principle in his little 'Treatise on the Terrestrial and Fluviatile Shells' in the neighbourhood of that city. His genera of Uuivalves ameunt to five only, uamely, Ancylus, Cochlea, Buccinum, Planorbis, and Nerita. His genera of Bivalves consist of two, Chama aud Mytilus, in the first of which he places Cyclas, and in the second an Anodon and a Uno.

Müller, tha Dane, presented zoologists with a system founded on the aame principle, which, whilst it was more complete than that of Guettard, inasmuch as it extended to all couchiliferous animala, was less natural than that of Adanson, and altogether inferior to it, as far as Adanson's went; but it was much more elahorate, and demands a great ahare of praise. The author of the 'Zeologia Danica,' in his 'Vermi'ım Terrestrium et Fluviatiliun Historia,' adopts three primary diviaioas-Univalvea, Bivalves, and Multivalves.

He divides the Univalves into three aections:-

1. Those Teataceous Univalves whose ahell is pierced through and through; sad in this section he placea the Echini and Dentalium.
2. Those which have a very large aperture, censiating of Akera (Bulla of modern zeologists), Argonauta, Bulla (Physa of Draparuaud and others), Buccinum (Limnooa of the moderns), Carychium, Vertigo, Twrio, Ifelix, Planorbis, Ancylus, Patella, sad Haliotis.
3. Operculated Testaceous Univalves, in which he places the genera Tritonium (Buccinum of Linaæus), Trochus, Nerita, Valvata, and Serpulu.

Tha Bivalves are divided by the same author into two sections only : the first consisting of those which have a toothed hinge, iucluding Terebratula, a new genua; the second, of those which bave a toethleas hinge, including two new genera, Anomia and Pecten, which he separates from the Oysters.

The Multivalves comprise the genera Chiton, Lepas, and Pholas.
There cau be little doubt that it waa to theae authors (amoug whom we do not include Müller, whose works appeared subsequently, nor Geoffroy, whose treatise appeared nearly simultancously) we owa the amended arrangement of Limnaus as it finally appeared in his last edition of tha 'Systema Natura' (the 12th, 1767), and as we have given it above. In the earlier editious the term Molluscu does not aeem to have occurred to him. The Naked Mollusca are distributed among the order Zoophytea, of bis class Vermes, aad the Tcataceous Mollusca formed his third order of that class, Tcstacca. Among the first we fiud Tethys, under which he arrsuged the Molothurice; snd Limax and Sepia, which he placed near the Mydra. The second were not yat
divided into Univalves and Bivalves. The genera Patella nnd Cbchlea beem to have embraced all the Turbinated Univalves; and Cyprea, IIaliotis, and Vautilus the Simple Univalves. All the Bivalves appear to be collected under the term Concha; and the Ascidiar, under the name of Microcosmus, acem to have found a jlace under lis Testacea.
It is in the tenth odition (1758) that we first trace considerable augmentations, which increased in the last that received the correction of the great Swedish naturalist's own hand, and which appeared in three volvmes: the first part of the first volume being publiahed in 1766 ; the second part of that volume, containing the Insecta and Fermes, in 1767; the second volume, containing the Plants ('Regnum Vegetabile'), in 1767; and the thirl, containing the Minerals ('Reguum Lapideum ')' in 1768 . Adanson'a work was published at Paris in 1757, ten years before the second part of the second rolume of the last edition of the 'Systema Nature.' But Limneus appears to have ouly profited by the labours of Guettard and-Adanson to add to the genera of the orders Mollusca and Testacea of his Vermes, and to define them more closely. Geoffroy's publication appeared nearly at the same time with his own last edition. The object of Linnaus seems to have been to cstablish a nomenclature and form a syatem of chonchology resting on the modifications of structure in the shell alone; in fact an arbitrary syatem, which has now generally given way to aystems founded upon more natural principles.

Pallas ('Miscellanea Zoologica,' 1766) aeems to have been the first to point out the unsteady foundation on which the aystem of Linnacus rested. He sliows that the subdivision of the Teataceous Molluses, as adopted by Linnacua and his followers, resting on the shell only, without taking the animal into consideration, is far from natural ; and in that apirit of prophecy which is now fuldilled, he remarks that it cannot be preserved.

Bruguiere, nevertheless, weighing the great influence which the gystem of Linneus had exercised on zoology in general, and the powerful aid which it afforded to the student of that ecience, clung, in his 'Dictionnaire dea Vers,' to the method of the Swede in 80 many points that he may be said almost to have done little more than imitate hitn.

Bruguiere admits the division of the two ordera Molluscous Worma and Testaceons Worms. The first of theas he subdivides into two sections, according to the presence or absence of tentacula, and consequently jumbles together a very beterogeneous mass of animala; for the same reason hia aecond section is even more heterogeneous than the first. He however separates into a distinct order the Echini and Star-Fishes.

In the aecond order, or that of Testaceous Worms, though the Limnean principle is kept in view, the genera are more multiplied and their charscters better defined; and as Bruguière ia one of those authors who has greatly contributed to the advancement of this branch of zoology, we shall givo au outline of his system of conchology.

He, like Linneus, divides the Testaceous Worms into three sections, according to the number of the valves.

In the first (Multivalves) he places the Chitons, Balanus, and Anatifa (Lepas of Linneus), Tercelo, Fistulana, Pholas, Char (a new and imaginary genua), Anomia, and Crania. Wo bcre havo for the first time a separation of the Pedunculated and Sessilo types of the Cirripeds (Campylosomata and Acamptosomata) pointed out under the generic appellations of Anatifa and Balanus, and tho new genera Fistulana and Crania.

The Bivalves (second section) are divided into the regular and irregular.

Among the Regular Bivalves are three new genern, namely, Acardo, Placuna, and Perna.

The Irregular livalves contain the new genem Trigonia, Pecten (previously selarated from the Oysters by Miiller and Poli), Tridaena, Cardita (fomned at the expense of Chama, Linn.), and Tcrebratula, containing a division of Anomia.

The Univalves are aubdivided into the Lnilocular, or those withont any partitions, and the Multilocular, or those which are furnished with regular partions or septa.

The Unilocular E'nivalves without a regular epire contain patella and Fianurclla, divided for the first tine, and, notwithastanding the observations of Pallan, Dentalium, Serpula, Siliquaria, nnd Arpergillum, among others; Fissurella, Silignaria, and Aspergillum, being new.

The Unalocular linivalvea with a regular zpire present a less heterogenesuatasemblugs. We find nmong thein Voluta reduced to a more Guiform genus ly withdrawing from it aome of the widely different upecies which Linneus had congregated under that name, and the following new genenn: Ocula (or mather Orulum), Olima, Purpura, C'isain, Terebra, Fusu, Cerithium, Bulimu, Planorbis, nud Satica.

The Multilocular Univalves not noticed by Linneus, but pointed out ly Preyn or Breynius of Danzig, in his ' Disertatio de Polythalnmia, nova 'Testaccorum Classe' (1732), comprise the genern Camerind, Ammonites, and Orthoceras, at the expeuse of the genus Nantilue of linumens.

Ginelin, whose clition of Linneus appeared about the same time with the work of Bruguiere, requires but little notlce. Four or five now gencra were added to the 'Systema Nature;' which received in
this edition a great number of species, too many of them added care. leasly and in a mannor to creato confusion, instead of diasipating it.

In 1791 Poli published the first volume of his splendid work, 'Testacea utriusque Sicilix eorumque Historia et Anatome.' Of the care with which the detaila are wrought out, and the magnificence and nccuracy with which they are illustrated, it ia impossible to speak too highly. But while Poli avoids the errore of those who eought to establish a syatem of testacoons molluscs on the structure of the shell alone, he runs into the opposite extreme, and rests his arrangement on the aoft parts of the animal only, without any reference to the hard part or ahell. He divides the Mollusca into three ordera:I, Mollusca Brachiata (Sepiee, \&c, of Linnous, and the Tritone and Serpula of the same author). 2, Mollusca Reptantia (Gastropods of the more modern authors). 3, Mollusca Subsilientia (Multivalves and Bivalves of the old achool, and characterised as being provided with a long foot, as being fixed to rocks or free, and as always wanting a head and eyes).

Of these families the most natural are the Bivalves, and their arrangement is bascd upon the structure of important parts.

Little seems to have been done for the science from 1789 to 1798, a period which included the French revolution and its reign of terror; but in 1798 a new era commenced, and George Cuvier published his 'Tableau Elémentaire de l'Histoire Naturello des Animaux.' This great man, clearly perceiving that Guettard, Adanson, Geoffroy, Mïller, and Poli took a right view of the principles of classification when they proposed ;the organisation of the naimal as its basis, adopted that method, and united, as Pallas had done, under the name of Mollusca both the Vermes (Mollusca) and Vermes (Testacea) of Linnwus, Considering the absence or presence of a bhell as a contingency of secondary importance, he divided the Mollusca into three sections,-the Cephalopodous Mollusca, the Qastropodons Mollusca, and the Acephalous Mollusca. Finally he arranged this 'Second Crand Division of the Animal Kingdom' in six classes, and gave the following method in his last edition of tho 'Règne Animal' (1830).

Class I.-Cephalopoda.

1, Sepia of Liunæur, containing the following genera and subgenera : Octopus, Polypas, Elcdone, Argonaula, Bellerophon, Laligo, Loligopsis, Onychotcuthis, Sepiola, Sepioteuthis, and the Cuttles properly so ealled, namely, Sepia of Lamarek. 2, Nautilus of Linnecus, containing Spirula, the Nautili properly so called (Nautilus pompilius, \&c.), Lituus, IIortolus, and Orthoceras. 3, Belemnites, including Aetinocomax (${ }^{\prime \prime}$). [Cermalopoda.] 4, Ammonites, including the Ammonites properly so called (Simplegades of De Moutfort), Planites of De Haan, Ceratites, Orbulites, Globiles, Goniatites, Pclogus, Scaphites, Baculites (Tiranites, Mhabdites, Ichthyosarcolites), IIamites, Turrilites (the last with M. Andouin's doubt). 5, Camerina (Nummulites of Lamarck), with their infinity of genera. [Fonsminifers.]

Class II.--Pterofods.

1, Clio. 2, Cymbulia. 3, Pneumodormon. 4, Linacina. 5, Iyalua. 6, Clcodora, including Crescis, Cuvieria, Psyche, and Eurybia, of M. lang, and perhaps Triptera of Quoy and Gaimard. 7, Pyrgo (fossil).

Class III.-Gasterofoda.

Order 1. Pulmonifera.
Section 1. Pulnonifera Terrestria.
1, Limax, including Limax properly so called. Arion. Vaginulus. Testacella aud Parmacella. 2, Melix, including Melix properly so called, Vitrina (Ifelicolinax of Férussao). Bulimus. Pupa. Chondrus, and Succinca. 3, Clausilia. 4, Achatina (including Polyphemus of De Moutfort).

Section 2. Pulmonifcra Aquatica.

1, Onchidium. 2, Planorbis. 3, Limnzus, or Limnaa. 4, Physa, near which Cuvier would place Scarabtus of De Moutfort. 5, Auricula (iucluding Carychium of De Férussac). 7, Mclampus (Conovulus, Lam.).

Order 2. Nudibranchiala

1, Doris. 2, Onchidoris. 3, Plocamoceros. 4. Polyecra 5, Tritonia. 6, Thethys, or Tethys. 7, Scylhea. 8, Glaucus. 9, Laniogcrus. 10, Eolidia. 11, Cavolina. 12, Flabellina. 13, Teryipes. 14, Busiris. 15, Placobranchus.

Order 3. Infcrobranchiala.
1, Phylliclia. 2, Dijhyllidia.

Order 4. Tectibranchiata.

1, Peurobranchus. 2, Plcurobranchtea (Plcurobranchidium of De Blainville). 3, Aplysire. 4, Dolabrlla. 5, Notarchus 6, Buraitella. T, Ahera, including Bullea, Bulla, and the AKcia properly so called (Horidium of Meckel, and Lobaria of De Blainville). 8, Qastropteron. 9, U'mbrclla.

Order 5. Hetcropoda (Lam.).
These were all comprised by Forskal uuder his genus Plerolrachca, and comprehended-

- In the text Actinocomar is included in the seetion appropriated to the genus Belemniter, though it is spoken of as a genus, In the 'Tabie Méthodique,' Actinocomax is printed as a genus, not a sub-genu.,

1, Carinaria. 2, Atlanta. 3, Firola. 4, the Timoriennes of Quoy and Gaimard. 5, the Monophores of the same. Phylliroe of Peron is placed here, but with doubt.

Order 6. Pectinibranchicta.

Family of Trochoids.-1, Trochus (including Tccius, Calcar, Rotella, Cantharidus, Infundibulum, Telescopium, Solarium, and Euomphalus). 2, Turbo, including, as genera and sub-genera, Turbo properly so called (which comprises both Turbo and Meleagris of De Montfort), Delphinula, Pleurotomaria, Turritella, Scalaria, together with cerlain terrestrial and freah-water sub-genera, namely, Cyclostoma, Valvata, and Paludinu; and the following:-Littorina, Monodon, Phasianella, Ampullaria (including Lanistes of De Montfort), Ifelicina, Melania, Rissoa, Mclanopsis, Pirena, Acteon (Tornatella, Lam.), Pyrainidella, Janthina, Nerita, Natica, Peloronta, Velates, Neritina, and Ctithon.

Family of Capuloids.-1, Capulus (Pileopsis of Lamarck). 2, Hipponyx. 3, Crepidula. 4. Pileolus. 5, Navicella (Cimber of De Montfort). 6, Calyptraa. 7, Siphonaria. 8, Sigaretus. 9. Coriocella. 10, Crypposoma.

Family of Buccinoids.-1, Conus. 2, Cyproza. 3, Ovula, or rather Orulum, including lolva (Radius?) and Calpurnus of De Montfort. 4, Terebellum. 5, Voluta, including Oliva, Volvaria, the true Volutce (subdivided by Broderip into Cymba-Cymbium of De MontfortMelo, and Voluta), Marginella, Columbella, Mitra, and Cancellaria. 6, Buccinum, including Bucciaum of Bruguière, Nassa, Eburna, Ancillaria, Dolium (the Tuna, and Partridge Tuna), Harpa, Purpura, Únicornus (Monoceros, Lam.), Ricinula (Sistrum of De Montfort), Concholopas, Cassis, Cassidaria (Moria of De Montf.), and Terebra. 7, Cerithium (including Potamides). 8, Murex, including Murex, Brug., which comprisea the Murices properly so called (Murex, De Montf.), and Brontes, Typhis, Chicoreus, Aquiluus, Lotorium, Triton, and Trophon of the aame; Ranella (including Apollon of De Montf.); Fusus (including Fusus and Latirus of De Montf.); Struthiolaria, Pleurotoma, Claratula, Pyrula (including Fulgur of De Montf.), and Pasciolaria. 9, Strombus (including Strombus, Lam., Pteroceras, Rostellaria, and Hippochrenes).

Order 7. Tubulibranchiata.

1, Vermetus, including Vermilia. 2, Magilus. 3. Siliquaria
 Order 8. Scutibranchiata.

1, Hatiotis, including Padollus as a aub-genua, and Stomatia. 2, Fissurella. 3, Emarginula (Palmarium of De Montfort). 4, Parmophorus (Scutus of De Montfort).

Order 9. Cyclobranchiata.

1, Patella. 2, Chiton. Class IV.-Acephala.
Order 1. Acephala Testacea (with four branchial feuillets, or leafleta.)
Family of Ostraceans.-1, Arcado, Brug., or Ostracites, La Peyrouse, including Radiolites, Spheerulites, Calceola, Hippurites, and Batolites, 2, Ostrea, Linn., including Ostrea, Brug., Gryphaza, Pecten, Lima, and Pedum. 3, Hinnites. 4, Plagiostoma. 5, Pachytes. 6, Dianchora. 7, I'adopsis. 8, Anomia. 9, Plucuna. 10, Spondylas, from which Lamarck has separated Plicatula. 11, Malleus. 12, Fulsella. 13, Perna, from which have been separated Crenatula, Gervillia, Inoceramus, Cutillus, and Pulvinites. 14, Etheria. 15, Avicula, including Margarita. 16, Pinna. 17, Arca, Linn., inc!uding Arca, Lam., Cucullsa, Pectunculus, and Nucula. 18, Trigonia.

Family of Mytilacerns.-1, Mytilus, Linn., including Modiola and Lithodomus. 2, Auodon, including Iridina, Dipsas, \&c. 3, Unio, including IIyria and Castalia. 4, Cardita. 5, Cypricardia, and the Coralliophaya of M. De Blainville, Vencricardia, and Crassatella (Paphia, Roiss).

Family of Chamaceans.-1, Chama, Linn., including Tridacna Nippopus, Chama (Brug.), Diceras, and Isocardia.

Frmily of Cardiaccans.-1, Cardium, including IIcmicardium. 2, Donax, 3, Cyclas, including Cyrena, Cyprina, and Galathea. 4, Corbis, Cuv., Timbria, Megerlc. 5, Tellina. 6, Loripes. 7, Lucina. 8, Ungrdina. 9, Venus, including Astarte (Crassina, Lam.), Cythercea, Capaa, and Petricola. 10, Corbuta. 11, Mactra.

Family of the Enfermés.-1, Mya, including Lutraria, Anatina, Solemya, Glycymeris, Panopert, aud Pandora. 2, Byssomya. 3, IFiatella. 4. Solen, including Sanyuinoleria, Psammobia, and Psammothea. 5, Pholas. 6, Tercdo. 7, Fistulana. 8, Gastrochana. 9, Teredina. 10, Clavagclla. 11, Aspergillum.

Order 2. Achephala without shells.
1st Family (Simple).-1, Biphora, including Thalia, Salpa, and Dagysa. 2. Ascidia, including Cynthia, Phallusia, Clavellina, and Boltenia.

2, Family (Aggregate).-1, Botryllus. 2, Pyrosoma. 3, Polyclinum. Class V.-Ebachoroda.
1, Lingula. 2, Terebratula, including Spirifor aud Thecidect. 3, Orbicula, including Discina and Crania.

Class VI.--Cirrhopoda.
 (Lepas and Triton, Linn.)

1, Anatifa, including Pentalasmis, Pollicipes, Cineras, Otion, aud Tetralasmis. 2, Balanus, including Acasta, Conia, Asema, Pyrgoma, Ochthosia, Creusia, Coronula, Tubicinella, and Diadema.
Such is the method finally proposed by Cuvier; and, while peruaing it, the reader should remember that he had the advantage of reference to almost every author of note who had written on the subject, down to the year 1830. Not that thia at all detracts from the excellent use which he has made of the materials at his command, and the grand philosophical views which he took of this intricate department of zoology.

We must now go back to 1798 , when Lamarck began his publications on the Mollusca, hy a paper in which he separated the great genus Sepia into three genera; and in 1799 he gave to the world his 'Prodromus' of a new classification of shells, wherein he established aeveral uew genera. In this work he states his adhesion to the principles and views of Bruguiere, whilst profiting by the observations of Cuvier as to the organisatiou of the animals, but remarks that he has been compelled to restrict still more the characters of the genera, and consequently to augment their number. In 1801, when he published his 'Auimaux aans Vertebres,' he seema to have been convinced of the justice of the views of Cuvier; and no longer confining his attention to the shells, he followed very nearly the exarnple of that great zoologist, and rested hia ayatem upon the organisation of the soft parts, as well aa on the form of the shell of the animal. The first vol. of the last edition, which received the corrections of Lamarck'a own hand, was published in 1815, and the last vol. in 1822. The following is the arrangement left by him :-

Before we enter upon that part of the aystem which in atrictness belougs to the subject hefore us, it will be necessary to give a auccinct view of Lamarck's Annelids. This he divides into three orders :-
I. The Apod Annelids, containing the Mirudinide, or Leeches, and the Lumbricide, or Worma (Echiurées).
II. The Antennated Annelids, containing the Aphroditida, the Nercidide, the Eunicidider, and the Amphinomida.
III. The Sedentary Annelids, containing the Dorsalida, which include Arenicola and Siliquaria; the Maldanide, which include Clymene and Dentalium; the Amphitritide, which comprise Pectinaria, Sabellaria, Terebella, and Amphitrite; aud the Serpulida (Spirorbis, Serpula, Vermilia, Gateolaria, and Magilus).

The Annelids immediately precede Lamarck's-

Clasa X.-Cirrhipedes.

Order 1. Seasile Cirrhipedea.
Section 1. With a quadrivalve operculum.
Genera :-Tubicinella. Coronula. Balanus. Acasta.
Section 2. With a bivalve operculum.
Pyrgoma. Creusia.
Order 2. Pedunculated Cirrhipedes.
Sectlon 1. Body completely enveloped by its tunic; shell composed of contiguoua piecea, leaving a free issue to the animal wheu they arc opened.
Anatifa. Pollicipes.
Secticn 2. Body completely enveloped by its tunic, which never. theless has an anterior opening; shell formed of separate pieces, which have no need to open themaelves for the issue of the arms of the animal.

Cineras. Otion.

Class XI.-Conchifera.

Order 1. Conchifera Dimyaria.

Two muscles of attachment at least; shell, internally, with two muscular impreaaiona, which are separate and lateral.
(1) Shell regular, generally equivalve.
(A) Shell gaping, in general, at the lateral cxtremities, its valvc\% being approximated.
(*) Craasipede Conchifers.-Mantle with its lobea united anteriorly, either entirely or partially; foot thick posterior: gape of the ahell alwaya remarkable, often considerable.
(1) Shell either contained in a tubular sheath, diatinct from its valvea, or entirely or partially incrusted in the wall of the sheath, or projecting externally.

Family Tubicolide.

Aspergillum. Clavagella. Fistulana. Septaria. Teredina. Teredo.
(2) Shell without a tubular aheath.
(a) Ligament extermal.
(\dagger) Shell either furnished with accessory pieces, foraign from its valves, or gaping very much anteriorly.

Family Pholadide.
Pholas. Gustrochena.
$(++)$ Shell without sccessory pieces, and gaping at the lateral extremities only.

Family Solenida.
Solen. Panopera Glycymeria.
(b) Ligament internal.

Family Myida.

Mya. Anatina
(*) Tenuipede Conchifers.-Mantle with its lobes not united, or hardly united anteriorly; foot small, compreseed ; gaping of the shell often considerable.
(\dagger) Ligament internal.

Family Mactriku.

(1) Ligament internal only.
(a) Shell gaping on its sides.

Lutraria. Mactra.
(b) Shell not gaping at its sides.

Crasatella. Erycina.
(2) Ligament risible externally, or double, one part being internal, the other external.
Unyulina. Solemya, Auphidesma.
Family Corbulida.
Shell inequivalve. Llgament internsl.
Corbula. Pandora.
($\dagger+$) Ligameut external only.

Family Lithophagidke.

Boring shells without accessory pieces, without any particular sheath, and more or less gaping at their anterior side. Ligament of the valves internal.
Saxicara. Péricola. Vencrupis.
Family Nymphide.
Two cardinal teeth at most in the same valvo. Shell often gaping a little at the lateral extremitics. Ligament external. Nymphs in general gaping outwards.
(1) Solen-like Symphide.

Sanguinolaria. Psammobia. Peammotaa.
(2) Tellen-like Nymphida.
(a) Lateral teeth, onc or two.

Tellina. Tellinides. Corlis. Lucina. Donax.
(b) No lateral teeth.

Capea. Crasina.
(B) Shell closed at the lateral extremities, when the valves are closed.
("․) Lamellipedo Conchifers.-Foot flattened, lamelliform, not posterior.
Family Conchidat.

Three cardiual teeth at least in one valve, with aa many or lesa in the other. Lnteral teeth sometimes.
(1) Fluviatile Conchida.-Shell with lateral teeth, and covered with a false epidermis.
Cyctas. Cyrena. Golathea.
(2) Marine Conchida.-No lateral teeth in the greater uumber; rarely an epidermis, which covers the whole shell except the umbones.

Cyprina. Cytherea. Vents. Venericardia. Family Cardiide.
Cardinal teeth irregular, either in their form or situation, and accompanied in general by oue or two literal teeth.
Cardism. Cardita. Cypricarlia. Miatdla. Isocarlia.
Family Arcide.
Cardinal tecth small, numeroun, intrant, and disposed in each valve on a line which in either straight, or arched, or broken.
C'ucullea. Arces Pectunculu. Nucula. Trigonia. Castalia.
Family Naiide.
Fluviatile shella, whosa hinge is nometimes furnished with an irregular cardinal tooth which in simple or divided, nud with a longitudinal tooth which is prolonged under the corselet; and nometimes is without any tooth at all, or is furnished along its length with irregular granular tuberclea.
Muncular impression posterior and compound. Umbones with the epidermin peeled off, and frequently eroded.
(ínio. hyria. Anadonta (or rather Anorlon). Iridina.
(${ }^{\bullet \bullet \bullet}$) Ambigunun Conchifers.

Family Chamida.

Shell irregular, inequivalve. A niugle cardinal tooth, which in oblique and aubcrenate, inserted into a little pit in the opponite valve.

Muscular impreenions two, dintant, lateral. External lignuent depressed.
Diseraf. Chama. Elheria.

Ordor 2. Conchifera Monomyaria.

Only one mascle of attachment, which seems to traverse their body.
Shell with an internal suboentral muscular impression.
(*) Ligament marginal, elongated on the border, sub-linear.
(a) Shell transvarse, equivalve, with an elongated muscular impression bordering the upper limb.

Family Zridacnida.

Tridacna. Hippopus.
(b) Shell longitudinal or aubtrangverse, with a muscular impression contracted into an isolated space without bordering the limb.
(\dagger) Ligament at the lateral border of the shell, and alwnya entire.

Family Mytilida.

Hinge with a subinternal ligament, which is marginal, linear, very entire, occupying a great part of the anterior border. Shell rarely foliated.

Modiola. Mytilus. Pima
$(++$) Ligament at the lower border of the shell, or divided.

Family Malleidu.

Ligament marginal, sublinear, either interrupted by crenulations or serial teeth, or altogether simple. Shell sub-inequivalve, folisted.

Crenatula, Perna. Malleus. Aricula. Mdeagrina.
(*) Ligament not marginal, contracted into a ahort space under the umbones, and not forming a tendinous tube undor the shell.
(a) Ligament internal or demi-internal. Shell regular, compact, not foliated.

Family Pectinida.
Pedum. Lima Plagiostoma. Pecten. Plicatula. Spondylus. Podopsio.
(b) Ligament internal or demi-intersal. Shell irregular, foliated, sometimes papyraceous.

> Family Ostreidce.
(1) Ligament demi-internal. Shell foliated, but nevertheless often asquiring great thickness.
Gryphera. Ostrea. Vusella.
(2) Ligament internal. Shell delicate, papgraceous.

Macuna. Anomia.
(***) Lignuent either null or unkuown, or represented by a tendinous cord which austsins the elell.
(a) Liganent and nnimal unknown. Shell very inequivalve.

Family Rudistides.
Sphrrulites. Radiolites. Calceola. Birostrites. Discina. Crania,
(b) Shell adherent, either immediately or by a tendinoun cord which sustains it, and serves as a ligament. Animal with two opposed arms, which are opposed, ciliated, and cirrhous.

Family Brachiopodide.
Conchifers haring uear the mouth two opposed elongated ciliated arms, rolled spirally when in reposc. Mantle bilobated, the lobes separated anteriorly, enveloping or covering the body.
Shell bivalre, adhering to marine bodies, either immediately or by a tendinous cord.

Orbicula. Terelratula. Lingula.

> Class XII.—Mollusc..
> Order 1. Pleropoda.

No foot for creeping, nor ams for progress or seizing the prey. Two fins opposed and similar, proper for natation. Body free and foating.

Myala, Clio. Clcodora. Limacina. Cymbulia. Pneumodermon.
Order 2. Gasteropoda.
Animals with a straight body, never spiral nor enveloped in a shell which can contain the entire animal; having under the belly a foot or muscular disc united to the body nearly throughout ite length, and serving for creeping.
Some naked, others protected by a dorsal ahell, not imbedded; aud others, on the other haud, containing a shell more or less bidden in their mantle.

Section 1. Hydrobranchiala.

Branchix, whatever be their popition, elevated either in a net-work, in lamine, in a pectinnted form, or in a ribbon-liko shape. Tho auimals of thiz section breathe water ouly.
(a) Branchie external, placed abovo the mantlo, eithor on the back or on the sides, and being in no particular cavity.

Family Tridonide.
Glaucus. Eolis. Tritonia. Scyllea. Tcthys. Doris.
(b) Branchie placed under the border of the mantle, and disposed in a longitudiual neries round the booly, or on one side only; not beiog in any particular cavity.

Family Phyltidildr.
Phyllidia. Chitoncllus. Chiton. Patella.

Fsmily Semiphyllididoe.

Branchix placed under the border of the mantle, and disposed in a longitudinal series on the right side of the body only.

Pleurobranchus. Umbrella.
(c) Branchix placed in a particular cavity upon the back, situated snteriorly near the neck. Shell always external, and covering the soft parts,

Fsmily Calyptreida.
Parmophorus. Emarginula. Fissurella. Pileopsis. Calyptrœea. Crepidula. Ancylus (?).
(d) Branchie placed in a particular cavity towards the posterior part of the back, and covered either by the mantle or by an opercular cscutcheon.
(\dagger) No tentacula.

Family Bullido.

Akera. Bullaa. Bulla.
(+1) With tentacula.
Laplysia. Dolabella. Family Laplysidoe.

Section 2. Pneumobranchiata.

Branchice creeping, in the form of a vascular net-work, on the wall of a particular cavity, the sperture of which is a hole which the animal contracts or dilstes at its pleasure. Animals of this eectiou breathe nothing but air.

Family Limacidce.

Onchidium. Parmacella. Limax. Testacella. Vitrina.
Order 3. Trachelipoda.
Body spiral in its posterior part, this part being separated from the foot, and alwsys enveloped in the shell. The foot free, flatteaed, attached to the lower base of the neck, or to the anterior part of the body, and aerving for creeping. Shell spirivalve and sheathing (engainante).

Section I. (Phytiphagous.)

Trachelipods without a projecting siphon, and respiring in general by means of a hole. The greater part phytiphagous and furnished with jaws. Shell with the aperture entire, having at its base neither dorsal sub-ascending notch nor canal.
(*) Trachelipods respiring air only. Shell spirivalve, unarmed (mutique), not distinctly nacreous.

Family Colimacidee (terrestrial).

(a) Four tentacles.

Helix. Carocolla. Anostoma. Helicina. Punc. Clausilia. Bulimus. Achatina. Succinea.
(b) Two tentacles.

Auricula. Cyclosioma.

Family Limnoidle.

Amphibious. Living in the water, but coming to the surface to breathe Shell with a sharp edge to the lip.
Planorbis. Phyza. Lymnoea, or rather Limnoea.
(*) Trachelipods breathing water only. Branchix projecting in form of filaments, lamioz or tufts in the brauchial cavity. Shell often nacreous, and often also having protuberant parts on the surface.
(a) Shell fluvistile, operculated, the left border of which does not resemble a demi-partition.
(\dagger) Shell with disunited borders.

Family Melanida.

Melania. Melanopsis. Pirena.
$(t+)$ Shell with united borders.

Family Peristomida.

Valrata. Paludina. Ampullaria.
(b) Shell fluviatils or marine, whose left border or lip resembles a demi-partition.

Family Neritidce.
Navicella. Neritina (fluviatile). Nerita. Natica (marioe).
(c) Shell marine, whose left lip does not resemble a demi-partition.
(\dagger) Shell floating at the surfsce of the water.
Family Janthinider.
Janthine.
(\dagger) Shell not floating, having the aperture very wide; no columella.

Family Macrostomidoe.
Sigaretus. Stomatella. Stomatia. Haliotis.
$(t++)$ Aperture without any particular width; plaits on the columella.

Family Plicacida.

Tornatella, Pyramidella.
$(+++\dagger)$ No plaits on the columella.
(a) Borders of the aperture united circularly.

Family Scalaridce.

Vermetuis. Scalaria. Delphinula.
(b) Borders of the aperture disunited.

Family Turbinidoe.

Solarium. Rotella. Trochus. Monodonta, or rather Monodon. Tuibo. Planaxis. Phasianella. Turritella.

Section II. (Zoophagous.)

Trachelipods with a projecting siphon, and which only breathe the water which arrives at the branchir by means of this siphon. These feed on saimal substances only, are merine, have no jaws, and are furoished with a retractila proboacis.
Shell spirivslve, sheathing the soft parts, with an aperture which is either canaliculated, or notched, or turned up st its base.
(a) Shell with a cansl more or less long at the base of its aperture, and the right border of whose lip daes not change with age.

Family Canaliferido.
Section 1. No constant bourrelet on the right lip of the species. Cerithium. Pleurotoma. Turbinella. Cancellaria. Fasciolaria. Fusus. Pyrula.
Section 2. A constant bourrelet on the right lip in all the species. (a) No bourrelet on the spire.

Struthiolaria.

(β) Bourrelets on the spire.
Ranella. Murex. Triton.
(b) Shell with a canal more or less long at the base of ita aperture, and the right border of whose lip changes its form with age, aud has a sinus inferiorly.

Pteride (Ailées, or Wing-Shells).

Rostellaria. Pterocera, or rather Pteroceras. Strombus.
(c) Shell with a short cansl, ascendiog postoriorly, or with an oblique notch at the bass of its aperture, this demi-canal being directed towards the back.

Family Purpurides (Purpuriferes).
Section 1. An ascending canal, or recurved towards the back.
Cassidaria. Cassis.
Section 2. An oblique notch directed backwards.
Ricinula. Pupura. Monoceros. Concholepas. Harpa. Dolium. Buccinum. Bhurna. Terebra.
(d) No canal st the base of the aperture, but a bubdorsal notch and plaits on the columella.

Family Columellida (Columellaires).
Columella. Mitra. Voluta. Marginella. Volvaria.
(e) Shell without a canal, but having the base of its aperture notched or versant, and the whorls of the spirs large, compressed, and enrolled in such a manner that the last whorl nearly eutirely covers the othera.

Family Convolutidae (Enroulées).
Ovula, or rather Ovulum. Cypraa. Terebellum. Ancillaria. Oliva. Conus.

Order 4. Cephalopoda.
Mantle in form of a sac, containing the lower part of the body. Hesd projecting from the sac, burrounded by armas, which are not articulated, but furbished with suckers (ventouses), snd which environ the mouth; two sessile eyes; two horny mandibles to the mouth; three hearts. Sexes separate.

1st Division,-Polythalamous Cephalopods.
Shell multilocular, enveloped completely or partially, and which is inclosed in the posterior part of the auimal, often with adherence.
(") Shell multilocular, with simple chambers.
(1) Shell straight or nearly straight; no apiral.

> Family Orthoceratide.

Belemnites. Orthoceras. Nodosaria. Hippurites. Conilites.
(2) Shell partially spiral ; last whorl continued in a straight line.

> Family Lituolitide.

Spirula. Spirolina. Lituola.
(3) Shell semi-discoid; spire eccentric.

Family Cristacide.

Renulina. Cristellaria. Orbiculina.
(4) Shell globulose, spheroidal, or oval, with enveloping whorls or partitions united on tunique.

Family Sphcrulide.

Miliola. Gyrogona. Melonia.
(5) Shell discoid, with s central spire, and partitions radiating from the centre to the circumference.

Family Radiolidido.

Rotalia. Lenticulina. Placentula.
(6) Shell discoid, with a central spirc, and partitions which do not extend from the centre to the oircumference.

Family Nautilide.
Discorbis. Sidcrolites. Polystomella. Forticialis. Nummulites. Nautilus.
(") Shell multilocular, with chambers pinked (decoupés at the edges).
Family 4 mmonitide.
Ammonites. Orbulites. Ammonoceras. Turrilites. Baculitea
and Division.-Monothalnmoua Cephalopods,
Shell unilocular, ontirely external, and enveloping the animal. Argonauta.

3rl Division.-Sepiary Cephalopods.
No shell, either internal or cxternal. A solid free cretacoous or homy body, contained in tho interior of the greater part of the naimal.

Octopus. Loligopeis. Loligo. Sepia.
Order 5. IIeteropoda.
Body frec, elongated, swimming horizontally. Head distinct ; two eges. No arms surrounding the head. No feet under tho belly or under the throat for creeping. One or more fins, without any regular order, and not disposed by pairs.

Carinaria. Pterotrachea. Phylliröe.
Such was Lamarck's arrangement, as he finally left it, after various modifications in the course of his publications, from the commence; ment of them to the recond edition of his 'Animaux sans Vertèbres.' During that interval many nuthors had presented their views to the public, and we proceed to notice some of them.
In 1500 M . d'Audebard de Férusaac (the father) produced s system of Conchology bssed on the consideration of the animsl and its shell. He introduced somo observations on the complete or incomplete state of what he calls tho 'epiral cone' of the shell, and tho point of attachment of the foot, under the neck or under the belly of the Gastropods. His views were limited to the Terrestrial and Fluvintile Mollusce, or Musculites, as he calls them, and subdivides them into orders almost as numerous as his genera, among which we find Ifelicolimax, forming the passago between the Limaces and the Helices.
The work of M. Bosc, in the supplementa to Buffon (Det., IS02), may be considered as rather of a retrograde character, for it still clang to tho system of Linuxus as amendod by Bruguiere ; and, notwithatanding the progress already made, we find him adharing to the terms Molluacous Wornis and Testaceous Worms, as designating the Naked and Testaceous Mollusca. His divisiona were nearly those of liruguiere, though he adopted the new subdivisions which Cuvier and Lamarck had established, and appears to have been conscious of the value of those innovations. Jose was an observer, and had studied many of the Mollusca in a living state. Ho established many new facts and some new genera.

In 1803 appenred the 'Prodromus' of tho work of Draparnaud, which was not published till after his death in 1808, on the Terrestrial and Fluviatile Mollusca of Frnace. This work is conceived snd executed in a philosophical spirit, and with rational views of a natural system of classification. He abandoned the arbitrary method of Linneyus, and returned to the principlo proposed by Reaumer (IF1I) in his 'Memoir on the Progressive Motions of Shells,' making his classification that of Cuvier.
The 'Natursl History of Mollusca,' for Sonnini's edition of Buffon, was hardly commenced by Denga de Montfort, and almost entirely exccuted by M. De hoissy. The classification is carried out on the principles of Cuvier, but the author differs from Cuvier on somo points, an, for instance, in thinking that the section of the Anodons ought not immediately to follow that of tho Oysters, and that the aperture which Cuvier regarded as anterior in Biphora was really posterior-an opinion in which he is supported by Messrs. Bose, Perron, De Blainville, Chaniano, and Kulh. Iu this work the analogy of tho Polythalamous or Chambered sheils is pointed out. M. De Roisay appears to havo perceived the pasange from the Univalve to the Bivalve Mollusca by means of the Patella, aud he seems to have been the first who placed Arpergilhum near to Fistulana, a prosition which it atill holds.
M. Duméril, in I806, pubishect, iu his 'Zoologie Analytique,' a clasaification of Jfollusca nearly similar to that of Cuvier. M. Dumeril divides the Mollusea into five orders:-Cephatopoda, P'teroporla, Gasteropolda, Acephala, and Brachiopodia. The principal novelties in this publication were n division of the Gasteropoda, necording to their organs of respiration, into three families-Dermobranchiata, Siphomobrenchinta, nid Addebranchiata-which correspond nearly to the three divixions extablished on the structure of the shell; and a aeparation of the Brachioprada ns a distinct order.
Io 180世 Jenya de Mont fort publiahed his 'Univalves Cloisonnées,' and in 1810 the reeoud volume of his 'Conchyliologie Systematique,' containing the 'Univalves non Cloisonnées.' Ilia genern are very numerona, and not many of them are retamod at preasent by zoologista, though they are for the most part neatly defiued. His method in only carried out with regard to the Univalvea; but his primary division resta upon the number of valpes, and is separated into Univalver, Multivalvea, and livalver, as in the systems of the older conchologists. He differs however in restricting the term Multivalves to shells made
up of aevoral unlted pieces, without any solution of continuity; whilst he applies the term Dissivalves to shells made up of many pieces, but not coherent nor adherent to each other, as Teredo, Fiatulana, Balanus, \&c.
Oksn, in 1810, read to the Socicty of Göttingon a papor upon the knowledge of Mollusca apart from their shells and upon a natural classification eatablished upon this basis; and carried out this principle in his 'Msnual of Nat. Hist.,' publighed st Jena in 1816. Our limits will not allow ua to do more than call tho reader's sttention to this work, which he will find well worthy of perusal, though it does not contain any new principle of arrangement, and there is momewhat too much of change of name about his genera, of which there are but faw really new. Nor can we do more than hint at the work of M. Rafinesque (Palermo, 1814). About the year 1816 much light was thrown on the Aggregated Mollusca by Lesueur, Desmarest, and above all by the grest Savigny, and in 1817 M . De Blainville first made known the principles of his system, which be afterwards carried out to its completion. The systems of Goldfuss snd Ranzani sppeared in the same year, 1820, the first at Nuremberg snd the second st Bologna; the first may bo regarded as a compilation of the labours of those malacologists who had embraced the natural system; and the basis of the second, ss far as the Cirrhipeds are concerned, rests on the atructure of the shall and its opercnlum without regard to the animal, and, as far as relates to the Acephsious Molluses, does little more than give new denominations to the four sections of that division.
M. De Férussac (the son) divided (1819) the Mollusca into two grand sections, the Cephalous and the Acephalous.

Cephalous Mollusca.

These are divided into three classes-Cephalopods, Pteropods, and. Gastropods.
The first class, Cephalopods, contained the tro orders, Decapods and Octopods, as in the arrangement of Dr. Leach. This class in the sfstem of De Férussac embraces all the naked Cephalopods and all the snimals with multilocular shells; but was subsequently considerably modificd in a joint-work with M. D'Orbigny.
The second class, Pteropods, which originally consisted of the families Hyalcea, Limacina, the Clios, the Pueumoderms, and the Phyllirhoos, also underwent considerable chauges in a subsequent and joint-work with M. Rang.

Tho third class, Gastropods, are divided into the following orders and sub-ordors:-1, Nudibranchians (Anthrobranchians and Polybranchians). 2, Inferobranchians (Phillidians and Semi-Phillidians). 3, Tectibranchians. 4, Pulınonians without an operculum (Geophilians, Gehydrophylinns, and Hygrophilians). 5, Operculsted Pulmonians. 6, Pectinibranchians (Pomastomes, Hemipomastomes, A pomastomes, and Adeloderma). 7, Scutibranchians, Ormiers (Haliotis, \&c.), Calyptracians, Heteropods. 8, Cyclobranchians (Chismobranchians and Polyplaxiphores).

Acephalous Mollusca.

These are divided into four classes-Cirripedes, Brachiopods, LamelLibranchians, and Tuniciers.
Tho first, Cirripedes, is divided into the orders-Sessile Cirripeden and Pedunculated Cirripedes.

The second, Brachiopods, contains the three families Lingulide, Tcrebratulide, and Cranida.

The third, Lamellibranchians, comprehends five orders-the Ostraceana, Mytilaceans, Benetiers (Tridacna and Mippopus), the Cardiaceans, and the Enfermés (Myida, Solenide, Pholida, and Tubicolida).
The fourth, Tuniciers, consists of the two orders Tethid Asc!dians (Tethidec and the P'yrosomes) and Thalid Ascidians (Biphora, \&c.).
In England Dr. Leach had been active in introducing a natural system, as appoars from his published pspers, descriptions, snd works. Ife had it in contemplation to publish a general history of English Mollusca; but the most distressing of maladies deprived zoology of one of its most zealous cultivators, and tho work has never appeared.

Dr. J. E. Gray published in the ' London Medical Repository' (1821), his system, which dividea the Mollusca (taken in tho largest sense of tha word) into seven clases.

Tho first, Andiobrachiophora (Cephalopods), consists of three orders - Anostcophora, Scpiophora, and Nautilophora.

The sccond, Gasteropodophora, is divided iuto three sub-classesPncumobranchia, Cryptobranchia, snd Gymnobranchia.
The first of these Sub-clngses contains two orders-Adelopncumona and Phaneropncumona. The second embraces nine orders-the Ctenobranchia, which are divided into six sectiona by the application of a new principle, namely, the form of the operculum : the Trachelobranchia; the Monopteurobranchia; the Notobranclia; the Chismatobranchia; the Dicranobranchia; the Cyclobranchia; the Polyplacophora; and the lipleurobranchia. The thirl class consists of two orders-P'ygobranchia and Polybranchia.
Dr. Gray'a third class, Gastcropterophora, corresponds with the Ilectoporla of Lamarck, and is similar to M. Do Blainville's order Nuclcobranchiata.
The fourth class, Stomatoptcrophora, corresponding with the Pleropoda, contains two orders, Pterobranchia and Dactyliobranchia.

The fifth clsss, Saccophora (Tuniciers of Lamarck), consists of three orders-Holobranchia, Tomobranchia, and Diphyllobranchia.

The sixth, Conchophora, consists of orders depending on the number of muscular impressions, and denominsted from the form of the foot, as Cladopoda, Leptopoda, Phyllopoda, Pogonopoda, and Micropoda.

The seventh, Spirobrachiophora, corresponds with the Brachiopoda.
M. De Blainville, who in 1814 had published his first sketch of a methodical arrangement of the Malacozoa, as be designates the animals on which we are treating, still further developed that method in 1817 in his 'Prodromus' of a general classification of the animsl kingdom. The organ upon which thst arrangement is based is the organ of respiration, and it was finally perfected in the method which appeared in his 'Manuel de Malacologie' (1825). We here give an outline of it.

Type.-Malacozoa.

Class I.-Cephalophora.
Order 1. Cryptodibranchiata.
Family 1. Oclocera, containing the genus Octopus, which includes Eledone (Leach) and Ocythoe (Rafinesque).
Family 2. Decacera, including the genus Loligo (Sepiola and Cranchia, Lesch Onychotenthis, Lichtenst., the Sagittated Calamaries, Pteroteuthis, Sepioteuthis), and the genera Sepia, Beloptera.

Order 2. Cellulacea.

Family 1. Spherulacea, consisting of the genus Miliola, including Pollontes of De Montfort; Melonia, including Borelis of De Montfort; Saracenaria; and Textularia.
Family 2. Planulacea, comprising Renulina, including Frondicularia of Defrance ; and Penerorlis, including Planularia of Defrance.
Family 3. Nummulacea, containing Nummulites, including Lycophris of De Montf.; Helicites, including Rotalites and Egcon of De Montf.; Siderolites, including Tinoporus and Siderolithes of De Montf; ; Orbiculina, including Ilotes, Ilelenis, and Archaias of the ssme; Placentula, including. Eponides and Florilus of the same; and Vorticialis, including Themeon, Sporilus, and Andromedes of the same.

Order 3. Polythalamacea.

Family 1. Orthocerata. Genera a. (with simple chsmbers or partitions), Belemnites, including Callirhüe, Hibolithes, Porodragus, Cetocis, Acamas, and Paclites of De Montf.; Conularia; Conilites, including Aehelois, 4 mimonus, and Thalamus of the same; Orthoceras, including Nodosaria (Lam.), Recphax, and Molossus of De Montf.; b. (with sinuous chambers), Baculites, including Tiranites of the same.
Family 2. Lituacea. Genera a. (with simple chsmbers), Ichthyosarcolithes; Lituola; Spirulu, including Hortolus and Lituites of De Montf., and Spirolince of Lam. b. (with sinuous chambers), Hamites and Ammonoceratita.
Family 3. Cristacea. Genera, Crepidulina, including Astacolus, Cancris, and Periples of De Montf. ; Oreas ; and Linthuris.
Family 4. Ammonacca, Genera Discorbites; Scaphites; Ammonites; and Simplegas, including Ammonites, Planulites, and Amallheus of $\mathbf{D e}_{e}$ Montf.

Frmily 5. Nautilacca. Genera, Orbutites, including Aganides and Pelagus of De Montf.; Nautilus, including Angulithes, Oceanus, and Disiphytces of the ssme; Polystomella, including Geophonus, Pelorus, Etphidium, Phonemus, Chrysolus, and Melonis of the same; Lenticulina, including Patrocles, Nonion, Macrodites, Robulus, Lampas, Pharcmum, Antenor, Clisiphontes, Rhinocurus, Herion, and Spincterules of the same.
Family 6. Turbinacea. Genera, Cibicides; Rotalitcs, including Storilus, Cidarollus, snd Cortalus of De Montf.

Fsmily 7. Turriculacea. Genus, Turrilites.
Class 1I.-Paracephalophora.
Sub-Class I.-Paracephalophora Dioica (Aquatic, but capable of living for some time out of water).
Section 1. Organs of reepiration, and ehell non-symmetrical, and almost constantly turned spirally from left to right.

> Order 1.-Siphonobranchiata.

Family 1. Siphonostomata (Murex, Linn.). Genera (no persistent bourrelet on the right lip), Pleurotoma, including Clavatula, Lam.; Rostellaria, including Lippochrenes of De Montf.; Fusus, including Latirus of De Montf.; Pyrula, including Fulgur of De Montf., and Melongena, and Rapana of Schum.; Fasciolaria; Turbinella, including Polygomum of Schum. ; Triton, including Lotorium, Apuillus, nud Persona of De Montf., and Struthiolaria of Lam. ; Ranella, including Buffo and Apollon of De Montf. ; Murex, including Dronies, Chicoreus, Typhis, nud Phos of the same.
Family 2. Entomostomuta (Buccinum, Linn.). Gcnera, a. (Turriculated Entomostomes), Cerithium, including Vertagus of Schum.; Triphora, or Tristoma, of Deshayes; Nérine of Defrance, Potumides of Brongniart, Pypazus of De Montf., snd Pirence of Lam.; Melanopsis; Planuxis; Subulu. b. (Turbinaceous Entomostomes, or those whose spire is moderately clongsted and rarely subtniriculated), Terebra; Elrurna; Buccinum, including Alectrion and Cyclops of De Montf., and Nassa of Lam. c. (Ampulaccous Entomostomes, or those whose shell is in general globulous), Marpa; Dolium, including Perdix of

De Montf.; Cassidaria, including Oniscia of Sowerby; Cassis; Ricinula, including Sistrum of De Montf.; Cancellaria; Purpura, including Monoceros of De Montf. d. (Patteloid Entomostomes, or those whose shell is in its totality very wide, very flat, with a spire but little marked, and no columella), Concholepas.
Family 3. Angyostomata. Genera, a. (an operculum), Strombus, including Pteroceras of Lam.; Conus, including Rhombus, Cylinder; Rollus, and Mermes of De Montf. b. (no operculum), Terebcllum, including Seraphs of De Montf.; Oliva; Ancillaria ; Mitra, including Turris of De Montf.; Imbricaria of Schum., and Conoelix of Swainson; Voluta, including Turbinellus of Oken and Cymbium of De Montf. ; Maryinella, including Volvaria of Lsm.; Peribolus; Cyprea; Ovula, including Calpurnus, Ultimus, and Radius of De Montf.

Order 2. Asiphonobranchiata.

Family 1. Qoniostomata (Trochus, Liun.). Genera, Solarium, including Maclurites of Lesueur and Euomphalus of Sowerby; Trochus, including Infundibulum, Phorus, Calcar, Tectus, Telescopium, and Cantharidus of De Montf., snd Rotella of Lam.
Family 2. Cricostomata (Tw.bo, Linn.). Genera, Turbo, including Clarculus snd Meleagris of De Montf.; Labio of Oken, Monodonta of Lam., and Littorina of De Férussac; ; Pleurotomarium; Detphinula, including Trigonostoma; Turritella; Proto; Scalaria, including Aciona of Leach; Vermetus; Siliquaria; Magilus; Valvata; Cyclostoma, including Cyclophonus of De Montf.; and Paludina.

Family 3. Ellipsostomata. Geners, Melania; Rissoa, including Alvania of Risso; Phasianella; Ampullaria, including Lanistes of De Montf. ; Helicina, including Ampullina and Olygira of Say; Pleurocerus, including Oxytrème of leafinesque.
Family 4. Hemicyclostoma (Nerita, Linn.). Genera, Natica, ineluding Polinices of De Montf.; Nerita. a. (right lip dentated, Nerita, Lam.), Peloronta of Oken; and Clithon of De Montf. b. (right lip not toothed), Ncritina, Lam. ; Velates, De Montf. ; Pileolus, Sowerby; Septaria.
Family 5. Oxystoma. Genus, Janthina.

Sub-Class II.-Paracephalophora Monoica.

Section I. Organs of Respiration, snd Shell, where it exists, nousymmetrical.
Order 1. Pulmobranchiata.
Family 1. Limnacea. Geners, Limnoea, including Radix of De Montfort and Omphiscola of Rafinesque; Physa; Planorbis.
Fsmily 2. Auriculacea (Volutu, pars, Linm.). Genera, Pedipes, including Tornatella and Conovulus, Lsm.; Auricula, iucluding Scarabus of De Montf., Carychium of Mill., and Phytia of Gray; Pyrimidella.
Fsmily 3. Limacinea (IIelix, Limn., terrestrial). a. (anterior border of the mantle elevated into a roll-bourrelet-and not a buckler; a ghell). Genera, Succinea, including Amphibulimus, Lam.; Bulimus, including Bulimulus, Leach; Achetina, including Liguus and Polyphemus of De Montf.; Clausilia; Pupa, including Chondrus of Cuvier, Gibbus of De Montf., Vertigo of Mïll., snd Partula of De Féruss, ; Tomogeres (Anostoma, Lam.); Helix, a. (circumference of the shell constantly carinsted or subcarinated at all ages, Carocolta, Lam.), including Iberus, Caracolus, Acavus, and Zonites of De Montf,, and IIfelicella of Lsm. b. (snterior border of the mautle enlarged into a kind of buckler; shell null or nearly membranous), ILelicolimax, including Helicarion of De Féruss. ; Testacella; Parmacella; Limacella; Limax, including Arion of De Féruss.; Philomique and Eumele of Rafin. ; Onchidium, including Veronicella of De Blainv.

Order 2. Chismobranchiata.
Geuera, Coriocella, Sigaretus, Cryptostoma, Oxinöe, Stomalella, Velutina.

Order 3. Monopleurobranchiata.

Fsmily 1. Subaplysiacea. Genera, Berthella; Pleurobranchus; and Pleurobranchidium.
Family 2. Aplysiacea. Genera, Aplysia, including Acteon of Oken; Dolabella ; Bursatella; Notarchus; aud Elysia.
Fsmily 3. Patelloidea. Genera, Umbrella (Acardo of Mcgerle); Siphonaria; and Tylodina.
Family 4. Akera. Genera, Bulla (including Aptustre of Schum., and Atys snd Scaphander of De Montf.; Bellerophus; Bullcea; Lobaria; Sormetus ; Gasteroptera; and Atlas.

Section II.

Order 1. Aporobranchiata.
Tamily 1. Thecosomata. Genera, IIyalcea; Cleodora, inciuding Vaginclla of Daudin and Styliola of Lesueur; Cymbulia, including Argivora of Lesueur; and Pyrgo.
Family 2. Gymnosomata. Geners, Clio, iucluding Cliodites, Quoy snd Gsimard ; and Pneumoderma.
Family 3. P'silosomata. Genus, Phylliroc.

Order 2. Polybranchiata.

Family 1. Tetracerata. Genera, Glaucus; Laniogerus; Tergipes; Cavolina; Eolida; Dermatobrunchus; and Placobranchus.
Family 2. Dicerata. Genera, Scyllea; Tritonia; and I'cthys.

Order 3. Cyclobranchiata.
Gencra, Doris, including Polycera of Cuvier; Onchidoris; and Peronia.

Order 4. Inferobranchiata.
Genera, Phyllidia and Linguella.
Order 5. Nucleobranchiata.
Familg 1. Nectopoila Geuera, Pterotrachea, including Firola, Firoloides, and Sagitella of Lesucur; and Carinaria.

Family 2. Pteropoda. Genera, Atlanta, Spirutella, and Argonauta.
Sub-Class III.-Paracephalophora Mermaplirodita (Patella, Linn.). Section I. Organs of Respiration and Shell aymmetrical.

Order 1. Cirrhobranchiata.
Genue, Dentalium, including Entale of Defrance.
Order 2. Cervicobranchiata.
Frmily 1. Retifera. Genus Patella, including Melcion of De Montf.
Family 2. Branchifera. Genera, Fissurella; Emarginula, including Rinula of Defrance; and Parmophorus.

Section II. Organs of Respiration and Shell non-symmetrical.

Order 3. Scutibranchiata.

Frmily 1. Otidea. Genera, Maliotis, including Padollus of De Montf., and Stomatia of Lrun.; and Ancylus.
Fnmily 2. Calyptracea. Genera, Crepidula; Calypiraa; Capulus; Hipponyx: and Notrena.

Class III.-A cephalophora.
 Order 1. Palliolranchiata.

Section L Shell symmetrical.
Genern, Lingula; Terebratula, including Pentamerus, Spirifer, and Productus, Sow.; Strygocephalus, Defr.; and Magas; Thecidea: Strophomena; Pachytes; Dianchora; and Podopsis.

Section II. Shell non-Bymmetrical, irregular, constantly adherent.
Genera, Orbicula, including Discina, Lam., and Crania.
Order 2. Rudista.
Genera, Spherulites; Mippurites; Radiolites; Birostrites, including Iodamia of Defr.; and Culecola.

Order 3. Lamellibranchiata.

Family 1. Ostracea. Genera, Anomia; Placuna; Marpax; Ostrea; and Grypheca.

Family 2. Subostracea (Ostrea, Linn.). Genera, Ostrea; Spondylus; Plicatula: Ilinnites: Pecten, including Amusinm and Pandora of Megerle, and Neithea of Dronet; Pedum; nud Lima.

Family 3. Maryaritacea. Genera, V'ulsella; Malleus; Perna; Crenatula; Inoceramus; Catillus; Pulvinites; Gervillia; and Aricula, including Margaritiphoru of Megerle, Maryarita, Leach, Meleagrina, Lamarck.

Family 4. Mytilacca. Genera, Mytilus, ineluding Modiola nud Lithodomus (Lithophaga of Megerle); I'inua.

Family 5. Polyodonta, or Arcacea (Arca, Linn.). Gencra, Arca, including Trisis of Oken, and Cucullea of Lam.; Pectunculus; nod Nucula.

Family 6. Submytilacea. a. (Specics with an epidermis and nacreous; freshwater). Genern, Anodonta, jucluding Berpolis, Leach, Mridina, Lam., Dipsas of leach, Alasmisodona of Say, and Cristaria of Schum.; l'nio, including Ilyria and Castalia of Lam. b. (Species without an cvident epidermis, not nacreous, and more or less peetinated; mnrine). Cardita, including lenericardia and Cypricardia of Lamarek.

Fanily 7. Chamacea. a. (Shell irrcgular).-Genera, Chama, ineluding Chamestrea of Do Roissy ; Diceras; Etherin. b. (Shell regular). Tridacna, including Mimpopus, Isocardia; Trigonia, including Opis of Defrance.

Family 8. Conclacca.
Section 1. Regular Conchacca, with lateral dintant teeth. Genera, Cardium, ineluding IIemicardium; Donax, iueludiog Capsa, Lan.; Tellina, including Tellinidlex, Law.; Lucina, including Loripes of Poli, Amphilesma of Lam., Fimbria of Megerle, Corbis of Cuvier; Cyclas, includiug Cornca, Corbicula, and l'isum of Megerle, Cyrcua and Galathea of l.an.; Cyprina; Mactra; nud Erycina.

Section 2. Regular Conchucea, withont lateral diatant teeth; Cras. satella: Vomu, including Arthemis of Poli, leaus, Cyherea, and Crassina of Lam. (Astarte of Sowerby, Nicania, Leach), Triquetra of De Blainville, aud Macoma of Leacli.
Section 3. lrregular Conchacea: F"encrupis, ineluding Rupellaria of F1. de Bell., and Pelricola of Lam.; Coralliophaga; Clotho; and Ungulina.
Family 9. Puloridea.
Soction l. ligament internal. Genera: a. Corbuda; Sphana; Onforlemma, inclurling Rupicole of 1\%. de Bell.; Thracia; Memicyclostoma; and Anatina. b. Mya, including Erodona of llaudin; Lutruchla, includinif Ligula of Leach, and Iutraria of Lanarek.

Section 2. Liganent extemal nad convex.-Psammocoln, ineluding

Psammolia and Psammotea of Lam.; Soletellina; Sanguinolaria; Solecurtus; Solen; Solemya; Glycimera, ineluding Myoconeha (1), Panopect, Saxicava, Byssomya, Rhomboides; Miatella, including Biapholius of Lench; Gastrachena; Chavagella; sud Aspergillum.

Family 10. Adesmacea. Genera, Pholas, including Martesia of Leach; Teredina; Teredo; Fistulana; aud Septaria.

Order 4. Meterobranchiata.

Family 1. Aecidiacea (Ascidia, Linn.).

Tribe 1. Simple Ascidians. Genera, Ascidia; Bipapillaria; Fodia.
Tribe 2. Aggregated Ascidians. Genera, Pyura; Distoma, including Sigellina of Savig.; Batryllus, including Diazoma and Polyclina of Savig., and Polycyclus and Botryllus of Lam. ; Synoicum, including Enorlium, Didermum, and Aplidium of Savig., and Pulmonella of Lam.

Family 2. Salpacca.
Tribe 1. Simple Salpians. Genus, Salpa, including tho genera Monophore and Timorienne of Quoy and Gaimard.
Tribe 2. Aggregated Salpians. Genus Pyrosoma.
Sub-Type Malentozoairs.
Class I.-Nematopoda.
Family 1. Lepadicea. Genera, Lepas; Gymnolepas, including Otion and Cineras of Leach ; Pentalepas, including Pentalasmis and Pollicipes of Leach; Polylepas, ineluding Scalpellum of Leach; and Litholepas.

Family 2. Balanidea (Balanus, Brug.).
a. Operculum articulated, and more or less vertical. Genera, Balanus, including Acasta of Leach; Ochthosia: Conia, including Asemus of Ranzani; Creusia, including Pyrgonia of Savig.; and Chthalamus.
b. Operculum not articulated, and more or less horizontal. Genus, Coronda, including the genera Chelodobia of Leach, Cetopira and Diadema of Ranzani, and Tubicinella of Lam.
Class IL.-Polyplaxiphora. (Chiton, Linn.)

Genus, Chiton, including the genera Chitonellus of Lam., and Chito. nellus of De Blaiuv.

Our limits will not allow us to do more than refer to the systems of Schumacher, Latreille, and Rang, though they will, the latter especially-which is in mauy respects a happy combination of the systems of Cuvier, Lamarck, and De Blainville, with some alterations -well repay the atudent for their perusal.

The recent publication of the work of Professor Edward Forbes and Mr. Sylvanus Hanley on the 'British Mollusca,' enables us to give the classification adopted in that work, and also the dames of the British genera of Mollusca:-

Acephala Tunicata.

Botryllider, or True Compound Ascidians. - Aplidium. Sidиyиm. Polyclinum. Amouroucium. Leptoclinum. Distoma. Botryllus. Botrylloides.

Clivelinid.f, or Social Ascidians.-Clavelina. Perophora. Syntethys.
Ascidinde-Ascidia. Molgula. Cynthic.
Pelonalade.-Pelonaia.
Salide.s-Salpa. Appendicularia.

Acepinala Lamethibinnchiata.

Pitoladide.-Teredo. Xylophaga. Pholus. Pholadidea.
Gasthochesides.-Gasirochuena. Saxicaru. Petricola. Vencrupis. Mrad.ti-Mya. Panopaa.
Connulidis-Corbula Neceras Poromya.
Paviombat-Pandora. Lyonsia.
Anatinid.*:-Theracia. Cochlodesma.
Solevida--Solen.
Solecuntidem-Ceratisolen. Solecurtus.
TeliLnids.--Jsummobia. Diodonta. Tellina. Syndosmya. Scrobicularia.

Dosicids.-Dunax. Ervelia.
Mactmod-Mactra. Luuraria.
Venfudes-Tapes. Cytherca. Venus. Artenis. Lucenopsis. Crumsid.t-Cyprina. Circe. Astarlc. Isocardia.
Cardiada--Curdium.
Leornide:-Lucinia. Diplodonta.
Kelliade.-Montacuta. Turtonia. Kellia. Lepton. Galcomima.
Cycladides.-Cyclas. Pisidium.
Unionides.-Ĺnio. Anodonta.
Mytilids.-Dreissena, Mytilus. Modiola, Crenella.
Arcad.s.-Nucula. Leda. Arca. Pectunculus.
Aviculacesi--Avicula Pinna.
Ostreads.-Lima. Pecter. Ostrea. Anomia.
Aceimala Pabliobranchata, or Brachlopoda.
Terebratclids.- Iypothyris. Terebratada. Argiope.
Cranisade- Crania.
Lamellibranchiata.
Ptenorodn,-Iyalea. Spiralis.

Gasteropoda Prosobranchiata.

Chitonide-Chiton.
Patellide.-Patella. Acmoga. Pilidium. Propilidium.
Dentaliade-Dentalium.
Calyptreide-Pilcopsis. Calyptrea. •
Fissurellide.-Fissurella. Puncturella. Einarginula.
Haliotide.-Maliotis.
Trocuide-Trochus. Phasianella. Adeorbis. Scipurella.
Janthinide.-Janthina.
Neritide.-Neritina.
Paldininde.-Paludina. Bithuria. Valvata.
Littorivide-Littorina. Lacuna. Assiminea. Rissoc. Jeffreysia. Skenea.
Turatellide-l'urritella. Cocum.
Cerithiade.-Aporrhais. Cerithium.
Scalariade-Scalaria.
Prramidellide.-Aclis. Stylifer. Eulima. Chemnitzia. Odos. Iomia. Eulimella. Truncatella. Otina.

Naticide.-Nutica.
Velutimide-Velutina. Lamellaria.
Cancellariade, -Trichotropis. Cerithiopsis.
Muricio.s-Murex. Lachesis. Purpura. Nassa. Buccinum,
Fusus. Trophon.
Conide-Manyelia.
Chpreade-Cyprea. Orula. Marginella.
Gasteropoda Optsthobranchiata.
Buldide-Cylichna. Amphisphyra. Tornatclla. Akera, Bulla. Scaphander. Philine.
Apcrsiade-Aplysic.
Plevrobranchide.-Pleurubranchus.
Doridids.-Doris. Goniodoris. Triopa. Sgirus. Thccacera. Polycera. Idalia. Aucula.

Tritoniade-Tritonia. Scyllea.
Eolinides,-Lomonotus. Dendronotus. Doto. Oithona. Eolis. Embletonia. Proctonotus. Antiona. Iermea. Alderia. Runcina. Limapontia. Acteonia. Cenia.

Gasteropoda Pulmonifera.

Onchidiade.-Onchidium.
Limacide-Avion. Geomalacus. Limax.
Testacelide--Testacella.
Hehcide.- Fitrina. Zonies. Helix. Bulimus. Pupa. Balca. Clausilia. Zua. Azeca. Achatinn. Succinea.
Limeseade-Phyza. Planorbis. Limneeus. Ancylus.
Auriculides-Conovulus. Carychium.
Crclostoxid.s.Cyclostoma, Acme.

Cephalopoda Dibranchiata.

Octopodide.-Octopus. Eledone.

Teuminde.-Sepiola. Rossia. Loligo. Ommastrephes.

Septade.-Sepia.
The organisation of the snimals above treated of will be found under the titles Cephalopoda, Conchifera, Gasteropods, Mollusca, and many of the families and genera.
MALACONE. [Zircon.]
MALACOPTERY'GII, according to Cuvier, the second great division, or order, of Osseous Fishes, the species of which are distinguished by all the rays of the fins being soft and cartilaginous; exhibiting minute articulations and often divided into small fibres at their extremitics. It frequently happens howcrer that the anterior may of the dorsal or of the pectoral fins is hard and bony, a character observable in nearly all the specics of the Siluridec, and in many belonging to other families.
The greater portion of the fishes of this order have the scales formed of simple lamina and with smooth margins; in this respect differing from the specics of the Percide, Scicnider, \&c., in which the edges of the scales are pectinated or serrated. The Pleuronectide, or Flat-Fishes, howcver prescnt the latter structure of scale; and yet, according to Cuvier, are placed in the Malacopterygii. M. Agassiz, ou this account removes this group to another section, and he also arranges the Silurides in another group, owing to the structure of their scales. [Siluride.]
The Malucopterygii are divided into three sections. First, the Ablominales, in which the ventral fius are situated in the sbdomen, far behind the pectorals. In the sccond section (Subbrachiales) the ventrel fins are situated immediately beneath the pectorals, and the pelvis is suspended to the bones of the shoulder. In the third section (A podes) the ventrals are wanting.
The section Abdominales contains the following families:-1. Cyprinide, or fishes aliied to the Carp, such as Barbel, Gudgeon, Tcuch, Bream, Roach, \&c. [Cyprinide.]' 2. Esocide, of which the Common Pike may be regarded as the type. [Esocides.] 3. Silurider, a fanily cf which there are no representatives in this country, at least not well authenticated. [Silcride.] 4. Sulmonide, or fishes of the Salmons Tribe. [Salmonide.] 5. Clupeide, of which we have familiar examples in the Herring, Sprat, Whitebait, Pilchard, Shad, \&c. [Clupeide.]

The section Subbrachiales contains the families Gadide (Cod-Fish, Haddock, Whiting, Ling, \&c.) [Gadidx]; the Pleuronectidex, or FlatFishes, such as the Flounder, Halibut, Sole, \&c. [Pleuronectide]; the Discoboli, of which family the common Lump-Fish will furnish an example [DiscoboLr]; aud, finally, the E'cheneididce, containing the species of Remora. [Echeness.]
The third section (Apodes) contains the Eels, Lauce-Fishes, \&c.
MALACORHYNCHUS. [Ducks.]
MALACO'STRACA (Maлак $\sigma \sigma \tau \rho a \kappa a)$, a term employed by Aristotlc to designated the Crustacca generally, but confined by Dr. Leach in his arrangement to the second order of the class.

The Malacostraca of Leach are divided into three tribes :-

1. Brachyuri, including the families Canceridee aud Oxyrhyncide.
2. Macrouri, including the families Pagurider, Palinurida, Astacida, and Squillides.
3. Gasteruri, including the families Gnathide, Gammaride, Corophiidte, Caprellidee, and Apseudidide. [Crostacea.]
MALACO'TA, Schumacher's name for a genus of Cirrhipeds, Otion of Leach. [Cirripedia.]
MALACOZOA. [Malacology.]
MA'LAXIS, a genus of Plants belonging to the natural order Orchidaceer, and to the tribe Malaxidece. It has a patent perianth, the lip posterior, erect, entire, similar to the petals and smaller than the sepals; the spur absent; the stigma rhombeidal; the rostellum short, entire, acute; the anthers terminal, continuous with the short column, out of the apex of which it appears as if it were excavated with two imperfect cells; the polleu-masses connected at their apex ; the germen upon a twisted stalk.
Of this genus there is one British representative, M. paludosa. It is a small plant, with a stem from one to four inches in height. The leaves are remarkable for being fringed at the end with bulbous gemma or leaf-buds. It is a native of spongy bogs, where it grows upon the moss, in the character of an epiphyte, and not amongst it as other bog.plants.

MALDANIDE, or Maleanians, the second family of Sedentary Annelids in Lamarek's system, including Clymene and Dentaliun, which last is not an Anuelid, according to the latest and best authorities, but a Mollusc. [Dentalum.] Savigny established the family.
MALE FERN. [Aspidium.]
MALENTOZOA'RIA, Articulated Mollusca, the second sub-type in the system of M. De Blainville. [Malacolooy.]
MALESHERBIA'CE E, Croonworts, a natural ordar of Polypetalous Exogenous Plants, with a tubular inflated inferior calyx, within the throat of which are inserted five petals, five or ten stamens, and a short rim or crown of the same nature as that of Passifloracce, but more rudimentary. The ovary is stipitate, superior, 1 -celled, with parietalior free placeutation. The order is therefore nearly allied to Passifloracece, from which however it differs in habit. The species are in many cases remarkable for the beauty of their yellow or blue flowers, and have been cultivated in this country, their seeds having been brought from Chili. They are however seldom seea, and are of no known use.
MALLARD. [Ducks.]
MALLEA ${ }^{\prime}$ Cea, or MA'Lleide, a family of Monomyarian Conchifera according to the system of Lamarck, most of the genera of which are to be found in the family Margaritacea of De Blainville. They belong to the Ostrucea of Cuvier, and the Oxygoncs of Latreille. Lamarck makes the family consist of five genera only-Crenatula, Perna, Malleus, Avicula, and Meleagrina. It has the following charact rs:-

Animal, with the mante non-adherent, eutirely open in its whole circumference, without tube or particular opening, prolouged into irregular lobes, especially backwards; foot canaliculated, and almost al ways furnished with a byssus.

Shell black or horn-colour, inequivalve, inequilateral, very irregular ; hinge without teeth ; marginal ligamsut sublincar, simple, or interrupted by crenulations ; muscular impression subcentral, fixed geuerally by a byssus furnished by the animal.
M. Rang places the fossil genus Posidonia at the head of the family, so that the position of that genus is approximated to Lima, which is arranged as the last of the lectinide.

Posidonia (Broun).-Animal unknowo. Shell very delicate, nearly membranous, equivalve, iuequilateral, obliquc, rounded, not gaping (?); cardinal border straight, a little prolonged ou each side, so as to be auriculated; hinge toothless; no pit for the ligaments; nor passage for a byssus.
M. Rang remarks that this genus had been established in 1820 for impressions sufficiently common in the schists of Dillemburg, and which some naturalists had been tempted to refer to rudimentary shells of Aplysia or Plewrobranchus. M. Rang agrecs with M. Bronn in opinion that these are the imprcssious of bivalve sbells, and assigns to Posidonia the position above stated. M. Deshayes however, in the last edition of Lamarck (1836), does not mention the genus among the Malleacea.

Vulsella (Lam.).-Animal elongated, compressed ; mantle very much prolonged backwards, anl bordered with two rows of papillary tubercles which are very close set; foot small, canaliculated, without a byssus; mouth large ; labial appcudages very much developed and

Posidovia. From pecimens in Irish limeatone.
triangular; brauchice marrow, very long, and united nearly throughout their extent.

Shell eubcorneous, delicate, elongated, flattened, irregular, inequilateral, subequiralve, the umbones nearly anterior, distant, and a littie recurved; hinge toothless, sud offering simply on each valve a projecting calosity comprelending a pit for the iusertion of the ligament; muscular impression subceutral.

The species are found in the sens of warm climates, where the epecies, none of which are furnished with a byssus, aro found in Aleyonia, Sponges, ke.

1. lingmlata may be takea as an example. It is found in the East Indian Occan.

J'ulsella lingulata.
a, Valves cioned; t, inside view of valve, showiag the binge and mascular imprestion.

Crenafula (Lam.) - Animal not known, but very probably beariug a close relation to that of Perna. Shell foliated, flattened, subequivalve, inequilateral, irregular, a little gaping behind, but without any aperture for a byenus ; hinge linear, marginal, marked with serial crenulations, which are callous and hollowed into rounded pits for the reception of tho divisions of the lignment; muscular impression subcentral.

The species inhabit the seas of warm climates, principally those of the liant lodies and Australia, as far na is yet kuown. The species, which are not numerous, aro not fixed by their valves nor by a byssus, but, liko the l'ulselle, are found in submarine bodies, such as spougen, dc.
C. ariculoides is an exsmple. It is found in tho seas of America, expecially those of the south.

Crenatsla arleviloders.
I'crna (Brug.).-Animal compressed; mantle very much prolonged backward, and fringed at its lower border; foot very amall, with a byasus. Shell corneous or black, lamellar, very much flattened, nubequivalve incquilateral. viry irregular, gajing in front for the pasage of the byasun; lhinge neraight, marginal, laving on each side a row of amall parallel furrow, which are trannverse, not intraut, and in which the divisions of the ligament are inserted; muscular impression subcentral.

The species are found in the seas of warn climates, more particularly those of the East Indies, though some species are found westward, as at the Antilles, Cape Verd, and ths Azores. The species are moored to the roeks and mangrovetrees by menns of their byssun, and have been found at depths ranging from the surface to ten fathoms,
P. Isognomum is an example. It is fuuud in the East Indian Occan.

a, Valves closed, showing the bywas; b, Inslde vien of ralve, shering blage and musenlar impression.

The number of recent Perna given by M. Deshayes, in his "Tables,' amounts to ten recent and four fossil (tertiary). In the last edition of Lamarek, the same recent number is stated, but the fossil species amount to six. Professor Phillips notes one (P. quadrafa, not mentioued by Lamarek or Deshayes) in the Coralline Oolito (Malton), and rlso in tho Bath Oolite. He also notices a Pcrna in the Oxford Clay. ('Geology of Yorkshire.') The genus is recorded in the Inforior Oolite, and in the Coral lag, by Mr. Lonsdale (Oolitic Distriet of Bath, in 'Geol, Trans.'), and by Dr. Fitton, In the Lower Greensand and the Blackdown Sands.

Malleus (Lam).-A nimal considerably compressed; mantle prolonged backwards, and fringed with rery small teutacular ajpuendsges; foot very distinct, canalieulated, and furnishiug a byssus; buccal appendages allerico-triangular; branchire short and semieircular. Shell folisted, black or corneour, subnacreous, subequivalve, inequilateral, very irregular, ofteu auriculated, and presenting a hammer or T shape; umbones not distaut; su oblique notch in front for the passage of a byssus; hinge linear, very long, toothless; witla a conical oblique pit, partially extomal, for the reception of the ligament, which in triangular and subexternal; muscular impression of considerable size and subcentral.

The species inlabit the Fart and Weat Indies (Guadaloupe and Martinique) aud Australasia. 'They are found at dopths ranging from the surface to soven fathoms. M. Jang speaks of the species from Guadaloupe and Martiniquo as having oceurred at great depths. The species, which are not numerons, are noored by their byssus to subiaarino rocke, \&c. They are very variable, and indeed M. Deshayes observes that ho never saw sny two individuals of a specien alike. Age makes a considerable change in the shape of the shells, especially in the suricles.
M. Do Blainville divides the genus into threesections:-1, consisting of eppecies scarcely suriculated (M. rulsellafts); 2, consisting of uninuriculated species (M. normalix); nnd 3, consisting of binuriculated Hpecies (M. rulgaris). M. Deshayes thisks that the greater part of the individuals occurring in collections under the name of M. vulsellafus may be the young of the variety of M. rulgariz with short eare, and he considers M. evlsellatus and M. arulinus an identical.
M. vulgaris is the most common species, snd we subjoin an illustration as an example. It is found in the East Indian and South seas.

Malleus rulgaris.
a, Valves elosed, shewing the byssus; b, inside view of valve, shewing the hinge and muscular impresslen.

Gervillia (Fossil only). [Gervillia.]
Inoceramus (Parkinson).-(Fossil only). Though some malncologista consider Inoceramus and Catillus to be identical, M. De Blainville, M. Rang, and M. Deshayes consider them as distinct apecies, and as belonging to this family. M. Deshayes gives the following description of Inoceramus:-

Shell gryphoid, inequivalve, irregular, subequilateral, with a lamellar shell, pointed anteriorly, and enlarged at its base; umbones opposed, pointed, and strongly reeurved; hinge short, straight, narrow, and forming a right angle with tha longitudinal axis, with a series of crenulations gradually amaller for the reception of a multiple higament. Muscular impression unknown. The species are of moderate size.

Inoceramus sulcatup, natural size. From the Folkestone Blue Marl. The smaller speeimen shows the hinge of one valve, the ether valve being a cust.
Dr. Mantell recorda several species in the Chalk, two in the ChalkMarl, two in the Gault or Folkestone Marl, and one (from Martin) in tha Shanklin Sand (Lower Greensand). ('Organ. Remains of Suseex,' 'Geol. Trans.,' 1829.) Some of the apeeies in tha Chalk-I. Brongniarti. I. Lamarckit, and I. Mytiloides-are Catilli. Professor Phillips reeords three (one a Catillus) in the White Chalk, one in the Red Chalk, and one in the Lias. ('Geology of Y'orkshire.') Mr. Lonsdale notices two in the Lower Chalk (Oolitie Diatrict of Bath). De. Fitton reeords six named species and ono undetermined from the Upper Greensand, Gault, and Lower Greensand. ("Strata between the Chalk and Oxford Oolite,' in 'Geol. Trans.,' 1836.) In Tenant's 'List of Britiah Fossila' 17 gpecics are reeorded as present in the Cretaccous Group. Woodward, in his 'Treatise,' says there are 40 species.
Catillus (Brongn.),-(Foasil only). M. Deshayes thus defines Catillus: -Shell sometimes flattened, clongated, or suborbicular, sometimes conver, cordiform, subequivalve, inequilateral, with umbones more or lesa projecting. Hinge straight, a little oblique or perpendicular to the longitudlnal axis, its border furnished with a row of small
cavities which are very short and gradually incressing; structure of shell fibrous; muscular impression unknown.
M. Deshayes observesthatamong the genera proposed by Mr. Sowerby in his 'Mineral Conchology,' there is one to which he has given the name of Pachymya. This genus appears to M. Deahayes to pessess all the external characters of Catillus, and he states that he has been led to remark the approximation of that genus to Catillus by studying a fina speeimen in the collection of M. Duehastel. M. Deshayes proceeds to observe that M. Brongniart has eatablished a genus under the name of Mytiloides for those Catilli which are very mueh elongated. and that consequently the genus Mytiloides cannot be retained. The genus Catillus then, as reformed by M. Deshayes, will consist of the genera Pachymya, Mytiloides, and Catillus. Some of the Catilli are of enormous size, and are mentioned as being many feet in length. M. Deshayes thinks that the animals of Inoceramus and Catillus both wanted a byssus.
C. Cuvieri, may be taken as an example. It is found in the White Chalk in England and France.

Oatillus Chvieri. a, the hinge.
Pulvinites (Defrance)-(Fossil only). Animal unknown. Shell delicate, rounded, equivalve, subequilateral, with the umbones inclined a little forwards; hinge composed of eight or ten divergent teeth, forming so many pits.

Pulcinites Adansonii. Inside vlew of valve.
The genus Avicula, which is plaeed by Lamarck among his Mallcacea, hut is arranged by M. De Blainville, with many of the genera abovo deseribed, under his family Margaritacea, is separated by M. Rang into a family which immediately succeeds the Malleidoe under the name of Avieulés, containing the sub-genera Avicula (properly so called) and Melcagrina [Avicuta.]
The following is M. Deshayes' description of the genus:-Animal oval, flattened, having the lobes of the mantle separated throughout their length, thiekened, and fringed on the edges; body very small, having on each aide a pair of larga branchie, nearly equal; mouth oval, rather large, with foliaceous lipa, and with a pair of labial palps on each side, which are large and obliquely truncated; foot eonical, vermiform, rather long, with a rather large byssus composed of stout filaments, united in some apeeies at its baso.

There are about 25 recent species known, and 300 fossil species.
M. Deshayes, in his 'Tables,' states the number of reeent Aviculce (including Mcleagrines) at 30 , and gives 5 as the number of fossil (tertiary). In the last edition of Lamarck he makes the number of
recent A viculr 21, and the number of fossil species 6 . (Paris, Grignon, Senlia, Ec. Chaumont, Paris Basin, Mastricht, and Cypli; the Cornbrash in Fiogland and France, the Middle and Upper Oolite in England and France, and the Muschelkalk iu Germany, Lorraine, and Toulon.) Tho Meleagriner are two in nuniber, both recent. Dr. Mantell mentions species in the Chalk Marl. ('Organic Remains of Sussex.') Professor Phillips records species in the Coralline Oolite and Calcareous Grit, in the Oxforl Clay, Kellowasa Rock, Bath Oolite, Inferior Oolite, and Marlstone. ('Gcology of Yorkahire.') Mr. Ionsdale notices apecies in the Lias, Inferior Oolite, Fuller's Farth, Hradford Clay, Cornbrash, and Kelloway Rock. ('Oolitie Distriet of Bath.') Mrofessor Sedgwick and Sir 1. Murchison mention the genus among the Gosau Fossils. ('Geological Transnctions.) Dr. Fitton records species in the Upper Greeusand, the Gault, the Lower Greensand, and the Portland Sand. ("Strata between the Chalk and Oxford Oolite," Geological Transactions.") Sir R. Murchison figures species from the Old Red-Sandstone (middle and lower beds only), from the Upper Ludlow Roek, the Amestry Limestone, the Lower Ludlow Rock, the Wenlack Limestone, and the Caradoc Sandstone.
M. Deshayes also coneurs in merging the genns Mrleagrina in that of Aticula, whiel, according to M. Deshayes's reformation of the genus, will contain also the fosail genus Monotis of Bronn.

J"ulsella.-M. Deshayes, in his 'Tables' (1.yell), gives the number of recent species as 5 and 1 fossil (tertiary). In the last edition of Lamarck he makes the recent species 6, with no addition to the fosgil apecies. (Grignon, Lamarck; Paris, Deahayes.) Woodward, in his "Tratise, gires $\$$ as the number of fosail apecics from the Upper Chalk.

MALLEUS. [Ear.]
MALLOW, [Malva.]
MALLOW, MARSH. [AITH.FA.]
Mal.LOW:WOItTS. [Malvace.f..]
MALOPE, \& genus of Mants belonging to the nstural order Mal. racter, consisting of two species, one of which is commonly enltiratod as a farourite hardy anuual. Thia plant, Matope malacoides, is common in Barbary, where it is found among stones and rocks, which it ornaments with its large crimson fowers; it is also met with in sardinia and other parts of the sonth of burope. The genus differs from. Malra in lasing its carpels distinet, and licaped irregularly over a contral receptacle, instead of being placed in a whorl and consolidated. Three or perhaps four other species are known to botanists.

MALIIGHlA'CEAE, Malpighiads, a natural order of Exogenous

Mralpighin macrophylln.

1. An entite Anwar, much magnified; 2 , the stamen and platila; 3, a honmrerme action of the sige fruit.

Plants, with polypetalous flowers, trygsnous pistils, usually monsdelphous stamene, sind alternate exstipulate leaves, inhabiting various parta of the tropics. They are usually shrubs or trees, and but seldom herbaceous plants In addition to the more general charncters already mentioned they have, in a majority of casea, a pair of convex oral glands on the face of each scpal, and in many species the baira are attached to the leaves, \&c, hy the middle; so that haira of that description have acquired the name of Malpighiaceous. Many of them aro beautiful objects, especially the Gulphimias and climbing species of Ilirata snd Banisteria. A fow only are useful. The bsrk of Malpighia Mourcila and M. crassifolia is a kind of febrifuge. The fruit of Malpighia glabrais the Barbadoes Cherry of the Weat Indies; it varies in size from that of a large pea to a small cherry, is amooth, ahining, and has three triangular stones; ita flesh ia juioy and sweet, but insipid. The fruit of Byrsonima coriacea, or Lotus-Berry of the West luties, is of much better quality; it is yellow, and contains a single stone. A few kinda produce timber of a bright yellow colour. The bark of some of the species is used for tanaing and as a tonio and astringent.

The ordor is nearly related to tha Accracta, or Sycamores of colder climates, differing in little except the ternary diviaion of the fruit, the symmetrical flowern with uaguiculate petals, and the pendulous or ausponded seeds.

There are 42 genera and 555 species of the order.
MAl.THA. [PETROLEUM.]
MALTHAClTE, s Mineral, occurring in thin plates and massive. Fracture uneven or conchoidal. Colour white or yellowish. Streak ahining. Soft like wax. Lustre waxy, weak. Streak shining. Translucent. Specific gravity $1 \cdot 90$ to $2 \cdot 01$. It is found st Stendorfal, between Lobau and Bauzen, and near Beraun ia Buhemia. Its analysis by Meissner gives-

MALVA (the Latin Malra), a genus of Plants belonging to the natural order Nalvacea. It has numerous atyles, a double calyx, the outer one 3-leased, the inncr one 5-leaved. The capsulea aro orbicular and many celled; the cella 1 -seerled and circularly arranged.
M. Moschata, the Musk Mallow, has an erect stem, kidney-shsped leaves, with five or seven deep pinnatifid lobes, the lower leaves incisocrenate, the atipules lanceelate-acute, the fruit-stalks erect, and the fruit hairy. The flowers are large and rosecoloured, on axillary single-flowered peduncles, crowded at the extremity of the atem and branches. It is uative in many parts of Europe, and is found in Britain in grassy borders of fields and by waysides.
M. sylvesiris, Common Mallow, has au erect stem, and is distinguished by its kidney-ahaped learca with seven deep crenate lobes; the frujt is glabrous, reticulate-rugose. The flowers are large and of a purple colour, much longer than the calyx, which is hairy. It grows on waste placea and roadaides in Britain, and ia native in most parts of Europe. The whole plant, but especially the root, yields when boiled a-plentiful tasteless mucilage, which ja used in some cases of internal irritation. Decoctions of the loaves are employed in dysentery sand in general for removing supposed acrimonious humours, but their chief utility is in clysters, fonseutations, and poultices. The fruit of this and the next specica are caten by children and are called Chceses, and in France, Fromagions. This specics is the Malva of Pliny, lib. 20, cap 21 ; slso, in Columella, lib. 10, cap. 247 ; it is the Madd $\chi \eta$ of Theophrastus, lib. 9, cap. 17, and the K $\eta \pi \in v T \eta$ ma入d η_{η} of Dioscorides, lib. 2, cap. 144.
M. votundifolia, Dwarf Mallow, has a decumbent stem, roundish heart-shaped learea with five shallow acutely crenate lobea, the outer sepals linear-lanceolate, ahorter than the ovate acuminato stellstely hairy inner ones. The flowers are small and purple, and two or three times longer than the calyx. It is common in waste places jn most parts of Europe, and is native of Britain. It is the M. rulgaris of Friea, the 'Aypia ma入d $\chi \eta$ of Dioscoridea, loc. clt., and the Malache sylvestris of P'liny, loc. cit.
M. borcalis has its outer sepals lincar, as long as the ovate-scute glabrous but atrougly-ciliated inner ones; the petals as long as the calyx ; the fruit pubescent, margined, reticulate-rugose. It is the M. pusilla of Smith, tho M. volunelifolia of Fries. It is found in Britain, near Hythe in Kent. There are many ather apecies of Mallow.
M. rerticillata las an eroct stem, cordate leaves, with five deep crenate-dentato triangular acute lobes; flowers axillary, clustered, nearly sessile; outer sepals linear, balf as long as the reticulated disphanous pilosc cularged inner ones; potala about as long as the calyx; fruit glabrous; earpels rounded on the edge, reticulated. The flowern are small; carpels separated by a deep furrow, into which the clavate reticulated surface extends Central dise very amall; stem quite erect, like a little hollyhock. letioles $\operatorname{several}$ times longer than the clueters. It is found near Llanelly, South Wales.

Those inentioned are the only natives of Britain, and the others are of little importauce excepting as ornamental plants. Those best worth eultivation for this purpose תre M. Moschata, M. Morrnii. M. alcea M. Muroana, and M. purpuruta. The stove rpecies will eucceed in
any kind of rich soil，and cuttings of them will strike root freely if planted in light soil underneath a hand－glass．The greenhouse species may be propagated in the same manner．The bardy pereunial kinds should be planted in the open border，and may be propagated either by seed or by dividing the roots．
（Don，Dichlamydeous Plants；Babington，Manual of British Botany．） MALVA＇CEAE，Mallowoorts，are a large natural order of Exo－ genous Plants，the distinguishing marks of which are polypetalous flowers，monadelphous stamens，unilocular anthers，and a valvate calyx．They also bave alternate leaves，the hairiness of which，if present，is usually stellate；and conspicuous stipules．A large pro－ portion of the order consists of herbaceous or annual plants，iuhabiting all the milder parts of the world，but much the most plentiful in hot countries，where alone a comparatively amall number of species become trees．In many eases they are remarkable for the large size and beantiful colours of their flowers，which are however fugitive， expanding for a aingle day only；but the great number of them and the regularity of their succession during the flowering aeazon make this of little importance．Among the very numerous species aeveral are of essential service to mad．As emollients they are well known in medical practice，the Mareh－Mallow（Altheca oficinalis）being one of the most uaeful among this kind of remedial aubstances，and a large propor－ tion of the whole order being capable of aupplying its place．［Althea．］ The bairy covering of the seeds of the various apecies of Gossypium forms the raw cotton ao important to our manufacturers．［Gossypiom．］Malva tricuspidata is uped by the negroes in the West Indies as a substitute for soap．［Malva．］The seeds of Mibiscus abclmoschusare warm and musky， and are employed in perfumery as a subatitute for nusk；those of II．esculentus form the ochra，so much used in hot countries as a mucilaginous ingredient in soups．A few species are acid，especially II．saldariffu．Finally the tenacious fibrea procured from the inner bark of many kinds of Malvaceous Plants form a good description of cordage． ［FImbseds．］$/$ ．clatus and II．tiliacens，and several kinds of Sida，are principally used for this purpose．［SiDA．］The order is related to Sterculiacce and Bytneriacerp．There are 37 genera and 1000 species．

1，a section of a corolla，with adheriag monadelphons stamess．
The only modern systematical account of the genera and species of the order is to be found in the first volume of De Candolle＇s －Prorlromus；but the genera have been since constructed upon principles so much moro precisc，aud the number of apecies has been eo very considerably increased，that this eummeration is of little upe at present．There is a good account of Indian slecies in Wight and Amott＇s＇Prodromus l＇lors Peninaula Indixe Oricntalis；＇of lirazilian NAT．Hist．DIV，VOL． 111.
speciea in Auguate de St．Hilaire＇s＇Flora Brazilize Meridionalia；and of Mexican kinds many are described in the various volumes of the ＇Linnæa．＇A few African apeciea are also to be found in Guillemin and Perrottet＇a＇Flora Senegambiæ，＇vol．i．
MAMMA＇LIA，MAMMALS，a term employed by Lionæus to designate thoae animals which suckle their young，and which seems preferrible to the term Mammifèrea generally used by the French zoologists．Mammals are vertebrated animals whose blood is red and warm，and whose system of circulation is double；whose footus，in most species，is nourished in utero by means of a placeuta；whose young，when born at the proper period，give aigos of life at their birth，and are，in a state of nature，afterwards fed with milk secreted by the mammre of the mother［Mammary Glands］，till they are old enough to procure their food，or to have it aupplied from other sources．
Linnxus，who makea the Mammalia the first class of the Animal Kingdom，gives the following，definition：－Heart with two auricles and two ventricles；blood warm，red；lunga respiring reciprocally； jaws iucmmbent，covered ：armed with teeth in most；penis intrans， viviparas，lactiferas；sensez－tongue，nostrils，ejes，ears，papilla （touch）；covering－hairg，\＆c．；support（fulcra）－four feet，except in those which are entirely aquatic，in which the posterior feet are hound together（compedes）into the fin of the tail；a tail in most．

This class Linnæus divides into orders，principally resting on the basis of dentition．His name for the inciaor teeth is Primores；for the canine or cuspidate teeth，Laniarii ；and for the back or griuding teeth，Molares．

The orders，which are six in number，are comprised in three sections，depending on the nature of the extremities：－1．The Unquiculata，containing the orders Brutce，Glires，Primates，and Ferce． 2．The Ungntata，comprising the Belluee and Pecora．3．The Mutica， cousisting of the order Cete（Whales）only．
1．The primates consist of the genera Homo，Simic，Lemur，and Tespertilio．2．The Bruta comprise the genera Elephas，Trichechus， Bradypus，Myrmecophtaga，Manis，and Dasypus．3．Under the Fere are arranged the genera Phocu，Canis，Felis，l＇iverva，Mustela，Ursus， Didelphis，Talpa，Sorex，and Einaceus．4．The Glives embrace the genera IIystrix，Lcpus，Castor，Mus，Sciurus，and Noctilio．5．The Pecora comprebend the genera Camelus，Moschus，Cervus，Cepra，Ovis， and Bos．6．To the Belluce belong the genera Equus，Hippopotanus， Sus，and Rhinoceros．7．Under the order Cete are arranged the genera Monodon，Balcena，Physcter，and Delphinus．

The following Table exhibits the gcographical distribution of the species of Manmalia contained in the collection of the British Muscum， one of the most extensive collections in the world ：－

Prinates．
Simiadep
Cebiace
Lemuridae
Galeopithecidre
Tespertilionide
ferde．
Felidse
L＇rside
Talpodae
Macropide
Phocille
Cetf．
Balapnidue
Delphinidep
Manatidae
Halicoridte
Rytenalle
Gumbs．
Muride
Mystricilde
Leparidac
Jerwoille
Aspalacidep
Ungulata．

Boridde

Equida
Elepleantida．
Dasypilicr．
Brudypidet
Total

$\underset{\sim}{\infty}$	$1 \mid-1 \infty$	ー－rerニ	$1 \mid 1-\infty$	c｜	$\pm 11 \sim$	Europe．
No	$\|1\|-\infty$	$\cdots-1 \sim$	11111	$11-1$ er	11111	North Asia．
\％	｜Noc｜es	い笖めーで	$1-1-1$	1 w to ero	令－c｜＊	South Asia．
$\stackrel{N}{2}$	1～ご范	con－0	11－	11玉1ヵ		Africa．
$\stackrel{\infty}{*}$	11110	10＊が吅	\｜\｜\｜	ー－内－	-1111	North America．
$\stackrel{\sim}{\circ}$	400	－n｜c゙心	$11-1$	$1 \infty 1 \times$	回1血1	Tropical America．
＊	11110	1－1	1 1 1 1	s｜｜er	11111	south America．
ご	｜es｜｜	$1111=$	$111-1$	－－	$=1 \mid 11$	Australasia．
\cdots	$11-1$.	$\|1-1\|$	｜｜｜ 1	｜｜｜｜｜	$\rightarrow\|1\| 1$	Not known．

the familien of Manmalia, compared with thome of the Museum of the Zoological Society of Loudon and of the Seakeaberglan Society at Frankfurt (the ouly two large collections of which, ne far as I am aware, completo catalogues have been published), may bo deduced from the following statement. Tho oumbers in the two latter columps of the tablo aro derived from Mr. Waterhouso's 'Catalogue of the Mammalia in the Muscum of the Zoological Society,' nad its Supple. ment, publiahed just before the packing up of that collection in store in 1539 , and from Dr. Rüppell' 'Catalogue of the Mammalia is the Museum of the Seukenberginn Society,' publialied in the sumtner of 1842 It in much to be regretted that there are no means of continuing the comparieon with reference to the museums of Paris, Loyden, Berlim, Vienas, or Drussela; no catalogue, or even estimate, of the contents of any of thase collections lanving, to my knowledge, beell given to the world. It ia alnost unuecessary to add, that such a comparison as that now given cannot be nt all pointa perfectly correct, Mr. Waterhouse or Dr. Ruppell occavionally regarding as species what in the present catalogue are considered rariotiea, and the reverse; but this difference of opiuion will be found to have very little influence on the ceneral remulta"

Paimats.	Britimh Muscum.		Zool. society.		Franet. Muscum.	
	species.	Individ.	specien.	Iadivid.	Species.	Iadisld.
Simiada	39	158	83	112	36	131
Colider -	41	84	24	42	24	60
Lomurida -	$1:$	34	19	32	9	13
Galeopitheridar.	1	8	2	;	1	3
Tegprrtilionidre	143	403	48	33	68	149
Fete.	261	657	138	286	138	361
Felida . -	171	310	140	233	97	333
Crrida . -	16	41	13	27	11	30
Talpidice .	40	124	43	67	23	68
Mocropida . .	91	320	33	83	19	43
Phocide.	8	21	3	3	9	22
Crtr.	329	1028	236	433	139	304
Balanide -	1	${ }^{6}$	1	1	3	4
Irelphinida	15	$8 ;$	2	3	3	10
Mnnolidae.	2	3	-	-	1	1
IIalicorida.	1	2	1	2	1	,
nylmada	-	-	-	-	-	-
Gidars,	22	38	4	6	10	19
Murida -	43	235	07	170	49	163
Myptricida.	21	43	1:	26	11	32
Leperida	25	68	17	31	11	32
Jerboida .	100	275	73	127	32	140
Arpalacida. .	14	34	8	8	9	23
Uroclata.	258	6is	212	362	132	394
Boridat .	114	486	89	190	78	239
Equidre :		7	3	;	4	;
Elephantida	22	61	11	20	16	67
Darypida * .	18	G:	18	30	13	28
Eiradypidar .	4	13	8	5	4	11
	161	631	126	204	115	$3: 2$
Total.	1031	S002	-34	1293	354	1630

"It may be remarkel," adds Dr. Gray, "that the last general work on the species of Mammalio, F'incher's 'Syuppin Aammatium,' publiahed io 1829 and 1830 , cintained 1126 which he considera well eatabliaberl, and 220 very doubtful apecies. Though the Museum collection nearly appronchey theme mubera, and is tho largeat asamblage of areciea hitherta brought ongether aml arranged in one meriea, yet thero are at leant between 300 and 400 other apecies now known as exinting in tho different kitropenn eollections wanted to complete tho meries, and many of these are inhatifants of our own porsensiona, or placea with which we have condiderable trade: it in therefore to be hoper that we ahall noon be ablo greatly to reduce tho number of our deaiderata."

Thin wan written in 1843 : alnce then a large number of the desidorata have been adilml to the collaction, an aecount of which will he fonnd in tho detailed cataloguen of tho mureum, not yet conpleted. Theae are given under tho heada of the familiea in thin work.

For the liatory of the reience relating to the armngement of the Mammalia generally, the rader in referred to the article Masmatorit; and for tho natural hiatory and onganimation of tha beines which form the clana, to that articlo nurl tho articles Mas, Mansany (ih.anis, Locomotion in Aximata, Destition, Tretu, add Ileabt, an well an the rarioun titlen referrible to the ordera, fatnilica, and gencra belonglag to the clans in this work.

MAMMA'LOGY, a hybrid word, tho moot being derived from the Latin and the Greck. Accordingly, M. Desmarest has proposed the term Mastology, and M. De Mlainville that of Mastozoology, as being eatirely of Greek origin, and thercfore of more legitimate construction. Vicious however as the word in, the term Mammalogy is in nuch general uae by the zoolugists of England and France that It seems to be less objectionablo to retain it, with all its faulta, than to attempt to aupersede it by enother word, which, though it may be more correct, would be comparatively very little known.

Mammalogy then is tho ncience which has for its object the study and classification of animals with mammes, or teats, that is to may, Man, and Quadrupeds properly so called, includiag the Quadrumanou: Animals and Whates.

Tho objects of this science are numerically much less than thoso which constitute the other classes of animated beings; their bulk, as compared with that of the others, is geverally speaking of greater rolume, and their structure is more readily laid open by the kuife of the zootomist; whilst, with the excoption of those passages by which nature gradually pasees from one form to another, their differcaces are mono strougly marked. Their habits too are bettar known; and consequently thoy afford matirials for classification capable of a comparatively certain arrangement.

To a certain extent the kuowledge of Mammalia and their nominal distinctions, as regards their habits and economic uses, must have been of the earliest date. Tho Holy Scriptures sbound with passagea to confirm this statement, if iodeed it needed confirmation. Ancient monuments too, loug snterior to the times of the Greeks and Romans, speak the rame ladguage. When we como down to the time of Aristotle, we find that the science had not proceeded further than a knowledge of tho external and internal structura of these animals, without any attempt at a aystematic arrangement of tham. If we descend lower, wa fiad the acienco in the same state, whether wo consult the works of Pliny, or of the other ancient writers who followed Aristotle.

Conrad Gesner, though he treated of the Mammalia alphabetically in his ' 1 listory of Quadrupeds' (1551), finally divided them into groups, such ns Monkeys, Horses, Deer, Oxen, \&c., as indeed be did with regard to the Oriparons Quadrupeds (Tortoiges, Lizards, Froga, \&c.)
Aldrovandus, Johnston, and the rest of that class of mammalogists, seetn to have followed Gesner as closely as the ancient writers followed Aristotlo.

The first great slep in system was mado by our countryman John Ray, in bis 'Synopsis Methodica Avimalium' (1693), wherein he separated the Mammalia iuto two grest classes, the Uugulated or lloufed animals, and the Uuguiculated, or animals with nails or claws.

Tho Ungulated class are divided into-1, the Solipedes, as the llorse; 2, quadrupeds with a divided hoof, properly so called, as the Os or Sheep; and 3, quadrupeds which have tho feet divided into moro than two parta, as the Elephnint.

The animals with a divided hoof are again subdivided into two sections:-1. Those which do not ruminate, as the Hog. 2. Ruminants, which consist of four genern-Sheap, Gonts, Stags or Deer, and Oxen.

Those of the Unguicnlated Mammala which have the naila wide and resembling those of Man, such na the Apes or Monkeys, are separated from thoso which have the nails aharp and narrow. These last he separates into those which have a bilid foot, as tho Camela, and into those which hare a multifid foot, which he names Fixsipedes.
The Yissiperles are subdivided into-1, the Annlogous Group, which have more than two incisor teeth in each jaw, as the Lions, or Great Cats, the Doga, \&c., or two incisons only, as the Beaver, the Hares, the Guinea l'ign, the Squirrels, tho Marmots, de; ; 2, the Anomalous Group, which have no teeth at all, ns tho Tamandua, and other AntEisters [ANT-EATER], or which have tecth differing in form, in number, and position from those of the other Mammals, as the Hedgehogs, Armatilloes, Moles, Slotha, \&c.

Our limita will not permit us to do more than allude to the authom, and they wero not fow, who cutcred upon this binnch of tho science after lisy. Of these Seba may be considered one of the priocipal, and his work in justly approcinted for tho number, and genernlly spenking for tho accuracy of the well-executed plates which illustmato hia voluminous work. lint thero now arose one who was eminently dintinguished from the crowd of zoolugical authorn. Linames, on outline of whose aytem is given in another place [Manmania], fixed the reience upon a basis which his penetrating genius immediately anw was the aecure one. Ito may bo said to have invented a language aduirably adapted to tho wants of that science; and it is in thia department that tho great Swedish naturalist shines preöminently as a zoologiat. In vain was the aplendid genius of Buffou arraged againat him nand hia pupils; in rain did lileiu, who seemed to livo for no other purpore than to attack the Swede, publinh his "Quadrupedum Disposilio brevisquo Hiatoria Naturalis' (1751), wherein he ecparated the Manmalia into two gronps, the Ungulated and the Ungulculated, each consiating of five families; in rain did Brieson (1756) publish his 'Animal Kingdon divider into Eleven Classes,' containiag 18 oriferm and 42 genem, mome of the latter well defued and atill admitted ; the philosophical kystem of Linnaus daily gained ground, and at length became slmont the universal language of zoology.

About a year before the death of Linnæus (1777) Erxleben published his 'Systema Regni Animalis.' It contained several new genera, as for example Papio, Cercopithecuz, Cobus, Callithrix (all at the expense of the great Linnæan genus Simia), Lutra, Cavia, Glis, Spalax, Dipus, Antilope, and Hydrocheerus, all of which are still retained; and indeed his work, which ehould be in the hands of the student, seems to have been intended as a further development of the Linuæan system, and of the principles contained therein.

The excellencies of the work last-mentioned are strongly contrasted with the edition of the 'Systema Nature' which Gmelin gave to the world in 1788. It is not passing a severe judgment to charaeterise it as a jumble of all that had been previously contributed to this depsrtment of zoology, and a farrago of speeies heaped together, without esre, and in many instances without inquiry. The student whose lot it may be to follow out the synonyms of the Mammalia will perceive in what a labyrinth he gets involved ss soon as be sets to work upon the nsmes and references which swell out the 'Systema Nature'from the neat proportions which graced it when it left the hand of Linneus, to the undigested and overladen mass which Gmelin has made it

Previous to this publication, a work of a very differeut character had made its appearance. In 1780 Professor Storr published his 'Prodromus,' which gave a direction to those employed in elassifying the Mammalia still in a great measure followed. He divided the class into three phsisnzes: the first consisting of those Manmals which have feet proper for walking; the second, of those whose feet are finshaped, but with distinct toes; and the third, of those which have true fins withont any apparent toes. These phalanxes are separated into cohorts, ordars, tribes, sections, snd geuera; snd the system is well worthy the deep attention of the reader.

Boddaert (2755), in his 'Elenchus Animaliun,' divided the Mammalia into two great groups, the Terrestrial and the Aqustic. In the first (Terrestria) he placed-1. The Unguiculated Mammals, divided into two sections: α. The Quadrumania; β. The Unguicalata, with long elaws (Sloth, Bats, Armadilloes, Psngolins,'and other Ant-Eaters). II. The Carnivorous Mammals (Ferce). III. The Rodent Mammals (Glives). IV. The Ruminants. V. Ungulata not Ramioants (Hog, Horse, Tspir, Rhinoceros, and Elephant). In the second group (Aqucbtilia) were arranged the Hippopotamus, Beaver, Otter, Wairus, the Seals and Dugongs, and the Manatee.

Not to detain the rearder with the anstomical bystem of M. Vicq.-d'Azyr, which broke up the Mammalia into 15 classes sad 38 genera, sud is seldom referred to, we proceed to notice the systen of Blumenbach, who separated the Mammalia into 9 orders. I. Bimana (Man). II. Quadrumana (Apes, Monkeys, and Macaucos). III. Cheiroptera (Bats). IV. Digitata, eonsistiag of three sections, the Rodents (Gli)es), the Carnivorous (Fera), and the Edentata (Bruta). V. Solidungule (Horse, \&c.). VI. Biecula (Ruminants). VII. Multengula (Hog, Tipir, Elephant, Rhinoceros, \&c.). VIII. Palmipeda, eousisting of three sections, namely, the Rodent Palmipedes (Chires, Leavers), the Carnivorous Palmipedes (Seals, Otters), snd the Eilentate Palmipedes (Bruta, Ornithorhynchus, Wairuses, Dugongs). IX. The Cetacea (Whales).

In 1798 Cuvier published his Elementary Table of Animals, whiel whs sfterwards further developed in his 'Anatomio Compares' and the 'Regne Animal.' The method of this great zoologists bears considerable resemblsnce in some of its parts to the 'Prodromus' of Storr, as Cuvier limself remarks: it is so geverally adopted that we shall presently give it in detail.
M. Desmarest (1804 - 'Dictionnaire d'Histoire Naturelle'), principally taking Cuvier and Storr for his guides, divided the Mainmalia into three great sectiona. I. The Unguieulated Mammalia. II. The Hoofed Mammalia (Mammiferes a Sabots). 1II. The Finned Mammalia (Mammiferes i Nageoires), containing the orders Amphilia, Seals, Walruses, Dugongs, iec., and Cetacea (Whales). Our limits will not permit us to enter at length into the classification of M. Desmarest, which should however be carefully perused by the student.

We now proceed to lay before the reader Cuvier's arrangement after it had received the benefit of the joint labours of M. Geoffroy and himself, and as it finally left his hauds in his last edition of the ' Règne Animal.'

Class Mammiferes.

Order I. Binana. Man.
Order II. Quadrumana. Two families. (Simia, Linn.). 2. Macaucos (Lemur, Lion.).

Order IlI. Carnassiers. Family 1. Cheiroptera (Bats). 2. Ansecticora (Hedgehogs. Tenrecs. Tupaia. Shrews. Myale. Chrysochloris. Tulpa. Comdylura. Scalops). 3. Cernivora. Tribe 1. Plantigrudes. Bears (Ursus, Linn.). lhaccoons (Procyon, Storr.). Panda (Ailurus, F. Cuv.). Bentarongs (Ictides, Valebciennes). Coatis (Nasure, Storr.). Kinkajous or Pottos (?) (Cercoleptes, Illiger). Badgers (1fcles, Storr.). Gluttons (Culo, Storr). Ratels. Tribo 2. Digitigrades. Marting (Mustche, Linn.). Skunks (Mephitis, Cuv.). Otters (Lutra, Storr). Dogs (Canis, Linn.). Civeta (Viverra). Genets (Qenctlo, Cuv.). Puradoxurus. Iehneumons (Herpestes, Illiger). Suricstes (Ryzenu, Illiger). Chossarchus. Proteles. The last subdivision of the Digitigrades is composed of the Hyænas (Hycena, Storr), and the Cats (Felis, Linu.), in which
last the sanguinary development is at its height. Tribe 3. Amphibia. The Seals (Phoca, Linu.). The Walruses (Trichechus, Linn.)

Order IV. Marsupialia. Subdivision 1. Opossums (Didelphis, Linn., including Cheironectes, Illiger, and Thylacinus sud Phascogale, Temminek). Dasyurus (Geoffroy). Peramoles (Geoffroy). Subdivision 2, Phalangista (Cuv.), ineluding the true Phalangers (Balantia, Illiger) and the Flying Phalangers (Petaurus, Shsw; Phalangista, Illiger). Subdivision 3, the Potoroos, or Kangaroo Rsts (Hypsiprymuus, Illiger). The Kangaroos (Macropus, Shsw; Ilalmaturus, Illiger). The Koalas (Lipurus; Goldfuss; Phascolarctos, Blainville). Phascolomys (Geoffroy).

Order V. Rodentia. The Squirrels (Sciurus, Linnæus, including Tamia? llliger; Pteromys and Cheiromys, Cuvier). The Rats (Mus, Linnacus, including Arctomys, Gmelin; Spermophilus, F. Cuvier). The Souslik (Cynomyz of Rafiucsque) ; Myoxus, Gmelin; Echimys, Geoffroy (Lonchercs, Illiger) ; Ilydromys, Geoffroy ; Capromys, Desmarest. Tho Rats, properly so called (Mus, Cuv.). The Jerbilles, Gerbillus, Desmarest; Meriones, Illiger ; Mcriones, F. Cuvier. The Hamsters, Cricetus, Cuv., and Arvicola, Lacépède. The Ondstras, Fisher, F. Cuv. The Field Rats and Miee, Arvicola, Cuv., Hypudceus, Illiger. The Lemmings, Georychus, Illiger ; Otomys, F. Cuv. The Jerboas, Dipus, Gmelin; Helamys, F. Cuv: ; Pedetes, Illiger; Spalax, Guldenstädt; Bathyergus, Illiger; Geomys, Rafinesque ; Pseudostoma, Say; Axomys, Lichtenstein; Diplostoma, Rafinesque. The Beavers (Custor, Linn.), Myopotamus, Commersou. The Porcupines (IIystrix, Linnæus, including the Ursons, Erétisons of F. Cur., and the Condous, Synetheres of F. Cuv.). The Hares (Lepus, Linnæus, including Lagomys Cuvier). The Capybara, Iy ydrochoerus, Erxleben. The Guinea Pigs (Ancema, F. Cuv.; Caria, Illiger, including Keradon, F. Cuv.). The Agoutis (Chloronyy, F. Cuv., Dasıprocta, llliger). The Pacas (Coelogenys, F. Cuv.) ; and the Chinchillas.

Order V1. Edentata. Tribe 1. Tardigrades. The Sloths* (Bradypus, Linnæus, including Acheus, F. Cuv.). Tribe 2. Ordinary Edentata. The Armaddloes (Dasypus, Linnæus), and the sub-genus Chlamyphorus, Harlan. The Aard-Vark (Orycteropus, Geoffroy). The Aut-Eaters (Myrmccophaga, Linnæus). The Pangolins (Manis, Linnæus). Tribe 3, The Monotremes. The Echidna, Cuv. (Tachyglossus, Illiger), and the Ornitharhynchus, Blumen. (Platypus, Shaw).
Order VII. Pachydernata. Family 1. Probroscidians. Elephants (Elephas, Linntus) and Mastodons (Mastodon, Cuvier). Family 2, Ordibary Pachydermata. Mippopotamus (Liuo.). The Hogs (Sus, Linnsus, inchudiag Phascoehæres, F. Cuvier, and Dicotyles, Cuv.). A noplotherium (Cuv., extinct). The Rhinoceroses (Rhinoceros, Linnæus). The Damans (Hyran, Hermann). Paleotherium (Cuy., extinct). Lophiodon (Cuv., extinet). The Tapirs (Tapir, Linnæus). Family 3. Solipeda. The Horses, \&e. (Equus, Linn.).

Order V1II. Ruminantia (Pecora, Linnæus). a. No Horns.-The Camels (Cumelus, Linneus, including the Llamas, Auchenia, Illiger). The Muskb (Mosclus, Linnæus). \quad. True Horus shed periodically.The Stags or Deer (Cevus, Lanæus). c. Persistent Horns.- The Giraffe (Cumelopardalis, Linneus). d. Hollow Horns.-The Antelopes (Antilope). The Goats (Cupra, Linuceus). The Sheep (Ovis, Linneus). The Oxen (Bor, Liuncus).

Order IX. Cetacea. Family 1. Herbivorous Cetacea. The Manstees (Manatus, Cuvier). The Dugongs (IIalicore, Illiger), Rytina (Illiger). Family 2. Ordinary Cetaccu. The Dolphins (Delphinus, Linn., including Delphinus, Cuvier, Delphinorfynchus, De Blainv.). The Porpoises (Phociena, Cuv.). Delphinapterus, Lseépède; Hyperoodon, Lacépede. The Nar'whals (Monodun, Linnæus). The Caehalots (Physcter, Linnæus). The Whalebone Whales (Balena, Linneus, including Balanoptera, Lacépède).

Illiger (1811), in his 'Prodromus Systematia Mammalium ot Avium,' divided the Mammalia iuto 14 orders, 39 families, and 125 geusra, most f which last are characterised with great nestuess. We have only room for a mereskcteh of this system, which has considerable merit :-

Order I. Erecta (Man).
Order II. Pollicata. Fanily 2. Quadrumana (Apes and Monkeys). Family 3. Prosinia (the Lemurs, \&c.). Family 4. Macrotarsi (Tarsiers. Gulago, \&c.). Family 5. Leptodactyle (Cheiromys). Family 6. Marsupialia (except the Potoroos and Kangaroos).

Order 111. Salientia. Family 7. Salientia (IIygsiprymnus and IIalnaturus, Potoroos and Kaugaroos.)
Order IV. Prensiculantia. Family 8. Macropoda (Jerboas, \&c.). Family 9. Agitia (Myocus, the Squirrels, and Pteromys). Family 10. Murina (Marmots, Hamsters, Rats, \&c.). Family 11. Cunicularia (Lamminge, Hypudaue, \&c.). Family 12. Palmipcda (IIydromys and Beavers). Family 13. Aculcatea (Porcupines sud Lonchères, or Echimys). Family 14. Duplicidcntata (Hares, \&c.). Family 15. Subangulata (Puca, Agoutis, Guiuea-Pigs, Capybara).
Order V. Maltunguluta. Family 16. Lamnunguia (Iyrax, \&c.). Family 17. Proboscidea (Elephants). Family 18. Nasicornia (Rhinoceroses). Family 19. Obesa (HIppopotamus). Family 20. Nasuta (Tapirs). Fsmily 21. Sctigera (Hogs).

* It is here that Cuvier mentions the extinct genera Afegatheritm and Megalonys, noticing however the differences, and observing that the former, though it has a skull very like the sloths, wants the caninee, and finclines, as to the rest of the skeleton, partly to the sloths, and partly to the ant-caters.

Order V1. Solidemowla. Family 22. (Horea, de.).
Onier VII. Biscula. Fumily 29. Tylopoda (Camole and Llamas). Family 24. Derexa (Giraffe). Fimily 25. Capreoli (Deer and Musks). Family 20. Caricurnia (Antelopes, Goate, and Oxen).
Onder VIII. Tardigrada. Family 27. Tardigrnda (Slotha, tridactylous and bidactyloun): Sloth-Bear, or Prochilus.
Orier ix. Effolientia. Family 28. Cingulata (Armadillocs) Fannily 29. Fermilinguia (Anrd-Vark, Ant-Enters, and Pangolius).
Order X. Reppantia. Family 30. Reptantia (Monotremes and Pamphractus, which inat is no Mammal, bit a Tortoise).
Onder XI. Volitantia. Family 31.' Dermoptera (Galeopithecue).
Fumily 32. Cheiroplera (Bats).
Onder XII. Falcnlata. Family 33. Subterranca (Hedgehoga, Shrews, Moles, \&c.). Family 34. Planfiyrada (Kinkajou, Coatis, Raceoon, Glutton, Badgers, and Beary). Famlly 35. Sanguinaria (Fennec, Dogn, Hyrenas, Cata, Civets, and Suricate). Family 36. Giracilia (Ichneumons, Skunka, Weasels, Otters).
Onder XIIL. Pinnipelia. Family 37. Pinnipedia (Seals and Walrusen).
Order XIV. Natantia. Family 33. Sirenia (Manated, Dugong, and Rytina) Farily 39. Cete (Whalebone Whales, Narwhals, Cachalota, Dolphins, dc.).
M. De Blainville (1816) divided the Mammiferes into two sub-classes. 1. Tho Monodelphes, containing the six orders-Quadrumana, Carnasaiers, Ellentuta, Roolentia, Gravigrades, and Ongulogrades. 2. The Didelphes. All the orders of the Monodelphes, with the exception of the fourth and fifth, are subdivided into the Normal and Anomalous, and so is the sub-class of Didelphes, the Normal forma being the Carvansiers and loongeurs, and the Anomaloua Echidna (for burrowing) and Ornithorhynchus (for awimming). M. De Blainville observes that It may be that the Cetacea ahould form a meparate order or degree of organisation; nnd that the E'chidne and Ornithorhynchi may make a distinct aub-clnss.

In 1825 Dr. J. E. Gray published his 'Outline of an Attempt nt the Disposition of Mammalia into Tribes and Familien, with a List of the Oenera apparently appertaining to ench Tribe.' For the details we must refer the render to the 'Annals of Philosophy' (vol. asvi.), and the 'Cataloguee of the British Muscum.' We present here his 'Systomatic Liet of the Genera of Mammalia.' The indented names are synonyms of the one that precedes them.

Order I. Primates.
Family 1. Hominida.
Homo, Linn.
Family 2. Simiada.
Trogloulytes, Geoff.
Pithecua, Cuv.
Andiropithecus, De Blainv.
Simia, Linn.
Pithecus, Gcoff.
Ponyo, Lacép.
Iophotus, G. Fischer.
Siamanga, Gray.
Iflobater, Geoff.
Hyldrates, $1 l l i g e r$.
Preshytis, Enechach.
Scmnopithecte, F. Cur.
Lasiopyga, Illiger.
Nasalis, Geoff.
Pugathrix, Geuff.
Culibus, Illiger (not Dutu.). Ateles. Gcoff.
Cercopithecre, Buffon, Erxl., Geoff.
Cercocebus, Geofl
Gwenom Macuquc, Iesson.
Macacua, Lacep.
Rhesm, Lesson.
Crrocdins, Lesou (not Geoff.).
Pithex, Ilodgnon.
In mas, Geoff.
Mays. Leson.
Cymopithecur, Blainy.
Silemus, Leesor, Gray.
(telada, Lenson, Gray.
Cyпоссриаии, Brimon.
Chueropithecus, Do Blainv.
Sphinx, Lerewon.
Hlamailrgan, Lenom.
Japio, Briamn, Geoff.
Morman, lesson.
Family 3. Cebide.
Aleles, Dieoff.
Brachiyeles, Spix.
Eriodea, I. Ucoff.

Layoditix, Geoff. Gastromaryun, Spix.
Myctes, Illiger.
Stenter, Geoff.
Alouata, Lacép.
Cebus, Eral, Cuv.
Sapagou nad Sai, Lacêp.
Cullilhrix, Erxl.
Suguinus, Lacép., Lessou.
Pithesciurus, Lesson.
Brachyurus, Spix.
Chiropotes, Lesson.
Cacajag, Lessou.
Pitheria, Dusm.
Yarkra, Lenson.
Nyctipithecus, Spix.
Aotus, $1 l l i$ iger.
Nothora, F. Cus.
Aotes, Humb., Swain.
Chirugaleus, Vig. and Horff, Wagler (not Gcoff.).
Jucchu, Geott. Ifapale, 1 lliger.
Mict, Lesson.
Arctopithecus, Geoff.
Cillithrix, Wagler.
Midas, Gooff.
(弓lipua, Leseon.
Leonfopithecus, Lesson.
Barihina, Mikan.
Family 4. Lemurilde.
Lrour, Linn.
Prosimia, Brinson.
Propithects, Bennett. Macromerus, A. Simith.
Lichanotus, Illiger. Pithelemur, Lesson.
Loris, Geoff.
Srnope, 1 liger.
Aruchnorelius, Leson.
Micrucebus (1), Geoff. Myscebus, lesson. Scartra, Swainson. Ghictimes, Iesoon.
Nycticebus, Geuff.

Skenops, Illiger.
Arailylemur, Do Blainv.
Cteany, Cuv.
Turdigradus, Bodd.
Perodicticus, Bennett.
Potto, Bosm. (1), Lesson.
Inelri, Geoff.
Lichanotus, Illiger, Wagler.
Indrix, Geoff:

- 4 rahi, Jourd.

Scımпосе \quad us, Lesson.
Otolicnus, Illiger.
Macropus, G. Fischer.
Galayo, Cuv.
Khoyah, Cur.
Chirogalews, Geoff. (not Vig.).
Cebugale, Lesson.
Gulago, Geoff:
${ }^{1}$ /yoxict bus, Lesson.
M/icrocebus, Ceoff.
Tarsius, Storr.
Prasimia, Bodd.
Macrotarsus, Lacép., Liuk.
Tarsier, Cuv.
Cephalopachus, Swainson.
Inypsicebus, Lesson.
A/icrocebus, Geoff. (1)
Cheiromys (1), Cuv.
Aic.Aie, Lacép.
Daubentonia, Geoff.
Myspithecus, Blains.
Chiromys, llliger.
Family 5. Galeopithecida.
Galeorithecus, Pallas.
Galeolemur, Lesson.
Galeopithecus, Temu.
Family 6. Vespertilionida.
a. Phyllostomina.

Sturnira, Gray.
Arctibeus, Leach.
Ardateus, Leach.
Vampyrus, Gleoff., Leach.
Phyllustoma, Qeoff., Gray.
I'teropus, ErxL.
Phyllostomus, Illiger.
Carollia, Gray.
Lophostoma, 1)'Orbig.
Guandira, Gray.
Macrophyllum, Gray.
Phylophora, Gray.
Glossonhaga, Geoff.
Monophyluns, Leach.
Anoura, Cray.
Diphylh, Spis.
Stenoderma, Geoff.
Endostoma, D'Orbig.
Brachyphylla, Gray.
Desmodue, Pr. Max.
Macrotus, Gray (uot Leach).
Rhinopoma, Geoff.
Megaderma, Geoff
Fhyllostomus, Llligar.
Laria, Gray.

8. Rhinolophina.

A riteus, Gray.
Istiophorus, Gray (not Cuv.).
Rhinolophus, Gcoff.
Noctilio, Bechast., Kulu.
Mipponideroa, Gray.
Phyllorkina, Bonap.
Aschlia, Gray.
c. Vespertilionina.

Nycteris, Geoff.
Petalia, Gray.
$\boldsymbol{N}_{\text {yctophilus, Leach. }}$
Barbastelhs, Gray.
Barbanellua, Gray.
Synotur, Blasius.
Plecotha, deoff.
Nacrotus, Iaach.
Romicia, Giray.
Vospertilio, Liun.
Trilaticu, Gray.
Vyotie, Gray.

Kerimula, Grsy.
Furia, F. Cuv. (not Linn.).
Furiplerus, Bonap.
Nutalus, Gray.
Miniopterus, Bonap.
Capaccinss, Bonap.
Scotophilus, Leach.
Vesperus and Vespervyo,
Keyal. and Blasius.
Nyctalus, Bowditch, Lesson.
Noclulinia, Gray.
Vesperugo, part, Keysl. and

Blasius.

Lasiurus, Rafin., Gray.
Atalapha, Rafin.
Nyctiocyx, Wagler.
Murinia, Gray.
Harpiocephalus, Gray.
Sycticgjus (), Rafin.
Hypexodon (7), Rafin.

d. Noctitionina.

Tuphozous, Geoff.
Saccopteryx, Illiger.
Succolaimus, Kuhl.
Noctilio, Linn., Cur.
Celeno, Leach.
Pteropus, Erxl.
Proboscidea, Spix.
Centron ycteris, Gray.
Emballonura, Kuhl., Temm.
Uvocryptus, Temu.
Silo, Leach.
Mosia, Gray.
Mystacina, Cray.
Chilonycteria, Gray.
Lobostoma, Gundl.
Phyllodia; Gray.
Mormoops, Leach (not F. Cur.).
Centurio, Gray.
Diclidurus, Pr. Max.
Pleronotus, Gray.
Cheiromeles, Horsf.
Nyctinomus, Geoff.
Dysopes, part, Temu.
Thyroptera, Spix.
Thyropterus, Bonap.

Molossus, Geoff.

Dysopes, Illiger (not F. Cuv.).
Dinops, Savi.
Turlarina, Blainv.
Myoptcris, Geoff.
Myopterus, Lesson.
Mops (1), 'F. Cuv.' Lesson.-
e. Ptoropina.

Pteropus, Brisson (not Beohst.).
Spectrun, Lacép.
Eleuthcrura, Gray.
E'pomophorus, Benneth.
Xan Lharpyia, Gray.
Cynopterus, F. Cuv.
Pachysoma, I. Geoff.
Mcyera, Tenim.
Macroglossus, F. Cuv.
Macroglossa, Lesson.
Inurpia, 1 lliger.
Cephalotes, Geofi:
Oelasinus, Lesson ().
Cephulotes, Geoff., F. Cuv.
Honoderma, Ceoff.
Acerodon, Jourdan.

Order II. Fers.

* Normalce.

Family 1. Felitle.
A. Sanyuinaria.

> a. Felina.

Leo, Leach, Gray.
Tigrie, Gray.
Leopardus, Grny.
Puma, Jardine.
Felis, Linn.
Cultus, Brisson, Lesson.
Chaus, Gray.
Caracala, Gray.

Lyncus, Gray.
Lynchus, Jardine. Lynx, Swains.
Gueparda, Gray.
Cymailurus, Wagler.
Cynnfelis, Lesson.
Guepardus, Duvern.
b. Iycenina.
/lyјеиа, Brisson.
Crocuta, Gray.
Crocotla, Wagler.
B. Necropuaya.
c. Viecrrina.

Proicles, I. Ocoff. Geocyon, Wagler.
Viverra, Linn., Gray.
Ciretla, Geoff.
Viverricula, Hodgson.
Linsany, Müller.
Prionodon, Horsf. (not Cuv.).
Prionodontes, Lesson.
ficnetta, Cuv., Gray.
Galirlik, I. Geoff.
Gulirtis, Geoff. (not Bell).
Gulidictis, I. Geoff.
Bassaris, Licht.
Mengos, Ogilby.
Atylax, F. Cuv.
Ichineumia, I. Geoff. Lasiopus, I. Geoff.
Urve, Hodgson.
Mesobema, Hodgson.
IIerpestes, Illiger.
Mangustu, Olivier.
Tchnermon, Lacép., Geoff.
Martes, W゙agler (not Cuv.).
Cynictis, Ogilhy.
Cynopus, I. Geoff.
Ciassarchus, F. Cuv.
Rhyzana β, Wagler.
Suricala, Desm.
Rysena, Illiger.
Ifemigalea, Jourd.
Nanoinia, Gray.
Aretictir, Temm. Ictulez, Valeac.
Paguma, Gray. A mbliodan, Jourd.
J'aradoxurue, F. Cuv. Platysehista, Otto.
Cimnoyale, Gray.
Potamophilus, Mïller, Temm. Lumictis, Blainv.
C'ryptoprocta (?), Bennett.
Liupleres (), Doyère.

> d. Canina.

Ctuon, Holgrou.
Primatus, Lesson.
Cenis, Linn.
Lupus, Swains.
Liycton, Lesmon.
Sucaliur, H. Smith.
O.cyyous, Hodgson.

Vulpicanis, Blainv.
l'ulpes, Ray.
Otolicnu*, O. Fischer.
Meyalotis, Illiger.
riralayo, Desm.
F'ennecus, Desm., Child.
Diyctercutes, Temm.
Otoryon, Licht.
Megulotis, H. Smith.
Iıyecton, Brooks.
C'yndiyena, F. Cup.
c. Mustclina.

Mertes, Cuv.
Putorius, Cuv. Firtoriun, Koys. and Blas.
Mientela, Linu.
J'utoriun, part, Cuv.
Piymnopus, Gmy.
Vison. Gray.
Zorilla, Gray.
Galera, Lrown.

Eraria, Luud.
Grisonia, Gray.
Galictix, Bell (not 1. Geoff.).
Hum, I. Geoff.
Eraria, Lund.
Mellivora, Stort, F. Cuv.
Ursus, Shaw.
Ratelus, Gray.
Lirsitaxus, Hodgson.
Gulo, Storr.
Helictis, Gray.
Melagale, I. Geoff.
Mephitis, Cuv.
Chinchia, Gray, Lesson.
Marputius, Gray.
Thiosmus, part, Licht.
Conepatus, Gray.
Thiosmus, part, Licht.
Myders, F. Cuv.
Mephitis, Desm.
Arctonyj, F. Cuv.
Meles, Lrisson.
Taxus, Cuv.
Tuxidea, Waterb.
Meles, Sabine,
Lataxina, Gray.
Latax, Gray (not Gloger).
Lontra, Gray.
Saricoria, Lesson.
Lutra, Lino.
A onyx, Lesson.
Aonix, Lesson.
Leptonix, Lesson.
Pteronura, Gray.
Pteronurus, Lesson.
Einhylra, Flemiag.
Enhydris, Fischer.
Pasa, Oken.
Latax, Gloger (not Gray).

Family 2. Urside.

a. Ursina.

Ursus, Limn.
Danis, Gray.
IIelarctos, Horsf.
Meluraus, Meyer.
Prochilus, Illiger.
Chondrorhynchus, G. Fischer.
Thaluretas, Cray.
Thalussarctos, Wiegro.

b. Pracyonina.

Procyon, Storr.
Lotor, Tiedem.
Gampsiurus, Liak.
Nivsua, Storr:
Couti, Lacép.
Cumpsiurus, Link.

> c. Cercoleptina.

Cercoleptes, MI., Desm.
Kinkujace, Lacép.
Putos, Cuv., Geoff.
Citulirolvalus, IVum., Tiedem.
Lemur, I'ean.
Urous, Liun.
Cumpsiurns, Link.
d. Ailurina.

Ailurus, F. Cuv.
** Abnormales.
Family 3. Talpide.

* Fossores.
c. Talpina.

Tulpu, Linn.
IIylomys, Temm.
b. Chrysochorince.

Scalops, Cuv.
T'celpusmex, Lesson (not Schinz). Chroyochlorit, Cuv.

Aspahex, Wagl. (not Oliv.).
Astranyetes, Harris.
Rhinater, Wagler.
Comlylura, Illiger.
Tulpusarex, Schinz. (not Learon).
** Ambulatores.
c. Tupaina.

Tupaia, Raffles.
Cladobates, F . Cuv.
Sorexglix, Diard.
Glisorex, Desmar.
Hylogale, Temm., Wagler.

d. Erinacince.

Macroscelides, A Smith.
Rhinomys, Licht.
Sorex, Linu.
Puchyura, Selys.
Crocidura, Wagler.
Suncus, Ehrenb.
Myoserex, Gray.
Corsira, Gray.
Amphisorex (No. I), Duvern.
Blervia, Gray.
Blarina, Lesson.
Otisorex (?), Dekay.
Crossopus, Wagler.
Mydrosorex, Nath. Duvern.
Pinalia, Gray.
Solenodonta, Brant.
Solenoulon, Lesson.
Myngalca, Fischer.
Myyule, Cuv. (not Fab.).
Caprios a, Wagler.
Galcmys, Wagler.
Myyalinu, I. Geoff.
Caprios β, Wagler.
Grymnura, Raffles, Lesson.
Echinazorex, De Blaiuv.
Echinops (?), Martin.
Erinaceus, Lina.
e. Cenictina.

Centetes, Illger.
Centenes. Desm.
Sotifer, Cuv.
Temec, Lrép.
Ericulus, I. Gcaff.
Family 4. Mucropide.
a. Phelangistina.

Acrobates, Desm.
Phalangista β, Wagler.
Petaurus, Shaw, F. Cuv.
Phalanyista, Iliger.
Phuhenger, Lacép.
Pilotus, G. Fischer.
Belideus, Waterh.
Petturista, Desm. Sehoinobutes, Lesson.
Cuscus, Lacép., Lesson.
Cuescocs, Dum.
Ailurops, Wagler.
Ceonyx, Temm.
Sipelus, G. Fischer.
Pithechier (?), F. Cuv.
IIepoona, White, Gray.
Preudochcirus, Ogilby.
Trichosurus, Lesson.
Fienos, Jourd.
Dromicia, Gray.
I'halangistu, Cuv.
Bolantia, Illiger.
Torsipen, Gervais, Gray.
Phercolarctos, De Blainv.
Kocala, Cuv.
Ilombat, Knox.
Lipurus, Golulf.
Morvdactylus, Goldf.

b. Месrоріпе.

Dсиdrolegus, Temia.
Mecropex, Shaw.
hiengurus, Lacép.
Ifelmaturus, Illiger.
Oniehogalea, Gray.
I/ulmaturus, Jlliger (?), F. Cuv.
Thylogate, Gray.
Setonix, Lesson.
Ospherenter, Gould.
Petroyale, Gray.
IIetcropus, Jourd.
Bettongiu, Gray.

Pelendor, Gray.
Conoyces, Lesson.
Hypsiprymиия, Illiger.
Potorous, Desm.
Lagorchestes, Gould.
Phuscolomys, Geoff., Illiger.
Wombatus, Geoff.
Amblotis, Illiger.
c. Peramelina.

Perumcles, Geofi.
Thylacis, Illiger, Wagles.
Isoodon, Geoff.
Eehymipera, Lesson.
Perijulea, Gray.
Cheeropus, Ogilby (?), Glay.
d. Dasyurina.

Peracyon, Gray.
Thylacinus, part, Tcmm.
Dyccoon, Wagler (not Less.).
Diubolus, Gray.
Sarcophilus, F. Cuv.
Thylucinus, part, Temm.
Dasyurns, Geoff., Temm.
Phuscogale, Temm.
Antcchinus, M'Leay.
Phascogale, part, Waterh.
Myrmecobius, Waterh.

> c. Ditlelyhina.

Didelphis, Lian.
Plilander, Brisson.
Micoureus, Lesson (?).
Thylamys, Gray.
Peramys, Lesson (?).
Chironettes, Jllig.
Family 5. Phocille.
a. Stenorynchinu.

Pelugites, F. Cuv.
Stenorlynchus, F. Cuv.
Leptonyx, Gray.

b. Phocina.

Phoca, Linn.
Culoceplacalus, part, F. Cuv.
Calacephalus, part, F. Cuv.
c. Trichecina.

Jalichocrus, Hornsch., Nilson.
Trichecus, Linn.
Odobenus, Brisson.
Rosmarus, Scopoli.

> cl. Cystophorince.

Oystophora, Nilson.
Stemmutopus, F. Cuv.
Morangu, Gray.
Macrorkinus, I. Cur.
Rhinophuct, Wagler.

e. Oteniarinu.

Otaria, Péron.
Otuë'b, G. Fischer.
Platyrhynchus, F . Cuv.
A rctoceplealus, F . Cuv.
Order III. Cete (Lim.).

* Cete.

Family 1. Batcuiclec.
Balena, Limu., Lacép.
Balowaptera, Lacép.
Nysticetus, Wagler:
Cutordon, Lacép.
1'hysalus, Lacép.
Ihyseter, Liun.
Cetus, Brisson.
F'bmily 2. Delphinide.
Delphinus, Lina.
T'ursio, Groy.
Delphinorkynchus, Laccép.
Belega, Gray.
Photene, Cur., Gray.
Grampus, Gray.
Chobiocephalus, Lesson.
Cetus, Wagler.
beluga, Gray.
\qquad .
\qquad
\qquad .
\qquad

\qquad
\qquad
\qquad

[^3]n

\qquad

,
"

Delphinupterws. Iacép. Drljhis, Wigler.
Jmia. D'Urblga.
Orm, Wagler.
Hesermlom, Do blainv.
Plataniaf, Gray, Wagler. Susy, Lesmon.
Wonculon, rimb., Iiure (not Sw.) Crrulorlum, Brime, Illig.
Hiodom, Storr (not Liun.)
Nimehalms, I acepl.
Ameyhodom, Illig. Amurnucus, lesson.
l"proodon, Lacep
Tiamoden, Illig.
Nodus, Wingles.
Aodon, Lesson.
A namarcus, laneep.
Ejviculon (!). linfin.
Orypterme (1), Retin.

- Sirenis.

Family 3. Manatide.
Namatus, IRondel, G. Cus.
Trichecur, Linu.
Manali, Lodd.
Family 4. Ilalicorider.
Halicure, Illis.
Rommarus, liodl.
Dugungu, Tiedem.
$D_{\text {世gony, Lacéj. }}$
Family 5. Rytinade.
Rytina, Illig.
Siclleria, F . Cus.
Hydrodumalia, Retz.

Orier IV. Olimes.

Family 1. Muricke.
a. Murines.

Acanthomys; Gray.
Acomys, I. Geoff, Mss.
A canthantys, part, Lessou.
Mus, Linu.
Mieromy, Sclys.
IJespavimyn. Witerh.
Shyllotis, Winterh.
Siupleromys. W゙aterh.
Culomys, Winterh.
Elogmodontia, F. Cuv.
Nesalia, Gray.
Tandeleuria, ©my.
Paculomys, Gray.
Pidunda, (imy.
leygudes, Gray.
Holochiden, Bramet.
Iforechyse, lesan.
Uxymycterws, Waterth.
Abrohlixix, Waterh.
Cricrtomy, Wisterh.
Criceles, Cur.
Denderony, A. Smith.
Alualon, Meyen.
fhloniny, wintert.
Mapaloris, Liclat.
('onifurus, "gillyy.
Nutomye, laray.
Peroynathus, Ir. Max.
4. A roicalime.

Myuramys, Wingr.
Rhombemy, Wiga.
frasmmomya, liupp. (not Lacconte.)
A memomys, Ihonap.
Merience, \dot{r}^{\prime}. Cuv.
Jaculus, Wingler.
Liuryolis, limadt.
Otomy: r°. Cuv.
Oromye, A. Sinith (nue r. Cuv.).
Siymodon, diay mal Urd.
Neor.,min, ©
Tromamai, limy.
ELiopmatom.
Reithonlon, Wisterl.
Clenodacylun, Uray.
A rricanthis, Leremin.
Arricala, Larep.

Hypuderus, Illiger.
Aruchywrus, O. Fischer.
Ilemiotomys, Selys
Microtns, Snlyn
Sminshus, Nordul.
Mynomea (1), lasin.
Myoder, Irallar
Lemmus, O1. Mag., Cur.
Hypudeus, lllig.
Curiculus, Wingler.
c. Succomyna.

Suctomys, F. Cuv.
Ifc'cromys, Desm., Gray.
Dasynofur, Waglet.
Dipotumyn, Gray. d. Cisturina.

Castor, Linn.
Myppotanus, Comm.
Putamyn, Larr.
Ihydromys, part, Geoff.
Fiber, Cur.
Oadutret, Lacép.
Simotes, G. Fischer.
Guillinomys (1), Leason.
Ifydromys, Geoff.
c. E.himyna.

Habrocoma, Wingler. Abrocoma, Waterh.
Octodon, Bennett.
fsammoryctez, Póppig.
Psummoryctus, Lesson.
Pociphagomys, F. Cur.
Oryctomys, Blaiuv.
Cupromys, Desm.
Ssudun, Say (not Geoff.).
Playionlonta, F. Cuv.
Mysuteles, Lesson.
Capromys, ''uppig.
Inlacorlus, Temm.
Loncheres, Illig.
Delomy, Jourdain.
Echimya, Geoff.
fhyllomys (l). Lund. 4
Cerconny, F. Cuv.
Ductylomys, I. Gcoff.
Petromys.
Fumily 2. Ilystricidet. 4. //ystricina.

Hymerior.
deherura, F. Cuv.
A caulhion (P), F'. Cuv.
b. Cercolubines.

Erethison.
Eirctizon, Lecsson.
Chertomys Gray.
Circolabes, Brandt.
Coculu, Lacép.
Symetherce, F. Cu.
Eucrihu, G. Fischer.
sphigguren, r. Cuv.
Siphingura, Wagler.
c. Hiesyproctina.

Dingprocta, Illig.
Chloromys, Fi' Cur.
Platypyyd, Illiger.
Ayuli, Lacép.
fertichutia, Destn.
C'hlarmuy, Cuv.
Mura, Lergent.
Culogrly, F', Cinv.
Oeteogrora, Marlan.

1. Jydrochurrinue.

Itydrochecrus.
r. Cocriina.

Clurin, kilein.
Cobuin, Cux.
Anormer, F. Cuy.
Ǩementarn, F. Cus.
Giake, Meyen.
Family 3. Laporitice.
Lophe, Lind.

Cuniculus, Ray.
Layomya, GcoII Pica, lacóp. Ogotona, Link.

Family 4. Jerboidd. a. Chinchillina.

Chinchilla, Gray
Eriomys, Licht.
Callonys, 1. Geoff.
Lagotis, Bennett.
Lagidium, Meyen.
Viscaccia, Schinz
Lagoutomiw, Brooks.

b. Pedelina.

Melamys, F. Cuv.
Pedetes, Jlliger.
c. Dipina.

Dipus, Linn.
Alactaga, F. Cuv.
Scirtites, Wiagn,
Jaculus, Frxl. (uot Wagler).
Gerlillus, F. Cuv.
Meriones, Illiger, Wagler.
Psammomys, Rüppell.
d. Myaxina.

Myoxus, Schreb.
Glis, Brisson.
Muscardinus, Ray.
Graphimus, F. Cuv.
Eliomys, Wagler.

> e. Sciurina.

Anomalurus, Waterh.
A rocethrus, Waterh.
Pleromys, Cut.
Pctauristus, G. Fischer.
Sciuropterus, F. Cuv.
Sciurus, Linn.
Funambulus, Lessou.
Macroxus, F. Cuv.
Rhinosciurus, Gray.
Xerus, Ehrenb.
Gcosciurus, A. Smith.
Sjernosciurnu, Lesson.
Tamias, Illiger.
Spermuphilus, F. Cuv. Cynomys (P), Rafin. Citillus, Prillas.
Arctomys, Schreb.
Family 5. Aspalacide.
Sjalax, Guldenst.
Aspalax, Olivier:
Atpalomys, Laxm.
Ommetosteryos, Blas. and Kicys.
Siphencus, Brandt.
C'hthonocryus, Blas, and Keys.
Lemmomys, Lesson.
Georychus, llliger.
Orycterws, li. Cuv.
Anthyergur, Illiger.
Ellobius, G. Fisclec.
Fossor, F'orster.
Saccophorus, Kuhl. Gcomys, Rafin. Ascomyz, Lielst., W'agler.
Psenedartome, Say.
Diplostoma, Say, Richards.
Thomonys, Pr. Max.
Orycteromys, Blainv.
(\%rysomys, Gray.
Bathyergut, Kiippoll.
Thizomy, part, Ruppell.
Aplodontir, lichards. At nisonyx (${ }^{\text {P }}$), laf. Itaplodon, Viagler.
Cenomys, Blaius.
fhizomys, Gray.
Syctulejes, Team.
Aepralomya, Gervain.
Order V. Uxguhata. - I'urcircda.
f'ccora, Linn.

Family 1. Bocida, Gray.
 a. Borina.

Bos, Linn.
Thurıe, II. Smitb.
Bison and Bibos, Hodgson.
Bubalus, H. Smith (not Ogilby), llodgson.
Pö̈phagus, Gray.
Oribos, Blainv.
Anoa, Leach, II. Smith.
Catoblepas, Gray.
Connochetes, Licht.
Bua, Forster.
Porlax, H. Smith.
Boselaphus, Blainv.
Tragelaphus, Ogilby.
Strepuiceros, 11. Sunith.
Culliope, Ogilby.
Boselaphus, H. Smith.
Oryx. Blainv., H. Smith.
Kemas, IH. Smith (not Ogilby).
Pantholops, Hodgson.
Acronotu, H. Smith.
Bubntus, Ogillyy.
Alcelaphue, Blainv.
Bubalides, Lieht.
Damalis, II. Stnith.
Rgocerus, Desm., II. Smith.
Kolus, A. Smith.
Tetracerus, Leach.
Cerricapra, Blainv.
A vilope, Ogilby.
Gazella, H. Smith, Ogilby.
Dorcas, Bennett.
Antilope, Pallas, H. Smith.
Saiga, Gray.
Cephealophorus, H, Smith.
Sylvicapra, Ogilby.
Grimmia, Laur.
Madoqua, Ogilby.
Ncotragus, H. Smith.

Oreotragus

Tragulus, II. Smith, Ogilby
Elcotragus, Gray.
Redunca, 11. Smith (?).
Nagor, Laur. (1).
Sylvicapra, Ogilby.
Raphicerus (?), H. Smith.
Tragelaphus, H. Smith.
Nemorrhedus, II. Smith.
Kemas, Ogilby.
Cajricornis, Ogilby.
Rupicajra, H. Smith.
Aplucerus, H. Smith.
Antilocapra, part, Ord.
Capror, Ogilby.
Dicranocrus, 11. Smith.
Mazama, Ogilby (not Suith).
Capra, Lina.
Hircue, Brisson.
Ilemicupra, Ilodgson.
Ǩmax, Ogilby.
I/cmifragas, Hodgson.
Ovis, Linn.
Arics, Brlsson.
Muman, Sclirank.
I.xalus (?), Ogilby.

A nilocapra, Ord.
Mozama, Rafin.
Orcammos, liafin.

b. Cameloparlina.

Camelopardalis, Guselin, Illiger.
Giruffu, Brisson, Scop.
c. Camelina.

Camelus, Liun.
Luma, Cur.
Auchonin, lliger (not Marshall).
Dromedarius, Wagler.

i.. Moschina.

Moschur, Linn., Pallas.
Ncminna, Gray.
Tragulus, Brisson, Gray (not Ogilby).
Napu, Lerson.
Trayus, Klein.

-

```
\(+\)
```

by),

\qquad
-
\qquad
.
vilby)

$$
17
$$

1

$$
y)
$$

> -
> (

e. Cervina.

Muntjacus, Gray.
Stylocerus, H. Smith.
Cervulus, De Blainv.
Prox, Ogilby.
Coassus, Gray.
Subula, H. Smith, Lesson.
Cariacus, Gray.
Mazama, H. Smith (not Rafin.).
Capreolus, Brisson, Gray, H. Smith (not Ogilby).
Caprea, Ogilby.
Cercus, Linn,
Elaphus, H. Smith.
Axin, H. Smith, Ogilby.
Musa, H. Smith, Hodgson.
Rucervits, Hodgson.
Hippelaphus, Gray.
pzeudocervus, Hodgson.
Panolia, Gray.
Dana, Gray, H. Smith (not Bennett),
Rangifer, H. Snith.
Turendus, Gray, Ogilby.
Alces, H. Smith, Ogilby.
Family 2. Equide.
Equz, Linn., Gray.
Asinus, Gray.
** Bellue aidd Bruta, Lion.
Family 3. Elephantidce.

a. Elephamtina.

Elephas, Linn.
Loxodonta, F. Cuv.

b. Tapirina.

Tapires, Brisson,
Tapir, Zimmerman.
Rhinochcerus, Wagler.

c. Suina.

Sus, Linn., F. Cuv.
Babirussa, F. Cuv.
Porcus, Wagler.
Suckoteirus (?), Shaw.
Koiropotamus, Gray.
Phascocherts, Cuv.
Eureodon, G. Fischer.
Dicotyles, Cur.
Notophorus, G. Fisoher.

d. Rhinocerina.

Rhinoceros, Linn.

Hyrax, Herm.
Lipura, Illiger.
Covia, Pallas.

e. Hippopotamina.

IIippopotamus, Linn.
Family 4. Dasypida.

a. Manina.

Munis, Linn.
Pamphractus, Illiger.
Pholidotus, Brisson.
Panyolines, Raf.
Phatiginus, Raf.

b. Dasypina.

Dasypus, Linn.
Tolypeutes, Illiger.
Cataphicacta, Storr.
Dasypuя, Linn., F. Cuv.
Armadillo, Brisson.
Tatusia, F. Cuv.
Euphractus, Wagler.
Xenurus, Wagler.
Priolontes, F. Cuv.
Prionodon, Gray (not Horsf.).
Chiloniscus, Wagler.
C'hlumyphorus, Harlan.
c. Oryfteropina.

Drycteropus, Geoff.

d. Myrmecophagina.

Myrnecophaya, Linn., Gray. Tamandua, Gray, F. Cuv. L'releptes, Wagler.
Cychothurus, Gray.
Myrmaydon, Wagler. Dielactylis, F. Cuv.
c. Ornitharhymelhine.

Plutypue, Shaw.
Ornithorhynchus, Blom.
Dermiper, Wiegm.
Lechidna, Cur.
Tachyjlossus, Illiger.
Family 5. Bradypidre.
Cholopus, Illiger.
Bradypus, F. Cuv.
Bradypus, Linn., 1lliger. Tardigradus, Brisson. A retopithecus, Gesner. Acheur, F. Cuv.

Mr. Swainson, who does not admit Man into the zoological circle for reasons stated in his ' Natural History and Classification of Quadrupods' (1836), gives in the third part of his book an arrangement of 'the Class Mammalia, according to its nataral affinities.' He makes the Quadrumana, the first order, consist of the following families:-1, Simiude. 2, Celidere 3, Lemuridce. 4, Vespertilionidce, consisting of Dr. Gray's sub-families Rhinolophina, Phyllostomina, Pteropina, Noctilimina, and Pespertilionina.
The second order, Ferce, includes the families-1, Felider. 2, Mustelide, consisting of the sub-families Viverince (Viverrince), Mustelince, and Úrinar. 3, Didelphidee (Opossums). 4, Sovecille. 5, Phocide.

The third order, Ceturea, comprehends the families-1, Sivesia (Herbivorous Cetacea). 2, Cefe, with tho sub-families Detphine and Bulcenince (\}).

The fourth order, Unantata, embraces-Tribe 1, Pachydermes. Tribe 2, Anoplotheces. Tribe 3, Edentaten, including the Monstremes. Tribe 4, Rumincenteg (comprebending the families-1, Boride. 2, Anvilopide. 3, Cervitce. 4, Moschide. 5, Camelopardec). Tribe 5, Soliperles.

The fifth order, Gilies, consists of-Division 1, Glires proper, with clavicles. Division 2, Clavicles rudimentary or nonc.
Immediately following the genus Caria and its sub-genera we find the 'Marsupial Rodentio, sitnatiou uncertain ;' and next to them the family 'Marsupidce' (Herbivorous Marsupials), formed of the genera Halmaturus, IIypsipmimnua, and Ihofangista, the latter with two sub-genera, Petauristu and Petaurut.
The works of Buffon can hardly be said to present any principle of clansification as applicable to the M/ammalia. Pennant indeed gives what he calla a systematic index of the genera, species, and varieties, and divides the Quadrupeds into two grand divisions (the first without ${ }^{\text {a }}$ name, and including:-1, Horse; 2, Ox; 3, Sheep; 4, Goat; 5 , Giraffe; 6, Antelope; ' 7 , Deer ; 8, Musk; 9, Camel; 10, Hog; 11, Rhinoceros; 12, Hlippopotame; 13, Tapir; 14, Elephant, as generic
appellations: and the second grand division, with the name of Digi ${ }^{-}$ tated Quadrupeds, including the genera (Section 1)-15, Ape; 16, Macauco; (Section 2)-17, Dog ; 18, Hyæna; 19, Cat; 20, Bear; 21, Badger ; 22, Opossum ; 23, Weasel ; 24, Otter; (Section 3)-25, Cavy; 26, Hare; 27, Beaver; 23, Porcupine; 29, Marmot; 30, Squirrel ; 31, Jerboa ; 32, Rat; 33, Shrew; 34, Mole; 35, Hedgeheg; 36, Sloth; 37, Armadille; 38, Manis; 39, Ant-Eater; 40, Walros; 41, Seal; 42, Manati ; 43, Bat); but this catalogue can hardly be called systematic. In his later editions be formed his catalogue into a more complete 'Method,' with four grand divisions:-1, Hoofed Quadrupeds; 2, Digitated; 3, Pinnated; 4, Winged; but his work will always be consulted more for the natural history of the 'Quadrupeds' there treated of than for their arrangement.
For further information the reader mnst consult the works of Pallas, Allamand, Schreber, Shaw, Marcgrave, Catesby, Hernandez, D'Azara, Sonnerat, Steller, Sparrman, Le Vaillant, Bruce, Barrow, Burchell, Humboldt, Peron, Lesuenr, Fischer, Lesson, Rüppell, Smith, Richardson, Bennett, Bell, Owen, Ogilby, Sykes, Darwin, and a host of others, who have eariched the subject by their writings or the observations which they have made in their travels.
MAMmARY GLANDS, LACTEAL GLANDS, or MAMME, are organs of considerable interest from their occurring only in that important class of animals to which they give a mame [MAMBALIa], and whese greatest peculiarity is that, while joung, their food is the milk secreted by the mammary gland of their mather.

The number of mammary glands varies in different animals. They are composed of ramified ducts which open on the surface of a nipple or teat by a very minute orifice. In some animals, as ruminants, there is but one orifice at the extremity of each nipple; in others, and in man, there are several. Each orifice leads into a fine canal, which however soon dilates, and ramifies with irregular and tortuous branches in the substance of the breast or udder. Each branch has either a simple closed extremity or terminates in a minute cellule, and namerous capillary blood-vessels ramify on their walls and secrete the milk into them. When the month of the young animal, by the action of sucking, produces a partial vacuum over the nipple, the weight of the surrounding medinm presses lightly and equally npon the surface of the breast or ndder, and propels the milk from the ducts in minute and gentle streams.
With respect to their strncture, the lacteal glands, in all essential particulars completely correspond with the larger racemose glands, for instance, the parotid and the pancreas. Each gland consists of 15, 24 , or more irregular flattened lobes, $\frac{1}{女}$ " to $1^{\prime \prime}$ wide, with a rounded, angular outline, which, although their cavities are quite distinct from each other, eannot externally always be definitely separated. Each is composed of a certain number of smaller and smallest lobules, and these lastly of gland-vesicles. The latter are rounded or pyriform, $0.05^{\prime \prime \prime}-0.07^{\prime \prime \prime}$ in size, with a distinct construction between them and the smallest excretory duct, as for instance in the small mucous glands, and as everywhere else are formed of a structureless membrane and tesselated epithelinn, which at the time of lactatiou andergoes peculiar metamorphoses. All these glandular elements are surrounded by dense white comective tissuc, particularly ahnodant between the ghand vesicles and smaller lobules, and are united into a compact large glandular mass, which is ultimately covered by a quantity of adipose tissue, or in part by the skin. The lacteal glands are properly speaking not simple glands, but like the lachrymal, aggregations of these. From each glaudular lobe by the coalescence of the excretory dacta of the smallor and larger lobules, there ultimately proceeds a shorter or longer duct, $1^{\prime \prime \prime}-2^{\prime \prime \prime}$ in diameter, the lacteal duct or camal (dnetus lactiferus or galactophorus), which 'running towards the nipple dilates beneath the areola into an elongated sacculus, $2^{\prime \prime \prime}$ - $4^{\prime \prime \prime}$ wide, the lacteal sac or receptacle (sacculus or sinus lacti ferns), afterwards contracting to $1^{\prime \prime \prime}$ or $\frac{1}{2}$ "' it bends round into the niplle, and ultimately opens at its apex, in an independent orifice, not more than $\frac{1}{3}^{\prime \prime \prime}-\frac{1}{\frac{1}{\prime \prime \prime \prime}}$ in diameter, betweeu the papillo that exist in that sitnation. All these excretory ducts, besides an epithelium, which in the largest of them presents cylindrical cells $0.006^{\prime \prime \prime}-0.001^{\prime \prime \prime}$ long, and in the finer ramifications rounded polygonal smaller cells, and a homogeneous layer beneath them, alse possess a white dense fibrous mombrane longitndinally plicated in the larger canals, in which hitherto no muscnlar fibres have been discovered, nothing but a nueleated longitudinally fibrons connective tissue, with fine elastic fibres. Henle however more recently thinks that he has noticed longitudinal muscles in the lacteal ducts; net those of the nipple, but more deeply within the gland.
The nipple (mamilla) and the areola present numerous smooth muscles to which the cuntractibility of those parts is owing. The bloodvessels of the lacteal glands are numerous, and surround the gland-vesicles with a rather close plexas of capillaries. The veins in the areol constitute a circle which is not always quite complete. The lymphatics are equally abundant in the skin covering the gland, whilst in the gland itself they have not yet been demonstrated. The nerves of the akin covering the mammare derived from the supraclavicular nerves, and the cutancous branches of the second. third, and fourth intercostals. In the interior of the gland no other nerves can be traced than a few fine twigs accompanying the vessels, whose termination is unknown.

The lacteal gland in its development follown the name course as the othrr cutancous glands, and is, acconding to Ianger, originally nothing lut a widi papillary projection of tho mucous layer of the cuidernis, which ba inveated by a layer of deuser dermal timue. In the nixth to the aeventh month it throwe out a certnin number of buds, and in this way ariso the first rudimenta of the aulsequent loles There are, at first, nothing but minnte pyriform or thapk-shaped proceases of the common rudiment of the gland, which do not eclarate from each other until towards tho end of fectal life, at which time they open extermally; whilst at the anase time rounded or elongated buds begin to appenr at their ende, which at thin time are alse molid. At the periocl of binth the gland meanure frem $1 f^{\prime \prime \prime}-f^{\prime \prime \prime}$, and already diatiuctly exbibits a certain number (12-15) of divisions, of which tho joternal still approximate. The rudimentary pajillie in fact have cither simple flask-like ends, or terminnte in two or three sinuosities; whilst the others are in connection with a grenter mumber. The excretory duct of each of these rudimentary lobulen, which is either simple or possesses two or three branches, is compored of a fibrons membrane of immature nuclented conncetive tissur, and an epitbelium of small cylindrical celle, and is manifestly hollow; whilat the dilated ends, which cannot in this case, any more than in other glands in the process of development, at this time be termed terminnl vesicles, are still solid; being wholly composed, besides the filmons tunic continued upon them, from the ducta of minute nucleated cella. From this very simple form the latter one is thus developed; by the long continued germination of the primary and subseruently-formed clavate endy, and their simultaneous excaration, a much-brancled doct, beset in ita offeets with whole groups of hollow glamp-vesicles, is at last formed.

At the commencement of pregnancy the mammary gland, which up to the period of puberty had been but little developed, enlarges; its incrense of size keeps pace with the progress of gestation, and before its termination a thin serous nilky fluid begins to le secreted. Directly after parturition the quantity of milk increases, and it becomen more thick and rich, combining in itself all the best principles for the nouriyhment of the young noimal. It continues to flow for a length of time proportioned to the age at which the young auiual can seck its own food, and then gradonlly submiding, the gland decreases to the amme size which it had before pregnaney.

The Milk, the secretion of the manmary glands, consists of a fluid, the milk-plama, and inmomerablo apherical opaque corpuscles, with the brillinnt aspect of fat-drops nuspended in it. These corpusclesthe milk-globnles-vary in size from inmeasurable minuteneas up to $0.001^{\prime \prime \prime}-0.002^{\prime \prime \prime}$, and more, and most probably do not consist of the fatty part of the milk alone, but have also a delicate investment of casein, and it is to them that the whiteness of the milk is owing. With reapect to the formation of the milk, it is to le remarked that, except at the periola of lactation and pregnancy, the glands contain nothiog lut a manall quantity of yellowish vixcill mucoun, with a certain number of epitbelial cello, and are lined up to their extremities by an epithelium, which in that aituatiou is tesselated, but externally is more cylindrical. With conception thin state of things is altered. The cells of the gland-vesicles begin to develop, at firat a little, and nubsequently more and more fatty matter within them, and to enlarge, so an to fill the terminal vesicles. To this in added, before the end of pregnancy, n new fommation of fat, containing cells in them, by which the ohler cella are forced into lactiferous ducta, which they gradually fill. Thus it happens, that nlthough a true secretion is not at that time net up, atill in the latter half of preguaney n fow drops of fluid may be expresed from the gland, which, as is shown by its yellow colour, in not milk, bot devertheless contains a certain number of fatHobules from the more or lian dixintegrated fatty cells, exactly rescmthing the subsequent milk-globules, and also contaitas such celle either with or withone a tunic, the notermed colontrum corpuscies. On the commencement of lactation after parturition the cell-formation in the gland-veniclen procceda with excersiva onergy, in conacquence of which the meretion collected in the lactiferona ducta nud gland-vesiclen is evacuated at the colontrum or immature milk, the true milk taking its place. The latter in tho extremitien of the gland conainta only of nome fuid and cella entiroly filled with fat-globules, which sometimes veculy the pland-reaiclen nlone, nometimes nawociated with pale chithelial celle, which however alwaym contain more or less fat, aud ariginate either in a free cell-fonomatiou or frotn ejithelial cella, in n way analogoins to that in which the cutaneoun achaceous matter in formed, by their continued multiplication. Thene edle, which kialliker demigonten an milk-celln, brenk up, no noon ay they reach the lactiferous ducta inte their clemente, the milk globulen, the membrane, and for the mont part almo the nucleun, dimppearing without a ventige being left, mo that tho milk when secreted uanally preacote no indication of ith nome of origin. At mont there occur in it a very few larger or smaller nggregation of milk globulen, which from their mimilarity to thone nurt with in the colontrum may likewine le termed colontrum corpuacles. The mecretion of the milk therefore depends ensentially upona formotion of fluid and fat containing cella in the gland-vesicler, and consequently falla into the categery of those secretions into the compraition of which soorlological clementa enter; above all to the fatty sccetionn, bucla as the cutaucous scluaceone mather, in which cella
of a precisely similar kind occur to those met with in the glend-resicks of the lacteal glanda and in the colostrum.
(Kölliker, Manual of Jfuman Histology.)
MABMEA, a genus of Plants belonging to the natural onder Gutliferre. It has two deciduous equal seprals; 4 or 6 petals, corincoous, somewhat equal, and deciduous; stamens distinct, or slightly united at the base, indefinite, deciduous; filaments short; anthers adnate, 2-celled, opening longitudinally; orary 4-celled; ovule eolitary, erect; atyle short; stigma 4 -lobed, with emarginate lobes; fruit pointed by the remains of the etyle, with a hard putanen and fleshy rind; 4 - or by abortion 2- or 3 -celled; seeds thick and large.
M. Americana, or the American Manmee-tree, the only epecies of this genue, forms a landiome tree with a apreading elegant bead, which is compared with that of a Maynolia. The flowers are odoriferons, and employed as an aromatic addition to liqueurs called Enu and Creme des Creoles in some of the West Indin Islands. The fruit is large and lias a double rind, of which the outer is thick and leathery; the inner one is thin and bitter, and containa the pulp closely adhering to it, which is of a yellow npricot-colour, whence it is sometimes called Abricot de Saint Domingue. This pulp has a pleasant but peculiar taste with au aromatic smell; it may be eaten raw, or cut in elices, with wine or sugar; or cooked, which deprives it of its gummy portion. It is also preserved in wine sweetened with augar, or in brandy. (Labat.) The fruit is considered nouriahing and pectoral, and is much esteemed in America. The bark abounds in a atrong resinous gum, used by the negroes for extracting chigoee from their feet. A bath of the bark renders the soles of the feet like Mangrove bark. Attempts bave been made to cultivate it in stoves in this country. According to Sweet, it grows froely in sandy loam; and ripened cuttinga, with the leaves not shortened, root in sand under a hand-glass in hent

MAMMELLI'PORA. Bronn proposes this name instend of Iymnorea, Lam., for a genus of Fossil Zoophyta, adalogous to Alcyonium. [Lymiorea.]

MAMMOTH, a term employed to designate the Fossil Elephanta. The name has been erroneously applied sometimes to the Mastodon. [Eleminant.]

MAN, the highest being in the animal series. Although attempts have been often made to establinh a close sffinity between man and the highest forms of Mammalia, the most recent writers on the structure of the higher forms of animals sre incliued to place him not only as a species and genus distinct from all others, but as occupying a position of ordinal value. Thus Professor Owen says, "Man in the sole species of his genus, the sole representative of his order."
The study of man may be pursued under three different heads. Thus we may examine the structure of the organs of his body and the functions they perform, and this constitutes the eciences of Human Anatomy and Physiology. We may also compare his structure with that of the lower animals from a zoological point of view, using our suatomical and physiological knowledge for this purpose. This is called the ecience of Anthropology. In the third place we may study him in his relations to himself, and consider the varieties he presents. This constitutes the science of Ethnology. All these departmenta of science are contemplated in the natural history of man.

In this work the anntomy and physiology of man are treated under the various separate heads of the organs and functions of man. In the present article we address ourselves to the principal features of the sciences of Anthropology and Ethnology. The following apothegma by Dr. Robert Gordon Latham, to whom the acience of ethnology is, deeply indebted, will present to the reader a view of the object and rauge of theso sciences:-

1. The natural history of man is chiefly divided between, two sub-jects-Anthropology and Pithoology.
2. Anthropology determines the relstions of man to the other Mammalia.
3. Fithnology the relations of the different varieties of monkind to each other.
4. Anthropology is more inmediately connected with zoology; ethnology with listory.
5. Whilst bistory represents the actions of men as determiued by moral, othnology ascertains the effects of phytical influencea.
6. History collects its facts from testimony, and ethnology does the same; but etlunology denl s with problems upon whieh history is ailent, ly arguing hack wards, from effect to cauge.
T. This throws the areun of the ethnologist into an estier period of the world's bintory than that of the proper historian.
7. It is the method of arguing from effect to cause which gives to ethnology its scientific in opposition to its literary aspect; placing it, thereby, in tho eame category with geology, as a palmontological science. Hence it is the science of a method-a method by which inference does the work of teetimony. Furthermore, ethnology is bistory in respect to its resulte; geology in respect to its method. And in the same way that geology las ita zoological, physiological, and such other aspects as constitute it a mixed science, ethnology has them also.
8. The chief ethnological prollemn are those connected with 1, the mity; 2, the geogmpibical origin; 3, the antiquity; 4, the foture deatination upon earth of man.
9. Ethnolegical facts are physical or moral-physical, as when we determine a class from the colour of the skin; moral, as when we determine one from the purity or impurity of the habits.
10. Moral characteristics are either philological (that is, connected with the language), or non-philological (that is, not so connected).
11. A protoplast is an organised individual, capable (either singly or as one of a pair) of propagating individuals; itself having been propagated by no such previous individual or pair.
12. Heace, a species is a class of individuals, each of which is hypothetically considered to be the descendant of the same protoplast, or of the same pair of protoplasts.
13. A variety is a class of individuals, each belonging to the same species, but each differing from other individuals of the same species in points wherein they agrec amongst each other.
14. A race is a class of individuals concerniog which there are doubts as to whether they constitute a separate species or a variety of a rccognised one.

Two interesting questions arise out of the study of man's relation to the lower auimals, and the clifferences he presents in various parts of the world. The first is his distinctness as a species from all the lower snimals; and the second, the specific uaity of all men. In poiating out the structural differences between man and the lower animals, we shall find toaclusive evidence of his specific diatinctness from the bighest forms of Mammalia. The second questiou has been put in the following form by an eluquent writer:-"Dacs the Bosjesman, who lives in holes and caves, and devours ants' eggs, lecusts, and snakes, belong to the same species as the men who luxuriated in the hanging gardens of Babylon-or walked the olive-greve of Academe-or sat enthronel in the imperial homes of the Casars-or reposed in the marble palaces of the Adriatic-or held sumptuous feativals in the gay salons of Versailles? Can the grovelliag Wawa, prostrate before his fetish, claim a community of origin with those whese religious sentiments inspired them to pile the prodigiens temples of Thebes and Memphis-to carve the friezes of the larthe-non-or to raise the heaven-poiated arches of Colegne? That iguerant Ibo, mutteriag his all but iarticulate prayer-is he of the same ultimate ancestry as those whe sang deathless strains in honour of Olympian Jeve or of Pallas Athene or of those who, in a purer worabip, are chanting their glorions hymns or solemn litanics in the churches of Christendom? That Alfoure woman, with her flattened face, traasverse nostrits, thick lips, wide mouth, projecting teeth, eyes half-closed by the loose swollen upper ey elids, ears circular, peadulous, and flapping, the lue of her skin of a smoky black, and (by way of ornameat!) the septum of her nose pierced with a round stick some inches long-is she of the same origioal parentage as those whose transcendant and perilous beauty brought unvumbered woes on the people of ancient story, convulsed kiugdoms, entraaced poets, and made scholars and sages forgct their wisdom? Did they all spring from one common mother 1 Were Helea of Greece, and Cleopatra of Esypt, and Joanna of Arragon, and Rosamend of Lingland, and Mary of Scotland, and the Eloises, and Lauras, and lanthes-were all these, and our poor Alfouro, daughtera of her who was fairer than any of them-Eve? The Quaigua, or Saboo, whose language is described as consisting of certain snapping, hissing, grunting sounds-all more or less nasal-is he too of the same descent as those whose eloquent roices 'fulmined over Greece,' or shook the forum of Rome-or as that saint and father of the church suruamed the 'goldeu-mouthed'or as those whose accouts have thrilled all hearts with iadignation, or melted them with pity and ruth, in the time-honoured halls of Weatmiaster ?"

We shall find as we proceed that the evidence of relation of structure is so strong, and of descent from a common pair so evident, that we cannot but auswer this question in the affirmative.

We shall first speak of the bony or osseous structure of man, referring the reader to the articles Cimpanzee, Locomotion in Animals, and Skeleton, for illustrations of the varions points of structure spoken of, and also for comparisen with the lower auimals.

In every part of the human frame we find sdaptations to the erect attitude, the soost peculiar characteristic of mankind. Examining the skeleten, we find that the two condyles, or articulating surfaces of the occiput, by which the skull is connected with the spiae, are so placed on each side, that a vertical line passiag through the ccatre of gravity of the head would fall almost exactly betwcea them and on the top of the spine. The courlyles arc not placed at the very centre of the base of the skull, but just belind it, so as to compensate in some mensure for the greater specifie gravity of the posterior part of the head, which is composed chiefly of thick heavy boac and brain, while the anterior is formerl in part by the light bones of the face, and contains aumerous cavities. Still however there is a slight prepoadcrance in front of the condyles, which, wheu the head is not held up by some external force, tends to carry it forwards and downwards, as we may see in persons falling asleep in the crect posture. But the muscles attached to the back of the head are far larger and more aumerous, as weli as more conveaiently arranged for the full exereise of their power, than those in front of the condyles; and the effort requircd of them to holll up the hearl is so slight, that it may be made throughout the day without producing fatigue.
he day without producing
Nat. hist. div. vol. III.

The surfaces of these condyles moreover have a horizontal direction (whea the head is held upright), and thus the weight of the skull falls vertically upon them and the top of the vertebral columa. Comparing with these arrangements the position and direction of the occipital condyles in other Mammalioc, we find that in the latter they are placed much nearer the back of the head, and that their plane is more oblique. Thus, if a line be drawn in the median plane aloug the base of a human skull, the foramen magnum and occipital coudyles will be fouad immediately behind the point at which that line is bisected; while in the chimpanzee (in which also the coudyles are proportionally smaller) the same parts are placed in the middle of the posterior third of a line similarly drawn, and in other animals are still farther back. Hence there is in all animals a greater proportion of the weight of the head in front of the vertebral column than there is in man; and all the parts anterior to the condyles are proportienally shorter in man than in other Mammalia, in which the jaws, the beny palate, the basilar part of the occipital bone, and the petrous portions of the temporal, are always loug and large.

Besides being placed se far bchind the centre of gravity of the head, the condyles of other Mammalia are directed mere obliquely downwards than those of man; so that, if the head were supported on the top of a vertical column, its weight (even if it fell entirely upon the condyles) would press on an iaclined plane, and constantly tend to carry the heal forwards and downwards. The degreo of obliquity iu the direction of the condyles varies in different animsle. It may be nearly estimated by the angle formed by two lines, one of which is drawn in the plane of the occipital foramen, and the other from its posterior edge to the lower margin of the orbit. This angle is of 3° in man, and of 37° in the orang-outan; but in the horse it is 90°, the plane of the foramen being vertical. If therefore the natural pesture of man were horizental, he weuld in this respect be circumstanced like the horse, for the plsue of his condyles, which is nearly horizontal in the upright position, would then be vertical ; the head, instead of being nearly balaaced on the top of the column, would hang at the end of the neck, and its whole weight would have to be suppperted by sume external and coastantly-acting power. But for this there is neither in the skeleton nor in the muscular system of man any adequate provision. Ia other Mammalia the head is maintained in such a pesition by a streng and thick ligament (ligamentum nuchor), which passes from the spines of the cervical and dorsal vertebre to the most promineat part of the ccciput, but of which in man there is little or no trace. In the horizontal pesition therefore he would have the heaviest head, with the least power of supporting it.

The position of the face immediately beucath the brain, so that its front is ncarly in the same plane as the forehead, is peculiarly charaoteristic of man; for the craaia of the chimpanzee and orang, which approach nearest to that of man, are altogether posterior to and not aborc the face. This form, at the same time that it remarkably distinguishes the human from the brutc features, is exactly adapted to the erect attitude. In that posture the plane of the orbits is nearly horizontal; the cavities of the nose are in the best direction for iohaling odours, proceediog from before or from below them; the jaws do not project in front of the forehead and chin. But suppose the posture changed, as paiaful an effort weuld be required to examiue an object in front of the body as is now necessary to keep the eyes fixed on the zenith, and the heavens would be almost hidden from our view; tho nese weuld be nuable to perceive any other odours than those which proceeded from the earth or from the body itself; and the teeth and lips would be almost useless, for they would scarcely touch an object on the ground before the forehead and chin were in contact with it; while the view of that which they attempted to scize would be obscured by the nose and checks.

The vertebral columu in mau, though not absolutely straight, yet has its curves so arranged, that when the body is in the erect posture, a vertical line drawn from its summit would fall exactly on the centre of its basc. It incrcases in size in the lumbsr region, sud is therefore somewhat pyramidal in form. The lumbar portion of the human vertebral columa is also of considerable length, and is composed of five vertebre; while in the chimpanzee and erang there are but four. The processes for the attachment of muscles upon it are long and strong; an arrangement well adapted to overcome the tendency which the weight of the viscera in front of the celumn has to draw it forwards and dowawards. Thus the spinous processes of the cervical and dorsal vertebre, which are in other Mammalia large and stroag for the attachment of the ligamentum uncho to suppert the head, are in man scarcely prominent, and his head is nearly balanced on the vertebral column; while thase of the lumbar vertebra, by which the weight of the thoracic and abdominal viscera is partly supported, are proportionally much larger in mas than in other Mammalia.

The base of the human vertebral column is placed ou a sacrum of greater proportional breadth than that of any other animal, and remarkably arched forwards. The sacrum is again fixed betwcen two widely-expanded haunch-hones, ferming the lateral walls of a peculiarly broad pelvis. By its great width the pelvis forms an ample cavity for the support and defence of many of the viscera, and cspecially of the pregnant uterus: by the distant scparation of the hauaches and thighs the basis of support is rendered wider, and by its oblique dircction the weight of the body is transmitted more directly from

Man in further monskable for his oluw growth, and for tho length of tine during which he remains in a ntate of helplesa iufancy sund of youth. The procesa of ossification and the clonnre of the nuturen of the akull aro completed later in him than ju any other animal: he in unable to meek him own fool for at least the firat three years of hin life, and doen not attain to the mulut period or to his full stature till to is from 15 to 20 years old. The length of time to which his life may be prolonged is however proportionally greater than that of any numal, nud is especially interesting when compared with that of those who in many respects resemblo him. The greatest longevity to which the o:augs attain ia about 30 yenns, while in all nations of men instances occur of life being prolonged to upwards of 100 ycars

Howerer widely man may be distinguished from other nimals in the peculiaritics of his structure and reonony already detailed, yet We must agree with Ir_Prichard ('Resenrches,' \&c, i. 175) that "the rentiments, feelingr, RYMunthies, internal consciousness, and mind, and the inbitudes of life and action thence resulting, are the real and earential characteristics of humanity." The difference in theserespects between man aod all other animals is indeed oo great that a comparison ia scarcely possible. Tho highest moral endowments of naimala sre shown in their attachment to their offspring; but this ceases when the periort of helplessness is past, sud there is no evidence of attachment between iudividuals, except in the associated laboum of romespecies, and the consentaneons netions of the male and female for the safety of the offspring. The arts of which animals are capable are limited and peculiar to each species; and there seems to bs no evilence of a power of javention, or of construction for any purpose begond that to which the original and instinctive powers are alapted. Anong the monkeys the adults exercise authority over the young, and it is raid maintain it even by chastisement; but there is no instance in which the stronger species has exercised authority orer the weaker, or brought it into a state of servitude. Fren when made the associates of man, nod instructed by him, how little have mimals learned: a few unmeaning tricks unwillingly performed, a few words uttered and constantly repeated, without choice or a conception of their menning, and sullen passive submissien, are in geneml the best reaults that can be found. There is not a proof in the whole history of nnimals that nay species or individund has ever inade an advance towards an improvement, or an alteration in its condition; whether solitary or living in herds, the habits of all remain the same; sll of the same species appear endowed with the mane faculties and dispositions, nod each is in mental power the same throughout his life.

Contrast with these the progress of man. In his origin weak, naked, and definceleas, he has not only obtained dominionover all the animate creation, but the rery elcments are made to serve his purpose. Of tha carth he has buit bis honses, and constructed weapons and the impleroents of art; he uses the wind to carry him in ahips and to prepare his food; and when the wind will not guit him he employa fire and water to replace or to resist it. By artificial light he has prevented the inconreniences of darkness; he has stopped and made rivers, and has forced deserta, misrshes, and forests alike to bear his food; he has marked ont and measured the course of the celestial bodies, till he has discovered from them the size and form of the earth that he himself inhmbits.

In intimate connection with his exalted mental codownents is man's peculiar posseasion of language. Other animals are naturally epecch. leas, not from any material difference in the form of their orgsin (for zann can tesch some of them to imitate him), but from their inability tif form those axociations of ideas which are essential to the construction and utterance of words.

The pecalinritien above described will probably be deemed aufficient to juntify the scparation of man as a distinct specics from all others In the nnimal kinglom. In these respects indeed the difference between the lowent man and any animal is far greater than the change whicls any apecica can be proved ur suppored to have undergone in any period of time, and under however varied circumetances; so that if degrees of difference of thia kind conld le measured, there would probably be much justice as convenience in the clasifications of those unturaligh who have neparated man from other numals to the greateat jonable dintance by constituting of the single njecies a separate geous and ordar.

Wo come now to tho consideration of the varintions to which the generul characterintica of tho homan race are nutject.

Varietien in form are of course chiefly referrible to differencea in the ntructure and proportion of the parta of the akeleton, and we find the mont unarked charactera of the different meen in the varied forms of the kkull. Ir. F'richard ("deacarches,' i. 251) refers tho rarieties io the form of the wall to three principal diviniona:-1at. The symnactrical or aval furm, in which are included all thone of the liniloAtlantic, or Imnian, nationk, comprining the countrict from the Himalaga Mommainn to the Iodinn Ocean, inclading the whole of Ilinduntan and the Jecean, as well as l'erain and Arabia; amrl from the Gangen to the imoders of the Atlantic. Including the north of Africa and nearly the whole of Furope. In thin variety the head in rounder than in the othera, the foreliend ta more expaniled, and the upper jow.bonea and rygomatic arches are to formed as to give the
face an oval slape, while it is nearly on a Mane with the forehead and cheek-bones, and does not project towards the lower part. The cheek-bones neither project outwards and laterally, nor forwnrds. The alveolar process of the upper jaw is well rounded and slightly curved vertically, so that the toeth are almost exactly perpendicular. 2ud. The narrow and clongated or prognathous skull, whieh is found in the negroes, the Papuas, Alfourous, New Zealsnders, Australians, nod other neighbouring Occanic nations, and of which the most marked specimens occur in the negroee of the Gold Const. The chief character of these skulls is that they give the idea of latersl compression and elongation. The cheek-bones project forward and not outward. The upper jaw is lengthened and projects forwards, giving to the alveolar ridge and the toeth a similar projection, and thus diminishing the facial nagle. 3rd. The broad and square-ficed, or pyramidal skull, which is that of the Turanian, or northern Asiatic Hations, Samoiedes, linkagers, Koriacs, Tschuktschi, Kamtchatkadales, Tungusians, Chincac, Indo-Chinese, Taugutians, and Japanese, part of the Tartar mee, and of the Fimish nations of Europe, the Esquimatux, the aboriginal Americans, and the Hottentots. The Mongols afford a good specimen of this form, and the Esquimaux an exag. gerated one. Its most strikiug character is the lateral or outward projection of the zygomata, so that lines drawn from each, touching the sides of the frontal bone, will meet ouly a little above the apex of the forehead. The cheek-benes project from under the middle of the orbit, and turn baekwamls in a large arch or aegment of a cirele. The orbits are large and deep; the upper part of the face remarkably plane and flat; and the nasalbones, as well as the apaco between the eyebrows, nearly on the same plane with the cheek-bonea.

The varicties of features dependent on the differences in the form of the frame-work just described will be at once evident. The first variety is distinguished by an evenness and regularity of fentures, an absence of any excassive prominence of one part in proportion to the other, a smooth and gently rounded cheek, compressed and rmall lips, a full and prominent chin, and the whole face of a tolerably regular oval form. It is probable that among European nations the Greeks have displayed the greatest perfection it the form of the head, at lenst according to tho European atandard of perfection. Blumenbach lias described a Greak akull in his collection, which, in the beauty of its form, agrees perfectly with the finast works of Grecinn sculpture, and renders it probable that the latter were actual copies of nature, and not, as some have supposed, ideal compositions, intended to give the expression of exalted intellect or of dignity. The same author describes also the akull of a Georgian woman, equally remarkable for its elegance sud asmmetry, and bays that its form agrees exactly with that of the head of n narble statue of a nymph in the Townley Collection at the Britiah Museum.

The features corresponding with the narrow alongated skull are distinguished by the promincuce of the jaws, from which they acquire a peculiarly ferociousand animal character. The compressed, narrow, and retreating forehend; the scarcely prominent nose, with its wido expanded nostrils; the thick protruding lips, and the retreatiog chiu; the projecting cheeks, and the heary jaws, combine to add to tho characteristica which approximate, though they do not identify, the form of the negro with that of animala.

The fentures of the thisd variety differ gearcely less from the European than those of the negro, but in a different direction. Iustead of the long and prominent face, we here find a face which is broadest transrersely from one cheek bone to the other; and which, as it gradually narrows, both above and below, acquires aomewhat of a lozenge ahape. The nose is flat, the apace between the eyes generally depressed, and the eyes themselves most frequently placed obliquely, with their internal angles descending towards the nose, ronnded and open; the lips large, but not 80 prominent as those of the negro; the chin short, but not retreating under the lips.

But these varicties are not separated by very definite limits. There are numerous instances of negroes remarkable for the beanty and European character of their fentures; and daily observation shows Europeans who, in the narrowness of the aknll, the lowness of the forehead, and the prominence of the jawn, elosely approximato to the negro; while othera in their features resemble the broad and fatfaced Tartars or Chinese. Within cach of these varieties moreover are included numerous sualler divisions, which are certainly, though less prominently, distinct in their features. The varieties of national appearance between the Scotch, English, French, and Germans, for exnmple, are in general diatinguishabie, though it would be difficult to define their differences. Similar subdivisions of chameter exist among all the varieties, and no fill up the intervals between the extreme specimens of each na to form n regular and nearly perfect series, of which the Esquimanx nud negro might oecnpy the extremities, and the Europenn the middle place, between the brond nud high features of the one, and the narrow, clongated, and depressed skull and face of the other.

Jifferences in the chape of the pelvis (on which depend aome important differeoces in the external form of the body) have been often supposed characteriatic of different races of men. lhat from an extencled nerion of observations by l'rofessor Weber, it has been nhown that every form of the pelvin which deviatea from the ordinary type, in whatever race it may most frequently occur, finds its analogues
in other races. He has arranged the various shapos of the human pelris in fuur classes, the oval, the round, the square, and the cunciform or oblong; and he shows that although the first is the most general form in Europeans, the second in the Americans, the third in the Mongolians, and the last in the Africans, yet that specimens of each kind may be found in all the different races.

The chest of the negro is somewhat more expanded than that of the European, the aternum more arched, the ribs larger, and more roundly curved. In general also the negro's fore arm, measured in proportion to his upper arm and to the height of the body, is longer than in the European. The knees of negroes often appear to Eurepeans misshappen, the bones of the leg bending out from beneath them, aud the feet tureed outwards in the manner commonly called splay-footed. The tibia and fibula also are rather more convex than in Europeans; the feet are flat, and the os calcis, instead of being arched, is nearly in a atraight line with the rest of the tarsus; and the gastrocnemii muscles have the greater part of their mass high up in the legs, so that the calves seem to encreach upon the hams. The hands are generally narrow; the fingers leng and very flexible.

It is from these modifications which the negro preseute, and taking extreme cases of each peculiarity, that there has appeared some ground for supposing the negro to form a grade intermediate between the European and the monkey. But there is no character in which the difference between the lowest negro and the highest ape is not many times greater than that between the same negro and the highest European; and in sll the important points of structurs which we have already mentioned the differences which the negro presents are but alight, never amounting to what would be regarded as a specific character amongst the lower animals. The length of the base of the skull, the somewhat more back ward aituation of the foramen magnum, the decrease of the facial angle, and the projection of the teath, depend almost entirely on the prominence of the alveolar process of the upper jaw; and if a slight allowance be made for it, the negro in these points resembles the European. So also, in the prominence of his two ossa nasi, the position of the cranium over the greater part of the face, the equal length and approximation of all his teeth, the full development of the mastoid and styloid processes, which are nearly or quite wanting in all apes, and numerous other essential characteristics, there is no differeuce betiveen the two races. At the same time therefore that it is allowed that the characters of form which the lowngt class of negroes presents are more like those of the monkey than those of the European are, it is certain that the approximation is but slight, and that a rast space is still left between them. It is trus that there coincides with this degradation of ferm a very low degree of intellectual development, but it is not lower than that of the Eequimaux and Hottentots and many of the third variety, who in some respects, as the breadth of the skull and face, are even more distantly removed from the monkeys than Europeans are.

Considerable differences occur in the general stature of the geveral races of mankind. In the temperate climates of Europe the gensral height varies from 44 to 6 feet; the instances in which individuals have fallen far short or have much excecded this atandard are too exceptional to be taken into a gencral account. [Gisist.] Amoag the native iohabitants of America great varicties occur. The Perisvians, the patives of Tiorra del Fuego and of Nootka Sound, the Fisquimaux, and the Chaymas are all described as very diminutive; while the Payaguas, Caribees, Cherokecs, and the natives of the regions jumediatoly north of Canada are said to be generally much above the standard of Europeans. The height of the Patagonians also, though often exaggerated, is yet remarkable ; the most authentic accounts agree that they commonly attain the height of 6 feet, and that they not unfrequently surpass it. The standard of height among the Africans appears about the aame as that of Europeans. The Hottentots are below the general size, and the Bushmen still more so, for among them is feet is said to be the aversge height of the men, and 4 feet that of the women. The Kaffirs on the contrary, the neighbonring tribe to the Hottentots, are distinguished for their height and strength. The people of the north of Asia and the Laplandera and Samoiedes in Europe are geuerally sborter than the inhabitants of the warmer climates, but the Chiness and Japanese, who in other respects much resemble them, are about the sane stature as the rest of the Europeans.

With thess varieties in stature it is interesting to compare the amounts of phyaical power posscssed by differeut nations. The result of all observation has been the exact contrary of popular belief, which ascribes a decrease of physical strength proportionate to the iocrease of intellectual power acquired by cisilisation. The Spaniards in their first intercourse with Aincrica found the natives in general much weaker than themselves; and the inability of the natives to sustain tho sevcre labour of the mines led to the introduction of African slavea, ono of whom was equal to three or four Indians. Hearne and others have found the same feebleness in the natives of various parta of the North American continent, and Pallas in tho Buriats. lint the most exact observatious werc made by leron with the dynamomater upon 12 natives of Van Diemen's Land, 17 of Australia, 56 of the Island of Timor, 17 l'renchunen belonging to the expedition, and 14 Englislomen in the colony of New South Wales. The mean results were as fellows:-
Strength
of the Atms.
Sitrenglh
of the Leias.

The substance on which the varicties of colour in the human race depend, is seated chicily in the soft and most interual layers of the cuticle; the true skin (cutis, derma), is similar in all nations, and the onter hardened layers of the cuticle have only a light tinge of the colour of those beneath them, which constitute what is often called the rete mucesum. [SKIN.] The human complexion depends in part ou the condition of the cutis and its vessels, and in part on that of the cuticle. In white nations, according to the fulness or comparative emptiness of the bloodvessels of the skin, we find all the gradations of complexion, from the deep ruddiness of full health, to the blanched pallor of sicknoss; and in negroes, the same changes are indicated by a greater intensity of the blackness and by a dull leaden hue. These differences however chiefly characterise individuals; the national variations depend rather on the cuticle. A thick and opaque though celourlcas cuticle, obscuring the blood of the cutis, assists greatly in giving that deadness of bue and phlegmatic aspect which distinguishes some Europeans from others who with a thinner and more translucent epidermis are marked by a florid ruddy complexion. As the cuticle becomes darker in colour, it obscures more completely the colour of the blood in the subjacent tissue, and hence it is only in nations of light complexion that sudden blushing or paleness is at once perceptible.

With the varietics in the colour of the akin there generally coincide analogous differences in the hair and eyes. It is probable indeed that the colouring matter is the same in all; being coubined in the cuticle with its peculiar cells and scales, in the hair with a horny substance, and in the choroid membrane and uvea with their minute roundish particles.

Dr. Prichard refers all the differences of complexion in man to three principal varieties :-1. The Melanocomous, or black-haired, which is the complexiou generally prevalent, except in the northern parts of Eurone and Asia. The ceincident colour of the skin varies from a deep black, as in some Africans, to a much lighter or more dilute shade. In the copper-coloured nations of America and Africa the dusky hue is combined with red, while in the olive-coloured races of Asia it is mixed with a tinge of yellow. In iutensity of colour there is every abade from the black of the Sauegal negro to the light olive of the northern Hindoos, and from the latter there may be traced every variety of shade among the Persians and other Asiatics, to the complexion of the swarthy Spanisrds, and of black-haired Europeans in igeneral. 2. The Leucous, or Albino variety, examples of which occur in all countries [Albivo], but perhaps most frequently in hot climates. They are distinguished by the total absence of the colouring matter of the cuticle, hair, and eyes; hence their shin is of a milk-white or piokiah-hue, the hair silky-white or at most yellowish, the iris rosy and the pupil intensely red. 3. The Xanthous, or yellow-haired variety, which includes all those individuals whe have light-brown, aubure, sellow, or red air. Their general complexion is fair, acquiring on exposure to heat and light not a brown hue, but mere or less rf a red tint. The eyes are light-coloured. This is the variety most prevalent in the temperately cold regions of Europe and Asia, whose climate seems peculiarly favourable to the constitution of body connacted with it. This variety may apring up in any black-haired tribe; as it bas in the Jews, who, though generally black-haired, present many examples of the light fair complexion and reddish hair. Dr. Prichard also adduces ('Researches,' \&c., i. 228) ample evidence that iustances of this variety occur not only among the Greeka, Romans, Russians, Laplanders, Tartars, and other melanocomens races of the least swarthy shade, hut among the Egyptians, African negroes, and the islanders of the Pacific. The majority of these last cases have becu confounded, under the term of white negroes, with the real Albinos; but they differ from them in the more ruddy hue of the skin, the colour of the iris, the blackness of the pupil, and the flaxen or red colvur of the hair.

Other varieties besides those of colour occur in tho skin and its appendages. The akin of many tribes of negroes is peculiarly sleek aud oily, from the abundance of sebaceous and perspiratory secretion. From many also there is emitted a peculiarly strong odour, and Humboldt says that the Peruvians cau by the sense of amell alone distinguish the Europen, the American Indian, and the negro. The cuticle of the dark tribes is thicker and coarser than that of white uations, and, from the greater difficulty of separating the latter into two layers, it has becn imagined that there is no rete muoosum, or aoft cuticle, in Europeans. The hair also varies almost as much in it.s texture as in its colour. Its chief varieties are observed in the copious, long, saft, and more or less curly hair of various colours in the European; the strong, straight, and scanty hair of the South Sea islanders; and the black, fiue, wiry, crisp hair of the negro. A very general characteriatic of the darker-coloured nations is aither an entire want of beard, or a very soanty one devcloped later ia life than in tho
white race. Mr. Lawrence ('Lectures,' 272) has adduced proofs of thit in the Mongoln, tha Chinese, Inpanere, Malaya, South Sea Ithandera, negroes, nod the lndians of North and South America; but the fact has leen somewtint obscured by the practice, which is generally provalent among these natione, of extirpating the little hair which they have.

In the performance of tho several functions of the economy, it has not get ajpeared that any fixed diffreuce exists in the several races of nen, except in cases in which the variation is due to the difference of climate, and occurs alike in all races when aubjected to the same infuences. In jhysical cudowments also, however great may be the distance between the degrees of iutelleetual and moral elevation possessed by civilised and uncivilised mationa, yet there is sufficient evidence to pruse that in all there may be traced the arme mental endowments, similar natural prejudices and impressions, the same councionsuess, eentiments, syapathies, propensities, in short a common phypical uature, or a common mind. (l'richard. ' lesearchea.')
This accordance in the physiological and psychical properties of all nations affords ofe of the strongest possible arguments in favour of the whole human mee being but one sjecies; for, as Dr. Prichard observes, "the physiological characters of race are liablo to fers and unimportant rariations;" and tberefore when we find that in a number of individunls spread over the greater part of the globe no other differences occur, either in the average length of life, or the extreme length oceasionally attained, in tho periods of gestation, of infaney, of puberty, and of other changes in the economy, or in tho habits, inatincts, affections, and intellectual faculties, than may bo fairly attributed to the differences of external circumstauces, it may be at ouce concluded that they are all members of the same family, and the ofispring of one common atock. This argument receives support from the fact that in many animale, of which from their forms aloue it might be difficult to determino whether they helonged to the same or different species, n diversity oceurs in their physiological charncters. Thus the wolf and dog, though iu many otber respects closely resenbling each other, differ in the period of gestation, the she-wolf earrying ber young ninety days, sad the bitel (of whatever sariety) ouly sixtytwo or sixtr-three. In like manner the dog is strongly distinguished from the wolf in his ioclination, which in cererywhere observable, to associate with man; and the fox, from both the wolf aud dog, in his molitary labite. Yet in form these three agree so dearly, that some naturilinta have deemed them to be the aame apeciea. Similar differences may bo ohserved in the ox kind, between the domesticsted ox and the bison and buffalo, which, though nearly related to him in form, are totally opponite in disposition and habits. So also the most marked differences between the sheep (iu all its varieties) and the gont are to be found in their instincts and cousequent modes of life; and no on through numberlens other iuntances, all tending to prove the permanence of physiological and paychical charactera iu each speeies, and their comparative independeaco of those influeuces by which modifications in formand colour are produeed.
It is necensary however to show that the atructursl differences which reem to diatinguish so elearly the several nstious of uaukind coincide with aimilar variationa io other animals which are deacended from a common stock. Such variations occur capecially in animals which have been domesticsted, and thua subjected to influcnces in many rexpects nalogous to those under which man has fallen in the progress or decline of civiliantion. No one, for examplo, will be inclined to deny tbat the varicties of dogs (which, nccording to Professor Owen, are unfloubtedly all of ono apecies) preseut far grenter differcuces in form and colour, and in some parta of their hahits and instincts, than any that nre observed in man. And it is worthy of observation that in the mot highly doracsticated races, as the epaniel, the craniom is more fully dereloped, sud receden further from the form of the skull proper to the wolf, than in those which are less cultivated, as the mastif. In this we can trace a serica of varictice very analogous to those of the monkey, the negro, and the highly civilised Earolenn.
The racen of swine present even more remarkable inntances of variation, which have Leen particularly deseribed by Blumenbaeh. ("Destrige xur Naturgench.'). It in certain that these all deacend from the wild bonr; nud it is equally certain that awino were unknown in America till carried there ly the Spminaris. Yet in that country they have already degenerated iuto breeds very different from each other and from their of iginal. Thoso taken to Cubagua became a race with torn half a span long, and those of Cuba became moro than twieo ns large an their progenitore. In Normandy the awine are remarkable fur the lerigth of the bone of the hind leg. Swine with aolid hoofo were kiown to the anciente, and large breeda of them aro found in Hungary and sweden. In rome alao the hoof is divided into five clefte. in Giuisea they have long ears conclied upon tho back; in Chiua, n laree jendant belly and very ahort lega; nt Cape Verd and other placen. very large curved thakn. Than then in one apecies we find changen even greater than thone which occor among tnen; and as to the meast important, blumenlach asya that the whole difference between the cramina of the nigroand that of a Furopean ia by no meana greater than that whieh exinta between the craninu of the wild boar and that of the doumatic awine. An examination of the different breela of alimp, horach, roen, gonta, cata rablita, and atill more of dorentic fowl, would in like wamer thow that all these sjeceen, even
while under observation, aro subject to greater variations than are found in the different races of men.
In respect of colour, a perfect analogy holds between the varieties of domestic animals and those of men. In all thone ouumeratod above examples occur of the melanocomous, leuoous, and xanthoua vsrietics springing up casually or existing constantly in particular breeds Thus oven in England the cattle of different oounties may be reeognised by their oolour as well as their forms. Azara romarks of the horsoa and oxen of Paraguay (where both speciea have run wild and multiplied very rapidly), that while all those that are domesticated vary considerably in colour, those that are wild have all the same colour; the horses a chestnut or bsy-brown; the oxen reddishbrown on the lack, aud black on the rest of the body.
Tbe analogy between the varintions to which domesticated (and more rarely wild) animals aro subject, and those which are observed in meu, is a strong argument for the unity of the human apecien. Another which possesses much weight is drawn from the propagation of the several maces. It is well known that among all other animala the hybrid produetions of parents of different species are either quito barren or so little prolific that they soon become extinct, and that au intermediste race csunot be maintained even to the second generawion without a return to the pure blood of one or other parent. On the other hand it is observed smong domestic animals that tho progeny of different varieties of the same opecies exceed in vigour, and are even more prolifio than their psrents; so that intermediate races are spt very soon to become more numerous than the originals from which they sprusg. Exactly the same principle holds in the human race. All nations propagate together with equal facility, and Dr. Prichnrd has shown that the progeny of parents of different nations have in many instances exceeded those from whom they eprang in vigour and in the tendency to multiplication.
What may be the precise nature of the influences which inve caused so much difference to exist betwoen the individuals of the human race we are unable to say; but instances are constantly occurring, which seem to show us how possible it is that all the varieties of human beings have occurred in a common family. Even amongst the races of our own islaud, when exposed to circumstances which deprive them of their usual nutriment and means of developing the civilising instincts of mankind, we find that they sink in eharactor, and become physically degraded to a level with races whose festures at first sight are very far removed. We need but to travel across the Irish Channel to see many groups of our Celtic fellow-subjects, who have been reduced by famine and disease to a degraded condition closely bordering on that of these sarages.
Although the colour of the skin and the character of the hair give no very deeided an appearauce to many of the races of man, yot there is on reeord a great number of cases, in which individuals, with hair and akin of one colour, have given birth to ehildren with hair and ekin of another eolour and character. Dr. Prichard enumerates a great number of iustances of individuals with yellow hair and fair akin, smongst tribes with dark hair and skin ; nnd iu the tempernte regions of Asin whole triber, ovidently dercended from dark-coloured racea, presented the light colour. The Jews appear to have been originally a dark-skinned and woolly-haired race ; but it is well known that the Jews of Europe very frequently present the oharacteristica of the lightest eoloured races. On the other hand we bave oonstantly indlvidusis born of whito parents having woolly hsir, a dark akin, and other approaches to the black varieties of men. Even whole nations, as the Gerinans, lasve presented a tendency to become darker.

There is nlso cvidence to prove that oveu the forms which the bonem of the head assume anaongst differeut natione are not fixed. Amongst the most highly developed races, having the most perfeet forms of skull, we constantly see individuals with the projecting maxilla, which is prevaleut amongst the lowest tribes; whilst, on the other hand, individuals are often eceu among tho least civilised races presenting forma of the skull appronching those of the most cultivated nations. Facte suel an these are constautly accumulating, and clearly polat to the derivation of the human race from one pair.

A very uatural question arises here as to whother we have any patural history cvidenee as to tho length of time man has existed on the surface of the earth. Recent inquiries into the history of the humau race have resulted in confirming the view of the comparatively modern origin of the race, and diaprored the statements of those who, relying on fabulous accounts of documents in the posseasion of the Chimese nad Hindoon, have given to the human race an nbsurd antiquity. Gcolagy reveals to ue very clearly tho fact, that man has not been created from the earliest period at which animal and vegetable life have appeared on the surface of tho earth. Geologints cma point to strata which were sueccissively deposited at tha bottoms of oceans and great rivera, and which present, for a long succession of ages, no evidence of the existence of human beinga. There rocks unfold a condition of the earth's surface by which this world was gradually prepared to receivo its highent suif most potent inhabitant-manl Eatiwates havo been formed ly Sir Charles Lyell and others of the periods of time required for thie production of certain changes upon the earth's surface; and comparing geological changes with the evidences of theexintence of man, ill the principles of the seience of geology support the notion, that man is one of the most recently
created beings upen the surface of the earth. The same evidence is also in favour of the eupposition that many of the animals and plants by which man is surrounded st the present moment are contemporaneous creations with himself. What the exact date of man's creation is science cannot answer. Dr. Latham has however shown that the arguments raised in favour of a much higher antiquity than is given in the books of Moses, from the civilisation of the Chinese, are of no value; and he has also pointed out, in his 'Varieties of Man,' that the civilisation of the Chinese is much more modern than the Chinese believe.
It bas only been within these last few years that the importance of employing the langusge spoken by man has been fully appreciated as a means of affording characters by which our knowledge of the relstions of the races of men might be facilitated. It will be however speedily felt, when the nature of language is considered, that if properly studied it must be capable of threwing grest light on the relation that exists between certain races and nations. The great cause that has retarded the application of the study of language in this direction hss been the assumption of erroneous views with regard to the derivstion and origin of languages. Thus, to take an example, writers on the English language have constantly assumed that our language has been derived from the Latin and Greekon the one hand, and the Celtic or supposed ancient British on the other. It never occurred to the old etymologist to inquire whether Latin, Greek, Celtic, and English might not all have been derived from a common stock, which is really the case; not that we hare net, and do not constantly import words from both Latin snd Greek-s8 such words as 'communicate,' 'investigate,' and 'condempation,' from the former, and 'geology,' 'anatomy,' and 'ethnology,' from the latter, fully testify; but we find a vast number of words in Latin and Greek which correspond as much with words in the Sauscrit and Persian as they do with the English; and a complete investigation of the subject shows that the English, German, French, Celtic, Lstin, Greek, Persisn, and other languages, are but branches of a common root, which has hitherto been traced to the Sanscrit.

Although modern philologists have succeeded in tracing cognate languages to certain primitive etocks, they are not yet in a position to demonstrate thst there was but one original language, or what was the probable nsture of that language. But if, as we have seen, there is reason to believe that the human race originated in a single pair, we must assume an original language, or at least such modes of expression as would originate in a common family. In the investigatien of language however, for ethnological purposes, we are not allowed to assume one language, and trace its roots through all known varieties; but we proceed from particular forms, and, comparing them with one snother, ascend or pass back in time to those that were eariier, and have been parents of the first.

This process, although st firat sight it might sppear easy, is one that only can be pursued according to the specisl laws of chauge which it is known words in passing from one language to snother have undergone. It appears that as long as a language is unwritten, it is subject to change; but these changes, although they go on more or less quickly according to circumstances, sre never sudden, violent, or arbitrary. As an instance of the kind of change that takes place we may quote the fact, that in the Teutonic languages the letter c of the Latin is almost invariably converted into h. Were it not for a knowledge of this fact, an inquirer would find it difficult to discover in the Latin word cor the analogue of our word 'heart;' yet when we call to mind the regularity of the conversion, the little importance of the vowels in all spoken languages, we shall see that the r with its preceding letter constitutes the true root of the word. This brings us to another point in the study of words, and that is, that for the sake of denotiog a relationship, letters and syllables aro either placed after or before certain words, called prefixes and affixes, and in order to discover the root of these words, it is necessary to separate such additions. In such Latin nominatives as cani-r and lupu-s, and accusatives, as cane-m and lupu-m, the last letters s and m are no essential parts of the word, but indicate the relations of the word to which they are attached to other words in a sentence. So with such words as ama-bam, mon-e-bam, audi-e-bam, the syllables $b a$, or $e b a$, are the sign of the past imperfect tense, whilst the letter m is the sign of the person or pronoun I. The root of the nouns then, in these cases, must be sought in the words cani and lupu in the nouns, and ama, mon, and audi amongst the verbs. As illustrations arnongst the adjectives, we may take such words as gracilis, similis, docilis, utilis, in which ilis is evidently the sign of the adjective, and the root is to be found in the words grac-, sim-, loc-, and ut-

In ascertaining the relation of languages to each other, there are three principal methods by which the relation between the different words that compose a sentence is indicated. Of these three different methods, the Chincse, the English, and the Latin and Grcek, may be taken as examples. In referring to the roots of words in Lativ, we spoke of the prefixes and affixes which altered their form; and this mode of expressing the relation of words in a language is characteristic of the Latin and Greek languages, and is called the classical method. The words added are called Inflections, and such languages Inflectional. In such a proposition as te-tig- homin-em, the $e m$ in the last word indicates the relation between the object (the man touched), and the action
expressed by the verb tetigi, that is, 'of touching.' Iu the verb the te denotes the time, the i the sgent.

Now, although the English lsnguage has inflections, as is seen in such words as ' sister-s,' ' touch-ed,' 'lov-ed,' yet, as a language, it may be regarded, in contrast with the classical languages, as non-inflectional Thus, instead of saying tetigi, we say ' I have touched;' and instead of homin-i, we say 'to a man.'
The Chinese resembles the English language in this respect, that it has a separate word to express relstions and objects, aud is thus noninflectional. The great difference however between the English and Chinese languages is this, that the English has lost inflections which it once had, whilst the Chinese has never acquired infiectious. This produces a great differeace between the two languages, as in passing through the condition of an inflectionsl language the English has acquired certain abstract terms which are not found in the Chinese. Thus, wheu we should say ' I go to London,' the Chinese would say 'I go end London.' They have no preposition indicating direction. Instead of saying, 'The sun shines through the air,' the Chimese say, 'The sun shines passage air,' and so on.
In addition to these three kinds of language, we have another. Instead of the inflections being merely letters or syllables added to denote relationship, they sre sometimes two words; so that inflection is developed as the result of juxtaposition, or composition.

By these methods we can arrange all languages under the four following heads :-

1. Aptotic (from a, not; and ptosis, a case).-Languages without inflections, and monosyllabic; as the Chinese.
2. Agglutinate.-Languages which are inflectional, but which have become so from the juxtaposition or composition of different words.
3. Amalgamate.-Lsaguages with inflections, which cannot be shown to have originated in separste and independent words.
4. Anaptotic (from ana, back; and ptosis, a case).-Languages which, like the English, once possessed inflections, but have fallen back from or lost them.

In classifying the rsces of men, it must be remembered that the divisious and subdivisions which are employed do not reaemble those Which are used in the systemstic classification of plants and animals. When the whole of the species of the vegetshle or the animal kingdom have to be arranged, then we divide them into various primary and subordinate groups, which are called clasees, families, or orders, genera, species, and varieties. Now man himself is but a species; he belongs to a subordinate group of a large division of the animal kingdom. Zoologicslly considcred, man is an snimal belonging to the class Vertebrata, the order Mammalia, the sub-order Mominida, the genus Ilomo, and species supiens.

The chsracters of this species given by Blumenbach, snd generslly received, sre:-"Erect, 2-hsuded, unarmed, rational, endowed with speech; a prominent chin; 4 incisor teeth above and below; all the teeth equally approximated; the canine teeth of the ssme length as the others; the lower incisors erect." The same author divides the species into five varieties, whose charseters sre as follows (Lawrence, 'Lectures,' p. 477) :-

1. Caucasian Variety.-A white skin, either with a fair rosy tint, or inclining to brown; red chceks; hair black, or of the yarious lighte: colours, copious, soft, and generally curved or waving. Irides derk in those with brown akin; light in the fair or rosy complexioned. Large cranium with small face; the upper and anterior regions of the former particularly developed, and the latter falling perpenuicularly under them. Face oval and straight, with distinct features; expanded forehcad, narrow and rather aquiline nose, and small mouth; front teeth of both jaws perpendicular; lipa, particularly the lower, gently turned out; chin full and rounded. Moral feelinge and intellectual powers most energetic, and susceptible of the highest development and culture. This variety includes all the ancient and modenn Europzans except the Finus; the former and present inhabitants of Western Asia, as far as the river Oby, the Caspian Sea, and the Ganges (that is, the Assyriane, Medes, and Chaldxans; the Sarmatians, Scythians, and Parthians; the Philistines, Phoonicians, Jews, and the inhabitants of Syria generally; the Tartars, properly so called; the tribes actually occupying the chain of Caucasus; the Georgians, Circassians, Mingreliaus, Armenians; the Turks, Persians, Arabians, Afghans, and Hindoos of high castes); and the northern Africans, the Eryptians, Abyssiniaus, and Guanches.
2. The Mongolian Variety.-Characterised by olive colour, which in many cases is very light, and black eyes; black, straight, strong, and thin hair; little or no beard; head of a square form, with small and low forehead; broad and flattened face, with the features running together; the glabella flat and very broad; nese small and flat; rounded cheeks, projecting exterually; narrow and linear aperture of the eye-lids; eyes placed very obliqucly; slight projection of the chin; large ears; thick lips; stature, particularly in the countries near the North Pole, inferior to that of Europeáns. It includes the tribee of Central and Northern Asia, as the Mongols, Calmucks, and Buriats; the Mantchoos, Daüriaus, Tuagooses, and Coreans; the Samoiedes, Yukagers, Koriacs, Tschuktschi, and Kamtchstkadsles; the Chinese and Japanese, the inhabitants of 'Tibet and Bootan, of Tonquin, CochinChina, Ava, Pegu, Cambodia, Laoa, and Siam; the Finnish races of Northern Europe, as the Laplanders and the tribes of Esquimaux.
3. The Fithiopian Variety,-Skin and eyes black; hair black and woolly; kkull compressed laterally, and elongated towards the finnt; furchead low, narrow, and slanting; cheek-bonea prominent; jawa narrow and projecting; upper front teeth oblique; chin receding. The eyes prominent ; the nose broad, thick, flat, and coafused with the oxtended jaw; the lipa, aud particularly the upper one, thick. All the natives of Africa, not included in the first variety, belong to this
4. The American Varicty.-Skin dark, and more or leas of a red tint; black, atraight, and ntrong hair; amall beard; and a counteuance and skull very aimilar to the Nougolian. The forehead low; the eyes deep; the face broad, mrticularly across the eheekn, but not so flattened nx ia the Mougols; month large; aud lips rather thick. This rariety includes all the mative Americaus except the Esquimaux.
5. The Malar Varietr. - Brown colour, from a light tawny to a deep brown. Hair black, nore or less curled, and abondant; head rather narrow ; lones of tho face large aad prominent; nose full, and broad towaria the apex; moutla large. In this are included the inhanbitants of Malacer, of Sumatra, Jara, Borneo, Celebes, and the adjaeent Asiatic inlanda; of the Molucca, Ladrone, Philippine, Marian, aud Caroline groups; of Australia, Van Diemea's Land, New Guinea, New Zealand, and of all the islands of the South Sea.

Cuvier distinguished only three principal divisions--the Caucasian, the Mongolian, and the Ethiopian; remaining doubtful as to the Malay und American varictica. Dr. Prichard, on the other band, divides the species into seven principal varieties:-1, the Iranians, who in the form of their akulls and other physical characters resemble Europeana, in which are included, as before detailed, all the Caucasian variety. 2, the Turanian, who are nearly the same with the Mongolians of other writers. 3, tho native Americana, except the Esquimaux and aome others resembling them. 4, the Hottentots and Bushmen. 5, the Negroes 6, the Papuas, or woolly-baired nations of Polynesia. T, the Alfourou and Australian races.

The following is the arrangement, with the defiuitiona given by Dr. Pickering, au Amcrican traveller and writer, in his work'On the haces of Meu:-
a. White.

1. Arabion.-The nose prominent, the lips thin, the beard abundant, and the hair atraight or flowing.
2. Abyssinian.-The complexion hardly becoming florid, the noee prominent, and the hair crisped.

b. Brown.

3. Mongolian.-Deardless, with the hair perfectly straight and very loug.
4. Hottentot.-Negro features, and close woolly hair; and the stature diminutive.
5. Malay.-Features not prominent in the profile, the complexion darker than in the preceding raees, nud the hair straight or flowing.

c. Blackiull-Brown.

6. Papuan-Features not prominent in profile, the beard abundant, the skin laarsh to the toueh, and the hair crisped or frizaled.
T. Negrillo. - Apparently Luardless, the stature diminutive, the features approaching those of the negro, and the hair woolly.
7. Indian, or Telingan.-The features approaching those of the Arabian, and the hair, in like manner, gtraight or flowing.
8. E'thiopian.-The complexion and features intermediate between the Telingan and Negro, and the hair crisped.

d. Black.

10. fustralian.-Negro features, but combiued with straight or fowing lasir.
11. Vigro.-Close woolly hair, the nose much flattened, and the lipe very thick.

The most recent writer and greatest authority on the races of men is Dr. II. G. Lathan, who, in his work on the 'Varicties of Man, propose the following arrangemeut. In the first place, like Cuvier and other previoun writern, be alopts lant three priunary varieties of the luuman species:-

I. Mongolider. II. Allantider. III. Jopetide.

The termiaation in 'idx' employed hero scema preferable to the lise of terma such as clase, order, fatnily, tribe, or other words which have another use, either in thin or viler departmente of natural hintory. It must not howover be nupposed that by usiug these terma any of the varieticn of man can be traced up to common aucestry, so that we could asy all the Monyolide originated with this man, or all the Aflantider with that man. In traclag buck races we bave wo crinlence no conclusire that any particular varicty originated with a partienlar bair of human beinga, ns wo have that all the families of mankind havo originated in a single pair. The terma Mongolide, A llantider, and Jopedider are not derifed from a community of meauing in the things they express. Thus, the firat comes from a nation, the Mongole, who occupied a portion of eastern Asia, and were at one time the conquerora of the world, and are regarded an typical of a large portion of the human mec. The Atluntide are entircly found
in Africa; henoe their name. The Japetida inclade the races of men in Europe, who are traditionally deacended from Japheth; hence the name selected to express them.
I. Moncolids.-The people comprised under this variety have the following phyeical conformation:-The face is hroad and flat, which cither arises from the great development of the xygomatio srehes, or from the distance between the parietal bones on each side of the head. There is often also a great depression of the nasal bones, which contributes to give a dat nppenrance to the face. The profile of the forehead is retiring or depressed, seldom found perpendioular. The profile of the jaws is prograthic or projecting, seldoun found on a level with the forehead. The eyes frequently present the peculiarity ealled ohlique. The skin is of a mixed character, never truly white, and very rarely of a jet-black; still it often presents what would be called a black or white colour. The eyes nre geverally of a dark colour. The hair, as a gederal rule, is atraight, long, and black; in some ingtancen it is curly-rarely woolly-and more rarely still lightcoloured.

