DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Md. 20084

A NONLINEAR MATHEMATICAL MODEL OF MOTIONS OF A PLANING BOAT IN REGULAR WAVES
by

Ernest E. Zarnick

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

SHIP PERFORMANCE DEPARTMENT RESEARCH AND DEVELOPMENT REPORT

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

REPORT DOCUMENTATION PAGE
READ INSTRUCTIONS BEFORE COMPLETING FORM

1. REPORT NUMBER DTNSRDC-78/032 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMEER
4. TITLE (and Subtitio) A NONLINEAR MATHEMATICAL MODEL OF MOTIONS OF A PLANING BOAT IN REGULAR WAVES	5. TYPE OF REPORT \& PERIOD COVERED 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a) Ernest E. Zarnick	8. CONTRACT OR GRANT NUMBER(a)
9. PERFORMING ORGANIZATION NAME AND ADDRESS David W. Taylor Naval Ship Research and Development Center Bethesda, Maryland 20084	10. PROGRAM ELEMENT, PROJECT, TASK AREA a WORK UNIT NUMBERS ZF 43421001 Work Unit 1-1500-100
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Sea Systems Command (SEA 035) Washington, D.C. 20362	12. REPORT DATE March 1978 13. NUMBER OF PAGES 86
T4. MONITORING AGENCY NAME A ADDRESS(if difterent trom Controiling Office)	15. SECURITY CLASS, (of this report) UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the ebstract entored in Block 20, if different from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse side if neceasary and identify by block number)

Planing Boat Motions
Hydrodynamic Impact
Small Boat Worthiness
Nonlinear Ship Motions in Waves
20. ABSTRACT (Continue on roverse alde If neceseary and Identify by block number)

A nonlinear mathematical model has been formulated of a craft having a constant deadrise angle, planing in regular waves, using a modified low-aspect-ratio or strip theory. It was assumed that the wavelengths would be large in comparison to the craft length and that the wave slopes would be small. The coefficients in the equations of motion were determined by a combination of theoretical and empirical relationships. A simplified version for the case of a craft or model being towed at constant speed was programed for computations on a digital computer, and the results were compared with existing experimental data.
(Continued on reverse side)
(Block 20 continued)
Comparison of computed pitch and heave motions and phase angles with corresponding experimental data was remarkably good. Comparison of bow and center of gravity vertical accelerations was fair to good.

TABLE OF CONTENTS

Page
ABSTRACT 1
ADMINISTRATIVE INFORMATION 1
INTRODUCTION 1
MATHEMATICAL FORMULATION 2
GENERAL 2
TWO-DIMENSIONAL HYDRODYNAMIC FORCE 3
TOTAL HYDRODYNAMIC FORCE AND MOMENT 6
EQUATIONS OF MOTION, GENERAL 8
EQUATIONS OF MOTION, SIMPLIFIED FOR CONSTANT SPEED 9
COMPARISON OF COMPUTED RESULTS WITH EXPERIMENTS 10
CONCLUSIONS AND RECOMMENDATIONS 13
ACKNOWLEDGMENTS 13
REFERENCES 33
APPENDIX A - EVALUATION OF HYDRODYNAMIC FORCE AND MOMENT INTEGRALS 35
APPENDIX B - COMPUTER PROGRAM DESCRIPTIONS 39
LIST OF FIGURES
1 - Coordinate System 14
2 - Types of Two-Dimensional Flow 14
3 - Lines of Prismatic Models 15
4 - Sample Time Histories of Computed Pitch and Heave Motions 16
5 - Sample Time Histories of Computed Accelerations of Bow and Center of Gravity 17
6 - Variation of Pitch and Heave with Wave Height 18
7 - Variation of Acceleration of Bow and Center of Gravity with Wave Height 19
8 - Trajectory of Computer Model Relative to Wave 20
9 - Heave Response for 10-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=6.0$ 21
10 - Pitch Response for 10-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=6.0$ 22
11 - Heave Response for 20-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=6.0$ 23
12 - Pitch Response for 20-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=6.0$ 24
13 - Heave Response for 30-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=6.0$ 25
14 - Pitch Response for 30-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=6.0$ 26
15 - Heave Response for 20-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=4.0$ 27
16 - Pitch Response for 20-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=4.0$ 28
17 - Bow Acceleration for 10-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=6.0$ 29
18 - Center of Gravity Acceleration for 10-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=6.0$ 30
19 - Bow and Center of Gravity Accelerations for 20-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=4.0$ and $\mathrm{V} / \sqrt{\mathrm{L}}=6.0$ 31
20 - Bow and Center of Gravity Accelerations for 30-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=6.0$ 32
Table 1 - Model Characteristics and Wave Conditions for Computations 11

A	Mass matrix
$\mathrm{A}_{\text {R }}$	Section area
a	Correction factor for buoyancy force
b	Half-beam of craft
$\mathrm{C}_{\mathrm{D}, \mathrm{c}}$	Crossflow drag coefficient
C_{Δ}	Load coefficient $\Delta / \operatorname{pg}(2 \mathrm{~b})^{3}$
C_{λ}	Wavelength coefficient $\mathrm{L} / \lambda\left[\mathrm{C}_{\Delta} /(\mathrm{L} / 2 \mathrm{~b})^{2}\right]^{1 / 3}$
D	Friction drag force
F_{x}	Total hydrodynamic force in x direction
F_{z}	Total hydrodynamic force in z direction
F_{θ}	Total hydrodynamic moment about pitch axis
f	Two-dimensional hydrodynamic force
g	Acceleration of gravity
H	Wave height, crest to trough
h	Vertical submergence of point below free surface
h_{z}	Double amplitude of heave
I	Pitch moment of inertia
I_{a}	Added pitch, moment of inertia
k	Wave number
k_{a}	Two-dimensional added-mass coefficient
L	Hull length
LCG	Longitudinal center of gravity, percent of L
M	Mass of craft
M_{a}	Added mass of craft

m_{a}	Sectional (two-dimensional) added mass
N	Hydrodynamic force normal to baseline
r	Wave elevation $\mathrm{r}=\mathrm{r}_{0} \cos (k x+\omega t)$
r_{0}	Wave amplitude
U	Relative fluid velocity parallel to baseline
V	Relative fluid velocity normal to baseline
$\mathrm{V} / \sqrt{\mathrm{L}}$	Speed-to-length ratio in knots/ff ${ }^{1 / 2}$
w	Weight of craft
w_{2}	Vertical component of wave orbital velocity
$\dot{\mathrm{w}}_{\mathrm{z}}$	Vertical component of wave orbital acceleration
x	Fixed horizontal coordinate
$\overline{\mathrm{x}}$	Vector of state variables
$\dot{\mathrm{x}}_{\text {CG }}$	Surge velocity
$\ddot{\mathrm{x}}_{\text {CG }}$	Surge acceleration
${ }^{\text {X }}$ CG	Surge displacement
z	Fixed vertical coordinate
$\dot{z}_{\text {CG }}$	Heave velocity
$\ddot{z}_{\text {CG }}$	Heave acceleration
${ }^{2}{ }_{\text {CG }}$	Heave displacement
β	Deadrise angle
Δ	Hull displacement W
ζ	Body coordinate normal to baseline
λ	Wavelength
θ	Pitch angle
$\dot{\theta}$	Pitch angular velocity

Pitch angular acceleration
$\theta_{\mathrm{p}} \quad$ Double amplitude of pitch
$\xi \quad$ Body coordinate parallel to baseline
$\rho \quad$ Density of water
$\omega \quad$ Wave frequency
$\ell \quad$ Wetted length
.

