STATUS Extinct. First recoxded in 1828 and poseibly present through about 1844.

OBSFRVATIONS: "A species of Duck*, with no conspicuous plumege, [wac found] Living in small flocks on Maller [-Layean] and LLeLansky, but not breeding" by Isenbeck in Agril 1828 (Rothschile, 1893-1900:v). A newgeper account of the wreck of the Molder Borden in 18ht (Wart, 1957:34) stated that ${ }^{n}$. . whta auck . . are pleatiful. . . . [and] . . were readily tamed." The account elso $\begin{gathered}\text { mplied that these ducks were eaten by members of the crew. }\end{gathered}$ Another account (Ward, 1967:42) stated that "The ducks seened pecullarly inclined to renounce their vild and roving propensities and adopt the domestic hebits of civilized 14fe. A slock of 40 hed attached thenselves to the settlement, *

Although it is possible that the ducks were same other spectes, thit does not seem too Likely. Jabes Pell. Captain of the versel and evidently the primary source rox the accounts of the ahipwreck (Word, 1967:38), wes Prom Yev England and should have been able to distinguish ducke Erom curlews. the only other species occurring on LisLonkli that is Likely to have exhibited the habits escribed to the ducks. Wo think it 11 tely that the Iast of the endemie ducks on LisLanski were killed for food betwean 1814 and 1846 by the shipwrecked cruvs of the Holdex Bordon or Frohasset.

[^0]Climatic data for this area of the Pacific are available only from Midway Naval Station, 255 miles northwest of Lisianski. No significant difference is expected between the general weather conditions of the two islands. The Data used in this section are from a summary of the years 1953-1963 (NavSta Midway Forecast Handbook and Air Weather Service, [MATS] Climadtic Center USAF).

Climate in this region of the Pacific is marine, influenced by marine tropical or marine Pacific air masses depending upon the season. During summer the Pacific High becomes dominant, with the ridge line extending across the Pacific north of Midway. This places the region under the influence of easterlies with marine tropical and trade winds prevailing. During the winter, especially from November through January, the Aleutian thaw moves southward over the North Pacific, displacing the Pacific High before it. The Midway region is then affected by either marine pacific or marine tropical air, depending upon the intensity of the Aleutian Zow and, or the Pacific High.

Monthly maximum, minumum, and mean temperatures for a ten year period are shown in Figure $\$ \mathrm{~V}$. The temperature variation shown is indicative of a marine environment. The mean annual range is 16° F. From December through April the means $\frac{1}{W}$ y between $66^{\circ} \mathrm{F}$ and $69^{\circ} \mathrm{F}$, and during the remainder of the year between $70^{\circ} \mathrm{F}$ and $81^{\circ} \mathrm{F}$, the warmest months being July, August and September, and the coolest January, February and April. An inexplicable departure from the normal curve occurs in maximum, minimum and mean figures for April. A 37 degree difference exists between the absolute high of $89^{\circ} \mathrm{F}$ and the absolute low of $52^{\circ} \mathrm{F}$ for this ten year period.

Mean monthly precipitation and the number of days with measurable precipitation are tabulated in Figure VI. Rain or drizzle most frequently occur from

December through May, and least frequently in June and July. The mean annual precipitation for the period is 42.59 inches, with a maximum of 5.07 inches occurring in January and August, and a minimum of 2.03 inches in November. A secondary maximum of 4.92 inches occurs in October. Combining amount of procipitation and days with measurable precipitation shows May and June to be the driest months of the year. During the remaining months measurable rain falls on from 10 to 17 days. No snow has been recorded. Thunderstorms have been recorded in all months except February, March and April but peak activity seems to occur during August, September and November. The annual average relative humidity is 76 per cent with a high monthly mean of 89 per cent and a low of 62 per cent.

During the periods for which data are available no tropical storm or typhoon has passed through the area, though storms of tropical character have passed within 500 miles, causing a noticeable increase in precipitation and winds, especially in September of 1957, 1958 and 1959, October and November 1962, and December 1964.

The maximum sustained wind recorded for Midway is 44 knots in January. Maximum winds are lowest in June, July and August, are high in September and December, and also low in October. Maximum winds occur generally from the east from July through October, and from the west the remainder of the year. Peak gusts of 77 and 67 knots have been recorded in December and January respectively, during the period when the Easterlies are not present. From May through August peaks range from 35 to 41 knots and in the remaining months from 42 to 55 knots. Gusts are generally from the west.

Surface wind speeds and directions are shown in Figure VII. The prevailing wind direction ten months of the year is the easterly, and during December and January westerly. The annual mean wind speed is 10 knots, with a range of 5 have been recorded. knots. No sustained winds over 40 knots generally range from northeast to
winds of over four knots
southeast, while greatest mean wind speeds are recorded from south-southwest to west-northwest.

The mean tenths of total sky cover is fairly uniform throughout the year, ranging from a low of 5.3 in August to a high of 7.3 in March. The yearly mean is 6.2. The occurrence of fog and haze is negligible, but highest in January and March. Closed conditions with visibility less than one mile occur rarely (2 o/o) at Midway, but most often from December through April, when due to rain.

Figure $\frac{\text { V }}{5}$: The mode of the monthly means for a ten year period, 1953-63, of temperatures for Midway Atoll.

Figure Mean monthly precipitation in inches (histogram) and mean number of days with measurable precipitation (line graph) for Midway Atoll, 1953-63.

Figure III : Wind direction and speed at Midvay Atoll fron 1953-63. Lengith of directional line indicates percent of observations from that direction, figure at end of the directionalline is mean wind speed in knots.

When Seen
\qquad
March 1828

June-Jyly 1891

Mentioned. in publications by Munro, 1941 and not by Rothschild
March 1915
$\frac{\text { 16-19 May } 1923}{\text { (Records by }}$ Wetmore, ms)
$\frac{26 \text { March } 1954}{\text { (Richardson, bbs.) }}$
$\frac{14 \text { February } 1963}{(\text { POBSP })}$
11 March ${ }^{1} 63$ (POBSP)
11 March 1964
(POBSP)
12-14 March 1965 (POBSP)

4 September 1967 (POBSP)

First Unequivocal Record of Occurrence

Black-footed. Albatross Laysan Albatross Great Frigatebird Red-footed Booby

Blue-faced Booby Brown Booby

Sooty Tern
Gray-backed. Tern
Black Noddy
White Tern
Golden Plover
Bristle-thighed Curlew Wandering Tattler Ruddy Turnstone
Wedge-tailed Shearwater Bonin Petrel
Bulwer's Petrel
Christmas Shearwater

Brown Noddy

Red-tailed Tropicbird

Sanderling
Herring Guli
Hybrid LaysanxBlack-footed Albatross

Dar-talled Godwit
Peregrine Falcon
Black-bellied Plover
GIaucous-winged Guli
Semipalmated Plover
Mongolian Plover
Jouanin's Petrel

First Unequivocal Record

 of BreedingBlack-footed Albatross Laysan Albatross Great Frigatebird

BIue-faced Booby Brown Booby
Red-footed Booby
Sooty Tern
Black INoddy

Wedge-tailed Shearwater Bonin Petrel Bulwer's Petrel

Gray-backed Tern
Brown Noddy
Christmas Shearwater

Red-tailed Tropicbird

First Published Record of Breeding
von Kittlitz (1834)
von Kittlitz (1834)
von Kittlitz (1834)
Rothschild (1893)
Rothschild (1893)
Rothschild (1893)

Rothschild (1893)
Rothschild (1893)
Rothschild (1893)
Rothschild (1893)
Rothschild (1893)
Rothschild (1893)
Rothschild (1893)
Munter (1915)
Munter (1915)
Munro (1941)
Miunro (1941)

Munter (1915)
Richardson (1957) ??
Clapp \& Woodward(1968)
Clapp Woodward(1968)
[MONE] \& Woodward(1968)
Clapp \&
Clapp \& Woodward(1968)
CIapp \& Woodward(1968)
Clapp \& Woodward(1968)
[NONE]
[NONE]
[NONE]

