\qquad
\qquad

BRITISH MUSEUM (NATURAL HISTORY).

BRITISH ANTARCTIC ("TERRA NOVA") EXPEDITION, 1910. NATURAL HISTORY REPORT.

ZOOLOGY. VOL. II, No. 5. Pp. 113-134.

NEMERTINEA.

WITH FOUR FIGURES IN THE TEXT AND PLATES I-II.

LONDON :
PRINTED BY ORDER OF THE TRUSTEES OF THE BRITISH MUSEUM.
Sold by Longmans, Graen \& Co., 39, Patermoster Row, London, E.C.; B. Quaritch, 11, Grafton Street, New Bond Street,
Liondon, W.; Dulat \& Co., Lid., 37, Soho Square, London, W.; the Midland Educamional Co., Lid.,
41 and 43, Corporation Street, Birmingham;
AND AT THE
Britise Mubeum (Natural History), Cromwell Road, London, S.W.
1915.
[All rights reserved.]
Price Two Shillings and Sixpence.

NEMERTINEA.

BY H. A. BAYLIS, B.A.

//I
WITH FOUR FIGURES IN THE TEXT AND PLATES I-II.
I. General. PAGE
Remarks on the collection, with Summary 11:3
Methods of study 114
Table of Collecting Stations and Species taken 115
II. Systematic and Morphological.
Descriptions of, and remarks on, the varions species:
Fam. Amphiporidæ110
,. Prostomatidæ 118
.. Baseodiscidæ 120
,. Lineidr 122
III.-Literature $1: 4$

I.-GENERAL.

The Nemertinea collected by the "Terra Nova" came, for the most part, from the Antarctic and Suhantaretic regions, chiefly from dredging-stations in the Ross Sea and McMurdo Sound.

Three species, each represented by a siugle specimen, were captured off New Zealand.

The total number of species in the collection is small, and of this number very few are certainly new to science. A survey of the whole collection gives the following results :-

Total number of species, 10 .
Previously described species, 5 .
New species, 2.
Doubtful species, 3.
The previously described species are the following:-
(a) From the Antarctic regions:-

Amphipmrus moseleyi, Hubr.
Amphiporus multilustutus, Joulin.

Prostoma milineatum (Joubin).
Lineus compujatus, M‘Int.
(b) From New Zealand :-

Basentismus gitardia (Hubr.).
The two forms described as new are :-
Bascodiscus contareticus, sp. n., and
Linens seotti, sp. n.,
both from the Antaretic regions.
The three doubtful forms are :-
(1) From the Antarctic regions:-

A very small specimen, apparently helonging to the genus Cerelnctulus, and prolably very young.
(1.) From New Zealand:-

Two species probably belonging to the genus Limens, each represented by one specimen only. They are referred to in the sequel as Limeus, spp. " A " and "B."

The material on the whole is very well preserved, and no difficulty, on the ground of preservation, has been experienced in making out microscopic details by means of sections or otherwise. On the other hand, the number of specimens in some cases is so small that it was thought undesirable to dissect them to any great extent, and the accounts given of their structure must be regarded as subject to modification at some future time, when more abundant material may be available.

It is a matter for regret that almost no record appears to have been kept of the colours and markings of the various species during life. The specimens, by the time that they were handed over to me for study, were all, with a very few exceptions which will be mentioned in their appropriate places, deprived of all traces of their natural colours by the spirit in which they had been stored.

Transverse sections taken by hand were employed as a means of assigning many of the specimens to their position. This method was found extremely valuable for rapidly sorting individuals which were so contracted, or of such nondescript external appearance, as to be inseparable by mere inspection. The sections were lightly stained with Paratarmine or Picrocarmine, and rapidly differentiated, dehydrated, cleared (preferably in Xylol) and mounted in Balsam. In the cases where serial sections were made, the hest results were obtained by staining on the slide with Hremalum, or with Delafield's Hrematoxylin followed by Eosin.

Creosote was found useful in dearing some preparations, such as the prohnescis of
the Amphiporidæ, in order to see details of structure without making permanent mounts.

The following Table gives a conspectus of the various collecting stations, and the species of Nemertinea collected at each station. The numbers in the left-hand column correspond with the numbers in thick type in the general " List of Collecting Stations" of the Expedition (Vol. II., pp. 1-12) :-

Station No.	Position.	Nature of Bottom.	Depth (in fathoms and mètres).	Species.
91	From Summit, Great King, Three Kings Islands, S. $10^{\circ} \mathrm{W} ., 25$ miles (New Zealand)	Rock.	300 fims. $(5+8 \mathrm{~m} .)$	SBascouliscus ginmii. (Linens, sp. " B.
1:34	Spirits Bay, near North Cape, New Zealand.	Shelly.	$\begin{aligned} & 11-20 \mathrm{fms} . \\ & (20-37 \mathrm{~m} .) \end{aligned}$	Linens, sp. " A."
220	Off Cape Adare, mouth of Robertson's Bay (Antarctic).	Shingle.	$45-50 \mathrm{fms}$. $(82-92 \mathrm{~m} .)$	$\left\{\begin{array}{l}\text { Amphiporus moseleyi. } \\ \text { A. multihastatus. } \\ \text { Prostomt wilimeatum. } \\ \text { Lineus corrugatus. } \\ \text { L. scotti. }\end{array}\right.$
294	Ross Sea, Lat. $7 t^{\circ} 25$ S., Long. $179^{\circ} 3^{\prime} \mathrm{E}$.	(?)	$\begin{aligned} & 158 \mathrm{fims} . \\ & (289 \mathrm{~m} .) \end{aligned}$	$\left\{\begin{array}{l} \text { Amphiporus moseleyi. } \\ \text { Lineus corrugatus. } \\ \text { L. sootti. } \end{array}\right.$
314	5 miles N. of Inaccessible Island, McMurdo Sound (Antaretic).	Mud.	$222-241 \mathrm{fms}$, ($406-441 \mathrm{~m}$.)	§Buseodisens rentarcticns. ILinms scotti.
316	Off Glacier Tongue, about 8 miles N. of Hut Point, MeMurdo Sound.	Undecomposed animal remains and mud.	$\begin{aligned} & 190-250 \mathrm{fms} . \\ & (348-457 \mathrm{~m} .) \end{aligned}$	Anephiporns multihastatus. Linete cormyrtus. I . seotli.
331	Off Cape Bird Peninsula, entrance to McMurdo Sound.	Mud.	250 fins. (457 m.)	$\left\{\begin{array}{l} \text { Amphiporus multilustufus. } \\ \text { Linens cornyatus. } \\ \text { L. sentti. } \end{array}\right.$
338	McMurdo Sound, Lat. 7713 s., Long. $164^{\circ} 18^{\prime} \mathbf{E}$.	,	207 fms (379 m.)	〔Limeus cormqutus. (L. scotti.
339	Entrance to McMurdo Sound, Lat. 775 S', Long. 16417^{\prime} E.	,	140 fims. (256m.)	$\left\{\begin{array}{l} \text { Amphiporus moseleyi. } \\ \text { Limens corrugutus. } \\ \text { L. seoth. } \\ \text { ! Corelorntulus, sp., jus. } \end{array}\right.$
340	Ross Sea, Lat. 76 56' S., Long. $16412^{\prime} \mathrm{E}$.	-	160 fims. (293 m.)	\Linens corrngutus. 1L. srotti.
35.5	McMurdo Sound, Lat. if $46^{\mathrm{S}} \mathrm{S}$, Long. $1668^{\prime} \mathbf{E}$.	(?)	$\begin{aligned} & 300 \mathrm{fms} . \\ & (548 \mathrm{~m} .) \end{aligned}$	Breseodiscts anterchions. o Linems sertli.
3.56	Off Granite Harbour, entrance to McMurdo Sound.	Mud.	$\begin{aligned} & \text { no tms. } \\ & (90 \mathrm{~m} .) \end{aligned}$	1 Amphiportes multilustutns. Dineus corrufatus.