The languagea of the people belonging to this variety are either characterised by the abseace of cases (aptotic), or having inflactions, they can ba ahown to have arisen out of the union of different words (agglutinato). They are very rarely amalgamate.

The distribation of this variety is vory wide over the surface of the earth. It finds its greatest development on the continent of Asia; although even there it is found not to be entire possessor of the earth. The Persians of northern and weatern Persia, the Kurds, the Beluchi, the Afghans, the Tajika of Bokhara, and the Siaposh must all be regarded as belonging to the Japetides. On the other hand, although we ahall find the Japelida the principal occupants of Europe, there seema to be little doubt that the Lapps and Finne of Scandinavia, the Magyare of Hungary, the Turks of Turkey, the Basques or Euskaldunes of Biscay and Navarre, and probably even the Albinians or mountaiueers of ancient Illyria and Epirus, all belong to the Mongolida.
From the analogy of language this variety is made by Dr. Latham to include the whole of the inhabitants of the Polynesian Islanda, as well as those of Americe. Although at firet sight the physical differeuces between the Asiatic Mongolida and the inhalitante of the ialsands of the South Seas and the contineat of A merica might look as great as that between many of the Mongolide and Japetida, yot it has heen found that even physical characters fail to afford a line of demarcation. Thus, the late Dr. Morton, of America, thought that "the squared or rounded head, the flattened and vertical occiput, the high cheok-bones, the ponderous maxills, the large quadrangular orbits, nnd the low receding forehead," were characters that would distinguiah the American from all other varieties. When however we examine the languages of the American continent we shall find that the Esquimaux present so strong a relation to that of the other racea that we cannot deny their affinity to the American races; and it is amongst the Esquimaux thet we find a departure from the phyaical type of a peculiar American form, and a strong relationship with the Asiatic Mongolidec. It is considerations auch as this which have induced recent ethnologiats to regard the American Indian as a form of the variety of mankind to which the fotlowers of Genghia-Khan beloug.

The influence of the races included under the variety of Mongolide must be regarded as rather material than moral. They uadoubtedly form by far the larger portiou of the human race, and occupy a congiderable apace in the history of the world. They have, by the aword, establighed some of the largest empirea that the world has seen. China is at this moment an example. Their empires havo however crumbled to pieces, aud left no deep impression on the world. Such is not the history of the Atlantida and Jopetidar, the first of which includes the Jewa and the Mohammedaua, and the last the Greeks, Romans, and modern European races.

The Mongolida are divided by Dr. Latham into groups ns follows:-

A. Allaic Mongolide.-The term Aitaic is taken from the Altai Mountains in Central Asia, these being a convenient geographical centre for the different nations and tribes comprising this division. It embraces two stock: the Suriform, and the Turaniau.
The Seriform atoek has the phyaical coaformation of the Mongol, and its languagea are either wholly aptotic or with only the rudimants of an inflexion. The area inhalited by these people is China, Tibet, and the Indo-Chineso or Trana-Gangetic Peninsuln as far ay Malaya; the Himalayna and parts of the Sub-llimalayan range of mountaing.

In this stock the chief people are Chinese, Tibetana, Anamese, Sinmese, Kamboginas, Burmese, the Indu; and soveral unplaced tribes are added by Dr. Intham.

The Turanian stock has the phyuical couformation of the Mongols, the languages are not monoayllabic. They are fouad from Kamtchatka to Norway, and from the Arctic Ocean to the frontiers of Tibet and Iersia. The countries included nre the northern parts of the Chinese empire, the greater part of Siberia, Mongolia, Tartary, Eastern Turkistant, Abia Minor, Turkey, Hungary, Esthonia, and Lapland. They are divlded into four groupa:-

1. Tho Mongolian branch, includiug the Mougols proper, the Buriats, the Kalmuks of Ruseia, and the Eimak of Persia.
2. The Tungusian branch including the Tshapojirs on the Lena, the Lamuts on the Sea of Okhotsk, and the Mantsho rulers of China. 3. The Turk branch : this includes the Uighurs, the Turks of the Sandy Desert, Turks of Khoten, \&c., the Kirghis, Uzbeks, Turkomans, Osmanli, Nogays, Turks of the Russian empire, and the isolated Yakuts of the Lena.
3. The Ugrian branch includes the Vogula, the Permians, Tcheremiss, Fiulanders, Esthonians, Laplanders, and Hungarians.
B. Dioscurian Mongolida. - The term Dioscurian is taken from the ancient sea-port Dioscurias. The tribes included in it have a modified Mongol organisatiou, the languages are (paucosyllabic) few. syllabled and agglutinate. Of all the languages not belonging to the Seriform stock of the last section they approach nearest to the aptotic state. They embrace-I, the Georgians; 2, the Lesgians; 3, the Mizjeji ; 4, the Irôn ; and 5, the Circassians.

Of this group, Ir. Latham observes, "To have used the word 'Caucasian' wonld have been correct, but inconvenient. It is alrealy misapplicd in another sense, that is, for the sake of denoting the so-called Causasian race, consisting or said to consist of Jews, Greeks, Circassians, Scotchmen, ancient Romans, and other heterogeneous elements. In this sensc it bas been used in more than one celebrated work of fiction. In such and in such only, it is otherwise than out of place."
C. Oceanic Mongolide. - The epithet Oceanic is applied to this group, because, with the exception of the peninsula of Malacca, the tribe belonging to it are the inhabitants of islands exclusively. With the exception of Mlauritius, the Isle of Bourbon, Ceylon, the Scychelles, the Maldives, and the Laccadives in the Indian Ocean, and the Japanese empire, with the islands to the north thereof iu the Chinese Sea, every inhabited spot of land in the Indian and Pacific Oceans is inhabited by tribes of one and the same race which are embraced by this division. Not only is this race to be found spread over these islands, but apparently nowhere elso. "In the peninsula of Malacca," says Dr. Latham, "and on no other part of the mainland of Asia, is an oceanic tribe to be detected." Although united by Dr. Latham, oceanic races exhibit two types., One class is yellow, olive, hrunette, or brown, with long, black, and straight hair. Another class is black rather than yellow; the hair is sometimes long and straight, but in other cases crisp, curly, frizzy, or even woolly, The social, moral, and intellectual difference between these two classes is not less than their physical. The black division inhabits New Guidea, Australia, Tasmania, Now Ireland, aud the islauds between it and New Caledonia. The brown division occupics all the rest of the oceanic area, Sumatra, Borneo, Java, the Moluccas, the Philippines, the South Sea Islands, the Carolinas, \&c. The names given to these divisions are as follows :-
I. For the lighter-complexioned straiglat-haired type-Malay.
2. For the type that partakes of the character of the African negro inhabiting New Guinea, Australia, and what may be called the continuous localitics for the unmixed black-Negrito.
3. The tribes with any or all of the Negrito characters, dwelling side by side with Malays in Malay localities, or in localities disconnected with the true Negrito area-the blacks of the Malayan area.
D. Hyperborean Mongolide. - The physical couformation of this section is that of undersized Mongohians. Their languages are agglutinate, neither monosyllabic, nor paucosyllabic. They are all subject to cither Russia or China Their religion is cither Shamanism or an imperfect Christianity. They are found on the coasts of the Arctic Ocean, and the courses of the Yenisei and Kolima. The principal dirisions sre the Samoides, the Yeuiseians, and the Yuknhiri.
E. Peninsular Mongolider. - This section comprises races very widely distributed. Some of these lie within the arctic circle, others as far south as $26^{\circ} \mathrm{N}$. lat. Their physical conformation is Mongol. Their languages are agglutinate, and in some cases excessively monosyllabic. The area occupied by these races are the islands and peninsulas of the north-eastern conat of Asia. The people embraced in it are the Foreans, the Japanese, the Aino, the Koriaks, and the Kamtchatdales.
F. American Mongolule. - This section embraces the origimal inbabitants of the whole continent of America. By most writers on ethnology, the races of Anmerica are regarded as a distiuct family. Their connection with Mongoliche sems however to be established by the Kiskimo, who are plysically Mongol and Asiatic, but philologically American. Of the Eskimo Dr. Latham remarks:-
"Unimportant as are the Fiskimo in a political and historical vicw, their peculiar geographical position gives them an importance in all questions of ethnology; since one of the bighest problems turns upon the affinities of this family.
"It has long been known that the nation which inhabits Greenland and Cabrador is the nation which inhabits the north-wegtern parts of Itusian America as well. It is found on the American side of Behring's Straits, and it is found on the Asiatic side also. So thast the Fskimo is the only family common to the Old and New World; an important fact in itself, and one made more important still hy the Lskimo localities being the only localitics where the two continents come into proximity. Now if these facts lad stood alone, unmodi-

NAT. HIST, DIV, VOL. IH.
fied by sny phenomena that 'detracted from their significance, the peopling of America would have been no more a mystery than the peopling of Europe. Such however is not the case. They neither staud alone, nor stand unmodified. The reasous that lie against what is at the first blush the common sense answer to the question 'How was America peopled ?' are chiefly as follows:-
"I. The distance of the northeastern parts of Asia from any probable centre of population-cradle of the human race, so called. For these parts to have beeu the passage, Kamtchatka must have been full to overfowing before the Mississippi had beeu trodden by the foot of a human being.
"2. The physical differences between the Eskimo.and the Americau Iudians.
" 3 . The difficulties presented by the Eskimo language.
"It is only these two last reasons to which I attribute much validity. The first of the three I put low in the way of an objection; that is, not much higher than I put the systems founded upon the Icelaudic and Welsh traditions, the drifting of Japanese junks, and the effects of wiuds and currents upou Polynesian canoes. Without at present doubting whether the occurrences here alluded to bave happeued siuce America was peopled by the preseut race, I limit myself to an expression of dissent from the doctrine that by any such unsatisfactory processes the original population found its way; in other words, I believe that our only choice lies between the doctrine that makes the American nations to have originated from one or note separate pairs of progenitors, and the doctrine that either Behring's Straits or the line of islands between Kamtchatka and the peninsula of Aliaska, was the highway between the two worlds-from Asia to America, or vice versâ. I say vice versâ, since it by no meaus follows that because Asia and Anerica shall have been peopled by the same race, the original of that race must necessarily have arisen in Asia; inasmuch as the statement, that the descendants of the same pair peopled two contiuents, taken alone, proves nothing as to the particular continent in which that pair first appeared. Against America, and in favour of Asia, being the birtliplace of the human race-its unity beivg assumed-I know many valid reasons; reasous valid enough and numerous euough to have made the notion of the New World beiug the oldest of two a paradox. Nevertheless I kuow no absolutely conclusive ones. Omitting however this question, the chief primafacie objections to the view that America was peopled from nortlieastern Asia lie in the-
"1. Physical Differences between the Eskimo and the American Indian.-Stunted as he is in stature, the Eskimo is essentially a Mongol in physiognomy. His nose is flattened, his cheek bones project, his eyes are often oblique, and his skin is more yellow and brown than red or copper-coloured. On the other hand, in his most typical form, the American Indian is not Nongol in physiognomy. With the same black straight hair, he has an aquiline nose, a prominent profile, and a skin more red or copper-coloured than either yellow or brown. Putting this along with other marked characteristics, moral as well as physical, it is not surprising that the American should have been takon as the type aud sample of a variety in contrast with the Mongolian.
"2. Philological Arguments.-Few lauguages, equally destitute of literature, have been better or longer known than the Eskimo. For this we have to thank the Danish missionaries of Greenland-Egede most especially. From the grammar of Fabricius the Eskimo was soon kuowu to be a lauguage of long compound words, and of regrilar though remarkable inflections. It was known too to be very unlike the better known languages of Europe and Asia. Finally, it bas been admitted to be, in respect to its grammatical structure at least, American."

We need not here enumerate the varions tribes embraced in this section, as it iucludes the whole of the origioal races found on the Aurerican contiuent.
G. Indicen Monyolide. - The races belonging to this section are found in llindustan, Cashmere, Ceylon, the Maldives and Laccadives, and part of Beloochistan. They are found mixed or contiguons to the Japetidx of Beloochistan and Cabul, and various Seriform tribes. They preseut two extreme forms of physical conformation, one with the skin dark or even black, the other of a brunctte colour, with a skin of great delicacy and clearness. The social condition of caste prevails amoug them. The principal religions are Brahminism aud Buddhism, with a variety of internediate creeds. Their aucient literature is in the Sanscrit, and their alphabets arc derived from that language. They embrace the following divisions:-I, the Tamul; 2, the Paliuda; 3, the Brahuii ; 4, the Indo-Gangetic; 5, the Purbutti; 6, the Cashmiriau; 7 , the Cingalese; and 8, the Maldivian.

1I. The Atlantidz.-In their physical character the face is not so broad and fat as in the Mongoliter. The jaws project, are prognathic, whilst the nose is generally flat; the forehead is retiring; the cranium dolikocephalic, that is, there is less space between the parietal boucs of the skull, whilst its length remaius the same, than there is in the last variety; the eyes only rarely open obliquely; the skin is mostly jet-black, preseuting however lighter shades, and very rarely approaching a pure white; the lair is crisp, woolly, very rarely straight, and still more rarely light-coloured. The languages amongst the A tantida
belong to the agslutinate elnss. They are seldom or ever found with a truly aundgaruste inflection.
The great district of the development of the natipes which are brouglit together under the above definition, in Africa. Perhape there is no quartir of the globe that presents n greater diversity of iuhsbitants than Africa, or mees of men who at first aightappear no evidently dintinct. All previous ethnologists have placed the Hottentot, the Negm, and the liushman in a very different position to the Assyrion, the lablylonian, the Mohamıedan, and the Jew ; but in Dr. Latham'a classifiention we find these bronght together under the common varicty Atlansider. The amalony of langunge lias led to this conclusion; and the transition from the lowest to the higheat of these mees is so gradunl, that no inrestigation of their physical structure with which wo are at present nequainted, would be sufficient to break down the afinity diecorered in their languages No part of Africa aeems to be inhabited by any mees but those of the Atlantids. The SyroArabian or Semitie nations, howerer, which are now classed amongst the Atlantide, are found occupying a considerabla nrea in the southwesteru part of Asia. Tho people of these races are far removed from the Negro nud tho Hottentot, and present great aymmetry of form, and considerable cerebral development.

However amall may have been the influence of tho lower types of this race on the world, there can be no doubt of the rast impressiou produced by tho Semitie nations. We may pass over the early civilisation indicated by the Asayriau and Babyloninn empires, and fix attention on the riligious history of the Jews. Here, nmidat the surrounding I'aganism, we find the worship of the one true God maintained by this amall race amongst the Semitic nations; and through them the religion of Christ, which is destined to react on sll the other races of mankind. It is also among these races that that compound of Judaiam and Christianity, Mohnmmedaniam, has sprung up; and howerer infetior it may be to the Chriatian religion, thero can be little doubt of tho beneficial influence it has exerted on tho races who have embraced it.

The following is Dr. Lathsm's division of this group :-

A. Nigro Allantidar.-The negroes hsre a black, unctuous, sud soft \∈ tho hair woolly; lips thick; maxillary profile prognathic, froutal profile retiring; nasal depressed. They inhabit the low lands, rea-cossts, nnd the deltas and courses of rivers, chiefly the Senegal, Gambia, Niger, and Upper Nile. They are nearly limited to the tropic of Cuncer. They are divided into Westeru Negroea, Central Negroes, and Eastern Negroes.
B. Kaffre Atlantidic. - The language of the Kaffir supplies a broad distinetion between them and other African races. They are prefixional and alliterational. Their phyaical comformation is modified negro. They occupy a distriet in Africa (east and went) from the north of the equator to the south of the tropic of Capricorn. The chicf dirisiona are, 1, Western, 2, Southern, 3, Eastern.

C: Holtentot Allantidar-" The Hottentot stock," says Dr. Lathrm, " has n leetter claim to be considered as forming a second species of the genua Homo than any other acction of mankind. It can bo shown however that the language is no more different from those of the world in gederal than they are from each other." The Hottentots occupy the southern extremity of Africa. They are of low stature; linabs slight; colour more brown or yellow than black; cheek bones Ironinent; nasnl profile depressed; hair in tufts rather than equalty distrinuted over the hend. They are divided into the Hottentots proper and the Saibs. The latter arc found between tho Rogecveld aded the middle portion of the Orango River.
1). Nitotic Allantider.-There people have n modified negro conformation, nul inhatit the water-syatem of the Upper ond Dididde Nile. Their chicf divimious are, 1, Gallas; 2, Agous; 3, Nubians; 4, Biahari.
E. Amasidyh Athanticles-Anazirgh is n term cquivalent to Berber. These poople are found on the consts of tho Mediterranean nud the whole noth-wentern quirter of Afriea. Thes present modificationa of both the negro and Amb typer. Their chief divisious are. 1, tho Siwnha of the Uanis of Siwah, the ancient Ammonium; 2, Cabylea of the range of Atlan; 3, Tunricks of the Sahmen ; 4, Guanchcs of the Canary Inlands.
F. Apypion dilamider. - This section includes the aneient Figyptiane, the nilijects of the Pharaols norl the l'tolemiea, and the morlern Copta na far on they are of unmixed hlood. They dwell in the valles and dilta of the Nile, from Fimounn to tho Mediterranean. The $p^{\text {haxical }}$ conformation of the ancient Egyptiann in Latherod from thoir muronien The morlern Copts have tho bair black and crisp or curled; tho check-bones projecting; lipn thick; noso deprensed; nontrila wirfe; complexion from a yellowish to n dark-brown; eyca oblique; frame tall and Deahy.
(1. Smific Allanishle. - This section embrncen the roost highly develojed fortus of the dlluntider. Tho Semitic racen aro fomme in Athyminio. Aralia, I'alratioe, Syrin, Nemopotamia, and parta of Kurdintan. They are lightecomplexinued, and referrible to three typenthe Arab, the. dew, thit the Findani. Their indupnce on the world
has been pre-ominently monal, opiritually as well as Intellectually. Their religious are pro-emlnently monotheistio in the later parta of their history. Thelr alphabet is the earliest in the world, and, with the exception of the Ethiopic, is written from rixht to left. The chiof divisions, which are more or less attiticinl, are Syrians, Assyrians, Bahylouians, Phonicians, Beui-Terah, Arabs, Ethiopians, Eolymi Cappadocians, Elamites, Cyprians, Philistines, Canaanites,

With the Benl-Terah (bons of Terab), father of Abraham, are found the Jews, who are remarksble amongst the nations of the carth for their early intellectual culture, and for the moral and religious influence their writings have produced on the world.
III. Japetidic-This variety includes most of the nations of modern Europe. Phyaically, they present characters auperior to the two other varieties. Their face is not fiat, and is moderately broad. The jawa project but little, the nose is often very prominent, and the frontal profile is not unfrequently nearly vertical. The skull is shaped geuerally as the last variety; the opening of tho eyelids is atraight, and very rarely oblique; the skin is white, or brunette: the hair is uever woolly, varying much in colour, frequently very light; the eyes are black, blue, or gray.
The languagea of the great European races are never aptotic. They are mostly anaptolic, or having amalgamate inflections. In a fow instances they are agglotinste.

Atheugh the Japelidoe form the principal part of the nations of Europe, they do not exclusively occupy this district of the earth, nor are they confined to it. We have before mentioned the Lappa and Finns of Scandinavia, the Euskaldunes of the Basque Provinces, the Magyars, and Turks. It appears not to be improbsble that the former were the original inhabitants of Europe, sad are the remnante of a race driven awry auccessively by the Celts and the Indo-Germanic races that now occupy this part of the world. As also we find evidence of the origin of the Japetide in the east, so we find traces of their exiatence in various parts of Asia: as iu tho Persians, Kurds, Beloochi, Affghans, Tajika, and Siaposh. It is not improbable, also, that the Armenians ought to be classed with the Japetidse.

The iufluence of this variety of mankind on the history of the world, has been much greater than that of the other tro. If we are indehted to the Semitic races for the truth of Christianity, ita adoption and propagation in a pure form has been mainly due to European nations. It became early identifed with the civilisation of Greece and Rome; and passing from the nations where it obtained ite early triumphs, it has become, in later times, the religion of the great Anglo-Saxon race, which ou both sides of the Atlantio is increasing with extraordinary rapidity.

Dr. Latham divides the Japetide into two divisions-Occidental nnd Indo-Germania.
4. Occidental Japetida include the races called Colts or Kelts The Keltic languages were separated from the common mother-tongus subsequent to the evolution of the peraons of verbs, but anterior to the evolution of the cases of nouns. These languages are evidently agglutinate. The present ares of thic race is Brittany, Wsles, the Highlands of Scotlaud, the Iale of Man, and Ineland. The original area oceupied by the Kelts, which have been constautly removed, is the Scottish Lowlands, Eugland, Gaul north of the Loire, and part of Switzerland. It is probable also that they occupied parts of Barden, Bavaria, aud northern Italy. The Taurisci of the Tyrol, the Soordisci, of Illyria, the Galatians of Asis Minor, the Celt-Iberians of Spain, and the Cimbri of Jutland are generally regarded as Kelts. They Lave two types of complexion in the British Islands: the Silurian type having oyes and hair blsck, oomplexion dark with a ruddy tingo, and chiefly found in South Wales; the Hibernian type with gray egos yellowish, red, or sandy hair, and light complexion; they sre found in reland. Dr. Latham gives tho following as their chlef divisiona:
I. Kelts of Gaul, fulling into-a. the proper Celtap; b. the Belge. Both extinct or incorporate.
2. Britiah Kelts, falling into-a. the Csmbrians; b. the Picts, which are extinet or incorpornte.
3. Gaels a. Scotely Gaels; b. Iriah Gsels; c. Manxmen, or Gaellc Kelta of the Inle of Man.
4. The Cisalpine Kelts of northern Italy.
5. The Ligurians, extending from the Etruscan to the Iberian frontior.

Their lino of population seems to bave been from Calaia and Dunkirk to Eugland, from England to Scotland, nad from Scotland to Ircland.
B. Indo-Germanic Japotiche.-The languagen of this group were aeparated from the common mothertongue anbsequent to the evolution of the cases of nouns. They are less evidently agglutidato than the Keltic. This nnd the previous group are sometine called lndo-European, and thus embracing sll tho Japetids. The IndoGermanic Japetide are divided into two elasses:-
I. Furopean Indo-Germans, - These are divided into-I. Gothic 2. Sarmatian; 3. Mediterrancan.

1. The Gothin embrace-
a. The Teutons, which are again divided iuto -
a. Mesagoths.
B. High Germans, including Hessians, Thuringians, Franks, r. Low Germans, including-
2. Batavians.
3. Saxons, embracing -

* Saxons of Hanover, and Anglo-Saxons of England.
** Saxons of Osnaburg and Westphalia.
*** Nordalbingians. Extinct.

3. Frisians,
b. Scandinaviana, embracing-
4. Icelanders.
5. Faroe Islanders.
6. Norwegians.
7. Swedes.
8. Danes.
9. Sarmetians. This comprises the Lithuanic and Slavonic divisions, and these are its primary sections.

Of the Lithuanians Dr. Latham says-

1. Of all the Japetidæ they preserved their original paganiam longest.
2. Of all the Japetidm they have had the least influence on mankind.
3. Of all the Japetidx they apeak a language nearest in structure to the Sanscrit.
The Slavonic division includes-
a. Rusbians.
B. Servians.
4. Illyrisns
д. Tcheks.
e. Poles.
5. Serbs.

خ. Polabic Slavonians.
3. Mediterranean Indo-Germans. These include the Greeks and Homans of antiquity, and their modern descendants.
II. Iranian Indo-Germans.-Dr. Latham says "the whole of this class is hypothetical." It includes the Persiana, who embrace the Kurds, the Beloochi, the Affghans, the Sieposh, and other contiguous races in Asia. The unplaced stocks are the Armenians and Tberians.
(Dr. R. G. Latham, Varieties of Man; Lawrence, Lectures on Man; Dr. Lankester, On the Physical Mistory of Man, in Pamily Tutor; Nott and Gliddon, Types of Mankind; Dr. Latham, Ethnology of Briliah Colonies, Ethnology of British Islands, Migrations of Man, Ethnology of Europe; Dr. Pickering, Races of Men; Dr. Prichard, Physical Hustory of Mankind; Cuvier, Regne Animal.)

MAN, FOSSIL. [Anthropolites.]
MANAKINS, the name of a group of small birds remarkable for the rich tints of their plumage (Pipra of euthors). Mr. Swainson makes them a sab-family of the Ampelide, under the namo of Piprince. [Pipra.]

MANATEE [CETacea.]
MANCHINEELTREE. [HIPPOMANE.]
MANDARIN DUCK. [DUCKs.]
MANDIOC, the Brazilian name of the Cassava Plant, Jatropha Manihot. [JATROPHA.]

MANDRAGORA. [Atrora.]
MANDRAKE. [ATROPA.]
MANDRILI: [BABOON.]
MANETTIA, a genus of Plants belonging to the natural order Cinchonacea. The limb of the calyx is 4 - or 5 -lobed, often with secondary lobes interposed between the principal ones; the corolla is funnel-bhaped, with a terete or quadrangular tube, a hairy thront, and a 4- or 5-lobed limb; anthers sessile, in the throst of the corolla; capsule ovate, compreased, crowned with the lobes of the calyx. Seeds peltate, girded by nusually toothed border. The apecies are herbaceous plants or shrubs, with slender twining stems and axillary leaves, many-fowered peduncles.
M. cordifolia is a native of Buenos Ayres and of the provinco of Minas Geraes in Brazil. The whole plant is glabrous; the stem suffruticose, much branched, very slender, round, twining; bark gray, and exfolisting on tho goung shoots, green, glabrous, and shiaing. The leaves are opposite, petioled, cordate, acuininate, glabrous on both side日, shining, pale, with prominent veins, and obscure minute articulations, below dark, and the veins slightly channeled above; stipules small, subulate, and at length often reflexed in their upper half, basea broad, and connate within the petioles, so as to form a small cup, which is occasionally toothed round the branch; peduncles elongated, solitary, glabrous, fliform, shining, and single-flowered at the extremities of the branches, which are aubsequently elongsted, rendering the peduncle axillary; calyx green, glabrous, 4 -parted, with minute divided intervening teeth; acgments acite, at length reflexed, and nerved; corolla very handsome, shining on tho outer surface, and glabrous every where except a little above its base ou the inside, where for some distance it is densely cluthed with inverted whilte hairs; tube clavate, funnel-shaped, with 4 fat sides, nectariferona, and ouly colourless at the base, every other part of the corolla vermilion orange-coloured,
deepest on the inner side of the limb, green in the young buds; throat dilated end naked; limb 4-parted; segments deltoid, revolute. The seeds are brown, round, flattened, and surrounded by a membranous wing. The bark of the root is esteemed in Brazil a most valuable remedy in dropsy sud dysentery. It is given in powder of half a drachm to a drachm and a half. It acts as an emetic.
(Lindley, Flora Medica.)
MANGABEY, a name for two species of Monkers belouging to the group of Guenons. [Guenons.]

MANGANESE, a Metal of which the black oxide, or binoxide, wa frst described by Scheele in 1774, and was afterwards determined by him and Gahn to contain a peculiar metal, which has so powerful an affinity for oxygen, that this circumstance alone would prevent its occurrence in nature in its metallic state. The natural compounds of manganese, and especially its oxides, are numerous, and are found abundantly in many parts of the earth. Like oxide of irou, it frequently occurs in minerals in such smsll quantity as to show that it exists in them rather in mixture than combination.

Manganese may be procured by mixing any of its oxides with oil, and heating it strongly iu a well-covered crucible. Its properties are, that it has a grayish-white colour and resembles white cast-iron in appearance; it is hard, brittle, and has a fasciculated crystslline structure; its specific gravity, according to Berthier, is 7.05; it is inodorous and tasteless, but when bresthed upon emits a smell of hydrogen gas. By exposure to the air manganese readily tarnishes by oxidisement, and even in a very short time sttracts sufficient oxygen to lose its metallic lustre, and falls to a reddish-brown powder; hence the necessity for preserving it immersed in uaphtha. Even at common temperatures it slowly decomposes water; and at a red heat the decomposition is rapidly effected, and in bath cases hydrogen gas is evolved and oxide of manganese formed. It requires an extremely high temperature for its fusion, and it is lixed in the fire.

The ores of mangsnese are chiefly oxides : they are the following:-
Hlaussmannite-Occurs crystallised in octohedrons aud massive. Prixaary form a square prism. Cleavage parallel to the base of the primsry form. Fracture uneven. Hardness rather grester than that of phosphats of lime. Colour brownish-black. Powder reddish-brown. Lustre imperfoct metallic. Opaque. Specific gravity 4.722.

Before the blow-pipe with borax fuses into an amethystine-coloured glass. It is found at Ilmenau iu Thuringia, at Framont, and in Pennsylvania, \&c.
Dr. Turner's analysis gives very nesrly-

The equivalent of manganese being 28, this ore ia essentially a compound of 3 equivalents of metal $84+4$ equivalents of oxygen $32=116$. It contains less oxygen than any other oxids except the protoxide, which does not occur in nature exccpt in combination.
Braunite-Occurs crystallised and massive. Primary form a square prism. Cleavage diatinct, parallel to the facea of an octoherlron. Fracture uneven. Hardness 6.0 to 6.5 . Britule. Colour brownishblsck. Streak the same. Lustre imperfect metallic. Opaque. Specific gravity $4 \cdot 818$. The massive varietien are divergiugly fibrous.

Before tho blow-pipe melts and effervesces slightly with borsx. It is found at Elgenberg, Wursindel, Piedmont, and in Cornwall.
According to Dr. Turner, it cousists very nesrly of-

It is easentially an snhydrous sesquioxide of mangauese, consisting of 1 equivalent of metal $28+1 \frac{1}{2}$ equivalent of oxygen $12=40$.

Manganite-Occurs crystallised and massive. Primary form a right rhombic prism. Cleavage parellel to the lateral faces. Fracture uneveu. Harducsa 4.0 to 4.25. Scratches glass slightly. Colour iron and stecl and blackish gray. Streak reddish-brown. Lustre metallic. Opaque. Specific gravity 4.328 . Massive varieties amorphous. Structure crystalline, granular, large fibrous.
Before the blow-pipe, with borax, fuses into s trsuspareut amethystine glass; hested in a tube, water is expelled. It occurs at Hartshill near Coventry, in Devoushiie, Ilfeld in the Harz, \&c.

Dr. Turner's auslysis gives very nearly-

26.97
$10 \cdot 10$
$10 \cdot 10$
-100
It is therefore hydrsted sesquioxide of maugsuese.
Varvicite-Occuls massivo and in pseudo-crystals. Composed of thin plates and fibres. Harduess 2.5 . Colour gray. Powder black Lustre metallic. Opaque. Specific gravity 4.531. When strongly heated yields oxygen gas and water.

It oceurs masivo at Hartahill in the comity of Warwick, and the peoudo-erystaln at llfeld.

Analysia according to l’hillips :-

It is a compound of 4 equivalents of metal $112+7$ equirslents of oxigen 50 and 1 equivalent of water 9.

Pyrolusite, Binaxide of Manganese-Ocours crystallised and masaive, l'riwary form a right rhombio prisin. Cleavage parallel to the lateral planes and short diagomal; indistinct. Fracture uneven. Hardness 20 to 2.5 . Colour blackish.gray and black. Streak black. Lustre imperfect metallic. Opaque. Specific gravity 4.94.

Manjive varicties nmorphous, reniform, and botryoidal. Struoture granular, fibroos.
It is the most abundant ore of manganese, occuring in large quantity in Deronshire, Warwickshire, Thuringia, Brazil, nad many other places.
1)r. Tumber's amalysib gives very nearly-

It is a compuund of 1 equiralent of metal $23+2$ equivalents of oxygen $10=44$, and is the per-or bin-oxide.

Hydrated Binaride of Manganese has long been known by the name of Black Wad.-It occurs of various shades of brown, and is massive, botryoidsl, amorphous, and somatimes pulveruleut. It is frequently soft enough to soil the fingers. It occura largely in Devonshire, and is also mot witl in Cornwall, the Harz, Piedmont, and many other places.

Analyais of a specimen from the Harz by Klaproth :-

Peroxide of Mroganese		.				.

Carbon. I•0

Pailonelane is an ore of mangancse which contains a considerable quantity of barytes. It occurs reniform, botryoidal, and stalactitic. Structure granular, compact, and indiatinctly fibrous. Fracture conchoidal, even. Hardness $5 \cdot 0$ to 6.0 . Colour dark-gray and grayiahblack. Streak browniah-black. Luatre imperfect metallic. Opaque. Specige gravity 4.0 to 4.15 . It occurs in Davonshire, Cornwall, in the Harr, and most maganese mines.
1)r. Turucr's analysis gives-

Sulphur is also fund in combination with manganese. The compound is called

Kobellite, Manganrse-Blende, dre- It oceurs cryatallised and massive. Primary form a cube. Cleavage parallel to its faces. Fracture uneven, conchoilh. Tardness 3.5 to 4.0 . Colour brownish-black; when fresh fractured, steelgray. Streak dark-green. Lustre imperfect metallic. Opaque. Specific gravity 4014 .

Fusea with diffealty, and only the odgea with the blow-pipe; gives sulphurotted hydrogen when diasolved in an acid. It is found at Nagyag in Tranglvania, and in Mexico.

Aumlyain by Arfwedaon:-

$$
\begin{aligned}
& \text { Manganese } 62.0 \\
& \text { Sulphur } \\
& 37 \cdot 6 \\
& -996
\end{aligned}
$$

Manganene occura also in combioation with some inctals tund oxidea. Ararniurct of Mangancse-Occurs nassivo. Fracture in one direction gravilar and ahining, in the other dull. Structure folinted. Hard. Jritile. Specifie gravity $5: 55$. Found in Saxons. Colour whitiah. gray. Blackens by exponure to the sir.

Ir. Kinne found it to connist of -

$$
\begin{aligned}
& \text { Mnngnnese } \\
& \text { Aruenic, with a trice of Iron }
\end{aligned}
$$

Cnprcove Mangancar - Occurs masaive, reniform, aud botryoidal. Structure compact. Fracture imperfect conchoithal. Hardness abont 1:5. Colour blibibshack. Streak the minc. Luatro resinoug. Opaque. Specife gravity about 3.2 . Ocemry in lubemis and Chili.

Analyaia by Karnten:-

Carbonio acid and silica also accur in combination with oxide of manganese, and the latter also with ozide of manganese and iron.
Carbonale of Manganese: Kohlerite-Occurs crystallised and massiva. Primary furm a rhomboid. Cleavage jarallel to the primary plancs. Fracture uneven, couchoidal. Hardness 3.5. Colour nosered, brownish. Streak white. Tranalucent. Lustre vitreous, pearly. Specific gravity $3 \cdot 3$ to 3.6 . Massive varieties globular, botryoidal. Structure compact, fibrous, granular. Colour yellowish-white. Opaque. It is found at Hartshill in Warwickshire, Nagyag, Freyberg, \&c.

Analysis of the esrbonate from Nagyag by Berthicr :-
Carbonic Acid
Protoxido or Mangnneso 58.6
56.0
a

00
Silicate of Manganese-Occura cryotallised and massive. Primary form an oblique rhombio priem. Clcavage parallel to the lateral faces of the primary crystal. Fracture uneven and conchoidal. Scratohes glass. Colour robe-red. Tranalucent on the edges. Lustre between pearly and reainous. Specific gravity $\mathbf{3 - 6 3 8}$ to $\mathbf{8 . 6 8 5}$. It occura in Siveden, the Harz, Devonshire, Cornwall, Ac.

Analysia by Berzeliua :-

Leonland has described some eilicates of maugaucse under the uames of Allagite, Photizite, Rhodonite, \&c., which contain admixtures of various other substances.
Silicate of Mangancse and Iron: Knebelite.-The locality of this ia not known. It occurs massive. Externally callular and unoven. Fracture imperfect conchoidal. Luatre glistening. Colour gray, spotted dirty-white, red, brown, and green. It is opaque, hard, and brittle. Specific gravity 3.714.
Analysis by Döbereiner:-

$$
\begin{aligned}
& \text { Silica } \\
& \text { Protoxide of Manganese } 32.5 \\
& \text { Protoxide of lron } 32.0 \\
& \mathbf{9 9 \cdot 5}
\end{aligned}
$$

Marceline (Anhydrous Silicate of Deutoxide of Manganese)-Oocurs crybtallised in octohedrons with a square base. Colour grayish-black. Lustre alightly metallic or vitreaus. It is found at St. Marcel in Piedmont. Analyais by Berzeliua:-

The analyais by Berthit gires cousiderably nore silica and less oxide of manganese.
Heterocline is a silicnte of manganeas belonging to this group.
Phosphate of Manganese and Iron; Ullmannite-Oceurs massive. Fracture conchoidal. Hardness 5.0 to 5.5 . Colour reddish-brown, or blackish. Lustre reainous. Opaque. Speeifio gravity 9.499 to 3.775 . Occurs at Limoges in Frapce.
Aoalysis by Berzelius:-

$$
\begin{aligned}
& \text { Phoephoric Acid } 32.8 \\
& \text { Oxide of Manganese . } \\
& 32.8 \\
& \text { Ozide of Iron } \\
& 31 \cdot 0
\end{aligned}
$$

Phosphate of Lime
Two other varictica have been lescribed under the name of Heteposite and Huraulite.
MANGEL-WUZREL. [BETA.]
MANOI'FERA, a genua of l'lants belonging to the natural order A nacardiacce. Thres or four ppecies of this genus ane enumeratedas M. fatida of Lourciro, s native of Cachin China and the Moluccas; M. laxifora, indigenous in Mauritius ; and M. sylvatica, of Roxburgb, a native of the billy districta bordering on Siluet, where it grows to a great size, and is called Lukshmee-Am. It bears a fruit which ripens in February and March, and is eaten by the patives, though not no palatable as aven a bad mango. It is also dried and kept by them for medicinal purposea. M. opparitifolia, lloxburgh, a native of langoon, in proposed by Messrs. Wight and Arnott to beformed into a distinct genus.
M. Indica, the Mnngo-Tree, in alone of any consequence, and this as forming one of the most grateful fruita of the tropical parts of Asin; it extends nipo as far north as 30°, and has been successfully intro-
duced into the West Indics. The tree grows to a great size, with an erect trunk, and dark-coloured cracked bark. The wood is of a whitish or dull-gray colour, parous, yet pretty durable if kept dry. The leaves are alternate, petioled, lanceolar, entire, of ten a little wared at the margins, firm, smooth, shining, and having, when bruised, a pleasant resinous smell. The flowers are yellow-coloured and small, but produced in great numbers, on large terminal erect panicles. Many perfect male flowers are often found intermixed with the bermaphrodite ones. Calyx 5 -leaved; petals 5, lanceolate, twice the length of the calyx, furnished in the inside with a lobed granular scale or crust ; stamen, a single fertile one, with three or four filameutlike bodies, which represent the abortive stamens; ovary with its base immersed in the torus, obliquely oval, I-celled, with a single ovule sttached to the side of the cell; style one, from the upper edge of the ovary, curved downwards; drupe oblong, or somewhat kidney-formed, also a little compressed like a kidney, fleshy, with a smooth rind, yellow or reddish when ripe, size various, but in general about as large as a goose's egg; nut conformable to the drupe, but more compressed, woody, 1-celled, 2-valved, covered ou the outside with many fibrous filaments, particularly in the worst sorts; the kernels are large. Eubryo between erect and transverse; cotyledons thick, fleshy; radicle opposite to hilum.

The Mango is so well known as one of the most highly esteemed fruits of the East, that one is surprised to find it sometimes described as like notling so much as a mixture of tow and turpentine. The latter is a secretion abounding in the family to which the Mango belongs, and may be sccreted in larger quantities in neglected parieties, where also the filaments of the nut will likewise abound. But in welleultivated varietics the fruit is sweet and rich-flavoured, juicy, and nearly as free of fibres as a melon. The kernels contain much nourishment, but are never used for food except in famines, when they are cooked in the steam of water, and used as an article of diet. From wounds made in the bark of the tree there issues a soft reddishbrown resin, which age hardens. Burnt in a candle, it euits a smell like that of a Cashue nut when roasting. It softens in the mouth, and adberes to the teeth. The taste is slightly bitter, with some degree of pungency. It dissolves almost entircly in spirits, and to some degree in water.

The tree is generally raised frem seeds, which should be sown soon after they are gathered, but this is a very uneertain way of getting the finer varieties. Propagstiog by layers, and grafting by approach, are the only modes of certainly continuing fine sorts, as well as of improving them. These have the advantages also of bearing when small in size, that is, only s few feet in beight, and therefore well suited to culture in the hothouses of Europe. Sweet states "that the Mango ripens iu this country when the plants are of a good size. Sandy loam, or a mixture of losm aud peat, is most suitable to it; and the pits should be well drained, as the plants are apt to get sodden with too much water. Fresh seeds from the West Iudies vegetate freely. The plant may also be increased from cuttiags, which root best in sand under s hand-glass." It would be adpisable also to jmitate its native climate as much as possible, that is, after winter, giving it dry heat with watering for some months, and then removing it into an orchideons house in the season of ripening its fruit.

MANGLIETLA, a genus of Ilants belonging to the natural orler Maymolincers, one of the speeies of which, M. glauca, bss a white solid wood, whieh is largely employed in Java, and supposed to prevent the decay of corpses put into coffins made of it.

MANGO-G1NGER. [Curcuma.]
MANGO-TRLEE. [Manglpera.]
MANGOSTEEN. [Clusiacese; Garcinla.]
MANGOUSTE. [Herpestes.]
MANGROVF: [RHizoriora.]
MANIHOT. [Jatrorha.]
MANIOC. [Cassava.]
MANIS. [EDentata.]
MANNA. The concrete juice of the Ornes Eiuroperes, a species of Ash, native of the south of Europe. Other sweetish secretions exuded by some other plants are usually considered to be kinds of Manna. These appear to be all produced in warm and dry parts of the world. The kind which is most abundant is by the Araba called Toorunjbeen, which is often translated 'Persian Mama,' and is produced by a thorny plaut, called by botanista Alhagi Maurorum. The genus Alhagi (a name compoutaded of 'haj' and the article 'al') of botanists contains two specien, A. Maurorum and A. desertorum, found in India, Egypt, Arabia, the north of Peraia, and Syria. Both species are slso called Ooshturkhar, or Camel's Thorn. A. Maurorum is alone remarkable for yielding a kind of Manna, which by aome authors has been supposed to be the Manna of the Wilderuess; hence the plant itself was ealled Munna Mebraica by Mr. Dou. The climate of Persia and Lokhara seema alone suited for the secretion of this Manna, which in the latter country is employed as a substitute for sugar, and ia imported into India from Cabul and Khorassan. A second kind, which, though less abundant, is nore esteemed than the former, is callerl Shecr Khisht, and is mentioned by Garcias uncer this name, and cleacribed as prodnced in the conntry of the Uzbces. A Cabnal merchant reported to Dr. Royle that it was produced by a tree called Gundelel, which wag about 12 feet high, had a jointed stem,
and grew in Candahar. A third kiud of Manua is called Guzunjbeen, the produce of a species of Tamarisk, called Guz, which is cousidered by Elrenberg to be only a variety of Tamariscus gallica, growing on Mount Sinai, but which has been called T. mannifera: by some authors this is supposed to be the Mama of the Wilderness. It is said to be produced also in Laristan and in Irak Ajemi. A fourth kind of Mama is produced on Calotropis procera, cailed Ashur, and its sweet exudation or sugar Shukur-al-Ashur, under which name it is described by Avicenua; Zuccarum-al-Husar in the Latin translation, ch. 758. A fifth kind, called Bed-Khisht, is described in Persian works as being produced on a species of willow in Persian Khorassan. Besides these comparatively little known kinds of Manna, a sweetish exudation is produced on the Larch (Larix Europea), which forms the Manna Brigantiaca, or Briançon Manna of some Pharmacopœias. [Ornes; Alhagi; Tamariscus; Larin.]

MANNA-ASH. [Fraxinus.]
MANON, a genus of Zoophyta, proposed by Schweigger, adopted by Goldfuss, and ranked by De Blainvilie among the Amorphozoa, with Spongia, Alcyonium, \&c. It is an attached mass, full of lacunre, composed of reticulated fibres, with its surfaee pierced by many distinet holes. Goldfuss gives nive species, of which five are from the Chalk, two in Jura Kalk, and one in Transition Rocks.

MANTELLIA (in memory of the late Dr. Mantell, the geologist), a generic name proposed by Parkinson for certain Alcyoniform Fossils of the Chalk. M. Brongniart has also established the use of this word for certain Cycadiform Plants, to which Dr. Bucklaud has applied the title of C'ycadeoidea. The specimens are chiefly found in the Oolite of the Isle of Portland, but one (M. cylindrica) occurs in the Lias of Luneville, according to M. Voltz. The stem of these plauts is cyliudrical or sphroroidal, and covercd with trausverse impressions of leaf-bases. The iutcrnal structure resembles Cycus. (Bucklaud, in 'Geological Transactious' I 828.)
The following is an account of the locality in the Isle of Portland in which these fossils occur:-"Immediately unon the uppermost bed of limestone, which is a coarse rock, full of cavitics and imprints left by the decay of the usual species of marine, univalve, and bivalve shells of the oolite, are layers of calcareous shell a few feet in thickness, in which no restiges of marine fossils have been observed; aud whose laminated structure and the preseuee of horizontal scams of earbonaceous carthy matter, with interspersious of vegctable remsins, indicate a fluviatile or freshwater origin.
"Upon these deposits is a laycr, from one to two feet thick, of a dark-brown friable lasm abounding in lignite, and so similar in appearsnce to common vegetable earth or mould, as to have acquired the name of dirt-bed from the quarrymen. In aud upon this bed aro numerous petrified stems and branches of coniferous trees and plants allied to the Zamice. Many of the trees and plats are stauding erect, as if petrified while growing on the spot; the trunks of the trees extending upwards into the limestone above, and vestiges of the roots being traceable iuto the dirt-bed. The upright stems are in general a few feet apart, and but 3 or 4 fect in diameter ; portions of prostrate trunks have been collected, iudieating a total height of the originals of 30 or 40 feet. In mauy instances fraginents of brancbes remain attached to the stem. The cycadeous plants occur in the iutervals between the upright trees, aud the dirt-bed is so little conselidated, that specimes evidently standing in the position in which they origiually grew, may be dug up with a spade.
"The strata above the dirt-bed consists of fuely laminated creamcoloured shaly limestone, in which casts of the freshwater erustaceans (Cyprides) so abuudant in the Wenlden, are the only organie remaing hitherto notiecd. These cleposits are covered by the modern vegetable soil, which but little cxceeds in depth the ancient oue above described, aud instead of supporting Cycadece and pine forests, barely maintains a scanty vegetation. Here then we have the remains of a petrified forest of the ancient world, the trees and plants like the inhabitants of the city in Arabian fable turned into stone, get still retaining the places they occupied when alive."

Specimens of Mantellia nidiformis and M. cylindrica from the Isle of Portland, are to be seen in the British Museum.

MA'NTID E, a family of Orthopterous Insccts, the species of which may be distinguished by the following characters:-Head exposed (not hidden by the thorax), furnished with three occlli, or simple eyes, besides the ordinary pair of componnd eyes; palpi short, slender, and cylindrieal; antenne generally setaceous, but sometimes pectinated; short in the females and loug in the males; body elongated; the thorax usually very long, often dilated at the sides and dentate; abdomen long, and with the terminal segment small in the male sex, more or less dilated, and with this terminal segment large in the females; the apex furnished with two small appeudages; legs long ; the four posterior legs alender, the anterior legs with the coxe very large and elongated; the femora also very large, dilated, and furnished with a double sories of spines on the under side, betwecu which (when the animal is in a state of repose) the tibise are placed: the tibie are rather short, armed with spincs, and having a strong spine at the apex, which is recurved ; tarsi usually 5 -jointed, but in some species the posterior tarsi liave only three joints; wiugs horizontally folled when at rest.

The principal genera contained in this family are:- Hetcromyturens

Eramioghila, and Mantis. The apecies of the firet of thene threo genera are readily distinguished by there being ouly three joints to the posterior tarsi, there being five jointa to the tarsi in all tho spocies comprined iu the remaining two geners. In the genus Eremiaphila, the palpi noo obtusely pointet, and the head is partially enveloped in the thoras; the two posterior pairs of lego are long and elender, and the thighs ame mometimes terminated by a emall spine; the penultimate segment of the abdomen is farniahed with two spiacs in the females. The elytra and wings are nlways very ahort. The genus Mantis (as now restricted) is ajstinguished from the last by the heal being free, the palpi rery elender and almost pointed, and the winga as long as the body, or pearly so; tho penultimate segment of the abdomen is never furniahed with spines.

The Mantide are found in all warm countriea, aro cxceedingly numerous, and remarkable for the grotesque forms which they usually assume. Their resemblance to a portion of a plant is often ao great, that it is only by their motiona they can be discovered. The namea M. veligiona, M. yrecaria, M. anncta, Praying Mnntia, \&c. havo been applied to certain species on account of a peculiarity in their habits-that of erecting the thorax at an angle with the body, and placing together the large fore lega, like the hands of a person when at prayer; in this position they will sometimes remain perfectly motionless for several hours. Their food consists of tlies and other insects, which they are exceedingly dexteroun in catching by means of their fore legs; the prey is held by the fore leg by bending back the tibia againat tho femur; the opposing aurfaces of these two portiona of the legs being corered with spinea, enablea them to retain their prey in this manner, and to couvey it to the moutl.

The eggs are depoeited by the female Mantis upon plants, and are corered by a glutinous substance, which soon becomes hard nud forma a kind of cane, in which they are arranged in a aymmetrienl manner. The form of the case varies nccording to the species. The young, when batched, rememble the parents, except in size and in being destitute of wings.

Mantis gongylodes has been selected to illustrate a eommon form of the insects of the present family. This species iuhabits the East Indiee, and when nlive is most probably of a green colour. The female is about 4 inches, and the male in about 31 inches in length.

MANTJS [Mastides]
MANUCOIH: [Elados Paradise.]
MAPLE (Acrib)
MAlABOU. [Clconia.]
MAltANTA, a genus of Planta belonging to the natural order Marantacer. The root-ntock is white, horizontal, ananlated, from which proced root-fibren, notne of which ewell into tubers and become jointed etcockn, simidar to the rhizona, but covered with scalea. These often elongate, curve upwards, and rising out of the ground become new flanta. Tho atem is 2 or 3 feet high, much branched, slender, finely bairs, tumid nt the joints; leaves altornate, with long leafy hairy mealla, ovate-lauceolnte; panicles terminal, lax, spronding, with long linear aheathing bracta at the ranifications; enlyx greon and amoath; corolla white, minall, unequal, one of the inner segments in the form of $n \mathrm{lip}$; anther attached to the petal-like filument;
style hooded, petal-shaped; ovary 3-celled, amooth; stigma 3-nided; fruit even, dry, 1 -reeded.
M. arundinacea yields the arrow-root of commerce, but it is also procured in large quantities from a variety of closely-allied, and oven many distinct, planta. Thua the Surinam and Bermuda arrow-poot is the produce of the M. arundinacea, while the Jaramica arrow-root is obtained from the M. Indica (Tussao); which plant, along with aeveral Curcuman, yields also the East Indian ntrow-root. The Weat Indian arrow-root has mostly a pure white solonr, the East Indian a yellow tinge.

The tubers, root-stocks, or offsets, are gratel or brused, and repentedly washed with water, which is passed through a floe hairaievo, so long as it runs off with a milky appearance. It is allowed to subside, the supernatant water drained off, and the powder dried : 100 parts of the fresh plant yield 10 parts of arrow-root; but Benzon stater 100 parts to yield 23 or 26 parts.
According to tho analysis of thin ehomist it consists of -

Tho volatile oil imparts a slight odour to tho solotiou in warm water, which helpa to diatinguish genuitie arrow-roat from several of the articlea aubatituted for it. Arrow-root has scarcely any taste, being bland and insipid; the powder, when presaed in the hand, amits a crackling noise, and retains the impression of the fingers, which common stareh from wheat does not Cassava (Manioc, from Jatrophe, or Janipha Manihot) also retains the impression of the fingers, but jt has more odour and a somewhat acrid taste.

1. aflower with the esisx and petain cut off, the petalold, ntamen, nod atyle slone remalning. 2, a capsule.

The meala of any ceresl grain may ensily be distinguished from arrow-root by the nitrogen which they contain, and the ammonlacal products which they yield by distillation. Potnto-stareh is however most frequently used to ndulterate arrow-root, or as a aubatitute for it. Nicroscopic observation of the form and size of the grains will point out the differonee, ns firat indicated by liappail ('Abdales des Sciences Nat.' t. vi.), those of arrow-root being amaller; the different habitudes of the ftarch with reagents will also do this. (See

Messrs. Payen et Chevalier, 'Traité de la Pomme de Terre,' p. 126 ; alzo 'Journal de Pharmscie,' Août, 1833.) Potato-starch is not soluble in cold water, which is the case with arrow-root. Dissolved in absolute alcohol, arrow-root separates into two distinct pertions, which neither wheat nor potato-starch does. In equal proportions dissolved in warm water, Arrow-root yields a thinner solution, with π more slimy aspect than wheat-starch.

Arrow-root dissolved in water, milk, or any other appropriate vehicle, constitutes, from its easy digestibility, a most excellent article of diet for delicate persons and young childreu. It may be given plain, or with wine or spices, according to circumstances. The valuable property just mentioned does not belogg to either wheat- or potato-starcb. The latter, if prepared from potatees in spring, is very liable to disturb the stomach; but less so if prepared in October or November. Patato-ztarch may be prepared at a very cheap rate, and kept for a long period unchanged, thus affording a protection against times of scarcity.
(Sir John Sinclair, On the Culture and Uses of Potatoes, Edinb., 1828.)

MARANTA'CE E, Marants, a natural order of Eadogenous Plants, which have either no atems or annual ones only, whose leaves have diverging veins, and whose flowers are constructed with an iuferior ovary surmounted by a 3-leaved calyculus; very irregular flowers, white, red, or yellow; and a single stamen, whose anther has but one Jobe.

With the exception of the genus Calathea, and of Canna, which is commonly cultivated under the name of Indian Shot, because of its beautiful flowera, the epecies included in this order are of small size, and by no means attractive, but the fleshy tubers of some of them abound in atarchy matter, which renders them nutritious. Arrowroot of the finest quality is ohtained from Maranta arundinceea, and a similar product is yielded by Canna edulis and others. The order is known from Zingiberacece by the anther having but one lobe instead of two.

All the species are found wild in tropical countries only.
The species are nativea of the tropics of America, Africa, and Asia. Amylaceoua qualities prevail in this order, and etarch is prepared from many of the species. The fleshy corms of aome species of the Canna are eateu in Peru, and a sort of arrow-root, called Tous le Mois, is extracted from some of the species. The seeds of others, called Indian Shot, have beeu used as a substitute for coffee, aud yield a purple dye.
(Lindlcy, Veyetable Kingdom.)
MARBLEE. A strict definition of this term is perhaps impracticable, unlesa, with Da Costa, we limit it to the calcareous rocks " of very lively colours, and of a constitution to fine that they will readily take a good polish." In a vague seusc other arnamental stones, as granite and porphyry, may be ranked ariong marbles, but the catalogue of the typical or calcareous marbles is long enough without these somewhat inconvenicat additions. A limeatone which will admit of being worked easily and equally in all directions is properly called 'freestonc,' as the Bath or Ketton freestone; a rock of similar chemical composition, generally capable of being worked equally in all directions, and also of taking a good pelish, deaerves the title of marble; when it is glanular and of a white colonr, it may be useful in statuary.
Da Costa, in his 'Natural History of Foasils,' gives a large catalogue of marblea, disposed in methadical order, which we shall follow in the subsequent brief notices of this extensive subject.

Division I. Marbles of one plain Colour.

Section 1. Black Marbles. Most of these contain bitumen, sud are fetid when bruised.

Examplea. The Namur marble, the marble of Ashford in Derbyshire, Dent iu Yorkshire, near Crickhawell, Tenby, Kilkenny, \&c. The marble, anciently called Marmor Laculleum, and now Nero Antico.
Section 2. White Marbles.
Examples. The marble of Paros, in which the Lsocoon and Antinous are executed; the Carrara marble, of finer grain, much used in modern sculpture; the Skye marble, noticed by Dr. M'Culloch ; that of Inverary, Assynt, Dlair Athol, \&c.
Section 3. Ash and Gray Marbles.
Examples. A beantiful marble, of compact oolitic texture, at Orelton, nesr the Clee Hills in Shropshire, deserves meution.
Section 4. Brown and Red Marbles.
Examples. The Rosso Antico; a rival to which, at least in colour, has been fonnd on the estate of the Duke of Devonshire, near Bixton. The mottled brown marble of Bcetham Fell, near Milntharp, is of good quality.
S'cetion 5. Yellow Marbles.
Example. The Giallo Antico. Siena marble, also dug at Mafra, near Lisbon. That used in ancient Rome is said to be from Numidia.
Section 6. Blue Marbles.
Example near St. Pons in Languedoc.
Section 7. Green Marbles.
Example. T'he Marmor Lacedsemonicum of Pliny. It is dug near Yerona.

Division II. Marbles of two Colours.

Section 1. Black Marbles variegated with other colours.
Example. Near Ashburton in Devonsbire, Torbay in the same county, Bianco e Nero Antico, the African Breccia of the ancieuts, Gialle e Nero Antico.
Section 2. White Marblcs variegated with other colours. Example. Marble imported from Italy. Marbles of this general character occur in Siberis, at Plymoutb, at Killarney, in Sweden, \&c.
Section 3. Ash and Gray Marbles variegated with other colours. These are very numerous, aud occur in various parts of Europe.

Section 4. Brown and Red Marbles variegated with other colours.
Section 5. Yellow Marbles variegated with other colours.
Section 6. Green Marbles variegated with other colours.
Examples. Egyptian Marbles-the Marmor Tiberium and Augustum of Pliny; some Verde Antico, as that dug near Susa in Piedmont, the bcautiful marble of Anglesey (called Mona marble), the marble of Kolmarden in Sweden.

Division III, Marbes variegated with many Colours.

Example. Some of the Plymouth marble, the beautiful Brocatello or Brocade marble of Italy aud Spain.
Division IV. Marbles containing Shells, Corale, and other extraueous bodies.
In this division of marbles the British Islands are rich. Some of the Plymouth, Ashburton, and other Devonian limestones are extremely beautiful, from the abundance of fine corals exquisitely preserved in them; the crinoidal marbles of Flintshire, Derbyshire, and Garsdsle in Yorkshire, are elegant examples of the carboniferous limestone; the shell marblcs of Rance (Northamptonshire), Buckingham, Whichwood Forest, Stamford, Yeovil, may be noticed from the Oolitic rocks; that of Petworth and Purbeck, from the Wealden strata, has been extensively used by the architects of the middle ages. In genersl the working of the English marbles is costly, and their use limited.

Dana gives the followiog account of mar'bles in hia 'Manusl of Mineralogy,' with especial references to the American sources of this substance :-
"The finest and purest white crystaline limestones are used for statuary and the best carving, and are called Statuary Marble. A variety less fiuc in texture is employed as a building material. Its coloure are white and clouded of various shades. It often contains scales of mica disseminated, and occasionally other impurities, from which the cloudings arise. The finest statuary marble comes from the Italian quarry at Carrara, from the island of Yaros, whence the name Parian; from Athens, Greecs; aud from Ornofrio, Corsica. Of these the Parian is the mast pure, consisting almost entirely of carbonate of lime; whilst that of Carrara is frequently intermixed with granular quartz, which renders it more durable. The Medicean Venus, and most of the fine Grecian statues, are made of the Parian marble. These quarries, and also those of the islands of Scio, Samos, and Lesbos, afforded marble for the ancient temples of Greece and Rome. The Parthenou at Atheus was coustructed of marble from Pentelicus.
"Statuary marble bas been obtaiued in the United States, but not of a quality equal to the foreign. Fine building material is abuodant along the western part of Vermont, and south through Massachusetts to western Connecticut and eastern New York. In Berkshire county, Massachusetts, marble is quarried anuually to the value of 200,000 dollars. The priucipal quarries are at Sheffield, West Stockhridge, New Ashford, New Marlborough, Great Barrington, and Laneaborough. The columns of the Girard College are from Sheffield, where blocks 50 feet long are sometimes blasted out; the material of the City Hall, New ITork, came from West Stockbridge; that of the Capitol at Albany from Lancsborough. At Stoueham is a fine statuary-marble quarry, but it is difficult to obtain large blocks. The variety from Great Barrington is a handsome cleuded marble. Some of the West Stockbridge marble is flexible in thin pieces when first taken out. There are Vermont localities at Dorset, Rutland, Brandon, aud Pittsford. Extensive quarries are opencd at New York, at Sing Sing; alac at Patterson, P Putnam county; at Dover, in Dutchees county, New York. In Counecticut there are marble-quarries at New Preston; iu Maine, at Thomastown. In Rhode Island, at Smithfield, a fine statuary marble is found; in Maryland, a few miles east of Hagerstown, 20 milea from Philadelphia, a fine clouded variety is found. A fine dun-coloured marble is found at New Ashford and Sheffield, Massachusetts; and at Pittaford, Vermont.
"The granular limestonc, wheu coarse, usually crumbles easily, and is not a good material for building; but the finer varieties are not exceeded in durability by any other architectural rocks, not even by granite.
" The impurities are sometimes so abundant as to render it useless. For atatusry it is essential that it should be uniform in tint, and without seams or fissures.
"The common minerals in this rock sre tremolite, asbestus, scapolite, chrondrodite, pyroxolite, apatitc, besides sphene, spinel, graphite, idocrase, aod mica.
-Vendo Antique Marble, or V'endo Antico, is a clouded greou marble cousinting of a mixturo of eerpentine and limestone, found at Genoa and Tuncany, and in much valued for its beauty. A varicty is called Poleinem di Genoa, and Vert d'Egypte.
"A marble of this kiml is found nlso in Americn, at Millford, near New flaren, Conucticut, of fine quality ; nlao in lianex county, New Cork; at Moria, near l'ort lleary, on lake Champlain.
"The Cipolin Marbles of Italy are white, or nearly so, with shadings or zones of green tale.
"The lhardiglio is a gray rariety, found at Corsica, also nt Carrara
"Compact limestone viually hreak out into thick slabs, and is a convenient asul durable stone fur building. It is not possensed of sauch beauty in the rough state. When polished it constitutes a varicty of urbles, accurling to colour; the shades are very numeroun, from wbite, cream, and yellow shades, through gray, dovecoloured, nlato-blue, or brown, to black.
"The Nero-Antico Marble is an ancient decp-black marble; the Paragons is a modern one, of a tine black colour, from Bergamo; and Hano di Morte is another black marble, with a few white fossil shells.
"The IRosso-Antico is deep bload-red, sprinkled with minuto white duta
"The Giallo-Antico, or Yellow Antique Marble, is deep yellow, with black or yellow ring a
"A beautiful marble from Sienna, called brocatello di Siena, has a yellow culom; with large irregular spots and veins of bluish-sed or purplish.
"The Mandelato of the Italians is a light-red mnrble with yellowishwhite spots It is found nt Luggezana.
"At Verona there is a red marble inclining to yellow; and another with large white spots in a reddiah and greenish paste.
"The Bristol Marble, of England, is a black marble, containing a fow white shells, nud the Kilkenny is another, similar. There is also a black marble found in Ameriea at Shoreham, New York, and in other places in that etate near Late Champlain. There are several quarrics at lele la Motte.
"The Porto is a Genoese marble very highly esteemed. It is deep black, with elegrant reinings of yellow. The most beautiful comes from Porto- Venese, and under Louis XIV. a great deal of it was worked upf for decorations at V'ersailles.
"The Birl's-Eye Marble of western New lork is n compact lime. stoue with crystalline points seattered through it.
"livin Marble is a yellowish marble, with brownish shadings or lines srranged so as to represent castlos, towers, or cities in ruins. Theso rusrkings proceed from infiltrated irou. It is an indurated calcareous marl.
"Oolitic Marble has usually a grayiah tint, and is speekled with rounded duta, looking like the roe of fish.
"Shell Marble contains seatered fossils, snd is of different colours, as the Petworth and Bethersden marbles. It is nbundaut in the United States. Crenoirlean or Eucrinital Marble differs only in the fusil leing noostly encrinites, resenbling thin discs. Large quantities are found in Onondagn and Mndison counties, New lork, and the polisheed slabs are minch userd.
"Malreporic Marblo eonsiats largely of corals, and the surface connists of delicate stars. It is called by the Italians Pietra Stellarin. It is also common in some of the states on the Ohio.
"F'ire Marble, or Lumachelle, is a dark-brown shell marble, having brillian fire or chatoyant reflections from within.
" Ireccian Marbles, nud Purlding Stone Marbles, are the polished calcarcous breccia or pudding-stone.
"Stalagmites and atalactitosnre frequently polished, nud tho variety of mindes iк often highly benutiful. Tho Gibraltar stone, so well known, in of this kind. It comes from a cavern in the Gibraltar rook, anal wan deposited from dripping water. It is made into juk-stands, letter-holders, nud variuns smalt articles.
"Wiond is often peraticel hy carbonate of line, and occasionally whole trunk are changed into stonc. The apecimens show well the grain of the woul, and some are very haudsome when polished.
" Marlle in maw by means of a thin iron plate and sand and water, either by hand or machinery. las polishing the slabs are first worn down by the sharpent sund, cither ly rubbing twu slabs together, or by means of a plate of iron; fiuer gaind is afterwarles thed, abd then a still finer. Next emery is applied uf increaning linnuens by menus of a plate of lead ; and, funally, the last palinh is given by meany of patty powder, rubbed un with a piece of felt about a thirl of an inch in thickners fastencil ou wa llock of worl malle fur tho parpose. Mono or lena water in used throughout the procesn."

MABCASTTE, n name for Iron Pyrito [1nos.]

 petalous Hixogenf, havimg an imbricated calyx, mumerons hypogynous ataurcun, mal a muperior ovary with n discoill atigetua and many polympernoun cellm. They are all iularbitants of the tropical parts of America, aud are nsually meramibling shanbs, which aro nometimes true parmiten. Tho order is of no known ne, sul of but little interest, oxcept in anysternatical point of view; unless for the sake of its vary curiona lancte, which vary in form in different species, but

leaver of Maregruavia umbellufa are regnorded in the West Indies ns diuretic and nutieeptic.

Marcgracia umbellata.
1, a pitcher shaped inverted bract adheriag to the pedancic of an unexpanded flower ; 2, a ripe frult ecated la the pershtent inbrleated calyx; 3, a transverse section of the same.

MARCHANTIA'CEAE, Liremcorts, n small natural order of Aerogens, or Cryptogamic Plsats, forming part of the old group called Hepatice. They are planta of a low organisation, in most jnstances haring no distinction of leaves and stem, but n thin leafy lobed thallus in their room, in which respect they resemble lichens, butare furnished with breathing pores nad nus appronch to spiral vessels in the form of elaters, which latter circumatances elevate them to the level of Lycopodiacece and I/risileacect.

Marchantia polymorpha.
1, a vertical rection of ath faveluerum, with the young capgule Imbedded in the receptacle.

Nerchantiacee differ from Jumgermamincea, with which they wero formenly combined under the old name of I/epaticce, in not having
a distinct stem, and in their fruit not being 4 -valved. Marchantia itself, a commou plant under the nerth side of old walls and hedyes, upon clamp ground, forms deep green patches with a lobed licheuoid thallus, and has reproductive organs of two kinds arranged separately below mushroom-shaped heads; one of them appears to be male and the other female. None of the species are of any known use.

Eudlicher separates the order into four, with the following distinctive characters:-

1. Ricciacea. Frondose. Involucre none. Capsules bursting iuregularly. Elaters none. Aquatics.
2. Anthocerotere. Freudose or leafy. Involucre none. Capsules 1-2-valved, with a central columella, Elaters.
3. Targioniacece. Frondose. Involucre heterogeneous. Capsules opening by teetl. Elaters.
4. Marchantiacece. Frondose. Poth involucre and incolucel. Capsules various, opeaing irregularly hy tecth. Elaters. Flowers capitate.

MARE. [EqUID天.]
Maire's-I'All. [Haloragacref ; Hipperis.]
MAliECA. [Decкs.]
MAREKANITE [ObsIDLAN.]
MARGAIIIN, a peculiar fatty matter contained in vegetable oils, and also in snimal fats, as mutton-suet and hog's-lard : when thess lave been treated with ether, for the purpose of obtaining stearin from them, the ethereal liquors, by spoutaneous evaporation, deposit a porion of the solid matter which they contain, and this is to be collected on a linen cloth, strongly pressed, and then exposed for a long time to the heat of a salt-water bath. This substance is very soluble in cold ether, which distinguishes it frem stesrin. It appears probable however that by boiling in alkaline solutions it is converted into stearic acid; but additional experiments are required to determine it ${ }^{\text {nature }}$ with precision. [Oil; Adiposf. Tisseme.]
MAPGARI'TA, Dr. Leach's namo for the Concha margaritifera, or Matrix Perlarum, Mytilus margariliferus of Linnreus, Meleagrina margaritifera of Lamarck. [Aviccla.]
MARGARITA'CEA, M, De Blainville's name for his third family of Lamellibranchiata. This family comprises the genera Irulsella, Malleus, Perna, Crenatula, Inoceramus, Cuellus, Pulvinites, Gervillia, and Aricula. [Avicula; Mandeace.l.]
MARGARITE. [Mica.]
MARGARODITE. [MIca.]
MARGINELLAA. [Volutides.]
Marginopolra. [Milleporide.]
mariguld. [Calendula.]
MARIGOLD, MARSH. [Caltila.]
MARIMONDA. [ATELES.]
MARJORAM, an aromstic potherb used in cookery, especially among the French. - It in the Origanum Majorana of Linnæus, or Majorana hortensis of Manch, a native of Barbary and the Himalaya Mountains. In gardens it is little better than an annual ; in a wild state it is a suffruticose perennial. [Origancm.]

MARL. A mixture of calcareous and argillaceous earth is commonly called Marl ; in Norfolk soft chalk used on the lands is called Marl; in Worcestershire and Somersetshirs red clays are termed Marls. Iu geolocy we have the Red Marl, the Black Marl at the base of the lias, the Chalk Marl, the Fresh-Water Marls of Headon Hill in the Iole of Wight. The terni is too vague for scientific descriptions. It is a neful rubstance in agriculture. [Marl, in Ants and So. Div.]

MARLSTONL: Sandy, calcareons, and irony etrata, which divide the upper from the lower Lias Clays, are thus designated. [Geoloor.] This mess of rocks is nowhere so well developed as in Yorkshire and Leicestershire.
MARMATITE, a name for Blende. [Zivc.]
MARMOLITE, a Mineral consisting of silicate of Magnesia, occurs massive. Its structure is columnar, irregularly intersecting. Columnar portions folinted, having a cleavage in two directions intersecting each other. Colour grayish and greenish. Hardness 3.5. Lustre pearly. Translucent, opaque. Specitic gravity 2.47. Found at Hoboken, New Jersey, and the Bare Hills, near Baltimore, United States. Analysis by Nittall:-

36
46
Magnebia
46
2
Water
-99
MARMOSET. [QUADROMAs.A.]
MARMOT. [RODEstia.]
MARLAM. [l'samma.]
MARROW, or MEDULLA, is the fat centained in the osseens tabes and cells of the bones. [Gone.] It consists of an oily fluid, contained in minute vesicles, which are usually collected into bunches and inclosed in apaces surrounded by bony walls. It is most abundant in the cavities of the long bones, and in the spougy tissue of their articulpr extremitien, and of the short rounded bones.
Spinal Marrow aud Medulla Spinalis arc names sometimes applied to the spinal chord. [Nenves.]
MARRU'BlUM, a genns of llants belonging to the natural order Lamiacee, or Labiutce. It has a tubular calyx be to 10 -nerved, equal, אAT. HIST, DIV. VOL, III.
with 5 or 10 acute spiny teeth; corolla with the upper lip erect, the lower spreading and trifid, with the middle lobe broader and generally emarginate; stamens didynamous, inclosed; anthers with divaricating somewhat confuent lobes, all nearly of the same form ; style with short obtuse lobes.
M. vulgare, White Herebound, is a bienaial or perennial berbaceous plant, common by roadsides. The stem is bushy, branching from the bottom, bluntly quadrangular; leaves ovate and atteuusted into a petiole, or roundish, cordate, crenate, hoary, rough; whorls many, Howered; calyx-teeth 10, subulate, recurved, patent, woolly below, their upper half glabrous; the flowers are white, in dense convex whorls. The officinal part is the leaves ; these are to be collected without the atalks. They are of a whitish-gray woolly appearauce, possessed of a faint odour, which becomes less by drying, and a bitter sharp taste. Ten pounds of leaves yield four peunds of extract. Their chief constituents are a bitter extractive, with a relatile oil, and probably some astriugent matter.

White Horehound, when young, is apt te be confounded with many other labiate plants, particularly the Ballota nigra, or Black Herehound, which possesses a disagreeablo odour. The medicinial properties of Horehound are ver'y iasignificant, being demulcent, slightly tonic, and astriugeats As a popular remedy it enjoys great favour in many pulmouary complaints; but the preparations vended under the name of Horehound often contain more efficient ingreclients, to which they owe their success.
MARSH-MALLOW. [Althea.]
MARSH-MARIGOLD. [Caltha.]
MARSILEACE $£$, or RH1ZOCARPE E, Pepperworts or Rhizocarps, a natural order of Aquatic Plants, with creeping stems bearing leaves, which are usually divided into three or more cuneate portions, and have a circinate vernation. The fructification is produced at the base of the leaf-stalks, and consists of sporocserps and involucres inclosing clustered organs, which consist of anthoridian and pistillidian cells. The germinating body has an oval form, and occasionally a mammilla on one side, whence roots and leaves proceed. The species are all iuhabitants of ditches or inundated places. They do not appear to be affected 80 much by climate ss by situation; thus they bave becn detected in various parts of Europe, Asia, Africa, and America, chiefty however in temperate latitudes. Their position is between Lycopodiacece and Jungermanniacece. The species number about 20, the principsl of which are-Pilularia, Marsilea, Azolla, and Salvinia. (Balfour, Class-Book of Dotany.)

MARSUPIA'TA, or MARSUPIA'LIA (marsupium, a purse or bag), an extensive group of Mammalia, differing essentially from all the others in their organisation, and comprehending genera fed by every variety of nourishment. Their structure is, ss a necessary consequence, modified accordingly; and we fiud among them an adaptation of the organs of progression, prehension, and digestion, to their several wants and habits, ec that we may trace in them analogies to the carnivorous insectivorous, herbivorcus, and redeut forms of the other Mammalia.

The first species belonging to this abnermal or aberrant group brought under the notice of zoologists were these of America, and they received from Scaliger the appropriate name of Animalia coumenata, or Purbe-bearing Animals; for the leading peculiarity in these Marsu. pials is, so to speak, the premature birth of their young, which are born in a state of development not much beyond that of the foetuc in the other groups at a very early stage of pregnancy, and attach them. selres by the mouth to the teate, which are situated in the marsupium, or pouch, of the mother; and in this nidus, or, as it may be termed, second uterus, the almost embryotic young one is nourished till the little knebs that marked the place of the extremities sheot out into limbs', and till the whele framework of the animal is completed, and it is able to go alone. Long after this period it flies to the pouch upon tiae appreach of danger, or enters it whon fatigued, and may often be seen peeping out to ascertain whether it is safe to venture abroad again.

Linareus, who appears only to have known the American species, or Opossume, arraoges them ueder the generic appellation of Didelphis, in his order Feree, placing them betwoen the Bcars, Badgers, Rscoons, \&c., sud the Molee (Talpa).

Cuvier, who had the advantage of knowing the great quantity of species and variety of forms discovered in Australia, arranged the copious materials which that extraordinary country afforded in addition to the fow American ferms, as the fourth order of hie Mammiferres, dividing the now nunnerous greup into several subdivisions, and placing the order between his Carnassiers and his Rodentia.

Illiger makes the Marsupialia the sixth family of his second order, Pollicata; and his third order, Salicntia, consists of the Kangarcos and Potoroos.
M. Da Blainville divides the Mammiferes into two sub-classes; the first being the Monadelphes and the second the Didelphes, which last consiste of the Marsupialia and Monotremes, properly so called; we say properly so called, because, strictly apeaking, every Marsupial femsic is a Monotreme.

Dr.J. E. Gray collects all the forms under the family Didelplider. [Mammalogy.]

Storr congregates all Mammalia with opposeable thumbs into nue
great group, which lio divides into three sections: the first cousisting of the genua Homo; the secend of the gencra Simia, Prosimia, Procebus, Tarsinf, Lemur; and the third of the genera Didelphis nad Phalanger.

Mr. Ogilby separates bis Cheiropeds (Manmals with opposenble thumbs) into the three groups, Dimana, Quadrumona, nad Pcdimana, which last are characterised as bsving opposeable thumbs on the hind hands only. The Pedimana conaist of tho families Simiade (with anthropoid teeth) nud the Didelphidir (with abnermal teeth). These last consist of the genera Phoscolarctos, Phalangista, Pelaurus, Didelphys, Cheironectes, Dasyurus, nad Phascogulc. ('Nat. Hist. of Monkeya, Opossums, and Lemurn,' Menageries.)

Before we proceed to notice the classification proponed by Professor Owen, it will be better to gire an outline of the organisation of these nnimals.

The Marmpiata differ considembly from ench other in the osseons part of their structure, as might be expected in a group whese foed and balits vary so much. Our limits do not permit of n detailed inguiry into these differences; but the examples given in the skeletons, skulls, and teeth represented in this article will convey a general notion of the formation of the bony parta, and the modifications to which they are subject. There is however one peculiarity common to all, which is even found in the trua Monetremen, and presents a marked discrepancy from the asseons systems of the other Mammaliawe allude to the Diarsupial benes. These are attached to the pubis, and imbedded in the muscles of the sbdomen, where they afford support to the marsupium, or ponch, in the females. They exist also in the nales, to whom their presence seems to be necessary for the purposes of reproduction. These bones and their gituation are shewn in the akeletons of the Kangareo and Opossum. (Owen, 'On the Osteology of the Marsupialia.' 'Zool. I'roc.' Uct., 1838.)

The organs of digestion, as might be expected, vary greatly. The teeth are approprinted to the food or prey to be taken, whether it be fleah, insecta, fruits, herba, or roota; and in conformity with the asme law, we havo a simple or a complex stomach, and a corresponding structure in the riacera; the flesh-eating tribes being entirely without a cecum, and the ethers porsessiog that sppendage in a greater or less degree accordiog to circumstances.

But it is in the organs of generation and mode of reproduction that the great sud strikiag difference exists between the Marsupials and nill other knewn Mammals.

I'rofesser Owen, in his paper ' On the Generation of the Marsupial Animnls, with a Description of the Impreguated Uterus of the Kangaree ' ('Phil. Trams.', 1834), observes that in all the genera of this group the uterus is double, and the introductory passage is separated either wholly or for a considerable extent into two lateral canals. Both the digestive and generative tubes terminate within a common cloacal outlet, and the term Monotremata therefore, he romarks, though confined to the Edentate Marsupiata, ie eo far applicable to the whole of this nberrant division. As the femules approach the Oviparous Jertebrata in their separate genital tubes, so also the males resemble them in the pecnliar structure and connections of the reproductive organs. "Both sexes," says Professor Owen, "in the Marsupial genera manifest alse their sffinity to the oviparoua classes in possessing two superior vente cava, and in the want of the inferior menenteric artery; and the marsupial bones, 60 common in the akeletons of reptilea, are limited in the msmmiferous class to thie division, in which aloae, from the peculiarly brief peried of aterise gestation, and the consequent non-enlargement of the sbdomen, their presenco might be expected. Dut these benes nerve important purposes in relation to the generative ceonomy of the Marsupiata. In the female they ausint in producing a compression of the inammary gland necessary for the alimentation of a peculiarly feeble offrpring, aud they defent the abdominal vicem from the pressure of the young as these incresse in nize during their mammary or marsupisl existence, snd still more when they return to the pouch for temperary shelter." In the malea, with the exception of the cdentate gencra, the marsupial bonen, from their relation to the cremaster muscles, which wind ronad them like pulleys, nupist in the acts of compression and retraction. The miante size of the young of the Anerican Opossum when feund in the toarsupium, their peodulous attachment to the mippler, and perhapa the mode in which the latter are duveloped, gave rise among the earlicr observens to a auppoaition that they were originally formed from those parts; and the gerumiparous theory, which has subsequently been often revived, npprears to havo lieen prevalent at the time when Tyana firat devoted his attention to the subject.

Irofersor Owen, nfter concluding, from data stated in hia paper, that it may the inferred that the onmm io the Kangano quits the ovisac in n condition corresponding to that in the orvinary Mammalia, and increanes in a similar manaer an it descends in the uterus, goes on to dencribe in minute and mont interenting detail the foetus and membranes of a Knugaron (Macropua major) at apparently the mildlo period of geatatioo, which in that animal contlmues for thirty-right dayn. The mambranem conaiated of an amnion, n very large vitelline sac, rendered highly vascular by ramifications of omphalo-meaenteric vesula, and a thin urvascular chorion. There was no placenta, nor any adhesion between the exterior membrane of the foetus and the
internal surfsee of the mother by the opposition and Interlacemont of villi, or vessele, as in thoso Mammalia, in which the placents is replaced by a uniform villous and vascular chorion; the condition of the fratus was ench as ocours in the viper and other oveviviparous reptiles, except that there was no trace of the existence of an allantois in that stage of the fortal develepineut. The dissection of very young mammary fectuses of the Kangaroc, Phalangista, and Petaurus, exhibited the remains of a urachus and umbilical vessels, whence Professor Owen concluded that at a miore advanced stage of the footus an allautois was developed. Profesacr Owen remarked thst as the growth of tho footus advanced, the circulating fluids became vecessarily more charged with decomposed particles of the organised subatanee; and that altheugh the cxtended surface of minutely subdivided bloodvessels afforded by tho vitelline sac might serve both for respiration and nutrition at the earlicst stagea, yet that at a late period, aud an the embryo acquired sdditional bulk and streagth and parta, an accessory apparatus for that end appeared to be necessary. In all the Reptilia, he observed, in which the respiratory function of the foatus ia not performed by the extension of vascular filaments from the siles of the neck, su allantois or ceccal process, organized by umbilical or hypogastric vesscls, is produced from the terminal portion of the intestinal tube. In the placental Mammalia, where the vitelline sac and vitellus are relatively smaller, the allantois makes its appearance much earlier, but is developed in different proportions in the different orders. It is aubservient in all the placental Mammalia to the important function of the transfereace of the hypegastrio or umbilioal arteries to the exterior enveleping membrane or chorion; and in these Mammalia, Professor Owen further remarked, the umbilical vessels ce-extended with the allantoic cwcum seek a more intimate coutact with the vascular eurface of the womb, and proceed to organise the chorion shooting out into villi, either extended over the whole surface, as in the mare, or disposed in circumseribed tufts, as in the ruminants, or limited to one place and formiug a singlo placenta, as in the buman subject, and in all unguiculate mammals.

- As convected with this subject Professer Owen subsequently exhibited a preparation ('Magazine of Natural History,' vcl. i. N. S.) to the Zoolegical Seciety of Loudon, and took occasien to obserre that in the bird and reptile the umbilical veesels are limited to the allantoin, and de not extend beyond that membrane to the chorien; the allantois therefore plays n primary part in the respiration of the footas. In the placental Mammalia, on the other hsnd, ita office as a temporary respiratory organ is eecondary, but it is essential as a means of transference of the umbilical vessels to the chorion; it has therefore a preexistence te the placenta, and without it the placenta could not be formed; for if it be considered that the embryo le formed within the bag of the cherion, and is originally free from say connection with that toembrane, there must of necessity be some oupport for the umbilical vessels during their passage to the cherion; but no other is known except the allautoig, or urimary bladder, and urachus, as its remsina are termed. The existence of a placenta, in Profeesor Owen's mind, therefore infere the pre-existence of an allantoie, but the reverse of the proposition does not therefore held geod. In birds and scaled reptiles the allantois itself performs the functions of the placenta or vascular chorion; and the queation to be reselved relatively to the Kangaroo and other Marsupisls was whether, the allantois being develeped, it would serve as a medium for the organisation of the chorion, or remsin, as is the Oviparous Vertebrata, an independent vascular bag or ciccum. The examination of the preparation alluded to, a uterine foctus of a Kangaroo placed at Professor Owen's disposal by Dr. Sweatman, contributed to the eolution of that question. This foctus wain further advanced than that described by Professer Owen in ' Phil. 'Trans.' The digita of the hinder extremities were, in this, completely formed. The unbilical cherd extended nearly three lines from the abdominal surface of the fortus; the smnios was reflected from this point to form the unual immediately investing tunic of the foctne; and beyoud the peint of reflection, the cherd divided into a very large anperier vascular asc, organised by the omphalo-mesenterio vessels, correaponding in all respects with the vitelline sac described and figured iu Professer Owen's paper in 'Phil. Trans.': but below the neck of this sac there extended a second pyriform sac, about one-sixth the size of the vitelline sac, having numerous ramificatione of the umbilical vessela, and constituting a true allantois. This sac was suspended freely from the end of the umbilical chord; it had ne connection at any part of its circumfereace with the chorion, and was equally free from attachment to the parieties of the uterus, in which the fotus was doveloped.

The period of geatation (thirty-nine dnys) was determined in I883, in tho vivarium of the Zoological Society of London, by Profensor Uwen, whose sccount of this obscure and interestiug portion of the natural history of the snimal we here give from his paper in the ']'hil. Trazs.' :-
"In order to inure the female to the examinations of the pouch when they sheuld become indispenaable, they were commenced six days after the copulation, which took place on the 27th of August, and were repoated every morning aud evening until the 5 th of October, when, nt 7 h.m., the foctus was discovered in the pouoh attached to the left superior nippla. On the preceding day at the same hour a great quantity of the meist brown secrotion peculiar to the pouch was
noticed, indicating a commencing determination of blood to that part, and at different periods during the day the female was observed to put her head into the pouch and lick off the secretion. When she was again examined, at six o'clock in the evening, a slight increase of the secretion was the only perceptible change in the state of the pouch, but there was no appearance in the nipples indicative of the event so soon about to take place. The nipple in use hy the joung one of the previous year was the right superior or anterior one; it was nearly two inches in length, and one third of an inch in diameter, while the other three were about half an inch in length, and about a line in diameter. I took notes of the appearance of the marsupium on the 6th, the 10 th, 15th, 21st, 30th, and 38 th days of uterine gestation; no material alteration was however observable till after the death of the young Kangaroo of the previous jear, which took place on the twenty-fifth day, when the brewn secretion first began to appear, and the nipple that had been in use to diminish. As parturition took place in the night, the mode of transmission to the pouch was not obserred. No blood or albuminous discharge could be detected on the litter, nor any trace of it on the fur between the vagina and orifice of the pouch; but these might have been remeved by the mother. The appearances presented by the little one thus detected within twelve hours after being deposited in the pouch were as follows:-It resembled an earthworm in the colour and semitransparency of its integument, adbered firmly to the point of the nipple, breathed etrongly but slowly, and moved its fore lega when diaturbed. Its body was bent upon the abdomen, its short tail tucked in between the hiud legs, which were one-third shorter than the fore legs, but with the three divisions of the toes now distinct. The whole length from the nose to the end of the tail, when stretehed out, did not exceed one inch and two lines. On the 9th of October I again examined the pouch; the young one was evidently grown and respired vigerously. I determined to detach it from the sipple for the following reasons:-1st, to decide the nature of the connection between the foetus and the nipple ; 2nd, to ascertain, if possible the nature of the maminary eecretion at this peried; 3rd, to try whether so small a foctus would manifest the powers of a voluntary agent in regaining the nipple; and lastly, to observe the actions of the mother to effect the same purpose, which one might presume would bo instinctively analogous to those by means of which the foetus was originally applied to the mipple. With respect to the first point, I was aware that the Hunterian dissections, as exhibited in the preparations in the museum of the college, and the observations of Mr. Morgan and Mr. Collie, concurred in disproving the theory of a vascular mode of counection between the mammary foetus and the nipple; nevertheless as a discharge of blood had been stated by Geoffroy St. Hilaire to accompany marsupial birth, or the spontaneous detachment of the featus from the nipple, and even the anastomoses and distribution of the continuous vessels in the neck of the foetus had been speculated on by him, it became desirable to have ocular demonstration of the facts.
"The foctus retained a firm hold of the nipple; when it was detached, a minute drop of whitish fluid, a serous milk, appeared on the point of the nipple. About half a line of the extremity of the nipple had entered the mouth, which extremity was of smaller diameter than the rest of the nipple, not being as yet so compressed by the contracted orifice of the mouth as to form a clavate extremity, such as it afterwards presents. The young one moved its extremities vigorously after being detached, but did not make any appareat effort to apply its legs to the integument of the mother, so as to creep along, but eeemed, in regard to progressive motion, to be perfectly helpless. It was deposited at the bottom of the pouch, and the mother was liberated and carefully watched for an hour. She immediately showed symptoms of uneasiness, stooping down to lick the orifice of the vagina, and scratching the exterior of the pouch. At length she grasped the sides of the orifice of the pouch with her fore paws, and drawing them apart, as in the act of opening a bag, she thrust her head into the cavity as far as the eyes, and could be seen moving it about in different directions. During this act she rested ou the tripod formed by the tarsi and tail. She never medded with the pouch while in the recurabent posture; but when stimulated by uneasy sensations, she immediately rose and repcated the process of drawing open the bag and inserting ber muzzle, sometimes kceping it there for half a minute at a time: I never observed that she put her fere-lcgs into the pouch; they were iuvariably employed to widen the orifice. When sho withdrew her head, she generally concluded by lickiug the orifice of the pouch, and ewallowing the secretion. After repeating the above act about a dozen times, she lay down, and seemed to be at casc.
"The freedom with which the mother reached with her mouth the orifices both of the geuital passage and pouch euggested at once a means adequate to the removal of the young from the one to the other; while at the same time her cmployment of the fore paws indicated that their assistance in the traosmission of the foctus need not extend beyond the keeping open the entrance of the pouch while the fertils was being introduced by the mouth, when it is thus probably conducted to, and helil over, a nipple, until tho mother feels that it has grasped the sensitive extremity of the part from which it is to derive its gustenance. This mode of transmission is consistent with analogy, the mouth being always employed by the ordinary
quadrupeds, as dogs, cats, and mice, for the purpose of removing their helpless offspring. It accords also with the phenemena better than those which hare been previously proposed; for it is now ascertained, by repeated dissections both of the Kangaroo and Opessum, that there is no ioternal passage from the uterus to the marsupium : and if the genital outlet can be brought inte centact with the orifice of the pouch in the dead Kangaroc by means of great stretching of the relaxed parts, yet such an action has never been wituessed in the living animal;* the tender embrso would be more liable to receive injury from the fore paws; and these, from the absence of a thumb, could not so effectually insure its passage as the lips, which can be opposed to each other. Lastly, the yonng one did not by any of its actions encourage the idea of itg possessing the power of instinctively creeping up to the nipple. When the female had rested quiet for about half an hour we again examined her, and found the young one not at the bottom of the pouch, but within two inches of the nipple ; it was breathing strongly, and moving its extrenities irregularly as before. I made an attempt to replace it on the vipple, but without success, and the mother was then released. On an examination two days afterwards the marsupium was found empty. Every portion of the litter was carefu!ly searched, in the hopes of finding the feetus, but witheut success. The mother therefore, owing to the disturbance of the young one, had probably destroyed it . This was a result I had not expected, for the head keeper at the Zoelegical Farm had twice taken a mammary fotus from the nipple and pouch of the mother, soon after it had been deposited there, and when it did not exceed an inch in length, and it had each time again become attached to the nipple. I afterwards saw this fotus attached to the nipple; and it continued to grow, without having sustained any apparent injury from the separation, until the death of the mother, when it was nearly ready to leave the pouch. A similar result occurred to Mr. Collie."

Outline of the Kangaroe about twelve hours after nterine birth, shewing its natural size and external derelopment at this period. The elongation of the jaws hus reduced the mouth to a simple round anterior orifice, which subsequently hecomes even more contraeted before the lateral fissures begin to extend backwards. The eye is concealed by the completely formed eyelids. Three divisions are now seen at the pasterior extremity. A longitudinal line indicates the separstion of the umbilieal pedicle. a, the upper nipple of the left side, to which the ahove foctus was attached; b, the lower nipple of the same side.

The young one observed by Mr. Cellie ('Zoological Journal,' vol. v.) Was of nearly the size of the last aud half the middle joint of one's little finger; and the flesh-coloured integuments were so transparent as to permit the higher coloured vessels and viecera to be seen through them. The extremities seemed completely formed, and its muscular power was testified by its efforts in sucking, during which it putevery part of its body in motion. "According to the testimony of the person," continues Mr. Collie, "who preserved the mether with this little one for me, the latter by no means passes the whole of its time with the lacteal papilia in its month, but has been remarked, more than nnce, withont having hold of it. It has even been wholly removed from the eac to the person's hand, and has alwaye attached itself anew to the teat. Yesterday, on again looking at it, I gently pressed with the tip of my finger the head of the little one nway from the teat of which it had hold, and continued pressing a little more strongly for the space of a minute altogether, when the teat, that had been stretched to more than an inch, came out of the jeung one's mouth, and showed a small circular enlargement at its tip, well adapting it for being retained by the mouth of the sucker. The opening of the mouth seemed closed in on both sides, and ooly sufficiently open in iront to admit the slender papilla. After this I placed the extremity of the teat close to the mouth of the young, aud held it there for a short time without perceiving any decided effort to get held of it anew; when I allowed the sac to close, and put the mother into her place of security. An hour afterwards the young one was observed still unattached, but in about two hours it had hold of the teat and was actively employed in sucking."
Professor Owen then refers to a similar experiment tried with a mammary foetus about the size of a Norway rat by Mr. Morgan. This foctus, after two hours' separation from the nipple, regained its

* Professor Owen observes that this argument is not applicable to those Marsupiata which, like Ferameles and the smaller South American Opossums, have the duplicatures of integument forming the pouch extended close to the cloaca.
boll, and numbinol no injury from the interruption of the supply of nouriabment l'rofesur Owen cuncladea therefore that the evideneo adducal entablinace the fict that the mammary foutua at a very early period is at least capmble of sustaining a separation from the nipple; und although it may not int this stage of growth possess the jower of reganing its bold by its own unaided effort, it is far from being the inert and formles embryo that it has been described to be, resembling no the contrary, in its rital powers, the new-born young of the smalter Manmalia mather than the nterine feetus of a larger species at a period of derelopmeat when auch a foctus corresponds in size to a new-bom Kungano; and although tho latter possesses grenter porrers of action than the same sized embryo of a flemp, and npprosimates more nearls in this respect to the new born yonng of the rat, get, I'rofeswor Uwenobserves, it is evidently inferior to the latter. For, though euabled by the muscular power of its lips to grisp and adhere firmly to the nipfile, its own unailed ciforts seem incapable of drawing sustenace therefrom. The preculiar arinptation of a muscle, analogous to the erenaster, to the mammary gland, for the purpose of injecting the milk from tho nipplo into the mouth of the adherent foctus, has been demonstrated by Professor Geoffroy and Mr. Morgnu; and Professor Owen remners that it can scarcely he supposed that the foctal efforts of suction should alwaye be coibeident with the maternal act of injection. If at nny time this abould not be the ense, the consequences might be fatsl from the forcible injectiou of milk into the laryux. Fo gunrd ngninst this there is a special contrivance, first described by M. Geoflroy, the necessity for which appears to have been foreseen by Mr. John luuter in his dissection of two small mammary fortuses of the \mathbf{K} angaroo for the especial purpose of showing the relation of the laryux to the posterior nares (Nos. 3731, 3734, 3735, Mus. Coll. Reg. Chir., Mhysiological Series), in which, as Professor Owenstates, there are evideuces that Hunter had anticipated most of the nutomical discoveries which have subsequently been made upon the ombryo of the Kaugarao. The epiglottis and argtenoid cartilages are elongated and approximated, and the rima glotidis is thus situated at the npex of a cone-shaped larynx, which projects, as in the Cefacca, into the posterior nares, where it is closely embraced by the muscles of the soft palate. The airpassage is thus completely separated from the fances, and the injected milk passes in a divided stream on either side the larynx to the (csophagus.

1, the lead of anmmary fotus of n hangaroo, bbout cight weeks old, dinercted to show the relation of the larynx to the tongue and postertor nares. a, the cplglotid, drawn down out of the aperture in the soft palate; b, the cavity in the tongue for the reeption of the nipule.
?, He elongated nipile, withdrawn from the moth; the dotted line shows the estent to which it is crasped: it never extends into the asophagus or stomacb, as has been conjectured. Owen.
"Thus aided and protected by modifications of atructure," con-
tinucs I'rofessor Owen, "both iu the nyatem of the mother and iu jts own, desigued with eapecial referenco to cach other's peculiar coudition, and nflarling therefore the most irrefrugable ovidence of crentive foresight, the ficeble offspring continues to iucraso fiom sustonance exclusively derived from the mother for a periud of about eight months. The young kangaroo may then bo seen frequeutly to protrude its heal froms the mouth of the ponch, aud to crop the grass at the same time that the nother is browsing. Maving thus acquired ndditional streogth, it quits the ponch, and hops at first with a feeble und vacillating gait, but coutmues tareturn to the ponch for occasional uhelter and supplies of fogd till it has attained the weight of 10 lbs . After this it will occasionally iusert its head for the purpose of sucking, notwithstanding another foctus may have been deposilel in the jouch, for the latter, as wo have seen, attaches itself to a different nipple from the one which lad been previously in use."

For tho observations mate by Professor Owen on the structure of the fernale geuerative organs in the other Marsupials, as compared with those of Oviparons, Ovoviviparous, and Viviparous Animals, we must refer to his paper nbove quoted, oul space not permittiug us to do nore than call the reader's attention to tho fnet that his inductions rest principally on tho examiuation of thoso organs in Didelphys dorsigera, Pelaurus pyymetu, Pelau'us Taguanoilcs, Dasypus virerrinus, Dilelphys Jivginiana, Hypsiprymnus Whitei, and Macropus majur. Itis remarks on tho inferiority of the cercbral development of the Marsupisls will be read with great interest as bearing on the structure and analogien of those organs, nad other points of resemblance to the lower vertelirate elasses, especially to the reptiles. "Those marsupial quadrupeds which I have had an opportunity of observing alive in the Zoologiesl Gardens," says the Professor ("and there are at present (1834) species of Dasyurus, Didelphys, Phalangista, Petaurus, Hypsiprymnus, Macropus, nad Phascalomys), are all characterised by a low degree of intelligence; nor can I learn that they ever manifest ady sign of recognition of their koopers or feeders. Auothor character, no less uniformly belonging to them, is the want of a power of uttering vocalised sounds. When ircitated they emit n wheezing or sarrling guttural sound; that of the Dasyurus ursinus is the elearest, and is the nearest ajproach to n growl. Mr. Harris however states that in addition to this noise, the Ursine Opossum utters a kind of hollow barking. The Thylacimus cynocephelus, or large Dog. Faced Opossum, he observes, utters 'a short guttural cry, and appears exceedingly inactive and stupid, having, like the owl, au almost constant motion with the nictitating usembrane of the cye." The Wombat, when irritnted, emits n loud hiss, which forcibly reminds oue of that of the serpent. The noise emittell by the Kaugaroo under similar circumstances is equally remote from a vocalised sound; the necessary apparatus for producing which, Cuvier long ngo ohserved to be wanting in tho laryux of this animal. It is interesting to find these nnalogies to the Repfilia, and more might be pointed ont if it wero not a comparison which merits a separato consideration." The reader who would pursue his inquiries ns to the generative ajstem of the Marsupialia may also consult the previous writiogs of Daubenton, leagger, and Leuckart. The muscum of the Roynl College of Surgeons will nfford amplo materials for following out the organiantion of this extraordianry group in the skeletons and preparation preserved iu the Physiological Scries of that noble institution. The following is the rrrangement, based on the organisation of the nnimals, proposed by Professor Owen in n paper read to the Zoological Society of Loudon on the 8th and 2end of Jaunary, 1839 :-

Chasifioamon of the Marschlata.

MA: innhinga.
Ininsceromyider
Phascolomys

- The terma given in the triben or primory groups of Marampiata in the cianification are not to be underatood as atrictly Indicalling the food of the epecte ecrerally incladed therein, but ouly thelr genetal tendency to aciect for theic aupport the substnacen implied by those designatlons.

We now proceed to give a suceinet illustration of the gevera and some of the sub-genera above mentioned.
Thylacinus (Ternminck).-Dental Formula :-

$$
\text { Incisors, } \frac{8}{6} ; \text { Canides, } \frac{1-1}{1-1} ; \text { Nolars, } \frac{7-7}{7-7}=46 \text {. }
$$

The incisors are ranged in a semicircle, equal, and separated in the middle in each jaw by a vacant space; the external incisor on each side is the stoutest; the caoines are of considerable size, curved and pointed like those of the eats and dogs; the last molars are armed with three obtuse tuhercles, reaembling those of the two groups of Carnivora last mentioned ; toea five on each fore foot, and four on each hind foot.
T. cynocephalus (Dasyurus cynocephalus of Geoffroy, T. Marrisii of Temminek), the Tasmanian Wolf, Zebra Opossum, and Zebra Wolf. Size of a young wolf; the short smooth hair of a dusky yellowish. brown above, barred or zebraed on the lower part of the back and rump with about 16 jet-black transverse stripes, broadest on the back, and gradually taperiag downwards, two of which extend a considerable way down the thighs; the ground-colour on the lack inelines to blackish-gray; tail much compressed and tapering to a point.

Tasmanian Wolf (Thylacinus cynocephalus).
Mr. Harris ('linn. Trans.') states that this apecies, tho largest of the Australian Carnizorct, inlabita caverna and rocka in the deep and almost impenetrable glens in the neighbourhood of the lighest mountainous parts of Van Diemen's Land, where it probably preys upon the brush (bush ?) Kangaroo and various small animals that abound in those plaees. The iudividual from which the deacription and drawing were taken was caught in a trap baited with kangarooflesh. It remained alive but a few houra, and during that period uttered the cry and presented the appearacees quoted by Professor Owen. In its stomach were found the partly-digested remains of a Porcupine Aut-Eater (Echidna aculeata). Two of these animala are now alive in the Gardens of the Zoological Society, Regent's Park. The following account of this animal ia given in the guide-book to the gardens:-
"The Thylacinus, or Tasmadian Wolf, is a carnivorous marsupial, which, in that great group of animals almost peculiar to Australia, has the same functions and relations as have the lion and the tiger among the larger quadrupeds of Africa and Asia. It is prohable that these beasts formerly preyed for the most part on phalangera aad kangaroos; for it appears, from the observations of Mr. Gunn, that they obstinately refuse the flesh of the wormbat, although it ia one of the commonest quadrupeds in the district,s which they ishabit. But since the intrnduction of sheep, their favourite prey is mutton, and their ravages have been so extensive as to oblige the shepherds to destroy them by every possible meaus. They are rarely caught alive, or, if so caught, are killed whilst in the soares, so that it has only been with the greatest diffculty and by oflering large rewards that Mr. Gunn and Dr. Grant have been able to seeure the present interesting specimens for the society. They are aoimals of extreme aetivity, and capable of bounding upwards nearly to the height of the den in which they are exhibited. No other species of Thylacinus is now known to exist, and this is entirely confined to the islaud of Van Diemen'a Land. In the fossil Fauna of the continent of Australia, Professor Owen has however discovered indication of a speeies very closely allied to it, among the remains eolleeted by Sir Thomas Mitehell in the caverns of Wellington Valley, New Sunth Wales."

Dasyarus (Geoffrog).-Head conical, very much pointed; gape very wide ; eara moderate; toes five on the for feet ; on the hind feet the great toe is reduced to a tubercle or is entirely absent.

Dental Formula :- Iucisors, $\frac{8}{6}$; Cauines, $\frac{1-1}{1-1} ;$ Molars, $\frac{0--6}{6-6}=42$.

Tecth of Dasyurus (Dasyurus macrurus),

f. ursinùs (Didelphys ursince of Harris).' Head, body, legs, aud upper part of the tail covered with long eoarse blaek hair, itregularly marked with one or two blotches of white; in some speeimens on the shoulders, in others on the throat or rump; tail slightly prebensile, its under part bare. (Harris.)

Ursine Opossum (Dasyurus ursimes). Harris.
This species, which is very voracious, and burrows in the ground int Van Diemen's Land, is of the size of π badger. "These animals," says Mr. Harris, "were very eotamon on our first settling at Hobart Town, and were partieularly deatruetive to poultry, \&c. They however furnish the eonvicts with a fresh meal, and the taste was said to be not unlike veal. As the scttlement inereased, and the ground became eleared, thiey were driven from their haunts near the town to the deeper recesses of forests yet unexplored. They are however
casily procured lyy acting a trap in the most unfrequented parta of the wood, buited with raw flesh, all kinds of which they eat indincriminately and romeioulr ; they mlao, it is probable, prey on dead finh, bubber, Nc, as their tracks are frequently fonnd on the sande of the sei-shore. 111 a atate of confinement they nppear to be untameably ravage; biting sererely, and uttering at the amme time a low gelling growl. A male and female, which 1 kept for a couple of montha clanel together in an empty cask, were continually fighting; their quarrela hegan an soon as it was dark (as they siept all daj), and continued throughont the night almost withont intermission, accompanied with a kind of hollow barking, not unlike a dog, and sometines a andden kind of anortirg, ns if the breath was retained a considerable tive, amt thea suhlenty expelled. The femate generally conquered. They frequently sat on their hind parta, and used their fore paws to convoy fond to their mouths. The muscles of their jaws were very atreng, as they cmeked the largest bones with ease asumber and many of their actions, as well as their gat, atrikiagly resembled those of "the bear. Ita vulgar natue is the Native bevil."

A apecimen in the Gardens of the \%oological Society was a snarling aurly aninal.

I'rofessor Owen's account of the disscetion of a Dasyurus macrurus, or C .0 g 'Thiled Dasyurus (Spetted Martin of Phillips's "Voynge'), will be found in the ' Foological 1 'roceedings' for $1 \$ 35$.

Phancorale (Temminck).-Difering from Dasyurus, especially in its Dental Formala:-

$$
\text { Incimore, } \frac{8}{6} ; \text { Canines, } \frac{1-1}{1-1} ; \text { Molars, } \frac{7-7}{7-7}=46 \text {. }
$$

P. penicillatu (Didelphis penicillatus of Shaw, Daspurus penicillatus of Geofroy). Size rather larger than that of the Brown Rat (Mus decumanus); tail very busly ; fur uniform, ash-colour, whitish beneath, short, woolly, and very' thick.

This Phascugale lives on trecs in Austmalim

> I'hancozalc (1'snscogale penicillata).

Mypmecetive (Wiaterhoune). Fore fect with fivo toea; hind feet with four toca, nll frec ; head elongated, mont produced; cars moderate, narrower, null subacute at tho npex; body alender; tail moderate. Dental Formula :-
Incisors, $\frac{8}{6}$; Canincs, $\frac{1-1}{1-1} ;$ Pacudo. Molars, $\frac{3-3}{3-3} ;$ Molars, $\frac{5-5}{6-6}=52$.

khull and loner jan of alyemercobine.
M. fasciapus. Fore part of the boly redliah, gradually blented into the blact, which is the provailing colour of the posterior half,
nul which ia adorned with nino white baods. Fur of two kinds: under hair scanty nud whitish-gray; upper hair rather coarse, short, and adpressed on the anterior jarts; long on the posterior and under parts; hairs on the auterior part of the back generally black at the base and fulrous at the apex; those on the head very short, brownish above, being compoaed of a mixturo of black, fulvoua, and a few white hairs; n few black hairs spring from the aides of the muzzle and under ench eye; hair of the tail leng aud rather bushy; mest of the hairs on the under part fulrous at the base and white at the tip; those on the under aide of tho tail generally black at the base and white at the apex. Length from nose to root of tuil 10 inches; length of tail to the end of the hair 7 iaches.

Mr. Waterhouse, in his paper in the "Trausactions of the Zoological Socicty,' descriptive of this animal, gives the following account of the two specimens on which his description is founded. The first was procured by Lieutenant Dalo, of Liverpool, whilat on an exploring party in the interior of the conntry at tho Swan River Settlement, nnd was discovered about 90 miles to the aouth-east of the mouth of that river. Two of these animale, according to Licutenant Dale, were seen within a fow miles of each other; they were first observed on the ground, and on being pursued both directed their flight to some hollow trees which were near. The party succeeded in capturing one of them ; the other was unfortunately burut to death in their eadesvour to dislodge it by fumigating the hollow tree in which it had taken refuge. The country in which they were found abonnded in decayed trees and ant-hills. Mr. Waterhouse was informed that the second individual was found in Vau Diemea'e Land (but he suspects some mistake here), and that others similar to it had been scon in the act of burrowing or digging at the roots of trees in search after insecte. Their farourite haunts are stated to be in those aituations in which the Port Jackson willow abounds.

Mr. Waterhouse observes, that aithough in the structuro of the skull M. fasciatus evinces an affinity to Phaseogale, it differs from that genus in the want of a thunb to the hind feet, and in the strength and larger size of the claws of the fore feet, which are shaped somewhat like those in the genus Herpestes, and are cvidently suited to burrowing. The fore legs are also stouter in proportion, and tho feet are atronger. In their narrow and pointed ahape, the ears, he remarks, resemble those of Perameles nasutus, and differ from those of Phasogale; they also differ in being tolerably well clothed with hairs. Mr. Waterhouse imagines that in the present animal he can perceive a slight appreach to the Edentate Mfursupialia, or Monotremes, and he thinks that analogically it may bo compared to the genus Tupaia among the truo Insectirora, bearing a aomewhat similar conaection with Echidna and Ornithorkynchus to that which exists between the last-mentioned genos and the genern Sinaceus and Mygale. In cancinsion, he adds that it must be allowed that thero is a greater dissimilarity in atructure between the last-mentioned genus and the genera Ifyrmecobius and Monotremes than between Tupaia and Mygale; we are however prepared for this, by the compratively andden transitions from one form to mother which we finl in the Marsupialia, which group, it must be borne in mind, stands low in the grade of orgausation among the Mammalia. ('Zoelogical Transactions,' vol. ii.)

Cherropus (Ogilby).-On March 13th, 1838, Mr. Ogilby exhibited to a meeting of the Zoological Socicty of London a drawing made by Sir Thomas Mitchell of a Marsmpial animal found by that officer on the banka of the river Murray, luring his journcy in the interior of New Sonth Wales. Mr. Ogilby stated his original belief that the animal in question belonged to the genus Perameles, under which impreasion he had propoaed to name it P. ccaulatus, from its entiro want of tail, a character found in no other species of the same group ; but a drawing of the fore foot, afterwarda fonud by Sir Thomas Mitchell, and likewine exhibited to the Socicty on the preant occasion, had considerably abaken this first opinion, and induced Mr. Ogilby to auppect that the animal may eventually form the type of a new genus. According to Sir Thomas Mitcbell"a drawing, and the notes which ho took at the time of examining the pecimen, it would nppear that there were only two toes on the fore feet, which were described as having been so perfectly similar to thoso of a pig as to hare procured
for the animal the name of the Pig-Footed Bandicoot among the persons of the expedition.

The drawing of the foot in fact very closely resembles that of the genus Sus in form and characters; two toes only are represented short and of equal length; but there is a swelling at the base of the first phalanges, which renders it probable that there may be two smaller ones behind. The Perameles, on the contrary, have three middle toes on the fore feet, all of equal length, and armed with very long powerful claws, beaides a small rudimentary toe very distinctly marked on each side. The form and character of the hind feet were perfectly similar to those of the Perameles, as were also the teeth, as far as could be judged from the drawing, except that the canines did not appear to surpass the anterior molars in poiut of size. The ears were long, elliptical, and nearly naked; the head broad between the ears, and very much attenuated towards the muzzle; the body about the size of a small rabbit, and the fur very much of the same quslity and colour as in that animal. Mr. Ogilby, sfter expressing his confidence in the fidelity of Sir Thomas Mitehell's drswings, and the care with which that geatleman assured him he had made the observation in question, expressed his belief that this animal would be found to constitute a new genus of Marsupials, and proposed for it the previsional name of Checropus, in allusion to the deacribed characters of the fore feet.

The following is the notice of this animal inserted by Sir Thomas Mitchell in his jourmal, on the occasion of first discevering it:"June 16, 1836. The most remarkable incident of this day's journey was the discovery of an animal of which I had seen ouly a head in a fossil state in the limestone caves of Wellington Valley, where, from its very singular form, I supposed it to belong to some extinct speeies. The chief peculiarity then obzerved waa the broad head and very long slender snout, which resembled the narrow neek of a wide bettle; but in the living animsl the absence of a tail was still more remarkable. The feet, and especially the fore lega, were alse singularly formed, the latter resembling those of a pig; and the maraupial opening was downwards, and not upwards, ss in the Kaugaroo sad others of that class of animals. This quadruped was discovered by the natives on the ground; hut on being chased it took refuge in a hollow tree, from which they took it alive, all of them declariog that they had never before seen an animal of the kind. This was where the party had commenced the jouraey up the left bank of the Murray, immediately after crossing that river." Such, Mr. Ogilhy remarked, was all the information he possessed at preseat with regard to this singular snimal; but Mr. Gould had promised to examine the original specimen on his arrival at Sydney, in the museum of which town it had been deposited; and Mr. Ogilby therefore hoped that, through the kindness of that gentlemsn, he should shortly have it in his power to communicate a more detailed description of its form and characters to 'the Society. ('Zool. Proc.,' 1839.)

Dental Formula :-Incisors, $\frac{4-4}{3-3}$; Spurious Molars, $\frac{4-4}{4-4}$; Molars, $3-3$, or $\frac{4-4}{4-4}$, perhaps $\frac{5-5}{5-5}$

Cheropus ecaudatus.
Perameles (Gicoffroy).- Head elougated, pointed; cars moderate, Lairy; posterior great toes rudimentary, and the two succeeding toes united by the skin up to the naila, great toe and little toe of the fore feet with the form of simple tuhercles, , that they wear the appearance of having only three anterior toes.
*The anterior of these might be termed canines.

Dental Formula :-Incisors, $\frac{10}{6}$; Canines, $\frac{1-1}{1-1} ;$ Molars, $\frac{7-7}{7-7}=48$.

Teeth of Perameles. F. Cuvicr.
P. nasulus. Head very long; muzzle produced; nose prolenged above the jaw; fur gray-brown ahove and white beneath.

Perameles nasutus.
Dr. J. E. Gray, in eharacterising a new specles of Perameles (P. Gunnii), very clesely agreeiog with P. nasutur, but peculiar for ita very short white tail, sud in having several indistinet white bands over the haunches, stated that P. Gunnii inhabits Van Diemen's Land, where it frequents gardens, and cemmita great havoc amongst bulbons roots, which it is said to devour with avidity. ('Zool. Proe.,' 1838.) Specimens of P. Lagatis, or labbit Peraneles, from Swan River, are to be secn in the Gardens of the Zoological Society in the Regent's Park.

Didelphys (Linnæus).-Heal very much pointed, gape wide, tongue rough with herny papille; ears large and naked; eyea small ; tail long and tapering, flexible, and prehensile, with hair at the base only, the remaining part being covered with scales. Fore feet with five toes, sll armed with strong sharp eurved claws; thumb of the hind foot opposeable and destitute of nail or claw, the other toes or fingers armed with claws like those of the fore feet. Dental Formula :-

$$
\text { Incisors, } \frac{10}{8} ; \text { Canincs, } \frac{1-1}{1-1} ; \text { Molars, } \frac{7-7}{7-7}=50
$$

This genus, in its geographical distributiou, is confined to America. D. Virginiana. Size that of a domestic cat. Colour dull white.

Hair of two kinds; that which is lowest, a long fine woolly duwn, white at the hase, bromnimh at the tip, through this pase the long hairn of a pure white on the heal, neck, and upper parta of the body; the bair in mont ard close. Round each cya a brownish circle. Lars generally black at the lase and yellowish at the tip. Whiakers long, part?'y white, partly reddinh. Extremity of the nose fleeli-coloured, with in tinge of yellow. I.egs deep chestant brown. Tail not mo long as the body, covered at the base by long hairn, but ouly nenntily furnished with brintles, which come onit from between the whitish ecales that prokect it for the grenter part of its length.

Tceth of Didelphys Jirginiona. F. Cuvier.
The Voirginian Oporsum is an arboreal nnimal, as might be expected from the structure of its postcrior feet or hauds especially. It appears to be to a certain degree carnirorons, for it preys upon insects and birda, and feeds also on fruits; but there is reason for believing that animal food forms ita priceipal support, for it aometimes invades the farmyarda in its neighbourhood. Aecording to Barton, the period of uterine gestation in thia apecies is twenty-six days. It inhabits North America, and was, perhaps in, very abundant in the morth of Mexico, and nearly throughout the United States, where it is called the Oposum. In the 'Perfect Deacription of Virginia' (1649), wo find, in the catalogue of animals, "Passonnes: this beast hath a bagge under her belly, jnto which alse takea lier young ones, if at any time affrighted, and carries them away." Lawson says:- "The Poasum in found nowhere but in America. She is the wonder of all the land animaln, being the size of a badger, nud near that colour. The female
dounticss breeds her young at her twats, for I hare weon them atick fast thercto when they lanvo been no bigger than a amall rasberry, and seomlogly inanimate. She his a munich, or falmo belly, wherein she earries her young. after thoy sne from thom teats, till they can ahift for themselvea. Their food If roota, poultry, or wild fruits. They have no hair on their taila, but a nort of a scale, or hard cruat, as the beavers hare. If a ent has nine lises, this creature surely bas ninetwen; for if you break every boda in their skin, and mash their skull, leaviug them for dead, you may come an hour after, and they will be gore quite away, or jerhaps you may meet them creening away. They are a very stupid creature, utterly neglecting their safety. They are most like rats of noything. I have, for necessity in the wilderness, eaten of them. Their flesh is very white, aud well tanted ; but their ugly tails put me out of conceit with that fare. They climb treen as the racoons do. Their fur ia not eateemed nor used, sare that the Indians suin it into girdles and garters." The tail appears to be net aloue of use as an organ of prelsecsion to the alult animal; for it is stated that the little ones when advanced in growth leap upon their mother's back if they are frightemed, and, twisting their taila round hers, eacape with her assistance the threatened danger. In captivity the animal is sullen, suarling, and stupid.

Virginian O_{i} assum (Didriphys lirgiriana).
The French name Sarigue for the epecies of this genus is cvidently a form of Carigueya, the Brazilian name for tha genus They ale known in Paraguay under the nqme of Micourd; jn the American Irlands under that of Manicon ; and in Mexico by the appellation of Tlaquatzín.

The epecies of Didelphys are numerous, and we subjoin a table of their distribution from Mr. Watorhouse's 'History of Mammalia :' -

Distmactiosi of the Spectes of Dideliniz.
Lnist stater, California.

The figure of the akeleton of tlo Virgimian Opasenm (Jidelphyn lirginiana) which is given on the next jage, exhbite the peculiar
formation of the marsupial boges as well as the prehensile tail of this naimal.

Skeleton of Didelphys Firginiana. a, the marsupial bones.

Cheironectes (Illiger).-The complete dental formula of this subgenus does not appear to be knowu. The number of ineisors is stated at 10 above and 8 below. Head ratber pointed; ears naked, rounded; tail scaly, prehensile; an opposeable thumb on the hind feet or hands, and the toes webbed.
C. palmatus (Cheivonectes Yapock of Desmarest; Didelphys palmata of authors). Fur brown above, with tbree traneverse bright-gray bande, interrupted in the middle; white below. Size larger than that of the brown rat. [Didelpinsa.]

The river Yapock, or Oyapock (the boundary that separates the French settlements from Brazil), iu Guyana, is the place where this species has been found. It swims with facility; indeed Buffon describes it under the name of Petite Joutre de la Guyane.

Chicironectes palmatus.
Phalangisla (Cuvier).-Heal rather short; ears hairy; fur woolly and short; no extensible membrane between the anterier and posterior limbs; tail long, prehonsile, sometimes without hair on its extremity.

Sub-genus Phalangista, properly so called (Balantia, Illiger). Tail prehensile, but covered with hair; ears long and erect. Dental Fermula:-

Incisors, $\frac{6}{2}$; Canines, $\frac{2}{0}$; Pre-Molars, $\frac{4}{2} ;$ Molare, $\frac{8}{8}=32$.
Lesson gives the dentition of Phalanyista as:-

$$
\text { Incieore, } \frac{3}{2} ; \text { Caninea, } 0 ; \text { Molars, } \frac{8-8}{7-7}=38 \text {. }
$$

P. culpina (Vulpine Opossum). The following description of this species is given in I'hillipe's 'Voyage :'—"This is not unlike the common fox in shape, but considcrably inferior to it in respect to size, being from the point of the nose to the setting on of the tail only 26 inches, the tail itself 15 inches: the upper parts of the body are of a grisly colour, arising from a mixturo of dusky and white hairs, with rufous yellow tinge, the bead and shoulders partaking most of this last colour; round the cyes blackish; above the nostrils 10 or 12 black whiskers, 4 inches or more in length; all the under parta of the body are of a tawny buff colour, deepest on the throat, where the bottom of the hairs are rustcolour; the tail is of the colour of the baek for about one quarter of its length, thence to the end black; the toes on the fore feet are 5 in number, the inner one placed high up; ou the hind feet 4 toes only, with" a thumb, consieting of two joints without a NAT. HIST, DIV, VOL. HH.
claw, placed high up at the base of the iuner toe; the whole foot serving the purpose of a hand, as observable in many of the Opossum

genus. The lege are much sborter in proportion than those of the common fox; the ears about one inch and a balf in length." It is

the Ihalanger licmard of the French, Hrumo of Vieqd'Azyr, and Whataporoo of the untives It is found in Australia, in the ueighbourhoul of l'ort Jackzon.
Sub genus C'uscus (Lacepede).-Tail prehensile, but in great part naked, nad covered with rugosities; cars very short. Dental Formula :-

$$
\text { Incison, } \frac{6}{6} ; \text { Cauines, } 0 ; \text { Molare }, \frac{6-0}{8-8}=40 \text {. (Lesson.) }
$$

This genus is peculiar to the Western Polynesia, or Malasia (Lesson.)
C. maculatus (Didelphys Orientalis of Gmelin; Cuscus Amboinemsis of Lacépide; Phalangista macmata of Geoffroy. This species, which ia namerl Coescocs at the Moluccas, accordiug to Valentyn, varies much In its colouriag with reference to sex und age. M. Lesson, who found It at Wagiou, where the nativea call it Scham-Scham, says that its fur, whlch is thick and woolly, is generally whitish, covered with Isolated brown spots, rowctimes runaing together. The same author atates that ita habits are slow and nocturnal, and that it lives on fruits in the equatorial forests of the great Molluceanad I'spunn islands.

Cuscus maculatus.

Pdauru (Shaw).-IJeal rather short; cars small and hairy; skin of the tlank extended between the anterior and postcrior limbs, and covered with hair; tail not strictly prehensile. Dental Formula :-

$$
\text { Incisors, } \frac{6}{2} ; \text { Canines, } 0 ; \text { Molars, } \frac{8-8}{7-7}=38
$$

It will be oloserved that the number of lower molar teeth given in the cut anounts only to 5 , and consequently dues not correspoud with the formula abovo given, or with that stated by F. Cuvier himself, who makea the total number of teeth 22 in the upper jaw aud 16 in the lower, and the number of upper fale molars 8 , and of molara S aldo ; the number of lower molars being 6 false nud 8 true, 38 in all. lie tells us that thin form of deatition is taken from Phalamiza Crokii, Petaumus T'uguanoides, "Le Phalauger Didelphoide, or Lo Macraure, of M. Geottroy, and n species which has no name."

Mr. Beanett, who in common with Cuvier, Deamarest, and Lesson, has placed the interesting apecica which we have chosen as the example under the geaua l'equrw, remarka that $\mathrm{l}^{\text {. Cuvier, relying nolely }}$ on the diacrejnacy or agreement of tho dentary aystemb, sud putting entirely out of queation all comsideration of other and essential points of atructure, han rennited the old genus Phalangista, in oriler again to mululivide it into two incongruous and heterogeneous groups; in the one confounding two well marked apecicy of flying Patauri not only with the climbing Phalangiste of Australin, but with the nakedtailed and atrictly prehennile Councoun of the Moluccas; repaying the otber group, which ho liad so uanecenarily dimmembered, by the mallition of a true Phalunginfa, whose only pretensions to nuch ma maseciation are inalo to dequend on a somewhat bimilar arrangement of the" teeth. "liy thas confining himaelf to a single character," continuea Mr. Bennett, "he hum broken up the regular serien of nfthities which counceled together thre markerl but athl closely allien gradationa of form, to subutitute an normgement which has no other recommenda. tion than the theoretio viewa of its author. In auch a cane we canuot benitate in giving to the organa of docomotion, combined with the general habit, that precedence before thone of manticatlon, which, under wther circumatancem, we nre generally in the habit of conceding to the latter; and we foel the lons repugnance to adopting this course, becauso it in sdmitted tlat tho dentary formula in in these animala
aubject to some variation, and becanse koologists are by no means agreed with reapect to its cxact definition. The teeth of the SquirrelP'etaurus egreo generally, according to M. F. Cuvier, with those of tho

Phalangista. They are consequently 38 in number, 20 occupying the upper jaw, and 18 the lower. The former are divided by the same eminent paturalist ioto 6 incisura, 4 canines, 2 fslse molars, and 8 true onea; the latter consisting of 2 incisors, and no canioes, with 8 false and as many truo molnrs. The dentary character of the orginal species of Petaurue, which he takes as the type of his other group, differs chiefly in the total want of canine teeth; but we rany here be permitted to observe that it appears to us somewhat doubtful how far those which are above coumerated as such truly deserve the name which has been applied to them. In every other respect the littlo creature in question perfectly agrees with the group of animals to which wa have restored it; and which are at once charncterised by the broad expansion of their akiu on each side of the body, extending between tho anterior and posterior limbs, as in the Flying Squirrels, to which indeed they bear a close resemblance. In common with nearly the whole of the mammiferous quadrupeds of the country which they inhabit, they possess the abdominal poach which fixes their place in the ayntem among the marsupial animals; and, os in many of these, the thumbs of the hind-feet are long and diatiactly opposeable to the sole. The other toes are four in number, and furnished with tolerably strong clawa, of which the thumbs are dastitute. The fore feet have long radiating toes, the middls one of which is the longeat, all armed with similar claws to those of the hind feet. The tail is round, covered with loose hair, sonsewhat tapering towards tho point, and not etrictly prehensile, having no naked surfacs at its extremity benenth. In sizs the present specien is nbout equal to tho common squirrel, and its tail is rather longer than its body. Ita colour is delicately gray above, somewhat darker on tho head, and white beneath. A black line passes from tho point of the nose along the back towarde the tail; and the lateral folde of the skin are bounded in front nad on the sides by a similar band, which coufounds itself gradually in the inside with the gray of the body, and is bordered at the outer margin by a friuge of white. The eyes are each placed in a spot of hlack, noll a faint blackish line extends along the upper surface of the bioder limbs. Tho tail is also of a darker hue, especially towarda its extremity."
I. sciurcus, Norfolk Island Flying Squirrel (the Sugar Squirrel), may be taken as na cxample of this geaus. There are three other aprecica, P^{\prime}. Auspalis. P. breciceps, and P. Aviel, nll from Australia
" IHuring the day," nays Mr. Bennett, speaking of the Sugar Squirrel, "the animal generally remains quietly nestled in the hollows of trees, but hecomes animated as night adrances, and skjms through the air, supported by itn lateral cxpanoions, half leajiug, half flying from branch to brauch, fecding upon lenves and inscets. This peculiar mode of locumotion can acarcely be considered an a truc flight, inasmuch as the cutnucoun folda which servo the jurposes of wings aeem rather destined for the mere aupport of the animal in its long and apparently denperate lenps, than for raising it in the air and directing
its course towards any given olject. For this latter purpose they are indeed but little fitted by their structure, the want of proper muscles in a great measure incapacitating them from performing auch offices as are dependent on volition. It may be doubted however whether these animala are entirely destitute of the power of exercising their will in their flight-like leaps. For the following acecdote bearing upon this subject we are indebted to our friend Mr. Broderip, who related it to us on unquestionable autherity. On board a vessel aailing off the coast of New Hollsnd was a Squirrel-Petaurna, which was permitted to roam about the ahip. On one occasion it reaehed the masthead, and as the sailor who was deapatebed to bring it down spproached, made a spring from aloft to avoid him. At this moment the ahip gave a heavy lurch, which, if the original direction of the little creature's course had been continued, must have pluuged it into the sea. All who witnessed the seene were in pain for its safety; but it suddenly appeared to check itself, and so to modify its career that it alighted safely on the deek." Those that we have seen in captivity are in s atate of somnolency all day; one kept st the Gardens in the "Regent'a Park was formerly in the possession of the then Marchioness of Cleveland. At night it was lively and active, and was perfectly tame, but rather aly. The apecies inhabits New South Wslea, and is said to be abundant st the foot of the Blue Mountains. There aeema to be no authority for the locality of Norfolk Ialand as a habitat of thia very pretty little animal, excepting the figure and description in Phillipa's 'Yoyage' sbove slluded to. The fur would be lighly ornamentsl from its colour, softnesa, snd beauty, as an article of drem.

Norlolk Island Flying Squirrel (Pelaurus sciureus).
Phascolarctos, De Blainville (Lipurus, Gold. ; Amblotis, Illig.).-Body stout; bead short, cars shaggy ; limbs rather ahert, robust, and nearly equal in length; toes five on each fore foot; the anterior toes divided into two groups for prehension, the thumb and the fore finger being in one group, and the remaiaing three fingers in the other, the thumb of the poaterior foot very large, but without a nail, and the two inner fingers united; tail very ahort, almost aull; Mr. Martin says that it differs from the Wombat in its dental formula, in whieh respect it closely remembles the Kangaroos. Dental Formula:-

$$
\text { Incisors, } \frac{3-3}{1-1} ; \text { Csnines, } \frac{1-1}{0-0} ; \text { Molars, } \frac{5-5}{5-5}=30 .
$$

The canines are emall, snd in the intermaxillary auture. The false molars are compressed and trenchant, but thicker than in IIypsiprymnus, the dentition of which, otlierwise, that of the Koala reaembles elosely. The lower true grinders are nsrrower than the upper onea, and both quadricuspid.
P. cinereus (Lipums cinereus of Goldfuss; P. fuscus of Desmarest; P. Flindersii of Lesson), the Ashy Koala. It is the only species.

It is as large as a dog of moderate aize. Fur long, thick, rather coarse, and ashy-brown, tufted ears rather lighter. It is said to lave the gait and carriage of s yeang bear, to be arborcal in its habita, and to pass its life upon trees and in dens or holes which it hollews at thelr feet. Of its powers of climbing there can be no doubt; the meructure of its extremitiea would lead to this inference, and actual obaervation lias confirmed it. Its locality is Australia, and we are enabled to give figurea of the parent and young, taken by the kind permision of a friend, from a very aceurate and beautiful drawing executed from the living animals, the first that were known in the coloniea. They were brought in by natives to Colonel laterson, then lieutenantgovernor of the colony, from the Hat Hill distriet, to the
southward of Port Jackson, in 1803. Tho native name 'Koala' is said to signify 'Biter.'

Ashy Foala (Phascolarctos cinereus).
There are old and young stuffed specimens in the British Museum, and as stuffed specimen (Mr. Caley's) in the Museum of the Linnæan Society.

The visceral anatomy will be found in Mr. Martin's paper 'On the Anatomy of the Koala,' rend to the Zoological Society in November, 1836 ('Zool. Proc.,' 1836). It is ehietly remarkable for the enormous size and length of the crecum.

Hypsiprymnus (Illiger).-Head elongnted; ears large; upper lip eleft. Tail moderate, acaly, covered geantily with hairs. Two teats only in the ventral pouch of the female. Anterior fect five-toed. armed with obtuse nails; third toe of the hind feet very robust, and armed with a very strong nail. Dental Formula :-

Teeth of ITypsiprymnus. F. Cuvier.
II. Potoroo (Macropus minor of Shaw; Potorous minimus and Fan. gurus Gaimardi of Desmarcat; Hypsiprymnus Whitei of Qnoy and Gaimard ; Potoroo of White, and Kauguroo-Rat of Phillips's 'Voyage'). It is the sizc of a rabbit; general colour grayiah, reddish-brown above, whitiah below; head triangular; eara large; tarsi very long; tail clongated, flexible, terminated by a pencil of haira.
The manners of the Kangaroo-lat are mild and timid: its fuod
conasta of vegetablos, and it is raid to burrow in the gronnd. Australia la its loculity, and leexon mya that it in not rare in the neighbourhood of Port Jackron, eapecially near tho river Weraganbia in the Blue Mountains

Kangaroo-Rat (Ifypsiprymnus Poforoo).
M. Iesson reconds two otber species, and Mr. Ogilby described ('\%ool. Proc,', 1831) a fourth, Hypsiprymnus sctosu, known in the colouy of New South Walea by the native name of Bettong Kangaroo. The specimen described by Mr. Ogilhy was believed to have been brought from Swan liver. The last-naned zoologist has also characterised gix other new species. (7,001 . Proc., 1838.)

> Sk ull of Hypsiprymnus.

A aecond speciea, $/ 1$. Gilbertii, has been deacribed ly Mr. Gould.
Sub-genus Halmaturus (llliger in part).-Differing from the truo Kangaroon in having ahorter eare, a tail nearly unkod, or only with a few hairs Dental Formuls:-

$$
\text { Incisors, } \frac{3-3}{1-1} ; \text { Canince, } \frac{0-0}{0-0} ; \text { Molars, } \frac{5-5}{5-5}=28
$$

Tecth of Ifint nlurus. F. Curler.
13. elegans (K゙angurus fasciatus of Pérou ant Iesueur). Colou mouse-gray, bounded transrersely with reddish-brown on the back aud loins. Size of a largo hare.

It haunts tho under thick bushes, and is said to form aubterranean galleries in the island of St. Pierre

Subgenus Macropu (Sbaw ; Halmaturus of Illiger in part).-Head elongated; ears very largo; upper lip cleft; whiskers very short and few. Posterior linibs like thosa of $J y_{i} s i, m y m n u$, but much longer and more robust. Tail long, triargular, very muscular. Dental Formula :-Incisore, $\frac{6}{2}$; Canines, $\frac{0-0}{0-0} ;$ Molars, $\frac{4-4}{4-4}=24$.
M. major and M. giganteus of Shaw (Kanguru laliatus of Geoffroy; Didrlinys gigantea of Gmelin; the Kingaroo of Cook).

This extraordinary animal, 'discovered by Captsin Cook, is now so well kuown, that a description, in addition to our illuatrations and account of its animal coonomy at the beginning of this article, would be auperfluous. Our countrymeu pursued it in Australia with greyhounda, and the leape which it took surprised those who bebeld it clear obstacles 7 or 8 feet high. In aize it equals a sheep, nome of the largest weighing 140 lbr ., nud the flesh is represented by thoas who have tasted it na being a little liko venison. The apeejes breeds pretty freely in this country, and has boen kept with suceess in our parka.
It inhabits New South Walea, Southern and Western Australla, and Van Diemen's Land. It is known to the coloniats by the names of ' Boomer ' and 'Forrester.' Mr. Gould dencribes two npecies, M. ocydronus and M. melanope, which Mr. Waterhouss regards as apecifically identical with K. gigankes.
M. fuliginosus, Sooty Kingaroo (Kiangurus filliginosus, Demmareat; Kaugaroo Giant, F^{\prime}. Cuvier). It ia about tho mame size as the last mpecies. Mr. Waterhouse thinks this epecies will turn out to be a varicty of the last. Ho says "tho nams Sooty Kangaroo is znost ill npplied to the present ammal, aince its colouring is auything but sooty; being for tho most Inrt $^{\text {nat }}$ a brownish-yellow, ratber bright on the sides of the body, and somewhat suffused with dukg-brown on the mithlle of the baek."
M. unguifer, tho Nail-Tailed Jingaroo, first deacribed Ly Mr. Gould, lias a nail-liks horny excrescence st the end of its tail. It is smaller than the foregoing xpecies.
M. fictnatus, the l3ridled Kangaroo, is nnother nail-tailed species, discovered by Mr. Gould. Its weight varies from 10 lbs to 15 lbs .
M. auralu, the Crescent-Marked Kiangaroo, is nbout the aizo of a rabbit. It inhabits the Swan River listrict, Weatern Australia.
1/. lepuroides (Lagorchestes Icporoided, (Iould), the Ilare-Kangaroo, is a prettr little Kancaron, about the nizo of the conmon lare. Its powers of leaping are very extraorlinary. "Whilo out on the plaina of South Australia," saya Mr. Gould, "I started a Hare Kangaroo before two fleet doga; after running to the distauce of a quarter of a mile,

Skelcton of Great Kangrroo (Jfacropus major). a, the marsupial bones.
it suddenly doubled and came bsck upon me, the dogs following close at its heels. I stood perfectly still, and the animsal had arrived withia 20 feet before it observed ma, when, to my astonishment, instead of branching off to the right or the left, it bounded clear over my head, and on descending to the ground I was enabled to make s. successful shot, by which it was procured.'
M. conepicillatus (Lagorchestes conspicillatus, Gould) is distinguished from the last by its ears being considernbly shorter, the more brilliant rusty-red colouring round the eye, snd the want of a black patch at the base of the fore leg; the muzzle likewise is more obtuse.
M. fasciatus, Banded Hare-Kangaroo (Kangurus fasciatus, Péron; Bettongia fasciata, Gould). It is about the size of the common hare, and has very long and soft browngray hair. It is very shy and timid, jahabiting the thick brush of Western Australia.
M. hirsutus, like the rest of the group called by Mr. Gould Lagorchester, ja about the size of the common hare. It iahabits Western Australia, where it is known to the natives by the name of 'Woo-rup.' It is distinguished from the others by the loug reddish hairs which are mingled with those of the ordinary hair on the hinder parts of the back, and especially near the base of the tail.
M. antilopinus (Halmaturus Antilopinus, F. Cuvier), Antelopine Kangaroo, is a large species, nearly the sizs of M. giganteus. It is characterised by being clothed with short stiff hairs, and these lie close to the skin, as in many of the sntelops tribe. It inhsbits North Australia.
M. Isabellinus (the Yellow Wallaroo), Isabellins Kangaroo. This species bas been described from a flat and imperfect skin procured by Mr. Gould at Barrow Island.
M. robustus, Waterhouse (Petrogale robusta), the Great Rock Kangaroo. It is the Black Wallaroo of the colonists, and inhabits the mountain ranges in the interior of New South Wales. The male and fepale differ in size and colour. The male equals in weight the Great Kangaroo, and is of a black colour, whilst the female is a small delicate creature of a silvery-gray colour. This animal is living in the Gardens of the Zoological Society, Regent's Park.
M. rufus, Desmarest (M. laniger, Gould). The male is called the - Red Buck' and the femsle the 'blue Doe,' she is also called 'Flying Doe.' This species is as large as M. giganteus, Four specimens were procured by M. Gould in Australia, and are now in the British Museum. It frequenta the banks of the Murrumbidgee and the Darling, and is probably dispersed over the great basin of the interior of Australia.
M. agilin, the Agile Kangaroo, jnhabits tho north coast of Australis. It is very agile, sud cludes the dogs cmployed in huntiug it by its
extreme activity in leaping over the high crags. The colour of the fur is sandy-yellow, but the back is pencilled with black.
M. Parryi, Bennett (Halmaturus Parryi). It inhsbits New South Wales. It is of a silvery-gray above and white beneath. It is a large species.
M. Irma (Halmaturus Irma, Jourdan), the Black-Gloved Kangaroo, is a native of Western Australia. It runs very fast, is about 31 inches in length or half the size of M. giganteus, snd abounds in the Swan River district.
M. Greyi, named after the Hou. Captain G. Grey, who presented two specimens to the British Museum. It inhabits South Australia,
M. ruficollis, Desmarest (Halmaturus elegans, Gray), Kangaroo à Cou Roux, the Red-Necked Kangaroo. It inhabits New South Wales and King's Island. It was discovered by Messrs. Péron and Lesueur in King's Islsnd. Mr. Waterhouse regards the M. Bennettii, 'Brush Kangaroo,' as a variety of this species. This animal has bred freely in this country both in the Gardens of the Zoological Society and in the menageris of the Earl of Derby.
M. Ualabatus, the Black Wallaby of Gould, Black-Tailed Kangaroo of Waterhouse, is an inhabitant of New South Wales.
M. Eugenii, Wsterhouss (IIalmaturus Eugenii; H. gracilis, Gould), inhabits Western Australia.
Mf. Thetides, the Pademelon Kangaroo, Pademelon Wallaby of the colonists, inhabits New South Wales. It is a small species, about 20 inches in height when sitting. It is highly prized as an article of diet.
M. Parma, Parma Kangaroo, inhabits New South Wales.
M. dorsalis, Black-Striped Kangaroo. Like the last it is found in the scrubby districts of New South Wales. This species is eaten, and its skin is used for clothing.
M. Derbianus, Derby's Kaggarao, inhabits Western and South Western Australia. It is about the size of the last, and is found in the interminable forests of short Eucalypti, which characterise many districts of Australis.
M. Billardierii, Waterhouse (Kangurus Billardierii), Red-Bellied Kangaroo, is a native of Van Diemen's Land. It is a gregarious species, hundreds of them inhabiting the same locality. It is called by the colonists 'The Wallaby.'
MI. brachyurus, the Short-Tailed Kangaroo, inhabits the region of Kiog George's Sound.
M. penicillatus, Gray (Heteropus albogularis, Jourdan), the BrushTailed Rock-Kangaroo, inhabits New South Wales, and its flesh is said to be most excellent. It is a gregarious and nocturnsl species, dwelling in rocky districts, and remarkable for its power of leaping from rock to rock.
M. lateralis, the Black-Elamked Rock-Kangaroo (Petrogale lateralis, Gould). It inhabits western Australia, the Swan River district, and is nocturnal in its habits, and remarkably shy.
M. inornatus (Petrogale inornata, Gould), inhsbits the north coast of Australia
M. Brachiotis, the Short-Esred Rock-Kangaroo, inhsbits the northwest coast of Austrslia.
M. concinnus is also found in the same districts.
M. Brunii, La Brun's Ksogaroo (Filander, La Brun; Didelphys Brunii, Schreber; Macropus vetena, Lesson; Mypsiprymnus Brunii, Müller; Halmaturus Asiaticus, Gray; Javan Opposum, Pennant). Head narrow and very long; ears short ; tail moderate; fors legs strong; fur very short, soft, and composed of hair almost entirely of ons kind, radiating from a point on the mesial lins of the back a little beh ind the shoulders; general colour grayish-brown suffused with yellowish, especislly on the sides of the body; under parts pale dirty yellow; ears blackish externally.
This animal was the first of the Massupiata with which naturalists became acquainted, having been described by Le Brun as early as 1711. It is an inhabitant of New Guinea. Specimens were obtained during the Freach expedition of the Astrolabe, and by an expedition recently sent out by the Dutch government. Through the last expedition specimens have been obtained which are now in the British Museum.
Phascolomys (Geoffroy).-Body clumsy; head large and bluff; fors feet with five toes, armed with crooked nails; hind feet with four, and a little tubercls without a nail, in place of the great tos; indeed it may is said to have but four toes on the hind feet. Tail nearly null. Dental Formula :-

$$
\text { Incisors, } \frac{\mathrm{I}-1}{1-1} ; \text { Canines, } \frac{0-0}{0-0} ; \text { Molars, } \frac{5-5}{5-5}=24
$$

P. Wombat, Didelphys ursina of Shaw; the Wombat of the natives, navigators, and uaturalists, is the only species of this genus known.
From Lieut.-Col. C llins's 'Account of the Eeglish Colony of New South Wales' (1802), we select the following part of a description of a Wombst found on Caps Barren Island, abstracted from Bass's 'Journal :'-"The Wombat, or, as it is called by the natives of Port Jackson, the Womback, is a squat, short, thick, short-legged, rather insctive quadruped, with great appearance of stumpy strength, and somewhat bigger than a large turnspit dog. Its figurs and movements, if they do not exactly resemble thoss of the bear, at least strongly remind ons of that animal. Its length, from the tip of the tail to the tip of the nose, is 31 inches, of which its body takes up 23

Tecth of Phascolomys, or Wombat (F. Cuvier), nearly of the natural size.
ioches and 5 -10ths. The head is 7 ioches and the tail 5.10 ths. Its circumference behiod the fore legs 27 inches; across the. thickest part of the belly 81 inches. Its weight by hand is somewhat between 25 and 30 lbz . The lisir is cesree, and about ous iach or one inch and five-tenths in length, thinly set upon the belly, thicker on the back and head, nod thickest upon the loins and rump; the colour of it a light sandy brown of varying shades, but darkest along the back." The head is large, flattish, and nearly triangular whea viewed in froat; tho ears are aharp and erect; the eyes small and rather sunken than prominent, thit quick and lively.

Wombat (Ihancolonyy Wombaf).
Frmm the mame work we take the following nccount of the liabits, \&e., of thim "Incien:-"Thia animal lian not any chim to Rwiftness of foot, an mont mon could run it down. lts pace is hobbling or mhoffing, anothing like the awk ward gait of a bear. In dinposition it in mild
and gentle, an becomes a gmas-eater; but it bites hard, and is furious when provokod. Mr. Bass never heard its voice but at that timo; it wha a low cry between a hissing and a whizziog, which could not bo lreard at a distance of more than thirty or forty yards. He chased one, and with his hands under his lrelly suddenly lifted him off the ground withaut hurting him, and laid him upon his back along his arm like a child. It made no noise, nor any effort to escape, not even a struggle. Its counteannce was placid and ondisturbed, and it scemed as contented as if it had been nursed by Mr. Bass from its infancy. IIe carried the beast upwsrds of a mile, and often shifted him from s rm to arm, sometimes layiog him upon his shoulder, all of which he took in good part; until, beiag obliged to secure his legs while ho weat into the brush to cut a specimen of a new wood, the creature's auger arose with the pinching of the twine; he whizzed with all his might, kicked and scratched most furiously, and sappped off a piece from the elbow of Mr. Bass's jscket with his grass-cutting teeth. Their frieadsbip was here st an end, and the cresture remained implacable sll the way to the boat, ceasing to kick only when he was exhsusted. This circumstance seems to indicate that with kind treatmeat the Wombat might soon be readered extremely docile; but let his tutor berrare of giving him provocation, st least if he should be full grown. Beaides Furneaux's Islands, the Wombat inhabits, as has been seen, the mountains to the westward of Port Jackson. In both these places its babitation is underground, being admirably formed for burrowing; but to what depth it descends does not seem to be ascertained. Accordiug to the account given of it by the uatives, the Wombat of the mountains is never seen during the day, but lives retired in bis hole, feeding only in the night; but that of the islands is seen to fced in all parts of the day. His food is not yet well known; but it seems probable that he varies it nceording to the situstion in which he may be placed. The stomachs of such as Mr. Bass examined were distended with the coarse wiry grass, and he as well as others had seen the animal scratching among the dry ricks of sea-weed thrown up upon the shores, but could never discover what it was in search of. Now the inhabitant of the mountains can have no recourse to the seashore for his food, nor can he find there any wiry grass of the islands, Lut must live upon the food that circumstances present to him."
A letter from James Hunter, Esq., Governor of the settlement, dated Sydney, Now South Wales, August 5, 1798, and published in Bewick'e 'Quadrupeds,' states that this animal, there called the Womkach, was found upoa an islaud on the coast of New South Wales, in $40^{\circ} 36^{\prime}$ S. Int., where considerable numbers wero caught by the company of a ship which had been wreeked there on her royage from Bengal to Port Jackson. The same commuaication relates that it had "lately been discovered to be an inhabitant of the interior of this country also. The mountain natives call it the Wombach."
The specimen dissected by Sir Everard Home in 1808 was brought from one of the islands in Bass's Straits, and lived as a domestic pet in the house of Mr. Clift for two years.
The iadividual dissected by Professor Owen in May, 1836, had lived at the Gardens of the Zoological Society upwards of five years.
M. Lesson says that it lives in King's Island and the Furneaux Islands, but that it does not exiat in the neighbourhood of Port Jackson.

The sastomy of the Wombst will be found in Cuvier's 'Leçons d'Anatomie Comparée,' in Sir Everard Home'e paper, 'Phil. Trans,' 1808, nud in Professor Owen's memoir, 'Zool. Proc.,' 1836. The lstter observes that the digestive organs in the abdominal cavity presented a development corresponding geaerally to that which characterises the same parts in the phytiphagous Rodents. It has a very sbort caccum.

The flesh of the Wombat is said to be excellent. Mr. Hunter, the writer of the letter above quoted, terms it delicate meat, and some have remarked that the animal might be casily naturalised in this country.

The impression made upon us by Mr. Bass's account of the belanviour of the Wombat which he caught, aod by one thst we have aeen in cafitivity, is, that the smimal is of a low grade in point of intellect. In both cases, ns long as there was no positive pain or disagrecable sedsation, the snimal was content, however new its situation might be. There was none of that nuxiety sad uneasiness which all auimals of lively sense slow when suddeuly placed in new positions, or in strange places; and indeed the followiog note is appended to Mr. Bnss's account of the espture of his Wombat:-"The Kangooroo and some other animals in New South Wales were remarksble for being clomosticated as soon as taken." This may be one of the consequences of the low cerebral development geaerally to be observed in this group.

There are at present (1855) zeveral specimens in the gardens of the Zoological Society, which are remarksbly tame, and readily present themselves at the palisades of their inclosure to bo caressed.

The following list, showiug the distribution of the Marsupiata in Australia, will supply alse the names of the species not already mentioned is the preceding account:-

South Australia.

Масromus giganteus.
M. Innatus
M. leporoides.
M. fasciatus.
М. rufus.

Macropus Greyi.
M. Eugenii (Nuyt's Archipelago).
M. Derbianus (from islands off the cuast).
IIypsiprymnus Grayi.
II. penicillatus. H. Gaimardi.
H. campestris.

Phascolomys Wombat.
P. latifrons.

Phascolarctos cinereus.
Phalangista vulpina:
P. Cookii.
P. concinna.

Petaurus Australis.
Macropus unguifer.
M. antilopinus.
M. agilis.
M. brachiotis.
M. inornatus.

Echidna àculeata.
Macropus giganteus.
M. (giganters) ocydromus.
M. lunatus.
M. Isabellinus.
M. fasciatus.
M. hirsutus.
M. conepicillatus (Barrow Island).
M. Irma.
M. Derbianus.
M. brachyurus (King George's Sound).
M. lateralis.

Mypsiprymnus Grayi.
H. penicillafus.
I. Gilbertii (King George's Sound).
H. platyops.

Phalangista vulpina.
P. v. xanthopus.
P. Cookii.
P. concinna.

Perameles obesula.
P. fasciata.

Cheropus castanotis.
Myrmecobius fasciatus.
Phascogale penicillata.
P. favipes.
P. albipes.
P. crassicaudata.

Dasyurus Geaffroyi.

North Australia.

Macropus concinnus.
Phalangista vulpina.
Petaurus breviceps, var. Aricl.
Perameles macroura.
Dasyurus hallucatus.

Western Australia.

Phalangista Neillii (King George's Sound).
Tarsipes rostratus (Swan River and King Ceorge's Sound).
Perameles (Macrotis) lagotis (Swan River and King George's Sound).
P. Bougainvillii (Peron's Peninsula, Shark's Bay).
P. obesula.
P. myorsuros (Swsn River and King George's Sound).
Cheropus castanotis (Swan River).
Myrmecobius fasciatus (Swen River and King George's Sound).
Phascogale penicillata.
P. calura.
P. apicalis.
P. leucogaster, var. flavipes (?).
P. albipes (?).
P. crassicuudata.

Dasyurus Geoffroyi.

Van Diemen's Land.

Ornithorhynchus paradoxus.
Phascogale Swainsonii.
EChidna (aculcata) sctosa.
P. minima.

Macropus giganteus.
M. ruficollis, var. Bennettii.

M. Billardierii.

Mypsiprymaus cuniculus.
II. мигіпия.

Phascolomys Wombat.
Phalangista vulpina.
P. Cookii.
P. Іенсория.

Dasyurus maculatus.
D. rivervinus.
D. ursinus.

Thylacinus cynocephatus (Bass's Strait).
P. nana.

Peramoles obcsula.
Echidna.
Macropus ruficollis(King's Island).
Phascolomys Wombat.
Dasyurus maculatus.
P. Gunnii.

New South Wales.
Ormithorhynchus paradoxus.
Phascolarctus cincreus.
Phalangista vulpina.
P. canina (interior).
P. Cookii.
$P_{\text {ctaurus }}$ taguanoides.
Echidna aculeata.
Macropus giganteus.
Mf. frenatus (interior).
M. leporoides.
MI. robustus (interior).
M. rufus.

Mf. Parryi.
M. Vatabatus.
M. Thectidis.
M. Parma.
M. dorsalis (interior).
M. penicillatus.

Мурвіртутпия rufesccns.
II. penicillatus.
II. Gaimardi.
H. murinus.

Phascolomys Wombat.
P. Australis.
P. sciureus.
P. breviceps.
P. (aerobata) pygnceus.

Perameles obesula.
P. nasuta.
${ }^{P}$. fusciata.
Phascogule penicillata.
P. tlavipes.
P. murina.
P. macroura.
${ }^{D}$ Dasyurus Geoffroyi.
D. vizerrinus.

F'ossil Marsupiata.

Besides the Fossil Opossum (Didelphys Curicri) of the Montmartre Gypsum, figured and described by Cuvier in the 'Anuales du Museum,' and in his 'Onsemens Fossiles,' and the fossil Dasyerus, IHpsiprinnus, Malmaturus, Phascolomys, and Kangaroo, described by Mr. Clift and Cuvier and Mr. Pentland, from the Australian bone-csverns and bone breccia, there are some fossil forms now generally considered as belong. ing to the Marsupiata, which it will be necessary, on account of the great interest which attaches to them both goologically nnd zoologically, to mention more at length. We commence with those fossil jaws originally described as belonging to the Marsupiata which were found at Stonesfield.
Thylacotherium, Owen (Amphitherium, De Blainville; Didelphys,

Cuvier).-In consequence of strong doubts baving been expressed by M. De Blainville, from inspection of casts, respecting the mammiferous nature of the fossil jaws found at Stonesfield, and assigned to the Marsupiata by Bsron Cuvier, a paper 'On the Jaws of the Thylacotherium Prevostii from Stonesfield' was read before the Geological Society by Professor Owen, giving a detailed account of the fossils from a careful inepection of the originals. In this communication Professor Owen confined his description to the jaws discovered at Stonssfield, characterised by having 11 molsrs in each ramus of the lower jaw. He commenced by observing that the scientific world possesses ample experience of the truth and tact with which Cuvier formed his judgments of the affinities of an extinct animal from the inspection of a fossil fragment ; and that it was only when so distinguished a comparative anatomist ss M. De Blainville questioned the determinations, that it became the duty of those who possessed the means to investigate the nature of the doubts, and reassure the confidence of geologists in their great guide.

When Cuvier first hastily examined at Oxford, in 1818, one of tha jaws described in Professor Owen's paper, and in the posseseion of Dr. Buckland, he decided that it was allied to the Didelphys ("mo semblèrent de quelque Didelphe "*); and when doubts were rsised by M. Constant Prevost, in 1824, t relstive to tha age of the Stonesfield slate, Cuvier, from an examination of a drawing made for the express purpose, was confirmed in his former determination; but he added that the jaw differs from that of all known carnivorous Mammalia, in having 10 molars in a series in the lower jaw. ("Il [the drawing] me confirme dans l'idée que la premic̀re inspection m'en avoit donnée. C'est celle d'un petit carnassier dont les malchelières resemblant besucoup à celles des sarigues; msis il y a dix de ces dents en série, nombre que ne montre aucun carDassier connu." 'Oss. Foss.' v. 349, note.) It is to be regretted that the particular data, with the exception of the number of the teeth, on which Cuvier based his opinion, were not detailed; but ha must have been well awsere that the grounds of his belief would be obvious, on an inspection of the fossil, to evary competent anatomist: it is also to be regretted that he did not assign to the fossil a generic name, and thereby prevent much of the reasoning founded on the supposition that he considered it as belonging to a trus Didelphys.

Professor Owen then proceeded to describe the structure of the jaw; and he stated that having had in his possession two specimens of the Thylacotherium Prevostii belonging to Dr. Buckland, ha had no hesitation in declaring that their condition is such as to enable any anatomist conversant with the estsblished generalisations in comparative osteology, to pronounca therefrom not only the class but the more restricted group of animals to which they have belonged. The specimens plainly reveal, first, a convex articular condyle; secondly, a well-defined impression of what was once a broad, thin, high, and slightly recurved triangular coronoid process, rising immediately anterior to the condyle, having its basis extended over the whols of the interspace between the condyle and the commencement of the molar series, and hsving a vertical diameter equal to that of the horizontal ramus of the jaw itself : this impression also exhibits traces of the ridge leading forwards from the condyle and the depression sbove it, which characterises the coronoid process of the zoophagous marsupisls; thirdly, the sngle of the jaw is continued to the sams extent below the condyle as the coronoid process reaches above it, and its apex is contiaued backwsrds in the form of a process; fourthly, the parts above described form oue continuous portion with the horizonial ramus of the jaw, neither the articular condyle nor the coronoid being distinct pieces, as in reptiles. These are the characters, Professor Owen believes, on which Cuvier formed his opiniou of the nature of the fossil; and they have arrested the sttention of M. Valcuciennes in his endeavours to dissipate the doubts of M. De Blainville. +

From the exsmination of a cast, M. De Blainville however has been induced to infer that there is no trace of a couvex condyle, but in place thereof an articular fissure, somewhat as in the jaws of fishes; that the teeth, instead of being imbedded in sockets, have their fangs confluent with, or anchylosed to, the substance of the jaws, sod that the jaw itself presents evident traces of the composite structure.

In answer to the first of these positions, Professor Owen stated that the portion of the true condyle which remains in both the specimens of Thytacotherium exsmined by Cuvier and M. Valenciennes, clearly shows that the condyle was convex, and not concave. It is situated a little above the level of the grinding surface of the teeth, and projects beyond the vertical line dropped from the extremity of the coronoid process, but not to the same extent as in the true Didelphys. In the specimen exsmined by M. Valenciennes, the condyle corresponds in position with that of the jaw of the Dasyurus rather than the Didelphys; it is convex, as in mammiferous animals, and not concave as in oviparous. The entire convex condyle exists in the epecimen belonging to the other genus, Phascolotherium, now in the British Musaum. l'rofessor Owen is of opiaion that the entering angle or notch, either above or below the trus articular condyle, has been mistaken for "uns sorte d'échancrure articulaire, un peu comme daus les poissons."
" 'Ossemens Foss.,' tom. V., p. 349.

+ 'Annales des Seienees Nat.,' Avril, 1825 ; alse the papers of Mr. Broderip a ad Dr. Fittoa, in the 'Zoologleal Jouraal,' 1828, vel. iii., p. 408.
\ddagger 'Comtes Rendua,' 1838, Second Semestre, No. 11, Sept. 10, p. 527, et neq.

The eprecimen of the half.jaw of the Thylacothere examined by M. Falenciemes, like that which was transmitted to Cuvier, presents the iuner eurface to the observer, and exhibits both the orifice of the dental cmal and the aymphysis in a perfect state. The formen in the fowsil is aituated relatively moro forward than in the recent Oposauna anal Daserure, or in the Placental Insectivera, but has the same place na in the marsupisl genus Hypsimpymnus. The symphyais is long and uarrow, and is continued forwarl in the same line with the gently conser inferior margin of the jow, which thus tapers gradually to a poisted nuterior extrenity, precisely as in the jaws of the Marsupinal Insectivera. In the relative length of the symphyais, its form nud position, the jaw of the Thylacotherium precisely corresponds with that of the Didedikys.
In addition liowever to these proofs of the mammiferous natare of the Stonesfield remaisa, and in part of their haring belonged to Marsugriata, Profenor Owen stated that the jawe exhibita charncter bitherto unnoticed by the able anatomists who have written respecting them, but whicl, if coexistent with a convex condyle, would serve to prove the mansupial mature of a fossil, though all the tecth were wantiog.
In recest marsupials the angle of the jaw is clongated and beat inwards in the form of a process, varying in elane and development in different genera. In looking therefore directly upon the inferior margin of the uarsupisl jaw, we see, in place of the edge of a vertical plate of hone, a more or less flattened triangulsr surface or plate of bone extedded between the external sidge and the interual process or inflected angle. In the Opossum this process is triangular and trithedral, and directed iowards with the point slightly curred upwards and extended backwards, in which direction it is more produced in the small thao in the large apecies of Didelphys.

Now, obserted Professor Owen, if the process from the angle of the jaw in the Stonesfield fossil had been eimply continued backwards, it would have resembled the jaw of an ordinary placental carnivorous or insectivorous mammal; but $i u$ both specimess of Thylacatherium, the half jaws of which exlibit their inner or mesial surfaces, this process presents a fractured outline, evidently proving that when eutire it must have been produced inwards or mesially, as in the (opossum.

Profesgor Owen then described in great detail the structure of the teeth, and showed, in reply to M. De Blainville's second objection, that thes are not codfluent with the jaw, but are separated from it st their base by a layer of matter of a distinct colour from the teeth or the jaw, but evideotly of the enane nature as the matrix; and secondly, that the teeth cannot be considered as presenting an uniform compressed tricuspid structure, and being all of one kind, as M. De Blainville states, but must be divided into two series as regards their composition. live if not six of the pesterior teetb are quiaquecuspidate, and are molares veri; some of the molares spurii are tricuspid, and soue bicuspid, is in the Opossums. An interesting result of this examination is the observation thast the five cusps of the tuberculate molars are not arranged, as had been supposed, in the same line, but in two rairs plaeed transversely to the axis of the jaw, with thie fifth cusp anterior, exactly ins in the Didelphys, and totally differcut from the structure of the melars in any of the Phoca, to which these very emall Manmalia hsve been compared: and in reference to this comparison Professor Owen again cellcd attention to the value of the character of the proccos continned from the angle of the jaw, in the fossils, as strongly contradistinguishing them from
 ao produced. The Thylacetherium differs from the genus Didelphys in the grenter number of its molars, and from every ferine quadruped hnowo at the time when Cuvier formed bis opiuion respecting the patare of the fosilil. This differchce in the number of the molar tecth, which Cuvier urged as evidence of the generic distinction of the fonenfied mamnifeyman forsils, has since been regarded as one of the proofo of their Saurian nasture ; but the exceptions by excess to the number neven, asigned liy M. De Bainville to the molar teeth in each ramus of the lower jaw if the insectivorons Mammalia, sre well eatablished, and have been long known. The insectivorous thryanchlorc, in the order feere, has eight molars in ench ramua of the lower jaw; the insectivorons Armatitlos have not fewer; and in one nulb genus (Priodon) there are more than twenty molsr tecth on each mide of the lower jaw. The dental formulie of the carziverons C'facen, agnin, demonstrate the fallacy of the argument againat the mammiferous charaeter of the Thylacolheriam founded upon the nunber of its molar tecth. From the occurrence of the above exceptions in recent phacontal dinmmatio, the exampla of a like excess in the number of molar teth in the marsuphal fossil ought rather to have led to the expectntion of the diacovery of a mimitar case nanong "xiating Marnuphaln, aud such an addition to onr zoological entalugues han, it fact, been recently mande. In the Australian quadruped deseribed ly Mr. Watonhota mader the mame of Myrmectiws an alpruximation towards the dentition of the Thylacolherinm is exemp. fied. not only in the number of the molar tecth, which is nine on ench nide of the lower jaw in the Mymecolius, but nho in their rclative miz", nerncture, and tlinpwition. Lantly, with refpect to the dentition, I'rofeanor Owen rays it muat he obvious to all who inapect the fussid and compare it with the jaw of a amall bidelyhys, that, contrary to the assertion of M. De Blainville, the tecth aud their fange are
arranged with as much regularity in the one an in the other, and that no argument of the Saurian naturo of the fossil can be founded on this part of its structure.

With respect to M. De Blann rille ${ }^{\circ}$ asecrtion that the jaw is compound, Professor Owen stated that the indication of thie structure near tho lower margin of the jaw of the Thylacotherium is not a true suture, but a vascular groove eimilar to that which characterises the lower jaw of Didelyhys, Opossum, and eome of the larger species of Sorex. ('Gcol. Proe.)

Jaw of Thylacotherium Precostii. Cepper figure magnified.

Some discussion having eneued, in which Dr. Grant and Mr. Ogilhy expressed opinions in support of M. De Blainville's views, Irofessor Owen, on the occasion of reading, on the 9th of December following, his paper on Phascolotherium, being the second part of the 'Description of the Remains of Marsupial Mammalia from the Stonesfield Slate,' gave a brief summary of the characters of the Thylacetherium, described in the first part of the memoir, and which he conceived fully proved the mammiferous nature of that fossil. He stated that the remains of the aplit condyles in the specimen demonstrate their original convex form, which is diametrically opposite to that which characterises the sane part in all reptiles and all oripara; that the aize, figure, and position of the coronoid process are such as were never yct witnessed in auy except a zoophagous mammal endowed with a temporal muscle sufficiently developed to demand so extensive an attachment for working a powerful carnivorous jaw; that the teeth, composcd of dense ivory with crowns covered with a thick coat of ensmel, sre evcrywhere distinct from the substance of the jaw, but hisre two fangs deeply imbedded in it ; that these teeth, which belong to the molar series, are of two kinds; the hinder being bristled with five cusps, four of which are placed in pairs transversely across the crown of the teeth, and the anterior or false molars, having a different form, and only two or three cusps-characters never yet found united in the teeth of any other than a zoophagous mammiferous quadruped; that the general form of the jaw corresponds with the preceding more essential indientions of its mammiferons aature. Fully impressed with the value of these charncters, ns determining the class to which the foscila belonged, Professer Owen stated that he had sought in the next place for secondary charicters which might reveal the group of Mammalia to which the remains could be assigned, and that he had found in the modification of the angle of the jaw, combined with the form, structure, and proportions of the teeth, sufficient evidence to induce him to belicve that the Thylacotherium was a marsupial quadruped.

Professor Owen then recapitulated the oljections against the mammifcrous nature of the Thylacotherinn jaws from their supposed imperfect state, and repeated his former assertion that they are in a condition to suable these characters to be fully ascertained: he next reviewed, lirst, the differeuces of opinion with respect to the actual structure of the jaw ; and, secondly, with respect to the iuterpretation of almitted appearauces.

1. As respects the structure.-It has been nsserted that the jaws nuast belong to cold-blooded lertebrata, because the articular surface is in the form of an enteriug angle: to which Professor Owen replied that the articular surface is supported on a convex condyle, which is met with in no other class of Yertelrata except in the Mammalia. Again, it is raserted that theteeth are all of an uniform structure, as in certain reptiles; but, on reference to the fossils, Yrofessor Owen stated that it will be fomd that such is not the case, and that the actual diffcrence in the rtructure of the teeth strongly supports the mammiferous theory of the fossils.
2. With reapect to the argument founded on an interpretstion of atructure, which really exists, the nuthor blowed that the Thylacotherium having 11 molars on each side of the lower jaw is no objection to its mammifcrous hature, because among the placental Carnivera the Conis Megalotia has constantly one more grinder on caeli side of the lower jaw than the usual number; because the Chrysechore, among the Insctirorc, has alno 8 instead of 5 'molara in ench ramus of the lower jaw ; sud the Myrmecolius, among the Marsupiata, has 9 molars on each nide of the lower jaw; and because some of the insectivorous Armadillos and zoophagous Cetacca offer atill more numerous and reptile-like tecth, with all the true and essential characters of the mammiferous class. The objection to the false molsrs having two fange, Professer Owen hlowed was futile, as the greater number of the
spurious molars in every genus of the placental Ferce have two fangs, and the whole of them in the Marsupialia. If the ascending ramus in the Stonesfield jaws had been absent, and with it the evidence of their mammiferous nature afforded by the condyloid, coronoid, and angular processes, Professor Owen stated that he conceived the teeth alone would have given sufficient proof, especially in their double fangs, that the fossils do belong to the highest class of animals.

In reply to the objections founded on the double fangs of the Basilosourus, Professor Owen said that the characters of that fossil not having been fully given, it is doubtful to what class the animal belonged; and in answer to the opinion that certain sharks have double faugs, he explained that the widely bifureate basis supporting the tooth of the shark is no part of the actual tooth, but true bone, and ossified parts of the jaw itself, to which the tooth is anchylosed at one part, and the ligaments of connection attached at the other. The form, depth, and position of the sockets of the teeth in the Thylacothere are precisely similar to those in the small Opossums. The colour of the fossils, Professor Owen said, could be no objection to those acquainted with the diversity in this respect, which obtains in the fossil remains of Mammalia. Lastly, with respect to the Thylacothere, the author ststed that the only trace of compound structure is a mere vascular groove running along its lower margin, and that a similar structure is present in the corresponding part of the lower jaw of some ryecies of Opossum, of the Wrombat, of the Balcena antarctica, and of the Myrmecobius, though the groove does not reach so far formard in this animal ; and that a similar groove is present near the lower margin, but on the outer side of the jaw, in the Sorea Indicus.

Phascolotherium, Owen, is another genus of fossil Marsupiata. Description of the half jaw of the Phascolotherium.-This fossil is a right ramus of the lower jaw, having its internal or mesial surface exposed. It once formed the chief ornament of the private collection of Mr. Broderip, by whom it has since been liberally presented to the British Museum. It was described and figured by Mr. Broderip (1828, with the provisiona name of Didelphys Bucklandii) in the 'Zoological Journal,' and its distinction from the Thylacotherium clearly pointed out. The condyle of the jaw is entire, standing in bold relief, and presents the same form and degree of convexity as in thegenera Didelphys and Dasyurus. In its being on a level with the molar teeth, it corresponds with the marsupial genera Dasyurus and Thylacymus, as well as with the placental Zoophaga. The general form and proportions of the coronoid process closely resemble those in zoophagous Marsupials; but in the depth and form of the entering noteh, between the process and the coudyle, it corresponds most closely with the Thylacymus. Judging from the fractured surface of the inwardly reflected angle, that part bad an extended oblique base, similar to the inflected angle of tho Thylacynus. In the Phascolotherium the flattened inferior surface of the jaw, external to the fractured inflected angle, inclines outwards at an obtuse angle with the plane of the ascending ramus, and not at an acute angle, as in the Thylacynus and Dasyurus; but this difference is not one which approximates the fossil in question to any of the placeutal Zoophaga; on the contrary, it is in the marsupial genus Phascolomys, where a precisely similar relation of the inferior flattened base to the elevated plate of the ascending ramus of the jaw is manifested. In the position of the dental foramen the Phascolothere, like the Thylacothere, differs from all zoophagous Marsupials and the placental Ferce; but iu the IIypsimymnus and Phascolomys, marsupial herbivora, the orifice of the dental caual is situated, as in the Stonesfield fossils, very near the vertical line dropped from the last molar teeth. The form of the symphysis, in the Phascolothere, cannot be truly determined: but Professor Owen stated his opinion that it resembles the symphysis of the Didelphys more than that of the Dasyurus or Thylacynus.
Professor Owen agrees with Mr. Broderip in assigning four incisors to each ramus of the lower jaw of the Phascolothere, as in the Didelphys; but in their scattered arrangement they resemble the incisors of the Jyrmecobius. In the relative extent of the alveolar ridge occupied by the grinders, and in the proportions of the grinders to each other, especially the small size of the hindermost molar, the Phascolothere resembles the Myrmecobius more than it does the Opossum, Jasyurus, or Thylacynus; but in the form of the crown the molars of the fossil resemble the Thylacynus mere closely thau any other genus of Marsupials. In the number of the grinders the Phas. colothere resembles the Opossum and Thylacinus, having four true and three false in esch maxillary ramus; but the molares veri of the fossil differ from those of the Opossum and Thylacothere in wanting a pointed tnbercle on the inner side of the middle large tubercle, and in the same transverse line with it, the place being oceupied by a ridge which extenda along the ioner side of the lase of the crown of the true molars, and projecta a little beyond the anterior and posterior smaller cusps ${ }^{\text {g }}$ giving the quinquecuspid appearance to the crown of the tooth. This ridge, which in Phascolotherium represents the inner cusps of the true nolars in Didelphys and Thylacotherium, is wanting in Thylacynus, In which the true molara are more simple than in the Phascolothere, though bardly less distiuguishable from the false molars. In the second true tolar of the Phascolothere the internal ridge is also obsolete at the base of the middle cusp, and this tooth, presents a close resemblance to the corrcsponding tooth in the Thylucinus; but in the NAT. HIST. DIV. YOL. HI.

Thylacimus the two posterior molars increase in size, while in the Phascolothere they progressively dimiuish, as in the Myrmecobius. As the outer sides of the grinders in the jaw of the Phascolothere are imbedded in the matrix, we cannot be sure that there is not a smaller cuspidated ridge sloping down towards that side, as in the crowns of the teeth of the Myrmecobius. But assuming that all the cusps of the teeth of the Phascolothere are exhibited in the fossil, still the crowns of these teeth resemble those of the Thylacinus more than they do those of any placental Insectivora or Phoca, if even the form of the jaw permitted a comparison of it with that of sny of the Seal tribe. Connecting then the close resemblance which the molar teeth of the Phascolotherium bear to those of the Thylacynus with the similarities of the ascending ramus of the jaw, Professor Owen is of opinion that the Stonesfield fossil was nearly allied to Thylacynus, and that its position in the marsupial series is between Thylacynus and Didelphys. With respect to the supposed componnd structure of the jaw of the Phascolotherium, Professor Owen is of opinion that of the two linear impressions which have been mistaken for harmoniæ, or toothless sutures, one, a faint shallow linear impression continued from between the ante-penultimate and penultimate molars obliquely downwards and backrards to the foramen of the dental artery, is due to the pressure of a small artery, and he stated that he possessed the jaw of a Didelphys Virginiana which exhibits a similar groove in the same place. Moreover this groove in the Phaseolothere does not occupy the same relative position as any of the eostiguous margins of the opercular and dentary pieces of the reptile's jaw. The other impression in the jaw of the Phascolotherium is a deep groove continued from the anterior extremity of the fractured base of the inflected angle obliquely downwards to the broken surface of the anterior part of the jaw. Whether this line be due to a vascular impression or an aocidental fracture is doubtful; but as the lower jaw of the Wombat presents an impression in the precisely corresponding situation, and which is undoubtedly due to the presence of an artery, Professor Owen conceives that this impression is also natural in the Phascolothere, but equally unconnected with a compound structure of the jaw; for there is not any suture in the compound jaw of a reptile which occupies a corresponding situation.

The most numerous, the most characteristic, and the best-marked sutures in the compound jaws of a reptile are those which define the limits of the coronoid, articular, angular, and surangular pieces, aud which are chiefly conspicuous on the inner side of the posterior part of the jaw. Now the corresponding surface of the jaw of the Phas colothere is entire; yet the smallest trace of sutures, or of any indication that the coronoid or articular processes were distinct pieces cannot be detected; these processes are clearly and indisputably continuous, and confluent with the rest of the ramus of the jaw. So that where sutures ought to be visible, if the jaw of the Phascolothere were composite, there are none; and the hypothetical sutures that are apparent do not agree in position with' any of the real sutures of an oviparous compound jaw.

Lastly, with reference to the philosophy of pronouncing judgment on the Saurian nature of the Stonesfield fossils from the appearance of sutures, Professor Owen offered one remark, the justness of which, he said, would be obvious alike to those who were and to those who were not conversant with comparative anatomy. The accumulative evidence of the true nature of the Stonesfield fossils, afforded by the shape of the condyle, coronoid process, angle of the jaw, different kiuds of teeth, shape of their crowns, double fangs, implantation in sockets-the appearance, he repeated, presented by theso important particulars cannot le due to accident; while those which favour the evidence of the compound structure of the jaw may arise from accidental circumstances. (' Geol. Proc.,' 1838-39, vol, iii.)

Jaw of Phascolotheriun Buchlandii. Upper figure magnificd.
A paper was afterwards read, entitled 'Observations on the Struc ture and lielations of the presumed Narsupial Remains from the Stonesficld Oolite, by William Ogilby, Esq., T.G.S.'

These observations were intended by the author to embody only the most prominent characters of the fossile, and those essential poiuts of structure in which they are necessarily related to the class of mammifers or of reptiles respectively. For the sake of putting the
several points charly and impartially, he arranged his voservations under the two following hends:-

1. The relations of ngreement which subsist between the fossils in queatlou suld the corresponding bones of recent Marsupinls anl Insectivora.
2. The charactens in which the fossils differ from those families. Mr. Ogilby confined his remarks to Marsupiata nud Insectirora, lecause it is to those families only of Manmifera that the fossils have been coneidered by automists to helong; nucl to the interior surface of the jaw, as the exterior is not exhinited in any of tho fossil specimens
3. In the general outline of the jaws, more especially in that of tho Dhilelphys (Pha*colotherinm) Bucklandii, tho nuthor stated that there in a very claso resemblanco to the jnw in recent Insectirora and Insectivorous Marsupials; but he observed that with respect to tho uniform eurvature nlong the inferior margin, Cuvier has adduced the sane structure us listinctive of the Monitors, Ignanas, and other true Saurian Reptiles; so that whatever support theso modifications of atructure may give to the question respecting tho marsupial nature of the Stunesfield fossils, ns compared with other groups of Mammals, they do not affect the previous quostion of their nammiferous nature, as cotmpared with reptiles and fiahes. The fossil jaws, Mr. Ogilby said, agree with those of Mammals, and differ from thoso of all recent reptiles, in not being prolonged backwards behind the srtienlating condyle; a elanmater, in conjonction with the former relation, which would be, in this nuthor's opinion, well-nigh ineontrovertible, if it wene nbsolutely exclusive; but the extinet Saurians, the Pterodactyles, Ichthyosauri, and Plesiosauri, cotempormries of the Stonesfield foseila, differ from their recent congeners in this respect, and agree with Manmals. Mr. Ogilby is of opinion that the condyle is round both in Didelphys Preroztii nad ID. Bucllondii, and is thercfore a very strong point in favour of the mammiferous nature of the jaws The sugular process, ho said, is distinct in one specimen of D. Prerostii, and, though broken off in the other, has left a well-defined impreasion; but that it agrees in position with the Insectivora, and not the Marsupiata, being situated in the plane passing througla the coronoid process aud the ramus of the jaw. In D. Ducklandii, he conceived, the process is entirely wanting; but that there is a slight longiturliual ridge partially broken, which might be mistaken for it, though placed at a considerible distance np the jaw, or uearly on a level with the condyle, and not at the inferior angular rin of the jaw. Ho is therefore of opinion that D. Bueklandii, caunot be properly associnted either with the Mnrsupial or Insectivorous Mammals. The composition of the tecth, he conceives, camot be advanced successfully against the mammiferous uature of the fossils, becanse animal matter preponderates over mineral in the teoth of tho great majority of the losectivorous Cheiroptera, as well as in those of the Myrmecolius and other small Marsupiala. In the jaw of O. Prevastii, Mr. Ogilby cannot perceive any nppeamnee of n dentary cenal, the fangs of the teeth, in his opinion, almost reaching the juferior margin of the jaw, and being implanted eompletely in the bone; but in D. Bucklandii he has observed, townrds the anterior extremity of tho jaw, a hollow space filled with foreign matter, and very liko a dentary canal. The double fang of the teeth of D. Preastii, nul probably of I. Bucklandii, luo said, nre strong points of agreoment between the fossils and mamuifors in general ; but that doublo roots necessarily indicate, not the mammiferous nature of the animal, but the componnd form of the crowns of the teetl.
4. With respect to tho most prominent characters by which tho Stonesfeld fosuls are distinguighed from recent Mammala of the Inectivoroug and Marsupial familiep, Mr. Ogilby mentioned, first, the position of the coudyle, which is placed in the fossil jawe in a line rather below the level of the crowns of the teeth; and he stated that the conlyle not tring clevated alose the line in tho Dasyurns Ursinus anl Thylacines Marrisi; is not a valid argument, becanse those Marsupials aro carnivorous. The becont pmint urged by the anthor sganat the opinion that the: fonsid belonged to the larectivorous or Marsupial Mammifera, is in the nature nud armagement of the teeth. Whe mumber of the molarm, ho conceived, is a secondary conaideration; but he is convineed that they cannot be reparated in tho fossil jaws into true and false, an in Mammalias; the great length of the fangs, equal wo at leat three times the depth of the erowna, he conceivea, is a strong olijection to the fosnils being placerl in that class, is it in a character altogether peculiar and unexampled numoug Mammala; the form of the teeth nino, he atated, cannot be justly compared to that of any known specien of Manupial or Iusectiveronn Mnmmifer, being, in tho nuthor's upininn, aimplytricunpid, and without any npparance of interior loles. As to the canines nud incinors, Mr. Ogilby kaid that the tooth in Dasyurni Ruchlauhif, which has been called a cavine, ia not larger than mome of the presumed incisora, aust that all of them are so widely sepamitrd in to vecupy full fire-twelfelan of the entire dental line; whilst in the Hempurms rircrinus and other apecies of Inametivorous Maranpiala they occupy onefifth part of tho sano apace. Their being nrangerl bongitutimally in the ame line with the molars, he concciren, in anutlar ohjection; hecnuee, nmang all Mammala, the incisorn oceupy the front of the jaw, nad stanil ne right angles ta the line of the molara. With reapeet to tho supprosed compound stinctare of the inw, Mr.

Ogilby offered no formal opinion, but contanted himsolf with simply statiug the appearaneen: he nevertheless objected to the grooven being considered the impression of bloodveasels, though he ndmitted thant the form of the jaws is altogether different from that of any known reptile or fish.

From a due consideration of the whole of the evidence, Mr. Ogilby stated, in conclusion, that the fossils present so many important and distinctive characters in common with Mnmmals on the one hand and cold-blooded animals on the other, that ho does not think nsturalists aro justified at present in pronouncing definitively to which class the fossils really belong. ('Gcol. Proc,' 1838-59, vol. iii.)

On the 9th of January, 1839, Professor Owen proved, in a paper read to the Geological Society, that the so called Bastosaurus of Dr. Marlan, upon which M. Do Blainville and the otler objectors, thinking it to be a fossil reptile with double-fngged teeth, had reliod so strongly as an argument for the non-mammiferous nature of the Stenesfield jaws, is no Snurian at all, but a mammiferous animal forming a most interesting link between the carnivorons and herbivorous Cetacea; and in compliance with the suggestion of Dr. Harlan, who, haviog compared with Professor Owen the microscopic structure of the teeth of the Basilosaurus with those of the Dugong and other animals, admitted the correctness of tho inference of its mammiferous nature, Professor Owen proposed to substitute for the name of Basilosaurus thst of Zeuglodion. [Cetacea.]

Among the fossil remains collectod by Sir Thomas Livingatone Mitchell in the Caves of Wellington Valley, Australin, and which are now deprosited in the muscum of the Geological Society of London, Professor Owen describes tho following genera and species :-

Macropus.-M. Allas, nt least ouo-third larger than the M. major, the largest known existiug species of Kangaroo, appronehing in the great sizc of its permanent spurious molar to Hypsiprynanus.
M. Titan, as large as the preceding, but differing chiefly in the smaller size of the permanent spurious molar, which in this respoct more nearly corresponds with the existing M. major.

Hignsiphynnus.-An undetermined species, rather larger than nny of the three species with whose crania Professor Oweu has had the opportunity of comparing them. There is no evidence, acconling to him, that it agrees with any existing species.

Phalangista.-A species differing from P. vulpina in having the spurious molar of relatively smaller sizo, and the second molar narrower; the symphysis of the lower jaw is also one line deeper in the fossil. Professor Owen states that there is no proof that it corresponds with any oxisting species; but, he adds, that a comparison of the fossils with the bones of these species (which are much wanted in our osteological collections) is obviously necessary to establish the important fact of the specifie difference or otherwise of the oxtinct Phalangor.

Phascolomys.-P. Mitclellii, s littlo larger probably thnn the cxinting Wombnt.

Diprotodon (Owen). - Professor Owen applies this name to the gemur of Mammalia represented by tho anterior extremity of the right ramus of the lower jaw, with a singlo large procumbent incisor, of which we give a reduced figure below (a, b). It had been formerly conjectured to belong to the Dugong, but the incisor resembles tho corresponding tooth of the Wombst in its enamelled structuro and position (b), and the section of the Wombat's teeth. It diffors however in the quadrilateral figure of its transvorso section, in which it corresponds with tho inferior incisors of tho IIippopotiamus.

Interior extemity of the right ramun, lower jaw, of Diprototon. Owen. a, profile.

Dasyurus.- D. Ianiariux, elosely resembling Dasyurus Ursinus, but dillering from it in being one-third larger, and in having the canines or laniaries of proportionately larger size. Another apecimen leads Professor Owen to doubt whether it is the lower jaw of the Dasyurus laniarims, or of some extinct Marsupial Camivore of an nllied but diatinct species.

Tho general result of the exnmination of tho remains found in the

Wellington Valley bone-caves are-1st, that the fossils are not referrible to sny known extra-Australian genus of Mammals; 2nd, that the fossils are not referrible, from the present evidence, to any exiating species of Australian Mammal; 3rd, that the greater number certainly belong to species either extinct or not yet discovered living in Australia; 4th, thst the extinct species of Macropus, Dasyurus, and Phascolomys, especially Macropus Allas and M. Titan, are larger than the largest known existing species; 5th, "that the remains of the saltatory animals, as the Macropi and Hypsiprymni, are all of young individuals, while those of the Burrowing Wombat, the Climbing Phalanger, and the Ambulatory Dasyure, are the remains of adults. (Owen, in Mitchell's 'Three Expeditions into the Interior of Eastern Australia, \&c.)

Dr. Buckland observes, that the discovery of the Marsupiata, both in the secondary and tertiary formations, shows that this order, 80 far from being of more recent introduction than other orders of Mammalia, is in reality the first and most ancient condition under which animals of this class appeared upon our planet; that, as far as we know, it was their only form during the secondary period; that it was co-existent with many other orders in the early parts of the tertiary Feriod; and that its geegraphical distribution in the present creation is limited to North and South America, and to Australia, with the adjacent islands. (' Bridgewater Treatise.')

The lower jaw of the Phascolotherium presented to the British Museum by Mr. Broderip will be found in the wall-case G of that Institution with the remains of Cavern Bears.
(Waterhousc, A Natural Mistory of Mammalia, vol. i.; Dr. J. E. Gray, British Muscum Catalogue; Owen, British Fossil Mammals; Proceedings of Geological and Zoological Socicties; Buckland, Bridgewater Treatise.)

MARSUPIOCRINI'TES, a genus of Crinoidea, proposed by Professor Phillips for some remsrkable fossils noticed by.Sir Roderick Murchison in the strata of the Silurian system. ('The Silurisn System,' pl, 18,'fig. 3.) The arms are formed of two rows of calcareous plates. [Encrinites.]

MARSUPITES, a forsil genus of Echinodermata, established by Miller in his work on the Crinoidea. In msny respects it resembles the Crinoidea, but has no stem. [Encrinites.] It belongs to the Chalk.

MARTAGON. [LLIUM.]

MARTEAU. [SqUALIDE.]

MARTEN, or MARTIN, the name of a Carnivorous Quadruped (Mustela Martes, Linn.), of the Weasel family. [MUstelide.]

MARTES. [MUSTELIDA.]
MARTIN, the name for aome of the Swallow Tribe, as the House Martin (Hirundo urbica, Linn.), the Bank or Sand Martin (IIirundo riparia), and the Black Martin or Swift. [Himundinide; SwalLows.]

MAliTINISITE, a Mineral composed of 91 per cent. of chloride of sodium and 9 per ceut. of sulphate of magnesia. It comes from the salines of Hassfurth. (Dada, Mineralogy.)

MARYSOLE. [Pleuronectide.]
MASARIS (Fabriciua), a genus of Hymenopterous Iusecta, the type of the tribe Masaride, the first of the third family of the aculcated Hymenoptera-the Diploptera. [Diploitema.]

MASCAGNIN, a Dijeral, a native Sulphate of Ammonia. It occurs stalactitic, pulverulent, or efflorescent. Colour yellow or grayish. Taste acrid, bitter. Translucent, opaque. Found in the fissures of the earth, and among the lavas of Etna and Vesurius, in the Solfatara, and near Sienna in Tuscany.

The following analysis is by Gmelin:-

Sulphuric Acid	53.29
Ammonis	.	.	.	220	
Water	.	.	.	23.91	

MASSA'RIUM, a provisional generic name of M, De Blainville for Alcyonium Massa of Mïller.

MASSICOT. [Lead.]
MASTERWORT, the oll nsme of an Umbelliferous Plant with fleshy tuberous roots, growing in moist mesdows and woods in the north of Europe and in Newfoundland. It has a stem from 1 to 2 feet high, broad twice-ternate leaves, flat large umbels of white or pink flowers, and thin orbicular straw-coloured fruit. Botanists calls this plant Imperatoria Ostruthium ; it has acrid, bitter, somewhat aromatic roota, and formerly liad a great reputation as a remedy for toothache, and as a cure for agues, whence no doubt its names have been derived. It retains a place in continental medical practice, but it is disused in Englaod. [IMPEhistoria.]

Mastich. [Pistacmia.]
MASTIFF, the name of a variety of dog of a very old English breed, now seldem seen in its original state of purity. Manwood states that the word is derived from 'mase thefere,' because it is supposed to terrify thioves by ita voice, which, when the auimal is excited, is fearfully deep and loud. This is the Degue de Forte Race of Buffon and the French, the Mastivus of Ray, the Canis Molossus of Linnseus, and the Villaticus or Catenarius of Dr. Csius.

A true-bred Mastiff is of considerable size, and very stoutly built.

The head is well developed and large, the lips deep and pendulous on each side of the mouth, and the whole aspect noble.
It appears from Claudian and Gratius that the British dogs, mastiffs probably, were highly prized at Rome; and Camden notices the employment of a special officer, Procurator Cynegii, appointed in Britain for superintending the breed of these dogs and their transmission to that city, where they appeared in the combats of animals at the amphitheatre, and sometimes upon occasions even more cruel, for there can be little doubt that they were set to werry those unhappy Christians whom the tyrants of the time ordered to be sewed up in the skins of beasts and then exposed to the attacks of those powerful sud savage dogs. Peunant quotes Strabo for the fact that the Gauls trained British Mastiffe for war, and used them in their battles. According to Dr. Caius, three were a match fer a bear und four for a lion; but Stow mentions a lion-fight with three of these dogs, in which, though two were disabled, and afterwards died, the lion was so much harassed that he retreated, and refused to resume the battle.

The Mastiff is capable of great attachment, aud when kept as a guard is of uvfailing vigilance, giving the alarm by its powerful bark, and never ceasing till it has roused the family or secured the intruder. It is now comparatively little used as a watch-dog, especially in great towns, where an active police has almost entirely superseded it.

Mastiff (Canis Mfolossus).
MASTIGUS (Hoff.), a genus of Insects belonging to the fourth family (Clavicornes) of the Pentamera.
MA'STODON, the game of an extinct genus of gigantic Pachydermatous Proboscidian Mammals (Mastotherium, Fischer), whose remsins are found abundantly iu the third avd fourth, or Pliocene, divisions of the tertiary fresh-water deposits, and alse, but less frequently, in the deposits of the aecond, or Miocene, period.
In the greater portion of their organisation the Mastodons must have closely resembled the elephants. [Elemiantid.e.] The tusks, the proboscis, the geveral couformation of the body and the limbs were very similar; and the principal distinction between the two genera was formed by the molar teeth. These indeed were gradually pushed forward from behind as they are in the Elephant, and displayed the same relative iucrease in proportion as the auimal was adranced in life; but, unlike those of the Elephant, their crowns exhibited on cutting the gum large conical points of a mammiform structure, whence the animal derives its name. As these conical points were worn dorm by mastication, the tooth prescoted dises more or less large, according to the degree of attrition which it had undergone. The following cuts, which are very much reduced in size, as will be understood from what we have already stated, will explain this difference in the tooth more clearly than words. Before the tooth has suffered from detritus it prescnts the following appearance:-

Molar Tooth of Mastodon, not worn.
And after exposure to a comparatively small degree of detrition it has the aspect represented in the following cut:-

Molar Tooth of Mantodus, slightly norn.
But when from longer use the conical teat-like points are me re dcoply worn down, the following ajpearnnee is presented:-

Molar Tooth of Mastodon, a good deal worn, seen from above.
The way in which these tecth are set in the upper jaw will be acey from the follawing cut:-

> Molar Tecth and Palate of Mastodon.

And the mode in which those of the lower jaw ne arranged will be perceived from the figures given below.

fortionn of Sower daw of dastodon.
The general contour of tho lower jaw as viewcd firm above may be collected from the following ligure.

In his 'British Fossil Mammals' Professor Owen makes the follow. ing prefatory remark to his description of these tecth:-
"Naturalista are mest familiar with that gigantie type of quadrupeds called, from the peculiar prehensile devclopment of the nose and upper lip 'proboscidian,' as it is manifested by the existing species of Elephants, which have been at different times introduced into Europe from the tropical regions of Asia and Africa; and we have seen in the preceding section that an extinct species of this genus once ranged over the whole of the temperate and part of the arctio zonee of the northern hemisphere of the globe, and has left abundant evidence of its former existence in our island. In like manner we learn from the study of fossil remnins that other quadrupedsas gigantic as Elephants; nrmed with two as enermous tusks projecting from the upper jaw, and provided with a proboscis, once trod the carth; the presence of the latter flexible organ being inferred not only by its necessary co-existence with long tusks, which must have prevented the mouth reaching the ground, but also by the configuration of the skull, by the holes which gave passage to large nerves, and by depressions for the attachment of particular muscles analogous to those which relate exclusively to the organisation of the trunk of the Elephant. Like the Elephant also, these other huge proboscidian guadrupeds were destitute of canine teeth, and provided with a small number of large and complex molar tecth successively devcloped from before backwards in the jaws, with a progressive increase of sizo and complexity from the first to the last. The broad crowns of the molar teeth are also cleft by transverae fissures; but these clefts were fewer in number, of less depth, and greater width than the Elephants; the transverse ridgee were more or less deeply bisected, and the divisious more or less produced in the form of udder-shaped cones, whence tho name Mastodou nasigned by Cuvier to the great proboscidisn quadrupeds of this kind. A moro important difference presents itself when the teeth of the typical species of Mastodon are compared with those of the Elephant in reference to their structure. Tho dentine, or principal substance of the crown of the tooth, is covered by a very thick coat of dense and brittle enamel; a thin cost of cement is contiaued from the fangs upon the crown of the tooth, but this third substauce does not fill up the interspaces of the dirisions of the crown, as in the lilephant. Such at least is the character of the molar tecth of the first discovered species of Mastodon, which Cuvier has termed Mastodon giganceus, and M. angustidens. Fossil remains of proboscidians have subsequently been discovered principally in the tertiary deposits of Asia, in which the number and depth of the clefts of the crown of the molar tecth, and the thickness of tho intervening cement, are so much increased as to establish trangitional chamacters between the lamello-tuberculate teeth of the Elephnat rud the mammillated molars of the typical Mastodon, ahowing that the characters deducible from the molar teeth are rather the distiuguishing marks of species than of genera in the. gigantic proboscidian family of mammalian quadrupeds.
"Two deatal characters howerer exist, though hitherto I believe unnoticed as such, which distinguish in a well marked and unequivocal manner the genus Mastodon from the geuus E/cphas. The first is the presence of two tusk in the lower jaw of both sexes of the Mastotion, one or beth of which nre retained in the male, and acquiro a sufficiently conspicuous size, though small in proportion to the upper tusks; while both are early shed in the femnle. The accoud charncter is equally decisive; it is the displacement of the first and second molnes in the vertical direction, by a tooth of a eimpler form than the secoud, developed above the deciduous tecth in the upper jaw, and below them in the under jaw. Theac two dental charncters, which are of greater importanco thau many accepted by moderu zoologists na sufficient demarcations of exiating generic groupa of Mammalia, have been recognised in tho species emlod Mastodon giganfeus, most common in North America, nud in tho Masfodon angustidene, which is the prevailing speciea of Europe.
"T's the last named species I refer the comparatively few remains of the Mastodon that have been cliscovered in Eugland, aud Litherto exclusively in these deposits, consisting of aand, shingle, loam, and laminated clay, containing an intermixture of the alsells of terrestrina, fresh-water, and marine Mollusca, which extend nlong the const of Suffolk and Norfolk, and have been no ndminably described by Mr. Lyell under the name of the Fluvio-Marise Crag, and referred to the Older ['liocene divisiou of his tertiary aystem."

The remains of the Great Mastodon (Mastodon giaganteus, Cuvier), appear to have been the first that attracted attention. These occurred in considersble abuudance in North America. They gave rise to much speculation and much erroneous opinion at first; for though the form sad aize of the molar teeth forbade the infereuce that they could have belonged to eny of the large existing suimals, the formidable appeurance of the pointed conical tuberosities of the crowns led to conclusions directly the reverse of truth, as we shall presently see. Danbenton, indeed, at first thought that some of these teeth belonged to the Hippopotamus, but he soon perceived that they must have formed part of sn snimsl which had no recent snalogue, snd Buffon announced that the whole evidence afforded by the remains led to the belief that this ancient species, which ought to be regarded as the first and the largest of terrestrial animals, existed only in the first sges of the world (n'a subsisté que dans les premiers temps), and never had come down to our time. This opiaion of Buffon did not extend beyond the larger molar teeth, and he still regarded the middling-sized and worn teeth as those of the Hippopotamus; he slso followed Daubenton in considering the femur found with the teeth as thst of an elephant, though Dr. (William) Hunter had pointed out the differences between it and the same bone in the elephant, as well as the distinctions existing in the teeth and lower jaw. ('Phil. Trans., vol. Iviii.). But while William Hunter did this good service, he introduced no small confusion and error. He had heard of the Siberian Mammoth, sud not having seen the bones of that animal, he immediately concluded that it was identical with the North American fossil, and gave the name to the latter, a nomesclature which was for some time adleered to both oy the Anglo-Americans and the English. The skelcton of the Great Mastodon was exhibited st London and Bristol as the Mammoth, and accounts of it under the same name were published in London in 1802 and 1803. Nor was this the only error of which William Hunter was the parent, for notwithstanding the rejection of such an opinion by Camper, the former declared that, from the structure of the teeth, the Mammoth, as he termed it, was carnivorous; and men, ever prone to estch at the wild snd wonderful, greedily sdopted this marvellous view, and named the gigantic beast the Carnivorous Elephant. We well remember in our early youth hearing the spcculations of some as to the sort of prey ou which the monster lived, and as to the great services that its enormous tusks, which in the skeletoy above noticcd were placed in an inverted position, with the curvature downwards, must have rendered when the snimal was on its predatory excursions. The confusion created by tho application of the same name Mammoth to two different genera was grat, and for a long time almost inextricable, notwithstanding the endeavours of Pallas, who clearly refuted the supposed identity of the Siberian and American animals, by showing that the Siberian Mammoth is a true elephant. Cuvier at once dissipated the clouds that had gathered over the subject, and while he clearly pointed out the osteological differences between the two gencra, gave to the supposed Mammoth of America the appropriate name of Mastodon (Maatos, a teat; bōous, a tooth).

The first notice of the tecth and bones of this extinct genus of l'achyderms appears to be in 'Phil. Trans.' (vol. xxix., 1714), a century and a quarter ago; and it is not uninstructive to observe what rapid strides natural science has made since that time, when the lloyal Society of London published in their 'Transactions' Dr. Mather's letter to Dr. Woodward, in which the former gives an account of s large work in manuscript in two vols. folio, but docs not name the author. Dr. Mather recommends this work, which appears to have been a commentsry on the Bible, with large philosophical remarks, "to the patronage of somo generous Meccuas, to promota the publication of it," snd transcribes, as a specimen, a passage announcing the discovery, in 1705 , of enormous bones and teeth at Albany in New Ligland, as the bones of a giant, appealing
to them as a confirmation of the text in Genesis (vi. 4); auother example, if any were wanting, of the folly and danger of mixing up religious questions with scientifo inquiries. Portions of remains were sent to France and England at different intervals, and elicited the observations of European zoologists, whilst in America materials were collected for forming two complete akeletons by the zealous indnstry of Mr. Peale.

Of these two skeletons one was placed in the museum of Mr. Charles Wilson Peale in Philadelphia, and the other was exhibited in London and Bristol by his son Mr. Rembrandt Pesle, who published two accounts of it under the name of the Mammoth sbove alluded to.

One of the principal deposits of Mastodon bones appears to have been the Big-Bone Lick in the north part of Kentucky, near the Ohio, whence the Mastodon has been called 'the suimal of the Ohio.' None of the remains have the appearance of having been rolled, but seem to have been unmoved since the death of the animal; and it is wortliy of remark that those which were found at the river of the Great Osages, which runs into the Missouri a little sbove its confluence with the Mississippi, were in a vertical position, ss if the animals had been bogged or buried in the mud. [MEGATHERIIDE.]

The traditions which were rife among the Red Men concerning this gigantic form and its destruction must not be passed over in silence. M. Fabri, a French officer, informed Buffon that the savages regarded these bones scattered in varions parts of Canada and Louisiana as belonging to an animal which they named the Pere aux Bocufs. The Shawace Indians believed that with these enormous animals there existed men of proportionate development, and that the Great Being destroyed both with thunderbolts. Thoso of Virginia state that as a troop of these terrible quadrupeds were destroying the deer, the bisons, and the other animals created for the use of the Indians, the Great Man slew them all with his thunder, except the Big Bull, who, nothing daunted, prescuted his enormous fore head to the bolts, and shook them off as they fell, till, being at last wounded in the side, he fled towards the great lakes, where he is to this day.

Buffou scems to have been the first who noticed the occurrence of thesc tceth in the OId World, and figures one alleged to have been found in Little Tartary, and given to him by the Comto de Vergennes. This is very large, having from eight to ten points, and weighing 11 lbs 4 ozs . He also figures another from the museum of the Abbe Chappe, said to have beeu brought from Sibcria. Pallas announces another instance; and gives a figuro of one from the Ural Mountains. Cuvier states that he for a long time thought that his Mastodon giganteus inhabited the OId Continent as well as America, but he coufesses bis donbts as to this point. The Abbe Chappe, he remarks, had been in Califorma, and there is no certaiu cvideace that he brought back his Mastodon tooth from Siberia. The tooth figured by Pallas, he thinks, may perhaps have belonged to M. angustidens, and he asks, who shall assure us that the Comte de Vergennes was not in error as to the locality of the great molar presented by him to Buffon, and which, together with that formerly ju the cabinet of the Abbé Chappe, is in the Paris Museum? Cuvier sums up by saying that he does not entirely pretend to invalidate these three proots, but that he begins no longer to regara them as sufficient.

The following species have been named:-Mastodon jiganteus, M. angustidens (Europe, America?), M. Andium (Andes), M. IIumboldtii (Concepsion-Chili), M. minutus, M. Tapiroides, M. Turicensis, M. Avernensis (EPplesheim, l'uy de Dôme), M. clephantoiles (Iravaddi, Sewalik Mountaius), M. latidens (Irawaddi, Sewalik Mountains), and M. longivostrix, Kaup. Professor Owen has referred the teeth from the Norfolk Crag to the last-named species.

Remains of the Mastodon were found by Captain Cantley in the Sewalik Mountains ; and in assigniug an age to the formation, the Captaiu adopts tho views of Dr. Falconer, who considers the deposit to be
nybchrunons with that from which Mr. Crawfurd obtained the remaina near Prome, on the banks of the Irawaddi. Captain Cautley having found jaws in which tho front teeth are not to be distinguished frons the teeth of M . laticlem, and those in the rear from the tecth of M . elophatoider, he conceives that the distinction which was established on detached teeth will be found to be erroneous.

Tho geuus Totracauloten of Godmaun is, according to the best anthoritiox, the young of the Grent Mastodon-M. giganteus. Onc species only, Tetracaulodon Mastodontoideum (Godmann), is recorded. (Marlan, 'Bull des Se Nat et de Géol.;'1830.)

We aubjoin l'rofessor Owen's remarks on the comparativo age of the various apecies of Mastodon:-
"From the age assigned to the fluvio-marine crag, and to some of the continental formations from which remains of the Mautodon angestidens have been obtained, it would seem that this species precoded the Mammoth in Europe, nad was of older date than the Mastodon gigantess of North Ancrica. No remains of the Elephas primigcime at least bare hitherto been discovered in the Miocene or older l'liocene strata nt Eppelsheim, which have gielded the most complete apecimens hitherto recovered of the bony framework and dentition of the Mastodon ungustidens; and not n fragment of a bone or touth of the Mastodon has yet been found in theso new pliocene and 1 ost-tertiary deposits of England, which are so rich in remains of the Nammoth.
"In other parts of the world the genus Mastodon, under different ypecific forms frow our European Mastodon angustidens, has continued to bu represented during a later epoeh, and to have been contempomueous with the Mammoth, or other extinct species of Flephant. In eertain localities in North America fanous for remains of the $M /$ astodon giganteus, as Big-Bono Lick, the Mammoths bear to the Mastodone a proportion of onc to five. A species of Mastodon nearly allied to the Mastodion anguatidens by the form of the molar teeth, is associated with the Elephantoid Mastodon, and with a true species of Elephas in the tertiary formations of the Sub-Himalayan range. Another speeies of Mastodon, also nearly allied to Mastodon angustidens, if we may judge from the configuration of a molar tooth, has left its remains in the ossiferous caves and post-tertiary or newer tertiary deposits of Australia. From the conformity of the molar teeth, Cuvier regarded a Mastodon whose remains have been discovered in Peru, as identical in apecies with the Mastodon anyustidens of Burope.
"We may therefore conclude that the gigantic proboscidian modification of the Mammalian type was first manifested on our planet under the generic form of the Mastodon, and with teeth which differed less from those of the older tapiroid Pachyderma than do the griuders of the true Elcphanta.
"No genua of quadrupeds have been more extensively diffused over the globe than the Mastodon. From the tropies it has extended both south and north into temperate latitudes; and in America remains of the Martodon havo been discovered on the western coast as high as the 60th degree of north latitude. Sut the metropolis of the Mastodon giganteus in the United States, liko that of tho Mastodon angustidens of Euroje, lies in a more temperato zone; and we have no evidence that any species was specially adapted, like the Mnmmoth, for braving the rigours of an arctic winter.
"The Mastodon unquestionally possessed a long proboscis, the chief office of which in the Elephant is to seize nud break off the boughe of trees for food. There is nothing in the ascertained organisation of the Mastodon to lead us to doubt that auch was also the principal function of the trunk in that gedus. Cuvier howerer was of opinion that the Mastodon applied its teeth, as the Hippopotaumas and Hog do, to the mantication of the tender vegetables, roots, and aquatic plants. But the large eminences of the griading tecth, the unusual thiekness of the cuarnel, and the almost entire absence of the eofter cement from the grinding surface of the erown, would rather indicate that they had been instruments, for cmahing harder and coaraer aubstancea than those for the unsticstion of which the more complex but weaker grinclers of the Elephants are adajted. It has been conjectured that the Mastodons were more aquatic, or swamp-hunting, quadrupede than the Elephants; their limbs were however proportionally ahorter, although constructed on the aame type, each foot being torminated by five mhort and stont toca, which were evidently, by the form of the lant phalanx, confined in one common thick hoof. The leg-bones aro atrunger in proportion than those of the Elephant, the cranium is flatter, and, from the smaller development of the frontal air-cells, it presents a leas intelligent claracter. The almont complete skeleton of the Matodon gigantives, wo well known to the public tus the 'Missouri Levinthan," when exhibited, with a most grotesquely distorted and exaggerated collocation of the bonea, in 1842 and 1813 , in the Eggptian Hall, l'icendilly, is now mounted in strict accordaneo with its natural propertions in the British Muscum."

MASTODONSAURU'S, Dr. Jager's name for an extinct Saurian lepptile found in the Alaunschiefer, or Alum-Slate (Wirtenberg), founded uphon tecth, the largest of which, with part of the stone adbering, ia figured ou the next columa, one-half of the size of the original. The other teeth were counidernbly amaller.
Dr. Jiger is of opinion that thege teeth must be held to approneh the nearent to thune of the animals belonging to aome of the apecies of Monifor. The Mastodonsumrus, from the length of its teeth, may
bo eaid, in his opinion, to have oqualled the Mososqurus of Maastricht in size; but in the formation of the teeth tho fermer differs from the latter. The amall teeth, he observes, agree oo much in every respect with the large one, that their dillerence in size is ouly to be ascribed to their having belonged to snimala of a different age, but not of a different genus, and also to their having accupicd different places in the jaw.

(Ds: Jager's memoir, Ceber die Fossile Reptilien voclche in Wirtcuberg aufgefunden worden sind, Stuttgart, 1828.)

MATACO. [ARMaDLLLO.]
MATAOASSE. [LANiad.a.]
MATAMATA. [Cembonis.]
MATHI'OLA, n genus of Plants belonging to the natural order Brassicacer, having tapering pods, converging etigmas thickened at the back, a calyx with two saccato sepals, and compreesed seeds. arrauged in a siagle row and surrounded by a thin membranous border. It consists of annual and perennial herbaceous plants inhabiting the warm countries bordering the Mediterranean, and extending eastward into Persia and some of the southern Asiatic provinces of Rusaia. Between 30 and 40 apecies are known to botanists, among which are those which fortn the Stocks and Gilliflowera of garlens, aweet-scented biemnials much valued for the beanty and varicty of their many-coloured flowers. The principal source of these has been Mathiola incana, to which are to be assigned the honry-leared, or TenWeek Stocks, Brompton, and Queen's; nnd M. glabrata, which com. prehende the emooth-leaved, or green Wallfower-Leaved Stocks: it is however probable that the uumerous varieties now common in gardens under the name of German and Russian Stocka have been procured, nt least in part, by muling the former species with some of the eadcoloured species of the genus. The latter are called Luperias by Do Candolle, and are remarkable for their dingy flowers, which are exceedingly fragrant at night, but at no other time. M. livida, M. tristis, and L. odoratissima, are the best known of them, and aro frequently cultivated in greenhouses.

MATICO. [PIPER.]
MATRICA'RIA, a genus of Plants belonging to the natural order Composita, tho sub-order Corymbifore, the tribe Senecionidea, and the section Anthemidea. It has a nearly flat involucre, with an elongated conical receptacle : the fruit angular, not winged; the pappus is either absent, or in its place there is a slight membranous border.
M. Chamomilla, Wild Chamomilo, has bipinnate smooth leaves, capillary simplo or divided segmenta, solitary heads of flowers, and a hollow receptacle. This plant is common throughont Europe, on dung-hills, in cultivated ground, and on way-sides and wasto places. It was formerly used as a medicine, but its place has been taken by the Common Chamomile and other plants of the same order. It is the 'Avөcuis of Dioscorides, lib. 3, cap. 144.
The P'yrethrum Parthenium, Fever-liew, is by some botanists referred to Matricaria. This plant appeara to be the 'Aveímov of Theophrastus, 'Iliat. Ilant.' lib. 14, cap. 7 ; and the חapoivov of Dioscorides, lib. 3, caj. 135 ; and of Plutarch ('Sulla,' cap. 13). Other plants, as species of Pariclaria, Chrysocoma, dc., were called Hapoiviov by the Greek writers. [1'yReTuncm.]
(Babington, Manual of British Botany: Frans; Synopsis.)
MatU TA, the name of a genus of Brachyurous Crustaccu.
[Oxistome.]
MAVIA, a genus of Plants belonging to the natural order Leguminosc.
M. judicalis of Bertoloni is the Mavi of the Kaffirs, and yields a poisonous bark used by them as a test in judicial trials.

MAYACACEAE, Mayacs, a natursl order of Endogenous moss-like Plants, creeping over damp places, with narrow leaves, resombling Spider-Worts, but differing in their 1 -celled anthers, carpels opposite the inner divisions of the perianth, 1 -celled ovary and capsule, snd parietal plscentas. Tha species, four in number, are natives of North America. Thay are of no known use. (Balfour, Class-Book of Botany.)

MAY-FLY, the popular name of the Neuropterous Insects of the genus Ephemera and its allies. [Ephemera.] Baetis is one of the ganera of Ephemera. The Baetis venosa, an insect inhabiting a great part of Europe, is the type,

MAY-WEED. [ANTHEMIs.]
MAZAMA. [ANTILOPEE.]
MEADOW-SAFFRON. [CoLCHICUM.]
MEALY-BUG. [Coccide.]
MEANDRINA. [MADREPHYLLIGA.]
MEAT-FLY. [MUsca.]
MECINUS. [CiavUs.]
MECISTINA. [PAROs.]
MECISTOPS. [Cnocomilide.]
MECONO'PSIS (from $\mu \dot{\eta} \kappa \omega \nu$, a poppy, and $: \psi \psi i s$, a resemblance), a genns of Plants belonging to the natural order Papaveracces, and formerly referred to Papaver. This genus stands between Papaver and Argemone. It has 4 petals, numerous stamens, a short style, 5-6-radiating free stigmas, the capsule obovate, opening by pores beneath the apex.

There is but one species, M. Cambrica, the Welsh Poppy, s native of Great Britain, a rare plant. It is also found in many parts of Europe. It has yellow flowers which are very fugacions, and are seated on long peduncles which are inflexed before the opening of the flower, so that the flower-bud is drooping. It is an ornamental plant, and may be introduced into the garden. It will grow in a rich light soil, in a shady situation. It may be propagated by dividing the roots, or by secds.
M. Nepalensis, a Nepanl plant, is described as being extromely poisonous, especially its roots.
MEDICA'GO (from M $\eta \delta \iota \kappa$, the Greek name of one of the species), a genus of Plants belonging to the natural order Leguminosce, to the tribe Lotece, and the sub-tribe Trifolice. It has the calyx somewhat cylindrical, 5 -cleft, the k keel rather removed from the vexillum; the stamens diadelphous; the legume many-seeded, of various forms, reniform, falcate, or cochleate, but usually twisted in a spiral manner. The species are herbs or shrubs, with the stipules usually cut; the leaves trifoliate, the leaflet usually toothed, and the peduncles 1-2-many flowered. They are exceedingly numerous, upwards of 80 species having been described.
M. sativa, Lucern, has many-flowered racemes ; the pods compressed, spiral, with two or thres turns, downy, unarmed; the pedicelsshorter than the calys or bract; the leaflets obovato, oblong, dentate above, cmarginste. This plant is a native of Europe, and is found wild in Eogland and Scotland. It has an crcet stem, with yellow or violet flowers. It is commonly cultivated in the fields of Europe, and Babington says that "the wild specimens found are scarcely, naturalised." This is the Mnown of Theophrastns, "Plant. de Caus., lib. 2, cap. 20 ; snd the Medica of Pling, lib. 18, cap. 20.
M. falcata has the racemes many-flowered, the pods compressed, sickle-shaped, downy, unarmed; the pedicels shorter than the calyx, longer than the bract; the leaflets obovate-oblong, dentate above, emarginate, mucronste. It is a native of Europe on dry mountainous pasturea. In Eagland it is a rare plant, but is occasionally found on dry gravelly banks and old walls. This species is said to be the Lucern which is cultivated in Switzerland.
M. Lupulina, Black Medick, or Black Nonsuch, has many-flowered dense oval spikes; the pods compressed, kidney-shaped, with a spiral point rugged with longitudinal branchod prominent veins; the stipules obliquely ovate, slightly toothed; the leaflets roundish-obovate, denticulate above, emarginate, mucronatc. It has a procumbent stem with yellow flowers, and is a native of Eiurope in meadows, pastures, and waste ground, and is plentiful in Great Britsin. It affords excellent fodder for sheep, and must be treated in the samo way as Luoern.
M. arborea, Tree Medick, is a villous shrubby plant; it has obovatocordate leaflets nearly entire; the stipules linear, acute, entire; the peduncles racemose; the legumes stipitate, twisterl, reticulated from transverse veins; 2-3-soeded, the secds somewhat kidney-shaped. This plant is a native of the south of Europe, and appears to bs the Kírujos of Theophrastus, 'Hist. I'lant.'' lib. 4, cap. 5; lib. 1, cap. 9; "Do Caus. Planto,' lib. 5, cap. 6; and the Kútvaos of Dioscorides, lib. 4, cap. 113. It is slso the Cytisus of the Romans: Pliny, lib. 13, cap. 24; Virgil, 'Ecl.,' i. 79; 'Georg.,' ii. 431.

Besides the first three specics described above, M. sylvestris, M. muculata, M. minima, and M. denticulata aro natives of Great Britain. M. mu"icala was at one timo admitted into tho British Flora as growing on the Rea-shore at Orford in Suffolk; Mr. Babington, in liis "Manual," statea that he is "convinced, from personal obscrvation, that no such plant now exists in that locality."

In cultivation the species may be easily raised from scod, and the
shrubby species propagsted by cuttings. The perennial herbacsous species may be propagated by dividing their roots.
(Babingtou, Manual Brit. Bol.; Fraas, Synopsis Plantarum Flora. Classicce.)

MEDICK, [MEDIcago.]
MEDJIDITE, \& Mineral consisting of Sulphate of Uranium and Lime. It is of a dark-amber colour, aud found near Adrianople in Turkey.

MEDULLA OBLONGATA. [Brain.]
MEDULLA SPINALIS. [NERVaUS System.]
MEDULLIN, a name given to the Pith of the Sunflower, \&c.
MEDU'SA. [Acalephre.]
MEERSCHAUM, a Mineral belonging to the series of Silicates of Magnesia. It is dull-white, opaque, and earthy, nearly like clay. Its hardness is $2 \cdot 0$, and specific gravity 2.6 to 3.4 . A variety from Anatolia, analysed by Thomson, gave -

When heated it gives out water aud a fetid smell, and becomss hard and perfectly white. When first dug up it has a greasy feel, like soap, and on this account is used by the Tartars in washing their linen. It is known in Europe from its being mado use of in Turkey to make the bowls of tobacco-pipes, which are hence called meerschaums. These pipes are first imported into Germany, where they are softened in tallow and wax, and then polished.
Aphrodite and Quincite appear to be varieties.
(Dana, Mineralogy.)
MEGACEROS. [CERvide.]
MEGADERMA. [Cheiroptera.]
MEGADESMA, a name given by Bowdich to a genus of FreshWater Conchifera (Potamophila of Sowerby, Galathea, Lam.).

MEGARRA. [Cnotalide.]
MEGALI'CHTHYS, a genus of fossil Ganoid Fishes, from the Carboniferous Strata of Edinburgh, Glasgow, Leeds, Manchester, Wigan, \&c.

The Megalichthys is one of those genera which may rank smongst the singular links connecting two great natural divisions, which are apparently so strongly mariked, and separated from one another so widely, ss to offer scarcely auy points of resemblance. It combines with many of the characters of a true fish many close and strikiug analogies with reptiles; and the teeth more especially so closely resemble those of some crocodilean animals, that when first discoverod they were immediately referred to that class; and not only the teath but the scales also seemed to Dr. Hibbert (by whom they were first noticed) to indicate the sams affinity.