Abstract

A nonlinear mathematical model has been formulated of a craft having a constant deadrise angle, planing in regular waves, using a modified low-aspect-ratio or strip theory. It was assumed that the wavelengths would be large in comparison to the craft length and that the wave slopes would be small. The coefficients in the equations of motion were determined by a combination of theoretical and empirical relationships. A simplified version for the case of a craft or model being towed at constant speed was programed for computations on a digital computer, and the results were compared with existing experimental data. Comparison of computed pitch and heave motions and phase angles with corresponding experimental data was remarkably good. Comparison of bow and center of gravity vertical accelerations was fair to good.

ADMINISTRATIVE INFORMATION

This investigation was authorized by the Naval Sea Systems Command with initial funding under Task Area SR-023-0101 and completion under Task Area ZF-43-421001.

INTRODUCTION

Computer programs for estimating the motions of displacement ships in waves for all headings and speeds have been in existence for some time. Comparable computational schemes for planing craft do not exist except in limited and restricted cases. A program for planing craft would be quite useful to the small craft designer, providing a means for systematically exploring the effects of numerous design variations on performance of the craft in waves. With minor modification, the program could also be used to examine the merits of a hybrid craft design, e.g., a combination of planing craft and hydrofoil.

Predicting the motions of a planing craft in wave's is by no means a simple problem. The analytical description of a high-speed craft, planing in waves, involves several different types of flow phenomena, including planing; hydrodynamic impact, and, to a lesser extent, surface wave generation and hydrostatics. Also, the mathematics tend to become nonlinear rapidly as the motion increases or, like the real craft, can in some instances exhibit large instabilities such as porpoising.

Development of a computer program that would take into account all of the previously described factors and would be applicable for a wide range of speed and wave conditions requires a careful and systematic study in several stages with appropriate verification at each stage. To lay the foundation for such a general program, a simpler problem has been
formulated in this report with potential for expansion and generalization to the more complicated case. The simpler problem is that of a V-shaped prismatic body with hard chines and constant deadrise planing at high speed in regular head waves.

The mathematical formulation is analogous to low-aspect-ratio wing theory with provisions for including hydrodynamic impact loads, essentially a strip theory. Surface wave generation and forces associated with unsteady circulatory flow are neglected, and the flow is treated as quasi-steady. The mathematical formulation is an empirical synthesis of several theoretically derived flows describing the overall craft hydrodynamics. Wave input is restricted to monochromatic linear deepwater waves with moderate wavelengths and low wave slopes.

MATHEMATICAL FORMULATION

GENERAL

Consider a fixed coordinate system (x, z) (Figure 1) with x axis in the undisturbed free surface, pointing in the direction of craft travel, and the z axis, pointing downward. If the motions of the craft are restricted to pitch θ, heave z_{CG}, and surge x_{CG}, the equation of motions can be written as

$$
\begin{align*}
& \mathrm{M} \ddot{\mathrm{x}}_{\mathrm{CG}}=\mathrm{T}_{\mathrm{x}}-\mathrm{N} \sin \theta-\mathrm{D} \cos \theta \\
& \mathrm{M} \ddot{\mathrm{Z}}_{\mathrm{CG}}=\mathrm{T}_{\mathrm{z}}-\mathrm{N} \cos \theta+\mathrm{D} \sin \theta+\mathrm{W} \\
& \ddot{\mathrm{I}} \quad=\mathrm{Nx}_{\mathrm{C}}-\mathrm{D} \mathrm{x}_{\mathrm{d}}+\mathrm{T} \mathrm{x}_{\mathrm{p}} \tag{1}
\end{align*}
$$

where M is mass of craft
I is pitch moment of inertia of craft
N is hydrodynamic normal force
D is friction drag
W is weight of craft
T_{x} is thrust component in x direction
T_{z} is thrust component in z direction
x_{c} is distance from center of gravity (CG) to center of pressure for normal force
x_{d} is distance from CG to center of action for friction drag force
x_{p} is moment arm of thrust about CG.
Equation (1) is exact; however, defining the hydrodynamic forces and moments in waves can be extremely difficult.

A high-speed craft moving in waves may transit through several regimes that have different hydrodynamic flow characteristics. For example, as the craft moves away from the crest of wave, the flow may be characterized by unsteady-state planing until the craft collides with the oncoming wave crest and enters another regime in which impact forces are important. After the impact, the craft may enter still another regime in which it is planing but in which buoyancy forces are rather significant.

The most promising approach to a method that would incorporate all three types of flow conditions into a general formulation would seem to be a modified strip theory. The mathematical justification for this approach is not rigorous; however, there is sufficient precedent to expect promising results. For example, impact loads on landing seaplanes can be estimated reasonably well using a strip theory incorporating the Wagner two-dimensional (2-D), expanding-wedge theory, ${ }^{1}$ and Chuang ${ }^{2}$ has provided a strip method for determining loads on an impacting prismatic form that agrees extremely well with experimental results.

More recently, Martin ${ }^{3}$ has developed a linear strip theory for estimating motions of a planing craft at high speed, which shows good agreement with experimental results. A nonlinear model of the equations of motion would be expected to provide, in addition to the motions, reasonable estimates of the vertical accelerations which are an important consideration in designing a planing craft.

TWO-DIMENSIONAL HYDRODYNAMIC FORCE

Implicit with any strip method is the need to define the 2-D hydrodynamic force acting on an arbitrary cross section of the body. The 2-D flow problem is not simple; however, it lends itself to an empirical approach, using a combination of techniques used in hydrodynamic impact and low-aspect-ratio theories.

The typical cross section of a hard-chine, V-shaped prismatic body such as that being considered here is shown in Figure 2. Figure 2 actually illustrates two different idealizedflow conditions, assumed to represent the crossflow during unsteady planing, depending upon whether the flow separates from the chine (Figure 2a) or not (Figure 2b). Nonwetted-chine flow conditions are typical of the sections near the leading edge of the wetted length of the craft. Wetted-chine flow conditions are more typical of sections near the stern, except possibly in the most extreme motion and wave conditions. Some sections between leading edge and stern may alternate between flow conditions as the wetted length changes with the motions.

[^0]The normal hydrodynamic force per unit length f , acting at a section, is treated as quasi-steady and is assumed to contain components proportional to the rate of change of momentum and the velocity squared (drag term), i.e.

$$
\begin{equation*}
f=-\left\{\frac{D}{D t}\left(m_{a} V\right)+C_{D, c} \rho b V^{2}\right\} \tag{2}
\end{equation*}
$$

where V is the velocity in plane of the cross section normal to the baseline
m_{a} is the added mass associated with the section form
$C_{D, c}$ is the crossflow drag coefficient
$\rho \quad$ is the density of the fluid
b is the half beam.
For sections near the leading edge of the wetted length with nonwetted chine, the added mass is assumed to be defined in the same manner as during an impact which for a V-shaped wedge is given by

$$
\begin{equation*}
\mathrm{m}_{\mathrm{a}}=\mathrm{k}_{\mathrm{a}} \pi / 2 \rho \mathrm{~b}^{2} \tag{3}
\end{equation*}
$$

where k_{a} is an added-mass coefficient that may also include a correction for water pileupk_{a} is assumed to bc 1.0 without pileup correction.