II. SYSTEMATIC AND MORPHOLOGICAL.

Order METANEMERTINI.

Fant. AMPHIPORIDE.

Amphiporns, Ehrenberg, 1831.

1. Amphiporus moseleyi, Hubrecht.

Amphiporus moseleyi, Hubrecht, 1887 , pp. 20-22; Pl. I, figs. 20, 21 ; Pl. IX, figs. 4, 7-9; Pl. X, fig. 3 : Pl. XV, figs. $11,12,20$.

Stations 220, 294, 339: 45-158 fathoms.
The collection contains three small specimens and various fragments, including pieces of the proboscis, which I assign to this species, not, however, without some hesitation. The material being so scanty, and the specimens not attaining to the large size of the types in the "Challenger" collection, though some of them are sexually mature, it may be questioned whether we are not here dealing with a new form. But on comparing the details of the proboscis-armature, and hand-sections taken through the whole animal, with the "Challenger" preparations and figures of this species, the resemblances are so great, and the differences so slight, that I (1) not feel justified in making a specific distinction.

With so small a number of specimens at my disposal, I was unable to cut a series of sections, and have therefore no important contribution to make to the anatomy of the species. It may be remarked, however, that in the various transverse sections taken by hand, chiefly in the middle or posterior region of the loody, the lateral nerve-stems do not appear to be situated quite so far dorsally as in the type material. Hubrecht, indeed, lays particular emphasis on the point that the nerve-stems lie abore the lateral gut-crea in A. moseleyi, and notes this as one of the characteristic features of the species. In the examples now under consideration the nerves do, apparently, lie at some distance from the lateral margin of the body, and nearer to the dorsal than the ventral side, but they are not entirely dorsal to the gut-caca, parts of which extend outwards both above and below them. and may be said to envelope them, as it were, on three sides. This slight discrepancy may, of course, be due merely to different states of contraction, or to a difference in the level at which the sections were cut.

The nerve-layer of the proboscis, as I find is the case in the "Challenger" material, contains fourteen longitudinal nerves.

The genital organs are also arranged as stated in Hubrecht's account.

The only other point specially observed was the great development, in some specimens, of muscle-bundles ruming through the gelatinous parenchyme in a dorsoventral direction. These muscles pass through the longitudinal muscle-layer, and are connected with the circular muscle-layer dorsally and ventrally.
2. Amphipornes multihastatue, Joubin. (Pl. I, figs. 1, 2, 5, 7, 9.)

Ampliporus multhastutus [Punnett (in litt.)], Joubin, 1910, 11. 11-12; 'Text-figs. 1.5, 16 : Pl. I, figs. 7, \&

Stations 220, 316, 331, 356: 45-250 fathoms.
This species appears to he tolerably aboudant in and near McNurdo Soumd. It was first recordel from Cape Adare, in the "Southern Cross" collection, and some of the "Terra Nova" material comes from the same locality. The collection contains thirteen specimens and some fragments belouging to this species. As it has been possible to cut some serial sections, and to examine the proboscis carefully, a few points in the structure of the species, which have not previously been described, mat now be noticed, and a few measurements given.

Exterval Featcres.

The largest specimens measure about 5 cm . in length. Their thickness, according to the state of contraction, is very variable.

The alimentary canal and proboscis-sheath have a common opening ou the heal, in the form of a median vertical slit (Pl. I, fig. 2, M.). The exterual openings of the cerelral organs are in the form of crescentic slits, mainly transverse in direction (Pl. I, fig. 2, C.S.) Numerous eyes were found to be present; they are situated rather deep in the substance of the head, and are arranged in two lateral patches (PI. I, fis, 1, E.).

Interxal Anatomy.

Alimentery l'mull.-The cesophagus is at first (in the region of the lomain) very narrow. Soon, however, it expands into a voluminons stomarch, with much folded walls. This is sumeceded again hy a narrower pyloric camal (Pl. I, fig. 5. Pyl.) which opens into the mid-gut at about $t \mathrm{~mm}$. (in a spirit specimen, ats (alculated from serial sections) from the tip) of the head. There is a large (acam (Pl. I, fig. 5, Caer.) extending forwards from this point. ventrally to the prloric (allal, as far as the posterior end of the folded stomach, with which it appears to lee in Close contact. This caecum sends out numerons lateral porkets (Pl. I, fig. J. L.P.). which courve upwards within the muscles of the body-wall.

Proloseris.-The most striking feature of the proboscis in this species, as M. Joubin notices, is its very great thickness in proportion to the amimal's body. Its anterior portion is exceedingly musculat, and its diameter is almout equal to half that
of the borly (II. I, figs. 5, Pro). The nerve-layer of this portion of the organ contams sisteen longitudinal nerves.

The armature of the proboscis (PI. I, fig. 7) is quite distinctive. The stylets are of a blunter and stouter shape than is usual in the genus, and are particularly hroud at the hase. The functional stylet measures $0.28 \mathrm{~mm} .-0.40 \mathrm{~mm}$. in length, and in width, at the point of attachment, $0 \cdot 12 \mathrm{~mm} .-0 \cdot 22 \mathrm{~mm}$. The hasis of the functional stylet is also very hroad and stout, and is of a somewhat triangular outline. It measures $0.70 \mathrm{~mm} .-1 \cdot 3 \mathrm{~mm}$. in length, and $0.4 \mathrm{~mm} .-0.8 \mathrm{~mm}$. in width at its thickest part, which is posterior.

The reserve stylets are contained in twenty-eight or thirty pockets, arranged in a sirele round the bulbous expansion of the proboscis (PI. 1, fig. 7). Each pocket contains one, or at most two, stylets.

Body-crell.-The external epithelium stands on a comparatively thick hasementmemhraue (Pl. I, figs. 5 and 9, B.M.). The circular muscle-layer is not very thick, but the longitudinal layer (Pl. I, figs. 5 and 9, L.MI.) is well-developed, and about equal in thickness to the external epithelium and hasement-membrane together.

