asiu

ENT OF COMMENT WARTMENT OF COMMENT STATES OF AMERICA NOAA Technical Report NMFS SSRF-765

Distribution and Abundance of Larvae of King Crab, *Paralithodes camtschatica*, and Pandalid Shrimp in the Kachemak Bay Area, Alaska, 1972 and 1976

**Evan Haynes** 

April 1983



U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service

### NOAA TECHNICAL REPORTS

### National Marine Fisheries Service, Special Scientific Report—Fisheries

The major responsibilities of the National Marine Eisheries Service (NMES) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for optimium use of the resources NMES is also charged with the development and implementation of policies for managing national fishing grounds, development and enforcement of domestic lisheries regulations, surveillance of forcign fishing off-United States coastal waters, and the development and enforcement of international fishery agreements and policies. NMES also assists the fishing industry through marketing service and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry.

Fhe Special Scientific Report – Eisheries series was established in 1949. The series carries reports on scientific investigations that document long-term continuing programs of NMES, or intensive scientific reports on studies of restricted scope. The reports may deal with applied fishery problems. The series is also used as a medium for the publication of bibliographies of a specialized scientific nature.

NOA V fechnical Reports NMES SSRF are available tree in limited numbers to governmental agencies, both Federal and State. They are also available in exchange for other scientific and technical publications in the marine sciences. Individual copies may be obtained from D822, User Services Branch, Environmental Science Information Center, NOAA. Rockville, MD 20852. Recent SSRF's are:

726. The Gulf of Maine temperature structure between Bai Harboi. Maine and Yarmouth. Nova Scotia. Jane 1975. November 1976. By Robert J. Pawlowski December 1978. iii + 10 p. 14 figs. 1 table.

727 Expendable bathythermograph observations from the NMES MARAD Ship of Opportunity Program for 1975 By Steven K. Cook, Barelav P. Colfins, and Christine S. Carty, January 1979, iv +93 p. 2 ligs 1.13 tables, 54 app. ligs

728 Vertical sections of semimonthly mean temperature on the San Francisco Honolulu route: From expendable bathythermograph observations. June 1966 December 1974 By I F T Saur, L F Eber, D R McLain, and C E Dorman January 1979, m + 35 p, 4 figs., 1 table

729 References for the identification of marine invertebrates on the southern Atlantic coast of the United States. By Richard E. Dowds: April 1979, iv  $\pm$  37 p

730 Surface circulation in the northwestern Gulf of Mexico as deduced from drift bottles. By Robert F. Jeniple and John A. Martin. May 1979, m + 13 p., 8 figs. 4 tables.

731 Annotated bibliography and subject index on the shortnose sturgeon. *Acipensei brevirostrium*: By James G. Hoff, April 1979, in ±16 p

732 Assessment of the Northwest Atlantic macketel, *Scomber scombrus*, stock By Emory D. Anderson, April 1979, iv + 13 p., 9 figs., 15 tables

733 Possible management procedures for increasing production of sockeye salmon smolts in the Naknek River system, Bristol Bay, Alaska, By Robert I. Ellis and William J. McNeil. April 1979, in +9 p. 4 figs., 11 tables

734 Elscape of king crab. *Paralithodes cantschattea*. from detelict pots. By William I., High and Donald D. Worlund. May 1979. iii +11 p. 5 figs. 6 tables

735 History of the lishery and summary statistics of the sockeye salmon, *Oncorhynchus nerka* (runs to the Clignik Lakes, Alaska, 1888–1966, By Michael I, Daliberg, August 1979, iv +16 p. 15 ligs). H tables

736 A historical and descriptive account of Pacific coast anadromous salmonid rearing facilities and a summary of their releases by region, 1960–76. By Roy J. Whide and Robert Z. Smith. September 1979, ivo 40 p., 15 figs. 25 tables

We Movements of pelagae dolphines (*Stenella* spp.) in the eastern fropical Paetic as anticated by results of tagging, with summary of tagging operations, 1969–76. By W. L. Perrin, W. F. Evans, and D. B. Holts, September 1979, in (14 p., 9 figs.) 8 tables.

738 = 1.0vironment.d baselines in Long Island Sound, 1972, 73, By R. N. Reid, A. B. Frame, and X. I. Draxler. Desember 1979, iv +31 p, 40 figs, 6 tables.

739 Bottom water temperature trends in the Middle Atlantic Biglit during spring and autumn, 1964–76. By Clarence W. Davis, December 1979, in - 13 p., 10 tigs., 9 tables

740 - Food of filteen northwest Atlantic gaditorm lishes. By Richard W Langton and Ray 1 - Bowman (February 1980, iv +23 p = 3 figs., 11 tables

741 Distribution of gammaridean Amphipoda (Crustacea) in the Middle Atlantic Bight region: By John J. Dickinson, Roland L. Wigley, Richard D. Brodeur, and Susan Brown-Leger. October 1980, x1+46 p., 26 figs., 52 tables

742. Water structure at Ocean Weather Station V. northwestern Paerfic Ocean. 1966 71 By D. M. Husby and G. R. Seekel, October 1980, 18 figs., 4 tables.

743 Average density index for walleye pollock, *Theragra chalcogramma*, in the Bering Sea. By Eoh-Lee Low and Ikuo Ikeda, November 1980, iii +11 p. 3 figs., 9 tables.

744 Tunas, oceanography and meteorology of the Pacific, an annotated bibliography. 1950-78, by Paul N. Sind. March 1981, iii + 123 p.

745 Dorsal mantle length total weight relationships of squids *Loligo pealer* and *Illex illexebrosus* from the Atlantic coast of the United States, by Anne M. T. Lange and Karen L. Johnson. March 1981, m + 67 p. 5 figs., 6 tables

746. Distribution of gammaridean Amphipoda (Crustacea) on Georges Bank, by John J. Dickinson and Roland E. Wigley June 1981, ui + 25 p. 16 figs., 4 table.

747. Movement, growth, and mortahty of American lobsters, *Homarus americanus*, tagged along the coast of Mame, by Jay S. Krouse. September 1981, in +12 p., 10 figs. 8 tables.

748 Annotated bibliography of the conch genus *Stronibus* (Gastropoda, Stronbidae) in the western Atlantic Ocean, by George H. Darcy. September 1981, iii +16p.

749 Food of eight northwest Atlantic pleuronectriform Tishes, by Richard W. Langton and Ray E. Bowman. September 1981, in +16 p., 1 lig. 8 tables

750 World Interature to fish hybrids with an analysis by family, species, and hybrid. Supplement 1, by Frank J. Schwartz. November 1981, ni+507 p.

751 The barge *Ocean* 250 gasoline spill, by Carolyn A. Griswold (editor). November 1981, iv +30 p. 28 figs. 17 tables

752 Movements of tagged summer (Jounder, *Paralichthys doutatus*, off sonthern New England, by 1: E. Eux and E. E. Nichy. December 1981. (ii) +16 p., 13 Jigs., 3 tables

753 Eactors influencing ocean catches of salinon. *Oncorhynchus* spp., off Washington and Vancouver Island, by R. A. Low, Ji. and S. B. Mathews, January 1982, ix + i2 p., 6 figs., 7 tables

NOAA Technical Report NMFS SSRF-765



Distribution and Abundance of Larvae of King Crab, *Paralithodes camtschatica*, and Pandalid Shrimp in the Kachemak Bay Area, Alaska, 1972 and 1976

Evan Haynes

April 1983

U.S. DEPARTMENT OF COMMERCE Malcolm Baldrige, Secretary National Oceanic and Atmospheric Administration John V. Byrne, Administrator National Marine Fisheries Service William G. Gordon, Assistant Administrator for Fisheries

# Distribution and Abundance of Larvae of King Crab, *Paralithodes camtschatica*, and Pandalid Shrimp in the Kachemak Bay Area, Alaska, 1972 and 1976

#### EVAN HAYNES'

#### ABSTRACT

Distribution and abundance of larvae of king crab, Paralithodes camtschatica, northern shrimp, Pandalus borealis, humpy shrimp, P. goniurus, coonstripe shrimp, P. hypsinotus, and sidestripe shrimp, Pandalopsis dispar, were studied in the Kachemak Bay area, Alaska, in 1972 and 1976. In both 1972 and 1976, larvae of king crah, northern shrimp, and humpy shrimp first appeared in outer Kachemak Bay; their abundance was greatest in the central portion of the outer bay. Two additional species were studied in 1972, coonstripe shrimp and sidestripe shrimp. In 1972, the center of abundance of sidestripe shrimp larvae was similar to that of larvae of king crah, northern shrimp, and humpy shrimp. Coonstripe shrimp larvae were most abundant in the inner bay and along the northern shore of the outer hay.

The direction in which larvae were transported out of outer Kachemak Bay was only in partial agreement with suspected water-current patterns and may have been influenced by behavior of the larvae. Continued abundance of larvae in outer Kachemak Bay may be caused by entrainment of the larvae in gyres.

Depending on species and area, pandalid shrimp larvae are released at different times and over different periods. For example, larvae of northern shrimp appeared in plankton catches earlier than larvae of humpy shrimp. Coonstripe shrimp had the longest release period of all the shrimp sampled.

From the percentage of glaucothoe in the samples, king crah larvae probably settle in the Bluff Point area in outer Kachemak Bay. Larvae of pandalid shrimp probably settle in outer Kachemak Bay and possibly lower Cook Inlet, but exact locations cannot be determined only hy observing changes in morphology of the larvae.

Vertical depth distributions of larvae of king crah and pandalid shrimp were generally similar. Early-stage larvae of king crah, northern shrimp, and humpy shrimp migrated vertically in a diel cycle. A thermocline did not prevent migration to surface waters.

#### INTRODUCTION

Little is known about the larvae of king crab, *Paralithodes auntschatica* (Telesius), and pandalid shrimp in Alaska; most of the research has dealt with adults and immatures. The geographical isstribution of zoeae of king crab in the southeastern Bering Sea has even studied (Takeuchi 1962, 1968; Rodin 1972; Haynes 1974), had the morphology of larvae of blue king crab, *P. platypus* Birandt), described (Hoffman 1968). The larval morphology of boonstripe shrimp, *Pandalus hypsinotus* Brandt, humpy shrimp, *P. coniurus* Stimpson, northern shrimp, *P. borealis* Krøyer, and ebllow-leg shrimp, *P. tridens* Rathbun, has also been described Haynes 1976, 1978, 1979, 1980).

The National Marine Fisheries Service Auke Bay Laboratory eggan an investigation in 1971 of the early life history of king crab and pandalid shrimp in Kachemak Bay. Alaska, to answer an aportant question of fisheries managers—Do the larvae of king ab and pandalid shrimp found in Kachemak Bay originate and setin Kachemak Bay?

The abundance and distribution of the larvae over time, area, and pth were determined by systematically sampling Kachemak Bay id lower Cook Inlet with plankton nets. In 1971, the sampling thnique was standardized and seasonal occurrence of the larvae rified. In 1972, Kachemak Bay was determined to be a major cease area for larvae of king crab and pandalid shrimp. In 1976, in oint study between the National Marine Fisheries Service and the

Northwest and Alaska Fisheries Center Auke Bay Laboratory, National Marine theries Service, NOAA, P.O. Box 155, Auke Bay, AK 99821.

Alaska Department of Fish and Game, it was determined that some of the larvae released in Kachemak Bay were dispersed seaward into lower Cook Inlet.

This report documents outer Kachemak Bay as a major release and settling area for larvae of king crab and pandalid shrimp. The term "outer bay" refers to the area of Kachemak Bay from Homer Spit seaward to long. 152°00′W; "inner bay" refers to the area from Homer Spit to the head of the bay. Depth distribution, diel migration, and settling areas of the larvae are also discussed. Dispersal of the larvae is compared with water-current patterns.

#### **METHODS**

The sampling area in 1972 extended from the head of Kachemak Bay westward to a line extending from off Anchor Point to approximately Flat Island (long. 152°00'W) (Fig. 1A). Tows were made at 24 stations semimonthly from the latter half of March through June.

In 1976, the sampling area differed slightly from the sampling area in 1972 and included the area from near Homer Spit (long. 151°30'W) westward to long. 152°30'W (Fig. 1B). Tows were made at 47 stations during four sampling periods. 10–13 May, 1–3 June, 22–24 June, and 13–15 July.

In both years, the sampling stations were distributed somewhat evenly throughout the sampling area. Not all stations were sampled during each period because of inclement weather, especially at the beginning of the season. Locations of all tows, both those yielding and not yielding larvae, are indicated for each sampling period in the figures showing larval distributions. Sampling techniques were different in 1972 and 1976 because of different study objectives. In 1972, the objectives were to determine both geographical and vertical distributions of the larvae; whereas in 1976, the objective was to determine only geographical distribution.