When and byWhom

First Specimen Taken
A. Wetmore, 17 May 1923
H. C. Palmer, 3 July 1891
A. Wetmore, 17 May 1923
A. Wetmore, 19 May 1923
(??Fisher, 20 May 1902)Wetmore, 17 May H. C. Palmer, 30 June 1891
U. S.Tres.Dept., 1904
U. S.Treas. Dept., 1904
A. Wetmore, 17, May 1923
J. S.Treas. Dept., 1904 NONE EVER COITECTED
A. Wetmore, 19 May 1923
A. Wetmore, 16 May 1923

$$
\text { (POBSP), } 22 \text { Aug. } 1964
$$

Munro (1941)
Munro (1941)
3 July A. Wetmore, 16 May 1923

A. Wetmore, 17 May 1923
A. Wetmore, 17 May 1923
A. Wetmore, 17 May 1923

Munter (1915)
[Alone??] No- a rather ambrghous statement by Munro 194
 U. S. Treas. Dept, 1904

Richardson (1957)
R.B.Clapp (POBSP) 20 March 1968

$$
\text { (POBSP.) } 14 \text { Feb., } 1963
$$

G. S.Wislocki(POBSP) 11 Mar. 1963

NONE EVER COLTECTED
R.B.Clapp (POBSP) 13 Mar., 1965 (POBSP) 12 Mar., 1965
C.A.Ely (POBSP) 4 Sept. 1967 R.B.Clapp (POBSP) 4 Sept. 1967
R.B.Clapp (POBSP) 4 Sept. 1967

$$
\text { ATE } \# 6
$$

October - November 1964

Howland, Baker, Phoenix and hive Islands

Field

$\begin{array}{ll}40434 & \text { Sterna fuscata. - Howland Island, Pacific Ocean } \\ -40435 & \text { Sterna fuscata }\end{array}$ - Howland Island. Pacific Ocean
-40436
440438 Sterna fuscata - Howland Island, Pacific. Ocean
40439
. 40440 Sterna fuscata + Howland Island, Pacific Ocean

- 40441 Sterna fuscata
-40442 Sterna fuscata
40443 Heteroscelus incanum
40444 Heteroscelus incanum
40445 Pinvialis dominica
40446 Pluvialis dominica
40447 Anous stolidus
40448 Fregata ariel
40449 Fregata ariel
40450 Frequita ariel.
40451 Fregata ariel
40452 Fregata ariel
40453 Fregata ariel
40454 Fregata ariel
40455 Fregata arrel
40456 Fregata ariel
40457 Fregata ariel
40458 Sula dactylatra
40459 Sterna fuscata
- Date.

Oct. 5, $1964 \mid$ Testes 2 mm .

- Da
Date
Oct. 11,1964
\vdots
Oct. 11,1964
Oct 1964

Oct. 13, 1964
Oct. 13, 1964
Oct. 13, 1964
13,1964

Oct. 18, 1964 Oct. 18 1964

Gonads
Ouum 5 mm .

$$
\sim
$$

$$
\begin{aligned}
& \text { Ovam } 2 \mathrm{~m} \\
& \text { Ovary } 15 \mathrm{~m} \\
& 1 . \text { Ovam } 1 \mathrm{~m}
\end{aligned}
$$

$$
\begin{gathered}
1.0 \\
\text { Teste } \\
0
\end{gathered}
$$

$$
\begin{array}{ccc}
\text { Testes } R & R & 8 \times 5 \mathrm{~mm} \\
\text { Ovary } & 10 \times 5 \mathrm{~mm}
\end{array}
$$

$$
-
$$

-

$$
\text { Ovary } 5 \times 4 \mathrm{~mm}
$$

$$
\begin{aligned}
& \text { Cuary } 5 \times 4 \mathrm{~mm} \\
& \text { Testes } 2 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ovary } 1.5 \mathrm{~mm} \\
& \text { Testes } 2 \mathrm{~mm} .
\end{aligned}
$$

Te

$$
\begin{gathered}
\text { Testes } 2 \mathrm{~m} \\
- \\
\vdots
\end{gathered}
$$

Weight 180 gms
144 gms.
\qquad

$$
148 \mathrm{gms}
$$

$$
\begin{aligned}
& 169.9 \mathrm{~m} \\
& 197.9 \mathrm{~ms}
\end{aligned}
$$

$$
667 \mathrm{gms}
$$

$$
\begin{array}{c|c}
4 \mathrm{~mm} & 60.8 \mathrm{gms} \\
2 \mathrm{~mm} & 112.9 \mathrm{gms} . \\
1.5 \mathrm{~mm} & 133.7 \mathrm{mms} \\
2 \mathrm{~mm} & 89.0 \mathrm{gms} \\
& - \\
\hline .8 \times 4 \mathrm{~mm} & 1556.4 \mathrm{gm}
\end{array}
$$

$$
\begin{aligned}
& 60.8 \mathrm{gms} \\
& 112.9 \mathrm{mms}
\end{aligned}
$$

$$
112.9 \mathrm{gms}^{\mathrm{ms}}
$$

Stomach saved

$$
33.7 \mathrm{ngms}
$$

Heavy fat, stomach saved
Skeleton, stanach saved

Stomach saved
Skeleton, stomach saved
Skeleton, stomach saved
Skeleton, Stomach saved
Stomech saved
Stomach saved
Stomach saved
Stomach swed
Stomach saved
Stomach saved
Stomach saved
Stomach saved
Stamach saved
Stemach saved

We. ght
158 gms
147.8 gms
134.6 gms
149.3 gm.
154.4 gms
174.8 gms
-
-
120.0 gms
102.5 gms
129.8 gms
106.5 gms
103.1 gms
119.4 gms
112 gms
115.8 gms
118.5 gms
119.7 gms
700 gms
93 gms
48 gms
41.5 gms
48.5 gms
51

$$
\begin{aligned}
& \text { Remarks } \\
& \text { Strumei surat }
\end{aligned}
$$

Stanch seed
Strant sured
Stameh suod
Sleictom
Shatefon
Silctoon
Found dad + selecten, ised
Shrunh smed
Stamat sumed
Stamech saned.
Stamach sund, stalletom
Strinh swewed. slele ton
Stamand saned, selele form
Stamah suad, Skeletem:
Strach sand

$$
\text { Stamel sune } 1
$$

Slalem
Stamele saved, sheleton
Stranal swael, sheltan
Stanesh swed, salitor
Stmoul smand, shleletor
Stmalh sumed
Stanal sured
Stamal sand
Strmat swod
firld Species
-40518 Cygis alba
4) 40,519 Heteroselus incanum
4. 40520 Sterna fuscata

- 40.521 PInffinus pacificus
-. 40522 / Veso freeqatta alblaularis - 40523 Bulweria bulwerii - 405×4 Puffinus I'herminieri - 40520 Paffinus I'herminieri 40526 Paffinus t'herminieri - 40527 Paffinus l'herminieri 40528 Erolia acuminata
40529 Erolia acuminata 40530 Erolia acuminata 46531 Erolia acuminata 40532 Gygis alba 40533 Heteroscelus incanum 140534 Anous minutus 40535 Anous stolidus 40536 Heteroscelus incanum. 40537 Arenaria intrepes 40538 Fregata ming 40539 Phar then lepturus 40540 Heteroscelas incanum 40541 Pluvialis dominica 40542 Pluvialis dominica 40543 Erdia a cuminata 40544: Anows stolidus 40545 Heteroscelus incanum40546 Sterna Iunata

Weight	Remarks
109 gms.	Stomach sured
84.79 ms .	Stomach saved.
143 gms .	Stomach saved
443 gms .	Stomech saued
67.2 mms	Stemach aared, Skeleton
79.8 gms	Stomach oaved, Skeleton
188 gms .	Stomach oared, Skele ton
182 gms	Stomech oured, Skele ton
173.89 ms	Stomech oured, Skeleton.
174.6 gms .	Stomach oared, Skeleton
80.7 gms .	
72.69 ms	Stomach saved
76.7 gms.	Stomach saved
61.2 gms .	Stemach saved
100.3 gms.	Stomach oared
106.89 ms .	Storuch aured
93.4 mms	Stomach sared
155.5 gms .	Stomach saved
83 gms	Stomach oared
102.7 gms .	Stomach sared
1167.5 gms .	Stomach saved
260.59 ms .	
99.2 gms	
720 gms .	Stomach saved
106 gms .	
. 66 gms	Stomach saved
173 gms .	Stomach saved
97.5 gms	Stomach saved
109 mms .	Storach sived