The rate of change of momentum of the fluid at a section is given by

$$
\begin{equation*}
\frac{D}{D t}\left(m_{a} V\right)=m_{a} \dot{V}+V \dot{m}_{a}-\frac{\partial}{\partial \xi}\left(m_{a} V\right) \frac{d \xi}{d t} \tag{4}
\end{equation*}
$$

where ξ is the body coordinate parallel to the baseline; see Figure 1. The last term on the right-hand side of Equation (4) takes into account the variation of the section added mass along the hull. This contribution can be visualized by considering the 2-D flow plane as a substantive surface moving past the body with velocity $U=-d \xi / d t$ tangent to the baseline. As the surface moves past the body, the section geometry in the moving surface may change with a resultant change in added mass. This term exists even in steady-state conditions and is the lift-producing factor in low-aspect-ratio theory.

The added mass of a section with fully wetted chines has not been developed to the same extent as the V wedge. In steady-state planing problems such as those of Shuford, ${ }^{4}$
the crossflow is treated as a Helmholtz-type flow in which the Bobyleff results are used for estimating drag coefficients. Helmholtz flows are applicable only to steady-state conditions; so, it is assumed that the added mass for the fully wetted chine flow can be determined from Equation (3) using the value of the half-beam at the chine. In using the Shuford approach, it is assumed that the crossflow drag coefficient for a V-section is equal to the drag of a flat plate $\left(C_{D, C}=1.0\right)$ corrected by the Bobyleff flow coefficient approximated by $\cos \beta$, i.e.

$$
\begin{equation*}
C_{D, c}=1.0 \cos \beta \tag{5}
\end{equation*}
$$

The Bobyleff flow coefficient is the theoretical ratio of the pressure on a V-section to that experienced by a flat plate for a Helmholtz-type flow.

The same approximation is used for estimating the drag coefficient for nonwetted chine sections, using the instantaneous value of the half-beam at the free surface.

An additional force acting on the body is the buoyancy force f_{B}. This force is assumed herein to act in the vertical direction and to be equal to the equivalent static buoyancy force multiplied by a correction factor, i.e.

$$
\begin{equation*}
\mathrm{f}_{\mathrm{B}}=-\mathrm{a} \rho \mathrm{~g}(\mathrm{~A}) \tag{6}
\end{equation*}
$$

where \mathbf{A} is the cross-sectional area of the section, and a is a correction factor.
The full amount of the static buoyancy is not realized because at planing speeds the water separates from the transom and chines, reducing the pressure at these locations to atmospheric or less than the equivalent hydrostatic pressure. A greater reduction is realized in the buoyancy moment because of the corresponding shift in the center of pressure. Shuford ${ }^{4}$ in his work on steady-state planing recommended a factor of one-half to obtain the correct buoyancy force. In the following computations, the buoyancy force was corrected by a factor of one-half, i.e., $a=1 / 2$. The buoyancy moment, computed as the static buoyancy force multiplied by its corresponding moment arm, was corrected by an additional factor of one-half to obtain the proper mean-trim angles.

Equation (2) is a synthesis of several idealized flow conditions combined in an empirical manner. In all of these flows, it is assumed that the net relative movement of the fluid past the body is in an upward direction. This condition may not always be met in the case of unsteady planing in waves. Closer scrutiny will be required to determine what limitations will be imposed upon the problem as formulated and/or what modifications will be required to improve the formulation.

TOTAL HYDRODYNAMIC FORCE AND MOMENT

The total normal hydrodynamic force acting on the body is obtained by integrating the stripwise, 2-D, hydrodynamic force given by Equations (2) and (6) over the wetted length ℓ of the body. A body coordinate system (ξ, ξ) with its origin at CG and the ξ axis pointing forward parallel to the baseline of the body is defined in Figure 1 to facilitate this integration. The hydrodynamic force acting in the vertical or z direction of the fixed integral coordinate system is given by

$$
\begin{align*}
-\mathrm{N} \cos \theta= & \mathrm{F}_{\mathrm{z}}(\mathrm{t})=\int_{\ell} \mathrm{f} \cos \theta \mathrm{~d} \xi+\int_{\ell} \mathrm{f}_{\mathrm{B}} \mathrm{~d} \xi \\
=- & {\left[\int _ { \ell } \left\{\mathrm{m}_{\mathrm{a}}(\xi, \mathrm{t}) \dot{\mathrm{V}}(\xi, \mathrm{t})+\dot{\mathrm{m}}_{\mathrm{a}}(\xi, \mathrm{t}) \mathrm{V}(\xi, \mathrm{t})\right.\right.} \\
& -\mathrm{U}(\xi, \mathrm{t}) \frac{\partial}{\partial \xi}\left[\mathrm{m}_{\mathrm{a}}(\xi, \mathrm{t}) \mathrm{V}(\xi, \mathrm{t})\right] \\
& \left.+\mathrm{C}_{\mathrm{D}, \mathrm{c}}(\xi, \mathrm{t}) \rho \mathrm{b}(\xi, \mathrm{t}) \mathrm{V}^{2}(\xi, \mathrm{t})\right\} \cos \theta \mathrm{d} \xi \\
& +\mathrm{a} \rho \mathrm{gAd} \xi] \tag{7}
\end{align*}
$$

where the integration is taken over the instantaneous wetted length. Similarly the force F_{x} acting in the horizontal or x direction is given by

$$
\begin{align*}
\mathrm{F}_{\mathrm{x}}= & \int_{Q} \mathrm{f} \sin \theta \mathrm{~d} \xi \\
= & -\int\left\{\mathrm{m}_{\mathrm{a}}(\xi, \mathrm{t}) \dot{\mathrm{V}}(\xi, \mathrm{t})+\dot{\mathrm{m}}_{\mathrm{a}}(\xi, \mathrm{t}) \mathrm{V}(\xi, \mathrm{t})\right. \\
& -\mathrm{U}(\xi, \mathrm{t}) \frac{\partial}{\partial \xi}\left[\mathrm{m}_{\mathrm{a}}(\xi, \mathrm{t}) \mathrm{V}(\xi, \mathrm{t})\right] \\
& \left.+C_{\mathrm{D}, \mathrm{c}}(\xi, \mathrm{t}) \rho \mathrm{b}(\xi, \mathrm{t}) \mathrm{V}^{2}(\xi, \mathrm{t})\right\} \sin \theta \mathrm{d} \xi \tag{8}
\end{align*}
$$