Cephutic Orgme.-Each of the crescentic apertures leads into a cavity which is wide at first, hut soon becomes a narrower tube, circular in section, rumning backwards and inwards to come into connection with the anterior part of the brain. The imer che of each organ is surrombled by the usual ganglionic and glandular structures.

Genital (oryms.-In both sexes the gonads are arrauged in a manner very similar to that of A. moseleyi; i.e, they are distributed round the inside of the looly-wall, so that several may he seen in the same transverse section (Pl. I, fig. 9, (i.), and without amy definite alternation with the gut-ceca. Their ducts open, for the most part, at the sides of the borly, but towards the hinder end, where the genital saws are more numerons, some of the openings are dorsal and ventral.

Fam. PROSTOMATIDE.

P'rostomn, Ant. Dugès, 18:28. [=Tetrastemme, Ehrenberg, 1831.]
: Proxtmur unilinentum (Jouhin). (Pl. I, figs. 3, 8. 'Text-figs. 1-2.)
Tectrastcomm unilincatum [Punnett (in litt.)], Joubin, 1910, p. 12. ; PI. I, fig. 9.
Stations 220 , :3:39: 45-140 fathoms.
Of this pretty little species there are nine examples in the present collection.* The type specimens in the "Southern Cross" collection are in poor condition, but there (am be little doubt of the determination of these imdividuals. One of them (Pl. I, fig. :3)

[^0]is somewhat larger than the type specimens, the body measuring 8 mm. in length, and 3 mm . from side to side at the widest part, which is athout the middle. The animal tapers towards the head and tail. The dorsal surface is convex, the ventral surface concave. The proboscis was extruded to a distance of 3 mm . hut is now hroken off. and a microseopic preparation has been made of it to show the armature.

Several of the specimens are very minute. measuring ouly about 2 mm . in length.

The coloration (in spirit) is as follows: the dorsal side is of a yellowish flesh-colour, with a distinct reddish-hown pigmented median stripe: the ventral side is of a pale ochreous yellow.

The four large eyes have been made out by clearing in creosote. The two on either side lie close together, one hehind the other. (Textfig. 1.)

Firi. 1.-Prostoma unilineatum: dorsal view of the anterior end, magnified, showing the eyes (E.)

The anatomy has not been fully worked out, as serial sections have not heen cut. A few transverse sections taken by hand reveal the following characters:

Body-rull.-The external epithelium (Pl. I, fig. 8, Ep.) consists of very tall cells, interspersed with many unicellular glands and their secretions, which are seen excaping to the exterior. It rests on a thin basement-membrane, which separates it from the circular muscle-layer. Both this latter layer and the suceeding longitudinal layer are thin and but feebly developed.

Ora.-The largest specimen is a female, and the entire space within the longitudinal body-muscles, where not occupied by the gut and its lateral diverticula, or by the proboscis-sheath, is filled with eggs of relatively enormons size (Pl. I, fig. 8, (1).). measuring about 0.4 mm . in diameter. Their nuclei are also large $(0.08 \mathrm{~mm}$. -0.1 mm . in diameter) and (ontain many refringent globules.

Probureris-sheath and Probuscris.-The probosidis-sheath

Pisi. 2. - Prostomate umilimeatum: the functional stylet of the proboscis, and its basis, hioghy magnified.
is proportionally large, and is supplied with strong circular musides.

The proboscis is relatively very stout, hat its amature is minute, in accordance with the small size of the whole amimal. The form of the central stylet and its hasis is represented in text-fig. 2. The hasis measures 0.15 mm . in length. There are two pockets containing reserve stylets to the number of alonot forer in catch.

Order HETERONEMERTINI.

Fam. Baskodiscione.

4. Baspodisens. matartions, sp. 11. (Pl. I, figs. t, 6.)

Stations 314 and 355 : Mr Nurdo Sound, ere-300 fathoms.
A fairly distinct constriction immediately behind the mouth, when the head is not retracterd. Cephalic grooves lateral and vertical. Mouth small and circular. Primary basement-membrane of cutis deep, but lonse, and with many radial muscle-fibres. A well-developed layer of gland-cells in connection with the cutis. Bundles of fibres in outer longitudinal muscle-layer of body separated by much gelatinous tissue. Circular muscle-layer thin. Walls of gut not folded. Proboscis slender, and proboseis-sheath thin-walled.

Two sperimens which I refer to this form oreur in the collection.
The larger of the two measures 5.5 cm . in length, and has a maximum thickness of 9 mm . The smaller, which is apparently a young female, measures omly 2 cm . in length and 5 mm . in thirkness.

There is no trace of colour or markings upon either individual.

Exterval Features.

In the small specimen the chatacters of the head (P]. I, fig. 4) can be fairly well made out; it is marked off from the body by a moderately distinct constriation, immediately behind the mouth. The proboscis-pore (P.P.) is a well-marked vertioal slit just below the apex of the head. The shallow rephalic groores (G.) are lateral and vertical, and apparently do not form a complete ring. The mouth (M.) is small and circular, with regularly wrinkled margin.

In the larger example the head is much retracted, and little of these features can he made out with certainty.

Interxal Anatomy.

A small piece was taken from ahout the middle of the hody of the small specimen, and cut into transserse sections (Pl. I, fig. (6). These reveal the following features:-

The external epithelium of the body (Ep.) consists of tall cells, resting on a serondary basement-membrane (B. M ${ }^{2}$.), succeded by two thin layers of muscte-fibres. an outer circular and an imer longitudinal. Beneath the latter is a well-teveloped layer (61.) of large glautular cells. Next comes the thick primary hasementmenhatue (B. II^{1}.), consisting of a rather loose comective tissue, through which many bundes of muscle-fibres pass ontward radially.

The outer layer of lomgitudinal borly-musedes (L. II^{2}) romes next in order. The
bundles of fibres lelouging to this layer are somewhat seattered, and are embedded in a considerable amount of gelatinous and solid-looking comective tissue.

The circular muscle-layer (C.M.) is thin. Between it and the outer longitudinal muscles lie the large lateral nerve-stems (L.N.).

The imner layer of longitudinal muscles (L. IL^{1}.) is comparatively thick and dense. Beneath it lie the proboscis-sheath (P.S.), the gut, aml a certain amount of loose connective tisisitie. In this commective tissue, between the muscles and the gut, there are numerous large spaces, some of which are prolably hlood-sinnses, hut others appear to be the gonadial sacs. The former are situated dorsally and ventrally, the latter at the siles. In the anterior part of the series of sections these gonadial spares are empty, hat more posteriorly ova are hegimning to he developed from their walls. The ova always appear on that side of the sac which is towards the exterior. The sex of the larger specimen was not determined, and I am uable to give any particulas as to the arrangement of the gonads in the male.

The gut (Pl. I, fig. 6, Int.) is simple and spacions, and its wall is not fohled.
The probosicis is feelly developed, and its sheath is thin-walled, and not ahmudanty provided with muscles.