There exists however a family of Ganoid Fishes, containing many extinct genera, represented in those existing by two genera, which together include ssven species, in which the peculiar Sauroid character of the teeth indicates this approach to the reptiles, which ssems carried to its height in the genus now under consideration. The dimensions of the teeth of the Meyalichthys far exceed those of any other fishes teeth that have get been examined, one of them having been found to measure nearly four inches in length, with a breadth at the base of nearly two inches. They are however of two kinds, the large teeth being accompanled by several very small ones, alternsting with them, and distributed over the whole of the inside of the mouth. The teeth are conical, and possess a conical hollow at the base, in which the next tooth is prepared, so that there may be a constant succession as in reptiles.

The scales of the Megalichthys are of various forms, and exhibit a coating of enamel of a nut-brown colour, and of the most brilliant lustre. They are gencrally angular, and the surface is punctured like that of the dermal soutes of the recent crocodile. Besides however the angular scales, others havs been found rounded, and of large size, having externally a lamellar structure, and not exhibiting the shining enamel so characteristic of tha scales of Ganoid Fishes. The rounded scales liava beeu fouud as much as five inches in diameter.
(Ansted, Principles of Geology; Agassiz, Recherches sur les Poissons Fossiles.)
MEGALOCHILUS. [Draconina.]
MEGA'LODON, Goldfuss, a genus of Fossil Conchifera from tho Devonian Strata.

MEGALONYX. [MEGATIERIIDE.]
MEGALO'PA (Leach), a geuus of Macrurous Crustacca (Macropa of Latreille).

The external antenme are setaceous, hardly one-fourth so long as the carapace, and formed of elongated joints; the intermediate ones terminated by two bristle-lika appendages, the upper of which is the longest. Lxternal jaw-feet, with the two first joints cempressed, the second the shortest, and notched st the end for the insertion of the othars; anterior fect equal, in form of didactylous pincers, rather short and stout; four last pair rather shorter, lass stout, and terminated by a single nail, which is a little curved; carapaee short, wide, aud a little depressed, terminated in front by a pointed rostrum,
which in wide at the base, aud sometimes inflected; oyes very large, mupported on a rery ahort peduncle; abdomen narrow, extended, linear, compased of seven jointa, of which the five intermedinte ones are provided with appendages, namely, the four first with false feet, having their external division very large and ciliated, and the fifth, ou each side, with a horizontal blede or lamina, which is oval and ciliated, composing, with the last joint, a sort of fin, differing a little from that of the other Macrura.
M. muica differs from the other species in having the rostrum n little inflected perpendicularly on the carapace and canaliculated in the middle; aleo in the absence of a recurved spine on the haunches of all the feet. The shell is truncated posteriorly, and has no point like that of M. armata. Colour brownish.

It was fonnd by Messra. Audouin and Adolphe Brongniart at the mouth of the Loire.

a, magntfed; b, internal antenna; c, external sntenna; d, natural size.
MEGALOPHUS. [Muscicapide]
MEGAlOSA'URUS, the name assigned by Dr. Buckland and the Rev. W. Conybeare to an extiact genus of Saurians found in the Oolitic Slate at Stonesfield, uear Woodstock, and other localities.
Though no entire skeleton lass yet been discovered, the number of bones and teeth collected give sufficient data to enable the observer to pronounce upon the generul osseons atructure, with almost as great a certainty as would be the result of the examination of the bones of the arnmal in a perfect and connected atate.
The femur, or thigh-bone, and tibia, or leg-bone, are nearly three feet in length acverally, so that tho entire hind-leg must have been nearly two vards long, and the discovery of a metatarsal bone measuring 13 inches indicates that the foot was of a correspouding length. lrom these and ather remains, including the vertebre, teeth, \&c., the sizo of this gigantic saurian has been calculated and its habits ascertained.
"The most important part of the Megalosaurus yet found," observes Dr. Buckland, in his 'Bridgewater Treatisc,' "consista of a fragment of the lower jaw, containing many tecth."

Antesfine extremieg of right lower jaw of Aegalountirus, frum Nonemfeld, onefourth natural nize.

> a, slew of the innlde; b, view of the outalde. Buekland.
"Tha form of this jaw shows that the head wan terminated by a stmight and narrosy anont, compressed laterally like that of tho IVelphinus Ciangcticus."

The atricture of theso teeth [Fering:] leares no doubt as to the carnivoroun lashita of thin immenae extinct lizard; aud tho internal atructure of the cylindrical nud other bones shows that is was a terres.
trial animal, though it may have occasionally taken to the water in purauit of prey, such as Plesiosauri and fiahea. Its ordinary food is aupposed to have been the smaller reptiles, crocodiles, and tortoises, whoae remains occur abundantly in the strata where those of Megalosaurus abound.

The form of the teeth too exhibits a combination of mechanical contrivances extremely remarkable; and there is a provision for a constant succession of new teeth to. supply the loss of the old ones. For this purpose the new teeth are tormed in distinct cavities by the side of the old onea, and towands the interior surface of the jaw; so that escha ns it grow gradually pushed away the one previously existing there, expelling it by the usual process of absorption, and insinuating itself into the cavity thus left vacant. When young, and firat protruding above the gum, the apex of the tooth presented a double cutting edge of serrated enamel; but as it advanced in growth its direction was turned backwards in the form of a pruning knife, and the enamelled sawing edge was continued downwarda to the base of the innel and cutting aide, but became thicker on the other side, obtaining additional strength when it was no longer needed as a cutting instrument.

Tooth of Megalosmurus, two-thirds nataral size. The'dotted lines indicate the compressed conical cavity, containing pulp, within the root of the growing tooth.
a, transverse section of the same, showing the manner in which the back and sides aro enlarged, and rounded in order to give strength, and the froat is brought to a strong and thin cutting edge.

The rertebre of the Megalosaurus indicate a more decided daparture from the Lacertian type than the mode of dentition; but by far the most remarkable difference occurs in the group of five of these bones, which sachylosed together form the sacrum, and which are so characteristic of the Laud Ssurians. Up to the time indeed that these bones were discovered, there had been no inatance recorded of any reptilian animal possessing more than two sacral vertebro ; and when first the megalosaurian remaina were described by Dr. Buckland, three of the five were referred to hy him as helonging either to the lumbar or caudal series. The whole five however properly belong to the sacrum, and they were so contrived as to give au amount of strength and resinting power that must have correaponded to enormoua muscular ensergy and weight; and, as if to give them every possiblo advantage of position, they ars not anchylosed in a atraight line, but in a gentle curve. forming an arch, and therefors atill better nble to support the weight presaing upon them. All the bonces of the cxtremities are exceedingly large compared with the sains parts in existing Sauriens; and the cylindrical once are hollow, like those of land animals. The thigh-bons and the tibis each measure nearly three feet in length; and thus the contour of the hinder part of the body, raiaed high above the ground, muat have been totally unlike that of any existing crocodilean; and the large ehare in the aupport of the trunk assigned to the hinder legs of the Megalosaurus probably made it neoessary in that genua, as in the heavy land quadrupeds, that a greater proportion of the spine dhould be permanently and aolidly fastened together, in order to transfer tho weight through the bones of the pelvis to the legs.

The existence of the boncs of the foot measuring 13 inchea long, is also a aufficient proof that a proportionately large base was prepared for the iumense column which the leg would form. Several bonea of the anterior extremity have also been referred-aome of them not without doubt-to this singular genus; and its dimensions have been calculated rather witla refercnce to these than to the general anatomy of the animal.

This modo of calculation has hovever been objected to by Professor Owen, and with great reason; for it ia in tho higheat degreo iuprobable, that in an animal raised six or eight feet from the ground there should be a tail ns long in proportion to tho body as that of existing lizards. To obtain a correct idea of the probable dimensiona it is certainly kafeat to caloulste by the length of the vertebree and their probable number, and in that way we ehall arrive at the conclusion that the body masy have attained n length of 12 feet; and that assuming it had as many vertebre as the crocodile, which is perhapa
hardly likely, the tail might also have been 12 or 14 feet long; while comparing the proportions of the benes of the head with those of the Java monster, the nearest analogue, we shall have an additional 5 feet, making in all nearly 30 feet; and this measurement is more likely to err on the side of excess than of curtailment.
Even howerer when we have thus halved the length originally assigned, we shall furd that in attempting to picture to ourselves this strange animal we must draw largely on the imagination. From the size and form of its ribs, the trunk appears to have been broader and deeper than in modern Sxurians; and this monstreus trunk was elevated on legs of unnsual length and massive proportions, heing raised to a height of several feet from the ground. The long narrow anout and powerful dental apparatus, well adapted to the carnivorons habits of the animal, would render it an object of terror as well as of astonishment; and it is difficult for us to appreciate the amount of change that has taken place, since a portion of the spot now called England was an island peopled by such reptiles, whose rivers and marshes were crowded with the aquatic crocodiliane just described, and which was surrounded by an ocean in which the Ichthyosaurus, the Plesiosaurus, and the Ceteoscurus formed a gronp of predatory animals never surpassed in fierceness, strength, and voracity. (Ansted.)

Dr. Buckland says, speaking of the remaims of this animal :"Although the known parts of the skeleton are at present very limited, they are yet sufficient to determine the place of the animal in the zoological system. Whilst the vertebral column and extremities muck resemble those of quadrupeds, the teeth show the creature to have been oviparous, and to have belonged to the oder of Saurians, or Lizards. The largeet thigh-bone of this animal in the museum at Oxford is 2 feet 9 inches long, and nearly 10 inclies in circumference at its central or smallest part. From these dimensions, as compared with the ordinary etandard of the Lizard family, a length exceeding 40 feet and a bulk equal to that of an elephant 7 feet high have been assigned by Cuvier to the individnal to which this bone belonged; and although we cannot safcly attribute cxactly the same proportions to recent and extinct species, yet we msy with certainty ascribe to it a magnitnde very far exceeding that of any living lacerta. Large as are the proportions of this individual, they fall very short of those which we cannot but dednce from the thigh-bone of another of the same species, which has been discovered in the ferruginous eandstone of Tilgate Forest, near Cuckfield, in Susses, and is preeerved in the valnable collection of Dr. Mantell, now in the British Mnseum, togetber with many other bones belonging to the same species, and of the eame size with those from Stonesfield. The femur in question, which has lost its head and lower cxtremity, measures in its smallest part, st the distance of two feet from its extremity, more than twenty inches in circumference, and therefore, when entire, must have equalled in mag. nitude the femur of the largest living elephant. To judge from the dimensions of this thigh-bone, its former possessor must have been twice as great as that to which the similar bone in the Oxford Museum belonged; and, if the total length and height of animals were in proportion to the linear dimensions of their extremities, the beast in question wonld have equalled in height our largest elephants, and in length fallen but little ehort of the largest whales; but as the longitudinal growth of animals is not in so high a ratio, after making some deduction, we may calculate the length of this reptile from Cuckfield at from 60 to 70 feet."
In Cuvier's opinion Megalosaurus partook of the structure of the Crocodile and the Monitor. (Mantell, 'Geology of Sussex'; Cuvjer, 'Ossemens Fossiles,' and 'Geol. Trans.', vol. iii., 2nd scries ; Mantell', 'Fossils of the British Museum.')
Besides the localities above mentioned, we may notice the occurreuce of this animal in the Oolite of Normandy; Forest Marble, Caen ; and Jura, near Solothurn (?). (H. Von Meyer.) [Sacria.]

MEGA'PHYTON, a genus of Fossil Plants, from the Coal-Measures. [Coan. Plants.]
megapodidde, Mr. Swainson's name for a family of Rasores, consisting of the genus Menura, the sub-genus Megapodius, and the genera Dicholophus, Prophia, and Crax, with the sub-genera Crcax, Churax, Ortalida, Penelope, and Lophocerus.
Megapodius. [Cracide,
megaptera. [Ćetacea.]
MEGARI'MA, the name proposed by Rafinesque for those species of Terebratula which are nearly equivalve and smooth, as T. leris, T. crassa, \&c. [Bracriopoda.]

MFGASPI'RA, Dr. Lea's name for a genus of pupiform, terrestrial, testaccous Mollusca, remarkable for the length of the spire of its shell, which consists of 23 close-set, narrow, gradually-increasing whorls, which he thus characterises:-
Shell clavate; aperture nearly oval, below rounded; margius reflected, above disjoined; columella meny-folded, belew entire, net effuse. Animal unknown.
This genus, which is closely analogous to the genera Dulinus, Pupa, and Aurimula, according to Dr. Lea, is founded on a eingle species, M. Theschenbcryiana.

The ehell is subcylindrical, turreted, thickly striate, brewnish, with longitudinal reddish-brown apota, laaving a solid apes; whorls 23. rather flattenerl; spirc obtnse at the apex; columella with four folds; outer lip reflected.
Nat. hist, div. vol, Hil.

(4)

Mregaspira Ruschenbergiana, Lea,

MEGASTOMA. [Lantade.]
MEGATHE'RIIDA, Megatheroids of Owen, who includes under the family the following genera of extinct Edentata, namely, Megatherium, Megalonyx, Glossotherium, Mylodon, and Scelidotherium, all of which have as yet been found in America only.
Megalherium (Cuvier), a gigantic extinct Mammiferons Quadruped, more nearly allied to the Ant-Eaters and Sloths than to the Armadilloes. The dental formula cannot be definitely stated, because the number of teeth in the lower jaw is not knewn. The upper jaw, as Professur Owen has shown, contains fire on each side, and from the analogy of Scelidotherium it may be conjeetured that Megatherium had only four teeth on each side in the lower jaw. In that case the formnla would be :-

$$
\text { Incisors, } \frac{0}{0} \text {; Canines, } \frac{0}{0} ; \text { Molars, } \frac{5-5}{4-4}=18 .
$$

Cuvier pointed out the skull of this snimal as very much resembling that of the Sloths, but observed that the rest of the skeleton bore a relationship partly to the Sloths and partly to the Ant-Eaters. The Madrid specimen was for a long time the principal if not the only source of information with regard to the genus; and as Mr. Clift remarks in his paper, to which we shall presently allude nore largely,* that magnificent though imperfect skeleton bad remained for the last century altogether unique. "Very few additional specimens," says that nble osteologist, "appear to have been sent to Europe; and no other cabinet eave the solitary one at Madrid possessed (as far as I am able to learn) a aingle intelligible fragment which could with certainty be assigued to this great unknown." The zeal and energy of Sir Woodbine Parish have added greatly to the materials for arriving at a just conclusion as to the proper place of this animal in the series; and the history of the Megatherium may now be considered to be complete.
According to the description of Don Joseph Garriga, \dagger Spain posseased considerable parts of at least tbree different skeletons. The first and most complete is that which is preserved in the royal cabinet at Madrid. This was sent over in 1789 by the Marquis of Loreto, viceroy of Buenos Ayres, with a notiee stating that it was found on the banks of the river Luxan, west-south-west of Buenos Ayres. In 1795 a sccond arrived from Lima, and other portions, probably not very considerable, were possessed by Fathcr Fernsudo Scio, who had reccived them as a present from a lady who had come from Paraguay. According to Messrs. Pander and D'Alton, they Pvere unable in 1818 to find any traces of the Lima specimen, or that which had belonged to Fernando Scio.
The remains collected by Sir Woodbino Parish were found in the rivcr Salado, which runs through the flat alluvial plains (the Pampas) to the south of the city of Buenos Ayres, after a succession of three unnsually dry seasons, "wbich lowered the waters in an extraordinary degree, and exposed part of the pelvis to view as it stood upright in the bottom of the river." This and other parts having been carriod to Buenos Ayres by the conutry pcople, were placed at the disposal of Sir Woodbine Parish by Don Hilario Sosa, the owner of the property on which the bones were found. A furtber inquiry was instituted by Sir Woodbine Parish, and, on his application, the governor, Don Manuel Rosas, granted assistance, the result of which was the discovery of the remains of two other skeletons on his excellency's propertios of Las Averias and Villanueva; the one to the north, the other to the south of the Salado, but at no great distauce from the place where the first had been found. "An immense shell or case was found with the remains discovered on the properties of Don Manuel, portions of which were brought to this country, but most of the bones aesociated with the shell crumbled to picces after exposuro to the air," and tho broken pieces preserved had not been sufficiently made out, when Mr. Clift published his memoir, to enable that zoologist to describe them eatisfactorily; but he gives very accurate figures of a portion of the shell.
The cuts in the following page will convey to the reader more accurately than words the osseous atructure of this enormous animal, which when full grown must have been more than 14 feet long including the tail, and upwards of 8 feet in height.

The simple outline (irom Pander and D'Alton) slows the extent of the skeleton at Madrid. The pale tint expresses the extent of corresponding parts sent to England by Sir Woodbino Parish. The dark tint shows the additional parts, which are deficient in the Madrld skeleton. ('Gcol. Traus.')
The thigh bone was twice the thickness of that of the largest elephant; the fore foot must have measured more than a yard in

* Some aeeount of the Remains of the Megatherium sent to England from Buenos Ayres, by Woodbine Parish, Jun., Esq., F.G.S., F.R.S.,' by William Clift, Esq., F.G.s., F.R.s.
\dagger 'Deseripcion del Esqueleto de un Quadrupedo muy corpulento y rara que se conserva en el Real Gabinete de la Mistoria Natural de Madrid.' (Madrid, 1790.)
leagth, and more than 12 Inches in width, and was termionted by an roots, which, in all probability, constituted the prineipal part of its enormoua claw, and the width of the upper part of tho tail could food. The enout of tho aulmal appenrs to have terminated in a ahort

not have been less than 2 fect. Tho following comparative measure- proboscis, which must have borno a gonl deal of resemblance in ils suente, furnished by Mr. Clift, will be found in Sir Woodbine Parisb's proportions to that of the modorn Trpirs.

Skeleton of Mrgatherimm forchbortencd, honmiag a nearly front view of the head and anterior and posterior extremitien. Pamber and D'Alton.
interating wrork, whare a ligghly charateristic figure of the skeleton, Jrawn from the origingl bonen, under Mr. Clift's superitstendence, showa the parta which are wating:-
Elephant. Meratherium.
ft. in. ft. tn.

The expanainn of the oasa ilin
Jrendth of the largest caudal vertelira
Circumference of middle of femur.
Tengelt or the on cslcin $\quad 0 \quad 2$
The whole of tho ntructure of thin extinct onimal is admirably adapted for digging the earth so as to onable it to obtain the suceulent

- 'Buenos Ajres and the Prorinces of the llio de Hiata,' 8vo, London.

We have seon that aus immense shell or case accompanied the remaios discovered to tho north and the sonth of the river Salado; and Dr Bucklond was led to suppose, not without considerable appareat ground for the opinion, that this shell was the armour that protected the Meqatherium.
"The sizo of tho Ifrgatherium," mays Dr. Buckland, in his 'Bridgewater Treatise," "exceeds that of tho existing bidenfafa, to which it is inost nearly allied, in a greater degree than any other fossil apimal exceeds its nearest living congeners. With the head and shoulders of n Sloth, it combined in its legs and feet an admixture of tho characters of the Ant-Fiater, tho Armalillo, and the Chlamyphorms; it probahly also atill further resembled the Armadillo and Chiamyphorus, in being cased with a bouy coat of armour. Ita hanches were more
than 5 feet wide, and its body 12 feet longt and 8 feet high; its feet were a yard in length, and terminated by most gigantic claws; its tail was probably clad in armour, and much larger than the tail of any other beast among extinct or living terrestrial Mammalia. Thus

Bones of the pelvis of Mrgatherium, discovered by Sir Woodbioo Parish, now in the Musenm of the lioyal College of Surgeons, London. The hones of the left hind leg and several of those of the foot are restored nearly to their natural place. (Dr, Buckland, 'Bridgewater Treatise.')

Cngueal phalanx of Megalherium, one-fourth natural sige. Clift.

Tooth of Sfegatherium, one-third natural size. Clift.
heavily constructed, and ponderously accontred, it conld weither run, nor leap, nor climb, nor burrow uader the ground, and in all its movements must have been necessarily slow; but what need of rapid locomotion to an animal whose occnpation of digging roots for food was almost stationary? And what necd of speed for flight from foes, to a creature whose giant carcass was encased in an impenctrable cuirase, and who, by a single pat of his paw, or lash of his tail, could in an instant bave demolished the Cougnar or the Crocodile? Secure within the panoply of his bony armour, where was the enemy that would dare enconnter this Leviathan of the Pampas? or in what more powerful creature can we find the causo that has effected the extirpation of his race? Ilis entire frame was an apparatus of celossal mechanism, adapted exactly to the work it had to do; strong and ponderons, in proportion as this work was heavy, and calculated to be the velicle of life and enjoyment to a gigantic race of quadrupeds, which, thougl they bave ceased to bo counted anong the living lnhabitants of our planet, have, in their fossil bones, left belind them imperishable monuments of the consummate skill with which they were constructed. Lach limb and fragment of a limb forming
co-ordinate parts of a well-adjnsted and perfect whole; and through all their deviations from the form and propertion of the limbs of other quadrupeds, affording fresh proofs of the infinitely varied and inexhaustible contrivances of creative wisdom." Much of this eloquent passage is unasśailable ; but Professor Owen has demonstrated most clearly, and, we have reason to believe, to the entire satisfaction of Dr. Buckland himself, that the tessellated shell or case found with the Salado remains did not beloug to the Megatherium, whose tegnmentary covering seems to have been not unlike that of the AntEaters and Sloths, but to a Dasypodoid or Armadilto-like gigantic extinct animal, to which Professor Owen has assigned the name of Glyptodon, whese hind foot, like the fore, appears to be expressly modified to form a base to a column destined to suppert an enormous incumbent weight; whilst in the Megatherium the toes were free to be developed into long and compressed claws, snch as form the compensating weapons of defence of the hair-clad Sloths and Ant-Eaters. [Glyptodon.] Professor Owen, in his paper read to the Geological Society of London, entitled, 'A Description of a Tooth and Part of the Skeleton of the Glyptodon, a large quadruped of the Edentate Order,' to which belongs the tessellated bony armour figured by Mr. Clift in his 'Memoir on the Remains of the Megatherium brought to Eagland by Sir Woodbine Parish,' showed that the portions of tessellated armour described and figured by Weiss ('Berlin Trans.,' 1827) are identical in strncture with those brought to Eugland by Sir Woodbine Parish, and that the bones which were found with the armour in both cases are the same in their characters, and therefore that they belonged to animals specifically identical. He next entered upen the inquiry: Had the Megatherium a bony armour? and he concluded, from a comparison of its skeleton with that of the Armadilloes, that it had not. In the pelvis of the Armadillo there are 12 sacral vertebre anchylosed together, and the spines of the vertebre are greatly developed anterio-posteriorly, forming a continnous vertical ridge of bone, bearing immediately the superinenmbent weight. In the Megathere the sacral vertebra are only 4 in number, and are net anchylosed, and the spineus processes are comparatively small, not locked together, as in the Armadilloes, but separated by intervals as in the Sloths. In the Armadilloes, the weight of the cuirass is transferred from the sacrum to the thigh benes by two paints on each side. One of them, the ischium, is anchylosed to the posterior part of the sacrum, the other point is formed hy the conversion of the iliac bone into a stont three-sided beam passing straight from the thigh joint to abnt against the anterior part of the sacrnm, where the weight of the shell is greatest, a structure which is watiag in the Megathere In no species of Armadillo is the ilinm expanded, while in the Megathere it is greatly developed, resembling that of the Eleplant in size, form, nad position; and among the Edentala the nearest approach in this portion of the skeleton is to be fonnd among the Sloths and Ant-Faters. The mest striking paint lowever in the structure of the Armadilloes, witl reference to the support of a bony coveriag, is the remarkable production of a part of the vertebra from above the anterior articular process on each side, in a straight direction upwards, outwards, and forwards, ito nearly the level of the true spincus praccsses. Now these oblique processes, which are developed only in the loricated Edentata, beautifnlly correspond in form and use with the tie-bearers in the architecture of a roof, and are cntirely wanting in the Megathere, the structure of this part of the vertebral colnmn of that animal corresponding with the character of the vertebre of the hair-clad Sletk and Ant-Eatcrs. Professor Owen noticed other supposed adaptations in the skcleton of the Megathere to sustain a bony covering, as the breadth of the ribs, bnt the ribs of the Sloths and Ant-Eaters are broader than those of the Armadillees.
The paper contained a tabular acconnt of the discovery of twelve skeletons of the Megathere, and in me instance did any portion of bony armour accur with or near the bone.* A notice was also given of the remains of a Glyptodon, fonnd in the left bank of the Pedernal before its junction with the Sala, an affinent of the Rio Sante, near Monte Videe, and preserved in the musenm of that town. From the accounts which have been given of these remains, they appear to have belonged to the same species as that described in the paper. An allusion was also made to some portions of boay armour obtained in the Rio Sece, in the Banda Oricntal, and similar in structure to the specimen of the Pedernal. One of the portions was the covering for the tail. It was bollow to its extremity, and presented in its concavity vestiges of caudal vertebre very distant from each other.
In conclusion, Professor Owen observes, that having brought together evidence of the remains of five specimens (found in the lio Seco, Rio Janeiro, Villanueva, Pedernal, and the Banda Oriental) of

- Sir Woodbine Parlsh, in May, 1839, communicated to the writer of this article a letter received by him, giving information of the diseovery of an almost entire skeleton of an adult Megatherium on the banks of the lio de la Matanza, with all the vertebre of the body, all the ribs, all the tecth, the head, and the legs-in short, with the whole of the bones except the tail and one foct. Close to it was the skeleton of a 'Tatou gigantesque' (Glyptodon probahly), with its bony armour complete. There was also found a very small and perfeet Megatherium, which must have been only just horn at the cpoch of destruction. No mention is made of any traces of hony armour or shell about the Megatheria. In tho old animal only one foot is wanting. It has been snggested that the so-called young Megatherium may passibly be a skeleton of Scelidotherium.
a large Filentate species undonbtedly coverod with armour, and moro or lesa correnponding with the characters of the Giyplodon, and baving establinhed the characters of that geaus on both dentary and loconotive organs; he trists at the same tione that he has vindicated the opinion of Cuvier with reference to the Megathere, by proving it to le, by its tegumentary covering as well as its osseous aystem, more nearly nulied to the Ant-liaters and Slothe than to the Armadilloes (' (iecol. Iroc," 1539.)

May we venture a suggestion as to tho immediate probable cause of the extiuction of these and uther gigantic quadrupeds whose remains are found in America! The soathern parts of that great continent are oven now subject to long continued droughts, sometimes lasting for three years in auccession, and bringing destruction on the cattle; and, indeed, the discovery of the remains collected by Sir Woodbine l'arish was owing to a succession of umusually dry seasons, as we linve seen. The upright peaition of most of these skeletons found in sitn, with the penderous vertebre and bones of the pelvis in their natural situation, indicates that the animal must have beeu bogged in sulhesive mud sufticiently firm to uphold the ponderous booes after the decomposition of the soft parts A loug continued drought would naturally have brought these extinet animals from the drained aud parched country to the rivers, dwindled by the continued dry seasons, to a sleader stream running between extensive mud banks, in which these gigantic quadrupeds may have beeu ingulfed in their anxious efforts to reach the water."

Megalonyx (Jefferson).-Under this uame Mr. Jefferson, formerly Iresident of the United States, described, from some bones found in caverus in the west of Virginia, an extinct msmmiferous animul, which be considered to be carnivorous. The boues on which his description was founded were, s sinall fragment of a femur or a humerus, a complete radius, no ulna complete but broken in two, three claws, t and balf a dozen other bones of the foot.

From the materials abore mentioned, nud on comparison with tho sualogous bones in the Lion, Mr. Jefferson came to tho conclusion that the Megalonyx must have been upwards of 5 feet in beight, that it must have weighed nearly 900 lbs , that it was the largest of unguiculated animals, and that it was probably the enemy of the Mastodon of the Ohio, as tho Lion is of the lilephant. When once a theory takes possession of the huaran mind, there is generally no want of nuaterials to confirm it in the imsziastion of the theorist. Thus Mr. Jeffersou sppeals to certain figures resembling s Lion mentioned by the most ancient historisns of the Auglo-Americans as visible on a rock at the mouth of the Kanhawa, a branch of the Ohio, which must have been traced by the hands of the Indians from their rudepess; sud to the accounts of travellers, some of them then living, who had heard during the night frightful roarings which terrified the dogs and the horses; and he asks if they do not prove the existeuce of some great unkown caroivorous species in the interior of America, and whether this redoubtable auimal may not hare been the Mcyalony,

Dr. Wistar, Irofeasor of Anatomy in the University of Philadelphia, subsequently perceived some sualogy between the boues of the fossil foot of Jefferson's animal and similar boncs in the foot of the Sloth, withent other sid than Danbenton's description.

Cuvier, who anw at once tho truc analugiea of the animal, and was ridiculed for his opinion by Fanjas de St. Fond, who mistook the clenresightedness of that great zoologist for the blindness of one who would constrain nature to bend to the factitious classification of an artificial system, obtained casts of the bones indicnted by Jefferson from Mr. l'enlo of lhilmdelphia, and was afterwards furnished by M. Palisot de Besuvois, with two morceaus found in the same casern where Jeiferson's specimens were discovercd; fortunately one of these was a tooth. With these additional materiale Cuvier completed his labourd, and atisfactorily showed that the Megalony.e belonged to the bilentata.

I'rofemer Uwen, in his description of hia genus Mylodan, sinys, "The freater part of Cuviers chuper on Megalonyse is devoted to tho beautiful and justly celebrated reasoning on the ungueal phalanx, whereby it is prover to belong not to a gigmatic Carnivore of the Lion kind, R Jefferson supposed, but to the less fermidable order of Fdentate Quadrupedy; nad Cuvier, in reference to the tocth-the part on which alone a generic character cond have been foundedmerely obsurves that it resomblea at leaut ns much the tweth of one of the great Armadilloes an it doen those of the Sloths. In the last clition of the 'Rigne Animal' Cuvier introduces the Megatherium wal Megalonyx between the Sloths and Armalilloes, but alludes to no

- Mr. Barmin etatem that he nas informed by an cye-witneas, that durling the 'gran acco' the cattie in berde of thousandm rumbel lnto the jarana, and being A shanted by hunger, they were uable to crawl up the maldy banke, and were drowncl. ("Voyages of the Alventure and licagle hetween the years 1826 and
 which contmued duthg the nummers of 1830, 1831, nad 1832, it was catculated that from a athliton and a half to two milliona of andmata died; the lurders of all the latereand atreablets in the province were fong afterwards white will their bonke" ('Huenom Ayres and the Provinees of the lio de la liata," \&ro, 1539.$)$
the manucal phalanax of Megolonize In much uere compresed than that of Megatherium.
other difference between the two genera than that of size- 'l'autre, le Megalonyx, est un peu moindre.' Some aystematio naturalista, as Desmareat and Fischer, have therefore suppressed the genus, and made the Megalonyx s apecies of Megatherium, uoder the name of Megatherium Jeffersonii. The dental characters of the genus Megatherium are laid down by Fischer, as fullows:- Deat. prim. et. laa. $\frac{0}{0}$; molares, $\frac{f-4}{4-4}$, obducti, tritores, coronide nunc plana traneversio sulcati, nunc modio excavsth marginulis prominulis.' That Megalonyx had the anme number of molara ns Megatherium (aupposing that number in the Megathere to be correctly matated, which it is not) is here assumed from nalogy, for neither Jefferson, Wistar, uor Cuvier-the nuthorities for Megrlonyx quoted by Fischor-possessed other means of knowing the dentition of that animal than were afforded by the fragment of a single tooth." (Owen, in "Zoology of II.M.S. Beagle:

The same nuthor adds, "With respect to existing Mammalia, most naturalists of the prosent day seem to be unanimous as to tho convenience at least of founding a generic or subgencric distinction on well-marked modifications in the form and structure of the teeth, although they may correspond in number and kiad, in proof of whith it needs only to peruse the pages of a 'Systema Mammalium' which relate to the distribution of the Rodent order. According to this mode of viewing the logical nbstractions under which species are grouped together, the extinct Edentate Mammal discovered by Jefferson must be referred to n genus distinct from Meyaiherium, nad for which the term Afegalony.e should be retained. This will be sufficiently evident by comparing the descriptions given by Cuvier of one of the teeth of Megalonyle Jeffersonii, and by Dr. Harlan of a tooth of his M. laqueutus, with those of the Megatherium which hnve been publiehed by Mr. Clift. The fragment of the molar tooth of the Megalony.e Jeffersonii, described and figured in the 'Oasemens Fossiles,' seems to hnvo been implanted in the jaw bike the teeth of the Megatherium by a simple hollow base, similar in form and aize to tho protruded crown: its structure Cuvier describes as consisting of a central cylinder of bone envelojed in a sheath of eanmel. The transverse section of this tooth presents sn irregular elliptical form, the external contour beiug gently and uniformly convex; the interual one undulating, convex in the middle, and slightly concave on each side, srising from the tooth being traversed longitudimally on its inner side by two wide and shallow depressions. The imperfect tooth of the species called by Dr. Ifarlan Megalonyx laqueatus, sud of which a cast was presented by that able and industrions naturalist to the Museum of tho Royal College of Surgeons, resembles in general foras, and especially in the characteristic double longitudinal groove on the inner side, the tooth of the Megalonyx Jeffersonii."

Two clnws of the fore foot, a radius, humerus, scapula, one rib, an os calcis, a matacarpal bone, some vertebre, a femur, and a tibia of Megalony, laqucatus, which wore diacovered in Big-Bone Cave, Teunessee, United States, aro also described by Dr. Marlan," who, though he docs not enter intu the question of the generic charucters of Meyalony x_{y} seems, as Profnssor Owen observes, to feel that they do not rest cntircly on dental modifications; for Dr. Harlan remaris that "a minute examinntion of the tooth and kuee-joint rendera it not improbable, supposing the last-named character to bo peculiar to it, that if the whole frame should hereafter be discosered, it may even claim a generic distinction, in which case cither Aulaxodon or Pleurodon would not be an inappropriate name." Upon this Professor Owen makes the following pertinont olsservation:-"Fluero can be no doubt, as it appears to mo, with respect to a fossil jaw presenting teeth iu the same number sad of the same general structure as iu the Mfegatherinm, and with individual modifications of form ns well marked as those which distinguish Megatherium from Megalonyx, that tho paleontologist has no other clooice than to refer it, either ss Fischor has done with Megalonyx, to a distinct species of the genus Megutherium, or to regard it as n type of a sub-gonas distinct from hoth. With reference however to the Pleurodon of Dr. Harlan, after a detailed comparison of the east of tho tooth on which that genus is maiuly founded with the descriptions and figures of the tooth of tho Meyalonyx Jeffersonii in the 'Oasemens Fussiles,' they secu to differ in so slight a degree ns to warrant only a specific distinction, and this lifference even, riewing the various proportions of the tecth in the same jaw of the Megatherium, is more satisfactorily established by the characters pointed ont by Dr. Harlan, in the form nad proportions of the rulius, than by those of the tooth itself."

Among the bones collectod by Spix nur Martius la the cave of Lassa Grande, year the Arrnyal du Tormeigos in Brazil, and deseribed by I'rofossor Doellinger, t thare were no teeth, and only a few bones of the axtromities. The l'rofessor concludes from their shnpe, the presence of an osseous sheath for the claw, aud from the form of their articulation, that they doubtless belong to a Megatheroid noimal of the size of an Ox. The bones, according to the l'rofessor, nre not thone of an inmature individual, and agree aufficiently with Cuvier's deacriptions and figures of the Megalonyx to warrant their being referred to that kind of nuimal.

- 'Medical and thysical Rescarches,' p. 323, de.

I spix asd Nartius, 'Relec In Braxil,' band U., p. S.

Glossotherium (Owea).-The genus is founded on a fragment of a cranium in Mr. Darwin's collection, discevered in the hed of the samo river in Banda Oriental with the skull of the Toxodon. The fragment includes the parieties of the left side of the cerebral cavity, the corresponding nervous and vascular foramina, the left occipital condyle, a portion of the left zygomatic process, sud, though last, not least, the left articular surface of the lever jaw. No tooth, no locomotive extremity, was present to lend its aid; and yet, upon the slender materials sbove stated, Professor Owen has been enabled to give generic distinction to the snimal to which they belonged, and to fix its place in the animal series satisfactorily.

Professor Owen remarks, that the impertance of the articular surface of the lower jaw in the determination of the affinities of a fossil animal has been duly appreciated siace the relations of the motions of the lower jaw to the kind of life appointed for each animal were poiated out by Cuvier; but he observes that we should be deceived if we were to establish, in conformity with the generalisation laid down by Cuvier, our coaclusion, from this surface, of the nature of the food of the extinct species under consideration; for the shape of the glenoid cavity is such as to allow the lower jaw free motion in a horizontal plane from right to left, and forwards or backwards, like the movements of a millstone: "Nevertheless," contiaues Professor Owen, "I venture to affirm it to be most probable that the food of Glossotherium was derived from the animal and uot from the vegetable kingdom, a ad to predict, that when the boues of the extremities shall be discovered, they will prove the Glossothere to be not an ungulate but an unguiculate quadruped, with a fore foot cadowed with the movements of pronation and supiastion, and srmed with claws, adapted to make a breach in the strong walls of the habitations of those insect societies upon which there is good evidence, in other parts of the present craaial fragment, that the animal, though as large as an ox, was adapted to prey."

The data on which Professor Owen rests this affirmation, are, in the first place, a remarkable cavity situated immediately behind the tympanic bone, of nearly a regular hemispherical form and an inch in diameter. The surface of this cavity does not appear to have beea covered with articular cartilage, because it is irregularly pitted with many deep depressions, and Professor Owen concludes therefore that it served to afford a ligamentous attachment to the styloid element of a large os hyoides. In addition to this ovidence of the size of the bones of the tongue, there is a more certain indication of the extent of its soft and especially its muscular parts in the magnitude of the foramen for the passage of the lingusl or motor nerve, which anterior condyloid foramen is larger than any of those which perforate the cranium, with the exception of the great foramen; it is eight lines in the long diameter, and readily admits the passage of the little fiager.

The Professor remarks that it is oaly in the Ant-Eaters and Pangelins that we find an approximation to these proportions; aud that in the Giraffe, the largest of ruminanta, and having the longest and most muscular tongue in that order, the foramen for the correspouding nerve is scsrcely more than one-fourth the size of that of Glossotherium. 1n the other parts of the cranium Professor Owen finds more decisive evidcace of the relationship of this extinct edeatate to the gencra Myrmecophuga and Manis.

The question, liad the Glossotherium teeth? is answered by the Professor in the affirmstive, from the rugged surface of the temporal fussa indicating an extensive temporal muscle; from the well-defined boumdary, formed by a blightly-elevated bony ridge, extending to near the sagittal suture; the size of the zygomatic portion of the temporal bone, and the remains of the oblique suture by which it was articulated to the malar bone; and he is of opiuion that they will probably be found to be molar teeth of a simple structure, as in the Orycteropus.

Here is evidence of the existence of an mala. This bone is wanting in the I'angolins; in the true Ant-Eaters it does not reach the zygomatic process of the temporal bone. From this evidence of the completion of the zygomatic arch, the Professor concludes that Glossotherium was nore nearly allied to the Armadilloes and Orycteropus; and from the form and loose condition of the tympanic bone, which, through the care and atteation of Mr. Darwin, was preserved in situ, that the affinity of the animal was clober to Orycteropus than to the Armadilloes: but the tympanic bone of Orycteropus differs from that of Glossotherium in forming part of the circumfereace of au ellipse whose long axis is vertical, and in sending outwards from its anterior part s coavex cminence, which termiuates in a poiut directed dowawards and forwards: in the distance from the origin of the zygoms to the occipital plane, which is relatively greater in Glossotherium that in Orycteropus, the former is more aimilar to MyrmecoThagu and Manis.

The internal surface of the cranial fragment shows that in Glossotherium, as in other Bruta, the ccrebellum must have been almost cntirely exposed behind the cerebrum, that the latter was of sunall relativo mize, not exceeding that of the $A 8 s$; and that it was chiefly remarkable, as in Orycteropus, the Ant-Eater, and Armaddlo, for the great development of the olfactory ganglia.

Such are the lealing points on whicli the cstablishment of this extinct geaus is placed. Our limits do not admit of our following out the interesting details which confirm the view taken by Professor

Owen, and which t' e reader will find in his 'Fossil Mammalia,' as part of the 'Zoology of the Voyage of Her Majesty's Ship Beagle, und $\lrcorner r$ the command of Captain Fitzroy, IR.N., edited and superinteuded by Mr. Darwio, and published with the approval of Her Majesty's Treasury;' but we think it advisable, with refereace to the succeeding fossil species described by the Professor, and here uoticed, to give the cencluding paragraph in his paper on Glossotherium.
"A question," bays Professor Owen, " may srise after perusing the preceding evidence, upon which the present fossil is referred to a great Edentate species nearly allied to the Orycterepus, whether one or other of the lower jaws, suhsequently to be described, and in like manaer referrible, from their dentition, either to the Orycteropodoid or Dasypodoid families of Edentata, may not have belonged to the same species as does the present mutilated cranium. I can only answer, that those jaws were discovered by Mr. Darwin in a different and very remote locality; that no fragments or teeth referrible to them were found associated with the present fossil ; and that, as it would be therefore impossible to determine from the evidence we have now before us which of the two lower jaws should be associated with Glossotherium; and as both may, with equal if not greater probability, belong to a totally distinct genus, it appears to me to be preferable, both in regard to the advancement of our knowledge of these most interesting Edentata of an ancient world, as well as for the convenience of their description, to assign to them, for the prescut, distinct generic appellations."

Mylodon (Owen), a genus of Ellentate Megatherioids, founded on some fossil remains described by Dr. Harlan iu his 'Medical and Physical Rescarches,' and referred by him to Megalonyx, and on a mutilated lower jaw and teeth discovered by Mr. Darwin among the many interesting novelties which have been the result of that zealous naturalist's researches in the southera division of Arncrica.
The fossil last alluded to was found in a bed of partly consolidated gravel at the base of the cliff called Punta Alta, at Bahia Blanca, in Northern Patagonia, and consists of the lower jaw, with the series of teeth entire on hoth sides: the extremity of the symphysis, the coronoid and condyloid processes, and the angular process of the left ramus, aro wanting.

The teeth are implanted in very deep sockets, and about oue-sixth only of the last molar projects above the alveolus; but the propor-

T.ower jaw of Mylodon, ene-sisth natural size. Owen.
tion of the exposed part increases gradually in the anterior tcetl. This and the relative distance of the teeth will be seen in the following figure:-

External view of right ramus of lower jaw of Mylodon (prefile), enc-sixib natural size.

The implated part of each tooth is simple, of the same size and form as the projecting crown, and with a large conical cavity at the base, for the persistent pulp, and indicatiug that their growth during life was perpetual.

I'rofcssor Owen remarks that these tecth are composed, as in Bradypus, Megatherium, and Megalony.r, of a central pillar of coarse ivory, immediately invested with a thin layer of fine and dense ivory, and the whole surrounded by a thick coating of cement.

The exterior surface of the symplysis of the jaw (which is completely anchylosed) is characterised by two oval mammilloid processes, situated on cach side of the middle line, and about half-way between the anterior and pesterior extremes of the symphysis. Nearly 4 inches behiud the anterior extremity of the above process is the large anterior opening of the dental canal, which is 5 lines in diameter, and situated about one-third of the depth of the ramus of the jaw from the upper margin. The Professor observes that the magnitude

Tecth of Ifytufon, thowing the depth of their implantation. The cavity nt the base of the tooth is seed al figure a. Two-thirds natural sife. Oren.
of this foramen, which gives passage to the nerve and artery of the lower lip, indicates that this part was of large size; and that the two symphyseal procesees, which prubably were subservieut to the attach ment of large retractor museles, denote that the motions of much a lip were freo and catendive. The anglo of the jaw is produced backwards, and ends in an oltose point, slightly bent upwards; a foramen, obe-third less than the noterior one, leads from near the commencement of the dental cansl to the onter surface of the jaw, a litele below and behind the last unola tooth; mal this formen presents the mane size add relative pasition on both sides of the jane. Irofessor Owan fund no indication of a curreaponding foramen, or of symphycal processes in the figures or descriptions of the lower jaw of the Mogatherium, nor in that of the Sloths, Ant-liatera, Armadilloes, or Hanisen, which he had cammined with a view to this comparison.

Irofeseor (owen further ohscrues that in the Meyatherium the inferior contone of the lower jaw is peculinrly remarknble, as Cuvier han observel, for the convex prominence or culargenent which is developed downwards from its middle part; but in the Mylodon the corresponding convexity is slight, not exceeding that which may he obserred at the corresponding pat of the lower jaw of the Ai or the Orycteropus; nod after entering into further interesting detaila, the l'rofessor comes to the conclusion that the lower jas of the Mylodon is very different from that of the Mrgutherium: with that of Meyalonyer he lum of course no means of comparing it.
"Among exinting Eilcutata," coutinues the Profersor, "the Mylodon, in the form of the posturior pat and angle of the jaw, holds an inter medinte place berwern the di nut the great Ammadillo; in the form of the machylored syrphysin of the lower jaw it reacmlides most chacly the L'nau, "Two Toed Sluh; lut in tho peculine exterval confgaration of the ayolldyia, resulting from the manilloid processes above deacribed, the Myloton prements a character which has not bithertan wens oberverl in any uther specite of Bruta, cither recent or fosmil."

Two rpeciom, Myloden Momani, fonumded on the fossil deseribed by Dr. Ilarlan, mul Myfufon /herorinit, on that diveoverel by Ma. Darwin, are recontled by l'rofemmer thwen; mind hegives the fullowing aducasurementa of the lower jav of the laterepeccies
lengtls (as fir an complete)
Inclace Iffaer.
Fixtreme width, from the outaide o: one banui to chat of the other
Jopth of each ramus
T.ergeth of alveolar serion
 firmdeh of symphysis
Jongutulimal extent of symuhyis
('ircumfernence of marrowest part of each natmese
176

9	0
4	8
4	8
6	0
3	5
1	0
8	9

He further abserves that the teeth aud bonen of Mylorlon tharania, aboen foacriberl, exhinit all the nypurancen and combitionn of thome of a full-grown numan, whd that thoy prement a markent dillicrence of
 been a much lager animal, for if the lower jaw of the latter apecies bears the aame propurtion to its Lecth an that of Mylodon Durecinii
does it must be about two feet in leogth. ('Zovology of II, M. S. Bengle,' [Mriodon.]

Sclidotherium (Owen), a largo extinct Edentato Mammal, allied to Megatherium and Orycteropus.

The remaine on which this genus is founded include the craninm, which is nearly entire, with the teeth, and part of the os hyoides; the seven ecrrical vertebre, cight dorsal and five ancral rertebre, both scappla, the left humerus, radius and vion, two carpal bones, and an ungueal phalanx; the two femora, the proximal extrenaitice of the left tibia and fibula, and the left antragalum.

These bones were discorered by Mr. Darwin at Punta Alta in northern Patagonin, and in the samo bod of partly consolidated grarel as that wherein the lower jaws of Toxodion and Mylodon were imbedded. All the parta were discovered in their uatural relative position, iodienting, as Mr. Darsin observes, that the sublittoral formation in which they had been originally deposited had heen but little diaturbed. This beach is covered at spring-ides, and many portions of the skeleton were inernsted with H7ustru: small marine shells were lodged withiu the erovices of the bones.

Sufficient of the cranium remains to indicate that its general form resembled an elongated slender subcompressed cone, beginning behind by a thattened vertical base which expanded slightly to the rygomntio region, and thence contracted gradually in all its dimensious to the anterior extremity.

"Tho Cape Ant-Eater (Orycferopus)" [Aard-Vank], says Professor Owen, " of all Lilcufata, most nearly resembles the present fossil iu the form of its cranium, and next in this comparison the great Armadillo (Dosypus giyas, Cuv.) may be cited. [Abmadilio.] On the supposition therefore that the correspondenco with the above existing Eilentals observalle in the parts of tho fossil craniom which do exist, was carried out through those which are defective, the longth of skull of the Scelidothere must hare been not less than two feet. The cranion is singularly small and slender in proportion to the rest of tho skeleton, especially the bulky pelvis and femur, of which bones the latter lass a length of 17 inches and a breadth of not less than 9 iuchen; the astragudus again excceds in bulk that of the largest hippopotamus or rlinoceros; yet tho condition of the cpiplayseal extremities of the long bones proves the present fossils to have belonged to an immature animal. Hence, although the Seolinothere, like most other Edentals, was of low stature, and, liko the Megatherium, presentel a disproportionate development of the lijnder parta, it is probable that, boik for bulk, it equalled, when alive, the largest cxisting pachycerms not proboscilean. There is no evidence that it possessed a tessellated orscours cont of mail."

Irofessor Owon gives a most minuta and interesting deserintion of the varions parts of the cranima, for which we refer to his memoir, remarking only that the most inheresting features in the region of the temporal bone consist in the line condition of the tympanic bones, and the preacuce of a semicitendar pit, imnediately behind the tympanic bunc, for the artieulation of the styloid element of the hyoid or tongue bone.
"In these points," obscrves the Professor," "we trnce a most remarkable corresponence with tho Glosothere, and in the seprarate tyupaaic bone tho same aflinity to the orycteropus an has been already noticed in the more bulky extinct lidental. This correspondenco natumally leads to a speculation as to the probablogeneric relationship between the Glossothere and Sechidothere. Now it may first be remarked that the styloid articular depression is relatively much larger and much deeper in tho Glossothero than in the Scelidothere: in the former ite dimocter equals, us we have seen, ono inch; in the Seelidothere it measures only a third of an inch, the whole eranium being about two fifthe manler. If wo turn next to the noterior condyloid formaina, which in the Seclidothere are double on each side, we obtain from then evidence that the muscular nerre of the tongue could only lave been onc-third the size of that of the Glossothere. These proofa of the superior relative derelopment of the tonguo in the Glossothere indicate a dittirence of habits, and a modification probably of the structure of the locomntive extremitics; and when We nesociate these devintions from the Scelidothero with tha known difference in the position of the oceipital phane, which in tho Glossothere corresponif with that in the Mymaccophayu nud Bradypus, wo shall bo justified in contiming to regard them, until evidence to the contrary be obtained, as belonging to diatinct genern."

The bones of the cranium connected with the organ of hearing and an accidental fracture of the right os petrosum, demonstating its usual dense and brittle texture, and at the same time exposing the cochlea with part of its delicate and beautiful lamina spiralis, give Professor Owen occasion to observe that the couservation of parts of the organs of, vision in certain fossils has given rise to arguments which prove that the laws of light were the same at remote epochs of the earth's history as now; whilst the structure just alluded to demonstrate, in like manner, that the laws of acoustics have not changed, and that the extinct giants of a former race of quadrupeds were eudowed with the same exquisite mechanism for appreciating the vibrations of sound as their existing congenors enjoy at the prosent day.
"The brain," says Professor Owen, "being regulated in its development by laws analogous to those which govern the early perfectiou of the organ of hearing, appears to lhave been relatively larger in the Scelidothere than in the Glossothers: it was certainly relatively longer : the fractured cranium gives us six inches of the auteroposterior diameter of the brain, but the analogy of the Orycterope would lead to the inference that it extended farther into the part which is broken away. The greatest transverse diameter of the cranial cavity is four inches eight lines; their dimensions however are sufficiont to show that the brain was of very amall relative size in the Scelidothere; and both in this respectand in the relative position of its principal masses the brain of the extinct Edental closely accords with the general character of this organ in the existing specics of the same order. We perccive by the obtuse ridge continued obliquely upwards from above the upper edge of the petrous boac, that the cerebellum has been situated wholly behind the cerebrum; we learn also, from the same structure of the enduring parts, that these perishable masses were not divided, as in the Manis, by a bony septum, but by a membranous teutorium, as in the Glossothere and Armadilloes: in the Orycterope, as has been before remarked, there is a strong, sharp, bony ridge extending into each side of the tentorium. Tho vertical diameter of the cerebellum and medulla oblongata equals that of the cerebrum, and is two inches three lines: the transverss diameter of the cerebellum was about three inches nine lines; its antero-posterior extent about one incl and a half. The sculpturing of the internal surface of the cravial cavity bespeaks the high vascularity of the soft parts which it contained, and there are evident indicatious that the upper and lateral surfaces of the brain had been disposed in a few simple parallel loagitudinal convolutions. The two anterior condyloid foramina hava the same relative position as the single corresponding foramen in thr Glossothere, Orycterope, and Armadillos; and the inner surface of the skull slopes outwards from thess foramina to tle inner margin of the occipital condyle."

b

Dentition of Scelidntherium.

a, Teeth of npter jaw in situ, seen from above; b, tecth of lower jaw in situ, name view; c, d, feeth, showing the depth of their implantation in the jaw and thelr struelure ; e, crown of tooth, Been from above. Reduced. (Owen.)

The size of the orbit is relatively smaller than in the Orycterepe, and still less than iu the Ant-Eaters. "Here however," observes Professor Owen, "wo lave merely an exemplification of the general
law which rogulates the relative size of the eys to the body in the Mammalia. The malar bone does not extend so far forwards in front of the orbit as in either the Orycterope or Armadillo; in the incliuation howaver with which the sides of the face converge forwards from the orbits, the Scelidothere holds an intermediate place betwecu the Armadilloes and Orycterope."

The Dental Formula of Scelidotherium appears to have been :Iacisore, $\frac{0}{0}$; Canines, $\frac{0}{0}$; Molars, $\frac{5-5}{4-4}=18$.
Though the teeth of Mylodon and Scelidotherium have a close analogy to those of existing small Insectivorous Edeutals, there is nothing iu their etructure to militate against the presumptiou that these extinct genera were fed on succulent plants, such as cabbagepalma, or on farinaceous vegetables, auch as large ferns. Their teeth are well adapted to chew vegetable tissues of moderate firmness. (' Zoology of H.M.S. Beagl..')
M. Lund discovered the remains of a large number of fossil Edentata in Brazil. The portion of the country examined by this zealous zoolo. gist is comprised between the rivers Rio das Velhas, one of the confluents of the Rio de San Francisco, and the Rio Paraopeba. This tract forms an elevated plateau of 2000 feet above the level of the sea, and is traversed in the midst by a mountain chain only from 300 to 700 feet high. The chain is formed by a secondary limestons (calcaire secondaire) stratified horizontally, and having all the characters of the zechstein and the hohlen-kalkstein of the Germans (calcaire à cavernes). It is entirely riddled with caverns, and traversed in all directions by fissures, the iaterior of which is more or less filled with a red earth identical with the red earth which forms the superficial bed of the country. In this basin of the Rio das Velhas M. Lund has discovered in company with the remains of Ferce, Glires, Pachydermata, Ruminantia, Marsumialia, Cheiroptera, and Semice, the following mammiferous fossils, which seam to claim attention here:-

"Family of Edentata.

"A Myrmecophaga (Glossotherium? Oweu) of the size of an ox (Myrmeeophaga yigantea).

"Family of Effodientia.

"1. Two species of Dasypus; one allied to D. octocinclus, and the other twice as large as the living species.
"2. Xenurus.
"3. Euryodon, a lost geuus of Tatou, or Armadillo.
"4. Hcterodon, distinguished from all the living Armadilloes by the proportion of its teeth.
"5. Chlamydotherium, a new geuus of Armadillo, representing on a great scale the genus Euphractus of Wagler (the Encoubert of Buffon); two species, one of the size of a Tapir, the other larger than a Rhinoceros.
"6. Hoplonhor'us (Glyptodon? Owen), a very extraordinary genus, whether wo consider the massive proportions of the specics, their gigantic structure, or the siugular combination of different types of organisation manifested in them. Their characters nevertheless approach more and more to the family of Sloths.
"These singular animals were armed with a cuirass which covered all the upper parts of their body, and was composed of small hexagoual scutcheons, except on the middle of the body, whers the scutcheous put on a square form and were arranged in immoveable transverse bands. The bones of the trunk as well as the large bones of the extremities are very similar to the Armadilloes (Tatous) and especially to those of the Cachicames [Abmadillo]; but the bones of the feet are so abridged and the articular surfaces present such a considerabls flattening, that nothing similar is to be seen in any animal skeleton, and one cannot couceivo how such fect could serve for digging in the earth (creuser la terre): the form of the toeth, too, indicates that these singular animals could only have been nourished with vegetable substances, and we must suppose that they fed after the manner of the great Pachydermata. LIowever this may be, the Moplophori, of which M. Lund distinguishes two species, present this particularity, that their zygomatic arch is furnished with a descending branch, in character regarded till now as exclusively proper to the Sloths. These two species were cach of the size of an ox. Fragments of these skcletous have already beeu described by Messrs. Weiss and D'Altou of Berlin.
"M. Lund has found fragments belonging to a genus approaching Ioplophorus, and to which ha assigns the name of Pachytherium. Its proportions were still more massive and its staturs taller.
"Family of Bradypoda.
"M. Lund is thus conducted to the family of the Sloths, which, 'at the Antediluvian opoch,' played in these countrics a very important part, whether the number and variety of their forms, or the great size which the species attained, are considered.
"The first genus which he notices is Mcgalonyx. It is connected with the Arvadillocs (Tatous) by the osseous plates which protected a part of its body; but these plates, although of excessive size, far from forming a contiauous cuirass as in the Tatous, were scparated from each other by great intervals. The Megalonyx exhibits the greatest affinity to Megathcrium, priucipally in the structure and composition
of the fect, but thase of the praterior limbs present the ame toraion as the fect of hradypua frodactylua, although proceeding from a different canse. In the Ai this torsion is produced by the particular monle of the articulation of the leg with the astrngalus; in tho Megaloryx, accosling to M. Lund, the articulation is effected in the unlinary manner, ant it is the carpal surfaco of thin last bone which. hye its momaluas conformstion, caused the contorion of all the rest of the forst.
"The molare, to tho number of five above and four balow, are deprived of roota as in the animals of the order Eidentata; in that they differ from those of M Mogatherimm, which are described as having two roote.
8. The Megalongxes were provided with a tail, which was oxces. sively atrong and probably prehensile, and thim, joined to the contorsion of the hivel feet and the enormous sizo of their claws. lends to the belief, suys M. Lund, that theme animals, notwithatanding the enornons weight of their body, were deatined to climb, like their avalognts in the present creation.
"This genus appears to have been very rich in apecies. M. Lumd alrmaly distinguishes five; one of which, M. C'urieri, was of the staturo of a very atont ox; and this was not the largest species.
"ly the Megalonyes a new genus (Sphenodon), which was of the size of a log, finds its place.
"Still acarer to the sloths must be arranged a new genus which M. Lund designates under the name of Colodon, and which consigts of one apecies.
" Ileturniog to the consideration of the animala which he enumeratea, and whicls are comprised in the order Bruta, or Eilenlata of Cuvier, M. lund observes:-
"1. That tho family of Ant-Faters properly so called, that of tho Tatous, nud that of the Sloths, which, at the present epocb, are peculiar to America, were also found at the preceding epoch.
"2. That then, these same families wero exclusively proper to this fart of the world, as they are at tho present epoch; snd that this gives cause for thinking that no species of these three families has litherta been found in the diluvial beds of the other parts of the world.
"3. That this great order of the Eilentata was then more numerous both in genus and species than it now is.
" 4. That tho greater part of these mammiferons genera which once prapled the conntry have disnppeared.
"5. That every apecies has been deatroyed, two species only exhibiting affinity, but not perfect identity, with the living species.
" 0 . Finally, that the auimals of thio order attained at that epoch dimensions much greater than those which they now present.
"Tho family of the Sloths has now entirely disappeared in the basin of the 1 io das Velhses, which is explainel by the want of virgin forests, sll this conatry being oceupied by the form of vegetation called by the Irazilians "Campos:" It is probable that at the epoch whon theso great animals lived it was otherwise, and that the country was then covered by immenes forests. Everything leada to the belief that they led the sane kind of life as their analogues of the present creation, that is to say, that notwithwtanding the colossal proportions of their bulies, they sought their nourishment on trees." ("Comptes Rendua,")

MFGAT'l\&E'JA, Dr. Leach's name for those species of I'yryoma whieh have a largo aperture. [Cinurespad.]

ME1ONITE [Scafolute.]
 Planta belonging to the matural order Myrtacere. It bas the calyxtube nearly bemisplierical, the limb 5 partite; tho petala 5 ; the atamern numeroun, combined into 5 elongated buodles, which altermate with the putals; the anthers incmabent; the style filiform, the stigma olture; the capsule cononte with und incloned in the thickened tube of the caljx, which in meraile on and adnate at its base to the fowerbearing branch, 3 celled, mang-geeded; the seeds angular. The specien aro trees or shrubn with alternate or opposite entire leaves, efual at the lowe, with flowers perfectly nesuile, or somewhat combined with tho braneh, arranged is apikes or lieads, sud of a white, yellowish, or purplinh colour.
M. Cajuphti (lioxlurgh), M. minor (Smith), has the leaves alternate, Allipticlavembne, sentish, rather falcate, 3 -b-nerved; tho flowers rather dimant, in fuikes, tho rachis and calyaes villous. This is tho Bpecien which vielda tho clief part of the oil brought to liuropo noder the name of ('njeput (bil. It in a uativo of Amloyna nnd other ronat \ln lia ialand.

In ita action on tho buman frame Crjeput participates in the propertien of other volatile oilm, and in rubefacient "xtermally, stimulant and antiapamodic when taken internally. Mixad with other ingredienta it lase lroved a uneful application to tho jointa in rhenmatims and mimilar affectiona, while a few dropa of it havo often relimeerl or warled off alight attack of byateria or epilepay. It by no unamerentiatal tho expectations entertained of it as a remedy in aparmomic cholern.
M. Iencolamdron, White.Tree, or Cnjeput-Tree, ham altermate long lancolato nemminato 1 falente $3 \cdot 5$-nerved leaves; the flower-buring branchen prembloma the flowern in npikes rather distant, which, as well as the machia, are quite glabrous. It in n mative of the Einst

Iblia Islania, and was at one time supposed to yiell the oil of commerce. loxborgh asserts that it possesses little or no fragmnce in its leaver, and that it is soldom or never nsed for tho distillation of the oil which is uned in the European markets.
Lipwards of 30 species of Melateuca havo been described, the majority of which are natives of Australia. Many of them ars fine flauts with beatiful blossoms, and very desirable for the couservatory or greenbouse. They grow well in a mixture of peat, loam, nod and, and may be propngnted by cuttiuge, which will readily take root if planted in n pot of and and placed under a hand or bell-glass,
(Lindley, Flora Medica; Dou, Dichlamyleom Plants.)
MF:LA'Ml'US, De Moutfort's name for a geuus of Turbinated Mollusca (Conorula or Conorulus of Lamarek), placed by Cuvier next to the great genus Auricula, and by M. De Blainville and M. Rang under the family Auriculacea. De Blainvillo arranges both Velampu* (Cunortala) and Tornotclla under Pedipes (Adanson).
This genus has, liko the A uricule, plaits on tho columella or pillar of the shell, but the external lip has no roll or bourrelet, sud is finely striated internally. Tho general contour of the shell is that of a cone, of which the spiro forms the base.
M. coniformis may be taken as nu example.

Mriampus coniformis, a lithe eniarged.

MELAMPY'RUM (from mé入as, black, nad aupós, whent), a genus of I'lants belonging to tho natural order Scrophularinere, or Scrophutariacea. It has n tubular 4 -toothed calyx; a ringent corolla; the upper lip compressed laternlly with reflexed margins; the lower lip furrowed, trifid; the capsule ohlong, obliquely acnminate, compressed; one or two seeds in ench cell, smooth. The species aro annual plants, with opposite lanceolnte linear entire leaves, with opposite naually secund termimal flowers. Eight species aro enumerated by Don, six of which are European and two American. Of the six European four are natives of Great Britain.
M. cristalum, Crested Cow.Wheat, has the spikes densely imbricated, 4 -sided, and the bracts heart-shaped. It is a native of woods and thickets in tho castern counties of England, and also generally of the north and middle of Fiurope.
M. arense, Purplo Cow-Wheat, has las conical spikes, and ovatelanceolate attenuated bracts. The bracts are of a purple rose-colour; tho flowers yellow, variegated with rose-colour nud purple. It is a native in fields of wheat in the sonth of lurope, and is fonnd in Great Britain, though only rarely, in Norfolk and the Isle of Wight.
M. pratense has tho Howers axillary, secund in distant pairs; tho calys closed; the upper lip protruded. It has large paleygllow thowers. It is a native of Great Iritain, but not a common plant. There is ono other British species, M. syleaticum, with an open ealyx, sud lips equal iu length. It is a rare plant, nut is found in nlpine wooda. M/. sylratioun is tho other British species.
(Babington, Manual of British Botany; Don, Dichlamydeous Plante.)
MELANCllLOH. [1RON.]
MLLA'N1A, n genus of Gasteropodous Mollusca, placel by IAmarek in his farnily Melauians; by M. De Blainville in Jis family Fillipaostomata [Elansostomata]; by Cuvier in his order Pectinibranchiata, between the genern Melicina and Kissoa; and by M. Rang under the order last mentioned, and in the first family of it (Turhinés of lle Férussac), between the sub-genern l'aludina and Rissoa.

Anlmal and Shell of Melasia (Picena) awrifa. a, operculum.
The nuimal elongated, with a foot which is ordinarily slaort and not thick; heal proboncidiform, subconical, truncated, nul termimnted
by a buccal slit which is small and longitudinal; one pair of tentacles elongated, filiform, carrying the eyes on the external side, sometimes near the base, sometimes towards one-fourth of their length; mantle open, with festooncd edges; operculum horny, elongated, and narrow, with an apical and paucispiral summit. (Deshayes.)

Shell with an epidermis, of an oval oblong, a pointed spire, which is often elongated or turriculated, and an oval aperture which is widened anteriorly, and has a very sharp edge.

It inbabits the rivers of warm climates generally, and of Asia especially. Species are also recorded from Africa and North and South America. Mr. Comrad has described several new species from the rivers of Alabama.
M. Deshayes thus divides the Melanice:-
a. Shell oval or sub-turriculated.

Ex. M. amarula.

Melaria amarula.
B. Shell elongated, turrieulated. Fx. N. truncata.
γ. Sbell with the inferior angle detached. Ex. M. costellata.
ס. Shell with a bordered aperture.
Ex. M. marginata aud M. subulata.

Lamarck gives the rivers of the East Inlies, Madagascar, the Mauritius, \&c, as the locality of M. amarula, the animal of which, he says, is very bitter, and passes for an excellent remedy for the dropsy.

The apex of all the species is generally eroded as the animal advances in age.

Woodward, in his 'Manual,' says, there are 160 recent species, The following are sub-gencra;-Melanatria, Bowdich; Jibex, Oken; Ccriphasia, Sw. ; IIemisinue, Sw.; Melafusus, Sw.; Mclatome, Anthony; Anculotus, Say; Amnicola, Anthony; and Pachystoma, Gray.

Fossil Melanirp-M. Deshayes, in his 'Tables' (Lyell, I838), makes the unmber of living species 34 , and the number of fossil (tertiary) 25. The pecies rccorded as both living add fossil (tertiary) areMelania inquinata, M. inflexa, M. Cambessclesii, and a ncw species. The habitations allotted to the living species of M. inquinala, M. inflexa, M. Cambessalesit, and the new species, are-the Pbilippine Isles, the Mcditerranean, and the lakes of Como and Geneva. M. lactea, M. nutida, and M. costellata are noticed as fossil species found in more than one tertiary formation. In the last edition of Lamarck (1838) the number of recent species is 36, and of these M. inquinata only is noted as occurring in a fossil state. The number of fossil apecies recorted in this edition is 8 , and of these M. Deshayes notes the species M. costellata, M. maryinata, and M. niticla as not being Melanic, M. nitida having all the characters of the genus Eulima. The other two M. Deshayes kceps provisionally among the Melanice. Melania semiplicata, anether of the cight, he conceives to be a variety of M. lacted, and in of opinion that it should be cxpunged from the catalogue.

Nat, HIST, DIY, VOL, H1,

Dr. Mantell records two species (M. sulcata and M. costellata?) in the Blue Clay of Bracklesham. Professor Phillips notes a Melania (?) in the Speeton Clay, and two species (M. IIeddingtonensis and M. striata) in the Coralline Oolite, M. Heddingtonensis and M. vittata in the Corubrash, and M. Heddingtonensis and M. striata in the Bath Oolite. In the table at the end of his work ('Geology of Yorkshire') he records Melania striata in the Coralline and Bath Oolite, M. IIcddingtonensis in the Corallinc Oolite, Cornbrash, and Inferior Oolite, M lineata in the inferior Oolite, and M. vittata in the Coralline Oolite and Cornbrash. Dr. Fitton records Melania Meddingtonensis in the Oxford Oolite (Dorset and Oxford).

MELANIAD E, Melanians, Lamarck's name for a family of fluviatile, testaceous, operculated Mollusca, breathing water only, aud belonging to the order Trachelipoda. The family consists of the genera Melania, Melanopsis, and Pirena, according to Lamarck, and M:. G. B. Sowerby, Jun. ("Conchological Mauual '), suggests that to these may be added Anculosa and Pasithea. M. Deshayes, in the last edition of Lamarck, adds the genera Eulima and Rissoa to Melania, Melanopsis, and Pirena, the latter of which, it seems, shouliI be expunged. In Woodward's 'Manual of the Mollusca' the Melaniade include the genera Mclania [Melania], Palulomus, and Melanopsis. [Melanopsis.]

MELANITE. [Garnet.]
MELANOCIILORITE, a mative Chromate of Lead, containing 23.64 of chromic acid. It has a dark-red colour, with a brick-red streak. It occurs in tabular crystals reticulately arranged. It comes from Siberia.

MELANOPSIS, a genus of fresh-water Testaceous Turbinated Mollusca, to which Lamarck assigns a position among his family of Melanians. M. De Plainville places it in his family Entomostomuta, between Cerithium and Planasis; and M. Rang, who includes in it the genus Pirena, between Sealaria and Planaxis.

The genus Melanopsis was established by M. De Férussac, and much difference of opinion appears to have existed among zoologists as to its proper place in the series. M. Deshayes, in the last edition of Lamarek, gives it as his opinion that it should be arranged in the family of Melanians ; and he observes that if one considers the zoological and couchological characters of the two genera Melania and Melunopsis, the conviction that they shonld be united soon arises. He remarks that M. De Férussac gave, in the first volume of the 'Memoirs of the Society of Natural History of Paris,' an intcresting account of the animal of the Melanopsides, which he had observed in Spain in the neighbourhood of Seville and of Valencia, and that M. Quoy has sinco made known the animal of Pircna lerdralis of Lamarck; so that the means are now at hand for comparing with exactness the three principal types of the family of Melanians, and of observing the analogy of their zoological charscters.
" If," continues M. Deshayes, " we have before us a great number of species of Mclanice and Melanopsides, living and fossil, we remark a phenomenon entirely similar to that which we have pointed out with relation to the genera Bulimus and Achatina; that is to say, that we have seen the columellar truncation cstablished by wearly inscusible degrecs from the most uncertain eommencement to a noteh as deep as that which marks the Buecinc. If, in relying on the identity of the organisation of the Bulimi and Achatince, we have been able to reduce almost to nothing the valuc of the character of the columellar truncation, we are authorised to employ here the same means for demonstrating the little importance which the truncation of the columella in the Mclanopsides ought to have in the eyes of zoologists as a ground for separating them from the Melanice. Already we have explained onrselves as to the value of the genus Pirena, and have shown that it was composed by Lamarck from hetcrogeneons materials: ou one side we find true Melanic, and on the other singular shells, approximating in their characters to certain Cerithia which Linnecus compriped among his Strombi. On approximating these species we soon find that they have all the principal characters of Melanopsis, and that they do not in reality differ from them, except by a notch in the right lip, which notch occupies in these species the place of the posterior gutter in the bucciniform Melanopsides. M. De Férussac clearly perceived the relation of these shells to the Melanopsides, and joined them to that group, leaving in the genus Pircna only those which we actually comprise among the Melanie. 'Thus dismombered, the genus Pirena should be expunged from the system."
M. Deshayes observes that the Melanopsides inhabit the fresh-water of the south of Europe, and particularly those in the neighbourhood of the Mcditcrmnean; and that they ahow thernselves abundantly in a fossil state in the greater part of the tertiary beds of Europe. IIe remarks that M. De Férussac has noticed that among the fossil species in our temperate countries there are some analogous to those which live in much warmer regions-an interesting fact, from which he has been led to conclude that the lowering of the temperature had been a sufficient cause for the destruction of the races which once lived in the centre of France. M. Deshayes states that he had objected to M. De Ferussac drawing a conclusion so general from so confined a number of observations; and he thinks that, in order to establish a fact so important as that of change of temperature by the aid of observations on the molluscs, it would be necessary to find a great collcction of facts, not ouly regrading the fresh-water molluscs, but
also respecting those which inhahit tho sea. He hus, he say, collected thesefacta, nnt in thum nble to estimnte approximatively the temper. ature proper to each of the principal tertiary epocha.

Melanopsie, Firo, and Pirena, Lam, have tho following generie charactera:-Animal with a proboncidiform muznle and two contmactile teatacula, which are conical, aumulated, and each with an oculated preduocle at their cxterual base; foot attached to tho neek, very short, oral, angular on each mide anteriorly; reapiratory orifice in tho guter formed by the maion of the mantlo with tho body. Oper. culum horny, subspiral.

Shell with an epidermis, elongatend, funiform or conicocylindrical, with a pointed numsnit; apire counisting of from 6 to 15 whorla, tho last often forming two-thirds of the shell; sperture, oval, oblong; columella twisted, molid, callous, truncated at its base, separated from the external lonler ly a sinus, the callosity prolonging itself on the convexity of the penultimnto whorl, forming a gutter backwards; sometimes a sinum at the posterior part of the riglit lip.
a-A mingle minua nt the external border of the aperture, beparating it from the columella. (Genian Ifelanomsis, Lam.)

Fix. M. preprosa (M. lerrigatu, Lam.; Melania buccinoidea, Oliv.; Melnnopsis buccincidea, Fér.).

Melanopsis prorosa.
B. -Two diatinct sinuses at the external border of the aperture, one which reparates it from the columella, the other situnted near the union of this border with the penultimate whorl.

Fix., M. atra (Jirena tercbralis, Lam.; Sirombus ater, Linn.).
It is found at Mslagascar.

Fiusil Mchanopules. Mr. G. B. Sowerbr, who also includes the genera Velanopats and I'wera under the first generic appellation, snys, "Wo are not nware that any of the Mrlanopsides are marine, for nll the recent njecies occor either in rivere or lakes, and yet mont of the fonil npecies are found in bealn that aro considared by geologists (in thin constry) to tho of mariuo formation. We know not what aegreo of credit in to legegen to the nesertion of a celcbrated author, "that the greater number of tho geoera of the l'ectiniloranchia might formorly bave contaised specien poculiar to rivers nul lakes ns well on to the sen,' but this we to know, that wherever the fognil Jelanopaidea neo foud, they aro necompanied by many other quecies of gonern that at prement only live in frehh-water; and therefore wo think they ought to be conmidered an chameterintic of the furumation in which they occur."
M. Jenlayen, in bis "Trblen,' maken tho number of living npeciea of 1/clunopsir ten, of fomil apreciea (icrtiary) cleven, mal notem $1 /$ chamop-
 "eicularis, M. inrorn, an specien occurring loth living nad fossil (teltiary). He amigna on habitations to the latter, Asjn, Spain, Grecce, mud laybach. If firena ho toake tho unnler of living "recien three, and of fomil (tertinry) two. In the last edition of Lamarek, M. Deabage gives yino recent npecies, and of these he notices M. cortata,
M. prevosa, M. nodosa, M. Dufourei, ani M. acicularis (l) (M. oubulatus, Sow., "Min. Con.'), no occurring in a fossil stato, observing that it is to be presumed that the grecien found fossil at Dax is to be distiuguishel from M. Dufourei, which oceurs in a fossil stato in the Inle of lhodes. The number of species which are fossil only he noken neven. Tho number of recont species of Pirence heglvea an four but records nono ns fossil only. Under Pirena terebralis (M. alra) is a reference to Féruasac's Fosinil Mclanopsides pl. 2, f, 7, \&c.
Dr. Fitton reconds three specien with a query, two under the yames of M. altenuata (!) and M. tricarinata (!), in tho W'eald Clis (Dorsot), aud Hastings Sand (Sussex), and the third, without a name, in the Purbeck Beds (Bucks).

Woodward gives 20 recent species and 25 fossil. The latter are all Eocene.

MELANORRHCEA, a genus of Plants belonging to the natural order Anacardiacea, bo called from the brown luid with which every part of the principal species abouuds turning black upon exposure to the air.
M. usitata, familiarly known as tho Birmeso Varnish-Tree, or Thectsee, was not described by botanists until discovered by Dr. Wallich, and figured in his spleadid work ' Planta Asiatice lariores,' t. II and 12. The tribe to which it belongs abounds in plants yielding a blackish, acrid, and resinous juice used for varnishing snd other such purposes, as the Marking Nut and the Japan Varnish-Tree. This tree was frst seen near Prome, and is fuund in different parts of Birma and aloug the const from Tenasserim to Tavoy, extending from tho latter in 14° to $25^{\circ} \mathrm{N}$. Jat, as Dr. Wallich han identified it with the Kheu or Varnish.Tree of Munipoor, a principality in Hiodu. stan, borderiug on the northeant frontier districts of Silhet and Tippera. It grows eapecially at Kubbu, an extensive valley elevated nbout 500 feet abovo the plaius of 3 engal, and 200 miles from the nearest sea-shore. There it attains its greatest size, some, and those not the largest, Laviug clear stems of 42 fect to the first branch, with a circumference near the ground of 13 feet. It forms extensive forests, and is associated with the two staple timber-trees of continental India, Teak and Saul (Tectona grandis and Shorca robusta), especially the latter, and also with the gigantic Wood-Oil Tree, a species of Diplerocarpus.
The Theetsee forms s large tree, with tho babit of Scmecarpus, and abounds in every part with a viscid ferruginous juice, which quickly becomes black by the contact of the atmosphere. Its leaves are large, coriaccous, simple, very entire, and deciduous. The janicles of flowers aro axillary; oblong; those of the fruit simplo and lax, with very large rufous and foally ferruginous involucres. It sheds its leaves in November, and continues naked until the month of May, during which period it produces its flowers and fruit, During the raing season, which lasts for five mouths, from the mildle of May until tho end of October, it is in full folinge.

Birmese Varnish-Trec (Mclanorvhon usitatn). A branch with leaves.
At Prome a conspilemblo quantity of varnieh is extrnctod from thin tree, but very little at Nartaban. It is collected by insertiog a polnted joint of a bamboo, which is closed at the
other end, into wonnds made in the trunk and prineipal boughs, which are removed after 24 or 48 hours, and their contents, which rarely exceed a quarter of an ounee, emptied into a basket made of banboo and rattan previously varnished over. The collecting season lasts from January to April. In its pure state it is sold at Prome at about $2 \mathrm{~s} .6 d$. for about $3 \frac{1}{2}$ lbs. avoirdupois. (Wallieh.) Mr. Smith, who was long resident at Silhet, aud was acquainted with this substance in 1812, states that it is proeurable in great quantities from Munipoor, where it is used for paying river-eraft and for varnishing vessels designed to contain liquids. The drug, lie says, is conveyed to Silhet for sale by the merchants, who come down annually with horses and other objects of trade. In Birma, Dr. Wallich states that almost every article of household furniture iutended to contain either solid or liquid food is lacquered by means of it. The proeess consists in first coating the article with a layer of pounded calciued bones, after which the varnish is laid on thinly, either in its pure state or variously eoloured. The most difficult part consists in the drying. It is also much employed in the process of gilding: the surface, being first besmeared with this varnish, has then the gold leaf immediately applied to it. Finally, the beautiful Pali writing of the Birmese on ivory, palm-leaves, or metal, is entirely done with this varnish in its native and pure state. Some diference of opinion exists as to the effects of this juiee on the human frame. Dr. Wallich states that it possesses very little pungency, and is entirely without smell, and that both Mr. Swinton and himself have frequently exposed their hands to it without any serious injury, and that the natives never experience any injurious consequenees from handling its juice; but he has known instances where it has produced extensive erysipelatous swellings attended with pain and fever. Sir D. Brewster, on the eontrary, cousiders it a very dangerous drug to handle, one of his servants having been twice nearly killed by it. A second species of the genus, M. glabra, was ohtained by Dr. Wallich from Tavoy. (Wallieh, 'Pl. As. Rar.,' i., p. 9, t. 11 and 12 ; and 'Edinb. Journ. of Science,' viii., p. 96 and 100.)

Birmese Varnish.Trec (Melanorrhea usitata). A naked fruit-bearing branch, with the large involucres.

MELANOSPERMEE, or FUCALES (Harrey), the first sub-class of the class Atgr. [AlG.w.] It consists of plants of an olive-green or olive-brown colour. Fruetification moncecious or dicecious; spores olive-coloured, either external, or contained singly, or in groups, ju proper eonceptacles, each spore enveloped in a transparent skin (perispore), simple, or finally separating into several sporules; antheridia, or transparent cells, fille. 1 witly orange-eoloured vivacious cor puscles, moving by means of vibratile cilia. It ineludes the following orders:-

Fucacere--Spores contained in spherical cavities inmersed in the frond. [Fucacene]

Sporoclinacer.-Spores attached to external jointed filaments, which are cither free or compacted together in knob-like masses.

Laminariacerp.-Spores forming indefinite cloul-like patches, or covering the whole surface of the frond.

Sictyotaces.-Spores forming definite groups (sori) on the surface of the frond.

Chordariacer.-Frond cartilaginous or gelatinous, composed of
vertical and horizontal flaments interlaced together. Spores immersed.
Ectocarpaceæ.-Frond filifurm, jointed. Spores external. (Harvey, British Marine Algre.)
MELANTERITE a native Sulphate of Irou (Green Vitriol). It occurs massive, fibrous, earthy, and erystallised. Primary form an oblique rhombic prism. Cleavage parallel to the primary planes. Colour green, with shades of yellow or brown. Streak white. Fracture conchoidal. Hardness 2.0 . Brittle. Lustre vitreous. Transparent, translueent. Taste astringent. Speeific giavity 1.84. Massive varieties amorphous; structure granular, botryoidal, reniform, stalaetitic. It is formed by the decomposition of iron pyrites, and is frequently found in coal-mines. It is found at Hurlet near Paisley, and Campsie, Scotland. The following analysis is by Berzelius :-

Sulphuric acid
Protoxide of Iron 28.8
Water 454

MELANTHA'CEEE, Melanths, a natural order of poisonous Endogenous Plants very nearly related to Liliacere, from which indeed they are only to be distinguished with certainty by their anthers being turned towards the sepals and petals, and by their styles or carpels being distinct or at least separable. The speeies vary exceedingly in their appearanee, some being subterranean-stemmed herbaceous plants, producing a few flowers withont their leaves just above the surface of the ground, as is the case with Colchicum; others forming a stem of considerable size with large leaves and mumerous flowers. The eonsequence of this difference in their manner of growth is a considerable variation in the appearance of the species, but they are all found to conform to the eharacters of Liliaceer, with the difference above explained. Iridacece, to which they bear a striking resemblance, because of the similarity between Colchicum and Crocus, are readily distinguished by their inferior fruit and triandrous flowers.
The most important species of this order are medical plants, namely, Colchicum, or Meadow Saffron, which is employed as a remedy for gout and rheumatism [CoLchicum]; Veratrum album, whose acrid poisonous rhizoma is White Hellebore [Veratrum] ; Asagreca offcinalis and Veratrum Sabadilla, both of which furnish the seeds called Cebadilla, now largely consumed in the preparation of Veratria [Cebadilla]; and a few North American plants of less moment. [Tofiendia; Helontas.]

1, a diminished figure of Veratrum Subadilla; 2, an expanded flower; 3, a vertical scction through part of the ovary; 4, a ripe seed-vesscl.

MELASOMA. [HETEROMERA.]
MELA'STOMA (from $\mu \in ́ \lambda \alpha s$, black, and $\sigma \tau \delta \mu \alpha$, a mouth, beeause tho berries when eaten stain the mouth black), a genus of Plants, the type of the natural order Melastomacce. It has the tube of the ealyx ovate, half-adhering to the ovary, lensely eovered with scales or bristles; the limb 5 -rarely 6 -cleft, the seguents alternating with the appen-
dagea, both deciltuoun; the petala $\overline{6}$-tip the ntamens twice the number of tho petala; the anthern ohlong linear, a littlo arched, openiug log a prove at the apex, each furninhed with a atipe-formed comective, which is in notue npecies clongated sud in others short, but always biauriculate or conanginate in front; the free part of the ovarium conical mul brintly: the ntyle filiform, Bomowhat thickened at the ajex; the atigma a pruinose dot; the capeule bacente, $6 \cdot$ e-celled, opening irregularly; the seeds cochlente. The species of this genus are shrubs, which are usually covered with strigie. The leaves are petiolate, abd either quite cotire or serrulated. Tho flowors are large, white, sosecolonind, or purple.
M. Malabathricum, Maisbar Melastoma, is a slurubby plant with tetragonal branches rongh from atrige: the leases ellipticoblong, obtuse at tho base, acuto at the apex, quite eutire, green on both surfacea, and reabrous from strigu; the corymbs $1-5$-flewered; the cslyx elothed with adpressed strigone scaler, with orate acute lobes; the conncctiven of the anthers fhort, or very long. It is a mative of the Fast Indies. and frequent in the Indinu Archipelago. The leaves of this plant are employed by the natives where it grows as a remedy in diarthona, dysentery, and mucous discharges.

Jetween 30 and 40 apecies of Melastoma have been described. They grow in the warmer districts of the Ohl snd New WVorld, aud are found in South America, Asia, and Africa. Their flowers are very handmome, mud all the species may be cultivsted for ormament. They grow well in a mixture of lomm, peat, and sand, and young cuttiugs root freely in sand in heat under a hami-glass
(Lindley, I'egetahle Kinglom: Don, Lichlamydeoms I'lants.)
MELASTOMA'CL.E, Melastomads, nu extensive natural order of Polypotalon Exogenous Ilauts, nearly related to Myrtacece. They have opposite ribbed lesvea without any trace of dots; anthers prolonged into a beak, and having in the bud their points curved downwarlm, aud inserted into sockets beiween the side of the ovary and that of the calyx; the ovary itself is many-celled and many-seeded, and connected with the calyx by vertical platen, which form the partitions between the sockets io which the anthers are confined. The Apecies are extremely numerous in tropical countries, where they nawally form bushes or small treas, and are scarcely known beyoud the tropics, with the exception of some Rhexias, which rtmggle into North Americn. In Jinmpe the order is unknown, unless iug gardens, where many species are cultivated for the nake of their gay purple or white tlowers. Some of the species bear berrics, which are eatable, and wtain the mouth an deep purple, whence their name Melastoma, or hack-month. Others are slightly astringent; somo yiehl dyes and edible fruits: none are poisonuus.

 rily : 1, a Iranaresmenection of the erars.

MFilliAfills, the mecific mame of n mecies of A contia (Cuvier), a genum of soaken, demeribed in tho article Acostiat, liy as error in the 'Ibegne Animal' a wrong figure ia given: tho apecien to which theiver refors in 'Scha" is the ohe given at the top of bext column.

 af Milae. Filsarda, who has sinco withrlrawn the name in favour of latreille"n prior njpmellation). Thia form approximatea to Jilumnus, Inat has almo sotuc analigy with tiraprene.

M. tessellula: Colour whitish, with red lineq. Somo hairs on the feet. length aloout five lines.
It inlabita the island of Mauritius

METIA (no called from Mexla, the Greek namo of the Common Ash, which one speeies of the geaus is thonght to resemble in folinge), a genus of Planta belonging to the natural order Meliacea, to which it has given its name, nad which is, like Melia, characterised by having the filaments of the authers combined into a tube, with the anthers sessile within it, and opening inwards; the scedr without winga. The species are fow in number, and chiefly Indian; one is uaturalised in the south of Europe, and one is found iu North Ausericn.

1, Trichifia spondioides: 2 , an expanded fower; 3, a ripe frult; 4, a transverac section of the same.
M. Azadirachta, the Neem.Tree or Margosa-Tree of the peninsula of India, lass been separated ioto a distinet genus on aecount chiefly of its ternary, not quinary, structure of the parts of the pistil, and its aingle-seeded fruit. This has been mamed Azadirachea from the Peraian (Azad-i-1)urukht, 'the oxcellent trec '). Ita bark id bitter, and considered a valuable tonic. The fleshy part of the fruit (like that of the olive) yiclds a'fixed oil, which is bitter, and considered anthelmintic add stimulant. The leaven are univerally used in Iadin for poultices, and both the flowers and needs are irritatiug and stimulsut. Aecording to Dr. Ainalie a kind of toddy is procured by fermenting the app of healthy young margesa-trcea.
M. Azedaral, Rometimes called I'erwian Iilac, Prile of India, and Common líad-Tree (Hill Margosa by Irr. Ainslie), is aaid by Dr. Roxburgh to bs n native of Chiss; it is also s native of the north of India. It is much cultivated in tho mouthern parts of the United States of Anerica. It in called loek in the northern provinces of hulia, and may le confounded with nuother mpecies under the mane Azedarach by Avicenua When in Hower it has some resemblance to
the Lilac, and its flowers are very fragrant. The berries are sweetish, and, though said to be poisonous, are eaten by children in the United States without inconvenience, but are reputed to be a powerful vermifuge. The bark of the root in its recent state hss a bitter auseous taste, yielding its virtues to boiling water, sud is cathartic and emetic, and considered in the United States an efficient anthelmintic, and also useful in infantile remittents.
M. Bukayun is distinguished by Dr. Royle from the West Indian M. sempervivens of Schwarz, with which it was united by Dr. Roxburgh. This tree appears to be a native of Persia, though common throughout India. It is called by the Arabs Ban, and by the Persians Azad-iDurukht. It is probable therefore that this may be one of the trees included under the Azedarach of Avicenna. The seeds are bitter, sud considered laxative and anthelmintic, as is also the bark. M. tomentosa is a species found in the island of Penang; and M. composita, in which are included both M. superba and M. robusta, is a species found in Malabar and Mysore.
MELIA'CELE, Meliads, a natural order of Polypetalous Exogenous Plants, distinguished from all others' by their stamens being united into a complete cup, within and often below the rim of which the anthers are inserted. It consists of trees or shrubs with alternate often compound leaves, inhabiting all countries within the tropics, but very rare in colder climstes; Melia Azedarach, or Bead-Tree, a Syrian plant, now maturalised in the south of Europe, forming the principal exception. [Melia.] In general the species are bitter and astringent, but they are sometimes dangerously poisonous, actiug violently as emetics and purgatives. Notwithstauding this, the pnlpy fruit of the Lansel is esteemed in the Indian Archipelago; and that of Milnea edulis is eaten in Silhet, where it seems to resemble the Litchi and Longan of China. There are 33 genera and 150 species.

ME'LICA, a genus of Plants belonging to the family of Grasses. It has nearly equal glumes, with lateral ribs nearly as long as the orate spikelet of 1 or 2 flowers, rounded on the baek, and a elub-like rudiment of 1 or 2 more; the paleæ hardening on the loose fruit; the styles terminal. There are two British species of this genus, M. uniflora and M. nutans, which are found in daup shady woods. (Babington, Mamual of Britioh Bolany.)

MELICERTA. [Acalermes]

MELILO'TUS (from $\mu \dot{\epsilon} \lambda \iota$, honey, and $\lambda \omega \tau \delta s^{\prime}$, lotus), a genus of Plants belonging to the natural order Leguminose. It has a calyx with 5 nearly equal teeth, the keel obtuse, the filaments filiform, the ovary straight, the pod subglobose or oblong, 1-celled, 1-4-seeded, longer than the calyx; the petalz distinct, deciduous. The species are herbaceous plants with stipules adnate to the petiole, and trifoliate leaves with usually toothed leaflets. Noue of them are ornamental plants, and they are seldom cultivated except in botanieal collections. Two of the species are used as fodder for animals. Three species are found native in Great Britain.
M. officinalis, the Common Melilet, has lax racemes, with the corolla twice as long as the calyx; the wings, keel, and standard equal ; the pods ovate, acnte, compressed, transversely wrinkled, hairy; the leaflets serrate, truncate, narrowly ovate; the stipnles setaceous, entire. It grows wild in woods, hedges, and neglected fields. When cultivated in a dry soil and made into hay it has a powerful aromatic sinell, and mixed in a small proportion with meadow-hay gives it an agreeable flavour. This plant is used in making the Swiss eheese eislled Schabzieger. It is ground in a mill, and mixed with the curd into a kind of paste, whiel is put into conical moulds and there dricd. [Cherse, in Arts ano Sc. Div.]
M. vulyaris has the wings and keel equal, but shorter than the standard ; the podz ovate, obtuse, mucronate, reticulate, rugose, and glabrous. It is a rare plant, and is found in sandy and gravelly places near the sen
M. urrensis has the wings and standard equal, longer than the keel; pods ovate, obtuse, mucronate, rounded, and slightly keeled on the brek, transversely plicate, rugose, glabrous. The flowers are yellowish, in long racemes. It is found in waste places in Cambridgerhire.
M. Meszanensis, Messina Melilot, has an erect stem, with obovatecuneated denticnlated leaflets; the stipules broad at the base, toothed, linear at the apex; the racemea few-flowered; the teeth of the calyx nearly equal, hardly shorter than the tube; the legume lanceolate, reute, very much nerved, 1 -seeded; the seeds ovate, compressed, large, llack, rugged from dots. This plant is a native of Barbary, Sieily, I'iedmont, and the Straita of Messina. It in the $\Lambda \omega \tau \delta \delta_{s}$ of Theoplirastur,
 lib. iv., cap. 171. It is also the Lotus of the Romans (Pliny, xiii. 17; xxxii. 21 ; Virgil, 'Geergie., ii. 84, and iii. 394).

None of the species of this genus are worth eultivating as ornamental plants. They may be easily propagated by seeds, which should be sown in the open border in spring. A light dry soil suits them best.
(Fraas, Synopsis; Brbington, Manual of Britisic Botany; Don, Michlamydeous Plants.)
MELI'NA, Schumscher's name for the genus Perna. [Malieacea.] meLipliaga. [Melipiagide.]
MELiPILA'GlDA, Honey-Suckers, a family of Tenuirostral Birde. Mr. Vigora, in his paper 'On the Natural A ffinities that conncet the Orders and Families of 1lirds' ('Linn. 'Trans.' vol. xv.), thus generally refern to the Mcliphagide. "That extraordinary groul", the existence
of the much more considerable portion of which was unknown to the Swedish naturalist, for which there was consequently no place in his system, occupies a prominent and important situation in the ornithological department of nature. Chiefly confined to Australasia, Where they abound in every variety of form; and in an apparently inexhaustible multitude of species, they find a sufficient and neverfailing suppert in the luxuriant vegetation of that country. There the fields are never without blossom, and some different species of plants, particularly the species of Eucalyptus, afford a constant succession of that food which is suited to the tubnlar and brush-like structure of the tongue in these birds. Their numbers and variety seem in consequence to be almost unlimited. Like the Marsupial Animals of the same conutry, a group to all appearance equally anomalous, which coutains within its own circle representatives of all the other groups of the Mcmmalia, this division of birds comprises every form which is ebservable amoug the families of the Insessores. From the powerfully constructed and strong-billed Corvidas and Orioli, down to the slender Merops and the delicately shaped Cinnyris, every Insessorial group has its analogous type in this family. Their approach to the Scansorial tribe is strongly conspicuous. The hind toe of the greaterportion of the group is long, powerful, aud appareatly formed for climbing, as Mr. Lewin has pointed out in his generic description of Meliphaga ('Birds of New Holland'). In this point of view they seem in Anstralasia to supply the place of the genuioe Pici; no species of Woodpecker, as far as I have been able to aseertain, having hitherto been found in that country. This stroug affinity to the Scansores is preserved by their forming one of the extremes of the present circle, which comes in contact with that tribe. I have indeed some doubts whether, in eonsequence of this affinity, they may not be even still more intimately united to that group, and form the immediate point of junction of the present tribe with the Certhiadle. I have consequently eutered them and their conterminous families into the tabnlar series with a mark of uncertainty. Time, with more accurate examination of their manners and internal economy, will clear away, it is to be hoped, these and similar points of doubt respecting groups so interestiug. The following faets however are, I think, sufficiently decided, namely, that the three groups, the Promeropides, Mrliphagide, and Nectariniada, constitute distinct and prominent divisious in the tribe, of which, by that generally stronger and more perfect eonformation which distiuguishes them from the more typical families, they form the aberrant groups; that they are united among themselves by general affinities; and that they connect the tribe on each side with the couterminons tribes that approach it, that is, with the Scansores at the one extreme, and with the Fissivostrcs, where we first entered on the order, at the other."

Mr. Swainson ('Classification of Birds,' vol. i.), after observing that he never had the opportunity of examiniag the tongue of the African Sun-Birds (Cinnyrides), states that by a fortunate chance he had discovered that the type smong the Anstralian Honey-Suckers (Meliphayidre) which represeuts the Trochilider, has the tongue constructed precisely the same as in those bircls. "This brings us," continues Mr. Swainson, "to the second description of extensible or rather of suctorial tengues, and which is of a form almost peculiar to the honeysuckers of Australia and its islands. In these birds the tougue is not nearly so extensible as in the Trochilide, being seldom more than half as long again as the bill; nor are the bones of the os byoides carried back upon the ekull, as in the woodpeekers and hummingbirds. Nevertheless the structure appears especially adapted for suction; the form of the lower part is the same as in ordinary birds, but the end is composed of a great number of delicate fibres or filaments exactly resembling a painter's brush. Lewin, who drew and described these birds iu their native region, has figured the tougue of the Warty-Faced Honeysucker (Meliphaga Phryjia) (' Birls of New Hollaud,' pl. 4), and describes the bird as sometimes to be seeu 'in great numbers, constantly flying from tree to tree (particularly the blue gum), feeding among the blossonns by extracting the honey with their long tongues from every flower as they passed.' What will appear still more extraordinary to the scientibie naturalist is the fact that some birds of this Meliphagous group are aetually woodpeckers, and yet retain the typical strueture of the toague of their own uatural faunily. The same obscrver, speaking of the blue-faced honey-sucker, describes it as being 'fond of picking transverse holes in the bark, between which and the wood it inserts its long tongue in search of small inseets, which it 'draws out with great dexterity.' Now, as Lewin describes this bird as a honey-sucker, we must conclude, until facts prove otherwise, that it has the filamentous tongue of the honeysuckers, but that it is used for the purpose, not of spearing insects, but of catching them by means of the glutinous matter on the filaments, a mode of eapturing its prey by no means improbable, provided the insects are of small size. It must not be supposed however that the food of the Meliphagider, feveral of which are as large as a thrush, and three or four much larger, is restricted, any more than that of the humming-birds, simply to the nectar of flowers. They indeed feed upon the honey, but, as Lewin declares, combined with the numerous small insects lodged in most of the flowers, which they extraet in a dexterous manncr with their tongues, peculiarly formed for that purpose. It is clear however, when we come to reflect upou the matter, that birds which are attached to the secretions of $1^{\text {arti- }}$
cular treen, as are many of the Meliphagider, can only enjoy thelr farourite foul for a coruparatively ehort eeason, that is, while the tree or plant in in hlowsom. They munt therefore either fed at other times tapun masll insects or uphon fruit. The two dirst babita we hase shown them to prasess; nad tho last, that of devouring frutes also, is exemplifed in the yellow-eared honey-sucker of lewin, who remarks that "in the winter senson these birds bave been seen feeding on the eweet berry of the white cedar in great numbers." "

Mr. Swainson makes the Meliphagide the firat family of tho tribe Tenuirostres: and he thus characterises theso Ilouey-Suckers:-Bill the strungest in this tribe (Tenuirastres), having the mandible distinctly notched; feet large, strong; the biacler too much doveloped; tongue exteusible, generally ending in a bunch of filaments.

Tho followiug genera and sub-genera are placed by this nuthor under the Meliphayide.

Meliphaga (luewin)-Bill moderato or short, wenk: tho under mauditle wot thickened; lateral toes unequal : the inner the shortest; tail rounded or graduated; tongue bifd: each division ending io mumerous filamedts (Sw.)

Sub-genera:-Meliphaga.
Fx. M. barbata, ('Ois, Dor.', pl. 5T, snd M. Australasiana.)
Jilutis (sw.), lemring to Olyciphila.
L'x. ("Leゃw. Bde.,' pl. 5.)
Zanthomitu (Sw.)
Fi. Z. Phrygia, Shaw ('Yool. of N. H.,' pl. 4, the tenuirostral type).

AneLochera (llorafield aud Vigors), the rasorial type.
Kx. A. carunculata. (White's 'Voyage' pl. 6.)
Glyciphila (Sw.). - Habit of Meliphaga. Bill either aborter or slightly louger than the lead: the uoteh in the upper mandible far removed from the tip; tongue rather short, terminated by numerous flaments; the third und threo following guills longest nud nearly equal; lateral toes equal; tail even. (Sw.)

Fix. (6. futrifrons. (Lewin, 'Nat. Hist. Birds,' pl. 22.)
Anthomizu.-IIabit of Melijhaga. Bill rather short; tonguo (!); wings anuch rouuded: all the quills uore or less terminating in points; tail forked; lateral toes equal ; the fissirostral type. (Sw.)

Ex. A. eutrulocephala. ('Mus. Carl.,' i., pl. 5.)
Lephoglosus (Su:). - Ihakit of Cinnyris. lisill remarkably Jong, alender, aud curved; tongue retractile, long, vifurcated, as in Trochilus; lateral toes nocqual; tail nearly even ; the tenuirostral type. (Sw.)

Fix. L. cucullafus. ('Ois Dor.,' pi, 60.)
J'tiluturus (Swo.).-lill tauch lengthened, slightly eurved; the upper mantible dilated, and folding over the base of the under: the margins of both inflected towards their tips; nostrils lengthened : the sperture lincar; wings moderate, rounded; the first quill spurious: the four next very braad at their base, anll emargiuate at the inner web; lateral claws unegual ; tail very long, grsduated: the middle feathers lax and narrow; the rasorial type. (Sw.)
Lix. P. C'apensis. (Le Vaill., 'Al.,' vi., pl. 25"-258.)

Manorhina (Vieill.). - Bill short, robust; the uuder mandible thickened: culmen arched, and much clevated from the base, considersbly compressed its whole length; commissuro curved; upper mandible notebed near tho tip.

Fix. M. viridis. ("Ill. of Orn.; pl. 78.)
Sub-genera:-Gymoph'ys (Gyminophrysi). (Sw.)
lix. U. (orqualue. (Lewiu, 'N'st. Hist. Birds,' pl. 24.)

Eicloparus (Sw.).
Eix. E. bicincfus.
Eintomiza (Sw.).-Bill strong, molerate: culmen much elevated; nontrila large, naked; the aperturo large, oval, and placed in the middle of the hill, at the termination of tho naked zembranc: culacn obture, convex; frontsl feathers manll, compact; hind toe aud claw very large, nad as long as the middle toe.

Ex. E: cyanolit. (lewin, "Nat. llist. Birds," pl. 4.)
I'hikedon (Cuv.).-Culmen abarp, carinated; head and face maked; front with an elevated protuberanco; hind toe sud claw aborter than the suiddla.

Ex. P. corniculatus. (Whiten 'Voyage, pl. J6.)
Mysomela (llonfield and Vigors)- - lifl with both mandibles very eonsiderably curved : the mides broarl and much compressed; tonguo nom nontrilm as in .Veliphaga; wingh lengethench: the third, fourth, and fifth quills equal; tail short, even; midrlo toc mueh longer than the hinder; lateral toem equal.

Ex. W. cardinalin. (dewin, 'Nat. IIjnt. Jirds,' pl. 19.)
Mr. Swainon iuquires whether thin cru be the tifth sub-genus of Weliphage! or nu abermat Mrlishrephes?

Mr. Vigors and Dr. Morsfald, in their 'I)escription of the Australina liirda in the Collectiou of tho Linnaran Socicty,' after remarking on the then (18:4) imperfect state of knowledge with regand to thin group, nud the coontant influx of new ppecien from Auntralia aud the Auntralian Imanda, obaerve that the then known apecier exhibited five 1 romment modiflentions of form, according to the variation chiefly of the characters of the lill and tail, and that they wished to consider thran tyime of form on mection ouly of the group which they name proviaionally the german Meliphaya. When the siecies blandd become more known, thry express their opidion that the sections there marked out might justly le considered genern, and the higher group bo
denominated Meliphagina. "When thla sub-dlvislon takes place," say our nuthors in conclusion, "the section which stands first in our toxt may be connidered the truo Meliphiga." The Meliphoga Norre Hollandie will form the type. It may be thue characterised:-llill rather slender, subelongate ; the culnen arelied, subenltrated at tho base; nostrils logitndinal, linear, very narrow, covered abovo by a membranc, snd exceeding the middle of tho bill in leagth; tongue furnished at the riex with msay bristles; wings modorute, somewhat rounded : first quill short; second, third, and fourth (which last is longest) gradually longer; the third and lifth, tho socond and sixtb, equal : exterual beards (pogonix) of tho third to the sovonth inclusive widest io the middle; tail subelongato, rounded; feet mether etroug; hallux subelongate, strong; acrotarses scutellsted.
M. Norce Ifollandio. IIr. Caley says, "This bird is most frequently met with in tho trees growing in serubs, where the different species of Bondsia are found, the flowers of which, J havo reason to think, afford it a sustenance during winter. In the summer I have shot it when sucking the flowers of Leplospermum narescens. In the ecrubs sbout Paramatta it is very common."

The following are the sections given by Mr. Vigors and Dr. Horsfich :-

- Tail rounded ; bill rather long and slender.
M. Nora Ifollandie, M. Australasiana, sud 3/. melanoma.
* Tsil rounded; bill rather shorter, and rather etrong.
M. auricomis, M. chrysotis, and M. leucotis.
-* Tail equal ; bill rather short, strong. (Melithreptus of Vieillot!) M. chrysops, M. lunulata, M. indisfincta, and M. brerirostris.
-.e Tail equal ; bill rather short and slender. M. cardinalis.
****Tail equal ; bill rather slender and longer. M. tenuirostris, and M. fulrifroms.

The other genera recorded by Mr. Vigors and Dr. Morsfield areMyzantha (V. and II.), Anthocherct, Tropidorhynchus (V. and H.), Sericulue (Sw.), Mimeta (King), psophedes (V. and If.), and Pomaterhinus (llorsf.).

MELISSA, a referenco from article Hymenortema. [MEl,1TTA.]
MELLSSA (from μ inaoga, a bee), a genus of Plants bolonging to the natural order Labiate, or Lamiacere. This genus has heen variously dofined necording to the different views of systematio botanists. Bentham, in his monograph on the INabiatce, has referred ahout 30 specien to this genus. They are all known by the common name of lhalma, and nomo of these apecies are deseribed under Calamistua. The genus thus extended has the following characters:The calyx is tubular, 13-nerved, usnally ntriated, bilabiate; the upper lip generally spreading, tridentate; the lower lip bifid; the throat naked or villous inside; the tube of the corolla straight or ineurvedly arcending, naked inside, usually exserted ; the throat generally juflated; the limb bilabiate, the upper lip erect, fattish, entire, or emarginate; the lower one apreading, with fut lobes, the middla lobe usually tho brosdent, entiro or emarginste; the stamens 4 , didynamoun, ascending, approximate by paira at apex, or rarely a little distant, lower two the longest, the superior two sometimes iterile, the filaments toothless, anthers free, 2 celled, the connective ofteu thickencl, the cells dietinet, parallel, diverging; the lobes of style sometimes equal, subulate with minuto terminsl stigmas; sometimes the lower lobe is elongated, recurved, fattened, with stigmatiferous arargins; the acheuia dry and smooth. The specios are usually herbs, sometimes under-shrubs, with a variable inflorescence.

The only species of the old genus Melissa admitted into the British Flora is M. officinalis, Common Balm. It has ovate crenato-serrate acute leaves, paler beneath; the calyx subcampanulate, slightly ventricose in front, distinctly 2-lipped, the upper lip flat truncate, with three short broad teeth, the lower with two lanceolate teeth. This plant, although it lus a place in the British Flora is a doubtful native. In its recent state it has a rough aromatic taste, and a pleasant lemon. like smell. It is frequently used in infusion, under the name of BalmTree, as a common drink in fevers. It was one of the medieines recommended by Paracelsus, but at the present day it is only used as a popular remedy.
(Don, Dichlamydeous Plants; Babington, Manual of British Botany.)
ME'LITA (Leach), a genus of Amphipodous Crustacea, generally found beneath stones on the sea-shores.
M. palmata (Cancer palinatus, Montagu). Colour blackish; antenna and feet annulated with pale grayish.

Melita palmata, enlarged.
MELITAA. [Acatephe; Polypifera.]
MELITHREPTA. [Cinnyride.]
MELITOPHILUSS, [Scahanzide.]
MELITTA (Kirby), a name for a genus of Insects belonging to the order Mymenopterts, and to the tribe Mellifera of Latreille. The genus as originally constituted by Kirhy embraced all the Honey Bees known at that time. This genus is now split up into numerous smaller ones. Leach divides the Mellifera into two families, Andrenide and Chrysidide.

The Andresides include the following genera:-

1. Colletez.	15. Ejecolus.
2. Prosopis.	16. Nomada.
3. Sphecodes.	17. Coclioxys.
4. IIalictus.	18. Melecta.
5. Andrena.	19. Anthidium.
6. Cilissa.	20. IIcriades.
7. Maeropis,	21. Chelostoma.
8. I'anurgus.	22. Eiucera.
9. Itasyporla.	23. Saropoda.
10. Megachile.	24. Anthophorct.
II. Osmia.	25. Apathus.
12. Anihocopa.	26. Bombus.
13. Stelis.	2\%. Apis.
14. 4 mmobales.	
HMYSIDID.E-	
1. Clepies.	4. IIcdychrum.
2. Chıyris.	5. Elampus.
3. Biuchricus.	

(British Muscum Catalogu--Mymenoptcra.)

MELITTIS, a genus of Plants belonging to the natural order Labiate. It has anthers approaching in pairs and forming a cross bursting longitudinally. The upper lip of the corolla flat, entire, straight; lower lip with 3 rounded nearly equal lobes; calyx membranous, bell-shaped, ample, variously lobed.
M. Melissophyllum, Bastard Balm, has ohlong, ovate, or slightly cordate leaves. The upper lip of the calyx with 2 or 3 teeth; flowers purple, with a white margin, or variegated in differcat ways, large. Sitem 1 or 2 feet high. M. grandiflora (Smith) is only a slight variety. They are both found in woods in the south of England.
(labington, Manval of British Botany.)
MELIZO'PIILLUS. [Merulide; SYLVIAd.e.]
MELLLILITEE. [Scapolite.]
MELLITE, or Money-Stone, a Mineral, consisting of Mellate of Alumine. It is found in Prussia and Austria It occurs in square octahedrons, looking like a honey-yellow resin, and may be cut with a knife.

MFLLIVORA. [URSIDE.]
MHLO (Broderip), a sub-genus of loluta. [VoLUTA.]
MELOBE'SIA. [Conalinace.e.]
MELOCACTUS. [Cactacese]
MELOCHINITES. [ENORINITES.]
MELOCR1'NUS, a genus of Crinoidea, employed by Gollfuse, in his 'Petrifacta Europere' for some fossils of the 'Transition Limestone. [Encrinite.]

ME'LOE. The Linnaan genus Meloe included the several genera of Heteromerons Coleoptera now forming the fumily Cantharide, interesting on account of its including those Lectles known under the name of 'blistering flies,' and cmployed in medicine. [Cantharide.]

The term Meloc is now restricted to the Apterons Cantharidee, and the species are all beetles with largeand swollen bodies, and short oval elytra, lapping over each other at the base of the suture. They are sluggish creatures and feed on varions plants, especially the species of Ranunculus. When alarmed they emit from the articulations of their legs an oily, yellow, or reddish liquid. Latreille maintained that this insect was the Buprestis of the ancients, to which noxious qualities were attributed. (See his paper on the subject in the 12th volume of the 'Mémoires du Museum d'Hist. Naturelle.') The nature of the larva of the Meloe has been a snbject of considerablo discussion among eutomologists, baving been supposed to be a minute, active, parasitic animal found on bees and flies. Most entomologists have held this view since the time of Linnæus, but the observations of Geoffroy, Newport, and Westwood, go far to prove that it is a mistake, and that there is no anomaly in the case.
MELOLO'NTHIDA, a family of Coleopterous Insects of the section Lamellicornes, and sub-section Phyllophayi. This family, of which the Common Cockehafer (Melolontha rulgaris) is an example, may be thus characterised :-Labrum transverse, and in most instances deeply cleft in the middle; mentum as long as broad, or with the length exceeding the breadth; sometimes nearly heart-shaped, and sometimes square; the anterior margin either straight or notched in the middle, but without any projecting process or tooth; mandibles strong and horny, and having at most bnt a single membranons appendage, which is situated in a concavity on the inner margin; the apex truncated, and having two or three denticulations; maxillæ gencrally horny, and armed in most cases with five or six denticulations; antenne usually with more than three lamellated joints; all the tarsi terminated by two claws, which are usually furnished with a spine on the under side near the base, and sometimes divided at the apex.

The family Mclolonthilce consists of three genera: Melolontha, Rhizotrogus, and Serica, and some sub-genera of minor importance. Species of this family are found in all parts of the world. In the genus Melolontha the antenne are 10-jointed; the terminal 5, 6, or 7 joints are lamellated, and form a large fan-like appendage; in the females the lamellated joints form a smaller club than in the males, owing to their smaller size, and also to a decrease in their number, their being 6,5, or 4 ; the labrum is deeply cleft on its lower margin; the claws of the tarsi are furnished with a spine on the under side near the base; the abdomen in the male sex often terminates in a horny pointed process.

Two apecies of this genus are found in England, the Common Cockchafer, M. vulgaris, Fab., of which there is a figure in the article Coleortera, and the M. fullo, a large species nearly an inch and a half in length, and which is of a blsckish-brown colour, with irregular white markiugs. This beautiful insect is common in some parts of the Continent, but rare in this country, and has been found chiefly in the neighbourhood of Deal.

The genus Rhizotrogus differs from Melolontha chiefly in having but three lamellated joints to the antenne, which are 9 jointed.
R. solstilialis, an insect which makes its appearance in the month of June, and often occurs in great abundauee in some parts of this country; it very closely resembles the Common Cockchafer, but is of a smaller size, narrower form, and paler colour.

In the species of Rhizotrogus, as in Melolontha, the claws of the tarsi are furnished with a spine on the under side at their base; but in the ncxt genus, Scrica, the claws of all the tarsi are divided at the apex; the body is of a convex ovate form, generally has a silklike appearance, aud changes in hue according with a change in the direction of the light.
S. bruncu, a common insect in England, as well as in various parts of the Continent, is about three-eighths of an inch in length, and of a uniform pale-brown colom'; the elytra are rather deeply striated, and, as well as the thorax, thickly punctured.
S. ruricolu, another British epecies of the present genus, is of a black colour; the elytra are reddish-brown, and have the suture and outermargin black. This is a smaller insect than the last (being about three. twelfths of an inch in length), and of a shorter and more rounded form : it also differs in haviug the palpi obtusely terminated, and not acute, as in S. brunnca. This difference in the form of the palpi is considered by many authors of sufficient importance to separate the two insects generically, and by these authors the S. ruricola is placed in the genus Onaloplia.
The geuns Serica is found in all tho quariers of the globe, and in M. Dejean's 'Catalogue dea Colcoptères' therc are 60 species enumerated.

In addition to the foregoing three groups, which appear to constitute the more typical Melolonthicle, Latreille places iu this family the following six genera:-

Dasyus (Lepel. and Serv.).-This genus contains but few species, and appears to be confined to Brazil: they have the clawn of the tro anterior tarsi bifid, and those of the other tarsi cntire.

Macroductylus (iatreille).-In this genus all the joints of the tarsi are alike in both sexes, and all the claws are bifid; the logs are very long, and the body is of an elongated and slender form: the thormx is narrower than the elytra, and is contracted both anteriorly and posteriorly.
M. whepinosma, a comsoon Insect in come parts of North Americn, is aboot threo-cighthe of an inch in length; the head and thorax are black, but covered with minute yellow scales; the elytra are of a yellowish browncolour, also coveral with yellow acalea; the under parta of the bexly arv nearly white, owing to the dense clothing of scales with which they are furnished; the legs ane deep-yellow, and the tarsi are black. Abost seven other apecies of the present genus are known, nearly all of which inhabit Sunth America.

IHphucephala (Dejean). Whe species of this genus are confined to Australia [1Muverphals.]
flectrin (Lepel and Serv.).-The claws of the intermediste tarsi unequal in size; the larger of these two pairs of claws are bifid, and all the clans of the remaining tarni are also bifid. Twelro species are kuown; they inhabit Brizil.
C'raspis (Lepel, and Serv.)-The species of this genus, all of which inhabit lrazil, may be distinguished by having two small notehes near the middle of the hinder margin of the thorax; the epace between the noteles is receivel into a notch in the scutellom. The antenne are 10 -jointed : the elaws of all the tarsi, with the exception of the anterior pair, are unequal ; the larger claw of the intermediate tarsi is entire in the male gex, the other claws are bifid. In the femmes all the claws are bifid. The body is covered with minute scalea, and is of an elongated form.

Arcoda (Leach). - Antennm 10-jointed; stermum produced anteriorly; the clawa of the tarsi unequal in the male sex, and equal in the femalea. The larger claws of the malea are bifid. The basal joints of the tarai aro short, and the terminal joint ia very large, and grooved beneath. These insects are of large aize, and adorned with brilliant colours. In the form of the aternum, and structure of the tarai and clawn, they depart from the true Melolonthula, and evince an affinity to the Ruelider and Anoploymathi, where, as in the present genus, the apecies hare the power of folding the claws backwards against the nader side of the termioal joint of the tarsus (like the closing of the blate of a penknife); and when thus closed the point of the larger claws is lodged between the penultimate and antepenultimate joints of the tarsi.
A. lanigera, a commun species in some parts of Nortls America, is rather wore thau three-fourths of an inch in length, of an oval form, and pale yellow-colour, with green reffections: the under jarts of the borly are of a dark green-colour, and thickly furnished with white hairs.

There are wix other known species of this genus: one is found in Guadaloupe, and the remainder inhabit South America.

MELON. [Cvecmis.]
MELO'PlIU'S (Swainson), r aub-genus of Leptony.c (Sw.). It is thus characterised :-General ntructure of Priagillaria, but the upper mandible is notehed near its tip. Ninder claw lengthened, but rather sloorter than its toe. Lateral toes equal. Tail even. Head created. T'ertials not lengthened. (Sw.)-Ex. M. erythropterus. ('III. of Oru.,' [1. 132.) [FMNOLLID.E.]

MELUSIRE.EA, a family of Miatonaccer, formed by Kützing. The epecies are striated, not having a central opening on the sccondary side. The stria are interrupted in the medinn line. It includes the penera Gallianella, Mclosira, I'odosira, and others. Meneghini, in his 'Natural llistory of Diatome:e,' makes the following critical remarka on thin group:-
"The Mclosire in general may be regarded as polypariform associations of C'yclotelle, and the comparison prevails principally in the second mub-genus The diatinction of the tro sub-genem is also proposed by Itamall (Sphurrophora, Melosciva) ; but it is to Kützing we are indebted for eatabliahing it upon the important character of the carima, which occury ouly in the firat two apecies (M. salina, M. nummuloides), a character on whese organograplic value we canot decide anything, but which merite some comideration in a morphologieal point of view: fur that projecting ring bounds the lateral surfaces; whilst in the other specien, with nidea more or lexa convex, these are continuous, me it were, with tho primary eurfaces. In all the specien we may notice tho double furrow which forms a ring connecting the body of each individual laterally to the interetitial ring; this furrow or conal prexenta apertures dinpused in a regular manner. Kiitzing believes these mupponed apertures to be nections of the canaln themrelven, that in. pertionn of then seen in projection. This opinion is the only one ennminent with the faet that the filanent beiog cylindrical, and therefore prosenting itaelf indifferently on erery side, these npparent aperturea are alwaym neen arrauged near the soargin. lillrenbergis aseertion that they are rane numeroun in fonme arecien, doen not neen to be confirmed. Thin neprarance in still mora complicated, inamuch as thear fine tubular canaln project from tho juterual surface of the ahichl, and a alight furn,w externally correanuta with them. This condition in evident in Mrlosira clistuns, in which, owing to the greatec depth of the furrow, the npparest porforationa remain separated from tho raargin. The interatitial ring preachts peenliaritien of which we have arn ingtance in the preceding genera. Its tomity and the great variety of ita extmanion are important chameters. But here we munt mild the very important one of the changes it undergoes duriag ebservation. It is mot uncummon to ace the two halven of the artien. Iation separate thenaclven Aluwly, and eularge at the same time with the ring. This fact is nut decisive in respect to the great question of
the animal nature of these beings; for it is not eubject to a subsequent contraction, sod because in plants we have the analogy of Spirogyre, in which, on the rupture of the outer tube, the extremitios of the articulation, which were inflected like the finger of a glove, expand thenselves as if by elasticity; but many facts controvert this ioference. In aupport of the opposite epinion is the frequent enlargement of a particular articulation, in a mauner nimitar to that of tho (Edogonia. But Hassall justly observes, 'fur this endochrowe . . . never becomes condensed inta a distinct organ or aporangium.' For this reason, the resemblance is reduced to a mere appearance. As to this aupposed endochrome, proofe are certainly wantiog that it is an ovary, as Ehrenberg 日upposes; but they are also wanting to show that it censiats of gum, starch, or chlorophyll, which would be necessary were it a gobimic substance, as advanced by Kützing; and analogy even is wanting, for we do not see in auy Alga a similar disposition of the internal substance. The often-quoted resemblance to the Conferre cannot even be deemed apparent; for in uo Conferve are distinct spherulos met so regularly, or diaposed so symmetrically. During deaiccation it hrppens in the marina apecies, as in the Podonira already described, that the internal substance adkeres to the iuner wall in the form of oily globules surrounded by a distinet transparent margin, and cormpressed one against nuother in the form of regular polygons. Ehrenberg also speaks of diaphanoun vesicular sances, which he regards as stomachs. Kiitzing enumerates, figures, and describes ninoteen species, marine, freshwater, and fossil, besides the four doubtful ones placed at the end, and the famous Perruginca (M. ochracca, Ralfs), which he proves not to belong to the class of Diatomear.
"We shall find, as a character common to them all, the circular figure of the vertical section parallel to the lateral surfaces; a character which, as well as the other, of a radiated diaposition of the strim upon the lateral surfaces, wo shall find repeated in the family of Coscinodiscea, which, having the shield of a cellular structure, belong to the tribe of Arcolatc. Perhaps we may suspect some Mclosirce (sulcata, decussata, lirata) to be furniabed with the same organio condition, and hence arises a fresh doubt reapecting the aystematic value that has been ascribed to it.
"In general wa may also say, that in the Melosirece the development of the lateral aurfaces prevails over that of the primary ones, which we find finally to disappear in certain genera (Py.cidicula, Podosira), as well as in some speciea of Mflosira (varians, orichaleca), the increased length of the articulations involving the correaponding development of the primary surfaces: and it ia to be observed, that although in this family the primary surfaces differ precisely as much in form as they do in the thres preceding ones, yet wo find in these the same organic character as in the greater number of the other genera, namely, the presence of longitudinal furrows or canals. Tho separation of one lateral surface or valve from the other, with tho consequent dilatation of superficies, which the primary surfaces exhibit befoce the duplieation taker placa (though verified to somo degree in other genera, yet in the Meloxire better than olsowhere), presents an undeniable analogy with the reduplication of Dcsmidiex, which Brebisson distinguishes from the deduplication of Diafomere. Tho particular dimposition of the internal subatnuce, the currents or mucous threads radiatiug from a centre, the eulargement of some articulations, and the dilatation of the interstitial ring, are isolated facts, which however merit particular attention in the paucity of our knowledge." [Diatomice.f.]

ME'IJIRIS, a genus of Coleopterous Insects established by Fabricius for the reception of certain species of the Linnosan gencra Cantharis and Dermestes. It belongs to the family Serricornes of Latreille, and constitutes tho type of the family Melyrida. The Mclyride are active and often gaily-coloured little bectlea, usually found on flowers, which they lirequent for the purpose of praying on other inaects. They have soft, oblong, or ovate depressed bodies; short filiform pointerl palpi; exserted heads; dentated mandibles; aud usually filiform and serrated autenue. Soms of the sjecies of Malcthiue, a genus of Melyrider found in Britain, are furnished with red bladder-like appendages at the anterior angles of the thorax and base of the abdomen, capable of being contracted or dilated at the will of the insect, and usually exhibited when it is alarmed. Mr. Westwood regards these bodies as portions of an apparatus for emitting an offensive eflluvium, and Curtis as means of enabling the insect to increase or decrease its gravity during flight. The larve, as well as the perfect insects, are carnivorous. Tho family is intermediate betwesu the Telephoride and Clerida. The genera Malachius, Dasyics, Enicopm, Dalichoroma, and Aplocnemus contain British epecies. (Westwood, Moelern Clussification of Inecte.)
MEMBRANE (in Anatomy) is an expansion of any tissue in a thin and wide layer. Since the time of Bichat [Bichat, in Bioo. Djv.] the membranes have been gencrally cunmerated as of three kinds, the eeroun, the mucous, and the fibrous, which are distinguished as well by their physical characters and their functions, as by the diseases to which each is peculisrly subject.
The Serous Membranes are so named from the character of their secretion, which conviats of a very mall quantity of thin aerous fluid. In the adult conlition of man sull the: highec vertebrata, they form what arc called shut sacs. In cach of the cavities of the chest, for example, which are exactly filled by the lung", there is a serous
membrane, the pleura [PbeUra] which lines the walls of the chest, and is then reflected on and covers the surface of the luag; and thus there is inclosed between the surface of that part which lines the chest and of that which eavelops the lung sa extramely narrow space, a sac, into which a very small quantity of fluid is secreted. During respiration there is a constant friction between the lung and the walls of the chest, which the fluid, by its lubrication of their surfaces, renders easy. It is the general condition of serous membranes, that they exist, with the aingle exception of the conjunctiva of the eye [EYE], wherever there is friction between the surface of an organ and the cavity in which it is contained. They are adapted for this condition by possessing a remarkable amooth polished aurface, covered by a very fine layer of epithelium, through which their moistening secretion can easily pass. The basis of their structure is a fine and rather loose cellular tissue, which by boiling is at once converted iato gelatine. The serous membranes in man are the arachnoid, which is found in the cerebro-spinal cavity [Brain], lining the dura mater, snd covering the brain and spinal chord, and lining the ventricles; the plura, lining the chest and covering the lungs [Respiration]; the pericardial serous membrane, similarly related to the heart and ita investing sac [Heart]; the peritoneum, lining the abdominal walls and covering the abdominal part of the digestive canal, the liver, spleen, part of the pancreas, \&c. [Peritoneum]; and the tunica vaginalis, forming the sac of the testis.
The Synovial Membranes, by which joints are lined, aud the heads of bones which move on each other covered, may be regarded as a modificstion of serous membranes, differing from them chiefly in the character of their secretion and in some of their diseases. [ArticuLation.]

A membranc very aimilar to the serous lines the whole vascular system, and forms the internal membrane of the arteries, veins, lymphatics, and lacteals [Artery; Veins; Absorbent System], forming a closed cavity with innumerable ramifications, and affording, with its polished surface and fiue epithelium, the least possible obstacle to the movement of the circulating fluids.
The Mucous Membranes, like the serous, are named from their peculiar secretion. [Mocos.] While the serous membranes line all those cavities whose surfaces are in contact with living parts, the mucous membranes line those canals and cavities which in the adult condition of man and the higher Vertebrata are exposed to the centset of the air and other inorganic substances. The basis of these membranes is a compact cellular tissue, which does not jield gelatine in boiling, and whose areole do not contain fat. [INTESTINES.] Their epithelium is thicker than that which covera serous membranes, but thinner than the epidermis covering the skin, to which they are in many respsects similar. [SKIN.] In the parts where they line the organs of sense the mucous membranes are generally beset with fine nervous papillæ; in other parts, numerous glands for peculiar secretions open on their surface by orifices through which the membrane is continued up the branches of the ducts into the very substance of the gland. [Gland.] Nearly all the tracts of mucous membrane in man communicate with each other: they are, the nasal, which lines the cavities of the nose [NOSE]; the conjunctival, which covers the front of the eye-ball and lines the eye-lids, sad opeas by the lachrymal duct into the nose [EYE]; the auditory, which lines the cavities of the ese [EAr] and opens into the pharynx; the digestive, including that which lines the mouth, oesophagus, stomach, intertinos, and the eeveral glands whose ducts open into this canal [Stomach; Intestines]; the respiratory, which lines the larynx, traches, and brouchial tubes [Lunos; Respiration]; the urogenital; and the mammary. [MamMary Giands.]
The Fibrous Membranes are those which are chiefly formed of tendinous tissue. They serve either to form strong cavities for the protection of important parts, as the pericardiam, the dura mater, the fibrous capsules of joints, the sheaths of tendons, \&c., or to envelop sud strengtheu certain parts, as the periosteum, fascie, \&c.; or they are merely expanded tendons, as aponeuroses. They are tough and inelastic membranes, composed of the shining dense wavy fibres which constitute the usual structure of tendons, mixed with more or less of a denee cellular gelatinous tissue. [Areolar Tissue.]

MEMBRANIPORA. [PoLyzoa.]
MEMECYLA'CEAE are a very small natural order of Polypetslons Exogenons Plants, consisting of a few tropical species of little intercst. Most of them inhabit the East Indies, the Mauritius, and Madagascar. They are in habit and foliage like Myrtacea, with which order they agree in most respects; but they have anthers which in form resemble those of many Melastomacece, and the leaves have no transparent dots. From the latter order they are distinguiahed by their leaves not being ribbed, sad by their cotyledons being convolute. In the opinion of Brown and Chamisso, it is rather as a section of Melastomacere than as s peculiar order that Memecylacece are to be accounted. No uaeful properties bave been assigued to any of the species, except to Memecylon edule, an East Indian plant, whoee leaves, according to Roxburgh, are an ingredieat in the dyes of Coromandel, and whose ripe astringent pulpy black berries are eaten by the natives.

MEMINNA, a genus of the sub-family Moschina (Gray). [Moscmide.]
MENACANITE. [TITANIUM.]
MENATIIUS. [Maides.]
nat. hist. div. vole ihi.

Memecylacece.
1, Mouriria Gunyanensis; 2, a full-blown flower; 3, a stamen, with the snther opening by pores at the upper end; 4, a transverse section of a ripe fruit. Copied from a figure by Turpin.

MENDIP HILLS, a long ridge of limestone extending from Wells in Somersetshire to the Bristel Chanuel at Bleydon Hill and Brean Down. Through its whole leagth it is what geologists term au anticlinal axis, the strata dipping to the north under the drainage of the Avon and the Yeo, and to the south under the low plains watered by the Axe and the Brue. This axis passes from Frome by the Beacen Hill above Shepton Mallet, Masbury Castle, Nine-Barrow Hill, and Black Down, to Bleydou Hill, Uphill, and Brean Dewn, from whence, according to Buckland and Conybeare, it may be suppesed to be continued into the Steep Holm in the Bristol Channcl.
Along the line of the axis of Meudip old red-sandstone strata show themselves for considerable lengthe, and form the nucleus of this miniature mountain range. They are exposed on the roads from Wells to Chewtown Mendip, and to Harptree, in each case evidently lying below the carboniferous limestone. Upon the slopes of this limestone, both north snd south, rest considerable stratified masses of what is often justly termed magnesian conglomerate, and this is cevered by the general mass of red marls which fill so large a tract in the low parts of Somersetshire. The limestone series is estimated by Buckland and Conybeare st from 500 to 700 yards thick. The axis of the Mendip Hills runs irregularly east and west : the geological era of its principal upward movement appears to be anterior to the red marla, and probably to the red couglomerate; though near Wells and in other parts the slope of the conglomerate beds proves a subsequent movement. There is nu better example known of the unconformity of atrata than that presented in Vallus Bettom, near Wells, by the junctiou of the lower oolite formation and the mountain or carboniferous limestone. Here the upturued and almest vertical atrata of mountainlimeatone are found covered by horizontal strata of oolite, each of these contrasted rocks containing the characteristic fossils which belong to them elsewhere. What renders the case more curious is the fact that the level surface of the aubjacent inclined beds of limestone is not ouly worn smooth by littoral action below the oelite, but also covered by attached oysters, and perforated by the lithophagous ahells of the oolitic sea into large and small holes now full of the oolite, and partly retaining the boring shells not uucommon iu that rock.

a, the Oolite in level beds; t, the Mountain Limestone in ateeply-inclined beds.
The moat elevated point of the Mendip Hills is Masbury Castle, sbout 999 feet above the sea-level.

The features of these hills remiud the observer of some parts of
nonthern therlymhire, lath in tho wide hare surface of limestone and the rugged ghens which staddesly broak the dulness of tho open country. Th bese marrow valleys appear like cracks and fismurea in the mase of ealcareous rock, which, in Cheddar Cliffs, riso 285 feet perpendicularly from the feet of the flrectator, and undoubterlly exceen in grameur the woblest rocke of Derbyshire or lorkshire. Several of theos gleos ary called 'comines' nad lrockloy Combo may bo taken as beatiful examplo of tho mixture of gray rock and ancient wood.
From the chasma just adluded to tho transition ia easy to the caves and internal fissures, which are numerous in Mendip. Many of thenc have becomo fauiliar to goologists by the uncommou nbundance of booes found in them by a host of explorers since tho days of Catcott, the celebrated and unfortomate explorer of Ilutton Hole.

Dr. Buck lant, in his " leliquie Diluvianx,' describes, from tho notes of Mr. Catcott aud Me. Conybeare, the circunatances under which tho teeth and bones of elephante, horses, oxen, stag, bear, fox, and other auimals of the Mrestozootic cra occurred at IIutton. The bonos were fonnd in the ochre-pits, which wero anciontly worked; they wero mostly white, well prosorved, and nppene to have boen drifted in by water, or collected from the falling in of quadrupeds rvaming on the surface.
At lluringdon, in the Mendip llills, nad nlso in Wokey llole, a celebrated carern near Wells, hmman troncs have been found of high antiquity, but being accompanied by urns or other marka of sepulture, it in not aupposed they belong to races contemporary with the manmoth and large carera benc. The specimens of this latter animal in the cave at Iutton are of chornous bulk.

Not far from Hatton Holo is the no less renowned cavern of Banwell, explored under the direction of the Bishup of Bathand Wells. Tha best cullection of tho contents of this rich repositery was to be seen pear the mouth of the cave. The complicated parts of this cavern are accessible by stepa made in the rock, and aro much sisited. The bones bolong chielly to oxen and deer. Boncs of elephants, bears, and other Carnivora occur less commonly. The specimeas are usually in admirable reservation, and contrnst remarkably with tho fragmentary bones of the same aumala at Kent's Hole and Kirkdale.
At the meeting of the British Association held at Newcastle, Mr. Long communicated a notice of human bonea found in a cave at Cheddar.
The Mendip Hills, in their metalliferous products, resemble the similarly constituted mountains of Derbyshiro and Plintshire. They jold galena, calamine (carbonate of zinc), and ochre. Manganese is dug about East Herptrce. The galena occurs principally in limestano; the calsmine belonga to the overlying magnesian conglomerate. In that rock agates occur, a od the large geodic crystallisationa of quartz called 'potato-stoner.' Tho fossil corals, abells, tribolitea, \&c. of the Meadip Hills have been long known to collectors; but a complete account of them beas, we beliove, never been prepared.
(Conybeare aud Phillips, Geology of England and Hales: Buckland and Conybeare, 'On the Sonth-West Coal District of E'ugland,' in Geological Transactions, vol. i. new series.)

MENGITF [Monasite]
MEXISIERMA'CLA, Menispernads, nn important and exteusivo antural order of Exogenous l'mata, considered by gume to be l'ulypeLulous, nad referred to Do Caudolle'× Thalsmifloral subclass; by othors placed among the Monochlamydue of that author. The order consiats of twining or merambling shrubby plants, with slternate leaves withont stipulen, and stanll greedish or white unisexual ilowers, often collected in large loose panicles or inceme. The floral onvelopez are arranged in a power of three or four, mud uatually in more rowa than onu; wheuce arises tho opinion that thea plants belong to lolypetalous Fixogens, the inner series being regseded as a corolta. The stamens are either dintinct or monadelphous, either equal in number to tho inner series of the calyx, and of the same number, or much anore mumeroon The carpelsare in nost cases three, or some multiple of that mumber, wher dintiact from each other or consolidated. The froit conniate of maceolent one-colled drupes, with n golitary seed, and a hormenhuc-shaped embryo, with this that cotyleduns.

The wood of the atem a" acranges cesentially upon tho Exogenons plan, but ban bune mtriliag peenlianities. Accurding to M. Decaisne, it han no munal coucchtrical layern The wouly platea are alwaya aimple, and to thut divido lougitudiaslly, ns in other llicotyledons, but increane each year by the formation of a sew woody layer outside the furmer amp ingide the liker. Tho lutter ceasem to grow after the first year. In Cisampelos /'arcira aul some othera new Wooly plates, like the firat in appearance, but having no mgral reasels ur liber, nhow themelvea, at the end of averal yenrs, on the outaide of the fiest, and produce around them a coucentric circle, a formation which may be repeated a great many times. ('Cumpten lendus,' v. 393.) 'The ordir in common in the tropics of Asia mal Ancrica, but uncummon out of thexe latitudes. All Africa contain but five, North Americasix, aul Siberia ouc. Tho mpecien ary underably fount in wouth twinhes roudd other planta, Cocculi are most common in the Old Workl, aul Cisampeli in tho New Workl.
Menspermaces are unablly bitter and tonic plants; thes species of Cocculum called Bakis, dibranres, cinerascous, nad other, nre uncl in their doative conatrices an resuedy for intermittent fevers. Cocculus folmatu furnishes tho Calumba linot of tho whop, a valuable bieter. fereiria medica is used for tho vame reason in Cuylom, as is Chypea

Burmanni is Mahuar, nnd various sorts of Cissampelos in Brazil. Lut the bitter principle, which in its diluted state is thus valuable, becomes a dangerous poinon if concentrated, ns in tho seeds of Anamiria cocculus, the Cocculua Indicus of the shops.
Thers are 11 genem and 175 apecies of this onder.

Menispermum Canadense.
$1, \mathrm{~s}$ male flower ; 2 , 8 femule ; 3, the ripe froit ; 4, a vertical sectlon of the same, showing the embrye and horscoshoe seed.

MENISPERMI'NA, a vegetablo alkali extracted by Pelletier and Courbe from the Menispermum cocculus, or Cocculus Indicus, in the shells of tho fruit of which it occurs.

MENISPLRMUM (so called from $\mu \eta \sim \eta$, the moon, and $\sigma \pi \operatorname{con}^{\rho} \rho \mu a$, scenl, from the crescent-like form of its fruit), a genus of the untural family of Menispermacea, which formerly coutained numerous apecies, many of them valuable for their mediciual and other qualities, such as the Calumba Root, and tho berries called Cocculus Indicus, which are now referred to the gedus Cocculus. [Cocculus.] Menispcrmum, as at present conatituted, contains but few species; and these are climbing shrubs, which hase their sepals and petals in quateruary order, arranged in two or three whorla. Male, stamens 16 to 20 ; Female, ovaries 2 to 4 ; drupes baccate, round, kidney-shnped, siagle-seeded. M. Cunadensis and M. Smilacinum are found in the United States of America, and M. Dustricum in the wooded hills of Datiria.

MENOBMANCHUS. [NECTUBUS.]

MENOPOMA. [AMmhba.]
MENTHA, a genus of Plants Lelonging tw tho natural order Lamia. cece, or Labiata. It bas a campanulate or tubular calys, 5 -toothed, equal, or bomewhat 2-lipped, with the throat naked inside or villous; corolla with tho tube inclosed, tho liuab campanulate, nearly equal, 4-cleft, tho upper segmeat broader, nearly entice, or emargiante stamens 4, equal, erect, distant; filsments smooth, naked; anthers with two parallel colle ; style shortly bifid, with tho lobes bearigg stigmas at the points; fruit dry and emooth.
M. virilis, Spearmint, is a native of lritain, and is also found in tho mikdor part, of Europe, the Cnuaries, Cope of Good Hope, mal Amerjca, both North and Suutb. It is a crecping rooted herbaceous plant, with an erect maoth stena; leaves subsessile, ovate-lnaceolate, unequally acrated, amooth, thoso muder tho flowers nll bract-liko, rather longer than the whorls, these and the caly xes hairy or emooth; xpikes cylindrjcal, loose; whorls approximated, or the lowest or all of them tiataut. This phant greatly rescmbles M. priperita. The colour however is of a deep green. It is also frequently confounded with M. crispa, than which it has a stronger und moro agreeable odour, but waker than peppermint. It lans not the aronatic odour of that plant, wor does it leave tho sense of cuolness in the mouth. From it are prepared a distilled water, a apirit, and a volatile oil, which are used as the former.
M. pincita, leppermint, is fomm by tho wides of ditehea and rivers in lititnin, all over liumope, in ligypt, the middle of Asia, India, and North and south Anerica. It has a procombent ascending branched ntem, reldish, quito smooth, or fringed with a very fow spreading haies; petioles genorally ciliated; leaves ovato-obloug, or somewhat
lanceelate, rounded at the base, dcep-green, smooth, or hairy on the under side; the upper floral leaves small, lanceolate, subulate, sherter than theflowers; whorls few, lax, the uppermost collected into a short oblang obtuse reddish spike, the lowermast remote, with the cymes shartly stalked; bracts subulate, the outer ones as long as the calyx: pedicels quite smooth; teeth of the calyx hispid, subulate, erect. Peppermint is an aromatic stimulant, and the most pleasant of all the mints. It is employed in medicine for several purposes; the volatile oil is an antispasmodic.
M. Pulegium, Pennyroyal, also a British plant, is found in wet ditches in most parts of Europe, also the Caucasus, Chili, and Teneriffe. The stems are procumbent or prostrate, very much branched, more or less hairy, rooting; leaves scarcely half su inch long, often much less, stalked, ovate, obtuse, with a few shallow unequal serratures full of pellucid dots, and a little hairy, chiefly underneath; whorls sessile, numerous, many-flowered, globose, distaut, large in proportion to the foliage; flowers light-purple, or nearly white; calyx hispid, 2-lipped, villous in the inside of the throat. The properties of thls plant are the same as the other mints. It is supposed to possess peculiar power as an emmenagogue and antispasmodic.

The other British species of the genus are:-
M. rotundifolia, Round-Leaved Mint, having sessile leaves, crenate, serrate, wrinkled, shaggy beneath, and lanceolate bracts.
M. sylvestris, Horse-Mint, has subsessile leaves, serrate, hosry beneath, snd subulate bracts.
M. aquatica, Capitate-Mint, is distinguished by its stalked leavea, the uppermost being shorter than the whorls; whorls few, subglobose, capitate, the uppermost terminal.
M. pratensis has nearly sessile leaves, the floral leaves scute, serrste, the smaller ones lenger than the whorls; whorls distant, subglobose; calyx bell-shaped; teeth hairy. It is a rare plant.
M. sativa, Whorled Hairy Mint, has stalked ovate leaves, the upper ones similar but smaller, all longer than the whorls; calyx tubular or bell-shaped, with triangular lanceolate teeth.
M. arvensis, Corn-Mint, is known by its stalked ovate or elliptical serrate leaves, the upper leaves similar and equally large; calyx bell-shaped; teeth triangular, as bread as long.
(Babington, Manual of British Botany; Lindley, Mlora Medica.)
MENURA. [MenURA.]
MENYANTHES, s genus of Plants belonging to the natural order Gentianaceo. It has a 5 -parted calyx; corolla funnel-shaped, with an induplicate astivation; the limb spreading, 5 -lobed, equal, stupose; stigena capitate, furrowed; capsule l-celled, 2-valved, with the placenta in the middle of the valves.
M. trifoliata, Buckbean, is common In spongy boggy soils in Europe, North America, and Great Britain. The rhizoma penetrates herizontally in the bog-earth to a great distance, regularly intersected with joints at the distance of about half an inch from each other; these joints are formed by the breaking off of the old petioles and their wheaths; the leaves proceed from the end of the rhizoma on long stalks furnished with broad shenthing etipules at the base; they are trifoliate, nearly oval, glabrous, somewhat fleshy, and slightly repand, or furnished with many irregularities at the edge, which hardly prevent them from being entire; scape round, ascending, smooth, bearing a conical raceme of flowers; peduncles straight, supported by ovate concave bracts; calyx erect, somewhat campanulate, 5 -parted, persistent; corolla white, its tube short; border 5 -cleft, spreading, and at length revalute, clothed on the upper part with a costing of dense flesly obtuse hairs; stamens 5, shorter than the corolla, and alternate with its segmeuts; anthers oblong, arrow-shaped; ovary ovate; stigma lifid, compressed; capsule ovate, 2-valved, 1-celled; seeds numerous, minute. All the plant, the root especially, is intensely bitter. It is considered to be a valuable tonic. Large doses produce vomiting, and frequently powerful diaphoresis. It is recommended in intermittent and remittent fevers, gout, hepatic complaints, rheumatism, dropsy, scurvy, and worme.

(Lindley, Flora Medica.)

ME\}hiTIS. [Mustelide.]
MERCENA'RIA, Schumacher's name for the Tenus mercenaria of authors, which passes current as mouey, under the uame of Wampum, among the Indians of North America. [Veneride.]

MERCURIA'LIS, a genus of Plants belonging to the natural order Fuphorbiacea. It las diocious or monccious flowers; the perianth $2-3$-psrted; with 9 to 12 stamens in the male flowers; the style short and forked in the female flewers; the capsule 2 -celled; the cells I-seeded, bursting at the back. The species are herbs; two of them are natives of Great Britaiu.
M. perennis, Perennial Mercury, has a simple stem; the leaves atalked, orate-oblong, rough; the female flowers ou long common stalks ; the root creeping. It is a native of weods and thickets. It is considered to be very poisonous, thougln some old writers speak of it as being boiled as a potherb. According to Slonne, it produces siolent vomiting, diarrhcea, stupor, convulsions, and even death.
M. annua, Annual Mercury, has the stem branched, leaves stalked, ovate or ovatc-oblong, smooth; the female flowers nearly sessile; the root fibrous. It is a common plant in waste cultivated lands. It onco had a place in the British Parmacopcoia on account of its supposed efficacy as an cmmenagogue, but it is not now used for that
purpose. The leaves abound iu mucilaginous matter, and are cooked and eaten in Germany in the same way as we eat spinsch. Professor Burnett has pointed out the peculiar instability of the stamens of this plant. At the period when they are fully develaped if they are touched they become loosened from their footstalks, and vault off elastically towards the pistilliue flowers.
(Burnett, Outlines of Botany; Babington, Manual of British Botany.)
MERCURY, or QUICKSILVER. This metal, which possesses the remarkable property of being fluid at usual temperatures, has been known from the remetest ages. Although it is met with in very large quantity, yet the mines occur in comparatively few places; those of Almaden in Spain, and Idria in Carniola, are the mest impertant. There are however inines of this metal in Hungary, Trausylvania, and the district of Deux Ponts in Germauy. Mercury has been obtained for a very long time in China and Japan, and although the amount of the produce is unknown, there is every reason to think it cousiderable; it is also fouud at Huancavelica in Peru.

Mercury is always obtained from cinnabar, which is a bisulphuret of the metal. It is found at Almaden in a dark-coloured slate intermixed with quartzite; sometimes, as in the district of Deux Ponts, the cinnsbar occurs in the subordinate porphyries; and at Idria it is found in the subordinate bituminous schist, but rarely in limestone itself.

The cinnabar which is found in ceal-sandstone is often accompanied with argillaceous and bituminous schist, and imprinted with fishes and plants, ofteu with combustible fossils, and sometimes even intimately mixed with coal.

Pliny states (xxxiii. 7) that Callias, an Athenian, discovered the preparatiou of vermilion, or cinnabar, b.c. 505. He alse mentions the mines of Almaden [Almaden, in Geog. Div.] as producing iu his time 10,000 Reman paunds annually; but this was not the amount which the mines could have produced, for the supply was purposely limited. Le Play, a French geologist, who visited Almaden in 1833, describes the mines as beiug richer than at any former period, furnishing annually nearly $2,244,000 \mathrm{lbs}$. of mercury. About 700 workmen are employed under ground, and 200 in the operations connected with the extraction of the metal from the ore at the surface. The mines were visited by Capt. Widdrington iu 1843. [Almmaden.]

Fermerly mercury was imported in packages of 50 or 60 lbs . weight; the metal was poured iuto a fresh sheep-skin, from which the wool was taken off, the ends were tied tight, and the sort of bag thus made was inclosed in a second skiu, aud that in a third, and three or four bags were packed in close barrels. Of late years however mercury has been brought to this country in wrought-iron bottles.

Various processes are adopted for the purposs of separating the mercury from the ere, all of which depend upon the volatility of the metal, its conversion into vapour in distilling-vessels or retorts, and its condensation by cold. In order to separate the sulphur from the metal, either iron or lime may be employed; the first forms sulphuret of iron, and the latter of calcium, with the sulphur, and the metal is thus set free, volatilised, and condensed. The reterts employed are made of cast or sheet iron, or earthenware.

According to Dumas the following mines yicld annually the anuexed number of quintals of mercury (a quintal is 108 lbs . avoirdupois nearly) :-

We may perhaps reckon the average at about 2000 tous.
The properties of mercury are-that it is fluid, of a silvery white colour, and possesses a high degree of lustre ; it is inodorous, tasteless, unacted upon or very slightly by exposure to air at common temperatures, and not at all by water at auy temperature. The specific gravity of mercury is about 13.568 . It boils at 670°; the density of its vapour is 6.976 ; and yct, as shown by Priestley, it vaporises at common temperatures, and Faraday has confirmed the observation. At 40° below Zero, mercury becomes solid, crystallises in octohedrons, and gives a dull sound like lead; at the moment of congelation it contracts considerably ; for while its density at 47° is 13.545, that of frozen mercury is 15.612 ; when in this state it is malleable, and may be cut with a knife.
Mercury is a good conducter of electricity and of heat, but its capacity for heat is extremely small; it expands uniformly at all temperatures between its boiling sud freezing points. When mercury is pure it assumes the spherical form iu small pertions, but when it contains other metala, it forms into leng strice; a very minute admixture is sufficient to produce this effect; when thus impure it must be subjected to distillation, by which the mercury is volatilised, and the metals mixed with it remain; or it may be purified to a considerable extent from the more axidisable metals by agitation with dilute nitric acid. The minerals in which mercury occurs are not numerous.

Nufire Mercury.-This occura in but few places, nad is met with in amall cracks or crevices of the rocks in which the common ore occurs, and is frequently nccompanied by red silver.

The princijal localities are Almaden in Spain, and Idria in Carniola; some is alno met with in the Palatinate.

Chlorile of Mercury (Horn Mercury: Baumerile; Muriate of Mercury) - Occura cryatalined nod in tnbercular crusta. Primary form a muare priam. Cleavage parallel to the lateral faces and the dingonal planes of tho primary form; the latter are the more brilliant. Fracture conchoidal. Harduess 10 ta 2.0 . Readily scratched with the knife Colour pearl-gray, or yellowish-gray. Lustre adamantine. Translucent. Specific gravity $6 \cdot 4$ se.

Heated by the blow-pine, it is eutirely volatilised, and it yields by aualysis-

$$
\begin{aligned}
& \text { Chlorine } 85.89 \\
& \text { Mercury } \\
& \hline 100
\end{aligned}
$$

It occurs principally at Moselelandaberg in Deux Ponts, but it is also met with in Sprin, bohemia, nud the lhatiunte.

C"innabor: Vermilion; Bisulphuret of Mercury-This is the comanon ore of the metal. Occurs cryatallised and massive. Primary Surm of the crystal an acute rhomboid. Cleavage easy, parallel to the lateral fnces of a regular hexahedral prism. Fracture conchoidal. Harluess 2.0 to 2%. Colour carmioes red. Lustre adamantine, approacbing utallic. Opaque, translucent, transparent. Specific gravity 8.008.

Heated by the blow-pipe, whitens n piece of copper held over it. linacted upon by nitric or hydrochloric ncid, but readily by a mixture of them.

It occurs in the places which lave been mentioned; as Almaden, Idria, \&c.

Massive Varieties amorphous. Structuro graunlar, compact. Fibrous and pulverulent.

Tho following is an aunlygis by Klaproth-

$$
\begin{array}{lll}
\text { Sulphur } \\
\text { Mercury . } & 4.05 \\
\hline
\end{array}
$$

This compound is often made for use in the arts, especially by the colour-makers.

Natire Amalyam-Oceurs crystallised and massive. Primary form a cube. Clearage indicating the form of n rhombic dodecaliedron. Fracture conchoidal. Harduess 3.0 to 3.5 . Scratchea gypsum; is seratched by fluor-spar. Colour silver white. Lustre bright metallic. Opaque. Specific gravity $14 \cdot 119$.

When heated by the blow-pipe, the mercury is rolatilised, and the silver resoains in the metallic state.

The following are the analysea by klaproth and Cordier-

Lilaproth. Cordier.	
.64	-2.5
36	27.5
100	100.0

Massive Varicty arnorphoms Structure compact. Sometimes sensi-fuid by misture with excess of mercury. Found in France, Spain, Sweden, Mumgry, the Inlatimate, dc.

Sodide of Mercury-Oceurs in spots of a finc lemon-yellow colour in the variegated madistone of Cabas Viejan, Mexico. When exposed either to the nir or ammonia it becomes black.

Seleniele of Alereury is a dark ateel.gray ore, which is wholly oraporated before the blow-pipe. It occurs in Mexico near San Onofre.

MbirCUliy, llerb. [Menceminis.]
MrRGANSFR [Decks.]
MriRGELLiUS. (Dreks.]
MERRGULUS. [Aした.]
MERGUS. [JUCKh.]
MERHOION. [HATOMACE.E.]

MEIRLAN(ils, a genua of Fishen belonging to the family Gadider. It is dintinguished from the genus Morrhua, to which the Cod-Fish belonga, by the almence of the barbule at the chin. [Mormiona.]
M. rulgaris (Godus rulyarin, linneus), the Whiting. This fish in well Known for the excellencesnd delicacy of ita flenh. The pearly whiteness of its daky mumelea, added to jts extreme lightness as an article of fond, recommend it particularly to invalida an ous artiele of diet. It is eaught in great nbuudance all round our const, and may be traced from tho Urknegata Cape Clear. Whiting of eeveral pounda weigbt have bonn caught on far north as the Dogger lank; they have nlan been taken of beas ly enhas mize on the const of Cornwall, and on the Nympla lank along tho exembled line of the nouth conat of Ireland. In that country they fave almo beenfound on the enatern conat, from Waterforl bis Antrim, nulf frum thence north aud west as far an Lough Foyle. The fishing for Whating with inea is pursued nearly all tho year through, bat the finh ia mons plentiful in the moatha of January and February, when it comea in large shoals towards Ahore for the purpose of depraiting ita sfawn, nud is taken in abundance withiu half a mile and meldom excecling three milen from land. The whiting is a voraejous feeder, abd seibe indiseriminately Molluca, worms, pmall

Crustacea, and young fishes. Though occasionally occurring in the London market of three or four pounds weight the most usual size is from 12 to 16 isches in length, and weighing about one pound and a haslf. The body of the Whiting, like the bodies of those belonging to this division, is longer for jta depth than that of the Cod-Fish; the scales small, oval, and deciduous; the lateral line dark and atraight posteriorly, but rising gralually throughout the naterior half; tho head elongated; the mouth and gape large, the tougue white and amooth; the upper part of the head and the back above the lateral line pale reddish ash-brown; sides and belly silvery white; pectoral, caudal, and dorsal fins pale brown; ventral and anal fius almost white, the pectoral fins each with a decided dark patch st the base.
M. albus (Gadus albus, Risso), Couch'a Whiting. It is mentioned by M. Risso, in his volume on the 'Ichthyology of Nice,' published in 1810 , but was not caught in the British seas until 1840 by Mr. Couch. His deacription is as follows:-"Length 15 inclies; the depth in a atraight line 21 inches; from tha base of the firat dorenl fin to the vent along the curve, 3 inches; from the mouth to the edge of the gill-covers 3 inchea; from the same to the auterior edge of the eye one inch; the aya large, the form a perpendicular oval; under jaw the longeat; the upper maxillary bone terminal, the suout receding from it back ward, contrary to the form of the Whiting, in which the upper jaw ia under a projection. The geoeral form of the body resembles that of tha Whiting, but rather more slender; tha back rounded as if tha specimen was plump, thus showing its slender form nat to be the result of emaciation. Tha distinctions between this fish and the Whiting are obvious, in the jaws, fins, lateral line, colour, and vertebres."
M. carbonarius (Gadus carbonarius, Linnæus), the Coal-Fish. This is decidedly a northern fish, but being a hardy species, is not without considerable range to the southward. It was the only fish found by Lord Mulgrave on the shores of Spitzbergen, and the fry, only 4 or 5 ioches long, wera caught with the trawl-net on the weat coast of Davis's Strait, during the first voyage of Captain Sir E. Parry. It is found on the coast of the United States. It abounds in all the northern seas, and in the Baltic, and may be said to swarm in the Orkneys, where the fry all the months of Bummer and autumn are the great support of the poor. As an article of food it is more prized when amall than when of large size. The flesh of apecimena weighing from 15 to 20 lbs . is usually dried or salted. This fish has more provincial names than any other spceies, aome of which only refer to it when of a particular size. Among the Scotch islands the Coal-Fish ia called Sillock, Piltock, Cooth or Ruth, Iarbin, Cudden, Sathe, Scy, nad Gray Lord. In Edioburgh and about the Forth the young are called Podleys; at Newcastle the fry are called Coalsey, and when 12 inchea long Poodlers. The Coal-Fish may be traced on the Irish coast from Wateriord along the eastern shore to Belfast. When detained and well-fed in a saltwater pond they attain s large size, and are very bold and voracious. The head and body ara elegantly shaped; the scales amall and oblong; the lateral line silvery white and nearly straight; tha upper part of the head and back above the lateral lina almost black, much lightor in colour below the line, becoming grayish-white with golden reflections on the gides and belly; pectorsl, caudal, and dorsal fins bluishblack; ventral and anal fins grayish-white; the upper jaw rather the shortest, the lips tinged with purple red, the mouth black, tho teeth very small, the irides silvery white, the pupil blue.
M. Pollachius (Gadus Pollachins, Linnxus), the Pollack. This fish is much less abundant on some parta of tha coast than the Coal-Fish, but like that species is an inhabitant of the seas all round our shores. The fish is called Lythe in Scotland, but whether from its supple pliant activity, or from 'lithos,' a stone, in reference to its living among the rocks, is not decided. The Hollack is caught at Hastings and Weynouth, also in Davonshire, where it is sometimes sold as Whiting. When only 12 or 14 inches long it possesses a considerable portion of the flavour and delicacy of that fish. It is also caught along the Irish const noder the names of Pollack, Laith, and Lythe. The body is elongated; the upper part of the head nud back above the lateral line olive brown, the sidea dull silvery white mottled with yellow, nnd in young fish spottod with dull red; tho Interal line dusky, curved ovar the length of the pectoral fin, then descending and passing in a atraight line to the tail; the dorsal fins and tail brown; the pectoral and nunl fins edged and tinged with reddish-orange.
M. vifens (Gadus virens, Linnæus), the Green-Cod. This firh was first added to the list of British fishes by Sir Hobert Cullum, nod if a distinct species, as some doubt it, is not only nbundant, but has an extensive range. It is mentioned ns an inhnbitant of the northern neas by linureus and othere, nod ia taken on the coast of Scotland, the lale of Man, and on the Cornish coast. By some it is thought to be the young of the Coal-Fish, nud by others ns the young of the Pollack. The northern naturnliate, who have opportunitics of making constanh comparison between this fish nad the Coal-Fish from the abundance of both, consider them as distioct apecies It acems to combina in itself the colouring of the lollack, with rome of the peculiaritice of the Coal-Fish, but appears almo to bo deeper for ita leugth than either, though if the young of n large species, judging by analogy, that would not be the case. The subject in its present state is open to investigation, and invites the nttention of those who nre so located as to be able to obtain examples of both.
(Yarrcll, British Fizhes.)

MERLIN, the English name for the Falco Nisalon of Linnæus; Emerillon, Rochier, and Faucon de Roche, of the French ; Stein-Falke of the Gcrmans; Smerlio, Smeriglio, and Falchetto, of the Italians; sud Corwalch and Llymystem of the Welsh. This species belongs to the third snb-family, Falconina, of the large family. Falconida. [FALCONID $x_{i n}$] Tha following are the characters of this bird :-

Old Male.-Bill bluish horn-colour, palest at the base, darkest towards the tip; cere yellow, irides dark brown; top of the head blue-gray, with dark lines passing backwards; the cheeks and thence round the back of the neck psle reddish brown, also marked with dark streaks, forming a collsr; the whole of the back snd wingcovers fine blne-gray, the shaft of each feather forming a dark central line; wing primaries pitch-black; upper surface of the tail-feathers blnish.gray over two-thirds of their length, with slight indications of three dark bands, the distal third nearly uniform black, the tips of all the feathers white; bresst, belly, thighs, snd under tail-coverts rufous, with brown central patches, and darker brown streaks; under surface of the tail-feathers barred with two shades of gray, a broad dsrk terminal band, and white tips; legs and toes yellow, claws black.
Female. -Top of the head, back, wing-coverts, and secondaries dark liver-brown, the shaft of each festher darker, the edge tipped with rad; the tail-feathers brown, with fine narrow transverse bars of wood-brown; under surface of the body pale brownish-white, with darker krown longitudinal patches; bill, cere, eyes, legs, toes, and claws, as in the male.

Young Males-Resembling the females.
Birds of the Year.--The wings do not reach so far towards the end of the tail as those in the adult. (Yarrell, 'History of British Birds.')

The length of this, the smallest of the British hawks, is from 10 to 12 inches, according to sex.

Merlin (Fulco .Esalon).
Upper figure, young male of the gear, whith the female, uniess rery old, resembles. Lower figure, adult male.
"Assuredly," saith the suthor of the "Book of Falconrie,'" divers of these Merlyns beconse passing good hswkes and verie skilful; their property by nature is to kill thrushes, larks, and partridges. They flee with greatcr fierceness and more hotley than any other hawko of proy. They are of greatcr pleasure, and full of courage, but a man must make greater care, and take good hearl to them, for they are such busie and unruely things with their beakes, as divers timea they eate off their own feet and tallons very unnaturally, so ss they dic of it. And this is the reason and true cause, that seldom or never shall you see a mewed or entermewed Merlyn. For that in ths Mew they do apoyle themselves, as I have bcfore declared." Sir Juhn Sebright says that the Merlin will tske blackbirds and thrushes, and that he nay be made to wait on, that is, hover near till the bird be pursued and started agaio; "and though a Merlin will kill a partridge, they are not atrong enough to be effective in the field." ("Obscrvations on Hawking.') The nest is placed on the ground, and but poorly made. The eggs (1 inch 7 lines long, and 1 inch 3 lines brond) vary in number from four to five, snd are mottled with reddish-brown of two shades of colour.

This bird is found in Europe, as high as Denmark, and as low as the shores of the Mediterranean; Smyrua (Strickland), Cspe of Good Hope (Smith); North America, according to Sir John Richardson, who says that. "s single pair were seen in the neighbourhood of Carlton House in May, 1827, and the female was shot. In the oviduct there were several full-sized white eggs, clonded at one end with s few bronze-coloured spots. Another specimen, probably also a female, was killed at Sault St. Marie, between Lakes Huron and Superior, but it could not be preserved." Sir John Richardson was upable to ascertain the extent of its migrations on the Americsn continent. Neither Wilson, Nuttall, nor Prince C. L. Bonaparte notices it as occurring in the United States; but the latter ('Specchio Comparativo') mentions it as very rare at Rome, and he only observed tha young, and that in winter. It "was formerly considered to be only a winter visitor to this country; but it is now very well ascertained that this species breeds on the moors of some northern counties. Mr. Selby has found the nest several times in Northumberland; and Dr. Heysham mentions three instances tinat came to his knowledge of Merlins' nests in Cumberland, where, he says, this bird remains all the year. Mr. Eyton tells me that it breeds on Cader Idris; and Mr. Dovaston sent a notice to his friend Mr. Bewick, 'on the authority of the gamekeeper at Wynstay Park, North Wales, that he had often seen the nest of the Merlin, and that it built and bred there in the summer of 1826.'"
"In the more southern counties of Cornwall and Devonshirs the Merlin is considered to be rare, and only seen in winter. On our eastern coast it is killed, but not very often, in Kent, Essex, and Norfolk. The specimeus obtaincd are generslly young birds, and these occur most frequently in autumn, or at the beginning of winter. In Ireland, according to Mr. Thompson, the Merlin is indigenous in several northern counties. It breeds also in Scotland, in Orkney, and in Shetland. In North Wales the young birds are called StoveFalcons; but among ornithologists the Stoue-Falcon is considered to be sn adult bird. It is not however improbable that the habit of sitting on a bare stone or portion of rock, by which this species has acquired the nams of Stone-Falcon, is common to it at all ages and in other conntries." (Yarrell.)
The charscter of the Merlin is thus snmmed up in the old French quatrain :-
"L'Esmerillon beau par extrcmité
A le eecur gay, et fort hardy ceurage,
Et bien qu'il seit petit, si fait-il rage
A pour suyvir sa proge en gayeté."
MERLU'CIUS, a genus of Fishes belouging to the Gadide, or family of Cod-Fishes, distinguighed by the possession of only two dorgal fins and ons anal fin, and the sbsence of the barbule on the chin. This latter chsracter distinguishes the species of the genus Merlucius from the Burbots (Lota) snd Rocklings (Motella), and there being only two dorsal fins removes the present genus from the more typical CodFishes, where there are three dorsal fins.
M. vulgaris, Cuv. (Gadus Merlucius), the Hake, affords a familiar example of this genns. This fish is found on various parts of the coasts both of England and Irelaud. It inhabits also the seas of the western coast of Norway, and is common on the northern shore of the Nediterranean. "A haks of 3 feet 8 inches long," says Mr. Yarrell, in his 'History of British Fishes,' "supplied the means of obtaining the following particulars:-The length of the head, compared to the length of the body alone, as one to three; the depth of the body not so great as the length of the head; the ventral fins are placed in advance of the pectorals, the rays not unequally elongated; the pectoral fins commence in s ling under the posterior angle of the operculum, the rays ending with the end of the first dorsal in; the first dorsal fin itself short and triangular in shape; the second dorsal fin commences in a line over the vent; the ansl fin begins immediately behind the vent; both the secoud dorsal fin and the anal fin terminate on the same plane, near the tail; the rays strong and stiff; the caudal rays about three inclies long and nearly even.
"The fin rays in number are:-Dersal, 10, 29; pectoral, 11; ventral, 7 ; anal, 21 ; caudal, 19.
"The hesd is depressed; the inside of the month and gill-covers black; the lower jaw the longest; teeth slender and sharp, in a singlo row in each jaw; the irides yellow, with a dark outer circle; the lateral line of the body straight throughout the posterior half, then gradually rising to the upper edge of the operculnm; the appearance of the lateral line is that of one whito lins between two dark ones; the scales large; colour of the body dusky brown above, lighter beneath; dorsal and caudal fins dark; ventral and anal fins pale brown."

Tha Gadus Magcllanicus of Forster, sud the G. Maraldi of Risso, are mentioned by Cuvier as species belonging to the present genus.

ME'ROE (Schumacher), a name for certain Cowry-Shells, Cytheraa sulcata, C. cripta, C. hians, \&c.
MERO'PIDAE, a family of Fissirostral Birds, which, in the opinion of Mr. Vigors, is most nearly connected with the conterminous tribe of Tenuirostres by the length, slenderness, and dowaward curvature of the bill. He adds that it exhibits at first sight a decided discrepanoy with the succeeding family of IIirundinida, where the bill is short and wide; and that if we examine only the typical specics of cach we
munt almit that io respect to these particulars thero is a manifest distinction between them. Iadependently however of the general characters in which both families approsch each other, such as the brealth of the rictus of the bill, the short and feeble lege, the utreagth of the wing, aul the consequent habit of using that member chielly in recking their nupport, a gradial a proximation is found to take placo even in their Lills; thoso of some of the extreme specien of Merops becoming Florter as they approach Mirundo; while those of sone of the lather group partially desert their own type, and by degrees argume the lengthened form of the bill of the Meo-Eaters. The tail of Merops again is equally found to desert the typical chnracters of the group, manely, the greater length of the two middle fenthers, in order to become even in some species, then slightly forked, nad st length to be identified with the fully-forked tail of Mirundo. Mr. Vigors is further of opinion that among the Tenuirostres the genus Promerops approaches nespest to the fissirostral group by meabs of Merops, the curved bill of which approaches the structure of itsowa. (Vigors, 'On the Natural Allinities that connect tho Orders and Families of Birds,' is 'Linn. Tmans,' vol. xt.)

Mr. Swainson ("Chassification of Birde") is of opinion that the Meropide, or Bee-Eatera, bucceed the Swallows, and anys of the Mctops Apiaster [Bee. Fiater], that it manuasly visits Italy in flocks of 20 or 30 , and insy be see日 skimming ever the vineyards and oliveplatations with a flight inuch resembling the swallow, thengh more direct and less rapid. He observes that their bill is indeed considerably longer and woere slender, but remarks that this difference is softened down by the iatervention of the genus Eurystomus, contaiaing the Swallow-dtollera of Iadia, Africa, and Australia, which have this organ very short. To these, be thinks, succeed the true Rollers (Coracias, Limn.), which arrive in Italy at the same time with the Bee1anter", and associste also in bmall flocks. "These two genera of Bullers," contipues Mr. Swainson, "are so indissolubly united, that nothing but the strongeat prejudice in favour of a preceaceived theory could ever have induced certain naturalists (whose labours in other rempects have been of much advantage to science) to have placed them in two different orders. The whole structure of the Rollers, their leagthened pointed wiogs, and their firm and often forked tail, at once induce the idea that they feed upon the wing; while their very short legs, bearcely longer than their hind toe, might have shown their incapacity to alight and walk, like the Crows, upon the ground ; but this queation is at once decided by a koowledge of their economy, which, from personal observation, we have every reason to believe is much like that of the lee-Eaters. The intervention of the Rollers at once lesseas the abrupt transition, which would otherwise be apparent, from the perfect-footed Swallows to the zygodactylo Bee-Entera; and we are thus prepared for all those birds whose toes, as it were, are soldered together, like those of the Meropide. Here perhaps we may netice that most beautiful and rare genus Nyctionnis, or Night-Feeder, an being in nill probability that particular link by which mature connecta thin family with the Trogone, therely uniting the three aberrant groupe of the Piesiroopres into one primary circle. M. Temmiack, overlooking itn particular structure, placed this genus with Merops, to which indeed it has a close resemblaace; while its connection to Irionites (llliger) in other parts of its organisation is no less obvious. Its precine situatioo in short requires further investigation." [Halo ctoside; Meldphagid.z]

Mr. Swainson gives the following cbaracter as distinguishing the family:-

Wings long, pointed; the first quill as long, or nearly so, as any of the othern.

He arranges the following genera under it :-
Merops (linn.). -Bill very long, elender, nlightly curvod, compressed; the culmen carionted; the tip entire, sharp, and not bent downward. Winga long. pointed; the tips of the lesser quills cmarginate. Tail lengthenes. Feet gresorinal. (Sw.)
M. apiater [lere-linter) is an example.

Syctiornis (Sw.)--Bill considembly curved, very long; the culmen with a parnllel groove on each aide. Wings rounded, convex. Plumage l.ax. Fect short, idsepaoris], resembling those of Prionites. (Sw.)
N. amictus is green; crown (in the alult) lilac; front of the throat and breant bright red. (Sw.) Total length about 13 inclees; wings 5 inches; tail (beyond) 3 inches; tarsi hardly half an inch. (Sw.)

It is a native of Iudia.
Coraciua (linn.)- Bill moderate, straight; tho sides hroad, but much compremal. The tip of the upper mandible bent over that of the lower, which in obliquely truncate; nontrila basal, oblique, Jinenr; gape very wide, extending beneath the eye; the sides briatled. Wieet innanorial, very short; all tho toce cleft to their lase; inner toe much the shortest. Wings moderate, pointed. (Sw.)
c: Alyaninica ham white round tho bill; body aquamarine-green; back and wing-coverta cinnamonecolour; alouldera, rump, and quills Whe; tail green, the two middle fenthers blue; two long loose procenco tarminating the two external quille
Sub-genua, Luryzomus (Vjeill.).-It rememblea Coracias, but the bill in ahortar and wider, and the winga logger; nostrils very long ; rictus manoth. (Sw .)
E. Orientalis. Colour nquamarinogreen; throat and point of the

Syeliornis amictus. Swainson.

Coracias Abyssinica.

wing (fouet de l'aile) azure; quills nad tail-feathers black; a white stripe upon tho wing.

It is a native of Java, South Australia, aud all the Polynesian Islands. It is tho Natay.Kin of the natives of tho neighbourhood of Sydney; Dollar-Bird of the colenists; and Tiong-ba-tu of the inhabitants of Sumatrm. It is the Coracias Oricntalis of Limnous

Chloropygia (Swi.).-Ceneral ferm between Tamacia and Coracias. Bill ahort; tho tip not abmuptly beot; rictus bristled; nostrila basal, linear, oblique. Wings, short, convex, reachiag only to the rump; the two first quills much graduated; tho four next nearly equal and longent. Tail elongated, rounded, and broad. Fcet as in Coracias.
The apeciea are natives of Madagapcar. (Swainson.)
C. Deptosomus (Lesson; Ill., ' Zool.,' pl. 22) is an example.

Lepiosomus (Vieill.).- Bill abont the length of tho head, robust; the upper mandible curved and notched near the tip; gonys straight; nostrils oblong, oblique, the margins elevated, naked, and placed towards the middle of the neper mandible. Feet short; toes in pairs, as in Tamatia. Wings lengthened, pointed; the first and second quilla longest. Tail moderate, even. (Sti.)
La riridis in a native of the conntry of the Kaffirs and the coast of Zanzibar, where it is said to livo in the foreata on insects and fruits.

. Eurystomus Orientalis.
The form is arranged by Lessou and others under the family Cuculide. [Leptosomos.]

Leptosomus viridis.

Mr. Swainson makes the family of Meropidee the first of the Fissirostres. It immediately succeeds the Paradisiada and precedes the Halcyonide in his arrangement.
M. Lesson, in his 'Table Méthodiquc,' gives the following genera as constitutiog the family of the Meropide:-Merops, Alcedo, Dacelo, Ceyx, Syma, Todiramphus, Momotus, aad Buceros. [Halcyonide; Brrds of Paradise; Hornbills.]
MEROPS. [Bee-Eater; Meropide.]
MERTENSIA, a genus of Plants belonging to the natorsl order Boraginacec. It has a calyx in 5 deep segments ; corolla bell-shaped, with a short thick cylindricsl tube with 5 minute protuberances in its throat; stamens protruded beyond the throat; fisments elongate; style simple; nuts mooth, inflated, rather drupaceous, attached laterally near their base by a flat surface ; seeds free.
M. maritima has a procumbent branched stem; Icaves ovate-acute, rough, with callous dots, glabrous, fleshy, glaucous; muts smooth; flowers in racemes, purplish-blue; protuberances in thront of the corolla yellow; leaves with a flavour reserubling that of oysters; nuts free, forming a pyramid longer than the calyx; pericarp membranous; sced smaller than the cavity. It is found on the northern sea-shores in Great Britain.
(Babington, Manual of Brilish Botany.)
MERULA. [BLACK-BIRD.]
MERC'LID E, the Thrushes, a family of Dentirostral Birds, placed by Mr. Vigors between the Laniada, or Shrikes, and the Sylviade, or Warblers. In the former family, he is of opinion that Vanga, Cuv., together with Prionops, Laniarius, and Thamnophilus of Vieillot, bring us in contact with the Thrushes, snd that the extremes of the family will be found in Graucalus and Ceblyperis of Cuvier, which
last has been latterly arranged with the Thrushes, sud both of which, by their bills, in some degree depressed at the base, lead bsck to Tyrannus, and the other broad-billed groups which commence the family. Mr. Vigors feels inclined rather to leave Ceblyperis in its original station among the Shrikes, from the peculiarity of its tailcoverts, which form themselves into a kind of puffed-out cluster on the back.
"The family of Merulida," continues Mr. Vigors, " connected as above with the Laniada, comprises a considerable number: of species and many natural geners; but which, like most of the Insessorial groups, have hitherto received but partial examination. The general views by which they seem to be allied among themselves, as far at least as can be judged from their present unorganised condition, may be stated ss follows; but with that expression of doubt which ever attends ioquiries like the present, where the absence of accurate information to the economy of the subjects before us, and of exteusive knowledge of the forms connected with them, leaves us no better foundation for our inferences than partial conjecture. The genus Myiothera, Ill., seems to be the first group of the present family which is connected with the Laniada, where it is met by some of the smaller species of Thamnophilus. This group seems to lead by Pitta, Vieill., sind perhaps Cinclus, Bechst., through some intervening forms, to the true Thrushes, or the genera Turdus of authors aud Merula of Ray, which form the type of the family. To these we may add that portion of the Limnxan Orioles, which, possessing the curved aud notched bill of the Thrushes, constitutes the genus Oriolus, or true Oriole, of the present day. Here we meet several groups, generally arranged without order in the Lionæan genus Turdus, and hitherto entirely uncharacterised, which graduslly lead from the typical groups to those which possess a more generally delicate conformation; until the comparatively strong form and robust bill of the Thrushes is lost in the weaker body and more slender bill of the Warblers. Here again the group of Rock Thrushes, of which the Turdus saxatilis is the type, appear to bring us round, by their general habits and assimilating characters of bill and tarsi, to Myiothera, where we entered the family. Those birds which constitute the groups which we denominste Chatterers, and which form the genus Ampelis of Linnæus, are usually assigned a place near this family; and I must confess that, from the general affinity which they appear to bear to it, I have felt, and still feel, considersble doubt whether this be not their nstural ststion. A strong sffinity however on the other hand seems to unite them with the wide-gaped P iproe, and some of those other groups which, by their bill, broad and depressed at the base, sppesr to come in contact with the earlier divisions of the present tribe, and the extreme of the Fissirostres which precede it. The general rule of placing groups in s conterminous situation, according to what appears to be tho predominance of their more important characters, has inclined me to arrange the birds of which I speak provisionally among the Pipridat, at the extreme termination of the tribe before us. In my present view of the case, the characters in which they accord with that family and spproximate the extreme groups of the preceding tribe appear to predominate. More accurate knowledge on these subjects will clear away these aud similar difficulties. But I cannot too often insist upon the point, that whatever slterations may take place heresfter in our ideas respecting the disposition of these subordinate groups, they cannot interfere with the general principles which it is the object- of this inquiry to illustrste. Instead of impugning our general views, they will merely remore those doubts on minor points in which our present limited acquaintance with nature involves us."

In Mr. Swainson's 'Classification of Birds,' the resder will find elaborate details of his views respecting the affinities and analogies of this extensive family, which our limits do wot permit us to give. The following arrangement is from the 'Synopsis,' where the family is placed between the Laniadce and the Sylviadce:-

Merulides.

Sub-Family Brachypodine.

Feet very short; hind toe slmost as long as tarsus; claws short, much curved; bill distinctly notched; wings short, rounded; feathers on the rump very long and thick-set. (Swainson.)

Micropus (Sw.).-Bill as long as the head, straight, somewhat conic, but the culmen graduslly arched; tarsus remarkably short, feathered beyond the knees; lateral toes unequal; hinder as long as the tarsus. Wings moderate, the first quill almost spurious; tail eveu. (Sw.) Ex., M. chalcocephalus, 'Pl. Col.,' 453.

Sub-Geuus, Mypsipetes (Vig.).-Tail forked. Ex. II. ${ }_{2}$ psaroidcs (Gould, 'Cent. Himala Birds').
Brachypus (Sw.).-Bill shorter than the head; the baso brosd; the sides compressed; culmen elevated and curved from the base; rictus generally furnished with bristles. Feet very short, strong; tarsal scales entire ; tarsus longer than the hind tos; claws curved, broad, acnte, wings and tail rounded. (Sw.)

Sub-Geuera.-Brachypus (Sw.).-Bill short ; rictus bristled. Feet smsll, weak, lateral toes equal, hinder toe as loug ss the tarsus. Ex. B. dispar', 'Pl. Col.,' 13\%. Chloropsis (Jard. sud Selb.).-Bill more lengthened; the tip much hooked; the notch of the upper mandible forming a small distinct tooth; rictus of gape smooth. Feet small,

Iateral toes unequal, the hinder too rather shortor than the tarsus. (Sw.) Ex. C. Malabaricus, 'Pl. Col.,' 512, f. 2. Jora, or Iora (1Ioraf.). - Bill nearly an long as the bead, lengtheaed, monowhat conic, and rounded; rictum smootly ; tarsua rather lengthened, the anterior acales divided; middle nud himer too of equal length; tarsus much longer than either; tail very short, fasciculated; the tipa truncato and even. lix. J. scapularis, llorsf., Java. Andropadus (Sw.). - Bill very short, rescmbling that of Brachypus, but the upper mandible crenated near the tip ; neck with setaccous hairs; rictus bristled. Winga, tail, and feot as in Brachypus. (Sw.) Ex. A. vociferus, 'Ois. d'Afr.,' 106, f. 2. Hematornis* (Sw.). -Head crested; bill short; rictua bristled. Fect short, lateral toes unequal, hinder too shorter than the tarsus, which is equal to the middle toe. Wings and tail rounded. (Sw.) Ex., $H 1$. chrysorthcews, 'Ois d'Afr.,' 111, M. 107, f. 2.

I'ricophorus (Temm.).-Culmen gradually arched; oostrils and base of the bill surrounded with lengthened slender hairs; gape very strongly bristled; margins of the mandibles white; feathers of the crown and chin elongated. Nape of the acck with several conspicuous lengthened bristles, considerably cxceeding tho surrounding feathers. Feet short. Tarsus louger than the hind toe, and feathered beyond the knees; inner toe shortest. Winga and tail moderate, the former with the three first quills much graduated. Ex., T. oliraceus. (Swainson, 'Birds of West Africa,' i. 204.)

Phyllastreyhus (Sw.).-Bill as loog as tho head, strong, the tip rather hooked; rictus strongly bristled: frontal feathers small, compact, directed forwaris, and compressed on the baso of the bill. Wings and tail moderate, rounded. Fect short, strong, robust; tarsus and middle toe of the same length; lateral toes unequal, the inuer ahortest: binder toe shorter than the inner one; anterior tarsal scales divided. (Sw.) Ex. P. Capensis, 'Ois, d'Afr.,' 112, f. 1.

Icteria (Vieill.).-Bill with the general form of that of Brachypus, but the culmen more elersted and arched, and both mandibles entire. Wings and tail rounded ; taraus cousiderably lengthened aud strong. Joner toe the ehortest; middle too very long. Natives of America. Ex. 1. polyglotta. (Wilson, pl. 6, f. 2.)

Sub-Family Myotherince (Myiotherince), Ant-Thrushes.

Bill straight, somewhat cylindrical; the tip suddenly bent down or hooked.

Dasycephala (Sw.).- Bill as long as the head, straigit; tip abruptly hooked, baso wide, the reat somewhat cylindrical; gonys strong, saceuding ; uostrils and front defended by stiff feathers and bristles, pointing in different directions; rictus strongly bristled. Trarsus leagthencd, slender; lateral scales nunerous, small, oval; tocs and claws slender; joner too shortest; outer too connceted to the middle fas far the first joint; hind claw large. Wiugs and tail rounded. Ex. D. rufescens. ('Birds of Brazil,' pl. 76.)

Myiohera (JII.).-Fect leogthened, rather stout; lateral scales of tarsus io an cntire piece; claws not broad, nor greatly curved. Bill as in the small Thamnophili. Wings short. Tail moderate, rounded.

Sub-Genera-Myiothera.-Tnuer toe longer than the outer, and cleft to its base; outer toc with its first joint united to that of the middle toe; the tarsua with the anterior scales divided. Drymophila (Sw.).Inner toe shorter than the outer, which is only slightly connected to the iniddle; tarnus (trpicalls) very amooth; all the scales entire. (Sw.) lix. J' lomgipes. ('Yool.', 111., ii. 23.) Brachypterix (IIorsf.). [BracirrETFRYX] Myiocincla (Sw.).-Legs strong; inner too longer than the outer; all the tarsal scales divided; anterior claws small; hinder claw nearly atright, and as long as tho toe. (Sw.) Ex. M. Colma, 'E'al.' 821. J'ithys (Vicill.).-Feet syudactyle; the inner lateral too shortest; the outer united by its first and second joint to the middle too; all tho tarmal scales entire. Ex. P '. albifront. (Vicill., 'Cal.,' pl. 129.)

Mr. Swainan remarks that Crotomus, Formicivora, and all the other amall Myiotherer, having the feet weak and the tarsal scalcs and clawa similar to those of Thamnophilus, ho thinks it better to refer them to that group; but, as it has not been analyaed, ho does not, in the 'Clanaification of Birds,' incosporate thone two sub-genera, althougha proposed by himelf some years ago. ('\%oological Journal,' vol. i. p. 301 ; On the matural Aftinitiea that conaect the Orders and Families of Birdn," by Mr. Vigors.)

Mr. Vigorn observes that the line of eomection between Themnophitus and Myiothera is fully cutabliabed by the intervention of soveral forma gradually panning into each other, such an l'ormicirora, trotomus, nud Diymophila. ('Linn. Trans,' vol. xv.)

Pitts (T'emm.).-libll atroug, thrush-liko ; the culmon gradually curved; nustrila nearly anked: winga moderato; the first and second quilla but slightly gradumted. Tail remarknoly short, almost hin hy the covers Feet very long, pale, the scales nearly entire; inner toe alightly aloorter than the outcr. India nud Auntralin, (Sw.) Ex. I'.gigas. ('I'l. Col.,' 21\%.)

Sub-Genera-Chlorisoma (Sw.).-Bill m in Pitta, but somewhat thieker; nostrila protected and nearly covered by incumbent festhers; rictus bristlod. Wings rounded; the four first quills much graduated. Tail moderate or lengthened, graduated. Feet strong, rather leagthened: the inner toe acarcely shorter than the outer. India. (Sw.) Fix. C. thalasina. 'Il'. Col,' 401. Grallaria (Vicill.).-Bill thrushlike, on in Pilla. Wings rounded; tho two first quills graduated, the

[^4]first half as long as tho second, tho three next nearly equal. Tail short and rounded. Legs very long: tho tarsus slender, palo; the anterior acales divided, the lateral scales (typically) ontire; lateral toes nearly equal. Ex. G. Rex. 'Jinl.,' 02.

Mr. Swainsou remarka that it appears to him that Chameza (Vig.) is more an aberrant specien of Grallaria than a distinct type in the genua Pifta, the only specion known chiofly differing in having the tail longer and the laternl scales divided.

Cinclus (Bechst.).-Bill moderate, rather slender, very straight, considerably depressed; tip absolutely notched; gonys ascending. Nostrils naked, membranaceous; the ajerture very amall and linear. Wings moderate, rounded; the first quill apurious. Tail very short, oven; feet large, very strong, palo; the lateral tocs equal; tarsal scales entire and smooth. (Sw.)

The Cincli haunt the bank of clear streams, rejoicing in the vicinity of some tumbling cascade hurrying over a rooky declivits. They go into tho water till they are quite aubmerged, walk on the bottom of the stream, and there seek their insect food. M. Temminck states that. When in this situation they open their wings and constantly agitate them. Their feathers are, he says, furnished with an oily matter for this purposo, like the fathers of ducks; nod adds, as an 'on dit,' that when thus walkiog they appear surrounded with air-bubbles, which render them very brilliant.
C. aquaticus, C. melanogaster, and C. Pallasii are native of Europe. M. Temminck expresses a doubt whether the second is a distinct apecies; and refers, with some slight doubt, C. Pallasii of the Himalays Mountains to the third. Ho states the geographical distribution of C. Pallasii to bo the Crimea and other parts of European Rusaia, and says that it is very common in Japan, where it is asmed Kawagaras.
C. aquaticus, the Water-Onzel. It is the Lerlichirollo and Merlo Aquatico of the Ttalians; Torlo de Agua of the Spaniards; Mcrlo d'Eau and Aguasiere at Gorgo Blanche of the French; Watnstare of the Swedes; Povodni Koss of Scopoli ; Fosse Fald, Fosss Kald, Quærn Kald, Stroem-Stær, and Beeke Engl, of the Norwegians: Wasser-Amscl, Bach-Amsel, and Der Hochkörfigo mittlero und Nordische Wasserschwiitzer, of tho Germans; Waterspreous of tho Netherlanders; Mwyalchen y Divir of the Welsh; and Water-Crow, Water-Pyet, Water-Piet, Dipper, and Bessy-Ducker, of the British.

Wiater-Ouzel (Cinclu* aquaticus). Adult and loung of the Year.
Malc.-Upper parts deep brown, tinted with ash-colour; throal, front of the acek, and breast pure white; belly rusty; bill blackish; iris pearl-gray; feet horn-colour. Length rather moro than 7 inches.

Female-Upper part of the head and back part of the neck ahh-brown; leas white upon the breast; lower parts yellowiah rusty.

Young of the Year distinguiahed by the gray feathers which cover the head and the nape; feathers of the back and rump fringed with blackish; those of the wiogs with white towards the end; the white of the lower parts extends to the middle of the belly and towarda the abdomen; but all these white feather'a are finely varied with brown and ash-colour.

It is found in Sweden, Scandinavia, Siberia, Russia, Germany, the Alps, the Pyreneea, Holland (rare), Spain, Italy, Englaud, Scotland, Walea, and Ireland, and in the vicinity of Trebizond, in Asia Minor.

With regard to ita habita, Mr. Gould aays:-"As far aa the fact of its submeraion goes, we have ourselves many times witnessed it; but have never been able to mark unobaerved the actions of the bird under water, ao as to gay whether it ia by a powerful effort that it keeps itself submersed, or whether it is completely at its ease, as some have asserted. The Water-Ouzel is a snirited and reatless little bird, full of life and activity, flitting from atone to stone along the borders of the streams ; and it is especially fond of perching upon any rock that happens to be elevated in the centre of the current, where, conspicuoua by its white breast, it may be observed dipping its head and jerking its tail in a thanner not unlike that of the wren, at one moment pouring forth a lively twittering aong (and that even in the depth of winter, when the earth is covered with snow), and at the next diving down, and rising again at a considerable distance. When so disposed, ita flight is straight, low, and rapid; in fact, much like the Kingfiaber; and it is equally solitary in its habits. It is however aeldom aeen in the aame aituationa as the Kingfiaher, the latter being a frequenter of atreams which flow through a fertile country, while the Water-Ouzel is peculiar to the rapid and limpid atreams which deacend the mountain aides and run through glena at their base." ('Birds of Europe.')
The food of this species consists of land and water insects and their larvo, Ephemerw, Phryganew, \&c., and fresh-water Testaceoua Mollusca. Mr. Macgillivray fouud in their atomachs beetles and the animals of Lymncece and Ancyli. The Scotch persecute it under the impression that it feeda on the spawn of the salmon. The justice of this persecution has been doubted.
Fissurea of rocka, crags, and rough atones ars selected as the locality for the curious nest, which is domed, and aimilar with regard to materiala to those which compoas the nest of the wren. "It builds early," obaerves Mr. Yarrell, "and conceala its large nest with great art. If a cavity in a moss-covered rock is chosen, the nest ia tormed of a mass of closely interwoven moss, 7 or 8 inches deep, and 10 or 12 inchea in diameter, with a hollow chamber in the centre lined with a few dry leaves, to which acceas is gained by a amall aperture through the moss on one side. Sometimes the nest is placed under a projecting atone, forming part of a cascade, and behind the sheet of water that falls over it. The egga are from four to gix in number, measuring one inch in length by nine linea in breadth, pointed at the smaller end, and white." ('British Birds.')

Nest of Watcr-Ouzel (Cinclus aquaticus).
Pennant's Penrith Ouzel is probably a young Water-Ouzel of the first ycar.

Mr. Gould, in his 'Birds of Europe, atates that, since the publication of his 'Century of Birda from the Himalaya Mountains,' he had received specimens of the young as well as of the adult, in consequence of which his plate in the 'lirds of Europe' is rendered more complete. He adda that M. Temminek had favoured him with npecimena of the Japan Water-Ouzel, which differcd so alightly from those killed in India, as not, in Mr. Gould's opinion, to admit of their being separated.
NAT, HIST. DIV. FOL, IH.

Thers is an American speciea, Cinclus unicolor (Bonap.), C. Mexicanus (Sw.)
Sub-Family Merulince (True Thrushes).-Wings more langthened and pointed. Bill notched, with the culmen gradually curved to the tip, which is bent, but not hooked over the lower mandible. Feet formed both for perching and walking. (Sw.)

Petrocincla, Vig. (Rock Thrushea).-Bill thrush-like: tip of the upper mandible abruptly bent down and nearly entire. Wings moderate; the first quill spurious; the gecond shorter than the three next, which are equal and longest. Tail even; anterior acales divided; lateral toes equal ; claws amall, but alightly curved.
P. saxatilis, the Rock-Thrush, Merle de Roche of the French, Turdus saxatilis (Gould), is a native of Europe. It inhabits rocky and mountainous countries. It is found in the Uralian Mountaina, the Alps, and Pyrenees. It also inhabits Gernany, France, Switzerland, and the Tyrol, Spain, Sicily, Turkey, the Grecian Archipelago, and Algeria. It has occasionally been shot in Englaud, and on that account is mentioned by Yarrell in his 'British Birds.'

Sub-Genus Petrophila (Sw.)-Bill thrush-like: the culmen and tip of the upper mandible gradually bent and entire. Winga and tail as in the last. Lega pale; anterior scales entire; lateral toes unequal; inner shortest; claws moderate and fully carved. (Sw.) Ex. P. cyanocephala. (Gould, 'Cent. of Himal. Birds.')

Merula (Willughby). [Blackbird.]
Orpheus (Sw.).-General atructure of Merula. Bill more curved in the culmen; the notch amall, or nearly obsolete; rictal bristles rather atrong. Winga rounded; the three first quills graduated. Tail lengthened, graduated, or rounded. Inner toe manifestly shorter than the outer. Ex. O. Polyglottus. (Wilson, pl. 10, f. 1.)

Sub-Genus Cossypha (Vig.).-Genersl structure of Orpheus, but the winga more rounded, and the tail less ao ; rictua amooth. Africa only. Ex. C. leucoceps. (Sw., 'Birda of West África,' 1, pl. 32.)

Chetops (Sw.).-Bill moderate, thrush-like, notched; nostrils basal, large, naked, membranoua, the aperture lateral and linear; froutal feathers rigid, the shafta composed of bristles; chin-fcathers the same, but weaker; rictus bristled. Wings very short and rounded. Tail ratber lengthened, broad, convex, aoft, and alightly rounded. Tarsi very long and strong; anterior scales divided; lateral toes unequal ; claws amall, obtuse, and alightly curved, the three anterior of equal aize. Africa. (Sw.) Ex. C. Burchellii. (Pl. 'Col.,' 385.)

Sub-Family Crateropodina, Babblera.-Lega remarkably long aud strong, with the claws but slightly curved. Wings ahort and rounded. Tail large, broad, graduated, and very soft. Plumage lax. Bill compressed, atraight, hard, the tip nearly entire. (Sw.)

Pellorneum (Sw.).-Bill moderate, straight, somewhat conic; tip notched; gonys ascending; frontal feathers, small, rigid, directed forwards; rictus bristled. Wings very abort, much rounded. Tail moderate, graduated. Tarsus and middle toe of equal leogth; lateral toea much ahorter and equal; hinder tos shorter than the taraus; anterior claws very amall, and but alightly curved; tarsal scales hardly divided. (Sw.) Ex. P. ruficcps.

Crateropus, Sw. (Ianthocincla, part).-Bill nearly as long as the head, more or leas atraight from the base, much compressed, obsoletely notched; rictus bristled; frontal feathers rigid. Wings ahort, rounded. Tail large, broad, aoft, and rounded. Feet very large aud atrong; tarsus lengthened, the anterior scales divided; lateral toes nearly equal; hind toe large, nearly as long as the middle toe. Pluange lax, boft. (Sw.) Ex. C. Reinwardii. ('Zool.,' Ill., i. 30.)

Giallina (Veill.).-Bill aleuder, atraight, rather cyliudrical above; the sides very little compreased; base broader than high; tipa of both mandiblea distinctly notebed; nostrils naked, basal ; rictus with a few bristles. Winga very long; first and aecoud quills graduated, four next longest. Tail lengthened, even. Feet strong, formed for walking, black; anterior toea divided, the rest cutire; latersl toes equal; middle toe and claw short, very little longer than the hind toe. Australia. Ex. (i. melanoleuca. (Vieill., 'Gal.', pl. 150.)
Sub-Geuus Cinclosoma (Horaf. and Vig.).-Bill very straight; culmen and gonya equally curved towarda the point, which is alightly notched. Winga very ahort; the two first quills graduated; the three next longeat, and of equal length. Tail lengthened, broad, graduated, the feathers narrowed towarda their tips; uuder tail-coverts very long. Feet moderate; inner toe longer than outer. Australia. Aualogous to Accentor among the Sylvialle. (Sw.) Ex. C.punctata. (Shaw, 'Zool. of Nat. Hiat.', pl. 9.)
Malacocivcus (Sw.).-Bill nore or less curved, by being elevated at the base, having the sides much compressed, and the culmen high and arched; the tip almost entire, aud nut suddenly bent over the lower. Feet very large. Tail goft, graduated, generally lengthened. (Sw.) Ex., M. striatus. ('Zool.,' Ill., ii. pl. 127.)

Sub-Genera.-Megalurus (Horaf.).-Bill alender; rictus bristled. Wings very short; the two firat quills graduated, the four next all of the same length, and longest. Tail leugthened, graduated; the feathera narrow. Feet very large and atrong; toea leugthened; the inner toe rather longer than the outer; clawa alender, and but alightly curved; anterior acales divided, lateral, entire. Ex. M. palustris. Pomatorhinus (Horsf.).-General structure of Cratcropus; but both mandibles of the bill curved and cutire, and the wing ahorter and much more rounded; four first quills graduated. Tarsal scalcs
entine; inner toc rather shoster than the outer. Ex., P. nontanus. Timalia (Horsf.). -Ilumage lax. Bill straght, rather hhort, much compressed; culmen high and anched gradually; tip ohsoletely notched or untire; commissure curved. Wings short, rounded. Thil moro or leas lengthed, grambited. Feet atrong; lateral toes nenrly equal. Indin, Australin, Africa (Sw.) Bx. T. Horacica. ('Il. Col.,' T6.)

Pferoptochus (Kittlitz). - Feet of extraordinary size and thickness; all tho anterior toea nearly equally long ; clawa long, sle nder, slightly curyed. Tail consisting of fourteen fenthers, rounded and carried enect. Wings very short. lRepresenting Menura nud Orthonyx. Western tropical America only. (Sw.) Iix. P.meyapolius. (Kittl., pl. 4; 'Zool.,' 111., ii. pl. 117.)

Sub-Famity Orioliner, Orioles, - Bill thrush-like, as long as tho head, broad int the base, compressed beyond; the base and gape devoid of bristles; nostrils naked, aperture large. Wings lengthened. liumpfeathers thick. Fateral toes unequal. (Sw.)
/honacobins (Sw.).-Habit aud general structure of the Craleropue. Bill lengtheaed, alender; the cuhmen arched from the bnse; the tip hooked and nutehed; nostrils large, naked, inembranaceous; the aperture large, oval, terminal. Wings remarknbly short and rounded. T'ail moderate, bromel, cuneated. Jeet very largo nud atrong; lateral toes equal; claws sleader, ncute, slightly curved. America only. (Sw.) Ex. I). rociferuns ('Zool.,' Ill., ii. pl. -2.)

Scriculue (Sw.).-Bill rather stout, resemuling that of Oriolus; nostrila naked. Wings modernte; two first quilla equally craduated; third nearly as loug as the fourth. Tail moderate, oven. Feet strong, robust; tarsus much longer than hind toe; inner ahortest. Australia (Sw.) Ex. S. chrysocephalus. (Lewin's 'Birds of New South Wales, p. 1.)

Oriolus (Linn.). - Bill ans long as the bead, bromi at the base; tip distiuctly notched, and somewhat hooked; nostrils short, nearly naked; nperture lateral, large, and oval. Wiags rather lengthened; first quill very short; second not quite so loug as the thiri, which is generally the longeat. Tarsus rather short, longer than the hind toe aud claw; anterior acales divided. (Sw.)

Woods and thickets are the linunts of tho Orioles; and there they live in pairs, congregating howerer for their autumnal migration. Thcir nesta are very artificially framed, and constructed at the extremities of the branches of higl trees; insects, with different kinds of berries and other soft fruits, form their food. The prevailing colour of the plumage of the males in yellow, and this charncter is constant in the grenter number of species knowa. The females differ much from the males, their plumnge exhibitiug grecnish or tarnished yellow tints; and the young in early life always resemble tho females. Their moult is aimple and orlinary.

They are found in Asia, Africa, islands of the Iudian Archipelago, and aouthern and casterm Europe.
O. galbula, the Golden Oriole. This is supposed by Belon and others to be the Xicopiav of the Grecke; Galgulus, I'irco, and Oriolus of the Romana, and the Picus of which Pliny (book' x.c. 33) spenks as suspending itd uest on a twig of the topmost branches of a tree, after the manner

(bolden Oriole (Oriohlisg galbula).
Lower figure, mile; upper figure, female.
of a cup. It is the Becqusfiga, Brusola, Galbedro, Garbella, Giallone, and Gravolo Gentilo, of the Italians: nud Rigogolo Commune of the 'Stor. degl. Uec.'; Turiol of the Spanish : loriot, Compere Loriot, and Orio, of tho French; Celbe Rache, Gelber Pirol, Der l'yrold, Wiedewal Ec, of the Germana and Netherlawiers; Goutmerle of the Dutch; Witwall of W"illughby and llay; and Fwyalchen Felen of the Welsh.

Male.-Golden yollow, a blackish brown spot between the eye and the bill; wings and tail black; a gellow apot on the quille, not far from the middle of tho wing when closed; and the tail-feathers terminated with yellow; bill reddish maroon; iris red; feet bluiah gray. Length rather more than 10 inches. Mr. Iloy agrees with Mr. Yarrell that tho male does not obtain its brilliunt yellow and black till the third year.

Female.-Greenish olive abovo; grayish whito with a yellowinh tint bclow, where the plumage is marked by somewhat distant grayish brown short stripes or dashes disposed longitudinally; wings brown bordered with olivaceoua gray; tail olivaccous tinged with black; yellowish beneath with a brownish black mark, somewhat in the form of an irregular Y ; no dark streak behind tho bill and tho eye.

The Young of the Year resemble the female; but the longitudinal stripes of tho lower parts are more numerous and deeper in colour; bill blackish grny aud iris brown.

Variety, with black spots on a brilliant yellow ground.
The Golden Oriole is, upon the whole, a sly birl, haunting louely groves and thickets on the skirte of woods, excepting in the fruit season, when it always frequents orchards, to the no small loss of tho owner. It is difficult to get near them, though they are gometimes approached by the sportsman under the deception of his imitative whistlo; but it requires great accuracy both of lips and ear to perform this fraud, for the least mistake, or one false note, will send the bird off nt once. The food consists of insects and their larve, berries, and fruita, among which figs, grapes, and cherries are favourites. The whistle of the Oriole is loud but flute-like, and Bechstein expresses the sound by the word 'puhlo.' The cup, or rather saucer-shaped nest, is formed of wool and slender grass-stems, and placed in the fork of a branch, usually towards its extremity. The old French quatrain says :-

The eggs aro generaliy four or five, purplish white with a fow ashgray and claret spots; and the femalo watches over them with such maternal care, that it is sail she will suffer herself to be taken rather than abandon them. In this country nesta haro been taken in Suffolk and Norfolk.
Thia bird is found in Sweden, where it occasionally breeds; some of the districts of Jinrsia, Germany, Holland, Fmuce, Spain, and Italy; Malta (on the southward migration to Africa), Greece, Egypt, Tunis, Tripoli, and the whole north coast of Africa; 'Trebizond and Sunyrna. In a noto to ['enpant'a ' British Zoology', by J. L., it is stated that it is common in Iadia under the name of Pilluck or Pecluck, and that drawings of both bexes were sent from Oude to Lsord Valentia; but theso wero probably specimens of 0 . aurcus so often received from Jadia, a species which, though in seme degree like tho O. gallula, is distinct from it.

In our own country the Golden Oriolo has been found in IIampahire, Devonshire, Cornwali, nenr Manchester, near Lancaster, near Walton in Surrey, and near Oodalnaing, at Cheshnut (llerts), near Saxmundham in Suffolk, in Norfolk, at Tynemouth in Durham, and in South Wales. it las been neen, though rarely, in Ireland, but never, as far as we can learn, in Scotland.

The bird can only be considered as an occasional summer visitor in Britnin, where it first appears in April, returning in September. Prince
C. L. Bonaparte states ('Specchio Comparativo') that it arrives near lome in the spring, and departs in the summer.

The Golden Oriola gets very fat after its summer feed of fruits. Willughby saw many of them in the poulterers' shops at Naples, and says that "it hath very delicate flesh, and yields wholesome nourishment."
Sub-Genns Trena (Horsf.).-Bill of Oriolus; but the culmen much raised and considerably arched from the base, rather hooked at the tip. Nostrils partly defended by short plumes, which eover the membrane. Rictus slightly bristled. Wings and tail as in Sericulus: feet small; tarsus very short, scarcely longer than the hind toe and claw; anterior and lateral scales entire; inner toc rather shortest : rump-feathers very thick, and slightly spinous. The species inhabit India. Ex. Irena Puella. (Horsf., 'Java.' 'Pl. Col.,' T0.)
Dulus (Vieill.).-Bill very short, much compressed, but with the culmen elevated and arched; commissure curved; nostrils as in Oriolus. Wings rather short; first quill not half so long as the second; third, fourth, and fifth longest; secondaries with the tips notched; tertials leagthened. Tail moderate, slightly forked. Feet as in Oriolus; elsws strong, broad, mueh curved. The species are uatives of South America. Ex. D. palmurum. ('Enl.,' 156, £. 2.)
Sphecotheres (Vieill.).-Bill rather short, strong, partaking of the structure both in Dulus and Oriolus; the bass broad; commissuro straight, gape very wide, extending beyond the eye. Nostrils naked, the aperture large and oval; wings, tail, and feet as in Dulus; tarsus hardly longer than the hind toe and elaw. The species inhabit Australia. Kx. S. virielis. (Vieill, 'Gal.,' pl. 147.)
M. Lesson, in his 'Table Méthodiqne,' makes the Turdnsinées, the fifth family of the Dentirostral Birds, consist of the following genera:-
Turdus (Linn.), including Merula, Turdus, and Ixos: Cinclus; Cinclosoma; Dulus; Sturnella; Timalia; Dasyornis; Jora; Pitta; Myiotherct; Drachypteryx; Girallina; Acridotheres; Psaroides; Mimetes: Oriolus; and Sericulus. The position assigned to the family is between the Ampelidees and the Menurees (Manura).

Prince C. L. Bonaparte, in Lis 'Geographical and Comparative List of the Birds of Europe and North America' (1838), places the Turdide between the Certhidee and the Muscicapida, and assigas to the first the following snb-families and genera.

Sub-Family a. Calamoherpina.

Cettia (Bonap.) ; Pseulo-luscinia (Bonap.); Locustella (Ray) ; Calamodyta (Bonap.) ; Cysticola (Less.) ; Erythropygia (Smith, Agrobates, Sw.); Calamoherpe (Meyer); Mippolais (Brehm.). These are for the most part formed at the expense of the genera Sylvia and Motacilla (Linn.).

b. Sylvinu.

Phyllopnerste (Meser, Phyllosconus, Boie); Melizophilus (Leach); Sylvia (Lath.); Curruce (Brisson); Nisoria (Bonap.); Accentor (Bechst.); Calliope (Gould) ; Luscinia (Br., Philomela, Sw.).

c. Saxicolina.

Dandalus (Boie, Hrythact, Sw., Rubecula, Br.); Ruticilla (Br., Phonicura, Sw.); Saxicola (Bechst); Fitiflora (Briss., (Enanthe, Vieill.); Sialia (Sw.) ; Petrocincla (Vig., part) ; Petrocossyphus (Eoie).

> c. Oriolinet.

Oriolus (Linn.).
e. Turdine.

Merula (Ray) ; Turdus (Linu.) ; Oreocincla (Gould) ; Mimus (Boie, Orqheus, Sw.) ; Cinclut (Bechst.).
f. Motacillince.

Anthus (Bechst.) ; Budytes (Cuv.) ; Motacilla (Linn.).
3. Parinar.

Regulus (Ray); Parus (Linn.) ; Mecistura (Leach, Paroides, Brehm.); C'alanophilus (Leach, Mystacinus, Brehm.); Ligithalus (Vig., Pendulimus, Cuv.).

h. Sylvicolinct.

F'arula (Bonap.) ; Trichas (Sw.); Vermivora (Sw.); Sciurus (Sw.); Sylricola (Sw.); W'ilsomia (Bonap.); Culicivora (Sw.).

Mr. C. R. Oray makes the Turlider (Turdus, Linn.) the second family of his third tribe (Dentirostres) of his second order (Passeres). The Dentirostres are placed by him between the Tenuirostres and the Conirostres, and the Turdide between the Luscinide and the Muscicapidne.

The followlng are the sub-families and genera into which Mr. G. R. Gray divides the Turfide:-

Sub-Family 1. Pormicorind.

Cleners.-Notodela, Less.; Eupetes, Temm.; Ajur, Less.; Dasycephala, Sw.; Pithys, Vieill.; lormicivora, Sw.; Myrmeciza, G. L. Gray; U'rotomus, Sw.; Malurio, Less.; Corythopis, Sundev.; Brachy-
pteryx, Horsf.; Macronus, Jard. and Selby; Tinactor, Pr. Max.; Formicarius, Bodd.; Chamaza, Vig.; Grallaria, Vieill.; Cissa, Bois; Brachyurus, Thunb.; Myiophoneus, Temm.; Hydrobata, Vieill.

Sub-Family 2. Turdince.

Genera:-Pctrocossyphus, Boie; Orocetes, G. R. Gray; Larvivora, Hodgs.; Bessonornis, Smith; Saxicolides, Less.; Chaëtops, Sw.; Geocichla, Kuhl. ; Zoothera, Vig.; Myiophaga, Less.; Oreocincla, Gould; Turdus, Linn. ; Merula (Ray), Boie; Mimus, Briss.; Toxostoma, Wagl.

Sub-Family 3. Timalince.

Genera:-Donacobius, Sw.; Pellorneum, Sw.; Aipunemia, Sw.; Crateropus, Sw.; Garrulax, Less.; Actinodura, Gould; Cinclosoma, Vig. and Horsf. ; Suya, Hodgs. ; Silia, Hodgs.; Tesia, Hodgs. ; Malacocercus, Sw. ; Timalia, Horsf. ; Pomatorhinus, Horsf.; --_? Paludicola, Hodgs.; Icteria, Vieill.; Turnagra, Less.

Sub-Eamily 4. Oriolinae.

Genera:-Dulus, Vieill.; Sphccotheres, Vieill.; Oriolus, Limn.; Mimeta, Vig. and Horsf. ; Analcipus, Sw.; Sericulus, Sw.; Oriolia, J. Geoff.

Sub-Family 5. Pycnonotince.
Genera:-Microscelis, G. R. Gray; Microtarsus, Eyton; Malacopteron, Eyton; Trichophorus, Temm.; Hypsipetes, Vig.; Fuhina, Hodgs.; Phyllastrephus, Sw.; IFcematornis, Sw.; Pycnonotus, Kuhl.; Andropadus (?), Sw. ; Trichixos (?), Less.; Setornis (?), Less.

Mr. G. R. Gray, with his nsual diligence and accuracy, gives the synonyms of all these genera; and observes, with regard to some of them, that Drymophila, Sw., has been used in botany; that Lepto. rhynchus, Menestr., was previously employed; Petrophila, Sw., used in botany; Cossypha, Vig., used in entomology, only the termination is there in us; Cichla, Wagl., previously used in iehthyology; Paludicola, Hodgs., previously employed in herpetology; and Micropus, and Brachypus, Sw., previously used in other branches of natural history.
Tho following true Thrushes belonging to the Linncean genus Turdus, are natives of Europe:-
Black Ouzel, or Blackbird, Merula vulgaris, Ray; the Ring Onzel, Merula torquata, Briss. ; the Migratory Ouzel, Merula migratoria, Sw.; the Black-Throated Thrush, Turdus atrogularis, Temm.; the Fieldfare, Turdus pilaris, Linn.; the Redwing, Turdus Iliacus, Linn.; the Missel-Thrush, Turdus viscivorus, Linn. ; the Song-Thrush, or Throstle, Turdus musicus, Linn.; Naumann's Thrush, Turdus Naumanni, Temm. ; the Pallid Thrush, Turdus pallidus, Pall.; White's Thrush, Turdus Whitei, Eyton; the Siberiau Thrush, Turdus Sibericus, Pall.; the Water-Ouzel, or Common Dipper, Cinches aquaticus, Bechst.; the Black-Bellicd Water-Ouzel, Cinclus melanogaster, Brahm; Pallas's Water-Onzel, Cinclus Pallasii, Temm.; the Iock-Thrush, Petrocincla saxatilis, Vig.; and the Blue Thrush, Petrocincla cyaneus, Vig.
Of these, the Water-Ouzel, or Common Dipper; the Missel-Thrush; White's Thrush (oceasioual only); the Song-Thrush; the Fieldfare; the Redwing; the Blackbird; and the Ring-Ouzel, or Ring-Blackbird, are Britisl.
T. musicus, Throstle or Song.Thrush ; Mavis of the Scotch. It is the Grive aud Petite Grive of the Freach; Tordo, Tordo Commune, and Tordo Bottaccio, of the Italiaus; Sing-Drossel, or Weiss-Drossel, of the Germans ; and Aderyn Broufraith of the Welsh.
This charming songster inhabits every country in Europe, haunting gardens and woods near streams or meadows. Dechstein says that iu Germany, as soon as the autumual fogs appear, the Throstles collect in large flights to seek a warmer elimate, the principal time of passage being from September 15 th to October 15 th, and the return about the middle $\mathrm{cr} \in \mathrm{ud}$ of March, when each pair seeks its own district. In Great Britain it is permanent, and spread over Eugland, Wales, Ireland, Scotland, and its islsnds. Russia, Denmark, Sweden, and Norway possesss it. In the south, besides Germany, France, Italy, and Greece have it. It has been seen in winter at Smyrna and Trelizond. Professor Nilsson states that it leaves Sweden for the winter, and comes farther south. Mr. Selby observes that snch visitors arrive in Britain with north or north-east wind, and, after staying a few days to recruit, move south ward.

Worms, insects, snails, and fruits, form the food of the Throstle. The common Gardeu-Snail (IIelix hortensis) and the Wood-Snail (IIelix nemoralis) are killed and eaten in great numbers by this species. Tho bird beats and bresks the shells against a stone to get at the animals. The nest is made of green moss generally, and fine root-fibres on the outside, and is lined within with cow-dung and decayed wood, the lining forming a cement so perfectly spread that it will hold water. Eggs four or five, of a light blue, the larger end haviug a few small black specks or spots. Time of incubation thirteen days. The first hatch generally cones forth in April, but the joung have beeu known to be out at the end of March. Thero are generally two broods in the year. Both the cock and the hen sit, but the former less than the latter. He often feeds her on the nest. A holly, a thick bush (a tall one is mostly preferred), a deuse and somewhat high shrub, or a fir is usually selected; but the bird has been known to breed iu an open
shed or tool-house, and does not neem to shun the neighbourhood of man. In $1 \$ 33$ a pair built their neat in a low treo at the bottom of Gray' 1 lun Gardena, gear the gates, where pansengera are going by all day long. The hen laid her complement of eggo, sud whs mitting on them, when a cat climbed up, and killed her on the nost. The cock immediately deacrted the place.

Hechatem ntates that in captivity the Throstlo in canily taught to perform airs For taking it he recommende n perela with a limod twig as tho beat mode of capturing a fine-tonsd malo: but in Soptember or October he aage that they may be caught in the water-traps, where they ropair at annrise nad suoset, so late that they bometimes cannot be scen, and the bird-catcher is only guided by his ear. He obsorves that when the birls enter tho water there must be no haste on the part of the fowler, because they like to bathe in company, and assomble sometimes to the number of ten or twelse nt once, by menas of a peculiar call. Beclastein tells us that the first which finde a convenient strean, and wishes to go to it, cries in a tone of surprise or joy, 'sik, sik, sik, siki, tuac, tase, tsac ${ }^{\circ}$: then all the thrushes in the neiphbourhool immediately reply in concert and repair to the place. The bath is cntered however with n good donl of circumsuection on their parts, nud they seldom venture till they have seen a Redbreast bathe without dinger. But the first that bathes is soon followed by othera, and they begin to quarrel nmong themselves if the bath is not large enough to nccommodate all satisfactorily. Bechstein further remarks that it is a good plan to have a tame birl ronning and fluttering on the huoks of the btrenin as a decos to attract them.
T. qiacivorus, the Missel-Thrush; Merle Draine of the French; Merula riscirora of Selby. It is also called in various parts of Great Britain, Mistle-Thrush, Gray Thush, Holm-Thrush, Screech-Thrush, Stormeock, and Shrite, The male and female of this bird exhibit little difference. The beak is dark brown ; the under mandible pale yellow at the base; the irides lazel; the top of the head and almost all the upper surface of the body nearly uniform clove-brown; winga and wing-coverts umber-brown; the latter broadly edged with woodbrown; the wing-feathers with n narrow edge of the samo colour; upper surface of the tail-feathera umber-brown; the broad inner web of each outside tail-feather with n patch of dull white; the second feather on each side with n smaller patch at the tip; the tail slightly forked; all the under surface of the body white tinged with yellow, nul covered with numerous black spots, those on front of the neck triangular in ahape, with one angle pointing npwards; the apota on the breast, belly, and sides round; under surface of the wings and tail gray; tarsi and toes palo brown; the claws dark brown. The wholo length of the adult bird is ahout 11 iaches,

This ia one of the largest of the British species, and although not very common anywhere it is very generally diffused. It is rather n shy bird, frequenting small woods and the high trees in hedges bounding large mendows. It remains in this country all the ycar, nod the male commences his nong frequently as early as Fcbruary. The name Stormcock in given him from him habit of aioging during btorm nad rain. It begins to build in April, and fixes its nest in the fork of a tree. The egga aro four or five in number, of a greenish whito-colour, spotted with red-brown; Bametimes the ground-colour is reddlish-white apotted with dark red-brown. Two broods are produced in the season. It feeds on woruna, slugs, \&c., alao fruits, especislly those of the inintletae, from which it derives its Finglish nume. It has been found in Scandinavia, lusain, and Iudia It is common in Germany, France, l'rorence, and Italy.
T. Whitei, Whites Thruah. This very mare bird is a native of Japan and Jara, and has been taken a few times in the british Islands. It wan first killed in lamphaire, nud named by Mr. liyton nfter White, the saturaliat of Selborne. It in the T. rarius of Temminck.
T. prilaris, the Fieldfare, or Gray Thrush, has the hend, hind neck, and wing gray ; foro part of the back chestuat ; apace before the cyes browninh-black; a whitioh line over the cye; fore neck nnd breast reddinh.yellow; the featherm tipper with a brownish-black elopgated trinneular apot; thono of the pides with lange duaky apota, and mar gined with white; lower wiog-coverta and axillary fenthern pure white. Young of the year with duller tiota, the feathers of the aiden light, with a pale brown or duaky border within the white margin. (Macgillivray.)