Wave forces are obtained by neglecting diffraction and assuming that the wave excitation is caused both by the geometrical properties of the wave, altering the wetted length and draft of the craft, and by the vertical component of the wave orbital velocity at the surface w_{z}, altering the normal velocity V . The horizontal component of orbital velocity is neglected,
since it is assumed small in comparison with the forward speed $\dot{x}_{C G}$. The velocities U and V may then be written as

$$
\begin{align*}
& \mathrm{U}=\dot{\mathrm{x}}_{\mathrm{CG}} \cos \theta-\left(\dot{\mathrm{z}}_{\mathrm{CG}}-\mathrm{w}_{\mathrm{z}}\right) \sin \theta \\
& \mathrm{V}=\dot{\mathrm{x}}_{\mathrm{CG}} \sin \theta-\dot{\theta} \xi+\left(\dot{\mathrm{z}}_{\mathrm{CG}}-\mathrm{w}_{\mathrm{z}}\right) \cos \theta \tag{9}
\end{align*}
$$

The depth of submergence h of the body at any point $P(\xi, \zeta)$ may be determined by

$$
\begin{equation*}
\mathrm{h}=\mathrm{z}_{\mathrm{CG}}-\xi \sin \theta+\xi \cos \theta-\mathrm{r} \tag{10}
\end{equation*}
$$

where r is the instantaneous value of the wave elevation directly above the point.
For regular head waves the wave elevation for a linear deepwater wave is

$$
\begin{equation*}
r=r_{o} \cos k(x+c t) \tag{11}
\end{equation*}
$$

where r_{0} is the wave amplitude
k is the wave number
c is the wave celerity.
At point $\mathrm{P}(\xi, \zeta)$

$$
\begin{equation*}
\mathrm{x}=\mathrm{x}_{\mathrm{CG}}+\xi \cos \theta+\zeta \sin \theta \tag{12}
\end{equation*}
$$

where $\mathrm{x}_{\mathrm{CG}}=\int_{\ell} \dot{\mathrm{x}}_{\mathrm{CG}} \mathrm{dt}$
The hydrodynamic moment F_{θ} about CG is obtained in a similar manner by integrating over the wetted length the product of the normal force per unit length and the corresponding moment arm.

$$
\begin{align*}
\mathrm{F}_{\theta}= & -\int_{\ell} \mathrm{f}(\xi, \mathrm{t}) \xi \mathrm{d} \xi-\int_{\ell} \mathrm{f}_{\mathrm{b}} \cos \theta \xi \mathrm{~d} \xi \\
= & \int_{\ell}\left\{\mathrm{m}_{\mathrm{a}}(\xi, \mathrm{t}) \dot{\mathrm{V}}(\xi, \mathrm{t})+\dot{m}_{\mathrm{a}}(\xi, \mathrm{t}) \mathrm{V}(\xi, \mathrm{t})\right. \\
& -\mathrm{U}(\xi, \mathrm{t}) \frac{\partial}{\partial \xi}\left(\mathrm{m}_{\mathrm{a}}(\xi, \mathrm{t}) \mathrm{V}(\xi, \mathrm{t})\right)+\mathrm{C}_{\mathrm{D}, \mathrm{c}}(\xi, \mathrm{t}) \rho \mathrm{b}(\xi, \mathrm{t}) \mathrm{V}^{2}(\xi, \mathrm{t}) \\
& +\mathrm{a} \rho \mathrm{gA} \cos \theta\} \xi \mathrm{d} \xi \tag{13}
\end{align*}
$$

EQUATIONS OF MOTION, GENERAL

Integrating the first term in Equations (7), (8), and (13) provides hydrodynamic forces and moments proportional to acceleration of the motion. These can be combined with the inertial terms of the rigid body to give the following equation of motion

$$
\begin{aligned}
& \left(\mathrm{M}+\mathrm{M}_{\mathrm{a}} \sin ^{2} \theta\right) \ddot{\mathrm{x}}_{\mathrm{CG}}+\left(\mathrm{M}_{\mathrm{a}} \sin \theta \cos \theta\right) \ddot{\mathrm{z}}_{\mathrm{CG}}-\left(\mathrm{Q}_{\mathrm{a}} \sin \theta\right) \ddot{\theta} \\
& \quad=\mathrm{T}_{\mathrm{x}}+\mathrm{F}_{\mathrm{x}}^{\prime}-\mathrm{D} \cos \theta \\
& \left(\mathrm{M}_{\mathrm{a}} \sin \theta \cos \theta\right) \ddot{\mathrm{x}}_{\mathrm{CG}}+\left(\mathrm{M}+\mathrm{M}_{\mathrm{a}} \cos ^{2} \theta\right) \ddot{\mathrm{z}}_{\mathrm{CG}}-\left(\mathrm{Q}_{\mathrm{a}} \cos \theta\right) \ddot{\theta} \\
& \quad=\mathrm{T}_{\mathrm{Z}}+\mathrm{F}_{\mathrm{Z}}^{\prime}+\mathrm{D} \sin \theta+\mathrm{W} \\
& -\left(\mathrm{Q}_{\mathrm{a}} \sin \theta\right) \ddot{\mathrm{x}}_{\mathrm{CG}}-\left(\mathrm{Q}_{\mathrm{a}} \cos \theta\right) \ddot{\mathrm{z}}_{\mathrm{CG}}+\left(\mathrm{I}+\mathrm{I}_{\mathrm{a}}\right) \ddot{\theta} \\
& \quad=\mathrm{F}_{\theta}^{\prime}-\mathrm{D} \mathrm{x}_{\mathrm{d}}+\mathrm{T} \mathrm{x}_{\mathrm{p}}
\end{aligned}
$$

where $M_{a}(t)=\int_{\ell} m_{a}(\xi, t) d \xi$

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{a}}(\mathrm{t})=\int_{\ell} \mathrm{m}_{\mathrm{a}}(\xi, \mathrm{t}) \xi \mathrm{d} \xi \\
& \mathrm{I}_{\mathrm{a}}(\mathrm{t})=\int_{\ell} \mathrm{m}_{\mathrm{a}}(\xi, \mathrm{t}) \xi^{2} \mathrm{~d} \xi \\
& \mathrm{~F}_{\mathrm{x}}^{\prime}=\mathrm{F}_{\mathrm{x}}-\left\{-\left(\mathrm{M}_{\mathrm{a}} \sin ^{2} \theta\right) \ddot{\mathrm{x}}_{\mathrm{CG}}-\left(\mathrm{M}_{\mathrm{a}} \sin \theta \cos \theta\right) \ddot{\mathrm{z}}_{\mathrm{CG}}+\left(\mathrm{Q}_{\mathrm{a}} \sin \theta\right) \ddot{\theta}\right\} \\
& \mathrm{F}_{\mathrm{z}}^{\prime}=\mathrm{F}_{\mathrm{z}}-\{\text { appropriate acceleration terms }\} \\
& \mathrm{F}_{\theta}^{\prime}=\mathrm{F}_{\theta}-\{\text { appropriate acceleration terms }\}
\end{aligned}
$$

A detailed evaluation of the integral expressions for the hydrodynamic forces and moments is provided in Appendix A.