Samples were collected in 1972 with four Miller high-speed samplers (Miller 1961) fished at different depths. These samplers, with nets of 0.571 mm mesh, retain their theoretical filtering capacity until they are three-fourths clogged and are efficient at speeds up to 10 kn (Miller 1961). Four samplers were towed simultaneously at each station at different depths on a single wire. Depths below 100 m were not sampled because of gear limitations. Sampled depths were estimated from wire profiles, which were determined by making repeated tows using time-depth recorders at various locations on the wire (for method, see Glover 1962). Each sampler sampled one-fourth of the water column in five step intervals of 2 min each, regardless of station depth. At depths of 100 m or less, the percentage of the tow taken outside the desired sampling depth was 6% or less (Miller 1961). In this analysis, it was assumed that each sample represented only its intended stratum. For discussion, portions of the water column sampled are referred to as strata A, B, C, and D, with stratum A nearest the surface and stratum D nearest the bottom. Circular tows were made to minimize effects of currents.

Diel vertical migration of larvae of king crab, northern shrimp, and humpy shrimp was studied over a 22-h period on 10–11 May 1972. Every 2 h, tows were made with Miller high-speed samplers fished in the usual manner. In addition, another Miller high-speed sampler was towed just under the surface at each 2-h interval from 2000 h, 10 May, to 0600 h, 11 May.

The water volume filtered during each tow was estimated from a Rigosha flowmeter. The flowmeter, enclosed in a polyvinylchloride housing fitted with stabilization fins, was attached with the sampler at the top wire stop. Adjustments for the amount of water filtered by the deeper samplers were obtained by making repeated tows at various depths with flowmeters attached at each sampler position. Once these adjustments were obtained, only the top flowmeter was used. Flowmeters were calibrated by towing them over a known distance at a sampling speed of 5–6 kn (2.6–3.1 m/s). The flowmeters performed consistently during the entire sampling period.

Plankton was collected in 1976 with two 61 cm bongo nets (Posgay et al. 1968) fished side-by-side from nearbottom to surface. Nets had 0.333 mm mesh, and cod-end jars had 0.571 mm mesh. Samples were taken by lowering the nets to about 1 m from the bottom and retrieving them vertically at a velocity of slightly less than 1 m/s. In 1972 and 1976, samples were washed from nets and preserved in a 5% solution of Formalin and seawater.

In the laboratory, samples containing about 400 larvae or less were examined in their entirety; samples containing >400 larvae were divided into equal portions using a splitter described by Cooney (1971). The splitter showed no significant differences (P>0.05) among either individual or pooled aliquot counts.

One scale of abundance for all species and sampling periods tended to mask differences so larval abundance was arbitrarily subdivided into as many as five categories. To avoid masking the differences, power functions of  $X^i$  (X=3, 4, 5, 9, or 10, and i=1, 2, or 3) were used to delimit the abundance categories. The abundance categories used for each species and sampling period are indicated on the charts showing larval distributions (Figs. 2–10).

For each positive tow in 1972 and 1976, data are given on depth and location of each station and on stage of development and number of larvae of king crab and each species of pandalid shrimp captured (Appendix Tables 1–3). Data on larvae of pandalid shrimp in 1976 are given only for *P. borealis* and *P. goniurus*. Larvae of other species of pandalid shrimp were collected during the 1976 survey but only in negligible quantities.

Larvae of king crab were identified from descriptions by Marukawa (1933), Sato and Tanaka (1949), Sato (1958), and Kurata (1964). Larvae of pandalid shrimp were identified from descriptions by Berkeley [1930] and Haynes (1976, 1978, 1979, 1980).

#### RESULTS

#### Distribution and Dispersal of Larvae of King Crab and Pandalid Shrimp

Larvae of the species studied in both years, 1972 and 1976 (king crab, northern shrimp, and humpy shrimp), were found throughout all the areas sampled. Patterns of distribution and areas of greatest numbers of larvae were similar for each species in both years (Figs. 2-20). Samples from the central portion of outer Kachemak Bay had the most larvae of each species. Samples from the inner bay and lower Cook Inlet had fewer larvae than the central portion of outer Kachemak Bay in 1976, larvae of humpy shrimp were abundant along the outer transect of the stations in Cook Inlet (Figs. 14, 15).

Two additional species, coonstripe shrimp and sidestripe shrimp, were studied in 1972 in Kachemak Bay. The areas of greatest abundance of larvae of coonstripe shrimp were markedly different from those of larvae of king crab, northern shrimp, humpy shrimp, or sidestripe shrimp. Larvae of coonstripe shrimp were most numerous in samples collected along the northern shore of the outer bay, off Bluff Point, and in the inner bay near Homer Spit (Figs. 16–18). The distribution of larvae of sidestripe shrimp was similar to that of larvae of king crab, northern shrimp, and humpy shrimp, except sidestripe shrimp larvae were not caught in the inner bay (Figs. 19, 20).

In Kachemak Bay, dispersal of larvae of king crab, northern shrimp, humpy shrimp, and sidestripe shrimp was similar. Larvae of all four species were dispersed into the inner bay primarily along the southern shore and out of the bay southwestward toward Flat Island. Some larvae were also dispersed northeastward toward Anchor Point.

Dispersal of coonstripe shrimp larvae in outer Kachemak Bay off Bluff Point was southwestward, similar in direction to the dispersal of larvae of king crab, northern shrimp, humpy shrimp, and sidestripe shrimp. Dispersal of coonstripe shrimp larvae from the inner bay was probably seaward along the northern shore of the outer bay toward Bluff Point.

# Relation Between Distribution of Larvae and Current Patterns

The following summary of water-current patterns in Cook Inlet and Kachemak Bay was extracted from Burbank (1977). Clear seawater enters Cook Inlet through Kennedy Entrance (Fig. 21); flows northward along the east side of Cook Inlet; eventually mixes with turbid, low-salinity waters from sediment-laden rivers in Cook Inlet; then flows southward along the western shore of the inlet, around Cape Douglas into Shelikof Strait.

Water circulation in outer Kachemak Bay is dominated by two large gyres: A counterclockwise gyre in the eastern half and a clockwise gyre in the western half. The two-gyre system is generally stable but can be altered by strong winds. Water in the gyres has a typical residence time of 1–2 wk, although longer residence times do occur. Water flowing northward enters the gyres along the southern peripheries of the gyres and leaves them along the northern peripheries. Net water transport in outer Kachemak Bay is northward, whether or not the gyres persist.

Water circulation in inner Kachemak Bay is dominated by two counterclockwise gyres: One gyre near Homer Spit, the other near the head of the bay. Surface waters, primarily derived from rivers at the head of the bay, flow westward into the outer bay. Water at depths below about 30 m flows from the outer bay into the inner tbay primarily along the southern shore.

If current were the only factor affecting dispersal, most of the larwae released in outer Kachemak Bay would be carried northward out of the bay soon after hatching. Some would be incorporated into the outer gyre and dispersed southwestward before being carried northward. Larvae not released in the bay would move into outer Kachemak Bay from the south.

The observed dispersals of larvae of king crab and pandalid shrimp from the areas of greatest abundance in Kachemak Bay were only in partial accord with the water currents. Surprisingly, most of the larvae originating in Kachemak Bay were not quickly dispersed out of the bay but remained in outer Kachemak Bay throughout sampling. The clockwise movement of water in the western gyre seems inadequate to account for the extensive dispersal of larvae southwestward from outer Kachemak Bay. There was no evidence of recruitment of larvae into Kachemak Bay from the south either in patterns of dispersal or in differences in seasonal progression of larval stages.

Behavior of the larvae may influence the direction and extent of their dispersal. For instance, vertical diel migration of farvae may affect their horizontal dispersal if the direction and velocity of water courrents vary with depth. The geographical distribution of larvae of many other Crustacea is known to be nonrandom. Larvae of oysters (Crassostrea virginica) are retained within the spawning estuary and often settle upstream from the major spawning populations by selectively swimming in synchrony with tidal cycles (see Wood and Hargis 1971 for review). Larvae of barnaeles (*Balanus* spp.) move in groups that are maintained even in eddies (De Wolf 1973). Behavior of larvae of king crab and pandalid shrimp is essentially unknown, particularly whether the larvae can maintain their geographic position in spite of currents. Until details of the behavior of arvae of king crab and pandalid shrimp are known, the underlying causes of their distributions in Kachemak Bay cannot be determined.

#### Time and Location of Release of Larvae

Areas of high abundance of Stage I larvae were presumed to be release sites. Stage I larvae of king crab first appeared in outer Kachemak Bay in April 1972, and their high abundance in this area in May 1972 and 1976 (Figs. 3, 5) indicated that outer Kachemak Bay was a major release area. Ovigerous king crab congregate in buter Kachemak Bay off Bluff Point each spring and release farrae.<sup>2</sup> Stage I larvae of king crab also appeared in other parts of Kachemak Bay at this time; however, they were less abundant. Their low abundance and pattern of dispersal seem to indicate that the larvae were transported into these areas by currents rather than released there. Kachemak Bay was trawfed from 5 through 13 May 1972 to determine the distribution of female shrimp that were releasing larvae (Fig. 22). (The egg cases remain attached to the pleopods of the female for some time after the larvae have been released.) Stage I larvae of all four species of pandalid shrimp were most abundant in plankton samples collected from areas where females were releasing larvae. Northern shrimp released larvae in the central portion of outer Kachemak Bay; humpy shrimp released larvae somewhat farther seaward. Coonstripe shrimp released larvae primarily at the entrance of, and within, the inner bay. However, Stage I larvae of coonstripe shrimp were also abundant in plankton samples from the northern shore of the outer bay (no adults were sampfed in this area). Female sidestripe shrimp released their larvae in the relatively deep (about 100 m) water of the inner portion of the outer bay.

Northern shrimp apparently released their larvae earlier in 1972 and 1976 than did humpy shrimp. In 1972, Stage I larvae of northern shrimp were first captured 3 April, and Stage I larvae of humpy shrimp were first captured 22 April. During the 10–13 May sampling period in 1976, 59% of the northern shrimp larvae were Stage II compared with only 16% of the humpy shrimp larvae. The percentage of fater larval stages remained greater for northern shrimp than for humpy shrimp until the latter half of June 1972. In the latter half of June, the percentage of Stage V larvae of northern shrimp (39%) was somewhat lower, rather than higher, than the percentage of Stage V larvae of humpy shrimp (50%). The reason for this reversal is unknown. In 1976, the percentage of later stages remained higher throughout the sampling period for northern shrimp than for humpy shrimp.

Time of larval release may be related to the location of the release site. For example, in 1976, larvae of humpy shrimp may have been released later in the lower Cook fullet area than in outer Kachemak Bay. Humpy shrimp larvae were most abundant in the 1–3 June collections in the lower Cook Inlet area but were most abundant in the 10–13 June collections in Kachemak Bay (Table 1). Also, in 1976, humpy shrimp larvae were consistently more developed (in later stages) in Kachemak Bay than in lower Cook inlet (Fig. 23). This difference in progression of larval stages in Kachemak Bay and lower Cook Inlet continued through the last sampling period (13–15 July).

Pandalid shrimp in British Columbia waters apparently begin and complete release of most of their larvae earlier than pandalid shrimp in Kachemak Bay. In waters off British Cofumbia, most of the larvae of northern shrimp were released between late March and early April; most larvae of coonstripe shrimp were released later than larvae of northern shrimp; and both species completed release of their larvae near the end of April (Berkeley 1930). Butler (1964) confirmed Berkeley's findings for northern shrimp and coonstripe shrimp. In addition, Butler showed that release of humpy shrimp farvae in waters near Vancouver, British Cofumbia.

> Table 1.—Number of humpy shrimp larvae captured in the western portion of the lower Cook Inlet study area and in the outer bay of Kachemak Bay, 1976.

| Date       | Larvae in<br>Kachemak Bay<br>(no.) | Larvae in<br>western portion<br>lower Cook Inlet<br>(no.) |
|------------|------------------------------------|-----------------------------------------------------------|
| 10-13 May  | 21                                 | 1.639                                                     |
| 1-3 June   | 55                                 | -06                                                       |
| 23-24 June | 23                                 | 11                                                        |
| 13~15 July | 9                                  | 30                                                        |

<sup>&</sup>lt;sup>2</sup>Data on file at Alaska Department of Fish and Game, Homer, AK 99603. Unpagated.

probably also was completed by April. In my 1972 study, Stage I larvae of northern shrimp were not caught until the first half of April; Stage I larvae of humpy shrimp and coonstripe shrimp were not caught until the latter half of April. Stage I larvae of all three species of pandalid shrimp were most abundant several weeks after the first larvae were caught. In the western Atlantic Ocean, pandalid shrimp also released their larvae later in northern waters than in southern waters (Haynes and Wigley 1969).