Thin bird is migratory in the Britinh Inlanda. It comes from the north, and in one of the latent npecien that makes it appearance. It seldom appeary much before the beginuing of November, and returns again at the end of April. In very acvere wentlaer they lenve theso imianda null go farther nouth; they aro known to go an far nouth and to the ant as Minorca, Sicily, Malta, Smyrna, and Virzerum. They shlom breed in this country. In Norway they buillitheir nemta on the pemee fir, and mevernl are found nenr together. They lay fire or aix "gen, clonely reacmbling those of the Blackbird; they are light blue, notelod over with apote of dark red-brown. Thin bird is well-known in Swedrn, Rinanja, and Siberia, where it in found only in the summer; in Pestand, Itumia, and Auntria it remaina the whole gear, but in Firunce anct the month of Fourone it in only nammer vinitast.
T. viama, thr Hodwing; Merula liza. Selby; Merle Mauria of Temminn* the led-Sided Thrumb, W'ind-Thruah, and Swine-jlipe, of the Einglunh. Like the lant this in a winter vinitant; it arriven in thackn about the midlle or end of October, drparting in the middle of May.

It has a beautiful note, and has been called the Nightingalo of Norway. It feeds on wormi, slugs, and berrics. Mr. larrell says it feeds on berries injurious to man.
T. ©orquatus, the ling.Ouzel: Merula forquata of Solby and Gould. It is alco called in this country Rock-Ouzel. Tor-Ouzel, Mountain-Blackbird, Moor-Blackbled, White-Broasted Black bird, and Jing-Thrush. The male has a yellow bill, the feet olivebrown, the plumage blackishbrown, the feathera margined with gray; a broad somilunar patch of white on the fore part of the breast. Female similar, but of a duller and lighter tint.

This bird is a summer visitor to the British Ielnnds; it arrives from the south in tho mooth of April, and departs in October. They are seen chiefly in the counties of Surrey, Kent, Essex, Suffolk, and Norfolk. It only occasionally breode in tbis conotry, and then more especially in the north; it builds its nest on or near the ground, and laym four or five light-blue eggs, specklod and spotted with reddishbrown. Its food coneists of snails, insects, fruit, hawberrien before it leaves for the winter, and iry berries when they return in tho spring.
T. aurigaster, Gold-Vented Thrush: Le Culdor of Le Vaillant; Ilcmatornis chrysorhaus of Swainson; Pycnonotus chrysorhaus, Thompson. This bird is a native of Africa, aud littlo is known of its habits. One specimen has been bhot in Iroland, and it therefore takes its rank as B British visitant. (Yarrell.)
T. erythrogaster is a native of the Himalaya, nad may be taken as an example of an Asintic apecies of Tturlus. The male is gray-cernlescent above; the cheeke, the sides of the neck, and the quills black; breast, nbdomen, and rump red; beak and tarsi black. The female differs in being carvlescent-brown, the lower part of the back obscurely banded with brown; neck in front whitish, marked with dark-brown; breast, nbdomen, nud rump reddish-white marked with' undulntions. Length $8 \frac{1}{8}$ ioches.

Turdus erythrogaster, male nad female. Gonld.

Mr, Gould ('Contury of Birds from the Himalaya Mountains') staten that this beautiful npecies exbibits a marked departure in the style of colouring from its snore typical congeners; and were it pot that its form dictated the situation in which it is retained, it would otherwise seem to be allied in many respecte to the genue Pcirocincla.
T. sfrepitans, Smith (Merula Letsitsirupa of the same), is a native of Africa The male has the front and top of lead brownish-gray ; occiput, upper aspect of neck, interncapulars, вcapulara, nad ahouldera deep yellowinh.gray, fnintly ahaded with browa; back, rump, and upper tail-coverta dirty ash-gray. Uncler parts white, tinted in places with ochre-yellow; mides of the neck, whole of the breast, Annke, and belly variegated with blackinh-brown pyriform anota, one on each feather, the large end reaching nearly to its point. Sides of the head white, elightly tinted with ochregellow, variegated below the cyes with three blackinh-brown bands; the foremont proceeda from the base of the lower mandible, the sccond from the middle of the under cyelid, and the third from the ontur nugle of the cye; the firat extends nearly borizontally, and the two others obliquely downararls and backwards till they unite with tho horizontal one. Primary wing.
coverts and primsry quill-feathers deep brownish-red, the latter tipped and edged externally with yellowish-white; the first two-thirds at least of the inner vanes of these feathers are of a clear buff-colour, darkest towards the shafts; secondary wing-coverts and secondary and tertisry quill-festhers dark grayish-brown, the outer vanes lightest, sll margined externally and tipped with dirty white. Eyes reddishbrown; upper mandible and tip of lower inferiorly as well as the clsws liver-brown; lower mandible elsewhere psle ssffrou-yellow, as well as the cutting edge of upper mandible. Feet and insides of the bill deep straw-yellow.

Figure rabust and rather short. Bill long and moderstely strong; upper mandible brosd and slightly depressed towards the base, narrow and distinctly notched near the tip; culmen between nostrils elevated and rounded, towards the point of the bill strongly curved; nasa] fossx large and membranous, the nostrils narrow longitudinal slits near to the edges of the mandible; wings short snd rounded, and when folded they reach over the first half of the tail; the first quillfeather rudimentary, the third rather the longest; the second and fourth of equal length, and scarcely shorter than the third; the fifth a little shorter than the fourth, snd the remaining primarics diminish in length successively. Tail short and slightly forked. Legs long, tarsi robust, anteriorly indistinctly scutellated, posteriorly entire; toes atrong, the inner and outer toes of the same length; claws stroug, much curved and pointed. Length from point of bill to tip of tail 8 inches 6 lines.

The female differing but little in colour, if at sll, from the male. (Smith.)

Turdus strepitans, male. Smith.
Dr. Smith states that immediately upon reaching Kurichsne this thrush began to appear in the thickets, and be continued to acquire occasionslly s specimen even in the vicinity of the tropic. It eeeks, he says, its food upon the ground, and, when so occupied, its resort is readily discovered by the natives from the ooise it makes iu Bcratching the ground, or in diaplaciog rubbish and decayed leaves which conceal the insects it is seeking. The name by which it is known in the country it inhabits is, he informs us, characteristic of the vigour with which it employs its feet, and the nesrest tranalation he can give is 'Oround-Scraper.'

Dr. Smith further remarks that the form of its bill, particularly towards the base, the length of its lege, and the shortness of its tail, are all characters which remove it from the more typical species of the genus Turdus; but yet there is in its atructure and babits what necessarily constitutes it a true thrush. ('Illustrations of the Zoology of South Africa.')
T. mustelinus (Gm.) is an American Thrush. It appears to be the Turdus melodus of Wilson and Tawny Thrush of Peonant, and is generally known as the Wood-Thruah. It is of a bright cinnamon-brown above, brightening into rufous on the head, and inclining to olive on the rump snd tsil; beneath whitish, thickly marked with pencilshaped dusky spots; vent pure white; orbits of the eye white; bill dusky-brown, slightly notehed, lower msndible flesh-colonred towards the base; legs and claws very pale flcsh-colour; iris dark chocolate. Jength 8 inches; alar extent 13 inches. (Nuttall).

Nuttall states that this solitary and retiring songster inhabits, during vammer, the whole continent from Hudson's Bay to Florida, and, according to his friend Mr. Ware, breeds as far south as the vicinity of Natchez, in the State of Mississippi. He remarks that it is not satisfactorily ancertained whether the species quits the boundaries
of the United States in winter, because the bird is then silent, and alwrys difficult of sccess. He thinks it probable that this Thrush may winter in the Southern States, as a young bird, gleaning insects and berries, had been caught in a garden in Boston on the 26 th of October.
But, wherever the Wood-Thrush may winter, it arrives in the Middle States from the 1et to the 15 th of April. Nuttall thus describes its song and habits:-
"At the dawn of morning he sanounces his presence in the woods, and from the top of some tall tree rising through the dark and shady forest he pours out his few clear and harmonious notes in a pleasing reverie, as if imspired by the enthusiasm of renovated nature. The prelude to this song resembles almost the double tonguing of the flute, blended with a tinkling, shrill, and solemn warble, which re-echoes from his solitary retreat, like the dirge of some sad recluse who shuns the busy hsunts of life. The whole sir consists usually of four parts or bars, which succeed, in deliberate time, snd finally blend together in impressive and soothing harmony, becoming more mellow and sweet at every repetition. Rival performers seem to challenge each other from various parts of the wood, vying for the favour of their mates, with sympathetic responses and softer tones; and, some wageing a jealous strife, terminate the warm dispute by kn appeal to combat and violence. Like the Robiu sad the Thrasher, in dark and gloomy weather, when other birds are sheltered snd silent, the clear notes of the Wood-Thrush are heard through the dropping woods, from dawn to dusk, so that, the sadder the day, the sweeter and more constant is his oong. His clear and iuterrupted whistle is likewise often nearly the only voice of melody hesrd by the traveller, to mid-day, in the heat of summer, as he traverses the silent, dark, and wooded wilderness, remote from the haunts of men. It is nearly impossible by words to convey any idea of the peculiar wsrble of this vocal hermit, but amongst his phrases the sound of "'airǒee,' peculiarly liquid, and followed by a trill, repeated in two interrupted bars, is readily recognisable. At times their notes bear a considerable resemblance to those of Wilson's Thrush, such as 'eh rbehu 'vrehu,' then varied to "'eh villia villis, 'eh villia vrehu,' then, 'eh villa villu,' high and shrill.
"The wood-thrush is always of a shy and retiring disposition, sppearing alone, or only in single pairs, and, while he willingly charms us with his song, he is content and even solicitous to remain concealed. His favourite haunts are low shady glens by watercourses, often rendered dark with alder-bushes, mantled with the trailing grape-vine. In quest of his insect prey he delights to follow the meanders of the rivulet, through whose leafy sbades the sunbeams steal only in a few uninterrupted rays over the sparkling surface of the runoing brook. So partial is this bird to solitude, that I have known one to sing almost uniformly in the ssme place, though nearly half a mile from his mate and uest. At times, indeed, he would venture a few fsitering low notes in an oak nesr his consort, but his mellowest morning and evening warble was alwsys delivered from a tall hickory, overtopping a grove of hemlock firs, in which the dimness of twilight prevailed at noon. The Wood-Thrush, like the nightingale, therefore, feels inspired in darkness, but, instead of waiting for the setting sud, he chooses a retreat where the beams of day can seldom enter. These shady retreats have also an additional attraction to our thrush; it is here thst the most interesting scene of his instinctive labour begins and ends, here he first saw the light, and breathed into existence, and here he now bestows his nest in a sapling oak, or in the next thick laurel or blooming alder, whose berries afford him an ample repast in the coming autumn. Outwardly it preseats a warm bed of withered beach or oak leaves, above these a layer of cosrae old grass and leaf-stalks is laid, tempered with a mixture of mud and decsyed wood smoothly plastered, so as to form a crust like the nest of the robin. The whole is then surmounted by a thin lining of the black fibrous radicles of the fern."

> Wood-Thrush (Turdus nusteTinus).

The same anthor states that the eggs, which are four or five in number, are scarcely distinguishable from those of the robin, and of
an uniform bright greendali-blue, deatitute of spota. Beetles, cater pillarn, and other insecte, and in autumn berrien, constitute the prin. cipal foorl of the species. Nuttall further statea that the young remain for wecks around gariens in queat of berries, and that they are particularly fond of those of the various species of cornel and biburnum. At this season, he sayn, they occasionally loare their farourite glena, and in their devious wanderings, previous to their departure, mometimea reuture to risit tho cumal guburbs of the city. The young, it appears, are easily rared, aud, like our Throatle, aing nearly us well in the cage as it their nativo wilds. ("Mamal of the (Praithology of the United States and of Cabada.')
MERUIATE [OPAL]
MERU'LIE: , genus of F'unyi, leriviag its name from Merula, a Inlackbird, somo of the species being black. The character of tho genus ia to have a veiny or sinuous plaited hymenium, with the folds conflecot with the pileun, and forming angular unequal perforations. lts only interest is derived from oue of the species being a common cause of dryrot. This plast, the M. lachrymans of Fries, and the Boletme lachrymans of Sowerby's 'Fungi,' t. 113, is very common on rottea wood in vaults and cellar, among the timbers in ships, and in siunilac damp situations where there is not a frec circulation of air. In general it is found withont fructification, its thallus, or spawn, being the only part developed, nud resembling a white, dry, cotteny matter, consolidated into a substance liko leather. The fructifiention is comprosed of fine yellow orange or reddish-brown plice, bo arranged as to hare the appearance of perforations, and occasionally producing "pendent processes like inverted cones:" it usually forms a circlo varying from 1 to 8 ieches in dianater, and when perfect the carities contain drops of clear water, which have given rise to the specific name. The means of preventing the attacks of this and other P'ungi upon timber is a free cireulation of dry air, or the impregantion of wood with corrosive anblimate, chloride of zinc, or creasote. [Dny-Ror.]

MERYCOTHE'RIUM, the mame applied by M. Bojanus to a geuus of Fossil Mammalia, founded on three fossil tecth, according to the authority of the person who sold thens to him. Bojsuus records one species under the name of M. Sibiricum.

Cuvier ('Oss. Fors.') remarks that if these teeth are really fossil, and from Siberia, this would bo the first nuthentic example of such remains belonging to the genus Camelus. Ho observes that their size, their form (which is longer than it is wide), and the absence of an 'arête,' or small cone, between the columus, leare no doubt as to theic generic character. Those of the Giraffe are more square, and with a small point, as in the stags; while those of the Ox have a cyliadrical 'arete,' or ridge. Cuvier further states that Bojanus, who has very well renarked this genersl resemblance, has also noticed some differences Which hare appeated to him sullicieat to justify a new uame for the animal ; but the French zoologiet observes that lojanus proposes this dintiuction with cloubt, and declares his readiness to renomes it, if it should be established that these teeth belonged to a camel, a gigantic sheep, or an antelope (tho only genera in fact which wat ridges between the columns).

Cuvier thinks that the differences of which Bojanus speaks aro owing to the skulls of the Camela examined by the latter, as points of comparison, being the heads of individuals much older than that to which the teeth in question belonged. A Dromedary only a little oller, and whose teeth were nearly in the same state of detrition, appeared to Cuvier to present no difference, gavo that of individuality. lle remarka that they are, as lojanus truly pointed out, the pennltimate and antepenultimate molara of the left side of the upper jar, and that it remain to show in what beds they were found, and to search for other bones of the animan, in order to see whether they will furniah any rpecific claracter. Cuvier concludes by stating that M. Marcel de Scrrea, professor of mincralogy at Montpellier, had just commmicated to him a drawing of a fossil fensur from tho cuvirons of that city, which reaembled much, ia the parts of it which were premerved, that of a Camel. [Cis.n.itss]

Notwithmanding Cuvicers opinion, which is worthy of all respect, there are thow who will thiuk that \mathbf{H} /erycotherium is a distinct genus. Sce Ihjrn. 'Nov. Aet. Acal. Leop. Nat. Cur.' xii. tab. 21, f. 1.8.
 lixogeas, consintiag of herbaccour and slatubby Plants inlabiting sacioun parta of the world, io very dry temperato climates, but especially the Cape of Good Hope, where the species are extrencly mancrour They aro succulent planta, with an inferior many-celled polyapermous ovary, numerous narrow petala, indefinite stamens, and a frite splitting into regular atellata values. Some of the planta aro مurnent, othern furmish alkaline matter, while a few are dincetic. Only fonr genera neem admikible into the order; the othera referred to it under the name of Picoidere chisely belonging to Tetregoniacer: but Mescmbryanthemum, one of the almitted gencra, nlone compreheads mom than 300 speciem. [Mgambmyanthemum.]

HHELEMBKYAN゙THEDUS, a genus of Plants belonging to the matural arler Mearmbmacer, or Picoudar. It han a calyx of $\overline{5}$ sepala, rarely of 2 or k, the sepala nuited to themaelves and to the ovarian; bolves noequal, unually leaf-formed; petaln inoumeratile, in onc, but more often in many serien, united manog thomaclves at the base; stamens inlefinite, digpoed in many meries, ingertad with tho petals at the top of the colya; orariun rduate to the calyx, tany.colled
inside; stigmas 4-20, but usually 5; capsule many-celled, opening ntellately at the apex, adnate to tho permanent calyx ; seeds numerous; evbryo curved, at the sido of a menly allowmen; cotyledon thick, very blunt. Tho apeciea are sub-sbrubs, rarely herbs, almost all uatives of the Cape of Good Hope. The leaves are usually opposite, thick, fleahy, flat, terete, or trigonal. Nower terminating the branches white, yellow, or purple, the greater part of which open in the heat of the sun, very few of them opening in the evening. The species are all known by tho name of Fig-Marigolds.

1, a ripe fruit ; 2, a rertical section of a flower.
M. nodifomem has an crectish stem ; lenres opposite and alternate, nearly terete, obtuse, ciliated st the base; fowers axillary, nearly sessile; lobes of the calyx very unequal, exceeding the petals, which are small. It is a native of Vigypt, Marbary, Corsica, and Naples, in sandy paces by the sea-side. It is used in ligypt for obtainiag barilla from its burnt ashes, and also in the manufacture of morocco leather. This and other species afford n grateful food to the cattle in the aris! desert districts where they are found.
M. crystallinum, Ico-Plant, is diffusely proeumbent, herbaceous; covered with large glittering papulio on every part, which makes the plant appear as if covered with ica; leaves orate, nlternate; stem clasping, undulsted; flowers axillary, almost sessile. It is a native of the Cape of Good Hope, Canary Islauds, and of Greece about Athens, in the sand by tho sea-sido. There are two varieties of this plant, one a bicnnial, which is said to bo the truc M. crystallinum, and the other an anmal, which is the Common Ice-Plant of the gardens, called by some botanists M. glaciale. The whole plant is covered with glittering white papulx that shine in the sun, whence it is called Ice-1'lant; others name it the Disuond-Plaut. Large quantities of the burnt ashes of this plant are imported by the Spaniarda for use in thoir glass-works, under the name of barilla Moradera. I/. emarcidum, according to Buruett, is fermented by the Ilottentots, when it becomess nareotic, and is cherred by thoso people like tobacco. M. allidum is an sweet-scented species from tho Cape.

Don, Dichlamydcous Miants; Lintley, l'egetable Kingdom.)
MESENTERIIPORA. [PoLYZon.]
MESFNTERY is that portion of the Peritoneum by which tho intes. tines aro attached to tho posterior wall of the abdomen. It consists of a doubla layer of fine collular and adipose tissue, which is attached to the nbdominal wall by a oomparativoly narrow origin, and becoming gradually wider, apreals out liko a fan, to bo attached to the whole length of the canal of the small intestines. Between its layers the arteries pass to the intestines, und the veins and lacteals return from them.

The other abdominal organs are attached to the walls of that eavity aud to each other by layers of membrane similar to tho Mesentery. Thuse which belong to the colon are called the meso-colon; these of the rectum the meso-rectum, \&c.; while those which connect tho stomach with the spleen and liver are named respectively the gastrosplenic aul the gastrohepstic, or lesser omentum. [Penitoseva.]
MFSSITINE: Sl'Al, Brännerite, a native Carbonate of Jron and Manganese. It occurs in ycllowish rhombohedrons. Its hardness is
$4 \cdot 0$, and its specific gravity 3.3 to 3.6 . It includes much that is called Rhomb-Spar, or Brown Spar, which becomes rusty on exposure to the atmosphere. (Dana.)

MESODESMA. [Conchacea.]
MESODESMA, M. Deshayes's name for a genus of Mollusca (Eyrycina, Lam.) [VENERID.s.]
MESOLE. [Natrolite.]
MESOMPHYX, Rafinesquc, a genus of Pulmoniferous Mollusca separated from Helix.

MESOPHLEEUM. [Bark.]
MESOTYPE. [NATROLITE.]
ME'SPILUS, a genus of Plants belongiug to the natural order Rosacece, and to the aub-order Pomece. It has the calyx 5 -cleft, the segments folisceoua; the petals nearly orbicular; the disc large, full of honey; the styles $2-5$, glabrous; the pome turbinate, open, 5 -celled; the endocarp bony. The species are trees, natives of Europe, and in a wild state are furnished with spines, which all disappear on cultivation. The flowers are larga, nearly sessile, and white.
M. Germanica, the Common Medlar, has lanceolate undivided leavea, downy beneath, and solitary flowers. This plant is a native of Europe and Siberia. It is found in Great Britain in bedges and thickets, in Surrey, Sussex, and Cheshire. It is cultivated on account of its fruit, which is eaten in a state of decsy. Its tasta and flavour are peculiar, and greatly cateemed by some persons. Da Candolle deacribes three wild varieties of this species of Medlar. The following are the garden or cultivsted varieties :-

1. Blake's Larga Medlar.
2. The Dutch, Common, Large Dutch, Broad-Leaved Dutch, or Large Germsn Medlar: It bears the largest fruit of any of the cultivated medlars
3. Stoneless, or French Medlar, has small obovate fruit, not much enteemed
4. Nottingham, Common, Small-Fruited, or Narrow-Leaved Dutch Medlar. It has an obovate middle-sized fruit, snd is the best of all the medlars.
M. Smithii, Smith's Medlar, has oblong elliptic serrated learea, pubescent on the nerves benesth, the flowers usually solitary. The pative conntry of thia plant is unknown, but it seems to hava the characters of a true species. It has white flowers, which are one-half smaller than those of the common Medlar. The stipules of the sterila branches are large and foliaceous.

The Medlar may be propagated by seeds or by layers, or by grafting upon seedling stocks of their own species or sny kind of Pomacea. Forsyth remarks that the kinda of Mespilus do better by grafting on their own stocks. The soil best adapted to the growth of the Medlar is a loamy rich earth, ratber moist tban dry, but not on a moist bottom. It may be grown either as atandard or an espalier. The general horticultural trestment should be aimilar to that of the apple-tree. For s further account of the pomaceous genera of Rosaccer, sce Роме.е.
(Don, Dichlamydeous Plants; Babington, Manual of British Botany; Loudon, A rboretum et Fruticetum Brit.)

METALS are elementary bodies constituting the great bulk of mineral substances on the surface of the earth. They are seldom found as minerals in their pure form, but uoited with various other elements. Different opinions are antertained as to their number, which arises from the circumstsnce that a faw substances are regarded as metallic in their nature by nome chemists, while by others their claim to this title is either doubted or denied. Thua by Barzalius a substance which he discovered and called 'sclenium' is regarded as a metal, but it is not so ranked by other chemista; again, the base of silica is by some classed as a metal, under the term ' ailicum;' whareas many consider it as more nearly allied in nature to boron, and call it 'silicon.'

Independently of these, the metals, including those which have been longest known, as well an some whose claims are even yet somewhat doubtful, amount to 48 ; they are as follows :-

Potassium	Titanium	Lead
Sudium	Tantalium	Iron
Lithium	Niobium	Cobalt
Barium	Palopium	Nickel
Strontium	Tungsten	Copper
Calcium	Molybdenum	Mercury
Magnesium	Vanadium	Silver
Lanthsrium	Chromium	Gold
Didynium	Urauium	Platinum
Cerium	Mangancas	Palladium
Yttrium	Arbenic	Rhodium
Erbium	Antimony	Iridium
Terbium	Tellurium	Rutherium
Glucium	Bismuth	Osmium
Aluminum	Zinc	Ilmenium (?)
Thorinum	Cadmium	Norium (?)
Zirconium	Tin	

Tho two last are doubtful.
The following are the general properties of the metals. With the single exception of mercury, they are all solid at the usual tamperature
of the sir, and the colour of most of them is grayish-white. Silver is of a pure white; tin, cadmium, platina, palladium, mercury, and iridium, ara white, with a slight shada of gray; antimony is whita, with a alight bluiah tint; cobalt, nickal, iron, manganese, and rhodium, are more gray; lead and zinc are of a bluigh-gray; chromium, molybden, and tungsten, ara of a pure gray colour; uranium is brown; gold, yellow; copper and tellurium, yellowish-red; \&c.

The lustre of metals is great and peculiar, sud is well known by the name of the 'metallic lustre; they differ however very considersbly in the degree in which they possess this property. Professor Leslie arranges them as follows, the first possessing the greatest lustra:-Plstina, silver, mercury, gold, copper, tin, and lead. When reduced to a state of minute division, as by filing, or by any other means, the metallic lustre is lost, but tha colour remains. The metals ara generally reckoned perfectly opsque, aven when reducad to thin leaves; but it is found that gold-leaf, which is $1-200,000$ th part of an inch thick, suffers light to pass through it, and it has a greeu colour; it is therefore extremely probable that all metale, if they could be rendered equally thin, would also be translucent. Tharo are soma metals, such as lead, tin, copper, and iron, whioh, when rubbed, emit a peculiar sud diaagreeable small. Thera are others which yield a peculiar odour when heated and vaporised; this is eapecially tha case with arsenic, and it occurs also with sntimony; the greater number of the matala are however inodorous; a few of them possess taste, but it is in all cases disagreeable.

Formerly great density and a specific gravity auperior to that of other bodies were conaidered as among the principal characteristics of metals. But the brilliant discoverias of Sir H. Davy have proved that substances which are even lighter than water-potassium and nodium for example-possess avery property which belongs to motals. The density of all tha metals has not been ascertained. Baginning with the lightest, their specific gravities are as follows :-

Nickel 8.279 Platinum . . . 21.530
The following metals are ductile or mallesble, arranged alpha-betically:-

Cadmium	Marcury	Potassium
Copper	Nickel	Silver
Gopld	Oamium (?)	Sodium
Iridium (?)	Palladium	Tin
Iron	Platinum	Zinc
Lead		

The following metals are so brittle that the greater number of them may lu reduced to powder:-

Antimony	Cobalt	Tellurium
Arsenic	Columbium	Titanium
Biamuth	Manganese	Tungsteu
Cerium	Molybden	Uraoium
Chromium	Rhodium	

The degrees of ductility and malleability of those metals which posseas those properties are very different; and soma metals are so totally devoid of them that they may ba broken by the hammer, and even reduced to powder. Ductility is that property by which metals are ausceptible of being drawn into wire, and malleability is that by which their form is changed, so that they are beaten into thin leaves under the hammer or extended by prassura.' The annexad tablea show that the metala mentioned in them do not follow in tha anma order as to those propertia.

Order of Ductility,	Order of Malleability.
Gold	Gold
Silver	Silver
Platina	Copper
Iron	Tin
Copper	Platinum
Zinc	Lead
Tin	Zinc
Lead	Iron

The ductility and malleability of metals ara in general considerably increased by heat, but only to a certain extent. There are soma metals which are malleable only between two very near degrees of temperature; such, for example, is the cass with zinc.

The degrea of teuacity of matala is indicated by the powers of their wires in supporting a given weight. The following weights are capable of being sustaincd by wires of the annexed metals about 0.840 of s line in diameter:-

There are only fow metala which are very hard when they are pure. The following table exhibits eome of them arranged according to the degree in which they possess this property, acconding to Professor Brande:-

Titanium	Nickel	Zinc
lhodium	Platinum	Antimony
Tungsten	Copper	Cobalt
Palladium	Silser	Tin
Manganese	Bismuth	Arsenic
Iron	Gold	Lead

M. Dumas however arranges the metals somewhat differcntly: his statement is as followa:-
$\left.\begin{array}{lll}\text { Manganese } & . & \text { Harder than tempered steel. } \\ \text { Chromium } & \cdot \\ \text { Rhodium } & \cdot\end{array}\right\}$ Not scratched by glass.

In this list Titanium is omitted, which is even harder than Mauganese.
The elasticity sud sonorousness of metale are generally associated with their degrees of hardness. There are not however any metals which are hy themsel ves either very elastic or sonorous; but there are alloys which possess these properties in a high degrce, as for example those of copper and tio.

The atructure of metaly is sometimea lamellar, sometimes granular, and frequently cryntalline; indeed, some of them, and more especinlly copper, occur cryatalliaed in the form of the cube and its varieties. Bismuth is a metal which mny be artificially crystallised in cubes with great facility.

The metals are good conductors of hent; they differ howerer greatly in the celerity with which it pervades them. According to M. Despretz, assuming the conducting power of gold as a standard, that of the undermentioned metals is as follows :-

Mensrs. l'etit and Dulong have determined with great care the calorific capreity of a grent number of metals for 1° of the centigrade thermometer, that of water being taken as unity. Their results aro-

Messra Petit and Dulong deduce from their experiments the important concluaions that the atoms of all substances have the anme
capacity for beat, or at least that thin capacity beara a very simple relation to the weights of the atoms.

Immediately that heat pervadea the metals, and before it fuses them, it expands them in all directions. Thim dilatation is different in each inetal; it varies also in the asme metal with every degree of the thermometrio acale; but from the freezing to the bolling point of wster it may however be regarded ns nearly conatant; between these points the linear dilatation for the following metals is auch as stated by the authoritien named :-

Zinc	laplaee and Lavolaler.	Dalton and Davy. 0.00296
Lead	0.00285	-
Tin	0.00217	0.00278
Silver	0.00191	0.00238
Copper	0.00172	0.00170
Gold	0.00147	0.00194
Steel (tempered)	-	0.00112
Steel (not tempered)	0.00108	
Platinum	$0 \cdot 00086$	0.00087
Mercury	- -	0.00835

The fusing point of metals varies extremely, as will appear from the following table from Turaer :-

Metals also differ in regard to volatility. Some metsla are volatilized at moderate degrees of heat; among these are mercury, cadmium, arsenic, tellurium, zinc, potassium, nnd sodium; but there are others which may be exponcd to the most intense heat of a wind-furnace without being st all vaporised.
lecquerel has given the following table of the relative conductiug powers of the metals for electricity, the wires of the several metala being of equal diameter:-

According to Pouillet, each of the following metals is positive with relation to that which follows it:-zinc, lead, tin, iron, antimony, bismuth, copper, mercury, silver, gold, tellurium, palladium, platina.

There are two metals only which are capable of being rendered permanently magnetic, nsmely, iron and nickel; the former of these only is met with possessing this property in nature; it is an oxide of iron, and commonly called the Loadstone. Most of the metals combine with each ather, and form compounds differing very materially in properties from their constituent metals. [Allors.]

All metals unite with oxygen, but with different degrees of facility and affinity; most of them combiue with more than one proportion of oxygen, and some of them with several proportions. The nature of the compounds formed is extremely various; thus some metals form with axygeu comparatively iuert compounds or mere oxides, such as iron and zinc; others, such as potassium aud sodium, when oxidised become alkalis; while arsenic and chromium form acids with this element. It has been already observed that some metals unite with several proportions of oxygen, snd these may be mere oxides, as in the case of iron; or oxides and acids, as occurs with manganese but there is no case of any metal forming a mere oxide and sn alkali with different proportions of oxygen, or an acid and an slksli under the same circumstances.
Chlorine snd metals combine with great facility, and the compounds are extremely important. Every metal is indeed susceptible of this combination; but chlorine possesses the remarkable property of forming in general volatile compounds with the metals. Bromine, sulphur, iodine, and phosphorus, combine with most of the metals.
The action of the air, of water, sad the acids, upon the metals, is extremely various, and depends greatly upon their respective affinity for oxygen. Few of them are oxidised in dry air, but many of them tarnish and some oxidise readily in it when moist, of which iron is an example. Some metals, as potassium, sodium, and manganese, decom pose water even at common temperatures, combining with its oxygen and evolving the bydrogen; others, as iron and zinc, require to be atrongly leated, or the presence of an acid, to .effect this decomposition.

Most of the metals are dissolved by acids, but platina and gold are exceptions, these and some others requiring chlorine, and that generally in the nascent state called aqua regia. Few metals however are acted upon by acids without the presence of water, and in some instances the water, in others the acid, and often both, suffer decomposition; and it is to be observed that no metal dissolves in acid unless it be either previously oxidised or acquire oxygen from the mixture of acid or water in which the solution takes place. The salts formed are in many cases of the highest importance in chemical investigations, in the chemical arts, and in medicine.

Metals are found either native or mineralised by combination with other substances. The common ores are compounds of the metals with oxygeo, sulphar, srsenic, carbonic scid, or silica. For exsmple, the oxides and carbonate of iron are the common workable iron-ores sulphuret of lead (called galena) is the lead-ore of the arts; arsenical cobalt is the principal source of cobalt and arsenic. Only a few of the metals occur native in the rocks : of these gold, platinum, iridium, and rhodium are, with a rare exception, found only uative. The bismuth of the shops is obtained from native bismuth. Native silver, native mercury, and native cepper are sometimes abundsnt, but are far from being the main sources of these metals. The other uative metals are mineralogical rarities. Perhaps we should except from this remark native iron, which constitutes large meteoric masses, though very rarely, if ever, seen of terrestrial origin. The ores of the metals are often much disguised by mixture with one another or with earthy materials. Thus a large part of the iron-ore worked in Great Britain is so mixed with clay or silica that its real character might not be suspected without some experience in ores.

Occasionally ores contain phosphate of iron, or some arsenical ores, or certain sulphureta, scattered through them, and on account of the difficulty of separsting the phosphorus, sulphur, or arsenic, the ore is rendered comparatively useless. By this intimate mixture of species the difficulties of reducing ores are much increased. When different ores sre not intimately commingled they are frequently closely disseminated together through the rack. We find ores of lead and zinc often thus associated; slso of cobalt and nickel ; of iron and manganese; the ores of silver, lead, and copper, and often cobalt and antimony; platinum, iridium, palladium, and rhedium.

Metals and their ores occur in the rocks in different ways :-

1. In beds or layers between lsyers of rock, as some iron-ores.
2. Disseminated through rocks in grains, nesta, or crystals, or extelded masses, as is the case with iron pyrites, cinnabar, or mer-cury-ore, and much argillaceous iron.
3. In veins intersecting different rocks, as ores of tin, lead, copper, and nearly all metallic ores.
4. Very frequently metallic ores, instead of occurring in true veins, are found in rocks near their intersection with a mass or dyke of Igncous rock, as in the vicinity of a porphyry or trap dyke. This is the case with much of the copper-ore in Connecticut and Michigan, as well ss with much silver-ore and mercury in South America, and elseWhere; and often the igneous rock itself contains the same metals disseminated through it.
The rock immediately enveloping the ore is called the Gangue. A Vein often consists for the most part of the rock material called the gangue ; and the ore either intersects the gangue in a continued baud,
nat. hist. niv. vol. imf.
or more commonly is partly dissemiusted through it in some places, and is continuous for long distances in others. Often a good vein gradually loses its charscter, the metal disappears, and the gangue is left; but by following on for some distance it will often resume its former character. The usual gangue in metallic veins is either quartz, calc-spar, or heavy spar; less frequently fluor-spar. Calc-spar is the gangue of the Rossie lesd-ore; heavy spar of much of the lead-ore of the Mississippi Valley; fluor-spar, in some places, of the lesd of Derbyshire, England. (Dana, 'Miner'alogy.')

The metals which are found pure, as well as the various compounds of metals which occur as minerals, will be found described in this work under the names of the metsls, The artificial compounds produced by the chemist, and the properties of the metals iu relatiou to one another, are treated of in the Arts and Sciences Division of this work.
METAMORPHOSIS, a term employed in natural history to denote those changes which plants and animals and their various organs undergo in passing from their simpler aud elementary conditions to those which are more complex snd compound. Thus the changes which an insect undergoes in passing from its egg-state through its caterpillar and cbrysalis stages are called its metamorphoses. [Insect.] Another remarkable instance of changes of form to which this term is applied is found in the Barnacles and Sea-Acorus. [Cirmipedin.] All animals exhibit these chsnges to a greater or less extent, and as far ss they have heen observed in particular families or species they are noticed in this work. [Amphibia; Crustacea; Acalephes; Mollusca; Marsupiata.]
The general results of these changes as exhibited in the forms which every species of plant or animal assumes at the period of its highest development, are called the laws or science of Morphology. [MORPHOLOGY.]
The same general chauges are observable in plants as in animals. In plants however neither their organs nor conditions of existence are so numerous and complicated as those of animsls, and consequently their metamorphoses are fewer. In animals each great group and each system, as well as each organ, has its peculiar mode of development and law of change, whilst in plants we find all parts resolvable into the two great elementa stern and leaves. Out of these two fundamental organs all the modifications of bracts, stipules, sepals, petals, stamens, fruit, and seed, are produced.

Although the development of the organs of plants is now recognised as a part of the history of the structure of each organ, this subject has an interesting history, and has been frequeutly treated of as an independent branch of botanical inquiry. The tracing back the history of an organ to its elementary condition is of moderu origin. It seems first to have occurred to Linneus, who in the second volume of the tenth edition of the 'Systema Nature,' published in 1759, thus expresses himself:-"Leaves are the creation of the present year, bracts of the second, calyx of the third, petals of the fourth, stamens of the fifth, and the stamens are succeeded by the pistil. This is spparent from Ornithogalums, luxuriant and proliferous plants, double Howers, and Cardui.'

In December, 1760, these propositions were sustained by Linnæus in s thesis called the 'Prolepsis Plantarum.' He commences by remarking that "as soon as leaves have expanded themselves in spring, s bud is observable in the axil of each. This bud swells as the year advances, snd in time becomes manifestly composed of little scales: in the autumn the leaves fall off, but the bud remains, aud in the succeeding spring swells, disengages itself from its envelopes, sud becomes lengthened: when its outer scales have dried up and fallen off, the inner ones are expanded into leaves, which are separated by a gradual extensiou of the young branch, and presently each new leaf is found to contain in its bosom a little scaly bud, which in the follow ing season will also be developed as a branch, with other leaves and other buds. Now, when we see a tree adorned with lesves, and in the bosom of these leaves provided with its little buds, we naturally inquire-of what do these buds consist? Can it be of rudimentary leaves, each with its budlets, the latter of other leaves and buds, and so on to infinity, or at least as far as the extension of the plant is likely to proceed? Nature organises living beings out of such minute particles, sad even from fluids themselves, that the best eye may in vain seek to penetrate far into her mysteries. I shall however endeavour to show that the composition of buds does not extend further at one time than provision for six years; just as, among animals, we find the little Folvox globator containing within the mother its children, grandchildren, great-grandchildren, and great-great-grandchildren down to the sixth generation."

The defects of this theory consisted, firstly, iu its not accounting for the modificatious of the pistil; aud, secondly, in the fanciful supposition that the organs of fructification are prepared six years beforehand, and that their peculiar appearauce is owing to the time of this development beiug anticipated by some unkuown but ever acting cause. It was this which probably caused the whole theory to be generally neglected. It was however maintained by Ludwig and Wolff; the latter of whom in particular improved so much upon the speculation of Linnseus, by rejecting what was fanciful and supplying to a certain exteut an explanation of the origin of the pistil, that his paper in the 'Novi Commentarii Academia Petropolitane' for

176s would undoubtedly have denerved to be considered tho beginning of a new era in butanical philosophy if it had been known to botanista. liut as it was introuluced into a paper upon the formation of the intextines of mimals, it doea not appear ever to havo attracted attention until it was discovered by Miquel a few years ago.

It is in raality to the celobrated poet Givthe that the hovour justly belongs of having brought before the world in a clear and philosophical manner the doctrine of all the parta of a plant being reducible to the axis and its appendages, and consequently of having proved, to use his own words, that vegetables "develop themaelves out of themgelves progresaively." Ily this means ho led to the discovery of the real lakes of structurs, and of the analogios which exist between one thing and another in different tribes of plants; thus laying the foundation of vegetablo comparativo anntomy by "eatablishing a principle in harmony with all the laws obeycd by millions of isolated facts."
A perfect plant consists of branches successively produced ont of each other from one common stock, and ench furmished with exactly the same organs or appendages as its predecessor. When the fructification is produced, an alteration takes place in the extremity of the fructifying branch, which is incapable, generally speaking, of further prolongation; bnt as the branches, before they bore fruit, were repetitions the one of the other, so are the branches bearing fruit also repetitions of each other. If a thousand sterile or a thousand fertile branches from the same tree aro compared together, they will be found to be formed upon the same uniform plan, and to accord in every essential particulor. Each branch is also, under favourable circunstances, capable of itself becoming a separate individual, as is found by cuttings, budding, grafting, and other horticultural processes. This being the case, it follows thst whst is proved of one branch is true of all other branches.
It is also known that the elementary organs used by nature in the constriction of vegetables are casentially the same; that the plan upon which these organs are combined, however various their modifications, is also uniform; that the fuids all move, the secretions all take place, the functions aro all regalated, upon one simple plain; in short, that all the variations we see in the vegetable world aro governed by a few sinple laws, which, however obscurely they may be understood by us, evidently take effect with the most perfect uniformity.

Hence it is not only true that what can be demonstrated of one branch is true of all other branches of a particular individual, but also that whatever can be shown to be the principles that govern the structure of one individual, will also be true of all other individuals. Whatever can be demonstrated to be true with regard to one single individual is truo of all other individuals: whatever is proved with reference to one organ is proved by implication as to the same organ in all other individuals whatsoever.
Moreover, the fact of one organ being readily transformed into nnother organ is in itself a strong presumption of the identity of their origin nud nature; for it does not happen that one pat assumes the appearanco and functions of another if they are origimally different. Thus, while the fuactions of the hand may be performed by the feet, as we know they occasionally are in animals, nothing leads the heart to perform the function or assume the appearance of the liver, or the liver of any other organ. This is one of the arguments of Linumus.

Tho first of the organs which are formed by a modification of leaves are the Bracts; theso bodios are intermediate between the lesves and the calyx. Their nuture is extremely various; sometimes they lave a grenter resemblance to the leaves, and nometimes to the calyx. In kome roses, sa Rosa canina, they aro obviously dilated petioles, to which a leaflet now and thon is attached; in other species, as R. spinasisima, they differ in no respect from the other leaves. In tho tulip a bract is occasionally present upon the scape, a little below the flower; this is nlways of a nature partaking both of the leaf and tho flower. In Abies ercelsa the purplo scale-like bracts often become gradually darrower, and acquire a green colour like lesves. It has been ntated by some botanists, that bracta are distinguishable from leaves by not producing buds in their axils; but the inaccuracy of such a distinction is apparent from a variety of cases. In Polygonua riciparum, and all viviparons plante, the flowers themselves are converted into buds within the bracts. Thereis a bud in the axil of every bract of the rose. Tho common daisy often hears buds in the axils of the bracta of its involucre; in which state it in commonly known in grilens by tho namo of 'hen and chickens.' In tho jermanent monster called Muscari monstronum a small cluster of branches covered with minute imbriented coloured learen rescmbling bracts is produced in lien of ench flower. Ilore all the parta of the fructification, instend of remaining at rest to perform their functiona, are attompting, but in vain, to become organs of vegetation; or, in other words, to assume that atate from which, for the purpose of perpetuating the species, they had ben metamorphosed by mature. lience it in elear that bracts cannot be exsentially distinguishod from leaver. [INvuluchess.]

W'ith the f'alyx legias tho flower properly so mamed; it forms what mome morphologiata call the outer whorl of tho fructification, and with it comancnesa a new order of learon, namely thone of the fructification, aaid to be diatinguinhed from the leaves of regetation by their conntanty verticilate arrangement, and by the want of buda in their axila. With the leares of the fractification all power of further
increase ceasos: the energies of the plant being diverted from increasing the individual to multiplying the species. Tho general resemblance of the calyx to the ondinary leavea of vegetation is well known: its green colour, and tendency to develop itself into as many leaves as it consists of divisions, especially in double roses, is so notorious that it need not be insisted on. In the case of Mesembryanthemum barbatum, noticed by Linomus, there is no difference whatsoever between the leaves of the calyx and those of the stem. The resemblance however between the calyx and the stem-leavea is often not apparent; but the identity of the calys and bracts is usually more obvious. In Cereus the transition from the one to the other is so gradunl that no ode can say where the distinction lies; and in numberless Ericas the resemblance of the bracts and calyx is perfect. The divisions of the calyx are also occasionally gemmiforous. A case is mentioned by Röper, in which one of the sepals of Caltha polustris was separated from the rest, and furnished with a bud. And Du Petit Thousrs speaks of a specimen of Brassica napus on whieh branches were produced within the calyx. A monster of Merreria parvifora has been seen of the came nature. (Lindley, 'Introluction to Botany,' ed. 2, p. 533.) From this it is apparent that the divisions of the calyx sre not only not distinguishable from bracts, but that there is ofton a strong teadenoy in the former to assume the ordinary appearance of leaves. There is however another point to which it is necessary to sdvert, in order to complete the proof of the identity of calys and leaves; this ing the verticillate arrangement of the former. Lesvee are either opposites alternate, or whorled; and these differences depend wholly upon their greater or less degree of approximation. If the leaves of a plant are rightly considered, they will be found to be inserted spirally round a commonsxis; that is to say, s line drawn from the base of the lowor leaf to that of the one above it, thence continued to the next, and so on, would have a spiral direction. When leaves become spproximated by pairs, the spire is interrupted, and the leaves are opposite; let the interruption be a little greater, and the lesves become ternate; and if the interruption be very considerable, what is called a whorl is produced, in which several leaves are placed opposite to each other round a common axis, as in Galium. Now a whorl of this nature is exactly of the nature of a calyx, only it surrounds the axis of the plant instend of terminating it. As we know thas onch approximations often take place in the stem in the direct line of growth, where the propulsion of the matter of vegotation exists in its greatest activity, there is no difficulty in comprehending the possibility of such an approximation constantly existing st the end of the system of growth, where the propulaion of the matter of vegetation ceases. But the calyx and more inner whorls of tho fructification do not always retain their verticillate position; on the contrary, they occasionally separate from each other, and assume the same position with regard to the axis of vegetation as is naturally proper to the leaves. Tbis is particularly striking in a very common permanent monster of Lilium album, known in the gardens by the name of the Double White Lily. In this plant the whole verticillation of the parts of fructification is destroyed; the axis is not stopped by a pistil, but is elongated into a stem, around which the white leaves of the calys are alterastely imbricated; and in double tulips, the outer whorl, representing the calyx, frequently losen its verticillate arrangement, and becomes imbricated like the lenves of a stem. The same structure also occurs in the double white Pritillaria melcagris. Honce it cannot be doubted that tho calyx consists of lcaves in a particular state.

The Corolls forms the second line or whorl of the fructification. It consists of several divisions, usually not green, sand slways alteruate with those of the calyx. It is a series of leaves arising within those of the calyx, from which it is sometimes indeed very easy to distinguish it; but from which it is so often impossible to discriminate it, that the difference between the calyx and corolla has been one of the most debateable subjects in botany. No limits can be found in Cereus; the saue is true of Illicium, and several similar plants. In all Liliacea, Orchilacea, and Zingiberacea, the only distinction that can be drawn between the calyx and corolla is, that the one originates within the other; they are aliko in figure, colour, texture, odour, and function. Whatever therefore has been proved to be true of the calyx is also true of the corolla. There are also cases in which the petals have actually reverted to the state of leavea. In a Campanula hapunculus, seon by Roper, the corolla had become five green leaves like those of the calyx; tho same was found in a Verbascum pyramillatum, described by Du Petit Thours ; proliferous flowers of Geum and Rosa, in which tho petals were converted into leavea, are adduced by Linuacus. [Flower.] The third whorl or series of fructification is occupied by the Stameus. These often consist of a single row, equal in number to tho divisions of the corolla, with which they are in that case alternate. Tbe exceptions to this in flowers with a definito number of stamens aro not namerons; and auch as do occur are to be considered as wanting the outer row of stamens, and developing the second row instead. Thus in Primulacea, in which the stamens are opposite to the petals, nul therefore belonging to a second whorl, the first makes ita appearance in Schucenckia in the form of clavate or aubulate processes arising from the sinuses of the limb. These, and similar procenser, which are far from uncommon in plants, and which aro known by rarious names, such as seales of the orifice of the corolla, glauds, nectary, cup, \&c., are in most cases metamorphosed stamens.

In Narcissus the cup is formed of three stamens of the first row, become petaloid and united at their margins; while the six which form the second and third rows are in their usual state and within the tube. This is shown, firstly, by the frequent divisions of this cup into three lobes, which then alternate with the petals; secondly, by a distinct tendency in double Narcissi, particularly N. poeticus, to produce abortive anthers on the margin of the lobes of the cup; and thirdly, by the genus Brodicea and its allies. In that genus the crown of the original species consists of three petaloid pieces, not united into a cup, as in Narcissus, but wholly separate from each other : in Leucocoryne ixioides these pieces are not petaloid, but clavate; and in L. odorata the species have the same figure as in L. ixioides, but almost constantly hear more or less perfect anthers. That the anthers are mere alterations of the raargins of the petals there is no difficulty in demonstrating. In Nymphaca the passage from tha one to the other may be distinctly traced. In double roses the precise nature of this metamorphosis is shown in a very instructive way. If any double rose is examined it will be seen that those petals which are next the stamens contract their claw into the form of a filament, and a distortion of the upper part, or limb, also takes place; the two sides become membranous, and put on the colour and texture of the anther; and sometimes the perfect lobe of an anther will be found on one side of a petal, and the half-formed misshapen rudiment of another on the opposite side. In Aquilegia vulgaris this transformation is still more curious, but equally distinct: the petals of that plant consist of a long aessile purple horn or bag, with a spreading margin; while the stamens consist of a slender filament, bearing a small oblong two-celled yellow anther. In single and regularly-formed flowers nothing can be more unlike than the petals and stamens; but in double flowers the transition is complete; the petals, which first begin to change, provide themselves with slender ungues; the next contract their margin, and acquire a still longer unguis; in the next the purple margin disappears entirely; two yellow lobes like the cells of the anther take its place, and the horn, diminished in size, no longer proceeds from the base, as in the genuine petal, but from the apex of the now filiform unguis. In the last transition the lobes of the anther are more fully formed, and the horn is almost contracted within the dimensions of the connective, retsining however its purple colour: the next stage is the perfect stamen. The conversion of stamens into green leaves is far inore uncommon: this indeed very rarely occurs. It was seen by Röper in the Campanullo Rapunculus already referred to; and Du Patit Thouars found tho stamens of Brassica napus converted into branches bearing verticillate leaves. In Plantago major and Sieversia montana permanent instances are known of a conversion of the stamens, with all the other floral organs, into leaves. Thus it appears that the stamens, like the petals, calyx, and bracter, are merely modified leaves. [Stamens.]
The Disc is so frequently absent, and is of so obscure a nature, that few morphologists take it into their consideration. It many plants it consists of a mere annular fleshy ring encompassiug the base of the ovary; in others it forms a sort of cup, in which the ovaries are inclosed, as in certain Pconies, and it very frequently makes its appearance in the form of hypogynous glands or scales: it is almost always between the stamens and pistil. That it is not an organ of a distinct nature may be inferred from its having no existence in a large number of flowers; but if it is not an organ of itself it must be a modification of something else, and in that view, from its situation, it would be referrible either to the stamens or pistil. It has so little connection with the latter, from which it alwaysseparates at maturity, that it can scarcely belong to it. With the stamens it has a stronger relation : it consists of the same cellular substance as the connective of the anthers, is very often of the same colour; whenever it separates into what are called hypogynous glands or scales these always alternate with the innermost series of stamens. In the Poony the disc may in some measure be compared to the inner row of scales which exist between the stamens snd pistil of the nearly-related genus Aquilegia. Dunal has noticed half the disc of a Cistus beariog stamens; and a variety of instances may bo adduced of au insensible gradation from the stamens to the most rudimentary state of the organ.
The fifth and last series of the fructification is the Pistil. The simple pistil, that of the pea for instance, consists of an opary, bearing its ovules on one side in two parallel contiguous rows, and at its upper extremity tapering into a style, which terminates in a stigma. If this organ be further examined, it will be found that there is a suture running down each edge from the style to the base; it will be also seen that the orules are attached to one of these sutures, and that the style is an elongation of the other: further, it will be perceived that the two sides of the ovary are traversed by veins cmanating from the suture that terminates in the style, and that these veins take a slightly ascending divection towards the suture which bears the ovules. Now if, when the pod of the pea is half grown, it be laid open through the latter suture, all these circumstances will at that time be distinctly visible; and if it then be compared with one of the ieaflets of the plant, it will be apparent that the suture that bears ovules answers to the two edges of the lcaf, the suture without ovules to the midrib, and the style to the mucro. Hence it might, without further evidence, be suspected that the ovary is an alteration of the leaf; but if the inquiry be carried further in other plants, this
suspicion becomes converted into cartainty. In the first place, the suture without ovales, which has been said to be the midrib, is always external with respect to the axis of fructification, as would be the case with the midrib of a leaf folded up and terminating the fructification. In the next place, nothing is more common than to find the pistil converted either into petals or into leaves. Its change into petals is to be found in numerous double flowers, as for example double Narcissi, Hibiscus Rosa-sinensis, Wall-Flowers, Ranunculuses, Saxifrages, and others. These however only show its tendency to revert to petals as the representatives of leaves. The cases of its reverting to other orgaus are much more instructive. In the double Ulex Europous the ovary is extremely like one of the segments of the calyx; its ovuliferous suture is not closed; iu the room of ovules it bometimes bears little yellow processes like miniature petals, and its back corresponds to what would be the back of the calyx; no style or stigma is visible; sometimes two of these metamorphosed ovaries are present: in that case the sutures which should bear ovulcs are opposite to each other, just as the inflexed margins of two opposite leaves would be. In Ferria Japonica, which is only known in our gardens in a double state, the ovaries are uniformly little miniature leaves, with serrated margins corresponding to the ovuliferous suture of the ovary, and an elongated point representing the style; their interior is occupied by other smaller leaves. Nothing is more common among roses than to fiud the ovaries converted iuto perfect leaves; in such cases the margins uniformly occupy the place of the ovnliferons suture, and the midrib that of the sterile suture. But the most instructive and satisfactory proof of the pistil being merely a modified leaf is to be found in the comnion double cherry of the gardens. In this plant the place of the ovary is usually occupied by a leaf altogether similar to those of the branches, but much smaller: it is folded. together; its margins are serrated, and, in consequence of the folding, placed so as to touch each other; and they occupy the place of the ovuliferous suture of a real pistil. The midrib of this leaf corresponds to the station of the sterile suture of the ovary, and is not only lengthened into a process represeuting a style, but is actually terminated by a stigma. There is thus a greater identity of function between the pistil and the other series of the fructification than would at first appear probable. The pistil is seldom indeed found converted into stamens; but it often takes upon itself the form of petals, as has been shown above; and although cases are very rare of pistils bearing pollen, yet several instances are known of ovules being borne by the stamens. This occurs continually in Scmpervivum tectorum.

It appears then that there is not only a continuous pninterrupted passage from the leaves to the bracts, from bracts to calyx, from calyx to corolla, from corolla to stamens, aud from stamens to pistil, from which circumstance alone the origin of all these organs might have been referred to the leaves, but that there is also a continual tendency on the part of every one of them to revert to the form of a leaf.

The pistil in a state of composition differs much in appearance from its simple form. At section 78 of 'Die Metamorphose der Planzen' of Göthe, are the following remarkable words:-"Keeping in view the observations that have now been made, there will be no difficulty in discovering the leaf in the seed-vessel, notwithstanding the variable structure of that part and its peculiar combinations. Thus, the pod is a leaf which is folded up and grown together at its edges, and the capsule consists of several leaves grown together; and the compound fruit is composed of several leaves united round a common centre, their sides being opened so as to form a communication between them, and their edges adhering together. This is obvious from capsules, which, when ripe, split asunder, at which time each portion is a separate pod. It is also shown by different specics of one genus, in which modifications exist of the principle on which their fruit is formed: for instauce, the capsules of Nigella orientalis consist of pods assembled round a centre, and partially united; in Nigella damascena their union is complete."
As it may thus be proved that all the parts of a flower are merely modified leaves, the following propositions may be stated to constituto the basis of Vegetable Morphology :-
"Every flower, with its peduncle and bracteolx, being the development of a flower-bud, and flower-buds bcing altogether aualogous to leaf-buds, it follows as a corollary, that every flower, with its peduncle and bracteole, is a metamorphosed branch.
"And further, the flowers being abortive branohes, whatever the laws are of the arrangement of branches with respect to each other, the same will be the laws of the arrangement of flowers with respect to each other.
"In consequence of a flower and its peduncle being a brauch in a particular state, the rudimentary or metamorphosed leaves which constitute bracter, floral envelopes, and sexes, are subject to exactly the same laws of arrangement as regularly formed laves." (Liudley; ' Outline of the First Priuciples of Botany.')
Engelmann has ('De Antholysi Prodromus') attenpted to classify the principal aberrations from normal structure, and has collected a very considerable number of cases under the following heads:-

1. Retrograde Metamorphosis (Regressus), when organs assume the state of some of those on the outside of them, as when carpels change to stamens or petals, hypogynous scalos to stamens, stamens to petals
or eepala, repals to ordinary leaves, irregular structure to regular, and the like. 2. Foliaceous Metamorphosis (Virescentia), when all the parts of a flower nssume more or less completely the state of leavea. 3. Disunion (Disjuactio), when the parta that usually cohere are separated, as the cappels of a syncarpous pistillum, the filaments of monadelphous stamens, the petals of a monopetalous corolla, \&c. 4. Dislocation (Apostasis): in this case the whorla of the flower are broken up by the extension of the axis. 5. Viviparousbess (Disphysis), when the axis is not only elougated, but continues to grow anl form new parts, as in those instnnces where one flower grows from within another. And, finally, 6, Proliferousness (Eeblastasis), when buds are developed in the axila of the tloral orgaus, so as to convert a simple flower into a mass of inflorescence. A very considerable number of instances are adduced in illustration of these divisions, and the work will be found highly usefulas a collection of curious or important facts.
(Göthe, Die Metamoryhose der Prianzen; Miquel, Commentatio de Organorum in Fegetabilibus Orta a Mctamorphosi; Röper, De Organis Plantarum; Lindley, Introluction to Botany; Balfour, Claws-Book of Botany; Schleiden, Priaciples of Scientific Botany, translated by Dr. Lankester.)

METAPOCEROS [Iquanid.z.]
METEORIC IRON. [Inos.]
METEORIC STONES. [Armolites.]
METEORS. [AEROLTES.]
METOTAA. [lipride.]
METO'PTOMA, a genus of Fossil Mollusca, from the Mountain Limestone of the north of Eugland.
METRIORHY NCHUS, Dr. Hermann von Meyer's asme for a genus of Fossil Crocoditida, found, according to him, in the Lias, the Oxford Clay, at Honfleur, and in the Kimmeridge Clay nt Havre.

METROSIDE'ROS (from $\mu \not{ }^{\prime} \tau \rho \alpha$, the heart of a trec, and $\sigma i \delta \eta \rho o s$, iron), a genue of llanta belonging to the natural order Myrtacece. It is distinguished from allied genere by tho tube of the calyx not being augular, sdhering to the ovarium, the limb 6 -cleft; the stamens $20-30$, free, very long, and exserted; the style filiform, nnd stigma simple; the capsule 2- or 3 -celled, the cells many-seeded; the seede wingleas. The species are trees or shrubs, with opposite or alternste leaves, with the flowers pedicellate, not adaste to the branches, as they are in the genera Melateuca and Callistemon. The last genus, with Angophora, has been recently separated from Metrasideros.
M. vera, true Iron-Wood, has opposite orste-lanceolate acuminated quite glsbrous leaves, seated on short petioles; the cymes axillary, pedunculate, many-flowered. It is a native of Java and Amboyna, among rocks. The Clincse and Japanese value the wood of this tree, which they apply to many purposes, as the making of rudders, anchors, \&e., for their shijs and boats. The bark is used in Japan as a remedy in mucous discharges, diarrhoea, and dysentery. It is usually mixed with eome aromatie, as pensug, cloves, or nutmeg.
M. pulymoryha has opposite corinceons leaves, of various forms, glabrous on buth surfaces, but covered with a little silky tomentuna tencath; the peduncles 3- or many-flowered, terminal and sxillary, corymbose; the calyxes aud branchlets glabrous or clothed with silky tomentum. This species is a tree, and grows in the Sandwich Islands, and is said to be the plant from which are made the clubs and other weapons employed in warfare by the South Sca Islanders. "The Aki, or Lignum Vita of New Zealmud, the Rata and the Pohutu Kawe of the same country, are all hard-wooded trees belonging to the genus Metrosidcros." (Lindley.)
Several other apecies of Metrosideros have been described, natives of Australis and the South Sea Islands. M. lucida, a beautiful tree, occurs as far south as Lorl Auckland's Ielands, in lat. $503^{\circ} \mathrm{S}$. The M. burifolia of Allan Cunningham is the New Zealand plant called $A k i$, and is a rambling shrab, adhering to trees, and climbing by means of its lateral roots to the summits of the loftiest trees in the foresta of Wangeron and the Bay of Ialands. In eultivation these plants may be grown in a mixture of loan, peat, and sand. They may be propagated by feeds or cuttings. Ripe cuttings will root in sand under a hand-glays.
(I)on, Dirldamydtous Plaats; Lindley, Vegetalle Kingdom; Burnett, Oulinca of Butany.)

MBUM (from Meicv, amaller), a genus of Plants belonging to the natural order L'mbelliforee and to the tribe Scecliace. It has an olvalete calyx ; cutire elliptical petals, acute at both euda, with an incurved point; the fruit elliptical, tercte, or slightly dorsally compressed ; the carpela with sharp nomowhat winged ridges; tho interatices and culumissures with many vitta. There are two species of thingenus.
M. Athamanticum, Common Lahl-Money, has bipinnate leaves with multipartite leafleta, the segments thread-shaped, neute. This is a highly aromatic plant, with numerous white and ycllow tlowers. It in a native of Furope, In dry mountain pastures, and is found in Eingland and the mountains of Scotland. The roota, seeds, and cvery part of the plant are aromatic, and are used in the countriea where it grows as stomachica and carminatives. This and the other apecion, M. Mutellina, the Swim Iald Money, which is a nstive of the subalpine pastures of Firope, euters into the composition of the compound called Venice Treacle.
(Babington, Manual of Ihitich Botany; Lindley, Vegctable Kingdom.)

MEW, [Lantide,

MEZEREON. [DAPBNE]
MICA, a Mineral belonging to the extensive gerien of Silicates of Alamina. It occurs in oblique rhombie prisms of about 120° and 00°, The crystala uaually with the acute edge replaced. The cleavage is very decided, yielding easily thin elastic lamino of extreme tenuity. lt is found usually in thinly folinted masses, plates, or sesles: sometimes in radiated groups of aggregated scales or amall folia. The colour is from white, through green, yellowish, and brownish shades, to black. The lustre ia more or less pearly. Transpareat or tranalucent. Tough and elastic. Hardness $2 \cdot 0$ to $2 \cdot 5$. Specific gravity 2.8 to 3.0 .

The composition of mica is as followa:-

A variety in which the scales are arranged in a plumose form is called Plumose Mica; another in which the plates have a transverse cleavage, has been termed Prismstic Mica.

Micr resembles externally talc, and some forms of gypaum. From tale it differe in sffording thinner lamina, snd being elastic. It also has not the greasy feel of talc. The same characters except the last distinguish it from gypsum, besides it does not crumble so resdily on heating.

Mica is one of the constituents of granite, gneiss, and mica-slate, and gives to the latter ita laminated structure. It siso occurs in granular limestone. It is found abundantly in the United States, in Russia, in Great Britain, and other parts of the world. It is not often found in large isolated mssses, but filling up the veins and fissures of rocks, into the composition of which it enters. It occurs in the oldest rocks, as well as in those which are new and possess a crystalline character.

In Russia it is used extensively as a substitute for glass, and hence it is called Muscovy Glass. The very thin lamine are employed for examining objects under the microscope. Hsiuy states that these lsmina are sometimes not more than the 1-300,000th part of an inch in thickness.

Lepidolite, or Lithia Mica, occurs in crystals or lamine of a purplish colour, and often in masses consisting of aggregated acales. It occurs in the Ural. According to Rosales, as quoted by Dana, it consists of the following analysie:-

Fuchsite is a green Mica from tho Zillerthsl, containing nearly 4 per cent. of oxide of chromium.

From the crystallisation of Mica two species havo been made out of the old apecics so called. The common Miea has an oblique prism for its primary, but many micas when in perfect erystals have the form of a hexagonal prism. This species has been calleal hexagonal mica, the dark-coloured micas of Siberia, and the brilliant hexagonal crystala of Veguvius. There are also hexagonal crystals which have been found by Dove to have two axes of polarisation, indicating that the lateral axes of the primary aro unequal, aud that the form is a rhombic pristn with the acute edges truncated. This species is called Rhomlic Mica, or Phlogophite.

Margarite, or Pearl Mica, occura in bexagonal prisms, having the atructare of mica, and also in intersecting laminc. It has the apperranco of talc, but differs from that mineral in being a silicate of aluminn instead of magnesia. It is found at Sterzing in the Tyrol, aseocinted with chlorite.

Margarodite, another schistoso tale of Zillerthal, is a varicty of common mica.

Emerylite and Euphyllite are new epecies, nomewhat related to Margarite. They ano found in l'ennsylvania, United States.

Nacrite resembles talc, but contains no maguesia. It is whitish and soft, and has a greasy feel.

Lepidomelane is a black iron micn, occurring in 6-sided scales or tables aggregated togother.

Ottrclite is an allied mineral occurring in black scales.
Oderit is probsbly a black mica. It can be split into thin leaves. It is opaque, black, and has very little lustre. It occurs in Sweden.

MICA.SCliIST, one of the carlient groups of Stratified Rocks known to geologists, and very extensively distributed throughout the mountain regions of the globe, often in contset with granite, but more requently superposed on guciss. It is frequently interstratified with
gneiss, primary limestone, quartz rock, ehloritic schist, and clay-slate, and is deficient in organic remains. There ars however certain more recent assemblages of strata more or less allied to mica-schist in composition, of very limited area, adjaeent to granitic elevations, in Dauphine, \&c., which do contain organic remains of the seeondary periods.

To the Britiah geologists the southern Highlands of Seotland and the mountains of Donegal offer abundant and striking examples of mica-schist, with its associated limeatones, quartz roeks, \&c., while round the granites of the Isle of Man, Cumbria, Devon, and Cornwall, hardly a trace of goeiss or mica-sehist has been observed.

Mica-schist, in its most typieal state differs from gneiss by the absenee of felspar, but among the early stratified rocka the gradations and permutations of ingredients are so frequent as to eonfound all merely mineral distinetions, from hand speeimens. The mica is usually spread through the rocks of this series in continuoua aurfaces overspreading the quartz portions, whereas in gneiss this aeldom happens. In reapect of the magnitude, relative abundance, and erystalline aspect of the ingredients of mica-schist, there is every possible variation, so that some specimens approach obscurely to granite, others to well defined gneisa, and others to clay-slate.

Dr. M'Culloch proposed the following synopsis of Micaceous Schist:-

Division I.-Consisting of mica and quartz.
Subdivision 1.-Simply laminar or foliated.
a. Composed principally of continuously laminar mica.
b. Composed principally of continuously laminar quartz.
c. The mica discontinuous, the quartz granular.
d. The mica greenish, approaching to chloritic schist.
e. Mica gray, approaching to talcose schist.
f. Approaching to clay-slate.

The rocks of this subdivision are irequently and remarkably contorted.

Subdivision 2.-Granularly laminar.
a. Granular quartz, with seales of laminar mica.
b. Laminar quartz, with mica in seattered spots.
c. Laminar quartz, with distinct scales of mica.
d. Laminar quartz, with mica in parallel lines, so as to appear fibrous on splitting. (Avanturine seems to be of this nature.)
e. The mica bent and contorted round the grains of quartz.
Division II.-Compounded of three or more ingredients.
a. With hornblende.
b. With felspar (passing to gneiss).
c. With ehlorite or talc (passing to talcose or chlcrite schist).
d. With more than one of these ingredients.
e. With carbonate of lime.

Division III.-Conglomerated, or containing superadded fragments of granite, gnciss, lincstone, \&c. It occurs in Iska, Garveloch, Rannoch, \&c.

Besides the minerals above noticed, many others oecur in micaschist, so as universally to modify its aspect. This is particularly the case with garnet, which is often perfeetly crystallised amidst the mass of fragmentary mica aud quartz, and is so frequently met with in mica-schist, that it seems to mark a partieular condition, through which the rock has passed ainee ita first deposition.
The circumatance which perhaps more than any other deserves atteution in atudying these rocks, is the charaeter of their stratification. Where limeatones or clay-slates alternate with the mica schist, its strata are easily traced; but in cases where entire mountains are formed of laminated miea and quartz, the contortions to whieh the whole is subject render it very difficult to determine the prevalent dip of the beds.

It is difficult to avoid the belief that the amaller contortions of gneiss and mica-schist are due to eauses quite distinct from violeut movement; they are characteriatie of a peculiar mode of deposition, or marks of a subsequent modifying process. Whether the great eontortions may be thus explained, or require the supposition of great disturbaoces of position, is not easy to determine. [Geology; Rocks.]

MICIPPA. [Maidxe]
MICO, or Fair Monkey, one of the common names for that speeies of Ouistui (Hapale of Illiger) known to zoologists as the Jacchus argentatus, Geoff., Simia argentata, Lind. It is a very pretty little speeiee, rerlaps the prettiest of the geous. [Jnocnus.] The head is small and round, the face and hands of a deep flesh-colour; indeed the face and ears are of so lively a vermilion, that the animal, when in full health, looks almost as if it had been painted with that colour. The body is covered with long silvery-white hair, and the tail is of a shining dark chestnut, sometimes almost black.

MICLIASTERIAS. [DEsmidiexi]
MICROCE'BUS, M. Geoffroy's name for a form amodg the Lemuride; Lemur (Galago) Guineensis. [Lemuridse.]
MICRODACTYLUS. [GARIAMA.]
MICROOLOSSUS. [PEITtacide.]
MICROLITE. [Pyrochlor.]
MICROLOPHUS. [IGUANIDE.]
CROPO'GON, M. Temminck's name for a genus of Scansorial

Birds whieh has the general structure of Bucco. The gape however is smooth. The first three quills only are graduated. Mr. Swainson arranges it under the Buccoince, or Barbuts, a sub-family of his Picida. [Picids.]

MICRO'PTERUS, a name assigned by Messrs. Quoy and Caimard to a genus of Anatida, remarkable for the shortness of their wings.

Two species are recorded, namely:-M. brachypterus (Quoy and Gaimard, Oidemia Patachonica, King, Anas brachyptera, Lath., RaceHorse of Cook and Byron, and Steamer-Duek of Kiog), and M. Patachonicus, Fing, which is smaller in the body than the first, and ia ablo to fly.
MI. brachypterus is abovs lead-colour, inelining to gray; abdomen whitish ; the beauty-spot on the wings white, at the bend a blunt spur; bill yellow, the nail blaok; legs fuscous yellow. Length from tip of the bill to end of tail, 40 inehea; of bill; 3 inches; of wing, from carpel joint to apex of seeond quill-feather, 11 inches; of tail, 5 inches of tarsi, $2 \frac{3}{4}$ inches. (King.)

Captain Philip Parker King, R.N., who has described both species, ons in the 'Zool. Journal,' and the second in the 'Zool. Proceedings,' first fell in with tho larger apeeies at Eagle Bay, beyoud Cape San Isidro (Point Shut-up of Byron), in the Strait of Magalhaens. "Here," writes Captain King, "we aaw, for the first time, that most remarkable bird the Steamer-Duck. Before steam-boats were in general use, this bird was denominated, from its swiftness in skimming over the surface of the water, the Raee-Horse, a name which oceurs frequently in Cook'.a, Byron's, and other voyages. It is a gigantic duek, the largest I have met with. It has the lobated hind toe, legs placed far backwards, and other characteristies of the oceanic ducks. The principal peculiarity of this bird is the shortness and remarkably small size of the winga, whieh, not having suffieient power to raise the body, serve ouly to propel it along, rather than through the water, and are used like the paddles of a steam-vessel. Aided by these and its atrong broadweblea feet, it moves with astonishing velocity. It would not be an exaggeration to state its speed at from 12 to 15 miles au hour. The peculiar form of the wing and the short rigid feathers which eover it, together with the power this bird possesses of remaining a considerable time under water, constitute it a striking link between the genera Anas and Aptenodytes. It has been notieed by many former navigators. The largest we found measured 40 inchea from the extremity of the bill to that of the tail, and weighed 13 Iha ; but Captain Cook mentions, in his second voyage, that the weight of one was 291 lb . It is very difficult to kill them, on account of their wariness and thiek coat of feathers, which is impenetrable by anything amaller than awau-shot. The flavour of their flesh is so atrong and fiehy, that at first we killed them solely for specimens. Five or six months however on salt provisions taught many to think aueh food palatable, and the seamen never lost an opportunity of eating them. I have preferred these dueks to salt beef, but more as a preventive against scurry than from liking their taste. I am averae to altering names, particularly io natural history, without very good reason; but in this ease I do think the name of Steamer much more appropriate and deseriptive of the swift paddling motion of these birds than that of Race-Horse. I believe, too, the name of Steamer is now generally given to it by those who have visited these regions."

The same author informs us that Pecten vitreus, whose shell is found attached to the leaves of Fucus giganteus, together with other

Mollusco, is the fool of the Steamer-Ducks M. brachypterus, aud M. fatuchonicur.
(' Narrative of the Survering Voyages of 11.M.S. Adveuture and Beagle,' vol. i)

Micropterus comes rery near to Microptera, Gravenhorst's name for a genus of Coleopterous Insects, and to Microptere of Lacépedo, who uses the term to deaignate a genus of Acanthopterygious Fisbes.

M'Cluol'US (Swainson), a geuus of Birts belonging to the family Bruchypotine, the first sub-family of the Merulide, according to his arrangement [Merchide]
M. chatcocejhuths; Ixos cholcocephalus, Temm. The male has the whole head covered with a sort of lood of metallic black with violet reflections; the neek, the shoulders, tho back, sud wings, dull gray or lead colour ; breast deep gray, which becomes brighter on the other lower parts of tho body; wiugs black, but the secondaries gray, borlered with whitish on tho exterior barbs; tail gray, with a transverse black baud, and terminated with a broad white border. Length 0 inelics 4 liues. Female : less tively in colour.

It inhabits Jawn, where Yan llasselt found it in the wild and woody district of Bantam.

MCROSCOPE, USES OF THE. There are few instruments that have rendered such important aid in ecientific seareh as the Mieroscope. The chief advsnees that hsve been made in the natural history sciences, embraciug physiology, during the latter portion of the first half of the lyth century, have been effocted by its ageucy. Tho structure of this instrument has beeu gralually rendered more perfect as the science of opties advanced ; and its nature and srrangement can only be underatood by the study of the principles of this science. In the articles Lagit, Less, Achromatic Aberbation, Micrometer, aud Michoscopp, in the Abts and Scieaces Division of this work, the student will find the principles aud plan on which this instrument is construeted fully elucidated. We purpose here referring to its use as an instrument of natural history and physiological research, and of those general arrangements and spplicatious by which its utility can alone be fully secured. It is not alone suffieient that a man possesses eyes in order to observe accurately, nor is it the possession of a costly microscope that will emable a pernon te confirm the observatione of others or makediscoveries of his own. The uso of tho microscope by uninstrueted and incautious observers has given riae to many absurd errors. "The fruit of the mulberry has been mistaken for Entozoa; calcareous corpuseles have been regarded by several observers as oya, and the appearauce ariaing from the presence of concentric lamina has been interpreted to bo the coils of an inclosed embryo; sitmilar corpunclea have almo becn regarded as nucleated cells, and again as Mood-corpuacles; minuto fossils in elalk have been strung together with portions of vegetable tissue, and (perhaps) the spores of A lgue, to constitute different stages of a fungus: minute hairs projecting on the surface of a membraue have been declared to be apiento within subjacent cells ; and quito recently ono writer states, that certain minute bodies which he has examined are either blood-corpuseles or the apores of fungi, but which is doubtful! while another recounts, low by fortunate aceileat he diseovered that eorpuscles, which ho had regarded at first as cousisting of fat, were afterwards found aceidentally to consist of calcareous salts !
"Again, we rearl in physiological works of the yolk celle, and the coloured oil-globules of the yolk; and a benutiful function of assimilation has been attributed to them; but they exist only in the imagination of the author, who havo regarded the one as cells, simply because they aro round, nul the other as consisting of fat, because they are highly refractive. Si co the publication of Schleiden's cell. doctrine, almost everything 1 und han been regseded as a cell; any single body within this, or where there are several, tho largest has
been regarded as a nucleus, and any spot within the nucleus has been viewed as a nueleolus. Whereas many of the so-called cells aro homogeueous spheres, many of tho nuclei are vacuoles, and a true pueleolus is very rarely found except in books." ('Mierographie Dictionary.')
Againat such errors as theso a long-continued and careful use of the mieroscope can alone preserve the young observer. They are not the result of imperfect or inferior inetruments, but the consequences of hasty aud imperfect observation. They have been made by persons using the most costly instruments aud their erroneousness demonstrated by those who have used the simplest sud most economical arrangemeuts.

In mieroscopie observations two things must be remembered-1st, That in the microscope, especislly with high powers, we see surfaces, not bodies. It frequently happens that in looking upon surfaces, we get a glanee into the depths of transparent objecte by changing tho adjustment, without altering the position of the object; it more often happens however thst in looking upon such objecta, we aro unablo to make them out to be bodies until we have changed their position, and ascertained their dimensious in threo different directions; this, in mauy cases, from the uature of the object itself, is a matter of great difficulty. 2nd, That we seldom see the oljects under the microscope in their natumal coudition; that we eonsequently must take into consideratiou tho changes which wo ourselves partly produce, either by the medium in which the object is placed, or by the use of the knife or other influenees. Loug and thorough practice with the microscope secures the observer from deceptions which arise, not from any fault in tho instrument, but from a want of aequaiutance with the microscope, and from a forgetfulness of the wide difference between common rision and vision through a microseope. Deceptions also arise from a neglect to distinguish between the natural appearanco of the object under observation, and that which it assumes under the microscope.
To these difficulties must be added those originating in the eye itself, through the so-called 'Mouches velantes,' and those also which arise from the observer being unacquainted with the appenranee, under the microseope, of the common things which are dispersed throughout the air and water, such as small particles of dust, \&c. Lastly, deceptious are also caused by air-bubbles, by molecular motion, and by the currents which arise upon the atage of the microscope from tho evaporation of wster, or from the intermingling of two fluids. The observer must learn to know and distinguish all these things thoroughly, and then no further deception can arise from these causes. The proper use of the mieroseope is always the principal thing to be considered. Hedwig with the microscope of his timo, promoted tho advancement of scienco to a greater extent than many observers with incomparably better instruments have done.
In order to uso the microscope properly, the observer must be skilful in handling tho instrument and the objects, and above all things, his modo of proceeding must be conducted with aceurscy and judgment, and ho must be able to give a sufficient reason for every thing that ho does. His progress in research will be slow, but sure; he must endenvour to obtain oljects from every possible source, and must exsmino them thoroughly; he must verify his own observations as scrupulously as possible, and so, progressing step by step, he will attrin the desired eud. Work without method will seldom lead to noy result ; the finest sections of wood made only in one direction, or in a wrong direction, do not lead to any knowledge of the wood under observation. Single observations (of wood, for instance), irregularly made from time to time, ouly abow the condition of the wood at the time of that partieular obsorvation, and throw no light on its coudition at an earlier or lster period; whilst seetions made in a proper msnner, and well-preserved specimens of the suecessivo conditions of the wood, furniah irrefragable proofs, the one of the construction, and the other of the development in the growth of the wood under observation. (Sehacht on the 'Microscope.')
Before speaking of the methods of examining and preaerving bodies for mieroseopic observation, it will be better to draw attention to the nstural objecte, to the exsminstion of Whicls it has been applied rith so much success. In both the inorganic and organic worlds the mieroscope is made subservient to obscrvation. To epeak first of inorganie substauces aud materials not under the influence of vital action, it has been found of great use in determining the forms of ninute erystals. In this way it sids the nalytical chemist. In the examination of the saliue conteuts of water, if a small quantity of the water in allowed to evaporato upon an ordinary glass slido, its contents may bo judged of by the forms which the crystalline matters assume. In fiuids obtained from organic bodies this plan of exsmination has beeu lately applied with the most interesting results. A series of the most beautiful illustrations of the microscopic charncters exhibited by crystale obtained by the ovsporatiou of the blood and other fluids, will be found in Dr. Otto Funke's 'Atlas 乌f Phyiological Chemistry,' and also in the 'Mierographic Dietionary,' by Dr. Griffiths and Mr. Heufrey. Not only aro the natural erystalline constitnents dissolved up in liquids thus obtained, but new combinations obtained by the additiou of reagents. This mode of inquiry is equally applicable to the exerctions of the human body, and is rapidly becomiug one of the most important moans of diagnosis in the hands of the physiciau.

Although dealing with the dispesition of large masses of matter, of which the earth's surface is composed, important knewledge is obtained by the geologist by examining minute portions of them with the aid of the microscope. It is by the aid of this instrument slone that the question of the manner in which an extensive series of rocks has been deposited can be determined. Many rocks which present a homogeneous surface, when sections are made of them and placed under the microscope, are found to consist of the remains of the minutest ferms of organic beings. [Diatomacee; Infosoria.] Whilst, on the other hand, rocks which, like the Oolites, present to the naked eye the appearance of being composed of various ferms of organic beings, on close examination with the micrescope are found to present appearances due to purely physical causes. Each of the little egg-like bodies seen in these rocks is found to centain a particle of sand surrounded by carbonate of lime. [Magnesian Limestone; Oolitic System.] It frequently happens that the fossilised parta of the bigher animals which are left in the selid reck are too small or shapeless to indicste the characters of the family to which they belonged; but by the aid of the microscope this question can be determined in multitudes of instances. It has been found by the recent researches of Dr. Carpenter and others, that the microscopic characters afforded by the structure of sbells are frequently so distinct as to afferd the means of distinguishing between allied species of Mollusca. This is a subject of the highest interest to the geologist; for of all the remains of animal life there of the Mollusca, from the hard nature of their shells, are these which are furbished to him in greatest abundance for distinguishing the character of different strata, and determining their relative age. Amongst the vertebrate animals, next to the teeth, the bones are the parts which are most frequently left in rocks. When the form of the bone is no guide, its microscopic structure will determine the family to which it belongs. The forms presented by the lacunx, or bene-cells [BONE], which are only visible by the aid of the microscepe, are found to differ so much in fish, reptiles, birds, and mammals, as to afford the means of distinguishing each class. The teeth are only modified bene, and although they present most frequently a very definite external form, and are usually better preserved than any ether part of an animal body, they afford still more definite characters by the modifications of the internal portions of their structure. It is thus that the internal structure of the tooth presents a better character than any other part of its structure in the gigantic extinct frog, the Labyrinthodon. [Amphibla.]

Among the earlier fishes which inhabited the seas of the earth were principally those which have a cartilagineus skeleton; but with this perishable skeleton they were endowed with hard scalcs, which have resisted all decomposiog agencies, and these scales, frequently scattered, are the only recerd of their cxistence. From micrescopic examination of the structure of these scales, Professor Williamson has showu that the species of those fishes can be detected.

Numereus are the ferms of Zoophyta, Polyzoa, and Echinodermata that have left remains in the strsta of the earth which the naked eye can by no means distinguish, but whose differences are immediately revealed when sections of their fossilised remains are placed under the microscope. Examples of these will be found in the second volume of Professor Quekett's 'Lectures en Histology.'

We pass from this glance at the use of the microscope to the chemist aud geologist, to point out its value in rescarches connected with living orgaeised beings. We begin with plants. It is in the vegetable structure that the ultimate cells, of which all erganised beinga are composed, are most easily discarned. The earliest microscepic observers were aware of this. It was left however for Schleiden to perceive the full significance of this fact in 1833, when he drow attention to the cytoblast as the source of the growth and life of the cell. [Cells.] He was followed by Schwane, whe pointed out that the cell was of equal impertance in the animal as the vegetable kingdem. The ultimste cell of the plant or animal is enly visible by the sid of the microscope; hence whatever impertance is attached to the discovery of cells and the formation of tissues by their agency is due to the use of the microscope.

The unceasing labours of microscopic observers during the last quarter of a contury have developed a new branch of science called histology [Histoloor], which embraces a knewledge of the ultimate structure of the tissues of which all parts of plants and animals are composed.

One of the most interesting facts connected with the history of the microscope is the discovery of the cxistence of minute animals and plants, inhabiting more especially water, and which are perfectly invisible to the naked eye. The earlicat observations on these minute beings were made by Leeuwenhoek in the middle of the 17th century; but it was left for Ehrenberg, during the present century, to make known to its full extent the immensa varicty of forms assumed by these microscopic beings. [DIatomacee; Desmidien; Infusoria.] Since the publication of the 'Infusionsthierchen,' these minute organisms have been a source of increasing interest to microscopic observers. Reprementing the entire animal or plant in its simplest form, the observations of their growth, structure, and functions have thrown light on some of the most complicated problems of animal and vegetable physiology. Small as they are, they make up for want of size by the prodigious numbers in which they occur, and the important
functions they seem to perform in the universe. The unveiling this world of life is entirely due to the agency of the microscope.

It is not hewever alone in revealing the minute structure of plants and snimals, as the existence of organic heings of minute size, that the naturalist and phyaielogist are indebted to the microscope. By its aid they have been enabled to investigate the functions performed by cells. If the tissues of plants and animals are built up of cells it was a natural inference that these cells performed an important part in the functions of these tissues. It was soon found that the animal and plant increased in size by the multiplication of thess cells; that the tissues were renewed by their agency; that the function of secretion was performed by them ; in short, that it was by the aggragate of their functions that plants aud animals lived. Hence the cell theory, or cell doctribe, has been to the explanation of the phenemena of living beings what the law of gravitation was to the phenomena of the physical uaiverse. Till the application of the microscope the mysterious function by which new beings in plants and animals were produced was only imperfectly apprehended; but since its extended employment the laws which regulate this process have become perfectly obvious, aad but little remains to complete our knowledge of the subject. [Reprodoction in Plants and Animals.]
Having pointed out the objects of the use of the microscepe, we now proceed to give some general directions for examining them. In giving these directions we shall follow Dr. Schacht, whese work on the microscope has been translated into English by Mr. Currey.
One of the principal requisites for microscenical investigation, besides a good instrument, is a proper supply of light. When the position and nature of the apartment can be selected at pleasure, a room should be chosen having windows facing the west or the north, or, what is better, a roem with windows towards both those quarters of the heavens. The windews must be as high as possible, since the light received from the horizon is the most favourable; light reflected from a white wall, or the light of white clouds, is ofteu very advantageous. The light of scudding clouds fatigues the eye by the rapid change in the intensity of the light, besides rendering necessary a continual change in the position of the mirror. No ordinary obsorvation is possible in direct suolight; this light is, in the first place, far too dazzling for the eye to bear; and, in the second plsce, it causes appearances which giva rise to the gressest deceptions. In working with the microscope in the forenoen and in the middle of the day, a reem lying to the east or to the seuth must therefors be avoided: by means of whits blinds, or curtains, the inconvenience may, to a certain cxtent, be avoided.
Many objects are seen very beautifully by lamp-light, but this light is far mere glaring than daylight. When the light is made to pass through blue glass befere reaching the mirror, it bears a greater resemblance to daylight, and is pleasanter to the eye. A piece of white ground-glass, fastened in a wooden frame, and placed before the lamp, will have the same effect. By regulating the light of the lamp in this manner, objects already prepared may be shown very well by night, but it is hardly possible te make fine preparations with such an illumination; for exact observation, therefore, the day-time only must be selected. In order te intercept the light of the herizon by means of the mirror, the latter is placed at least three feet from the window, the microscope is turned with the mirrer tewsrds the light, and the whele instrument, but especially the mirror, is placed in different pesitious whilst the ebserver looks through the ege-glass; the light is, in fact, sought after: when the field of view appears clearest and brightest, the object which is to be observed is pushed under the microscope.
When it is wished to examine opaque objects with incident or reflected light, the micrescope may often be advantageously brought nearer to the window. Since for this kind of illumination a much larger quantity of light is necessary, direct sunlight is sometimes desirable; in the absence of this, the condensing lens is used, by means of which the greatest possible quantity of light is cencentrated upen the ebject. In this kind of illumination, the access of light from below, which would interfere with the observation, is prevented by clesing the diaphragm. Fer objects which are altogether opaque, a background which is white, but not glittering, is often advantageous.

The table at which microscopical observatious are undertaken must be sufficiently large, and very firm; it must be so arranged that all the apparstue which is ever wanted shall be at hand. Much time is spared by attention to this, and in microscopical investigations time passes only too quickly; moreover, in a very confined space it is impossible to make effectual preparations with the simple microscope. Evary object intended for investigation should be examined in the first instance with a low magnifying power, since by that means a far larger portion of the object is seen, and thus a better impression with regard to the whole is obtained. Should the light ba too strong, the plane mirror may be used instcad of the concave one. When the observer has gained as much iuformation as he can with the lowmagnifying power, for instance, one of 50 diameters, or, in some cases, cven a less magnifying power, the object-glass is changed for a more pewerful one. When the most powerful object-glass has been used, and a still stronger magnifyiug power is found desirsble, then a stronger eye-glass is taken. As a general rule, the eye-glass of lowest power should be used, aud, if necessary, the magnifying power should
be increased by passing from the object-glasses of lower power to those of higher power; but, nesertheless, for seeing with consenience, and especially for drawing, the use of a powerful eyeglass is oftea not without adrantage. As long as the magnifying power can be increased by means of an object-glas, rocourse should nerer be bad to the eyoghass, sinco both the light and the sharpness of outline of the image are neceasarily diminished by the use of a powerful eyeglass, which is not the case in using a more powerful object-glass.

In sotne cases, it is a good plan to shade with the left band, the ege which looks into the mieroscope. When an object is thin enough to be seen with transmitted light, it is first illuminnted with light tmasmitted directly, and is examined with different, and graduslly increasing, magnifying powers; should any details of the image remain undefined, obliquely transmittel light is used, which in insinuated into all the different corners of the object. In some microscopes this is attained by turning the stage round its axis; where thia arrangement is wanting, the position of the object must be changed by moriog it with the hami. Lines always stand out most clearly when oblique light falls upou them at a right angle: where, therefore, a line is suspected to exist, or is only dimly seen, particular attention must be paid to this circumstance. In aubmitting objects to incident light, the same rule generally holda goorl, and particular care must be taken, by turning either the stage or the object itself, to concentrate the light in all possible dircctious upon the object. Object-glasses of very high power cannot be used with incident light, inasmuch as the shortness of their focal length prevents the light from falling on the object ; in this case recourse must be had to less power object-glassea, and more powerful eye-glasses. As a general rule, low-magnifying powers are sufficient when incident light is used.

Objects are frequeutly examined by polarised light. In order to effect this an instrument called a polariscope is employed. That mont frequently used ia the arrangement proposed by Mr. Nichol. It consists of two prisuns of Iceland spar, oue of which is fitted beueath the stage, the other is attached to the eye-piece. Tourmaline ia also used for the same purpose. Large crystals of iodide of quinine have also been shown by Dr. Herapath to be applicablo in polariaing light for tho microscope. ('Quarterly Journal of Microscopical Science,' vol. ii.) By the use of polarised light objects frequently exhibit their structure in a more perfect manner. Various objects, especially crystals of a spherical or oral form, exhibit a beautiful variety of colour in this way. In aome casea it may be made the means of teating the uature of an object.

In most instances, objects are exsmined under water: it is but seldom, as, for instance, in examining pollen or spores, that it is neceseary to observe them in different media, and also when dry. In the case of incident light, water often operatea injurionsly, especially when the object is not quite covered by it: it ia thereforo advisable, for certain particular objects, as, for instance, the embryoea of grasses, to observe them first without water, and afterwards under water; by placing them uader a cover, and adding water with a camel's-hair brush, the object is generally aufficiently and fully immersed. Whan low-magnifying powers are used, it is not necessary that the objects should bo placed under a glasa cover, in fact, in many cases where it is wisbed to have the power of turning the object round, or when it is thought that the object may bo improved by any additional cutting or preparstion, it is rery advantageous not to cover it; when objectglasses of very high power are uaed, the focal distance ia so short, that in order to present atriking the lens againat the object, or dipping it in the fluirl upon the object plate, it is necessary to make use of glass covers. When these are used, the fluid iu which the object liea frequently becomes leasened by evaporation during the observation, in which case s fresh drop is added at the edge of the glass cover by means of a glass rod, or a clean camel'a-hair brush, which may be used when it is wished to add a solution of iodine, or of chloride of zinc and iodine, to objects which are alresdy immersed in water.

When any chemical re-agents are used, whether iodine, caustic potahb, or an scid, the object should always be covered with a thin plate of glass; in using volatile acids, such as nitric acid and hydrohloric aeid, too mucla care cannot be taken. The vapour of sulphuretted hydrogen has a rery injurious cffect upon flint glass, which is used by some opticians for the under side of tho object-glass.
When the micmoscope is in daily use, it is a good plan to keep it under a ligh bell-glas, or an ormanent ahade.
The greatest cleanlinens and accuracy are indispensable for microacopical inveatigations: it must be laid down at a rule alwaya to use the elcancat water, in the cleanest ressela, for moistening the slides. Fiven with this precaution it in impossible entirely to protect the object from becoming soiled with particles of dust. Extraneous thingt of thin kind will not eanily deceive a practiacd observer; a beginner however may be easily misled by then. Water which has been left atanding should never be used, since it too frequently contains the inferior morts of animals and plants; and when different objecta are exanined one after another, freal water ahould be taken for eviry new object, in order that no particlen of the objecta whieh have been prevously examined may be mixed with the water upon the alide. Many erroramay be traced to a neglect of amall jrecautions of this sort.
In order to be able to recogniso cxtraneoun objecte as sucb, it is
advisable to gain an aoquaintance with those things which, notwith. standing all precantlons, cannot always be avolded. To thin class of things belong-1st, Air-bubbles, which, with transmitted light, generally appear in the form of circles of larger or smaller diameter, with a dark, black-looking rim : With incident light, on the oostrary, their rim sppears of a white colour. When the object is under a glass cover and in contact with it, the larger air-bubbles frequently assume a very irregular ahape; the above-mentioned optical fact is generally however by far the best proof of the presence of air, and by it the presence of air may bo detected both in and between the cella of plants. 2nd, Colourless or coloured fibres of paper, or of linen, woolleo, or silk-textures, left behind upou the object-glasses, from the cloths with which they have been cleaned, and also the hairs which bave been detached from the brush. 3rd, Granular particles of dust of irregular ahape, which are frequently colourcd, and are probably produced by the decay of organised bodies. If it is wished to examine plants, or parts of planta, which grow either in or upon the earth, or in water, great attention must be paid to the many organised bodies which are likely to be met with : pains must be taken by careful obserration to become acquainted with the lower forms of animals and plants: it is necessary, for instance, to be able to distiaguisb the common forms of Infusoria, both those which are provided with siliceous coatings, and those that are not; also with the yeast plant, the different forms of mould, the Oscillatoria, and such like things, in order to be able to separate them from the particular object under conaideration.

The epithelial cells of the mucoue membrane of the mouth are also objects which may deceive the observer. They occur when the bruah is drawn through the mouth previoualy to bringing an object upon the object-plate. It ia advisable never to pass the brush through the mouth. When in cutting amall objects, the latter are held between the thumb and forefinger, or upon the forefinger alone, it often happens that small fragments of the akin of the finger are cut off at the same time. The observer must learn to distinguish these fragmenta, as well as the amall pieces of cork which he will meet with in eections made betwecn that aubatance.

Appearances of motion, either usual or accidental, may also give rise to mistakes, and these must therefore be learnt. Molecular motion is peculiar to all very amall bodies, contained in a thin fluid medinm; it consists of a somewhat trembling motion of these small bodies; it is frequently seen in the interior of pollen grains; it may be observed still better in certain fluids, for instance milk, when a small quantity is mixed with water, and placed under the microscope, with a maguifying power of from 200 to 400 diameters. Wheu acquaintance is once made with thia phenomenon no further decoption can be caused by it. The same reault follows from accidents] currents upon the object-plate, which may take place either by evaporation or by the uningling of two fluids of unequal apecific gravity, or by the diesolving of any salt existing in the fiuid.
Observations are made less frequently with reflected than with transmitted light, but since the latter can only be used for very thin objects, the principal poiut to be attended to in dealing with opaque objects, is to make auch an arrangement of them, as to enable the observer clearly to make out their detaila. The manner in which the object is divided must be regulated and altered according to the nature of the object itself, and the information which it is wished, by the help of the microscope, to obtain respecting it. Firm homogeneous textures, such as wood, muat be treated quite differently from delicate objects composed of different organs, such as buda and blossome; in the case of wood it is sufficient to take ns thin a alice as possible, cut in a certain fixed direction; in the case of bude and blossoms, attention must be paid not only to the direction, but also, particularly, to the point at which the section is made; it in necessary to exhibit au accurate longitudinal aection through the middle of the whola bud or blossom, and an equally accurate traasrerse section made at different heighta, in order to ascertaia the arrangement of the organs with respect to one another; moreover, the different parts of the organs must be separated and examined by themselven; in cases like thia, and especially in inquiries connected with the development of plants, a dissecting microncope is necessary. The same remarks apply to hard and soft animal tissues.

Succulent or spongy tissues have gencrally large cells; it is not nccessary therefore to hare thin eections of auch tissues, which are alwaya difficult to make. Delicate animal tiseues may advantageoualy be placed in spirit or pyroligneous acid for some days, provided it is not necessary that the tissuea should be examined whilst freah; but there is little advantage to be derived from treating botanical objects in that manuer. It ia a good plan however, in many casea, to saturato delicato portions of animals and vegetables with thick gum-mucilage, and to let them dry slowly in the air.

In dissecting, different methorls must be adopted, according to the magnitude of the different objects; objecte of large size may be held with the left hand, or with the thumb and forefinger of that hand; very amall or very thin objects, such as the stoms of moases, thin twigs and roots, leaves, small seeds, and auch-like things, may be placed between two pieces of cork, aud thin elices of the object cut by means of a sharp knife or razor.

Obscrvations are eometimes disagrceably impeded by the preseace
of air, which becomes accumulated in the lairy parts of plants, in the intercellular canals, in the vessels, and in wood; it is best removed by placing the object for a few minutes in a small watch glass filled with alcohol; when taken out of the alcohol it must be put into water, and then transferred to the slide. When it is wished to examine the cell contents, in which the changes are generally produced by the operation of alcohol, the removal of the air may be advantageously effected by the ase of the compressorium, which is permitted to operate continuously upon the object, whilst the observer looks into the microscope. In the absence of a compressorium, the fingers may be lightly pressed against the glass cover.

For transferring objects from one fluid into another a very fine camel's-hair brush should be employed; needles and other sharp instruments shonld never be used for this purpose, since the object may be easily injured by them. When the objeet is very small it will be more easily found if the watch glass is placed upon a dark back-ground.
The microscope only affords a vicw of one surface of an object; wheu, therefore, bodies are subjecter to examination, it is not sufficient for a correct understanding of them to examine one side only; a transverse section and a longitudinal section, and, iu fact, frequently many longitudinal sections in different determinate directions, must be carefully examined and compared with ons another before the observer can be satisfied that be has made ont the construction of the body under observation. That which in objects of large size is attained by the belp of the knife. is cffected, in the case of very small opaque objects, by examining them on different sides. In examiniug amall bodies which are very transparent, as, for instanee, the ovules of Orchidere, or grains of polled or starch, the adjustment of the miscroscope is varied from time to time, by which means the upper side of the object is first brought into the focus, then the middle (which may be called an optical section, trausverse or longitudioal, as the case may be), and, lastly, the under-side. The more perfect the object-glass the more exact is the focal planc, and the more sensitive is the instrument to any small alteration of the focus, on which account the observer should always keep his hand upon the fins-sdjusted screw whilst he is employed upon observations requiring mach accuracy. The sensitiveness above mentioned increases, in good instruments, in proportion to the magnifying power, and also with the angle of the aperture of the glass.
The accurate adjustment of an object is judged of by the sharpness of delineation of the image. The adjustment is more accurate in proportion to the delicacy and sharpness of the lines seen upon small objects, and also in proportion to the fineness and clearness of the outlinc, which should be soft, but well-defined. The scales of the Hipparchin Janira, a common brown Butterfly, are well adapted for enabling a person to judge of the accuracy of an adjustment; the smallest change of focus causes transverse strixe to disappear.
In examining emall round bodies, such as pollen-grains, tha position of the objects should be changed, by gently pushing the glass-cover so as to cause the bodies to roll abont; by this means different sides of the objects are seen, and from the different images presented to the eye their true form is made out.

Small objects should never be compressed between two glass sides, that being too rough a method of proceeding. If bowever it is supposed that anything is to be gained by compression, then it is advisable to use the compressorium, which is au instrument consisting of a mechanical arrangement by which the thin glass covering an object may be compressed at will. When the compressorium is cautionsly used, the observer, by carefully watching what takes place, can gaiu a knowledge of the changes produced by pressure during the tine the compressorium is permitted to work. In certain cascs, wherc, for instance, the question is whether a particular object is a delicate cell or a drop of some fluid, the compressorium may be of service; since, if a cellular membrane be prescnt, it will burst and discharge its contents as the pressure is increased, whereas the drop, whether it be oil, liquid resin, or any other chemical substance upon the slide, will only change its form.
In examining any object, whether animal or vegetable, it is not sufficient to observe the nature, form, and arrangement of the cells; It is necessary also to pay attention to their contents, which, in the case of plants, are different accordiog to the functions assigned to them $1, y$ nature. It is necessary, therefore, to distinguish-1st, Whetber a cell is empty, that is to say, whether it contains air, as is the case, for instance, with perfect vessels and wood-cells; 2ndly, Whether its contents are fluid witl a solid substance contained in the fluid. Another question which arises is as to the nature of the fluid contcats, that is, whether they consist of a homogeneous fluid, or of fluids of different consistencies, apparently not intermingling with one another; the manner in which these fluids are affected by chemical re-agents has also to be considered. Lastly, the solid ingredients of the cell-contents, and their physical and chemical pature, must also be attended to. There are some substances dissolved in the juices of the cell, such as sugar, for example, for which no certain chemical re-agents are known. Gum and dextrine are coagulated by alcohol ; the presence of altrogenous substances is proved, by the uso of sugar and sulphuric scid, which produce a red colour, or by a solution of iodine, or of chlortde of zine and iodine, and also by nitric acid, with ammonia subsequently addel to it; in these three cases an intense yellow
Nat. hist. HIV. VUL. HI.
colour, almost brown, is produced. When the presence of oil or resin is suspected, the object should be placed in ether or pure aleohol for some hours, which will dissolve both oil and resin. When the juicess of the cell hold any salt in solution, some reagent must be used which operates upon the salt. Starch is detected by being coloured blue by iodine. [Starce; Lignin ; Cblorophyle ; Protern.]

The following is a list of re-agents which it will be found convenient to have close at hand in the examination of either animal or vegetable substances :-

1. Alcohol, which is used principally for removing air from sections of wood and other preparations, and as a means of dissolving certain colonring matters, \&c. It coagulates the albnminous textures of animals.
2. Ether, which is principally used for dissolving resins, fatty essential matters, and other oils, \&c. This is also useful for removing air.
3. A solution of canstic potash, which is used for the purpose of dissolving fat, is also useful in certain cases from its effects upon the contents of cells, and upon the thickening layers. It dissolves 11$]$ substances of an albuminous nature. This solution ofteu works better after warming.
4. A solution of iodine (one grain of iodine, three grains of iodide of potassium, one ounce of distilled water) for colouring the cellmembrane, and the contents of the cell.
5. Concentrated sulphuric acic. 'This is principally used for examining pollen and spores. In the examination of hairs it renders the cells very distinct.
6. Diluted sulphuric acid (three parts of sulphuric acid and one part water), for colouring the cells of plants whieh have been previously moistened with the solution of iodine. The object is moistened with the solution of iodine, which is then removed with a fine camel's-hair brush, and by means of a glass rod a drop of snlphnric acid is added, and the object is then immedittely covered with a coveriog-glass. The cffect of the sulphuric acid and iodine, as well as that of the iodised solution of chloride of zinc, is not always the same over the whole surface of an object. At the points where the mixture is more concentrated, the colouring is more intense; frequently places remain without any colour. The colour changes after' some time; in twenty-four hours the blue is often elianged into red.

The iodised solution of chloride of zine produces generally the same blue colour in cellulose as iodine and sulphuric acid: the former is preferable in many cases, inasmuch as its effect is not so rapid, and it is not injurions to the cells. Both re-agents should in mayy cases be employed, and their effects compared with one another. Besides maceration, it is advisable, in examining woods, to adopt the plan of boiling thin sections for about a minute with a solution of caustic potash; after this boiling, the wood-cells, which were not previously turned blue by iodine aud sulphuric acid, become of a violet or blue colour upon the application of the iodised solution of chloride of zibc.
7. A solution of chloride of zinc, iodine, and iodide of potassium. A drop of this solution applied to an objeet placed in a little water, produces the same colour as iodine and snlphnric acid. This solution was first recommended by Professor Schultz, of Rostock; it is more convenicnt to use than iodine and sulphuric aeid, and produces almost the samo resuits; it is, moreover, not so destructive as sulphurie acid. The cxact prescription for this solution is as follows :-Zinc is dissolved in hydrochloric acid; the solntion is permitted to evaporate, under contact with metallic zinc, until it attains the thickness of a syrup; and the syrup is then saturated with iodide of potassium. The iodine is then added, and the solution, when it is necessary, is diluted with water.
8. Nitric acid, or, what is better, chlorate of potash and nitric acid. This is used for separating cells. The method of maceration discovered by Professor Schultz, and whieb is much to be recommended, is as follows:-The object (wood, for instance), is reduced in size to the thickness of a lucifer-match; it is then thrown into a loug aud tolerably-wide boiling-tube; to this is added, in a little while, an equal volume of chlorate of potash, and as mnch nitric acid as is at least sufficient to cover the wood and the potash; the tube is then warmed over a spirit-lamp; a brisk development of gas quickly appears; the boiling-tubs is withdrawn from the flane, the oxydising mixture is permitted to wark for about a minute and a half or three minntes, and the whole is thrown into a saucer with water : the small pieces which adhere slightly to one another are then collected, placerl in the boiling-tube, and boiled repcatedly with alcohol, until the latter appears colourless; they are then boiled once more, for the last time, with water. By the help of the simple microscope the cells ars now separated from one another with a needle, and selceted. The boiling with nitric acid and chlorate of potash should never be carried on in the room where the microscope is kept, because its glasses might be injured by the evaporation which is developed. Thin sections of plants, for instance, of woods or leaves, are warmed for balf a ininute, or a minnte, in a watch-glass; the boiling is unnecessary in this case; the section is tasen out with a little rod, and thrown into a small watch-glass, with water. Nitric acid is one of the best agents for removing animal or vegetable tissues from silica, as in the case of the Diatomacere.
9. Oil of lemons, or any aticr essential oil, for cammining pollen and spores.
10. A tolerably atrong molution of mariate of lime (one part of dry muriste of lime, and three parts of distilled water) for preserving microscopic objects This is lareful for mot things, even for delicate objecta, unless they contain starch. If it is wished to preacrvo an object for a few days without mounting it inmediately, it is a very good plan to put a drop of this solution upon the object, and to place it under a bell-glasa for protection against dust.
11. Glycerine. This is also well sdapted for preserving microscopic objects, and expecially for cells which contain starch, which latter nubstance continues unchanged by it. In grauules which exhibit lamination, for imetance in the potato starch, the lamination is apt to continue invisible for the first few hours; after 24 hours, however, it appears more clearly.
12. Copal varnish, or Canada balmam, also for the preparation of microscopic objects; these are only to be recommended for a few thin sections of wood, anch as fossil woods. They both make the object more transparent than the solution of muriste of lime.
13. A tolerably strong solution of carbonate of sods for digesting pent-wood, as well as hydrochloric acid for digesting fossil woods which have been converted into carbonate of lime. It is also recommended for examining the sweat-ducts in the skin.
14. Acetic ncid. This is rery useful in examining animad tissues. It has the power of unsking the cell-wall clearer, whilst the nucleus becomes darker and more distinct. It also distingnishes phosphate or carbonate of lime from oxalato of lime, by dissolving the two former, whilst it has no action on the latter.
15. Very dilute chromio scid. It is used for the purposes of hardening tissucs. It is especially useful in exsmining the structure of the retina.
16. Ammonia will be found useful in the same cases where csustic potash and soda are employed.
17. Nitrate of baryts is used as a test for sulphuric sud phosphoric acids. Sulphate of baryta is insoluble in acida and alkalies, while phosphate of baryta is readily soluble in scids, but insolnble in semmonia.
18. Nitrate of silver in solution is used as a test for chlorides and phosphates. The white chlorido of silver is soluble in ammonis, but insolublo in nitric acid. The yellow phosphate of silver is soluble in cxcess of ammonia and nitric acid.
19. Oxslate of ammonia is employed as a test for lime, an insoluble oxalate being formed wherever lime is present.

This list of re-agents might be increased, as there is acarcely an operation performed in the laboratary that may not be repeated on a smsll scale uader the microscope. The abovo list, however, comprises those which will be found most uscful.

In addition to the ordinary optical srrangements of the microscope, certain forms of neceasory apparatus will be found very useful. Some of these have been slready alluded to, and the following will also be found convenient.

1. A apirit lamp, which may be made of brasa, tin, or glasa, fitted with a ground glass cap. It may be fitted with a stand, and will be found useful for submittiog object to heat. The objection to the employmeut of candlex, or lamps, is the black smoke they produce.
2. A small warns bath. This will be found of use for drying objects previous to being mounted in Canada balsam.
3. Watch-glasses are useful for cxamining substances in flnide with low power, as by this means a considerable depth of fluid is obtained for observation.
4. Plste-glass slides, 3 ioches long snd 1 inch broad, are uscful for mounting and examining sll kinds of bodies.
5. Thin-glass, called cylinder-glaen, of different degrees of thicknesa, ia indispensablo for placing orer objects, especinlly those which are soft or fluid when placed npon a alide.
6. Needles of various eizes aro used for making minute dissections, Small handles may be attached to them, rendoring them inoru easy to work. Needles or pins mas be employed for fastening down minute organic bodica which sre abont to be submitted to diasection.
7. Sciasors of various sizes will be found nerviceable. These may be obtained of the surgeon's instrument makers.
8. Kuives, ncalpela, and razory, for cuttiug soft or hard objects, should be kept at hand.
O. A pair of thin brass forefps will be found convenient for placing thin glass on tho alides, as well as for placing or removing objecta from the slidon.
9. A glass-cutter's diamond la umeful for cutting slipa of glass, in the making of cella, and in writing the names of preserved olijects on the glas sliders.

Cements of various kinds are necemary to tho microncopic observer who winhes to preaervo tho objects ho examinea. They sre uad for making glass cells to contain objects, on the glaes slide, and for fixing the cover after the preparation has been placed in tho cell, and for other purposes. The principal cementa used are gold-size, sealingwax varnisb, solvtion of shell-/sc, gum, a French ceneut composed of lime and Indian-rubber, Brunewick-blsck, marine-gluc, and Canada balamin. These cementa are most' of thern rold nt tho opticinn's and directiona for making them sre found in eome books on chemistry and the microscope.

In order to freacrve preparations for a length of time it is neccs-
mary to placo them in an air-tight vessel. These vesqels areoalled cella and are best madu of glass. Thoy aro also sold where microscopes are procured. With a little practice howover the mioroscopist may mako his own cells.

Thin cella may bo made of various substancea. Even paper answers exceedingly woll in some casea, and is well adapted for dry preparations. A thin layer of white lead, which has been allowed to dry, has also been employed for the same purpose. White lead, made into a thick liquid with linseed-oil sud turpentine, has been recommended by some observers. Various varnighes have likewise been used; but Where it is required to keep the epecimen in some preservative solution gluss is the substance which in all cases forme the best material for making cells.

Sometimes preparations are of such extreme tenuity that it is only necesasry to place them un the slide with a drop of some preservative solution, and then to cover them with a equare of thin glass, the edges of which havo been anointed with gold size or otber appropriate cement. The auperflnous fluid is next absorbed with bibuloua paper, and the slide sllowed to dry for a few miuntes. A layer of gold-size or other cement is then applied round the edges of the thin glass in order to fix it to the slide. In this way an exceasively thin cell may be formed; but preparations mounted in cello made in this manner can seldum be kept for any length of time without the entrance of air-bubbles. This arises from the outer layers of the gold-size drying more rapidly thso the more internal layers. By the contraction thus produced the edges of the cement are drawn off from the glass, to which however it does not adhere with great tonacity in consequence of the surface being bighly poliphed. It is therefore alwsys better to make very thin cells of glass or other msterial, which can be cemented to the glass slides with marine glue or other cement ; or else to make the cell by painting the slide with a ring of varnish, marine glue, or Brunswick black, and allowing this to dry thoroughly before the prepsration is placed in it. In this manner the thinuest cells which can be required are renlily made.

Perhaps Brunswick blsok is, for the purpose just mentioned, the best. It is painted upon a glass slide with a fine csmel's-hair brush, and sllowed to dry perfectly, when, if the cell ia not sufficiently thick, another lager may be applied. If tho cell be required immediately, it is better to warm the slide slightly before applying the varnish. If too great a degreo of heat however bo employed the varnish becomes brittle and the cell unfit for use.

Very thin cells may bo made of tin-foil. This may be easily accomplished by cutting with a pair of acissors a piece of thin tin-foil the size of the cell which it is desired to make. A hole is cut in the centre of the tin-foil sufficiently large to hold the preparation which is to be preserved, and the tin-foil is then attached to the glass slide with marine glue. When cold the cell may be filed perfectly flat with s very fine file, or rubbed with a little emery upon a piece of plate glass, and the marine glue should be afterwards removed from the centre with a little solution of potash. The cover may be fixed on with gold-size or varnish, as in other cases. Thin cells bsve also been mado of gutta percha, but there is great difficulty in fixing the cell firmly upon the glass slide. This however has been effected by some observers; but in consequence of the difficulty it is a muthod not generally employed. Proparations however mounted in cells compoaed entirely of gutta percha keep very well for a length of time.
Cells composed of very thin glass are perhaps the most couvenient, and will bo found useful for preserving many proparations. Thoy msy be ohtained of different degrees of thickness, and are made usually by perforating the thin cylinder glass which is used for covering the cells, or by grinding sections of a thick glasa bottle to the required renuity. Round cells of thin glass are made as follows:-A grest number of squsres of thin glase are cemented firmly together With marine glue, aud when cold a hole of tho required size is drilled through them all. They are next separated from each other by heat, snd, after being clemned with potash, may be fixed on the glass slides with marine glue in tho ubual way nnd kept ready for use. $1 t$ is a good plan to roughen the surfsce of these cella, which renders the subsequent entry of air leas likely, as the gold-aize adheres much more firmly to a ground than to a polished surface. This is readily effected by rubbing the cell, after it has been fixed upon the glass elide, up and down a narrow hone or strip of plate glass on which aome moistened emery powdor has been placed. In this way slao the thickness of the cell may be reduced if required. (Beale.)

Cells of any thickness or depth may bo mado for Jarger objects, but those described will be found most convenient.
If it is only required to examine the character of a specimon in a dry state, it may aimply be lnid upon a glass slide and plsced in the field of tho microscope; if however the substance bo of a very delicate atructure, or in a miuute atate of division, it is better to place a piece of thin glass over it in tho usual manner in order to proteot it.
Dry objects may be mounted in a thin glass cell, or in a psper cell or if of extreme tenuity they may simply bo placed on a glass alide and covered with thin glasn, which shonld be fixed to the former by a small pioce of gummed prper (rather larger than the glass cover), in tho ceatre of which a hole has been cut of sufficient size to permit the entire object being seen. The paper may of course be of any colour, or ornamented according to the tasto of the operator.

When objects are to be examined by reflected light they may be placed in little glass or card-board cells, or in pill-boxes, or they may be put up in glass cells. The preparation should be placed upou a dark ground, which may be effected either by cuttiug a piece of dark blue or black glazed paper of the exact size of the cell and placing it within; or the black paper may be fixed on the posterior aurface of the alide; or this surface may be covered with black paint or black varnish.

There are various methods by which preparations may be subjected to examination, and preserved as permanent objects in a moist state, and the different value of the various preservative solutions which are in use entirely depends upon the nature of the subatance to be mounted. Distilled water forms a very good flidid for some objects, while for the preservation of most it is necessary to immerse them in water impregnated with some antiseptic agent, which is not volatile at ordivary temperatures. Many again are best preserved in spirit, or in a solution of some salt. It is very difficult to lay down rules which will enable the observer to choose a preservative fluid for any particular specimen. A little experience however will soou enable him to judge which solution is best adapted for the purpose.

We take the following account of several preservative solutions from Dr. Beale's valuable work on the Microscopa:-
Spirit and Water.-Mixtures of spirit and water of various strengths are required for preserving different preparations. In diluting spirit distilled water only should be employed; for if common water be treated with spirit, a precipitation of some of the salts dissolved in it not unfrequently takea place, rendering the mixture turbid and unfit for use. Proof spirit will be atrong enough for all general purpoaes, except for hardening portions of the brain or nervous system, when stronger spirit must be used. Two parts of rectified spirit, about gpecific gravity -837, mixed with one part of pure water, makes a mixture of $8 \mathrm{p} . \mathrm{gr} \cdot 915 \cdot 920$, which contains about 49 per cent. of real alcohol, and will therefore be about the atrength of proof spirit. One part of alcohol, 60 over-proof, to five parts of water, forms a mixture of a sufficient atrength for the preservation of many zubstauces.
Glyccrine.-A solution of glycerine adapted for preserving many atructures is prepared by mixing equal parts of glycerine with camphor water. The latter prevents the tendency to mildew. It may be uaed as other preservative aolutions.
Glycerine is obtained by boiling oil with litharge. The oleate of lead remains as an insoluble plaster, while the glycerine is dissolved. It may be reodered free from lead by passing a curreut of sulphuretted hydrogen through it; and the clear solution, after filtration, may then be evaporated to the consistence of a syrup.
Thwsites's Fluid.-This fluid has been much employed by Mr. Thwaites for preserving specimens of Desmidiect ; but it is also applicable to the preservation of animal aubstances.

$$
\begin{aligned}
& \text { Water of Wine . . . } \\
& \text { Spirits of } \begin{array}{l}
16 \text { onnces. } \\
\text { Crecsote, sufficient to aaturnte the spirit. } \\
\text { Chalk, as much as may be necessary. }
\end{array}
\end{aligned}
$$

Mix the creasote and spirit, etir in the chalk with tho aid of a pestle aud mortar, and let the water be added gradually. Next add an equal quantity of water saturated with camphor. Allow the mixture to stand for a few daya, and filter. In attempting to preserve large preparations in this fuid, I found it alwaya became turbid, and therefore tried soveral modifications of it. The solution next to be described was found to answer very satisfactorily. Water may also be impregnated with creasote by distillation. It ahould be remarked that M. Straus-Dürckheim has aucceeded in prcserving preparationa in camphor-water only.
Solutiou of Naphtha and Creasote.-

$$
\begin{aligned}
& \text { Crensote } \\
& \text { Wood Naphtha } \\
& \text { Diatilled Water } 3 \text { drachma. } \\
& \text { Chalk, as much as may te uccessary. } 61 \text { ounces. }
\end{aligned}
$$

Mix first the maphtha and creasote, then add as much prepared chalk as may be sufflient to form a smooth thick paste; afterwards add, very gradually, a amall quantity of the water, which must be well mixed in a mortar. Add two or three amall lumps of camphor, and allow the mixture to atand in a lightly covered vessel for a fortnight or three weeks, with occasional stirring. Pour off the almost-clear supernatant fluid, and filter it if necessary. Preserve it in well-corked or stoppered bottles.
I have aome large preparationa which have been presorved in upwards of a pint of this fluid, for more than five years, and the fluid is now perfectly clear and colourless. Some dissections of the nervoug hystems of insects have kept excellently-the nerves keeping their colour well, and not becoming at all brittle. Two or three morbil apecimens are alyo in an excellent state of preservation; the colour being to a great extent preserved, and the soft character of the texture remaining. I have ooe preparation mounted in a large gutta percha cell, containing nearly a gallon of this fluid.
Solution of Chromic Acid- - A solution of cliromic acid will be found well adapted for preserviog many microscopical specimens. It is particularly useful for hardening portious of tho nervous system previous to cutting thin sections. The solution is preparcd by dissolving suf-
ficient of the crystallised acid in distilled water, to render the liquid of a palc atraw colour.

The crystallised acid may be prepared by decomposing 100 measures of a saturated solution of bichromate of potassa, by the addition of 120 to 150 measures of pure concentrated sulphuric acid. As tha mixture becomes cool, crystals of chromic acid are deposited, which should be dried and well pressed on a porous tile, by which means the greater part of the sulphuric acid is removed, and the crystals obtained nearly pure.
Preservative Gelatine. -

$$
\begin{aligned}
& \text { Gelatine I ounce. } \\
& \begin{array}{l}
\text { Honey } \\
\begin{array}{l}
\text { Spirits of Wine } \\
\text { Creasote }
\end{array} \\
4
\end{array}
\end{aligned}
$$

Soak the gelatine in water until soft, and to it add the honey, which has been previously raised to the boiling.point in another vessel. Next let the misture be boiled, and after it has cooled somewhat the creaoote dissolved in the spirits of wine is to be added. Lastly, filter through thick flannel to clarify it. When required for use, the bottle contaiuing the mixture must be elightly warmed, and a drop placed on the preparation upon the glass slide, which should also be warmed slightly. Next, the glass cover, after having been breathed upon, is to be laid on with the usual precautions, and thc edges covered with a coating of the Brunswick black varnish. Care must be taken that the surface of the drop does not become dry before the application of the glass cover; and the inclusion of air-bubbles muat be carefully avoided.

Goadby's Solution.-
Bay Salt

Alum
Corrosive Sublimate
Boiling Water

.
2

Mix and filter. This aolution may for most purposes be diluted with an equal bulk of water. For preserviog delicate preparations it should be even still more dilute.
Burnett'a Solution.-This fluid has been patented. Its preservative properties appear to depend upon the chloride of zinc. A stroug solution of chloride of zine forms a very powerful antiseptic, and also possesses the property of absorbing noxious odours, \&c.
Other saline solutions-Many other saline solutions have been employed by different observers. Of these, a saturated aqueous solution of chloride of calcium, frec from iron, has been much recommended for preserving specimens of bode, hair, teeth, and other hard structures, as well as many vegetable tissucs (Schacht). A solution of alum iu the proportion of 1 part of alum to 16 parts of water has been found to anawer pretty well for aome substances. Gannal'a solution, which consists of 1 part of acetate of alumina dissolved in 10 parts of water; solutions of common alt (1 part to 5 parts of water, with a little camphor), corrosive sublimate, persulphate of iron, arsenious acid, sulphate of zinc, aud solutions of several other salts, have been recommended as preservative solutions, but their employment has not beeu always attended with the most satisfactory results.
Arseniuratted hydrogeu gas has also been reconumended for the preservation of animal substances, but it is not adapted for microscopical preparations.
Canada balsam forms a most useful agent for mounting various substances; and the structure of many can only be clearly made or: when they sre examined in this menatruum.

In this method of mounting objects no cells whatever are requisite. The balsam should be pale and old. The glass slides must be warmed before the balaam is put on, aud for this purpose the glasses may be held in a pair of wooden forceps, or in a pair of common forceps, the legs of which are covered with cork, and heated over a spirit-lamp, or upon a brass-plate. The latter plan is the most couvenient when several preparations are to be mounted at the same time, becausa they may be arranged in a row along the plate, and the balsam placed upon each slide as it becomes hot.
The Canada balsam may be heated after it is placed upon the alide, in order to allow the air-bubbles eutangled in it to rise to the surface before it is applied.
The slide being warm, and the small quantity of Canada balsam sufficient to contain the preparation haviug beeu placed upon it, it must be gently moved about while the balsam is hot and quite fluid, until all the air-bubbles have floated to the surface and colleoted together towards one spot. A pointed wire or needle should then be taken, and all the bubbles either drawn out upon the end of it, which may be readily effected, or broken by the wire after it has been heated. lu those cases in which the preparation is not detached from the glass slide upon which it has been nllowed to dry, it is only necessary to place the drop of balsams upon it and gently warm it, following the usual precautions; afterwards the thin glass cover may be applied. Wheu the preparation bas beeu dried esparately over the water-bath and cleaned, it may be taken in a fine pair of forceps, gently warmed, and carefully placed iu the hot and perfectly fluid baisam. After it las becn thoroughly wetted by the balsam, aud all adhering airbubblcs removed, it may be placed in the position it is iutended to occupy. The thin glass cover, adapted to the size of the preparation
laving been previnuty cleaned and warued, may then be taken in a pair of furceps, mul, ather being held over tho warm balsaus for a minute, allewed to fall gradually upou the preparation (begiming at one side), until it becomen perfectly wetted with the balsam. Tho glas suay now be elightly pressed in onder to force out the superfluous kalkam, and the preparation allowed to cool.

We now proceed to give a fow directions for the exsmination of jartienlar objecta, more especially animal tissues, an these of all othera are the most difficult to manaide. In the exauination of tissues containing blood-vestels, ducts, or other tubular organa, it is frequently most desirable that injoctions shouk be made before they are subnitter to the uieroscope. This operation requires great delicacy. A very anall nyringe, or atnall syringes necording to the delicacy of the niructure, nuat be cmploper. The flud injected consists of size or gelatine, coloured with sarious eubstances, ns vermilion, sulphuret, and jodide of nercury, ehromate of lead, indigo, Prussian blue, white lead, de., accorling to the colour wished for.

The following general roles for injection are given by Dr. Beale :Great attention ahould be paid to the eleanliness of all the instruments to be used in injecting. The syringe should alway be kept ferupulously clean aud in good order, and the jnjectiag.cans should be carefully covered, to prevent the ingress of dust. Before commencing the operation, plenty of warm water sbould be nt hand; and the subject should be nllowed ts sonk for some time in a basin of hot water, before it is attenjuted to inject it, in order that it may be thoroughly warmed through. The temperature of the water must vary according to the degree to which the injection is required to be henterl: if size aud vermilion bo used, the water need only be warm; but if meltel wax lee enployed, the water must be so hot that the hand can rearcely be borne on it. The length of time which the preparation is allowed to soak must depend upon its bulk; and the water shouht be changel as soon as it becomes at sll cool. With respect to the length of time after death that is more favourable for this operation, no nbsolute males can be given. Generally, it may be remarked that we ahoull not attempt to inject while the rigor mort is lasto. Many days may in some cases with advantago be allowed to elapse, particularly if the weather is cold, white in warm weather we are conjpelled to injeet soou nfter deatl. As a general rule, the more delicate the tivsue, and the thimer the vessels, the soomer should the injection be performed. Many of the lower animsls, annelids, mol Jusca, \&e., nud fishes, should be injected soon after death. In making minute injections of the lirain, ouly n short time should be sllowed so elapso after the death of the auimal, before the injeetion in commonced. Injections of the alimentary canal of the higher animals whould be periormed early-not more than a day or two after cleath.

When the preparation is warmed through, the injection properly wraned, and the pipe fixed in the vessel, we may proced carefully to inject, taking care that the injection is kept at a proper temperature, by allowing it to remain in the warm water-bath during the ojeration.

The air shoudd he first withlrawn from the upper part of the vessel by neans of the syringe, after which the atop-cock in turned off and left nthached to the jipu. The nyringe is then disconvected, and after being woubed ont once or t wice witl waro water, is uearly filled with injection, which must be well atirred up immediately before it is takon. The faringe should not be quite tilled, in order that the air in the pipe muy be made to riso into the syringe through the injection, by the nucut of the pinton, before any of the latter is forced into the vessel. The end of the syringe: is then to be pressed firmly iuto the upper lart of the stop-ciock, with a elightly ecrewing movemeut.

The piston is now very gently foreed duwn by the thumb until the syringe has been nearly empatial, when the stop-cock must be turned ofli, nad the syringe refilled with warm injectiou at before.

Care must always be taken to keep, the syringe in an inclined jrenition, so that may air which may be in it may remaio in the upper part : and, for the shme reason, all the injection should not be forced out, for fear of the incluned nir entering the veisels, in which case all chance of oldaining a nuccessfal iujection would bo dentroyed.

After as certuin quantity of thid has been injected, it will be necesfary to ume a greater amonnt of force, which, however, must bo increased very eradually, nat whould only be sufficient to depress the pixton fery slowly. If too great force too oraployed, extravasation will be prohnecd lefare the capillariea are half fided. Geutle nud very gradunlly inereand pressuro. kept up for a consilerablo time, will c.ane: the minute vesach to become slowly distended without giving way to my grent extent. At then gane time it inumt be borue in mind that extrivamation frequ ntly oceura at varioun joints in a successfal jujection; but the longer this oveat can lo kejot off, the more likely urs we to succed.

In order to cataine tha structure of many tisnuca, it is necesary to obtain a nection sufficiently thin to permit the tranamismon of the lichse readily, and an evenly cus, that the minute structure of the tiasue may be subnitted to examinction in every part of the nection. The lifficulty of making thin sections of many texturen is often very grest, mat, we effert this object natisfacturily, a knowledge of cortain mechanien! operations becomes neessmary. Sometimes wo require to cat a thia mection of a ruft pulpy texture, which can scarcely be
tiou of its constituents; while, in other instances, we must obtain a yery thin tramsparent section of a substance so hard that steel tools will searcely serstch it, such as the enamel of teeth, fossil teeth, \&c.

Previous to the examiastion of a tissue, boiling is frequently of service.

For instance, the fibres of which the crystalline lens is composed are best bhown after boiling the lens in water. The branched muscular fibnes in the tongoe of the frog, and in other aituations msy be made out very readily by boiling the organ in water for a few momenta, and then tearing up small portions with fine needles. Beautiful sections of muscular fibre can ofton be obtained after the texture has been boiled in water. Various glands and other textures often require to be boiled some time in wster, "in order to lusrdeu them eufficieutly to enable us to cut thin sections; but in all cases the microscopical characters of the recont texture should be examined, as well as that which has beeu hardened by boiling. Small portions of tissue ean be readily boiled in a test-tube over the spirit-lamp.

Not unfrequeutly we wish to get rid of the soft and mone pulpy part of a tissue, in order to subject the more dense and fibrous portion to examination. This object is usually effected by soaking the tissue iu water for some little time, and then placing it under a running stream of water, by which means tho softer portions are gradually washed away. Soaking in water frequently enables us to tear up a tissue very readily with the aid of needles, and thus to demonstrate its structure. Occasionally it is found necessary to press the tissue, and rub parts of it together, before the soft pulpy portions can be got rid of In this way we may demonstrate the supporting or trabecular tissue of the spleen, aud the areolar and vascular tissue of the liver, de. Thin sections of kidney, liver, and other glantular organs, mey be thus treated when the instrix is to be subjected to examination separately.

Thin sections of various tissues can frequently be obtained only by first drying the substauce thoroughly, and then cutting off a thin shaving with as sharp knife. In this way specimens of skiu, mucous meubrane, and many other tissues, are often most advantageousily prepared. The tissuc is stretched on a board with pins and then sllowed to dry, when a very thin section can be cut off and examined in Canada balsam; or it may be placed in water for a short time, in which case, when subject to examinstion, it will often be found to have regained its first appearance. Portious of muscular fibre, tho tongue, skin, and many other tissues, may be allowed to dry in this manner, and then we may with a sharp knife readily obtain exceedingly thin sections, which could not we procured in any other manner. The drying may be effected in a warm room, or iu a current of air. A high degree of artificial beat should be avoided.

When the inorganic portion of a tissue which we wish to exsmine is not altered by exposure to a red-hest, recounse may be had to ignition, in order to get rid of the auimal matter. In thia way erystala of carbonate and phosphate of lime, and granules of siliceous matter, may be separated from the organic material with which they were combined. The benutiful siliceous shells of the Diatomacea may be separated from organic matter by a similar process. The ignition should be performed in a small platiuum capsule, or upon a small piece of platinum foil. The carbouaceous residue must be exposed to the dull red-heat of a spirit-lamp for some time, uotil only a pure white ash remains, which will be found to contain the objects of our scarch in a very perfect state. If the siliceous matter ouly is wanted, the ash should be treated with strong nitric acid, which will diesolve any earbouate or phosphate. The insoluble residue may then be wahned and dried, and subjected to microscopic oxaminstion while inmersed in turpentinc or Canads balsam. In many cases this mothod is superior to that of boiling in nitric acid in order to remove the orgauic matter. Both processes may however be employed where only the siliceous residue is wanted, but if we require the salts of lime iguition at a dull red heat is nlono spplicable.

In oriler to subject a portion of tissue or other substance to exsmination by tramsuitted light, the following plan is adopted:-One of the glass slides is carefully cleaned, and the thin section of tissue which hats boen removed by the aid of forceps and acissors, or a scalpel, placed in the centre; a drop of clesa water is then added, aud the whole covered with a square of thin glass, also perfectly clean. If the under surfnce of the thinglass be gently breathed upon it becomes wetted more easily. The substance may be uaravelled with needles, or, if necessary, any other operation performed before covering it with the thin glass. If the substance bo covered with too much soft pulpy matter, it may bo alightly washed in watcr before being placed upon the slide, or a jet of water from the wash-bottle may be forced upon it. Thin eections will require to be laid flat upon the slide, with the assistance of needles and forceps.

Hard tissues require a lifferent treatment. Here the great object is to make sections thin eaough for the olject to be seen by trans. mitted light.

Many hard rubstauces, puch as nail, horn, and dried animal textures, may be cut with a stroug sharp knife, or with a razor; an operation which is easily performed by phoing the substance upon a piece of soft deal board, and, after cutting a maooth edge, removing a thin shaving, which may be examined dry or in fluid, or may be placed in Canada balsatn, as occasion may require.
Such eubstances as bone, lvory, and fossilised rocks, should be firat
cut into very thin sections with the aid of a sharp saw. Tbese sections should then bs pared down to the necessary fineness upon a bone or smonth stone. This may be effected in the following manner:-The section, after having been cut off with the saw, requires to be ground thin before it can be subjected to examination. It may perhaps be as much as the tenth of an inch in thickness when the grinding is commenced, but by rubbing it for a short time upon a smooth stone it may be reduced to the proper dagree of tenuity. Stones which are well adapted for this purpose are the 'Charley Forest' stones, the Turkey stones, or the Water of Ayr stones, about an inch or more in width, and six inches in length. Each of the four sides should be perfectly smooth. Other stones, or even a piece of slate, answer also very well, and may be procured at much less cost. The stone is wetted with a little water, and the section rubbed up and down with the finger, or with a piece of cork or leather.

A very good plan also is to imbed the section slightly in a piece of warm gutta purcha, which sbould extend only a very short distance beyond the edges. This is to be rubbed up and down on the wet bone, water being added as required, till the surface is perfectiy smooth, when the section is to bs taken off, turned round, and ground down on the opposite side until it is sufficiently thin. The section may also be gronnd down expeditionsly by rubbing it between two hones. If very thick, it will be better to reduce it somewhat with the aid of a flat file befure commencing the grinding. After being ground to what is consillered the proper thinness, the section may be placed in the microscope, when numerous dark lines will bs found all over the surfaces; these must be removed by polishing. The deepest of the scratches may be obliterated by rubbing the specimen upon a very smouth part of the bone quite dry.

Teeth require a little more attention than otber hard substances. They should be first ground down upon s lapidary's wheel or upon a dentist's emery wheel. Sections can also bs readily cut with a diamond saw (an iron-wheel, the edge of which is covered with diamond dust).

The thin section is now to be soaked for a short time in ether to remove the fatty mattor, and then allowed to dry.

It is to be subjected to examination in the dry way, moistened with water, turpentine, or Canada balsam, and the different appearances in cach case should be carefully observed.

The cartilagioous basis is to be examined also in thin sections, which may be cut either befors macerating in acid, or subsequently. A whole tooth plaeed in moderately strong acid will become soft in four or five days, when thin sections of differeut parts may readily be cut with a sharp knife.

The dentinal tubes may be isolated from each other by longer maceration in aeid, and afterwards by noaking for a few hours in dilute caustie soda or potash. It is better in this investigation to cut the thin section before maceration in acid, or to macerate the tooth until moderately soft, and then remove a thin section, which is to be further exposed to the action of the strong acid. A misture of sulphuric and hydrochloric acids has also been recommended.

The examiostion of fluids does not require so much art as that of solid matters. Where it is wished to examine the whole of the contents of a fluid, all that is necessary is to place a drop opon a glass slide and to cover it with a pieee of thin glass. It frequently happens however that it is the matter suspended in a fluid that it is desirable to examine. Under these circumstances the fluid should be placed in an urdinary tast-tube, and after allowing the deposit to settle, the supernatant liquor should be poured off, and a drop of the deposit conveyed to the glassside. In other cases a pipette nay be made use of to draw up the deposit from the bottam of the test-tube or other vessel in which it msy be held. In examiang water for living animalcules a small muslin-bag or net may be employed, through which the water may be poured, and the contents of the bag placed on the slide. In this way the Desmidiece and some of the larger forms of Infusoria are best procured for examination.

When the quantity of deposit is very small, the following plan will be found of practical utility. After allowing the lower part of the fluid which has been standing to flow into the pipette as above described, and removing it in the usual manner, the finger is applied to the orifice, in order to prevent the escape of fluid when the upper oritice is opened by the removal of the finger. The upper opeuing is then carefulty closed with a pieee of cork. Upon now removing the finger from the lower orifice, the fluid will not run out. A glass slide is placed under the pipette, which is allowed to rest upon it for a ahort time. It may be suspended with a piece of string, or supported by a small retortastand. Any traees of deposit will subside to the lower part of the fluid, and must of necessity be collected in a small drop upon the glass slide, which may be removed and oxamined in the usual way.

Another plan is to place the fluid with the deposit removed by the pipette in a narrow tube, elosed at one end, the hore of which is rather lest than a quarter of an inch in diameter. This may be inverted on a glass slicle, and kept in this position with a broad elastic Indiarubber loand. The deposit, with a slrop or two of fluid, will fall upon the slirle, but the escape of a further quantity is prevented by the nature of the arrangement.

Amongst the fluids of the human body which may with advantage bo submitted to examioation with the microscope, there is none of
more importance than the urine. This fluid being the great means which nature employs to rid the system of the used-up and effete matter of the body, becomes an index by which the completeness, redundacy, or inefficiency of this function may be examined. The following bints for the examination of this fluid will be found useful.

The urine which is to be examined sbould be collected in sufficient quantity, in order to obtain sufficient of the deposit for examination.
In all cases the urine should, if possible, be examined within a few bours after its secretion, and, in many instauces, it is important to institute a second examination after it has been allowed to stand for 24 hours. Some specimens of urine pass into decomposition within a very short time after they have escaped from the bladder; or the urine may even be drawn from the bladder actually decomposed.

In other instances, the urine does not appear to undergo decomposition for a considerable period, and may be found clear, and without any deposit a day or two, or even longer, after it has been passed.

In those cases in which lithic acid or oxalate of lime sre present, we shall find that the deposit increases in quantity after the urine has stood some time. The latter salt is frequently not discoverable in urine immediately after it is passed, but makes its appearance in the course of a few hours; depending upon a kisd of acid fermentation, which has been the subject of some beautiful investigations by Scherer.

In order to obtain sufficient of the deposit from a specimen of urine for microscopical examination, we must place a certain quantity of the fluid in a conical glass, in which it must be permitted to remain for a sufficient time to allow the deposit to subside into the lower part.

Urinary deposits often require to be examined with different magnifyiug powers, those which are most frequently used being the inch and the quarter of an iuch. Large crystals of lithic acid are often readily distinguished by the former, but crystals of this substance are sometimes so minute that it is absolntely necessary to use high powers. Octohedra of oxalate of lime are frequently found so small that they cannot be seen with any power lower than a quarter ; and, in order to bring out the form of the crystals, higher magnifying powers than this are sometimes necessary. Spermatozoa may be seen with a quarter, but thsy then appear very minute. In these cases, an eighth of an inch object-glass will be of advantage. The easts of the tubes, epithelium, and the great majority of urinary deposits can, however, be very satisfactorily demoustrated with a quarter of an inch objeet-glass.

In the investigation of those deposits which are prone to assume very various and widely-different forms, such as lithic acid, it will sometimes be found neeessary to apply some simple chemical tests, before the nature of the substance under examination can be positively ascertained.

The urine is pery liable to the introduction of foreign substances. A paper on this subject by Dr. Beale will be found in the first volume of the 'Quarterly Journal of Microscopical Science.' The following is a list of these substances occasionally found by Dr. Beale :-

Fragments of human hair.
Cat's hair.
Hair from blankets.
Portions of feathers.
Fibres of worsted of various colours.
Fibres of cotton of various colours.
Fibres of flax.
Potato starch.
Rice starch.
Whest stareh, bread-crumbs.
Fragments of tea-leaves, or separated spiral vessels and cellular tissue.
Fibres of eoniferous or other wood swept off the floor.
Particles of sand.
Oily matter-in distinct globules arising from the use of an oiled catheter, or from the accidental presence of milk or butter.
Besides the above, there are many other substances, met with less frequently, as, for instance, fragments of silk, mustard, flour, cheese, small fragments of the skin of potato, or of different kinds of fruit, and many others which will oecur to the mind of every one. With the microscopical characters of these hodies the student should be perfectly familiar as soon as possible; and, as they may be obtained without the sliglitest difficulty, this is easily effeeted.

For the nature of the deposits found in the aripe, see the article Uhine.

The examination of the other fluids of the animal body present little difficulty. Next to the urine the blood is of most importance. In order to examine the blood, a small drop is placed upon a glass slide, and covered with thin glass, whieh is to be pressed down until a very thin, transparent, and almost colourless stratum only remains. If in this manner the iudividual globules cannot be seen distinetly, a little syrup or serum must be added; but it is better to avoid the addition of any fluid, if possible. Upon carefully focussing, the red globules will appear to present a dark eentre aud light circumference, or the reverse, according as the focus is altered, and here and there a white eorpuscle may bo observed. [BL.00D.]
If a little strong syrup be added to a drop of blood, the corpuscles will be found to have become flatter from exosmosis of a part of theil
enntents; while, on the other hand, if placed in water, they kecome spherical from endonmosis, and ultiuntely burst. It is not difficult to anse a solution of similar density to that in the interior of the corpuecle; nul in this manner, as Dr. Rees expresses jt, we may take the epecific gravity of a bloorj-corpuscle, if we necertain the rpecific gravity of the solution which has been added to the blood.

Scetic acid causea the inembrane of the corpuacle to become more tramplarent and clear, and to awell up frem endosmosis. After the mplication of this reagent the blood corpuscle may be scarcely visible, but the membrae is not dissolved by it. Stroug hydrochloric and uitrie acids do not dissolve the globules; with the latter reagent the outline is often rendered darker and thicker, while the cutire globule becomea smaller. The corpuseles are entirely soluble in ammunia nud alknlies. They are rendered darker, and the walle corrugated, by the acid of the gastric juice, and after remaining in acid uriue for some time a similar ebauge occurs; hence the black colour of blood which has been effused into the stomach, aud the dark amokey bue of acid urine containing blood.

We hase before spoken of the crystals to be obtaiued from the blood. These crgatals are very readily obtained by dilutiug blood with water. A drop of blood may be placed upon a glass slide, and after the addition of a drop of water, nlcohol, or other, the whola should be lightly covered with thin glass. A hair, or a small piece of thin paper or wood, may be placed between the glassea, in order that a atratum of fluid of autficient thickness may be retained. Whenerer it is possible, it is preferable to use defibrinated bluod. Often the corpusclea and a little serum may be remored from the clot by firm pressure, and from this very perfect erystala may frequently be obtained. The blood-corpusclea become ruptured by endoamosis, their contents escape, and crystallise as the solution gradually becomes concentrated. The time which elapses before cryatallisation takes place varica from $s n$ hour to several houra or dnys in different apecimens of blood. Crystals may also be obtained in a aimilar manner from the coagulum of blood.

The form of the crystal often viries slightly in the same specimen, but the blood of different animals yields cryatala of very different forms. The prismatic form is that most commonly obtained from the blood of man, the Carnirora, and fishes. Tetrahedral cryatals appear most common in some of tho Rodentia, sa the guinea-pig, while sixsided tables are formed in the blood of the squirrel, mouse, nnd some others. Teichmann has aucceeded in obtaining crgstals from frog'e blood by the addition of a very large quantity of water at a very low temperature.

The erystals form more readily in daylight than in the dark, but most rapidly when the slide is exposed in the light of the sun.

Guinea-pig' blood crystallisea in the course of half an hour, or even sooner, if it be diluted with a little water or nlcohol. Dog's blood nlso crystallises in the course of a short time upon the addition of a little alcuhol. Human blood crystallises nfter the nddition of water, slowly if only juat removed from the body, but more quickly if the blood has been drawn a few hours.

It in obvious from what has been said above that the microacope ia one of the most important inatruments of research thint has beeu placed in tho hands of man. Its practical value has not however been yet fully recognised. It is employed by the medical man in the diagnosia of diseases, but in medico-legal investigationa in the detection of aduiterations in food, in ascertaining the value of fibrous materiuls in the arte, and in many departmeuts of industry, it has yet to find its way. Dr. Beale gives the following instances of its utility as n menus of diagnosis:-
"Dinenses of the Kiducy.-There is no class of diseasea in which ith powers have been more sdrantageonsly brought to bear by the practical physician than in those of the kiducy. By a microscopical examination of the urine we are frequently enmbled to ascertain the nature of certain morbid changes which nre going on in the kidnes, and even to dintinguinh during lifo the existenco of certain well-defined pathulugical conditions of that organ. The laborioun reacarches of Dr. Johuson havo hown us luow, by the peeuliar character of the carts of the uriniferon tubes, which ate found in the urine, we cau ascertain whether the epithelium be derquanating, or, on the other hand, whether it prenents no much tendeney, but remains firmly attached to the banement membrane of the tube. If the epithelium be undergoing that peculiar change temed fatty degencration, we Nhall often be able to nscertain the fact by examining a specimen of tho depoait from the urine by the nicroscope. Songain, by the prenenco of certain other depoait, nud a knowledge of the symptoms unuslly anociated with them, the physician is enabled to direct his sitemtion, as the cum may be, to the exintence of local changes affecting mone part of the genito-uriuary inucoun membrane, or to more general diaturbance in the clangen which take place in primary and हecondary amimilntion.

Fntty begencration.-Of late rears the remarkable clanges which take place, nut which have been dereribed under the name of Fatty legeneration, in onme of the highly complex textures of the body, in conmequeuce of which their propertics become changed, and their functiona impained, or altogether dostrojed, lave been undergoing careful inventigation by a vast number of highly-talented investigntorn "The recent dincovery of a state of fatty degeneration affecting the
nrteries of the brain, in the majority of cases of apoplexy, by which the strength of their conts becomes deteriorated, and their elasticity entirely destroyed, would tend to lead us to infer that this disease is dependent mather upon complicated changes affecting nutrition, than upon the presence of a condition of plethora or hyperemis, as was formerly supposed and acted upon.
"The connection between fitty degeneration of the margin of the cormea (arcus senilis), and similar changes taking place in the muscular tissue of the heart (a subject which has been carefully inveatigated by Mr. Canton), or in the cerebral vessels, must bo regarded with great interest by every practitioner.
"The microscopical examination of the matters vomited in certain cues has proved to us that the presence of minute fungi, originally diacovered by Profersor Goodsir, and named by him Sarcina Ventriculi, occurs in connexion with certain morbid conditions of the stomnch. These remarkable cases are much more frequently met with than was formerly supposed, and form an cxceedingly interestiug class of diseases. [EntophyTa.]
"Tumours and Morbid Growths. -The microscope has many times nfforded important aid in the diagnosis of tumours, although it has certainly failed in mavy inatances; which circumstance has been brought forward by some, as nn argument againat its employment altogether. After crreful microscopical examination, the best observers have failed in deciding as to the nature of a particular tumour submitted to examination; adod they have been unable to pronounce as to ita malignant or non-maligunnt character.
"On the other hand, not unfrequently this question has been positively and correctly nnswered in the affirmative or negative, and therefore it would surely not be right altogether to discard the uso of an instrument which, although eminently useful in many inatancea, is not infallible; for it would appear to be the opinion of some, that the use of the microscope onght to be altogether abandoned in the diagnosis of tumours."
"For the discovery of Imposition the microscope ja invaluable, as it almost necessarily follows that, in consequence of the frequency with which urine is subjected to minute investigation, patients often resort to various expedients to deceive the practitioner. Perbaps flour, starch, saud, and milk are more frequently employed for this purpose than any other eubstances. The microscope will obviously euable any one to detect the first three. If milk be added to urine, the mixture may very readily be mistaken for a specimen of the so-called ohylous urine. Although a considerable quantity of fatty matter is present, in either case this fatty matter exists in a very difforent state. Iu milk we find the oil-globules, 60 characteristio of thin fluid, while in true chylous urine not a aingle oil-globule can be found, although the specimen may contain a large quantity of fatty matter in a molecular state.
"Inrre of the Blow-Fly in Urine.-A specimen of urine containing several bodies of about half an inch in length, and of a rounded form, was once sent to Dr. Todd for examination. The bodics in question looked not unlike the larro of mome Jarge fly, but, ne it was confidently affirmed that they were passed by the urethra of a gentleman, the accuracy of this view of their nature was doubtful.
"Upou placing s portion of one of them under the microscope, trachee-(the sir-vessels characteristic of the class of insects) were observed in considerablo numbers; and this circumatanco alone enabled me to aay positively that they were not Entozoa, and that they could not have been passed in the manner stated. They were afterwards proved to be the larve of a fly.

The clawa of Echinococci nud portions of hydatid cysts bave on ecveral occasions been discovered in the urine, sputa, \&o., upon subwitting portions of theso tluids to microscopical examination, proving beyond a doubt the exiatence of hydatids [ENTozoa.]
"Substances passed by the Bowels.-If the practitioner have a good knowledge of the use of the microscope, he can of ten ascertain the nature of subatances passed from the alimentary canal ; and by the aid of this instrument bo can often at once decide as to the nature and origin of substances, which, to the unaided eyo, only present moat doubtful characters. Considerable perplexity has arisen from the presence of bodies in the stoola of patients, which afterwards proved to be portions of almonds, gooseberry-skius, portions of potato, the testa of the tamarind, husk of wheat, de.; pot many ycara ngo the uredo of wheat was mistaken for, and described as, n poculiar fungus, to which it was aupposed tho phenomens observed in casea of cholers were due.
" Portions of vessels which, unliko the other conatituente of the food, have resisted the procoes of digestion, have bcen met with in the freces, and mistaken for small intestinal worma, which they much resemble when examined by the unaided cye. Upon being aubjected to microscopical examination their true nature was readily discovered.
"In Medico-Legal Inquiries the microscope bas often afforderl raluable aid. The distinction between blood-spots and red otains produced by fluids reacmbling blood in colour-between human hair and that of nuimals-and the detection of spermatozon in cases of rape, need only be adduced as examplea of the importance of the inicroacope in euch investigations.

For Detecting lmpurities in Food and Druga the microscope has nfforded important sid, and there are several other purposes to which it may be applied."

In preparing this article we have been greatly indebted to Dr. Besle's most useful work on the 'Microscope, and its Application to Clinical Medicine,' also to the translation of Dr. Schacht's work on the - Microscope in ita special Application to Vegetable Anatomy and Physiology,' translated by Mr. Currey, and to Professor Quekett's admirable 'Trestise on the Microscope.' For those who would wish to refer to the subject farther we give a list of the principal works devoted to this instrument:-Robert Hooke, 'Micrographia, 1667. Leeuwenhoek, 'Pspers in Philosophical Traneactions,' from 1673. Baker, 'Employment for the Microscope,' 1744. Adams, 'Micrographia Illustrated; or, the Knowledge of the Microscope Explained,' 1746. Adams, jun. 'Microscopical Essays, 1787. Pritchard, 'Microscopic Csbinet.' Chevalier, 'Des Microscopes et de leur Usage.' Sir David Brewster, 'Treatise on the Microscope.' Joseph Jack $o=n$ Lister, 'Philosophical Transactions,' 1829. Ross, article 'Microscope,' in 'Penny Cyclopadia,' 1839, Carpenter, article 'Microscope,' in 'Cyclopredis of Anstomy and Physiology.' Mandl, 'Traite Pratique du Microscope,' 1839. Schleiden, 'Principles of Scientific Botany,' translated by Dr. Lankeater, appendix 'On the Use of the Microscope,' 1849. Robin, 'Du Microscope et des Injections.' Hannover, 'On the Microscope,' translated by Professor Goodsir, 1853. Bennett, 'An Introduction to Clinical Medicine,' 1853. Hogg, 'The Microscope, its History, Construction, and 'Application,' 1854. 'The Microscopical Journal.' 'Quarterly Journal of Microscopical Sciences.' Griffith and Henfrey, 'The Micrographical Dictionary,' 1854-55.

MICROSPORON. [ENTOPAYTA.]
MICHOTUS, Schrank's name for a genua of Murine Rodente, embracing our English Water-Rat, Mus amphibius, Linnæus, \&c. [Muride.

MICROZOA'RTA (literally 'little animsla'). This is the title employed by M. De Blainville for the Animalcula infusoria of earlier writers, who commonly classed these singular objects of microscopic research among the Zoophyta. Baker, Needham, Buffon, and Spallanzani, occupied with the singular facte and hypotheses regarding the origin and vitality of these animated points, gave little sttention to their zoological relations; the worka of Linneus contain almost no notice of more than the larger Vorticella, Brachioni, snd Volvoces, which are ranked among the Vermes Zoophyla. The great founder of all the classifications of the minute Infusoria, the firsticareful observer of their permsnent characters of form, aurface, movements, and internal structure, is the sccurate O. F. Müller, author of the 'Zoologia Danica' Considering that in 1786 (the date of hia work) the microscope had been scarcely at all improved since the days of Hooke, the numerous figures which Miiller presented were highly creditable to his eye and hand. They have been frequently copied (as in the 'Encyclopédie Méthodique'), and yet retain a high value.

Müller's classification, founded upon the figure and surface of the animal, is convenient to the observer who desires to name the active molecules which pans under his microscope, but unsatisfactory to the zoological student.

The genera are arranged in some degree according to their apparent simplicity.

A. Without external organs.
 * Substance thick.

Monas. A mere point.
Proteus. Of variable figure.
Volvox. Spherical.
Enchelis. Cylindrical.
Vibrio. Round, elongated. (Several of the snimals included in this group should have been ranked among the Vcrmea.)

* Membrsnaceous

Cyelidium. Oval, complanate. (Oenerate by division.)
Paramecium. Of an oblong figure. (Oenerate by division.)
Kolpoda. Sinuate, complanate. (Cenerate by division.)
Gonium. An angular mass.
Bursaria. Hollow like a purse.

B. With external organs.

* Naked.

Cercaria. With an extension like a tail. Some are said to have cyea.

Trichoda. Named for ita hairiness. (Generate by division.)
Kerona. With little horny protuberances.
Himantopus. With slender extensions or cirri.
Leucophra. Ciliated over all the aurface. (Cenerate by division.)
Vorticella. Ciliated about the mouth, contractile. The cilia have a whirling motion.

* Covered with a shell.

Brachionus. Ciliated nearly as Vorticella.
On this classification Lamarck ('Animaux sans Vertebrcs') has made few alterations; he preserves the same geners nearly in the aame order in sll the naked Infusoria, but rejects from those with external organs (Infusoires appendiculés) Vorticella and Brachionus (which he places among his Polypi), and re-arranges the others thus:-

> Infusoirea appendiculés.
> No tail $\left\{\begin{array}{l}\text { Trichoda (including Leucophra of Miiller). } \\ \text { Kroona (including IImantopus of Miiller) }\end{array}\right.$ Kcrona (including ITimantopus of Müller). Sercaria.
> A tail Furcocercaria.

The remaining groupa are thus classed among the Polypi:Polypi ciliati.
Section 1. Vibratiles with oral cilix, having vibratory movement.
Rattulus. (Trichoda Rattus and T. clavus of Müller.)
Trichocerca. (Cercaria forcipata, \&c., Müller.)
Vaginticola. (Trichoda inquilina, \&c., Müller.)
Section 2. Rotifere, with oval cilix having rotatory movement.
Folliculina. (Vorticella ampulla, V. raginata, \&c., Müller.)
Brachionus. (Divided into sections, with or without a tail.)
Furcularia. (Includes the Vorticella rotatqria, or wheel-animal snd others allied to it.)

Urceolaria. (Vorticella viridis, Bursaria, \&c., Müller.)
Forticella. (The pedunculated species of Müller, both simple and compound.)

Tubicolaria.
Cuvier constitutes for the Infusoria his fifth and last class of Zoophyta, observing however, what always struck the least informed zoologist, who contemplated the various forms and habita of these snimals, that smong them were aeveral grades of organisation, and some forms which could not be reconciled to zoophytic structure. Bory de St. Vincent had adopted ('Encyclopédie Méthodique,' 1826) 82 genera, but Cuvier even reduces the number of Lamarckian genera.
De Blainville ('Actinologie') givea the following arrangement of the Microzoaria:-

Division I. Microzoaria heteropoda.

Section 1. Rotiferes.-Body distinguished in parts anterior, medial, posterior (sometimes really showing head, thorax, and abdomen), with anterior bundles of ciliæ, which in their rapid movement resemble wheels. Posterior sppendices simple, terminal.
The genera are as in Lamarck, with iudications of the sub-genera adopted by Bory de St. Vincent.

Section 2. Ciliiferce, with lateral ciliform appendices. The genera are taken from Müller, namely, Kerona, Himantopus, Paramocium, Trichoda, Leucophra, Volvox, Cyclidium, Monas, with indications of the sub-divisions adopted by Bory de St. Vincent, \&c.

Division II. Microzoaria apoda.

With no externsl appendices, including Bursaria, Kolpoda, Trachelina (Vibrio, Müller), Proteus, Cercaria, Enchelis, and Gonium. Many of them are thought by De Blainville to be young Planarice or Ilirudines.
Nearly all the real information which accompanied these slight transformations of Miuller's system of classification was derived from the numerous and acute observatious of that eminent naturalist, whose figures and descriptions we have often compared with the indicatious of the microscope before this instrument received the marvellous improvements of Amici, Chevalier, Pritchard, Plösl, and Schiek. By their inventions, and the able use made of them since 1828, a new mine of knowledge has beeu opened on the history, structure, and zoological relations of the Infusoria. [INfusoria; Diatomacee; Desmidien; Rotifera.]
MIDAS, M. Qeoffroy"s name for a sub-genus of the small South American Monkeys called Ouistitis. [Jacchus.] The common nsme for the species of this aub-genus is Tamariu.
It has the following charactera:-Muzzle short, facial angle 60°; forehead with an appearance of prominence, arising from the great sagle of the upper edge of the orbits; upper incisors contiguous, under incisors same aize as the upper. Nails like claws, excepting those on the thumbs behind. Tail as in Jacchus. General dental formula as in Jacchus.
There are seven species, of which we sclect as the example M. Rosalia, the Marakina, or Silky Tamarin. This pretty littlo monkey is entircly of a golden-gellow, varying to a redder tint, and paleat on the back and thighs. The hair, which is fine and silky, is so long about the head and neck as to form a ruff or mane, whence it has been called the Lion-Monkey. Its besuty and gentleness render it a very interesting pet; but great care is required to keep it from dsmp, which is destructive to it. It is supposed to live almost entirely on trees, and to be aquirrel-like in its habits.
It is a native of Guayana, and the south of Brazil from Rio Janeiro to Cape Frio.
Desmarest notices a red and black variety (Cuysna), and one of a bright shining red from Brazil.
The species must not be confounded with M. Leonina, Simia Leonina (Humb.), the Leoncito, or Leouine Tamarin, which is probably the smallest monkey known. The last is brownish, and haa a very well developed mane of that colour, which it bristles up when angry, so as to look like a little lion. The face is black, the mouth
white, and the tail black above and white lelow. It inhabits the phains bordering the eastern slope of the Cordillera, and is rare.

Silky Tamarin (3fidas Rosnlia).

MIDAS'S FAR. [AURICELA.]
MIDDLETONITE, a Carbonaccous Minemal, occurring in rounded maser, seldom larger tban a pea, or in layera a sixteenth of on inch or less in thickuess, between layers of conl. Colour reddish-brown by refected light, and deep red by transmitted light. Powder liglit brown. Transparent in small fragments. Hard and brittle. Lustre residous. No taste or smell. Whackens on exposure. Specific gravity 16. Found about the middle of the main coal or Haigh Moor seam nt the Middleton collicries, near Leceds; also at Newcastle. The following is sn analysis by Johnaton :-

$$
\begin{array}{llll}
\text { Carbon } & . & . & . \\
\text { Ilydrogen } & . & . & 86437 \\
\text { Oxygen } & . & . & .
\end{array}
$$

J 00
MIKA'NIA, a genus of Planta belonging to the natural order Compositer, to the sub-order Tubuliforn, to the tribe Eupatoriacece, nod the subtribe Adenoslyler. It has a dflowered licad, a naked narrow receptacle, four involucral leaves, with a bractlet added at the base or below it; the tubo of the corolla short, with the throat dilate nad sonewhat campanulate; the anthers nomewhat protraded; the achenium nagular; the pappusin one row, rough nud hairy.
M. offinalis ha nn erect, nmooth, nearly simple stem, with leaves decunating somewhat triangular-ovate, cordate with a great sinus, toothed at the siden, entire towards the point, drooping ; the panicles corymbose nasl terminal. This plant is n native of Brazil, when it in called Coraçoa do Jesu. lt ian n handsome plant. The leaves contain a bitter principle and nu nromntic oil, and are used in the same way nud for the rame diseascs ng the Cascarilln and Cinchona bsrks, They are rail to bo nu especially valuable remedy in remitting fevers nud in ntonic dympepsia. They are ndministered in the form of extrset or decoction.
M. Fuaro, Guaco Plant, has an herbacenus twining stem; the branches round, nulcate, hairy ; the leaves stalked, ovate, somewhet acuminate, mortly narrowed at the base, relsotely toothed, netted, roughiah above, hairy beneath; the corymbsaxillnry, ntalked, opponite; the heade nomewhat ternate, Bessile; the lractlets linear, slorter than the involucre; the involucral scalen linear oblong, obtuse, downy; the acheuia mooth. This is one of the phants called Guaco in Sonth Anerica, and is usod both internally nonl externally as a remerly agminnt the biten of poinonous acypents. This plant is cultivnted by the Indian for the parpose of being uned. It is easily known from ather plants by the large indigo.bluo mots that mark the under murface of ita rough leareg. It in probable that the apotted character of the leaves of this and plania similarly employed, as the Calladium holleborifolium nul n species of Ariztolochia, hnve led th their ure in the biten of poinonous nalaken. "The mode of uning thia remedy;" Rayn Poppig, "in very simple: tho wound in somewhat distended, and the frenh-premed juico is dropped into it; the surrounding parts bring repentedly covered with the preased laves; and tha juice it alno taken by the mouth. The tincture, made with cotamon brandy, in aloo much celebrated, and recommended to travellers an n secura anl portable means of cure. In Guayaquil litlle cakes are formed out of the fresh-bruised plats, which, when iricel in the sun, retain
their activity a long time. The effect of the Gunco is not in all eases alike quick and decided; but observations, both in Maranon nad Ega, prove that after 24 hours' use the swelling had ceased, tho phin vanished, and, with the exception of litth ulcors, the cure had been effected. In Vurimaguas, and eapecially about Muniches, every year several persons are bitten by anakes; but the Gunco hat acted so efficiently thast in the memory of man only two children wem known to have died of such wounds." Although Pöppig has given so favourable an account of this remedy, he says in another place that "the excision and cauterisation of the wound immediately aftor it is received is undoubtedly the safest plan." Besides the Guaco there nro several other planta used in South America, some of which are called Guaco, as the Merpestes colubrina, Dorstenia tubicina, Aritolochia cynanchifolia, \&c. The Gunco has been tried in this country as a remedy in hydrophobia, but without success. The Urali, or anake-noison of the Indians of British Guiana, is a componnd, and contains in it strychnia. [Struchnos.]
M. opifera is a smooth climbing plant, with an angular stem; it hns stalked, cordate, acuminate, repand-toothed or nearly cotiro leaves, when full grown rather blunt; the heads stalked in coryinbose panicles; the involucral scales ohlong, mather acute; the bractets lanceolate; involucre rather shorter. This plant is a nstive of Brazil, where it is called 'Eros da Cobia' It is also employed against the bites of smbes, and is said to effect a curo by its powerful diuretic action. An account is given of this plant by Gomez in the Memoirs of the Royal Academy of Lisbon for 18ia, where it is described as the Eiupatorium crenatum.
The genus Mikania is closely allied to Eupatorium, and they belong to a group of plants in the order Compositu, the most remarkable for their activity. Dr. Lindley states, in his "Vegetable Kingdom," that the famous styptic 'Matico' is the produce of Eupatorium giutinosum, and not of Artanthe clongata, as has been usunlly supposed. Of this plant Mr. lartweg says, in a communication to Dr. Lindley, "Matico is the vernacular name applied by the inhabitants of Quito to Eupatorium ghutinosum, or the Chussalonga in tho Quichun language. It forms a shrub from 3 to 5 feet high, and is common in the higher parts of the Quitininn Andes, where its properties were discovered some years back by a soldier called Mnteo, better known under his nick-anine Mstico (little Matthew), who when wounded in action applied accidentally the leaves of sorae shrub to his wound, which had the immediato effect of stopping the bleeding. This shrub happened to bs tho Chussalonga, which has since been called, in honour of its discoverer, Matico. That it is tho true Matico of the jnhabitants of Quito and Riobomba I bave not tho slightest doubt; both leaves and specimens have been gathered by myself, and upon comparing the latter with Kunth's deacription I found them to agree exactly with bis Eiupatorium glutinosum." The Matico has been used in Europe, snd is said to bo an exceedingly efficient styptic, and of great valuo in stopping the bleeding from small wounds.
(P'öppig, Reise in Chilc, Peru, \&c.; Lindloy, Vegetable Kingdom; Lindley, Mora Medica.)
MILDEW is a disease which attacks both living and dead vegetable mntter, and is believed by the vulgar to be owing to fogs, dew, meteors, nod noxious cxhalations, but in reality is caused by the ravages of parasitical Fungi. This malady is often of little importance to the subjects of its attack, as it appears towards the close of the year, when the most cssential of the vital functions of plants are fulfilled, or in such a sunall degree as to produce no appreciable effect upon tho genersl health of the plants infested. Wut it very often becomes a most scrious cril, destroying the straw of corn, and so presenting the maturation of the grain, ravaging tho fields of peas and henns, destroying the hopes of the gardener by seizing upon his penches and noctarines, capecially when forced, nnd not unirequently extending its cvil influence to the orchards and every description of kichen-garden crop.
The species of Fungi which produco these effects are always very minute, and often of microscopic smalluess. Some are iutestinal, attacking plants internally, and only becoming visible when they break through the surface of the plant for the purpose of sheiding their spores; others urs auperficial, rooting and fructifying upon the ontside of the epidermis These two classes of Mildew-Fungi requiro to be carefully distinguished.

Of tho lotestimal Fungi the following aro the more common, mamely:-
J. Lirido fotida, called the Pepper-Brand. This plant attacks wheat, filling the young seed with ite jelly-liko spawn, and producing myriads of foetid decp-brown spores, which end by occupying the whole interior of the ripe grain.
2. Erincum griseum, nud other species of tha same genus, which overrun the leares of the mountain ash, the sycamore, \&c., forming broad-gray, orange, or brewn blotehes.
3. Various kinde of Puccinia. The mildew of whent-straw is caused by $P \cdot g$ gramineum, which is gencrated in cavities below the epidermis of the stom, and protrudes when ripe in tho form of dull grayish-brown broken strice. P. Heractei occanionally attacks crops of celery and chdive, spreating over the field, and producing the appearance of acorching.
4. Hicidium cancollatum occasionally docs much harm to pear-trees
in the erchards of Herefordshire. It appesrs at first like bright yellow spots upen the upper surface of the leaves; hy degrees a liquid matter is exuded frem them; at the same time small cenical processes appesr in clusters from the under sids of the leaf; these processes enlarge, becoms fibreas, open at the sides by numerous slits, and thence discharge their spores. This fungus often produces the mest destructive conseqnences, appearing upon the leaves, stems, and fruits, and generally destroying the tree. Another species, \mathcal{E}. laceratum, sometimes spreads over hawthern hedges; and the common orangered mildew of the Berberry is \mathbb{E}. Berberidis.
5. Sclerotium, a hard kernel-like fungus, is a less common but sometimes very troublesome visitor. S. compactum occasionally establishes itself in the rind of fruits, renderiag them unestable ; S. Cyparissire and ethers attack the leaves of various plants, particularly of the pear-tree.

In all these cases it is ususlly found that the most vigorous individuals are the first affected by the mildew, especially in the case of Uredo and Puccinite; and it is probable that the spores from which thess plants are propagated are drawn inte the circulation frem the soil, slong with the fluid matter on which plants feed; that they sre carried along into the stem, and begin to grow as soen as they fiad thamselves in a suitable situation, disturbiag and disorganising the tissue by the production of their spawn, and taking to themselves that nutriment which would otherwise hava been applied to the general maintenauce of the plant attacked. Mr. Bauer found that he could alsways cause wheat to produce the Uredo fotida by rubbing its grains with the spores of that fungus previous to their being sown; and Mr . Knight ascertained that by sowing pear-seeds in soil infested with the Ecidium, the very youngest leaves of the seedling plants were sttacked.

Of superficial Fungi the following are the most remarkable :-

1. Cylindrosporium concentricum, a pulverulent species, which appears in dots arranged in a circular manner upon the leaves of the cabbage.
2. Acrosporiwm monilioides.-A frequent cause of the whiteness of leaves and stems in roses, \&c. It consists of vast multitudes of filaments jointed like a necklace.
3. Botrytis diffusa and species of the genus Aspergillus, whose filaments bear tufts or branches, covercd with spores. These form the white mealy sppearance of the leaves of onions and similar soft-leaved plants.
4. Erysiphe communis, which forms the mildew of peas. It cousists of white cobweb-like apawn, radiating from a golid gray spherical centre, filled with the spores of the species. Peach mildew is often eaused by another of this genus, the E. pannosa.
The attacks of superficial Fungi ars ganerally brought on by the debility of the species attacked; and it is probable that unhealthy individuals only are suited to the growth of these parasites. This is liks what occurs among animals, which, when healthy, are scarcely attacked by parasitical vermin, but as soon as they become sickly are overrun by them. Heary rains occurring suddsnly after long drought are mentioned as a cause of this kind of mildew; and it may be supposed that the plants are debilitated by the dry weather, at which time the Pungi seize upon them, and that assoon as rain falls they grow with rapidity and quickly overrun the plants. It is eaid that deep-colonred roses and peaches are more liable to mildew than others; this may be rcferred to constitutional debility, for their colour is connected with a want of power to decomposs carbonic acid, which is one of the most indispensable of vital functions in the vegetable kingdom. Transplanted onions, which are lezs vigorous than untransplanted ones, are the most subject to mildew.

These canses of mildew being rightly understood, the methods of preventing the evil are sufficiently ohvious. To cure intestinal mildew the soil should be neither too rich nor too freely watered, and every precaution should be taken to preveut the spores of the mildew-plants from being communicated to the soil. Mr. Knight stopped the attacks of Acidium cancellatum by taking up his mildewed par-trees, washing their roots clean, pruning them closely, and removing them to a new situation ; thoss removed became healthy, thoss left in the soil event-
ually perished. It would also appear that in some cases plauts may be randered incapable of takiag the mildew. Mr. Baner says that if corn attacked by pepper-brand is soaked in lime-water for at least twelve hours, and then well dried in the air befors sowing, not enly are all the Fungi adhering to it destroyed, but the plants themselves are incapable of neurishing the fungus; at least he fenud that prepared grains could not be ineculated, although unprepared grains could be. With regard to destroying superficial mildew, a restoration of vigour or its preservatiou seems to offer the best chances of success. Mr. Knight prevented his peas from mildewing by watering then abuedantly and constantly ; in Scotland, where the climate in more equable than in England, and the night dews more abundant, peamildew is unknown. The writer of this has seen a crop of oniens perishing under the attacks of Botrytis diffusa gradually restored to health by a constant supply of water. As to the schemes of stopping superficial mildew by the application of sulphur, quick-lime, fresh wood-ashes, and similar substances, all of which have been recommended, it does not appear that any advantage follows their employment. When trees are attacked by supericial parasites the best plan of removing the evil is by cutting off all the mildewed branches sand destroying thsm, together with shreds, uails, or whatever else may have been made use of in trainiag the plants. Mr. Hayward recommends in addition that peach-trees, which are very liable to mildew, should bs subsequently wasbed with a fluid consisting of 4 galloes of rain-water, 2 lbs . of soft soap, 1 lb . of flower of sulphur, 1 lb . of roll tobacco, 1 quart of fresh-slaked lime, and 1 pint of spirits of turpentine, the whole boiled together for half an hour.

For a further account of the Fungi which produce diseases of plants see Funar.

MILIOBATIS. [Squalide.]
M1'LIOLA. [FORAMINIFERA.]
MI'LIUM, a genus of Grasses belonging to the tribe Agrostidece. It has membranous glumes, nearly equal, unarmsd ; the palea 2, nearly equal, unarmed, about as long as the glumes, aud hardening on ths the fruit; the spikelets convex on the back, or slightly dorsally compressed. There is but ons British species of this genus, M. effusum. It has a diffuse panicle, with acute palex, a smoath stem, and linear-lanceolate leaves. It has a stem 3 or 4 feet in height, and is found in damp shady woods. (Babington, Manual of British Botany.)
MILK is an opaque fluid, secreted by the mammary glands of the females of the animals belonging to the class Mammalia, and adapted to the nourishmeut of their young offspring. It is of a specific gravity somowhat greater than that of distilled water, and possesses a peculiar odour, which is due to several acids. It consists, in addition to the watery portion, serum, \&c., of globular particles, which are not more than balf the size of the globules of human blood, having a diameter of about 1-10,000th of an inch. They are composed of a fatty matter (butter) and a coagulable aubstance, which in many points resembles albumen, termed 'caseum,' or ' caseine.'
The globules are specifically lighter than the fluid in which they are suspended, and easily ascend to the top when the milk is allowed to stand. This constitutes the cream, aud consists of the butter, with soms caseins and a portien of serum. By agitation, such as is effected by the various modes of churuing, the fatty globules unite into a mass (butter), leaving the buttermilk, which consists of caseins and serum.

Milk from which the supernatant fluid, or cream, has been removeū is termed 'skim-milk,' and still retains a cousiderable quantity of coagulable or caseous matter, which nay be separated from the serum, or whey, by means of a rennet or any acid. This caagulated portion constitutes the curd, and is the basis of cheese. If a rennet be used, and all the portion coagulated by its means be separated, the addition of vinegar causes some of what remains to coagulate ; and this has been termed ' zieger" by Schubler, but it is not certain that it differs from caseins. What remains after both these coagulated principles have been removed is the whey, which contains sugar-of-milk, some azotised substance (perbaps osmazome), lactic acid, and various salts.

The different constituents of milk, and the differences in the relative proportions of them in some of the common domestic animals will be best seen in the following tables:-

Milk

Analyses of rarious kinds of Milk in 1000 parte

	Water.	Fat.	Cuscinc.	Sugar of Milk.	Ash.
Woman (arerage). (Simon.)	853.0	233	31.3	43.2	2.3
Woman (maximum of nu- merous analyses).	914.0	510	45.2	62.4	2.7
Woman (miolmum of ditiol	861.4	3.0	19.0	39.2	$1 \cdot 6$
Woman, lith day nfter delirery. (Clrman.) .)	579.815	42.268	35.339	11.135	2.093
Woman. (L'llerilier.) -	86.8	$42 \cdot 5$	11.7	74.0	$1 \cdot 0$
Cow. (Simon.) . .	$85: 0$	$40 \cdot 0$	720	28.0	6.2
Ass. (Cberallier and Ilenri.)	916.3	$1 \cdot 1$	18.2	60.8	3.4
Ass. (Peligol.)	9017	12.9	19.5	62	
Goat. (Clemm.)	868.0	$33 \cdot 2$	$40 \cdot 3$	52.5	$5 \cdot 8$
Exc. (Cherattier and llemri.)	856.2	420	45.6	$50 \cdot 0$	6.8

As milk is the food of the young being nanongst the Mammalia for n period of several months, it must contain all the elements necessary to the mutrition of the nnimal body. Dr. Prout therefore proposed to classify all food acconding to the constituents of milk :-

1. Aqueous foods, represented by water.
2. Albuminous foods, represented by tho caseine.
3. Oleaginous foods, represented by the butter.
4. Saccharine foods, represented by the augar.

The ashes also reprasent the jnorganic coustituents of tho food of all noimals. [KOOD.] The ashes in the milk of a cow examined by Haidlen contaiued in 1000 parts:-

The chamcters of the milk in the mammary gland, and the mode of ita secretion will be found under the article Mammany Glands.

Under the microscope fresh milk appears as a clear fluid in which fat-globules, the so-called milkglobules, ste suspended as in au cmulsion. These globules differ very considerably in aize; the majority bave s diameter of from $0.0012^{\prime \prime \prime}$ to $0.0018^{\prime \prime \prime}$, nud although they are rarely found to measure $0.003 \mathrm{~s}^{\prime \prime \prime}$ in frosh milk, Henle states that he has found them to be $0.014^{\prime \prime \prime}$, and according to Raspail and Donné, they are somtimes oven $0.044^{\prime \prime \prime \prime}$. Although the milk-globules, without the addition of n re-agent, exhibit no trace of an inpesting mombrane, its exiatence may readily be proved in two different ways. The firat is the addition of acetic acid, which causes theso globules to assume a varioty of irregular forms which they would not if they were aimply globules of fat. The second way is to add a little ether to milk, when it will be found that the ether will not dissolvo up the milkglobulea which it would were these simplo globules of oily matter.

The milk immediately after delivery differa from milk that is drawn subseyuently. It has recuived the namo of colosteum. On examining colosteum under the nicroscope a very largo number of fat-globules are seen, nome of which are larger than thoso that occur in ordinnry milk, and these are observed frequently clinging to each other; besielem theso thero are granulatel, yellow, roundish corpuacles, larger tham the wilk-globules, which oppenr to be composed of very minute fat-vesicles. Their diamoter varica according to Henle from $0.0003^{\prime \prime \prime}$ to $0.0232^{\prime \prime \prime}$, but may are cousidered to be about $0.0111^{\prime \prime \prime}$. The fat-granulen of theo bodies are moro easily dissolved by ether than those of the uilk.globules. Acetic ncid nud potanh diasolve the granular combining nubntauce, and acatter the fat-globules. From theye facta it would appear that the colostenm-corpuacles are very amall fat-globules imbediled in an albuminous substance. Thero is no spperance of a meleus or an inventing membrane. Theas moleculen na n rule dinappear the third or fourth dry after delivery, nlthough they have been found as late as the twenticth day. They frequently reappear in the milk when any dineas in the ryatem aupervedes. Although there can be no doubt that the natare of the food affects the composition of the milk, it has not yct bees ahown in what aramer this nffecta the particular constituonts of the anilk; from experiments marle on dogs it would sinear that when fed on vegetable dict their milk was richer in butter nad angar, whilst the nolid constitueuta are cenerally auguented on a mixed animal and regetable diet. Fat fool increases the quantity of butter. Playfair found the butter of cons's milk increaned during atall-foeding, nud diminished when the aumala were kept out in the fields. Cown fed on hay that has been cut noll collected in a dry summer yield a richer mille, than when fed on hay which has been cut in a wet nearon.

Ferrier foumd, from a nerien of experimenta on a buckling womm, that the milk undergoes gradual changes luring lactation. While the quantity of lutter remained the same through the whole period, it
was found that the caseine increased as the child became doveloped. The augar of milk diminished and the salts increased during the same period.

Various iostruments hare been invented for testing the purity of milk, especially that of the cow. These instruucnts aro called Galactoscopes, or Galactometers. [Galactometer, in Abis AND Sc. Div.]

MILK-THISTLF [SiLnYum.]
MILK-WORT. [Polyanlas.]
MILLEFOIT. [Achillea.]
MILLEEPO'RIDAE. In the Linnman 'Systema Nature' the geuus Millepora included fourteen species of solid corals perforated with cooical non-Inmelliferous pores. Several of these have been taken aa types of new genera or sub-genera, and, according to the general practice of modern zoology, the Linnoan genus is tranaformed into a great family. Lamarck ('Animaux sang Vertèbres') places many of the Millepores in his fourth section of Polyparia, the foraminated corals, with Catenipora and Tubipora, which belong to other groupa The Milleporide form a distinct onder in the Foraminatod Polypiaria of Lamouroux ('Expos. Méthod.'), and inciude no less than eighteen gencra, pamely:-

Orulites, Relepora, Lunulites, Orbulites, Ocellaria, Melobesia, Eivdea, Alicolites, Theonea, Chrysaora, Millepora, Terebellaria, Spiropora, Idmonca, (Distichopora, Mornera, Krusensterna, and Tilesia are included among Millopricle in the table, bat not in the body of the work.)

Lamouroux defines the Milleporidee thus:-Polyparia, atony, polymorphous, solid, internally compact; cella very stall or poriform, scattered or in series, never lamelliferous, though the parietes are sometimes lightly striated.

De Blainville collects the Milleporide into groupa according to the form of the cells in the ooral, and defines the family by charactera drawn both from the animal and the stouy support.

Animnla in general very slender, and provided with a single circlo of slender tentacula; cells sometimes of considerable aize, but always without lamellm or stric within or without the tubes; polyparium fixed, varying in ahape. Retronching from the group the palmatad kinds (to form the genus Palmipora nmong tha Madrephyllixa), there remajn, acconding to De Blainville, twenty-three genera, which are thus arrauged:-

1. Cells polygonal, ofted rather large-Favosites (Eunomia), Alveolites, A psendesia, Theonca, Pelagia, Tercbellaria, Polytrema, Prondipora, Lichenopora
2. Cells round, very finc, poriforin, immersed-Orbiculites, Marginopora, Stromatopors, Tilesia, Spinopora, Chrysaora, Ceriopora, Distichopora, Meteropora.
3. Cells round, more or less tubular-Piustulopora, IIornera, Idmonea, Cricopora.
The following aro the principal charactera of these gencra:-

si. Cells Polygonal.

Farosites.-Animnla unknown; cells prismatic, contiguous, vertical or diverging, the parictes pierced with pores, the cavity divided by transverse sopta; polyparium branched or unassive, sometimes basaltiform.

It is a gonus of Lamarck. Goldfuss ndded to the kuowledgo of ite structure, but changod its name to Calamopora. De Blainville thinks Eunomia of Lamouroux may bo included in it, but tho deacriptions nre unlike. Fhrenberg placesit near Astrea, in the family of Madrephyllica, and we think with reason.

Tho Favositcs are ouly known in a fossil state, and, wo believe, only in atrata of the Transition and Carboniferous eras, in the former of which they are specially nbumdant, in the Eifel, Siluria, at Dudley, \&c.
I. Gothlandica (Ooldfuss, tab. 26, 6. 3) is a favoumblo exnmple. (See figures on the next column.)
Eunomia,-Animnla unknown; cells tubular, long, parallel, internally aulcated longitudinally, and trausversely nowulated; the parietes thick nud solicl. (Lamouroux, 'Expos. Method.')

Tho ouly species, E. radiata, is fossil in Oolitic series of Cacn.
Alreolites.-Animals unkuown; cells ehort, tubular, prismatic, alveoliform, the parietes thin; polyparium furmed into reticnlatod layors, enveloping onch other.
It is a genus of Jamarck, subsequently, but without sufficiont reason, reunited by Goldfuss to Foroviles, under tho name of Calamopora.
Two liviog apecies and a few fossila, chiefly from the Tertiary seriex of Dax. De Blainville includes in the genus (not correctly) many of the Calamopora of Goldfuss which nro to be ranked as Favositcs.
Frondipora.-Animale unknown; cells unequal, subpolygonal, nceumulated irregularly, prominent only on the external surfaca of a fincly brauched polyparium, which is fixed, arborescent, vaiously reticulated, and longitudinally atriated on the nod-celluliferoua face.

One of the apccica is ranked ns a Retepora by Lamarck. Lamonroux (following 'Tilesius) calls it Kruscnsterna. Ths species aro recent in tho rens of Kinatchatks and the Mediterranean. Ex. F. reticulata. (Blainv., pl. 69, f. 1.

Lichcnopora-Animna unknown; cellm rather large, poriform or suls tubular, sub-polygonal, accumulated and acattered on tho interior surfine of a fixed orbicular cupuliform polypmium, which is quite suooth extermally.

Tavosiles Gothimndicr.
a, b, two specimens; c, nuclei of the tubes; d, tubes magnified; c, portion fa verticsl scction.
It is a genns of Dofrance, including one recent and thrce fossil species from the Cretaccons and Tertiary Strata. Kx. L. turbinatu. (Do Blainv., pl. 68, f. 4.)

Theonea.-Animals unknown; cells rather largo and deep, subpolygonal, accumulated irregularly, promincut on the tumid or angulated face of the polyparium, which is fixed, irregularly lobed, and more or less lacunose between the accumulations of pores, Ex. T. clathrata. (Lamouroux, pl. 80, f. 17.) Frem the Oolite of Caen.

A psendesia.-Animals unknewn; cells sub-polygenal, small, poriform, irregularly disposed, occupying the upper and external edge of aimuous rilges, smooth on one side, plaited on the other ; polyparium globular or hemispherical, diverging from the base to the circumference. It is a genus of Lamouroux, from the Oolite of Caen. Ex. A. dianthus. (De Blainv., pl. 59, f. 2.)

Terebellaria.-Animals uuknown; cells small, oval, sub-trigonal, quincuocially arranged on the surface of the polypaisum, which is composed of short conical apparently twisted branches.

This beautiful coral, thus characterised, is found in the Oolite of Caen, and, it is believed, also abundantly near Bath. Perhaps only, one species is known, which Lamouronx divides into two. Ex. T. ramosissima. (Lamour., pl. 82, f. 1, a.)

Pelagiu- Animals unkaown; cells sub-polygonal, close, irregular, occupying the convex edge of bumerous vertical ridgea, disposed in n radiating form, and either simple or dichotoraous on the upper surfac, of the coral; polyparium frce, fungiform, excavated and lamelifereus above, coavex, pedunculated, and circularly wrinkled below. Ex. P. clypeata. (Lamour., pl. 79, f. 5, 6, 7.) From the Oolite of Caen. /'olytrema.-Animals uoknown; cells periforns, polygonal, irregular,
,

Terebellaria ramosissima.
unequal, numerous, occupying the knotty branches of a small fixid polyparium. It is a gebus of Risso. Ex. P. miniaceum. (De Blains., pl. 69. f. 4.)
§ 2. Cells rounded, poriform.
Orbitolites.-Animals unkaown; polyparium a regular, orbicular, discoid, cellular, cretaceons mass ; cells in two layers, sotnetines apparent externally, and especially at the margin, which is thickened.

It is a genus of Lanarck, apparently founded upon an internal corel. One recent European species, and several fossils from the Chalk ard Tertiaries of Europe, are mentioned. Ex. O. complanata. (De Blainr., pl. 72, fig. 2.)

Marginopora.-Animals unknown; cells poriform, excessively small, rouod, close, situated in the narrow tortnous folds of the circumference of the polyparium, which is free, irregular, discoid, thickened at the margin, and conceatrically striated on both surfaces. (Probally an internal coralline plate.) Ex. M. vertebralis. (Blainv., pl. 69, f. 6.)

Stromatopora.-Animals unknown; polyparium hemispherical or sub-globose, formed of alternately aolid and porous adberent superposed layers.
The character is from Goldfuss, the author of the genus. The cells are very small, the external surface concentrically wrinkled. The species are fossil in the Transition Limestone, \&c., of the Eifel, Situria, Dudley, \&c. Mr. Lonsdate has described a new species similar to a Nummulite in figure. Ex. S. concentrica. (Goldfuss, 'Petrifacta Europre, tab. 8.)

Siromatopora concentrica.
a, surface :cdnecd ; b, wertical section reduced; c, portion bighly magnified.

Criopora.-Animals uknown; cells poriform, round, close, irregularly distributed in concentrie layers; polyparium polymorphous, often globular or lamellar.

Thit genus was catoblished by Goldfnss, but is curtailed by a atricter detinition by De Blainville, to suit foesils which mpear in the Chalk of Macstricht and the Transition liocks of Bamberg. Lx. C. micropora. (Goldfuss, tab. 10, f. 4.)

Chrysaurd.-Animals unknown; cells poriform, very fine, with a round opening, accumulated on the intervals of ridges, which anastomose on the surface of the fixed irregularly manose polyparium.

It is a genus of lamuurous, to which Ite Blainville refere many of the Ceriopore of Goldfuss, which belong to the Oolitic Furmations. Ex. C. spinosa. (1am , pl. S1, f. 6.)

Tilesia.-Animals noknown; the polyparium formed of tortnons verrucose cylindrical branches; cells stoall, accomulated in irregular patches, which project above the general surface, and are separated by smooth intervaln. Lix. 7. distorta. (Lam., pl. 74, f. 5, 6.) From the Oolite of Caen.
Spinopora.-Animals unknown; polyparium adherent by a concave concentrically striated fuce below; above reticulated, tuberculated, and bearing between the tubercles poriform eclls. Fossil from the Chalk. Three apecies. Ex. S. vitra. (De Blain., pl. 70, f. 3.)

Distichopora.-Animals unknown; cells of two kinds; some stelliform, scattered, auperficial, ahallow; the otbers poriform, deep, unequal, forming three lateral rows on each aide of the branches of an arborescent polylarium-these branches are compressed, obtuse, subflexuong, and tubulose within.

Thia Lamarckian genus contains the Millepora riolacea of Linuens. (De. Blainv., pl. 55, f. 2.)

Ifeteropora.-Animals unknown ; sella round, poriform, completely inmersed, of two sorts; aome, larger than the others, are regularly dispersed on the whole aurface of the polyparinm, which is fixed, lobed, or brauched, and formed of anperpoged lamina.
It is a genus of De Blainville, formed to include certain Cerioporce of Goldfuas which have two sorts of pores. Ex. H: cryptopora. (Goldfuss, tab. 10, f. 3.)

a, b, two specimens; c, pores magnificd.

loasil from the Chalk of Maestricht.
Mr. Lonsdale inentious one from the Silurian Rocks. (Murchison'a 'Silurian System.')
§ 3. Cells round, and more or less tubular and prominent.
I'ustulopora.-Animals unknown; cells rather prominent, pustulose or mammillated, distant, with round openings; polypariuin formed of enperposed laminæ, cylindrical, digitiform, or a little brancled, fixed.

The few fonsily which have these charactera are separated from the Ceriopore of Goldfuss by De Blainville. They are from the Clank and Wolite. Vix. P. madrcporacea. (Gollfnes, tab. 10, f. 12.)

Jormera. - Animals unknown; cells with a circular opening, promineut, detaclurd, disperved almost quincuncially on the inner face of the braselses of a fragile ramulose polyparium, which is fistulose and firrowed on the non-polypiferous face.

It in a genua of lamouroux, formed from Refepora of Lamarck. It inclndea several living species, from the aeas of Europe and Auetralasia, and more fumaile, chietly from the l'ertiary Strata, but Mr. Lonadale notices one from the lndley Linuestone. Fix. H. frondiculata. (Lam., II. Ti, f. 7, 8, !.)

a, ratural side; b, f, fragmesat of the upper end lower siden, magnified.

Idmonea.-Animals unknown; celle prominent, sub-conical, distinct, with a circular opening, arranged io half ringa or short cross.lines, on two-thirds of the circumfereuce of the branches of the polyparium, which is not porous, but alightly channelled on the non-celluliferous face; the branches are divergent and triquetral.
One living species belongs to this genus of Lamouroux, and several fossila from the Oolite of Caen, and Chalk and Tertiarien of Mnestricht and Paris. Goldfuss has included two of them among Reteporce. Iix. I. triquetra. (Lam., pl. 79.) From the Oolite of Caen.

Cricopora-Animals unknown; cells tubular, rather prominent, with a circular opening, arranged in rings transversely or obliquely on the surface of a fragile polyparium, which branches into cylindrical parts obtuse at the extremity.

Thia genns was named Spiropora by Lamouroux, but it is only rarely that the cells take anything approaching to a spiral arrangement. The coral is alveolar through its inass. Some of the most characteristio species are fossils from Caeu. F. Faujasii is from the Chalk of Mnestricht, and De Blaiuville joins to the group two recent apecies, Seriatopora annulata and S. nula (Lamarck). Eithrenberg calls the group Myriazoon, and Wiegmann Truncularia.
MILLER'S DOG. [Squalidex.]
MILLER'S-THUMB. [Cortes,]
MILLET. [Songirum]
MILLSTONE-GRIT is the title of a remarkable group of atrata which belong to the Carboniferous System, and separate the Coal Formation from the Mountain Limestone. It may be reganded as one of the many instances of transition on a large scale, which reveal to the geologist local changes of level and position of the ancient landa, whereby new curreuts were occasioned in the sea, and new depositions produced in its bed. Instead of the deposits of mountain limestone generated by processes almost purely marive, we have in the Millstone-Grit gronp evidence of streams from the interior of elevated lands and periodical currents which spread pebbles, sand, and clay, with land-planta, over surfaces where previously corals and shells were accumulated in the quiet sea. The character of this group varies according to a certain law of development in passing from the south to the north of England. It is of little importance in the south-west of Eugland, South Wales, or any of the midland cosl-fields; but in Derbysbire it acquires great thickness, and appears in some of the nost atriking scenes of that romantic county. Here it is a seriea of thick arenaceous rocks, alternating with shales and flagstones below the coal and above the limestone. Perhaps no more remarkable feature in English geology can be noticed than the bold crags of millstone-grit which are crossed as the traveller proceeds from the coal of Sheffield to the limestone of Castleton.

Farther to the north, between the deep limestone dales of Yorkahire, the millstone-grit racks appear on the summit of Ingleborough, Penyghent, and Wharnside, mixed with shales, limestones, ironstones, and beda of coal. At least three distinct bands of coarse pebbly millatonegrit here occur, though not in one hill, and a aimilar character belongs to the series in Durham and Northumberland. Through all the extremo north of Eugland indeed the millstone-grit group passes by its coal, irobstone, \&c., to the coal formation above, and by its limestones and peculiar shales to the mountain limeatone bolow, by so easy a gradation that the whole appears one vast series of associsted deposits.

The rack from which the group is named the Millatone-Grit, is a very coarse.grained quartzose sandatone, with layers of pebbles, often defining the upper or under surfaces of beds, and aometimes (as near Keighley) contaiuing remarkable masses of laminated mica, which is not common in the substance of the stone. The most coarse and quartzose parts of the stone have a vague resomblance to unmicaceous grauites (as that of Ravenglass), and this is strengthened by the occasional abundance of felapar, in large masses crystallised within, but fragmented or worn to a pebbly aspect externally. This discloses probably tho true history of the rock. It is a re-a.ggregated mass of the disintegrated materials of granite; and as almost every sandatone of the coal districts is liable to assutne locally the coarseness of grain of the millatone-grit, and all appear to contain felspar graius and fragments (often decomposed to prorcelain clay), the importance of a stndy of the Millstone-Grit becomes evident. The organic remaina aro a mixture of those belongiug to the Coal Formation (Plants), and those of the subjacent Limestone (Conchifera, Mollusca).

MILVUS. [FAlconidx.]
MIMOSA, a genus of Plants belonging to the natural order Leguminosc. It has polyganous flowera; petals 4 or 5 , connected together into a 4- or 5-cleft funnel-shaped corolla; stamens inserted in the base of the corollo, or in the stipe of the ovary, equal in number to the lobes of the corolla, or double or triple that number; legume compressed, fint, I- or many-jointed; jointa I-seeded; ribs permanent; atipules petiolar; leaves bipinuate, with one or noore pairs of pinnte, ench pinna bearing 2 or many pairs of leaflets; flowers rose-coloured or whito, disposed in heads. The leaves aro frequently sensible to touch, as in the Sensitive Plaut. The apecies are very numerous.
M. sensitiva, the Sensitive Plant, has prickly stems and petioles; leaflote ovato-acute, dotted, with adpressed pili beneath, but glabrous above. It is a native of Brazil. The flowera are roso-coloured and tetrandrons. Tbe leaflets are mensitive to touch, but not mo much so as the following apecies.
M. pulica has a prickly herbaceous stem, with the petioles and peduncles more or less beset with stiff hairs or bristles; leaves somewhat digitately pinnate, with 4 pianæ, each piona bearing many pairs of linear leaflets. It is a native of Brazil, and is commonly grown in our gardens under the name of Sensitive Plant, the leaves falling on the slightest touch. The roots of this plant and its allies emit a most offensive smell, rescmbling the odour of a sewer at the time of irapending rain. The legumes of M. saponaria, according to Royle, form a considerable article of commerce in India ou account of their saponaceous qualities. [Sensitive Plants.]
(Lindley, Vegetable Kinydon; Don, Dichlamydeous Plants.)
MIMO'SEEE, a sub-order of Plants belonging to the natural order Leguminose, whose flowers are regular, the stamens long, usually indefinite in number, and hypogynous, and the flowers valvate in restivation. They are in many cases polygamous, and their leaves are always nore or less compound. The principal genus of the division is the Acacia. [Acacta.] Mimosa itself consists of a considerable number of species, many of which are remarkable for the irritability of their leaves, a curious property which has always rendered them objects of interest. [Sensitive Plants.] The species commonly cultivated for the exhibition of this phenomenon is the Mimosa pudica, a South American anuual. Among the useful plants belonging to Mimosec, and not included in the genus Acacia, are the Ingus sapida, I. dulcio, I. biglobosa, and some others, whose pods contain a sweet nutritions feecula, which renders them fit for food; and several kinds of Prosopis, the astringency of whoss pods and bark renders them raluable for tanning purposes. In general, in the northeru hemisphere, Mimosece are confined to tropical countries, or to those which have at high summer heat; but io the southern hemisphere they extend beyond such limits, as in Van Diemen's Land, where Acacias, called Wattles, are the commonest wood. [Lequminos.en]
MLMULUS, a genus of Plants beloaging to the natural order Scorphuldariacece. It has a tubular calys, 5-angled and 5-toothed; corolla ringent, upper lip 2 lobed, lower one trifid, usually bigibbous at the base, segments all flat; stamens 4, didynamous, inclosed; cells of anthers diverging or divaricate, at length subconfluent; stigma bilamellate; capsule hardly furrowed, 2 -valved, valves entire with flat margios, dissepiment at length free; placentas aduate. The species are ercct or procumbent, glabrous, rarely villous herbs, with usually tetragonal stems; leaves opposite, usually toothed, rurely quite entire ; flowers axillary, solitary, pedicellate, superior ones sometimes racemose.
M. Luteus, Yellow-Flowered Monkey-Flower, has leaves closely toothed, lower ones on long petioles, ovate or somewhat lyrate, superior ones rounded cordately, stem clasping; calyx ovate, but campanalate in the fructiferons state, with ovate-acute teeth, the upper tooth larger. It is a native of Chili. Babington says it has become naturalised in Great Britain. The corolla is gellow, with a dark mark in the mouth.
M. moschatus, Mask-Scented Monkey-Flower, has diffuse stems clothed with woolly villi; leaves petiolate, ovate, or ovate-lanceolate, a little toothed, rounded at the base, rather pilose, and somewhat clammay; calyx tubular, but oblong in the fruit-bearing state, with lanceolate unequal teeth. It is a native about the Colombia liver, on the north-west coast of Americia The plant exhales a strong scent of musk. The flowers are small and yellow. The plantis difusc, rooting at the base.
(Don, Dichlannydeous Plants; Babington, Manual of British Rotany.)
MMUS, a genus of Birds belouging to the family Merulidce. [Merulide] M. polyglottue (Boie), the Mocking Bide, the Minic Thrush, is the T'urdus polyglottus of Linneus, and the Orpheces polyglottus of Swainson. The male of this bird has the upper parts of the head, neck, and back, dark brownish ash, an'd when new-monlted a fine light gray; wings and tail nearly black, the first and eecond rows of coverts tipped with white; primary coverts in some males wholly white, in others tiaged with brown. Three first primaries white from their roots as far as their coverts; whits on the next six, extendiug from au inch to one and three-fourths farther down, descending cqually on both sides of the feather; the tail is cuneiform, the two exterior feathers wholly white, the rest, except the middle oues, tipped with white; chin white; sides of the neck, breast, belly, and vent, a brownish-white, much purer in wild birds than in those that have becn domesticated; iris of the eyo yellowish cream-coloured, inclining to golden; bill black, the base of the lower mandible whitish; legs and feet black and strong.
Female very much resembling the male, but the white is less pure, spreads over only seven or eight of the primaries, does not descend so far, and extends considerably farther down on the broal thau on the narrow side of the feathers. The black is also more of a brownish cast.
Young birds with the breast spotted like that of a thrush : young male with the white on the wing broader and of greater purity than in the feunale. (Wilson.)
The extraordinary vocal powers of this wonderful song-bird, and his lively habits, as recorded by cye and ear witnesses, are so uncommon, that we should think we were reading of some magical bird in a fairy tale, did we not know the fidelity and accuracy of the excellent observers who describe it. Wilson thus portrays this polyglot:-
"The ease, elegance, and rapidity of his morements, the animation of his eye, and the intelligence he displays io listening and laying up lessons from almost every species of the feathered creation within his hearing, are really surprising, and mark the peculiarity of his genius. To these qualities we may add that of a voice full, strong, musical, and capable of almost every modulation, from the clear mellow tones of the wood-thrush to the savage scream of the bald eagle. In measure and accent he faithfully follows his originals. In force and sweetness of expression he greatly improves upon them. In his native groves, mounted on the top of a tall bush or half-grown tree, in the dawn of dewy morning, while the woods are already vocal with a multitude of warblers, his admirable song rises pre-eminent over every competitor. The ear can listen to his music alone, to which that of all tha others seems a mere accompaniment. Neither is this strain altogether imitative. His own native notes, which are easily distiuguishabls by such as are well aequainted with those of our various soug-birds, are bold and full, aud varied seemingly beyond all limits. They consist of short expressions of two, three, or at the most five or six syllables, generally interspersed with imitations, and all of thom uttered with great enphasis and rapidity, and continued with undiminished ardour for half an hour or an hour at a time. His expanded wings and tail, clistening with white, and the buoyant gaiety of his action, arrest the eye as his song most irresistibly does the ear. He sweeps round with enthusiastic ecstacy; he mounts and descends as his song swells and dies away; and, as my friend Mr. Bartram has beautifully expressed it, 'ho bounds aloft with the celerity of an arrow, as if to recover or recal his very soul, expired in the last elevated strain.' While thus exert ing himself, a bystander destitute of sight wonld suppose that the whole feathered tribes had assembled together on a trial of skill, each striving to produce his utmost effect, so perfect are his imitations. He many times deceives the sportsman, and seads him in search of birds that perhaps are not within miles of him, but whose notes he exactly imitates; even birds themselves are frequeutly imposed on by this admirable mimic, and are decoyed by the fancied calls of their mates, or dive with precipitation iuto the depths of thickets at the scream of what they supposs to be the sparrow-hawk.
"The Mocking-Bird loses little of the power and energy of his song by confinement. In his domesticated state, whon he commences his career of soag, it is impossible to stand by uninterested. He whistles for the dog; Cesar starts up, wags his tail, and runs to meet his master. He squeaks ont like a hurt chicken, and the hen hurries about with hauging wings and bristled feathers, clucking to protect its injured brood. The barking of the dog, the mewing of the cat, the crcakiog of a passing wheelbarrow, follow with great truth and rapidity. He repsats the tune tanght him by his master, though of considerable length, fully and faithfully. He runs over the quiverings of the canary and the clear whistlings of the Virginian nightingale, or red-bird, with such superior execution and effect, that the mortified songsters feel their own inferiority, and become altogether silent, while he seems to triumph in their defeat by redoubling his oxertions. This excessive fondness for variety however, in the opinion of soune, injures his song. His elevated iustations of the brown thrush are frequently interrupted by the crowing of cocks; and the warblings of the blue-bird, which he exquisitely manages, are mingled with the screaming of swallows or the cackling of hens: amidst the simple melody of the robin we are suddealy surprised by the shrill reiterations of the whip-poor-will, while the notes of the kill-deer, blue-jay, martin, baltimore, and twenty others, succeed with such imposing reality, that we look round for the origiuals, aud discern with astonishment that the sole performer in this siugular concert is the admirable bird now before us. During this exhibition of his powers he spreads his winge, expauds his tail, and throws himself around the cage in all the ecatacy of enthusiasm, seeming not only to sing, but to dance, keeping time to the measure of his own masic. Both in his native and domesticated state, during the solcmu stillness of night, as soon as the moon rises in silent majesty, he begios his delightful solo; and seremades us the live-long night with a full display of his vocal powers, makiug the whole neighbourhood ring with his inimitable medley."

Audubon is of opinion that in song it is far beyoud the nightingale. He pronounces the notes of that bird to be equal to those of a sonbretto of taste, who, could she study under a Mozart, might perhaps in time become very interesting io her way. But he thioks it quite absurd to compare her essays to the finished talent of the Mocking Bird. In coufinement its melody, though vary beautiful, falls far short, in his judgment, of its "wood-notes wild." He describes its imitative powers as amazing, and says that theso birds mimic with ease all their brethren of the foresta or of the waters, as well as many quadrupeds; but though he has heard that the bird possesses the power of imitating the human voice, he never met with aninstance of that mimicry.
The last-mentioned author gives na a most iuteresting detail of the loves of these charmiag birds amid the rich scanery where the great Magnolia, with its thousand beautiful flowers, Bignonias, the whiteHowered Stuartia, aud the Golden Orange, are intertwined with ionumerable viucs. "For awhile," continues this graphic describer, "each loug day aud pleasanat night are thus spent; bnt at a peculiar note of the female he ceases his song, and attends to her wishes. A nest is to be prepared, and the choice of a place in which to lay it is
to become a matter of mutual consideration. The orange, the fig, the peartrec of the ganlens, sne inspected; the thick briar patches are ako vinited. They nppear to be well-suited for tho purpose in view ; and so well doen tho binl koow that man is not his most dangeroon caemy, that, insteml of retiring from him, they nt length tix their alosle in his vicinity, perhaps in the nearest tree to his window. Dried twigs, leaves, grasses, cotton, flax, and other substances are picked up, carried to a forked branch, and thero arranged. The female has Inid an egg, and the mald redoubles lis carusses. Five eggs are depositel in due time, when the male, haviog little more to do than to sing his inate to repose, attunes lis pipe anew. Every now and then bo apies an insect on the ground, the taste of which bo is sure will please his beloped ooe. He drops upon it, takes it in his bill, leats it againat tho earth, aud flies to the nest to feed and receive the wara thanks of his devoted female."

The eggs are palegreen, bluthed and spotted wemly all over with umberbrown. The female sita $1 / 1$ days.

Mocking Bird (Jimus polyglothus).
The enemies of the Mocking Bird are cata, the Falco Stanleif, and maken, eapecially the Black Snake, which Wilson describes as the mortal couny of our sougrter's eggs abd young, and as the object of bis eapecial and deadly vengenace; for the bird rarely leares his foe, when he has found him, alive. "Childrey," says Audubon, "seldona deatroy the nests of these birds, and the planters generally protect them. So much does this feeling prevail throughont Louisiana, that they will not willingly permit a Mockiag Bird to bo shot at any timo."
The food of this species consists, nccording to Wilson, of the verries of the red cedar, martle, holly, and many species of Smilax, together with cum-berrien, gall-berries, and n profusion of othera with which the nwampy thickets abound, as well as winged insecta, of which it is exceedingly foml.
"The Nocking Jiird," sayn Wilson, "inhabite a very conviderable extent of loth North ami Sonth America, having been traced from the atates of New England to Brazil, and also among many of tho adjacent islands; much more numerons in those states south than in those north of the river Delawre, being generally migratory in the latter, and reaidert (at leat many of them) in the former. A warm climate and Jow conntry, not far from the sea, seem most congedial to their nature accoringly wo find the npecies less numerous to the west than east of the great range of the Alloghang, in the anme parallels of latitude. In the severe winter of 1808 . I found these birds occasionally from Fredericknlourg in Virginia to the sonthern parts of Georgia.'

Nutall ntatea that it inhabits tho whole continent and tho adjacent islamde, from thorle Inlant to the lamger inlands of the West Indiea, continuing through the equatorial regionn and as far nonth as Brazil. Nor in it confinecl to the eastern or Atlantie atates; for it is found in the State of Arknnas, and wore than a thousand wilea from the month of Red Iliver. Say notices it na breeding at tho western noureas of the J'latte, near the base of tho lacky Mountains. Bullock wnw it on tho tableland of Mexico. Mr. Litebtield informed Nuttall that it is commonly heard in Verazuela.

Mr: Darwin ('Journal and Jemarka') noticen, in hia acconot of Maldonado, a Mocking. Dird, Orpheus modulator, called by the inlatit. anta ('alandrin, an remarkablo for jossessing nong far superior to that of any other hird in tho country: indeed it was nearly the only bird in South America which ho oberved to take its atand for the purpose of ninging. Jie compares the song to that of the Sedge. Warhker, but mase that it is more powerful, and that momo harsh notes
and some very high ones aro mingled with a pleasnot warbliog. It is heard only during spring : at other times its cry is harah, and far from harmonious. 110 atates that near Madoondo these birds were tame and bold, constantly atteading the country-houses in uumbers, to pick the meat which was hung up ov the posts or walle; but if any other small bird approsehed, the Calaudria drovo it away. Mr. Darwin adds, that, on the wide uninhabited plaine of Patagonia, another clonely allied species, Orpheus I'atagonicus of D"Orbigny, which frequents the valleys chothed with apioy bushes, is a wilder bird, and has a alightly different tone of voice. ('Vojages of 11.M.S. Adventure and Beagle, vol. iii.)

Mr. Swainson ('V'auna Boreali-Americana,' vol. ii., and 'Classification of Birds,' vol ii.) notiees the atriking analogy between the Mock ing Bind and Lanius Carolinensis (the Loggerheaded Shrike). Hoth the birds, he remarke, are typical examples of two distipet groupa they are of tho same size, clothed in nearly the same coloured plumage, seck the asmo kiod of food, agree in the gtructure of their winga and tail (almost in that of their feet), build the same kind of nest and in similar situation, inditate tho notes of other binds, eject their unser riceablo food in the same manner, and yet, in bis opinion, are totally distinet in real affinity.
'The term 'Mock-Bind' is sometimea usod to designate tho SedgeDird (Currucas salicaria of Fleming, Sylvia Phragmitis of Bechstein, Calamodyta Phragmitis of Bonsparte); and that of Mock-Nightiugale is sometimes applied to the Black-Cap [Black-Cair], and also to the Fauvette, Curruca hortensis, Br. und Flem., Motacilla hortensis, Gm. Sylvia hortensis, Bechst.

MIMUSOPS', a genue of Plants belongiag to the natural order Sapotacec. It has a calyx 6 - to 8 -parted; segruents disposed in a twin order; conolla with a doublo row of sogments, the outer row contalning from 6 to 16 in aumber, which are either entire or divided, the inder row containing 6 or 8 eatiro segments; satheriferous stameus 6 or 8 , opposite the inner gegments of the corolth, alternating with as many sterile ones; ovarium 6-8-celled; berry 1- or few-seeded from abortion. The species sre trees with mlernate quite-entire glabrous corinccous lenves, and axillary fascicles of 1 -flowered pedicels. The flowers are small and white; the fruit edible.
M. Elengi has oval-lanceolate or obloug leaves, acumiaater, glabroua; pedicels anay together, shorter than the petioles, which are glabrous. It is a native of tho East Indies, where it is much plantod on account of its fragrant flowers, which come out chiefly in the hot season. A fragrant water is distilled from the flowers. The scods yield an nbuudnnce of oil in request for painters. The leares are eaid to produce an extraordinary noise when burnt.
M. Kaki has obovato leavea, very blunt, silvery or hoary beneath, hardly three times as long as the petiolea, crowded at the ends of the branches; lowers fascicled, bexandrous. It is a native of the East Indies and Australia withio the tropic. The tree yields a gum, and the fruit has a sweetish taste, nad is much eaten by the antives of ludia
(1)on, Dichlamydeous Plants; Lindley, Vrgctable Kingdom.)

MINERAL. VEINS. The principal inorganic constituente of the cruat of the earth are in general capable of arrangetnent as the products of water or of hest; and to each of these classes belong peculiar characteristic fentures of composition, aggregation, and srrangement. The products of water are mostly laid in the form of strata; the products of heat sre often seen to cross, penctrate, and overlie or underlio these hyyers of rock, in dyker or in buge amorphous masses But there is a third less distinctly limited elass of aggregations in the crust of the earth, whose form is different from either of the preceding types, and whose origin, though perhaps not indepeadent either of heat or wnter, is yet not to be underatood without the considerstion of other and peculiar conditions. Such are metallic and mineml veins, spar veins, and other crystallised and coucretionary accumulationa, common in both stratified and amorphous rocks, uader a great variety of circumatances, tho essentisl conditions of which nppear howover to be few in number. To recertain these conditions is the first object of a philosphical inquiry into the origin of mineml veins; for the laws of the planomeoa may thus become correctly known, and the true theory, the ultimate end of the inquiry, be satisfactorily indiented.
Tho most frequent form in which anetallic and minernl veins oceur is that of a vertical or alightly inclined mass, occupying what was once a fissurc, or narrow open space, traversing the stratified or amorphous rocks for a variable but often considerable leugth horizontally, and a limited or anknown depth in a perpendicular direction. This is called n Rake Vein. Oecarionally the mineral masses are found arranged in a narrow vertienl or oblique tubular form, like sn irregularly expanded chimney, traversing the strata: such are somotimes called lipe Veins. From these two sorts of veins parts occasionally pass laterally, and are called Flat Veins, and there are frequently ramifications from all of them, called Strings, and wholly or almost detached lumps, or buoches, or nesta, of ore and spar, in the contiguous rocks.

Now the general condition of all these oecurrencen is the existence, aateriorly to the accumulation of the metallic and sparry substances in the rako, pipe, flat, \&c., of a cavity in the substance of the rocks, or a separation between the bods or blocks of stone. The anme forma of occurrence belong to various apars and other abbstances, and the samo general condition is predicable of them. That cavities really did
exist in these situations, previous to the formation of the veins, is often evident from the fact that the sparry or metallic matters lie in the interior of closed originally hollow shells, or fill lines of fracture and fissure across corals, shells, and fishes. It is further evident from the fact that along the line of a rake-vein the strata are commonly found to have been violently displaced, and moved upwards or downwards many inches, feet, yards, or fathoms, even to fifty or more fathoms, and reunited in this broken state by the subsequently introduced mineral crystallisations. This consideration supplies us with a definition of veins, identical, except by the omission of the words in brackets, with that given by Werner :--"Veins are rents produced in rocks, which were afterwards filled [from above] with certain substances." ('On Vcins,' p. 57.)

In such cavities, spars of several kinds, as carbonste of lime, quartz, sulphate of barytes, sulphate of strontian, are frequently found, entirely unconaected with metalliferous districts, and as a ususl and ordinary occurrence. In metalliferous districts the same and other minerals occur, associated with carbonates, phosphates, arseniates, sulphurets, \&c. of lesd, iron, copper, silver, \&c., in almost every proportion. Between the most valued mineral vein, such perhaps as ores of precious metal, and the unprofitable massses of 'dead spar,' which occur in almost every limestone-quarry, there is an almost uminterrupted gradation ; they must all be taken into the induction of phenomens, as a basis of theory; yet there are peculiarities in the geographical and geological rclations of the metalliferons or true mineral veins which require separate classification, and justify some special inferences touching the local conditions and geological times of their formation.
I. In a mining district, however rich, not all the cavities in the rocks yiekl metall:c minerals, even though they contain spars such as often accompany these. Generally the ores of lead, copper, silver, \&c., are limited in their occurrence to such great fissures of the rocks as are accompanied by displacements of the masses of rock which bound the fissure. Thus great fissures, Nos. 1 and 2, in the figure, which

are marked by dislocations, may be richly filled with valuable ores, and yet tho detached cracks and fissures (j) may contain ouly unprofitable spars or thin partings of clay.
2. When, as frequently happens in mining districts, veius accompanied by dislocation cross each other, the veins commonly become either richer or poorer in metal, and exhibit other peculiarities, ahout the junctions.
3. Such veins which cross may be of quite different natures: No. 1, for example, may yield copper-ore, and No. 2, lend-ore. This difference of contents in adjacent or meeting veins is even very frequently the case when the direction of the vcias on the surface cliffers by a quadrant of a circle. Thus in Cornwall, veins which pass cast and west may yield tin or copper, and those which run north and sonth produce lead. In Aldstone Moor, veins running east-north-east and west-south-west arc rich in lead, those ranging porth-north-west and south-south-cast are often unproductive.
4. The same veins vary in respect of the nature of their conteats; nome yielding lead or copper, and others copper or tin, according to depth from the surfacc, the nature of the inclosing rock, and other less known conditions. Below the surface, 100 or more yards, veias may yield principally sulphuret of lead, with a variable admixture of the double sulphuret of copper and iron, and near the surface these may be exchanged for carbonate, phosphate, and arseniates of lead, carbonates of copper, sad red oxide of iron. We may believe these natallic salts to be derived from the sulphurets by processes of change originatiag from the surface. Again, veins which cross differcat sorts of rocks, as limestone, gsorlstone, and argillaceons shale, may be very rich in limestone, verg poor in shale, and of variable value in sandstone. Now, as the effect of dislocations in such countries is frequently to cause, on the two sides of a vein, very different beds to be on the pame lovel, so that limestone is opposite to shale, or to sandstone, or to the same or a different bed of limestone, the complexity of the phenomena met with in practical taining, even in one vein, nced not surprise a prurlent reasoner. Geasrally speaking the miner looks for
a change in the quality of the vein with every marked change of the including ground (or 'country,' as it is tarmed in Cornwall).
"In the older rocks we see the same vein intersecting clay-slate and granite ; it is itself continuous, and there is no doubt of its identity; and yet the contents of the part inclosed by one rock shall differ very much from what is found in the other. In Cornwall, a vein that has been productive of copper-ore in the clay-slate, passiog into the granite becomes richer, or, what is more remarkable, furnishes ores of the same metal differently mineralised. If wa pursue it farther into the granite, the produce of metal frequently is found to diminish." (Taylor, in 'Report to the British Association,' 1833.)
5. This dependence of the productiveness of veins on some quality of the rocks which they traverse, is a phenomenon of the aame order as the relation of veins in general to particular classes of strata or particular masses of igneous rocks. Dislocations of the strata occur in almost every district, yet it is chiefly in certain assemblages of the strata that metallic veins are abundaut. In Great Britain and Ireland generally speaking, the only districts of mineral veins are situated among the ancient strata; perhaps no metallic veins occur in these islands above the Palæozoic Strata [Paleozorc Series]; and though in other parts of the world strata of munch more recent origin do yield some valuable ores, it is under pecnliar and limited conditions.
6. Among these conditions appears to be the proximity of rocks of igneous origin. Thus, in the Pyrenees, rocks of the age of the chalk yield iron-ores near igneous rocks, and not elsewhere. On a general survey of mining districts, without regard to their age, some relation of this kiud appears. It is near the granites of Cornwall and Brittany, near the porphyries of Caldbeck Fells in Cumberlaud, near the greeustope of Aldstone Moor, that metallic veins are abundant; but on the other hand there is no metallic vein known in conucction with the sienites of Malvern or Charnwood, while the rich lead-mines of Flintshirs and Grassiagton Moor in Yorkshire are not accompanied by traps visible at the surface, or known in the mines; and the toadstonc of Derbyshire has been thought to actually cut off the lead-veins. Perhaps on this important point prudence will be best satisfed by admitting the real influence of certain igneous rocks on the productive. ness of mineral veins, not merely as being of igneous origin, but as being of particular chemical qualities, and haviug certain dofinite properties in relation to the passage of thermic and electric curreuts.
7. A certain relation of veins to the physical geography of the country is traceable. It is chiefly in or near to mountainous regions that mineral veins abound; and this appears to be mainly owing to the fact that, in such countries, the strata are more broken than elsewhere, and more divided by masses and dykes of igneons rocks, circumstances already known to influence the occurrence of mineral veins; but several authors mistake the nature of this relation, and in particnlar Werner, whose treatise 'On Veins' is very valuable, attaches too much importance to it. He says, "The occurrence of vcins depends much upoa the external form of the mountaius, on the position of the whole chain of mountains in respect to its cxtent and declivity, on the particular position of the country where they [the mountains] occur, whether the country be composed of hills with gentle declivities and roundish or flattish summits, or whether it be a place in a principal valley." (Werner, 'On Veins,' p. 54.)