With such scanty material availahle, nothing further fan be said at present of the anatomy of this species. Its chief interest lies in the fact that it is the only member of the genus as yet recorded from truly Antarctic waters, unless, we accept Einmolia prmetti as a "good" species. I shall further state my views with regard to this question under the heading of Limells comrugutus; lout I may be permitted to remark here that I can see no reason for referring that form to the genus Eanmiar (or Baseorisens). If this view be correct, the present species will he the only one, I believe. hitherto recorded from a latitude further south than 42°.

Station 91: 300 fathoms.
A single specimen taken near Three Kings Islands, New Zealand, appears to helong, in all probability, to this species. It measures about 6 cm . in length, and has a thickness of 6 mm . The head-end tapers somewhat, and shows a faint surromeding groove, as described and figured by Hubrecht. The tail is conically pointed, and thicker than the heal.

The specimen is a female.
No traces of colour can now be made out.

Fam. LiNEIDAE

SUB-FAM. LINEINA.

Limens, Sowerlay 1806.

Linens corrugutus, M'Intosh, 1876, pp. 322-323. M‘Intush, 1879, p. 262; P1. XV, figs. 17, 18. Studer, 1879, p. 123. Bürger, 190t (1), 1p. 96-97. Joubin, 1910, pp. コ-8: Text-figs. 1-10; Pl. I, fists. 1-5.
Cerebratulus corrugatus, Hubrecht, 1887, p1. 41-43; Pl. I, fis. 17; PI. XI, fis. 9; Pl. XII, figs. 3, 4 ; Pl. XIII, figs. 1-6; Pl. XIV, figs. 2-4. Joubin, 1908, p. 6.
? C'erebrutulus charcoti, Joubin, 1905 (1), pp. 315-318, and text-figure. Joubin, 190.5 (2), p. 432. Joubin, 1908 , pp. 2-6; Fig. 1.

Lineus hanseni, Joubin, 1910, pp. 8-9: Fig. 11.
Eupolit prmactit, Joubin, 1910, 19. 9-10; Figs. 13, 14.
Stations 220, 294, :316, 3:31, 338, 339, 340, :356: 45-250 fathoms: Station :324. Me.Murdo Sound, on shore.

This tine species forms the bulk of the present collection, having been captured at nearly all the dredging stations in the Ross sea and McMurdo Sound, where it is evidently very abmudent.

The best account of this form is still that of Hubrecht (1887) in the report on the "Challenger " wollection. His description and figures of the histological details of the body-wall in particular are most accurate and complete.

The original description of the species hy M'Tatosh (1876) is very hrief, and may he quoted here in full :--
"Borly (in spirit) Hattened, rather abruptly pointed anteriorly, and more gradually posteriorly. The essophageal region is marked extemally by a series of prominent and somewhat regular ruga, which sweep from the mouth dorsally and ventrally; so that the dorsal view recalls that observen in Arion uter.
"Colour dark olive throughout, with the exception of a white band, which crosses the anterior horder of the shout, and passes backward to the posterior third of the lateral fissure, where it hends dorsally and terminates.
"The special characters are the very large mouth, with the prominent rugre, which show that the animal probably possesses unusual powers of asophageal protrusion-a supposition horne out by the great development of the external circular muscular fibres and the sucreeding longitudinal coat of the organ. The internal glantular lining is also very firm. The outer layers of the proboscis correspond with the type in the Lineidre ; hut the internal longitudinal layer is largely developed."

In size the specimens in the present collection vary very greatly; the smallest of the young indiviluals measure about 6 cm , in leugth, and are generally coiled ventrally in a spiral when in spirit. The largest specimen is 65 cm . in length; this example was fomed "washed up on Hut heach, Fel. 28th, 1911," and is in a
very expanded condition. Another measures 52 (am. and there are several of nearly this size.

The colours of the large examples are no longer distinguishable-some arn perfectly white, while others have apparently been discoloured hy the spirit in whid they were kept.* The young, however, still show the characteristic markings mentioned in M•Intosh's description. The gromm rolour is now (in wirit) a dirty reddish hrown ahove, somewhat paler below, and with slight indications of a paler longitudinal stripe on either side in some cases. The cephatice slits are elged with white and a white streak passes dorsally from near the hinder end of each slit, forming a nearly "omplete band across the head.

In some of the large examples the hearl is exceedingly elongate. the mouth measuring 23 mm . (in the "Hut beach" sperimen 30 mm .) in length, wht the cephalic slits about 6 mm .

One specimen, measuring ahout 50 cm . in length, exhibits at rery marked Hattening of the posterior end, which led me to question whether this was not of a different species from the rest. It is, indeed, remarkahly similar to the form desiribed by Joulh (1908) as C'ovelortullus chureoti. By means of sertions, however. I have satisfied myself that there is no gromed for leliesing that it is not an example of L. compurutur. It is a male, and in the Hattened posterior portion the testes may the seen in section, disposed peripherally within the muscles of the body-wall. The varions layers of the hody-wall are much reduced in thickness in this region, and the musclelayers in particular appear at this point to be very weak. Hence the probable explanation of the flattening (which is seen in varying degrees in other sperimens also \dagger) is that at the time of sexual maturity the body-wall becomes reduced in thickness, and less strongly muscular, in order to provide more room for the sexual products which are ripening within. The natual result of this process would be that the weakened portion would participate less fully in the muscular contraction which takes place under the antion of a fixing reagent, amd, if abraly Hattened. would remain so.

I have been led, during my investigation of this speries, to entertain doubts an to the validity of certain other pecies from Antarctie waters, and it is appropriate here to make some reference to them. While working on the "Temal Nowa" collection I have had at my disposal the types of the "Chatlenger," "Dhisenvery, "and "routhern

[^1]Cross" collections. Among them there are good series of sections of Linens corrugatus, Linens honsemi, and Eupmlin pmmetti. I have worked through all the series, paying particular attention to those (twelve in all) which were taken through the heads of the worms, and which show the arrangement of the brain, cephalic organs, and blood-spaces in that region. On carefully comparing all these series together, and also with the "Terra Nova" specimens of L. corrugatus, I can find no reason, either in the grosser matomy, or even in the finer details of histology, for regarding any of them as distinct species, and I therefore consider them all synonymous with that originally described hy Mr'Intosh (1876).

One of the most characteristic features of Limmes comburutus, as has been noticed by M. Joulin (1910), is the arrangement of the large blood-sinuses in the hatal. I have paid special attention to this system in all the species mentioned, and find it in every instance identical. Such slight apparent differences as there are, are evidently the result of different states of contraction, and are in no way due to any variation in structure. At the point where the blood-sinus traverses the nerve-collar it becomes so compressed in some specimens as to be almost obliterated, hut it can nevertheless be traced, and shown to go through essentially the same changes at different levels, in all the specimens examined, and in all the "species" above named.

As my conception of this hood-sinus and its transformations differs somewhat in details from that of MI. Jouhin (1910), and as it is an important feature of the species, I have prepared a series of diagrams illustrating its appearance as it is traced back through any series of transverse sections, commencing with the snout of the animal. These diagrams were all outlined with the camera lucida, though they were not all taken from the same series of sections, as the vessels in a given region were better displayed sometimes in one specimen, sometimes in another, according to its state of contraction. In all, however, they could be traced with more or less ease, and reduced to the same plan.

