
为


## PRESENTED

BY
The Trustees

OF
THE BRITISH MUSEUM.
-
.
-

# NATIONAL ANTARCTIC EXPEDITION 1901-1904 

## NATURAL HISTORY

Vol. II.

## ZOOLOGY

(VERTEBRATA: MOLLUSCA: CRUSTACEA)


LONDON :
PRINTED BY ORDER OF THE TRUSTEES OF THE BRITISH MUSEUM.

1907
(All Rights Reserved)
 IMTAU ANI, Cい., 37 SOHO SQU.aRE, W.;

AND AT
The British Musedt (Natural History), Ceomwele, Koai, LoNdun, S. W.

## PREFACE.

When, in 1901, the Expedition of the S.S. 'Diseovery,' moder Captain Sort, R.N., was sent to the Antarctic Regions, the Trustees of the British Museum gave their assistance to this national enterprise by allowing the cases containing the natural history specimens which might be olitained by the Expedition to be sent to the Natural History Museum for unpacking and sorting. They further undertook to publish a detailed report on the collections so obtained, under the superintendence of the Director of the Natural History Departments.

Some of the most important collections have heen dealt with hy naturalists who were members of the Expedition. Thus, the Mammals and Birds are descrihed by Dr. Edward A. Wilson, the Isopoda and Pyenogomida by Mr. T. Y. Hodgson, and the Rocks (in relation to Field Geology) by Mr. I. T. Ferrar. Other groups have been dealt with by members of the staff of the Natural History Departments of the British Museum: Mr. Bonlenger describes the Fishes; Mr. E. A. Smith, the Gastropoda, Lamellibranchia, and Brachiopoda; Mr. Jeffrey Bell, the Echinoderma; Dr. Calman, the Crustacea Decapoda, and the Cumacea; Mr. Kirkpatrick, the noncalcareous Sponges; whilst Mr. G. T. Prior has prepared a petrographical description of the Rock-specimens.

It has been necessary to obtain the assistance of other specialists in order to deal with the rest of the collections. So far as the latter group of contributors is concerner, the following is a list of the subject-matters, together with the name of the naturalist who has undertaken the work in each case :-



The work of securing the assistance of these specialists and of distributing the collections has been performed by Mr. Jeffrey Bell, of the Zoological Department, who has also acted as sub-editor of the Zoological and Botanical portions of the reports. The Keeper of Minerals, Mr. Fletcher, has superintended the reports in the subjects belonging to his department.

The Director desires to acknowledge the ability and energy which have been brought to bear on the preparation of the Zoological reports by Mr. Jeffrey Bell. Owing to his care, the reports have been got ready by the varions contributors and published within a reasonable time after the return of the 'Discovery' from the Antarctic Regions. Neither trouble nor expense has been spared in order to render the illustration and presentation of the Natural History of the Expedition worthy of the generous efforts both of Captain Scott and his fellow-explorers and of those who provided the funds for that enterprise.

E. Ray Lankenter.

October, 1906.

## PREFACE TO VOLUME II.

The chief part of the present volume is Dr. Wilson's beautifully illustrated report on the Birds and Mammals, giving lis personal experiences during the Experlition, as well as the results of subserpunt stuly of the mollections. This Experition was the first to discorer a nesting colony of the Emperor l'enguin.

All the other collections of vertehates made during the Experlition are here reproted on, with the exreption of the embryos of seals ind the pelagic fishes, which will be dealt with later. The investigation into the develoment of the feathers of the penguin raises several points of great morphologiral significane. The collection of fishes is small, but interesting.

The discovery of two new species of Cephatudiscus, the presence of which in the collection was first noticed by Proin. Ray Lankester, has leen made the basis of an important contribution to our knowledge of the small group to which it belongs.

All the Mollusat collected by the "Discovery,' except the "P'termpola," are reported on ; the Brachiopoda were but poorly represented. As Dr. Cahman's reports on two divisions of Crustacea have been a very long time in type, it wats decidel to publish them as soon as possible. Several reports have already been printed for the third volume, which will probably appear carly next year.
F. Jeffrey Bell.

December: 1906.

## TIBLE OF CONTENTS.

## Y'ERTEBRATA.

I.-Mamnalia (Whales and Seals). By Edeary A. Whenon, M.B. ( $66 \mathrm{pp}, 5 \mathrm{Pls}$. ) Il.-Aver. By Edward A. Wilnon, II.B. . (118 pp., 13 Pli.) Ill.-On Sone Points in the Anatomy of the Emiferef anl dofélif Penguls. By W. P. Pycraft, A.L.S. . . (36 pp., 1 Pl.) [V.-Pisces. By G. A. Bonlenger, F.R.S. . . . (5 pl., 2 Pls.)

## PTEROBRANCHIA.

(Ephamisodus. By W. G. Ridewoon, D.Se, Lecturer on Biology at St. Mary's Medical School, University of Lomblon. ( 67 Pl ., 7 Pls.)

## MOLLUSCA.

I.-Cephalopoda. By W. E. Hoyle, D.Sc., M..I., Keeper of the University Museum, Manchester. . . . . ( 2 pp.)
II.-Gastropoda. By Edgar A. Smith, I.s.u., Assistant Keeper, Zoological Department. . . . . . ( 12 pp., 2 Pls.)
III.-Ampinmura. By the same. . . . . (1 p., 1 Pl.)
IV.-Numbranchiata. By Sir ('harles Eliot, K.C.M.G., LI. D., Vice('hancellor of the University, Sheftielt. . . ( $28 \mathrm{pp}, 1 \mathrm{Pl}$ )


BRACHIOPODA.
By Edgare A. Smitio, I.S.O.

## CRUSTACEA.

I.-Decapoda. By W. T. (faman, D.Sce, Assistant, Zoological Department. . . . . . . . . . ( I IP.)
II.-Cunacea. By the same. . . . . . ( 6 lif.. I lil.)
vol. 1.
,

## INTRODUCTTON

## THE REPORT ON MAMMALS AND BTRDS.

The mollection of Mammals and Bivds which forms the hasis of my Report was mate on hoard the 'Discovery,' and the 'Moming' in the Southern Seas, between 1901 and 1904. For the 'Disenvery' rollections I am respomsible myself; the 'Mominge' collections were mate by Dr. G. A. Davidion dming two voyages of relief to me mater (aptain Colbeck in 1902 and 190\%.

It is not necessary for me to write at length upon the cireumstances muler which our voyage was made. Its history is to le found in dotail in Captain Sontt's marative (The Voyage of the 'Tiscovery.' $\because$ vols., lamdom, $1!005$ ). What we who were members of the Expedition owe to Sir Clements Markham, and what we owe to all who interested themselves, is he did, in our work and in our welfare, is there todd in a way which leaves little for me to add. We agree with every word of it.

But with regard to Captain Soott himself there is a point to be mentioned which fimbs no place in his look, namely, the matiring interest that he took in the scientifiwork of those who were placed under his command. Where opportunitios must be made and taken at the right moment, it speaks well for the Commander if they are not often missed ; and I can say for my when part, that although a failure to seize opportunities sometimes happened, it was not once due to any lack of sympathy on his part. It is to the interest and gombill that he showed in all our work that such results as we have been able to collect are very largely due.

But, indeed, there was not one of the naval officers who did mot monstantly gn out of his way to help us ly olservation, or ly pratical and often heary and mopleasant lahour ; and, if I mention Eng-- lient. Skelton as having given me personally the most useful help of all, first as a photographer, and then as a keen sportoman and collector, it does not mean that the others were less gencrous.

I owe much to Mr. Hodgsom, who, in my ahseme on vatons sledge jomrmys voluntarily made it his duty to carry on my wok ; and to Lient. Royds, who tomk a very practical part in the colledtion of lads and ohservations.

I am greatly imdelited to Mr. Jacoh C'mos (First Class Petty Officer, R.N.), who made himself acquainted with my work, aud gave up much of his spare time to help in it. Is a skimer of seals and pengnins he had no equal on the ship, and soon surpassed his tramers.

Athough the majority of the photographs nsed in these reports were taken, as I have sild. by Licut. Nkeltom, 1 have also used photographs by other members of the Experition. :and for these lexpress my thanks to them, while 1 acknowledge their names in the "List of Illustrations." The coloured plates are from drawings by myself, as are the other ilhstrations in hack-ind-white, with one exception, namely Plate III. of the Seals, which has been reproduced from drawings by Mr. Engel Terzi.

While ackuowledging with real gratitude the time and attention that my proofs have received from Captain G. E. II. Barrett Hamilton, who has looked over the Report upom the Seals, and from Mr. Eagle Clarke and Mr. Pyaraft, who have both been good enough to revise the Birls, I must at the same time take full responsibility for the crrors and shorteomings that may be found in them.

My sinere thanks are due to Dr. Bowdler Sharpe and Mr. Oldfieh Thomas for the farilitics given to me while at work in their respective departments, and to Mr. Jeffires Bell, as General Elitor, for much kindly help and many excellent suggestions.

Westal, Cheltenham.
. Fenuary :'m, 1907.

## ILLUSTRATIONS

## IN

## THE REPORT ON TTIE M MAMMALS.

## COLOLRED Plater.

Whales.
I. An Uniamed Thale.

Spals
I. An adult Weddell's Seal with its yomes.
 Loboton carimophayus, and Ommutaphoret rossi.
1II. Parts of the jaws of an whed Wells sical, witl worn teeth.
IV. Adult female and roung of llooker's sea Lion, in the Amekland Islands.

## PIGURES IN TEXT.


From a drumiay ly, E. Wilson
To. fierep P I
.. 2. Neobatamat margimata
E. Wilson
.. $\quad 1$
.. :i. Higmerandom rastratus
."
E. Wilson
.. 4
.. 4. Orca gladiator rising to blow
Proman a pliotograply lig R. Ford
.. is
.. 5. Or'a !latlietor rising to blow
L. Shamketum 6
.. i. Orict !latiator
From th drenein! biy E. Wilson
..
" 7. An Cnnamed Dolphin
L. Wilsun
.. is
" $\quad$. Weddell's Seal, armult female
From a photomiafli lig R. Skeltom
.. $1 \ddot{\because}$
.. 9. Weddell's Seal, idult Jemale
R. Skeltom

1:
, 10. A rookery of Weddell's Seals
E. Stackletom
.. 11
.. 11. Weddell's seal at its blow-hole.
R. Skelton

11
.. 12. Weddell's salal and yomer just born
R. Skelton
.. 16
. $1: \%$ Weddell's Seal and young
li. Ford
.. 16
, 14. Weddell's Scal and young
.. li. Skelton
.. 18
., 1\%. Weddell's Seal suckling its goung
..
li. Skelton
., 18
., 16. Yomng Weddells Seal, just born
..
R. Skelton .. 20
.. 17. Young Wedlell's Seal. jnst lem
.. L. Beruachi
. 21
., 18. Young Wediell's Seal, ten days old
.. R. Forr
., $2 \because$
. 19. Young Weddell's Seal, monlang
.. R. skolem
.. $\because \because$

Fric. 20 . Young Wreddells sial, two monthe odd
., 21. Wredrell's Seal, adult
., 21a. Adult Weddell's Seal travelling on ice
.. 21d. Young Weddell's Seal in the first week
., 22. Itead of adult Sea Leopard
,. 2?. Adult Crab-cating Seal .
., 24. Jearl of adnlt ('rabrefiting Seal
, at. Domed blow-hale of Wedtell's sial .
, 2 2f. Scars in skin of ('rab-eating Seal
.. 27. Ross' Seal, adult
.. 2x. Rows' neal. adult
.. 29. Ross' Seal, adult
., :ar. Young mate Sea Elephant, Maequarie Islands
.. :31. Hooker's Sea Lion, Anekland Islands
.. :2?. Hooker's Sea Lion, Ancklaud Islands
.. 33. 1 Looker's Sea Lion, Anckland Islamts
.. :31. Honker's Sea Lion, Anckland IslamJs

Promir at thaturactioli lig li. Fors
L. Bernacchi
R. Skelton
R. Ford
R. Skelton
R. Skilton
R. Nirltom .. : :

From a dramim! ly E. Wilson o. : s

From a photnyraph by R. Skelton
R. Skelton
P. Skelton , 4t
R. Skelton $\quad$, 2
R. Ford , , 60
li. Fort $\quad$ Co
.. Mr. Meciregor Wright
.. Mr. Mefiregor Wright
To futer $p$ - 21 , $\quad 24$ ., $\because$ , 26
R. Skelton ," $2 R$
R. Skilton $\quad$. 9
E. Wilson ,. In
R. Skelton 4

Mr. Mefregor fright .. bit

## LLLUS゙THATIONS

## IN <br> THE REPORT ON THE BIRDS.

## (OLOURED PLATEK.

1. View of the Emperor l'mgnin Rookery at Cac Crozier.
2. Ihead of an adnlt Fmperor Penguin.

11I. Heads of yomge Emperor Pempuins at hations stages of immaturity.
W. One of the Empero Penguin chirkens picked up trozen at Crye Crozies.

1. The feet of Emperor l'enguins, young and ohd.
VI. Eges of the Emprer Penguin.
VII. Eggs of the Emperor Penguin.

VIII, Heads of the King l'engnin, yomerg and ofl.
1X. Heads of the Adelie fenguin, young and old.
X. 'The feet of the Adelie Pengmin. young and old.
Xl. Neads of atult and immature hoyal lengnins; and the head of a fireat Penguin.
XlI. Leads of McCormiek's skia, young and old.

Xlll. Fect and legs of Mccormick's Siknat varions ages.

## FlGURES IN TEXT'

Fig. 1. Rookery of Emperor Penguins at Cape ('rozier F'rom a photugriph by C. lioyds Tofarep. 1
., 2. Rookery of Emperor Penguins at Cinpe Crozicr .. R. Nkethan .. 1
" 3. Emperor Penguins . . . . , . Royds , 1
" 4. Emperor Penguins . . . . ., li. Skelton ., t
, 5. Emperor Penguin Rookery at Cape Crozier. .. Sh. Skelem .. is

" 7 . Emperor Penguins in full moult. . . . li. skeltom . 12
" R. Emperor Penginin and chick . . . .. li. Nkeltum .. 14
" 9. Emperor l'enguin and chick . . . W. Wilson 16
" 10. Emperor Penguin and chick . . . . N. Skelton " 16
" 11. Emperor Penguins tobograming . . ". 1 lioyds ., 18
" 12. Emperor Penguin walking . . ." (. lionds o. is


Fig. 14. Emperor Penguin sfepins
.. Ii. Emperor Penguin monlting
1ti. Emperom lemquin alick taking its fool
, 19. Emperor Penguin chick, sleeping
20. Emperor Penguin chick. slecping

$\because 2$. Emperor Peugnin chick, piping for fool
, 品: Frozen Fmperor Penguin chicks and eggs.
., $\because 1$. Eiggs of the Emperor, King, and Aldelie Penguins.
$\because \therefore$ King Penguins on Maceparie Island.
, 2ti. Rookery of King Pengnins on Maceparie 1sland
, 2 - $\quad$. Adelic Pengnims
, $2-\therefore$. Adelie l'engains on the rinn
" $2!$. Adelic Penguin rookery at Cap Anate

, : : 1. Adidic Pengums' pathway up the bills
, : iz. Adelie Penguins' rookery at C'ape Adare
" :3:i. Idelie l'enguins, clean
, : $: 4$ A Adie l'enguins, dirty
" : A. Adelic Penguins. nesting at Cape ('rozier
": ith. Aulilie Penguins, changing places on the nest.
, 37. Adèlie l'enguin chickens, hegimning to monlt
, : 88 . Alelie Penguin and young on the nest
, 39. The cestatic attitude of the Adelie Penguin
,. 10. Marks made in snow hy McCormick's Skna
,, 11. McCormick's Skua.
, $1 \because 2$. Mecormick's skuas bathing in a thaw pool.
" I: Footprints of the Giant Petrel.
., 44. A gronp of Black-browed Albatrosses
, 15. Head of lioad-billed Whale Bird
" 41 . Moulted feathers of (inil and Curlew

E. Wilsen

From " phatomrith bay R. Skelton
R. skelton

Fram a drariny by E. Wilson
., E. Wilson
R. Skelton
.. $\because 2$
.. $\because 1$
-. -1
-. 26
-1 $2 i$
-, -6
.. 28
.. 28
From u photoyraphe by J. Skelton , an

| " | R. Skelton | . |
| :---: | :---: | :---: |
| - | 12. Skeltan | $\cdots$ |
| , | R. Skelton | " |
| " | R. Skelton | , |
| - | R. Skelton | . |
| " | E. Shackictom | $\cdots$ |
| - | 12. Skeltor | $\cdots$ |
| " | E. Shackleten | " |
| . | R. Skelton | " |
| , | C. Royds | $\cdots$ |
| " | R. Skeltem | - |
| - | C. Toyds | $\cdots$ |
| " | C. Royds | " |
| - | 1.. Bernacchi | - |
| . | R. Ford | - |
| From a diaucimy by | E. Wilson | $\cdots$ |
| , | E. Wilson | - |
| From aphotograph by | R. Ford | " |
| - | R. Ford | $"$ |
| * | R. Skelton | * |
| $\cdots$ | R. Skeltou | .. |
| From at drauing by E. Wilson |  | " |
|  | L. Wilson |  |

## I. MA M M A LIA.

By Edward A. Wilson, M.B.

## CETACEA.

(1 Plate.)

Although there are no land mammals of any kind at present known to exist in the Antarctic, there is an amphitions and marine mammalian fanna in the ice-covered waters of the region, comprising an unexpected number of species, hoth of Seals and Whales.

In the case of the Whales it would be hard to say how many different species are to he assigned to the Ross Sea alone. But so far as our own ohservations go, we can differentiate, though we camot as yet name, at least six or seven that are distinct from one another.

## BALENA AUSTRALIS.

## The Southern Right Whale.

Balena dustrelis, Desmoulins, Dict. (lass. d'Ilist. Nat., ii. (182:), P. 1G1; Flower, List tetacea B. If.. (1885), p. 2 ; Hitton and Drummond, Animats of New Zealand (1904), p. 42.

It seems more than doubtful whether this whale has ever frequented the icecovered seas of the Autarctic area, hut if it has, it is now quite rertain that it has either changed its summer haunts from the Ross Sea, where Sir James Ross reported its existence in the forties of the last century, or has become so reduced in numbers as to be practically on the verge of extinction. Many whalers lave journeyed in seareh of this whale to those very seas, and the remarks which are quoted below form the only evidence of its existence there at the present time.

Captain Larsen, in an account of the voyage of the 'Jason,' has given some of his experiences, but beyond saying: "We have had a boat out . . . . in the hope of finding Rethvalen," and "the mate saw three more sponts, and he conld only ascertain that one was from a Rethral . . . . but did not see the whale again," he gives no other indication of its existence. He was at the time in about $67^{\circ} \mathrm{s}$. lat., $61^{\circ} \mathrm{W}$. long. Mr. Bull during his cruise in the 'Antarctie' (1894-5) saw no sign of a Right Whale farther south than the Campleell Islands, though many, he says, were seen in that neighbourhood during May and June, and "plenty" were killed much farther north at the Kermadec Islands during the preceding winter months. On June 29th, off the Campbell Islands, they were seen in pairs and in large schools, but few were seen after this date, and none at the Auckland Islands, where the ship next went. Captain Jensen (1898-1900) too has killed the whale off the Camplell Islands, but has not seen one in
the Southen ior. Anrt lantly, Mr: Bruce and Dr. Donakl. who acompanied the 'Dundee Whaters' in 1892, have only to report its total alsence.

There has always leen much disenssion upon the report mate by Sir . James Ross in 1840, that "Right Whales" were exceedingly abomiant in the waters of Ross Sea. Butalthough his report has been fully tested, and much criticism applied to it by various explorers, and although whaling captains have hunted the area in question unsuccessfully, it woukt nevertheless be wrong to dismiss the report as having been founded upon error, when we consider that it was male by persons who had had more practical opportunities of becoming familiar with the Right Whale than have the majority of naturatists of the present day:

By the "Right Whate" in his report, sir James Ross certainly meant the Batron rustralis, a whale which russ as a rule in pairs or singly, and is upwards of 50 to 70 fect in length. Its spout is doulle, one jet passing to each side upwards and forwards, lont neither as high as the spout of the Rorpual. It is saill to frequent the seas of the Sonth, where it can find discoloured water of shallow depth. There it has been hunted almost to extermination by a method, the employment of which affords a rery sufficient explanation, as it seems to me, of its disappearance. One has hut to refer to any account of the Soutlı Sea Right Whale fishing industry to learn how first an active look-out was kept upon the hays where this whale was wont to come to calve, and how, secondly, the hunt began with the lestruction of the calf, not because it was of value in itself, hut because it was known that the mother wonld then become an easy prey, as she would not leave the hay without her suckling. This is, perhaps, the most complete and rapid method of exterminating an animal that has ever been adopted, aud in the case of the Southern Right Whate it seems to have been only too successful.

In the lihary of the Royal Geographical Society is to be found a short mannseript note by " Whalelone," one of those, I helieve, who aecompanied the 'Dundee Whalers,' and in it are given a series of rongh sketches which indicate methods of identifying the varims whales of the Antarctic seas at a distance. In this note it is evileut that "Whalebone" was convinced that Ross had mistaken a Rorqual, or a Finner Whale for a Right Whale, and his conclusions appear to be based upon an olservation, which we were able to confirm, namely, that the Rorqual shows its fin only some few seconds after finishing its blow. This is a point to which I shall again refer helow. The Right Whale, in this manuscript by "Whalebone," is depicted, as usnal, with no fin at all, with a double "spout," aml a note to the effect that it hlows at regular intervals. Sir James Ross may, of course, have been mistaken, but he based his report apparently less on his own experience than on that of some of his crew who har been engaged in whaling cruises, and as this particular whale was at one time abundant in the Southern oceans, breeding freely off the coasts of South Africa, New Zealand, and Anstralia, there would seem to be no mimi facie reason to donbt that at certain seasons of the year it made its way to the Southern ice, as the similar Northern
form makes its waty to the ice of the Northern seas in summer. From May to August, we are told, the females of Bulcent australis visit the ('ontinental conasts to calve. The males are seldom eaught, as they rarely approach the land. From october to May, on the other hamd, the chief whaling gromul lies between the Chatham and Norfolk Islands. It is therefore during the Southern summer months that one may expect to find them wandering sonthward to the ice: and it was in Jamary, at the height of the Antarctic summer, that Sir James Ross was cruising in these Southem seas. However, the fact remains that, since the days of Sir James Ross, not one of these whales has been quite certainly seen there, and if the Right Whale still visits Ross sea, it is certain that it no longer does so in anything approaching the numbers that were wont to come. We ourselves, in the 'Discovery,' saw not one.

Mr. Bemnett, in his "Narrative of a Whaling Voyage Romm the (ilobe" (1833-36), gives the following details of the species. He says that the barnarles which habitually find a footing on it, incrusting it like rugged rock, do so on amonnt of its sluggish halnits in the shallow seas. While at the surface, he says, it sponts regularly every ten or fifteen seconds; the spout is from 6 to 8 feet high, and is emitted obliquely upwards and forwards. At each pout the wose comes ligh out of the water, and there is no inspiratory drawbeck as in other whales, the spout terminating abruptly, so that it can be recognised by ear even in the dark. In June and July, he says that pregnant females are to he found in South African biys, and in September mother and calf go out to sea.

## BALENOPTERA IUSCULUS.

## The Rerquerl or Fimer.

Bellenoptera musrulus, Linn., Syst. Nat. i. p. 100 (1766) ; Flower, op. cit., p. 5.
Plysalus australis, Desmoulins, Dict. Class. d'Hist. Nat., ii. (18:2). p. 1;6; Hector, Trans. Wellington Phil. Soc., 1878, p. 336.
The most striking, perhaps, of all the Antarctic whales both for its abundance, its size, and for the great height of its vertical "spout," is the common Rorqual or Finner, which is saill to reach a length of from 70 to 80 feet. It is distinctive also for other reasons.

While the 'Discovery' was cruising in Ross Sea we used to watch this hage whate come to the surface again and again to blow, at intervals of 30 to 40 seconds, and from the fact that at each of four or five appearances no vestige of a dorsal fin was visible, we began to womler whether we had not found the " Right Whale" that was once reported to be so abundant in Ross Sea. Again and again the "spout" went up into the cold air, a white twelve-foot column of condensed moisture, followed by a smooth broad back, and yet no fin. For some time we remained uncertain as to its identity, till at last in " souncling" for a longer disappearance and a greater depth than usual, the hinder thirl of the enormons beast appeated alowe the surface for the first time with its little abgulan dorsal tin, at once dispelling any doubts we might
have had. We saw a very large number of these whales, sometimes alone, sometimes in pairs, and sometimes in much greater numbers.

On March 2nd and 4th, 1904, when off Cape North and the Balleny liands, we saw so many together that we conld generally count half-a-dozen spouts at once. Many were then in a sportive mood and, in rolling over, showed some yellowish white on the under parts. Some, too, were hellowing, and the noise of the how was coustant, far and near.

There is much varicty in the shape of the dorsal "fin" and in the extent to which the Jack is hmmped behind it; in Fig. 1 are given a number of outlines which were taken on the spot. The "fin" is always situated far bark upon the posterior third of the animal's length. Some, too, have excrescences on the dorsal fin which probably consisted of harnacles, but this we did not ohserve in the icy seas, where all that we saw were free from anything of the kind.

We saw a pair of these whates in Table Bay on our voyage out; again a pair off the coast of New Zealand, hut nowhere did we see them in numbers till we reached the ice. In Ross Sea they were abundant. If, as Sir James Hector suggested, there are really four species of Rorqual in the Southern Hemisphere, they are probably not easily to be distinguished at a distance. I must refer all that we saw to the one species only, though it is possible that they represented also the Southern form of Rorpual which has been given specific distinction under the title B. atrstralis, the "Sulphur-Bottom" of Antarctic whalers.

## NEOBALENA MABGINATA.

## The Australian Whate.

Balcona maryinata, Gray, Zool. Ereb. and Terr., (1846), p. 48.
Neobalenu murginuta, id., Snppl. Cat. S. and W. (1871). p. 40; Flower, op. cit., p. 4 ; Hntton and Drummond, Animals of New Zealand (1904), p. 44.
This whale, unless our identification is at fault, is also a common form in the Ross Sea, and is met with constantly wherever there is loose pack ice. It is a hack or dark grey whale of from 20 to 30 feet in length, with a very rounded back, and a small hook-like dorsal fin which slopes well backwards. It appeared at the surface almost as it spouted, and as the head went under, the round back rolled up, showing its little dorsal fin, hefore it disappeared again. (See fig. 2.) As a rule this whale was solitary; occasionally two or three, hut never more, were seen together. It was always moving along in an orderly fashion, and never on any occasion disported itself, nor did it ever show more than the back and fin, as I have mentioned.

## AN UNDESCRIBED WHALE.

(See Whales, Plate I.)
Next must he mentioned a whale which Sir James Ross and McCormick have lonth mentioned as one "of large size, having an extrmely long erect Jack fin," a


Fig.E1. Balenontera musculus, see p. 3.


Fig. 3. Hyperoodon rostratus, see p. 5.
To face 1. 4.
desmiption applied to a whale distimet from the drot, which wats onden of always as a "piehald whale," (n "a whale marked with white patrles."

This high-finned whale, however, of which 1 am now speaking, is without douth an wherwise undescribed species, confined perhaps in its distrilution to the Antaretic seas. On January 28 th, 1902 , we saw three together off Ross's Great lee Barrier, and on Febunary 8th, $190^{\circ}$, again form more of the same kind. They were all of them wholly black above, but ham some white about the montly of chin. In length they were from 20 to 30 feet. But the most striking chanacteristic about them was the disproportionate height of the dorsal fin, which was erect, pointed, and salneshaper, and stood, so far as we were able to judge, from three to four feet high.

In all but one individual this fin curved slightly larkwards, but in one the concavity of the curve was towards the head (see Whales, Pl. I., fig. ©a). The "spout" appeared simultanconsly with the appearance of the tip of the fin, and the nose, which was spluare and bhut, came well out of the water immediately after (see Whales, Pl. I., fig. 1). As the head dipped under, the whole hack and fin to its lase was seen (see Whales, Pl. I., fig. 2). There is no possibility of mistaking this whale for another ; the length of the fin is approached only lay the Orect, whose piebald colour affords an easy means of identification even at a distance. Its movements are also very much more slow and dignified than the rapid racing of a herd of Orea whales, and I have no hesitation in declaring it to be a new species of which no example has as yet been taken, though I camot refer it to any known genus.

## IIYPEROODON ROSTRITUS. <br> Bontle-mesed Whale.

Batema rostrata, O. F. Miuller, Zool. Dan. Prod. (17ra), p. 7.
Hyperanton rostictlis, Flower, ip. cit., 1. 9.
A whale get remains to be mentioned whirh 1 identify nevertheless with much hesitation, as it is impossible to be confident without having had a specimen to examine.

On February 25th, 1902, when the ice had broken hack in McMurdo Sound to a point some miles farther South them our winter quarters, we were visited by a small herd of long-snouted black whales which made a great noise in howing and splashing about at play. There were about six or eight together, amb all were in a sportive moon, and one as we were watching "hreached," leaping dear of the water, in this way showing himself full length and brouside on against the sky.

The sketch which is given (sce fig. :3) was mate upn the spot. The animal was some 20 to 30 feet in length, and wholly black above and below. The dorsal fin was a mere excresence. In shape, the whale was long and slim, with a very prominent forehead and well-marked beak.

Others of a similar kiml were reported as "Bottle-nosed Whales" by varions officers of the relief ship 'Morning,' and these were seen at the elge of the fast ice in McMurdo Sound during Fehnary of 1903 and 190t. It seems, therefore, on the
whole, to be a fairly abundant speries in the summer months, frequenting the edges of the ice as it lueaks lark to its farthest print.

During our royage out we were acompanied on November 5th (S. lat. $48^{\circ}$ and E. long. $100^{\circ}$ ) by a solitary male of this species, whioh was of the dull yellow colour that characterises the animal in old age. It measured about 20 feet in length, and was covered with the white hicroglyphie markings which are said to be produced by the arms and surkers of the ephatoporls upon which this animal feeds. In this case, as the whale remamed with us for upwards of half an hour, and almost rubbed its sides against the ship, we had ample opportunity for olserving it closely and satisfying ourselves as to its identification.

It is however, known mainly as a Northern species which lives, not in the ire, but on its ontskirts, and in this, the whales which we identified as IIfperoodom agreed, exeret that they were in the south and not the north. But if the whale is known to exist so far south as S . lat. $48^{\circ}$, there is every reason that it should follow the same instincts in the Southern Hemisphere that it follows in the Northern. It would then go south during the summer, keeping just at the margin of the ice, as we observed it to do in NeMmrdo Soumd, and these facts, taken in conjunction with its ocenrrence in S. lat. $48^{\circ}$, makes me more rertain that this is a species common to both Northern and Southern seas.

It will be seen that the outline given (fig. 3) of the southern form is almost identiral, except for a slight difference in the dorsal fin, with that of IIyperoodon rostratus as figured in Flower and Lydekker's "Mammals" ; but it will also be seen to agree even more precisely with the outline given by Sir . Tames Hertor of Berardius Armuxii, see pl. xvi, in a papertelivered to the Wellington Philosophical Society, Fan. 12th, 1878.

Whatever, therefore, may be the true identity of this whale, and without a capture it is impossible to say, I give the facts for what they are worth. It is, at any rate, of interest to know that such a whale is to be fomm in the southermost waters of the Antaretic; and we may hope that before long some expedition may interest itself in the capture of these doubtful species.

## ORCA GLADLATOR. <br> The Filler.

Defphinus wrote, Liml., Syst. Nit. (1766), 11. 10s.
Orat gladiator, Gray, Zool. Ereb. and Terr. (18t6), p. :3 : Flower. op. cit., p. 18; Hutton \& Drummond, Animals of New Zealand (1904), p. 53.
Turning now to the Dolphins, the largest of all, the Orea, or Killer, is very aboumant, probably the most abundant, of all the Cetarea in the Southern seas. $\mathrm{l}_{\mathrm{n}}$ Ross Sea, and particularly in Mchlurdo Sound, it was always to be seen-the first to arrive as the ice broke up-hunting along the cracks letween the floes, and down the edges of the fast ice, for seals ant penguins.

Moving rapidly in large herds, sometimes amounting to a hundred, they were constantly rising to blow in the leads of open water (figs. 4 and 5). In length they were apparcutly from 15 to 20 fect; in moner, a dirty grey above with a broad yellow-oche-


Fig. 4. Orca gladiator.


Fig. 5. Orca gladiator:
coloured saddle on the Jemek hehind the dorsal fin: there was a patch of pater Jufl hehind the eye, and so far as could be seen, the under parts were also pule yellowish white.

Often they followed close in mbler the ship's stern, disporting themselves like the smallest of the Dolphins; and in a herd that followed nur ship on February 17th, 1904, we saw the young ones with their mothers. The young had not yet developed the yellow saddle, but its position was marked out as a dull grey patch in the darker colour of the lack. The car patch, however, was already distinct and of a yellow colour quite conspicuonsly marked. In the oldest, or at any mate the largest, the saddle is mainly ochreous yellow with an ill-defined anterior border which merges into the grey-black back. The posterior border on the other hand is well-defined. There is much variation in the size and general shape of the dorsal fin in this species, as may be gathered from the sketches given below (fig. 6), which were taken from the animals, as they sported round the ship, in McMurdo sound.

It is probable that some of these Killers remain always ats lar south as the periodical opening-up of the sea ice will allow them. They were with us in the autumu to the last days of open water in McMurdo Sound, and were again at once apparent when the ice lnoke up in the spring. Throughont the open part of the year, from the middle of September to the middle of March, we had schools of this whale in McMurdo Sound ; and, no doubt, we coukl have found them a little farther north in winter as often as the ice in Ross Sea was hroken up by the southerly winter gales.

For its diet in the south we have no actual evidence, but, regarding its alleged propensity for seals and penguins, there can be 110 possible doult, in my opinion that the sears and wounds inflicted on so many of the seals in the pack ice are the marks of wanton, or unsuccessful, attacks made ou them by these whates. Such rents are exceedingly common, both as recently inflicter wounds and as mended scars, and the chief sufferers are the Lobodion Seals, which live halitually in the park ice of the open sea, and wot Weddell's Seals, which kecp to the sheltered bights and hays along the coast-line or the cliffs of great ice lamriers. An ohd Lothodon is but rarely to be found without some sears upon his cont; aml an idea of the extensive character of some of these wounds may be gathered from the account given below (see p. 39), and from the figure there given, which is taken fiom scars on one of the skins in our collection. The whole question of the proballe causation of these sears being fully discussed in that chapter, I must refer my readers to it, ind state here only that I have no doult whatever in my own mind that the Killer is responsille for them.

Penguins, also, in all probability pay heary toll to these matauling bands, and from the excessive hurry in which they are often seen to leave the water when a herd of Killers is in sight, it is evident that they know their danger sufficiently well. Moreover, the repugnance they show to re-entering the water, even when chased by men or dogs upon the ice, is an additional proof that they know yuite well where their customary danger lies, and that they feel it is safer to tackle an unknown and novel risk on the ice than to face what they know to be a rertain danger in the water.

Werdetl's Seals are he mo means so liberally seared hy the Riller's teeth as are the Cral-caters, aurl this results from the fact that they remain almost always some miles on the safer side of the ire-celge, and as far as possible from the pen water. Here they are comfortably clear of the Killer Whales, whinh keep to the hreaking edge of the fast ice, and the more or less open water of the park.

The Killer is heard to llow, and the spont is seen before the snout comes out of the water. They are generally moving at a rapid rate, and, as a rule, the whole head and lack and dorsal fin come dear ont of the water, after blowing, at every rise. They have the same habit of swimming in close proximity side by side that we have noticed also in the Rorfual. They may be travelling at a very fast rate, yet the pate is so unform in each intividual that they may appear fastened one to the other, each half a lengtl in arlvance of its companion ; constantly appearing and disappearing in this mamer they give the idea of a single animal with two dorsal fins, unless indeed they are so close that they can be separately distinguisher. I camot say what is the meaning of this habit either in the Rorfual or the Killer, but perhaps the young and the mother thus find an easy way of avoiding separation whilst making a passage from one district to another.

The range of the Orea in the South, as we ourselves observed it, lies between S. lat. $30^{\circ}$ in W . long. $30^{\circ}$, where the northermost examples were found, and S . lat. $78^{\circ}$ in E. long. $170^{\circ}$ where we saw hundreds at the farthest point of open water to the South. But if, as scems to be the case, the Southem form is identical with the Northern, the range of Orca glatiutor must be considered universal. That the Southern form is identical with the Northern appears evident from Sir James Hector's mention of two examples which were oltained in New Zealand, the first of which ran ashore in Lyell's bay, while the second, which he says appears to be a fully adult example of Orea !ladiator, was cast up on the beach at Wanganui. (Proc. Wellington Phil. Soc. 1880.)

It has been reported ako from the Seychelles ( $4^{\circ}$ to $5^{\circ} \mathrm{S}$. lat.), from the Cape of Good Hope, from the Northern Pacific, and from the English coast ; and if further testimony is wanted as to its uliguity, it is to be found in Mr. Bennett's words:-" Whales thus designated appeared to us in small bands, and chiefly in the vieinity of the equator." **

# LAGENORHYNCHUS OBSCURUS. <br> The Inusky Dolphin. 


Latenorhynflus obscurus, Blauford, Mamm. Brit. India (188s), 1. 5s0, ibique citata. $\dagger$
We saw the Dusky Dolphin (Layenorhynchues (bscurus), a well-known and ummistakable form, day after day playing round the ship in the Southern ocean. We saw also an allied and hitherto umecognised species of erpally chatracteristic

[^0]

Fig. 7. An Unnamed Dolphin (see p. 9).
and constant marking, as describel below. The distribution of these two Dolphins appears to overlap, and yot, thongh we hat many schools of each from time to time aromed the ship, they never mingled.
 $195^{\circ}$ E. long., we had Dusky Dolphins roumb us, and were at the same time just outside the ine pack. But a few days later we lont them, and were joined hy the other species, which we at once called the Hour-glass Dopphin from the peculiar and characteristic arrangement of its colouring. In this it somewhat resembles that of the Dnsky Dolphin, yet is quite easily to be distinguished from it.

## AN UNIDESCRIBED DOHPIIN.

This new Dollhin is to he met in abundance in the outer zome of the Antaretic pack ice. We saw it on November 19th in about the same latitude in which we had seen Latpenorhanchus obscurus fom days before, but farther to the east. We again saw mumbers playing round the ship on December $29+1$, 30 th and 31 st, and on January 1st, the day before we actually sighted ice on our way to the suath in 1902.

Also in 190t, as we made our way to the North, on March 5 th and fith we had large schools of this same Dolphim romb the bows of om ship, moving easily with us, thongh we were running at from 8 to 10 knots an hour. They are from 8 to 10 feet long, and strikingly marked with white and brown. The whole of the back, head, dorsal fin and tail is rich dark lorow, as are also the under parts: lut there are on each side of the boty two extensive patches of white which are separated from one another just below the dorsal fin by an isthmes of the brown which runs obliquely down and forwards, uniting the hrown of the upper parts with the brown of the lower parts. In other words, the anmal may be described as uniformly dark brown all over save for a broad white lateral band broken in the rentre by a bridge of hrown, but ruming otherwise from nose to tail and uniting above the tail. The dorsal fin, which is dark hrown, is large in proportion to the size of the animal, and in most rases is falciform, often markedly crooked, almost to a right angle (fig. 7).

Attempts were made with the harpoon to oltain an example of this Dolphin, but without success, and it remams for others to give a more detailed descrip,tim than is pussible at present from olservations made only upon animals in artive motion.

This short and very insufficient account of the Whales and Dolphins observed during our cruise in Antaretic waters, though it thows little light upon their habits, may nevertheless be of use to some future observer. It is only with the olject of pointing out that there are new and unknow species, apparently peculiar to the region, that 1 have thought it worth while to record our soanty ohservations. An expedition properly equipped for the capture and study of surh animals would assimedy reap a harvest in the South.

# PINNIPEDIA. 

(4 Plates.)

LEPTONT(HOTES WEDDELA.
If catdell's Seal, ar the Filse Ser-Lerpard.
(Plates I.-III.)
Oturiu uextlellii, R. P. Lesson, in Férussac's Pull. Sci. Nat., vii. (1826), 1p. 437-438.
Letomythotes upeldelli, Allen, N. Amer. Pinnip. (1880), p. 467 ; Barrett Hamilton, Rep. Mamm. 'Sonthern Cross' Coll., 1902, p. 17, ilhque ritata* ; K. A. Andersson, Wiss. Erreh. der Sehwed. Südpolar-Exped., Bd. T. 2 (1905), pp. 3-11; Brown, Mossman, and Pirie, Vos. 'Scotia' (1906), pp. 129, 227, :340 rt alia.

## Material in the 'Discovery' Collection.

No. $\because$, , $\delta$, juv. skin and skull. About three months old. Jan. 29, 1903. McMurdo Sound.
No. : $2, \delta$, ad. skin and kknll. Monlting. Jan. 1902. Ross Sea.
No. 4, $\sigma$, ad. skin and skull. Ready to moult. Jan. 1902. Ross Sea.
No. 19, る, ad. skin and sknll. Jan. 1902. (Mounterl for B.M. Gallery ly Rouland Warl.) Mcalurdo Sound.
No. 82, 9 , juv. skin. In first week. Nov. 27, 1902. McMturdo Sound.
No. : : $: \%$, skin and skull. Jan. 1!02. Memurdo Sound.
No. 84. ó, skin. Mcaturdo Sound.
No. 3.i, $\delta$, ad. skin and skull. MeMturdo Sound.
No. 3f, $\boldsymbol{\delta}$, ad. skin and skull. MeMurdo Sound.
No. : 8,9 , ad. skin and skull. Ready to moult. Jan. 190:. Mcliurdo Sound.

No. 41, 9 , ad. skin and skull. Monltiug. Jan. 1902. South Yictoria Land.
No. 42, 反, juv. skin and skull. Just born. Nov. 5, 190:. MeMurdo Sounl.
No. $4^{5}$, $\delta^{\text {, }}$, jur. skin and skill. Seventeen days old. Nov. 14, 1902. MeMurdo Sound.
No. 47, 9, ad. skin and skull. Late summer eoat. Jan. 1902. McMurdo Sound.
No. 48, J, ad. skin and skull. Beginuing to monlt. Jan. 1902. South Victoria Land.
No. 49, of, ad. skin and skull. Fresh moulted. Feb. 1912. South Victoria Laud.
No. 50 , 9 , ad, skin and sknll. Fresh monlted. Jan. 1902. Sonth Victoria Land.
No. 51, skin and skull. In first year. Ready to monlt. Tan. 1902. South Vietoria Land.
No. $i_{2}$, J, skin and skull. In first year. Freshly monlted. Jan. 190\%. South Tictoria Lamd.
No. $3:$, 9 , ad. skin and skull. Moulting. South Victoria Land.
No. 54, ad. skin and skull. Moult just begun. Jan. 1902. South Victoria Land.
No. 5.), P, ad. skin and skull. Moult almost completed. Jan. 1902. South Victoria Lamd.

No. 60, 9 , ad. skin and sknll. Moulting. Jan. 190․ Sonth Victoria Land.
No. 1i2, J, ad. skin and skull. Weathered pelt. Realy to moult. Jan. 1902. Sonth Vietoria Land.
No. º $^{\prime \prime}$, of, ad. skin and skull. Jan. 1902. Lady Newnes Bay.
No. 71, d, skin and skull. One yar old. Jan. 1902. Lady Jewnes Bay.
No. 72, 9 , skin and skull. One year old. Jan. 1902. Lady Newnes Bay.
No. 73, 9 , skin and skull. One year old. Jan. 1902. Lady Nemnes Bay.
No. it, skin and skull. One year old. Jan. 19(\%․ Lady Newnes Bay.
No. it, $_{\text {, }}$, skull, with alserrant dentition. Mcalurdo sound.
No. 7s, skull, with mueh-wom canines and incisors. MeALurdo Somd.
No. so, J, skall. MeMurdo Sound.
No. 81, J, sknll. MrM[nido Soumd.

* Gill is erroneously cited.-F. J. B.

No. 82 , 9 , skull, with worn ranines and incisors. Medurdo sumat.
No. 84, ठ, very young skull. MeMinto Sound.
No. 85, 9 , skull. McMurlo Siound.
No. s6, 9 , juv. skin ami skull. Moulting woolly coat, three weeks old. (Ifomed fin B. M . Gatlery by Romlimet Warl.) Dec. 23,1903 . McNurlo Sound.

Collection of Exibryos.
Twelve embryos from the earliest stages were preserved in spirit by Mr. T. V. Hodgron. Two fuetal seals at full term were also pueserved in spirit.
This collection has been snbmitted to Dr. Marrett Tims, of Cambrilge, for examination, and will be separately reported.

Material in tiee 'Morning's' Collection.
No. 16, M. 4. ठ, ad. skin. South Victoria Land.
No. 23, M. 47. $\begin{gathered}\text { o , ad. skin and skull. Moulting. Sonth Victoria Land. }\end{gathered}$
No. 24, M. 48. O, vix ad. skin and sknll. Fel. 1903. McMurdo Sonnd.
No. 25, M. 44. ó, vix ad. skin and skull. McMurdo Sound.
Here and there, seattered far and wide luring the summer months in IlcMurdo sound, we saw parties of Weddell's Seals lying on the floe. Sometimes one or two only, sometimes ten, twenty, thirty, forty or more lying together, not huddled close to one another, but in seattered parties. The whole frozen strait, from the open water at the mouth to the blind end where the ire of a season or two meets the barrier iee of an unknown number of seasons, the whole of this vast ice sheet is, in fact, one ligg seattered rookery of Weddell's Seals (wep fig. 10, p. 14).

On approaching one of the largest collections lying on the floe, it could he seen that, thongh almost all were sleeping, there was a good deal of lazy restlessness in their slumber. They were not by any means motionless. One or two would be up and moving, loping along in ome direction or another for no very apparent reason. Another wouk he seen coming ont of its hole in the ice, clumsily hitching its shapeless bulk up by degrees, wet and shiny, till at last it emerged on to the floe, where it immediately began a rough dry by rolling over and over on the snowy surface. Then it would lope along a little further and settle off to sleep.

We might then walk up to one of the sleepers, and if we approached him up wind no notice woukd be taken. The eyes are fast closed, and the head is drawn in, wrinkling up the blubber-lined skin in folds around the neek. The breathing goes on as before, a sudden half opening of the nostrils (sometimes in sleep only one is used), a snorting expiration followed at once by a wide opening of the nostrils and a rather less prolonged and noisy inspiration, then the nostrits snap to and remain closed while one can slowly count to twelve or fifteen seeonds. No notice whatever is taken of our presence, though we may be only a foot or two from the sleeping Weddell's nose. IIis eyes remain tight shat, and now he stretches himself and contracts his hind flippers into the most grotesque attitudes; his back itches, and his hand goes round in the must human fashion to seratch it with the long protruding nail of the second finger. Now his hand itches, and with the other he scratches that. Then he yawns, amd gurgles in his throat, still always with his eyes tight shot, aml he may settle off to sleep
again. Yin are not a yard from him, and you may shont to him to wake. He takes wo notice whatever, so you shont again. He hears yom, am, opening his howdont eyes upon you, stares in amazement without making an effiort to
 hut that does not perent the emptying of his ldatder, which, as a rule, is his first move, indicative, perhaps, of some slight mosiness of mind. This increases as he legins to realise you are sumething not quite usual, and he stowly rolls wer away from your direction, and then stops again to stare and very likely to make a little piping trill in his throat with his mouth shot. It sounds like the tinkling of water in a stone cistern, and you see the movements in his throat." He is inclined to go to sleep again and forget about you. His large hazel brown eyes no longer show the bood-red canthus as they did hefore, when you first surprised him, and you walk round to his tail. He oljects to this, as a rule, and attempts at once to avoid you by rolling over sideways or slinging his hind quarters round and away from your proximity, his main endeavour lieng to keep yon broadside on. If you insist aml manage to touch one of his hind Hippers with your foot, he is at once really frightened. He may then either immediately rear half up off the ice at you and bellow with an open month, or else he will rapilly roll aml shuttle away from you and make off as hard as he can lope for the nearest hole. In so doing he will constantly look round first on one side and then the other to sed whether you are following, or else he will make off" "lumsily with his head held high up in the air, with both eyes widely open, watching you the while along his bark, and in this position he forms a very quaint and rharacteristic picture. Many a time did we womler at the complete ignorance of danger exhibited by this seal, so wholly different to the sumpicions charater of its kindred in the North.

Their rookeries were a constant source of interest to us and an ample food supply, from which we drew largely for our needs. The meat was coarse in fibre and very dark, hot by wo means rank, and although the bhbber was meatalle the flesh was our greatest stand-ly, not moly as a preventive of soury but a certain onre for the disease.

Judging. from our experience in passing first throngh the pack ice north of Ross Sea, and then along the coast of South Victoria Lant, Weddell's Seal is to he found only within sight of laml or of lam ice. We saw no example of it in the pack ice, and in this respect confirmel the late Mr. Manson's olservations on the 'Southern Cross' Expedition. There can he no doubt now that Wedrell's seal is definitely a coastal species, which never wanders farther from land than it am help, though occasionally it is carried by drifting ise to varions distant islands, and even across large stretches of sea and open wean to lambs where it can only be considered an accidental visitor. For example, it has been reported from Juan Feruandez, Kerguelen and Hearl lslands, and even from New Zealand, where a sperimen was stranden on the

* Weddell's Seal when quite roung gives a "babh" like a shecp. This becomes a roar as the seal grows older, but other and more musical notes are common, such as a moan beginning with a high pitched note and ending with a low one, often like an ice moan; or a series of plaintive piping notes may be produced. ending on the call note of a bullineh, or changing to a long shrill whistle which terminates with a gront or a snort or a gurgle.


Fia. 8. Whmblés seal, ahutit?


Fig. 9. Weddell's Seal, adult 8.
Tin fuce 1.1
beach outside the Iteads ant wats deposited in a muscum at Wanganui. The first specimens placed in the British Museum were procured from the river Santa Cruz on the Last coast of Patagonia. Sir James Ross procured but one specimen from the Intarctic. Kerguclen and Itearl lslands seem to be more frequently visited by wandering examples of Leptonychotes than the more Northern lands as one wonld expeet, and Mr. Moseley reported a herd of four hundred of these seals on an outlying istand of Kerguelen, and many lones of the "Sea Leopard" on Heart lslaml. Whether these were really Leptonychotes or Stenorhinchus is still doubtinl, and julging only from probabilities one would lee inclined to think that they were at any rate not Wedilell's Scals. It is certain, however, that one true example of Leptomychotes was taken at Kerguelen.

By the "Belgira" Experlition Weddell's Seal was seen abmulantly in the Palmer Archipelago, and ly the "Southern Cross," and the "Antarctic" (Bull's cruise) all along the coast of South Yictoria Land. Dr. Donald and Mr. Bruce in the Dundee Whalers' cruise saw a few of this species in Graham's Land, and more recently they have been reportel as "very numerous" in the South Orkneys, where " over a hundred could often be counted lying on the small raised beach on the west side of Seotia Bay." In the Werldell Sea it is reporterl by Dr. Pirie and Mr. Brown to have heen seen off Coats' Land, $74^{\circ} \mathrm{S}$. and $22^{\circ} \mathrm{W}$., in Mareh, and again by Dr. Nordenskjold to have been the commonest of all seals in Louis Philippe Land, where, however, he adds, "it could not be depended on lluring the winter months;" aurl finally it was met with by the German Expedition off Kaiser Wilhelm's Land; while in Adelic Land, it is noted in Wilkes' and Dumont D'Urville's narratives under various names, and the "Sea Elephant" so constantly mentioned by Wilkes, refers in all probability very often to Weddell's Seal.

The normal range of distribution of Leptonychotes is therefore more or less coincident with the coast line of Antarctic lands and not with the distribution of the Antaretic pack ice. Occasional examples may be caried ly drifting hergs to the northern limit of ice in the winter months, but as Wedlell's Scal is not in any complete sense a migrant, it will not he less rare in these latitudes in the winter than in the summer. The Southern limit of its range is the same for summer and winter, and coincides with the limits of Barrier ice and the coast-line of the so-called Antarctic Continent.

Weddell's Seal does not migrate. It is to be found at the southermmost limit of its range thronghout the winter months, but is not so much in evidence at that season as it is in the summer months. Its southernmost limit throughout the year is decided by the possibility of obtaining food, and not at all by temperature or climate, neither of which seems to affect either it or its supply of food to any considerable extent. The food of Weddell's Seal consists almost entirely of fish, though the beaks of cuttle-fish are often found in the stomach, slowing that its diet is not exclusive. Crustaceans also form a small part of its fool supply, and, as in most other
seals, there is always a large prantity of mud, samd, and stones in the stomarh, whirh appear also in the excreta. This mul is introduced, no doubt, largely loy accident in collecting the fish and crustareans which inhathit the lontom of the shallow seas.

Some of our seamen during the winter monthes would wait at the seals' how-holes with a hapoon and line, and with these even the largest Weddell's Seals comld be transfixed amd landerl. As they hat often been feeding immentiately before their capture, it was possible sometimes to take ten or twelve little-daunged fish from the stomach before digestion had commenced. The fish commonly obtaind were species of Trematomus, Totothenic, and Ciymmertiaco. These seem to be as plentiful in the winter as they are in the summer montlis, the actual temperature of the sea-water varying but slightly throughout the year. The mere fact that the sea is frozen at the surfare does not make moch difference to the marine inhalitants. The arerage tempeature of the water in the winter months from April tu September is just above the freezing point of sea-water. Consequently there is a unformity of temperature moder water during the winter, which is ly mo means to be found in the air. This not only allows marine life to continue and flowish throughout the year, but it also aremonts for the non-migration of Weddell's seal, and for the fact that, although it is ahmost as ahmunt as in the summer in point of nombers, it is mot lyy any means so much in evidence. These seals, which may le seen during the stommer lying in hundreds on the fast ice, live during the winter almost entirely in the water. They find it far more comfortable to remain in water at a uniform temperature of $28^{\circ} \mathrm{F}$. than to expose themselves to temperatures ranging from ahout zero to $-50^{\circ}$ or $-60^{\circ} \mathrm{F}$. in the air, where wind and snowhift would make their existence infinitely less comfortable even if the temperature itsclf was less severe. Therefore, apart altogether from the fact that the winter montlis are dark and prevent seals from being seen at any distance, there is no doubt that they really leave the water very little and only when there is no wind and a moderate degree of cold, conditions not often ocoming together at the latitude of our winter puarters. Nevertheless, we are rertain that they were still with us in the dep,th of the winter, not only because the blow-holes were always found open, but because we cond hear their signals to ome :mother umderneath the ice, and because we could actually bring them out at the emb of a harpoon line whenever we cared to wait for them at a bow-hole.

Throughout the two winters spent in McMurdo Sound, in lat. $77^{\circ} 50^{\prime}$, the farthest point South at which they have yet been recorded at any time of the year, we noted every occurence of a seal on the ice out of the water. Quite a large number were seen and many more heard during the finst winter, when the ice was constantly breaking up in the strait to within a few miles of the ship, even so late as May 5th, and though fewer were seen in the second winter, when the open water was never nearer the ship than 10 or 12 miles, there was still a considerable mumber with as. Comsequently we knew that the movements of the greater number were influened by the proximity of gen watere hat mot to the extent of more than a mike or two and


Fig. 10. A Rookery of Wednela's seade.


Fig. 11. Weddell's Sleal at its Blow-hole.
regtainly not to anything apmonching what might be called a seasonal migration. Weddell's Seal is therefore mot a migrant, and that it is less ahmolant in the winter months than in the smmer is rather the result of a change in its habits, than of any radical change in its lowal distribution.

This is an interesting point in the history of Wedell's seal, for it marks it off as the species which has adapted itself more perfectly to Antaretic conditions than any of the other Southern forms, and it has a learing also on its comparative immmity from the attacks of Killer Whales, as witl presently be shown.

The Killer Whales throughout the year remain quite as far South as the perionical loreak up of the sea ire will allow. They are to le seen the last thing in the autumnal twilight (March 7th and 9th in 1902) and the first thing in the spring (September 14th in 1:02) hunting in herts along the erlges of the fast ice, as the thoes hreak off and drift away.

If, then, Wemlell's Seal lived actually at the limiting edges of the fast ice, and was wholly dependent upou the proximity of open water, it would be un more immone from the attacks of the Killer Whale than are the 'ral-eater (Lolnulon) and Ross' (Ommutophocu) Seals. but it is not so depemdent upon 'pen water, for it retires as this advances in the summer months, betaking itself to the fast ice which is still mbonen in the sheltered hights and hays along the coast-line.

If, on the other hand, it wanders from the actual shores and shelterel hay ice of the coast, it is not to tempt fate in the park ice, hot to take adrantage of the peculiarities in the formation of the Ice Bariers which ring round the Antanctic rontinent, where, diring deep under the frowning ire-diffs that roufront the open water, and coming up a quarter of a mile or more from the actual etge, it rearhes the Barrier surfare where it dips in a valley to the water-level. Nothing roukd be more surprising, after first scaling the ice-cliffs to reach the snowy surface of Russ' Great Ice Barier, for example, than to find that the surfare gradually dips again into a long valley filled with seals and seal-holes at the level of the water.

Wedlell's Seal in this way has gone farther than any other speries to outwit its enemies and find seclusion without reducing its chances of securng ford. In the summer, where it hasks on the fast ice it is alsolutely safe, and where it breeds it is even more so. Where it feeds it is sometimes open to attack, but hy no meams always, since it finds food freely in the water beneath the ice on which it basks and lnceds. In the winter, knowing that open water means danger, it is safe when the sea is frozen, and by retiring south as storms lueak up the sea ice, it is safe while the sea is leing opened up.

That its security is not merely theoretical is strongly evidencer loy the almost total absence of all scars in the skins of the 'Discovery's' collection. Nor are these skins exceptional, for it is a very rare thing indeed to find a Weddell's Seal with such scars and ugly wounds as are to be found commonly on the large majonity of Crab-eaters' (Lobudom) skins. I have only on one or two oceasions seen scars such
as might have resulterl from the attack of a Killer Whale, on Weddell's Seal. Some no doult fall virtims to these roracious animals on the coast and at the elges of the unbroken ire, and probably if attacked at all they would have a smaller chance of escaping with wounds only than would the more agile Lolodon or Stenorhinchus. Some, too, no doubt, get carried ofl to sea on drifting floes from time to time while slepping and fall a prey to the Killers in making their way back to shore, but the accome l have given above applies to the great majority, and it is in them that habit is adapting itself to circumstances in a way not yet appreciated by the other species.

I have mentioned that Weddell's Seal during the winter months spends most of its time in the water beneath the ice. We arrived at this fact in various ways. They were rarely found on the ice in the neighbourhood of their blow-holes or of the tide cracks, yet they kept these blow-holes open, and could be harpooned as they came up to breathe, all through the winter months. In addition to this we had other evidence. Our cars, for instance, convinced us that seals were with us in considerable numbers, though they so rarely showed themselves. Again and again while sitting up at night as meteorological observers, in the silence which reigned when others were aslecp, we would hear the gurgling, bubbling, guttural notes of Weldell's Seal beneath the ship, sounds which we knew so well from having often watched the seals as they made them. There was no mistaking them, nor did anyone fail to hear them, and they were not to be confounded in the dead stillness of the night with the contraction of the rigging or the movements of the ice or ship. Sometimes one would hear definite thuds bencath the ship, the seals bumping against the timbers as we had often heard them bomp against the ice. At other times, and almost at any time out on the sea-ice, if we stooperl to listen with an ear to the floe, we could hear the guttural notes of the seal, or its bublling trill, or the thud of a seal's head given, we imagined, hy way of signal to its fellows. All these noises were carried by the ice to considerable distances, and, as it seemed, formed a simple system of communication between seal and scal through the medium of the solid ice. Sometimes also, as we walked along a frozen crack, we would be arrested ly the scrunching noise of seals' teeth opening up new ice in the crack to form a blow-hole.

As carly spring approached, and we began to go farther aficld during the short hours of approaching day, we realised that more seals were leaving the water to bask in the seanty sunlight. If then we followed one of the scars formed across the strait by the re-freezing of a crack, we would find a series of blow-holes and holes for egress and ingress averaging 180 yards apart. Abont every third hole would be enlarged to allow a seal to leave or enter the water, and round these there was abundant evidence of occupation during the winter months, even if no seal was actually lying there when we approached.

To give an example of one of these refrozen cracks, on June 18th we made a list of all the scal holes discoverable in a scar that ran for some miles to the


Fig. 12. Weddell's Seal and Young, jest born.


Fig.l13. Weddele's Seal anil Young.
-
westward across Mcllurd, Souml. The distance in gards is given between the holes :-

| Hole No. 1 | ... |  | For egress and ingress. |
| :---: | :---: | :---: | :---: |
| 100 yards to No. 2 | ... |  | Blow-hole only. |
| 140 yards to No. : | ... |  | Blow-lole only. |
| -20 yards to No. 4 | ... |  | For egress and ingress, 1 o seal out. |
| 140 yards to No. | $\ldots$ | $\ldots$ | For exress and ingress, many sirns of occupation. |
| pio yards to No. 6 | $\ldots$ |  | Blow-hole only. |
| 1.76 yards to No. $/$ | $\ldots$ |  | Blow-hole only. |
| 180 yards to No. \& | $\ldots$ | $\ldots$ | For egress and ingress, 1 d scal out. |

The depth of water bencath these holes was about 300 fathoms. By such signs as the above, and without atually seeing by any means so large a number of seals as in the summer, we gradually convinced ourselves that there were, nevertheless, a large number unon the spot. Nor were those that we saw on raught of any one age or sex. Some were males and just as many were females; some were yeatings, but many more, as one would expect, were adults. All were very fat, and their roats in exellent condition; perhaps the fattest of all, at any period of the year, were the adnlt females that we met with in the spring. The huge animals used to collect in varions serhuded spots, often many miles from open water, as for example at Pram Point to the south of Cape Armitage, where from twenty to twenty-five miles of solid ice separated them from the nearest open sea. There they lay, entering the water from time to time by holes or "racks anongst the pressure ridges, thoughout September ant Ontuler, waiting for the linth of their young. These began to appear first on October e2ud in 1902, and on Octoler 25th in 1903, at the Pram Point rookery, which was not only the largest but the nearest of all that we met with in McMurdo Sound. If we wandered northwards, along the west roast of Ross Island, we could find here and there, along the tide crack, a group of breeding Weddells. Further still, if we came to Tortoise Rock we found again mothers and young amongst all the pressure ridges aromd that island, and by the tongue of a glacier, or away mongst the Delloridge Islands, again large numbers of old and young, but nowhere were they so plentiful or so convenient for observation as amongst the ridges of broken ice about Pram Point. This musery was visited every day or two as the state of the weather allowed; and here, on returning from a sledge journey in 1903, I foumd that Hodgson had generonsly "car-markel" every infant as it was lom by attaching a tin label with a momber to its hinder flipper, muctl against the infant's will and often enongh with scanty approval from its parent. By means of these labels we were t" some extent able to watch the changes in the coat of the infants during the first month of their existence (som figs. 12 and 13, p. 16 ; also figs. 14 and 15, p. 18).

At birth the young Weddell's Seal is clothed in a woolly coat of long hair, of a rusty greyish colom, presenting but the finintest indication of any marking (are figs. 16 and 17, P. 20 ). The woolly chat consists of two raticties of hair, the one 3.8 cm. long, fiue, and almost straight; the other shomter, fine, and very curly, su YOL. II.
curly, inteen, that in a hair of 1.7 cm . in length there are no less than eight or ten "urves or bends. It is worn for the first fortnight, though at the end of this period it has a less woolly appearance and the hair seems shorter. There is also a suggestion of light spots on the siles and darker marks and splashes beneath as in the adult animal. The change in the character of the roat is due more to the fact of the amimal's rapid growth at this time (from 57 inches at birth to 72 inches at the end of a fortnight), than to any actual change in the woolly covering itself; though it is possible that some of the curly hains begin to drop out earlier than the straight. At the end of a fortnight, however, a regular moult legins (see fig. 19, p. 22), and observing as strict an order as in the alult, the wool is first shed from the head and flippers, both fore and hind simultaneonsly; then runing abong the mid-line of the bark it spreads down the sides and eventually dears the rhest and helly. This process occupies a fortnight, so that by the end of the first month of its life the young seal has shed the coat it was lom in, and has assmmed a very rich and landsomely marked coat of thick, straight, and short hair, thus hecoming an exact copy in minature of the most hanlsomely markel arlults, while measuring letween 6 and 7 feet from nose to tail instead of about 9 feet (we fig. $20, \mathrm{p} . \geq 4$ ).
${ }^{\top}{ }^{1}$, to this stage the infant has been wholly dependent upon its mother for sustenance, and the mother leaving her oftipring on the ice has regulaly entered the water to supply herself with food. The young seal thus left to itself either sleeps in the sun or crawh under the shelter of a neighbouring hummock. Many of them at this stage succumb to the cold, and it is hy no means an uncommon thing to find them dead a lay or two after their lirth. Their eyes are open at birth, and the involution of the umbilical cord takes several days. The young seal is found at times with the cord intact, attached to the expelled placenta. Presumably the cord is bitten through by the mother, though we did not see this done. The placenta with its membranes is soon demolished by the Skua gulls, which attend in numbers but it did not appear to strike them that the young seals would form an easy prey. In no case did we see even a dead young seal attackel. Prohably the skin proves a difficulty, though the hubber beneath when exposed ly ourselves in a skinned seal was very rapidly stripped lig these birds. Ocasionally we would skin a seal and leave it on the Hoe to be Henced ly Skuas; and though it was never completely alemed, the total weight of the skiin, which might have to be dragged for some miles upon a sledge to reach the ship, was much reduced.

Wedlell's Seal surkles her young, and in no case did we see more than one roung one horn to any seal, upon the iee. Lying upon her side she exposes two nipples in the athominal region (see Seals, Plate I.), which, though hardly visible when not in use, are erectile organs which become prominent when the young is sucking. The milk is white and creamy and the glands flat and extensive beneath the skin, showing no prominence from withont. Not more than two glands and two nipples are developed.

The mother seemed to he much attached to her infant, and in some cases would attack us vicionsly if we attempted to interfere with it. In others she was


Fig. 14. Wemolele's Sead anil You Ne.


Fig. 15. Wfithell's Seal, Suchbing its Yourg.
absolutely callons both to the struggles ame the blating aries of her foung, with which we were struggling in our effiorts to attach a label to its tail. In the illsence of the mother the young one would occasionally make ite way to a neighouring seal, and, if she happened to have a young whe too, one might be misled into thinking that she had given hirth to the two herself. Quite probluy this happens sometimes but we were never quite sure of such a case.

At the end of a month, when the young one has moulted its woolly coat and has donned its richly marked cont of hair, it is taught ly the mother to enter and leare the water, she the while giving her assistance bushing from behind ; soon, no doult, the young seal hegins to suphly itself to some extent with fool. Even after it has learned to enter the water, however, it can often be seen to take milk from its mother, but on Decmber 23 r the stomach of one that was killed contained only fish and isoporls. Lactation, therefore, camot long continue, aud probahly as a rule the young one heromes wholly independent within six weeks of its birth on a week or two after entering the water.

At the end of its first year the yomg seal is still easily recognisalle as a yearling by its small size. Thus at the end of its first winter it reached alout two-thirds of the size of the normal adult, and measured between 6 and 7 feet from nose to tail. During the following winter, however, the discrepancy ends, and before two years of its life are out the Weddell's Seal arrives at adolescence. Whether it then lreeds or not it is impossible to say; but, judging from the damaged condition in which one finds many arlult males, and even very old ones, from the severe fights which take place in the third week of Oetober and in November and December, I am inclined to think that few males can breed until at least their third or fourth years. The gestation period in the female is as nearly as possible eleven months. One may find during the above-mentioned months old males in secluded spots literally covered with open wounds from heal to tail. All these womms are short and comparatively shallow, and most abundant about the head, neck, and genital orifice. The last appears to be the main object of attack in all their battles, and in the majority of cases the region is in a terribly torn condition (see Skins No. 3 and No. 48 in the 'Discovery' Collection). Neither do the wounds heal with any great rapidity, suppurating sores remaining often for many months. But the wounds received and given by the males in their contests during the rutting season must not he confounded with the far more serious wounds found on males and females alike, though very rarely in Weddell's Seal, as the result of attacks made on them by the Killer Whale.

The seal's teeth produce multitudinons wounds, it is true, bat none are more than a few inches in length and these seldom deeper than the skin: the Killer's teeth. on the contrary, produce the most serious rents, often from 12 to 20 inches in length, limited in number, from two to six in parallel rows alout two inches and a half apart from one another; these will often be deeply cut through skin and hluber right into the very flesh, and mainly upon the ventral surface.

At the elose of the rutting season, which follows direetly upen the separation of the young ones from their mothers, it is noticeable how often one may find the hulls in sedonded places, to which they have retired with a multitude of opel wounds. This bears upon the diseovery of dead seals. not only in seetuded pots, hat in phaces which one would have thought were abmost inaccessible to them. There can be no donbt, however, that the same instinct which leats a temporarily danaged bull to retire from all rompany for awhile leads a sirk or aged seal which no longer feels erpat to the strugle for existence aumgst its fellows to retire still further, and to perist in it efforts at retiring to the moment of its death. In this way, and in wother, can we aerount for the discovery of dead seals at a distance of 35 miles iulam from the coast, and on the surface of a glarier no less than 3,000 feet above sea-level. In these cases the carcases were those of Crah-eaters; again the carcases of four ('rah-eaters were fomed by Mr. Femarat the foot of "Cathedral Rocks," in the Royal Society's Range, 2, 000 feet ahove sea-level, and thinty miles inlam. Yet amother was fomm on New lfarlome Glacier, 200 feet alove sea-level, and twenty miles from the coast.

The carease of a Weddell's Seal was found ly Lieutenant Amitage 2.400 feet above seatevel on a similar glacier, and other seal remains at similar heights and distances from the coast. On another sledge foumey along the western side of McMarto Somed two dead Weddell's Scals were fomm, much weathered, on the tongur of Koettlit\% Glacier, some twenty miles from the sea-ice ; and, still further in, an old and battlesarred male alive, and covered with suppuating sores, more than twenty miles from any of his kind. The instinct of retirement is strong when evil overtakes these amimals, and their one ilea is to get far away from their fellows. Starvation in such cases must have experited matters, and the climate being of a kind to preserve the remains, we eame upon them, as I have stated, in the comse of our various sledge journeys.

Wedlell's Seal, by its shape and build, is by no means so well fitted for progression on the ice as it is for rapid movement in the water. All its enemies-they camot be very numerons-are in the water: its food also is in the water, and its whole energies most be directed to the avoidance of the one and the overtaking of the other. It therefore hecomes transformed on entering the water into a rapid fish-like swimmer that can leat the pace of the fishes that form its forel.

If one watches this seal on a flat surface (and when ont of the water it is almost always on sea ice), me motices that the ordinary method of pogression is a very laboured "hitching along" of its bulky body a foot or two at a time, the chest being used as a fixed point non which to draw up the remainder of the hody hy the artion of the abdominal muscles. In this way the pubic part of the pelvis beromes in thon the fixed point, and upen it the body is again shot forward. The limbe in this mode of progression are not brought into action at all, indeed the him limbs, palm to palm, are hed in a vertical plane extended backwards with the tail and based from montact with the ire. The fore limbs, illso held closely applied to the sides of the rhest, camot even be considered of use in keeping the amimal on an eren keed, for


Fig. 16. Yoeng Wempllis Geaf, just born.


Fig. 17. Young Weddell's Seal, just born.
when the trail of a sal on the snow is examined the may or may not be on ome side on the other, a mark showing where one fore llipper did actually but puite arcinentally touch the snow. Under all ordinary conditions, therefore, it is seen that this seal has quite given up the use of its limbs an land are, a point in which it differs from several of the other trme earless soals, amb a point which suggests that a rory long juriod must have elapsed since it enjuyed the power of using its limbs as an ordinary pandruped.

I mention helow, in comertion with Loborton, that the extremity of fear will revive a methon of more rapid progression which dosely resembles the canter of a fomplegged amimal; but this re-awakening of a power that must have long lain dormant was never once noticed in the case of Loptonyehotes. I do not think that the limbs in Leptomplotes were ever seen to be called into play in are elerating the rate of movement, nor was any other method of progressiom noticed than the hitching, loping, or "looper caterpillar" methon of which I have already speken, a method that reminded one of nothing so much as the progress of the raterpillar of one of the Geometer motlos. If pressed to exert itself, this method of progression was not changerl, though the movements became very flustered, and then it was a common thing to see the head held high in the air that the pursuer might be kept in sight, the seal watching him with wide open eyes along its bark and shoulders, instead of tmming its head sileways, first one way and then the other, as is msually the case when the ammal is less seriously frightened.

In the ordinary course of events it requiren a romsideralle amonnt of interference to disturt the equanimity of a Weddell's Scal. Having mo cnemies ontside the water, it gazes with lank amazement upon man and dog, with difticulty reatising that either Gam have the power to lurt. There was always, however, some risk of its swinging round to bite, and this the dogs som leamed; for the hite of a full-grown seal was by all means to be avoided; the seal's movement in this respect is very druick, amb the grip being followed by a wrench would certainly tear the flesh from the bonew.

Above all else this seal is an alept at rolling sideways out of reach from danger, but in doing so it is merely following the instinct which forbids it to expose its more defenceless extremity towards the enemy. There seems to he no need for it to practise amy but the most lahour-saving methods of movement ont of the water. Having no enemy on the ice when man and his dogs are alsent, its needs for travel at the worst of times are not exacting. It lives within reath of some permanent crack or mening in the floe, which may be either a tide crack along the shore, an יjuming which never fails, or a line of weakness ruming out for miles from some cape or healland. Occasionally, in ice may seasoms old, one may find a blow-bole domed over by the frozen hreath, as in fig. 25, p. 38 : and this may he still in use, though the ire he five or six feet throngh. Only on a very few occasions have we seen a track prolonged for any distance in the snow. In one exreptional case a track, mate ly a seal which had apparently lost its way, led fainly straight for about half a mile from one area of pressure ridges across a bay of unhoken ice to another area off a small hoadiand, where
open cracks wore always to he fomm. During blizzards and heary weather these cracks get empletely hidden up in snowlrift, and one may see that the seals experience a certain amonut of difficulty in finding them again, if they lappen to have been lying out while the storm proceded. In this case me finds them lurrowing into the snow with their noses, amb when they diseover the crack, in all probalitity by this time half frozen up and filled with snowdrift, they commence with their teeth to work a hole which shall be hig enough to let them through.

Their methord of enlarging a crack to make a hole has been more than onee observed by members of our expedition in Mcanurdo. Somod, and the eridence is well supported by the condition of the teeth in a really old Weddell's Seal; this is well exemplified in the sample figured, where the canines and incisors are worn to romoded stumps (Seals, Pl. Ill.). The seal, fixing the canines and incisors of his lower jaw in the solid ice, begins to revolve the upper jaw about them, in this way using the teeth of the lower jaw an the fixed point of a centre-hit white those of the upper act as the cutting edge. This has not, to my knowledge, been previously ohserved, and it explains not only the very won condition of the teeth, but also how new seal-holes rapidly appear in a narrow, fresh-formed arack in solid sea ice, even within a few hours, sometimes, of its opening. The seal has been known to work in the same way from helow, and in this case one cannot but think that there must he sufficient air-space liclow the ice for lreathing.

Further examples of the wearing down of the incisons and canines may be seen in Skulls Nos. $47,48,78$, and 82 of the 'Discovery' Collection.

To return to the subject of progression, it is obvious that this power of making holes in the ice for entrance to or exit from the water has almost entirely done away with the necessity for any lut the most perfunctory methods of progression on ice and lant. The hind Hippers certainly are never used at all except when the seal is int the water, and there is no tendency whatever under any conditions to attempt to loring them forward in progression. That there is still free and varied movement in every joint of the hind limb is, however, olvious from the fantastic positions that it assumes when the animal, as he so often does, stretches himself, or when he brings an irritable himd limb, forward to be slowly and deliberately seratched by the long naik of the fore limb. The 'puant attitudes thus exhibited are exemplified in several of the accompanying illustrations.

It is interesting to note in this connection, too, that although when lying on the ice these seals are often in a sery initable condition as regards their skin, a repeated and careful searli failed to reveal any external parasites at all. It would appear that the animal is quite free from anything of the kind, and one is led to conjecture that the constant irritation as the amimals lie sleeping in the smm. is due to the effect of eraporation on the salt water in their hair. It may be that the aystallisation of the salt, and the pecnliar effect whirh drying hats upon the hair itself, may cause the irritation, for the hair, instead of lying flat against the skin as it does when wet, takes


Fig. 1s. Yut Ni Wemell's Seal, 10 days old.


up a recurved form ats it dries, and ronghens the whole coat by gradnally standing up and curling lockwads. This is a marked feature in the hair of Weddell's seal, and was very noticeable in the varions uses to which the dried skin was put upon the ship, such as the making of slippers, knife sheaths, gaiters, and so on: for when dry there was a good wite-haired furry skin, hat mo sooner was the hair exposed to moisture than the sleek and shiny texture of the wet seal was immediately reprodned. This hange in drying, particularly from salt water, may have much to do with the apparent irritability of the skin of the basking seal.

Of the ase of the fore limb when ont of water there is little more to be said. The claws are not used offensively when the animal is disturled to the same extent that they are in Phoca vitulina, for example. In the latter the whole action is that of a cat, hut Weddell's Seal has not the same power that is possessed hy Phoca vitulina, or Ph. fatida, or aren Halicharus, of loinging the fore limb right forward from the shoulder. The limb is more perfectly webled, and the wed, is much more dosely contimuons with the skin of the body than in these species, that is to say, there is in Leptonychotes less of an arm or wrist than in these northern seals.

This being so, one would expect that the nails would have lost something of their efficiency and of theire size, but this is not the case. They are comparatively long and well formed, and reach well heyond the fleshy part of the digits. In the hinder limb, the mails are not so well grown, nor are they in any sense functional. The mails of the fore limb, on the other hand, are, as I have said, ronstantly in use for swatching. In the infant the fore limbs are far more constantly brought forword than they are in the adult, and in this way the young Leptonychotes approximates to the true Phocinx and Halicherrus. In the fore limb there is free power of flexion and extension as well as of abduction in all the digits. and the same may he seen in the hinder limbs.

There is, moreover, a very remarkable amount of precision in the power of directing the touch, and this is seen in the accuracy with which the apparently clumsy limb hrings a single nail to hear on the irritable spot, whether it he on the fare on head, on the breast or abdomen, or on the other flippers either before ar helimet.

All these remarks deal with Weddell's Seal on land, or mother on ice and snow. Certainly it is the most lam-frequenting of all the Antar tic scals, imdeed, it is never to be foud in any numbers away from the actual slore, or, at any rate, from fast ice. This littoral halit, however, is not a primitive one retained ly Weddell's seal ahme, whilst others, its near relations, have taken to the open seas; it is a halit of senondary development, into which the animal has fallen in these regions through a wish to shun the enemies that molest it in the open sea.

Few seals are more fully adapted to a pelagic life than Leptomychotes, and crery feature of the anmal helps to support this view, esperially if we wateh first the eas. motion of a seal in the water, its clumsy efterts to lamd, and the still mone clumsy sait that follows when at last the landing is effected. When there has been moned for haste a seal has been seen to make ten unsucressfinl eftiots to band on ise which was
not 6 inches above the water-level. Certainly such clumsiness is not quite usual, hut one seldom sees less than two or three unfruitful efforts before the ungainly borly is sulficiently out of water to hitcla itself fairly on to the ice. In this effort the fore limbs are used, but to no great purpose, and the movements are all wather suggestive of those of a man tied up in a sack trying to get ont of water on to land.

The seal swims mainly by the sinuous motion of its looly, and in this movement the hind Hippers are of the greatest service, foming a fish tail in the vertical plane when held, as they usually are, palm to palm, and a powerful horizontal fluke as in a whale, when there is necessity for rising or sinking in the water. The fore flipperw are probably of more use in direating the conse of the animal than in propelling it, and they must be increased nearer to the size of the sea lion's fins before they can be of very great service for swimming.

Of the colouring of Leptomychotes something still remains to he sail." The collection at present mader consideration contains thirty-five skins, covering all ages and conditions of moult in both sexes. It is natural that in such a series there shonld be a certain amount of variation.

Weddell's Seal is to he foum moulting at any time during the summer months, from the third week in November even to the end of March, for an adult seal has been observed just commencing to moult on the 19th of the latter month.

The order or sequence of parts from which the old hair is shed is much the same for Leptonychotes and Lobodom. Beginning in a line down the centre of the back from head to tail, the moult is almost simultaneous upon the heal and upper neck, shoulders, fore and hind tlippers. The old hair then begins to fall from all the lower partsneek, chest and abdomen-while the last remmats of the old heached hair are to be found on the sides of the body.

The change in colour thus brought about is often most remarkable. The old hair is a pale rusty gray where it one was black or dark gray, and the spots and pheshes of white and silver gray, which appear in rich contrast with the bark in the new roat, are disclosed by the falling of a rather dirty-looking whitish hair which is hardly whiter than the rusty gray whirll covered up the black. Yet this seal never looks white in the weathered coat, as loes Lolrolom: rather it looks a dingy brown with ineonspicuous markings.

The weathered adult wat prepared to moult at any minute can be well seen in the following skins Nos. $4,38,47,51$, and 62 of the 'Discovery' collection.

The commencement of the monlt is to be seen in skins Nos. :3 anl 54: while the stage is rather more advanced in Nos. $23,25,48,53.60,72$, and 74 . In Mos. 41, 55 , and 73 the moult is almost completed, ant ruitr completed in Nos. 49 and 50 . In many of these the contrast between the old blearhed and weathered hair, and the rich hack and gray and pure silvery white of the new hair is very striking: marking

[^1]



Fig. 21. Weddell's Seal, adult.
.
which appear dim and shadowy and ill-definel in the old cont, come out with startling contrast in the new. The summer sun undonbtedly play's the greater part in the beaching, much more than the weathering of the preceding winter months. Weddell's Seal does not appear to shun the water while moulting.

These changes in coat are, however, distinct from differences due to individual variation. The skins of the present collection may he ronghly divided into three types, not one of which is confined to any particular age, sex or lorality.

1. The type in which the markings of black, white, and intermediate gray are large, bold, and in striking colour contrast. Of such are skins Nos. 35, 47, 49, 56, and 74.

Il. The type in which the markings are all small and narrow, but very aboudant and distiuct, the white and black well contrasted. Of such are skins Nors. 40, 51, and 5 .
III. The type in which the markings are few and indistinct: and of such are skins Nos. 36, 50, 62, and 7 .

Yariations in size are excedingly common, but may all he consilered as the result of differing age, not sex. Such differences are exemplitied in the measurements of the following skins :-


In the colouring of the adult Weddell's Seal, perhaps the most typial chanacteristic is that the palest area is not ventral and median, but lateral or ventro-lateral. The dorsum is typically back; then comes a dorso-lateral area which is lhack with a few white streaks or splashes; then a lateral area in which the white hotehes are larger and more abondant; then a ventro-lateral area in which the white is predominant, and very few darker markings are to be seen; and lastly, the median ventral area is gray with white spots and streaks or splashes. The tail is, dorsally, the harkest part of all, but has a narrow white horder which is constant.

The gray colour of the head starts round the nostrils and passes barkwards to surround the eyes, except for a white superciliary pot over each eye. The gray of the head spreats backwarts to include the shoulders and fire Hippers, but on the shoulders there are often short and discreet white streaks. The fore Hhppers are blackish gray above, but whitish on the radial border amd beneath; the hind Hippers blachish gray above with whitish tibial border, but blackening towards the tips of the digits, which are bortered with a whitish edge, and where the nails are inserted, marked by a few white hairs. The nails are back, as also are the twisted facial limstles in the adult. These show no twist or wave in the young of the first few months. The hair at the corners of the mouth and at the excretory orifices is staned a deep chestnut hrown.

Of the liseases of the Antaretio seals there is but little to be said. They are not exempt from the ravages of unfriendly hacteria, for one may see their wounds freely suppurating, and in more than one case the eyes both of adult and young have been seen streaming with pus. They are also apparently subject to uric acid trombles, for the kiduey tubules have been foum in one or two cases oeempied completely her renal calculi. In the coronary arteries also, very definite atheromatous deposits may oceasionatly be foumt.

## STENORIIINCHUS LEPTONYX.

The Sen-Lempard.

Phoct leptonyx, de Blainrille, Journ. de Plysique, ete., t. XCI. (1820), pp. 288-2s9 and 297-298.
Stenorhinthss leptonyx, F. Curier, Dict. Sici. Nat., XXIIX. (1826), p. 549.
Oymortumus leptonyx, Peters, Monatsb. k. Akad., Berlin (1875), p. 3:9; ; Barrett-Hamilton, Rep. 'Sonthern Cruss' (1902), p. 25, ithique citutue; K. A. Andersson, Wiss. Lrgeb. der Schwed. Südpolar-Exped., l3. V. $\because(1905)$, pp. 11-13.

Material in the 'Discovery's' Collection.
 for the B. M. Gatlory by Rombemel Wari.)

## Material. in the 'Morning's' Collection.


No. 65, M. 30. d, ad. skiu and skull. Jan. 1901. Pack ice, Ross Sea, 6s ${ }^{\circ}$ S. $17: 3^{\circ} \mathrm{E}$.
No. 66, M. 27. O , ad.sk. Tan. 1904. Pack ice, Ross Nea, 6! $9^{\circ} \mathrm{s} .178^{\circ} \mathrm{E}$.
For the history of the type specimens, and of the carliest descriptions of this seal, I must refer my readers to the account given hy Captain Barrett Hamilton under Ogmorkimus in the Report on the 'Southern (ross' Collections (1p. 25-27). The syumomy there given also covers the matter so completely that I could but quote the paragraph word for worl. I venture in this paper, however, to return to Stenorhinchus, a name which is certainly open to objection, but not perhaps to so much as are Ogmorhinus and Stenorhynchus, while it is rertainly preferable to Itydrurga.

Stenorhinchus, then, has a very extensive range, not only far to the sonth and within the Antarctic Circle, but also throughout the Southern temperate regions. It has been recorded, for exampie, from the Falklands, Camplell Island, Desolation Island, New Georgia, Lorl Howe Island, Tasmania, Cape Horn, New South Wales, Patagonia, Kerguelen, and varions parts of the coast of New Zealand (Port Nicholson aud Wellington Habour, the Waikato and Wanganui rivers), where Sir James Hector says it is a commun but a solitary tuimal. "It frequently comes on shore, aud, notwithstancting its feelle powers of locomotion, scrambles far back into the bush in Hat country, and oceasionally ascends rivers for a long distance." Farther south, Ciptain Larsen reported it from Louis Plilippe Land in November, Ar. Brave from Grahan's Land, and Mr. Borchgrevink from Robertson Bay in September. Sir


Fig. 21a. Adult Webbele's Seal Thatrldiat of Ief,


Fig. 21b. Foči. Wimidele's Seal in the Filest Werk.

James Ross obtained it in the Antarctie pack-ice to the north of Ross Sea, as also did the 'Sonthern Cross' and the 'Belgica' later on. Nore recently it has been reported by the Sottish Expedition from the South Orkneys, and by the Swredish Expedition from South Georgia, and from $65^{\circ} 19^{\prime} \mathrm{S}$. lat. in $56^{\circ} 48^{\prime} \mathrm{W}$. long.

In the 'Discovery', during our passage through the pack to the north of Ross Sea in January, we saw one example ouly, which we prorured (fig. 22, p. 28). It was an adult female, and in full milk, lnt we saw no sign of a young one. On our homeward voyage we again saw two cxamples in loose and disintegrating palk-ice, on March 1st, quite close to the Balleny Islands.

The 'Morning' procured three evamples ako in the Russ Sea pack, about $68^{\circ}$ and $69^{\circ} \mathrm{S}$. lat. in $173^{\circ}$ and $178^{\circ} \mathrm{E}$. long.

The identity of this seal has, I think, on many oceawims heen mistaken. Mr. Borchgrevink scems to have confused the two so-called Leoparl Seats, and quite hahitually speaks of the Sea Leopard (Stenorlinchus leptonyr) when giving an excellent description of Leptonychotes weddelli. Mr. Bruce also appears to have made the same mistake in Grahan's hamd. Stenorlinclus is a solitary anmal,* and the seals which he saw in "a great host, moaning londly," must surely have hecn Weddell's Seals. I cau also understand Dr. Donald's note that "the females of the larger species were larger than the males" only by lelieving that the animats he speaks of were Weddell's Seats.

It is with all due deference that 1 urge such criticisms, lut it is well to correct, if possible, misapprehensions which have arisen from these accuruts, for Stenorlinchus, above all things, is in the Antarctic ice a widely scattered species, not found in large herds, and not "one of the two best-represented seats in the pack-ice near Victoria Land," as Mr. Borchgrevink has stated; nor can it be said to breed in liobertson Bay, except possibly on very rare orcasions. Leptonychotes, on the other hamd, does all these things, and it is of Leptonychotes that they shonld rightly have been reconded.

Mr. Moseley's note of a herd of 400 of these animals at Kerguclen Island is perhaps less open to doult. It is more probable, however, that this was a collection of Stenorhinchus than of Leptonychotes. It is just possible that it was neither, although looth are known to have occurred there.

But it may here be pointed out that we know practically nothing of the breeding habits of Stenorhinchus, and that it may collect for the purpose of breeding in the outlying islands of such places as Kerguelen. It seems occasionally to produce its young in the Antarctic pack ice, or in the neighbourhood of Antarctic lands, but no acconnt has ever yet been given of anything approaching an undonbted 'rookery' in the Antarctic. The 'Southern Cross' Expedition 'lamed to have fomd it hreeding in Robertson Bay, but the animal instanced scems really to have been Leptenychotes, which bred freely there.

The contour of Stenorhinchus, as may be julged from various photographs that

[^2]have heen pullished, notahly an exellent one hy Mr. Bernacehi in his narrative of the 'Sonthern 'ross' Experlition, and in the 'Southem Cross' Report (p. 26), is markedy ditlerent to all the wher species. The lieat in disproportionately large for the rest of the lonly and the power of the neck is immense. The rest of the animal tails off in a more snake-like fashion than in any other of the southern seals, suggesting great power and rapidity of movement under water. The total length from nose to tail tip, of the four specimens in our collection is respectively 128 inches in No. 64, 10 g inches in No. (;5. 181 inches in No. 66 , aml 107 in No. 18. These figures, however. do not give a true idea of the size to whieh the animal may grow, for Sir James Ross captured one with a length of 144 inches. The proportions of the animal will be hetter understood ly the fullowing measurements, which were in eath case taken in the flesh, and it may here be noted that the example recently mounted in the British Mnseum Gallery (No. G4 of the 'Discovery' rollection), was modelled earefully to these figures, so that its form represents as nearly as possible the proportions of life:-

Nose to tail til ... ... ... ... ... ... $1 \ddot{\text { P }}$ inches.
Diameter, taken with callipers from side to side:-

| It a point |  | che | hin | n |  | ... | ... | $\ldots$ | ... | 11 i | ches. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ,. | $\geq 1$ | , | . | " |  | ... | $\ldots$ | ... | $\ldots$ | 172 | , |
| " | 36 | $\cdots$ | -• | - |  | ... | $\ldots$ | $\ldots$ | $\ldots$ | 29 | " |
| " | 45 | " | " | " |  | ... | $\ldots$ | $\ldots$ | ... | $2 \%$ | " |
| " | 60 | , | " | , |  | $\ldots$ | $\ldots$ | $\ldots$ | ... | $\because 0$ | , |
| ,. | 72 | , | " | , |  | ... | ... | ... | ... | 191 | " |
| " | 84 | , | , | - |  | ... | ... | ... | ... | 16 | " |
| ., | [16 | " | .. | $\cdots$ |  | ... | $\ldots$ | ... | $\cdots$ | 16 | .. |
|  | 108 | $\cdots$ | " | " |  | $\ldots$ | $\ldots$ | $\ldots$ |  | 1:3 |  |

The end of the fore flipher, lying along the side, was bie inches from the nose. At a point 90 inches from the nose was the smallest dianeter of the belly, $1 . i$ inches.

The following dimensions were taken by Dr. Wavidson from examples captured on the 'Morning,' :-


In the stomath of the secimen whith we procured were the remains, ahmost a complete skin, of an Emperor penguin, 3 feet in lengtl. In the stomach of one taken by Dr. lavidson, on the 'Moming,' were the remains of a young Weddell's Seal. Fish, cephatopods and penguins seem to form its wief diet in the Antaretic seas, and in one instance $281 b$ s. of fish are reported to have leen taken from the stomach of a single animat. On the ire Hoes it seems to loe even less active than Weddell;


Fig. ?2. Head or Sea Leoparb, a holtt

To race $p$. 2 s

Seal * but whereas in the latter this is due to excessive fatness, in the former it seems to result from the disproportionatr weight of the heal and shomkers. Nor are these capable of being rared high ofl the ice, as they are in the case of the Sea Elephant, whose fore tlippers are still of some service as a smport to the massive head and shoullers. In Stenorhinchus the fippers, both himd and fore, are essentially swimming organs, and to this end are long and powerful, with the first and fifth digits of the hind flippers hroully pahmated at the tips leyond the nails, thongh all the flippers, both hind and fore, are still completely clothed with hair. The nails are fairly well developed in the fore limbs, the first alone being rudimentary, the other four rearhing well beyond the edge of each digit. In the hind limb the nails of the first and fifth are small and rudimentary, those of the second and fourth well formed and reaching to the edge of the digits, while that of the third reaches well beroml.

Stenorhinchus is not so immune from the attacks of the Killer Whales as one might infer from its size and strength. It has been relorted in one case, a young animal it is true, to have been seen very ladly tom loy wounds of the typical "han"wter. No. 18 of our own collection has an extensive healed scar upon the crown of the head, but of a shape which suggests rather damage dome ly moving ice floes than ly a Killer Whale.

Stenorhinchus is at once to be distinguished from all other seals by its cheek teeth, which are not only larger and more powerful than those of any other Antarctic form, but shaper each like a trident, with three long pointed cusps standing vertically to the long axis of the jaws. The points of the two outer cusps in each tooth are curved slightly towards the longer central one, which has itself also a slight curve backwards.

The typical marking of the skin of this seal has been aready detailed in the 'Southern Cross' report, and I have only here to add that the orange tint which chararterises the great majority of Museum seal skins, not only of this, hat of all the Antarctic species, is only less misleating in this wase than in any of the other forms, since the living Stenorhinchus has in some cases a tawny tint, characterising the weathered coat. This. when sherl, is replaced by hair of as pure a grey as occurs in any other of the seals. The younger animals appear to be of a more silvery grey than the older. The orange tint, which is so very marked a feature in the majority of Museun seal skins, particularly of the earlier specimens, is. in the rase of Lobodon, Leptonychotes, and Ommatophoca, wholly misleading, not one of them having auything "pproaching it in life. It results chietly from the gradual ahsorption of disorgmised fat into the hair, fat which, in life, is almost colourless, lut becomes dark yellow after death and in the course of time. The only tendency to a brown colouration in the living Antarctic seals is in the hair of the weathered coats; but this is always of a very moderate tone, and never approaches orange yellow; it should rather be described as a brownish buff in Lobodon, and a dusky brown in all the others.

* See, however. Voy. of "Scotia,' op. rit., p. 222, where Dr. Pirje writes that this seal "has bems seen to come up alongside a tloe on which the penguins were resting, seize one in its huge jaths, and sweep down again with its prey."

There appears to le a good deal of individual variation in the extent and distribution of the pigmentation in the hair of Stenorlinchus. The four skins in the - biscovery' and 'Horning' collections, although having in each ase the main distinctive character, are strikingly different in this respect. No. 66, for example, is an exreedingly handsome skin, richly marked with jet hark and dark grey, particularly upon the throat, shoulders, flanks and hind tlippers. These are the usual areas upon which the datk makings appear, or mother, one should say remain; for the chataeter of the marking in all of the Antaretie seals is such that one may more casily consider it hrought about by the greater or lesser contluence of white spots upon a dark gromul. This is the case even in Lobodon, where the white spots are conflucnt to such an extent that in many cases mo trare of the gromul colour is left. This is the case also, and to a considerahle extent, in Stenorhinchus and Leptomychotes. It is less apparent in Ommatophoca. The result of the partial contluene of white spots in young examples of Lobodon, and in all examples of Stenorhinchus, is that rings, more or less amplete, of pigmented hair remain to form the characteristic dappling on certain areas, these being constant in each case. The first part of the body to be wholly whitened is the abdomen and the throat, the last the back and dorsal aspects of the limbs and sides of the head. In No. 66 the pigmentation is murh in excess of the average, so that there are even black markings remaining on the abdomen, and the throat is very richly marked. For lescriptive purposes, the skin of Stenorhinchus may be conveniently divided into a dorsal, a ventral and an intermediate lateral area. The first is dark grey with black markings, the secom is pale with no marking as a rule, the thind is grey, freely spotted with both black and white. Specimen No. 65 is a richly marked skin, but of a different type to No. 66. The dorsal area is dark grey lout with multitudinous and small hack markings, the lateral area freely spotted with white and black, and the ventral area, particularly the throat, hat slightly marked with hack. No. 18 is again a third type, with few and indistinct markings, being of a rather dirty grey colour dorsally and ventrally, and only a pale grey below; yet there is no douht, even in this prorly-marked skin, that the distribution and appearance of the darker markings is characteristic of Stenorhinchus.

It is a significant fact that in the ten skulls of Stenorhinchus now in the British Dusem, there is to be found no variation at all in respect of the number, either of the incisons or of the cheek teeth. In each case the formula is strictly Stenorhinchine,

$$
\text { I. } \frac{\ddot{2}-2}{2-2} \mathrm{C} \cdot \frac{1-1}{1-1} \mathrm{P} \cdot \mathrm{C} \cdot \frac{5-5}{5-5}
$$

This uniformity in a species of the true seals is fuite musual. Loboton carcinophagus, Phoca greenlandica, and Stenorlinchus leptomyx are the only species in which I have heen mable to diseover aberrant dental formuke. This point is obvionsly connerted with efficiency from a functional point of view, for the teeth are strong and well adapted to the food upon which their owners live, although they are in each case also highly secialised in form.

## LOBODON CARCINOPHAGUS.

## The White Antaretie ar Crobleteting Seal.


 1I.; Barrett Mamilton, Rep. 'South. Cross' Coll. (1902), 1'. Bh, ibipue citatu; Brown, Mossman, and Pirie, Voy. 'Scotia,' (1906), 1' 12:.
 Pl. 18-16.

## List of Material in the 'Whicovery's' (ohbertion.


No. li, $q$, adnlt skin and skull. January, 19nこ. J'ack ice. Russ hea.

No. ! , d, adult skin and broken skull. January, fone. lack ice. luss hea.
No. 1", $\%$, adult skin and broken skull. January, 1902. l'ack ice. luss Ša.
No. 2s, 9 , adult skin and skill. lamary, 190z. Patk ice. Ross sia.
No. 2!!, adult skin and skull. lanuary, 1902. Peck ice. lioss sea.
No. :30, $q$, abult skin and sknll. Tannary, 1902. Pack iec. Ross Se:
No. :3: $q$, adult skin aud skull. Janmary, 1902 . l'ack iee. Ross hea.

(Monutod for 1). M. (iallery by Romland ITartl.)
No. 75, ad. skull. MeMurdo Sound.
No. 79, ठ ad. skull. MeMurdo Sound.
No. 8\%, all. skull. One of N. Ilanson's, pieked up ly me at ('ille Alare.
Also the skeleton of an adult $\sigma$.
Materlala in the 'Mornine's' 'olbertion.
 No. 7, M. 20, б, andult skia and skull. Jannary, 190:. Pack ice. lioss Sea.
No. 15, M. s. d. adnlt skin and skull. January, 190:\%. Parkice. Ross Sea. 6ifis. 17! II.

 No. 5!, M. 19, $\delta$, adult skin ind skull. January, 1!0:\%. l'ack ice. Ross Sea.
No. 6:3, M. 7, 9 , adult skin and skull. January, 190:3. P'ack ice. luss hea. No. 61, M. 11, ठ, adult skin and skull. Jannary, 190:s. Pack ice. Ross Sea. fit S.17! E.



 No. 22 (M.1), $\delta$, adult skin aml skull. Jannary. Jack ice. linss Sea. Also the skeleton of an ad. $\delta$.
Lobodon has been seen by almost every expedition that has entered the Antarctic pack ice, and in all probability it is to be found all rom the Antaretie ('ircle. Stray examples have been reoorded, as with other similar species, from the most unexpectel quarters. A specimen, now said to be in the La Plata Masemm, was taken near San Sidro, north of Buenos Ayres, in lat. $34^{\circ} 28^{\prime} \mathrm{S}$, while other two examples have been taken on the coast of Australia, the one at Mellomme, the other at Portland, Victoria, in 1897 and 1894 respectively (see "Nature," Fehrinary 5th, 1903, p. 32才): these are
of course, merely wanderers. The limits of this seal's normal rane are probably as far south as open water can be formd, at present as far south as lat. $77^{\circ} 50^{\prime}$ in Mr. Murlo sound, and as far north as the more heary pack ice has now heen known to dift, which may be rouglly stated as varying hetween $58^{\circ}$ and $60^{\circ} \mathrm{S}$. lat.

The listory of the type specimen of this speries las been briefly and reaty stated by Captain Barrett Itamiltom in the Repurt on the 'Southern 'ross' Collections. and to this 1 have nothing to add. It appears that after Gray harl deseriher the skins and skulls hrought home hy Sir James Ross, the writen lescriptions of the same amimal, figured previously in the Zoological Atlas of the Freneh Voyage to the Sontlo Pole, made its appearance. Gray recognising his specimens as belonging to the sime species, arcepted the specific name Carcinophayd, while the French natmalists aropted Lobodon as the generic name proposed ly Gray. The University Museum of Zoology at Cambridge is in possession of one of the skulls brought home by the Dmmont D'Urville Expedition. Owen's description of Stenorhanchus spridens was takon from a skeleton brought home ly Dr. Mr.Cormick of the 'Erehas' ant 'Terror' Experlition, and presented by him to the Royal College of Surgeons of England.

Anch still remains to be discovered roncerning the life history of this seal; the fart that it is to be fomm chiefly in the pack ice of the open sea, and rately along the actual coast line, suttiriently explains why our knowlenge of its habits should be so limited. Its young, no doubt, are horn into the world about the same time as the young of the other Antarctic seals, namely in the latter end of September and the leginning of October, fully a month or six weeks lefore it is advisable for any exploring ship to attempt the passage of the pack. Consequently the young Lobodon in its infantile cuat of rough white fur has heen very rarely seen, and no experition except the Belgian (1897-99) has, to my knowledge, had the gool fortune to obtain an example in this stage, for no other expedition has wintered in the park.

There can le mu doubt. I think, that Lobodon spemb the whole of its time throughont the year in the pack. We know that it is to be seen there in comparatively large mombers during the summer months, from the aroounts which have been given by expeditions from the earliest days. It is the common seal of the pack ice. For every example of Russ's Seal or of the Sea Lenpard, some fifty or sixty of Lobodon are regularly seen in the hoss sea pack.

Wedell's Seal in rarely away from land or fant ice: so rarely that in our passage through the park, not me was seen, and it was not until we had come cluse in shore towards Cape Alare that we met with it at all; but during our passage throngh the pack ice carly in January we constantly canc arross small companies of "rab-eaters lying asleep upon the ice floes. Often they were to be seen singly, often in couples, but even more commonly in small groups of five, six, or more together, and of both sexes. Sumetimes they would be lying on their barks, and sometimes on their bellies, one prition seemed to suit them just as well as another. It is interesting to contrast the distribution of these two species, Lobodon


Fita. 23. Crab-eating Seal, andit.


Fif. 24. Heal of antit Curb-eating Sfaf.
-
and Leptomychotes, since they are by far the most abundant of the five seals now known to oecur within the Autaretir circle.

Ommatophece is still a rarity; Stenorhinehes, though less rare, is very phisely distributed, and I/tororlimus can only be considered a very oscasional visitor, thus leaving Leptomychotes and Lofodon as the two seals that oecur in great numbers to chare the fied between them. This they have done by differentiating both in hadit of life and in diet, Lolvedon living mainly upon crustaceans, and Leptomyehotes almost wholly npon fish.

It is noticeable that the two penguins which share the same wea have differentiated in a somewhat similar manner, the Emperor living almost entirely upon fish, and the Adélie Ponguin almost entirely upon crustaceans. If we press the similarity even further, we shall see that Weddell's Seal and the Emperm Penguin lave similarities which are distinct from the similarities that exist between the Crab-eater and the Adelie Penguin.

The first two have the following points in common, namely, a littoral distribution, a fish diet, and residental uon-migratory halit, remaining as far sonth the whole year round as open water will allow; whereas the other two, Lohorton and Pryoserdis adelie, have in common a more pelagic halit, a coustacean dict, and a distribution definitely migratory in the case of the penguin, and although mot so detinitely migratory in the case of the seal, yet cherked from coming so far south as Weddell's Seal in winter hy a strong tendency to keep in touch with pelagir ice. By this differentiation, the interests of Lohorlon and Leptomychotes are saved from clashing, as are also the interests of the two penguins; and the advantage in cach case rests apparently with the non-migratory and more sonthern species. For one thing, at any rate, hoth Weddell's Seal and the Emperor Penguin are very much more free from the attack of heasts and birds of prey than are either Lolouton or Py;poselis culther.

The attentions of Orea gladiator are confined almost wholly to Lohodon, aud those of Megatestris maccormichi amost wholly to Pyyoscolis admice. Neither Orea nor Meyalestris can be considered to play any great part in the life history of Wedlell's Seal or of the Emperor Penguin. In this respect, no doult, these two amimals have made a great advance loy accommodating themselves to the winter conditions which prevail in the highest latitudes where water, and therefore food, 'an by any means be obtained.

There is, at present, but slender basis for saying that Lubudon is a migratory seal in any sense, but it was noticeable that so long as open water was within a mile wr two of our winter quarters, we were occasionally risited ly this seal, whereas it entirely disappeared and was not once seen when and so long as tive or ten miles of solid ice separated us from open water; although Leptonychotes, as I have alrealy shown, was almost as abundant as before.

In the month of Felnuary, for example, during our first year in MeMurdo Sound, we saw three Crab-eaters on the 25 th, and these remained with us till the YOL. II.
I)

9th of April. Others, also, appeared at varions times a short distance from the edge of the mbroken ire, but conly solong as the open water was guite easily within rearh, ats it was even into the second week of May. Then the whole strat became once more frozen over, and this shect of ine remanced mbroken for close on two years, during which time the open water was never nearer to us than five miles, aud murh more generally was ten to twenty miles away.

From the day when the sea froze orer we had no more risits from the Crab-eaters. They shmonel the fast ice and frequented only its margin and the pack. The reason of this may be that the crustacea on whirh they feed are abundant only in the quen park, and we know that Eupheusia are not common under the fast ice. Nearly two years later, when the ice again Troke up in McNmrdo Sound, a single Loludon made its appearane, a male, considerably hattle-scarred and weather-worm. It had heen freely eating a red seaweed, with which we foume the stomach filled. It is possible, however, that this anmal was sick, and that in thus entering the strat at all it was following the instinct of retirement in sickness and approaching death, upon which I have dwelt more fully in speaking of Weddell's Seal.

Certain it is that Lolortom, notwithstanding its pelagic habit of life, even more than Leptempchotes, tonds to wander great distances at the approach of death, and to extraordinary heights up the glaciers of South Tictoria Land. Thirty miles from the sca shore and 3000 feet above sea level, their careases were found on quite a number of occasions, and it is hard to account for such vagaries on other grounds than that a sick animal will go any distance to get away from its companions.

In the extracts from the late Mr. Itanson's diary, pullished in the 'southern (ross' Report (p. 95), the sane point is touched upon, though the earcases in this case were diswovered, not at great heights upon the ghaciers, but at sea level. He says:-"This afternoon 1 rommened digging out some seal mumnies. I found in all twelve of them." His list includes eight Crab-eaters, two Weddell's Seals, and two that were imbeterminable. Guly one of the twelve was not adult or old, and he proceeds to say :-" What does this list tell us? Shall we here find a solution of the zoological problem, Where do the Antarctic seals bring forth their young? It would be of great interest to get the problem solved, as the life and resort of the seals during the breeding season is entirely unknown." One of the Crab-caters he found was a "female with embryo."

On September 14th, a short month before his death, Nicolai Itanson wrote again in his diary:-"To-day something of great zoological interest happued. Fongner found a mate white seal far up in the land (abont 500 metres) under the momitain. As he wats very savage and wanted to attack Fouguer when he approatched him, he had to return to the hut and call Evans to come to his assistance with a riffe. . . . To judge by the colour it was an exceedingly old animal-white as chalkand he had not a sound tooth in his jaws. In the skin there was a number of large scars, but all ofd; the peritonemm was full of immmerable small back hard tumonrs
as ligg as shot of all sizes. What has hought this oh seal om shore? To juige hy liis tracks lee has stayel there several days. Ite was pesmaldy ill, as he was very lean, with only about half an inclu of fat. Perhaps this is a sulution of the curestion as to where all the drad seals fome firm which I have fomm seatomed about on the point here and in the guano perhaps this is a hurial-place for old seals, and they crawl on land here to die. If this is so, my first supposition that all the seal mummies are due to its heing a lneeding-place for the White seal is thereloy knocked on the head; lut this does not derrease the interest of my last monjeeture."

On Oetoler 14th, 1899, Itmson died, his great wish-the investigation of the berening halits of the White Seal-remaining mfultilled. Wr kow lout little more of their loreding halits now than he knew then, hut we do know, that where he was stationed at Cape Adare, there was no possilbility of discovering more, amb indeen the only light that has been thrown upon the matter has rome from the park ire farther north.

Dr. Racovitza, of the 'Belgiea, procured and photographen a joung Lolumton immediately after it" birth. This animal he has thas described:-"Le jeme unique est monert d'une épaisse fourure, de la méme coulen' que celle des parents, mais beauorup plus foumie. Le hébé, an moment de sia naissance, a me taille comsidérable; $1 \cdot 15$ mètre ( $=3$ feet 9 inches); il possède déjà des dent et des yeux parfaitement fonctionncls et même whe couche de graisse sous-cutanée efficace pour le protéger du froid. Il peat done immédiatement se tirer daflaire tout sent ; anssi la mere labandome-t-elle apres l'avoir allaité seulement deux ou trois jours."

By no other expertition has so young an example of this scal been hrought home. In the 'Diseovery' we hat no better fortune than the other expeditions which were in the Antarctir with us. We can only say therefore that the Cral-rater hreeds neither along the coasts or coastal ice nor on the Barrer ioe of the Antarctic lam masses, conjecturing with almost certainty that it breeds always in the pack ice of the more open seas. The appearance of the foung at lirth in september we know from the above dessription and from a photograph reproluced in Dr. Racoritza's praper. But, in its carly independence and in the very specty desertion of its mother this seal differs from Wedell's Seal, which not only tends hat surkles its young for at least five weeks and often more after lirth, and 'fuite ronstantly fir a week or two after the infant has shed its natal woolly coat and entered water.

The adult Crab-eater differs markedly in build from the heary, phegmatis movieldy Weddell's Seal, for although in length it ranges up to ! feet from the tip of the mose to the end of the tail flippers, it has never the bulk that charanterises the Wedtell's Seal. It is long and slim, tailing off gently from the shoulder's batwarts (figs. 23) and 24 , p. 22). The neck is long, and merges also gently with the head, which has an elongated appearance from the lengthening of the smout. The snout is distinctly pig-like, and can he given a tumed-up, truncated low when the animal is in fear or otherwise excited, and the mostids are dilated.

Once would have no dombt, julging merely from its outward appearance, that it had some need for a far greater agility than Werdell's Seal, and this is shown when the animal is distmberl, first in attack and then in flight. In attacking man or dexgs, it mishes fomard first with open mouth and a husky roar, and then as fuickly makes off for the nearest hole to reach the water. In character, as in appearance, Loluntom is the most active of all the Antarctic seals on land or ice, but probality is inferior to the others in point of speed while under water. It is usually aggressive when distulned, and, in comparison with Leptomyrhotes, might certainly be called "nemrotic:"

Its progression on ice is fal more rapid than that of Weddell's seal, and its morements when adarmed become as nealy as possille duadrupedal; for while the lithe and active body takes on the motion of a fish, the fore limbs, insteal of lying inle along the sides, as in Wedelell's Seal, assume alternating action, exactly as they would in a four-legged least. The hind limbs, of course, are functiomless as legs, and camot be brought forward as those of the Eared Seals can; but the rapid movement of Lubodon when thoroughly alarmed, rushing along as it does with head erect in a sinuous, suake-like comse, is strongly suggestive of some fainly recent four-legged antecedent. It has, of course, also the chatateristic " looper-like" methot of progression, in which the body is alternately hitched up and shot forward from the chest and pubes, and this method it has in common with Weddell's seal. The other mote of progression seems peculiar to itself: In the water it is naturally more active still, and this activity is probably ucedful to it, more for escaping from its arch-enemy, the Killer Whale, than for procming foorl.