The solution to Equation (14) is cumbersome; however, it can be accomplished using standard numerical techniques. Introducing the state vector $\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right]$ where $x_{1}=\dot{y}_{C G}$

$$
\begin{aligned}
& \mathrm{x}_{2}=\dot{\mathrm{z}}_{\mathrm{CG}} \\
& \mathrm{x}_{3}=\dot{\theta} \\
& \mathrm{x}_{4}=\mathrm{x}_{\mathrm{CG}} \\
& \mathrm{x}_{5}=\mathrm{z}_{\mathrm{CG}} \\
& \mathrm{x}_{6}=\theta
\end{aligned}
$$

Equation (14) can be rewritten, using matrix algebra, as

$$
\begin{equation*}
A \vec{x}=\vec{g} \tag{15}
\end{equation*}
$$

so that

$$
\begin{equation*}
\overrightarrow{\mathrm{x}}=\mathrm{A}^{-1} \overrightarrow{\mathrm{~g}} \tag{16}
\end{equation*}
$$

where A^{-1} is inverse of the inertial matrix A . Equation (16) is now in a form that lends itself to integration by using a numerical method such as the Runge-Kutta-Merson integration routine.

EQUATIONS OF MOTION, SIMPLIFIED FOR CONSTANT SPEED

Assuming that the perturbation velocities in the forward direction are small in comparison to the speed of the craft, the equations of motion may be further simplified by neglecting the perturbations and setting the forward velocity equal to a constant, i.e.

$$
\dot{x}_{\mathrm{CG}}=\text { CONSTANT }
$$

If it is also assumed that the thrust and drag forces are small in comparison to the hydrodynamic forces and that they are acting through the center of gravity, the equations of motion may be written as

$$
\begin{aligned}
\ddot{\mathrm{x}}_{\mathrm{CG}} & =0 \\
\left(\mathrm{M}+\mathrm{M}_{\mathrm{a}} \cos ^{2} \theta\right) \ddot{\mathrm{z}}_{\mathrm{CG}}-\left(\mathrm{Q}_{\mathrm{a}} \cos \theta\right) \ddot{\theta} & =\mathrm{F}_{\mathrm{Z}}^{\prime}+\mathrm{W} \\
-\left(\mathrm{Q}_{\mathrm{a}} \cos \theta\right) \ddot{\mathrm{z}}_{\mathrm{CG}}+\left(\mathrm{I}+\mathrm{I}_{\mathrm{a}}\right) \ddot{\theta} & =\mathrm{F}_{\theta}^{\prime}
\end{aligned}
$$

These equations also represent the case of the craft (model) being towed through CG at CONSTANT speed. Based upon the previously described equations of motion, a computer program has been written in FORTRAN language to compute the motions of a prismatic body, planing in regular head waves at high speed. A listing of the program along with the appropriate flow chart is presented in Appendix B. The listing contains reference to thrust and drag terms; however, they have no significance, except to provide a starting point for possible updating of the program to include these terms in the future.

COMPARISON OF COMPUTED RESULTS WITH EXPERIMENTS

Computations of pitch and heave motions and heave and bow accelerations were made, using the computer program for comparison with the experimental results of Fridsma. ${ }^{5}$ Fridsma tested a series of constant-deadrise models of various lengths in regular waves to define the effects of deadrise, trim, loading, speed, length-to-beam ratio and wave proportions on the added resistance, heave and pitch motions, and impact accelerations at the bow and center of gravity. Figure 3 shows the lines of the prismatic models. The models were towed at CG with a system that permitted freedom in surge. The computer program simulates the model being towed at constant speed with CG at the baseline.

Table 1 presents some characteristics of the model and experimental conditions for which comparisons were made. Most of the comparisons have been made at a speed-to-length ratio $\mathrm{V} / \sqrt{\mathrm{L}}$ of 6.0 where the mathematical model is expected to be most representative. A limited comparison has also been made at $\mathrm{V} / \sqrt{\mathrm{L}}=4.0$; however, no comparison has been made at $\mathrm{V} / \sqrt{\mathrm{L}}=2.0$. At this speed, the model (or craft) operates in the displacement mode for which the mathematical formulation is not valid.

The average computer run corresponded to 10 -second, real-time, model scale; however, only the last 2 seconds were considered free of transient effects. An example of the computer time histories of pitch and heave motions is shown in Figure 4. Although the motions are periodic, they are not perfectly sinusoidal; consequently, in determining phase relationship, the peak, positive-pitch value (bow up) and the peak, negative-heave value (maximum upward position of CG) were used as reference points. There was a difference when the opposite peaks were used.

TABLE 1 - MODEL CHARACTERISTICS AND WAVE CONDITIONS FOR COMPUTATIONS
(Model Length $\left.=114.3 \mathrm{~cm}(3.75 \mathrm{ft}) ; \mathrm{L} / \mathrm{b}=5 ; \mathrm{C}_{\Delta}=0.608\right)$

CONFIGURATIONS							
SYMBOL		$\begin{gathered} \beta \\ \operatorname{deg} \end{gathered}$	LCG percent L		Radius of Gyration percent L	$\mathrm{V} / \sqrt{\mathrm{L}}$	
A		20	59.0		25.1	4.0	
B		20	62.0		25.5	6.0	
J		10	68.0		26.2	6.0	
M		30			24.8		0
WAVE CONDITIONS FOR CONFIGURATION --							
A		B		J		M	
H/b	$\underline{\lambda / L}$	H/b	λ / L	H/b	$\underline{\lambda / L}$	$\underline{H / b}$	λ / L
0.111	1.0	0.111	1.0	0.111	1.0	0.111	1.0
0.111	1.5	0.111	1.5	0.111	1.5	0.111	1.5
0.111	2.0	0.111	2.0	0.111	2.0	0.111	2.0
0.111	3.0	0.111	3.0	0.111	3.0	0.111	3.0
0.111	4.0	0.111	4.0	0.111	4.0	0.111	4.0
0.111	6.0	0.222	6.0	0.111	6.0	0.111	6.0
		0.334	4.0				
		0.111	6.0				

Corresponding time histories of bow and CG accelerations are shown in Figure 5. The bow acceleration was computed at Station 0 . As can be seen in these plots, the impact accelerations ranged in magnitude from cycle to cycle. The maximum impact (or negative value) acceleration computed during the final 2 seconds of run was used in the comparisons with experimental values. In some instances, particularly near resonance, the maximum impact acceleration was more than twice the average impact value.

Figure 6 shows a comparison of variation of computed and experimental pitch and heave motion with wave height for the 20 -degree deadrise model in a 15 -foot wavelength and for a speed-to-length ratio of 6.0 . Figure 7 shows the corresponding impact acceleration at the bow and CG. The computed results closely follow the experimental data, except for CG acceleration at the extreme wave height condition, where the computed value is apparently much lower. Experimental data show that the model was leaving the water at this waveheight condition. The computer model did not leave the water but came very close;
see Figure 8. Figure 8 is a trajectory of the computer model relative to the wave for a selected cycle of motion. The computer model behaves very much as expected. On the lefthand side of the figure, the craft is planing down the crest of the wave and, as it approaches the wave trough, comes very close to leaving the water before slamming and submerging itself deeply into the front of the oncoming wave crest.

Figures 9 through 14 show comparisons of the computed and experimental pitch and heave motions at $\mathrm{V} / \sqrt{\mathrm{L}}=6.0$ through a range of wavelengths and at constant wave height of 2.54 centimeters (1 inch) for deadrise models with 10,20 , and 30 degrees. The data have been plotted with respect to the coefficient C_{λ}, defined by Fridsma as $L / \lambda\left[C_{\Delta} /(L / 2 b)^{2}\right]^{1 / 3}$. Note that in our notation, b is the half-beam.