Before a satistactory theory of veins can bo possible, we must possess correct geueral inferences on two points-the origin of fissures and cavities in rocks, and the aature of the forces by which those fissures have been filled. Each of these points has been thougit difficult of approach: the former has certainly been reached; the way to the latter is perhaps ouly indistinctly perceived.

Fissures and other cavities in rocks exist as effects of several natural causes, and present diverse appearances characteristic of these.

Caverns in limestone rocks are sometimes independent of real fissures, and other evidence of movements of the rocks, and may even be thought in some cases to be original, or left such when the rock was formed in the sea. Such cavitios actually occur in modern coral recfs, left by the peculiar growth of the lithophytes: in certain cases (for instance magnesian limestone) the small cavities may have been formed by gas extricated in the course of the formation of the stone. Now in such closed cavities, large or suall, the crystallisations which we find (carbonate of lime, sulphate of barytes, sulphate of strontian, quartz, oxide of iron, sulphurct of iron, \&c.) are of the same kinds, and may be due to the same causes, as the crystallisations in originally hollow shells, or in the cavities left by the dissolution of these from the rocks. To the above catalogue may therefore be added sulphuret of ziac, aracniuret of iron, sulphuret of lead; for these minerals occur in the situations just named, especially near faults or veins.

Cracks in many limestone rocks are ns perfectly intornal cavitics as those above-named, and are, in the neighbourhood of veins or metallifcrous fissures, lined with similar crystallisations, adding to the list carbonate of copper. (In Maguesian Limestone of Yorkshire.)

Joints are open cracks traversing beds of stone, and come under the same description as other often very large open fissures unaccomlanied by dislocation. These fissures are ofteu arranged with so much symmetry as to leave no doubt of the influence of polarities among the molecules of the rocks when they wore formed. Joints and fisbures, especially wear voina, often partake of the minerals which they contain.

Faulta, or fisaures ncoompatied by dislocations, offer, in addition to all the factaslrualy mentioned, the very important information that the crust of the earth bas been broken at ditfereat times, as well as in different directions. In the drawing of two intersecting reins, which illustrates this nrticle, it will be seen that the vein No. 2 euts through and displaces the strata, whiel had been already broken and displaced by the rein No. 1. The relative nntiquitro theae two veins has been generally allowed to be in the order of the numbers. Now as the metalliferous contenta of the fissures No. 1 nre divided by No. 2, as Well an the strata which bound it, there nppears reason to conclude that the vein No. 1 was filled with ita mineral contents before the disturbance of the ground by the liksure No. 2.

We are thus conducted to the remaining part of the general inquiry proposed, namely, the causes cencerned in filling the cavities of all kinila, nlready clased. The evilence of the dislocation of strata on the sides of inost mineml vins leads, when generalised, to the recog. nition of several systerea of veine, even in one district, of unequal autiquity. It is also found thast these systems pass in different directions respectively, one set east-north-east, nnother north-north-west, others to intermediate points; nnd further, there aro observed in these syatems of reins-malike in direction, and unecpual in antiquity-some general and characteristic differences in the contents of the veips.

Werner gives eight snceessive aystems of veins in the freyberg Minea, but the definitions are far from clear. M. Carne givea eight successive groups of veins and slides in Cornwall, more clesrly characterised; the oldest nre in veins (lodes), underlying (dipping) to the north, ranging Desrly east and weet ly compasa. The second are tin reins, underlying to the south, ranging east and west nesrly (by compass). The third includes east and west copper veins. The fourth are diagonsl (or contra) veins, ranging north-west and south-east, and yield copper. The fifth class includes eross-courses, manging porth-north-west and south-south-east, and rarely yielding metal, except lend. A sixth group yiclda copper. A seventh includes "eross flukaps" (clay, veins), ranging nearly borth and south, nud an eighth, the 'slides;' which are formed of soft clay, and cut through all the others.

This classification, though too hard and precise for exnct adaptation to uature, is valuable ns an index to many complicated phenomenn; but the relative antiquity of 80 insuy zets of fractures is a difficult problem, requiring much mechnnical science, nud n kuowledge of the relative hardneas and reaisting power of the masses broken. Sir II. De la Beche has shown ('Ordnance lieport on the Geology of Cornwsll,' \&e., p. 299) n aimple case of this nnture, in which the intersecting elran dyke is probably not the pewest of the two fractures. In the elnborate volume juit quoted the reader will find a vast body of digeated information regnting the phenomenn of the Cornish and Ievon miveral veias $A_{s} n$ cumbined result, we find in the veins of Cornwall n manifest tendeucy to two aets, one (the oldest) east-northeant, yiclding most of the ores, the other north-north-west, crossing the freceding almost from sen to sea. In Devonshire also two sets appear, one (the oldest) nearly east and west, yielding most of the orea, the other north and nouth, erossing the other. Continning the investigation, we find this ayatem of cross courses (ranging north and sonth) extended into Dorsetahire, nncl there dividing the chalk, so that a compratively recent geological date for some of the great cross cournes of Devon and Cornwall may be probally inferred. Adopting the view of this author, we find evirlence of four systems of east and weat fructures in the district of Cornwnll and Devon:-1. That of the upheavnl of granite, and the arrangement of the strikes of tho bods of slate. 2. The elvan (porphyry) courses, which trnverse nlike the granite and the strati disturber with it. 3. The east nod west aysterna of reina. 4. Tho mytem (indistinctly traced) of east and west clay alicles; nnd adding to them tho north ond south traps, olvans, crose courgen, nud fukaus, we ree clearly how many and varions lanve been the fracturem and finsurea, and how compliented the conditions unter which these finnuren were storel with their contents. What why the ageney by which this was acceomplivhed?

Werraer (1041) believed that fisauren wero filled from nbove, by precipitationa of earthy and metullic salts held in nolution by water. An anne of the substancen common in mineral veins nre not known to be aoluble in wnter, beparately or in combination, wo can ooly adopt this riew upon the supposition that the crystallisations in veins are the result of double decomponitions in tho lifuid; nor even with thin nial in the procen at all clear by which tho metallic nasasen wero formed.
lehman haul previoumly (1,53) introluend the notime of sublimed vapourn and exhalationm; and if we belicve that aulpluretted hydre. gen gas wam abuodant in theae, tho formation of aulphurets from salts of learl, coppar, \&c. might becomo n possiblo case. Necker revived this ider ("Geol. Suciety Abstracta," 1832.) Dra. Ilutton aud llayfair maintained that the vein-apara and metallic ores were tujected into fimsuren nint in n state of solution in water, but in n stato of fugion through lieat. They were a mort of metalliferoun dyken.

In connequence of tho experimente of Mr. lox, which mow in certain canea the paasage of electricnl currents between different parta of the metalliferoun vejns of Cornwall, nud an sugmentation of tem. erature in them no we deacend into tho earth, a fourth general viow han gradually nul abseurely grown up to importance. In this view
electrical forces are appealed to for determining the deponition of matter brought into the fissures by water operating on metallio agyregations, at great depthe and under considerable heat. Suoh heated watera would circulate upwards and downwards in the open spaces of the rocks; in the upper parts of the fisauren they would bs cooled, and might deposit part of their dissolvent oontents; these would be arranged by electrical affinitics under the influence of the various nature, direction, and fissuring of the rocks.

Such affioities might be dependent on local electrical carrents, generated by the local differences of the rocks and mineralk, or on the general terrestrial currents which govern common mngnetism, or on a combination or oppasition of these. Under any circumatances, evidence of these general currents must be looked for in the general phenomena, and the local currents must be sought in the local phenomena. Adopting this theory as at lenst partially true, we may venture to refer to general currents the remarkable fact of the frequent srrangement of raetals in east and west veins, or in veina pointing a little north or a little south of east and west; for within euch limits in European and Mexican latituden these general electrical currents may be conceived to pass, rarying most in Europe, according as the polarities varied from time to time. We may refer to local currents the limitation (which is reldom really, though often in appearance, arbitrary) of the metallic contents of a vein to particular adjncent rocks, to particulsr oblique parallel shoots or pipes, to particular sides or ends of n vein, to particulnr depths, or particular nidiform masses. Tonsuccession of anch operations we may refer the successive vertical Inmination of several sorts of crystals (fluor, carbonste of baryter, lead-ore, blonde, \&c.) in the snme vein; and nfter a principal vein was partially filled, wo masy conceive without difficulty the deposition of nearly similar contents in neighbouring fissures or joints, or even closed cavities, if these shonh then become the lines of easiest electrical conduction.

The reader will find n comprehensive view of thie hypothesis compared with charneteristic pheaomena in the 'Ordnance Report on Devon and Cornwall.' Indeed anything approsehing to the atrict and severe process of deductive reasoning from known physical truths, applied to conditions like those ascertained in the districts of Cornwall and Aldatone Moor, has been liardly nttempted elsewhere. Yet the occasion is favourable. Sir H. De In Beche has embodied a vast mass of available resulta in the Report already quoted. Mr. Fox has experinentally nlmost made mineral veins by imitating the natural arrangements of the rocks of Cornwall: the electrotype process is daily revealing new and unexpected phenomena of electrical traosfer under managenble conditions; and there are these great inducements for an enrnest general investigntion of the whole subject, that in the first place erystallography nnd the doctrines of molecular forees would assuredly be ndvanced by it; and, what is still mone important, laws of judgment and practice in mining operations would be satisfactorily established and confidently applied to cases entirely beyond the range of ordinary experience. Wie must however cantion the reader who prefers this new view of the origin of weins against nay contemptuons disregard of the opinions of Wemer, Lehman, and llutton, on the ground of apecinl difficulties in regard to solutions in water, eublimations of vapours, or igneous fusions of minerals. There is abundance of facts known to redeom their speculations from a basty charge of absurdity; there are may ingulated facts which seem to agree with then ; and at nll cevents the descriptions furnished by Pryce, Werner, Carno, Fournet, Fox, Heuwood, Taylor, and Do In Beche, must be carefully and rospcetfully considered, and combined with the general lawe of the carth's structure nad established principles of physics, before we can boast of n theory of Mineral Veins.
(l'ryce, Mincralogia Cornubiensis; Werner, On l'eins, 1\%91-Eoglish edition, 1809 ; Hawkins, Cnrne, Davy, and others, in Transactions of the Gealogical Society of Corneall; Willians, Mineral Kingdom; Fournet, in D'Anbuisson's Gcology, vol. iii.; Fox, in Procedinge of Polytechaic Socicty; Ilenwood nud Necker, in Abstracte of Gicological Sucicty of London, 1832; Taylor, in Report to British Association, 1833; Beequerel Traité drelectricité, 1835; Murchison, Silurian System: l'hillips, in Larduer's Cyclopretia, IS39; De In Beche, Orlnance Report an Cornwall, Deran, end Il'cat Somerset, 1839 ; Lyell, Principles of Geoloyg.)

MNERALOGY, according to the defiaition given by lirwan, is the art of distinguishing mineral sulstances from each other. It may be regarded both as a science nod nu art: ns n science, in reference to the knowledge requisito for supplying accurato descriptions of minerals, and forming whit may bo termed a natural classification; and an art, in referedce to the nrrangement of the deacriptivo chameters for the purposo of afterwarls distinguishing minerala from each other.

Nineralogy then must be considered ns including the chemicsi composition of bodiea, and nn account of their external or physical propertics. 13oth aro requisite, for substavees occur which agreo in their ehomical composition, mul exhibit differences in their external charncters; while there are other bodies which differ in their chemical constitution, but ngreo in their external properties.

Vnrious methods of arrangement of minerals have been proposed by difforent authors. According to Werner, miverala were divided into the four clanses of earthy mincrals, saline minerals, inflammalles, and metals: Karsten classed them unler the headm of earths, salts, cons-
bustibles, and metals: Haüy divided minerals into acidiferous earthy gubstances, earthy substances, non-metallic combustible bodies, mstallic bodies, substances not gufficiently known to admit of classification rocks, and volcanic products. In Phillips's 'Elements of Mineralogy;' the classes are earthy minerals, alkaline-earthy minersla, acids, acidiferous earthy minerals, acidiferoua alkaline minerals, native metals, metalliferous minerals, and combustible minerals. Berzelius sttempted a strictly chemical classification of minerals: he has however candidly admitted that considerable difficulties attend this method, owing, in part at least, to the uncertainty which existg as to what are the essential and what the sccidental constituents of a mineral.
The following is the arrangement of Dufrenoy as given in Professor Ansted's 'Elementary Course of Geology,' \&c.:-
Class I.-Simple Bodies, or Biaary Compounds never bases, generally essential ingredients in combinations, and serving as prusimate elements.
Group I. Hydrogen.
2. Carbon.
3. Silicon.
4. Sulphur.
5. Selenium.

Class II.-Alkaline Salts.
Group 1. Salts of Ammonia.
2. Salts of Potash.
3. Salts of Soda.

Class III.-Alkaline Earths, and Earths.
Group I. Salts of Barytes.
2. Salts of Strontia.
3. Salts of Lime.
4. Salta of Magnesia.
5. Salts of Yttria.
6. Salts of Aluminn.

Classs IV.-Silicatea.
Group 1. Anhydrous Aluminous Silileates.
2. Hydrous Aluminous Silicates.
3. Silicates of Alumina and Lime, or their isomorphs.
4. Aluminous and Alkaline Silicates, and their isomorphs.
5. Hydrous Aluminous Silicates with Alksline and Lime
bases, and their isomorphs.
6. Nodaluminous Silicates.
a. With Lime as a bare.
b. With Zircon as a base.
c. With several bases.
7. Silico-Aluminates
8. Silico-Fluates.
9. Silico-Borates.
10. Silico-Titanates.
11. Silico-Sulphurets.
12. Aluminates.

Class V.-Metals.
Group 1. Cerium.
2. Manganesc.
3. Iron.
4. Chromium.
5. Cobalt.
6. Nickel.
7. Ziac.
8. Tellurium.
9. Cadmiun.
10. Antimony.
11. Arsenic.
12. Mercury.
13. Titanilum.
14. Tantalium.
15. Niobium.
16. Pelopium.
17. Ilmenium.
18. Lead.
19. Tin.
20. Bismutl].
21. Iranium.
22. Tungsten.
23. Molybileum.
24. Vanadiun.
25. Copper.
26. Silica.
27. Gold.
28. Platiuum.
29. Iridium.
30. Osmium.
31. Rhodium.
32. Palladium.

Dana, in his useful 'Manual of Minernlopy,' adopts the fellowing
clansification :-
NAT. 1 IIST. DV.
vot, MI.

Class I.-Gases; conaisting of or containing Nitrogen or Hydrogen. Class II.-Water.
Class III.-Carbon, and Compounds of Carbon.
Class IV.-Sulphur.
Class V.-Haloid Minerals: Compounds of the Alkalies and Earths with the Soluble Acids, or of their Metals with Chlorine or Fluorine.

1. Salts of Ammonia.

2 Salts of Potash.
3. Salts of Soda.
4. Salts of Barytes.
5. Salts of Strontia.
6. Salts of Lime.
7. Salts of Magoesia.
8. Salts of Alumina.

Class VI.-Earthy Mineral8: Silica and Siliceons or Aluminous Compounds of the Alkalies and Earths.

1. Silica.
2. Lime.
3. Magnesia.
4. Alumina.
5. Glucina.
6. Zirconia
7. Theria.

Class VII.-Mctals and Metallic Ores.

I. Metals easily oxidizable : Iron, Lcad, Copper, Mercury,
ac.
2. Noble Metals: Gold, Silver, Platinum.

We have slready observed that Mineralogy includes a knowledge of the cliemicsl composition and of the exterasl and physical properties of minerals, and they are all divisible into two great classes of crystallised and uncrystallised. With respect to regularly crystallised minerals, we refer for an account of their forms to whst is ststed under Crystallography. There are some substances whioh do not assume regular forms, but hsve an imperfect crystalline structure; while those bodies which are not either crystallised or crystalline, unless they are pulverulent, are described as massive, and these are suhdivided into such as possess particular forms, as botryoidal, mammellsted, nodular, stalactitic, reuiform, globulsr, and amorphous, or without any particular form.
The structure of minersls is an important feature. It may be Columnar, Lamellar, or Grsnular. The following sre explanations of the terms used in describing the different kinds of columnar structure :-
Fibrous: when the columns arc minute and lie in the same direction, as gypsum snd asbestus. Fibrous minersls very commonly have a silky lustre; a fibrous variety of gypsum, and one of calc-spar have this lustre very strongly, and each is often called satin-spar.
Reticulated : when the fibres, or columns, cross in various directions, sud produce an appearance having some resemblance to a net.
Stellsted: when they radiate from a centre in all directions, and produce a star-like sppearance. Stilbite and gypsum are examples.
ladiated, divergent: when the cryatals radiate from s centre without producing stellar forms. Exsmples, quartz, gray antimony.
In the Lamellar Structure the lamide or leaves may be thick, or very thin; they sometimes separate easily, and sometimes with great difficulty. When the laminx sre thin and separate easily, the structure is said to be Foliaceous. Mica is a striking example, snd the term Micaceous is often used to describe this structure. When the lamine are thick, the term Tabular is often applied; quartz snd heavy spar afford camples. The lamine may be elastic, ss in mics, flexible, as in talc, or graphite, or brittle, as in diallage. Small lamina are sometimes arranged in stellar shapes; this occura in mica.
When the grains in the texture of a miueral sre coarse, it is said to be Cosrsely Granular, as iu granulsr marble; when fine, Finely Grsnular, ss in granular quartz: and if no grains can be detected with the eyc, the structure is described ss Impalpable, as in chalcedons. Grsnular mincrals, when easily crumbled by the fingers, are said to be Friable.
Massive minerals also take certuin imitative shapes, not peculiar to either of these varieties of structurc. The followiug terms are used in describing imitstive forms:-
Glebular: when the shape is spherical or nearly so: the structure may be Columnar and Radiatiug, or it may be Concentric, consisting of conts like an onion. When they arc attached, they are called lmplanted Globules.
Reniform: kiducy-shaped. In structure, they aro like globular shapes.
Botryoidal : when a surfsce consists of a group of rounded prominences. The prominences or globuleg usually consist of fibers radiating from the centre.
Mammillary: resembling the botryoilal, but consistiug of larger prominences.
Filiform: like a thread.

Aclcular: slender like a needla.

Stalactitic: having the form of a cylinder or cone hanging from the roofs of caritien or caves. The term stalmetile in usually restricted to the cylindera of carbonate of lime hanging from the roofs of caverna ; but other tulnerals are said to lhave a atalactitic form when resembling these in their general ahape and origin. Chalcedony and brown irodore are often atalactitic.
Reticulnted : net-like.
Druky : a surface is anid to be drusy when covered with minute crystals.
Amorphous-shapeless: haring no regular structure or form, either crystalline or imitative.
Crystals are aleo called Pseudomorphous. A pseudomorphous crystal in one that has a form which is foreign to the apecies to which the aubstance belonga.
Crystala sometimes undergo a change of composition from aqueous or some other agency, without losidg their form ; for example, octnhedrons of spiael change to steatite, still retainiog the octahedral form. Cubes of pyrites are changed to red or browu iron-ore.
Again, cryatals are mometimes removed entirely, and at the same timo and with equal progress, another mineral is 6 bustituted; for exnmple, when cubes of fluonspar are transformed to quartz. The petrifuction of wood is of the same kind.
Again, cavities left empty by a decomposed crystal are refilled by another species by inflitration, and the new oniueral takes ou the external form of the original mineral, as a fused wetal the form of the mould into which it is cast.
Again, crystals are sometimes incrunted over by other minerals, as cubes of fluor by quartz; and when the fluor is afterwards dissolved awny, as sometimes happens, bollow cubes of quartz are left.
The first kind of Pseudomorphs are Pseudonorphs by Alteration; tho necond, Pseudomorpha by Replacement ; the third, Pseudomorphs by Infiltration; the fourth, Peeudomorphe by Incrustation.
Pseudomorphous crystals are distinguished by having a different structure and cleavage from that of the mincral imitated in form, and a different hardness, and usually littlo lustre.
A large number of minerals have been met with as pseudomorphe. The causes of such changes have operated very widely and producod important geological results.
The eharacters of minerals depending on light are also arrangel. They are of five kidds, nyd arise from tho power of minerals to refloct, transmit, or emit light. They are as followe:-1, Lustre; 2, Colour; 3, Diaphaneity ; 4, Refraction ; 5, Phosphorescence.
The lustre of miverais depeuds on the nature of their surfaces, which causes more or less light to be refected. There are different degrees of intenaity of lustre, and also different kiods of lustre.
The kinds of lustre are six, and are named from some familiar object or class of objects :-
Metallic: the unual lustre of metals. Imperfect metallic lustre is expreased by the term Sub-Metallic.
Vitreous: the lustre of broken glase. An imperfect vitreous lustre is termed Sub-Vitreous Both the vitreous nad sub-vitreous lustres are common. Quartz poseesses the former in an eminent degree; calcareous spar often the latter. This lustre may be exhibited by minerals of any colour.
Resinoun: lustre of the yellow resins. Opal and zinc-bleude are examples.
Pearly : like pearl. Talc, nativo magneesia, etilbite, \&c., are examples. When united with aub-metallic lustre, the term Metallic-Pearly is npplied.
Silky: like nilk; it is the result of a fibrous atracture. Fibrous carbonate of lime, fibrous gypsum, and many fibrous minerals, more eapecially thoso which in other forms have a pearly lustre, are examples.
Adamantiue: the lustre of the dinmond. When sub-metallic, it is tormed Metallic-Adamantinc. Varietiea of white load-ore are examplea.
The degrees of intenaity aro denominated as followe:-
Sploddent: when the surface reflecta lights with great brillinucy, and gives well defined imagen. Elba iron-ore, tin-ore, some specimens of quarta and pyrites are examplea,
Shining : When mo Image in proluced, but not n well-defincd image. Calcarcoun spar nnd celestine are examples.
Glistening: When there in a general reflection from the surface, but no image. Talo and copper-pyrites are exnumplea.
Glimmering: when the reflection la very imperfect, and npparently from pointa neattered over the surface. Flint and chalectony are examples.
A mineral is said to be Dull when there is n total sbsence of hustre, as chalk.
In distinguiahiug minerala, both the external colour and the colour of a surface that has been rublied or acratelied, aro obervel. The latter in called the Streak, and tho powder abraded, tho Strenk-l'owder.
The colours are cither metnllic or non-metnllic.
The Metallic are anmed after mome faniliar metal, an copper-red, l,ronze-gellow, bram-ycllow, goll-yellow, atecl-gray, lead-gray, irongray.
The Non-Metalic colours uned in charneterising minerals, nre various shades of white, gray, black, blue, green, yellow, red, and brown.

Thero are thus mow-white, roddish-wLite, groonish-whlte, wilk. white, gollowinh-white; bluish-gray, amoke-gray, greenish-gray, pearlgray, ash-gray; velvet-black, greenish-black, bluish-black ; azuro-blue, riolet-bluc, aky-blue, indigo-blue; emorald-green, olivegreen, oilgreen, grass-green, applo-green, blaekish-green, pistachio-green (yellowinh) ; sulphur-yellow, straw-yellow, wax-yellow, ochro-yellow, honoy-yellow, orange-yellow; acarlet-red, hlood-red, flesh-red, brickred, hyacinth-red, rose-rod, cherry-red; hair-brown, reddish-brown, chestnut-brown, yellowish-brown, piechbeck-brown, wood-brown.
Tho expression a Play of Coloura is used when several prismatio colours appear in mpid succeasion on turning the mineral. Tho diamond in a atriking examplo; also procious opal.

Chnge of Colours : when the colours change slowly on turning in different positious, as in labradorite.
Opalescence : when there is a milky or pearly reflection from the interior of a specimeu, as in some opals, and in cat's eye.
Iridescenco: when prismatic colours are ecen within a crystal; it is the efiect of frncture, and is common in quartz.
Taruish: when the eurface-colours differ from the interior; it is the result of exposure. The taruish is described as Irised, when it has the bues of the rainbow.
Polychroism : the property, belonging to aome prismatic crystals, of presenting a different colour in different directions. Theterm Dichroism has been generally used, and implies different colours in two directions, as in the miueral iolite, which has been namod dichroite becauso of the different coloura presented by the bases and sides of the prism. Mica is another example of the same. The more general term has been iutroduced, because a different ahade of colour has been observed in more than two directions.
These different colours are observed only in crystals with unequal axes. The colours are the same in the direction of equal axes, and often unlike in the direction of unequal axes. This is the general principlo at the basis of polychroiem.
Diaphaneity : the property which mnuy objects possess of transmitting light; or in othor worde, of permitting more or less light to pass through them. This property is often calied transparency, but it is properly onc of the degroes of diaphaveity. The following tarms sre used to express the different degrees of this property:-
Transparent : a mineral is said to be transparent when the outlines of objects, viewed through it, are distinct. Glass and crystals of quartz are exsmples.
Sul-Traneparent, or Semi-Trnasparent: When objects are seen, but their outlines are indietinct.
Translucent: when light is transmitted, but objects are not seen. Loafsugar is a good example; also Carrara marble.

Sub-Translucent: when merely the edges transmit light faintly When no light is trausmitted, the mineral is described as opaque.
Those miuerals whose facee emit light exhibit two sets of phenomear, Refraction and Polarisation. [Refmaction, and Polaribation, in Arts and Sc. Div.]
The index of refraction has been obtained for many minerals, of which the following are n few :-

Many cryetals possess tho property of refracting light in two dircetions instesd of ono, nud objeotes scen through them consequently appear donble. This is called Doubie Refraction. It is most convocicutly exhibited with a crystal of cale-spar, aud was first notioed in a pellucid variety of this mineral from Iceland, called from the locality Iceland-Spar. On drawing a lino on paper and placiog the eryetnl over it, two lines are seen instead of ono-one by ordinary refraction, the other by an extraordinary refraction. If the crystal, ns it lies over the line, be turnod around, when it is in one position the two lines will come together. Instead of a lino make a dot on the paper, and place the erystal over the dot: the two dote eeen will not come together on revolving the crystal, but will seem to revolve one around the other. The dot will in fact appear double through the erystal io every direction except that of the vertical axis, and this direction is called the Axis of Double Refraction. To view it in this direction the onds must be ground nad polished. The divergence increasea on passing from a view in the direction of the axis to one nt right angles with it, whers it is greatest. In some nubstances the refraction of the extraordianry my is greater in the latter direction than that of the ordinary ray, nud in others it is lens. In cale-spar it is lese, it diminiehing from 1.654 to 1.483 . In quartz it is greator, it inerensing from 1.5484 to 1.5582 . The former is said to have a Negativo Axia, the latter a l'onsitive.
Thin property of donblo refrnction belonga to sueh of the fundnmental forma as have unequal axes; that is, to all except those of the monometric system. Thoee forms in which the lateral axes are equal (the dimetric and liexagonal systeme) hnve one axis of double refrac-
tion; and those in which they are unequal (the trimetric, monoclinate and triclinate systems), have two axes of double refraction.

Both rays in the latter are rays of extraordinary refraction. In nitre the two axes are inclined about 5° to each other; in arragonite $18^{\circ} 18^{\prime}$; in topaz 65°. The positions of tho axes thus valy widely in different minerals.

The extraordinary ray exhibits a peculiar property of light, termed Polarisation. Viewed by means of another doubly-refracting crystal, or crystalline plate (called from this use of it an anslysing plate), the ray of light becomes alternately visible and invisible as the latter plate is revolved. If the pelarised light be made to pass through a crystal possessed of double refraction, and then be viewed in the manner stated, rings of prismatic colours are developed, and on revolving the analysing plate the coloured rings and intervening dark ring successively change places.

Several minerals give out light cither by friction or when gently heated. This property of emitting light is called Phosphorescence.
Two pieces of white sugar struck against one auether give a fecble light, which may be seen in a dark place. The same effect is obtained ou striking together fragments of quartz, and even the passing of a feather rapidly over some specimens of zinc-blende is sufficieut to elicit light.

Flour onpar is the most convenient mineral for showing Phosphorescence by Heat. On powdering it, and throwing it on a shovel heated nearly to redness, the whole takes on a bright glow. In seme varieties the light is emerald-green; in others purple, rose, or orange. A massive fluor frem Huntington, Connecticut, shows beautifully the emerald-green phosphorescence.
Some kinds of white marble, treated in the same way, give out a bright yellow light.

After heing heated for a while the mineral loses its phosphorescence; but a few electric shocks will in many cascs to some degree restore it again.
Many minerals become electrified on being rubbed, so that they will attract cotton aod other light substances; and when electrified some exhibit positive and others negative clectricity when brought near a delicately suspended magnetic needle. The diamond, whether pelished or not, always exhibits positive electricity, while other gems become negatively electric in the rough state, and positive only in the polished tate. Friction with a feather is sufficient to excite electricity in some varieties of blende. Some minerals thus electrified retain the power of elcctric attraction for many hours, as topaz, while others lose it in afow minutes.
Many minerals become electric when heated, and such specics are said to be Pyro-Electric.

If a prism of tourmaline, after being heated, be placed on a delicate frame, which turns on a pivot bike a magnetic needle, on briuging a magret near it, one extremity will be attracted, the other repelled, thus indicating the polarity nlluded to. Several other minerals exhibit clectrical phenomena, especially boracite and topaz, which, like tourmaline, are homihedral in their modifications.
Magnetism is exhibited more especially in the ores of irou. The loadstone, as the magnetic oxide of iron is called, is common where ths ores of iron are found. When mounted like a horse-shoe magnet, a good loadstone will lift a weight of many pounds. This is the only mineral that has decided magnetio attraction; but several ores containing iron are attracted by the magnet, or, when breught near a unsgnetic ncedle, will canse it to vibrate; and morcover, the metals nickel, cobalt, manganese, palladium, platinum, and osmium, have been fourd to be alightly magnetic.

Minerals vary in their specific gravity. This must be ascertained as for any other substance. [Specific Gravity, in Arts and Sc. Div.]

The Hardness of minerals differs much, and is the point first attended to by the mineralogist. In order to ascertain the harduess of a mineral it is only necessary to draw a file across the specimen, or to make trials of scratching one with auather. As standards of comparison, the following minerals have been selected, increasing gradually in hardness from talc, which is very soft and easily cut with a knife, to the diamond, which nothing will cut; this table is called the Scale of Harduess:-

1. Talc, common foliated variety.
2. Rock-Salt.
3. Calc-Spar, transparent variety.
4. Fluor-Spar, crystallised varicty.
5. Apatite, transparent crystal.
6. Felspar, cleavable variety.
7. Quartz, transparent variety.
8. Topaz, transparent erystal.
9. Sapphire, clcavable varicty.
10. Diamond.

If on drawing a file across a mineral it is impressed as casily, as thor-spar, the hardness is said to be 4; if as easily as felspar, the lardness is said to be 6; if more easily than felspar, but with more difficulty than apatite, its hardness is described as $5 \frac{1}{2}$ or 5.5 .

The file should be run across the mineral three or four times, and care should be taken to make the trial on angles equally blunt, and on parts of the specimen not altered by exposure. I'rials should also
be made by scratching the specimen under examination with the minerals in the above scale, as sometimes, owing to a loose aggregation of particles, the file wears down the specimen rapidly, although the particles are very hard.

Minerals differ in their state of aggregation. Solid minerals may beBrittle: "when parts of the mineral separate in powder on attempting to cut it.
Sectile: when thin pieces may be cut off with a knife, but the mincra pulverises under a hammer.

Malleable: when slices may be cut off, and these slices will flatten out under the hammer, as native gold and silver.

Flexible: when the mineral will bend, and remain bent after the bending ferce is removed, as talc.

Elastic: when after being bent it will spring back to its original pesition, as mica.

A Liquid is said to be Viscous when on pouring it the drops lengthen and appear ropy, as petroleum.

When a mineral is broken its cut surface presents different aspects. The following are the several kinds of fracture in minerals :-

Conchoidal: when the mineral breaks with a curved or concare and convex surface of fracture. Flint is a good example.
Even: when the surface of fracture is nearly or quite flat.
Uneven: when the surface of fracture is rough with numerous small elevations and depressions.
Hackly: when the elevations are sharp or jagged, as in broken irou. Soluble minerals may have taste : the kinds are-
Astringent: the taste of vitriol.
Sweetish-astringent: the taste of alum.
Saline : taste of cemmon salt.
Alkaline : taste of soda.
Cooling: taste of saltpetre.
Bitter: taste of Epsom salts.
Sour : taste of sulphuric acid.
Excepting a few gases and soluble minerals, minerals in the dry unchauged state do not give off odour. By friction, moistening with the breath, the action of acids, and the blow-pipe, odeurs are sometimes obtained, which are thus designated:-
Alliaceous : the odour of garlic. It is the odour of burning arsenic, and is obtained by friction and more distinctly by means of the blowpipe from seversl arsenical ores.
Horse-Rsdish odeur : the odour of decaying horse-radish. It is the odour of burning selemium, and is strougly perceived when ores of this metal are heated before the blow-pipe.

Sulphureous: odour of burning sulphur. Friction will elicit this odour from pyrites, and heat from many sulphurets.

Fetid: the odour of ratten eggs or sulphuretted hydrogen. It is clicited by friction from some varieties of quartz and limestone.

Argillaceous, the odour ot moistened clay. It is given off by serpentine and some allied minerals when breathed upon. Others, as pyrargilite, afford it when heated.

Witheut submitting the mineral to a regular analysis, advantage is often taken of the effects of heat by meaus of the blow-pipe, with or without the aid of certain fluxes, as sodn, phosphoric salt, \&c.; snd the mineral is stated to be either fusible alone, or with the assistance of the different fluxes, and the nature of the resulting compound is described; sometimes it is a colourless glass, at other times celoured, trampparent, or opaque, \&c. [Blow-Pipe, in Arts and Sc. Div.]
(Dana, Manual of Mineralery; Dana, A System of Mineralogy;
Austed, Elementary Coursc of Geology, Mineralogy, \&c.; Phillips,
Introduction to Mineralogy; Phillips, Elements of Mineraloyy; Jack-
son, Minerals and their Uses; Sowerby, Popular Mineralogy.)
MIN1M. [Levciscus.]
MINIUM. [Lead.]
MINK, a name for the Vison-Weasel, Mustela (Putorius) Vison. [MOSTELADe.]

MINNOW. [Leuciscus.]
MINT. [MENTHA.]
MINX, a name fer the Vison-Weasel. [Mustelide.]
MINX-OTTER, Pennant's name for the Vison-Weascl. [Mustelide.] MINYAS. [ACTINinde.]
MINYAS, a genus of Echinodermata.
MIRE-CROW, a name for the Laughing Gull. [Lamidn.]
MIRE-DRUM, a nsme for the Bittern (Botaurus stetlaris). [Bittern.] MIROUNGA, Dr. Gray's name for a genus of Scals. [Phocides.]
MISCOPHUS. [Larides.]
MI'SILUS. [Foraminifera.]
MISPICKEL. [IRon.]
MISSEL.'THIRUSH. [MervLides; Thrusims.]
MISSELTOE, or MISTLETOE. [Viscun.]
MISTONUSK, oue of the Crce Indian names for the American
Badger (Melcs Labradoria, Sab.). [Badaer.]
Mite. [Acarid.e.]
MITHRAX. [MAIDEF.]
MITRA. [Volutidaf.]
MITU, a name for seme of the Curassow Birds. [Cascid.s.]
MNEMIA. [Acalephe.]
MOA. [Dinornis.]
MOCHA-STONE. [AaATE.]

MOCO. [II rstrados.]
MOCKING BIRD. [Minvs.]
Modiola. [Mrtilid.s.]
moEHMLNGLA, a genus of Plants namel after Paul liemry Gerand Moelaring, a German physician, author of 'Hortus I'ropriun,' and other works. This genns belongs to the natural order Caryophyllacee, and has 5 sepals, 4 or 5 petals, either edtire or slightly emarsinate; 8 to 10 utamens, 2 or 3 styles, the capsule opening with 4 or 6 valves; the seeds numerous, with an appendage at the hilum. The species are alpine plants with the habit of A renaris.
M. Crinervia has ovatencute stalked 3-5-perved leaves, the upper ones pexsile, the petals shorter than the calyx, the sepals lanceolateacute, 3 -ribhed; the intermediate rib strongest and rough. This plant wan formerly referred to Arenaria, but it ussy be distinguished from that genus by the appendage to the hilum of the seed. This plsat is found in dsmp shady places, nnd is a native of Great Britain. Four other ejpecies of this genus are deacribed by Koch in his 'Flora Germa-иіса;-M. тнсоsa, M. prona, M. polygonoides, nnd M. villosa.
The apecies are alpine plante, and adapted for cultivation on rockwark or in small pota They may be propagated by dividing them at the root. They are beat grown in pota, in a mixture of saud, lonm, and peat.
(Babington, Manical of British Bolany ; Don, Dichlamydeous Plants.)
MoExChiA, a genus of Plants named after Conrad Moeneh, professor of botany at Marburg, who wrote several works on botany; amongst othere, 'Enumeratio Plantarum Indigenarum Hessix, praenertim Inferioris,' Cassel, 1777, 8 vo ; also a work on the cultivation of North American forest-trees in Germany.
The genus Moenchia belongs to the datural order Caryophyllacece, and has 4 erect sepals, 4 entire petals, 4 stamcus, a inany-seeded capsule opening st the end with S teeth.
11. erecta is the only British species. It is a small glaucous plant growing in dry gravelly and sandy places.
(Bubington, Manual of British Botany.)
MOHOLl. [Levcride]
MOHR. [Astitoreene]
MOHSITE, a Mineral, consiating of Titaniate of Iron. It occurs crystallised. The primary from is a rhomboid. The crystals occur attached and macled. The clearage is not observable. The fracture is conehoidal. Tho harduess is sufficient to scratch glass. The colour and atrenk are black. The lustre metallic. It is opaque; not attracted by the magnet. It is found in Dauphing.

MOLASSES. [ScGar.]

Mole. [Talpider]
MOLE-BAT. [Ohtagobiscus.]
MOLECRICKET. [GRTLLIDE]
MOLERAT. [TALPIDEe]
MOLENESIA, a gedus of Fishes beloning to the Iamily Cyprinide. The species are American.
MOLGE [Aspuibia.]
molgula. [Tunicata.]
MOLI'NIA, a genus of Grasses belonging to the tribe Pestucinect. It has unequal glumes without lateral ribs, ahorter than the lanceolate apikelet, of 2 or 3 semicyliudrical flowera and a aubolate rudiment of another; the palea handening on the looso fruit, and the styles terniunl. There is one species which is British -

1. ccerulca, which has an erect elongate narrow panicle; apikolets from 1 - to 3 -flowered; tho onter palea 3 - rarely 5 -nerved, downless; the upper part of the stem uaked. Tho lodves are long, linear, and altenated. It grows on wet heaths in alpine situations. This specics is the M. depauperata of Lindley.
(Babington, Munual of British Botany.)
MOLLUSCA. Referring to the article Conchafera, Gastenoroda, Cerimaloroma, and Malicology, for informntion as to tho zoological arrangement and subdivision of the various families of the Mollusca, we alaill in the present article consider the animals which constitute this great group in a parely anatomical and morphological point of view; that is, we shall endeavour to slow-firstly, what Common Plan or Archetype in discoverable among the varieties of Molluscan forms; necoadly, in what way the Common I'lan in moro apecinlly modified in the leading sub-typical groups of this great division of the animal kiogdom ; thirdly, the varions modes in whieh the organs aro arranged being thua comprehended-what peculinr characters are presented by thene organn themselven; nud fourthly, the development of tho Mollusca, mo far an it benrs upon the idea of a Consmon llan, will be dineussod.
2. The Common P'lan or Archetype of the Mollusca.-By tho Compion Plaza or Archetype of a group of nuitmals wo understand bothing more than a diagram, embexlying all the organs nad parts which are fomm in tho group, in such a relative position ma thoy would have, if nong lid nttained an excessive development, it is, in fact, nimply a contrivance for rendering moro dintinctly compré hensiblo tho most general proponitions which can bo enuncinted with regard to the group, and has the same relation to anch propositions as the dingrans of a work on mechnices lave to actual machinery, or those of a gectactrical work to actual lino and ligures. Wo aro particularly dexirons to indiente the nense in which auch phrasea as Archetype and Cormon l'lan aro here uned; as a very injurions realisn- n eror of ansion that an Arclectype is itself an entity-
appeara to have made its way into moro than one valuable anatomical work. It is for this reason that if the term Archetype bad not so high anthority for its use, wo should prefer the plirase 'Common Plan' as less likely to minlead.
There are two modes in which tho Archetype or Common Plan of any group of animala may be set forth. In the first, the community of plan among the members of each group would be demonstrated; and then, the minor plans thus obtained being compared together, tha general Common Plan would be delucible. But this analytical method (which has been carried out to a certain extent for the Mollusca by the writer in a Memoir in the 'Philosophical Transactions' for 1852), would require more space and more illustration than can here be devoted to it; we must, therefore, take tho opposite course, and, assuming a Common Plan, trace out its modifications in the subordinate plans, and explain the lawe by whose operation they are effected.

This assumed Common Plan or Archetypo of the Mollusea may be represented by fiy. 1, 1.:-

1. The Ideal Arehetype or Common Plan of the Mollusca.
2. Its modifications in conecquence of the development of an abdonen and consequent neural fiexure of the intentine. 1, 1typothelical; 2, 1'teropod; 3, Ceplisalojrod.
3. Modifeations resulting from the development of 8 post abdomen and eonacquent hamal ficxure. 1, IIypothetical; 2, Peetindranchiate Gasteropod.
IV. I'rimarity nearal flexure molified by subeequent changes. I, Lamelli. branchlate Molluse; Scural Moflusooida. 2, Brachiopod; 3, lolyzoon.
V. Hamal Jolluscoidn (Ascillans). 1, almpic hermal flexure, as in Appendicularin: 2, atter barmal fiexure tho intestine is bent back, and an atriums is forined; the branchial eac remains comparatively amall; 3, the branebial anceoraparatively large.
a, oral aperture ; b, anal aperiure, or extremity of the intentine; c, renal organ; pp, propodium; ms, meeopodium; mt, metapodium; ep, epipodium; t, branchise ; u, auricle; r, ventricle; x, ccrchral ganglis; y, pedal guaglia; II, hemal region ; N, neural region.
[The ietters have the same signifiestion in these ond all the otter figures, with the execpition of figure 10. $]$

This figure is supposed to be bilaterally symmetrical, and the following parts and regions are to be distinguished in it:--(H). The Hæmal Region, or that upon which the heart is situated, and which corresponds with what is commonly termed the dorsal region. The word dorsal, however, is vague, being used in differeat senses in various divisions of the animal kingdom, and should therefore be, abandoned in philosophical anatomy. For the same reason, the opposite region (N) is termed, not rentral, but Neural, inasmuch as it is the region in which the great centres of the nervous system are placed. The termination (a) is the anterior or oral; the end (b), the posterior, or anal. Between these extremities the intestine takes a straight course. The neural surface is that upon which the majority of Molluscs move and by which they are supported; and it is commonly modified to subserve these purposes into a muscular expansion or disc called the Foot. Three regions again, often very distinctly divided from one another, may be distinguished in this foot :an anterior, the Propodium ($p p$) ; a middle, the Mesopodium ($m s$); and a posterior, the Metapodium ($m t$). In addition to these, the upper part of the foot or middle portion of the body may be prolonged into a muscular enlargemeut on each side, just below the junction of the hemsl with the neural region-the Epipodium (ep). The mass of the body between the foot proper and the abdomen, or post-abdomen, which bears the Epipodium, and whose limits cannot very well be defined, though it would be very convenicnt to have a name for it, may be termed the Mesosoma (mid-body); and for what is loosely called the head the name Prosoma might advantageously be adopted. On the upper part of the sides of the head or Prosoma are two pairs of organs of sense: the Eyes (which may be supported on pediclesOmmatophores), and the Tentacles. In the hæmal region the integument may be peculiarly modified and raized up at its edges into a free fold, either in front of or behind the anus, and when so modified it is called a Mantle (Pallium). In front of the anus again the Branchize (t) project as processes of the hamal regiou. Amoog the internal organs we need only point out the position of the Heart (u, v), which lies in front of the branchix in the hernal region; and the Nervous Ganglia (x, y, z), of which there are three priucipal pairs arranged around the alimentary canal, which they encircle by means of their commissures.

Such is the Common Plan of which all Molluscs whatsoever may be regarded as modifications; the neat question is, to consider the laws according to which tho plans of the great sub-classes of the Mollusca may be derived from it.
2. Modifications of the Common Plan. The structural peculiarities of all known Molluses may be very simply accounted for by the excessive or defective rclative development of certain regions in the Archetype, more particularly of one or other parts of the Homal Region. Of this region the portion which lies in frout of the anus may be conveniently termed the Abdomen, while to that which lies behind it the term Poat-Abdomen may be spplied. Now, if it be supposed that the Abdomen grows out of proportion to the rest of the body, constituting a kind of prominence, and that the intestine passes into the outgrowth so as to form a sort of loop (it.), it is clear that the open angle of this loop will be turned towards the Neural surface; and the intestive may be appropriately said to bave a Neural flezure. On the other liand, if it be supposed that the Post-Abdomen grow out in the same way, and draws into itself a loop of the intestine, then the open angle of the loop will be in the opposito direction, that is, it will be directed towards the Heemal ourface; the intestine therefore may in this case be said to have a Hæmal flexure (n 13 .). It will be readily understood that either Abdomen or Post-Abdomen may develop a mantle or not, and that the existence or absence of this nuantle has nothing to do with the essence of the change in question, however much it may affect the external appearance of the resulting form.

Again, the extent to which the Abdomen or Post-Abdomen is developed, may have a great influence on the relative position of certain organs of the Mollusc. Thus, in the first place, the position of the anus may become greatly altcred. When there is a neural flexure it will acquire a direction towards the neural surface and backwards, the final approximation to the oral end dependiog on the amount of the development of the abdomen on the one hand, and that of the ncural region on the other. Again, if the outgrowth of the abdomen take place, not symmetrically, but more or less on one side of the median line, the final position of the anus will be towards the opposite side and to the right or left, as the case may be.

It is even conceivable (this amount of modification indeed actually olutains in nature) that by nn exceedingly one-sided development of the abdomen, the anus may be thrust quite round on to the haomal side. Its final position therefore must not be regarded as certaioly iudicative of the direction of the Hexure by which it obtained this positiou. Where there is a hemal flexure again, the direction of the ausus will be normally towards the heemal (that is, dorsal) side, and forwards; its "pproximation to the head, its asymmetrical losition, and the amount to which. it may be thrust backwards and towards the neural side, depending upou conditions of the same order.

It is not merely the anus which is affected by thesc changes however; the branchiso (nnd the heart which follows them) undergo similar transpositions, whose nature and origiu it is very uccessary to understand
in order to appreciate their value as organic characters. M. MilneEdwards long since pointed out the singular fact that, in certain Molluses, the branchix are in front of the heart, while in others they are behind it. The latter he termed Opisthobranchiata, the former, Prosobranchiata. It will be seeu that our Archetype is Opisthobranchiate. Now, it is easy to understand that if an Abdomen were developed in front of the heart, without involving the cardiac regiou, the Mollusc would remain opisthobranchiate; if however it were more extensively developed so as to involve the heart and branchio, the heart, from having been io front, would eventually take a position posterior to the branchix, and the Molluse would thus become prosobranchiate. So with regard to the development of a Post-Abdomen ; its effect on the position of the beart and branchie would depend wholly on the extent of hrmal surface which it iuvolved. It follows, therefore, that Opisthobrauchism may co-exist with either a hacmal or a neural flexure, or with none; while Prosobranchism indicates one or the other, but not which ; and that these organic characters, however valuable, sre secondary to and therefore of less importauce than the neural and hemal flexures (that is, development of an abdomen or post-abdomen), on which they depend. Dealing with the facts furnished by adult structure alone theu, there are two primary modifica. tious of the Molluscan Archetype, which may be shortly termed the Neural and Hemal Plans. The Cephalopoda, Pulmonata, Pteropoda, Lamellibranchiata, Brachiopoda, and Polyzoa, are the molluses which present madifications of the Neural Plan. The Heteropoda, Gasteropoda, T'ectibranchiata, Infcrobranchiata, Cyclobranchiata, Tubulibranchiata, Nudibranchiata, and Ascidioida, are those which present modifications of the Hæmal Plan.
3. The Neural Plan and its Principal Modifications.-Milne-Edwards has proposed a division of the Mollusca iuto the Mollusca proper, and the Molluscoida (Molluscoidcs), including under the latter class those Polype-like forms, tho Polyzoa aod the Ascidioida. Believing that the Molluscoida are as truly and wholly Molluscan as auy other Mollusca, we nevertheless consider the distinction drawu by the eminent French naturalist to be very important, and that it should be retained as a primary subdivision of the great Hæmal and Neural Divisious. In the hæmal division the limits of the Molluseoida are the same for us, as for M. Milne-Edwards; but in the neural we include somewhat more. In fact, if the most fitting definition for this subdivision be those Molluscs which have the neural region comparatively little developed and the nervous system reduced to a single or at the most a pair of gauglia, while the mouth is usually surrounded by s more or less modificd circlet of tentacles, then we shall find that, in the neural division, we must iuclude the Brachiopoda with the Polyzoa. Commencing our study of the morphology of the special groups of the Mollusca with the Neural Division; and with the Molluscoid sub-division of the neural forms then, we have to consider frst, the Polyzoa and the Brachiopoda:-

Fig. 2.

Pulyzoa.-1, Membranipora. 2, Bowerbankia. 3, Pumatella. 4, I'edicellina. 5, Avicularium.

The Polyzoa.-Conceive the abdomen of the Archctype to be greatly prolonged, the neural region with its appendages, the organs of seuse, and the heart, remaining undeveloped; so that the auus comes into close apposition with the oral extremity, while the edges of the latter. are produced into long ciliated tentacles, and the resnlt will be a Polyzoon, which ueeds ouly the power of gemmation to give rise to those composite aggregations which are so characteristic of the group.

The Polyzoic type itsclf prescuts five subordinate modifications in the five principal orders of the group:- tho Cyclostomala, Ctenostomata, Cheilostomata, Mippocrepia, and I'edicillinida.

In the first three, the body of the Polyzoon when fully expanded is completely straightened, there being no permanent fold or inversion
of the integument. In the last two there is zuch a permanent inversien.

In the Cyclostomata the horny or calcareous deposit in the integument of the abdomen joins the sof parts by an even level cdige, and therv is nothing which acrves as a cover or operculum, fur the retracted I'olyzoon.

In the Ctenostomata (fig. 2, 2) the margins of that portion of the ahdemen which is inverted in the retracted state are produced into a toothed horny sheath, which can be retracted by special museles, and which werves as an operculum.

In the Cheilostomata (fig. 2, 1) the horny or calcareous deposit takes place in mela a manaer that the hardencd integuments of the front portion of the hamal region constitutes a e ert of hid, regularly articuLated upon the hinder portion, and provided with proper occluser (and perhaps levator?) muscles. It should be noted that the anal aperture is directed mway from this lid or operculum.

In each of the previous divisions the tentacles are arranged on a circular dise, or lophephore, of whose edges they are prolongations; but in the great majority of tho /fippocrepia (fig. 2, 3), which are all fresh-water forms, the lophophore is so produced into two arms on the anal side as to assume a horse-shoe shape. It is important to consider this in connection with the peculiar features presented by the Brachiopoda.

Thirdly, we venture to regard the peculiar genus Pedicellina (fig. 2, 4) an constituting an order by itaelf. Essentially a l'olyzoon, it is nevertheless diatinguished frow all other Polyzoa by the circumstance that its tentacles are united together by a membrine into a cup, which cup is never protruded far beyoud the geueral boundary of the body.
'The Cheilostomata are remarkable for possessing two kinds of moveable appendages-Flabellaria, whip-like processes, articulated to a bulb containing muscles by which they are moved; and A vicularia or bird'shead processes (f ig. 2,5). The structure of the latter is of great interest in a morphological point of view, and demands particular attention. They eonsist of a larger piece, or ralre (p), shaped like a bird's head and produced into a longer or shorter process of attachment, to which a amaller valse (o), representing the bird's lower jaw, is articulated. Stalked or acssile, these avienlaria present during life an incessant snapping retion, produced by the alteraate contraction of two sets of muncles, which arise from the concavity of the 'skull' of the bird's head by wide fan-abaped origina, aud seem to be inserted by narrow teudonsinto the smaller articulated valve. The one teudon (c) is inserted iato the smaller valve in frout of the line of articulation, and the other (n) behind it, and therefore by their alteroate action they raise and depress the lesser valve upon the larger.

Hikynchonella prittacea.
n, oral apertere; b, anal apertare, or extremity of the intestiac; ℓ, ndducter murcles of Firachospoda; n, cartinal muscles of Brachiopoda; Ps, pedicle; $p^{\prime} p^{\prime}$, vedicic musclen ; y, pidal ganghon.

The Bruchiopola. - Now, if we comprare the relative positions and mole of articulation of the opereulum and cell of a Chcilostomatous lolyzoon, or of the two valves of ous avicularium, with those which obthin in the mhells of the typical Brarhiopela, нnch us the Tcrobratulicle and Whymchonellider. the resemblanee will be found to be very striking; nud atill mere so, if in nddition the arrangement of the musches be taken into conmideratiou. In sueh a lrachiopod, in faet (fig. 3), the whell is conpmed of two valres-one large, exeavated, and produced into a canal or tube. through which a pediele of attachument passes; while the other is mianler and more or less fattened. The two valves are articulated together by menms of a socket in the nmaller valve and a tuoth in tho langer, on cach ride, the internediate rpace being free, just an the olerculum of the Polyzoon in united with its ecll, or as the lesser valre of an avicularium is articulated with the larger. So lidewine the aual eatremity of the Brachiopod in turmed from the amaller ralve. Thea the arma of the brachiopod are enseutially comparnhle to thone of the lophophoro of a lijpocrepian l'ulyzoon, except that their direction in differeut; the calcified aupperts to which they are fixerl in many Brachiopoda, are so variable in form and so extensively nbsent in othera, that their existence can in nowise affect
the homology of the parts. Again, if we lesvo out of consideration the pedicle-muscles (which are however, in all probability, ms Mr. Hancock as ahown, the homologues of the retractors of the Polyzoa), the arrangement of the other musclen in precisely, what wo have seen to obtain in the avicularium : the adductors which pass from the larger ralve to be inserted into the rmaller, in front of its point of support, corresponding precisely with the occlusor anuscles of the avicularium; while the cardinal muscles, which arise from the larger valve, and pasi to be iuserted into the candinal process of the squaller, behind the peiut of support, are identical with the divaricator muscles of the avicularium.

The existence of distinct muscles for the purpose of separating the valves of the shell is characteristic of the Polyzoa and Brachiopoda, the only approximation to such an arrangement at present known among the Lamellibranchiata being presented by the Pholades.

Finally, if the great propertional size of the Brachiopoda, their pedunculated attachment, their thick and solid shells, and their simple forms, be brought forward as arguments against the view we take of their essentinlly polyzoie nature, we would remind the objector of the like apposition in such features between Bollenia and Botryllus, or Aplidium, among the Ascidians.

Two principal modifications of the common Brachiopod plan are to be observed. In tha Tercbratulide and Mhynchonclliale, nnd in all probability in their extinct allies the Spiriferidoc, Orthida, and Productide, the museles are always arranged in three sets-Adductor, Cardinal, and I'eduncular. At the same time the mantle (whose homelogy with the produced edges of the nou-retractile part of the abdomen of a l'olyzoon is at once appreciable), though divided into two distinct lobes in frout, is continuous and entire behind, that ir, towards the peduucle. A still more remarkable feature in their organisation is that, at least in Waldheinnia and Rhynchonella, thero is ne anal rperture, the intestine terminating in a cocum directed towards the middle of the large valve.

In the Craniada, Discinula, and Lingulide the muscles have a very different arrangement, which could ouly be rendered intelligible by dctailed descriptions and illustrations, as the homelogies of these muscles with those of the other division are not yct determined. The lebes of the mantle again are completely separated (Discina, Lingula, Crania ?), aud the intestiue opens upon one side of the body between these lobes There ara no teeth, and the articulation of one valve with the other and the modes of attachment rary remarkahly; Lingula having a luag peduucle; Crania being attached by the surface of its lower valve; aud Discina haping an aperture in the corresponding valve through which a pertion of the adductor passes, and ${ }^{3}$ preading out at its extromity into a sort of plug, acts as a pedicle.

Neural Mollusca.-The Lamellibranchiata. In all Mollusca proper the neural region is developed to a much greater extent than in the Molluscoida, and there are always three pairs of gauglia, two Cerebral, two P'edal, and two Parieto-Splanchnic (or brauchial). The especial characters of the Lamellibranchiata, as modifications of the Arehetype, are the following:-The hiemal region is well doveloped in its abdomian portion, but forms no prominent sac-liks abdomen, into which the viscera enter in the adult condition. Its edges aro produced into extcusire pallial lobes, which are arranged on each side of a longitudinal plane, and not above and below a horizontal one (or more properly before and behind a transverse one), as in the Brachiopoda. The mouth is surrounded by a fringe, representing the tentacles in the Molluscoida (as may be well seeu in l'ecten, fig. 4, 4) which is produced laterally into elougated 'palps,' but is totally unprovided with any manducatory apparatus. The intestine pasaing from the stomach cither forms a simple loop with a second open anglo directed hemally, or this loop may be nuth coiled and convoluted: the intestive finally passing over the great posterior adductor and termiuating between the lobes of the mantle behind it.

The foot anay be more or less largels developed, but never presents any clear distinction into pro-meso- and meta-podium, unless indeed, as we are iuclined to suspect, the whole free pertion of the foot of the Lamellibranchiota ought to be regarded as a modified motapodium. Besides the pedal muscles, the Lamellibranchs possess one or two characteristic muscles-the adductors, which approximate the valves of the shell, and whose greater or less devclopment seriously affects the ultimate form of the animal.

The gills deviate but little from their arehetypal form and position in nome Lamellibrancha, such as Trigonia and Pcctcn, being merely thrown dowuwards by the developmeut of the mantle. In Nucula (fig. 4, 3), their inuer edges are united posteriorly, but they remain comparatively small. In the majority of Lamellibranchs however, the gills are exceedingly large in proportion to the reat of the body, and consint of two double plates, which aro united with the mantle and with one auother, in auch a mannor as to divide the pallial cavity into two chambers, a supra- and infra-branchiai, which communicate only by the paskage between the anterjor edge of the branchix and the foot, and by the multitudinous perforations in the branchial plates themselves.

It is in the absence of external organs of sense or of any buccal masticatory apparatus, and in the peculiar arrangement of the gills, that the main difference between the Lamelibranchiata and the Gasteroporle lies; and hence the great resemblance which the ideal section of

Lamellibranchinta.-1, Lutraria. 2, trnio, 3, Nucula. 4, Pecten.
a, oral aperture ; b, anal aperture, or extremity of the intestine; r, renal organ; m, mantle; r, labial palpi ; z, anal and branchial siphons; f, branehlw ; r, reatriele ; y, pedal ganglion; A, anterior adductor ; B, posterior adduetor.
a typical Iamellibranch bears to a typical Gasteropod. Compare (fig. 4) 4 with with 1,3 , and 2.

It may seem nt first sight inconsistent with our awn principles to consider as neural molluscs theso Lamellibranchs, which confessedly have the principal loop in the intestine open to the hromal sidc. But the position of the largely-developed mantle, completely in front of tho anal aperture, and the direction of the aortic ond of the heart, unchanged from what is observable in the Archetype, are sufficient, apart from developmental considerations, which will be adduced by and bje, to prove that the secoud flexure of the intestine in this case is to be considcred acciclental, the result of the great development of the mesogoma, to serve as a chamber for the viscora, and of the eulargement of the great posterior adductor, thrusting up the rectum which passes over it.
As for the leading varieties of form of the Lancllibranchs, there are none which, in renlity, depart very wiclely from the Common l'lan. Ierbaps Teredo or Pholas, on the oue hand, and Ostrea, on the other, may be regarded as the extremo forms, the former bcing as much as pessible elongated longitudinally, the latter attaining the extreme of concentration about a centre. At the same time thero is a reduction of parts to a ninimum, as shown in the nbsence of a second adductor, aod of any font in the arlult state. The differences between thesc forras are howevor decidedly less than those which may be observed between the extreme forms among the Cephatopoda or Gasteropode.

The Pteropoda and Pulmonata.-The Lamellibranchs are, as we have said, curiously exceptional in presenting the general features of the Mollusca proper, without that singular buccal apparatus which we meet with in all other members of the subdivision, whether nenral or hemal, and whose peculiar nature is describod below. Again, they are exceptional in the vast development and symmetrical longitudinal division of their mantle, and in the corresponding division of their pallial shell into two pieces or valves-characters we shall not meet with again in any modification of the Commou Plav.
In the Pteropoda and Pulmonata the mantle is never developed into such lateral lobes, and the shell to which it gives rise never consists of two pieces, but is constituted by a single mass, which either has the form of a flat plate or presents some modification of a cone. Again, the foot (or some part of it) is always well developed, presenting no obvious distinction into regions in the Pulmonata; but in the Peropoda often exhibiting a well-marked meso- and meta-podium, and always presenting a characteristically large epipodium-an organ whicls in these Molluses constitutes the so-called 'wings,' from which their name is derived.

Fig. 5.

Pteropoda.-1, Prieumodernon. 2, Cleodora. 3, Psyche (foot and head only). Letters as in figure 1.

There is usually a well-developed mantle in the Pteropoda and Pulmonata, and its walls act as a branchial surface without being produced into true gills-(IIyalcea?)-the sea-water in the marine Pleropoda and the air in the terrestrial aud aquatic Pulmonata being inspired and expired into its cavity.
In the Pleropoda in general, the aperturo of the pallial cavity and that of the anns, are sitaated upon the postcrior surface of the body, in accordance with the neural flexure of the intestine. The anal aperture however is usnally thrust to one side of this surface, and, in Limacina and Spirialis, this lateral thrust has taken place to such an extent, that not only the anal aperture, but that of the mantle cavity, is thrown up completely on to the dorsal sarface. This latero-dorsal, or dorsal position of the anal and respiratory apertures, is as regular in the Pulmonata as it is exceptional in the Pteropoda.

In the Pteropoda and Pulmonata some most important modificatious of form are produced by the greater or less development of the mososoma on the one hand and of the mantle on the other. The predominance of the latter is to be observed in such forms as Criseis, Cleodora, Hyalica, and Mclic: while the former may be seen in Pneumodermon aud in Limac. In the latter the mantle is very small, and in the former it is almost if not entirely absent ; what is ordinarily considered as the mantle in this mollusc being in fact nothing more than the mesosoma. The like confounding together of purts so essentially different has taken place, we shall find, iu the Nudibrancluato and in the IIeteropoda.

The Cephalopodu.-In the Pteropod forms, Pnewmodermon and Clio, a hood, giving off long processes covered with suckers from its inner surfuce, surrounds the oral aperture, and there is every reason to believe corresponds with the propodium, whose lateral halves have united over the month. If the liko process were to take place in a Ciriscis, but to a greater extent, so that the mouth were thrust back between the halves of the mesopodium, and the propodium and mesoporlium formed one continnous tentaculigerons sheath around the oral aperture; and if at the same time the two halves of the epipodium united posteriorly into a funnel-shaped tube, the Criseis, so far as its external organisation goes, would no longer be a Ptoropod, but would lave become a Cephalopor. In fact, the Cephalopod may be derived from the Arehetype by supposing these modifications. The mantle is always well developed, and its cavity incloses one or two pair of gills. The two halves of the epipodium are united behind into what is called the funnel, a peculiar apparatus, of great importance in the economy of many Cephalopods; and in the majority of the group the sides of the foot, having united in front of, and forming a
completo alicath for, the licad, are produced into eight or ten processen, the so calleal arms, on which are set the ncetabula, or anckora.

Fis. 6.

Vertical Section of Loligo media.
n, oral apertare ; b, anal apertore, or extremity of the intestine; m, mantle; m^{\prime} ', whell: , branchle ; x, eerebral ganglla; y, pedal ganglia; z, parteto aplanchnic sanglia ; rp , funnel.
Beyond this peculiar armagement and development of the external organh, we are not aware that nny characters exist by which the Cephaloporla, as a class, can be diatinguished from the other Mollusca. Among themelvea tbey present a remarknble harmony, differing chiefly in the number of their branchio, in the intermal or oxternal ponition of their ahell, and in the nature of the appendages ioto which the edges of the foot are modified-charneters which do not nttain to ordianl importance in other diviaions of the Mollusca.

Having thun glanced at nll the leading modifications of the Neural Ilan, wo may next turn to the Himal Plan, commeneing with its Molluacoid modification conatituted by the Ascidioida nlone.

The Ascidioula-An n Molloscoid group, the Ancidinna aro chametrrised, in the firnt place, by the rulimentary condition of their whole nouml region, and ly the reduction of their nerroun system to a mingle infra-cenophageal ganglion. Beailes these however, their orgnuinstion presenta certain charncters which nppear at first night very rnnote from much a Common llan as has been deseribed, and lardly deducille from it. An Ascidian, in fact, ia mually fixed by one extremity of itn bode, and prementh at tho other two apertures. One of theac leals into a wide cavity, whoae entrance in fringed with a circlet of tentacles, and whoee walla (except along tho middle line noteriorly and ponteriorly) are perforated by innumerable cilinted npertures, and often thrown into folds, by which their aurface in greatly increamed. At the bottom of thim cavity-the branchial menecond wide nperture leadn into the alimentary canal, which incariably prementen haemal flexure, and thon nlmont alorny bendm backwariln neurally to terminate in a necond wide cavity. This, the atrium, whoae more external portion is unually termed the clonca, opens extermally by the recond or cloacal nperture, and extends along escla nido of the liranchial rao up to ita median line of attachmentcommunicating freely with ita cavity by means of the amall ciliated
aperturen which have been mentioned. Tho aiogle gaoglion lies between the oral and cloacal aperiurca

Ascidioida.-1, Boltenia. 2, Cynthia. 3, Bolryllus, 4, Inteatinc of Perophora, 5, Clacelina. 6, Snlpa. i, Apperdicularia.
a, oral aperture; b, anal sperture, or the exiremity of the intestine; d, eloacal aperture and strium ; f, brazeblal sac; g, bypo-pharyngeal hand; m, test ; q, genitalla; y, pedal ganglia.

Now, in what manver in this form derivable from the Archetype? It is to be remarked, in the first place, that the pharynx, large in the Polyzoa, becomes comparatively enormous in the Aacidians; while the tentacles, which were very large in the Polyzoa, nre in the Ascidians comparatively small. Next, with the dovelopment of a post-abdomen, the intestine scquires a hemal flexure; but instead of the anal aperture remnining on the hrmal side, it is bent round, by the same process as in Spirialis and Limacina, but in tho inverse direction. Suppose with all this that a mantle has been developed, and that its free margin remaining emnll and narrow, has followed the anue to tho ncural side, while its cavity has extended up on each side of the pharynx to the middle line of the hamal surface of the latter, carrying to a great extent a process of which the outlide inny be aeen in Cymbulia, nud giviag rise to the atrium;-imagido alse that the sac thus conatituted oxternally by tha inner surface of the mantle (third tunic), and internally by the pharynx, becomes perforated by minute npertures-nnd the result would be an Ascidinn.
Such is the mnnner in which the Ascidinn type is derivnble from the Common Plan. Of this type the group presents three eubordinate mollifications. Tho first is that presented by the extraodinary and inatructive genus Appendicularia (sig. 7, 7), which in a manaer represents permanently the larval atate of tho more perfect members of the groupswimming by mean of a loog rapidly-vibrating tail, liko that of a tadpole. In Appendicularia there ia no cloacal nperture or ntrium. The mouth opene into a wido pharyno ropresenting the branchinl ane of other Ascidiana; from this a gullet lenda into the stomach. The marrower intestine passes from tho stomach, forwards and to the hremal aurface, where it terminates without bending downwanla, and without being aurrounded by noy apecial cavity. Appendicularia therefore might be anid to be n form io which the process of modification of the Molluscan Arehetypo into the Aecidian Typo is arroated holf way.

In all other Ascidinn thin process in complete, and there is a diatinct cloncal aperturo and atrium; but these forms agnin may be nrranged under two great sub-typical modificatious, according to the development of tho branchinl sac relatively to that of the poat-nlodomen. In auch forma as Cynthia, Bollenia, Perophora, Botryllus, the branchina anc nttaina no grent a proportional fizo an to occupy tbe whole, or nearly the whole, leugth of the body, the intestine lying on one alde of it: these might therefore le well denominated Ascidic Branchiales, Branchinl Ancidinus. On the other hand, in Clavelina, Aplidium, Polyclinum, Salpa, tho alimentary comal liea completely behind tho
branchial sac, which is propertionally small, and these might therefore be termed Ascadice Intestinales, Intestinal Ascidians. A very complete mutual representation will be found to obtain between the members of these trro groups.

Hamal Mollusca.-In passing from the Hiomal Molluscoida to the IIæmal Mollusca, we find the same new features presenting themselves as in the Neural Division, the transition being even more abrupt, from the absence of any representative of the Lamellibranchiata. In all these Mollusca, in fact, there is a more or less well-developed foot; a distinct bead, with its organs of seuse and buceal armature; and three pairs of ganglia-cerebral, pedal, and parieto-splanchnic.
The modification of the Common Plan is carried to a less extent in this than in the Neural Division, the chief varieties of its forms depending on the changes in the shape of the shell with which the majority are provided; on the greater or less development of the different regions of the foot; but most of all in the relative proportions of the mesosoma and mantle.
If we divide the Hxmal Mollusca into two great groups-the one consisting of the Heteropoda, Scuibranchiata, Tubulibranchiata, Pectinibranchiata, and Cyclobranchiata, famfies which are most intimately allied, and which are counected as a greup by the diocious arrangement of their reproductive organs; and the other of the Nudibranchiata, Inferobranchiata, and Tectibranchiata, families in like manner united, among other characters, by their common hermaplirodism, then we shall find in each such group two extremes of form-the one resulting from the great development of the pallial region, the other from that of the mesosoma. In the Dicccious Division, Dentalium, Vermetus, Allanta, and the ordinary I'cetinibranchiata may be regarded as examples of the former case; and in the Monocious Division the Inferobranchiata and Tectibranchiata; while the mantle becomes rudimentary or absent altogether in the Dioscious Firoloides, in the Monocious Phylli hoë, and the Nudibranchiata in general, where the region from which the so-called branchial processes arise, aud which is commonly called the mantle, is not the homologue of the mantle of Atlanta for example, but of its mesosoma, which herc, as in Firoloides, constitutes the main portion of the borly.
rig. 8.

Meteropoda.-8, Altanta; 9, Firuloides.
a,oral aperture ; b_{1} anal aperture, or the extremity of the intestine; mot, mantle; ms, mesopodium; $p p$, propodium ; r, ventricle.

The foot in the Monocious Hæmal Mollusca rarely presents any special development of its different regions, except that in certain forme-namely, Aplysia and Gasteropteron-the epipodium is as well markerl as in the Pleropoda, and serves the same end in locomotion. This is well known in Gasterovteron, and we have seen a tropical Aplysia 'fly' through the water in precisely the same way as a Pteropod would do. These epipodial lobes have been frequently called mantle, although the true mantle is a most distinct and obvious structure.

In the Dioccious group the epipodium is never well developed, presenting itself at most under the form of little lobes and proccsses -at least it would seem probable that the neck-lappets and headlappets of the Trochide are rudiments of the epipodium. On the sat. hist. Div. VOL. ili.
other haud, it is in this group that the propodiurn, mesopodium, and metapodium attain their most complete and distinct form ; as in Atlanta, where the propodium constitutes the anterior flattened fin, the mesopodium the rounded sucking disc, and the metapodium extends backwards, as the tail-like lobe which carries the operculum, In Firoloides we find that the mesopodium has vanished, and the metapodium lias taken the form of a mere filament, while the propodium constitutes the great swimming fiu.

Fig. 9.

Foot of Pectinibranchiata.-1, Trochus; 2, 3, Nittica.
a, oral aperture; $m t$, metapodium ; $m s$, mesopodium; $p p$, propodium.
Iu the ordinary Pectinibranchiata, on the other hand, the foot may not be differentiated iuto its subdivisions at all, the metapodium being marked only by the position of the operculam, when this exists, as in Buccinum. In other cases, as in Oliva aud Sigarctus, a deep clelt marks off a very distinct propodium from the conjoined mesopodium and metapodium ; in others, as in Pteroceras, the metapodium is as specialised as in Atlanta; while again, in such forms as Natica, the three coustituent parts are distinguishable-the propodium constituting the hood in front of the head; the mesopodium the creeping disc; and the metapodium the operculigerous lobe. (Fig. 9, 2 and 3.)

Having thus passed in review those modes of arrangement of the various organs of the Mollusca which constitute the Common Plan of the group and the subordinate plans of its leading subdivisions, we have next to consider the peculiarities presented by these organs themselves, or, in other words, those more striking features in which the organs of the Mollusca differ from those of the Vertebrata, Annulosa, and Radiata. The most importaut organs, in this point of view, are those of -1 , the Alimentary; 2, the Circulatery; 3, the Respiratory; 4, the Reval ; and 5, the Nervous System.*

1. The Alimentary Organs, in certain Mollusca, present two kinds of apparatus which are met with in no other division of the Animal Kingdom. The first of these is that peculiar manducatory instrument issually called the 'tongue,' which is possessed by all the Mollusca proper, except the Lamellibranchiata; and for the first description of whose true structure and mode of action we are, we believe, indebted io Mr. Thompson (see article 'Tongue,' in the 'Cyclopadia of Anatomy and Physiology'), although the organ itself had been more or less an object of atteution cver since the time of Cuvier.

Tongue of Patella.

1. a a, the eartilaginous plate3 which constitute the pulley over which the clastio plate 2, b, supporting the serics of teeth c, plays; d and e are the anterior and posterior insertions of the intrinsie museles of the tongue. 3 is n side view, and 4 a view from above, of the entire apparatus.
The tongue is essentially composed of a cartilagineus mass, with a pulley-shaped upper and anterior surface, which projects from the bottom of the oral cavity. An elastic plate plays over the pulley, and is attached at each eud to muscles which arise from the upper and

* Our limits preelude the consideration of the tegumentary and genital systems, whose peculiatities bowever are less exelusively Mollusean.
lower surfaces of the cartilaginous mass. Aloug the middle line of this elastic plate successive trausverse series of strong recurved teeth are set-new ones boing continually formed behind as the old are worn nway-in a eort of persistent dental sac.

When the tongue is brought into play it is protruded by appropriate nuseles from the cavity of the mouth, and its extremity is firmly applied againat the body to be rasped. The auperior nad iuferior sets of muscles, which are inserted into tho corresponding ends of the elantic plate, now contract alternately, nud tho reandiag action is precisely that of a circular saw. It is by means of this apparatus that the Caruivorous Molleseca bore through the shells of the animals upon which they prey; and perforated shells which have been thus emptied nbound on every coant.

The other appendage of the alimentary camel peculiar, so far as we at present know, to the Mollusco, is what is termed the Crystalline Style, a transparent, usually elongated body, which projects by one end into the atomach, and in lodged for the rest of its extent in a ane formed by a diverticulum of that organ. The Crystalline Style is found in a great number of Lamellibranchs (to which group it has crroneously been supposed to be confined), but has hitherto been observed in only a few Pectinibrunch Mollusca, such as Pteroceras, Strombus, Trochus, and Murcx. Its function is wholly unknown.

Among the alimentary appendages, the Liver in one gronp, the Ascidians, departs sufficiently from the ordinary plan to deserve par tlcular netice. In these suimals (fig. 7, No. 4, k) it always consists of a series of uarrower or wider anastousosing tubules, commencing in cocen upon the outer surface of the intestine, which they envelope in a close network, aud terminating by a narrow duct in the stomach. In the Botryllide the hepatic tubules are remarkably wide.
2. The nature of the Circulatory Syatem in tho Mollusea is at present in some respects a vexed question, more cspecially as regards the important point whether they possess a true closed syatem of veasela or not. Withont entering into any discussion of tho various arguments used on both sides of a disputo which is in some respects verbal, we may be perwitted shortly to state our own conclusions on the subject.

In the Polyzoa there are no special circulating organs, if we except the cilia with which the perivisceral cavity is often lined, and which keep up a continual current in the perivisceral fluid; nor do we anagine that any one will insist that in them the perivisceral cavity is not a sinus, but has a truly venous lining mombrade.

In the A scidians there ls a henrt, but it is a simple muscular sac, open at each cad, and jossessing the extraordinary power of reversing the direction of its contractions, aud thus circulating its blood first in one way and then in the opposite. The blood thus poured out is driven through chauucls in which assuredly no separate lining membrane is demenstrable. Indeed it is difficult to comprehend bow any ono with a living Ascidiau under his microscope can question that here, at any rate, the circulation takes place through lacuna, and not through vessels with distinct walls.

In the Brachiopoda a very remarkatle vaseular system has been waid to exist, consisting of two hearts (in Jhynchonclla of four), each componed of an auricle and a ventricle; the former being in free communication with the periviscersl venous sinuses (perivisceral cavity, nobis), while the latter ends in an aorta, whose branches undergo a regular distribution. Such is the circulatory system in the Brachiopode according to Professor Owen; but ourown inquiries have tended to strengthen very greatly the doubts first raised by Mr. Hancock as to the true uatura of this no-called circulatory system. In fact these induiries lend us to doubt whether the so-called 'hearts' of the Brachiopoda have anything at all to do with the circulating systom; inamoch an, in the first place, we are pretty confident that no 'arteries' are given off from the rpices of the 'ventricles,' as has been said, nod think it more than probable that they open exterually. Secondly, there in no evidence at preseat, either indirectly from structuro or directly from olservation during life, that the so-called 'hearts' of any brachioporl are contmetile. Ilhirdly, the multhplication of these bearts to four in Rihynchonella acesos not a little to militate against their cardiac nature

We may fitirly conclucle then that, for the present, the unture of the circulatory nyatem in the Brachiopola nuat bo regarled as an open rucetion.

Vollusca Propiep. - The doctrino firat ndvocated by M. Milnc-Edwarde that in theac Mollunca the circulating nyatem in alwnym more or lesa incomplete, has met with a wide acceptance, but also with no small "pposition. Su far ny tho minute transparent Mollusca, which can be abbuitterl to direct micruscopical observation durimg life, are concerned, we de not undennand how the truth of M. Milue-Pdwardne doctrine can bo 'quationed. If the term 'venous lining' is to have nuy manaing but a mon-matural one, arburedly it cannot be kaid with truth that auything of the kind existn in the ainuace of Piroloiles, or of Allemin, or in those of the Jecropota.

In the larger Molluaca, on the other hand, much depende on the serbal quension-what in the definition of a 'vein,' or 'venoun mem brane?" If a lamina of connective tisaue sepmrable from the surround. ing farte le a venoua wall, then doubtlean the venous bloodechanmels of many lamellitrancha nad Ganteropods, and jerhape of all Cephatopods, are veins. If on the other hand a greater histological
differentiation correspouding to that which exists in the Vertebrata be required to constitute a vein, ovidence of the existence of anything of the kind lu the greater proportion of the venous blood-channels of these creatures is at present wanting.

As regards the grosser structure of the circulatory apparatus in the Mollusca proper, it may be observed that, in the Lamellibranchiata there ja either s single auricle and a aingle ventriclo (Ostraa), a single ventricle and a double auricle (most Lamellibranchs), or two surioles and two veutricles (Arca). In all other Mollusca, except the Cephalopoda, there is a singlo auricle and a single ventricle. la the Cephalopoda the heart is essentially similar to that of the Lamelli. branchy, inasmuch as it consists (in the Dibranchiata) of a single ventricle and of two contractile, socalled 'Branchio-Cardiac Voins,' which represent the two suricles of the Lamellibranchs. The circu Iation in these creatures is rssisted (at least in Loligo media, in whioh we lately hal opportunities of convincing ourselves of the fact), not only by the regular contraction of the mo-called "branchial hearts," which are dilatations of the afferent branchial veins, but by that of the gills themselves.

The nature of the socalled Pericardium in the Mollusca has been mach misunderstood. It is most important to recollect that in no case is there evideuco of its bcing a closed eerons sao comparablo to the pericardium of the higher auimals. On the contrary, wherever it has been examined with sufficient care (Lamellibranchiata, Pleropoda, Metcropoda, Nudibranchiata, and Cephalopoda), it has been found to be a blood-sinus, which in somo cases (Pteropoda, Ccphalopoda (l), Lamellibranchiata (?), and Heteropoda) communicates with the exterior by the medistion of the renal organ.
3. The Respirntory Function is performed by modifications of several distinct parts in the Mollusca.-I. By the general surface of the pallial cavity, which may be more or less adsptively modified : this kind of respiratory organ is to be found in the Brachiopoda, Pleropoda, and Pulmonata. 2. By specially modifled parts of the walle of the pallial cavity into true gills: the whole tendency of the modification of form which these gills undergo is to increase their surfaco, and this end, generally speaking, is effected in one of three ways:a. By the development of simple processea, as in Patella or Atlanta. b. The simple processes become ramified, $s 0$ that the gill oventually consists of a stem with lateral branches, and these again may be subdivided into amaller and smaller branchlets-Pectinibranchiata and Cephalopoda. c. In the Lantellibranchiata each gill essentially consists of a stem with lateral undivided branches, and in such forms as Trigonia and Nucula (fig. 4, No. 3, t.) ; the branchia have precisely this structure. In Nucula the lateral branches are comparatively short, but in Trigonia they are much longer. In Pecten they turn up st their free ends upon themselves and form a close loop, so that the free end takes n position near the fixed extremity; at the same tinso lateral processes are given off from the branches which unite and connect them together by a very loose and ojen vascular network. Each gill has thus become a flattened pouch, completely open, both laterally and superiorly; the sides of the pouches are very open, and are constituted superficially by the parallel produced aud reflected portions of the gill-branches, and more deeply by the rery looso network formed by the snatomosing lateral processex Now, if we suppose that the reflected portion of the outer gill-pouch adheres to the mantle, while the reflected portion of the inner gillpouch remains free on each side of the foot, but sdheres to its follow behind the foot, thus forming a complete partition across the pallial cavity, the deep vascular network becoming very close, and giving off vertical septa, by which the pouch becomes divided into successive autero-posterior chambers; then the result will be such a gill as we meet with in the Oyster, tho Unio, and the great majority of Iamallibranchiata. The minute structure of theae branchix strikiugly resembles that of the branchial sac of the Ascidians, as has been long since pointed out by Sicbold and othere, and has given rise to the prevalent idea that the two organs are homologous. Structural resemblauce, however, is in itself no true basis for tho establishment of homologies, and here there are abundant means of demonstrating the resemblance to be simply annlogical. 3. The 'branchise' of the Nudilranchiata again doubtless subserve respiration, but they are developed from tho ancaosoma, and contain the gastro-bepatic processes of the slimentary canal - features by which they are essentially distinguished fram true gills. 4. The branchisl sac of the Ascidians is, as we have ahown, a modification of their pharyngeal sac, resembling the gilln of fishes (especially Amphioxus) more than any structure to be found in other Inrertebrata (the nearcat approsimation perhaps is in the cloacal branchie of Neuropterous Larve and of ame Annelids). Like the wall of tho gill-pouch of IAmellibranchiata, that of tha branchinl sac of the Ascidians is fundamentally composed of two ole-ments-a superficinl strong framework of branchial bars corresponding with the 'gill-branches,' and a decper vascular network connecting these. The mors obvious peculiarities in the structure of the branchiel sao of Ascidjaus are produced by the plaiting of its wall into the so-called branchinl folds, which may vary in number from four (Cynthia) to a unmber so great that the wall of the sao sppears crimped (Phalluria).
4. The lienal Organs-The existeuce of a special organ for the urinary secretion has now been demonatrated in all the great divlsions of the Mollusca except the Polyzoa and Drachiopoda. The essential feature
of the molluscan kidney is the deposition of a quantity of urinsry excretion beneath a free surface, which in all squatic Mollusca is, by some means or other, freely bsthed with wster. In Phallusia, for instance, minute rounded sacs, each clothed with a delicate epithelium, and containing one or many concretions, are seattered over the intestine immediately beneath the lining of the atrial cavity. It is probable that the constant current setting through this cavity carries awas some portion of the secretion; but the greater part seems to remain, and eventually coats the whele parietal surface of the atrium. Here the secreting part of the appsratus sppears to be out of proportion to the excretory. In the Pleropolla and Heteropoda the reverse relation would appear to obtain. In these animals in fact the concretions have not yet been detected; but the excretory apparstus is sn elongated sac which opens at one end by the side of the anus, and at the other communicates with the pericardial bloed-sinus. The sac contracts rhythmically and with great rapidity, so that the bloed in contsct with its delicate walls must be very effectuslly washed. How far the internal communication with the blood-sinuses is avsilable for the same end, is not at present understood. In the Lamellibranchiata (at least in Unio) the pericardisl sinus is cennected anteriorly with the internal cavities of two spongy bodies-the glands of Bojanus-in which a great quantity of concretionary matter may be detected; on the other hand, the outer surfaces of these glapds lie in a cavity which admits the water freely by an opening placed anteriorly close to the genital sperture. This cavity clearly corresponds with the contractile sac of the Pteropolla and IIcteropoda, but no evidence of contractility has yet been observed in it or in the renal organ itself. Keber also denies that any direct communicatiou exists between the interior of the kidneys and pericardial sinus and the outer sac, but it is somewhst difficult to make sure of this. However this may be, the arrangement of the kidney in Unio is very interesting frem its close anslogy with what obtains in the Cephalopoda, where the 'serous cavities,' which open at the base of the gills and contain the peculiar spengy venous appendages attached to one of their walle, correspond exsctly with the excretory sacs of the Lamcllibranchiata, while the spongy appendages themselves are but the glands of Bojanus in snother form. Our limits will net permit of the descriptien of the structure of the rensl organ in Nulibranchiata snd Pectinibranchiata, but it might readily be shown to resemble in all essential points that of the Lamellibranchiata and Cephalopoda.
5. The Nervous System of the Mollusca.-The Molurcoida and the Mollusca respectively present a remarkable agreement in the general

Fig. 11.

Diagrams of the Central Nervens System-1, Waldhcimia; 2, Phalhrsia; 3, Lamellibranchiata; 4, Pteroecras; 3, Atlanta; 6, Firola; 7, Patella; 8, Bullua; ; 3, Eolis (after Alder and IIancoek); 10, Criseis; 11, Ommastrephes (Hancock); 12, Nautilus (Owen). The cireles with central dots represent the anditory vesiclea.
es, clibated sac; x, cerebral ganglia; y, pelai ganglia; z, paricto-splanchinic gangia.
arrsngement of their nervous apparstus, which consists in the Polyzoa and Ascidioida of a single ganglion placed in the midst of the neural region of the body; in the former case between the oral and anal apertures, in the latter between the oral and cloacal apertures. In the Brachiopoda the nature of the nervous system is only kuown with certainty in the Terebratulidce, where it consists of a single elongated ganglion having the same positiou as iu the Polyzoa, sending on each side a commissural branch to surround the mouth, snd giving off numerous branches to the mantle. In the Brachiopoda no distinct organs of sense have yet been observed, but in the Hippocrepian Polyzoa a little tongue-shaped organ projecting from the lophophore clese to the ganglion, probably represents the 'languet' of the Ascidisns, aul organ whose function is net known, but which probably performs, in conjunction with the ciliated sac, the part of an organ of sense. The 'ciliated sac' is, as its name implies, essentially a small ciliated pouch placed between the oral end of the hypopharyngeal band and the circlet of teutacles. In the Cynthice, Phallusire, \&c., it becomes enlarged and twisted upon itself, so that its margin frequently presents a very elegantly convoluted pattern, fig. 11, 2, cs In this form it was described by Savigny as the 'Tubercule Antérieure: In Appendicularia and in the Salpa an otelithic sac is alse attached to the ganglion.

In all the Mollusca proper the nervous system presents a remarkable uniformity ss to its central elements, and remarkable differences in their arrangement. There are essentially three pair of ganglia :-

1. The Cercbral, which supply the eyes and olfactory organ, and give off the nerves to the buccal ganglia where they exist.
2. The Pedal Ganglia, which supply the foot with nerves, and always, save in Heteropoda aud perhaps some Nudibranchs (where the exception is very possibly only spparent), give off the nerves to the auditory vesicles.
3. The Parieto-Splanchnic Ganglia, which supply the hwmal regien of the body and many of the viscera.

There are never more than two pedal and two cerebral ganglia, but the parieto-splanchnic centres would seem to be capsble of almost indefinite multiplication. These multiplied centres however may be reduced to two classes-Parietal Ganglia, which give nerves to the sides of the body, snd Visceral Ganglia, which supply the heart, branchiæ, \&c.

The scompanying diegramatic figures of the nervous systems of Molluscs of all classes, in which the Cerebral Ganglia are marked x, the Pedal y, and the Pariete-Splanchnic z, will render the great chsuges of position, while the essential parts remain the same, obvious without further description.

For the organs of sense of the Mollusca proper we must refer to the articles Conchifera, Gasteropona, \&c.
4. The Development of the Mollusca.-Those conceptions which the philosophical anatomist comprehends under the name of Archetypes, or Common Plans of Animal Forms, must always present a certain value and interest to all whe regard anatomy as comething more than an exerciso of the memory; but the amount of the value of such conceptions, and of their beneficial influence on the forward progress of science, depeuds entirely ou the extent to which they embrace the whole anatomical peculiarities of a group of animals. Now animals, like all living beings, not only are, but becoms; and their anatomy, in the widest sense of the term, is to be obtained, not merely by the study of their structure (which is their final anatomy), but also by that of their development, which is the anatemy of the successi;o states through which thay pass in attaining their fiusl condition. Now the Archetype or Common Plan professing to be the embodiment of the most geveral propositions which can be enunciated with regard to the snatomy of the group, its validity will depend upon its embraciug beth structural and developmental facts. If it neglect either of these, it will be theoretically imperfect, and 'will run the risk, at any rate, of keing practicslly erroneous. Pefore the publication of Von Bär's great work, and uufortunately too often since then, the extaut notions of archetypes, unity of organisation, \&c., were open to precisely this objection, their authors having centented themselves with devising bypotheses to fit the facts of adult structure, without concerning themselves whether their hypotheses would or would not also fit the facts of development. Hence the infinite variety of baseless speculations of the 'Nature-philosophie' school; in botany, the unlimited and quite gratuitous demsnds upon 'abortion aud fusien' of parts which Schleiden has so justly ridiculed; in zoology, such notions as that a Cephalepod is a vertebrate animal doubled upon itself, that au Insect is a vertebrate animal with free ribs, \&c.

It is precisely on this footing however that at present our Common Plan or Archetype of the Mollusca stands. We have before us the evidence which might perliaps have satisfied Geeffrey and Oken. Given our plan snd certain laws of modification, and all known molluscan forms may be derived from it; hut it remains to be scen how far the evideuce which weuld alone have satisfied Von Bair, the evidcnce of development, justifies the view which has been taken; how far in fact our hypothesis is capable of being clevated to the dignity of a theory. To this end it is by no means requisite to shew that cvery Molluse has at one time the archetypal form, and is subsequently modified into its persistent condition; to maintain such a proposition it weuld be necessary greatly to siuplify (though not esseutially to alter) the
archetype, and thus to do away with a great part of its utility in exhibitiug the tendencies of every Molluac. All that appears to be really necescary is to show :-firat, that no mollnscan form presents features in its development which cannot be recouciled with the archetype; and secondly, that the kind of modifications which havo been supposed to take place in the converaion of the archetype into the special types are such as actually occur.

The first stage of development of the Molluscu resembles that of other animale The gelk, at first a homogeneous mass, undergoes the process of division to a greater or less extent, its outermost layers eventually becoming converted into a blastoderinic layer, the plastic materin out of which the future numal is modelled.

Fig. 12.

Devetopment of-I. Olarelina. II. Lamellibranch (Lovin), III. Antiopa. 1). Sepia (Küllher).
a, oral aperture: b, anal apenture, or extremity of the intentine; d, cloaeat aperture and atrium (Ancidians) ; $r p$, cplpodlum; me, metapodium; g, hypo-
 (Lamellibranchiata) ; t, branchise; A, anterior adductor (Lamellibranchiata) ; II, posterior adductor.

In the Molluscoila the rounded or oval embryo thus formed either lecomes covered with cilin and swims nway as a free form (P 'olyzoa, Pbachiopola!), or it gives rise from one portion of its surface to a long fin-like mnacular procear (fy. 12, 1. 1.), by whone rapid vibration it is propelled (A acidioide, in great part). With what organ of the Mollusca is thin 'thil' or 'fin' of the Ascidian Inrva homologous? This is a very dillicult point to ancertain, the thil arises before the regions of the unimal are differentiated. At first sight one anight be tempted to consider it as a modification of the velum of the eabryos of tho Mollusca proper; but ita relation to the middle of the neural gurface, and its inacrtion cloae behind the ganglion, which may be readily cobervol in later ntagen, nepear rather to indicate that it in the homologue of the foot proper, nuld promably of the metapodium, as this in the portion of the foot which in the Mollusca appears first.

In tho further development of the Molluscuida thero enn be no queation that, an regarda the fulyzoa, the neural region boon almont ceaeen to grow, the further increase of the body taking place by the diaproportionate development of the hiemal region, which constitutes ninsont the whole of the body of the adult animal, and presenta the surface loy which it becomes lixed. Agnin, aimple inspection in suff.
cient to show that the iatestine extends into the great abdomen thus developed; that it acquires herewith a neural flexure; that the tentacles are produced from tho margins of its oral aperture; and that the pharynx nequires a large proportionate size.
In the Ascidioida the nenral region remains in a like rudimentary condition, the hemal region undergoing a similar disproportlonate growth; but it is next to impossible to ascertain from the study of development whether this hamal outgrowth is formed behind the snus or before it, inasmuch as the inteatine has acquired its complete hremal flexure when its parts are first distinguishable.

In the youngest state in which the different organs are distinguishable, the intestine is almost entirely bent up on to the hamal side of the body; the pharyns is a wide cavity (not wider proportionally however than that of a Pelyzoon); the tentacles spring from its margin in exactly tho same relative position as in a Polyzoon, and thore is no atrial cavity. By degrees tho pharyngeal cavity enlarges atill more, the tentacles remaining comparatively rudimeutary (fig. 12, 1. 2). Contemporaneously with these changes, the end of the inteatine becomes more and more bent down towards the neural surface, and a cavity, which in another Mollusc would be the mantle-cavity, appears around its extremity; a single or two lateral apertures (subsequent)y uniting into one) are soon formed, and allow this cloacal pertion of the atrial cavityto communicate with the exterior. At the same time the atrium extende on each side of the enlargod pharynx, detaching it from the side of the body, and enveloping it just as a serons sac invests the surface of a viscus. Ciliated apertures (at first one or twe only on each side) now pierce the wall of the cularged pharynx, and increase in number until it assumes tho structure of the perfect branchial sac. Finally, it depends upon the proportional development of the branohial sac, and of the post-abdomen, whether the adult Ascidian shall belong to the Branchial or to the Intestinal subtype.

We unfortunately know hardly naything of the development of the Brachiopoda; but so far as, the Polyzoa and Ascidioida are concerned, it is obvieus that the hypothetical modifications of the Archetype do in fact faithfully represent the sctual course of development. (See however the remarks, further on, as to the nature of the post-abdominal ontgrowth iṣ hsmal Molluscoida and Mollusca.)

Development of the Neural Mollusca.-The Lamellibranchiata.-The first stop towards the production of tho organs from the blastodermic layer in this group is the development of one portion of its surface into a diso with mixed edges provided with very long cilia (fig. 12,11. 1). Next in the inuer substance of the germ the intestine appears as a solid mass, bent upon itself, towsrds what the eventual development of the foot proves to be the neural surface; its oral portion being placed immediately behind the cilisted disc (2). Finally, the hemal surface behind the cilinted disc gradually gives riso to the two lobes of the mantle, upon each of which a thin transparent pellicle, the first rudiment of one valvo of the shell, eventually appears. As development goes on (3), the neural surface between the primarily spproximated oral and ansl apertures becomes converted into the large foot and/mesosoma of the Lamcllihranchs, which serve to lodge tho principal inass of the viscera, the abdomen never becoming developed into a great process as in Gasteropods. The great posterior adductor makea its nppearance on the ncural side of the intestine, and by its development the latter is thrown up so as almost to sppear to have a hamal flexure. The gills next appear as processes of the body within the mantlecavity, and therefore have not the remotest homology with the pharyngeal branchial sac of Ascidians, any more than the two siphonal apertures which are essentially dependent upon tho union of the two lobes of the mantlo with the gills and with ono adother bave anything to do with the oral and cloncal apertures of the Ascidians.

Finally, it is said that the cilinted disc becomes metamorphosed into the labial palpi. This is a point well worthy of further investigation; for the arrangement and form of the appendages in Pecten lead us strengly to belicve, as we have said, that they ane the bomologues of the tentacles in tho Ascidioida and Jolyzoa. On the other hand, there can be no doubt that the ciliated disc of Lamellibranchs is hemologous with the cilisted lobes of the Gasteropod embryos; and these, there is every reason to believe, are nothiug but the specially modified anterior portion of the epipodium. The tentacles of the Polyzoa would thus come to be tho homologues of the epipodiutn; but the validity of the whole chain of reasoning obviously depends upon whether the cilinted disc does or does not become metamorphosed into the palpi-a pooitiou which the more requirea confirmation as in tho Gasteroporla the ciliatod lobes nro now known entirely to disappear. However this may be, what has heen stated with regard to the main steps in the development of the Lamellitranchiaia fully confirms the hypotheticsl derivation of the type from the Common Platu.

I'eropoda and Pulmonata.-la the primary alages of thoir development no important diatinction is to be drawn between the members of thin division and those of the last, except that in the Pteropoda the ciliated disc is replaced by two ciliated lobes, ono on each side; and in the I'ulmonnte embryos by a contractile expansion-their socalled 'yelk-sac.' The primarily neuml flexure of tho intestine in the Pulmonata, and the development of their mantle in front of the anus (that is, the development of an sldomen), are fully demonstrated by late observations upon their embryogeny. It is important to rumark, that in the Peropoda the ciliated lobes of the embryo do not
become the lateral alæ of the adult form, but are a production of the anterior part of the epipodiam, which usually disappears in the adolt.
Cephalopoda.-In this group the embryo attaius a much higher development before leaving the egg, and the modifications which its primary form undergoes are extremely instructive. The first organs of the Cephalopod which appear on the germ-disc are (fig. 12, 1v. 1) the mantle, which is simply a thickening in the middle of the hromal surface with somewhat raised edges; around this is a surface representing the mesosoma and foot, at one end of which is the mouth, and at the other or anal extremity are placed two little processes, the rudiments of the gills. Again, on each side of the mantle the mesosoms is produced into a longitudinal ridge occupying the precise position of the epipodium. As development goes on, the hromal surface occupied by the mantle grows out, and becomes a prominent sac, whose free edges detaching themselves more and more for only a short distance anteriorly, but for almost the whole length of the sac posteriorly, give rise to the mantle cavity (Iv. 2). The intestine passing into the abdomen thus formed becomes more and more bent upon itself, until at last it makes a complete loop, open towards the neoral side. With all this the epipodium, remaining rudimentary in its anterior region, becomes a free process ou each side posteriorly (representing for a time the alæ of a Pteropod), but after a while these processes unite, and form a hollow canal, the Funnel. The changes undergone by the margins of the foot are not less remarkable; they are produced from behind forwards into four or five digitations on each side, the anterior pair of which stretch in front of the mouth and unite over it; the digitations elongate more and more, and the mouth is in consequence at last placed in the centre of a sort of inverted cone, formed by the foot and its prolongations-the acetabuliferous arms (1v. 3).

Such may be tatcen as a very short abstract of Professor Kölliker's most valuable 'Entwickelungs-Geschichte der Cephalopoden,' and it is needless to point out that it is our hypothetical process of modification of the Archetype into the Cephalopod type, in other words.

The Ilamal Mollusca.-It is unuecessary to consider the development of the separate families of these Molluscs, as the process, as far as we kuow, is the same in all. We will take that of a Nudibranch (Antiopa cristata) as a type, having recently liad occasion to go over it with especial reference to the points here under consideration.

The end of the process of yelk-division (which, we may remark in passing, results, not in the formation of 'nucleated cells,' but simply in that of smaller and smaller packets of yelk-granules) in this Molluse, is the formation of a blastodermic laser investing the remainder of the yelk. The whole embryo next becomes more or less bellshaped, a sort of rim, with very long cilia, sppearing at the broader end, while s minute prominence is seen at the opposite extremity (in. 1). A straight line drawn from this prominence to the centre of the surfacc, surrounded by the rim, would have the body of the creature symmetrically disposed around it. On the ono surface is a deep pit, formed by the edges of the blastodermic layer; on the opposite a delicate transparent cup, the rudiment of the future shell, sud the indicator of the position of the hamal surface and mautle, appears (ini. 3). By degrees tho hæmal surfacc becomes more and more promiuent and the shell larger. With this the prominence above referred to is thrust more and more towards the right side, so that its position becomes quite asymmetrical (11. 3, 5). At the same time the ciliated rim from being cireular is produced laterally into a lobo on each side-the ciliated lobes; the metrpodium makes its appearance behind these as a small prominence ; and a delicate operculam is formed upon the metapodiam. The aperture of the mouth may now be observed behind the ciliated lobes and between them and the metapodium ; and the iuternal substance of the germ is seeu to preseut the outlines of an slimentary canal, consisting of a rounded gastro-hepatic mass and a narrower intestine, which turus abruptly forwards and upwards, to end ou the right side more or less hemally iu the beforementioned prominence, whose position has become thus catensively altered. The mantle cavity has begun to appear as a sort of pushing-in of the integnment arouad the anal prominence.
Two things are obvious in this series of developmental changes. In the first place, the primary symmetricality of the embryo; secondly, the gradual asymmetry brought about by the development of that fortion of the borly which bears the shell, and which is a portion of the hirmal surface.

Now this is perfectly in accordance with our bypothetical derivation of the Hamal Mollusca from the Archetype, and the only point which remains to be proved is, that this over-developed hæmal arrface is to be considered as a post-abdomen, that is, as a post-anal portion of the hæmal surface.

This vicw has been taken in deriving these forms from the Archetype, because it is much the more readily comprehensible, and has many structural facts in its favour; but we are by no means prepared to assert that the post-anal position of the hamal outgrowth in the Hecmal Molluscu may not be a secondary prodactiou, the result of a gradual twisting to one sido and backwards of a primarily pre-snal outgrowth of the heroal surface. The facts just detailed with regard to the development of Antiope would favour this view; bot, on the other hand, saflicicut attention has not been paid to the process of developenent of other Gasteropoda to decide whether it is in these reapects identical with that of the Nudibranchs or not. The snatomy
of adolt Pectinibranchs and Pteropods would lesd one to believe that in these forms, at any rate, the hæmal flexure has been direct aud primary; and it may be that a careful comparative study of development of the Pectinibranchs and Nudibranchs will lead to the trauslation of the Nudibranchs to the Neural division, the final hæmal flexure turning out to be a secondary modification. In the absence of sufficiently conclusive studies of this kind, however, we prefer to be guided by structural considerations, and thence to retain the Nudibrauchs provisionally amoug the Mollusces with a hæmal flexure. It will probably be granted that the doctrine of a Common Plan among the Mollusca, which has been advanced, will have its value as a guide through the mazes of their varying organisation-even although the details of this first sketch should turn out to be even in many points erroneous.

MOLOCH. [Draconina.]
MOLOSSUS. [CHEIROPTERA.]
MO'LOTHRUS (Swainson), a genus of Birds placed in the subfamily Icterince, under the family Sturnidoe, with the following geueric character:-Bill very short, thick, finch-like, conic, entire; the culmen not flattened, but slightly arched from the base, which is rather elevated. Wings lengthened, pointed; the first quill longest. Tail slightly rounded. Middle toe as long as the tarsus; lateral toes of equal length; hind toe shorter than the tarsus. All the claws rather small, and fully curved.
M. Pecoris, Sw, the Cow-Pen-Bird, Cow-Blackbird, Cow-Troopind, and Cow-Bunting (Icterus Pecoris, Temm. ; Limberiza Pecoris, Wils.; Fringilla Pecoris, Gm.).

Male: Head and neck brown, inclining to black; the rest of the plumage shining black, glossy with violet reflections on the breast and shot with greenish above; irides hazel ; legs and claws black.

Cow-Bird (Molothrus Pecoris). a, mite; b, fentile; a, young. Wilsun.

Female : Scoty-brown abore, pale beneath.
Young : Like the female, with the breast spotted.
This species is a native of America, and leade a wandering life, apprearing in the middle and northern States of the Union at the end of March or the beginning of April. The winter is jassed in the southern States and warmer parts of the coutinent, where they are to be seen with the Red-Wings (Icterus Placniceus) nnd the common Blackhirds (Quiscalus rersicolor) in the ploughed fields, necerding to Nuttall. They attead on the cattle constintly, like many of the Sturnile, intent on picking up the ineects which are dinturbed by the qusdrupeds or haunt their droppinge, nor do they in the colder weather refuse to hunt for aquatic iunects and amall inolluacs on the margins of ponds, where, according to the author last quoted, they may be seen in the winter senson iudustriously turniug over the leaves of waterplants to gleas such as may there ndhere. But though they with their nssociates nre occasionnlly found in the rice and corn fields, it scems that their depredations are not coequal with those of their companions, for the food of the Cow-Bunting appears to cousist chiefly of iasects and such food as makes them for the most part independent of the farmer.

The most curious of ita habits remain to be told; for this vagaboud bird, like our cuckoo, never preparea a nest for itself, but drope its egg in another's nest. As a concomitant to this ordinance they do not pair, but polygamy prevails among the flock without exciting any great jealoury; though now nud then there may be a battle, as is usurl in such cares, in which the atrongest generally prevails. The egg, which is nearly oval, varies in colour; sometimes the ground-colour is white tinged with green and aprinkled with apots of brown, and sometimes pure white with nearly black spots. It is a very little larger than that of the Bhe-Birl. This supposititious egg is, it appears, always hatched before the legitimate obes. Were this not the course of nature, the epecies would probably perish; for the legitimate nestliugs would suffocnte the uewly-hatched founding, as the latter actually does suffocatc the young of its foster-mother, when they afterwards come into existence.

The favourite nests appear to be these of the Red-Eyed and WhiteEyed Flyentchera, and the Maryland Yellow-Thront; those of the Blue-Bird, the Iadigo-Bird, the Chipping-Sparrow, the Song-Sparrow, the Blue-Eyed Yellow Warbler, the Blue-Gray Flycatcher, the GeldenCrowned Thrush, and Wilson's Thrush, are however also selected as places of deposit. From the vnrious and interesting accounts of this curious phenomenon we select that of Nuttall, whese personal obscrvations we proceed to lay before the reader:-
"When the female is dispesed to lay, obe appears restless and dejected, and separates from the uaregarding fock. Stenling through woods and thickets, she pries into the bushes and brambles for the nest that suita her, into which she darts iu the abseuce of its owner, and in n few minutos is seeu to rise on the wing, cheerful and relicved from the nuxiety that eppressed ber, and proceeds back to the flock whe had fo reluctantly forsaken. If the egg be deposited in the nest alone, it is uniformly forsaken; but if tise nurning parent have noy of ber own, she immedintely begins to sit. The Red-Eyed Flycateher, in whose beautiful havket-like nests I have observed these egga, proves a very uffectionate and asaiduous nurse to the uncouth foundling. In oue of these 1 found an egg of cach bird, and the hen already sitting. I took her own egg, nnd left the strange one; ahe soon returned, nad, ns if senaible of what had lappened, looked with steadfast attention, mall shifted the egg about; then ant upon it, but soon moved off; again renewed ber observation; and it was a considerable time before flie feemed willing to take her eat, but nt length I left her on the nest. Twe or three days nfter, I found that she had relinquished her attention to the atrange egg, and foraaken the premises. Another of these lirds however fersook the geat on trking out the Cow-Bird's egge although ahe had atill two of her own left. The only example perhapa to the contrary of deserting the uest when solely oceupied by the stray egg is ju the Bhue-Bird [Hust-Bum], who, attached strongly to the breeding-llaces, in which it often continues for severnl yeara, han been known to lay, though with apparent reluctance, after the dejration of the Cow-lird'a egg. My friend Mr. C. Pickering found two neats of the Blue-Fyed Yellow Warbler, in which had been deponited an egg of a Cow-Ilirl previously to ang of their own; aud, unable to eject it, they had buried it in the bottom of the ueat, and built over it an additioun story. I also saw, in the sumarer of 1830 , n kimilar cireumstance with the same bird, in which the Cow-Bird'g egg, thongh incarcerstal, was atill viaible on the upper edge, but could newer bave been lintched. At times, 1 think it proballe that they Iny in the nests of larger limla, who thraw out the cgg, or that they drop their egge on the ground without obtaining ndeporit, as I bave found an egg of thin kind thur expowed and boken. 1 have also remarked Frmetimen twe of thene egys in the amme nent, but in thik case one of them commonly proves abortive." The same author in 1831 anw a hen Red Figed Flycatcher kitting on two egga, and one of the Cows lied; and lie nelife that this apecies, lirce oliraceus, and (more hately) lircomblra divacea of Bomapate, Muscicapa diroccu, Linn., appears to beita mont uanl nurac. He las knewn this lirco begin her incubation with only an cgg of each kind, whilat in other nents he has obaerved an many as three belonging to the liveo, na will as that of the intruder; nuil lie suggesta that, Iroun the largeness of the egg, the
nest probably lmmediately foels full to the ineubating bird, wos to induce ber to sit directly, when the larger egg, being brought nearer to the body of the nurse than her own, is first hatched, generally, as he believes, on tho twelfth or thirteenth dig. The legitimato eggs are hatched about a day later, are often atified by the auperior size of the stranger, which is affectionately nursed by the poor dupe of n dam, and when the young are dead are conveyed to a distance by the parent and dropped; but they are never found immediately below the nest, an would be the casc if they were ejected by the young Cow-Bird, as is done by the young Cuckoo. [Cuculids:] "Indeed," continuea Mr. Nuttail, "as far as I have had opportunity of observing, tho founding shows no hestility to the natural brood of hie nurses, bat he nearly abserbs their whole attention, and early displays his characteristic cunning and self-possession. When fully fledged they quiekly desert their foster-pareut, and skulk about in the woods, until nt length they instinctively join company with those of the same feather, and now becoming more bold, are scen in parties of five or six in the fields and lanes gleaving their accustomed subsistence. They still however appear siny and watchful, and seem too selfinh to study anything more than their own security and adrantage." The Cow-Birl is but a poor songster. Its flitting migrations are generally made in the night or in the gray of the morning.

Besides the localities noted above, this species is also found in Mexico, but according to Audubon it is rare and a visitor obly in Louisiana. Prince Boasparte, in his 'Geographical and Comparative List,' gives "America generally" as its locality.
Mr. Darwin ('Journal and Remarks') states that another species (Le Troupiale Commun of Azara), of a purplish black-colour, with a metallic lustre, feede on the plain near Maidonado in large focks, mingled with other birds. Several, he says, may often be seen standing on the back of a cow or horse. Whilo perched on a hedge, and pluming themselves in the sun, they sometimes attempt to sing, or rather to biss: "the neise is very peculiar; it resembles that of bubblea of air passing rapidly from a emall orifice under water, so as to produce an neute sound." Azara states that this bird, like the cuckoo, deposits its eggs in other birds' nests. "I wrs eeveral tines told by the country people that there was some bird with this habit; aud my assistant in collectiug, who is a very accurate person, found a nest of the sparrow of the country (a Zonotrichia) with one egg in it larger than the others, and of a different colour and shape." This egg is now in the museum of the Zoelogionl Society of London.

MOLVA. [LOTA.]
MOLYBDENUM, a Metal discovered by Scheele in 1778, in a mineral which resembles and had beeu confounded with piumbage: bo gave it the Greek uamo of Mo^úsfasva. This mineral is composed of sulphur and melybdenum; and it has nlso been met with in other etates of combiostion presently to be mentioned. This eubstance was however first reduced to ita metallic stato by Hjelm, another Swedish chemiat, nad its properties have been since particularly examined by Bucholz and Berzelius.

The metal is obtained from the native sulphuret by roducing it to fine powder aud heatiag it in aqua regia; by thia the sulphur is converter into aulphuric acid, and the metal iato molybdie acid, which remains in the state of a white powder after being hasted to expel the sulphuric acid; when this is very strongly heated with charcoal, it ie reduced to tho metallic state; or the metal may be procured by passing hydrogen gas at a high temperature over the acid ia a porcelain tube. This metal is obtained as a pornus mass or in globules, and has not yet been procured in the state of a button or bar. The grains are somewhat crystalline; sometimes they are of a silver-white-colour. When obtained by the reduction of the oxide, thie metal has not much lustre, but acquirce it by burnishing. Its density is $8 \cdot 6$. When long exposed to the air at ordiunry temperatures, it appears to tarnish, but the oxidation is superficial. By exposure to air and beat, it is first convierted iuto brown oxide, afterwards it becomes blue, and eventunlly molybdic acid, which is white. This exidation does net however take place completely, but ouly at the surface. Sometimee the metal takes fire at the momeut of oxidation. It does not decomposo water.
Ores of Molybdeaum.-Oxide of molybdenum occurs eacrusting the sulphuret of melybdenum, aud nlso between its lamins in thin lajers. Its structure is thin fibrous, earthy, friable, aud pulveruleat. Colour pale-yellow or greeaish.
It has been fould only iu small quantity in Scotland, Norway, nud North America. Its composition has not been ascertained.
Molybilic Acid or MIolybdic Ochre occurs in nature in combination with leall and silver.
Sulpharet of Molybdenum, Molybleaite, is the most common mincral of this netal. Occurs crystallised and massive. Primary form n rhemboid. Crystallises in hexagonal crystaia. Cleavagevery diatiuct, perpendicular to the axis Franture indietinct. Hardness, scratches talc, is ecratched by calcaroous apar. Colour lead-gray, and strenk the same. Flexible in thin inmina, but not elastic. Lustro metallic. Opaque. Specifie gravity 4.591. llubbed on paper, it lenves a gray metallic mark, and on porcelaia a greeniah one. Massive variety amorphoun; structore foliated, granular. When hested by the blow-pipe on cinrcoal, emits a sulphurous-vapour, and leaves a powdery residue. It occura in various parts of the world-in Eugland,

France, Germany, and America; more especially however in Saxony and Bohemia. It contains, according to Bucholz, 60 parts of molybdenum and 40 of sulphur.

Molybdenum combines, as already noticed, with oxygen, and forms two oxides and one acid; but these we have not thought it requisite to describe, any more than its other compounds, for it is not used in any form whatever.

Molybdate of Lead occurs native. [Lead.]
MOMORDICA, genus of Plants belonging to the natural order Cuourbitacece. The flowers are monceious, yellow or white; the staminiferous flowers have a 6 -cleft calyx, with a very short tube, a 5 -parted corolla, tridelphous stamens, with conuate anthers; the protilliferous flowers have three sterile filaments, the styles bifid, the ovary 3 -celled; the fruit opens with elasticity when ripe; the seeds compressed, reticulated.
M. Elaterium, Linnæus (Ecbalium, Elateum, Prichard), the Wild or Squirting Cucumber. The plant is hispid, scabrous, glaucous; the stem prostrate, without tendrils; the leaves cordate, somewhat lobed, crenste-toothed, very rugose, on long stalks; the ripe fruit is about two inches long, roundish, muricate, green, and fleshy; possessiag the power of ejecting, along with a mucilaginous greenish juice, the compressed ovate smooth seeds; on which account it is called the Squirting Cucumber. The juice has an extremely bitter taste, and even in very small quantity acts violently as a hydrogogue cathartic, producing numerous watery stools. It owes its power to an acrid and drastic bitter extractive, to which the name of Elaterin has been given. This is coluble in alcohol, ether, and fat oils, but scarcely soluble in water or dilute alkalies or acids, while strong acids destroy it.

The very minute dose which is required of Elaterin recommends it in many cases an a remedy in dropsy, especislly ascites, but few persons can bear the violence of its sction for any considerable time; two or three days should always be allowed to elapse before repeating the dose. It is apt to cause vomiting as well as purging, and a dose of even a quarter of a grain may produce such extreme action as to sjak the patient into a state of alarmiog debility. It grows wild in the south of Europe, and is cultivated in Eagland. The Elaterin was known to the ancients; it is δ "A $\gamma \rho$ os Eicuos of Theophrastus and Dioscorides. It is the Cucumus sylrestris of Pliny. It was much employed by Hippocrates.
M. Balsinina, Linnecus, is supposed to be the plant Neurosperme cuspidata by Rafinesque, the fruit of which is stated to be a dangerous poison.
M. operculata, Linoreus, has 5 -lobed toothed leaves; elliptical angular tuberculated fruit, with a deciduous rostrum-like lid, green, dry internally, and divided into 3 cells by a plexus of entangled fibres; seeds compressed, black. This plant is a native of South America, and is common on the coast of Essequibo. It is one of the bitterest of all known substances.
(Lindley, Flora Medica; Fraws, Synopsis Florce Clussice.)
MOMOT, or MOTMO', the common name for the species of Birds belonging to the genus Prionites, Illiger. This genus has the following characters:-Both mandiblos slightly curved and compressed; the margins with strong denticulations. Tongue long, slevder; the sides ciliated. Wings short, rounded. Tail lengthened, cuneated. Feet gressorial, as in Merops. (Sw.)
Mr. Swainson ('Classification of Birds') remarks that every writer since the days of Linnacus (who at first actually classed them in the same genus) has placed the Motmots (Prionites) and the Toucans (Ramphastos) close together, not only from the similarity of their habits, lut from the structure of the tongue, which in both is long, and so much ciliated at its sides as to resemble a feather ; so far therefore, he obscrves, the resemblance is uaquertionable. "But," continues Mr. Swainson, "the feet of the Motmot are totally different from the Toucan; they are not scansorial, but of that particular structure so common among the Fissirostres. The Toucans, we know, from personal obselvation, to be gregarious, living in flocks, sud seeking their food from the tops of lofty trees; the Motmot is solitary, hiding in the dcep shades of the forests, and, like other air-feeding birds, is always found sitting nearly motionless. Here theu is a very obvious departure from the structure and habits of the Toucan. The question then is, to what does it lead? If to the Hornbills (which has been inferred from the structure of the feet), we should have no diminution in the size of the bill, which in both the Horabills and Toucans is equally large, but in the Motmot of an ordinary and proportionate size : we should further expect a bird which was gregarious, since both these groups are so. Yet there is nothing in the Motnot, beyond its feet, which will at all assimilate it to the Perchers; while its finsirostral habit of catching its food upon the wing, and the discovery of the broad-billed species, Prionites platyrhynchus, seems to us a conclusive argument for placing this genus in the fissirostral order, as more intimately connected to the Jacamars (Galbula) [Halcyonide] than to any other known genus."
P. Mexicanus is green above, paler beneath; head and neck above crimson, ear, black, varied, aud tipped with bright-blue stripes; luelly white. (Sw.)

Mr. Swsioson ("Zool. Ill.') states that the Motrnots, or Momots, "so named from their monotonous note, live only in the tropical forests of the N'cw World, preferring those dcep rccesses of perpetusl shade
where a high canopy of matted foliage nearly excludes the rays of a vertical sun. They appear even more solitary in their disposition than the 'I'rogous; their note may be heard, morning and eveniug, from the depths of the forests, but the bird is never seen, unless the hunter comes unexpectedly upon its retreat. This we have gencrally found to be a low withered branch completely shaded and just at the edge of such paths as are made by the Cavies or the Indinus. The Jacamar's and the Trogons both love these shady nooks, where they sit nearly motionless, watchiug for passing insects, on which they dart. Such is no doubt the manner in which the Motmot feeds; but his strong conformation enables him to capture larger game. Travellers assert that he also devours the eggs and young of other birds, like the Toucans; this we believe, as both have the same long sud feather-like tougue."

Prionites Mexicants.

Dr. G. R. Gray makes the Momotine, a sub-fanily of the Modide, consist of the genus Crypticus, Sw. (Momotus, Leadb. ; Prionites, Sw.), and the genus Momotus, Driss. (Baryphonus, Vicill.; Prionilcs, Ill.; Momota, Shaw; Ramphastos, Linn.)

MONAS. [INFUSORIA.]
MONASITE, or MONAZITE, a Mineral with the following composition :-

It occurs in modified oblique prisms. It has a perfect and brilliant basal cleavage. It is only found in small imbedded crystals. It has a brown or brownish-red colour; subtransparent, or nearly opaque. The lustre vitreous, iaclining to resinous. It is found near Platoust in Russia.

MONASSA, Vieillot's name for a genus of Birds (Hermit Birds of Swainson and others)., [Halcyonide.]

MONESES (from $\mu \dot{\nu} \nu o s$, sole, or alone), a genus of Plants belongiug to the natural order Eiricacce and the tribe Pyrolece. It has a 5-toothed calyx; 5 -lobed corolla; 10 inelined stamens; the anthers dehiscing at the base by two holes, the cells elongated and tubular; the stigma 5 -toothed; the capsule 5 -celled; the valves dehisciag from the apex, destitute of tomentum. Thero is but one species of this genus, M. grandiftora. It has a creeping root; large solitary terminal drooping open white flowers, nearly au inch broad; very large stigmas. It is a native of Europe, Aaia, and North America, in Alpine mosay
wools. It is found in Great Britain, in the mountainous wooda of Scotland.
MONEY'WORT. [Lrsimachas.]
MONGOOSF, or MONGOOK, one of the names of a specice of Macanco, Lemur Jongos, Lina. [leemeridse]
MONIMIA'CESE, Monimiads, constitute a little-known natural onler of Planta, whose most striking distiuction conaists in the flowers leing paked and collected together into involucra, somo male and some female; the male involucm having their inner surface thickly covered with mumerous stameas; tho female including several carpels, each of which las a ninglo ovule in its interior. The genera are eight and the specice about forty in bumber, and aro mostly South American wooly phate, ahrubs, or trees, with fragraut aromatic secretions Their real affinity is unsettied. If the prevailing opiuion as to their atructure is correct, they must be regarded as near allies of Vrticacce: but if what is now called the involuere should be slown to be a calyx, as it was considered till Browa suggested the contrary, they will take their station near lauracec, with which their aromatic qualities assimilate them. Lindley regards their true station as near to Myristicaccur. loldoa, the boldu of Chili, produces an aromatic succuleut fruit, which is eaten. The wood and leaves of this phant are fragrant. The bark ia used for tanning.

Monimia rotundifolia.
1, a male involucre; 2, a female involuere; 3, the tast ent open to nhow the cargele: 4, a ripe fruit; 3 , a view of the ripe carpela contained in the fatter, the tuvolucrum being parlly eut away.

MONITOH1DNE, or MO'N1TORS, a fanily of Lacertian Reptiles: the name Monitur has been given to the typical geuns of this family in consequence of the nuppowed warning given by thom of tho vicinity of erocoliles. The waraing of theso Monitory Lizarda was said to be a linging or whintling; but tho better opinion in, that they obtainel credit for thin monition molely from the nceident of their haunts, which are for the mont part in the neighbourlooxl of tho wntern, and consequently bring them nometines into company with the destructive and gignatic reptiles above mentioned.
The Monitors have teeth in both jawn, lat none on the palate. Cavier divides them into two grouph, and Fitzinger into three, under the unanea of Tapinambis, Vapanns, and Jrammonaurus. Dr. J. L: Gray makes the Monituride the first family of his Leptoglosere, or Slender-Tongued lizarists.
Character of the Fanily.-Head with minute polygomal Ahichn; teeth adnate to the inner mide of the jawa; tongue clongate, alemder, retractile into a Alenth at its basen; acalea small, roundinh, phaced in crom ring", thone of the sides like thone of the back; leges t, strong; tocs 3.5 , compressed, unequal; thigha poreless; supraorbital plate bony
The rpecien are inhabitants of the 0.1 World, and frequent the bamks of rivers.

The gencra and 天pecics of the 'lritioh Museum Catalogue' are as
A. Tail round, without any keel above. Terrestrial.

P'sammosaurus, Fitz-Nostrils ovate, oblique, near the orbits. Tail roundish, not keeled abovo, with couvex sides, unarmed. Scales not pierced. Toes unequal, rather elongnte. Teeth elender, acute.
I. Scincue, Gray, the Ounran (L'aranus Scincus, Merrem; Tupinamlis grisers, Daud.; Monitor terrestre, Cuv.; Ourau de Forkknl, GeoII. ; Tupinamlis arenarius, 1. Geoff.). Gray, obscurely banded with an obscure streak on each side of the bead and neck. It in a antive of Northern Africa.
P. (?) Cazpicus, Fichw., the Caspian Ouaran. It inhabits the Carpian Sea.
Odatria, Gray.-Nostrils ovate, longitudianl, aut-anterior; teeth compresscd, acute. Tail elongate, round, not keeled nbove; scalea large, sharply kecled, sub-ppinose. Back with clongate narrow kceled ecales. Veutral shield elongate. Toes rather unequal, elongate.
O. punctuta, Gray (Monitor tristis, Schlegel), the Dotted Odatria. Gmy-olive, with narrow black reticulated lines, leaving large hexngonal apots; bead, limbe, and tail blackiah, with a fow pale spote, darkbanded. Ventral ahield twice ns leng as broad. Thil round, scales over the cye small, grapular. Male (1) with a tuft of conical spine-like scales on each side of tho vent. It is a native of Western Australia.
O. ocellata, Gray, the liyed Odatrin. Black, with rather largo yellow rings; limbs and tail yellow-spotted. Tail round ; scalen of the tail brond, oval, spinose. Scales over the eyes small, granulsr. Veutral shields twice ns long as broad. It is a native of the north-western coast of Australia
O. Timorensis (Monitor Timorensis, Gray; Tupinumbis viridimacth lafus, Daud.), the Timor Odatria Black, yellow-dotted, dots forming rings and apots; head yellow and black-dotted. Seales over the orbits stmall, granular; of forehead larger. Ventral shields uearly as broad as loug. Thil slightly comprcased above, sub-triangular; base of tail nuarmed. Is is a native of Timor.

1. Tail with a compressed keel abore, formed of two rowz of scales. Nostrils large, ollong, oblique. Aquatic.
Regenia--Nostrils large, obloug, oblique, pear the arlit. Tail shortish, thick, doubly keeled above; scales oblong, bluutly keeled. Toes ahort, sub-etual. Teeth rounded. Scales large, couvos, surrounded with ummerous granulatious. Head short.
R. alboguleris (Tupinambis albogularis, Baud. ; Monitor Gillii, A. Smith; Uaranus ornatus, var. Merrem; M. eranthcmaticus, var. Capensis, Schlegel, 'Abbild.' 71), the White-Throated Regenia. Dark brown, with large white spots, pale beneath, with a dark streak on each side of the back of the neck. Nostrils uear the orbit. Scales rather large-of the hend convex. It is found in South Africa
h ocellatus (Varanus occllatus, Biuppell; Tupinambis exanthematicus, Daud.; M. exanthematicus, var. Schlegel), the Eyed Regenia. Nostrils rather further from the orbit. Scales large-of the neck largest, of the head tubercular. It is a native of Senegal.

Empagusia, Gray.-Nostrila large, oblong, oblique, in front of the muzzle. Tail as long as the body and head, tapering, rouudish, with a double-edged keel above; scales alarply keeled. Toes rather short, subequal. Teeth acute. Scalcs ovate, kecled. Ilead short.
E. Jartscers, Gray (Momitor farcscens, Gray; Uaranus Ruselii, Scllegel ; U. Diquotii, Dum. et Bib. ; M. exanthematicus, var. Indica, Schlegel), the Indian Empagusia. Olive, with yellowinh cross bands. Head-shields sul-equal; eye-brows with a central series of larger plates. It is found in Nepaul.
Varanus, Merrem.-Nostrils obloug, rather oblique in the centre, between the apex of the muzzle and the orbits. Tail elungate, compressed, with a double-edged keel sbove. Toes clongate, unequal, stroug. Head clongate.
a. Shields over the orbits small, sub-equal.
ℓ. heraldicus; Monitor heraldicus, Gray; the Heraldic Uaran. Black, with cross rows of pale-cyed spota; pslo beneath; blackbanded. Shields over the orbits small, sub-equal. It is a native of ludia.
U. lunatus, tho Lunated Uaran. Nostrils large, nearly ccutral; ehields over the orbit sunall, subequal. Dark brown, with lunate bauds directed backwaris on the neck and forwards on the body, aud with cross-bands on the tail; belly and under side of tail whitish. It is found in India.
U. ornatus, the lhilippine Uaran. Nostrils large, central; ghielda over orbit manall, sub-equal. Olive; neek and front of tho body with pale-spatted broad black cross-bauds; the hinder part of the body and tail with pale apoth. It is a native of the lhilippine I slands.
I. Mumerilii; Monitor Mumerilii, Miller; Dumeril's Usman. Brown, with obscure cross-bauls, with a black spot ou side of neek. Shields of the heal aud over the orbit nearly equal, moderate. Scales large, convex. It is a native of Borneo.
L^{\prime}. rudicollis, the Rough-Neeked Unran. Noatrila large, nearer the orbit than the end of tho muzale; shields over the orbits nearly square, the hinder central ones rather larger. Scales of the back triangular, keelcd; of the neck largo, prominent. Muzzle elongate. Mack, with white streaks on back of neck, nud bande across the back. It is found in the Plilippine Islands.

b. Scales over the orbit small, with a central longitudinal serics of larger plates.

U. nobulosus (Monitor nebulosus, Gray; M. ncbulatus, Schlegel), the Coloured Uaran. Nostrils large, rather uearer the orbit than the end of the muzzle; orbital shield with a larger series; back of neck with converging dark streaks. It is a native of Iudia.
C. Tail triangular, compressed, and with a doubly-toothed crest above. Nostrils small, round. Aquatic.
Monitor, Gray (Polydredalus, Wagler; Uaranus, Fitz.).-Nostrils small, round, in the middle, between the apex of the muzzle and the front angle of the eye. Tail elongate, compressed, with a doubleedged keel above. Toes elongate, unequal, strong. Teeth rounded.
a. Scales over the eyes equal. Nape with lunate bands. African.
M. Niloticus (Lacerta Nilotica, Hasselq.; L. Capensis, Sparm.; Tupinambis ornatus, Daud.; Stellio Sawrus, Laur. ; T. elcgans, Daud.; T. stellatus, Daud.; M. pulcher, Leach), the Nilotic Monitor. Ifead gray, when young with concentric rows of white spots. Back of neck with lunate cross bands. Under side of body and heal grayish, white-spotted when young, black cross banded. The shield over the eyes flat, sub-equal, many-sided.

Nilotic Monitor (Monitor Viloticus).

It is found in Ligypt, where the modern Egyptians have a fable that the animal is a young crocodile which has been hatched on dry landas indeed all young crocodiles are-but they meau, we supposc, to convey tho idea that it is a dwindled aud neglected offapring. Tho species is to bo found on the monuments of the ancient Egyptians, probably on account of its devouring the eggs of the crocodile.

a, skull of Monitor Niloticus, seen from above; b, under-jaw of same.
b. Scales over the eyes equal. Nape coloured like the back.
M. Dracana, Gray (Lacerta Dracena, Liuu. ; Stellio Salveguardia, Laur.; Tupinambis Bengalensis, Daud. ; T. Indicus, Iand. ; T. Cepedianus, Daud.; L'aranus gutlatus, U. punctatus, and U. Argus, Merrem; M. gemmatus, Guérin), the Iudian Monitor. Brown; blackapotted or jellow-eyed when young. Nostrils central ; вcales over the eyea flat, small, sub-equal ; of the hearl rather larger. It is a native of Iuclia.
M. Gouldi, Şchlegel (ITydrosaurus Gouldii, Gray), Gould's Monitor. Neck with two yellow streaks on the side; seales over the eycs small, granular; of forehead larger. Ventral shiclds small, longer than broad. It is found in north-western Australia.
c. Scales over the eyes with a larger central series.

Mf. chlorostigma, Cuv., the Dotted Monitor. Olive, with grecnish dots. Nostrils rather nearer the muzzle than the cyes; bead-scales flat; scales over the orbit unequal, the central series very large.

Ifydrusaurus, Wagler (T'upinumbis, litz.).-Nostrils oblong, longitudinal, near the apex of the muzzle. Tail elongated, with a rloubleedged keel above. Toes unequal, elongate. Teeth compressed, harp-edged, denticulated. Scales small.

NAT, HIST. DIV. VOL. HI.

* Scales over the orbit equal. Neck with lunate bands.

II. varius, Gray, (Lacerta raria, Shaw; Tupinambis varicgatus) Daud. ; INydrosaumus, var. Wagler), the Lace-Lizard. Scales over the orbit very small, equal. It is a native of Australia.
II. Bcllii (Uaranus Bellii, Dum. et. Bib.), Bell's Lace-Lizard. Pale, body and tail with broad black cross bands; scales of the orbit dilated, equal.
** Scales on the orbit equal, small. Neck spotted like the back.
II. giganteus, Gray, the Gigantic Lace-Lizard. Brown, back and tail with cross bands of large black-edged white spots; weck and under side of body pale, with large black round reticulatious; legs whitespotted; toes rather short, strong; shields of the head sub-equal, convex, over the orhits very small, grauular. Found on the coast of Australia.
*** Scales over the orbits with a larger central longitudinal series.
IT. Salvator (II. bivittatus, Wagler, Stellio Salvator, Laur.; Tupinambis bivittatus, Knbl; Uaranus vittatus, Lesson; Monitor elegans. Gray; Lacerta Monitor (?) Herm. ; M. marmoratus, Weigmana; U. Cumingii, Martin; Tupinambis exilis, Reiuw.), the Two-Streaked Lace-Lizard.
II. prasintus (Monitor prasinus, Müller), the Grcen Lace-Lizard. Green, with narrow dark cross bands, gencrally placed in pairs, those of the neck lunate, the rest transverse, with a brown streak ou the cheek behind the nostril; head-shields flat, rather large, those over the orbits larger in a series. It inhabits the west coast of New Guinea.

The Great Fossil Lizard [Megalosaurds] appears to have partaken of the structure of the Monitors and the Crocodiles. The Mosasaun us. was also very nearly allied to the Monitory Lizards. [Mosasaurus.] Au account of the dissection, by Mr. Martin, of a Monitor that died at the Gardens of the Zoological Society in the Regeut's Park, in 1831, will be found in the 'Proceedings of the Society' for that year.

MONK, a kind of Seal. [Phocide.]
MONK-FISH. [SQUalide.]
MONK'S.HOOD. [ACONJTUM.]
MONK'S-RHUBARB. [RUMEX.]
MONKEY, the arme usually applied to those forms among the Simiade which posses a tail. [Quadrumana.]

MONO. [ATELES.]
MONOCEROS. [Entomostomata.]
MONOCHIROS. [Pledronectide.]
MONOCHLAMYDEF, a arbdivision of the class of Exogenous Plants. The group is characterised by possessiug a siugle perinnth, that is, the calyx and corolla not distinguishable or wanting. [Exogens.] MONOCHROITE. [ChROMIUN.]
MONOCONDYLEA, M. D'Orbigny's name for a sub-genus of Unionide, which he describes as equivalve, inequilateral, sub-rotund or angulated with a hinge formed of a large, obtuse, round, cardinal tooth in each valve, but without lateral teeth. M. Paraguayana, D'Orbigny, is an example.

MONOCOTYLE'DONS are those plants which are now more commonly called Endogens. [Endogens.] They derive their name from their seed haviug generally only one cotyledou; but there are exceptions to this, as in wheat, which possesses a secoud cotyledon in a rudimentary state. Usually the single cotylcdon of these plauts rolls up, inclosiog the radicle and plumula, so that the embryo appears to be a cylinder with no interruption to the contiuuity of its surface; but there are many deviations from this, the nost striking of whieh are those of Grasses and Aquatic Monocotyledons.

MONOCULUS. [Daphina.]
MO'NODON, the Linnean name for the Narwhal. [Cetacea.]
MONODONTA, Lamarck's name for a genus of Trochider, the columella of which termiuates abruptly in a tooth or notch. It is the Odontis of Sowerhy. [Trochide.]
MONOI'CA, M. De Blainville's name for his sccoud sub-class of the class Paraccphalophora. [Malacology.]
MONO'LEPIS, a genus of Macrurous Crustacar intermediate between Porcellana and Megalopa, established by M. Say.
MONOMYA'IRIA, Lamarck's name for his second order of Conchifera, consisting of those Conchifers which have but one priucipal muscular impression in each valve of tho shell. [Covchifera; Malacologr.]

MONOPHYLLUS. [Cheiroptera.]
MONOPLEUROBRANCH1A'TA, M. De Blainville's name for his third order of Paracephalophora Monoica. [Malacology.]
MONOSTEGA. [Foraninifera.]
MONOTHALA'MIA, Lamarck's name for his second division of Cephalopoda, including one genus only, namely, Argonauta. [Cepuahopoda; Malacology.]
MONOTIGMA, Dr. J. E. Gray's name for a genus of turbinated shells allied to Turritellt.
MONOTREMES, M. Geoffroy'a name for certain Edentate Mammalia which have but one external aperture for the passage of the semen, the urine, and the other excrements.
The organs of generation of these extrwordinary animals present, as might be anticipated, singular anomalies. The different canals tormi-
nato in the uretira, which last opens into the cloace. Their intromittent male organ lica hid, when in repose, in a sheath which opeas by means of a holo towarta the bottom of the cloaca. Their uterua merely consista of two canala which open separately, and each of them by a double arifice into the urethra, which is large, nod, as in the male, has ite exit iu the clonca. It was for a long time doubted whether these nnimals were oviparous or viviparous, but there is now every reason for believing that the young are oxcluded from the body of the parent alive. Though they have no pouch, they still possess the eupernumerary bones which exist in the Morsmiata. [Marsupiata.] In other parts of their ospeous atructure they ane remarkable for possessing a sort of clavicle, placed more forward than the ordinary clavicle, and annlogous to the oa furcatorius, furciform bone, or merrythought, in birde. The coracoid bone also reaches the sternum. The oyes are very small, and there is no external conchas to the ear. Two genera only are koown, Echidna and Ornilhorhynchus [Ecmidna; Unmithonitsches.]

MONOTJROPA (from μ hoos, one, and tposos, a turn), a geane of Plants belongiog to the natural order Ericacece and the tribe MonoPropece. It is often regarded as the type of an order, Monotropacere. It has a 4.5 jurted calyx ; a corolla of 4.5 petals each, with a hooded nectariferous base; 8.10 stamens with kidney-shaped 1 -celled 9 -ralved anthers; a peltate stigma ; the capsule 5 -celled, 5 -valved. many-aceded. The species of this geums are singular-looking planta, found growing at the roots of trees, and destitute of the green and bright colours which characterise the other forms of vegetation.
M. Hypopitys, Yellow Binds'-Nest, has 'the flowers in a drooping cluster, lateral ones with 8 stamens, the termidal ones with 10 stamens, the fruit erect, the bracts and flowers glabrous externally. The stem of this plant attains a height of 6 or 8 inches, is succulent, simple, clothed with ovate scales, terminating in a short cluater, dingy yellow, st length tuming nearly black; the flowers with large scaly bracts. It is a native of Great Britain. This, with the other species of Monotropo, being constantly found at the roots of trees, was supposed to be parasitical upon them; recent rescarches have however led to the conclusion that in the case of this speciees such an opinion is crroncons. Mr. Rylanda, in a paper published in the 'Phytologist,' page 341, bas given the result of a very accurate iovestigation of this subject, and has proved that the fibriline of the roots of M onotropa possess spongioles and take up their nutriment in the anme way as other plants. Most apecimens of Monotropa, when recently dug up, present masses of a fibrous substance, which adhere to their fibrils and the ronts of the plant near which they grow, so closely, that they were supposed to be portions of the roots of the Monotropa. On examining this fibrous aubstance with care, Mr. Rylands found that in all cases it consisted of n species of byssoid fungus which had been developed upon the roots of the Monotropo, having no organic connection with the plant. The species of fungus varied in lifferent apecimens, and were found to belong to hitherto undescribed forms of Cryplogania. There can bo little doubt that the othor species of Monotropa are of the same nature as IIypopitys, and that their paramitism is imaginary. Some writers have referred the specica here deacribed, and two others, to a genus called Hypopitys. This includes the Europesn epocies, Fhilst the ald genus Monotropa embraces two American species, M. Morisomiana and M. unifora. The last epecies have not the muaky semi-fragrant odour of those belongiag to the genus Hypopitys.
(Don, Dichlamydeous Planta; Phytologist, vol. i.; Babington, Manual of British Botary.)

MONOTROPA'CEAE, Fir-Rapes, are a small natural order of Monopetalous Fxogenous I'lanta, said to be parasitical upon the roots of pines and other trees, nad covered with brown scales instead of leaven. They rescmble Orobanchacece, from which they differ in their regular flowers and multilocular ovary. In natural classifications they are ususlly placed in the neighbourhood of Ericacea, on account of their flowers being monopetalous with hypegynous stamens. The apecien are natives of Jiurope, Asia, and North America in cool places, especially in fir-woods. I'lier aro only six kenera, Monotropa, IIypopithye, Pterospora, Schacentia, Corallophyllum, and Pholisma. The xpecies are sbout ten. Their uses are few. Some of them have n delicate smell of violets or pinks. The North American Judiana are anid to employ Pteroppora Andromedra as an anthelmintic and disphoretic. [Mosotnol's.] (Lindley, Vegrtable Kingdom.)

MON1RADITE: a Mineral belonging to the silicate of msgnesia series. It occura massive. Cleavage, one dintinet, nod mother imperfect. Colour pale yellowish, verging on red. JIardneas uesrly that of felspar. Lustre vitreous. Specifie gravity $3 \cdot 2673$. It is found at Bergen in Norwny, lta analysia by lirdmann gives:-

10040
MONSTER, or MONSTROSITY, a term applied to those individuala amongat planta and animals which preaent any irregularity in their geneml form or the form of the organa of which they are comprosed.

The term Monatrosity in often applied to those anomalien only which nre apparent externally, and which produce more or leen deformity;
but, in a scientifio point of view, it includes every varistion, either external or internal, in any organ, from its most general or natural comformation ; and it is in the latter sense that we whall bere treat of it.

Monsters were formerly regarded as sports or prodigies of nature, and these ignorant notiona, with respect to their true charaoter, continued provalent among all classes of peoplo until the commencement of the last oentury, and are even now held by the uninformed. By the physiologist however the study of the various anomalies of organisation in plants, animale, and man are now viewed an a branoh of natural science. An ncourate anatomical examination of monstronities and a minute acquaintance with embryology and atrueture, have shown that the formation of these different imperfect beings is goycrned by the samolawa which preaide over the formation of perfect individuals; the ooly difference being, that the proeess of developmont in the former cases has been perverted or arrestel or increased in its course during the growth of the embryo or germ.

The true nature of monstrosities is more easily recognised in the vegetable than in the animal kingdom. We shall therefore opeak firet of monstrous growthe in plants. The study of such growiths is not a mere matter of curionity, as their structure tends to throw light on the true law of development amonget plants. Although direot observations are more casily made on plants than on anituals for the purpose of escertaining the facts of their history during growth, it is nerertheless interesting to obtain a confirmation of these facts from the forms which monstere assume, these forms in the mojority of cares being permanent conditions of the stages of growth through which plants pass. In theso forms nsture presents us with as it were experiments to teet the truth of the general lsws of morphology.
This subject cau perhaps be best illustrated by reference to epecial instances. To begin with tho Leaves. [Lear.] In the history of the normal development of the leaves, it is found that they are always srranged in an alternate manner, one leaf above the other, but subsequently in many plants, and even whole families, the leaves becomo opposite or whorled. In the case however of individusla it not unfrequently happens that the leaves of opposite or whorled-leaved families of plants become alternate. Thus an instance is recorded of Ifippuris vulyaris (Mare's-Tail) which in its normal complete devolopment bas whorled leaves, presenting its leaves arranged alternately in a spiral upon the stem. (Lankester in the 'Report of British Association,' 18th meeting, p. 85.)

In the conversion of the leaf-bud into the flower, one of the earliest changes that takes place is the conversion of the leaves into the organs called Bracts. [Bracts.] Instances are very often seen of monstrous forms of plants in which the leaves are not converted into bracts but retain their leaf-like character. This frequently occurs in the speoien of Plantogo, giving the inflorescence a singularly different character to that which occurs under normal circumstances.
The lesf-bud is always seated in the axil of the leaf, but in the case of the bracts forming the involvere of the Compasifer neither leaf-buds or flower-buds are sested in their axils; butin the case of the monstrous variety of the common daiay [Bencis], known by the name of Hen and Chickens, flowerbuds are developed in the axils of the bracts.

Next sfter the bracts tho Sepals are formed in the flower-bud. [Califx.] It not unfrequently happens that during the growth of cultivated plants, the sepals are found assuming the sppearance of leaves. This is especially the case with the cultivated roses. This tendency to recur to the condition of the leaf is sometimes a normal tendency of plants. Thus, in the case of Calycophyllum Stanleyanum, one of the sepals after the corolla drops off begins to grow into e beantifully rose-coloured leaf. Other instances of this kind are soen in the order Cinchonacer. In plants with inferior fruite [Fauit] the germen seems to contract an sdhesion with the lower part of the sepals which thus produces the peculiar character of these fruits, such as the gooscberry, the currant, the apple, and the pear. In these fruits it is not uncommon to find amongst them leaves growiog from the eurface of the fruit, indicatiog the tendency of this sepallary part of the fruit to assume the condition of the leaf. The most romarkable example of this tendency of the sepal to assume the condition of the leaf bas been obsorved in the Goat's-Beard (Tragopogon pratensis), in which the pappus surrounding the minute flower whieh represents the calyx has been found to have assumed the character of the leaf.

It frequently happene where one of the parts of e flower have a tendency to relapse to the foliar condition, that the whole of them partake of this character. Thus Mr. Austen has recorded very accurately the changes observed in s monstrous form of the Whito Clover (Trifoliun repens). The following changes were observed in his specimens:-
" 1. Calyx.-Tho calyx-teeth often rise into sioglo lesves, but when compound leaves are formed the division seema to be as follows: the two large equal teeth, which are opposite the vexillum, form ane serrate leaf, and another leaf is formed from the three remaining teeth.
"2. Corolla.-The part which here most frequently reverta to e leaf is the vexillum, and this is a perfect one. Of these leaflets, the alo are often ncen forming simple lesves, ns slao the carion; but their perfect union into a ternate leaf is less common.
"3. Stamens,-Whatever changes the flower may exhibit, these organs are always in a stats to be recognised, snd their revernion to
leaves less frequent than in any other part; so that there is more difficulty in determining the number of leaves which go to form this portion. As two ternate leaves form the calyx and corolla, it might be supposed that the stamens were constructed out of the same number. The figures represent cases of a stamen reverting to a leaf with a true stamen attached to its stalk on either side ; the single anterior stamen, where it reverts, seems always disposed to form more than a simple leaf; and it is therefore probable that the ten stamens $(9+1)$ may be formed out of four sets of ternate leaves.
"4. Pod.-From the well-known character of the pod and pistil in Leguminosce, it might be expected that ingtances of reversion to leaf would be most frequent in this part of the flower; and a series might easily have been produced which would have represented it in every stage of passage; some of these were given. From these it would appear that the pod is not formed of a whole compound leaf, as either two scales, or two abortive leaves, are constantly to be seen at the base of the imperfect pod on either side; the pod is therefore usually formed out of the middle leaffet. In one flower-head however each division of the pistil-leaf had become a pod, with a distinct stem and the ovules in wards.
"Orules seem to be produced only when junction of the edges of the pistilleaf takes place; in other cases leaflets arc produced in the place of ovules.
"In cases where cvery other part of the floral series has been regularly developed, the Pistil occasionally will take the form of a perfect ternate leaf, and then the axis of the plant is continued through the flower." (Austen, 'British Association Report,' 19th meeting.)

Mr. Austen has likewise recorded in the same place an iustance in which the staminiferous flowers of the Common Maize (Zea Mais) were converted into pistils. In this case we have an instance of the tendency of an organ not to relapse to a lower type, but to assume a higher type of development.
It is very frequently the case that stamens relapse to the condition of petals. This is the case with most of the double flowers of our gardens: and in the case of the rose, the picony, the bachelor's-buttens, and others, the anthers may often be found tipping the petaloid bodies in the centre of the flower. This is seen as a normal condition in the water-lily.

The recurrence of the pistil to the form of the stamen and corolla is not so frequent, as its assuming the form of the leaf. In the double cherry of our gardens this condition of the pistil is frequently presented. It is this same tendency which is seen in monstrous oranges, in which this fruit is split up into the same number of parts as it possesses carpellary lenves. [Flower.]

The most central organ of the plant is the Seed, and its development is the great object of the production of the flower. In the seed is the young plant. The seed is however but a clanged bud, and during the process of its development it sometimes recurs to the condition of the leaf-bud, and produces instead of an embryo a branch.

These instances will be sufficient to show how instructive the study of vegetable monstrosities really is. Many such have been recorded, and one of the best resumes of the whole subject will be found in Moquin Tandon's 'Teratologie Vegetale.' [METAmorphosis.]

We now turn to the monstrosities observed in the Animal Kiagdom. Thesc have not been studied so accuritely amongst the lower animals as to afford any important result. The investigation howsver of monsters amongst the invertebrate animals lead to the same general conclasions as that derived from the study of the same forms in plants. It is upon the menstrous forms of the buman being that we find the greatest atteution has beea bestowed, and we now proceed to give some account of these.
In consequence of the immense number and variety of forms of monstrosity anoongat animals (there being scarcely any part in any epecies of animal which has not been observed to depart from its usual form and structure), it becomes absolutely necessary to arrange them according to some system. Though the necessity of a classification is gencrally admitted, authors greatly differ in the methods which they have adopted; some basing their arrangements upon the forms or peculiarities of the monsters themselves, and others upon the theoretical ideas which they may hold concerning the causes which produce them. The system most generally followed is that which was proposod by Buffon, and which has been alopted with some modificationg by Blameabach and Meckel. Buffon formed threc classes: in the tirst he incladed all those casos in which the parts of the body are increased in number, constituting monsters by excess; the second contaited those beinga in whom fower than the usual number of organs are met with, or nonsters by default; and in the third he placel the various irregularities in size, relative situation, and structure of parts, which so often occur. The classification proposed by Meckel ('De Duplic. Monst. Comment.;' p. 2) differs from that of buffon in the addition of a fourth elass, including the different forms of hermaphrodism only. The simplest classification, beiug that which excluden all theory as to their causes, is to distribute them according to some simple and obvious characters, either depending on the degree of unatural chauge, or the region or system of orgaus affected; and such is the kind of classilication which we shall arlopt in the present article.

Animal monsters may be first divided into Simple and Compound, the first of whieh only coutain the elements of a single individual, while in compound monsters the constituent parts of two or more beings ars united. Simple mousters may be agaiu distributed into three classes, which, though not all distiuguished from each other by any precise characters, are yet sufficiently distinct for purposes of arrangement.

In the first of these classes may be included those congenital varieties of couformation which are simple and uncomplieated, only affecting one organ or system of organs, and in most cases not interfering greatly with the performance of any vital function.

The second class, on the coutrary, contains all those cases in which the degree of malformation is so extensive as to produce great alteration in the anatomical and physiological relations of organs, as well as, in most cases, serious external deformity and disturbance of the rital processes. M. Isidore Geoffroy St. Hilaire ('Hist. des Anomalies,' tom. i., p. 79) is of opinion that the term Monster should be coufined to these more complex eases, and thinks that all the other kinds of malformation, with the exception of the compound mousters, should be simply denominated anomalies; but this distinctiou is arbitrary and inconvenient; indeed, in dividing this class from the previous one it is exceedingly difficult to say where one begins and the other leaves off; and, consequently, to know in which of them to arrange many cases.
The third class may be very clearly defined, for all the malfurmations which it includes affect one system of organs, namely, those of generatiou. The monsters in this group are denominated hermaphrodites, the sex being imperfectly developed, and both sexes, or some of their characters, being present in one individual.
An immense number and variety of anomalies are included in the first class, which may be agaim subdivided into orders, according to whether the malformation affects the size, form, or structure of organs, or produces an alteratien in the mode of arrangement and connection, or even in the number of parts. It is often found however that two or more of these varieties of malformation exist together in the same monster; thus in eretins and idiots, both the size and form of the skull and brain are frequently altered; and in club-foot we find a great change both in the form, structure, and position (or arrangement) of the affected limb. Simple alterations in the size ol: form of parts ars so common that no other examples of them ueed be adduced, but some very interesting changes in the iutimate structure of the tissues of the hody have been met with; and particularly that peculiar absence of the colouriug matter of the skin which characterises the state called albinism. A description of this curious anomaly has been given in the article Albino, and we shall only here state that its origin must be accounted for by simple arrest of the process of development. M. I. Geoffroy St. Hilaire says ('Hist. des Anom.,' tom. i. p. 319), "The pigment," or colouring uatter of the skin, "is wanting in the foctus up to a very advaucel period of intra-uterine life, and even in black or dark people the integument remains, for some time after birth, of the same colonr as it the children of fair men. We can easily conceive therefore that the skin may stop in the series of its stages of development, before the period when, in the natural order of formation, the pigment is deposited in the mucous layer, and consequently it will remain uncoloured. The colouring matter of tho skin and hairs, the iris and the choroid, may thus be deficient in an individual (independently of any pathological alteration), in the same manner as any organ or part of an organ may be wanting from arres' of development. If any doubts remain regarding this explanation they are removed by the circumstance that the absence of pigment is not the only condition of foetal life which is preserved in albinism. We kuow that the foctus, during the latter part of preguancy, has the skin covered with down; and this down is frequently preserved in alhinos, particularly in those which are met with on the isthmus of Panama. Lastly, the persistence of the membrana pupilliris in some of these cases beyond the ordinary term of its axistence, is another equally evident proof of arrest of development."
Many curious anomalies in the position and connection of parts have been met with, and it has been observed that organs are subject to changes of position in proportion as they are loosely conneeted with the surreunding parts at an early period of development. The walls of the thoracic and abdominal carities are thus much less subject to alterations in the position of their component parts than the organs which are loosely contained within them. The viscera have becn found removed from one part of their natural cavity to another, or transported into a neighbouring cavity, as from the abdomen to the chest; and some of the argaus ruay protruds exterually, when the malformation receives the name of a congenital hernia. But of all theso anomalies the most curious is that in which the viscera are generally inverted, all the thuracic and abdomiual organs preseuting exactly an opposite arrangement to that which constitutes their uatural state; the liver, cecuon, threc-lobed luug, and all those parts usually found on the righit sido being transposed to the left; while the heart, spleen, sigmoid flexure of the colon, \&cc., are found on the right. It is the peculiar eharacteristic of this monstrosity, that though the actual situation of the viscera is changed, their relative situation and connections are preserved as in the natural state; and consequently their different functions are not in any way disturbed. ln most, if not

Hell, fof theso individuale in whom this transposition of organy las been "borverel, the existence of the anomaly has not even been suppected during life, which, as in the celebrated case commonicated by Mery to the Acmieny of Sciencea (of an invalid soldier, aged 72), may be prolompen to its orilinary term. The cnuses of this malformation are excerdingly obseure, but it acems probable that general change of position of all the viscera depends on some original alteration in the situation of one important organ, ra tho heart or liver; for we know that many organs are connected by their functions, or by the medium of larye blond casels, iu aucha a maner as to acquire a certain relative situation to each other, which niso becomes necessary to preserve the general shape of the animal. Accordingly we find that when any important viscus is changed in ita situation other viscem are affected in asimilar manner. In the carliar pucriods of the colution of the foetus, acveral of those organs which sfterwards incline to one side are naturnlly placed in the centre of tho body, or in the median line: this is the case with both tho heart and the liver. The knowledge of this fuct enables us to underataul more readily how these parts may at a anbsequent perion incline to the opposite side to that on which they ave usunlly found though we are unable to explain the mode in which they chanje the direction of all the other abdominal and thoracic viscera
I'ogether with the alterations of connection, we must place those cases in which, from arrest of develupment, different organs, naturally entire, are apparently divided into two or more portions, as in Harelarl aul spina bifida. The later of these malformations consista in a division or fisgure of the posterior part of the ringe of the vertebre, wither in one region of the back (as is most common) or throughont the whole epine. The mode in which the production of these and many other nomalies of tho sane nature can be explained by arreat of development, is by a knowlelge of the method by which parts are formed. It has been observed in some organs (and the same thing is supposed by anslogy to take place in almost all), that the growth goes on from the circumference towards the centre, and that the lateral parts of any single orgau nre developed before the central parts, and thuz, at an carly period of fotal life, hare-lip and spinal fissure are natural conditions of the embryo. If the process of development becomes arrested by any accidental cause these states will become permanevt, and tho child will be malforined.
We bave ahown that arrest of development may preduce unastural separation of parts, and it may also occasion the closure or connection of parts naturally open or separate. Thus we froquently meet with deficiency of one or more of the orifices which open on the surface of the body, and particularly of the anos. In thia case the intestinal canal may be perfect, and fits orifice only closed by a membranous fold, or it may be very incomplete, and terminate in a cul-de-sac at a greater or less distance from the situation of its natural outlet. This nuomaly is casily explaned by the mode of formation of the nimentary canal, which is origiaally a prolongation of the iutestinal vesicle, wilich gives rise in one direction to the stomach and upper part of the digestive tube, and in the opposite direction to the inferior or descending part of the intestincs. The formation of either of these portions may be arrested in any part of its course (the canal terminating in a bliod extrenity), though the largo intestines, as the colon or rectum, are most commonly the seat of this anomaly, which, on secount of the serious interfcrence which it oceasions in the functions of nutrition, speedily destroys the life of the child, unless it can le removed by surgieal art.

Monsters sometimes jresent irrugularities in the number of parts which they poasesa, being either furnished with supermumerary organs ur exhiliting some deficjency. An order of moneters than componed of deviations from the natural number of parts seems to be clearly dintinguished from all others; but if wo carefully cammine the different cases which it comprises, wo shall find that a great wany of thenn may be arranged togother with cases belonging to other oriers of monstrusity, leing in fact referrible to sonve nlterations of volume welange of combection in the atliected parts. Thus when an organ is njprarently deficient, it is ofturnowible to detect the rudimonts of it ly n carchul dissection, and therefore, though much diminished in aize, it still existm. In tha same manner when supernmmerary parts ano adleded to any organ, ruatomical examination will sometimes show that there is no real formation of new parta, but only an increased development of those structures which commonly remain in a rudimentary othte. In many casea also the deficiency or mdition of organs, as mupernmmerary fingers or toce, and vice versh, may be explained liy the complete division of one part into twa, or the intimate nuion of two or more jarts.
'1ho development of nupernuncrary mamme is one of the most froquent anomalien of this kimp which oceur in the buman subject. There in commonly only the noldition of ene extra gland in these canes, making three breanth, but both four nudfive have been oceasionally seon. When four exist they are gencrally armanged nymmetrically two on each side of the chent. Whan three or five me present, the odd one bay le placed laterally beneath one of the others or in the madian live: when in the lateer nituation, it has bean remarbed that it in genemally ronall and rudimentary, which may be owing to the mode of diatibution of the manmary artaries which ron parallel down the miden of the chent, A very rimarkable but rare anomaly in
man is the existence of a mamma in the inguinal region; one or two authentio cases of this kiud sre reconded. ('Jourval Gen. de Médecine,' tom. c, p. 57.) The only theory which explains these momslies is that which Geoffrey St. Hilaire has denominatod the " law of unity of organic composition." This naturalist eupposes that the whole animal kiugdom is formed upon a common type, the organa of different animala in the carliest states of the embryo being all similar, but during their development assuming different forms in different animale; some parts being dighly developed in ono species, and remaining in a rudimentary state in others. Almost all the Mammalia have neveral mammary glands disposed in two parallel series; and though two are only naturally dereloped in man, yet we may suppose that the clements of others have existed at an carly proriod, which becomo developed in thene anomalous cases by excese or irrugularity of the formative process. Tho bonea, muecles, vessels, viscera, and other organs, have all boen frequently observod to present alterntions in the number of their parts. Many casos are related by authors of an increase or diminution in the number of the cavities of the heart; three veutricles have been met with (Chemineau, 'Hist. de l'Acad. des Sciences,' 1699) ; absence of both tho auricles has been observed (Turner, 'Journal Gen. de Médécine,' tom. xcvi.) ; and many anatomists have deacribed hearts which were furnished with only a single auricle and ventricle, as in fishes: cases are even related in which two distinct hearts bave been found in the same individual, but their authenticity must be donbtod. An unastural number of teeth has often been observed. Arnold ('Obs. Physic. Medic.,' p. 69) mentions a case in which thero existed 8 incisor, 4 canine, and 24 molar teeth in each jaw-making together 72. The truth of this case may well be suspected, though many instances of the presence of acveral supernumerary teeth have been recorded by other authors.

The second class of simple monsters, comprising the various forms of extengive malformation, contains an immenso number of different cases. Some monstern, though greatly altered both in form and structure, are yet capsble of living for a considerable time nfter birth; others, on the contrary, are entirely destitute of the power of supporting an independent vitality, and may be so imperfectly formed that the symmetry of the body is lost, and nothing remains but an irregular shapeless mass. Malformation often affects only one region of tho lody in monsters, the other parts remaining comparatively natural : thus the limbs are frequently very mnch altered in structure and appearance, and may be even entirely deficient, in cases where the bead and trunk preserve almost their regular form. Monsters have been seen in whou the hands or feet were alone developed and inserted inmedistely upon the trunk. From a fancied resemblance between the state of the limbs in these monsters and their natural state in the Seal and other amphibious animals, the name Phocomedes has been applied to them. M. Duméril (' Bull de la Soc. Philomathique,' tom. iii., art. xi.) has described a man who was affected with this anumaly, and who diad in Paris about the year 1800, at the age of 62. His body was carefully examined after death, when all four limbs were found alike deficient: the two clavicles were very short and thick; the hntmeri and bones of the fore arm did not exist at all, but the hands were articulated by the bones of the wrist immo: diately to the scapula. In tho sbdominal limbs the head of the femur and the trochanters were found on both sides, and a rudimentary tibia exiated which was articulated with the foot, but had no connection with the short thigh-bong. The hands and feet have bomotimes been found wanting in cases where the whole or part of the arms and legs were developed, which terminated in a rounded extremity or atump; and lastly, oue or more of the limbs in man and different animals have been found entirely deficient: In another family of monaters, denominated Symelcy, or Sirens, the two thoracic or abdominal limbe aro fused together into a single momber: thos the two legs have been seen united into one, and furnished with cither a double or single foot, or terminating in a point or stump. These monsters aro generally malformed in some other respecta, and mostly die soon after birth.

The trunk may be the principal seat of inalformation, while the heail and limbs only slightly participate in it. In monsters of this kind eventration has generally becn found, accompanied with other anomalies. Eventration consists in imperfect development of the walls of the abdomen, aud consequently protrusion of tha greater part of tho visecra, which form a large tumour in front of the abdomen, which is only covered by a thin and delicate membrano, consisting of the dilated base of the umbilical cord. This anomaly may be solely confined to the abdomen, or it rany also implicsto tho thoracio viscera: thus if the eventration occupies the upper part of the abdomen, the nteruun may be divided by a fissure, or may even be completely wanting, so that hernial displacement of the heart will take plice. Where the sternum and chest are implicated, the diaphragm is also imperfect, being partly wauting or divided. (I. Geoff. St. Hilaire, 'Hist. des Anom.', t. xi., p, 283.) When tho eventration occupies the inferior regions of the abdomen, the urinary and genital organs are often imperfectly developerl, as well as in some cases one or both of the abdominal limbs.
lixtroveraion of the bladder is one of the beat known anomalies of this class. In this malformation there is both displacemont and imperfect development of the bladder itself, as well as of part of the walls of the ablomen, the front wall of the bladder is deficient, and
the mucous membrane of its posterior side is retroverted, forming a soft, red, projecting tumour above the symphysis pubis. On the surface of this tumour, towards the lower part, two apertures may be observed, from which the urine is constantly trickling: these are the orifices of the ureters. Extroversion of the bladder does not seriously impede the performance of any of the vital functious, and therefore is not incompatible with prolonged life; but the more complicated forms of eventration are necessarily fatal.

In both the preceding families of monsters the head is slightly if at all deformed; but many instances have been met with in which the head and face are the parta most extensively altered, though it has been observed, that whenever serious malformation of the cerebral orgaus takes place, some other parts of the body participate in the anomaly. The brain has often been found imperfectly developed, and situated wholly or partly without the cranial cavity, the walls of which were incomplete. In these monsters, which have been named Exencephali, the brain may protrude through an opening in the posterior or accipital region of the skull, or in the anterior or frontal region. This hernial displacement of the braiu is often complicated with eventration or spinal fissure. The brain in somo cases bas been found entirely deficient, and the vault of the cranium absent, a bright redcoloured tumour, composed entirely of vessels, lying on the base of the skull, and partly occupying the place of the brain: in a few monsters of this kind the vertebral canal has beed seen widely open, and the spinal marrow also deficieat, the vascular tumour sometimes existing and sometimes not.

The face in some monsters is the principal seat of anomaly, and no form of monstrosity has attracted more attention than that denominated Cycloria, in which, from atrophy of the nasal orgaus, the eyes approach and unite in the median linc. In some of these beings, which have also been called Cyclocephali by Ceoffroy St. Hilaire, the two eyes are placed very close together, but still remain distinct, the bony parts of the nose being entirely atrophied, but the soft and tegumentary parts remaining in the form of a proboscis, or trunk, situated above the orbits, which, though closely in contact, are not bleaded together. In others ouly one orbital cavity has been found, containing a double eye, the component parts of which are sometimes so blended together, that only a few traces of duplicity remain; thus the cornea, pupil, and crystalline lens have been found quite single in these cases. (St. Hilaire, 'Histoire', \&c., t. ii., p. 387.) None of these single-eyed monsters have cver been kuown to live for more than an hour ol two after birth, and their speedy death must be accounted for by tho imperfect state of the brain, which constantly accompanies this anomaly. Malformation of the head is sometimes carried to such an extent, that the natural structure becomes completely lost, and a more shapeless mass remaius; and lastly, in those monsters to whom the denomination of Acephalous is correctly and should be exclusively applied, the head is cutirely deficient, no external vestiges of it remaining. In these very imperfect beings other parts of the body always participate in the malformation; the aymmetry of the form is loat, one or both of the superior extremities are generally deficient, and many of the thoracic and abdominal viscera wanting: the heart and lungs have been found ahsent in most cases; and some writers have remarked that the heart is nover found in acephalous foctuses, but the testimony of many observers has proved that this is incorrect. (St. Hilaire, 'Histoire,' tom. ii., p. 507.) 31. Serres has related a curious case ('Bull. de la Soc. Méd. d'Emulatiou,' Sept., 1821), in which an acephalous foctus was furnished with a simple tubular heart resembling the dorsal vessel of insects, into which the priacipal vascular trunks opencd. This case is peculiarly interesting, since we know by the researches of embryology that the heart first appears in the embryo in the shape of a long tubular pouch, which ordianily transient state had doubtless become permancnt in the above mouster by arrest of the process of development.
Some of the irregular shapeless masses generally called moles, congisting of differcut organic parts, as teeth, bones, hair, skin, \&c., which are occasionally found in the uterus or ovaries, must be considered as the imperfect products of conception, and therefore arranged among single monsters. But we must distinguish these cases from others which often very closely resemble them, in which tumours of a similar kind have been found in the ovarics of virgins, and even of girls before puberty, the occurrence of which must be explained in quite a different manner, either by the action of some morbid process in the system, or by the theory of monstrosity by iuclusion, which supposca that the elements of one being have been originally iuclosed in the body of another, where they have remained in an imperfectly developed state.

The last class of simple monsters includes the various forms of hermaphrodism. An hermaphrodite was defined by the ancients as an individual capable of fulfiling by turus the reproductive functions of both sexes, or at least une who simultaneously possessed both the roalc and female organs fully developed; such a bcing however is not only unknown arnong the autheutic details of anomalies, but is physically impossible in man and the higher orders of animals without extensive alteration in the conncctions of the bones and other parts of the pelvis. The siguification of the term hermaphrodism is now innch extended, and it is used to desigoate an individual who possesses any misturo of the characters of the two sezes. An iumense variety
of these malformations of the generative organs has been observed; but in most cases the malformed beiug belongs essentially to oue or the other sex, and is only related to the oppesite sex by some few characters. The two families of male and female hermaphrodites have been thus formed, which include a great proportion of the cases which have been met with. In both of these forms of anomaly, by a careful investigation during life, or dissection after death, it will be found that all these beings are essentially male or female.

In a few cases of what have been denominated neuter and mixed herma, hrodism, the organs belongiug to the opposite sexes secm to have been so blended together in the same individual, that the being could not be referred to one sex rather than the other, but these instances are very rare. A most curious instance of this description is given by Schrele, a German anatomist. (6 Med-Chir. prakt. Archir. vou Badeu,' \&c., t. i., 1804.)

The mode of origin of hermaphrodism is very obscure, though the first-mentioned forms of this anomaly may most probably be referred to some arrest or excess in the process of development, since in the early stages of embryouic life a very close resemblance exists between the generative organs in both sexes.

We now come to those curious and interesting anomalies in which the compouent parts of two or more distinct beings are united in one individual, forming a Compound Mouster. The two subjects composing a double being may possess an equal degree of perfection, or be very dissimilar in size and structure, oue appearing as a mer's parasitical appeodage of the other: thus two individuals nearly perfect and distinct may cohere together by one region ouly of the body, or an apparently single trunk may be furuished with two heads or four arms; the multiplication of one or more of the extremitics constitutes in fact the firat degree of double monstrosity. In some cases every limb is doubled, aud the individual then has eight extremities; in others there is ouly one supernumerary extremity, which, in somo cases, has been observed single at its origin and doubled or tripled towards its termination, as when two or three feet are attached to the same leg. (Audral, 'Anat. Pathol.,' vol. i.) It has been observed that in whatever mazner or degree t wo beings are joiued together, they are always united by corresponding aspects of the body, that is to say, side to side, face to face, or back to back : each par't and each organ in the one corresponds to the same part or organ in the other; every vessel, nerve, or musele situated in the line of uniou joins itself to the corresponding vessel, nerve, or muscle in the other subject, in the same manuer as tho two primitive halves of auy siugle organ, which, according to M. Serres's theory of eccentric devclopment, aro originally separate, uuito by the progress of development.

We have already said that the two subjects composing a double monster may bo both nearly perfect and distinct, only adhering together by one region of the body. Beiugs of this description are sometimes capable of supporting an iudependent vitality for a cousiderable number of years, though they are mostly destroyed during parturition, their structure occasioning great difficulty to the process of delivery. One of the most remarkable cases of complete double moustrosity was that of the double female who was born in Hungary in 1701, and christened by the two nanes of Helen and Judith. This monster was shown about for seven years in almost all the countries of Europe, and lived to the age of 22 years. The two individuals, which were each quite perfect, except at the poiut of union, were here placed back to back, and united by the buttocks and part of the loins. The external organs of generation oftered evident sigus of duplicity, though there only existed a siugle vulva, which was placed inferiorly and hidden between the four thighs; the vagiua was at first single, but soon divided iuto two distinct canals, which led to separate uteri. The two intestival canals likewise terminated in a common anus, and the vertebral columus were unitod at their extremities. The aortio and vena cava communicated at their lower part, and thus established a large and direct communication between the two hearta, producing an intimate relation of life and functions between the two beiags. Whenever one was ill the other felt so too, and participated in her sister's disease; it was thercfore predicted that the death of one would necessarily destroy the other; which proved to be true. Judith, at the age of 22 years, was attacked with diseate of the lungs and brain, of which she died. Heleu, who, at the commencement of her sister's attack, was in perfect bealth, soon becane ill, and both expired at almost the sanc iustaut. The Siamese twius who were exhibited in Loudon in 1829.30 were an example of a less extensive union than the last. In their case a vital conuection was established laterally, and the fleshy mass which united them was so small, that some surgeons who saw them thought it might bo practicable to separate them by an operation.
The junction of two foctuses may take place by almost any region of the body; thus they have been seen attached to each other by the crown of the head, buth being placed in a straight line (Villeneuve, ' Wescription d'une Monstrosité, \&e., 4to, Paris, 1831); hy the anterior portion of the thorax, or abdomen, or by part of the front of both, as occurred in the Siamese twins. In this instance the two brothers were only furuished with a single umbilicus. Two varietics have been observed in the mode of junction whercver situated; in one the attachment is superficial, being effected only by
the rkin and bones; in the other it in more deeply meated, the cavitice of the body at the point of union communicating in the two individuals, or being in fact converted into one; thus, the chesta being nnited, the sternum may be altogether deficient; and the thoracie cavities thrown into comunnication, in which case the viscorn frequently present some anonalies in form nad arraugement. Sometimes there are two hearts, which are perfectly distinct, and inclosed in separate pericardia; sometines tho hearts, though both well formed, are contained in one common pericaniium, in which they may be cither distinct from each other, or superticially joined at some point. In other casem two hearts are found, but both in a very imperfect state; lastly, there may be unly oue heart preseating eeveral viees of couformation, as three or four ventricles, or one of the two ondinary ventricles unususily large, nod partly divided by a septum. In other casce of this description the beart has been found single and well formed, but the large vescels have bech all double, so that two aortas sprung from the left ventricle, \&e.

In some instauces of double monstrosity the component individunls are distiuct and separate at their lower halves, but more or less intimately united at the upper part of their bodies, no that they appear to have a double boly and single bead. In others, on the contrary, there are two distinct heada, and the upper part of the borly is double, while the pelvis and inferior extremities are nearly or quite single. In some cases belonging to the former of these divisions the separation of the bodice is only complete ivferiorly, all the parts above the umbilicus manifesting a tendency to coalesce: ju others the separation is perfect as high as the seck. In all these instancem however the heal and upper part of the body, although appareutly single, almost invariably present ou dissection some supernumerary parts, which clearly indicate their double origin. Those compound monsters which are furnished with two heads and a single body offer numerous varietics; the head may be double, but not distinctly divided, there being two faces, more or less perfectly formed, placed side by side, and separated by a longitudinal division; each face is geverally provided with a pair of eyes, but sometimes therc are only threc, one being placed in the median line and formed by the union of two together, as in cases of Cyclopia. The two heads may be completely double, but the body and extremities single. Laetly, the heads and upper halves of the borlies mas be reparate, there being four upper extremitica, while the monster is ouly single by the pelvis and lower extremities. A human monster of the last kind, which lived to be nino mouths old, excited great interest in Paris in 1529; it was a double female, and denominated Rita-Christina. It was born in Sardinia, and was brought to Paris to be publiely exhibited. It was carcfully examined after death, and a detailed account of its structure has been given by M. Serres, in his 'Recherches d'Anatomie Transcemlante, de. The two vertebral columus were found quite diatinct in their whole length, and a rudimentary pelvis separated them inferiorly: avother fully developed pelvis was found in its natural position, which mpportcd two well formed abdominal limbs. There exinted a aingle bladder, uterus, and rectum, which were common to the two aubjects, but behind these organs were found rudimentary traces of othem. There were two dintinct hearts, and sll the other thoracic and most of the abdominal viscern were double.

A fingular nad unique case is recorded by Sir E. Home ('Philos. Trand,' vol. lxxx. p. 296, and vol lxxxix. p. 28; also in 'lectures on Comparative Anatomy,' t. iii. p. 334), of s fuetus with an accessory liead, which was implanted by its eummit on to the crown of the natural heal. The body of this child was well formed in every respect, having no nupernumerary part, and tho princijal head was quite uatural in appearance, except in the parietal region, where its integuments were continued into those of the accessory heal. The latter was paced in an cutirely inverted position, the ucck, which terminated in a round tumour, being directed upwards and a little backwards. This monstrous child. which was born in Iengal in 1783 , lived to be four yearn old, and then only died from the bite of a scrpent. In this case, which must be included with thone of doublo monstrosity, we nust muppose that the body and limbs belonging to the accessory head had becone completely atrophied, but it is exceedingly curious how this remaining jart continued to live solely by means of vascular and nervous communication with the principal individual, and without noy separnte umbilical cord or special organs of nutrition.

The lant variety of montrosity which we shall mention is that by inchaion. In these cases fragronts of one foctus have been found contained in the interior of another. A easo of thin kind io recorded by M. Dupmytren ('Iull. de la Faculté de Médécine' vol. i), who found a cyat in the transverac megocolon of a boy 13 years of age, coutaining an organimed mase, which, when carefully exausined, prekented traces of the brain, nimad marrow, nerves, museles, and moat of the bones of a foetua, but no vestigen of the organs of digention, reapiration or circulation. Similar substances have been found in varimu situationa in other sulyecta, and there is no doubt of their nature; though the mode in which the germ of one foctus has hecume included in the body of another is at present entirely unknowu.
Compound monsters, formed by the union of more than two distinct individuala are excedingly rare, and very fow authentic cases of such
anomaly are on reconl.

None of the different theoriea which have been proposed in explanation of the mode of origin of ainglo monfters throw any light on the causes of compound montronity. It is very difficult to decide whether the germa have been origionlly double, or whether two or more have become united during the progreas of development. The latter is the most general opinion; and the moat probable jdea respectiog their mode of union ja, that two ova become adherent whenever they are coutained within the enmo membranea, and opposed to each other by corresponding aspects of the body.
Of ths jredisposing and exciting causes of monstrosity little is known; for while the infuences determining the phenomens of normal development are hidden from us, those presiding over irregular formation must necessarily be involved in darkness. In the article Ferva it is stated that the organs of the embryo are generally considered to be successively developed, and not evolved from originally pre-existing elcmenta: the notion therefore that the germ of the future embryo is ever originally monstrous previous to impregnation must be sbandoned, and the causes giving rise to the various forms of congenital malformation must be sought for in some accidental influences disturbing or arresting the process of development in the embryo. Direct evidence has been afforded by experiment that the natural stages of formation may be so nltered in the embryo of the chick during incubation by external injury. Geoffroy St. Hilaire injured several eggs in which the process of incubation had cominenced, and had been going on aaturally for several days. He shook some of them violently, he perforated the shell of others in different places with a sharp instrumont, or kept them in a vertical position, upon either the large or small end, during the whole time of hatching; sgain, in some he covered part of the ehell with wax, or a varnish impervious to the air. The constant effect of these injuries was the production of a very considerable number of anomalies, cither aimple or complicated, among which may be mentioned Cyclopia and other malformations of the face and head, eventration, and spinal fiseure. In no instance was auy case of double montrosity mot with, which might, à priori, have been supposed; a double monster being composed of two distinct embryon, the germs of which muat have previously existed in the same egg. ("Mémoires du Musćum,' tom. xiii. p. 289; also 'Journal Complément. des Sci. Méd.' tom. xxxiv.)

The younger St. Hilaire repeated these experiments in a different manner, altering the structure of eggs previous to the commencement of incubation, and not during the course of this process, as had been done by his fsther. His experiments were attended with quite a different result: the more violent disturbing influences destroyed the vitality of the embryo altogether; othera, less active, produced general retardation or srrest of the process of development of the whole body; but in no instance was malformation of any one region or part effected. ('Hist des Anom.' tom. iii., p. 603.) These experiments confirm the opinion that anomalies jnvolving a single individual must priacipally be referred to the influence of some disturbiug causen occurring during the proceas of dovelopment. In some instances the birth of a monater has undoubtedly followed an accident received by tho mother during the early months of gestation, euch as a fall, 3 violent blow on the abdomen, or some long coutinued mental impression or anzjety. The influcuce of such causes is however much weakcr than has been supposed ; for how many examplea occur every day of women producing well-formed children who have been suffering under violent moral emotions, or who have received serious sccidents during prognancy. It is unnecessary to bring forward any argumenta to refute the ancient superstitious notions of the vast influence which the imagination of the mother was supposed to exert over the formation of the foetus. It is no longer supposed, except by the ignorant, that any objeet which has been seen or longed for by the parent can be depicted on the body of the child; and in most cases where the child has bcen supposed to have been deformed through the influence of any such cause, if the dste of the impression received by the mother be carefully ascertained, it will be found that the organ supposed to be sltered or marked by ouch impression inust have been nearly or fully developed at tho time that it was received, and therefore could be in no way affected.

Another very generally admitted cause for some malformstiona is the occurrence of discase in the fortus itself, and there is no doubt but that some cases of anencephalia and other malformations of the brain and apinal chord must be referred to dropsical diseasc occurring in the interior of the akull and epine of the embryo; but in the majority of cases this explanation is inadmissible, snd supported by no proofs. Many other hypotheses have been proposed to sccount for the production of monsters-as adhesions between the foetus and its inventing membraves; modifications in the quantity and quality of the nutriment received by the embryo; pressure made on the feetns by tumours attached to the parietes of the uterus, ic. It ja unnecessary to enter inta the consideration of these causes; for, after all, we can only srrive at the conclusion that the development of the embryo in anomalous cases has been diverted from its natural courac, or arrested by nome accidental cause, which, whether taking its origin in the fortus jtself, or acting secondarily on the embryo, is involved in obscurity.

Though the occorreuce of accidental causes acting during the process of development will account for most of the phenomena of monstrosity, yet it will not account for nll. It has been observed that some malformations are hereditary-are tranmitted from fathera to
children; and sinceall influence of the father on the child must cease with the set of fecundation, these anomalies must be dated from the moment of conception.
From exteaded observation it has been found that all the forms and varieties which monstrosity presents are apparently under the control of certain fixed laws; or, in other words, there appear to be a number of general facts which are applicable to all cases of malformation. Some of these facts it is mecessary to be acquainted with, since, by a knowledge of them, we may often be enabled to distinguigh (when reading or hearing descriptions of monsters, or looking at figures in old works) those anomalous cases which may really have existed, from others which are only the fanciful and absurd productions of a fertile imagination. To one of these laws we have already alluded, for instance, the fact that union between two individuals forming a double monster always takes place by corresponding parts of the body; and we shall now briefly mention several others.

Monstrosity, however complicated and extensive, is never carried to such a degree as to remove the animal affected with it out of the series of natural beings in which it has been originally placed; no entire being yor organ has ever been met with so deformed that the species to which it belonged conld not be recognised. Again, in the most extensively deformed monsters the relative connections between different organs are never so completely altered that it becomes impossible to distinguish them by the position which they occupy. Thus the heart has never been found in the craninm, nor the lungs in the pelvis.

Anomalies are more frequent in proportion as they do not affect vital organs nor iuterfere with any important functions. Thus we very commonly meet with irregularities in the course of bloodversels, since it eignifies lit+le through what channels the blood is eonveyed, so that it arrives at the organ which it is destined to supply. It has also been found that the parts most liable to vary are those which are the latest in attaining their complete evolution; and this fact may very readily be explained, for if the process of development be disturbed or arrested by sny cause during the course of footal life, those organs which are already nearly or fully formed at the time of the occurrence of such disturbing influence will be little or not at all altered, while on the contrary complete suppressiou or a very marked alteration may be effected in other parts whose formation has not commenced or is very imperfect. This fact has been explained in another manner, by supposing that different organs are subordinate in their formation one to another, one being produced by another whose development preceded it. Thus the suppression of any part will not influence those which have been previously formed, while it must necessarily lead to the complete absence of all those which ought to have followed it in the order of development.
A kind of compensation or balancing has sometimes been observed between different organs in monsters; excess of development in one part being accompanicd with a correspouding arrest of formation in some other organ. Thus an individual having several supernumerary fiugers or toes on one hand, frequently has the opposite limb furnished with fewer than the usual number, and monsters deprived of the brain have been observerl to have the face unusually large. Many other applications have been made of this law of compensation, as it has been termed by Gcoffroy St. Hilaire.

It has been said that the left side of the body is more frequently deformed than the right, and that a greater number of moasters beloug to the female than to the male sex, which last fact Meekel explains by the theory that the generative organs are in both sexes originally fomale, and that many monsters lemain of that sex by arrest of development, who, if naturally formed, would have been males.

For further information upon the subject of Monstrosity the reader may particularly consult Haller's troatise 'De Monstris ;' Meckel's 'Manual of Pathological Anatomy' (German); Geoffroy St. Hilairc's 'Anatomie Philosophique;' and his son Isidore Qeoffroy St. Hilaire's 'Histoire des Anomalies;' and Carpenter's 'IUuman Physiology.'
MONTACUTA, a genus of Aceóhalous Lamellibranchiate Mollusca, belongiag to the family Kelliade. The shell is small, thin, equivalve, inequilateral, transversely oblong or obliquely oval, surface smooth or concentrically striated, or rarely radiatingly furrowed; beaks inflected; inner margins smooth; linge-margin with a trigonal incision and cartilage pit, and a pair of diverging lamionr teeth in one or both valves; ligament internal; muscular scars suborbicular; paltial impression simple; animal oblong, its mantle freely open in front with simple margins, not furnished with siphonal tubes posteriorly; a single aiphonal orifice, or none; foot very large, stroug, and broad, furniahed with a byssal groove. Such are the characters of this somewhat unsatiafactory genus as given by Messrs. Forbes and Hanley. They enumerate three species as British-M. ferruginosa, M. bidentata, M. substriata.

MONTAGNA, Dr. Leach's name for a genus of Macrurous Crustaceans allied to Callianasarn.

MONTIA, a genus of I'lants named in honour of Dr. Joseph Monti, professor of botany and prefect of the medical garden at Bologna. Ile paid much attention to the scientific arrangement of the Graminacece and Cyperacer. IIe published also a catslogue of the plants in the botanic garden at Bologna, in which he described several new species.

The following are the principal works which he published :-_'Catalogi Stirpium agri Bononiensis Prodromus, Gramina et adfinia complectens,' Bononiæ, 1719, 4to; 'Indices Horti Bononiensis ad Usum Demonstrationum quæ in Horto Bononix quotannis habentur,' Bononix, 1724, 4 to.

The genus Montia belongs to the natural order Portulacece, and Las a persistent calyx of 2 sepals; a corolla 5 -parted with 3 eegments smaller than the others, with the tube split to the base in front; 3 stamens inserted in the throat and opposite to the smaller segments of the corolla; the ovary turbinate; the style very short; the stigmas 3 , downy; the capsule of 1 cell with 3 valves and 3 seeds. There is but one species of this geuus, M. fontana, which is a native of Great Britain. It is also found in North and South America in bogs, ponds, and ditches; and is commonly known by the vame of Water-Chickweed. It closely resembles the species of the genus Claytonia.
(Babington, Manual of British Botany.)
MONTICELLITE, a Mineral, occurring crystallised at Vesuvius. Primary form a right rhombic prism. Crystals small, and have usually the aspect of quartz. Colour generally yellowish. No cleavage planes have been observed. Hardness 5.0 to $6^{\circ} 0$. Sometimes nearly transparent and colourless. It has not been analysed.

MONTICULARIA. [MadRephylliœa.]
MONTIPORA. [Madreporda.]
Montivalitia. [Madrephyllica.]
MOON-SEED is the seed of various kinds of Menispermum, and is so called on account of its figure.

MOON-TVORT. [Botrychion.]
MOOR-BUZZARD, the English name for Circus ceruginosus of Aldrovandus and authors. [Falconidet.]

MOOR-COCK, one of the names of the Red Grouse. [TETRAONIDE.] MOOR-FOWL, one of the names of the Red Grouse. [TeTraonider.] MOOR-HEN, the common English namo for the Galliuule, or Water-Hen, Fulica chloropus, Lian. [Rallides.]

MOOR-TITLING, one of the names for the Chick-Stone, Stone. Chatter, Stone-Chat, Stone-Smith, and Stone-Smick, Saxicola rubicola, Bechstein. [SAxicola.]

MOOSE-DEER. [CERVIDE.]
MOSSES. [Musci.]
MORACEE, Morads, a natural order of Exogenous Plants which were formerly placed as a sub-order of Urticacea. The species are trees or shrubs, with a milky juice, sometimes climbing. The leaves are commonly lobed and rough. The flowers are small, monocious, and collected in heads, spikes, or catkins. The ovules are solitary and suspended. The embryo lies in the midat of fleshy albumen, hooked, with the radicle long, superior, folded dowo towards the cotyledons.

Although the Mulberry and Fig grow in Europe, all the Moraceet are extra-European. The species inbabit the temperate and tropical latitudes of both hemispheres, often forming vast forests. The genus Ficus is the most distinguishing feature of this order. [Ficus.] Most of the plauts of this order furnish caoutchouc. [India Rubber.] The fruit of the Mulberry is edible, and the leaves of the genus Morus are the food of the Silk-Worm. [Morus.] Several species of Dorstenia are used in medicine. [Dorstenia.] Other genera of this order yielding useful products are Broussonetia and Maclura. [Broussonetia; Maclura.]
This order embraces 8 geuera and 184 species.
MORCHELLA, a genus of Fungi, one of the species of which is eatable. M. esculenta, the Morel, springe pp in orchards, woods, aird cinder-walks, early in the spring and summer, and is believed to be most plentiful in places where fires have been made. The country people in Germany are so persuaded of this, that they formerly set fire to woods in order to obtain a crop of morels, of which they are very fond. At last the practice was put dowu by law. This fungus has a stalk from one to threc iuches long, and a spherical cap, from the size of a pigeon's egg to that of a swan's, hollow, pale-brown, or even gray, and deeply pitted all over its surface, the depressions being separated by raised anastomosing lines. The plant has a slight smell and an agreeable taste, and is employed for various purposes of cooking, both fresh and dried. In the former state it is most commonly stewed or stuffed with force-meat; iu the latter it is cmployed as an ingrodient in sauces. In this country it is of rather rare occurrence.
MOREL. [Monchella.]
MORILLON, one of thenames of the Golden Eye (Clangula vulgaris). [Ducks.]

MORINGA. [MORINGACES.]
MORINGACEA, Moringate, a small natural order of Exogenous Plants, embracing the species of the genus Moringa. They are characterised by the possession of a many-leaved calyx, perigynous petals and stamens, I-celled anthers, stipitate and concolidated siliquose fruit, and seeds without albumen. This order is referred by most botanists to a position near Leguminose, but Lindley places them in his Violales. They are natives of the East Indies and Arabia.
The root of Moringa pterygosperma has a pungent odour with a warm biting and somewhat aromatic taste. The geeds of this plant are called by the French Pois Queinques and Clicot. They are the Ben-Nuts of old writers, from which the Oil of Ben was extracted. It is chiefly used by perfumers as the basis of various scentsa It does not readily freeze and ou this account is used by watchmakers. The
fowera, leaven, nad other garts of this plaut are adled to curries in Indin.
(Lindleg Iegelahic Kingdom.)
MO'AliO, De Montfort'a name for Cassidaria Echinophora. [Fsstomostomita.]
MOBMON, Illiger'a namo for n genus of Alcade (Fraterchia of Prisson). [AUK.]
MonMols. [Cuminoterna]
MOROXITE. a Mineral, a variety of Phoquate of Jime. [Apatite.] MORPinNes, [Falconimen]
MORPHOLOGY in that branch of science which trents of the lawa which regulate the forms neanmed by Plantand Animals When :hin term was originally introduced into nntural history science, its application was confined to tho explanation of the changes which occur in the conversion of the leaves into the parts of the flower in plante. It is now however generally recognised as the acience of form in the organic kingdoms. Schleiden, in his 'Irinciples of Scientific Potany,' trents of what is usually called the structure of plants, under two heads, that in General and Special Morphologr. Tho following aro his definition and remarks upon this subject:-
"Morphology is the study of the forms of plants, and of their several parts. It is divisible into a general branch, which elucidates all that has referenco to plants and their organs in general, and a apecial branch. Which treats of plants accorling to their principal groulna as well as their individual organs; and this latter branch again is eeparable into two parallel sections, namely, the delineation of external form, and the delineation of intermal structure, or of the peculiar composition of planta and their parts from rarious tissucs.
"In my methodological introduction I have cadeavoured to show that the external morphology of plants is really the most important section of botany. A mere glance at tho history of the science will convince ans one of the truth of this view, for it is truly wonderful to observe how far it has succeeded, to the almost entire neglect of all other acientific knowledge, in taking possession of the materials by merely examining its exterior, and arranging it in such a manner thant the systens which in recent times have taken nother path-I allude to the anatomico-physiological-lave scarcely effected more than the introduction of extremely triting changes, in some instances clearly untensble, and others at beat of very doubtful validity. The morphological method of observation bas certainly, from the origin of the acience, been the basis of all treatises on botany: but those who have thus pursued it have becu far from taking a strictly acientific ries of the queation, or seeking in this way for the solution of its difficultics. This tank in twofold, at once empirical and theoretical. In its first character the stuly requires ns to easmine into and characterise the fundamental forms which, as trpes, or conceptions of generic and apecific whapes, constitute the basis of individual fornis. In its second character this study has to unfold the natural laws according to which thene types are firmed, and which control and explain the devintions that occur in individual forms from their prototypes. For the first or empirical part of our researchen, we may congratulate ourselves on haviog aome little information, althougla of a very fingmentary maturo; but in the second or theorotienl department we have scarcely even nn indiention to guide ur. That the solution of the difficulties must be Rought hy loginning from the simplest care is evideat, nad here Schwann line certainly shown eminent acutences in establishing tho amalogy between the formation of cryatals and that of cells; but unfortunately we lave not ret brought the law of crystalline formation into the dominion of acience. Thas at the present time we can do no more than apecify the problem prenented to botans, the solution of which ian alone to bo expected when the mathematical construction of the formation of crystaln lies perfectly complete before us. If however this in cyer to he effected, we musit enter upon all possible construction in a very different way from what has hitherto been doue. For this purpone we must connder somewhat more exactly the chameteristics of organic form, cяpecially the regetable, as opposed to the inorganic. The inorgnic forni, the eryctal, in promanent when once formed ; it in unchangeable ; the indivilunt (the individual existence) is the form itself, and by ita molution nad change "f form a new individual arises. In the plant, on the other hand, the form in not stable or permanent, lat an reerechanging one. The namagies between the two hold good only in the aimplest cares. 'rlae nuchena of a "ryatnl originatea in n definite form, num then prases through a series of forma, until it reaches the ite haved cryatnline form. An anch it then remains unchangeable until the" individual ix dentryyed with the form. 'Thus certainly it lins a very nimple hitury of development, but this continums merely so long no norinething ia atill being nddled to that which in ntrendy present, until tho whelo in completed. The cell in formm in a mananer momewhat natogerma to this, orikianting in odefinite form, and pareing through a narimy of clange, which, as it njpeare, only contribute dew matter until the furn in completo: thin then romaina atationsry until it rolntion ame the comacquenteleatruction of its individuality. It in however wholly diffremt in combined forma, nud theae it is which, with few pxortions, componn what we term jlante. Here a mimber of cella com. bine together within inforite paternal limita: but thene celle themedves do not enter int, the furm na dend jarticlea of the mana; they continue to develnp new cello. whint the old onea are partinlly destroyed: the uewly originated cctla chauge, liy their mrangement, the form of the
whole, and, since fermation of new parts and destruction of the old are continually going on, the general boundary of the whole never appears as anything definitely fixed. As, however, this metamorphosis is constant in its nature, nud only oocurs in individunl parts, wo cannot regarl each one of the form ronulting from this process as a new one, but merely as a slight morlification of the one immediately preceding it; and this peculiar connection brings the whole to un an ono individual, which, at its first appearance, may be entirely dillerent in all its parts, both in shape and material, from wiant it is at last; but in the conception of which te must comprehead the whole series of changing forma, wherein the widely distant members have perhaps no element identical, if wo would attain to scientific knowledge, if wo would understand the object, and not merely nequire a disjointed, uncomprehended, and ineomprehersiblo improssion. From these considerations it follow, granting the paramount importaneo of the morphological method of observation, that we gain nothing by the comprehensiou of the forms complete at any ono moment, but that we must trace out the law of morphological development, and direct our scientific inquiries, not to an individusl complete at any one period, but to the comprehension of the collective constant series of normally changing forms. The cenception of gencra and species in botsuy is consequentls, therefore, not merely the result of a comparison but niso of a connection of the various individual characteristics with each other. In this manner we should lay a firm foundation for the indnctions to lead us to a theory of orgnnic morphology, if wo could but succeed in completing the theory of the formation of inorganic forms As sel we nre fir from this point, and simply because it is only in tho most recent times, and yet very imperfectly, that the importance of the study of the history of derelopment has been acknowledged: nlthongh, without this, botany would bo wholly divented of all rcientific pribciple. This deficiency renders it impossible as yet to treat morphology with seientific logienl development, or in sccordance with n perfectly systematic mode of arrangemont, as will but too obviously appear in ny manner of treating this subject, although tho blamo of this is only partially to be imputed to me. It seems however practieable perfectly to state the problem, and to this end I subjoin the following remarks :-
"We have to construct the laws of morphological formation, and to delineate the forms themselves. The first remains for the preseut a mere problem, the snlution of which must be reserved for succeeding times. The second may be accomplished, although imperfectly. I sny imperfectly, because, instead of those complete series of development of which we ought alone to trent, we only know a fow individual conditions; and therefure the greatest portion of the task still lies unperformed before us. Here we must again diatinguish betweon1. Seriea of forms which occur in all or in very many plants of a very different nature, and may therefore expecially gervo as the foundation of the study of vegetable forms; that is, Geueral Morphology. 2. Series of forms which are only preculiar to definite groups of phants: special or Comparative Morphology. These two would farther branch off into the consideration of form without reference to its conposition from the differeut forms of the clementary organs: External Morphology; and into the cousideration of the manner in which forms are composed from individual tissues: Internal Morphology (the theory of structuro-'Comparativo Anatomy'). This last part falls however away from General Morphology: for all that we can, for the present at least, say is, that every plant is composed of the different forms of the clenzentary organs which have niready been trented of. Even with respect to the scoond part, in regard to Comparative Morphology, it appears to me unadvisablo to divide the two sections, on account of our deficiency of material; I shall, therefore, in the examination of the individual groups and parts of plants, subjoin all that is known concerning their structure."
In this work, in the description of the organs of plants, tho plan of Schleiden has been followed, and the morphology of tho separate organs of playts will be fonud under the head of each organ. Hlluatrations of the geneml laws of morpholozy will also bo found uador the heads of Metashomposis, Monetra, nad Unitit of Onganisation.
In the rame manner the lnws of morphology, as far as they are yel underntood in tho Aumal Kingdom, will be feund referred to in the descriptions of the grent families, nad in the auticles Mondesca and skhaztor.
No'kRHUA, n genus of Fishes of the orler Malacoplerygii nad Rection Subbrachialis. The Common Cod-Fish may be regarded as the type of this gonur, which alao contains tho Haddock and several other species, all of which have the ventral fins pointed, and rituated under or mither in advauce of tho pectorals; thrce dorsal fins, two aual fius, and the chin furnished with a barlmele.
J. rulgaris, Cuv. (Gudus Marriha, Linn.), tho Cormmon Cod, is usually about three feet in leugth, but anmetimes attains a much larger nize, sud weighs from 60 to 70 ths. 'The upper parts of the head and body are of an olive-hrown colour, mottled with yellowish; the under parts rnd tho lateral lines are white, nul the fins are dusky. The propertions of a specimen threo feet in length are ns follows:-The length of the head compared with thant of the boty (not including tho (nil-fin) in ns one to two and a half; the depth of the body in equal to the length of the head; the first dorsal fin commenees in a vertical line just hechind tho origin of tho pectorals; tho second dorsal
commences in a line over the anal opening, and terminates opposite the binder point of the first anal fin; the third dersal and the second anal both commence and terminate in the same vertical line; the tail is truncated.

The Cod-Fish is an inhabitant of the northern seas. In this country it is found on all parts of the coast; and "in the United Kingdom alone this fish, in the catching, curing, the partial consumption, and sale, supphes employment, food, and profit, to thousands of the human race."

The account of the mode of fishing, \&c., given in that most excellent work the 'History of British Fishes,' is as follows:-" The Cod-Fish is very voracious, a favourable circumstance for the fishermen, who experience little difficulty in taking them with almost any bait, whenever a favourable locality is ascertained. As these fishes generally inhabit deep water, from 25 to 40 and even 50 fathoms, and feed near the ground on various small fishes, worms, Crustacea, and Testacea, their capture is only attempted with lines and hooks. Two sorts of lines, adapted for two very different modes of fishing, are in common use. One mode is by deep-sea lines, called bulters, on the Cornish const; these are loog lines, with hooks fastened at regular distances along their whole length by shorter and smaller cords called snoods; these sooods are 6 feet long cach, and placed on the long line 12 feet from each other, to prevent the hooks becoming eatangled. Near the hooks these shorter lines, or snoods, are formed of separate threads loosely fastened together, to guard against the teeth of the fish. Some variations occur at different parts of the coast as to the number of hooks attached to the line, as well as in the length of the snood; but the distance on the long line betwoen two snoods is always double the leagth of the snood itself. Buoys, buoy-ropes, and anchors or grapples, are fixed one to each end of the long line. The hooks are baited with sand launce, limpet, whelk, \&c. The lines are always laid, or, as it is termed, shot, across the tide, for if the tide runs upon the ead of the line, it will force the hooks together, by which the whole tide's fishing is irrecoverably lost: they are deposited generally about the time of slack water, between each ebb and flow, and are taken up or liauled for exanination after having been left for about 6 hours, or one flood or ebb.
"An improvement upon this more common plan was some years ago suggested by Mr. Cobb, who was sent to the Shetlands by the Commisaioners appointed for the Improvement of the Fisheries. He fixed a small piece of cork within a certain distance of the book (about I2 inches), which suspended and floated the bait so as to prerent its falling on the ground, by which method the bait was more freely shown to the fish, by the constantand variable motion produced upon it by the tide. In the old way the bait was frequently hid from the fish by being covered with sea-weed, or was cansumed by some of the numerous star-fish and crabs that infest the ground.
"The fishermen, when not engaged in shooting, hauling, or rebaiting the long lines, fish with hand-lines, armed with two hooks kept apart by a strong piece of wire; each fisherman manages two lines, holding one line in each hand; a heary weight is attached to the lower end of the line, not far from the hooks, to keep the bait down near the ground, where the fish principally fecd. These two modes of line-fishing are practised to a great extent nearly all round the coast; and eaormous quantities of cod, haddock, whiting, coal-fish, pollack, hake, ling, torsk, and all the various flat-fish, usually called by the general name of white-fish, are taken.
"Of cod-fish alone the number taken in one day is very considerable; from 400 to 550 fish have been caught on the banks of Newfoundland in 10 or 11 hours by one man; and a master of fishing. vessels trading from the London market told me that eight men fishiog under his orders off the Dogger Bank, in 25 fathoms water, have taken eighty score of cod in one day. These are brought to Gravesend in stout cutter-rigged vessels of 80 or 100 tons burthen, called store-boata, built for this traffic, with a large well, in which the fish are preserved alive; and of these a portion is sent up to lillingagate market by each night-tide.
"Well-boata, for preserving alive the fish taken at sea, came into use in this country early in the last ccutury; they are said to have been first built at Harwich about 1712. The store-boats remain as low down as Gravesend, because the water there is sufficicntly mixed to keep the fish alive. If they were to come higher up, it would kill them.
"A change has lately taken place from the cod having shifted their ground. Formerly the Gravesend and Barking fishermen ohtained no cod nearer than the Orkneys or the Dogger Bank; but for the last two or three years the supply for the London market has been obtained by going no farther than the Lincolnshire and Norfolk coasts, and even between that and London, where previously very few fish could bo obtained
"In a natural state the cod spawns about February; aud nine millions of ova have been found in the roc of one female. The cod is in the greatest pericction as food from the end of October to Christmus. It may, in fact, he said of the whole of the family of Gadida, that they are in the best condition for the table in the cold months of the year. The young of the cod, about 6 inches long, abound at the mouth of the Thames and Medway throughout the summer: as autumn adrances they gain size aud strength, and are NAT. HIST. DIV. VOLe IH.
caught, from 12 to 16 inches in length, by liaes, vear the various sandbanks in the channel. When of whiting size, they are called Codlings and Skinners; and when larger, Tamlin Cod."
M. eglefinus, Cuv., the Haddock, a common fish in our markets, is of a smaller size than the cod, which it greatly resembles. In a specimen 20 inches long, the length of the head, compared with that of the body, without including the tail, is as one to two and a half; the depth of the body is less than the length of the head : the fins are situated nearly as in the cod, but they are proportionally higher, especially the anterior dorsal, which is pointed : the tail fin has its posterior edge emarginated. Its colour is usually paler than the common cod, the back is palish-brown, the belley is silvery white, and the lateral line is black; a blackish patch is situated on the side of the body behind the pectoral fios, and sometimes extends over the back, and unites with the corresponding spot on the opposite side; the dorsal fins and tail are grayish, and the pecteral and ventral fins are paler.

This fish frequeuts for the most part the same localities as the common cod, being found in the northern seas. It occurs all round the coast of Great Britain and Ireland, but is said not to exist either in the Baltic or Mediterranean. It is chiefly caught with long lines baited with pieces cut from a herring or sand-lannce.

In the 'Regne Animal,' it is said that when the Haddock is salted, it is called Hadou, after the English name Hadok; and in the "History of British Fishes,' Mr. Yarrell states, that "the French fishermen call the haddock Hadot," whence probably our name was derived.
M. callarias (Gadus callarias), the Dorse, the Variable Cod. This species is admitted by Mr. Yarrell into the list of British species although the only autheatic instances of its capture have been at Antrim and Cork in Ireland. It appears to be a well-known fish in the Baltic, and is frequently called the Baltic Cod. It differs from the commou Cod, and is subject to great varieties in its characters, bence its name of Variable Cod.
M. lusca (Asellus luscus, Willughby; Gadus luscus, Linnæus), the Bib-Pout and Whiting-Pout. The Bib and Pout have sometimes been regarded as different fishes, but Yarrell describes them as one. This fish is well known on the English coasts. From a dark spot at the origin of the pectoral fin in which it resembles the Whiting, it is often called Whitiog-Pout. It is called Pout, Bib, Blens, aud Bliads from the power it possesses of inflating a membrano which covers the eycs and other parts about the head. The flesh is excellent, and like most of the Gadidee it is best eaten in November and December. In form the Whiting Pout is the deepest for its length of the British Gadida. The upper jaw is the longest; the band of teeth of several rows, those forming the outer row the largest; under jaw with a single row; the barbule at the chiu rather long; various mucous pores about both jaws; the eyes large; the orbits covered with a loose membrane which the fish has the power of disteuding; the diameter of the eye equal to one-third of the length of the head; the irides orange colour; the dorsal aud abdominal lines exhibit considerable convexity; the body tapers rapidly from the line of the ending of the secood dorsal and first anal fius; the colour of the head, back, and upper part of the sides, a yellow reddish-brown, becoming lighter on the belly, and tinged in places with bluish-gray; at the base of the pectoral fins a black spot; scales small and deciduous; posterior half of the latcral line straight, then rising in a curve over the pectoral fin; all the fins, except the ventrals, dusky-brown; the veutials nearly white; the first anal Cin in large-sized specimens edged with fine blue.
M. minuta (Gadus minutus, Linnacus), the Poor or Power-Cod. Though similar to the Pout it differs in many poiats. It is not so deep when of the same length; the first anal fin does not begin so far forward as in the Pout by nearly the whole lengtin of the base of the first doreal fin; the longest rays of the third dorsal fiu and the secend anal fin are shorter than the bases of the respective fins, and do not, thercfore, produce the same vertically truncated appearauce as in the same relative fins of the Pout; and the barbule at the chin is much shorter.

This fish is abundant in the Baltic, where its presence rejoiocs the fishermen, as it is usunlly the precursor of the Cod. It is the smallest of the Cod family, and although on account of its size it is more usually employed for bait, it is very good eating. It is scarce in America.
(Yarrell, British Fishes.)
MORSE. [Phocide.]
MORUS, a genus of Plauts belonging to the natural order Moracca. The flowers are moncecions; the staminiferous flowers spiked; calyx 4 -parted, spreading, membranous; the stamens 4, larger than the calyx, with the rudiments of an ovary between their bases; the pistiliferous flowers clustered; sepals 4, scale-like, imbricating each other, 2 being opposite and external to the other 2; atigmas 2, linear, glandular; ovale solitary, suspended. Fruit consistiag of the latter flowers become fleshy and grown together, each inclosing a dry membranous pericarp. Sced pendulous; embryo curved like a herse-shoe, amongst fleshy albumen, with the radicle directed to the hilum. The species are trees.
M. nigra, the Black or Common Mulberry, is a small tree with very rugged bark. The young shoots are downy the leaves roundish,
conlate, pubeacent, coarsely sermated, rough to the touch, alightly acuminate; stipules oblong, membranous, downy, the longth of the petiole or louger, decidsons.

The Black Mulberry is the ouly specien of Morus worthy of being cultivated at a fruit-trec. It is a native of Yersia, and its indigenous range appears to bo extensive. lte introduction to this country dates about the midlle of the nixteenth century. Under great vicissitudea it proves very tenacious of life; sand under ordinary cirenmstances it attaina, even in this climate, a considerable age, for rome trees planted in I54s are still alive. The fruit is used at the dessert, fresh gathered, and at the kame time it ouglat to be so ripe as to be just ready to drop from the tree; indeed the fruit may be said to be in the highest perfection with regard to ripouess when it actually drops, and hence a grase plot surrounding the trunk is desirable; but the treos are found to thrive better when the soil is kept stirred; however, as grass will be gederally preferred, all strong-growing sorts of grasses ahould be avoided ; and it should also be kept very cloacly mowed till at least immediately before the fruit ripens. By this means the oun's rays will be permitted to penetrate the soil to a greater depth than when obatructed by a covering of long grass. Mnlbcrries are also preserved in the form of a syrup; and their juice, mixed with that of apples, forms a beverage of a deep port-wine colour, called Mulberry-Cider.

The soil for mulberry-trees should be of a light, rich, and moderately dry nature. If the eubsoil be not naturally pervious, it should be rendered as much so as is possible. A gool bottoming of brick rubbish will prove beneficial with regard both to the growth of the tree and the farour of the fruit.

Propagation of the Mulberry may be effected either by seeds, cuttidge, or layering. The last is the preferable mode, where it can be conreniently adopted; and the shoots or branches used for this purpose, as also those intended for cuttings, should be selected from those trees, or parts of a tree, that have been observed to be most fruitful; for although the plant is gencrally moncecious, get some trees occasionally assume a diccous character. Hence, likewise, seedling plants are not so desirable as those propagated from trees previously ascertained to bo prolific; and moreover seedling plants aro a greater number of yenrs in attaining a beariog state.

As the scquisition of n good mulberry-treo is very desirable, the following directions for obtaining a bearing tree readily and quickly will be useful. If a tolerably large branch of a vigorous tree is 'ringed,' and the annulation is inclosed in a box filled with rich soil, sufficiently large to hold as much as will preserve a somewhat uniform temperature, or at least an approximation to that which the roots of a tree natarnlly experience in the ground, roots will be readily emitted into the earth, and in due time the branch may be cut off and planted. A covering of moss is useful, partly for maintnining an equablo temperature, and partly for preserving moisture.

The Mulberry-Tree requires very little pruning beyond that of regulatlag the head. The geason for this operation should be alrays mid-winter; for if in a growing state, this plant bears amputation very ill, eapecially as regarda large limbs. Mulberries have been trained against south walla, over which a single plant has beon known to extend upwaris of ninety feet horizontally; additional size and flavour are said to havo been gained, but certainly not so much ovor a standard on a proper bottom as to compensato for the great extent of wall-room occupied.
M. alla, the White Mulberry, is a native of China, where it forms n small tree, and whence it has been gradually carried weatward till it has become s common plant in moat of the temperate parts of the Uld World, forming in the south of Europe a pollard-tree by roadsides. Its leaves are smooth and shining, usually heart-shaped at the base, and on old trees orate or oblong, but on young vigorous shoots as frequently divided into deep lobes The truit is white, insipid, and of little value except for feeding poultry ; in this country it is seldom formed. It in on this species that the silk-worm is chiefly fed; and in silk countries many varicties are cultivated for the purpose, somo of which are waid to be much better than others. The conmon wild kind is eaid to suit the silk-worm as well as or even better than any other kind; but as it yields only a manall quantity of foliage, compared with other norts, it is principally employed as the souroe of seeds from which stocka are raised for grafting more productive varieties. Of the latter each silk country las its own fancy kinds, which there would be little adrantage in noticing here; but there is among them an exception of importance, the value of which has been recognised wherever it has been cultivated. Some ycara since a mulberry was introduced into France from Manilla, whence it has gained the name of the Phillppine Mulberry, the great excellence of whiel aeerns univerally acknowledged. It has atraight smooth branclies, oval heartslaped leaves tapering to a point, thin, rather moft, a little blistered and prickered in the middle, often drooping, and nometimes more than nix or even nine inches broad in the dry elimate of the mouth of lirance. It growz much fanter than the Whito Mulberry, and atrikes from cuttings as frecly an n willow, which is not the case with the latter. The abundance of its leaves is much greater than any other known varicty, and, what is most imporinnt, it is not only freely eaten by the silkworma, but perfectly agrees with then. Its culture is now anperReding that of all outher in the muth of Furope, and it la even taken as a atock on which to graft the common White Mulberry, wheu the
latter is wished for. Acconding to Mf. Bonnfous thin may be done either upon layers of the Philippine Mulberry, headed down to one or two eyes above the ground, or upon cuttings seven or cight inchos long, which may be planted imuediately nfter having been grafted: the young plants will be five or six feet long the firat year, and three or four inches in circumference. This mulberry is eometimes called Morus multicaulis.
In this country the White Mulberry and all its varieties suffer a good deal from our winters, but not so much as to provent ito oultivation. Some years ago nn sttempt was made to introduce it and the rearing of silk worms into Oreat Britain; but tho sttompt failed, owing partly to unskilful management, but more to the soft juicy condition of the leaves in this damp climate, which rendered them unfit for the food of the worm.
(Loudon, Arborefum Britannicum.)
MOSANDFRITE, a Mineral belonging to the Cerium series It occurs massive and fibrous, and crystallised in flat prisms. Cleavarge in one direction distinct, in others indistinct. Colour dull reddish brown. Streak grayigh-brown. Hardness 4.0. Luntre of clearage face betreen vitreous and greasy; of other surfaces resinons. Thin splintors translucent, and showing a bright red colour by transmitted light. Specific gravity $\mathbf{2 . 9 3}$ to $\mathbf{2 . 9 8}$. It is found att Lammanskaret in Sweden. According to Erdmann it cansists mostly of silica, titanio acid, nud the oxides of cerium and lanthaninm, with some oxide of manganese, lime, a little magnesin, potash, and water.

MOSASAURUS, Mr. Conybesre' name for a gigantic extinct aquatic Saurian, the Saurochampan of Wagler. It was at first considered by Faujas St. Fond to be a Crocodile, but ita true position among the Ssurians was pointed out by Camper and confirmed by Cuvier. Indeed, previous to their investigations, the nearly perfect head of this Saurian, known as the great animal of Masestricht, and found near that city in the calcareous freestone forming the most recent deposit of the cretaceous formation, was a stumbling-block to naturalista, some of whom wero of opiniou that it was n whale. The zoologista last named, and eapecially Cuvier, have satisfactorily proved that it was a great marine reptile, and very nearly allied to the Monitor. [MonrToride.] The tecth are without true roots, not hollow as in the Crocodile, but solid throughout, and joined to the sockets by a broad bony basis, the result of the hardening of the pulp from which the teeth were formed, and likewise attached to the jaw by the ossif. cation of the pulp that had furnished the enamel. "This indurated capsule," writes Dr. Buckland, in his 'Bridgowater Treatise,' "passed bike a circular buttress around its base, tending to make the tooth an instrument of prodigious strength. The young tooth first appeared in a eeparate cell in the bone of the jaw, and movod irregularly acrose its aubstinnce until it pressed sgrainst the base of the old tooth; causing it gradually to become detached, together with its base, by a kind of necrosis, and to fall off like the horns of a deer. The teeth in the roof of tho mouth are also constructed on the same principle with those in the jaw, and renewed in like mannec."
The last-mentioned writer places its organisation and its zoological and geological relations In so interesting a point of view in the treatise above mentioned, that we select his account as the best calculated to inform the general as well as the philosophical reador on these points.
"The geological epoch at which the Mosasaurus first appeared seems to have been the last of the long series during which the oolitio and cretaceous groups were in process of formation. In these periods the inhabitants of our planet acem to have been principally marine, and sorne of the largest creatures were Saurians of gigantic stature, minny of them living in the sea, and controlling the excesaive increase of the then extensive tribes of fishes. From the lias upwards to the com mencement of the chalk formation the Ichihyosauri and Plcsiosauri were the tymants of the oceau; snd just at the point of time when their existence terminsted, during the deposition of the chalk, the nev genus Mosasaurus sppeara to have been introduced, to supply for n while their place and office, being iteslf destined in its turn to give place to the Celacea of the tertiary neriods. As no Saurinns of the present world are inhabitants of the sea, and the most powerful living representatives of this order, namely the Crocodiles, though living chiefly in water, have recourse to stratagem rather than speed for the capture of their piey, it may not be unprofitable to exsmine the mechanical contrivancos by which a reptile, moat nearly alliod to the Monitor, was mo constructed as to possess the power of moving in the sea with sufficient velocity to overtake and capture such large and powerful flahes as, from the enormous size of its tseth and jsws, we may conclude it was intended to derour. The head and teeth point out the near relstions of this animal to the Monitors; and the proportions maintained throughout all the other parts of tho skeleton warrant the conclusion that this inonstrous Monitor of the anclent decp was 25 feet in length, nlthough the longest of its modern congeners does not exceed 5 feet. Tho licad here represented measures 4 feet in length, that of the largeat Monitor does not exceed 5 inchea. The most akilful anstomist would be at a loss to devise a series of modifications by which a Monitor could be enlarged to the length and bulk of a Grampus, and at the samo time be fitted to move with strength and rapidity through the watera of the ses; yet in the fossil before ua we ahall find the genuine charactera of a Monitor maintained
throughout the whole skeleton, with such deviations only as tended to fit the animal for its marine existeuce.
"The Mosasaurus bad scarcely any character in common with the Crocodile, but resembled the Iguanas in having an apparatus of teeth fixed on the pterygoid bone, and placed in the roof of its mouth, as in many serpents and fishes, where they act as barbs to prevent the escape of their prey.
"The other parts of the skeleton follow the character indicated by the head. The vertebre are all concave in front sud convex behind; being fitted to each other by a ball and socket joint, admitting easy and universal flexion. From the centre of the back to the extremity of the tail they are destitute of articular apophyses, which are essential to support the back of animals that move on land: in this respect they agree with the vertebre of dolphins, and were calculated to facilitate the power of swimming; the vertebre of the neck allowed to that part also more flexibility than in the Crocodiles.
"The tail was flattened on each side, but higla and deep in the vertical direction, like the tail of a crocodile, forming a straight oar of immense strength to propel the body by horizontal movements analogous to those of skulling. Although the number of caudal vertebre was nearly the same as in the Monitor, the proportionate length of the tail was much diminiahed by the comparative shortness of the body of each vertebra; the effect of this variation being to give strength to a shorter tail as an organ for swimming; and a rapidity of movement, which would have been unsttainsble by the long and slender tail of the Monitor, which assists that animal in climbing. There is a further provision to give strength to the tail, by the chevron bones being soldered firmly to the body of each vertebra, as in fishes."