As Captain Barett Jamiltom has pointed out, the long, pig-like snont and the peculiar chanacter of its tecth, which close upon one awother to form a sieve, have both to do with its method of capturing the crustaceans (mainly Euplumsize) upon which it feets. Either at the bottom of shallow seas, or along the "foot" or submerged ledges of leergs and floes, it stirs up both mond and git and gravel, faking these in freely with the crustareans that are stired up with them. The arrangement of the cusps in the teeth of both jaws, then coming into play, allows the water to drain out before the remaining contents of the mouth are swallowed. This development of conps in the teeth of the Lalmetom is probably a more perfect alaptation to this purpose than in any other mammal, and has been produced at the cost of all usefulness in the tecth as grimers. The grit, however, which forms a fairly constant part of the contents of the stomach and intestines, serves, no doult, to grind up the shells of the erustaceans, and in this way the necessity for grinders is completely obviated.

In a few rare cases there is seen to be some wear, however, in the teeth, and this always in the skulls of the oldest seals. Such wear is not easily accounted for, but may follow, I think, from some change of habit or of diet in old age, pertaps, as in Wealdell's seal, from opening ice-holes in a sechded bay, or from changing to a seatred diet, as ahove suggested. The delicate nature of the rusps, me might think, womd lead to fremuent damage, but this is not the ase: and thomgh it
quite a common thing to find grains of wand and grit wedged in immonahly betwodn them, they are very mely hoken. If in extreme oblage a seamem died is pefermed, if is pussible that in wrenhing this from the rome mpen which it errows, the teeth might show some such effect in wear, though one thing is certain, that in the zeat majonty of adult skulls there is hardly any sign of wear at all. Ocrasionally the remains of some small fish are fomed in the stomanh of this seal mixed up with the Euphomsior, lout the latter form its diet in the main, and, measuring up to half an inch or more, may often be foumb umamaged in the contents of the stomanll. The pigment of this sehizopod is passed maltered in colour in the excreta, colomring them lirick red. It surprised us not a little, after rearling that the stomachs of atl the seals which Mr. Borchgrevink saw captured in the pack were empty, to fimt that the stomarhs of those we captured, in the same month, and in the same state of partial monlt, were repleto with food. The moulting Crab-eater nether shuns water nor prefers to starve while his coat is heing shed (see Author's notes in 'Southern ('ross' lieport), and the diserepancy between on respective observations must have heen aecidental.

The monlt of Lolorton, which necms in Jannary and Fonuary, follows a regular couse, beginning, as in Weddell's Seal, on the limbs both hind and fore, amb prearling in a line from the heal to the tail, mid-dorsally. From this it spreats down the sides, and also from the belly, the sides often retaining some old bleached hair for a considerable time. The change in colomr resulting from the moult varies a grom deal, not acording to the sex, but according to the age of the individual. Young inlalt Cral-eaters, when freshly monlted, are very hamdsome animals, for their hair is musually silvery, not white, but grey, and the ring-marks which anpear very constantly on the flanks, shoulders, and sides of the head are of a rich choondate bown colour. One example was hrought home from Cape Adare by the 'Sonthern Cross' Expedition, which represented the stage of transition from the natal monlt. Before it was tamed it had a grod deal of the long whitish wool that dharacterises the iufant at hirth, as in the example which was procured ly the 'Belgica' Expedition. This fin was lost, unfortunately, in the taming process, as it wats actually being monlter when the seal was killed, and the coat which appeared beneath showed only the urwal mottling of the young alult.

This mottling is a very variable feature even in the mencathered phase which immediately follows the monlt. As a whole the hair is silky and of a wam hrownish grey, darker mid-dorsally, silvery white ventrally, and ring-marked with a rich warm brown. The ground colonr, so to speak, of the whole animal is this dank brown, and upon it the silver grey may he consilered to have been develoned in the shape of "val spots, but to so great an extent that the spots are conthent over the whole body, except on the flanks, shoulders, sides of upper neek or head, and to a very rarialle extent over the remainder of the body. In one specimen, which mfintmately was not procured, as also in No. 19 of the 'Insovery' obllection, the white spots are mot attogether conllnent on any part of the benty, the result lecing a heautifully spenten seal.

It must be understond therefore that in the least mottled examples the dark brown colour appears only on the flippers lind and fore, and in the shape of a few
 Fig. :? of llate $V$. in the 'Southern Chess' Report, which are from whomed drawings of my uwn, represent sufficiently the points to whin I have here refered, and I have not deemed it necessary to repeat them. These two plates also illustrate the changes which this seal matergoes in the rourse of the ensuing year. The whole coat changes. gralnally during the winter months, and mach more rapidly during the summer, to a "remy whiteness ly bleaching, while the dark brown ring-marks and the flippers also fade to a pale amd often lardly discernible luff. I speak still only of the young adults. The result of this heaching is to produce a creamy-colonred seal, which has in conseyucure been mimed the "White" Antaretic Seal. It is applicable only to the heached and weathered coat of summer, whith is once more shed in January for the darker bomwn. In Plate V. of the 'Sonthem Cross' Report are shown first the bleached and weathered hinder 'puaters of a young adnlt in Fig. 1, then the moult commenced in Fig. - , and lastly the new wat in lig. 3. As age advances, and partionlarly in the males. the levelopment of the paler shates hecomes more and more complete, until in advanced age there is no longer any trace to be fond of the dark brown under-rolour, and neither ring-maks nor mottling make their appearance cither in the new roat or the aht.

Thus one may describe the most common phase of all as a seal of miformly pale whumis, reamy white in the weathered coat, and brownish grey with silvery tones throughout in the newly moulted amimal.

The following analysis of the skins in the present collection will give some idea of the comprarative frequency of the varions phases:-

ii. Nkins with some faint markings, Nos. 17, 2?!, 5! (the last with marks on hind quarters only).
iii. Skins with distinct and extensive markings, Nos. 19, 2n. 89.

Nkin No. 39 is exceptionally handsme: along the top of the head and hack it is silver-grey, but along the sides, fiom the face to the thanks, the white spots or splashes are distinet from one another, leaving more or less chorelate-hown in the form of ring marks bedwen them. The fore and hind flippers are chocolate-hown, and the tail hrown slouted with white. It is the confluene of the white spots which calses the loss of the chamateristic dappling. The whiskers are twisted, each on its own axis, as is the case with all the Antarctic seals. Each bristle is white with the terminal third hack. The iris is dark brown, and the reflex to le seen in the vertical slit-like pupil when it opens to a lozenge shape is a brilliant emerald green. If the hair of Lutheden is "xamined it is found to be rather more than half an inch in lengtly, quite straight anl tapering finely to a point after coming to its greatest thickness abont a fuarter of its length from the root. In the hairs of an old white seal no trace of pigment gramules can lee fommot.


Fig. 25. Domein Blow-hole of Wedhell's Sbal, see p. 21.

MID-DORSAL LINE.


MID-VENTRAL LINE.
Fig. 26. Scars in Skin of Lobodon ( 1 , nat. size), sec p. 40.

The following table gives measurements, taken in the thesh, of perimens mbleded by D1. Davidson, on the 'Morning' :-

| Sex. | Nose to tail. in inches. | Greatest girth, in inches. | Length of foreflipner, in inches. | Breadth of foreflipper, in inches. | Length of hindflipper. in inches. | Spread of hindtipper in inches. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| No. 5 | d | 81 | 二; | $1{ }^{6}$ | 11 | 18 | 21 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 68 | 9 | ! ${ }^{\text {a }}$ | 20, | 10 | 11 | 16 | $1{ }^{1}$ |
|  | d | $!1$ | 8.) | 15 | 1\% | 17 | 25 |
| , 58 | $\delta$ | 82 | 87 | 17 | $!$ | 17 | $16 \frac{3}{3}$ |
| 57 | ${ }^{6}$ | N | 5.5 | 1 ; | 10 | 17! | 23 |
| , 76 | d | 95 | 56 | 18 | ! ! | 18: | 14 |
| 7 | 1 | (x) | 512 | $17 \frac{1}{4}$ | 9! | 17! | $\geq 1$ |
| . 15 | ${ }^{6}$ | $\therefore 1$ | S13 | 1 i | $9!$ | 17 | 17 |

 its skin the sears aml womls which have drawn the attention of maturalists for many years. They have proved a fertile some of diseussion and speculation, not only on account of their scientific interest, but because the commercial value of such seared skins is much reduced. It is certainly true that the greater number of Lobodon skins taken in the Antartic ice are damaged by long rents. Those may present themselves as freshly intlicted wounds, deep and gaping through skin and blubber to the flesh, or as shining white scars formed liy the healing of such wounds.
"Half the pack seals are worthless from scarring. Scars frefuently rumning parallel up to twelve inches long and about one inch apart, whiefly on the sides and lower parts of the londy." Thiss Mr. Bull, whose interest in the voyage of the 'Antarctic' was largely a rommerrial one. He suggests, further, that the lecland ground sharks may have some Antartic remoterpart in an amimal with similar habits, and were it not that the abmudane of Orca pletctutor in the Sunth makes surch a summise hardly necessary, the suggestion would lie a good onc.

Captain Jensen, too, whose interests were also to some extent commercial, has remarked upon the fact, saying that many of the "Grey Seals" taken were more or less cut up with sears and wounds in the skin.

Captain Kristensen thinks that the wounds are mate by a sworl-bearing animal. It is well, therefore, in the light of these suggestions to examine carefully the nature of the wounds that are so commonly found on the Antaretir seals, not one species of the whole number leeing altogether free, though Lobolon appears to be more subjeet to them than any other.

Leptonychotes I have myself seen on one or two rare oreasions with large, gaping wounds upon the side, although it is, on the whole, wonderfully free from them. Amongst thirty skins of Leptomychotes in the 'Discovery's' collertion not one can show the typural scars, though many of the males can of comse show fighting sears, the short and
shallow rents which ame mince in the rutting monthe by other males. These camot be mistaken for the long sarts at present muder disenssion.

Ommatopher males show abmant fighting sears, but I am mot aware of any skin of this species whirh shows the characteristic rents, thongh the searity of skins abmost remores this seal from the discussion.

Stenorhinchus leptomyx, one might imagine, would be free of these wounds if speed and strength can avoid them, yet it has been reported with the typical open woumls, the specinen being a young one. The fact remains, however, that whereas in other seals the scars occur but rarely, in Lubodon one may say they are the rule. Ont of trenty-four skins of Lohodon in the 'Discovery' collection no less than thirteen lave the marks of these scars and wounds upon them, quite distinct in every case from the fighting sears. The small, short, and often abundant fighting scars are fomm on the males alone; they are more abmant in nearly every case about the head and neck, and of this, skins 7,8 , and 22 of our collection afford goon examples, though in the male Wediell's Seal they are often miversal, with a special almudance romd the genital orifice. The more serious scars and wounds, on the other hand-great rents measming from 12 to 17 and 20 inches long, arranged in parallel rows from 2 to $2 \frac{1}{4}$ and $2 \frac{1}{2}$ inches apart from one another-these are, of course, not made by seals' teeth.

In almost every case they are on the sides of the animal or on the abdomen, and appear to have heen inflicted from below. There is a close similarity in them all that at once puts out of court the suggestion of damage done by ice movements. One can imagine a seal being erushed between moring ice floes, or losing a flipper, or its life, but one cannot see how ice can tear the skin like a horse-rake, leaving ten or twelve tooth marks in a parallel series, each equi-distant, more or less, and up to 1.8 imehes in length (ser fig. 26, p. 38). Such wounds ran only have been made by the killer Whale, the Orea !ladiator-the predacious dolphin of whose powers Eschricht gives us some idea when he says that in the stomarh of one of the Northern Killers were found the remains of $1 m$ less than thirteen porpoises and fourteen seals.

This wolf of the seas is extraordinarily abundant in the Antarctic; we have seen it constantly in herds of a score or more together hunting along the edges of the ice where seals and penguins may be found. On a few occasions McMurdo sound has been full of them, their high curved fins appearing everywhere, and on one occasion there must have been a hundred in a herd. These powerful beasts, abont 15 to 20 feet in length, are almost, if not quite, identical with the Northern form. They travel far to North and Sonth, and were with us in S. lat. $30^{\circ}$ as well as in $78^{\circ}$. They seem to be resident in the South so far as open water will allow, for they appear as the ice breaks np, and are last seen as the water freezes over. Ever on the hunt for seals aud penguins, the damage that they do is written plain on Lobodon's skin, and I think it is impossible to doubt its evidence.*

[^3]Such skulls of the Nowthern Oren an I have been able to exmmine present an amy of tecth which well agree with their inseriptions. The distance diviting the conimal crowns varies from 1 to $2 \frac{1}{2}$ imehes. These measurements as neaty ats pasible agree with many of the scars. Take, for example, such seans as are figurel below from skin Nu. © in our collection, showing not only where the teeth of the upper and hower jaws piered the skin, but where the skin eventually gave way and allowed the victim to escape (fig. 26, p. 38). The spacing of the teeth in this case must have heen about an inch, and the length of jaw which intlicted the womols, about 21 inches.

## OMDMATOPHOCA ROSSI.

Russ' Seal.
 ‘South. ('russ’ Coll. (1902), p. 46, ibique citatu; Brom, Mossman, and Pirie, Voy. 'scotia’ (19w2), pp. $320,321,327,350,361$.

List of Materlal in 'Discovery' Collection.


 (Mountel for the B. M. Gullery by Romland Wert.)

List of Material in 'Mornivg' Collection.


 full moult.

Ommetophoce was first diseovered by the British Experlition of 1840 muder Sir James Ross, and the type specimen which was eaptured on Jamary 8th in the pack ice to the north of Ross Sea ( $68^{\circ}$ lat., $176^{\circ}$ E. long.), is now in the British Musemm (No. 324 A). It was clescribed by Dr. J. E. Gray, and remained mique mutil, first the Belgian Expedition of 1898-99, and then the 'Southern Cross' of 1898-1900, brought home more examples and some notes upon its matural history.

Mr. Bruce's "Mottled Grey Seals" were ahnost certainly young adult (rab-caters in the freshly moulted coat. The two species are not casily confounded, and so far Ross' Seal has never been discovered in numbers together, preferring, it would seem, always to live a solitary existence in the pack.

From Dr. Racovitza we have a description of this seal, of its voice in particular, and of its general appearance in the flesh, acompanied bey a very execllent photugraph which shows the peculiar habit it has of inflating the pharynx with air.

Six specimens of Ommatophoca were procured by our own expedition in the pack ice of Ross Sea, and on thirteen oceasions it was secn ley mombers of the 'Belgica' Expedition in the pack ice to the west of Graham's Lamd. This very
fairly reprachts the distribution of the seal as regarts number. It has never been


Its rame extmots wer a wide area ( $40^{\circ} \mathrm{W}$. lat. to $160^{\circ} \mathrm{E}$. lat.) from the neighmurhoul of Alexambat Land westwards to the pack ine of Ross Sea, and in mather increasing numbers towards the Balleny Islands.

In the 'jiscovery' we procured two males and a female in our short passage of a week through the belt of ice pack, while Dr. Davidson, in the 'Morning,' who made the pasition on two onasions, procured three more examples, all of which were males (figs. 27 , 28 , and $-9, p^{\prime} 44$ ). It is strage how far more frequently males have licen procured than fomales. Of the four specimens olrtained by the 'Southern 'ross' thece were males.

A young Rows' Sal has quite recently been reported ly the Argentine Expedition an having been captured on the shores of the South Orkney lalands. How young this specimen may be 1 do not yet know, hat it is interesting that it should have occurred so near to land. No example has licen foum in the natal woolly coat, neither do we eren know whether Gmmeta, heren is lnin in the uswal woolly covering of seal infancy or whether this is shed in utero. Its breening hatits are wholly monown, and though it is sufe to conjecture that it problues its young about the same time as the other Antaretir seals, and in the open pack ice, it remains still for some expedition, wintering as did the 'Belgica' in the open pack, to prove it.

The new-hern vomg of Macrorhmus are desmibed as black; those of Cystophora are white, bom in a woolly ecrat, which is very soon discarded. Analogy, therefore, does not help us to guess, though it will be a point of great interest to know, what is the appearance of the new-horn young of Ommatophoce. The white colour of the young of Cystophora suggests, as Captain Barrett Hamilon says, that this species may have been a more stridty Polar animal ; ant one may perhaps expect the same colour also in the young of Ommatoplenca.

There seems to be a far greater difference in the size of the male and female in Cystophom and Meremimus than in Ommetophere, a number of whose dimensions are here given, taken from the animals in the flesh.
'Dlscovery' Collemtion.

| No. | Sex. | Colour of the chin and throat. | Tail tile to nose tip in inches. | Girth at the arminches. inches. | Girth at the umbilieus in inches. | Side to <br> sicle dia meter taken <br> lins from nose tip. | side to side dianeter taken 6ins. from nose tip. | Side to side diameter taken at the shoulders. | Side to side diameter taken 1 foot from tail tip. | side to side diameter taken 2 feet from tail tip. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | d | P'ale chin and throat. | 81 | i2 | $2:$ | 16 | 8 | $20!$ | 11 | 16? |
| 16 | $\delta$ | Pade chin and throat. | : $3:$ | - |  | 1:3 |  | -- | -- | - |
| 14 | 9 | Pale chin and throat. | 81 | 52 | $\therefore 2$ | 16 | R | 20.4 | 10 | 16 |

Morvina＇Collemmos．
Metrsurements takon by In．Inteidsom．

| No． | Sex． | Colour of the chin and throat． | Tail tip to nose tip in inches． | Gratest girth in inches． | Length of fore Hiplex in inches． | lireadth of fore flipner in inclies． | Length of lind thiper in inches． | cpread ut <br> hind tlipler in inches． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | す | Pale chin inul throat． | Si | 59 | 16 | 12 | 1s | $\because 1$ |
| 23 | $\delta$ | Blackiwh chin ：md throat． | 71 | 46 | $10!$ | S！ | 1：3 | $\because$ |
| 20 | ${ }^{3}$ | Blackish chin and throat． | 7\％ | S＂ | 141 | $4!$ | 15！ | $2: 1$ |

In No． 46 of the＇Discovery＇eollection the riameter wist taken from side to side with callipers at every twelve inches of the animal＇s length．This gives the pro－ portions of the animal in the flesh．

Diameter from side to side：－

$$
\begin{aligned}
& \text { At a point } 1 \text { fit. from tip of nose } 1 \text { :3 ins. } \\
& \text {.. } \because \mathrm{ft} \text {. .. .. } \because 2 \mathrm{ln} \text { :。 } \\
& \text {.. : ft. ., .. } \because 20 \text { ins. } \\
& \text {.. } 4 \text { ft. .. .. } \because 0 \text { ins. } \\
& \text {.. 5ift. .. .. } 1 \text { is ins. } \\
& \text { Position of Pemis. } \\
& \text { At a print if ft. from tip of mose } 1=3!\text { ins. } \\
& \text {,. } \quad \mathrm{ft} \text {., .. } 11 \mathrm{ins} \text {. }
\end{aligned}
$$

In the＇Discovery＇series the only female is larger than two of the five mates，but it must le noted also that whereas these males are young adults，the female is a very old one．It is unfortumate that the skins and skulls ohtained lyy the＇Southem Cross＇ are misexed and camot be incheded in this comparison，and that the four skins brought home by the Belgian Expedition range only from 52 in hes to 58 inches，obviously animals which were not full grown，and a most unfortunate series from which to estimate the average size of Ommutophoer．

The greatest length of my specimen that las come under my whervation is $1: 30 \frac{1}{2}$ inches，the skin of the animal mentioned by Mr．Bernachi as heing nearly cleven feet in length，in the flesh．This animal，almust certainly a male，was of a lnownish hue， with a pale throat and chin．One other skin of thr：＇Southern Couss＇eollection，which measured 92 inches in length，wats also certamly a mate，and was of a hackish grey colour with a blackish chin and throat which fuded gradually into the paler grey of the chest and abdomen．If these two skins are included in my hist of measurements，the males on the whole may be taken to the distinctly larger than the females，and in size ctual to that of Wedell＇s Seal and exceening that of the average（＇rab－cater．

With a capability of reaching dose on 11 feet，it is the more remarkable that out of thirteen speemens none ligger than $t$ feet 10 inthes shouh have been bronght home by the Belgian Expedition．In shape Rass＇heal is quite distinct from the other Antarctic seals，as can he well seen in the photograplis whith have lecen frublisherl，
not only hy lh. Ramovitza, hat also in the 'Sumthem Cross' Report, and lastly in the present paldication (x, Fig. 27 and 28). It is well allated to a marine life, and, in consegurne, itl almped for progression on lam amd iee. On the few measions on which we sam it in the park ine, it made no eflont to escape. Consequently, wh cam say mothing as to its methods of prouressiom. It has, as it lies on an ice floe, a most peruliar pug-like expreasion of countenance. It was in each rase excessively fat, and its head was withdawn into the circular folls ar molls of heavily blublered skin on the neck to such an extent as almost to disappear from sight. The eyes are mot large, and the mouth is small for the size of the amimal compared with the mouths of other Antareties seals. This one would expert from the decadene of the post-canine teeth. The prominence of the forehear and throat in Fig. 28 is as characteristic as it is peruliar, and results solely from the withdrawal of the head upon the neck.

We had mot the good fortune to see or hear this seal perform vocally, but having constantly heard Wedell's Seals produce a variety of musiral moises hoth laryngeal and asophageal, we could casily appreciate the excellent desmiption given by Mr. Racovitza of Ommatophoca:-"Ce phoque possede aussi une aptitude curiense qui le distingue de ses congénéres. Sa voix est beancoup plus complignée et les sons qu'il émet plas variés que ceux des autres phoques. Il peut gonfler son larynx et en outre son énome volle de palais, de facen a constituer deux caisses de résomance, deux poches contenant grande provision d'air. Cela lui permet d'exéruter des trilles et arpiges aussi sonones que lizarres. Lorsqu'on l'inite, il rommence par gonfler som laryux en rabattant la tête en arrière. Il produit alurs, la guente ouverte, et son voile de palais distemdu aparaissant comme une grosse houle ronge, un roncondement semblable à cehi d'me tourterelle emonée. Puis il ferme la gueule et émet un glonssement de poute effiaybe. Il expulse finalement avee violence, par les narines, sa provision diair, et cela produit un reniftement comparable à celui que fait un cheval qui séboue."
'The flippers of Ross' Seal are large and well formed for swimming. The nails are generally to be fomm, if earefully searched for, on each digit of loth fore and hind limbs, hat they are all mdimentary, and wholly functionless. The fore flippers are webled to the extremities of each digit, and when spread the limb forms a most efticient paldle. The hind limbs have also a very extensive spread, the first and fifth digits, in
 similarity to those of Muerorhmus; they are also, as in that seal, completely covered with hair. The kength of the first and fieth digits of the hind limb, compared with the third or centre, is as 15 and 16 inches to 9 inches.

The foon of (bmmatomene consists of cephalopents. The beaks of cuttle-fish have on more than one oceasion been found in the stomach contents of this seal, and the following passage occurs in a report on the Argentine Antarctic Station by Mr. Rudnose Brown, of the Sootish Expedition (The Seottish Compethecel Daymeine for April, 1905) :-"From the number of cuttle-fish beaks found in seals" stomathe, the Sontish Expedition had the strongest evidence of the existence of a large cuttle-fish in


Fig. 27. Ross' Seal, adult.


Fig. 28. Ross' Seal, adult.


Fig. 29. Ross' Seal, adult.

Sonth Orkney waters, so that the calpture hy the Aremtines of one with a lowly over © feet long is of special interest."

Mr. Hanson on Jamary $\because$ Inst, 1899 , motes in his diary that the stomarh rontents in one case consisted of seawed, am that " in the bowels he hat an immense number of worms." On January $24 t h$ in another case he mentions "Ortopus and vegetable stuff ;" and on February Brd, "the stomath was quite full of food, consisting solely of octopus." For the "worms," which were parasitic, we ourselves can vouch, for in earch of the three specimens that we obtained there was quite an enormous number of nematodes in the stomarh and tape-worms in the gut; but of food remains, absolutely none. Ross' Seal lives mainly on soft-hodied cephatopords, and to this end has developed the incisors and canmes into needle-pointed recurverl hooks of great delicary, and has allowed its post-canine tecth to degenerate. The gums presumally can manipulate such food as well as eoult molar teeth, and so we find that in some cases, although developed, the post-canines are small and insignifiant, whereas in others they are loose and useless and ocasionally absent altogether. To sucli a marked degree is this degeneration of the cheek teeth progressive that it is rare to time two skulls to which the same formula applies.

The discrepancies hrought to light by Captain Barrett Lamilton in the series of the 'Southern Cross' wollection have been fully maintaind by the six additional skulls of our own. In this series of six skulls there are mo less than five variations, and it may be of interest here briefly to sum up the position loy plaing these and several others for eomparison together, though the question of variation in the dentition of the seals generally is more fully discussed helow (sce p. 4(i).



In bur wwo series the tweth of skull No. 1 are exeptionally strong and welldeveloped throughout, quite regular, amd limbly ronted. The same remarks apply alsa to the teeth of aknll No. 1t, hat for the presence of a small alditional inerisor, anl th thase of No. th. The incisor tecth of No. 35 , however, are most unsmal. They ocem in two ties, wf wheh the outer four are the larger, and the inner four minute. In skull No. $\because 6$ the teeth are all well developed hut not well rooted. The alseoli are shallow, and just outside and behind the first premolar on each side of the lower jalw is what appeas tole a persistent milk tonth. In skull No. os precisely the same apparent persistence of a milk tooth is to be seen in a similar position on each sitle of the upper jaw.

In the fresh-killeal amimal it is gnite a common thing to fimd all the cheek teeth loose, amd whan the skull is cleancel, they will be limul in some cases to bave no bony socket at all, being merely hed in the fleshy gum ready to drop out sooner or later and leave no trace of their existence.*

Ommotophoct has apparently the same range amd distribution as Lobodon, and no doubt if both were dependent on the same forel, there would be some struggle between them for sulsistence. But seeing that Loborton lives on crustaceans, and Ommatophea mainly on cuttle-fish, and possibly some vegetable matter, there is obvionsly room fur looth, :mm it is not easy to see why in mombers Lolomthe should be so very far ahead.

If we ronsider the position which ommatophoed has been given in the later classitications of the seals, we may douln, I think, with some reason whether it has really as much in common with the Stenorhinchince as has been clatimed for it, and whether it has not cheser aftinities, notwithstanding the number of its incisors, with the Ciystophorlince than with any of the Stenorhinchina.

In all the seals, with hut very few exceptions, the variation in the dentition is so exressive, that one is led to dombt the advisalitity of laying so much importance on this one feature. When one finds, for example, in the Plencince, grouped mainly upon the number of their ineisore, first an example of Pluce vitulime with I. $\frac{3-3}{3-3}$ as a

 with $1.3-3$, the other with 1 . $\frac{4}{2}-\underset{2}{2}$, as variations of $I . \stackrel{\square}{2}-2$, and an example of


* My attention has been dawn by Prof. F. Jeffrey Bell to the following diserepant statements conceming restigial teeth in Whales. L'rof. MI. Weber (Die Sangetiere, 1904, p. 578 , says of the Ihyseterine :-" Zanne des Oberkiefers rudmentar, brechen micht durch"; but Bemett (Whaling Voy. Round the Gobe, Vol. II., 1840, t. 163) says:-"The upler jaw is not altogether toothless, as usually deseribed. On the contray, it has on cither sile a short row of teeth, which, for the most part, are placed more interior than the depressions which receive the tecth of the lower jaw; hough they sometimes, also, occupy the hottom of those eavities. Their entire length is three inches; they are cursed hackwards, and elevated about half an inch above the soft parts, in which they are deeply imbeded. having only a slight attachment to the maxillary lone. In two instances, I have fomb their number to be eirht on ewh silc. They exist in both sexes of the Spem Whate: and although visible extermally only in the adult. they maty be seen in the sonng ammal upon remosing the soft parts from the interior of the jaw."
from the normal mmber and arrangement of incisors in ommethethor, I thimk that, however satisfartorily a seal may fall into a certain salb-family in this respect, one is bound to ask first whether the mmber of inersors is a point of such grat importance as is thens impliat. and semondly, whether a pectial taste in fomelstutl's may not have led to something like a reversion in the mumber as well as in the thatacter of the teeth. Presmably, the less differentiated types of seal have the greater munder of incisus, and so presumally the Cystophorince, latving reduced them to a minimum, have departed farthest in this respert from the ancestral type. But having done so, it would be as casy at any rate, if not casier, for a seal to revert again to the greater number of incisors than to make a still greater redurtion as in the Cystophonime. This seems to me to have been the alse with ommutophom, and quite a consirlerable number of points can be alduced in which it shows close aftimitien with Cystophore and Sherorhinue, far more than san be adtured to womect it with the Stemrhinchince.

For example, if we examine the post-canine series wh find in (tmmotophed a strong tendency to retuce their nomber, giving the fiblowing ahmmant variations:-

 P.C. $\frac{3-3}{5-\frac{3}{4}}$, P.C! $\begin{gathered}5-5 \\ 4-4\end{gathered}$, and ahmost the same extraomatinary variahility in their number, printing to a similar functional worthlessmess such as we have seen hohls groul in
 of post-camines, the reasom is probally to the fomm in the fart that its finet mosisto met wholly of Cephatopons, lomt also to a monsiderable extent of some fore which neressitates a more usefol set of monars fir purposes of mastiation.

There is therefore mpon consideration of the post-ranine tectl, goorl reason for thinking Ommatophence to be more rlosely related to the Cystmpherime than to the Stemerhinchime, not a member of whirlh shows any tendency whaterer to vary from the
 coverable in about forty sknlls, have P.N. $\begin{aligned} & 6-6 \\ & 5-5\end{aligned}$, and P.C. ${ }_{5-5}^{5-5}$, showing, if anything, not a tendency to realuce the sheek teeth, as in Ommatophoor, lont to moltiply them. Both in the incisors and in the rheek teeth therefore the affinity of ommetwhere to the Ciystophorina seems to be upheld.

If we now turn to other points, and examine the skulls of the sperics under consideration, we fimb puite as many and is important points in which thmetny hore resembles Cystophore and Ifacrorhims, as we find points in which it resembles any members of the Stenorlinchine. For example, to prote from Sir William Turner, the skull of Ommatopheca approaches that of Cystophore not mily in the vertical inclina-
tion of the anterior nares, lut in the relation of the anterior nares to the infra-mhital foranch, in the width of the ollits and interzyomatic regions; and in the small proportion of the ascending parts of the premaxillae, which leave a large part of the materior nares to be hounded ly the saperior maxilla. To these I would add that in Jucronhinus the premaxilla make no effort to reach the nasal bones at all and leave the whole of the anterior nares to be hounded ly the superior maxilla; in this respect very widely differing from the form of the same bones in the Stenorkinchine.

It is of conse true, as Captain Barrett Hamilton has pointed out, that in some resperts the skulls of Ommatephoce and Cystophora differ. He allows, however, that the few characters to which he draws attention do not bring Ommatophoca any nearer to the Stemorhechine, and this is just the point I wish to urge. The resemblance of the skull of Ommatophoca to that of Nacrorhmus is seen to be very marked when only immature skulls of the latter are taken for comparison, a point which it is well to bear in mind when using such highly secialised anmats for comparison as the atult Sea Elephant. It is exactly as one would expect that Ommatophoca, in which no very striking peculimities have heen developed, should fime its closest resemblance in the yomg and immature skulls of Macromhinus, which represent far hetter than the arlults the more primitive type from which both of these seals as well as Cystophora have probably sprong. There appears, moreover, to be some reason for believing that Ommatopheca approaches Wacrerhimus and Cystophore in the relative size of the sexes, at any rate to a greater extent than do the other members of the Stenorlinchinx; and the evirlene of all the fighting sars upon the adult males of Ommatoplued inflicted as they are, solely on the head amd neck, as in the (ystaphmime, and never on the body, as in the Stenmhimelinee, afforls strong support to the assumption that they fight standing up to ome another on their fore limbs, as lo the Cystophorime; Joth Ommotoplowen and the Cystiphorime approaching on this point far more closely to the Otariedee than do any of the Stenorthenchime.

In fond also, as one would expert from the form of the teeth, Ommutophoter agrees with the Cystophorime, both members of which are satid to live mainly upon cephatopods. There is also in the character of the hair of Ommatophoca a certain similarity with that of Macrorlimus, both having short, flat, broad and decidedly coarser hair than occurs in any of the Stenorhinchine.

There is, as I have sail, a strong general similarity in the form of the hind flippers of these two seals, a similarity which is not shared by other members of the Stenorhinchince, and the extremely rudimentary nature of the claws upon the hind limbs is rhasacteristic of hoth, as also of Monachus, and different from those of Stenorhinchus, Leptomychotes, and Lolviton, in all of which the claws are well developed.

In the fore limbs, however, Ommatophoca stands apart with claws as rudimentary as these upon its hind limb, whereas the claws of the fore limb in Macrorhimus and Whmothes and of both limbis in Cystophora and Inelichorres are exceptionally well developed.

Nor is there in Mecrorkimus any marked develnpment of spots or splashes, and in this Ommatophoce confoms to it rather than to the characteristionlly spotterl seals with which it is at present grouperl. Nevertheless, it would mot be surprising to fime that the young of Ommonnthen was spotted as is the yomng of Cystophora ; particularly as a tendency to sueting is measionally foum in Muromimes. ln a very great number of ways, therefore, it would appear that Ommutophocu has really closer affinities with the Cystophorme than with the Stenmhinchinee, notwithstanding the apparently decisive judgment given by its dental formula: This 1 believe to be perhaps of less real value than it at first seems to be, wwing to the extramedinary amount of variation to whirh even the mumber of the inersors is subject in every gromp of seals.* Mardly a speries hut shows ly these variations that no hart-and-fast law binds them, and the fart olvionsly means that the teeth throughout the family are molergoing rapid changes. ln some, as in Ommatnpluen, the check teeth are on the point of disappearing altogether, ind it is therefore less surprising to fime that the canines and incisors are becoming of ereater importance to this amimal. ls there any great difficnty in believing that in sheh a case, even il the incisors hand once been realuced to $\frac{2-2}{1-1}$, they should again revert to $\stackrel{2}{2}-\ddot{\sim}$ - or , imdeed, as in we wase has actually happened, that the reversion should go even farther and prome thee incisors on one side in both upper and lower jaws? This example alone is suffirient to prove that there is no insurmountalne rliffirulty preventing the multiplication of incisor teeth. I cannot help thinking that either the young of Ommatophoca, or a more abondant series of skulls than is at pesent at hand for examination, will tome to show that this seal is misplaced among the stonortinchine

In the eleven skins of this ammal that have mow rome under my notice there appear to be two definite varictics of rolour apart from changes which can be attributed to age or moult. Buth are identieal up to a revtain point, being dackish grey in gencral tone, when freshly moulted, darkening considerably twwarts the midelle line of the back and becoming almost whitish on the under surface, lont with no definite line of demareation between the two. Rmming barkwards, lowever, from the sides of the neck and shoulder are a number of narrow streaks and lines, pale and indistinct, but quite constant, and marking the whole of the lateral aspect of the animal amost to the tail. Many of these pale lines are mbroken for several inches in the region of the shoulder, but towards the middle of the animal's length beome broken and irregular. Towards the hinder flippers and the tail the line of separation hetween the darker dorsal and the paler ventral grey hecomes more definite, and this demarcation line extends on to the lind limb, sometimes between the fourth and fifth digits and sometimes dividing the flipper into equal halves, one dark and the other pale.

* See Bateson, "Materials for the Stury of Variation " (1894), P1, 235-243, where a number of other examples illustrating the same point will be found, and where the variation in eacb ease has been treatel in detail.
vol. 11.

The tail is almost black, with a fringe of pale hairs round the edge, and is of a more conical shape than the tail in other members of the Stenorhinchinze.

All this is true for freshly moulted skins. But in two of the six skins in our collection, and also in two of the 'Southern Cross' collection, the chin and lower lip are back instead of white, and this blackness extends backwards over the throat to fade away mpon the lneast and belly. The line of demarcation between this dark band upon the throat and the pale whitish-grey of the sides of the head and neek, cheek, upper lip and eychows, is well defined. In four skins of the six in our collection and in two of the 'Southern Cross' collection, however, the chin and throat insteal of leing llack are white, aml this is the colouring of the type specimen in the British Museum. The difference has nothing to do either with sex, age, or locality so far as can at present be seen, and must be cited merely as an instance of individual variation.

The monlt in this seal takes place in January, and in that month the animal may he found in a rusty brownish-grey coat, of which the hairs are loose. When this is shed the blackish-grey coat, which I have just described, appears first as a very meagre covering. It seems that this seal prefers to starve for a week or two rather than enter water whilst the moult proceeds. Hamson, in his diary notes, describes how he fom one moulting in the pack: "He was shedding his hair, and to all appearance he had been lying several days in the same place where we fomm him, as there was a lot of hair and excrement scattered romd about on the ice, and on opening the stomach it was found to be ruite empty. . . . . There was hardly an inch thick of blubber on the skin." Skin No. 28 of our collection is in full monlt, and shows well the difference between the eolow of the old and new coat.

The eoat of Ommatophoca when examined closely is seen to consist of two different sets of hair. The most abundant of these are short and blackish to the naked eye, while longer white hairs can be seen sparsely but generally intermixed. The white hairs are on an average about one-third longer than the shorter and darker hairs. All are flattened, stiff and straight, with a strong resemblance to the hairs of Macrorhimus and Cystophoru.

Several of the skins in the 'Discovery's' collection are badly searred, but in every case they are the scars which result from the fights between the males in the rutting season. They are particularly well seen in skins No. 1 and 46, disposed, as already noted, almost solely, abont the head and neck. In no case have I seen sears on Ross' seal which might be attributed to the Killer Whale, a fact which may be connected with the more perfect development of this seal for a marine life, with its torpedo shape and comparatively large flippers indicating a power and speed in water not seen in other species.

## MACRORHINUS LEONINUS.

The Sere Eleplent.

Phoce leonina, Linn., Syst. Nat. I. (1754), p. :8R.
Macrorhinus leonimus, Allen, Mist. N. Amer. Pinnipeds (1880), p. 466, ibique rituta: K. A. Andersson, Wiss. Ergeb. der Schwed. Südpolar-Exped., Bd. V. 2 (1905), pp. 16-1N: Brown, Mossman and Pirie, Yoy. 'Scotia' (1906), pl. 20\%, 261, :227.

Materlal in the 'Discovery' Collection.
No. 26, 9 , Young. Skin and skull. November 22, 1901. Macquarie Island.

No 87, $\delta$, ad. Skin anl skull and complete sketeton. Jimmary, 190t. Cipue Royds, Sonth Victoria Land.

The colouring of the soft parts is as follows:--Iris, dark lorown ; mouth and tongue, pale pink.
On the occasion of om landing on the Macpuarie Istands we saw something of the Sea Elephants that are to be fonud there, a scanty remmant of a much persecuted race of animals.

The lauding on the east sikle, in the bay known as Fisherman's Cove, is not altogether easy, by reason of the swell which molls in from the open ocean, but this diminishes as one enters the belt of kelp which liberally fringes the shore.

A short way $u p$ from the beach are a few whalers' or sealers' huts; the flat part of the coast-line, extending from a quarter to hatf a mike, between the water's edge and the foot of the hills, is little better than a bog, stony in some places, covered with tussac grass in others, and wet everywhere.

Beside the hats was abundant evidence of the nature of the work undertaken by those who had iuhabited them. Not only had Sea Elephants been boiked down for oit, but penguins also, and Aptenodytes longirostris had evidently come in for an undue share of attention, as the heaps of their discarded bones attested.

How near to extinction the Sea Elephant has been in these islands it is hard to say, but since 1880, when Professor Scott of Dunedin visited the island and found the Fur Seal quite extinct, shore parties are said to have been constantly boiling down both penguins and Sea Elephants, and 20 tons of Elephant oil were taken by five sealers a few years before our own visit to the island. In South Georgia, even so long ago as 1823, Weddell reported the Sea Elephant to be nearly extinct, no less than 20,000 tons of Elephant oil having been shipped to the London market alone. At one time (1802), we are told that 600 Sea Elephants were obtained in ten weeks between March and May, at King's Island, in the Bass Straits.

That seals of any kind should be still remaining is now a matter for wouler, and we were surprised to find in our short visit that there were really quite a considerable number of young Sea Elephants on the shore, and more, no doubt, than we saw, for
they were to be foum in twos and threes asleep amill the dumps of tussac grass (Dactylis), and quite invisible untıl we rame upon them, as much to their surprise as ours. Those that we saw here had come on land to change their winter coats, November being the month when they regularly leave the water for the purpose After this, it is sail, the calves are horn, and the mating season hegins in Febrnary. The males are then very thin ly reason of their long abstinence from food during the time they have remained on shene.

It is said that the Sea Elephant larely goes far from land, lout it is hard to believe that this is the ease, since we ohtaned a half-grown male in South Yictoria Land ( $47^{\circ} 50^{\prime} \mathrm{S}$. lat.), 1,000 miles or more from the nearest spot at which the animal has been known to breed ; and a second example is lately reported to have been seen in the South Orkneys by the Scottish Experlition.*

The balnit they have of suldenly rearing their massive heads, with a loud, inspiratory rour aurl, in the male, inflated nostrils, showing the while a wide, pink eavern of a month and formidable ranines, has before now been well described.

In none of the amimals that we saw in the Marguarie Islands did the total length exceed 8 feet. I full-grown female is said to reach a length of 10 feet. We met with none of the enormons males whose length has heen known to reach as murh as 22 fect in all, nor did the proboscis in any of the young males with which we came in contact attract either comment or attention ; imleed, it was hardly noticeable, though a slight suggestion of its presence may be secn in the acompanying photograph, which shows the somewhat pointed shape of the nose of a young male, in which the proboseris is but to a slight degree developel (fig. 30, p. 52).

We saw, perhaps, a score or more in half a mile of the foreshore, some of which were asleep guite "lose to the kelp-lined hearlh, others some distance from it, even up the hillsile amid the tussac grass. There were also large rookeries of penguins, loth of the King (Aptenodytes lomirontris) and of the Royal (Catarrluctes Schlegeti), both of which were breeding at the time. Though in close proximity, these birds and the Sea Eleplants showed a total disregard of one another's presence, the latter being found asleep quite near the penguins in the muddiest of pools.

That the animals will use their jaws in self-defence when startled we proved by presenting a stick to the open moutl that sometimes confronted us in a startling manner as we made our way up some steep and grass-covered bank. The powerful animal would wrench it from our hands with so much vigour that we were careful to avoid a closer contact. Nevertheless, when on shore, their movements are exceedingly clamsy and their progress slow. A rate of a mile an hour would be a generous estimate when the animal is in a hury to be away. The movement is best describerl as an ungainly "lque."

In the water they are at ance at homs. When hrought to bay on land, a thing which is cavily aromplisheal hy the simple means of treading on some portion of the

[^4]

Fig. 30. Young Male Sea Elephant, in the Macelame Inlanip.
tail Hippers, the animal swings romed the hinder portion of its body and shows a threatening front with its open month. The motion is very characteristir; both ends are off the ground at the same moment, the hind flippers and tail swinging high into the air, white the head and neck are reared up, and the anmal edges itself into a frontal position with the help of its fore limles and a kind of backward shuftle.

The Macquaric Islands have long leen known as a stronghold of this seal, but it has from time to time been reported as erfually abmutint in the Kerguelen, Marion, Heard, and Crozet Istamts. It is said not to come so fir north as the Camphell and Auckland Islands in the direction of New Zealand, althongh in other directions it has been taken at Tristan da Cumha, Juan Fernamlez, the Falkland 1slands, New Georgia and Lnaccessible Islands; also from the Cape of Good Ilope (Bartlett) and the "Antarctic Seas." It is therefore a seal of wide distribution, ocurring abmudantly in the South lndian and South Pacific Ocems, and wanlering as much to the morth as to the south.

For a discussion of the rights to specific distinction of the Californian species of Jeterorhinus I must refer my readers to Desmarest (Mimmalogie, 1ll. 239-240), Scammon (The Marine Mammals of the N.W. Const of N. America, 1874). Allen (History of N. American Pimipeds, p. 466), and Lydekker (Roy. Nat. Hist., Vol. H., p. 147).

After more than two years in the Antarctic ice without seeing any hat the four well-recognised Antarctic species of seal, it was something of a surprise to weet with a Sea Elephant in MeMurdo Sound. While encamper at Cape Royds ( $77^{\circ} 40^{\prime} \mathrm{S}$. lat.) on the outskirts of the penguin rookery which has there established itself. our attention was arrested by the sight of a large yellowish seal, with a bulk and colour and general appearance that in no way suggested any of the rommon forms we were aceustomed to. It lay on the black simdy beath not five yards from the water's elge, and as we came in sight raised its head and shoulders well on its fore limbs in a way that no Weddell Seal, Crab-eater, Ross or Lempard Seal rould imitate. In every way, in Jonlk, in colour, and in attitude it reminded us of the Macynarie Elephants; it hat also the same characteristic way of changing front. It was nevertheless hard to believe that a Sea Elephant, an animal that has become so rare now even in its own proper habitat, should have wandered thas fur against the prevailing winds :mb ocean currents.

Having no means of capturing the amimal, we made haste to leave him and return to camp, seeing that he hecame uneasy at the sight of us and evidently thought of taking to the water. On our return we were still twenty yards away when he awoke and raised himself well up on the fore limbs so that his liroad blunt mazale filcel us. The nostrils were then conspicuonsly in front of and not on the top of the shout as in the other Antarctic seals. Nore than ever now in his alarm were the characteristics of Macrorhinus evident-the bulky forequarters, the massive heal and neck, the free use he made of the fore tlippers which bent out at the metarapus almost like the
fore limhs of the Ottridie, the large watery eyes and gaping mouth, and, above all, the elisproportionately rapid tailing off of the himder parts.

As we approached he began to elge towards the water, and had even entered it before we killed him. To haul such an animal up on the beach was no light task, for being a half-grown male his weight was probally half a ton or more. The mouth and tongue were Heshy pink, the latter short and thick with a deep-cut noth in the distal end. The eyelalls were very large with dark brown irides. All these parts were pat on one side to be preserved, but though they lay quite close to us as we Heneed the skin we were robbed of them loy the Skua gulls. The whole skin moreover was afterwards buried in a mound of sand, yet the Skuas went to the trouble of uncovering it in part, and made bare patehes on the back by perking off the hair.

The boldness of this bird, combined with its strength of bill and claw, mont never be forgotten by the collector in these regions, for it matters not what is left lying on the ice, they will soon have tried either to eat or to remove it. One views with small pleasure a Skua flying off to sea with a favourite knife-sheath or a belt; even coats are dragged abont the ground, and bits of hubler freely taken from the hand.

The stomach of this Sea Elephant was empty, as also was the entire length of the intestines, which were very uniform in size and quite firmly contracted into a cord-like structure containing only a few small nematodes. Nevertheless, it was a hearily hubbered animal, to the extent of two or three inches under the skin, the whole body over. One cannot think, therefore, that it had been starving for any great length of time, and how it cam have found its food on these icebound coasts, so different to those of its normal habitat, is difticult to see. From its dentition one would be led to consider that cephalopods must form the greater part of its subsistence.

The cheek teeth are in every way degenerate when compared with the welldeveloped camines and incisors, and this is a feature which may be expected more in an animal that lives on soft-bodied amimals than in one that must either catch fish or crush the shells of molluses. The small peg-top plaited crowns of its cheek teeth are in no sense adapteal to such work. If a series of the skulls of this animal be examined, there will be found a variability in the number and permanence of the cheek teeth which reminds one strongly of the same feature in the dentition of Ommatophoca.

Of the five skulls of Macrortinus leoninus, at present in the British Museum, no less than three are aberrant from what one must take as the normal dentition. This is as follows:-

$$
\text { 1. } \frac{2-2}{1-1}, \quad \text { C. } \frac{1-1}{1-1}, \text { P.C. } \frac{5-5}{5-5} \text {. }
$$

Flower gave the milk dentition as-

$$
\text { I. } \frac{2-2}{1-1}, \quad\left(: \frac{1-1}{1-1}, \text { P.C. }: \frac{3-3}{3-3}\right.
$$

In the British Mnsenm series are three skulls with the normal number and arrangement of cheek teeth, lont also the following, which is irregular in this respect :-

$$
\text { No. 334c. Ross Expedition. I. } \frac{2-2}{1-1}, \quad \text { C. } \frac{1-1}{1-1}, \quad \text { P.C. } \frac{4-4}{5-4} .
$$

To these may now be added :-
No. 26. Young 9 . Macpuarie I land. 'Discovery' Collection.

$$
\text { I. } \frac{2-2}{1-1}, \quad \therefore \frac{1-1}{1-1}, \quad \text { P. } . \frac{3-3}{5-4} .
$$

No. 37. Young ad. 8. Cape Royds, Mr.Murdo Souml. 'Discovery' Collection.

$$
\text { I. } \frac{2-2}{1-1}, \quad \text { C. } \frac{1-1}{1-1}, \text { P.M. } \frac{4-4}{4-4}, \quad \text { II. } \frac{1-1}{0-0} \text {. }
$$

From such evidence of variability, I think it is fair to consider that the food is managed mainly by the canines and incisors, and that the post-canines are in a state of degencracy, and will shortly disappear. There is little or no evidence of wear in the teeth of specimens $334 \mathrm{a}, 334 \mathrm{c}$, and 334 g of the B. II. collection. The specimen which we obtained in McMurdo Sound, No. 37, was considerably larger than any that we saw in the Maequarie Islands. It was, as I have saill, a half-grown male. The following measurements were taken in the flesh immediately after death :-


Its colom was a yellowish grey, darker dorsally, and pale ventrally-a grod deal lighter altogether than that of the Macquarie specimens. As usual, there were no markings. The teeth were well developed, and showed no signs of wear. Nevertheless, the post-canine teeth of No. 94.11.17.1 (B. M. Coll.) show abundant evidence of long wear, this specimen having been taken from an old male.

Of the two examples obtained in the Macquarie Islauls, No. 43 of the 'Discovery' Collection was a young male and No. 26 a young female. In neither were the teeth fully developed nor were the sutures of the skull united. In No. 43 the length from nose to tip of tail is 81 inches, a length some 17 inches greater than that of the female.

In colour both are of a uniformly dull buff or brownish-grey all over the upper parts, gradually paling on the sides to a lighter tone of the same colour moderncath. The darkest shade is along the middle line of the back. The colonr and tone of the fore and hind limls are intermediate between the deeper part of the back and the lighter part of the belly. There are no spots or markings.

Terminating each digit in the fore limb is a long and narrow semi-cylindrical nail of a dark brown or blackish colour, measuring in the Antarctic example from $1_{6}^{1}$ inch or 3 cm . in length, and exteming half its length in each case beyond the digit itself. The depth of the interdigital space between the fourth and fifth is decidedly greater
than that between any two other digits, and the depth of the space between the first and seeond is rather less than that between second and third or third and fourth. The nails show no sign of wear and tear, hot have the appearance of having grown in water, though with transverse ridges indicative of periolic fluctuations in their growth. That the limb in its functional use more closely approaches the type of limb found in the Oterible is most nbvions when the living animal is observed, though in its general shape aml outline in the dead animal it is more like the fore limb of the Phocidie. The fore limb, is still functional as a support on land to a far greater degree than it is in any member of the Stenorhincline. Hair covers the palmar surface of the fore limbs to the extreme ends of the digits.

The hind limb, on the other hand, las everything in common with the hind limb, of the more specialised of the Phocidx. In it only the merest traces of vestigial nails ran be discovered on the first and fifth digits, and no trace whatever of nails on the scoond, third, or fourth. The first digit is in a remarkable degree larger and wider than the fifth, though hoth are of a similar outline, the two limbs leing well adapter to form a powerful fin or rudrer when used in conjunction, either palm to palm in a vertical position, or outspread horizontally to form together an apparatus resembling the tluke of a whale. The three eentral digits, webbed almost to their tips, are long and tapering, but the third, which is the shortest, is about half as long as the first or fifth, and the second is slightly longer than the fourth.

That they are all well supplied with muscles which allow of adduction and aloluction can be seen in the living animal, not only when under water but when lying on shore and in the act of stretching; the hind limbs are thus often extended to their widest limit when the free elge of the webbed limb, instead of being deeply concave in outline as it is when at rest, becomes straight or even somewhat convex.

Of facial bristles there are in the Antarctir specimen five rows on each side of the muzzle, and the loristles themselves are hack and twisted. There are also eight conspicuous bristles in a chmp over each eve. The hair is "flat, truncated, adpressed," as descrihed by Gray, and resembles most nearly in character the hair of Ommatoplecere and Cystophorw.

In examples so yomg as this male, the characteristic proboscis, as I have already mentioned, is not yet fully developed, though three transverse creases in the skin of the nose are distinct, and indicate its extensibility. The profile outline of the head in such an animal when excited shows a more pointed physiognomy than would appear in the profile of the same amimal when at rest, this being due to the partial inflation of the nasal sac; the external nares being thus forced out, open forwards and downwards, instead of upwards.

There is, I thonk, room fir donbt as to whether Macrorhinus is really, as it has been considered, the most specialised form of the Phocidre. Macrorhmus in all its movements is far more like one of the Oturidie than is any other member of the true Plocider. The fact cannot but be noticed by anyone who has watched both classes of
seal in life, and if in other points also it can he shown to approach the Cfariidie, it must be considered not one of the most highly specialised of the Phocidx, hut one of the less. And from it, as a connecting form, we may possibly draw suggestions as to the aftinities of other seals, some of which are without dombt closely connected with it.

From this point of view it will be seen that there are other characters in auldition to its gencral family resemblance to the Oturiadre, which indicate a chser comnection with them than can le argned for any wher of the Plueidie. For example :- While it is more at home in the water than on land, and its progression on land is exceedingly clumsy, yet the Sea Elephant speuds almost, if not quite, as murh time on shore as do the Sea-lions and Sea-bears. Almost precisely the same migrations are common to looth, depending as they do upon similar amnal necessities, such as the change of the winter coat, the birth of the young, the mating of the sexes, and so on. In all these points the Sea Elephant is far more of the habit of the Oteriidre than of the Phocidx. Again the cnormons difference in size between the male and the female is paralleled nowhere in the group of Ploweiter, though it is the rule in the Oturitile. Whether this is comected in the same way with the polygamons halits that are seen in the Ofariidre, as opposed to the more imbiscriminate methods of pairing which are seen in the Phocille, none of which appear to form so definite a harem, I canot say, nor do I know of any account which supplies evidence upon this point.

The most specialised seals, i.e., those that have departed most from their landfrequenting forehears, are those which have beeme least dependent upon land for any part of their existence.

No seal has yet taken to the production of its young in the water, though in some species, Phoca ritulina, for example, the young scal is said to be able to take to the water with safety at the moment of its lirth, and there undoubterly is a consideralle range among the various species of seals in the length of time that must elapse between the birth of the young and its taking to the water. The shortest period must be a mark of more adranced specialisation in the Phocide, and in this respect Macrorhimes camot be included in their number. The longest period, on the wther hand, is certainly found in the Otariidx, and Macrorhinus appears to conform to their habit. Thus taking first the Phocidee :-

In Lobodon carcinophayus, the young takes to water in about three days, its woolly coat being rapidly shed at lirth. (Racovitza.)
In Leptonychotes wellelli, the young takes to water in a month, commencing to shed its woolly coat at the end of the first two weeks, and completing the monlt in forr.
In Phoca vitulina, we have the young taking to water at birth, laving shed its whitish gellow woolly coat in utero or on the day of its liith (according to Lloyd), or leerimniug to shed its white coat for a darker in three days (according to Macdonald).
In Halichurius !rypus, the young is born in a thick white woolly coat, which is shel in forr weeks, and the young then takes to water. Suckling is said to last from three to ten weeks. (Hallgrimsson.)
Iu Phoca groenlandica, the young is born in a yellowish-white wool, which is shed a few weeks after birth. It takes to water in from fourteen to twenty days. (Brown.)

Whereas if the halits of the (Itorider are examinet, we fint that:-
In Aritorphetus forstori the young is suckled for 5 montlis, during which it completes a natal moult before it takes to water.
In Arefocpphatus hookeri, the young is snekled for 5 montlis, and a natal monlt is completed before it enters the water.
In Ceflorhimes ursinus, the yomg one is surkided for : months, and during the first month undergoes a matal moult lefore entering the water.

Now, in the case of Macrorlimus, we are toll (Lydekker) that the young are left lying on the heach for as much as ( 6 or 7 weeks hefore entering the water, a period which is longer than in any other case concening which evidence is forthoming among the Phocille, and a period whirh is far more suggestive of the habits of the Otaridie. We are told, on the other ham, hy Professor Scott (in the "Trans. N.Z. Inst.," lxi., Nov., [880) that the young are suckled only for three weeks, and that they are born in a black woolly coat, which is shed in a week, the coat which succeds it being ako blark. These arromsts appear to disagree, for the young would surely cuter the water as soom as their mothers finally deserted them, but on this point l'rofessor Seott is silent.

Furthemore, attention may be drawn to the perion of gestation, which seems to be appreciahly longer in the case of the eared seals than in the carless. Nore observations on this point are wanted, and it may be objected that surd as we have are insufficient to argue from, lut so far as they go they tend to phace Sacrorlimes at the Otarian end of the Phocidee rather than, as Profestor Flower would have us to do, as far as possible from them.

Periods of gentation.

| Phoct ditulina ... | ... | ... | ... | ... | ... | () months (leeks). |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phora arrentanlica | ... | ... | ... | ... | $\ldots$ | 9 months (Allen). |
| Halicherus !rypus | ... | ... | ... | $\ldots$ | ... | !) months. |
| Leptomychotes wedidme | ... | ... | $\ldots$ | ... | $\ldots$ | 10 months. |
| Erignethus burbatus | ... | ... | ... | ... | ... | 10 to 11 monthis (Collett). |
| Matrorlimus leminus | ... | ... | ... | ... | ... | 11 months. |
| Cullorhimes crsimus | ... | $\ldots$ | ... | $\ldots$ | $\ldots$ | 11 montlis, 20 days. |
| Arrtorephalus forsteri | ... | ... | ... | ... | ... | 11 to 12month:. |
| Aretorephalus honkeri | $\ldots$ | $\ldots$ | ... | ... | ... | 12 months. |

With regand to the presence of an under fiur in Macromimus, as noticed by Gray, I have not heen able to draw any definite conclusion. Having had no opportunity of examining the new-horn young, the hairs of young adult mimals have been my only material for investigation, and I have been mable to see anything approaching the character of "under fur" in them. Should there be such a thing, it afforts one nore point of similarity between Macrorhimus and Ommutophorn, as well as between Macrorhimes and the Otaridee.

The position of the extemal nares is a print which does not seem to be highly sperialised in Jherorkmes for a life in the water. They are by no means so high on the nose, nor do they open upwards so much as in the more specialised Plocidie, for
example, Leptomychotes, Stenorhinchus, or Lobodon. In this respert. Mucrorlimes is more like the Qumidite, amb so less diflerentiated from lamd mammals, and less specialisel for a purely marine life.

In direct opmosition th the ahmen facts, which are drawn mainly from the life history of the animal, Professon Flower drew up a series of woteulngial maracters which, in his opinion, showed that the Sea Elephant has dereloped seal-like characteristics more perfect than in ary other fomm. These are briefly as follows:-

The shortness of the femme.
The want of development of the calcuincal process.
The articulation of the filth metacarpal with the prosimal row of carpal lones.
The development of claws on both feet (?).
The length of toes in hind limbl, and extent of lobe behind the claws, for swimming purposes.
The ossifieation of all the phalanges, eseept the ungual, from threc centres, insteal if only from in prosimal.
Its dentition presents an extreme form from other mammals, Stonorhinthus showing the perfection of the modification, aud Marmorlinus the extreme form beynd it.
The form of the lorain cavity, very wide posteriorly compared with its kength, thas much modified from Oturiule and land carnivora.
It is true, no rhulst, that in the reluction of its incisor teeth to $\frac{2-2}{\frac{2}{-1}}$ and in the rudimentary or tramsitional condition of the cheek teeth, Mecrorkimus is removed from any approach to the stable and characteristic dentition of the Otarialiee, wr even of some of the Phocilie, hut it is an open question whether we are justified in making the teeth a charavter of such paramount importanee in classifying the Pomipedie, seeing that they are variable to an extraordinary degree. Not only in number, but in shape, size, and character, as well as in the number of the roots, there is lardly a species which does not give a must musual number of variations.

## AROTOCEIHALUS HOOKERI.

Itomker's Sim- Limn.
(Plate IV.).
Aretocephatus hookeri, Gray, Zool. Yoy. Ereb. and Terr., Pl. XlV., XV.; Intton ind Drummme, Animals of New Zealand, 1904, p. 36.
Phocarctos hookeri, Allen, Mist. N. Amer. l'imipeds (1880), p. 209, ibique cituth.

## List of Material in the 'Discuyery' Colleition.

No. 27, ad skin and skull $\circ$. March $2(1,19 n 4$. Lauric Hatbonr, Luckkand Islands. (Senls, Plate IV.).
No. 31, ad. skin and skull 9 . March 20,1904 . Laurie Marbour, Auckland Islands.
No. 4t, jav. skin and sknll $\delta$. Mareh 20,1904 . In process of monlting the red hair in which it was lorin. (Sceals, Plate IV.). Enderby Island, Anckland lslands. The skull contains sereral milk tecth.
The colouring of the soft parts is as follows:-
Iris, dark brown.
Uncorered jurtions of the hind and fore limbs, all hatek.
Nails, latk hrown.

> Note on Seals, Plate 1V.; the prition and ontline of the adnt female is taken from a photograph sumplied to me liy Mr. Mciregor Wriaht, of Wellington, N.Z., who hapment to visit the Anckland Islands during one stay there, and kindly grave me permission to use his photoeraphs in this palimation. Fee alsu figs sand 34, p. 61.

On her homewarl journey from the Antactic to New Zealand, the 'Discovery' was anchored for a fortnight (March 15th to 29th, 1904) in Lamic I Iarbour, at the northcastern end of the Auckland main istand. 'This stay bronght us in tonch with Hooker's sea-lion (Aretocphutus hokeri), which we foum to be abundant in our neighbourhood, a large number frequenting astretch of samly shore alout half a mile long on the southem sile of Enderby Island, whith lies just outside and to the north of Laurie llarbour. In Lamie Habour itself we were visited by adult females and young adult males, hut the oldest and largest males were only to be seen on the sandy beach of Enderlyy Island, and an account of our visit to it will convey the greater part of our observations concerning the halits of the animal.

It may first, however, le stated that the exact range of Ifooker's Sea-lion has not been very satisfactorily determined. There is much doubt as to the propriety of considering the ranomsly named speries of Arctocephelus as distinct, and until this matter is cleared up it is almost impossible to say where Anctocephatus hookeri has or has not been foum. Gray reports it from the Falkland Islands and Cape Hom, amd probably the south coast of Australia. It is also said to frequent the west coast of New Zealand, Bass Strait, and the west coast of Tasmania (Sir James Hector). It quite certainly oecurs aboudantly on the shores of the Auckland Islands; and the samly beach of Enderby Istand seems to provide the requirements of a breeding "rookery," since we there found old males with their harems around them, as well as two young ones quite recently born. Along the whole length of this sandy beach were these Sea-lions, the majority young males amd females; lut there were also about twenty full grown and very large dark lnown bulls with thick manes of short, rough and curly hair (figs. 31 and $3 \pm, ~ p .60)$.

Wherever we went into the bush which covered the island, even half a mile inshore, in the thickest sorub or amongst the mounds of tussac grass, often half-way up a (quite considerable hill, we found ourselves confronted by half awakenet Sea-lions. In the scrub adjoining this sandy beach we diseovered a very young one, dead, but fuite fresh. This was a purticularly interesting specimen,* because it had just commenced shedding the reddish-brown hair in which it was hom. From nose to tail its skin measmes 42 inches. The hind flippers extented behind add another 8 inches to its length, and the fore flippers are 9 inches long. The lwight chestnut-red hair which covers it is tine in texture, staight and ahmolant, cach hail measuring $\frac{3}{4}$ inch ( 17 to 18 mm .) in length. The ventral surface is as red and as dark as the dorsal, but the shoulders and the lower part of the back and flamks are of a decrdedty darker shate

* There is, in the B. M. Coll., a similar skin of Arctorephalus hookeri of about the same age, showing excedingly well the pale crown, mentioned on p .61 ; hat the skin has no history.


Fig. 31. Hooker's Sea Lion, old bull and cows, in the Auckland Islands,


than the back; and the whole of the face, the chin, muzzle, checks, eyedrows and throat are all distinctly darker and browner than the remainder of the body. From the forchead, over the crown of the hearl, nape and back of the neck as far an the shoulders, the colour is paler than any other part, and may be described as a pale buff or light yellowish brown.

I would draw attention to the possible significance of this pale coromal patern of colour in comection with the question of the origin of the Sea-lions. It is more marked in this youthful individual than in older specimens, though it is plain enough in some of the fully alult examples of other sea-lims (in Otaria lolutu, for example, and to a less degree in Oturia jubuta) in the collection of the British Musemm, and it is highly suggestive, occurring thus prominently in this new-born example, of the very similar coronal white and light patches of colour that occur in certain of the Mustelider, notably, for example, in the Badgers and Ratels, and the Sea-Otter, the most seal-like, in some respects, of all.

The specimen we procured was, as I lave said, on the point of moulting its natal coat, and in place of the reddish hair, whirh hat licen shed in more or less contluent patches over the centre of the back and sides, mouse-grey coloured hairs hat appeared, darker upon the back and paler laterally, a colour which characterises many of the young adults. It is noticeable that the monlt commences in a different way in this animal to that which olstains in the natill moult of Leptomychotes, where the head, fore Hippers, and him flippers are invariably the first parts to show new hair, sometimes accompanied, but never preceled, by the moult of the median dorsal area. In this young example of Hooker's Seatlion, although the back is moulting, there is no sign of moult upon the head or flippers. The hairs composing the new roat are very fine and short ( 10 mm . in length), their terminal quarter being white, and the remainder dark grey or black, the mixture of black hairs and white ends producing the soft monse-grey colouring characteristic of the young and some of the females of Hooker's Sca-lion.

The fore and hind limbs are miformly covered to the roots of the nails with the same red-brown hair that covers the body. The naked parts of the limbs are black. On the fore limb are five minnte rudimentary nails, and on the hind limb well-formed mails, 12 mm . long, upon the second, third, and fourth digits, and rudimentary nails only upon the first and fifth. The ears are comparatively long and pointed, measuring fully 20 mm . in length, the pinna drooping downwarls and backwards. The facial bristles are long, strong, and white for the most part. The himer ones are the stronger and in some cases, are of a slightly darker shate. The nostrils, 12 mm, long, open directly forwards, and are livider by a comparatively narrow septum. The distance separating the bare black skin of the nose from the upper lip is 7 mm ., and this space is covered with short reddish hair. In the pes the first digit extends its palmation 25 mm . beyond that of the fifth, that of the second, third, fourth, and fifth being equal. The tail measures 35 mm . in length.

In the skull of this young specimen the most prominent tecth in the upper jaw are the two incisors on cach side, and they are almost twice the size of the corresponding teeth in an ablult female. The third or outermost incisor only just shows through the gum, and this is one of the permanent set, for just anterior to its emerging point on each side may he seen the small socket for the deciduous tooth closed over by the gum. When this was opened up hy dissection, a minute third incisor of the milk dentition was found embedded in it. There are therefore on each side three indisors of the milk dentition in the upper jaw, the two central being larger than those which follow of the permanent set, and the third minute. The canines of the milk dentition are next in prominence to the incisors. Each of these has a long conical crown extenting 10 mm . beyond the gum, straight and pointed. Next to these, and towards the median line, if the gum is dissected away, the points of the permanent canines ran lie disclosed.

The first pre-molar is the largest and most prominent tooth in the upper jaw. Next to it comes a tooth, the point of which has lut just piered through the gum. The thirl is more advanced; the fourth, again, is just showing through the gum ; the fifth post-canine, or first molar, shows two of its three cusps, the central and the posterior, through the gum, and the second molar was completely hidden in the gum, mutil disclosed loy dissection. All these are tecth of the permanent dentition, the check teeth of the milk dentition, mere caps of dentine in the surface of the gum, having dropped from their hold in the lower jaw, though some of them still remain in situ in the upper jaw. As to their number no definite statement can be made from the specimen, though the position of the few that remain maker it probable that there are four pre-molars in either jaw. In the lower jaw again, when compared with the lower jaw of a young alult, the imer tooth of the two incisors of the milk rentition is considerably larger than the permanent tooth which follows it ; in shape and character the inner of the two deciluous incisors is ahmost the exact comberpart of the outer of the two permanent incisors, whereas the outer of the two deciduons incisors is much like a small edition of the permanent canine. The imer of the two permanent incisors again is a small and insignificant tooth rescmbling neither of the decidnons incisors. The canine tonth of the milk dentition is in situ on each side in the lower jaw, and has a long and pointed 'ylindrical crown 8 mm . in lengtly. Just within and slightly behind it can be found deeply imbedderl in the gum the point of the permanent canine. Behind this is the most prominent tooth in the lower jaw, the first permanent pre-molar with a large central and a mimute anterior cusp. Just behind it can be seen two minute sockets in the gum from which the small deciduons teeth have quite recently fallen. Pusterior to these the central cusps of the secont, third and fourth pre-molars are just appearing throngh the gum. On the outer side of the fourth on the right side is a small depression for a milk tootl recently lost, and on the left side this milk tooth is in situ. The central rusp of the single lower molar is just hencath the surface of the gum.

The formula for the milk dentition in this species is probably as follows :-

$$
\mathrm{I} \stackrel{3-3}{2-2} \quad \mathrm{C} \frac{1-1}{1-1}, \quad \mathrm{PC} \frac{4-4}{4-4} .
$$

The formula for the two adult females in the 'Discovery' collection is in cach case :-

$$
\begin{array}{ll}
\mathrm{B}-8 \\
2-2
\end{array}, \quad\left(\frac{1-1}{1-1}, \quad \text { P } M \frac{4-4}{4-4}, \quad \text { M } \stackrel{2}{1-2} .\right.
$$

The skin of one of the females (No. 31) measures 68 inches from nose to tip of tail. The length of the fore tlipper is $18 \frac{1}{2}$ inches, the length of the hind flipper $15 \frac{1}{2}$ inches. The colouring is a uiform buff, or creamy grey, very slightly darker and greyer dorsally owing to the fact that the basal two-thirds of every hair are black and only the terminal third is bufl, whereas in the lateral and ventral areas the hairs are completely buff.

The fore limb of this adult female carries five minute and rudimentary nails. The naked dorsal pahation is carried $4 \frac{1}{2}$ inches beyond the position of the nail in the first digit, $\mathcal{Z}$ inches beyond that of the second digit, 1 inch heyond that of the thirl, and $\frac{1}{2}$ inch beyond that of the fourth and fifth. The balmar surface is devoid of hair over its whole extent, forming a sole 12 inches in length and $4 \frac{1}{2}$ inches across the hase. The radial border of the limb is also devoid of hair on the dorsal surface. In the hind limb, nails 30 mm . in length are developed on the three central digits, while the first and fifth are provided only with rudimentary suggestions. Beyond the position of the nail on the dursal surface of the first digit is a naked palmation of 13 cm . in length and 4 cm . in width. Beyond the nail insertion in the second digit there is a palmation 10 cm . long, in the third 9 cm ., in the fourth 9 cm ., and in the fifth 9 cm ., but the width of the fifth, 2 c.m., is just double as much as the width of the second, third on fourth. The pamar naked sole of the hind limb extends to within $2 \frac{1}{2}$ inches of the root of the tail, and measures 13 inches by 4 inches at its widest part. The same features and the same proportions hold good also for the limbs of the young, in which the distribution of hair and naked skin is precisely the same as in the adult females. The nostrils of the adult female are 22 mm . in length, and the hair-covered space between the nostrils and the upper lip is 22 mm . As in most seals, the hair immediately adjoining the lip is a darker chestnut red, and of a longer softer character in this seal, especially along the lower lip. It is the only part of the adult that retains the chestnut real colonr characterising the new-born young.

The females on the sandy beach of Enderby Island were divided into parties which were collected arom the older rough-haired males. The old males have a far coarser and darker hair than the younger males and the females, and have also a very thick crisped blackish brown mane, which clothes the whole of the enormonsly muscular neck. In the younger males one sees innumerable scars upon the nerk, Jut these are not visible under the crisped mane of the larger males. The mane, no dombt, is developed largely as a protection in the fights that constantly occur hetween them. While
thus employed, they stime erect, supurting themselves on their fore limbs, quite close to one another, with wide, gaping mouths making from time to time most vicious snatches each at the other's neck (ree Fig. 33, 3.4, p. 64). The largest males were the most phlegmatie, mill rousel by the approach of another of their own sex, when they wond at once show signs of disapproval, and if this was not sufficient, would make for the introler and drive him oft.

They trok very little notice of us, hut the females would leave their masters' company, and follow us in small crowls, galloping with yuick loouds, their long necks outstretched and mouths agape, emitting all the while a kind of bark or hoarse cough. When they came tom close, shonting out and withdrawing their long necks in the most rapid manner imagiable, and coming a little eloser at every suap, we harl to drive them ofl with sticks and seawnerl roots. They were easily frightened, though they soon regained confidence, and it was far from pleasant to walk along the beach with half-a-dozen suapping sea-lions at one's heels, each one encouraging its neighlomes to press the attack a little chaser. Ocasionally one of the females would put all timidity on one side, and rush straight up with long hops from a distance of twenty yards, with the obvions intention of doing mischief. The slightest knock on the nose would, however, make her turn and retire as rapilly as she had rome.

The females were always fir smaller than the males, and were either ]huish-grey or luft' or cream-coloured, with very sleek coats. Some had a heantiful steel-hhue gloss all orer, while others were cream-coloured except for the heads and shoulders, which might he a steel-hlue grey.

The males were uniformly dark and hankish-lrown, head, neck, mane, and body; very ugly, with large, dark, lustrelcss, weeping eyes, and a high ridged head which suggested that of the bloodhound when looked full in the face. Moving about in a stately manner on all fours, they looked like large brown bears with their feet cut off, as though they were walking about on the stumps. The larger males were at least three times as bulky as the largest females, and each one guarded five or six of the latter which lay in a circle round about him. The females, unlike the males, were active in all their movements, galloping abont frecly and attacking one another within the sphere of their masters' protection.

There were only two small pups, and only one of these in the red chestnut coat of its birth. The other was the size of a large terricr, and exceedingly active, reminding one much in its movements of a dog roming here and there about its mother, which lay with a group of females.

We were on Enderby Island in the third week of Mareh, and we believed that the two young ones that we saw were exceptionally late arrivals, and that the majority of the young around us were hardly to be distinguished from the females.* In the Trans. N.Z. Inst., 1892, however, there is a note ly sir James Hector concerning this Sea-lion, in which he says: "The males take up their stations on the coast in

[^5]

Fig. 33. Honherís Séa Lims.



Decenber. Soon after the cows appear, and on landing give hirth to the young, each male securing a harem of ten to twenty cows, and protecting the mothers and young pups. The rutting season is in Jimmary, after which the males leave the mothers to bring up the young until May, when they all lave the coast for the winter."

It will be seen at once that this account dues not agree with our observations. There is no doult that the males when we were there in the third week of March had not left the rookery, neither is there any doubt that the young one whirh we procured hat died very shortly after birth, not more than the day before we fomed it, and as there was but one other small pup upon the beach, it was natural that we should have surmised that they were both either very carly amivals or very late, with a probalility of the latter, as they were born in the latter ent of Marth; moreover, the fights that we saw between the males, as well as the refinite collection of so many harems around them, led us to think that the breeding season might be in progress, perhaps later in the Anckland Islands thau on the west coast of New Zealand, where Sir James Itector mate his observations, many years ago. In his note he gnes on to saly that "the mode of life of the hair seals has lheen much alterel sime 1863 , when I made my first observations, and I believe that the New Zealand Hair Seals (Protonctus hewkeri) have now become much more solitary, and that they will soon become extinct."

While it is quite possible that the colonies might he broken up to some extent, it is hardly likely that they could have changed the month in which the young were to be born. As Nir James Hector's observations are the result of a longer experience and olservation than our own, we can only think that the pups we saw were born a month on two later than is usually the case, and that the rest of the young perhaps had gone to sea.

The food of Hooker's Sea-lion in March appeared to consist exclusively of a latge red erab. No douht the diet varies from one season to another, for it is hardly probable that they would find the same crustaceans while they lived mandy on shore and visited only shallow water that they would find while living a more pelagie life during the winter months. Fish would then, no doulit, form a considerable proportion of their fool.

The large red Auckland lsland crab is known as Nectocurcinus antercticus, and is a shallow water form. We know that the sea-lions eat them in large numbers, because we found evidence of it everywhere along the shore and in the bush. The Sea-lions, having satisfied themselves at sea, come in shore, and make their way into the bush, where, amilst the rank growth of scrub and tussac grass, they sleep, and sooner or later regurgitate a bolus composed of the moligested remmants of the crabs, whose legs and shells are rolled into a mass the size and shape of a hen's egg.

We saw the Sea-lions upon occasions chasing such binds as Cormorants, and probably anything that would be food to an ordinaty carnivorous appetite would be food also to them.

We had, one night, a very interesting experience in ohserving the phosphorencence that was stired up in the sea by the movement of these amimals. Coming back to the ship hy hoat from Enderby lshad an hour or two after sumset, and on a particularly dark night, with neither stars nor moon, we watched the simous and grateeful movements of about six large Sea-lions that followed our boat apparently out of "miosity. Diving and twisting about beneath us in the fitch-black water each animal was ablaze with light. Every limb and every movement conk be sech, though they moved so rapilly that the eye could sarcely follow them; they played with one another and chasel one another and the boat, now roming up to blow, as we conkl hear, a yarl or two astern, and now diving deep down under the boat to appear often dose in under the bulwarks; every stroke of the long powerful fore flippers was aceurately conveyed to our eyes in the pitchy darkness ly the lnilliance of the phosphorencence coating them. We watched long to see if they ever used the hind Hippers as propellers, and though this happened only on very rare occasions, we satisfied ourselves that they were ocrasionally brought forward to assist the pace by a powerful stroke in unison.

Throughout this long pull in the dark we saw not a single fish or other heast lit up in the same way, and althongh we could hardly wonder at this, considering how ample a warning they had of the approach of their enemies-the Sea-lions-we yet thought that possibly the smooth and frietionless mucoid covering of the fish might he of some ase, not only in facilitating their sped through the water, but also in preventing a similar declaration of their whereabouts whenever, as so often happened, the sea was full of organisms preparel to phosphoresce. No doubt the striking brilliance of the sea-lions was due to the roughuess of their hairy coats, and every organism that came in contact therewith wond phosphnesce at one and brilhantly. It must very materially embarass an anmal's prospects of oltaining fool if. on every warm night. it is bound to declare its presence in this manner.

The sight was a must beautiful one. The animals moved with feints, and twists, and turus, now in curves, now in circles, but always with the sinuous motion of the body like a fish, supplemented by powerful strokes of the long fore flippers, and always with the most wonderful rapidity. All this we saw most clearly in the hackest darkness, far more clearly, indeed, than such objects are wont to be seen even under the most favourable conditions, in the daylight.

## I N D E X

alulier. P'ypuserlis 3:\%.
allierenter. Monucturs 4 li.

anteretiolls. Necturarimus: fio.

Areforphilles forsteri, il, is.
Arctorphetus houkeri, is, 59-66; fookl, fi.) ; limbs.
6i.: migration, fit; milk dentition, liz: monlt
of soung, bl; ause of phophoressence, hif:
teeth, 6:3: roung, for.
An-tratian Whale, t.
unstrulis. Dallemu 1-3.
"nstralis, Embenopterat.
unstralis. Physellus: :

## Butlome unstralis. 1-3.

Bakene muryinata. 1 .
Baternue raslrut", 5.
Ballemopieca atistrulis, t.

$$
\because \quad \text { musirultus, } 2,3-4,8 .
$$

Iurlutus, Eriguthus is.
Berardiess arnuxii, os.
latue Whale, a.
Bottle-nosed Whale, 5-6 ; breaching. it : markingon. 6.

Cullorhinus ursimus. is.
earrinophaya, Phora: :i.
cercinophajes. Lobtelous:1.
Gellurrhactex sethegeli, as.
Cutment, $1-9$.
("mmorants, 65.
('rab)-eating Seal, $7,15,16,21,24,2!$, :31, 31-41, $16,57,59$; colour, 37 ; description, 85 ; distribution, 82 ; hahitat, $3: 3$; measmements, 39 : mode of feeding, 36 ; moult, :it ; retirement in
 stones in gut, 36 ; teeth, 36 ; types of skin. $: 3$; young. 3 .
Crab-eater. Sfe Crab-tating Seal.

('ystophorimer, 4i, 47, 4-, 4:.
Durlylis, ix.
Delphinider. 6-9.
Delphinus obscurus, s.


1) olphins, 6-9.
2) 中phin. sp. undescribed, 9 .

Dusky Iohnin, 8-9.
Eared sicals, :3it.
Erignathus barturtus. is.
Eimphatsin, ist. 36, :3.
False cia Leqparl. So Wendell's seal.
Fimer. Sar Romaal.
fictilu. Phoris 2:3, 46.
forsteri, Arrtorpphalus $\overline{\text { In }}$, is.
Fur Seal, $\therefore 1, \therefore 2$.


Gigmumitrero, 14.

hookeri. Alstorqplulus: 59-66.
hookeri, Phon'mertos is.
honkeri. Protmurtus 6is.
Hooker's Sm-tion, in. 59-66: fonl. (i.): limbs. fi: ; misration, lit: milk rentition. be: : monlt of poung. 61 : canse of phosporescence. 66 ;

Hy, trumga, 26 .
Hyperondon rostratus, 5 - 6 : lnearhinıs, is markings On. 6.
jubata, Otaria 61.
Killer, $\mathrm{i}, 6-8,1 \therefore, 14,1!, 29,3: 36,39,41,11,50$.
Latyenorlynarlus ubsturtes, 8-9.
leonim, Phocte 51.
leonimus, Martorhinusil.
Leptonychotes merldelli, 7, s. 10-26, ㄱ. 28, 29, :50.
 birth of young, 17 ; blowholes, $1 \mathrm{fi}, 17, \because 1$; colour of, 24 ; deseription of yonng, 18 : diseases, 26 : distribution, 1: : as food, 12 : fool of, 13 ; gestation period, 19 ; habits, $1 \because$; littoral habit of, $15,23,33$; means of progression, 20, 21: measurements, $2 \pi$; monlt, 24 ; moult of young. 1s; nails, 23 ; non-migratory, 18 ; retirement
in sickness, 20 : rutting scason, 20 ; satety of. 1.7 ; scars, $7,15,19,39,40,50$; suckling of young, 18 ; nse of limbs, 22,23 ; use of teeth, 2 ; variation in, 2.
Toptony.r. Ploctu 2li.
leptomys, Stenorlimethes:26-30.

Ioburtu, Otaria 61.
Lobotem vercimplutyus, $7,15,16, \because 1, \because t, 29,34$,
31-41, 46. 57, 2! ; culonr, 85; description, 易; distribution, 8: ; labitat, : 33 ; measurements, 33 ; mode of feeding, 36 ; moult, 37 ; retirement in sickness, 34 ; scars, 7, 15, 19, 39, 40 . 60; stones in gut. 34 ; teeth, 36 : types of skin, 38 : young, :3.
Inmirestris, Aptenodytes $81, \therefore 2$.

Murrorhimus angustirustris, $\overline{\text { nin }}$.
Mucrorhimes leminus, 18, 2!, 33, 42, 44, 47, 48, 49. 51-59; colour. A.) ; distribution, 53; food, it: hair, 58 : movements, in : oil trade, il ; teeth, 5 .
matrormicki, Mentelestris 3:.
Memmatie, 1-66.
marimutu, Bultrmu 4.
murryinatu, Neobalrmu 4.
MeCormick's skua, 1s.
Ifrgelestris murvormithi, :3:3.
Monarlins, 48.
Monarlens alliventor, 46 .
musiculus, Berlipmotere 3-4.
Mustulitio, 61.

Notorarimus anturtions, (is).
Nematodes, 4., 5t.
Neoluatena maryimutu, 4.
Notuthenia, 14.
obscurus, Delphinus 8.
obscurus, Layenorhynchus: 8-9.
Ommatophore rossi, 15, 29, :30, :3: 40, 41-50, 54, 26, 5s ; colour, 49; hair, 48, 50; limls, 44 , 48 ; measurements, 42 ; mode of progression, 44 ; moult, 50 ; scars, 7, 15, 19, :39, 40, 50 ; teeth, 46,47 : rocal powers, 44 ; foung, 42 .
Ora glatiutor, 5, 6-8, 15, 16, 19, 29, :3:3, 36, 39, $40,41,50$.
orci, Delphimis is.
Oterim jubata, 61.
Otaria lolvata, 61.
Otaria wedlelli, 10.
Otarialle, 48,54 , 5i, 57, 5x, $5: 1$.

Parasitic worms, 4.
Penguins, $6,7,28, ~ 51 ;$ Alelie, 83 ; Emperor, $2 \times$, ; ; ; King, 51, 52 ; Royal, 52.
Phorer 'artimophaya, :31.
Phoca firtidm, 23,46 .

Phorateominta, 51.
Phocal Ifitnnyr, $\because 6$.
Phora citmlina, $2: 3,46, i-5$,
Phocurtos hoolirri, 59.
Phocider, in, at, ise, is!.
Ploomer, z: th.
Physulus unsirulix, :
Pimnipedia, 10-66.
Physeterime, to.
Protuarctus honkeri, (6.).
Pyyoserlis artim, :33.

Right Whale, 2 , :3 see also Bouthern light Whate.
Romerual. $\because, 3-4$, i.
rossi, Ommaltiphomel 41-50.
 colour, 4! ; hair, $4 \times, 50$; limise, $44,4 \begin{gathered}\text {; mas- }\end{gathered}$ surements, 42; mode of progression. 44 ; moult. in ; scars, $7,15,19.39,40,50$ : tecth, 46, 47; vocal powers, 44; jounge, 4.2.
rinstrutu, Binlemen 5.
rustrutus, Hyperoodm" 5-6.
ficars on Sezls, 7, 1.5, 1:9, 39, 41.
Sichizopot, :it.

Sea Elephant, 1: $2,2!1 \because .4 t, \pm 7.45,4!, 51-58$; colonr, 5.) : listribution, 5: ; frod, 54 ; hair, 58 : morements. 57 : wil trade. 21 ; teeth, 5.4.
Sea Leuparl. 13, $14,26-30,: 3,38,44,5: 3$ : colomr, 2!): food, 2s: measuremuts, 28: scars, 7, 15, 1:1, :99, $10,30$.
Ser-lions, it.
Seals, 10-66: gestation priom, is.
Seaweed, :31, 37, 15 .
serritens, Stenorhyuhtus: 3‥
Skua, 54.
Southern Rirht Whate, 1-3.
Sterm Whale, th.
Stenorlumminer, 15, 17, 1:, 1!, int.
 5.1 ; colom, .?! ; food, it: measurements, 28 : scars, $7,15,19,39,40,50$.
Stenorhyuchus teptonyx, 2 (6.
Stemorhyuchurs servilens. S3.

## Tromatomus, 14 .

mrsims, Callorhinus ax.
ritulinu, Phoce 23. 46, 57, 38.
wodidoll, Leptomychots 10-26.
wedilelli, Otaria 10.
 $34,35,36,39,48,17,37,5 x, 39,61$ : birth al gouner, 17; blow-holes, 16, 17, $\because 1$; cohur, $\because 1$; description of young, 18; diseases, 26; distri-
bution, 1: : as fool, 12: food of, 1:3; westatim 1erionl, 1!9: habits, 12: littoral habits of, $15,2 \because$, 33: means of progression, 21 , 21 ; measurtments, 2.: monlt, 21 ; moult of rouns, 14:
 sickness, 20 ; rutting seasin, 20 ; safety of, $1 \therefore$; scars, $7,1.5,1!, 39,10,50$; suckling of goune. 1s: use of limbs, 22. 23; ase of teeth, 22 ; variation in, $\because$.
Whales, 1-6: vestigial teeth of, 46 .
Whate, sp. undescribed, 4.
White Antaretic Seal, see (ral)-eating Seal.

## WHIIES

## I'late I.

An untamed and as yet modescribed whak is represented, in fig. $i$, as it rese to how ; in fir. ${ }^{2}$, as it :"prears just after howiner : and in fig. $S$, as it sounds, just hefore disappearines. Fig. za mpesconts an example of the same species with the dorsal "fin" corver abmormally formand, intead of barkwand. (step Mammalia, p. 4.)


## SEALS

Piate 1.

In adnat fomale Wraddis sal (Leptonychotes weddelli), with her young one



## SEALS.

Plate II.

The heads, in protile and from above, of the four momon Antaretic Neals. Figs. 1 and $\because$ represent Wealdell's Seal (Leptonyrhotes methelli). fiys ; ind 4 the seab
 figs. I and is lioss' Seal ( 11 mmotophoth rossi). Although reducel to about une-sixth matural size, the relative sizes of the drawings are intended to be correct for the arerage of earlo speries.
$\therefore \quad$.


 and injury of the eanines of thoth jaws us the left wide.


## SEALS

## Ilate IV.

An adult female of llowker's Sea Lim ( Iritorephalus honkeri), with her young one. on the Auckland lsland roast. The colomring is taken from skins 27 and 44 of the ' Discovery ' (ollection (ser Nammali:, pp. 59-86).



Fili. 1. Emperom Pexiduns' Loomery at Caje Crozier.



## II. AVES.

By Einwafd 1. Nilmon, M.B

( $1: 3$ Ilates.)

## AP'TENODOTES FORS'TERI. <br> The Emyeror Pempuin.

(Plates I.--MI.)




Last of Materlal in the ' Ionforehy' ('oldenthon.

No. 2li, imm. sk. 17 months. Abont to monlt. Felr. in, $1: 14$. NeMurdusiond.






No. 3:,$\delta$, ad. sk. April \&, $1!90:$ MeDumdo Soumel.




No. :s, d, ad. sk. April $x$, 1 , Me: Mr.Lurdo Sound.



Sound.


No. 4h, $\mathcal{F}$, ad. sk. April $A, 190 \because$. McTlurdo Sonnd.
 Lately Newnes Bay.

No. 48, 9 , ad. skin. April 8, 1902. MeMurto sonnd.
No. 49, 9 , ad. skin. Sept. 30, 1902. McMurdo Sound.
No. 5 , , ad. skin. April 8, 1902. MeMurdo Sound.
No. 51, ${ }^{\text {d }}$, ad. skin in full moult. Jan. 15, 1903. Mcalurdo Sonud. *

No. $2=4$, jur. in spirit, fonm dead. Oct. 18, 19n:. Cape Crozier.
No. ! ! , d, jnv. skim.
No. 91, 9 , juv. skin.
No. 97. $\dot{\delta}$, jur skin.
No. !x. q. jur. skin.
No. 102, juv. skin.
No. 10:, $q$, jur. skin.
No. 105, $q$, juv. skin.
Nu. 199, juw. skin. Alive in captivity from Sept. 18, 1903 to Dec. 10, 1903. Cape Crozier.
No. 100, juv. skin. Nuv. 8, 1902. Cape Crozer.
No. 101, ó, jur. skin. Sept. 2f, 1903. Cape Crozicr.
No. 104, o, jur. skin. fround dad. Sept. 13, 1903. Cape Crozier.
Nos. 1sfi to $1!93$ incl., jur., in formalin and spirit. Found dead. Sept. 13, 190\%. Cape Crozier.
Nos. 201 to ent incl., jus., whatched, in spirit. Found dead. Sept. 13, 1903. Cape Croziel.
No. : 2nf, care. Fully incobatel, putrid.
No. 207 . egg. Fully incubated, putrid. :36t, grms.
No. 2u8, egg. Fully incubated, putrid. to $\frac{1}{2}$ grms.
No. 20!, egg. Partially incubated, wholly rotten. $211 \frac{1}{2}$ grms.
No. 210 . exg. Fally incubated.
No. 211 , egres. Fully incnbated, putrid.
No. $21 \leadsto$, grg. Fully incubated.
No. 21: , egg. Fresh laid, burst by freezing.
No. 211 , egg. Fresh laid, burst by freezing.
No. 215 , egg. Fresh laid, hurst loy freezing.
No. 216, egg. Slighty ineubated. 4twig grms.
No. 217 , eges. Fully incubated.
No. 218, egy. Fresh laid, contents altered by freezing.
No. 21: , egg. Fresh laid, contents altered by freezing.
No. 2en, egg. Wholly putrich. The first cxample, found by Lance-Corpl. Blissett, R.M.L.I., under Lient. Royds, li.N. Nor. S, 190z. Cape Crozier.

The coloming of the soft parts is given in detail below. Set ply. $0_{0}$, ol.

## List of Mathelal ia 'Morning' ('ollection.

A. No. 14. $\delta$, imm, skin. Five months, Jan. 1904 . Pack ice, $70^{\circ} \mathrm{S} .176^{\circ} \mathrm{E}$.
B. No. 45, $\delta$, ad. skin. Abont to monlt. Jan. 1904. McMurdo Sound.
('. ad. skin. Sonth Vietoria Land.
I). ad. skin. South Victoria Land.
E. imm. skin. Dec. : $1,1002.70$ S. 175 E .
F. ad. skin. Soutli Victoria Land.

11. ad. skel. sunth Yictoria hand.

## Note in the Illubtratioss.

Plate 1. represents the Emperor Penguin Rookery at C'ape Crozisp in Neptember, looking eastward, along Ross' Great Iec Barrier.
Plate II. represents the head of an adnlt Emperor Pengnin in full jlamage. (Life size.)
Plate III. represents the heads of Emperor lemgins at rarions stages of growth. Figs. 1 and $\because$, the heads of chicks in domn at one weck and one month. Fiys. ${ }^{3}$ and 4 , of immature birds at five and six months. Figs. 5 and 6 , of immatnre birds at seventeen months. ( 13 life size.)
Plate IV. is from one of the frozen chicks picked ap on the ice at Cape Crozier. It rerpured no support to stand thas while frozen, but probably would not stand so erect in life. It is drawn as it was picked up, hat crect instead of lying on its sille.
Plate V. represents the feet of young chicks and an adult.
Plates VI. and VII. represent four Emperor Penguin's egrs, life size. taken from the rookery at Cape (rozier. Plate VI., fig. 1, is the smallest, Plate VII., fig. 1, the largest of the series. Fig. $\because$ on tach plate represents a variation of surface.

Our first introduction to the Emberor Penguin, the largest and the handsomest of all living penguins, ocomred on Jannary 4th, 1902, when we hat entered the park ioe and were making the best of our way towards open water again to the sonth. The birds were swattered here and there, singly, or in couples, and much to our surnise we foum that ahmost all were immature. It was not matil we had worked om way through the pack ice, and had begm to coast along South Victoria Land, that we realised that we had left the region freguented ly the immature and had come amongst adult birds. Even now, however, these were few and far between; we came across a few eompanies of eight or ten in the bay named after Lady Newnes, and they were in full mont, but afterwards we saw still fewer until we came to the fast ice of King Elward Vhl's Land, at the extreme eastem end of Ross' Barries.

Passing by McMurlo Goum in our search for winter guarters we sailed to the eastward till we came to the rocky clifts of Cape Crozier, under Mount Erebus and Mome Terror, the two volamoes which form what is now known as Russ lshand. These high rocky cliffs abut on the ice cliffs of the Great lee Barier, and where the ice and rock elifts mect at angle they enchse a bay. On the ice of this little hay, as we discovered some nine months later, a very large number of Emperor P'enguins collect year by year to form a breeting "rookery" (figs. 1 and 2, p. 1 ; also fig. 5, 1. 8). But in limmary of 1902, when we first reached the spot, the ice was all gone ont, and not an Emperor Penguin could he seen, nor was there the least snggestion of the rookery : existence, though the ice on which it stood conld hardly have been broken up much more than a month before. Not a single Emperor Penguin was in sight, either young or old, as the 'Discovery passed the spot in Janary and made her way to the eastwand along the sea face of the Great Ice Barrier.

After sailing for over a week along this ice cliff, 500 miles in length, and of a height which averaged 200 feet, we came at length to its eastern comfines and discovered the new land mass now called King Edward VII.'s Land. Here in a hay,
while the ship was beset with new ice, we first hegan to suspect that we were nearing the Emperor's lreeding hamts. Away in the distance, over some miles of disintegrating ice-floe, conld be seen large companies of birds which, when viewed through the telescope from the crow's nest, proved to be Emperor Pengnins. Large and dark, standing in colonies here and there under stranded icebergs, were many hondreds of them, and between them and us, in the water and on the ice, now crying aloud to one another, now leaping like sahon to land upright on the edges of the floe, were such numbers as had never hefore been seen together. Knowing nothing of their habits, it was natural that we shoukd helieve that here at last was the long-looked-for Jreeding ground ; and our disappointment, on realising that we conld not attempt to reach it, may he easily imagined.

The navigalle season was already at its close, the sea ice was freezing hourly thicker, the miles of disintegrating ice between ourselves and the apparent rookery wats a barrier to closer intercourse, and the near approach of winter made it imperative that we should speedily find winter quarters and avoid by all possible means being frozen in exactly where we were. So the question for the time remained unsolved. When, wine months later, we discovered that the Emperor Penguin lays and incubates its egg through the winter darkness; that the chicken emerges from the egg at the beginning of September; that it has shed its down and taken up an existence, independent of its parents, by the middle of Jannary, we began to wouter whether, after all, the collection of birts in King Edward VIL's Land was, in truth, a breeding colony, or whether it was not rather a large collection of moulting birds, waiting on fast ice till their new plumage had appeared and they might be able to take to water once again.

This, no douht, was the true explanation of our seeing lirds in such numbers at so late a date as January 31 st and so far sonth as lat. $76^{\circ}$. To return, however, to our search for their Jreeding-place. We had settled into McMurdo Sound for the winter after returning westward from King Edward VIL's Land along the Barrier Cliff. Again, we had passed the little bay under the cliffs of Cape Crozier, and 'fuite close by in the middle of a very extensive rookery of Adelie Penguins we had left a record for the relicf ship 'Moruing' to pick up in the ensuing year. And then, when our first tark winter lay behind ns , the spring sledging was begun, and with it preparations were completed for the longer extended journeys that were to oceupy the summer months.

A few days only before Captain Scott started on his long Sonthern sledge jonrney, taking with him Lieuteuant Shackleton and myself, three frozen chickens were brought tu the ship from the Emperor Penguin rookery, discovered then for the first time at Cape Crozier by Lientenants Royds and Skelton. Having skimed these limds, and having heard a most interesting account from Lieutenant Skelton, who had brought home the minutest details, we had at once to leave the ship for the South. All further investigation on my part was therefore necessarily postponed till the following year, but Lientenant Royds kindly volmontecred to make a second jouncy to the spot and hunt more rigorously for eggs, and, if possible, find answers to 'fuite a number of 'fuestions


Fig. 3. Emperor Penachis.


Fig. 4. Emperor Peritins.
that suggented themselven before we mold say we understom the breenting habits of the limed.

It was not till thee months later, on our return from the farthest South, that we learned how the first Emperor Penguin's egg, heserted, half huried in the ice, and full if putrid chicken, had been fouml. The egg, however, was not the omly result of this jouney. The party which amived at Cape Crozier on November 8 th was surprised to find that all the chickens hatehed that year had disappeared. Again and again they put large packs of Emperoms on the rum, but not a living chicken could be fomm. On November 10th they again went down to the rokery, and now there were hardly any Emperoms left at all. The migration to the North was obvionsly completed, hat how had the chicks been taken? (1e thing was amply certain, that before their down was shed they could mot have gome by water. This poblem remained madsed till the ansuing yar, hat there are further points in comection with this year's jouneys which must first be mentioned.

Excellent to a degree which could hardly have been smpassed moder much more firourable conditions, were the photographs taken on the spot by Lientenant skelton. Taken though they were at a temperatme of $40^{\circ}$ below zero, Fahenheit, and after a comple of hous' climbing over crevassed and chaotic pressure ridges of io and snow with rope and ice axes, they show, nevertheless, all the charactenistion of the rookery, and examples of every position assmmed by the birds in sleep and incubation.

Of the first three chickens bronght back to the ship one had been pirked up dead and frozen on the bay ice. It hat probably died within a week of emerging from the egg, and lad been roughly handled by the parents buth before and after deatl. The down on the head and borly was nearly all wom off. The brittle frozen wings were bokm. There was a large rent in the slin of the neck, and marks of the old hird's claws upon the lowly. The other two chickens had been taken alive from the parents. In these, too, were a number of small ruts in the wings and a wound in the neck. But of the significance of these mutilations I have more to say below. The moly remains of eggshell formd by the first party were such as adhered to the frozen excreta, loroken lits of thick white shell and membrane which had olvionsly been swallowed when the eggs were hatrhed, and had become wrapped round the undigested remains of tish-hone. From this we gathered that the eggs were laid and hatched in all probability on the sea-ice where the rookery was situated, and that there had wot heen any migration to the spot after the hatching of the chicks.

* It appears then that in the Emperor Penguin we have a bird which not only camot fly, and lives on fish which it catches hy pursuit under water, hut which never steps on land or on land ire even to breed, and has so modified its halits that it carries out the whole process of incubation on sea ice, choosing those months of the Antarctic year when the greatest cold ensures a solidity of sea-ice which can he trusted. Without anticipating further the habits of the hird, I must now pass to an acomnt of the third year's jommeys to the rookery.

It must be remembered that its distance from our winter quarters was rlose om 50 miles, and that in early spring a sledge jommey to cover the distance there and hack necessitated monsilerable forethought and preparation. For one thing, the surface suow was liable to give ome very heavy travelling, and for another, the number of hours of daylight in September were few, and the day's mard therefore short, whik camping had to he managed after dark by the light of a piece of candle. The temperatures moreover were severe to a degree which har never before heen experienced in extended joumeys, and ranged sometimes for ten days together from arything below $-30^{\circ} \mathrm{F}$. and $-40^{\circ} \mathrm{F}$. down to $-63^{\circ} \mathrm{F}$. The first point therefore in the following year was to decide upom the earliest practirable date on which it would be wise to make a start, and this we had to judge from the following fact which was all that we possessednamely, that on October 18th of the previons year there were chicks of apparently ten to fourteen days' growth.

We had no knowledge of the length of this penguin's inculation, hut from Professor Moseley. quoting Goodrich, on the incubation period of the King Penguin we hat the limit of seven weeks given for our guidance. If anything, the Emperor should have a longer incubation period than the King-first, because it is the bigger bird and the period of incubation is said to vary with the size of the hird ; and second, becanse the temperature of the surounding air is very distinctly lower than it is in the regions where the King Penguins breed; and this also has been said to prolong the time necessary for the purpose. So, as the first week of September was the earliest date at which there was light enough for travelling, we decided to make a start upon the 7th. The party consisted of Lieut. Royds, myself, and four seamen, with two tents and sledges. We lelieved that if we arrived from a month to six weeks earlier than in the previous year we should rertainly find eggs, incubated probably, but still monatehed.

On September 12th, when we arrived, we made our way to the sea ice across, the pressure ridges full of hopeful anticipation, for we combl already see that the birds were there in large numbers. What then was our dismay when we found that we were again far too late for eggs, and that every one of them was hatched. Again and again we examined "sitting" lirds and found that they had young ones but not eggs. We sadly realized the error we had made in calculating the age of the October chicks, and finding no eggs, began to supply ourselves with a series of the nestlings. In collecting such, however, as were dead and frozen on the ice, we soon came to a spot where we could see that some catastrophe had befallen the breeding colony, for we foum no less than fourteen eggs deserted, lying loose upon the ice, all frozen, and many burst by the freezing, but some still perfect and uncracked.

It was clear that there had been a fall of ice from the cliffs under shelter of which the penguins had been quietly sitting with their eggs a month or two before. That this heary fall had crushed some we could guess, for it had crushed some eggs as well, hut the hirds that had escaped hat dropped their eggs in terror and had bolted. It was strange. however, that whereas some that we found must have been frozen fresh soon
after they were laid, the majority were fully inculatent, and these were rotten as a result of having undergone a further incubation after life in the egg had been extinguished hy the cold. How the descrtion of the new-laid eggs can be accounted for I am at a loss to know, unless imbeed there was an cartier fall from the ice clift when the incubation was heginning, followed by another towards its close. And this is possible, for the condition of the ice mass is eonstantly unstahle, the ice sheet being always on the move. Had the eggs been deserted onee and for all when the ice cliff fell they would not, of course, have heen decomposed, for it was now September 13th only, and the sun which appeared on the Northern horizon on August 231 d. after an abience of one humdred and twenty days, had as yet 10 power to thaw, much less to assist in deromponing anything. The sea ice, moreover, on which the eggs were form hat been formed only since the previous summer. It is therefore certain that the birds must have returned, when it was ton late, to resume their duties of incubation till the eggs were completely rotten.

It is possille that the wholesale loss of eggs is not a rare orcurrence. The ice clifts used for shelter are so much undermined and so unstahle from the pressure of the Barrier ice against Cape Crozier that no man in his senses would camp for a single night beneath them. Yet these birds huddle there for upwards of five month in every year persistently, and this may perhaps explain why so large a number of the Emperors are memployed.

There were in this rookery adults both male and female to the number of about one thousand, and not more than one in ten or twelve was occupicd at the time of our visit in rearing young. (he may suppose that some had lost their eggs, and some their young, for all harl the keenest possible desire to brood, and many that hat tired of waiting to snatch up a living chick would nurse a dead one.

We now saw that the chickens with which the birds were at present oecnpied were distinctly smaller than those taken in Octoler of the previons year. But the difference seemed far less than might have been expected for five weeks' growth. The growth, in fact, in the earlier stages of their life must be extremely slow.

At any rate we saw that the date for the laying of the eggs must be put back to the heginning of July. From seven to eight weeks seems a reasonalle estimate for incubation, and the eggs are all hatchel out by the first week in September. There were no eggs just hatching on the 12 th, nor were there any recently disuarled eggshells On the ice; nor were the smallest of the living chickens so small as some of the dearl and frozen lying there, which must have died some days before our visit (we Plate IV.).

On our return from this early journey to the rookery, we brought back two living chickens to the ship, hoping to throw some light upon their rate of growth and the date at which the natal moult begins. We had amongst our party a seaman named Cross, a first-class petty officer in the Royal Nary, who took charge of the foundings, and at $60^{\circ}$ below zero denied himself the use of his sleeping jacket on the joumey home to keep them warm. At every camp he fed them with well-masticated seal meat, and they were strong and well and lively when we reached the ship. I must
return to their further history later, and meanwhile continue to give an account of the fourth and last journey that we made to Cape Crozier on behalf of the Emperor Penguins.

Accompanied again by Cross and a naval stoker, Whitfield, I started for the spot on October 12th. Our journey out took just a week, and we arrived on the day on which Lieut. Skelton the year before had killed the chickens that he first brought home. It was possille, therefore, to compare the chickens of this year's hrood with those of the previous year, and we found them as nearly as possible ideutical in size. Moreover, the chicken we had kept alive in the ship was fully as lig now as the liggest in the rookery, and we felt we might rightly take its rate of growth as an indication of what was going on under the more natural conditions at Cape Crozier in the rookery itself.

The number of dead chickens had certainly increased during the month we were away. To compare with the last year's skins, I picked out two of the largest living chicks that could be found. All were in down, and not one showed any sign of an approaching moult. The unemployed adults were still to be seen mursing dead chickens here and there, or waiting for a chance to seize a living one.

We remained encamped as near the rookery as possille for close upon three weeks, experiencing a ten-days' lizzard, which kept us confined to our sleeping bags for no less than seven days. Nevertheless, it was not such an ill wind that it blew no gond to us, for had it not been for this southerly blizzard, we should have missed what was one of the most interesting sights we saw.

It will be remembered that in deseribing the second journey made by Lieut. Royds to this rookery the year before, I said that he arrived on November 8th, and found that all the adults as well as all the chickens had disappeared. Our journey was therefore timed to watch, if possible, something of this migration to the north. The chicks, I knew, were still in down, and unfit to enter the water. How, then, did the parents take them north ?

During the week that we were forced by the blizzard to be inactive, though we never actually saw the young ones taken, we saw enough to suggest a solution of this problem. The day before the storm broke we were on an old outlying cone of Mount Terror, about 1,300 feet above the sea. Below us lay the Emperor Penguin rookery on the lay ice, and Ross Sea, completely frozen over, was a plain of firm white ice to the horizon. There was not even the lane of open water which usually rums along the Barrier cliff stretching away as it does like a winding thread to the East and out of sight. No space or crack could be seen with open water. Nevertheless the Emperors were unsettled owing, there can be no doubt, to the knowledge that bad weather was impending. The mere fict that the usual canal of open water was not to be seen along the face of the Barrier meant that the ice in Ross Sea had a southerly drift. This in itself was unusual, and was caused by a northerly wind with snow, the precursor here of a storm from the south-west. The sky looked black and threatening, the barometer began to fall, and before long down came snowfakes on the upper heights of Mount Terror.



All these warnings were an open book to the Emperor Penguins, and if one knew the tiuth there probably were many others too. They were in consefuence unsettled, and although the ice had not get started moving, the Emperor Penguins lad; a long file was moving ont from the bay to the open ice, where a pack of some one or two humbed had alrealy collected alwout two miles out at the edge of a re-frozen crack. For an hour or more that afternown we watehed this exochs proceeding, and retmed to camp more than ever consinced that band weather might be expecterl. Nor were we disappointed, for on the next day we woke to a sontherly gale am smother of suow and drift, which effectually prevented any one of us from leaving our camp at adl. This continued without intermissiou all day and night till the following morning, when the weather cleared sufticiently to allow as to reach the elge of the cliff whirch overlooked the rookery.

The change here was immense. Ross Sea was upen water for neurly thirty miles; a long line of white pack ice was just visible on the horizon from where we stood, some 800 to 900 feet ahove the seal. Latge sheets of ine were still gring out and drifting th the north, and the migration of the Emperors was in full swing. There were again two compamies wating on the ice at the actual water's whe, with some humbed more tailing out in single file to join them. The birds were waiting far out at the edge of the open water, as far as it was possible for them to walk, on a projecting piero of ice, the very next prece that wouk break away and drift to the morth. The line of tracks in the snow along which the bink had gone the day before was now ent off short at the edge of the open water, showing that they had gone, and under the ice clittis there was an appreciahie diminution in the number of Emperors left, hardly more than half remaining of all that we had seen there six days before.

The following day, the 24th of October, we were again ronfined to our camp and slecping bags with a very heary blizzard from the south, but on the 25 th, we male an effiort to reach the alge of the clifts, and saw once more this method of migration going ou. There was again on the extrene edge of the fast ice a large number of waiting lirds, and a long file of others going out to join them. I believe that as yet mone but the unemployed had gone, for they had all a mile or two to walk to the edge of the open water and all were walling freely; their movements being very different when they have a chick between the legs. The nursing contingent of the rookery was still huddled moler the iee cliffs, sheltered from the worst of the storm, lat markedly reduced in numbers.

We had onrselves some difticulty this time in regaining our tent, for the storm came on with fury, and the air was so thick with show that we contl see nothing but what was at our fect. We hat, as a precaution before starting, laid out a line of ski poles, skis, ice axes and a length of Alpine rope across the direction of our path to help us to again find om tent, but had we not worn crampons, which bit holes in the hard ice and gave us marks to follow, we should have had great difficulty in tinding our way back that day or night, for all marks in softer snow were immediately swept away.

The two following days and nights the storm raged with so much drift that we were forced to remain in our sodden sleeping bags, and it was not until the 28th that we were once more able to visit the edge of the overlowking cliff. It was then blowing and drifting so hare that we got but an occasional glimpse of the birds below in the bay. No ice was now to be seen on Ross Sea, even to the very horizon. More ice had left the little bas, and precisely the same exorlus was in progress that we had seen before. On the edge of the bay ice, again, a pack of about a hundred birds were waiting to he drifted north, and a file of adults going out from the shelter of the cliftis to join them. There was still a remnant with their chickens waiting under the ice clifls.

On October 29th we made a day's journey to the Adélie Penguin rookery in most objectionable weather, and on the 30th and 31st and on November 1st we were again forced to remain in our camp, by a renewal of the blizzard. On November and the weather cleared, and taking a rope and ice axes we crossed the pressure ridges and once more visitel the Emperors down on the sea-ice in their rookery.

Ross Sea was free of ire, and the Emperors then remaining, in all about four humbred, were scattered over the limited area of fast ice still tilling up the bay. It was now fulte an easy task to number the chickens, for they were lying all around us dead. There were not more than thirty left living in the rookery on November end.

In September, when Lieutenant Royds and I were here together, we caleulated that there were perhaps a hundred and fifty chicks amongst the thousand adults. We were therefore in a position to check our estimate, for we could collect into a heap all the dead chickens we found lying on the ice (seefig. 23, p. 30). Including the deserted eges, these numbered just a hundred, making the total for the year's production one humdred and thirty young. This gives the surprising death rate of 77 per cent. Thas :-

giving a total of one hundred and thirty-one as the produce for the year, of which no fewer than one hundred and one lost their lives before leaving the rookery for the pack ire.