As expected, the percentage of each larval stage of king crab and pandalid shrimp was related to the time of year. Only the four larval stages before the glaucothoe (settling) stage of king crab were represented in the 1972 samples; all larval stages, including the glaucothoe, were represented in the 1976 samples (Fig. 24). In 1972, all king crab larvae collected during the 15–30 April sampling period were Stage I. During the next sampling period, 1–15 May, some Stage II larvae were present. By the end of May, the percentage of Stage II larvae had increased, and 2% were Stage III. This progression of later stages continued until the last sampling period. A similar progression occurred in 1976, except the later stages became more abundant earlier in the year. The July 1976 samples contained only three specimens and may not reflect the true ratio of Stage IV to Stage V larvae.

Seasonal progression in abundance of later larval stages of pandalid shrimp (Fig. 25) varied with species. In lower Cook Inlet, the progression was slower for coonstripe shrimp and humpy shrimp than for northern shrimp. In 1972, release of larvae of coonstripe shrimp began during the latter half of April; by the latter half of June, 64% of the larvae were still only Stage II. The presence of Stage I larvae in plankton is partly dependent on how long females release larvae. From samples of ovigerous females collected over several years, coonstripe shrimp larvae have been observed to release over a longer period than other pandalid shrimp larvae in Kachemak Bay. The high percentage of Stage II larvae of coonstripe shrimp in the latter half of June was probably related to this extended period of larval release. In 1976, the slower progression in abundance of each larval stage of humpy shrimp in lower Cook Inlet compared with humpy shrimp in Kachemak Bay (Fig. 23) was probably related to later larval release in the lower Cook Inlet area.

#### Settling Areas of King Crab Glaucothoe

The presence of king crab glaucothoe in plankton collections is generally considered indicative of a settling area (Makarov 1967). The molt from Stage IV to glaucothoe is characterized by abrupt changes in morphology resulting in larvae that can swim (Sato 1958) but are characteristically bottom dwelling.

Areas of abundance of king crab glaucothoe in Kachemak Bay in 1976 (glaucothoe were not captured in samples in 1972) included most of the central and northern sectors of the outer bay. Glaucothoe were found in plankton samples across the mouth of Kachemak Bay from Anchor Point to Point Pogibshi and southwestward into lower Cook Inlet waters. The high abundance of glaucothoe in the area between Anchor Point and Bluff Point implies that this area is a major settling area. Sundberg and Clausen (1977) have shown that the area between Anchor Point and Bluff Point also has higher densities of juvenile king crab than the other areas sampled (Fig. 26).

#### Settling Areas of Late-Stage Larvae of Northern Shrimp and Humpy Shrimp

In both 1972 and 1976, Stage V and VI larvae of northern shrimp and humpy shrimp were most abundant in outer Kachemak Bay. Few late-stage larvae of either species were caught seaward of Kachemak Bay in 1976 except along the outer transect of stations.

Areas of abundance of late-stage larvae of pandalid shrimp may not always indicate settling areas because the transition from zoea to megalopa, which is characterized by only slight changes in morphology (Haynes 1978, 1979), would have negligible effect on swimming capability. Larvae of northern shrimp and humpy shrimp probably settle in outer Kachemak Bay; but settling may be dependent upon factors other than changes in morphology. Until these factors are known, designation of settling areas will be based on abundance of the late-stage larvae.

#### Depth Distribution of Larvae of King Crab, Northern Shrimp, and Humpy Shrimp

Very little is known about the depth distribution of king crab larvae and pandalid shrimp larvae. Takeuchi (1962) suggested that younger king crab larvae are more abundant nearer the surface, whereas older larvae are more abundant nearer the bottom, but his data were too meager to substantiate his suggestion. In Berkeley's (1930) study on the postembryonic development of *Pandalus danae* in British Columbia waters, she found that Stages I and II *P. danae* are somewhat evenly distributed with depth, except no larvae were caught at the surface. Later stages (Stages III-V) of *P. danae* seemed to be found progressively deeper that earlier stages.

To determine the depth distribution of larvae of king crab, northern shrimp, and humpy shrimp, I ranked the midpoints of depths where larvae were collected in 1972 and tabulated the percentage of each stage of each species in each 100 m<sup>3</sup> of water strained. These data were plotted and a line drawn through the points visually (Fig. 27). Data for glaucothoe of king crab and for larval Stage V and older of pandalid shrimp are not shown because too few larvae were in the samples.

Depth distributions of larvae of king crab, northern shrimp, and humpy shrimp were similar, but the number of larvae varied with depth. Few larvae were captured at or near the surface or deeper than 60 m; most were captured between 10 and 40 m. Below 70 m, however, Stage I larvae of northern shrimp were more abundant than Stage I larvae of king crab or humpy shrimp. This increase in abundance below about 70 m may reflect release of larvae at the deepwater stations.

#### **Diel Vertical Migration**

Early-stage larvae of king crab, northern shrimp, and humpy shrimp migrated vertically in a diel cycle. In the 22-h study of 10–11 May 1972, Stage I larvae of king crab and Stage I and II larvae of northern shrimp and humpy shrimp were more abundant in the surface 15 m between 1800 h and 0800 h, the hours of twilight and darkness, than during daylight hours (Figs. 28, 29A). In the 15–30 m stratum, the percentage of Stage I larvae of king crab and of Stage I and II larvae of northern shrimp and humpy shrimp was greatest during the hours with more light, 0800–1600 h. In the 30–60 m stratum, the percentage of early-stage larvae of king crab, northern shrimp, and humpy shrimp was lowest during the period of low light levels and highest during the period of high light levels (1000–1600 h). Too few of the other stages of king crab, northern shrimp, or humpy shrimp larvae were in the 22-h samples to determine their diel vertical distributions.

Temperature profiles in the study area were similar throughout the 22-h sampling period (Fig. 29B): A pronounced thermocline was present from the surface to 10 m, and water below 10 m was nearly isothermal. A thermocline may hinder or prevent vertical imigration of some zooplankton (Vinogradov 1968; Mauchline and Fisher 1969); however, early-stage larvae of king crab, northern shrimp, and humpy shrimp migrated up and down, through the thermocline.

#### **CONCLUDING REMARKS**

The question of whether larvae of king crab and pandalid shrimp rremain in or migrate from Kachemak Bay needs further study. Undoubtedly, some larvae are carried out of the bay, both to the morth and southwest. Although most larvae remain in the bay, the portion that migrates needs to be determined. Abundance and direction of dispersal of the pandalid larvae in the western portion of the study area also need to be assessed. Both the distribution and aannual variation of abundance of the larvae in this area are aunknown.

Studies on the identification of larvae of pandalid shrimp and kking crab in the study area have provided detailed descriptions of the morphology of each larval stage so that identification of these stages in plankton collections is no longer a problem. Studies on the life histories of these forms, however, have provided little more than estimates of time of larval release, abundance of larvae, and ddispersal of the larvae in relation to major oceanographic events in the Kachemak Bay-lower Cook Inlet area.

This study emphasizes our limited knowledge of the physical and boiological processes affecting abundance of larvae in the Kacheamak Bay-lower Cook Inlet area, especially factors related to their geographical and vertical distributions and seasonal changes in abbundance.

#### ACKNOWLEDGMENTS

I thank Robert Gunter for helping me collect the 1972 samples and Catherine W. Mecklenburg for sorting many of them. The Alaska Department of Fish and Game, Coastal Habitat Section, provided funding and vessel support for the 1976 study. Mike Ifreesch, temporary biologist with Alaska Department of Fish and Game, helped me collect the 1976 samples and sorted many of them.

#### LITERATURE CITED

BERKELEY, A. A.

- 1930. The post-embryonic development of the common pandalids of British Columbia. Contrib. Can. Biol. Fish., New Ser. 6:79-163.
- BURBANK, D. C.
- 1977. Circulation studies in Kachemak Bay and lower Cook Inlet. Alaska. In L. L. Trasky, L. B. Flagg, and D. C. Burbank (editors), Environmental studies of Kachemak Bay and lower Cook Inlet, III, 207 p. Alaska Dep. Fish Game, Anchorage.
- BUTLER, T. H.
- 1964 Growth, reproduction, and distribution of pandalid shrimps in British Columbia. J. Fish. Res. Board Can. 21:1403–1452.

COONEY, R. T.

- 1971. Zooplankton and micronekton associated with a diffuse soundscattering layer in Puget Sound, Washington Ph.D. Thesis, Univ Washington, Seattle, 187 p.
- Je WOLF, P.
- 1973. Ecological observations on the mechanisms of dispersal of barnacle larvae during planktonic life and settling. Neth. J. Sea Res. 6(1-2):1-129. HOVER, R. S.

1962. The multi-depth plankton indicator. Bull. Mar. Ecol. 5:151-164.

HAYNES, E. B.

- 1974. Distribution and relative abundance of larvae of king crah, *Para lithodes cantischatica*, in the southeastern Bering Sea, 1969–70. Fish Bull., U.S. 72-804–812.
- 1976. Description of zoeae of coonstripe shrinip. *Pandalus hypsinotus*, reared in the laboratory. Fish. Bull., U.S. 74, 323–342.
- 1978. Description of larvae of the humpy shrimp, *Pandalus gonucus* reated in situ in Kachemak Bay, Alaska. Fish. Bull., U.S. 76 235-248
- 1979. Description of larvae of the northern shrinp. *Pandalus borealis*, reared in situ in Kachemak Bay, Alaska Fish Bull., U.S. 77:157–173
- 1980. Larval morphology of *Pandalis tridens* and a summary of the principal morphological characteristics of North Pacific pandalid shrimp larvae. Fish Bull., U.S. 77:625-640.

HAYNES, E. B., and R. L. WIGLEY.

 1969. Biology of the northern shrimp, Pandalus borealis, in the Gulf of Maine. Trans. Am. Fish. Soc. 98:60–76.

HOFFMAN, E. G.

1968. Description of laboratory-reared larvae of *Paralithodes platypus* (Decapoda, Anomura, Lithodidae). J. Fish, Res. Board Can. 25:439–455 KURATA, H.

1964. Larvae of decapod Crustacea of Hokkaido, 6, Lithodidae (Anomura). [In Jpn., Engl. summ.] Bull. Hokkaido Reg. Fish. Res. Lah. 29:49-65.

MAKAROV, R. R.

1967. Larvae of the shrimps and crabs of the West Kamchatkan Shelf and their distribution. Natl. Lending Libr. Sci. Technol., Boston Spa. Yorkshire. Engl., 199 p. [Translated from Russian by B. Haigh.]

MARUKAWA, H.

- 1933. Biological and fishery research on Japanese king-crab Paralithodes canttschattea (Tilesius). [In Jpn., Engl. abstr.] J. Imp. Fish. Exp. Stn. 4, 152 p.
- MAUCHLINE, J., and L. R. FISHER.

1969 The hiology of euphausiids. Adv. Mar. Biol. 7, 454 p.

MILLER, D.

1961. A modification of the small Hardy plankton sampler for simultaneous high-speed plankton hauls. Bull. Mar. Ecol. 5(45):165-172.

POSGAY, J. A., R. R. MARAK, and R. C. HENNEMUTH.

 1968. Development and test of new zooplankton samplers. Int. Comm Northwest Atl. Fish., Res. Doc. 68–34, 7 p.

RODIN, V. E.

- 1972. An estimation of the state of the king crah (*Paralithodes camtschatica* Tilesius) stock in the southeastern Bering Sea. *In* P. A. Moiseev (editor), Soviet Tisheries investigations in the northeastern Pacific, Part V, p. 149-156.
- SATO, S.
  - 1958. Studies on larval development and fishery biology of king crah, Paralithodes camtschatica (Tilesius). Bull. Hokkaido Reg. Fish. Res. Lah. 17:1-102.
- SATO, S., and S. TANAKA.

1949. Study on the larval stage of *Paralithodes cantschatica* (Tilesius), 1.
 Morphological research. Hokkaido Fish, Exp. Stn. Res. Rep. 1:7-24.

SUNDBERG, K., and D. CLAUSEN.

1977. Post-larval king crab (*Paralithodes camtschatica*) distribution and ahundance in Kachemak Bay, lower Cook Inlet. Alaska, 1976. In L. L. Trasky, L. B. Flagg, and D. C. Burhank (editors), Environmental studies of Kachemak Bay and lower Cook Inlet, V. 36 p. Alaska Dep. Fish Game, Anchorage.

TAKEUCHL 1.

- 1962. On the distribution of zoea larvae of king crab, Paralithodes camtschatica, in the southcastern Bering Sea in 1960. [In Jpn., Engl. summ.] Bull. Hokkaido Reg. Fish. Res. Lab. 24:163-170.
- 1968. On the distribution of zoea larva of king crab, *Paralithodes cani-tschatica*, in the southeastern Bering Sea in 1957 and 1958. [In Jpn., Engl. summ.]. Bull. Hokkaido Reg. Fish. Res. Lab. 34/22-29.
- VINOGRADOV, M. E.
  - 1968. Vertikal'noe raspredelenie okeanicheskogo zooplanktona (Vertical distrihution of the oceanic zooplankton.) Akad. Nauk SSSR. Inst. Okeanol Izdatel'stvo "Nauka", Moskva, 320 p. (Translated from Russian hy Israel Program for Scientific Translations, 1970, 339 p., TT69-59015.)
- WOOD, L., and W. J. HARGIS, Jr.
  - 1971. Transport of hivalve larvae in a tidal estuary In D. J. Crisp (editor),
    Fourth European Marine Biology Symposium, p. 29–44. Camb. Univ.
    Press, Lond.