The total number of vertebre was 133, nesrly the same as in the Monitors, and more than double the number of those in the Crocodiles. The ribs had a single head, and were round, as in the family of Lizards. Of the extremities sufficient fragments have been found to prove that the Mosasaurus, instesd of legs, had four large paddles, resembling thore of the Plesiosaurus and the Whale: one great use of these was probably to assist in raising the animal to the surface, in order to breathe, as it epparently had not the horizontal tail by means of which the Cefacea ascend for this purpose. All these characters unite to show that the Mosasaurus was adapted to live entirely in the water, and that although it was of such vast proportions compared with the living gencra of these families, it formed a liuk intermediate between the Monitors and the Iguanas. However strange it may appear to find its dimensions so much exceeding those of any cxisting lizards, or to find marine genera in the order of Saurians, iu which there exista at this time no species capable of living in the sea; it is scarcely less strange than the analogous devistions in the Megalosaurus and Iguanodon, which afford examples of still greater expension of the type of the Monitor and Iguana into colossal forms adapted to move npon the land. Throughout all these variations of proportions, we trace the persistence of the same laws which regulate the formation of living genera, and from the combinations of perfect mechanism that have in all times resulted from their operation, we infer the perfection of the wisdom by which all this mechanism was designed, and the immensity of the power by which it has ever bcen upheld.
"Cuvier asserts of the Mosasaurus, that before he had seen a single vertebra, or a bone of suy of its extremities, he was enabled to announce the character of the entire skeleton from the examination of the jaws and teeth alone, and even from a single tooth. The power of doing this resulte from those magnificent lsws of co-existence which form the basis of the science of comparative anatomy, and which give the highest interest to its discoveries."

Ifead of Jososaurus Cumperi (Lacerta gigantea of Sümmering).
The noble specimen from which the cut is taken was discovered in 1780, and is in the Museum at Paris. At the capture of Maestricht by the French army it was given up to them for the purposs of being placed in the museum, according to Cuvier, by Goddio, dean of the chapter of that towa, which, in virtue of some droits of the chapter, had taken it from Hoffman, of whobe collection it formed the principal feature. It is said that the French cannoneers had directions not to point their artillery towards that part of the town in which this precious specimen was deposited.
A cast of the above specimen, prescnted by Baron Cuvier to

Dr. Mantell, is now in the British Museum. In the same collection is also part of a lower jaw of Mosasaurus, presented by Dr. Peter Camper in 1784. There are also several vertebre found by Dr. Mantell in the Chalk of Lewes. Casts are also preserved in the museums of the Geological Society and of the Royal College of Surgeons. Teeth in every respect similar to those found in the Maestricht reptile have been discovered by Dr. Harlan in Philadelphia, and other remains of this suimal have been found in the same district.
(Msutell, Fossils of the British MI useum.)

MOSCHATA. [AcTINLAD王]

MO'SCHID E, a family of Ruminant Quadrupeds familiarly known as Musk-Deer.
Linnæus defines the genus Moschus, which he places between Camelus and Cervus, under his order Pecora, as having no horus, and the upper canine teeth solitary and exserted-"Cornua nulla. Dentes Laniarii Superiores solitarii, exserti."
Pemmant, in the 'Systematic Iadex,' gives it nearly the bame positiou, the only difference being that the Deer precedes it, and the Camel follows it.

Curier, in his last edition of the 'Règne Animal,' gives it the same position that Linurus assigned to it; the Llamas (smong the Camels) immediately preceding it, sud the Deer (Cervus, Linn.) being next in succession to it. The French zoologist states that the Musks are much less anomalous than the Camels, and only differ from the other Ruminants in the absence of horns, in having a loag canine tooth on each side of the upper jaw, which comes out of the mouth in the males, and finally, iu heving in their skeleton a slight fibula, which has no existence in the Camels. He adds that they are charming animals in regard to their elegance and lightaess. The distiaction of the exserted upper canine tooth, noticed by Cuvier, is not confined to the Musks; such a conformation exists in some of the males of the Cervidar, the Munjak for instance.

Mr. Swainson is of opinion that the Moschida, or Musk-Deer, constitute the most aberrant group of the Ruminants, and he places them between the Cervides and the Camelopardae, the last family being the terminating group of his fourth tribe, or Ruminants.
M. F. Cuvier enumerates Moschus Moschiferus, M. Meminna, M. руgmєия, M. Javanicus, and M. Napu, as the only species known at present.

Dr. J. E. Gray, iu his 'Disposition of the Mammalia' ('Annals of Phil.,' 1825), divides the family Bovide into two sections, the first with persistent horns, and the second with either no horns or deciduous horns. [Bovides.] He makes Maschina the fourth oub-family, and arranges it between Camelina and Cervina, in the second section. The genera of Moschina, in this arrangement, are Moschus and Meminna. The same suthor, in June, 1836, read to the Zoological Society of London some observations 'On the genus Moschus of Linnwus, with descriptions of two new species.' He remarked that the oaly character by which this genus, as established by Linnous and others, differs from the genus Cervus, consists in the absence of horns; for the elongated canines are common to it and most of the Indian species of Cerrus, especially the C. Muntjac. [Cervide.]

The character of the fur, the degree of hairiness or askedness of the metatarsus, and the presence or absence of the musk-bag of the male, offer however, he observed, good characters for the sub-division of the group into three very distiact sections or sub-genera.
The first of these divisions, for which Dr. Gray would retain the name of Moschus, comprehends only the Tibet Musk, M. Moschiferus, Linn. In common with the Deer and Antelopes, it has, be pointed out, the hinder and outer side of the metatarsus covered with close erect hair, and, like many of the Deer also, its fur is quill-like and brittle; the throat moreover is entirely clothed with hair, and the males are provided on the middle of the abdomen with a large pouch secreting musk. Its young, like those of most of the Deer, are spotted, whilst the adult animal is plain-coloured.
Dr. Gray further stated that the division to which, in the year 1821, in a paper in the 'Medical Repository,' he gave the name of Meminna, also consists of but a single species, the Moschus Meminna, Linn. In this group the hinder edge of the metatarsus is, he ohserved, covered with hair; and there is no musk-beg in either sex. The false hoofs, he remarked, are distinct, although Linneus and Buffon denied their presence.
The third and last sub-division is characterised by Dr. Gray, under the name of Tragulus, as having the hinder edge of the metatarsus nearly bald and slightly callous, a character which distinguishes them at once from all other Ruminants; the fur is eoft, and adpressed like that of Meminna, but not spotted even when young; the throat is provided with a somewhat naked, concave, sub-glandulsr, callous disc, placed between the rami of the lower jaw, from which a band extends to the fore part of the chin; and they have no musk-bag. Like all the other species of the Linnæan genus Moschus, they have false hoofs; and most of them have the edges of the lower jaw, three diverging bands on the chest, and the under surface of the body, more or less purely white. The apecies of this division scarcely differ in colour in the various stages of their growth, the young fawn resembling the adult in every particular except in size.

In this division, the synonymy of which is stated to be extrensely coufused, Dr. Gray reckons four epecies, two of which he describes as
new. Jr. Gray stated that he was unable to identify with any of the four species mentioned by him on this oceasion, or to separate from thena ns Jinkioct, the Palendoc, Ggured in Maraden's 'Sumatra,' or I'ygmy Mugk of Sumstra, figured in Mr. Griffith's edition of Cuvier's 'Animal Kingdon,' on which Fiacher has established lis Moschus Giriththii. The M. pugmerns of Linnwus, in Dr. Gray's opidion, belougs to the genus Amilope: the hided part of the taraun being covered with hair, and the falso hoofa wery small and rudimentary, and eatirely hiddeo under the lair of the fect. Ho thinks that the M. Americanus sppears by its spotted livery to belong to a specios of Deer; and that the M. deicatulus, or Leverian Musk of Shaw, is undoubtedly tho fawn of a deer. Dr. Gray further ohserved that it is curious that Dr. Shaw quotes as a synonym of the last-named species the figure of Seba, on which alone the M. Americanus is fonuded, while at the rane time he cummerates the M. A mericanus as a distinot aprecies (${ }^{(2001 . ~ P r o c ., ' ~ 1836 .) ~}$

In the same jear Mr. Ogilhy, in his paper on the 'Ruminantia,' read before the Zoological Society, makes the Maschide the third family of that order, with the following eharacter:-
Feet bisuleate; horns none ; jucisor teeth (primores), above none, benenth eight. Two genera

1. Moschus.-Rhinaria large. Laebrymal sinuses pone ; interdigital rosare none ; inguinal follicles noue; teats four. T'ype M. Moschiferus.
2. Jxalus ().-Rhinaria none. Lachrymal ainuses smsll aod distinet; interligital fosser none; inguiusl follicess small; teats two. Type, I. Probaton ('Zool. Proc,' part iv. p. 119.)

Mr. Ogilby goes on to state thast the genus Jxalus, founded upou the observation of a siogle apecimen, may eventually prove to belong to a different family: and indeed he observes that it differs little from the trus antelopes; but eveo supposiog it to be correctly placed among the Moschide, other forma, Mr. Ogilby remarka, are still wanting to fill up the chasms which evidently exist among the charaoters of that group. "Two," contiouea Mr. Ogilby, "are more eapecinlly indicated, and our knowledge of the laws of organic combination, and of the constitnent parts of other groups, gives us every reasou to believe in their actual existence, and to snticipate their discovery." He then proceeds to characterise the genera Hinnulus and Caprealus, ubserving that they will probably be found, one in the tropical forests of the Indian Archipelago, aud the other on the elevsted table-lands of Mexico or South America.
"It may appear a bold, perhaps a presumptuous undertaking," says Mr. Ogillyy, "thus to prediet the diseovery of species and defioe the characters of genera, of whose actual existence we have no positive knowledge; but, as slready remarked, nll the nualogies of nature, whether derived from organic combination, or from the constituent membere of similar groups, are in favour of the supposition; and I may observe further, that the recent discovery of the genus Jxalus, if indeed it eventually prove to be a genus, of whieh I had long previossly defined the characters, as I have here done for the presumed genera Ilinnulus and Copreolus, atrengthens my belief in the netual existence of thene forma, and increnses the probability of their future discovery." The fannily is placed by Mr. Ogilby between the Cervilie and Caprider.

The aame author makea Tragulus (type Antilope pygmea) the first genus of his family Boride.

The Moschicle do not differ mach from the other Ruminants; the leading difterencen aro given above, and the general osseous structure of the form may be collected from the following ents:-

Qkeleton of Muschun Joachiferws.

Dental Formula :-Incisora, $\frac{0}{8}$; Canines, $\frac{1-1}{0-0} ;$ Molara $\frac{6-6}{6-6}=34$.

The canine teeth go far back into the upper jaw, as will be scen from the following figure of one of them. It is not impossihle that the co-ealled csaine teeth of l'rsus cultridens may be the caniue teeth of an extinet ruminant allied to this family, or that of the Cervida. [Machamodes.]

> Canine Tooth of Wrosches Mosehiferus.

Moschus Moschiferus, the Musk, or Tihet Musk. It has somewhat of the form of a loebuck; but higher behind than it is at the shoulder, from the upper part of which to the role of the foot it mesarres about 2 feet 3 inches; whilst from the top of the haunches to the soles of the hind feet the measurement is about 2 feet 9 inches. lenrs long and rather narrow, in the inside palc-gellow and dark-brown outside. Hair on the body subereet, long, oach hair marked with short wavea from top to bottom, ash-coloured near the base, hlack or blackisli near the end, and rusty at the tips. Chin yellow. The colourn wing. Most of the alults are plain-eoloured. In some, and such is the individual figured by Pennaut, the fore part of the neek is marked on each side with long white stripes from the head to the chest, the back striped transversely with pale-brown renching to the sides, which are alao dappled with a lighter colour. Hoofs very long and deeply divided, apurious hoofs very long. Thil abont an inch long, concenled in the hair. Scrotuna ratilum. Penis vix percipiendus. (Pennant.)

Female lens than the male, and wants the two turks.
Young, spotted.
The Musk is a monatain animsl, timid and shy, sod a lover of solitude. Preejpices covered with pines and almost inaccessible crags are its favourite hanots; and the musk-hunter often perils his life in the dangeroun chane; for when hotly pursued the anlmal takea refuge frequently in the highest fastnesser, leaving men and doga with scarcely
the possibility of access to the precipitous aummits to which it flies. And yet the alaughter mada among them must at one time have been great, and the animala abundant; for Tavernier bought in one journey 7673 musk-bags. The bag, or tumer, containing this well-knowa drug is peculiar to the male: it is kidney-shaped, pendulous, of the size of a hen's egg, and aituated beneath the abdomen. There are said to be two apertures, the larger oblong, the amaller round, and covered with hair : and on the application of pressure the musk may be forced through the apertures. It is brown and unctuous. This bag the hunters cut off, and tie it up for sale, but, like everything that is calculated for the use of man and is the object of commerce, it is said to be adulterated by the admixture of foreign matter, and pieces of lead are stated to have been found enveloped in it, for the purpose of increasing the weight. The musk which comes from Tibat is considerel the best, and used to bear the highest price; the bag is more or less full, and the quality more or lesa good, according to the age and health of the animal. When dry, musk is dark-brown, inclining to red, or rusty-black, and appears more or less granulated. To the taste it is rather bitter and somewhat acrid. It is perhaps the atrongest and most pungent of perfumes, and so subtle that every thing near it becomes infected, and for a long tima retains the odour; vessela of silver even, a metal which, as much as if not more than others, readily becomes purified from odorona subatances, do not part with the scent of musk, which may have been placed iu them, for a long time. When fresh, or exposed in large qusutities, its effects upon the nervous aystem are said to be absolutely violent; and it is stated that blood has been forced from the nose, eyes, and eara, of those who have imprudently iuhaled the vapour of a considerable quantity. When Chardin made his purchsses, he secured himsclf from the sudden effects of the smeli by covering his face with a handkerchief several times folded. The mere skin of the animal filla the place where it is kept with the perfume for a long period. In medicine it is used for nervons and convulaive casea in considerable doses. The flesh of the animale, though that of the males is rather highly flavoured with musk, is eaten by the Russians and Tartars. In rutting-time this flavour is most predominant.

It is a native of Tibet; the province of Mohang Meag in Chida; Tonquin, and Bootan; about the lake Bailkal; and near the rivers Yenesei and Argun. Found from lat. 60° to 44° or 45°; but never wanders so far south, except when forced through hunger, by great falls of suow, when it migrates to feed on corn snd new-grown rice. (Pemant.)

Musk, or Tibet Musk (3ivschus Mroschiferus).
The deacription given by Linnaus of this speciea is an example of his great neatness. He describes the Tibet Musk as Moschus folliculoumbilicali; and this ia the diatinction of the species, as far as we yet know. It does not appear to have beeu known to the ancients, but seems to have been first inentioned by the Arabians. Serapion rescribed it in the 8 th century.

There are three other apcciea of Moschus-M. Sibivicus, the Kubaya, a native of Siberia; M. leucogaster, the White-Bellied Musk, a native of Nepaul; M. chrysogaster, the Golden-Eyed Musk, also from Nepaul. 'Ithe Moschus aquaticus, Ogilhy, the Boomorah of West Africa, is the Hyemoschus aquaticus of Gray.

Meminna Indica (Moschus Meminna, Linu.). It is the ouly spccies known.

Length about 1% inches. Ashy-olive; throat, breast, and belly white, sides and hanches apotted and barred transversely with white: ears large and open, tail very short. Weight about 5 l lbs.

It is a native of Ceylon and Java. (Pennant.) Colonel Sykes informs us that it is the Pecsorel of the Mahrattas, and that it is found
in considerable numbers in the deuse woods of the Westeru Ghauts, but never on the plains. ('Zool. Proc.,' 1831.) Pennant described it from a drawing communicated by Governor Loten, of Ceylon.

Tragulus Javanicus, Pallas (Moschus Javanicus, Gmelin and Rafles; M. Napu, F. Cuvier), is the size of a large hare. Body heavy. Limba very delicate. Head arched and long. Eyes large, but not expressivf. General colour brown mixed with blackinlı-gray or yellow reflections; ysllow predominating along the back and tail, on the legs, the neck, and head; the gray and black prevail on the lower part of the shoulders, on the sides, and thighs. These different tints are the result of the colouring of the hairs, which on those parts which are ycllow are of that colour for the greatest part of their length and black at the point, and where the hairs lie very thick and one on the other, some of the parta sppear black. Lower jaw white; two white lines which spring from it extend thence beyond the cheeks; two other white banda apring from the same point as the first, and temninate at the shoulders; a middle band descends on the breast, widening in its descent, and is lost in the white of that part. The upper edge of the first two white bauds is bordered with hlack, and the other bands are all separated from each other by hairs of a browuish-black colour. Belly, anterior and upper part of the hind lega, pasterior and upper part of the fore legs, and the under part of the tail, white. End of the muzzle naked. Eyes surrounded with a naked part, from which springs a band without hairs which goes to the muzzle. These naked parts are black with a alight tint inclining to violet. The toes are united, by a rather loose membranc, nearly to the origin of the hoofa, which are very long and pointed; the apurious hoofa are also long, cylindrical, and pointed. Length about 24 inchcs. Height to the shoulder rather more than 9 inches, to the top of the haunches rather more thau a foot.

Mr. Beunett observes that M. F. Cuvier regards five radiating banda as the distinctive character of the $N a p u$, and threa as that of the Kanchil; whercas, in truth, the number is the same in both, and the difference is only in their disposition.
The Napu comes from Java aud Sumatra.
Sir Stanford Raffles states that this species frequents thickets near the sea-sbore and feeds principally upon the berries of a species of

Ardiria. Ho mulds that it can be easily trained, when taken young, and will become quite familiar,

Napu (Tragulms ,laranicus).
Dr. Gray refers also to this genus Moschus Kanchil (Javan Musk of Shaw, Le Cherrotain de Jara of Buffon); J/. fulrirenter (Le jeune Chevrotain of Buffon) ; and M. Stanleyamns, of which last, in i 586 , there were four living specimens in the magnifieent collection of the Farl of Duby at Knowsley; and two others, consisting of a specimen of each of the varietier, in that of the \%oological Society of london, tho gift of her present Majesty. With the exception of the last, whone locality is not known, theso sre Oriental, the Kanchil being an inbabitnt of Jara, aud the Trayulus fulvirenter a native of the Malacea Islands and the Eiast Indian Peninsula, but the habitat of T. futrirenter is given by Dr. Gray with a query.

Fossil Moschiele.-The following apecies nre recorded: M. antiquus, Kaup (Eppleshein Sand); M. Bergalensis (Tertiary, nortli-cnst border of Beagal, Peatland); M. Prattii (Tertiruy, Isle of Wight, Pratt). Dr. Schinz also mentions the teeth of theso ruminating animals as occurring in the Tertiary Coal of Zuirich; of which, one, he mays, is scarcely larger than the teeth of the small musk; the other belonga to n species of leer. Hemains of Moschus are alro mentioned by Jiger (Tertiary, lenn Iron-ore (Polnerz) of the Jiah Alp).

MOSQUITU, n term applied to certain stinging plies belonging in all probability to several distinct genern. The mosquitoes are either gnata or gnat-like insects, which are furnished with a proboscis adapted for piercing the thesh, and at the same time forming a kind of siphon throngh which the blood flows; this instrument moreover iojecta into the wound which it makes a poison which causes intlammation.

Many inrects callod Mosquitoes probably belong to tho same tribe as the Common Gnat (Culer, Jimn.) ; Jlumboldt however nsserts that the insects known by that mate in America belong to tho genus Simulium, and that the Culices, which aro equally numerous and annoying, sure called Kancudoes, which means long legn. The former are whit the krench call Moustiques, and the latter Cousins.

The genus Simulium, accoreling to Macquart ("Suites a Buffon; llist Nint. des Insectes-Diptères'), belongs to the family Tipularice nnd section Tipularieviorales, and in thu characterised:-Fourth joint of the palpi rather elongnted nnd sleuder; nntenne eylindrical, 11 jointed; cyes round, ocelli wanting; basal joint of tho tarsi as long an the others taken together; winga very broad, basn and marginal cella very narrow.
M. Maequart. in his account of the habits of the species of this genua, nays, "They frequent the leaves of shrubs under trees, nnd live upon the juices found uron thobe leaves, especially such as are produced by the plant-lice; they do not however contine thematves to this timd of nourishment, but when opportunity oflem, like goats, they suck the blood of animala, nut protuce an equally painful wound. Their proboncis is mush lesu complicated than that of the gnatn, corninting. sh in other Tipulariom, userely of a labrum nod lingua; theme parta liowever are more developed than usual. Thea minute fien are constantly io notion, and in runoing apply the whole nolo of the anterior tarata to the plave upon which they may be moving: they moreover nppent to use their fore legs an feclers"

The following in an account of tho structure of C'uler. Mosquito, the Mospuito of the Americana, by an American observer:-
"'The male nonquito diflers considerably, as is well known, from the female; him body being smaller and of 4 darker colour, nud his hoal furmishal with antennie rand palpi in a state of greater developnent Notwilhstanting the fitness of his organs for predatory purpones he is tirnid, wellom entering dwellinga or manoying man, lant reatricta limaelf to damp and foul placen, capecially sinkn and privies. The femaln, on tho other hand, gives grenter extension to her flight, and, attacking our race, in the occasion of no iucon-
siderable disturbance and vesation during the summer and autumn months.
"The head of the male mosquito, about 0.67 mm . [millimetres] wide, is provided with luante eges, between which in frout superiorly are found two pyriform capsules nearly touchlag each other, and laving implanted into them tho very remarkablo antenne.
"The capusule, measuring nbout 0.21 mm ., is composed of a homy substance, and is attached posteriorly by ils pedicle, while anteriorly it resta upon a horny rung, united with its fellow by a transverse fenestrated band, and to which it is joined by a thin elastio membrane. Externally it has a rounded form, but internally it resembles a certain sort of lamp-shade with a constriction near ita middle; and betreen this inner cup sod outer globe there exista a space, excepat at the bottom or prosimal end, where both are united.
"The antemse are of nearly equal length in the male and the female.
"It the malo the antenma is about 1.75 mm . in length, and consists of 14 joints, 12 short and nearly equal, and 2 long aud equal, terminal ones, the latter measuring together 0.70 mm . Fach of the shorter joints has n femestrated skeleton with an external investment, and terminates simply posteriorly, but ia encircled anteriorly with about 40 papilla upon which are implanked long aud stiff hairs, the proximal sets being about 0.59 mm . and the distal ones 0.70 mm . in length; aud it is beset with minute bristles in front of each whorl.
"The two last joints lave each a whorl of about 20 ehort heirs near the base.
"In the female the joints no nearly equal, number but 13, and have each a whorl of about a dozen small haira around the base. Here, as well as in the mase, the parts of the antenne cnjoy a limited notion upon each other, except the bssnl joint, which, being fixed, moves with the capsule upon which it is implanted.
"The space between the inner nod outer walls of tho eapsule, which we term confidently the auditory capsule, is filled with a fluid of moderate consistency, opalescent, and containing minuto spherical corpuscles, sud which probably benrs the same relation to the nerre as does the lymph in the scalre of the cochles of higher animals. The nerve itgelf of the antena proceeds from the first or cerebral ganglion, advances towards the pedicle of the capale in company with the large trachen which sends its ramifications throughont the entire npparatuz, aisd, penctrating the pedicle, ita filamenta divide into two portions. The central threads continue forwards into the antenon and are lost there; the peripheral ones, on the contrary, radiate outwards in evely direction, enter the capsular space, and are lodged for more than half their length in sulci wrought in the inner wall or cup of the capsule.
"In the female the disposition of parts is observed to be nearly the same, excepting that the capsule is smaller, and that the last distal antennal joint is rudimental.
"The proboscis does not differ minterinlly in the two sexes; but the palpi, although consisting in both instances of the samo number of pieces are rery uulike. In the female they are extremely short, but in the male nttain the length of 2.73 mm ; while the probuscis measures but 2.16 mm . 'They are curved upwards at the extremity.
"If an organ of hearing, similar to that described by Treviranus as belonging to the Blatta orientalis, exist in tho head of the Mosquito, the tympanum must be of exquisitely minnte proportions, because the head, which has a diameter of only 0.67 mm ., is almost entirely occupied by tho corneal plaquer, tho capsules, and tho attachments of the neck and of the buccal apparatus. Tho membrana tympani must therefore be so small as to preclude the ider of its being put in vibration by my sounda other than those infinitely move acute than nre produced hy the insect itself, and the use of anch an organ for the purposes of intercommmication must be highly problematical. But no trace of such a disposition is to be fonnd in the hend, por very certainly, also, in the body; nad we are obliged to look for some organ which may auswer tho requirements of au effective auditory apparatus.
"The position of the caphules strikes us as extremely favourable for the performance of the function which we assign to them; besides which there present themaelves in the same light the anatomical armugensent of the capsules, the disposition and lodgment of the nerves, the fituces of the expanded whorls for receiving, and of tho jointed antenne fixed by the immovenble basnl joint for transmitting, vibrstions createl by sonorous modulations The intrn-capsular fluid is impressed by the shock, the expanded nerve apprecistes the effect, of the sound, ard the animal may judge of the intensity, or distance, of the source of sound, by the quantity of the impression: of the giteh, or quality, by the consonance of particular whorla of the stiff liniry, eccurding to their lengths; nad of the direction in which the molulations travel, by the manuer it which they striko upon the natenuse, or may be mado to mect cither antenna, in conseguence of an opposite movement of that part.
"That the male should be codowed with superior aculcuess of tho seno of hearing nuperars from the fact, that he must seek the fernale for sexunl union either in the dim twilight or in the dark night, when nothing knve her dwep sharp humming noise can aerve him as a guide. The necessity for nu equal perfection of hearing does not cxist in the
female; and accordiugly we find that the organs of the one attain to a development which the others never reach. In these views we believe ourselves to be borne out by direct experiment, in connection with which we may allude to the greater difficulty of catching the male Mosquito.
"In the course of our observations we have arrived at the conclusion that the antennæ serre, to a considcrable extent, as organs of touch in the female: for the palpi are extremely short, while the autenne are very moveable, and nearly equal the proboscis in length. In the male however the length and perfect development of the palpi would lead us to look for the seat of the tactile sense elsewhere; and in fact we find the two apical antennal joints to be long, moveable, and comparatively free from hairs; and the relative motion of the remaining joints very mnch more limited." (Dr. Christopher Johnston, Quarlerly Journal of Microscopical Science.)

MIOSS-AGATE. [Agate.]
MOSSES, [Muscl]
MOTACILLA. [Blue-Bird; Blue-Breast; Erythaca; Motacrlemere.]

MOTACILLINE, or MOTACILLIDE, a sub-family of Birds belonging to the family Sylviade. [Srcviade.] They are an active graceful race, tripping it along the smooth shaven grassplots, edges of ponds, and sandy river-shores in unwearied scarch for their insect-food, and with tails which never cease to vibrate as long as their restless little bodies are in action. The species are natives of the Old World only-Europe, Asia, and Africa. At least the form does not appear to have been hitherto detected in America, and that continent has now been much searched by zoologisth.

The genus Motacilla, as it was left by Linnens, in his last edition of the "Systeraa Nature,' comprised the following species:-

M. luscinia.	M. iclerocephala.
M. calidris.	M. Dominica.
M. nodularis.	M. Canadensis.
M. achemolenus.	M. maderaspatanc.
M. campedtris.	M. aurocapilla.
M. curruca.	M. petechia.
M. hippolais.	M. dumetomun.
M. salicaria.	M. cinnamomet.
M. sylvia.	M. caparata.
M. ficedula.	M. phomicurus.
M. alba.	M. erithacus.
M. glara.	M. guira.
M. Siphia.	M. Suecica.
M. stapazina.	M. sialis.
M. enanthe.	M. fulicata.
M. rubetra.	M. Cayana.
M. rubicola.	M. velia.
M. atricapille.	M. carulea.
M. Pennsylvanica.	M. sibilla.
M. chrysoptera.	M. rubecula.
M. coronata.	M. troglodytes.
M. Senegalensis.	M. calendula.
M. varia.	M. regulus.
M. Capensis.	M. erochilus.

Here we find assembled with the true Wagtails, the Nightiugate, the Redstart, the Robin, the Wren, the Whitethroat, the Black-Cap, the Stonechat, the Blue-Bird, the Hedge and other warblers, and the Golden-Crested Wren.

It may well be supposed that many a group, not to say family, has been formed at the expense of this genus Motacilla; and iu this work the arrangements of more modern ornithologists will be found under the title Sylviade..

In the present article we propose to restrict ourselves to the True Wagtails.

These have been thus sub-divided by Cuvier :-

1. Les Hochequeues (Motacille, Bechst.). -The Wagtails, according to Cuvier, join to a bill still more slender than that of the Fauvettes, a long tail which they elevate and deprees incessantly, lengthened legs, and, especially, scapular feathers long onough to cover the end of the wing when folded, which gives them a certain degree of aproximation to the greater part of the Waders. The following are Cuvier's sub-divisions:-
2. The Wrgtails properly no called, or Lavandiercs. (Motacilla, Cuv.).-These have still the claw of the hind-too curved like the other Bec-Fins. They live near the water-side. Ex. M. alla.
3. The Bergeronettes (Bulytes, Cuv.). The Bergeronettes have, with the other characters of the Lavandicres, the claw of the hiod toe elongated and but little arched, which approximates them to the Pipits. [Astuus; Alateine.] They haunt pastures and seck for insects among the flocks, whence their Fronch namc. Ex. M. (Bulytes) flaca.
The genus Motacilla thus limited, jncluding the sub-gonus Budytes may be thus characterised :-Bill slender, subulate, straight, carinated, aogulated between the nostrils, cmarginated at the tip; the edges of both mandibles slightly comprossed inwards. Nostrils bassl, lateral, oval, and partly concealed by a naked membranc. Wings of moderate size; the first quill-feather the longest, the second and third cqual in
length and nearly as long as the first; the tertials very long. Tarsus much longer than the middle toc; the outer toe of the three in front joined to the middle toe at its base; the claw of the hind-toe sometimes elongated. Tail, of 12 feathers, long and nearly even at the end. (Yarrell.)
M. Yarrellii (Gould), the Picd Wagtail.-Spring Plumage.-Male.Forehead, cheeks, sides of the neck, and lower parts, pure white; occiput, nape, throat, breast, feathers of the middle of the tail and its upper coverts, deep black; back and sides ash-colour, coverts of the wings blackish bordered with white; the two external tail-feathers white. Length rather more than seven inches.

Female.-Forehead and cheeks of a less clear whitc; the black pateh on the occiput less, aud the borders of the wing-coverts verging to gray.

Complete Winter Plumage.-Throat and front of the neck pure white, spotless; on the lower part of the neck a deep black band, the sides of which ascend towards the throat. The ash-colour of the upper parts less deep than it is in summer.

Young. -Lower parts dirty-white; on the breast a crescent, more or less large, of a brown ssh-colour. In antumn the young begin to put on the livery of the adults; those of the second hatch quit our climates, says M. Temminck, iu their youthful garb, and even come back sometimes in the same state at the return of spring. In this state it is the M. cinerca of Gmelin, Sylvia cinerea of Latham, Bergeronette grise of Buffon. (Temm.)

This bird is common and stationary over the whole of the southern part of the European continent, remaiuing during winter dispersed over the southern counties of England. "Yet," says Mr. Gould, in contiouation, "we learn from Mr. Selby and Bewick, that, cven so far" north only as Durham, it migrates southward in October, and does net again make its appearance till the following March; and Mr. Low, in his 'Natural History of Orkoey,' tells us that it continues there the shortest time of auy of the migratory birds that come to build, and is never to be seeo after the end of May. It is also known to migrate still farther morth; but, as might be expected, the higher the degree of latitude attained, the shorter is the duration of the visit. ('Pirds of Europe.')

Picil Wagtail (Motacilla Varrelli).
Lower figure, winter phumage; upper figure, summer plumage.
The aame author however, in the "Magazioe of Natural History" (1837), thus writes of the genus Motacilla:-"While engaged upen this tribe of birds during the course of my work on the 'Birds of Europe,' I was equally surprised to find that the sprightly and Pied Wagtail, se abundaut in our islands at all seasons, could not be referred to any described species; and that it was cqually as limited in its habitat; for, besides the British Islands, Norway aud Sweden are the only parts of Europe where I have been able to procure examplea identical with our lird, whose place in the temperate pertions of Lurope is supplied by a nearly allied but distinct species, the true Motacilla alba of Linuecus; which, although abundant in France, particularly in the neighbourhood of Calais, has never yet been
diecoveral on the opponite ahorea of Keut, or io any part of lingland. As therefore our bird, which hae alwaye been conmidered as identical with the J. alla, provea to be a distioct speciea, I have named it after my friend W". Yarrell, Fasq., as a just tribute to hia varicd acquirements as a naturaliat."

Mr. Gonld then proceeds to point ont the characters by which these two species, as he terms them, may be readily distinguislied. The I'ied Wegtail of Enpland, he observen, 3. Yurrellii, is somewhat more robust in form, and in its full summer dresa has tho whole of the lieal, cheat, aud back of a full deep jet-black; whilo in tho White Wagtail, M. alba, at the same period, the thront and the head alone are of this colour, the back and tho rest of the upper surface being of a light wh.gray. In wintor, he remark, the two species more nearly assimilate in their colouring; and this cireumatance lans, in his opinion, been the cause of their haviag been hitherto considered identical; the black back of M. Farrellii being gray at this season, although never so light ns in . M. alba. Additional evidence of their being distinet is, he adds, that tho female of our I'ied Wagtail neter has the back black, as ia the male ; this part even in summer being dark-gray, in which respect it closely resembles the other specica. This colouring of the female, Mr. Gould observes, has donbtloss contributed to the confusion.

Mr. Yarrell, although he concurs in opinion with Mr. Gould, that theae tirds are distinct, gives figures and descriptions of both birds in their sammer and winter plamage to invite investigation to the subject; and he quotes the Supplement of Temminck's 'Manual," is which that ornithologist refers to Mr. Gould'a figure in the 'Jirds of Europe,' and also to that in Werner's Atlos of Illustrations to the 'Manual,' which, Mr. Yarrell says, although there called Motacilla lugubris, ia certainly our Pied Wagtail, as representations of varieties of Motacilla alba. Prince Bonaparte, he remarke, lass considered our l'ied Wagtail to be distinct from M. alba, and has admitted it as a apeciea in his 'Geographical and Comparative List of the Birds of Europe and North America.' (' British Birds,' 1838.)
M. Temminck, in the fourtly part of his 'Manual' (1840), states, under the bead of Motacilla Yarrellii (Bonap.), that recont observations upon this black variety, and his ccrtainty that it forms a constaut race Labitually found in England, where the continental M. alda is never seen, deternine lim to arrange it as a local variety or race, which he characterises as having the wings of a complete black, and all the coverts bordered with pure white. He also details the summer and winter plumage.
IBelon thinks that the M. alba of the continent is the Kvinadoras of Ariatotle. ('Ilist. Anim.,' viii. 3.) It is the Cotremola, Codetta, Codeta di Pecore, Ballarina, Monachiae, and Cuttretola, of the Italians; Lavandiere of the French; Dic Weisse IBachatelze and Weiss und Schwartze Bachstelze of the Germana; Arla of the Swedes; Vipstiert and Harre-Sxer of the Daues; Frle and Lin-Erle of the Korregiana; Ksikstanet of tho Netherlanders; Brith y Fsches and Tinsigl y Grya (probably our Pied variety only) of the Welsh; and (our lied rariety) Dish-Washer and Washerwomas of the English.
The figure is Belon's folio work, as well as that in the 'Portraits d'Oyseaux, evidently referm to the continental variety. The French bance which are placed over the figure in the last-named book are, Lavandiere, Dattoqueuë, Battelesiue, and Hanssequeuë. Below it is the following quatrain:-
" Ta Larandiure haste de bord de l'ean,
Itochant souklors la queué et le derifire,
Lavant pon linge anpres d'un ejalr ruisneaa."
Speaking of jts labite, Mr. Yarell saye, "It is ever in motion, running with faejlity by a rapid succession of steps in pursait of its insect foon, moving from place to place by short nudulating flighta, uttering a cheerful chnping note while on the wing, alighting again on the grousd with a sylphlike buoganey, and a graeeful fanniag Inotioo of the tail, from which it derives its name. It frequenta the vicinity of ponds aud strenma, moial pantures, aud the graes-plots of plenuregrounds; may be frequently seen wadiag in shallow water, seeking for rarious apisatic inuecth or their larve: and a portion of a letter ment me lately by W. linyner, Esq., of Uxbridge, who keeps a variety of birils in a large aviary near his parlour window, for the pleanure of ntserving their habita, seem to prove that partiality to othor prex, beades nquatic insecta, has aous influence on the constant vinits of Wagtaila to water:-'I had slan during tho summer and antumo of 1530 neveral Wratailm, the Jied and Yellow, both of which were very expert in catching and feeding (n) minnows which were in a fountain in the centre of the aviary. Thene birda hover over the water, and, an they skim the aurface, catch the mimow as it ajproaches the top of the water in the most dexterous manner; and I was much anrpinel at the wrinesnand cunuing of some Blackbirds and Thrushes, in watching the Wingtaila catch the nimown, and immediately sciaing the prize for their own dinner."
Tho nent of the Britiah Pied Wrogtail is mado up of root-fibres, withered grane, and mona; the lining compats of hair and a few fenthera A bank, a hole in aome oll wall, the thatch of a cart-mhed or other farm-building, faggot-piles or woodntacka, and hayricks, are all localition where it is generally placed, and almost always near water; but Mr. Jeane mantions in his 'Gleaninga' the peat of a

Water. Whgtail in one of the workshops of a manafactory at Taunton, amil the incessant din of braziers who occupied the apartmeat. It whe built near the wheel of a lathe which revolved within a foot of it, and here the bird hatched four young onea. She was perfectly familiar with the well-kuown facen of the workmen, and flew io and out withont fear of them; but if a stranger entered, or any other persons belonging to the same factory, but not to what may be called her shop, she quitted her nest instantly, and returoed not till they were gone. The male howovor bad less confidence, and would not come into the room, but brought the usual eupplies of food to a certain spot on the roof, wheace it was brought into the nest by his mate. The eggs are from four to five, white with ash-coloured speckles.
"While the cowe are feeding," saya White, "in the moist low pastures, broods of wagtails, white and gray, run round them, clone up to their noacs, and uader their very bellica, availing themelves of the flics that eettle on their lege, nad probably finding worms and larvic that are roused by the trampling of their feet. Nature ia aucls an economist, that the most incongroous avimals can avail themselves of each other ! Interest makes atrange friendships,

The habits of the Continental Mofacilla alba are similar to those of our Pied variety.

The British species figured and deseribed by Yarrell aro four in number:-The l'ied Wrgtail (M. alba; M. Y'arrellii, Bounp. aud Gould); the Gray Wagtail (M. boarula); the Gray-Headed Wogtail (M. ncglecta, Gould; M. fara, Temm. ; Budytes of Prince Bonaparte's 'Comparntlve List '); and Itay's Wagtail (Yellow-Wragtail of Pennant; Bulyies Rayi of the Prince's "Comparative Liat').
M. alba, La Bergeronette Grise, the True or Continental White Wagtail. It inhabits Europe; the high laads of India and Africa. Eggs about six in number, bluish-whito apotted with black. Nest very variously placed, in fissures of rocks, in old towers, under arches of bridges, about hollow trees.

True or Contineatal whiste Wagtail (Motacilla alba).
Enicurus (Temminck).-Bill rather strong, lengthened, very straight, abruptly bent and notelsed; culmen straight from the base; gonye thickenel, ascending; rictus bristled; wings rather sliort, tho three first quills graduatod; tail leugthened, deeply forked; feet strong; tarsus lengthened, the scales entire; middle toe shorter than the taraus, outer toc longest; legs pale. (Sw.)
E. speciosus (Motacilla peciosa), the Chenginging or Kingking of the Javanese.-Crest, lower part of the back, rump, belly, vent, two exterior tail-feathers entirely, and other tail-feathers at their extrenity, a broad band extending ouliquely across the wings, and the axilhe, whito; head, except the crest, breast, lack, and greatest part of winge and tail, black. The white is the purent snow-white; the black is of different shades, moro intense on the head and breast, having a slight reflection of dark-blue, inclining to purplo on the cxtrenity of tho wings, tinted with brown. A few minute black plumes bomd the crest behind and at tho sides, extending to the base of the bill. Three or four of the last accondary feathers with a narrow baad of white, but the succession not regular. l'lumee of the hypochoudrim elongated and delicately villous. Length of body and head 41 inches; of tail 6 inchers of bill, which is black, 10 linen. Tarsi nearly twice as long as the middle toe, pale flesh-coloured with a yellow tint. (lloraf.)
Dr. Forsfield atates that this apccies in its habits and manners resemblos sevemi European species of the genus Motacilla. "It is," says he, "found near small rivulets; in the bede of these, particularly where they abound with rock and gravel, it is scen running along
with alacrity, meving its tail incessantly, and picking up worms and insects. It is very locally distributed, and uniformly deserts the neighbourhood of populous villages. It is almost entirely confmed to the southern coast of Java, which abounds in small streams, descendieg rapidly frem the southern hills, and shaded by luxuriant shrubs. Here I first discovered this bird, in the district of Pajittan, in the year 1809. I afterwards met with it again along this coast, in the district of Karangbelleag, and in the previnces south of Kediri. Aroong more central situations it frequents the baaka of an elevated lake near the declivities of the mountain Prahu, where I found it more numerous than in any ether part of Java. In the extensive foreats of Pugar and Blambangan I never noticed it, although I devoted a considerable time to their examination." ('Zoological Researches in Jaเa.')

Motacilla (Enicurus) speciosa, Morsfield.
M. Tugubris (Pallas) ; Schwarze Bachstelze of the Germans; the White-Winged Wagtaij.

Summer Plumage.-Back of head and neck, line from bill to eye and from eya to hinder part of the liead, back, rump, six middle tail-feathers, throat, and chest, black; shoulders, tipa, and outer edges of the primaries, dark grayish-brown; remainder of wiags white, except the tertiaries, which are brown in the ceatre; bill and fcet black.

Winter Plumage.-Upper part of throat pure white ; back and scapulars uniform gray, instead of black. (Gould.)

M. Tcmminck atates that individuals which are marked with black and gray on all the upper parts are presing frem one state of plumage to the other.
nat. Hist. DIV. VOL. III.

Young of the Year.-Lore and stripe behind the eyes black, but very narrow; top of the head and all the upper parta, to the upper tail-ceverts, gray-ash; nuchal collar very narrow, indicated in great part by black spots ; coverts of the wings always pure white. Length of the apecies about 7 inches 8 linea. (Temm.)
It is found in Eastern Europe, seldom advancing farther west than the central parts; Russia; Southern Siberia; Egypt; Hungary; the Crimea ; Aaia Minor probably; acarce in Italy, Provence, and Picardy; very common in Japan, especially in winter, where it is called Sekirei, and frequents the streams of meuntaioeua valleys.
MOTELLA, a genus of Fishes belonging to the family Gadide. It has the following charactera:-Body elongated, cylindrical, compressed pesteriorly, the first doraal fin very alightly elevated, delicate in structure, scarcely perceptible ; second dorsal and anal fins leng, continued nearly to the base of the tail.
M. vulgaris, Mustela marina (Ray), Gadus tricirratus (Bloch), the Three-Bearded Reckling, Sea-Loche, Whistle-Fish, Three-Bearded Cod, Three-Bearded Gade, has the following characters:-The length of the head compared to the length of the body alone, witheut the caudal rays, is as one to four; the depth of the bedy equal to the leagth of the head; the first dorsal fin delicate in atructure; the first ray elengated, the rest hair-like: the aecond dorsal fiu commencing immediately bohind the end of the first, and reaching along the back to the tail, but ending a little shert of the base of the caudal rays; ventral fins with the first two raya eloggated, the aecond mest ao, the twe disunited; the other five rays nearly equal, usited, and shert; pectoral fina rather large and rounded; the vent half-way between the point of the chin and the ead of the fleshy portion of the tail; the aaal fin commences immediately behind it, is one-feurth less in length than the second dorsal, and ends on the same plane with it; the tail moderate in size, and reunded at the ead. The fin rays in number are-2nd D. $55 ;$ P. $20 ;$ V. 7; A. $49 ;$ C. I8. The head is depressed; the meuth wide; the jaws nearly equal, but when separated the lower jaw ia the longeat, with one barbule at the chin; a mixture of large and small teeth in each jaw; the upper jaw with one barbule on each aide the middle, between the lip and the nostril; inner part of the upper lip crenate; the irides gelden yellow; the anterior portion of the body of the fish cylindrical, or glightly depressed; the tail compressed; the general colour of the body and head is a rich yellow-brown, spotted on the top of the head, along the back, the pecteral, dorsal, and caudal fins, with rich cheataut-brown; the lower part of the sidea, the ventral and anal fins pale yellow-brown approaching to white, and without spots.

Young fish of this opecies are of a uniform brown colour, until they have acquired 6 or 7 iaches in length; in this condition they are the Mustela alia of Ray. (Yarrell.)
This fish is cemmon on the coasts of Cornwall, and also on the coasts of Ireland.
M. cimbria (Gadus cimbrius, Linnæus), the Four-Bearded Rockling. This fish has been taken in Scotland, and is common in the Baltio and the southern ceast of Sweden.
M. quinquecirrata (Gadus mustela, Linareus), the Five-Bearded Rockling. This fish is common on the British ceast. Ita habits resemble these of the Three-Bearded Reckling, aud by seme naturalists it is regarded as a varicty of that apeciea.
M. gtauca (Ciliata glauca, Conch), the Mackerel Midge. This fiah has been taken on the coasta of Cornwall by Mr. Couch. It dies iastantly en being taken out of the water. It is like the young or aeme of the other species, but it has not been observed te grow
M. argcnteola (Gadus argenteolus, Moatagu), the Silvery Gade. This fish is a miniature representative of the Three-Bearded Rockliug, as the last is of the five-bearded apecies. It was first described by Montagu, and is arlmitted as a diatinct epecies hy Yarrell.
MOTH, the English name of the Insects belonging to that section of the Lipidoptera called Nocturna. [Lepidoptera.]

MOTHER-OF-PEARL. [SheLl.]
MOTHER-WORT. [LEONuRUS.]
MOTIONS IN PLAN'TS. It was at one time considered a distinctive mark ef the animal kingdom that it had a power ef locemotion which was deaied to plants. It was however gradually diacovered that plants had withim a limited apace a considerable power of self-genarated or automatic movement. It is now believed that these mevementa originate in the pretein which constitutes the protoplasm or nucleus, in connection with which all vegetable cells are formed. This subatance is the material which, being conveycd into the syatem, becomes the material out of which the nervous and muscular syatems of animals are formed. This substance posseases an inherent pewer of mevement under all circumstances; and in the movements of plants and their suaceptibility to the action of heat and light, we see the first dawnings of a nelvous and muscular syatem. It is thus that the plant, though not actively locometive, becomes the source of all locomotion and sensation in the animal kingdom.
The instances in which movements of varieus kinds have been observed iu plants are very numcrous. Amongst Confervec is a genus named Oscillatoria, consisting of green articulated filaments. These planta derive their name from the eacillating metion observable m them. They net only move their limbs, but shift their station with seme rapidity; for example, if a patch of them is placed in water
in a plate, and a black bell-glass is inverted over them in such a manner that its edgea do not quite touch the plate, the Oacillatorias will remore from where they were first placel, and glide out on the side of the bell-glass which is exposed to light. The late Captain Carmichacl observed their motiona with great care, and sufficiently proved that they were not owing to external causes of any kind; especially not to agitation of the water in which the Oscillatorins are placed. Let, ho saya, a small portion of the stratum be plaeed in a watch glass nearly filled with water, and covered with a circular film of tale, so that its edge may touch the glnas; the water will be rendered as fixed as if it was a piece of ice. The glass may nuw be placed under the microacope, and the oscillation of the filaments viewed without risk of disturbance from the agitation of the water. By following this course, it will be speedily perceived that the motion in question is entirely independeut of that canse. The action of light, ar a cause of motion, canoot be directly disproved, because we cannot view our specimens in the dark; but indirectly there is nothing easier. If a watch-glass, charged as above, bo laid aside for a night, it will be found that, by the next morning, not only a considerable radiation has taken place, but that multitudes of the filaments have entirely esciped frem the stratum, both indicating motion independent of light. Rapidity of growth will show itself in a prolongation of the filameuts, but will not account for this oscillation to the right and left; and still less for their travelling, in the course of n few hours, to the distance of ten times their own length from the straturn. This last is a kind of motion almost unexampled in the vegetable kingdom.

Another kind of locomotion has been seen in the reproductive particles or apores of Conferve. At a particular period of their life these spores move about spontaneously inside the tubes in which they are genersted, and at length force themselves out into the water wherein the mother-plant is floating. Once plunged in this element, the spores move about with velocity, in a gyrstory manner, till they reach a shaded place, when they fix themselves by one end, produce s root, and lose all power of after-motion, so that such plants have locomotion when young, nud are destitute of it when old. Many such phenomena are known to occur in plants of the same low kind of organisation. [Alga; Fucscese; Achlya.]

But while locomotion thus unquestionably occurs smong some kinda of plauts, regetsblo movements are more commonly confined to the limbs, in which they are risible in different ways. A kind of motion occura in roots, although not perceptibly, except by its effects. Many kinds of Orchidaceous plants appear onc season in a spot at some diatance from that which they occupied in the previous season, and thus appear to travel; in such cases however the shifting of place is effected by means of underground suckers, annually formed by the parent, which projects them to a certain distance from herself, and then periabes. The cormi, or bulbs, as they are called, of many Iridaceous plants exhibit the same kind of property, raiaing themselves upwarda year after year, so that if originally buried some inches under ground, they at last travel upwards into the sir; this is effected by each corinus forming a bud at its spex, which bud grows into a new cormus, and kills its parent, forming a new cormus at its own apex, and then perishing in its turn. This power of rising upwards is possessed in a most singular manner by palms, but in those plants takea place in a different way. Some palm-trees, which originally had their stem restiog by its base on the surface of the ground, force it upwards by protruding tho bares of their roots, till at last a kind of plinth is formed of maoy irregular arches, upon which the column or trunk of the palin-true is upheared. A case of this kind is mentioned ly M. Polteau, in the 'Annals of the Horticultural Society of P'aris," vol. ir. p. 4, f. 16, where the arches of the roots were high enough to allow a man to pass bencath them. Here it is evident that the elevstion of the truak is caused by the extension of tho roots, which exerciac that power in the direction of least resistauce, namely, of the nir, mither than of the molid earth.
The phenomena of flowers unfolling or closing under sunshine, of which everybody is aware, are strictly referrible to the class of vegetable motions. With the unfolding and closing of flowern must also be arranged those aingular motiuns in the parts of fructification which oceur upon their being touched. If the filaments of the Barberry [Bfrberse] are irritated, they rise up and atrike the anthers againat the stigns ; if the sexual column of Stylilium, which is beut over one nide of the flower, in touched, it awings over instantly to the other nide. Several cares of thin power of motion occur in Orchidacear : if the caudicula of the pollen masses of Catasctum is disturbed, it aprings up so violently an to eeparato itself from the colnmo ou which it grown, and to dart to a considerable distance. a very siugular iontance of motion in the flowers of another plant of this kind growing in the Swan Kivor Colony, las been deacribed by Mr. Drummond. ('Ginrdeners' Gazotte, vol. xiv., p. 429.) The lower lip, he may, in which the anthers are placed, in a boat-bhaped box; the upper lip, which he auppoaes to lre the atigun, furman a lid which exactly fita it; the hinge on which the lid moves apringa from the upper jurt of the flower, and in attached to ita centre; and when it opena the upper part turas mund wilhin the box, comes out at the bottom, turns up and back; ao that when fully expandoll it atands fairly over the flower. The moment a nmall innect touches the point of the lid it makes n
box, so that it has to pass the anthers in its way, nnd makes prisonor any small insect which the box will hold. When it catches an insect it remsins abut while the insect moves about; but if the insect be not caught the box soon opens again.

Another kind of motion, mors resembling spontaneous action, especially as It is not apparently connected with the application of stimuli, is that which occurs in the sexual apparatus of many planta at the period of impregnation. In Armeria, at this time, a abort column below the stigmata lengtheas, so as to close up the foramen of the ovulo, and at the same moment the cord on which the orule is suspended slips aside and elevates the ovule, so as to eusble it to present its foramen to the column. The same phenomena are visible in Mophne Laurcola sud other plants; and nomething of an analogous nature occurs in Zygnemota, which at the period of fructification bring themaelves together, and effoct a kind of spontaneoua vegetable copulation. The most striking phenomena of this nature occur however in Asclepiadacec, which have their pollen-graina closely packed in bags, from which it would seem that there is no escape: at tho period of impregation each of these pollen grains projects one tube from its side, and these tubes all direct themselves spontanoously towards a thin space on the side of the bag that holds them. Piercing this bag, they succeed in extricating themselves and reaching the vicinity of the stigma, but are still st some distance from it; they then direct themselves towards that organ, and succeed in reaching it, wherever it may be, cither by directing themselves at right angles, or downwards, or even upwards, as tho peculiar structure and location of the stigma may require.

In the Sensitive Plants, various species of Mimosa [Mmosa], especially M. pudica, the leaves fold up on being touched, and this so slowly, that it is easy to perceive that the folding is effected by the gradual communication from leaflet to leaflet of the shock produced by the touch. If a portion of the end of one of the lesteta of the Mimosa is cut off the whole of the leaflets of that pinns gradually fold up, one after the other, from the point to the base; then the neighbouring pinne will fold up their leaflets from the base to the point, and presently the petiole itself will suddanly bow itself down whereupon the fulding up of the remainder of the pinnse will take place. Somatimes, after a little space, the lesves sbove and below will slso close up, all under the influence of the one original iujury. These curious phedomena have been watched with care by Dutrochet, in whose little book ('Sur la Motilitódes Plantes') a long and particular nccount of the phenomens will be found. Many other plants possess this kind of sensitive power in their leaves: Smithia rensitiva, Aschynomene sensitiva, Porlicria hygrometrica, and Biophytum sentitivum are well-known cases; and it is recorded that in Sencgal there grows a plant which the natives call by a name equivalent to 'How d'ye do?' as if it offered s friendly salutstion by its bowing to those who touch it. (See De Caudollo's 'Physiologie Végétale,' p. 857, where several of the modes are enumerated in which leaves having motion close up.) The 'sleep of the leaf,' that is, their folding up and drooping at night, while they raido themselves and unfold by day, are powers of motion in the limbs of planta, which are doubtless of the bame arture as that of the Sensitire Plant and its allies. To the same class nlso must be assigned the fly-estching leaves of Dioncea. [Dron.ea] This plant, which grows wild in the marshes of Carolina, has a leaf which is bordered with a row of strong teeth, and when spreal open is atrikingly eimilar to one of the toothed iron traps when set as used for catching game, that is, it consista of two roundish sides, each furnishcd with s row of strong teeth. Near the middle of each side there grow three stiff bristles, placed in the form of a triangle; if one of these bristles is touched by an insect or any other means, the two eides of the lesf spring up instantly, the toeth cross cach other, nnd the insect is held so fast that it can only be extricated by foreing the sides of the leaf asunder, an operation of some diffculty, so great is tho muscular force with which the contraction is effected. These movements are all owing to n specife jrritability residont in tho moving organ, and must bo distinguished from the following, which takes place, to nll sppearance, apontaneously.

Desmodium gyrans, the Gora-Chand of Bengal, was first mentioned in aystematical botsny by the younger Linneus, who spesks of it as a wonderful plant, on account of its singular motlon. "No sooner," bo saya, "bad the plants he raised from seed acquired their ternato leaves, than they began to be in motion in overy direction. This movement did not ceasc during the whole course of their vegetation, nor were they observant of suy time, order, or direction. One leaflet frequently revolved, whilo the other on the same petiole was quiescent; somotimes a few leafeta only were in motion, then almoat all of them would be in movement at once. Tho whole plant was very seldom agitated, and that only during tho firat year. It continued to move in the stove during the second year of its growth, and was not at rast even in the wlater."
"The irritsbility of the Desmodium," Burnett adds, "ia never so great, oven in our best bouser, as it is said to be in its native climate, and its motions here are very seldom so lively as those described by Linncus. Warnth nppears essential, for its movements are always the most observable when the hent is greatest; that they are not attributable to the sun's rays, nor to any currents of air, is shown from the fact that the plant loves the shade, and that the motion is
most evident when the stove is closed and the atmospbere quite still. These movements have more the semblance of spontaneity than any others that have been observed in the more perfect plants; for the leaflets, if beld quiet between the fingers for a short time, and their movemeuts thus prevented, are said immediately on their release to revolve with sccelersted force, ss if to make up for the time lost during the forcible interruption." De Candolle describes the motion thus:-The leaves consist of three leaflets, two of which are lateral, very small, linesr, and oblong, and an odd one, separated from the two others, much lsrger and oval-oblong. The two side leallets are iu almost continual motion, which takes place by little starts, like the small hand that marks the seconds of a watch. One of these rises so as to mount about 50 degrees above the level of the pctiole, and the other falls on the opposite side to about the ssme distance; when the latter rises the other falls, and thus a constant oscillation is maintained. The central leaflet also moves, but much more slowly, sloping first to the right, then to the left, snd so on.
In the above instances we see, as it were, the natural tendency to mobility in the plant developed. The reason why no grester smount of movement occurs in the vegetable appears to be the nature of the cell-wall, which being composed of the unyielding material cellulose in sufficient quantities, resists all attempts at movement from the imprisoned protein. [Protern ; Cells.]

MOUFLON. [OVE.e.]
MOUGEOTIA. [ALOE.]
MOULDINESS is a nsme spplied to all minute Fungi which appear in masses upon organic bodies. It appears to be caused by a damp atmosphere and s diminution of light, both which conditions are fsvourable to the development of those bodies whose spores or reproductive particles are flosting everywhere in the stmosphere, ready to apring rapidly into growth whenever thcy chsuce to fall upon suitable oituations.

All the Fungi that constitute mouldiness are so small as to escape observation, except when from their numbers they form microscopical forests; and then they clothe the surface of the body which they sttack with light patches of yellow, blue, white, green, red, and various other colours. The species of these plants are extremely numerous, and sre distributed by writers on Fungi into many genera, chiefly belonging to the Hyphomycetous division of the order, the combining character of which is, that the plants are flocculent, naked (that is, not inclosed in a case or seated upon a peculiar receptacle), distinct, but interwoven into a general mass, which looks like a thin web, or a collection of cobwebs.

One of the nost common is the Ascophorc Mfucedo, which forms a blue mould upon bread, paste, and similar substances prepared from flour. This plant forms a fine horizontal cobweb-like bed, from which rise up olender branchos terminated by an expsnsion which bears the spores.

Ascophora Mucedo, very highiy magnified.
a is a sporiferous branch arlsing from the horizontal bed; l is the termination of a branch covered whth spores.

Another form is that of Penicillium, in which we lave tho same entangled floceulent bed, nad a similar elevation of perpendicular branches; but the lstter are not terminated by a disc covcred with spores; on the contrary, they end in a jointed tuft, cvery division of which produces at its point a necklace of spherical sporules. The
plant called the Vinegar Plant, which possesses the power of converting sugar into vinegar, appears to be sn undeveloped form of Penicillium glaucum.

Penicillium verticillatum, highly magnifed.
a represents a cluster of perpendicular branches springing up from the horizontal bed; b is one of the pencil-like heads which terminate the branches.

Mouldiness is occssionslly produced by Coniomycetous Fungi-thst is, by those very imperfectly organised species which bave no flocculent bed, nor sny specisl part on which the spores are generated, but which merely cousist of a series of joints within which reproductive bodies are formed. Of these, the Torula Casei, found in the crevices of putrid cheese, msy serve as sn example.

A morsel of Torula Casei, very highly magnified, after Corda.
Many of these plants are capable of living under circumstances that would be fatal to any other form of vegetatiou; for exsmple, Ascophora Mucedo springs up plentifully in pasts poisoned with corrosive sublimate.
Their general ststion is upon decsylng animal or vegetable matter; but one species, the Botrytis Bassiana, attacks the living silkworm and kills it; others destroy house-flies, which may be seen in the sutumn glued by these parasites to the window, on which they have alighted in a semitorpid state.

The following are the botanical names of some of the more common species of Fungi that csuse mouldiness:-

Hydrophora stercorea (yellow, turning blsck), on the dung of various animals; Mucor mucedo (bluish-black), on fruit, pastry, \&c.; Eurotium herbariorum (white, yellow, or orange), on damp plants in Ilerbaria; Cladosporium herbarum (green, turning black), on various decaying bodies, damp paint, \&c.; Aspergillus candidus (white), very common; Aspergillus glaucus (blue), very common.

MOULTING. [Birds.]
MOUNTAIN LIMESTONE is a term employed by Dr. Smith to designate the calcareous rocks which underlie the coal strats in England. It is the equivalent of the Carboniferous Limestone of Conybeare snd many other geologists in Eagland. It is the Calcaire Carbonifere of the French, and the Berg-Kalk of the Germans.

In England the Mountain Limestone forms the true base of the upper part of the Palæozoic Series. [Geoloox.] It is not however always present. From the character of the limestone it is iuferred, that the whole mass of this formation has been deposited by the agency of the coral-forming Polypifera. Embedded in the limestone sre found numerous sbells and remains of Eucrinites and Fishes. These sre common to it and the coal-beds. [Conl Formatron.] It not unfrequently presents bands of impure coal, which in other
countries are of tuore value than in Eugland. In the nouth of Enghad imperfect coal-bede called Culm replace the limestone. This also occurs in Rusia and elsewhere. In lreland this rock is abundant, and the eeries of beds are terminated by a peculiar saody deposit.

The Culmiferous Series of Devonshire oceupice a great trough, the axis of which ranges east and west and extends for about 50 miles, with a breadth of between 30 and 40 miles. Crossing the edge of this trough, we find a black limestone, overlaid by siliceous fagstones; and these are followed by saudstones and carbonsceous and calcareous shales. which graduslly become harder, and pass into silieeous bands of a dark colour, with earthy carbouaceous partings, surrounded by a regular thick-bedded sandstone, resembling the gritstonee of the conl-measurea
The beds, the order of whose superposition has been just mentioned, form, with a black carbonaceous shale and a black limestoue, the lower subdivision of the whole Carboniferons System, as developed in the south-west of England. The order is eomewhat different however towards Dartmoor, for there au irruption of granite has taken place since the deposition of the strata, and the vicinity of the crystalline rock has produced confusion and violent distortion. Notwithstanding this, and the frequent repetition of these beds by faults and disturbanees, they are sntisfactorily proved to be of great thickness; but they contain few fossils, and differ in lithologieal character from the rock, probsbly of the same age, in the middle aud north of Eugland.
The upper Culm-Measures of Devonshire are the newest beds of the district, and oceupy nine-tenths of the whole surface of the carboniferous deposit. Thia group is composed of sandstones and indurated shales (the latter containing the culm), and is of great but uиascertained thickness, being perpetually interrupted, coiled upon iteelf, and repeated over again, forming an ineredible number of anticlinal and synclinal lines, all of them ranging east and west, parallel to the atrike of the beds.

There is however no difficulty with regard to the general onder of superposition, or the extent and real thickness of this part of the deposit; for both on the northern aud southern outskirts of the formation a great ascending series is seen, throughout the whole of which the dip is tolerably regular.

The sandstones of this group sre generally elose-grained, and of a gray or greenish-gray colour, passing occasionally into flagstone nad laminated arenaceous ahale, with fioe ripple marks at the partings. The shales vary iu appearance from sandy beds to soft slaty clays, not to be distinguished from the common coal chales; and amongst these latter are ocensionally found dark carbonaceous bands, containing obecure vegetable markings discoloured by pyrites.

Such are the prevailing eharacters of the beds which form the Culmiferous Serics of Devonshire : these beds being the true repre seutatives of the Carboniferous Syatem. Notwithstanding the gencral paucity of fossils, one or two species of shells sre not to be dis. tinguished from epecies well known in the Mountain Limestone; and the result of a comparison of the remains of plants from the culm, with those commonly met with in roeks of the earboniferous period, tends yet more atrongly to establish the conteuporancity of tho two depoaits Considering the thiekness of these Culm-Measures io Devooshire, they might represent the whole mass of the Mountain Limestone; and the different mineral character of the roeks dependent on the circumstauces under which they were respectively formed, might account for considerable alterations in the foseils, and must havo had great iufluence in modifying the forms of animal life.

The Carboniferous System, as exhibited in Yorkshire and Derhyalire, consista of a magnificent development of Mountain Limestone, to whuse presence the picturesque secuery of those countios is dus; the linestone beiug partly overlaid on the east, west, and north, by the millstone-grit. The lower part of the millstone-grit however is sometimes repreneuted by a serics of lamiunted and often bituminous phalea, which rest immediately ou the lineratone, and contain some bands of iron-atone, snd a few thin black limestones; whils the upper part consints of eeveral hundred feet of pebbly grits and other sandstoneh alternating with thin bad coal.

Farther north, and in the north-western part of Yorkshire, the Mountain Limestone becomes a still more important and pruninent member of the Carboniferous Series, and is capable of local subdivisions. It in hero subdivided into two groups, whose total thicknesa is abont 1800 feet. Of these two the lower, the Scar Limestone, formn bold buff precipicen, and in piereed in many places by large natural caverna; aod looth here and in tho upper stratas (the Yore dale ltockn), the limestone in remarkably different from the contemporaneous beds in the south, conthining thin seams of cosi, sometimes worked, and diviled juto several beda by partitiona of grit and shale. The Yoredale liock thus contain at least five diatinct beds of limestone, alternating with freestonea, 日lagatones, de., and attaining a thickness of ns much as 1000 fect. In the north-west of England, where the Mountain Limestono is developed in the same manner, the upper beds of the seriea, the milletone grit and the truo coal-measuren, are ncantily exhibited; but in the northeast, ns iu Northumberland, the Scar Limeatone is mueh bruken ly the interposition of pebbly gritu, chales, snd coal-geasus, which entirely chauge the chsracter of the formation.
In Ireland the Mountain Limestone occupies an important phace,
and consists of two great bands of limestone, with a considerablo thickness of shale and argillaceoun limestone and sandstone interspersed, which aro known by the name of calp, or calp-slate. It is chielly however in the northero and middle districte that the calp is found, and it gradually thins out towards the south. Beneath the lower limestone noother series of schistose beds (the Carbonifaroue Slate) occurs, and this reats on eandatone beds, often altercating with shale, and occasionally with limestone. The Carboniferoun Slate of the south of Ireland differs in lithological character from that of the middle and northern regions, but from the evidence of fosmils, the two muat bo looked on as contemporaneous.
On the continent the carboniferous beds are similarly devoloped; the lower beds in Westphalia passing into calcareous shales, containing fossil remaine of the carboniferous type. These therefore aro assumed as the base of the Carboniferons System. They are immodintely aucecoded by a group of bisek imperfect limestono and siliceous schists (Kiesel-Schiefer of the Germans), considerably expauded and traceable for some distance, and looked upon as the equivalents of the English Mountain Limestone, the underlying beds representing the shales occasionally met with in Eugland when the sequence to the older rocks is complile.
The Blaok Limestone is extremely carbonaceous, argillaceous, and fetid, and it correspouds so entirely in mineral character with the Culm Limestone of Devonshire, that the description of the one rock might almost serve for the other, not merely as regards its general appearance and lithological character, but also because the orgenio remains-the Goniatites and Posidonix-with which the rocks in Deronshire are loaded, are in Westphalia aleo by far the most abundent fossils of the deposit. On the continent however, the Culm Limestone passes upwards into another limestone of a lighter colour, and this bed contains all the most characteristic fossils of the true English Mountain Limestone.
Advancing still farther eastward wo find in Russia that the lower carboniferous beds consist of incoherent sandstone, alternating with a bituminous shale, which sometimes contains thin bands of impure conl sad impressions of plants; the whole being surrounded by varioun beds of linestone, which form the central group of the Carboniferous System. Of these beds, the lowest is usually of a dark colour, as in other parts of Europe; but the middle, and most extensivo, differs entirely from any contemporaneous rock, being of a milk-whito colour, resembling chalk, and loaded with fliuts. It is also of conaidernblo thickness, and extremely fossiliferous, nnd alternatos with bede of compact yellow maguesisn lirnestono, and bande of red or greenish shale or marl, while associated with it there are eplendid masses of white gypsum and thin bands of limestone interstratifict. The third or upper divisiou of the series is scarcely less remarkable than tho central, being almost entirely made up of myriads of fossil bodies (called Fusulina) resembling grains of wheat, and forming a limestone, which is of considerable thickness, nod appesrs in the lofty cliffe which occupy the banks of the Volga, and nloo in the coal region between the rivers Doieper and Don.
In Northern Russia, and in the upper beds of the Volga, the contral liunestone of the Carboniferous System is totally devoid of cosl, which is found in sbales and sandstones, interstratified with thin courses of limestone in the lower part of the series, and in this reepect axhibits a resemblance to the lower beds of the Mountain Limestone in Yorkshire. In the south of Russia, on the other hand, the central beds of the Carboniferous System are occasionally productive of good bituminoun as well as anthracitic cosl, offering in some points very striking analogies in mineral condition to the great South Welah basin. The northern beds are nearly horizontal, but the coal-feld in the south appeara to have been disturbed, and to have been broken up by faults.
North America presents zome interesting points with reapect to the rock now under conaideration. The Carboniferoue Series of Pennsylvanis is based upon massire sandstones, conglowerates, and shales, overlying a bed of fossiliferoua limestone. Resting upon this group, which is of great and uniform thickness, thero is a deposit of red shale, which varies in thickuess from 3000 feet to less than 100 feet, nad is supposed to thin out nud disappsar to the south-west; and this it partly overlsid and partly replaced by a hard coarse conglomerate. very thin towards the north-west, but rapidly swelling out nud becoming from 800 to 1200 feet thick towards the south-east. Noue of these formations coutain profitable cosl, although the remains of plauts aro found in them, and a fow seama, about a foot thick, oecur in the red shales. Tho coal-measures themselvos form the uppermost part of the series, and consist of micnceous sandstones, axnaceous, argillsceous, and carbonncevus abales, nud valuable bods of limestone.
In other parta of the same wide area the Carboniferous Series manifests similar peculiarities of alructure. Thus, in Nuva Scotia, and elsewhere in Canada, the lower bede consist of Carboniferous Limestone ; but at Cape Breton the milintone-grit appears to terninate the sequenee. Newfoundland aleo, which presents not less than 5000 square miles of country, occupied by contemporancous bede, has hitherto nfforded no cosl.
(Anatod, Elementary Coursc of Geology.)
MOUSE [MUMD.E.]

MUCOR. [ENTOPHYTA.]
MUCORACESE, an order in Lindley's alliance Fungales. The species have a floccose thallus and the spores surrounded by a vesicular veil or sporangium. They are amougst the smallest forms of Fungi, and attack decaying vegetable and animal matters. Thes are frequently known by the name of Moulds. [Mouldiness; Fungi ; Entopirta; Mildew.]

MUCOUS MEMBRANES. [Membrane.]
MU'CUNA, a genus of Plants belooging to the natural order Leguminose. The calyx is campanulate bilabiate, with two very caducous bracteoles as long as the tube; the upper lip broad, entire, and obtuse; the lower lip trifid, with acute segments. The corolla is papilionaceous, with a cordate vexillum incumbeut on the wings, nuch shorter than the wings and the keel, and without callosites. The stamens are diadelphous, with five of the anthers obloug, linear, and the other five ovate and hairy. The seeds oval, roundish, or reaiform, with a narrow, oblong, or linear hilum. The species are climbing herbs or shrubs, with pinnately-trifoliate leaves and axillary racemes, which hang down when bearing fruit.
M. murita, Cowiteh, has purple flowers in compact ovate racemes; leaflets hairy beneath, the middle one rhomboidal and obtuse, the lateral ones dilated on the outer edge; the legumes are oblong, curved, compressed, not keeled, and covered all over with a thick coatiug of erect white stinging hairs, which turn black in drying and brown when ripe. It is a native of the hedges and banks of the East Indies.
M. pruriens, Commou or Stingiug Cowitch, has entire ovate-acute leaflets, smooth above, hairy bcneath, the lateral ones oblique at the base, the middle one slightly rhomboidal. The racemes are from 12 to 18 inches loug, lax, and many-flowered. The calyx is hairy, pink, with narrow lanceolate segments. The flowers have a disagreeable allincoous sinell; the vexillum is flesh-coloured, the wiogs purple or violet, and the keel greenish-white. The legumes about 3 inclies long, the thickness of tho finger, closely covered with strong brown stinging hairs. The seeds oblong, variegated with a white hilum. A mixture of the hairs of these two species form the Cowitch of commerce. The ripe pods are dipped in syrup, which is scraped off with a knife, and when the syrup has attained the thickness of honey, by means of the hairs becoming mixed with it, it is used as a medicine, and is considered a good anthelmiutic, as it occasions no uneasiness. It is giren from a tea-spoonful to a table-spoonful in the morning, fasting. The hairs, when applied to the skin, produce an intolerable and painful itching. A vinous infusion of the pods, 12 to a quart, is said to be a certain remedy for dropsy. A strong infusion of the roots, sweetened with honey, is used by the aative practitioners in India in cases of chelera. It is likewise considered a powerful diuretic.
M. urens has racemose flowers and legumes clothed with stinging bristles; the leaflets have a shining tomentum bencath. The flowers are large, white or gellow, with the lower edge of the wiuga red. The seeds, from their resemblance to an eye, are called by the French Yeux Bourrique, or Ass's-Eyes, and for the same reason the seed has the name Ox.Eye-Bean in our colonies in the West Indies, where the species is a native.

A rich soil suits these plants, and they are eavily raised from cuttings, but are not worth the trouble of cultivation, excepting for botanical gardeus.
(Don, Dichanydeaus Plants; Lindley, Flora Medica; Burnett, Outlines of Botany.)
MUCUS. The fluid which is found on tho surfacs of mucous membranes is thus named. The chemical composition of this fluid has not been very accurately ascertained, but its morphological elemeuts have been investigated by Henle and others with much care.

Dr. Henle of Berlin ('UaberSchleim- und Eiter-Bildung,' in Hufeland's 'Journ. der Practisch. Heilk., 1838), was oue of the first who determined the true composition of this substance, which had previously presented many qualities that appeared anomalous. He has proved that it always at least contains the scales or cells of epithelium, which cover all the open cavities of the body, suspented in a consillerable quantity of watery fluid.

The epithelium, or cuticular covering of all mucous mambranes, consists of one or more layers of miaute cells; and it is deposited not only on the free surfaces of the large open cavities, but is contimued into all the canals and ducts of glands that open on the mucous membranes. In differcut situations the form of the epithelium-cells varies considerably; in some parts they are rounded, or polygonal, aud flat, allhering to each other in a continuel membrane by their aljacent criges; in others they have a cylindrical or conical form, and are ouly attached to the mucous membrane by one of their extromities; in others they have also a cylindrical or couical form, and their free margins are beset with vibrating cilic. [lirituelium.]

By the contact of the foreign matters to which all the mucous mernbranes are exposed in the performance of their functions, or by other processes, the epithelinm cells are comstantly being removed, and their place is as constantly supplied by the formation of new cells from the aurface beneath. Thus on all the micous surfaces a more or less mpin process of desquamation and reproduction of cuticle is ever going on; the superlicial layerd scaliug off, amI dcep layers beiug producerlis a manner exactly similar to that in which, as the outer
surface of the cuticle of the skin (the epidermis) is removed, fresh layers are deposited on the inner surface to replaca them and maintain the thickness of the membrane.

The superficial layer of epithelium-cells thus removed, net in dry scales, like the epidermis, but mixed with a quantity of watery fluid secreted by the surface of the mucous membrane, constitutes healthy mucus-a viscid, ropy, transparent, and apparently homogeneous substance, which is distinguished more especially by the presence of minute epithelium-cells either floating separately or united iuto small membranous flocculi. Its chief chemical properties are that it mixes with any quantity of water without being dissolved, but sivelliug up, and forming flocculi, does not dissolve in alcohol, aud is not coagulated by heat.
In addition to the epithelial cells mucus frequently contains round corpuscles, called mucus-corpuscles, which are not easily distinguished from pus-cells. These corpuscles are abundautly secreted in common catarrh. They are regarded as abortive epithelial cells. As these cells increass in diseased conditions, the mucus assumes more decidedly the character of pus.

It frequently happens that fibriuous ceagula are found iu the mucus, constituting the peculiar character of the mucus in croup, diphtheritis, paeumonia, Bright's disease, dysentery, and other affections of the mucous membranes. In these cases after the active inflammation has ceased, cells are observed in the mucus, which have been called inflammatory globules, or granular cells. Besides these bodies mucus contains fat-globules, and frequently molecular or elementary granules. The latter are seeu in iucipient diseased conditions of the mucous membranes, as iu tuberculosis or cancer. It sometimes contains living beings, as Vibriones and fuggoid threads of various kiuds.

The chemical elemeut which forms the basis of mucus is called Mucin, but unfortunately it has not been separated from the morphological elements. In addition to mucin, the mucus contains various extractive matters. It a!so contains potash and sodi, aud frequently gives an acid reaction; this ariscs from the presencs of free acids. Albumen is also present in mucus, and frequently in considerable quantities. With regard to the origiu of mucus, Lehmann, in his 'Physiological Chemistry,' has the following remarks. After stating that it does not appear that mucus is formed by any of the glands of the mucous membranes, he says :-"Tilanus has drawn especial attention to the circumstauce, that epithelial structures are always present wherever there is true mucus. This observation might lead to. the assumption that the formation of mucus is connected with the development of certain cells, that is to say, that its production occurs simal taneously with the development of certain merphological elements. Two views here present thenselves for our consideration; oue of which is, that the alhumimates of the liquor sanguinis become decomposed, under certain hitherto unknown conditious, into the substratum of the epithelial cells and into mucus, whence the latter substauce might iu some respects be considered as a secondary product of this cell formation, so that the muceus juice in the mucus would hold the same relation to the epithelial cells as the spirituous fluid does to the yeast-cells in a mixture which has undergoue fermentation. The other view, which seems to be supported by uumerous observations made by Scherer and Virchow, refers the origin of the mucus to a partial disintegration of the epithelial cells. All who have followed Frerichs iu his observations on the metamorphosis of the cells within the gastric juice, or who have examined them by the microscope in the preparation of artificial gastric juice, will easily comprehend the gradual solution of the gastric cells and their couversion into a mucous fluid. Such a conversion of cells into a mucous substance would therefore at all events not be wholly without aualogy: Scherer and Virchow however go still further, aad advance the opiuion, based upon several pathologico-histelogical observations and chemical experiments, that certain colloid substances, and others adapted for the formation of urine, may be converted into mucus under certain couditions which still remain to be explained, and even without any cell-formation; and hence they regard the latter mole of development as associated with the existence of colloid or cartilaginous substances. This view is not only supported by the abseuce of epithelial structures in many cysts containing raucus, but more especially by the frequently uoticed couversion of the gelatiu of Whartou into perfect mucus. It appear's to us atill to require atcurate chemical experiments to decide which of these two hypotheses deserves the preference. The elemeutary analyses which were made by Scherer on a single variety of mucous juice uufortunately do not enable us to decide the question, both because the atomic weight could not be determined, aul because we are still entirely deficient in an acourate analysis of the epithelial cells, the colloid substance, \&c. It remaius for us to hope that the investigating powers of men like Scherer may before long earich aciencs with tho kuowledge necessary for elucidating a subject which is so iutimately associated with the advancement of physiology.
"The localities in which mucus occurs clearly demeustrate that it is especially designed to serve as a protectiug medium to all the parts which are placed in a reciprocal conuection with the outer vorld."

MUDSTONE, a local nams for part of the Upper Silurian Rocks of Sir Roderick Murchison.
MUDWOLRT, the common name of the species of the geuus Limosella. This genus belongs to the natural order Scrophullariacece. It
has a 5 -cleft malyx; a 5 -ficl bell shaped equal corollan; a globose 2 valvel cappule, with a central placenta, free, or conuected with a short tissepiment below, 1 -eelled.
L. aquatica is the only liritish species. It has lanceolate spathulate lenves on long stalks; pericles axillary, crowded, shorter than the petioles it has snall white or rosecoloured dowers. It is found growing in muddy places, where water has atagnated.

MLGI'LID.E, the Mullet Tribe, a family of l'ishes of the order Acanthoptcrysii. This family may be distinguishod by the following characters:-liody nearly cylindrical, covered with large acales; doraal fins (two in number) separated, the first with only four spinous rays; the rentral fins hare their origin a little behind the line of the pectoralls; branchiostegous mys, six. The head is somewhat depressed, and, like the body, is covered with large seales or polygonal plates; the muzzle is very short; the month is trausterse, and when elosed forms an angle, the lower jaw laning an eminence in the middle, which fits iuto a corresponding bollow in the upper; teeth very minute ; pharyngeal bones much developed.
There are three genera belouging to this family-Atherina, Mugil, and Tetragonurus.

Atherina has the body rather elongated; two dorsal fins widely separated ; ventral fins placed far behind the pectorals; sides with a broad longitudinal silver band ; teeth minute; branchiostegous rays 6.
A. presbyter, the Atherine, or Sand-Smelt. It was at one time supposed that the Atherine of the British coasts was the A. hepsetus of Linneus, but after a close exsmination Mr. Yerrell comes to the conelusion that the Jritish species is A. prestyter of Cuvier.

The British Atherine is a handsome small fish from 5 to 6 inches in length. It is found on the coast of Cornwall at all seasons of the year. It is also frequently eaught at Brightou, where large quantities are eateu in the winter seasou by the inhabitauts and visitors. Dr. Parnell has taken it in Scotland, and Mr. Thompson in Ireland.

Mugil has the body nearly eylindrical, covered with large scales; two dorsal fins widely separated, the rass of the firat fin spinous, those of the second flexible; rentral fins behind the pectorala; middle of the under jaw with an elerated angular point, and a corresponding groove in the upper ; teeth small; brsuchiostegous rays 6 .
M. capito (Cus.), the Gray Mulet, or Common Mullet, is not uneommon on many parts of the Britimh coast. It is rather more than a foot in length; the length of the head compared with that of the body and tnil ls as one to four ; the greatest depth of the body, which is benesth the first dorsal, is about one-fourth the whole leagth, excepting the tail. The head is broad and depressed; snout rounded; the skin of the anterior and posterior margius of the orbit does not advance over the eye. First dorasl fin commences abont the middle of the body, its height is equal to twice its length; between the first and eecond doraal there is a considerable interval ; its proportions, as regards height and leogth, the same as the first. The upper surface of the body is dusky.gmy, tinged with blue; the sides and belly are silverywhite, marked with longitudieal dusky lines; fin-membranes dirtywhite ; a dark spot on the base of the pectoral fin.

It is found plentifully in Cornwall and Devonshire, and along the south coast. It is also taken on the eastern coasts. This fish never goes to a great distance from hnd, and delights in ehallow water. It in ou this account probably that it bears confinement better than other fishes, and is one of those which have been most successfully kept in the Aquavivarium of the Zoological Society iu Regent's l'ark. They seem more intelligent than most lish. Carew, the Cornish historian, had a ponal of alt water in whioh he had naturalised these fish, and he could assemble them together to be fed by knocking on a stick. Fishermen also relate numerous instances of its iutelligence, and the devics it ham reeourse to for the purpose of escaping from the net when ones caught. It takes its food from the mud at the bottom of the water in which it lives, and seldon partakes of my living food. It is mont readily taken by fat, or cabbage boiled in broth.

This fish frequently goes up rivers, and is thas often caught by the anglen: When taken young and placed in fresh water it has been found os thrive.
M. chelo, Cuvier, the Thick-Liuped Gray Mullet, nccording to Mr. Couch's manuseripte, communicated to Mr. Yarrell, seens to be abondant on the conat of Cornwnll, but no other British uaturalists appear to have noticed it. It is distinguished from the Common Gray Mullet chielly by its large and fleshy lipa, the margins of which are eiliated; the teeth rescubble hairs ; the maxillary bone curved, and showing itnelf behind the eommissure.
M. curtue, the Short Gray Mallet of Yarrell, is a third apecies, found in the British sea. "Tho length of the head, as compared with that of the bouly and tail, is an one to three, the proportion in the Common Cimy Mullet being as one to four; the loody is alwo deeper in proportion than in M. cupita, being equal to the length of the hearl: the head is wider, the form of it more triangular, and also more pointel anterinrly; the eyes larger in proportion; the fin-rays longer, particularls thene of the tail ; the whtral fins placed nearer the poe. toral, and a differeuce exints in the numher of nome of the fin-rays: the colours of the two apecien are nearly alike; and in other reapects, except thope naned, they do not differ materially." (Yarrell, "Rritiah' 1Fishes.') Mr. Iarrell caught this uew species at the mouth of l'ook harbour.

Tetragonurus, so named from the projecting keels or ridges on each side, near the base of the caudal. There in only one epecies, an inhabitant of the Mediterrancan, about a foot long, and black, and reputed to be poisonous.
MUGWORT, the common name for the Artemisia vulgaris. This species of Artemisia is known by its leares being woolly beneath, with lauceolate, acuminate, cut, and sermod aegments. It is a very common plant on waste ground in Great Brituin. [Autemisia.]

MULDERRI. [Monos.]
MULI:. This word is, in its particular sense, used to denoto the offispring of the malo ass and the mare [Equid.s.]; but, in its geueral signification, it is applied to the offspring of any two aninals of distinct species, and is then synonymons with the term 'Hybrid' [HybB1D.]
"The true distiuction between different species of animals," writes John Hunter, " must ultimately, as appears to me, be gathered from their incapacity of propagating with each other an offspring capable again of continuing itself by subsequent propagations: thus the horse and ass beget a mule capable of copulation, but incapable of begetting or producing offspriug. If it be true that the male has been known to breed, which mast be allowed to be an extraordinary fact, it will by no means be sufficient to determine the horse and ass to be of the same species; indeed from the copulation of mules being very frequent, and the circumstance of their breeding very rare, I ehould rather attribute it to a degree of moustrosity in the organs of the mule which conceived, as not being a mixture of two different species, but merely those of either the male or female ass. This is not so farfctehed an idea, when we consider that some true species produce. monsters which are a mixture of both sexes, and that many nuimals of distinct sex are incapable of breeding at all. If then we find nature in its most perfect state deriating from general principlea, why may it not happen likewise in the production of males, so that sometimes a mule shall breed from the cirenmatance of ita being a monster respecting mules ?" We think that the riows here laid down are clear and satisfactory so far as they go, and that the question with which the parspraph coneludes is in no danger of a contradictory answer.
But the student should be on his guard as to an unhesitating admission of everything that is laid down even by an authority ao deseryedly cminent as that of the great physiologist whose opinion we hare just quoted. 1'rofessor Owen, for instance, in ono of his valuable notes on another part of this very paper, truly observes that John Hunter's assertion that the fertility of a hygbrid with an individual of a pure breed proves the fact of identity of two supposed distinet species equally with the production of offspring from the connection of hybrid with hybrid, cannot be admitted. of two supposed distinct species," continues the Professor, "granting the fertility of the hybrids from the two to be the proof required, it should be shown that such hybrids are fertile inter ee, and capable of propagating indefnitely an intermediate variety. Now this is precisely the fact which is wanting in the eridence adduced in the text. All that Hunter proves is that two species very nearly allied to each other will produce a hybrid offspring, and that the hybrid is again productive with m individual of tho pure breed; but this only illustrates a geueral law by which the reversion of the hybrid to the pure breed le provided for; while, on the other hand, the intermixture of the distinet specics is guarded against by the aversion of the individuala composing them to a sexual uuion." And it is no contradiction to this general rule to show that in some iustances this aversion is overcome, as in the case of the lion and tigress-to cite an example, among the Cumivora [Femp.e], and in that of the pheassnt and common fowl : and the hen canary-bird with the goldfiech, linnet, \&e. among birds. [CANARr-BnmD.] Such crses are the exceptions, and prove the generality of the rule or law.
Doubtless there must be a concurrence of predisposing accidents to bring different species, in their anxious desiro to obey the all-powerful inmplae of reproduction, together ; and the presence of such predisposing causes may be generally traced in most of these erratic alliances. In the great majority of them the species thus mingled are very nearly allied. Thus there are beveral instances on record of the Hooded Crow (Corrus Cornix) pairing aud producing offspring with the Carrion Crow (Corvus Coronc) ; the male of Montagn's llarrier (Circus hyemadis) and a liagtail (Circus cyancus) having been shot nt the nest feeding their young (Yarrell, ex relationo Sweeting). Mr. Merry notices tho pairing of a Blackbird and a Thrush in Lancashire: these birds reared their brools, which were atrongly-marked hybrids, for two successive years. ('Magaziue of Nat. Hiat.,' vol rii.)
Mr. Yarrell, who in his 'Listory of British Mirde' mentions the loat-umed cases in detail, adds that ecveral instances are known in which the female of tho lhack Grouse, usually called the Gray Hen, has bred in a wild state with the Common Pheasnnt; such a hybrid is represented in the title-page of Mr. T. C. Eyton's 'History of the Rarer British Birds.' [BLack Gnousf..] The last-named ornithologiat has also recorded the fruitfal connection between the Common Guose and the Chinese Gander; and the Hon. Twiselton Fiennes communicated to the Zoological Society of London na instance of the Common Will Juck breeding with the male Pintail. [Ducks.]
The author of the "History of Mritish Birds' above quoted has had so much experience on this intricate aubject, so far as it relatea to birds that the following observations by him are worthy of all attention :-
"Several experiments on the productive powers of various bybrid birds are now in progress; but without intending to anticipate the interesting particulars which may be elicited, I may briefly refer to What has fallon under my own observation. Some degree of restriction, either accidental or imposed, and arisiug from various causes, appeare to be necessary to induce the union of birds that are of different species; but the influence of the divine command to 'increase and multiply' is so irresistible, that some birds unite with strange partaers rather than have no partner at all. When putting two birds of different species together, with the intention of breeding from them, union is less likely to take place if they ars kept within sight or liearing of other birds of their own species. The two sexes of ths broods produced by such unions take little or no notice of each other when adult even during the usual breeding seasoo, and are believed to be unproductive among themselves if so restricted; but if allowed an opportunity of uniting with the true species of either parent they are then prolific, and the young birds produced soon lose all intermediate character." ("Hist. Brit. Birds,' part xiii.)

Mr. Darwin, in his highly interestiog ' Journal and Remarks,' being the third volume of the 'Narrative of the Surveying Voyages of H.M. ships Adventure and Beagle,' gives the followiog graphic account of the social habits of the Mule when describing the passage of the Cordillera:-
"Our manner of travelling was delightfully independent. In the inhabited parts we bought a little firewood, hired pasture for the animals, and bivouacked in the same field with them. Carrying an iron pot, we cooked and ate our oupper under the cloudless sky, and knew no trouble. My compauions were Mariano Gonzales, who had formerly accompanied me, and an arriero, with his ten mules and a madrina.
"The madrina (or godmother) is a most important personagc. She is an old steady mare, with a little bell round her veck; and wheresoever she goes the mules, like good children, follow her. If several large troops are turned into one field to graze, in the morning the muleteer has only to lead the madrioas a little apart and tinkle their bells; and although there may be two or thres bundred mules together each immediately knows its own bell, and separates itself from the rest. The affection of these animals for their madriuas saves infinite trouble. It is nearly impossible to lose an old mule; for if detained for several hours by force, sho will, by the power of smell, like a dog, track out her companions, or rather the madrina; for, according to the muleteer, she is the chicf object of affection. The feeling however is not of an individual nature; for I believe I am right in aaying that any animal with a bell will serve as a madrina. In a troop each animal carries, on a level road, a cargo weighing four hundred and gixteen pounds (mere tban twenty-nine stons) ; but in a mountainous country a hundred pounds less. Yet with what delicate slim limbs, without any proportional bulk of muscle, these animals support so great a burden! The mulo always appears to me a most surprising animal. That a hybrid should poseess more reason, memory, obstiascy, social affection, and powers of muscular eadurance, than either of its parents, seems to indicate that art has here out-mastered nature."

MULGE'DIUM, a genus of Plants belonging to the natural order Compositce, the sub-order Liguliflore, the tribe Cichoracea, and subtribe Mieracic. It has many-flowered heads, a double involucre, the inuer of one row, the outer of short lax imbricated scales; the fruit compressed, constricted above, and terminating in a ciliatcd disc ; the outer rows of the pappus rigid and brittle. There are several species of this genus.
M. alpinum, has glabrous, lyrato at the base, arrow-sbaped leaves, the terminal lobe large, triangular-hastate, acute; the stem simple, heads racemose, bracts, pedubcles, and iavolucres, glandular hairy; the fruit oblong, not attenuated, with many ribs. This plant bas blue flowers in small numerous heads, with n stem about 3 feet high. It is a remarkably handsome plant, and is the only British specios of the genas. It is the Sonchus cceruleus of Smith in the English botany. The only locality in which it grows in Great Lritain is the Clooa Monntaios of Scothand.
M. floridanum in a native of Amcrica, and on account of its excessive bitterness is called Gall of the Earth.
(Babington, Manual; Liudley, Fegetable Kingdom.)
MULI'NIA, Dr. Gray's name for a genus of Conchifera, allied to Mactra, having the ligament, propcrly so called, internal, and the lateral teeth simple.

MULLET. [Mugilides; Mullus.]
MULLUS, a genus of Fishes belonging to the group A cantlopterygii and the family Percide. The species have the body thick oblong; profile of the head approaching to a vertical line; scales large, deciduous; two dorsal fins widely separated, the rays of the first spinous, those of the secoud flexiblc ; teeth on the lower jaw and palate only; two cirri at the symphysis of the lower jaw; branchiostegous rays 4. There are two species of this genus found in Europe, and both ars inhabitasts of the seas of Great Britain.
M. surnuletus, the Striped Red Miullet, or Striped Surmullet, has the following fin-ray formula:-D. $7-1+8 ; \mathrm{P} .17 ; \mathrm{V} .1+5 ; \mathrm{A}$. $2+6 ;$ C. 13 .

The forehead, nape, cheeks, and operculun are covered with scales;
irides pale-ygllow; mucous-pores abundant; the colour of the body is from a piok to a bright-red; the membrane of the first dorsal-fin is tinged with yellow; those of the other fins transparent; the axilla of the ventral fin furnished with a pointed seale; the vent placed under the commencement of tbe second dorsal fin.

The Striped Red Mullet is abundant on the southern coasts of Great Britain, but is rarer on the eastern and oorthern coasts. This fish is good eating, and is sent in large numbers from the coasts to the London market. In the month of August, 1819, 5000 were taken off Weymonth, and in one week during the month of May, 1831, 10,000 were sent to London from Yarmouth. The Striped Red Mullet was a favourite dish amongst the ancient Romans, and large prices were paid for them. "A fish of 3 lbs. weight produced a considerable sum to the fortunate fislerman, while the cost of a fish of $4 \frac{1}{2}$ lbs., says Martial, was ruinous. A. Mullet of 6 lbs . is recorded to have produced a sum equal to $48 l$.; one still larger 64l.; and even $240 l$. were given for them of unusual size, procured on the same day, for a repast of more than usual magnificeoce." (Yarrell.) On our own coast this fish seldom exceeds 14 inches in leagth.

The Striped Red Mullet sparns in the spring, and the young are 5 inches long in October. Their food consists of the softer crustaceous and molluscous creatures. The cirri, which are generally placed near the mouth, seem to act as organs of feeling, whereby these animals are enabled to distinguish their food. Mr. Yarrell says, "On dissecting these appendages in the Mullet, the Common Cod, aud others, I found them to consist of an elongate and slender flexible cartilage, invested by numerous longitudinal muscular and nervous fibres, and covered by an extension of the common skiu. The muscular apparatus is most appareat in the Mullet, the nervous portion most conspicuous in the Cod. These appendages are to them, I have no doubt, delicate organs of touch, by which all the species provided with them arg enabled to ascertain, to a certain extent, the qualities of the various substances with which they are brought in contact, and are analogous in function to the beak, with its distribution of nerves, among certain wadiug and swimming birds which probs for food beyond their sight; and may be considered another iustance, among the beautiful provisions of mature, by wbich in the case of fishes feading at great deptbs, where light is deficieut, compensation is made for imperfect vision." ('British Fishes,' vol. i., p. 34.) This and the next species must not be confounded with the Gray Mullet, which belongs to a very different family of Acanthopterygious Fishes. [Muginids.]
M. barbatus, the Plain Red Mullet, the Surmullet, the Red Surmullet. This fish is much rarer on the British coasts than the last. They seem to bs equally abundant in the Mediterranean. The fin-rays are as follows:-D. $7-1+8 ;$ P. $16 ;$ V. $6 ;$ A. $1+6 ; \mathrm{C} .15$. The scales are somewhat smaller than in the last and present some structural differeaces.

(Yarrell, Iistory of British Fishes.)

MULTIVALVES, the name formerly used to designate those shells which wers mado up of more than two pieces. Thus the Cirrhipeds (Lepas) were all multivalve shells of Linneens, and so were Chiton and Pholas.

MUNTJAK. [CERVID.e.]
MURE'NIDA, or ANGUI'LLIDA, a family of Fishes belonging to the Apodal saction of the Malacopteryyii. Thess fishes have an elongated nod often cylindrical body, covered by a thick and soft skin in which the scales are deeply imbedded and scarcely apparent. Thuy have no cacca, but Dearly all are furnished with a natatory bladder. In the first group, which constitutes the great genus Murcena of Linnæus, the opercula are small, and enveloped in the skin; the gillopening is small, and is situated far back, an arrangement which, by more completely protecting the branchix, permits these fishes to live a long time out of water. They have no ventral fins.

The species of the genus Anguilla are distinguished by the possessiou of pectoral fins; the dorsal, aaal, and caudal fins are united. the dorzal commences at a considerable distance behind the pectorals; the upper jaw is shorter than the lower; the gills opening by a small aperture on each side, situated beneath the pectoral fin. Three if not four species of Anguilla, or Eel, are found in this country - tha Sharp-Nosed Eel, the Broad-Nosed Eel, and the Suig.
A. acutirostris (Yarrell), the Sharp-Nosed Eel, may be distinguished, as its name implies, by its comparatively narrow and sharp muzzls. "The head is compressed, the top convex, depressed as it slopes forwards; the cyes small, placed immediately over the angle of the mouth ; irides reddish.yellow; the jaws very narrow, slightly rounded at the end; the lower jaw the longest; nostrils with two openings on each side, one tubular, the other a single orifice; both jaws furnished with a narrow band of small teeth; gape small; various mucous pores about the mouth and other parts of the head; gill-opening a small aperture immediately before and rather below the origin of the pectoral fin. The scales on the bedy rather small ; dorsal fin sxtending over mors than two thirds of the whole length of the fish; anal fin occupying more than balf the whole length; both united at the end, forming a tail; the number of rays in the first fins oot easily asccrtained, from the thickness of the skin ; the lateral line exhibits a long series of mincous orifices; vetebre 113. The vent includes four distinct openiags, the most anterior of which leads upwards te the inteatinc, the posterior to the urinary bladder, in a direction back-

Whis, nul onve elongnted lateral opening on cach ride commmicating with the cavity of the abdomen, as in other bony fishes." Colour of the upper aurface of the head aud body very dark olive-green; under surface ailvery; the colouring however varics somewhat necording to the pature of the water in which the animal lives, as in other fishea; in thoze found in clear streams the colours are bright, whilst those found in mudly waters are dusky.

This rpecies is coumon in streams, lnkes, \&c., throughout the country. The Eel is said to be averse to coll, and in the autumn migrates down the rivers to reach the wann brackish water, where it passes the winter, and deposits its spnwn. In the spring the young fry may be seen making their way up the atreams, sometimes in immense numbers. Such a desire do the young cels (about three inches in length) appear to have to go up the stream that their course is not easily stopped. The writer of this has seen a flood-gate, 6 or 7 feet in height, in [1arts covered with them, and has observed many succeed in passing over this perpendicular barrier by availing themselves of the trickling water which escaned through the crevices of the woodwork,
Those eels which live in ponds, and cannot therefore migrate, bury themselves in the mud during the winter months. In these cases however they will sometimes leave the water, and, availing themselves of the wet grass during tha night, travel considerable distances in onder to reach a stream; they are known also to leave certain ponds, the water of which does not auit them, and to make their way over land to other sad more fapourable situntions.

The question as to whether the Eel be an oviparous or viviparous fish has been much discussed; many have imaginad that it brought forth its young alive, but there appears to be better grounds for the belief that it is oviparous.
"The Jondon market," Mr. Yarrell informs us, "is principally supplied from Holland hy Dutch fighermen. There are two compnoies in Holland, having five vessels each: their vessels are built with a capacious well, in which large quantities of eels are preserved alive till wanted. One or mora of these vessels may be constantly seen lying off Billinagate ; the others go to Hollnud for fresh supplief, each bringing n eargo of 15,000 to 20,000 pounds weight of live eels, for which the Dutch merchant pays a duty of $13 l$. per cargo for bis permission to sell.'
A. Iatiorotais, Yarrall, the Broad-Nosed Eel, is not uncommon, and is often found in the same whters as the sharp-nosed species, from which it is readily distinguished by the compratively grester breadth of its head, nud the situation of tho eys, which is placed in advance of the angle of the month. The body is moreover thicker in proportion to its length, the teeth are more numerous, larger, and stronger; the dorsal fin commeoces farther back; the dorsal and anal fins are nuch deeper and thicker. The number of vertebra is 115 . This species is the Anguille Plat-Bec of Cuvier, and is sometimes called in Eagland the Grig-Eel.
A. nedionostris, Ynrrell, the Suig, is in some respects intermediate between the common or aharp-nomed species and tho broad-nosed eel. The general colour nbove is olive-green, and beneath yellowish-white. "In the comparative breadth of the nose, the Saig is intermediate in reference to the sharp and brond nosed eela, but rather more resembles that with the sharp nose," кays Mr. Yarrell; "it has a slight but elongated depression extending from the anterior edge of the upper jaw to the upper and lnek part of the head; the tubular openings of the nostrils are longer, nud the mucous pores abont the lips larger and more conspicuous; hoth jawe rounded at their extremities, the lower one the longeat ; tecth longer and stronger than in the common eharpnosed epecies; gnpe large; the angle nad the posterior edge of the cye on the mane verticnl line; tho pectoral fins, the commencement of the dorbal fin, bad the reat, nre each placed hearer the head than in cither of our freah-water cels."
besides the distinguishing characters above pointed out, there are others, the most important of which perhnps is the difference observable in the form of the vertebro-see Yarrell's 'History of British F'iabes,' where the akulls and ndjoining vertebre of theso thrce species are figured.
A. Couger, Shaw (Conger tulgaris, Murana Conger, Lisareus, le Congre, Cnvier), the Conger Eel, in readily distinguiphed from the fresh-water apeciea by the upper jaw being the longent, nud the dorsal fin commencing tauch nearer the hend-chnracters which bave induced Cuvicr to sepnrate it from them as a sub-genus.

This marine apecies is common on many parta of our coast, and in indeed found in most of the European scan it attains a very large ize, being often five or aix feet in length nan occasionally as much as en fect or upwarda; the thickness bearing about the mane proportion to the length as in the common ecl. The upper parta of the body are browninh and the under parta dirty-white; doral and nunl fios whitiah margined with decp lolush-black; the lnteral line is apotted with white.
A. myru, another specien of Conger, in found in tho Mediterranean. It rearmbles the common speeies, but is of a amaller size, and is known by there being apota on the snout, a bnnd neross the occiput, and two fows of rlots on the nafe, nll of which are of a whitinh colour.
Ophisurus of sacépede is a genus nearly allied to Anguille, tho apecies of which differ from the true eels by their dorsal and anal fina
terminating before they rench the end of the tail, which has no fin. Tho posterior orifice of the nostrils opens on the edge of the upper lip.
O. serpens, the Snake.Fel, inhabits the Mediterrancan; it is about five or six feet in length and ahout three inches in thickness, of a brown colour above and silvery beneath; the snout is slender and pointed.

In nome species of this genus the pectoral fins are very small, and in this respect approach tho genus $J / u r(n)$ in which thero are no pectorals.

Murena, as just stated, has no pectoral fins; the orifices of the gilla are mall and open, one on each aide; in each jaw there is a single row of tecth; the dorsal and anal fins are very low, and are united.
M. Ilelena, the Murene, the Muræna, is the typo of the geuus. It is found in the Meditermacan and Portuguese beas, and in one instance has been taken on the coast of Britain. It grows to the length of between four and five fect, and even more. The body is smooth and glosay, beautifully mottled with salmon colour, yellow, and purple. The liead is large and owollen, which gives the fish a disagreeable aspect. It is excellent eatiog, and was highly esteemed by the ancients, who reckoned it among the best of fighes for the table, and kept the Murcena alive in vivaria. It is said that Vredius Pollio used to cause his offending elaves to be flung alive into the ponds to feed his Murane.

Leptocephalus has a small and short head; numerous teeth; pectoral fius and gill-openings very emall; body compressed and very thin, tape-like; dorsal and anal fine emall, united at the tail, forming a point.
L. Morrisii, the Anglesey Morris, appears to be the only European species. This fish, which is identical with the L. Spallanzani of Risso, has been found in Great Britain. [Leptocepiuslus.]

Ophidium, Echiodon, and Ammodytes are other British geners of this family. [Echrodon; Ammonytes; Ophidrym.] Gymnolus oontains the Electric Eel. [Grmiotos; Electricity in Ohoanic Beings.] Carapus and Stenarchus are genera, the species of which inhabit South America. Gymnarchus inhabits the Nile. [Gimnarcuus.]

MURFNOIDES (Lacépede), a gedus of Fishes belouging to the section Acanthopterygii and the family Gobiada. The species havo been inelvded under the genera Blennius of Linnæus, and Gunnellus. They have the bead snall, muzzle obtuse; body elongated, smooth; scales minute, covered with a mucous secretion ; dorsal fin extending the whole length of the back, the rays simple; ventral fins very small; teeth small, pointod, detached.
M. gutlata, the Spotted Gunnel or Butter-Fish, is distinguished from its congeners by the consistence and quantity of mucous secretion by which its sides sre covered. It is known from the true Blennies by its dorsal fin being but little elevated above the line of the back, and by ita elongatod, slender, and compressed tody, from which cireumatance it has obtained the name of Swordick in Orkney and Svardfisk in Norway, from a supposed resemblance to the blade of a sword. It is a common fish on the consts of Grent Britain, where it is often found in the little pools left by the tide. It feeds on small Crustaceas and tho apawn and fry of other fishos. In Greenland it is eaten, but it is only used for bait in this country, its flesh being hard. The length of the head is equal to the depth of the body, and is, when compared with the whole langth of the body and head of the fíh, without including the tail-fin, as one to eight. It is said to attain the length of 10 inches, but its more frequent leagth on the British shores is from 5 to 7 inches.
Mr. Yarrell states that the Spotted Gunnel of America is identical with the British fish.

MUREX. [Sirnonostomata.]
MU'RIDAE, the name of an extensive family of Rodeuts, comprising, when taken in its largeat sense, a great number of genera and species, which, though none of them sttain to sny considerablo size, become worthy of serious notice from their prodigious multiplication and the destructive influence which they exert over vegetation nud the fruits of the labour of the agriculturist. The type of this family is found in the genus N / us, to which our Common Ilats and Mioe belong.

The Linnean genus $\mathrm{Jf} u$ is thus eharacterised in the last cdition of the 'Systema Nature :'- Dentes primores inferiores eubulati;' and, as might be expected from such a defiuition, it is made the receptacle not only for auch Rodents as are vernacularly koown na Rats sad Mice, but for the Guinea Pig, the Agoutis, the Paca; in short, for all tho Glire then known, not arranged uoder the genera Hysirix, Lepus, Castor, snd Sciurus. The remaining genus (Noctilio), placed by Limexs among his Glives, belongs to tha Bats. [Cimeroptera.] Pallas concurred with Linnæus in uniting under one great genus ($/ / u s$) nll the Jodents provided with elavicles which had no striking external distinction, buch as the tail of the Squirrel or the Besser.
Gmelin separated from this crowd of Rodenta the Marmota (Arctomys), the Dormice (Myoxus), and the Jerboas (Dipus).

Cuvier, in the last edition of the ' Regne Animal,' carrics this subdivision muel farther, adopting the following sub-genera, under the grent genus M us, or the Ruts:-The Marmots (Arctomys, Gm.), the Dormice (Myoxus, Gm.), Echymys, Geoff. (Loncheres, III.), Hydromys, Geoff., Capromys, Desm., the Ikats and Mice, properly so called (Mus, Cuv.), Gcrbillus, Desm. (Meriones, Ill.), Meriones, F. Cuv., the Hamsters (Crictur, Cuv.), the Campagnols, or Field lats and MLice (Arvicola,

Lacép.), which ha aubdivides into-1st, the Oadatras (Fiber, Cuv.), and, 2nd, the ordinary Campagnols (Arvicola, Cuv.; Hypudicus, III.), -the Lemmings, Cuv. (Georychus, Ill.; Otomys, F. Cuv.), and the Jerboas (Dipus, Gm.). To these succeed the Jumping Hares (Ifelamys, F. Cur.; Pedetes, III.), the Mole-Rats (Spalax, Guld.), the Orycteres, F. Cuv. (Bathyergus, Ill.), Geomys, Raf. (Pseudostoma, Say, Ascomys, Licht., Saccomys (?), F. Cuv.), and Diplostoma, Raf.
Dr. J. E. Gray, in his 'Outline' ('Ann. Phil.,' 1825), after observing that the Glires sro" exceedingly difficult to arrange, snd that the arrangement given is only "an attempt according to their habits," makes Muride the frat family of the order, with tha following character:- "Cutting teeth two in each jaw, lower awl-ahaped, grinders simple or compound, upper abelving backwards, lower forwarda; limbs proportionate, tail acaly, fur with seattered longer hairs, or flat spines ; clavicles distinct.'

He then subdivides the fumily as follows :-

\dagger Grinders rooted, simple.

1. Mrurina.-Mus, Liun.; Otomys, F. Cuv. ; Capronys, Desm.
2. Hydromina.-Hydromys, Geoff:
$\dagger+$ Grinders rootless, compound.
3. Ondatrina-Ondatra
4. Castorina.-Castor, Linn. ; Ostcopora, Harlan.
5. Echymina.-E'chymys, Geoff. ; 1heteromys, Desm.; Saccomys, F. Cuv. In the 'Catalogus of apecimens in the British Museum,' Dr. J. E. Gray has somewhat modified this arrangement. A list of the British Museum specimens of this family is given at the end of this article.

Dr. Fischer, in his 'Couspectus Ordinum et Generum ' (1829), divides the Glires into two sections: the first consisting of those with complete clavicles; and the secoud of those which hava none. The following genera are thus arranged under the first eectiou:-Castor, Lemmus, Spalax, Saccophorus, Lonchercs, Myoxus, Hydromys, Capromys, Mus, Cricetus, Saccomys, Pedetcs, Dipus, Aulacodus, Arctomys, Sciuvus, Pteromys, and Cheiromys.
Mr. Swainson, in his 'Classifcation of Quadrupeds' (1835), slso separates the Glires into two divisions: the first, or Gtives proper, with clavicles; and the second with rudimentary clavicles, or none. In the firat division, after the genora Custor, Fiber, sud Myopotamus, snd an observation in a note to the first gection, that these divisiona are purely artificial, and merely formed to facilitate the search among so many unarranged groupa, wa find the following sections:-

1. Rats and Mice, under which are arranged the following:Arricola, Lacép. (Hypuderes, Ill.). Example, I/us amphibius, Linn., Water-Rat, Penn. ; (icorychus, IIL. (Lemumings). Example, Mus Norregicus, Linn., the Lemming." Echimys, Geoff. (Spined Rats). Ex. Echimys cristatus, Desm., Gilt-Tsiled Dormouse, Penn. Myoxus, Gm. (Dormouse). Ex. Mus arellanarius, Linn., the Common Dormouse. IIydromys, Geoff. (Water-Rat). Ex. II. leucogas/er, Australia Mus, Auct. Ex. M. Rattus, Liun., Common Rat. capromys, Desm. Ex. C. prehensilis, South America. Cricetus, (IIsmster). Ex. C. vulgaris, the Hamster.
2. Fore lega very short, hind legs long. Jumping Mice, under which come the following gevera and sub-gevera:-Dipus (Jerboa), Fix. Mus Jaculus, Linn. (D. Sagitta. Dum.). Sub-genus Gerbillus, Desm. Ex. M. Tamariscinus, Tamariek Jerboa, Sh. Meriones, F. Cuv, Ex. Meriones Labradorius. Sub-genus Pedetes, IIL. Ex. M. Caffer, Pall., Cape Jerbos, Penu. Then follows Lagostomus, Brookes, with ita aub-genera Chinchilla and Lagotis. [C'minchiliddes.]
3. Tail very short. Mole and Sand-Rate, including Geomys, Schmaltz (Saud-Rat). Ex. Geomys Douglasii, America. Diplostoma, Schmaltz, America; Aplorlontia, Richardson. Ex., A. leporina, America, Aspalax, Güld.t Ex. Mus Typhlus, I'all., Asia; Bathyergus, Ill. Ex. M. naritimus. Gm., Africa.
4. Tail long, bushy. Squirrela, under which are arrangel A rctomys, Gın. Ex. Mus Marmotta, Linn., tha Marmot. Spermophilus, F. Cuv. Ex. M. citellus, Pall., chiefly America, Sciurus, Auct. Fix. S. vulyaris, Lion., the Commou Squirrel; together with the sub-genus Pteromys, Geoff, and the genua C'heiromys.

The numerous forms which press upon the attention in conaidering this large section of Mammalia are enough to convince any ona who has bestowed soy thought on the subject that suthors have not apoken of the diffcultiea surrounding it without reason. We shall therefore introduce the atudent to the most remarkable among them; and, adopting Mr. Swainson'a names for the first three aections as arbitrary divisiona under which we may bring the atructure and lasbita, where they are known, of these animals before the reader, proceed to examing the natural history of this great and destructive group.

Rata and Mica (popularly ao called).

Arricola.-Ears moderate. Muzzle obtuse. Anterior toes armed with moderate claws. Tail round and hairy, not so long as the body. Number of teata from 8 to 12. Molars composite, with flat crowns, presenting angular camellad laminx.

* Georychun is generally considered to signify the Mote-Rata. The true Lemmingr, such as MHs Norregicus, are cloacly allied to Arricola.
+ Aspafar is Olvier" name; Spatax is Guldeastadt's.
x AT. HIST. DIV. VOL. HI.

Dental Formula:-Incizors, $\frac{2}{2}$; Molars, $\frac{3}{3}=10$.

Teeth of Arvicola. F. Cuvier.
Cuvier divides the great genus Arvicola of Lacépède (Canppaguola) into the Ondatras (Fiber, Cur.) [Ondatra], and the Campagnola Ordinaires (Arvicola, Cuv.; Hypudceus, Ill.); and so they stand in Cuvier's last edition of the 'Règoa Animal.' M. Lesson, in his 'Manuel,' atates that Cuvier has formed two sub-divisiona of the Arvicold, namely, first, tha Campagnols Nageurs, of which M. Lesson gives A. amphibius, Desm., Mus amphibius, Linu., as an example; sad second, the Campagnols Terrestres, whioh may be examplifiad by A. agrestis.

Adopting this latter sub-division of Arvicola in its reatricted sense for convenience, thers beiug hardly sufficiant difference in the atructure, whatever there may bs in habits, to juatify the breaking the true Arvicote down into two groups, we ahall, before we proceed to tha description of the two esamples aelacted, detuin the reader very ahortly with tha viewa of two modern English anturalista of note with reapect to tha Arvicole.
Dr. Gray raises this group to the rank of a family under the aame of Arvicolide, or of a triba Avricolina, and under it places hia genus Ctenodactylus, a word, by the way, which comes very near to Dejean's name for a genus of Coleopterous Insecta, Clenodactyla. [Ctenodactylus; Ctevodactila.] Mr. Yarrell is of opinion that C. Mas sonii of Gray, is, as suggested by Mr. Ogilby, identical with the Mus Gundi. of Rothman, on whose description is founded the Arctomys Gundi of Gmelin and othera, and the Guadi Mermot of Pennan:'a 'Zoology.'
Mr. Bell, in his ' British Quadrupads,' observes that the location of the Arvicolee with the genus M us involves an inconsistency which was early detected, and the correction of which has been universally recognised and followed. The characters of the teeth, he remarks, as well as the general form of the body, and the habits of all the apecies, remove them not only generically from the Mures, but esen point out their association with a different favily of tha Rodentia; and their affinity to thia beaver, he adds, appeara to have forcibly struck Linnaus himsclf, who, in bis 'Fauua Suecica,' applied tha nams Custor to the European Wister-Vole, or Water-Rat. Mr. Bell then coutinues thus: "The generic term Arvicola, if not absolutely unobjectionable, must be retained, as having the aanction of priority over the nama Microtus of Schrank, Hypudous of Brant, or Lemmus of F. Cuvier. With regard to the name of the family, I have ventured to changa that of Dr. Gray, Arvicolidte, to Castoride, becauae tha genus Castor must be considered as the typa of the family, of which the present can only be an aberraut form." [Beaver.]

Section 1. Water or Swimming Arvicoles or Voles.
A. amphibius, Desm.-Castor caudl lineari tereti (Liun. 'Faur. Suec.') ; Mus amphibius ('Syat. Nat.,' Mull., 'Zool. Dan. Prod.'); M. aquaticus (Briss.) ; Lemmuns aquaticus (F.Cuv.); Arvicola amphilia (Jenyns); A. aquatica (Flem.); Rat d'Eau (Buffou); Water Rat (Pennant).
The head ia thick, short, and bluat; eyea amall, not very prominent; ears ahort, scarcely conspicuous beyond the fur; the cutting texeth of a deep jellow colour in front, very atrong, chisel-shaped, conaiderably resembling those of the beaver; the surface of the grinding-teeth formed of alteruate triangles arranged on each sido of the longitudinal axis; fors feet with four complete toes, the last phalanx only of the
thamb being conspicuous beyoud the skin; hinder feet with five toes, not webbed, though connected to a short distance from the base; tail more than half the length of the body, covered with hair, of which those on the inferior surface nre rather long, and probably assist the animal in swimoing by forming n sert of rudder of the tail. Fur thick and shining; of a rich reddish-brown mixed with gray above, yellowishegray beneath. Dimensions by Mr: Bell:-

Length of the head and boul:
Length of the head
Leagth of the ears
Leagth of the tail
Inches. IInes.

This sppears to be the Sorgo Mergange of the Italinas; Wasser-Mause-Rat of the Germsus; Whter-Rot of the Dutch; Watn-Ratta of the Sredes; Vand-Rotte of the Danes; Llygoden y Dwfr of the Welsh; and Water-Vole and Water-list of the English.

Ray names it Mus mojor aquaticus, seu Rattus aquaticus, and he, as well as linmeus, states that the Water-Rat is web-footed. This puzzled Whita of Selborne, who, in one of his letters to Pepnant, writes, " Kay eays, and Linneus after him, that the water-rat is webfooted behind. Now I have discovered a rat on the banks of our little stream that is not web-footed, and yet is an excellent swimmer and diver: it answers exsctly to the Mus amphibius of Linazus (seo 'Syat. Nat.'), which, he says, 'natat in fossis et urinatur.' I should be glad to procure one 'plantis palmatia." This letter is dated early in August, 1767, and Peanant in his 'Synopsis' (1771), says of the Wister-Kat that it "swims and dives admirably, though it is not web-footed, as Mr. Ray supposed, and Linneus copied after him.'

The Water-Rat inhsbits the banks of rivers, streams, poods, and even ditches, in the banks of which it burrows and broeds. Its retreat is however sometimes at a great distance from the water. White (Selborne), sags, "As a neighbour was lately plowing in a dry chalky field, far removed from any water, he turned out a water-rat, that was curicusly laid up in an lyybernaculum artificially formed of grass and leaves. At one cad of the burrow lay above a gallon of potatoes regularly stowed, on which it was to have supported itself for the winter. But the difficulty with me is how this amphibious Mus came to fix its winter station st such a distance from the water. Was it determined in its choice of thst place by the mere accideut of fiuding the potatoes which were planted there? or is it the constant practice of the aquatic rat to forsaic the neighbourhood of the water in the colder months !" We suspect that the potatocs had their charms for the store-keeper. The Water-Rat is indeed entirely, as we believe, a vegetable feeder, roots and subaqueous plants being its staple. It has been said to feed on worms, frogs, small fish, and the fry of fish generally, among other animal food; and has thence labourcd under a very bad characteras the enemy of the fish-poud and the trout-stream. The best writers are agreed that there is no foundation for this charge, and there can be little doubt, as Mr. Bell observes, that it lian arisen from this phytiphagous animal being confounded by inaccurate observers with the common Brown Rat (Mus decumanus) which often haunts ditches and mill-tails, feeding freely on all sorts of animal sobatances, and taking the water boldly. Tho last-aamed rats have been seen towards nightfall crossing the canal in the Regent's Park in order to forage in the gandens of the Zoological Society.

The Water-Rat is a very cleanly animal, and generally has but one brood, consisting of five or six: these are ordinarily bora in May or Jone, when the vagetation is well forward; but the young are sometimes produced as early as April, in which latter case there is a second litter towards the end of summer or beginning of sutumn. The flesh is said to be eaten by the French peasants on maigre days.

This lat is na inlabitant of most parts of Europe.
Mr. Bell, whe gives n very gool figure of the Common Water-Vole, or Water-hat, remarks that a black variety of this species has long been known, and that it las been described by l'allas nud other continental zoologints. Mr. Hell is of opinion that this is probably identical with the quadruped described ly Mr. Macgillivray in the sixth volume of the 'Tranactions of tho Wernerian Sueiety of Edinburgh,' under the name of Arricula afrr, as very common in the counties of Banff and Aberdeen. 'Ilse Water. Vole, it is stated, does not occur where this Arricola afer abounds. The labits of the lntter ngree with those of the Water-Vole. Mr. Macgillivray however thinks that there are sufficient differences in the organisation and colour of these two naimals to warrant apecific distinction. Arricola aler is atated to be deep black above, and black with a tiuge of gray beneath; iu size somewhat analler than the Common Water-Vole, but the ditlerence of the proportions in nonrecly apprecinble. Mr. Bell observes that this author believea the number of candal vertebro to be differcut; and he adds thath if this were comatantly the cane, it would go far to eatabliph their Nrecific diatinction; but an examination of a stuffed specimen belonging to Mr. Iarrell, does not, on a comparison with several of the common sort, appear to Mr. Bell to justify this suppoaition. "Mr. Jeagm," continnes Mr. Bell, "staten that the black variaty is not uncommon in the feus of Cambridgeahire, and differs in no naspect from the other but in colour; a testimony which munt weigh very hearily against the opinion of j!e being apecifically distinct, when we consider the great accuracy of that gentleman's observations."

Section II. Terrestrial Arvicoles.
A. agrestis (Mus agrestis brachyurus, liny; M. agrestis. Linn.; M. arralis, Pall., Gmel; Lemmus arralis, F. Cuv.; A. rulgaris, Desm.; A. agrestis, Flem., Jenyns, Yarrell; A. arralis, Selys-Longchampa; Campaguel, Buff.); Short-Tailed Field-Moune, I'ean. ; Meadow-Moumo, Shaw.

The head is large; muzzle very obtuse; ears just appearing above the fur ; body thick and full; tail not more than one-third the length of the body, aparingly covered with hair; thumb of the fore feet rudimeutary, without a claw. Upper parts reddish-brown, mixed with gray; of the under parts ash-colour; feet and tail dusky. Dimentions by Mr. Mell:-

\[

\]

This appears to be Le Petit Rnt de Champs and Le Campagnol of the French; Campagnolo of the Italians; Skier Muus of the Danes; Llygoden Gwtts'r Maes of the Welsh ; Field-Vole, Short-Tailed FieldMouse, and Meadow-Mouse, of the English.

Small and inaigoificant as the animal is in appearance, there is scarcely a species among the Rodents more destructive to the fields, gardens, and woods, which have been rendered fruitful by the industricus hand of man, than the Short-Tailad Field-Mouse. In the cornfield, in the rick-yard, in the granary, in the extensive plantation, its depredations are often sovere, and sometimes overwhelming. The following instance will show.what damage these mice are capable of doing when they become multitudinous. Lord Gleubervie, in a letter to Sir Joseph Banks, dated June 30th, 1814, observes that the wholo both of Dean Forest and New Forest appeared to be numerously atocked with mice ; at least wherever the large furze-brakes in the open parts had been burnt their holes sad runs covered the surface. Haywood Hill, a dew plantation of about 500 acres in the forest of Dean, was particularly infested. This inclosure, after bcing properly fenced, was planted with acorns in 1810, sud in the following spring about onethird came up; the rest of the eeed having been probably destroyed by mice privcipally. The joung shoota of the natural hollies of the tract, which had been cut down to favour the plantation, were not attacked by the mice in the winter of 1811, though their runs were numerous. In the autumn of 1812 a large quantity of five-gear'e-old oaks and chestunts, with ash, larch, and fir, were planted in the inclosure. la the winter the destruction began, and numbers of the hollies, then two, three, or more feet high, were barked round from the ground to four or fiva inches upwarda, sod died. In the apring of 1513 n number of the oaks and chestnuts were found dead, and when they were pulled up it appeared that the roots had been ganwed through two or three inclies below the surface of the ground; many were also barked rouud and killed like the holly-shoots ; whilst others, which had been begun upon, wero sickly. The evil now extended to the other inclosures; and becoming very serious both in Dean Forest and the New Forest, cats were turned out; the bushes, fern, rough grass, \&c., were cleared away to expose the mice to beasts and birds of prey; poisons in great varicty were laid; and seven or eight different sorts of traps were set for them, some of which made of tin succeeded very well. These were however superseded by tho plan of a professed rat-catcher, who, having been employed to catch the mico, lad observed on going to work in the morning that some of them had fallen into wells or pits, sccidentally formed, and could not get out again, many of them dying from hunger or fatigue in endeavpuring to climb up the sides. Such pits were therefore, on his recommendation, immediately tried : they were at first msde 3 fset deep, 8 feet long, and 2 feet wide; but these were found to be unnecessarily large, and after various experiments it nppeared that they answered best when from 18 to 20 inches deep at the bottom, about 2 feet in length, and oue foot and a half in width, and at top only 18 inches long and 9 iuches wide, or iudeed as amall as the earth could be got out of a hole of that depth; for the wider they are below and the narrower above the better they answer their purpose. They were made about 20 yaris asuader, or sbout 12 on an acre; or, where the mice were less numerous, 30 yarda apart. Nearly 30,000 mice had been caught priucipally by this last nethod, in Deno Forest, up to the 22ad of Deceuber; and Mr. Davics (the deputy-surreyor) was conviaced that a far greater number had been taken out of the holea, either alive or clead, by stoata, weasels, kites, owls, \&c., and oven by crowa, magpies, jays, \&c.
'lise suceess of thess holes in Dean Forest was so great, that the use of a bait in them was soon discontinued; but from an inaceuracy in the digging of them, or some other cause, they wore far less efficacious in the New Forest, where the mice continued still, though less numerous, to iufeat the plantations. It was hoped that the severe weather would havo either totally destroyed or greatly diminished the numbers of these suimals, for they did not vouture out during the hard frusta. In a letter from Mr. Davies, dated the Sth of March, 1814 , he gives only 1216 as the number taken from the 7 th of Jaunary to the Sth of March; and he says the whole of these Lad been caught in a fow daya of open woather which intervened nbout that time. The total number taken in Dean Forest to the 8th of March, 1814 , did not much exceed 30,000; and in the New Forest
only sbout 11,500 had been taken up to the same period. In hoth forests two sorts of mice had been observed-one the Short-Tailed, the other the Long-Tsiled Field-Mouse; but the former was by far the most aumerous, particularly in Dean Forest, where it was in the proportion of upwards of fifty to one Long-Tailed.

Buffon speaks of similar depredations to plantations by the species under consideration; but though he seems to have tried the same sort of trap which was used in the Euglish forests above-mentioned, he does not appear to have resorted to the plan of making holes, which is stated to have been successfully employed by the farmers in the neighbourhood of Liege; but though they make the holes round, and not more than four inches in diameter, and a foot deep, the success seems to be complete.

This destructive Arvicole is a burrower, though it not unfrequently takes up with the subterranean retreat of another animal, that of the mole, for instance. The wheat-rick and the barn are not unfrequently infested by them, but their favourite situations are low and damp. Dry seasons are fatal to them. The nest is formed in some bank or meadow, generally of dried grass, and from five to seven young ones are produced at a birth. To this specie日, or to the Long-Tailed FieldMouse, the latter most probably, White appears to allude in the letter containing snecdotes of the maternal affections of animals, when he speaks of a remarkable mixture of instinct and sagacity which occurred to bim one day, when his people were pulling off the lining of a hot-bed, in order to add some fresh dung:-" From out of the side of thin bed leaped an animal with great agility that made a most grotesque figure ; nor was it without great difficulty that it could bs taken, wheu it proved to be a large white-bellied Field-Mouse, with three or four young clinging to her teats by their mouths and fcet. It was amazing that the desultory and rapid motions of this dam should not oblige her litter to quit their hold, especially when it appeared that they were so young as to be both naked and blind."

This mouse is a native of Europe.
Mr. Bell is of opinion that the Arvicola riparia of Yarrell ('Zool. Proc.,' 1832) is no other than the A. pratensis of Baillon and the A. rufescens of Selys-Longchampa. For the other species of Arvicole see the list at the end of this article.

Octodon.-Mr. Bennett observes that "In the structure of its molar teeth, Octodon may be regarded as occupying an intermediate station between Poephagomys and Ctenomys. In Octodon the molars of the upper jaw differ remarkably in form from those of the lower. The upper molars have on their inner side a slight fold of enamel, indicating a groove tending in some measure to separate on this aspect the mass of the tooth into two cylinders: on their outer side a similar fold penctrates more deeply, and behind it the crown of the tooth does not project outwardly to so great an extent as it does io front. If each molar tooth of the upper jaw be regarded as composed of two partially united cylinders, slightly compressed from before backwards, and somewhat oblique in thcir direction, the anterior of these cylinders might be described as entire, and the posterior as being truncated by the removal of its outer half. Of such teeth there are, in the upper jaw of Octodon, on eacl side, four ; the hindermost being the smallest, and that in which the peculiar form is least strongly marked. In "Ctenomys, all the molar tecth, both of the upper and the lower jaw, correspond with the structure that exists in the upper jaw of Octodon, excepting that their crowns are more slender and more obliquely 1,laced, wheuce the external emargination becomes less sharply defined; and also excepting that the hinder molar in cach jaw is so small as to Le almost evanescent: as is generally the case, however, the relative position of the teeth is counterchanged, and the deficiency in the outline of the crown of the tooth, which in the upper jaw is externsl,

8kull of Octodon.
1, eech from sbore; 2, proble; 3, seca from below; 4, lower jaw seen from abure.
is, in the lower jaw, internal. In the lower jaw of Octodon the crowns of the molars assume a figure very different from those of the upper, dependent chiefly on the prolongation of the hinder portion of the tooth to the same lateral extent as its anterior part: each of them consists of two cylinders, not disjoined in the middle where the bony portion of the crown is continuous, but partially separated by a fold of enamel on either side producing a corresponding notch; placed obliquely with respect to the jaw they resemble, in some measure, a figure of 8 with its elements flattened obliquely, pressed towards each other, and not connected by the transverse middle bars. With the lowers molsrs of Octodon those of Poephagomys, as figured by F. Cuvier, correspond in structure in both jaws. Octoclon thus exhibits, in its dissimilar molars, the types of two genera: the molars of its upper jaw represent thoso of both jaws of Ctenomys ; those of its lower jaw correspond with the molars of hoth jaws of Poephagomys."
O. Cumingii, Benn. (Dendrobias degus, Meyen). In size and shape genarally resembling the Water-Rat, with which Mr. Bennett thinks that it is nearly connected systematically. All the feet with five toes, but the innermost both before and behind very short, and separated by a wide interval from the rest. Upper surface and sides brownish gray, intermixed with frequent indistinct and undefined spots and patches of dusky-black ; colour slightly darker towards the rump, and upper surface of the entire tail, together with its under surface for one-third of its length from the tip, approaching closely to black; under surface of the body dusky-gray, mingled with a shade of brown, lighter and nearly white beneath the base of the tail, and deeper on the breast and the neck, where it becomes almost of the same general hue as the upper surface.

Octoron Cumingii. Dcanctt.
Mr. Cuming thus describes the habits of O. Cumingii in its natural state:- "These animals burrow in the ground, but always under brushwood feaces or in low thickets. They are so abundant in the neighbourhood of Valparaiso that in the high-road between that place and St. Jago more than a hundred may frequently be scen at one time in search of food. Sometimes, but not often, they are observed on the lower branches of the shrubs, and ou those which form the fencer. They fly at ths least alarm, and in running carry their tufted tails like a bent bow. A species of horned owl feeds principally on these pretty little creatures." Mr. Bennett adds, that two living specimens brought by Mr. Cuming from Chili, were placed by him, in 1831, in the Society's Menagerie: ous of them escaped, but the other was alive when Mr. Bennett wrote (December, 1835), and was as active and lively as it was on its first arrival. They were rather shy, and had but little playfulness. They leaped readily and without any appearance of exertion from the floor of their cage to a narrow perch placed at the height of nearly a foot, and there remained seated at their easo. Their food was vegetable.

It is found in Chili, near Valparaiso, where Captain King informed Mr. Bannett that he had seen thousands of them. ('Zool. Proc.," aud ' Zool. Trans.')
The geaus Octodon is referred to tho family Mystricidee by Mr. Waterhouse. [Hystricide.]

Ctenomys.-Mr. Waterhouse refers this genus to the tribe Octodontina in his family Hystricida. [Hystricide.]
C. Magellanicus may be taken as an example. In general form it seems nearly to resemble Octodon Cumingii. Toes 5, the innormost, both before and behind, much shorter than the others. Tail sparingly baired, but comparatively shorter than in O. Cumingii, and deatituto of any marked tuft of longer hairs at its extrsmity. Upper surface and sidcs brownish-gray tinged with yellow, and hardly varied by
thumb being conspicuous beyond the ekin; hinder feet with five toes, not webbed, thongh connected to a short distance from the base; tail more than half the length of the body, covered with hairs, of which those on the inferior surface are rather long, and probably assist the animal in owimming by forming a sort of rudder of the tail. Fur thick and shining; of a rich reddish-brown mixed with gray abore, yellowish -gray bezeath. Dimensions by Mr. Dell:-

Length of the head and borly
Length of the head
Length of the ears
Length of the tail
Iaches. Lines.

This appears to be the Sorgo Morgange of the Italians; Wasser-Mause-Rat of the Germans; Water-Rot of the Dutch; Wstn-Rasta of the Swedes; Vsad-Rotte of the Danea; Llygoden y Dwfr of the Welsh; and Water Vole and Water-Rat of the English.
Ray namea it M/us major aquaticus, seu Rattus aquaticus, and he, as well as Lidnerus, states that the Water-lat is web-footed. This puzzled White of Selborne, who, in one of hin lettera to Pennant, writes, "Ray eays, and Linneus nfter him, that the water-rat is webfooted behind. Now I have discovered a rat on the banka of our little stream that is not web-footed, and yet is an excellent swimmer and diver : it answers exactly to the Mus amphibius of Linnaus (Ree 'Syst. Nat.'), which, he says, ' natat in foseis et urinatur.' I should be glad to procure one 'plantis palmatis.'" This letter is dated early in August, 1767, and Pennant in his 'Synopsis' (1771), aays of the Water-Rat that it "swims and dives admirably, though it is not web-footed, as Mr. Ray supposed, and Linnxus copied after him.'

The Water-Rat inhabits the banks of rivera, streams, poads, and even ditches, in the banks of which it burrows and breeds. Its retreat is bowever sometimes at a grest distance from the water. White (Selborne), says, "As a neighbour was lately plowing in a dry chalky field, far removed from any water, he turned out a water-rat, that was curioualy laid up in an bybernaculum artificially formed of grass and leaves. At onế end of the burrow lay above a gallon of potatoes regularly stowed, on which it was to have aupported itself for tho winter. But the difficulty with me ia how this amphibious Mus came to fix its winter station at such a distance from the water. Was it determined in its choice of that place by the mere accident of finding the potatoes which were planted there? or is it the constant practice of the squatic rat to forsake the neighbourbood of the water in the colder months !" We muspect that the potatoes had their charme for the atore-keeper. The Water-Rat is indeed entirely, as we believe, a vegetable feeder, roots and subsqueous plants being its staple. It has been aaid to foed on worms, frogs, small fish, aud the fry of fish generally, among other animal food; sad has thence laboured under a very bad character as the enemy of the fish-pond nud the trent-stream. The best writers are agreed that there is no foundation for this charge, and there can be little doubt, as Mr. Bell observes, that it has arisen from this phytiphagous animal being confounded by inaccurate observers with the common Brown Rat (Mus decumanus) which often haunts ditchea and mill-tails, feeding freely on all sorts of snimal substances, and taking the water boldly. The last-named rats bare been seen towards nightfall crosaing the canal jo the Regent's P'ark in order to forage in the gardens of the Zoological Society.
The Wrter-Rat is a very cleanly animal, and generally has but one brood, consisting of five or aix : these are ordinarily bora in May or Jme, when the vegetation is well forward; but the young are sometimes produced as early as April, in which latter case there is a second litter towards the end of summer or beginning of autumn. The flesh is said to be eaten by the Freuch peasants on maigre days.

This Rat is an inhabitant of moat parts of Europe.
Mr. Bell, who gives a very good figure of the Common Water-Yole, or Water-lat, remarks that a black variety of this species has long been known, and that it has been described by Pallas nud other continental zoologints. Mr. Bell ix of opinion that this is probably identical with the quadruped deseribed by Mr. Macgillivray in the eixth volume of the 'Transactions of the Wernerian Suciety of Edinburgh,' under the natec of Arricola ater, as very common in the countien of Banff nad Aberdeen. The Water-Vole, it is stated, does not occur where thin Arricolater abounds. The habits of the latter ngree with those of the Water-Vole. Mr. Macgillivray however thinke that there are sufficient differencen in the orgmiastion and colour of these two animals to warrant apecific distinction. A rricola acer is stated to be deep black above, and lack with a tinge of gray beucath; in size somewhat maller than the Common Water-Vole, but the difference of the proportiona ia scarcely sppreciable. Mr. Bell observes that this nuthor welieven the number of caudal vertebro to be different; and he adds that, if this wero constantly the case, it would ge far to catallish their "recific diatinction; bat an examination of a atuffed apecimen belonging to Mr. liarrell, doen not, on a comparison with neveral of the common sort, appear to Mr. Bell to justify this supposition. "Mr. Jenyus," continues Mr. Kell, "statea that the black variety is not uncommon in the fens of Cambrialgeshire, nad differs in no reapect from the other but in colonr; a tentimony which munt weigh very hearily agninst the opiuion of ita being epecifically distinct, when we consider the great accuracy of that gentlemanis obserrations."

Section II. Terrestrial Arvieoles.
A. agrestis (Mus agrestis brachyurus, Rny ; M. agrestia. Linn.; M. arralis, Pall., Gmel; Lemmus arralis, F. Cuv.; A. vulgari, Desm.; A. agrestis, Flem., Jenyna, Yarrell; A. arralis, Selyg-Longohamps; Canapagnol, Buff.); Short-Thiled Field-Mouso, J'ena. ; Meadow-Mouse, Sbaw.

The bead is large; muzzle very obtuse ; ears jubt appeariog above the fur; body thick aud full; tail not more than one-third the length of the body, eparingly covered with hair ; thumb of the fore feet rudimentary, without a claw. Upper parts reddish-brown, mixed with gras; of the under parts ash-colour; feet and tail dusky. Dimennions by Mr. Bell :-

> Length of head and body.
> Length of head
> Length of tail

This appeara to be Le Petit Rat de Champs and Le Campagnol of the Frenct ; Campagnolo of the Italiana; Skier Muus of the Danes; Llygoden Gwtta'r Maes of the Welsh; Field-Vole, Short-Tailed FieldMonse, and Meadow-Mouse, of the English.
Small and insignificant as the animal is in appearance, thero is scarcely a species among the Rodenta more destructive to the fields, gardens, and woods, which bave boen readered fruitful by the indnstrious band of man, than the Short-Tailed Field-Mouse. In the cornfield, in the rick-yard, in the granary, in the extensive plantation, its depredations sre often severe, and sometimes overwhelming. The following instance will abow- what damage thase mice are capable of doing when they become multitudinous. Lord Glenbervie, in a letter to Sir Joseph Banks, dated June 30th, 1814, observes that the whole both of Dean Forest and New Forest appeared to be numerously etocked with mice ; at least wherever the large furze-brakes in the open parte had been burnt their holes snd runs covered the surface. Haywood Hill, a new plantation of sbout 500 acres in the forest of Dean, was particularly infested. This inclosure, after being properly fenced, wal plantod with acorns in 1810, and in the following spring about onethird came up; the rest of the seed having been probably destroyed by mice principally. The young shoots of the natural hollies of the tract, which lad been cut down to favour the plantation, were not sttacked by the mice in the winter of 1811, though their runs were numerous. In the autumn of 1812 a large quantity of five-jear's-old oaks sad chestnuts, with ash, larch, and fir, were planted in the inclosure. In the winter the destruction began, and numbers of the hollies, theu two, three, or more feet high, were barked round from the ground to four or 6 ve jaches upwards, and died. In the apring of 1813 n number of the oaks and chestnuts were found dead, and when they were pulled up it appeared that the roots had been ganwed through two or three inches below the surface of the ground; many were also barked rouud and kitled like the holly-shoots ; whilst others, which had been begun upou, were sickly. The evil now extended to the other inclosures; and becoming very serious both in Dean Foreat and the New Forest, cats were turned out; the bushes, fern, rough grass, \&o., were cleared away to expose the mice to beaste and lirds of prey; poisons in great variety were laid; and seven or eight different sorts of traps were set for them, some of whioh made of tin succeeded very woll. These were however superseded by the plan of a professed rat-catcher, who, having been employed to catch tho mice, hed observed on going to work in the morning that some of them had fallen into wells or pits, accidentally formed, and could not get out again, many of them dying from hunger or fatigue in endeavpuring to climb up the eides. Such pits were therefore, on his recommonder tion, immediately tried : they ware at first made 3 feet deap, 3 feot long, nnd 2 feet wide; but theese were found to be unnecessarily large, and after various experimenta it appeared that thay answered beat when from 18 to 20 inches deep at the bottom, about 2 feet in length, and one foot and a half in width, and at top only 18 inches long and 9 iuches wide, or indeed as amall as the earth could be got out of a hole of that depth; for the wider they are below and the narrower above the better they answer their purpose. They were made about 20 yards asuader, or about 12 on an acre; or, where the mice were lesa numeroun, 30 yards apart. Nenrly 30,000 mice had been caught principally by this last method, in Dean Forest, up to the 22nd of December; and Mr. Davics (the deputy-surveyor) was convinced that n far greater number bad been taken out of the boles, either alive or dead, by stonts, wcarels, kites, owls, \&c., and even by orows, magpies, jays, \&c.
The auccens of thes holes in Dean Forest was so great, that the use of a bnit in them was soou discontinued; but from an inaccuracy in the digging of them, or some other caune, they were far less efficncious in the New Forest, where the mice continued atill, though less numerous, to iufeat the plantations. It was hoped that tho severe weather would have either totally destroyed or greatly diminished the numbera of these animsla, for they did not veuture out during the hard frosts. In a letter from Mr. Davies, dated the 8th of March, 1814, he gives only 1246 as the number taken from the Tth of January to the Sth of March; nad he gays the whole of these had been caught in a few daya of open weathor which intervened nbout that time. The total number taken in Dean Forest to the 8th of March, 1814, did not much exceed 30,000 ; and in the New Foreet
only sbout 11,500 had been taken up to the same period. In both forests two sorts of mice had been observed-one the Short-Tailed, the other the Long-Tailed Field-Mouse; but the former was by far the most numerous, particularly in Dean Forest, where it was in the proportion of upwards of fifty to one Long-Tailed.

Buffon speaks of similar depredations to plantations by the species under consideration; but though he seems to have tried the same sort of trap which was used in the English forests sbove-mentioned, he does not appear to have resorted to the plan of making holes, which is stated to have been successfully employed by the farmers in the neighbourhood of Liege; but though they make the holes round, and not more than four inches in diameter, and a foot deep, the success seems to be complete.

This destructive Arvicole is a burrower, though it not unfrequently takes up with the subterranean retreat of another animal, that of the mole, for instance. The wheat-rick and the barn are not unfrequently infested by them, but their favonrite situations are low and damp. Dry seasons are fatal to them. The nest is formed in some bank or meadow, generally of dried grass, and from five to sevell young ones are produced at a birth. To this species, or to the Long.Tailed FieldMouse, the latter most probably, White sppears to sllude in the letter containing anecdotes of the maternal affections of snimals, when he speaks of a remarkable mixture of instinct and sagacity which occurred to him one day, when his people were pulling off the lining of a hot-bed, in order to add some fresh dung:-"From out of the side of this bed leaped an animal with great agility that made a most grotesque figure; nor was it without great difficulty that it could be taken, when it proved to be a large white-bellied Field-Mouse, with three or four young clinging to her teats by their mouths snd fcet. It was amazing that the desultory and rapid motions of this dam should not oblige her litter to quit their hold, especially when it appeared that they were so young as to be both naked and blind."

This mouse is a native of Europe.
Mr. Bell is of opinion that the Arcicola riparia of Yarrell ('Zool. Proc.,' 1832) is no other than the A. pratensis of Baillon and the A. mufescens of Selys-Longchampa. For the other epecies of Arvicole see the list at the end of this srticle.

Octodon--Mr. Bennett observes that "In the structure of its molar teeth, Octodon may be regarded as occupying an intermediate station betwecn Poephagomys and Ctenomys. In Octodon the molars of the upper jaw differ remarkably in form from thoss of the lower. The upper inolara have on their inner side a slight fold of enamel, indicating a groove tending in some measure to separate on this aspect the mass of the tooth into two cylinders: on their outer side a similar fold penetrates more deeply, and behind it the crown of the tooth does not project outwardly to so great an extent as it does in front. If each molar tooth of the upper jaw be regarded as composed of two partially united cylinders, slightly compressed from before backwsrds, and somewhat oblique in their direction, the anterior of these cylinder's might be described as entire, and the posterior as being truncated by the removal of its outer half. Of such teeth there are, in the upper jaw of Octodon, on each side, four; the hindermost being the smallest, and that in which the peculiar form is least strongly marked. In 'Ctenomys, all the molar tecth, both of the upper sad the lower jaw, correspond with the structure that exists in the upper jaw of Oetodon, excepting that their crowns sre more slender and more obliquely placed, whenco the cxternal emargination becomes less sharply defined; and also excepting that the hinder molar in each jaw is so small as to be almost evanescent: as is generally the case, however, the relative position of the teeth is counterchanged, and the deficiency in the outline of the crowu of the tooth, which in the upper jaw is external,

skull of Octodon.
1, seen from abore; 2, profile; 3, scen from below; 4, lower jaw seen from abore.
is, in the lower jaw, internal. In the lower jaw of Octodon the crowns of the molars assume a figure very different from those of the upper, dependent chiefly on the prolongation of the hinder pertion of the tooth to the same lateral extent as its anterior part: each of them consists of two cylinders, not disjoined in the middle where the bony portion of the crown is continuous, but partially separated by a fold of enamel on either side producing a corresponding notch; placed obliquely with respect to the jaw they resemble, in some measure, a figure of 8 with its elements flattened obliquely, pressed towards each other, and not connected by the transverse middle bars. With the lowers molars of Octodon those of Poephagomy/s, as figured by F. Cuvier, correspond in structure in both jaws. Octodon thus exhibits, in its dissimilar molars, the types of two genera: the molars of its upper jaw represent those of both jaws of Ctenomys; those of its lower jav correspond with the molars of both jaws of Poephagomys."
O. Cumingii, Benn. (Dendrobius degus, Meyen). In size and shape generally resembling the Water-Rat, with which Mr. Bennett thinks that it is nearly connected systematically. All the feet with five toes, but the innermost both before and behind very short, and separated by a wide interval from the rest. Upper surface and sides brownish gray, intermixed with frequent indistinct and undefined spots and patches of dusky-black; colour slightly darker towards the rump, and upper surface ol the entire tail, together with its under surface for one-third of its length fiom the tip, approaching closely to black; under surface of the body dusky-gray, mingled with a shade of brown, lighter and nearly white beneath the base of the tail, and deeper on the breast and the neck, where it becomes almost of the same general hue as the upper surface.

Octodon Cumingri. Dennett.
Mr. Cuming thus describes the habits of O. Cumingii in its natural state:-"These animals burrow in the ground, but slways under brushwood fences or in low thickets. They are so abuudant in the neighbourhood of Valparaiso that in the high-road between that place and St. Jago more than a hundied may frequently be seen at one time in search of food. Sometimes, but not often, they are observed on the lower branches of the shrubs, snd ou these which form the fencer. They fly st the least alarm, and iu running carry their tufted tails like a bent bow. A species of horned owl feeds principally on these pretty little creatures." Mr. Benuett adds, that two living specimens brought by Mr. Cuming from Chili, were placed by him, in 1831, in the Society's Menagerie: one of them escaped, but the other was alive when Mr. Bennett wrote (December, 1835), and was as activo and lively as it was on its first arrival. They were rather shy, sud had but little playfulness. They leaped resdily and without any appearance of cxertion from the floor of their cage to a narrow perch placed at the height of nearly s foot, and there remained seated at their ease. Their food was vegetable.

It is found in Chili, near Valparaiso, where Captain King informed Mr. Bennett that he had seeu thousands of them. ('Zool. Iroc.' aud ' Zool. Trans.')
The genus Octodon is referred to the family IIystricide by Mr. Waterhouse. [Hrstricids.]

Ctenomys.-Mr. Waterhouse refers this genus to the tribe Octodontina in his family Iystricidce. [Hystricid.a.]
C. Magellanicus may bo taken as au example. In general form it seems nearly to resemble Octodon Cumingii. Tocs 5, the innermost, both before and behind, much shorter than the others. Tail sparingly haired, but comparatively shorter than in O. Cumingii, and destitute of any marked tuft of longer hairs at its extremity. Upper surface and sides brownish-gray tinged with yellow, and hardly varied by
blackish-in short the wime as that of Octodon, but of a lighter tint ; colour of the belly lighter than the upper surface; chin nod throat pale-farn; whort hairs of feet and tail almost white. Length of head and body, 75 inches; of the tail, 2.75 inches.

Skull of Cerromys.
1, seen from above; 2 , profile; 3 , seen from below; 1 , lower jaw seen from above.

Captain King's memoranda on the aulyect of this animal are:"From the size of the jaw, as compared with the nbundnot remains of thin littlu auimal which are acattered orer the surface of the ground, I think that the present specimen is rather a young one. On examining the teeth I fud that it cannot be referred to any of the genera of M. F. Cuvier's arraggement in his 'Dents eles Mammiferes': that to which it npproaches most nearly is Helamys; but it is sufficiently distinct to constitute a new geaus The red colour of the incisive teeth is rery reujarkable in all the spceimens which $\}$ have seen. The little animal is very timid, feeds upon gras, nud is eaten by the Patagonina Indiana. It dwells in holes which it burrows in the ground; and, from the number of the holes, it would appear to be very nbundant," Mr. Darwin ("Joumns nud Jemarks') gives a circumstantial account of thin curioun animal, which he well describea as a rodent with the hatits of n moln. "The Tucutuco," says that author, "is extremely abundant in anme parts of the conntry, but is difficult to be procured, and still more difficult to be seen when at liberts. It lives almost catirely under ground, nol prefers a arandy noil with a gentle iuclination. Tho burrows are aaid not to be deep, but of great length. They are seldom open, the earth being thrown up at the mouth joto billockn, not quite so large as those made by the mole Conniderable trsets of country are so completely undormined by these animala that horees, in passing over, sink nbove their fetlocks. The Tucutucos appear, to a certain degree, to be gregarious. The man who grocured apecimena for me had caught six together, and he maid thin was a commou occurrence. They are nocturnal in their Linbite; and their primeipal food is afforded by the roots of plants, which is the object of their exteosive and auperficial burrowa. Azara says they are no diflicult to be obtained that ho nover kaw more than one. Jle states that they lay up magarines of food within their burnown. Thia animal if universally known by a very pecular noise which it makes when beneath tho ground. A person, tho first time he hears it, is much murprined; for it is not casy to tell whence it comen, nor is it possiblo to gnean what kind of crenture utters it. The noise consints in a short but not rough nasnl grumt, which is repeated about four times in quict muccession; the first grunt is not so loud, but a little longer, nad more dintinct than tho three following: tho musical time of the whole ia coustant, an ofteu as it ia uttered. The name Tucutuco is given in imitation of the sound. In nll timea of the day, where thia animal ia abmdant, the noise may be heard, and mometimea directly beneath one"s fect. When kept in n roon the Tucutucos move both alowly nod clumnily, which appears owing to the outwarl action of their hind legs; and they are likowise guite incapable of jumping even the manllent vertical height. Mr. Reid, who disected a mpecimen which 1 brought home in apirits, informs me that the socket of the thigh bone in not nthached by a ligamentum teren; and thin explainm is n matisfactory manuer, the awkward moremente of their hinder extremities When eating thoy rest on their himd logn and hold tho picee in their fore pawa; tley appented also to winh to drag it into sotne comer. They nre very stupid in making my attempt to escape; when angry or frightened they uttered
the tucutuco. Of those I kept alivo reveral, oven the first day, became quite tanse, not attempting to bite or to run away; others were a little wilder. Tho man who caught them asserted that very many are invorinbly fonnd blind. A npecimen which I prenerved in apirits was in this state; Mr. Reid considers it to be the effect of inflammation in the nictitating membrase. When the animal was alive I placed my figger within half an inch of its head, and not the alightest notice was taken: it made its why howover about the room nearly as well as the others."

Tucutuce (Ctenomys Magellanicus). Bennett.
This creaturo is found at the east entrance of the Strait of Maga Laens, at Cape Gregory, and the vicinity. (King.) Mr. Darwin says that the wide plains north of the Lio Colorado are undermined by these animals; nud that near the Strait of Magalhaens, where Patagonia blends with Tierra del Fuego, the whole saddy country forms a great warren for them.

Mr. Darwin further atates that at the Rio Negro, in northern latagonis, there is nn animal of the same habita, nud probably a closely allied species, but which he never saw. lis noiso was different from that of the Moldonade kind, and was repeated only twice instead of three or four times, nud was more distioct and sonorous; when heard from a distance it so closely resembled the mound made in cutting down n small tree with an nxe, that Mr. Darwiu sometimes remnined in doult concerning it.

The Sigmodon of Say and Ord occupies, in their opinion, a station between the genera Areicola and Mus, having the babits and some of the external characters of the former, with teeth remotely allied to the latter. Tho geaus Neotoma of the samo zoologists, must, in their opinion, be also placed near Arricola. (See 'Journal of Nat. Acad. Sc. Phil.,' vol., iv.; and 'Zool. Journ.,' vol. ii.)

IIyprdacus (1ll.).-Closely allied to the Arvicola, from which they differ but littlo except in the umber of tho auterior toes, and in the shortness of the tril, are the true Lemmings. They have the following generic character:-Molnrs composite, with an even crown preaenting enamelled angular laminx; enrs very ahort; auterior feet generally pentadactyle and formod for digging; tail very ehort and thickly haired.

$$
\text { Dental Formula:-Incisors, } \frac{2}{2} ; \text { Molars, } \frac{3-3}{3-3}=16 \text {. }
$$

II. Norecgicu, the Jemming. It is the Lemmar, or Lemmun, of Olaus Magnus; the Jeem, or Iemmer, of Gesner; Mus Norvegicus vulyo Lening of Worminn; Mus Lemmus of Limmeus; Fial-Mus and Sabell-Mus of the Japlanders; Lummick of the Swedes; Le Leming of Buffon; Lemming of the Jritish; Lemmus Norvegicles of Desmareat ; and Mus لfommus of Pallas and Jimasus

Hend not quito no blunt as in tho Arvicole; whiskers long; eyes amall but black nad pierciug ; monthamall; eara small. Foro legs short, pentadactyle, tut the thumb hardly perceptible though the claw in very shapp; hiad legs pentadactyle. Skin thin. Head and body blnck nud tawny, irregularly, disposed; belly white with a yellowish tinge. Length from nose to tnil 5 iaches or thereabout, the tail half nu inch.

The ordinary food of the Lemming connists of grasa, the rejn-deer lichen, nad the entkins, \&c, of the dwarf bireh; but at intervals of time, geacrally once or twico in a quarter of a century, a great army of them appears: jouring onwards in vast honth, they devour every green thing in their path of desolation. Grval bande deacending from the Kolen, traverge Nordland and Finmark, ending their journey and
their lives in the Western Ocean, which they enter and there perish. Others, taking a direction through Swediah Lapland, are drowned in the Gulf of Bothnia. Their march is stated to be in parallel lines about 3 feet apart, without stop or stay, unless the obstacle is insurmountable : rivers and lakes they cross without deviation, and they are eaid to gnaw through corn and haystacks. ('Phil. Trans.,' ii.) Pennant, who states that they appear in numberless troops in Norway and Lapland, where they are the pest and wonder of the country, thus graphically describes one of these irruptions. "They march like the army of locusts so emphatically described by the prophet Joel; destroy every root of grass before them, and spread universal desolation : they infect the very ground, and cattle are said to perish which taste of the grasa which they have touched; they march by myriads in regular lines; nothing atops their progress, neither fire, torreuts, lake, nor morass. They bead their course atraight forward, with most amazing obatinacy; they swim over the lakes; the greatest rock gives them but a slight check, they go round it, and then resume their march directly on, without the least division: if they meet a peasant, they persist in their course, and jump as high as his kuees in defence of their progress; are so fieree as to lay hold of a stick, and suffer themselves to be swung about before they quit their bold: if struck, they turn about and bite, and will make a noise like a dog."

The Carnivora are close attendanta upon these wanderiag multitades, which Olaus and others believed to have beeu geaerated in the clouds and to have fillen from thence in storm and teonpest. They are, ayys Pennant, "the prey of foxea, lynxes, and ermines, who follow them in great numbers: at length they perish, either through want of food or by destroying one another, or in some great water, or in the sea. They are the dread of the country: in former times spiritual weapona were exerted against them; the priest exorcised and had a long form of prayer to arrest the evil : happily it does not occur frequently; once or twice in 20 years: it seems like a vast colony of emigrants from a nation overstocked; a disclarge of animals from the great northern hive, that once poured out its myriads of human creatures upon Southern Europe. Where the head-quarters of these quadrupeds are is not very certainly known; Linneus says the Norwegian and Lapland Alps; Pontopiddan neems to think that Kolens lRock, which dividea Nordland from Sweden, is their native place; but wherever they come from, none return: their course is predestinated, and they pursue their fate."

When seeking the reindeer lichen in the winter, the Lemmings get under the snow, making lodpments, and opening spiracles to the surface to secure nir. The Arctic Fox pursues them in these retreats. It does not sppear that they lay up say magazines of food, and to this improvidence perhsps, as Peanant observea, may be traced the great migrationa that they are compelled to mako in certain years; huager urging them to quit their usual residences.

They breed ofteu io the course of a ycar, producing five or aix young at a birth, and they bring forth sometimes on their migrationa. They are said to carry some of their young in their mouths and some on their backs.

The Laplanders, who compare their flesh to that of squirrels, eat thein.

Echinyz (Geoff.; Loncheres, 11l. part).-Four unguiculate toes and a FCstige of a fifth on tho auterior feet. Tail very long, scaly, and nearly uaked. Haire, especially those on the upper parts, flat and aciculated. Molara with transverse lamins, united to each other by two at onc end, or isolated.

Deutal Formula:-Iucisors, $\frac{2}{2} ;$ Molara, $\frac{4-4}{4-4}=20$.

Tecth of Exchimys dactylines (young), enlarg.d. F. Cuvier.
E. chrysurus (E. cristutue, Desm.?), Lerot ì Queue dorée of Allamand; the Gilt-Tail Dormouzc of Pcavant.

The êars are ahort and broad, whiskers strongly developed, a goldcoloured lioe extendiag longitudially from the nose to the space between the ears; head, body, and upper part of tail, maroue or shiniug purplish chestaut, ruddy marginate bristlea being geattered between the hairs, which give the apleodour to the animal; lower part of tail, which is thick at the base and longer than the body, golden. Length from nose to tail 5 ioches. This species is said to climb trees, and live principally on fruits.

It is a native of Surinam.
Cercomys (F. Cuvier).-In shape ressmbling the Black Rat, but with the chanfrein more arched and the ears larger. Anterior limbs cocsiderably shorter than the posterior, which are terminated with five toes, the three middle ones longest; the anterior with four toes only, and the rudiment of n thumb with a small flat nail; all the other toes with compressed nails curved and pointed, and seeming more proper for climbing than burrowing. Tail very long, and like that of the Brown Rat. Fur composed of long atraight firm hairs of a uniform texture, and of hairs which are fioer, softer, aod much thicker ; no bristle as in Echimys. Molars with distinct roots of equal size, and their slightly elevated crown nearly circular, presentiog at the surface a notch and three ellipses surrounded with enamel, as is the tooth itself. The notch is on the internal aide in the upper molars, and on the external side in the lower molars. Great suborbital hole considerably extensive.

$$
\text { Dental Formula:-Incisors, } \frac{2}{2} ; \text { Molars, } \frac{4-4}{4-4}=20 \text {. }
$$

C. cunicularits. It is dcep brown above, paler on the sides and the aidea of the cheeks; jaws and neck beneath, as well as the under parts generally, whitish. Eses and ears large.

It is a native of Drazil.

Cercomys cunicularius.
The genera Echimys and Cercomys are iucluded in the tribe Echymyina of Mr. Waterhouse's family IIystricidce. [Hystricide.]
Myo.cus (Schreber; Gmelin).-Four toes and the vestige of a fift: on the anterior feet; five toes behind. Fur very soft and fiue. Tail

Tecth of Myoxus, enlarged. F. Cuvier.
very long, sometimes well clothed with hair and round, sometimes depresed, sul sometimes tufted at the extremity only. Molars with transveree rilges of enancl projecting and hollowed.

$$
\text { Dental fiormula:-Incisors, } \frac{2}{2} ; \text { Molars, } \frac{\frac{1-4}{1-1}=20 \text {. } .4 .}{}
$$

M. arellanariue, the Dormouse- The head is proportionally large; eyes large, black, and prominent; muzzle not bluut ; cars bromt, about ono thind tho length of the head; body plump and round; tail flattened, the hairs rather long and buahy; head, back, aides, belly, and tail, tawny-red; leugth that of a common monse.
loung of a mousegras, head and fanke only tinged with red.
This is the Muscardin, Crotulue-Noix, mullat-d'Ur of the French; Moscardino of the Italians; Liron of the Spanish; Jothe Wrald-Maua Hascl-Mons, and Ilasel Schlafer, of the Germans; Skugamus of the Sweden; Kasel-Mus of tho Daacs; Pathew of tho Welsh; aud Sleeper of the English.

Thero is little if any doubt that this species is the Glis of the Roman nuthors Tllus Pliny, in his elapter, 'De lingina Glande,' \&c. (xvi. 6), saya, "Fagi glana muribua gratissima est
glires quoque saginat;" and Martial (xiii. 50, 'Glires') writes-

> "Tota mibl dormitur byems, et plaguior tlln Tcmpore sum, quo me all aisi somnus alit."

Nor does the occasional short awakening caused by a warn sumaty day, to which the animal is subject, militate against the application of Martial's Jines; for the occasional disturbanco is the exception to the rule.
Mr. Bell placea the Dormouae among the Sciuridé (Squirrels); and indeed zoologists have assigned it to both the genus Sciurus aud Mus. In its habits it comes wear to the Squirrel, but in its dentition it is nearer to the Mice. It is in truth one of those forms by which nature glictea from onc race of nimaly to another. Mr. Bell gives the following synonynu:-Muarellanarius minor (lay), M. arcllanarius.(Linn.), Sciurus arellanarius (Desm.), Myагия Muscordinus (Schreb.), Мyoxus arellanarius (Desm.), Le Muscardin (Buff.), Jormouze (l'enn.) Ho cousiders the epecific name arellanarius is not well chosen, inasmuch as the bazel-unt is not the principal food of the Dormousa; " indced," he continues, "I have uever saen any that could gnaw through tho shell of that nut when fully ripe and dry."

Dor atouse (.Myosus arellanarius).
1)enme thicketa, buaby dells, and tangled hedgerows are the favourite retreats of tho Vormonse. There it constructs its ensy dormitory, and there provideatly laya up its winter ntore, consisting of aeorns, beechmant, corn, young hazel-nutn, haws, de. It seema inclined to be gregarions; and indeed Mr. Varrell told Mr. Bell that he hal seen not less than ten or a dozen, or even more, of their aeats built in the - blurubs of a thicket. The latter zoologist well describes ita habita,
"It hakes its foorl bolding it in itm hauds, and sitting on its haunches Jiken mpoirrel (so do the rats), nud often surpending itself by its hindfcet, in which poaition it feeda an canily and comfortably an in the more ordinary poxition. Towarda tho winter it becomen exceedingly fat; amd having laid up a ptore of food, retires to ith little neat, and coiling itself up, into a ball, with the tril over the head nad back, becurben comyletsly tornid. A mild day calls it into transient life; it then takea n fresh mupply of food aud relajaes into its former slumber; and finally awakening in the ajring, at which timo it linn lont azuch of its fat, it cuters upon its unal habita, rud the enjoyment of the conjugal nad paternal affectiona. Tho young, which are genemally about four in number, ame born blind ; lut in a few daya the eyea are opened, and in a short time they aro eurbled to aeek their food independently of the parentia care. I havo reason to lelieve that, in mome coses nt leat, the burmouse ham a second brood carly in the
autumn, rus I have recoived from one locality ia the month of September an adult, ono about halfogrown, ovidently of tho biring brood, and three very young ones apparently not more than a fortuight or three weeka old." ("British Quadrupeds.)

Thia pretty little snimal is nocturnal in its habita In "The Naturalint' (vol iii.) will be found a well related instance of its bohaviour on being aroused from its naju during tho winter. One of thom having been taken in its nest in the middlo of December, the heat of its captor's haud and the warmth of the room completely revived it, and it nimbly scaled the furniture, finding no difficulty in aseending and descendiog the polished backs of the chairs, and leaping from chnir to chnir with great agility. On being set at liberty it sprang at least two yards to a table. It did not seem alarmed at being taken into the baud. In the evening it wa placed with its neat in a box, and the uest morning had relapsod into torpidity. Another accoust in the same volume informs us that a Dormouse, which had been aent a distance of 140 milea, was appareutly but little disturbed by its ride. "From that time till the lst of April, 1838," says Mr. l'iggott, "it slept in its saug dormitory, a deal box lived with wool, when it awoke, nud readily ate of apples and nuts. It is easily alarmed, being more timid than tame, but shows no signs of auger on being taken in the hand. As it sleeps the greater part of the day, I camnot then closely watch its babits; but towands evening it wakes up, and is very lively and frolicsome, running, ou being let out of its cage, up tho bell-rope, where it will ait for lours in the folds of the knot, timidly watching our movements."

It is found all over Europe.
Graphiurus (F. Cuvier).-Limbs short, delicate, and not differing much from each other iu length; anterior feet temninated by four nearly equal toes, and with a flat nail on the interual tubercle of tho palm, which indicates the thumb; posterior feet with five toes, the two external, but the thumb principally, the shortest; all the toes armed with pointed, compressed, nrched, nad stroug claws Tail short, very fleshy, and aecmingly thicker at its oxtremity than at its root. Molars eight in each jaw, remarkablo for tho comparative smalluess of their size; the first in ench jaw only a linear rudiment; the three following ire a little amaller in tho lower jnw than they are in the upper, equal in size to each other, with the surface of the crown united, nud in this respect resembling those of the Aye-Aye; no figure was traceable, but this may lave been from detrition.
G. Capensis. The eyes are not so large as in Myoxus, with which the aniunal has mucli relationship; ears round; fur thick; upper parts of the head, neck, shoulders, back, aides, rump, aud upper part of the limbs, deep brownish-gray; tip of the muzzle, aides, and lower part of the head and limbs reddish-white; a large band of blaekishbrown from the eyes to below tha ears; lower parts of tha body grayish-white with a neddish tinge; tail brown-gray, and whitish above, with its extrennity entirely reddish-white; there is a tuft of white hairs at tle upper and anterior part of the base of the ear. Size of tho Lerot, buffon, Mus quercinus, Linnsus, This apecies is a uativo of the Cape of Cood Ilope. Its habite aro unknown.

Ofomys (F. Cuvier), Delalande brouglat back from his voyaro to the Cape of Good Hope two specics of Rodenta remarkable for their phyaiognony, which mufticiently resemblea the Lats, but difforiog externally from those animala in having their large ears covered with haira, tho head more rounded, and a short tail, and esjecinlly in their dentition.

$$
\text { Dental Formula:-Incisors, } \frac{2}{2} ; \text { Molar } \cdot \frac{3-3}{3-3}=16
$$

Teeth of Ofonys. F*. Curier.
O. unisulcatus, Caffre Otomys. The anterior limbs have four complete toea, armel with delicate nails, which are compressed and aharp, and a rudiment of an unguiculated thumb; the posterior feet have five toes, armed with the same nails, but the two external ones are very abort. The tail is but acantily covered with hairs, and is acaly and short. The muzzle is very thiek and obtuse, entirely covered with hair, with the exception of a alight ridge round the nostrils, which are small, and approximated to each other below; the ayes aro large, as well as the cars, which have an internal projecting membrane, which, when its edges (paroia) are approximated, cntirely shut the entrance of the auditory passage. The month is very small, the upper lip cleft, and the tongue thick, short, and covered with soft papillx. Thero are whiakers on the sides of the muzzle and above the eyes. The fur is thick, very soft, and consists of two sorts of hairs; the ahorteat and most numerous, which determine the colour of the animal, are woolly, and, when viewed through a microscope, appear to be formed of very small rings, alternately bright and obscure; the others, rare and longer than the first, are alao atouter and more stiff; these, when viewed through a microscope, present only a uniform texture, and so it is with the whiskers. The woolly laairs are of a slaty-gray for two-thirds of their length, and then of a yellowishwhite, with the point hack, whence reaulta the dirty yellow tint with Which tho animal is coloured above; below, yellowish-white predominates. The very short hairs of the tail aro of the colour of those of the back; the extremities have the tint of the under parts. Length about 6 inches (French), from the tip of the muzzle to the origin of the tail, which last measures 31 inchcs. Meau height, 2% inches. (F°. Cuvier.)

Caffre Otomy (Otomya unisulcotus).
The habits of this speciea do not appear to bo known, nothing respecting them having been found in the notes of ML. Delalande. F. Cuvier thinks that it is doubtless omnivorous, like the rats;
but from the size of its eyes, it may be conjectured that ita life is not passed in auch obseurity as theirs; and from the delicacy of its sharp claws, and the softness of its fur, that it does not burrow.

Hydromys (Geoffroy).-Muzzle rather pointed; ears small and rounded. Body covered with long hairs. Tail long, eylindrical, lather scaly, with scattered hairs. Four toes and the vestige of a thumh on the fore feet. The binder feet 5 -toed, and palmated for two-thirda of the length of the toes. Molars with the crowns divided into obliquely quadrangular lobes, the summits of which are hollowed into a spoonshape.

$$
\text { Dental Formula :-Incisors, } \frac{2}{2} ; \text { Molars, } \frac{2-2}{2-2}=12
$$

II. leacogaster. It has the fur short, soft, marone-brown above, white below; tail black at the base aud white at the other extremity. Size sometimes twice that of the Common Brown Rat.

Hydromys lencogaster.
M. Geoffroy has recorded two species, that described above, and another with a yellow belly, H. chrysogaster' ; the last ho states to be nearly one-half less than the Coypou, but they are generally considered to be ouly varieties of the same apccies. M. Geoffroy speaks highly of the quality of the fur of the yellow-bellicd variety, and aays that it is more valuable than that of the Coypou.

These aninals are aquatie, and were found in tho islands of D'Entrecasteaux Channel. That named II. chrysogaster was killed by a cailor at the momeut when it was taking refuge under a heap of stones; II. leucogastc" was taken iu the island Maria, in the same channel.

True Rats and Mice.
F. Cuvier ('Dents des Mammiferes') observes that up to the time of his writing, animals provided with the same teeth as the Rat (Mus Rattus), the Brown Rat (Surmulot of the Freneh-Mus decumanus), or the Mouse (M. Musculus), formed a aingle and very natural genus. He then goes on to state that the possession of a cranium, the origin of which be knows not, in presenting the type of
a now geuns provided with the same teoth as the mat, confers on those teeth a more elevated rauk than they han previonsly held, wal begina to form the character of a family. Tho following is n eopy of k. Cuvier'e plate, and he informs us that the apecies which gave him this dentition aro M. /autus, M. dectmonus, M. Muscmus, M. I'umilio, \&c.

In eudenvouring to give a rketch of tho swarms of this group, we shall treat of them according to their geographical distribution.

Europeaz Rats and Mice.

The Joug-Tailed Field-Mouse, Wood-Mouse, or . Mus sylvaticus, and the Harvest-Mouse, M. minimus of White, and \mathbf{M}. messoriks of Shaw, may bo considered an indigenous in linrope. Whether the old Binglish or Black llat (M. Raftus) and Jomestic Mousu are aborigines, or imported, is not so clear. The lutter is only found in inhabited countriea; and, like the Black liat and Brown lant, is a cosmopolite, fullowing civilised tana wherever he is to be fonud.

Mus sylvaticus, the Long.Tailed Field-Mouse. It is the Llygoden Ganolig aud Ialygoden y Maes of the Welsh; Le Mulot of the Freach; and Voed of the Danes; M. sylzaticus (linn.), M. agreatis major (Briss.), and M. domeaticus medius of llay. The lengtly of the hend and body, a given by Mr. Bell, is 3 inches S lines, and that of the tail 3 inches and 0 linem. I'ennant makes its measurement from the nose to the setting on of the tail $4 \frac{1}{4}$ inches, nud the tail 4 iuches. If the last-mentioned dimensions are correct, they must have been taken from a very large individual. Ar. Macgillirmy gives the dimengions of three iullividuals; the kngth (to the end of the tail) of the largest wan 8 juches 8 limen, that of the next 6 iuches 6 lines, and that of the leant 6 ischen only.

The nnimal is will described by Mr. Lell as larger than the Common Field-bole, bot varying consinlerably in size; the heal long and saidev, the muzale tapering; the whiskera very long; the eyes remarkably large and prominent; the ears large, oblong, ornl, with the noterior margin turbed in at the hase, nad n projecting lobearising within the enr, near the banc of the posterior margin; the tail nearly as long as tho borly, slomber and tanering; the lega long. The upper part nud niden of the head, beck, and body; and the outer murface of the lfgn, of a yellowiah-brown, darker on the liack, each liair being gray or and-culutred at the bane, thes yellow, and the tips of some of them black; under parta whitiah, with a very alight grayial tint in nomo parte, and a yellowinh gray patch on tho breast. Tail brown above, whito beneath. ('13ritim Quadropeda.')

Thin in n mast destructive mpecien, and a bitter encmy to the horticulturint, the ngriculturint, and the plonter. It ia very prolific, bringing fortly from seven to ten at a birth, nud in not mlwaysatinted (0) one browl in a year. The hoarda that it collects in itw aubterranenn retrata (Hidich are sometimes the regults of itm own labour, but more freguently exeavations which it finds rendy made, but which it colargea, much as those under routs of trecs, old mole rina, de.) nre enomoun for the aizo of tho animal, nud lemant is of opinion that tha great daungo done by hogs in rooting up the ground, or mooting. in it in called in nomo countion, is cauned chictly by the wearch of the nwinc for the concealeal treasure of thin Field. Mouse.

It in an inhabitant of the wholo of temperate Europe.

Mus messorius, the Harvest Mouse. White of Selborne, who suggests the name of Mus minimus, appears to be the first who drow the atteution of naturalizts to thia the amsllest of British quadrupeds. IIe wrote an account of it to leanant, who called it the Less Long. 'Tailed Field-Mouse and the Harvent-Moure. It is the Mus messorius of Shaw, and Mr. Bell adds the following synonyms:-Mus minutus (Pallas): Molot Nain (?) sad Tat des Moissons (F. Cuvier, 'Mamm.'); Minuto Mousc of Shaw.

Harreat-3tuase (Nus messorius). Nest in baekgreund.
White thus iutroduces his discosery to Pennant:-"I have procured some of the mice mentioned in my former letter, a young one and a female with young, both of which I have preserved in brandy. From the colour, size, slape, and manner of nesting, I mako no doubt but that tho apecies is nondescript. They are much smaller sad more slender than the Mus lomesticus medius of liay, nod bave more of the squirrel or dormouse colour; their belly is white; a atraight line along their sides divides the shadea of their back and bally. They never euter into houses; srecarried into ricks and barms with the sheaves ; abound in harvest; and build their nests amidst the straws of the corn nhove the ground, nad sometimes in thistles. They breed as many ns eight at a litter, in a little round nest composed of the blades of grass or wheat. One of these 1 procured this antumn, most artificially platted, and conjposed of tho blades of wheat, perfectly round, aud nbout the size of a crickot-ball, with the sperture so ingenioully closed that there was no discovering to what part it belonged. It was so compact and well fitted that it would roll neross tise table without being decomposed, though it contained eight little mice that were naked and blind. As this nest was perfectly full, how could the dam come at her litter respectively $s 0$ as to sdmioister is teat to each ? Jerhapa she opeus different places for that purpose, adjusting them again when the basiuess is over; but ahe conld not possibly be contained herself in tho ball with her young, which inoreover would be daily iocreasing in bulk. This wonderful proereant cradle, an elegant instance of tho efforts of instinct, was found in a wheat-field suspended in the laeal of a thistle." And again:-"As to tho mall mice, I Lave further to remark that, though they haug their nests for breeding up amidst the straws of the ntaming corn above the ground, yet I fiud that in the winter they burrow deep in the carth, nod make warm beds of grass: but the graad readezrous seens to bo in corn-ricke, into which they aro canied at harvest A neighbour housed an oatrick Intely, under the thateh of which wero sssembled ncar an hundred, most of which were taken, and some I maw. I mensured them, and found that from nose to tail they were just two inches nud a quarter, and their tails just two inches long. Two of them in a acale weighed down jont one copper halfpenoy, which ia about the third of an ounce avoirdupoin; so that I suplore they are the binallest qualrupeds in thin ialnad. A full-grown Mus metius domesticus weighs, 1 find, ono ounce lumping weght, which is more than nix timen as much as the monne above; mul mersures from nowe to rump four inehes and a quarter, and the same in its tril. . . . As my neighbour was bousing a rick ho obserred that lin doga devoured all the little red mice they could entch, but rejected the common mice; and that his eats ate the common mice, refusing the red." Thus far White. Dr. Gloger
describes one of these nests as beautifully constructed of the panicles and leaves of three stems of the common reed interwoven together, and forming a roundish ball, suspended on the living plants about five inches from the ground. On the side opposite the stems, rather below the middle, was a small sperture, which appeared to be closed during the sbsence of the parent, and was scarcely observable even after one of the young had rade its escape through it. The inside, when examined with the little finger, was found to be soft and warm, smonth, and neatly rounded, but very confined; it contained only five young; but another less elaborately formed sheltered no less than nine. The panicles and Ieaves were slit into muute strips or strings by the teeth of the animal in order to assist the ncatness of its weaving. Mr. Maegillivray found one of these nests in Fifeshire composed of dry blades of coarse grass arranged in a globular form, and placed in the midst of a tuft of Aira cospitosa, nive inches from the ground it contained six or soven young, naked and blibd. The food of this little mouse consists of corn and grass seeds, insects, and earth-worms one to which a bit of the tail of a dead blind worm, Anguis fragilis, was presented, devoured it greedily. Of insects it is very foud. Mr. Biagley says:-"One evening, as I was sitting at my writing-desk, and the animal was playing about in the open part of its cage, a large blue fly happened to buzz against the wires. The little creature, although at twice or thrice the distance of her own length from it, aprang along the wires with the greatest agility, and would certainly have seized it had the space between the wires been sufficiently wide to have admitted her teeth or paws to reach it. I was surprised at this occurrence, as I had been led to believe that the Harvest-Mouse was merely a granivorous animal. I caught the fly, and made it buzz in my fingers against the wires. The mouse, though usually shy and timid, immediately came out of her biding-place, and, running to the spot, seized and devoured it. From this time I fed her with insects whenever I could get them, and she always preferred them to every other kind of food that I offered her." Mr. Maegillivray figures one in the coils of an earth-worm, which it devoured, thongh the worm at first upset it by twisting round its body. ('Naturalist's Library, Mammalia,' vol. vii. ; 'British Quadrupeds,' pl. 27.)
Colonel Montagu failed to keep it in confinement, but it has been so kept. The Rev. W. Bingley and Mr. Broderip observed that the tail is in a degree prehensile. The latter had a pair in a dormouse's cage for some time, and frequently saw them coil the ends of their tails round the bars, especially when they were clambering along the sides or on the top of it. They became very familiar, soon recognised their friends, and would lie down or rear themsclves up to be tickled with astraw or a pen; an operation which they evidently enjoyed mueh. We know of no instance when the female has brought forth in confinement where she has not eaten her young. One just born that was saved from the teeth of the mother is in the Muscum of the Royal College of Surgeons, and is perhaps one of the smallest placental quadrupeds that ever breathed.

It is probably generally spread throughont Europe. It has beeu found in Siberia, 1Russia, and Germany. In Britain it is recorded as having occurred in Haropshire, Gloucestershire, Wiltshire, and Devonshire; in the three last counties by Colonel Montagu, and noted as not uncommon. It has been found also in Cambridgeshire. Mr. Macgillivray had one sent to him from Aberdeenshire, and another from the neighbourhood of Edinburgh: he found, as we have seen, the nest in I'ifeshire.

There are, it appears, in Trebizond, mice (M. Alleni and M. Abbottii) smaller than M. messorius. ('Zool. Proc.,' 1837.)

We shall here notice those cosmopolites, the Black Rat, the Brown Rat, and the Common Mouse, the pests of civilised man.
M. Rattus, the Black Rat. This is Le Rat of the French; Iratto and Sorico of the Italians; Raton and Rata of the Spaniards; Rato of the Portaguese; Ratze of the Germsns; Rot of the Dutch; Rotta of the Swedes; Rotto of the Danes; LIygoden Ffrengig of the Welsh; Blsck Rat of the Euglish; aud Ratton of the Scotch. It is the M. domesticus major of Ray.

That this animal is indigenous may be doubted. Mr. Macgillivray observes that the 'Old English or Black Rat,' as it has been called, is as mueh French or Irish as English. That it was in Britain long before the introduction of the Brown Rat, before whose superior strength it is rapidly disappearing, can be doubted as little. Pennant, who gives the British name above stated for the Black Rat, has no British name for the brown species; and we suspect that the king's rat-catcher, noticed by Pennant, with his scarlet dress embroidered with yellow worsted, on which are figures of mice or rats destroying wheat-sheaves, owed his office in this kingdom to the Black Rat. " lt is belleved," says Mr. Macgillivray, " to have beeu originally inported from the continent, where it first nade its appearance in the beginning of the 16th ccutury, aud is sopposed to have come from the East. Vessels in port werc formerly liable to be infested by it, so that it soon became as conmmon in America as in Europe; although in the maritime parts of that country it has now become nearly as scarce as with us, and from the same causc, the predominance of the more enterprising adod strongcr Brown IRat." Mr. Bell had previously fixcal the middle of the same century for its appearance in this country. "At least," "ajs Ine, "no anthor moro autient than that period has described or even alluded to it, Gesner being the first who described

Nat. hist, div. vol. 111 .
and firured it." The figure of Gesuer leaves no donbt that the animal represeuted is the Black Rat, and it is spoken of in such terms that it may well have been a long resident in Eugland:-"Mus domesticus major, quem Rattum appellàrim cum Alberto, quonism hoe nomine nou Germani tantum, sed Itali etiam, Galli, et Angli, utuntur;" and again, among the names given to the animal by various nations, "Anglice, Rat, Ratte." Shakspere's lines-

> "But in a sieve I'll thither sail,
> And, like a rat without a tail,
> I'll do-I'll do-and I'll do!"
show that the auimal must have been familiarly known to his audience; and it must have been rery common early in the 17 th century, when the white varicty was probably well known; for we read in the 'Dysart Kirk Session Minutes" (May, 1626), that a suspected witch, ode Janet, came to Jolm White's house, "and span on his wife's wheel in her absence, and thereafter there came a Whito Ratton at sundrie times and sat on his cow's back, so that thereafter the cow dwined away." Mr. Bell notices the usurpation of the haunts of this species by the Brown Rat. The Black Rat, he says, "is now rarely found, excepting in old houses of large cities, as in London, in Edimburgh, and some other places, where it still exists in considerable numbers, especially in the cellars and stables of the city of London, in many of which it is more common than the other." Mr. Macgillivray remarks that in Edinburgh it appears to be completely extirpated. "I have not," he continues, "seen a specimen obtained there within these fifteen years." The last-mentioned author also tells us that the Rev. Mr. Gordon, minister of Birnie, some years ago sent him several individuals alive, which were eaught in Elgin, where however the species is much less frequently met with than the Brown Rat. In Leith he says it is not very uncommon; and in other towns and villages in Scotland which are farther inland, it is still to be procured. "Whether," adds Mr. Macgillivray, "the destruction of this animal has beeu effected by the larger and more ferocions Brown Rat, or, like that of many tribes of the human species, has resulted from the diminution of food, caused by the overwhelming increase of an unfriendly race, it is impossible to determine."

The Black Rat is grayish-black above and ash-coloured beueath. The ears are half the length of the head, and the tail is rather longer than the body.

Mr. Bell gives the following dimensions:-

It breeds often in the year, and the femala ordinarily produces from seven to nine at a birth. Like the brown species it is omnivorous. Mr. Bell thinks it probable, from the proximity of the two countrics, that it was introduced into this kingdom from France, and observes that the Welsh name for it, which signifies 'French Mouse,' appears to favour this opinion. From Furope, he adds, it has been sent with the Brown Rat to America, the islands of the Pacific, and to many other places.
Mr. Thompson ('Zool Proc.' 1837) notices an Irish Rat with a white breast, which he is inclined to consider distinct from Mus Rattus, and which he names Mus Hibernicus.
Sir John Richardson did not observe the Black Rat in the Fur Countries of North America; and he says that he may venture to affirm that it had not, when he wrote, advanced farther north than the plains of the Saskatchewan.
Mus decumanus (Pallas), the Brown Rat. This is Le Surmulot of the French, Norway Rat of the English, and M. Norvegicus of Brisson. Why this overwhelming pest has obtaiued the name of Norway Rat does not appear: so far from its being aboriginal in that country, it was not known to exist there when the name was first applied to it "It is," says Pennant, "an animal quite unknown in Scandinavia, as we have been assured by several natives of the countrios which form that tract, and Linnæus takes no notice of it in his last 'System.' It is fit herc to remark an error of that ablo naturalist in speaking of the Common Rat, which he says was first bronght from America into Europe by means of a ship bound to Antwerp. The fact is that both Rat and Mouse were unknown to the New World before it was discovered by the Europeans, and the first rats it ever knew were introduced there by a ship from Autwerp. This animal never mado its appearance in England till about forty years ago. . . . I suspect that this rat came in ships originally from the Last Indies. They aro found there, and also in vast numbers in Persia, from whence they have raade their way westerly even to Pctersburg." It made its appearance in the neighbourhood of Paris about 1750. Mr. Bell states that the original country of this rat can no longer be ascertained, although thers is reason to believe that it comes from a warmer climate than our owin. Mr. Macgillivray says that it is supposed to have been introduced from Persia and the East Indies about 1730, and gradually to have spread over the greater part of the continent of Europe, as well as America, by means of the frequent commercial intercourso established amoug the nations of these regious. It is not, he observes, confined to cities and villages, but establishes colonies in farmconfined to cities and villages, but cstablishes colones $\begin{array}{r}3 x^{\prime}\end{array}$
steadings, on the banks of cusale and rivers, and even iu islands at a conaiderable distance from the maidand, or from larger islauds, to which it has been intrulucel by shipping. Thus, he shates, it is found on many of the istets of the Ilebrides in considernble numbers, feeding on grask, shell-finh, and C'rustacea, aud burcowing in the banks; "for although not easentially nmphibious, like the Water-liat, it does not hesitate on occasiou to betake itself to the water, and flocks have been seen swimming from one isladd to nuother.'

Acconliug to Dr. Harlan the Drown Rat did uot uakvits appearance in North America until the year 1775 . Whon Sir Johu lichardson wrote ('Fauma horenli-Anericana') it was very common in Lower Canada; but to was informed that in is25 it hail not advauced much beyond lingston in Upper Canada. He did not observe it in the Fur Countries; and if it does exist there, he thinks that it is only at the mouth of the Columbis Iiver, or at the commercial stations on the shores of IIndson's May.

This species is eminently carnivorous, bold, ferocious, and most destructivo in the gane-preservo and poultry-yarl, where the eggs and young birds are preyed upod by them without mercy. In towns carrion and oftial form their chicf subsistence. An official report to the Freuch goverument on tho proposition for removing the establishment for slaughtering hores at Moutfaucon given no acconnt of their nusmbers nad voracity almost appalling; indeed one of tho chief arguments against the remoral was the danger to the neighbourhood of suddenly lepriving theso voracious animals of their usual food. The carcasses of the slaughtered horses, sometimes to the smount of thirty-five per dien, are found next morning picked to the bare bone by the rats A part of this establishment is inclosed by solid walls, at the bottom of which several holes aro made for the eutrance and exit of these vermin. Into this flace Dusuassois, the proprietor, put the dead bodies of two or three horses; and having stoppet up all the holes towarils midnight, with as little noise as possible, he, with sereral workuen, each benring a torch in one hand and a stick in the other, suddenly cutered tho inclosure, shut the door, nud begau a gencral циasencre. Wherover a blow was directed, even without aim, a rat was killed; snd those which attempted to eacapo by running up the walls were quickly knocked down. Tho dead of one night smounted to 2650 ; the result of four hunts was 9101 ; snd by repenting the experiment at jutervals of a few days, Dusuassois deatroyed $1 \mathbf{6 0}, 050$ sats in the apace of a month. Now when it is recollected that the gard in which these uumbers were killed does not contain moro than In twentieth of the area wer which the dead horses are spread, some inlea may bo fonned of the multitudes thant infest this place; indeed the adjoioing fields and eminences are riduled with their burrows, and their jaths thereto masy be traced from the inclosures where tho horses are slaughtered.
This rat is grayith-brown nbove and grayish-white bencath, and the tail is elverter than the head and body. Mr. Dell gives the following dimensions, from which its superiority in size to the Black Rat will be evident:-

> Length of the head and body Leugth of the lead Length of the ears Length of the tail

Iaches, Lines.	
10	8
2	4
0	8
8	2

White or yellowish-white rarieties, being albinocs with red ejes, fund variegated individuals, sometinacs occur.

Mus Muculus, the Common or Domestic Mouse, nceds no description. It seems to be entirely dependent on civilised man, and has never been found at a distance from his dwelling. White varietica with pink eyes are kept and propagated aw pets by those who admire aueh albinoes; thoy are pretty little nuimals, aud soon becomo fumiliar. This wellknown apecies in Ia Souris of the lireuch; Topo, Soreio, and Sorgio di Cana, of the Italinan; lint of the Spanibla; Batinho of the I'ortuguenc; Maus and Hausionas of the Germans; Muys of the Dutela; Mis of the Swedes; Muas of the Danes; Llygoden of the Welsh; IIus damenticus communis vel minor of Gesuer; and M us domesticus culyaria seu minor of Ray.
Sir John Hichardson eaw a dead mouso in a btorehouso at York Factory filled with packages from Euglaud, and ho thinks it probable thant the apecies many havo been introduced into all the ports on the Hhores of liudson's Bay; but he never heard of its leeing taken in the Fur Countries at a distance from tho sea-coast. Mr. Say inforned hime that it was iutroduced at Enginecr Cautwment, on the Missouri, by Major Loug's eryedition.

Asiatic Rats and Mice.

If acmen to le certain that tho Brown kat in an Asiatic apocies, and the 1Hack last is not without claims to a similar geographical origin; Dat anong the moat formidable of tho Oriental Kats is tho M / us yignaters of IIardwiche, I/us Malabaricies of Shas. Of this rat Tieneral Harlwicke gives n fnithful figure, of the size of life, in the seventh volume of the "Trmanctions of tho Limncaus Society.' It has the appearance of a lbrown liat dilated to gigantic proportionn, and it is impossifle to lock at it without thinking what tho consequences might be if it were ever to be imported and uaturalinel in Europe. Atoro it is zoot hairy and black; beacath inclining to gray. The
animal figurod was a female, norl weighed $21 \mathrm{bs} 11 \frac{1}{\mathrm{oz}}$. It total length was 261 inches, of which the tail measured 13 inches. The male grows larger, and weighs 3 lbs. nud upwards. "This rat," writes the General, "is found in many places on the coast of Coromandel, In Mysore, and in aeveral parts of Bengal between Calcutta and Hurdwar. It is partinl to dry situations, and lardly ever found distant from habitatious. The lowest caste of Hindoos eat the flesh of this rat in preferenco to that of any other species. It is n most mischievous auimal, burrows to a great depth, and will pass under the foundations of graunries and storehouses, if not deeply laid. Mud or unburnt brick walls prove no sccurity against its attacks, and it commonly perforates such buildings in all diroctions. It is destructive in gardens, and roots up the seeds of all leguminous plants sown within its haunta Cucurbitaceous plants aud fruits also suffer by its depredations. When grain and vegetalles are not within ite reach, or scarco, it will attack poultry; but the former ia its choicest food." Dr. Gray remarks that tho gcographical mage of Mus gigantcus appears to be very extensive, Mr. Charles Hardwicko haviug transmitied to the British Muscuma apecimen from Vau Diomen's Land.
M. sefifce (llorsf.). The Tikus-Wirok of tho Javauese was considered by M. Temminck and others to be the young of this species; but this opinion is corrected by Dr. Gray ('Zool. Proc,', 1832), who points out the differences. Dr. Morsfield states that it is found in Java at the confues of woods and forests, sud, according to his observations, rarely approthches tho villages and dwellings of the natives, who describe it however as a bold aud mischievous animal, and tho Doctor says that the rohustness of its form and the remarkable size and strength of its front tecth agree with this character: its nosc, be adds, is evidently employed in burrowing the ground in search of its feod; and its tail has the character of those species which are in the babit of frequenting the wster. Mr. Ilodgson states that M. decumanus and M. Rattus are both very Dumerous and troublesome in Nepaul ; that M. Musculus is very uncommon; and that Field-Nice are frequently met with.

African Rats and Mice.

M. Barburus, the Barbary Mouse, will serso as an example of tho African species. It is of a darkishbbrown colour, with five or six yellowish longitudimal strijes on cach side, nbout half as wide as the intervenitg kpaccs, and becoming confused towands the under parts, which are nearly white. Mr. Bemett observes, that ou the fore feet only three of the toes aro at first visible; and that this circumstance, mentioned in the specific chamcter given by Limacus, has led many subsequent naturalists to doubt whether the Barbary Mouse really belonged to the genus with which it was associated. Limneus himself, continnes Mr. Bennett, had however stated, in his description of the species, that rudiments of a thumb, rad also of a fifth too, wero observable on a closer inspection; and this statement, he adds, was fully confirmed by the examination of tho specimensin the Menagerie of the Zoologicall Society of London, which were intermediate in sizo between the Common lat and Common Mousc.

It is a native of Barbary, where they are not rare, and where the uamo given to them by the natives is Ihanr-Azüf, the Palmetto Mouse.

American IRats and Mice.

Sume of the best examples of the forma of American Mice will be found in the 'Zoology of H.M.S. Bengle,' where many species aro figurod. They wero collected by Charles Darwin, Esq., at various parts of the southern coast of South America, namely, Coquinbo, Valparaiso, Port Deaire, Maldouado, Bahia Blauca, \&c. Mr. Waterhouso firet described theso in tho ' Jrocceding of the Zoological Socicty of

London' (1837), dividing them into several subordinate groups, to which he assigns the sub-generic titles of Scapteromys, Oxymycterus, Abrothrix, Calomys, and Phyllotis, which last, in Mr. Waterhouse's opinion, indicates an aberrant form of the Muride.
Mus (Phyllotis) Darwinit may be taken as an example. The fur above is cinnarnon and blackish intermixed; in front of the eyes ashcolour ; cheeks, sides, and tail, near the base, yellow cinnamon; under parts and feet white; ears very large and leaf-like, nearly naked; the tail, which is nearly equal to the head and body, blackish-brown above, white beneath. Length from the tip of the nose to the end of the tail 10 inches 9 lines, of which the tail measures 4 inches 9 lines. It is a native of Coquimbo.

Mrus (Phyllotis) Darwinii.

Mr. Waterhouse slso characterises from the same collection two new genera of small liodents, Reithrotion and Mabrocoma. The affinity of the first is stated to be with the Muridx, and the second Mr. Waterhouso considers to be evidently allied on the one hand to Octodon, Ctenomys, and Poenhagomys, and on the other to the Chinchillide. [Chinchillid.e; Hystricide..]

Before we take leave of this part of the subject we must refer to an observation of Dr. Gray, who remarks ('Zool. Proc.,' 1832) that the comparative length of the hinder feet, and the relative distance of the tubercles of the sole from the cud of the toes and from the heel, appear to furmish very good distinctive characters for the species of this difficult genus. Thns, in the Wood-Monse (M. sylvaticus), the linder tubercle of the sole is about a line nearer to the heel than to the end of the toes; While in the Common Monse (M. Musculus), which has a shorter hind foot, the hinder tubercle is nearly equidistant between the heel and the tip of the toes.

Mr. Darwin ('Journal and Remarks') observes that mice, and other small rodents, subsist in considerable numbers in very desert places as long as there is the least vegetation. In Patagonia, even on the borders of the Salinas, where a drop of fresh water can never be found, they swarm. Next to lizards, he adds, mice appear to be able to support existence on the smallest and driest portions of the eartl, even on the islets in the midst of great oceans. He believes it will be found that several islands, which possess no other warm-blooded quadruped, have small rodents peculiar to themselves. Sir Woodbine l'arish (' Buenos Ayres', \&c.) states, that after the great drought of 1830,1831 , and 1832, there was a prodigions increase of all kinds of vermin, especially field mice, myriads of which overran the country, and entirely destroyed the maize harvest of 1833.

Cupromys, Desmarest (Isodon, Say).-Fore feet 4 -toed; thumb rudimentary: hind feet strong, thick, 5 -toed. Tail moderate, thick at the base, scaly, with few hairs. Molars prismatic, with their

crown traversed by folds of enamel, which penetrate rather deeply, and rcsemble those in the crown of the teeth of the Beavers.

$$
\text { Dental Formula :-Incisors, } \frac{2}{2} ; \text { Molars, } \frac{4-4}{4-4}=20 .
$$

C. Fournieri, Desm. (Isodon pilorides, Say). It is the size of a rather small rabbit. Fur coarse, greenish, or blackish-brown, tinged with specks of obscure yellow above, except on the rump, where the hairs are stiffer, and which is reddish-brown; belly and chest dirty brownishgray; muzzle and feet blackish.

M. Desmarest was presented with two males from Cuba by M. Fournier. Of the habits of these animals in the wild state, the latter knows only that they are found in woods, that they climb trees with great facility, and that they live on vegetables. In the domesticated state, M. Desmarest remarked that their intelligence appeared to be developed as much as that of rats and squirrels, being much beyond that of rabbits and Guinea pigs. They showed great curiosity, and were very wakefnl at night; but their sense of hearing did not seem so fine as that of rabbits and hares. Their nostrils were incessantly in motion, especially when they smelt any new object, and their teste was sufficiently delicate to enable them to distinguish and reject vegetables which had been touched by animal substances, which last appeared to be odions to them. They agreed well, sleeping close together ; and when they were apart they called to each other with a sharp cry, differing little from that of a rat. They expressed pleasure by a low soft kind of grunting. They hardly ever quarrelled, except for food, as when one piece of fruit only was given between both; one wonld then seize it and run away till the other was able to take it from him. They sometimes played for a long time together, holding themselves up in the manner of kangaroos, firmly supported upon the broad soles of their feet and the base of the tail, and striking eaciother with the hands, until, one of them finding a wall or some other body against which to support himself, acquired additional power and gaimed advantage; but they never bit each other. They manifested the greatest indifference to other animals, paying no attention even to cats. They were fond of being caressed, and particularly of being scratched under the chin. They did not bite, but slightly pressed with the incisive teeth the skin of those who caressed them. They did not ordinarily drink, but M. Desmarest gaw them occasionally suck up water as squirrels do. Their food was solely vegetable, such as cabbage, snccory, grapes, nuts, bread, apples, \&c.; and they were not very difficult in their choice of it, though they wero very fond of lighly flavoured herbs and aromatic plants-wormwood, rosemary, pimpernel, geraniums, celery, \&c., for instance. Grapes too pleased them mightily, and to obtain the fruit they climbed up a long pole on which it was placed. They were fond of bread steeped in anisseed or wine. Their excrements were long black lumps, similar in consistenco to that of rabbits. Their urine reddened, in drying, white linen wetted with it.
They were almost absolutely plantigrade, and their movements were slow, the hinder parts appearing to be embarrassed, as it were, when they walked, as may be observed in the bear. They took occasional leaps, suddenly turning round from head to tail, like the field mouse, and gallopped, when at play, making a considerable noise with the soles of their feet. They climbed with ease, assisting themselves with their tails as a support, and using the same in descending. In certain positions, on a stick for example, the tail served as a balance to preserve equilibrium. They often raised themselves to a listeving posture, sitting erect, with the hands hanging down, like rabbits and hares; and in eating they employed sometimes both of their hands, at other times one only. The latter happeus when the gubstance they
aro holding in omall cnough to bo led between their fingers and tho tubercle at the base of the thumb.

This ancies appears to be known in Cuba by the name of Utia, nad M. Desmarent thinks that it is the animal described by lomare, Ovierlo, and othere, more than 300 years since. According to bomare, the l'tias is a species of rabbit of the size of a rat, which inhabits the Wiest Indien, and is lunted nt night by the light of n luminons insect, named Acodio (propmbly Elater noctilucus), of which M. Fonrnier brought large quantities from Cuba.

Another species, also from Cubn, Cupromys arehemilis (Puppig), is misa recorted, but Dr. Finelecr plnees the mark of doubt before it.

1'rofessor Owen has made some observations on the comparative matomy of C'apromys in the '\%ool. Proc.' for 1832 nnd 183. .
('ricetus is a genus of the family Muride, including the Common IIsmster. [Cracirus]

Jumpiag Mice.

The race of Jerboas, or Dipodide, nppears to be ordained by nature for living upon descrt and anndy plains

Schreber, and lie was followed by Gmelin and others, appears to have been the first who characterised the genus Dipus.

Dr. Gray ("Annals of Philonoplyy," 1825) makes the Jerboide the fourth family of the Glires, and thus characterises it: Cuttiog-teeth two in each jaw; grinders simple or compound, rooted; ears moderate; eyes large, prominent; clarioles diatinot; fore feet ahort (uned as lands); hind feet vory long; tail long, hairy, used in leaping or walkiog; fur soft. And he thus divides the family:-

+ Grinders compound or rootless.

1. Pakstina; Pclecter, Illig. 2. Dipina; Dipus, Schreb.; Merioncs, F. C'us., not Illig.
t+ Grinders simple, roots divided; legs nearly equal.
2. Gcrbillus, Desm. 4. Myoxina; Myoxus, Gm. 5. Sciurina; Sciuropterus, F. Cuv.; Pteromys, Cuv.; Macroxus, F.Cuv.; Sciurus, Linn; Tamai, lllig. The latter genus very closely allied to Arcfomina.
Mr. Swainson ('Classifieation of Quadrupeds') observes that the Jerboas (Dipus) are remarlable for possessing the longest hind legs of any quadrupeds yet discovered, while the fore legs are disproportionally short; this structure he remarks is seen also in the Nangarooz, which seem to be represented in miniature by these little auimals, which, "like their pouehed prototypes, use the fore feet only as organs of rest upon the ground; for if they are frightened or wish to proceed at a quiek pace, they stand upon the hind legs only, and take prodigious leapu." That the tail is necessary for the efticient performance of these feata, is proved ly the fact that individuals deprived of their tails were unable to nasume the erect position or to leap at all. The fore feet are employed in conveying food to the mouth, and seem to be of little or no use as organs of progression. Those that we have secn alive scened to use their posterior extremities ooly as organs of locomotion, and rppeared to walk on the toes of those extremities. Tlsey aro very bird-like in some of their movements, and there is something in their general appearance that would lead an imaginativo mind to tho funcy thint they were birls suddenly transformed to quadrupeds and were hardiy reconcilel to the clango. Parts of their internal structure, in the skeleton particularly, nre bird-like.
Mr. Swainsou rays, "Ilae bestknown species is the Gerbo, or bioyltinn Jerbou (Dipus Sagilla), in which country it is very comanod. It liver in Jargo societies, and constrncta burrows under ground : it is shy and timid, nor can it be kept in confinement any considerable time. Of four typical apecies alrealy known, three inhabit tho sandy deserts in tho heart of Asia, nud the shores of the Caspian; the rest have bers separated ns a sub-genus, under the name of Gerbil (Gerbillus) ; but their diatinctions are so very slight that wo have not adopted the name. The genus Pedetes, represented by the Cape Jerboa, clearly belongs to the amme group. Ancrica, which las no Jerboa, neverthelean preacula un with their jrototypea in the Jumpiog Miee of Canadr (Meriones, 11 lig.)."

The Jerboas have, in truth, presented considerable difficulties to zoologist., nud the dintinction of the species is often not clearly made out. Sonnini was one of tho first who endenvoured to dissipate the confusion which prevailed on the subject. He comes to the conclusion that there exinta hut one variety of them in begypt, where they are multiplied without ond. "In fact," sayz M. Somnini, "monoug all those which I have observel at different times aul in different placea, Inever remarked the least diwainilitude of either form or colour." His japer, M. Wherthout van lherehem's letter on the true nomencha. ture of the Gerboino, nod M. Sonaini'a reply to the gnme, will Lo found in the "Iravels" of the latter in U"pper nud lower Jgypt. That thers Jerbona wreknown to the ancients in evident. Herodotus (iv. 192) alludes to them ad Juhabiting Africa. Ariatotlo ('Hint. Anim.;' vi. 3i) preakn of them an thone ligyptian linte which walk on two feot, because the hind feet are great and the fore feet small. They are notieed by Filian (xv. 20), who quoten Theophratus The leacription of Theo $1^{\text {hhrantun (FFr. xiv.) cannot bs mintaken. He sayen that theso ratis }}$ finvo indeed fore feet, but do not waik upon then, and uace them as hauds When they flee, he odda, they leap. They are clearly the

Aoyptii mures of Pliny, who saya 'bipedes ambulant' (x. 65), and leunant gives an engraving of a geld coin with the plant Siphism and one of theso animals represented on it, aud says that these symbols wero usel to denoto the country of Cyrenc, where both were found.

One of the best monogrnphe of the genus Dipus is that of M. Lichteastoin: the species he gives are numerous, and it may be donbted. whether some of them ara not varieties A very elaborate memoir ou the Jerboas and Gerbillas, by 1 l . Cuvier, was read before the 7oological Soclety of London in 1830, and is published, with beautiful illustrations, in the 'Transactions' of that Socicty (vol. li.).

Skull and Tecth of Dipus hirtipes. F. Cuvier.
a, skull, piofle; δ, same, seen from sbove; c, same, seen from below; d, e, teeth of same.

Sbuth ath Teeth of Aliefloga.
n, b, cranium, onethird larger than natural pize; e, d, teeth of the eame, fire limes larger than nature.
F. Cuvier commences this 'Memoir' with observing that his attention had been particularly directed to the Rodentia, with a view of arriving at a oatural classification of the numerous species composing that order, among which considerable confusion had hitherto prevailed, particularly in the geners Dipus and Gerbillus, the relations of which to other allied groups had been but very imperfectly understood by previous writers. The species included in the genus Dipus had been formed by M. Lichtenstein into three divisions, which are distinguished by the absence and number of rudimentary toes upon the hind feet. In the first section are placed those with three toes, all perfectly formed; in the second, those with four, one of which is rudimentary; and in the third, those with five, two of these being rudimentary. F. Cavier states that he is unscquainted with the second division of M. Lichtenstein; but in the examination of the species belonging to the first, in addition to the absence of rudimentary toes, he finds that they are also distinguished from those of the third by the form of the teeth and the osteological characters of the head. These points of difference he considers of sufficient importance to justify a distinct genus for the Jerboas with five toes, adopting the name Alactaga, given by Pallas to a species, as the common generic appellation. F. Cuvier remarks that the three principal toes of the Alactagas, as well as the three only toes of the Jerboas, are articulated to a single metatarsal bone, sud that the two rudimentary toes of the first genus have each tbeir metatarsal bone; whence it results that the penultimate segment of the foot is composed of three bones in the Alactagas, and of one only in the Jerboas. The incisors of the Alactagas are simple, whilst those in the upper jaw of the Jerboas are divided longitudinally by a furrow. The molars of the latter genus are complicated in form, aud but little resemble those of the former: They are four in number in the upper jaw, and three in the lower but the first in the upper is a small rudimentary tooth, which probably disappears in aged individuals. After a detailed account of the structure of the grinding teeth, F. Cuvier observes that the general structure of the head of the Alsctagas and Jerboas is evidently the same, and is characterised by the large size of the cranium, the shortness of the muzzle, and, above all, by the magnitude of the suborbital foramina. The cranium of the Jerbon is distinguished by its great breadth posteriorly, resulting from the enormous development of the tympanic bone, which extends beyond the occipital posteriorly and laterally, as far as the zygoraatic arch, which is by no means the case in the Alactagas, where all the osseous parts of the ear are of moderate dimensions. Another differential character between the two genera is presented by the maxillary arch, which circumscribes externally the suborbital foramina, and which, in the Alactagas, may be said to be linear, presenting a very limited surface for the attachment of muscles. He then notes a difference in the relative development of the jaws, the lower being comparatively much shorter in the Alactagas than in the Jerboas. Haviog described a new species of Alactaga, a native of Barbary, under the name of Alactaga arundinis, F. Cuvier proceeds to consider the characters and affinities of the genera Gerbillus and Meriones, and enters into a critical examination of all the species referred to that group. To these he adds another species, the bsbits of which he dcacribes, and to which be gives the name of Gerbillus Burtoni. The snecies ke includes are :-1, Gerlillus Ayyp-

Gerlithus Durtoni.
tiacus, Sya; Dipus Gerlillus, Mcriones quadimaculatus, Ehrenberg. 2, Gerbillus Pyrumidum, Syn.; Dipus Iyramidum, Geoff.; Merones robustus, Riipp. 3. Gerbillus Mygargus, Syn. ; Meriones Gerdillus, Riupp. 4. Gerbillus Indicus, Syn.; IDipus Indicus, Hardwicke. 5. Gerbillus Africanus, Syn.; Meriones Schlegelii, Smutz; Gerlillus Afra, Gray. 6. Gerbillus brevicuudatus. 7. Gerlillus Otaria. 8, Gerbillus

Burtoni. The detailed descriptions of these are given in the "Transactions of the Zoological Society,' in which will also be found F. Cuvier's views with ragard to the affiuities of the Clerbillas and Alactagas to the Jerboas, and which lead him to the conclusion that the Gerbillas have a much nearer affinity to the Murida.

Cranium and Tceth of Cerbillus Burtoni.
a, skull, profile; b, same, seen from above; c, same, seen from below; a, e, tecth of same.
General Hardwicke gives the following iuteresting account of his Dipus Indicus:-" These snimals are very numerous about cultivated lands, and particularly destructive to wheat and barley crops, of which they lay up considerable hoards in spacious burrows near the scenes of their plunder. They cut the culms of the ripening corn just beneath the ears, and convey them thas entire to one common subterraneous repository, which when filled they carefully close, and do not open for use till supplies abroad become distant and searee.

Dask-landed Jerboa,
Grain of all kinds is their farourite food ; but in default of this they have recourse to the roots of grass and other vegetables. About the close of day they issue from their burrows, and traverse the plains in all directions to a considerable distance; they run fast, but oftener leap, making bounds of four or five yards at a time, carrying the tail extended in a borizontal direction, When eating they sit on their hind legs likopa squirrel, holding the food between their fore feet

They never appear by day, neither do they commit depredations within doors I haveobserved their manmers by night, in moonlight nighth, taking my station on a plain, nud remaining for some time with as littlo motion as possible. I was soon surrounded by hundreds at the distance of a few yards; but on rising from my seat the whole disappeared in an instiat, nor did they venturo forth again for teat minutes after, rud then with much caution and circumspection.

Egyptian Jerbos (Dipus Algyptirs, Hempr, and Ehren.).
"A tribe of low Hindns, called Kunjers, whose occupation is hunting, go in quest of these animals at proper seasons, to plunder their harrla of grain; and often, within the space of twenty yards aquare, find as much corn in tho ear as conlll be crammed into a common lushel. They inhabit dry situations, and are often found at the distance of nome miles out of tho reach of water to drink. In confinement this animsl soon becomes reconciled to its aituntion, and docile; sleepa much in the day, but when awake feeds as freely as by night, The lindus above mentioned esteem them good and mutritious food." ("Lion. Trans.,' vol. viii.)
A Jerbon has been discovered in Australia by Sir Thomas Mitchell. "The arid deserts of Asia nod Africa, the solitary steppes of Sonthern Siberia, and the boundless prairies of America, have been long known to be inhabited by numerous apecies belonging to this or the elosely nllied genus of Gerbilles; in short, wherever extensive and open plains were found to exist, whether in the Old World or in the Niew, there likewiae were found these little twollegged rata, hopping along or runniag with great velocity upon their hind lega, and appearing as if nature hat expressly intended them to occupy such a situation. Anstralia alone was believed to form an exception to the general rule in this instance, as in so many others. Who will undertake to say that the progreas of discovery may not destroy ita anomalous character in mnay other instnnces, ns it has done in this ?" ('Linn. Trans,' vol. xviii.) Mr. Ogilby hias named this species Dipus Mitchellii, after its meritorious discoverer, and given a detailed description of the

Ingus Stiocheliai.
"uccies in the 'Linnean Trausactions' last above quoted. The animal was found on the reedy plains nemr the junction of tho Murray nnd tho Murrumbidgee, on the northern boundaries of Anstralis Felix. The cut is taken from the figure in Sir T. Mitchell's account of "Threo Expoditions inta the Interior of Eastern Australia.' Sir T. Mitchall statea that its foro and hind legs resemhled in proportion those of the Kangaroo; and it used the latter by leaping on its hind quarters in the samo manner. It was not much larger than a comnon field-mouse, but the tail was longer in proportion even than thst of a Kangaroo, and werminated in a hairy brush about two inches long.

Mr. Ogilby has characterised another new genus of Australina Rodents, which he thinks most probsbly belongs to the extensive and complicated family of the Miveride. In some of the charactere the genus very much resembles the Csmpagnole (Arvicola) and Gerbilles (Meriones), to the latter of which genera Mr. Ogilby sayn that Conilurus is more particularly related by the leagth and development of the posterior members.

Meriones (Illiger and F. Cuvier)-Differing from the other Ratn with long feet in the form of its molars, which are composite.

Teeth of Aferiones, IF, Curier.
M. Labradorius, the Labrador Jumping Monsc. It lias the back and apper parts of the head dark liver-brown mixell with brownishyellow; sides brownish-yellow slightly sprinkled with black; margin of the mouth, chin, throat, and all the lower parts of the boly white; yellowish brown of the sides joining the white of the belly by a atraight line extending between the fore sund hind extremities. Fur not so long or so fine as that of the common or meadow micc. Total length 9 inches 9 lines, of which the tail measnres 5 inches 3 lines; this last tapers slightly, is scaly, and thinly set with short lanirs.

Labrador Inmping Mouse (Jfcriones La'sadorins).

Sir John Richardson, from whose 'Fauna Boreali-Americana' the sbove description is abridged, states that in some specimens the yellowish-brown colour ocenpies as much space as the darker colonr of the back; in others the latter encroaches so much ou the sides as to leare merely a narrow yellowish line next the white; whilst in autumn specimens, where the animal has just acquired a new coat of fur, the dark colour of the back adjoins the white of the belly.

This appers to be the Labrador Rat of Pennant; Gcrbillus Hudsonius of Rafinesque-Smaltz; Mus Labradorius of Sabine; Gerbillus Labradorius of Harlan; Labrador Jumping Mouse of Godman; and Kstse (the leaper) of the Chepewyan Indians.

Sir John Richardson remarks that Pennant, in his 'Arctic Zoology,' first described a specimen of this animal, sent from Hudson's Bay by Mr. Graham, to the muscum of the Royal Society. Afterwards, in the third edition of his 'History of Quadrupeds,' he is inclined to consider it as identical with the Mus longipes of Pallas (the Dipus meridianus of Gmelin), an inhabitant of the warm sandy deserts bordering on the Csspian Sea. This opinion, which, in the opinion of Sir John, can scarcely be correct, was, he says, formed from an imperfect inspection of the Hudson's Bay specimen whilst it was suspended in spirits, and is opposcd by differences in colour and other characters which he himself points out. From Penuant's time until Mr. Sabine described an individual brought from Cnmberland House, on Csptain Franklin's first journey, the Labrador Jnmping Mouse does not, continues Sir John Richardson, appcar to have attracted the notice of naturalists. Pennant, he observes, mentions a yellow lateral lins in his specimen, which did not exist in the one Mr. Sabine described, but this difference Sir John Richardson attributes solely to the season in which they were procured. Mr. Sabine's specimen, he l'emarks, was mutilated in the tail, sn accident very common to the whole family of Rats; and Pennant, under the name of Canada Jerboid Rat, and Colonel Davies, under that of Dipus. Canadensis, describe another Jumping Monse, which seems to differ from this in having ears shorter than the fur, but in other respects to be very similar to it.