It was most interesting to note how closely these observations for the year 1903 agreed with those which had been made on the same spot the year before by Lieutenant Skelton. In 1902 Licutenants Royds and Skelton had been eneamped there during a blizzard of tive days and, on Uctober 18th, when the storm abated, had gone down on to the sea-ice to take a count of the number of birds and chickens. Skelton's estimate was about thirty living chickens and four hundred adult birds, almost inlentically the same as in the year that followed.

The blizzard which detained us the following year lasted ten days. Before its
mbet we calculated that there were over a thonsand Emperms in the hay；when it abated we calrulated that there were alout four humdred adults and from twenty－five to thirty living chicks．What went on during the stomm we were luckily able to see， and what we saw gave us the clue to the suden disappearance of all Emperors，young and old，from the hay hy November 8th，when Lieutenant Royts mate his serond visit to the spot in 1902 ．Had we possessed food and fuel enough we should have remained cncmmped on this spot to see the remmant carry out their migration，but our return to the ship was already overlue and our food and fuel had ahmost rome to an end．So we had perforee to leave and make our way back．We took with us the oldest chicken we could find in the rookery，in case the chick we had left at the ship might have died huring our absence，and we hoped that we might soon be able to watch the natal moult in progress．With wir departure from the rookery on November ？nd our observations on the Emperor＇s breeding halits came to an end．No further visits were possible，as all hamds on the ship，both ofticers and men，were requisitioned for the ice saws in Mc．Durdo Sound to cat a channel for the ship＇s release．
＊We now，however，knew a good many of the halits of this lird，and they are ecrentric to a degree rarely met with even in Ornithology．First，in choosing the darkest months of the Antarctic winter in which to incubate its eggs，which are laid probably in the first week of July．Then，not only in the choice of season for its nesting，but of place．It must needs lay its single egg upou sea－ice with no pretence at nesting，removing the egg at onee from the surface of the ice to rest upon its own feet． There it holds it wedged in between the legs closely pressed to a pateln of bare skin in the lower alndomen，and revered from exposure to the cold by a loose falling lappet of abkominal skin and feathers．

That this method which the King，in common with the Emperor Penguin，has of holding the egg on its feet，covered up by what is nothiug but a fold of ablominal skin， should ever have heen described as the＂pouching＂of its egg is mnch to be regretted． The term＂ponch＂is wholly misleading in this connection，not only anatomically but from a purely descriptive point of view．There is no pouch of any sort or kind into which the egg is placed，it is merely held upou the feet to keep it from actual contact with the ice or ground，and covered up by a loose and thickly－feathered fold of skin to keep it warm（see fig．8，p．14；also figs．9，10，p．16）．
$U_{11}$ the sea－ice，therefore，the Emperor stands waiting for the egg to hatch．But as there is no such thing to be fomed in September as a bird half－starved or in poor condition， all leeing fat and in perfect phmage，it is obvions that the same bird does not sit on the same egg for seven weeks．It would appear that the inculation is caried out not by one hird only，nor by a single pair，lut by a dozen of more，which stand patiently waiting round for a chance to seize either a chicken or an egg as the post of incubator becomes vacant；every adult bird，both male and female，in the whole rookery has a keen desire to＂sit＂on something．Certainly not more than one egg，and so one ＂dicken，is produced to every ten on twelve adults，though why this should be the case is
more than ome "ans say ; passilly it is a comdition of things evolved in an exacting climate, to allow earh indult to ohtain sufficient fool through so long a period of inculation.

Not only du the laren females take their turn with the hens that lay the egos, hut the mak limets also help, and so every individual, whether male or female, has the same bare patrin of skin in the median line of the lower part of the abdomen against which the cges is mosely held fur warmth. What we actually saw again and again was the wild dash made by a dozen adults, each weighing anything up to 90 lhs, to take possession of any chirkin that happened to find itself deserted on the ice. It an be compared to nothing hetter than a football "scrimmage," in which the first lird to seize the chicken is hustled aml worried on all sides by the others while it rapidly tries tw push the infint in letween its legs with the help of its pointed beak, shouging up the lonse skin of the abdomen the while to cover it. Although the transfer of the rat was never athally sem, there is every reason to believe that when the sitting lird feek hungry it hamk over its treasure to the nearest neighbour that will modertake the duty of inculation.

That mo great ware is taken to save the chick from injury is obvions from an examination of the dead ones lying on the ice. All had rents and llaw maks in the skin, and we saw this not only in the dead hut in the living. The whicks are fully alive to the incomenieure of heing fought for by so many clumsy nurses, and I have secn them not only make the best use of their legs in avoiding so much attention, hut even crawl in umder a ledge of ice where the ohd birds could not follow them, and there remain to starve and freeze in preference to being nursed. Undoubtedly, I thimk that of the 77 per cent. that die before they shed their down, quite half are killed ly kindness. Once caught and tucked away the chicken appears to be very comfortable, lout the process of changing hands, which must take place fairly often, is full of danger. Often enough the chick is almost smothered by the struggles of the heavy hirds above it : often enough, too, its skin is tom by beak and claw, and from time to time it will le fomm to have elropped down a crack in the ice, where it remains to freeze in the slatge while the birts dispute its possession just above, not one of them having the sense to help it out of its dangerous position. It is not wonderful, therefore, that a very large proportion come to grief, and the season of the year in which the unhappy chicken is forred to emerge from its egg-shell undoubtedly tends to increase the enormous death-rate.

A glance at the mean temperatures for each month of the year in this region (ved PP. 117 and 118) will show at once that the Emperor Penguin chick which is hatched at the end of August has to face, in the first few weeks of its life, the lowest temperatures of the whole Antarctic year. The mean of the two Septembers of 1902 and 1903 was $-12^{\circ} \mathrm{F}$. and $-18 \cdot 7^{\circ} \mathrm{F}$., and thermometers within a few miles of the rooker in that month recorled $-63^{\circ} \mathrm{F}$. and even $-68^{\circ} \mathrm{F}$. upon the Barrier.

The question that naturally arises from an infant mortality of 77 per cent. is whether or no the hreed of Emperor Penguins is dying out. From all that we saw and from all




Fig. 7. Emifmon Pheqguns in Fule Motitt.
that has been recorled of the wide distribution and romparatively frequent ocmrence of this bind, I should myself say most certainly not. It is to be met with all orer the Antarctic region. The fact of the death-rate being high at the only ronkery as yet located, a rowkery which was situated ahost as firr sonth as the liod has ever been known to wander, eren in the summer months, does not necensarily prove that it would be as high in every other rookery. There may be certain conditions at this spot, local ant climatic, which would account for an extra ligh mortality, w it may he, as I have ahready suggested, that the hird has a great longevity and that this th some extent counteracts the effect of a high rate of death in infincy.*
"A very pathetic sight was to be seen, resulting from the intense desire of the memployed adults to "mother" something. Having neither eggs nor living chickens they are reduced to mothering the dead, and so it was no uncommon thing to see an old lind trying to coax a frozen infant into a comfortable position betwern its legs, wh to see the head and neck of a lifeless chicken trailing out hehind by the ohd linds tail. To surh an extent was this practised that very few of the chickens form dead upom the irefloe were in a fit condition for making specimens. The down was in most cases worn by friction from off the stome-hard frozen body, and the legs and wings were in the majority of rases looken. Were it not for the interest attached to these mutilations as proof of one phase in a unique life history, few of the specimens found dead would have been worth preserving. As it was, however, we brought a number of them home.

As the size of the chicks increased, the difficulty of covering them up with the flap grew greater, and when we risited them on the 19 th of October we saw quite anmber in which the head and shoulders alone were out of sight, the large round himder quarters covered with greyish down sticking out hehind, smmonnted by a short hack tail.

Sometimes the chick would face the same way as the parent, and then but little of its anatomy was out of sight, for the main increase in loulk was in the lower thind of its loody, till the little individual became ahonst pyamidal in shape. The legs ant feet of the chicks soon became comparatively coarse and heary for their size. They certainly need to have them hard and homy, living as they do on the old bind's sealy feet; neither would it do them any harm to have the parts aromut the anms also homy, for in some cases these parts were sor abmed an to he raw and blewhing.

The usual position taken up in the earlier stages was at crouching attitule with the head as low as the feet, and it appeared to make litfle differenee whether the chick sat upright on its nuse's feet or lay upon its side. The chims when puite small are invisible so long as the nurse keeps still, but have the power, and use it frepuently, of poking the head ont from beneath the flap to look about and whistle for more food.

* Prof. Bell has kindly obtained for me, from Mr. Herbert Klugh, the following estimate of the age of an Emperor. Penguin so far as it may be dedueed from the foregoing facts. "Assmme that after the chick stage all the binds in the rookery lise to the arerage age $a$ and then die, then there must be $\frac{1,030}{a}$ of every age; and so every sear ${ }_{a}, 030$ die, so that in order to keep the population stationary, if ${ }_{a}^{1,030}=30$, the arerage age $=34$. years."

If one fored an old hirl with a dicken to move, it would shuffle along awkwarlly as though the fert were tied together, never exposing the chicken or hanging from a plantigrale morle of progression. If ome hurred such a hird a little mome, it would wer-halane formarls, and try then to retain the dieken with its feet, helping itself along with beak and wings. If still pressed to move rapilly, the feet were involuntarily brought into intion, and the chicken very som slipped out behind, being left sprawling and piping in the open on the ire to be pounced upon by the nearest unemployed adults without delay.

Obvionsly, the chickens, as I have said, are common property, and they must change hands scores of times while they are dependent upon the arlults for their foort. The method of feeding was precisely as described helow in the rase of the Aelie Pengains. The old hird, having regurgitated some semi-digested food into its pharyx, allowed the dheken to supply itself from there by poking its head and bill insile the parent's mouth.

The food of the Emperor Penguin consists mainly of fish and cephalopors, the bones and the horny beaks of which are constantly accompanied by pebbles in the stomach. Crustaceans of varions kimds are eaten as well as fish, but the latter seem to form the bulk of their ordinary diet. That so many large birds are able to find foom for themselves in those somthern waters, even in the depth of winter, proves concusively that there is a great aboudance of marine life under the ice throughout the year. This, in the case of such ammals as Crustaceans, Medusie, Asternids and Hydrozna, was amply proved hy the collections made by Mr. Hodgsm, hut that fish were so abundant we knew mainly ly the contents of the stomachs of seals and penguins.

It may seem strange, that during the winter months the sea was not so completely frozen over as to prevent the penguins from eutering it every day, but so it was just where they congregated.

Floating ice drifts in a direction dependent upon wind and current. If the mass is very lurge, e.\%, an iceberg, having about seven times the visible bulk sulmerged, the direction of its movement will depend ahost wholly on the ocean cmrent, and one may constantly see icolorgs thavelling up the wind. But with flat sheets of ice, such as are formed by the freezing of the sea in winter, the wind has often a greater directive foree than the current of the water. Conseruently, along the sea face of the Great Ice Barrier, where not only is the set of the water corrent northerly, but the wind as a rule is somtherly or easterly, the two combine to keep the sea ice on the move in a north-westerly direction, prolucing, for the greater part of the winter, a lane of open water along the actual foot of the ice cliffis. Of this the Emperor I'enguins take advantage, and here they have an entrance to open water always handy.

If, as very occasionally happens, there is a northerly wind of any strength, the sea-ice is driven up to the foot of the Barrier ice cliffs, the chamel is for the time being dosed, and the liris are foreen to look for caracks and seals' holes by which to

enter the water for their ford. Probably during the whole winter there is never a day on which a mile or two of travel on the ice would not loring them to in opening of this kind.

If, again, the set of the ice drift be easterly, there will be an open pool of water under the lee of every cape along the ice diffs; and, vice cersin, if the set be westerly, there will be pools on the eastern side of all the bigger capes; and one realises, on skinning an Emperor Penguin, that the very suhstantial layer of fat bencath its slin, quite indispensable in such a climate, can only be maintained by a constant and abundant take of food at all times. The season of the year when this layer of fat is most ample is, as one wonld expect, toward the ent of the summer months and before the moult, when the new feathers underneath the skin will be found embedded in a mass of fat at least an inch in depth all over. This layer is much reduced ly the growth of the new feathers and by the period of starvation necessarily undergone during the moult, when nothing will induce the birds to enter the water.

The firh which forms the Emperor Penguin's staple dict is a small silvery species of from 4 to 6 inches in length; the crustaccans were mainly Euphusize and schizopods, while the cephalopods were of considerable size, a foot or two in length julging by their beaks. The pelbles were no doult of use in the trituration of the fish bones and the harder parts of the crustaceans' shells. They were always present, in the young and in the old, and were found even in the stomach of a chick which could only have emerged from the egg a day or so before. Exactly where the pebbles come from is not at first sight evident, seeing that the lirds are never seen on land. Probably they are picked up at the bottom of the shallow seas, or some of them may be foumb on thating glacier-ice. Much grit and gravel, even of a considerable size, is blown some distance on to sea-ice from the neighbouring roast-line. lt may be that this affords the lirds the supply they need. Occasionally the stones are passed with the exereta, and may be found in the radiating pattern which is left upon the ice floes where a company of Emperor Penguins has huddled together for warmth and rest in their spring and autumn wanderings.

These wanderings are worthy of a note in passing. We had settled into our winter 'fuarters on February 8th, 1902, and had seen no Emperor Penguins there at all, until, on March 30th, we were surprised by a party of twenty-eight, whose tracks over the ice showed that they had wandered very irregularly along re-frozen cracks, endeavouring to find some place where they could enter the water. They kept well together always, travelling in single file, now and again halting as mentioned above to huddle together in a heap, all facing towards a common centre, presumably for warmth and sleep. Occasionally the tracks showed that a lird had preferred to travel on its hreast, but as a rule they all were walling.

No lird was then seen till the 8 th of April, when again a party of between thirty and forty appeared in the darkness near the ship. Of these we caught and killed a large number, and one was the heaviest so far recorded, scaling 90 lls s. The
sea-ice, honever, was hraking up and we were unable to follow their tracks th fint out where they hat come from. Win April 12 th, fim days later, we again saw a party of five, and on the 13th seven more; on the 19th a single one, and on the 6th of May two others. These were the last for the season, and no doult by this time, so cluse to midwinter, they had collected together at their varions roweries to commence the duties of mating and incubation.

The nest that were seen in AcMurdo Sound were wandering on the ice not far from "pen water in the spring. Here one might find them abont the middle of September in small companies, and in the best of plumage and condition. They seemed then rather to prefer our company than otherwise; and a party of fifteen on one occasion followed us for some distance. Always full of curiosity, they would stand round in a group making comments to one another on om appearance. They had no objection to heing photographed, but resented leing stroked. Sueh a group formerl an exeeerlingly beautiful picture; their lemon-yellow breasts shone like satin in the sun, and their huish backs and jet-black heads set off the golden yellow patch on the side of the neck, and the rose or lilac streak on the lower lill. The back and lireast, if the hird had just been in the water, would glitter with crystals of ice and salt. No doubt the hrilliance of such a picture was murh enhanced by the fact that we were just emerging from the darkness of a pular winter, during which we had seen no sum for seventeen weeks. But still, such is their size and colouring that they would form a striking feature anywhere.

We saw again on September 29 th a party of forty-six Emperors, and two parties of eight and twenty on the following day, and so on through the early summer months. How, in the light of ascertained facts, these birds came to he wandering in the spring, when they shond have been at the breeding colonies, one canot molerstand. Perhaps, having lost their own young, or having produced mu eggs, they got sick of waiting about on the off-chance of musing the yomng of another birl, and began to wander for want of better occupation. There were hoth males and females in these eompanies, as we found by taking samples from their number. Sometimes we chose out the largest and the smallest; the latter has proved to be a female, the former a male, though it is certain that size is no criterion in distinguishing the sexes, for the record indivilual of 90 lbs . weight was a female.

The average weight of thirty-three of these birds, all of which were adults and in full phmage, takeu in November, was $70 \frac{1}{2} \mathrm{lbs}$. Only one was below 60 ll s ., scaling $58 \frac{1}{2} \mathrm{lhs}$. Fourteen came between 60 and 70 lhis ., fourteen hetween 70 and 80 lbs , three weighed respectively 80,80 , and 87 llss., and one scaled the record weight of 90 Hs . These measurements were kindly taken for me by Licuts. Royds and Skelton.
"Their method of progression varies much with the necessity for speed. When left to themselves the birds invariably walk bolt upright with great dignity (werfig. 12, p. 18); bot if alarmed in any way immediately drop dorm on to the breast and tologgan rapidly along by alternating strokes of their powerful legs and wings. If overtaken in their


Fig. 9. Fmperoh Pengitis and Chict.


Fif. 10. Emieroh Pienguin ani Cincti.
efforts to escape the hirds will at once rise to their feet and show fight, faring their antagonists and nsing hill and flippers simultaneonsly, and the stroke of an limperor Penguin's wing, if "aught fainly on the hand on on the shin, leaves a lnowe whith will be fett for many week:

When pressed to travel as fast as possible they gline along on the ice at the rate of about 8 or 10 miles an hour (spe fig. 11, p. 18). This rate is, of oourse, much exceeded in the water, where their sped and dodging power probally rivals that of fishes, seals, and whales. They swim with their wings, and maty often be seen to leap from the water and land unight on a shelf of ire at least fom feet above the surface. Their only enemies, so far as is known, are also inbabitants of the water: and their ideas of fear are comected chicfly with that element, as in the cave of Aleflie Penguins.

We once fround the ragged skin of an Emperor Penguin in the stomach of a
 Adelic Penguins (Pygoscelis aleliz) in the water as they were thrown to it from the ship. There is therefore no doult that the Sea Leopard is one of the Emperor's artive fues. Prolnally none of the other seals would attempt to molest it; lat the Killer Whate (Oren glactiator), whose food is seal and dolphin, woutd almost certainly take Empror Penguins if they rame in its way. This however we did not see ; nor did we anywhere come across another dead Emperor Penguin, except on one oecasion, when the mangled skin of an adult lird turned almost inside out floated past our ship as we entered Mredurd, Sound. Probally it was the remains of a bird which had died and had formed a feast for some Skua (Megalestris maccomichi) on (iiant Petrel (Ossifrafa !!gantea). Neither of these hirds, however, should her considered the natural enemy of the Emperor Penguin, for I do not helieve that this Petrel attacks things living, as a rule; nor has the Skua any appromity to attank the Emperor Pengun's chickens, since at the time of their infancy, in the winter and early spring, they are many handreds of miles to the south of the region then infested liy the Skuas.

The Emperor Penguin sleeps cither standing in the upright pasition with its hear tumed back over the shoulder so that the tip of the beak rests moler the back of the wing (ser fig. 14, p. 22), or clse in the prone position with the luend drawn in mon the neck. The prsitions assumed by the chick are seen to be slightly different (ligs. 19, 20, 13. 2(i). Buth attitudes are to be seen in the photograph taken by Lieutenant-Engineer Skelton (fig. 5, p. 8). Whether the former posture is a relic of days gone by, when the hird had a fully feathered wing and was capable of flight, it is mot casy to say; hot it is suggestive to see it take up an attitude which would have been comfortable when it had thick warm feathers into which to breathe. It may be that the position is merely a convenient one for bilance, and it is quite certain that all comfort must have disippeared since the wing became converted into a bony flipper. 'The prone prsition is certainly more reasonable with a view to economising lurly-heat. Both attitudes are assumed loy the ehick in its carliest stages when takn from the alult.

The temperature of the hird is high, but not so high as that given by Mr. Eagle Clarke, as observed in the Aelelie Penguins by members of the Scottish Expedition. For that hird the temprature is given as $106^{\circ}$ Fahr., Jot in the Emperor, as a mean of that taken in the asophagus and in the rectum the moment after pithing a freshaught lird, we form the temperature to the $100 \cdot 7^{\circ}$ Fahr. The rate of the pulse in a "pithed" hird was sixty to the minute, and the respiration in a chicken twenty. It is possible that the danage to the medulla may have afferted these oliservations, though they were taken the moment after; it was not easy, however, to make them otherwise.

There were no parasites discoverable on the skin or amongst the feathers of the Emperor Penguin-a fact which is somewhat remarkahle, and one which hotds good, so far as we were able to make out, for all Antarctic birds and beasts, in direct opposition to the experience of observers of Northern Polar lirds and animals. The only typical Antaretic lind on which lice were ever discovered, and in this one ase they swarmed, was in a single individual of the Snow Petrel (Pafotroma nivera). Bacteria, I am told by Dr. Koctlitz, infested the intestines and also were discoverable in the incubated eggs of the Emperor Penguin.

The cry of the adult Enperor is far londer, more prolonged, and more musical than the harsh croak of the Adélic Penguin. It is like a defiant trumpet-call, and can be heard at a great distance over the icefloes. This is its rallying call note, and is emitted with the head crect, but it has also a clucking or chattering note to which it gives expression in a different way. Bending the head and neek down low on the breast in a powerful expiratory effort, it then, in rasing it, gives vent to in interrupted musical ery as the lungs are filled with air. The supraclavicular hollows can be seen distinctly emptying as the head goes down, aud filling out again as the head is raised. The ery of the chick, which is noted elsewhere, is a more definite utterance of four notes emitter in the same way, and bearing a faint resemblance, according to our worthy blucjackets, to the words, "Gimme some more, gimme some more," which it at any rate always implied exactly, even if the resemblance was somewhat vague.

The bird oceurs probably thronghout the whole of the Antaretic regions within the limits of the ice, or more exactly, as laid down by Mr. Howard Sambers in the "Antaretic Mamal," it "ranges longitudinally from $151^{\circ}$ E. in Victoria Quadrant, through Ross Qualrant, to about $50^{\circ} \mathrm{W}$. in Weddell Quadrant." Its range to the north has been somewhat exteuded lately by the Seotish Expedition, some of whose members saw an immature example of the hird in $60^{\circ} 44^{\prime} \mathrm{S}$. lat., where the 'Seotia' wintered in the South Orkney Istands. The limit of its range to the south coinciles with the open water of summer, and this in Ross Sea is about $78^{\circ} \mathrm{S}$. lat.

The ocenrences of the adult bird in the area we oursetves explored are given incidentally throughout the cousse of this paper, but concerning the immature birds, five or six months old, it is noteworthy that of the ten Emperor Penguins sighted in the pack ice between Jamary 2nd, 1902, and Jamary 8th, 1902, all that were near enough to be distinginshed were in that stage of immaturity, and five of




Fli. 12. Emifreor I'fingtin Walieng.
them were "aptured. Furthemore, not one of this age was seen or waptured later or in any other region but the pack; thongh of the immature stage of seventern months, with the hown and weathered coat, and whitish throat, we salw about tive wamples in all, and every whe of these was taken a grat distance farther south, at the edge of the fiast ice, and at the cond of summer (in February) when the pak-ion hedt hat disappeared, thowing Ross Sea npen to the southern oceans.

It appears, therefore, that the varims ages have cach their wom bationlar man during certain seasons, and that whereas the pack ice is regarded as a safe numery for the youngest birds in summer, the more advancel immature hirds, which, at seventeen months, are then on the point of moulting, wamder sonth ter find fist ice on which to remain while the process lasts, knowing that in the disintegrating ice-pats they might he fored to take to water when it would be highly inconvenient for then to do so.

Similarly, the adult linds, having finished all their duties to the youmg. m心 leave them to themselves, and also retire southword in Jannary and Febnary to take up their retreat and moult in safety on fast ine. This acomonts for the groups we met in full moult on Jannary 15th, 1902, in the secluded bight known at Laly Newnes Bay ; :utso
 1902, and for the varions examples taken in Jamary, 190:3, and in Febrany, 1904. all in full moult or with the moult but just completed, in Mchardo Sound.
a We have therefore substantiated the following farts: first, that the Emperor Penguin chick remains hut four months in the down, a most astomishing fract, it, as seems to be casc, the King Penguin wick remains in down for fully ten months (see pp. 34, 35) ; that it then moults to assume the blue-grey plumage with the whitish throat which characterises the lirds of five months old to be found in the pack during January. This same plumage is to be seen a year later in a brown and faded state, with hackish feathers sprinkling the white thwat, and the whole abont to be shed, in Felruary, when the bird dons the first adult plamage, and all the characters of the fully adult, though not as yet the richmess of coloming that it will assume at the next ammal moult.

One immature bird was brought on board in Lady Newnes Bay, and kept in capdivity while it shed its immature and dommed its atult phomege. The feathers elinging chase to one another came off in spurions shects or hamdfals, first from the hreast and thighs, and then from the face and tail and flippers, but most irregnlarly, until at length there was nothing but a ruffle or collar of old feathers round the nerk (wit fig. 15, p. 2. 2 ; and figs. 6 and 7, p. 12). This moult took just twenty days from start to finish.

It has before been stated, as a result of the late Nionlai Hemson's olservations in the 'Sonthern Cross,' that the birds fast while moulting and aroin at all costs entering the watel.

The young feathers embedded in a mass of fat heneath the skin grow rapidly, and push the ofd ones out, so that often a mere touch will detarly a hundred feathers from the bird en musse, giving the false impression that they have come off
in a sheet or "slough," and suggesting a comparison with the sloughing of a reptile's skin. The comparison, however, as Mr. Pyeraft has elsewhere shown, is fallacions, and as mislealing in its suggestion a the use of the worl "pond"" in luseribing the same birds inculation methors.

In ali probability, not only are the superficial scales of the feet shed as well as the feather, but also the plate on cither side of the lower mandible, as in the rase of the Puttin and possibly the Auk* and other bind. The superficial layers of these homs parts, at any rate, become loose, and, in the Emperor, change the colour of the beak, rendring it dull and opaque, and the feet hrown instead of hark. The coloured plates of the lower mantible can eatily he removed in a monting lird, and are then foumd to be of a tramslucent yellow horn.

In the young chick the eolouring of the iris is a rich dark brown, varying a tritte in warmenth from dark wahnt, though never reaching the redness of malogany: The bill is blackish at the tip and hase and whitish in the centre, while in the older chicks there js: sometimes a faint dusky puplish tinge in the lower bill. The feet and mails, at first pale theshy grey or the colour of French chalk, become darker day by day, till in the thind week they are definitely hack.

In the immature bird, after shedding the downy feathers, the whole of the back becomes haish grey, the lilue tinge preponderating and cucrowhing on the head and neck. The chin is grey and mottled, but the throat, instead of lowing black as in the alult, is white, with here and there a greyish feather showing through, thongh in some the demaration line between the dark chin and the white throat is quite distinct, as in Fig. : of Birds, Plate III. If this figure be examined and compared, first with the arrangement of back-aud-white in the chick, Figs. 1 and 2 , Plate III., and then with the head represented in Fig. 4, it will be seen to show a kind of transition stage in which the white round the orbit in the chick has not quite changed to the dark grey characterising Fig. 4, Plate III. Neither has the grey patch on the side of the neck, the precurso of the orange in the adult, come out so prominently in Fig. B, Plate IH., as it hats in Fig. 4, Plate III. This is due to a variable admisture of grey feathers with the white and white with the grey, as the case may le. The iris in this stage also is a rich dark lownu, and the bill has become dusky throughout, with a dull purple tinge upon the lower mandible. The feet are black, as also are the chaws; this holds good for the ulult bird as well. The heak, howerer, alters, and in Figs. 5 and 6, Plate IHI., it will be seen that the side plates of the lower bill now show a decided orange yellow tint, less marked than in the fully adult bird, but still distinct. These two heads are drawn from hirds in the same phmage as Nos. 3 and 4, Plate ILI., But after a full year's weathering, which has faded the black to brown and has much reduced the prominence of the bhe or huish grey. The whole plumage in this stage has a hrown and faded appearance, and the patch on the side of the neck has become quite white. In No. G, Plate III., the demaration of the back throat of the mbult is already

[^6]dofinitely marked by the appeatace of a few hark feathers. On this plate then are represented the heals of three distinct phases of phmage. Nos. 1 amb $\because=$ giving the hearks of rhieks in flown in the first 4 months. Nos. $:$ and 4 giving the heats of immature lierls at 5 montlis and onwarts; this gralually weathering to the condition of the hearls figured in Nos. 5 and 6 , which are drawn from limes of 18 months, when they are on the point of moulting for the first time into the black-throated, gellowneeked dress of the adult.

The first adnlt livery is, as I have said, not quite sor rich in colour as it hecomes after another moult, but is in other respects similar, and so has mot been figurect. Plate II. represents the life-size heal of an ahlult Emperw in lull plumage, with the rose and lilac colour fully developed on the lower hill, and the head and throat a rich glossy black against the bight orange yellow on the nerk. Han the weathered and farted comlition of the adult livery been represented, it would have shown again how much of the black farles out to a dull brown oolour, both on the head and neck and back, the hlue hardly changing, hut giving with the brown a very farled appearance to the plumage. The tail feathers, twenty in number, become worn to mere quills, and often in the loreding rookery one may fiml all the tail feathers detached from the bird and lying imbedder in a large lump of hard and dirty ire upon the floe. The seales on the feet also will be no longer a rich hack, but brown.

If one compares the measurements of the birds in these various stages of growth, one finds that great changes are effected in the bill. It will be seen hy comparing Figs. 3 and 4 with Figs. 5 and 6 of Plate Ill., that the rhief alteration takes place by the lengthening of the upper mandible, the eurve of which gradually increases. With this growth proceding at a faster rate alomg the culmen than along the tomia, the nostrils, wher are very detinite and well marked in the first few montlis of life, gradually become olseurer. So also the thickening, which is apparent on the enlmen about one-fourth of its length from the tip, is also gradually obliterated by the elongation of the upper mandible. This thickening has served in place of an egg seale, which is not developed as a deriduous element at all. The angle of the gonrs, too, which is quite apparent in the lower mandible np to the fifth month, gradually disappears with the lengthening of the bill, and erentually the strong uniform curve of the adnlt bill developes to its full extent.

Perhaps the measurements which best bring out these changes in the growth of the bill are the length of the upper mandible from the feathers at the nostril tu the tip, and the measwement from the angle of the mouth to the tip of the bill. Thus:-


The adult measmements of the wings are reached much earlier; even within the first six months, as also are the measurements of the feet and dans, presumably as a
result of the necessity for extra strength and efficiency in those parts to avoil natural enemies ower amd alrove their uses in obtaning food, while the bill lacks this stimulus tor rapid growth.

The intividual variation to he found in a series of Emperor Penguins amoments to very little indeed. When the variation in size and weight has been mentioned, as ilhstrated in the series of thirty-three birds given above, there is no special peint to which attention can be drawn except in the curve of the bill. Here, however, there is some variation having no apparent reference to sex or age. In some individuals the curve is decidedly more marked than in others, as may be seen, for example, in the cwo birds of a similar age in Figs. 5 and 6 of Birds, Plate III. This is not merely chararteristic of immaturity, for the curved type shown in Fig. 5 is found eveu mone strongly marked in some of the adult specimens in the collection.

The colon of the side plate of the lower mandible is also variable, from yellow throngh orange and real to lilar; but it seems to depend to a certain extent on the condition of the peripheral cirenation, tuming to a livid lilac when the circulation is depressed by cold. The depth of the lemon-yellow colour of the hreast and abdominal feathers varies considerably according to the extent to which the summer sum has farled it. When freshly monlted the whole of the lower parts must be described as pale lemon yellow, not white, as in the catalogue of the British Museum.

In descrihing the immature bird also there is a point worth noting in the colour of the rrown, which is of pale bhuish grey, marked off as a distinct patch from the darker grey which surrombs it. This hluish path is noticeable during the first seventeen months, but the heal then becomes jet llack all over. The point is the more intrresting lecause it is exactly reproluced in the first prenuptial plumage of the immature King Penguin. Ls a grey coronal patch it is lost iu both King and Emperor when the immature plumage is disearded, hat in the King the tenlency to differentiate in colour in this part of the head is again bronght out by the deposition of minute fuantitios of golden yellow pigment in the coronal and particularly the superciliary feathers, which with the black gives the crown a greenish sheen. This is also to be seen upon the chin and throat. That this tendency to deposit golden yellow pigment should oecur in the position in which the golden superciliary erests occur in Caturrlutes and Megadlptes is most significant, and an examination of a specimen of the King Penguin in the collection of the British Mhsemm, now figured for the tirst time in Fig. 4 of Birds, Plate VIII., will show how far this tendency may be carried in a particularly vigorous individual.

Attention is particularly drawn to the distribution of the golden yellow pigment in this specimen, horase it has a definite bearing on the genesis of the superciliary crests in those genera which nomally possess them. To this end I have gone into some detail in deseriling the head and neck of this particular sperimen in the chapter devoted to Iptenodytos patafomice (11p. 35, 36), and there the 'fuestion of its relationship to Aptemodytes forsteri is dealt with more fully.


Fig. 13. Emperor Penguin Rookery at Cape Crozier.


Fig. 11. Empreroia PexGitin shmpring.


Fro. 15. Enirquor PexGets Mollamge


The most puzzling fact about the Emperor Penguin is that the colowring of its nestling is totally lifferent from that of the nestling of the King. I'revions to its diseovery in $190: 2$ it would have been deemed reasonable to surmise that the thirken of the Emperor when fomm would be miformly dak hown in colour and hartly distinguishable from the chicken of the King. But this is far from being the case. In direct contrast, it has a jet-black head with a pure white area surroming each of the eyes. The back of the head starting from the lase of the uper hill, and including the forchead, lores and chin, is continued over the crown to the nape of the neck. There it blends with the silver grey of the bark, to be continued as a grey or lackish hand, almost, hat in most cases not quite, meeting on the fore neek as a collar. Between this collar and the chin, which is jet blatk, the throat is pure white, as is also a rounded area including the cheek, eychow, and ear coverts. The minute little tuft of stiff feathers which constitutes the tail is jet black, and the whole of the remainder of the down covering the body is silvery white ar grey, with this notable peeuliarity, that the darker area is on the under surface, extending from the fore neck to the vent, over breast and abdomen, whereas the whiter area is on the doral aspect including the nape, mantle, scapulars, back and rump, as well as the minute and downy-coated flippers, thus reversing the usual order, in which the under parts are lighter, or at least not clarker than the upper (figs. 16, 17, p. 24).

The complete absence of any protrusion of the how or superiliny prominence gives the bird a quizzical look which is always entertaining. The movements of the eye are quick, and the uper lid is raised to look upwards without morh motion of the head. The outer coverings of the eye are almost flush with the outer contour of the face and head; there is no attempt to offer it protection by bony ridges, but every effort is made to produce an eye so placed as to catch the glint of a fish aloove, below, ahead or astern, while the bird is in its element under water in search of food.

I have so far been unsuccessful in finding any discernible reason for the peculianities of colour distribution to which attention has just been drawn. That at one period the adults of the Emperor and the King must have been totally distinct one has every right to conclude from the fact that the chick of the one is uniformly dark and brown, while the chick of the other is a fantastic piebald of hack and white. Yet the udults have such striking similarities in their jet-llack heads, their orange necks and heak plates, their bluish backs and lemon-yellow breasts, that one is led to consider them close relations to one another until their chickens are examined side by side. Even then one is reminded that the Emperor Pengnin and the King Penguin lay but one egg' earh, and that both incubate the egg in the same way on the dorsmun of the foot insteal of in a nest. This they do moreover in an upright position instead of squatting om the egg as do other penguins. It is impossible to think that these many peculiar similarities have been developed independently by birds which were once more distinct, but how then can one explain the total dissimilarity that exists now in the chicks? The simplest way out of the difficulty would be to say that the white down of the Emperor's
chick is a special development for its protection while lying on the snow-covered seaice which forms its earliest musery, but this explanation is loy no means borne out by facts. From September to December the chick exists on the floes of the seatice upon which it was hatehed without ever entering the water. lis enemies, therefine, in the Antaretic can only le other linds. There are no seals that would disturl, these chicks on the ise, and the mily birds that might interfere with them are the Skua (Mromedras metemmicki) and the Giant Petrel (Osifiaga gifantea). Both, however, are migrants and neither wond appear on the Emperor Penguin's breeding ground until the end of October. some two months after the chickens have left their eggs, and when they would already have reacher the size of a full-grown Skua.

I do not believe that the Skua is responsible for the death of any of the Emperors' young, neither do I believe that the white down is the result of a need for protection from any enemies that we know as yet.

The Giant Petrel might occasionally attack the young of the Emperor Penguin, but an far as our own and all other observations go, they lead one to look pon the Giant Petrel as a camion-feeder with little tendency to attack living animals. It most also be remembered that, like the Skua, the Giant Petrel in far to the north at the outskirts of the pack ice in September and Octoler when the Emperor chicks are in their most helpless state, and that they come southward only with the southward migration of the Alélie Penguins in October.

It may be said that the Sea Leopard (Stenorhinchus lepfonyw) is a danger to the Emperor Pengum's young, and this seal certainly feeds on full-grown Emperons, Jnt these must be attacked and caught in the water, where the Sea Leoparl is probably one of the fastest amimals of the south. There is little reason to think that he would attempt to ratch such an active animal as the Emperor chicken on an icefloe, where his own pase is slow and his movements clumsy, and where he may be scell sunning himself in friendy neighbourhood with other seals and penguins, none of which fear him on the ice.*

It is obvious, therefore, that the white colouration of the Emperor chick has in this case nothing whatever to do with the theory of protective assimilation. The young bird while in the down is careful never to leave the ice, and there can be no reason to thinds that it requires any protection other than its parents can give it until it shels the white down and takes on the dark grey plmage of the finst gear's bird. This makes it still more difticult to supply a reason for its colouration. As a matter of fact, anything more conspicuous than a jet-black head, such as it has, on a field of smooth sea-ice could hardly be imagined; but the ice of the pack is seldom smouth, and in a broken mass of disintegrating fioes where every piece has others forced upon it, and the movement and wash of the sea has worn them into strange fantastic shapes with holes and hollows, it is easy to see that a white bird would be very inconspicnous indeed, and the more so if its whiteness is helped ont hy the addition of a black hearl

[^7]

Fig. 1G. Emperor Penglin Chici takivi its fuod.


Fig. 17. Emperor Penguin Chicks.
(t) simulate a shanw. But as has ahreaty heen slown, it powndy has murgent med for being incompingons.

We are therefore led tomsider whether the black head, which at rest may for an arditional help, to inemspiraonsness, might not be a berm when in motion to the parent, assisting it to fimb its young after a prolonged stay under water, during which the movements of the ice may have altered all its bearings. This might be considered a partial explanation, lont can hardly be the whole of the matter, for the shrill and piping viee of the whick is a very serviceahle efuipment against such an eventuality as separation from its parent, and again, if a hack head is helpful as a beacom, much more so wond lee a uniformly dark head and body, as in the chicken of the King.

I must comfess therefore to an imability to explain the facts of the case in the colouring of this chick, and I am forced to turn for an explanation away from the overturdened theories of protective assimilation, and even of alvantageons colomation at all from any but a physiological standpoint. In this particular case, even physiologically, it is hard to see why the Emperor's dhick should not have dispensed with the pigmentation of its head, amd have done all that was possible to economise its cnergies by becoming wholly white.

I canot think that in the alult stage the Emperor Penguin was ever white. The white down of the chick must be a special development of its own, probably upon the lines of physiological economy. Such pigment as it was able to produce instead of being squambered over the whole borly, as it is in the young King Penguin, is in the young Emperor concentrated in the head as hack, where it may be of use as a signost to its parent in the pack ice in the manner above suggested. This may ou the whole cost each individual less than it would th pigment the whole of the down, and in the September temperatures of the Antaretic even the most tritling effort at physiologimal economy may turn the scale.

I know that in thus trying to suggest an explamation for this particular case I am falling back on what is still an uncertain theory, but in what has heen published concerning the physiological reasons for colow or its absence in various animats, there is sufficient truth to encourage the suggestion of further examples which appear to uphold the theory. In the case of white aumals, moreover, whose whiteness is generally due to the alsence of pigment in hair or father, one is on safer gromm, for there is no duobt that the production of much pigment is associated with an active tissue metalolism, and that the production of little pigment is associated with a metabolism in which econony is olvionsly of importance, e.g., old age and winter whitening.

It is possible, moreover, though I know of no experiments that have been made upon the sulject, that white feathers and white hair, in which the cellular tissue is ocenpied hy air instead of solid pigment may prove to be a more satistactory nonconducting material than pigmented hair or feathers. If this is so, we have a definite physiological reason for the whiteness whin characterises so many of the Polar amimals, and indeed for the whiteness of certain Tropical speeies, for the comditions which would
in this case be tending to whiteness would he either of the extremes of temperature, and should be hetter exemplified lyy Polar and Tropical speries than by those of Temperate regions. One other suggestion I would make, namely, that it is an economy to a hird or beast to produce white or mopigmented feather or hair, when such feather or hair has not necessarily got to stand much wear and tear. White feathers undoubtedly wear out far more quickly than pigmented feathers; as, for example, in the moulted primaries of our rommon Hering (iull (Larus "r:fentutus), where the result of wear and tear on pigmented and nnpigmented parts of the same feather may reallily he seen, and perhaps even better still in the feathers of the Curlew (Numenius (rymetus) (fig. 46, p. 104).

With the hope of throwing light on the rate of growth of the young Emperor Penguin chickens, we took two on September 13th, 1903, the largest we could find in the rookery, back to the ship.

On September 20th these weighed respectively 636 and $662 \frac{1}{2}$ grms. The less heavy of the two, which survived mutil December 10th, increased at the following rate:-

$$
\begin{aligned}
& \text { September Brd, 1903, probable date of hatehing, probable weight 45, grms. }
\end{aligned}
$$

We weighed also several others taken ou different dates, for example :-

| No. 16. | Immature in down, | found dear. Sept. 13, 190:3 | $\ldots$ | weighed | 453 | 1 ms |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. 1. | .. .. | taken alive. Oct. 1s, 190: | $\ldots$ | .. | $1695 \cdot 75$ | , |
| No. $\because$. | .. | taken alive. Oct. 1s, 1!03 | $\ldots$ | . | 181\% | " |
| No. 3 | .. ., | fonnd dead. Nor. 2, 190:; | ... | .. | $1670 \cdot 4$ | " |
| No. 4. | .. | taken alive. Nov. 5, 190:; | ... | , | 1245.75 |  |

The weight of a large egg (No. 34), slightly incubated, was just short of 1 ll . ( $448 \cdot 5$ gims. .

Probably for the first month or two of its life each chicken puts on rather more than lalf a pound per week, but in its third and fourth months this average must be largely increased, for in January the rhick reaches a bulk equal to about half that of an adult bird, and prolably weighs as much as 30 lbs .

The roice of the chick is a very shrill rattling pipe or whistle when it is hungry. First it lowers its head to the gromnd, eraning the neck to its full extent, and then suddenly swings it up as far as it will go, rattling ont a very shrill piercing whistle of four notes. It is a crescendo pipe, rising in pitch and in shrillness and suddenly dropping at the end note. Out on the ice in the open air the rookery sounds as though it were full of farmyard chickens. In a confined cabin the noise, even of two


Fig. 18. Emperor Penguin Chick.


Fig. 19. Emperor Penguin Chick, Slefpinti.


Fur. 20). Emperotr I'ENritid (ther, Shberpand
chicks, is quite trying ; and, as they appered tofeel the cold in the observatories on the upper deck, we had to keep our celptive chicks below (tig. 21,22, p. 28).

The result was that, as their foster-parents, we were roused from sleep at least three times every night, amb after turning out of a wam bonk, had to mastirate seal meat fur about twenty minutes cach time till the imperions chickens' appetite was suldued. Crasherl imphiporls were tried, luat appared to have so little fool stuft in them that the more solid seal meat was again resorted to. For several weeks, however, before the last lind finally sucembed, it was evident that it was not thriving on this diet, and eventually it died with the bones distorted as in an arote stage of rimets.

It used to be monstantly preening its downy feathers, and then, standing upright, would (rane its neck and 'fuickly flap, its wings backwarls and forwards as one sees a young rluckling do, making a quaint suldued little rowing moise at the same time (fig. $21, \mathrm{p} .28$ ). The movements of the eyes aml eyelids were most peruliar, the eyes being so set in the head of the chick that, without tuming sidewas, it rould see everything above it. Owing to the absence of any cyelorows the conea was almost Hlush with the convex outline of the heal, whieh was eovered by a very short and velvety down. The legs were set widely apart (fig. 18, p. 26), and with the (apacions abdomen and the immense beam of the hind quarters formed a most stable support for the agile neck and for the head, which was shot in varions direetions with great rapidity, the lied leing exceedingly inguisitive and ever ready to peck and wory at an intruding hand.

In feeding it was sufticient to touch the upper bill to make the mouth open widely, the act of swallowing leeing continned so long as there was any rom for more food in the distensible stmarh (fig. $16, \mathrm{p} . \ddot{24}$ ). The same wriggling and craming motions that one sees in hawks and owls were used to assist the passage of an extra bulky lolus. The head was then violently shaken from side to side to get rid of adherent pieces or, if necessary, to get rid of an extra bolus which had gone halfway down, but for which there had been foumd insufticient room below. If it was turned over on its lank the chick had very great difticulty in righting itself again.

This particular shicken, as I have said, became very weak and ailing in its third month, and died on Derember 10th after three months' aptivity. It had not then begme to alhange the down, no were there any signs of the approach of the natal moult. This in me way was satisfactory, though one would have wished to have kept the hind alive until the moult commenced. It proved, however, conclusively that the chickens had been removed by their parents from the rookery at 'ape (rozier when they were still in downy plumage; consequently they could not have entered the water, and the journey must have beeu undertaken on floating ice, as we surmised from what I have described above in speaking of the migration of the adults.

In general character the egg of the Emperor Penguin ipproaches that of the King (see fig. 24, p. 30). It has the same mondly pyriform shape, Dut the mimite character of the surfare is slightly different, not omly in the fresh state, hat alsu in swh its have lreen weathered through exposure to sun and wiml. The size of the egg varies mach, from
measurements whichare almost identical with those of the King lenguin's egg tomeasurements which are ahmost half as long and half as wide again. The smaflest of the series of fourteen egges proched byour expedition at (Gpe (rozier measures $10 \cdot 7 \cdot \mathrm{~m}$. in length and 8.0 cm . in bealth (we tig. 1., Il. VI.) ; Jut there are three eggs which measure less in brearth, whe heing 7.5 cm . across, and the wher two 7.7 cm ., thongh their length is in cach case greater, namcly, $11.0 \mathrm{~cm} ., 11 \cdot 0 \mathrm{~cm}$, and 12.8 cm . respectively. These figures will give some idea of the variability that exists in the proportionate length and brealth of the eggs, some indeed being long and narrow, and others boad and squat, but all distinctly pyriform. The largest of the series in question measures 13.1 cm . in length, and has a breadth of 8.3 cm . (ser fig. 1, Pl. VII.), but there is yet another which, though measuring only $12 \cdot 8 \mathrm{~cm}$. in length, has a hrearth of 8.6 cm .

It is therefore clear that there is a wide range both in actual and in proportionate measurements, even in a limited series of eggs from one hreeding colony-a fact which may have some bearing upon the age of individuals, if, as I believe to he the ase, the younger produce smaller eggs than the older birds. If the age of the laying birds and the size of the eggs they lay increase proportionately, one may argue that whe the eggs of a single species vary much in size, there must be a corresponding difference in the age of the individuals; and so, further, that as some of its eggs are nearly half as big again as others, the Emperor Penguin must be a bird of considerable longevity. This, however, is a supposition which can be mate only in the form of a snggestion.

It is upheld loy very few facts, so far as I can ascertain, from the matural difticulty there is in getting at series of eggs from a single lird of any species from year to year. But in the solitary case of a Buzzard (Buteo rulyaris) in which I have seen the eggs lail year by year by the same hen, their size very gradually increased," and the same observation has been made often enough in the ponltry yard with domestic hens.

Previous to our discovery of the Emperor Penguin's rookery at Cape Crozier in 1902 there was hat one egg in any known collection which was supposel to the the egg of an Emperor Penguin. This was in the collection of Mr. Watter, of Drayton Honse, Norwich, and its history, for the details of which I am indehted to him, and to Mr. T. Parkin, of Hastings, is as follows.

It was hrought to Paris from the Antarctic in 1838 ly the French South Polar Expedition under Dumont D'Urville. In 1840 or 1841 it was bought in Paris by Dr. (afterwards Sir) Henry Alfred Pitman, whosold his cutire collection five years later to the late Mr. H. F. Walter, of Papplewick Mall. Notts. At his death the collection passed into the possession of his son, by whom it was remored to Drayton House, Norwich, where the egg in question now hes. This Haytom egg it has heen my privilege, through the courtesy of Mr. Walter, to examine and compare with those from Cape Crozier, and I have no doubt now, even if there had heen any real doubt before, that it is the egg of an Emperor Penguin. It measures 10.9 cm . in length,

* I hare to thank Mr. O. H. Latter, of Charterhonse, for kindly drawing my attention to this series, which is at [resent in the school musemm.


Fig. 21. Emperor Pengyin Chich, Crowing.

7.7 mm . in its greatrst bearlh, and has a surface which provides a rertain amount of internal evidence for this belief, as I presently hope to show.

In the aceount of the lireeding halits of the Emprer Pengnin, I have statel that the pogs are probally laid in the middle thirl of the Antaretic winter, that is to say about the begiming of July. Previously, therefore, to the year 1897, when the 'Belgica' first spent a winter in the sonthern ice, there was no possibility of a fresh Emperor's egge finding its way to England. Neither did anyone on the 'Belgia. of on the 'Southern Cross' Expedition, daim to have disenvered either the egg or hreeding place of this penguin. How then mond ther be any possibility that this Drayton egg was really what it clamed to be? Cortainly it would mot have been a fresh eogg, but it might quite well have been a deserterl one pirked up on an inetloe hy a vessel rusising in the Antaretic: during the smmer months. It must hy that time, no matter what ship fond it, have heon exposed to some six months' weathering on a floating piece of seaire, at a season when the sun shines night and day and is capable of prodncing thaw and wot where any foreign buly cond absorb its heat and melt the ice. Here then are the comditions for producing an extremely weathered shell, such as is seen in the Drayton egg. The smface has completely lost its outer chalky covering, and it is worn and smonth except for the minntr longitudinal pores that are charateristic of the weatherel examples in our own Cape Crozier serics. It has very few of the warty excrese enves which characterise the majority of the Cape Crozier eggs, but these again are not present in all Emperor Penguins' eggs, nor on the other hand are they always alsent in the normal egge of the King Penguin.

In respect of size the Drayton egg is small for an Emperor's, hot yet not so small in either dimensions as the smallest of the Cape Crozier series. In length it is 0.2 cm . longer than the shortest, aml in hreatth it is 0.2 cm . greater than the narowest of the Cape Crozier series. Ant if one eompares the dimensions of the Drayton egg with the average of a dozen King P'enguins' eggs taken at random, one finds it to lee 10.9 cm . hy 7.75 cm . as compared with $10^{\circ} 1 \mathrm{~cm}$. by 7.36 cm . in the King, and somewhat longer than the largest of a series of King Penguins' egg's which we bronght home in the 'Discovery' from the Macquarie Islands in 1901.

There can be no doubt, therefore, that this egg is in reality that of an Emperor Penguin, and that it was lnought home from the Antarctic regions by the French Expertition of 1837-1840, some member of which must have picked it up on an icefloe during the smmmer months of 1837-1838.

But although it gives an idea of the deeper characters of this penguin's egg-shell, the surfine of the fresh-find "gge is very different. It is covered in the tirst plare with a thick white thatky eoncretiom, such as is fomed on the surface of a shag's or a Gamett's egg.* The colon of the fresh shell has a fiant greenish tinge, which is found to be quite a deep green when examined by transmitted light. The surface of the harder shell below is characteristically pitted with a multitude of little longitudinal pores,

[^8] expesceness forming in some wamples a romghess wer the whole of the larger end of the eg.g. but in others appeatige mbly here ant them, wothered sometimes at the smaller end, sumetimes in the middle, amb sometimes being absent altogether. In one or two sperimens the thell is serpeted irregularly, so that rased streaks on faint ridges appear rmming down the shell from one end to the other ; the surfare is therefore romse in textmer, rough, and cammonated, until weathered, when it presents an musmally smonth and polished appeatime with the longitudinal pores partionlarly moticeable.

Below is a list, with the measmements and characters of early egg in the series whirh we whained, with measmements also of the brayton egg, and of a series of King Penguins' eggs from the Maepuaric Islands for comparison.

## Emifror Penguins' Efgg.

No. 1. $1: 3 \cdot 1 \mathrm{~cm} . \times \cdots: 3 \mathrm{~m}$. Smonth, laire of chalky rovering over the pointerl hatf. Few chalky nodules.
No. 2. $12 \cdot 11 \mathrm{~cm} . \times 8 \cdot 2 \mathrm{~cm}$. Very rough, thick, white, chalky sovering. Infinite number of nodules. Egr-shell itself pale greenish white.
No. : $\quad 11 \cdot 1.5 \mathrm{~cm} . \times 8.1 .5 \mathrm{~cm}$. Many nolules, forming a ring round the widest part of the egy. Dirty white, chalky covering thick on the blunt end.
No. 4. $11.6 \mathrm{~cm} . \times 7.7 \mathrm{~cm}$. Nodules collected at the slarper end. Chalk covering thin.
No. $\therefore 12.8 \mathrm{~cm} . \times 7 \cdot 75 \mathrm{~cm}$. Chalky covering all wom nff. Siell surface frecly pitted with longitudinal pores a few mm. in length.
No. (i. $12: 3 \mathrm{~cm} . \times \times ? \mathrm{~cm}$. Many nolules. Thick, challky covering. Serenten or cighteen longitudinal raised streaks down the length of the shell.
Nu. 7. $12 \cdot 15 \mathrm{~cm} . \times 425 \mathrm{~cm}$. Dirty grecnish chalk all over. Very few nodules.
No. \&. $12 \cdot 2 \mathrm{~cm} . \times 8.2 \mathrm{~cm}$, Seattered modules, few. Chalk uniform, but thicker at the sharler ent.
No. 9. $\quad 111.7 \mathrm{~cm} . \times 5.0 \mathrm{~cm}$. The smallest in the series (Fig. 1, Pl. YI.).
No. 11. $12.4 \mathrm{~cm} . \times 5.6 \mathrm{~cm}$. Thick white chalk :all over, and multitudes of notules, all covem loy the clalk.
 at cach embl.
No. $1 \because . \quad 11 \cdot 11 \mathrm{~cm} . \times 7 \cdot \therefore$ cmin. Many nolules, chiefly romid pointed cond aud middle, in a band.
No. $1 \% .11: 9 \mathrm{~cm}, \times 8 \cdot 2 \mathrm{~cm}$. No nodules. Chalky covering at hoth ends.
No. 14. $11 \cdot \frac{7 .}{5} \mathrm{~cm} . \times 8.4 . \mathrm{cm}$. Nodules only at sharp end. (haiky covering it Joth emls. Longitudinal pitting marked.
So. 15. $1: ; 1 \mathrm{~cm} . \times 4: 3 \mathrm{~cm}$. The largest in the series (Fig. 1, Pl. VII.).
No. 16. $12 \cdot 5 \mathrm{~cm} . \times 5 \cdot 5 \mathrm{~cm}$. Thick chalky corering, and many nodules (Fig. : 2, PI. YI.).
No. 17. $12.5 \mathrm{~cm} . \times 5.5 \mathrm{~cm}$. Marked with slightly raised longitudinal strixe (Fig. 2, PI. VII.).
Dravton Egg. $10 \cdot 9 \mathrm{~cm} . \times 7 \cdot 7 \mathrm{~cm}$. Surface smooth and weatherworn. Longitudinal pitting as in all the weathered eggs. A few small nodules. No remains of chalky wovering. Inseribed: "Aptenotytes forstori. Emperor Penguin. F69."

## King Pengutiss' Egifs.

Greatest measurments in length and lureadth of twelve exge from the Macquaric lisandx:-

| $11.8 \times 7.2 \mathrm{~cm}$. | $10 \cdots \times 7 \cdot 0 \mathrm{~cm}$. | $10 \cdot 2 \times 7.5 \mathrm{~cm}$. |
| :---: | :---: | :---: |
| $!\mathrm{r}$ ) $\times 7.5 \mathrm{~cm}$. | $10 \cdot 3 \times 7 \cdot 5 \mathrm{~cm}$. | $!9 \times 7.3 \mathrm{~cm}$. |
| $111.1 \times 7.3 \mathrm{~cm}$. | $10.6 \times 7.8 \cdot \mathrm{~m}$ | $10 \cdot 6 \times 7 \cdot 5 \mathrm{~cm}$. |
| $111.1 \times 7 \because \mathrm{~cm}$. | $9 \cdot 6 \times 7 \cdot 2 \mathrm{~cm}$. | $9 \cdot 8 \times 7.4 \mathrm{~m}$ |



Fig. 23. Frozen Emperor Penguin Chicks and Eggs, picked up at Cape Crozier.


Fig. 24. Egos of the Emperor, Fing, and Adélie Pfnguins.

The possibility that we have in the Empern Penguin the nearest approth to a primitive form not only of a penguin, hut of a bird, makes the future working wot of its embryongy a matter of the greatest possilbe importance. It was a great disappointment to us that although we diseoveret their hreeding ground and although we were able to bring home in number of deserted egge and chicke, we were mot able to procure a serics of early embryos loy which alome the points of partioular interest can be womed out. Tohave dome this in a proper manner from the spot at which the 'Discovery' wintered in Mcגurdo Sound would have involved us in culless difticulties, for it would have entailed the risks of sledge travelling in midwinter with an amost total absence of light. It would at any time reguire that a party of three at least, with full camp equipment, should traverse about a hundred miles of the Barrier surface in the dark and should, by momight, cross aver with rope and axe the immense pressure ridges which form a "haos of crevasses at Cape Crozier. These ridges, moreover, which have taken a party as much as two homs of "areful work to dross by daylight, must he crossed and re-rrossed at every visit to the breeding site in the bay. There is no possibility even by daylight of eonveying over them the sledge or camping kit, and in the darkness of mid-winter the impracticability is still more obvions. Cape Crozier is a focms for wind and storm, where every breath is converted, by the comfigmation of Moonts Erehns and Terror, into a regular drifting bizzard full of snow. It is here, as I have already stated, that on one journey on another we have had to hie patiently in sodden sleeping lags for as many as five and seven days on emb, waiting for the weather to change and make it possilite for us to leave our tents at all. If, however, these dangers were overome there would still be the difficulty of making the needful preparations from the eggs. The party would have to be on the scene at any rate early in July. Supposing that no eggs were fomm upon arival, it woud be well to spend the time in labelling the most likely birds, those for example that have taken up their stations close underneath the iee cliffs. And if this were done it would be easier then to examine them daily ly the moonlight, if it and the weather gencrally were suitalle; conditions, I must confess, not always easily obtained at Cape Crozier. But if by good luck things happened to go well, it would by this time be nscful to have a shelter built of snow blocks on the sea-ice in which to work with the cooking lamp to prevent the freezing of the egg lefore the embryo was aut out, and in order that fluid solutions might be handy for the varions stages of its preparation; for it must be borne in mind that the temperature all the while may be anything hetween zero and $-50^{\circ} \mathrm{F}$. The whole work no douht would be full of ditticulty, but it would not be quite imposillle, and it is with a view to helping those to whom the opportunity may oserre in future, that this wutline has been added of the difficulties that would surely beset their path.

## APTENODYTES PATAEONHCD.

Th, Kin! Pernmin.
(Plate VIII.)




List of Material in The 'Dheovery' Collection.
 Fig. 1.


 Bird. Plate YIIl., Pis. $\because$.

No. 1:77, ad. $\delta$. Nov. 29,1911 . Macemarie Istand.
No. 1:s, ad. + , Nov. $2 \cdot 2,1!m 1$. Macpuatice Istant.

No. 1411 , ad. $\delta$. Nov. $\because \because, 1901$. Nactuarie Island. Iloulting.
The eolouring of the soft parts is as follows:-
Ju'. Now. 182, 183, 1:34.
Cpuer bill, purplish back entirely.
Lower bill, porplish black with a pateh half-ath-inch ling of fale whitinh horn colum on each side, about the midelle of its length.
Iris. grey with a brown tint, steaked radially with darker brown.
Eyclids and skin aromed the eyes of a dusky purjhish hue.
Fect and claws, hack.
Immatwe. No. 1:35.
Leper bill, buish hack cutirely.
lower bill, huish hack, shandug into: brick-red tinge at the hase.
Iris, brown, with tarker randial streatis.
Fett and claws, hack.
Atwht Nos. 1;3, 1:3, 188, 1:3:1 1 11.
${ }^{1}$ jomer bill, buish black entirely.
Lower bill, bluish black with a eonsphenous orange-red plate corering the basal twothirds on cach side of the ranus.
Iris, brown, with darker radial streaks.
Feet aul claws, black.
The $p^{\prime \prime} \mu^{i}$ in this bird at all ages is "fadrilateral or " diamond-shaped" when contracted, and becomes circular when dilated to its foll extent.

Note on the Ildistritions.
Plate VIII. represents the hamb of four staues in the growth of this penguin, thee of which - Figs. 1, $\because$, : -are reprohned from sketches made upon the spot of hirds that had just bern killed. Fig. $t$ is drawn from a remarkable skin in the callection of the British Musemm taken in the Suares Islamds. A: 1 could not ascertain that such an example bad anywhere been previonsly digured, I asked permission to figure it with those of our own collection. This permission Dr. Ray Lankester kindly gave me. The skin is probally that of a rery old and vigoruns male bird, and pussesses points which are worth more than a passing notice.

* This plate is lettered iptenodytes putagonich-F. J. B.

For a concise acome of the range and distribution of the King Penguin I must refer the reader to Mr. Iloward sammlers" acomant in the "Antareti- Mamal." Brictly, it

 and the ('razets. Fiarther Last it has been remeded from the towart and suares Istands, New Kealaml, imb as far south as the Mancuario Islimds. It has never been reemeded within the Antardir Circle.

Without attempting to give a complete description of the bird's life history, it will not he out of place if I give a shent aceont of our visit to the Maciuarie Island, where, on Normber 2ond. 1901. We investigated a large rookery of King Penguins at perthaps the hasiest time of the year: Pawturie Island lies about 600
 Fishoman's 'ore. Thu shome is behed hy a thick frimge of kelp, and the eastern shoper of the island are covered with a come thasork grass, which grows breast ligh. Betwen the foot of the hills at this peint and the seashore is an extensive bearh amd a stretch of stomy quagmire, with pathes of tustock here and there, and it was in this fuagmire that the King l'engmin mokery was situated (fig. 26, p. 34).

Meydestrie unturctict was ahmolant here; we also satw in varying mumbers Larus dominiremus, Oscifretfe, , ifgentet, and a Comorant, one of which was taken and proved to be Phaturneorax trmersi; Sterm frontalis; Prion of more than one species, probably deselutus and cittutus, and certanly lamki ; Dimmedre pondans, a young une;
 fomod a species of Oeqdromus in abundance, which has since been named O. sentti by Mr. Ogivic Grant, from a pecimen sent home soon after ome own visit to the Asland, by Lord Ranfurly ; and lastly, a large nesting colony of Caterthuctes schleyelt, which was quite dose to lout distinet from that of the King Penguins.

In one of the whaters huts on shore we formd, anongst other things, a collection of prepared lind skins, amongst which I noticed the albino example of Cittarrhtuctos secheyfli, which is now in the British Mnsemun oollectiom. This and some uther skins I had intended saving from the mice, which had already played havon with the feet and bill: of the majority; lout in the newessarily humied business of transfering a dollection of about forty fresh-killed hind and eggs to the beats, they were forgotten. We were surprised on our return to England nearly three years after to recognize the skin in the National collection.

There was in the King Penguins' rookery a large number of birts busily inculating eggs. These, as is now well known, they hold upon their feet, tucked in between the legs and covered from sight by a loose fold of shin and feathers, and so tightly were they held that although we lifted the hirds hodily from the ground, get the egg was very seldon dropped. The olject of thus holding the egg is to keep it firm the wet and mudyly quagmire in which the birds prefer to incobate; a parallel wase to the Emperor Penguin, where the abjert is to keep the egg from contact with the ice.

The Kings' rowkery was filthy, neither more nor less, and the whole area smelt abominably. They are large hirds, and humdreds are huddled together in close compmies, living and hreding on an area of mod, stones, and water at the foot of the overhanging hills. The hreeding hirds avoid the tussork grass, amongst which one finds only bands of bachelons and unemployed. Generatly, the sitting bird makes in effort to keep clean and dry by balaning itself on a stone, a little island as it were in the muddy trickle that surrounds it. Several lirds taken with eggs and marked on the spot as sitters, proved, on cxamination, to be males, so that probably the parents take turns, one sitting while the other goes to sca to feed.

There were lirds in this rookery of all sexes, ages, and conditions, a few alults even in full moult. Many of the young were still in a complete suit of chestnut-coloured down, thongh almost as lig as the adults; many showed different stages of the natal moult, shaggy remnants of the down, commonly as collars only or tufts on the neck, Ineast, and back, remaining still in sifu; many showed the clean pale feathers of immaturity, the neck patch leing smaller and of a very pale lemon yellow instead of mange goll, the lnight red side plate of the mandille being then conspienons by its alsence (fig. o, Pl. VIII.).

Of the eggs, some were well advanced in inculation, though the great majority were fresh-laid, and the contents of these were excellent eating, without any rank Havom, and with very pale yellow yolks. In no ease was there any attempt at nestmaking, hut cach bird halanced on its own little islam, resented any interference, either from its neighbous or ourselves. If by chame one of them was overbalanced it fell on its lifl and wing tips, and so remained, hokling tight to its egg until, hy a sudden jerk, it recovesed the upright position once again.

The noise in the rookery was so excessive that we had to shout to one another to make ourselves heard above the din. The adults gave out a harsh guttural sipuatk or a chattering gathle, and the young birds a shill, piping whistle. If we attempted to drive any of the memployed into the water, we found ourselves engaged in a very difficult task. When scared, they seemed to have a great repugnance to leaving the shore, as we afterwards found was the case with the Antarctic Adélic Penguins, If we surronded them and persisted in wur efforts, they would dive in and appear beyond the kelp, with head, bill, and neck hehl high in the air, while the body was so low in the water as to be hardly seen at all.

The posture of the lind when "sitting" with an egg has been so often deseribed that it would, perhaps, be surerthous to repeat it here, were it not for the unfortunate way in which the word "pourh" is invariably employed ever since it was finst used to describe the in ubation methods of this bird. The egg, and this camot be too plainly stated, is simply held wedged in between the legs, resting upon the upper surfare of the feet. Having once heen laid, it is never afterwarls admitted within the londy of the lime that land it, any mome than is the egy of an ondinary banyard "sitting hom."


Fig. 25. King Penguins on Macquarie Island, showing young birds shemding their down.


Fig. 2G. Rookery of King Pengcins on Macotarif Island.

The food of the King Penguin at this rowkery consisted mainly of erustaceans, fish and rephalopocs, many outtle-fish heaks leing foumd acompanied ly pelblen in the stumath.

The King Penguin has methonts of progresion precisely amparahle to those whith I have more fully described in the Emperer P'enguin. It was, therefore, not ahwos casy to catch the lime before it droped down on its heast and rumed its phmage ly tologaming in the filthy mire; nor were we ourselves pleasant objects, either to sight or smell, when the chase was over, spattered as we were from hean to foot with a most ofleusive mod.

There are, as I have stid above, certain points in the colouration of the King Penguin which are deserving of very areful consideration. Of the colouring of the chicks I will say nothing, since we saw them only in the latest stages; and of the signiticant differences between these and the Emperors' ehicks I have alreaty spoken in dealing with the latter. But in all the older stages 1 would rall attention to a gratual change in the pigmentation of the feathers of the cown of the head, which can be traced from the first year's immature plumage, throught the ordinary adult, right on to the extraodinary plomage of such an aged example as that figured on Plate V'III., fig. 4. This birl was taken on the Snares off the coast of New Zealand. Unhapply the sex is not lenown, lut it is probably an old and exceptionally vigorons male.

To begin with, in the first immature plumage, which replaces the down at the end of the first year, the crown is distinct from the rest of the blark head as a diamondshaped patch of pearly haish-grey. This is seen to be efferted, if ome examines the crown feathers closely, by the terminal thitd of each feather leing pale bluish-grey tipped with a tinge of yellow, while the central third is hack, and the lasal third is white. If the same crown feathers are examined from the heald of a hird in ordinary adult plumage, the arrangenent of the pigment in each feather is fomm to have completely altered. [ustead of three bands there are only two, the terminal half being dark brown or black, with a minute amome of orange pigment intermixed, am the hasal half white. Associated with this change in the imbividual feathers is an obvious change in the rown patch, which instead of heing grey is now seen tw be black with a greenish gloss, which results from the intermingling of minute dots of vivid orange pigment with the bark. The same green gloss is th be seen upon the chin and throat, lont at present l emcern myself with the crown pateh only:

If then we turn to the Suares example, the significance of these mimute changes in the distribution of the pigment legins to explain itself. The green gloss on the rrown has become definitely ciremmsribed by rows of fathers with distinctly orange tips, and these 1 take to be associated with the develnmont of the superciliary golden erests and bands to be fomed in Cutartuctes and Meyentuptes. If the individual feathers of these primitive superiliary hads are examined more closety, the arrangement of the pigment will once more be fomm to have emmphate altered,
for thomg the hasal half is still white, the teminal half is divided equally into
 of the ferether.

It is moticeable, tow, that in the Emperor Pemuin the immatme hirt show predisely the same palle peaty-grey womal patch that is fomed in the immature King. though the changes are not continned in the ablult Enueror an they are in the adult king.

In this respect, therefore, mamely, the development of golden smperiliary feathers, the King Jengmin forms a very definte intermediate link between the Empern and
 long golden plumes of Cutarlactes.

P!pmectix, I am told boy Mr. Pycraft, shows certain skeletal characters which are yet more primitive than those of aptomalytes, so that while there appeas to low some reason for considerimg the Emperor Penguin to be a mose primitive type than the King. and Meyedyptes more primitive than any form of Cethorluctes, Piffoserelis may le considered the most primitive of all. And further. in Cutarlutetes, judging from the
 less sperialised forms than C. chryseneme, while C. chryonhphets and C. sehtopli are more wectialised than any of them, not only on account of the length of their superciliary phunes, hut also because the golden bams meet anterionly in the midde line,


It will be seen from the above that this one specinen may be considered to lee a key to the whole question, if the head, as 1 am inclined to think, is in all the penguins the part in which loth generic and sperifie distimetive thatarters are specially developed, as heing the part manly visible for recognition when these binds ate forting on the surface of the water.

## PYGOACELIS ADELIE.

# The Atélie Penyuin. 

(Plates IN., X.)




## List of Material in the ' Dincovery' (ohafectons.




Nu. 55, б, aul. skin. Nov. 7, 190 . do.

No. 57 , $\delta$, atl. skin. Dec. $2: 3,1!102$. do.





No. 19:; \&, ad. skin. Jan. $\because=2,190=$ do. do.
No. 1;4, ó, imm. skin. Jan. 19, 1944. Cape Royds- hediner the down.
No. 15 , d, inm. skin. Jan. 1! , 19nt. (ape Royds-shedding the down.
No. 151-181, adult skeletnus. McMurdo somm.

Spirit Specimens.

No. 236, juv. .lan. ! , 1 !ne: do.

No. 238 , 9 . jur. Jan. 12, 1!wt. do.
No. 23: 8 , jus. lan. 1: 1904 do.
No. 240 , juv. Jan. 11. 1904. do.
 Cape Crozier, Jan., 1902 , and Nor., $1: 003$.

The colouring of the soft parts is as follow: :-
Bill, when first hatched, backish. A week uld, back terminally, deep red at the sape and alone the entting edges. Immature of the first yar, backish. Adnlt, hrick-red, the upper bill back terminally, and the mandible black abong the cutting edge.
his, brown, varying between reddish brown and greenish brown.
Eyelids, black throughont the first year ; pure white in the adult at 14 months, and ouwarts. Feet, flesh red : dusky when first hatched, brightemine in the dirst week or two. Imm. and adolt, pale flesh pink abore, black beneath (in some cases piebald beneath, see Fig. If, Pl. X.).
Claws, brown.
Listit of Materlal in the • Morning's' (Ohlection.
M 1 , ad. sk. Jan. $1: 1,190 \%$. 7 S S., 167 E.


M 1, ad.sk. do. ía s., 167 E .
II 5, ad.sk. do. 77 S., lí E.


M x , imm. sk.
M 3 s, $\delta$, ad. sk.
M $86, \mathrm{ad} . \mathrm{k}$.
M 8 s , ad. sk.
M 39, ad. sk. lioss Sea.
M 42, $\delta$, id. sk.
M 51, ad. sk.
M $22, q$, ad. sk.

## Note on the Illetthations.

Birds-Plate IX. represents the changes in the head from hatehing to atolescence. Fig. 1. . last hateled, showing the ampular prominence nsed as car-seale. Fig. O. About a fortnight old. Fig, i. sheddime the down. Fig. 4. Immature lird of third month, in the plumage carried for the first rear. Fig. 5. Heal of normal adult. Fig. 6. Heal of isabelline variety, with occipital crest erected.
Birds-Plate X. represents the changes in the feet of birds of correspunding age to the heads in the last Plate: Fig. 6 alone differs in representing a variation in which the sole wats piebald instead of llack.

On . Immary zurl. 1902 , we sighted ice for the lirst time after leaving New Zealand, and for the fist time also were surroumled by surh typical ire birds
 us the day before when we were acompanied also by a number of Sooty, Blarkhowed and Wamering Alhatrosies and a few Cape Pigeons. All these left us hefore the following day. Yet we were in the ice for three whole days before Pryosedis addiee, first singly, and then in rouples, some immature with white throats, and some adnlt and black-throated, appeared to greet us with their ringing ery "Aark!" "Aark!"

On this thind day we were for the first time amongst the mone extensive ireflocs, and these being far more closely parked, afforder an excellent opportunity for the inquisitive little hirls to run long distances towards us, and with many halts to gaze and ay in wonder to their rompanions; now walking along the edge of a floe in search of a narrow spot to jump and so avoid the water, now with heal down and murh hesitation judging the width of the narmow gap, to give a little standing jump across as would a child, and ruming on the faster to make up for its delay. Again, coming to a wider lead of water necessitating a plunge, our inquisitive visitor would be lost for a moment, to reappear like a jak-in-the-box on a nearer floe, where wagging his tail, he immediately resumed his race towards the ship. Being now but a hundred yards or so from ns he pokes lis bead constantly forward on this side and on that, to try and make ont something of the new strange sight, orying aloud to bis friends in his amazement, and exhiliting the most amusing indecision lietween his desire for finther investigation and doult as to the wisdom and propriety of closer contact with so huge a heast ; this constimtly leads him first to advance and then recede, and eventually th give dismetion a prmanent advantage over valour (figs. 27,28 , p. 38).

Nothing could exceed the amosing interest which these lirds excited in our minds, looking on them as we did for the first time, though the amnsment and the interest increased tenfold later $\cdot \mathrm{m}$, when we came to watch and study them in the more husy hours of the nesting season at their "rookeries." The number of Adélie Pengnins increasel day by day as we made our way through the ice pack towards the south. We saw abont an equal number of hirds in the adult and immature plumages to liegin with, but when we reached, on Jannary 8 th, the southern edge of the pack, those in the alult plumage vastly preponderated.

The pack ire is a place of safety for the immature binds; lere they live and move and find their living in comparative safety for the first two years of their existence, possibly in many cases for the first three years. Here they feel nothing of the ocean swell, which is practically lost under the weight of floating ice within half a mile of the open sea, while they can find shelter from the wind and drift under a friendly hummork. Here they have always a handy retreat upon an icefloe when hunted by the Sea Leopard (Stenorlineluse leptomys), or the Killer whale (Orca sladiator). Here, too, they bask and sleep in safety when they have filled themselves to satiety with


Fig. 27. Adélie Penguis.s.


Fig. 23. Adélie Penguins on the run.
the rmstaceans which literally swarm amid the icefloes, pmolahly berame of the almulane of diatomaceons refuse in the melting and discolomed ire. Here, too, they may confidently trust to a foothold which will last them while they moult their feathers in the antumn, when for a fortnight they are bound to aroid the water, and sit disconsolately fasting in little linots unter the lee of one of the larger hummorks.

As we entered open water from the southeru limit of the park, and came in sight of the cliffs of Cape Adare, the mmbers of adult Alelies rapidly increased and no more were scen in the plumage of immaturity.

It were well that the zoologist should realise the necessity of seizing every opportunity as it offers, for the entry to the Antarctic through the helt of pack ice may be his one and only chance of making a representative rollertion of Antarctic animak. He will have much canse for thankfulness at every day's delay in passing through it. Once through, he will as likely as not (and this was our own experience) see little (1) nothing more of Lolodon, Stenorhinchus, or Ommatophoca amongst the seals, or of mmature Adélies and immature Emperor Penguins, of Priocella gllucinluides, Prim, or Italohona amongst the birds. He may see Pagodromu, Thalassceca, and Oceunites again in numbers, lout he may never have so good an opportunity of their close olservance, or such a chance of adding them to his collections. The park ice is the place par excellence for close contact with many Antarctic lirds and seals, as well as whales and dolphins. Once through the pack, and to my somow we were through it in less than seven days, there may be no further opportunity, for on the homeward royage in February or March no pack ice may be seen, or if seen, it will be in small detarhed and drifting masses which may be traversed without meeting any sign of life.

The spring pack is the Intarctic hunting-ground, and every hom spent there will loring a rich reward to the naturalist. He may for days together postpone the removal of his clothes, and sleep in snatches when he can, for night and day he will be summoned to the loridge to take notice of some new hind or gromp of seals. There away on the port bow will be a mack objert lying on the ice. Is it a Rose' seal, or only another Lolndon? If the former, the ship's course may be altered, lint if not, then "as you were" until another bunch of six or eight Lobodon seals turns up, as happens sometimes twice in the day. The naturalist must decide, and in settling throngh the glasses whether the seal is a Ross, a Crab-eater, or a game Sea Leopard, he will find exercise for his powers of diaguosis, which will be surely and sufficiently criticised at the next meal below if a mile or two of southing has been lost for the sake of in imaginary Ross. Let him, therefore, who sees a bird, or a change of plamage, whether of moult or immaturity, take it while it offers, the more carcfully if he thinks he is sure to have another and a better opportunity later on. In nine cases out of ten the regret will come without the opportunity, and in working out his problems, this or that clue which was one day well within his grasp will almost certainly he missing. With this warning, the result of personal experienee, I must proceed to detail more fully the history of the bird now under consideration.

As we neard Cape hate, we had Mdic Penguins in the water all around us, birds ly humbents dithing in and ont like little dolphins, making very rapid travelling through the water, shooting into the air with heads drawn in and wings appressel, just clearing the water hy a font for a yard or more, and then in with the slightest little splash. When first reen, they may easily be mistaken for a school of fish. Under the water they wing their way with powerful strokes, often in a zig-zag comse, esperially if frightened, as a means, no douht, of batfling the seals and Killer whales that are their terror. The feet and tail in this methorl of progression are used for steering only, but if the bird.is at the surface, floating as he does low in the water, instead of the wings the feet will be used for propelling.

In landing on a shelving shore, the bird merely swims till he can stand upright and walk, lout in landing from leep water on an icefloe with its edge a foot or two atove the water, he leaps like a salmon, with this difference, that instead of allowing his borly to follow the curve of motion, he preserves the vertical position, and lands upon his feet, immediately running on a few paces or falling sometimes on his breast ; and in this landing leap the stift tail feathers most be of use in preventing any tendency to fall hackwards.

Mr. Burn Murdach has given three feet as a good leap, and 1 think this is quite likely, thongh their powers are not often put to such a test. In leaping from Hoe to Hoe across a crack of open water, they show no great athletic capabilities, and in crossing six inches or a foot, which is about as much as they ever dare attempt, their movements are exactly what one is wont to see if the same feat is performed by a child of three. If in their wanderings they come to a crack which is too wide to jump, and yet not wide enough for plunging into, they will follow the edge till they find a point more suited to their tastes; but it takes much time and many hesitations before they decide the thing to be possible for either.

Time, happily for them, is no olject ; but this at first sight one would hardly guess, their movements heing always precise, busy, and preoccupied. It is only when one has watched a little party hurrying along for full half a mile in a direct line, as though upon some urgent business, suddenly stop and all go to sleep, or suddenly turn and go off in another direction, or come back upon some equally urgent call, that one begins to realise that their business is not always so important as it looks.

On flat ice or snow they seem to prefer walking (fig. 33, p. 46), balancing themselves with their Hippers, and leaving between their footmarks a sinnous track made by the tail. If hurred or fatigned by soft snow they will fall on their breasts, the polished feathers of which form an excellent romer surface for tohoganning. They then leave a track which takes the form of a straight smooth groove with foot and wing marks on each side, each working in altemation with the other.

Onland, as, for example, in the rookeries, they progress as far as possible on their feet, and in making the longer jouneys up the mountain sides, over very "raggy rocks and really difficult steeps, they lning bill and wings into use as well as feet




Fig. 30. Adfíle Penguins' Nursfry at Cape Auare.
-
and nails, and hoon stains in their tracks show that sometimes they must suffer in the proress (fig. 34, 1. 46).

We saw no matked sumbling in the rork surfare such as that which has heen ubserval in the Fatkland Isimds. Probably if one hanted in suitable phame in the Antaretir one might tim them, for with vesicular volanire rorks the partitions between the vesigles wond easily be broken down by the linds' daws, always in a manner which would assist the sulneefnent action of water, and the two together would eventuatly promece deep grooves.

At Cape Adare, however, where some of the hirds nest at a height of nearly 1,000 feet, their pathwass are pecnliar fir another reason. They dhome, to begin with, the gulless and "chimneys" which are more on less filled with snow drift, and the constant prowession of birds up and down these gulleys in the steep momtain side grakually wears away a monher of sleep cottings in the hard snow which intersert one another in every direction, and leave lozenge-shaped pimarles standing in between. The quaint aspect given to the thoronghfare in this way is seen in the photo reproduced (fig. 31, p. 42).

The pace at which these liods can travel in the water rivals that of many fish; on land they are of comrse not so fast, thongh their pare when tohogaming on their stomaths is alwot as quick as a man can rum on ice and show, and a great deal faster than the birds can travel on their feet.

The question as to whether penguins have in loygone days had the power of Hight is still an open one, and I will not attempt to disenss here what is more satisfactorily disenssed in another chapter dealing with anatominal details that bear upon the matter of their origin. But, having a strong belief in the permanence of instinctive efforts and halits, even long after their need or their nsefulness has disapperared, and having seen a penguin with a strong desire to follow a Skua gull which was flying overhead, crouch down as if to spring and suddenly use its wings ats if to rise in tlight, while its cyes followed the flight of the Skua, I wats so assured of its wish to tly that I could half helieve it must once have had the power.

There is moreover the quaint habit in this bird, as well as in the Emperor and the King, and possilly in others too, of sleeping in an mpright position with the hill turked in behind the flipper. This, as I have more fully explained in the case of the Emperor Penguin, is also a habit or posture in which the hird continues to indulge, but whirh has no raison d'etre now that the wing is so sparsely feathered. This hird, as is the case with other penguins, sleeps at times on its lreast with the head drawn in upon the neck.

Experments, in themselves cruel, and nseless from a scientifir point of view, have been made from time to time with a view to settling the nmmber of minutes that a pengnin can remain under water and yet live. Undoulitelly the penguin could, if put to it by finding itself under a very extensive sheet of ice, remain and swim under water for a good deal longer than a minute; lout in the ordinary
worse of evants, when fectling or when travelling, it is douldful whether a longer submersion combl be bome with comfort. Alf that am be seen hy watehing the bire in the water is that its submersion is of very short daration when travelling rapirly in a straght line. It will lave the water for breath ly a leap in the air st intervals which vary fiom 20 to 50 yards or more ; it would be no rare feat to pass under in icefloe of 100 yarts, and in doing so the sense of direction is well maintanced bencath the ice, as one may see, if the bird is embabouring to reach a comprinion some little distance away.

The food of the Adelie Penguin during the summer months consists atmont entirely of Euphleusia sumethe, a red shrimp-like sehizopolous erustarean, which exists in vast numbers in the shallow seas of the Antarctic. These red crustareans can be seen sonnetimes in large numbers in the water, frepuenting chiefly the ice pack, the alges of the icethes, or the foot of the ine diffs which form the sea faces of the Barricr show plains. Here, therefore-in the early hours of the morning, more abmandly than at any other time, hut at every other hour in the twenty-four as well-may be seen hundreds of penguins feeting, their hads heads and loud voices proclaiming their husiness, while they swiftly dash in and out of the water in small companies, like a school of little dolphins.

In its passage through the alimentary track the colnuing matter of this crustarean is apmently little altered, so that the ground which is eccupied by an Adnic Penguin rookery takes on a lorickred colour from the excrement, and this can be recugnised ly sight, even at a very consideralde distance from the shore. Not only does the gencral colour of the ground give evidence from afar of the situation of a rookery of Alelie Penguins, hut the smell has in more than one case directed us to search for and discover a hitherto unsuspected colony: The smell is unpleasantiy fishy and ammoniacal. After a landing from the ship, our clothes and hoots, notwithstanding a vigorous cleansing, kept us in constant recollection of the rookery by impregrating our calnins with the smell for clays. It is quite malike the smell of anything else, and to one who has spent a day or two in their midst, thongh he were hintfold, the smell of the musemm skin of a penguin chicken would at once reall the harsh and misy clamon of some crowled rookery of Ablic Penguins in the sonth.

On one ocrasion this smell was forced upon orn notiee when we were no less than :30 miles from the nearest penguin rowkery. Travelling at the time with slerges on the Barier surface to the south of Mount Erebus and Mount Terror, we were thinking of anything in the worl hut penguins, when a gentle breeze sprang up across the divide between these two mountains, blowing in a bee-line to us from the great rookery at Cape Crozier, 30 miles away. The smell was faint but ummistakable, and the truth of our perecptions was home out a little later, when we foum some weathred penguins' feathers that had heen carried in the same way over the divide, itself a height of from 6,000 to 7,000 feet. We were, moneover, at the time making (abservations on the prantity of ozenn in the air, and in passing into the carrent which




Fig. 32. Adélie Penguins' Rookery at Cale Abare. The hut on the mhilt was left theire by the 'Southern Choss' Expedition.
had crossed this extensive track of gnano, from the pure air of the larrier plain, the test, which we applied for the 24 hours which included the polluted air, showed a strength of 3 degrees of ozone, compared with a strength of 10 to 12 degrees on other days for half that number of hours.

It may be surmisel, therefore, that the sanitary condition of these rookeries is open to considerable criticism, and the place would he mbearable were it not for the fact that the winds are constant, and the temperature of the air in the summer months always, with the exception of one or two days in the year, below the freezing point of water; where dark rock is exposed it will rise a few degrees, but only from contact with the rocks which have absorbed heat from the rays of the sun. The dryness of the air, moreover, is a powerful agent in the prevention of such musance as would otherwise arise from so great an abundance of dead bwies and other organic refuse ready to decay, and the remains of a penguin tom to pieces by the skuas will generally dry before it really decomposes.

The quantity of cunstaceans hrought in during the day to such a rookery as that which exists at Cape Crozier or Cape Adare must be immense, for parents hury in whore from ora end of the twenty-four hours to the other without cessation, their stomaths loand with a mess of shrimps (see figs. 29, 30, p. 40 ; also fig. 32, p. 42). Chickens by the hundred stand in little groups of twelve or twenty, now in a state of bulging repletion, now in a ravenous hury chasing some mfortunate adult but lately arrived with spoil from the open sea.

One may, therefore, infer from the miform colour of the thin layer of guano in every Alélic Penguin rookery that these red erustaceans do form their staple diet; but at Cape Royds I have known them eat small tish, some three or four inches long, and, no doult, they also feed on wephalopods, the heaks of which are often found in their stomachs. Beyond the remains of fish, cephalopods, Euphusiae, and other ernstaceans, an invariable concomitant in the stomach of this lind is a collection of small pebles, swallowed no doubt, for the purpose of redneing to a pulpy mass the indigestible parts of the crustaceans. That these pebbles are very necessary may be gathered from their constant presence in the stomach. There is no separate crop or gizzart, as such, in penguins, where the stoman forms one large molivideal musenlar sace capable of great distension.

The chicken is eutirely dependent upon its parents for food from the time it leaves the egg until it has completely shed its down and has assumed a feathering which enaldes it to enter the water. Undoubtedly it requires a very large supply of foorl, for its growth is rapid and the state of repletion which eventually brings the chicken to consider that it has had enough is not readily arrived at. One wonders how the young that are hatehed ont on the summit of such mountainous heights, nearly a thousand feet above the sea, can ever olstain a sufficiency of food. Yet they are as well grown and as healthy there as they are at the sea level, thanks to the nutimg efforts of their parents, who form a constant stream passing up and down the sides
of the mountain in beaten tracks. One camot lout marvel at the persistence with which these little birds, using their feet, hills, and flippers, lahorinosly climh to the summit of surh rugged slopes. Why, one wonders, should they ever set themselves such an infinite amount of unnecessary labour when there is ample room for them to nest and rear their young on the flat moraines below?

The olservations made on this rookery at Cape Adare by the zoologists of the Southern 'ross' Expedition show that lout two journeys could be made to the summit during the twenty-four hours; and this is no isolated example, for on other rookeries there were nests to be found fully as high and even farther from the shore.

To return now to the actual feeding of the chickens. They have a method which is altogether entertaining, a method which exemplifies in a direct and indisputable manner the farrearhing law of the survival of the fittest. One may stand in the noisy crowd of penguins at Cape Crozier and watch the law in being from its many-sided aspects; the cruclty, the pathos, the humour, and yet the admirable perfection of the whole system being irresistibly lrought home to the observer.

The sooty-grey young ones in the third week of January were almost as hig as their parents, and quite as active. Of these young birds there were literally thousands, and all were hungry, many very hungry. Noreover, each individual chicken acted upon the supposition that every old hire as it came up from the shore was full of shrimps. () ${ }_{n}$ this assumption the old bird had no choice but to run the gametlet. Chased incontinently up and down the rookery by the importmate infants, the fond parent ran hither and thither with a keen eye open for the chicken it once had called its own (fig. 38, p. 52). Driven at last to bay, it could only turn to swear and silence its persecuting followers for the moment with a vicious peck, but the moment its santh again commenced it would be caught up and followed and worrice in precisely the same way by a fresh relay of young ones, all helonging to someone else.

As we stood there and watched this race for food we were gradually possessed with the idea that the chiclis looked upon each adult coming up full-bellied from the shore, as not a parent only, hut a food supply. The parents were labouring under a totally different idea, and intended either to find their own infants and feed them, or else to assimilate their ahrealy partially digested catch themselves. The more rohst of the young thus worried an adult motil, hecause of his importunity, he was fed. But with the less robust a much more pathetic ending was the rule. A chick that had fallen behind in this literal race for life, starving and weak, and getting daily weaker becanse it could mot run fast enongh to insist on being fed, again aud again ran off pursuing with the rest. Again and again it stumbled and fell, persistently whining out its hunger in a shrill and melancholy pipe, till at last the race wat given up. Forced thens by sheer exhaustion to stop and rest, it had no chance of getting ford. Each hurying parent with its little following of hongry chicks, intent on one thing only, rushed ifuickly by, and the starveling dropped behind to gather strength for one more effort. Again it fails, a rolnster bird has forced the pace, and again suceess is
wanting to the runt. Slecpily it stands there with half-shut eves in a torper ronling fiom exhanstion, cohl, and huger, wombering perhaps what all the binstle roum it means, a little dirty dishevelled dot, in the rate for life a failure, deserted lyy its parents who have honted vainly for their own offispring romed the nest in which they hatehed it, hut from which it may ly now have wandered half a mile. Aur so it stands, lust to everything around, till a Ska in its beat drops down beside it, and with a few strong virions pecks puts an end to the failing life.

Not once or twice, but a thousand times this happens, and the kindness of Nature's seeming cruelty was borne in upon us as we watched its working. All romed the rookery are skus' nests with their young; the comitions of life are hart, and failnes must he many where the stamdard of efticiency is high. Not fifty por cent. of the Skuas themselves survive their infincy; not thirty por rent. of the Emperor Penguin chicks smave; and from the arpse-strewn andition of the acres oceunied loy an Alefic Penguin rookery, where mot merely egg shells loy the seore, hut mangled chicken remants loy the many humbed, lie to be trodden into frozen dust, and muddy guano, one may guess, I think, with truth, that even in these communities the duath-rate is exeessive. No one can walk wer a mile or two of surh a breeding ground without leing astounded by the number of the dead around him. He will notice, moreover, at once that it is not only the youngest of the chickens that die, hat that a very large propertion are hirds which have already shed their down and have assmmed the plumage which enables them to take the water. Why, one wonder's, did these lirds die on shore! The parents left them, true. Jout they were ranly to he left, and yet apparently they never dared the water, wherealone they could escape starvation. Unce again the uncompromising character of Nature's teaching was brought home to us as we realized that death was the one altermative to a creature that refused to learn.

Our nearest large rookery of Adrlie Penguins was that which was alrearly known at C'ape Crozier, a distance of fifty miles by sledge from our winter quarters in Mchlurdu Somd. This rowkery we visited many times, laming there first from the ship on Fanuary 223 nd, 1902. From the ship also we landed to investigate the romery at C'ape Alare on Jannary 9 th, 1902 . From the ship again we sighted rowkeries on the northern slopes of Couman Islam, on the southern slopes of Cape Jomes, on the sonthern shores of Whor Bay, and on Cape Bird. There was also a small rookery within 20 miles of our winter yuarters on the headland now called Cape Royds, and it was here that we encamped for a part of the breeding season in Janmary, 1904. Quite a consideralle momber of sledge jouneys were made to the rookery at Cape Crozier, and at the time of the birds' return in the early spring we were cncamped there also fon a month. Lieutenants Royds and Skelton visited the rookery more than one to deposit records for the 'Morning,' and the olservations bronght back by them are incorporated in the present acconnt.

Now, although it will be seen that we were not quite so happily situated for ornitholngieal work as we might have wished, and, although in the case of the Adélie

Penguins we were tow from on nearest rookeries to visit them day by day, or even Weck hy week, yet we were ladky in meeting with the more interesting stages of the birl's develomont. They legin to arive at Cape Adare as early as the mithle of September, hat the more sonthern rookeries at Cape Crozier were tenanted only by a few dozen stragglers even so late as Uetober 19th in 1903. In 1902, not a hird had arrived even on O.tnler $24 t h$. Within a week of these dates, however, they numbered many thomsands, the nesting sites had leen appropriated, the stomes and pebbles with which they make their nests han been freely fought for, and were now hy theft being as freely arcalated firom one end of the rookery to the other.

The penguins' rourtship was in full swing, and on every nest squatted the lardy while her knight slept stamling at her side, or woke to pay her the attention that lis chivalry suggested. There are many misunderstandings in these colonies over the misappropriation of property. The nests were all too flose to one another, and he had the higgest nest who conld most sulecessfully annex his neighbour's peblles and prevent his own from being stolen. Needless to say, there was hardly a stone of his nest but had been taken from someone else.

The battles royal between the males have been so many times described that little is left for me to say. The females, sitting on their nests, have fuarrels with their neighbous, hat whereas they followed the time-honomred custom of fighting with their lills, attcmpting to cut out each the other's tongue, the males fought chietly with their weight and flippers, and the hows resombed afar as they were hailed down upon the mbocky wight with a torrent of abose. But pheky they certainly are, for again and again, when overborne and fored to give way a bit on all fours, the beaten indivilual will leseen to turn and confront his persectitor on his legs again, his eves athame, his rutte up, his chest out, and his flippers working like a windmill.

The voice of the Adelie Penguin has, by every writer on the sulbject, heen given the attention it demands. It is a voice which camot be ignored, especially when one hears it flowing freely from the throats of many thousands in such a rookery as that at Cape Crozier on Cape Alare. If one walks among the nests, the majority either swear persistently under their breath or shout in a lond harsh voice. The noise is ammst moneasing. From a distaine it is like a whistling roar, and when, from the rlifts of Cape Alare, we lowked down upon the 200 acres swarming with shonting penguins and their whistling, piping dhicks, one was reminded of mothing so mulh as a rink with a thousant chattering skaters; there was the same ringing roar that such a gathering would have in the Crystal Palace.

It is harl to give a description of the individual aries. They begin at one's approach in a low, honse, swearing growl, which gets gradually londer and higher in pitch, while the hird bridles mp with ruflled arest in front of his swearing spouse. Then, making a with dash at the intruler's legs, he seizes such gaments as he ram read amb mmercifally batters his shins with a bain of hows that have been well compared to the ratte of a hoy's stick along some comrugated irom palings.


Fig. 33. Adélie Penguins, just out of the water ani clean in consequence.


Fig. 34. Adélie Penguins in their nooiery, bloodstained and dirty (see p. 41).

While camping out on Cape Royds, within casy sight and sound of the penguin rookery, we nsed to think that there was a lull in the abmost reaseless rlatere of the rookery about noon or shortly after. Exepet for this, it was continuons night and day. The birds have a different note of anger mongst themselves-a more disjointed cry-beginning with distinct syllahles "ah—ah—ah," rather than a grwwl. The call note, again, is "Aark," or " (ank," and one heard in the pack ice or at sea is nerer to be forgotien. It is best imitated by blowing shaply on the edge of a blade of swod grass held between the ball of the thumb and the index fingers, as shoolhoys du, or else loy shaply drawing the thmm and finger down a resinous piece of string attached to the hear of a little cardbourd drum. I was suddenly brought back to the Antaretie in the streets of Lonton ly hearing a penguin's call mote at my elbow one day, as I passed a man on the curbstone selling cork and feather eocks mounted on surh a cardhoard drum as I describe. The mimicry was exact, though unintentional. I bought the article in question, and a little practice hrought it to perfection. The lull which I mentioned as occurring at noon is due to perhaps more hirds thau usual having gone to sea. Sleep is snatehed when and where it is needed, and hirds may be found sleeping in the rookery at all times of the day or night, as well as on the iceflee miles away from anywhere.

The roice of the chicken is a whistling pipe, very shrill, very pathetic and very aggravatingly persistent one would think to the adults, who often show their anoyance by scolding their infants roundly. As the nestling grows, the pipe gets louder and more shrill and more persistent until the down is shed, and the hird undertakes its own responsibilities. It then drops the whine and takes on the cry of the adult, a little more shrill and somewhat quavering at first, but gradually merging into the full-viced ery of the adult.

The first arrivals at a large rookery such as Cape Crozier have naturally the choice of nesting sites, and on the 19th October, 1903, when only a few dozen birds had just arrived, we found them scattered over the rookery at immense distances apart. What advantages the sites chosen had over any others it was hard to see, exeept that from the highest part of the rookery to the very shore, and as far as it reached from east to west, the one object seemed to be to avoid proximity to any neighbour. Knowing how desperately erowded the place would be within a week, we could not fail to notice this. Sunny rilges had perhaps a preference, but not wholly by any means. There was a company of four or five anong the hummocks of ice and stranded bergs on shore, but the rest were exceedingly busy, each one gathering stones into a heap, upon which it shortly sat to form a nest. One or two linds only had paired as yet, the majority were widely separate and intent only on the amassing of private property. Not one of these nests contained an egg, nor indeed was an egg to be fund throughout the rookery even ten days later when there were many thousands of lirds all materl, and the whole rookery crowded to its utmost limits with well-made nests, each surmounted by a sitting penguin (fig. 35, p. 48).

Rusis sea was then frozen over as far as the eye could rearh, aud ouly a very few lanes of water wer visible, from which frost smoke was rising here and there, but ton days later the sea was open and every scrap of ice had been blown hy recent winds to the Nonthern horizon, where, as a long glistening line of pack ire, it combld be seen shining in the sum. The area of the rookery at Cape Crozier is inmense, and rums up the valleys and slopes of Nount Terror from the sea shore to a height of from 700 to 1,000 feet. The main valley in which it lies has a facing almost north, and is for some reason hare of suow. On the castern limit are two very old and weatherworn blue-ice diffs, which are remmants of a previous and more extensive glaciation. On the 29th October our visit to the rookery was made in a heary gate of wind with thick snowdrift from the S. W. , hat we found that in the rookery valley we were completely sheltered. The prevailing wind there was more nor'westerly than sontherly, as we rould see by the wastrugi or ridges in the smowdrifts.

The nesting sites are arranged with some method, not here and there as the loniders fancy, hut in groups with neutral ground between them, earh group varying in point of mumbers from twenty upwards, and relying upon a few of the most pugnacions members forence. From ten days to a fortuight after their arrival the hirds legin to lay, and when earlh uest contains two eggs the serions incubation hegins. Lasting from thirty-one to thirty-fou days-three days elapsing lietween the laying of the eggs, acomling to Mr. Evans of the 'Sonthern Cross' Expedition-the business of inculntion is shared by the cook as well as by the hen, and at Cape Royds I hat the "pportmity of seeing the two change places. The hen presumably was sitting on the eggs when the rork ame up to her, and she presently stood up. Then legan the weird motions that gon in courting times. Stambing heast to breast each rubled its neck against the other's, first one side aml then the other alternately, with a gentle carkle all the time (tig. :36, p. 48). The wock was now and again allowed to see the eggs and tonch them with his beak and rearame a stone or two of the nest, and this went on for several minutes, she loath to go, and he, I presume, assuring her the white that she should gorard get some shrimps, for there is no fasting during the period of incubation, as some have stated; presently the hen stepped off and the cock at once walked in and rommenced to sit upon the eags. I was surprised in this case that two eggs should remain so long mhatrher, and turned the hird off to examine them. One egg had a pinhole in the side, but I hat not the heart to disillusion them, and so they went on sitting. Probably the other one was addled.

The "limatie ronditions which these birds undergo are by no means so severe as thuse which the Emperor Penguin faces, but they are severe enongh in their way. During the winter months from May to . Dugust, wandering between S. latitude $6 t^{\circ}$ on the Antartio Circle, the liod weathers long nights of darkuess, moch cold and many smonstoms: lout probally the conditions here are very mon less severe than thase given by M. Henryk Arctowski, in his acrount of the meteorology of the pack in winter, between $70^{\circ}$ and $71^{\circ} \mathrm{S}$. latitude, some ten degrees farther to the south.


Fig. 35. Arálife Jenguins Nesting at Cape Crozier (see p. 48).


Fig. 36. Adélie Penguins changing places on the Nest (see p. 48).

Tuming to our own observations for the summer months of September to Aprit, when the Jiids were with us at Cape Royds and Cape Crozier, we foumt that the lowest monthly mean was - $18 \cdot 7^{\circ} \mathrm{F}$. for September, and that it gralually rose each month, standing at $-8 \cdot 5^{\circ} \mathrm{F}$. for October, $+12 \cdot 0^{\circ} \mathrm{F}$. for November, $+{ }^{\circ} 23 \cdot 1^{\circ} \mathrm{F}$. for December, till it reached $+\because 6 \cdot 1^{\circ} \mathrm{F}$. for January, then falling $\mathrm{t}_{0}+11 \because \because^{\circ} \mathrm{F}$. in Felnuary, $-0.8^{\circ} \mathrm{F}$. in March, and - $16 \cdot 9^{\circ} \mathrm{F}$. in April, when the bird was no more seen with us. The lowest temperature the lind would be suljected to during these months was $-41 \cdot 8^{\circ} \mathrm{F}$. in October, 1902, and $-43 \cdot 8^{\circ} \mathrm{F}$. in October, 1903. In November the temperature was rarely helow zero, and in December and January was from $4^{\circ}$ to $9^{\circ}$ above. Perhaps the saving grace of the Antaretic climate is the fact that with the lowest temperatures there is rarely any wind. No sooner does a mizzard threaten from the S.W. than the temperature begins to rise, and in twelve hours it may have risen from 40 below zero to nearly $30^{\circ}$ above it. With this rise in temperature comes the wind and snowdrift, and while camping in the rookery at Cape Royds in January, 1904, we found no little interest in wandering among the penguins and skuas to see how they faced a blizzard. Nuch fresh snow was falling, and still more perhaps was drifting. At the ouset it was noticealle that the adults which were alle to leave their nests did so, and went out to sea in a great hurry. Whether they did this beeause they found it warmer to be out of the wind and in the water, or Jecanse they knew that a gale brought in more food, I cannot say. Such as remained on land looked miserable enough, and they squatted with their backs to the weather, so that the feathers were blown up the wrong way and got filled with drift. The chickens in their down were more confortable. Forming themselves into hig rounded masses by collecting in groups of fiftecn to twenty birds, each bird headed for the centre till neither shape nor form was visible. Inside the heap they must indeed have been quite warm ; but the outer ones were white with snow.

Up to January 9 th, at Cape Royds the chicks were still all in their several uests, being tended and jealonsly watcherl, and kept from wandering or being interfered with, by their parents; two chicks were in every nest, but often remarkably different in size, one being twice as big as the other, and probably three days older. Some chicks were almost too big to be nursed, and one might see the quaint figure of a chicken more than half as big as its parent still being "sat on," though nothing but the head and neck could find a covering lectweeu the parent's legs. There was noticeable also for the first time on this date, Jamary 9th, a tendency for the chicks to huddle more in heaps together. As yet, however, there has heen none of the eager clamouring for food that accompanies the chase of the unhappy parents. The huddling together of the chickens which have wandered from their nests is at this stage mnch encouraged by the old birds, who station a few reliable guardians in a circle round the creche (see fig. 30, p. 42), while the majority give themselves up more persistently than before to the smplying of their offsping's needs. And, white many of the chickens huddle close together for mutual warmth and comfort, a number may be seen
trying to seratch shelters in the soil, an attempt whith reminds one strongly of the burrowing tendency of other speries of penguins. One may find nests even so late as Janury 9th, in almost all "onditions, some empty and unoceupied, some empty, hut appropriated ly a horsy pair of stone collectors, who the next day desert it, and, of convar, leave no egg. Thirdly, one may find a patient penguin sitting on an addled eqg: another may he sitting on a whicken and an addled egg, another on two chickens, one dead as soon as hatched, the other one well grown. And lastly, one with the full complement of two, lout markedly unequal in size.

The dickens have now become more and more exacting in their food requirements, amb so by a natural sequence each more independent of its own individual parents. In groups in which they mutually support one another from the sknas, they are more protected than would otherwise be the case.

The skuas, however, are always on the watch, and soomer or later a chicken is separated from its group aur falls a victim. The following is a case which I take from my diary written at Cape Royis upon the spot. The skua, when I first caught sight of it, was dragging the chick away by the skin of its neck, from the outskirts of a group of penguins to a stream of water. The chick was lively and quite unhurt, about half grown, and piping lustily. From time to time the skua stood off and watehed its rictim, but at once dragged it hack if any attempt was marle to reach its companions; these were now about ten yards off. Not a single old lird tried to make a rescue till I had watched for some five minutes. Then a penguin walked up to the skua and drove him off, the chick immediately nestling up to him. This was more than he had bargained for, so at once he left the chick to itself and went aloout his business.

Again the skua returnel and lregan to drag the chick about ley the skin of its neck, pecking it till tufts of down Hew from its lack and loins. It was som dazed and heeding from the head, hat althongh several old penguins passed close lyy, not one took the slightest further notice or attempted to interfere. For a long time the skua did nothing but peek and pull at its prey, and then stand oft to see what result this had, and full fifteen or twenty minutes had elapsed before the chicken was exhausted; the skua then proceeded to tear open the back and make a meal from the parts about the kidneys, which are almost invarially chosen first.

The complete indifference of the older penguins was surprising, for they showed the greatest courage in defending their eggs and chicks from us. I imagine that they have become so accustomed to the ravages of the skuas, that they look upon a chicken separated and once attacked as a chicken lost, aud the skua an evil rather to be codured than cured. The skua in this case was obrionsly afraid of the penguins, it was slim and alert and ready to fly off at a moment's notice, and yet, as a rule, one sees the penguins cower down as a skna flies over them. The margin of safety on each side must be very limited, but it is certainly not conducive to a great belief in the penguin's intelligence when one finds that it allows its only enemy on land to breed
and safely rear its yomg within a few yarls of its wom most satrol nest. I have spen the Adelie Penguin perk at and dmolish its own egg which had a minute before been removed for inspection and had been put back mader it, resenting the intrusion of what it evidently did not rerognise as an egg at all. This, again, is no great sign of intelligence.

Of its eleanliness there is nothing to be said bout paise, for no bird on earth conll possibly be more strictly clean than the Adflie Pengmin. Hunt as one might, no parasite could be discoverel amid the smowy fathers, nor any trace of dirt or alventitions matter. Within, it has, in common with all other hirds and leasts of the Antarctic, abmodant nematorles and quite a host of varions forms of microbes, but externally it is scrupulonsly clean.

There cannot now, I think, be much rlonlt that the Alefie Penguin takes not one year but tro to reach maturity. It joins the lreeding colony for the first time not at the end of its first but of its secoml year. Appearing from the egg in the middle of December, the eolour of the bittle downy-coated nestlings is somewhat variable. Two are almost always hatched in each nest, and the interval which elapees between the laying of the two eggs, and so between the hatching of the two chickens, is sutticient to accome for the discrepancy in their size. One is geuerally about twice the size of the other in the earlier stages of their existence. The eggs, varying in size from 6.45 cm . to $7 \cdot 2 \mathrm{~cm}$. in length, and from 5.0 cm . to 5.5 cm . in breadth (this being the average of ten specimens), are rounded more or Jess erpually at each end, of a white chalky texture withont, and are of a green colour withim, which by transmitted light is very marked.

In the majority of the chickens the down is uniformly dark and sooty, but here and there in the progeny of quite nomal parents one may fiml nestlings of so pale a grey as to be almost silvery white with hackish heals, possilhy a reversion to an carlier type, and, at any rate, suggestive of the young of the Emperor Penguin, which perhaps represents the oldest stock of all.

The changes undergone as the nestling grows are well destribed by Dr. Bowdler Sharpe in the report on the 'Southern Cross' collections, and, as he there says, the colour of the head is in all cases somewhat blacker in the earlier stages than the remainder of the body. But this difference gradually disappears, owing, no dount, to the change in the nestling's down, which Mr. Pyeraft describes as taking place in this bird before it changes it for the immatme first year's phmage. The sooty black, as well as the silver grey, in such as have it, gives way before long to a smoky colon', which gets an old and dusty look by the time it hegins to loosen on the under surfare of the flippers. This moult hegins on the abdomen and the thighs, where the white side stripes appear as the new feathers are disclosed (se fig. 37, p. $5 \geq$ ) : these parts heing the first denuded simply because they bear the brunt of the wear and tear. Then it is shed from the face and hearl, round the lill, and romed the tail. The upper hreast and neek and back hold longest to the down, which will hy now be elogged with ice and dirt and snow, all of which are abundant in the rookery from time to time.

Un the 19th of Jimary, 1904, at the Cape Royds rookery in lat. $77^{\circ} 45^{\prime}$, the moult from the down was in full swing, though not a hird had finished it. Fur contrast with this, at C'ape Alare, some 380 miles further to the north, we saw the same monlt in frogess on the 9th of Jimiary, $1!00$. This serves to emphasise what has lefore been noticed, that the more southern rokeries are decidedly later than the northern ones, a faut which one might have expected, becanse the seasons are relatively far later for a few degrees of southing in thuse latitudes than in more temperate regions farther north.

The colour of the feet meanwhite has also been undergoing change. When first the chicks are hatched their feet are very dark, and in the youngest nestling we ohtained they were a very dusky blackish red. This rapidly alters for a clear bright red, which reaches its maximum in alout three weeks, and then gradually turns to pale flesh colom on the dorsal, and black on the plantar surfaces, and these are retained ly the bird for life. The soles of the feet are uniformly black as a rule. It is exceptional that such a pieball mixture of flesh pink and hack is seen upon the sole as that figured in fig. 6, Plate X. The colour of the mails is blackish to begin with, but they gradually change in a couple of months to brown. The nails of the adult are long, and brown on the upper surface. Underneath they are darker, and there is a surface marking, which is due, apparently, to the wearing of the nail, the deeper parts of which are of a different density to the surface layers. This surface marking is found in the mails of all the penguins, varying much with the hab it of the species, some iuhahiting hard, some soft ground, and some at times avoiding all wear by a prolonged stay in the water out at sea.

Returning now to the change in coloming which takes place at the finish of the first monlt when the nestling down is shed, the first noticealle point is that the throat is white. The general colour of the upper part of the head and uck and back is blush black, with a sharp demarcation line diviting it from the pure white throat, fore-ncek, breast and abdomen. The flippers are bluish black above and white beneath, with blackish patches at the tips, which vary much in size and may be absent. The bill in the adult is brick red with black on the tip and upper surface of the upper mandible, while the lower is black upon the sides along the cutting edge. The cyelids in the nestling are black, and become white only at the second autumnal moult. In the immature plumage the suggestion of white eyelids is given at times by the habit the bird has of showing the white sclerotic alove the coloured iris; in the adult this habit enhances the value of the pure white eychids which are so characteristic. The white ring round the eye which is seen in every photograph of an Adelie Penguin is therefore not due only to the whiteness of the lids. If the bird is watched when neither frightened nor exrited the prominence of this white ring is much reduced and the upper lid is almost hidden under the black feathers of the brow. The colour of the iris varies between a warm or almost reddish lnown and a brown which has a decided greenish tinge. In one at least of the younger birds the iris was a definite sage green.