Figure 1.—Location of sampling stations used to determine relative abundance and distribution of larval king crab and pandalid shrimp in (A) Kachemak Bay, 1972, and (B) onter Kachemak Bay-lower Cook Inlet, 1976.



Figure 2.—Abundance and distribution of king crab larvae in Kachemak Bay, 16-30 April 1972.



Figure 3.—Abundance and distribution of king crab farvae in Kachemak Bay, 1–15 and 16–31 May 1972.



Figure 4.—Abundance and distribution of king crab larvae in Kachemak Bay, 1-15 and 16-30 June 1972.



Figure 5.—Abundance and distribution of king crab larvae in Kachemak Bay, 10-13 May 1976.







Figure 7.—Abundance and distribution of northern shrimp larvae in Kachemak Bay, 1-15 and 16-30 April 1972.







Figure 9.—Abundance and distribution of northern shrimp larvae in Kachemak Bay, 1-15 and 16-30 June 1972.



Figure 10.—Abundance and distribution of northern shrimp larvae in outer Kachemak Bay-lower Cook Inlet, 10–13 May and 1–3 June 1976.



Figure 11.—Abundance and distribution of humpy shrimp larvae in Kachemak Bay, 16-30 April 1972.



Figure 12.—Abundance and distribution of humpy shrimp larvae in Kachemak Bay, 1-15 and 16-31 May 1972.



Figure 13.—Abundance and distribution of humpy shrimp larvae in Kachemak Bay, 1–15 and 16–30 June 1972.



Figure 14.—Abundance and distribution of humpy shrimp larvae in outer Kachemak Bay-lower Cook Inlet, 10–13 May and 1–3 June 1976.



Figure 15.—Abundance and distribution of humpy shrimp larvae in outer Kachemak Bay-lower Cook Inlet, 22–24 June and 13–15 July 1976.



Figure 16.—Abundance and distribution of coonstripe shrimp larvae in Kachemak Bay, 16-30 April 1972.



Figure 17.—Abundance and distribution of coonstripe shrimp larvae in Kachemak Bay, 1-15 and 16-31 May 1972.



Figure 18.—Abundance and distribution of coonstripe shrimp larvae in Kachemak Bay, 1-15 and 16-30 June 1972.



Figure 19.—Abundance and distribution of sidestripe shrimp larvae in Kachemak Bay, 16-30 April 1972.



Figure 20.—Abundance and distribution of sidestripe shrimp larvae in Kachemak Bay, 1-15 and 16-31 May 1972.



Figure 21.—Net circulation of surface water in Kachemak Bay-lower Cook Inlet area. Data collected during the spring and summer seasons (adapted from Burbank 1977).



Figure 22.—Distribution of northern shrimp (A), humpy shrimp (B), coonstripe shrimp (C), and sidestripe shrimp (D) in Kachemak Bay, 5–13 May 1972.



Figure 22.—*Continued*.

### HUMPY SHRIMP--1976 (larval stages)







Figure 24.—Percentages of each of the larval stages of king crab larvae sampled inKachemak Bay, 1972, and outer Kachemak Bay-lower Cook Inlet, 1976, for each sampling period.



Figure 25.—Percentages of each of the larval stages of northern shrimp, humpy shrimp, and coonstripe shrimp collected in Kachemak Bay, 1972; and northern shrimp and humpy shrimp collected in Kachemak Bay-lower Cook Inlet, 1976.



Figure 26.—Distribution of juvenile king crab, 21 July-8 October 1976 (Sundberg and Clausen 1977).







Figure 28.—Dicl vertical migration of larvae of king crab, northern shrimp, and humpy shrimp in Kachemak Bay, 10-11 May 1972. Widths of blocks are proportional to the percentage of all larvae collected within the depth strata.



Figure 29.—Incident sunlight profile (A) and water temperature profile (B) in Kachemak Bay, 10-11 May 1972.

Appendix Table 1.--Depth and location of stations where larvae of king crab and pandalid shrimp were collected in Kachemak Bay and lower Cook Inlet, Alaska, 1972 and 1976.

|         |       | 1972     |           |
|---------|-------|----------|-----------|
|         | Depth | Loca     | ation     |
| Station | (m)   | Lat. N.  | Long. W.  |
| 1       | 40    | 59°44.3' | 151°05.5' |
| 2       | 58    | 59°42.0' | 151°11.5' |
| 3       | 20    | 59°38.2' | 151°23.8' |
| 4       | 77    | 59°37.5' | 151°18.0' |
| 5       | 33    | 59°36.8' | 151°12.8' |
| 6       | 119   | 59°35.0' | 151°23.0' |
| 7       | 73    | 59°29.8' | 151°21.9' |
| 8       | 165   | 59°27.5' | 151°25.2' |
| 9       | 128   | 59°30.0' | 151°32.0' |
| 10      | 110   | 59°33.2' | 151°32.5' |
| 11      | 13    | 59°36.2' | 151°32.5' |
| 12      | 33    | 59°38.0' | 151°40.0' |
| 13      | 86    | 59°34.0' | 151°40.0' |
| 14      | 20    | 59°30.0' | 151°40.0' |
| 15      | 53    | 59°27.4' | 151°50.0' |
| 16      | 68    | 59°32.5' | 151°50.0' |
| 17      | 37    | 59°36.5' | 151°50.0' |
| 18      | 20    | 59°40.4' | 151°50.0' |
| 19      | 37    | 59°42.7' | 152°00.0' |
| 20      | 40    | 59°38.6' | 152°00.0' |
| 21      | 46    | 59°34.7' | 152°00.0' |
| 22      | 49    | 59°30.0' | 152°00.0' |
| 23      | 95    | 59°25.4' | 152°00.0' |
| 24      | 49    | 59°21.5' | 152°00.0' |

Appendix Table 1.--continued.

|         |       | 1976    |          |
|---------|-------|---------|----------|
|         | Depth | Loc     | ation    |
| Station | (m)   | Lat. N. | Long. W. |
| 1       | 35    | 59°35'  | 151°40'  |
| 2       | 33    | 59°30'  | 151°40'  |
| 3       | 49    | 59°27'  | 151°52'  |
| 4       | 60    | 59°30'  | 151°50'  |
| 5       | 33    | 59°35'  | 151°50'  |
| 6       | 27    | 59°40'  | 151°50'  |
| 7       | 22    | 59°43'  | 151°54'  |
| 8       | 24    | 59°50'  | 151°54'  |
| 9       | 37    | 59°50'  | 152°00'  |
| 10      | 22    | 59°45'  | 152°00'  |
| 11      | 31    | 59°40'  | 152°00'  |
| 12      | 37    | 59°35'  | 152°00'  |
| 13      | 62    | 59°30'  | 152°00'  |
| 14      | 49    | 59°25'  | 152°00'  |
| 15      | 37    | 59°20'  | 152°00'  |
| 16      | 60    | 59°15'  | 152°00'  |
| 17      | 113   | 59°10'  | 152°00'  |
| 18      | 141   | 59°10'  | 152°10'  |
| 19      | 77    | 59°15'  | 152°10'  |
| 20      | 71    | 59°20'  | 152°10'  |
| 21      | 57    | 59°25'  | 152°10'  |
| 22      | 44    | 59°30'  | 152°10'  |
| 23      | 40    | 59°35'  | 152°10'  |
| 24      | 38    | 59°40'  | 152°10'  |

| Appendix | Table | 1continued. |  |
|----------|-------|-------------|--|
|----------|-------|-------------|--|

|         |       | 1976    |          |
|---------|-------|---------|----------|
|         | Depth | Loc     | ation    |
| Station | (m)   | Lat. N. | Long. W. |
| 25      | 33    | 59°45'  | 152°10'  |
| 26      | 48    | 59°50'  | 152°10'  |
| 27      | 82    | 59°50'  | 152°10'  |
| 28      | 82    | 59°45'  | 152°20'  |
| 29      | 64    | 59°40'  | 152°20'  |
| 30      | 60    | 59°35'  | 152°20'  |
| 31      | 71    | 59°30'  | 152°20'  |
| 32      | 82    | 59°25'  | 152°20'  |
| 33      | 84    | 59°20'  | 152°20'  |
| 34      | 95    | 59°15'  | 152°20'  |
| 35      | 100   | 59°10'  | 152°20'  |
| 36      | 84    | 59°10'  | 152°30'  |
| 37      | 60    | 59°20'  | 152°30'  |
| 38      | 55    | 59°30'  | 152°30'  |
| 39      | 82    | 59°40'  | 152°30'  |
| 40      | 60    | 59°50'  | 152°30'  |
| 41      | 70    | 59°45'  | 152°30'  |
| 42      | 82    | 59°35'  | 152°30'  |
| 43      | 60    | 59°25'  | 152°30'  |
| 44      | 90    | 59°15'  | 152°30'  |
| 45      | 18    | 59°38'  | 151°40'  |
| 46      | 15    | 59°36'  | 151°32'  |
| 47      | 86    | 59°31'  | 151°34'  |
|         |       |         |          |

Appendix Table 2.--Number (per 100 m<sup>3</sup> water strained) and stage of development of larvae of king crab, northern shrimp, humpy shrimp, coonstripe shrimp, and sidestripe shrimp captured in each tow in Kachemak Bay, 1972.

|              |         |       | King  | crab      |     |            |       |  |
|--------------|---------|-------|-------|-----------|-----|------------|-------|--|
| Larval Stage |         |       |       |           |     |            |       |  |
| Date         | Station | Ī     | II Zo | ea<br>III | IV  | Glaucothoe | Total |  |
| 16-30 April  | 9       | 8     |       |           |     |            | 8     |  |
|              | 11      | 8     |       |           |     |            | 8     |  |
|              | 12      | 368   |       |           |     |            | 368   |  |
|              | 16      | 15    |       |           |     |            | 15    |  |
|              | 17      | 149   |       |           |     |            | 149   |  |
|              | 18      | 16    |       |           |     |            | 16    |  |
| 1-15 May     | 1       | 7     |       |           |     |            | 7     |  |
|              | 3       | 45    |       |           |     |            | 45    |  |
|              | 5       | 69    | 7     |           |     |            | 76    |  |
|              | 6       | 166   | 15    |           |     |            | 181   |  |
|              | 9       | 7     | 7     |           |     |            | 14    |  |
|              | 10      | 7     |       |           |     | ~-         | 7     |  |
|              | 11      | 121   |       |           |     |            | 121   |  |
|              | 12      | 823   |       |           |     |            | 823   |  |
|              | 13      | 14    |       |           |     |            | 14    |  |
|              | 14      | 45    | 7     |           |     |            | 52    |  |
|              | 15      | 29    |       |           | - + |            | 29    |  |
|              | 16      | 50    |       |           |     |            | 50    |  |
|              | 17      | 4,731 | 65    |           |     |            | 4,796 |  |
|              | 18      | 620   |       |           |     |            | 620   |  |

|           |              |          | King      | crab      |          |            |       |  |  |
|-----------|--------------|----------|-----------|-----------|----------|------------|-------|--|--|
|           | Larval Stage |          |           |           |          |            |       |  |  |
| Date      | Station      | Ī        | Zoe<br>II | ea<br>III | IV       | Glaucothoe | Total |  |  |
| 16-31 May | 1            | 24       | 262       | 17        |          |            | 317   |  |  |
| 10-31 May | 1<br>2       | 54<br>61 | 203       | 0         |          |            | 140   |  |  |
|           | 2            | 01       | 70        | 9         | ana John |            | 140   |  |  |
|           | 3            | 116      | /8        | ~ ~       |          |            | 194   |  |  |
|           | 4            | 9        | 17        | 9         |          | ana 4mi    | 35    |  |  |
|           | 5            | 79       | 134       |           |          |            | 213   |  |  |
|           | 6            | 367      | 359       | 39        |          |            | 765   |  |  |
|           | 7            | 79       | 147       | 52        |          |            | 278   |  |  |
|           | 8            | 151      | 236       | 25        |          |            | 412   |  |  |
|           | 9            | 207      | 572       |           |          |            | 779   |  |  |
|           | 10           | 490      | 171       |           |          |            | 661   |  |  |
|           | 11           | 675      | 210       | ~ -       |          |            | 885   |  |  |
|           | 12           | 124      | 21        |           |          |            | 145   |  |  |
|           | 13           | 1,468    | 1,240     |           | ~ -      | 560 MP     | 2,708 |  |  |
|           | 14           | 1,206    | 272       |           |          |            | 1,478 |  |  |
|           | 15           | 44       | 22        |           |          |            | 66    |  |  |
|           | 16           | 2,524    | 30        |           |          |            | 2,554 |  |  |
|           | 17           | 3,355    | 499       | 23        |          |            | 3,877 |  |  |
|           | 18           | 1,123    | 307       | 16        |          |            | 1,446 |  |  |
|           | 22           | 8        | 17        |           |          |            | 25    |  |  |
|           | 23           | 8        | 16        |           | _ ~      |            | 24    |  |  |
|           | 24           | 7        | 7         |           |          | ~ ~        | 14    |  |  |