Comparisons of heave and pitch for the 10 -degree deadrise model shown in Figures 9 and 10 , respectively, show excellent results. The computer model accurately predicts the secondary peaks in the pitch and heave responses at $\mathrm{C}_{\lambda}=0.19$. At this condition, the physical experimental model rebounds so as to fly over alternate waves. The computer model oscillates at half the wave-encounter frequency and comes close to leaving the water at alternate encounters with the wave. It does not quite leave the water to fly over alternate wave crests; nonetheless, it is a good representation of the actual motion.

The heave and pitch comparison for the 20 -degree deadrise model at $\mathrm{V} / \sqrt{\mathrm{L}}=6.0$ is also excellent as can be seen in Figures 11 and 12, respectively. No experimental phase data for the condition were reported for C_{λ} greater than 0.072 ; however, extrapolated results (not shown) are in line with the computed results. The pitch and heave results shown in Figures 13 and 14 for the 30 -degree deadrise model are good; however, responses at $\mathrm{C}_{\lambda}=0.048$ and $C_{\lambda}=0.072$ are higher than the experimental results.

For practical considerations a computational scheme for planing boat motions should be valid for a range from approximately $\mathrm{V} / \sqrt{\mathrm{L}}=4.0$ to $\mathrm{V} / \sqrt{\mathrm{L}}=6.0$. Computations of the motions were made for $\mathrm{V} / \sqrt{\mathrm{L}}=4.0$ for the 20-degree deadrise model; see Figures 15 and 16 . Again the comparison of the computed heave and pitch response with experimental results is excellent.

Comparisons of the computed and experimental impact accelerations (or largest negative values) are presented in Figures 17 through 20. Figures 17 and 18 show bow and CG accelerations for the 10 -degree deadrise model; Figure 19 shows similar results for the 20 degree deadrise model; Figure 20 shows the results for the 30 -degree deadrise model. In all cases, the comparison appears to be fair to good. In the shorter wavelengths, $\lambda / \mathrm{L}=1.0$ and $\lambda / L=1.5$, the computed accelerations are higher than the corresponding experimental values. This is most pronounced for the 10 -degree deadrise angle model.

CONCLUSIONS AND RECOMMENDATIONS

A mathematical model of a craft having a constant deadrise angle, planing in regular waves, has been formulated using a modified low-aspect-ratio or strip theory. It was assumed that the wavelengths were long in comparison to the craft length and that the wave slopes were small. The coefficients in the equations of motion were determined by a combination of theoretical and empirical relationships.

A simplified version for the case of a craft or model being towed at constant speed was programed for computations on a digital computer, and the results were compared with existing experimental data.

The comparison of the computed pitch and heave motions and phase angles with the corresponding experimental data gave remarkably satisfying results. Comparison of the bow and CG accelerations was fair to good.

In summary, the previously described mathematical model appears to be a valid representation of a planing craft in waves for the specific craft geometry and wave conditions considered.

To make the computer program more valuable to the designer the following additional work is recommended:

1. Improve estimates of hydrodynamic coefficients to obtain better acceleration data and to include more complicated ship geometry.
2. Determine added resistance in waves.
3. Include freedom to surge and to add components of propulsion.
4. Extend to the case of irregular waves.

ACKNOWLEDGMENTS

Acknowledgment is given to Dr. Joseph Whalen and Ms. Sue Fowler of Operations Research, Inc., who translated the equations of motion into an operational computer program.

Figure 1 - Coordinate System

Figure 2a-Flow Separation from Chine

Figure 2b - Nonwetted Chine

Figure 2 - Types of Two-Dimensional Flow

Figure 3 - Lines of Prismatic Models

Figure 4 - Sample Time Histories of Computed Pitch and Heave Motions

Figure 5 - Sample Time Histories of Computed Accelerations of Bow and Center of Gravity

Figure 6 - Variation of Pitch and Heave with Wave Height

Figure 7 - Variation of Acceleration of Bow and Center of Gravity with Wave Height

Figure 8 - Trajectory of Computer Model Relative to Wave

Figure 9 - Heave Response for 10-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=6.0$

Figure 10 - Pitch Response for 10-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=6.0$

Figure 11 - Heave Response for 20-Degree Deadrise Model at $V / \sqrt{L}=6.0$

Figure 12 - Pitch Response for 20-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=6.0$

Figure 13 - Heave Response for 30-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=6.0$

Figure 14 - Pitch Response for 30-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=6.0$

Figure 15 - Heave Response for 20-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=4.0$

Figure 16 - Pitch Response for 20-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=4.0$

Figure 17 - Bow Acceleration for 10-Degree Deadrise Model at $V / \sqrt{L}=6.0$

Figure 18 - Center of Gravity Acceleration for 10-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=6.0$

Figure 19 - Bow and Center of Gravity Accelerations for 20-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=4.0$ and $\mathrm{V} / \sqrt{\mathrm{L}}=6.0$

Figure 20 - Bow and Center of Gravity Accelerations
for 30-Degree Deadrise Model at $\mathrm{V} / \sqrt{\mathrm{L}}=6.0$

REFERENCES

1. Wagner, H., 'Landing of Seaplanes,' leitschrift fur Flegtechnik und Motorluflsshifffahrt, (14 Jan 1931); National Advisory Committee for Aeronautics TM 672 (May 1931).
2. Chuang, S.L., 'Slamming Tests of Three-Dimensional Models in Calm Water and Waves,' NSRDC Report 4095 (Sep 1973).
3. Martin, M., "Theoretical Predictions of Motions of High-Speed Planing Boats in Waves, '" DTNSRDC Report 76-0069 (Apr 1976).
4. Shuford, S.L., Jr., "A Theoretical and Experimental Study of Planing Surfaces Including Effects of Cross Section and Plan Form," National Advisory Committee for Aeronautics Report 1355 (1957).
5. Fridsma, G., " A Systematic Study of the Rough-Water Performance of Planing Boats," Davidson Laboratory, Stevens Institute of Technology Report R1275 (Nov 1969).