Starting, then, with the tip of the animal's head, we find a single hlood-sinus occupying a median position dorsal to the rhynchodreum (Fig. 3, A.). This siuus soon widens out (Fig. 3, B.), and becomes divided into two lateral spaces by the development of a partition from the dorsal side of the rhynchodrum to the opposite wall of the sinus (Fig. 3, C.). The hood-spaces, a little hehind this point, come to embrace the rhynchodrum between them, each being of a crescentic shape in transverse section (Fig. 3, D.). This condition remains constant until the region of the brain begins to be reached. The connective and muscular tissues in the centre now begin to increase at the expense of the hood-spaces, which become very attenuated (Fig. 3, E.-H.). This development of muscular tissue is the first indication of the proboscissheath proper, whose muscles are at this point continuons with those of the proboscis itself.

A space, or spaces, now hegin to appear in the central tissue. These represent the begiming of the lumen of the proboscis-sheath, which soon completely surrounds

B

Fis. 3.-Lineus corrugatus.-Diagrams of a series of transverse sections, illustrating the vascular system, which has been represented in solid black. The brain and nervons structures are hatched. Pr., proboscis: P.S., cavity of proboscis-sheath ; R., rhymehodam, seen opening to the exterion in the first diagram (A).

A-Shows the median blood-sinus in the smout, lying dorsally to the proboscis-pore (R.) . Blood-sinus represented in solid black.
B-The proboscis-pore has passed into the rhynchodreum (R.), and the blood-sinus is of wider calibre.
C-The blood-sinus becomes divided into two ly a partition of connective tissue developing on the dorsal silc:
D-There is now a complete wall of connective and muscular tissue dividing the two blood-apaces, and enclowing the rhyuchodrum.
E-Nerves from the anterior part of the bran are appearing laterally, and the central tissuc is encroaching more and more upon the blood-spaces, so as to reduce them in size.
F-The central muscular tissue begins to show spaces-the beginning of the cavity of the moboscis-sheath (P.S.). Blood-spaces still further reduced.
G-The cavity of the proboscis-sheath is now seen completely surrounding the proboscis (Pr.), and separated by a thin wall from the blood-space on either side. The hood-spaces are pressed between the hrain and the mohoncino sheath, so as to be very marrow at this point.
H-The blood-spaces hare coalesced rentrally, so as to form a ("whaped ressel enchosing the pobuseis-shenth.
the probosecis. It has only a thin wall ventrally and laterally, separating it from the hood-simus, which is now a single U -shaped cavity, the two lateral simuses having coalesced below. (Hig. :3, H.)

The hood-sinus may be regarded as a single cavity throughout, broken up hy the encroachment of bridges of comective and muscular tissue, which appear quite irregularly, and are not always symmetrical on the two sides. Immediately after passing behind the brain, a median ventral bood-space is formed for a short distance. as shown by M. Jouhin (Fig. . A.). This, however, is soon divided again into two lateral spaces (Fig. \&, B.), which become more and more widely separated by the intervening mass of connective tissue (Fig. 4, U.). This median space is quite distinct from the vessel of the probosciss-sheath, and insteal of passing gradually into it, as described by M. Joubin, never has any comertion with it whatever. This vessel. usually called the dorsal vessel, though clearly belonging to the probosicis-sheath, is a small cavity in the wall of the sheath itself, on the ventral side, appearing first at the level of the hinder part, of the hain, and extending, probahly, thoughout the length of the sheath. Its donsal wall anteriorly is a very thin and collapsible membrane. Posteriorly the vessel sinks more deeply into the tissues lielow the proboscis-sheath, so that its dossal wall beromes much thicker. Not having cut a whole worm into, sections (which would be a somewhat extensive undertaking), I cm mable to state what actually hecomes of this ressel at the himder end ; hut so far as my evidence goes it is not, at any rate at the anterior eml, in direct commmiration with the other system of sinuses. To rontinue the history of the main system, as we pass backwards through the series of sections to the region where the mouth and asophagns appear, the lateral simuses, at first few and large (Fig. 4, C.), are seen to spread round the outside of the œesophagus, so as to embrace it laterally and Aorsally, except for the interruption of the prohoscis-sheath. They subsecuently become more and more subdivided hy the bridges of comertive tissue and musides, and at the same time smaller and less conspicuons.

Finally, hehind the month, their condition is that of a network of cuite small vessels almost completely surrounding the gut (Fig. 4, D.). They lie between the imer longitudinal hody-muscles aml the circular muscle-layer which surromeds the gut, and have now arguired a much more definite lining epithelium of their own. They now present, in fact, exactly the appeatance described and figured by Huberht (1887, Pl. XILI, fig. (i).

One other peint may le mentioned in romertion with the vaseular system, in which I camot entirely agree with II. Joubin's description (1910). He states that both in L. corrmatus and in L. hanseni there are certain "orifices" by which the cavity of the rhynchorlam is in communication with that of the bood-sinus in the head. This communication is said not to be direct, but certain "ampulles " in the thickness of the wall of the rhynchorlaum are said to commminate through a kind of "Rongy tissue with the bood-sinus, being at their imere ends in direat

PS.

Ensi. 4.-.-Lineus corrmutus,-Continuation of the series of diagrams illustrating the vascular system (solid black). C.M., circular muscles; Int., intestine: M., mouth: Oes., asophagus ; P.S., cavity of proboscis-sheath.
A-Bridges of connective tissue and muscles hegin to cross the blood-space irregularly, breaking it up into a network of intercommunicating vessels. A small blood-vessel, with very thin dorsal wall, is now appearing in the wall of the proboscis-sheath, on the ventral side. (The proboscis is no longer seen, having been torn ont in this

B-A median ventral hlood-space has appeared temporarily, but is already being encroached upon lis the connective tissue, and separated into two lateral spaces.
C-The branches of the blood-space are becoming widely serarated, and spreading romm to embrace the walls of the
D.-The fophagus and mouth, when have now appeared.
longitulendition of the blood-space with its network of ressels. Thene now lie below the inner layer of longitudinal muscles, amd completely surzoud the intestme. The bloud-vessel of the proborcis-sheath is still seen, its dorsal wall being an exceertingly thin membrane (exaggerated in thieknem in the drawing).
communication with the lumen of the rhynchodram. The figures given, however, are not altogether convincing ; and on re-examining the material (which is not conspicnously well preserved), I have formed the conclusion that the "ampulle" are to a certain extent artificial results of the contraction of the wall of the rhynchodieum. They are, in fact, a kind of "hernia" of the lining epithelium, which is here and there pushed outwards hetween the muscles, thus forming minute diverticula still in communication with the main cavity of the rhynchodæum. They do not occur in all the series of sections examined, and are not, therefore, an essential feature of the species. Moreover, their outer communications with the bood-sinus are, I believe, imaginary In no rase have I detected any actual opening, and though they sometimes come very near to the surface, I believe that this appearance is entirely due to artificial causes.