| King crab |         |              |       |       |     |            |       |  |  |
|-----------|---------|--------------|-------|-------|-----|------------|-------|--|--|
|           |         | Larval Stage |       |       |     |            |       |  |  |
| Date      | Station | T            | Z     |       | IV  | Glaucothoe | Total |  |  |
|           |         | <b>ل</b><br> | 11    | 111   | 1 V | Giadcothoe |       |  |  |
| 1-15 June | 1       | * -          | 24    | 31    |     |            | 55    |  |  |
|           | 2       |              | 26    | 165   | 26  |            | 217   |  |  |
|           | 3       | ** **        | 101   | 247   | 46  |            | 394   |  |  |
|           | 4       |              | 56    | 103   | 8   | <b>* -</b> | 167   |  |  |
|           | 5       |              | 15    | 161   | 16  |            | 192   |  |  |
|           | 6       | 18           | 451   | 88    | ~ - |            | 557   |  |  |
|           | 7       |              | 92    | 16    | 8   |            | 116   |  |  |
|           | 8       |              | 33    | 16    | 8   |            | 57    |  |  |
|           | 9       | 157          | 2,801 | 614   | 18  |            | 3,590 |  |  |
|           | 10      | 124          | 1,311 | 305   |     |            | 1,740 |  |  |
|           | 11      | 192          | 2,280 | 857   |     |            | 3,329 |  |  |
|           | 12      | 16           | 16    | 8     | ~ - |            | 40    |  |  |
|           | 13      |              | 537   | 434   |     |            | 971   |  |  |
|           | 14      |              | 8     |       |     |            | 8     |  |  |
|           | 15      |              | 193   | 346   |     |            | 539   |  |  |
|           | 16      | 254          | 1,529 | 1,786 | 284 | ÷ =        | 3,853 |  |  |
|           | 17      | 353          | 1,403 | 2,273 | 245 |            | 4,274 |  |  |
|           | 18      |              | 87    | 138   | 8   |            | 233   |  |  |
|           | 19      |              | 22    | 11    |     |            | 33    |  |  |
|           | 21      |              | 8     | 81    | 16  |            | 105   |  |  |
|           | 22      | 8            | 35    | 17    | 8   |            | 68    |  |  |
|           | 23      | 125          | 440   | 626   | 95  |            | 1,286 |  |  |
|           | 24      | 45           | 89    | 44    |     | ~ -        | 178   |  |  |

|            | King crab |          |          |          |       |            |       |  |  |  |
|------------|-----------|----------|----------|----------|-------|------------|-------|--|--|--|
|            |           |          | L        | _arval S | tage  |            |       |  |  |  |
|            |           |          | Zo       | bea      |       |            |       |  |  |  |
| Date       | Station   | I        | II       | III      | IV    | Glaucothoe | Total |  |  |  |
| 16-30 June | 1         |          |          | 15       | 8     |            | 23    |  |  |  |
|            | 6         |          | 23       | 93       | 76    |            | 192   |  |  |  |
|            | 7         |          |          | 23       | 16    |            | 39    |  |  |  |
|            | 8         | dan ana  | ~ ~      | 41       | 16    |            | 57    |  |  |  |
|            | 9         | 400 400  | 25       | 82       | 49    |            | 156   |  |  |  |
|            | 10        |          | 24       | 348      | 234   |            | 606   |  |  |  |
|            | 11        |          |          | 97       | 73    |            | 170   |  |  |  |
|            | 12        |          | 563      | 5,993    | 2,061 | 10         | 8,627 |  |  |  |
|            | 13        | 400 400  | 15       | 619      | 537   |            | 1,171 |  |  |  |
|            | 14        | aan 48a  | 7        |          |       |            | 7     |  |  |  |
|            | 15        |          | 22       | 87       | 33    |            | 142   |  |  |  |
|            | 16        | 489 489  | 18       | 328      | 338   |            | 684   |  |  |  |
|            | 17        | 405 AP   | 169      | 1,667    | 1,492 | 8          | 3,336 |  |  |  |
|            | 18        | 40% 48%  | 175      | 3,798    | 2,638 | 16         | 6,627 |  |  |  |
|            | 19        |          | 40% 60%  | 7        | 58    | 8          | 73    |  |  |  |
|            | 20        |          |          | 58       | 100   |            | 158   |  |  |  |
|            | 21        |          | 400 GM   | 17       | 86    |            | 103   |  |  |  |
|            | 22        | 100 cite | 40% 4103 |          | 103   | 16         | 119   |  |  |  |
|            | 23        | 40% 40%  |          | 84       | 761   | 50         | 895   |  |  |  |
|            | 24        |          |          | 8        | 8     | data.      | 16    |  |  |  |

|             | Northern shrimp |       |    |         |            |            |          |       |  |
|-------------|-----------------|-------|----|---------|------------|------------|----------|-------|--|
|             | Larval Stage    |       |    |         |            |            |          |       |  |
| Date        | Station         | I     | II | III     | IV         | V          | Megalopa | Total |  |
| 1-15 April  | 10              | 9     |    |         |            |            |          | 9     |  |
|             | 13              | 32    |    |         |            |            |          | 32    |  |
|             | 17              | 56    |    |         |            |            |          | 56    |  |
| 16-30 April | 1               | 8     |    | <b></b> |            |            |          | 8     |  |
|             | 3               | 8     |    |         |            |            |          | 8     |  |
|             | 4               | 128   |    |         |            |            |          | 128   |  |
|             | 5               | 56    |    |         |            |            |          | 56    |  |
|             | 6               | 424   |    |         |            |            |          | 424   |  |
|             | 7               | 374   |    |         |            |            |          | 374   |  |
|             | 8               | 2,242 |    |         |            |            |          | 2,242 |  |
|             | 9               | 722   |    |         |            | <b>-</b> - |          | 722   |  |
|             | 10              | 413   |    |         |            |            |          | 413   |  |
|             | 11              | 338   |    |         | <b>~</b> - |            |          | 338   |  |
|             | 12              | 56    |    |         |            |            |          | 56    |  |
|             | 13              | 1,186 |    |         |            |            |          | 1,186 |  |
|             | 14              | 8     |    |         |            |            |          | 8     |  |
|             | 15              | 216   |    |         |            |            |          | 216   |  |
|             | 16              | 278   |    |         |            |            |          | 278   |  |
|             | 17              | 320   |    |         |            |            |          | 320   |  |
|             | 18              | 40    |    |         |            |            |          | 40    |  |

|          | Northern shrimp |       |     |       |          |     |               |             |
|----------|-----------------|-------|-----|-------|----------|-----|---------------|-------------|
|          |                 |       |     | Larva | al Stage |     |               |             |
| Date     | Station         | I     | II  | III   | IV       | V   | Megalopa      | Total       |
| 1-15 May | 1               | 49    | 7   |       |          |     |               | 56          |
|          | 2               | 56    |     |       |          |     | , <del></del> | 56          |
|          | 3               | 158   | 8   |       |          |     |               | 16 <b>6</b> |
|          | 4               | 78    |     |       |          | ÷ * |               | 78          |
|          | 5               | 407   |     |       |          |     |               | 407         |
|          | 6               | 1169  | 84  |       |          |     |               | 1,253       |
|          | 7               | 419   | 8   |       |          |     |               | 427         |
|          | 8               | 1,356 | 21  |       |          |     |               | 1,377       |
|          | 9               | 1,723 | 7   |       |          |     |               | 1,730       |
|          | 10              | 1,475 | 65  |       |          |     |               | 1,540       |
|          | 11              | 5,600 | 104 |       |          |     |               | 5,704       |
|          | 12              | 166   | 37  |       |          |     |               | 203         |
|          | 13              | 2,431 | 158 |       |          |     |               | 2,589       |
|          | 14              | 54    |     |       |          |     |               | 54          |
|          | 15              | 7     |     |       |          |     |               | 7           |
|          | 16              | 2,748 | 51  |       |          |     |               | 2,799       |
|          | 17              | 2,176 | 208 |       |          |     |               | 2,384       |
|          | 18              | 78    | 26  |       |          |     |               | 104         |

|           |              |     | Nort   | hern shr | rimp |   |          |        |
|-----------|--------------|-----|--------|----------|------|---|----------|--------|
|           | Larval Stage |     |        |          |      |   |          |        |
| Date      | Station      | I   | II     | III      | IV   | V | Megalopa | Total  |
| 16-31 May | 1            | 9   | 149    | 140      |      |   |          | 298    |
|           | 2            |     | 79     | 44       | 18   |   |          | 141    |
|           | 3            |     | 32     |          |      |   |          | 32     |
|           | 4            |     | 34     | 52       |      |   |          | 86     |
|           | 5            |     | 64     | 103      |      |   |          | 167    |
|           | 6            | 62  | 405    | 250      |      |   |          | 717    |
|           | 7            | 53  | 175    | 79       |      |   |          | 307    |
|           | 8            |     | 194    | 16       |      |   |          | 210    |
|           | 9            | 103 | 483    | 309      |      |   |          | 895    |
|           | 10           | 15  | 315    | 353      |      |   |          | 683    |
|           | 11           | 28  | 200    | 62       |      |   |          | 290    |
|           | 12           |     | 42     | 14       |      |   |          | 56     |
|           | 13           |     | 15,902 | 2,454    | 97   |   |          | 18,453 |
|           | 15           | 24  |        |          |      |   |          | 24     |
|           | 16           | 243 | 631    | 60       |      |   |          | 934    |
|           | 17           | 39  |        |          |      |   |          | 39     |
|           | 18           |     | 75     | 33       |      |   |          | 108    |
|           | 22           |     | 36     | 9        | * *  |   |          | 45     |
|           | 24           | 8   | 77     |          |      |   |          | 85     |

|                    |         |    | North | ern shri | imp      |               |          |       |
|--------------------|---------|----|-------|----------|----------|---------------|----------|-------|
|                    |         |    |       | Larva    | al Stage |               |          |       |
| Date               | Station | I  | II    | III      | IV       | V             | Megalopa | Total |
| 1 <b>-</b> 15 June | 1       |    | 8     | 40       | 95       |               |          | 143   |
|                    | 2       |    | 9     | 69       | 190      | <b></b>       |          | 268   |
|                    | 3       |    |       | 32       | 32       |               |          | 64    |
|                    | 4       |    |       | 16       | 48       | <b>a</b> , e, |          | 64    |
|                    | 5       |    |       | 8        | 54       |               |          | 62    |
|                    | 6       |    | 8     | 69       |          |               |          | 77    |
|                    | 8       |    |       | 24       | 80       |               |          | 104   |
|                    | 9       |    | 37    | 120      |          |               |          | 157   |
|                    | 10      |    | 8     | 169      | 8        |               |          | 185   |
|                    | 11      |    | 47    | 141      | 93       |               |          | 281   |
|                    | 12      |    |       | 8        |          |               |          | 8     |
|                    | 13      | 15 | 333   | 747      | 792      |               |          | 1,887 |
|                    | 15      |    | 14    | 294      | 432      |               |          | 740   |
|                    | 16      |    |       | 260      | 288      |               |          | 548   |
|                    | 17      |    | 249   | 276      |          |               |          | 525   |
|                    | 18      |    |       | 18       | 18       |               |          | 36    |
|                    | 19      |    |       | 31       |          |               |          | 31    |
|                    | 21      |    |       |          | 16       |               |          | 16    |
|                    | 22      |    |       |          | 8        |               |          | 8     |
|                    | 23      |    | 78    | 232      | 293      |               |          | 603   |
|                    | 24      | 11 |       |          | 22       |               |          | 33    |

|            |         |     | North | ern sh | rimp     |       |          |       |
|------------|---------|-----|-------|--------|----------|-------|----------|-------|
|            |         |     |       | Larv   | /al Stag | e     | ·        |       |
| Date       | Station | I   | II    | III    | IV       | V     | Megalopa | Total |
| 16-30 June | 2       |     |       |        | 26       | 9     |          | 35    |
|            | 4       |     |       |        | 36       | 27    |          | 63    |
|            | 5       |     |       |        |          | 8     |          | 8     |
|            | 6       |     |       |        | 122      | 106   |          | 228   |
|            | 7       |     |       |        | 8        |       |          | 8     |
|            | 8       |     |       |        | 16       |       |          | 16    |
|            | 9       |     |       |        | 18       |       |          | 18    |
|            | 10      |     |       |        | 32       | 64    |          | 96    |
|            | 11      |     |       |        |          | 12    |          | 12    |
|            | 12      |     |       |        | 21       |       |          | 21    |
|            | 13      |     |       |        | 2,137    | 1,677 |          | 3,814 |
|            | 16      | * - |       |        | 242      | 165   |          | 407   |
|            | 17      |     |       | 35     | 566      | 58    | ~ -      | 659   |