Fig. 37. Adélie Penguin Chichens, at the Commencemext of their Moult,


Fig. 38. Adélie penguin and loung on the Nest.
-

It is in this phamage, then, that the young Adelie Pengrin is finally left to its own resoures at the cond of the horeding season. The parchts, wording to some olservers, take ansiderable tromble in tearhing their young to swim, waxing them to take the water lefore they migrate to the north themselves, that they may then be intepentent. By others, however, it is stated that the achults, having watched over their young till they have shed their down and are rapable of taking to the water, and so of finding food for themselves, desert them for grod amt all, and make their own way indepembently to the north, leaving the young birds to be taught by sheer necessity to find uut how to swim and follow after them.

Supporting this latter wome is the fact that Mr. Borchgrevink, on his first visit to Cape Alare, foum the colony tenanted amost entirely by white-throated young birds of that season's breeding. "The absence of the black-throated penguin at that time is easily explained," he salys, "hy the fact that the old ones, uncharitahle as it may seem, leave their young ones aml go to sea towark the time their offipring should be able to look after themselves." Aml again: "When the old penguins left, the young ones, being able, like the rest of their kind, to live for a long while without food, remaned on shore till starvation forced them to work for their own living, and then they, too, went to sca."

A similar course is taken liy a mumber of other lirds, as for example by the Little Auk and the Snow Bunting, amongst Arctic hirds, while examples from our own combtry such as the Cuckoo will readily suggest themselves.* Unhappily we were not able to settle this point, as we were never within reach of an Adélie Penguin rookery at the time when this migration was commencing. We were really too far south in the 'Discovery' fon the constant observation of any birl exept Mcr'ormick's Skua, and we were therefore dependent upon the opportunities that rould be seized in (ruising with the ship) or loy sledge travelling for olservations made at the breeding places of the Antarctic hirds.

We were cnabled in the course of our visits to the various Adelie Penguin rookeries ahove mentioned to see the coming of the first few birts in spring, and to see them choose their nesting sites and then to arrive in their thomsands. We saw their courtship and nesting, and obtained their eggs, and a series of the young from the first stage to the last in down. It appears, therefore, that when the nestlings' down is shed and the old birds have gone north, the glossy-coated, blue-thaten, and whitethroated young are thrown upon their own resourees with nothing but their instincts for guidance. It was lont natural that some of them shonld go arhift, and instead of going northward where their parents were in safety in the park, that a few should wander to the soutlo in our direction.

By February 5th we had seen the last of the adults in 1904, and from that date onward we saw none but young birds, the white-throated and immature. But these again were young hirds of two very different ages, and the older of the two now

* Little Auk = Mergulus alle; Snow Bunting = Plectrophenur nivalis; Cuckoo = C'uculus camorus.
 phonare, and two years to mach matmity. The one immature hind that we raptured in Aredurdo fomm in Fobmary was of the glossy hatherked, white-throated phase, whirl hat but at month ago shed its down. The uther was amsidematy larger, with still a white throat, hot a lank brown plumage, which was on the point of being shed, by an autumal moult, and which dming the month of Fehnary would be replacer by the full hack-thmated, blue-hack plumage of the adult. Having modergone these changes it would join the nesting wotonies in the following spring, and at the commencement of its own third jear begin to breed.

This hrom plumage is merely the weathered combition of the first year's suit, in which some of the hlue colour remains, lut from which the black has faded by the weathering of a winter and of a smmmer's sum. The bleaching power of the Antarctic smo is quite extraordinary, and the Adelic Penguin is not the only bind that suffers from it. The adult Adelie is also thanged from bluish black to hrown before it monlts, as also is the Emperor Penguin, both adult and immature. The skua gull's dark hrown feathers are often bleached pure white, and the same effect was scen not ouly in the hair of all the seals, hut even in ourselves, for hair and beards were in several cases bleached to a flaxen whiteness at the end of some months of sledging on the Barier snow phains. That the brown Adelic Penguins taken in Fehruary were on the point of moulting was obvions from the fact that just beneath the skin the new set of feathers was imbedfed in in mass of fat. The adults were also at this time moulting, and the whole process would be over for young and old well before the onset of the actual winter.

There is nothing to add to what has already been done in describing the adult lird, though of its variations a word or two may be said. In the 'Southern Cross' collections a bird was mentioned hy Dr. Sharpe which had a patch of white feathers on the nape. As individual variation in any species was held to be a question of the greatest interest, we kept a constant look-ont for examples to illustrate it hoth in this and every other animal we came across, the interest lying mainly in the fact that the number of species being very limited there is no keen competition and no great difference in the conditions of life or difficulty in obtaining food. And, so far as the Adelie Penguins were concerned, we were struck more by the extraordinary miformity of their plumage than by the number of even trifling variations.

We procured lut one bird irregularly marked, somewhat as in the example mentioned by Dr. Sharpe in the 'Southern Cross' collections, and we saw from the ship at times, when it was impossille to procure the speeimens, about two or three other examples of rariation in the distribution of black and white about the head and neck. That there should be some such tendeney might be expected from the fact that it changes so markedly in the second year; hut it is interesting also for the bearing it has on the utility of the markings of just that region of the body.

These examples, though few, are important as far as they gro because they
suggest that the temency to vary lies in the distribution of black ame whito alumt the head and neek, which is exactly what one would expert, berause it is the reeognition area, so to spak, of the vaions speries of jengmin- the part which atone is "pen to view as the hime is lloating on the water. The rest of the lemby would hardly suffice to differentiate a dozen species, and it would be mo casy task to differentiate between the hirds at sight if the heads were taken off at the shoulders. It is in the head that we have the most marked differences in the build and colom of the beak, wide differences in the colour of the inis, white throats in sume and hack in others, white bands across the forchad, hack bands again arross the throat, and a variety of shading and armoment in the golden superifiary phomes and fromtal crests, as though from time immemonial variations in the hemd had been selected and developerl, and the prowess still goes on.

Hence we get mifomity in those parts which are useless fir specific distinction. but are probably of an advantageons invisibility moler water ; mul a tendency to variation chiefly in these parts which canry specifie recognition marks. But one may argue that, if the distinctive specific chanacteristies are to be lowed for in the head. there is every reason why the head marks should not vary, and it is certamly hand to see why in any particular part there should be assoriated at once the necessity for uniformity and a sperial temdency to variation.

One must allow that whereas in the parts which do not show alove water the colouring is governed mainly by the necessity for potective invisibility, yet in the parts that do show above the water there is an inherent tendency to vary, from the very fact that the physiological procsses leading to pigmentation have beeme ronerntrated in them; a concentration which results from the need for recognition marks in the parts that do come casily intor view as the penguin floats on the surface of the water. That the moder parts should all he white seems naturally to result from the neressity for invisibility from below, where lurk, not only the fisll that the bird must watch, lut the seals and whates that would prey upon the hime.

Whatever may be the reasm, the fact remains that the demareation line between the bark and white is seen to vary about the head and nerk more fremuenty than elsewhere. And the only other variation noticed in this species was in the case of the font illustrated in Fig. of of Plate X., where the hataching of the sole was irregula, and also in the extent of the back tip to be seen on the moder surfare of the wing, which varics within wide limits, and which, leing eommon to several species, camot be cousidered of much sperific value.

There is still one other varation of the Adelie Penguin that must be mentioned. It is the pale or isabelline variety, of which we obtained a serimen in each of two sucessive years at the C'ape Crozier rookery. Both were adults, and in lwoth the parts which should have been black and hluish hack were buff or hownish-huff; the feet were pale flesh colour, the mats light liown and the iris also bown.

The head of this hird is figmed in Plate LX., Fig. 6 , and in comparing it with

Fig. 5, which presents the head of a nomal adult hird, it will be seen that in the latter, whereas the feathers of the face and orown are flatened and closely appessed to the head, the feathers of the owiput and nerk are rased and fom a ruft or collar. It is hardly necessary to say that this ruff is mot peruliar to the isalbelline bird ; it weenrs also constantly in those of nomal colouration. With the erection of these feathers is associated the wide opeuing of the eyelids and the exposure of the white sclerotic of the eyeballs, giving the lird an apparance which we are apt to associate with fright. In the Adelie Penguin, however, the appearance is certainly intended rather to induce terror in others, though one may say with truth that any great excitement will cause the erection of this dest, with every sign of rage in voice and attitude. There is no dould that the Adelie Penguin is a puick-tempered and withal a very plucky birl, though there are sundry points about its character which show a most deploralle lack of the power to draw logical couclusions from even the most suggestive facts. In short, however quaint and attractive may be its personality, one camot but consider it to he a bird of very small and undeveloped intelligence. For example, it has no enemies to fear save such as live and feed halitually in the water; these are the Sea Leopard and the killer Whale. Its one and only strong idea of danger in the abstract is therefore comected with the water, and its power of logical deduction is insuflicient to grasp the fact that man appearing on the surface of an icefloe and knocking over its companions one ley one, can be avoided by leaving the surface of the ice and entering the water. It matters not how many men and dogs may chase it on the iefloe, the more temified it heomes, the more persistently will it shrink from entering the water. Again, one would have thought that seeing its enemy, the Skua, ravish egos and young ones daily throughout the nesting season, it would have been a simple logical condusion to arrive at, that the Skuas were hetter ousted from the rowkeries; but instead we find them constantly in friendly neighbourhool, their nests often within a few yards of a group of penguins' nests and in the very heart of a rookery of penguins. There seems to be in this a deficiency of common sense, since a want of pluck can hardly be considered one of the birl's faults. When confronted by man in the rookery the pair will range up one behind the other as close as ean be, with ruttes up and every sign of an anger which soon breaks into assault and battery. Certainly there are a few birds in every rookery casily recognised as cowards at sight, for on approaching them one sees the feathers lie flatter along the head and neek instead of rising into the warlike ruffle, and in a moment they are off as fast as their legs can carry them; but this is not the rule. Hardly a hird but begins to growl and glare with staring eyeballs amd rufting feathers as one approaches his sitting mate, and hardly a bird lut will without hesitation attack the most aggressive liped disturber of its peace.

The hark-throated Adelie Penguin, although its wanderings are limited strictly to the icy regions, is a regular migrant within those limits. No whe else has hat quite the 'pportmity that M. Racovita of the 'Belgial hand of sturlying its move-


Fig. 39. The ecstatic attitede of the Adélie Pengein.


Fig. 40. Marks made in the snow by McCormick's Shea (see p. 67).
ments during the winter months in the pack. From Dr: Cowh's account it is evident that the gencral exolus from the pack ice to the hreeding places in the south, of all or most of the back-throated arlults, led him to consider the white throats of the immature hinds to he a form of summer plumage. Obvionsly the sudden relative increase in the number of immature hirds in the park ice when the adults left his neighbourhood, at the commencement of the spring, misled him. His observation, however, was borne out ly our own as we mate our way through the ice-pack in January. There was a large proportion of white-throated immature hirds there which were certainly not hrecding. Just a year ohl at the time, they had yet another year to wait before they wonld join the southern migration to the nesting colonies. Their home till then was the pack ice and the open sea. There were, ako, in the pack ice in January quite a number of adults, which presumally were not taking part in the nesting of that particular season.

From March, therefore, till the latter end of Angust, the Adelic Penguins, both young and old, are scattered over the northern regions of the ice, where they spend the winter, within easy reach of food amd open water. They are also during this time more or less gregarious in habit, though markedly less so than they are in the summer season.

Wherever in the pack ice they can depend upon an open lead of water, at the foot, for example, of an iceberg, penguins may he found in small companies, both young and old, throughout the winter: Not so, however, farther south, where neither sign nor trace of an Adefie can be found from March till the following spring, September or October. What is exactly the farthest point to the south in the Victoria quabrant at which this bird may be found during the winter months, it is at present impossilile to say, but one may take their average limits from the begimning of October to the end of Fehruary as lying between $61^{\circ}$ and $78^{\circ} 50^{\prime} \mathrm{S}$. Lat., and from the begiuning of March to the end of September from $61^{\circ} \mathrm{S}$. Lat. to the Antarctic Circle. Individual hirds have heen known to wander, apparently lost, on the Great Ice Barrier some 60 or 70 miles from open water, but this was certainly accidental. The general migration southward from the pack ice applies to the alults only, and occurs about the middle of October. The general migration to the pack ice north again takes place in two sections, that of the adults about the third week in Jannary and that of the seasm's young a week or two later. Such adults as we found at the nesting rookeries after this were always in full moult, and one must believe that their moult har inconveniently overtaken them before they started north, and so enforced their waiting till its completion. Amongst the more sonthern individuals the moult legins in the latter end of February; on Feb. 17th in 1904, when we landed at Cape Adare, we found a very large number of adults, all moulting; there was then not a single immature bird with them. They had hut one choiee, either to leave the safety of the land on an icefloe, which might break np and precipitate them into the water, or to remain safely where they were on land and wait for a fortuight till their monlt was completed, and then go
north ly sea or ice as opportunity offered. One thing they would on no aceount risk, namely, to chter the water during the moult, and so they took the latter alternative and waited, fasting, where they were.

The feathers that were being shed were old, worn, and faded, giving the lind a brownish look all over. They were shed, moreover, not feather by feather, but in spurions sheets, large numbers of them leing held together, as Mr. Pycraft has pointed out to me, by the cohesion of the barbs and bartmles. The size of the bird as the old coat loosens is prodigions compared with the sleek and slim appearance of the newly moulted one, for not only do the oll feathers stand out at right angles to the skin, but the thick layer of fat in which the new feathers are embedded is still below the skin. As the new feathers develop, this layer of fat diminishes, and the difference in the close fit of the glonsy hue-black plumage and the old dishevelled loose hrown coat is more than ever marked.

There are, therefore, to recapitulate the various plumages and moults.

1. Downy plumage carried for one month from Dee. 15 th to Jan. 9 th, and in this, I understand from Mr. Pyeraft, there are two distinct phases. ln the light of this observation the variation of the first phase, which I have noticed ahove (see page 51), in the colour of the youngest chicks is the more interesting. The silvery aspect lasts only for the first week or less, and during this stage the silvery-white character of the down and the black head strongly suggest the colouring of the Emperor Penguin's young. One is inclined to think in consequence that the colouring of the Emperor's chick is on the whole more primitive than that of the King Penguin's chick. This transitory silver grey phase in P!!/osedis adeliæe no doultt emresponds to the white phase of the chick in the Plygosedis antarctica, as desorived ly Mr. Eagle Clanke, and the seoond smoky phase of $P$. addiee with the second phase of the chick of $P$. antarctica.

The nestling's down is monlted between Jan. 9th ind 16 th, and the ensuing juvenile white-throted plumage is carried for thirteen months from. Wan. 16th to Feh. 15th of the following year.

The next moult, to the liack-throated adnlt phmage, follows between Fel. 15th and Marth 7 th.

It is possible that a year more is spent in the park-ice after the adult phanage has been accuired, and that these are the black-throated birds which are seen in such numbers in the pack-ice in January, many hundreds of miles away from the business of the nesting colonies. If this lie so it would postpone the commencement of breeding till the end of the lind's third year, and this is quite possibly the case. One thing is certain, that having assumed the livery of the adult, which is identical for male amd female by the month of February, they wear it without much deterioration throughout the winter in the pack. The moult in all stages of immaturity is antumal, and being also an antumad moult in the alult, it may lie called post-nuptial.

## CATARRHACTES SCIILEGELA.

The Prayth Pentuin.
(Plate XI., Figs. 1 and 2.)


List of Materlal in the 'Disoovery's' (oldentwn.
 Grey chin.
 Grey chin.
 Chin white, throat grey
 Chin and throat white, except for a small spot of errey on the latter.
 ('hin and throat white. This male was taken from the nest where it was inenhating an egg.
Also twenty egge of C'atorrluates schlegeli, and the materials of one of the nests.
The enlouring of the soft parts:-
Adelt : -

Iris, brighte reel.
Bill, upler and lower, hright orange pink, the upher slightly more crimon in tone.
Naked skin at the gape, vivid crimson, shading to purple anteriorly.
Feet, pale flesh pink.
Claws, pale lrownish hom colour.

## Immature:-

Iris, bright red.
Bill, dusky orane pink.
Naked skin at the gape, dusky rel.
Feet and claws as in the alult.

## Note on the llleftrations.

Binds, Plate Xl., F'ig. 1 represents the head of an immature Schleqed's jemguin, probably at cheren montlis ; the coloming, both in this figme and in Fig. 2 , which represents the head of an amble $\delta$, is taken from freshly-killed birds. The main difference in the colome of the soft parts is in the degree of brilliance, particularly in the colome of the maked skin about the angle of the month. Fig. :s represents the heal of Eulyptes antipmlam.
Caturnhartis schegeli, commonly known as the Royal Penguin, has been remoded from New Zealand, Camphell Island, and the Macruarie Islands. It is a localised species and breels only at the last place.

The rookery that we examined on the oceasion of the 'Disonery's' visit to these islands om November 22ml, 1901, was situated on a shelving beach in Fisherman's Cove, on the eastern side of the islaml, not far removed from the waters edge. It was
in a revy murl drier spot than that chosen by the meightouring King Penguins, and considerably more limited in size and extent. Definite nests had been made ly each pair of hirls guite ehose to one another, composed of grey pebbles, twenty to thirty in number, suall and large, with water-worn bones picked up on the adjacent shore. They were well-finmed structures with raised mbes, ireular, and with a good depression in the centre of each. The birds had already mande good progress with their incubation, for in every nest we fonnd an egg, and they were all ton fully in ulated to be useful an fool. The male shares the labour of inculation with the female, and the prowesis is said to be completed in a month. The eggs we took were about three parts inculated.

Theil measurements vary between 7.5 cm , and 8.5 cm . for the longer diameter, and between $5 \cdot 5$ and 6.25 cm . for the shorter diameter: thu* in five of the eggs taken the measurements are as follows:-

$$
\begin{array}{lll}
8 \cdot 2 \mathrm{~cm} \times 6 \cdot 1 \mathrm{~cm} . & 7 \cdot 8 \mathrm{~cm} \times 5 \cdot 5 \mathrm{~cm} . & 8 \cdot 0 \mathrm{~cm} \times 5 \cdot 9 \mathrm{~cm} . \\
7 \cdot 5 \mathrm{~cm} .5 \cdot 9 \mathrm{~cm} . & 5 \cdot 5 \mathrm{~cm} \times 6 \cdot 25 \mathrm{~cm} . &
\end{array}
$$

They are all pyriform in shape and have the usual dalky-white shell which tharacterises the eggs of other penguins.

A most interesting article, by Mr. Biekerton, Amang with the Royal and King Penguins' ronkeries on this island is to be foumd in the "Pall Mall Magazine" for November, 1897. In it he gives September as the montl in which this lied begins to lay. This does not quite agree with our observations, from which we concluled that the eggs could not have been laid before the midnle of Octoler. Mr. Biskerton's visit was made in March, 1895, aml it is possible that he was misled by the account of the sealers who accompaniod him. He says, further, that the Royal Penguins begin to arrive at the Macpuarie lsamls in Tanuary to moult, and upon his arrival in March, although birds were still ariving, yet the moult was still in progress. It is said to hast three weeks, and during this time, as with other species of penguin, the hirts live on their very plentiful supply of fat, sine they will not enter the water until the process of monlting is completed.

The young are sait to le realy for the water within three months of hatching. If this is so the down most be sheding about the month of Fehnary, and Mr. Bickerton arriven only just too late to see them. The whole process of inculation and chicken rearing ley the linal Penguin is, therefore, very comparable to that of the Adélie Penguin farther south, but every stage takes place alont a month earlicr:

When we were on the spot in November no monlting linds were to be seen, ant every hird was paired, nests mande, and an egg laid to each pair of birts. Their comdition was so unform thoughout that we couh only conclude that the laying of eggs takes place, as in the Adme Proguin, ahmost to the day thrmghont the rookery, and not over a consilerahle "xtent of time, ats in the ease of the King Penguin. Only two phases of phomage were to be seen in November. First, and by far the most momerous, were the fully aduht hirls with white throats and chins and long
golden-ydlow superiliary phanes. Serondly, there were a considerable mumber of yearling hirks, with hark grey chins and throats amd shont goden plames. besiles these were to be fomm acortain mumber with slight traces of grey persisting unm the thom, linels which, julging firm the length of their phmes, were at least two years ohld, if the grey-throated bints were correctly comsidered yealings.

Fig. $t$ of Plate NI. gives the features of the head of the yearlings. Fig. 2 the heat of an allult male. It is interesting to note that the lemon-yellow tinge. Whin is seen on the white feathers at the lase of the mandible in Fig. 2 , has its exact comerpart in the same pwitiou in Merfodyptes antigenthom, which has been figures on the same plate for the sake of comparison (Fig. 3, Plate XI.).

Further, it is signifirant to note that this is the region in which the King Penguin develnges the same greenish glosis that is to le seen upon the crown and superciliary regions. This greenish gloss on the cown I have shown (we Pp. 35 aml 36), in the case of the King Penguin, to be the carliest indiation of the orange-yellow pigmentation, which eventually collours the superiliary wowns and arests of Jeydedypes and C'aterrhectes. That it should be apprent not only on the crown of the King Pengim, hat also on its chin and upper thrat, is obvionsy an imdication of a tombency to prowluce the yellow pigment there, and conserfuently it is to be fomed fuite conepicmonsly developed in Mergutyptes, and to some extent also in Catartuactes sehleyrli, suggesting that the affinities between Iptenodyfes and the two genera just named are more close than might, otherwise have been expected.

For we have, thas, not only in the crown and superciliary regiom, lont also in the throat, a develoment of a very characteristic pigmentation from . I ptenorlytes forsteri throngh A. petayonich to Magudyptes, and so to Catarrhuctes schleych. There appears to be no similar tendency in the other members of Catartuctes, ant certainly in Pygoscelis one would not expect it, as it is only just making its appearance in Aptenodytes.

The fully developed plames of Catarmactes scheqdi present a very grotestre appearance as they stand out on both sides of the head and frame the ficre-looking blood-red eyes and the large red hill. The birds looked like hampes cowering ower their nests on our approath, swearing and growling in concert with the harsh and angry cries of their neighbours in a way which was almost deafening.

While engaged in incubating its egg the birl suats in the sume manmer as the Adélie P'enguin, light down upon its breast. There is no effort to holl the egg between the legs, and in no atse was the egg lifted when we raised the hird from its nest. Yet the production of a single egg may be considered the first strp towardis what one may call the hyperporial method of inculation employed by the King amd Emperor Penguins, which although more primitive than C'aturnhuctes in some respects, must be considered more highly specialised in this particular direction.

I have elsewhere mentioned that we found the skin of an abino logal l'onguin in one of the hats on shore, with a large collection of other bird skins preprate and
left there. This allino was entirely white excep for the golden superciliary plumes, which were wrll devehnel. It now forms part of the British Musem collection.

Tor reapitulate the life history of this penguin, it appears that in January the birks begin to arrive at the islam, and continue to arive till the emd of Mareh. The moult of the ablults is in progress throughout Fehruary and March, each bird spenting the three weeks necessary for the process on shore, fasting. From March to September presmally the lirts remain at sea. In September they come again to land in numbers amb prepare to nest. In September or ().toher a single egg is laid in each nest, amb the young are hathoul out at the end of November. These remain on shore from December to the end of Felmary, when, having shed their downy plumage, they take to the water and leave the coast clear for the moulting adults.

## MEGADYPTES ANTIPODUM.

The Gieat Penyuin.
(Plate XI., Fig. 3.)
Catarrhates antipodes, Ilombr, et Jacן., Ann. Sci. Nat. (2), svi. (1841), 1, 320.
Megulyptes antiportm, Osilvie Grant, C'at. B. Brit. Mus., xxvi. (189s), p. 64t; Sharpe, Rep. 'Sunthern Cross ' Coll. (190: ) , 1. 13s, ilinge citate.

## Material in tife 'Discovhity's' Collertion.

(ii), ad. sk. March $\geq 4,1901$. Laurie Harbour. Duckland Ishands.

Colouring of the soft parts (see Birls, Phate XI.. Fig. B) :-
$\mathrm{U}_{\mathrm{l}} \mathrm{per}$ bill, brick red, almost throughout; some small fmonnt of white showing at the junction of the phates.
Laser bill, terminal quater, brick red; the rest pare white, except for a narrow broken line of brick red hots which run along and close to the cutting edge on each side.
Inis, bright yellow.
Eyelids, pink.
Leers and fect, flesh pink dorsally exeept the toe tips, which are black dussilly all round the claws. The sole of the feet wholly black.
Claws, dark brown.
We had but little opportmity of stulying this bird, but two were canght in Lamie Harbour, just moulted, on Narelı 24 th hy Dr. Souter, the surgeon on boart the second relief ship 'T'erra Nova.' The head of one of these in its new plumage, not yet quite completely developerl, is figured (Plate XI., Fig. 3). As we passed the cast const, we saw in the distance, on Ewing Island, a scattered rookery of penguins on the low rocky shore, hut we were too far away to be certain of the speries even with glasses. The bind, however, is known to breed there, but it breeds always in small companies, and does mot form large rookeries as do the other Perguins. The sperimen ontained is interesting chiefly on account of the stage of moult which it exemplifies. As exhibiting a definite stage between Aptemodytes and Catarthactis it has been mentioned above (see p. 6I) in connection with the development of yellow w orange pigment in the feathers of the superciliary region and the chin.

## STERNA $\%$ inc.

On March 1st, $1904\left(6 \sigma^{-}: 30^{\prime} \leqslant, 180^{-}\right.$E.) , while pasing through some very loose pack ice on our way to the north we saw two on three whisps of Teru. It was the only ocasion on which we encomenter the bird. The day was misty and the birds were all apparently making their way to the north or north-west, evidently in an autumn migration. The crown of the head, forehead and nape were hack, the tail and rump were white. There was a white border to the wing and the rest of the upper parts were grey. The bill was hatk or very dak. They Hew in companies of from three to sin linds together and alighted frecuently on the icefloes, giving a clear whistling note while on the wing. We satw neither this nor any other Tern farther south, nor were we able to procme a specimen on this oceasion. It is possible that the hirds we saw were examples of Stermu cittutu, but I am more inclined to think they were S. hiewndinacea from the extent of white upon the rump, and the distinct white Jorder to the wings. The liird has alsw heen recorded from the South Shethants and South Orkneys (Sharpe, "Rep. 'Southern Cross' Coll.," p. 1655, 1902; Eagle Clarke, "'p. cit.).

## MEGALESTRIS ANTAROTICA.

## The Anturctic Skur.

Lestris anturctica, Lesson, "Traite d'Orn." (1831), p. 616.
Meyalestris anturtica, Gould, P.Z.s., 1s.9. p. Sx ; Sharpe, " Rep. 'southern ('ross' ' 'oll.," (1902), ]. 172, ibique citute ; Eagle Clarke, Birds of Sonth Orkney Jds., Ibis, Jan., 1916, [. 180.

Material in the 'Discoreri's' Collection.
No. 1t구, ad. skin, $\delta$. Nov. $\underset{\sim}{2}, ~ 1901$. Maçuarie Island.
No. 148, ad. skin, ${ }^{\circ}$.
$\begin{array}{cccc}. . & . . & . . & . . \\ . . & . & . . & .\end{array}$ No. 14!, ad. skin, む. . . . .. .. No. 150, ad. skin, $9 . \quad$. . . . . No. 151, ad. skin, $9 . \quad$. ". .. No. 152, ad. skin, Q . . . . . . $^{\text {. }}$
Colouring of the soft parts :-
Bill, wholly hlack.
Iris, very dakk brown.
heus, toes, webs and claws, black.
Also a collection of egres taken un Nov. 22, 1901. Macquarie Island.
Occastonally, as in a specimen seen in the Auckland Islands in March. I90t, the legs of this Skua are piebahd, black and white, as 1 have mentioned is so often the case in Meyalestris maccormichi (see p. 68).

There is no possibility of confusing this Skua with the more sonthern form, Megalestris maccormichi, which is contined to the ice. M, cuturctica is very considerably larger, and darker, although there is a tendency to variation as in M. maccormicki within certain limits.

We ultained six examples of Mequenestris unturetien from the Macepuarie Islands. but unfortunately none fiom the Sulklamds, where the linds appeared to be ceven darker and larger than they wore in the Macguarie lskmes. We foum it nesting in the latter fislands on November $\because 2.1901$. Each nest contained two egis laid merely on the gromm, with rately a few lents lining a shallow depression. The hirds not only threatencel to attarls those who interfered with them, lut also oecasionally attempted to draw them away hy feigning an inability to thy. They live here as skuas do chsewhere, largely by harassing other hirts till they disgorge. We saw one dipping at a Whalehird (Prim). Fear was a thing aparently unkown to them. for in the open ocean we watched them chasing even the largest allatrosses, and wo sooner did the sailing flight of the Ska: change for its bee-line stoop than the albatrons would immediately drop to the water, there to remain until cither its tormentor was gone, or the coveted food in its stomarh had passed beyom recall.

On the Marguarie Iskands the Skias patrolled the penguins' rookeries with great persistene aml nu doult took a fair share of the eggs and young. The most northerly puint in open ocean at which we observed legalestris antarcticn wats $37^{\circ} 83^{\prime} \mathrm{S}, \mathrm{C}^{\circ} 9$ E. on S'cpt. 29, 1901. in the South Atlantic ocean. The most sontherly point at which we saw the hirl was $56^{\circ} \mathrm{S}$, $176^{\circ} \mathrm{E}$. on Marh 11 , 1904, and we were then immensely struck he the ohvious differenee hetween it and Maccormink's Skua to which we had grown so aroustomed during the preceding two yeurs. lustead of the smaller, pale or parti-coloured bied, we saw a much larger, darker, and stronger birk of one uniform brown all orer, chasing albatrosses. Undoubtedly it was most distinct, for we had seen nothing like it amongst thousands of Maccormick's species farther south, and the distinction appears to he well confimed by a comparison of their young.

# MEGALESTRIS MACCORMICKI. <br> MeCormich's Shu". <br> (Plates XII., NIII.) 

Stertorerius meterormirki, Sanders, Bull. 13.O.C. 111. (1s9:), 1. 12.



## hist of Materlal in the 'Dhemerry's' Collection.

No. bif, 9 , ad. sk. Jam. 31, 19me. Great Ice Barricr.
.. (i7, $\delta$, ad. sk. Jan. : $: 1,1902$.
.. 68, J. all. sk. Fel. 24, 1901 . Cipe Adare. Weathered and white. (Fir. i, Pl. XII.).
, 69, $\ddagger$, ad. sk. Felb. 24,1901 .






Nos. 1:7-169, ad. skeletons. MeMErdo Sound.
.. $225-229$. Young Nestlings in Spirit. (ape Royds.
.. 280-234. Younr Nestlings in Spirit. Cile Adare.
Many eggs of this bird were taken, aml preserved in "chutches," and singry, from Cape Alare. Cape Royds, Cupe Crozier, ete., at varions dates durint November, December, and Janmary.

The colouring of the soft parts is as follows :-
Bill of the nestling. bluish grey, gradually darkening to hack at the bird attains to maturity. Bill of the small adult, back.
Iris, dark brown at all ages.
Legs, toes, and wels, pale bluish grey in the gomen when just hatched, gradually blackening from the extremities upwards, until, when the bird is full-fledged, the feet and legs are hack except for a patch of hight blue just ahore the tibio-metatarsal joint. In the adult. wholly black.
Claws, black at all ages.

## Note on the Illustrations.

Plate XII. represents the hem of Jegalestio murcormiclic in tive stages of srowth.
Fig. 1.-The nestling, when first hatched, with the egg scale still attached to the upper bill.
Fig. :.-The nextling at about two weeks, showing the rapid growth of the bill, aut the change in its colour.
Fig. B.-The fledgling at abont seven wecks, when the bird is just beginning to attempt the use of its wings. The down in this case (Skim. No. 72) is completely shed, and the phomase is soft and close, of a miform grey, very different to what it wond be in anther week or two when the feathers hawe assmed the harder character of the adult, and are dark brown in colour.
Fig. 4.-Represents the bead of a young amblt in the first year, with but little attempt at the display of a yellow collar.
Fig. 5.-Represents an adult bird with the bleached and whitened phmare, which ehatacterises the bird at the end of the smmmer months, before the moult.
Plate XIIT. represents the fect of MCCormick's skua in varions stages of growth.
Fig. 1. -Of the nestling immediately after leaving the egg.
Fig. ...-Shows the eneroaching blackness which gradually cree]s in, the font and leg from the terminal border of the webs and elaws. This is the foot of a bird at two ur three weeks.
Fig. 3.-A stage of coloming reached at the sheddiug of the downy phamare.
Fig. 4.-The foot of a normal adult.
Fig. 5.-The pied foot and leg of an abormal adult. See p. 6s for reference to this figure.

In the South Victoria Land 'fuadrant of the Antartir area the ocurrence of Mc(omnick's Skua (Megalestris mactormicki) is limited to the ire (ser fig. 41, p. 68). Nor does it in any other part of the Antarctic seem to wander into more temperate regions, its place licing taken in the sub-Antarctic area ly the more robust form Megalestris anterctica. Having areustomed ourselves to the appearance of the latter, which was with us day ly day on our outwad royage for months, we had no difficulty in at once recognising the smaller and paler form of the ice park as a distinct species. From January 5 th, when we met with it, onwards thronghout the summer months we had it always with us. Hardly a day passed in the summer but McCormiek's Skua was noter, though not always in excessive numbers, exrept when we neared an Adalie penguin rookery. Then the Sliua would always become abundant, and the bloody remmants of penguin chickens would he sufficient testimony th the nature of its needs.

In the "Antarctic Manual" Mr. Howard Saunders gives $78^{\circ} \mathrm{S}$. lat. for the southermmost ownrence of McComirl's Skua, and about $70^{\circ} \mathrm{S}$ lat. as its limit to the north. These must now he extended, and in doing so this gull must he given the distinction of having been farther south than any other known bird. We met it first in Jamary, in the ice pack of $68^{\circ} \mathrm{S}$. lat., but on our return north two years later we saw it for the last time at the Balleny Islands on March 1st, when we were in lat. $67^{\circ} 20^{\prime \prime} \mathrm{S}$. And for its southem range we saw two or three examples so far south as $80^{\circ} 20^{\prime} \mathrm{S}$. An explanation of this ocemrence will be found below, though it is right to say at once that in a sense we drew them to us from about $78^{\circ} \mathrm{S}$. lat.

The variety of colouring in this skua was very noticeable at Cape Adare, where we landed fon a few hours on January 9th. The colour of the head and neek and hreast varies from a very light huff, or alnost white, to a dark rich brown. Everywhere on the ligher slopes the birl was nestimg, and young of all stages as well as inculated eggs were taken on that day.

Un Jamary 15 th we entered an ice-bound inlet, Lady Newnes Bay, and again met with M.e'omicl's Skua, in attentence this time on a colony of Weddell's Seals and a company of moulting Emperor Penguins. The Skuas were not nesting here, for we were surmmoded by ice eliffs and snow-eovered rolling shopes. They were more than ever tame and fearless, and could be approarhed to within a yard or two as they ferl on the lhubber of the seals we had killed for food.

Adrift here for ten hours with three rompanions on an ice-floe, I had time to watrh snme of the lirds that kept ns company during the hours of the might. The Skna we notieed slecping as it seruated on the ire-floes, from 2 a.m. till 7 in the mornimg, and a trait in the bird which we fond to be very characteristic was the habit of settling, the one just ahead of its mate, both with outstretched wings and head well up, vociferating with lond and rapidly repeated cries lefore chosing up the wings. Their habits are in every way like those of other Skas, and having no other gulls to attark, as have their northem relatives, they content themselves ly
attacking one another or the smaller petrels on the wing till the weaker disgorges what he has eaten．

Again，in Granite Harbour，on the west const of McMurdo fomm，we found them nesting，with yomg and even eggs，though it was solate as Jamary 20th．We then crossed over to Cape Grozier，where many Skias nest，and practically live on the Adflie penguins of the enomous rookery there，amd here we saw the bird settle deliberately on a healthy pengnin elick and peek its eyes out．

On January 31st we were at the extreme castern end of the Great Ice Barier of Ross，and off the new land，now called King Edwad VlI＇s Land，we procured three Skuas，which on the same day provided us with examples of the two extremes of colour variation and an intermediate form．One lim was uniformly dark all over，another was weathered and bleached，with an almost white head and breast and white splashes on the hark and mantle，while the third was a stage between the two．This varialility has nothing whatever to do with sex，lut much to do with age and moult．The moult which replaces the bearher and whitened feathers is apparently more complete and rapid in the young than it is in the older lirds．

Returning along the Barrier we saw that the Skas were almost as ronstant in their attendance on the seals as they were upon the penguins．So late as Fehuary 9th they still har nestlings in down，and on this day we reached our winter quarters in McMurdo Somm．We then had had weather for some days，and on the 11 th we fornd that these young ones had succombed．Prolablly this is the fate of the majority of late hroods．I believe there womld be no late eggs on second broods at all were it not that so many of the first are destroyed and eaten by their neighbours．

The number of Skas increased largely day by day as we killed seals round the ship for food，and there were at no time less than twenty or thirty flying ower the dog－kennels on Hut Point．At the end of Narch they began their migration north－ ward，and finally disappeared on the 30th，to be seen no more till the following spring． This skua is of a socialle disposition，notwithstanding its cannibal tendencies，feeding， nesting，and hasking in the sun in groups．It is，moreover，a very cleanly bird，and repeated search failed to reveal an external parasite of any kiml．It is particularly fond of bathing in the thaw－water pooks among the hills where the snow is melted by the heat absorbed from the sun＇s rays by the wlawent rocks．Round and in these pools a group of skuas might always be foum，and the abmulance of their feathers at the edge testifies to the hahit（see fig．42，p．68）．In the adjacent sum their tracks are found，and here and there a pattern in the hardened surface that might puzzle anyone who had not watched them there（sie fig．40，p．5（i）．Thist ahead of two footmarks is a fan－shaped series of linear seoop－marks，made ly the bird＇s heak ats it sfuats comfortably on the suow and proceeds to satisfy its thirst by eating it．

The skua has no dombt goorl sight，hut its sense of smell must be little short of marvellous．When on a sledge journey to the sonth with Captain Soott，on lioss＇

Grat le Barter, we camped in lat. $80^{\circ} 20^{\prime} \mathrm{S}$., about 170 miles from open water, and 150 miles form the nearest spot which we knew to he frequenter by the Skuas, we were surprisel ane day to see a bind hovering round our camp, till we realised that the wiml was sontherly, and remembered that the night before we had killed and cut up one of our slenge dogs to feed the others. Nothing but the scent of hood could have brought the hird those many miles. This was on December loth, and the same thing happened again on whe return when the wind was once more southerly, and the soent of houd was carried about the same distance, and hrought on this occasion two Skna linlls to om camp. They remained with us two days aml disappared, leaving as to finish our journer home alone. Three months of solitude were spent on this journey, si mompletely devoid of life that this was the conly hird or beast of any sort that came to hreak it.

On Marich 5th, in Medurdo somed, we shot the first of the year's brood upon the wing. It had the straw-coloured ring on the neck very imperfectly marked, and was otherwise very dark all over. Its legs were piebahd, black and pale bluish white, in pathes persisting from the nomal colomation of the nestling (see Birds, Plate xiii., fig. 5). This ambition of things, however, was not a constant characteristic of the first Jear's lind, for in gening throngh some three hundred of the adnlts that we shot for consumption during the ensung winter, no fewer than $\because 0$ per cent. were found to have piebah legs. Moreover, on once more reaching the Auckland Islands we saw precisely the same piehald legs in an individual of the larger and darker pecies, Weqalestris antaretica, and precisely the same thing may be seen also in one of the examples of M. contaretien which are now to be fomm in the Zoological Rociety's (forlens at Regent's Park (. Inly, $1!006$ ). Such facts may have little significance, but they are worthy of record as evilences of individual valiation. This partioular case is possibly a reversion, and suggest, that at some previons stage in their history the Skuas were paler hirds than they are at the present day, a suggestion one may gather from the colouring of the chicks.

The inalility of these birds to appeciate danger is often very remakable. Before their departure we tonk heary toll of their numbers to supply ourselves with fresh meat, and a change from seal Hesh during the appronching winter. There was little difticulty in procuring more if the gemner was sumessful in dropping one, as the rest immeriately colleded to see what was going on, their curiosity only increasing with the fall of a secom or a third. It is but fair to ald that nothing, save the necessity of taking every possible precalition aganst the semry which had appeared in ow ship's company, would have inlacer us to take such an advantage of their igmorance of danger. Their conage as thieves led more than once to much ammsement. On one occasion a fish-trap hole was used hy two of our men for fishing with hook and hand line, and the proceeds of the sport were mpidly thown belaud them, as we after another of a passing shoal of fish wats landed. But, alas! when the shath wats gone, and they turned to take comnt of all that they had caught, there were only a few satistied-


Eig. 41. McCormice's shta (Megalestris maccormichi).


Fig. 42. McCormick's Sicas, eathing in a thaw pool.
bonking skuas behind, whith heavily twok thight as the fishermen rose sublenly tw their feet. On another werasion, when cutting up a seal, we held ant semps of habler which were taken from our hambls skas on the wing. If any part of the seal was to be kept we had to be careful to protect it. When the Nearelephant was killed, its tomgue and eyeballs were set apart to be preserved in spirit, bur looth dixapeared white the rest of the skimning was leing completed. Not only this, hat a heary pilot duth jacket had been dragged ten yands away ly Skuas that dioputad its possession, and the sealskin sheath of a knife, about two feet long, was last seen hanging from the mouth of a skia as it flew away to sea. Nothing is sacred and nothing safe from such clamorous thieves, and more than onco they paid heavily for their phack and "monity.

I have mentioned lolow the fighting that eremes at times letwem nestlings that have but just emerged from the saffety of their cggshelts. This instinct is hy no means confined to the yomg. The old hinds were always game to fight, and nothing more was needed than to fimd themselves at close quarters in captivity. when the matter was at once fought out. Mecormilk's Skua chooses for its mesting site the northern or north-castern face of some gravelenvered hillside, talus, or momane come, where the snow has either never settled on acmont of the winter winds, or from which it has been lanished loy the summer sum. We were able to inpect a sore or more of their mesting colonies. They freed almost invariably in groupsor colmies, with the nests inly sufficiently widely separated to aroid monecessary collision, which between birts of such strong thieving and diminal tendencies leads to awkwakess. Often the colony is situated close to and even mingling with a rookery of Adelie penguins. This is the case at Cape Adare, where the skuas nest on the serees and upland heights of the higher ground in close companionship with the Aldelie penguins that "hoose the high gromud for their nests. A thousam feet above the moraine flat at sea level, where the majority of the penguins nest, may be fomm in close proximity both Skuas' and Penguins' nests with eggs and young. Again, at Cape Crozier the Sknas were onllested in a nesting colmy on the detris-strewn slopes of Mome Temor, overlooking many thomsads of Arlélie's nests. So also at Wood bay and at C'ape lioyds. The last-mamerl rookery, one of the smallest Adelie penguin rookeries we saw, was, strange to saty, the largest of all the Skuas' breeding colomies. Literally soores of nests wouk be dismoven dming it day's tramp over the rocky (ape. Nowhere flat, this little peninsulat was extremely rugged, both from the irmgular weathering of a hard rolemie rock, and from the fact that over it hat rom at some long distant period a huge ice-sheet, which has scooped it out into little hills and valleys and terraced it with moraine heaps. Each of these little hills or its adjacent valley was orouped by a pair of Skus, and cath litthe rise oremome in a morning's walk from the camp laid one open to the noisy attention of another pair.

Round and round one's head the one bind wheded with a shreking datter, every now and again dashing down as thongh to strike. From time to time the luw took effect, and sometimes tonk one's cap off. Ocasimally one might he surprised loy a suden blow on the forehead, but always, and at fill as 1 equhd jubge
without exeeption, it wats given with the wing, and the claws were never used in the attack. While her partner was thus doing his best to frighten off the intruder, the sitting liirl was loudly and persistently advertising the exact pusition of the nest, bow wouk she leave ler post till we had come, sometimes, to within a yard or two.

The hirds ary is much like that of other gulls, a loud and anxious rapidly repeated ery, and very haskl. But the wy of the fledgling is very different. It Cape Adare I thought for some time that there must he a bird of the samplpiper type alout, for I constantly heard a liquid, melancholy whistling trill. By legrees, however, it hought me to a Hedgling skua, which was just begimning to use its wings for flight. I saw it whistling with it most musical note, wholly unlike the harsh cry of the adult.

The bire makes no attempt at concealment, though its colour as well as the colour of its eggs might be considered to be specially adapted to the nature of the gromm, but with such habits as the Skua's there is obvionsly nothing in it. Even when the birl is away from its nest, one has but to climb a little rocky hillock, and somewhere in the hollows under one's cye will be apparent two eggs in a shallow scooped-ont nest, easily visible even at a distance of ten or twenty yards. There is never any attempt at nest-making other thim the shallow lepression in the gravel on which the eggs are laid. Once only I found a little collection of the Adelie penguin's tail feathers laid in the hollow, as one occasionally fints a little twig or a few bents laid in the hollow of a Peewit's nest," Jut as a rule in a Skua's nest there is nothing at all. We never fomm more than two eggs in a nest, imb in a eertain number of cases in every rookery one egg is considered sutficient for inculation, the other donbtless having leen stoleu by a marauling neighlour. In many cases there is to be found in company with a normal egg another with a much thinuer shell and a pale huish ground, but with little or no marking. Sometimes a thin-shelled egg may be ringed round the upper thind by minute and crowded dots and speckles, but be lacking in the characteristic boteches of the normal egg. These I took to he the results of an effort to replace a stolen egg, the amont of shell and colour that the bird is able to secrete being nearly exhansted in the production of the first two eggs. In one nest I foum a normal egg in company with another the size of a Blackhird's $\dagger$ All round the colony, in addition to the empty shells of sucked penguins' egges, are to be found the shells of sknas' eggs bearing similar evidence of theft and suction.

A very favourite nesting site in McMAurdo Sound was a group of moraine-covered islands on the westeru side, now known by the name of Dailey Islamts. At Dellhridge Islames, alw, on the eastern side of Mc:llurdo Sound, we procured large numbers of Skuas' eggs, Jut neither here nor at the Dailey lslands did the rule holl that Skuas always breed near penguins, for in each case they were puite alone.

[^9]We amived at our winter (puarters about the end of October, lat the Sknas did not begin to lay their egge till the beginning of December. In 1902 the first egg was taken on December ! th, aml in 190:' on December oud. The majority are laid ly the middle of December, and then ensues a period of four weeks for inculation. On New Years Day the first young skitas were hatched, three nests had two chicks each just hatched, and two nests had one egg hatched in each. The chick emerges with a well-developed egg scale on the beak, whinh it sheds in a day or two. It is a mere ball of pale slate-grey fluff, with pale blue beak and feet and legs; the grey of the down has much more blue in it than luft, and herein seems to lie a distin tive character between the young of McCormick's skua and the yomg of the mome mothern Autaretis Skua. But it is well, in julging of slight, differences in the shade of colour in museum specimens, to remember how soon the hhush colour disappears, and is replaced by a buff or brownish-yellow tone, resulting from the ahost mavoidable alisorption of a certain fuantity of fat from the skin.

By the middle of damary it is difficult to find an erg unhatched, though in Granite Harhour we found eggs so late as Janary 20 th. The paired adults are very friendly and have an obvious mutnal care for one another and their chicks. As we were able to watch them from our tent door, camped out on Cape Royds in January, 1904, we saw much that otherwise might lave escaped notice. The pair that hatched out their young within a few yarls of our tent never got atcustomed to our proximity. Each time as we left the cimp or returned to it we were assailed with an angry clamom. Nevertheless, the chicks were not removed, nor were they led away. They were able to run at once on emerging from the egg, and the two young oues soon got separated from one another. The parents seem to know from the first that too much care and condling will unfit them for such a rigorous climate. Conserfuently one rarely sees the parent sitting on the chicks. She will be somewhere close to them, but they themselves will be generally some feet away from her, sunning themselves or taking shelter under the lee of a neighbouring rock. The fart is that these two little chickens in their nest do not agree. I have seen them a few days after hatching fight tooth and nail with one another over some trivial hit of food, lucked each to the other by every claw, and fighting with lom squeals as they usen their tiny beaks. They are not fed, as are so many lirds, directly from the parent's bill or pharynx, lut from the first they pick up for themselves, and I have seen the parents put lits of regurgitated fish and crustaceans on the ground for them to peck, thus treating them exactly as a fowl of the barnyard treats her chickens.

It is a noticeable fact in connection with this bind that only one of the two hatched in a nest survives. This is comnected with the tendency of the yonng to wander and get sparated, and also with their tendency to fight, and with the instinct which teaches the parent to be chary of giving them too much mursing. The consequence of all this is that while the mother is engrossel with one, the other
wambers out of reach and is sooncr or later snapped up by a hungry neighbour. It is a fact, at any mote, that though two young ones are almost always hatched, one is invarially missing after a few days or a week. This point we noticel at Cape Adare in 1902, and proved conclusively when we had letter opportunities fom watching at Gape loyds in 1904. That the chicks are caten in every case ly their own kind is proballe, though this was actually seen but once; the fact remains that one of the two mysterionsly disappears out of every hrood, and the corpse is very seldom found.

From the end of Uctober to the hegiming of April may be considered the six summer months given up ley this hird to the business of reproduction. It inhabits during this period the most southerly part of the ghone that can hy any bird or least, ind luding man, be looked upon as habitalle at all. No bird goes farther sonth than this, and very few so far. When the young were well feathered and fully capable of locking after themseles, they appeared with their elders round the ship in search of seraps and refuse. They are easily known hy their very dark and uniform phanage. They have not got the blearled and whitened feathers that give their ehlers at the end of summer a charateristic hoary look, no have they the straw-coloured ring round the back of the neck that liecomes prominent in the second year and increases then with call year. The changes in plumage from the slate grey downy nestling to the adult are much as follows. The first thing noticeable before the feathers of the wing are properly developed, is a gradual blackening of the pale blue feet from the claws upwards. a blackening which gradually creeps up the toes and webs with a definite line of demaration, extending loy degrees till the feet and legs are hark to the feathers at the tibio-metatarsal joint. Here, in the young just about to take the wing, there is still a bright bue patch of skin, but ly March the legs and feet are black all over. The down has by this time been exchanged for a uniformly dark and soft mouse-grey phunage, which gradually lecomes more brown ly the removal apparently of the soft loose ends of the barts by wear and tear. The bird now in its first year's phomage has no trace whatever of the golden straw-coloured land upon the weck; this begins to appear at abont the age of ten or eleven monthe.

The following talle gives at a glance the general movements of Mc'ormick's Skua threughout the year in McMurd, Sound:

| The first hird arrived |  |  | $\begin{gathered} 1902 . \\ \text { Nov. }: \end{gathered}$ | $\ldots$ | $\begin{aligned} & 1903 . \\ & \text { Oct. } 25 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Birds obviously pairing |  | $\ldots$ | - | $\ldots$ | Nov. 25 |
| First egre discovered ... |  | ... | Dec. 9 | ... | Dec. ${ }^{\text {2 }}$ |
| First chicken hatched |  |  | - |  | Jan. I |
| Young are first able to Hy |  |  | Mar. is |  | Feh. 24 |
| The majority have gone north |  |  | Mar. 25 |  | Mar. ${ }^{0}$ |
| Last hird seen in MeMurdo Sound | $\ldots$ | ... | Mar. :0 |  | Apr. 7 |

The foon of the McComickis Skua consists of a variety of things, most of which have atready heen mentioned ine identally.

In the early days of November when Weddell's Seals are giving linth to their young, the Skuas are ready scavengers, and make short work of the placental refuse.

Then, too, they hunt fur themselves at sea aur on the shore, picking up anything they can find in the shape of fish and crustaceans. They also hont hirds of other species, petrels, for example, and force them to disgorge what they have caten. This they also do with one mother. They are particularly partial to the eges and young of the Addic Penguin, and it is their taste for these that in most cases determines their choice of a nesting site.

The Sknas' real harest legins as soon as the Adfle P'enguin lays its eggs, and the abmodance of empty shells abont a rookery would be sufficient proof if other testimony were absent. But the Skia even rols its own kind, and in a nesting colony of some 20 or 30 lirels, the number that have apparently lost their eggs, or one at least, by rohbery is always fairly large. I have seen a ska dash down upon an umprotected nest-a Skua's nest - to pick up an egg with its lill with hardly a moment's panse. one might almost say that it was done while on the wing, as the arenging owner of the nest was down on the intruder like a Hash, and the stolen egg droppet from a leight at our feet disclosed the remains of a half-inculnated chick.

That "dog won't eat dog" is untrue in the south, not only of the sledge-tlog" but of the skinas. Mr. Ferrar gave me a further instance. Near the rookery we killed a Sea-elephant on the beach, and on catting him up were smrounded by some dozens of sknas, which were som sitting on all the small headlands around us gorged with lits of bubber. Notwithstanding this abundance of a rery farourite food, a nestling Skna which had wandered to the beach was seen, seized. and carried out to sea by one of the Skuas, followed by a clamouring crowd, all eager to rol the owner of its prey. It is when the Adélie l'enguins have hatched their eggs, however, that the Skua has least trouble in procuring his food. Pouncing upon some unprotected young penguin he attarks its eyes, and soon has the victim at his merey.

Hanging round the rookery, with the umistakable look of a thief, the skua will run ur to a chicken almost as hig as himself, hrag it ley degres away from the more crowded part of the rookery, and then gradually worry it to death; eventually tearing a ragged hole in the skin of the back wer the kitheys,* which are generally the first, and wften the only parts that are touched. The penguin whick pipes his loudest. but the wh lirds standing round take very little notice Ocrasionally one in passing will make a run at the skua and drive him off for a moment, lut the chirk is separated from the rest, and the old penguin has no mind to stop and shelter him, so back the sliua comes to complete his work. Literally, in a rookery sull as that of Cape Crozicr, one ramot walk ten yards without coming on a deat penguin rhick. Many of these, as one would expect in a climate where dowy is very slow, are drict and flattened mommies, trodden down and trampled into the stones and guan that cover the gromed. But an enomons proportion are seen tole fresh victims, if one visits a roukery in Tannary, when the Sknas have not only themselves but their young to feed.

[^10]जkas are generally to he foum in the neighlomrhood of seals. in the hope of wetting stals of fish amd oftal. Lomm our ship they lived on any refuse they could find, graing themselvon mainly with seal's buhber, lut swallowing everything that was nowel to their sight. On one oreasion, the stomach and resophagus of a hird that wats shot were ampletely oermped by two sheep's mils, the bones of two very lengthy chops from stome of our frozen muttom.

I have said above that the wide range of colour in Meromick's ska depends manly on the blaching of the feathers, which is exessive during the summer monthe, and on the moult, which weruss iregulaty during the summer, chiefly at the latter end of Sanuary and in Febmary. When the ligeds first came sonth to Mremurlo sound in Nowember, it was exeeptional th see one in the bleached amd wathered plase of plumage. Host of them were then in the dark plumage which had been assmmed towards the end of the preceding smmer, and the expowe modergone dowing the darker monthis of winter hat not left very much trace of wear and weathering.
but amongst the number of dark hirds whid damaterise the montlo of Nowember (of which No. 75 and No. $8: 3$ are typral examples), one is wrasiomally seen (No. 87 , for (xample) which (arries the same phmage that it hal during the previous winter, and mbsengently alpeate very white and weathered on the head, heast amb mantle.
hat becember the lirds are moting, and one may note the light and the dark phases gaired together. One maly alst still see the exceptionally weathered birds in a plumage mow rompleting its semm rear, and these may le of either sex. But the mowe nsual phase is the darker one with shightly weathered phmare, since the summer sum lapintly takes offort in blewhing the plumage which has alrealy stome the winter's wear.

In Jannary all stages of weathering may be seen, and expy intermediate phate as well. prolued ley moult. Light, hark amd mottled. wan all be easily procured, though by the whe of the month the blearlhed hisds predminate. Of the eight skins provered this month six were much wothered, two were moulting and one had already completer the momlt.

In Foblumy me has still a mixture of very white and dark birds, the dark phase perhaps promminating, as the majonity of binds have shed their whitemed phange, and are now as datk as the yomig which maty le seen oreasionally on the wing.
 in Ortober, though there is a greater freshess in the dark hown of the moulted arlults and the yomg. IDere and there, again, as in Octolore, one may see a lived which has not "hanged its phomage showing pale and weathered amongst the monlted linds.

Even the odest adults are dark when fieshly moulted (as, for example, No. To ), and apart from evidences of age in the heak and daws, there seem to be mo definite

 collar varies a enom deal ; in some birds it is very makem, but in others alsent, ame
it is in the wher birds, both male smd female, in the whitw and weathreed phase of phumage, that the golden tips which do not fade show to greater advantage.

In a young arlult the pale straw-coloured tipe of the dark neck feathers are hardly visible, and in a hird of the first year there is mosign of them at all (see, for example, Nos. 72 and 77). In No. 82, an whlut make, not only is the golden collar a wellmaked feature, hut there are gold tips to many of the feathers of the head and conw.

I know of no differences in the coloming of this bird by which the sexes may be distinguished, hut there seems to be a fairly constant thomgh slight audvantage in point of size in the female over that of the male.

|  | Wing. | Tail. | Bill length. | Iill width. | Tarsus. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | $16 \cdot 5$ to $15 \cdot 3$ | 7•3 to 6-3 | $2 \cdot 1$ to $2 \cdot 3$ | 10.6 to $1 \times$ | $\because \cdot 5$ tur $3 \cdot 3$ |
| \% | 16.4 to $15 \cdot 0$ | $7 \cdot 1$ to $6 \cdot: 3$ | $2 \cdot 4$ to $2 \cdot \underline{ }$ | $1 \%$ to $1 \cdot$ | $\because 5$ to $\because \sim 2$ |

Intividual variations in the measurements taken from hirls of the same sex may have a grood deal to do with age, hut they are comsideralle.

The average weight of three adult Mchomick's Skuas was? 3 lhs.
If the egges of Megalestris maccomicki and antarction are examined, something of the same difference in size will be noticed that holds hetween the bimds. Thus in twenty-six eggs of macemmichi, not one reached the measurement of a full-sized egg of Mermentestris anturctica.

In four eggs of the latter, taken on the Manquarie Islands, the measurements are as follows :-

$$
\begin{array}{ll}
8 \cdot 1 \times 5 \cdot 1 & 5 \cdot 5 \times 5 \cdot 1^{*} \\
7 \cdot 65 \times 5 \cdot 0 & 8 \cdot 1 \times 5 \cdot 4
\end{array}
$$

while the measurements of eleven eggs of Megalestris macoomicki taken in Mr-Murdo Soumd are as follows:-

$$
\begin{aligned}
& \text { Nest I. ... ... ... ... 6.75 } \times 5 \cdot 1 \text { and } 6 \cdot 8 \times 5 \cdot 0 \\
& \text {, II. } \ldots \quad \ldots \quad \ldots \quad \ldots \quad 6 \cdot 6 \times 5 \cdot 0 \text { and } \quad(i \cdot 7 \times 4 \cdot 9 \\
& \text {, III. ... } . . \quad \ldots \quad \ldots \quad 7 \cdot 65 \times 5 \cdot 0 \text { and } \overline{7 \cdot 3} \times 4.9 \\
& \text {, IV. ... ... ... } 7 \cdot 0.5 \times 5 \cdot 05 \text { and } \overline{7 \cdot 3} \times 4.9 \\
& \text {, } \mathrm{V} . \mathrm{F} \quad . . \quad \ldots \quad \text {... } 7.3 \pi \times 4 \cdot 9 \\
& \text { " VI. } \ldots \quad \ldots \quad \ldots \quad \overline{7 \cdot 15 \times 5 \cdot 0} \text { and } 7 \cdot 35 \times 4 \cdot!
\end{aligned}
$$

Those measurements which are underlined are of the more miformly coloureh eggs, with thinner shells and but few spots or blotches. I believe, as I have said alove, that they are the result of an effort to replace a stolen egg by a third.

It is interesting to note in several of the clutches taken from a single nest, that the distinct types mentioned by Dr. Sharpe in the Report on the 'Southern Cross' 'ollections, were to be found, not sorted one with another, as might have heen expecterl, lut so that in the same dutch an egg of the brown type would be found with an agg of the greenish or olive-grey type, showing that examples of each of the various types of egge may be produced by the self-same lirel.

Of the lifference between the nestlings of these two speries of Antarctic skua. I can judge only by what has been reported of the young of Meydelestris materetien

[^11]Jey others, and hy what (an fre sem in the skins of that hird in the British Museum onllection. We had mo opportunity of obtaining fresh examples of the goung of Mroulestris anturcticu, but fiom all accounts it would appar that the tone of the downy plumage in mecormichi is much more bluish than it is in the nestlings of antaretica, and it would be interesting to know whether the feet and legs and bill in life show any correponting divergence from the distindly blue colour in Accomick's nestlings (see Birds, Plate XIII., Fig's I am 2).

This is a point which can only be settled by reference to fresh specimens, for the nesthings of Mremmick's 'kina which were brought home liy the 'Southem 'ross' have altered from bluish grey to the hrownish tone they now possess, and no dould the skins of nesthings of Merfelestris entarctice have altered in a similar manner.

## OUEANITES OOEANICUS

Wilsmis Petrel.
Procellatiat meanict, Kuhl. Butr., j. 1:3t (1403), ex Banks' Icon., No. NlI.

 Pl. X., fig. . 2.

Mathelah in the Discoveris' (Colle tion.

Nhat at catrance to burrow, in which were Nis. !1 and ! !2.
No. 91, ad. sk. d. Jinn 9, 190!?. Cape Adare.
(amplit on the nest with No. a:
No. !
(Gunght on the nest with No. 91.

Taken from the sime nest as the above there birds.
The colon of the wift parts is as follows:-
Bill, entirely lawk.
Iris. dark hrown.
Legs and tors, black.
Weln, hark at the free horder and back also along the sides of the outer digits, but wherwise briwht orange fron the bese of the first phalanges to a point level with the middle of the second phatanges.
Claws, hank.

> Materhah in tife ' Morenintis' ('ollemThon.

Aha an adult skeletom.
From Mr. Iloward Saunders I take the following notes as to the range of Wilson's Storm Potrel:-

It has leen recorded from Louis l'hilippe Land; from Deception 1sland in the Suth Shetlands; probally also fiom South Georgia, under the name Oceanites melanoyaster, lay Steinen; from lierlache Strait by the 'Belgica, aurl from Cape

Adare by the 'Southern Cross,' where we are told by Mr. Hanson that eggs were secured, but no live young ones; though from the multitule of the dead young mes in their old nests, it appears that very many perish every year. Kerguclen is given as the first lreeding place male known in 1874.

Quite recently the Scottish Expedition has setumen with eggs from the South Orkneys, and the following notes are given in Mrr. Eagle Clarke's paper on the bird in these islands (lhis, Jaulary, 1906, p. 167). "In the antumn of 1903 it was last seen on March 23rd. . . . It was never olserved during the winter months, and did not appear mutil late in the spring, namely on November 11 th, being the last of the summer visitors to arrive. . . . On Derember 11 th the first eurg was oltained. . . . There was no attempt at nest making . . . and looth eggs and dead young linels of previous seasons were numerns in the tenanted boles containing the fresh eggs."

Quoting once more from Mr. Howard Saunders: "After the breeding season Wilson's Petrel wanders widely; and owing to the fact that it has been often olserved on the coasts of Western Europe, including the British Islands, as well as on those of Ameriea up to Labrador, some ornithologists have assumed that it breeds on the istands of the North Atlantic. Of this there is not the slightest proot: on the contrury, some of the lirds olitained between the spring and autumn of our Northern Hemisphere are in moult."
"Both sexes," says Mr. Hall (Ibis, 1900, p. 19), in speaking of the westing habits of this bird upon Kerguelen Island, "take tums at incubation, and ahout 8 p.m. the 'night shift' comes in from the sea to go on duty, when the relief is maked ly loud croakings; and few birds are to be seen over the land in the day-time."

This point is no doult the same as that commented mpon hy Mr. Eagle Clarke in the following words: "From 7 to 11 p.m. these birds flitted about the clifts and wer the head of Seotia Bay in great abundance, and in striking contrast to theis habit in the day-time, when ouly occasionally was one to be seen on the water, thongh there were probably many at sea off the islands."

The bird is obvionsly migratory, coming far south to lneed, and wandering over every ocean when its duties in that way are completed. We first met with it on November 7 th, in $51^{\circ} 16^{\prime} \mathrm{S}$. lat., $108^{\circ} 5^{\prime} \mathrm{E}$. long., just before ripping south to make a shont excursion in the ice pack on our way out to New Zealamt. On the 8th we again saw several. After that not more than one or two till November 16th, when we were in touch with ice. The bird wats with us each day in the ice and out of it, and northwards till we reached Macenarie Island on November $\because 20$ nd. Between Macquarie 1sland and New Zealand we did not see it, nor yet until we sighted ica after leaving New Zealand on our voyage to the South, did this bird again put in an appearance. On Jannary 2nd and during the week that we spent in making our way throngh the pack they were with us night and lay, flitting over the icefloes like so many House Martins.*

* House Martin = Chelidton urhim.
( 11 Jamuary 9th we made a landing on Cape Adare, and had some hours which we orempied in hunting for this and other birds' nests. It was presumably late for nest, hat we were lucky in at last locating one. The birds were to be seen hovering round the month of crevices in the rocky side of the cliff, often settling close by for a few seconds, and then sailing in short circles round it, reminding one strongly of the movements of a House Martin at its nest under the eaves of a country barn.

Two of these crevices could not be reached, but soon we saw a bird hover round and settle upon a large boulder. Hunting about for a burrow underneath, we caught the sound of twittering, and traced it to a kind of monse-hole. This by dint of long and tedious picking with a sheath-knife, we enlarged till it admitted an arm up to the shoulder. The work was laborious, as the floor of the hurrow was hard black ice and grit, but eventually we reached the nest. At the end of the little tumel was a chamber containing a very comfortable nest thickly lined with Adélic Penguins' feathers, and in it a somewhat remarkable collection. First we brought out an adult male alive, then an adult female; then two eggs, one clean and newly laid, the other old and rotten, and under all another dead and flattened adult Oceanites. Outside, as we worked, a fourth hird was hovering, which, when shot, proved to be an adult male. It has been long known that with this species the nesting burrow is often used by more than a single pair. The fresh egg was preserved, the rotten one fell to pieces, and the three birds were preserved.

Not a day now passed in our summer cruising on which we did not see a few Wilson's Petrels. Never in large numbers, they were, nevertheless, never absent, and it was not until February 7th that we saw the last, in 1902.

At the approaeh of winter they disappeared from the southernmost regions, and no doult migrated north. Though the ice of Ross Sea was many times broken up by storms during winter and carly spring, the little Wilson's Petrel was not to be seen in Mraturdo Sound from the end of Febrnary to the middle of December. In December and in Jannary of 1903 to 1904, while we were camped on the sca ice under Dellbridge Islands, we saw quite a number of them, but though the rongh volcanic rocks and boulders were apparently much frequented, we found no nest there. Nor could we find them nesting at Cape Royds, which seemed more suitable, being some miles nearer to opeu water and their food supply.

The burrows are not very difticult to discover, for one's attention is drawn to them by the habit the bird has of hovering round the entrance in the evening homs, and settling there withont actually going in, and also sometimes by the twittering of the lird within. They are often quite inaccessible without a rope even when located, but on the other hand they may he almost on level ground.

The flight of the bind is peculiarly attractive in these barren wastes of snow and rock, chiefly perhaps, from its resemblance to the Hight of the familiar martin, for it tlits here and there exactly as thongh in search of insects on the wing. Occasionally it sails on outstretched wings. The power of tlight must be very wonderful, for it
seems to spend its lifetime on the wing. On more than one occasion it was seen by sledging parties on the ire plain of the (ireat Barrier, some sixty miles from open water ( $78^{\circ} 30^{\prime}$ S. lat.), but always on the wing, and apparently never tired.

Its food, consisting of minute crustaceans, is picked up from the surface of the water on the wing. Flitting ahout from wave to wave, the little letrel delicately treads the water to steady itself a moment, while it picks up a tiny morsel.

As we left the southermmost area, we saw it each day from Feloruary 19th to March 3rd; lut on that day, when tmongst the Balleny Islands, we saw the last of the icebergs and with them the last of Ocemites.

Five days later on, when in S. lat. $61^{\circ}$, we fell in with Cymodromat aprollaria, and from that time onwards they became more and more abundant, and apparently took the place of Oceanites.

## FREGETTA MELANOGASTER.

Thalassidroma melanoyaster, Gould, Ann. and Mag. Nat. Hist., xiii. (1844), p. 367.
Freyeftu melanoyaster, Gigl., "Faum. Vert, Occano," 1870, p. 3s; Sharpe, Rep. 'Sonthern Cross' Coll., (1902), p. 141, ilique citata ; Eagle Clarke, Birts of South Orkney Ids., Ibis, Jan., 1906, p. 168.

This hird we met first on September 1st, 1901, in the Atlantic Ocean. There were a number of them, and they kept about our wake and stern quarters, rarely flapping their wings, but sailing up and down close over the waves. The distribution of hack on the under parts, extending from the chin to the tail, can be easily made out when watching the birds upon the wing. The white of the axillary region joining with the white on the rump and under wing coverts does not meet beneath on the breast as it does in Cymodroma gralleria. We saw the bird fairly constantly in the Sonth Atlantic thronghout September and on to the 16 th of October in large numbers, twenty or thirty following in our wake with their very characteristic flight, halting and then darting forward as thongh they had dipped their toes in sealding water. Again on October 20th they were exceptionally plentiful, and a few appeared almost every day until November 16 th ( $61^{\circ} \mathrm{S} .140^{\circ} \mathrm{E}$.) when they left us as we came within sight of ice, and were not seen again.

Although they gencrally fly in the wake of the ship they also constantly travel round her, and may often be seen on the bows. We obtained no specimen. The bird is a great wanderer, and though it has been taken in Kerguelen Island, New Zealand, and has been reported from the Southem Oceans generally, it has also been taken as far north as the Bay of Bengal and the Tropic of Cancer in the North Atlantic, and quite recently has been found by the Scottish Antarctic Expedition, breeding on December 5th, so far south as the South Orkney Islands. (Eagle Clarke, op.cit., p. 168.)

## ('YMODROMA GRALLARLA.

Promelleria !frellmiat. Tiell. N. Dict. I'llist. N. xxs. (1817), p. 11s.
('ymmbromar ,yrullurit, Baird, Brem. \& Ridgw., Water Birds of N. Amer., ii. (1881), p. 11!) ; Sakin, C'at. 13., Bril. Mus. xxs. 1s:9ti, p. 36ti, ilhigue citutn.

Thes petrel is to be reengised on the wing mainly ly its small size am white belly, the rhin, throat and tail alone being back on the moler part. We obtained mo sperimens, though we salw it on several occasions. On September 18th. 1901, we had several in our wake, and again on september 20 th we sat then continually dropping to tonch the water with one foot, steadying themselver while they laintily took their minute crustacean foxel from the surface of the water. At these times their tails berome marh hollowed out on the dorsal surface, so that carh half is at right angles to the other.

We saw the hird again om september $24 t \mathrm{th}, 1901\left(37^{\circ} \mathrm{N} .8^{\circ} \mathrm{W}.\right)$ in the South Atlantic, and on November 11 th, $1901\left(52^{\circ} \mathrm{S} .125^{\circ} \mathrm{E}.\right)$, in the Southem Indian Ocean, when a few were following in our wake, lat we saw nome in the winter months on our voyage home, either in the South Pacifie or Athatic. It is suid tormge gencrally wer the seas of the Sonthom Hemisphere, and northward to the coast of Florida.

## PUFFINUS GRISEUS.

## Thu Mutton Biarl.

Procellarin ariset, Gimel. Sist. Nat. i. (178s), p. igt.
 citutu.

## Materlal in 'Discovery's' Collection.


Also two specimens in formalin from the same lucality.
Colouring of the soft parts:-
Bilf, wholly black, but with a narrow threal-like white line at the base of the uller bill.
his, very dark brown.
Legs and toes, black on the outer surface, but hac or purple on the inner surface.
Webs, blatekish.
(laws, black.
This lird we wherved in large mmbers at the month of Lamic Hanhour, where it was to be seen in immense flocks orasionally in Mark, feeding upon an omge-red Eupluasia. Its method of fishing was typical of the shearwators, ats it would suddenly drop into the water and disappear with extended wings, appeaning shortly after with the wings still fully catended to rise and repeat the same maneovre constantly. We saw lage flocks of what we presumed to be the same lind in the pen seat off New
 we had durs supneciliover on the table at the same lime with which to eompare it.
 of which was much inforior the (ivey buck above montioned, although that lime is most highly estecmed in New Zealand and Anstalia for the table.

## PRIOFINCTS CINEREUS.

## The Great (irey shearuater.


 ibique citutu.

## Materiala in the ' Dhsonemy's' Combmotion.


Colouring of the soft parts:-
Unmer bill, dark greyish hom, the latericorn fale and yellowish, and in some hirds cem bright yellow.
Mandible, greyish hom at the tip, but otherwise pale yellow, both on the cutting edge and on the sides, a darkcr line elividing these parts.
Iris, dark brown.
Legs and toes, grey or flesh grey.
Wels, flesh pink or even red by transmitted light, but otherwise grey, or flesh grey.
Claws, backish horn.
The inside of the mouth is flesh red, the palate, fances and tongue abmantly smplien with sharg horny papilla.

Priofinus cimeres, the Great (irey Shearwater, is a very harateristio him of the Southern oceans, considerably larger than the Cape pigeon, grey or bhish grey all over the upper parts, aml white leneath; it may be seen ocrasionally in the ship's wake without dawing the attention of the casalal observer. Bat one monning he will gon on deck to find the ship followed by the bird, perhans in hundreds. Very humgry or very greedy, they then afford much amusement as they drop sudmenly beneath the surface of the water with their wings spead to seize some serap of fook. They unhesitatingly completely under and reappear again with their wings still spreal. We were visited by surh a flork on November 1, 1901, in the Gouthern Intian Ocean. Having first seen it on September 25 th, 1901 , we han never hat more than two or three with us until this flock arrived. Many of them were eridently moulting, as several of the smaller primaries were missing on either sile. This expsed the paler part of the primares still present, and gave the appeanane of a white path amd a piece cut out from the centre of the wing. They may be cauglit and landed with stont threan entanglements, hat ordinary thead should not be used, as it is apt to entangle the bind and break, leaving it hisabled in the water. This large forek remaned with us for
about a week, when it legan to dwindle, and on November 12 th, on our turning to go sonth, the hirds left us altogether.

On our homeward royage we sal one example of this hitd on March 10th, 1904, in $58^{\circ} \mathrm{S}$. lat., $164^{\circ} \mathrm{E}$. long., aml a large number from time to time between New Kealand and Cape Hom in June. But their numbers diminished as we neared Sonth America. and we saw the last on June $24 t \mathrm{l}$. In the South Atlantic we saw it ocasionally in numbers letween .Inly 23 rd a 29 dh, when it finally disappeared. It ranges all over the Southern oceans, from $35^{\circ} \mathrm{S}$. to the Antarctic Cincle.

## THALASSCECA ANTARCTICA.

## The Anterctic Petrel.

Procellaria antarctica, Gmel., Syst. Nat. i. (178s), p. 565.
Thatussuct anturctict, Cones, Pro. Acad. Nat. Sci. Philad., 1866, pp. 31, 192; Sharpe, Rep. 'Sonthern Cross' Call. (1902), 1. 14:, ibique citata; Eagle Clarke, Birds of S. Orkney Islands, Ibis, Jan., 19nG, 1. 169.

Material in the 'Discovery's' Colleetion.
No. 7, ad. sk. $\begin{gathered}\text {, March } \\ 2\end{gathered}$, 1904. Off the Balleny Isles. Munting. Shows a misture of light and dark feathers.
No. 8, ad. sk. $q$, Jan. 11, 1902. Off Cape Adare.
No. 9, ad. sk. o, March $\because, 1904$. Off the Balleny Isles. Newly moulted. Shows in rich contrast the pure white and dark chocolate brown.
No. 10, ad. sk. $\downarrow$, Jan. 11, 1902. Off Cape Adare.
No. 129, ad. sk. $¢$, Nov. 16, 1901 . Pack ice. $61^{\circ} 46^{\prime}$ S. $140^{\circ} 12^{\prime}$ E.
Nos. 168, 164, 165, ad. skeletons from Cape Adare.
The colour of the soft parts is as follows :-
Bill, blackish horn ; the cutting edge of the mandihle lemon yellow.
Iris, dark brown.
Legs, toes and wels, pale flesly grey. The knuckles in an old bird, e.g., No. 9, are marked with darker shades.
Claws, blackish.
Matelial in the 'Morning's' Collection.
No. 18. No label.
No. $2 \because$, Dec. $25,190:$ I Lee pack. North of Ross Sea.
No. 24, б, Dec. 2., 1903. Tee jack. North of Ross Sea.
No. 4. No label.
 white and devoid of the usual brown.
No. 31. Skelcton. Dec. 25,190 : Ice pack. North of Ross Sea.
Tur beeding place of the Antardie Petrel is still monown. The bird seems to have been strangely scare in the South Orkney lslands, thongh the Scottish Expedition obtained specimens in the Weddell Seal. Its range and distribution also appear to the
little known, though examples were brought home from the Antarctic seas ly Dr. Mecomick so long ago as 1842. The following notes on its wite oerurrence in the sonthern oceans will therefore be of greater interest, proving as they du, conchavely, that the bird is just as much a regular migrant as Priocella or Ocermites. We observed it in Tune and July as far north as $53^{\circ} \mathrm{S}$. lat. in W . long. $82^{\circ}$, and every bird we then saw was freshly moulted.

Having learned the details of this bid in England, it was not surprising that on meeting it in the Antarctic pack ice there should have been some doubt as to its identification. It required much fath to see in the richly pielald bird that appeared to be almost black and white against the icetloes, any semblance to the faded white and buff-hown specimen that was captured in the days of Ross. But the Museum specimen was not, as we found out later, altogether at fanlt. In life, als!, the colours fade, and the rich dark marking of the first one we met was in reality a colour that very soon wears off.

It is most noticeable in the Antarctic liirds how little their feathers stand the wear and tear of the summer season. The wind and weather, the alternate snow and sea spray, the continuons sunlight for several months in the summer, combine to give a bird a very different appearance before monlting to that which it will have when the monlt is over. In the case of the Antaretic Petrel the change is partirularly marked. It is marked also in the Sluas and in the Penguins.

The clean-moulted Thalasseca is a handsome lind, with head and back and wings deep chocolate lnown, and pure white wing and tail coverts ; and after the antumn moult, when the young lirds have gone north to the open ocean away from ice, one sees them in this dark plumage during the winter months between New Zealand and Cape Hom. In November they are still dark, but when the nesting season is over and the smmmer sun has done its work, the richness goes entirely and a pale buft colour takes its plare. Then comes the autmmal moult in January or Febnary, and the birds take on a mottled plumage, as one by one the almost black-brown feathers make their way out amongst the faded feathers of the head and back.

We met the bird in November of 1901, when we first sighted ice, in $62^{\circ} \mathrm{S}$. lat. and $140^{\circ}$ E. long. Two or three followed us a long way to the north again, away from the ice, but left us five days before we sighted the Marguarie Islands. They were in full dark plumage.

On our next jomncy sonthward a dozen or more met us as we again cucometered ice in January. They had been roosting on a lerg, and were in full monlt, with primaries missing in the wings, and a mottled plamage of buff and back-brown feathers intermixed. Throughout the ice pack we had them with $\mathrm{n} s$, and on the 10 th of Jannary we saw them flying in a flock in a south-casterly direction down the const of South Victoria Land. All that night and the following day we had flocks of then around us, some flying at great heights, turning and wheeling together at a given signal in contrast to the independent and irregular flight of a flock of suow Petrels.

All were monlting, as one could see hy the missing primaries of the wing. Several were raught on threads. They hat been feeding on small fish and spuids, the beaks of which formed part of the contents of their stomachs. On Jannary 12th we lost them for a white, and saw mo more till we foud them in exeptionally large numbers at the extreme castern edge of the Great Le Barrier. Mere in S. lat. $76^{\circ} 50^{\prime}$ and W. long. $158^{\circ}$ we discovered King Edward VIl.'s Lamd, and the mosmal abondance of Thelassmea antarctica may mean that they breed somewhere in the locality. There was no spot in sight, however, that conld possilly have suited them ; there were no rocky diff.s worth mentioning, and no land that was not buried in an undulating and almost unbroken sheet of snow and ice. Returning by this spot a few days later we were again surrounded by large numbers of the bird, but we lost them the next day entirely and as suddenly as we had before met with them on the same spot. They were not on passage, but were flying to and fro as though in the neighbourhood of their loreding place; more than this we canoot say. From that time onward for two full years in McMurdo Somm we did not see the hird, save once, when a single straggler passed the ship.

On our homeward jomney, however, in 1904, we fell in with them on Febnary $\because 6$ th. We were then in pack ice, and on the 29 th we saw large numbers and kept them with us as we passed between the Balleny Islauls. They were not in Hocks. Some were freshly monlted, but others had only just begm. One or two were caught on threads and landed. We finally saw the last of them on the day that we crossed the Autarctic Circle coming north.

I have mentioned that between June 20nd and July 4 th this hird was seen in consideralle numbers every day in the Sonth Pacific Occam. This throws some light upon their movements during the winter and extends their range. They are not so strictly ice birds as they were supposed to be, since they leave the ice for the open ocean in the winter months. We saw none in the South Atlantic. Upon their breerling hannts we can throw no light. It is possible that Scott Island may repay a search in January or December, and further exploration of King Elward VII,'s Land may some day disclose their eggs and young. At present, however, these still remain mknown, and the nesting place a mystery.

## PRIOCELLA GLACIALOIDES.

The Southern Fulmue.
Prorellarit glacialoides, Smith, Ill. Zool. S. Afr. Aves. (1841), pl. 51.
Priorella glacialoites, Baird, Brewer anl Ridgw., Water Bids N. Amer., ii. (1s84), p. 375 ; Sharpe, Rep. 'Southern Cross' Coll., 1902, p. 145, ibique cituta; Eagle Clarke, Birds of S. Orkney Ids., Ibis, Jan. 1906 , p. 170.

## Mathrial in the '1)iscovery's' (ohleftion. <br> 

The colone of the suft parts of this hird is as follows:-
liill, rosy pink, luackish at the tip on both mandible and maxilla. The masal tubes and base of the mandible grey with a lilae tinge shading into rose pink on the side plates. Iris, rich brown.
legs and toes and web all flesh grey with a strons pink tinge. Eacle knuckle on the onter digit of each foot marked blackish, as also to a slighter extent is cach knuckle of the middle toe. A narrow backish edging runs along the outer edge of each foot. Claws, blackish.

Materlaf ix the • Norning's' Collemtion.
No. i, add. sk. ठ. Nov. 2., $1902 . \quad 167^{\circ} \mathrm{S} ., 174^{\circ} \mathrm{E}$.
The range of the Southem Fuhmar in the Southern Hemisphere, as given by Mr. Howard Sanders, is very wide. It has been reported from the lape, from the Pacific Coast of America, and as far North as Washington territory. Kerguelen Island is supposed to be a breeding place. It is abundant thoughout the Southern Ueeans, and has been obtained from Louis Philippe Land, Ross Sca, South Victoria Land, Ross' Barrier and the Weddell sea; also from the region westward along Arefie Land. Probably there is no quarter of the Antarctic in which it may not be fomm. The Sonttish expedition reports it from the South Orkneys about the middle of February, and apparently in some numbers, just as we saw it in numbers off the Balleny Istands at the end of the same month. Nothing appears to be known of its breeding habits; the Scottish expedition were mable to find it nesting, thongh they strongly suspected that it bred on the north side of laurie Isand; nor were we in the 'Discovery' any more successful. I can only suggest the Balleny Islands as a possible nesting place, but if the hind breeds upon Kerguclen lstands it is much more likely that the more northern sub-Antaretie islands will prove eventually to harbour them. It must he considered a migratory bird, since it visits the southern waters of the ice pack during the summer months (Deember, Janmary and Felnuary) and retires northwad to the open ocean for the winter. Here we met it in aboudance during Junc and July. We saw a very great deal more of this handsome bird in what may be called the subAntarctic region than in the true Antarctic. The first example was met with in $59^{\circ} 18^{\prime} \mathrm{S}$. and $138^{\circ} 2^{\prime}$ E., the day before encountering the pack ice on November 15 th, 1901. They were rather more plentiful in the pack, and followed us for a couple of days after leaving it as we steamed north toward the Macpuarie Islands, as far as $57^{\circ} 25^{\prime} \mathrm{S}$. in $151^{\circ} 45^{\prime} \mathrm{E}$. After this we saw no more till we once again entered the ice on the 2nd of Jamary $190 \%$. A pair of birds met ns with the first iceberg in S. lat. $67^{\circ} 20^{\prime} \mathrm{E}$. long. $179^{\circ}$. The following days in the pack we saw three more, and then from Jannary 6th in 1902 till Fehruary 27 th in 1904 , for two whole years, we never saw the bird. It keeps to the open ocean, and avoids the roast of South Tictoria Land. In MeMurdo Somed it never visited us, neither inded did we see more than a
single individual farther south than lat. $68^{\circ}$; exeept on one solitary occasion it was not seen in Ross Sea south of the encircling lelt of pack ice; lut on the 27 th of February, 1904, when we were on our way northward from Cape Adare, cudeavouring to make the Balleny Islands by working along the coast ly Cape North, a very heary and extensive pack of ice forced us to stand out, and Priocella glacialoides became suddenly abmulint. The following day we passed through the middle of the Balleny group of Jslands and Priocella was more abundant than we had ever seen it elsewhere. It never Hew in aflock. On the $3 \mathrm{rl}, 4$ th and 5 th it was still abundant, but on the following day we crossed the Antarctic Citcle and lost it as suddenly as we had found it.

All that has so far been sail, however, gives a one-sided idea of its distrilmtion. We reached New Zealand on the 1st of April and left on the 8th of June, to cross the South Pacific Ocean at a higher latitude than is generally taken, and to round Cape Horu. We were not so much surprised, therefore, when, on the 19 th of June, we picked up Priocella glacialoides once again and two days later Thalassoect antarctica as well. The latter we kept with us till within four days of Cape Horn, but Priocella much longer, for it not only accompanied us in very considerable numbers through the Straits of Magellan, but remained with us till July 12th, when we made Port Stanley in the Falkland Islands. It was not until July 22 nd in S. lat. $49^{\circ}$ and W. long. $52^{\circ}$ that we eventually saw the last of it. Although we had both it and Thalassorca antarctica with us almost thronghout our voyage from New Zealand to Cape Horn, we saw no ice. The know Petrel alone of the sonthern birds, Penguins of course excepted, is an infallible indication of the close proximity of iee. Nowhere did we see any sign of Priocelli's nesting place, though its sudden appearance in such large numbers in the neighbourhood of the Balleny Islands was suggestive. It was then, however, so late in the season that one would lave expected to see young hirds upon the wing, but in no case did we meet with a bird in any plumage but that of the apparently adult. It may be that the basaltic rocks of Scott Islaud, diseovered in Ross Sea by the relief ship 'Morning,' are a breeding place for this petrel, and for the Antarctic Petrel too. From its position this is quite likely, and from the large number of birds seen in the neighbourhood in January one might well be led to think that the eggs and the young of these two birds may at some future date be found there.

## MAJAQUEUS AQQUINOCTIALIS.

> The Cipe Hen.

Procrlarid ceruinoctiolis, Linn. Ssst. Nat. i. (1766), p. 213.
Majuqueus arquinortulis, Cones, Pro. Nat. Sci. P’hilad. 1864, pp. 118, 142; Sharpe, Rep.'South. Cross' Coll. (1902), p. 146 , ibique citatu.
Majaqueus eqqumoctialis, commonly known as the Cape Hen, first appeared on our outward voyage on September 27 th, $1901\left(38^{\circ} \mathrm{S} .1^{\circ} \mathrm{E}.\right)$. It is easily recognisable
on the wing hy the bright yellow of the bill and a white spot muler the rhin of an otherwise wholly black hird. When the hird is on the wing its bill appears to be oomparatively long and thin, the legs and leet hack and extending well beyond the tail give it even more of a cuncate fom than it really has. It was an abumbant lirid in the South Atlantie, and increased in numbers enormonsly when we ame in sight of South Afriat, sitting in small companies on the water all aromb, and reminding us, curionsly in its coloming of the common Coot.* It was very abmentant in False Bay, but we missed it in Simon's Bay. From October 15 th ouwards we han it with ne on our way to New Zealand motil November 9th when we lost it in $52^{\circ} \mathrm{S} .120^{\circ} \mathrm{E}$.

We saw no more of this hird until, on our return home, we were passing through the Magellan Straits. Here there were a few on July 7 th; we had not seen one between the Straits and New Zealaud. On July 28th, 29th, and 30th we saw a few in the Sonth Atlantic between $30^{\circ}$ and $37^{\circ} \mathrm{S}$ in $32^{\circ} \mathrm{W}$. Its flight is characteristic, the appearance of length and narrowness in its wings being much cuhanced by its uniform blackness. The wings in flight have a very angular look: the hird is of a quarrelsome disposition, fighting greedily for saraps, and dinplaying the most magainly spreal of feet and stradded legs as it splashes with its rivals into the water. It is not known to wander farther to the north than $30^{\circ} \mathrm{S}$. It breels on the Crozets and in Kerguelen Island, aceorling to Mr. Eaton, in a hole similar to a deserted rablit's hole excavated in wet ground, with water standing (in early smmmer) an inch or two inches deep within the entrance, especially if it is in a slope near the sea. The nest is built of mud and pieces of plants arranged in the form of an inverter salucer, three or four inches high, hollowed out at the top. (Phil. Trans, 168 (1879), p. 121.)

## (ESTRELATA LESSONI.

Lesson's Petrel.
Procellerite lessoni, Garnot, Ann. Sci. Nat. VII. (1s26), p. it, pl. 4.
Gstreluta lessomi, Cassin, Pr. Ac. Phil. 1862, p. 327 ; Salvin, Cat. B. Brit. Mus. XXV. (1896), p. 401, ibique cituta.
This is a bird which, from its characteristic marking and powerful Hight, seldom failed to attract attention. Although it was never ahmodant, and nsually oceured singly, flying wide of the ship and rarely daning to approach closely, its white hear with the dark eye strak and the conspicuons W across its back and wings were casily to be seen at a distance. We first met with it in the Southern Indian Ocean $\left(48^{\circ} \mathrm{S} .96^{\circ} \mathrm{E}.\right)$ in November, and in the same month we saw it also in $59^{\circ} \mathrm{S} .148^{\circ} \mathrm{E}$. Also off the S.E. coast of New Zealand ( $44^{\circ} 37^{\prime} \mathrm{S}$.) and on the outskirts of the ice $\left(63^{\circ} \mathrm{S} .178^{\circ} \mathrm{E}\right.$.) on January 1st. In such high latitudes it is ly no means meommon in March, and we saw it frequently onwards from March 4 th ( $67^{\circ} \mathrm{S} .155^{\circ} \mathrm{E}$.) on our way to New Zealand from the sonth, more abundantly in this purtion of our voyage

* $\operatorname{Coot}=$ F'ulica atra.
than in any other. After kecpime it with us lay by day from New Zealam eastwaml to $144^{\circ} \mathrm{W} .55$ S., we sudilenly and completely lost it, nor lid we see it agan dming the remainder of that voyage. Its lmonow, acomting to Ar. Eaton, is short and gemmally "xavated in Azorella; it is as large as a lablit's hole, dry, and with its "utranm hestrewn witle green shoots of decom. It hreeds on the Kergmelen istants.


## PAGODROSA NIVEA. <br> The Snowey Petrel.


 Cros: Coll. (1902) , p. 1ts, ilique ritate ; Eagle Clarke, Birds of S. Orkney Ids., Ibis, Jam. 1 out,


No. 11, atl. sk. 9. Larger rariety. Feb, - 6,1904 . Off C'ape North.
No. 12, ad. sk. す. Larger variety. Jan. 1, 1902. Off Care Alare.
No. 12, and. sk. \%. Smaller variety. Feh. 1,1 gee. Off the fireat Ice Barrier.
No. 11, arl. sk. F. Fell. 1, 190ㅇ. Off the Creat Ice Barricr.
No. 15, ad. sk. ㅇ. Smaller variety. Jan. 1, 19世2. Pack ice, lis S., $176^{\circ}$ E.
No. 16, ad. sk. §. Smaller variety. Jan. 11, 1sone. Off Cape Aldare.
No. 17, ad. sk. ․ S. Smaller rariety. Jim. 11, 190e. Off Cape Adare.
 $207^{\circ} 17^{\prime} \mathrm{E}$,
No. lbit, adult skeleton. Cape Idare.
The colouring of the soft parts is as follows:-
Bill, black with a bhinh tinge on the sidex, and flesh-coloured along the cutting edges and at the gape.
l ris, very dark brown.
Legs and toes. wels, and claws all dark bluish back.

> Materlal in the 'Mornifg's' Colfectiox.

No. 5, ad. sk. ․ N. Nov. 11, 1902 . $188^{\circ}$ S. $175^{\circ}$ E.
No. 1t, ad.sk. ठ. Ice pack. N. of Ross Sea.
No. 2, ad. sk. 9 . lee pack. N. of Ross Sea.
No. 1.t, anl. sk. §. Tee pack. N. of Ross Sea.

This leantiful Petrel is more strictly confined to the limits of the ice than any other. We first met with it in om short visit to the pack ice in S. lat. $61^{\circ}$ to $62^{\circ}$ anl E. long. $140^{\circ}$ on November 16 th and 17 th, 1901 . But it was not matil Jannary 2nl, 1902 that we saw the lire in numbers, and then during the summer, cruising along the coast of South Victoria Land and the Barrier to King Edwarl Mll.'s Land, it rarely failed to keep us company. Nothing could be more heautifnl and less apparently fitted for the rigoms of a storm-ridden climate. such as the Antaretic, than this little dove-like bird. It is the most constant companion of the ice, and whereas we saw the Southern Fulmar (Prioctha aldiciuloiles) and the Antarctic Petrel (Thutheserce
(antarctica) many times during our voyage home in the winter, when we were far the the north of the outakirts of the ice, we never once satw the Suowy letrel away from its vicinity. It wats abmont always in the pack ice, and it is there that the opportmity must lee taken, if a gool series of skins for a collection is to be oltained.

Our passage through the pack was unfortunately a rapid one, but from time to time we were able to procure examples and to contirm, at any rate, the observations previonsly made, that the measmements of this lird vary within large limits, irrespective of sex, and apparently also of local distribution; though it seemed to me that there was a preponderance of the larger hirls to the westwand, where, unfortunately, we wre not able to do much collerting, and that in the pack ice along the shores by Cape North and the Balleny Islamls, the general build of all that we saw was ligger and stronger In the British Museum (atalogue the following measurements are given :-

| Total length... | ... | $\ldots$ | $\ldots$ | .. | 11-16 inches (or $3.5 \cdot 7-40 \cdot 7 \mathrm{~cm}$.). |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Wing... | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |  |
| Tail | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $4 \cdot: 3-1$ inches ( $01010 \cdot 9-1: 3 \cdot 11 \mathrm{~cm}$.). |
| Bill | ... | ... | $\ldots$ | $\ldots$ | 1-t-1-8. inches (or $3 \cdot 6-: 3 \cdot 9 \mathrm{~cm}$. ) |
| Tarsus | $\ldots$ | .. |  |  |  |
| Middle and witer toes | ... |  |  | $\ldots$ | 1. $0^{-1} \cdot 9$ inches (or $4 \cdot 1-4 \cdot \mathrm{scm}$. ). |
| Inner toe |  |  |  | $\ldots$ | 1-3-1•5inches (or $3 \cdot 0 \cdot 3 \cdot \mathrm{sm}$ (m). |

- Specimens differ greatly in size as indicated in the above measurements."

The variation in size is even greater than has hitherto been supposed The largest example in the present collection was whained in the Ross hea pack ire, while the smallest of all was oltained off (ape hare; their respective sizes may loe seen from the following mensurements :-

and between these two extremes every gradation may be observed.
The following are measurements taken in the tle from two examples of the birl which were captured in Rolertson Bay:-

| (11) | Total length | ... | ... | ... | ... | ... | $\therefore 1 \mathrm{~cm}$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total stretch tip to tip of wings | $\ldots$ | $\ldots$ | $\ldots$ | ... | $\ldots$ | is. cm . |
|  | liirth at the shoulders | .. | $\ldots$ | $\ldots$ | ... | $\ldots$ | $\because 0$ cm. |
|  | Bill from nasal feathers to tip | $\ldots$ | $\ldots$ | $\ldots$ | ... | $\ldots$ | 18 mm . |
|  | Bill from angle of month to tip | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 85 mm . |
| (b) | Total length | ... | $\ldots$ | ... | $\ldots$ | $\ldots$ | 40 cm . |
|  | 'Total stretch tip to tip of wings |  | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | S2 cill |
|  | Girth at the shoulders |  | .. |  |  | $\ldots$ | $\bigcirc \cdot 3 \mathrm{~cm}$. |
|  | Bill from masal feathers to tip | ... | $\ldots$ | ... |  | $\ldots$ | $\because \mathrm{mm}$. |
|  | Bill from angle of mouth to tip | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $4: \mathrm{mm}$. |

On January 9th, 1900, we saw many of these birds flitting about the summit of the most inaceessible cliffs of Cape Adare. Farther down in Robertson Bay its eggs had been taken by members of the 'Southern Cross' Expelition in 1898 and 1899, and previous to this, in 1840. MeCormick had obtained the eggs on Cockburn Island. We ourselves saw nothing of its nesting halits, our winter quarter's being so far south that we were visited only by a few stragglers from time to time, not one of which remained to breed. The hirl is a great wanderer, and was seen by several of our slenge parties on the Great Ice Barrier, some 70 miles to the south of open water.

After leaving Cape Adare we passed down the coast of South Victoria Land, and when in sight of the Possession Islands were visited, on the 11 th of January, by large flocks of Snow Petrels, which flew about the ship, mounting to very great heights above the masthead. These flocks alternated, without mingling, with flocks of Thalassocea antarctica. The latter wonld fly in mison, all turning at once like a Hock of Starlings,* while the Snow Petrels, on the other hand, flew here and there imdependently in a mazy fashion, glittering against the hlue sky like so many white mothe or shining snow-Hakes.

When flying in the wake of the ship in this irregular manner it was possille to catch and hanl them inboard by flying lengths of strong thread from the halyards, the birds becoming so completely entangled by their wings that they were easily drawn in. Under these circumstances they gave vent to a guttural croaking sound, which seemed a most msnitable note for such a dainty bird; this was followed ly the regurgitation of a mucoid reddish-orange fluid, consisting of a mess of little shrimps, which was shot with some energy from the month and nostrils; one's feelings for the dove-like petrel became in consequence somewhat mixed. ln one ease, and strange to say, in one case only, this heantiful hird literally swarmed with lice. This particular individual was canght in the neighbourhood of the Balleny Islands; but it was quite an exceptional thing to find any lird or heast infested by these parasites in the Antarctic.

The fool of the Snow Petrel consists almost entirely of Euphausia, a red shrimplike erustacean, which abounds in the Southern waters. It lives there in countless numbers, and is thrown up by the breaking surf upon the edges of the icefloes, where the Snow Petrels hover with outspread wings to pick them up before the next wave comes to wash them otl. Occasionally this diet is varied ly a few small silvery fishes of the size of sprats, but the crustaceans form their staple diet.

The bird has but few enemies. NeCormick's Skua may be seen occasionally chasing it; hat not for its life, for the chase is over when the contents of the petrel's stomach have been surrendererl. Apart from the Skua I believe it has no enemies. The Snow Petrel is a migrant within the limits of the ice-covered area, going northward with the sun in the autumn to frequent the northern limits of the ice belt, where it can obtain fool in the open leads of water.

At our winter quarters in McMurd, Gound ( $78^{\circ} \mathrm{S}$ lat.) we saw the last hird of the

* Starling $=$ Sturnus vulgaris.
season on February 8th in 1902 . In 1903 the open water was su far from our ship that we saw unly a few stragglers haring the whole smmer, ant nome after the New Year. In 1904 wr ancompanied the hind the thenth omselves when we finally left Mc:Mmele Somm on Pehnary lgh. We had it with us durime the whele of ome jommey wothwad along the kouth Viotoria Lam const, amb ofl the Balleny listards on March :um, when it afpeared in therks of as some or mome tugether. All were miform in size and of the larer type; mot one of the smaller type was seen, hat as they seemed to be in flowses and on the move, one cond mot ensider this to be daracteristio of the locality. Most of the hirds that we saw after the midute of Felnary in 1904 were monlting, and a slomtage of prinaries ennd be seen in the wings; but in 1902 we oltained moulting birds on Janamy 11 th, so that the montt evidently begins 'uite carly in that month.

The flight of the Show Petrel is exceedingly heantifnl and dainty, and from the whiteness of ite plumage it is very easily lost to sight on the snow-covered pack or ice-floe, appearing mow for a serond and now as smdenly disampearing, and there is something ahosot ghostly in the silent Hight and sudden appearance and disappearance of this hird. Quite often one's attention is drawn to it by the flitting of its shadow on the snowy ground rather than by the bird itself. Though its flight is so beautiful, not only is its croaking guttural voice discordant, but its gait upon the snow is equally mbecoming. The legs are set widely apart, and the broad webled feet are turned inwards, giving it precisely the same maganly strathle-legged appearance that is familiar in the less clegant Ossifroma! !iganten.

On March 4, 1904, we saw the last of its kind on our way to the North in S. lat. $67^{\circ}$ and E. long. $154^{\circ}$. In November 1901, we had seen it in S. lat. $61^{\circ} 46^{\prime}$, E. long. $140^{\circ}$. Sir James Ross reported it in S. lat. $61^{\circ} 03^{\prime} \mathrm{S}, 146^{\circ} \mathrm{W}$., where he first met with it on Derember 18th, 1840 .

Mr. Eagle Clarke reports that it was "loy far the most numerons of the few species that remained for the entire winter at the South (orkeys" ( $60^{\circ} 44^{\prime} \mathrm{S}, 44^{\circ} 50^{\prime} \mathrm{W}$.) , where "in summer it freeruented the high precipitous sea-cliffs which formed its hreeding haunts, and where, during the nesting season, some 20,000 birds were estimateri to be present on Lauric Island alone." (Ilis, January 1906.)

Even so far sonth as Cape Adare (S. lat. $71^{\circ} 30^{\prime}$ ) the hird is reported by members of the 'Southern (ross' Expedition to have been ocosiomally seen late in the winter, on May 15 th, and even on June 17 th (Dr. Bowiller Sharpe on the 'Southem Cross' Collections). And althongh it has been taken in min-winter so far North as the Falkland lands, in all probability it was misled there by the wanderings of an over-extensive icelerg, and it may, motwithstanding this, be considered to have the most sonthern distribution of all known hirds except the Emperor Penguin. Its nesting habits have heen deswriled mot only ly MeCormick of the 'Erebus' and 'Terror' Expedition, but by Welster, of II.M.S. 'Chanticleer;' who found it on the South Shetlands; by the Germans in South Geomia, and more
recontly hemeners of the 'Southon Crass' and Soottish Expeditions, both in the

 white in colomr, amd measming $\because \because 2$ ins. $\times 1.6$ ins., is laid at the ent of a burrow, from - to if feet in length, in the "revies of roks, or may the "forty feet from the entrance of a care." Here the lien sits for some week before she lays, and the place chosen may be either a few fect above sea level or as high as 1400 feet up it mountain side. litruders are greeted with the customary petrel romit, which monsists of hall-digester food, and is said to be ejeeted sometimes to a distance of cight feet.
"On November 己oth." says Mr. Borchgrevink, " the birds were sitting on their nests at C'arm Alare," and "on Derember 10th he took their eggs in Roliertson Bay, while on Jannary 6th many years before, incubated eggs were taken on Cokkimrn Jsland by MeCormick.

In the south Orkneys in 190:3 the first eggs were taken by the Seottish Expedition (in December "ml. "They were then mot quite fresh. By the 4 th all the hirds scemed to have laid." "1n 1904 the first eggs were olserved on November 25 th, and young birls were fomm on danmery 28th, 190t" (Mossman). The young has lreen described by Mr. Eagle "larke in the following terms: "About one-third grown, and capturet on dinnary 28tli, 1904, it is dad in long flutfy down whi halmost conceals the feathers "ppenting on the wings and tail; the down is of a lavender grey tint on the back and chest, darker on the hearl, and dull ivory white on the abdomen"-the deseription in this case was taken from a specimen obtamed in the South orkney lsiands ly bre Pirie, Nedical Officer aul Gcolugist to the recent Scottish Expedition of 1902 , and is figured in the 'Insis, for Janary, tsoc. In the British Musemm Catalogue the "ohur of the feet in the aulult is given as "yellowish," a description rightly rorrected by lor. Sharpe in the Report on the 'Southern Cruss' Collections, for the legs, feet, wels and nails are all of a dank haish black, and although in fight the bint often huries them decply in the moder tail-roverts so that they are completely lost to view, yet they are also often cmried exposed and guite conspicuous, contrasting makedly with the pare white feathers. It is true that the feathering of the hird is white, hot there is in the quills, particularly of the wings ame tail, and in the basal parts of nearly all the feathers quite a strong tinge of lemon yellow, which no doubt results from the ingestion of :o mulh of the hight orange yellow pigment that characterises the crustaceans which form its staphe diet. This pigment not only tinges the feathers, bout colours the fat. The eyes, althomgh aparently jet bark at a short distance, are fomd when exanined closely to have a very dark brown iris. The bird has been ligured in the volume on Zoology of the 'Erehns and Terror' Expelition. Photographes of the birt upon its nest are to he seen in the 'Ibis,' Jamary 1900 (facing p. 171), and also in the British Musemm's pulbication on the Corlertions of the 'Sonthern ('ross' (bage 151).

# GSSIFRAGA GIGANTEA. <br> The Giant Petred in Nilly. 

Prorellari" gipantra, (imel., Syst. Nat., i. (17s8), p. 503.



Material in the • Mnconeriy's' Colble thon.
No. 1!3, $\mathcal{F}$ ad. sk. Dark varicty with light head. Jan. 20, 1904. ('ape Royds, McNurdu Solnd.

No. 21 , $\delta$ ad. sk. Motled grey variety. Feh. $2: 3,19 n:$ McMurdo sound.
No. 22 , o ad. sk. White variety. Jan. 9, 190:. Cape hlare.
No. $2: \%$, ad. sk. White variety. Jan. 9, 190:. Cape Adare.
No. $\because 1$, o ad. sk. White varicty. Jan. 9, 1!0:. Cape Alare.
 1:001. Macefarie Istand.
Nos. 161 and 162 , adult skeletons. Both of dark variety. Ross tex.
The colouring of the soft parts of this bird is as follows, and the deseription applies to all in the list excent when sucsially signified :-

Bill, pale yellowish horn colour ; the mafeathered skin-folds at the gape and junction of the bill and feathers, bluish grey.
Iris, brown, with vellowish radiating streaks.
skin of eyelids, buish grey.
hegs and toes, grey with pate yellowish tinge.
Weh, fleshy errey.
Nails, blatkish horn.
Materlal in the 'Mornine's' Collemtion.
No. 2!, $\mathcal{Y}$ ad. sk. Dirk varicty. $69^{\circ} \mathrm{S} .178^{\circ} \mathrm{E}$.
M.t., $\delta$ al. sk. White variety. Jan. s, 19@2. Cape Adar".
M.v., adult skeleton.
M.w., ad. sk. Mareh 1904. Anckland Iskands. Collected ly Dr. souter, of the "Terra Nova.'

Of the range and distribution of the Giant Petrel there is little to add to what has alreaty been fully given in various publinations, notably by Mr. Itoward sumbers in the "Antaretic Manual."
" Its loeding and habits on Marion and Kerguelen Istamts have been described Iry Moseley and others, and the lird probably nests on [Ieard laland; Welster fomm it on Dereption Island, Sonth Shetlands, from January to Mareh; and as regards Soutlo Georgia, the eggs are laid in the heginning of November."

It wamers freely as far is $30^{\circ} \mathrm{S}$. lat to the North, and almost an far an any other living amimal to the South, i.e., to abmi $78^{\circ} \mathrm{S}$. lat. In Mr. Eagle Clarke's aceomit of

 (1) Laturie lsland were confined to the north and cast conste, where upards of 5000 birds are sain to have been resident during the nesting season. The nests are deseribed
as " great pile of small angular stomes. . . . aloout two feet in diancter." The first "ges wem hew laid. very moly more than one in a nost, om November 41 h, and the armag length of cighty eggs was 10.38 cm . amd the headth 6.57 dm . There is also in this acomet an interesting mote which I goote lelow, upon the proportion of the white, dirk, and intermeniate phases. Plate XI., Fig. S, in the 'His' for . Fanary, 1906, shows an exeedingly happy photograph of the white phase of this hind with its nest and egg.

Oseifrofy feeds mainly won cariom, thongh its character is not alove suspicion in the matter of attacking living animals. In one case, at any rate, the evidence of its having attarked man in the water is hardly open to dombt: I quote Mr. Howam Samders, who writes: " Itr. Arthur G. Guillemard states that a sailor who was pirked up han his arms hadly laceraterl in defending his hear from the attacks of an 'allatross,' which may well have heen this Giant Petrel." Mr. Eagle Clanke also, in his "Aceome of the Birls of (Gongh Island" ('Ilis,' April, 1905, p. 26:3), thlts us that according to Alr. ('omer, it caries oft young Penguins to eat, and pulls Petrels from their hurows in the ground.

We constantly saw it feeding upon seals' blubber, leal penguins, and any other amimal refuse that happened to lie in its way, but we ourselves never saw any living animal attacked; and although Mr. Eagle Clarke mentions "abundant remains of recently killed roung penguins" in their rookeries in the South Orkners, he says nothing in this case to prevent one from believing that the hirds merely pioked up the remains of what the Skuas had killer, of of birts that had summbed to climatic causes.

The halnit that this lird has, in common with most of the petrels, of disgorging semi-digested food when disturbod or anoyed is very commonly seen in putting it to Hight after feeling. It is interesting to notice how small an amount of such ballast removel by romiting seems to tum the seale, for it is quite insignifiont when compared with what the stomanh actually contains: yet the bird seems so utterly uatble to run or to rise from the ire matil relieved, that, mo mater how chasely it is pressed, it will come to a dead stop in order to disemomber itself ly a mumbre of voluntary dffints before making a sorions effint to rise. The weight of the bind and the length of its wings neessitate a comsilerable rim on the irefloe in tuly ase before this can lie effected. On whe occasion the footmanks (fig. 43, p. 94) of a rising Osifrafu, seen on a drifting fee-flow from the ship, created quite a small sensation; from at distance they looked much like the fontprints of some gigantic mammal.

The ralative distribution of the varions phases of this hird is a print to which a grod deal of attention was $p_{\text {mid }}$ thonghout the conse of our royge. By making a rough estimate daily of the momber of hirits that we silw of this speries, and notes as to their coburing, we amm to the comelusion that the white form, althong seen from time to time in the more temperath region of the sombern (Weans, is really very much mome almulant, loth alsolutely and relatively, in the ire. Ame not only this, hat that the abmbance of the intermediate forms has also some relation to lowaty ame dimatic ditlerences.


Fig. 43. Footrinets of the Giant Pethel (Ossifrenge gigentio).


Eig. 4. . (irole of Black-erowed Aleatrosses (Diomedea melenophrys).
*

We first met with the Giant Petrel in $95^{\circ} \mathrm{S}$ lat. © September 21 st, when we were in the South Atlantic Ocoan. It was in this ase the darkest variety of all, with at lemon yellow linl, the varicty that may with some trath be called bark. Again, on Octuber :2nd, in $45^{\circ} \mathrm{S}$. hat, we satw the bird in the Somthern bulian Ucem, and this example was also black. From that day onward we hat one on two with us ahmost constantly between $45^{\circ} \mathrm{S}$ lat., in $51^{\circ} \mathrm{E}$, amt the ire pack in $61^{\circ} \mathrm{S}$. lat. and $143^{\circ} \mathrm{E}$. and thence to New Zealand. It the Macranic lshats we ohtamed one of the paler grey varicty, the lightest in colom that we hat seen in coming from the west ; and at few days later, in passing up the western site of the Anckham Ishands, we saw Osifing in very large numbers, almost all of which seemed to be somewhat small ant grey instead of brownish black, as though they were perhaps the hen lirkts or the young of a nesting colony. On November ernd, when we hat passed to the north of the Macplarie lslands, we first saw the wholly white variety, and this was in lat. $55^{\circ}$, between 300 and 400 miles to the north of the ice pack we had then just left.

After leaving New Zealam we went due south to South Victoria Land, and after crusing eastwat along the Geat lee barier to long. $152 . W$., we spent two years in Mchurdo, hound, returning thence again to New Zatam by way of the Balleny and Auckland lstands. From New Zadand we made the homeward journey throngh - the Magelan Straits and by the Falkland lslands, and throughout the whole of this part of our voyage to as far north as $: 33^{\circ} \mathrm{s}$. in $20^{\circ} \mathrm{W}$. lat. we were accompanicd by Ossifrague in greater or lesser mumbers.