APPENDIX A

EVALUATION OF HYDRODYNAMIC FORCE AND MOMENT INTEGRALS
The hydrodynamic force the craft experiences in the vertical direction as derived in the text is:

$$
\mathrm{F}_{\mathrm{z}}=-\int_{\ell}\left\{\mathrm{m}_{\mathrm{a}} \dot{\mathrm{~V}}-\mathrm{U} \frac{\partial \mathrm{~m}_{\mathrm{a}} \mathrm{~V}}{\partial \xi}+\dot{m}_{\mathrm{a}} \mathrm{~V}+\mathrm{C}_{\mathrm{D}} \rho \mathrm{~b} \mathrm{~V}^{2}\right\} \cos \theta \mathrm{d} \xi+\int_{\ell} \mathrm{a} \rho \mathrm{gAd} \xi
$$

where $\mathrm{U}=\dot{\mathrm{x}}_{\mathrm{CG}} \cos \theta-\left(\dot{\mathrm{z}}-\mathrm{w}_{\mathrm{z}}\right) \sin \theta$
and

$$
\mathrm{V}=\dot{\mathrm{x}}_{\mathrm{CG}} \sin \theta+\left(\dot{\mathrm{z}}-\mathrm{w}_{\mathrm{z}}\right) \cos \theta-\dot{\theta} \xi
$$

Another force acting in the vertical direction is the weight of the craft.
The first two terms of the integral are evaluated by making the substitutions

$$
\begin{aligned}
\dot{\mathrm{V}}= & \ddot{\mathrm{x}}_{\mathrm{CG}} \sin \theta-\ddot{\theta} \xi+\ddot{\mathrm{z}}_{\mathrm{CG}} \cos \theta-\dot{\mathrm{w}}_{\mathrm{Z}} \cos \theta \\
& +\dot{\theta}\left(\dot{\mathrm{x}}_{\mathrm{CG}} \cos \theta-\dot{\mathrm{z}}_{\mathrm{CG}} \sin \theta\right)+\mathrm{w}_{\mathrm{Z}} \dot{\theta} \sin \theta \\
\frac{\partial \mathrm{~V}}{\partial \xi}= & -\dot{\theta}-\frac{\partial \mathrm{w}_{\mathrm{z}}}{\partial \xi} \cos \theta \\
\frac{\partial \mathrm{U}}{\partial \xi}= & \frac{\partial \mathrm{w}_{\mathrm{Z}}}{\partial \xi} \sin \theta \\
\frac{\mathrm{~d} \mathrm{w}_{\mathrm{Z}}}{\mathrm{dt}}= & \dot{w}_{\mathrm{Z}}-\mathrm{U} \frac{\partial \mathrm{w}_{\mathrm{Z}}}{\partial \xi}
\end{aligned}
$$

and noting that

$$
\int_{\ell} U V \frac{\partial m_{a}}{\partial \xi} d \xi=-\left.U V m_{a}\right|_{\text {stern }}-\int_{\ell} m_{a} \frac{\partial U V}{\partial \xi} d \xi
$$

Using the previously described substitutions, the force becomes

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{z}}=\left\{-\mathrm{M}_{\mathrm{a}} \cos \theta \ddot{\mathrm{z}}_{\mathrm{CG}}-\mathrm{M}_{\mathrm{a}} \sin \theta \ddot{\mathrm{x}}_{\mathrm{CG}}+\mathrm{Q}_{\mathrm{a}} \ddot{\theta}+\mathrm{M}_{\mathrm{a}} \dot{\theta}\left(\dot{\mathrm{z}}_{\mathrm{CG}} \sin \theta-\dot{\mathrm{x}}_{\mathrm{CG}} \cos \theta\right)\right. \\
& +\int_{\ell} m_{a} \frac{d w_{z}}{d t} \cos \theta d \xi-\int_{\ell} m_{a} w_{z} \dot{\theta} \sin \theta d \xi \\
& -\int_{\ell} \mathrm{m}_{\mathrm{a}} \mathrm{~V} \frac{\partial \mathrm{w}_{\mathrm{z}}}{\partial \xi} \sin \theta \mathrm{~d} \xi+\int_{\ell} \mathrm{m}_{\mathrm{a}} \mathrm{U} \frac{\partial \mathrm{w}_{\mathrm{z}}}{\partial \xi} \cos \theta \mathrm{~d} \xi \\
& \left.-\left.U V m_{a}\right|_{\text {stern }}-\int_{\ell} V \dot{m}_{a} d \xi-\rho \int_{\ell} C_{D, c} b V^{2} d \xi\right\} \cos \theta \\
& +\int_{\ell} \mathrm{a} \rho \mathrm{gAd} \mathrm{\xi}
\end{aligned}
$$

where $M_{a}=\int_{\ell} m_{a} d \xi$
and

$$
\mathrm{Q}_{\mathrm{a}}=\int_{\ell} \mathrm{m}_{\mathrm{a}} \xi \mathrm{~d} \xi
$$

This is essentially the form in which the integrals have been computed in the program.
The rate of change of the sectional added mass in the third term of the integral expression is derived by relating it to the rate of change of depth of fluid penetration of the section. The added mass of a section is assumed to be equal to

$$
\mathrm{m}_{\mathrm{a}}=\mathrm{k}_{\mathrm{a}} \pi / 2 \rho \mathrm{~b}^{2}
$$

for which the time derivative is

$$
\dot{\mathrm{m}}_{\mathrm{a}}=\mathrm{k}_{\mathrm{a}} \pi \rho \mathrm{~b} \dot{\mathrm{~b}}
$$

where b is the instantaneous half-beam of the section, and k_{a} is an added-mass coefficient, assumed to be constant. A value of $k_{a}=1.0$ was used in the computations contained in this report. For sections with constant deadrise, which is an imposed limitation of this work, the half-beam is related to the depth of penetration by

$$
\mathrm{b}=\mathrm{d} \cot \beta
$$

where d is depth of penetration, and β is deadrise angle.
Taking into account the effect of water pileup, the effective depth of penetration d_{e} is, according to Wagner

$$
\mathrm{d}_{\mathrm{e}}=\pi / 2 \mathrm{~d}
$$

and

$$
\mathrm{b}=\mathrm{d}_{\mathrm{e}} \cot \beta=\pi / 2 \mathrm{~d} \cot \beta
$$

where $\pi / 2$ is the factor by which the wedge immersion is increased by the pileup. Using this expression for the half-beam, the rate of change of sectional added mass becomes

$$
\dot{\mathrm{m}}_{\mathrm{a}}=\mathrm{ka} \pi \rho \mathrm{~b}(\pi / 2 \cot \beta) \dot{\mathrm{d}}
$$

This expression is valid for penetration of the section up to the chine. When the immersion exceeds the chine, the sectional added mass is assumed to be constant, i.e.,

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{a}}=\mathrm{k} \pi / 2 \rho \mathrm{~b}_{\max }^{2} \\
& \dot{\mathrm{~m}}_{\mathrm{a}}=0
\end{aligned}
$$

where $b_{\text {max }}$ is the half-beam at chine.
The submergence of a section in terms of the motions is given by

$$
h=z-r
$$

where $\mathrm{z}=\mathrm{z}_{\mathrm{CG}}-\xi \sin \theta+\zeta \cos \theta$

$$
r=r_{0} \cos \left\{k\left(x_{C G}+\xi \cos \theta+\xi \sin \theta\right)+\omega t\right\}
$$

For wavelengths which are long in comparison to the draft and for small wave slopes, the immersion of a section measured perpendicular to the baseline is approximately

$$
\mathrm{d} \approx \frac{\mathrm{z}-\mathrm{r}}{\cos \theta-v \sin \theta}
$$

where $v=$ wave slope

The rate change of submergence d is given by

$$
\dot{\mathrm{d}}=\frac{\dot{\mathrm{z}}-\dot{\mathrm{r}}}{\cos \theta-v \sin \theta}+\frac{(\mathrm{z}-\mathrm{r})}{(\cos \theta-v \sin \theta)^{2}} \cdot \frac{\partial(\cos \theta-v \sin \theta)}{\partial \mathrm{t}}
$$