|             |         | 4 <sup>4</sup> / | Hump | by shrim | ip    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          |        |
|-------------|---------|------------------|------|----------|-------|----------------------------------------|----------|--------|
|             |         |                  |      | Larva    | Stage |                                        |          |        |
| Date        | Statior | n I              | II   | III      | IV    | V                                      | Megalopa | Total  |
| 16-30 April | 4       | 8                |      |          |       |                                        |          | 8      |
|             | 6       | 8                |      |          |       |                                        |          | 8      |
|             | 7       | 22               |      |          |       |                                        |          | 22     |
|             | 8       | 77               |      |          |       |                                        | ~ -      | 77     |
|             | 9       | 94               |      |          |       |                                        |          | 94     |
|             | 10      | 35               |      |          |       |                                        |          | 35     |
|             | 11      | 22               |      |          |       |                                        |          | 22     |
|             | 12      | 7                |      |          |       |                                        |          | 7      |
|             | 13      | 68               |      |          |       |                                        | -        | 68     |
|             | 16      | 217              |      |          |       |                                        |          | 217    |
|             | 17      | 1,378            |      |          |       |                                        |          | 1,378  |
|             | 18      | 243              |      |          |       |                                        |          | 243    |
| 1-15 May    | 1       | 7                |      |          |       |                                        |          | 7      |
|             | 2       | 8                |      |          |       |                                        | * =      | 8      |
|             | 3       | 76               |      |          |       |                                        |          | 76     |
|             | 4       | 13               |      |          |       |                                        |          | 13     |
|             | 5       | 224              |      |          |       |                                        | æ =      | 224    |
|             | 6       | 700              | 14   |          |       |                                        |          | 714    |
|             | 7       | 190              |      |          |       |                                        |          | 190    |
|             | 8       | 156              |      |          |       |                                        |          | 156    |
|             | 9       | 483              |      |          |       | <b>600 AG</b>                          |          | 483    |
|             | 10      | 1,735            |      |          |       |                                        |          | 1,735  |
|             | 11      | 3,912            |      |          |       |                                        |          | 3,912  |
|             | 12      | 856              | 45   |          |       |                                        |          | 901    |
|             | 13      | 755              | 21   |          |       |                                        |          | 776    |
|             | 16      | 3,948            |      |          |       |                                        |          | 3,948  |
|             | 17      | 34,512           | 16   |          |       |                                        |          | 34,528 |
|             | 18      | 1,534            | 13   | aja 20   |       |                                        |          | 1,547  |

|           |         |       | Hu    | mpy shrir | np       |   |          |       |
|-----------|---------|-------|-------|-----------|----------|---|----------|-------|
|           | <u></u> |       |       | Larva     | al Stage |   |          |       |
| Date      | Station | n I   | II    | III       | IV       | V | Megalopa | Total |
| 16-31 May | 1       | 9     | 146   | 18        |          |   |          | 173   |
|           | 2       |       | 105   | 35        |          |   |          | 140   |
|           | 3       |       | 22    | 16        |          |   |          | 38    |
|           | 4       |       | 8     | 26        |          |   |          | 34    |
|           | 5       | 24    | 246   | 79        |          |   |          | 349   |
|           | 6       | 289   | 1,225 | 273       |          |   |          | 1,787 |
|           | 7       | 53    | 3,195 | 353       |          |   |          | 3,601 |
|           | 8       | 93    | 370   | 25        |          |   |          | 488   |
|           | 9       | 735   | 2,437 | 182       |          |   |          | 3,354 |
|           | 10      | 470   | 3,564 | 346       |          |   |          | 4,380 |
|           | 11      | 566   | 3,560 | 269       |          |   |          | 4,395 |
|           | 12      | 140   | 868   | 126       |          |   |          | 1,134 |
|           | 13      | 995   | 3,986 | 529       |          |   |          | 5,510 |
|           | 14      | 623   | 64    |           |          |   |          | 687   |
|           | 16      | 2,083 | 2,356 |           |          |   |          | 4,439 |
|           | 17      | 8     | 187   |           |          |   |          | 195   |
|           | 18      | 83    | 207   | 34        |          |   |          | 324   |
|           | 21      |       |       | 9         |          |   |          | 9     |
|           | 22      |       | 27    |           |          |   |          | 27    |
|           | 24      | 54    |       |           |          |   |          | 54    |

|           |         |   | Hur | mpy shri | mp      |     |          |        |
|-----------|---------|---|-----|----------|---------|-----|----------|--------|
|           |         |   |     | Lary     | al Stag | е   |          |        |
| Date      | Station | I | II  | III      | IV      | V   | Megalopa | Total  |
| 1-15 June | 1       |   |     | 16       | 24      |     |          | 40     |
|           | 2       |   |     | 26       | 79      |     |          | 105    |
|           | 3       |   | 8   |          | 31      |     |          | 39     |
|           | 4       |   |     | 24       | 56      |     |          | 80     |
|           | 5       |   |     | 23       | 16      |     |          | 39     |
|           | 6       |   | 76  | 91       |         |     |          | 167    |
|           | 7       |   | 91  | 381      |         | ~ - |          | 472    |
|           | 8       |   |     | 256      | 200     | ÷ + |          | 456    |
|           | 9       | 9 | 551 | 662      | 46      |     |          | 1,268  |
|           | 10      |   | 113 | 719      | 64      |     |          | 896    |
|           | 11      |   | 468 | 896      | 328     |     |          | 1,692  |
|           | 12      |   |     | 24       |         |     |          | 24     |
|           | 13      |   | 665 | 10,737   | 510     |     |          | 11,912 |
|           | 14      | 8 | 8   |          |         |     |          | 16     |
|           | 15      |   | 70  | 686      | 2,226   |     |          | 2,982  |
|           | 16      |   | 144 | 2,340    | 3,449   |     |          | 5,933  |
|           | 17      |   | 129 | 2,882    | 1,574   |     |          | 4,585  |
|           | 18      |   |     | 18       | 36      |     |          | 54     |
|           | 19      |   |     | 20       | 62      |     |          | 82     |
|           | 21      |   |     | 24       | 8       |     |          | 32     |
|           | 22      |   |     |          | 16      |     |          | 16     |
|           | 23      |   |     | 490      | 2,427   |     |          | 2,917  |
|           | 24      |   |     | 22       | 22      |     |          | 44     |

|            |         |     | Hum | oy shr | imp       |       |          |       |
|------------|---------|-----|-----|--------|-----------|-------|----------|-------|
|            |         |     |     | Larv   | /al Stage | 9     |          |       |
| Date       | Station | I   | II  | III    | IV        | V     | Megalopa | Total |
| 16-30 June | 1       |     |     |        |           | 8     |          | 8     |
|            | 2       |     |     |        | 9         |       |          | 9     |
|            | 4       |     |     |        | 9         |       |          | 9     |
|            | 6       |     |     | 15     | 16        | 38    |          | 69    |
|            | 7       |     |     | 16     | 77        |       |          | 93    |
|            | 8       |     |     | 8      | 64        |       |          | 72    |
|            | 9       |     |     |        | 45        |       |          | 45    |
|            | 10      |     |     | 32     | 275       | 105   |          | 412   |
|            | 11      |     |     |        | 48        | 24    |          | 72    |
|            | 12      |     |     |        | 2,720     | 2,782 |          | 5,502 |
|            | 13      |     |     | 94     | 1,388     | 1,436 |          | 2,918 |
|            | 16      |     |     | 11     | 517       | 869   |          | 1,397 |
|            | 17      |     |     | 82     | 3,858     | 3,292 |          | 7,232 |
|            | 18      |     |     | 72     | 416       | 256   | 16       | 760   |
|            | 20      |     |     |        |           | 19    |          | 19    |
|            | 21      |     |     | 10     | 30        | 10    |          | 50    |
|            | 22      | * - |     |        | 18        | 115   |          | 133   |
|            | 23      |     |     |        | 82        | 1,028 |          | 1,110 |
|            | 24      |     |     |        | 26        | 95    |          | 121   |

|             |         |          | Coonst | ripe shr     | imp         |     |            |       |
|-------------|---------|----------|--------|--------------|-------------|-----|------------|-------|
| Date        | Station | <u> </u> | ĬĬ     | Larva<br>III | Stage<br>IV | V   | Megalopa   | Total |
|             |         |          |        |              |             |     |            |       |
| 16-30 April | 12      | 7        |        |              | ÷ =         |     |            | 7     |
| 1-15 May    | 1       | 7        |        |              |             |     | <b>* -</b> | 7     |
|             | 3       | 38       |        |              |             | ~ - |            | 38    |
|             | 4       | 13       |        |              |             |     |            | 13    |
|             | 5       | 14       |        |              |             |     |            | 14    |
|             | 6       | 42       |        |              |             |     |            | 42    |
|             | 8       | 7        |        | -            |             |     |            | 7     |
|             | 9       | 7        |        |              |             |     |            | 7     |
|             | 12      | 22       |        |              |             |     |            | 22    |
|             | 17      | 8        |        |              |             |     |            | 8     |
|             | 18      | 52       |        |              |             |     |            | 52    |
| 16-30 May   | 1       | 148      | 26     |              |             |     |            | 174   |
|             | 2       | 44       | 18     |              |             |     |            | 62    |
|             | 3       | 443      | 356    | 16           |             |     |            | 815   |
|             | 4       | 51       | 51     |              |             |     |            | 102   |
|             | 5       | 103      | 72     |              |             |     |            | 175   |
|             | 6       | 55       | 47     |              |             |     |            | 102   |
|             | 7       | 97       | 36     |              |             |     |            | 133   |
|             | 8       | 42       | 8      |              |             |     |            | 50    |
|             | 11      | 42       | 28     |              | <b>-</b> -  |     |            | 70    |
|             | 12      | 56       | 238    | 56           | <b>-</b> -  |     |            | 350   |
|             | 13      |          | 9      |              | **          |     |            | 9     |
|             | 16      | 15       |        |              |             |     |            | 15    |
|             | 18      | 67       | 42     |              |             |     |            | 109   |

| 1715       |         |    | Coonst | ripe shr | rimp    |                |          |       |
|------------|---------|----|--------|----------|---------|----------------|----------|-------|
|            |         |    |        | Larva    | l Stage |                |          |       |
| Date       | Station | I  | II     | III      | IV      | V              | Megalopa | Total |
| 1-15 June  | 2       | 17 | 18     |          |         |                |          | 35    |
|            | 3       | 70 | 101    | 70       |         |                |          | 241   |
|            | 4       |    | 32     | 8        |         |                |          | 40    |
|            | 5       | 23 |        |          |         |                |          | 23    |
|            | 6       | 15 | 54     |          |         |                |          | 69    |
|            | 7       | 33 | 16     | 8        |         |                |          | 57    |
|            | 8       | 16 |        |          |         |                |          | 16    |
|            | 9       | 37 |        |          |         |                |          | 37    |
|            | 10      |    | 16     |          |         |                |          | 16    |
|            | 11      |    | 47     |          |         |                |          | 47    |
|            | 12      |    |        |          | 8       |                |          | 8     |
|            | 14      | 8  | 8      | 8        | 16      |                |          | 40    |
|            | 18      | 9  |        |          |         |                |          | 9     |
| 16-30 June | 1       |    | 8      |          |         |                |          | 8     |
|            | 2       |    | 17     |          |         |                |          | 17    |
|            | 4       |    | 9      |          |         |                |          | 9     |
|            | 8       | 8  |        |          |         |                |          | 8     |
|            | 11      |    | 36     |          | 48      |                |          | 84    |
|            | 12      |    | 200    | 63       | 42      |                |          | 305   |
|            | 14      |    |        |          | 8       | <del>-</del> - |          | 8     |
|            | 18      |    | 16     |          |         |                |          | 16    |

| Appendix | Table | 2continued. | • |
|----------|-------|-------------|---|
|----------|-------|-------------|---|

|             |         |    | Sidestr                               | ipe shri   | imp     |             |          |       |
|-------------|---------|----|---------------------------------------|------------|---------|-------------|----------|-------|
|             |         |    | · · · · · · · · · · · · · · · · · · · | Larva      | l Stage |             |          |       |
| Date        | Station | I  | II                                    | III        | IV      | V           | Megalopa | Total |
| 16-30 April | 13      | 15 |                                       | <b>* -</b> |         |             |          | 15    |
| 1-15 May    | 8       | 21 |                                       |            |         |             |          | 21    |
|             | 9       | 7  |                                       | ÷ =        |         |             |          | 7     |
|             | 10      | 14 |                                       |            | ~ -     |             |          | 14    |
|             | 11      | 40 |                                       |            |         |             | * *      | 40    |
|             | 13      | 65 | - +                                   |            |         |             |          | 65    |
|             | 16      | 17 |                                       |            |         |             |          | 17    |
|             | 18      | 13 |                                       |            |         |             |          | 13    |
| 16-31 May   | 12      | 14 |                                       |            |         |             |          | 14    |
|             | 13      | 18 |                                       |            |         | angta statu |          | 18    |
|             | 17      | 8  |                                       | <b>+ -</b> |         |             |          | 8     |
|             | 18      | 8  |                                       |            |         |             |          | 8     |
|             | 22      | 9  |                                       |            |         |             | ÷-       | 9     |
| 1-15 June   | 11      | 16 |                                       |            |         |             |          | 16    |
|             | 17      | 34 |                                       | - +        |         |             |          | 34    |
| 16-30 June  | 6       | 8  |                                       |            |         |             |          | 8     |
|             | 9       |    | 9                                     |            |         |             | * =      | 9     |
|             | 10      | 8  | <b>+</b> -                            |            |         |             |          | 8     |
|             | 15      |    | 8                                     |            |         |             | -        | 8     |
|             | 18      |    | 8                                     | 8          |         |             |          | 16    |
|             | 24      | 9  |                                       |            | * *     |             |          | 9     |