The whele distance coverel in the Southern Oceans was than about $2: 2,000$ miles, and we were much struck by the waty in which the several phases appeared and disappeared from time to time. In the open ocean, and in the more temperate regions throughont September and October, we saw only the largest and hackest hirds, in good condition and with clear lemon ycllow bills. On approtching the ocean islands of Mactuarie and the Aucklands in November we came into a region frectuented almost wholly by the smaller and greyer phase or variety, sometimes in great numbers, and these all apparently in full moult, but althongh we must have seen in all many hundreds, we hat met with as yet one only that was wholly white, and that in the rather higher ranges of the temperate latitndes. Between New Zealand and the ice we again saw the grey birds moulting off Campbell Island on December 26 th and 27 th, and somewhat darker birds on December 29th. In the pack ice we sitw one or two of the darker birds, but they became more numerous as we neared the coast at Cape Adare, and one might there constantly see two or three upon the flows running along with wike ungainly stradlling legs, mable to rise after feeding on some dead Adélic Penguin.

On January 9th, when we came to Cape Adare, we were surprised to see a collection of Giant Petrels standing on the shore, about a dozen of which were wholly white. In all there must have been two or three dozen linds, the majority of which were black, dark grey and hrown, though some hand paler heads, and some had heads quite white, with darker loolies. They were less tame and more suspicions
of langer than we experten, and it was only with considetalble diffieulty that we coull get "lose mough to shoot them as they ran with outspread wings and long vtrides to rise and go out to sea. We olitainel three of the white hirets and also whe of the darkest hown. It was not easy to kill them on the shore, as they were all at the water's alge aml took wing to the drifting ice Hoes, where they were soon completely wut of reach. The white biods had the usual few dark feathers scattered here and there, hut otherwise were wholly white. None of them, so far as we could ascertain, were nesting on this peninsula, nor did the 'Southern Cross' Expedition, in their stay upon the spot, see any Giant Petrels nesting. It is a curious fact, too, that a white diant Petrel was, during their stay in 1900 , comsidered a very great rarity by the members of the 'southern ('russ,' thongh they were stationed here for some thirteen months, anvering part at last of two summer seasons. In connection with the frequency of the white phase of the Giant Petrel within the Autarctic Circle, as compared with its infrefueney in the more temperate part of the Sonthern Oceans, 1 have put in a tabular form an estinate of the various phases, necessarily a very rongh one, hon formed by daily observation during the whole of onr stay within the Antarctic Circle.

It is, of course, imposible, in a aruise on board ship, to say arauately what number of any partioular species of hind has heen seen earll day, but it is possible to discriminate between such mombers as two, or half a dozen, or a some or more, and it is sulll a rough-amel-rady estimate as this that I have attempted to make. It shows that whereas the white phase is a rarity in the sulbantarctie region, it is hy no means so rate in the region of the ice. In the sub-Anturetir region, moreover, Os.ifruge is almost always of a miform colow, cither uniformly dak, hawkish brown, or Warkish grey, whem viewed on the wing at a short distance, or else uniformly white. But within the cirele one sees not unly these unicolour phases, lut a very considerable momber of hirds which rary hetween the white and dark. Some hirds are dark all over. with white head and neck, ind some are mottled grey, brown, and white.

It will be seen from this analysis, then, that in a voyage of 140 days, covering many thousands of miles of the sub-Antarctic ocean, only one White Giant Petrel was seen among several lumdreds of the uniformly darker ones, giving a very small perrentage. aml also that the percentage of intermentiate forms is almost as small, amounting to three or four in all, or less than a half per cent. Whereas if we compare this with the proportion of White to Dark and Intermediate birds in latitudes where ire conditions are persistent, we see that in a total of ahout a hundred birds ohserved during half as many days, in a voyage covering only about 4,000 miles, the perentage of intermerliate birls rises to $23!$ per rent., and of white to ats much as 30 per cent. Thus:-Between 3:3 S. and $666^{-1}$ S., we observed :-
Dark birds.
It least ion.
Intermediute.
4.

Whereas, hetween $66^{\circ} 7^{\prime}$ ㅅ. and $78^{\circ} \mathrm{S}$. we observed :-

| Dark birds. | Intermediate. | White. |
| :---: | :---: | :---: |
| Alout in. | $\mathbf{1 4 .}$ | 18. |

I may quote here some remarks which have fatlen from other olservers upon the same point, and which, indeed, first led me to take special note of the farts:- Mr: Burn Murdoch. for example, in his hook, "From Edinhurgh to the Antaretic," says, "peaking of Giant l'etrels, "Some of them are partly white, ant a few, of the same kime of bird, I believe, perhaps one in twenty, are pure white, all hat one or two hrown feathers." Thus giving the percentage proportion of white linds aromed Graham's Land, where the Dundee whalers were at work, as 5 per cent.

Mr. Eagle Clarke, on the other hamt, in writing of the South Orkeys, says, "The proportion of bives in white phumage in the rookeries was not more, perhaps less, than 2 per cent." going on, however, to say that the "colour of the birts maged from very dark brown through all shales of chocolate, and from grey through light grey and mottled white to white."

Although 2 per cent. and 5 per cent. are a great leal smatler than the 30 per cent. which our observations show for the Victoria ?uatrant, nevertheless, they uphold my man contention that the white form is very much more abmind in the ice-rovered regions than farther north. For even $\because$ per cent. in the kouth otiney Islands amounts to ten times as many as the highest percentage allowable on our observations in the temperate seas, where we saw but one white hird tor, at the very least computation, five humdred dark ones. In South Victoria lath we sam a firr smaller total momber of Giant Petrels that were met with byeither of the above-guoted observers; and 1 may also draw attention to the fact that the area in which our observations were chiefly made extended some 13 degrees ( 780 miles) farther south than Graham's Land, and no less than 17 degrees (over 1,000 miles) farther south than the South Orkneys. This very gradation in the percentage of white hirds from 1 in 500 in the ice-free seas to 2 per cent. in the Suuth Orkmey lslamks, then 5 per cent. in the ice off Graham's Land, and about 30 per rent. in South Victoria Land, so very much farther south, not only uphohls but suggests that there are conditions in the ice-covered regions which are more attractive to the whiter variations than to the darker; but until white birds can be shown to interbreed and to exhibit some tendency to form nesting colonies apart from those of the larker birts, which at present is not the case, one can hut summise that in the above facts we are looking upon a very carly step on the road to the formation of a distinct Antarctic species. *

Not only do such figures as the above lead one to believe this, but certain measurements of the bill and wing, taken first from a series of the darker phases and then from a series of the white phases, tend also to the same conclusion. Thus. in the 'Discovery' and 'Morning' collertions we have nine examples, fom of which :He

[^12]white and tive dark，and in the average of the bill and wing measurements given below the alvantage in size is always slightly with the white variety．

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| White Jijris－ |  |  |  |  |  |  |  |
| M．t， $\begin{aligned} & \text { ¢ }\end{aligned}$ | ． | 54．7 | $5 \cdot 3$ | $10 \cdot 2$ | $\because 5$ | $1 \cdot 5$ | 7．${ }^{\text {i }}$ |
| I）$\because 1 . \%$ ¢ | $\ldots$ | 2：3： | $5 \cdot 8$ | $10 \cdot 5$ | $\because \cdot 7$ | $1 \cdot 5$ | $7 \cdot 8$ |
| 1）． 23 ，${ }^{\text {d }}$ ．．． | ．．． | 54.7 | $5 \cdot 3$ | $10 \cdot 1$ | $2 \cdot 4$ | 1.5 | $7 \cdot 7$ |
| D．$\because 2$ ，${ }^{\text {d }}$ ．．． | ．．． | $51 \cdot 7$ | $5 \cdot 3$ | 10\％ | $\because \cdot 6$ | 1.5 | $7 \cdot 7$ |
| Average ． | $\ldots$ | 54.35 | $5 \cdot 3$ | $10 \cdot 05$ | $2 \cdot 55$ | $1 \cdot 5$ | $7 \cdot 7$ |
| D．aiker Birds－ |  |  |  |  |  |  |  |
| M．No． 29 ，dark，¢ ．．． | $\ldots$ | 683：3 | $4 \cdot 5$ | 9） 3 | $2 \cdot 4$ | $1 \cdot 3$ | $7 \cdot 4$ |
| D．$\because 0$ ，white head， 9 | ．．． | 5：$:$ | $4 \cdot 1$ | $8 \cdot 7$ | $2 \cdot 4$ | $1 \cdot 8$ | $7 \cdot 11$ |
| 1）． 21 ，mottled 9 res．${ }^{\text {d }}$ | $\ldots$ | 5－2 1 | $4 \cdot 4$ | $8 \cdot 7$ | $\because \cdot 4$ | $1 \cdot \%$ | $6 \cdot 9$ |
| J）．19，．，．．${ }^{\text {a }}$ | ．．． | 5\％ 3 | $4 \cdot 1$ | S－8 | $\because \cdot 4$ | $1 \cdots$ | $7 \cdot 0$ |
| M．w，lark， 9 ．． | ．．． | $5 \cdot 2 \cdot 1$ | $5 \cdot 3$ | $110 \cdot 1$ | $\because 6$ | $1 \cdot 6$ | $8 \cdot 1$ |
| Average ．．． | ．．． | $52 \cdot 8$ | $4 \cdot 1$ | $!\cdot 1 \geqslant$ | $\because 41$ | $1 \cdot 34$ | 7－2 ${ }^{\text {i }}$ |

This，one might think，could hardly have been aceidental，but as three of the darker sperimens were femakes，and all the white were males，the figures were not conclusive，and contimuing the measurements to include birds in the collections of the British Muscum，as the following table shows，the alvantage in size is found to be not invariaily with the white variety ：－

|  | $\begin{aligned} & \dot{3} \\ & \text { E } \\ & \text { E } \end{aligned}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | － |
| White Biris－ |  |  |  |  |  |  |
| ！3．12．1．2 Suares | $50 \cdot 8$ | 4．5 | $8 \cdot 9$ | $2 \cdot 3$ | $1 \cdot 3$ | $6 \cdot 9$ |
| 11．1．7．29 Campbeht lslands | 83.4 | $5 \cdot 4$ | 1100 | $\because \cdot 6$ | $1 \cdot 4$ | $7 \cdot 7$ |
| Darker Bhens－ |  |  |  |  |  |  |
| ：12． 2.10 .401 black．．． | 19•5 | 4：3 | $8 \cdot 2$ | $\because \cdot 1$ | $1 \cdot 2$ | $6 \cdot 2$ |
| （13．12．30．20\％r．dark o | $47 \cdot 0$ | $1 \cdot 7$ | ！ 11 | $\because 01$ | $1: 3$ | $7 \cdot 2$ |
|  | $\therefore 15$ | $5 \cdot 3$ | $3 \cdot 8$ |  | $1 \cdot 4$ | $7 \cdot 9$ |
| － 0.11 .15 .1935 v．dark | $\therefore 2 \cdot 1$ | $5 \cdot 0$ | $111 \cdot 2$ | $2 \cdot 5$ | $1 \cdot 4$ | R•1 |

My object is to point out that there must he some artive reason for the preponderance of this pure white phase within the limits of the ice. Yet it is not easy to see how the facts can be brought within the range of the ordinary theories of animal colouration.

In the first place, it is fairly certain that the Giant Petrel has no need for protective assimilation to its surroundings in the ice, and yet this is possibly the first idea that occurs to one on learning that a white variety of a dark hird is very much more abondant within the Antarctic Circle than without. But it is quickly follower by a question respecting the enemies it hopes therely to escape, and in this particular case the answer disposes at once of the protective assimilation theory, because the bird, whether black or white, has no enemies that are worthy of the name. In the water, no doulst, it might be surprised by a Killer Whale (Orce aladiutor) or a Leopard Seal (Stenorhindlus leptomyx), but the position of any bird which can rapidly take wing from the surface of the water and never gnes below is obviously not such as would require invisibility to protect it from such enemies as these.

Both beasts give ample warning of their approach by the moisy way in which they breathe. They are dangerous only to such lirds and leasts as live labitually below the surface, where their approach is as sudden as it is silent and unamounced, amd where little safety is tw he found in anything but superior speed and more rapid powers of turning. On the ice floes the Giant Petrel, 110 matter what may be its colour, shows by its lack of nervous apprehension that it is not as a rule roncemed with anything that may he there, except it he in the nature of something it can eat. We may, therefore, quite safely dispose of the assimilation theory so far as the protection of the bird from its enemies is concerned, and equally safely, 1 think, in so far as it is supposed to help the lird in obtaining food.

The Giant Petrel lives on any carrion that it is able to discover, and it can never be at a loss during the Antaretic summer for a plentiful supply of dead seals and penguins. I know not whether in the Macquarie and Ancliand Tiskads and elsewhere it is also mainly a carrion feeder, but I can answer for this in the Autarctic. One has but to kill a seal on the shore in summer and visit the bluber refuse day by day to realise how quickly such food attracts the birds who are looking for it. None but the carrion feeders come to it; one sees no Albatross, no Snow, Antarctic, or Wilson's Petrel, though all must often scent it; but the Giant Petrel and the Skuas come in constantly increasing numbers.

It is a fine sight to watch a Giant Petrel, with a stretch of wing as extensive as that of an Albatross, beating up the wind in large circles along the shore in search of scraps that the tide has left there. His tlight is as even as the flight of a Diomeden; for long one may watill in vain to see a stroke of the wings, hat without an effort he now rises against the wind till almost at a standstill, and now with a wide majestic sweep turns out to sea, and so once more up into the wind again. It is a labour-
saving methen of progressim, heantifnl enough to watch, but useful only in a land where time-rating methorls are of little value.

If, then, invisibility is of no use to this bird either for protection or for procuring fook, one is homel to go farther into the case and ask what other reasons ean he given for this predominance of the white and lighter phases within the iey regions. Of the fact I am convinced, and I can see no explanation that can mect it on hiological gromods. I believe, however, that it is a case whith strongly upholds the physiological thenriss more than once alvanowl hy Captain Barrott Hamilton and Mr. Bonhote recently, and by others lomg before, to account for the whitemess of Aretic and Alpine types.* These theories suggest that pigmentation is present most alhudantly where the physiological vigour of an animal is at a high level, amd that the deposition of pigment peripherally is associated with an active tissue metalolism, and is fundamentally a reserve or so-malled " waste product," which can le called upou as a supply of energy to the body when accasion needs and muler certain comlitions. Also that economy in tisme metalolism tends to diminish the formation of pigment, and therefore that one may expert to fimb a dimimtion of pigment in any animal that is living at a disadvantage in respect to its suroundings. Under such disadvantages we may suppose that somm of the Arctic and Apine animals are living, A:\%, Ossifrega and Payedroma, ant to make up for this they have necessarily to economise their physiological forces, or, in other words, as far as possible to check the metabolism of their tissues. This leads, amongst other things, to the accumulation of fat and the reduction of pigmentation, and it is a notable thing, already widely recognised, that the accumulation of fat to an excessive degree and the abseme of pigment in hair and feather, is frefuently associatel not only with Arctic and Alpine climatic conditions, but also with seasonal and age dhanges, all of which may in a sense be dassed together as onditions having a depressing effect upon the metabolism of the various tissues, all, therefore, teming 1. . 'heck the production of so-called waste products, including pigment, all tending also to pallor and whiteness in the varions tissues, inchuding the hair, feathers, fat and skin of surh animals as are exposed to them. That pigment granules can be remover from hair and feathers ly the agency of phagocytes seems to be an established fact, and it accounts probahly for a number of transitions from darker to pater tints, indurling those of old age and winter whitening, though the converse, by whirh white hains or feathers convert to dark withont a monlt, is not established. And althongh, in speaking lonsely of the " hleaching effect" of the short Antarctic summer, which far exreets that of the preceding winter, upon the fur of
 the illa conveged is probally that of some cheminal change in the pigment grambes, it is very possible that there may have been in the cemrse of the summer monthe a definite withrawal of these pigment grambes preparatory to the growth of the new

+ In a paper on Winter Whitening of Animals in the Proc. Roy. lyish Acad., Vol. AXIV., Sect. B., lart 4. by Captain Barrett Hamilton, and in " linowledge," Dec., 1905. p. 298, in a paper on Colouration in Mammals and Birds, by Mr. Bonhote.
hair or feathers which are to replice those that wontained them, and this virw is tor a slight extent upheld by a mirrosophic examination of fresh-wrown and of so-called "heached" hairs of Lothortm, for there appears to foe not so much a change in the colour and character of the pigment gramules, as a simple diminution in their number, though to make this point certain it would, of amse, be necessary to repeat on the animals in 'question the olservations made by Professor Metchnikoff' on men and dogs (Proc. Roy. Soc., London, Vol, LNLX., p. 156, 1901).

But in O. diymonto we have to deal, not with a seasomal change of any kind, hot with an increasing tendency in a pigmented species, which is beroming acclimatised to the Autarctic climate, to become white and umpigmented, and I comsider that there is sutficient reasm for discarding the usual explanations. given in such cases, seeing that there is no apparent need for invisibility, and for consilering whether the athove physiological reasons may not be sutficient. The lired is nomally in inhalitant of the temperate regions, and is apparently ranging more and mome into the Kouthem Polar seas. In doing so it beemes migratory, and each year, probally, increases the extent of its winter range in point of numbers. Its tendency being towards arelimatisation for severer combitions, presmably some pressure is acting from the month to cherk its range in that direction. Every reserve of energy has to be called in to meet the extra tax upon it, physiongical fores, am the peripheral pigmentation, even though it may have had a purpose in other climates, is now recalled, while the tissue changes are pari pussu depressed by the climatic combition, and fat, possilly as a consectuence, begins to aecumulate, serving a useful purpose by retaining the loody heat. It is just possible, moreover, that the feathers themselves, when the spaces previonsly filled by pigment granules are occupied by air, are really a better mon-combucting mering for the bird than they were before. If this be so, it is an additional factor in the rapid production of a white form typical of the Autaretie ice. It may bo urged that this white form, if hecoming acelimatised under less :utvantagems comditions than those under whin the dark forms farther north exist, should show some definite deterioration, just as the most southern Skua, M. mutcormicki, shows a definite deterioration in size from M, antaretich. lnstead of this, it mantains its size, and even in some small points exceeds the measurements of the darker forms, suggesting that the formation of this new type or incipient species is not so much the result of pressure from the north as a proof of a tendency for the more rohust of the race to spread in a new direction where the drawhacks may he outhatanced by butter food, the absence of competition or enemies, or other and mone subtle adrantages at present beyond our ken.

## MAPTLON CAPENSLS.

## Ther C'ape Pitpern.

Prorellaria rapensis, Linn., Syst. Nat. i. (176i(i), p. 213.
 ithinur citutet: Eagle Clarke, Birds of Sonth Orkney Ids., Ibis, Jam. 190t, p. 17t, pl. x., fig. 1.

Matemlal in the 'Morning's' Collection.
(a) Ad. sk. No label.
(i) Ad. sk., 9. Oct. $4,1902.42^{\circ}$ S. $21^{\circ}$ E.
(b) Ad. sk. Oct. 7, 1!02.

Colomring of the soft parts:-
1sill, bhack ; the bare skin bencath the mandible, dnsky red.
Iris, dark lrown.
Leegs and toes, hack.
Wels, black between the toes, but white ontside the third digit; a frequent variety has white spots on the black wels on each side of the central portion of ach phalanx, with a feeper hlack surounding each joint.
Claws, black.
Daption chpenxis, the well-known ('ape Pigeon, made its first appearance during our voyage on September 18 th, $1901\left(31^{\circ} \mathrm{S} .21^{\circ} \mathrm{W}\right.$.). It was then with us abmutantly earl day throughout our course ly Gouth Trinidad to Cape Town, where we arrived on Ortoler : ?rd. We saw mone while close in shore during our stay in Smon's Bay, but directly we left, on October 15th, we pirked the bird up again and kept mmbers with us thronghout the whole of our voyage to New Zealand. Even while we were in the ice park on Sovember 16th and 17 th we were accompanied ly a few, and so on till November 28th, when we entered Lyttelton Harbour. On November ¿ath we were in sight of the west coast of the Auckland Islands and Daption capensis was around us in very great mumbers. Yet in going sonth from New Zealand we saw hardly a sign of it ; one only on berember e9th, and a few on Janary 2 m , the day on which we sighted ice. Farther south than this we did not meet with it.
( $n$ our homewat voyage from the ice we first met it again on Felruary 28th, $1904\left(68^{\circ} 30^{\prime} \mathrm{S} .173^{\circ} \mathrm{E}\right.$.), and we kept it with us past the Balleny lslands until Marh 6th. Then, strange to sity, the species absolutely disappeared, and we saw no more on our way north to the Aurklamls and New Zealand. What can be the explamation of this extramdinary difference between the enormons numbers we saw in the neighborhood of the Aurklamd Islands during November and its complete absence in the latter end of Mardi? It appears that there are far more extensive migratory movements in these ocean wanderers than we at present recognise. In November and December the Cape Pigeon should be hreeding, as we now know from the olservations marle by the Scottish Expedition in the South Orkneys. There is
 coast, and this would amont for the nombers that we saw there in Novembris. But in the young go sonthward in the autumn in a hody? If mot, why din we meet them just within the cirde and bose them entirely farther north arom thoir hooding hames? And if in the antmon they do gor sonth, one wombers for what pmonese Powshly ow experience was exceptional. $l_{n}$ the winter they are again farther to the north; we saw them between Now Zealand and Gape Hom throughout the whole of June, 1904 , between $50^{\circ}$ and $60^{\circ} \mathrm{S}$. lat., and in abumbare. They were to be seen in enomons flocks in the Magellan Straits in July, and on the Atlantir side we carrifed them north with us, and saw the last on August 4 th, 1904 (albout $20^{\circ} \mathrm{S}$. lat.).

No other petrel is so common in the Southem (beans, amp protally no nther is so easily taken by thread entanglements. It fieds upom minnte rerstareans, most of which appear to be coloured with the hright orange pigment that is so marked a feature in those animals. They are freely ejected in a muroid orange-whured mess when the hird is ranght and hambod, and the same objertionable halit is said to be indulged in when the lirds are distnthed upon their nests, "six or evon "ight fret" heing given as the distance to which it ran he ejerted, and "with great precision." I quote this from Mr. Lagle Clarke's most interesting acount of the loreeding and nesting habits of this bird. For very many years the nesting hamen of the Cape Pigeon have been so little known that no eqges had heen taken before the Soottish Expedition foum them in the South Orkneys. Here, we are told, almout 20,000 birds resort for nesting purposes to Laturic lalam alone. The whole aromont is so new and su interesting that 1 ran but quote it word for wort. (See "The Ihis," Janary, 1906, pp. 174-177.) "The egg' remained entirely unkown until Derember Zat, 1903. when Dr. Pirie took the first sperimens at the South Orkmeys. The three nests from Whith eggs were then ohtained were placed on open axposed ledges of "liff: on the west side of Cruguay Cove, Lamie Islam, at heights from 20 to 100 feet almse sea level. The nests were comperen of a few small angular fragments of row and a little earth, and contained single eggs whith were quite fresh. . . . Several wer fomm freymently nesting near to ead other on the same ledge, but isolated nests were not unommon. . . . On December 12th more cges were procured . . . . and on Jantary 1sth, 1904, a fresh egg marked on lherember and was found dhipere, so that the period of incubation was not less than te days. . Somg linds were still in down in Felmary 5th. . . . The eggs vary from oval to clongate-ovate in fomm. . . . The average of a large number of specimens is $62 \cdot 35 \times 43 \cdot 11 \mathrm{~mm} . \ldots$. . In 1904 the first eggs were lairl on December Bre, or one day later than the previous year (Alnsman). The momeros nests fomen were plated either on leders of cliff: or, though these were few, in hollows in the earth and ammor small stmos on stref screc-stopes, and atl were puitr npen. . . . The ehick in downe tive days odd. taken on January 18th, 1904, is slate-grey above, and paler and sooty on the muter surface."

## 1L.AIOBAENA (EERULEA. <br> The Bhou Petrod.


 ibigue citulte.

Materiala in the 'Jiscovery's' (Gollegtion.
No. 1:31, wh. sk., $9.61+6^{\prime} \mathrm{S} .1+0^{\circ} 12^{\prime}$ E. Nov. 16,1001 . In pack ice.
Colouring of the soft parts:-
Bill, Wuish black, the latericorn of the maxilla distinctly hluish.
Leess and toes, pale cohalt blue. Wels, pink in the centre, grey borders at the free edges. Claws. black.

Holubene rerultu is a bird which ran easily le distinguished at sea from any Prion by the white termination to its tail. Flying constantly in company with the different species of Prim, in size and colouring much the same, it would be difficult to tell them apart were it not for this.

We first encountered it on Octoler 24 th, $1901\left(45^{\circ} \mathrm{S} .48^{\circ} \mathrm{E}\right.$.), when a very heary sea was ruming, with a high wind and occasional stoms of snow. Considemble numbers were flying round about the ship, and we kept them with us from that date onwarl as we went sonth; they were still with us in the denser ice-pack ( $62^{\circ} \mathrm{s}$. $140^{\circ}$ E.) on November 16 th and 17 th, 1901.

On our homeward royage we had them with ns again in the South Pacific letween $135^{\circ} \mathrm{W}$. long. and the Horn, and between $55^{\circ}$ and $60^{\circ} \mathrm{S}$. lat.; also in the South Atlantic, not far from the Falkland Islands.

These observations coincide with the accepted range of this lind, which is given as the Southern Seas, between lat. $40^{\circ} \mathrm{S}$ and $60^{\circ} \mathrm{S}$.

It has been known to hreel in Kerguelen lsland, where Mr. Eaton obtained their first eggs plentifully on Octaler 23nd, laid in burrows made in the Azorolla growing upon dry suft loam. A nestling, almost full fledged, was killed at the same place on Fehruary 9th. It has been ohtained also at the Cape of Good Hope, and in the Pacific Ucean near Cape Horn ; and we ourselves obtained a specimen, which was unfortunately shot to lits, in the pack ice of $62^{\circ} \mathrm{S}$. lat. $140^{\circ} \mathrm{E}$., two degrees farther south than the range given in the British Museum Catalogue.

## PRION VTTTATUS.

## The Bromel-lilled IItule Biral.

Procelleriet vittaht, Gmel., Syst. Nat. I. (1-8s), p, isto.
 citate.





## Materlal in the 'Dheovery's' (ohlemtion.


The colouring of the soft parts:-
Upper bill, palc bloish grey, shading into black at the base and on the nostribs, the central part of the culmen also black and the terminal part or point of the upper bill yellow.
Mandible, pale blue, with a back line along the centre of each side, and the tip black. lris, dark brown. Legs and toes, pale blue. Wels, flesh pink, with the free borders grey. Nails, grey.

## Material in the 'Morning's' Collegtion.

## No. 1, aul. sk. Nov. 2., 190 .

The varions speeies of Prion are not readily distinguishatle mpon the wing, so that observations made on board ship and from a distance only are open to a very considerable amount of doubt. Prion vittutus, however, can occasionally be certified at "lose quarters by the enomous width of the upper bill. We obtained we or two specimens on the 'Discovery,' and were much interested to find that the floor of the month was very extensile, enahling it to take up a mulh larger fuantity of water and small erustaceans than would otherwise be possible. Darwin, in his "Origin of Species," makes the following remark: "In the genus Prion the upper mandible alone is furnished with lamelle, which are well developed and project beneath the margin ; so that the beak of this bidd resembles in this respect the mouth of a whate." If the lower bill of a dried skin is examined more than this would hardly be noticed; for the loose blue skin between the rami of the lower jaw will be found dry and folded to form a hard level floor to the mouth. But if the tip of the little finger is inserted into the mouth of a freshly killed specimen, it will be found that the neatly folded skin can be quite easily distented into the form of a hag, or sar, something like that of the pelican, which is olviously of use to a hird that has developed lamellie on the upper bill which act like the baleen plates of a whate. The tongue is bright orange-pink in colour, smooth and fleshy, and of a suitable muscular chararter to assist in expelling the fluid from a mouthful of minute crustaceans and the water in which they were taken up. The acempanying figures were made from a fresh specimen ; in Fig. 45 (2), p. 104, the sar is lightly distended with a loose piece of cotton wool ; Fig. 45 (1), shows the sac in a state of normal contraction, and the neat small folds into which it is then thrown are shown in Fig. 45 (3).

The flight of the Prion petrels is wonderfully strong and untiring for such small birds. They are apparently always on the wing, aud one rarely sees them resting on the water; their Hlight is always very rapid, with quick changes, which show altermately the wholly white underparts and underwings, and the blue-grey barks with the darker $V$-shaped mark, which characterises this and allied forms of petrel.

## PRION BANKSI.

## The IIThle Bird.




Material in tue - Discovery's' Collection.

 No. 121, ad. sk., ठ. Marth 18, 1904. Anckland Isles. Lamie Harlwur.
The colouring of the suft farts is an follows :
['per bill, pate cobalt bhe, the nostrils and culmen being black. hat the tip pale blue. No jellow nail.
Lower bill, pale hlue, save for a narrow hack line along the centre of each ramms, which begins at the base of the bill lont stops short of the tip and spreads into a $T$ at the jumation of the terminal and the lateral portions of the beak.
Iris, dark brown.
Legs and toes, pale colatt lhue.
Webs, fleshy grev, ahmost pink, terminal border greyer.
Nails, blackish.
Matehlal in the 'Morning's' Colleftion.
II 1 , ad. sk., of. Nov. 2h, 190ㄹ. if S., 179 E.
$W_{E}$ foumd it impossible to distinguish with any certainty the varions species of Prion upon the wing. It is, therefore, leside the point to give a more detailed acoont than the above of what we saw, and the following remarks apply only to the birds which we actually ohtained. One was procured in the ice pack ( $61^{\circ}+66^{\prime} \mathrm{S} .141^{\circ} 19^{\prime} \mathrm{E}$.) in November: There was a comsiderable number aronnd us at the time, but we were beret with ice too heary for the easy management of a lonat, and yet too loose to do without one, aml it was exceedingly difficult, wing to the rapid drift of the ice, to pirli up the birds we shot. We next obtained a decaying sperimen of this petrel in a water-butt at one of the sealers' huts in the Macquarie Islauds. In the duckland lshands they had heen breeding, and we oltaned an adult which flew to a batern on shore at might, and also a fledghg which comblot yet fly, close to some burows in a bomk of tussu: grass, where presmably it had been reared. We seareled many burows, but all were empty, and heyond this proof of its nesting there, we are uncertain as to whether we were examining the burows of this of of some other species of petrel. The flergging was taken on Mirrell 18th, 190t.

In September, 1901, we lad humbeds of Whale birds in our wake ( $36^{\circ} \mathrm{S} .5^{\circ} \mathrm{W}$ ), and we kept them with us throughont September, October, inn November, in the South Athatio amd Sontlem Indian Oceans, even to the ice.
( ) n several orasioms soon after leaving Cape Town for New Zealand large focks phssed us, moving to the west and south-west, evidently on some hasiness bent. It is noticeathe that hhis hime, as seen fiom the ship, may in some lights eompletely
 the belief that two different petrels of the same size compuse the flock.

Between New Zealand and the ire of Ross Sea they were athondant in Derember, and flow by might as well as loy day, hat we las them on entoring the mack.

On our retum joumey in Fehrary, 1904 , we met them agall in $71^{\circ} \mathrm{B} .7: i^{\circ} \mathrm{E}$, and kept then mward from that date to New Zealam, pirking them up again in the Gouth Pacifice, and retaining them in our company, thongh not in large numbers, till we sighted South America. We did hot sed any in the Stmats of Magellan, lout again met them in the South Atlantic, and finally saw the last on July 30 th in $30^{\circ} \mathrm{s}, 30^{\circ} \mathrm{W}$.

On Shoe Island, one of the Aurkland lalands, we found the gromul covered with the Whes of Prim lankisi, and honeyembed with the burows of some petred. We could not satisfy ourselves as to whirlh speries they belonged, for the nesting seasm was orer.

 common in that lowality.

## PELECLNOIDES [TRINATRLX.

The Dicin! Pital.

 p. 437. ibique citutu.

## PELECANODDES EXSUL.


In mid-ocean one maly see a small petrel, quite alone. flying fast and straight flose over the wave-tops, until sumenly, like a stome, it disapman's inter the water. If the sea is particularly calm, it maty been that its wings flap rapinlly for three on fom stroke, then follows a 'quick short sail, the hird seldom rising more than a foot or two from the suface of the water. Its flight seems to be huried and in a straight line, coming to an abropt termination as the hird dips. It is not easy to observe at sea, but its flight is so peculiar that it camot well be mistaken for any other form of petrel.

We saw it first in the midde of September, alout $30^{\circ} \mathrm{S}$ in the South Atlantie, and now and again in the Southern Indian Ocean, to $1=2^{\circ} \mathrm{E}$. long. and as far South as $5 I^{\circ}$. A species of Pelicemoides was also seen in the Magellan Strats in July.

The recognised range of Pelecamides exsul is wer the Southern hadian Oxem from the Crozets tu Kergnelen Island. It has been recorded from New Zealand and the Auckland Islands. It is possible that the lind we olserved in the Magellan Straits was $P$. urinatrix, which is known to range over the Cape Horn seas to the Falkland Isdmes, as well as the Australian and New Zailand Seas. The two series are, so far vor. in.
as I know, intistinguishable on the wing, but the thim, $P$. !arnoti, of Western Somth America, is ronsiderably larger than either of them. Probably the bird we saw in the open orean was Petecmoides exsul, and that in the Magellan Staits, $P$. urimatrix.

Pelpenomides ensul has heen known to breed in Kerguelen Island, where the eggs were found on and after October 31st. Their hurows are said by Mr. Eaton to be as small as the holes of the Samd Martin (Cotyle riparia) ; they are made in dry tanks and teminate in an enlarged chamber with no sperially constructed nest.

## DIOMEDEA EXULANS.

The Wanderin!, Alluatross.
 ibique citata; Eagle Clarke, Birds of S. Orkney Islands, Ibis, Tan., 1906, 1. 177.

Mlaterlal in the 'Discovery's' Coliection.
No. 121, ad. sk., d. Sept. 22,1901 . At sea. $8,0^{-1} 10^{\prime} \mathrm{S} .180^{\circ} 10^{\prime} \mathrm{W}$.
The colomine of the suft parts is as follows :-
Ditl, whitish with a faint pink bush; the tiph of both upper and bume bills being rellomish. Tris, dark hrown. Eyelids, both Mper and lower lriglat scarlet. Legs and toes, wreyish white. Wels, palf greyish-white: when viewed by transmitted light, flesh pink. ('laws, whitish.

Domenea extlans, the Wandering Albatross, was first seen on September 18th, 1901 ( $31^{\circ} \mathrm{S} \because 2 \mathrm{~W}$. ), an inmatme elecimen in the hrown plumage. From September 19th to the QBrl, sereral immature hirds were seen. An immature specimen was seen again on Soptember 10th, having a lark hrown cap, upper parts hown, and a dusky collar romed the nerk. The same brown immature phase appeared again on September $20 t h$, two or three together, and also an ahlult for the first time. On September 2 and an ahlult male was caught on a tin triangle; total length, 42 imeses. The two first primarics on carh side, new feathers, were just appearing from the sheath. In the stomach was an undigested liman Catholic tract, with a portrait of Cardinal Viughan.

On September 29 gh, we adult and several brown immature hirds.
September 27 th to 30 th, October list to ?m, arlult birls were seen, and on September 29 th again an immature sperimen.

The adult inirds followed us clase inland to Tahle Bay.
October 17 th, two days ont from Sinon's Bay, several adnlts and immature.
Octolee 18th to November 11 th, one or more adnlts each ray, and immature hirels also.

From Octuber 17 th t. November 7 th, hirds whinh wire lirown atl over, but with a pater head.

On November 16 th we were close outside the ice park, amb saw one atult. Also the following lay one alult and one immature, and an atult wh Nowember 19th.

At the llamuarie latambs we saw both young and old on November zend. The speries became more and more abmbant as we neared the New Zaband coast, aul at the end of November both young and old were exeeptionatly abundiat.

After leaving Now Zealaml we saw many more on December 25 th, both young and ohd being quite abomdant ench day onwath ats we went south until January 2 me, when we came in sight of ine. This was the hast that we sat of the bird, for it left us ats som as wo entered the ice pack, and athough it has heen recorded off hoss's Great lee Barrier, we ourselves did not see it farther south than $65^{\circ} \mathrm{S}$.

On our return journey to New Zealand we saw every common form of Albatross except Diomedea caulens as soon as, or even before, we had left the immediate neighbouhood of ire, but although in December that bird had been abmunt in the same seas, in Mardh we saw very few inded. In going morth the first was seen on Mareh 9th, $1904\left(60^{\circ} \mathrm{S} .177^{\circ} \mathrm{E}\right.$ )--a second-year's bird with a brown cap. March 10th and 11 th each showed one hird. The 12 th showed many more, two of which were mottled bown all over, a very young phase. On this day we saw five or six together, sometimes settled on the water. On March 14 th nearly all that we satw were joung and mottled, and we came close in to the Auckland Islinds.

On June 10th we left New Kealand on our homeward mage hy way of the Magellan Straits. We saw several examples of Diomedea exulans between June 12 th and 19 th (chiefly thire-year hirds with hrown (aps). After this it absolutely disappeared mutil we had passed through the Magellan Straits and had entered the South Atlantic Ocean. Even then we reached the Falkland Islands without seeing a single example, and it was not mutil July $233 \mathrm{~d}\left(48^{\circ} \mathrm{W} .46^{\circ} \mathrm{S}\right.$.) that the lird again appared. On the 29 th we saw one adult and one yearling, and an adult on July 31 $\left(29^{\circ} \mathrm{S} .27^{\circ} \mathrm{W}.\right)$, after which we saw no more.

When on the wing the feet are held folded together at full leugth under the tail, and, extending well beyond its longest feathers, give the impression of a markedly welge-shaped tail with a white terminal border. This, of comse, is not the case, for the tail is bordered by black at the extremity, and the appearatuce of white beyoud the llack is due to the whitish feet.

Diometea coulam." was by no means so deroid of shyuess as some of the other albatrosises. Diometren migia and chiomptere were the most shy of all, ereltens oreasionally found courage to come closer to our wake, sometimes yuite dose, Int
 Threlessogeron culminatus.

Diomedea exulans is known to breed freely on Kerguelen Island, where a large number of nests are built on the grassy stopes 700 or 800 feet above the sea,
of striaw and stubhla plastered up with chay（Sir Joseph Howker）；they atso breed upon the that gromi，arowimg tw Mr：Biton（Phil．Trans． 168 （187！9），p．145）．

Wi wrationally motied the pink stains on the sides of the neck in this hird， whimare remarked upon hy Mr．Eaton．

## HOMEDEA REGTA．

## 




## OいONEDES（＇HIONOPTERA．


The former is the whitm of these，the two largest forms of allatross；it is an inhabitant mainly of the אouthern Lumbun Geam，but has been reported also from the South Athantie：
 it is not ease to spak contidently of the occurrene of these hinds moler one nane on the other．
（th certain ocasions we oltaned a view rlose enngh to satisfy ourstros as the the identity of $D$ ．chionoptera，if rmplete whiteuess of the whole wing except the
 standing the doubt that must necessarily attand itself to obserations unemifined ber fecimens，it may be worth while to record the following．
ln the South Atlantic we saw a momber of the larger allhatroses，but ］believe that evary one of them was to be refered to $D$ ．ratans．Jn the largest of all there was a natrow lank tip to the tail，and this apparently is never seen in either $I$ ．reyia or D．chimentera．

In the Sontloem ludian Oeam．on the whar hame we comstantly saw lirk whirh apmeared to have less hark on the wings than seems comsistent with I），carehns．We could mot be eertain，howerer，save on a few orasions．Fin example．on ortaher athl，two adults with hand primaries only ame romm the ship，and the tail in
 chimoptere，and after this we saw similar hirds every two or three days，the last

（ ${ }_{11}$ Marrelt 11 th， $1904\left(56^{\circ} \mathrm{S} .164 \mathrm{E}\right)$ ，we satw what we believed to be an example of II．refin，aml，whe had an mblt $D$ ．brultus in sight as well with which to compare it，probably in this rase we were right．We saw others a little further worth carh hay until we rached the durkiam Islands．

Between New Zealand and Gaw [rom we saw ucither. but in the South Ittantio we saw one of these larger forms quite elose to the Fatkland dolands, and anther large and exmentingly white indivilnal a little farther nowth. $D$. remin is a hird of the New Zealand seas, and has heen taken in the Anckland Islands and New Zealand. I). chementere, on the other hand, frequents the Southern Indian Orean, and hat been taken on the Marion and Kerguelen lilamls, as well as in the South Mtantic. Nrither of these cmormons hirds was fond of approaching our ship at all closely. We had no chance of catching them as we caght $I$. erentime melemm,m,s, and Th. culminntus. They sailed in wide sweeps, almost always at a distance from the ship.

Thongh the adults are so moch alike, the downy nestlings of $D$. reyid are said to be white, whild those of II. chimoptera are brown, and in this respect the two speries afford a somewhat parallel case to that of the two largest penguins, Aptemedyters fionsteri and putatomick. Which in the adult stage are far more closely alike than they are in the natal down. In the latter they are even more markedly different in rolow than are the young of $D$. regie and dhimoptera.

## DOHEDEA MELANOPHRYS.

> The Black-liroured Illutions.

' Konthern ('ross' Coll. (190:), p. 161 , ibique ritutu.
Materlal, in the 'Dinotery'h' ('ollefeton.



 No. i, ad. sk., $\delta$, March 10, 190t. With orange tip to the beak, is s. 176 k .
The colouring of the soft parts is as follows:-
Bill, very variable, apparently with age, from a uniform dnsky brownish line in the younger hirds to a miform orange yellow in old adults. The tip always a deeper tone of the sime colour as the lill. The most usual adnlt form is a dear lemon yellow thronghont with a rich orangered tip to the uper bill.
Iris, rich hazel brown.
lures and tues. fleshy grey.
Wels, fleshy grey.
Claws, darker horn colour.
The feet and leas when seen at a distance appear to he of a fairly dark haish erey, but if seen closer and by transmitted light, the colour becomes pink.

Material in the 'Morning's' Collection.
No. 1, ad. sk., f, Dec. 1903. $56^{\circ} \mathrm{S} .172^{2} \mathrm{E}$.
Diomeden moltomplirys was first seen on September 27 th, 1901 ( $\left.0^{\circ} 39^{\circ} \mathrm{S}.\right)$ : two young bints with dusky tips to lemom yellow lifls. After this we saw it "wery N :
day, in varing numbers It followed us dose in shore to Table Bay, and appeared again at onre as we put to sea. Throughout October it was more aboudant than any other of the larger linds. Some were pale grey all over the head and neck, others had merely a hrod or narrow collar of grey, incomplete betow; the size also varich considerally, but all had the bill of $D$. melanoph?ys, dusky yellow, am always with a darker tip. We comsindered these grey-headed and grey-necked individuals, if the bill was hoad, yellowish and darker-tipped, to be the young of I . molanophys. There was no difficulty in distinguishing the grey-headed $D$. melanopherys from the grey-headed Th. chlororhynches and Th. culminatus. since the colour of the lill in the two latter is much more dean cat and histinctly black and yellow than the dusky brownish ar yellowish hith of the immature $D$. melonophrys.

Until October 19th we saw only inmature lirds. but on that day the white-healed adult, with lemon-yellow hill and mage tip, appeared. Ifter this we saw each day for a whild only adult birds, but on October esth we hat the following together: White-headed mhlts with lemon-yellow hill and hrightmange tip; white-healed hinds with hright yellow hill amd dusky tip, or with dull yellow hill and hackish tip; and grey-heated hirds with dusky hownsh bill and larker tip.

Throughout the first half of Novemher, 1901, we saw one on other of these forms ahost daily, and came to the conclusion that they were simply age changes, and that the grey-headed were the fimmature. We lost them all as we approached the ice, but had four with us of the ycllow-hilled phase the day after we left it. These birds had such deep yellow bills that the orange tip was hardly to be differentiated. They all had pure white heals. It will be conveniont to atrange them thins:-


On November 20th we saw phase 3. Un November 21st, phase 1. On November 22nd we saw phases 2 and 3, eight or ten birds at once, sometimes. We were then in sight of the Marguarie lshands, and the binds were here exeptionally plentiful. They also mompanied us on our way to New Zacaland.

On leaving New healand for the south we fomm $D$. melamophys excedingly numerous on December $\because 6$ th aml 27 th ( $\$$ lat. $53^{\circ}$ ). Nost of them were of phase 1. One was small in size, thongh white-headed, and of phase 4 , and a few were of phase 2. On December 28 th they were more abmulant than ever. Nearly all were of phase $\because$, and these, being the ohler and more plentiful, were the binds that we gencrally caught. A few were of phases 3 and 4. All had white heads (see fig. 44, p. 94).

[^13] procure one, and I can here only give impressions receivel at the time from watching binds at some little distance.

The same remarks exartly apply the next few hays, until, on . Tanary ond, we sighted ice. On that moming we had five hirds of phase 1 with as, and one of phase 3. After this we lost them entirely.

On oum homerard voyage, from MreMurlo Sound to the Auckland Islands, we first enowntered them, six or cight together, and all of phase $\because$, on Fehruary 29, 1904 ( $\left.67^{\circ} 30^{\prime} \mathrm{S} ., 174^{\circ} \mathrm{E}.\right)$. We sat them in graduatly increasing numbers, always of the same phase, from March lst to March 14 th. Wuring this fortnight we saw probahly orer a humded birds, and all were of phase $\because=$ exept ond which was of phase 4.

While anchored in Port Rossi in the Auckland Islanls we saw them out at sea, but they never came into the harlmur. Between New Zealand aml the Straits of Magellan, to our surprise, we saw not a single example of the hird. It appeared again, however, on the day that we sighted South America, and in the Straits we saw many hundreds sitting in large companies on the water. On the Atlantic side between Punta Arenas and the Falkland Islands we oceasionally saw one or two of the typical adults, the last on July 27 th, when $D$. metemplerys disippeared entirely, and its place was taken by a form we had before this hardly son at all--a hind in every respect the same in shape and size as $J$. melonophon, bot with a grey ring always rome the neck and the bill always quite black. **

Diomedea mehonophys wanders orer all the southem oceans, and occasionally has made its appearance far in the North Atlantic. Of its seasomal migrations very little appears to be known, bat even our own limited wherrations seem to show that they have definite movements at certain seasons. No mere weather changes can accoment for their congregation in the Straits in mid-winter, neither can aceident only accomen for our having met only the fully adult form in the ice in autumn.

## TIIALASGOGERON CULAMNATUS.

> The Giry-hemed Alluthors.

Diomerlea culminutus, Gould, Amn. \& Mag. Nat. Mist. xii. (184t), p. Sill.
Thaldssomforn rulminutus, Baird, Brew., and Ridgw., Water Birls N. Amer. ii. (1snt), p. Bis ; Sharpe,


Material, in the ' Discoyery's' Collection.


* This bind appears to agree with the "Molymawk" (Thulassogeron sp. inc.), mentioned ly. Mr. Eagle Clarke anongst the birds of Gough Island (op.cit., p. 265). Those that we saw were evidently adult. They had the bill entirely black, and the head white, shading on the occipat, or sometimes on the hind neck, into grey which deepened round the sites of the neek to form a well-marked grey collar, incomplete upon the fore neck. The feet were rosy pink. In other respects, as in size, the bird elosely resembled D. melanophiys. We saw it several times in March, from $55^{\circ}$ S. lat. northwards as we came up to the Auckland Islands from Wilkes' Land. We saw nothing of it in the South Pacitic; but in July we found it again in the South Atlantic. hetween $30^{\circ}$ and $40^{\circ} \mathrm{S}$. lat. as we came north from the Falland Islands in 1904.

The colouring of the soft parts is as follows:-
Upper hill, back entirely, except for a band of pale yellow along the centre of the rulmen from the edge of the feathers to the tip, where the pale yellow becomes orange pink.
Nandible. back alng the eutting edge, otherwise rith ochreons yellow, with a narrow streak of orange red at the base, toming up to the angle of the mouth. 'Tij wholly lack.
hris. rich hrown.
As in the case of Thuluswoferon chlororlymehes this bird must be seen first at a moderate distance for recognition, since it is essential to make ont the distribution of the yellow and bark mon the bill. Having once done this it is mot ditticult to rerognise it much farther away, thongh it repuires care to awod confusing it with young, larkbilled, grey-headed examples of $I$. melanophys. There are, nevertheless, some very puzzling forms of alhatross which are orasionally seen. For instance, on October e0th, 1901, we had a hird with the typical yellow admen on a very dark heak, but the head and neck, insteal of lwing wholly gres, were grey with a pure white crown, while the fore-neck and throat were also white, making the grey collar incomplete. Again on October 23 d, 1901, we saw a similar hird with the rown, dheeks and throat white, but with some grey aromid the eyes, and an incomplete grey collin round the upper neck. The depth of the grey on the head also varies in the apparently adult, sometimes approaching whiteness, imdeed, the heads in a few were wholly white, and in others very dark grey. The blackness of the leak also varies, but in every ase the yellow culmen is distinct, reaching from the mange tip of the bill to the nasal feathers.

We had Th. culmimetus with us constantly in the last ten days of Octoler and throughont the first half of November, 1901 (hetween $70^{\circ}$ E. and $140^{\circ} \mathrm{E}$., alout $50^{\circ}$ to $60^{\circ} \mathrm{S}$ ). It disappeared as we apporched the ine, hut joined us again the day we left it. We saw it oft the Macpuarie latamds, and it acompaned ns thence on our way to New Zealime. In March, 1904, we met with it on cur way north from the Antaretic ( $68^{\circ} \mathrm{S}$., $157^{\circ}$ E.) and kept it with us to the Auckland Islands. We saw it constantly between New Kealand and C'ape Hom in . Tme and in . Tuly, and althongh we did not see it in the Magellan Strats it appeared again orrasimally on the Atlantir side. We saw no example further north than $45^{\circ} \mathrm{S}$. in $45^{\circ} \mathrm{W}$. Its recognised range covers the Southem Oceans, and it is known to go as far north as Central Americat on the Pacific side.

## THALASSOGERON CHLORORIIYNCHUS.

> The Yellow-billed Albetroses.

Diomedet chlormehymbos, (im. Syst. Nat. i. (17ss), p. itis.


We first cmoontered Thalassompron chlororthmehus in the South Atlantir Wean on Weptemher $\because=2,1901\left(: 35^{\circ} \mathrm{S} 14^{\circ} \mathrm{W}\right.$.). It is guite recognisable on the wing by the chatater-
istic arrangement of black and yellow on the hill. which is distinet even at a considerable distance. It was with us from september 20nd to September :30th, 1901, and again quite close in shome off the wast of south Africa (False Bay) as well as over the Agulhas samdbank, lout eastwarl of this, in the Somthern Indian Ocean, its place was taken entirely by Thalussomeron culmimatus, which we had not once observed in the South Atlantic. Th. chlormblynchus is known, however, to range over the South Atlantic and Southern Indian Oceans, and the Sustralian seas. That its ratnge varies, however, with the season, as is aparently the case with so many Southern Ocean birds, seems evident from its romplete alsence during our vorage from the lape to New Zealand in Octoher and November.

No example was taken on the 'Discovery's' royage.

## PIIGBETRIA FULIGINOSA.

The Sorety Alhatross.

Diomedta fuliginowa, Gmel., Srst. Nat., i. (158s), p. 268.
 (1902), P. 163, ilique citute.

## PIIEBETRLA CORNICOIDES.

Phabetria cornicoiles, Hutton, Ibis (1867), 1. 192; Eagle (larke, Birds of Gough I., Ibis (1905), 1. 267 .

> Materfal in the 'Discovery's' Collection.

The colouring of the soft parts is as follows:-
Bill, entirely back, exelt for a narow edging of livid blue along the cutting edges.
Iris, dark lirown.
Bare skin of the chin bencath the mandible, tusky blue.
Leegs and toes, flesh grey.
Wels, also flesh gres, but dull red by transmitted light.
Claws, quite pale grey.
The Sooty Albatross is perhaps the most striking liird of all in the Southern Oceans, as it is the most sinister in expression and the best adapted by its dusky plumage, and its interested manner, to form the basis of sailors' legends and superstitions. On September 23, $1901\left(36^{\circ} \mathrm{S} .11^{\circ} \mathrm{W}\right.$.), we first saw it in our wake and thence onward until two days before we reached Cape Town, on October 3rd. On leaving, it was again two days hefore we picked it up. Then we had six or eight sailing round our ship, very inquisitive, but not at all inclined to feed in the ship's wake. They flew so close over our heads that we could see the expression of their eyes. We were thying meteorolugical kites at the time, and so interested were they in the messengers sent up, that they constantly fouled the lines. Throughout Oetober they were abundantly with us, and we procured one male Ph. comicoides, spmuing 7 ft . tin.
from tip to tip of the wings. They arion alway in greater numbers towards crening, anl on the evoning of Nosember 18 th as many as sixteen were counted at onn time. Buth the light amb the hark phases were generally ahumant, though on Novamber 12 th, when we ham aght together, they were all of the pale-lacked variote:* The hird rematined with ms on November 1 Gith and 17 th as we enterent the ontskits of the pack ice ( $62^{\circ} \mathrm{S}, 1+0^{\circ} \mathrm{E}$ ). It appars to shm the immediate
 hatpernd alsw when we appoarhed and left Cape Town and New Zealand, we invariahly lost the limb about two days out, and picked it up again at about the same distance when we left. Betwen New Zealand and the ire, at the latter end of December, we saw serctal barh day. Somb of these were abmost white on the lark and breast. On limuary 1st we satw one exeptionally white and another exepetiomally dark. As we יutared the ire on Jamary ? ind they left us at the outskits. We dirl not see this bird again until two years later when, on our voyage home, it was the first of the wean lirds to mest us. This ofcurred on Fenmary $\because 2 n d$ even farther south than Couman Island, at $74^{\circ} \mathrm{S} \cdot 170^{\circ} \mathrm{E}$. It was one of the paler varicty, probably $P h$. corniedides, which Mr. Bagle Clarke tells me is a more Suthern form than Ih fuliginost. We saw one again on Felmary 23rd, and three or four on Felmary 27th, all of the paler variety. Eight on ten appeared on Felmary 29th, when we still had iochergs romd us, and Pafodrome nira, the ibe-indicator, in almmatace. On March the we saw several very dark birds, and one at least atmost white upon the bark. Again both extremes appeared together on March 8th and 14 th.

I have given for what they are worth the alowe ocurrences of the two extremes of eolour together. We did not appear to pass from an area of the one phase to an area of the wther in any definite manner, bot though there are immomemble intermediate individuals, the white and the black varieties are certainly vory noticable at sat, aml it beomes a matter of interest to know what is their distribution in the hreerling seatom.

There is no hird in the south with which it is possible to romfonse these birds. The muly uther abmulant large dark hide is Ossighem, which, with its
 billod, close-feathered Phelntsite. The latter, morenver, has an easy sailing Hight, Which is perhaps more perfert than that of any other alhatross, and many of us romsidered it the most lascinating to wateh of atl the owem hirds on this asoment.

[^14]A.
 in Lat. $75^{\circ} 50^{\prime} 50^{\prime \prime} \mathrm{S}$ and Long. $166^{\circ} 44^{\prime} 45^{\prime \prime} \mathrm{E}$.

(From bi-houly observations.)

| Date. |  | Mean. | MIux. | 2lin. | Date. |  |  | Mean. | afax. | 2lin. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Fibre. | Fahr. | ratur. |  |  |  | Fahr. | Fahr: | Fuhr. |
| 1902. |  |  |  |  | 1100: |  |  |  |  |  |
| February | ... | ${ }^{1} 1.5 \cdot 8$ | $\because 9 \cdot 2$ | -0.8 | Fubuary | ... | ... | 11•2 | $\because \cdots$ | $-10 \cdot 0$ |
| March | $\ldots$ | $7 \cdot 7$ | $\because \square$ | $-18 \cdot 2$ | March ... |  | $\ldots$ | -11. | 示号 | $-\because 10$ |
| April .. | $\cdots$ | $-7 \cdot 1$ | 19.7 | $-81 \cdot 6$ | April ... |  | $\ldots$ | -1in! | ; $\because$ | $-43 \cdot 0$ |
| May ... | ... | $-12.8$ | 1:30 | -39 - | May ... |  | $\ldots$ | $-1161$ | 9* | - |
| dune ... | . | $-16 \cdot 11$ | 1:30 | $-47 \cdot 11$ | June ... |  |  | -1:3.! | $17 \cdot 11$ | $-4.501$ |
| . July ... | $\ldots$ | $-8 \cdot 5$ | $15 \cdot 1$ | -30.0 | July ... |  | $\ldots$ | $-\because 1 \cdot 1$ | $1 \because \cdot 0$ | -8.5\% |
| August | $\ldots$ | $-16 \cdot 6$ | (i) 0 | -50. 5 | Angrist ... | $\ldots$ | $\ldots$ | -16. ${ }^{\text {a }}$ | $11 \cdot 8$ | $-54 \cdot 2$ |
| September | $\ldots$ | $-12 \cdot 11$ | $15 \cdot 0$ | $-41 \cdot 5$ | S'eptember |  | $\ldots$ | $-18.7$ | 1:3• | -51.5 |
| Oetoler | ... | -8.9 | 11\% | $-11 \cdot 8$ | October | $\ldots$ | $\ldots$ | -1i.8 | $1 \because 0$ | $-43 \cdot 8$ |
| November | $\ldots$ | $12 \cdot 11$ | 27.8 | $11 \cdot 1$ | November | $\ldots$ |  | 35 | :1) 0 | $-6 \cdot 0$ |
| December | $\ldots$ | $\because 3 \cdot 1$ | $39 \cdot 1$ | $4 \because$ | December |  | $\ldots$ | 06.4 | $42 \cdot 1$ | $7 \cdot 6$ |
| 1903. |  |  |  |  |  |  |  |  |  |  |
| January ... | $\cdots$ | $21 \cdot 1$ | $39 \cdot 0$ | ! $\cdot 11$ | January | $\cdots$ | $\ldots$ | $4 \because 1 \because$ | 78.8 | $4 \cdot 0$ |
| Ye.ar | $\ldots$ | $10 \cdot 7$ | :39 0 | -0.10\% | Year ... |  | ... | $4 \cdot 82$ | $1 \because \cdot 1$ | - $65 \cdots$ |
|  |  |  |  |  | $1!94$. |  |  |  |  |  |
|  |  |  |  |  | February | ... | $\cdots$ | 520 | 885 | $6 \cdot 4$ |

- Observations began on the 9th.
: After the 7 th, observations were made from 8 a.m. tu 10 p.m only. ... . Mean of $\frac{8 \mathrm{a} . \mathrm{m} .+8 \text { p.m. }}{2}=15 \cdot 5$.
: Observations generally made from 8 a.m. to 10 p.m. ouly $\ldots \ldots$... ditto $=26 \cdot 2$ ?
* Observations made with varying frepuency from eight to three times a day... ditto =22.2.

S Observations generally made at 8 a.m., Noun, 4 p.m., and 8 p.m., and ;
discontinued after the $15 t l_{1}$ day. $\quad$ ditto $\quad 20.3$.

## B.

Meaxh and Extmemen of Temperatere at (ape Adare in Lat. $71^{\circ} 18^{\prime} 0^{\prime \prime} \mathrm{s}$, Long. $170^{\circ}!9^{\prime}: 30^{\prime \prime} \mathrm{E}$.



* Eight day only. $\quad+$ Omitting February, the mean for the 11 months is 5. 17.


## INDEA.


 I! : b beediner habits. the is: changen with

 habits, 11 : in and mulne water. $1: 3$ : behasionr

 migration, if, $\therefore$ : moult, $\therefore$ : $:$ numlt of gomus,
 pathory, 41 : rookeries in Sonth Victoria Lamd.
 stages of immaturity, it, is ; stones in stomach. 1:3: variations, it, in; voice noter, th, ti: roice untes of young. 17 .
Ahatross, 61, 3!1, 108-116.
Amos supereilinsio.sI.
 ing of. :3.
 10: : ung uf, 7 : : youms, 7 .
 100, 111 : absone of parasites, 18 : air tempmat the during mesting. $1 ; 12$ : abeage are $1: \%$ : body temperiture 1 is: bewding hathit, $i$ :
 death-rate ol' yomis, $11,1 \because$; description of ers. $27-30$; discosery of rookery, 1 ; distribution, $:$,
 chemice, 17; fatness, 1 : : feeding of pouns, 11 : linting of tirst egg. 5 ; food, 14 ; hathits of youns, 27 ; measurements, 21 ; methon of "arying egge and yomus, 11, 1:5:methods of progression, 16 : migratin, $5:$ mismation with rome. 8. 9, 10 ; monh. 19. 20: mursing deed chicks. 13: " polding " of "Mes. 11 : starvition during monlt, 15 : stomes in stomach, 1.5 ; strougrge for chicks, 12 ; variations, 22 : volice notes, 18 : boice motes of young, 18. 26; wandering in :hatum, 15 : weight, 16 ; wrinht of egg ind youns, 26.
Aptenoryters puturemict, 6, 11, 19, 22, 23, 25, 2-7, 2心, 32-36, 60, 61, 111: description of rookery, : 4 : exg of, 29, 30, :34: foorl, 35 ; method of holding exg and yomg, $3: 3,34$ : mothods of progression. :35: moult of young, 3.1; roice notex, :3.

Butcri: 18.
 gation in Marellan strats, 11 ; phases of immatmity, 11 .
Blac Petrel. 104.

Butrol pillyutris. 2-
linzzan, 2s.




G'itururathos intipoles. 62.
C'aterrechless cherysultume. 36.

C'aturarhles purhyrlemull/s, :36.
 61 : was of, 60: mirration, 62: monlt, 60: nesting hathits. 60. 61; phases of immatmity, 60 : sulereiliary erest, 61.
("uthrulthess selteteri, ::6.
Cephateports. 11, 15, 35, 43.

Crabseater, 39, 100, 101.
Cumb". 5 .
Curlew, 26.
C'gmodirmata grallain, 79, 80.
 by lor. I'irice, 10: ; nestime hathits, 10 B .
Itionemtert, 99.
Diometion chimumperte, 109, 110-111.
Diomedral vharurhymehns, 111.
Siometret colminutus, 11:3.
 immaturity, 109 : shyuses of, 109 .
Itiometlen fultiginusa, 11 N .
 tion in Mugellan Strate, 1 : : ; phises of immaturity, 11:.
Diomedret regite, 16:11, 110-111.
Diving l'etrel, 107-108.

Emperor Penenin, 1-31, 41, 1., ts, 61, 6is, !1, 100 111: abence of paraite. Is ; air-tomperature
 furature, 17,18 ; breeding babits, 7 ; colome of yomgr, 2? ; damage done to pomm, : ; deathrate of goung, $1^{11}$. $1 \because$; description of $\quad$ erge, $\because$-itu; dixcovery of rookery, 4 ; disuibution, $\therefore, 1 \mathrm{~s}$; erges and yonne common moperty, 11, 1 ; enemics. 17 ; fatuess, 15 ; ferpling of young, 11 ; fimliug of tirst ceres. 5 ; food, 11 ; habits of young, $2-$; measirements, 21 ; method uf amrying try ant young, 11, 1: ; methol of progresion, 16; migration, $\therefore$; migration with foung, $s, 9,10$ : moult, $19.2(1)$ musing danl chicks, $1: 3$; "pothing" of egess, 11 ; starvation during montt, 15 ; stons in stomach, 1.5 : strustle for dick, $1 \because$; lioriations, $\because 2$; voice notes, 1 s ; voice motes of youmr, 1 s , $2 \boldsymbol{2} ;$ wambing in antum, $1 . i$; weight, if ; wight of egg and yomes, 215.
Enlyptes sihleyelt, 59.
Eullausite, 15, 4: 4. , sil, 90.


 Freipette molanoyuster, 79.

Gamnet, 2!
(ilint Potrel, 17, $21,38,91,93-101,116:$ distrilmtion of varicties, 96 ; flight, 99 ; foom, 91 : footmarks, 94 ; mesting habits, ! I ; valiation, !as.
Givat dipey shearwater, 81-82.
Great Peugain, © $62,62$.
Grey-headed Albatross, $3: 30,109,111,112,113-114$.
Gull, Herrius, 26.
Halobrna, :39.
ILulubarnu cirrulat, 104.
Killer Whale, $17,88,40,56,3: 9$.
 30, 32-36, 11, 60, 1il, 111; description of
 Huthod of holding esg and yomm, : in: : :t ; methend of prowitsion, in; moult of goung, : : $t$; voine notes, : : 4.

[^15]
Mcformick's Nkna, 17, $\because 1,53,63,64-76,90,100$, 101 : attacking intrulers, 70 ; attacking pengnins, 67 ; disappearance of young, $7:$; distrihution, 6if; eating snow, 15 ; eng of, 7.5 ; feeting of yoms, 71 ; food, 70,$7 ;$; late broods, (i7; monlt, it; nesting habits, 69, 71, 71; phaves of phomage, fif, $7-3$, it ; sense of smell, (is: thierins tendencies, 69, 7:3; variation, 6s; roier notes, 71.

Meym lyptes rutipulmin, bif, 62.
 $\therefore 1,101,116:$ curg of, 7.5 : young of, 7.
 100, 101 ; attackiny intrmiers, 70 ; attacking
 tribution, fof; cating snow, fo ; efse of, 75: feeding of youns, 71 ; food, 71 , $7: 3$; late luroods, 6i7: monlt, 71 ; nesting hahits, (i!), 70, 71 ; phases of phmare, 66, 72, 74; sense of smell, 68: thieving tendencien, 69, $2: 3$; varation, 15 ; voice notes, 70 .
Maton liarl. 80-81.
"Nelly." S'e Giant Petrel.

Northern Polar imimals, 18.
Nemumius arquatte, 26 .
Oiemaites memmonaster, 70 .
Orcmiles nceamirus, :;), 76-79, s: , 9! ; di-tribution, 77 ; eger, 78 ; food, $7!$; migration. 77. IS: nesting habits, $\operatorname{Ts}$.
Otyetromus scotti, :3:3.
Opstrelitue Pessouti, 87-88.
Ommetrpheret, 39.
Oirol !lutintor, 17, 3s, 40, 56, 99.
Ossifrifye !imantea, 17, $\because 4,3: 9,11,93-101,116$; distrilntion of raricties, ! 1 ; flight, 99 ; food, : 4 ; nesting haljits, !4; variation, 95.

Prayotrome, :3: 100.
Pelodromut mitut, 18, 38, 83, 88-92, 100, 11i; chemies, 90 ; flight, 91 : fout, ! 0 ; measurements, st ; migration ! 0 ; monl, : 11 ; voice, undes. : 1.
Prtctumides remel. 107-108.
Pelermoiltas garnoti, 108.
leterthmidex wrimetrir, 107-108.
I'chguins, $1-62, ~ 6.1,8:, 86,94$; footmarks and readways, 11 .
fetrels, 76-108; hathit of disporefing, 94.

Thulumerorter molensai． 81.
Ihalurroforwer 7raterni，：3？
Phumetria，3：．
Phondretria fuliginosa，10：9，115－116．
 tributiom，sis．
Prorellaritu ifrisen，su．
Prinfors cimpiomes．81－82．
Prion，89，RI，Jut．

Prion desolutus，：3：
Priou rittatus，？：3，li，104－105．
Profellerite erquinortitelis，sti．
Prorelleriot anturdiet，se．
Procellopict reportere， 101 ．
Promellaita cotumsis，10．
Prorelleriat cintron，$\$ 1$ ．
Proctllarim！！e！mutpa，9：3．
Prorelletria ！flerimbuides，st．
Procellerion gretlerrier，sil．
Prerefleriat ！risem．su．
Profefleriat lessom，心夊．
Provellerim mivele，ss．
Procellarin orequira， 7 \％．
Procellarim urimutrio． 10 ．
Procellaria vithetu， 101.
Puffin，20．
Puffinus drisfus，80－81．
Pypusedis，：it，il， 1 om．
 9．5， 100 ；air temberatmes doring nesting， $1!$ ； breding hadits， 4 if tis：dranges with growth，
 51 ；fecding of yomus， 41 ：fom， $4:$ ；hathits， to：in and mbder water，ter ；beharion in a hlizzard，4！；incubation perion， 4 A ：I Sabeline varicty，：： 7 ，$\therefore$ ；methots of promression， 411 ；

 pathwas，41：rookeries in Sunth Vieturia Land， 4．；sknas attacking，sul smell of rookery，4：： stages of immaturity，if，is：stones in stomarh， 1：；rariations，it，in；voice notes，16，ti： voice notes of comur， 17.
Pimposelis antumtion，is．

Quail Hawk， 10.
Rows＇sul，8：9．
Raval Allatros，109，110－111．

 babits，bio，（is ；phases of immaturits，bot： sumerciliay mest，bil．




Shag，w！

Snowy Alhatioss，109，110－111．
Snowy letrel，18，is．s：i，88－92，1610，116； chemics， 90 ；flight， 9$]$ ：foor， 90 ：mersure nuents， 89 ；migration， 91 ；monlt，：11：rois nutes，！ 1.
Smety Alhatross，109，115－116．
 Imtion，sit．
Stonorlimehnes，：39．


N＇rime， 63.
Sternu frometelis，：3：8．
Strom hirumlinterte，di：
Ntprillt littutu，dis．
T＇crin，：in， 63.
 heaching of，sis．

Thatussinyerom chlorwhymete，112，11\％，114－115．
Thedussoypron culminutus，in：11！！，111，11こ，113－114．
Wimdering Mhatross， $8: 3,35,108-110,111$ ：plases of immaturity，10：9：slyness uf，10：
Werdelles Seal，fic， $7: 8$ ， 100 ．
Whate Sidx，：：：106－107．
 77；erg，is：food． $7: 4$ migratim，i－，is； nesting hahite，is．

Yillow－hillad illmatros，11こ，11：114－115．

## BIRDS

## I'late !.

The Emperor Pengnin Rookery at Cope Crazier, from a sketch taken in hiptemixer. lowking eastward along the cliffs of hose (ireat lee batrier. In the foregromet at hird is represented holding a living chicken on it, feet, white another is about to take possession of a dead one; a third is slemping in the frome prition. and on the rithot a bird is represented sleeping in the more usmal, upright, powition.

RIR1S.

> Plate II.

The head of an adult Emperor Penguin (Aptenertyes forsteri) in full planage, life-size.

$$
e
$$

## BIRJS.

## Plate III.

The beads of Emperor P'agoms (. 1 ptomolytis forstori) at varions ages. Figs. I and $\because$, the beads of chickens in down, at one week and one month respectively : firs. : and 4 , of immatmre birds at five and six months respectively; figs. 5 and b, uf immature birds at seventern months. All these are apmoximately one-third lifeosize. (Str Aver, pry 20 and 21.)


## BIRDS.

Plate IV.

Drawn from one of the frozen Emperor Penguin chickens, picked op on the ice at ('ape Crozirl'. Altwngh it stom withont smport as depicter, when frozen, it probably would be mable to do so at that age, in life. It was not more than a few daye old. ant the photure is life-sion. This specmen can be recognised in the gronp of frozen Enpern Perguin dheks on page: :


RIRIS

$$
\text { Plate } V \text {. }
$$

The feet of young and adult Emperor Penguins. Fig. 2 shows the extent of web in the foot of the chick about a month old. Approximately life-size.
.


## BIRD:

## Phate VI.

Eges of the Emperor Penguin, from the 'ape ('waier Rookery. Fig. 1 representthe smallest of the series obtained, and fig. $\because$ one of the larger, with an unusual number of the characteristic little chalky nodules. Natural size.
̌

## BIRBS

PLATH:VII.

Egge of the Empror Penguin, from the Cape Crozer Rookery. Fir 1 repersenth the largest of the series, and fig. $z$ one slightly smabler, marked with an musnal surakiness on the surface, and but few of the litile chatky nodules. Natural size.
s

## Bんは心。

Plaje $\backslash 111$


 fig． 2 represents the head of a youns him mon the completion of the womate from the
 fig．the the hed of an extmormaly what in which the woldert pigment hat hean
 pp．：35，：36．）


## BIRIS.

## Plate IX.

The head of the Adelie Penguiu (I'y!tomptis ulthe Fis. 1. a day or two after emerging from the egg, with the myglar mendo erg-seale on the upper bill ; fig. $\because$. about a fortnight wh: fig. . . Sheddine the downy plunage : and fig. 4 , in the plumage of the tirst rear, with white throat and harkish hill and eyelids: fig. 5 represents the lead of a normal adnlt : amd firs, fi, that of an isabelline variation, with the oceipital crest rased and the eyes stating, as they appear in this species whenever it is angered or texcited.

$$
\therefore \quad \because
$$



## BIDD

## Plate X .

 are of corresponding age to fig. 1. Pl. IX.; fig. : , of correnunding age tw fig. $\stackrel{2}{ }$, Pl. IX.: firs. 4 : and $\pi$, the normal foot of the adult ; and lig. b. in ahormal distribation of colour in the foot of an alult.


## BHA心

## Plate XI.




 plumes. both were taken in the Marparie lslands, on November -2end ; fige if shows




## BIRDS．

## Plate Ailf．

Heads of McCormick＇s Skna（Meyalestris macormicki）at vimious ages．Fig．1，of nestling when first hatcherl．with the egg－scale still attached to the mper hill ；fig，丷． nesthing at abont two weeks．showing the rapid growth of the hill ；fig．只，Hedgling at ahont seven weeks，when the liad is just heevimine to nse its wings；fig．4，voung adult of the first year ：fig．万．adult at the end of smmer，hat before the monl．


## BIRDS.

Plate XII.

The feet and kegs of McCormick's Skna (Megalestris maccormictio) at ages corresponding to the heads in Plate XII. Fig. 1, the leg of a nestling when first hatcheal ; fig. 2, of at nestling from two to three weeks old : fig. :i, a stage of colouring rearhed at the shedding of the downy plumage; fig. t, the lig of a normal adnlt ; fig. 5, of an adult, abnormally piebald (see p. 6s), in which the colouring of the immature lied has persisted.


# ILI. ON SOME POINTS IN IHE ANATOMY of the <br> <br> EMPEROR AND ADELIE PENGUINS. 

 <br> <br> EMPEROR AND ADELIE PENGUINS.}

By W. P. I'yehaf, A.L.s., R.Z.s.<br>(1 Plate and 8 text-figures.)

## (ONTENTS.

DACE

1. Introdutury ..... t
II. Ptervlosis of the Addlit ..... $\because$
1if. The Nestlifi Down ..... 6
IV. The Monlitine of the Adult ..... 1.3
Y. The Svrinx of the adult Emperor Pextecis ..... 14
VI. Some factí conebrine the Embryo and Nemthingo. ..... 15
Vll. The Intemtinal Treat ..... 20
Vill. Sumary ..... 吅
I. - [nthendetory:

In the preparation of this report I have comfined myself to a careful study of the nestlings and embryos, and to rertain hitherto memescribed, wrombly interpreted points concerning the pterylosis of the alults of the Emperm and Adelie Penguins; and this partly from choice and partly from necessity, sume wo complete whlts in spirits formel a part of the collections lionght lume. Even hat swoh sperimens loen firserved they couth have added but little of importance to nur knowlenge of these remakable birds. Thanks to the able monograph of l'of. M. Watson, which fimmed a part of Vol. VII. of the great series of volumes published on the results of the 'Challenger' expelition of $1872-76$, we may be said to have a faimly complete knowlelge of the general anatomy of the adult friguin, though much yet remains to the done from the systematist's point of view. Therein, at any rate, will he found a survey of the anatomy of nearly every genus, most of which holdi good to-tay, though in some particulars further researd or beter material have ewersel emolusions therem expressed. In the memoins of Prof. Menabier (9), Shhamisfand (14) and Stmen ( 16 ), will he formen much valnable matter with regard th the development of the peronins:
YOL, IK.
and this is especially the case with Prof. Menzlier's paper. So murh having heen dome then, it has heen my aim rather to extend our survey than to revise the work already mapped out.

## Il.-Pterylosis of the Adult.

In their pterylosis the penguins difter from all other hirds, even including the Struthions types; and this because of the miformly even distribution of the feathers wer the body: The only apterium is found extending in the form of a narrow space from the cloaca upards to the middle of the almomen. Even in the Struthous types, which approach nearest to this condition, e.\%., Cusumeris and Aptery.i, an apteriom trmei laterale as well as an apt. mesomestrei is represented. It is impossible to distinguish remiges or coverts in the wing of the penguins, and the parapteron and hypopteron, as well as the ala-spuria, are all wanting also.

The rhamphotheca of the penguins is almost universally deseribed as compound. Certainly it appears to he so in genera such as Cutarrhactes and Meyutuptes, inasmuch as a deep groove extends throughont nearly the whole length of the sheath upper jaw, dividing it into an apparent "rhinotheca" and "gnathotheca," recalling that of the Tubinares. ln the remaining genera this groove is much less developed, while in the embryos of all the genera which [ have had an opportunty of examining, this groove is either very feebly developed or altogether wanting. On examination of the beak sheath of any of these birds the groove in question will be fomm to terminate lefore reaching the tomium. Thus it would seem that the penguins are in this respect less mimitive than has been supposed. From the slight indication of this groove in the embryo we must assume that the simulation of complexity in the beak-sheath of the adult is a secondarily acquired character. In the Emperor and Adrlie Penguins this groove is mot more marked than in, say, the curlew for example. The anterior nares in the penguins, cxcept in the genus Spheniscus, close up soon after hatching ; they would appear, however, to be functional for a short time, inasmuch as a bistle can be pansed through to the posterior choane in very young nestlings. This pecmliarity the penguins share in common with the Steganopodes, the Phethontidu and Fregatide only still maintaining functional nares, though extremely reluced.

It is a point of no little interest to remark that, while in the cormorants and gamnets the usseons narial aperture has become entirely closed, aurl nearly so in I'hethon and Pelecanus, in the Sphenisci this aperture, in the dried sknll, is of consideralle size, extending, in fact, nearly the whole length of the beak. This, of course, refer's to the adult skull. But in the nestling Sula, and in Pliethon, the narial aperture of the skull is as large as in the Sphenisei. It would thas seem that the closing of the osseons mares follows that of the external sheath only loy slow degrees, and may not take place at all. Are we to regarl the oclusion of the homy sheath of the external mares as due to adaptation to diving habits brought alout by selection, and the later closing of the molerlying wssens apertme-as in sula-to the efferts of
disuse, or to hastogenic variation? In the latter case it would seem that we must assume that the variation must have afferted looth the parts concerned at the same time - that loth most have leen incluled in the same germinal dhange-but that the outer lorny heak-sheath proved mone plasice, undergoing transformation at a fuicker rate than the unlerlying osseons parts.

The pototheca is made up of a series of small more or less hexagonal scales, while the claws are of very considerable size, and show some variation in the matter of shape. In Aptenodyles the middle claw is always very large, and flattened dorso-ventrally, therein contrasting with the outer "haw, which appears to le always somewhat compressed in shape ; but the inner claw would seem to vary somewhat, in some specinens being deridedy compressed, and in others as markedly depressed. In Pypesectis, also, the middle and inner daws are flattened, and the outer laterally compressed. In all the other genera, however, the daws are relatively somewhat smaller, and all agree in being laterally compressed.

In the extent of the wehbing of the thes, the penguins present some interesting differences. Thas in Aptenodyles and Pyyosedis the interdigital wels do not extend more than halfway between the toes; in A. forsteri, indeed, the imer wel, is almost olisolete. In other genera, however, as in Catormacles, Eurlyptula, and Spheniscus, the twes are fully webbed. In all cases the outer toe has a free fold of skin running along its outer side, just as in many other swimming birds, p.g., Anatide and some Potlitize. It is to be noticed that while in newly-hatched birds the toes can casily be spread and the wels examined, this is by no means the case with adult birds, wherein the toes apparently lose much of their power of lateral movement.

The oil gland is tufted. There is a thick underclothing of down feathers, and filo-phumes are present as usual.

## The Structure of the Feathers.

There is an almost miversal tradition, religionsly preserved not only ly text-fooks of comparative anatomy, but even by works devoted entirely to Avian Morphology, to the eflect that the feathers of the penguin are seale-like, and by some this supposed fact has been used as an example of one of the connerting links between birds and reptiles. The origin and spread of this myth is difticolt to understand. Gencrally, doulteless, those who desmibed these feathers as scale-like, and reptilian, merely wished to emphasise what they considered-certainly without looking at the structures in yuestion-an aceidental or convergent resemblance to sates. Anything more than this, any closer relationship, morphologically, a moment's reflection, having regard to the rest of the anatomy of this particular group, would show to he impossible.

How then can this misconception have arisen! What basis is there for its support? The origin of the tradition as to the scale-like chanacter of the feathers of the penguin is now lost, but it had its rise, doubtless, in the fact that the feathers of these birds are
bery fore-titting, still, amb haw hat, hiok shafts. Further, the absene in the wing of dwhmble primaries and secombaries, amd the cxtremely small, thick-shafted feathers of the paranial bomer of the wing. must have combibuted mum to the fontering of this myth. Fommed ons sonenly obseration, it owes

fig. 1.-Moclting contoul fhather of emperole PESGTN, 1 ztenodytes firsteri, showing The reMarkable cervature of the calaves, and the DOWNY AFTEESHAFT (a). its perpetaation to the practice, mappily not always avoilable, of arcepting statements of carlier writens withont reserve or verification.

There can be no doult, then, but that the feathers of the penguins have no more likeness to the stales of reptiles than have the feathers of other hirds. As in the case of the Hightless Struthions hirds, the penguin's feathers are muyuestionably degenerate, while in some respects they appear to have undergone some specialisation.

This specialisation is apparent in the structure of the shaft, which is curved in such a way that between the body and the outer surface of the feathers there is enclosed a wide space which is filled by down feathers. This forms an effertive barrier against the intense cold in which these hirds live-a larrier which is further supplemented by a thick layer of fat heneath the skin. The curvature of the shaft is peculiar. At the region where the calamus-which is extremely short, aud dorsoventrally depressed-leaves the skin, it tums sharply upwards, arches considerably, and then passes into the more gently curved rhachis (Fig. 1). This is broad and that, fating on its ventral surface insensibly into the rami, instead of forming bencath these a more or less quadrangular heam as in more normal feathers. The aftershaft is peculiar in that it comsiste of a short, Hat, Habelliform main axis supporting numerous long, downy rami.
The howe umbinele of the calams is not shaply defined. This is a point of some importanere, inasmuch as it would seem to he due to the fact that hefore the alamus has a watly completed its growth, the feather follicle at its base has begun to form the tips of the rami of the succeeding generation, the sheath enclosing which becones fused with the rim of the mubiliens.

The degenemate features are fom in the vane. (Dnly a vory matow area on earh side of the shaft presents to the maket eye the chanacteristic apparance of a montinuous vane, this central portion being frimged on earh side by a wide downy burder, while the tip of the feather is formed largely loy long, flattened rami devoid of rallii, and produced loy a splitting up of the free end of the rhathis to form a series of rools, arranged fanwise (fig. ©). By wear the length of these rami is greatly reduced, and thus the shape of the feather just before the moult differs somewhat considerally from that which it originally bore. Partly by this wearing away of the rami. and partly by the death of the pigment contaned therein, the colour change unticeable between the feather of a moulting and a newly feathered lind is due.

## The Microscopic Structure of the rami and radtio.

That the vane of the contour feathers of the penguins represents a degencrate, degraded form of that characteristic of carinate Jirels which possess full powers of flight, is olvious. That is to say, the feathers of the penguin can in no sense be held to represent a primitive type of feather, hut are ummistakahly degenerate structures, hearing evidence to an carlier structural perfection identical with that which obtains to-day among birds that Hy. In their degenerate chararters they resemble the feathers of the flightless Palicognathe (Ratite).

While anong the feathers of hirds that fly the rami of the remiges and rectrices grow shorter as they reach the tip of the shaft or main axis of the feather, so that none project beyond it, in the penguins the rami of what, possibly, answer to remiges show no such curtailment, hut, on the contrary, are of great length, and give the shaft the appearance of breaking up distally into a fan-shaped series of rami (fig. 2), thereby agreeing with the contour feathers.


FIG. 2.-THREE FIGCRES OF ONE OF THE SMALL, FEATHERS FROM THE IRE-AN゙TAL RORDER OF THE WING, NNLARGED RESIPCTIVELY 2, 15, ANi 20 DIAMETERS. The most highly-magnified figure includes only the tip of the feather, and shows the fan-like termination of the rhachis.

The radii are less degenerate than in Struthio, for example, among the flightless lirds; inasmuch as those of the distal series still possess their hooklets, though these are reduced both in number and size; they arise, however, as delicate, filamentous, curved processes from loroad lamina, twisted wh ats to lie with their flat surface upwards, as in functional remiges. The ratii of the proximal
series, thomgh mere degonemte than thase of the distal, wertaping series, still preserm their chameristic fonwat curvatur, lout they have boome rod-shand, losing the peculiar serell-shaped eurve which these proximal radii present in functomal remiges. Finally, these ratii grow fewer amd shorter as the free end of the ramus is approrhed, leaving this, eventually, as a simple rod.

## III. - The Nestling Down.

THE nestling panguin, on emerging from the agg, is but parsely dad in down foathers which rather resemble, superficially, fine silky hair than feathers. This is fuickly sucecoled hy a semend growth of down feathers, longer and thicker ; and this, later, is followed by the adult feathers on teleoptiles. This development of two successive down plumages is a featue which has hitherto cscapel our notice in the life history of the penguin. Further, it has never been suspected to obtain, so far as 1 know, either in this or in any other momp of hirds, though, as will he shown presently, it oceus in a numler of instances, and is likely to lead to some important modifications of our conceptions of plumages and their history.

The colow of the down in the Emperor, King, and Ahelie Penguins has alreaty been described by Dr. Wilion in his report. Consequently, I shall deseribe here omly its structural features, and such other peculianities as may he necessary.

## The Nestling Down of the Adelie Penquin.

I propme to descrine the nestling down of this species first, lecause in this I have been able to trace the whole develnmental history from the very young nestling (1) the andult hird, while in the ease of other species some link in the chain has always been wanting. The down of the newly hatehed nestling is short, and of a texture recalling velvet-pile. Mieroseopically, the rami are short, arise from a common base, and hear very short, straight, riblom-shaped radii, which have hut fow fila, arranged, as usual, in pairs.

This down is rapidly succeeded ly a long, dense, woolly covering, so dense that it is difficult to expose the skin. Except that it is shorter on the head and neek, it is of a uniform character throughout. If examined carefully, the carlier, shorter down tufts will he formd adhering, here and there, to the tips of this second generation. The peculiar chanacters of this down may best be studied in birds which are just developing contem feathers. In such specimens it will he found that the tufts of these originally umbelliform propennse are in part attached to the rami of the main shaft of the contrur feathers, and in part to the aftershaft thereof. In situ the tips of all the rami of each down tuft reach the same level, that is to say, the rami borne by the aftershaft extend to the level of those bome ly the main shatt. To effect this, those rami which are supported ly the aftershaft of the contour feather are connected therewith ly a long ribloon-shaped stem, and this apparently on accome of the fact that the after-shaft is so
much shorter than the thathis of the defintive feather. This arrangement is somewhat remarkable amb demands further explamation.

fig. 3.-a developing contour feather of Pygoscelis adelie, showing the mesoptyle down-plumage borne. in part by the maf shaft, and in part ify tife after-shaft (o).

In the first place, the fact that any of the rami of the pre-penna should be formd in organic commertion with those of the after-shaft of the contome feather is, so far at 1 know at present, elsewher manown. There can le mo dombt, l think, hat that the
nemsoptiles repment distimet frather gencrations, and that therefore the pre-penner, as
 some apmerently hold, a prit of - "agents in advance" of - the contom feathers which sureed them. Conseruently, the fiet that the bulk of the rami of the pre-perme in PIyposetion melize are directly attached the the tip of the rami of the after-shaft of the succeding teloptile is a somewhat remarkalde fact, esperially since in all other instinces ret known the mestling-down, when attached to contom foathers, is attarhed to the rami of the main shaft. In the case now under discussinn the rami of the pre-pema, which are borne by


FHG, 4.-THE FIRST (NEOSSOPTYLA:) AND sFCOND (MESOTTYLE) DOWN FFATH rers of iptenotytes forsteri. It MESOPTYLE: the main axis of the contour feather, are few in number and take mo appreciable part in the formation of the prefermat as a whole, which is romposed of rami combected ly means of the long ribhon-xhaped stak with the rami of the aftershaft, and forming the large tuft of worlly down such is is seen in Fig. 3. The significance of this relation tw the aftershaft must be referred to again later.

Nicros"opically the rami of these "pre-penuse" are of considerable longth, and have short, riblom-shaped spirally-twisted radii which leerr only about fon pairs of mimete fila. The spiral twist acts as a lime of feltimg arangenent, wherely the downy onvering is "knitten," as it were, into an ahmost hombermons rat.

## The Nestling I Perro of the Emeneror Pentuin.

This differs nos only in colour hat also in certain small structural details from that of the Alefic Penguin. The first dewn-phmage differs from that which follows, in that it is short, harely covers the lorly, and resembles silky hair more than feathers; that is to say, when sumficially examinal. Under the mimesome earh down feather is found to be made up of several rami, mombliform in armangment, and of moderate length, each ramus being fronlued into a long filament beyom the radio, which are short. The fila of these radia are much larger than in Pyyosetis. This first down-phmage is rapinlly succeded by similar umbelliform tufts of much greater length and rolume. The rami are about twion as long as those which precoded them, hot the radii are ouly, relatively, slighty longer, and hear from eight to ten pairs of fila. This generation of down feathers Wifleps from the comesqumbing sencration in l? ? pose lis, firstly, in that the radii are stmight instead of spiratly twisted, su that the down is less "felted," and secomdly, in that insteal of lowing of a mifimm dhatrater throughemt, the rami of the down
of the himler end of the borly assume a harsh character, ahmost mistle-like: a chanacter which may be due to ataptation to the pecoliar enviroment in which these nestlings are reared. These two generations are shown in Fig. 4.

## The Nestliag Dourn of the King Penguin.

Cufortunately mospecinens of very foung King Penguins appear to have been whained as yet. Doubtless when examined they will be fomm to show the same suecession of down-plumage as obtains in all the other genera.

To complete our knowledge of the nestlings of the King, and Emperor Penguins, very young examples of the fommer, and moh obler examples of the later, than any which have yet heen seerured are necessany. But there seems to be little room for doult that while the adults of these two rpecies closely resemble one another, the nestlings thereof differ widely. In the Emperor Penguin the nestling has a hack heal and a greyish white boly, while the young King Penguin is of a uniform dark hrown.

The King Penguin retains its down-phmage for about six months, hy which time the liirl is nearly full grown. This down is remarkable for its great lengthleing ahont 3 inches long-and for its superfirial resemblance to long and somewhat coarse hair. If examined when the contour feathers are just beaking through, it will be formd that the rami are attached in part to the tips of the rami of the main shaft of the emonom feather, and in part to those of the after shaft. Thus they differ from the down of Plyforedis, wherein the contom feather bears hut few of these rami. While the rami are of great length the radii are short. Thongh they bear alout ten fairs of fila, these camot easily he mate out except under high manification of the microseme.
ln the nestling which formed the suljert of this description pre-phomule amb filoplmmes also oreured, but I have not met with these in other genera. In this comertion it must be remlected that this particolar nestling was nearly twelve monthe oll.

## The Nestlimg Doren of the Rimyed Prompuin.

The nestling of the Ringer Penguin (Py/yoselis antractica) is rescribed by Mr. W. Eagle Clarke as liffering remakally from its congeners of the same age, in that, when newly hatched, it is clothed in a silky-white down, except the lower part of the abdomen, which is partially naked. But he does not say whether this naked area is really larger than the similar apterion which olstains in other speries. Later this white down is succeeded by a thick, short, fur-like coat of grey.

## The Nestlin! Dowen of the Genton Pentyuin.

 resemble the Adflir Penguin at the same age, being elothet in a fine siky down of
grey, deepening to blark, or nomly hack, on the head. This is succeded, aromding to Mr. Eagle 'lanke, ly "a daker coat of down, to the tips of which the paler down of the first enat is attached for a time." It differs then from the Adelie Penguin only wh that the down of the first cuat is ronspicuons on the tips of the second. This is not the case in any of the penguins whicl I examined. In these, conseruently, the displaced down of the tirst crop is ouly to be made out by microscopic examination. But for this it wonld seem that the differences in texture and length between the down of the newlyhatched and full-grown chick were simply differences in the rate of growth of a normal downy covering.

## The Composition and Sequences of the Neossoptiles.

I have elsewhere shown that the nestling down of linds may be of two kinds, which may exist either singly or in combination. It would seem, so far as omr present knowledge of the matter goes-which is not far-that as a rule the nestling is elothed in down feathers which are finally pushed out on the tips of the first generation of contour feathers, and these, in conseguence, I have called pre-pemm. In many cases, howerer, these pre-penne are intermixed with down-feathers, "pre-phumble," which are later succeded by adult down-feathers. Only "pre-peme" apear to ocew in the young of the Galli and Anseres, for example. It might have been expected that pre-plumule also woudd ocem in the Anseres, inasmuch as these hirds have a thick moderclothing of down fathers when adult, lout these do not make their apparane till the end of the nestling stage.

The admixture of pre-penne and pre-plumulat can be seen in the nestling of the Hontzin (Opisthocomus cristatus) or in the young of the Accipitres, f:\%, Fuleo timmenculus. There it will le foond that the pre-penme are insignificant in size, and take but a small share in the covering of the hody, while the pre-plumule are of great size, entirely superseding the pre-pemme. It is not surprising, therefore, to find that in some speries, P.g., Phalarocorax and Cotymhus, the pre-pemne have entirely disappeared and preplumula only remain. So far, the fuestion of the down-phomages of nestling limbs appears to insolve only plain, straightforwad issues-the plumage may emsist of pre-pemme or pre-phmula omly, or a combination of lwoth, then follow the teleoptiles.

As a matter of fact, howerer, this apparent simplicity is illusive. I have already shown that the owls (11) and the megaperes (12) fumish ws with exceptions to this rule; inasmuch as in the former the pre-penne are not succeeded by normal contour feathers (except in the case oir the Barn owl, which has hitherto been supposed to agree with all other owls), hut ly a type of plamage intermediate between down and contour feathers; while the megapodes pass through a downy stage while yet embryonic, and cmerge with an intermediate type of phamage answering to that of the nestling owl. Thase facts now prove of murh nore importance than seemed to be the case at the time of their disenvery. Amd this beranse of what has come to light during my investiga-
tions of the penguins herein deseribed. The nestlings of these firds, ats has alreaty been pointed out (p. 6), before attaining the typical "ontour fathers, develop two distinct down plumages. Inasmuch as these neossoptiles are rommonly split up by the succeding contour feather, so that each of the terminal rami of the latter is sumomet ly a ramus of the disintegrated down feather, it has been suggested that these down feathers are really a part of the actual contow feather.

Though Studer (20), Davies (4), Klee (9), and others have motributed some valuable ohservations on the development of nestling down and contour feathers, there is much work yet to be done on the embryonic history of the feather-much that as yet remains obscure, but is essential to a thorongh grasp of this yuestion. But there can be no doulst that the neossoptyles represent distinct feather gencrations. That later they become, in so many instances, disintegrated, so that the several rami of which they are composed are borne out on the tips of the rami of the suceeding definitive feather, is due to the fact that the growth of the definitive feather is begun lefore that of the neossoptile has finishod. and conseruently the bases of the rami of the first become welded on to the tips of those of the second, as will he made apparent presently. Let this be assmed as proved for the moment, and it will be seen that a new and important light is thrown not ouly on the sequences of the plamages of the pengums in particular, but of the nestling ind later plumages of all lirds. The penguins then develop two successive down phmages lefore assming the normal definitive feathers. The point to he discovered is the signiticance of this sequence ; and this can best be done by a gencral and bricf survey of what obtains in other groups.

Up till the present it has never been suspected that more than one generation of nestling down was ever developer,, though it has long been known that the succeeding gencration of definitive feathers, in some species, presents a character intermediate between down and the contoir feathers which eventually succed them. Further, as I have already pointed out on more than one occasion, these down feathers present very diflerent grades of perfection, such for example as may be seen in the umbelliform tufts of loose, woolly down of, say, an owl, the semi-plumous type of the Galli and Anseres, and the strongly pennaceous type of some Tinami. It has now hecome necessary to re-interpret the significance of these differences. It would seem, then, that the full sequence of plumages is represented (1) by neossoptyles, composed of (A) pre-penne, divisible into $\alpha$-protoptyles and $\beta$-mesoptyles; (B) pre-plumule, and (2) teleoptyles or definitive feathers.

In how many gromps of birds these three plumages are represented I am at present mable to say, lont I have mudertaken, in conjunction with my friend Mr. J. L. Bonhote, a thorough examination of this prohlem. Consequently, I propose to do little more

[^16]here than qutling the facts which showed me the ned of some sumb incuiry as that on which we have embarked.

These three plumages are developer, in anything like completeness, in but a few groups. But they can he followed in the owls for example, with one remarkable exeption. In the Tawny, or Eagle Owl, for instance, it will he found that the nestling is at finst duthed in long, woolly down; later, before ${ }^{\text {quitting the nest, this is replaced }}$ hy feathers, having a superficial resemblance to down, hat which, when examined, are found to be intermediate in character between down feathers on the one hand and definitive feathers on the other. Down-like in their softness, they are yet feather-like in their colouration, amd in that each feather is made up of a main shaft, rami, and radii, whereas the down feather is umbelliform. But while the head and trunk are thus chothed the quill and tail feathers are those of normal definitive feathers, and functional. This plumage is wom till the autum, when the tronk feathers at least are replaced by new, and these of the typical adult structure. The exception referred to is found in the nestling barn owls. These birds have the down succected immediately by contom feathers, indistinguishable from those of the parent. To this we shall refer again presently.

This second generation of feathers we may call provisionally " mesoptyles." The penguin must certainly he regarded as having preserved what must be looked upon as a somewhat, perhaps very, ancient succession of plumages, but in these birds the " mesontyles" have degencrated to mere down feathers. The megaporles, as is already known, shed their down feathers within the egg and emerge feather-rlad. But these feathers, as I pointed out some time since ( 14,15 ), differ conspicuonsly from the feathers which follow the next moult. In the light of my recent discovery the true interpretation of this plumage is clear-it is a mesoptyle dress. The differences between the "down" feathers of the Galli and Anseres now Jecone capable of interpretation. They do not, as I imagined, represent a primitive type of down feathers homologons with the woolly, and so presumably degenerate, down of, say, the Alcidae, bot answer to "mesoptyles." The protoptyle or first generation of feathers would seem to bee wanting in these birds, but I had the good fortune to discover small tufts of down adhering to the tips of the mesoptyles of a young Chlophaga rulndiceps. Thus, then, we may assume that this first generation, since it has not yet been trated, has been lost in all the Galli, and prolally all the Anseres save perhaps this species and one or two allied genera. It is significant that the only species in which it has so far turned up has a striped nestling plumage, which is mudoubtedly a primitive sign.

Among the Galli, it is to he noted, the mesoptyles present varying degrees of perfection, in some, as in Melectris, for example, a rhachis and aftershaft are fairly well developed, while in Tetroo, for example, the mesoptyles have hecome umbelliform. Similarly in the case of the Tinami. In Caludromus, for instance, the main axis is large anll strong, and the rami set fainly cluse together, while the radii hear a close resemblane to those of the definitive feather. The after shaft is here also as long as the
main shaft. In other precis, though a main shaft aml hymorhachis are present, the radii ate muth mote degencrate.
some time since $I$ drew attention th the fact (15) that though in the Cassawary and Emu the definitive frather bore an after shatt as longe as the main shaft, in the nestling down the after shaft was larely traceable: while on the other hand the dectinitive feather of the Tinami possessed but a small on vestigial after shaft, while the "nestling duwn" had a hyporhachis as large as its main axis, thus reversing the order hetween adult and young in the two groups. It now appeas probable that what have hitherto been regarded as the detinitive feathers of the Cassowary and Emu are really to be looked upon as answering to the "mesoptyles" of the Timami. That is to say, these birds, though they may have developed remiges of the normal definitive type, yet never acyuired the feathers of this grade on the trunk. A parallel comblition is seen among living lirets to-day in the owls. The young Tawny Owl for many week is clothed, as to his trunk, in mesoptyles, hat the remiges, which are functional, are those of the higher type of feathers. Apteryx certainly must be regarded as having lost the true nestling down; what is generally regarded as nestling down, and has heen described as such hy myself (15), represents a mesuptyle plunage. The nature of the nestling plumage of the remaining Struthious types will now remuire further study. To show how complex is this problem of nesthing phmage it may be pointed out that in some lirds, as, for example, Plalacrocorote, the first phmage is made up entirely of pre-plumule, while in other Steganopodes it is composed of pre-penme. In some of this group it may turn out that the plumage is composed of a mixture of hoth. The fact that in the penguins the rami of each mesoptyle are oonnected lyy means of a long ribhon-shaped stalk with the aftershaft of the definitive feather is one which must form the subject of further examination. At present no solution appears possible.

## IV.-The Moultivg of the Adelt Pexgin.

Ture penguins appear to be peculiar in the method of their moulting, inasmuch as the feathers are not cast in few at a time, but over large areas the feathers of the moulting bird will be found to have actually lost all direct attachment to the body, and to stand out therefrom at right angles or thereabouts.

The moulting of the feathers has been described by more tham one olserver, but with especial care by the late Mr. A. D. Bartlett ( 2 ), and more recently by Mr. W. E. De Winton (5). The former, just seven and twenty years ago, gave a short account of the moulting of Humboldt's Penguin (Spheniscus humboldti). The feathers of the wing, he wrote, "came ofl" like the skin of a serpent." But the feathers, he says, in speaking of the moulting of the trunk, "began to fall from all parts of the lird, not as birds usually moult, a few feathers at a time, but in large 'fuantities." These old feathers were pushed off, he says, by the new ones, many of the old feathers being left
still atamed to the new ones. This moult was exceedingly rapin, taking from first to last ahmot ten days!

The whervations of Mr. We Winton (5) were made on a King Penguin als, in the gatens wi the Zoulugiral soriety, and includerl two successive moults. The change hew differed from that desribed ly Bartlett in Spheniscus, inasmuch as he tells us that the feathers "hecame as withered leaves," lost all their lustre, and were assidnously removed by the lind, this operation leing performed, not by pulling, but by pushing them with the beak from their attachment. They were not " peeled" off" in masses as in Spheniscus.

During the secoml moult he discovered that each of the monlting feathers was attached lyy its base to the tip of that succeeding it. The new feathers he describes as "growing into the luses of the old ones, the thin sheaths attacherl to the lases of the feathers leing secupied ly the points of the new feathers." The effect of this peculiar attachment is to give the liril an extramenarily lhoated appearance, the old feathers standing out almost at right angles to the boty:* Though the description and figures given ly Mr. De Winton tally in the main with my observations made on the Emperor Penguins lrought home by Dr. Wilson from the 'Discovery' Expedition, I find that in a few details they refuire amendment.

The skins of the moulting lirds brought home ly Dr. Wilson exactly agree with the description given by Mr. De Winton, thus showing that the peculiar method of moulting which he desmibed was not due to the effects of confinement. In the skins in question the feathers are all erect and come away with the slightest tonch. In some, however, as well as in a number of moulting feathers given me some time since ly Mr. De Wintom, the peculiar attachment of the old feather to the tip of the new, deseribed by Mr. We Winton, is perfectly preserved. And an examination of these shows that the sheath which normally invests all growing feathers, instead of curling in it puill-like point, has become attanhed to the rim of the lower umbilicus of the old feather, which thus remains attached to the tip of the now until this has pushed its way some distance out of the skin and completed the growth of the enclosed rami. The sheath, ly this time having lost its hold on the imprisoned rami, now easily comes off with the old feather.

## Y.-The Syrinx of the Adult Emperor Penguin.

The syrinx of the Emperor Puggin, Aytenotytes forsteri, does not appear to have been previnsly described. As in the rest of the penguins it is tracheo-bronchial, but shows a tendency twwarls the bronchial type. The first bronchial semi-ring has the form of a gently arcuate rod, while the second and thind are nearly straight. As will be seen in Fig. 5, the tracheal rings grow smaller immediately above the syrinx, and are akso bent upon themselves; the tracheal rings from the antepenultimate onwards,

[^17]however, have a somewhat greater circumference; and this in sperially noticeable in the last. But the bonchial semi-rings $2-4$ have a rery wite opan, so that the wind pe in this region reaches its greatest dorso-sentral width ; from the fourth bromehial semi-ring backwards the circumference of the bronchus decreases rapidly. Only the first hronchial ring is complete-to its imner rim is attached the upper end of the membrane tympaniformis. The intrinsis mascles terminate in the middle of the antepenultimate ring, while the extrinsic muscle leaves the trachea at alont the twentieth ring from the syrinx, counting from the last tracheal ring finwards. The trachea of this species shares with that of the remaining penguins the peculiarity of a median septum which extends the whole length of the trachea, from the syrinx forwarls as fir as the upper third of the tracheal tube. This septum is made up, in the adult, of a number of bony hars corresponding numerically to the number of the tracheal rings (Fig. 5) ; while that of the nestling differs from that of the adult only in being, like the rest of the trachea, entirely cartilaginous.

## VI.-Sone Facts Concerning tue Embryo and Nemtlings.

1 prorose to deal here with a few facts concerning the thamphotheca and the external nares, the palate, the developing wing and the tarso-metatarsus.

## The Rhamphotheca.

The shape of the beak in the embryo

fig. 5.-The strind of an adelt emperor pengein, side WEW, AND IN SECTION TO SHOW TIE TRACHEAL SEPTUAF. $\mathrm{B}=$ bronchidesimus ; br. = bronchus; $\mathrm{s} .=$ seplum; $\mathrm{tr} .=$ trachea; $\mathrm{t} .=$ trachealis muscle $; \mathrm{tm} .=$ tympanic membrane.
I. $=1$ st tracheal ring; $\left[.^{1}=1\right.$ st bronchial ring; II. $=$ 2nd bronchial ring. Emperor Penguin, at the time when the feather papille we just making their apearance, differs from that of the nesthing, just as markedly as the beak of the latter differs from that of the adnlt.

In the embryo at the age just indicated the beak is relatively long, "ylimitrical, slightly swollen at the tip, and shows no trace of the egg-tooth. The anterior mares are "pen, hat there is no sign of separate rhamphothecal plates, or of the groove which later appears in front of the nostrils.

In the newly-hatched nestling the cumen of the beak is arderk, while near the tip is a small egg-tooth, which is apparently absothed, sime it is not detathable as in, say, young gallinaceous birds. Here, again, there is mo thace of seprate elements in the beak sheath, such as are met with in the petrels fin instame, but there is a deep groove ruming from the nares forward, neared the tomime than the comen, but this dees not
extend to the eutting eage of the leak. The antrion nates open, each loy a small round hote near the midde of the inferiom lumer of the beak; the rime of this aperture is slightly swollen.

In the newly-hatehed Adrlie Penguin (P?ffoserlis) there is an ill-defined cere, which extemds forwards and downwards on cach side of the beak. The nostrils, however, do not pieree this cere, but open beneath it.

In the newly-hatched Cuturbuctes there are at first hut traces of a cere, and only a very slight groove in front of the mostril. This groove, however, later beemes monch deepened and lomger.

## Osteolouical Churueters.

With regard to ostonlogy, I may remark that since I have already dealt at consideralle length dsewhere ( $16-17$ ) with this subject, I have deemed it suffirient here to ronfine my remarks to such new points as have come to light duriug my examination of nestling skeletons of the Emperon and Aelie Penguins, and these, as I have alreaty remarked, are contined to the following camial chanaters.

## The Paletw-Pter?yoid Aitionlation and Siqumosal.

The facts now to be described were gleand from the skulls of nestlings of the Emperor Penguin (Aptenorlytes forstori) of ahont cight days old. Herein (Pl. fig. 7) the distal end of the pterygoid is deeply notched, and while the outer limb, is rounded in shape and almost completely ossified, the imer is produced forward into a lomg, pointerl, homy spike, which is embedded in the yet cartilaginoms mesial border of the dorsal aspect of the palatine. The extremity of the palatine runs under this pterygoid spike (hemipterygoid), and is reccived into the noteh just describet. Secen from below the distal end of the pterygoid appears to be whipuely tromated, instrad of notehed, and this because the imer limh of the noth is applied to the dowal aspect of the palatine. While the himer ent of the palatine is yet bommed by a rim of cartilage arome its free emb, the process of assification has proceded rather further in the perygoid. But the matin beint to be moted is the fact that the palato-pterygoid antiendation is by interlocking suture, and not by glenoid surfaces, and in this respect the skull resembles that of the more primitive group, the Palieognathee (17). Later the pterygoid spike segments off from the main shaft and fuses with the palatine, and therely the skull assumes its final neognathine form. But on the inner lorder of the distal end of the pterygond l have discovered a little romuled patch of cartilage contaning a bony nodule ; from its position it is possille that this may be the last vestige of the reptilian epipterygoid rool. Later the ussification in the cartilage extends till the whole hecomes blemed with the pterygoid shalt.

Basipterygoid prosesses are ressented only ly vestiger.
The spamosal presents one on two interesting featmes deserving sumething more
than a passing notice. In the skull of the nestling just referred to, this bone is oblong in shape, hroadest along its parietal horder, and gently hollowed along three sides (Pl. fig. 6). Its posterior horder artirulates with the lateral ocripital, which is yet chietly antilaginons, while the anterion border is embedted in the rartilaginons adisphenoil. In the skull of a nearly full-grown bird in the Museum roblection. obtained during Ross' Antaretic Expedition of 1839-4; the separate clements of the skull are still free, though ossification is complete-a fact of no little interest and some importance-and here (Pl.fig. 8) the squamosal has retained the same gencral shape as in the younger specimen. But it has assmed, externally, a shallow trongh shape, the hollow forming the major portion of the "temporal fossa," and it hats at the same time thrown out a thickened phlange of bone immediately above the squamosal articulation for the quadrate ; this phlange forms the superior limb of a $>$-shaped lomy protuberance which ultimately passes into the "parocripital" process. The parietal border is produced forwards to form a shapp angle, whose apex is separated from the frontal only by a narrow wedge formed by the parietal.

The significance of this can only be appreciated ly a comparison of the stuammonparictal relations in other species (Pl. figs. 1-8). Unfortunately, at present, 1 cannot make this comparison as comprehensive as could be wished; but nevertheless one or two interesting facts have come to light out of the material to hand.

In the skull of a full-grown Pighoscelis pripue, in which no fusion of the rooting bones of the skull has taken place, the squamosal is roughly $\Gamma$-shaped, the superion edge of the hackwardly directed limh articulating with a long, ohlique, and downwardly direeted edge provided hy the parietal (Pl. fig. 5). But between the anterion angle of the superior border of the squamosal and the frontal there is interposed a broat parietal border. Cutarmactes agrees with Prypescelis in this respect, but in the former genus the syuamosal is oblong with a slightly hollowed posterior horder (Pl. fig. 1).

Pygoscelis adelice, it is to be noted, resembles Cuturthectes mather than its ally $P$. Pmpur, in so far as this region of the skull is concerned, since, as in Cutamernctes, the alisphenoidal horder of the parietal is sharply truncated, and this is a fart which we would hardly have expected.

That there is some underlying principle involved in the variations met with in this region of the skull is highly probable. At present we can only hazard a gness ats to what this principle may be; hut it is not unlikely that we shall be near the truth in assuming that in the skull of Pygosedis we have a more primitive type than in Aptenodytes or, indeed, of any other penguins except perhaps Eudyptelu, which has not yet heen examined. The evidence for this is based upon the chatacters now inder discussion, which. arlopting Dr. Chalmers Mitchell's method of analysis, we may regard as a metacentre, while the apocentricities arising therefrom are multiradial.

I have fixed, rightly or wrongly, on Py!poscelis papur as the point of departure of this metacentre, for the following reasons. In this skull the squamosal articulates with the parictal by means of a long obligne suture, sloping from liehind
forwants and downwards, thus the articular surface for the squmosal looks distinctly backwards (cautad) and downwards. while the parietal horter cephalad of the sfuamosal forms therewith a sharp angle. Now, taking the Class Aves as a whole, as specialisation proceeds, that is to say, as the cramial cavity increases, the orientation of the roofing bones changes; so that the supra-occipital, parietal, and frontal regions, instead of lying one in front of the other, come more and more to turn upon themselves so as to lie one upon the other, while the parietal hecomes narrower antero-posteriorly, Jut increases in length laterally. At the same time the spuamosal shifts forwards, passing the parictal angle described above, and approaching nearer and nearer to the frontal. In Aptonotytes, where the frontal is almost reached, we have one of the initial stages in this changed relationship of the squamosal. In the majority of the higher Cumutre, indeed, the squamosal actually comes into juxtaposition with a large portion of the frontal hone. A further leature of this specialisation is seen in the fact that in the more primitive skulls the squamosal is entirely suporficial, while in the more highly specialised it has eome to absorl, the underying tissue of the parietal and so to take a direct part in the protection of the hains. Apparently only in Aptomblytes, among the penguins, does the sçuamosal pierce the cranial wall in this way, when, partly by a reduction of the upper ent of the prootic, amd partly he the aborption of the parictal a portion of its inner surfare appears withim the cerelnal cavity.

We might here olserve that in the relation of the squamosal to the cranium Biws resemble the Mammalia rather than Reptilia, a fact which is due to the relatively enormons size of the bain in cither case. Among Reptiles the Bircls agree much more closely with the Rhymhocephatia than with any other group of living Reptiles. The relations of the palatal homes and the presence of a quadrato-jugal arch afford convincing evidence of this. Thus, in Splenorlon, the yuadrato-jugal articulates, as in birds, with the inferion extremity of the quadrate, immediately above the lower jaw, while in lizards and snakes the rod-like jugal har extends forwards from the latse of the squamosal immediately above the head of the quadrate to join the post-orlital process.