Having already stated my conviction that Linens henseni and Enpmelia punnetti are synonymous with L. conruyatus, I may perhaps be permitted further to whl that I feel some doulit as to whether Cerebratulus charcoti, Jouhin, should not come under the same category. The author's description (1908) does not appear to me to show any very atisfactory grounds for its separation; no deseription or figures of its internal anatomy are given, and the main points upon which the distinction of the species is lasted are (1) the marked flattening of the posterior end of the boty: (2) certain very vague features of colour; and (3) the great length and attenuation of the head. Now (1) the Hattening of the body, as I have attempted to show athove, ore uns in ppermens which I camot regard as other than L. corvugatus; (2) colour, in spiritpreserved material, can hardly be said to have any importance at all, being often affecter by the pigments of other specimens, dre, which may have been immersed in the same spirit: while (3) the comparative length of the head, mouth, de., in these worms is a matter obviously dependent upon the growth of the individual and the mode of fixation or preservation employed, and may he extremely varialde in preserved specimens of the same species.

Taking all these facts into consideration, I think the evidence points to the condusion that in all four cases (Linens. cormentus, Limens. hanseni, Cerebratulu. Tharroti, and Eanmlia monetti) we are dealing with one and the same species, and that this is the form originally described by M‘Intosh (1876) under the name of Limene.

Distribution.

By the inclusion of the several species above-mentioned in the synonymy of L. corrmutus. the range of the latter is seen to extend to the western as well as the castern side of the subantarctic regions. The specimens determined by M. Joubin as Gevelontulux. sompurutus and ('sharcoti came from Booth-Wandel Island. I have also to add that some immature specimens brought from Cumberland Bay, South Georgia, by the late Major G. E. II. Barrett-Hamilton's Expedition, 1913-1914, helong, in
my opinion, to the same species. Combining, therefore, all these records, we have the following:-

These localities lie in a failly complete circle, between the approximate latitudes of $50^{\circ} \mathrm{S}$. and $77^{\circ} \mathrm{S}$, and it appears that we are dealing with a single common species which extends completely round the subautarctic region. It is, perhaps, somewhat remarkable that the species, occurning as near as South Georgia, should not have heen recorded from the Strait of Magellan, which lies well within its range of latitude; and possibly sooner or later it will be found there. Its northern range, however, with the exception of Kerguelen and Heard Island, appears to lie within the extreme limits of the pack-ice.

7. Limenes seotti, sp. 11. (Pl. II, figs 1-6.)

Skin smooth. Head blunt and rounded. Mouth rather short. A transverse groove encircling the head behind the cephalic slits. The latter are deep, and communicate with the brain only at their hinder ends. Primary basement-membrane of cutis lacking. Glandular cells in epithelium with a brownish secretion. Outer longitudinal muscle-layer very dense and thick. Proboscis with four longitudinal nerves. Its circular muscle-fibres form dorsal and ventral crosses. Cerebral organs large, projecting into lateral head-simuses.

Length up to 10.7 cm . (probably often greater).
Stations $220,294,314,316,331,3: 38,3: 39,340,355: 45-300$ finthoms.
The species seems to ocour together with $L_{\text {. compurfore in nearly every case. }}$
A number of specimens of this Linene, which is clearly distinct from L. corpllyftus. oceur in the collection. I have named this species in honour of the famentert Commander of the Expedition. The two forms, when in spirit, are gemerally realily separated by mere external inspection, though by this means some sperimens of I. sootti might easily be taken for immature individuals of L. emponfothes which hat hecome decolorised.
vol. II.

External Features.

The chicf points in the external appearance of L. seotfi which serve to distinguish it from L. compugutus are as follows:-

The skin is comparatively smooth, and not thrown into marked wrinkles and fillows.

The heal is uswally blunt and romeded in front. The shout is, however, evidently "apahle of some extension, as in a small number of individuals it has been fixed in a mone tapering form.

The young specimens do not appear to coil up ventrally in a spiral when killed, as do those of L. comringatus.

The mouth (Pl. II, fig. 1) is a longitudinal slit, but not nearly so clougate as in the other species. In the largest individual it measures 5 mm . in leugth. The lips are thrown into regular folds trausversely to the long axis of the mouth.

There is in many cases a more or less well-marked transverse groove behind the cephalic slits. This is especially noticeable on the ventral side (Pl. II, fig. 1), where it runs back in the middle line to meet the anterior end of the mouth, thus forming a V-shapel furrow.

The cephalic slits are very deep and clean-cut, measuring about 4 mm . in length in the largest individuals.

The proboscis-pore (Pl. II, fig. 1) is, as usual, a vertical slit at the tip of the snout, crossing at right angles a slight groove which joins the anterior ends of the cephalic slits.

In length, complete specimens (of which there are few) measure from 2.4 cm . to 10.7 cm . The larger specimens are all fragmentary, and it is impossible to guess at the maximum length probably attained; but this would seem to be certainly very much smaller than that reached by L. corrugutus. In thickness, the largest fragment measures about 8 mm . laterally and 6 mm . dorso-ventrally; the other specimens vary greatly in thickness according to their state of contraction.

No traces of the original colours of the species calu be made out.
Nearly all the specimens appear to he sexually immature.

Internal Anatomy.

Bonly-relll.--The outer epithelium (Pl. II, fig. :3, Ep.) consists of very tall ciliated cells, with numerous smaller interstitial cells at their bases. Between the tall epithelial cells ate seattered many large club-shaped cells (Pl. II, fig. 3, (61. ${ }^{2}$) full of a refractive yellowish-hrown secretion.

Below the epithelium there is at thin but solid-looking basement-membrane (B.MI.), scarcely as deep as the epithelium itself. Beneath this again there is a thin layer of circular muscle-fibres (C. II^{2}.). A well-developed and conspicuous, deeply-staining layer of large glandular cells (G1.) succeeds this, resting immediately upou, and being partly
embedded among, the fibres of the outer longitudinal muscle-layer (L.M ${ }^{2}$.). The deep) "primary basement membrane," so conspicuous in L. corruyntus, separating the glandular layer from the musculature, is entirely alsent.

The outer layer of longitudinal muscles (Pl. II, figh. 2, 3, 4, 5, L. Mi.) is exceedingly thick and well-developed. Its fibres are separated into groups only by slight partitions of comective tissue, so that under a low power of the microseope they appear closely and evenly placed together, and the whole layer has a very solid aspect. Between this layer and the circular muscles there is present the usual nerve-plexus (Pl. II, fig. 2, N.P.), with the two large and well-developed lateral nerve-stems and it small dorsal nerve.
 layer, is very stont and solid in appearance. It is succeeded hy a comparatively thin inner longitudinal layer (L. II^{1}.). The last two layers together make up a thickness nearly equal to that of the outer longitudinal coat.