Appendix Table 3.--Number (per 10  $m^2$  water strained) and stage of development of larvae of king crab, northern shrimp, and humpy shrimp captured in each positive tow in outer Kachemak Bay - lower Cook Inlet, 1976.

|           |         |       | King     | crab      |     |            |       |
|-----------|---------|-------|----------|-----------|-----|------------|-------|
| ****      |         |       | L        | arval Sta | ige |            |       |
| Date      | Station | Ī     | Zo<br>II | ea<br>III | IV  | Glaucothoe | Total |
| 10-13 May | 1       | 582   | 274      | 51        |     |            | 907   |
|           | 2       | 805   | 496      |           | 17  |            | 1,318 |
|           | 3       | 1,832 | 582      | 17        |     |            | 2,431 |
|           | 4       | 1,198 | 445      |           |     |            | 1,643 |
|           | 5       | 2,808 | 1,387    |           |     |            | 4,195 |
|           | 6       | 308   | 274      |           |     |            | 582   |
|           | 9       | 17    |          |           |     |            | 17    |
|           | 10      | 17    | 17       |           |     |            | 34    |
|           | 12      | 17    |          |           |     |            | 17    |
|           | 13      | 2,054 | 445      |           |     |            | 2,499 |
|           | 14      | 428   | 394      |           |     |            | 822   |
|           | 15      | 17    | 34       |           |     |            | 51    |
|           | 16      | 51    | 17       |           |     |            | 68    |
|           | 19      | 68    | 137      |           |     |            | 205   |
|           | 20      | 68    | 274      |           |     |            | 342   |
|           | 21      | 120   | 68       |           |     |            | 188   |
|           | 22      | 17    |          |           |     |            | 17    |
|           | 24      | 34    | 17       | - +       |     |            | 51    |
|           | 25      | 17    |          |           |     |            | 17    |
|           | 26      | 17    | 103      |           |     |            | 120   |

|           |         |         | King      | crab      |       |            |       |
|-----------|---------|---------|-----------|-----------|-------|------------|-------|
|           |         | <u></u> | La        | arval St  | tage  |            |       |
| Date      | Statior | n I     | Zoe<br>II | ea<br>III | IV    | Glaucothoe | Tota  |
| 10-13 May | 28      | 86      | 137       | 17        |       |            | 240   |
|           | 29      | 17      |           |           |       |            | 17    |
|           | 39      | 17      | 17        |           |       |            | 34    |
|           | 40      | 17      |           |           |       |            | 17    |
|           | 42      | 68      | 34        |           |       | ~ -        | 102   |
|           | 46      | 103     | 86        |           |       |            | 189   |
|           | 47      | 1,644   | 2,242     | 120       |       |            | 4,006 |
| 1-3 June  | 1       | 17      | 17        | 574       | 1,524 |            | 2,132 |
|           | 3       |         | 34        | 103       | 170   |            | 307   |
|           | 4       |         | 86        | 531       | 976   | 17         | 1,610 |
|           | 5       |         |           |           | 17    |            | 17    |
|           | 6       |         |           | 34        | 137   |            | 171   |
|           | 7       |         |           |           | 34    |            | 34    |
|           | 9       |         |           |           | 17    |            | 17    |
|           | 10      |         |           | 103       | 68    |            | 171   |
|           | 12      |         |           | 34        | 34    |            | 68    |
|           | 13      |         | 34        | 86        | 17    |            | 137   |
|           | 14      | 17      | 68        | 360       | 137   |            | 582   |
|           | 15      |         |           |           | 34    |            | 34    |
|           | 16      |         | 34        | 17        | 34    |            | 85    |
|           | 17      | 17      | 34        | 51        | 34    |            | 136   |
|           | 19      | 17      | 17        |           |       |            | 34    |
|           | 20      |         |           | 17        | 86    | ÷ =        | 103   |
|           | 21      |         | 34        |           |       |            | 34    |
|           | 22      |         |           | 34        | 34    |            | 68    |

|            |              |    | King   | crab      |     |            |       |  |  |  |  |
|------------|--------------|----|--------|-----------|-----|------------|-------|--|--|--|--|
|            | Larval Stage |    |        |           |     |            |       |  |  |  |  |
| Date       | Station      | Ī  | II Zoo | ea<br>III | IV  | Glaucothoe | Total |  |  |  |  |
| 1-3 June   | 24           |    |        |           | 17  |            | 17    |  |  |  |  |
|            | 26           |    |        |           | 17  |            | 17    |  |  |  |  |
|            | 27           |    | 34     | 34        | 34  |            | 102   |  |  |  |  |
|            | 28           | 34 | 68     | 86        | 17  |            | 205   |  |  |  |  |
|            | 29           |    |        | 17        |     |            | 17    |  |  |  |  |
|            | 34           |    |        |           | 17  |            | 17    |  |  |  |  |
|            | 35           |    |        | 34        | 51  |            | 85    |  |  |  |  |
|            | 37           | 17 | 34     | 17        |     |            | 68    |  |  |  |  |
|            | 38           | 17 |        |           |     |            | 17    |  |  |  |  |
|            | 39           |    |        | 51        |     |            | 51    |  |  |  |  |
|            | 41           |    |        | 17        |     |            | 17    |  |  |  |  |
|            | 42           |    | 34     |           | 17  |            | 51    |  |  |  |  |
|            | 43           |    | 34     |           |     |            | 34    |  |  |  |  |
|            | 44           |    | 34     | 86        |     |            | 120   |  |  |  |  |
|            | 46           |    | 17     | 51        | 103 |            | 171   |  |  |  |  |
|            | 47           |    |        | 188       | 325 |            | 513   |  |  |  |  |
| 22-24 June | 1            |    |        |           | 17  | 86         | 103   |  |  |  |  |
|            | 3            |    |        |           |     | 17         | 17    |  |  |  |  |
|            | 4            |    |        |           |     | 51         | 51    |  |  |  |  |
|            | 5            |    |        |           | 17  | 120        | 137   |  |  |  |  |
|            | 6            |    |        |           |     | 120        | 120   |  |  |  |  |
|            | 7            |    |        |           |     | 171        | 171   |  |  |  |  |
|            | 10           | 17 |        |           |     | 17         | 34    |  |  |  |  |
|            | 11           |    |        |           | 17  |            | 17    |  |  |  |  |
|            | 13           |    |        |           |     | 17         | 17    |  |  |  |  |
|            | 14           |    |        |           |     | 17         | 17    |  |  |  |  |

|            |         |              | King | crab |    |            |       |  |  |  |
|------------|---------|--------------|------|------|----|------------|-------|--|--|--|
|            |         | Larval Stage |      |      |    |            |       |  |  |  |
| Date       | Station | Ī            | II   | iII  | IV | Glaucothoe | Total |  |  |  |
|            | 15      |              |      |      |    | 17         | 17    |  |  |  |
|            | 17      |              |      |      | 68 | 17         | 85    |  |  |  |
|            | 19      |              |      |      | 17 |            | 17    |  |  |  |
|            | 20      |              |      |      |    | 34         | 34    |  |  |  |
|            | 21      |              | ~ -  |      |    | 17         | 17    |  |  |  |
|            | 31      |              |      |      |    | 17         | 17    |  |  |  |
|            | 33      |              |      |      | 34 | 17         | 51    |  |  |  |
|            | 34      |              |      |      |    | 17         | 17    |  |  |  |
|            | 35      |              |      | 17   | 17 |            | 34    |  |  |  |
|            | 36      |              | 17   |      |    |            | 17    |  |  |  |
|            | 39      |              |      |      | 17 |            | 17    |  |  |  |
|            | 41      |              |      |      | 17 |            | 17    |  |  |  |
|            | 43      |              |      |      | 17 |            | 17    |  |  |  |
|            | 44      |              |      | 17   | 17 | 17         | 51    |  |  |  |
|            | 47      |              |      |      | 34 | 34         | 68    |  |  |  |
| 13-15 July | 18      |              |      |      | 17 | ~ ~        | 17    |  |  |  |
|            | 21      |              |      |      | 17 |            | 17    |  |  |  |
|            | 26      |              |      |      |    | 17         | 17    |  |  |  |

|           |         |     | North | ern shr | imp   |             |          |       |
|-----------|---------|-----|-------|---------|-------|-------------|----------|-------|
|           | ·····   |     | ····· | Larval  | Stage |             | ·····    |       |
|           |         |     |       | Zoea    |       |             |          |       |
| Date      | Station | I   | II    | III     | IV    | V           | Megalopa | Total |
| 10-13 May | 1       | 223 | 205   |         |       |             |          | 428   |
|           | 4       | 223 | 205   |         |       |             |          | 428   |
|           | 5       | 462 | 565   |         |       |             |          | 1,027 |
|           | 6       | 51  | 205   |         |       |             |          | 256   |
|           | 8       | 34  |       |         |       |             |          | 34    |
|           | 12      |     | 17    |         |       |             |          | 17    |
|           | 13      | 17  | 103   |         |       |             |          | 120   |
|           | 14      |     | 17    |         |       |             |          | 17    |
|           | 17      |     | 17    |         |       | <b>*</b> •• |          | 17    |
|           | 18      | 34  |       |         |       |             |          | 34    |
|           | 46      | 17  | 51    |         |       |             |          | 68    |
|           | 47      | 548 | 959   | 51      |       |             |          | 1,558 |
| 1-3 June  | 1       |     |       | 68      | 274   |             |          | 342   |
|           | 2       | ÷ - | 17    |         | - +   |             |          | 17    |
|           | 4       |     |       | 103     | 120   |             |          | 223   |
|           | 21      |     | 17    |         |       |             |          | 17    |
|           | 28      |     | 51    | 17      |       |             |          | 68    |
|           | 34      |     |       | 17      |       |             |          | 17    |
|           | 37      |     | 34    |         |       |             |          | 34    |
|           | 39      |     | 17    |         |       |             |          | 17    |
|           | 43      |     |       | 17      |       | * *         |          | 17    |
|           | 46      | -   | 17    |         | 68    |             |          | 85    |
|           | 47      |     | * -   | 51      | 360   |             |          | 411   |

|            |         |   | North | ern shri | mp    |    |          |       |
|------------|---------|---|-------|----------|-------|----|----------|-------|
|            |         |   |       | Larval   | Stage |    |          |       |
|            |         |   |       | Zoea     |       |    |          |       |
| Date       | Station | I | II    | III      | IV    | V  | Megalopa | Total |
| 22-24 June | 1       |   |       |          | an an | 17 |          | 17    |
|            | 4       |   |       |          |       | 17 | apar was | 17    |
|            | 17      |   |       |          |       | 17 |          | 17    |
|            | 19      |   |       |          |       | 17 |          | 17    |
|            | 34      |   |       |          |       | 17 |          | 17    |
|            | 35      |   |       | an an    |       | 17 |          | 17    |
| 13-15 July | 4       |   |       |          |       | 17 |          | 17    |
| ,          | 27      |   |       |          |       |    | 17       | 17    |
|            | 30      |   |       | ~ -      |       |    | 17       | 17    |
|            | 33      |   |       |          |       |    | 17       | 17    |
|            | 40      |   |       |          |       | -  | 17       | 17    |