## The Win! af the Embin!o.

The wing of the embryo penguin, if examinel at the time when the first traces of boue are heginning to form around the cartilaginous skeleton, will be found to differ remarkally from that of the adult: and entirely confirms the contention that the paddle of the modern penguin has heen derived from a functional Hying wing. And this not only hecause at this early stage the wing agrees, even in detail. with that of typical Carinate at the same stage, as may be seen in tig. 9, but also because it agrees in all essentials with that of the adult flying hird more . losely than at any other later stage of development. But the transformation to the paddle-shaped organ peculiar to the penguins takes place with great rapidity after the
appearance of the first lone eells: no much so, that all the essential characters of the adult paddle are present, in the case of the Emperor Penguin, for example, long before the beak has acpuired its typical shape, and while the feathers are as yet hut papille (Pl. fig. 10).

Let us compare the wing of an emhryo Pyfosertis udelize on the one hand with that of an adult of the same species, and on the other with that of a somewhat later embryo of Aptenolytes forsteri. In the wing of the younger cmblryo it will he noticerd that ossification is just hegiming to take place in the bones of the forearm, and that these are more or less dumb-hell shaned, and circular in section. The carpal clements are as yet distinct, the radiale lieng wedge-shaped, instead of culmid, as in the adult, and the uhare almost cubrid, instead of triangular, as in the adult; while the distal elements of the arpus are three in nomber. Carpale 1 is smatl, pherioal, and not very sharply differentiated from the embronie tissue, and this is also true of carpale 3. Carpale 2 forms a large semilumar plate dosely applied to the hase of its metacarpal. The metacapalia are all distinct, Mc. 1 being short and placed at an angle with Mc. II, which is long, cylimprisal, and expanded at each end, while Me. II is rod-like and extends distad beyond Mc. 11 . The phalanges are long, and also cylindrical. The terminal phalanx of Digit II, it is to he noted, is constricter romd its middle, and has its free end expanded in such a way as to suggest an earlier phylogenctic stage when this digit bore an ungual phalanx. The phalanx of Digit III is remarkable for its great length, and forms a slender cylindrical rod, slightly lowed, and extending ats far as the midde of the terminal phalanx of Digit HI. From the somewhat hastate shape of its free end we may infer that this digit was armed with a daw up to within comparatively recent times. Though as development proceeds this phalans changes shape, and loses something in length, it remains thronghout life unicue among linds for its great size.

The figure of this wing of P!ypoceli. ( Pl . fig. 9), should now be compared with that of embryo Emperor Penguin (Ahtenorlytes forsteri) (Pl. fig. 10). Thongh apparently the bird from which this wing was taken was hot little older than that of the Pyoseelis chlelize just dessribed, it has assumed all the frincipal features of the adult wing, and this fact will become the more ohvions in comparison with Pl. figs. 10-11. In the preparation from which this drawing was made the primary cartilaginous skeleton can still be traved, thongh in places the abomption of the cartilage ly the growing bone rells has hegm. The rod-like form of the long lones has now herome transformed into broad hars, the carpus has assumed its adult form, hut the pollex is yet free. Though Digit II bears an ungual phalanx, this appears to be wanting in Digit Ill ; possibly, howerer, a slightly later stage would show that the cartilage segments to form this, and that it remains distinct for some time.

Between this wing and that of the adult there is less difference. The most striking feature indeed is the disappearance of the pollex, which can now only he traced with difficulty, since it has fused completely with the metacarpal of Digit II., leaving at most lut a single groove or a few perforations along the line of fusion. Digit II. loses its
 humerns in the adult, like the rext of the wing, has modergone great flatening, as well as marked rhames in its extremities. Its distal forl has become twisted on itself, so that the rathal and umar condyles lie one alove the other, insteat of wide hy side, and, further. have become reduced so as to form conthent facets, while the olecranon process is unw prodnced backwads into a prominent, triangular spur, hearing two deep gromen for the lotgment of susamoids of large size. The proximal end has also undergome considerable changes, the most marked of which are the increased size of the glemid surface of the head and the great size of the fossa trowhimerica. The skelon of this limb is non-phematic. The result of these moulifations has Jeen th permit the several segments of the wing to le extended so as to form a straight-jointed rod, but one allowing of but little motion hetween the joints. In the normal wing the hand ean be straightened out "リwn


FIG. 6. -THE DEODENAL IMOP OF A NFATLING EMPEIROR IENGIIN. the forearm, lout the latter is always, from the nature of its articulations, hent upon the humerns. But then, of course, in the one case the wing is used as a pardle, in the other for the pmroses of flight, though the patdle of to-day, there can be no dombt, was emlier used as a wing.

## The Tarsal and Metaterval Boncs.

In the embryo of the Emperur Penguin, to which the wing just described belonged, the tarsus is wholly cartilaginous, hut the proximal row, thongh showing no separate clements. is yet fiee and is applied in the form of a cartilaginous pard to the bones of the metatarsals II.-IV. The metatarsals are also all free, and, it is important to remark, have the form of pertiectly cylindrical shafts, thens showing that the peculiarly hroal and semi-distinct metatasals of the adult have not assumed this shape by a secondary flattening process, as some have suggested, hout that the tarso-metatarsus, in the contrary, actually presents a primitive stage.

## VII.-The Intestinal Tract.

Dr. P. Chalmefs Mithele (12) has described and figured the intestinal tract of Cotarbhactes, Spheniscus demersus, and Aptemodytes, luttogemicu, his preparations being made from adult specimens. I am mahled here to ald deseriptions of this tract in the Emperor Penguin, A. forsteri, and the Melie Penguin, Plyosedis adeliee, but mentu-
nately my material has heen restricted to nestlings only. Neverthetess it seems to me that the peculiarities in the tracts in question are too marked to be materially affected by age. Dr. Chahmors Mitchell has shown that Cuturhuctes, Spheniscus and Aptenodytes agree rather closely one with mother in the great length of Neckel's tract, and in the form of the supa-duodenal lrop, which is simple and in all of considerable length—relatively longest in cyllenisens aml shortest in Eullytes. Spheniseus and Cuturphuctes alike have the duodenal loop of great length and thrown into a series of minor loops, wherein they differ from Aptenonytes, in which the duok enal hop is simple, of great lengtl, and coiled upon itself.

It would now appear, from what follows, that while among the penguins there is to be found a common general resemblance in the couvolutious of this tract, there is, at the same time, a greater range of differences between the species of a genus than might have heen supposed; how great this range may be is a matter for further research. Thus, while in the King Penguin, A. putagomict, the duodenal loop is a simple closed loop eoiled upon itself; in the Emperor, A. forsteri, it forms what may hest be described perhaps as a series of interlocking U-shaperl loops (fig. 6) ; while in the Adelie

fig. 7.-the intestinal 'tract of a nestling Pygoscolis adelia. Note the coiled duodenal loop. Penguin, Pugoscelis redelize, the loop is, as in the King Penguin, simple and coiled, fout the coils, however, are much more voluminons, as may be seen in fig. 7. The Adelie and Emperor Penguins show a further common resemblanse in that in hoth species the supraduodenal loop is folded hack upon itself insteat of forming a single loop as in the other genera already described: while the trant in PIIfoscelis is still further remarkable in that the loops in Meckel's tract appear to fre fewer in number than in any other penguin yet examined, though it must be remombered that the condition here doseribed is that of a nestling. The mumber of loops may inerease with age.

Meckel's diverticnhm in the young Emperor Penguin is situated, not as usual at or near the end of the apex of a loop, but at the bottom of the valley between two adjacent loops (fig. 8).

The very remarkable difference displayed ty the intestinal tracts of the King and

Emperor Penguins is the more striking, beanse the food of the two birds does not appear to differ in any conspicuous degree, while externally the two species bear a very close resmblance when adnlt, though this is not the ease with the nestlings (pp. 8-9).

fig. 8.-the intestival fract, mines the duonenal loop, of the yofng emperor pengete. Note the position of the yolk sac (if).
YTlI.-Summary.

Palfontomar has thrown no light on the problem of the ancestry of the penguins, for the oldest known remains, which occur in the earliest tertiaries (Eocenc and Niocene) liffer from those of living penguins only in very slight particulars.

It is significunt that penguins are, and always have been, confined to the Southem Hemisphere, and that only fossil remains thereof have been foum on the South American Continent, New Zealand, and, as a result of the Swedish Antaretic Expedition, in the South Shetlands: mo less than six new genera having been deseribed from seymour lslamed.

Our knowledge of fossil penguins dates bark to the time when Huxley (8) tirst described the tarso-metatarsus of a pecies which he estimated must have stood 4 feet to 5 tieet high and named Palemelyptix antaretious; but there is reason to believe that he under- rather than over-estimated the size. This fragment was from the white Kakanui limestone of Otago. Later. Hector (7) redescribed this with numerous other bones which had leen found in this same limestme, exposed at low water in a reef at Woodperker Bay. These remains he referred to Iluxley's species.

Five species, referred to the genera Palenspheniscus and Ponfotennelytex, have been described ly Professor Ameghino (1) from remains found in Miocene formations of Patagomia.

The remains brought back ly the Swedish Autaretic Expedition (1901-1903) have proved to be of considerable interest. They were ohtained from the ohler tertiaries (apparently Eorene) of Seymour Island, one of the South shetlands. lying to the north-west of hoss Island. These have formed the sulject of a beatifully-illustrated memoir ly Dr. Carl Wiman (22), and deserve some mention here.

Unfortmately, as in other cases, no skulls were formd, but trunk and limb bomes oerured in some plenty. Netogether some six gencrat are described, all of which show somewhat less specialisation than recent penguins. Prolalhy, howero, not more than five genera will the allowed to stamb, for the homes referred to the genus Cluturnix do not seem to be those of a penguin.

In size these newly described forms range from a speries not larger than the latarfooted penguin (Symenisers demerses) of the (ape to giants of twice the size of the Emperor Penguin.

The largest species (Anthromonis mordenskighldi), like Puthemulyptes anturcticus, occured in Eocene times, and stood apparently some six feet high its against the three feet of the moderu " Emperor."

The wings of these carly forms appear to have heen relatively fonger than recent penguins, and further to have approximated more nearly towards the flying wing, since the radial and ulnar condyles of the humerns were much larger, rounder, and wider apart than in living penguins. Similarly the proximal end of the humerus had as yet undergone relatively little change, lat at the distal end of the shaft the Epicondylus ulnaris had even then become produced backwards and grooved for sesamoids as in recent types. And what is true of the genus Authropormis is true also of the later Niocene genera in this matter. Similarly in all the Eocene forms, in the manus the pollex is found to be less completely fused with the Ale. If. than in living species; but no $\mathrm{f}^{\mathrm{m}}$ halageal hones have so far heen discovered, hence there is no recond as to whether the II.-III. digits terminated in ungual phalanges. But the Niocene forms appear to differ in no way from modern species.

The coracoids of the fossil genera all show a larger procoracoid, and this is especially noticcalle in the Eocene Authropomis, in which this hone is relatively shorter ant broader than in Iftemmptes. But it is in the tarsometatarsus that these extinct South Shethand forms differ most wilely from their modern relatives, inasmuch as this is, in the first place, relatively mach longer than in any living species. In Anthormenis, for example, it is, relatively, more than twice as long as in Aptenemptes. Thus in the latter genus the breadth nearly equals the length, while in Inthropormis the breadtla is less than half the length. In Defphinomis and Eospliseniscus. the same elongated metapodials are also to be noted. Among living peuguins Etulyptular has, relatively, the largest tarsometatarsus, the width buing about one-thim the length, while in

Aptomelytes the wilth is nearly as great as the length. I feature which is somewhat remarkalle alout the metaporials of the fossil forms is the fact that they are more completely fused one with mother than in living species. In the latter, as is well known, the metatarsals are more or less divided hy deep grooves along the anterion aspect of the metatarsus, while these grooves are pierced in Aptenodytes ly a pair of intermetatarsal fenestre, and in other gencra ly a single foramen between the imer and median metatarsals. In the fossil foms only the inner groove is present, and this is fiereed near its upper end by a small foramen, except in Eu, hhremsens, in whieh the foramen is enlarged to form a long slit.

Again, in the fossil genera the trochlea are set moch wider apart than in living gencra, and this is especially true of the trochlea of Mc. Il., which diverges widely fiom the trochlea of Mre. IlI.

This thortening of the metatarsals is in part due to the lessened use of the legs, hut the presence of the intermetatasal grooves would appear to be a secondary, and mot a primitive character, as has hitherto been supporsed. Nevertheless, as we have shown (p. 20 ), in the embro the shafts of the metatarsals are more complete than in any other living birds.

Ir. Wyman, the anthor of the monograph on these fossils, attributes the shortening of the metatarsals in living pengins to their platigrade halits, lant in this, of oourse, he is in error, as these lirds are not plantigrade.

Ill that "an be gleaned from fossils, then, is that penguins have probably descented from hirds which prosessed full powers of flight, and this probability beomes eonverted into a certainty when the embryological evidence comes to be cxamined. But the question of the precise aftinities of this group most still be regarded as an unsolved problem, the intense specialisation which these hirds have mulergone ohlitenating much of the necessary evidence.

It would seem, however, that we mnst regard the Steganopodes as representing a common ancestral stock fiom whith have descended the Sphenisci, Colymbi, and Tulinares, on the one hamd, and the Cicomiz, Accipitres, and Anseres on the other. Amt this conclusion is lased on at ronsideration of a number of anatomical characters into which there is no need to enter here. But anong them I would specially mention two, inasmulh as they have not hitherto heen used in this comection. These are the nature of the relations leetween the squamosal and parietal before their fusion, and the nature of the palate at the same period.

Is I propose to deal elsewhere in detail with these characters, I will confine my remank thereon at present to those types immetiately concerned with the sulgeet in hand - that is to say, to the relationship of the penguins to the divers and petrels and to the steganopodes.

At the stage in question all are schizognathons, and the penguins and divers, like the Steganoporles, have a large squamosal, articulating with the hinder portion of the postern-infero angle of the parietal, agreeing in this with the strothions types. The
petrels, howerer, in st far as I have heen mablal to stmly skulls of the nemessary age, differ conspicuonsty in thet the symamosal has assumed an arenate form, the mper limh, therenf extending along the infero-lateral border of the fromal. This change in the from and relations of the syuanosal, ley which it comes into combination with the frontal, is met with in the more highly pecialised types of many puite marelated orders of hirds, though the details of the mion vary. It is associated gencmatly with an increase in the size of the frontal, and a decrease in that of the parietal, but the net result appears to be a lager cranial davity. The peculiar form of the shuanosal in the Thanares, it is curious to note, oecurs nowhere else except among the Aleide - the mont highly specialised of the plovers (Chermatri).

The Steganoporles have lost the external nares, excepting only the Phethontide, in which, however, they are much reluced. The Sphenisci have similarly suppressed the external nares completely, except in Spheniseus, in which, however, they have ceased to be fun tional. The mamer of this sealing up of the nares is interesting. In the penguins, this rosing has been brought about simply by the growing together of the rhamphothecal homy tissue suromnding the aperture, leaving the osseuns nares unaffected. In spheniscus, however, a minute though functionless aperture still remains, yet here the osseous mares have also hegm to close. Among the Steganopodes, the cormorants and ganuets have completely closed the ussenns narial aperture by hony tissue, and show but the faintest traces of an aperture in the rhamphothera; in the peticans there is no trace externally of these apertmes, anl only minute apertures in the plaee of the nomal fossie in the skutl. The process of reduction of the onseous forsa is interesting, inasmuch as in the nestlings of the Phae thontide, for example, the skull is sehizorhinal, white in the adult it heromes hokorhal. This is true also of the commants and ganets, though here the fossia hecomes ahost obliterated. This redurtion of the nares is the more remarkable because in the Colymbi, which, like the penguins, olitain all their food hy diving, the nostrils are normal. The Tuhinares show a similar reduction of the nares, but in no case does this end in complete suppression of the aperture. If we turn to the Ciconire, Anseres, and Acupitres we fimb the same phenomena; the more primitive types have the largest nares. Thus, then, this peculiarity appears to have been the common heritage of all the forms belonging to this great Steganopol banch of the Avian tree, except the Colymli. In their pterylosis the penguins are the most prinitive of all the Neoguathe (Gamate), and alter them the Steganopodes show the hroadest piteryla.

Dr. Chalmers Mitchell in his extremely valuable treatise on the Intestinal Convolutions of Binds treated the chanacters of the patterns of the gut as though this portion of the alimentary canal were the whole amimal. Although, as he pointed out, the evolutionary inferences therefiom cannot be regarded as exact indications of affinity letween the diflerent groups of hirds, yet they follow surprisingly close on the results obtained by taking the sum of all the amatomical characters. In so far as it hears on the present paper, then, we may remark that he showed that the characters of the intestual
convolutions of the Colymhi, Sphenisci, Steganopodes, Cicomire, Accipitres and Anseres werederived from a common metacentre ; but that those of Colymbi were more primitive than those of the Steganopodes, Sphenisci or Tulinares. The Steganopodes, indeed, in this particular represented a new metacentre from which the penguins and petrels, in commou with the storks and dimmal hirds of prey, took their rise, each group evolving along a rarlius of its own. This agrees extremely well with the characters which I have Inought forward, drawn from the plumage and skull in the present connection. His scheme also embraces all the forms inchuded in Dr. Gadow's Colymbo-pelargomorphine hrigale. But we should possilly he nearer the truth in regarding the Steganopodes as repesenting the stock from which these several orders were derived, and not the Palamedee, as the evidence of the intestinal convolutions alone would seem to indicate.

With regard to the question of the compound rhamphothera in the penguins, there can be little dould lat that the primitive beak-sheath was composed of several separate pieres, and that in the Tulinares these have attaned their highest phase of development, while in other groups there is a tendency for these plates to fuse: so much so, that in each group exhibiting this type of ramphothea some members will be found in which all traces of distinct plates have been lost. Thus among the Steganopodes Pheethon is holothecal ; and what is somewhat remarkable, so also is Plotus, while in the nearly allied Phalacrocoracidæ the sheath is still compound.

That the deep lateral grooves along the rhamphotheca of the penguins, exteuding almost to the tomium, are relics of distinct lateral plates (labials) there can be no doult: but if this sheath is on this account to be regarded as compound, so also must that of the long-hilled Charadrie, as well as of many Ciconiæ and Rallidæ. But this sheath in the penguins differs further from that in the Tubinares, since it lacks all trace of the "rostrale," so well developed in the Tubinares and Steganopodes.

As a factor in classification, there can be no doubt the structure of the beak-sheath is valueless, that is to say, it is of no value in determining' 'fuestions of atfinity; inasmuch, as Dr. Lönnberg (10) has recently shown, traces of these originally separate elements oceur more or less distinctly throughout the whole class Aves.

As a measure of specialisation this character is certainly useful. Thus Aptenodytes, P'y!usedis. and Eudyptula are less sperialised than Catorrhuctes or Spheniseus, although in the former of these two the plates are greatly thickened, simulating those in the rhamphotheca of the Tulinares.

Perhaps the most interesting ficts which this enquiry has brought out are those romected with the nature of the nestling plumage, and the light they throw on the prolnable character of the primitive plumage. But these points have been dealt with so fully (p. 10) that there is no ned to deal further with the matter here.

Thongh the method of moulting in the penguins differs from that in all other binds, it is not, as has been stated, comparable in any way to the sloughing of the slim in suakes (p. 13) ; white for the sloughing of the lateral rhamphothecal plates of the lower jaw, described by Dr. Wilson, we may find a parallel in the shedding of a part of
the sheath of the upper jaw in the puffin (Fratercula aretica). or in the monlt of the claws in grouse.

Some day another Antarctic Expertition will be sent out, when it is to he hoped that, so far as the penguins are roncerned, special efforts will be made to secure the earlier nestling stages of the King, ant the latter stages of the Emperor Penguin-full-grown nestlings of the latter being especially needed; while of both speries the early and middle embryonic stages are wanted. Ripe embyos will and hout little of real value to our knowledge, since they differ but little of course from the newlyhatched nestling, and furthermore, several examples are among the spoils of the expedition herein concerned. A few adults of hoth species would certainly be useful if preserved entire, in spirit, or in ise.

Bearing in mind the temperature of the air in which these birts live, wservations on their breathing would be of value, since, as we have pointed ont, the external nares are closed; therely respiration has to be carried on by way of the mouth. This being so, it is possille that ohservations may show that some merhanism las been adopted wherely the air taken in at the mouth can be retained and wamert before leing passed on to the lungs. It may lee that the tracheal septum, hy increasing the vascular surface of the interior of the trachea, may serve some surh purpose. This septum can, however, hardly have been developed to serve this special end, inasmurh as it oceurs in the embryos of all birds, and the adult of some other speries which live neither in a specially cold atmosphere nor have closed nares.

## REFERENCES

1. Ameghino, F. "Sur les Oiseaux fossiles de Patagonie." Bol. Inst. Geogr. Argent., xr. (189.7).
$\therefore$. Bartlett, A. D. "Remarks on the Hahits and ('lange of Plunage of Humbeldt's P'engum." P.Z.א., 18:9.
; B Beddard, F. E. "The itrneture and Chassification of Birds." London. 1s!s.
2. Davies, II. R. "Beitrag zur. Entwickl. der Feder." Morph. Jahrb., xiv. (1885), xv. (188: ).

万. De Winton, W. E. "On the Moulting of the King Penguin." P.Z.S., 1 nss and 1 N99.
(;. Gadow, IL. "Promn's Thier-reichs." Bd. vi, ; Abth, ir. : Yögel. Systemat. Theil. (18!:;).


!. Klce, K. " Ban u. Butwickl. der Feler." Zeitschr. f. gesinmt. Natmonisk, lix. (lanti).
10. Lönnberg, E. "On the Itomolngies of the Different Pieces of the Compound Rhamphotheen of Birds." Arkiv. für Zuologie. Bd. 1. 1901.
11. Menzbier, M. "Vergleich. Osteol. der Penguine." Bull. Sue. Jmp. Nat. Mose., $1 \times s$. 7.
12. Mitchell, P. C'. "On the Intestinal Tract of Birds." Trans. Limn. Soc., viii., ?nd ser, Zool. (1901).

1:?. Pscraft, W. P. "A Contribution towards war Knowledge of the Monplogy of the Owls." Trans. limn. Soe., rii., :nd ser. Zonl. (189s).

11．Pycraft，W．P．＂A Contribution tomards our Knowledge of the Pteryography of the Mecapodii．＂ Wilneys Zoological Rexults．Part iv．（1900）．
15．P＇ycraft，W．P．＂On the Norpholow．．．．of the Pataugnathe．＂＇Thans．Z．心．，xr．（1901）．
16．P＇ycraft．IV．I＇．＂Contributions to the Osteology of Birds．Part ii．Impenues．＂P．Z．S．1s．！8．
17．Pgoraft，W．l＇．＂Some lnonts in the Morphology of the Palate of the Negmathae．＂Jomen．Linn． Soe xsviii．
1s．Schamisland，H．＂Zur Entwickl．der Penguine．＂Verh．fies．Deutseh．Nathrf．1s！ 1 ．
19．Stieda，L．＂Ban u．Entwickl．Aler Feder．＂Petersb．medic．Zeitschr．，Bd．xvii．（1～B9）．
21．Stader，＇T．11．＂Die Forschmesreise S．M．S．＇Gazelle．＂Berlin．Theil iii．，1889．
21 ．Watson，M．＂Report on the Inatomy of the Spheniscida．＂＂Chaflenger＇liports，vii．（1883）．
 Südpolar－Exped．Bd．，iii．，Jetifr． 1 （190．i）．

## Description of Plate．

skulls（left side riew）and wings（dorsal aspect）of nestling Pengrins．
Fig．1．Skull of Ciatarductes chrysortme．
．．2．．．Sphemisrus temersis．
．．：．．．Pyjoscelis adelix．
．．t．．．．．．．（full grown）．
．．万．．．．．papua．．，
．，（i．．．Aptenodytes forsteri．
．$\quad$ ．．Hemipterygoid of Aptenotytes firsteri．
．， 8 ．skull of Aptenodytes forsteri．
＂9．Right wing of Pyjosielis artlix．
＂ $10 . \quad . \quad$ ．，Aptenolytes forsteri（later stage）．
．．11．．．．．Py！userlis aldize（adult）．

| Als． | $=$ alisphenoid． | P＇h．${ }^{1}$ | $=$ phalans 1. |
| :---: | :---: | :---: | :---: |
| 中。 | $=$ basipterygoid process． | r．${ }^{1}$ | $=$ radiale． |
| e． | ＝condyle． | r． | $=$ radins． |
| de．${ }^{1.2}$ | $=$ distal carpalia，1． 3.8 ． | $11^{1}$ | $=$ ulnar ． |
| fr． | $=$ frontal． | 11. | ＝ulna． |
| h． | $=$ humerus． | so． | $=$ supraoceipital． |
| hept． | $=$ hemipterygoid． | s．o．g． | $=$ ，orbital ¢roove． |
| 1．0． | $=$ lateral occipital． | su． | $=$ supamosal． |
| P． | ＝parictal． | I．II． | $=$ Digits I．II．I］I． |

Fifis．1－（i）and 8．Slightly reduced（（\％nat．size）．
Fini．7．Eularged．
．．！．Four times matural size．
．．11．Five times natural size．
，11．Nlightly reduced（ $\begin{gathered}7 \\ 4\end{gathered}$ nat．size）．



## IV.-FISHES.

By G. A. Boulenger, F.R.S.<br>(Two Plates.)

The collection is a very small one, comsisting of representatives of ten specios only, from within the Antarctic Circle, lout of these four are here cleseribed as new. In addition to these species an example of a very large Notothenim, apparently closely related to N. collecki, Blgr., was ohtained, harpoomed, with a seal, from a hole at the Winter Quarters. It was in a damaged comlition, the head gone, and the caudal fin partly torn away. All I have seen of the fish is a photograph and the bones of the body. Dorsal with viii, 27 rays, anal with 26 ; scales, in a longitudinal series, 125. Total length, 3 ft .10 ins : weight, 39 lhs . (withont the head).

## 1. Trematomus borcherevinki. <br> Boulenger, Rep. 'Sonth. Cross ' (19n2), 1. 17!

Ten specimens, measuring from 170 to 250 millimetres. Winter Quarters, taken in April and December, 1902, and May, 1903.

## 2. Trematonius hansoni. <br> Iti., op. cit., p. Isn.

Twenty-five pecimens, measuring from 115 to 290 millimetres. Winter Quartres, taken in Morch and April, 1902 ; also to the south-west of the Balleny lilands, at a depth of 254 fathoms, March 4 th, 1904 .

> 3. Trematones beriacuiti.
> 1h., op. cit., p. $1 \times 1$.

Forty-two pecimens, measuring from 100 to 280 millimetres. Winter Quarters, taken throughout the year.

## 4. Notothenia longipes.

Steindachner, SB. Ak. Wien. lxxii. i. (18:i), p. 7 l .
Three sperimens, measuring up to 120 millimetres, from Tent Istand, Iantary Brt, 1904.

## 5. Notothenia nicolai.

Boulenger, op cit. p. 18t.
Five specimens, measuring up to 100 millimetres. Winter Quarters, February and March, 1902, and Felmary, 1904.

## (i. Notothenia scotti.

(Plate I., fig. 1.)
Depth of hody five and a-half times in the total length: length of head thrice and one-third. Diameter of eye twice and four-fifths in the length of the head; interorbital width nine times; maxillary extending to below the anterior lorder of the eye : lower jaw not projecting: head densely scaled, except on the upper surface of the snont. Gill-rakers short, eleven on lower part of anterior arch. Dorsal fin V, 32; longest rays nearly half the length of the head. Anal fin 34 : longest rays two-fifths the length of the head. Pectoral fin rounded, three-fourths the length of the head, reaching loyond origin of anal. Ventral also three-fourths the length of the head. (audal fin rounded. Caudal peduncle as long as deep. Scales $56 \frac{5}{16}$; lateral lines $\frac{40}{18}$ ? ? Brownish, with irregular darker spots, first dorsal fin, and a hotch on the posterior part of the dorsal and anal, liack. Total length, 115 millimetres.

A single badly preserved specimen taken at a depth of 300 fathoms off the Ice Barrier, Tanuary 27 th, 1902.

## 7. Notothenia hodgsoni.

(Plate I., fig. ..)
Depth of hody four and one-thirl to five times in the total length; length of head thrice and a half to thrice and four-fifths. Diameter of eye thrice to thrice and a-half in the length of the head, interorbital with thrice and a-half; maxillary extending to lelow the anterior third of the eye; lower jaw not projecting; interorbital region and occiput naked. Gill-rakers long, 16 to 18 on lower part of anterior arch. Dorsal fin VI-VII, 34-38, longest rays alout half the length of the head. Anal fin 33-35, longest rays about one-third the length of the head. Pectoral fin rounded, as long as or a little shorter than the head, reaching beyond origin of anal. Ventral fin about threefourths the length of the head. Caudal fin truncate. Candal peduncle as long as deep. Scales $90-95 \frac{8-9}{28-30}$; lateral lines $\frac{43-52}{8-10}$, sometimes very indistimet. Brownish, with dark spots, which may form irregular vertical bars on the side of the body.

The largest specimen, from the stomach of a seal (Sept. 30. 1903), measures 160
millimetres, but is partially rigested. There are twenty-four specimens. up to 95 millimetres, from the winter quarters, taken throughout the year. All more or less poorly preserved. This species is most nearly related to $N$. collocki, differing in the more numerous dorsal and anal rays, somewhat larger scales, and truncte caudal fin.

## 8. ('hamisocephalus macropterus.

(Plate II.)
Body feebly compressed, gradually attenuate towards the very short caudal peduncle. Head large, twice and three-fourths to twice and four-fiftlis in the total length, twice and one-fourth to twice and a-half as long as hroad; suout spatulate. nearly half the length of the hear, with a hook-like spine in front, some longitudinal strie on its upper surface; diameter of eye five to five and a-half times in the length of the head, once and a-half to once and two-thirds in the width of the interorlital region, which is smooth and concave; jaws equal in front, with a doulle series of slender, sharply pointed, feelly curved teeth; maxillary extending to below the anterior third of the eye ; operculum proluced above into a group of four spines, the upper of which is shaped like a Lochaher axe, having an anterior, recurved hook. Dorsal fin with XIII-XIV, 29-32 rays the anterior portion commencing at a short distance from the occiput, the posterior commencing immediately behind the anterior' ; the spines flexible and produced into filaments much longer than the articulated rays, measuring ahout twothirds the length of the head. Anal fin similar to the second dorsal, but a little shorter, with 25 to 27 rays. Pectoral fin as long as the ventral, ahout two-thirds the length of the head. Caudal fin small.* Body naked, with a series of 64 to 77 soft tubular scales forming the principal lateral line, high up on the back from the gill-opening to the caudal peduncle, lut not extending to the root of the caudal fin; a very short second lateral line, of 3 to 7 scales, on the middle of the caudal peduncle. Head and body pale olive $\dot{\dagger}$ with harkish spots and vermiculations, forming more or less regular rross-hands on the hody, these cross-bars enclosing a lighter field; the membrane between the first dorsal and the ventral fins blackish; isis pale golden.

Eleven sperimens, measuring from 65 to 240 millimetres, the largest heing a female with the oviducts full of ripe eggs, measuring 3 millimetres in diameter. They were ohtained from the stomach of a Weddell Seal ; winter quarters; Sept. 27, 1903. The head of another specimen was taken from a seal's stomach, March 14, 1903. The very large first dorsal fin well distinguishes this species from Dr. Günther's C. esox. With respect to this eharacter the C.gunnari recently described by Dr. Lönuberg is intermediate.

In addition to the specimens described above, there are three very young and postlarval specimens, measuring from 20 to 30 millimetres, obtained at the winter quarters.

[^18]February 2ud, 190:, which I must refer to the same speries. Is in Trachimus, the post-larval fish is remarkable for the very large size of the ventral fins, which are about three times as long as the pectorals, and of an intense hlack.

Other post-larval fishes, collected with the above, and also a few days later, Fehuary 23, 1903, appear to be referable to cigmondrite acuticeps, Blgr., and are also remakallle for the very long ventral fins; there are two black bars on the body and a third at the ront of the candal fin.

## 9. Bathydraco macrolepis. <br> (Plate I., fig. 3.)

Bonly slightly depressed, gradually attenuate towards the candal pedunde ; its depth nine times in the total length. Head large, three times in the total length, twice anl one-fourth as long as lorod; snout spatulate, one-third the length of the head; diameter of eye one-fourth the length of the head, and three times the width of the interohital region ; jaws with hroad bands of villiform teeth, the lower projecting beyond the upper; maxillary extending to below the anterion border of the eye. Gillrakers moderately elongate, widely set, six on lower part of anterior arch. Seven Inanchiostegal rays. Dorsal fin with 39 rays; its base slightly louger than its distance from the end of the suout, the longest rays two-fifths the length of the head. Anal fin with 29 rays, the longest measuring two-sevenths the length of the head. Pectoral fin longer than the ventral, three-fifths the length of the head. The distance between the extremity of the ventral and the vent one-fourth the length of the fin. Cambal fin rounded, half as long as the head. Scales strongly ctenoid, $96 \frac{5}{12}$; lateral line 56, extending from the upper extremity of the gill-cover to the root of the caulal fin. Uniform brownish, posterior half of the ventral fins blackish. Total length, 210 millimetres.

A single speeimen, taken at a depth of 252 fathoms, to the south-west of the Batleny Tslands, March 4 th, 1904. Distinguished from B. Antarcticus, Gthr., by the much larger scales, fewer and longer gill-rakers, and fewer branchiostegal rays.

## 10. Pleuragranina antaruticum.

Bonlengur, op. cit., p. 187.
Twenty specimens, measuring up to 200 millimetres, mostly from the stomachs of seals, January 23rd, 1903, and February, 1904, lout one found among ice mystals at the seal hole off' Cape Armitage, September 22nd, 1902, and one taken at a depth of 254 fathoms to the south-west of the Balleny Islands, Mareh 4th, 1904.

Series of young showing the development were also obtained by Mr. Hodgsou. In specimens measuring about 20 millimetres, the bedy is very elongate, and a series of black dots borders the base of the dorsal and anal fins.

## ENPLANATHON UF THE ILATES

## l'LATE 1

Firi. 1.-Nutothemin sritti.
., 1".-Notothemicr srotti. L'pper view of hearl.
., 2.-Notothmin horgsoni.
., 彐!.- Notothenin horgsoni. Luper view of head.
.. : :- Bathyitrorn marrolrivis
.. : :e, -liathytraro marolepis. I'luer view of head.
All natural size.

PLATE 2.
Chumisacephalus murropteris. Adult, natural size. with uper view of head: and young, enlargen three times, with upper view of head.


# PTEROBRANOHIA. 

## CEPHALODISCUS.

By W. (i. Ridemuon), D.sc., Lecturer on Biology at St. Mary's Medical Sohoml, University of Lonimin.

## (')NTENTK.

Introduction
PAGE ..... ~
Diaquosis of a New Species of ('ephalodisrus ( $($. hodysoni)
Considration of the Characters serviceable for the Discrimination of the Species of cephalodiseus ..... 3
Review of the six Species of C'phatodiscus. ..... 7
Key to the Identification of the Species of Ceqhalodiseres ..... 11
Relations between Rlialelopleura and E'pphalodisrus ..... 12
Description of $C$. nigresepns-
Material ..... 20
Tubarinm ..... 20
Polypides ..... 24
Buccal Shield ..... 27
Pust-oral Lamella ..... 29
Plumes ..... 29
Stolon ..... :32
Cuelom ..... 83
General Internal Strueture ..... 3.
Collar Canal Muscle ..... 41
Alimentary Canal ..... 43
Gionats ..... 45
linds and Budding ..... 47
Description of C. hodlysomi- ..... 49
Tubarium ..... in
Polypides ..... 52
Buccal Shieta ..... 5.
Plumes ..... 5.
Pust-oral Lamella ..... 57
Gonads ..... 57
Stolon and loudding ..... 59
Buds ..... (i)
Summary of Results ..... 6\%
Literature on C'phlulodistes. ..... (i:
Explanation of the I'lates ..... 6

## INTRODUGT1ON.

 in 1876 from a single locality, in the Straits of Magellan, Station 311. Since the puldiation of the full report upon that speries ( $C$. denteraloplus) in 1887 by Professor Whonsh aml Dr. S. F. Harmer (19), many papers have heen written pon its anatomy mode of budding, and its systematic position, notahly by Cole (2), Delage and Hhrourd (3). Ehlers (4), Fowler (5), Harmer (7, 8, 9), Kemna (11), Lang (12), Masteman (20-28), Achepotieff (29), and Spengel (31). No special methorls were ardopted for the proseration of the material, so that the minuteness with which the varions investigatom have suceeded in elucidating the histological detaik of the polypiles is not a little remarkable.

In 1003 (1) Ambersmon notified the re-dismovery of Ceplethentisers in the region of the Falkland Tslands ly the Swedish Antarctic Expedition, but until the full report is issued it is not possible to say whe ther this is a new species or not.

In . July of the past year (1905) was puhlished the report on the Pterobranchia of the 'Siloga' Expedition (10) ley Dr. S. F. Farmer, contaming a description of two new speries of ('ophthetiserse ohtamed on the 'Siboga' Expedition (C. grueilis and C. silomere ) and a third speries dotained from the South end of the Corea Strait ( $\because$ lerinsemi).

The only known pellypides of ( $\therefore$ drudechontus are females, the colony of this species lowing aparently diocions: the known sperimens of $C$. arocilis are all females, those of ( C . whenere are males and nouters, and those of $C$. lecinveni females.

The material mitained by the "liseovery' consists of two species, the polypides of both of which hare an orary and in testis, on tro oraries, or two testes. The one species is lulky, and with harge, deeply pigmented polypides, and the other has a tularium with long spin-like prosesses, like that of ('. doderoloplus, but more massive, and with the central cavity less divided up. The former species was namer C. nignerems in a short areount puldished by Lankester in the Proceenlings of the Royal Goriety of last year (15). Tha second species I now name C. hodysomi, after Mr. T. V. Honlgam, the hiolugist of the 'Diseovery' Expedition. Eight sperimens (pieces of ondmy) if this were oltained, five on one day, one two days previously, the surventh four monthe later, and the last a fortnight later still. The lates and lowatities are given on p. 49.

1 takr this opportumity of offering my thanks to Professor Ray Lankester for having entrusted to me the drawing up of the Report on Cephatediscus, and I wish further to express my indeltedness to him for frequent and valuable suggestions and adviee given during the progress of the investigation.

## 

The priweipal characters of ( 6 hollasomi are as follows:-6. hodysuni n.sp. (fig. 1, plate 2) -tuharimm, an irregularly hanching tube, with lmmen varying in size, but with imer surface smoth, and not with partial sipta and trabeculae; ostia oral, about $: 3 \cdot 31, y 2 \cdot 3 \mathrm{~mm}$, with four or five loug athating pines, simple or forked: polypides motourless or nearly so, with no black or brown pigment; males, femates, and hermaphrodites (with one ovary and one testis) worming mixd in the same colony, indistinguishatle externally; phmes twelve, eath with an emb boll, in the epidermal redls of which are refractive colondess beands: free egys found within the eavity of the tubarium measure abont 45 mm . achoss.

## CONSHDERATLON OF THE CHARACTERS SERVICEABLE FOR THE DISCRIDINATION OF THE SPEGIES OF CEPMALODISCUS.

In reviewing the six species of Cepholodiseres of which diagnoses have up to the present been published,* one camot fail to be struck by the close agreement in general structure that exists between the polypides of the varions species. Were it not that the males of $C$. siborue have a reduced alimentary camal, and the phmes reduced to two, me might draw up a gencral description of a polypide which with very slight alterations, having reference to the size of the body as a whole, the proportions of the haceal shiedd, stolon and stomath, the number and shape of the plumes, and the degree of pigmentation of the surface, might he made to apply to the polypides of any species. The details of the structure of the notochorl, gill-sits, probuscis canals, collar canals, and gonads are almost identical in all. It hecomes necessary, therefore. to look mainly to the tubarim for features which shall serw to distinguish one species from another.

The extreme mobility of the bumal shield rembers a companish of the shichts of the varions species a matter of prartical lifficulty, and onc can only utilise this man for taxonomic purposes by taking an average of measurements of a lage number of shiedds of earh species. The structure of the shield is essentially the same in all; the eurved red line is constant, and the posterior lohe is thimer than the anterior.

The number of plumes is not constant in polypides of the same speries, hut the degree of variation is not the same in all species. In Ceplulentivers. dodecalophone, C. levinseni, and C. hodgsomi the mumber is amost invarially twelve; in C. nigrescens, on the other hand, the average number is fourteen, but there may be an few as twelve or as many as sixteen. The number of plumes in C arroilis is stated ly Hamer to be ten ; the plumes of $C$. siburue are eight in nenter individuals and two in the males.

[^19]The range in the momber of pimmles of the plames in the same species, and even in different plumes of the rame individual, is too wide tor allow of surh rhatater being utilisell for promes of discrimination. Althongh the two plumes of the males of C. simmer have no pimnules, those of the neuter inlividuals are provided with pimules rescmbling those of other species. The massiveness of the axes of the plumes of $\therefore$ mimosern is distinctive of that speries, hat aregards the form of the apex it is not easy to sily whether in (. migresenes the apex is swollen or not, it varies so much with the differnt degrees of extension and contraction of the plumes (cf. figs. 23 and 24 , phate 5). Teminal bulls with refartive colontess beak surh as orew in C dodeco-
 no sum swellings in the polypiles of $C$. lecinsemi, in the neuter polypiles of $C$. silunge, wor in the adults of $C$, aprecilis, although in the buls of the last species they occur on the first and smetines on the second and third plames, and occasionally persist in the
 whold comme of the two pimmule-less plumes.


Text-Finde: 1.-Comatodisus dodcculophas; plumes seen from the aponeural aspect and from the side.
The size of the horly of the polypide varies somewhat with the condition of the gomarls, lut it is failly miform for the same speries, and would be a nseful chatacter if one conld extimate tha hulk or the weight of the body. In consecpuence, howerer, of the ereat mobility of the parts, and their caparity for expansion and contration, the linear measurements are mot very reliable, and the length of the boly of $C$. berinserni ambl C. nimperens may be an excessive index of the bulk of the borly in conseruence of the limitation imposed upon the width of the body by the narrowness of the tubular maty in which the polypide dwells. (C) domecalophus and C. hotysomi, on the other hand, being less restricterl, have a body less cylindrical.

The measurements found to be most reliable are those from the fiont of the buccal shich to the posterior ent of the visceral mass. The length of the body of $C$. dodecothothes is usually given as 1 mm ., lut it is not explained how this measurement is taken ; premmally one is experted to measme from the anns to the end of the visceral mass, hut even then the recorden measurement falls short of the atual size. The arerage lagoth of the polypide from the front of the huceal shield to the end of the
viseral mass is 1.5 mm , and from the ends of the phomes to the end of the visemal mass about 2 mm .
 these of $C$. nigreserns consilerathes su, the length from the front of the buceal shield to the end of the visceral mass of the last species being 4.5 mm . i.f., three times the arresponding measurement of $C$. doulectophues; lut the same ration is mot mantained in the width of the borly. The polypiles of C. lecinewi are about ats long as those of C. dentecalophus, although more "ylimbrical, and those of $C$, premilis and $\therefore$ simmen (ucuter individuals) itre smalles:

The length of the stolon and its mone of curvature, whether towats the mouth or away from it, are characters that can only he employed in a very genemat way fors


Text-Figure 2.-Cephaludiscus sibogar.-A, - colony attaehed to a stune $\left(\times 1 \frac{1}{2}\right)$. $B,-a$ cupple of branches more highly magnified. The cavity of the tajarium is continuous, and opeus ly several ustia. (Coplicd from Harmer, 10, plate 1, fig. 2 and plate 2, fig. 15.)
eriminating purposes. The differemes depend almost entirely upon the anownt and the monle of distribution of the longitulinal muscle fibre of the stolom. If, as is usumbly the ease, there is more mustle on the antero-ventral watl of the stolon than chewhere, the amimal dies with the stolon couled towards the mouth wing to the contradion of these fibres in its death struggles, lont this cmrvature is not apparent if the ammal dies tightly fitted into a tubular space, as do the polypides of $C$. nimesertos and $\therefore$ limmeni.

Some species are remarkable for the great development of epinmal pignment. which canses them to appear black. This is so with ( $\therefore$ nighereeres and $C$. silumy, C. arocilis is deseribed as having a medran line of pigment on the anterin sith of the
stolom ( $10, \mathrm{p}, \dot{\boldsymbol{z}}$ ) and Hamer also states that deserted stolons of this species are deeply pigmented ( $10, \mathrm{p} .93$ ). The red line of the lonceal shield is absolutely constant, heing present even in the shield of the reduced mates of $C$. sithofae. The red pigment of the oviluct is also constant, and is sometimes, thongh rarely, present in the testisduet in C: miffresens and C'. huldsomi. Harmer, ly saying mothing of red pigment aromul the testionlar oritices in $G$. silumpe, leads one to conchade that there is none

The free ova fomm in the avities of the tularime in some of the species vary somewhat in size, although they are all heavily yolked, and are all ovoid in shape, and pale rellow in colour. Those of 6 . mitrescens are the largest, and measure $\cdot 6 \mathrm{~mm}$. acroses those of $C$. houlysumi are +5 mm .; and those of $C$. dendocolophlus, $C$. areceitis, amb $\therefore$ Incinsmi measure between 3 and 4 mm .


Trat-Figure 3.-Cephatudiseus lelinscni, portion of a branch ( $\times 5$ ). The dark bodies are the polypides. Each polypide occupies a separate cavity of the tubarium, opening by a single ostium. (Copied from Harmer, $\mathbf{1 0}$, plate 2. fig. 11.)

One is thas left with the tubarimn to deal with, and the architectural details of the test are almost in themselves sufficient to enable one to judge of the species to which the polypides that prodnced it belong. The size and 'habit' of the tubarim of the different speries are much more different than are the size and shape of the polypides. The rolony of C. fracilis and C. sithoute (text-fig, 2) is dimimutive, that of $C$. nigrescens is exceptionally hulky and massive. The branching of $C$. rodicolophu* is straggling, the lnawches of $C$ herlysemi are more closely set. The spine-like processes of the exterior of the tularime vary in leugth and thickness in the different species: the may occur one to each ostium. or several, or may oceur apparently independently of the astia. They may be long, thin spines, or
may be but short, thick lips to the peristomial tube. Nost important of all, hovever, is the isolation of the polypides of certain species in tulnar sares in the tubarimm, in contrast with the wecurrence of all the polypides of the colony in one romtinuous avity in wther species.

Hamer, on p. © of lit momaraph (10), gives a list of the generie "haracters of
 genns to the name Cophelodiscus at the hean of the paragraph, he alters the diagoosis of that anther by deseribing the tubarium as "with a continuous avity or with aseparate cavity for cacll zooid." Cntil the discovery of 6 . locinestli it was not known that any foms of Cephelodiscus existed in which the polypides had separate tubes. The presence of (an average of) fourteen plumes in the polypides of C. migrescens, and the discovery that in both $C$. nifrescens and $C$. herdysoni hemmphodite imdividuals occur, necessitate further alterations in the diagnosis given Joy Harmer (10, p. 6).

The isolation of the polypides in separate tubes within the common test is Hearly a feature of great systematic importance, and for the inclusion of species of Cepluctodivers in which the polypides are so isolated Professor Ray Lankester has been good enough to suggest the sul-generic name Idintlecia*. So far as our present knowledge goes there are three such species, viz., C. lexinseni (text-fig. 3), C. migrescens (plate 1), and an undescribed species olntained by Dr. (xilchrist in the Cape Seas. The remaining speeies of Ceplalodiscus, in which the polypides are more social and live together in the same edifice, namely, the type species $C$. dodecalophus (text-fig. 4), and the recently discovered species C. gracili, (text-fig. 5), C. sibogat (text-fig. 2), and C. hodgsom (fig. 1, plate 2), are included in the sul-geuns for which Professor Lankester proposes the name Demintluciat. Dr: Andersson's note (1) is not sufficiently detailed to enable one to judge whether the Falkland Islands specimens belong to C. delecalophus, as that author suggests, or not.

## REVIEW OF THE SIX SPECIES OF CEPMALODISCUS.

Genus Cipholodiscus. Polypides secreting a tularium of gelatinous appearane, formed of superimposed lamellae, and with ostia upon the surface. Polypides with buecal shicht, collar, and trunk. Shield with pedicle arising from middle of upper surface, hollow, the cavity opening typically $\ddagger$ by two small pores (prolosicis pores) on the dorsal surface. Collar with special paired division of coelom, opening to exterior on earh side hy a canal (collar canal) near the gill-slit; collar produced

[^20]antorionly into paired phmes which are nsmally proviled with paired pimmes, and promued pustero-ventrally into a pust-onal lamella. Trmak large, with distimet division of the coelom, not opening to exterior, and prinarily paired. A stolon for the promution of louds projects from the ventral side of the trunk region of the londy. Alimentary canal hent, mouth posterior to the pedicle of the shiche, a motochomal outgrowth from the firme of the pharynx, gill-slits leading from the phargngeal cavity to the side of the body, anus anterodorsal, near the lases of the plumes. Gonarls simple, one pair, with short durts opening near the anm.

Sul-genus Demintheciu. C'avity of the tulnamm contimures, and all ontia leating into that cavity.


Text-Figitre 4.-Cemalodiscus dodeculophus. A, - portion of tubarium cut leugthwise; E , - portion of tubarium cut transsersely. The polypides are not shown. The cavity is continuous, irregular, and with several ostia $(\times 3)$.

Speries dodecalophus. Mrterial. Ohtamed by II.M.S. 'Challenger,' in 1876 , in the Straits of Magellan, Station 311 ; depth, 245 fathoms; hottom, hue moul. Described lyy Mhatosh in Alm. May. Nat. Mist. (17) and in the Report of the 'Challenger' Expectition (19). Tulurium. Cobony irregularly lnamedod. and straggling, some of the lumbes fusing up to form a network, the woss-hars leing unatly solid. Colony reaching a length of at least 225 mm . distance between one branch or cross comection amd the next abont 22 mm . ; width of bauch, 4 to 6 mm ., not incheding spines; Gvity of tubarim partially divided ${ }^{1} \mathrm{I}$, by hars, ridges, and incomplete partitions (text-fig. 4), ostia mumeroms, imegulanly placed, oval, $1 \cdot 51 \mathrm{y} \cdot 7 \mathrm{~mm}$., sessile, i.r, without peristminal tubers,
eren sunk below the general surface; pines long, not very obwiously related to the ostia; width of spines about 5 mm . Pol!pides colourless; all known individuals are female. Fromt of buecal shich to end of visceral mass 1.5 mm . Plumes six pairs, axis of each terminating in an end hulb with refractive colourless beads. Stolon not so long as the rest of the polypide in the contrarted condition, commonly directed towards the mouth. Buts, one or two, rarely three. Fres ort 33 mm . across.

Speries horlysomi. Matorial. Eight sperimens dredged by the 'Disonvery' in the Antarctir Ocean in 1902-3, in 100 to 300 fathoms. New species. Tulutrium. (chony irregularly and dosely branched (fig. 1, plate 2); distance


Text-Figure 5.-Cephalodiscus gracilis, portion of a colony $(\times 5)$. The dark bodies are the polypides and embryos. The earity of the tubarium is continuous, and opens by numerous ostia. (Copied from Harmer, 10, plate 2, fig. 15.)
from one liranch to the next ahout 10 mm . ; width of luanth ahout 6 mm . ; cavity of tubarium with imer surfane smooth; astia wal, $3 \cdot 3$ by $2 \cdot 3 \mathrm{~mm}$., with four or five long, rarliating spines, simple or forked; width of spines $\cdot 6$ to 1 mm . Polypides colourless; males, females, and hemaphrotites (one ovary and one testis), indistinguishalle externally; front of hucal shield to end of visceral mass 2 mm . Plumes six pairs, axis of each terminating in an cud bulb, with refractive colourless beads. Stolon curved forwards or backwards, average length in contracted state 2 mm . or less. Buds two, sometimes three or four. Frep arit $\cdot 45 \mathrm{~mm}$. across.

Speries armilis. Whterial. One sperimen, ohtained at Station 89 of the 'Siboga' Expedition, East Coast of Borneo, ou reef, between tide-marks.
] esrriher hy I [amer in Report of' Sihoga' Expedition (10). Tuburium. Colony vely small and lelicate ; almost colouless tubes, of prostrate habit, supported hy foreign oldject (rakareous branches of the Polyzoon Tulmetharia). Extremities of the hamehes with long spines home upon the margins of the fumel-shaped ostia, which masure 8 to 1 mm . across. Width of hanches 1 to 1.5 mm . (text-fig. 5). Polypides. All known individuals are female. Front of linecal shiedd to end of visceral mass $\cdot 87$ to 1.2 mm . Plumes five pairs, small end halls with refractive bearls present in first pair of arms of the lind, and ourasionally on serond and third pairs also ; they may persist in the adult ( $10, \mathrm{p} .20$ ). Stolon thin, murl longer than the rest of the polypide, msmally directed away from the mouth, and prorlucing hads in great profusion. Frep oce $\cdot 3$ to 4 mm. across.

Speries silogae. Matorial. One specimen, obtained at Station 204 of the 'Siboga' Expedition, at the Northern entrance of Buton Strait, off S.E. point of Celehes, in 75 to 94 metres. Bottom sand with dead shells. Desribed by Harmer in Report of the 'Siboga' Expedition (10). Tuborium with a dense basal encrusting portion, growing on a small rock, with stiff, erect and slightly hranched tubes, with numerons foreign inclusions in the sulostance of the test. Ostia fumel-shaped, more or less alternate on two opposite sides of the branch, $\cdot 6 \mathrm{~mm}$. arcoss produred into a few peristomial spines, stiffer and shorter than those of $C$. aracilis. Wiolth of branch 1 to 2 mm . (text-fig. : $)$. Polypides deeply pigmented ; all known individnals are male or nenter. Nenters with elongated trunk region, with excessively long and slender stolon arising from near its aboral end, bud producing buds in great profusion; gonads vestigial in buds, usually absent in adults, but occasionally developed into functional testes (10, p. 84, and legend to fig. 98). Plumes four pairs, withont end bulls and refractive leads. Front of boncal shield to end of visceral mass $\cdot 95 \mathrm{~mm}$. Nales with conical hody, which passes contimonsly into the stalk ; alimentary canal vestigial ; testes ourupying most of the tronk and part of the stalk. Plomes one pair, withont pinnules, surface with crowded refractive heads, at least in yomng males. Frere ore not known.

Sub-genms Idinthecio. ('avity of the tuharimm multiple; each ostimm leading into an mbranched, tulmlar ravity orempied by one polypide and its buds, and having no ronnection with the other savities of the tularium.

Speries mifreserns. Matoriml. Several specimens, olitaned by the
'Discovery' in 1902 off ('oulman Inand, near Victoria Land, in the Sutaretic Orean, in 100 fathoms. Desmilur by Lankester in Pror. Roy. Soc. (15).

[^21]Tulurium. ('Whny massive, maximmon size of known specimens 190 by 115 mm ., with twelve lranches (plate 1); maximm widtlo of a single lnanch 32 mm . Branches roughly eglindrial, with narowing axtremitics. Peristomes tulmar at the extremity of the branch, and occasionally elsewhere. The alaxial edge promuced into a lant lip; no monspicnons ridge continued down from the extremity of the lip. Width of lumen of tule $1 \cdot 2$ to $1 \cdot 3 \mathrm{~mm}$. (fig. 10, plate 4 ). Polypides large, 4.5 mm . from front of loweral shied to end of visceral mass: surface deeply pigmenter, so as to appear hark to the maked eye. Males, females, and hemaphrodites (one ovary and one testis) not distinguishable externally. Plumes usually seven pairs, axes massive. back, no end bulls with refractive bearls. Stolon short, stont, and transversely wrinkled in contracted state, usually directed posteriorly; luds from 2 to 9 , some upon secondary stolon where the number is large. Free oru - 6 mm. across.

Speries licinseni. Ifaterial. One sperimen, belonging to the Copenhagen Musemm, ohtamed off the West roast of Japan, at South end of the Corea Strait, in 100 fathoms. Dessribed by Harmer in the Report of the 'Sihoga' Expentition (10). Tubteriom subuylindrical, slightly brached, reaching a length of at least 132 mm . Ustia at euds of distinet tubular peristomes, which raliate in all directions, at an angle greater than a right-angle, from the principal axis of the branch, each heing produced on its ahaxial side into a single, short, hunt process or lip (text-tig. 3). Width of lmand (from tip to tip of peristomial lips) 12 mm . ; with not including peristomial tules 3 to 5 mm . ; width of cavity of tube about $\cdot 7 \mathrm{~mm}$. : a ridge present on the outer (alaxial) surfare of the peristomial tale, teminating in the end of the lip. Polypides colomrless; all known individuals are female ; body cylindrical, front of buccal shield to end of visceral mass 1.5 mm . or more; stalk of luceal shield exceptionally long. Plumes six pairs, without end lulls or refractive lieads. Stolon thick, alout as long as the rest of the polypide, usually directed posterionly, producing buds in small numbers. Fire ona 3 to .4 mm . arross.