Location

	Speats		Location
$45547 \mid$	Gyyis alba	7	Sydney Istad, Phoenxx Istandss, factic Ocean
$4_{4}^{6} 448181$	8 Fichave caramualata	07	Tithila Iflad, Amerrem Suma Phoenir Isherd Pof Ocea
${ }_{4}^{4} 4.598$	Heteroselenu Inentam	\Rightarrow	Thturar Istad Amancon Saroa
${ }^{4655581}$	Endynamis Taitensis	of	Gardner Ithad, Phenenx Istands Pactice Oca
4, 538	Pluvalis dommica	7	Gardner Istand, Phoenix Islends, Pacific
4055	3 Fondehero carmanalata	O	Tutwila Iolsard, Amerren Samoa
40541	Aflons ater frows	or	Tutwila Tsilad. Aneereem Samoa
4 4055	5 Fouldhoo carmadita	?	Thetula Iblha, American Samoa
44.56	Ap enos atrifueces	\rightarrow	Tatrita Islaud, Amencrean Samon
40557	Aplone atiouseas		Thatula Tolur. Anmercen Sman
4058	8 Ty to alba	\%	Tritura Is inad, Amerricen Samoa
4.559	Storas fucata	σ	Phoen n Irland, Pacific oceem
4956	- Sterna fuscata	σ	". . .
4.581	Sterma fuscata	7	
4056	S Starmi fuscata	\Rightarrow	
4 4,563	S3 Sterna Suseata	\%	" - . " - "
4654	4 Sterna fuscata	of	" " - "
4066	Sts Stera fureata	\%	" ". . -
Y 4566	"S Sterna fuscata	0	- " - - "
40.67	Wrs Sterna furceata	\%	" ". "
4.568	488 Sterna fuscuta	\%	" .".
4656	s99 Sternn fuscenta.	O	
45570	- Sterna fuceata	\cdots	" .
4557	Sterna fucata	7	
70s57	Sta Plunatio demencos	0	Phoenx Island, Pacifo Ocean
4057	So Areanara intrepes	\rightarrow	
4659	24. Puffrusus aturatis	-	Phoenixit Itand, Parific Ooon
	If Poff mus nitutatus	-	

Date		Weight $105.7 \mathrm{gman}$	Remates
ort. 29,1964	Testes 1 mm	29.7 gan	Steletorn, Stomat sared
Mor. 4.1964	Testes 2 mm .	$105.39 \mathrm{ms}$.	Stemach saved
O.t. 30,1964	Testes 2 mm	135.3 gms	Stameh ared
Oct. 23,1964		122.09 ms .	Stamach saved
Oct. 23,1964	-	119.2 gms	Stomach saved
Oct. 30,1964		37\%as.	Steletor, Stomath save
Oct. 30,1964		158.5 ,ms.	Stalctoon, Stornch sa
Oct. 30, 1964		25.59 ms .	Stalctor, sitmach saved
Oct. 351964		147.5 gms	Skelefor, Stomuk sued
Ot 29, 1964	${ }^{2} \begin{aligned} & \text { bx } \\ & 6 \times 4 \mathrm{ymm}\end{aligned}$	132.3 gms.	Skeletor, Stomal mas
Oct. 15, 1964	Orany 5mm		, Stamad saved
Nov.: 3, 1964	Tester 3 mm	151.3 gms	Stamach saud
	Testes? 2.5 .5 mm	144.49 ms .	Stamach saved
	Testes $\mathrm{L}^{2} 1 . .5 \mathrm{mmm}$	142.89 ms	Stomach sared
	Testes ${ }^{2}$ L 1.5 mm	160.0 gms	Stomach saved.
	1. ounm 3 mm .	163.19 ms	Stomach saed
	${ }_{3}^{2 \mathrm{~mm}}$	163.5 mms	Stomash sared
	ovum 1.5 mm	151.49 ms	Stomach saved
	Teteres ${ }^{\text {R }}$ S $5 \times 3 \mathrm{smm}$	182.19 ms	Stomach sared
	1. ovam 2 mm	153.0 gms .	Stomach sawed
	Ovary in ${ }^{\text {ommm }}$	145.9 gms.	Stameh sared
	1. ovmm 2 mm	146.89 ms .	Stomach saved
Nor. 3, 1964		178.99 ms .	Stmach save
	Orary 7 mm	159.8 gms	Stamach saued
Nor. 4, 1964	Testes 2 mm	103.7 gms	
Yon. 4, 1664	Testes 2 mm	96.89 ms	
Nor. 5, 1964	Oray 8 mm.	310 gm .	(Skeletor?)
	Testes 2 mm	331 gns .	Skeleton

Fregata ariel

Fregata minor
Phacthon rubricaud.
Pterodroma alba

Arenaria interprar

Arenaria interpres
Pluvialis dominica
Fregata ariel
sterna
58

> May 19, 1965

Biels	Sperisis
5459	Sterna fuscata
60	
61	
62	
63	
64.	
65	
66	
67	
68	
69	Phacthon rubricauda
70	Sula sula
71.	sterna lunata
72	Phaethon rubricauda
73	. 11
74	\cdots (11)
75	sterna fuscata ${ }^{\text {(albino) }}$
76	Fregata minor
77	" 1
78	Fregata minor
79	Phacthon rubricauda
80	Phacthon rubricauda
81	/'
82	Soerna lunata
83	"
84	
85	sterna. lunata
86	sterna fuscata
87	Puffinus pacificos

Locality
Howland Island, Pacific Ocean

veald 5488 89 90 91. 92 93 9.4 9.5 96 97 9.8 99 5500 01 02 03 04 0.5 06 0 08 09 10 11 6 13 14 15 16	Plcilo Puffiniv. grisicus Gygis albis Anous stolidus n 11 Anous stolidus sterna lunata 11 a Sterna lunata Sterna: furcata sterna fuseata n / 11 Anous stolidus Gygis alba Gygis alba Pluvialis dominica Pluvialis dominica \qquad Arenaria interpres Anous minutus Anovs minutus		Locathon Hull Island.

Location
 - Hull Island, Pacific Occan

Phocnix Island, Pacific Ocean

Phocinix Island
n
n
a

Find
5575 Phacthon rubricauda
76
77
78
79
Lef Location

81 Frogata minor
82 Fregata minor
83. Fregata minor

84	Anous minutus
85	Añous minutus

86 Anous minutus
87. Anous stolidus
88 Sterna lunata

90	$" 1$
91	Stcina fuscatia
92	Anous stolidus
93	Sterna lunata
94	"1

95 Anous stolidus
96 Anous stolidus
97 Sterna lunata

98 Puffinus 1'herminieri
99 Sterna fuscata
5600 Phacthon tepturus
01 Myzomela cardinalis

$A T F$ \#

Howland, Baker, Phoenix Istandi, Tohelaun Islands, Line Istands

January 25-March 25,1965

5166
5167
5174
5179
5180
5181
5182
5183
5185 Sula levco gaster
5200
Ducula pacifica
Nukunowo
5219
sterna sumatrana Atafo
5335 sterna fuscata
5238
Ducula pacifica
5239
5240
524 :
Frigata ariol
5242

$$
5255
$$

LS \#22

PRELIMINARY REPORT
 IISIANSKI ISLAND

Prepared
by
Roger B. Slap

PRELIMTINARY REPORT

IISIANSKI ISLAND

by

Roger B. Clapp

Field Trip Personnel: Eugene Kridier, Refuge Manager, Bureau of Sport
Fisheries and Wildlife (Party Leader); Karl W. Kenyon, Wildlife Biologist, Marine Mammal Biological Laboratory; Ernest F. Kosaka, District Wildlife Biologist, Hawaii Division of Fish \& Game; John I. Sincock, Research Biologist, Rare and Endangered Species Program, Bureau of Sport Fisheries and Wildife; Roger B. Clapp, Pacific Ocean Biological Survey Program.

Support Vessel: U.S. Coast Guarā Cutter Ironwood (Wagl 297), Captain William Reed.
Itinerary: 110020 March 1968 -- Field party arrives Lisianski
132021 March 1968 -- Clapp departs Lisianski
c. 150021 March 1968 -- Rest of field party departs Lisianski.

POBSP Man-days spent on Lisianski: 1.1
During our very brief survey of Lisianski the primary objectives of the party were to count, tag, and return Hawaiian Monk Seais and Green Sea Turtles. The POBSP observer tried to obtain credible population estimates and to determine, so far as was possible, the breeding status of the species occurring on the island.