Alimentary Cicmal.-The intestine is U-shaped in transverse section (Pl. II, fig. .2, Int.), and without marked lateral diverticula. It seems to be characteristic of this species that the "crypts," or pockets, in the lining epithelimm-at least, in the essophageal portion of the gut-form very regular and acute angles.

Probowix-sheuth and Proboscis.-The proboscis-sheath is larger in diameter, relatively to the size of the whole amimal, than that of L. corrougutur. Its lining epithelium rests on (1) a thin basement-membrane, followed by (2) a thin longitudinal coat of musele-fibres; (3) a thin circular coat of muscles, connected dorsally with the circular musculature of the hody-wall; and (4) another coat of longitudinal muscles, which is in reality part of the inner longitudinal coat of the body-wall.

The dorsal blood-vessel (Pl. II, figs. 2, 4, 5, D.V.), or vessel of the rhynchocele, as it might more descriptively be called, lies, anteriorly, on the inside of the circular muscles of the prohoscis-sheath; more posteriorly, it simks through the circular muscle-layer, and eventually comes to lie below it, among the outer longitudinal muscles. It has very thick walls, as compared with the corresponting ressel in L. compuyatus.

The proboseis is thin, and its musculature is mot strongly developect. In tramsverse section (Pl. II, fig. 6) some of the circular muscle-fibres are seen to (rnss earls other dorsally and rentrally (C., C.), and pass outwards to the periphery, as in the common Ceretratulus maminatur. Within the circular layer of muscles there is a nervous layer, containing four large longitudinal nerves (N.). There is no inner longitudinal layer of muscles separating this nervous layer from the lining epithelium. The latter is mainly composed of tall glandular cells.

I'asentar System.-The hood-sinuses in the head are arranged on a plan similar in essential points to that of L. rompatus, already described; but after the L'shaped sinus has patsed hehind the domal commissure of the bran, its two ams extomd dorsally and outwards (Pl. II, fig. 4, B.S.), so ats to embrace the donsal granglia and
cerehral organs. They then become separated by muscular tissue from the ventral portion of the " U " (Pl. II, fig. 4, V.B.S.), just as in L. rompugatus, so that there are for a short distance three apparently distinct spaces. Further back, the system of intercommunicating vessels is not nearly so elaborately developed as in the former species; the blood-spaces round the gut are by no means so distinct or so numerous, the most conspicuous being a pair of longitudinal vessels situated to right and left of the proshoscis-sheath, dorsal to the gut (Pl. II, figs. 2 and 5, B.S.). A few smatler and more irregular vessels can he seen laterally and ventrally.

Sense-oryems and Nercous System.-There is a minute "frontal organ" at the tip of the smout, and the head is very abundantly supplied with gland-cells, some of which are probably connected with it.

The cephatic slits are very deep and straight-sided. There is very little expansion at the bottom of the furrows, which communicate with the brain ouly at their hinder ends. On the posterior wall of each slit there is a prominent transverse ridge, contaning a groove which leads into the canal of the cerebral organ.

The upper extremity of the dorsal ganglion of the brain on either side ends immediately in front of the cerehral organ. In the anterior and upper part of the dorsal ganglia, the largest or "giant" type (Bürger) of ganglion-cells are extraordinarily well seen, and are of very large size in proportion to the whole brain.

The cerebral organs (Pl. II, fig. 4, C.O.) are well-developed, large, and abundantly supplied with glands. On their inner and dorsal sides they are closely surrounded by the lateral portions of the cephalic blood-sinus.

The lateral nerves, with their investment of ganglionic cells, run out ahmost at right angles to the long axis of the amimal for a considerable distance on leaving the hrain (Pl. II, fig. 4, L.N.), and then turn back to run in the usual manner along the sides. They are very stout, and lie somewhat towards the ventral side of the animal (Pl. II, fig. 2, L.N.).

There is a complete plexus of nervous tissue (Pl. II, fig. 2, N.P.) immediately outside the circular muscles of the body-wall, and a small dorsal nerve in this layer, in the middle line, as in L. commatus.

Gemital Oryans.-In a female specimen examined, the gonads appear to form a continuous series along either side of the worm (Pl. II, fig. 5, G.). They compress the gut hetween them, and are not separated from their neighbours by any lateral gut-cerat. The eggs comtaned in this individual measure about $0 \cdot 2 \mathrm{~mm}$, in diameter.
[am umalle to give any acoount of the arragement of the genital organs in the male.

Note :-It may be remarked that there is nothing in my description of this form contradictory to the supposition that it is identical with Cerebramlus validus, Bürger, from South Georgia. On the other hand, the description (1893) of the latter species is based upon one specimen only, and is so brief that it would be searcely possible to determine the species from it, and moreover no figures are given. Hence I have not hesitated to regard the "Terra Nova" material in the light of a new species.

8, 9. Linens, spp. "A" and "B."
"A," Station 134. "B," Station 91.
There remain two specimens, apparently of this genus, from the New Zealand waters, belonging evidently to two distinct species; but as to the determination of these I prefer to reserve judgment. I hesitate to found a new species upon a siugle specimen, as the description must necessarily be incomplete, and may only lead to confusion. One of these two individuals, which I will call Lineur" sp. "A," is interesting mainly on account of the following features: The body is slightly flattened, and the head is shaped like an arrow-head, the posterior ends of the cephalic slits projecting considerably at the sides, and the suout tapering to a point. The cephalic slits are 3.5 mm . long. The mouth is small, and measures only slightly over 2 mm . in length. The skin is deeply pigmented, of a rather dark olive-green colour. The pigmentgranules are closely crowded together in the thick primary basement-membrane, and in another layer immediately outside the circular muscle-layer of the bory-wall. Between these two main layers scattered granules are also seen in the radiating strands of comective tissue among the outer longitudinal muscles. The snout, and the edges of the cephalic slits and mouth, are ochreous, and may perhaps have been red during life. [Length of specimen (tailless), 5 cm .]

Sub-FAM. MICRURINA.
Serebratulus, Renier, 1804.
10. ? Cerefratulus, sp. (juv.)

Station 339.
There is a single very small specimen in the collection, with a minute tail-like appendage at the posterior end. The total length of the animal is about 7 mm . The skin is transversely wrinkled, and the general colour yellowish, thickly dotted with minute reddish-brown spots of pigment.

The snout is thick and square, and the whole head large in proportion to the body. The cephalic slits measure a little over 1 mm. in leugth. The mouth is elongate, but not large, and lies behind the cephalie slits.

It is only provisionally that I assign this specimen to the genus ' 'ermotulus, amb I regard it as prohably a very young individual.

LITERATURE.