## KEY TO THE IDENTIFICATION OF THE SPECTES OF CEPILALODISTUS.

[^22]```
Polypides in separat+ carities, each with a single ostinm (sub-gemms Ithotherio).
    Polppides, black: phmes, seven pairs.
            Colony massive, width of branch 15 to 2.5 mm . or more. peristomial tubes very
                short, each with a short blunt lip . . . . . . . . nigrescms.
    Polypides, not black; jlumes, six pairs.
            Width of branch (includinge peristomes) abont 12 mm., peristomial tnbes longer
                than their width. each with a short lip, no spines
                        lerinseni.
            Width of branch is to 10 mm ., peristomial tubes short, spines long, slender,
                simple or forked . . . . . an undescribed species from the t'tupe Sects.
```


## RELATIONS BETWEEN RIIABDOPLETRA AND CEPIIALODISCCS.

The discovery of speries of Cepluthetiscus with the polypides residing in separate tubular spares in the tubarium (viz., C. lecinseni and C. nigresems) tends to show that Cepllatodisens is more cossely related to Rluthdudrupe than was supposed; although it must be horne in mind that the new tubes in the species of Cephulotiscus in question are formed independently of the okler ones and not as laterally erupted branches of them (see text-fig. 6). In Rhalvdopleura,* as in C. levinseni and C. nigresems, the tube is lengthened hy arlditions to its free edge, and, the increments being intermittent in both genera, the sucessive rimgs are distinct to the eye, although as a rule not readily separable by dissection. In instituting a comparison between the tubaria of Rludrlopleura and the above species of $C_{e} p h a l o d i s c h s$, however, it is to le noted that in the latter the rings are so broad, in a direction at rightangles to or oblique to the axis of the tube, as to form a tube-wall of considerable thickness, or even to constitute strata extending more than half-way towards the arljacent tuhes, so that the space which in Rhabdoplewa occurs between neighbouring tubes does ṇot exist.

In Rhalumplura each of the rings which compose the tube is in most cases interrupted by an ohlique suture (text-fig. 7, B; see also Harmer, 10, pp. 8 and 126). The polypile works round the periphery of the tube until it returns to its starting point: the part of the new ring that was first secreted having by this time hardened somewhat, the junction of the finst-formed and last-formed parts of the ring is indicated by a suture. Possibly in some cases the secretion of the ring is so rapid that the suture is not discemible, while in other cases the polypide-usually an immature polypide with a bilobed burcal shield-forms only a half-ring at a time, so that the complete ring has two sutures (hamkester, 13, p. 627).

In Cophatodisers lon inseni and C. nigrescens the rings that constitute the tubes are

[^23]meven, me portion leing always more bulky than the rest. The lip of the tube owes its origin to this local profusion of the sectetion. Thee rings are not mecessarily complete, indeed half-ring*, commenoing at the lip and rying out at the other side of


Text-Figure 6.-Whabulonleura normani, complete colony ( $\times$ 3). (Copied from Lankester, 13, plate 37 bis, fig. 2.) $a$, growing branches of the tuharium ; $b$, the oldest portion of the colony; $c$, hifurcation of a growing branch; d, completed hranches, each terminating in an upright polypide-tube.
the ostimm, are common (Harmer, 10, p. 9 and fig. 12 ). The disposition of these rings, complete and incmplete, is more dearly marked in C. levinstui than in ('. nigrescons, for in the latter the common protion of the test that fills in the interval between one tube and the next (" ixternal secomdary lamellae" of Harmer) is more abondant, and mly the teminal portions of the tubes stand out freely. The mode of deposition of the material in C. nigrescons is illustrated in figs. 12 and 13 of plate 4 , and reference to the latter of these will show that not only may the secreted material spread over from the tube-margin to the interval hetween the tule in 'question and its neighbours, but that thin films are continned down the inner surface of the tube ("inner secondary lamellae" of Harmer). These secondary lamellae, both inter-tubular and intra-tubular, appear to have no existence in Rhahdoleura.


Thit-Figure 7.- Fihubdoplewa normani. A, - portion of a colony, highly magnified. (Copied from Laukester, 13. plate 39, fig. 1.) IS, - tenuinal portion of a tube, more highly magnified. (Copied from Harmer, 10, plate 2, fig. 19.)
a, extremity of growing branch: $b$, gymnoeaulus or soft stalk of the terminal polypide of the growiug branch; $c$, latest bud produced by the gymnocaulus; $d$, penultimate bud; the part of the stalk which produced it bas now become hardened, and is known as peetocaulus: $\varepsilon$, third bud; it has forced its way through the wall of the axial tubarium, and is coustrueting a lateral tube; $f$, fourth bed, counting from youngest; it is now a fully-formed polypide, with complete polypide-tube with reeumbent and rertical portions: $g$, fifth bud; $h$, pectoeaulus; $j, j$, septa of axial portion of tubarium.
 The terminations of the hamehing colony of Rlublophura are, as Lankester hats shown, of two kinds, those which are continuing to grow and produce bonds (text-fig. $7, A,{ }^{1}$ ), aud those which stand ont at right-angles to the geneal plane of the colony and are occupied ly adult polypides ( $f$ and !(). The proliferating stolon in the hranches of the former kind has no hard covering such as is found on the organi- stalk that
comects the full-grown polypides of the colony. It is called ly Lamkester (13) the "gymnocaulus," the hard stalk being termed the "pertocaulus." The gymmocaulus gives off a series of huds in regular suression (text-fig. $7,4, f, e, d, c$ ) at the lasal end of the terminal "proliferous polypide," which remains incompletely developed so loner as it continues to produce lomd from its stalk. Each hod remains in that part of the axial or growing part of the colony in which it was formed, and lecomes partitioned off loy the formation of a transverse septum ( $j$ ), whin stretches across the tube, and is traversed ley the organic stalk of the colony, which shortly afterwards lecomes bardened (pectocaulus, $h$ ). The hom, which has adrenty developed a shield and a pair of plunes, now breaks through the side of the portion of the tuke within which it is enclosed, and foms a lateral tube, commencing at the point of cruption, lay the secretion of successive rings. It now enlarges and differentiates further, whd beomes an adult polypide.

This succession of buds along the stalk of a terminal polypide of Rhubluplourn appears to have uo direct equivalent in Cophotodiscus, and in Cepluludiscus there is no differentiation into ordiniry polypides and proliferons polypiles. All the polypides of Cephalorliscus seem to be capable of hording, the buts being formed aromd that area at the free end of the stolom where the severance of the polypide in puestion took plare, when, as a full-grown bul, it separated from its parent polypide. Scarch was made for some such regularity of bul-succession as occurs in lihubdoplener, but without success (see plate 7, figs. 69-84).

Returning to the consideration of the tubarim, it is to he noted that the tulies of Cephaludiscus lovinseni and C. nifpescems do not arise as outgrowthe from a main tuhe as do those of Fhaludopleura, lout, so far as one ran judge from a stuly of nonliving material. earll new cavity is from the first independent of other cavities (see plate 4, fig. 10). The newest tules are the short ones at the apex. ha other words, the bur of C mipresens separates off from its parent and forms an entirely new tulie of its own, whereas the hon of Rhaluloploura heaks out laterally from the main or axial tube and remains in organie continuity with the parental stolon.

In the species of Cephedudiseus of the sulb-gemus Deminthectid (i.e., C'. Iodecedmphes, $G$. horlysoni, $C$. sithome, and $G$. tpucilis) the polypides are more social than those of Idiothecir, aml co-rperate in the secretion of a common envelnoe, which may in a general way he described an an irregular lnamelning tube with nmmerous ustia. The part played by the younger and the older pelypides respectively in the bikding of the tubarium is not known, hat most probahly all polypides act in concert, and additions to the existing envelope are made ly young and od indifferently.
 Rhablopleara have much in conmom-the division of the bumy into a burabl shield, a collar region with plumes, and a trunk regiom, latged than the others, and with a ventrally placel stalk (ef. text-fig. 8 and plate 6 , fig. 49).

The red line of the shich which is so conspiruous and ronstant a feature of
 the exart pasition "orupied lay the red line in Ceplatertisens, a "Pigmentstreif" (1904, ph. :. fige 9, ant 190.5. p. 796 , fig. 1), lut since he says nothing alout red colour, one is ted to comelute that the pigment-stripe is hark. The rowl of lhack pigment spots at the anterior point of the shich of Rholdopleurt, assumed to be a rudimentary organ of rision, fimbs me equivalent in Ceplulotisens. The relations of the shied to the month. howerer, and the great monility of the shield, and the glandnlar nature of

 fis. 1.)

the thick rentral part of the rentral wall of the shicld (Schepotieff, 1905), are the same in loth liledulopleurer and Cophuludiscus.

The coilar region is protuced in loth into a postoral lamella and phomes. The latter are two in munber in Rhulbtoplemere, and although Copholodisens has in most cases four pairs or more. Harmer's discovery of male polypides of $C$. sithoter with one pair of phomes only $(10, p, 84)$ is of interest in this comection, in spite of the fact that such plumes do mot possess pimmles.

The mode of development of the phomes of Rhaldopleare from the dorsal region of the rollar near the stalk of the lncal shield, and the mode of development of pimules uron them (see Lankester, 13, ph. 39, fig. 3, buds 5 and (i, and the slightly older loud figured helow these ; alsu Alman, 1869, pl. 8 , figs. 7 and 8 , and Shepotieff, 1905,1 . 802 , fig. 6) renders it almost certain that these two phomes are the epuivalents of the first pair of plumes that develop upon the had of Cephatodisens, and not of the short lophophomal arm whioh in Cephatodiscus. dodectophus bears the six plumes of its own side of the borly. The second and later pairs of plumes of Ceplerlodiscus are not represented in Rlentmopleura. The pimules of liluthdopleum are erquivalent to the pimmles of Cephaludiscus.

On each plume of Rhoblopleure are about fifty pimules, projecting ventrally from the two edges of a ciliated grove, which has a central ridge. In his carlier paper ( $1904, \mathrm{p}, 12$ ) Shepotieff was inclined to regand this central ridge as hearing a third row of pimules, but sime he says nothing of these in his later paper ( $1905, \mathrm{p} .797$ ) he has presmally withdrawn that view. The plumes and their pinnules are hollow, and are lined ly a tough sheet of skeletal connective tissme, which remains when the epithelium disintegrates, and gives a false impression of being solid; hence the erroneous statement of Sars that the skeletm of these parts is cartilaginous.

The postoral lamella resembles that of Cephatoliscus in that it consists of a pair of lateral Haps ("Scitenlippen" of Schepotieft), containing continuations of the collar coelom, the middle part, posterior to the mouth, leing, however, less free than in Cephalodiscus. Phabdopleura has a front lip, distinct from the postoral lamella.

Although gill-slits do not exist in Rhublopleure, the position which these would ocupy is clearly indirated ly a pair of ciliated grooves ("Kiememimen" of Schepotieff, 1904 , pp. 13 and 14 , and 1905 , P. 796 and fig. 5). These grooves are clearly the equivalents of the pair of triple grooves of Cephulodiscus which Masterman has descrilied as comburting the fool particles from the plumes into the mouth. In Cephatodiscus there are a pair of perforations of the pharyngeal wall which serve the purpose of disposing of the exress of water that has come down the grooves charged with the fool organisms. Such perforations are wanting in Rhetorlopleure. Schepotieff's Kiememinne is a continuation of the ciliated groove on the ventral side of the plume-axis; it passes from the plume-lase down the side of the collar region and the stalk of the shiekl, and runs down the side of the mouth into the first portion of the alimentary canal, where its walls change in character. At the side of the mouth the rells composing the wall of the groove are tall, colummar, ciliated cells; those in the pharyngeal region are pale-staining cells, partially vacuolated, and sharply delimited from the other cells of the pharyngeal wall-they constitute the "pleurochords" (Schepotieff, 1905, fig. 5). It is where the groove changes in waracter, i.r., at the anterior end of the pleurochord, that one would look for the gill-slit.

The atimentary ranal of Pholulopleura resembles that of Cephalodiscus in the position of the month and anns, the flexure of the gut, and the presence of plewrohords and notochord: wen the gastrib caremm of Cepholotiseus is represented ("Blimddarm" of Schepotioff. 1904, [. 14).

The notochord (Fowler and Schepotieff) is an anteriorly directed diverticulum of the first part of the illimontary ranal. It is usually solicl. hut in some polypides possesses a mavity. The rells of the hinder or hasal part are frefuently vacurlated aud resemble those of the Eicheldarm of Balanoglossus: in the terminal portion is a "cartilaginons" on "gelatinoid" substance ("Stützkïrper" of Schepotieff, 1905, P. 800) which stains very darky with haematoxylin. The notochord lies in the region where the median septum of the dorsal part of the collar mects the septum that divides the collar eavities from the proboscis cavity.

The central nerse mass of Phadodopleure (Fowler and Schepotieft) lies, as in Ceplatodiscus, on the dorsal side of the neck region. It is situated leetween the plume-hases, the collar pores and the anal papilla. The superficial epidermal cells that cover it are pigmented, and, according to Schepotioff. constitute a sense organ.

Un the evidence of Fowler and Schepotieff the divisions of the coelom are exactly as in Cephatoliscus, namely, a prohoscis cavity in the boceal shich, a pair of collar cavities and a pair of cavities in the trunk region. The pericardium, on the authority of Schepoticff, constitutes a sixth cavity (cide posta). The cavity in the bucal shich is shut off from the collar roelom by a septum, and from this septum there pass muscle filnes to the thickened ventral wall of the shield. The cavity opens to the exterior by a pair of pores, the probosis pores (Schepotieft, 1905, LP. 797 and 798 , and fig. 2, Kip. Situated in the prohosis carity, and set close against the septum, is the pericardium, within which is the heart, in contact with the ventral surface of the notochord (Schepotieff, p. 799 , and fig. 4; ef. text-fig. 12 of this paper).

The right and left collar cavities are separated by a median septum dorsally to the notochord, and are continued laterally into the flaps of the postoral lamella, and forwards into the plumes and pimules. In his earlier paper (1904, p. 16) Schepotieff states that the plume eavity is separate from the whlar cavity, lut in the later one (1905, p. 799) he regards the two as continuous. Earh collar cavity opens to the cxterior loy a collar canal, with a wide internal opening and a narrow collar pore. While the collar pores of Copliflodiscus are strixtly laterab, and far back, near the gill-slit, they oceur dorsally or dorso-laterally in Rhubdopleura, on the plume-hases, on the right and left sides of the central nerve mass. Schepotieff represents the collar pores close to the anus, whereas Fowler identifies the positions of the collar fores with those of the ciliated tulereles of Sars, which in the earlier figures (Sars and Lankester) are represented as at some distance in adrance of the anus. The difference is probably to he acounted for by the relative state of rontraction or extension of the polylide: in a well-extended polypide the lengthening of the neck
or collar region would have the effect of removing the central nerve mass and the collar pores from the anal region. Both whar canals and proboscis canals are regarded ly Schepotieff as "nephridia" (1905, p. 801).

The trunk coelom does not open to the exterior. It is contivucl into the stalk, as was first noticed ly Lankester, and it is divided by a median septum, which runs into the stalk, dividing it intor right and left parts more completely than does the corresponding septum in Cephelouliscus. The longitudinal muscles of the stalk, says Harmer (10, p. 78) are related to those of the body exactly as in Cophelodiscus, and there are two hood-vessels. The posterior of these, arcording to Fowh (1901), is continuons with the lining of the alimentary canal; but Hamer is inclined to doult this, and to regard it as a true hood-vessel, homologous with the posterion bloodvessel of the stalk of Cephalodiscus. There is a nerve tract on the anterior or ventral side of the stalk, exactly as in Cepholodisus (Fowler, 1904).

The gonads of Pholutoplenre are not well known, owing to the fact that most of the material examined has been collected at the wrong time of the year. The only definite information on the sulject is that given ly Lankester (13) and Schepotieff (1905, p. 801), according to whom the testis is mpaired, and situated on the right side. It is a long sac, which extends from the posterior end of the visceral mass to the anal papilla, and the hinder part is sometimes swollen, and contains developing spermatozoa, whereas the rest of the sat is filled with ripe spermatozoa. The ovary of Rhabdopleure may be said to be moknown, since the account of the ovary and testis as oruring in different parts of the peduncle, given by Conte and Vaney (C. R. Acad. S.i., 1902. p. 64) is too brief to be intelligille.*

In descriling the growth of the bud of Rhabdopleura Sohepotieff notices (1905, p. 803) that the coelom is divided into six parts at an early stage, two in the shied, two in the collar, and two in the trunk, the last continuons for some time with that of the parent stolom. The right half of the shield ravity is much smaller than the left; it beromes median, and after undergoing further redurtion in size, persists as the pericardium. The gut develops as a solid mass of rells, subseruently hollowed. The notochord develops from the auterior part of this, and the stomodaelum opens into the middle part. The proctodaeum is a solit mass of ectodermal cells, hollowing later, and becoming connected with the hind end of the primitive gut. Fowler, it is to he moted (1904, p. 28), regards the notochort as developed from the stomodaeum, and not from the primitive gut.

In reviewing the above remarks on the polypites of Rluthlopleur". it will be scen that in bodily structure Rhabdopleuru agrees very dosely with Cephelodiscus, the only important differences being in the position of the collar pores, the number of the plumes, and the alsence of pharyngeal perforations or gill-slits. The

[^24]presistane of the lranching stom in Rhublopleure, su that the polypides remain in organic romtinuty, wonstitutes amother point of differemer, and the frainess of the tubarium aur the diminutive size ${ }^{*}$ of the pelypites and wotony get other differences: hut on the whole the effect of revent investigations made upon Pholdopleura and Cophatorliseus is to justify the action of the varlier zoologists in associating thes two genera in the same mroup-l'torohnmehia of Lankester. Appidophoma of Alman, Diseephom of Hatselock.

DES 'RIPTION OF CEPILALODMSCTS NMGHESCENS<br>

## Material.

Thas whole of the material of this species at present known was dredged by the 'Disopery' on January I:th, 1902 , in 100 fathoms, ofl' 'omban Island near Victoria Lamd, in the Antarcti- Occale. The bulk of it was preserved in a 5 per rent. nolution of formalin, lut two pieces were tixed ly Perenyi's fluid. followed hy akohnd, and two pieces hey picrice add sohtion, followed bey alcohol.

## Tularium.

The colony of this species is lonky and massive, the tubarime $\dagger$ gelatinons in appearance, nearly tramsarent, somewhat opaleseent, and with a slight yellowishbown tint. The largest piece in the collection measures roughly 190 mm . by 155 mm ., and has twelve hrames ( 15 , alse plate 1 of this Report). A smaller but more massive piece is shown in fig. $\because$, phate 2. The largest single bruch is 90 mm . long and 30 mm. across. The branches are roughly oylindrical in shape; the larger ones are hantembed, the maller ones taper towards their extremities.

Upening at fairly regular intervals orer the surface of the colony are the tubes in which the polypikes dwell, and the substance of the tubsium is sutticiently transparent to enable one to trace the tulnes inwards for a moderate distance with the maided eye, and to recognise the polypides within the tules. The lining of the tube, i.e the layer which bounds the cavity in which the amimal lives, is darker in tint, and of tongher and fimer consistency than the common portion

[^25]of the tubarium in which the tubes are embediled. The two sulstances are doubtless of a similar nature, but in consequence of the above differenes it will he convenient in the following pages to refer to them as .the "tule" and the "test" respectively.

The erge of the mouth of each tulve is produced into a blunt lip, and the roughness of the surface of the colony is due mainly to these projecting lips. In some portions of the colony the tuhes, not merely their lips, project heyom the general surface, even tor the extent of 4 mm ., as thongh there had heen a deficiency in the production of the common test between the tubes. The lower part of each tube, i.e the part farthest from the external aperture, is moccupied, and extends olliquely towards the axis of the branch (see fig. 4 , plate 3 , and fig. 10, plate 4).

A transverse section of one of the branches of the colony (fig. 6) shows around its elge the lips and distal portions of the tules, with some of the animals within them: the central part shows the empty deeper parts of tubes which open nearer to the extremity of the branch than the level of sertion.

In the midale of the length of a lnanch of a colony of average size the tubes have a length of 12 to 17 mm . Their width is nearly miform thronghout $(1 \cdots 2$ or $1 \cdot 3 \mathrm{~mm})$, but near the external opening the carity hecomes very slightly wider, and the end of the tube remote from the extcrnal opening is usually enlarged into a kind of bulb, with a slightly namowed neck. This end is closed and blind (fig. 11). There is nowhere in the colony any sign of branching of the tubes, nor of the communication of one tube with another.

The limd end of the tube has a variable number of thin septa, mostly hemispherical, but occasionally irregular. These one may reasonably suppose to have heen secreted successively, the last-formed one of the series being that which is nearest to the polypirle, or rather its buds, for these are foum towards the hind ent of the tulie (fig. 11).

If a tube of the colony be dissected from its neighbours by cotting away the common test that surronnds it, and a longitudinal section be taken, the morle of lengthening of the tube by additions to its margin, and the mode of increase of the common test by the deposition of successive strata between the tubes at once becomes apparent (see figs. 11 and 12). The layers alded to the rim of the tube by the polypide are continned lown the interior of the tube for some distance as very thin sheets, of darker colour than usual. The teminal portion of the tube is slightly wider than lower down, and these thin sheets have the effert of diminishing the width, so that when the part under ronsideration is no longer terminal it is no longer wider than the average of the tols.

The softer common test between the tubes has a stratifieation which is more intimately related to the general surface of the bameh than the the tubes. How these layers of the test are demsited by the polypiles it is difticult to understand,
except one almits that the polypides are capable of leaving their tubes and wandering over the surface.

The apex of earh branch of the colony is bluntly pointed, and the terminal eight or ten tubes have transversely terminated ends without milateral lips, slightly projecting above the general surface (fig. 10). These tubes have a length of not more than 4 or 5 mm ., hat their width is the same as that of the longer tubes situated lower down. They are curved or bent, sometimes hent as much as a right-angle, and they are closely rowled. Judging from the appearance of the more basal parts of the branch, it would seem that the bent portions of the tubes are subsequently straightened out, and that the tubes themselves become more widely separated from one another, either by depsition of new intervening common test, or by expansion of that ahealy existing, thongh how this can be effecter it is lifficult toronceise. The short bent tubes of the aper of the branch have a bulb,ous swelling, not smaller than those of the longer tubes, but they differ from the latter in having no hemisherieal septa within them.

In exceptionally thick pieces of the colony, e.g. a piece of 30 mm . diameter, the tubes are rery much longer than usual, and may attain a total length of 20 to 26 mm . These very long tubes are mostly empty tubes, and the septa are much more numerous than usual, and extend over 9 to 12 mm . of the tube. The part of the tube occupied ly the polypide up to the time of its vacating the tube is thas 11 to 14 mm . in length. Some of the long, uninhabited tubes have the apertures closed, and a longitudinal section of the tube shows that the closing has been effected by the deposition, first of some five or six thin sheets, irregnlar and widely separated, in the month of the tule itself, and then several thin layers of test over the opening, the stratification of these layers bearing no relation to that of the layers of which the tube is constructed (see fig. 1:3). The "burying layers" are not continned over the lip of the tube.

In what one may conclute to be the upright branches of the colony the tubes are set at the same angle to the axis on all siles, and the lips are all beneath the apertures of the tubes; in the horizontal and oblique branches, however, it is only on the lower surface that the lips are strictly towards those edges of the apertures which are nearest the base of the hranch. The openings are few on this surface, most of the tubes having curved round so as to open at the sides of the branch.

At the sides of such a branch the lips are so situated as to be vertically below the apertures of the tubes, and they are thus lateral as regards the tubes themselves in their relation to the whole banch. The apertures on the upper surface of the horizontal hanch are arranged irregularly, and the terminal portion of each tabe is set nearly at right angles to the surface of the branch. The lips of the tubes are mainly towards the edges which are nearest the base of the branch, but the relation is not constant. Further complication is introlued ly the presence of the secondary
branches. These arise mainly from this upper surface, and where a young hranch is being developed the apertures of those tubes on the relatively main branch that lie close around it are symmetrically disposed around its base, and have the lips on the edges of the tubes most remote from the axis of the new branch.

The above generatisation holds good in the main, but in places one meets with a most irregular disposition of the apertures of the tubes, and a pair of tules opening to the exterion within 10 mm . of one another maty have their apertures facing one another, and yet have no trace of a developing brancl betreen them.

A secondary branch behaves in its development as a foreign organism. The polypides of the new banch, having begun to secrete their tubes at some small area of the surface, incommode the polypides of the main branch in their immediate vicinity, and canse them to distort their tubes so that the openings are well outside the area settled upon. If a young branch be roughly handlet, it heaks off and leaves an irregular flat or concave scar composed of solt test only, none of the tubes of the secondary branch rumning into the main branch (fig. 5. a and b, pate 3). Should any deserted tubes of the main branch open within the area upon which a new branch is growing, it is covered over with common test, and, unlike the inhahited tubes, is found in the scar (fig. 5, c).

In a young branch there is a marked contrast hetween the new tubes of its base and the ofl tubes of the main hameh opening around its hase. The old tubes have longer, thicker, and hrowner lips. The eommon test of a young branch resembles that of the apex of an old branch in being softer than usual, paler, and more transparent, and in heing composed of thicker strata.

Until this species of Cephalodiscus shall have heen studied in the living state it will be impossible to make any definite statement with regard to the mode of growth of the colony, but so far as one can judge from the material availalke, the deductions are as follows:-the fully-grown luds, after severing their conncetion from the parent stolon, emerge from the tube within whith they have heen growing, and wander over the surface of the branch. They are gregarious, and cight or ten of them collect either at the apex of the branch, or, in the case of an old branch, settle in a patch at some convenient spot on the surface and start producing a new bramb. They secrete profusely a soft investment common to them all. within with each lives in a shaply bent or curved tubular eavity with a bulbous hlint end. By the addition of numerous thin layers to the interior of the neck of the bulh the "tube" becomes differentiated from the "test." These lining layers are contimons with the margin of the tube, where they are comparatively thick layers and resemble so many superimposed rings. The mouth of the tube projects slightly ahove the general test, and has no lip.

As younger polypides than these migrate to the apex of the new branch and secrete profusely, the polypides under consideration lenothen their tubes in an obliquely radial direction in order to aroid being overed in-incidentally developing
a "lip" to the margin of earh tule-and as apieal growth continues and they themsilus come to wecupy positions sumessively more ramote from the apex, they make their tubes longer and lomger by additions to the margin, and they fill in the spaces betwen the tubes with sufter common test, so that the part of the hranch in which they ocrm becomes thicker ind thicker. Siuce, apparently, this makes the tales memfortally long, a shortening of them is effected by the sueressive fomation of conave septa at the hasal ends at surh a rate as to leave the inhahited part of each tube about 8 or $1: 2 \mathrm{~mm}$. in length.*

## Polypides.

The polypides are deeply pigmented and show conspicuoasly though the test. Whet of them are in a state of contraction, ant their plumed ends are situated about 5 mm . from the openings of the tubes in which they dwoll; a few, however, are moderately expanded. and the phmes of these project slightly beyond the openings of the tuhes. Not more than one fully-grown polypide is from in each tuke, but from two to mine hods of varions sizes are comerted loy their stalks with the end of the stolon of the individual to whirh the tube may be said to helong. The bme are usually arowled at that extremity of the polypile which is farthest from the opening of the tube. Lying freely in the tube in the virinity of the buds an orum sometimes occurs, buely two or three; the ovum is oval and yellowish-white, and measures $5 \mathrm{~h} \cdot 6 \mathrm{~mm}$. or $\cdot G$ h $\cdot 7 \mathrm{~mm}$. The ova are seen in figs. 3 and $t$ as small whitish wal pathes.

The polypide is about three times as long as that of C'phalodiscus dodecalophes: The length of the berly from the front of the bural shich to the eme of the visceral mass is 4.5 mm ., whereas in ( ${ }^{\prime}$. dudecolophus the correspomeling measurement is 1.5 mm . The boly is alout 1 mm . wide, and fits fairly closely in the tulu, the intorior of which is mot more than 1.2 or $1 \cdot 3 \mathrm{~mm}$. across.

When removed from its tule, a polyphle amb its huds present the appearance shown in tig. 7 . plate 3 . The hods are contracted and have their stalks twisted about one another in a mamer whith is ohvonsty matural and is dountless camsed ly the inctation set $u^{\prime}$ by the fhin in which they wore killen. With a little are the stalks of the boms of the formalin-preserved material can be mavelled (fig. 8) ; the material fixel in Perenyi's flum amd that fixed in piorie aciol solution is. however, too brittle to allow of any disentangling of the stalks.

[^26]The pigmentation * of the skin is deep over the visceral mans (figs. 7 ank 8), less deep over the gonaln and along the ventral surface of the stolon, which touches the interion of the tuke ant wer the part of the surface of the body between the hacal shich and the stohon. The axes of the plumes have a double batk band running along them, the two bands comberging towards the tip, which is entirely black. There is a black elge to the buecal shiofl. Near the porsteriort edge of the homal shied is a curved line of hrilliant rend, and a similar red pigment is seen in the oviduets.

The blatkish colour of the looly is due to a superficial latyer of large cells. which are brown in colour when mounted in glyerime and examined under the microscope (see fig. 9, plate 3 ) ; they do not stan with hamatoxylin m Innaxammine solution, they seem to have no nuclei, and they contain each one small spherical pigment gramule, sometimes two. In very thin sections each rell appears to bee composed of thirty or forty closely parked polyhedral grains of a dark straw in a raw sienna colour. This is the appearance presented in sections or teased preprations made from the material fixed in formatin, or in l'erenyis fluid. In that fixed in pieric acid solution the pigment rells are considerally swollen and are not brown in colour, but each cell shows its one or two small black spheres, as in the other material. Pigmented cells similar to those of the epidermis oceur in the wall of the phargux and in the pleurochords, either as solitary cells or in small groups.

At intervals in the sertions of the pigmented epithelium are seen masses which stain deeply, each about an large ats one of the pigmenten vells. In caminestained sections these are uniform in tint, but in those stained with hamatoxylin they appear finely granular. They are presmably the secreting cells of the epilemis. They show no mulei, and there is no distinction between the cytoplasm and the deeply-staining mass, which latter I take to be the secreted material not yet emitten. These cells oceur in all parts of the superficial layer, wer the borly,

[^27]on the phome-axes and on the pimules, hut they occur in greatest abundance in the dorsal layer of the buccal shich.

The red colour of the curved line of the buccal shieh and that occurring in the owiducts is due to elosely crowded grambar wells of small size, of unform character, and of a bright red colour which remains, or. at most, has turned to a reddish brown, in sertions cut ly the paraffin methorl. In the material fixed by pieric acil solution the cells are not swollen. lut present the same appearance as in that fixed by formalin or ly Perenyi's Huid.

Except in the case of a small ummber of polypides found loose at the bottom of the hottles-specimens whirh hat dearly escaped from their tubes at the moment of immersion of the colony in the preservative fluid (fig. 14, plate 4)-and in polypiles taken from the terminal tubes of the colony (fig. 15), the stolon does not stand out obliquely or hang ventrally as it does in Cephalodiscus dodecalophus, lout it rmos back parallel with the long axis of the body (figs. 7 and 8, plate 3). On an average of rases it leaves the borly midway hetween the hind edge of the buccal shield and the end of the visceral mass. It i s short, stont, and transversely wrinkled: in much contracted specimens the visceral mass partially envelopes the stolon, a concavo-convex flap of it lying against one or both sides of the stolon. On the other hand, in the above-mentioned individuals which appear to have died frec, and uninfluenced by the limitations imposed by the tubes (fig. 14), the visceral mass is not distorted ly the stolon, and, further. it has a general curvat ture towarls the ventral side of the body.

There is a striking unifomity in the general appearance of the fully-grown individuals. Full-grown polypides that have mot two or more buds and a pair of gonads in mature condition are not met with, and the regular presence of ripe gonads in individuals whirh are actively ludding is not the least remarkahle feature of Ceplatodiscus. Further, although large ova are frefuently eucountered lying loose and singly in the blind ends of the tubes of the colony, they appear to be all of the same age, and exhinit no signs of segmentation.

A polypide remains as a bud until its plumes are ahmost of full size, and until itself is nearly as large as the individual to the end of whose stokn it is attached. Such a "ripe" loud usually carries at its puint of contact with the main stolon a very small bud of its own, and it has gonads abont one-fomth or one-third of the normal size.

Although throughout the colnyy, and not merely at the apices, the polypides are protucing louls, it is mely at the tips of the branches that one meets with what may be regarded as mewly estaldished polypides. A polypide from one of the terminal tubes of a banch of the colony differs from ordinary polypides, in that there are 10 gonads recognisable loy dissection," the visceral mass is more swollen

[^28]at its extremity, amb the stolon is attached relatively farther from this end of the body and nearer to the hocral shiell (fiss 15 , plate 4). The ent of the stolon hears from two to fise huds of various sizes. and thus resembles that of ordinary pelypides.

## Bucrol Shield.

The outline of the haceal shield is that of an wal with indented sides (test-fig. 9, ("). The ventral suface is not flat, lut hat a maised central portion separated from the anterior and pasterior portions of the rin by shallow grooves.


Text-Figerf, 9.-A = Buccal shield of a bud of $C$. nigrescens with two pairs of phme-axes only: $\mathrm{B}=$ Shield of a bud with four pairs of plume-axes; $\mathrm{C}=$ shield of adult polypide of $C$. nigrescens. The figures are drawn to the same seale of magnification $(\times 43)$.

The anterior and posterior horders are deeply pigmented, and slightly in advance of the inner dark border of the posterior part of the shield, hut separated from it by a pale land, is a well-defined red line, which is curved, and follows the posterior half of the outline of the central and thicker portion of the shield. In text-figure 9 the red line is represented by the firm black line that passes across the shield (see alse plate 3 , fig. $8,1, \ldots$ ).

In a well-expanded shield, removed and mounted for examination under the mieroscope, the antero-posterior diameter is slightly greater than the maximum width, and the distance from the centre of the red line to the anterior edge of the

Whiel is ahout $\because \frac{1}{2}$ (m $2 \frac{3}{2}$ times the distance from the red line to the posterior edge (text-fig. 9. '). The average measurements taken from a momber of well-expanded shields are as follows:-

| Centre of red line to front edge of shied] | -89 min. |
| :---: | :---: |
| Centre of red lime to hind edge of shich | - 4 mm. |
| Total anteropusterion diameter | $1 \cdots 3 \mathrm{nmm}$ |
| Maximmm winth of shied | $1 \cdot 1 \mathrm{~mm}$. |

The shifld is attached to the hody by its middle part only, and tears off reathly. The teaning away of the shield lays bare a pair of fairly large boles, situated in front of the month and hehind the hases of the plumes, and leading into the two collar cavities. The cavity of the shedr (proboscis cavity) has the form of a cleft hetween the two layers of the shich, and is traversed loy muscle fines and connective tissue strands which have prominent nuclei along their course. The carity opens charally among the lases of the plumes by a pair of small (amals (proboscis pores) situated to the right and left sides of the pericardimm.

The mildle part of the sentral face of the luecal shield is thick and firm, and stains with burax camine more deeply than any other part of the body. A few scattered yellow-hrown cells may le found in this part, hut they are not crowded as they are at the edges of the shied. The outer face of the buceal shield is ciliated, but not the dorsal surface.

The red line that is so conspicuons a feature in the buceal shield owes its existenre to cowded grauular cells of miform character and bright red colour. The mass of red cells extends through the whole thickuess of the rentral layer of the shield (text-fig. 10, r.l., p. :3t), and the red line shows edtally well on this face of the shieh and on that face (dursal) against which the mouth opens, for the cavity of the shieh is but a natrow cleft in the region of the red line, ant the oral layer of the shied is thin and transparent.

The buctal shicld is clearly an extremely motile structure, a conclusion arrived at not merely hy analogy with that of Rhubdopleura (which has been studied in the living state), lut from the various positions in which the shich may be found in the adults, and more particularly in the buts, of the species of Cephalodiscus now under consideration. It is no musual thing to find the buccal shich of an adnlt twisted un its stalli thromigh 90 degrees, so that the anterior and posterior elges are right and left, and the curved red line is anteroposteriorly placed instead of being transverse to the length of the borly. In half-grown luds the posterior lobe of the buccal shich is freguently hent outward at a right-angle or even at a smaller angle to the rest of the shichl (see fig. 65, plate 7 ). In both buds and full-grown polypides the posterior lobe of the shicld is thinner than the anterior lobe. la buds the shich is relatively narrower than in the adult (ace text-fig. 9, A and B , aml pre $47-48$ ).

## Post-oral Lamellir.

The post-oral lamella consists of a pair of thaps projerting laterally from the right and left sides of the mouth. The flaps are continuons with one another hehind the mouth aperture, but the connecting part is very narrow. The lateral flap. are nonstly wrinkled at their elges in a manner which suggests that they are now in a partially contracted state, and would in the living animal be of greater extent. They may cover the collar pores and gill-rlefts, hat much depents on the degree of contraction of the indivinal examinel; their probable function is to direct the food-current into the mouth and to separate it from the rurrent that is issuing from the gill slit. The food-current coming down the grooves on the outer sides of the plumes probahly passes into the narrow deft-like space between the buceal shieh and the post-oral lamella, and thus into the month.

## Plumes.

The plumes, of which there are usually fourteen, are mote or less symmetrically disposed. The inner face of each (i.e. that face which is directed towards the midde of the bunch of plumes) is convex an regarts its length (figs. $25-27$, pate 5 ), am is also courex as regards its lrealth, except for a shallow and narrow grove which extends along the basal two-thirds and separates the two boad hands of pigmented epithclium. This groove, which maks the position of the nerve of the plume-axis, dies away towards the extremity, and the two black lands approach one another and fuse into one hroal hand. At its middle the axis is about twice or two and a half times as broad as it is thick.

The apex of the plume varies in shape acoming to the degree of extension of the whole plume. In a moderate state of contraction, such as that in whin the majority of the plumes are found, the apex is rommed, smooth, black all over, amt bears no pinnules (fign. 23 aud 26 ). In consequence of the curvature of the axis the truc shape of the apex is not readily made out, for the plame cannot be got to lie flat without applying so much pressure that the apex breaks up, and a sile view is difficult to obtain on acomont of the breadth of the axis. A few specially good examples of plumes are shown in figs. $23-27$.

The extremity is not differentiated to the same extent as is that of C. dorlecalophus; it does not appear like two-thirds of a sphere set upon the end of the phme-axis. The cavity of the plume-axis does not enlarge at the extremity as it loes in ('. dodecalophus, and the cells of the extremity are not different from those pigmented cells of the central face of the plume-axis, whereas in C. dodecoloptus the cells of the apical colargement are much taller and more regularly set than those of the face of the plume-axis.

Plumes found fully extemed have the teminations almost invarially damaged, but in fig. 24 is shown a plume in moderate cxtension, and in this one ant in the
remmants of injured, fully-extented plumes the apex is seen to be pointed. A plume, in the ordinary condition is about 8 mm . or 1 mm . in length; a fully extended plume is 4 mm . long.

On the outcr face of the plume-axis, between the two series of pimmes, is a ciliated groove, lroad, deep and $V$-shaped in seation at the hase of the axis, narrow and abont as deep as wide along the greater part of it (fig. 28). Towards the tip the groove dies awar, and the outer face of the terminal portion of the axis is slightly convex.

The pimmles arise from the elges of the outer face of the plume-axis, and form a regular and close-set series from the base of the axis to near the tip (fig. 23). The pimmules arise obliquely along the edges of the axis, so that in a transverse section of a plume alnost all of the sections of the pinnules are oblique. Further, the epithelium of the pimule is montinned along the grooved face of the plume-axis as an ohlirgue ridge whirh stops only just before reaching the melian plane of the axis. A transverse section of the plume-axis, therefore, always shows the ciliated epithelium of the aponeural groove in the form of an irregular simous line (fig. 28, ce.).

The interior of the plme-axis is occupied hy a cavity, directly rontinnous with the collar-eavity, and traversed by tine trabecule, irregularly placed, and with small nuclei adhering to their sides (fig. 28). There is an important tract of longitudinal muscle fibre on the aponeural side of the plume-axis, lying to the inner or coclomic side of the layer of skeletal matter that underlies the superficial epithelium. On the neural side of the axis the muscle fibres are less abundant. There seems to lee no special mechanism for the extension of the plume-ixis, and Harmer is probably correct when he surmises ( $\mathbf{1 0}, \mathrm{p} .42$ ) that elongation is effected by fluid pressure in the collar coelom.

The section dran in fig. as does not show the nemal groove, being eut ton near the apex of the plume-axis, and the two masses of pigmented epithelium on the nemal face of the axis are eloser together than they would be in a section taken nearer the base of the plume. Lying immediately internal to the nerve tract, and apparing as a space in the sub-epidermal seletal layer, being bounded on all sides by the skeletal substance, is the blood-vessel of the plume (b.c.).

The pimules form a regular and close-set series from the base of the axis to near the $\operatorname{tip}(f i g s .23$ and 26 ). The longest are those aring alout half-way atong the axis. The pimules at the hasal end are sometimes very short, but this is probahly in plumes which have not get reached their full development. The number of pinnules along each side of the axis varies from seventeen to fifty in plumes which have apparently reached their full development. The most distal pinnules may project beyond the apex of the plume-axin (figs. 24 and 27) or not (figs. 23 and 26 ).
ln some cases the most distal pimmles of three or four of the plumes of the indivilual are fomed to be atherent th the margin of the tulse in which the animal was living. They are greatly attenuated, and their cells are full of highly refractive,
colourless, transparent granules. Similar gramules are found athering to the surface of the pinnules. Extended pimules such as these have sand-grains not merely entangled among them, but actually adherent to them. The other plumes of sneh an individual are in moderate extension only, and one is led to conclude from these relations that, at the time when the colony was placed in the preservative solution, the pinnules of the extended phomes were in the art of secreting one of those increments to the margin of the tuhe which a longitudinal section of the tube shows so sharply marked off from one another (fig. 12, plate 4). The secreted material, leing presumably of a tenacious character, prevented the retraction of the plumes in question, whereas the other plumes were free to contract, and did so more or less. The saud-grains also which came up with the dredge hecane embedded in the newlysecreted material lefore it had had time to solidify.

Each pinnule is roughly circular in section (tig. 29, phate 5), and has a very slightly expanded extremity (fig. 33). A single milateral series of the yellow-hrown cells with one or two black dots oceus along the pimnule. There are none at the actual extremity, but at a short distance from the end there oreurs a group of five or six.

A transverse section of a pinnule shows tall epithelinm on one side and low epithelium on the other. The pigment cells oceur amnng the latter (fig. 30). The high epithelium is on that side of the pimnule which is in relation with the aponeural surface of the plume-axis. The low epithelium with occasional pigment cells is continnous with the pigmented neural face of the axis.

Within the pinnule are two tubular cavities bounded by the skeletal basement membrane, and separated the one from the other by a curvel wall of the same sulstance. The tube which is next the high eiliated epithelinm is continuous with the coelomic space of the plume-axis, and contains here and there solitary coelomic nuclei. The other tube is prolably a blood-space, although its commmication with the main blood-vessel of the plume-axis has not been established by the careful examination to which the sections were sulmitted.

The plumes, althongh disposed in nearly radial symmetry at the anterion end of the body, are clearly collected into two groups, right and left. The lophophoral arm that bears the seven plumes of each side is short and nearly semi-cireular. It is broadly attached to the body on the posterior side of its ventral half or more (viz., that nearest the bucal shield). The other part stands free from the body and bends back slightly, so that the sixth and seventh plumes appear to be set at a more posterior level than the first and second (i.e. those nearest the shield). Two consecutive plame-axes tonch one another at their bases, whereas the end members of the right and left series (viz., first and first and seventh and seventh) are separated from one another by a slight interval. The fourteen plume-ases are set around the margin of an elliptical area in a fairly orderly fashom, and the whote series of plumes can be laid out flat on a glass slip, radiating from a central peint or from the two foci of an ellipse, without separating their bases.

The mumber of plumes is not ronstant. The commonest number is fourteen, but there may be as man as sixteen and as few as twelve plumes. A study of the buds shows that, as in Cephalodiscus dodeculophus, the full complement of plumes does not develop simultanensly, but successively, and the occasional presence of a very small plume among thirteen or fourteen large ones in a full-grown individual suggests that the number may be sulject to increase evell after the adult stage has been reacherl.

## Stolon.

The stilon is stout, short as compared with that of $C$. dodecaloplus, roughly circular in section, and with a pigmented and transversely wrinkled surface. It does not taper, but is of fairly uniform diameter; its free or posterior end is hemispherical, and from the margin of this extremity the buds are developed. The angle at which the stolon stands out from the borly differs in polypides found in tubes and those found free (see p. $2(6)$.

The longitudinal mustes in the stolon are disposed in the form of a thickwalled tube surrounling a mass of compacted coelomic corpuscles and trabeculae. There is no median septum in the greater part of the length of the stolon, it extends hardly beyond the base of that organ.

There is little variation in the shape of the stolon. In a full-grown individual with many buds it is always short, cylindrical and stout; but from the wrinkling of the superficial epithelium one may conclude that the organ has been fixed by the preservative fluid in a condition of extreme contraction. As is explained later in the remarks upon budding, a large bud may develop at that end of its stalk which is attachen to the parent stolom a small harl of its own. On the separation of the bud from the parent form, its stalk becomes its stolon, and the bud already present at its end. and those developed later, have relations to this stolom similar to those which the buds of the parent form hore to the parent stolon. The interesting feature to be noted here is that the stalk of the large hud in question is not always fonnd in a state of contraction ; in most cases it is two or three times as long as the stolon of the parent, and is slender in proportion.

If one assumes that the parental stolon is in a fully contracted state, the explanation of the granular mass in the middle of it is not far to scek. The stolon is to be regarded as a hollow structure, with the coetomic cavity traversed by comnective tissue strands with the characteristic prominent lateral nuclei, and by an excessive diminution in the length of the stolon these threads and unclei become all crowded together and form a dense core, the coelomic cavity as a cavity disappears in the stolon itself, ame only remains recognisable in the basal part. In a male individual with large testes a limb of one of them may extend into the basal part of this gramular core of the stolon.

The question why the stolon of full-grown individuals is invarially contracted
while the stalks of buds are not, in other words, why the stolon is so much more acntely sensitive than the stalks of the buds to those irnitant influences which cause contraction, remains yet to le answered.

## Coelom.

There are, as in C. dodectophas, five divisions of the corelom; one in the buccal shield (proloscis avity), "pening among the lases of the plumes ley two small pores (proboscis pores), and having a periardial cavity lying within it a pair of cavities in the anterior part of the borly (collar (avities) continued into the post-oral lamella and into the plumes: and a pair of large trunk cavitics.

The collar cavities are a little smaller than the prohoscis cavity. In their middle portions, just dorsal to the pelicle of the burcal shield, they come close together, and are separated by a small, thin mesenteric fold; they extent into the short pedicle of the buccal shield, and are separated from the proboseis cavity hy a thin wall of a similar nature. The two collar cavities come together also behim the month, where they are separated by a small mesenteric septum ouly. Each collar cavity opens on to the exterion ly a narrow tulular passage, which is lined by ciliated epithelimm, and curves round and opens dorso-anteriorly to the gill slit. Posterior to this "collar-pore" is a ridge of specialised epithelium, consisting of tall columnar cells, presumably of a sensory nature. The collar caual marks the posterior limit of the collar cavity,

The separation of the two large trunk cavities (abdominal cavities) is probably in all cases incomplete owing to the imperfection of the mesenteric fold. In the anterior part of the trunk coclom there is a fold which extends from the pharynx to the gastric caccum, and from the sides of this fold there pass out short folds to the anterior portions of the two gonads. Behind the mouth, hut anterior to the point at which the stolon leaves the body, is another foll, extending from the pharynx to the ventral body wall. A similar fold is found between the intestine and the dorsal body wall, hot there appears to be none between the stomach and the intestine, which seem invarially to be in close contact. The trunk cavity is not definitely continued into the stolon, for this is largely choked up with coelomic corpuscles, but a continnation of the mesenteric fold can be recognised in the basal part of the stolon, extending from the one blood-vessel to the other.

## General Internal Structure.

In the present section of the paper a general account is given of the internal organs, based mainly upon the appearances which they present in sections of the body taken through struetures of particular interest. Six such sections are drawn in text-figures 10-15. These figures are composite figures, each constructed from sections
of fom or fise polypides. An attempt has hern made to place the pen-strokes and dots in such positions and at such distances apart as shall give the general appearance and lepth of tint of the several tissues as seen mer the low power of the microscope ; the small rectangular and pulygomal areas enclosed by the pen lines are not intended to represent cells, except in a most diagrammatie mamer.

The gencral intemal structure of Cephalodiscus nighescens loes not differ in any important respects firm that of $C$. dectecalophus as made known to us by the writings of DIarmer and Masterman. By its superior size C. nigrescens presents great advantages over C. dodecalophus as an oljert for investigation, but, while most of the details of the chordal, neroms, museular and coelomic systems deseribed in accomes of the latter species an be recognised in the former, only a certain proportion of the hoor-vessels hescribed by Masterman in C. dodecalophus can be identified


Text-Figerf 10.-Median longitudinal section of the antero-ventral part of a polypide of Cephatodiscus nigrescens.
b.s. = thickened ventral wall of the buccal shield; c.n.m. $=$ central nerve mass; $\epsilon . p$. = ectodermal pit; $g o .=$ gonad $; h .=$ heart ; $m .=$ mouth ; mu. 1 f, mu. $1 \mathrm{c}, m u .2=$ muscle (see text) ; no. = notochord ; p.c. = carity of the huccal shiedd, proboscis cavity; pal. = pericardium; ph.d. = pharyageal diverticulum; po.l. = posterior part of the post-oral lamella; r.l. $=$ red line of the shield; t.c. $=$ trunk carity.
with any degree of confidence in C. nigrescens, and no light is thrown on the course taken by the bloorl in the vessels.

The notochord (sulmeural gland of Masterman) has a well-rlefined and continuous lumen, and does not open into the dorsu-interior diverticulum of the pharynx, as, according to Harmer (10, p. 54) it does in C. dodecalophus; its opening is situated more ventrally (text-fig. 10, no.). The anterior end of the notochord is in contact with the central nerve mass, as also are the pericardimm and the pharyngeal divertieulum ( $/$ h. d.). The pericardial sac does not extend over the dorsal side of the tip of the notochord as it is desmibed as doing in C. dodecalophus, but it projects back beneath the notochord to a greater extent than in the latter species. The heart is not fixed to the end of the notochorl, but to the ventral side of its extremity.

Between the notochord, the central nerve mass, and the pharyngeal diverticulum
is a triangular space oceupied ly the median septum between the right and left eollar cavities; and along each face of the septum there run muscle fibres in the direction indicated in text-fig. 10 at mu. $1 a$. (See also text-fig. 12, mu. 1 1 .) Between the collar septum and the central nerve mass is a marrow eleft, the dorsal blood sinus; this is marked $d . b, s$. in text-fig. 12 , and is shown, but not markerl, in text-fig. 10. There seems to be no direct comection hetween this spare and the carity of the heart. On the ventral side of the middle part of the notochord is an irregular tissue (text-fig. 10), but there is no cavity that can be identified as the ventral blood sinus of Masterman.

The heart (text-figs. 10,11 and $12, h$ ) is a sar, apparently closed, situated with its front part free in the pericardium and the hinder part attached to the lower surface of the notochord. Projecting from the surface of the heart are irregular, short threads, which appear to be broken coclomic trabeculae. They have small spherical nuclei placed upon their sides, as one finds in the roclomic trabeculae of the proboscis cavity and collar cavity, and they probably extended, when perfect, to the wall of the pericardial sac.


Text-Figure 11.-Section of a polypide of Cephalodiscus nigrescens taken transrersely to the length of the body, and passing through the prohoscis pores and the front part of the heart. The odd sections of plumes which are almost invariably included in sueh a preparation as this are not shown.
b.s. = thickened rentral wall of the buccal shield; c.n.m. = central nerre mass ; $h .=$ heart ; mu. $3=$ radiating muscle fibres passing across the cavity of the haccal shield; n.t.1, u.t.2 $=$ nerve tracts (see text) ; p.c. = carity of the buecal shield, proboscis cavity; $\mu \cdot \rho \cdot=$ external opening of the buccal shield, proboscis pore,

The buccal shich has frequently a strong transverse wrinkle such as is shown in text-fig. 10, in front of the red-line (r. l.) The posterior lole of the shield is thimer than the central part, and consists of the ventral and dorsal or ad-oral walls almost in contact, the coelomic space being here reduced to a barely recognisable cleft.

The proboscis pores, or openings of the luccal shield, are a pair of narrow tubular passages lined with prismatie epithelium, and situated at the sides of the pericardium (text-fig. 11, $p .1$.) and at a level anterior to the tip, of the notochord. The nerve tracts marked c. n. m. and $n, t .1$ in text-fig. 11 are continuous both in front and behind the prohoscis pores. The ectodermal pit (text-fig. 10,e. $p$.) is constant in its occurrence, lut it has the form of a winkle in the antero-dorsal wall of the shicld rather than of a definite seusory organ, a relation which bears
out the conchusion arrivel at by Harmer in the case of C. dodecaloplus that the importance attributed to the cetodermal pit by Masterman is unmerited.

From two smahl areas on the domsal wall of the bueal shield there vadiate muscle fibres which are inserted into the coelomic face of the thickened central part of the veutral wall of the shieh (text-fig. $11, m u .3$; see also text-fig. 12).

The muscles that run between the lasement membrane underlying the central nerve mass and the notochord, on either side of the median septum between the right and left collar cavities (text-figs. 10 and $12, m u$. $1 a$ ), send some of their fibres backward on the right and left sides of the month, just ventral to the dorsal diverticnlum. Posterior to the level of the oral aperture these converge, and become applied in the form of two sheets to the sides of the septum which divides the right and left collar cavities in the region of the posterior edge of the pust-oral lamella (text-fig. 10, mu. 1c.), and to adjacent parts of the dorsal and rentral walls of the collar cavity. The two tracts of muscle shown in text-fig. 10 at mu. la. and mu. 1c. are thus in reality terminal parts of the same muscle. The midde part runs by the side of the mouth, and is seen in text-fig. 13 at mu. 1b. This muscle, called loy Harmer the "oral muscle," stops immediately in front of the anterior end of the muscle tract of the ventral body wall (text-fig. 10, mu. 2), which contimes back into the stolon as part of the longitudinal muscle of that organ, but, as Harmer has pointed ont in the case of the species examined by him, the muscle fibres do not pass through the septum that separates the collar cavity from the trunk cavity.

It the side of the base of the notochord a few of the filres pass ventrally and terminate in the septum between the collar cavity and the probuscis cavity on the dorsal side of that small area from the ventral side of which the radiating muscles of the proboscis carity arise. Beneath the central nerve mass a few of the fibres of $m u .1 a$ are continued forward into the dorsal wall of the front part of the shiedd, passing externally to the proboscis pores; others pass ont laterally as a thin sheet lying immediately below the nerve mass, and these are continued into the plume-axes.

The section drawn in text-fig. 12 is taken only slightly behind that shown in text-fig. 11. It shows the front parts of the right and left collar cavities, separated from one another by a muscle-flanked septum (mu. la), and separated by more extensive septa from the cavity of the shield. The base of each half of the lophophore divides roughly into three parts before breaking up into the seven plumes; the base is necessarily cut oblipuely, and the outline is consecuently irregular. The cavity of the collar is continuous with that of the lophophore and its phomes; the indicating line marked l.l., points to the cavity of the lophophoral base.

The central nerve mass (c.n.m.) shows a few large ganglion cells in its dinsal layer immediately beneath the superficial epithelium, and the nerve tracts that lead out sideways into the hase of the lophophore are continued into the phomes as the
branchial nerves. The shieh shows nerve tracts in lowth its ventral and domsal walls; that of the former is a continuons sheet, that of the latter is paired.

The section passes tangentially through the anterion part of the "viseral mass" of the borly, and includes sections of the gonad ducts and of the terminal portion of the intestine. Had the section been taken a little farther back the sparions trunk cavity woukl have come into view.

Text-fig. 13 shows a section taken through the mouth and the collar canals. Such a section passes behind the stalk of the buccal shield, and shows a very thick dorsal wall to the pharynx, with lateral parts, the pleurochords ( $p /$. ), of a paler tint and with a strong groove on their inner surface. The lateral flaps of the postoral lamella ( ${ }^{\prime \prime}$. l.) are shown as hent over towards the month, a relation which they frequently


Text-Figure 12.-Section of a polypide of Cephalodiscus nigrescens taken trausversely to the length of the body, and a little farther back than that shown in text-fig. 11. It passes through the front part of the notochord and the hinder part of the heart.
$a .=$ aus ; b. $=$ base of the lophophoral system; $b . s .=$ thickened ventral wall of the buccal shield; $b . u .=$ anteriow body-wall, eut tangentially; c.n.m. = central nerve mass; d.b.s. $=$ dorsal blood-sinus; d.g. = duct of the gonad; $h=$ heart, lying within the pericardium; mu. $1 a .=$ muscle fibres passing along the side of the septum between the right and left collar cavities; no. $=$ notochord, in transverse section; n.t. $2=$ nerve tract; p.c. $=$ cavity of the buccal shield ; probuscis cavity.
possess, hat in some slides the flaps are ontwarilly directed, so that their free elgen are near, or snceed in covering, the openings of the collar canals.

The collar cavity is here fairly spacious (c.co.) and is seen to extent into the post-oral lamella, the two walls of which are comerted here and there by fine coelomic trabeculae with lateral, spherical mulei. The apithelinm of the dorsal wall of the collar camal is taller than that of the ventral wall, am the internal upening of the canal is smaller than the external. The fitres of the oral muscle,
passing along the mesial wall of the collar colon, are seen in transerse section (inu. 1\%), and the fibres of the collar canal muscle (mu. 4), the 'problematical boudy' of Harmer, are cut obliquely, hat more longitudinally than transversely. A special seetion of the paper is devoted to a consideration of this body (p. 41).

The section drawn in text-fig. 14 is taken only slightly behind that represented in text-fig. 13. It cuts the him edge of the mouth almost tangentially (se. t.) ; lut if the polypide dies with its month widdy open, a tramserse section taken through the gill-slits will pass also through the mouth opening. The small septnm


Text-Figurf. 13.-.Section of a polypide of Cephalodiscus nigrescens taken transversely to the length of the body, and passing through the collar camals and the mouth aperture.
b.s. = thickened ventral wall of the buceal shield : c.ca. $=$ collar canal ; c.co. $=$ collar coelom $;$ g. $d .=$ gastric diverticulum; go. =gonad; $i=$ intestine $; m .=$ month ; $p . c=$ cavity of the buecal shield, probosci.s eavity; $n h .=$ dorsal wall of pharsnx ; pl. = pleurochord ; po.l. = lateral flap of the postoral lamella; mu. $1 b$, mu.3, mu.4, $m u .5=$ muscle (see text). The tract marked mu. 4 is the problematical body of Harmer. n.t.2, n.t. $3=$ nerve traets ; t.c. $=$ trunk coelom.
between the right and left collar cavities is situated immediately posterior to the part marked se.t. By the side of se.t. are seen some of the median ventral muscle fibres (text-fig. 10, mu. 2) passing forward obliquely into the anterior horns of the trunk eoelom, and some of the fibres of the oral muscle in the collar cavity are
seen passing backward obliquely to complete their course along the septum letween the right and left collar avities (text-fig. 10, mu. 1c.).

The gill-slit slopes from the pharyngeal atvity ventro-laterally and in the transverse plane. The collar canal slopes from the collar cavity dorsonlaterally, and slightly backward. The external opening of the collar canal is more dorsal than that of the gill-slit, and a little more anterior. The gill-slit is such a short distance behind the collar camal that only oreasionally, as is shown on the right side of the text-fig. 14 , is the canal wall missed entirely; mone msually


Text-Figere 14.-Section of a polypide of Cephalodiseus nigrescens taken transversely to the length of the hody, and a little farther back tban that shown in text-fig. 13. It passes through the gill-slits, aud immediately behind the month.
b.s. = thickened rentral wall of the buceal shield ; c.ca. = part of the posterior wall of the collar canal cut tangentially; $c . c o .=$ collar coclom; $g . d .=$ gastric diverticulum; $g o=$ gomad ; $g . s .=$ gill-slit; $i .=$ intestine; $p h .=$ dorsal wall of pharynx ; $p^{\prime}=$ pleurocbord $; p o l .=$ postero-lateral flap of the post-oral lamella hent over towards the month; mu. 5, mu. $6=$ muscle (see next) ; n.t. $3=$ longitudinal nerve tract; se.t. $=$ subepidermal tissue behind the mouth, cut tangentially ; t.c. $=$ trunk coelom.
the tangential section of the external part of the ialnal wall is inclurfed (text-fig. 14, c. ca.).

As in the previous figure, the trunk ravity is comspowns, and is own ionl. at this particular level of section, by the two gonads, the intestine and the anterior
extremity of the gastric divertionlum. It is divided by a metian septum, which is readily romgnisalle between the pharynx and gastric baecmm, and between the intestine ant the dorsal body wall, but not between the gastric caecum and the intestine, these being foum to be invariably in closi montact. In sections taken farther forward than that represented in text-fig. 1:3, lnot not su far forward as that shown in text-fig. 1•2, a lateral mesenteric foll is to be seen extending outward to the gonad duet from the median septum that extends from the dorsal wall of the pharmx to the intestine.

A section taken transversely through the himber part of the horly at about

 pasing through the basal end of the stolom.
co.co. = coelomis contents, consisting of fine trabeculae and their muctei, and entangled coelomic corpuscles ;
 (her text).
the level of the hasal gat of the backwardy directed stolon (text-fig. 15) shows the trunk avity owupied by the flattened stomarh and intestime. The stolom itself is nearly dircular in section, and its ventral epithelimm is rompused of smaller and less deeply pigmented cells than the dorsal and lateral parts. A nerve tract ( $n . t .4$ ), partially divided into three, is seen adjacent to the small epithelium celts of the ventral surface. The molomic cavity of the stolon in largely obliterated by a mass of compacted trabeculae ant their malei, with entangled
melomic enpuscles (\% m. . At the extreme basal and of the stolom a modian septum is seen extemling from the hoob-vessel $\therefore 2$, to that marked $c, 8$. It is continuns with the borly septum that stretehes between the pharynx amd the ventral bouly wall aml divides the trunk (avity into a right aml a left compartment, lint it does not extend far down the stobm, and is abrendy incomplete at the level of seriom represented in text-fig. 15.

Lying in the mesenteriw fohd below the stmmach is a hometressel ( $r$. 1) which passes forward, aml on reaching the lase of the stolom, passes downam, then backwam along the dorsal wall of the stolon, and comes again into riew in the section now moler consideration at $c: 2$. The bood-vessel marked $c: 3$ is rontiuned forward into the borly, ruming between the pharynx and the ventral borly wall.

Passing lomgitulinally below the stomach, at mu. 7 in text-fig. 15, we some muscle fibres which can be traced forward as far as the base of the stomo. Here they eurve down and then run badk along the dursal sile of the stolon, ly the side of the donsal vessel of that organ ( $\quad: \quad \sim)$. The muscle fibnes in the lateral and ventral parts of the stolon (mu. 8) are continued formard iuto the trunk as an extensive trant lying ventrally and laterally to the pharyox. The ventral part passes straight forword and stops a little distance behind the month (text-fig. 10, mu. 2), against the siptum between the collar cavity and the tronk cavity. The lateral part, which is more bulky, forks on reaching the gill-slit into one part which runs donsally to the slit and collar camal (text-figs. 13 and 14, mu. 5) and gradually thins out as its filnes are inserted into the body wall, and a secom part whieh runs ventrally to the gill-slit and collar canal and cols at the front of the right and left anterior horus of the trunk cavity (text-fig. 14, mu. 6).

Lying immediately internal to the superficial epithelimm of the stolon is a thin layer of musele fibres, areularly disposed. In transyerse sections of the stolon this layer might asily be taken for a layer of skeletal tissue; but in tangential sections of the layer the outlines of the individual fibses can reatily be seen. The fibres are much finer than those of the bulky longitudinal museles of the stolon, and are arranged in a very even and contimons sheet.

## Collar-conal Muscle (Problematical Tissue).

The transverse section of the collar canal of $C$. nigpeseens has the form of an elongated ellipse set oblipuely. The epithelium of the postero-lorsal side is composed of tall, closely-set prismatic vells bearing long cilia, the epithelimm of the anteroventral wall is thin, and is in relation with a short, stout trant of monsle filnes, which pass obliguely from this antero-ventral wall of the collar canal and the part of the boxly-wall which lies to the antero-ventral side of the collay pore. The most ventral of these fibres are attached to the dorsal (aboral) surface of the lateral flaj, of the post-oral lamella, the rest have no obrious attachment. This musele
(text-fig. 18, p. $38, m \% .4$ ) is the " problematiral tissue" of TIarmer ( $10, \mathrm{pe} .42-46$ ). There is nothing in thr prosent material to suggest that the structures in question are " lamellae," and not fibres. The slope of the collar canal and the obliguity of the musele fibres to the antero-ventral wall of it are surh that one's chances of olnaining the filnes wat at right-angles to their length are very remote. The ordinary sections that one takes for the study of the structure of Cephalodiscus are those cut transversely to the long axis of the bonly, those taken parallel to the sagital plane, and those taken parallel to the ventral lorly-wall, i.e parallel to the fare of the shield. All of these will cut the muscle filmes obliquely ; the chance of getting some of the fibres cut longitudinally is greatest in the third kind of soction, but nome of the three sections will show more than a few of the marginal fibues cut thansersely. The fibres are, further, mot disposed strietly parallel with one another, but they interlace slightly, so that in no ase could all the fibres of whe section present the sume aspeet.

As smmised Jy Marmer, who, in spite of what he ronsiders to be its exceptional shape, is disposed to regard the problematical tissue as eontractile, the effeet of the contraction of the muscles is clearly to dilate the canal ly drawing away the thin antero-ventral wall from the stonter postero-dorsal wall. When the collar canal is nearly elosed, the transverse section of its avity is erescentic; when open, it is elliptical, possibly nearly circular.

The bodies in question are clearly those refered to as "solenocytes" by Srhepotieff, and shown by him in his fig. 8 (29), and it is a curious coincidence that Harmer at first suspeeted that they might be solenocytes, and even submitted his preparations to $M_{1}$. E. S. Goodrich, in order to whtain the latter's opinion on the matter (10, p. 45). They are obviously not solenocytes, however. What gives them a faint rescmblance to such excretory structures is the swelling which appears at the coelomic extremity of each ohliquely-cut fibre. This swelling, there seems to be no reason to dould, is due to the smapping of delicate fibres which in life must have passed across the collar cavity to the opposite wall, these fibres being possibly of a muscular mature themselves, like those that matiate across the proboscis cavity, but they were certainly mot sa thick; they must have resembled rather the ordinary coclomis trabeculae. The resemblance to the latter is further borne ont by the presence of nuclei, exactly like those which are set upon the coelomic trabeeulae, oreurring in numbers on the coelomic surface of the muscle. What puzzles one at first is the relation of the musele filues to other parts; they have an origin, as pointed ont above, lut many, one might say most of them, have no insertion, the fibres curving round, and ending apparently against the coclonic cavity only.

The relations of the collar are probably such that. during the death struggles, when the animal is plunged into the killing fluid, these musole fibres in all cases contract so violently as to break the trabecular connection extending from their coelomic extremities to the apposite wall, i.e. the ventral face of the lateral flap of
the post-oral lamella, the snapped threats drawing themselves and their nuclei up to the coelomic surface of the muscular fibres. It is a significant cirenmstance that while a greater or smaller number of perfect coelomis trabectlae are found in most parts of the collar cavity and the cavities of such out-growths from it as the plunes and postoral lamella, only broken filmes are found projecting from that part of the post-oral lamella which lies immediately ventral and anterior to the collar walal musche (text-fig. IS).

The present species possesses the advantage of superior size over those species examined by Harmer, and is consednently well adapted for the detemination of the nature of the "problematical body." The muscle-fibres composing it "an even be recognized as of the "cross-striped" varicty (see text-fig. 16). It is worthy if remark that the collar canal moscle is the only cross-striped musele in the bouly of Cephatodiscus. While cross-striped muscle filme is widely sprent throughout the Vertebrates and occurs in consilerable bulk, in the Invertebrates it orcurs only in


Text-Figure 16. Section of the collar canal musele of C. nigrescens cut parallel to the ventral surface of the polypide, i.e., parallel to the face of the buccal shicld; as seen with Zeiss apoehr. imm. obj. 2 mm. , compens. oc. 6 ; $\times 820$.
isolated genera or families, and only in certain limited tracts of the body. A higher muscular efficiency and a more rapid contraction appear to be associated with this histologically differentiated muscular tisue, and one is led to the condusion that the eollar canal of Ceplutudiscus is an organ of considerable importance.

## Alimentary Canal.

The alimentary canal differs from that of $C$. dodecaloplus, mainly in that the stomach is not globular. The canal is in most cases empty, or nearly so. The first part of the tube (pharynx) las a thick wall, and is lined with eiliated epithelium. Projecting forward from its anterior wall is the notochord, a long, narrow, blind tube, with continnons lumen opening into the pharyngeal cavity, and with walls composed of pale-staining, vacuolated cells. The two gill-slits, right and left, are small oval apertures, symmetrically dispused and situated not far
hehiml the level of the mouth. Along each side of the pharynx a part of the wall is composed of pale-staining vacuolated cells-the pleurochord. The pleurochorl has a groove which rums lengthwise along the lateral wall of the pharynx and opens into the gill-slit anteriorly. The pleurochordal cells suround the gill-slit.

The pharyux narrows very abruptly behind, and leads into the next portion (stomarh) by a rely small aperture. The stomach is in no case dilated; it is continmed forwards as a caecum, of oval sertion and with thick walls, which lies between the intestine and the two gonads (see text-fig. 14, p. 39) ; and it leads at its posterion eur into the intestine, which passes first ventrally, then posteriorly, then dorsally, and finally forwards, and opens by an auns at the front end of the borly. In the specimens preserved in formalin the intestinal wall is pale green.

Much dischssion has centred around the structures mentioned above as the notochord and pleurochords. The pleurochords were so termed by Masterman (22, p. 353 , footnote), who, since the year 1896 (20, p. 64) is disinclined to recognise any homology existing between the median pharyngeal diverticulum above referred to as the notochord, and the notochord of the Vertebrata. He at first denicd that any homology exists between the median diverticulum of Cephatodiscuss and the Eicheldarm of Balanoylossus, but he has since ceded the point (28, p. 72:3) and admits an homology between the median diverticulum of Cephuthtistus and the vermiform process of the Eicheharm. He homologises the former structure with the subneural gland of Tunicates (22, 23, 27, 28), and now regards the Eicheldarm of Batanoglossus as a subnemal gland also (28, pp. 723 and 724).

Willey has shown that the complete stomochord or anterior diverticulum with vacoolated walls oceuring in the Enteropneusta exhibits strongly marked regional differentiation (34, p. 235 , fig. 3), and he homologises Masterman's pleurochords of Cephalodiscus and Actinotrocha with the lateral pouches of the stomochord, and the median ventral diverticulum, arising from the anterior end of the intestine and underlying the oesophagus, deseribed in Actinotrocha by Roule (Comptes Rendus, cxxvii., 1898, pp. 633-636, and Amn. Sci. Nat. Zool., xi., 1900; see also Ikeda, Journ. Coll. Sci. Imp. Univ. Tokyo, xiii., 1901, pp. 555-556), with the ventral (aecum of the stomochord (34, p. 237). He agrees with Hamer (7, p. 342) that the notochord of Cephalodiscus (sumeural gland of Masterman) is the equivalent of the vermiform process of the stomochord of the Enteropmensta, hat in this comection it is to be noted that Harmer has recently stated (10, p. 65) that he regards the notochord of Cephalodiscus as equivalent not with the vermiform process alone, but with the entire Eicheldarm.

Willey shows further that the hinder region of the gut of the Enteropnensta may develope in its ventral wall a skeletal vacuolated structure, the pyogochord (34, p. 234). The pygochord Nasterman (Quart. Journ. Micr. Sci., xliii, 1900,
p. 412, footnote) compares with the chordoid structure which he found to exist (22, p. 305) in the mid-ventral wall of the stomach of Actinotrocha.

From all this it would appear to an umprejudiced mind that the gut-wall may develope tracts of vacnolated skeletal cells in any part of its extent, and that, except in the ease of the notochord of the Cephalochorda and Vertelrata, which ocenpies a definite position between the central nervous system and the enteric tube, any close comparison of these various tracts in the different forms of the Chordata is almost impossible.

The suggestion of Masterman (22, p. 356, and 25, p. 915) that the pleurochord of Cephalodiscus is a skeletal structure developed in the wall of the pharynx for the purpose of keeping open the gill-cleft, and Willey's remark (34, p. 238) that a long pleurochord may mark the position of a row of obliterated gill-slits, are worthy of eareful consileration. In the Cephalochorda, Cyelostomata. Fishes, and Amphilia, the positions between the gill-slits are supported ly skeletal tissue (mesoblastic, it is true, whereas the pleurochord is hypoblastic), and it is not unreasonable to suppose that the long pleurochord of Cephalodiscus, with the gill-slit at its anterior end, may represent the skeleton of a series of slits, only one of which now appears in ontogeny; and further, that in Actinotrocha (Masterman, 22) and Phubdopleura (Sehepotieff, Bergens MLus. Aarhog, 1904, p. 14, Kiemenrinne) the skeletal matter of the slit develops ("liver d verticula" of earlier writers (Masterman, 22, p. 304)), although the slits themselves never make their appearance. Willey elaims that the lateral pouches of the stomochord of the Enteropnensta are the "persistent vestiges of primitive gill-clefts lelonging to that portion of the body which, in the Enteropneusta, is now specialised as the collar region" (34, p. 238).

## Gonads.

The individuals of the species under consideration possess either two ovaries or two testes, or an ovary and a testis. In a series of thirty-six individuals examined, fifteen had two ovaries, seven two testes, and fourteen an ovary and a testis. The three kinds of individuals are not restricted in their distribution. The same hand of the colony may have male, female, and hermaphrodite individuals, and no distinction can be drawn as regards sex between the individuals found in the hasal, middle, and more teminal portions of the same lnanch of the colony.

If the gonads are large they bulge somewhat upon the sides of the bouly, and by stretching the pigmented body-wall that covers them, ause it to be paler than the other parts of the surface (see figs. 7 and 8, plate 3).

The ovary is narrow at its anterior extremity, where it opens upon the exterior by a short duct with a small, frefuently ill-defined cavity, and with walls of a red colour, which resembles that of the red line in the boceal shield in tint and in being
unatered ly alcolm, formatin, and glyerine. The ovary may be described as a sac, to one side of the interior of which are attachel the ova (figs. 38-40, plate 5). The side in question is that farthest from the median plane of the hody. The smallest ovicels are those at the widnal or anterion end of the ovary, and the size of the cells gradually increases as me passes twards the hroal end. The larger ovicels are more or less comma-shaped (fig. 40), which suggests that the proliferation of the germinal cells taks place near the oviluct ant on the side of the ovary farthest from the nedian plane of the borly, and that the production of the new cells causes a lackward distortion of the cells proliferated at an carlier period, so that these latter have each a kind of tail directed towards the iuterior end of the outer wall of the sac. The hindermost member of the series is in some ovaries vastly larger than its neighbours, and has hecome rounded off (tig. 38). lt is heavily charged with yolk.

The large ripe ovom, free in the ovarian sac, presumably escapes by passing forwards between the mesial wall of the sac on the one side and the layer of ovicels on the other, and, by causing a great distension of the red oviduct, passes out to the exterior. There is in the present species no evidence to support the suggestion of Masterman in the case of $C$. dedecalophus $(24$, p. 512$)$ that the oviduct serves merely for the mbimssion of the spermatozo, and that the ova do not eseape by way of this duct, but are set free only by the death and disintegration of the boty of the parent. Indeed, the owurrence of an ovum in some specimens lying entangled among the bases of the plumes immediately over the oviducts points to the normal extrusion of ova through these lucts.

At the posterior end of some ovaries oecurs a kind of collapsed and irregular tube (fig. 39), which lowks as though it were an oviduct; and the supposition is strengthened by the ripest , wa being found towards this extremity of the ovary. But examination of sections shows that the tube in question ends blindly. Moreover, the ducts of the testicular sacs of the male oceur in positions corresponding exactly with those of the red ends of the ovaries of the female, and the lumen of the male duct is invarially clear, and bounled by well-lefined epithelium. The tube at the posterion end of the wary is in all probalility the hiuder portion of the ovarian sac which has rollapsed after the discharge of a ripe ovum, and has not yet been fillerl out ly its suce essor. I similar twisted tule is present in C. dodecalophus.

Liberated wat are fond singly among the buds in the bind ends of inhabited tubes of the colony. They are yellowish white in colour, 7 mm . in length and $\cdot 6 \mathrm{~mm}$. acros. No segmenting ova have been met with.*

The testis, when small, has the form of a pear-shaped sac, and bears a general external resemblane to an ovary; but when fully formed it is much larger than an ovary, and is cylindrimal in shape, frequently distorted, however, by pressure of parts of

[^29]the alimentary system (fig. 37, plate 5). A large testis extemels as far as the extreme posterior end of the visceral mass, and may occasionally send ofl a lateral lianch which is lorged in the stolon. The durt at the anterion, pointed end of the tastis differs from the corresponding duct of the ovary in having no red pigment, wat most a few specks of red.

I transverse section of the testis shows a molerately thick wall of unifim character throughout (except in the foremost portion or duct), composed of four or five layers of cells in varions stages of spermatogenesis. The central cavity is ocerpied by large masses of spermatozoa.

The openings of the ducts of both ovaries and testes lie at the bottom of shathow depressions, the epithelium of whirh is composed of taller and mone closely set rells than those investing the greater part of the loody.

## Buds and Budding.

A bud in its carliest stages of development appears as a small clavate mass (fig. 60, plate 7), the free end of which gradually Hattens out (fig. 61), and becomes differentiated from the "body." The flattened teminal portion is of semicirolar outline, and develops into the anterior part of the buccal shicld. The red line of the buceal shield appears at about this stage, before the posterior erge of the shicld is clearly outhed. The shield hecomes harader and more sharply defined from the "hody" (fig. 62), and grows at a much faster rate than the latter (figs. 63-65).

Fig. 65 gives a side view of a hod of the same age as that represental in fig. 64. and serves to show the great mondity of the shich even at this early perion of development. The posterior flap of the shield can he hought shaply forward, i.e. ventrally, ame the" holy" appears as an chongated pyriform structure projecting from the mildle of the dorsal surfare of the sheld, and is contimed back inter the tapering stalk.

Shortly after this stage is rearhed the plumes legin to develop, as small hemispherical projections situated dorsally to the mithe of the shield, and arranged in :curved line that rums immetiately anterior to the "body" (fig. 666). The plumeaxes elongate and thatten into thick wate dises, and the pimules grow out from the edges.

After this, the shield increases at a relatively slower rate, the borly enlarges rapidly (fig. 67), and, in the later stages, the visceral mass legins to bulge posteriorly (fig. (68), so that the stalk is no longer terminal. but on the ventral side of the borly. The plumes by this time have increased to the number of twelve or fourteen, and the line of their bases has gratually changed from a semieircle to almost a cirele.

As in $C$. dondecalophus, the shied of a goung had (with two pairs of plume-
ases mby) is comsiderally homer* that wide (text-fig. 9, A, p. 27), and when four pairs of phames are remomisald the same relation holls (text-fig. 9, B). In the adult. however, the antero-posterion diameter is only slightly greater than the maximm wilth (text-fig. 9. (C). In C. donteculn, hens the width is a little greater than the antero-posterim diameter (text-fig. $77, F, p$. 54 ). In lnols of $C$. migrescens the winth of the hinder lole is less than that of the fiont lohe, hut in adnlts it may he wider or narower than the front lobe, or erfal to it in width. The distance from the centre of the red line to the anterior edge of the shield is in yomg buts about wire the distance from the ted line to the posterion edge. In adults the propertion is $\frac{21}{2}$ times or $2 \frac{3}{4}$.

The stalks of huds of medium and large size are fomm in rarious degrees of rontration and extension, and even the same stalk may in one place be thin and smonth, and in another stout and thansversely wrinkled. The stalks are so extensible in half-grown homs that these buds may he fomm rontangled among the plumes of the parent imbividual, or may even project beyond. The stalks of such buds are of comrse greatly attemuated.

Before severing its comection with the parent stobon, a large hur usually develops, at the side of the extremity of its stalk, a bul of its own so that if the parting orcurs at the extremity of the stalk (which is mot alway the case), the stalk has now to be regarded as the stolon of the liberated hum, with the tirst of its series of burds alrealy present.

The hases of the bul-stalks of an intivinual with several buds are disposed more or hess in arde arom the hemispherical termination of the stolom, or slightly to ome sile of it. The orter of sequence of the buts is not easy to trace, bot it is not musuad to find small louds alternating with large buds around the rincle. Figs. (69-75, plate 7 , whow the appaname of the end of the parent stolon after the stadks of the larger buds have been meravelled, and eat close to their origins.

A feature of especial interest, as pointing to the possinility of the recognition in the stolon srstem of Ceplutedisers of surh a system of branching as occurs in Rluludolewa, is the oecurrene-rare, it is true-among the bods at the end of the parent stolon of a sansage-shaped pieme which at its free end has a rosette of buds of its win (figs 69, 71, 73). In louds half-grown and ohder the stalk, as has already heen noted. may be slender and attenuatel in parte, while short and transversely wrinklel in others. These latter parts are sausage-shaped, and pinched at one wo both of their extremities, and the most plausible explanation of the above doulle rosette of huds seems to be that a full-grown bud may sever its stalk at any point, and that not only dues the free extremity of that part of the stalk which remains attacherl to the liberated burl possess the raparity of develnping harls of the next genemation, but the free cond of the other portion

[^30]of the stalk also. If this he so, the houds marked $\mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{J}, \mathrm{K}$, in lig. is are buds of a later generation than those marked $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$.

In one case examinel (fig. 71), two such secondary stolons were fomm. In this case there are no buds on the main or parental stolon, one morerately large bud and a larger houl with long thin stalk on one seomblary stolon and two small buds on the other. In another rase (fig. 69) there is a long-stalked burl and a secondary stolon arising from the parental stolom. three young burls and a tertiary stolon at the end of the secombary stolon, and a small ind, a large bud with plumes, and a larger, long-stalked hod arising from the extremity of the tertiary stolon.

## DESCRIPTION OF (EPHALODLSCLS HODGSONI (SEe r. B).

## Material.

The material of Celketodiveus hotlywi consists of eight sperimens, of which five (for convenience of sulserfuent reference here called $\lambda, B,(, D, E)$ were dreiged on the same day (Jamary 29th, 1902) in 100 fathoms off the east end of the Barricr, $78^{\circ} 16^{\prime} 14^{\prime \prime} \mathrm{S} ., 197^{\circ} 41^{\prime} 47^{\prime \prime}$ E., where the bottom is dess ribed as consisting of "mud, stones, aml rocks." I sixth pecimen (F) wat oltained two days earlier and at a greater depth (Jamary 27 th, 1902, 300 fathoms, off Barrier, bottom mud), while the other two were oltained in the following year when the boat was in winter quarters, specimen G on May 18th, 1903, No. 10 hole, 130 fathoms, and specimen II on Jume Brl, 1903, No. 10 hole, 130 fathoms.

The largest pieces are B (fig. 1. B, plate 2), (6, and F. Unfortunately B and (' herame partially dry and even frozen before heing placed in the preservative fluit, and the spines appear rather shrivelted. A is a fine piece, although comsiderably smaller than B and C, and this specimen is mate the type of the species (fig. I, A). Specimens E and H consist of test only, without polypides. The former is a small fragment of a colony growing upon a piece of Eschura.* Specimen G is a young colony investing a piece of Retepora (see p. 52).

Specimen D consists of three joung colonies growing upon the same piece of Meniluer. From the appearane of these ome would conclude that either the whole of the polypides of each colony belong to one family, heing produced hy hutding from a single individual which settled in that situation (having itsclf been proluced sexually or as a bud from one of the indivituals of a parent colony), or earh of the new colonies was formed by a crowd of migrants, a view which is supported ly the obvionsly gregarions character of the polypides of this species in particular. The three colonies appear to be of abont the same age, and there is nothing to lead one

* I have to thank Mr. H. W. Burrows for naming the rarious Polyzoa found in association with the Cephalodiscus.
to surpert that one of them is a parent colomy of the others. It is further of interest that, although these monime iplear so yomg amin so remently estabished, there are present attachen to the interion of the test, numeroms solitary egrs of owal shape, small sizn (averaming 42 by $\cdot 47$ mm.) and pale yellow eolour. They are attixad be a short, fine, transparent pedicle continuous with the thin enveloping membrane.

All the perimens were preserved by being phaed in 70 per rent atcohol.

## Tuburium.

The tubarimu of this species in its present state, after being in alcohol for three years, is of a light brown whoms. It is larger than that of Ceplutodisctes dedecelophers, has shorter and more dosely-set branches, and thicker and longer spines.

The largest piece (fig. 1, B, plate 2) measures about 110 mm . by 70 mm . The original latel accompanying this piece is marked "Mas been dry." A smaller piece which was dredged at the sime time (fig. 1, A), and which in all probability is part of the same colony, is free from this disalvantage, and does mot show the shriveling of the tips of the spines which is apparent in specimen B (ats also in C).

The cavity ormpied be the polypiles is comtinums throughout, and branches regulaly with the hamehing of the tularimm. In fig. $\because \because 2$, phate 4 , is given a diagrammatis: repesentation of the avity of the tubarimn, as though the polypides had been remosed, a cast mate of the interion, and the tubarium subserpently stripped off. Sections taken through the stems and hanches of the colony are roughly olliptical in shape, and measure about 6 ly 4 mm , aross. The width of the interior of the tuln is from 2 to 4 mm ., lout it is greater where a branch becomes flattened, as it freguently does towads its free extremity.

The wall of the tube is thimest in those parts where the test is most regularly tubilar. and where there are no pines. The thickness here is not more than 3 mm . In the hasal parts of the colouy the tubarime is more massive, and in places attains a thicknest of 2 o $\mathrm{m}^{\prime} \mathrm{mm}$. Nthongh the lomen varies in diameter in the manner deceribed in the preceding paragraph, the imer surface of the tularimm is smooth and cron. and is not irrequaty mambered as it is in $U$. dodecolophes. There are no internal traburulae, rifiges on pritions; and the waty is continuous from one end of the whmy th the other. The moted end is, of course, blind, but there are several short hanches with ostia chose around it.

The terminal hameses are short, alout 10 th $1: 3 \mathrm{~mm}$. in length, and the portions of the relatively main stem between two consecutive hamehes are rarely more than 10 mm . in length, frequently murh less.

The openings of the tubarium, the ostia, are situated at the terminations of the branches, and are one, two or three in momber at the end of each hranch. This rule that the nemings are terminal is not without axeption, lout most of the instances of
apparently lateral nstia are explicable on the ground that a lateral brand is in earh of these cases in the initial stages of its growth. The openings are oval, sometimes cireular, and average between 3 bey 2 and 3.5 by 2.5 mm . arons. Each opening has four or five pines around its margin. Five representative figures are given of the ostia and their spines, since the mmber and distribution of the spines of the test of ('phlutolisens will probahly prove to be anong the features usefin for distinguishing the various speries (figs. $16-20$, plate 4).

The spines are simple, or forked, or even trifid. The lougth of the free part varies considerably, usually within the limits 5 to 15 mm . The with varies from - $G$ to 1 mm . The central axis of a mine is darker than the general test, and can be traved for some distance inter the latter: The total length of a mine, including this embedted hase, varies from $1 \because$ to 25 mm . Slost of the pines arise from the edges of the ostia.

The successive increments hy which the spines are hoilt up remain chearly visille, and a study of the fine dark lines which mark off the different strata shows that the forking of a spine is not due to diollotomy, hut that one of the two limhs of the fork is the primary spine and the othre one, although it may le "pal to it in size, we even greater, has been semondinily attarched to its site (sen fig. 21, plate 4).

In comnection with the probable freedom of loromotion possessed liy the polypides of Cephalodiserss and the hearing which this freedom has upon the morde of inerease of the test, it may be moted here that in specimen (' a few pieces of Fhastra (Cimberen) have been caught up among the bandhes of the colony. In some plares the flattened hrames of the a onoerimo of the polyzon have been completely horied in the test, lint in others the strata of the test are continned along one surface, or along one etge, as a thin film, or as several films, with here and there a spine of the usual strurture. This ooting of the forcign oiject extends to a distance of 20 or 30 mm . away from the nearest lollow bart of the tubarinm occupied ly polypides. It sorms dear from this that not only have the polypides the power of moring almut over the surface of their own test-one camot conceive how the tominal increments of the spines are put on if they camot do so-hut they are also able to roan about upon weighbouring foreigu objerts, which they smear over with their profuse secretion.

Specimen ( is further of interest in that in certain parts of the colony a stolomiferons polyzoon allied to bourerlmbian is found embedred in the test. The relations of the zorids of the polyzorn to the Cepheloriseus tubarium are such as to suggest that when they were flooded ly the not yet solinified material of the test, they had time to dispose themselves so that their tentaculater ends were Hush with the surface before the material hardened. Some of the zooids are normal to the surface of the tubarimm, others are obligne, lout all have their openings flush with the surface.

In specimen 1), as in sperimen (', the mammer in whith the coenoerimm of the polyzoon-in this case Menipa-has hecome cmberderl in the test of the Cephatmisers gives one a good idea of the pofusion with which this material is secreted.

The shape of the tubarimu of "perimen G difters materially from that of the type specimen, but that \& belongs to the same speries as $A$ is eritent from the size of the spines, the size and relations of the few tubular prolongations of the test that wan le recognised, the size of the ostia, and the chatacters of the polypides. Sperimen (i is evidently a young colony of Cephatodisen. hodlysoni which has not yet assumed the racemose appeatance presented by the type specimen. The polypides are crowted underncath a stuare inch or su of the calcified reticular comnecium of the polyzoon lieterore, in relation with which the colony has established itself. They are supported upon a fairly flat floor of test secreted by themselves, ant the upper surface of the Rectepore is also coated with a thim, flat sheet of the same material. From around three-fourths of the edge there stand out fifty or sixty spines, mostly simple and muforked, and radiating more or less obliquely outwards from the centre of the whole structure. Some of these spines are armaged in groups of fom or five arome the openings of ten or eleven short tules which lead out from the marginal parts of the flattened central chamber.

This specimen (G) is interesting because Harmer, in describing the species C. situmpe, attaches some importane to the crowding of the polypides in a low and wide "hasal encrustation" with irregulaly divided cavity, set upou the piece of rock on which the colony was growing ( 10,1 . 13). That Ciphatodiscus situme is a valirl species 1 do not doubt, lout this particular "habit" of the robny will probahly prove to be common, in the carlier stages of growth of the colony, to most, if not to all species of Cephetudiscus, exrept those which, like C. lecinseni and C. migresens, have separate tulbe for card polypide and its hods.
Polypides.

It is remarkable how densely arowded are the polypirles in this species; yet, although they are in such close contact, the only organic continuity which exists is that between the parents and their buts. If one side of the tubarium be removed amd the contents carefully isolated, the crowd of polypides can be mavelled into a number of separate imdividuals, with their buds. The apparent connection is due to the entanglement of the stalks of the buds of the different individuals.

Julging from the least crowiled parts of the colony it is evident that, as in C. dedecalophus, each polypide is free to pass out through the ostia of the tubarium, and the move about from end to end of the interior, except in so far as it may lee incommoded by the coowting of the other prolypides.

The polypiden bear a telemally chase resmblance the those of $C$. dodecolophus, but they are a little larger, measuring : mm. from the posterion ent of the visceral mass to the fiont of the huecal shiche, and alout 2.5 mm . to the emis of the plumes, wheras in 6 . dombenthones the corresponding measurements are $1 \cdot 5$ and 2 mm . The only colour which the polypides possess is that of the red line of the buceal shield. and the red pigment of the gonal ducts.

The "looly" is rather more dongated and less loullous than that of C. dorlecollophes, and the stolon arises relatively farther from the shied. The shape of the bouly is largely determined bey the stomach, which is ghomlar and diated, as in 6 . dodecalophers, and not compressed as it is in C . migresenes. The stohon is distinctly longer and more slemder than that of $C$. dombedophos, and in an average state of rontraction measures $z^{2} \mathrm{~mm}$. or less. It is sometimes found rurving forwarls toward the shied, hut if extended it is usually directed parallel with the long axis of the boly (see figs 49 and 50 , plate 6 ). The stoln at its maximum of ©xtensiom measures 4 mm . or more (fig. 51).

The buds are usually two in number, a large amd a small houd, hot orasionally as many as four are met with at the end of the same stolon. When a bur remains attarher to its perent until it attains a considerable size, it develops a loud of its own.

The number of plumes is in the majonty of cases twelve. Each plume axis terminates in a bulloos enlargement with refractive beads, particularly in individuals of moderate size only.

One specimen was found laving a hody shaped like a short sausage, with an extremely slender and clongaterl stalk arising from one extremity. No plumes, luceal shield, post-oral lamella, mouth, gill-slits nor gomad ducts are to be distinguished (fig. 52). This solitary specimen is of interest in comection with the remark made by Hamer (10, p. 93) that in C. fracilis the "degeneration of a zooid begins by the throwing off of the proboseis and collar, leaving the metasome, with the alimentary canal, attached to the stalk," and that "degomeration of the zooids is of frequent ocemrrence, and is usually not succeeded by any regeneration of lost parts." The plumeless polypide of 1'. dodeculophus figured by I'Tntosh as an "abnomal specimen" has no stalk (19, fig. 4, plate 3).

Nost of the polypides are females; two out of the fifty or more specimens examined are hermaphrotite; the rest are males. The sexes of the polypides cannot with certainty be distinguished except by dissection, but as a rule the red pigment of the gonad-ducts is distinctive of the female; at all events it is more strongly marked in the females than in the males. There are no neuters, except perhaps the plumeless polypige mentioned ahove, the anatomy of which was not worked out. Further details of the plumes, stolon, and gonads, and the characters of the shield, buds, etc, are given monder special healings in the pages that follow.

## liureral sind.

The shield of the adult polypide of C. luelysomi varies in size, bat on an average

 maximmon with, the organ bring evidently arable of great contortion in all directions. The posterior lobe is aral in width to the front hale, or is slightly less: the white of the red line is about four-fifthe or five-sisthe of the antero-posterine diameter from the front edge. The diagram given in text figure 17 , E is a composite ligure of about twenty specimens.

 with the forth pair of phme-axes making them appearance as hemispherical projections. $Q=$ shield of a bud

 ('. Andes, $\mathrm{F}=$ lid of adult prlyphe of $(\mathrm{C}$. molochlophas. These six figures are drawn to the same scale (. for).

The rend line makes its first appeamer in the bod at a time when the form th phaneraxes have the form of hemispherical prominences at the base of the third pair. It is at this period only a shat line extending across mot more than one-third or me-half of the total with of the shield (text-fig. 17, B), and it is in this stage and for some time later relatively more remote from the posterior edge of the shield than it is in the adult (of. text-fig. 17, B, ( $, ~ D, ~ E)$; the posterior lobe does mot clare quite so rapidly as the anterior lobe as growth proceeds. Until the stage at whim the fifth pair of plame-ases normally make their appearance - they are in
some cases retarded - the width of the posterior lole is less than that of the anterior lobe (text-fig. 17, A, B, C).

Except in being somewhat larger, and in that the width of the posterion lobe is a little greater in proportion, the shied does not differ materially from that of C. demlecalminus. Text-figure $17, \mathrm{~F}$ shows a composite figure mate from seven well-expanded shields of the latter pecies. The width of the front lobe is $7: 3$ to -83 mm ., and that of the himd lobe rather less. The rentre of the red line is $\cdot 60 \mathrm{to} \cdot 66 \mathrm{~mm}$. from the front edge and $\cdot 11 \mathrm{tw} \cdot 16 \mathrm{~mm}$. from the hint enge, the average antero-posterior diameter being 77 mm . In foung buds the ret line is relatively farther forward than in the arbult polypide, as in C. hod!asomi.

## Plumes.

The normal momber of plumes is twelve but the sixth pair develop late, and a full-sized polypide, with hods of its own, and with well-developed ovaries, may have only ten fully-grown plumes. Close inspection, however, usually reveals the presence in such polypides of a sixth pair, these being very small outgrowth, with un) pimmes, situated at the most anterior part of the line of attarhment of the pust-oral lamella to the rest of the boty. The late-developed sixth phumes of such imfividuals are rarely exactly equal in size ; it ahmost always happens that one is larger than the other. No polypide of C. hodgromi has been found possessing more than twelve plumes.

The plumes bear a fairly close resemblance to those of $C$. dodecalopthus. Each ronsists of an axis, almout 1.5 mm . long when well extended, with a rentral coelomic space continnous with the collar cavity, with a hollow end-hull, with high epithelial cells, and with pimules arranged in two lateral series (figs. 31 and 32, plate 5). The axis is Hattened, and grooved along the surface more remote from the central nervon, system, and the pinmules, which usually number thirty, sometimes as many as forty, along eath edge are not merely attached to the edge of the axis, but are contimued across the groove almost to the median line. The piunules of one side as they become free from the edge of the axis are not set exactly in one plane, but they alternate slightly, su that when a plume is laid flat on a glass slip under the microsonpe, the pimmle bases will not he all in focus at the same time. Assuming that the pinnules are denotel by consecutive numbers along one edge, those bearing odd numbers will he ont of focus when those bearing even mumbers are dearly definet, and ciere rerwh.

The base of each pinmule is enlarged, and this is especially noticeable if the plumes are in a state of contration. New pinmeses are prohuced at the hase of the plame-axis for a considerable time after the bod has lecome separated as a free polypile, if not for the whole life of the polypide.; a few small hasal pimules in gramated series are almost invarially to be fomod. All
pimmen exept the few youngest at the base of the phme-axis are slightly swollen at their extremities. The most distal pair of pimmules arise as a rule immerliately to the proximal side of the eud-holb, and are comparatively short (fig. : :3: -35, plate 5) ; exceptionally they arise from the end-bulb itself (fig. 36). The longest pimmules vary from 5 to $\cdot 7 \mathrm{~mm}$ in length in different indiviluals.

The hull, at the extremity of the plame-axis of C. dedecolophlis is a hollow cntargement, of the shape of two-thirds of a sphere, and with a wall composed of taller epithelial cellis than those of the phme-axis. The cavity is continuous with that of the plume-axis, and is traversed by a few rolomic thabeculae. These emi-holbs have heen described in detail hy Masterman (22, p. 3tt, and 24, pp. 516 and 521) and Cole (2). The former author regardet the terminal swelling of the plume as a rudimentary monostichous compound eye, hearing a remarkable resemblane, looth in appearance and structure, to the "hamchial organs" found in the sedentary Annelids, such as Potumille and sulluclla, but he states in a later paper (28, p. 725) that he had already abandoned this view before the pullication of the olservations of Cole, who considers the terminal loulb to be a "rhabdite-battery," composed of rhabdite "cells" resembling those of Turbellaria and Nemerteans.

Harmer (10, p. 38) states that end-fulls with highly refringent vesicles, similar to those of $C$. dodecalophus, ocenr in the hmels of $C$. frectios on the first pair of plumes, sometimes also on the second and third ( p .20 and p . 94), and that these vesicles prohably disappear as the adult stage is reached. No end-buths or refringent vesides ocemr in $C$. lecimseni, nor in neuter individuals of $C$. silurpee, but the males of $C$. sithogue have two long arms, representing the first pair of plume-axes without pimmles, and these have closely-set refringent vesicles covering the greater portion of their length. On page 90 he suggests, with some dittidene, that possilly the vesicles "have the nature of reserve supplies of motritive material, developed precocionsly in the young loud for the mutrition of the future testes."

The emd-bulbs of $C$. hodysomi are less troly spherical in their curvature than are those of $C$. dorccolophus, since the tall epithelimm extents farther along the neural than the groover face of the plume-axis, and thus present a lop-sited appearance when examinerl from the side (figs. 33 and :35, and text-fig. 1). The Clear refractive beads of previous authons occur among the tall cells of the end-Jull, and are present in greater profusion in immature than in full-grown polypides.

I minnte examination of thin sections and of teased preparations suggests the posibility of the refingent vesides of Harmer and the rhatrdite "cells" of cole being the globules of the tubarium of the colong in pocess of secretion, like the globules of mucus in the goblet-cells of a mucous membranc. When the secretion is forming, it is of comse, surounded by protoplasm, aml if the bead of secreted material is large, it will louge pon the surface, heing covered ly a thin pellicle
only of the protoplam. On the pellicle hreaking, the secretion will flow wor the surface of any solin bonly to which that particular part of the epidemis of the end-bulb, is applied, and subsequently solidify as a film. If, however, the animal is killed before the pellicle hreaks, the secretion hardens as a dear bead, projecting to a greater on less extent above the general surface of the epithelium (figs. 33-36). I have not recognised any rhalndites in these beals in cither $C$. horlysomi or $C$. dondectophtus.

The refractive heads are mot confined to the end-hollhs. Small ones are mostly to be foond at the corls of the pimnules, and others, not smaller than those of the end-bulb, may sometimes he seen along the neural face of the plume-axis. Nore rarely they are to be found in the whole of the epidermis of the body-wall (e.g. in the plumeless polypile referred to above, fig. 52, plate 6). Assuming that these are the rells of the epidermis secteting the test, the inconstancy in their occurence elsewhere than in the emf-bulbs may be acomuted for by the relative activity on quietude of the polypide in respect of secretion of test at the time of death.

## Pestoral Lemella.

The post-oral lamella does mot differ materially from that of C. rodecaloplus. It may be described as consisting of a pair of lateral flaps of the body, containing an extension of the collar coelom, situated at the sides of the mouth, and comected behind the mouth by a narow hand which has a free posterior border continuous with the free edges of the lateral flaps, but differing from the latter in not heing thickened (fig. 53, plate 6). The post-oral lamella becomes free firm the body around the edge of the part which in fig. 53 is shaded by irregular lines, and in the middle of which the mouth is situated. The ragged front edge of the shaded area marks the $1^{n s i t i o n ~ o f ~ t h e ~ h i n d e r ~ s u r f a c e ~ o f ~ t h e ~ s t a l k ~ o f ~ t h e ~ b u c c a l ~ s h i e l d . ~ T h e ~ h a s e ~ o f ~ t h e ~}$ sixth plume-axis occurs in development at the anterior limit of the attachment of the lateral flap, and in contimuity with it.

## Gonads.

The sexes of the polypides of Cophalotisens hodysomi are in most cases distinct, though not invariably so. Two hermaphrodite polypides, earh with one ovary and one testis, were discovered among the many polypides dissected.

Most of the polypides are females. The ovaries, when fully mature, are owoid or pyriform bodies, measuring 8 ly $\cdot 5 \mathrm{~mm}$. (fig. 42, plate 5). The oviducts are of a brilliant red colour. In some young ovaries the oviluct is larger than the orary itself (fig. 43), and the transition from the red oviduct to the white orary is abrupt (figes. 43 and 46). In other young ovaries the red pigmentation spreads in an irregular and diffise manner into the interior of the ovary (figs. 44 and 45).

The testes. when fully formed, are slightly larger than the ovaries, and measure -9 by $\cdot 6 \mathrm{~mm}$., or. if less elongatel, $83 \mathrm{ly} \cdot 75 \mathrm{~mm}$. and the lucts are as a rule not chomen rent, and are shorter and narmer than the oviducts. The shape of the testis is oroil or priform (fig. 41) and there is no tendency to elongation, as there is in the testes of $C$. silngule ( $10, \mathrm{P}$. 85) and C. nispexcens (fig. 37).

The males and females differ only in respert of their gomads and ducts amd
 row in the internal ravities of the tubarim. The luds are not neressatily of the same sex as their parent. One of the male polypides of sperimen F was fomm to posesess a boud with a pair of fairly large ovaries.

The 'perimens of $C$. hodysomi dredged by the ' bisenvery' were not all obtained from the same situation, nor at the same time of year, amb some of the lifferenes in the state of the gonals may possibly be attributalle to seasomal changes. The combition of the gomads in the various sperimens is as follows:-

In eqecimens A aml la the mabrity of the polypides are femates with small ovarins. I few are males with momaratively barge testes ( $\cdot 86 \mathrm{l}, \mathrm{y} \cdot 67 \mathrm{~mm}$. and colourless ductr. 'Two porlypites were fomm in which looth testes had red ducte, and in these two specimens one testis was large and the other small. One polypide was fomm with a large testis and a small ovary, both with red ducts (fig. 47). It is worthy of remark that no bipe ovaries are present in specimens $A$ and $B$.

In specimen $C$ the numbers of male and female polypides are about equal. The females are on the whole less mature than the males, and their gonads are in some cases very small. One hermaphrodite polypide was found, possessing a latge testis and a small ovary. No testis ducts of material (' exhihit any red wholr.

It is only in perimen I) of (. houlgomi that free wa are found. They oreur singly, they are pale yellow in colour, and owod in shape (fig. 48), they measure athont 47 he 42 mm , and are attached hey a narrow pedicle to the inner swface of the tularimm. (If fourteen polypides examined thirten were female and one was mate. Sime of the females have fully developed ovaries, with red ducts, and alsw with red spots in the interior of the ovary; other polypides, of the same size as the former, have mimute waries with no red colow in the oxiducts, nor in the ovaries. The single male fom has two large testes, one of which has a red duct.

In specimen F female $\mathrm{p}^{\text {mlypides are commoner than male, and less mature. }}$ $l_{n}$ the least mature femalos the ovanim part of the genemative apparatus is small as compared with the size of the red wiluct (figs. $4: 3$ and 46 ). The largest wary fomm measmes 5 hy 45 mm . not including the duct, and the testes of the mates measure 8 by $\cdot 75$ or $\cdot 83$ hy $\cdot 7 \mathrm{~mm}$. The testis ducts are narrower then the oviducts. and are not red.

In specimen is all the polypides examined are very immature females; the ovaries we extremely small, alout $\cdot 05 \mathrm{~mm}$. in greatest wibth, ant 1 mm. long, inchuling
the duct, which has 10 red colome, or hut a few red sperks here and there. The waries consist of small closely-packed cells with one latger erll, perhaps two, exhibitius a germinal veside and germinal sunt. just enough to enable one to distinguish the sex.

The polypides of material (: arr of the full size distin tive of the speries, amd have buds of their own, and the smalluess of the ovaries is moteworthy, because in specimen $F$ the oraries are fairly well developed in louls of mot more than half the size of the adult polypides. Sperimen G was oltained in May, whereas all the other specimens collected (except sjecimen $H$. which has mo polypides) were oltained in Janary. The colony, further, has the general apparance of being for recently established (vide 1 . 52 ), and this circmostance, taken in anjunction with the above, watrants the suggestion that the full-sized polypides of $(i$ arrived at their present situation as free-swimming larvac, and were not produced ly the budding of their parents.

## Stulom and Budelius.

The stolon of most of the full-grown propiles is about 2 mon. Jong, hat the wrinkling of the surface indiates that the organ was fixed by the killing reagent in a state of rontraction. Exceptionally one finds a long stolon, four or fire millimetres long, with less superficial wrinkling. In old buds the stolom is frequently curved strongly towards the shield, but in adults it usmally slopes rather away from the shield; in ases in which the stolon is in exreptional extension it is parallel with the long axis of the lody (fig. 51, plate 6).

Although there is ample evidence that the castomary methon of sequation of a houd from its parent is by the severance of the tissue between the end of the stalk of the bod and the extremity of the stolno of the parent, yet in "xamining lurl-systems of $C$. hondysumi one not infrequently meets with curvel, sansige-shaperl or hanam-shaped structures which give one the impression of heing portions of parental stolon which have berome severed rlose to the body, or at sume print along the course of the stolon, in else the stalks of bouts similaty diviled.

Harmer in his 'Siloga' report regarls the sallage-shageal hodies as the stolons of adults which have died off, or "degenerated," as he puts it. Whike this may be the case in the speries of Cepllatodiseus examined loy him, the sperimens of $C$ : hodysoni figured in plate 7 would seem to show that the parent horly is in a perfectly bealthy condition at the time when this severance takes fare, especially as buds not fully grown may separate off by constriction of thair stalk at any point of its length at a time when the parent stolon is still perfect.

In fig. 78,79 , and 81, plate 7 , are shown bud-systems unconnected with any parent form. The first of these is composed of four buds and a curved sausage-tike body which is presumably the parental stolon which has hecome severed close to the parental body, the separation between huds and parent ocruring in this rase not at
the distal end of the parental stolon. In fig. 81 the large intividual is a halfgrown bud. and the salusage-shaped structure is no larger than the stalk of the former, and bears a small houl of exactly the same size as that borne ly the extremity of the stalk of the large boul. Further, there is an indication of a constriction at the lasal and of the stalle of the large bud, which if completed would convert the stalk into a sansage-like structure exactly similar to that shown on the right side of the figmre. One concludes, therefore, that the latter bouly is the severed stalk of a half-grown burd.

In fig. 79 there are two sausage-like bodies and three buls, two on the larger, and a very small foud on the smaller. Fig. 83 shows a loug eurved, dub-shaped rol, and two buds, one with the fifth pair of plumes just appearing, the secomd with the first plumes only, still attached to the extremity of the stolon of a normal and healthy individual, not shown in the figure. The area from which the parent stolon was dissented off is marked $a$. In this case it is fairly evident that the chub, is a hud-stalk.

White groups such as are shown in figs. 78 , 79 , and 81 are not uncommon, the groups which afford the evidence of the mode of origin of the samage-like boties are searce. In fig. 82 is shown a parent individnal with a constriction of the stolom in such a position that, if intensified so as to result in a division of the stelom, it will leave in the but-systrm a curved, satuge-like borly sum an that shown in figs. 78 and 79. The group shown in fig. 80 differs from the last in that the hasal portion of the pareutal stolon is attomated and nomrow, and is of intcrest as suggesting the mode of origin of soch a group as that shown in fig. 7r, in which, while there is a salusige-like body, less curved than nsual, attached to the two loms, it is but the terminal portion of a moniliform rod, the free end of which is pointerl.

The group shown in fig. 76 is interesting beranse the parent individual and its stolon ate still perfert, amb yot there is a half-grown har in prosess of sovering its stalk at about the midulle of its length, and a curved, dub-shaped bemy which presumally represents the whole, or the distal part, of the stalls of a hud which has previonsly aut itself off firm the group.

Only rarely is such a complex system as that shown in fig. 84 met with. In this case it would appear that " is the severed stolon of the parent polypile of the group; l, the largest individual present, is nearly full-grown, and has two buds of its own, $c$ and $d$; the hade has a bud of its own, $f$; but what are the relations of the homs !, $h$ and $j$ is not clear. The small size of $j$ mather casts a doubt upon the indentification of a as the stalon of the main individual of the group, and yet a is thisker than the stalk of $b$, and $b$, is mot yet fully grown.

Notwithstanding the difficulty of interpretation of the lant group, one may conclule that in gencral the parent polypide proluces from the margin of the Hattened extremity of its stolon first ome loud am then a second. The first how develops fiom the side of the distal extremity of its stalls a hul of its own, and then,
when nealy of full size, separates from the parent by severance at the distal ent of its stalk from the end of the parent stolon, and is now in the position of the parent imdividual referred to in the beginning of this paragraph. Sometimes the parting from the parent individual is delayed mutil the seceding lom has developed a seromb loud of its own.

What happens to the parent polypide when its two buds have departed can hardly be determined except by tracing the process of budding in a living conlony. Possibly it prodnces young buds at the same rate as the old bods sepanate offf, su that the number of buds on the parent stolon is maintained at two. If this be so, there is less reason for doubting that $a$ in fig. 84 is the parent stolom, and $j$ its recently formed burl.

What are the conditions which determine whether or mo a parent stolon in a bod-stalk shall constrict amd divide at its middle, or at its proximal end, are difficult to conceive. The acceptance of Harmer's view that the individuals so liberated are "degeneratel" is hardly possible in view of the healthy appenance of the polypides shown in figs. 80 and 82 ; yet what hecame of the stolonless polypides and stalkless louds after their separation by this method is a mystery, for no such individuals have been encountered in the couse of the investigation. Since in the whole animal kingdom it is so very musual for sexual reproduction and vegetative reprodnction to take place simultanemsly in the same body, may one comjecture that sexnally reproducing polypides first cast off their vegetatively produced families, together with the gemmation-tissue of the stolon, and hecome more frec-living in their halits, perhaps leaving the colony altogether? This explamation would acoont for the absence of stolonless polypides in the mass of individuals taken from the cavities of the tubarium.

That the constriction and division of parent stolons and bud-stalks is due to the convolsise contraction of certain parts of the conerntric museles at the time of death, is rather negatived by the perfect rounding off of the free ends of the sansage-like structures, and by the absence of stolonless polypides in the material examined. Further than this, in C. nigrescens, the sansage-shaped piece of stalk is sometimes found with bonds at its free end as well as at its hasal end (figs. 69, 71 and 73).

## Beuls.

The loud on its first appearance is ellipsoidal or ovoidal in shape (fig. 54, plate 6). The attached end becomes narrower, and the free end becomes flattened dorsoventrally into what will later be the anterior part of the buccal shield. The posterion elge of the buccal shiel next becomes marked out hy the appearance of a curved groove, sitnated about halfway along the ventral surface of the houd, and, at the same time, the first pair of plume-axes develop as hemispleral swellings on the dorsal surface (fig. 55). The bacaal shield enlarges in all ditections, and
the pasterion lobe grows hatwand and downwat ; it is thimer than the anterion part of the shield, and mantaius this relation throughout life.

By the time the shied is so far differentiated an th possess a stalk or pedicle attanded to the midde of its dursal surfice, the "homy" or metasome is pearshaped, and : serond pair (fig. 56), and thind, and fourth (fig. 57) pairs of phome-axes make their appeatare. The bud is at this time apable of remarkable chathe of form. and an eight-plume bud may show a long "loody" and statk, and a cuppen shick with an ubvions pedicle (fig. 58), or, more usmally, a flattened shiedt, attarhed at its middle, but with no clear pedicle, and a short and winkled "lowly" and stalk (fig. 57). Ns a rule, buts that have reached the same stage of dwelopmont, so far as ean be jutged hy the number of plumes present, are of approximately the sam size, but it is to be noted that the eight-phme lom shown in fig. 58 is exeeptimally large.

The red line of the loncol shield begins to appear at alout the stage when the fourth pair of plume-axes are hemispherical knobs onty, or are losing their hemispherical shape and are becoming elongated (text-fig. 17, B, p. 54).

## SUMMLAY OF RESULTS.

 amel desmiptionss are given of the two speries ohtained by the Diswovery, mamely, ('. mitresects and C. hod!simi (pp. 20-4! and 1R. 4!-fi2).
$\because$ A new sul-genemin name Idintheem is given fir the ibrlasion of those species of Cophaledisrus (e.\%. $\therefore$ migreserns and $(\therefore$ lerinsmi) in whith the polypides reside in separate tubular ravities in the tularium ( P . 7), and the sul-generif name Hominthein for those species in whint the polypides live torether in the same cavity.
8. A review is given of the six reanded perien of Cephalodiscus, namely,
 to the identification of these (pp. 11-12).
4. Since the thlus of the tubarimm of $C$. wigresems are entirely separated and show mon signs of having been continums at an carlier stage of development, a shgestion is offered as to the behaviour of the polypides in the buikling up of the tubarime (1. $\because 3$ ).
5. Destriptions and semi-tiagrammati- figurs are given of sections of the prlypindes of $C$. migreserens taken through struetures of particular interest (pp. 84-41).
(i. The "prolnematical borly" of Hamer, supped by that auther to romsist of lamellae, probaloly of a museula nature, is shown in the case of $C$. nigreserns to be formed, not of lamellac, but of obliguely interlacing cross-striped muscle fibres (pp. 41-43).
7. In breth of the new speries mbtained ly the 'Discovery' there are hemmphodite individuals, with one orary ant onn testis, as well as males amd
females with two testes and two waries respertively. 'There is m sumal dimmphim such ats occurs in the case of (. siterge (Harmer); the there kinds of pulypides -males, females and hermiphodites-are indistinguishalle exmmally, exerpt in so far as the ducts of the testes do mot as a role prosess the red pigment that orcurs in the oviducts (12. 45-47 and PP. 57-59).
8. The morle of dovelopment of the lumb of $C$. nigrestens aml $C$. hodysuni is considered ( pp . 47-49 and 1P. 59-62).
9. The clear refractive beads form in the end bulls of the phumes of $\left(\begin{array}{l}\text {. hendrani }\end{array}\right.$ are regarded, not as rhablite-eells, lout as the material of the tubatimen in process of secretion, after the mamer of the gholules of mums in a goblet-eelh (11. 56-57).

## BHBLIOGRAPIH OF CEPMALOHISELS

1. Andersson, K. A.-" Eine Wiederentackung ron ('phumbisths." Zonl. Anzeiger, axvi. (1903),






 119. 16.1 et seq.)

 ( $1 \times 50$ ), $1 \mathrm{p} .3: 3-47$, fonl text-figures.


2. Hatuek, S. F.-Article "Jemichordata." Cambritge Natural llistory, vii. (1901) (I'terobranchia, 11. $21-25$ )
3. Ilamer, S. F.-"The Pterohnachia of the Siboga Expedition, with :m Accomet of other Species." Résultats des Explorations ì borl du Siboga. Lirr. xxii., Monogr. xxvi. bis; Leiden (1905), 111. 132, 1t plates and two text-tigures.
4. Kemena, A.-"L’origine de la corde dorsale." Ann. Soc. Roy. Zool. et Malacul. Belgique (Bull. des Seances), xxxix. (1904), pp. 85-157 (Author's reprints, 1 p. 1-73).
5. Lante, A.-"Zum Verstandniss der Organisation von Gophelodiscus dodectof hus." Jell. Zeitschr., xxv. (15!10), lp. 1-12, no figures.
6. Lankester, E. li.-"A Contribution to the kinowledge of Rhablommal." quart. Jomm. Micro. Sci., n. s., xxiv. ( 1881 ). pp. (2x2-ifta, five pates. (Contains a few allusions to Cophatudistus.)
7. Lankester, E. R.—Article "Polyzoa." Encycl. Britann., El. 9, six., 188., pp. 12:9-1月. (Contains the first published figures of Cophalodistus; they were made from drawings suphited by Prof. II'Intosh.)
8. Lankberbit, E. R.- "On a new species of ('phmodisens ( $f$. niyresens) from the Antarctic Ocean."





 no figures.
9. M’lstosn, W. ('- - Pocliminay note on C'ephatodiseus, a new form allied to Prof. Allman's



10. Mastersha, A. T.-" l'reliminary Note on the Structure and Allinities of I'hormis." l'roce Roy.
 comparisnoll of ('ephetodisens with Dulanoglassus, Phoronis and Rhathopten'te on pre 7" and 71.)
11. Mantermar, A. T. "On the Strnctare of Actinotrocha considered in relation to the suggested
 with text-figures.
12. Mastermis, A. 'T.- "On the Diphomorda. I. The Stencture of Aetinotrocha. Il. The Structure

 fire text-tigures.
13. Mas'rerman, A. 'T.-"On the further Anatomy and the budding lrocesses of Cephatudiscus dode-

14. Mastemax, A. 'T'- "On the Origin of the Vertebnate Notochord and Pharyngeal Clefts." Rep.

15. Nantermax, A. T.--"On the Theory of Archimeric sumentation and its bearing upon the Pleytetic
 2:) text-ligures.
16. Masterman, A. 'I'-"On the "Notochord' of C'phmodisens." Zool. Anzeiger, xxii. (1s99), 112. $354-363$.


 19. 20 , two plates.
17. Somakzwithi, II.- "Sur les relations genétiques des Métazoaires." Congres Int. Zool. Moseon,

18. Spexiel, J. W.--"Monographie der Enteropnensten." Fanna und Flora des Golfes von Neapel,


19. Sreagel, J. Wr.-" Bemerkngen zu A. T. Jasteman's Aufatz'On the notochord of Cephalodiseus."

20. Wilaey, A.-Anphinsus and the Ancestry of the Vertehates. Columbia Univ. Biol. Ser., 1894.

21. Wileer, A.-"Romarks on some Recent Work on the Protochorla." Quart. Jonra. Micro. Aci.,


## EAPLANATION OF THE PLATES.

PLATE 1.
Photograph of Cephatorliseus (Ifiotheciu) nigrescens; natural size. (From Lankester, 15.)

## PLATE $\xlongequal{2}$.

Fre. 1.-Photographic reproduction of Cophatodiscus (Demiothecia) horlysomi; natural size. A, small perfect specimen; $\mathbf{B}$, larger specimen with the tips of the spines shrivelled, owing to drying.
Fic. ᄅ.-Photograph of a massive colony of ('phatodisrus (Ithotlectit) mitresions; natural size.

## PLATE 3.

Pri. 3.-Cephelodisens (Irliotheriu) nigreseens, drawing of a branch as seen arainst a white barckround. ( $\times 1 \frac{1}{2}$.)
Fus. 4.-Median longitndinal section of same. ( $\times 1 \frac{1}{2}$.) In figs. $:$ and 4 the black parts are the folypides seen through the trausparent test; the small white ovals are free ova in the tabes.

Fua. b.-Transverse section of a branch. ( $\times 1 \frac{1}{2}$.)
Pus. $7 .-A$ polypide of C'ephatotisrus nigresiens as it appears on removal from its tube. ( $\times 13$.) b.1, bud flattened agrinst the ventral side of the polypide; $h .2$, bow flattened against the far side of the polypide; ll.?, five other bonds; b.s., buceal shiell; yo., gonad; ph., phomes; st., stolon ; r.m., visceral mass.
Fiti, s.-A polypide of $(\because$ nigresceus with plames more expanded and with the buds disentangled. ( $\times 1$ 19.) b., buds; other letters as in fig. 7. Figs. 7 and 8 were drawn mader a lirenough binocular microscope, with a strong top illmmation; the polypides do not look as black as they would if the illamination had been less intense.
Fig. !.-Cells of the pigmented epithelimm as they appar when teased out and exmmed in dilute nlycerine.

## PLATE 4.

Fri. 10.-Diagram of a longitndinal section of the distal half of a branch of Cephetodisers (Ithothecime migrescens) showing the relative lengths and curvatures of the varions tubes. ( $\times \ddot{2}$.) In this diagram the whole of the tulues visible are represented as lying wholly in the radial flane ; as a matter of fact the innor ends of the tubes twist about one another in the axial part of the branch (see fig. 4, pl. i) The prilypides are not shown.
Fis. 11.-Dingram of one of the tubes of 't. niffescens, with a contracted polypide within, showing the form of the lip of the tube and the hemispherieal septa at the hind end. The ragged edge of the figure represents the irregular surface left after picking away the adjacent tubes. ( $\times 8$.)
Fif. 1\%,-Longitudinal section of the mouth of a tule of $C$. nigrescens taken throngh the middle of the lip, showing the mode of deposition of the layers of the test. ( $\times 1$ 万.)
Fig. 13.-The distal end of a long miohabited tobe, dissected ont and cont lomsitmanally. Note the six irregular elosing septa, and the close-set superficial layers of common soft test bmying the montl of the tube. ( $\times 15$.)
Frg. 14.-Polgpide of $U$. nigrescens found free, ie., not in a thise. The Juds have been ent away. ( $\times 14$.)
Fig. 15.-A polypide of ( 6 . nigreserns taken from one of the short terminal tubes of the branch. ( $\times 11$. ) In figs. it and 15 the blackness of the polypides has been redned in order to show the shape of the Jody; were this not done the body would appear almost as a silhonette.
 of the shimes are standing out ohlifacly towads the observer．Nat．size．

Fita， $2 \because$－Dingrammatic mperatation of the cavity of the thbarium of $C$ ．holysoni，as thongh the phymbes hat been removel，a cast made of the interion，and the test sulssumenty strippen off． Nat．size．

## PLATE ：

Fig．en－A flattencel phume of Cephutoliselns（Idiotheria）nigresions in moderate contraction，seen from the central（nemral）aspect．Note the roumled extremity of the axis．（ $\times 50$ ．）
Fic．21．－－1 phme in muderate extusion．Nute the pinted extremity of the axis．（ $\times$ 50．）


Fit：：2－－－Another phme in side viow．Note that in this plame，apmently fully－grown，the pinnules are few，ant the diatal ones project besond the extremity of the axis，whereas in the plumes shown in figs． 2.8 and -6 they fall considerably short of it．（ $\times 20$. ）
 from the fire end．（ $\times 160$. ）h．e．，hlood－ressel ；i．e．，ciliatel epithelinm ；m．，mascle； n．t．，nerve tract；p．e．，pigmented epithelinm；s．l．，skeletal layer．
Pig．2！．－Transperse sertion of a pimmle of 6 ．nigresreas．（ $\times 4.20$. ）
Fig．：80．－A similar section passing throngh a pigmented cell．（ $\times 420$ ．）
Fir．81．－A plane of C＇phuthelisels（hmiothectit）hodysomi seen from the side．（ $\times 40$ ．）The pinnules of the farther side are not slown．
Jig．32．－A phame of C．hmemoni seen from the aponeural aspect．（ $\times 40$ ．）
 refrative onbules projecting heyond the surface of the terminal bulb．（ $\times 1 \neq 0$ ．）Note that in fig．：$: 6$ the most listal pinume arises from the end－bulb itself，whereas more nsually it arises from the neck of the bulb．
 （く水．）
 in dilated glecerine．（ $\times$－ 0. ．）
Fic．41．－Testio of Éphomplisers hothsoni as sem ly transmitted light after mounting in diluted （r）yerim：$(x+10$.
 The relative 口pacity of the two largest ora is dne to yolk．
 （ $\times 111$ ．）
Fig．47．－The onary and testis of a hemaphrodite prolyde of $C$ ．holysomi．（ $\times 40$ ．）Note that the testis dnct has red prigment，which is exceptional．（ff．fig．41．）

## PJATE 6.

Pric．4n．－Enere of Cephatodisrus（Demiotherin）honlgsoni．（ $\times$ t10．）

Fri．si．－A polypide of（ $\because$ ．hodysoni with longer stolon than the last，and a flatter shield ：rentral view． （ $\times \therefore$ 。）
Fif．51．－－Sile view of a polypile of（\％hollysoni with a well－extended stolon．（ $\times$－S．）
Fig．5上．－A long－stalked phmeless polyide of C．hodgsoni．（ $\times 16$. ）
Fig．5in．－The post－mal lamella of a polypile of $C$ ．hemfsoni dissected off and flattened out；dorsal view．（ $\times 10$. ）
Fig．51．－Vomeng bul of（\％hollgsoni．（ $\times$ 60．）
Fif．55．－Later but，with tirst pir of plume－ases appearing；dorsal view．（ $\times$ be．）

Ftri, ifi-LLater bul, with second pair of phome-axes appearing : side view. ( $\times$ for.)

Fifa. is.-bud of ame stage of doveronent as the last, hat in a state of considerable extension : side view. ( $\times 6$ in.)
 figs. it-ix, the garent stolon from which the had was dissected off is not shown.

## l'ATE -.




Fif: 63.-Later bud; rential riew. ( $\times 80$. )
Fia. Gt.-Bnd of same stage as that shown in fig. dib: side viow. ( $\times$;an.)
Fif. 6.t-Similar bud in side view, but showing a rery common disposition of the boceal shith. ( $\times 8$ 8.)
Find. 6t.-Later bud of ('. nigrestons, dorsal view, at a stage when the fifth jair of phomes are just :lpparing. ( $\times$ :3.) lecters as in fig. is.
 bud has already dereloped two bods of its own. a, area ol attachment to the parent stolon ;

 and the visceral mass projects in such a wiy that the stom is no longer terminal. This stage is rare. The speeimen figrured had no buds of its own. st., stolon ; other letters as in fig. 67.
 parental stolon is shown from the sile, the cut surface being mpermost in the figure; figs. it and 7 in show the end riuw of the parental stolon. Only the smallest bats are shown entire : in other eases the hases of the stallis alone are shown. All magnifich abont lis diameters. For explanation of letters of tig. 7.5 see text, p. LS.
 diameters. In fig. $\bar{i}$, st., terminal portion of parent stolon. In fig. sis, ", area of attachment to 1 arent stolon. Fur lettering of fig. 84 see text, p. 61 .



17
18

.




## MOLLUSCA.

## T.-CEPHALOPOIAA.

By W. E. Ifoyle, MI.A.. D.Sc., The Thiversity, Manchester.

Tres collection of 'ephalopota lrought home by the 'Diseovery' consists' of a number of mandibles, many in a fragmentary combition, ol tained from the stomachs of seals amd penguins, and one laval form. Apparently no special efforts were mate to collect these animals, for though the group does not seem to be richly represented in the hutaretie regions, wher expeditions have hought home larger numbers.

## MANDIBLES.

The specimens of mandihles are as follows:-(1) Stomarh of Emperor Penguin, January t, 1902 [II 1350]. Nineteen upper mandibles, apparently all belonging to the same species. Eleven lower mandilles, all of one species, and most probatly belonging to the upper mandibles just mentioned. One upper mandible, apparently of a different speries, hut only fragmentary. I have not succeeded in determining the systematic position of any of these, further than that they pohally leelong to the Decapoda. (2) Stomard of Lududin coreimethem Serond [II 1349]. Three fragments probably of the same species as the nineteen mentioned alwo e. (3) Stomarle of Weddell's Seal, W. (!., July 24, 1902 [II 1351]. Three uper mamlildes of different sizes, and helonging to two, pussilly three, speries. The smallest is an Octopod, the two larger Decapols. There is also a lower mantible, which appears to belong to the middle-sized upper one. (4) Stomach of Seal, o, November 10, 1900, Hut Point, W.Q., $54^{\circ} 01 \frac{1_{1}^{\prime}}{2}$ '., $70^{\circ} 499^{\prime} \mathrm{E}$. [H1346]. A pair of moderate-sized mandilles, promally belonging tor an Octopol a couple of feet in total length. A pair of somewhat similar mandibles, rather smaller, and probably belonging to a different species. The difference in form is small, hat the extent of varbition of these organs within the limits of a species is not yet known [II 12,47]. A few fragments of rery douldful position [II 1:348].

## LARYAL IISTTOTEUTIIID.

December 27 , 1901; Lat. $54^{\circ} 01 \frac{1^{\prime}}{}{ }^{\prime} \mathrm{S} . ;$ long. $170^{\circ} 49^{\prime} \mathrm{E}$. [II 1:45].
My friend Dr. (i. Pfeffer has very kindly examined this young pecimen, ant has favomed me with some notes upen it, a tramslation of which is here appemed :
"The yomge Cephalopod submitted to me is a larval Cullitruthis. That it belongs to the Inistiotenthirle is probable at the first glanee, from its general appenance, and examination with a lens conserted the suspicion into certainty. The peceliar form of the holy and fins, as well is the latk of a sims in the oculat opening, and the strong pigmentation orem only in this mamur in the young of Enoplotenthice and IVistiotenthide. The numeron rows of surkers on the tentacular cluls and their prongation hown the stem of the tontacle show that it camot lee an Emploteuthid.
"It must be amintted that the chamacteristic develop-
 ment of luminolus organs is not get shown, lut closer investigation would prohally show the rudiments of them. The smallest sperimen (with a mantle-length of 6 mm .) in my possession already possesses them; but I helime Professor Chum has a still smaller one in which they are not yet visille.
"Other characters which show the sperimen to be a Histiotenthin are the relatively broan funnel cartilages, the form and comparative size of the suckers, espectally their relatively small size on the ventral arms.
"Finally it may be shown hy a process of exclusion that it canmot belong to any other family. The Batliyteuthide have fins of 'quite different shape, no suckers on the tentacular stem, and much smaller ones on the club; young sperimens lave quite a diflerent appearance.
"The Gonaticle have more than two rows of suckers on the arms.
"The Trachelotenthide are cssentially different in form and have mach smaller suckers on the tentacles; in addition to which, the terminal cone of the pen is clearly visible through the integument, and finally the young of this family are slender, colourless and glost-like.

- Young Architenthilie hase not yet been seen ly me, nor, so far as I am aware. by anyone elice; they mast, however, he quite different from the specimen now under consideration."

I removed a purtion of the mantle and lad a series of sections prepared, hoping to fiml trates of the luminoms organs in an early stage of development. I was, however, mable to find any structures which could be so interpreten.

# MOLLUSCA. <br> IL.-(iASTROIODA. 

By Edoaf A. Smitif, l.s.O.
(Plates I. and II.*)

Abtogether twenty-six specins of Gastropods (exdusive of a few Nudihands and some Ptemonds) and fourtern Lamellihands were whaned ly the Expertion, Three-fom ths of these appear to he new. The majority of them are small ant insignificant, lut among the rest are a few striking foms, notally the new genus Trichecmelu, a very remarkable Chiton, the Tromben lomgstufi, and a beautifully scouptured Limu. A glance at the collection at onve suggests that it was olitained cither in deep water or a cold dimate, for the almost total abserne of colour in nearly every instance is hararteristio. It does not show any partionlar resemblance to the Areti- famal ; indeed, the majority of the genera have almost a world-wide distrilution. The gemus Trophen, for instance, although typically a mothem ant Antarctic group, has a characteristio representative in T. corrhetis of Watson, whiclo orms off Syatuey in 410 fathoms; and it will probably ewntually be shown that many genera, which are nsually regarded as peruliarly Arctic, have a murla wider range than has heen antiopated, althmgh the may orour at murd greater depths than in morthern latitndes. Of the previonsly deseribed specios remoded in the following pags nearly all are known from Kerguelen Islant, and pessibly most of the remamber may also omur there. Only a single speries was rollected which was olitained ly the 'Belgira.'

## Neobuccinung eatonf.

Bucrinnpsis retuni, Smith, Ann. Mag. Nat. Hist., Vol. NTI., 185:5, ]. Gs.
Neolucemum rutomi, smith, Phil. Trans. Roy. Soc., Tol. ('LANYIII., 1s79, pr 16!), pl. ix., figs. 1, 1a;
 Mollusca (1902), 1. 200 ; Martens, Dentsch. Tiefsee Exped.. Vol. VII., p. 6:3 (190:i).
Six miles N. W. of Ifnt Point, 180 fathoms.
A single specimen only was olitained. It is of the same elongate type as those collected by the 'Southern Cross' Expedition at C'ape Adare in $7-10$ fathoms.

## Neobuccinum tenerum. <br> (Pl. I., figs. 2, 2a.)

Shell small, ovately fusiform, thin, sulpellucid, horn-colour, covered with a very thin periostrarum, exhibiting somewhat remote, slender, threadlike, arcuate, longitudinal lire, and rather obscure spiral striæ between them. Whorls $6 \frac{1}{2}$ convex, the first $2 \frac{1}{2}$, forming the large protoconch, smooth, glossy; the rest not shining, separated only loy a slightly ollique suture, the last rounded above, contracted anteriorly; aperture subpyriform, acuminate above, and produced anteriorly into a short, open channel; labrum just a trifle thickened, brownish white within, gently curved in the middle when viewed laterally, very slightly faintly expanded, with a very shallow, hroad, indistinct sinnation towards the suture; columella curved ahove, rather straight helow the midde, wovered with a thin glossy callosity. Length, 15 millim.; diam., 7 ; aperture, 6.5 long, $3 \cdot 3$ broad. Operculum (pl. I., fig. 2a) horny, reddish brown, marked extemally with lines of growth, and exhihiting a nuclens which is paucispiral at the nuclear end. Lower surface ronghenet, with a narrow, red, raised ridge, parallel with the outer margin, which is smooth and shining. Length, 5 millim.; width, 3 .

Off Couhman Island, 100 fathoms.
The general form of the shell and the character of the operculum agree with Neobuccimum. It is of thin and delirate texture, and the very fine periostracum is produced upon the threadlike rihlets at the upper part of the whorls, forming a sort of fringe below the suture. The riblets are about twenty in number on a whorl. Only a single specimen was obtained.

## Troschelia?

(Pl. I., fig. 8.)

Off Coulman Island, 100 fathoms.
A young specimen, 19 millim. in length, is of interest as indieating the presence in the Antarctic region of a large species allied to Troschelin or Sipho, indeed, it bears considerable resemblance to the upper part of the northern Trosch. berniciensis (King). It consists of ahout seven whorls, which are slightly convex, increase slowly, and, although rather water-worn, the five upper ones cxhibit traces of spiral striation. The two last whorls are covered with numerous thread-like spiral lire, some of which are thicker than others. These are crossed by oblique delicate lines of growth, and a thin straw-coloured periostracum invests the eutire shell, excepting the upper worn volutions. Being a young shell, it is impossible to describe the probable form of the aperture or the character of the labrum and anterior canal of the adult. The last whorl is somewhat inflated at the middle, and contracted below into a short twisted recurved beak. The operculum is reddish, horny, and of the ordinary fusoid or unguiculate character, exhibiting distinct lines of growth and a terminal nucleus. A large operculum
( 14.5 mm . in length), similar in charater, was oltained nff llut Point, 11 th November, 1902, which probably belonged to a more or less adult specimen of this species.

The genus Boreofusus of Sars is a synonym of Trovehelie, and possibly Buccinofusus of Comral, which has priority, may also be congeneric.

## Trophon longstaffi. <br> (Pl. I., figs. 3-3d.)

Shell orately fusiform, white, rather thin, longitudinally delicately pheate; whorls 6-7, the two apial forming the protoconch (fig. 31.) glohose, smooth, glossy; the rest convex, rather shouldered above, separated by an oblifue deep suture, ornamented with numerous thin lamellæ, which are directed forward, and often somewhat produced at the mpper part, especially upon the body-whorl. They vary in number from 10 to 20 upon the last whorl, but generally average about 16 . The surface is also seulptured with very fine spiral striæ both between the lamellie and upon their upper surface, but their lower is smooth. The last whorl is contracted below and produced into a short oblique snout which is directed towards the left. The aperture is pear-shaped, with the canal considerably longer than the spire, smooth am white within. The outer lip in the most adult sperimen is a little thickened within, sharp at the clge, and somewhat patulate and united above, with a distinctly defined callosity which covers the columella. The anterior canal is short and oblique.

Leugth, 41 millim. ; greatest diameter, $25 \cdot 5$; aperture, with eanal, 25 millim. long, 12 broad.

Flagon Point, 1 mile N. of ship, 20 fathoms; holes 4, 12, in 25-41 fathoms.
The animal externally appears to be normal, the tentacles are short, compressed, pointed at the tip, with the minute sessile eyes situated about midway upon the outer edge. The operculum (figs. Be, Bd.) is clongate-ovate, rather thin, of a reldish horn colour, slightly convex externally, marked with distinet lines of growth from the apical nucleus, and also exhibiting a few arcuate rays, which curve from the apex to the inner margin. The lower concave surface is finely wrinkled, with a broad, glossy, reddish and somewhat thickened margination on the outcr edge, and is dull upon the rest of the surface.

This species does not compare closely with any of the described forms. Perhaps the Patagonian T. latiniatus is its nearest relation. It is, however, rather different in form, its whorls are broader, and the lamellie are not prodnced above into hollow spinelike projections. The aperture also is devoid of the orange or brown colom which distinguishes the South Americau shell.

## Trophon coulmanensis.

(Plate I., figs. 4-4b.)
Shell fusiform, turreted, white within and without, ornamented with somewhat distant thin lamellæ, about ten on a whorl, which are produced at the upper part or
shomber of the whons into erect hollow spines. Whorls 5 , the two apical, forming the
 at the wides. But a little contranten below towards the suture, sendetured loetween the lamedte with fine spiral stries. which are crossed ly very fine lines of growth, producing a textured appaname. The body-whon is rontrated below the middle and terminates
 exceeding half the entire length of the sholl. Columella contorted, covered with a smonth, glossy. pellurid callus.

Length, 13 millim. : diam., 7 ; aperture and canal, 7 millim. long, $2 \cdot 50$ broad.
()tf ('omhnan lslind, 100 fiathoms.
()nly a single specinem of this species was oltamed. In general form it is very like the var. : mmmeri of the northern T. cluthotus (see Sars, Moll. Reg. Arct. Norvegie, pl. xv., figs. 11, 11a). It may be separated on acount of its much larger protoconch, and more distinct subpture betwen the lamellae. The latter are rather more erect and pine-like at the upper part of the whons, and the aperture is entirely devoid of colour.

## Jhembia! manogens.

(Pl. I. figs. $1-1 \mathrm{l}$. )
Whell small, molerately elongated, turretel, dirty-whitish within and without. rather thin, not glossy, finely yot distinctly, pirally striated; whorls 5 , comsidembly comsex, the first $1 \frac{1}{2}$ forming the smooth glowsy protorond ; suture obligue, deep; last whol contracted anteriody, more dosely striated upen the eauda than abose : aperture ocrnpying abont $\frac{8}{6}$ of the entire lengtl of the shell ; lathum thin, prominent and eurver at the midale, broadly and shallowly sinated atove; colmella slighty archate, covered with a thin callosity which is janed to the upper ene of the latmum ; anterior "anal shot, mother bod, olligue, samely recorved.

Length, $7 \cdot 5$ millim. ; diam., $3 \cdot 5:$ aperture, $3 \cdot 05$ millim. long, $1 \cdot 5$ livart.
(1peralum (fig. 1J) minute, horny, thin, yellowish, roundly ovate, with a subterminal nucleus and exhibiting lines of growth, and also some radiating lines or strice.

Hole 12. In 25-80 fathoms; also llut Point, Fel. 13, 1904.
The genns, or suth-genus, Thesthin is said to have no operculmm, but the present - feem has a very minute one which might easily be overlooken. It agrees, however, so dosely in other dararters with the type of the gemus ( $T$. mena Loven *) that I do not feri indined to separate it from this gromp only on that acount.

Ahmete jelifatula.
(Pl. I., figs. 5, 5a.)
Shell fusiformly ovate, minutely rimate, very thin, dirty white, ornamented with numerons time thead-like spiral lire, and exessively delicate dose-set lines of growth.

* Forbes anl Hanley, Brit. Moll.. vol. ir.. 1l. cxii., fig. 8; Jeffrevs. Brit. Conch., vol. v., 1l. Mxxxviii., fig. 4 ; Burs, Moll. Feg. Arct. Norr, pl. xvi., f. 2.

Whorls $4 \frac{1}{2}$, rapilly increasing, very womex, the lant very large, rather ventrioke ; protoconch, consisting of $1 \frac{1}{2}$ whorls, smooth, romded, forming a rather large huttonlike apex ; eperture semiovate, dirty whitish, delicately groovel withim, the groves "ontesponting with the extemat line, orculying not quite $\frac{8}{3}$ of the whole length of the shell; labrum thin, simple: colnmellat slightly obligue, very little arrnate, with a thin reflexed callosity at the lower part which forms the slight rimation.

Length, 9 millim. ; diam., $5 \cdot 5$; aperture, $5 \cdot 5$ long, $2 \cdot 5$ wide.
Winter Quarters, 130 fathoms.
Only two deal cxamples of this speries were obtained. It is remarkable for its thin. delicate strurture and the fine spiral lire. These are not all of the same strength, lout here and there orcurs a more slender one than the rest. Upon the penultinate when there are about six or seven, five on the preceding volution, and about twenty on the last. There are traces of a thin periostrarmm which would be striated by the lines of growth. These are contimons both upon and between the lire.

Temporarily placed in Admete until fiuther information rexperting it ran be obtained.

Amauropsis? rossiana.
(Pl. I., figs. 6, 6a.)

Shell globose, imperforate, rather thin, clothed with a brownish olive periostracmm, exhibiting fine ollinge lites of growth, muncoms mather ohseme spiral strie, and a few peculare ohlifue malleations upon the last and penultimate whonk; spire somewhat raised, erodnd at the apex ; whorls 5 (?), $2-8$ remaining ones very convex, sparated loy a rather deep suture ; aperture obliguely semicirular, haish white, ofrupying nearly $\frac{2}{3}$ of the entire lengtl of the shell; mollumella ollique, rather straight above, curving anterionly into the lower margin, waered with a white defined callus whirh is thickened and retlexed wer the umbilial region. Length, :29 millim.; greater diameter, 25 ; lesser diameter, 21 : aperture, 18 millin, long, 11.5 wide. Operrulnm manown.

Irat l'oint. Ficls. 18, 1904.
Two deal shells only were ohtained at this locality. They are remarkable on account of the peculiar ohlipue olsiure ridges upon the last and penultimate whorts. These are most noticable upon the penultimate volution just above the insertion of the outer margin of the aperture. Between the oblique ridges the surlace is somewhat flattened and has a malleated appearme. The species seems to be separalole from the several forms which orem at Kerguelen Island. Provisionally placed in Amemross until the animal and operculum are known.

## Natica (Neverita) delicatula.

Natica delicatulte, Smith, "Sonthern Cross" Report (1902), p. 206, pl. xxiv., fig. 6.
Winter Quarters, 130 fathoms.
One small specimen only. It has the spire preserved, and consists of $3 \frac{1}{2}$ well-
rounded whonls. I am indined to think that this species, founded on a single shell, will arentually prove to be merely the young state of $N$. grised Martens, fomm at Kerguelen Islaml.

> Neoconeha vestita.
> (Pl. I., figs. 11-11ヶ.)

Shell suloghonse, rimate, very thin, semi-transparent, pale horn colour, bovered with a periostracum which invests the entire surface, including the apex, and which, when moistench, is thick, hat shimks and seems thimish when dry. It is promeded at the upper part of the whorls, a little below the suture, into a series of short spincs. forming a sort of cormation. Whonls three, very ronvex and rapilly inveasing; the two alical (the periostramm leing removel) are whitish, glossy, glassy, amd finely spinally striated; the hast is very large, globose, exhibiting oldigue lines of growth of briostramm, which are prolured over the deep amabiolate suture Aperture lorodly priform; peristome thin, simple, the columelar margin, howerre, being of a brown eolom and somewhat reflexel.

Greater diameter. 7 millim.; height, 8 ; aperture, $5 \cdot 05$ millim. long, $4 \cdot 5$ wide.
Ther upereulum (fig. 11 ) , is homy, redinh, somewhat triangular, with the nuter margin anted, the converging sides straght, the nurdens temmal and marked with rather eoarse, curved lines of growth.

Off Coulman Ishand, in 100 fathoms.
Only a single sperimen was oltained. It has the appeatance of being the young state of a shell that might grow to a considerable size, jubging from the large apial whors. When first received, before its removal from the spirit, the periostracum was thitk and sponey, and enveloped the entire shell, and harl the appearance of being keeled at the mppre part of the body-whon.

The foot of the ammal has a domble margin in front, the tentacles are rather shont, sulmlate, with the eyes sessile at their outer hases, and the hear is prolonged inlo a long, slemter rostrum. Radula (fig. 114) : , 1, 1, 1, 2, tapering towarls the anterior end. Central tooth with a melian cusp, and two smaller ones on earlh side; latemals with thee of four anss, imer masimal tri- or charlri-rnspidate; outer marginal simple, hooked.

The Rev. II. M. Gwatkin, who very kindly extracted and momed this ratula fow me, considers that it appromes that of Crepiduld and C'elyptreat. The eharacter of the shall amt the presence of an operenlum at one separate it from those groups. It apparently represents a new generic type, for which I would suggest the name Nomomelua.

## Tremhomentha mirabilis.

(Pl. 1., figs. 7-7l).)
thell depressed, ondionlar, mmbinated, thin, light, flexille, mered with a yellowish, very hairy periostracm, marked with strong ohlifue lines of growth, upon

Which the hairs are arranged in spiral, longituthat serices. Spire not raised atove the last whorl; whonts $4 \frac{1}{2}$, very rapilly enlarging, sepurated by a deep, chamelled suture; first $2 \frac{1}{2}$, the protocome white, shelly, smonth, convex, mot covered with periostatum ; the last very large, inflated, whighty destenting anterimly; apertme, large, subcircular, hown within; peristome thin, continuous, the columellar margin slightly retlexed.

Greater diametrr, 29 millim.; lesser diam., 20.5 ; height, 19 millim. ; aperture, about 16 millim. in height and wieth.

Operulum (fig. 7c) small, horny, reddish, lamellar, marked with line lines of growth, and having the nucleus lateral and marginal. Length, 7 millim. ; width, $5 \cdot 5$.

Off Conhman Islamd, 100 fathoms, one adult specimen; off Momt Erelns, 500 fathoms, one young example.

The much-contracter mimal is of an miform light reddish colour in spirit. Edge of mantle fringed, fincly sulpapillate, the papille leing grooved above. Thent prontuced into a long, non-retractile, pointer, amulated mostrum, which appears to be divided ahove down the middle loy a groove, which starts at the front part of the heal between the tentacles. The latter short, conical, pointed, laterally compresser, with the sessile eyes at their onter base. Foot molerate, with a doulle margin in front, am with a distinct groove above the side and himd margins. I'enis morerate, behind the right tentacle.

Ratula (fig. 7b), $2,1,1,1,2$, of arown colon' ; central tooth fuadrate, arntely micuopid, laterals wider, subpuadrate, with a single long, smooth cusp; marginals simple, hooked or curved.

This, perhaps, is the most interesting (iastropod fomml loy the Experition. It at once stamds out as distinct from anything hitherto obtamed from the Nutaretic region. The shell, which is quite flexible and trogh, like a chestment skin, and the beautiful hany periostracum are the two main characters of this very remarkable species.

The shelty protoconch, which is succeeden by the soft, thexille lower whons, is most unusual, and the reverse is murh more common. For example, the protoconths in "The Tritons," Doliums, Purpuras, and wther groups are more or less horny, the adult shells lieing solid and calcareons. Generically, it is allied to Trichotropis and Tolutimu, Dout the character of the radula is somewhat different, and there are differenees both in the shell and operculum which are sutficient to separate it.

## Eulima convera.

(Pl. I., figs. 9, 9a.)
Shell small, clongate, pellucid white, exhibiting the red dried remains of the animal, smooth, glossy, rather blunt at the apex; whorls 8, a little convex, slowly and regularly increasing, narowly marginate heneath the slightly oblique suture; aperture ovate, acmminate above; peristome whitish, the onter margin curved forwat
in the mithe, somewhat simated above ant at the lase; columellar margin thickened, reflexme joinem abre to the outer lip by a thin allowity.

Tength, $5 \cdot 75$ millin. ; diann. 2 ; arerture. 1.5 hig. 1 homet.
Holes $9,1 \because . \quad$ In $\because 5-51$ fathems.
The whols are mone convex than in many of the kown small speries. I: amblia, Watwon, fiom between Marion and Prince Elward Lstands, has longer and fatter whors, a longer aperture, and is smaller.

## Scala antarutica. <br> (Pl. I., figs. 10-10h.)

Shell small, womate, imperforate, dirty whitish, greyish towarts the upere part of the mire; whots $7-8$, very convex, diviled by a somewhat oblique nuture, whibiting fine lines of growth and thickencl varices, we or two upon each whorl ; last whon oltusely keeled aromit the hase; apex blunt. globose; aperture roundly orate; peristome thickened and a little expanded.

Length, 10 millim. : diam., :3•5; aperture, $2 \cdot 5$ long.
Hole 1… In 25-30 fathoms.
Remarkable on accrunt of the smooth, rounded whorls, and thinkend varices. When closely examinel, the dirty whitish colour is seen to be composed of numerons immonaly intermpted minal and longitudinal bines, producing a minutely cancellated appearance (see fig. 10h). Uperculum normal (fig. 10a), yellowish, homy, redmer in the centre.