A nearly complete count of the Blue-faced Booby nesting population was obtained and pair data were obtained for 142 birds. Hopefully, this data, when analyzed in conjunction with similar data taken in March 1965 and June 1967, will provide useful data on duration of pair bonds that will supplement similar data taken on Kure.

Three specimens were collected: a Sanderling, a Glaucous-winged Gull, and a hybrid Black-footed x Laysan Albatross. Fifty-two birds of 2 species were banded and 165 returns were obtained from 7 species. Thirteen of these returns were Ruddy Turnstones obtained by other members of the survey party. Of these 13 returns one was evidently from Laysan and two had been banded on Lisianski.

Vegetation on Lisianski appeared to be considerably more lush than on Nihoa, French Frigate Shoals, or Laysan, which may account in part for
the relatively more advanced nesting cycles found in several species. The Tribulus was blooming profusely and the Eragrostis appeared considerably greener than on Laysan

Black-footed Albatross Estimated breeding population -- 1500-2000
These albatrosses were not very abundant and apparently preferred to nest on the more open beaches of the southern third of the island. Only downy young were present.

Laysan Albatross
Estimated breeding population -- 4000
This species was also not numerous and also appeared to be more abundant at the south end of the island. A number of old eggs were found but all active breeders had downy young.

Black-footed x Laysan Albatross
No. collected
1
At ill 45 on 20 March I collected a hybrid by hand at the south end of the island just north and east of the cutbank at the southeast corner of the island. The bird was standing near an adult Laysan Albatross and both Were near a young Black-footed Albatross in a nest near the rim of the Scaevola. This area was about 100 yards from a mixed Blackfoot-Laysan colony. A series of photographs of the soft part colors was taken the following morning.

The specimen (Field \#40809) was a male with the left testis measuring 20 x 10 mm . It weighed 3039 grams of which at least 366 grams were fat and was not molting in the flight or body feathers. The stomach was empty except for what appeared to be the distal half of a crab claw and a small amount of a greenish fluid.

Wedge-tailed Shearwater

None of these shearwaters was seen by me nor do I remember any other members of the party mentioning that they saw any. It is not impossible that a few may have been present but were overlooked due to the brevity and cursory nature of the survey.

Christmas Shearwater
Eistimated population -----------
I saw several of these shearwaters north of the coconut trees in the interior of the island and others were doubtless present. I saw no evidence of breeding activity.

Bonin Petrel
Estimated population -----------800, 000
These petrels were extremely abundant and had burrows throughout the interior of the island. I checked no burrows but have no doubt that many
were breeding.
Petrel sp.
Kenyon found a dead small petrel in the center of the island near the edge of some morning glory. Judging from his comments it was either a Bulwer's Petrel or a Sooty Storn Petrel.

Red-tailed Tropicbird
Estimated population -------------- c. 100
Breeding status: only nests with eggs found.

Red-tailed Tropicbirds were low in numbers, a maximum of 10 birās having been seen in display over the northwest corner of the island at 1355 on the 20th. I found only about $5-6$ birds down on the ground on the northwest corner of the island, either under Scaevola or mixed Scaevola and morning glory. Only two occupied nests were found by me and both contained eggs.

Estimated population	430
Nesting population	225
Results of sample nest count (believed to be about $85-90$ percent complete) :	
\# of nests counted	98
\# of nests with eggs	$76(78 \%)$
\# of nests/naked young*	6 (6\%)
\# of nests/small downy young	15 (15\%)
\# of nests/medium downy young ------	I(1%)
Number banded: 18 (9 A-M, $9 \mathrm{~A}-\mathrm{F}$)	
Number returns: 146 ($76 \mathrm{~A}-\mathrm{M}, 69 \mathrm{~A}-\mathrm{F}$, $1 \mathrm{~A}-\mathrm{U})$	

The nesting cycle of the Lisianski Blue-faced Boobies was in advance of all other islands where we found it nesting, with the possible exception of Green Island, Kure Atoll. Nonetheless, nearly 50 percent of the population was still in prenesting pairs.

On the afternoon and evening of the 20th I attempted to make as complete a nest count as possible and get pair data for as many birds as I could. The island was arbitrarily divided into three areas to see if one area or another was more favored by the early nesters. Area I was from the Fish and Wilalife Refuge sign (camp) around the north end of the island to where a distinctive, dike-like portion of rocky reef extends outward from the east side of the island' (= roughly the northwest, north and northeast hall of the east perimeters). Area 2 was from this point to the high south point of the island (= roughly the southeast half of the east perimeter). Area 3 was from the high south point to camp. (= roughly the south, southwest and central west perimeters). As Table 1 below shows, there appeared to be little difference in the stage of nesting from area to area, and allowing for differences in size or the sample area, little difference in nesting density from area to area.

[^1]Table 1. Results by area of 20 Narch 1968 nest count of Blue-faced Boobies on Lisianski.

Contents of nest	$\frac{\text { Area I }}{\text { No. } \%}$		$\frac{\text { Area } 2}{\text { Ivo. }}$		Area 3		Totals			
			NO.	\%	NO.	\%				
Nests/I egg	9	(25)			6	(27)	10	(25)	25	(26)
Nests/ 2 eggs	20	(56)	11	(50)	20	(50)	51	(52)		
Nests/ egg \& naked young	1	(3)	-		3	(8)	4	(4)		
Nests/ I naked young	1	(3)	-		-		1	(I)		
Nests/2 naked young	-		-		1	(3)	1	(I)		
Nests/ I small downy young	5	(14)	4	(18)	6	(15)	15	(15)		
Nests/ I medium downy young	-		1	(5)	-		-	(I)		
Total nests/eggs	29	(81)	17	(77)	30	(75)	76	(78)		
Total nests/ young	7	(19)	5	(13)	10	(25)	22	(22)		
Total active nests	36		22		40		98			

20 "clutches" were checked for stage of incubation by canding. 8 of 10 2-egg "clutches" were incubated while only 1 of lo l-egg "clutches" was incubated. This results in a mean clutch size of 1.89 for 9 clutches known to have been completed.

Pair-data were obtained for 142 birds, of which 88 were prenesting birds roosting together and 54 were birds with active nests.

No clubs, subadult, or immature birds were seen by me nor do I remember any other members of the field party stating that they had seen any. Of the 146 returns, 142 had been banded on Lisianski and 4 had been banded on Laysan, one of them as a Laysan Albatross. Three of these birds were roosting with Lisianski-banded birds and the fourth was paired with a bird with one egg.

Brown Booby

> Estimated population
> c. 20
> Breeding status
> Unknown

On the afternoon of the 20 th and the morning of the 2lst I counted 15 Brown Boobies roosting on the reef rocks of the east side of the island. Fourteen were adults and one was an immature or subadult. During my nocturnal survey of the island perimeter I found none roosting in other areas.

No one in the survey party visited the breeding area in the southwest interior of the island where nests were found in September 1967. Hence, I do not know whether any of the biras seen were breeding or not.

Red-footed Booby

Although just beginning to nest, the breeding cycle of the Lisianski

Red-footed Boobies was decidedly in advance of that of the population on Laysan (where only I nest in 8 contained an egg and where considerably more effort was expended in searching for nests.) Probably not less than 75-100 nests were present on Lisianski.

It is of interest to note that an almost identical difference in the cycles on the two islands was noted by Hackman last year when he visited the two islands on the same days of the month that I visited them this year. Hackman found that 18 of 85 (21 percent) nests checked on Lisianski had eggs but found no nests with eggs on Laysan although some as-yet empty nests were present.

As on Laysan and Nihoa the Red-footed Booby nests appeared to be much more scattered and less often found in clumps than were those of the Great Frigatebirds. The only area where there appeared to be somewhat of a concentration was in the higher Scaevola of the northeast corner of the island.

Great Frigatebird

The nesting cycle of Lisianski Great Frigatebirds did not appear to be significantly different from that on Laysan. Many birds were courting and many were nest-building. Ten eggs checked for stage of incubation by candling were fresh or very slightly incubated. I suspect that not less than several hundred active nests were present but this figure may well be erroneously low since coverage of the interior of the island was scanty.

As on Laysan a number of immature birds were present, most of them flying, but a few stili on the nest and apparently still being fead by their parents.

Gray-backed Tern
Estimated population ----..----- c. 1000
Breeding status: eggs but no
young present.
Gray-backed Terns were nesting in the sand-Eragrostis association in the north central portion of the island. Kenyon reported that only nests with eggs were found and that these terns were nesting in an area peripheral to that occupied by the Sooty Terns.