Bürger, O.-1893. "Siadgeorgische und andere exntische Nemertinen." Zool. Jahrb., Syst., VII, pp. 207--240, Pls. 8-9.
Büraer, O.-1899. "Hamburger Magalhaensische Sammelreise. Nemertinen." Pp. 1-14.
Büraer, O.-1904. (1.) "Nemertini:" in:" Das Tierreich;" Berlin.
Bürser, O.-1904. (2.) "Res. Voy. S. Y. Belgica en 1897-1899. Zoologie-Nemertinen." Pp, 1-11, Pls. I-II.
Hubrechit, A. A. W.-1887. "Report on the Nemertea." "Challenger" Reports, Zoology, Vol. XIX, pp. 1-151, Pls. I-XVI.
Joubre, L- -1907. (1.) "Note sur un Némertien recueilli par l'Expédition antarctique du Dr. Charcot." Bull. Mus. hist. nat., No. 5, pp. 315-318.
Joubis, L. 1905. (2.) "Note préliminaire sur" les Némertiens recueillis par l'Exp, antarctique française du Dr. Charcot." Bull. Mus. hist. nat., No. 6, pp. 431-437.
Joubin, L.-1908. "Exp. Antarctique française. (1903-1905.) Némertiens." Pp. 1-16.
Joubin, L.-1910. "National Antarctic Expedition, 1901-1904. Vol. V. Nemertinea." Published by the British Museum. Pp. 1-15; 1 Pl .
II'Intosif, W. C.--1876. "Descriptions of some new Species of Annelida from Kerguelen's Island." Ann. May. Nat. Hist. (1), XVII, p1, 318-323.
MIstosif, W. C.—1879. "Zoology of Kerguelen Tsland—Marine Annelida." Phil. Trans, CLAVIII (extra volume), pp. 258-263.
Studer, Th.-1879. "Die Fauna von Kerguelensland." Arch. f. Naturgesch., NLV, Bd. I, pp. 104-141.

Nemertinea, Plate 1.

PLATE I.

Figs. 1, :2, 5, 7, 9.-Amphioorus multihestulus.
3, S.-Prostoma wnilineatum.
" 4, 6.-Bascodiseus antarcticns.
Fur. 1.-Amphiporus multhastatus, Joubin. Dorsal view of anterior end, showing E., the two groups of eyes.

Fic. 2.-Amphiporus multihastatus. Ventral view of anterior end. M., siugle opening of the mouth and proboscis-pore ; C.S., cephalic slits.
Fis. B.-Prostome unitincatum (Joubin). Dorsal view of the entire animal, $\times 8$. Pr., the partially everted proboscis.
Fit. 4.-Bascodiscus antarcticus, sp. n. Ventral view of anterior end, showing G., lateral grooves in which the openings of the cerebral organs are situated; M., mouth; P.P., proboscis-pore.
FIG. 5.-Amphiparus multihastatus. Transverse section near the anterior end. B.M., basement-membrane; Cæc., anterior cacum of the intestine; C.M., circular muscle-layer; D., a genital duct; Ep., external epithelium ; (x., gonadial sac (testis) ; L.M., longitudinal muscle-layer ; L.N., lateral nerve-stem; L.P., lateral pouch of intestinal cacum; Pr., proboscis; P.S., cavity of proboscis-sheath; Pyl., pyloric canal.
EIf. G.-Baseodiscus antarcticus. Transverse section at about the middle of the body. B. M1 ${ }^{1}$. primary basement-membrane; B. M^{2}., secondary basement-membrane; C.M., circular muscle-layer ; Ep., external epithelium ; Gl., glandular layer of the integument; Int., intestine ; L. M ${ }^{1}$., inner longitudinal muscle-layer; L. I^{2}., outer longitudinal muscle-layer; L.N., lateral nerve-stem ; Pr., proboscis; P.S., carity of proboscis-sheath.
Fici. $\overline{\text { I.-Amphiporus multihastatus. Middle portion of the proboscis, seen by transparency, showing the }}$ armature and reserve-stylets.
FIG. ©.-Prostoma wilineatum. Transverse section in the middle region of the body. Ep., external epithelium; Int., intestine; L.N., lateral nerve-stem; Ov., ova; Pi., dorsal band of pigment; P.S., cavity of proboscis-sheath.

Fig. 9.-Amphiporus muttiotastatus, q. Transverse section in the middle region. B. M., basementmembrane; C.M., circular muscle-layer ; G., gonadial sacs, containing ova; Int., intestine; L. M., longitudinal muscle-layer ; L.N., lateral nerve-stems; P.S., cavity of proboscis-sheath.

Nemertinea, Plate II.

PLATE II.

Liuphs smoth, sp. 11.
Fos. 1. Ventral view of the anterior ond of one of the smaller specimens, magnified, and showing the mouth, cephatic slite, probomedspre, and the grone forming an " V " immerliately in front of the mouth.

Firs. 2.-Transverse section towards the midde of the body. D3, Mo bood-sinus: C.A., circular musclelayer; D.N., domsal nerve; 1).V., dorsal bocod-vessel ; (il., glandular layer of the integument; Int., intectine: L. M ${ }^{1}$, imer longitudinal mascle-layer: La M ${ }^{2}$., outer longitudinal muscle-layer ; L.N., lateral nerve-stem: N.P., merveplexus: P.S., cavity of proboscis-sheath.

Fig. B - Portion of the onter part of the body-wall in transverse section, highly magnitied. boal.,

 L. II^{2}., outer longitudinal imnscles.

Fif. 4.-Transverse section immediately behind the brain. B.N., blowdinns; U.C., cerehal canals; C.M., circular muscle-layer: C.O., cerebral organ: D.N., dorsal nerve: I.V., dorsal bloodressel: (Al., sfandular layer: L. IH., inner lomgitudinal muscle-layer: L. M², outer longitudinal mascle-layer; L.N., lateral nervestem passing outwards from the brain: P.s., cavity of proboscis-sheath; V.B.A., ventral pretion of ldood-sinus.
Fir. 5 - -Transverse section through the midde region of the body of a female specimen. B.S., blordsinus: C.MI., circolar muscle-layer; D.V., dorsal hond-vessel ; G., gonadial sac, filled with ora; Int., intestine; L. II^{1}., inner longitudimal musele-layer: L. M² , onter longitudinal musclelayer : P.s.s. cavity of probuccissheath.
Fiff. 6.-Transverse section through the prohoscis, highly magnifien. C., C., points where the cirenlar muscle fibres cross each other dorsally and ventrally: N., lomgitudinal nerves.

Brit. Antarctic (Terra Nova) Exped. 1910.
Brit.Mus. (Nat.Hist.)
Zooloǵy Vol. II.
Nemertinea Pl.71.

[^0]: At the time of studying the material, only two specimens were available Neven more very small individuals were sulbequently sorted out from among dredged material from Nation 220 .

[^1]: * The following note on their colours during life has been submitted to me by Mr. D. (y. Lillie:
 "The lons Limens-like specimens obtamed in the Antarctic were of a purplish lisht red or term-cotta colour on the dorsal side, and a yellowish-creany white on the under surface. 'The colouring was vers much alike in all the larger specimens obtained." He adds, with regerd to this speries, that o they had great power of elongating and contracting their bodies."
 \dagger The "Hut beach" specimen is flattened throughout its entire length, but it is probable that thin individual was in a mopibund condition when collected, and I do mot attan any importance to its exerptional appeamaner.