```
Risiona abapersis.
(Pl. II., fig. \(\because\). )
```



Shell clongate ovate, white, smooth, ghossy, imperforate; whorls 5 , considerably convex, marked with fine strie of growth; apex large, globose, smooth; suture a little oblifue; aperture ovate; peristome continuous, outer margin a little thickened externally, colmellar margin namowly reflexed.

Length, $3 \cdot 3$ millim., diam., $1 \cdot 5$; aperture, 1 loms.
Operculum thin, minute, ovate, pancispital, a little concave atove, without any process on the under side.

Holes 4. 12. In 25-41 fathoms.
A pure white semi-transparent species, without any striking characters. Allied to R. georyiana, Pfeffer, from South Georgia, bui different in form. The finer series of specimens obtained ly the 'Discovery' shows that this species is sometimes a little longer than the type originally described, and may consist of five whorls. The trace of faint longitudinal costation referred to in my fomer description is proluced liy some of the lines of growth leing more pronounced than others. Riswol (Sctin) columne, Pelsencer, is very similar.

## Rissoia fraupulexta.

(Pl. 11., fig. 3.)
Shell small, wate-elongate, scarely rimate, thin, semi-transparent, dull, dirty whitish; whorls 5 , consex, divided by a slightly obligne suture, omamented with fine spiral striae, crossed loy the still more delinate lines of growth ; protocomelh large, smonth, glohose; aperture ovate, orrupying rather more than a thid of the cutire length; outer lip thin; columella margin very slightly reflexed, united above to the lahrum by a thin callus.

Length, $2 \cdot 5$ millim.; diam., $1 \cdot 5$ : aperture, 1 in length.
Hule 3. $12 \frac{3}{3}$ fathoms. Stones aml gravel.
The principal features of this shell are the spiral strix, convex whorls, and dull surface.

> Rissoia Gelida.
> (Pl. It., fig. 5.$)$

Shell ovate, acuminate above, imperforate, dirty whitish, ornamented with tine spiral lire ; spire obtusely comical: whorls 5 , very convex ; apex smooth; suture deep, a little oblique ; aperture broully wate, rather large, orupying abont five-twelfths of the entire length of the shell; lanmom thin, a little effuse, especially at the base; rolumella narrowly reflexed, mited alwo to the labrum by a thin callosity.

Length, 3 millim. ; diam., $1 \cdot 75$; aperture, $1 \cdot 25$ long.
Operculam nomal, pandispiral, thin, without any process.
Holes 3, 4, 12. In $12^{3}-41$ fathoms.
The spiral threads are five or six in number on the pemitimate whorl, and aloont twelve on the last.

$$
\begin{gathered}
\text { Rishola deshrta. } \\
\text { (Pl. II., fig. 1.) }
\end{gathered}
$$

Shell ovately conical, imperforate or scarcely rimate, dirty whitish, semi-tramsparent, dull, semptured only with fine striae of growth; whorlin 5 , convex, narrowly margined beneath the suture; spire conimal, hant at the tip; suture very slightly whligue; aperture almost circular; peristome thin, continuous, outer margin simple, columellar edge narrowly retlexed.

Length, $2 \cdot 5$ millim.; diam., $1 \cdot 75$; aperture, 1 long.
Winter Quarters, Fel. 20, 1902, and March 19, 1902, 10 fathoms.
In form rather like $R$, felida, but at one separable (on account of its smooth surface.

> Risisoia glacialis.
> (Pl. II., fig. 4.)

Shell ovately conical, uarrowly perfirated, white, smooth, glossy, exhiliting only fine strie of growth; whoms $5-1$; very convex, and conseqnently separated hy a deep vol. il.
suture, which is inly slightly whigue; aperture romuded, a little longer than hroad; peristome contimus, the outer or right margin being simple and unthickened, and the rolumellar edge is slightly rellexed.

Length, $3 \cdot 5$ millim. ; diam., 2 ; aperture, $1 \cdot 2$ long.
Holes 10, 12. In 25 and 127 fathoms.
A smooth shell without any striking features. Two specimens only were olitained. They differ from the other smooth species here described, $R$. culurensis and $R$. deserta, in form. The loody-whorl is broader than that of the former, so that the spire looks more conical, and the spire is more produced than that of the latter, the mouth of which is larger and rounder than in the present species.

## Lovenella antarctica. <br> (Pl. II., figs. 6, Ga.)

Shell elongate, subulate, white, not very sharp at the apex; whorls 9, rather convex, gradually enlarging, separated by a slightly whlipue suture, the three apical very finely and dosely longitudinally costate, the rest transversely ridged, and marked with fine lines of growth; ridges or lire, generally four in number on the upper volutions, and about eight on the last whorl, which is contracted anteriorly into a short rostrum ; aperture subovate, produced in front into a short, slightly oblique, open canal ; outer lip or labrum thin, simple; columella arcuate in the midde, obliguely truncate beneath.

Length, $7 \cdot 25$ millim.; diam., $2 \cdot 5$; aperture, $1 \cdot 75$ long.
Operculum (fig. Ga) thin, hrown, ovate, puncispiral, consisting of about three whorls, the muclens being lateral, but somewhat within the margin.

Hole 4. In 41 fathoms.
This very interesting species is at once recognisable on account of the difterenec of sculpture of the upper and lower whorls. The minute apex is smooth and involuted. The first of the custate whorls has about eighteen to twenty-five riblets, which increase somewhat in number on the next whorl, being closer together. There does not appear to be any transverse sculpture on these whorls. The lines of growth on the lower volutions are rather distinct, esperially between the spiral lire. The base of the bodywhorl, around the columella, is rather smooth. The type of the genus, Lovenella metula (Loven), has the second whorl fincly and closely costellate, in a manner very similar to that which obtains in the present species.

$$
\begin{aligned}
& \text { Yalvatella molin. } \\
& \text { (Pl. II., fig. 8.) }
\end{aligned}
$$

Shell turbinate, narrowly but deeply umbilisated, iridescent bue, more or tess obscured by whitish, dose-set, obligue, thread-like lines of growth and less pearly spiral lire ; whorls $5-5 \frac{1}{2}$, convex, the first $2 \frac{1}{2}$ yellowish, the penultimate with three or four
spiral lire, the last with about cighteen, not comuting some very fine ones within the monhilicns: fom rome the midde of the whon stronger than the rest; apex smooth, whtuse; lines of growth more conspianous between than upon the ridges, aperture irregularly rounded; peristome thiu, outer margin grooved within, the grooves corresponding to the external ridges; columella a little arcuate, scarcely reflexed.

Greater diam., 9 millim. ; height, 7 ; aperture, 4 wide.
Operculum yellowish, a little comave externally, comsisting of about nine whorls.
Winter (uarters, June 18, 1903. In 130 fathoms.
The distinct lines of growth eross the spiral ridgen, but are less conspircoms upon than between them. The aperture is more beautifully iridescent blue than the exterior. With regard to the use of the gencric name Valratella in preference to that of Margorita, see the writer's remarks in the Proe. Malac. Sor., Vol. III. (1898), p. 205.

## Yalvatella crebrilibclata.

(Pl. Il., fig. 9.)
Shell turlinate, very narowly perforate, white, sculptured throughout with very fine numerous thread-like spiral lines, and fine oblique strie of growth; spire clevated, ronical, bluntish at the tip; whorls 5 , the apical one smooth, glossy, suhorbicular, the rest convex, lut indistinctly angled at the middle, the angle in the body-whor being above the periphery ; aperture rather large, nearly circular; peristome continuons, outer margin thin, columellar elge a little thirkened and reflexed.

Height, $6 \cdot 5$ millim. ; greater diam., 6 ; aperture, $3 \cdot 25$ lroad.
Hut Point, Fel. 13, 1904.
The spiral threads vary a little in slenderness. There are ten to twelve on the penultimate whorl, and twenty-five to thirty on the last. The umbilicus is a narrow perforation, partly covered by the reflexed columellar margin of the peristome.

Yalvatella pefulgens.
(Pl. II., fig. 7.)

Shell small, twhinate, very narowly umbilicated, pearly iridescent, more or less covered with a whitish shelly film, smooti, with the exeeption of deliate oldigue lines of growth; whorls 4, very convex, the last ohlipuely slightly dessending; aperture moderately large, circular, beantifully hluish pearly within; peristome thin, the margins joined by a thin callus, columellar edge expanded aud slightly reflexed.

Greatest diam., 5 millim.; height, 5 .
Operealum very thin, yellowish homy, concave externally, many-whorted.
Winter Quarters, 10-130 fathoms.
A very leautiful little species, sometimes quite pearly externally as well as within. It is simple in design and ormmentation, exhiliting merely tine incremental strixe. it remalls the $\mathrm{I}^{\prime}$. helicime, Falmidias, of morthom seas, lout it has a higher spire amb a smaller body-whorl.

## Talfatella minutissima. <br> (Pl. II., fig. 10.)

Shell very small, turlinate, very marowly perforate, pellneid white, delicately spirally striated: whorls 4, very convex; aperture rounded; peristome thin, with the columellar margin a little thickened and expanded.

Length, $\because \cdot 5$ millim. ; greatest diam., 2.
Winter (luarters, Fel. 20, 1902.
Only a single specimen, whirh, although so small, appears to be arlult. The surfare is a little wom, hut the spiral strix are quite evident in places. It differs from $1^{r}$. refulgens in its more elevated spire, smaller size, and sculpture.

## Lepeta (pilidium) antarctica.

(Pl. II., fig.. 11, 11a.)
Shell small, rap-shapal, thin, dirty-whitish, narrowly ovate at the circumference, moderately clevated, with the apex curved over anteriorly, so that it is almost in a position perpendicular to the margin. The sculpture consists of fine radiating lire which are minutely scaled hy the lines of growth, ant those down the posterior part of the shell are rather more conspirnons and stronger than those upon the anterior surface. Interior smooth, white, slightly iridescent.

Length, 4 millim. ; diann., $2 \cdot 75$; height, 2.
No. 10 hole, 130 fathoms.
Only a single specimen oltained. Narrower than the L. copingeri, smith, from the Straits of Magellan, with fewer radiating lira.

> Bullinella (ielida.
> (Pl. II., fig. 12.)

Shell "ylindrical, a little hroader helow than ahove, very thin, white, sculptured with slightly ollique curved lines of growth; apieal perforation small, fumel-shaped, rommlly keded at the eirmmference ; aperture narrow above, widening anteriorly; onter lip on a level alweve with the end of the whorl, deeply sinuated; columella thickened, reflexed, oppressed.

Length, 1:3 millin.; riam., 7 .
Winter Quarters, 1:30 fathoms.
Without any striking features, lut apparently separable from allied forms. It is represented in Arotic seats hy $\operatorname{li}$. nucholn. Reere, which seems to me distinct from 73. cllne, Brown, with whirh it hats beed mited hy Pilshery (Man. Conch., vol. xv., p. 291).

# MOLLUSCA. <br> III.-AMPHINEURA. 

By Eimar A. Nimph, iso.

## (!HATOPLEURA MIRANDA.*

(Pl. II., figs. 18-18g.)
Animal elongate, more than twiee as hong as hoad; valven thin, arotely leceded along the middle, flatly shoping on each side, standing ere persterionty we alowe the other ; anterion ralve (fig. $1: 3$ ) with eight to ten slender rabliating mster, slembrer ahove, and gradually flickeming towards their extmomity, radiately striate or suldeate between the rihs; merlium valves (fig. 13re) with a single costa on carh side, the rest of their surface being madiately sulcate on striated and marked with fine lines of growth: the posterior valve (fig. 18d) has the muro lehind the eentre, and, besides the radiating sulation, "xhints ane on two more ronspirums suk diverging latwally from the apex: the girdle is day-coloured, mather hroad, fieshy, dosely heset with short apicules; wour of valves dirty whitish, exepting the thind and seventh, which were more bess reddish; insertion plates thin, that of front valve with nime fine, slont slits comes ponting to the extermal rihs (fig. lBe) ; intermediate valven (fig. $1: 3 f$ ) with a singla lateral slit, posterior valve (tig. 13 g ) with six slits.

Length (induring girdle), 55 millim. ; diam., 25 ; height from solle of foot to the apex of the forurth valve, 12 millim.

Three sperimens of this interesting chiton were oltained, all agreeing in coloumtion, which is remalkalle, as only the thind and seventh valves are staned with red, the rest being dirty whish. The gills extend about two-thinds along the sile of the fins.

[^31]\[

$$
\begin{aligned}
& \text { te } \\
& 49^{90} \\
& \text { 0.oos }
\end{aligned}
$$
\]


.

## MOLLUSCA.

## IV.-NUDIBRANCHIATA.

(1 Plate.)

The Nudibranchiata collected lay the 'Disenvery' consist of the folloring species:-
*) Tritomia challengerima Bergh.
*2. Tritoniclla belli. Gen. et spec. nov.
3. T. simuata. Spee nov.
4. Bathydoris hodgsoni. Sper: nov.
5. B. inflata, Spee. nov.
6. Doto antarctica. Spec. mov.
*7. Notacoliclia depressa. Spec. nov
8. Cuthonella antarctica. Spece nov.
9. C. paradexa. Spec. nov.
10. C. modesta. Spec nov.
11. ? Cratena sp.
12. Galvinella antaretica. Gien. et sper. non

All the above forms are represented ly a single specimen except Tritomiella belti, of which there are five. Three minute Aeolirls staterl to lave leen with No. 11 have been low. The bottle was broken, and only the remains of one specimen were fomed.

Many of the specimens appear to he well preserved, lout, in addition to the changes in whour and shape which usually affert Nulihanclis kept in alcohol, they have undergone exceptional vicissitudes, such as leeing frozen into solid lumps when first taken out of the sea. It is therefore not surprising if the external appearance has been altered in some cases. A superficial examination of the specimens of Tritonielle bulli suggests that they comprise three specien of very different shape, lnt as the anatomy is identical and the naturalists who saw the living amimals regarled them ats all of one speries there cannot be much doult that the differences are due to distortion. The real appearance of such forms as Bethydoris ludysomi must remain a matter of doult, and the species can be safely defined only by anatomical hararteristics.

I have some doult as to the reality of the distinetion between Tritoniella belli and T. sinuatt, and between Bathydoris horlgsomi and B. implatu. The differences, both external and internal, are sutficient to provide sperific characters, but it is possible that these characters may really be due tor the state of preservation and to age, the second

* Of these species only are there any specimens in the Museum arailable for investigation,-En.
 may be due to growth, for in buth genem the teeth near the rhachis are very irregular anm umbefineal in outline.

With the exeption of Tritemia cleallentorianm, alrearly rerorled from the west coast of Patagonia, all the forms appar to be new. Some uncertainty must exist about Joto antarctica, which greatly resembles Doto fratilis, but there are some points of diflerence anl it seems safer to create a new speries, for it is a considerable assmption to take for Granted that similar forms from urothem and southem seas are specifically identical.

The Nulibunchiata of the Aretic amd Antaretic oceans with their neighbouring waters show ronsiderable general resemblanes, as far as the famas are known. There is a maked searcity of Donids and a preponderance of Tritonids and Aeolids. It must be remembered, however, that Donids are most ahmulant under large stones in the littoral zome. and that even if they exist in such locatitios on ice-loum shores, they are mot likely to be brought up by the dredge. But it would seem that even in amessible waters they derease in mombers towards the extreme sonth. A collection of NudiInamehs mate in the Falkland lslands contains only five Dorids referable to two speries, hut nearly forty Aentids, referable th alont four species, and seven Tritonids. The 'Belgica' ohtained only Tomipes antareticus. The present rollection and that mate by the soottish Natimal Antaretir Expedition have together yielded eleven specimens of Tritmids, cight of Jotuedidia, one of Doto, eight of varions Aeolids, two of Bathyderix, and no ordinary Dorids at all. Acanthodoris, however (which with the allied A(cluturia has heen fomed far north in both the Parific and Atlantic), is recorded from New Zealand and Cape Horn (Rochebrune and Mabille), and probably extends further sonth. Anchicteris is recorded from Kerguelen Island, Cape Adare and Wandel Tsland.*

The two collections are too small to warmant any conchaions ans to the alsence of foms which are not represented, hut, as far as they go, they inclicate that the Aretic and Antaretic Nudibrachs are similar rather than identical. As for species, Dr. Bergh regards an Acenthotoris fome in New Zealand as a variety of A. pilosa, and the animal here desuribed as Iotn antarcticu may possibly be a variety of $D$. fragilis. The genera Tritomicu and Bathyderis are common to hoth seas, and are also recorded from intermediate points, Bathydoris only from great depths. Tritonimla, Tritomionsis, and Notapolidia are recorded only from the sonth, while Demtrometus and Cimpuspur, thongh fremuent in hoth the North Atlantic and North Pacitic, and extending into the Polar regions, ate not rerorded from further sonth than the Bay of Biscay and Califonia. The Antaretic Aeolids hitherto collected are allied to Cratena or Galrina, no. Fucelinidee or Corypletlidte having been found. It is remarkalle that in all of them the vent is dorsal, not lateral.

[^32] $\therefore$. gigas) very minute ones. In the other sperimens no cyes conld be fomm, and though their absence ramot be regarded as rectam, it is probable that the larger animals, at any mate, have noue. As preserved, the secimens are mostly yellow, but it would apper that when alive they were milk-white or colourless. The Nudilamechs of the Sontish National Antarctic Expedition seem to have been white ar pinkish.

## TRITONHDAE.

This family consists of large slog-like anmals of a sonewhat rectangular shape. They have an undivided liver, no hood gland, one erematothera, a frontal veil, strong jaws and a large badula with a central tooth. As a rule they have armesesent branchiae set on the dorsal margin, simple rhinophores surmonded by plumes and retractile into raised sheathe, the hermaphrodit, gland spreat over the liver, and numerous smonth hamate lateral teeth, of which the first is larger than the others.

Five genera seem referable to the family :-

1. Tritomia Cuvier has all the typical chanacters mentioned above, and simple projections on the fromtal veil. Cantidla Gray is a subgenus.
2. Marionic Vayssiere differs firm the other known gencra in having the stomach armed with homy plates. Otherwise it resembles Tritonic, but the processes on the frontal veil are generally branched.
3. Atthila Bergh has papillie on the back, perfoliated rhinophores, a smooth frontal veil, teeth partly denticulate, and a different arrangement of the hermaphodite gland.
4. Tritoniopsis Eliot (Trams. Roy. Sor. Edin., 1905, vol. SLl., part ILI., p. 530) has ridges on the back and a divergent radula.
5. Tritomiella gen. nov. resembles Tritonia in most points. but differs from it and from all the known genera in having mot armerecent banchiae hut simple processes on crenulations of the mantle margin somewhat like those of Lomanotus. The back bears ridges.

Ifeterodoris Verill, from New England, very possibly belongs to the same family, and I camot help suspecting that it is allied to Tritomiella, but the deseription is defective in some impentant penints, and it is imporssible to say to what gromp of the Nudibranchiata the animal should be referred.

Marionia is common in the tropics, the furthest points from which it is recorded being the Mediterranean and Bucnos Ayres, but the other genera seem to prefer the colder seas.

## TRITONIA (Cuv.).

Twenty-sin species of this genus are registerel (see Eliot, Jour. Mar. Biol. Assoc, VII. (1906), p. 335), but some of them shouk probably be referred to Marioma, as the difference between the genera is anatomical and the descriptions often imperfect.

The majonity of the forme rertainly referahle to Tritomin are inhathitants of the cold on temperate seat, hut the 'Sibwa' expertion fomm two species in the Malay Archipelago. From the southern seas are recorded hesides the present species T. pallide Stimpison (Cape of Gool Hope), T. inente Bergh (New Zealand), T. "pyenticulthen Eliot (Bouth Onkneys), T. (Condiella) austratis (South (lhile). The amimal deseribed as Microloplus.s poiveri, ly MM. A. T'. Rochebrme and .J. Mabille in the "Mission sicntifipue du Cape Lom," 1880-3, Vol. VI., p. 11-12 and plate 6, 1a aml 1b, is prolably a Tritonia.

## 1. Tritonia challevgeriaid (me.?).

Bery, Chall Repr Nulitr. (188t), p. 45.
One specimen labelled " 19 , iii. 02 , W.Q. ( 50 ), 10 Fath." It is well preservert and of a uniform pale yellow colour, probably due to the preserving fluid.

The mimal is 29 mm . long, 9 broad, $7 \cdot 5$ high; not much tapering until quite the end of the boly. The hack is flat, not arched, almost smooth except for a few scattered minute tubercles. The foot is 5 mm . broar, rounded in front, and not grooved. Posteriorly, it is expanded into a sort of dise, but this may be a distortion.

The margins of the hack and the foot are marked by very distinct lines, a little lighter in colom than the rest of the body, but not projecting much. There are eleven banchie on each side, aul an additional tubereular prominence on the left. On the right sile the largest are the fourth, sixth and seventh; on the left the fourth, fifth amb seventh. These plumes are abont 3 mm . long and 2 mm . wide at the t"p. They are not foliaccous or much developed, and consist of a ather long stout stem, gencrally indistinctly quarrifid, and hearing in all twelve to sixtern pints. The smaller hanchie are simpler and the smallest rudimentary. The genital orifiees lie below and between the thim and fouth plumes on the right ; the vent (which is not mullh higher up) below and between the fourth and fifth.

The frontal veil is 8 mm . wide, thick, and not very ample. It beass sixteen small roumbed tuberdes, which give it an imdented appearance. It is not distinctly bitohed, but there is a space in the middle where the tubercles are absent or olscure, so that it falls into two halves. No trace of a tentacular groove could be seen. Above the frontal veil the head forms a raised transverse ridge, teminating in the rhinophore openings, which point right and left ame mot vertically. The rims hardly project at all, but on the lower side a small proeess extends downath. The chub of the thinophores is short and conical; it is surrounded loy about ton simply pimate plumes. The tips are protruled, and there are slight indications of a tentacle-like appentage on the upper ends.

The general colour of the intestines is yellowish. The central nervous system is as usual: the pleurocerelnal ganglia pear-shapel, with signs of a division into two parts; the pedal round. No eyes were found. The jaws are yellow, narrow, elongater and convex. They are 7 mm . long, not counting the curve, and, as they lie folded, the
two measure 4 mm . across. The masticatory process is not long; luoth it and the elges of the jaws bear alout five rows of denticles, the outermost very distinct. The radula is mahogany brown, and has a fommala of at most $32 \times 30.1 .1 .1 .30$. The median tooth is broad and trienspid ; the central cusp strong and triangular at the top, the side cusps rounder and more irregular. The first lateral is of the usual clumsy shape; the remaining laterals rather erect and bent at the tip. The salivary glands are alout 5 mm . long; they look like smooth hands and are incomspicuonsly folliculate. The oesophagus proper is very short, and almost immediately after issuing from the Jnceal mass hegins to dilate into a pouch which becomes the stomach, though it is harl to say at what points distinct names should be applied th the various portions of the digestive tract. The upper part of the stomach is laminated. The lower and larger part is enclosed by the liver, a not very compact mass, which bears on both the upper and lower side, lout only here and there, yellow follicles of the hermaphrodite gland. The large and strong intestine issues from about the middle of the hepatic mass, runs forwards, and then turns to the right. Internally it is strongly laminated. The anterior genital mass is small ( $3 \cdot 5 \times 2 \cdot 5$ ), and the mocous and albumen glands not much developed. The vas deferens is moderately long and not much convoluted; the verge straight and conical; the spermatotheca romed and not large.

This form is probably an immature specimen of $T$. challonyeriona Bergh, recorded from the west coast of Patagonia. Differences are not wanting, particularly in the number of the branchia, which are only 11 here, whereas $T$. challengeriant has $25-30$, but I do not think there is sufticient ground for creating a new species, and the animal cannot be certainly identified with T. appendiculata, to which it shows resembances. The peculiar shape of the head and position of the rhinophore sheaths is perhaps not natural.

## TRITONIELLA.

Most of the characters are as in Tritomid, hut the dorsal margin is wide and bears not foliaceons tufts, hat simple umbuched prominences, which have a few limellie on the muder side. Some of the specimens ate exceptionally well preserved, and it seems dear that no appendages have been lost. The back bears a median longitudinal ridge ind some irregular accessory ridges and tubercles. On the frontal veil are only slight prominences and indentations. The jaws are not denticulate; the radula is fairly wide with a median tooth. The stomach bears plate-like ridges, which, however, are not detachable.

The eollection contains two species, which are best distinguished by the dentition. ln Tritoniella belli (named in honour of Professor F. Jeffrey Bell, of the British Museum) the rhachidian tooth is broad, with a large cusp and rudimentary denticulation, and the first lateral is as in Tritonia. In Tritomiella simuata the finst lateral Wees not differ much from the others, and the rhachidian tonth in an incompricuons flat plate.
T. limi appears to have two renal orifices sitmated close together. The second is possibly analogous to the pore of unknown functions in Heataranchus (v. Bergh in Semper's Reisen. AVIII., p. 551 , under IV. faustus. . In T. simmeta the orifices were contrarted anl their chanacter conld not be precisely determined.
3.-Teitoniella belli (Fifs. $A^{*}$ and B).

The collection contains five sperimens of this form, which present consideralle differences in shape and in the greater or less development of the mantle margin and the processes which it bears. Mr. Hodgson, however, informs me that they all appeared to him to be the same species when captured. and were all milk-white. This and the identity of the internal anatomy canse me to deseribe them as one species and not to distinguish even varieties, since the diversity of appearance, though considerable, is probably due to artificial canses. The animals have no doubt the power of altering their shape from Hat and lnoad to high and narrow, and the Tritoniidze are very apt to have their mantle margin and hranchie rubhed off, without any clear sign of the loss remaining. Besides leing exposed to ordinary distortion, the present specimens were captured in a temperature which caused them to freeze into solid lumps before they could the placed in the preserving fluid.

The specimens may be classified as follows:-
A. Une specimen captured at Hut Point, Winter Quarters, February 13, 1904, with the $D$ net. It appears to be very well preserved, and is of a miform pale yellow. Leugth 50 mm ., maximum hreadth 30 , height 19 . The hroad undulated mantle-edge bears a row of papille, and the mal veil is distinctly tubereulate.
B. Two sperimens from It Murdo Bay, t-10 fathoms, Feliuary 13, 1902, and one sperimen captured with the D net at Winter Quarters, hole No. 12, on August 24, 1903. In all these specimens the erges of the mantle and of the oral veil are much less distinct than in A, and there are only a few processes. The measurements are as follows in millimetres.
Length.
$6: i$
$3 ; 1$
41
Breadth.
20.9
16
$1!9$

| Height. | Breadth of foot. |
| :---: | :---: |
| $1: \because \cdot \%$ | $1: ;$ |
| $1+\cdot \%$ | 11 |
| $1!$ | 9 |

The of these specimens is represented in Figs. 1 and 2.
C.-One specimen captured with the I) net at Hut Point, Winter Quarters, November 19, 1902 . Colour. grey: hack much arched; anterior portion, especially left rhinophore, greatly swollen. This specinen, which is superfirially unlike all the others, appears to have suffered considerable distortion, which is confirmed loy the firet that the viscera have been drawn up into the anterion pat of the body avity, leaving the posterior half empty.

[^33]When not otherwise stated, the following data ami measurements apply to specimen A (Fig. 1).

Though it is rather hard to say where the dorsal margin begins, it is cleanly 12 mm . Wide in some pares, and is wary, with two shall, lat perhaps not natural, undulations inwards. Each side bears more than twenty points or papilla. the largest 3 mm . high. They show 1 m sign of branching or division, lout the larger hear on the under surface a few folds. The oral veil is distinctly libber. Besides two projecting grooved tentacles of the type usual in Tritmine, it bears on the right lobe, which is larger, seven tubercles, and on the left lobe three, one of which is larger than the rest, and formed of three small tubercles fused together.


Fig. 1.-Tritoniella belli-specimen a from above.
The rhinophore sheaths are 5 mm . high and 4 mm . hood. The opening is not crenulate, and points somewhat outwards. The dorsal margin starts from the side of the sheath, which is somewhat elongated in this direction. The Hhinophores themselves are conical knows, surrounded by $6-8$ much-livided plumes. There are a growl many scattered lenols on the dorsal surface, especially about the point where the margin begins, though not on the edge of the flap. Down the middle of the harks runs a longitudinal ridge. It bifurcates just before the rhimophores, amd semis off "a branch to each sheath. On the right, alow t the middle of the hark, it gives off a T-shapen process. Between and in front of the minophores are four irregularly shaped tubercles. A little behind the rhinophores two ridges run inwards from the dorsal margin, but do mot reach the median longitudinal ridge. The foot is rounded in front, and very slightly grooved. The margins are not expanded in any part, and
there is 10 tail whatever aprem from the boly. The genital wifices are 19 nm . and the anns: 31 man. from the anterior end ; buth lie just unler the mantle natrgin. Abmot 5 mm . in front of the mus lie two openings, chose together, lout fuite distinet and probably renal.

The other specimens seemed to present the same configuration in a more or less damaged comdition. Though they are larger, the dorsal margin is never more than $5-8 \mathrm{~mm}$. in lneadth, and often quite narow. Only a few processes (3-7) remain on each side. Some of them are rather larger than in $A$, and though they show no traces of having been arborescent, or even simply pinate, they bear one or two deep indentations. The tubereles on the edge of the oral veil are very indistinct. The ridges and tubercles on the back differ considerahly in the different specimens, and seem to indiate a real variability. Traces of the $\mathbf{T}$-shaped lateral ridge on the right are generally but not always present, and between the rhinophores there are from one to thre tuberdes of very varying shape and size (Figs. :-4). The rhinophore


Tritoniella belli-Anterior Part of Back in tirme specimens showing the varyixg
arrangemext of Tubfrcles.
sheaths are dirested either laterally or vertically, and their margins are generally turned ontwards.

The body-walls are thick, the dorsal integments much thicker posteriorly than in the rentre of the bark. The borly carity is only about 30 mm . long, the solid tail measuring 18.5 mm . The periantiom is not visible externally, and lies somewhat to the right of the median donsal line. The central nervous system is as in Tritomia, but no eyes were diseovered. The ganglia are very distinetly granulate and yellowish. The pedal ganglia are rombl, the cerebroplemral larger, hut withont any sign of a division into two parts. The clongate, elliptical bucal ganglia are applied closely to the under side of the oesophagus at some distance from one another, and the small found gastro-cesophageal ganglia are united to them ly long connectives.

The lnacal mass is of the Tritonia type, and presents no important differences in any of the sperimens. The jaws are strong (Fig. 5), very convex, and present a ronghly rireular apparance (with a diameter of athout $7 \cdot 5 \mathrm{~mm}$.) as they lie together.
 prowest is bery shor and, as in many other forms, pesents under a high power the "ppearance of a teswelfatel pavement.

The ratula is of a mahogany frown, strong, and not at all fragile. It consisto of from 50-58 mows, each consisting of a brod fhathian tooth (Fig. (i), a large first lateral somewhat different from the rest (Fig. 7), and 60-70 hamate teeth (Fig. 8). The


Fig. 5.-Tritoniella belli-Jaws.
rhawhitian tonth has a strong, pointed, elevated, triangular central cusp, and about four rather irregular, not very pointed, denticles on each side. It seems to be a transition hetween the form of tooth foumd in Tritomien (see particulanly Mariomia aboreserns in Dr. Bergh's Fig. 34, pl. Ixxxviii., Malac. Unters, part XV1I., in Scmper's Reisen) and that foumd in Bormelle, Plourophyllidiu, and Notacolidia. The laterals are rather thisk and clumsy, not much hooked, with small loseses, and no kink in the back. The seemel


Fig. 6.-Tritoniella belli12hachidian Tooth.


Fig. 7.-Tritoniella belliFilest Lateral Tooth.


Fha. 8.-Thitoniella belli-Thimer Laterals floni tife Middle of the Half Row.
lateral from the rhathis is lower than the wthers, and has a broader lase, and these features are much increasel in the first, which, however, still preserves traces of the hamate shape.

The salivary glands consist of a thread-like duct and a long (as much as ät mm. in one specimen) flocrulent mass. The asophagns is short, and som enters the stomach, which has the appearance of a large tube, not much dilated, aml never more
than 7 mm, wide. In the upper part are soft lamellio am papillat, and in the lower a ring of fiftern to twenty had rilges, which lowk like the stomach plates of I/triomine, but are mot retachable. The rircuit of phates is broken by the large liver duct which monters the stomarly at about this point. The hinder part, but not the whole of the stomath is enclosed in the greyish liver mass, which is itself covered here and there, hut hy 10 means everywhere, by a thick redish layer consisting of the follisles of the hermaphodite gland. The intestine is lammated intermally. It insues from the mildte of the liver mase, rums a long way forward, and then turns backward and to the right. In one specimen fragments of shells were found in the digestive organs.

The :mpulla of the hermaphrodite gland is long (about $25 \mathrm{~mm} . \times 4 \mathrm{~mm}$., if straightened ont), and folded about four times on itself. The ras deferens is redish yellow, and lies in a fow large, loose coils (about $40 \mathrm{~mm} . \times 1.5 \mathrm{~mm}$., if straightened out). The verge is rather small, coniral, and pointed. The mucous and albumen glands are not large in any of the specimens, and it is probable that the ammals were not raptured in the breeling season. The spermatotheca has a short duct ( $2 \cdot 5 \mathrm{~mm}$.), and is elongate (ahout $8 \mathrm{~mm} . \times 2 \mathrm{~mm}$.), with strong, muscular walls. In all the pecimens it is contracted and twisted in the middle. The extemal orifices of the reproductive organs are protected by folds of morderate size.

The renal orifice, which lies immerliately in front of the vent, is remarkably distinct in all the seremens; and in most of them it an be seen that it consists of two openings, very blose together, the anterior smaller than the posterion. Both "plpear to communicate with the renal apparatus, but the connection was not satisfactmily diseovered. Attached to the intestine is the reddish, egg-shaped, renal vesiole, lined with lranehia-like lamelle.

## 3. Triteniella mintata (Fig. C).

One specimen, captured at Winter Quarters on October 8, 1903, with the 1 net in hole $1 \because$ ( $2.5-30$ fathoms). It is of a uniform, light-yellow colour, and well preserved, lut swollen rentrally, which is probably unatural. It is narrower and higher than the sperimen of $T$. helli, the mearmements being : length, 30 mm ; brealth, $10 \cdot 5$; height, 12.

The dhsal margin rises vertirally, wot laterally, alout 5 mm . and hears on each side 30 points, which are continued lelow into low ridges, ruming towarts the contre of the back, hut mot reaching the rentral rilge. It is not clear if these transverse ridges are permanent, or mere folds produced ly contraction. Three of the points are larger than the others, and measure 4 mm , including the rifges; five are of moderate size ( $\$ \mathrm{~mm}$., including the ridges), and the rest are small. On the muler side of the points are a few imlistinct lamellas.

The mal veil is bi- or trilubed, as the rentral fortion is somewhat cxpanded
in front. It bears two very distinct, growed tentacken of the Tritonia type, and a munher of faint indentations, aparently representing modeveloped tuberces in different stages of growth. Down the rentre of the bark rmas a erimkled rikge,
 abmomality in this sperimen-and gives ofl a shot asymmetrical side ritore on the right, alwut balf-way fown the back. Betwern the rhinophow puckets is a lirge, rouml tuberde. The lawk is covered everywhe with smather tubereles, ats are alsw the sheaths of the rhinophores, which are directer vertically. The genital mifices are alunt 9 mm , amd the anns about 15 mm . from the head.

The central nervoms system is as in T. melli, hat the gramulations of the gamglia we not very distinct. No eyes are visible.

The lonly walls are thick. The jaws are more elongate than in the other species and do not form a cirle. They are not regnkary dentienlate, but the black edges hear nomerous asymmetrical prominences. The ralula is dark hown in front, yellow hehime. The formula is $56 \times$ about 70.1 .70 . Contrary to what is nsual in Tritomids, the entral tooth (Fig. 9) is hard to see, and is hidden by the laterals which bend over


Fig. 9.-Tritoniella simuata-Rhachidian Тоотн,


Fif, 10.-Trituniclla sinuata-Three Lateral Teetif.


Fig. 11.
Tritoniclla simuta -Terge.
it. It is a flat phate with only faint indications of cusps. The laterals (Fig. 10) are thick, rather irregular in outline, and often with a kink in the hack. The first lateral shows hardly any difference from the others.

The salivary glanls are about fimm. long and Dmm. broan. The stomach contains a girdle of 14 flat, lnom ridges, plate-like, but soft and not detachable. They are about 4 mm . long and $1 \cdot 5$ hrod, and hoar $7-10$ irregular transreme strie. They are not like those of the other speries on arount of their width and flatuess. The stomarh is full of black matter and the greater part of it is enclosed in the dark-grey liver, which is itself covered in many, but not all, parts by the reddish-yellow hermaphrodite glamb. The intestine is laminated intermally.

The reproductive organs resemble those of the other species, except that the reger (Fig. 11) has a hord flat top from whirh rises a ronical point. The allmmen ant mucous glands are not much developed; the spermatotheca is clongate and tapering: the vas deferens extremely long and coiled.

The dentition seems to distinguish this species from T. helli, and there are also differences in the jaws, reprodurtive organs and stomach pates. Probahly also the extermal appearance, particularly the mantle edge, is different.

BATHYDORIS (Berth).<br>(Brrgh. ('hatl. Report Nurlibr. (1×8t), p. 109; id., Ingolf Exp. Nudibr. (19-), p. 7.)

This remakable gemus is in many ways a link between the Tritomiilee and Doridide. The shape is apherical, and the back hears deciduous papille. The head parts are much as in the bordide ; the rhinophomes perfoliate and non-retractile. The branchise comsist of separate mom-retractile tufts, set in a circle on the posterior part of the bark. The powerful jaws and radula are muh as in the Tritoniatae. The hermaphoolite gland is separate from the liver. In the nervons system the cerebral and plemal ganglia are distinet tom not fused.

Only fon specimens of this genus are remoded, comstituting as many speries:-

1. B. alyssor'm, Bergh, whained by the ' 'hallenger' near New South Wales, in a depth of $2,4 \geq 5$ fathoms.
2. 13. impulfiuna Bergh, from Davis Strait, in 1870 fathoms.
1. B. hodlysemi sper. uov., from the Antaretic, in 100 fathoms.
2. $B$. inplute sper. nov., from the Antarctic, depth not stated.

It is noticeable that this gemus, which is only recorded from great depths in northern and temperate seas, is in the Antaretio regions found in comparatively shallow water.

The Antaretie forms agree with those described hy Dr. Bergh in most points, but differ in several details, anong which may be mentioned the presence of numerous papille along the dorsal margin and over the mouth. Unfortunately it is difticult to give a complete and satisfactory description of cither, for $B$. houlysoni, though well preserved internally, has probably been somewhat distorted externally, while B. influtu appears to be excellently preserved externally, but has no interual organs in a recognisable condition except the teeth and jaws. The two appear to be specifically distinct, as the radule are different and, as it would seem, the tentacles and hramehiee as well. B. houlysemi is best characterised as having an armature of small black spines in the stomach and large sulid tentacles at the side of the head. B. inflata has smaller, grooved tentacles, very small, easily detachable branchiee, and comparatively few dorsal papillæ.

Dr. Bergh gives as a generic tharacter minophoria retractilia. This is possibly a slip, for neither his descriptions nor his figures are quite decisive on the point. But there cam be sun doubt that in both of these species, and also in $B$. alyssormm (the specimen of which preserved in the British Musem I have examined) the rhinthores $^{\text {n }}$ are not retractike, that is to say, there are no pockets into which they can lee withdrawn.

## 4. Bathydoris hodgnoni (Figi. E-G).

Une specimen captured in 100 fathoms oft Coulman Istant on January 13th, 1902, As preserved the colour is onage yellow of varying shades. Though the anmal is not
at all transparent, the internal organs athere to the rather thin skin am affect the colour in places. Length $41 \cdot 5$, lrealth $28 \cdot 7$, weight 23 mm . The foot las a maximum lreadth of 23 mm , and is only 23 mm . long, the rest of the ventral surface being taken up by the very large bucal parts.

The front of the font is deeply grooved; the angles are not at all produced, at least as preservel, lut the growe rums down fur about 8 mm . on weh sike. The lateral and posterior margins are crinkled and drawn up against the louly, but apparently formed a free projecting edge about 5 mm . wide. Posteriorly, this edge is prolonged inter a short inconspicuous tail.

The dorsal margin does not project, lut is clearly marked about 4 mm . above the foot by a line of papille, the largest of which are about 2 mm . high. They are detachable and leave behind them a mark like $\odot$. A few umler the rhinophores are larger and nearly 4 mm . long. These papilla are most numerous near the dorsal margin, but it woull appear from marks left that they once covered the whole dorsal surface, at intervals of two or three millimetres. There are also remains, especially near the margin, of a reticulate pattern formed by low whitish lines eonnecting the papille, but it is not conspicuons. The papille are rather irregular in outline, and taper abruptly, but are not ramified.

As preservel, the front of the animal is unlike $B$. alyssorum and 13 . impulitume The dorsal margin of papille is continued anteriorly at a bright of ahout 4 mmm alowe the lips. Above this margin rises a sort of forehearl 7 mm . high, and bounded on the top by a thick ridge. It bears papilla, and seems similar to the rest of the dorsal surface, from which it is divided by the ridge. The whole formation is possibly due to distortion. The lower side of each large lip is prolonged into a thick tentacle. The free part of the left tentacle, whieh is less contracted than the right, is 5 mm . long and 4 mm . thick at the base. These processes rise from the outermost comers of the head, not from the sides of the mouth, and should perhaps be regarled as flaps of the head rather than true tentacles; they are not grooved.

The rhinophores are bent, about 8 mm . long, and bear about thirty distinct perfoliations. Both have on the cutside a groove across which the perfoliations extend. There is no trace of a pocket. At the lase of each thimophore is an in onspicuous flap of skin, but it looks like an musually large perfoliation rather than a sheath. About 20 mm . from the head is a large prominence on which are seated the reprodurtive orifices. It lies just under the dorsal margin ame is not surrounded by folds.

On the posterior slope of the body are the branchial tufts, cight in number, and arranged rather irregularly in an incomplete circle about 10 mm . in diameter and open behind. About 5 mm . behind the circle lies the large anal papilla, 4.5 mm . long and 3 mm . thick, with an irregularly cremate margin. Within the circle lies the subcentral renal pore. The branchial tufis are componed of several (generally four) smaller tufts, each of which consists of two or three short, thick, "oarscly hipimate phmes.

When the dorsal skin is removel it is clear that there are mo pockets into which
the rhimphones mond possibly be retracted. The posterior pat of the bonly ravity is filled hy the large haish-green liver on which lics the yellowish fern-like renal organ. Across the bue mass runs the yellowish intestine from lelt to right (rising from under the left side) and then hackwats. In front lie the central nervons system and the genital mass, luoth yellowish. The hermaphrodite gland is rompletely hidden under the renal organ.

Though the internal organs are mostly well preserved, some have fared hadly. The pericardim is represputed ly a thin, dried, pear-shaped membrane adhering to the dorsal wall from which it can lardly be detached. In front of the liver there lies over the pharyux a hard yellow mass consisting of two triangular lobes cach measuring


Fig. 12.-Bathyloris hodysuni-Central Nervous System: a Cerebral ganglia; bleural ganglia.
c Pfinl ganglia; a Commisscre; e Buccal ganglia.
ahout $12 \mathrm{~mm} . \times 10 \mathrm{~mm}$. The rentral nervons system is emleded in this mass, which probably consists of the blood gland and the salivary glands fused together, hat its character could not be more aceurately determined.


 than behind, and modsed on the onter side. The plemal are smatler and rommer, the pedal pear-shaped. The revelnal and pedal ganglia give ofll at least five nerves each and the plemal at least three. The bucal ganglia are round, and lie at the sides of the
pharynx, not beneath it. No trace of eyes or anditory organs enald be foumd. The bucal mass is large ( $18 \mathrm{~mm} . \times 15 \mathrm{~mm}$.) and viry strong. The front of it is fomed by a thick museutar pad which lies over the jaws. These latter form a dise measmring about $14 \mathrm{~mm} . \times 1: 3 \mathrm{~mm}$. as they lie together. The elges are rather membranous and yellow; the rest strong and deep brown. They are covered and mited ly strong membrancs, and it would secm that they have no expersed cutting edge, but must art as a powerful prehensile organ.

The radula is set on a thick, tough, white membrane, from which the tecth are letachable only with difficulty. It consists of 37 rows, deep mahogany colour in front but rather lighter behind, which are unsually bent and curve upwards and outwards. In the longest rows there are as many as 65 teeth on either side of the


Fig. 13.-Bathydoris hoigsoni-Three Rifachidian Tefth, $a, b, c$. Fig. 14.-Bathydoris hodysuni-First Lateral Tooth, $a$.


Fio. 15.-Bathydoris hodgsoni-Second (c), and third ( $f$ ), Laterals.
Fig. 1G.-Eathyduris hodgsoni-Latreals ( $g$ and $h$ ) from the Middee of the Malf Row seen fhom the side; the other Teeth are seen from above.
rhachis. The ordinary laterals (Fig. 16) are spike-like and little bent. The base is deeply excavated and often jagged and there is a slight wing-like expansion at the side of the shaft. The fifth lateral from the rhachis begins to be flatter, lower and broader. These features increase markedly in the following teeth (Fig. 15), and the first lateral ahost develops an accessory denticle (Fig. 16). The rhachidian tooth (Fig. 13) consists of a plate-like base rather broader behind than in front, and bearing a raised cusp of very irregular shape with several projections and indentations which are not sufficiently symmetrical to be called denticles. The $10-12$ outermost laterals decrease rapidly in size, and the last two or three are rudimentary.

The cesophagus is about 7 mm . wide on issuing from the lonccal mass. After dilating a little to form the first stomach the digestive tract turns sharply to the left
 the digestive tract dilates agan to fom the serond stomach. After this perint, when it must presumally be called the intestine, it rums up the left side of the liver, erosses its donsal surface, and in reathing the right sile turns lackwards and runs to the hime part of the body. The liver is deeply grooved (in some places as much as 10 mm .) to rereive the digestive tract.

The first stomach hears numerous strong longitudinal folds, which are themselves folded and puckered traustersely. In the second stomach these folds cease, and are replaced by alout ten low flat ridges, rmoning into one another here and there, and ly minute hark xpines amanged quite irregularly. These spines are conical, with romnd hases; some are thin and pointed, some thicker and rather blunt. At the exit from this stomach there are again longiturinal folds, and the intestine is lamellaterl transversely. The liver appears to enter this stomach by one large duct. No gallbladice was fomd. The intestine contained back matter, which appared to consist of mod and grit, including a peblle measwing 6 mm . by 4 mm . The amimal no doubt swallows loose inorganic matter found on the sea bottom. The intestine is very large, leing 8 mm . wide when it leaves the stomach and 5 mm . at its extreme posterior eml ; mueh of the work of digestion appears to be performed in it. The liver measures $: 60 \mathrm{~mm} . \times 23 \mathrm{~mm}$. It is smooth and malividerl, except for the deep chamel cot in it by the digestive tract. The hollow within it measures $8 \mathrm{~mm} . \times 6 \mathrm{~mm}$. The exterior surface of the liver is bluish green, but when it is cut the inside appears brownish, and is seen to consist of numerons tules of an average wilth of 1 mm ., althongh some are larger.

The renal organs: are unusinally developed. Adhering to the upper surface of the liver are two yellow fern-like orgams, beautifully ramified. They lie sile by side and together are 21 mm . long and 11 mm . broad. In the middle of them is a round tiansparent chamber with smonth membranous walls. The renal syrinx is large $(5.5 \mathrm{~mm} . \times$ 4.5 mm .) with strong foliaceons lamine inside. A tube runs backwards from the renal organs along the intestine and issues in the renal pore within the branchial circuit.

The hermaphrodite gland lies under the renal organs and touches the anterior part of the liver. It is nearly circular ( $8 \mathrm{~mm} . \times 7 \mathrm{~mm}$.) and has a large strong duct. It is composed of spherieal glohules, yellowish with white rims. They contain minute granules, some circular imb some elongate. The anterior genital mass is very small, and the animal is probably sexually immature. The mucous gland is yellowish; the allomen gland is roundish and darker yellow. The spermatothera and spermatocyst. are both rounded, flattenel and very small. The vas deferens is an extremely thin tube coiled about seven times. The verge is completely retracted into a bag and muth crumpled, lut appears to be relatively large. On one side there is a deep fold, probably correspomling to the cheft observed hy Dr. Bergh in other species.

The armature of spines in the stomach is remarkalle and is not found in any nearly allied genera, though it occurs in Bornellu.

## 5. Bathyboris inflata (Fig. I)).

One specimen, labelled W.Q. Feb. 1902. The distendel egg-shaped body projects considerably over the head in front so that the length dorsally is 17 mm ., whereas the length from the month, which is rentral, to the tip of the tail is only 18 mm . The breath is 12.5 mm . and the height 11.5 mm . The colour is lark ehocolate of various sharles, the internal organs heing visible throngh the skin as in the last speries. The rhinophores, tentacles, branchir, foot and marginal papille are yollow. The few remaining lorsal papille are whitish.

The foot is 9 mm . broad and only 10 mm . long. It is grooved in the same way as the last species and has a projecting lateral margin about $: 9 m$. wide. The tail is shont.

The dorsal and marginal papille are much as in the last species, hut there is nu, reticulate pattern. They are sparsely seattered over the bark, there being only about twenty facets on the dorsal area visible from above. They are most momerous near the margin, especially orer the head, where they form a sort of oral veil. Most of them are irregular in shape with varions bulges and wrinkles, lut a few near the rhinophores are straight and as much as 4 mm . long.

The mouth is open and bears on each side a pointed conical tentarle, which is deeply grooved near the hase and about 3.5 mm . long.

The rimophores are straight, $3 \cdot 5 \mathrm{~mm}$. long, and bear abont twenty distinct perfoliations. There is no trace of a pocket.

The branchie are five or six in number, according as the anterior group, which comsists of two plumes close together, is connted as one or two. The rest are single, and not tufts composed of several plumes. They are tripinnate but minute, heing not more than 1 mm . broad, and easily detachable. Within the branchial rirenit is a small snb-central renal opening. Behind is the anus, which is not very prominent.

The interior of the animal is almost entirely filled with a solid mass composed of fragments (some as large as 8 mm . ly 7 mm .) of a semi-transparent, redish-brown substance, resembling hom or hardened glue. The state of the osophagns, which is lined with this substance, suggests that the animal must have distented itself by swallowing some kiud of jelly which, under the action of the preserving fluid, hardened into an almost vitreons mass. The rolour of the integuments is due to this substance, and, when removed, they are transparent and very hittle. Most of the internal organs have been distorted and hartened ont of all recognition. Besides the buceal mass can be distinguished only the ontline of the ferm-like kidney and of the intestine, which are compressed aganst the dorsal wall, and some harl fragments of the asophagus, liver, hermaphoulite and mucous glands.

The juws lie in the fore part of the bucal mass, and form a dise about 3 mm . in diameter, covered lys strong membranes, which are pierced ly an aperture $\cdot 7$ mon. wide. In structure they resemble the jaws of the last species. The radula consists of twentytwo rows, and the teeth are deep yellowish brown. They increase regularly in number
backwarts, so that the whole radula is fan-shaperl. The front rows contain ten to fiften tecth on each side of the rhachis, the midule rows fifteen to twenty-five, and the bark rows twenty-five to thirty. The rentral tooth (fig. 17) is much hromer than in the last species. In the front rows it is distinetly lifid, and the laterals close orer it, but, as the rows widen, it becomes separated from the laterals by a distinct space and the cusp is irregularly impented. The outlines of the base louth of this tooth ind of others are very indefinite, and seem to melt into the mentmene which bears the radula.


The first lateral (fig. 18) bends towards the rhachis, and has a long base and a low flattened hook hearing one distinct denticle and an irregularly jagged edge on the imer site. The second lateral (fig. 19) has a symarer base, and the hook, though narrower, is still flattened, and bears a distinct terminal denticle. The third lateral (fig. 20) is much the same, and the rest gradually leerome straighter and more erect until the sixth or seventh attains the form which prevails montil the end of the row. The teeth near the rhachis are Hatter and more different from the rest than in


Fic. 19.-Bathyduris inflataSecond Lateral.


Fig. 20.-Bathydoris inflataThird Lateral.


Fig. 21.-Bathydoris inflata--Lateral frosi the Middle of Half Row.
B. hodgromi. The laterals (fig. 20) in the middle of each half row are stoutish lnut fairly erert. They often have the extreme tip hent, aml hear a wing-like ridge at the side. The fom or five ontemost are rulimentary.

As mentioned alneve, in spite of the differences in the dentition, lmanchiae and other peints, 1 do not think it impossible that this may be a younger specimen of B. hudysmi. Uwing to the rombition of the intemal organs, it is impossible to say if the stomach was armed with spines or not.

## DOTO ( $0_{\text {KEN }}$ ).

Tue members of this genus are small animals, probally of rosmopolitan distribution. They are recorded in abumlance from the Northern and Dledian Atlantic (Cape Verle Islands) and the Mediterranean, and also from Mauritius, Zanzihar, Ceylon, ant Formosa. A great number of species have been described, esperially by Trinchese ant Hesse, but the majority are uncertain, as it is hard to find good specific character:. The buccal parts aud other intermal organs are much the same for all species, and not only the colouration, but such characters as the shape of the rhinophore sheaths, frontal ridges, and tubercles vary within the limits of one species. Dr. Bergh recognises sixtect species in his "System der Nud. Gasteropoden," but of these D. obluseula Agassiz and D. mimuta Forhes appear to he mere names, and 1 . australis Angas is probibly a Melim. To the list may be added D. africana Eliot (P.Z.S., 1904, page 285). II. amuligera Bergh (Siloga Exped. Opisth., 1905, page 221), and D. fluridicola Simeoth (Archiv, für Naturgeschichte, 1888, Vol. I., page 219), though the last (the radula being unknown) may perhaps be identical with Bergh's Dotilla f'ymmapa. Dotu crassicomis is recorded from Christiania, so the genus is probably found in Aretie seas.
6. Doto antarctica, si. n. (? = D. fragilis var).

Ove specimen labelled " 25.2.02., Seal crack W.Q. 45 ." The body is 11 mm . long, 4 mm . high, and 3 mm . broad, without the cerata, the largest of which is 5 mm . high and 2.5 broad. The colour as preserved is a uniform deep bright yellow, except that the tips of the tubercles on the cerata are paler. The surface of the body is smooth, and there are no tuhercles on the back or sides. From the marks left on the skin, it would appear that there were originally six pairs of cerata, but only six single cerata have been preservel. They are erect, tall, but not very stout, and bear four to five rows of distinct pointed tubercles. In the top row there are four tubereles, in the lower as many as cight. The facets of the cerata, which have been removerl, show three distinct openings, one for a ramification of the liver and two for the vascular system. The foot is broal and rather paler than the body. The frontal veil is ample, rounded in front, and bears two ridges ruming to its edge from the front of each rhinophore sheath. These sheaths are 2 mm . high. Their margin is divided into fow lappets, of which the most anterior is conspicuously larger than the others, and projects $1 \cdot 3 \mathrm{~mm}$. in front. The rhinophores are rather stout and quite smooth, without wrinkles. The genital opening is under the place where the first of the ceratil apparently stool and the anal papilla at the right anterior extremity of the pericarimm, letween the first and second ceruta.

No jatvs were found, but these organs are probably mot absent. In this gemes they are extremely thin and membranous, so that, except in large and well preserved specimens, they are very apt to become tom or decayed, and so escape notice. The radula is a single row of 102 clear yellow teeth of the shape usual in the genus.

They bear thre to lour distinct lateral denticles, the highest of which are on the sides of the central cusp.

This speries is nearly allied to Doto fragilis (Forbes), which has ridges on the frontal veil and no dark spots. But the cerata are fewer, and bear fewer tubercles, there are no traces of tubercular spots on the hack, and the rims of the rhinophore wheaths are much more deeply and distinctly lowed than in $I$. fromilis. These characters, however, are all rather slight, and on examination of seral pecimens would probably show eomsiderable variation. Doto amea Trinchese ( $!=D$. aurita, Itasee), has deeply loher thinophore sheaths, but apparently no ridges on the veil.

Provisionally this form may be registered as Doto antrocticm, bout it does mot ditler materially from the Dotos of the North Ithantic, muless indeed jaws are really absent.

## NOTAEOLIDIA (Eliot).

Eliot, Nulihranchiata of the Scotish National Antaretic Expulition ; Trans. Rogal Sor. of Edinhoreh, XLII, Part III. (190.i), p.
This genns, which was createl by me for a momber of specimens collected by the Scottish Antaretic Expedition from the Gonth Orkneys, seems characteristic of Antarcti waters. It is intermeliate between the Acolidide and forms like Indromotus and Lomomotus. Like the true Aeolids, it has non-retractile perfoliate rhinophores without sheaths, large oral tentacles, but no frontal veil, and numerons cerata, lut the radula consists of a few rows each containing mine or eleven tecth, amd the liver is a fotliculate mass, partly lying within the hody cavity and partly forming a layer within the body walls, from which branches pass into the cerata. The species are :-

1. Notaeolidia gigas Eliot.
2. N. purpurea Eliot.
3. N. depressa. Sp. nov.
N. gigas and N. purpurea superficially resemble Acolids. In the present species the resemblance is less striking, as the amimal is relatively broader, flatter and furnished with only a single row of cerata. The radula is specifically distinct.

## 7. Notenlima bepressa (Figs. II and I).

Ons specimen from Mr. Murdo Bay. dreaged in 4 to 10 fathoms, and, as preservel, of a miform, orange yellow, with a little white pigment on the papillie. It measures 47.5 mm . in length, 16 in hrealth, aud 12 in height, but has a flattened imd lepressed apearance, wwing to the sides of the back leing produed, much as in Lomumotus, into expanded margins, which bear a single row of wonical papille, asompanied in a few places by very small ones moderneath. The majority of these papillie or cerata are ahout 1.5 mm . high, hat some are still smaller: and on each side there are ahout fifteen larger ones, 5 to 8 mm . high, set at
irregular intervals. In all there are about ninety on each side. They are somewhat wrinkled, and this rugose apparame is increased by their bearing a little white pigment, arranged in irregular lines. ha front the side-flaps turn inwards, so that the reata stand in front of the rhinophoses; but they are set distinctly on the Hat, and not on the head. Behind, the cerata of the two sides meet at the tip of the tail, the free portion of which is very small ant hardly 1 mm . long. The dorsal margin and cerata are irregularly ululated.

There is no frontal veil, lout the region in front of the rhinophores passes directly into two very thick, conical, oral tentacles, $6 \cdot 5 \mathrm{~mm}$. long, and 5 broad at the base. Between them lies the mouth, which seems small and circular, hut is much rontracted. The anterior margin of the foot is grooved, am perhaps notched; lout this character could not be ascertained with certainty, owing to contraction. The foot is folded inwards, lot in a natural condition must have hat wide, expanded margins, and have been about 10 mm . broad. The rhinophores, which are set close together, are about 4.5 mm . high, and bear fifteen distinct perfoliations. At the base are folds of skin, bout mot regular pits. The genital orifices are 13 mm , and


Fig. 22.-Notacolidia depressa-Rilachidian Tooth from above.


Fig. 23.-Notacolidia depressa-Rinachidian Tooth from the side.
the vent 20 mm . from the head. The former are small, ant not surrounded li large folds of skin; the latter is an elongate papilla, half way down the side. The pericardium is not prominent.

The internal organs are poorly preserved, but appear to resemble those of $N$. gites in their essential features. The central nervous system is small, the eyes black and minute. No salivary glands were discovered, but they probably exist. The jaws are thin, with a smooth edge. The formula of the radula is $20 \times 4.1 .4$, and the teeth are much as in $N$. fifes, but the central tooth (figs. 2.2 and 23 ) is not so square, and has sloping sides. It has a rather lower median cusp with eight to nine strong lentides, but is not striated. The laterals are higher and narrower, with deeper and more distinct renticulations. Even the outermost lateral has about twelve fine but clear denticulations. The esophagus is short, the stomach large, strongly laminated, and constricted in the middle. The liver is folliculate, and arranged much as in $N$. gigue. The man trunk gives off six branches on each site, which form a layer of ramifications in the mantle margin and sides of the dorsal area, from which diverticula pass into the cerata. The space filler by this layer is considerably
large than the line of the emma, and the rembish momifications are clearly visible through the skin. The divertionla within the cerata, on the other hame are only visible with difticulty, being of the same colour ats the integuments ats peserved. In structure they are similar th the same organs in $N$. gitues.


Fig. 24.-Notacolilia depressa-a First Lateral Tooth; b Second; c Third; a Fourth.
The reproductive system is not much developed, and the animal, considering its relatively small size, is probally sexually immature. The follicles of the hemaphrodite gland lie among the hepatic branches, but do not form a thick mass above them, as in $N$. gifus. The anterior genital mass is small and yellow, the sermatutheca of moderate size amd roundish, the vas deferens long and much convoluter.

## CRATENIDAE.

(See Eliot, Jomr. Mar. Biol. Assoc., VII. (1906), pp. 363-366.)
The division into genera of the forms comprised in Dr. Bergh's family Cratenidae is a matter of great difficulty. Phestillu is distinguished by its dentition among other points, and Itrrvia by its elongate shape; but C'uthona, C'uthonellu, and Crateme are mot easily separated from one another. None of them have any very remarkalle characteristics; they are mallish Lolids, neither very long nor very stont, with simple minophores, "glindrical cerata, a foot rombled in front or with inconspicuous projertions, and teeth of the common horse-shoe shape, bearing a moderate number of denticles (usually less than twelve) on eath side of a central cusp.

In . Jeflreys'" British Conchology," Vol. V., Aker divided many of the forms romprised in these genrra hetween Cuthomu, having the branchise close set, and Cavolina, having them in rather distant rows, and also having the central usp of the teeth a little prominent. But the name Gavolina is preacenpied, and the difference between close set and distant rows is one of degree, which may be obscured in preserved specimens. Ascording to 1)r. Bergh's definition, the difference between C'uthom A. ind 1I. and Cratenu Bergh is very slight. The former has caput latum . . . puthertum antien rotundutum, the latter, caput non lutum, podarium antice leviter arcuatum. Cuthomell" Bergh is more distinct. The foot has pointed corners in front, the jaws bear several series of denticles, the anus is latero-torsal, and the otocysts
contain otoconia, not a single otolith. These charaders, though wecming in Cuthomella alyssicola, for whish Bergh created the genus, bave mot been fomm mitert in any other fomm, and Wr. Fricle ("Mollusken der ersten Nordmenfithrt," Dergen's Musemens, Aarhog, 1902, No. :3, page ! f has enlarged the detinition, treating the domal position of the vent as the mief waruter, the shape of the foot, denticulation of the jaw and presence of otomia being regarded as of secomlary impurtance. Following this example, I refer to C'uthombllu, three foms in the present collowion, and the grmes will now romprise the following specics:-

1. Cuthomella alyssicola Bergh.
$\therefore$ C. ferrugined Fricle.
2. C. berghi Friele.

All from the North Atlantic in emsidemble depths.
4. C. anterctica, sp. nov.
5. C'. modestu, sp. mov.
6. C. puratorere, sp. nov.

The arrangement of the cerata in the last-named species appeas to have been very remarkable, and might warant the creation of a new genns, but the specimen is unfortunately damaged.

## 8. Cuthonella antarotica.

One specimen labelled "W. (1. 5. vi. 02. D net," miform yollowish hrown in colour and fairly stout. The body is 14 mm . long and 6 mm . hroad across the pericardinm, without the cerata. These latter have au irregular appearance, as they point difterent ways, but are set in seveu rows on cach side, containing four to six each.


Fig. 25.-Cuthonellet antarctica-. A Trotar FROM ABOVE.


Fig. 26.-Cuthonelle anteritica-A Tooth

There are six in the first row. The imermost are the largest ( $5-1 ;$ mon. high), and the outermost are very small. After the seven rows romes a "lump of very small cerata
 The vent is latero-donsal, and lies at the right posterion extremity of the feriwarium close to the imemost cerata of the forth and fifth gromps. The first is romeled in front withont a trace of tentacmlar angles. The mouth, as preserved, is ventral, and
has on each side of it a short, thick, bunt tentacle. The rhimophores are much larger than these tentaclen ( 4.7 mm . high), wrinkled but not perfoliate. The lack is strongly arhed, and shows a dear contral space, 3-4 mm. wide, without any cerata. The heal and the font are of alont the same hrealth, 4.5 mm .

The jaws are brown and hard, endosing the buccal mass. The masticatory process hears a single row of very inegular projections of varying shapes, with little lumps belind them, but there camot be said to be any regular denticles. The radula consists of a single row of twenty-six brown tecth (figs 25 and 26 ). They we of the horse-shoe shape with a fairly strong central ensp, and six, or rarely seven, lateral denticles. The ontermost denticle is curved strongly inwards. The others are farly straight.

## 9. Cuthonella paradoxa.

One sperimen from Winter Quarters, captured February 20th, 190: It is yellow with traces of reddish hown and some minute reddish rhots on the larger verata. The intestines ind hepatic diverticula, as seen through the integments, are reddish brown.


Fig. 27.-Cuthonella paratora-A Tooti ; $a$ Fron above; $b$ From below.
Length, 11 mm ., lreadth, 8 mm ., height, $4 \cdot 3 \mathrm{~mm}$. The pointed tail, as distinct from the dorsmm, is $2 \cdot 3 \mathrm{~mm}$. long.

The umb tentacles are 2 mm . long, and point straight right and left. The rhinophores are : mm. ling, stout, bent forwards and bear transverse rings, but it is not clear if these rings are natural or the result of contractions.

On the left side is a single line of twelve cerata along the dorsal margin, none more than 1 mm . high, conical, with gaps between them, so that the line is probably not complete. Within this line there remains still attached a single very large papilla alout 7 mm . long and rather lent. It is behind and slightly to the left of the anal papila. On the right-hand side is a similar line of twelve cerata, mostly rather larger. Under the first three of them is a second row of three very small ones. la the bottle are seren detached cerata measuring $7,5,5,4,4,3, \because \mathrm{~mm}$. respectively. The anal papilla is dorial, set far back ( 7 mm . from anterior end) and slightly to the right of the median line. The genital wrifices are 4 mom. from the anterior end, rather high in on the side.

The anterion end of the bonly foms a hool over the month which, as preserved, is ventral. The foot is rounded in front, thickened at the margin and slightly expanded,
but not grooved and not produced into tentaculiform angles. The intemal organs are somewhat deromposed, but appear to be as is usual in the Seohidict. The jaws are thin and yellow, with a single row of distinct denticles, some pointed and some blunt. The miseriate radula consists of thirty-one reddish-yellow teeth (fig. 27), with seven distinct fairly stout and long denticles on each side of the central cusp.

The hepatic diverticula are irregular in outline, and the reditish dots appear to be on them aud not on the external surface of the cerata. The cerelno-pleural ganglia are roumdish, and considerably larger than the pedal ganglia. The olfactory ganglia are round and close together. An auditory organ was not found. The hermaphrodite gland consists of large and small lobes. No armature was diseovered on the verge. The animal camot le safely reconstructed from the fragments preserved, but it certainly looks as if it hat harl a fringe of small cerata round the dorsal area, and a few much larger ones grouped round the vent.

## 10. Cuthonella modesta.

One small specimen of a miform greenish yellow, labelled " W.Q., 1, XlI., 02. ., D net, Hut point, 123 , Picric acid." As preserved it is only $3 \cdot 2 \mathrm{~mm}$. long and $1 \cdot 1$ hroad. The cerata are stoutish and rather inflated; the tallest are less than 1 mm . high, the smallest are mere tubereles. They are very deciduous, and most have fallen off, lout apparently there were only two longitudinal rows on each side. The pericardium is large; to the right of it lies the auns, which is latero-dorsal. The genital orifices are just behind the rhinophores. The rhinophores are large, thick and simple, the oral tentaeles short and thick. The foot is broad with expanded lateral margins amd a thick anterior margin produced into short processes on cither side.

The jaws are white and membranous. The masticatory edge is not even, but can hardly be said to bear denticles. The radula consists of a single row of 27 teeth, yellowish, and of horse-shoe shape. They bear five denticles on each side of the central casp, which is low and shorter than the lateral denticles, so as to he hardly visible.

## (?) 11. ('ratena sp.

Label, "W.Q., 29 v. 03., No. 4 Hole, 5 fms." The tube sent with this label was sail to have contained "four minute Acolids," but, mufortunately, it was received in a broken combition and its contents were dry. There were fomel in it only the shrivelled remains of one acolidifom animal, whitish, 5mm. long and 1.5 mm . wide. Nothing conk be distinguished externally except the tentacles and two or three longish cerata.

The jaws are transparent, with a single row of large, distinct, but rather irregular denticles. The radula is uniseriate, and consists of 15 colourless tecth of the narow horse-shoe shape, with a long, strong central cusp and five clear-cut, longish denticles on each side.

This animal is very probally a Crutenu, but identification is impossible.

## ( C (NONELLA.

Thas ennus agres with dicheme in its dentition, which is an important peint of resemblaner, bat differs sommel in wher ways that it ran hardly be included in the
 modio-forsal and the remata, thongh they have intlated tips, are not wate ats Gelvime, but slemder mul bent. A few of them stam isolated near the centre of the lank.

The allied gemes Galcinn is commom in the North . Atlantic and (i. rempum is


Was specimen from Wiater (Quarters, "Hole No. 11, rim," captured April 24th, 1903. It is rather stont and of a miform yellow colomr. Length 20 mm ., lirealth arross tipe of cerata 8 mom. arross the back 6 mm . height 5 mm . The font is murh amked, hut appars to have hern ahout 4 mm . wide. It is grooved in fromt and prombed intorshort, stroight tentacular angles.


The oral tentacles are short and thick, 3 mm . long and 2 mm . hroad at the base. The rhinophores are longer ( 5 mm .), somewhat datk and thick twwards the apex. Both the tentacles and mimphores are wrimked, but apparently not really perfoliate.

The rerata (Fig. -8) have an unusual aplearance owing to their standing a comsiderable distance from one another and punting different ways. They are mostly bent, thick at the base and asain thick at the apex, but rather slender in the middle. The armoment apears to be as fullows when me lonks at the womplete specimen :-

| Left side. |  | Right side. |
| :---: | :---: | :---: |
| - |  | 51 |
| t |  | -1 |
| (; |  | i) |
| ; |  | 6 |
| F |  | : |
| i |  | 1 |
| : | Middle. $11$ | 3 |

But an inspection of the facets after removing the cerata leads to the conclusion that the anterine group is a horse-shone, or two lines indined towards one another,
followed by eight simple lines of three to six errata each. The outermost erato are small, cylindrical and straight; the inner are $5-6 \mathrm{~mm}$. high, and nearly always curved almost into a semicircle. Four of the cerate stand in the middle of the back, two in front of the pericardium and two behind. Though a few of them have been lost, they are not caducous.

The anus is a prominent medio-dorsal papilla, standing just behind the pericardium and after the fourth row of cerate. The jaws are thin ant yellowish. They are not denticulate, but present near the edge an appearance like a tessellated pavement due to numerous short prominences. The radulat consists of sixty-four rows containing three teeth each. The central tooth (fig. 29) bears a median rasp, ant on each site of it four denticles, of which the fourth is less conspicuous than the others and sometimes absent. The median cusp is fairly strong, but rather low and points straight forward, whereas the first of the lateral denticles often points distinctly upwards. The side denticles are fairly long but a little irregular in shape and direction. The lateral teeth


Fig. 99.-Galuinella antartica-Central Tooth; a From below; $b$ From above.


Figs. 30.-Galimella antarcticaLateral Teeth.
(fig. 30), are much as in Galuinu, very thin and transparent hut distinct. The base is very long and hears a single pyramidal cusp, the tip of which is often broken off.

The rest of the digestive system appeared to be as usual. The salivary glands are long, simple bands. Flocculent ptyaline glands also seem to be present. The central nervous system is as usual. The cereho-pleural and petal ganglia are both spherical, the latter distinctly below the former. The olfactory ganglia are elliptical. The eyes, which are hark with yellow lenses, are set far back on the rerehro-pleural ganglia. The reproductive system also appeared to the as usual. The hermaphrodite gland is not large, but the lobules which compose it are very distinct and consist of small spherical booties set round a large one. The verge is long, conical and unarmed.

## DESCRIPTION OF PLATES．



## description of Figures．

Fig．1．－T＇ritomiella belli－Sjecimen A from above
PAGE
．．2， $3,4 .-$ Anterior jurt of back in three specimens showing the varying araurement
．． $2,3,4 .-\quad$ ．．Anterior jart of back in three specimens showing the varying araurement

| ．． | f．－ | ．． | ．． | Jaws ．．． | $\ldots$ | ．．．． |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ．． | 6．－ | ．． | ．． | Phachidian tooth | $\ldots$ | ．．． |  |

．．6．－．．．．Rhachidian tooth $\ldots$ ．．．$\quad$ ．．$\quad . . \quad$ ．．．$\quad .$.
，．7．－．．．，First lateral tooth ．．．．．．．．．．．．．．．．．．．．．．．．！
．，8．－．，．．Three laterals from the mildle of the half row ．．．．．．．．．．．．！
．．9．－Tritomielln simmetu－Rhachidian tooth ．．．．．．．．．．．．．．．．．．．．．．．．． $1 t$
．．10．－．．．．Three lateral teeth ．．．．．．．．．．．．．．．．．．．．． 11
．．11．－．．．．Terge ．．．．．．．．．．．．．．．．．．．．．．．．．．． 11
．．1ュ．－Bathyloris hodyson－Central nervous ssetem：＂cerebral ganglia；$b$ pleural ganglia； e pedal ganglia ；th commisure ；e buccal granglia ．．．．．．．．． 1 t
．． $1: \dot{i}-$ ．．．．Three rhachitian teeth，$a, b, c$ ．．．．．．．．．．．．．．． 15
．．14．－．．．．First lateral tooth，$l_{\text {．．．．．．．．．．．．．．．．．．．．．} 1 \text { ir }}$
．．15．．．．．Second（ $\rho$ ），and third $(f)$ laterals ．．．．．．．．．．．．．．15
．．16．－．．．．Laterals from the midde of the half row seen from the side；the other teeth are seen from above ．．．．．．．．．．．．．．． 1 ．
．，17．－Buthythris intlatu－Rhachidian teeth ．．．．．．．．．．．．．．．．．．．．．．．． 18
．，18．－．．．．Two first laterals ．．．．．．．．．．．．．．．．．．．．．．．．is
．．19．－．．．．Second lateral ．．．．．．．．．．．．．．．．．．．．．．．． 18
．．20．－．．．．Thid lateral ．．．．．．．．．．．．．．．．．．．．．．．．is
．．$\because 1$－．．．．Lateral from the middle of half row ．．．．．．．．．．．．．．．is


．．21．．．．．a first lateral tooth ；beromi ：$c$ third；$d$ fourth ．．．．．．．．．．．
．，25．Cuthouflla antarctict－A toth from above ．．．．．．．．．．．．．．．．．．．．．？
．． 2 保－．．．．．．from the side ．．．．．．．．．．．．．．．．．．．．．
．，こ̄．－C＇uthonellt puralora－A tooth；a from above；$b$ from below ．．．．．．．．．．．． 24
．，2s．－Gultimella tantarctict－Cemata ．．．．．．．．．．．．．．．．．．．．．．．．．．． 21

，． 34 ．．．．Lateral teeth ．．．．．．．．．．．．．．．．．．．．．． 27


# MOLLUSCA. <br> V.-LAMELLTBRANCHIATA. 

By Eiviar A. smith, l.S.O.<br>(Plates II. and III.)

('UNPIDARIA TENELLA.
(Pl. II., figs. 14, 14a.)
Shell rather large, very thin, ronsiderally convex, looadly rounded in front, narrowly or rather shortly rostrate posterionly, whitish, covered with a thin periostraemm, sculptured with distinct lines of growth and ronrentric waves; inuer surface smootl, lint comentrially snleate, the shallow sulei comesponding with the external waves; dorsal margin of right value delirate, with a small ligamental pit (see fig. 14a) directed oldiquely backwards beneath the mm lon, a raised ridge extends from this liganental process, parallel with the edge of the valve, and might le regarded as a posterior lateral tooth : adductor scars and pallial sinus imtistinct.

Length, 30 millim.; alt., 22 ; diam., 15.
Off Coulman Island, 100 fathoms.
This is a large species, but very thin, and somewhat resembles C. optima, Sowerly, from South Afrira. It is, however, somewhat different in form, is murh more delicate in sulstane, and the ligamental pit and hinder lateral tooth are different. Only a single right valve was oltained.

## Anativa elliptica. <br> (Pl. IIl., fig. 3.)

Anatima ellittera, King and Broklerip' Smith, 'Challenger,' Lamellibranchiatu (1אs.s), p. 76; id. 'Southern Cross,' Molluser, p. : 10 , pl. xxy., figs. 9, 10.
Winter Quarters, 10-130 fathoms.
To show the variation in form, a figure is now given of a short example, which is very diflerent from that figured in the 'Sonthern Cross' report.

## Thracia meridionalis.

Thracin moritionmis, Smith, Lamellihranchiata, ' 'hallenger' Exped., 1. Gs, pl. vi., figs. 4-4b.
Holes 4, 12, etc., 20-130 fathoms.
The largest sperimen oltained exreeds the dimensions of any of the 'Challenger'
examples. It is 26.5 millim. in length and 21 in height. The form is rather varialle, some shells heing murh longer in proportion to the height than others. The speries was obtained ly the ' hatlenger' at Kerguelen, Marion and Prinee Elward Iskands.

## C'ardita astartoiden.


Winter Quarters, $1: 0$ fathoms.
Only foung and half-grown semens were obtainel. They do not exhilit any sperial difference from the Kerguelen examples, exrepting that, in some of them, the radiating riblets are rather more distinctly granose, throngh the more strongly marked conventric strie.

## ('ARDITA ANTAROTICA.

(Pl. II., figs. 15, 15a.)
Shell small, very inequilateral, moderately convex, dirty whitish, covered with a thin olivareons periostrarum, soulptured with about $\because t$ rarkiating rilkets, which are a trifle broader than the interstices, amd omamented with fine concentric wayed stria, some of whith are more strongly marked at intervals: lumular and escutcheon areas exhiliting only growth-strie; umbones curred over anterionly ahmost to the end of the shell; hinder dorsal margin a little oblifue, subrectilinear, anterior very much descending; rentral outline liroadly arcuate, posterior a little curved; interior of valves white, slightly dentate at the margin; front adductor saar long, narrow, deepish, posterior much boarler. Aslight ridge commencing at the upper end of the anterior impression curves upwats towards the umloo ; hinge normat.

Length, 12 millim. ; height, 12 ; diam., 10.
March 4 , 1904, near Antarctic Circle, 254 fathoms, mud and stones.
Only a single left value was obtained. The lines of growth on arossing the radiating rilhets are sufficieutly strong to protuce a compressed sulgramose appearance upou the younger portion of the shell.

The species is more inequilateral than C. velutina, Smith, from Patagonia, not nearly so strongly rilhed, the ribs being more numerous and less distinctly granose. The inner margin of the valves also is not so coarsely dentate.

## Kellia simulays.

(Pl. III., fig. 1.)

Shell small, inefuilateral, ronndly ovate, rather swollen, sulpellacid, whitish, glossy, soulptured with fine strise of growth and a few rather invonspicnons ratiating strise, "hiefly down the midlle of the valses and near the ventral margin ; anterior end more shaply rarsed and narmor than the posterior, lower outline very gently arcuate; umbones antemedian, ursed over to the hinge-line, rather obtuse at the apex; intarior of values faintly waved in the dirertion of the lines of growth,
glossy ; hinge composed of two small ardinal teeth beneath the mmo in the left valve and one in the right, also a long posterior lateral in tach valve; a very stender ligament is attached to the margin of the valves behind the umbones; the internal ligament has apparently dropped oft.

Length, 6 millim.; altitude, 5 : diam., $3 \cdot 5$.
Hut Point, Oct. 25, 1902.
One specimen only. Differing in form from Kellia maydlanica, Smith. Also somewhat resembling the British K. suborbiculuris, Montagu, yet different in shape, and having a more delicate linge.

## Tellimya antarctica.

$$
\text { (Pl. II., figs. } 16-16 \mathrm{~h} .)
$$

Shell very small, transversely ovate, rather convex, inequilateral, white, covered with a dull yellowish periostracum, marked with very fine incremental lines: anterior
 umbones antemerlian, ouly a little prominent, somewhat eroled: hinge ronsisting of two strong cardinal teeth in the left valve (fig. 16b, 1), wome in the right: ligament central, beneatli the mbones (figs. 16a-l, 2); interior of the valve smooth, lout exhibiting lines of growth ; margin smooth, slightly thickened ; posterior adductor scar pyriform, anterior apparently smaller.

Length, 3 millim. ; height: $2 \cdot 5$; diam., $1 \cdot 5$.
Hut Point, Feh. 13, 1904.
Only one specimen was oltained. Short, and more solid than the northern T. bidentala, Montagu, also having a stronger linge.

> ('yamicy dexticulatum.
> (Pl. III., figs. $4-4 \mathrm{~b}$.)

Shell small, rounded, rather convex, almost equilateral, rather thin, whitish, covered with a very thin, glossy, yellowish periostracum, marked with very fine strize of growth and numerous shallow, narrow, and not very ronspicmous radiating sulci or impressed lines. The latter are visible on the imner surface of the valves, which are finely denticulate at the margin ; the muscular impressions are indistinct. Hinge composed of two diverging tecth in the right valve (fig. 4b, t.), and three in the left (figs. 4a, t.), the anterior in the right and the central one in the left being somewhat bifid. The posterior lateral margin of both valves is produced into a pseudo-lateral tooth (figs. 4a, 4b, m.) ; the ligament (figs. 4a, 4b, 1.) is oblique, posterior to the teeth, and mostly internal ; but a slight portion is visible externally, when the valves are elosed, just behind the tip of the umbones; the prodissoconch forms a circular, smooth, glossy, white, convex dise at the apex of each valve.

Length, $4 \cdot 3$ millim. ; height, 4 ; diam., 3 .
Hole 3. In $12 \frac{3}{4}$ fathoms, stones and gravel.

Althongh the general aspect of this species is very unlike that of the type of the genus Cymmizm, still the characters of the hinge appear to be so very similar that it does not seem to be advisable at present to separate them generically.

$$
\begin{gathered}
\text { Diplobonta incerta. } \\
\text { (Pl. III., figs. } 5,5 \mathrm{a} . \text { ) }
\end{gathered}
$$

Shell very inequilateral, small, thin, whitish, moderately convex, sculptured with fine lines of growth, and exhibiting a radiating ridge or rounded angle from the umbo to the lower posterior extremity; umbo antemedian, consisting of a distinctly marked, smooth, pellucit, convex, rounded embryonic disc ; anterior dorsal margin much descending; posterior curvel, horizontal, posterior end terminating below in a point at the end of the radiating ridge; anterior end sharply curved; lower margin gently arcuate; interior smooth, glossy, exhiliting a groove beneath the exterior radiating angle, and some shallow sulcations corresponding with the more distinctly marked lines of growth of the exterior ; two divergent cardinal tecth in the right valve (fig. 5a, 1), the anterior one being just in front of the apex of the umbo, and the posterior immediately beneath it ; ligament internal (fig. 5a, 2), in a narrow furrow behind the hinder tooth; scars and pallial line indistinct.

Length, $6 \cdot 75$ millim.; height, $5 \cdot 5$; diam., 5.
Winter Quarters, $1: 30$ fathoms.
One right value only. Provisionally placed in Piplodonta, although the ligament is rather more wholly internal than in that genus.

## Philobrya limoides.

(Pl. III., figs. 2-2h.)
Shell small, equilateral, moderately convex, thin, dirty whitish, clothed with a deciduous, fibrous periostracum, sculptured with concentric lines of growth and some raised, slemder, radiating, threadlike lines, from which spring short, epidermal hairs or fibres of a darker colour than the rest of the epidermis; umbones obtuse at the apex, which consists of a distinct protoconch, radiately lirate, minutely concentrically striated, and having a straight hinge-line; the dorsal margins of the adult shell are very sloping, nearly rectilincar, the posterion grooved to hold the ligament (figs. 2h, 1), and the anterior terminating just in front of the umbones of both valves in a small, shelly projection ; lateral and ventral margins more or less distinctly denticulate within and slightly thickened; interior of valves dirty whitish, smooth, exhibiting a large but shallow posterior adductor scar in the form of a 6 ; anterior scar not traceable, perhaps absent.

Length, 8 millim.; height, $9 \cdot 5$; diam., $4 \cdot 5$.
Winter Quarters, 20-130 fathoms.
Remarkable on account of the peculiar protoconch, the epidemis, and the
bristle-bearing, radiating lines. Only the slightest chink exists in front of the umbones for the passage of the byssus. In form somewhat resembling, in miniature, that of the large northern Lima excarata. Differing from $P$. sublacis, Pelseneer, in the position of the ligament and the absence of crenulation on the hinge-plate, and in the character of the prodissoconch, as well as the position of the adductor scar.

Adacinarca xitens.
(Pl. III., figs. 6-6c.)
Allernurcu nitens, Pelseneer, Toy. Belgica, Mollusca (1903), pp. 21 , 41 , pl. vii., figs. 8:--s8.
Beyond a slight difference in form, which seems to be a varialle feature, judging from the few specimens obtained, there dres not appear to be anything to distinguish these examples from that figured by Prof. Pelsenect. This genus, consisting at present of a single species, has a small, ohliquely-rounder shell, of thin texture, glossy, minutely radiately striated, of a dirty whitish colour, covered with a thin periostrarum. The edge of the valves within is minutely ermulated, the crenulation at the sides being rather stronger than upon the ventral margiu. The linge consists of a minute central resilimm, bencath the beaks (figs. 6c, 1), a slight marginal ligament (figs. (6c, 2), and a minutely, transversely striated linge-plate (figs. 6c, 3). The largest specimen is 7 millim. in length, $6 \cdot 5$ ligh, and 4.5 in diameter.

Hut Point, Oct. 18 and 25, 1902.
The position of the ligament is somewhat different to that of Cienella decussate, Montagu, which is elongate and obliquely internal within the hiuder dorsal margin, under the striated hinge-plate. Otherwise the species appear to he conchologically cougeneric.

## Limopsis grandis.

(Pl. ILI., figs. $7-7 \mathrm{~b}$.
Shell large, olliquely ovate, very flat, comentrically striate and very finely radiately striatel, white, clothed with a coarse yellowish, hairy periostracum; umbones small, acute, separated by a narrow ligamental area; hinge-plate narrow, slightly simuate in the middle, with thirteen teeth in a small specimen, aur probally about twenty in the adult form ; interior of the valves very fincly radiately striated, excepting the outer margin, which is smooth and shimeng; anterior adductor scar small; posterior much larger, elongate pyriform, bounded on the inner side by a thickening of the shell which forms a ridge extending from beneath the umboues beyond the scar almost to the margin of the valve.

Length, 33 millim. ; diam., 12.
March 4, 1904, near Antarctic Circle, 254 fathoms.
Closely allied to L. marionensis, Smith, but larger and flatter, and also distinguished by the peculiar thickened ridge down the pusterior side of the interior of the valves.

Only three dead and worn valves and one young fresh specimen were obtained. $L$. leecinecula. Pelsencer, is also very like the present form.

> Lima (linatula) hodgsoni.
> (Pl. III., figs. 8-8b.)

Shell oblong, oblique, narrow above, rather convex, thin, white; anterior side more curved than the posterior ; ventral margin arcuate, curving obliquely upwards behind; surface omamented with 30-35 fine ribs, which are very finely scaled by being crossed by the lines of growth (fig. 8b) ; the ribs are rather broader than the intervening grooves, and do not occur on the auricles, which are only seulptured with the incremental strite; the scales are very dose-set, and only very little elevated; interior of the valves ralliately sulcate, slightly denticulate along the lower margin; umbones central, a little prominent above the ligamental area, which is very narrow diamond-shaped.

Length, $27 \cdot 5$ millim. : height, 35 ; diam., 20 .
Winter Quarters, varions dates, 10-130 fathoms, also off ('oulman Island, 100 fathoms.

Allied to Limu pygmze, Philippi, but much larger, of a rather different form, being broader beneath and much more contracted above. The ribs, also, in the present speries are lroader and much more beautifully symate.

Peeter rolbedit.
(Pl. III., figs. 9-9a.)
Pecten rolberki, smith, Report 'Sunthem C'ross ' Mollusea (1902), p. 21थ, pI. xxs.. fig. 11.
Winter Quarters, 20-130 fathoms.
Only three small left valves and one right valve were collected. The former are interesting. as hitherto only the right valee was known. They are all of the same rich puplish red or phan colour as the type, with the ears and mmbones whitish. The right is rather flatter than the left valve, and its posterior auricle is a trifle larger than the interior, hat not very deeply simated below. Its sculpture is similar to that of the other ralves, consisting of alout fifteen rounded, but feeble coste, and very delicate concentric raised stria. Some of the riblets are hoader than others. Owing to the thimess of the shell, the inner surface of both valves in these young specimens is mately grooved and ridged like the exterior, whereas in the adult, this featme is less observable towards the outer margin, since the costie become less and less pronounced as the shell increases in size. In the left, and slightly more convex valve, the auricles are almost alike, the anterior being perhaps a tritle the larger.


## EXPLANATION OF PLATES.

## PLATE 1.

Figs. I-Ib. Thesbia immocens, sp. n.
., $\because, \because a$. Neobncinum tenerum, sp. n.
.. B-Bd. Trophon longstaffi, sp. n.
.. 4-4l. $\quad$. conhanaensis, sp. it.
.. 5, 5a. Ailmete delicatula, sp. n.
., 6, 6a. Amanopsis rossiama. sp. n.
.. T-ie. Trichoconcha mirabilis, g. et Sle u.
, \& S. Troschelia? sp. jus.
,. !, !\%i. Enlima convexa, sp. 11 .
.. 19-10h. Scala antaretuca, sp. n.
.. 1I-itc. Neoconchat vestita, g. et sp. n.

## PLATE II.

Fig. 1. Rissoia descrta, sp, n.
, $\because . \quad$.. adarensis, smith.
,. :\%. ., fremdnlenta, sp. n.
., 4. ,. glacialis, sp. n.
, 5 . ,, gelida, sp. n.
, G, fil. Lovemella antarctica, sp. u.
, $7 . \quad$ Valvatella refulgens, sp. in.
.. 8. ., dulcis, sp. n.
,. 9. ., crebrilirulata, sp. II.
,. 10. .. minutissima, sp. n.
,, 11, 11a. Lepeta (Pilidium) antarctica, sp. n.
., $1 \underline{\text {. Bullinella grelida, sp. n. }}$
, 1:3-1:\%g. Chatopleura miranda, spr. u .
.. 1t, 1 ta. Cuspidaria tenellia, sp. n.
, 15, 15a. Cardita antarctica, sp. n.
, 1fi-1 fib. Tellimya auturctica, sp. n.

## PLATE 111 .

Fig. 1. Kellia simmlans, sp. n.
": 2-: b . Philobrya limoides, sp. . 1.
., :3. Anatina clliptica, King and Broderip.
,. t-4h. Cyanium denticalatum, sp. n.
., 5, 5a. Diplodonta incerta, sp. 1 .
.. B-bic. Adacnarca nitens, Pelsencer.
, 7-7b. Limopsis grrandis, sp. n.
, 8-xb. Lima (Limatula) bodgsoni, sp. n.
, !, !ad. Pecten colloceki, smith.

## BRACHIOPODA.

By Emeat A. Smith, L.so.

 hoth apprently representing new forms belonging to the genus Maydmmat One is very distine from all the known species. on account of its remarkable seuptura. Jnt the
 M. remose of Solamber; imberl, it is with some hesitation that 1 have venturel to separate it mperitioally.


Magellania fratilits. (Figs. 1, …)
Shell very similar in general aspert to M. remow, from l'atagonia, whd $M$. kerguelenensist, lout thimer than either, and with marser tent perforations. M. Emose

[^34]is more minutely perforated all over, the formen is smaller, and on earh side of the valre (the ventral) exhibits a more or less distinet keel; also the internal septum of the dorsal value is stronger and longer. The present species is perhaps more closely related to M. kerfuelenensis, hut, besides heing thinner and more conspicuously perforatel, it does not exhibit the mesial depression referred to in the description of that species; the formen also is larger. The internal septum is erpally thin and delicate. The form is somewhat variable, some specimens being broader than others. The rolom is light brown, or dirty horn-colour.

Largest specimen- Length, $43 \cdot 5$ millim.; wilth, 39: diam., 24 .
Another example.-Lengtl, $37 \cdot 5$ millim.; wilth, $29 \cdot 5$; diam., $22 \cdot 5$.
I gassiz Island, :300 fathoms, mud, off ice barrier.
A few more or less damaged specimens were ohtained.

## Magellania sclecata. (Figs. :3, 4.)

Shell of mednm sizc, ovate, globose, of thin substance, hom-whor, inequivalre, exhibiting, excepting towarls the umbones, numerons concentric conspicuous raised lines of growth, producing a remarkable suleate appearance; dorsal valve less convex than the ventral, which is produced and curves over so that the foramen, of moderate size and eirenlar, is on a plane with the margin of the ralve and separated from the edge by a narrow deltilium; interior of the valve concentrically sulcate like the exterior; teetlo of ventral valve moderately strong; loop very thin and delieate, hroad and reflexel, with a thin acute septum bencath, extending half-way across the valve, with the crumal points loug and acute; perforations of the test large, whong.

Length, 28 millim.; width, 23 ; diam., 17.
Coulman Islaud, 100 fathoms, and Winter Quarters, Angust 7, 1902, 178 fathoms.
This pecies is remarkable on acrount of the concentric suleations and the coarse perforations of the shell. I do not know of any recent form that exhibits sulci or marked lines of growth of this kind, hat among fossil forms a similar kind of surface ornamentation is met with in Terelratula sulciferc, Morris, of the lower chalk.

## CRUSTACEA. <br> I. - DECAPODA.

By W. T. Calman, D.Sc.

Two species of Decapod Crustacea were obtained by the 'Disowvery' within the Antarctic Circle. They have been identified with the two species rollected by the German Polar Commission of 188:-188: at South Georgia. By the rourtesy of Dr. Georg Pfeffer, of the Jamburg Museum, who first described the specics, I have been able to compare the 'Discovery' specimens with co-types from South Georgia, and to satisfy myself of their identity. With the eircumpolar range implied by their occurrence at these two widely separated points, hoth species combine a remarkable range in depth, for, whereas at South Georgia they were found at 7 -9 fathoms, the 'Discovery' dredged both species at depths reaching to 500 fathoms.* Dr. Pfeffer's descriptions, although very detailed and accurate, leave moticed rertain characters which are now regarded as of systematic importance. I have, therefore, found it necessary to supplement his account on some points. One of the species, Crangon antarcticus, has received some attention in recent discussions on the subject of "bipolarity," and I have therefore attempted to define a little more precisely its athinties with related forms.

## FANLILY HIPPOLYTIIA.

Chorismus antarcticus.

Description of ovigerous females.-Total length 87 to 101 mm . Lengtll of carapace (including rostrum) about two-fifths of total length of body. Rostrum equal to or a little longer than the distance from the orbital notch to posterior margin of carapace in the middle line, curved upwards, moderately expanded below; upper margin with eight or nine teeth, of which the second is placed over, or a little in front of, or

* Crangon antarcticus was also dredged by the Belgica' at a depth of $400-500$ fithoms in Lat. 71 . S. . Long. $4 s^{-15}$.
in one case a very little behind the orbital notch, and the last two are close to the apex of the rostrum; lower margin with six to uine teeth (usually seven.) No supra-orbital teeth, antemal tonth distinct from the lower orbital angle, anterolateral comer of arapace with a minute (pterygostomial) tooth.

Third abdominal somite with dorsal surface strongly clevated or "hmmped," but withont : definite tubercte as in Chorismus tuberculatus. Sixth abdominal somite without movalle lateral spines.

Peduncte of antemnles reaching to or nearly to two-thirds the length of rostrum, thind segment one-half the length of second, spine of first segment ("stylocerite") narrow and acute, reaching to middle or quite to end of second segment; flagella sulequal, or inner slightly longer than outer, extending beyond tip of rostrum ley we-third to nearly half their length. Antennal scale hroad, about equal in length to rostrm, outer edge distinetly and evenly convex, apex broadly rounded, outer spine short.

Mandible with small incisor process and palp of three segments, the first hroader tham, and as long as the second. Thind maxilliped extending nearly to tip of antennal scale, terminal segment twice the length of preceding. Exopor well developers.

First leg extending beyond penultimate segment of third maxilliped, carpus slightly excarate distally, about equal in length to the hand. Second leg extending leyond tip of antennal scale, carpus of eleven, merus of three, and ischium of two segments. Remaining legs moderately stout, fifth leg extenting forwards nearly to tip of antennal scale.

Telsm not greatly narrowed distally, tip rounded, with seven spines. Inner plate of moporls suberual to the telson and very little shorter than the outer plate, which is lroadly romed at the tip.

The branchial system comprises five pleurobranchie on each sile on the last five thoracic somites, an arthrolnanchia on the third, and a podobranthia on the secomd maxilliperl. There are epipods on the third maxillipeds and on the first two pairs of legs.

Young mules (55-59 mm. in length) and females ( 42 mm .) Body a little more slender and the rostrum relatively longer, distinctly exceeding the length from orbit to bark of carapace. Flagella of antennule little longer than rostrom. Outer edge of antennal scale straight. In two specimens ( $\delta$ and $\circ$ ) there are twelve segments in carpus of second leg.

The antypical specimen of Hippolyte antarctica used for comparison is an origerous female, alout 60 mm . in total length. It agrees perfectly with the 'Disenvery' specimens except in the following points:-Uf the seven teeth on the upper elge of the rostrum only one is close to the point, not two, as in our specimens; the antemal siale is slightly longer than the rostrum, and its onter edge (as in our specimens of similar size) is nearly straight; the third maxillipeds are a
little shorter, and their terminal segment is hardly twire the length of the preceding; the carpus of the first legs is a little shorter than the hand.

Remarks.-This species agrees with the type of the genus Chorismus ( C. tubereulatus, Sp. Bate.) in the characters given in my recently published synopsis of the Hiprolytilize ('Amı. Mag. Nat. Hist.,' xvii., 1906, p. 30), and further in having no supra-orlital spines, in the mandible-palp being composed of three segments," the gills seven in number on each side, and the last three pairs of legs without epipods. It differs in having eleven or twelve segments in the carpus of the second legs while C. tuberculutus has only nine, in having an exopod on the third maxillipet, and in the fact that the first segment of the mandibular palp is not shorter than the second.
Occurrences.-January $2 \searrow, 1902.500$ fathoms, 1 万.
W.Q., February 28, 1902. Less than 20 fathoms, 1 \%, 1 ㅇ. W.Q., January $10,1903.130$ fathoms, 2 ㅇ. W.Q., May 14, 1903. 127 fathoms, 1 な, 1 i. W.Q., Tune 18, 1903. 130 fathoms, 2 ㅇ․

Fragments of this species were taken from the stomachs of seals on several occasions.

## FAMILL CRANGONIDE.

## Crangon $\dagger$ antarctices.

C. antarcticus Pfeffer, Jahrb. Hamburg. Wiss. Anst. iv. (1~87), p. 4i, pl. i., higs. 1-ㅡ́ ; Contiere, C. R.


Descritition of females (not origerons). -Total length, 37•5-75 mm. Gencral form slender. Surface of the carapace very meven, with strongly marked ridges and hollows; in particular, a more or less sharply defined ridge runs backwards from the median dorsal spine for a distance equal to one-half the length of the carapare. The ridge rumning backwards from the antenal spine is continuns with that rumning forwards from the hepatic spine. Rostrom long, sender, compressed and acute, in we case nearly one and a half times as long as the eye-stalks. Abhmen long and slemer, sixth somite generally more than one-sixth of total length of body. I pair of slemer acute spines on hind margin of fifth somite dorsu-laterally. Sixth somite with a stronglymarked double dorsal keel. Telson rounded at the tip, with a median spiniform point. Antemmar peduncle slender, the distal end of first segment narrower than one-half the greatest diameter of the eye; outer lohe of first segment nearly flat, dromlly orate, produced anteriorly into a rather feehle spiniform point which does not reach distal

[^35]end of segment. Intemal scale with onter margin straight, or, in smaller specimens, concave. Third maxillipels extending to or slightly heyond end of scale. First legs extending a little beyond middle of terminal segment of third maxillipeds; hand from nearly four to nearly five times as long as hroad, terminal tooth of patmar edge at about one-fourth of the length of the hand from distal end. Last pair of legs extending forward to the tip of the antennal scale. Endopod of first pleopod articulating with distal inner angle of peduncle.

Branchial system.-Five pleurobranchite on each side, on the last five thoracic somites: no arthro- or podo-branchice.

Limurks.-The 'Discovery'specimens differ from 1)r. I'feffer's description, and from a co-typical sperimen with which I have rompared them, in the more slender form of the lody, due esperially to the greater length of the sixth aldominal somite ; in the greater length of the rostrum ; in the shorter lobe on the basal segment of the autemule, reaching only to almot the distal thint of the segment, white in the typical form it reaches nearly tor the end; and in the narrowes' hand" of the first legs. But while earh of the three well-preserved specimens in this collection differs from the co-type in all these points, they doso in varying degree. The differences are at least as important as some of those which have been regarder as of sperific value by recent writers on the ('rangomide, but I do not think that they would justify ns, at present, in separating the form inhabiting the area explored by the 'Discovery 'from that found in the very distant region of South Georgia.

The following table gives some measurements, in millimetres, of the co-type of C. antarcticus. as compared with the three most perfect specimens in the 'Discovery' collection. All the sperimens atprear to be femates or immature males.


1)r. Pfeffer * was the first to draw attention to the apparent "bipularity" in the distribution of the genus Cromyon. With the exception of the very imperfectly known C. capensis, Stimpson, from the Cape of Good Hope, C. antareticus is the only species of the genus inhabiting the southern Hemisphere, and is widely separated from all the other species, which are contined to the temperate and (if Sclerecranyon be

[^36]included) the Aretie regions of the Atlantie and Parific. The guestion has been
 related to the Califomian C frenfiscorem, Stimpsom, and that its presence in the Southern Hemisphere is to bre explainel he migration from the North along the West coast of America, where the hydrographical ronditions are sum an to fayour an intermixture of morthem and southern fanas arross the tropic zome.

With a view to testing this conclusion of Lr. Ortmann's, L have carrefully compared the sperimens of $C$. antarctirus with specimens of $C$. franciveorum in the Mnseum collection. $\dagger$ The whef charater on which Dr. Ortmann relies for linking the two speries together is the presence of a pair of dorso-lateral spines on the himl margin of the fifth abdominal somite. This character is conspicnons and definite. hut it may be doulted whether it is of great morphological importane. Prof. Sars ligures a pair of spines of varying length in neally the same pasition in all the larva of Cranfomidre examined by him $\ddagger$ and it seems likely that this larval chatacter may have been retained independently in species not elosely related. In other respects $C$. funcisemuir differs considerably from the Antarctic species. The surfare of the carapace is much less uneven, the varims ridges and hollows being murh less strongly marked. There is no ridge running harkward from the median donsal spine and the ridge comecting the antemal and hepatire spines is interrupted ly a grove. The pterygostomial spine is not compressed and expanded laterully as it is in C. cmtartiches. The rostrun is shorter than the eye-stalks, depressed and hollowed on the dorsal surface and hlmotly pointed. The sisth abdominal somite is ahout one-seventh of the total length, and has omly a faintly-marked indiation of a double keel on its domal surfice. The telsom narrows gradually to an acute tip. The antemulate perluncle is stout, the distal end of the first segment hoader than three-fourths of the greatest diameter of the eye; the outer lobe of the first segment has its external margin strongly bent upwards, thickened and produced formards into a strong spine which reaches the distal end of the segment. The outer alge of the antennal seale is slightly comvex. Miss Rathhon states (ILamiman Alaska Exp., ('rnstacea, p. 120) that the thim maxillipeds do not rearll the end of the antemal seale, but in two ont of three sperimens examined loy me they rertainty do so. The first legs reach the tip of the thim maxilliperts; the patmar enge of the ham is very oblique, its terminal towth leing more tham me-third of the length of the hand from the distal end. The last pair of legs reach to about the middle of the antemal seale. The first plenporl differs considerably in shape from that of C. cuturetrus, the endrool heing attached nearly half-way down the imel margin of the perdnacle.

* Jenaische Denkschr., VIII. (Smon's Zool. Forschungseise V.), (1) (1894), 1'. 77 ; Proc. Aran. Nat. Sci., Fhilat., 1895, p. 190 ; Zool. Jahrb., Syst., IX. (1897). 1. 582.
$\dagger$ These specimens, received from the smithsonian [nstitute, are labeller as having boen collected in California by Stimpson himself, in the course of the North Pacific Exploring Expedition, and mar therefore be resarled as en-types.
$\ddagger$ Bidrag til Kumdaken om Decapolemes Forvallingar, iii. Fam. Crangonidar. Areh. Math. Natmrid. xiv. (1890), pp. 182-195, pls. i.-vi.

A difference which may possihly he of greater importance than any of those mentioned alove exists, as Prof. Contiare has pointed ont, in the branchial system. In addition to the five plemolnandiam possessed by C. anturetious, C. fromeisemmen has on each side a well-developed arthrobranchia at the hase of the third maxilliped. The statements made hy varions writers ats to the gill-formula of the common shimp. and of the genus of whirh it is the type, are ruromely wontioting. Mthough Huxley, in 1878, Boas, in 1880, amd (lans, in 1886, gave the number of gills in i. mumbis morretly as six, more recent authors seem to have overlooked the arthrohrandia of the third maxilliped, which, althongh small, is not at all difticult to see. Sars, in 1890,* gives among the characters distinguishing Cromyom from Pompmitus, the presence of five gills in the former and six in the later genus, and this statement is mpied ly Mr. Stebing.t Ortmann, in his revision of the Cretmomidie in 1895, + nemes a mumber of speries of Crem!em which he has examined and found to have only five gills. One of the mames mentioned, "typiocls," does mot appar elsewhere in the paper, but it may be comjectured that it refers to the typieal form of the speries $C$. culymis. Two other speries on the list are C. afinis and C'. fromiseorum. In these three suerics, and also in C. allmami and C. nigmoundu. I fime on the contraty, that the atholnamehia is well developed. In the absene of trmstworthy data as to the ormmene of this gill in the other speries from the northern hemisphere, it is not possible to estimate the importane to be attached to its alnsume in C. Antureticus. It may he noter, however, that it is allosent
 mot very sharply defined from (bunfon, and to which, in its strongly swhtured carlpace, the present puries has some resemblance. Prof. Coutiore, in his preliminary moter on the Decajurla of the 'Belgina, has called attention to this resemblanee to
 sulgemus, Xituromym, for the Antaretic speries. I have not been able to examine the strubtme of the male pleoponts, to which he attaches some importance, hat the other 'haracters which he mentions do not seem to me to justify this step.

Latow.-A mmber of larve of this species were collected, all in a stage of development corresponding to the "last larval stage" of Prof. Sars. The rostrum is very long amd slender, extending well heyond the eyes. There is a smatl median dorsal tooth on the campace, about midway between the back of the onl it and the "cervical" moove, and a little in front of it is a rounted papilla (represented in some of Sass's figures) probahly representing the problematical "dorsal organ" of some Euphausid laree. The aldomen is mamed, except for the paired spines at the posterior end of the fifth somite, which are lomg and slemder, almost as in sarsis figures of the larve of Pontophitus, and, as in that gemmsalso, the sixth somite in very long. The telson is very large, in the form of an almost equilateral triangle, with the posterion margin
 Fhilat. (1895), 18. 175.
 sulnhelate. The secom legs are (as in the wher sumes of the gemme (rommen)
 the eath side, comeroming to the first fom laws.
 . Tanuary $22,190 \pm 500$ fathoms. 1 o (jnv.) (!). Fanuary 27, 190\%. 300 fathoms, off Barricr, 1 ? Mard 4 , 1904. "e5t fathoms, 1 p.

Larval of this speries were taken in Winter Quarters on Shptember 1:3, 190:, Felnuary 8, 1903, Mard 10, 190:3, and Mard $123,1903$.

Fragments we taken fon the stombindo of seals on several necasions.

# URUSTACEA. II.-OUMACEA. 

By W. T. Calman, D.sc.

(t Plate.)
The collertion of Comecen obtained by the 'Discovery' is a very mall our. la anlition to a speries collecter at the furklame lslamds and omitted from the present report an not belonging to the strictly Antaretic fama, it omprises only fom operies, two of which are represented by solitary specimens.

No Cumach have hitherto been recorded from within the Antarctic Circle. In the sul-Antaretie region five speries were got by the "Challenger' at Kerguclen and deseribet by Prof. Siass, and In. Zimmer hats more tecently described two species from South Georgia and four from Tierra del Fuego. I am unable to identify any of these -peries in the present collection.

On the other ham, I have regarted one of the forms got hy the ' Dinonvery as a varicty of a speries known hitherto from the North Athantir and the Meditertamean. It is necessary to add, howerer, that 1 do not think much importance can be attacherl to this circumstance from the peint of view of zoo-geography. In this ammection 1 would refer to the emphatir statement of $\mathrm{Dr}_{\mathrm{r}}$. Giesherht, already fuoted with approval loy Dr. H. J. Hansen :-"Unsere Kemonisse von der Microfama der Kusten ausseremopaischen Meere sind kam der Rede werth." My own worli lemts me to believe that the Cummed will, in the future, illustrate most adminally the opinion of these two distinguinhed carcinolngists. The species in fuestion, Crumplaspis remprosen, wat described by lrof. Surs in 186:3, and, until 1901, it was only known from Norwegian seas. Nore recently it has been obtained ly Mr. E. W. I. Holt ofl the West of lreand, and by Dr. Lo Bianw in the Mediterancan, near ('apri. There wan be little doult that, with appropriate methots of collecting, its known range might be vastly inereased, and it might even be found to he continnous with that of the variety now described.

> Lefons austrabls.
> (Text-figs. 1-3.)
 seventhe of total leugth. compersisel, the demeal erest insely semated thomghon it whole length. P'semborstrum horizontal or very slightly upturnerl, acute, a litale less than one-fiouth of total length of canapace. Antemal noteh widely open, werpying the whole of anterolateral margin. Antero-lateral angle pronsinent, triangular:
serated on it, lower edge. Sutemules with the imer ramus wh emaderable size longer than the first segment of outer ramos. Cropods a little fomger than the last two sumites (weether, pedmede shorter than the sulegual rami and having dive spines on its imme ofge. Endoper with ten pince on its inner elge. withont sete on its outer edge, the proximal segment twiee the length of the distat.


IIG. 1.-Leucon anstrales, ADULT FLMsl.E, FRGM THE SIDE, APPENDAGES OMITGLD.
Oecurver.-W.O., June 15, 1902. D-net.
Remetris.-Among the thirteen species at present referred to the genns Leucen. four have the inner ramus of the antenmule of "onsiderable size, at least efluad in length to the first scement of the outer. Of these, $L$. lompirestrix, Name, $L$.



Fig. 2.-Lencul australis, caibarace and antexnele.


Fig. 3.-Lellcon australis, last somite and chohod.
antero-lateral margin serrated abose the noteh. L. sptemedentus, Zimmer, from Tierra del Fuego, resemblen the present species in the form of the antemal notch, but differs in the truncate pseuthostrum, in having the serrations of the dorsal crest confmed to its anterior part, and the distal segment of the inner ramus of the uropods much less than half the length of the proximat segment.

## Euborelila staflas.

(Figs. 1-6 oul Plate.)
Deseription of sub-rdult fomale. Thotal length 5.8 mm . The antero-hateral margin (fig. 2) of the carapace ends blow in a strong curved tooth, ahow which the marrin is roncave, hecoming convex and hearing about four rey slightly maked teeth immediately helow the well-hefined antemal moth. Above the motch the marsin is nearly straight, and is withont teeth. The upper margin of the proudorostrum is convex, without any projertion behind, and bears a tuft of lomg seter.

The pemultmate admamal smite bears on its fustorn margin above a pair of very long sete.

The antemules (figs. :3 and Ba) have buth rami rathere stonter than is newal in the genus and armed with strong spines.

The maxillipeds and legs agree very closely in their proportions and amature with those of $E$. trumetulu a is figured by Sars.

The urounds (fig. (i) show no anspirnoms differene from thase of $E$. trmentele. exeept that the rami are somewhat stonter.

Adult melle--Total length, 6 mm. The anterion margin of the rampare (fig. 4) is strongly convex, projecting well in front of the single small tooth which defines it belone.

Jn the outer ramus of the antemmle (fig. 5) the proximal segment is equal to the wher three together. The immer ramus raches to the end of the serond segment of the outer.

Occurences-TV.Q., June 15, 190シ. 1)-nct. Jtany specimens. 'Comban Islamd, 100 fathoms.' I specimen.

 what apart, having no distinct antemal moteh in the (arapace of the female. Of the remainder, only $E$. hixpild and $E$. "mon, (i, (). Sars, atree with the prearnt speries in having a strong tooth at the antero-hatemal angle of the watapace. In looth of these species, however, the antern-lateral margin hats strong teeth above as well as below the antemal moth in the female. The only species of Eintorella hitherto recorted from the Southern 11 emisphere is E. splemtill, Zimmer, from South Georgia. The figure of this speries is not entircly satisfactory, but it suggests that the fom of the anternlateral margin of the carapace is very similar to that of the present operies. The specimens examined by me might, in fact, have been identified with In: Zimmurs species, were it not that the latter has the upper edgr of the pseudorostrmen producel behime into a strong comred tooth, of which no trace is to the seen in the "Disenvery' sperimens.

## (GMELLA ACNTRALIS.

(Figs. 7-1: on llate.)
 minths of the total length, compressed, its greatest witth little more than half its length. Seen from the side, its vertioal height is about twothirls of it length; the dorsal edge is strongly arded and serated throughout its length. There are about twenty large teeth, with some smaller teeth between and beride them. asperially in the posterion fart. The anterion tooth of the dopsal rest is elerated above, and werhames the ornkar lohe, which is sub-globular and prominent. The prembostrum is shont, vertioally trumate and shightly ohlique, the pemborotral plates meeting in front of the ocolar hore for a distane eftal to about half the diameter of the later. Is seen from the side, the fronto-lateral suture has a stromg sigmoid curve; the antemal noteh is wide and semi-curoular ; the antero-lateral angle is rounded and strongly sermated. The third of the free thorario somites is produced dorsally into a pair of stont teeth, elosely appoximated in the middle line, rurver upwarls as seen from the side, and oremanging the following smmite. The aldomen is a little shorter than the eephatothoracie region, the somites stont and eylindriad. The thime maxilhipeds resemble those of $C$. pramber, hut the basipodite has alout four teeth, the distal one very strong, on its imer margin. The meropotite also bears a stont tooth internally, and the carpopodite has a smaller one at the distal end of its imere edge. The first legs (fig. 9) are rather short and stont, alout three-quarters the length of the carapace; the lasipontite is about two-thirds the length of the remaining segments, with five strong teeth on the distal part of its outer edge, and ome on its inner edge. The second legs (fig. 10) are very smilar in proportions and amature to those of $C$. Imimmer. The third legs (fig. 11) have the basipontite shemer ame cursed, longer by one quarter than the remaining segments together. The carpopodite is nearly twice the length of the meropolite, and $1 \frac{1}{2}$ times as long as the propolite. The fomth legs (fig. 12) are smilar to the thind, but the fifth are much shorter. 'The hasiporlite is albout twothirds the length of the remaining segments. The uropods (fige 1:i) have the perlume a little less than twice the length of the last somite. The inner edge is serrated, heginning at about one-thim of its length from the base, the serations diminishing in size distally. The endopoulite is about two-thinds the length of the perluncle, and carries a teminal spine of half its length. Its imer edge is serrated, aml bears two (perhaps three) short spines. The exoporlite is twothirds the length of the endoporite, and has a long and slender terminal spine.

Occurremé:-‘W.Q., May 2G, 1902.' I specimen.
Remontis:-This species appears to le sufficiently distinguished from the three known species of Cumellu ly the larger rarapace, with its strongly arched donsal
edge, the numerons serrations of the dorsal crest, and the double tooth-like propection of the thire free somite.

Campylanfin verrigosa var. antafotica.
(Figs. 14-16 on Plate, and text-fig. 4.)

 Ncapel, xvii. (1906), 1. 424.
The Antarctic specimens which I refer to this species differ in the following points from all the northern specimens with which I have compared them :-

The hairs scattered over the surface of the body are much longer ant more conspicnons, though not, apparently, more nomerons. The sides of the carance arm


Fig. 4.-Campylaspis cerrucosa, var. antarctica, fourth and fifth somites of abdomest, FROM ABOVE AND FRON THE SIDE.
more distinctly Hattened or even slightly hollowed, especially over an ohligue area, defined alove and below by rows of tubereles, and corresponding apparently to the lateral aroove of $C$. suldentu. The dorsal tuberdes of the first five alnominal somites are replaced hy sharp teeth (Text-fig. 4), pointing bankwards, amt having the edges more or less distinctly serrated ; and they are accompanied on earh somite by a pair of lorso-lateral teeth, which are hardly indicated in the northern sperimens. The constriction of the fifth somite (Text-fig. 4) is much more strongly marketl, and the pusterior margin of the somite is produced, on the dorsal sile, into a curved median tooth, serrated on the upper margin, in place of a swall tubercle in the monthern specmens. The thomacie limbs do not differ pereptilly in the form, relative proportions armature of the varions segments. The mropods (fig. 16) have the pertucle much more strongly serrated, and the teeth on the imer margin are spiniform, corved ant irregular in size. The imer enge of the entopod is also more distinctly sermated. The specimens are larger than any others I have reen. Adult females measure $5 \cdot 35 \mathrm{~mm}$. in length of loody.

For the purpose of comparisom, I have examined a series of specimens of $C$. cerrurese from the West of Ireland and from the Mediterranean; those from the latter locality include some determined loy Prof. Sars himself. These sperimens, as 1 have elsewhere noter, show considerable variation among themselves and differ in some points from Prof. Sars's figures and deseription. In view of this variation, it Wes not seem possille to attribute specific value to the characters which distinguish the Antartic from the morthern specimens, more especially since I have only very few fully adult specimens of the latter.

Camplaspix norlutusa, dessribed ly Prof. Sars from specimens ohtained ley the - 'la lemger' at Kerguelen, is very simila to the present speries, hat the type operimens, although of large size $(3.75 \mathrm{~mm}$. in length accorling to my measurements *), are without any trace of the last pair of legs, and may, therefore, le presumed to lo immature. The smallest specimens of $C$. verrucose which 1 have seen are about 2.5 mm . long, and have the last legs alrearly fully developed. The smallest of the 'Discorely' specimens are about the rame size as the types of C. nodulow, and they agree in all essentials with the whlts. It is likely, therefore, that lefore attaing the adult state the Korguelen form must grow to a size greatly exceeding that of the 'Discovery' suecimens, and it will le necessary to wait until adult specimens are olitained before deriling what value is to be attarhed to the characters distinguishing it. The most important of these characters are the smaller relative size of the carapace, which is less than one-half of the length of the Jorly, and the absence of any tubercles or teeth on the dorsal surface of the ahdominal somites.
(ecompence:-‘W.Q., Aug. 29,1903 , Sept. 8, 1903, and Feb. 13, 1904.' Many pecimens.

Explanatiox of the Plate.


[^37]

LONDON:
PHINTED BY WHLLIAN CLOWES AND SONS, LMMTED,
UUKL STREET, SIAMFORD STREET, S.E., AND GREAT WINDMILL STREET, W.
(


[^0]:    * Jennett, " Whaling Voyage Round the Globe," 1833 to 18:36, ii., p. 239.
    $\dagger$ The date of Mr. True's paper is 1889.

[^1]:    * In the Leport on the 'Southem (mes" whlletions, the skins of the form epecies of Sntaretic Seale were deseribed, with coloured illustrationa, he thr Anthor of this pitper.

[^2]:    * Compare also Dr. Andersson's aceount of this animal in South Georgia: "Es kam vor, das wir dort bis zu 10 Stiick auf demselben Strande nicht weit ron einander sahen, aber sie schienen in keiner Weise sich um einander zu kümmern, so dass er keinesfalls als ein geselliges Tier zu bezeichnen ist." Op. cito, p. 11 .

[^3]:    * Sce also F. D. Bemett, " Whaling Voyage round the Grobe," 1840, Vol. ii, p. 239.

[^4]:    * Ir. N. Rudmose Brown, The Scott. Geog. Mag. for April, 1905, r. 207.

[^5]:    * See Hutton \& Drummond, op, cit., p, 36

[^6]:    * I'uffin $=$ Frativenla arctica: Ank $=$ Mergulus alle.

[^7]:    * Dr. Pirie states, however, that the Sea Leopra has been seen to come up alongside a floe on which penguins were resting, seize one in its jaws, and sweep down again with its pres. Voy. 'Scotia.' p . 222.

[^8]:    * Shag = Phalecrocorax graculus; Gannet = Sule bassanu.

[^9]:    * l'eewit $=$ V'anellus culyaris.
    $\dagger$ Blackbird $=$ Turdus morula.

[^10]:    * Cf. Potts, in 'Zoologist,' 1881, 1. 295, on the kea.-F. J. 1s.

[^11]:    * Inches, teste R.B.S.

[^12]:    * Since writing the above I have been reminded Ly Mr. Fagle Clarke that duta oltained at the breerling grounds are of far greater valne than those taken from bird that are merely wandering. and that the latter may be very mixkeading. While I agree with this objection, I have allowed my observations to stami for what they are worth, feeling that they may yet achuire some value, if breeding gromms are discoverch farther sonth than the farthest that are at present known, namely, those in the South Orkneys and South Shethands. And this apmenrs to me to be possible, considering how small an area of the Antarctic has as yet been propry explored.- E. A. IV.

[^13]:    * It is, of course, quite possible that these were really of a distinct species, but we failed in all our efforts to

[^14]:    * How many of the birds we saw were really Ih. cormicoides, and how many Ph. fuliginosa, I cannot say. I am certain only concerning the specimen we captured, which Mr. Engle Clarke las kindly identified forme from a col ured drawing of the heat, made inmediately after eapture.

[^15]:    
    Lerres dmminictens, 33.
    Leptonythetes "rolletli, 66, 7in, 100.
    Lewsun's I'ctrel, 87-88.
    Lestris anturetion, (i:3.
    

[^16]:    * Sinee this was written, a paper has appeared ("Ilis," Jan. 1906) from the pen of Mr. W. Eagle Clarke, on the results of the Scottish National Antarctic Expedition. He therein briefly refers, without speeial comment, to the fact that in the young of the Gentoo I'mguin, Pygoscelis papua, the down of the newly-hatehed ehick " soon gives place to a darker coat of down, to the tips of which the paler down of the first coat is attached for a time."

[^17]:    * (ff. Dr. Wilson's Licport on Birds, p. 20.

[^18]:    * Its exact shape cannot be made out from any of the specimens.
    $\dagger$ According to a coloured sketch by Dr. Wilson.

[^19]:    * The description of Dr. Andersson's specimens has not reached me at the time of writing, and the new species of Cephatoriscius dredged by Dr. Gitchrist in the Cape Seas has not yet been deseribed.

[^20]:    * From 'iows, one's own, personal, private, and $\theta \dot{\eta} \kappa \eta$, a case, box, vault.
    $\dagger$ From $\delta \eta \mu \omega s$, belonging to the commonwealth, and $\forall \eta \kappa \eta$, a case, box, vault.
    $\ddagger$ Proboscis pores, gill-slits, and post-oral lamella have not been recognised in the reduced males of C. sibogae ( $10, \mathrm{p} .6$ ), hat the neuter individuals of that species conform with the generic diagnosis in these respeets.

[^21]:    * In drawing up this table the distinctive features of C. yracilis, C. sibogur and C. levinscni have been culled from Harmer's monograph; an independent examination of his specimens was not marle. It is to be noted that Harmer's oriontation of the polypide is not accepted ; the surface of the hoty which he temes anterior in here spoken of as ventral.

[^22]:    Polypides in a common eavity with numerous ostia (sub-genus Demiotheriat).
    Width of branches, 2 mm . or less ; colony diminutive; plumes, less than six pairs.
    Polypides, black; plumes, four pairs, except in males, which have one pair only . sibofaf.
    Polypides with black pigment on stolon only ; plumes, fice pairs . . . gracilis.
    Width of brauches, 4 mm . or more ; phomes, six pairs.
    Cavity of tubarinm with smooth inner surface; distance from one branch to the next abont 10 mm .

    Rodigsoni.
    Cavity of tubarium incompletely subdivided by ridges and partitions of irregular shape; distance from one branch to the next abont 22 mm .

    - Ioderaluphins.

[^23]:    * In these remarks upon the structure and mole of growth of Fhabroplewra, Lankester's classical memoir (13) has been freely drawn upon, also papers by Allman (Quart. Toum. Micro. Sci., n.s. ix., 1869, pp. 57-63, pl. 8), Sars (Quart. Journ. Micro. Sci., n.s. xis., 1874, pp. 23-24, one plate), Fowler (Festschr. 70ten Geburtstage R. Leuckarts, 1892, pp. 293-297, one plate ; ill. Proc. Roy. Soc., lii., 1893, p. 132 ; id. Quart. Journ. Micro. Sci., n.s. xlviii., 1904, pp. 23-31, one plate) : Schepotieff (Bergens Mus. Aurbog, 1904, No. 2, pr. 1-21, three plates; id. Zool. Anz., xxriii., 1905, pp. 795-so6, seven figures), and Harmer (10. p1. 125-128). An independent examination of Fhabdepleura was not made.

[^24]:    * These authors are also responsible for a denial of the existence of collar pores, and divisions of the coelom, and the presence of a notochord, the structure recognised as notochord by Fowler (1892) being, according to them, nothing more than the anterior end of the peduncle. Fowler's observations, it is well to bear in mind. have since been amply confirmed by Schepotieff (1904 and 1905).

[^25]:    * Fowler puts the diameter of the polypide of Phabdopleura at $\cdot 12$ ? man., aml Schepotieff at $\cdot 15$ to 16 mun.
    $\dagger$ The soft secreted material that forms the protective envelope or dwelling of Cephulodiscus has thmost invariably been calleal the "cocnoecium," a term which was shown by Lankester as far back as 1884 ( $13, \mathrm{p} .62$ ) to be inappropriate, for the coenoecimm of the Polyzoa is the locally thickencl cuticle of the hinder part of the polypide's body, to which it is permanently adherent. In deseribing the structure of Rhabdoperura, hankester explains (13, p. 635) that it is the caulotheca or stalk-pipe of this anmal which is the true homologue of the cooncecium of the ordinary l'olyzoon colons: "This equitalence," he comtinues, "makes it all the more necessary to distinguish the tubular awelling of Rhablophara by some other mane, and justifies the special term "tubarimm.' The thbarimu has no equivalent in 1'hylactolamons and Gymmolamoms l'olvora."

[^26]:    * The above was writen before the publication of Hamer's report on the Pterobranchia of the sibora' Fxperlition, and it is interesting to note that in one of the new species deseribed by hin ( $C$. (rinsemi) the polypides are similarly isolated, each tube of the tubariun being oceupied by one polypide and its buds, and that the explanation of the growth of the colony which he puts forward $(\mathbf{1 0}, \mathbf{p}, \mathbf{1 1})$, includes as its essential feature the migration of the buls from the parental thbes, their crawling orer the surface of the colony. and their subuepuently astablithing themseltes in a suitable situation opon the surface, where they secrete thbes of
    
     Written in the sumblici of 190 ot).

[^27]:    * The species now under consideration was temed C. nigrescens (15) before the publication of the 'Siboga' Report on the I'terobramehia. In that Report Ifarmer notes that the epriemis of all parts of the body of C. sibogut is pigmented $(10,111.8$ and $4!9$. De also states that a median line of pigment occurs on the anterior side of the stolon of ( $C$. gracilis ( p .52 ), and that deserted stolons of individuals of this species are deeply pigmented ( P .93 ).
    $\dagger$ The usual orientation of the body is aceepted in this eommunication; the plumed end of the body is regarded as the anterior end, and the surface of the body upor which the mouth opens, and from which the stolon arises, as the ventral surface. Hammer, in his most recent work on the subject (10, p. 2: adopts a new orientation, taling the nain axis of the body as passing fron the midile of the baconl shield through the central nerve mass, imd ending on the rectal site of the body a little below the anus, so that the visceral mass is regarded as a rentral downgrowth. He denies that in the bui the elongating caccal end of the intestine leares its prosition in the part of the "body" near the stalk and migrates along the aboma surface of the pharynx, subserpently opening to the exterior in the position in which the anus is fomm in the adult, mu suggests (10. P . 100 , par. 3) a lateral pinching-in which separates a dorsal intestine from a ventral stomach, with formation of a median mesentery between. One objection to the acceptance of Hammers orientation is that in the adults of C. migrescens the notochord is a long structure lying parallel with the thick face of the shied, and more or less in a line with the pharyngeal axis (text-fig. $10, \mathrm{p} .34$, and it is not unreasonable to regard this as detemmining the median axis of the pulpide. For practical purposes the earlicr terminology is preferable.

[^28]:    * This is odd, in siew of the fact that small gonads can be reeognised in ripe buds not yet separated from the parent stolon.

[^29]:    * Since the above was written, sections have been cut of some eggs of C. nigrescens which prove to be in a state of seguentation. The only stage net with up to the date of this footnote is one in which a single layer of tall, narrow cells surrounds an undivided mass of yolk. July 22, 1906.

[^30]:    * For comparisons of this hind the shield is removed and mounted for exmmination under the microscope.

[^31]:    * Mr. Simith has this morning received Ifr. J. Thiele's report on the (litons of the "deutseher Tiefsee Expedition," in which (rol. ix., p. 332) this species is noted as Notobhitom [g.m.] miomulus: the locality cited (Bonvet Island) show's the wide distribution of the species. En., Oct. 22. 1906.

[^32]:    * MI. Vayssiere (Bull. In Mns. d'Hist. Nat., (1906), 3. 1. 147) gives preliminary diagnoses of the four Nuti. branchs found by the 'Charcot ' Antaretic Expectition (64 to 65 lat. s. and 64 long. W.). They are Arehidoris
     of the characters of the Tritomilite and Tethymelibilie; and Notecolifin !figns,

[^33]:    * The letters refer to figures on the plate; the text figntes are distinguished by cyphern.

[^34]:    * See Davidson, Trans. Limm, Soc., Zud Ser, Vol. IV., Zoolog. (Is81). 1, 49.
    $\dagger$ Davillson t.e., p. 58.

[^35]:    * Spence Bate defines the genus Chorismus as having a "biarticulate synaphipot" (Challenger Liep.' Macrura, p. 616), but he elsewhere eorreetly states that there are three segments (t.e. 1p. 577 and 618).
    $\dagger$ lievent reforms in nomenclature having rendered most of the well-known generin manes of Crustacea unintelligible withont an explanatory footnote, it is necessary to state that I use the mame frongon for the gronus of which the common shrimp is the type.

[^36]:    * Die niedere Thierwelt des antarctischen Ufergebietes. Internat. Polarf. Deutsch. Exped., ii. (1890), 1p. 520-572.

[^37]:    *Sars says " Nearly 5 mm.." which is a little too much, even if the uropods be included.