Sooty Tern
Estimated population ---------- c. 7500
Breeding status: Down on ground
by day but no nests with eggs or young found.
Sooty Terns were swirling over the north-central portion of the island
and some were down on the ground. Kenyon investigated this area on the 2lst and reported that he found no nests with eggs.

Brown Noddy
Estimated population ----------- c. 100 Breeding status: At least a few eggs present.

I saw very few Brown Noddies, either by day or by night and found no evidence of nesting. Kenyon reported a small colony with 5 or 6 eggs in the north-central portion of the island near a frigatebird colony.

Black Noday

Estimated population ----------- c. 500	
of nests with contents counted	156
\# of nests with eggs	105
\# of nests with small downy young	$30(19$
\# of nests with medium sized young	$10($
\# of nests with large young	7\%)
No. Banded ---: 34 ($20 \mathrm{~A}-\mathrm{U}, 14 \mathrm{~N}-\mathrm{U}$)	
-. Returns --: I (A-U)	

Black Nodaies were evidently near the peak of nesting as many active colonies were found in the northwest corner of the island. On the whole, the population appeared to be at least several weeks ahead of that on Laysan. Thirty-two percent of all nests counted on Lisianski had young whereas on Laysan only 12 percent had young.

This difference in the progression of the breeaing cycle was also supported by flotation tests to determine the stage of incubation or eggs. Of 30 eggs tested on Lisianski, I (3%) was fresh, I (3%) was very slightly incubated, $6(20 \%)$ were slightiy incubated, $7(23 \%)$ were moderately incubated, and $15(50 \%)$ were heavily incubated giving a total of 26 percent fresh to slightly incubated eggs and 73 percent moderately or heavily incubated eggs. In a sample of 25 eggs tested by flotation on Laysan 68 percent were very slightly or slightly incubated and 32 percent were moderately or heavily incubatea.

My observational data not surprisingly also indicate that the larger colonies had been longer established than were the smaller colonies. The number of empty nests seen suggests that egg-laying was still proceeaing and it seems likely that nests were still being built although I saw no biras carrying nesting material.

The single return obtained had been previously banded on Lisianski.

White Tern
Estimated population ------------- c. 100
Breeding status: no eggs or young
found.
No. returns
I(A-U)
White Terns were scarce on Lisianski, the maximum concentration seen by me consisting of about 10 birds that were present in the northwest

Casuarinas. Most birds were found roosting either as scattered individuals or in pairs. : Numbers did not appear to be appreciably greater at night than during the day. No eggs or young were found by me nor did other members of the survey party report finding any.

The single return had been previously banded on Lisianski.

Vagrants and Shorebirds

I first saw this gull as it flew along the crest of the northeast beach on 20 March. The following day I found it roosting in a tidal pool on the rocks. I pursued it around the island to the southwest beach where the bird was eventually collected.

The specimen (Field No. 40810) is a very fat immature female that weighed 1255 grams. It was not molting in the body feathers and its stomach was about $1 / 8$ full of fish and bones that were lightly sprinkled with sand. The ovary measured $25 \times 7 \mathrm{~mm}$. but all ova were minute. The present specimen constitutes the second specimen record from Lisianski Island.

Golden Plover
Estimated population ------------ c. 600
Golden Plovers were found around the entire perimeter of the island and in the interior of the island. The largest concentration that I saw was a flock of about 500 birds, many of them coming into breeding plumage, that was roosting on the southwest beach. Kenyon reported that he had seen about 60 to 70 in the interior on the morning of the 21st. He noted that this species, and the turnstones and curlews, seemed to prefer to forage in areas of low Tribulus and morning glory but that the birds were somewhat more abundant in areas predominantly covered by morning glory.

At night I frequently found individuals roosting in small openings in the Scaevola and Eragrostis along the edge of the beach crest.

Kridler told me that seven were banded by the other members of the party on the night of the 20th.

Ruday Turnstone
Estimated population
c. 1000

Turnstones were abundant along the beaches and were commonly observed in the interior of the island. At night I saw small numbers of them on the beach crests but the largest roosting concentration was found in hollows in wave sculpted rocks on the central east portion of the island perimeter (where these, birds were found most abundantly at night in September 1967).

Kridler informed me that the other members of the party had banded 170 and gave me a list of 13 returns, all obtained on the night of the 20th. Six had been banded on Lisianski by the POBSP last August and September, 4 evidently had been banded by another agency, $1(712-51706)$ had been banded as a White Tern on Laysan in September 1967, and 2 had been banded on the East Killing Ground, St. George Alaska. One of the latter, 722-16178, had been banded as an immature on 25 August 1966 and no longer had a streamer or a red rump. The other, 1103-03235, a red-rumped, streamered bird, had been banded as a immature on 25 August 1967.

Wandering Tattler

Estimated population
Wandering Tattlers were seen sparsely around the perimeter of the island. Three were banded by the Fish and Wildife Sexvice personnel and one return was obtained. This bird $(943-84070)$ was banded by the POBSP on Lisianski, 2 September 1967.

Bristle-thighed Curlew Estimated population ------------- 100-125
As had been noted on a number of previous trips, the curlews were most abundant along the northern perimeter of the island, although scattered individuals and small groups were found along much of the island perimeter. The three largest flocks seen by me contained respectively 6, 21, and 11 curlews. The first two flocks were seen in the open Scaevola-Eragrostis association on the dunes at the northwest corner of the island and the third was seen on the southwest beach.

Eight curlews were banded by the survey party with bands supplied by the Fish and Wildife Service and three returns were obtained, all of which had been banded on Lisianski last September by the POBSP.

Sanderling Estimated population ------------- 6

Sanderlings were found along the beaches by both day and night but were relatively few in number. The most that I saw at one time was four birds flying along the northwest beach. By day 1 to 3 could be regularly found along the west beach. At night I found 2 to 3 on the sandy beaches of the west shore, above the waterline and collected one with a hand net. This specimen (Field \#40808) was a male with testes measuring $2.5 \times 1.5 \mathrm{~mm}$. It was very fat, weighing 52.8 grams, and was molting in the body feathers.

Although previously reported on many occasions by POBSP personnel on Lisianski the present specimen is the only one that has ever been collected there.

Reptiles

Kridler informed me that 13 turtles had been seen on Lisianski, one
of them a small "platter-sized" turtle. Nine turtles were tagged and 3 were returned by the Fish and Wildlife Service personnel. Each had a gray streamer affixed to the tag to make it easier to recognize tagged turtles on future surveys. Further details on sexes and dimensions of turtles handled are in Kridler's notes.

Mammals

Results of the seal count taken by other members of the survey party are presented below. These data were contributed by Eugene Kridler.

Table 2. Results of Monk Seal count taken on Lisianski by Wilalife Personnel.

Age of Seals	Males	Females	Sex Un-. determined	Totals
Adult	45	21	1	67
Subadult	$24 \int 14$	21513	-	27
Yearling	\{ 10	21.	-	19
Pup	6*	4	-	10
Totals	75	47	1	123

* Pup total includes those tagged in addition to those seen on the count.

One pup was born on the night of 20 March.
Other members of the survey party tagged 24 seals, 6 male and 4 female pups, and 8 male and 6 female yearlings. Each had a gray streamer affixed to its tag. Thirteen returns were obtained, 8 from yearlings, 1 from a subadult, 1 from an adult, and 3 from seals of unknown age. Appendix I below presents data on tag numbers üsed and returned.

Appendix I. Seals Tagged and Returned on Lisianski 20-21 March 1968.

SeaIs tagged 20 March 1968

Tag \#	Sex	Age
A 308	0^{7}	yearling
A 309	¢	yearling
A 310	$0{ }^{*}$	pup (gray)
A 311	\%	yearling
A 312	0	yearling
A 313	¢	yearling
A 314	$0{ }^{\text {a }}$	yearling
A 315	0^{17}	yearling
A 316	0^{*}	pup
A 317	\%	pup
A 318	¢	pup
A 319	9	pup
A 320	$0{ }^{7}$	pup

1. Dashed lines show area divisions used on nest count of Blue-faced Booby (See BIue-faced Booby species account)

Temperatures Recorded on Lisianski in 1923 by Alexander Wetmore

Date
\qquad
May 16
May 17
May 18
May 19

Times

$7: 00$ a.m.	noon		$6: 00$ pom.
72°	74°	73°	
74°	72°	76°	
72°	74°	70°	

SMITHSONIAN INSTITUTION UNITED STATES NATIONAL MUSEUM
 WASHINGTON, D. C. 20550

25 November 1967

Dear Rog:
A short note from Jane mentioned that Tina had been (or was?) ill. Hope that she's recovered by now and feeling OK. (I didn't think that people who drank goat's milk were ever sick!).