After further observing that tho Gerbillus Canadensis of Dr. Godman agrees in description with Rafinesque-Smaltz's G. soricinus (Desm.), but has larger ears than the Canada Rat of Pennant, and that a specimen in the Philadelphia Museum, deseribed by Dr. Harlan under the name of G. Canudensis, appears to be entirely similar to the Labrador species, Sir John Richardson concludes by remarking that it is evident that the Jumping Mice inhabiting different distriets of America require to be compared with each other before the true number of species and their geographical distribution can be ascertained.

It is common in the Fur Countrics as far north as Great Slave Lake, and perhaps farther; but Sir John Richardson was not able to gain any preciso information respecting its habits.

Pedetes (Illiger; Helamys, F. Cuvier).-Head large, flattish ; muzzle thick; ears long. Anterior extremitics with five toes armed with very long claws; posterior extremities very long, 4-toed. Tail long and very bushy. Four pectoral mammx. Molars simple, with two lamine.

Dental Formula:-Incisors, $\frac{2}{2} ;$ Molars, $\frac{4-4}{4-4}=20$.

Tecth of (Ifelamys) Pedeles.
P. Capensis, the Grand Gerbo of Allanand ; Spring-Has, or Jumping Hare of the Dutch; and Aerdmannctje of the IIottentots. It is the Dipu: Caffer of Kimmerman, Schreber, and Gmelin. It is of a bright yellowish-tawny colour above, varied with blackish; white below, with a line of the mame colour in the fold of the groins. Legs brown. Tail reddish above at its origin, gray bclow, and black at the tip.

Length from nose to tail about I foot 2 inches; of the tail, near 15 inches; of the ears, 3 inches.

Jumping Ilare (Pedetes Capensis).
It is a native of the Cape of Good Hope, where it sleeps during the day, going forth hy night, and leaping twenty or thirty feet at a bound. It eats sitting nearly upright, with the hind legs extended horizontally, and using the small fore feet to bring the food to its month. It is a very strong animal, and with these same fore feet, which are admirably formed for digging, burrows so expeditiously as quickly to hide itself. It sleeps in a sitting position, placing the hicad between the legs, and holding its ears over its eyes with its fore legs.

Tril moderate or short. Sand and Mole Rats. Pouched.
The genera Saccophorus, Kuhl ; Pseudostoma, Say; Gcomys and Diplostoma, Rafinesque; Ascomys, Lichtenstein; and Saccomys, F. Cuvier, are given by Dr. Fischer as synonymous; and indeed the distinctions, except perhaps in the case of Geomys and Diplostoma, do not appear to be sufficiently marked to warrant their scparation.

Sir John Richardson remarks that M. Rafinesque-Smaltz, in 1817, founded his genns Geomys on the Hamster of Georgia (Geomys pinetis), described by Mitchell, Anderson, Meares, and others; and referred to it, as a second species, the Canada Pouched Rat (Mus bursarius of Shaw). Under another genns, Diplostona, he arranged some Lovisiana or Missouri animals, known to the Canadian voyagers by the appellation of Gauffres, and remarkable for their large cheek-nonches, which open forwards exterior to the mouth and incisors, to which they form a kind of hood. These two genera, he observes, have been adopted by few naturalists; and the American systematic writers have either overlooked M. Rafucsqne's species entirely, or referred them all to M. bursurius. In the latter case, Sir John says, they are undoubtedly wrong; for there are at least six or seven distinet species belonging to one or other of these genera which inhahit America, and he thinks that botil Gcomys and Diplostoma will eventnally prove to bo good genera; the Sand-1Rats belonging to the former having cheek-pouehes which are filled from within the month, and the Ganffres, or Camas-IRats, of the latter genus, having their cheek-ponches exterior to the mouth, and entirely unconnected with its cavity. Sir John Richardson had no opportunity of examining Geomys pinetis, the type of the genus, but he had inspected an undescribed species from Cadadsguios, and another (Geomys Douglasii) from the banks of the Columbia; from these two Sir John Richardson's characters of the genus were drawn up. With regard to the Cannda Pouched-Rat, great doubt, ho observes, still exists as to whether it belongs properly to Geomys or to Diplostoma. Judging from tho description of Dr. Shaw and the figure in 'Lim. Trans.' (vol. v. pl. 8), Sir John Richardson has littlo doubt of the cheek-ponches opening into the month, and of their being precisely similar in form and functions to the cheek-pouches of the Sand-Rats; but he states that he was told, on good authority, that the identical specimen deseribed by Shaw (which at the sale of Bullock's museum passed into the bsnds of M. Temminck), is in fact similar to the Gauffres in hsving cheek-pouches that open exteriorly, and that consequently Major Davies's drawing represented them in an unnatural and inverted position. Mr. Say gives the characters of a Missouri Gauffre with cheek-pouches opening exteriorly, and he identifies his specimen
with M. Burarius. The samo zoologist alludes to the Georgia Ilauster as belonging to the mane geuna, without giviog any further neconut of ita characterm than merely quoting Dr. Marton'a remark of its being only lants the size of the Missouri one. His account of the dentition of the Missuuri Gauffre, observes Sir John Riehantson in conclusion, corresponds, as. far an it goen, pretty clozely with that of the Colombis Cicomys. Dr. Marlan aud Dr. Godman refer the Georgia, Canada, and Miesouri auimala to one sprecies. ('Faum Boreali-Ausericaba")
Thae following is the dental formuln of Geomys given by Sir John Richandson:-

Lucisors, $\frac{2}{2}$; Cauinea, $\frac{0-0}{0-0}$; Griuders, $\frac{i-4}{4 \sim 4}=20$,
and below is given the skull and teeth of the genus from the same authority.

Ekull and Tecth of Gcomys. Richarden.
1, 2, 3, Akull, satural mize; f, lower jaw, naturat size; 5, patate and uyper teeth, magnited; 6, first upper grinder, magaified.

The dental formuln of M. F'. Cuvier's genus Sacconays is :Incisors, $\frac{2}{2} ;$ Molara, $\frac{4-1}{4-4}=20$;
and the following cut is taken from his figure of the dentition.

Tecth of Suecomy", calarged. 1: Curicr.
The following is Br. Slaw's deacription of Mus burtarius:-"Ashcoloured rat, with whort nearly maked tail, jouched cheeke, sud the
clawa of the fore feet fory largo and formed for burrowing." (Mus לurgarius, 'Linn. Trane,' rol. r. p. 227, pl. 8.)
"This, which is a species but lately discovered, seems to be the most remarkable of all the pouched rats for the proportional sizo of the receptacles. It is a mative of Canada, aud tho individual hero figured was taken by some Indians in the year 1798, and afterwands presented to the lady of Governor Prescot. It is sbout the size of a brown or Norway rat, sod is of a pale grayish-brown colour, rather lighter beneath: tho leugth to the tail is about nine inches, and that of the tail, which is but slightly corored with hsirs, about two inches: the legs are short; the fore fect atroug, and well adapted for burrowing in the ground, having five claws, of which the threo middle ones are very large and loug; the interior much smaller, and the exterior very small, with a large tuberclo or elbow beneath itw. The claws on the hiod feet are comparatively very small, but the two middle are larger than tho reat, and the interior oue is scarcely visible; the teeth sre extremely strong, particularly the lower pais, which are much longer than the upper; the ears are very suall. This species is described in the 5th vol. of the 'Trans. of Lima. Soc.,' but I must observe, that, by some oversight in the comluct of the figure there givcu, the claws on the fore feet are represented as only three in number, and are somewhat too loug, weak, aud eurved ; the engraving in the present plate is a more faithful representation, and is accompanied by an outline of the hend, in its natural size, as viewed in front, in order to show the tecth and cheek-pouches. The maners of this species are at present unknown, but it may be coneloded that it lays in a stock of provisions, either for autumnal or winter food. The pouches of the individual specimen above degeribed, when first brouglit to Guveruor Prescot, were filled with a kind of earthy substance; it is therefore not improbable that the Iadians who caught tho adimal might have stuffed then thus, in order to preserve then in their utmost extent."

Mas bursarius.
In Sir John Richsrdson'a Gcomyn Douglasii tho length of tho head ant body was 6 inches 6 lines; and that of the tail (vertobre) 2 inches 10 lines. Check-pouches large, moch resembling the thumb of a lady's glove in form and size, and hanging down by the sidos of the head. 'lhe apecimen was a female, aud was taken in her nest with three young ones, near tho mouth of the Columbis, by Mr. Douglas. When it cance into the hands of Sir John Ilichardson the fur hal mostly fallen off, but tho specimen was in other respeets perfect, fud what was watiog to the description was supplied from Douglas's notes. 'Ihe state of oxsification of the skull showed the animal to be aus old one. Douglas informed Sir John Richarlson that the outside of the pouches was cold to the touch, even when the animal was alive, and that on the inside they were lined with small orbicular indurated glands, more numerous near the opeuing into the month. Whon full the pouches had an oblong form, and when ompty they were corrugated or retractel to one-third of their length; bat, it is added, they sre never inverted no as to produce the hood-like form of the pouch of a Diplostoma. When in the act of emptying its pouches the animal sits on its hams like a marmot or squirrel, and squeezes his sacks agrinat the breast with hia chin and fore paws. ('Fnuna BorealiAmericnna.')

Sir John Kichardson states that there little sand-rats are numerous in the neighbourhood of Fort Vincourer, where they inhabit the declivities of low hills, and burrow in tho sandy noil. They feed on
acorna, nuts (Corylus rostrata), sud grass, and commit great havoc in the potato-fields sdjoining the fort, not only by devouring the potstoes on the spot, but by carryiug off large qusntities of them in their pouches.

The following figure is conied from Sir John Richsrdson's Diplostoma (!) bulbivorum.

Diplostoma bulbivorum.

Not Pouched.

Aplodontia (Richardson).-Head large, depressed; ears short and round; ao cheek-pouches. Feet 5-toed, with large, strong, and compressed claws. Tail very small, and concenled by the fur. First molar in upper jaw small, cylindrical, and poiuted, placed within the anterior corner of the sccond one, and existing in the sdult.

$$
\text { Dental Formuls:-Incisors, } \frac{2}{2} ; \text { Molars, } \frac{5-5}{4-4}=22
$$

A. leporina. Head large; nose thick and obtuse, covered with a dense coat of short fur; eye very small; ear resembling the human in form. Body short, thick, and mbbit-like. Legs very short, and covered down to the wrists and heels with fur similar to that on the body; a little sbove the wrist-joint, on the inner side, is a smsll tuft of stiff white hairs. Fur like that of a rabbit out of season, amber and cheataut-brown above; grayish or clove-brown beneath; lips whitish; s rather large epot of pure white on the throst; some white hairs dispersed through the fur. Tail slender, cylindrical, hardly half an inch long.

l, anterior hall of the bsult, with lower jaw, profile; 2, anterior half of skult, neen from below; 3, the same seen from nbove; 4, lower jaw, with rifht condsle broken, seen from above; 3, upper molar tooth; 6, 7, fore feet, upper surface; 8, sole of bind foot.

Sir John Richardson gives the following as the synonyms of this nnimnl:-Sewellel, Lewis and Clark; Anisonyx (i) rufa, MafnerqueSmaltz, Desur. A Arctomys rufa, Harlan; Mrsmot, No. 17, Hudson's NAT, HIST. DIV. VOL III.

Bay Museum; and he says that amongst Mr. Douglas's specimens there was s young one, with more white hairs interspersed through its fur, and some differences in the form of its skull, which seem to point it out ss a second species, but the specimen was not sufficiently perfect to enable Sir John Richardson to give its characters as a distinct species, though he has little doubt of its being so. Sir John adds, thst since the account of the genus was published in the 'Zoological Journal' (vol. iv.), Mr. Douglas had placed in his hands an Indian blanket, or robe, formed by sewing the skins of the Sewellel together. The robe contained 27 skins, which had been selected when the fur was in prime order. In all of them the loug hairs were so numerous as to bide the wool or down at their roots, and their points had a very high lustre. Tho general colour of the surface of the fur was between chestaut snd umber-brown, lighter, and with more lustre on the sides. Some of the skins which were in the best order had the long hairs on the back of the head and between the shoulders almost black. Sir John observes further, that it is probable that there were the skius of two species of Sewellels in the robe, snd that one of them wants the white mark on the throat. The down of all the skins of the robe had a shining blsckish-gray colour.

These animals live in small societies, in burrows, and feed on vegetable substances. They inhabit the neighbourlood of the Columbia River, and are most sbundant near the great falls and rapids.

Dr. Gray makes the A spalacidee the fifth family of the Glires, with the following character :-

Cutting teeth two in each jaw, lower chisel- or awl-shsped, often very much exposed; grinders compound or simple; rarely rootless; ears and cyes often very small, sometimes hid; clavicles stroug; limbs proportionate; tail none, or hairy, cylindrical; fur very soft. He thus subdivides it into five sub-families.
† 1. Aspalacina.-Oiycterus, F. Cuv.; Bathyergus, Ill.; Aspalax, Oliv.
2. Lemnina (Lemmina ?)-Arvicola, Lacep.; Sigmodon, Say; ; Neotoma, Say.; Lemnus (Lemmus?), Liuu.
†+ 3. Cricetina.-Cricetus, Lacep.
4. Pseudostorina.-Pseudostoma, Say.; Diplostoma and Geomys, Rafin.
5. Arctomina.-Arctomys, Gmel.; Spermophilus, F. Cuv.

Dr. Fischer thinks that Cretzchmar's genus Pasmmomys should be placed before Aspalax. (See Rüppel, 'Zool. Atl.') Psammomys obesus, on which the genus is founded, lives gregariously in the sandy deserts of Alexsndris, forming multifarious burrows, spd is a pocturnal and root-esting snims], without cheek-pouches.
Aspalax (Oliv. and others; Spalax, Güld., Ill., snd others).-Muzzle obtuse. Eyes rudimentary, sud hidden under the skin. Ears null, or mere obsolete margins of the auditory passage. Body thick sud cylindrical. Feet short, pentsdactyle, with falcular claws, proper for digging. Tail null or very short. Molars simple.

Dental Formula :-Incisors, $\frac{2}{2}$; Molars, $\frac{3-3}{3-3}=16$.
A. typhlus.-This species sppears to be the Spalax typhlus of Illiger ; Aspalax typhlus of Desmarest; Mus typhlus of Pallas and others; Marmota typhlus of Blumenbach; Georychus typhlus of Lesson; the Zemui of Rzaczynski; the Slepez of Gmelin; the Podolian Marmot of Pennant; and the Blind Rist of Shaw.

Description.-The head is broadcr than the body, no aperture for the rudimentary eyes, which, no bigger than popry-seede, mer hid licneath tho skin; no external ears; cnd of the noze covered with a
thick skin, nostrils very remote, and placed below; limbs very short, toes separated, excopt a thiu membrane at the base, claws short; hair or fur ahort, thick, and vory soft, dusky at the bottom and cinereous gray at the $k i p$, space about the nose and nbove the mouth white. Length between 5 and $\$$ inches.

This is supposed by some to be the 'A $\sigma \pi d^{\prime}$ ak of Aristotle ('Hist. Anim.' i. 9 and ir. S). It is ovident, from both the passages quoted, that be liad accurately examined that part of the noimal where the eye should be, and the result of his cxamination clearly agrees with the condition of those parts in the Agpala.c of tho moderns; but it must not be forgotten that those and other passages will equally apply to n second species of Mole (Talpa), now named Talpa creca, whioh inhabits Enrope, and in which the egelids are closed, whilst in the common species they are open.

This species, which the Russians name Slepez, or the Blind, and the Cossacks Sfochor Nomon, signifying the same defect, burrows exten. sively beneath the turf, driving at intervals lateral passages in its search for roots, particulaly that of the bulbous Cherophyllum. Openings to the surface occur at distances of some yards from each other, and there the earth is raised into hillocks, sometimes of two grards in cireumference, and of considerable height. It works atoutly and rapidly, and on the approach of an enemy instantly digs a perpendicular burrow. Though it cannot see, it lifts its head in a menacing attitude towards its assailant, aud when irritated snorts and gashes its teeth, but emits no cry: its bite is very severe. In the morming it ofteu quits its hole, sud during the season of love basks in the sun with the femalc. It is worthy of notice that there runs a superstition in the Ukraino that the hand which has suffocated one of these animals is gifted with the virtue of curing scrofult, or the King's Evil (as it is still called), in the same way that it was supposed to vanish before the royal touch of the Stuarts in this country.

It is fonnd in the southern parts of Russia, from Poland to the Volga, but not to the east of that river; it is common from the Sysran to the Sarpa, and frequent along the Don, even to its origin, and about the town of IFosk, but not in the sandy parts.

Bathyergus, Branta (Orycterus, F. Cuv.).-M. F. Cuvier assigns to Bathyergus only threo molars in each jaw; whilst to Orycteris he nesigna four.

The Dental Formula of the first, according to this statement, Tould be :-Incisors, $\frac{2}{2}$; Molars, $\frac{3-3}{3-3}=16$; and of the secoud, Incisorx, $\frac{2}{2} ;$ Molars, $\frac{4-4}{4-4}=20$.

Dr. Fischer quoten Profenor Kaup for the opinion that the Bathyergus Capenin of llrants (Cape lat of Shaw nad Pennant) and Bathyerynes marifimua of Branta (Coant lent of Shnti, Orycterus maritimus of 1 . (nvier) are indentical, the former heing tho animal in a comparatively enrly stage of life. The latere is tho Fand Moll of the Duteh sud Knasw-llowhan of the Ilottentote: it is of a reddishogmy or nalh-colout abote, and hoary beneath. length from tip of mizzile to origin of tail, 1 foot 11 inch; of tail withont the hair, I inch 1 line; of the jrencil of hairs, 10 linea. There in a variety all white.

It is foum sumbig the and-flats of the Cape of Good Hope, wherein it hurrowa in great numbers. In every part of thone thats biurchell olonarred innumerable mole-hilla, and his foot often kunk into their sallerios: for this reason, he remarka, it is very unpleasnnt, if mot dangeroun, to ride on horachack in surli places, as pereons are linble to be thrown by the feet of their lorsen unexpectedly sinkiug into these holen.

Coast Rat (Orycterus maritimus).
The following genera are placed by Mr. Swainson among the Squirrels, and, indeed, there is much abont them to indicate a near spproach to that family of Rodenta,

Not Pouched,

Arctomys (Gmelin).-Head and cyes large; ears short; body stout; fore feet with four toee and an obsolete thumb, hind feet five-toed, Tail short. Upper surface of molars ridged and tuberculous.

$$
\text { Dental Formula :-Incisors, } \frac{2}{2} ; \text { Molars, } \frac{5-5}{4-4}=22
$$

A. Marmota, Schreb., and A. Empetra, Sclureb, may be given as examples: the latter of the American Marmots.
A. Marmota. This is the Mus Alpinus of Gesner and others; Mus Marmota of Linnmue and others; Glis Marmota of Klein; Marmota Alpina of Blumenbach; Marmotte of Buffon; Murmelthier of Kramer and of Meyer; and Alpenmurmelthior of Schmak.
Tho cheeks are large; oars round and short, hid in the fur; body stout; head and npper parts brownish-ash mingled with tawny; lega and uuder parte reddish; tail rather full; length from noee to tail, abont 16 inches; of the tail, 6 inches.
This well-known species is found in the Alps and Pyrenees, even, it is said, on the summits of those mountain chains. They live in little societies, foeding on roots and vegetables, and occasionally on insects, Their holes are formed in the ground, generally with three chambers in tho shape of a I , with two entrances. These apartments are comfortably lined with moss and hay, and to them the Marmots retire about Michaclmas, having stopped up the entrances with earth, there to doze awny the inclemeut months, till the warm suns and showers of April arouse them from their torpidity to partake of the renewed vegetation. From five to a dozen are maid to be lodged in a chamber, They lift their food to their mouths with their fore feet, eat it sitting, and will walk on their hind feet. When on their feed a sentincl is placed to watel, and on the approach of danger his whistle drives them instantly to their aubterranean retreats. They are playful creatures, but when nagry or before a storm picree the ear with their shrill whistle. Though they soon become tame, and will eat almost anything, they bito very hard when offended. Milk pleases them greatly, and thcy lap it with satisfactory murmurs. They become fat, and are sometimes eaten; but they are taken by the Savoyards and others principally that they may be exhibited by those itinerants. The number of young at a birth is generally three or four.

Alpine Marmot (Arctomys Marmota).
A. Empetra is the Quebec Marmot of Pennant and Godman; the Common Marmot of Langedorff; the Thick-Wood Badger of the Hudson's Bay residents; the Siffleur of the French Canadians, who apply the same name to the other species of Marmot and to the Badger ; Tarbagsn of the Russisu residents on Kodiak (3); Weenusk of the Crees; Kath-hillo-Kooay of the Chepewyans; Mus Empetra of Pallas; Arctomys Empetra of Sabine and others. It is hoary above, mixed with black, aud bright brown shining through; reddish-orange beneath; head and foet blackish-brown; cheeks whitish; cars flat, round, moderate; tail about half tho langth of the body, black at the tip. Length of the head and body, from I7 to 20 inches; of tail vertebrac), $5 \frac{1}{2}$ inches.

Quebec Marmot (Arctomys Empetra).
Sir John Richardson, who gives the above synonyms, states that the Quebec Marmot inhabits the woody districts from Canada to $61^{\circ} \mathrm{N}$. lat., and perhaps still farther north. He says that it appears to be a solitary animal, inhabits burrows in the earth, but ascends bushes and trees, probably in search of buds and other vegetable productions, on which it feeds. Mr. Drummond killed two, one on soms low bushes, and the other on the branch of a tree. According to Mr. Graham it burrows perpendicularly, selecting dry spots st some distance from the coast, and feeding on the coarse grass which it gathers on the river-sides. The Indians capture it by pouring water into its holes. The flesh is considered delicate when the animal is fat. The fur is valueless. It much resembles the Bobac of Poland in form and general appearance. ("Fruns Boreali-Americana.) Pennant says, "Mr. Brooks had oue alive a fow years ago; it was very tame, and made a hissing uoise."
This species has a slight folding of the lining of the mouth, forming the rudiment of a cheek-pouch. (Richardson.)

Pouched.

Spermophilus (F. Cuvier).-Dental formuls as in Arctomys; the molars are narrow. Cheeks with large pouches; toes narrow and free; heel covered with hair; hind toes naked.
A. (Spermophilus) Parryi. This, according to Sir John Richardson, who first named the species, is the Ground Squirrel of Hearnc; the Quebec Marmot of Forster; the Seek Scek of the Esquimaux; the Tho-Thiay (Rock-Badger) of the Chepewyans; and the A rctomys Alpina of Parry's 'Second Voyage.'

Ears very short ; body thickly spotted above with white on a gray or black ground, pale rust-coloured beneath; face chestnut-coloured; the tail one-third longer than the hind feet, stretched out flat, black at the extremity, with a narrow white margin, rust-coloured beneath. Length of head and body, 8 inches 6 lines; of tail (vertcbroc), I inch 6 lines.
SirJohn Richardson tells us that this Spermophile inhabits the Barren Grounds skirting the sea-coast from Fort Churchill in Hudson's Bay round by Melville Peninsula, and the whole northern extremity of the continent to Behring's Straits, where specimens precisely similar were procured by Captain Beechey. It is abumdant in the neighbourhood of Fort Enterprise, near the southern verge of the Barren Grounds, in 65° N. lst., and is also plentiful on Cape Parry, one of the most northern parts of the continent. It is found generally in stony dis. tricts, but seems to delight chiefly iu sandy hillocks amongst rocks, where burrows, inhabited by differout individuals, may bo often observed erowded together. One of the society is generally observed sitting erect on the summit of a hillock, whilst the others are fecding in the neighbourhood. Upon the approach of dauger be gives the alarm, and they instantly burry to their holes, remaining however chsttering at the entrance until the advance of the enemy obliges them to retire to the bottom. When their retreat is cut off they become much terrified, and, seeking shelter in the first crevice, they not unfrequently succeed only in hiding the head and fore part of the body, whilst the projecting tail is, as is usual with them uuder the infuence of terror, spread out flat on the rock. Their cry in this seasou oi distress strongly reaembles the loud alarm of the Hudsou's Bay Squirrel, and is not very unlike the sound of a watchman's rattle. The Esquimaux nsms is an attempt to express this sound. Hearne states that thay are easily tamed, and very cleanly and playful when domesticated. They never oome abroad during the winter.

Their food appears to be eutirely vegetable; their ponches being generally filled, according to the season, with teuder shoots of herbaceous plants, berries of the alpine arbutus, and of other trailing shrubs, or the seeds of grasses and leguminous plants. They produce about seven young st a time. ('Fauna Boreali-Americana.') Sir John Richardson's figure, from which the cut is taken, was drawn from a specimen procured from the banks of the Mackenzie River.

Ground Squirrel (Arctomys (Spermophilus) Parryi).
The genus A ulacodus of Temminck is placed by Dr. Fischer between Dipus and Arctomys.
Mr. Waterhouse, in his interesting 'Observations on the Rodentin, with s view to point out the Groups, as indicated by the Structure of the Crania, in this order of Mammals' ('Mag. Nat. Hist.,' 1839), states the following as the principsl genera of his section Murina:--Sciurus, Arctonys, Myoxus, Dipus, Mus, Arvicola, Geomys, and Castor. The principal genera in the eection Ilystricina are, according to the same author,-Bathyergus, Poephagomys, Octodon, Habrocoma, Myopotamus, Capromys, Echimys, Aulacodus, Mystrix, Dasyprocta, Chinchilla, and Hydrocherus.
In the 'Zoology' of H.M.S. Beagle' (Sept., 1839), Mr. Waterhouse says that he has been induced, by the differences there pointed out in the molar teeth of the two groups, to separato the South Americau Mice from those of the Old World, or rather from that group of which Mus decumanus may be regarded as the type; and to place them, together with such North American species as agree with them in dentition, in a new genus bearing the name of Ilcsperomys. Mr. Waterhouse will not venture to say whether this group be confined to the western bemisphere or not; but he thinks that ha may safely affirm that that portion of the globe is their chief metropolis. In the species of Mesperomys, he observes, the molar teeth are always rooted; and in the form of the skull and lower jaw they agree with the Murida, and do not present the characters pointed out by him as distinguishing the Arvicolidec; and, as regards the cranium and lower jaw, it is only in the genus Neotoma that auy approach is evinced, in his opinion. Under the family Octodontidee he places the genera Ctenomys, Poephagomys, Octodon, and Abrocoma, which last he states to be allied on the one hand to the genera Octodon, Poephagomys, and Ctenomys, and on the other to the family Chinchillidde. The Octodontide appear to him to bear the same relatiou to Echimys as the Arvicole do to the Muridee. [Rodentia; Hystricide; Sciumide.]

In the collection of the British Museum the student will find specimens of nearly all the Murille at present kuown. The following is a list of the species found in that collection, with the countries in which the spccimens were found :-

Family Murida.

a. Murina.

1. Acanthomys Cahirinus, the Cairo Rat. Egypt.
2. A. affinis, the Allied Acauthomys. Egypt.
3. Mus Bandicota (Bechstein), the Baudicoot, or Pis-Rat. Nepau].
4. M. nitidus (Hodgson), the Shiuing Rat. Nepaul.
5. M. setiger (Horsficld), tho Wirok. Van Diemen's Land.
6. M. yigas, the Egyptiau Bandicoot. Egypt.
7. Mf. decumanus (Pallas), the Norway Rat. Great Britain and India.
8. M. Rattus (Linnæus), the Black Rat. Grent Britain.
9. M. penicillatus (Gould), tho Pcucilled Rat. Van Diemen's Laud:
10. M. Decumanoides (Hodgson), the Iudian Rat. Nepaul.
11. M. Asiaticus (Gray), the Asiatic Rat. Mexico and Iodia.
12. M. nirirenier (Hodgson), the White-Bellied Rat. Nepaul.
13. M. Nod (Gray), the Kok. India
14. M. dolicharus (Temminck), the Mairy-Fared Rat. Sonth Africa.
15. M. Abyssinicus (Rüppell), the Abyesininn Rat. Abyssioia.
16. Mr. Eilioli, Elliot's lat. Madras.
17. M. rufercens (Gray), the Red House-Rat. India.
18. M. albipes (llüppell), the Whitc-Footed Mat. Abyasidia.
19. W. lewcosternum (Rüppell), the White-Chested Rat. Abyssinia
20. M. rarieyatue (Brants), the Variegated lat. Egypt,
?I. M. Susculus (Linncus), the Common Mouse. Great Britain and Australia
21. M. sylraticus (Linnens), tho Wood-Mouse. Great Britain.
22. M. Musci, the Mnuci. Madms.
23. M. fuscipey (Waterbouse), the Brown-Footed Rat. Australia, Van Diemen's lasad, de.
24. M. Crouldii (Waterhouse), the South Australian Rat. South Australia
25. M. fuscus, the Brownish Rat. South Australia.
26. M. Australasicus, the Australasian Rat. South Australia.
27. 1V. Vore Mollandice (Waterhouse), Waterhouse's Mouse. Anstralia
28. M. delicatulus (Gould), the Delicate Mouse. Port Essington.
29. 1/. pumilio (Sparmano), the Linested Mouse. Cape of Good Hope.
30. Micromys minutue (Selye de Longchamp), the Harrest-Mouse. Great Britaiu.
31. Callomys lcucopus (Waterhouse), the American Field-Mouse. America
32. Fandeleuria oleracea (Gray), the Mcinalka. Madras.
33. I. dumeticala, Jodgson's Free Mouse. Nepaul.
34. Nesokia Mardwickii (Gray), the Nesoki. Iudia
35. Pseudomys Groyii, Gray's Pseudomys. Australia.
36. P. Australis (Gray), the Pseudomys. Australia.
37. Golunda Elliori (Gray), the Galandi. Madras.
38. G. Meltada (Gray), the Meltada. Madras.
39. G. Barbara, the Barbary Mouse. North Africa
40. Lrggadla Booduga (Gray), the Buduga Madras.
41. L. //aty/hrix (Gray), the Leggade. Madras.
42. Iolochilus ariculoides, the logota Rat. Santa F6 de Bogota
43. I. Brasilicnsis, the Brazilinn Rat. Bahia
44. II. nasulus, the Sharp-Nosed llat. Brazil (?).
45. II. Angouya (Brandt), the Augouya. Brazil.
46. Abrothric cbscurus (Waterhouse), the Dusky American Rat. Soutla America.
47. Cricetus frumentarius (Pallas), the Hamster. Europe.
48. Dendromys (ypicus (A. Smitb), the Free Mouse. Cape of Good Hope.
49. D. melunotus (A. Smith), the Black-Backed Freo Mouse Cape
f Good Hope. of Good Hope.
50. Pheromy: Cumingï (Waterhouse), the Phlaoonys. Manilla.
51. Hapalotis albipea (Lichtedstein), the Rnbbit-Rat. Australis.
52. II. melanura (Gould), the Black-Tailod Mabbit-Rat.
53. Il. Gouldii (Gray), Gould's Rabbit-Rat. Port Essington.

b. Arvicolina.

55. Meriones Labrarlorius (Richardsou), the Katse. North America.

5ti. Euryotis irroratus (Brants), the Vley Muis. South Africa.
57. E. Rrantsii (A. Smith), the Vlakte Muis Cape of Good Hope.
55. E. unisulcala (A. Smith), the One-Groovod Euryotic.
59. Otomys (ypicus (A. Sinith), the Otomys. Cape of Good Hope.
60. U. albicaudatus (A. Smith), the White-Tniled Otomys. Cape of Good Ilope.
61. Sigmodon hispidum (Say), the Sigmodon. Floridn.
62. Niotoma Fioridana (Say), the Ncotoma. Florida.
63. Teonoma Irummondii, tho Teonoma. North America.
64. Cicnodactylus Massoni (Gray), the Gundi. Cape of Good Hope (1).
65. M/ynomes riparius, the lank Mowhw-Mouse. North America.
66. Arricola amphibius (Deamonlins), the Wister Rat. Oreat Britain.
67. A. Americanus (Gray), the American Water-Kat. South America
68. A. Dcunsgiranicus (Itichardson), Wilson'a Meadow-Mouse. JIudyon's lay.
64. A. canthoynothus (Leach), the Vellow-Cbeeked Vole North America.
70. A. arralis, the Canpagnol. Great Dritain and Belginm.
71. A. subterrancus (Selyn do Longehamp), the Subterrancau Vole. lelgium.
72. A. glarealus, the bank Campagnol. Great Dritain.
"3. A. Roylci (Gray), the Indian Vole. India.
It. A. (?) hydrophilus (llodgson), the Nepaul Vole. Nepaul.
75. A.-(7), the Ilunian Vole. Itumsian Soongoro.
i6. A. norehortecensis (Kichardeon), the Sharp-Nosed Meadow. Mouse. Nurth America.

TT. A. Lervalis (lhichardmon), the Awinnk, or Northern MealowMouse. Surth America.
7s. Myoles helrolux, the Tawny lemuing. Alpiue swamps.
79. M. ©romucronatia, Lack'ゅ Lemming. North America.
80. M. Lemmus, the Lemmiog. Norway.
81. M. IIudronius (E. Sabine), the Hudson's Bay Lemmiog. North America
82. Lemmus Grecnlandicus, the Owingak, or Greealand Lemming. Hudson's Bay.

c. Saccomyna.

83. Dipodomys Philliprii (Gray), the Pouched Jerboa-Mouse. Mexico.
84. Hetcromys anomalus (Gray), the Spiny Pouchod Rat. Trinidad.

d. Castorina.

85. Castor Fiber (Linnews), the Beaver. Nortlı America
86. Byopotamus Coypu (T. Geoffroy), the Coypu, or Racoonda, Central America and Cbili.
87. Fiber zibethicth (Desmoulins), the Ondatra North Anerica
88. Hydromys chrysogaster (Geoffroy), the Hydromys. Van Dismeu's Land.

e. Echimyna

89. Octodon Degus, the Cucurrite, or the Degus. Chili.
90. Aulacodus Sscinderianus (Temminck), the Ground Pig. South Africa
91. Echimys myosuros (T. Geoffroy), the Red-Tailed Echimys. Tropical America.
92. Petromys typicus (A. Smith), the Rock-Mouse. South Africa,

Fossil Muride.-Arvicola (Lacép., Lemmus, Link.).-1, Campagnol des Schistes de Bohème (Cuv.); Bohemia. 2, Campagnol des Cavernes (Cuv.) ; bone-caves, Kirkdale. (Buckland, 'Reliq. Diluv.') 3, Petit Campagnol des Cavernes (Cuv.); bono-caves, Kirkdale. (Buckland, 'Reliq. Diluv.'), where it would eeem that there may be other species, Arricola also occur in the bone breccias of Cette, Nice, Corsica, and Sardinia; in the tertiary of Puy-de-Dome; and in the bonecaves of Gailenreuth, Sundwick, \&c.

Dr. Buckland notices the extreme abundance of the teath of WaterKata in tho Kirkdale Cave. The aame author remerke that the teeth and bones of Water-Rats had been found by Cuvier to oceur nbundantly in many of the osscous breccias from the shores of the Mediterravean and Adriatic, and that the Baron had aleo in his collectiou a large mass from Sardinia, composed exclusively of the bones and teeth of these animals, nearly as white as ivory, and slightly adhering together by delicate stalagmite. ('Reliquia Diluvianse.')

Myoxus.-I, Loir dee Platrières (Cuv.), Gypuum of Montmartre. 2, Second Loir des Ilatrieres (Cuv.), Gypsum of Montmartre. 3, $\boldsymbol{M}_{\text {yoxus prinijenius (Meyer, Arctomys primigenia, Kaup). Another }}$ Myoxus is recorded from the EEvingen beds. Dr. Buckland, in his ' List of Vertebral Animals found in the Gypsum of the Paris Basin,' records two small epecies of Dormouse, those above noticed in all probability, as extinct species.
Mus-1, MF. Musculus fossilis (Karg), Euingen beda. lemains of Jice have also been found iu the bone-cavee and Osscous Breccian. T'hne Dr. Buckland describes and figures (' Reliq. Diluv.' p. 15, pl. 11) the jaw and teeth of a meuse from the Kirkdale Cave. In the Eocene formation (lacustrine) of Cournon, in Auvergne, a Rat is recorded as one of the auimals found with the fossil eggs of aquatic birds.
Dipus (Gerbillus, Desm.; Meriones, III.).-Remains of this form are recorded in the Tertiary beds. Benn iron-ore of the Rauh Alp. (Jager). Rusaia. (Vischer.)
C'tenomys.-Mr. Darwin found at Brhin Blanca, in a cliff of red earth, part of the head of a Ctenonys; the specice being different from the Tucutuco, but with a close general resemblance.

Spermophilus.-S.superciliosus (Kaup). Tertiary : Eppelsheim Sand.
MUS. [Mund.玉.]
MUSA, a genus of Endogenous Plants, the typo of the natural order M/usacece. The epecies consist of herbsceous plnats, baving a gigautic simple stem, thickly clothed with the eheathing petioles of long, broad, horizontal lesves, which form a tuft, like that of somo palin, on the apex of the stem. Theso leaves are of a firm but thin texture, and are undivided; but laving simple veins running directly from the margin towards the midrib, nud presedting a broad surface to the wiad, they are slwnye torn into broad etrap-like divisiona, which give them a compound appearance. From the mldet of these leaves proceeds the iuflorescence, consisting of a compound spike of great size, each of whoso divisions is juclosed in a large bract or spathe, loaded with male flowera at its base, but bearing females or hermaphrodites at the upper end. The perinath consists of 6 superior diviaions, five of which are grown together into a tube, slit at the back, while the sixth is small aud concave. There aro 6 stamens, one or more of which are imperfect. The ovary is inferior, $3 \cdot \mathrm{celled}$, with a double row of numerous ovules in each cell; the atyle is short ; the stigma is fuunel-ahaped, and obscurely 6-lobed. The fruit is an oblong fleshy body, obscurcly $3-5$ coruerod, containing aumerous aeeds buriod iu $p^{\text {ulp }}$ p. The latter are roundish, the size of a pea, flattened, with a baril brittle shell, which is judented at the hilum.

This genus is one of the most important of those found in tropical couutries, to which the epecies are confined in a wild state. The M. Sajicutun, or Ilautain, of which the Banama, or M. paradisiaca, is a slight variety, lias a fruit used to a prodigious extont by the inhabit-

Plantaia (Nusa Sapientum).
ants of the torrid zoue; and, from its nutritious qualities and general use, it masy, whether used in a raw or dressed form, be regarded rather as a necessary article of food than as an occasional luxury. In equinoctial Asia and America, iu tropical Africa, in the islands of the Atlantic and Pacific oceane, wherever the mean heat of the year exceeds 24 centigrade degrees (75° Fahreuleit), the plantain is one of the most interesting objects of cultivation for the subsisteace of man. Three dozen fruits will maiutain a person, instead of bread, for a week, aud eveu appears a better diet in warm countries. Indeed the plantain is often the whele support of an Indian family. The fruit is produced from among the immesse leaves, in buaches weighing from 30 to 80 lbs., of warious celeurs, and of great diversity of form. It usually is long and narrow, of a pale-yellow or dark-red colour, with a yellow farinaceous flesh. But in form it varies to oblong and nearly spherical; and ia colour it offers all the shades and variations of tints that the combination of ycllow and red, in different proportions, caul produce. Some sorts are said always to be of a brightgreen colour. In general, the character of the fruit to an European palate is that of mild iusipidity; some sorts are eveu so coarse as not to be edible without preparation. The greater number however are eaten in their raw state, and some varicties acquire by cultivation a very exquisite flavour, even surpassing the finest pear. In the better sorts the flesh has a fine butter-yellow colour, is of a delicatc taste, aud melts in the mouth like marmalade. To point out all the kinds that are cultivated in the East Iudies alone would be as difficult as to describe the varieties of apples and pears ia Europe, for the names vary necording to the form, size, taste, and colour of the fruits. Sixteen priacipal kinds are described at length by Rnouphius, from which all the others seem to have diverged. Of these the worst are, Pisang Swangi, Pisang Tando, and Pisang Gabba-Gabb; and the best are the round, soft, yellowish sortz, called Pisang Medji and Pisang Radja. Some cultivators at Batavia boast of having 80 sorts. Rheede distinguishes It varieties by name, as natives of Malabar. In Sumatra alone 20 varieties are cultivated, among which the I'isang Amas, or Small Yollow Ilantain, is eateemed the most delicate, and next to that the Pisang lRaja, Pisang Dingen, and Pisang Kallé. In the West Indies, plantains appear to be even more extensively employed than in the cantern world. The modes of eating then are various. The beat sorts are served up raw at table, as in the Last Iudies, aud have
boen compared for flavour to an excellent reinette apple after its sweetness has been condensed by keeping through the winter. Sometimes they are baked in their skins, and then they taste like the best stewed pears of Europe. They are also the principal ingredient in a variety of dishes, particularly in one called mantágue, which is made of slices of them fried in butter and powdered uver with fine sugar. Of the many cultivated sorts, that called hy the French La Banane Musquée is considered the best; it is less than the others, but has a more delicate flavour. There are uncoloured figures of the plantain frnit in Rheede's 'Hortus Malabaricus,' vol. i., plates 12, 13, and 14; aud coloured ones in Tussac's 'Flore des Antilles,' plates 1,2. All hot climates seem equally congenial to the growth of this plant; in Cuba it is even cultivated in situations where the thermometer descends to 7 centesimal degrees (45° Fahrenheit), and somctimes nearly to freezing point. There is a hardy variety called Camburi, which is grown with success at Malaga.
The Plantaiu prefers a rich fat soil; for in sandy places, where it flowers abundantly, it produces no fruit.
In the climates that suit it, there is no plant more extensively useful, indepeadently of its being an indispensable article of foed. A tough fibre, capable of being mads into thread of great fineness, is obtained frem its stem; and the leaves, from their breadth and hardness, form an excellent material for the thatch of cottages. An intosicating liquer is also made from the fruits when fermented, and the young shoots are eaten as a delicate vegetable.
The Banana of hot countries is a mere variety of the Plantain, distinguisbed by being dwsuf, with a spotted stem and a more delicate fruit. Betanists call it Musa paradisiaca, in allusion to an old netion that it was the Forbidden Fruit of Scripture : it has also been supposed to be what was intended by the grapes, one bunch of which was berne upon a pole between two men, that the spies of Moses brought out of the Promised Land. The only argument of any importance in support of the latter opinion is, that there is no other fruit to which the weight of the fruit of Scripture will apply.
All the genus is Asiatic ; the wild plantain is found in the foresta of Chittagong, where it blossoms during the rains; M. coccinea, a dwarf sort, with a stem not more than 3 or 4 feet high, is found in China; M. ornata and M. superba inhabit the forests of Bengal; M. glauca is from Pegu; M. textilis is from the Philippines, where it furuishes the valuable thread called Mauilla Hemp. There is also in the gardens of Eagland a plant called M. Cavendishii, not above 3 feet high, and fruiting abuudantly at that size, the origin of which is aaid to be Mauritins.

MUSA'CEEA, Musads, a uatural order of Endegens, of which the genus $M u s a$ is the represcatative. They are stemless or nearly stemless plauts, with leaves sheathing at the base snd forming a kind of spurious stem, often very large; their limb separated from the taper petiole by a round tumour, and having five parallel veins diverging regularly from the midrib towards the margin. Flowers spathaceous; perianth 6 -parted, adherent, petaloid, in two distinct rows, more or less irregular; stamens 6 , iuserted upon the middle of the divisious. some alwaye becoming abortivc ; anthcrs linear, turned inwards,

1, a Musaccous flower, with its inferior evary ; 2, the sexual apparatus of a male flower; 3, ditto of a female flower; 4 , a section of an ovary; 5 , a ripe fruit; 6 , the same eut threugh transversely.

2-celled, often having a membranous petaloid erest; ovary inferior, S-celled, many-sceded, rarely 3-seeded; ovides anatropal; style simple; stigma unually 3-lobed. Fruit either a 3 -eelled capsule, with a coculicilal dehiscence, or succulent and indehiscent. Seeds continuous, surromded by hairs, with an integument which is usually crustaceons; embryo orthotropal, oblong-linear, or mushroom-slaped, with the madiculareud tonching the hilum, having pierced through themealy albumen.

The species are stately nud always beautiful herbaceous plants witls tho sspect of a plantain, and with large hracts and spathes, which are usually coloured of somo gay tint. Tho characteristic marks of the order are to have an lnferior ovary, with very irregular and unsym. metrical flowers, whoso sexual apparatus is not consolidated. It is chiefly by these distinctions that it is known from A maryllidacere. In some tho fruit is fleshy, as in the Plantain; in others it is dry and capsular. Ooly 4 geners aro known of this order, cousisting of about 20 species, nll of striking beauty. Heliconia is the principal American form, nearly all the others being fonud in the Old World; of these the species are conspicuous for their brilliantly-coloured rigid beatshaped bracts, mometimes yellow, sometimes scarlet, and even a mixture of both. The species of Strelitzia are Cape plants with rigid glaucons leaves, and singularly irregular flowers of considerable size, coloured yellow and blue or pure white. Finally, the Ravenuls of Nadagascar (L'rania speciosa), a noble palm-like plant, is remarkable for the brilliant blue colour of the lacerated pulpy aril which envelopes the seeds; the latter are used for dycing in Madagascar, but nono of the order are of any important use to man, with the exception of the Musas themselves [Mus..]
MUSANGA, the name of the seeds of species of Cecropia and Arocarpur, used by the Africans of the Gold Coast.
MUSCA. [MUSCID A_{4}]
MUSCALES, an alliance of Acrogenous Plants in Lindley's arrangement of the Vegetable Kingdom. It includes two divisions:1. Hepatice; 2. Musci. The Hepatice include the onders Ricciacca, Marchantiacer, Jungermanniacce, and Equisetacere. [Acrobens; Ricclaces; Jongermannlace.s; Marchantiacee; Equisetacere.] The Musci include the orders Andraacea and Bryacere. [Muscr.]

MUSCARDINL: the name given to s disease to which silk-worms are subject, and which often causes great injury to those who cultivate these animals for the sake of their silk. This disease is attended with tho development of a fungus belonging to the genus Dotrytis, and has been named by Balsamo aud Montagne B. Bassiana. This plant, which is characteristic of the disease, can be propagated by the introduction of apores into a healthy caterpillar. The result of the changes produced upon the blood and tissues of tho animal is its death. This disease is ratuch more common some gears than others. It frequently spreads to other insects; and the caterpillars of other Lepidoptera can be inoculated by the epores of the Dotrytis. When once the disease has appeared there seems to bo no means of checking it. The best mode of prevention is to take care that the caterpillars are not over-crowded, and that thoy have a sufficient supply of fresh food. Tho predisposition to this disease anongst silk-worms seems to be brought ou by the same causes as those which act upon the human system, and render it favourable to the attacks of epidemic diseases. [Entoruyta; Fenar; Bornitis; Mouldiness.] (Robin, Mist. des Végétaur Parasicta.)
MUSCA'RI, a genus of Plants belonging to the natural order Liliacere. It has a globose and subcylindrical perianth, narrowed at the mouth, and 6-toothed; the stamens are inserted at about the middle of the tube, the filaments not decurrent.
M. racemasum, Grape-Hyacinth, is the ouly British species of this genus. It abounds in Suflolk, pear Pakenham, and is found in some other parts of Great Britaiu. It has ovate nodding crowded flowers, the upper ones nearly sessile, abortive; tho leaves linear, finccid, and rocurved. The Howers are of a dark-blue colour. It grows most abundantly in mandy fields.

The bulles of M. moschatum are, according to Lindloy, emotic.
(Babington, Manual of Brit. Botany: Lindley, Feyd. Kingdon.)
MUSCHELKA1K. A Calcarcous lock, interposed in the midst of the New Red-Sandstone System, receives this name in Germany, and thongh it is not more carboniferous than some other limestones, yet it js mach richer in organic remains than the average of the strata with which it is aseociated. This rock occupies a considerable space in the vicinity of the Harz, Schwarzwald, and Vonges Mountains, but is unknown in the Iritish Inles, though soveral suall bands of calcanoous rock interlaminato the variegated clays of the Jed-Sandatone System. Brown (' Lithaw Geognostica') presents the following nyuopwis of the strata iu this formation, as it appears on the fianky of the 1Black Foreat:-

Keryer Normation.

Dolomite

Muschelkalk.

limeatone of

 FriedrichanallAuhydrite.
Dolomite (Nagelfels, Malbstein).
l'ectinite Limentone.
Rogenstein (Oolitic).
linerinitic limestone.
Paliaurenkalk,
Encrinitie limeatone. $\}$
Dark Clay and Anhydrite, with Dolomite, Swinestone, and lock-Salt.
Wellenkalk

Limestone and Dolomite Marle, with Gypsum and lrock-Salt.

Bunter Sandatein.

Tho fossil remains of the Masehelkalk participate in the more common specios of the Bunter Saudstein below and the Kouper abova; but among the peculiar species may be reckonod Encrinus moniliformis and Ammonitcs (ceratites) nodosus. Saurian reptiles oocur in this rock.

MUSCI, or MOSSES, conatitute a group of Cryptogamic or Flowerless Plants, of considerable extent and of great interest on account of their very eingular structure. They are in all cases of small size, never exceeding a fow inches in height, and, though often of almost microscopical minuteness, are furnished with leaves arranged over a distinct sxis of growth, snd are propagated by means of reproductive apparatus of a peculiar nature. They have no trace of apiral or other vessels in their tissue, but are formed entirely of cellular tissuc, in the stem lengthened into tubes. For a long time they were thought to be destitute of stomates, but these were discovered by Treviranus and Unger, and afterwards by Mr. Valentine. ('Transactions of the Linnacan Society,' vol. xviii. p. 239.) In nddition to the stomates, several species are pierced with large round openings, which are sometimes inhabited by \& wheel-animalcule-the Rotifer vulgaris.

The organs of fructification are of two kinds. The most unfversal and most conspicuous is the Um (Sporangium, or Theca), in which tho spores, or seed-like bodies, are generated. If the axils of the leaves of a moss are examined at the proper eeason of the year, there will be found in some of them elusters of articulated filaments ewollen at the base, from among which some one will be larger than the remainder, and go on growing while they are arrested in their development. After a while this body is found to have an exterior membranous conting, which separates from the base by s circulsr incision, but which otherwise adheres to the part beneath it. The Iatter, which is the goung urn, graduslly acquirce a stalk, called the Seta, upon which it is elevsted above the leaves, carrying the outer membrane upwards on its point, so that when full grown it is covered by it as with a cap-then called a Calyptra. The urn itself is closed by a lid, or Operculum, and contains the spores arranged in a cavity surrounding a central column, or Columella. Its rim is bordered by a double row of processea, often resembling jointed tooth, and called the Peristome, one set of which appears to belong to the outer shell of the urn and the other to the inner. Ueually the urn grows from a fieshy tubercle called the Apophysis, the station of which is in most cases at the base of the seta, but in Splanchnum forms a curious process at the apex of the seta, immediately below the urn.

1, an entire Plant, much magnificd; 2, a cluster of young Uras; 8, an Ura, full grown, with its Calypira, 4, remored; 5 , the Urn with the Opercuium talica off; 6, a portion of the Peristeme.

A second set of organs, to which the name of Autheridin or Staminidia has beeu appliod, are also observed. These are also found eluaterod in the axils of leaves; they consist of membranoue, cylindrical, jointed, or jointless bodies, irregularly opening at the point, and diseharging a mucous turbid fluid; thoy are surrounded by paraphysen, or jointed filsments, like the urns themeelves, (See the figures on the next column.)
The function of these two sets of organs has long been a matter of .dimpate. The following account from Mr. Henfrey'e report on the 'IReprorluctive Organs of the Higher Cryptogamia,' made to the British Association in 1851, will supply all the information that is st present known on this subject:-
"On no subject lias more discussion been maintained than on the existenco of sexes among the Cryptogamous Families. The discovery of the two kinde of organs, the Antheridia and Pintillidia, in the

1, a Seta, bearing on the apex an urn, from which the opercalum is rising, proceeding from sn apophysis at the base, where it ia surrounded by paraphyees; 2, a groap of young Urns, among which a few paraphsses are mixed; 3, in ciaster of Stamiadia and Paraphysce, sarronnded by scalc-like leaves; 4, three Staminidia surrounded by four Paraphyses; 5, a Spare; 6, the same in the first stage of germination; 7 , the same in a more advaneed state.

Mosses and ITepaticce, and of the peculiar organs containing analogous spiral filaments in the Characece, wers for a long time the chief facta brought forward by those who supported the sexual hypothesis; end in the endeavour to carry out the view into the other tribes, a similar nature to that of the antheridia was attributed to most varied structures in the Ferns and other plants. These attempts to find distinct sexual organs were in some instances pursued with so little judgment, that the opinion has of late gears fallen in some degree into discredit, and two circumstances contributed still further to strengthen the doubts which were entertained. The first was the exact analogy pointed out by Professor Von Mohl, between the mode of development of the spores of the Cryptogamia and the pellengrains of the flowering plants, which interfere very importantly to prevent any comparison between the sporangia and ovaries, and apparently determined the analogy of the former to be with anthers. The econd was the discovery by Professor Nägeli, of organs producing spiral filaments, therefore analogous to the antheridia of the Mosses, on the germ frond, or pro-embryo developed from the spores of the Ferns.
"At the same time, the facts observed in Pilularia were altogether equivocal. Mr. Valcntine traced the development of the larger spores, exhibiting in germination an evident analogy to ovules, from cells closely resembling the parent-cells of pollen and spores; while Professor Schleiden stated that he had observed a fertilisation of these supposed ovulos by the smaller spores resembling pollen-grains, and thus seemed to remove the ground for attributing a fertilising influence to the spiral filaments contained in the so-called antheridia of the Cryptogrme.
"To this state the question remained until 1848, when Count Suminski publiahed his observations on the germination of Ferns, showing that the researches of Naigeli had been imperfect, and that two kinds of organs are produced upon the pro-embryo of the Ferns, one kind analogous to the antheridia, and the other to the pistillidia of Mosses; from the latter of which the true Fern stem is produced, like the seta and capsule from the same organ in the Mosses; further stating that he had actually observed a process of fertilisation. Soon after this M. G. Thuret discovered antheridia like those of the Ferns in the Equisetacece; Naigeli had previously published, in opposition to Schleiten's obervations, an account of the production of epiral filaments from the amall apores of Pilularia; and finally, M. Mettenius discoverod them in the small spores of lsoctes. Thus they were sbown to exist in all the families above cnumcrated, with the exception of the Lycopodiacece, in which they have recently been stated to exist by M. Hofmeister.
"The antheridia of the Mosses occur in the axils of the leaves or collected into a head, inclosed by numerous variously modified leaves at the summit of the stem. They are produced either on the same heads as the pistillidis, or in diatinct heads on the same individuals, such Mosses being called monocious; or the heads are found only on distinct individuals, such Mosses being termed dioscious. The stracture of the antheridium is exceedingly simple ; it consists of an elongate, cylindrical, or club-shaped sac, the walls of which are composed of a single layer of cells, united to form a delicate membrane. Within this sac aro devcloped vast numbers of minute cellules, completely filling it, and, the anc bursting at its apex at a certain
period, these vesicles are extruded. When the nearly perfect saes are placed in water, the vesicles within appear to absorb water, and swell so as to burst the sac of the antheridium, and often adhering together, they collectively appear to form masses larger than the cavity from which they have emerged. Through the transparent walls may be seen a delicate filament with a thickened extremity, coiled up in the interior of each vesicle. Often before the extrusion, but alway shortly after, a movement of this filament is to be observed when the object is viewed in water under the microscope. The filament is to be seen wheeling round and round rapidly within the cellule, the mation being rendered very evident by the distinctneas of the thickened extremity of the filament, which appesrs to be coursing round the walls of the cellule in a circle. According to Unger, this filament breaks out of its parent-cellule in Sphagnum, and then appears as a spiral filament moving freely in water, in fact, as one of the socalled Spermatazoa.
"The pistillidia of the Mosses are the rudiments of the fruit or capsules. When young, they appear as flask-shaped bodies with long necks, composed of a siugle cellular membrane. The long neck presents an open canal like a style, leading to the enlarged cavity below at the base of which, according to Mr. Valentine, is found a single cell projecting free into the open space. The single cell is the germ of the future capsule; at a certain period it becomes divided iuto two by a horizontal partition, the upper one of these two again divides, and 80 on uotil the single cell is developed into a ccllular filament, the joung seta; the upper cells are subsequently developed into the um end its appendages, and as this rises, it carries away with it, as the calyptra, the original membrane of the pistilidium, which separates by a circumscissile fissure from the lower part, the future vaginula. Thesc observations of Valentine are not exactly borne out by those of Schimper in some of the detail points. According to this author, the lower part of the pistillidium (the germen of Dr. Brown) begins to swell at a certain time, wheu a capsule is to be produced, becoming filled with a quantity of what be terms 'green granulations.' As soon as the thickuess has become about that of the future seta, the cell-development in the horizontal direction ceases, and its activity is directed chiefly to the upper part, which begins to elongate rapidly in the direction of the main axis. This elongation causes a sudden tearing off at the base, or a little above it, of the cell-membrane enveloping the young fruit, and the upper part is carried onwards as the calyptra; the lower part, when any is left, remains as a little tubular process surrounding the seta. Whils the young fruit is being raised up by the growth of the seta, the portion of the receptacle upon which the pistillidium is borne, becomes developed into a kind of collar, and at length into a sheath (the vaginula) surrounding the base of the scta, which is articulated into it there.

- M. Hofmeistcr again describes the details much in the same way as Mr. Valentine. He states that there exists at the point where the style and germen of the piatillidium join, a cell, developed before the canal of the style has become opened. In those pistillidia which pro duce capsules this cell begius at a certaiu period to exhibit very active increase; it becomes rapidly divided and subdivided by alternately directed oblique partitions into a somewhat spindle-shaped body formed of a row of large cclls. Meanwhile the cells at the base of the germen are also rapidly multiplied, and the lower part of the pistillidium is greatly increased in size. The spindle-shaped body continues to increase in length by the subdivision of its uppermost cell by oblique transverse walls, and the opposition which is offered by the upper concave surface of the cavity of the germen causes the lower conical extremity of the spindle-shaped body to penetrata into the mass of cellular tissue at the base of the germen-a process which resembles the penetration of the embryo into the endosperm in the embryo-sac of certain flowering plants. The base of the spindleshaped body, which is in fact the rudiment of the fruit, at length reaches the base of the pistillidiuh, and penetrates even some distance into the tissue of the stem upon wbich this is seated. The growth of the upper part going on unceasingly, the walls of the germen are torn by a circular fissure, and the upper half is carried upwards, bearing the calyptra; the lower part forms the vaginula. The upper cell of the spindle-shaped body then becomes developed into the capsule, and the calyptra often becoming organically connected with this, as the base of the seta docs with the end of the stcm, it in such cases undergoes further development during the time it is being carried upwards by the growing fruit.
'The view now entertained by Schimper, Hofmeister, and others of the reproduction of the Messes is, that the antheridia are truly male organs, and that they exert, by means of the spiral filaments, a fertilising influence upon the pistillidia, it being assumed that those bodies, or the fluid which they are bathed in, penetrate down the canal of the style, or neck-like portion of the piatillidium, to reach the minute cell, the supposed embryonal cell, situated in the globular portion or germen of the pistillidium, and thes render it capable of becoming developed into a perfect fruit.
"No such process of fertiliaation has actually been observed iu the Mosses, and therefore all the evidence is at present merely circumstantial, but this is very strong. In the first place it is stated as an undoubted fact by Schimper and Bruch, that in the diocious Mosses, those on which the antheridia and pistillidia occur in separate plants,
fruit is never produced on the so-called male plante, and never on the so-called female, unless the males occur in the vicinity. Suveral exataples are cited in the work of Schimper above reforred to. When the sexes occur alone, the increase of the plant is wholly dependent on the propagation by gemma or innovations.
"lly the discovery of the antheridia and piatillidia in tho other higher Cryptogams, the arguments from analogy greatly strengthen the bypothesis of the sexuality of Mosses.
"Further obscrvation is required then for the direct proof of the occurrence of a process of fertilisation in the Mosses; but the facts now before us all tend to prove their sexuality, if wo argue from amlogy, and the probabilitica deduced from tho negative ovidence above refirred to, in regard to the dicocious species.
"It is unneccsary to give any nccount of the well-known structure of the Moss capsules; yet, in order to render the comparison with the phenomena of the life of Mosses with those of the other leafy Cryptogams complete, it may be worth while to aliude to the germination of the spores. The spore is a single cell with a double cost, like a pollengrain; this germinates by the protrusion of the inner cost in the form of a filamentous or rather tubular process, which growa out and becomea subdivided by septa, so as to form a confervoid filament, The lateral branches bud out from some of the cells, some elongating Into aecondary filaments, others at once undergoing a more activa devclopment, anal by the multiplication of their cells assuming the condition of conical cellular masses, upon which the forms of Moss leaves may soou be detected; theae cellular masses becoming buda, from which the regular leafy atems arise.
"Ifepatica.-Tha genera comprehonded in this fumily present a wouderful variety of gtructure in the reproductive organs, but in almost all of them the existence of the two kinds of orgaus called pistillidia and antheridia have long been demonstrated, and in most cases the development of the aporangia from the so-called piatillidia has been traced. Ia those genera in which the plants wost resemble the Mosses in the vegetativo portion, as in Jungcrmannia, the pistillidia are very like those of the Mosses; this is also the case in Marchantia; but in Pellia, Anthoceros, aud other genera, the rudiment of the sporangium bears a atriking reaemblance to the so-called ovules of the Ferns, Rhizocurpece, \&c., occurring upon the expanded fronda very much in the same way as those bodies do upon the pro-embryoes of the said families. It would occupy too much space to anter into a minuta detail of the various conditions that sre met with. It is sufficient to say that in all cases the physiological atages are nalogous to those of the Sosses; since the pistillidia produced upon the frouda, or leafbearing stem, developed directly from the spores, go on to produce a sporaugium alone, in which the new spores are developed without the intervention of the atage of cxistence preaented by the pro-embryo of the Ferna and Equisetacea, where the pistillidia nud notheridia occur upon a temporary frond, and the former give origin to the regular stem and leaven of the plant."

The genera of Mosses aro principally characterised by pecubarities in the peristome, or by modifications of the calyptra, and of the position of tha urn. Linnzua admitted very few genera, but modern muscologista have increased the number very largely.

Mosses are found all over the world where the atmosphere is humid. Thoy are however more common in temperate than in tropical climates. Mosses are smong the first plants that apriug up on the surface of inorganic matter, $n t$ first appearing like a green atain, when they morely consist of germinating spores, but soon clothing themsel ves with leaves, and then by their decay producing the earlieat portion of decomposed vegetable matter with which the soil is fertiliaed.
lindley beparates the genera Andrea and Anoschisma from the reat of his Musci under the order Andreacer. The sporc-cases in this order open by valves, and have an operculum, but no elaters.
(Bridel, Bryologia Cnireralis; Iledwig, Theoria Gencrationis, de., Plantarum Crypogamicarum; Éndlicher, Genera Plantarum; Hooker and Taylor, Mucologia Britannica: Lindley, Yegctable Ḱingdom; llenfrey, in Report of British Association, 1851.)

MUSCICA'PlUSE, Plycatchers, a family of Insectivorous Birda, so named from their mole of taking their pray. Thus, M. Temminck meates that the Flycatchera (Gobe-Mouches) feed entirely on flica and other winged insecta, which they eatch as they Ay ("Manuel d'Ornithologie') ; and our conntryman White asys:-"There is one circum. atance characteristic of thia bird (the Spotted Flycateher, Mfuscicapa grisola) whicli meena to have escapod obecration, and that is, it takes ite ntand on the top of some atake or post, whence it aprings forth on ita prey, catching a ty in the air, and liardly ever tonching the ground, but returning atill to the same stand for many times together." ("Nat. Hiat of Selborne.')

Tinnacua, in lis lant edition of tho 'Systems Natures, places the gemur Mucicapa, containing the True Flycatchers, the Tyrants (M. Tyrannus), and several other npecies to the amount of 21, between the genera Pringilla nod Mfotacilla.
(uvier places the Gobe-Monches (Muscicapa, Linn.) between the lies-(iriechen (Isutcher-Birds, Lanius, Linn.) and the Cotingas (Ampelis, Linn.). He deacriben the group as having the bill depresaed borizontally, and furniahed with hairs or vibrisge st its base, and its point more or leas booked and notched; and he maken the Flyentehers conwhet of the Tyrants (Tyrannus, Jion.); the Moncheroles (Mfuscincta,

Cur.) ; the Platyrhynques, or Broad-Bills; certain apecien high on the legs and with a phort thil (T'urdus auritus, Gm.-Conopophaga, Vioill.): the True Flyeatchers (Muscicapa, Cuv.) ; and other variations of form, principally in tho bill, which becomes more slender in some, thus spproximating to tho Figuiers; and in others has the areto a Hittle more elevated, whilst it is curved towards the point, thus leading to Saxicola. Cuvier finishes by observing that there are various genera or aub-genera which come very near to ccrtain links of the series of Flycatchers, though they much surpass those birds in size, such as the Buld Tyrants (Gymnocephalus, Geoff.), and Cephaloptervi (Geoff.). [Comacisa.]
3. Temminck places his genus Gobe-Mouche (Muscicapa, Linn.) between Lanius (Linn.) and Turdus (Linn.).
M. Vieillot places the Myotheres, or Flycatchars, betwoen the Chelidons (Swallows and Goatsuckers) and the Collurions (ButcherBirds).

Mr. Vigors, at the commencement of the section treating of the order Dentirostres, observea that the depressed bill and insect-food of the Todicle introduce us at ouce to the Mf uscicapila, with which they sre immediately counected by the genus Platyrhynchur, Desm. The apacies that compose the Jatter group were, he remarks, originally included in the gonus Todus, and wero separated from jt only on acconat of the comparative strength of their lege. "The whole of the Mfuscicapida, indeed," continues Mr. Vigora, "with which family Platyrhymehus ia now united, have a decided affinity to the last tribe, or tho birds which feed upon the wing, in their broad-based bills, the vibrisse that surround them, and their similar habits of darting upon their prey while on the wing. Separated from them chiefly by the atrength and mone perfect structure of the leg and foot, they form the extreme of the succeoding tribe, in which they are numbered in consequence of these distinguishing characters. The line of affinity between the two tribes may thus be assumed as establishod." Mr. Vigors then statea that the families composing tho order Dentirasfres sppenr to succeed each other as follows:-Muscicapidae; Laniade; Dferulidre; Sylriada; Piprida. Theso families are thus grouped by him in their typical disposition :-

$$
\begin{array}{cc}
\text { Rostris fortioribus } & \text { Normal Group. } \\
& \cdot \\
& \text { Aberrant Group. }
\end{array}
$$

$\left\{\begin{array}{l}\text { Laniada. } \\ \text { Merulide. }\end{array}\right.$

Mostris debilioribus .

$\left\{\begin{array}{l}\text { Sylriader } \\ \text { Pipride }\end{array}\right.$ Piprida. Muscicapida.

He further remarks that the Muscicapidee contain a multitude of species, diffused over every quarter of the globe, and differing in many poiuts of generic distinction; but hitherto so ill-defined, nnd ao uusatiafactorily grouped, that any attempt to trace them in detail through their affinitics in their present confusion would be hopeless They are all howaver, he adds, well united togather by the essential characters which distinguish the type of the group-the notehed, depreased, and angular bill, and the strong hairs or vibrisse that aurround its base. In these characters, as wall as in their manners, they partially correspond with the Laniade, from the esrlier familiea of which they chicfly differ in their inferior power and robustness. Mr. Vigors then enters among the Laniade by the genus Tyrannue, Cur., which, in his opinion, unites them with the Muscicapida, in which family indeed that genus has generally boen classed, and from which he would separate it, chiefly on account of the strength of the bill, wherein the character of a Shrike is more conspicuous than that of a Flycatcher.
M. Lesson makes the Muscicapide consist of the genera Tyrannus, Monacha, E'urylaimus, Platyrhynchus, Todus, Myiagra, Muscicapa, Alectrurus, Drymophila, Formicivora, Rhipidura, Seisura, Psophodes, and Enicurus.
Mr. Swainson ('Classification of Birds') is of opiaion that the Whtcr-Chats (Fluvicoline) seem to connect the Tyrant Shrikes with the Flycatching Family, or Muscicapide, the most insectivorous of the Dentirostres; a group, he remarks, hardly less numeroue than that of the Warblers, and composed, like them, almost entirely of amall birda. Both families, he continues, are iusectivorous, that is, habitual devourers of insocts; but very many of the warblers (even in the more typical genera) foed also upon fruits, of which the robln, the blackcap, and the white-throat are notable examples. "The Flycatchera however," adds Mr. Swaingon, "properly so called, seem to be atriotly and excluaively insectivorous, or, at least, it has not yet been ascertained that any of the species composing the typical group Musicapides ever partake of fruits, This peculiarity of diet, independent of many others, separates them from the warblers on one aide, and from tho Ampclider, or Chattercrs, on the other; while another is to be found in the mode or manner of their fecding. Tho warblars fly about, hunting down their prey, nenrehing nmong trees, and roaming from place to place after their favourite food; hence they become ambulating flycatchern, and their feet are conaequently larga and strong in comparison to the size of their bodies. Wa need only look to the goldcrested and wood warblers as exemplifications of this remark, eveu
among those species which frequent trees; but in such, as in the Stonechats, Saxicolince, and Motaciliince, as habitually walk, the feet are much stronger and the shanks more lengthened. Now, the very reverse of this structure is the typical distinction of the Flycatchers; their legs are remarkably small sad weak-more so, perhaps, than those of any dentirostral birds-showing at once that their feet are bot little used; and such we find to be the case. The Flycatchers constitute the fissirostral type of form among the leading divisions of the Dentirostres, and they consequently exhibit all the chief indications of that primary type of nature, as it is exhibited in the feathered creation. These, as the intelligent ornithologist already knows, are manifested in a large and rather wide month and bill; short, feeble, and often imperfect feet; great powers of flight and often a considersble leagth of wing; the development of this latter structure is not always apparent, but it is the peculiar power of their flight upon which they chiefly depend for procuring subsistence. They are mostly sedentary, and only dart upon such insects as come within a sudden swoop, without attempting to pursue their game further, if unsuccessful in the first instance: they return, in fact, to the spot they left, or to another very near, and there await patiently until another insect passes within the proper distance. This habit of feeding at ouce explains the reason of the feet being so small sad weak, by showing that they are merely used to support the body; or, at least, that they are not employed in constant exercise or exertion, as in the generality of other birds. Other characters accompany these, no less indicative of birdn which feed exclusively upon the wing: the bill is always considerably depressed or flattened, particularly at its base; and the sides of the mouth are defended with stiff bristles, to confine the struggles of their prey."

Mr. Swainson thinks that the primary divisions appear to be represented by the genera Eurylaimus, Muscicapa, Fluvicola, $P_{s u r i s, ~ a n d ~}$ Querula, and these, according to his views, constitute the types of so many sub-families, vary uncqual indeed in their contents, yet blending sufficiently into each other to point out their circular succession. He considers the first two of these to be the typical aud sub-typical groups; and the three next to be aberrant.
Prince C. L. Bonaparte ('Geographicsl and Comparative List') placen the Muscicapide between the Turdide and the Laniade; and he makes the Muscicapide consist of the following sub-families and genera.

a. Muscicapince.

Genera:-Sctophaga, Sw. ; Tyrannula, Sw.; Tyrannus, Vieill.; Mil. tulus, Sw.; Butalis, Boic. ; Muscicapa, Linn. ; Eivthrosterna, Bouap.

b. Virconince.

Geners:-Icteria, Vieill.; Vireo, Vieill.; Vircosylva, Bonap.
In considering this arrangement, the student should remember that It only applies to the birds of Europe and North America.

Mr. Swainson thus defines the family :-Stature small. Bill cousiderably depressed its entire leagth, broad; the edge of the upper mandible folding over that of the lower; the tip abruptly bent and notched. Rictus wide, defended with strong rigid bristles, pointing forwards Fect almost always short (except in the rasorial types, where of course they are longer), small, and weak. Feed solely upon insects captured during fight. Hsbits sedentary.

Sub-Family Querulince.

Bill strong, broad, much depresssed ; gape wide. Rictus with strong bristles. Feet short, resembling those of the tspical Ampeline. Lateral scales minute. (Sw.)

Mr. Swainson in of opinion that the genus Querula is the type of this family, and be observes that by some of the Linnean writers this remarkable hird is classed as a Muscicapa; while by others, even among the moderns, it is considered an Ampelis; and he thinks that both of these opinious may be reconciled, by viewing it-as it stands in his arrangement-as the connecting link betryeen these familics. He remarks that all the other Fly catchers, according to his system, so far as wo yet know, feed entiraly upon insects; but there is nnquestiourble testimony that this species lives also upon fruits, thus uniting in itself the characteristics of the two families which it connects. In the bill, ha adds, there is much of the form and strength of that of Psaris, but it is wide and more depressed ; whilst the stiff bristles at the rictus botray its insectivorous hsbit: the fent are remarkably short for the sizo of the bird, and are calculated only, like those of the \boldsymbol{A} mpelide, for perching. All these characters, in the opinion of Mr. Swaiason, not only point out thia genus as the fissirostral type, but perfect the union of the families of Muscicapicke and Ampelide.

Querula, Vieill., and Lathria, Sw., are genera of this sub-family.
Querula.-Bill large, broad, and strong. Gonys long and straight. Nostrils concealed by incumbent reflected feathers. Wiugs long and brosd, fourth quill longest. Toes unequal ; inver toe shortest, of equal length with the hind toe. Tail eveu.
Q. rubricoltis, the Common Pialian, is black with a purple throat. It is the Muscicapa rubricollis of Ginclin.

It is a native of America, where they go in troops in the woods in pursuit of insects.
NAT. HIBT. DIV. VOL. III.

Common Piahau (Quciela rubricollis).

Psariance.

Bill large, thick, sub-cylindrical. Culmen convex, and without any ridge; the tip abruptly bent and notched. Head large, depressed. Mouth very widc. Feet weak : lateral toes unequal ; interior scales of the tarsi transverse; lateral scales small, numerous. Wings.long.

Cayenne Shrike (Paris Cayanensis).
Mr. Swainson (who gives the abore as the characters of the subfamily to which, in his opinion, Alectruna immediately leads) states that in the Psaricnee there are but thrce ascertained genera. "These birds," says Mr. Swainson, "like their representatives, Monucha and Psarisoma, depart considcrably from the types of this family: the blll is less depressed than in any other of the Flycatehers, and its structure is altogether stronger and thicker; they are all natives of tropical America, and are generally found only in thick forests. Gubernetes is the genns by which they appear to be connected with the waterchats, through the medium of Alectrura. One species only is yet known, the Gubernetcs forficatus, remarkable for its long forked tail : to this succeeds Psaris, where we find nearly all the species coloured alike; that is, they are more or less of a gray or peanl white, with black head, wings, and tail: they remind us immediately of the gulls, and this analogy is one of the most beautiful, when worked out, in the whole family. The smaller birds of the genus Packyrynchus immediately follow.

3
 higethe great depregsion of their bill, and the siugularly formed red feathers on the thront" ("Classification of Ibirds," part iii.) In tho "Synopmis" (part iv.) only two genera are given, Psuris, Cur., and P'ackyrynchus. spix.

I'ziris,-liill large. Tho rictus amooth, often makel round tho eye. Winge lengthened; the first quill equal to or longer than the fourth. Tail nhort, eves. loner toe shorter than the outer. (Sw.)
I^{\prime}. Cayuachsia is abla-coloured, head, wing, aud tail black. This is the Lanims C'tyanensis cinercus of Brisson; Lasius Cayanus of Linnous and Gmelia; Pie-griche grise de Cagemo of Buffon; Cayenno Shrike of Latham; and is the type Cuvier's genum Psaris.

It is a native of South America, partieularly Cayenne. Cuvier says that its manners are those of the Shrikes.

F'uricolina.

Legs formerl for walking. Tarsi lengthesed, strong. They inhabit the sides of marahes and rivers in tropical American Sciaura alone is Australian. (Sw.)

Mr. Swainson states that the Fluricoline, or Waterchate, with the exception of one genus, whose situation is still somewhat doubtful, are entirely restricted to the warm latitudes of America, where they seem to represent the stonechats and the wagtails of the Old World. "They are," continues this nuthor, "strictly ambulatiog Flycatehern, rus constitute the rasorinl division of this family. The legs are consequently very long, and formed especially for walking; the toes are also long, quite divided to their base, and furnished with long and slightly eurved claws. This structure earbles these birds to run with great celcrity; and they are generally seen on the sides of streams and rivers, feeting upon flying insects which resort to such situatious; for they never hunt among trees, nod rarely perch; such at least are the maners of the typical species; but there are of course various modifieations of habit, corresponding to those which will now be glaneed at in their etructure." Mr. Swanson exhibits somo varintion in his riews as to this group in the third and fourth parts of the 'Classifica. tion of Birds.' In the third part, the first genus, with which he begins the series, is that of Seisura, differing only from Rhipidura by its more lengthened bill and feet: indeed he by no means feels satisfied that Scisura is naturally separated from $P_{\text {ipipidura, although, for the }}$ present, he adopts the group as proposed by Mr. Vigors sud Dr. Honfield. Ho nevertheless expresses his subpicion that all the gevera of tho Fluricolina may prova to be netives of tropical America, and that Scisura is only composed of aberrant species of Rhipiulura which pass into the Fluvicolina. Joth these divisions (Scisura and Rhipidura), nes well as that of Seicircue, havo broad fna-bhaped tails, which, he observes, plainly indicate the type to which they belong, although the rauk they respectively hold cannot, in our present state of knowledge, . be clearly ascertained. "Leaving this group," says Mr. Swainson in contisuntion, "we reach that of Fluricola, by means of certain black and glossy birds of Brazil, some of which have distinet crests: these latter conduct us to the typical Fluricolo, having the legs unusually long, the bill depressed, the tail leogthened, and the plumage differently varied with white and black. One of the most characteristic of these singular birds is the F'uricola cursoria, of tho size of a lark; but some are nearly capal to a small thrush. Pcrapicilla, so called from the naked gleahy lobo which surrounds the eyes like speetacles, is the next genus: this is succeeded by Alectrura, one of tho most distinct and well definel groups in the wholo cirele of ornithology: the remarkable development of the tail-feathers in this group only fiuds a parallel in the genus Jidua among the tinches and that of Gallus on the rasorial circles besjulen the日e geuern, there are seveml black and white colonred hirds having a general resemblanco to the foregoing, which would recu to enter auong the waterchats; yet, as we have not sufflciently auslysed the group, we must leave this point undetermined: anong thene aro the white.headed tody of the old writers, which is cither a Tyranmula or an aberrat Flavicolas ss well as the Muscicapa leucocilla of llahn, which, in outward appeamnce, so much resembles a manalin, that it may posmibly prove a representativo of that family in the prearent circle." la tho fourtlo part tho sub-family is unde to cunint of the followiug genern, niranged in tho order here given:

Giubonetes, Vig.; Alcetrurus, Vicill.; Pluvicola, Sw. (with its subgenun Illechropus, Šw; P'podza, D'Azarn); Scisura, Horsf, and Vig.; Perapicillos, Sw.
fiuberacte-Bill thick, suld-deprensed, raised at the base; culmen roumled; upler mandible alightly notcheri nt tho apex; nostrila rounded; tho rictus furnighed with closenet rigid vibrisus. Wings inowerate; quilla, from tho firat to the fifth acarly equal, the firat the whortest, the arcond the longent; the external bearla (pogoniis), except the beards of the firat fenther, notelied in tho middle; internal bearls contire. Feet with moderate tavi; the acrotaryia nud paratarsia acutellatel; anden reticulated with wal meales. Tail very long and forked. (Vigers)
(i. C'umminghani is ash-coloured, longitudinnlly lineated with l,rown;

- In the thisd gharl of Mr. Sarinson'n 'Chamafication of Hirde', the subfamilles atand in the following order:- Fiurylammor, Mascicopince, Fhutions doner, Harionar, "secrubum. In the fourth jart ('synopsin') they are thas aranged:- पweruhina, I'sarnanar, Flucicolinax, Mhusienpinc, Eurylaimind.
thront and rump white; lunulated pectoral bad purplish-brown; wings and tail brownish-black; quills lougitudinally banded with ferruginous.

Gubernetes Cumbinghami. Vigors, '\%oological Jeuraal.'

Mr. Vigors, whose generic and specific deseriptions wo have given sbove, says that this bird, which ho named after Colonel Cunningham of Rio Janeiro, appears to have n considerable affinity to the genus Psaris of Cuvier in the structure of its bill and wings, but that it differs from it by other such cesential chameters as to have juduced Mr. Vigors to place it in a sepsrate gcous. Besides the difference in the structure of the tail-an importint charncter, he observes-in the group of the Laniada, which still retnin some of the powers of flight belonging to the Fissirostres, he notes the following differences between the two forms. The rictal bristles of his bird are strong and numerous, while in Psaris they are scarcely perceptible. The tarsi, though somewhat weaker than those of Psaris, are in a slight degree weaker, while the toes are longer and stronger. The lateral scales of the tarsi are square and far asuader, while in Paris they are rounded and numerous. The hinder scales also are less rounded, less close, and less conspicuous than in the latter genus. ('Zool. Journ.' rol. iii)

Muscictipina.

Feet wesk, formed only for perching, generally short, excepting in Totus, but always very slepder, and often syadactyle. Bill more or less depressed; gape with atifT briatles. Clawa small, considerably curved; lateral toes unequal. lahabits warm and Irepical latitudes, but excluded from Nortli America. (Sw.)

This extensive sub-family contains the ondinary Flycatchers, the generality of which do not exceel the dimeanions of Muscicapa grisola. Mr. Swainson romarks that the bill, although it ia rarely eo broad as in the Eurylaimina, is much more flattened, and the bristles at the gape are inore developed. "Their whole structure also," continuen Mr. Swainson," is more elight and delicate; but their colouring, although sometimen elogant, is almost devoid of rivid tints. The different form and length of the bill nod feet furmish the characters by which the genem and aub-genera are dintinguished; while the specien, whilch aro exceediugly mamerous, with the exception of the genus Todue, are only found in the Old World. The typical genera are Todsu and Muscicapa; the aberrant are Majalophus, Monacha, nod Hhipidura: the two firat are so aumerous in mpecies as to contaln sub-genera." Mr. Swainson thea enters into A lengthened notice of the different genera and sub-gedera; exhibits tho circle of Tolus, which he conaiders to be complete with that of Muscicopa; and givea the following as a table, showing the comparison of Todus with the orders of birds and the tribes of the Perchers:-

Sub-genera of Todus.	Genus Todus. Analogies.	Tribes of Perchers.	Orders of Birds.
Todus	$\cdot\left\{\begin{array}{c}\text { Eill lengthened, eonie, slightly } \\ \text { netched }\end{array}\right\}$	Conirestres.	Insessores,
Platyrhynchus	$\cdot\left\{\begin{array}{r} \text { Bill short ; tip abruptly hooked ; } \\ \text { notch or tooth very distinct } \end{array}\right\}$	Dentirostres.	Raptores.
Conopophaga	- Feet eyndaetyle ; head large	Fissirostres.	Natatores.
Platystera	Bill slender.	enuirast	rralluto
Lepturus	$\cdot\left\{\begin{array}{c} \text { Feet large; toes eleft; サings } \\ \text { short; tail leng } \cdot \end{array}\right\}$	Scansores.	Rasares.

This illustration Mr. Swsinson considers to be perfect. ('Classification of Birds, part iii.)
The gemera and sub-genera of the Muscicapince are, in the fourth part of the work last quoted, placed in the following order:-

Rhipidura, Horsf. and Vig.; Monacha, Horsf. and Vig.; Megalophus, SW. ; Todus, Auct. (with the following sub-genera:-Conopophaga, Vieill. ; Platyrhynchus, Desm.; Todus, Linn.; Lepturus, Sw. ; Platystera, Jard. and Selby); Muscicapa, Lina. (with the following sub-genera:-Cryptolopha, Sw. ; Muscipeta, Cuv.; Myiagra, Horsf. and Vig.; Muscicapa, Linn.; and Hyliota, Sw.)

Mhipidura-Bill short, depressed, broad at the base, compressed at the apex; the culmen arched; upper mandible notched at the apex; nostrils basal, oval, nearly covered with bristles and plumules; rictus furnished with close-set bristles, generally exceeding the maudibles in length. Wings moderate, subacuminate; the first quill shortest, the second looger by twice, the third and fourth (which last is the longest) gradually longer. Tail elongated, patulous, reunded at the tip. Feet moderate, slender; the acrotarsia and paratarsia eutire. (Vig. and Horsf.)
R. fabellifera is brown-black; superciliary and postocular spot, throat, points of the wing-coverts, and stems and tips of the tailfeathers whits; abdomen incliniog to ferrugioeus. (Vig. and Horsf.) This is the Muscicapa tabellifera of Gmelin; the Fan-Tailed Flycatcher of Latham.

Fan-Talled Flyeateher (Rhipidura flobeltifera).

Mr. Vigors and Dr. Horsficld remar'k that the figure of this speeies given by Dr. Lathan has mucl nore white on the lateral tail-feathers than the bird described by them; but they add that Dr. Latham afirms that the species is subject to much variation.

Mr. Caley, speaking of this species under the nama of Fan-Tail, says, "There is something singular in the habits of this bird. It frequents the small trees aud bughes, from whence it suddenly darts at its prey, spreading out its tail like a fan, and, to appearance, turuing over like a Tumbler Pigeon, aod then immediately returning to the same twig or bough from whence it sprung. These actions it contiones constantly to repeat. The skin is very tender; and it is difficult, after heving taken it off tho body, to restore it again to its proper shape."

They are found in Australia. Mr. Caley says that the species is very commen about Paramatta, and he does not recollect having missed it at any period of the year. Gmalio, quoting Forster, gives New Zealand as the habitat.

Torlus.-Bill lengthened, broad throughout, contracting suddenly at tho tip, very flat. Bristles short, weak, or none. Tail short, very slender, rounded. Lega long, weak; toes short, the onter more or less united to the middle one. Trepical America ouly. (Sw.)
T. viridis is bright-graen above; whitish beneath; throat scarlet; sides rosy; lower tail-coverts yellow. This species sppears to be the Rubecula vividis elegantissima, Green Sparrow, or Green HummingBird of Sloane ('Jam.,' vol. ii. p. 306 ; Ray, 'Syn. Append.,' p. 137); T. viridis, pectore rubro, rostro rccto, of Brown ('Jam.' p. 476); Todier do St.-Domingue of Buffon; the Grean Tody of English authors.

Sloans says of his specimen that the belly or stomach was pretty thick, and very well filled with Cinices and small vermin of the like kind. It loves, he adds, melancholy placas, and scarce will stir from any one till they take it. "It is," says Sloaue in couclusion, "one of the most beautiful small birds I ever saw." Browns states that it is a very familiar and beautiful bird, and will often let a man come withiu a few feet, and look for minutes togather at it, before it moves. "It keeps," he adds, "much about houses in the country parts, flies very slow, aud probably may be easily tamed."

Green Tody (Todus viridis).
M. Lesson, who places the geaus with doubt between Platyrhynchus and Myiagra, says that the birds composing the genus have the greatest appreximations to the Kingfishers, near which, and in the Syudactylons tribe, Cuvier has arranged them. M. Lesson is of opinion that they are united to the Kingfishers by his genus Todiramphus, though he at the same time observes that M. Temminck admits only ono Tody, armely, T'. viridis, placing it uear Platyrhynchus and before the Moucherelles, an opinion which appears to M. Lesson to be well founded. The Todies, he adds, are very small birds of America, living upon insects which they catch in the mud or in the water. "They are," says lie, "in truth, Water Moncherolles; their wicle and flattened bill, furnished with asperities, or teeth, permits them to sift the mud and retain their prey. They also seck for small inscets under the moss and on the banks of small streams."
The bird is placed by Mr. Vigors among the Fissirostres.
This species is a native of the Antilles.
Muscicapa (Butalis, Boie).-Bill moderate, triangular, and not much dilated at the base, which is furnished with loug and stiff hairs. Nostrils basal, lateral, ovoid, partially covered with hairs directed forwards. Wings rather pointed; first quill small and spurious, secoud rather shorter tban the third and fourth, which are the longest. Tail rather short or moderate, even or slightly forked. Feet rather strong; tarsus and middle toe lengthened; inner toe almost as long as the outer toe.
M. grisola.-All the upper parts ash-brown; forchead approaching to whitish; a lougitudinal stripe of a deep brown on the head; throat and middle of the belly white; sides of the neck, breast, and sides, sprinkled with lougitudiual stains of ash-brown.
This is the Gobe-Monche proprement dit of Buffon; Gobe-Monche Gris of Temminck; Tliegenfinger and Gefleckter Fliegenfianger of the Germans; Stoparola of Aldrovandus and Ray; y Gwybedog of
"T'wo ar thene alrady prepare us for the next " division (隹eruliner), lise the great depression of their bills, and the singularly formed red fenthers on the throat." ("Classification of Jinds," part iii.) In the "Syuopmis" (part iv.) only two genern aro given, Pearis, Cuv., and Puchyrymehus. spix.

Jenris.-Ibill large. The rictus amooth, often naked round the eyc. Wings lengthened; the firs quill equal to or longer than the fourth. Thil short, even. Inner too shorter than the outer. (Sw.)
f'. t'ayuncssis is nals-colouret, hend, wings, and tail black. This is the Lexuiman Cuyanensis cincreus of Driweon; Lanius Cayanus of Libuæus and Guchia; l'iegriche grise de Coyemne of Buffon; Cayenne Shrike of Iathan; and is the type of Cuvier's genus Paris.

It is a mative of South Auserica, particularly Caycnnc. Curicr says that its manaers are those of the Shrikes.

Fhuricelinct.

Iags formed for walking. Tarsi lengthesed, strong. They inhabit the gides of marshes and rivers in tropical America. Scisura alone is Australian. (Sw.)

Mr. Swainson states that the Fluricoliner, or Waterchats, with the exception of one genus, whose situation is still somewlat doubtful, are eatirely restricted to the warm latitudes of America, where they seem to represent the stonchats and the wagtails of the Old Wordd. "They are", continues this nuthor, "strictly ambulating Flycatchers, and constitute the rasorind division of this family. The legs are consequently very long, and formed especially for walking; the tocs are abso long, quite divided to their base, and furnished with long and slightly curved claws. This structure caables these birls to rum with great celerity; and they are generally seen on the aides of streams and rivers, feeding upon flying insects which resort to such situations; for they never hunt among trees, and mrely perch; such at least are the manners of the typical species; but there are of course various modifications of habit, corresponding to those which will now be glanced at in their structure." Mr. Swainson exhibits some variation in his view as to this groups in the third and fourth parts of the 'Classification of Birds.' Iu the third part, the first genus, with which he begine the series, is that of Sciaura, differirg only from Rhinidura by its more lengthened bill nad feet : indeed he by no means feels satisfied that Scisura is maturally separated from Phipidura, although, for the present, he alopts the group as proposed by Mr. Vigors and Dr. Horsfield. The neverthelcss expresses his suspicion that all the genera of the Fluricelina may prove to be natives of tropical America, and that Scisura is only composed of aberrant species of Rhipilura which pass into the Pluvicoline. Both these divisions (Scistra nud Rhipidura), as well an that of Seicircur, have broad fan-shaped thilk, which, he observex, llainly indicate the type to which they belong, although the rabk they respectively holl cannot, in our present state of knowledge, . be clearly ascertained. "Leaviog this group," says Mr. Swaiusod in continuation, "we reach that of Fluricola, by means of certain black narl glossy birds of Brazil, some of which have distinct crests: these latter conduct ua to the typical Fiuricoler, having the legs unsually long, the bill doprcased, the tail leugtheued, and the pluange differently varied with white and black. One of the inost characteristic of these siugular biris in the F'lucicola cursoria, of the size of a lark; but some are nearly eunal to a monall thrush. Pcrepicilla, so called from the naked fleshy loln which surrounds the eyen like spectacles, ia the next genum: this in succecdes by Alectrura, one of the most distinct and well defined groupa in the whole cincle of ornithology: the remarkable development of the tail-feathers in this group only finds a parallel in the germas lidua among the finches and that of Gallus on the rasorial circle loegilen thene genern, there are several black and white coloured binla having a geneml neacmblanco to the foregoing, which wouhl yeem to enter mong the waterchats; yet, as we have not sufficiently nualymed the group, we must leave this point undetermined: anong thene are the white-licaded tordy of the old writers, which is cither a Tyrannula or an aberrant Pluricola, as well as the Muscicaja leucoculat of Haln, which, in outward npuearance, no much resembles a. manakin, that it may ponnibly prove a repreatutative of that family in tho present circle." In the fourth prot the sub-family is made to comaint of the following genern, arraged in the order here given:-

Gubernetes, Vig.; Alectrurus, Vieill.; Pluricola, Sw. (with its sub-genu- Dlechropus, sw. ; J'epoaza, D'Azara) ; Scisura, IIoref. and Vig.; Perpicilla, Sw.

Cubernefes.- Will thick, soledeprenscil, raised at the base; culmen rounded; upier mandible alightly notcbei at the apex; nostrils rounded; the rictus furnimhed with clone set rigid vibrisate. Wings mondente ; quill, from the first to the fifth vearly equal, the first the shortent, the necond the longeat ; the external bearde (pogoniis), except the beards of the firat feather, notehed in the middle; intermal bearda entire. Fect with modnate tarsi; the acrotarnia and paratarsin scutellated; anles reticulated with oval scalen. Tail rery long and forked. (V゙ignra)
(i. Cuminghrmi is ash-coloured, longitunlinally liceated with lrown;

- In the wion parl of Mr. Smainaon'n 'Clasalication of Birds,' the nubfamilicentant in the following order:- Eurylaminur, Misacicnpina, Flurion-
 astanged:- \&uerulmar, I'sariana, Flucicolinat, Musicopinct, Eurylaimina.
throat and rump white; lunulated pectoral band purplish-brown ; winge and tail brownish-black; quills longitudinally banded with ferruginous.

Gubernefes Cunninghami. Vigors, "Zeolegieal Jeurani.'

Mr. Vigors, whose gencric and specific descriptions wo have given above, says that this bird, which he aamed nfter Colonel Cunnisgham of Rio Janeiro, appears to lave a considerable affuity to the genus Psaris of Cuvier in the structure of its bill and wings, but that it differs from it by other such essential characters as to have induced Mr. Vigors to place it in a scparate genus. Besides the difference in the etructure of the tail-an importiant charscter, he observes-in the group of the Laniadd, which still retain bome of the powers of flight belonging to the Fissirostras, he notes the following differences between the two forms. The rictal bristles of his bird are strong and numerous, while in psaris they are scarcely perceptible. The tarsi, though somewhat weaker than those of Psaris, are in a slight degroe weaker, while the toes are longer and atronger. The lateral scales of the tarsi are square and far nsunder, while in Paris they are rounded and aumerous. The hinder scales also are less rounded, leas close, and less conspicuous than in the latter genus. (' Zool. Journ.' vol. ii.)

Muscictapina.

Fect wenk, formed oaly for perching, generally short, excepting in Todus, but always very sleader, and often syndactyle. Bill more or less depressed; gape with atiff bristles. Claws small, conslderably curved; lateral toes uncqual. Inhabits warm and tropical latitudes, but excluded from North America. (Sw.)

This exteusive sub-family contains the ordinary Flycatchers, the generslity of which do not exceer the dimensions of Muscicapa grisola. Mr. Swainson remarks that the bill, although it is rarely so broml as in the Euryluimine, is much moro flattened, and the bristles at the gape are inoro developed. "Their whole structure also," continues Mr. Swainson, "is more elight nad delicate; but their colouring, although sometimes clegant, is nlmost devoid of vivid tints. The different form and length of the bill and fect furnish the charactera by which the genern and sub-genera aro diatinguished; while the mpecien, which aro exccedingly numerous, with the exception of tho genus Torlus, are only found in the Old World. The typical genera are Todus and Muscicapa; the aberrant are Megalophus, Monacha, aud Mhipidura: the two first are so numerous in apecies as to contain aub-genera." Mr. Swainson then enters into a lengthened notice of the different geners and aubgenern; exlibits the circle of Todus, which he considens to be complete with that of Muscicapa; and gives the following as a table, showing the comparison of Todus with the orders of birds and the tribes of the Perchers:-

Sub-geacra of Todus.	Genus Todus. Analogics.	Tribes of Perchers.	Orders of Birds.
Iodus	$\cdot\left\{\begin{array}{c} \text { Bill lengthened, eanie, slightly } \\ \text { notehed } \end{array}\right\}$	Conirostres.	Insessores.
Platyrhynchus	$\cdot\left\{\begin{array}{r} \text { Blll short ; tip ahruptly hooked ; } \\ \text { noteh or tooth very distinct } \end{array}\right\}$	entirostres.	Raptore
Conopophaga	Feet syndactyle; head large	issirostres	Notatores.
Platystera	Bill slender.	Tenurostres	rallato
Lepturus	$\text { - }\left\{\begin{array}{c} \text { Feet large ; toes eleft ; wings } \\ \text { short ; thil long } . \end{array}\right\}$	Scansores.	Rasores.

This illustration Mr. Swainson considers to be perfect. ("Classification of Birds,' part iii.)

The genera and sub-genera of the Muscicapince are, in the fourth part of the work last quoted, placed in the following order :-

Rhipidura, Horsf. and Vig; ; Monacha, Horsf. and Vig.; Megalophus, Sw.; Todus, Auct. (with the following sub-genera:--Conopophaga, Vieill. ; Platyrhynchus, Desm.; Todus, Linn. ; Lepturus, Sw.; Platystera, Jard. and Selby); Muscicapa, Linn. (with the following sub-genera:-Cryptolopha, Sw.; Muscipeta, Cuv.; Myiagra, Horsf. and Vig.; Muscicapa, Linn.; and Hyliota, Sw.)

Rhipidura-Bill short, depressed, broad at the base, compressed at the apex; the culmen arched; upper mandible notched at the spex; nostrils basal, oval, nearly covered with bristles and plumules; rictus furnished with close-set bristles, generally exceeding the mandibles in length. Wings mederate, subacuminate ; the first quill shortest, the second longer by twice, the third and fourth (which last is the longest) gradually longer. Tnil elongated, patulous, rounded at the tip. Feet moderate, slender; the acrotarsia and paratarsia entire. (Vig. and Horsf.)
R. fabelliferce is brown-black; superciliary and postocular spot, throat, points of the wing-coverts, sud stems sud tips of the tailfeathers white; abdomen inclining to ferruginous. (Vig. and Horsf.) This is the Muscicapa flabellifera of Gmelin; the Fan-Tailed Flycatcher of Lathan.

Fan-Talled Plycatcher (Inipidura fobellifera).

Mr. Vigors and Dr. Horsfield remark that the figure of this species given by Dr. Latham has much more white ou the lateral tail-feathers than the bird clescribed by them; but they add that Dr. Latham aflirms that the species is subject to much vsriation.

Mr. Caley, speaking of this species under the nsme of Fan-Tail, says, "There is something singular in the habits of this bird. It frequents the small trees and bushes, from whence it suddenly darts at its prey, apreading out its tail like a fun, snd, to appearance, turning over like a Tumbler Pigeon, and then immediately returning to the same twig or bough from whence it sprung. These actions it cootinues constantly to repeat. The skin is very tender; and it is difficult, after having taken it off the body, to restore it sgain to its proper shape."

They are found in Australis. Mr. Caley says that the species is very common about Paramatts, and he does not reeolleet having missed it at any perion of the year. Qmelic, queting Forster, gives New Zealand as the habitat.

Todus.-Bill lengthened, broad thronghout, contracting suddenly at tho tip, very flat. Briatles shert, weak, or none. Tail short, very slender, rounded. Legs leug, weak; toes short, the onter more or less united to the middle one. Tropical America only. (Sw.)
T. viridis is bright-green above; whitish beneath; threat searlet; sides rosy; lower tail-coverts yellow. This species sppears to be the Rubecula viridis elegantissima, Green Sparrow, or Green HummingBird of Sleane ('Jam.', vol. ii. p. 306 ; Ray, 'Sya. Append.' p. 187); T. viridis, pectore rultro, rostro recto, of Brown ('Jam.,' p. 476); Todier de St.-Demingue of Buffon; the Green Tody of English authors.
Sloane says of his specimen that the belly or stomach was pretty thiek, and very well filled with Cimices and small vermin of the like kind. It loves, he sdds, melancholy places, and scarco will stir from any one till they take it. "It is," says Sloane in conclusion, "one of the most beautiful smsll birds I ever saw." Browne states that it is a very familiar and beautiful bird, and will eften let a man come within a few feet, and look for minutes together at it, before it moves. "It keeps," he adds, "much about houses in the ceuntry parts, flies very slew, and probably may be casily tamed."

Green Tody (Todus viridis).
M. Lesson, whe places the genus with doubt hetween Platyrhynchus and Myiagra, says that the birds composing the genus have the greatest approximations to the Kingfishers, near which, and in the Syudactylons tribe, Cuvier has arranged them. M. Lesson is of opinion that they are united to the Kingflshers by his genus Todiramphus, though be at the same time observes that M. Temminck almits only one Tody, nemely, T. viridis, placing it near Platyohynchus and before the Noneherolles, an opinion which appears to M. Lesson to be well founded. The Todies, he adds, are very small birds of America, living upon insects which they catch in the mud or in the water. "They are," says he, "in truth, Water Moucherolles; their wide and flattened bill, furnished with asperities, or teeth, permits them to sift the mud and retain their prey. They also seek for small insects under the moss and on the banks of small streams."
The bird is placed by Mr. Vigors among the Fissirostires.
This species is a native of the Antilles.
Muscicapa (Butalis, Boie).-Bill moderate, triangular, and not much dilated at the base, which is furnished with loag and stifl' hairs. Nostrils basal, lateral, ovoid, partially covered with lairs directed forwards. Wings rather pointed; first quill small and spurious, seeond rather shorter than the third and fon'th, which are the longest. Tail rather short or moderate, even or slightly forked. Feet rather strong; tarsus and middle tee lengthened; inner toe almost as long as the outer toe.
M. grisola.-All the upper parts ash-brown; forehead sppreaching to whitish; a lengitudinal stripe of a deep brown on the bead; throat and middle of the belly white; sides of the neck, breast, and sides, sprinkled with longitudinal staius of ash-brown.
This is the Gobe-Mouche proprement dit of Buffon; Gobe-Mouche Gris of Temminck; Nliegentinger and Gefleckter Nliegenfanger of the Germans; Stoparela of Aldrovandus and Iay; y Gwybedog of
the Welah: Spotted Flycatcher and (provincial) Deam-Bird, Lafter, [ost-Birl, de., uf the British.

spotied lifeatcher (Muscicapa grisala).
Tho Spotted Flycatcher, one of the latest of our sommer visitants, rarely arrives in these islands before tho latter part of May, when its insect food, which consists principally of tlies and other dipterous insect, abounds. Its mote of capturing them is well described by White in the pasage quoted at the commencement of this article. Temminek sajes that it rarely eats caterpillars and ants. Pennant ntates that it is very fond of cherries; but Mr. Selby eays that he has not been able to rerify this, and that he is inclined to beliove that the Greater l'ettychaps (Sigleia hortensis), a keen devourer of all the sosaller fruita, has in most instances been mistaken for the present bird. The sunc suthor tells us that it is of rare occurrence in Scotland. Mr. Gould says that it is found throughout biugland and a portion of Scothand, wherever there exists a locality suitable to its econony. It quits un in September nad October, having brod and brought up its young here. In. I'emminck says that it is spread in Furije as for as Sweden, and that it is found in tho temperate provinces of lasain; but that it ia rare in llolland. Mr. Selby atates that its summer or polar migration exteads as far na Sweden and Nurway. l'rince lhonapato ('Specchio Camparativo') wotes it as raro in the summer near lRone; and as found in Europe generally. ("(Beogralhical and Comparative List'). Mr. Gould says, "The Spotted klycatcher appears to enjoy a wido rango over the continent of Europe, Laing generally dispersed from the border of the Aretic Cirele to its most southern boundary; and we have also frequently observed it ninong eollections from India." The neat, loosely constructed of moss, fibres, catkios of the bazel, or small twigs lined with straw nad wool or hair and feathers, is often placed upon tho jutting ends of beanm and miters in tool-houses, or other garded or farm buildinge, whence its name of Beam-lird. Tho four or five eggs aro grayidr-white, with pale omnge-brown epots. When the young are able to biavo the nest, the parents lead them to some place where innects nhonml. There tho young soon leara to enptaro their jrey after the manner of the old birds.

The mexes are nlike in plamage. Tho young, for a short time after they begin to fly, linve the feathers tipped with yellowish-white, which gives them a sootilell aprearmuce. The chirp of thia Flycatcher, ita ouly note, is weak.
M. atricapilha, Gobe. Monche Bec.ligue of th:e Vrench, M.luchuosa of Temminck, the lied Flycatcher. Malo with the upper parts black; part of tho forchead, a jatch on the wing, aud the outer web of the two onter thildenthern on cach side, fe well as the lower parte, white. Female noll young grayish hrown above, brownimh-white bencath.

Thin hird is a vinitor of the liritinh lelands, but is not so numerous se the lant. It arriver from tho middle of Apail to the begimaing of May, nall depart in September. The eges are five or six, pade, Fi.12ths of an inch long, and rather more than half an inch in burealth. It luidds in the holes of decnyed oaks or pollard-trees.
 of pair had n nemt in the incotical hale where this apeeies had bred for
 fgem arrauged in the following manner: ono lay at tho botfom, and the ramainture were nll placed perpendionarly round the siden of the tuent with the nuallar phats resting uponit; the effect of which was cxeeclingly houtiful."

Risylaimince.

Size large. Structure powerful. Mill short, excesivoly broad; tho
upper mandiblo convex above, dilated at its base, and the margios foldiag over those of the upper mandible; the tip abruptly hooked. Wingr rather short, Feetstrong, molerate. The onter toe connected for half ita leagth to tho middlo toe; hinder toe long; inner too shortest.

Mr. Swainson, who gives thia an tho character of the aub-family, observes that the Eurylaimine are the most remarkable birds of the wholo fanily; the specien are very few, and their geographical limita secm to be restricted to the hottest parts of India, where they inhabit the foreats. "In aize," continues Mr. Swainson, "they exceed all others, savo tho genus Querula, in this fomily, being about the sizo of starlings, while the enormous breadth of their bills and the peculiar hrightaess of their colonring reader it impossible for the atudent to mistake theru for any other genus. Tho bill is not only excessively broad, but tho margins of the base are so dilated that they often project over those of the lower mandible, whilst its substance seems much more solid than in the ordinary flycatchers. Although very few sjecies have hitherto been diacovered, it is quite clear that the fivo leading typea hava come to light, although only one examplo of the genera Serilophus, Psarisoma, and Platystoma are yet known. It may be here opscred that notwithataoding the great width of the bill in all theso birds, it is nevertheless much more convex above, and in some instances is oven more raised on the culmea than any of the others; the feet also and the wholo structure of the body are more robust. Heace, although the width of the mouth and the great size of the head wonld indicate this to be the pre-eminent typical group, yet all the other characters would place it as the typical. Serilophus is evidently the rasorial or crested type; and it departs considerably from the others by the only apecies yet known boing very fond of fruits; this is in conformity with the atrong and remarkable analogy it shows, even in its outward appearance, to the wax-winged chatterers (Bombycilla).'

The gencra given by Mr. Swainson in the 'Synopsia' are-Eury. laimus, Horsf. ; Cymbirhynchus, Vig. ; Platyslomus, Sw. (both of which aro placed by M. Lesson in his genus Erolla); Psarisomus, Sw. ; and Serilophus, Sw. Mr. Swainson considers Eurylaimus to be the preeminent type; Cymbirhynchus tho sub-typical type; Platystomus the fissirostral type; and Scrilophus the rasorial typa; by which last and Megalophus regius ho considers that the Eurylaimince and Muscicapmee are united.

Eurylaimus.-Bill broader than the head; under mandible very thin, particularly at the hase. Nostrils basal, trapaverse, oval; the aperture naked. Frst quill alightly, second almost imperceptibly graduated. Tail short, rounded.
b. Javanicus (E. Morsficldii, Temm.). Entire length eight inches, Head, sides of the neck, and the whole of the neck and body underneath violet, or rather vinous, varying in intensity. The part of the forehead arouad tho bill nearly black. Upper part of the neck brown, darker towards tho back, whore the tint is sooty. Wiags very deep blackish-brown nbove, more intenso near the shonlder, and lighter towards the extremity. A yellow atreak between the coverts and secondary quills. Wings beneath from the axillio to tho shoulder yellow, which borders the wing externally. Tail-coverts black at the base and yellow at tho tips, a that tho rump appears yellow, which is the colour at the vent. Two intermediate tail-feathers black, four next on each aide black, with a white transperse band near tho extromity. On the two external feathors tho band is near the middle, und rather bronder. Bill roddish-brown at tho base, with both mandibles irregularly variegated, and atriped towards the

a, bill of Furylaimus Jaranicus, feen In profle; b, seen from above; c, anterior toc of the same, to show their relative canarxion. Ilorefichl.
extremity; culmen yellowish; cutting-edges intensely black and shining, Tarsi and toes dugky-yellowish; claws brown, inclining to black.

Dr. Horsfield is of opinion that from the observations of Sir Stamford Raftles, io the catalogue of a zoological collection made in the island of Sumatra under his direction, and communicated to the Linurean Society, we cau also in some measure determine the range of this genus: "It extends," continues the Doctor, "from Sumatra eastward to Singapura, and thence seuth to the eastern extremity of Java near the Straits of Baly, where I discevered it in the year 1806; nince that period I have not met with it again. We are indebted to Sir Stamford Raftles for the following remarks on the first species: -' It frequents the banks of rivers and lakes, feeding on insects and worms. It builds its nest pendent from the branch of a tree or bush which orerhange the water.' I found it in Java, in one of the most distant and inaccessible parts covered with extensive forests and abounding with rivers and marshes."

Dr. Horafield placed the genus among the Meropide or Syndyctyle.
MU'SCID $A,{ }^{2}$, family of Dipterous Insects of the sub-section Athericera. The insects of this family were for the most part included in the genus Musca by the older authors; and Muscidee may be regarded as the typical group of the second great division of Two-Winged Flies (the Brachocera), in which the antenve are short and composed of only threc joints, and the joints of the palpi are reduced to one or two.
In Macquart's work on the 'Natural History of Insects,' the section Brachocera of the Diptera is divided into three groups:-First, the Hexachactes, in which the proboscis is composed of six setee in the females; the palpi are ovate and elevated in the males, couical and decumbent in the females, and adhering to the base of the seter; the third joint of the antenna curved.
The second sub-divisiou Tetracheetes, is thus characterised:Proboscis composed of four setar; palpi generally adhering to the base of the setæ; third joint of the antennæ either curved or simple, with the stylet usually terminal; wings gencrally with four or five posterior cells.

In the third sub-division, Dichutes, the proboscis has only two setex, the palpi are generally placed on the base of the proboscis, and the stylet is situated on the upper burface of the third joint of the antennes: the wings have ususlly but one submarginal cell; three poaterior cells; the anal cell is usually short, and there are sometimes no transicrse cells.

The sub-section Athericera, which forms one of the sub-divisions of the great group Dichoctes, is distinguished by the sucker being inclosed in the proboscis ; the antennæ laving the last joint usually patelliform.
In the Muscides the proboscis is always very distinct and susceptible of being entirely retracted within the oral cavity; the sucker is cem. posed of two pieces; the stylet of the antenne is usually plumose to the aper; the body is short and tolerably broad; the eyes, in the male sex, are usually contiguous.

This family includes several well-known insects as the Common Fly, the Blow-Fls, the Blue-Bottle Fly, aud many others.
The larvac of the Muscidce are thick, fleshy, cylindric, attenuated towerds the head, and truncated at the other extremity of the body; the head is eoft, with two or three horny points, which serve to pierce the matters upon which they feed; they are also provided with apiraclea, the number and figure of which are variable, some being placed upon the head, rcsembling eyes, and the others, which are
larger, placed at the posterior part of the body. They are destitute of legs, snd their progression is effected by the hooks of the mouth, which they affix in the surface of the substance upon which they bre placed : having first extended the body bs far as possible, they then draw the hind parts of the body towards the head, contracting it as much as possible, when they again push the head forward as before. These larva feed upon various matters, both animsl and vegetable: amongst the herbivorous species, many devour decaying Fungi, Boleti, \&c., the galls and seeds of plants, and the interior of fruit; amongst the carnivorous species, some prey upon the flesh of auimals, of which they cause the more rapid decomposition, whilst others live in excrement, manure-heaps, \&c., and some are parasitic, liviug in the bodies of other caterpillars, of which they devour all the inner parts, The larve assume the pupa state without throwing of their skin. The pupa state is variable in its duration according to the state of the weather, which may be more or less favourable to the development of the different parts of the inclosed pupa. In order to effect its escape from the pupa, the fly throws off a small cap at one end of the case or skin-cocoon by beating against it with its head. At first these flies are soft, and may be observed creeping along with their wings crumpled up in a small compass. They soou however gain their full size; and the fly acquires its dark celour, and then joins its companions in the air.

Latreille has divided this family iuto nioe primary groups, from various peculiarities of structure ; while Macquart, availiog himself of the researches of M. Robineau des Voidy, has partially adopted the habits of the groups for the establishment of three sub-families, in which he traces a gradual decrease in the organisation of these insects until his arrival at the confines of insect life.

1. The Creophila, characterised especially by the wings, of which the first posterior cell is entirely or partialiy closed, and by the large size of the alulets. This sub-family comprises those species which are distinguished by their size, colours, robustness of body, strength of flight, is. They generally deposit their eggs either upon the flesh of dead animals, or are parasitic in the bodies of other larvo. The chief genera are-Tachinia, Ocyptera, Gymnosoma, Phasia, Dexia, Sarcophaza, nnd Musca.
2. The Anthomysides, distinguished from the preceding by having the first posterior cell constantly open, and by the moderste or small size of the alulets. They chiefly frequent flowers, and their larvo reside in decomposed vegetable matters. The chief genera are-Aricia, Lispe, Eriphia, Anthomyia, Cunosia, \&c.
3. The Acalyptera, differing from the Anthomysides by the breadth of the face, in which the eyes of both sexes are separated, and by the want of alulets. Here belong various groups of small size and inferiorly-developed structures, which are for the most part exceedingly prolific. The chief genera are-Laxacera, Scatomyza, Ortalis, Tephritis, Sepsis, Lauxania, Spherocera, and Phora.

The genus Musca, as now restricted, contains such species as have the third joint of the antenne $\mathfrak{t w i c e}$ or three times as large as the second; the first posterior cellule of the wings extends to the margin.

The common House-Fly (M. domestica of authors) affords a faniliar example of this genus, and is too well koown to require description. The larva, called maggots, live io putrid substances.

This iosect is very common in houses in England. Its favourite position is the window, on the panes of which it may be constantly seen walking up and down. The power which this insect possesses of walking upon smooth upright surfaces bas iu consequence becu a frequent theme of conjecture, and of not a small amount of observation. Dr. Derham, in his 'Physico-Theology,' speaking on this subject, says that flies have "skinny palms to their feet to enable them to stick to glass and other smooth bodies by means of the pressure of the atmosphere, after the manner as I liave seen boys carry heary, stones with only a wet piece of leather clapped on the top of a stone."

This opinion, which has been entertained by the majority of entomologists of the present day, has acquired additioual weight by tho elaborate investigations of Sir Everard Home, undertaken at the suggestion of Sir Joseph Banks, with the assistance of that (then) uorivalled microscopic artist, M. Bauer, and published in the 'Philosephical Transections' for 1816. The suckers, of which several kinds of flies possess three to each foot, are attached beueath the base of the claws, aud are of an oval shape and membranous texture, being convex above, haviog the sides minutely serrated, and the under concave surface covered with down, or hairs. In order to cause the alleged vacuum, these suckers are oxtended; but when the fly wishes to raise its logs they are brought together, and folded up as it were between the hooks. Messrs. Kirby and Speuce have likewise adopted this opinion, considering it as "proved most satisfactorily." Other anthors of no mean repute have however entertaiued a different opinion, and have entirely rejected the idea of a vacuum being produced. Thus Dr. Hooke describes the suckers as palms, or soles, beset underneath with small bristles, or teuters, like the conc-teeth of a card for working wool, which he conceives gives them a strong hold upon objects, having irregular or yielding surfaces; nnd he imagined that there is upon glass a kind of smoky substance, penetrable by the points of these bristles. The same opiniou is also given by Shaw in his ' Nature Displayed;' and more recently, Mr. Blackwall has ceusidered that the motions of the fly are to be accounted for upon mechanical principles aloue; thus, upou inspecting the
-tructure of tho parts of tho suckers, it was immediately perceived that the function ascribed to them by Dr. Derham and Sir l⿳. Homo is quite iucompatiblo with their organisation. "Miaute hairs, very closely set mind directed downwards, so completely cuver tho inferior surface of the expanded meubranes, improperly lenominated suckers, with which the termionl joint of the foot of flies io provided, that it cannot possibly bo brought into contact with the object on which thome innects more by auj muscular force they nre capable of exerting. The productiou of a vocuum between ench membrano nad the plane of position in therfore clearly impractieable, unless the numerous hairs on the under side of these organs individually perform the offico of suckers; and tbere does not appear to bo anything in their mechanimn which in the slightest degreo countenances such an hypothesis. When highly maguibed, their extremities, it is true, are seen to be somewhat eularged; but when they are viawed in action or in repose, they मever assume n figure at nli adapted to the formation of a vacuum." Moreover, on enclosing a House-Fly in the receiver of an air-pump, it was demonstrated to the entire satisfaction of several intelligent geatlemen prosent that the fy, while it retaius its vital powers unimpaired, can not only traverse tho upright aides, bist even the interior of the dome of an exhausted receiver; and that the cnuse of its relaxing its hold, and ultimately falling from the station it occupied, was a diminution of muscular force, attributable to impeded respiration. Hence Mr. Blackwnll is induced to believe that insects are ennbled to tako hold of any roughuess or irregularity of surface, by menns of the fine hairs composing the brushes, the most carefully polished glass not being found free from thaws and imperfections when viewed in a favourable light with a powerful lens. A still differeat opinion has been maintained by other nuthors upou this subject, who, setting aside nll idea of a rncuum, have conjectured that the suckers, as they have been termed, contain a glutinous secretiou, capable of ndhering to well-cleased glass; thus Abbe de la Pluche states thint when the fly marches over any polished body, on which neither her clawa nor her yoints can faston, she sometimes compresses her sponge, and causes it to evacuate a fluid, which fixes her iu such n mnnuer as preseuts her falling, without diminishing the facility of her 1 rogress. "But it is much more probable," ho adds, "that the sponges correspond with the fleshy balls which sccompany the claws of dogs and cata, and that they enable the fly to proceed with a softer pace, and contribute to the preservation of its claws, whose pointed extremities would soou be iupaired without this prevention." Notwithatauding the ridicule which has been thrown upon this opinion in a receut eutomological work, it sppears, from still more recent iuvestigatious, to be the best founded of any hitherto advanced. Thus, in general, the foot of the By is described as being compoed of two hooks nud two flnps, or hollow cupe, which net as suckers. Rymer Joues, in his 'Geueral Outlines of the Animn Kingdom,' 1s11, bags- "The llouse-Fly is furnished with n pair of membranoua flap, which, uuder a good microscope, nro seen to be covered with innumerable hairs of the utmost delicacy; these flaps, or Buckere, an they might be tormed, adbere," \&c.

The atructure of the foot of the fly has recently becn exmmined by Mr. Hepwerth, who says:-"The flap varies in form in different species, from nin irregular cirele to that of an irregulne triangle; and viewiug it from one side, it is somewhat thicker at tho base (near its nttachment), tho under surfaco being, when isolated, convex, but perfectly flat as a whole, when npplied to a aurface of that form. It nppeared to be composed of an upper and under layer of nreolar tishue, or womething kinilar to it, between which a bundle of tubes, aloug with tho fasciculi of a lnrge muscle pass; theso are placed nt its bake, and (bometimea protected by a 'cont of mail,' formod hy long ecalen overumpling cach other as a Venetian blind, or in nlterunte ones, ns tho scnles of n finh, \& Sc_{0}, but more frequeutly wanting) expand in n radinterl form; ench tube, as it passen alung with its fellows on each nide, sives off a number of tubules alteruntoly with them; these dip downwardn from the under anrface, nad become expnnded into trumpet. whaper "xtreniti"A, the thap becoming thimer aml thinner as it npproaches its nargin, which aometimes termanates in nu irrogularly sermetel edge, and nt others by finely pointed hairs. The fly has the powar of nttaihing itnclf to anooth nurfacea by these trumpet-shnped "xtruitica, mal also of necreting a fluid from them, when vigorous,
 state (the leat for mating observations), it dues not rppear to be able to givo out this neerction, nlthough it can atill nttach itaclf; indeed this fluid in sot ensential for that purpose: when it is secreted, it is deposited on the glas with great regulnrity. I have often nttempted to premerve theno amakinga by aluplyiug colouring matter whilat they were moint, hut have not yet suceectet. Tho tulmles are often seen Jrotruding from under the margin of the flap in n semi-arel-like form, giving it n friagerl rypenrance. Tho foot of the male ly'ixens is a type, not only of many of tho bectle tribe (not aquatic), but of the whole of that of tlicea powneased of thaps. The frat jointe of the taraus of the anterior lege of thim insect nre extremely dilatel, no na to forus a lomad eircular palette. Un examining the ioferior surface of this
 nucking cupa, two or three leing lnger than the reat, but thog form collectively n " womlerful instrument of mbesion." ("Qunterly Jeunn of Mismanpiasl Scimen.")

MUSCLE is an animal tirsue composed of bundlea of soft and usually reddish filres, endowed with a peculiar power of contracting.
The muscles are divided into two classes-the voluntary and the infoluntary. Tho former claan, thosc over which the will exercises a direct control, are subservient to all the actions by which the anlmal is plnced in activo relation with thio external world, as in all the motions of the limbs, of apeech, of the cyes, ears, \&c., and they are therefore often called the zuscles of nnimal lifo; the latter class, compreheuding those whose actions are connected with the internal and antritive functions of tho body, over which the will has no imme. diate or coustant coutrol, form the muscular aystem of organio lifo, an the heart, the museular coat of the stomach, \&c.

Fach voluutary muscle is composed of a number of parallel or nearly parallel tleshy bundles, inclosed in coverings of cellular tissue, by which each is connected with and at the same tine isolated from those ndjacent to it. Fach bundlo is again divided into smaller fasciculi similarly ensheathed, nud so ou through an uncertain number of gradations till wo arrive at tho muscular fibre, the only definite and fixed form in the system, and the only part which possesses charactera common to the muscles of all classes of auimals. The muscles being thus divided, cach fibre or each fasciculus may be regarded as a separato coutractile organ, which though usually acting in concert with those adjacont to it, is capable of iudependent contraction; and the 1 ower of n wholo muscle will thus be equal to tho sum of the powers of its separate fibres, and will bear a direct proportion to their number.

The two forms of muscular fibre differ extremely in their microscopic charncters. The fibres of the voluntary muscles, as well as the fibres of the heart and some of those in the esophagus, are Striped or Striated; while all other muscles, including those of the Alimentary cannl, tho uterus, and bladder, all of which nre involuntary, are Unstriped or Non-Strinted.

The elementary fibres of tho voluntary muscles are arranged in sets parallel to one another, whilst those of the involuntary muscles usurlly cross at various angles, aud interlace, forming membranous organa, inelosing a cavity which their contraction serves to constrict.

The Striated Fibres are usually of about the same length as tho muscle to which they belong. In the Sartorius they often exceed two feet in length, while in the Stapedius (in the middle ear) they are not two lines. They fary in diameter from 1-60th to 1-1500th of an ineh, being largest in Crustacea, Fish, and Reptiles, where their irritability is most enduring, and smallest in Birds, where it is most evanescent. In Nan their average dinmoter is 1.400 th of an inch. The fibre nlways presents upou and within it longitudinal dark lines, nlong which it subsequently splits up into fibrille; but it is by a fracture nlone that these fibrilloo are obtained; they do not exist as such in the fibre. Sometimes, on the applicatiou of violence, clearago takes place in a different manuer, in a plane nt right angles to the long nxis of the fibre. In this case discs, and not fibrille, are obtained; and the cleavage is just as natural ns the former, though less frequent.

Fragments of Elementary libres, showing a Cleavage in opposite direction. A, Longitudinal Cleavage: the longitudinal and trannverse linea are both acen; c, fibrilla eeparated from one nother by violence at the broken end of the fibre, and warked by tranaverne lines equal in width to those on the fibre; $r^{\prime}, r^{\prime \prime}$, represent two appearancea commonly presented by the separate slughe tilurile (more lidity magaified). At c^{\prime} the borders mad transverac linen are all perfectly recilificar, and the ineluded apaces perfectly rectangular. At e"t the bordera are acalloped and the apacea bead-like. When moat distinct and defiaite, tho fibrilla prewents the former of these appearances.

In, Tranaverse Cleavage: the longitudinat linea are acarecls risilhe; a, ineomphete fracture following the opposite surfaces of a dise, which stretches across the interval and retaina the two fragments in connexion. The edge and surface of that diac are seen to be minutely granular, the pranules corresponding in alze torthe thickness of the dine, and to tho diatance between the faint longitudinal lines. ", another dise, nearly detached. b^{\prime}, detached dise more highly mag. alfied, showing the sarcous clements. (Howman, in 'Todd's Cyelopsedia.')
lience the fibre must bo regarded neither an a bundle of fibrillse nor n pilo of cliacs, lut an "n mass in whose structuro there is an intimation of the exintence of loth, nud n tendency to cleavo in the two directiona." 'Tlse mano particles compose the disc and the fibrilla, and they havo received the names of the primitive or enrcous
elements. The cress stripes of the fibre are formed, according to the views of almost all the best ebservers of the day, by the apposition, side by side, of the dark peints seen on the separated fibrillc. That they are net caused by a structure distiect from the fibrille, and present only on the surface of the fibre, is evident, according to Todd and Bowman, from the fellewing facts:-

1. That a transverse section of a Fibre shows it to be solid and not hollow, and that the ends of the fibrille, as seen on its section, exist throughout its interior, just as on its surface.

Fig. 2.

Transverse section of three Elementary Fibres of the dried pectoral muscle of a Teal, treated with weak citrie acid.
2. That fibrillx taken from any part of a fibre are marked with light and dark points, cerresponding in distance and force with the transverse stripes of the fibre.
3. That with a high magnifying power applied to a thick fibre we may bring all parts of its interior into focus in succession, and perceive throughout the same kinds of stripes.
The Sarcolemına, or Tubular Sheath inclosing the striated fibre, consista of a transparent, very delicate, but tough and elastic membrane, which isolates the fibre from all ether tissues. It most commonly has no appearance of structure, but occasionally small corpuscles, the remains of cell-nuclei are observed in it.

Fig. 3.

Fragments of the Elemeatary Fibre of a Skate held togetber by untorn but t wisted Sarcolemma.

If the fibre be inmersed in acid, it swells, bursts the sheath, and forms small protrusions or hernix.
The researches of Valentin and Schwann have thrown much light on the develepment of muscular tissue in the embrye. In its earliest stage, muscle consists of a mass of nucleated cells which first arrange themselves in a linear seriee, and then unite to form the elementary fibres.

Stages of Development of Striated Muscle Fibre.
a, arrangement of the primitive eclls in a linear geries.
b, the cells unlted, the nnelei separated, and some broken up; longitudinal lines becoming apparent. (1From a fotal calf, three inches long.)
c, d, transverne stripes apparent. In e the nuelel are internal, and bulge the fibre; In d they are prominent on the surface. (l'rom a fotal calf, two months olf.)
e, transverse stripes fully formed and dark; nuclel disappearing from view. (From the buman Infant at birth.)
f, elenentary fibre from the adult, treated with acld, showing the nuciel. (From Schwann. The rest from Bowman.)

As the cells unite, a depesit of contractile material gradually takes place within them. The depositiou assumes a granular form, the granular or sarcous elements beieg of the same size as in the perfect muscle; for this reason the traasverse stripes resulting from their appesition are of the same width as in the adult. Muscles grow by an increase, not of the number, but of the bulk of their elementary fibres.

The Unstriped or Non-Striated fibres censist of modified simple cells, usually fusiform, mere rarely sherter and broader fibres, which Kölliker calls "centractile or muscular fibre-cells." They are gencrally of a pale colour, bulged at intervals by oval or elengated corpuscles, or nuclei, which have frequeutly one or more nucleoli in their centre (fig.5). Their texture seems to be homegeneous. By transmitted light they have usually a soft and very finely mottled aspect; their ordinary diameter varies from 1-3000th to 1-2000th of an inch.

Fig. 3.

Fibres of Unstriped Muscle.
c, in their natural state; a, treated with acctic aeld, showing the cerpuecles; b, corpuseles or nuclei detached, showing their various appearances.

Muscular fibre is chemically distinguiehed from the fibre of cellular tissue by the circumstance that it dees net yield gelatin by prelenged beiling in water, but disselves in acetic acid, frem which it may be precipitated by ferrecyanide of potassium, showing that it belongs to the proteia-cempeunds.

In consequeace of the difficulty that exists in separating muscular fibre from cellular tissue, vessels, and nerves, it is impossible to speak with certainty respecting the behaviour of pure muscle towards re-agents. If very emall pieces of muscle are freed as much as possible from fat and cellular substance, and immersed in water, bloed, celouring matter, and the extractive matter with which muscle abounds, are gradually taken up, and coleurless muscular flbres are left.
Cold water and alcehel produce little effect on them, but in boillng water they first centract and become firm, and subsequently soften. Concentrated acetic acid dissolvcs them; in the dilute acid they swell and assume a transparent fibrous appearance. The alkaline carbenates increase their firmness. Solutions of muscular fibre in dilute acids are precipitated by ferrocyanide of petassium and tannin in a precisely similar manner to acid solutions of fibrin. Dried muscular fibre may be easily pulverised; in that condition it resembles the whele class of protcia-cempounds in exhibiting strong positively electrical properties.
On making incisions inte the warm flesh of an animal just killed, we obtain by preseure an acid fluid which rapidly coagulates, in censequence of the presence of a little fibrin: if the flesh has been kept for ceme time, the fluid ebtained by pressure no longer ceagulates, although it cxhibits an acid re-action. Ne quantitative analyois of human ficsh has yet been made, but the flesh of several animals has recently been submitted to analysis. The ameunt of water averages about 800 and the greater part of the selid residue consists of fibrin; the ether censtituents, albumen, hæmatoglobulin, fat, extractive matters, lactic acid, the lactates, and ether salts, occur in the expreseed juice. The prepertions of these constituents have been determined by Berzeliue, Bracennet, Schlossberger, Schultz (and Marchaad). In the fleah of oxen they found :-

	Berzelius.	Bracon. not.	Scbloss. berger.	Schultz.	Marchand.
Water	$57 \cdot 17$	77.03	77.50	77.50	76.60
Fibrin, cells, vessels, and nerves	15.70	$17 \cdot 18$	17.50	$15 \cdot 00$	18.00
Albumen and hemateglebulin	$2 \cdot 20$	270	$2 \cdot 20$	$4 \cdot 30$	$2 \cdot 50$
Alcehel-extract and Salts	$1 \cdot 80$	$1 \cdot 94$	1.50	$1 \cdot 32$	170
Water-cxtract and Salts	$1 \cdot 05$	1•15	$1 \cdot 30$	1.80	$1 \cdot 10$
Phesphate of Lime with Albuuen	$0 \cdot 08$	-	traces	-	$0 \cdot 10$
Fat and Less.	-	-	-	$0 \cdot 08$	
	100.00	$100 \cdot 00$	100.00	$100 \cdot 00$	00.00

The drien muscular fleah of the ox has been nonalysed by l'layfair and Bichmann, and found to be identical in its composition with dried bluod:-

	Flesh (Deef).		Ox-Blood.	
	Mayfair.	Bückmann.	Flayfair.	Hëckmana.
Carbon	51.33	51.80	51.95	51.96
Hydrogen	7%	7.59	$7 \cdot 17$	7.33
Nitrogen	15.01	$15 \cdot 05$	$15 \cdot 07$	$15 \cdot 08$
Oxygen	21.37	21.24	21.39	21.21
Ashes	$4 \cdot 23$	4.23	4.42	4.42
	100.01	100.00	100.00	100.00

Deducting the awhes or inorganic matter, the composition of the organic part is-

Carben	$54 \cdot 12$	51.18	54.19	$54 \cdot 20$
Ilydrogen	$5 \cdot 50$	7.93	$7 \cdot 48$	$7 \cdot 65$
Nitrogen	$15 \cdot 67$	15\%1	15\%2	15.73
Oxygen	22.32	$22 \cdot 18$	22.31	$22 \cdot 12$
	100.00	10.000	9970	99\%0

Which correspoods to the formula-C4 $\mathrm{C}_{4}, \mathrm{H}_{30}, \mathrm{~N}_{0}, \mathrm{O}_{15}$
In 100 parts of the ashes yielded by the incineration of ox-flesh, Enderlin fonnd -

Soluble Salts.
$\left.\begin{array}{ll}\text { Tribasic Pbosphste of Soda }\left(3 \mathrm{~N}_{\mathrm{a}} \mathrm{O}, \mathrm{P} \mathrm{O}_{3}\right) \\ \text { Chlorides of Sodium sdd Potassium }, & 45 \cdot 100 \\ 45 \cdot 936\end{array}\right\} 91 \cdot 036$
Inecluble Salts.
$\begin{array}{lll}\text { Phosphates of Lime, Magncsia, nud Pcroside of Iron } & 6.840 \\ \text { Lons }\end{array}$

100.000

The following analyses of the flesls of other animals have been made by Schlossberger,-

		alf.	$\stackrel{\text { ® }}{\stackrel{E}{E}}$	号		¢	$\stackrel{\dot{\Delta}}{\stackrel{~}{E}}$	号
Water -	797	i8.2	78.3	76.9	76.0	173	80.1	80.5
$\left.\begin{array}{rll}\begin{array}{l}\text { Muscular fibre and } \\ \text { ressels }\end{array} \\ \text {. }\end{array}\right\}$	15.0	16.2	16.8	18.0	$17 \cdot 0$	16.5	$12 \cdot 0$	11.1
Albumen and hre- mato-globulla	$3 \cdot 2$	$2 \cdot 6$	$2 \cdot 4$	$3 \cdot 3$	$4 \cdot 5$	$3 \cdot 0$	5.2	$4 \cdot 4$
$\left.\begin{array}{cc} \text { Alcohnl-cxiract } \\ \text { Ralts } & \text { and } \\ \hline \end{array}\right\}$	$1 \cdot 1$	$1 \cdot 4$	1.71		(1.0	$1 \cdot 4$	1.0	$1 \cdot 6$
Winter-extract and salts	$1 \cdot 0$		0.8)		(1.5	1-2	1.7	$0 \cdot 2$
$\begin{aligned} & \text { l'hosphate of lime } \\ & \text { with albames } \end{aligned}$	0.1	traces	traces	0.4	-	$0 \cdot 6$	-	2.2

The soslyses of Schultz correspond in many points with those of Schlossberger. In calres' flesh Schultz found a little more noimsl fibre than Schlossberger : in the flesh of a pig four weeks old Schultz found $\left.21^{\circ}\right]$ parts of muscular fibre and 3.45 of albumen and hematoglobulin; and in the flesh of n jig two years and a half old he found 20.3 parts of the former and 4.2 of the latter. Schultz also found that the amount of muscular fibre was less in the flesh of Fishes than in that of the Mammalia; thus in the flesh of Cyprinus nasus and C. barbus, the proportions of fibre were 13.5 and 17.18 respectively.

A series of experiments were performed by Helmholtz, on the consumption of tinsue during muscular action.

Powerful mancular contractions were induced by passing an electric current through the amputated leg of a frog as long as convolsiods continued to be manifester. The flesh of the two legs was then nnalysed. The albumen was apparently scarcely affected, the mean of six experimente giving $2 \cdot 108$ of albutnen in the electrised, and $2 \cdot 138$ in the nonelectrised lieel. With regaril to the extractive matters, it nppeared that in nll the experimenta, without a single exception, the water cxtract in the electrisel flesh was diminisherl, while ou the other hnad the spinit-anl alcoholextracts were increared ly that process. The amount of fat was anallected. Nourea could be found in the alcohol extract.

Jhere is a great difficulty in performing experiments of this asture on warm-blooded animals, in conkequence of the rapidity with which inolated portions of musele lose their irritability. Tho beat results were obtained with decapitated jigeons:-

It remains to be consldered whether the fibrin takes part in this decomposition: h priori we should infer that it did, for the proteincompunds neem universally the conductors of the highent vital energies; and further, the increaned anombt of kulphates and phosphates in the urine after macular exertion indicates a decomposition of the andphur

The above facts aufficiently show that muscular action is always nccompanied by a chemical change in the composition of the acting muscle. (Simon, 'Animal Chemistry,' translated for Sydenham Society by Dr. Day.)

The following account of the development of muscular tissue is given by Kölliker in his ' Manual of Human Histology ':-
"The rudiments of the muscles consist originslly of the same formative cells as those of which the rest of the body of the embryo is constituted; snd it is not till afterwserds that the musclef, tendons, \&c., are gradually developed ly a histological differentintion. In man the muscles are not evident before the end of the second month; at first however they caunot be detected by the unnided eye : they are soft, pale, gelatinous, nad not to be distinguished from their tendons. In the tenth and twelfth weck they are more distinct, especially in specimens preserved in alcohol; and nt this time the tendons also msy be distinguished na somewhat clearer but at the same time tradsparent streake.
"In the fouith month both the muscles and tendons are still more distinct, the former being ou the trunk of a light reddish colour, the latter more trangparent and grayish, both retaining a aoft consiatence. From this period both textures acquiru more and more of the configuration which they afterwards retain, so that at the maturity of the embryo-excepting that the muscles are still softer and paler, and the tendons more vascular and less white-they no longer present any difference worth notice.
"With respect to their intimate conditions, the primitive fasciculi, in the embryo, st the eod of the second month, present the aapect of eloogated bands $0.001^{\prime \prime \prime}$ to $0.002^{\prime \prime \prime}$ broad, with nodular culargements at different points, at which places are situated elongated nuclei ; the bands exhibit either a homogeneous or finely-granular aspect, and but rarely an extremely faint indication of transverse strintion. In their further development, these primitivo muscular fasciculi, which, as comparative histology teaches, originate in cells arraged in a linear series, continue to increase in breadth sud length, and their contents, the original cell-contents, are developed into the muecular fibrils. In the fourth month they measure for the most part $0.0028^{\prime \prime \prime}-0.005^{\prime \prime \prime}$, some eren $0.006^{\prime \prime \prime}$, whilst others do not exceed $0.0010^{\prime \prime \prime}$ and $0.002^{\prime \prime \prime}$. The larger ones are etill slways flattened, but of uniform width, and also cousiderably thicker than before, mostly with evident longitudinal and transverse strixe, aud even with fibrils, which admit of being isolated. It is partially erident even is a longitudinal view, but stidl better in a transverse section, that in many cases the fibrils do not occupy the entire thickness of the primitive tube, but that they are deposited around its peripbery; the interior being as yot filled with a homogencous substance as at first, and which now appears like a cansl within the fibrils. All the primitive tubules possess a sarcolemma, which on the spplicstion of acetic scid or soda appears as a very delicate membrane, which by the imbibition of witer may occasionslly be raised from the fibrils. The tubes moreover, as at first, present nuclei lyjing close upon the sarcolemma, and which frequently cause rounded elevations on the surface of the tube, and msy be observed actively engaged in the process of inultiplication. Theyare all vesicular, roundish, or elongated, with very distinct, simple, or double aucleoli, measuring $0.0004^{\prime \prime \prime}-0.0008^{\prime \prime \prime}$, and frequontly with two aecondary celle in the interior. They are much more numerous than previously, and most frequently disposed in pairs closely approximated; but often also in groups of three or four, or even six, either contiguous or arranged serially. From this period to thst of birth no further important change takes place in the inuecular fasciculi, except an increase ju their size. In the new-horn infant they measure $0.0056^{\prime \prime \prime}-0.0063^{\prime \prime \prime}$, nre solid, rounded, polygonal, longitudinally or trausversely striated, according to circumstances, as in the cudult, with very long isolated fibrils, and no longer any sppearance of nuclei.
"From what has been remarked, it is clear that the parcolemma represents the sum of the merabranes of the conlesced cells, and that the uuclei of the youngest fasciculi are the original cell-nuclei, whose deacendants are represented in the nuclei of the older fibres, which have multiplied by an endogedous process. The muscular fibrile are the sltered contents of the original tubes, become eolid; they appear, demonstrably in many instances, to be formed on the inner surface of the sarcolemma, from without to within, but in other cases probsuly in the whole of the tube at once.
"The growth of the catire muscle is chiefly to be referred to the increase, both longitudinal and in thickness, of the primitive fasoiculi; and the rudiments of all the future primitive fasciculi sppear to be formed-probsbly eveu as carly as the original rudimente of the muscle itself-in every case nt the middle period of foctal life. In tho embryo, at the fourth or fifth month, they are perhaps five times as thick as in one at two months; in the new-born infant they measure for the most patt twlee, occasionally even three and four times as much as in the fourth and fifth month, sad in the adult their size is perhaps five times greater than in the new-horn child. The number of fibrila must necessarily increase in proportion to the size of the fasciculus, hecause, according to Harting, they are but little thicker in the adult than in the foctus."

The development of the tendons takes place subsequently to that of the muscular fibre, and in no case previously. It is not till the end
of the third or fourth month that their elementary constituents can be made out.

All the muscles receire large arteries and veins from the trunks passing near to them, whose branches run in the cellular interspaces between the fasciculi, and form at last an irregular network among the fibres. They receive also a large supply of nerves, probably more than any other organs in the body. Nearly one-half of the brain and spinal chord is for the supply of nerves through which the will may act upon the voluntary muscles, or through which their motions may be excited by other stimuli. The involuntary muscles are chiefly supplied from the ganglionic or sympathetic system of nerves. [Nervous STSTEM.]
The colour of the muscles is dependent partly on the blood which they contain, but chiefly on s peculiar colouring matter, very similar to that of the blood, which is fixed in their tissue. Their colour is distinctly though remotely connected with the quantity and condition of red blood in the system, and its depth is one of the best sigus of robustness and full health. Thus, in all quadrupeds and birds the muscles are more or less red, and the colour is deepest in the parts which are most actively employed, but pale and scarcely perceptible in those which have not been frequently exerted, and slso in those animals which, by being closely stalled and stabled, are killed in a condition of great debility; beace the difference between red and white meats. In Amphibia, which have less red blood than Mammalia and Birde, the muscles are nsually pale. In Fish, which have still less, they are, with the exception of the heart and those which move the fins and are particularly exerted, quito white. There are however soma exceptions, as the salmon and tunny. In animals of a still lower order, the muscles, though still preserving the same structure, sre all quite white.

The peculiar vital power of the muscular tissue is its contractility; that is, the power which its fibres possess, when stimulated by the will or other means, of shortening themselves, snd thus approximating the points to which their extremities are attached. When muscles contract they become shorter, harder, and thicker; but their actual size remsins the same, for what thoy lose in leagth they exactly gain in breadth and thickness. The fasciculi are also wrinkled or thrown into undulated lines, which are most visible when the contraction is least powerful and rather trembling, and the fibres vibrate so as to produce a distinct sound. The more powerful the contraction the more rapid are the vibrations of the muscular fibres; the higher the note which they produce, and the greater the diffculty of perceiving them with the eys. The simplest method of observing the sound of muscular contraction is that which Dr. Wollaston pointed out ("Croonian Lecture,' 1809): when the tip of the thumb, or of one of the fingers, is put into the external ear, while some of the mascles of the former are in a state of contraction, a sound is heard like that of carriages running rapidly over a distant stone pavement. This sound is not heard when the same degree of pressure is applied to the same part by any other mesas than those in which muscular contraction is concerned. By rubbing a piece of stick over the notched edge of a board so as to produce a similar sonnd, and counting the number of notches whose edges were atruck in a given time, Dr. Wollaston concluded that the number of vibrations of a contracted muscle is between 20 and 30 in a second.
The relaxation of a muscle presents phenomena exactly the converse of those of its contraction. The power by which the voluntary muscles are lengthened after having contracted is generally the extension to which, when they cease to act, they are subjected by some other muscles (their antagonists), whose action is tho opposite of their own. The hollow involuntary muscles are usually extended after contraction by the accumulation of fluids or other sabstances forced into their cavities by some external power. It may be yet a question whether muscles have s vital and independent power of dilatation as well as of contraction; but on the whole the evidence is in favour of their possessing such a power, for the heart will contract and dilate when empty, if external stimuli are applied, and the hearts of reptiles when hung in the air will sometimes go on contracting and dilatiug till they are nearly dry and stiff. Were there no vital power of dilatation, it is difficult to conceive how the heart or any other muscle when separated from the body should, after having once contracted, be dilated so as to be able to contract again.

When muscles shorten however it is not always by an exerciss of their peculiar vital contractility, but often by their elasticity, by which, like all the other tissucs, they are always maintained in a certain degree of tension. Thus when a muscle is divided, its ends retract as well after death, or when its nerves are cut, as during life and health. It is by this power that muscles, after having been mach extended, generally return to their natural size; thus, when a muscle on one side of the joint of any limb shortens, it is cvident that its antagonist on the opposite side must be lengthened in the same proportion, and when the contracting muscle ceases to act the elasticity of the extended one (increased by the tension to which it has been subjected) will be alone sufficicnt in most cases to restore the limb to Its positiol of rest.

The actual power with which a muscle contracts is in direct proportion to the number of its fibres, and inversely as their leagth. Hence, in sll the muscles in which great strength is required, as in the chief muscles of tha shoulder and hip, the fibres do not ruastraight from muscles of the shoulder a
Nat. Hist. DIV, vol. III.
the general point of origin to that of insertion, but the whole mass of the muscle is divided into a number of small portions, in which a multitude of short fibres are attached to separste points within tho muscle, so that they may act separatcly, or, when great exertion is necessary, altogether, snd with far greater power than a smsller number of long straight fibres could. The strength of a muscle is very commonly increased by ita fibres not running parallel to the line in which the muscle has to draw the part to which it is attached, but with various degrees of obliquity to that line. Thus in mauy muscles the fibres and faseiculi are attached obliquely to one or both sides of a tendon, as the fibres of a feather are attached to its shaft; by which arrangement, though each muscular fibre coatracts in its own direction, the general result of their contraction and the direction in which the resistance will act upon them forms an ohlique angle with their direction, and much of the danger of their being ruptured is removed. There are indeed but fow instances of rectilineal muscles in the body; in nearly all, the fibres are placed more or less obliquely to the line in which they have to draw the part to which thoy sre attached; a plan by which, though individually they lose in active power, they gain in resistance, and by which a far greater number may in the same space be brought to bear upon a given point.
An almost infuite variety of arrangement is found in the muscular fibres adapted to the especial purpose which each muscle has to fulfil, whether it be chiefly strength of action, or rapidity or exteut of motion; and all are guided by the nicest mechanical rules. Wherever streugth is more necessary than a wide extent of motion, the fibres are increased in number and placed obliquely to the direction of the resistance; wherever extent of motion is more needed thsin strength, the fibres are long, and run almost straight from one point to the other, so as to give the full benefit of their contraction; where velocity is required, they are placed at a part of a lever close by tha centre of motion, the resistance being placed on a part more distant from the centre. In general, the absolute power exerted by a muscle in contracting is much less than its efficient power, a great part of its force being lost in its being inserted obliquely on the lever which it has to move, or in the distance of the resistance from the centre of motion, or in the resistance which other muscles snd the adjacent tissues, which have to be extended, present, \&c. But it is constantly found that where power is lost, a corresponding gain of velocity or extent of motion, or of convenience and compactuess of form, and readiness of action, is obtained.
(On the subject of the Structure of Muscle and its Functions, the student will find iuformation in the following works: Carpenter, ' Principles of Human Physiology ;' Todd and Bowman, 'Physiological Anatomy; ' Valentio, 'Textbook of Physiology;' Kirkes, 'Handbook of Physiology;' Kölliker, 'Manual of Human Histology; Wagner, 'Manual of Physiology.')
MUSCLE, or MUSSEL. [MYTILIDE.]
MUSCULAR TISSUE. [Muscle.]
MUSHROOM. [Agaricus; Fungi.]
MUSK. This substance is an extremely odorous secretion, lodged in a bag which is attached and peculiar to the abdomen of the male Musk-Deer (Moschus Moschiferus). [Moschids.] The elevated regions frequented by the creature, its timidity, and speed in flight, render it very difficult to obtain the substance, while the high price borne by it offers great inducements to substitute other articles for that which is genvine. The musk-bag varies much in form, colour, size, and quality, circumstances which suggest the belief that it is procured either from two or more specios of musk-animals, or that it has been obtained at different periods of the year, or from very differently-aged animals. In the very young animal the bag is quite empty, while in the old and feeble the musk is in small quantity and of inforior strength. It is alaid to be secreted in greatest abuudance during the rutting season, and to have then its sensible qualities most developed. The secretion has a much stronger odour in the animal which inhabits Tibet and China than in that which frequents the more northern districts of Siberia. In the fresh state the musk has an extract-like consistence, and a reddishbrown colour, with an odour so powerful that the buntsmen can scarcely endure it. This odour diminishes by drying, and the musk acquires a friable granular state, and a dark brownish colour. In Siberia the chase occurs in spring sad summer. In Tibet the pursuit is restricted by the government to certain periods, and the bags which are obtained are stamped with the royal signet. In commerce two and occasionally three varieties of Musk are met with.

1. The Tonquin, or Tibet Musk, received through the East India Company, occurs in small oblong rectangular boxes, lined with lead, and covered with paper or silk. Each bag, or pod, as it is termed, is wrapped in thin blue or red paper, on which are marked some Chinese characters. Sometimes the bags are enveloped in a deep yellow brownish nearly transparent paper, which becomes brittle by time. The most distinctive mark of this sort of musk is, that it is slightly fattened, nearly round, and very rarely pear-shaped. The yellow or yellowish-browa hairs, chiefly at the sides, are often cut, while those which ramain in the centre are darker coloured, finer, aud less bristly. Generally the hairs converge or point towards a small natural opening. The pods are mostly about two inches and a half long and one iuch and three-quarters broad. The weight of difiereut apecimens varies considerably, soma being merely 3 drachms 30 grains, others 9 drachms
$47 \frac{1}{2}$ grains ; the average in 6 drachms 12 graina. The average quantity of anusk contained in the sacks in about 2 f drachms.

By careful removal of the bag there remains the musk. which is molid, in graina of different sizes, ndhering to each other, soft, and unctnous to the feel, of a reddish brown colour, like a clot of bloor dried. hariog frequently a number of hairs intermixed, derivol from the inner side of the orifice already described. The taste is bitterish, acrid, disagreeable, and nomewhat astringent. The odour is strong, peculiar (musky), peoctrating, very lasting, and extraordinarily diffusible. It is stated that a single grain can conatantly fill the air of a large apartment with a sensible impregoation for many yeara, without its weight being perceptibly dimivished; and one part can communicate its odour to 3000 parts of an involorous powder.

It mhould be kept in glass-bottles, very closely stopped, and preserved in a place neither very dry nor too damp.

By the analysis of Geizar and leeiman it appears to cousist of1, a peculiar volatile priuciple (which can exist in a free state); 2, nmmodia; 3, a peculiar fixed uncrystallisablo acid (theso three are in undeterminable quantity); 4, stearine and oleine; 5 , cholesteriue; 6, a peculiar bitter resin; 7 , osmazone, with severn salts; 8 , a mouldylike substance, in part combined with ammonia, and numerous aslts; s, saud; 10 , water, ncid, \&c., with some volatile odoroua marter.

It has not beev ascertained upon what musk dependa for its peculiar properties. It has been conjectured that a kind of putrefaction goes on which evolves the peculiar odour. Moisture seems to favour this, and wuek which when dry yields little acent, becomes powerful when moistened. The odour is augmented by adding a few drops of the solution of subcarbonate of potass.
2. Kabardin, Russian or Siberian Musk, is either received through st. I'etersburg, or, it is said, sent to China, and laid for some time among the bags of genuine Tonguin Musk, to acquire the odour of the latter, and then shipped to Europe. The pods of this sort are in general larger, moro oval, more compressed, and the margins often have large portiona of the skin of the abdomen attached to them. The colour of the hairs is a dirty milk-white. The musk exhibits a more homogeneous aud less granular appesrance, having a much fainter odour and taste than the precediog kind. The odour is augmented by moisture, but is somewhat pauseous and disagreeable. The wood-cuts khow the difference of aspect of the two kinds.

Mumk in more noluble in water than in alcohol. Of 100 parts of genuise Tonquin Musk, boiling water disholves 00 parta, nlcohol only万0. Of Kabnrdin Muyk water diwolves only 50 per cent. It is like. wion roluble in cther, ncetic ncill, abdy yolk of eqg.
3. A very mall kind of pol in mometmen met with, which is not flattoned, but jerfect'y risunt: the hara of a yrllowimblown colour, Matoned, but jerfect y rumbit: the haira of a yrllowinh

It is safest to purchase the musk out of tho pod, as there is then less opportunity of ndulteration. Infusion of geauine musk is not precipitated by a nolution of bichloride of meroury (corrosive aublimate) ; but genuine muk is precipitated by nitric and other atrong acida, by acetate of lead (sugar-of-lead), and infurion of galls The musk-baga are used by perfumors to prepare Essence of Musk. An artificial musk in sometimes made with nitric acid and oil of nuber.

MUSK-BEETLF [Cerannyciden]
MUSK-DEER. [Moscuids.]
MUSK-DUCK. [Ducks.]
MUSK-ORCHIS. [HERMLIUM.]
MUSK.OX. [Bovida]
MUSK-RAT. [Ondatra.]
MUSK-lKOOT, the root of a plant brought to this country from Russia and Persia, and known nlso by the name of Sumbul. This root exhales a powerful smell of musk, and has been used in medicine as a aubstitute for that aubstance. The plant sielding it is not known, but the root has the nppesranca of belouging to the natural order Umbellifera. Its tissues are full of starch.

MUSOCA'RPUSI, n genus of Fonsil Plants, the fruits of which only are known. It occurs in the Con-Measures of Lancashire. (Brongniart).

MUSOPHA'GIDAE (Swainson), a family of Birds, the type of which is the genus Musophaga, the apecies of which are called PlantainEaters. Mr. Vigon notices the genera Musophaga and Corythaix as nearly and evidently allied to the Gallinaceous Families, sod as being found among the Scansorial Birds; and speaks of the genus Vinago [Columbides] as united by their comparatively stronger and more solid billa to Penelope nad Crax, which in his arrangenent form the opposite extreme of the order Rasores, as well as to Musophaga and Corythaix, which approach the whole of the Rasorial groups and conncet them with the Perchers. [I nsessones.]
The Musophagidar constitute, according to Mr. Swainson, the fifth great division of the conirostral tribe of Perchers. Not that ho oonsiders it as by any means clear that Musophaga js the real type of the whole fnmily, though he designates that genus as the most cosspicuous of the group.
He thus characterises the family :-
Bill short; upper maudible high; the culmen arched; the margins either serrated or entire ; the uoder mandible very thin. Feet short formed for elinging. The toea various.

The place which this family occupiea in Mr. Swainson's arrangement is next to the Fringillider, at the end of the Perehing Birds, and immedistely before the Scansores, intermediate between the Finches and Hormbills. He observes thst those which betray their affinity to the bullfinches are amall, whilst others, whose size and peculiar structure aasimilate them more to the hornbills, are of a aize proportionste to those birda, remsrking that, with the exception of one genus, they all possesa a ahort but very atrong and thick bill, inore or less curved on the top, the cutting marginn being mloutely serrated, like the teeth of a saw. The food, it ia ntated, neems to be entirely vegetable, and of the most tender and delicate description: and Mr. Swainson remarka that it is aingular to observe that the bill in thia family (in outward appearance much stronger than that of the Finchea) ahould yet be employed in procuring the softest vegetable food; while the short bill, posterior nostrila, hopping gait, and purely vegetable food nre all exemplified in such birda as Bucoras galcafus, and proclaim the affinity of the Ilantaiu-Eaters to the Hornbills.
Mr. Swainson further remarks that the economy of theso birds, 00 fur as they bave been observed by travellers, is directly against the theory of their being likened to the Gallinaceous Order; and he quotea some of the atatements of Cuviar and those of Yarrell in support of hia opinion. The former, in the 'Regne Animal,' states that Corythaix and Musophaga appear to him to have some analogy with the Gallina coous Birds, and particularly with the lloccos. They havo the wiage and tho tail of those birds, aud, like them, keep on trees; their bill ho continues, ia short, and the upper mandible couvex; their feet have a sliort membrane between the anterior toea; but it is true that the external toe in often directed backwards like that of the owls. Their noatrila alao aro simply placed in the horn of the bill, the edges of the mandiblea are dentilated, and the aternum (at least that of the Touraco) has not tho great notches which aro ordinary in the Gallinaceous lirds Mr. Swainzon observes that this admission of Cuvier, that Corythaix aud Musophaga only present "quelqije analogic avec lea gallinacés," and that thacy have not the notched sternum of the latter, is directly opposed to the theory of these birds leading to the Gallinacea, a view of the subject which in confirmed by Mr. Yarrell'e observations. Mr. Swainson separates the family into the following anb-familics and genera :-

Phytotomince, P’ant-Cutters. - Bill serrated, but not swollen. Feet with tro or three toes forward, and one backward. (Sw.)

Phytotona (Nolina).-Bill short, compressed, the base widened; ligh at tho base, and gradually curved; the lower mandible much weaker, straight; the commissure slightly arched, with the margins crested. Tongue ahort, pointed. Nostrils basal, small, rounded. Wing modrrnte; the first two quills gradusted; tail moderate, eveu. Feet atrong. Lateral toes unequal, the inner bhortest. Clawaslender slightly curved. (Sw.)
P. Rara. Molina describes the Rara, or Chilian Plant-Cutter as nearly of the size of a quail, with the bill rather large, conical, straight, a little pointed, serrated, and half an inch in length; the tongue very short and obtuse, the pupil of the eye brown. Three well-proportioned anterior toes, the fourth posterior and a little shorter. The tail moderate, but rounded. The colour is an obscure gray upon the back, rather brighter on the belly; the points of the quills and of the tail are black. The sound of its voice is hoarse and interrupted, sad seems to express its narne. It feeds on plants, but previously has the destructive habit of cuttiog them off close to the root, and often capriciously cuts off a quantity of them without touching them further. For this reason the peasants persecute this species, and carry on a continual war against these birds; moreover children who destroy their eggs are rewarded. The nest is built in obscure and but littic frequented places on the most lofty trees, and thus these Plant-Cutters escape the persecutions of their enemies. Notwithstandiog such precautions however, their numbers are considerably diminished. "I do nat know," says Molina in conclusion, "whether this is because a price is set on its head, or on account of its naturally small degree of fecundity."

Chilian Plant-Cutter (Phytotoma Rara).
Mr. Swainson observes that in Phytotoma the four toes appear to be arranged as in the Fiaches, but in Hyreus, the olber genus of this sub-fanily, the toes are only three. He compares the size aud entire aspect of Phytotoma to that of a Bullfinch.

Colince, Colies.-The only definition of this sub-family given by Mr. Swainson is, "all the four toes placed forward," and the only genus contained in it is-
Colius (Brissen and Gmeliu).-Bill short, strong, conical, slightly compressed, entire, with the mandibles equal and the edges arched. Nostrils rounded; nails arched and long, that of the bind toe shortest. Wiage short; third quill longest. Tail graduated and very long.

The plumage of the species is soft and silky, and the colours geverally sombre, whence they are called at the Cape, according to Le Vaillant, Oiseaux Souris (Mouse-Birds). Africa and the East Indies are the localities where they bave been found, the Colius viridis of Latham, said to be from Australia, belonging probably to another genus. The Colies are gregarious, live upon fruits, and sie the scourges of gardens. They walk badly, but they climb almost contioually on the branches of trees, where they hold on, assisting themeelves with their bills like the Parakeets. They build their nests, which are spacious and round, in little groups; and Le Vaillant sffrrms that they sleep suspended with their heads downwards, and that, when it in cold, thy are found so benumbed in the morning, that they may be taken one after the otber. The number of eggs is generally five or six, and the flesh of the birds is said to be delicate. (Lesson.)
C. Senegalensis (Latham). Round the eye a maked reddisb skin; forehead yellow; colour pearl-gray, with greenisll reflections; abdomen ruddy.

This appears to be the Colius Quiniva of Le Vaillant; and the Coliou Huppé du Sénégsl of Buffor.

Musophagince, Plautain-Eaters.-Three toes forward and one backward; the outer toe placed obliquely. (Sw.)

Corythaic (Illiger).-Bill short, ratber small, high, and greatly compressed. The frontal feathers reposiag over and concealing the nostrils. Culmen high, curved to the tip. Lower mandible narrow; both mandiblee distinctly notcherl at the tip and finely serrated. Wings short, rounded; the first three quills graduated. Tail long,

broad, rounded. Feet short, strong. Middle toe longer than the tarsus; lateral toes equal, hind toe shortest; external toe capable of being turned a quarter of the way backward. Claws short, thick, and much compressed.
The following cuts will give but an imperfect idea of these elegant birds.

Head of Corythaix Senegalensis

The Touracos are most elegant birds, and feed principally on soft fruits. The prevailing colour of these birds is green, varied in some species with purple on the wings end tail. They are natives of Africs, where they perch on the highest branches of forest trees, and thus keep out of gun-shot, as Le Vaillant found to his cost. Having at last succeeded in bringing one to the ground, he could not find it, and, stamping in his rage at the loss, he broke through into one of the covered pits which the Hottentots employed to catch ferocious animals, particularly elephants. This accident might have been fatal. "When I recovered my first eurprise," says he, "I began to consider how I should extricate myeelf from this embarrasement, extremely happy that I had not been impaled on the sharp-pointed stake placed in the bottom of the pit, and still happier that I found in it no company. I was however apprehensive that some might arrive every moment, especially if I should be obliged to remain there during the
night" In this dilemma Le Vaillant fired hia fusce at iotervals; the bhots at last were answered, and be was delivered by his Hottentota. But he did not forget his Touraco, and now, by the aid of his dogs, which had followed tho Hotteatoth, found it squatted under a tufted bush. IIe afterwards laid saares for them on the fruit-trees, to which they resorted to feed, and took them nlive.

Corythaix Senegalensis.
C. erythrolophus (Swaibsou). Crest, which is rod, erect and compressod; sides of the head, ears, chin, and patch rouud the eye (which is large, red, sad brilliant), white; general plumage green, ioclining to bluish oa the body and belly; quills rich purple violet; tail rounded; bill yellow; foet grayikh-black.

This beautiful apecien is the Opothm erythrolophus of Vieillot; the Musophaga Paulina of Temmiock; and Corythaix ignicens of Lesson. If is a natlve of Africn.

Seveml apecimens of Touracos are to be found in our museum, and aeveral : pecies have lived at the gardens of the Zoological Society, Regent's Park.

Itead of Corythair erythrolophus.
Chizerhis (Wagler).-Bill large, high aud thick at the base, compressed begond. Culmen thick, convex, considerably arched. Lowar mandible not half so high as the upper; the tips of both deeply notehed, with thair margins finely crenated. Nostrils bosal, placed close to the top of the bill, naked, luaular, and pierced in the substavee of the bill Wiogs lengthened ; the four first quills graduated. Tsil leugthened, slightly rounded; the tips very obtuse, Feot as in Corythaix. (Swaiuson.)
C. variegata Light gray above; a blackish stripe dowa each feather; frout, top of the head, chin, aud throst as far as the breast, chestaut-brown; noder plumage beyond the breast white, but each feather with a dark middle stripe; primary and eecondary quills blackish, with a spot of pure white varying in size in the middle of their incer webs; tertiaries and mlddle tail-feathers gray, tipped with black; lateral tail-feathers black; bill yellow; feet gray. Crest placed very far back on the nape. Total leagth about 20 inches.

Chizarhis raringata.
This appears to be the Touraco Huppócol of Le Vaillant; Phasianus Africanus of Latham; nod Musophaga raricgala of Vioillot. It is a native of Africh

Musophaga (Inert).-Bill resembing that of Chizarhis; but tho bane enormensly dilated, so as to spread like a casque or lielmet over the fore part of the head as far as the crown, where its thickened sidea form a semicircle. Nostrils naked, ovsl, open, placed aearer to the tip than to the eyes, and pierced in the oubstance of the bill Wings, feet, and tail as in tho Corythaix. (Swainson.)
M. violacea. Bill rich yellow, passing into crimson; orbits naked, and, like the compact velvety feathers of the crown, glossy-crimson; a white stripe beginning below the aye and extending shove the ear; secondsry sud part of the primary quills carmine, with lilac reflec. tions, margined and tipped with blackish-violet, which is the geuersl colour of the plumage, only that it changes into a very deep green on the under parts, and is very rich on the tail; legs strong and black; gape wids, opening beneath the eyes.

This magnificent bird appears to be the Cuculus regius of Shaw.
It is a native of Africa-Gold Coast and Senegal.

Musophaga violacea.
mUSQUASH. [Ondatra.]
MUSSEL, a form of Conchiferous Mollusca. [Mytilide.] MUSTARD. [Sivapis.]
MUSTARD-TREE. The plant referred to by this name in Scripture is, according to Dr. Royle, the Salvadera Persica of botanists. It is a native of the East Indies. [Salvadora.]

MUSTELA. [Mustelide.]
MUSTELIDAE, tho Weasel Tribe, a family of Digitigrade Carnivorous Animals, of which the Common Weasel is the type.

The genus Mustela of Linneus, in the last edition of the "Systema Nsture, which underwent his revision, comprised the following specice:-M. Lutris, M. Lutra, M. Lutreela, M. barbara, M. Gulo, M, Martes, M. Putorius, M. furo, M. Zibellina, M. erminea, and M. nivalis. The genus thus established consisted of the Otters and Gluttons, as well as the true Weasels, and was placed between Viverra and Unsus.

Cuvier divides the Martes (Mustela, Linn.) into the following sub-geners:-

Putorius (Cuv.).-The animals of this sub-genus are, he observes, the most sanguinary of all. The lower canide has no internal tubercle, and their upper tnberculous tooth is wider than it is long; they have ouly two false molars sbove and three below. They may be recognised by tho extremity of their muzzle, which is rather shorter and stouter than that of the Martes; and they all diffuse a most disagreeable odour.

The species arranged under this sub-genus ars the common Fitchet, or Polecat (Mustela Putorius, Linn.), the Ferret (M. furo, Lind.), the Polecat of Polsad (M. Sarmatica, Pall.), the Siberian Polecat (M. Sibirica, Pall.), the Weasel (M. vulgaris, Linn.), and the Steat or Ermine Weasel (M. erminea, Lion.).

As approximated to these he records the Mink, Norek, or Polecat of the northern rivers (M. Lutrcola, Pall.), which frequents the banks of waters in the north and east of Eurepe from the Icy Sea to the Black Sea, feeds on frogs and crayfigh, and has the feet a little palmated between the basee of the toea, but which its tecth and round tail appresimate to the Polecats more than the Otters. It is reddishbrown, and has the circumference of the lips and under part of the jaw white. Its odour is only musky, and its fur very beautiful.

Some, Cuvier observes, think this tho rame as the Polecst of the North Americsn rivers (M. Vison, Cmelin), to which the name of Mink has been transferred, and which has also tho fcet semi-palmated; but
this animal has generally white on the point of the chin only, and sometimes a narrow line under the throat, and is a different species.
Among the Polecats of warm climates, Cuvier notices the Javanese Polecat (P utorius nudipes, F. Cuv.), the African Polecat (P. Africanus, Desm.), the Striped Polecat of Madagascar (P. striatus, Cuv.), and the Cape Polecat (the Zerille of Buffon; Viverra Zorilla. Gm.).

The Martes, or Martens, properly so called (Mustela, Cuv.).
These, according to Cuvier, differ from the Polecats in having an additional false molar above and below, and a small interoal tubercle on their lower canins; two charscters which a little diminish the cruelty of their nature.

Belonging to Europe he notices, as very closely allied to each other, tha Common Marten (Mustela Martes, Linn.), and M. foina.

As the production of Siberia, he calls attention to the Zibelline Marten (M. Zibellina), so celebrated for its rich fur, which is brown, with some gray spots on the head, and is distinguished from the preceding by having hairs even under the toes, a provision adapted to its habitation in the most frozen mountains. The painful chass of this species is laboriously followed in the midst of winter among frightful gnows, and to the pertinacity with which it has been persevered in, natwithstanding the meteoric terrors that surround the hunter, the discovery of the eastera countries of Siberia has been ascribed.

North America, observes Cuvier, produces many Martes, which travellers and naturalists have indicated under the names of Pekan, Vison, Mink, \&c. Ons of these, the White Vison of the furriers (M. lutyocephala, Harl.), has the feet as hairy and the hair nearly ss soft as the Zibslline, but of a bright fulvous colour, and is almost whitish on the head. That, he remarka, which he shall call Pekan (M. Canadensis, Gm.), and which comes from Canada and the United States, has the head, the neck, the shouldera, and the upper part of the back mingled with gray sud brown ; the nose, the rump, the tail, and the limbs are blackish.

The Mouffottes (Mephitis, Cuv.).

These, like the Polecats, Lave two false molars above and three below; but their upper tuberculous tooth is very large, and as long as it is wide, and their lower canine has two tubercles on its internal side, which approximates them to ths Badgers, as the Polecats are approximated to the Grisons and the Gluttons. The Mouffettes have besides, like the Badgers, the anterior claws long and adapted for digging, and they are even half plantigrade: the resemblance is continued even in the distribution of the colours. Cuvier truly remarks in conclusion, that in this family, remarkable for its footid odour, the Mouffettes are distinguishad by a stench far exceeding that of the other speciss.
The Mouffettes, or Skunks, are generally striped with white upon a black ground; but the number of stripes varies in the same species. The most common is the North American species (Viverra Puterius, Gm.), which is black, with white stripes more or less wide and numerous, and the tip of the tail black. The odour of this suffocating animal has been compared to that of the Polecat, mingled with an overpowering atench of garlic, and nothing can be more intolerable. Cuvier also notices the Chinche (V.mephitis, Gqm.), with the tail whits; the stripes on the back sometimes occupy the whole of its width.

Mydaus (F. Cuv.).-Cuvier considers that this may be made a distinct sub-genus. With the teeth, feet, and colours of the Skunks, it has a truncated muzzle in the form of a snout, and the tail is reduced to a small pencil of hairs.

Only one species, M. neliceps, is known.
The Otters (Lutza, Storr.).
The Martes of Cuvier are placed between the Ratels and the Dogs. The same position is assigned to this family by M. Lesson.
Professer Bell, io his 'British Quadrupeds,' makes the Mustelialce consist of the following genera:-

Lutva, Mustela, and Martes, Ray.
He places the Mustelidoe between the Ursidoc and the Felidee in the same work.
Dr. J. E. Gray arranges his sub-family Mustelina, the fifth of his family Felide, next to his sub-family Canina. The IVustelina contain the following geners :-

Martes, Mustela, Putorius, Gymnopus, Vison, Zorilla, Galera, Ratelus, Gulo, Helictis, Mephitis, Chinchia, Marputius, Conepatus, Mydaus, Arctonyx, Meles, Taxidea, Lontra, Lutra, Aonyx, Pteronura, and Enhydra. ('Synopsis: Brit. Mus.')

We shall here confine ourselves to the Weasels, properly so called, including the Martens, Skunks, and Mydaus.

The dentition of the Commou Weasel, the Zorilla, and the Marten, is very similar; and indeed F. Cuvier unites the three, giving two plates to show the slight variations. He observes, that the only difference that they present with reference to this part of their organisation is that the Marteds have in both jaws a rudimentary false molar more than the Weasel and the Zorilla; and that the Zorilla lias the internal tubercle of the lower canine mors developed than it is found in tho anslogous tooth of the Martens and Weasels, or Polecnts. In other respects their systems of dentition are quite identical.

Tecth of Weasel, \%orilla, and Marten.
Upper set, a little more than twice tho dize of naturo; ower act, nenrly twice the mataral aipe.

M/ustela.-Body elongated, vermiform. Feet short; tocs separate; claws sharp. Molar teeth, $\frac{4-4}{5-5^{\circ}}$
M. vulgaris, the Common Weasel. Reddish-brown above; white bencath; tail of the same colour as the body.

It is found in Europe and North America. Pennant states that this apecies inhabits the Hudson's Bay countriee, Newfoundland, and the United States. Godsana, in his account of the animals of the United States, omits it. Prince Bonaparte thinks that what has been considered as the Common Weasel in the United States is the Ermine in jts summer fur. Lawson notices it in his 'History of Carolins,' saying that it jo tho saine as in Eugland, but very $\begin{gathered}\text { earce. Cateaby aleo men- }\end{gathered}$ tions it, writing 'Weasle;' and in the 'New Description of Virginia' (1649), 'Weesels' are mentioned among their congeners, but with this saving clause, evidently written to soothe settlers-"but-these vermine hurt not hens, chickins, or eggs, at any time." Sir John Richardnou remarks that both the Weasel and the Ermine are indubitably inhabitants of the American contineut, the Ermine extending to the most remote arctio districts, and the Weasel as far to the north, at least, as the Saskatchewan live us.

Commoe Weasel (I Iustela rulgaris).
Mr. Bell observes that the near approximation in figure and charscter, and the great general similiarity in habita, which a comparison between the Stost and Weasel presents, hsve occasioned considerable confurion in some of the accounts which have been given of their history; though the differenco of size and colour would at once be aufficient to distinguish the species, were there oo other pointa of disagreement between them.
"The Stont," says Mr. Bell, "is brown above, dirty white beneath; the tail always black at the tip, longer and more bushy than that of the Weasel, and the former animal is twice as large as jta elegant little congener. The Weasel, on the other hand, is red sbove, pure whito beneath, the tail red snd uniform. Their habits alao, though generally aimilar, are in many of their details considerably diatinct; aud we are fully borne out by observation in raying that the accusationa against the Weasel of the miscbief which he is said to perpetrate in the farinyard and tho hen-roont, as well as amongst game of every description -on hares and rabbits no less than on the feathered tribes-sare principally due to the Stoat. It ia not meant to be asserted that the Weasel will not, when driven by hunger, boldly attack the atock of the poultry-yard, or occasionally make free with a young rabbit or a sleeping partridge; but that its usual prey in of a much more ignoble character in jroved by daily observation. Mice of every description, the field sud the water vole, rats, moles, and small birds, are their ordinary food; and from the report of uuprejudiced olseervers it would appear that this pretty animal ought rather to be fostered as a destroyer of vermin than extirpated as a noxious depredator. Above all, it should not be moleated in barna, ricks, or granarien, io which situations it is of grent service in deatroying the colonien of mice which infest them. Those only who havo witnessed the multitudinoue numbers in which these little pesta are found, in wheat-ricks eapecially, and have scen the manner in which the interior is sometimes drilled, as it were, in every direction by their rums, can at all sppreciste the amount of their dopredationa; nud surely the occasional abduction of a chicken or a duckling, supposing it to be eveu much more frequently chargeable against the Wease] thau it really is, would be but a trifling set-off againat the benefit produced by the deatruction of those swarms of littlo thieves."
Mr. Bell odds, an ground for thin defence of the Wease], that a friend of his assured him that at least three buehels of different apecies of mice had been killed out of one wheat-rick, a number that will not aurprise those who havo seen s good thoroughly-routing mouse-hunt in a grain rick-yard or grauary where the mice have taken up their quarters in cament. Great good the Weasel certainly does, and its
usual mode of attack when it reaches its prey shows that amall quadrupeds and birds form its staple. It inflicts a bite on the head which pierces the brain, and seldom fails to lay the victim dead at its feet by a single stroke. But there can be no doubt that it is a destroyer of newly-hatched gallinaceous and game-birds and young ducks, as well as the onaller feathered tribes; and that, although it does good service in keeping down the mice, it is a bad neighbour to the bare and rabbit warren. Not that the Weasel will do one-third of the mischief that a Stoat will, nor upon animals of such large growth, but it will do enough. It is a most active and persevering hunter; few trees will stop it when in search of birds'nests, which it robs not ouly by sucking the eggs, but hy carrying off the young. It will buot the mole, the field-mouse, and other small quadrupeds in their usual haunts, not only by the eye but also by the scent, like a Stoat; and most amusing it is to see one of these flexible agile little creatures tracing up the scent when it is at fault. They will quarter the ground like a dog till they hit it off, and, to lose no belp from their eye, will occasionally sit up, raising themselves on their hind quarters to gain a more extended view around them. Their perseverance will tire down animals larger and stronger than themselves; nor will water stop them when their game takes to it for safety. In they plunge, and seldom quit their object till the fatal bite is inflicted. The brain is generally first eaten, and the body of the victim kept as a supply near the haunt of the little huater; but it seems very questiouable whether they are addicted to those blood-sucking propeosities which the vulgar attribute to them; and our own experience coincidee with that of Mr. Bell, who considers this alleged habit to be much exaggerated, and whose own observation, as far as it had gone, tended to confirm the opinion of those who deng the existence of such a propensity altogether.
The last-named acute zoologist also throws well-grounded doubt on the assertion that the Weasel will attack and destroy snakes; and indeed he believes such a notion to be entirely erroneous. He placed a weasel and a common snake together in a large eage, in which the former liad the opportunity of retiring iuto a small box in which it slept. Mutual fear was mauifest, aud the animals kept at a distance; the smake however showing as much disposition to be the assailant as the weasel, which at last gave the suake an occasional slight bite on the aide or on the nose, without however materially injuring the reptile, and evidently without any instinctive desire to feed upon it. After they harl remained two or three hours together the animals appeared almost indifferent to the presence of each other. The sake was then removed.
"How different was this weasel's conduct," says Mr. Bell, after relating the experiment above stated, "wheu a mouse was introduced into the cage: it instantly issued from its little box, aud in a monent one aingle bite on the head pierced the brain, and laid the mouse dead without a struggle or a cry. I have observed that when a weasel seizes a small animal, at the instant that the fatal bite is inflicted it throws its long lithe body over its prey, so as to secure it should the first bitc fail; an accident however which I have never observed to occur when a mouse has been the victim. The power which the Weasel has of bending the head at right angles with the long and flexible though powerful neck, gives it great advantage in this mode of seizing and killing ita smaller prey."

This destroyer becomes itself a victim to birds of prey. We have all heard the story of the eagle and cat, and how the maddened quarry brought the mighty bird that had suatched it away down again to the earth in the agonice of death. In the 'Magaziae of Natural History' a similar ancedote is recorded of a stoat and an eagle, not however with any strong voucher. But Mr. Bell, on the authority of Mr. Pindar, residing when the event occurred at Bloxworth in Dorsetshire, relates the following passage in the life of a weseel ; and as there is no ground whatever for doubt, it affords a striking instance of the murderous instiact of this little quadruped.

Mr. Pindar, while riding over his grounds, saw at a short distance from him a kite pounce on some object on the ground, and rise with it in his talons. "In a few moments however the kite began to show sigan of great uneasiness, risiag rapidly in the air, or as quickly falling, sull wheeling irregulurly round, whilst it was evidently eudeavouriog to force some obuoxious thing from it with its feet. After a sharp but short contest the kite fell suddenly to the carth, not far from where Mr. Pindar was intently watching the manouvre. He iustantly cole up to the spot, when a weasel ran away from the kite, appareatly unhurt, leaving the bird dead, with a hole eaten through the skiu under the wiog, and the large bloodvessels of the part torn through."
With similar courage the Weasel will attack doge, and even men, when its nest is invarled. This is framed of dry leaves and herbage, and is generally lodged in somesnug locality, ouch as a crevice in a bank, the hollow of a tree, or a dry ditch, which kceps it warm and comfortable. Here four or five young are brought up from each birth, and the number of theso litters is two, or evea three, in the year.

The femalo Weasel is smaller than the male, and Mr. Bell well observes chat it is probably the "little reddish beast" called by the country people a Cane, mentioned in White's 'Selburne, and described as not much bigger than a field-mouse, but much longer. Mr. Blyth informed Mr. Bets that the animal was known in Surrey by the name of Kine.

This species sometinaes, but rarely, turas white in the winter, and in this state it is the Mustela nivalis of Linneus. Mr. Bell received one. from Scotland with two white spots on each side of the nose, which it retained throughout the summer.

Pennant gives the following national names for this species:Bronwen of the Welsh; La Bellette of the French; Donnola, Ballotula, and Benula, of the Italians; Comadreia of the Spanish; Doninha of the Portuguese; Wisel of the Germans; Weezel of the Dutch; Vesla of the Swedes; and Vresel of the Danes. The Auglo-Saxon name is Wesle.
M. erminea, Linn., the Ermine-Weasel. Body reddish-brown above, white beneath (in winter wholly white); extremity of the tail always black. (Bell.)

Winter Dress.-Yellowish-white, the yellow hardly visible on the head, but gradually showing itself more and more on the body and increasing in intensity, so that some are of a pale yellow colour on their hind parts. In high northern latitudes, and in severe winters lower down, the white on the upper parts is quite purc.

Ermine (Hustela erminca) in winter dress.
Summer Dress.-About the end of March the upper parts change to reddish-brown, of rather a dull tint; the lower parts coutinue white. The tail, as noticed in the specific character, remains black at the extremity during all the changes.

Ermine (Mustela erminea) in summer dress.
In northern latitudes, even in the alpino districts of Scotland, Mr. Bell observes that this change is universal ; but farther south it becomes an occasional and even rare occurrence.
With regard to the mode in which this alteration is brought about, Mr. Bell expresses his belief that the winter change is effected not by the loss of the summer coat and the substitution of a new one, but by the actual change of colour in the existing fur; aud he cites, in proof of this view of the subject, the case of the Hudsen's Bay Lemming, which in Captain Sir John Ross's first Polar Expedition was exposed iu its oummer coat on the deck to a temperature of 30° below zero, and the next morning the fur on the cheeks and a patch on each shonlder bad become perfectly white. Next day the shoulderpatches had considerably extended, and the posterior part of the body and flanks had turned to a dirty white. At the end of a week the winter change was complete, with the exception of a dark band across the shoulders prelonged down to the middle of the back.
That claage of temperature, and not merely change of aeason, is neceseary to effect the alteration of colour, is evident from Mr. Hogg's observations. (5th vol. of Loudon's 'Magazino of Nat. Hist. ;' Bell, ' British Quadrupeds.')
Mr. Hogg, whose remarks appear to have been made in the county
of Durbam, statea that within the last nine years from the date of hin communication he lad met with two Ermines alive, and in the most different wintera tbat had occurred for a great many years. One was observed in the extremely severe winter (January to March) of 1823; the other in the extremely mild January of 1832.
"In cunsequence of the months of Decenber, 1831, and January, 1532, having been no extremely midd, I was," says Mr. lloga, "greatly surprised to find this stoat clothed in his winter fur; and the more so, becanse 1 had seen, about three week or a month before, a stoat in its summer coat or brown fur. 1 was therefore naturally led to consider whether the respective situationa which the brown and white stonts geen by me this warm winter inhabited, could none account for the differenco of the colour of their fur, in any clear and satiafactory manner. The situation then where the Brown Stoat was seen, is in nearly $54^{\circ} 32^{\prime}$ N. lat, $1^{\circ} 19^{\prime} \mathrm{W}$. logg, upon a plain elevated a very few feet above the level of the river Tees, in the county of Durham. Again, the place where I met with the Ermiue, or White Stoat, on the "3nl January, 1832, is in the Forth Riding of Forkahire, iu nearly ${ }^{5} 4^{\circ} 10^{\prime} \mathrm{N}$. lat., $1^{\circ} 13^{\prime} \mathrm{W}$. long.; it is situnted at a very considerable elevation, and in the immediate neighbourhood of the lofty moorlands called the Hambledon Hills. These constitute the eouthwestern range of the Cleveland Hills, which rise in height from 1100 feet to 1200 feet abose the nea. At the time, the Ermine was making his way towarda the hills, where, no doubt, be lived, or frequently haunted; and consequently the great coldness of the atmosphere, even in so mild a winter, upon 80 elerated and bleak a spot as that moorland, vould satisfactorily necount for the appearance of the animal in ite white fur ; although the place is, in a direct lise, more than 23 miles distant to the south of the fields near the Tees, inhabited by the Brown Stoat."
The Ermine-Weasel, the length of whose head and body is 9 iuches 10 lines, the tail being 4 inches 8 liner, is the Carlwm of the Welsh; Stoat, Stout, and Greater Weasel of the English; L'IKermine and Le Roselet of the Frensh; Armellino of the Italinns; Armino and Armelina of the Spanish; Hermelin of the Germana; Hermelin and Lekatt of the Swedee; Mermilyn of the Dutch; Mermelin and Lekat of tho Danes; Seegoos and Shacooshew of the Cree Indians; and Terreeya of the Escuimaus.

The Eraine is found generally in temperate Europe, but common only in the north. The finest, that is, those with the longest and thickest fur, and of the purest and brightest colour, are imported froa the high latitudes. Russia, Norway, Siberia, Lapland, furniah them abundantly. The British importation, in 1833, was 105,139; aud 185,000 in 1850 . In America it is found from the most northerin limits to the middle districts of the United States Ermine-akins formed part of the Canada experts in the time of Charlevoix; but they have so sunk in value, that they are said not to repay the Hudmon's Ihy Company the expense of collecting them, and very few are brought to this conutry from that quarter.
"It appears that in Eagland generally," anys Dlr. Macgillivmy, " the Firmine is less common than the Weascl; but in Scothand, even to the south of the Frith of Forth, it is certainly of more frequent occurreaco than that apeciea; and for one Weasel 1 have scen at least five or six Erminca. It frequents stoney places and thickets, among which it finds a secure retreat, as its agility enables it to outstrip even a dog in a ahort race, and the alimness of ita body allowa it to cuter a very amall sperture. I'atches of furze, in particular, afford it perfect eccurity, and it sometimes takes possesaion of a rabbit's burrow. It preys on game and aud other birds, from the grouse and ptarmigan downwarde, sometimes attacks poultry or suck their egga, and is a determined enemy to rats and moles. Young rabbits and hares frequently become victims to ite rapacity, and even full.grown individuals are sometimes destroyed by it. Although in general it does not nipear to bunt by acent, yet it has been seen to trace jts prey liko a iog, following its track with certainty. Its motions are clegant, und its ajpeamace extroucly animated. It moves by leaping or bronding, and is copable of runaing with great speed, although it kehlum tants itself leyond the immediate vicinity of cover. Uader the excitement of puranit however its conmge is aurprising, for it will attack, scize by the throat, and cling to a grouse, hare, or other naimal atrong enough to carry it off, and it does not hesitate on ocearion to betake iteclf to tho water. Sometimes when met with in a thicket or stoney place, it will stand and gaze upon the intruder, as if conacions of necurity ; and, although itn boldneas has leen exaggerated lin the popular stories which have made their wsy into books of natural lintory, it camot be denied that, in rroporticn to ita size, it is at leat fus courageons as the tiger or the lion."

Mr. liell was informed by tho Mev. l'. W. Hope that the latter, while shooting in Shropshire, was attracterl hy the loud shrill seream of a barw which he thought had been just caught in a poacher's anare. He ran towards the apot, and there saw a hare limping off, apparently in great diatrese, with nomething attached to the nide of the throat. Thin jroved to be a stont, and the ntricken hare made ite way intho the bruahwood with its enemy ntill holling on. In Fngland it takes advantinge of the gallerien of the mole for itn winter retreat, as well no the rablit burrow:

Captain hyon, liN., saw the lirmine bunting tho footstep of mice in the nuth an a lomad would hunt a fos, and obecrved their burrows
in the enow, which were pusbed up in the samo manner as the tracka of tooles in Britain. These pasageen ran in a serpentine dirvetion, and near the hole or dwollingoplace the circles wero multiplied as if to render the approach more intricate.

The same graphic voyager give: a lively description of a captive Ermine :-"He wan a fierce little fellow, and the instant he obtained daylight in his new dwelling, he flew at the bars, and shook them with the greateat fury, uttering a very shrill pasionate cry, and emitting the ationg musky amell which I formerly noticed. No threats or tenuing could induce bim to retire to the sleeping-place, and whenever be did so of hia own accord, tho slightent rubbing on the bars was sufficient to bring him out to the attack of lis tormentors. He soon took food from the hand, but not until ho had first used every exertion to reach and bite the fingera which conveyed it. This boldness gave me great hopes of being able to kecp my little captive alivo through the winter, but he was killed by an accident."

Sir John Richardson statea that the Ermino ia a bold animal, and often domesticates itself in the habitations of the furtruders, whore it may be heard tho live-long night pursuing the white-footed nouao (Mus lcucopus). He remarks that, according to Indinn report, this species brings forth ten or twelve young at a time. In this country it produces about five in April or Miay.

In Siberia Ermines are taken in trapa baited with flesh; and in Norway they are either shot with blunt arrowa, or taken in traps made of two flat" atones, ono being propped up with astick, to which is fastened a baitod atring. This the animal nibbles, when the atono falla and crushea it. Tro logs of wood are used for the same purpose and in the rame manner in Lapland.
M. Putorius, the Polecat, or Fitchet Weasel. Stouter in proportion than either tho Common Weasel or the Ermine, and the head broader. Nose rather pointed, ears round and not conspicuous. Neck compara. tively short. Tail inclining to busby, rather more than a third of the length of the body and bead. There are two kinds of fur in this species; the ahort is fulvous and woolly, the loug is black, browniahblack, and shining. A brown colour mingled with yellow, varying according to the proportions of these two sorts of fur ius the individunl, is the result. There are some white marks about tho mouth and ears, aud the parts which are darkest in colour are the head, tail, and feet. Length of the bead and body 1 foot, 5 inches, 6 lines; of the tail, 5 inches 5 lines. Such ia Mr. Bell's measurement. Mr. Macgillirray makes the total longth to the end of the tail 17 inches, and observes that the anal fac is usually represented as single; and be found that beneath the extremity of the rectum externally two saes containing a yellowish fetid substance of the consistence of thick cream were present.

This is the Firwlbard of the Welal; ; Fulimart, Foumart (as well as the terms given at the hoad of tho description) of tho English. Polocnt has been aupposed to have been a corruption of Polish Cat; but thin seems to be not much better than a guess; loumart and Fulimart have with better reason been considered to be contractions of Foul Martin, in contradistinction to the Sweet Martin. It is the l'utois of the French, Foetta and I'uzzolo of the Italiana, P'utoro of tho Spanish; litia, Ulk, and Buntsing, of the Germana; Bonsing of the Dutch; Iller of the Swedes, and llder of the Dances.

It ia found throughout Fiurope. Peunant says that it in common in the temperate parts of Kuseia, but grows acarcer in Siberia, except in the desert of Baraba and beyond the lake lailkal.

The I'olecat is mont destructive to the poultry-ynrd and tho preaerve; its appetite for slaughter, which seema never to bo satiated as long as any living thing rewains within its reach, rendering it a most ruinous neighbour to those who rear fowla or keep up a head of game. Not only the young birda fall victime to it, but the parents also; nor are
oven geese or turkeys safe. We remember an instauce of a hen and a whole brood of chickens being killed by one of these destroyers in a single night; sad upon another occasion, seven or eight nearly fullgrown tarkeys. The brain and the blood seem to be the choicest portions. The bodies of the dead are carried off to its haunts, which are generally in some copse or wood near a farm or in the beart of a preserve, whence it issues on its deadly errand in the evening, generally soon after sunset, or when it grows dusk.
No 'vermin' is placed with more satisfaction upon 'the Keeper's Tree, for none commits more havoc, if so much, among the game. Beginning with the egg, it persecutes all the game-birds through every period of life, and is a far more determined enemy than the Stoat itself to the hare and rabbit-warren. The fox, as is well known, will do much to keep down the pheasanta, and especially the rabbits and hares; but even this wily and powerful invader is not so mischierous as the species of which we are treating. Where a fox will kill one, a polecat will immolate ten, to say nothing of eggs; no vertebrated animal seems to come amiss to its murderous nature. Bewick relates that during a severe storm a Foumart was traced in the suow from the side of a rivulet to its hole at some distance from it. As it was observed to have made frequent trips, and as other marks were to be seen in the snow which could not easily be accounted for, it was thought a matter worthy of great attention. Its hole was accordingly examined, and five fine eels were discovered to be the fruit of its nocturnal excursions. The marks in the snow were made by the motion of the eels in the quadruped's mouth. In Loudon's 'Magazine' (vol. vi.) is an account of a female polecat that was hunted to her nest, which held five young ones in a comfortable bed of withered grass. From a side hole the narrator picked out forty large frogs and two toads alive, but capsble of gprawling only, for the old polecat had stricken them all with palay by a bite through the brain of each.
The nest of this species is generally made in some rabbit-burrow, in the crevice of a rock, or where the tangled herbage and brushwood overgrow loose hesps of stones, and there the female drops from four to six young in May or early in June.
The courage of the Polecat is great, and none of the tribe denominated by gamekeepers 'vermin' so severcly tries the 'pluck' of a terrier; for ita flexibility, unless seized in the right place and shaken to death at once, enables it to turn and fasten upou the nose of the dog, $s 0$ as to make the latter not unfrequently desist from the attack.
There is good evidence that the Fitchet or Polecat will breed with the Ferret.
Inferior to the fur of the Sable or Marten, that of the Polccat is neverthelcss esteemed, and a conaiderable importation of the skins annually comes to this country from the north of Europe, under the name of Fitch.

Martes (Ray).-Grinding tecth, $\frac{5-5}{6-6}$; body much elongated; feet short, with separste toes; tougue smooth.

Before we cnter upon the Europeau species of Martins, or Martens, as they are perhsps more properly termed, it will be necessary to consider the difference of opinion among zoelogists, as to the point whether the Common or Beech Marten, the Pine Marten, and the Sable are three different specics, or merely varieties of one.
The Martes seems to have been known to the ancienta, though it does not appear which of the Martens was thus designated; indeed it may have been a common name for them all. Martial writcs ('Ep.' x. 37): 一

"Venator capta marte superbus adest."

Some indeed read 'mele' for 'marte,' and 80 mako a badger of the capture. The annotator in the Delphin edition has crowded as much confusion as he could in his illustration of that reading, for he writes, ${ }^{\text {"tegunt alii capta mele, Gallice blaireau, chat sauvage, fouine,"- }}$ badger, wild cat, marten, for which last 'fouine' is the French term.
George Bauer, who wrote under the name of Agricola, in his book 'De Animantibus Subterraneis,' notices the three kinds of Marteu first sbove alluded to. After writing a clear account of the Polecat, be ays:-"A third kind of sylvan weasel lies in the crevices of stones and caverns, which is called Martes by Martial and Marturus by the Germans." He then gives Martial's line above quoted, and proceeds to describe the animal and its habits with much accuracy. This is the Common or Stone Marten. He then describes a fourth, the Pine Marten ; and afterwards a fifth, "called by the Germans Zobel," the Sable. The skins of the last are, he remarks, more precious than cloth of gold, and he adds that forty of the best, the usual number in one bundle, have been aold for more than \& thousand pieces of gold. ("De Anim. Subt.,' folio, Basil, 1561.)
Geancr, Aldrovandus, and Jonston, did little more than copy Agricola. "They scem however," says Mr. Beanett, who has well traced up the opinions of authors upon this subject, "to have abandoucd Agricola's subdivision of the second species, and to have described his first, the Stone Marten, as it was emphatically denominated by the Germana, as the Beech Marten, imputing to it a more familiar and sociable disposition, and a fondness for the neighbourhood of inhabited places." The same dintinctions are adopted by Ray in his 'Synopsis Quadrupedum,' I 693 ; but to his description of the Sable lee adds that "Dr. Tancred Robingon had seen the animal itself in the possession of ancred. IIIst. niv. voit II.

Dr. Charlton. Its size was that of a Cat of Cyprus, its coleur a dark tawny; the fore part of its head and its ears of a whitish ash-colour ; and the bristles on its eyebrows, nose, and face, very long.'
Mr. Bennett remarks in continuation that so slightly did Linnæus estimate the value of the distinctions indicated between the Pine and Beech Martens, that he uniformly treats of them as one and the same animal in all his zoological writings, from the first edition of bis 'Fauna Suecica' to the twelfth of his 'Systema Nature.' It is only, he observes, in the last, that Linnæus for the first time intimates the existence of any difference between them. There he speaks of two varieties as known to the rustics-the Beech Marten with a white throat, and the Pine Marten with a yellow throat. The Linncan character of the Sable is principslly, Mr. Bennett adds, founded on that of Ray, and is accompanied by the sign ussed by Linneus to denote that he had not seen the animal to which it is appended.
M. Lesson enumerates all three as species, under the names of 1, Marte Commun, Mustela Martes, Linn. ; La Marte, Buff. 2, Marte Fouine, Mustela foina, Linu. (Gmel.?), La Fouine, Buff. 3, Marte Zibeline, Mustela Zibellina, Linn.; the Sobol of the Poles and Russians; the Sabbel of the Swedes.
Mr. Benuett states that since the time of Pallas the three species have been almost universally enumerated by authors, each copying his predecessors with more or less correctness. Desmarest, he remarks, has omitted the most important characters given by Pallas for the Sable, and has, on his own authority, furnished it with a tail of twothirds the length of its body, while that of the Pine and Beech Martens is stated to measure but little more than the half; and he says that he knows of but one instance, since Linnseus, in which the two latter animals have been even appareatly coajoined. This occurs in Dr. Walker's 'Essay on the Scottish Mammalia.'

Mr. Bennett, in the 'Gardees and Menagerie of the Zoological Society,' gives an accouut of the specimens of Martens in the collection of the Zoological Society.-"Such," he says, "are the specimeus of Martens contaioed in the Society'e Museum. Other individuals, exhibiting similar variations in their colouring and markings, have been observed by us in various collections; but it would be nseless to multiply descriptions leadiag to no conclusive result. If the Beech and Pine Martens of our own country be distinct, it is probable that the last-described animal may also belong to a different species from either. We do not however hesitate to declare our opinion that the true Sable of Pallas is atill a stranger to our collections; and wo have good reason, in the silence of authors respecting it, for believing that it is equally unknown to the zoologists of the continent. It is certainly not a little singular that an animal so highly valued and so anxiously sought after should still be a desideratum to the scientific world; but it is perhaps no less so that the opiniou which has been so lightly adopted with such well-known animals as the indigenous martens, should never yet have been put to the test of direct experiment."
Mr. Bell, after speaking in terms of deserved praise of Mr. Bennett's statement, say that a delibcrate consideration of these and other authorities, and a comparison of many specimens of both kinds, had hitherto failed to lead him to a conclusion at all satisfactory to his own mind; and it is only with a protest against being considered as decidedly supportiog the opinion that they are essentially different, that he ventures to give them a distinctive character in his 'British Quadrupeds." "I am not," says Mr. Bell, "the more disposed toward p this opinion by the obscrvatiou of two living specimens in the Surrey Zoological Gardens, in which the throat, though decidedly yellow, is less bright and deep in its bue than in some other specimens, and of a single one in the menagerie of the Zoological Seciety, also living, the threat of which, though it would be termed whitish, yet has a slight yellow tinge. The dark colour of the former and the lighter and grayer hue of the latter, with the different colour of the throat, joined to a slight difference in the form of the head, the former being proportionally a little lenger, would certainly lead us to consider the former as the Yellow-Throated or Pine Marten, and the latter as the White-Throated or Beech Marten, supposing them to be distinct; but the differences are scarcely decisive, and the yellowish tiage ou the throst of the latter specimen shows an approach to the Pine Marten even in this supposed distinguishing character, which is far from offering any help towards a satisfactory solution of the difficulty."
Mr. Macgillivray notices these observations of Mr. Bell in the 'Naturalist's Library' (British Quadrupeds); and then states that the examiation of individuals in different stages, and obtaised in various parts of Scotland, had disclosed to him a gradation of colouriog combined with a sameness of form that had satisfied him as to the indivisibility of the species. "In fact," saya Mr. Macgillivray, " the Beech Marten and the Pine Marten differ less from each other as to size than iodividuals of the polecat, ermine, or weasel, and the differences of colour observed are not greater than in the common fox."
M. Martes, var. with the White Throat (Linn.), the Beech Marten; M. foina, Gmel.; Martes Fagorum, Ray; M. Saxorum, Kleio. Mr. Bell describes the head of this marten as somewhat triangular; the muzzle pointed; the nose extending a little bejoud the lips; the eyes large, prominent, and remarkably lively; the ears large, open, and rounded; the body much eloogated and very flexible; the tail long, thick, and somewhat bushy; the feet rather short; the toes generally $3 T$
naked, but at timee, probably in the winter, covered beneath with a thin soft hair. The fur, he observes, in of two worts: the inner extremely nof, ahort, copious, and of a light yellowish-gray colour; the outer very long, shinug, ash-coloured at the root, brown at the extremity, but of differnt degrees of intenaity at different parts of the body; the middle of the back, the tail, the outer parts of the legs and the feet, being darker than the other parts ; tho belly lighter nad mone gray; the thront white, but Mr. Bell atates that in ono inatance Ho lad reen it of a light yellowish tinge; iover anrface and margio of the ears whitish. Length of heal nud body 1 foot 6 inches; of the thil 0 iuches 6 lines.
This is the Bela Graig of the Welah, and Stone Marten of the English. It is La Fouide of the French; Foina nud Fouida of the Italians; Marta and Gibellina of tho Spaniels; Hauss Marder and Stein Marder of the Germana; Marter of the Dutch; Mard of the Swedes; and Maar of the Danes.

It is found in northem and temperate Furope, and weatern Aaia.

Beach or Atone Marten (Mustela Martes).

This Marten is found more remote from woods, though it is often met with in them, and moro freguently in monatainous and atony places, and nearer the babitetiona of man than the Pine Marten. It prefers the vicinity of farm-yards and lomestends, and is a ruinous visitor to them and the garoepreserve. It is an expert climber, and Daoiel, in his 'Rural Sports,' has figured it ou a tree abont to attack a hen-phearant at perch. A vory groundleas notion onco prevailed that this was the Pine Marten in a atate of domestiention. It is lively, netive, and graceful in its movements. The seat of the femalo is constructed of herbage, straw, or grass, aometimes in the hollow of a troe, nometimea in the crevices of rocks, not uafrequently in a mius, and occasiodally in granarjes or barns.

The fur of the Beech Marten ia considered very far inferior to that uf the Pine Marten, and ja known in the trade as the skin of the Stono Marten. Many are imported from the north of Europe, and dyed to represent Sable. The comparatively joor quality of tho fur however is immediately porceptiblo to tho expericuced eye, nlthough, as is the case with most of the animala which are used for their fur, the northern wins are fuller, richer in eolour, and tooro lustroua than those from more temperate elimates.

Mortes Abictum (lay) ; Mutela Martes, Linn., the line Marten. Brown; thront yellow; toen maked boneath; lega longer and head smaller than in the Beeela Marten.

This in tho Bela Good of tho Welmh; In Marte of the French; Marta, Martura, Martorn, and Martorelle of the Italinna; Marta of the Spanigh; Feld-Marder and Wild-Mander of the Germana; Marter of the Dutch; Wawpectan of the Creo Indiana; Winwbeechina of the Algoaquide; Sablo of the American FurDealers; und Martin of the Itudnou's Lay Company's Lista

It ia found in kiurope and North America.
The I'ine Martan in its habitn reemblen the leech Marten, but it nhuna tho neighbourhood of man-living in liurope in deep foresta, and preying on birda aud the maller animala. The female deposita two or threy goung onen in a neat of moss and lenves furmed in nome hollow tree, when aho does not take posersion of that of the aquirrel or tho wooripecker.

Sir John Richariaon statea that the I'ino Marten inhabita the woody dintricts in tho northem parts of Amerien, from the Athntic to the Pacific, in great numbera, and that it has been observed to be particulariy abundant whero the troes have been killed by fire, but are atill standing. "It is very rare," continues Sir John, "as Hearno has remarked, in the district lying worth of Churchill liver, aurl enst of Great Slave Lake, koown loy the name of thepewyan or lharren lands

A aimilar district, on the Asintic side of Behring'a Straits, 25 degrees of longitudo in breadth, and inhabited by the Tchutski, in dencribed Ly Pennant as equally unfrequented by the marten, and for the same reason, the want of trees. The limit of its northern range in America is like that of the wood, about the 68 th degree of latitude, and it in said to bo found as far south as Now Eoghad. Particular races of martens, distinguished by the fineness and dark colours of their fur nppenr to inhabit certain rocky diatricts. The rocky and mountainous but woody district of tho Nipigon, on the north side of Lake Superior, las long been noted for its black and ralunble martenakins"

The samo nuthor gives tho length of the head and body at from 18 to 20 inches, and notices a remark of the natives that the for loses all its lustre, and consequently much of its value, upon the falling of the first abower of rain for the season. He further states that this animal preys on mice, hares, and partridgea, and in summer on amall birds' eggs, \&c. A partridge's laead, with the feathers, is, ho says, the best bait for the long traps in which it is taken. It does not reject carrion, and often destroys the hoards of meat and fish laid up by the nativea, when they havo accidentally left a crevice by which it can enter. When its retrent is cut off, it shows its teeth, sets up its hair, srehes its back, and hisaes like a cat. It will seize n dog by the nose and bite so hard, that, unless the latter ia well used to the combat, it eacapes. Easily tamod, it soon becomes attached to its masier, but is not docilc. The flesh is occasionally eaten but not prized by the Indians. The females are analler than the males, go with joung about six weeks, and produce from four to reven at a time about the end of April. According to Mr. Grahmm this marten is sometimes troubled with epilepar.

The importation of Pine Martens skins from the territories o tho Hudson's Bay Company and Canada is great. Jennant relates that at ono of the company'a anlea (in 1743) not fewer than 12,370 good skina, and 2360 damaged, were aold, and about the same time the French bronght into the port of Rochello from Canada no lears than 30,325 . Upwards of 100,000 skins have long heen anoually imported into Great Britain.
'I'lo editor of tho last edition of Pennsnt's 'Iritish Zoology' says that the length of a male which ho saw in Suffolk was 19 inches, exclusive of tho tail, which measured 10 inches; the total leagth of the female the same, but the tail longer in proportion to the body. The breast of the latter was of a paler yellow, and tho colour extended behind the ears.

Mr. Bell, after remarking that tho colonr of the fur is scarcoly a tangiblo distinction, observes that different inclividunls of the Beech Marten vary quite as much in this rempect as the Pine Marten nad the Sable: the existence of fur on tho toes, which has been adduced as a character of tho Sable, probably dependa, ho observea, on climate; and is mentioned by Pennant as having been aeen by him in the Common Marten. "Nover," says Mr. Mell, " having geen an undonbted Whole specimen of the true Siable, Inm unable to offer any satiafictory addition to our knowledge on the more important claracters of the two animals; but I have fount in the exnmination of numbers of the fineat anble-akina, that the yellow patch on tho throat had alwaya an irregular outline, and that there were also small apots of the same fine colour acattered on the sides of tho neek. This is a distribution of the colour which I havo never observod on tho Common or Pine Marten. I offer the fact however merely as one which, combined with other chameters, may posibls nid in determining the question when we havo fuller information on the aubject."

The probability seems to be that the liecel Marten, the l'ino Marten, and tho Sable, do not offer afficient liffering elaracters to warrant their npecific distinetion.

Mustela Furo, Linn. (Viverra Furo, Shaw), the Ferret. Yellowish, different parts beiog more or less white, for the long fur is partly white and the short almost entirely yellow; eyes pink. Length of head and body 14 inches; of the tail 5 inchea 6 lines. This is Le Furet of the French. It is a native of Africa, but is domesticated in Europe. It is often regarded as a domesticated variety of the Polecat.

Ferret (Mustela Furo).
The Ferret was well known to the ancients; and it appears that it was used by them much in the same manuer as it is employed in the present day. Its use in Spain is noticed by Strabo (iii. p. 144, ed. Casaub.), and Pliny ('Nat. Histo, viii. 55) speaks of its services under the name of Firerra, in hunting rabbita, by entering their burrows and ejecting them, so that they were taken when they bolted out.

Its habits are similar to those of the European Weasels, but more bloodthirsty. Capable of a certain degree of tameness, it seldom, if over, becomes attached, and is a dangerous inmate unless properly secured. It has even been known to attack and cruelly lacerata an infant which had been left unguarded in its cradle, and with such ferocity that after it had been driven away the cries of the tortured child brought it from its hiding-place, eager to renew the attack.
This species, whose whiteness and red eyes may probably be the result of a long period of domestication, cannot bear cold, and should be kept warm to ensure its healthy condition. It is said to breed twice a year in a state of domestication, unless it devours its offspring, which it sometimes does, and then it has three hitters. The gestation of the female continues six weeks, and she then produces generally six or seven young-sometimes nine. These are blind for a month, and at the end of two more are considcred fit for service.

Ferrets should be kept in tubs or amall boxcs; and cleanliness is very essential to thair health and strength. To enter them, they should, when the rabbits are half grown, be sent into the burrow with a line tied round them and unmuzzled. Wheu tho forret seizes a rabbit the line should be gently pulled and the ferret drawn back, holding the rabhit in its mouth. This mode can only be practiaed where the burrows run comparatively straight and ncar the surface.

Ferrets should not be fed bcfore they are taken to the warren, for if they are filled with food they will not hunt, but lie sleeping in the burrows for hours. Before they are turned in they should be muzzled or coped, there being no uecessity for the inhuman practice of sewing up the ferret's mouth.
The following has been recommended as the best method of 'coping': -Tie a piace of soft string round the neck of the ferret, close to the head, and leare two rather long ends. Tic another piece round the under jaw, pass it under the tongne, bring it round over the upper jaw, and there tie it, leaving the ends long. The mouth will thus be kept closed. Then bring the four ends together, and tie them in one knot on the top of the head : this makes all safe. No paio is inflicted apparently by this operation, for the ferret thus coped bunts as cagerly as if it were unmuzzled.
Daniel, in his 'Rural Sperts,' thus describes the method of ferret-iog:-"The ferret is coped or muzzled, and a small bell tied round his neck; and after the holes are as silently as possible covered with purse-nets, called 'flans,' the ferret should be put in the windward side of the burrow, where the person should also place himeelf, and observe the utmost silence, otherwise the rabbits will retreat to their lower earths and bo scratched to death before they will bolt. Hay neta are however chiefly used by experienced warreners, who are loth to turn ferrets into burrows, which invariably give the rabbits a dislike to them." "The mode of using these hay nets is then described.

Mydaus.-Firc toes on each foot, united up to the last phalanx by a very narrow membrane; claws, proper for digging, very large on the
fore feet, moderate on the hind feet. Tail rudimentary. Pupil round; no external ear; four pectoral and two inguinal mammæ.
Dental Formula :-Incisors, $\frac{6}{6}$; Canines, $\frac{1-1}{1-1}$; False Molars, $\frac{2-2}{3-3}$; Flesh-Cutting Molars, $\frac{1-1}{1-1}$; Tuberculous Molars, $\frac{1-1}{1-1}=34$.
M. meliceps. Agrecing in size generally with the polecats of Europe and America. Eyes placed high in the head, resembling those of a hog, which animal is called to mind by the appearance of this species; eyelids rigid, well provided with minutcly-bristled eyebrows; irides dark, pupil circular; ears nearly concealed by hair, but provided externally with an oblong concha surrounding the posterior part, and passing the lower extremity of the meatus auditorius, forming a small curve inward; no perceptible whiskers, a few long straggling hairs on the upper lip. Fur composed of long, delicate, closely-arranged hairs, silky at the base, and forming a warm coat. Colour blackish-brown, more or less intense on every part of the body, except the crown of the head, a streak along the back, and the extremity of the tail, which are white, with a slight tinge of yellow, but in some individuals the streak is interrupted. The brown colour is generally lighter on the abdomen, and is subject to variations generally from grayish-brown to deep brown with a sooty tint; the last the most common. Tail scarcely half an ioch long, the hairs projecting abova an inch from the body. Limbs short and stout; feet plantigrade; claws united at the base by a thick membrane enveloping this part as a sheath: those of the fore feet nearly double the size of the hind feet. Two glands of an oblong form, about an inch long and half an inch wide near the extremity of the rectum, furnished with an excretory duct nearly half an inch long, which communicates with the intestine. Fluid secreted by the glands perfectly analogous in odour to that secreted hy several specica of Mephitis in America, particularly to that of Mcplitis striata, Fisch. Length of body aud head, from extremity of nose to root of tail, 1 foot $2 \frac{3}{4}$ inches; of naked tail, half an inch; of tail, with hairy covering, 2 inches. (Horsf.)

skull of Mydaus meliceps (profle). Eorsfield.

Teeth of Mydaus meliceps.
a, upper jaw, seen irom beow; o, lower jaw, seen from above. Horsfield.

Irofile of the head of Myduus meiiceps,

Thin is the Teledu of the Jaranesu east of Cheribon; Seng-gung of the Sunda Javanese of the mountaiooun districts from Cheribou to lanatan: Teleggo of the inhabitants of Sumatra; Mephitis Jaranensia of llaffes

Mydaus meliceps. Ilorsfleld.
Dr. Horsficld states that this species presents a singular fact in its geographical distribution. It is, he says, exelusively confined to those monntains which have en elevation of more than 7000 feet above the level of the ocean; nnd on these it accurs with the same regularity an many plants. "The long-extended surface of Jara," coutinues Dr. Horsield, "abonnding with conical pointa which excced this elcuation, afforls many places farourable for its resort. On ascendiag these mountains the traveller scarcely fails to meet with our animal, which, from its peculiarities, is universally known to the inhabitants of these elevated tracts; while to those of the plains it is as stramgo as an animal from a foreign country. In my visits to the mountaiaous dintricts 1 uniformly met with it, and, as far as the information of the uatives can be relied on, it is found on all the mountains. It is bowever more abundant on thoso which, after renching a certain elevation, cousist of pumerous connected horizontal ridges, than on those which terminate in a defined conical peak. Of the former description are the mountain Prahu and the Tengger lills, which are both distinctly indicated in Sir Stamford Raffes's map of Java: liere I observed it in great abundance. It was less common on the mountaia Qede, south of Matavia; on tho mountain Ungarang, south of Semarang; and on the mountain Ijea, at the farthest eastera extremity; bat 1 traced its range through the whole island."

Most of theao mountains and ridges are cultivated for the production of wheat and European vegetables, and fruits, such as potatoes, cabbaree, peaches, and strawberries, in a deep vegetable monld, where the Telede ranges, and in its search for food injures the plantations and deatroge the roots. It turns up the earth with its nose like a hog, and thus leaves vexatious traces of its noctornal visits.
The dwelling of the animal is formed at a slight depth beneath the soil, under the roots of a large tree, whero it constructs a globular ebncuber several fect in dianeter, sunooth and regular; and there is n subterraneous approach to it about 6 feet long, the external entrance to which the animal conceals with twige and dry leares Here it remaius hidden during tho day, and at night comes forth to seek the insecte and their larva, and common enrthworms, which are its food. They are mid to live in paire, and the femalo produces two or three young at mbirth, aecording to the natives.

The fetid matter, which is viscid, nad which Dr. Horsfield was ansured the aniunal could not propel beyond a distanee of two feet, is very volatile, and consequently spreads to a great extent. The entire neighbourhond of a village is sometimen infected by the odour of an irritated Teledu; and it is so powerful in tho immedinte vicinity of the dincharge as to produce nyncope in some persons.

Dr. Horatield describes the mannera of this apecies as by no means ferocious, and states that if taken young it might, like the Badger, bo eanily tamed. He kept ono mome time in confinement: it beeame gentle, and nover emitted ita offensive smell. Dr. Horsfield carried it with him from Mount Prahu to Blederan, a village on the declivity of that hill, where the temperature whs more moderate. It was tied to a amall atako while tho drawing was being made, and moved about quietly, burrowing the ground with ita snout and feet, as if acarching for food, without noticing the bystanders or making violent efforts to disengage itself. It nte voraciously of earth-worms (Lumbrici) which wero brouglat to it, and held one extremity of a worm in its claws while ite teeth wero employed in tearing tho other. After it hal caten ten or twele it became drowsy, mado a small groove in the earth, in which it placed its snont, and, having deliberately composed itself, noon slept moundly. ('Zoological licsearches in Java.)

Mrphuer.-Dody elongate, arcliel. Toes meparated and armed with
long claws, the anterior proper for burrowiag. Tail long and very bushy, or entirely null. Anal glauds secreting a fetid odour.

Dental Formula:-I acisors, $\frac{6}{6} ;$ Canines, $\frac{1-1}{1-1} ;$ Molars, $\frac{3-3}{5-5}=32$

Tecth of 3fephitis (double the nstural size). F. Cuvier.
F. Cuvier gives tho above cut as the dentition of Mephitis and Mydaus. The dental formula is that given by Leeson for Mephitis.

The fetor of the species of Mephitis has obtained for them the names of Bêtes Puantes, Eufans de Diable, and Stiaking or Stifing Weasels. M. Lesson observes that a great number of these American Mouffettes have been described, but the imperfect accounts of voyagers render the arrangewent unsatiefactory. He notices the following:M. Americana, M. mapurito, M. Chilensis, M. Chincha (the Chinehe), M. Quitensis, and M. interrupta. Mr. llorsfield gives the following representation of the profilo and front tecth of M. dimidiata of Fischer, the Chinche of Buffon.

lrofile of Mfephitis dinitinta.

Freat teeth of eame. a, upper; b, lower.
M. Ancricana (var. Hurlsonica), the Mudson's Bay Skuuk. The following necurate description is given from the pen of Sir John

Richardson:-"The Skunk is low on its legs, with a broad fleshy body, white forehead, and the general aspect rather of a Wolverene than of a Marten; eyes small; ears short sad round. A usrrow white mesial line runs from the tip of the nose to the occiput, where it dilates into a broad white mark. It is again usrrowed, and continues so until it passes the ehoulders, when it forks, the branches running along the sides, and becoming mueh brosder as they recede from each other. They approach posteriorly, and naite on the rump, becoming at the same time narrower. In some few specimens the white stripes do not unite behind, but disappear on the flanks. The black dorsal space included by the stripes is egg.shaped, the narrow end of which is towards the shoulders. The sides of the head and all the under parts are black. The hsir on the body is long. The tail is covered with very long hair, and has generally two broad longitndinal white stripes sbove on a black ground. Sometimes the colours of the tail are irregularly mixed; its under surface is black. The clars on the forc feet are very strong and long, being fitted for digging, and very ualike those of martens." ("Fauva BorealiAmericana')

This is the Seecawk of the Cree Indians.

Hudson's Bay Skunk (Mephitis Americana).