|           |        |        | Hun   | npy shrin | np    |   |          |       |
|-----------|--------|--------|-------|-----------|-------|---|----------|-------|
|           |        | ······ |       | Larval    | Stage |   |          |       |
|           |        |        |       | Zoea      |       |   |          |       |
| Date      | Statio | n I    | II    | III       | IV    | V | Megalopa | Total |
| 10-13 May | 1      | 2,482  | 240   |           |       |   |          | 2,722 |
|           | 2      | 51     | 17    |           |       |   |          | 68    |
|           | 3      | 599    |       |           |       |   |          | 599   |
|           | 4      | 9,621  | 154   |           |       |   |          | 9,775 |
|           | 5      | 5,033  | 1,798 |           |       |   |          | 6,831 |
|           | 6      | 1,079  | 445   |           |       |   |          | 1,524 |
|           | 8      | 51     |       |           |       |   |          | 51    |
|           | 10     | 17     |       |           |       |   |          | 17    |
|           | 13     | 103    | 34    |           |       |   |          | 137   |
|           | 14     | 51     |       |           |       |   |          | 51    |
|           | 15     | 17     |       |           |       |   |          | 17    |
|           | 16     | 17     |       |           |       |   |          | 17    |
|           | 20     | 17     |       |           |       |   |          | 17    |
|           | 26     | 34     | 34    |           |       |   |          | 68    |
|           | 27     | 34     | 17    |           |       |   |          | 51    |
|           | 28     | 17     |       |           |       |   |          | 17    |
|           | 39     | 34     |       |           |       |   |          | 34    |
|           | 42     | 308    | 17    |           |       |   |          | 325   |
|           | 46     | 308    | 103   |           |       |   |          | 411   |
|           | 47     | 4,006  | 1,678 |           |       |   |          | 5,684 |

|          |              |          | Hum       | npy shr | imp   |        |            |             |  |
|----------|--------------|----------|-----------|---------|-------|--------|------------|-------------|--|
|          | Larval Stage |          |           |         |       |        |            |             |  |
|          |              |          |           | Zoea    |       |        |            |             |  |
| Date     | Station      | I        | II        | III     | IV    | V      | Megalopa   | Total       |  |
| 1-3 June | 1            | **       | 188       | 2,191   | 2,397 | 68     |            | 4,844       |  |
|          | 2            |          |           |         | 17    |        |            | 17          |  |
|          | 3            |          | 103       | 428     | 171   |        |            | 702         |  |
|          | 4            | 17       | 291       | 3,047   | 2,106 |        |            | 5,461       |  |
|          | 5            |          |           | 17      | 17    |        |            | 34          |  |
|          | 6            |          |           | 17      |       |        |            | 17          |  |
|          | 9            |          | 17        | 86      |       |        |            | 103         |  |
|          | 10           |          | 17        | 34      | 17    |        |            | 68          |  |
|          | 11           |          |           | 34      |       |        |            | 34          |  |
|          | 13           |          | 17        | 86      |       |        | - *        | 103         |  |
|          | 16           |          |           | 17      |       |        | ÷ •        | 17          |  |
|          | 22           |          |           | 17      | 51    |        | -100 -100  | 68          |  |
|          | 26           |          | 17        |         |       |        |            | 17          |  |
|          | 27           |          | 34        |         |       |        |            | 34          |  |
|          | 28           | 17       | 17        | 17      |       |        | 50 m)      | 51          |  |
|          | 29           |          | 17        |         |       |        |            | 17          |  |
|          | 38           | 51       | 171       |         |       |        |            | <b>2</b> 22 |  |
|          | 39           | 68       | 68        |         |       |        | ngan ngan  | 136         |  |
|          | 42           | 411      | 496       | 68      | 17    |        | 60 60      | 992         |  |
|          | 43           | 17       | 274       | 34      |       | am 100 | -          | 325         |  |
|          | 45           | gan bain | 1999 (San | 17      | 17    |        | <b>a a</b> | 34          |  |
|          | 46           |          | 17        | 34      | 51    |        |            | 102         |  |
|          | 47           | 34       | 51        | 753     | 308   | 17     |            | 1,163       |  |

|            |         |   | Hum | py shrii | np    |     |          |       |
|------------|---------|---|-----|----------|-------|-----|----------|-------|
|            |         |   |     | Larval   | Stage |     |          |       |
|            |         |   |     | Zoea     |       |     |          |       |
| Date       | Station | I | II  | III      | IV    | V   | Megalopa | Total |
| 22-24 June | 1       |   |     |          | 34    | 274 |          | 308   |
|            | 2       |   |     |          | 17    |     |          | 17    |
|            | 4       |   |     | 17       | 34    | 86  |          | 137   |
|            | 5       |   |     |          |       | 86  |          | 86    |
|            | 7       |   |     |          |       | 51  |          | 51    |
|            | 11      |   |     |          | 17    |     |          | 17    |
|            | 13      |   |     |          | 17    | 17  |          | 34    |
|            | 17      |   |     |          |       | 17  |          | 17    |
|            | 18      |   |     |          | 17    |     |          | 17    |
|            | 24      |   |     |          |       | 17  |          | 17    |
|            | 26      |   |     |          | 34    | 17  |          | 51    |
|            | 27      |   | 17  |          | 17    |     |          | 34    |
|            | 29      |   | 17  |          | 17    | 17  |          | 51    |
|            | 30      |   |     |          | 17    |     |          | 17    |
|            | 38      |   |     |          | 17    |     |          | 17    |
|            | 39      |   | 17  |          | 17    | 34  |          | 68    |
|            | 40      |   |     |          | 34    | 34  |          | 68    |
|            | 41      |   |     | 17       | 34    | 34  |          | 85    |
|            | 42      |   |     | 51       | 34    | 34  |          | 119   |
|            | 45      |   |     |          |       | 17  |          | 17    |
|            | 47      |   |     | 17       | 103   | 291 |          | 411   |

|            |         |     | Hum          | py shrin | np                                         |     |          |       |  |  |
|------------|---------|-----|--------------|----------|--------------------------------------------|-----|----------|-------|--|--|
|            |         |     | Larval Stage |          |                                            |     |          |       |  |  |
|            |         |     |              | Zoea     | ·<br>· · · · · · · · · · · · · · · · · · · |     |          |       |  |  |
| Date       | Station | I   | II           | III      | IV                                         | V   | Megalopa | Total |  |  |
| 13-15 July | 3       |     |              |          |                                            | 17  |          | 17    |  |  |
|            | 4       |     |              |          |                                            | 171 | 51       | 222   |  |  |
|            | 5       |     |              |          |                                            | 34  | ~ ~      | 34    |  |  |
|            | 39      |     |              |          |                                            | 34  | -        | 34    |  |  |
|            | 40      |     |              |          |                                            | 34  | 17       | 51    |  |  |
|            | 42      |     |              |          |                                            | 34  |          | 34    |  |  |
|            | 43      |     |              |          | 17                                         |     |          | 17    |  |  |
|            | 44      |     |              |          |                                            | 17  |          | 17    |  |  |
|            | 46      |     |              |          |                                            | 17  |          | 17    |  |  |
|            | 47      | ~ - |              |          |                                            | 223 |          | 223   |  |  |

## NOAA TECHNICAL REPORTS NMFS Circular and Special Scientific Report—Fisheries

### Guidelines for Contributors

#### **CONTENTS OF MANUSCRIPT**

**First page.** Give the title (as concise as possible) of the paper and the author's name, and footnote the author's affiliation, mailing address, and ZIP code.

**Contents.** Contains the text headings and abbreviated figure legends and table headings. Dots should follow each entry and page numbers should be omitted.

**Abstract.** Not to exceed one double-spaced page. Footnotes and literature citations do not belong in the abstract.

**Text.** See also Form of the Manuscript below. Follow the U.S. Government Printing Office Style Manual, 1973 edition. Fish names, follow the American Fisheries Society Special Publication No. 12, A List of Common and Scientific Names of Fishes from the United States and Canada, fourth edition, 1980. Use short, brief, informative headings in place of "Materials and Methods."

**Text footnotes.** Type on a separate sheet from the text. For unpublished or some processed material, give author, year, title of manuscript, number of pages, and where it is filed agency and its location.

**IPersonal communications.** Cite name in text and footnote. (Cite in footnote: John J. Jones, Fishery Biologist, Scripps IInstitution of Oceanography, La Jolla, CA 92037, pers. comrmun. 21 May 1977.

**Figures.** Should be self-explanatory, not requiring refercence to the text. All figures should be cited consecutively in the text and their placement, where first mentioned, indiccated in the left-hand margin of the manuscript page. Photoggraphs and line drawings should be of "professional" quality —clear and balanced, and can be reduced to 42 picas for ppage width or to 20 picas for a single-column width, but no more than 57 picas high. Photographs and line drawings should be printed on glossy paper—sharply focused, good ccontrast. Label each figure. DO NOT SEND original figures to the Scientific Editor; NMFS Scientific Publications Office will request these if they are needed.

**Ifables.** Each table should start on a separate page and should be self-explanatory, not requiring reference to the eext. Headings should be short but amply descriptive. Use bonly horizontal rules. Number table footnotes consecutively across the page from left to right in Arabie numerals; and to avoid confusion with powers, place them to the *left* of the numerals. If the original tables are typed in our format and tre clean and legible, these tables will be reproduced as they tre. In the text all tables should be cited consecutively and their placement, where first mentioned, indicated in the leftand margin of the manuscript page.

acknowledgments. Place at the end of text. Give credit only to those who gave exceptional contributions and *not* to mose whose contributions are part of their normal duties. Literature cited. In text as: Smith and Jones (1977) or (Smith and Jones 1977); if more than one author, list according to years (e.g., Smith 1936; Jones et al. 1975; Doe 1977). All papers referred to in the text should be listed alphabetically by the senior author's surname under the heading "Literature Cited"; only the author's surname and initials are required in the author line. The author is responsible for the accuracy of the literature citations. Abbreviations of names of periodicals and serials should conform to *Biological Abstracts List of Serials with Title Abbreviations*. Format, see recent SSRF or Circular.

Abbreviations and symbols. Common ones, such as mm, m, g, ml, mg, °C (for Celsius), %,  $\%_{\circ}$ , etc., should be used. Abbreviate units of measures only when used with numerals; periods are rarely used in these abbreviations. But periods are used in et al., vs., e.g., i.e., Wash. (WA is used only with ZIP code), etc. Abbreviations are acceptable in tables and figures where there is lack of space.

Measurements. Should be given in metric units. Other equivalent units may be given in parentheses.

#### FORM OF THE MANUSCRIPT

Original of the manuscript should be typed double-spaced on white bond paper. Triple space above headings. Send good duplicated copies of manuscript rather than carbon copies. The sequence of the material should be:

FIRST PAGE CONTENTS ABSTRACT TEXT LITERATURE CITED TEXT FOOTNOTES APPENDIX TABLES (provide headings, including "Table" and Arabie numeral, e.g., Table 1.--, Table 2.--, etc.) LIST OF FIGURE LEGENDS (entire legend, including "Figure" and Arabic numeral, e.g., Figure 1.--, Figure 2.--, etc.)

FIGURES

#### ADDITIONAL INFORMATION

Send ribbon copy and two duplicated copies of the manuscript to:

Dr. Carl J. Sindermann, Scientific Editor Northeast Fisheries Center Sandy Hook Laboratory National Marine Fisheries Service, NOAA Highlands, NJ 07732

**Copies.** Fifty copies will be supplied to the senior author and 100 to his organization free of charge.

#### UNITED STATES DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL MARINE FISHERIES SERVICE SCIENTIFIC PUBLICATIONS OFFICE 7600 SAND POINT WAY N.E. BIN C 15700 SEATTLE, WA 98115 OFFICIAL BUSINESS

#### NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS

The National Oceanic and Atmospheric Administration was established as part of the Department of Commerce on October 3, 1970. The mission responsibilities of NOAA are to assess the socioeconomic impact of natural and technological changes in the environment and to monitor and predict the state of the solid Earth, the oceans and their living resources, the atmosphere, and the space environment of the Earth.

The major components of NOAA regularly produce various types of scientific and technical information in the following kinds of publications:

PROFESSIONAL PAPERS — Important definitive research results, major techniques, and special investigations.

CONTRACT AND GRANT REPORTS — Reports prepared by contractors or grantees under NOAA sponsorship.

ATLAS — Presentation of analyzed data generally in the form of maps showing distribution of rainfall, chemical and physical conditions of oceans and atmosphere, distribution of fishes and marine mammals, ionospheric conditions, etc. TECHNICAI. SERVICE PUBLICATIONS — Reports containing data, observations, instructions, etc. A partial listing includes data serials; prediction and outlook periodicals; technical manuals, training papers, planning reports, and information serials; and miscellaneous technical publications.

TECHNICAL REPORTS — Journal quality with extensive details, mathematical developments, or data listings.

TECHNICAL MEMORANDUMS — Reports of preliminary, partial, or negative research or technology results, interim instructions, and the like.



Information on availability of NOAA publications can be obtained from:

PUBLICATIONS SERVICES BRANCH (D812) INFORMATION MANAGEMENT DIVISION NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION U.S. DEPARTMENT OF COMMERCE

> 11400 Rockville Pike Rockville, MD 20852