1. Thanks for the copy of progress report to RLP. It contained information on several items I'd been wondering about. I'll add a dew comments on it later.
2. We seem to have exclusive species accounts. I must have either left my duplicate set in Honolulu or misplaced them somewhere. Anyway I'll ask Jane for a duplicate set when I write her later. I still have the "original untyped final" copies of all that you listed. Do you have the. Black-footed Albatross account? I have a rough "original" only. The last eight species accounts that I finished in Honolulu were typed in Washington but apparently not duplicated. I'll get these duplicated on Monday and send the originals to you then. (The duplicating facilitié are locked up for vacation). These include: Bristle-thighed Curlew, Black Noddy; Bulwer Petrel; Laysan Albatross; Brown Booby; Sanderling; Golden Plover; Wandering Tattler. Four species are still in rough draft and I'll get these cleaned up, typed and sent off early in the week. These are: Great Frigatebird; Red-footed Booby; Blue-faced Booby; Redtailed Tropic-bird.
3. Do you now have everything needed for the Leeward island reports for Aug. -Sept.?
4. I have no definite notes on Messerschmidia on SE but I seem to remember one plant on the northeast shore, west of our camp and one or more with Scaevola near the inlet (east side of inlet). One or another of your "panorama" shots should prove or disprove this. Both of the plants that I have in mind were conspicuous plants. I'm sure it was present on North Id.
5. Its good news that we finally have a skinner. Now if they will just let him skin and not put him on ADP or something maybe he can catch up. If we don't have these birds finished by Christmas, I'll ship them back for him. Who would guessed that the project would hire an Indian bird skinner???
6. I'm not quite sure what you mean here. I assume that you are referring to the big island reports. Do you mean mentioning the collecto of each specimen, etc.? I could give a bet屯er opinion after seeing one of the final drafts, but if it reads better I'm in favor. On the other hand, if you have to qualify each name, or state that it was collected by Jones (of POBSP) or something of that sort then I disagree. It should be pretty obvious after you look over an account done each way.
7. I'd forgotten about the Sooty Tern table. Yes, I have a rough handwritten draft which I'll ask Jan to type and then send back to you.

Jan has been occupied with other things this semester and its made quite a difference in my output. Sharing secretaries doesn't work any better here than in DC. Enough bitching, I'll see if I have any other items of this type.
12. I can find no references to turtles in the green books for either Laysan or Lisianski. So far as I know, no turtle counts were made on either island. I saw No turtles on either island but did hear some of the Navy chaps talk about a female that was supposed to be laying on the west side of Lisianski near the FWS sign. Didn't Dave go over for a picture? I made half the shorebird count on Laysan and saw no turtles. I saw none on Lisianski during several circuits after shorebirds.
I. Included is a copy of the tagged seal data from the trip which I extracted while checking for turtle data. Sent the other copy to RLP.
II. Good luck on the "Additions . .." and"Swain's papers. Do you sometimes have the feeling that writing is the simplest part of preparing a publication? Well, you seem to get along with George better than most of us.
III. My Leeward slides will be leaving Monday now, and I'll leave it up to you to screen them and duplicate whatever ones you think are needed. Then would you please pass them on to Lamoureux? I'm writing him today too to try and get some of the misunderstandings and foulups straightened out. The slides that I took DO NOT duplicate those he, Butler, et. al. took earlier. I did take a series of "landscapes" at the north end of the island which may be of help to him. However, I also left the south end for the "next" morning and so did not get them taken.
IV. Still have lla days before my colleagues return so if I can get next week's lectures finished tonight will get back to Laysan. It's a bit frightening to see the time flashing by so rapidly. I suspect that the pressur on you is building more and more rapidly also. When it gets too bad, just say to hell with it, and set up nets for a few days. Hope that Tina is feeling better.

SMITHSONIAN INSTITUTION UNITED STATES NATIONAL MUSEUM WASHINGTON, D. C. 20560

6 November 1967
Dear Rog:
The banding data were so complicated (or confused?) for the other two islands that I concentrated on them first. I'm sure that there are still errors but at least they are consistent now. Sent these back to RP as requested and have been incorporating the interisland and other data into the Banding and Movement sections for each of the three islands.

Now back to Lisianski. I'm finding that I have considerably less recall from here than from the other two and as a result can't add much without danger of error. But here goes anyway:

1) On 2 September (early morning hours) I found one that had wandered over to the beach north of camp, near the spot where the turnstones roosted in the wave-cut beach. I'm surprised that such apparently weak birds could cover so much ground. It was marked however.
2) I did not handle a large series as on North Island but I am sure that the percentage of dark phase birds was very low.
3) I noted three chicks: the one you mention ? (1 Sept.) and 2 on the 4th: I with a little down under Scaveola near the NW point; I younger and about $\frac{1}{4}$ downy under Scaveola near the southenst end of the island (after daylight). Judging from Laysan I suspect there were a good number of chicks under Scaevola, especially near the north end.
4) It was sitfing alone on a narrow sandy beach on the east side of the island north of camp. A few rocks, completely covered with Scaveola were nearby (also a large log) but I could find no evidence of breeding (Haven't skinned him yet).
5) The green books and banding records help here. Based on these and a few notes, the break down would be as follows: 128 nests: 4 with eggs; 16 with SDC; 12 MDC; 38 LDC; 58 fledglings. Under fledglings I've included those in the late (last) down stage. Since different people recorded chicks differently there may be a small degree of error. If your figures include the banding data they would be included in the above; if not they should be added.

Re: description of frigate feeding (or attacks, rather): While banding tropicbirds we were followed by several frigates (females and subadults) which repeatedly swooped down and tried to pick up fish that had been regurgitated. We did not see any actually succeed but they were quite persistent intheir attempts. Many of the birds we released were attacked (even though they had regurgitated some food before release) and one was actually knowked into the water by a female frigate. I agree that frigates are faster than tropicbirds. In fact, I was quite surprised to see the speed of their flight when pursuing other species- I'd underestimated their ability before. Ron Amerson made sompeoberyations and reported the peak of activity (for tropicbirds)
to
6) Dave noted 2 clubs of about 60 birds each at the NW tip of the island possibly your club of 100 on North beach??

His notebook entries do not distinguish between birds in clubs and those dispersed along the beach crest - so the only data available are those you mighthave.

5a) I don't know about dependent immatures. I'd consider most of the trios (2 ads \& I imm) distributed around the island as dependents, but where do you draw the line? When does "dependency" stop?? So, I'd estimate from at least 50 (definitely non-fliers) to 300 or more, depending on use of term and would lean toward the higher figure.

6a) Did you ever watch long enough to see what happens to birds that are knocked into the water? Do they disgorge before taking off? Are they reâttacked when they leave? I'm curious but never noticed.
7) We may have erred in sexing Browns but IF the banding data are correct females outnumbered males 20 to 9. I agree that the estimate of 40 birds must be pretty close to correct. +2
8) Based on 486 birds handled I'd estimate 1500-2000 birds present. This is several times higher than the estimate (?) I gave you in the field, I know. As late as the 4th, very few birds had been banded in some areas (e.g., the north end) and in one area only 2 of 56 had been banded. I worked the Scaveola along the East beach north of camp on three nights and was still getting a high percentage of new birds (though numbers did decrease). Also on the 3 rd I captured all 17 birds in an isolated tree and only 1 had been banded.

8a) I'm puzzled about the nest count - the only figures that I can find in the green notebooks and banding data are for 14 large downy chicks; (5 at the south end; the remainder scattered around the island in Scaveola) It seems that there were more birds than this but perhaps I'm thinking of immatures still on nests. (many of the 71 immatures were prob. dep.
9) I pulled all of the Red-foot banding data for the first three nights (31 Aug - thru 2 Dept) including some omitted from the catalogue. The results are pretty similar to yours: 230 birds": 160 adults (70%); 48 subadults (21\%); 22 immatures (09%). Some of the immatures were probalby dependent young though not so marked.