The author last quoted states that the Skunk is not an uncommon aoimal in the district it inhabits, which does not, he belieres, extend to the north of 56° or $57^{\circ} \mathrm{N}$. lat. It is found in the roeky and woody parts of the country, but is still more frequent in the clumps of woad kirting the sandy plains of the Saskatchewsn. Sir John Richardson had not been sble to ascertain the southern range of this variety of Skunk, sud he adds that, judgiog from Kalm's description, there apperre to be a different one in Canada.
The Skunk lays itself up in a hole for the winter, seldom going abroad st that season, and then for ashort distance only. Mice and frogs in summer are its principal prey. It has from six to ten young at a litter, sad is said to breed but once a year.
Unlike the more agile weasels, the Skunk is slow in its motions, and consequently easily overtaken. Its defence consists of a most fetid discharge, which is described as sbsolutely intolerable when it comes upon the nose by surprise. Lawson says:-" Polecats, or Skunks, in America are different from those in Europe. They are thicker and of a great many colours; not all slike, hut each differing from another in a particular colour. They smell like as fox, but ten times stronger. When a dog encounters them they make urine, snd he will not be sweet again in a fortaight or more. The Indiaus love to eat their flesh, which has no manaer of ill smell, when the bladder is out. I know no use their furs are put to. They are easily brought up tame." Professor Kalm was almest suffocated by one that was chaced into a house where he slept: the very cattle bellowed through distress at the stench. Another that was killed by a maidservant in a cellsr so overpowered her that she lay ill several days: the provisions in the place were so tainted that the owner was obliged to throw them away. Catesby sayg :- "When one of them is attacked by a dog, to appear formidable it so changes its usual form, by bristling up its hairs and contracting its length into a round form, that it makes a very terrible appearance. This menacing bchaviour however, insufficient to deter its enemy, is seconded by a repulse far more prevailing; for from some secret duct it emits such fetid effluviums, that the stmosphere for a large space round shall be so infected with them that men and other animals sre impatient till they are quit of it. The stench is insupportable to some dogs, and necessitates them to let their game escape; others, by thrustiog their noses into the earth,
renew their attacks till they have killed it; but rarely care to have more to do with such noisone game, which for four or five hours distracts them. The Indians notwithstanding esteem their flesh a dainty of which I have eaten, and found it well tasted. I have known them brought up young, made domestic, and prove tame and very active, without exercising that faculty which fear and self-preservation perhaps only prompts them to. They hide themselves in hollow trees sad rocks, and are found in mest of the northern continent of Ameries Their food is insects and wild fruit." (Carolina.) Sir John Richsrdson states that the noisome fluid which it discharges is of a deepyellow colour, and contained in a small bag placed at the root of the tail. It is, he says, one of the most powerful stenches in nature ; and so durable that the spot where a Skunk has beeu killed will retain the tsint for many days. He quotes Graham for the fact that several Indians lost their eye-sight in consequence of inflammation produced by this fluid having been thrown into them by the animal, which has the power of ejecting it to the distance of upwards of four feet. "I have known," says Sir John Richardson, in continuation, "a dead Skunk, thrown over the stoeksdes of a trading post, produce instant nsusea in several women in a house with closed doors upwards of a hundred yards distant. The odour has some renemblanee to that of garlic, although much more disagreeable. One may however soon become familiarised with it; for, notwithstanding the diegust it produces at first, I have managed to skin a couple of reeent specimens by recurring to the task at intervals. When care is taken not to soil the carcass with any of the strong-smelling fluid, the meat is considered by the natives to be excellent food."

We have above adverted to the number of so-called species of Mephitis. Cuvier was of opinion that our knowledge did not justify us in considering them as more than varieties of a single species, sad he enumerated 15 such varieties. Sir John Richardson says upon this point:-"I have now seen a considerable number of specimens killed to the north of the Great Lakes, none of which presented any important deviation in their markings from the one principally referred to in the description. M. Desmarest remarks that the varieties (if they are to be considered as such, and not as species) are, for the most part, suff. eiently uniform in the same district of country in the disposition of the stripes. The Hudson Bay variety however comes nearest to the description of the Chinche of Buffon; the Fiverra Mephitis of Gmelin, which is said to be minhsbitant of Chili. The Fiskatts or Skuak of Kalm, which inhabies Canada, has a white doral line in addition to two lateral ones." ('Fsuna Boreali-Americana.')

In the museum of the Royal College of Surgeons in London, Nos. 2140 to 2144 of the 'Physiological Series' (both inclusive) present instruetive preparations of the anal bags, glands, and follicles, of the Ferret; of the Zorille (Putorius zorilla, Cuv.) ; of the Marten (Mustela Martes) ; of the Japanese Skuuk (Mydaus meliceps) ; and of askuuk. (See 'Cat.,' vol. iii. part 2.)

The following is a list of the species of Mustelidee in the British Museum :-

Martes Alietum (Ray), the Piue Marten. England.
M. leucopus, the American Sable. North America.
M. Foina (Gray), the Beech Marteu. Eaglsud.
M. melanopus, the Japanese Sable. Japau.
M. Canadensis, the Pekan, or Wood Shock. North America.
M. flavigulu (Hodgson), the White-Cheeked Weasel. India.

Putorius fotidus, the Polecat. Europe.
P. Sarmaticus (Gray), the Vomela, or Peregusna. Siberia.

Tison Lutreola, the Nurik, or Nurek Vison. North America. Mustela vulgaris (Brisson), the Weasel. Englsed.
M. penula (Licht.), the Black-Fsced Weasel. Mexico.
M. Erminea (Linnæus), the Stoat, and Ermine. Europe and North

America.
M. santhogenys (Gray), The Yellow-Cheeked Weasel. California.
M. Sibirica (Pallas), the Chorok. Siberia
M. Modgsonii (Gray), Hodgson's Weasel. India.
M. Calhia (Hodgaon), the Cathis. Nepaul.
M. alpina (Fischer), the Altaic Weasel. Altai Mountains.
M. Horsficldii (Gray), Horsfield's Weasel. India.
M. subhemachalana, the Nepaul Weasel. Nepaul.

Zorilla striata, the Zorille. Cape of Good Hope.
Galera burbara, the Tayra. Tropical America.
Grissonia vittata, the Grison, or Huron. Brazil.
Mellivora Ratcl, the Ratel, or Bharsiah. Cape of Good Hope.
Gulo luscus, the Wolverene. Europe and North America.
Ifclictis moschata (Gray), the Helictis. Chiua.
II. Nipalensis, the Nepsul Helictis. Nepsul.

Mephitis varians (Gray), the Skunk. North America.
Conepatus Amazonica (C. Humboldt), the Maikel. Magalhaens.
C. Humboldlii (Gray), the Patagouian Maikel. South Ameriea.

Mydaus meliceps (F. Cuvier), the Stinkard, or Teledu. Java.
Avctonyx collaris (F. Cuvier), the Balisaur, or Sand-Bear. Iudia.
Taxus Meles (Linnreus), the Badger. England.
Tuxidea Labradoria (Waterhouse), the Brairo, or Lseyotl. Westera America.
Latcuina mollis, the Americsu Otter. North America.

Lontra Brasiliensis, the Lontra. Cayenne.

Lutra relgaris, the Otter. Eingland.
L. Chinemais (Gray), the Chincse Otter. China and Indin
L. Colifornica (Gray), the Californian Otter. California
L. aurobrunnea (Hodgson), the Golden-Brown Otter. Nepaul.

Aonve leptony.e, the Wargul. India
A. Delalandi (Lesson), the Gray Otter. South Africa.

Enhydra Lutris, the Knlan, or Sea Otter. Californin.

Fostil Mustelida.

Fossil remsins of Weasels have been found in the Tertiary Scries, in tho Bone-Caves and Bone Breccias nt Lunel-Vieil, Kirkdale, Puy-de-Dome, de.

Dr. Buckland states, in hia 'Reliquix Diluviano,' that a few jaws and teeth were found in Kirkdale Cave belonging to the Weasel, and that at Oreston there were marks of nibbling by the incisor and canine teeth of an animal of the aize of a weasel (pointed ont by Mr. Clift), showiog distiuctly the different effect of each individual tooth on the ulna of s wolf and the tibia of a horae. In his 'Bridgewater Treatise,' Dr. Buckland figures a weasel among the Land Mammifers of the third tertiary period.
The only fossil species named in Meyer's 'Palcologica' is Mustcla antiqua.

MUSTELUS, n genus of Fishes. [Squalide.]
MUTI'LLIDAE, \& family of IIymenopterous Insects corresponding to the Linoaan genus Mutilla. These bees belong to Latrcille's diviaion Potoores, and some of the apecies are remarkable for the power of their stings.
The females are generally destitute of mings ; the males aro wiuged. It is on this account that Latreille places them in his sub-section Heteropyna with the Ants. Their economy and bsbits however decidedly correspond with the fossorial or burrowing Sind-Wasps. This fsmily comprises the following moderu geuera:-Douglus, Labidus, Apterogyna, Psammolherna, Myrmosa, Myrmecodes, and Methoca.
Mutilla Europcea is n British species. It is of a bluish-black colour, with the thorax red, and with three white bands across the abdomen; the male is winged. It has been taken in Coombe Wood in the neighbourhood of London.

MYA. [Prloridia.]
MYA'RIA, Lamarck'a name for a family of Dimyarian Conchifers, consisting of the genera Mya and Anatina. [Pylorides.]

MYCE'TES, Illiger'a name for a genus of Quadrumana, consisting of the largest monkeys of America, remarksble for the powerful development of the organ of tho voice. The species are, as the name implies, Howlers, and the horrible yells sent forth by these snimals from the depths of the forests are described by those who have heard the mournful sounds as surpassingly distressing aod unearthly. Humboldt and Koopland heard the Araguato, one of the epecies, at the distance of half a league.

The genus is distinguished by a pyramidsl head with the upper jaw descending much lower than the cracium, while the lower has its ascending ratai very high, to sfford room for the bony drum formed by a convexity of the os hyoides, which communicates with the laryns, snd gives to the voice the enormoue volume above alluded to. llumboldt gives the fellowing as the external form of the drum in this gelus.

brim of Howilng Munkey.
The tail in this genus in preluenaile, and the part nuplied by the mimal when laying lold of a branch or other borly is naked below; Fo that auch portion munt lowe n higloer neasibility of toneh, F. Cuvier gives the following as the dentition of the llowing Nonkey, frem the Alouate Finge.

Teeth of Howliag Mankey. Y. Cuvier.
Mr. Swainson ('Classification of Quadupeda') observes that it is rsther singular that F. Cuvier should not have speeislly noticed the remarksble size of tho canioe teeth in the Howlers, which he saya are uncommonly large; and adds that in a 日pecimen before him when he wrote, they are nearly six times bigger than the eutting-teeth, a itructure which st once separates this group from the genus Cebus. Facial angle about 30 degrees.

Cuvier, in common with most other zoologists, places the genus at the head of the monkeys of the New Continent.

Dr. J. E. Gray ('Annsls of Phil.,' 1825) places the form among the Anthropomorphous Primates in the second family (Sariguida), and as the sole genus of its first eub-family Mycetian.
M. Lesson arranges it betweon Lagothrix and Cebus.

Mr. Swainson mskes Myceles the first genus of the Ccbidee, the second fanilly of his first order Quadrumana.

Mr. Ogilby observed in the summer of 1829 that two living individuals of $M y$ ycetes seniculus did not use the extremities of their anterior limbs for the purpose of holding objects between the finger and thumb, as is common among the Quadrumana; and he ascertained slso, on closer examination, that the thumb, as it has generally been considered, was not in these snimals opposeablo to the other fingers, but originated in the same line with them. Struck with the apparent singularity of the fact, he was induecd to pay particular attention to sll the other animals referred by zoologists to the Quadrumanous Family to which he had access; and the continued observation of more than eix years assured him that the non-opposeable character of the inner finger of the anterior extremities, which be first observed in the epecimens referred to, is not confined to the genus Myceles, but extends throughout the whole of the genera of the South American monkeys, individuals of all of which had been seen by him in a living state. He remarked that a true thumb existed on the anterior limbs of none of them, sud that consequently they havo been incorrectly referred to the Quadrumana by zoologists generally. [Cuemoroda; Quadnumana; Simmad.E.]

The habits of these nnimnle are oocial, nud most of them havo thiek beards. Their deep and sonorous yells are supposed to be n call to their matea; in short, to be a hideous love-song. In their gregarious habits nud howlings they may be considered as bearing ame anslogy to the Gibbons of the Old World [Ape; Hylobates]; whilat their low facial angle bas induced some to look upon them as representing the baboons of the nacient continent.
M. Urainus (Stentor Ursinus of Geoffioy), the Araguato.

Length nearly 3 feet, without including the tail. Hair, which is longer than that of M. seniculus (Mono Colorado of Humboldt), of a golden red, but the beard, which is of a deeper colour than the reat, is less buhy than it is in M. seniculus; and the circumference of the face where the hair is red is also paler. Humboldt matea that the eye, voice, and gait, denoto melavcholy. He saw goung ones brought up in the Indian huts, which never played like the Sagoius. [Jnconos.] Lopez do Gomara rpeaks of the Aragusto de los Cumanengea na haring the fuce of n ninn, the beard of a goat, and a grave demeanor. Fruit and the leaves of plants form their food. The femalea carry the young upon their shoulder. Humboldt counted sbave forty upon
ons tree, and he does not deubt that upon a square league of the wild conntries frequented by them above two thousand may be found. Thay were in great abundance near pools of stagnant water ahaded by the Mauritia Acauosa. All the species are natives of South America.

Araguato (Myetes Crsinus).

MYCETOCHARUS. [Cistelides.]
MYCETOPHAGUS, a genus of Tetramerous Xylophagous Coleoptera.

MYCETO'PODA, or MYCE'TOPUS, a genus of Conchiferous Molluaca with elongated valves, established by M. D'Orbigny, and referrible to the family Naiade of Lamarck. M. D'Orbigny atates that this genua perforates like the Pholade. [Naindes; Pirolade..]

MYCTERIA. [JARIRU.]
MYC'IERUS, a genus of Hcteromerous Coleoptera.
MYDAS, a genus of Dipterous Insects.
MYDAUS. [MUSTELidE.]
MYGALE. [Sorecide.]
MY'GALE, a genus of Spiders, the species of which have their eyes placed clomely together at the antcrior cxtremity of the thorax. They spin their webs in the form of tubes, in which they reside concealed in holes in the ground, or under stones, or the bark of trees. In consequence of the representations of Madame Merian, some kiads of Mygale have become celebrated as bird-catching spiders. Mr. W. S. M'Leay has however shown that Madame Morian'a drawing is not to be trusted, since the Mygale there figured is a subterranean spider, and makea no net in which to entrap small birds. The same distinguished naturalist has observed a spider belonging to the genus Epeira eating a yeung bird of the genus Zosterops, which had been entangled in ita net in a garden in Sydney, Australia. In a communication of Mr. M'Teay's, publiahed iu the 'Annals of Natural History' for 1842, be remarks on the subject of bird-catching spiders as follows :- "My conviction is that Madame Merian has told a wilful falsehood reapectiog Myyale, or rather has painted a falsehood; and that her followers have too hastily placed confidence in her idle tales. My conviction is that no Mygale can catch birds in its net; for, as I have said in the paper printed in the 'Zoological Transactions,' it makea no geometrical net. Nay, further, I have proved that the genus Nephila, which lives in a geometrical net, does not catch birds either here or in the West Indies ; and moreover, I have ascertained that birds are not the proper food of this New Holland Epeira." The Mygale Ionica, a Grecian speeies, forms a very ingenioua trap-door with which to close up the mouth of its tubc.

MYGINDA. [Aquifoliacee.]
MYIOTHERA. [Merulider]
MYLODON. [Megatheridis.]
MYOPHONUS. [CoRvios.]
MYOPORA'CEE, Myoporads, a natural order of Plauts, distinguisherl from Verbenaceer by little except the orulcs being pendulous and the albumen more abundant. The plants referred to Myoporacece are chiefly shrubs of little interest, inhabiting the Australian regions and othet parts of the southern hemisphere. The most remarkable thing connected with them is the presence of cysts of oil in their leaver, which thence have a dotted atructure.

Aricennia tomentosa, tha White Mangrove, a shore plant rooting in mind, is a curious species. Brown describes ite roots as creeping to a
considerable distance, often curved above the ground as much as aix feet before they fix themselves, and throwing up naked auckers out of the mud in great abundance, which look like shoots of asparagus. It is used at Rio Jansire for tanning. It exudes a kind of green aromatic resin, which is eaten by the natives of New Zealand.

The order centains 9 genera and 42 species.
MYOPOTAMUS, a genus of Animals belonging to the order Rodentia and the family Hystricidae. [Hystricide.]

MYOPTERIS. [Cheiroptera.]
MYOSOREX. [SORECLDe.]
MYOSO'TIS (frem $\mu \hat{s} s$, a mouse, and $\omega \pi$, the crude form of ozs, an ear), a genus of Plants belonging to the natural order Boraginacea. It has a 5 -parted calyx; the corolla salver-shaped, contorted in æstivation; the throat closed with scales, the limb 5-fid, obtuse; the stamens included, with filamenta very short; the style simple; the nuts smooth, externally convex, keeled within, attached by a minute lateral spet near their base. This geaus is distinguished from all the other Boragineous gavera by the posseasion of a contorted restivation of the corolla. The species are annual or perennial, rough or amoothish planta, with blue flowers in terminal racemes, which are revelute before expansion. About 50 apecies have been described, which inhabit the more temperate parts of Asia, Africa, and America, and are abundant in Europe. Eight apecies are found in Great Britain.
M. palustvis, Great Water Scorpion-Grass, or Forget-Me-Not, has the calyx open when in fruit, and shorter than the pedicel, with straight adpressed bristles; the teeth short, triangular ; the limb of the corolla flat, longer than the tube; the lobes slightly emarginate; the pubescence of the stem spreading. It is a native throughout Europe, and also of Asia and North America. In Great Britain it is found in humid meadows, bogs, banks of rivers, rivulots, and ditches. This plant has a large bright blue corolla with a yellow eye. It is a beautiful plast, and when once seen will be seldem forgotten. It is probably on this account that it has obtained its common name Forget-Me-Not. Amongat the young it is regarded as enblematical of true affection, A variety is describod with white flowers.

The fellowing are the remaining British apecies of this genus:-
M. repens, Mouse-Ear, with narrow lanceolate teeth; lobes of the corella slightly emarginate; the puhescence of the stem apreading. Found in boggy places.
M. caspitosa, with narrow lanceolate teeth; the limb of the corolla equalling the tube; the lobes entire; the pubescence of the stem adpressed. Found in watery places.
M. suaveolenis has an attenuated calyx; the limb of the corolla longer than the tube; the root-leavea on long stalka, pointed. Only found in Scotland on the aummits of the Breadalbane Mountains.
M. sylvatica has a calyx rounded below, deeply 5 -cleft, closed when in fruit; the limb of the corolla longer than the tube, flat; the rootleaves bluntish. Found in shady places.
M. arvensis, Field Scorpion-Grass, has the calyx half 5-cleft; the limb of the corella equalling the tube, concave. Grows in cultivated land and thicketa.
M. collina has the calyx open and ventricose when in fruit. Found on dry banks.
M. versicolor has the calyx clesed and obleng when in fruit. It has amall flowers, at first pale-yellow, afterwards blue. Found in meadows and on banks.

Nong of the species are used in medicine or the arts.
(Babingtov, Manual of British Botany.)
MYOSU'RUS (from $\mu \hat{v} s$, a meuse, and oupd, a tail, the seed being seated on a long receptacle "which looks exactly like the tail of a mouse '), a genus of Plants belonging to the natural order Ranunculacece. It has a calyx of 5 sepals, prolonged into a apire at the base; the petala 5, with a filiform tubular claw; the capsules closely imbricated uper a long filiform receptacle, not bursting; the seed pendulous; the embryo inverted with the radicle superior. The ouly species of this genus is M. minimus, which has a simple leafless single-flowered stem 2 to 5 inches high. It has a very long receptacle, numerous carpels, and linear leaves. It grows in damp places aud in fields. It is a native of Eurepe and America. The American plan* has been described as M. Shortii, but there is every reason to believe it is the same as the British and other European plants. (Babington, Manual of British Botany.)
MYOTHERA, a genus of Dentriostal Passerine Birds, the species of which, on account of their liabits, are known by the name of AntCatchers.

MYOXUS. [MURIDe.]
MYRAFRA. [FRiNaillide.]
MYRIACAN'THUS, a genus of Fossil Fishes, from the Lias of Dorsetshire. (Agassiz.)

MYRIAN1'TES, a genus of Fossil Annelidu, from the Lower Silurian Strata of Lampeter, in South Wales. (Murchison.)

MYRIAPODA, an order of Invertebrate Animals belonging to the class Articulala. This order is represented by auch species as the Centipede and Gally-Worm. They may be regarded as an intermediate form between the lower and bigher forms of Articulate animals. They agree with the Annulose ferms in the lengitudinal extension of their trunk, in the similarity of the segments from one end of the body to the other, and in their cylindrical form. On the other hand,
they poesess more completo eyea than any of tho Vermiform tribes, and their respiratory apparatum and the parts of their organisation are more nearly alliod to Insects Their covering is firm, and of a horny character.

The division into negments is very distinct, a flexible membrane leing interposed between each pair of flrm rings or plates. The lega and other appeodages are inclosed in the same kind of integument, and their joints are formed in the same manner as those of the body. We find in this class hewever two distinct types of conformation, of which one approximates most nearly to the Vermiform tribes, and the other to that of the higher Articulata; in the former of which the Iulus (Gally-Worm) may be taken as an example. The body is generally cylindrical, or nearly so ; the number of eegments is coneidernhle, and most of them bear two pairs of thread-like legs, so that the number of these members sometimes amounts to 160 pairs. The legs are very imperfectly developed, being acarcely large or strong enough to sustain the weight of the body, and their articulations being indistinct; and the animal seems rather to glide or crawl with their assistance, like a serpent or a worm, than to use them as its proper instruments of lacomotion. This tind of movement is facilitated in aome species by the incemplete inclosure of the body in the consolidated integument, for this merely forms plates above and below, which are connected at the bides by sof membrane; so that the trunk can be easily placed in any direction. When at rest the bedy is rolled up in a spirnl form; 80 that the legs, concealed in the concavity of the apire, are protected from injury. The animals do not move with mpidity, and they chiefly feed upon decomposing organic matter. In the higher division, on the other hand, of which the Scolopendra (Centipede) may be taken as the type, the body is fattened, and each segment is completely inclosed in its horny covelope; the number of segmenta is not very great, never exceeding 22, sad being sometimes as low as 12 ; snd each segment bears a aingle pair of welldeveloped legs, on which these animals can run with considemble rapidity. Still their bodies are possessed of conaiderable fexibility; and they are thus enabled to wind their way with facility through very anrrow and tortuous passages, in aearch of the insects, \&c., which constitute their food. In both orders, the first segment, or head, is furnished with numerous eyes on each side, sad siso witha pair of jeinted antenne; the mouth is adapted for mastication, being furoished with a pair of powerful cutting jaws; and it is also provided, in the Centipede and its allies, with a pair of appeudages, formed by a metamerphosis of the legs of the first segment of the body, which are adapted not merely to held and to tear the prey, but to convey poison into the wouuds thus made, this poisen being ejected through a minute aperture near their points. (Carpenter.)
The alimentary canal is mostly divided inte gullet, stomach, and intestiac. The stomach ususlly presents distinct muscular walls, The circulatory organs consiat of a donsal vessel, whieh propels a curreat of blood from behiad forwards, which is diatributed to the body and respiratory organs. In the higher forms respiration is effected by meana of trachex, which convey air iato the interior of the body es in Insects. The pervous syatem is arranged in a double neries of gauglia, as in most of the Articulated Tribes. They possess cephalic ganglia, which meet above the cesophagus, and form a twolobed mass, from which nerven proceed to the eyes and antenna. In soany parts of the deuble seriea of cords the ganglia of either gide unite. The muscular apparatus is very complicated, consisting of a series of distinct muscles for the movements of the segments and legs. The sexes are separate. The embryo st the period of hatching consiats of but few segments, but these inerease in number till it is fully grown by the nubdivision of the penultimate segment. The first number of segments is eight or vine, and these go on increasing in number till there are sixty or seventy. The larva has ne legs, these organa making their appearance after the first moult. During their growth these animals have a cousiderable power of regenersting lost portions of their boly as the legs and antennes, but this power is loat when they cease to develop.

Mr. Newport divides the Myriapoda into two orders-Chilopoda and Chilognatha. [Culofoma; Cmbocisatha.] The followiog synopsis of the genera of these two orders is dramn up from the list of the specimens of dyriapoda in the collection of the British Museum (1814):-

Order I. Chilopoda.

Family 1. Cermatinder.

1. Cermatia, lliger. 9 apecies.

Family 2. Lithobiider.

1. Lithobim, I.eneh. 9 specier
2. IIenicops, Newport. 1 species.

Family 3. Scolopendride.

1. Scolopendra, Lioncus. 38 species.
2. Cormocthalus, Newport. 8 species.
3. Rhombocephalu, Newport. 2 specio.
4. Heterostoma, Newport. 7 species.

万. Thentons, Nowport 1 speeies.
6. Scolopocryptop, Newport. I speciea.
7. Cryptop, lenel. I яpecies.

Family 4. Geophilidke.

1. Scolopendrella, Gervais 1 apecies
2. Mecistocephalus, Newport, 2 species.
3. Necrophlcophagus, Newport. 3 species.
4. Gonibregnatus, Newport. 1 species.
5. Gcophilus, Leach. 6 apecics.

Order II. Chilognatha,
Family 1. Glomerida.

1. Glomeris, Latreille. 4 species.
2. Zephronia, Gray. 6 speciea.
3. Spharotherium, Brandt. 2 apeciea,

Family 2. Polyxenida.

1. Polyxenus, Latreille. I species.

Famil 3. Polydermida.

1. Pontaria, Gray. 3 apecies
2. Polydesmus, Latreilla 12 species.
3. Strongylosoma, Brandt. 2 species.
4. Craspedosoma, Leach. 2 specien,
5. Cambala, Gray. 1 species

Fim 4. Iulida.

1. Platops, Newport. 5 apecies.
2. Iulus, Linnerus 12 species.
3. Blaniulus, Gervais 1 species.
4. Spirobolus, Brandt. 9 вресies.
5. Spirostreptus, Brandt. 15 species.
(Monograph of the Class Myriapoda, Order Chilopoda, by George Newport; Linnacan Transactione, vol. xix.; Carpenter, Principles of Comparative Physiology.)

MYRICA (the Greek Mupinø), a genus of Plants the type of the natural order Mfyricacere. It has its flowers in catkins, which are composed of concave scales; 4 to 8 stameas. The fruit a 1 -celled I-seeded drupe, and no periauth. There are scveral species of this genus, which are shruba or emall trees.
M. Gale, the Sweet Gale, or Box-Myrtle, is a native of Great Britain. It has lanceolate serrate leaves, broader upwards, with a shrubhy stoun. It is a bushy plant, about 4 feet in height; the catkins are acasile and erect; the fruit is covered with reaineus glands, and the lesves are fragrant when bruised. This plant is found on the continent of Europe, and slso in North America, under the same circumatancea as in Great Britain. The leaven, on diatillation, yield a yellow othereal oil, of a feeble odour, and mild taste, whieh after a littla time becomea slightly warm. The leaves were formerly used as a remedy against the itch, and when bruised are placed amengst furs for the destruotion of the moth. In decuction they are employed for the deatruction of buga and other vermin. In Sweden they are used as a substitute for hops in browiag.
M. ceriferc, Wax-Myrtle, or Bay-Tree, has cuncate-lanceolato leaves, sometimes entire, but more frequently tootbed, particularly towards the end, somewhat pubescent, a little paler beaeath, and geverally twisted or revolute in their mode of growth; has a branching halfevergreen etem, from 1 to 12 feet high. The emall flower is formed by a concave rhomboidal ncale, containing three or four pairs of roundish anthers, on a branched footstalk. The pistiliferous catkins which grow on a different shrub are less than half the size of the staminiferous ones, and consist of narrower scales, with each an ovato ovary, and two fliferm styles. To these catkine eucceed olusters or aggregations of amall globular fruits, which are at first green, but finally become nearly white. They consist of a hard stony covering, which incloses a dicotyledonous aeed. The hard covering is atudded on its outside with small black grains, and over these is a coating of hard white wax, fitted to the grains, and giving to the aurface of the fruit a granulated appearance. This plaut is a native of woods in the Uaitod States of America. The bark of the root of this plant is acid and astringent; in large dosea it produces vomiting, accompanied by a burning eensation iu the throat. It is used as a stimulant and astringent. The wax of the fruit is collected aud purifed, and used for many of the purposes for which bees'-wax and candlee are employed. The wax has been occasionally used in pharmacy in the same way as commen bees'.wax.

The fruit of M. a apida, a nativo of Nepaul, is about the size of a cherry, and is pleasantly scid and eatable.
(Lindley, Mora Mfedica; Lindles, legelable Kiinydom; Mabington, Manual of British Botany.)

MYRICA'CEAE, Gallworts, aro plants constituting a very emall nstural order of apetalous Exegens, with eeparate sexes. The mont essential part of their character is expressed by Endlicher in the following terms:-" Flowers unisexual. Males-Bractlets, 2 ; calyx, 0. Females-Hypogynous scales from 2 to 6; ovary 1-celled, with 2 styles; orule 1, erect, orthotropous; drupe 1 -seeded; sced erect; embryo without albumen; radicle вuperior." In general their fowera are arranged in a manner aimilar to those of Betulacea and Salicacere, With which latter howerer they seem to have no real affinity. From Casuaracea, curious Australian trees, with jointed lealless stems, like those of Equisetum, they are only distinguished by their orect ovule and orthotrepous aceds. They are common in the temperate
parts of the world, especially in North America and the Cape of Goad Hope. The order embraces 3 genera and about 20 species. [Comptonis; Myrica.]

Myrica argula.
1, a male flower; 2, an ovary; 3, a drape cut opea vertically to show the erect position of the seed withia it.

MYRIOPHYLLI'TES, a gents of Fossil Plants, from the Cual Measures. (Artis.)

MYRIOPHYLLUM (from $\mu \nu$ pios, numerous, and $\phi \dot{\prime} \lambda \lambda o \nu$, a Jeaf), a genus of Plauts belonging to the natural order Maloragacce. It has monocious flowers; a 4-parted calyz; 4 petale, fugitive, louger than the calyx in the staminiferous flowers, small and reflex or none in the pistilliferous flowers; the stamens 8 , styles 4 , villese; the fruit tetragonal, separable into four hard uuts. The species are floating squatic herbs, rising above the water to blossom. The leaves are fiuely cut, appesite or verticillate; the flowers are small, disposed in axillary whorls or in whorled spikes, the upper leaves being almost all abortive.
M. vericillatum, Verticillate Water-Milfoil, has the flowers all nsillary, whorled; the bracts piunatifid. It is a native of Europe, in ponds, ditches, poola, and lakes, but never in running water. It is found in Great Britaia, but is a rare plaut.
M. picatum, Spiked Water-Milfoil, bas the flowers whorled, forming in leafless spike, the bracts small cutire, the spike erect when in bud. It is a native of Europe and North America, ia ditches, lakes, and pools, never in ruming water; it is found abundantly ia Great Britain.
M. alternifulium has the spike drouping when in bud, and the fertile flowers in axillary whorls. It is found in ponds and ditches in Europe, in Grat Britain rarely.

About 10 other species of this genus from various parts of the world have been deacribed.
(Babington, Manual of British Botany.)
MYRIOPODA. [Myriapoda.]
MYRIPIRISTIS. [PERCIDS.]
MYRISTICA, a genus of Plants, the type of the order Myristicacece. The flowers are djocious; calys urceelate, 3 -teothed; filaments of stamcus monadelphous; authers if to 10, connate; ovary simple; style, bone; atigma 2-lobed; pericarp fleshy, 2 -valved, 1 -seeded; seed euveloped in a fleshy aril.
M. afficinalis, Linuxus (M. Moschata, Thubberg; M. aromatica, lloxburgh), is the Nutmeg-Tree.
This tree is a native of the Molucca Ialauds, especially of Banda, but cultivated in Java, Sumatra, and elsewhere in the East, and lately in Caycnue and scveral of the West India Ialands. It gields nutmegs and mace, the beat of which are produced in the first-mentioned islands. The fruit is of the size aud form of a peach, and, when ripe, the fleshy part separates into two nearly equal halves, exposing the kernel surrounded by an arillus, the former heing the mutineg, the latter the mace. The arillus is red when gathered; but being sprinkled with sea-water and dried it assumes an orange-yellow colour. It has a fatty shining appearance, yet is horny and brittle. The odour in strongly aromatic; the taste aromatic, but sharp and acrid. It contains both a fixed oil (in small quantity) and a velatile oil. One pound of mace yields by distillation one ounce of the latter. The former is not au article of Euronean commerce, and what is termen the

'expressed oil of mace' is obtained from the nutmeg, and should bear its name. An inferior mace is obtained from various species of Myristica, especially the M. tomentosa and M. officinalis (Martius), which is a Brazilian tree. The propertics of macc are similar to those of the nutmeg.

1, a calyx ; 2, the monadelphous stamens of a male flower; 3 , the pistil of a female flower ; 4, the seed of the nutmeg, eaveloped is the mace or aril ; 5 , a vertical section of the seed, showing the rataiated alhumen and the small embryo at its base.

On the removal of the mace is seen the shell, of an oval or ovate shape, and of a dark-brown colour, in which js contaived the seed or nut. This is closely invested by an iouer shell or coat, which dips down into the substance of the albumen of the seed, and gives it the character which is termed ruminated. Two or three gatherings of the nutmegs are made in the year, generally in July and August, iu December, and in April. The third period jields the best nutmegs. The collected nuts are dried in the sun, or by the heat of a moderate fre, till the shells split: they are then sorted and dipped in lime-water, to preserve them from the attack of insects. The nuts are about an inch long, of the size of a hazel out, but with a furrowed or sculp. tured surface. Those of good quality slould be heavy each weighing, on an average, 90 grains. The internal aspect is marbled and of a fatty sppearance. The substance is gray; but the veins, which are of a reddish-brown, consist of cellular tissue abounding in oil, and are the processes of the internal coat already mentioned. Odour agreeable, strongly aromatic. Taste warm, aromatic, oily.
Besides the fixed oil, it coatains a volstile oil, lighter than water, being of the specific gravity of 0.931-47, while a spurious oil of nutmeg is ouly 0.871 . By keepiag it deposits a stearopten, or muscat. camphor, called Myristicine. The solid or fixed oil consists of stearine and elaine, with a slight portion of volatile oil intermised. Both the fixed aud volatile oils are used for medical purposes. Of the fixed there are two varieties, the English and Dutch, of which the former is the better: It occurs in pieces, wrapped in leaves of the banaua, weighing about three-quarters of a pound. When cut iute it has a uniformly reddish-yellow colour. The Dutch sort is in larger pieces, wrapped sometimes in leaves, sometimes in paper, and of a lighter yellow colour. Both are frequently adulterated. The volatile oil is also mixed with purified oil of turpentime. Nutmegs are frequently either digested in alcohol or distilled to abstract the volatile oil, and then passed off as fresh. Such nutmegs are lighter, and when a hot ueedle is inserted do not give an oily coating to it. Old, worm-eateu, or wild nutmegs should be rejected. Cenuine or cultivated nutmegs are called female, to distinguish them from the male or wild nutmegs, which are the preduce either of the M. . Meschata, var. sphcnocarpa, or of M. tomentosa (Thunb.). These are longer, heavier (weighing generally 110 grains), and of inferior quality. They are more apt to cause narcotic symptoms, giddiness, \&c., than the true sort. TThe coarse strong-smelling nutmegs from Santa F'é are from the M. Otebce. Other species also yield nutmegs - as M. spuria, in the Philippines; $M f$. Mudagascariensis and M. acuminata, in Madagascar; aud M. Bicuiba, in Brazil. Sowe nutmegs have little or no odour, as the M. fatua, but they nevertheless act powerfully on the system. M. spuria yields a crimson juice, which is employed in the Philippines as a substitute for dragen's-blood.
Nutmegs and mace, from the large quantity of volatile oil, are decidedly stimulant, and when used in abundance produce, by exciting
the circulation, narcotio effects. In moderation they promote the appetito and assist digention.
MYRISTICA'CE.t., Nutmegs, a family of Plants belonging to the division of Diclinous Esogens, The epecies are tropical, fragrant, anomatic trees, with an astriogent juice, alternate coriacoous aimple leaves, without stipulos, and dimoious flowers. Of the flowera, the males havo monadelphous stamens; the formales have a single l-celled ovary, containing an orect seed; and both have for calyx a tubular coriaceous envelope, with from 2 to 4 , usually 3 , valrato teeth. Their fruit is a 2 -val ved succulent capsule, containing a aingle seed enveloped in an aril, and consisting of ruminated albumen, abounding in a powerful and agreeablo aromatic secretion; the embryo is very small, and placed in a cavity at the base of the albumen.

Tho order is nearly allied to A nonacea, from which however it differs very remarkably in the total want of a corolla, and in the reduction of the number of carpels to one. To station it in the artificial division of Apetalous Exogens, as is usually done, is to violste every principlo of natural classification.

The Nutmeg of the shops, which is the soed of M. officinalis, is the only product of the onder employod officinally. [MYnistics.] Other apecies bear fruit that may be omployed as a eubstitute, but thoy are all ioferior to the real Oriental Myristica.
This order embraces 5 genera and sbout 35 species. The genera are, Myristica, Firola, Ḱnemu, Pyrrhosa, nnd Hyalostemma.

Wirola sebifera yielda n fatty oil on being hested. Pyrrhosa tingens fields a crimson dye, with which the natives of Amboyns stain their teeth.

MYRMECOBIUS. [Marsuriata]
MYRMECOPIIAOA, the geous of Edentate Avimals to which the great Ant-Eater, MF. jubata, belongs. This animal has not often been seen in Europe. Two specimens wero exhibited alive in the Gardens of the Zoological Society during the summer of 1854. An account of the anatomy of this creature was givon by Professor Owen to the meeting of the British Association it Liverpool, in September 1854. [ANTEater]

MYIME'LEON, genus of large Neuropterous Insects, the larva of which are remarkable for their habit of entrapping their prey by means of pitfalls. Among the many accounts which have beed publlshed of their operations, one of the best and most recent is that given by Mr. Westwood, in the 'Magazine of Natural History' for 1838, and in his Introduction. "Some larvo of the common epecies, Myrmeleon formicaleo" (the Ant-Lion), writea that naturalist, "which I brought slive to this country from France, nfforded me smple opportunities for watching their proceedings. It is in very fine sand that the larvs makea its pitfall. When placed upon the aurface, it beads down the extremity of the body, and then pushing or rather dragging itself backwards by the assiatance of its hiod legs, but more particularly of the deffexed extremity of its body, it gradunlly inoinuates itself into and beventh the sand, constantly throwing off the particles which fall upon, or which it ehovela with its jaws or legs upon its head, by suddenly jerking them backwards,

- Oasaque prost lergum magnie jactata parentis.'

Proceeding in this manner, in a spiral direction, it gradually diminishes the diameter of jts path, and by degrees throws so much of the sand away as to form a conical pit, at the bottom of which it then conceala itself, its mandibles widely extended being the only parts that sppear above the surface; with theae any luckless insect that may happen to fall down the hole js immedistely seized and killed. When the fluids of the victim are exhausted the ant-lion, by a audden jerk, throws the dry carcas out of the hole: should, however, the inscet by chance escape the murlerous jawa of its enemy, the latter immediately commencea throwing up the sand, whereby not only is the hole made deeper, and its sides eteeper, but the escapiug iosect ia probably hit, and again brought down to the bottom of the pit. It in chiefly upon ants and other moft-bodied insecta theso larva feed. They are however capable of underging long fasta, for one of my larrae remained from October till March without food. Previous to nssuming the pupa atate, the larva form a globular cocoon of less than half an inch in diameter of fine sand, glued with ailken threads apun from a alender telescopic-like eppingeret, placed at the cxtrenity of jts body, and lined with fine ailk. The puia is amall, not being bulf no inch long, inactive, and with all the limbs laid at rest upon the breast. When ready to amsume the perfect state, it uses its own mandibles, which are quite unlike those of the larva aud imago, to gnaw a hole through the cocoon, and puabes itself partly through the aperture in which it leaves the pupa akin. Immediately on assuming the perfoct state, the abdomen is almost immediately extended to nearly three timen ite previoun length."

MYKMICA, a genus of Insects belonging to the order Hymenopicra, and the family formicida. It is one of the genera formed out of the Limmean genus Pormica. Unlike that genus bowever, it possesses a nting. The peduncle of tho abdomes ia composed of two kuota, the antenne are ixposed; the maxillary palpi are long and 6.jointed, and the madibles triangular. M. rubra is a common lBritiab species.
MYROBAIANS. This ia a name applied to the almond-like kernela
of a nut or dried fruit looking like a plum, of which thero are aeveral
sorts known in the Eant. They are the produce of various species of Terminalia, as T. Bellerica, T. Chebula, T. citrina, and T. anguetifolia, They vary from tho size of olives to that of gall nuts, and have a rough, bitter, and unpleasant taste. Many of the trees of this tribe, which are all natives of the tropical regions of Asia, Afrion, and Amoricn, aro used for tanning, and somo for dyeing. They aro highly valued by dyers, creating, when mixed with alum, a durable durkbrown yellow. Myrobalans fetch in the Bombay msrket 8s to 26a the Surst candy of 821 lbs. The bark and leaves of T. Catappa yield a black pignent, with which Indian ink ia made; the seeds are eaten like almouds. A milky juice is said to flow from T. angustifolia, which, when dried, is fragrant, snd, resembling Benkoin, is used as a kind of incense in the Catholic churches in the Mauritius. The fruit of T. Bellerica, and of T. Chebula, both useful timber-trees, indigenous to the East Indies, are ured medicinally as a tonic and astringent. Ono hundred and seventeen owts. of Myrobalans were shipped from Ceylon in 1845.

The annual imports of Myrobalans into Hull, amount to sbout 1600 cwts. The quantity which arrived at Liverpool was 185 tons in 1849, and 851 tons in 1850 ; 27,212 bags in 1851, and 19,946 bags in 1852 ; they came from Cnloutta and Bombay, and aro also used for dyeing jellow and black. The prico in January 1853 was 6a, to 12 a. per cutt. The average annual imports into the United Kingdom may be taken st 1200 tons.

Myrobalsns is also the Einglish name given by Lindiey to tho natural order Combretacece, which yields these fruits. [Combubtacses; Enblica.]
(Symonds, Conmercial Products of the Vegetable Kingdom.)
MYROSPERMUM, a genus of Plants helonging to the natural order Amyridacea. It has a 5 -toothed campanulate calyx; 5 petals, tho upper one largest ; stamens 10, distinct; ovary stipitate, oblong, membranous, with $2 \cdot 6$-ovules; legume with m winged stalk, terminating in an oblique indehiscent 1 -celled I-2-seeded samara. The species are trees with dotted leaves.
M. Peruiferum (Myroxylon Peruiferum, Linnous), Balsam of Peru Tree. The stem of this plant yields the Balsam of Peru. It has a thick smooth straight trunk with n gray coarse bark, which is filled with resin. The lcaves are pinnated, and marked with transparent dots; the leaflets slternste, of $2,3,4$, or even 5 psirs, ovato-lanceolate, acuto, coriaceous at the apex, somewhat emarginste, shining above, hairy on the under side; calyx campanulate ; petals 5 , white, tho upper reflcxed, broad, roundish, emarginate, tho other 4 distinct, linear-lauceolste, reflexed, apreading; etamens 10 , distinct, shorter than tho petals; anthers mucronato; eved reniform, lying in yellow liquid balsam, which hardens into resin.

Balsam of Peru occurs in two states; one called the white, the other the black. The former results either from spontaneous exudation from the bark, or from incisions made in it; it is also found in the insido of the seed-vessel wrapping tho seed. At first it is liquid, of the consistence of recent honey, of a light yellow colour, of an agreeable odour, resembling vanilla, and a somewhat acrid, bitterish, but aromntic taste. Its apecife gravity is less than that of water. Heated in a platioum spoon it burus with a wbite smoke, which reddena litmus paper, and leaves no residual ash. It is completely soluble in alcohol, and also in ether, except some white mnterial which separates frow it. It contains much benzoic scid. By distillation with witer it gields a volntile oil. By expoaure to the air it bardens, and is then termed Opobalsamum Siccum, which must not be confounded with tho true Opobalsamum. [Balsamodendnon.] Balsam of Tolu is also sometimes called Opobalsamum.

Bhack Balsam of Peru is stated to bo procured by boiling the resinous bark of the trunk and branches of the tree. Martiua conjectures that it is procured by subjecting these parts and the pods to a kind of dry distillation, or 'distillatio per descensum,' similar to that by which tar ia obtained from pine-trees. This balsam has the consistencu of ayrup, but does not solidify with age, is scarcely tenacious, of a blackish-brown colour, and not transparent, eomewhat oily to tho touch, odour agreeable, balsamic, resembling vanilla, taste acrid, balsamic, bitterish, and cnduring. Scarcely iguiting when in contact with flame; not yielding by distillation with water any volatile oil, and not perfectly soluble oven in absolute alcohol. Its chief constituents are tho oil, which cannot be termed volatile, two kinds of resiu, and bonzoic acid.
M. Toluiferun (Toluifara Bulsamum, Millor, Myroxylon Toluifora, Ilumboldt), Balsam of Tolu Treo. It is very like the last, and by some botanists has been regarded as a variety. The leaflets are then macinbranous, obovate, taper pointed; the terininal one larger than tho others. This tree yields Balsam of Tolu. It flows from incisions in the trea, and ia of the consistence of a strong turpentine. It is sent to Europo in earthenware jars or in tin cases It becomea tenacloves with age, snd in cold weather may be fraotured, but melts again in aummor, or with the warmtle of the hand. It is of a yellow or brownish colour, tramparcut, with the taste nad odour of the white Balsam of Peru. [Balsans, jo Ants and Sc. Div.]
(Lindley, Flora Medica)
MYROUNGA. [Phocide]
MYRRH. [BALSANODENDRON.]
MXRIRHIS, a genus of Plants belonging to the natural order

Umbelliferce; and to the tribe Scandicinece. It has an obsolete calyx; obcordate petals, with an inflexed point; the fruit not beaked; the carpel covered with a double membrane; the outer membrane with elevated keeled ridges hollow within, the inner one close to the seed; no vitte. The spacies hare leaves thres times decomposed, the leafets pinnatifid; the involucrum wanting; the iuvelucels of many lanceolate ciliated leaves, the central flowers of the umbel staminiferous; the petals white.
M. odorata, Sweet Cicely, or Great Chervil, has the leaves downy benesth, the leaflets of the partial involucres lanceolate-acuminate. This plant has a stem 2 or 3 feet high, round, leafy, and hollow. It is a native of middle and south Europe and Asis, from Spain to Asia Miner, also of Germany, Switzerlaud, Austria, the south of France, and the north of Italy. In Great Britsin it is found in pastures and hilly districts. This plant wss formerly much used in medicine. It yields a volatile oil, which bas a pleasant odour. The young leaves and seeds were used in salads, and the roots were boiled or eaten cold, or in tarts or in a varicty of sauces. In Germany the seeds were added to soups, and in the north of England they are employed for polishing and perfuming old oak floors and furniture. M. sulcatum has heary leaves, and is a native of Spain, Both species may be grown in any common garden soil, and propagated by seeds or division of the roots.
(Babington, Manual of British Botcryy; Eurnett, Outlines of Botany.)
MYRSINA'CEE, Ardisiads, a natural order of Plants. They are chiefy sub-tropical plants of the Exogenous class, so nearly the same in their fructification as the species of Primulaceo of nortbern chmates, that soarcely any valid mark of distinction can be found between them. The indehiscant fruit in Myrainacece is chiefly relied upon for the means of separaing them. The general appearance of the two orders is however widely different; Primulacece censisting of herbs with no development of woody matter, while Myrsinacece, in all cases yet observed, are ahrubs or tress. Many of the species have handsone foliage and gaily-coloured flowers, on which account thay are frequently met with in gardens, but they are of no importance for useful purposes. Arlisia and Jacquinia are the twe commonest geners. The order contains 30 genera and 320 species.
MYRTA'CEEF, Myrtle-Blooms, are Polypetaleus Exogens, forming a very cxtensive and important natural order of Plants, exclusively inhabiting warm countries, and in all cases either shrubs or trees, an herbaceous form of the order being unknown. The most nerthern station of the species is the south of Europe, where the common Myrtle grows appareutly wild. [MYRTUs.] If this plant is taken as the type of the order, it might be said to cousist of aromatic plants with opposite lesves, dotted with transpareut oil-cysts, bearing icosandrous monegynous polypetalous flowers, succeeded by an inferior succulent fruit; but this is the character rather of a section of the order than of Myrtacece considered as a whole. In this division are however included nearly all the species employed for the use of man. Among the tablefruits of the tropics are-the Guava, yielded by different species of Psidium; the Rose-Apple and Jamrosade, produced by Eugenia

1, a flower; 2, a stamen; 3, a transverse section of the ovary.
Salaccensis and F. Jambos: of spices, Cloves are the flower-buds of Caryophyllus aromaticus; and Allspice is the dried berries of Eugenia

Pimenta; all which are obtained from plants belonging to the same section as the Common Myrtle: the arematic fruits of that plant were indeed used as a spice before Clores and Allspice became common. [Evgenia; Psididm.]

The deviations that take place from the typical structure of the order consist partly in the fruit being dry and capsular instead of fleshy and indehiscent, and partly in the organisation of the interior of the fruit being reduced to a state of great simplicity; besides which the leaver are often alternate instead of opposite. Some of the species have no corolla, snd there is in many cases a very singular tendency to consoljdate the floral organs of all kinds.
The species with capsular fruit are principally found in Austrslia, where, in the form of Eucalyptus and Leptospermum, they constitute one of the most striking features of the vegetation. [Eucalyptus.] These plants abound in a powerful astringent secretion, chiefly found iu their bark, on which account they are found valuable for the tanner's purpeses; while the aromatic principle is also abundantly secreted in ather cases, as, for example, in Melaleuca Cajeputi, from which the green stimulating oil of the Cajeput is procured. [Melaleoca.]

It is more particularly among these species that anomalous conditions of the floral organs occur. In Eucalyptus there is no cerolla, and the segments of the calyx are so completely united to each ether as to ferm a fleshy cap, thrown off by the flowers when the time arrives for extricating the stameus. In Mclaleuca, Calothamnus, and several others, the stamens are united to each other by their filaments, so as to form showy, petal-like, fringed expansions; and in Eudesmia the petals themselves are united into a cap, thrown off upou the expansion of the flower.
The most singular form of Myrtaccee is that which derives its name from an Australian plant, called Chamalaucium, in which the interior of the ovary contains but one cell, with from twe to five ovules rising up obliquely from its base. These plants are all small heath-like shrubs, having in the majerity of cases the edge of the petals prelonged into long and delicate fringes. Such plants are extremely abundant on the west cosst of Australia, where they form one of the most striking characters of the Flera.
Punica Granatum, the Pomegranate-Tree, is a most anomalous form of Myrtacece, remsrkable for an slmost total absence of transparent dotting, aud consequently of aromatic qualities; and haviog a fruit consisting of two whorls of carpels compacted together into an inferior ovary, the interior of which becomes altered and distended so much after the flower has fallen off, that the fruit is nothing but a collection of csvities filled with seeds, and having no apparent relation to each other. [Punica.]
The genus Caryophyllus has the following characters:-Tube of the calyx cylindrical; limb 4-parted; petals 4, sdhering by their ends in a sert of calyptra; stamens distinct, arranged in 4 parcels in a quad rangular fleshy hollew near the teeth of the calyx; ovary 2-celled; evules about 20 in each cell; barry 1-2-celled, I-2-seaded; seeds cylindrical or half-ovate; cotyledons thick, fleshy, convex externally, sinuous in various ways internally.
C. aromaticus, the Clove-Tree, is a native of the Molucca Islands. It is a moderately-sized tree, with leaves opposite and decussate, persistent, somewhat coriaceous and shining, minutely punctuated, about 4 inches long, ovate-lanceelate, more or less acute, quite entire, psle beneath, tapering gradually at the base into a slender foot-stalk which is almest 2 inches long. The cloves of the shops are the dried compressed flowerbuds of this tree.
MY'RTEA (Turten), a genus of Mollusca.
MYRTLE. [MyRTUs.]
MYRTLE-BLOOMS. [Myrtacere]
MYRTUS (Múptos), a genus of Plants, the type of the natural order Myrtacece. It has the calyx-tube somewhat globose, with the limb 5- or very rarely 4 -partite; the petals 5 , or very rarely 4 ; the stamens distinct ; the berry 2 - or 3 -celled, somewhat globose, crowned with the segments of the calyx; several seeds in each cell, or very rarely solitary; uniform, with a bony testa; the embryo curved; cotyledons semi-cylindrical, very short, the radicle twice the length of the cotyledens. The species are shrubs with opposite quite entire pellucid dotted leaves; peduncles axillary, 1- or rarely 3-flewered.
M. communis, Common Myrtle, has solitary 1 -flowered pedicels about the length of the leaves, bearing 2 livear bracteeles under the flowers; the calyx 5 -cleft; the leaves ovate, lanceolate, or acute. This beautiful plant is a native of the south of Europe; it is found wild in Frances about Marseille, and extends from that city along the sea-coast to Genoa, and throughout Italy. In these districts it forms thickets which sometimes grow within reach of the spray of the sea. This plant has been in all ages a grcat favourite in Europe. It was called by the Greeks Múptos. Mupoivn is the name under which Hippocrates refers to this plant. ('Morb. Mul.,' i. 599.) Theophrastus alse uses this word, and Muptivn and Muptis, in speaking of the Myrtla. The Romans knew thia plant by the name of Myrtus. (Pliny, 12-13.) This name has been adopted in mest European languages. It is Mirto in Italian and Spanish; Myrte in German; Myrter in Danish; Myrten in Swedish; Mirte in French ; Mirta in Portuguese.

The leaves of the Myrtle, like the whole ordcr, contain a volatile oil which possesses medicinal properties, and they were used as stimulants by the ancients. The buds and berries of this plant also contain volatile
oil, and were used by the Romans as a spice, and are st this day in Tuscany employed as a substitute for pepper. The Tuscans also prepare a kiud of vine from the Myrtle called Myrtidanum. The berries are used at the present day in Greece as a remedy in the diarrhoes of little childron. The mode of administering them is to sonk them in rel wine. The flowers of the Myrtle have nu agreeable scent, and when distilled they form the perfume sold in Franco under the name of Fau d'Ange. In addition to a volatile vil the Myrtle contains tannin, so that in mediciue its rarious parts have nn astringent action, and have been used for this purpose. In Greace, Italy, and the mouth of France, the bark is ased for tanuing.

The Myrtls is ouly a half-hardy plant in this climate, although many individuala have lived and borue our winters for above 100 yeard. The Myrtle appears to have been introduced iuto England in the 16 th century. There are at the present time many fine myrtle-trees iu I Ireat Inritain and Ireland. At Cobhnm IIall, in Kent, there are several specimens 30 feet high. In the Isle of Wight it forms the hedges of rany gardens. It cannot however be relied on, but may be easily eutlivated by giving it protection during tho winter. Sereral varieties of the $M_{y r t u s}$ communis are found in gardens.
M. melanocarpa ('D. C. Prod.;' iii. p. 239). Fruit blackish. This veriety of Myrtle is frequent in the south of Europe and in gardens, where there are farieties of it with donblo flowers and variegated leaves.
M. lewcocarpa (' D. C. Prod.,' iii. p. 239). Fruit white. Nntive of Greece and the lhaleario Isles. The fruit of this is rather large, edible, with a grateful taste nod smell.
The nbove variaties are constant, but there are others in the garden which are more variable, such as the Gold-Striped Broad-Leared Myrtle, Broad-Lesved Jew"s Myrtle, Gold-Striped-Lesved OraugeMyrtle, Silver-Striped Italian Myrtle, Striped Box-Leaved Myrtle, Silver-Striped Roacmary-Leaved Myrtle, Silver-Striped Nutıueg Myrtle, Cockscomb or Bird's-Nest Myrtle, Spotted-Leaved Myrtle.

About 40 other apecies of Myrtle besides those of the old genus Myrtus, now referred to tho genera Myrcia, Syzygium, Eugenia, \&c., have been deacribed. [Evgevia.] None of them yield products nsed in arts or medicine, sud only a few of them have been cultivated.
M. tomentosa ia a nstive of Cochin China. It is a handsome shrub, and has been found to grow well against walls in the south of Englaud.
M. nummularia is a creeping species found at tho Straits of Magal. haebs; and M. myrsinoides, a native of the colder parts of Peru, would probably be found to be half-harly in this climate.
(laudon, Arboretum Britannicum; Frass, Synopsis Flora Classica; Burwett, Outlines of Botany; Lindley, Flora Medica.)

MYRTUS PIMENTO. [PImento.]
MYSCA (Turton), a genns of Mollusca.
MYSCOLUS, a genus of Plants belonging to the natuml order Composite. The young roots of M. Hispanicus are esten.

MYSIS. [STOMapoda*]
MYSTICETE [CFTacea.]
MYSTUS, a genus of Malacopterygious Abdominal Fishes belonging to the family Silurida. They are found in the waters of Gnyana.
MYTELES, s genus of Malacopterygions Abdominal Fishes belonging to the family Salmonide. Oue of the American species is eatable.

MITIJACEA. [MrTILID.E.]
MITI'LID.E, a fnmity of Lamellibranchiate Mollusca. It includes the species referred by Linnacus to the genus Mytilus. This genos, as it was left by tha nuthor in his last edition of the 'Systema Nature,', was divided into three sections. The first, 'I'arasitici, unguibus affixi,' connisted of those speciea which arenffixed by unguicular nppendages to (iaryonice and other submarine bodies, Lath orgsuic nad inorganic, such as Ifytilua Crista Gialli, M. Myotis, and M. Frons, which hnve been since restored to the geuns Oatrca. The second, 'Plani s. compressi, ut plaui appareant et moburiti, consinted of the Pearl-Bearing Musclo (Matrir perlurum), under the nane of Myeilus margaritiferus, now separated generically under the namea of Meleagrina and Margarita [Avicula; Majelescest]; and Mytilue unguis, n sjeciea, if it be one, not larger than the human uail. The third, 'Ventricosinsculi,' comprised not only the true Myfili, of which Mytilus edulis (the Comuon Muacle) may bo considered as the type, but nlso the M. lithophagus, the Moliolif, the true Aricula (Mytilum Hirundo), and the Fresh. Water Moseles'(Anodon). The generic definition of this heterogeneous ansemblage was Merilus. The animal sn necidia (?). The whell bivalve, rough (rudis), most frequently affixed by a byasus. Tho hinge toothleas, marked (dintinctua) by an excavated longitudinal mubulate line. Linneun placed this genua between Anomia anì Jinna, [Malacolobr.]

Cuvier uaken the Mytilaces the accond family of his Tentaceous Acephaloun Molluace. He characterines the family as laving the mantle open in front, bit with a reparate aperturo for the excruments, alding that all these bivalses haven foot berving the purpoae of creeping, or at leat to alraw out, direct, nud fix the byonus. They are, he stater, in concluaion, hown under the generic name of Moules (Muacles).

This family Cuvier mulnlivides into-

1. The True or Marine Muaclea (Moules I'ropres ou Moules de Mer; Mytilue linn.)

In this mubdivision are placed M ytilus (M. edulis and its congeners) Morliola (Lam.), and Lithodomur (Cuv.).

1I. The Anodonts (Anotontes, lirug.), vulgarly Pond-Muscles (Moules d'Etang).
III. Les Mulettes (Univ., Brug.) commonly called the Paintera Muscles, including Myria and Castalia (Lamarck).
1V. C'ardita. (Brug.)
V. Cypricardia. (Lam.)
VI. Les Corabliophages. (De Blainv.)

Jenericardia he considers as difforing but little from Cardita, and be observea that both the one and the other approads Cardium iu general form and the direction of the riba (cites). He states his suspicions that this is the place for Crassatclla.

This family is placed by Cuvier between the Ostraces and the Camacées.

The genus Pinma is placed by this zoologist betreen Avicula and Arca.

Lamarck characterised his Mytilacées as baving the hinge with a sub-internal marginal linear very entire lignment, occupying a great part of the anterior border, and the shell rarely foliated. In this family he places the genera Modiola, Mytilus, and Pinna.
M. De Blainville thas characterises the Mytilacea, which he placen between the Maryaritacea and the A reacea or Polyodonta. The genus Aricula among the Margaritacea thus immediately precedes the Myrilacea.

Bnatle adhering towards the borders, slit throughout jts inferior borders, with a distinct orifice for the anus, and an indication of the branchial orifice by the more considerable thickening of its posterior borders; a canaliculated linguiform foot, with a byssus backwards at its base; two adductor muscles, the anterior of which is very amall, besides the two pair of retractor muscles of the foot.

Shell regular, equivalve, often furnished with an epidermis, or corneus, with s toothless hinge, and in linear dorsal ligament.

The genera placed in this family by M. De Blainville are Mytilus, with its subdivisions, and Pinna.
M. Rang gives the following as the charactera of the family Mytilacés:-

Animal having the mantle open thronghout its inferior part, and adhering towards the borders; a separato aperture behind for the excrements forming very rarely a tube; the foot linguiform, canaliculated, and furnished with a byssus behind.

Shell rather delicste, generally with an epidermis, or corneus, equivalve, but very inequilateral; the hinge toothless; the ligament linear; naterior muscular impression very small; the posterior one rather large.

Marine (the genus Mytilus alone presents a species which is said to live in fresh water). ('Manuel,' \&c.)

The genera arranged by M. Rang under this family are-Mytilus, with its subdivisions, including Modiola, Lithodomes (Cuv.), and Pinna.

Mr. G. B. Sowerhy ('Geners'), after remarking that the Linnaan genus Mytilus, on account of its principal character being its want of hinge teeth, consists of seversl forms that are widely distinct from each other, and which have well served as the types of several Jamarckian gencia, such as A vicula, Modiola, Anodon, and others, in counection with the present genus, which deservedly retains the name of $M y$ tilus, both on account of its form and the priority of its claim, proceeds to observe that the other genera which have been united with it, but from which it appeara necessary to distinguish it, because of a certain degree of gencinl resemblance, are Modiola and Lithodomus: from Anodon and Avicula, together with Lamarck's Mcleagrina, it is, ho sdds, obviously distinct; whilst one character-namely, the pointed terminal umbones-serves to distinguish it from Modiola aud Lithodomus.

Mr. Ginrner, in his paper 'On the Anatomy of the Lamellibranchiate Conchifera' ("Zool. Trans,' rol. ii), is disposed to regard the disposition and form of the branchise and siphons as being of great use in the classification of those animals; and he instances Anomia, Pecten, Arca, Jodiola, Unio, \&c., as each having a particular disposition of the branchice, sac of the mantle, valves, siphons, \&e, giving rise to particular modifications of the course of the aerrating currents of water to the branchice. He observer, that in the geners, sone of which are nbove mentioned, no complete division of the sac of the mantle exists; while in Solen, Miatella, Pholos, \&c, a different disposition takes place. With regard to the excretory systen, ho found the oviduct distiuct from the anc in Modiola, Mytilus, Lifhodomus, \&e.; whilst in Tellina, Cardium, Mactra, Pholas, Mya, nud most others, the ova are discharged into the excretory organs. With reference to the reproductive ayntem, Mr. Garner remarks that the ovaries of the Lamellibranchiste Conchifera differ much in their situation: sometimen they form diatinct parta-sometimes they are found in the foot -sometimes they are ramified in the mantle-which last disposition is present in Modiola, A nomia, Lihodomus, Miatella, and the like.

The same author, in hia 'Anatomical Classification of the Lamellibranchiata, thua arrauges tho geuera Mytilus, Modiola, Pinna, Lithodomus, and Unio:-

Museles equal, tro pairs of retractile muscles ouly; byssus rudimentary .

Lithodomus.
Foot large, not hyssiferaus
Unio (Cardita,
IHyria, \&e.)

Mytilus.-This genus is abundaut on most rocky coasts, where the species are to be found moored by their coarse filamentous byssus, generally to such roeks or other anbmarine bodies as are exposed at some periods of the tide, where tides exist, and covered by the sea at high water. Mr. G. B. Sowerby does not think that, after being once attached, they habitually disengage themselves, though it appeare to him probable that, wheu diaengaged by the force of the sea, they may live for some time without being in any manner affixed.
M. Deshayea, in the last edition of Lamarck, thus describes the animal :-Oval, elongated; the lobes of the mantle simple or friuged, united posteriorly in a aingle point so as to form an aual siphon; month rather large, furnibled with two pairs of soft palps, which are pointed and fixed by their summit only. Foot glender, cylindraceous, carrying at its base and posteriorly to it a silky bysaus; abdominal mass moderate, and on each side a pair of branehis nearly equal ; two adductor muscles; the one anterior and very small, the orher posterior, large, and rounded.

Giadd of the byssus, inantle, oviduct, \&e. of Syitus edulis. Garner.
A, right lobe of the mantle ; D, rettum ; G, branchix ; II, foot ; J, posterior mascle; L, saperior tabe; O, heart; P, ventriele; Q, auriele ; X, pericardlum; b, teatacies; d, byssas; e, glnnd of the hyssus; g, retraetile muscle of the foot ; h, valves of the mautle; i_{1} oviduet ; i, orifice of the exeretory organ ; k, internal ditto.

The specics are numcrous, and most of them are used as food; but they should be eaten with cantion, for serious illness and even death have ensued from a meal malle on some of them. The bysaus, or beard, as it is popularly called, should be carefully cleared away, and they shonid be partieularly avoided when cholera is about, or even when diarrhcea is prevalent.
Captain I'. P'. King, R.N. ('Voyager of the Adventure and Beagle,' vol. i.), mentions the Choro (Mytilus Choros of Molina) as among those shell-fisli of the island of Chilce which are more particularly descrving of uotice. Speaking of this large muscle, Captain King says, "Molioa has described the Choro of Concepcion, which is not at all different from that of Chiloe. It is often found seven or eight inches long. The fish is as large as a goose's egg, and of a very rich flavour; there are two kinds, one of a dark-brown and the ether of a yellow colour; but the last is most esteemed. There is also another sort, much larger than the Choro, get equally delieate and good, the fish of whieh is as large as a swan's egg: it is called Chelgua; but as the ahells seem to be of the same species, I think the distinction ean only be owing to size. In l'ebres's 'Dictionary of the Chileno Language,' the word Cholchua is rendered into Spanish by 'Cascara de Cheros Blancos,' or 'Shell of the White Musele.' Cholhun, or Cholgna (the letters g and h are indiacriminately used), must be a corruption; for it is now used in Chilbe to distinguish the large from the small choros. The manner in which the natives of these islands, both Indians and dercendants of foreigners, cook sheld-fish is very similar to that used for baking in tha South Sea Islands and on some parts of the coast of New Holland. A hole is dog in the ground, in which large smooth stones are laid, and upon them a fire is Eindled. When they are sufficiently heated tha abea are cleared away, and shell-fish are heaped upon the stones, and covered first with leaves or straw and then with earth. The fish then baked are exceedingly tender and gaod; and this mode of cooking
them is very superior to any other, as they retain withi.. the sholls all their own juioiness."

The distribution of this genus is very wide. Few rocky coasts are withont some of the species, which are all littoral. They are sometimes found affixed to crustaceans, shells, and corals,

> * Mylili, with a smooth shell.

Mytilus edulis, the Common Salt-Water Musele. This species is too well known to require deseription : the figures will show the shape of the shell, which is strong. When freed from the epidermis and polished, the under surface of the external part of the shell is exposed, and is of a deep blue. In this state it is often offered for sale at watering places. The inside of the valves is white with a dark rim.

Ova of Mytilus edulis. (1-18th inch foeus.)

a, detached valve; the animal In situ with bysus ; the mantle slightly contracted; b, valves conjoined; animal as seea when the shell is partly foreed open, with hyssus.

The Common Edible Muscle ia found in extensive beda below low. water nark, and also at a greater depth. Roeks and stones between high-water and low-water marks are also eovered with them. We cnce saw a lobster, which is now, we believe, in ons of our museums, with its shell coated with them. The species is used largely as an article of food, and is considered rich and rapid by many; but it entirely disagrees with some constitutions, and, besides other derangements, has been known to canse bloteheq, ewelliugs, \&e. Some eascs are recorded where these and other affections lave been produced by eating these muselcs, whilst some who have partaken from the same dish have escaped all evil consequences. These derangements have been attributed by some to the byssus, by others to the Pea-Crab [linnotherians], a little erustacean which sheltars itself, especially at particular seasons, in the shell of the musele, and by others again to the muscle itself beiug in an unwholesome state or out of season. There can be little doubt that the musele, like the oyster, and iudeed like most other edible animals, is comparatively unfit for the food of man at certain periods; but that the Pea-Crab has anything to do per se with the poisonous qualitics of these esculents is denied by all who have written on the subject. When any symptoms of derangement oceur after cating muscles an emetic ahould be taken and afterwards a dose of castor-oil. Cases of this kind are however rare. Pennant remarks, that for one who is affected by eating museles a hundred remain unimjured.

No avatomical investigation into the condition of sueh specimens as prove injurious, nor chemical analysis of their composition, has

Shell of Mytilus edulis.
a, waluen closed, wheh bsenus; b, cxicranal vicw of onc of tho valves; c, internal view, whowing the muncular impressions.
rovented the cause of the dinorder; but as such casvaltios result mostly in anmmer, it is prolable thst some natural change is takhg $1^{1 / 3}$ ee in the animat, which renders it nt that reason unfit for food. It woull therefore he prudent to ure it only in the winter monthe. The ifen that it in owing to the fiah laving absorbed copper is quite unfounded. The application of heat in cooking loes not destroy the noxious property, an it deca that of may vegetahle poisons, for those Which are dresmed are as butful as those enten raw. Neither does decay soem to be the mourec of the deleterious principle, minee bad effecth follow tho uno of those which are quite fresh; nor does decay decompose tho poinon, though most animal poinons are destroyed by putrefaction, for fatal cases havo cnsued from the enting of decaying manclen. Tho conserfucncen laso been imputed to idiongnerany in throme who eat the souscles; but this jolsiously inalequate to explaid the circumancea, ninco in most of the instancesevers peraon (nmounting in one cone to thirts individuals) wbo tasted them 日uffered; and oren cate and logm, we well ns human beinge, died from eating them. 'lhe morbid aymutoms vary, and in somo of the cases are connected with inflammation of the stomach and intertines. "Two affections of thin Kind havo been noticed; ono in no eruptive diserse, resembling nettle-rauh, abd accompanied with violent anthma; the other a comatonn, or parmyic disorder, of a very peeuliar deacription. The mympoms lave unually commenced hetween one and two hours after enting, and rapidly athined their groatent intensity. The first symptoma wrer like thase of violent catarrh, awelling and itching of the eychidn, and generally nettloranh followed; nad the cruition afterwaringave place to nymitoma of the most urgent anthma. The swelling in not alwaya coufiverl to the eyclids, but has unvally extended over the whule face. In sevoral cares the cruption was preceded by sathon, lividity of the free, inmenibility, and conrulaive movements
of the extremities; in othera nausea and romiting, followed by heat and constriction of the mouth null throat; difficulty of swallowing and mpaking froely; numbness about the mouth, gradually extending to the arma, with great debility of the limbs." Tho ablomen is often affected with pain, increased on pressure; the fnnctions of the kidneys rlisturbed, but generally inersased; the bowels sometime obstinately constipated. Epileptic symptoms, or delirivin, conpulaions, and coma, havo appeared in the greater number of fatal cases, rather than inflamtastory aotion.

Jimetics, such as sulphate of zinc, which acts quielly, have been of service; but ether seems the most effectual means of relioving the difficulty of breathing aud the otber nervous asmptoms.

Partieulnr localities are celebrated as producing this musele in perfection. "Ne fraudentur gleria sua littora," exclnims Pennant, "I must in justice to Lnncashire add, that the fivest muscles are thone called Hambleton Hookers, from a village in thst county. They are taken out of the sea and placed in the river Weir, within rench of the tide, where they grow very fat aud delicious." In "The Forme of Cury' (1390) is a receipt for dressing "Muskels in Browet,' and nlso one for making 'Cawdel of Muskela.

Suall or seed pearls frequently oceur in this species, and some years ago thesc were emploged for medical purposes.
** Myili with the shell striated longitudinally.
M. Magellanicus. Shell oblong; whitish below, purple violet above, with long thick undulated furrows; the umbones acute, and not much curved. Length varying, generally from 4 to 5 inches.

It is found in the Straits of Magalhaens, Chilóc, dc.
The flesh is well-flavoured and nutritious. The shells of old individuals, when polished, are brilliant, with a nacreous decp purple tinged with riolet.

Myitus Magellanicur, Bttached ta a rock by its byesus.
It is not improbable that this species ministered in a degree to the woful wants of Byron and his wretohed companions after the wreek of the Wager. "Having thus eatablished," says tlant officer, "some sort of nettlement, wo lad the more leisure to look nbout us, and to make onl researches with greater necurney tban we had before, after such supplies as the most desolste coasts are seldom unfurnished with. Accordingly we soon provided ourselves withs sorue sea-fowl, and found limpets, nuseles, and other shell-fiah in tolerable abundance; but this rumbinging of the aloore mas now become extremely irksome to those who had any feeling, by the bodies of our drowned people thrown anrong the rocks, some of which wore bideous spectacles, from the mnogled condition they were in by the violent aurf that drove in upou the coast. Theso horrors were overcome by the distreases of our people, who wero even glad of the oecasion of killing the gallinazo (the carrion crow of that country) while presing on these carcassea, in order to mako n meal of them."
Here may bo introduced the Mytilus polymorphus of Pallas, Gmelin, and others, thus clarncterised as n genus by Dr. Vanbeneden, under the name of
Drissena.-Mnntle entirely shut, presenting throe apertures, one of which is furnished with a ajphon. Auterior extremity of the body hifurcated and lodging in the middlo of the division the transverse anterior muscle. Ablomen depressed; extremities of the branchio ilonting in their posterior half.

The shell is regutar, equivalve, inequilateral, umbo with a septum in its interior. Three musculnr impressions, the middle one unique nad linear.

Dr. Yanbencden thinks that the organ of the byssus, which he designates, after Poli, by the name of 'languette,' has been erroneously
taken for the foot. The true foot, he observes, consists of a muscular tunic more or less thick, which covers the sbdomen of the animal, and serves it as an organ of progression; whilst the organ, which always accompanies the byssus, possesses no character in common with the foot except its mobility. Instead of covering the abdomen as a muscular tunic, it forms a part of the retractor muscle, from which it cannot be eeparated. At the base of this argan, with which, when the byssus is torn away, the animal seems to explore the bodies in its neighbourhood, is the shesth in which the byssus is lodged.

The mantle entirely envelops the animal, and forms three apertures, one of which serves for the passage of the byssus and the 'languette;' the second terminates the animal in the siphon; the third is placed on the back, and gives passage to the excrements. The aperture of the siphon is elongsted many lines in respiration, and can be bent in different directions.
D. polymorpha. This appears to be the Mytilus Wolga, Chemn.; M. Chemnitaii, Fér.; M. Magenii, De Baer; M. lincatus Waardenburg, and M. Arca, Kickx.

It inhabits seas, lakes, rivers, and marshes; all these conditions seem favourable to it. Dr. Vanbeneden gives the following localities:the Caspian Sea, the Black Sea, and the Baltic, the Damube, the Volga, and the Rhine, where they are found in considerable quantities; the marshes of Syrmia (the Palatinate), the Canal Guillaume (Belgium), the lakes of Harlem (Holland), the Lea (our river Lea, we suppose, is meant), the Doks (the Commercial Docks, London, probably) and the neighbourhood of Edinburgh (Union Canal) ; so that this form extends nesrly over the whale surface of Europe from 43° to $56^{\circ} \mathrm{N}$. lat.; Turkey, Austria, Russia, Germsny, Belgium, Holland, and England. (Vanbeneden.)

1. Animal of natural size, showing the slphon exserted, and the aperture which corresponds with the anus open; view of the back. a, the siphon; b, the posterior row of papillæ; c, anal aperture.
2 , view of the ventral side. a, the siphon; b, the anterior row of papilla ; c, the languette.

3, Animal ia the left valuc. a, the abdomen; b, the languette \ln situ $; c$, the branchis; d, the aperture which gives iasue to the excrements; e, aperture of the byssus; f, the byssus. Vanbeneden.

Shell of Dreissena polymorpha.
a, view of inside of ralve, showing the septum at the umba; b, the outside of valve.

Mr. J. D. C. Sowerby sppears to have been the first who noticed their introduction into the Commercial Docks in the Thames, to which place he is of opinion that they had been probably brought in timber.

The species are found at the bottom of the water in beds, like the marme Mytili, agglomerated in bunches by means of their byssus. They attach themaselves to stones, to piles, to other shells (Unio and Anodon), and all the bodies which are in their neighbourhood. Dr. Vanbeneden remarks, in continustion, that they probsbly often sdhere
to the keels of bosts, and thst it is perhaps by such means that they are dispersed over such a considerable exteut.

Modiola (Lamarck).-M. Rang makes Modiola the third group of the genus Mfytilus. M. Deshayes, in his inquiry whether this genus ought to be preserved, observes that the Mytili and Modiolce much resemble each other, as all admit, but they offer some difference, the importance of which he praceeds to test. Of the animal he says nothing, their analogy being so perfect, and all their characters, internal as well as external, being so similar that it is impossible to distinguish them. The habit which certain species have of living in the stones which they pierce has not changed their orgauisation; and of the justice of this remark those interested in the subject may, ho states, assure themselves by a comparison of the animals themselves, which are abundantly spread abroad in all seas. It is a received principle among all zoologists, he continues, that animals having the same organisation ought to make a part of the same genus; but as there are persons who attach considerable importance to certain characters in the shells, it is right to reduce it to its just value. The Modiole differ from the Mytili in not having pointed and terminal umbones. On assembling a great number of living and fossil species of both genera, some will be observed whose umbones, nearly terminal, are overpassed by a small very short border; others in which this horder is a little more extended; and so one passes by insensible degrees from the Mytili to the Modiole without the possibility of determining the point where one genus ends and the other begins. If the same comparison is continued between the Modioler and the Lithodomi the same passage may be observed, and then, concludes M. Deshayes, the observer will be convinced, as we are, of the inutility of these genera.
M. Rang separates the group of Mytili, consisting of Lamarck's genus Modiolos, into two subdivisions.

* Shell sulcated longitudinally.
M. sulcata. Shell bluish-white; epidermis yellowish; hiuge-margin deutilated. It is found in the Indian seas.

a, Shell clased, with byssus; b, outside view of valre; c, inside view of valve.

** Shell not sulcated longitudinally.

M. Silicula (including, aecording to M. Deshayes, M. cinnamomca). Shell marone-brown or whitish; epidermis deep marone-brown.

Lamsrck gives the seas of the Mauritius as the habitst of hif. cinnamomea, and the seas of Australia as that of M. Siliculu.

Modiola Siliculai.
Lithodomus (Cuv.).-Animal oblong, very much elongated, thick, having the mantle prolonged and fringed posteriorly; anal aperture mesial; mouth furnished with very small triangular appendages; foot linguiform, caualiculated, but littlo developed, and carrying a byssus at its base in the early stages of the animal's life.

Shell delicate, covered with an epidermis, obloug, very much elongated, subcylindrical, rounded auteriorly, not gaping; umbo subanterior, very distinct; hinge toothless; ligament linear, for the most part internal, inserted in a narrow and elongated furrow; suterior muscular impression of considerable sizc.
L. Dactylus (Modiola lithophaga, Lam.; Mytilus lithophagus, Limn.).

In the early stages of life the Lithodomi suspend themselves to rocks and madrepores by means of their hyssus; but they soon pierce those bodies in order to introduce themselves, sud thus form cavities which they can never leave, in consequence of their increasing volume es they advance in age. The byssus then becomes useless, and is no longer manifested. These shells, says M. Rang, sre very common in
the Mediterramena and at the Autillea, where they are found in stoues and maswes of madrepore, and sometimea, but much more rarely, in sonse thick chells.

Lithodouns Daclylus.
n, Younf, with bysus; 8 , full-grown, iaside of valve; c, ditto, outside of ralse; d, thece aprecimens in a mass of madrepore.

This species in highly nutritious and well flaroured. Imprisoncel as the noimal is in the atone or madrepore, frequently with a rery nmall opening comrounicating with the sea, it must obtain a plentifil supply of foorl, prebably by means of the currents produced by the nuinal, for the slaels are always full and the asimal plump. A stew of these Lifhodomi in described by those who have partaken of it as excellent.

With regard to the power of piercing rocks, atones, wood, de., posneased by Lamellibranchiate animala, Mr. Garner, in a paper in tho - Philosophical Trannactions, observes that such piercing camot in every case take place by the muchanical action of the valves, and he inatances chore of Lilhorlomus as not at all mapted for such an action. He alno denien the posaitality of the perforation being cauaed by a molvent fluid secretal by the animal. [Lathobmagas.e.]

Pinna (limm.) - Animal clongated, rather thick, nubtriangular ; loben of the mantle united on the doreal border, Feprated throughout the rest of their extent, orlinarily ciliated on the edges; foot slender, conic, vermiform, carrying at ita base a silky bysus; moutl between two lipe, folincmus within, very much elongated, and terminated by two prirs of mant palp, the two palps uf one mide ablelered nearly throughout heir lengta; two adductor muscles, tho mus terminating behime the ponterior one. (Deshayes.)

Shell fibrous, huruy, rather delicate, frogile, compresed, reguar, equivalre, longitudinal, trinugular, pointed anteriorly, rounded or trutucated poaterionly; anterior umbo but hittle diatinct; hiuge linenr, miriate, toothless; ligament marginal, a great portion of it internal, very narrow and compnct, ocetupging more than tho anterior half of the doraal border of tho miwll, in a narrow nall elongated gutter; anterior muecular impregaion very small and cntirely in the angle, mosterior muncular impresuion very large. (liang.)

Poli has given lxautifin figurea of the animal, which he calls Chimere, and moat claborate letaila of ita amatomy; and to bis great work we refer the rwatler. There are no projecting siphone, and the conic tongue like fuot in employnd by the animal to fix itnelf by the bygana, which in not nciuty and coarne, like that of the Mytili, but long, fine, luntrons, amil abmilant; wo that, though it takea no dye, it in emploget in manufacturen in lialy. [Byases; Coscharera.] The finner approximate more eapecially to the Mypili, but the shell of the former, with itn atraght motrones and jt* gaping opmosite extremity, atronely distimgunh a the m. Thorre is a tenderey in their ahell
to divide itself into lamins, and thus it approaches that of tho Malleacer.

The apecics are geverally found in deep water, but they have been taken at deptha ramging from the surface to seventecu fathoms; nost frequently on mandy bottomm, where they were moored by their byanas, and at no great diatnnce from the ehore. It is said that the avimal sometimes lixes itself by tho aid of its byssus, and sometimes remeves iteelf by the aid of its foot Small c.ustaceans, both brachyuroos ant macruran, are sometimes fonud in tbeir abells. Specics occur nearly in all sear. Most of thern are muricated when joung wilh vaulted or aubtubular spines; but as they increase in age these are worn dowa, and nt last almost entirely disappear. We have had jndividuals of the great Mediterranenn Pinna before us, gradually increasiog from a very small size to nenily two fect in length. When apecimens taken at wide intervale were compared, the difference was so great that they might easily have passed as distinct species, as iodeed they have been described by some nuthers. We hare seen many pearls from this Pinna net ill-formed and of an amber colour, bnt none of any consjderablo size.
I. I'labellum may bo taken as an examplo of the genus. About 50 receot and 50 forsil upecies of thi genus hare been described.

Pinna Fia\&rllum.
a, loang, with apinen, and the byesur, patural eize; b, fult-grown, lagide view of valve, one-fift eutural size.

Possil Mytilide.

Mytilus-Mr. G. H. Sowerly ("Cedera') atales that tho fossil apecies with which he ia acquainted are not numerous; they occur howerer, he observen, in rome of the beds below the clatk as well as in mout of thoso abore it, but partlcularly in the crag.
M. Des lanyes, in lis Trales (1833), makes the number of fossil species (tertiary) 15. M. Chemnitsii and N. edulis be states to be both living and fossil (tertiary). In the lant edition of Lamarck (1836), he remarka tbat Brocchimentions a fosail shell to which tho latter given the namo of M. calulis; but M. Deshases does not believe that this fossil in the manlogue of 1%. cdulir, Linn, but of another cdible apecies very common in the Mediterranean. Of fossil specien ho admita 9 only in that wark. Dr. Mantell notices a specien in the cliff betwern Brighton and Rottingdean (dilnvium); and another, M. lanceolatus, ju the

Piman Flabellum, 俋!-grown, valves closed, outside view, with byssus, onefith natural size.
oolite in bia list of organic remains of the Yorkshire coast. Dr. Fitton, in hia 'Syatematic aud Stratigraphical Liat of Fossils' (strata below the chalk), enumeratea the following species:-M. edentulits, M. inuquivalvis, M. lanceolatus, M. Lyellii, M. pralonyus, M. tridens, and an undetermined speciea. Woodward gives 80 fossil apecies, principally from the Permian beds.

Dreissena.-Fosail in the modern Calcaire of Aratapak and Transylvania, in Moravia, and the environa of Vienna. (Vanbensden.) About 10 foasil species have been deacribed.

Here wo may perbsps place Myilus Brardi. The eeptum comes very near to that of Dreissena.

> Mytinus Pirardi.
a, llinge and septum, enlarged ; b, outside of valve; c, Inside.

[^5]notices a Lithodomus in the inferior Oolite, and another in the Coral Rag. Dr. Fitton recorda a new speciea and anothar apecies, both nameleas, in the Portland Stone.

Pinna.-The number of fosail apecies is about 50. They are chiefly from the Devonian Beds, and found in Europe, America, and Southern India.

MYTILUS. [Mytilide.]
MYXI'NE, a genus of Cartilaginous Fishes, of the order Cyclostomi. It is synonymous with the Gastrobranckus of Bloch. The Myxine glutinosa, or Glutinous Hag, is the type. Thia curious animal is shaped like an eel, and measures when full grown about one foot and a half. The head is acarcely distinguiahable from the body, and is obliquely truncated in front, terminating in a large round mouth, the frame-work of which is a membranous maxillary ring, furnished above with a single tooth. The tongue ia furnished on each end with two rows of strong teeth. Eight filaraents surround the mouth. In the middle of ita auperior margin there is a single round spiracle. It has no eyes. The branchial openings are two, and are estimated at about one-fourth the length of the body, below the mesial lins. The akin is naked, and very alimy. Along each side of the belly there ia a row of porea, which fornish the miucous aecretion. An obscure fin runa along the hinder portion of the back, is continued round the conpresaed tail, and beneath the anal opening, which ia placed near the tail. It is of a dark bluish-brown colour above and whitish beneath. The M. glutinosa is not uncommon in the Scandinavian seas, and is frequently taken off the porth-east coast of Britain. It enters the mouths of fiabes caught in the linea of the fishermen, and eats up all the fleshy parts of their bodies, leaving only the skin and bones. It is sometimes called the Hag, and also Borer, because it is said by some that the Myxine pierces a small aperture in the skin, and thus makes its way into the body of the cod or other fishes which it attacks.
The very anomalous characters of this fiah have at different times caused naturalista to place it in more classes than one. Thus Linneus clasaed it annong Vermes; Modeer, among Amphibia; and O. F. Müller: among Mollusca. That it is a true fish, though very low down in the series, has now been placed bejond doubt. It has furnished the subject of many elaborate assays. The moat valuable ia the celebrated memoir on the 'Anatomy of Myxinoidea,' by Profeasor' John Müller, published in the Transactions of the Berlin Academy for 1834, illustrated by admirable anatomical drawinga.

In that memoir the author proposes the following arrangement of the Cartilaginous Fishes, in which the exact position of Myxinc and its allies in the series is well shown.

Chondroptérygia.
Skeleton cartilaginous, cranium without suturea.
Order 1. Branchiostega.
Family 1. Cataphracta.-Cartilage of the cranium and skin of the trunk covered at intervals with cartilaginous tubercles.
Sturiones. Genus 1. Sturio.
Family 2. Nula.-Body without tubercles.
Spatularice. Genus 2. Spatularia.
Order 2. Molocephala.
Genus 1. Chimera.
Genus 2. Callorhyncus.
Order 3. Plagiostomata.
Family 1. Sqali-The branchial apsrturea not attached to the head. Geaus 1. Squalus.
Scyllium.
Carcharias.
Lamna.
Galeus.

Sub-Genera.

Northern Seas. A representative specios has aince beeu made known from the Antarctic Scoa.

Genus 2. Bdellastown. The fishes of this genus diffir from the Myxine in having eyex, and more than one branchial spiracle.

Muller enumerates four apecies as eertain, viz: H. hexatrema and B. heterotema from the Capo of Good Hope; IIrptatrent from the

South Seas, and Forsteri from Now Zenlnad. J. Nombeyi is regarded as doubtful.
(Yarrell, British Fialiea.)
MYXODES, n genus of Acanthopterygious Fishea belonging to the family tobioda.

MYZOMELA. [MELPHagid.e]

NABALUS, n genus of Planta belonging to the onder Asteracece. Two of the specios, N. Scrpentarius and N. albus, are found in North America, and have, with many other planta, n repnte ns, a remedy for rattle-anake bites. They luave a milky juice in their roots, which is rery bitter.

NACRF. [Suri.L.]
NACRITE, a Mineral unually occurring in Miea-Slate, taking the place of the mica; so that the rock becomes a mixture of quartz and nacrite. It in also found crystallised in granite. In occurs in 4 -sided prisms. Its hardness is $2 \% 5$. Colour silvery, or light greenish-white. lustre pearly, silky, splendent. Translucent. Specific gravity from 2.788 to 2.793. It occurs in Wieklow, Ireland, and in North America.

A specimen from Brunswick, Maine, analysed by Dr. Thomson, gnve-

The cryatals from Wicklow contajacd less oxide of irom, 98.72 ron, but n considerable portion of lime and of pratexide of manganese.
NFSA. [Isoroda.]
NAIA, Laurenti's nume for a genus of highly venomous Serpenls, to which the species of Uicus and Aspis of Wagler belong.
Cuvier places the form next to the Vipers (Vipera of Daudin), and immediately precediog Efal/s (Schn., part). Dr. J. E. Gray formerly made Nuina the second aub-fanily of his Tiperide, Fiperina being the first. Naiina, whiel is characterised by Dr. Gray as having the "head broal behind, with plates," is immediately succeeded by Elaphina, and thus the genus Naia, in his arrangement, ntands between P'dius (Mcrrem) nud Sepiden of the same nuthor. ('Anmals of Phil., 1825).

Mr. Swainnon, in hia 'Clasification of Reptiles' ('Natural History of Fishes, Amphibians, and Reptiles,' vol. ii.), places the genus Naia among the C'rotalide, hin second family of Ophides, or Serpents, and arranges it between Cerastas and Maturus. He gives the following as the sub-genera :-Naia, Sepilon, and Ellays, and thus characteriges the sub-genus Naia:-Neck capable of being dilated; head narrow; doral acales linear; tail conical ; subcaudal plates arranged in two rows

Thin form appears to be confined to the Old World.
The Asiatic species, Coluber Naje of Lioneus; C. cacus of Gmelin (?); lipera Naja of Dandin; N"ija tripudians of Merrem; N. lutescens of laurenti; Cobra de Capello (adder with n lood) of the Asintic Jortuguese; Serpent is Lancttes of the Irench; Nag and Chinta Nagoo of the natives; and Spectacle-Suake of the Euglish, may be considered as the type of the genus.
It has the following characters:-IIead with nine platea behind, broad; neck very expansile, covering the head like n hood; tail round. (Cray).
The expanimion of tho neck and upper part of the body is effected by the anterior rilu, which the animal has the power of miaing and bringing forward mo as to dilate that portion into a disc more or leas large. When this dise is thus dilated in the Vaia tripulians, it presenta on the hack part of it no bad rejrescntation of a pair of apectacles, or rather barnacles, reversed, for there is no trace of the lateral pieces by which spectacles are attached to the hoad of the wearer. The animal is brown above, and bluish-whito bencath. The following euth will couvey some iden of the form of this sunke, with the hood or dise expanded.

(1

ltead of Noing.

Colonel Briggs informs us that this active and deadly oerpent is sounctimes worshipped in temples in India, whero it is pampered with

a, view of the npperside of the disc or hoom expanded, with the heal on the same line with the bods.

b, view ef the under slde of the bame.

c, the dise or bood ween from behind, when the anterior portion of the exeited serpent is in an crect posture.

Nraia tripudians, yeduecd, in aa erect and excited state.
milk and sugar by the priests, and he notices it as a surppising instance of the effect of kind treatment in subduing the most irritable spinita. "The Hindus," says the Colonel, in continnation, "have a notion that the sagacity and the long-elierished malice of this worm are equal to that of man. I have seen them come out from their holes in the temples, when a pipe has been played to them, and feed out of the liand as tamely as any domestic animal; nnd it is when in this state of docility, so opposite to their shy but impetuous nature, the common people believe that the Deity has condescended to adopt that form. It seems probable that this hooded snake was the dragon of the heathen worahip; and the shape of its head and its aetivity when in a state of excitement probably gave rise to the fable of its being winged."
It is pretended that the root of the Ophionrtiza mangos is a specific against the bite of this serpent. The priests and jugglers however, who rake them diuce to astonish or ainuse tho peoplo, make all sure, there is little doubt, by cxtracting the poison-fangs.

This formidable species, or at least some species of hooded snake, according to the records of travellers, grows to a considerable length. Captain Percival gives the following aceount of its size aud babits, in his 'Aecount of the Island of Ceylon,' 4 to, 1805 :-
"The Cobra Capello, or Hooded Snake, is found here from six to fifteen feet long. Its bite is mortal. The natives find the lierb pointed out by the iehneumon a remedy, if timely applied. When curaged and preparing to attaek, it raises its head and body to the height of three or four feet in a spiral manner, while at the same time the remaining part of the body is coiled up to accelerate and give force to the spring. At this instant it distends from its head a membrane in the form of a hood, from whieh it reeeives its name. This membrane lies along the forehead and the sides of the neek, and is almost imperceptible till the animal gets into a state of irritation and is about to attack his foe. When the hood is erected it completely alters the appearanee of the head, and diseloses a curious streak in the slape of a pair of spectacles, and sometimes of a borse-shoe. The extension of this membrave seems intended by Providence to give warning to all those within this animal's reach that he is preparing to attaek them. Withont this signal he would be very dangerous indeed, as his motions afterwards are too rapid to be avoided. I have more than once been an eye-witness to instances where the fatal bite of this snake was escaped from merely by the objeet of his vengeance titnely observing his preparations. One remarkable characteristic of these dangerous zerpents is their fonduess for music. Even when newly caught they seem to listen with pleasure to the notes, and even to writhe themselves into attitudes. The Indian jugglers improve greatly on this instivet, and, after taming them by degrees, instruct them even to keep timg to their flageolet."

The largest Cobra de Capello seen by Dr. Davy in Ceylon was nearly six feet long; and he adds that the general length is between two and four feet. The colour varied: those of a light colour were called high-caste snakes by the natives, and those of a dark colour low-caste. "The natives," says Dr. Davy, "in general rather venerate this snake than dread it. They conceive that it belongs to another world, and that when it appears in this it is merely as a visitor; they imagine that it possesses great power, that it is somewhat akin to the gods, and greatly superior to man. In consequenee they superstitionsly refrain from killing it, and always avoid it, if possible. Even when they find one in their honse, they will not kill it, hut, putting it into a bag, throw it into water. They believe that this snake has a good and generons disposition, and that it will do no harm to man, unless provoked." Dr. Davy gives a pleasing picture of the irritations and sootbings with which the snake-charmers excite and allay the temper of this serpent. He records several instances of the operation of the poison, the first arising from a serpent found in a bag floating down the Kalang-ganga. It was about five feet long, and about six inches in circumferenee in the broadest part. This snake bit a hen, fixing its fangs in the skin eovering the lower part of the left pectoral musele, and keeping its hold about two or three seconds, when Dr. Davy succeeded in shaking it off. The hen, which at first seemed to be little affeeted, died eight hours after she was bitten. ("An Aecount of the Interior of Ceylon,' \&e., by John Davy, M.D., F.R.S., 4to, London, 1821.)

Several Cobras have been kept alive in the Zoological Gardens Regent's Park. One of these creatures bit one of the keepers on the nose whilst he was playing with it. The man died in a few hoars after. The Arabs who accompanied the Hippopotamus had the power of suake-charming; and on several occasions these fearful reptiles were made to go through a variety of performances by a lad not more than 10 or 12 years old.

There are several other species of Naia. Schlegel, in his essay on the 'Physiognomy of Serpents,' gives the following :-
N. Haje, the Aspis of antiquity. This is the snake which is most frequently operated on by the suake-charmers of Egypt, where it is fonnd. [Asir.] It is worthy of observation with reference to the contest in the presence of Pharaoh between Moses and Aaron and the magieians of Egypt (Exodus, vii. 9-12), that it is stated, on good anthority, that the modern Egyptian jugglews pessess the power of throwing the N. Haje into a state of catalepsy, and rendering it stiff and immoveable, in other words, changing it into a rod, by pressing the rape with the fingers.
N. Bungarus is a rare species, inhabiting the islands of Java and Sumatra, It is the Bunyaris of Daudin.
N. Bungaroides, elosely resembles the last, but is smaller.
N. porphyrica inhabits the sandy downs of Anstralia.
N. Mumachates inhabits the Cape of Cood Hope. N. rhombeata and N. lubrica are also Cape species.
N. Elaps is a very large suake, but its country is unknown.
N. curte, a native of Australia.

We owe to Dr. Cantor, who has added so much to our knowledge of the natural history of Asiatic serpents, the introduction of a new geuus of hooded swakes, Hamadryas, whieh will probably find its proper place in the series as a sub-genus of Naia.

Mamadryas (Cantor),-Head broad, sub-ovate, deplanate, with a short obtuse rostrum, covered abovo with 15 seuta; chceks tumid; eyes large, prominent, pupil round; nostrils widely opened, within the confinc of two scuta; gape very ample, subundulated. Poison:
fangs nuterior, behind which are the maxillary teeth. Neck rilatable, Bods thick, snooth, imbricated with mooth scales disprosed in oblique rows Tail ahort, covered with scuta and scutella, its apex acute. (Cantor.)
11. ophiophagus (Cnotor). Above olive-green, girt with black sagittal stris ; abdemen glaucous, marbled with black. The Ifindustanee name is Sunkr Choar.

It is a natire of Bengal.
Dr. Cantor thus describes the labite, the effect of the polson, and the hintory of this serpeut:-
"The Mamadryas, like the Bungarns, Hydrus, and Hydrophis, has a few maxillary teeth behiod the poison-fangs, and thus, like the latter, connects the venomous serpents with isolated poison-fnugs to the harmless, which possess a complete row of maxillary teeth.
" of the terrestrial renomous serpents, the Bungar"us is chiefy characterised by a distribution of the teeth similar to that of the Ifamatryos, which, also martaking of the chicf characteristic of the genus Vaja, namely, that of forming a hood or disc, constitutes an immedinte link between the genen Bungarus and Naja.
"In consequence of the stroug reacmblance in the general appearnace between the Naja nad the Mamadryas, when first iny attention becatoe attracted to the latter, I thought I could refer this serpent to that geous; and it was not untill was able to examiue a specimen whose poison fangs were untouched (those of the first specimens I saw having been drawn by the astives, who are greatly afraid of this Rerpeot), that I discovered the maxillary teeth behind the poisonfangs.
"Il. ophiophagus differs from the Naja tripudians:-1, By its maxillary teeth; 2, by the strongly-developed spines on the os occipitale inferins; 3, by the integuments coveriug the head; 4 , by the iuteguments covering the abdomioal surface of the tail; 5 , by its colour; 6, by its size. Accorling to the natives, the Ilamadryas feeds chiefly unon other serpents: in one I dissected I found remains of a good-sized monitor, which fact may account for its arboreal labits, ns 1 have in Bengal, along the banks of the rivers, observed numbers of thoee large lizards among the branches of trees watching for birds.
"The nower of abstaining from food, generally speakiug, so characteristic of the Serpents, is but in a comparatively sinall degree possessed by this species; the most protracted starvation amounts to a period of about one month; while the lipera degans, the Naja tripudians, and the Bungarus annularis, have, without inconvenience, been confived in crges without nny food for more than ten months. Two npeeimens of the /Iamadryas, in my possession, were regularly fed by fiving them a serpent, no matter whether venomons or not, every fortnight. As eoon as this fool is brought near the serpent begins to hiss loudly, and, expandiag the hood, rises two or tliree feet; and retaiuing this attitude, as if to take a sure nim, watching the movements of the prey, dnrte upon it in the same manner as the Naja tripuriens does. When the victim is killed by poinon, and by degrees swallowerl, the act is followed by a lethargic state, lastiog for about twelve houra. Such of the other Indian venomous serpente, the habits of which I Lave had oppertunity to atudy from life, show themelvea much inclined to nvoin other aerpenta, however ready thes are to attack neen or animals when provoked or driven by hunger; nad I nm not aware of any other of those serpents being recorded ar preying upau its own kind. A short time ago however, during my aojourn at the Cape of Gocd llope, I received from high authority the following fact, which throwa a light upon the habits of the . Fioja of Sonthern Afriea, one of which, when being captured, threw up the body of a J'ipera arietons (T". bruchyurus, Cuvier), which bore narks of having been submitted to the process of digestion.
"The Hamadryar, like the greater number of Indian serpenta. eriuces g_{g} grat partiality to water. With the exception of tho Treeserpents (Leptophina, Bell), they all not only drink, but also moisten the tongue, which, as this organ is not situated immediately in the cavity of the mouth, become in the serpents two different reta, specimens of thin serpent in my pusnemion changed the akin every third or fourth nooth, s procenn which takes place in all the Indian nerpenta aeveral times duriug the year. The Hanaylryas in very fieren, sud is alway ready not unly to attack but to pursue when opposed; while the Cophia, the Jipera, the Naja, nm the Bungarus therely defend themelves, which done, they alwaya retreat, provided no further provocation is offered. The natives of India assert that iudividuala are found upwards of 12 feet iu length-a atatement probably not exaggerated, ma 1 have myaelf reen xpecimenn from sto 10 feet in lemgth, and from t, to 8 inchee in eircumference, i lave often licaril it eqaerted thas 'Coluras' (which name is naturally enough given to "wery hooded merfent) lave been met with of an enormous size, but I ntrongly donbt their belonging to the gemus Viaja. Amoug a conaiderable number which have come unher iny obervation, I never asw may excrehug if ta fifet in length, while the common size ia about ifect. some time before I dixeovered the hamedryas, I was favoured ly A. W. Grant, baql. of the llon. Company'e (ivil Survice, with an intereating deacription of a gigantic fooded serpent he had obnerved in the upper provincen, and which, he remarked, wan not a Nuja, By impection thingentheman devied the /lamadryas to be identical with the mboveroentioned.

Whe dativea deferibe another hoorded rement, which in said in
attain n much larger size than the Hamadryas, and which, to conclude from the vernacular asme, 'Mony Choar,' is perhaps nnother nearly allied apecies.
"The fresh poisen of the Hamarlryas is a pellucid tanteless Buid, in conmistence like a thin solution of gum arabic in whter; it reddens slightly hitmus paper, which is almo the ense with the fresh poison of the Cophias riridis, lipera elegans, Naju tripudians, Bunjarus annnlaris, aud Bungarus curuleus. Whes kept for nome time it acts much stronger upon litmus; hut after being kept it loses considerably, if not entirely, its deleterious effects.
"From a series of experiments upon living anlmals, the effects of thia poison come nenrest to those prodnced by that of tho Naja tripudians, although it appeara to act less quickly. The shortest period within which this poison proved fatal to n fowl was fourteen minutes, whilat a dog expired in two hours eighteen minutes after being bitten. It should however be observed that the experiments were made during the cold reason of the year."

NAI'ADACEA, otherwise called Naiadea, Naiads, Naiales, and Pluriales, are Aquatic Plants forming a small natural order of Endogens, remarkable for the unusual simplicity of their organisation. As they live constantly below water they requiro no epidermis, and therefore the leares consist of nothing more that the mesophlocum, or central stratom of parenchyma. Their sexes aro usually separate, and sometimes on different plants. Their floral envelopes are either deficient of in the form of a membranous tunic or cup, or consist of scaler, to the face of which authers or carpels adhere. The latter aro either solitary or in pairs or fours, 1 -gecded, I-celled, with the ovule generally pendulous from the central suture. Their fruit is usually indehisecat and nut-like, but sometimes it is 2 -valved or irregularly ruptured. The embrye has no albumen, nod consints of a very large radicle, usually folded up, and containing a slender plumule lyiog in the cavity so formed.

These plants are inconspicuous objects, inhabiting both fresh and salt water in all parts of the world. In this country, the genera Pota. mogeton, a common inlabitant of rivers and ponda, elerating its little brown spikes of flowers above water during the time of fertilisation; Zannichcllia, a tbread-shaped plant, with minute axillary flowers, constantly submersed; and Zosfera, or Sea-W rack, with long narrow ribandlike leaver, inlubiting sestuaries of the sea, are the most common.
This order, from which Zosteracece is now separated, contains 9 genera and 16 species Its relations are with Mydrocharidacex, Iunctiginacer, and Alfar. [Yosteracese; Potamogeton; Zannicherdia; Calus.isis.]

1, a fpathe containing male and female flowers; 2, a female; 3 , an anther; 4, an enbryo.

NAIALIE, NAIADES, or NAYADHR, and UNIONIDAB, n family of fresh-watar Conchiferoun Mollusca, comprising the genera Unio, Myria, Anodomet, or Anodon, Irulina, Monocondyllca, Mycetopue, Witheria, and Millerin.-The l'resh-Water Muscles, at the members of this fanily are popularly called, are very elosely allice to the Marine Muscles, and differ chiefly in tho atructure of the foot of the raimal, which, in the tribe before un, is greatly developed in dimensionn, and in not provided with a bymal groove. Mr. Anthony, an American conchologint, however asserts that under peculiar circumstances certain North American specica do npin a byasus lerth in the young and adolt statem. As in several of the gencra of Mytilule the
mantle has its margins, which cannot be reflexed, freely open almost throughout, and the siphons are only indieated by a difference in the structure of the posterior borders, the shells vary greatly in form and aspect. Those of our few native species are more or less oblong and depressed; but so great is the variation among foreign species, that an American naturalist observes, there seems to be a representation of the forms of all the genera of marice bivalves in this tribe. All the Unionidke are equivalve. They are covered with an epidermis which is often remarkable for brillianey of colour, a feature also of the pearly surfaces of the insides of their valves.
The variation of the hinge is very great in this tribe, and its value, as a source of character, has been a subject of mueh discussion among conchologists. Some, as Mr. G. Sowerby, have gone so far as to propose the union of all the genera in one, whilst otbers, as Mr. Swain son, have maintained the other extreme, and not only divided the tribe into numerous genera, but have even grouped them into subfamilies. The tribe, as a group, is a very natural one; the genera are, we fear, too nearly inclined to artificial sections, and of the extreme opinions that of Mr. Sowerby approsehes nearest the truth. There are however in the family a few types of ebaracter, round whieh a number of species seem to group themselves naturally : the sections Unio and Anadon, to whieh, with most authors, we refer our British speciea, are of this nature, and may conveniently be retained. The value of the generic divisions at best however iu this tribe is not equal to that assumed by such seetions in most of the other tribes we have prssed in review.

The Unionide all inhabit fresh-waters; butfew comparatively are found in the Old World, by far the greater number being inhabitants of America. In the United States, alone there are more than two hundred species. The collections made by Major Cautley and Dr. Falconer among the Siwalik fossils would seem to indicate that during tertiary epochs the species of the Old World were more numerous than they now are. The tribe ranges far back in time. All the species are very variable, and it is extremely difficult to assign their precise diagnosis.
The bisexuality of the animals of this family was first, we believo, observed ly Professor Bell in Europe and by Dr. Kirtland in America. The shells of the females are more ventricose than those of the males.
The distribution of the British Fresh-Water Museles is peeuliar and significant of the four species we posses. Three are menibers of the genus Unio and one of Anodon. The last is generally distributed through England, Scotland, and Ireland: one of the Uniones, that representing the section Margaritana, or Alasmodon, is partially distributed in the three countries, confining itself to the mountainous portions and the rapid streams which flow from them. The remaining two are confined to England, and abundant mainly in the south aud east. On the continent the Alosmodion abounds in the Scandiuavian rivers beyond the range of its fellows, which however have an almost universal distribution through central and southeru Europe. The former species does not range south of the Alps. Taking the features of this distribution into consideration, it seems as if the Unio maryaritifera had migrated southward from some ancient northern centre, whilst the other Uniones and the Anolonta advanced westward and northward, with unequal pace however, since only the last iuvaded Ireland. The fossil contents of the fresh-water tertiaries contemporaneous with or immediately preceding the period of the drift, when the greater part of the British Isles was under sea, corroborate this view, for in them we find associated together the Unio tumidus and U. Pictorum and the Anodonta cygnea. (Forbes and Hanley, 'History of British Mollusca.')

The North American rivers abound with this family ; and Dr. Lea of Philadelphia has contributed most largely to our knowledge of the babits of these animals, and has made great additions to the species.

Dr. Lea, in his 'Prelimivary Remarks,' notices Lamarck's statement that the animal of Anodon, which is essentially the same with that of l'nio, is hermaphrodite, and seems viviparous; for the eggs pass into the oviduct placed along the superior branchie, where the young are found with their shells complete. He then tells us that he dissected a specimeu of A notonta undulata nearly three inches long, and found the oviducts charged with about 600,000 (as nearly as he could calculate) young shells perfectly formed, both valves being distinctly visible with the mieroscope. In bis second volume, bearing the title of ' Ohservations on the Genus Unio,' \&e., the same author informs us that, believing that the oviducts would present the means of discrimitation in some species, he having found them to be so very different in Unio iroolus, his attention had been particularly, addressed to these organs in the few and small species of his vicinity. Whilst engaged in this investigation, Dr. Kirtland of Poland, Ohio, informed Dr. Lea of his ability to distinguish the female and male shells of the same succies, without having recourse to the ineluded animal ; and shortly afterwards Dr. Kirtland's paper on the subjeet appeared in the 'American Journal of Seience and Arts,' vol. xxvi. Dr. Lea's attention now became more addressed to sexual characters, and he atates that a very short series of examination aatisfied him fully as to the establishment of the difference of sexes. The female, sustaining her very large burthen, naturaliy requires, he observes, more space within the valves; bence an enlargement of the posterior portion of the shell is generally found, differing in its form in various apecies.

The following figures, representing the oviducts of the speeies whose names are printed under the cuts are giveu by Dr. Lea.

Cnio irroratus.
1, soft parts, showing interior of oriduct; 2, showing exterior of oviduct, the mautle being remored ; a, mouth; b, great anterior musele ; f, right supcrior branehia; d, great posterior muscle ; e, inferior right branchia; f, right oriduct ; g, foot ; h, superior left branchia; i, interior view of oviduct; 3 , 4 , shell.

Dr. Lea remarks that the mass of the lobes in Anodonta rudulate differs from that of A. fluviatilis, in preseuting a darker appearance and a very curious arrangement of the oviducts. The ova are placed in a kind of sac lying across the lobe, aud preseuting one end to the stomach and the other to the mantle of the animal. They lie so close together as to take the form on the exterior, like the cells of a honeycomb. This, Dr. Lea says, is of course produced by pressure. Some of the e sace, when carefully removed, were found to contain as many as twelse ova, each with a perfect living shell in it, having a brownish epidermis

Anodontas fuciatilis.
In plate sa. (Mr. Garner's paper on the 'Lamellibranchiate Conchifera') will be found a figure of the antmal from the ovarium of an Anodonfa, as sech in the feld of the mileroscope ($\frac{1}{3}$-inch focus); and in plate xviit. the dinpostion of the heart, pericardium, excretory organn, de. of Anodonta anatina is shown.

Auodonta undulata, apparently ready to aparn.
a in the cut represents a sac with its ova; b represents the ovum with its perfect young shell ineluded; crepresents the honeycomb appearance, and is eight times unaguified.

"f wo femalem of rinin radiatis the they were acon with the parte protended no they lag at the furtom of a basia of watcr. Dr. Lea stater that theac femalo. put on two quite different formas regards the inferior portion of the manth asexhibitestaberc.

Dr. Lea (rol. i.) ntaten that it acems to be a matter of doubt on what these animalm subsist. He rays that he has atrong reasons for believing that they feed on animalcules which are ever found to exist in water, and which they might beparate from the constant metrean which they pane from the jonterior part of the aliell, and which munt bo taken in at another jint. This operation he wituessed frequently
in a vessel in whiels he kept the Naindir for somo moaths. If the water was not changed for twout y-four hours he uniformly found the animala quiet, but withia a few minutes after it was changed they as uniformly commenced the paesage of this constant streaus. He adds that he cannot suppose this operation to be fur the sole purpose of breathing, as there ia no intermission in the stream of water, and the quantity thrown out in too great for this purposo only. He believea it to be the result of the action of the separation of the aulmalcules from the water.

In the Museum of tho Royal College of Surgeons in London aeveral preparations of the internal organs of the fresh-water muscle, Anodon cy:/acus, will be found.

The brilliant and variously coloured nacre with which many of the species are lined and the extrome thickness of some of the ehells are very remarkable. That pearls should be found in them will not surpriae those whose attention has boen drawn to their interaal surface. l'ennant remarks that M_{y} a margarififera of Linnzeus (Unio clongafus) is noted for producing quantities of pearla, and formerly thero wero regular fieheries in many of our rivers to obtain them. As many as sixteen have been taken from one shell. The Esk and the Conway were famous in this way. The latter river in the daya of Camden was noted for them. Sir Riehard Wyun of Gwydir, chamberlain to Catherine, queen to Charles 11., is said to havo presented ber majesty with a Conway pearl which is to this day honoured with a place in the regal crown. leanant, who states this, adde, that the shells are called by tho Welsh Crigen Diluw, or Deluge Shells, as if left there by the Deluge. The river Irt in Cumberland also produced them; and Sir John Hawkina, the circumnavigator, had a patent for fishing that river. Britain indeed had early acquired a reputation for its pearls; for, according to Suetonius, they were Cresar's inducement for undertaking his British expedition. ('Jul. Cezar,' a 47.) Thia however docs not seem very probable. Pliny (ix. 35) indeed speaks of the pearls of our island as small ond ill-coloured, and refers to the breast-plate which Casar himeelf had brought home and dedicated to Venus Genetrix in her temple, adding that be wished it to bo understood that the offering was formed of British pearls.

Ireland has produced pearls of considerable size and some valte, especially in the rivers of Tyrone and Donegal. One weighed 36 carats, and was valued at 40l., but it was fonl, and so lost much of its worth. Other single pearls weresold for $4 l .108$, and for as much as $10 l$. The last was sold a secoud time to Lady Glenlealy, who put it into a necklace, and refused 801. for it from the Duchess of Ormond. Peunant, who quotes from the abridgment of the 'Phil. Trans,' speake of the last century as the time when these large Irish pearla were procured. We hare secu some lately of considerble size, fair shape, and pretty good colour.

Dr. Lea, iu bis final arrangemont, admita ouly-two genera, Margarita and Platiris. The first of these has been preoccupied by leeach to designate a genus of Marine Conchiferg. [Maltgakira.] We shall however retain the name in this article, in order to present to the reader the leading features of Dr. Lea's arrangement and tho forms of the shells.

Margarita. (Lea).

1. Sub-Genus. L'nio.-JIaving a Cardinal and Lateral Tooth.
*Sympliynote.
Ex. I'nio alatus.

Chio alatun.
a, part of the wing of the valve broken off, showing the symphynete character redneed.
** Non-Symphynote.
Ex. Unio Pictorum, common in our English rivers. [Conchifera.]

Chio Niclorum, Fromia young specimen.
In Mr. Garner's 'Memoir on the Anatomy of the Lamellibranchiate Conchifera' (pl. xx.) the ova of Cnio Pictorum from the ovaries and branehiae are represented (18th of an inch focus); also the valve of a young Unio, ehowing that its nucleus is of the same slape as the valves of the animals found in the branchire.
2. Sub-Genus. Margaritana--Having One Tooth (Cardinal).
*** Nou-Symphynote.
Fx. Alamodonta undulata. (Say).

Alosmodonta undulata.
Symphynote.
Es. Alasmodonta complanata. (Barnes.)

Alasmodonta complanata.
3. Sub-Genus. Dipsas.--IIaving a Linear Tooth under the dorsal margin.

Symphynote ouly.
E.x. Dipsas plicatus. (Leach.)
4. Sub-Genus. Anodonta.-Having no Teeth.

* Symphynoto.
F.x. Symphymota magnifiac. (Lea.)
** Nou-Symphynote.
Ex. Anodonta Auviatilis (Mytilus ftuviatilis of Solander; Dillwyn, sce; ; Anolonta catarructa of Say).

> Platiris. (Lea.)

1. Sub-Cienus. Iridina.-Having a Crenulate Dorsal Margin.

> Non Symphynote.
x. Iridina exotica. [Conchacea.]

Iridina Nilotica.
Plicate Shells.
Ex. Unio plicatus. (Lesueur.)
Nodulous Shells.
Ex. Unio pusiulosus. (Lca.)
Smooth Shells.
Es. Unio complanatus (Unio purpurcus, Say).

spinour Shells.
Fixample, C"nio npinosus (Len). Bhartrnom nppenrs to havo been the firnt who dincoscred this mpecieq. He, rpparently, found it in the Minsismippi. Seo his "Traveln', 1. 431.
I)r. I.ea, in him "Tablen," enmmeratea 323 recent apecies as ndmitted, not 29 an mannown to him or doubtful.

If the anb-genus l'nio 235° r"cent, norl 20 which he has not been nble to milmit as certain. (liurope, Asin, Africh, North America, South Americn, Auntralia, By far most nbundant in North America,)
.Vargaritana, 20 malinitter, 2 unknowa. (Europe, North America, South Aucrica, nud jerhapn Africa)

Dipuas, 2 recent. (Avin.)
Anodonia, ${ }^{3} 8$ ndinitted; 7 unknown to L.ea. (Jurope, Asia, Africa, North America, Houth Aurcrica, Australis.)

Iridina, a recent. (Africs.)
Sputho, Érecent. (Afrim, South America.)
M. Denhages (lant edition of Ioamarck), after reviewing the atato of the gueation, comen to the conclamion that all the varioun genera cannot form and onght not to form more than one genur, constituting singly the family of the . Visinder.

Fossil l'nismidir.-The recent apecien of l'nio mere very numeroun, amounting lo 2:0, These wre fouml in North and Sonth America, Furope, Afica, Δ sia, nad Anmtralia The fosmil apecica are about 50 . They are foum in the Wealden nad in the Tertiarien of Jadia. The upecies of other genera have not yet been recugnised in a fosail form.

NAIADIES. [NABAD.ace.s.]
NAJAS, a genus of Phats the type of the uatural order Naiadacea. It has imperfect solitary slenthod flowers with no perianth. The liarren fowers consist of 1 stamen, the fertile flowers havo a singlo short atylo with two or three filiform bigmas. There is one British species.
N. Hexilia has very garrow and very minulely denticulste, ternate, or opposite leaven, the sheaths cilinte-denticulate. Tho ovary is alitary and the stgle is short. It has been found in but one locality, and thant is near Rouodatone, Connomntn, in Galway, Ireland.
NAIDES, A group of Abranchinte Annclida. The specien have the elongnted body nud ringa legs marked than in tho Farthworma. They live in holen which they bore in mud at the bottom of water, null from which they are constantly protmaling their bodies. Somo have black points on their heads which have been regarded as eyes. To this family belong a large number of little-studiod forms of very minute freah-wnter worms. The amaller ones are sounctimes called Vibrios, of which the very common librio fluriatilis of the amateur microscopist is au example. It also appenrs to embrace the Stylaria of Lamarck, the Proto of Oken, and the Clymene of Savigns. This family would repay attentive study.

NAlIS, thenppeadngee to the fingers nnd toee in human beings and the Quadrumann, nod which are homologota with the olnwe and hoofs of the lower nnimals. Theso orgmas are aimply nn altered form of the external layer or epidermin of the rkjo. [Skis.] If a portion of recently formed mil is placed under tho microscope it in found to consiat almont entirely of nuclented cella, which are of preciscly the Rmme character as those fund in the new layers of epidermal tisnue. In the older portions of the mil no very dintiact stmictura can be seen, but if these parts nre immersed in n dilute solution of canstic potash or codn, the cells will bo unde npparent. In the human being the naila are produced from n foll in the truc akin. This fold or groove has a highly vascular surfnce, which is furniahed with longitudinal elevated ridges, to which blood-ressela are copiously diatributed, and between which the soft inner layer of the nail dipe down. The
nail grows by additions to its base, but as it moves upwards it receives additional matter from the portions of the skin on which it rests. M. Bean states that the rate of growth of pails is $2-5$ ths of a ling per week, and that the growth of the nails of the toes is only l-10th of a line per week. M. Beau states that during disease growth is not so active in the uail, and that it becomes thinner also from the absence of healthy nutrition. In this way he states that the condition of the nails may be made subservient to the diagnosis of disease. When the nail is injured, provided the skin beacath has not been destroyed, it is speedily reproduced. Tha nail is in every part continuous with the true epidermis, except on its projectiug edge, which in the foctus is also continuuus with the epidermis. (Carpenter, Principles of Human Physiology.)

NAKED SEEDS. This name wae applied by Linnæus to s small form of fruit which does not directly bear a style at the apex, and which has the appesrance of a seed, as in the Lamiacea, to which the Sage, the Dead-Nettle, the Borage, \&c., belong; such fruits are now called Spermidia by many writers. Naked seeds, strictly so named, are seeds which are fertilised by immmediate contact with pollen, and which have no pericarpial coveriag; they are at present known only in the great class of Gymoogens, thst is to say, in Coniferce, Cycadacear, and Loranthacta. [SEED.]

NANDOU. [STRUTHONDDE.]
NANI'NA (Gray), a genus of Mollusca, consisting of the phanorbicular species of Melix, with large umbilici, included in the sub-genus Helicelles of Da Férussac.

NANODES. [Psittacide.]
NANOTRAGUS. [Antilopee.]
NAPE-CRESTS, the English name for the species of Birds belouging to the genus Chizarhis. [Mosophagide.]

NAPHTHA is a compound of Carbon and Hydrogen, frequently found in the neighbourhood of cond-deposits, snd in other parts of the earth. It contains 82.2 of carbon and 14.8 of hydrogen. It is a limpid or yellowish fluid, lighter than water, snd heace called Mineral Oil. Its apecific gravity is 0.7 to 0.84 . It hardens and chagges to the substance called Petroleum on exposure to air. It may be obtained from Petroleum by beat, which causes it to pass off in vapour.

Naphtha issues in large quantities from the earth in Persis and the Birman Empire. At Ragoon, on one of the branches of the river Irawaddy, there are upwards of 500 naphthe and petroleum wells, which afford annually 412,000 hogsheads. In the peninsula of Abcheran, on the western shore of the Caspian, naphtha rises through a marly soil in vapour, and is collected by sinking pits several yards in depth, into which the naphtha flows. There is an abundant spring near Amiana, in the Duchy of Parma. Mr. Dana says that in the United States it was formerly collected for sale by the Seneca and other Indians; the petroleum is therefore commonly called Genesee or Seneca Oil, under which name it is sold in the market.

Petroleum is used as lamp-oil in Birma, and when mixed with earth or ashes as fuel. Nsphtha is used both for fuel and light by the inhabitants of Bakou, on the Caspian. The vapour is made to pass through earthen tubes, and is iaflamed as it passes out, and used in cooking. The spring at Amiana is used for illuminating the city of Genoa.

Naphtha has been recently used as a medicine, sud is found to be a good stimulant in some chronic diseases. It has been externally applied as a lotion in cutaneous affections. It is sometimes substituted for drying oil in making paint. It is slso employed for preserving the metals of the alkalies potassium and sodium, which cannot be kept in contact with any substance contsiaing oxygen.

The Rangoon petroleum contaias the compound Paraffine. This substance has also been obtained pure in a liquid form from the coalpits of Derbyshire. It is used for the purpose of diminishing the friotion of machinery as a substitute for sperm-oil. It is now obtained artificially from cosl, and also in a solid form, from which candles are made. [Paraffine, in Arts and Sc. Div.]
(Dana, Manual of Mineralogy; Gregory, IIandbook of Organic Chemistry.)

NAPOLEANA. [BElYisiacer..]
NAPU. [Moschin.x.]
NapuS. [Brassica.]
NARCISSALES. [ENDoaens.]
NARCISSUS, a genus of Plapts belonging to the class Endogens and the natural order A maryllidacea, among which it is known by its Howers growing upon a scape, and having a cup at their mouth; the staneoe, which are opposite the sepals being longer than the others. It consists of bulbous plants principally inhabiting the warmer parts of Europe.

The following is the arrangement of the European spccies of this genus given in Mr. Wood's 'Tourist's Flora :'-
A. Leaves fist, linear, obtuse; tube of corolla short, obversely conical ; crown campaulate, dentate.
N. Peoudonarcissus, the Daffodil. Scape 2-edged, striste; flowers nearly sessile in sheath; crown erect, nearly as long as segments of corolla ; stamens equal. It is found in woods and meadows throughout Europe.
N. minor, a native of Europe.

NAT, RHET, DIV. VOL. III
N. incomparabilis has the scape 2-edged. It is found in France and Italy and the coasts of the Mediterranean, and is naturalised in Great Britain.
B. Leaves ncarly flat; flowers hypocrateriform.

I. Scape nearly terete.

N. calathinus. Scape 2-4-flowered. A native of the Isles of Glenans and of Brittany.
N. dubius. Scaps 2-6-flowered. Mediterranean and Francc.
N. chrysanthus. Scape 3-10-flowered. Found nesr Grasse, in France.

> II. Scape 2-edged.
a. Crown yellow.
N. poeticus. Scape l-flowered; petals white. It is found on open beathy fields in Norfolk and Kent, in Great Britain ; it is also found in Austria and various parts of Italy.
N. radiiflorus. Scape 1-fowered; striate. It is found in Austria, Styria, sad the Vallais.
N. biftorus, with linear-obtuse keeled leares; scape compressed, 2 edged, striated, 2 -flowercd, crowned, very short, concave, crenate at the pale margin ; the petals of a pale sulphur colour. It is found in sandy fields in the south of England, snd in Ireland; also in France and Italy.
N. patulus, N. precox, and N. Tazetta, are other Europesn species belonging to this section.

b. Crowu and petals white.

N. polyanthus. Scape slightly 2 -edged, $8-20$-fiowcred. It is found near Toulon and Nics, in stony places.
N. nivers. Scape 6-10-flowered. It is a native of F'rance.
N. unicolor. Scape 10-15-flowered. It is found at the base of Vesuvius.

C. Leaves convoluto-setaceous.

N. serotinus. Scape 1-flowered. It is found near Palermo, on open hills.
N. cupanianus has the scape 1-7-flowered, and is found on the coasts of Corsica, Sardinis, Calsbria, and Sicily.

D. Leaves semi-cylindrical and channeled.

N. letus has the scape 1-3-flowered. Found nesr Grasse, in France,
N. ochroleucus. Scape 4-8-flowered. Found in fields near Toulon.
N. odorus. Scape 1-5-flowered. It is found in the fields and olivegrounds of Lucca.
N. Jonquilla, the Jonquil. Scape 2-6-fowered. It is found in Italy. N. intermedius is probably a variety of this species.
N. Bulbocodium. Scape 1-flowered, A native of heaths in France.

The species, from their hardiness or gay colours, or sweet smell, hare long been favourite objects of cultivation, especially the Daffodils, Jonquils, sad Tazettas. A very full account of them will he found in the 'Amaryllidacee' of the Honourable and Reverend William Herbert, p. 292 (8vo. London, 1837), who however divides the genus into six others, after the example of Salisbury and Haworth; but as those genera are not likely to be adopted by botanists, with the exception perhaps of the genus Corbularia, no account need be given of them. With regard to Corbularia, to which the name of Hoop-Petticost Narcissus is giren, and of which five supposed species are enumerater., the peculiar form of the flower and the delicate stamens of that plant may perhaps entitle it to be regarded as a peculiar geous; the species are pretty, all yellow flowered, with the siagle exception of C. cantabrica, a little plant with white flowers found on the mountains of Biscay and the Prrenees, but now lost in our gardeas.
NARDO'STACHYS, a genus of Plants belonging to the natural order Valerianacece. The limb of the calyx is 5 -parted; the lobes ovate, or,long, acute, lesfy, somewhat toothed and permanent; the corolla is regular, ecalcarate, obtusely 5 -lobed and bsarded in the throat; there sre 4 stamens, which are attached to the bottom of the corolla. The species are herbs with sweet-scented perennial roots, which are beset with erect fibres at the neck.
N. Jatamansi is a dwarf herbacaous plant with a long hairy taproot. The stems are perennial, very short, and simply divided into a number of shaggy scaly crowns, from which the lesves are produced; the branches erect, downy, and a few inches high; leaves obovate, lanceolate, 5 -ribbed, downy, those at the base scute, the upper ones obtuse; the flowers sre of a pale pink colour, clustered in the axils of the upper leaves, which form a kind of involucre for them. It is a native of Nepaul, on the Himalaya Mountains, sud in Delhi, Bengal, and the Deccan. This species is the true Spikenard of the ancients, and is esteemed not only as a perfumg but as a stimulant medicinc. Oriental writers give it as a remedy for a multitude of diseases, and it seems to ba really valuable iu cases of epilepsy and lyysteria.
N. grandiftera has a glabrous stem, oblong glabrous leaves, with solitary termiaal flowers; the capsule is doway, snd the lobes of the calyx evideutly denticulated. It is a native of Nepsul and Kumaon.
(Lindley, Flora Medica.)
NARDUS, a genus of Grasses belonglug to the tribe Rotbellice. It has the spikelets in two rows on cne side of the rachis of one flower; glumes absent; outer pale keeled, tapering into a subulate point; stigmas elongate, filiform, protruded at the apex of the flower
N. efricta, the Mat-Grass, is a Iritish species. It has the stem and leaves erect, oleader, rigld; it is 5 to 8 inches in beight; the spike is close; the outer pale has a short rough coriaceous often purplish swn, the inuer pale is membranous. It is a native of moors aud heaths.
(Mabington, Maneal of British Botany.)
NSRDC'S is also a name given to the plant supposed to gield Spikemard. [Spikisand.]

NARTIIE'CIUM, a genus of Plants belonging to tho natural order Juncacea. The perianth is partly coloured, of 6 linear-lanceolato persisteut leares Tho filamenta are woolly, and the atylo undivided. It has a simplo obtuse stigma. The capsules pyramidal, 9 -celled and 3-valved. The placenta extends only a short distanco up the inner edge of the dissepiment. Tho seeds have a long filiform appeudage at each end.

N: ossifragum, the oaly Lritish species, has linear sword-shaped leares, pedicels with one bract at the base, and another aboro their mildle. The perianth longer than the staunena, and considerably phorter than the capsules The fowers are bright-gellow. This speciea is distinguished especially by ita sceds it is found in turfy bogs.
(Inabiupton, Manual of British Botany.)
NaluWHAL [Cetacea.]
NASA'LIS (Geoffroy), a remarkable genus of Monkeys established on the 'Guenon A long Nez' of Buffon, the Iroboscis-Monkey of Shaw, Simia Nasiea of Schrober, Nasalis larvatus of Geoffroy, the Kahau.

The enormous development of the nose in the Kahau is not dependent on bouc. The nasal bones are no more clerated thau they are in the rest of the Simiadte, as will bo perceired from the following cut of the whull of a Proboscis-Monkey in the Muscum of the Koological Society of London.

Skull of Kahau (Simia nasalis).
The figure given below was reduced front the drawing of a female, when newly taken from the cask of spirit in which the body was preserved : the specimen came from Borneo, and is now to be secn, but with the nose deteriorated by drying, in the Museum of that Society. It is said that the aninal has tho power of dilating this organ to an cnormous size by inflation.

Yace of kahan (ternale).
Andebert give the following view of the nose, as seen from bencatl.

None of kahau, neen from beacath,

The following sccount of this Monkey is given by Mr. Martin.
"The genus Naralis, of which the 'Gnenon h long Nez' of Buffun ("Suppl.,' vii.) or Proboscis-Monkey of Shaw, is the type, was founded by Geoffroy St. Hilaire in his 'Tablean dos Quadrumanes,' publishod in the 'Annales du Musénm d'Histoire Naturelle' for 1812. In this outline of the Siniadie the genera Semnopithecus and Cercopithecus sre blended together under the latter title; but from this group are excluded two Monkeys, the Douc, constituting the typo of the gonus Pygathrix (Lasiopyya IIl.) and the 'Gugnonalong Nez' Witb respect to the genus Pyga/hrix or Lasiopyga, founded upon the alleged want of callosities, most naturalists, I believe (aware of the error committed both by Geoffroy and Illiger, in describing from an imperfect skin), havo regarded it as merging into the genus Semnopithecus, at loast provisionally, until the internsl anatomy of its assumed representative be known.
"The characters of the genus Nasalis, formed for the reception of the 'Gucuon it long Nez' (Sinia Nasica, Schreb.; Cercopithecus larcatue, Wurmb), are laid down as follows:-
" Mluzzle short, forehead projecting, but little elevated; facint angle 50°; nose prominent, and extremely elongated; eara small and round. Body stout. Cheek-Pouches. Auterior hands, with fourlong fingera and a short thumb, ending whera the index-finger begins; posterior liands very large, with fingers stout, especially the thumb. Csillosities large. Tail longer than the body:'
"At s subsequent period however, in his 'Cours da l'Histoire Nsturelle, published in 1828, Geoffroy, sdopting the gedus Semnopithecus, established by F. Cuvier, places the 'Guenon i long Noz' within its limits, doubtfully, it is true, and with the acknowledgment that his genus Nasalis has not been generally adopted, but at the samo time with a bias in its favour; for, observing that the manners of these Monkeys are those of the Semnopitheci, he adde, 'Cependant, il ne nous parait encore démontré que le singe nasique soit une véritable semnopitheque, et il est fort pozsible que lorsque l'espece sera moins imparfaitement connue, on soit oblige do rétablir le genre Nasalis, dans lequel on l'isolsit autrefois, mais qui n'est pas été sdmis par la plupart des nuteura moderues.'
"Serting aside the singular conformation of the nose, so remarksble in the Simia nasalis, its external charactera are not different from those of the Seninopitheci in general ; and it is to be observed that in a second species, lately added by Mr. Vigora and Dr. Horsfield, under the title of Nasalis recurrus, the proportions of this part of the face are much diminished, and its form also modified. This apecies (which though doubted by some as being distinct, is, we believe, truly so) takes an intermediate station between the Simia nasalis and the ordinary Scmnopitheci with flat noses, thereby showing that the transition in this particular character is not abrupt; even were it so, "an isolated point of this nature docs not form a philosophical basis npou which to ground a generic distinction.
"So far I have alluded to external characters only; it remains for me to give some aceount of the anatomical characters of this singular Monkey, of which, as far as I can learn, modern naturaliste do not appear to be aware.
"It would seem that M. Otto, who described the sacculated form of the stomach in one of the Monkeys of the genus Semnopithecus, is not the firat observer of this peculiarity, for I find that Wurmb, in the 'Memoirs of the Society of Bataria,' notices this point in the anatomy of an individual of the Simia nasalis. After giving some intereating details respecting the habits and mannera of the species, he proceeds as follows:-'The brain resembles that of man; the lungs are of a suow-white colour; the heart is covered with fat, and this is the only part in whicle fat is found. The stomach is extraordinarily large, and of an irregular form; and thero ia bedeath tho skin a sae which oxtends from the lower jaw to the clavicles.' Audebert (with whose work, 'Histoire des Singes,' Geoffroy St. Hilaire was well acquainted) refers to this account of Wurmb; jet Geoffroy does not, ss far as I can find, advert to these points, unless indeed his statement of the presence of eheek-pouches bo founded on the observation of a sac extending from the lower jow to the clavicles; and if so, he has made a sidgular mistake, for the sac in queation is laryngeal, and the words as they stand cannot be supposed to mean anything else. I know of no Monkey whose cheek-pouches extend beocath the skin to the clavicles; but tho laryogeal sacs in the Orang nod Gibbons, and also in tbe Semnopitheci themselves, are remarksble for development. It is evident howerer, from the silence of M. Geoffroy St Hilaire respecting the laryngeal eacculus in the Proboncis-Monkcy, that he was not sware of the real character of the structure to which Wurmb had alluded. With respect to the structure of the stomach, neither Wurmb nor M. Otto drew any gencral inferences from it; they deacribed it as it presentod itself in sioglo species, and regaried it in an isolated point of view; it is, if I mistake not, to Mr, Owen that wo owo its reception as an anatomical character cxtant throughout the Semnopitheci. ('Transactious of tho \%oological Society.')
"The statement of Wurmb respecting the stomach and laryngeal apparatus of tho I'roboscis-Monkey I hare lately been ensbled to confirm.
"In every essential point the stomach is the same as in all the Scmnopitheci hitherto examined : it consista of a large cardiac ponch, with a strong inuscular band running as it were around it so as to
divide it into two compartments, an upper and lower, slightly corrugated into sacculi; the eardisc apex of the upper pouch projects as a distinct sacculus of an ovsl form, and is not bifid. From this upper pouch runs a long and gradually narrowing pyloric portion, corrugated into sacculi by means of three muscular bands, of which one is continued from the band dividing the cardiac pouch into two compartments. The elongated pyloric portion sweeps around the lower cardiac poucb.
"The lungs consisted of two lobes on each side, the fissure dividing the lobes on the right aide being the most complete.
"The laryngesl sac was of enormous size, and single. It extended over the whole of the throat, and advanced below the clavicles, communicating by means of a single but large opening with the laryax. This opening is on the leftside, between the larynx and the os hyoides, and is capable of being closed by means of a muscle arising from the anterior apex of the os hyoides, and running down the central aspect of the trachea to the sternum. The contraction of this muscle draws the os hyoides down, 80 as to press upon the edge of the thyroid cartilage.
"There were no cheek-pouches, nor any traces of them.
"The teeth were much worn, but the fifth tubercle of the last molar tooth of the lower jaw was very distinct." ('Zool. Proc.,' 1837.)

Simia nasalis, the Kahau, is of a reddish-brown colour, except the lightecoloured tail, lower part of the back, and some light-coloured markings on the srms. Height about 3 feet, when nearly erect. Female rather less, and destitute of the light markings on the back, \&c. Nose and face darkish-brown.

Kahau (Simia nasalis). Audebert.
This species is a suative of Borneo. Their habits are gregarious, and they are said to collect in great troops upon the trees borderiug the rivers at sumrise, darting from tree to tree with great activity, sometimes springing a distance of 15 feet. Their bame, Kahau, is supposed to be given to them from their continued cries, which sre considered to resemble that word in thir expression. Their disposition is said to be bad. M. Lesson notices a statement that the species is also a native of Cochin China; but be gives no authority for this locality.
Mr. Vigors and Dr. Horsfield, in their paper 'On the Mammalia in the Zoological Museum,' after noticing the species above described, mention another form, of which two specimens, almost equally distinguished by the extension of the nose, but having that nember turned up instead of being recumbent, brought also from Borneo, are in the same collcction. This is the form alluded to above by Mr. Martin, and is thus characterised by Mr. Vigors and Dr. Horsfield, under the name of Nasalis recurvus. It is to be remarked that they were also preserved in spirit, and consequently were not subject to the same contraction of the soft parts of the nose as might have occurred in dried skins.
It has the head, neck, shoulders, aud thighs rufous above; abdomen paler; middle of the back reddish-gray; inside of arms snd thighs, paler ; part of the back, and tail, gray ; tail below, white. Size about one-third less than the Kahau.
Mr. Vigors and D1. Morsfield observe that the general colour and markiogs of this animal correspond with those of the Kahau. The minin of the face however, they remark, is reddish in N. recurvus, where in the other species it is black. In N. recurvus, they add, the beard is very prominent; but in the Kahau the hairs on the chin ecarcely assume the appearance of a beard.

Mr. Vigors and Dr. Horsfield state that it has been suggested that this may be the young of the Kahau; but they state that they cannot allow themselves to come to the conclusion that they are the same, with 80 great a disproportion of the facial angles, in the absence of some stronger grounds than mere conjecture. Its teeth, they romark, showed no signs of being otherwise than adult.

Profle of Nasalis securvus.

Mr. Swainson appcars to agree with Mr. Vigors and Dr. Horsfield, and Mr. Martin, in considering N. recurvus distinct; for he gives the number of species of Nasalis as two. ("Natural History and Classification of Quadrupeds.')

NASSA. [EnTomostomata.]
NASTU'RTIUM, an old word applied to some kind of pungent herb, such as Cress. By the English of the present day it is given to the Tropceolum majus [TropeolUs], an American annual with pungent fruit; by botanists, to the Water-Cress and plants allied to it; by the Romans it was applied to a plant resembling Mustard in its qualities.

The species now referred to the genus Nasturtium ware formerly included uuder Sisymbrium. Nasturtium was separated by Brown, and is principally distinguished by the position of the cotyledons, a point of primary importance in the whole order of Brassicacea. In Sisymbrium the cotyledons sue folded with their back upon the radicle, whilst in Nasturtium their edges are presented to it; in the former the cotyledons are said to be incumbent, in the latter accumbeut.
N. officinale (Sisymbrium Nasturtium), the Common Water-Cress. In addition to the characters of the genus, this plant is known priucipally by the form of its leaves. The leaf is composed of from 5 to 7 leaflets, which sre arranged opposite each other on a common petiole with a terminal leaflet. The leaflets are somewhat heart-shaped and slightly waved and toothed; they sre succulent, and their surface is smooth. The terminal leaflet is always largest. The upper leaves do not separate into distinct leaflets, being pinnatifid with narrow segments. The petiole of the leaf does not in any manner embrace the stem. The flowers ars white, and the pods, when rips, are sbout an inch long. It is a native of rivulets throughout the world, and is very plentiful in Great Britain. It has a warm agreeable flavour, and has long been one of the most popular plants as a salad. It was formerly much used in medicine ss a diuretic and anti-scorbutic, but its great consumption now is as an srticle of diet. As it frequently grows amongst plants that are not wholesome, and that bear to it a general resemblarce, it would bs well for every one to be acquainted with its characters. The plant most frequently mistaken for it, especially when out of flower, is the fool's water-cress. [Srum.] From this it may be always distinguished, and in fact from all other Umbelliferce, by the petioles of the leaves not forming s sheath round the stem.

The Water-Cress is cultivated to a very great extent in the neighbourbood of Londou. The plants are placed out in rows in the bed of a clear stream in the direction of the current, and all that is required for their successful growth is replanting occasionally and keeping the plauts clear of mud and weeds; sandy snd gravelly bottoms ars best. "Some market-gardeusrs who can command ouly a small stream of water, grow the water-cress in beds sunk about two feet in a retentive soil, with a very gentle slope from one ond to the other. Theu, according to the slope and length of the bed, dams are mads six inches high across it, at intervals, so that when these dams aro full, the water may rise not less than thres inches on all the plants included in each. The water, being turned on, will circulate from dam to dam, and the plants, if not allowed to run to flower, will afford abundauce of young tops in all but the winter months." (G. Don.) Water-Cresses grown in this way have not so fine a flayour as those from natural streams.
N. sylvestre is a less common species. It is found on river banks and in wot places. It is distiuguished from the last by having yellow flowers, and by its petals being twice as long as the calyx.
N palustre is also a native of wet places. It has a fibrous root and small flowers, with the petals only as long as the calyx. The two last are also natives of Great Britain.
Other Europan species are N. lippizense, N. pyrenaicum, N. anceps, N. amphibium, N. fluviatile, N. armoracioides, N. tervestre, and N. austriacum.

NASUA. [Vivernide.]

SATATORES, Illiger name for the Swimning-Blrda-Swame Ducka, Geeae, de. [Ducks.]

Natica. [Nemtide.e]
NATIBI (Laurenti), s genus of Colubride, a fumily of Saskee deatitute of poison-fanga, and of which the Common Suake, N. corquate of Ray, may be taken as an exsmple.

The lead is distiuct, oblong-ovate, depressed, covered with scuta; gape wide, borly rery long, nearly cylindrical, blender, seales imbricated, placed in longitudinal series, lanceolate, generally carinated; abdominsl abields simple, arehed at the margin, caudsl shieds biserial. Bell.)

Head and tail of Natrix. Head seen trom above; tall from below.
N. torquata, Ray, Fleming, Jenyna, Bonaparte; Coluber Notrix, Linn, Shaw, Dsudin, Turton; Coluber torquatus, Lacópède; Natrix rulyaris, Laurenti; Tropidonotus Natrir, Kuhl, Gray, Schlegel; Ringed Soske, Pennast; Couleurre a Collier, Lacépede. It is the Riageluatter of the Germans, and Tomt-Orm, Suok, and Ring-Orm of the 'Fanaa Suecica.
The Common or Ringed Suske is too well-known to require descrip. tion: the female in larger than the male. Its food consists of lizards, youg birds, birds' eggs, mice, snd more particularls frogs. The latter aro genernlly captured by one of the hind legs, and in that case the jurey is swallowed slise, aud with the lower limbs and parts foremost, tho hend atill continuing in its proper position, nad disappearing last. During the operation of deglutition the cries of the frog are very distressing, and we have delivered more than one from its enemyunfairly perhaps, in consequence of beiag attracted by the eries of the sufferer. The frog evilently remsins slive for some time after it has been ewallowed, in the courge of which the jaws of the enake are dilated, and, so to speak, dislocated io order to allow of the pasage of the disproportioned body to be conveyed into the atomach. Mr. Mell, who given in his "British IReptiles' a very accurate and clear necount of the manner in which thia operation is performed sud the dilatation pffected, ataten that be has heard a frog distinctly utter its peeuliar cry neveral minutes after it hat been swallowed by the suake. Tho same zoologist observee that the frog in generally taken by one of the hinder extremities, because the latter is most frequently in the act of Qeeing from its pursuer when taken; and in that case, the prey, nccording to bis experience, in swallowed as we have above described; but ho ndda, that if the frog be taken by the mildle of the body, the snako invariably turns it by several movements of the jaws, until the head in clirected Lowards the throat of the snake, when it is awallowed heal foremost In taking lizards or birds, the soake, as far as Mr. Bell's olservation goes, always awallows them head foremost. The same suthor gires a curious but painful description of an instance where two anakea had seized the gano wretehed frog, which. after a long and jaiuful struggle, aud some fightiog between the saskea, was wallowed by the victor.

When the akin of the common anake han been just cast, it is a very beautiful arpent, and those who have geen it, as we have, gracefully nwimming with elevated head and neck, and with the sun alining on its 'enamelled skin,' as it crossed the limpill water of aome clear ntrean or little lake, will neknowledge its clegance and beauty. Mr. lell han the following wbservationa uron tho pulyect of this chauge of the mkin. "Suakea, like most other Neptilia, med their cuticle or onter mkin at greater or less intervals. It in a mintake to assign a particular period to this procegs ; aome have atatel it to nccur ance, pome twice in the summer; but I have found it to depmin un the temperature if the atmonghere, nall on the atate of henth, and the nore or lens frequent feeding of the animnl. I lave known the skin shed four or five timen luring the gear. It is alwnys thrown off by reversing it; so that the tranalarent covering of the eges, and that of the scales also, are alwayn found in the exuvis. I'reviourly to this curious circumatance baking place, the whole cuticlu becomea somewhat opayue, the cyen are dim, and the animal in evidently blind. It also becomen more or leas inactive, until at length, when the akin is ready to be removed, being everswhere detached, and the new skin perfectly hard urderncath, tho nuimal buruth it at the weck, and creeping through nome dange herlage, or low brushwood, leaves it attachorl, and comes forth in far brighter and clearer colomm than before."

White aud others have remarked an offenaise power la this creature, that of 'stinking se defendendo," as Whito describea it. He adds, "I kuew a gentleman who kept a tame nnake, which was in its person as areet as amy avimal while in good humour and unalarmed; but as soon as a stranger or a dog or cat came came in, it fell to hisaing, and filled the room with such maseóus effluria as remdered it hardly supportable." But this offenaive odour, whioh is expelled from certain glande, is not emitted io self-defeace aloue. It is also said to be the concomitant of sexual exoitement.

The ringed suake is oviparous, as is the rest of the genus. The eggx, to the number of 16 or 20 , are deposited in a connected chain in some dung-lueap or warm rituatiou, the counection being effected by a glutinous eubstanoe, and there left till the heat of the place or of the sun calls the goung lato life. Preparations illustrative of the anatomy of the Snake are to be soen in the Museum of the Royal College of Surgeons of Eugland.
The common snake commenees its hgbervation in some warm hedge, under the root of a tree, or other sheltored situation, about tho end of nutuma; and then they coil themselves up, sometimes in numbers, till the epring again brings them forth. Many instances of tame snakes have been recorded. Mr. Bell gives the following account, showing that suakes may be mado to distinguish those who caress and feed them. "I had oue many years since, which knew me from all other persons; and when let out of his box would immediately oome to me, and crawl under the aleeve of my cont, where he was fond of lying perfectly atill, and enjoying the warmoth. He was accustomed to come to my linnd for a draught of milk every morning at breakfast, which he always did of his own accord, but he would fly from strangers and hiss if they meddled with him."

Common or hinged sume (A'atrix lorquata).
The editor of the last edition of Pemnant's 'Britiah Foology,' the Rev. L. Jenyns, aud Mr. Bell, are all of opiniod that the Dumfriesshire Sake of Sowerby's "Jritish Miscellany' is probably an imonature variety of this species. The editor of Pennant seeme however to be in doubt whether it is the young of the Aberdecn Snake, Anguis Eryx, or of the Natrix here treated of. But there can, we apprehend, be hardly suy doubt that the Dumfriesshire Snake is the young of N. torquata. The A berdeen Snake is nothing moro than the Slow-Worm or Blind-Worm, [Buan-Wonm.j Mr. Macgillivray atates that he has never seen the Ringed Snake in Scotland.
Geographical Diatribution.- Furope, "from Scotland and the correaponding latitude of the Continent, to Italy and Sicily:" (Bell.)
With reference to the alleged inability of reptiles to live in Ireland, Mr. Bell says, "I have already mentioned the existence of Lacerfa agilis there, and with respect to the preaent apecies, the following is the result of my inquiries. It would appear not only that the Common Suake ia not indigenous to Ireland, but that several attempta to introduce it have totally fuiled. Mr. Ball some time sinee informed me of Rome triala of this kind." Mr. Jell then prints the following letter from Mr. Thompen, which he had recently received, and which, as Mr. Bell observea, givea a very detailed and clear account of tho actual facta.
"In this order (Ophidia) there in not now, nor, I believe, ever was there, any apecies indigenous to Ireland. In the Fdinburgh 'New Philosophical Jourual,' for April, 1895, it is remarked: "We have learned from good authority that a recent importation of snakes has been made into Ireland, nind that at present they are multiplying repidly within a fow milea of the tomb of St. IPatrick.' 'I never,' proceeds Mr. Thompson, 'heard of this circumstance until it was publiahed, and subsequently endeavoured to ancertain ita trath, by inquiring of the perrona about Downpatrick (where the tomb of St. Patrick ia) who tre bent nequainted with these aubjecta, not one of whom had ever beard of makes being in the neighbonrhood. Recollecting that about the jear 1831, a snake (N. Iorguota), imonediately
after being killed st Milecross, was brought by some country-people in great consternation to my friend Dr. J. L. Drummond, I thought this might be one of those alluded to ; and recently made inquiry of James Clealand, Esq. of Ruth Gael House (county Down), 25 miles distant in a direct line from Downpatrick, respecting suakes said to have been turned out by him. I was favoured by that gentleman with the following satisfactor'y reply:-"The report of my having introduced soakes into this country is correct. Being curious to ascertain whether the climate of Ireland was destructive to tbat class of reptiles, about six years ago I purchased half a dozen of them in Covent Garden market in London; they had been taken some time, and were quite tame and familiar. I turaed them out in my garden; they immediately rambled away; one of them was killed at Milecross,"that alluded to as hsving been brought to Mr. Drummond,-three miles distant, in about a week after its liberation; and three others were shortly afterwards killed within that distance of the place where they were turned out; and it is highly probable that the remaining two met with a similar fate, falling victims to s reward which it appears was offered for their destruction." "

To this Mr. Bell adds, that it certainly does not appear that the failure of these attempts to introduce snakes into Ireland is to be attributed to anything connected with the climate, or other local circumatances, but rather to the prejudices of the inhalitants; nor is there reason to believe that their absence from Ireland is other than purely accidental. ('British Reptiles.') [Ophidia.]

NATROLITE, s Mineral belonging to the family of Zeolites. It occurs in right rhombic prisms, usually slender, and terminated by a short pyrsmid. The cleavage is perfect. It also occurs in globular, stellated, and divergent groups, consisting of delicate acicular fibres, which ofted terminato in acicular prisnatic crystals. The colour is white, or inclining to yellow, gray, or red. The lustre is vitreous. It is transpsrent to transluscent. Its hardness is 4.5 to 5.5 ; its specific gravity is $2 \cdot 14$ to 223. It has the following composition:-
 26.5 16.2
9.3
-100
It becomes opaque before the blow-pipe, and fuses to a glassy globule. It is found in amygdsloidal trap, bssalt, and velcanic rocks.

Scolecite resembles Natrolite, and differs in contsining lime in place of soda.

Poohnalite is a related species, from Poohna, Hindustan.
Mesole is another related species, occurring uscally in impregnated globules, having a flat columnsr or rsdiated structure, with a pearly or silky lustre.

IIarringtonite, from the north of Irelsnd, snd Brevicite, from Brevig, Norway, appear to be identical with Mesolc.
Mesolype is sn old species of Mineral, embracing the various forms here cnumersted.
(Dana, Mineralogy.)
NATRON. [SODICM.]
NATTER-JACK, or NATTER-JACK TOAD, the Eoglish name for the Bufo Calamita of Laurenti. Its colour is light-yellowish, inclining to brown, and clouded with dull olive; but its most distinguishing mark is the bright-yellow line running along the middle of the back. The warts or glands on the body and the large glands behind the head are reddish; the under parts yellowish spetted with black, and the legs banded, with black. [BOFO.]

Mr. Bell gives the following dimensions:-

Natter-Jack Toad (Siufo Calamita).
Natural ordelrs of Plants. [Botany; Exogens; Endo. or:3s; Acrociens; Thallooens.]

NAU'CLEA, a genus of Plants belonging to the natursl order Rubiacece. It has a calyx with an oblong tube and a short truncate or 5 -toathed limb; the corolla is funnel-shaped, with a slender tube, a naked throat, and 5 spreading oval oblong lobes; the anthers are inclosed, and always shorter than the lobes of the corolla; the capsules are 2-celled, sessile upon the receptacle, but gradually attenuated to the base. The seeds numerous, imbricate, winged, fixed to oblong placente, which sre adnate to the dissepiment; the embryo is invested in a fleshy slbumen. The leaves are opposite, or 3-4 io a whorl, petiolate, or sessile. The bracts wanting at the base of the head of flowers, but with linear palex smong the flowers, which are crowded and sessile. The species are unarmed trees, rarely shrubs, snd natives of Iudia and Africa.
N. Cadamba has brachiate branches; petiolate coriaceous ovate leaves; triangular stipules; terminal solitary peduncles, ususlly shorter than the beads, which are globose. The flowers are orangecolcured, collected into heads about the size of a small apple; the style is white and exserted. The seeds not winged; the lespes from 5 to 10 inches long. Kudumbs is the native name of this tree; it flourishes about Cslcutta and Malabar, where it grows to be a very large tree, and is ornamental snd very useful from the extensive shade it affords.
N. parvifolia has petiolate obovate-obtuse leaves, oval stipules, and terminal solitsry peduncles; sometimes the peduncles are in triplets, when the middle one is the shortest. It is a native of the East Indies and all the coast of Coromandel, but chiefly io the mountains of the Philippines. The flowers are light yellow and globular, about the size of a plum. The wood is of a pale chestnut-colour, firm, and closegrained; it is useful for purposes where it can be kept dry, but when exposed to wet it soon decsys.
N. cordifolia is prized on account of its wond, which is light and durable where it can be kept dry. It aoswers well for furniture.
There are 37 species of this genus eaumerated, all of which sre natives of the East, lut do not possess any peculiar qualities which entitle them to particular notice.
The Nauclea Gambia of Hunter ('Linuxan Trsnsactions,' vol. ix.) is now Uncaria Gambia. [Uncaria.]
(Lindley, Flova Medica.)
NAUCLERUS. [FALCONids.]
NAU'CRATES, a genus of Fishes of the Mackerel Tribe, having fusiform hodies, tails heeled st the side, and two free spines before the anal fin. The N. ductor is popularly known as the Pilot-Fish, and is remarkable for its habit of following vessels often for many hundred miles. Mr. Crouch, in the 14 th volume of the 'Linnæan Trsnsactions,' has recorded an instance of two individuals of this species which accompanied a ship from the Mediterranean to Falmouth, where they were taken by a net. The N. ductor is about a foot in length, and is remsrkable for the beanty of its colour, being of a silvery pale blue banded by broad and deep transverse dark blue belts.

NAU'TILIDE, or NAUTILA'CEA, a family of Cephalepodous Mollusca. According to Lamarck, they constitute the sixth fsmily of his Polythalamous Cephalopoda, consisting of the genera Discorlites, Siderolites, Polystomella, Vorticialis, Nummulites, snd Nautilus. Tó these Mr. G. B. Sowerby, Jun., adds Simplegas and Endosiphonitcs. In the system of M. De Blainville it is the fifth family of his Polythalamacea, and comprises the genera Orbulites, Nautilus, Polystomella, ar.l Lenticulina. The genns Nautilus is the type of this family. [CephaLOPODA.]
Linnaus gave the following ss the generic charscter of Nautilus:"Animal (Rumphius, 'Mus.,' t. 17, f. D) testa univalvis, isthmis perforatis concsmerata, polythalsmia;" and be divided the genns as follows:--

I. Spiral, rounded.

In this section he placed the spccies N. Pompilius, N. Calcar, N. crispus, N. Beccarii, N. rugosus, N. umbilicatus, N. Spirula, and N. semilituus. Of these, all, except N. Pompilius and N. Spirula, the latter of which is separated ss a cephalopodous genus under the name of Spirula, are minute chambered shells, for the most part from the Adriatic Sea.

II. Elongated, sub-erect (erectiusculi).

In this section the species are N. obliquus, N. Raphanistrum, N. Raphanus, N. Granum, N. Lladicula, N. Fascia, N. Sipunculus, N. Legumen, and N. Orthocera. Of these, sll but N. Orthocera are minute, snd from the Adriatic snd Mediterranean. N. Orthocera, now estsblished as a fossil genus of Cephalopods under the name of Orthoceras, though described by Lianæus as fossil, seems to have becn considered by him as not without s living analogue, for he writes"Hsbitat in alto pelago; Fossilis;" and he has the following observation :--"Testa frequentissima petrificata in montibus nostris calcareis, jnter omnis fossilia nobis nota sxpe longissima, non dum visa immutata."

M. De Blainville thus describes the genus:-

Animal having the body rounded, and terminsted behind by a tendinous or muscular filament, which attaches itself in the siphon with which the chambers of the shell are pierced; mantle open obliquely, and prolonging itself iuto a sort of hood above; the hesd
prorided with tentacular appendagos, which are, as it woro, digitaterl, and surrounding the aperture of the mouth.
Shell discoid, but littlo compressed, with tho back rounded or subcarinated, umbilicated or not, but zever mamomellated (wauelonée); the chanbers simple, invisible externally; the last deeply hollowed and pierced by one or two siphons.
The ramo zoologist thas divides the goaus :-
A. Species not unbilicated, back rounded; aporture round, a single suboentral siphon. Fix. N. Pompilíus, Limu.
A. Species not umbilicated, with a carinated back and nagular operiag. (Angulither, De Montf.) Ex. I. triangularis.
C. Vimhilicated species, with the back rounded and a single siphon. (Oceanus, De Montf.) Ex. .I. umbilicatus.
D. Umbilicated specios, with the back rounded sud two siphons. (Bisiphites, Do Montf.) Kix. N: Bisiphiles.
M. Rang, uader the genus Nautitus of Linamus, places also Aganides, Angulithes, Canhropes, Occanus, Bisiphites, and Ammonites of De Montfort. All De Montfort's genera, except Oceanus aad Ammonites, are fossil only; the former he describes as coming from the Molaccas. It if, ns far as one can judge from the figure, a very young shell, possibly the young of \boldsymbol{N}. Pompilius. Ammonites is deacribed as coming from the China Scas, nud is apparently a apecies of \therefore. umbilicatus. De Montfort considers"it as the type of a epecinen of Ammonits amalogons to tho Ammonites, or Cornua Ammonis "i cloisons unies." He further says that he possessed a superh petrification of this Ammonite a foot in diametor.

Tho deacriptions of the animal given by De Blainvillo and othors seem to have been taken from the figure of humphius. We therefore girea copy of this figure, which representa the animsl in a supine position. The general form is not insccurake, but the details aro confused, aud many of them incorrect, the fanalel for instance, which is erroneonsly represented as round. That which an ordinary epectator would take for the eye is mercly an opening between the digitations: the mantle is torn, aud so represented as to mislead the spectator.

Tho following is the Iescription of Rumphius, and it has much more merit than his figure:-
"The firl that inlablits this shell (the Noutilus) is a rpecies of Polypua (that in, Cephalopod; Пoגínous, Aristotlo; Ponlpe, Freach), but of a particular aspect, moulded according to tho coneavity of tho shell, which it does not quite fill when it holds itself retracted therein.
"The posterior part of tho bodry fits into the bottom of the cavity, while the superior parts (which are inferior when the animal draga itaelf flong the bottom) are flatened, but also rounded off, plaited, and of cartilaginous texture; coloured with brown or washed with rod; spoted with blackiah marks, which ran one into another, as in the ("uttlo-Finh (Veelvoet). The posterior part of the body, which presses agaiant the shell below the convexity (kiel), and which, in its progrensjon, becomes tho supcrior part, is nleo a little eartilnginous, but not ao much ao as the auterior parts, which are covered with a namber uf cavities (wratten).
"In the middle of these parta, in front of the head, thero is a con-
siderable lump of little feet, which terminate in floshy processes laying one over another, and which cover the moath on each side: theso procesaes are formed like the hand of a child. Tho largest, or those which are extorior, are torninated hy 20 of these fiugers or little feet, onch as long as half a finger, as thick as a stran; round, mooth, having none of those suokers we see on the feet of the Cuttles, but a little flattened or divided at tho end. The great flesby processes are aucceeded by others which are shorter and have only 16 fingers, and these aro followed snocessively by others atill shorter, which go on covering erou to the month.
"The aumon can rotract or elongsto these fingers at will, for they not only serve ns feet to croep withal, but also as hande to seize his prey and carry it to the mouth. This mouth is arived by a very hooked beak, formed like that of a Coccatoo or a Sea-Cat (Sepit !). The upper beak is largo, hooked, lentated on the edge; the lower heak is small, concealed, or, as it were, shut up in the upper. Both sbarp, and calculated to pierce flesh (vleosch). This heak is hard os bone, and its colour of a blackish-blue, surroanded by circular lips of a white colour, fleshy or parchment-like. These are produced eometimes so as to cover cntirely the beak, which at other times is almost entirely concesled by a gelatinous deposition, and by the multitude of feet whieb surronnd it, so that it cannot be seen without violeut means being used.
"The eyes are placed a little low down, laterally disposed, very large, large as beans, without an inferior cyelid, pierced in the middle; but we cannot find the leus (oogappel); they are filled with dark-brown blood.
"From the hinder part of the body, to wit, that which rests npon the last partition, goes n long artery (ader) through all tho partitions and throagh all the chambers, cven unto the extreanity of the spire, the uiddle hole to which the fish hangs fast to the shell : excepting this part the chambers aro eatirely empty, and it breaka readily wheu the fish is drawn oat. Under the beak'(snuit) is a half pipe (canal) of a rounded form, one side rolled over the other, of a whitish flesh, like as in the Sea Cat (Sepia), and in this is concealed a sort of tongue. It is most likely the same cansl as that by which the Zeekat ejects its black blood." ("Rariteit-Kamer,' book ii.)

This figure and description warmed the imagiastion of Denys de Montfort, who published a ludicrous representation of the supposed animal seated in its shell, sad expanding its hood or sail. This has been copied by Shaw; and as it has beeu published by that zoologist in his 'Lectures,' we give a copy of the monster, which was meant to yass curreat for the inhabitant of the shell.

Suppesed animal of Vantilus l'ompitius. Deaye de Montfort and Shaw
It will now be necessary to go back to the carlier anthora, and to inquire whether this nuimal was known to them. After reading tho followiag parsagos, few will hesitato to concede that it was known to the father of natural history.
Aristotle ('Hist. Nat.,' iv. 1), nfter well deacribiag the different Malákıa (Naked Cephalopoda), paya:-"There are also two Polypi in shells; ono is called hy some Nautilus, and by others Nauticus. It is like the Polypus: hut ita mell rescmbles a hollow comb or pecter, and is not atheched. This Polypus ortinarily feeds near the shore; rometimes it is thrown by the waves on the dry land, and the sholl falling from it, it is caught, and thero dies. These are small, and in form like the Bolitence" (Cephalopods probably, of the form of which

Eledonc moschata is the type). "And the other," continues Aristotle, "is in ashell, like a snail; and this does not go out of its shell, but remains in it like a snail, and sometimes stretches forth its arms (or cirri, $\pi \lambda \epsilon \kappa т a ́ v a s) ~ e x t e r n a l l y . " ~$

The first of these Polypi is evidently the Nautilus or Pompilius of Pliny and other ancient writers; the Argonauta of Linneus and the moderns. [Octopoda.]

The second, to which the term Pompilius is now exclusively applied, is as evidently the Nautilus of Lamarck.

Belon figured the shell of the animal, now termed Nautilus Pompilius (and we believe that his figure is the first that appeared) under the name of Nautilus alter seusecundus; but it seems clear that he was unacquainted with the soft parts. Rondeletius, apparently confounding Aristotle's two genera of Polypi, seems to refer the animal of the first to the sleell of the second; and dwells on the impossibility of so delicate and feeble an animal dragging about so heavy a shell.

Gesner relstes that 'Jo. Fauconerus,' a celebrated physician of England, formerly gave him the picture of a Nautilus, with a written description (by letter). This descriptiou Gesner gives; and it is not improbable that the soft parts there described may have been those of Nautilus Pompilius (it is clear that the shell was) ; but the account is 80 obscure and bivef that there is room for doubt, though the term velum is used, which would hardly be applicable to the palmated arms or vela of the other kind.

We now return to the period which followed the publication of Rumyhius's figure; and for many years no further information was obtained, though special dircctions wers given by the French and other nations to collectors to be assiduous in procuring the soft parts. 7'hesc directions were given in vain, and all was conjecture. Fragments even of molluscous animals were caught ist and published as probable parts of this much-desired animal ; and Messrs. Quoy aud Gaimard published their 'Description d'un Fragment de Mollusque Incounu, presumé ctre celui du Nautile Flambé (Nautilus Pompilius, Linn.), with figures, in thg 'Annales des Sciences Naturelles' vol. XX. The materisls are not sufficient to come to any safe conclusion as to the animal of which the frsgment was a part, but it may now be confidently denied that it is any portion of the soft parts of Nautilus Pompilius. The parenchyma of the fragment indeed is said to have been identical with that of Firola and Carinaria. This fragment is preserved at Paris in the Jardin du Roi.

The recovery of this interesting animal was reserved for a British voyager, and its structure has been demonstrated and illustrated by Professor Owen in a most masterly manner.

Mr. George Bennett thus describes the capture of this interesting animal in his 'Wanderings in New South Wales,' \&c.:-" It was on the 24 th of August, 1829 (calm and fine westher, thermometer at noon79°, in the evening, when the ship Sophia was lying at anchor in Marakini Bay, on the south-west side of the island of Erromanga, one of the New Hebrides gronp, Southern Pacific Ocesu, that something was seen floating on the surface of the water at soms distance from the ship; to msny it appeared like a small dead tortoise-shell cat, which would havc been such an unusual object to bs seen in this part of the world, that the bost which was alongside the ship at the time was sent for the purpose of ascertaining the nature of the flosting object. On approaching near it was observed to be the shell-fish commonly known by the name of the Pearly Nautilus (Naxtilus Pompilius); it was captured and brought on board, but the shell was shattered from having been struck with the boat-hook in capturing it, as the auimal was sinking when the boat approached, and had it not been 80 damaged it would have escaped. I extracted the fish in a perfect state, which was firmly attached to each side of the upper cavity of the shell. On being brought on board I observed it retract the tentacula still closer than before, and this was the only sensation of vitality it gave after being caught; I preserved the soft, parts immediately in spirits, after making a rude pen-and-ink sketch of its form. On breaking the lower part of the shell the chambers or cavities were found filled with water. The hood has been stated by Dr. Shaw ('Lectures,' vol. ii., p. 165) as being of a pale reddish-purple colour, with deeper spots and variegations; the colour however, as it appeared in this recent specimen, was of a dark reddish-brown, in fact, resembling the colour produced by the Koka on the staincd cloth of the Tongatabu natives, intermingled with white. We had fine weather; light winds and calms a day or two previous to this animal being caught." After noticing the incorrectuess of Shaw's figure (which, as we have above noticed, was copied from those given by Denys de Montfort), and the greater gencral accuracy of that of Rumphius, he informs us that this specics is called Kika, Lapia, and Krang Modang, by the natives of Amboyna; and Bia Papeda, Bia Cojin, by the Malays. Other instances are rccorded by Mr. Bennett of the capture of this aninisl.

The specimen capturcd by Mr. Bennett is preserved in the Museum of the Royal College of Surgeons in London, and has produced the almirable 'Memoir on the Pearly Nautilus (Nautilus Pompilius, Linn.), with Illustrations of its External Form and Internsl Structure,' by Professor Owen, and published. by direction of the council of the college, a summary of which we shall endeavour to lay before our resders.
The externsl form, of which an elaborato description is given, for which we must refer our readers to the 'Memoir' itself, will be
collected from the following cuts, which are reduced from Profcssor Owen's figures :-

Nautilus Pompilius (female), in the prone position, with its natural relatlon to the shell shown by a seetion of that part in outline. (Reduced from Owen.)

The same, with the animal as well as a part of the shell in outline, explanatory of the parts, on a larger seale. (Redneed from Owen.)
$a a$, the mantle; b, its dorsal fold, applied to the involute eonvexity of the shell ; c, its free anterior margin : d, the oriflee for the passage of the funnel; e, the convexlty produced by the ovarian gland; $f f$, the horny girdle for the adhesion of the mantle to the shell; g, the horny lamine covering the extremlty of the left shell musele; h, a portion of the shell which was left adhering to this musele ; i, the membranous tuhe or slphon, which traverses the testaceous tubes in the camerated portion of the shell; k, the funnel ; l, the left lateral proeess of the funnel; m, the left erus or pillar of the funnel; n, the hood or ligamento-museular dise that surmounts the head; 00 , the exterior digitations on the left side; o^{\prime}, the larger one, with a papillose surface like that of the hood; $p p$, the digitated tentacles, protruded from their sheaths; q, the groove which separates the hood from the papillose digitation ; r r , the ophthalmic receptacles; s, the eye; t, its pedunele; u, the inferior ridge or rudimentary eyelid; v, the ridge running from this to v, the pupil ; $x x$, the partitions of the ehambers ; y, the septal tubes, which give passage to the membranous siphon ; z, the chamber of occupation. (Owen.)

Professor Owen thus concludes this part of his memoir on the anatomy of this creature :-" From whst has beeu alresdy said, it will bs seen how considcrable are the oxternal differences between the Pesrly Nautilus and the higher Cephalopoda; nevertheless ite geueral plau of organisstion renders its claim to rank with them indisputable;
and as its locomotive apparatus is confined to the head, tho reoeived devomination of the class remaina undinturbed by its admisnion. The ivferior or ventral pair of labial processes 1 consider as analogous to the superadfed pedunculated arms of tho Cuttlo-l"ieh and Calamary, which also come off more internally than the shorter arms, and are approximated or united at their bases on the rentral aspect of the mouth. The other pair in Nautilus appear to result from a higher degree of organifation of the part analogous to the external lip in the preceding genera. The curlailed digitations nro however but feeble representatives of the elongated nod cotyligerous arms of the Poulp, or Cuttle.Fish; and the retractile teutacles, pedicellate eges, and flattened disc, which, accordiug to the testimony of kumphins, ia applied to the groumd in the progressive motions of the animal, attest an obrious tendeucr townils the Gasferopoda. And while tracing these examples of affinity with the different nod heretofore widely-spread groups of Mollused, between which this remarkahle form, I appreheud, is osculant, there may also be pereeived in the whole of this singular but at the rame time regular aud symmetrical arrangement of the palpigerous organe about the mouth, an analogical relation to the higher Annulosa."

Before I'rofessor Owen enters upon the Muscular System, which is described carefully and in detail, he notices what he rptly terms the intermal skeleton or frame-work from which its principal mases take their origiv. Like that of the Dibraochiate Cephalopoda, this akeleton, nccording to Professor Owen, is cartilaginous, yiclds readily to the kuife, aud in texture and semitranapareucy closely resembles the cartilage which coustitutes the skeleton of the Skate. In Sepia, he observes, this cartilagiuous part completely encirclea the cosophagns, and on the dorsal aspect of that tube is dilated iuto a large carity, which contains the brain; but in Naufilus the circle is incomplete behind, and the brain is protected only by its membranous abeath.

Digestive System. -The jaws aro two, eudowed with a vertical motion. and in form resembling a parrot's bill reversed, the upper mavdible being encnsed in the lower wheu they are closed. Posteriorly they are adapted to a muscular basin, to which they owe their motious. "Thus far," continues Professor Owen, "they resemble the madibles of the Dibranchiate Cephalopoda; but they are not composed entirely of horny matter, bor are they uniformly of a brown or black colour, their extrconities being of a dense calcareous nature, and of a bluish-white colour; they are also less pointed at the end, and the oval marging of the lower mandible are notched and clentated." They are larger in proportion than in the Cuttle-Fish. Professor Owen proceeds to state that the calcareous extremities of both mandibles are of a harduess apparently adequate to break through the most deuse crustaceous coverings, or even shells of a moderate thickucss. The extremity of the upper mandible is sharppointed, and solid to the exteut of fivo lines from the extremity; but in the lower one the calcareous matter is deposited on both sides of a thin layer of the black horny substance, and thus a combination of tough with dense matter is obtained, which much diminishea the liability to fracture. This mavdible is also more hooked than the upper ene, but is more obtuse nt the ead. "It seems," observes Irofessor Owen, "from its dentated margin, evideutly intended to break through hard substances, whilst the sharp edges of the beak of the euttle-finl better adapt it for cutting and lacerating the soft bodies of fish." In the particulars here atated the maudibles of Niautilus differ, as Professor Owen remarks, from those of every other known apecies of recent Cephalopods. The circular lip whioh surrouada tho jaws is unch deeper than in the Cuttle-Fish, and the jaws aro provided with four retractor muscles, and one for protrusiou. The tomgue is large, and supported by an obloug horny substance. The flebly subatance is produced anteriorly, and forms three carunclea, which are very boft in texture, and beset by numerous papillac, laving all the characters of a perfect organ of taste. The doterior extremity of the homy substance is embraced by n pair of retractor musclen, which ariee from the posterior margin of the lower mandible, and four delicate retractor or depressor musclea are iuserted into the suterior or termianl earuncle. Behind the caruucles the dorsum of the tongue in eneased with a thin layer of horny matter, from which ariac four longitudinal rown of alender recurved prickles between one and two linea in length, the anme in umber as the labial tentaclea, mamely, 12. There in an manlogous atructure in the Cepholopoda and in many of the ioateropola. "The necessity of Buch a etructure," nay I'rofesnor "wen," becouses very apparent in the l'carly Nautilus, if, as lhumhius has sumerted, it creeps with the nhell uppernost; since in that case the tongue, having itn praition reversed, would be opposed justend of beiug anaisted by gravitation while regulating the toovementa of the food in the month. And it is worthy of remark that in the Flomingo, which turns the upper nondible to the ground while taking itn fool, the tompue in similarly armed with regularlydeveluped recurved spinea, calculated, as in the I'darly Ninutilus, to rake the alimentary morsel towards the fauces." [De"cks.] liehiud the horny parta the tongue agnin becomes aoft and japillone, but tho papillae are larger and conrner. The only traces of a salivary ayatem detected were in twe browl flealy procesues projecting forward from the pides of the fauces: they were papillose, and perforsted in the midelle of their inner surfaces by a swall aperture which led into a glandular carity lectween the folds of tho ract limane, and from theso
cavities an opaque whitish substance could be expressed. In the Dibranchints Cephalopods these glands are remarkably developed. The alimentary canal, which was filled with the fragments of Crustaceans, was overywhere connected to tho parietes of tho sbdomen by numeroue filaments; the ouly trace of a mesentery cxisted between the two last portions of the intestine, which were connected together by the ramifications of au artery and vein. Among the crustaceous fragments, portions of branchiae, claws, and palpi wers distinctly recognised, so as to leave no doubt that the greater part of them had belonged to a Brachyuroue Decapod of a hinsute character, and not a swinner. The crop, which was capacious and pyriform, was tensely filled with these fragments, and Professor Owen remark that the capability of propelling such rude and angular particles through a narrow canal into the gizzard without rupturing the tunca of the preparatory cavity is not one of the least extroordinary examples of the powers of living matter. The gizzard very much resembles that of a fowl, as it does in Octopus. A globular cavity communicates with the intestine at a little distance from the pylorus, and its reception of the biliary secretiou readere it in some measure analogous to a gall-bladder; but Professor Owen thinks that its chief use is probably to pour into the commencement of the intestinal canal s fluid necesary for digestion; so that, like the lamianted sad spiral cocum of the bigher Cephalopods, and the pyloric appendages of fish, it is essentially a simple form of paucreas. The interior of the alimentary canal, which was filled with sunaller fraguents of crustaceous shell, presented a few longitudinal rugio and slight transverse puckeringe. The liver is bulky, and extends on each side of tho crop from the asophngue to the gizzand. There was no trace of atructure analogous to the ink-bag of the Dibravchiate Cephalopods.

Nautilus Pompilius, in the prone position, with the lablal processes and tentaclen, the mandibles, and the digesilve organs diaplayed. (Reduced from Irofesser Owen's figure.)
$a a$, the hood, or upper part of the oral sheath, iongitudinally divided ; $8 b$, the posterior foben or anglen of the hood; $c e$, the posterior conearity of the hoorl; d d, the ridge in the aame; eef, the cut surface of the sbore parts; $f f$, the internal aurface of the oval abeath; $g g$, the exteroal labial procencs; $h h$, the exteroal lahial tentacles; if, the internal inhial processen; $k k$, the internat labiai tentactea: I, the olfactory famine: m, m_{t} the circular fringed 1 lp , longltudinally divided; n, the superior mandibie; 0 , the inferior mandibie; p, the muscuiar basin on which the mandites are fixed; q q, the superier pair of muscles which retract the jaws; $r y$, the semicireular muscle which protrodes the jawe, divided lengitudionliy; s, the asophagus; P, the crop; u, the narrow canal leading to r, the gizzard; u, the integtine ; w, the terminal fold of intesthee drawn eut of its altuation; x, the anum; y, the laminated pancreatic bag; $=2$, the liver; 15, is branch of the anterfer aorta, which ramifien in the membrane connection the two portions of the terminal fold of the litestine; 10, the conthastion of the porterior aerta aleor the dorsai nupect of the erop; 20, ith bifureation at the ossophagun, to form a rnecular cirelc corresponding to the incrous eirele round that tube; 21 and 22 , arteries of the erop, gizzard, de. (Owen.)

In the Museum of the Royal College of Surgeous ("Physiological

Series,' No. 499, A.) is a preparation exhibiting the crop, gizzard, and laminated pancreatic pouch. (See the 'Catalogne,' vol. i.)

Circulating and Respiratory System.--The respiratory organs are elongated and pyramidal, and have the same lsminated structure and symmetrical disposition as in the Cuttle-Fish; but they are four in nomber, being disposed two on either side, and each pair arising by a common peduncle from the inner surface of the mantle. "From this difference in the number of branchix, in addition to the other peculiarities in the structure of Nautilus," says Professor Owen, "the existence of at least two orders of the class Cephalopoda is, I imagine, demonstrated; and the denominations of these orders might conveniently be taken from the modifications of the respirstory system. Assuming therefore that it is common to the class to possess branchim of a laminated structure, symmetrically disposed, and concealed beneath the mantle, those genera which possess two auch branchie will form an order under the term Dilranchiata, and the Pearly Nautilus and other Celphalopods with shells of an analogous formation, a second order, under the term Tetrabranchiata. It is in this ense that the expression 'Dibranchiate Cephalopods' has been made use of in this memoir; and to this group moat of the characters of the class, as given by the immortal Cuvier in Lis 'Règne Animal,' exclusively appertain." [Cephalopoda.]

Nervous System and Organs of Sense.-This part of the system in the Pearly Nautilus is in many respects inferior to that of the Dibronchiate Cephalopoda, though it is analogous to it. "The part," says Professor Owen, "which corresponds to the brain of the cuttlefish, is neither enlarged nor lobulated, nor contained in a cartilaginous receptacle; but is a simple rounded chord or commissure placed transversely above the cesophagus, and connected at its extremities to the great ganglions. These are six in number; are disposed aymmetrically about the cesophagua, and, together with the central commissure, are loosely enveloped in a tough membrane, or dura mater." The doubla cesophageal collar is not peculiar to Nautilus, but is also found in other Molluses, Aplysia for example; though in these latter cases the subcesophageal ganglions being more remote, the connecting flaments running to the common centre above are longer. In the Museum of the College of Surgeons a preparation (No. 1306, a, "Physiological Series') exhibits the head and anterior or muscular part of the body of this apecies laid open longitudinally along the dorssil aspect, and the sides divaricated to show this part of the system. The brain, or supracesophageal mass, will be seen to consist of a tranaverse chord-like ganglion, from the ends of which three nervous trunks are continued on each aide. The anterior pair pass downwards and forwards by the sides of the cesophagus to unite below it, forming a ganglion on either side; these supply the digital processes and tentacles, and give off nerves to the organ of amell and the funnel. The middle and superior trunke dilate into the optic ganglions; the retina, which terminates that of the left aide, is shown. The posterior chords surround the cesophagus in a manner analogous to the anterior pair, forraing also two ganglionic swellinga, from which the nerves of the great ahell-muscles and those of the viscera are given off; the latter nerves are of small size, and are contiuued down by the side of the great perforated vein, and are analogous in, their distribution to the sympathetic nerves and par vagum. ('Cat.,' vol. iii. part l.)

Sight.-The eye of the Nautilus, as might be expected from the comparative inferiority of the brain, is leas complex than in the Dibranchiate Cephalopods. "Indeed," says Professor Owen, " it appears to be reduced to the simplest condition that the organ of vision can asaume without departing altogether from the type which prevails throughout the higher classes. For although the light is admitted by a single orifice into a globular cavity or camera obscura, yet the parts which regulate the admissiou and modify the direction of the impinging raya are entircly deficient." The eyes are not aituated in orbits, but are attached severally by a pedicle to the aide of the head, immediately below the posterior lobes of the head. This attachment to a muscular pedicle gives great mobility to the organ, and cnablea the animal easily to bring it to bear on objects in a varjety of directions. Professor Owen found that the contents of the globe had eacaped by the pupil; but he comes to the concluaion, on gatiafactory grounds, that if it had ever contsined a crystalline lens, it must have been very small.

Professor Owen was unable to detect a distinct organ of hearing.
The structure of the tongue and the nerves with which it is supplied indicate a conaiderable development of the faculty of taste; and the numerous tentaclea, soft in their texture, annulated on their surface, and well supplied with nerves, must give the animal an ample enjoy. ment of the sense of touch.
Generative System.-Aristotle was well sware of the diatinctions of sex in the Madakia; and Professor Owen remarks that the propriety with which that great zoologist classed this animal, although it was covered with a shell to which it adhered like a snail, is fully borne out by the dissection of the female, upon which he operated. The organs consist of an ovary, an oviduct, and, as in the Pectinibranchiate Gasteropoda, of an acceasory glandular apparatus, and are delineated in the eighth plate of Professor Owen's 'Memoir.'

With regard to the habits of the Nautilus, Rumphius says, "When he floats on the water he puts out his head and all his barbs (tentacles), VAT. BIST. DIV, VOL. III.
and spreads them upou the water, with the poop (of the shell) above water : but at the bottom he creeps in the reverse position, with his boat above him, and with his head and barbs upon the ground, making a tolerably quick progress. He keeps himself chiefly upon the ground, creeping aometimes also into the nets of the fishermen; but after a storm, as the weather becomes calm, they are secn in troops floating on the water, being driven up by the agitation of the waves: whence ove may infer that they congregate in troops at the bottom. The sailing however is not of long continuauce; for having taken in all their tentacles, they upset their boat, and so return to the bottom." ('Rariteit-Kamer.')

Professor Owen, who quotes this passsage, observes that the extent to which the Pearly Nautilus is covered by its shell, and its close attachment to it, indicated the affinity to the Gasteropode in too strong a manner to escape the penetration of Aristotle, who, as we bsve seen, directly compares it in this respect to a quail; "and the general resemblance," says Professor Owen in continuation, "must have been sufficiently striking, when, with his house above him and in the supine poaition, he makes his way along the sand with a moderate degree of rapidity."

We here give representations of the external appearance of the shells of two species.

Shell of Nautilus Pompilius.

Shell of Umbilieated Nantilus (Nantilus serobiculatus).
The genus Nautitus is thus characterised by Professor Owen. Body oblong, rounded posteriorly, terminated by a slender membranaceous tube. Head above with an ambulatory disc. Arms on each aide, 19. Tentaculiferous labial appendages 4, disposod around the mouth. Tentacles (92!) of three kinds, namely: ophthalmic, lamellose, on each aide two; brachial, annulose, on each aide 20 ; labial, annulose, on each side 24. The whole body laid up in the last chsmber of a large multilocular shell, and affixed by two lateral muscles. [Terrabranchiata.]

The spocies inbabit the seas of warm climatos, especially those of Asia and Africa, and their ialands, Amboyna, Zanzibar, and New Guinea; and the Pacific and Australian Ocenns. Guinea; and the Pacific and Australian Ocenns.

Fossil Jantilide.

The Rhyncholites, formerly considered to be tho beaks of binds, are now, upon unquestionable eridence, proved to be the jaws of forail Nausili and atmonites. Blamenbach recognised theso Whyncholites as being rather the mandibles of Cephalopods, differing from all reecot geners then discovered; and M. D'Orbighy, who found some large ones in the same bede with tho shell of a Nautilus gigas, suspeoted that those Rhyncholites appertained to that species.

We here give figures of the mandibles or beaks of N. Pompilius, the structure of which is above noticed, and somo of these Rhyncholites.

2, Mandibles of Naufilus Pompilius. a, ealearenns extremity of upper mandible; b, extended internal horny lamina of the kame; r, notehed calcarcous extremity of lower maxdible ; dd, cesternat horny lamine of the same.
3. Epper mandible, showing the form of the calcareous extrcmity, and the proportions of the external and internal horng lamines.
f, One-half of the lower mandible, showing the different propartions of the iwo borny lamina, and the extension of the horny substance at a ppon which the ealcareoum matter is deposited; a^{\prime}, the internal horny Inmina; u, the external horny lamina. Nistural size. (Owen.)

Bhynchofites, upper, fide, and internal views.
1, Slice view (Munchelkalk of Luncrille). 2, Lepper view (same localty). 3. tepper view (has of Lyme hegia). A, caleareoua point of an under mandible (laternal view), from Iancrille. (Huckland).

The Oolite (Stonesfirli), and tho Lins of Lymo Regis and Bath, will serve as oxamples of the British strata wherein these beakestones oecur.

Fossil Nautili occur both in the Tertiary and subjacent strata. M. Deahayes ("Tables') records four fossil apeciea (Tertiary). Dr. Mantell noticen Vautus imperinlis, from the Arenaccous Limestone or Sandatono of lognor; N. clogens, from the Chalk (Lewes); the last-mamed apecies and N. cxpansur, from the (halk.Marl; N. incrquelis, from the (iand or Folkstoue Darl (Folkstone); aud a nameless apecies from the Shanklin Sand (Lower Grcensand). J'rofessor Phillipa records tho following in Yorkshire:- N. lineatus (Inferior Oolite); N. astacoildes (Lian); N. hexagonus (Kellownys llock); N. annularis (Lias); nad outiers in the specton Clay and limndsby Slate. Mr. Lonsdale enomerates $N_{\text {. lincatur (inas) ; and } N \text {. obrsus (Inferior Oolite from }}$ Path). 1)r. Fitton ('Strata below the Chalk') records V . degans, N . inequalis, N. plicatu, N. rudiatus, N. simplex, N. undulater, and an uncertais npocies, the first-named species from the Upper and the rest from tho Lower Grectand. Sir lRoderick Murchison ('Silurian System') describes and figures ono specica, N. undasus, from the Caraloc Sadatone. Altogether about 100 fossil specics of the genus Nautilue aro known. (Woorward)

Ior. lhuckland, ia hin 'Bridgewater Treatise,' thus concludes lin obsorvations upan tho affnities of the chambered aholls of Cepha-loporla:-
"It reanlta from the view we have taken of the zoologienl nfluitiea between living nad extinet apecien of chambered ahelle, that they aro all comected by one plan of orgnuiantion, each forming a liok in the common chain which unites exiating speciea with thoso that prevaled among the earlient coaditions of lifo upon our globe; aad sll nttesting the ideotity of the design that has effected so many similar cnds
through such a variety of instruments, the principle of whose construction i , in every species, fundamentally the same.
"Thoughout the various liring and extinct genera of chambered shells, the uso of the air-chambers and siphon, to adjust the specifio gravity of the animals in rising and sinking, appears to have been identical. The addition of a now transverso plate withia the comical shell added n new sirchamber, larger than the preceding one, to counter balance the increase of weight that attended the growth of the shell and body of the*o animals.
"Theso bexutiful arrangements aro, and ever have been, subservient to a common object, namely, the construction of hydraulic instruments of essential importance in the economy of creatures destined to move sometimes at the bottom and at otber times upon or near the surface of the sea. Tho delicate adjustments whereby the anme priaciple is exteaded through so many grades and modificationa of a single type, show the uniform and constsat agency of some controlling intelligeace : and in searching for the origin of so much method and regularity smidst variety, the mind can only rest, when it has passed back through the subordinate aeries of second causes, to that great first cause, which is found in the will and power of a common Creator."

The other genera of the family Nautilide are fossil :-
Lifuites has a discoidal shell; whorls close or separate ; last chamber produced in a atraight line; siphuncle central. It contains 15 species, which sre found in the Silurisn rocks of North America and Europe.

Trochoceras bas a nautiloid spiral depressed shell. It contains 10 species, which are fonnd in the Upper Silurian Rocks of Bohemia.

NAUTILOGRAPSUS. [Grapindes]
NAUTlLUS. [NaUTILID.e]
NAVEL. WORT. [COTYLEDON.]
NAVEW. [Brassica.]
NAVICELLA. (Nenitidex.]
NaVlCULA. [Diatomace.e.]
NAXIA. [Maides.]
NECRONITE. [FELSPan.]
NECROPHORUS, a genus of Coleopterons Insects belonging to the family Silphido. The antenna are terminated by a nearly globular 4-jointed mass; the boly is parallelopiped; and the maxille hare no horny tecth. There are several species of this genus. They have obtaiaed the name of Burying Bectles, from the peenliar instinet which they exhibit of burying the dead bodios of small animala, such as moles, mice, frogs, \&e., as a receptacle for their eggs and larvo. Their powers of pereeptian are very strong, and it is surprising how soon they discover a dead body fitted for their purpose, round whieh they may bo observed flying, with the elytra elevated, their dorsal surfaces being applied together. They soon ereep benenth the body, and commence seratching up tho earth from the sides and under tho animsl, which by degrees deseends into tho pit which is thus gradually deepened. When it has reached a sufficient depth the earth is thrown over it, and the insect deposits its eges upon the carcass, so that the larva, when hatched, finds itself in the midst of a repast, disgusting cnough, but snited to its taste. The larra is long, of a dirty-white colour, with the upper surface of the anterior seginents armod with a acaly plate of a brown colour, and with small elevated points upon the hinder segments. They liseo also six scaly legs, add the jawa are robust. When they have attained their full size they bury themselvea atill doepor in the earth, whero they construct an oval cell, the jnner surface of which they coat with a gummy secretion. These ioscots, like many others which feed upon carrion, have a stroag odour like muk. The habits of theso insects have been especially stadied by M. Gleditsch, and more recently by various persons in Franoe, who hare written upon the subject of destroying moles, and by whons various points in their economy have been clucidated.
There are a cansidorable number of species of this genuk, somo of the largest of which (5 : grandis, Fisbricius) have been observed in North America. There are seven British specios, five of which aro distioguished by tha golden-coloured bands of the elytra. Theso apecien vary amongst themselves in the form of the thorax, the structuro of the hind legs, the markings on the elytra, and the colour on the club of the rntenne. Ono of the most common specics is the Silpha lespillo (Linneus), in which the posterior tibixe are curved, and the trochaters furnished with a atrong spine. Tho specien vary also in leagth from half an ineh to an iach and a thivd, which is the length of N. gcrmanicus, tho largest and rarest of tho l3ritish species. (Westwood.)

NECTANDIRA, a genus of Plants belonging to the natural order Lauracer. Jt has a 6 -parted rotato calyx, deciduous segmente, the three outer rather the broadest; there are 9 antliers, which are ovate, nearly senaile, with 4 cells, armaged in a enrye, and distinet from the tip of the suther, the celle of the interior anthera inverted; the glands are in pairs, globese, sessile at the baso of the three interior stamens next their baek. The fruit js succulent, more or less immorsed in the tubo of the calyx, which is changed into a truncated cup. The flowers are panicled or corymbore, axillary, lax, and protty ample.
N. cymbanum is a trce acarly 100 feet high, growing in the woods of the Orinoco, near San Ferunndo de Atabasso, where it is called Sassafras, sad also in tho ancient forests of tho Rio Negro in Mrazil. The braches are amooth; the leaves oblong, lanceolate, papery, and
shining above; the cup is large with a double edge; the bark aromatic, bitter, and stornehic. Martius suspects that it is one of the ingredients in the famous Woorary poison of Guiana.
N. cinnamomoides has oblong leaves tapering into a fine point, acuto at the base, between papery and leathery; naked, smooth, and shining above; finely downy beneath, with numerous distinct narrow costal reins. The bark has the smell and flavour of cinnamon, as which it is uscd in New Granada.
N. Puchury major has oblong or elliptical leaves tapering to a uarrow point, smooth, reticulated, and of the same colour on either side. The cup of the fruit is very large and spongy. Martius assigned the Pichurim Bean to this plant. In the early months of the jear the fruits drop from their cups to the ground, and are collected by the natives, clemned, and dried by a gentle heat. They are prescribed in dysentery, diarrhcea, cardialgia, strangury, \&e. Ths bark has the smell of fennel mixed with closes.
N. Puchury minor, according to Nees, yields seeds similar in their qualities to the above. Its bark is said to resemble sassafras when fresh, but tastless and scentless when dry. According to Humboldt, it yields the sassafras nuts sold in the London shops. It is a native of the woods of Jabatinga, in the province of Rio Negro, in Brazil.
(Lindley, Flora Medica.)
NECTARINE, [AMYGDALUs.]
NF:CTARINLA. [CinNPRIDE.]
NECTARINIDA. [CINNYRIDE.]
NECTARY, in Botany, a term used by Linnæus to designate those appendages of the corolla which secrete honey. The term has however, since the time of Linnans, been used in a general sense to express any organ existing in the flower hetween the corolla and pistil, and which coild not be rightly assigned to these or the stamens, Such parts or appendages of the flower have had many other names applied to them, and some much more commonly than Nectary. A common form of appendage of the corolla is called Coroua. This organ is formed at the base of the limb of the corolla, and forms sometimes an undivided cup, as in the Narcissus, when it is called by Haller a Seyphus. When it is separated into several parts, as in Silene and Brodicea, it forms the Lamella of some writers. In Stapelia this organ forms a thick solid mass, covering the ovary and adhering to the stamens. It is here called the Orbiculus. When this appendage is accompanied with little projecting processes they are called Cornua, or horns; the upper end of these is the beak, or Rostrum, and their back, if dilated and compressed, is called Ala, or Appendix. Occasionally there is a second set of horns, which alternate with the first, and are called Ligule; the circular space at the top of the orbiculus is the Scutnm. When the lamelle are small and scale-like, and overarch the orifice of the tube, they are called a Fornix.

Link proposes to call all appendages which are referrible to the corolla, Paracorollx; or, if they consist of several pieces, Parapetala; and all appendages referrible to the stamens, Parastemon. The peculiar filiform appendages of Passifora he calls Paraphyses, or Parastades.

The real nature of these appendages is a point of some interest. In some instances they appear to be simple expansions of the cellular tissue and epidermis of the part on which they are seated, and in others they are evidently abortive stamens or petals. Thus the little bodies found in the claw of the petals of Ranunculus may be regarded as an expansion of the tissue, whilst the filamentary appendages seen in the geaus Passiftora are evidently metamorphosed petals. The various forms of corona may be assigned to one or other of the above causes. This subject requires investigation, and it would bs well if a more simple and intelligible nomenclature could be applied to these parts of the flower; for, however unimportant at first sight such organs may appear, they nevertheless constitute some of the most valuable distiuctive marks for species, genera, and even orders, which the botanist possesses.
The original name (Nectary) of these appendages was applied on account of the honey which the tissues of these organs frequently secretc. They were on this account called by Meyen Compound Glands. It was supposed by Kurr that the function of these glands was vicarious, and that they only secreted honey till the fruit began to develop itself. But that the function of the nectary has no direct relation with the object of the function of the fruit, that is, the developmeot of the seed, is proved in an experiment by Kurr himself, in which he found that the seeds of plants became perfectly maturated, although he had in the early stages of the growth of the flower removed the nectaries. As to what may be the determining cause of the secretion of sugar in these organs, any more than in other parts, no examination of their structure has hitherto pointed out. They do not however possess the power of secreting sugar and other secretions in may greater degree than the petals and other parts of the flower and fruit.
(Lindley, Introduction to Botany; Schleiden, Grundzïgc der Wissenschaftlichen Botanik; Meyen, Pflanzen Phyziologie.)

NECTU'RUS, Rafincsque's name for a geuus of Derotrcmata, placed by Cuvicr between the Axolotls [Axolotl] and the Proteii of Laurenti. This form is the Mcnobranclus of IIarlan and the Phanerobranchus of Fitzinger. It has the following characters:-Four toes on each foot. A row of teeth on their intermaxillaries, and another parallel but more extended on their maxillarics.
N. lateralis (Triton lateralis of Say; Menobranchus lateralis of Harlan; and Phancrobranchus of Fitziuger) is the species best known, and will serve for an example of the genus. It is olive, with blackish spots above, and a blackish stripe running from the muzzle just above the eye and reaching to the branchix, where it becomes continuous with the blackish belly, which is variegated with olive spots. The size is considerable; some say as much as two or thres feet in length.
This creature is an iuhabitant of the great North American lakes.

Neoturus lateralis.

NEEDLE-ORE, a Mincral occurring crystallised in acicular 4- or 6 -sided prisms, indistinctly terminated and longitudinally striated. Cleavage parallel to the axis of the prism. Colour, when first broken, steel-gray or blackish lead-gray, soon acquiring a yellowish tarnish. Cross fracture small-graiued and uneven, with a shining metallic lustre. Hardness $2 \cdot 0$ to $2 \cdot 5$. Opaque. Specific gravity $6 \cdot 125$. It is found near Ekaterinburg in Siberia. The following is an analysis by Frick: 一

NEEDLE-STONE, a name for the Mineral Scolecite. [NATROLITE.] NEEDLE-WHIN. [Genista.]
NEGUNDO, a genus of Plants separated from Acer because of its pinnated leaves and diocious apetalous flowers. Two species are known, one of which is a handsome hardy tree, inhabiting the United States of North America, and now common in the gardens of this country; the other is a native of Mexico, and at present but little known : it may be a mero variety of the other.

NELOCIRA. [Isopoda.]
NELUMBIA'CE A, a natural order of Exogenous Plants, by some writers associated with Nymphceacea, or Water-Lilies, which they resemble in appearance and manner of life, inhabitiog the fresh waters of the temperate parts of the world, and producing large poly. petalous flowers with numerous stamens. But these orders differ in such important circumstances that they can hardly be regarded as plants of very close rlliance, much less as members of the same order; for Nelumbiacece have no albumen, and their systern of female organs is broken up into its original elements, while in Nymplucacece there is an abundance of albumen, and the female system is completely consolidated.

Nelumbiacees are readily known by their carpels being distinct, 1-seeded, and buried in the cavities of a large truncated fleshy receptacle, which eventually forms a broad hard bed, filled with holes, in each of which there is u single ripe nut. Notwithstanding their large flowers, these plants must be regarded as among the lowest forms of the exogenous type. The hest kuown species is Nelumbium speciosum, a magnificent water-plant floating in the rivers and ditches of all the warmer parts of Asia, and also found iu the Nile: its nuts are supposed to have been the sacred bean of Pythagoras; its fleshy stems are used as food by the poorer inhabitants of China. [NElummum.] The nuts of all the species are eatable and wholesome. Nelumoium is the only genus.

NELUMBIUM, a genus of Plants belonging to the natural order Nymphacacece, but sometimes regarded as the type of an order called Nelumbiacce. It has many distinct carpels, half-immersed in the profoundly honey-combed obconical elevated torus, each bearing a style with a solitary seed in each carpel, which is exarillate, and destitute of albumen. The flowers are large and showy, white, red, or yellow. Both leaves and flowers rise from the surface of the water.
N. speciosum, Pythagorean Beau, has a polypetalous corolla, and anthers drawn out beyond the cells into a elub-shaped appeudage. It is native in slow running streams and trauquil waters, in the warmer parts of Asia. The flowers are very beautiful, smelling of anise, and generally of a rose colour, seldom white. Λ variety of this species, Tamara, has its outer stamens sterile, dilated at the top, winged, obcordate, the appendage rising from a notch at the apex. It is a native of Malabar. The fruit resembles an instrument ouce used in play by the French, called Latos, and is ous of the plants supposed to be the celebrated Lotos of antiquity, formerly found in Egypt. It was known to the Greeks, and is mentioned as growing in Egypt by Herodotus (ii. 92), Theophrastus, and others. Although not now to be met with in that country, there can be no doubt as to its haviug actually existed there, either naturally or in a cultivated state, for these authors speak of it in elear and decisive terms, and their accounts are confirmed by the sculptures still preserved, which testify that this species, as the proper Lotos, has obtained religious
reverence It is apoken of as having been used as foorl by the Hegptians Both rook and sceds are esculent, and are accounted cooling and atrengtheaing, and to bo of aervico in extreme thinst, diarrhow, vomiting, te. In Chins it is called Lienwhn, ant the seeda and slices of the hairy root, with the kernels of apricots and walnuts, and alteronte layers of ice, were frequently presented to the Britiah ambaseador sad his auite, at breakfusta given by the principal manadarins. The roots aro laid up by the Clinese in antt and rinegar for winter use. Tbunberg says this plant is held sacred in Japan, and is considered pleasing to the deitiea, the images of which are frequently made aitting on its large leaves. The seeds are somewhat of the sire and form of an acorn, and of a taste more deliente than that of almomes.

1. the ripe receptacle of Jilumbinm speciosum ; 2, a seed; 3, the sanuc, writh the twe cotrledons so separated as to show the large plumule whicli they inclose.
N. lutcum bas a polypetalous corolla, sod greatly resembles N. ppeciosum in structure. It is a native of North America, In lakes and ponds: it has been naturalined as far as Pbiladelphia. The flowern are yellow, and rememble a double tulip. The seede are very agrecable to eat, and are much relimhed by the Indians and children.
(1)on. Dichlampicous I'lants; lmmett, Oullines of Boteny.)

NHMACA'N1HUS, n genus of Fosell Fisbea from the Oolite and Liasic Strata (Agamiz).

NEMAl.1TE, a Mineral accurring in slender fibres, which are elantic, nometimea curved, and casily separated. The colour in white, with n ahade of yellow. Streak white. Lastro highly silky. Oprque. Some decotaposed varictiea $j_{\text {a ve an earthy njpearance. IInrducas } 2 \cdot 0.0}$ Specifie gravity $2 \cdot 333$. It in found in veins at lloboken, New Jersey, nul other placen in the Uaited Staten. The following is its nanlynis by Dr. Tliomand :-

NF,MATODFS, [ELATHRHD,F,
NF:MAT(11)FA. [Fistozon.]
Ni.MERTINJS, a genus of liomil Annclida, from the Jower Silurian Strata of Lampeter, io South Wales. (Murchison.)

NHMOCERA, the first family of lipherans luseets in the arrangemeat of latreille, ineludes nuch njeciea na have antemne composed of wany jointe, mexnerted hend, a alicntised sucker, and cither kimple
or toothed tarmal hookn It includes the apesiea of Culex and Tipula, the names given by natnralista to the Mosquitoes and Craneflices Theac linnamn genera are now greatly aubdivided. [Dirtena.]

N゙FMOICUS. [Cuncula.]
NFMORH KDDUS, Colonel Hamilton Smith's name for the Goral Antelopes [Astilour.s.s.]

NEMO'SlA, a geans of Birls eatablished by Vieillot, and placed by Mr. Srainson in the sub-family Taragrince in his family Fringillida. [TANAGMNAE]

NEOMERIS. [CETacba.]
NEO'MERRIS (Lamouroux), a group of articulated Corallines.
NEOMOR1'HA, n genun of Jirds established by Mr. Gould on two species from New Zealand, but the apecimeaa wanted the feet and tho greater part of the winga. It has the following eltaracters:- Bill longer than the head, compreased at the sidea, arched, horny, solid, sharp at the apex, with n denticle. Nostrils open, placed in the basal furrow; carina mandibula superioris in pantem tendente. Tongue bard, elender, bristly at the apex; augles of the mouth with peodent deshy earuncles. Tratal length of the largest species, 151 inches.

NHOPllisON. [VULTURID.E.]

NEOTRAGUS. [ANTH.OMEA.

NE'OTTLA is a mame given to a brown leafless scaly plant, found in woods in this country, growing pammitically on the roots of other apecies. It belongs to the natumal order Orchidacce, sud flowern in May aud Juae. It has a lioorled periauth; a deflexed 2-lobed lip saccate at the base; the stigms tranevarse; rostellum flat, broad, prominent, entire, aud without an appendage.

The only species is the N. Nulus A vis, or Bird ${ }^{\text {s. Nest, so }}$ called from the appearnace of the entangled fleshy fibres of tha root. The whole plant is of a pale reddish-brown ; the root formed of many thick fleshy fibrea, from the extremities of which young plants are producer. The stem is about a foot high, with sheathing brown scales. It has no leaves. The spikes are dense, cylindrical, and many-llowered. It is the original Neottia of Linneus, and is a native of Grest Britain in shady yoods.

Some modern botanists strangely enouglz apply the name of Neottia (itself meaning literally a nest) to plants having no entanglement of the roots that can justify the appellation, and more generally called Spiranthes: by those writers the true Birl's-Nest is called Listera Niclus A vis-s perversion of nomeaclature for which there is no necessity, and which no necessity could justify. This genus gives its name to a division in the Orchidnceons order, called after it Neotlica, composed of terrestrial apecies, especially characterised by the suther being placed at tho back of the stigion, nat vertically upon the end of the column, and by the polleu being pulverulent.

NFPA, a genus of Hemipteraus Insects of the family Hydrocorisce, the species of which are popularly knawn as Water-Scorpions. Their borlies ternimate in two long sete, by means of which they aequire a supply of air for respiration when immersed in the water or mud.

NEPLENTHA'CEFE, Nepentho, a natural order of Exagenous Plants inhabitiag the damper and warmer parts of Asia, and baving, in the plsea of leaves, large hollow bodies furnished with a lid, and coutaining water secreted from a peculiar glandular apparatus with which they are lined. These bodies, or pitchers, as they are called, appear at the cul of a leafy teudril-like expansion of the bark, and are considered to be hallow state of the apex of the petiole of a leaf, while the lid that closes them it regarded as the blade. Their flowers are diocious, green or hrown, apetalous, nrranged in cylindrical racemes, and are succeeded by a capeular fruit filled with fiun fusiform seeds, Whied look like very small sawduat. They are coneidered to be elosely akin to Aristolochiacece, and also related to Sarraceniacece and Euphorbiacer. Adolph lirougniart has pointed out a resemblance between N'penthacece aud Cyfinacece; but Lindley remarks that it is imposaible to agree ia this conclusion:-" "I'a say notbiag of the extreme dissimilarity in labit between these plants, the structure of their fruits appears to be essentially different; sad the seeds of Cytinus being unkaown, the resemblauce between it aud Nepenthes is reduced to a eimilarity in the arrangenent of tha anthers, which cannot in the present case be cansidered of much importance, as it in some degree depende upon the uniaexuality of the flowers of both genera. Λ better approximation of the order has been made by Brown, who points out a relation to linthwarts (Arisfolochiacces); as to which, the structure of tho wood in anne respecta confirms his views. Like msny in thst order it is zonelesn, although plainly exogenous; but it has thia in particular to characteriso it, that the syatem of spiral ressels is developed in a degree unknown la any other planta. Endlicher adopta the same view as does A. Brongriart, and 1 have formerly coincided with thase botanints; but the nulherent ovary of Birtlaworts, their highlydeveloped calys, axile placentation, and hermaphrodite flowers, are serlous diffeultica in the way of a close contact between them and Nepenths, unless the peculiar atructure of the wood, the consideration of which I for the preaent abandon, should lead ta the fian establishment of tho class of 1 lamogen, in which case Nepenthes and Birth. worts will be brouglit into contact or at leat a near neighbourhood. For the present tho true poaition of this order must be regarded as an undatermined point." Joindley places them in the liuphorbial alliance, observing that "ita points of agreements aro its unisexual flowers, albuminous aceda, incomplete foral envelopes, and climbing habit.

Its great disagreement consists iu its indefinite seeds aud peculisr woody structure, which is however in some respects without example." ('Vegetable Kingdom.') The water found in an unopened pitcher was found to emit while boiling an odour like baked apples, and to yield minute crystals of superosalate of potash. There are about six species of Nepentles.

Iepenthes distillatoria.
1, a male flower; 2, a female flower; 3, a rertical scction of the lipe capsule; 4, a vertical section of a seed very much magnifled; δ, the seeds.
NE'PETA (s name used by Pliny from 'nepa,' scorpion, being supposed to be efficacious agaiust the bite of a scorpion, or from Nepe, or Nopete, a town in Tuscany), a genus of Plants belonging to the natural order Labiatce, and the tribe Nepeter. It has diverging anthercells; a ringent corolls, the upper lip flat, straight, emarginate, or bifid; the calyx is 5 -toothed.
N. Calaria, Catmint, has stalked cordate acute leaves, deeply crensted, and clothed with a whitish pubescence benesth; dense manyflowered whorls; smooth and glabrous nuts. The stem is from 2 to 3 feet in height, downy or mealy. It is a native throughout the whole of Europe and Middle Asia, and is plentiful in Britain. The corollas are white, with a tinge of red spotted with purple. The whole plant has a strong smell between mint and peunyroyal. Cats are said to be fond of it, and hence it derives its name; they roll themselves on it, and tear it to pieces apparently with much pleasure. Ray noticed that the plants he removed from the ficld into his garden were always destrojed by cats unless he protected them with thorns until they had come into flower, but they never meddled with plants raised from seed; hence the old sayiug, "If you set it the cats will eat it ; if you sow it the cats won't know it." . Ray accounts for this from the fact that by transplanting the leaves become bruised, and the powerful orlour is exhaled which attracts the cats to it. It appears to act as a real sphrodisiac upon cats. Sheep are said to eat it, but all other domestic animals refuss it.
N. Glechoma (Glechoma hederacca, Smith) Ground-Ivy, has uniform cordate crenate leayes, axillary stalked whorls, ovate aristate teeth, and oblong nuts with impressed dots; the corolls is a light bluishgray, threc times as long as the calyx. It is a native of Lurope and the north of Asia, in hedges and ditches, in woods and waste places, and is plentiful in Britain. The leaves of the Ground-Ivy were formerly thrown into the vat with ale to clarify it and give it a flavour: this was called Gill-Ale, Ground-Iry beiag named Gill, or Gell, and Creep-by-Ground, in some places. From this use of the plant, and the form of the leaf, it has also the names of Ale-Hoof and Tun-Hoof; but it has gradually grown into disuse since the introduction of hops.
N. Nepetella, Snall Catmint, is an erect pubescent plant, clothed with hoary tomentum; the leaves lauceolate, crenate, rounded or cordate at the base, clothed with hoary tomentum or pubescence on both surfaces; the racemes many-flowered, nearly simple; the bracts scarcely longer than the pedicels; the calyx tububar, incurved with an oblique mouth; the corolla twice as long as the calyx. It is a native of the south of Europe, and is found iu Spain, Provence, Switzerland, and Italy. It is a very variable plant, especially in gardens. Many varieties have been described.

There are about 70 species of Nepeta known to botanists. Some of them have pretty blossoms, and may be cultivated iu the garden. They grow well in any garden soil, especially when light and dry They may be propagated by dividing the root or by sowing the seeds.
(Koch, Flora Germanica; Babington, Manual of British Botany; Don, Dichlamydeous Plants.)

NEPHELINE, or Sommite, is a Mineral which occurs in attached hexagonal prisms. Its primary form is a rhomboid. It gives indications of cleavage parallel to the planes of the prism. The fracture is conchoidal, shining. It scratches glass. Colour \cdot white; streak the same. Lustre vitreous. Transparent, translucent. Specific gravity, 2360. When a transparent fragment is put into cold nitric acid it becomes cloudy, and afterwards gelatinises. Before the blow-pipe the edges are rounded; with borax it slowly melts into a colourless transparent glass. It occurs on Monte Somma, Vesuvius; aud in the lava of Capo di Bore, near Rome. The following is an analysis by Arfwedsou of a specimen from Vesuvius :-

$-98 \cdot 30$
Elcolite is the name given to dingy oily-looking masses. It is found in Norway and Siberia.

Giescekite is a name for crystals from Greenland.
Cuncrinite is a bluish variety.
NEPHELIS, a genus of Annelida.
NEPHRITE-Jade or Axe-Stone-a Mineral which occurs in masses. The structure is compact. Its fracture is coarse, splintery. Hardness 7.0. It is very tougb. Colour dark-green and green of other shades. Translucent on the edges. Specific gravity 2.9 to 3 . Before the blowpipe it whitens, but does not fuse, but with borsx it forms a transparent glass. The following is an analysis by Kästner :-

It is carved into images and worn as a charm. It was supposed to bo good in diseases of the kidney-hence its name. It is found in New Zealand, Chiua, and Western America.

NEPHROPS. [HOMARUS.]

NEPT AA, a geuus of Zoophytes.
NE'REIS, Cuvier's name for a genus of Dorsibranchiate Annelida, comprehending the genus Lycoris of Savigns. Tentacles equal in number are attached to the sides of the base of the head; a liscle more forward are two other biarticulated oncs, and between them two simple ones: they have only one pair of jaws in their proboscis (trompe). The branchice only form small lamine on which a net-work

Nereis (Syllis) phoxphorescens.
a, the animal ($1-3$ rd inch focus) ; b, head of the same (1.12 th inch focus). Garner.
of veseels creeps; there are besides two tubercles to each of their feek, two bunches of filaments, a cirrhus nbove, and one below.

Lamarek states that the antenam of the Nerelds ave in genernl short. The eyes, when diatinct, he mys, are four ln nuniber. The probosein Is large, open at ita extrenity, and ofton furnished with malient points or small teutacler I amarck divides them into six genem, namely, Lycoris, Nephtys, Glycera, Hesione, I'hyllodon, and Syllis, principally on the ground of the presence or absence of jaws, and the modifications of the antennes to these he adde Spio.
The Nereids are widely apread, and somo of tho species aro found in most sea. Somosre found on our own consts. [Asselid..]

NEREITES, a genus of Fosail Annelida, from the Lover Silurian Strata of Lampeter, in South Wales. [Murchison.]

NERITA, a genus of Gasteropodous Molusca, the type of tho family Scritide. The genus Nerita has the following charncters:-Shell thick, smooth, or spirally grooved; epidermis horny; outer lip thickened, and sometimes denticulated withiu; colunsella broad aud flat, with its inuer edge straight and toothed; operculum sbelly.

1. polifa has the shell thick, sniooth, somewhat shining, longitudinally etriated very finely, varying in colour; the spire very retuse, the lip toothed, smooth ebore. (Lam.)

Nerita polita, with its animal. 'Astrodabe.'
This species, according to Messre. Quoy and Galmard, is the most plentifully diffused of any of the geuns, and is found in nearly all the
seas of warm elimates It in hoavs, polished, marbled, and often coloured with threo red trausverse bands.

The animal is of a uoiforn yellowish-white, with the oxcoption of the tentacles, which are of a smoky-brown colour.
N. Ascensionis has the shell solid, trapaversely fusrowedly ribbed, greenish-gray, spotted with white aud brown: spire prominent, the apex yellow; aperture white; the lip toothed, rugous above: marked above with a ycllow apot. (Lam.)
This shell is deeply striated, rugous, gellowish-gray, with circumscribed brown spots upon the parts in relief; aperturesmooth, yellowishwhite; peristome dotted with white and brown.

a, bhell, with animal ; b, opereulam.
The animal has the font yellow below, stristed and dotted with deep-brown on the sides, so as to appear nearly black on a yellowish ground. The head, which has a very expanded hood, is striated in the same manner. The neck is violet. The tentaclesare loug, pointed, lively-brown, atriated longitudinally with black. The oyes, placed at their base, are at the extremity of a triangular palette of yellowishwhite, having a black stripe at the external border. The mantle has its contour datted with brown. The operculum is red-browa, very much granulated, angular at the posterior border, and provided with a very projecting heel or process. It is found in the Island of Ascension. (' Astrolabe.')
(

[^0]: Bhall of rooted Ifjeras: prome. (Cuider.)

[^1]: - Includiag, probably, Ciesis and Fayinuha.

[^2]: 'Tin anid on xummer's eveniag hout
 Flashes the golden-colour'd tower
 A fair electric fame.'

[^3]: \qquad

[^4]: This name in pre-oceupled. (Fatcosims..]

[^5]: - Modiola.-Mr. G. B. Sowerby statea that the fossil species are not many. M. Deshayea, in his 'Tables.' makes the number of fosail species (tertiary) 21 ; and M. barbata, M. discrepans, and M. lithophagu (Jithodomus), both living and fossil (tertiary). In the last edition of Lamarck the number given is 20. Woodward gives 130 sa the number of fossil species now known. They are found from the Silurian syatem upwards.

 Lithodomus.-M. Deshases does not mention this genus in his - Tables,' and appears to place it under Modiola, a position which it occupies in Lamarck'a work. M. Deahayas records Modiola lithophaga (var.) -Lithodomu lithophagus - as fossil at Paría, Mr. Lonadala
 NAT. HIST. DIV. VOL, III,