I also made several counts to get some idea of age structure of roosting birds as follows: In the NW part of island, 123 birds (118 ads 15 immatures); In the NE part; 56 birds (47 ads; (imm; 8 subad); single

Based on the various counts and memory I would estimate 400 dependent immatures (including those flying but still with adults); those still at the nest site during the day not over a fourth of that number.
10) I now think that the population estimate is too low (based on 158 birds handled). On 4 September I checked 44 birds in the north roost and only one was painted. Birds were tame and easily approached. Of the 44 birds handled, 37 were adult (28 females; 9 males) and 7 were subadults.
11) Again I'm puzzled on nest counts. I find notes on only 31 (17 in th south end of the island; 2 near the F^{W} sign (west); and 12 distributed in Scaveola elsewhere around the island). Contents were noted for 12 (1 SDC; I MDC; 8 LDC; 2 dependent young). As I remember the remainder were almost all large downies.
12) I'm also of the opinion that females were far more numerous on the island than were males. (Do males predominate on Nihoa and the near islands Of 124 roosting birds handled, 93 were adults (68 females; 25 males); 29 were subadults; 2 were immatures. I believe that these ratios should be pretty good since I handed most of them and did not make any special attempt to capture a particular age or sex.
13) My original estimate was 15,000 adults and I'll stay with this as a minimum. The birds were pretty well distributed throughout much of the center of the island and I always flushed groups when crossing the island and I had no difficulty in capturing a 100 birds in a short time.
14) After seeing Laysan, I'll go along with your estimate of 10 chicks. Each of the two adults collected was with a begging chick. Neither hasfyet been skinned but both were molting in the same manner as birds collected during the non-breeding season and previously considered "sub-adults". I'm now sure that Gray-backs have a speckled crown during the non-breedng season.
15) I think your estimate may be low since we actually handed over 1500 birds. I'm not too confident in the breakdown of chicks but my guesstimates are: eggs: none (or VERY few); SDC - 100; LDC - 1000; dependent(?) young, including flying immatures - 2000. A check of banding data showed only 20 "nestlings" banded. I think this is mostly because banding was concentrated in the ro_osting areas around the perimeter of the island rater
than in the breeding areas a short distance inland. I do not recall seeing any eggs nor do any of the notebooks mention any. Did you see any? I"m sure I would have taken a few parents if I had seen any eggs. I did see a small proportion of small downies but by far the greatest number were stub-tailed juves or larger. I think the ratio of immatures to adults (roosting) was less than on Laysan - do you remember this??
16) My original estimate was 250 birds and I'll stay with this even though I'm less confident after Laysan. I'm sure that I saw at least 50 "families scattered around the island in Scaevola. At night I saw birds in all areas that I worked. (where there was Scaevola, of course). I did not work the Casuarinas or cocos so those would be in addition.

Of five nests recorded - I had an egg (Scaevola south of camp); four chicks from large downies to stub-tailed juves. In addtion I handled at least 5 dependent fut or flying immatures. The immatures are smaller, have a different voice and white shafts to the rectrices. I'm also pretty sae that the sexes OF A PAIR can be distinguished on wing lengthbut my series is small and I haven't had a chance to $\begin{aligned} & \text { ionk on it yet. }\end{aligned}$

I have little to add on shorebirds. I've pulled all of the banding data so Laysan should be out in a few days. Irve onelosed a page covering your wing molt on Sooties for Laysan. Correction, will add it to Laysan report.

The only seal data for Lisianski was the beach count made at noon on 2 September by Dave: 141 animals: 60 adult, sex not recorded; 59 adult males; 12 adult females; 10 pups.
chack

I stell get intenagted every timé
g get started - juit like at S.I.!!
Charles A. Ely

Astronomic position of LISIANSKI RM 2: Lat. N. $26^{\circ \circ} 04^{\circ} 08.03^{\prime \prime}$, Long. W. 173° 58' 12.02"; Astronomic Azimuth LISIANSKI RM 2° to AZ MK $322^{\circ} 05^{\prime \prime} 41.56^{\prime \prime}$ from south.

The station is marked by a USC\&GS triangulation disc stamped "LISIANSKI-1961". set in a mound of concrete which is flush with the ground. Located on the west side of Lisianski Island. on a prominent sand ridge, which runs parallel to the west shore, approximately 120 meters east of a clump of pine trees located on the west shore.

- 'RM I' is marked by a USC\&GS reference disc stamped "LISIANSKI-No 1-I961", set in concrete, 15.636° meters (51.299° eet) in astronomic azimuth wrom south of 66° 09' $30^{\prime \prime}$ from station.

RM 2 is marked by a USC\&GS reference disc stamped "LISIANSKI-No 2-1961" set in concrete (dimensions not noted), 11.210° meters (36.76 feet) in astronomic azimuth from south of $150^{\circ} 44^{\prime} 48^{\prime \prime \prime}$ from station (RM 2 was occupied as the light crossing station for the azimuth observations).

Az. Mk. is marked by a USC\&GS azimuth disc (stamping not noted) (monument-ation-not noted). Located approximately 120° meters north of the southern tip of the island on an east-west sand dune ridge approximately 76 meters east of the highest sand dune which is near the southwest shoreline and approximately 1390° meters in astronomic azimuth from south of $322^{\circ} 05^{\prime \prime} 41.56^{\prime \prime \prime}$ from RM 2. "

Boat landing is on west side of island, approach dangerous when heavy swells are present.

Pô sitaubl wo aphbetical nobe
(3)

$793-52184 \quad 0947-64$ \qquad
\qquad
823-01100 09-7-64 Fi-u $06-8-66 \quad A-C$
7as-aturs os-07-65t A.4
$823-18811 \quad 07-17-65$
P-u
$06-04-67$
A-U
7
$863-62311 \quad 08-07+5 \quad$ A.4 $06-18-66$ $A-4$ $863-67112 \quad 03-0-65 \quad p-4$ $06-18-66$ A-ce
$863-67615 \quad 08-08-65 \quad$ a-4 $66-18-66 \quad n-4$

$$
\left(\begin{array}{ccc}
893-01179 & 08-c 5-65 & p u \\
893-01681 & 0-65-65 & B-u \\
89-07326 & 08-05-65 & A-u \\
893-09405 & 08-06-65 & p-u \\
893-11955 & \text { os-c6-65 } & \text { p-u }
\end{array}\right.
$$

$06-17-66$
su
$06-17-66$ A-U
$06-04-67$ PR-4 66-18-66 A-d c8-03-67 A~C $863-71956 \quad 08-09-65 \quad A-4$
$06-04-67 \quad 8-4$

$$
903-43528 \text { o6-12-66 } \quad A-4
$$

$$
06-04-67
$$

$$
18-4
$$

$$
903-43923 \quad 06-12-66 \quad A-4
$$

$$
06-04-67
$$

$$
A-U
$$

(3) $903-61808$ 06-13-66 A-u Lisiangk I. $06-17-66$ A-U
$903-63810$ o6-13-66 P-u "u 06-03-67 A-U

(5) Pearl and Hermes Reef, Southeast I.
(16) 753-43868 08-17-64 A-U hisianshi I 06-18-66 A.U
(6) 753-44797 08-18-64 A-U Lisianski I. 05-30-67 A-U (vesting)
(1) Midway Atoll, Eastern I.

F(BR-9) 713-70211 08-01-62* y-u hisianski I 06-19-66 A.4.4.ings)
(16) 793-83954 08-15-64 N-U hisiansk: I. 06-0H-67 A-U (nesting)
(16) $793-89441$ 08-19-64 N-U -06-0H-67 U-U
(6) 863-09402 07-23-65 A-U $06-18-66$
$A-u$

(6) $913-42473$ O6-21-66 A-U "I O6-ON-67 A-4

* Bandea by BSELO

Diomedea immutabilis

	Sterna lunata		
USNM 289225	Wetmore 7238	May 17, 1923	Ad. F.

Sula Ieucogaster
USNM 289299 Wetmore 7240 -- Alcoholic young

USNM 300909
USNM 300910

Fregata minor USNM 464438 USNM 464439

Sterna fuscata
USNM 191503
USNM 191504
USNM 191505
USNM 191506
USNM 300584
USNM 300585
USNM 300586
USNM 495461

Sterna lunata
USNM 191501
USNM 191502
USNM 300627
USNM 494124

Anous stolidus
USNM 300518
USNM 300519
USNM 495541
USNM 496601

May 17, 1923
May 18, 1923
Ad. M.
Entered July
1904

Entered July
1904
(U.S. Treasury)

May 19, 1923
"
May 16, 1923
July 16, 1965
Juv. F 。

- F.

POBSP
just off shore
A. Wetmore

Ad. F.

$$
"
$$

"
-
POBSP just

$$
0
$$

$$
c-1
$$

\square,

Museum + Number	Date	Age + Sex	Collector
USNM 496602	June 19, 1966	Ad.	M.

USNM 300801
May 17, 1923
Ad. F. A. Wetmore

Ad. F.
Ad. F.
Ad. F.
Ad. F.

May 16, 1923
Ad. F.
Ad. F.
Ad. F.
Ad. M.
May 19, 1923
.
May 16, 1923
May 19, 1923
\because
Mar. 12, 1963
July 16, 1965

- \quad.

USNM 495632

Puffinus nativitatus
USNM 300697
USNM 300698
USNM 492967
USNM 494122
USNM 494123

May 17, 1923
-
Mar. 12, 1963
Mar. 13, 1965
" - M.

Ad. M.
Ad. F.

- $\quad \mathrm{M}$.
- F.
Museum + Number

Date
USNM 300829
Max 18, 1923
USNM 300828
May 17, 1923
Ad. M.
Ad. M.

Diomedea immutabilis

USNM	300849	May 17, 1923	Ad. F.	A. Wetmore	
USNM	300850	May 19, 1923	Ad. M.	:	
USNM	300851	May 17, 1923	Ad. M.	*	
USNM	191497	--	- -	Treas. Dept.	
USIM	191498	--	- -	.1	
AMNH	526869	July 3, 1891	no sex given	Palmer	Downy
AMNH	526870	, 1	\because	$\cdot 1$	
USNM	495735	July 17, 1965	Imm. F?	POBSP	

Diomedea immutabilis x Diomedea nigripes
USNM 493918
Mar. 11, 1963

Pterodroma hypoleuca

AMNH	528329	July 3, 1891	-	-	H.C. Palmer
USNM	300662	May 17, 1923	Ad.	F.	A. Wetmore
USIM	300663	p	Ad.	M	*
USNM	300664	*	Ad.	F.	"
USNM	300665	ir	Ad.	M.	"
USNM	494125	Mar. 13, 1965	-	M.	POBSP
USNM	494126	"	-	F.	\cdots
USNM	496586	June 18, 1966	-	F.	"
USINM	496585	June 19, 1966	-	M .	"

Squatarola squatarola

| Museum + Number | Date | Age + Sex | Collector | Comrnents |
| :--- | :---: | :---: | :---: | :---: | :---: |
| USNM 494120 | Mar. 13, 1965 | - | M. | POBSP |
| USNM 494121 | 11 | - | F. | $"$ |
| USNM 496779 | June 19, 1966 | - | F. | $"$ |

Arenaria interpres
USNM 494143
Aug. 22. 1964
Ad.
POBSP

Numenius tahitiensis

| USNM 301042 | May 19, 1923 | F. | F. Wetmore |
| :--- | :--- | :--- | :--- | :--- | :--- |
| USNM 493202 | Mar. 12, 1963 - | M. | POBSP |

Limosa lapponica
USNM 493478
Mar. 11, 1964
POBSP

Heteroscelus incanum

| USNM 301020 | May 19, 1923 | - | F. | A. Wetmore |
| :--- | :--- | :--- | :--- | :--- | :--- |
| USNM 301021 | May 16, 1923 | - | F. | " |
| USNM 496688 | June 17. 1966 | - | F. | POBSP |

USNM 191499
USNM 300983
May 17, 1923

- M.

Sula dactylatra
USNM 189415
May 20, 1902
USNM 300942
May 17, 1923
May 18, 1923 Ad. M.

Ad. M.
BPBM 7060

Sula leucogaster
AMNH 729471

AMNH 729472
AMNH 729473
AMNH 729474
AMNH 729475
AMNH 729476
AMNH 729477
AMNH 729478
AMNH 729479
AMNH 729480
AMNH 729481
USNM 240994
USNM 300873
USNM 300874
USNM 300875
AMNH 729498
BPBM 7062

June 30, 1891 Ad. M.
Ad. M.
Ad. M.
July 1, 1891 Ad. M.
July 2, 1891 Ad. M.
July 30, 1891 Ad. F.
11 Ad. F.

July 1, 1891 Ad. F.
July 3, 1891 Ad. F.
July 1, 1891
Mar. 12, 1913
May 19, 1923
Ad. F.
Ad. M.
May 16, 1923 Imm. M.
July 1, 1891 Imm.
W.K. Fisher
A. Wetmore
H.C. Palmer
G. Willett
A. Wetmore
H.C. Palmer

Appendix Table -. Movennentis of (cont.) [Sooty Tems

Orisinal Bandina Datra
Recasture Data
Band Number Date
(2) Johustan Atoll
(16)

$$
\begin{array}{lll}
753-15469 & 08-03-63 & A-U \\
753-22396 & 09-04-63 & \text { A-U }
\end{array}
$$

hisianskiI. ob-18-66 u-u
(1) Erenoh Erigate Shoals, East I.

400n
(6) 863-23219 08-15-65 A-U hisianski I. 06-04-67 (withegs)

(16) Wake Island

$$
743-49717 \text { 07-24-63 A.4 hisianski 5. } 06-04-67 \text { A-6 }
$$

t maurred with gainge strearnei an ley

STUDY SKINS

Museum No.
492959
492967
493202
493353 493478 493918
494120
494121 494122 494123. 494124 494125 494126 494133 494143 495461 495541 495631 495632 495735 496585 496586 496601 496602 496603 496604 496605 496606 496607 496608 496609 496610 496611 496612 496613 496614 496615 496616 496617 496688 496779 497536 497537 497538 497539 542925 542926 542927 543020 543063 543185 543331 543332 543333 543338 543339 543343

Species
Date Collected Puffinus pacificus Puffinus nativitatis Numenius tahitiensis Larus aggentatus Limosa lapponica D. immutabilisXnigripes Squatarola squatarola Squatarola squatarola Puffinus nativitatis Pufiinus nativitatis Sterna Iunata Pterodroma hypoleuca Pterodroma hypoleuca Larus glaucescens Arenaria interpres Sterna fuscata Anous stolidus Puffinus pacificus Puffinus pacificus Diomedea immutabilis Pterodroma hypoleuca Pterodroma hypoleuca Anous stolidus Heteroscelus incanum Squatarola squatarola. (Arenaria interpres Arenaria interpres Arenaria interpres Arenaria interpres Sterna fuscata Sterna fuscata Sterna fuscata Sterna fuscata Charadrius mongolus Bulweria (fallax)
(Arenaria intempres
$\{$ Arenaria interpres
Arenaria interpres Crocethia alba
Larus glaucescens
D. immutabilisXnigripes

17 JuIy 1965
16 July 1965
16 JuIy 1965
17 JuIy 1965
19 June 1966
18 June 1966
19 June 1966
I9 June 1966
19 June 1966
I9 June 1966
19 June 1966
17 June 1966
18 June 1966

18 June 1966 $\frac{18 \text { June } 1966}{19 \text { June } 1966}$ 19 June 1966 19 June 1966
$\frac{19 \text { June } 1966}{4 \text { Sept. } 1967}$
4 sept. 1967
17 June 1966 18 June
20 Mar. 1968
21 Mar. 1968
20 Mar .1968

Sex

Comments

12 Mar. 1963	q
12 Mar. 1963	$0 "$
12 Mar. 1963	0
14 Feb. 1963	O?

11 Mar. 1964	$:$
11 Mar. 1963	0
0	

trunk skeleton
-2

Segt $196 ?$

AICOHOLICS (None Iisted through \# 503641)
EKELETONS
497919
497951
498366
D. immutabilisXnigripes 11 Mar. 1963 Pterodroma hypoleuca 14 Feb. 1963
Bulweria (fallax)
4 Sept. 1967
o* skeleton of skin \#493918
0

Prepared 21 October 1968 by R.B.Clapp. Catalogs checked through \# 498369 in the skeleton catalog and through \# 543780 in skin catalog.

[^0]: \% ThLs duck, which Warner $(1963: 6)$ end others thought might be the seme as the endemic Leycan Teal (Anse layganensis), could hove been a distinct subspectes or species.

[^1]: * Includes nests that also contained an egg.