Since immersion $(z-r)$ is always small in the valid range of the previously described expression, the relationship can be further simplified to

$$
\dot{\mathrm{d}} \approx \frac{\dot{\mathrm{z}}-\dot{\mathrm{r}}}{\cos \theta-v \sin \theta}
$$

and

$$
\dot{\mathrm{m}}_{\mathrm{a}} \approx \mathrm{k}_{\mathrm{a}} \pi \rho \mathrm{~b}(\pi / 2 \cot \beta) \frac{(\dot{\mathrm{z}}-\dot{\mathrm{r}})}{\cos \theta-v \sin \theta}
$$

The expansion of the integral expression for the hydrodynamic moment in pitch follows the procedure used for the vertical force. The results are summarized as follows

$$
\begin{aligned}
\mathrm{F}_{\theta}= & -\mathrm{I}_{\mathrm{a}} \ddot{\theta}+\mathrm{Q}_{\mathrm{a}} \cos \theta \ddot{\mathrm{z}}_{\mathrm{CG}}-\mathrm{Q}_{\mathrm{a}} \dot{\theta}\left(\dot{\mathrm{z}}_{\mathrm{CG}} \sin \theta-\dot{\mathrm{x}}_{\mathrm{CG}} \cos \theta\right) \\
& -\int_{\ell} \mathrm{m}_{\mathrm{a}} \cos \theta \frac{\mathrm{~d} \mathrm{w}_{\mathrm{Z}}}{\mathrm{dt}} \xi \mathrm{~d} \xi+\int_{\ell} \mathrm{m}_{\mathrm{a}} \dot{\theta} \sin \theta \mathrm{w}_{\mathrm{Z}} \xi \mathrm{~d} \xi \\
& +\int_{\ell} \mathrm{V} \dot{\mathrm{~m}}_{\mathrm{a}} \xi \mathrm{~d} \xi+\int_{\ell} \rho \mathrm{C}_{\mathrm{D}} \mathrm{bV} \mathrm{~V}^{2} \xi \mathrm{~d} \xi \\
& +\left.\mathrm{m}_{\mathrm{a}} \mathrm{UV} \xi\right|_{\text {stern }}+\int_{\ell} \mathrm{m}_{\mathrm{a}} \mathrm{VUd} \xi \\
& +\int_{\ell} \mathrm{m}_{\mathrm{a}} \mathrm{~V} \frac{\partial \mathrm{w}_{\mathrm{Z}}}{\partial \xi} \sin \theta \xi \mathrm{~d} \xi \\
& -\int_{\ell} \mathrm{m}_{\mathrm{a}} \mathrm{U} \frac{\partial \mathrm{w}_{\mathrm{z}}}{\partial \xi} \cos \theta \xi \mathrm{~d} \xi \\
& +\int_{\ell} \mathrm{a} \rho \mathrm{gA} \cos \theta \xi \mathrm{~d} \xi
\end{aligned}
$$

The only additional moments are the buoyancy moments. All other moments are considered to be zero for the specific problem considered in this report.

APPENDIX B
 COMPUTER PROGRAM DESCRIPTIONS

OVERVIEW

The equations of motions developed in the previous sections of this report have been solved by means of digital computer programs. Two major programs have been developed: the first (MAIN) solves the equations of motion using the Runge-Kutta-Merson integration algorithm and generates time histories that are stored on the system disk. The second (PLTHSP) generates California Computer Products Company (CALCOMP) pen plots from the disk files. All programs were designed to operate on the Control Data Corporation computer system, located at the David W. Taylor Naval Ship Research and Development Center in Carderock, Md.

Descriptions of input data required to execute the programs, job control cards, and programs follow. Sufficient detail is presented for this appendix to serve as a manual for use and maintenance.

JOB CONTROL CARDS FOR PROGRAM MAIN

Job control cards for program MAIN which computes time histories of the motion variables, are described as follows. If CALCOMP plots are not desired, TAPES need not be cataloged.

Job Control Language Card:
Job Card
Charge Card
REQUEST,TAPE9,*PF.
REQUEST,TAPE2,*PF.
REQUEST,TAPE4,*PF.
ATTACH,BINAR,SEFZARNICKNEWB, $\mathrm{ID}=\mathrm{XXXX}$.

ATTACH,NSRDC.
LDSET(LIB=NSRDC).
BINAR.
REWIND,TAPE2.
REWIND,TAPE4.
COPY(TAPE2,OUTPUT)
COPY(TAPE4,OUTPUT)

Comment

Standard facility card
Standard facility card
Reserves space for CALCOMP plot data
Print output file 1 request
Print output file 2 request
Attaches binary run file

Attaches library routines
Loads library routines
Loads and executes run file
Rewinds time-history files for printing
Prints time-history file
Prints time-history file

CATALOG,TAPE9, SEFZARNICKDATA. ., ID=XXXX.

7/8/9 END OF RECORD
DATA CARDS (1-5)
6/7/8/9 END OF FILE

INPUT DATA CARDS FOR PROGRAM MAIN

Input data used by program MAIN are read from data cards in NAMELIST and in standard format. A description of the FORTRAN symbols appearing in NAMELIST follows. For simplicity in the text that follows, it is assumed that NAMELIST input occupies only one card. More cards can be used if necessary.

Card 1(NAMELIST FORMAT, / /)
A
NPRINT If $=1$, print normal output
If $=2$, matrix, inverse matrix, F-column matrix, and KUTMER results If $=3$, integral results If $=4$, calculated values constant for given input values
NPLOT If $=0$, no plot
If $=1$, printer plot of results
END Number of runs to be made
W Weight of craft in pounds
BL Boat length in feet
TZ Thrust component in z direction
TX Thrust component in x direction
XECG Distance from center of gravity to center of pressure for drag force in feet
XP Moment arm of propeller thrust
XD Distance from center of gravity to center
DRAG Friction for drag force
RO Wave height
LAMBDA Wavelength
RG Radius of gyration in feet
T Propeller thrust in pounds
GAMMA Propeller thrust angle in degrees

Card 1 (continued)

ECG	Longitudinal center of gravity
NCG	Vertical center of gravity, nondimensionalized by ship length
KAR	Added-mass coefficient
BETA(I)	Dead-rise angle in degrees
EST(I)	Station position in feet
NUM	Number of stations
XA	Initial time
XE	Stop time
HMIN	Minimum step size
HMAX	Maximum step size
EPS	Error criterion

Card 2 (Format 8F10.0)
($\mathrm{X}(\mathrm{I}), \mathrm{I}=1,6) \quad$ Initial conditions
$X(1) \quad$ Velocity
$\mathrm{X}(2) \quad \mathrm{Z}$
$X(3) \quad \theta$
$\mathrm{X}(4) \quad \mathrm{X}$
$\mathrm{X}(5) \quad \mathrm{Z}$
$\mathrm{X}(6) \quad \theta$ degrees

Card 3 (8F10.0)
START Time to turn on (RMP) function (see page 48)
RISE Duration of RMP

Card 4 (8F10.0)

TME Time at which integration interval is to be changed*
HMX New maximum interval size after TME
HMN New minimum interval size for KUTMER to subdivide

[^1]
Card 5 (8F10.0)

PERCNT Percentage of boat length subtracted from longitudinal center of gravity to obtain X - point where acceleration computations are made

JOB CONTROL CARDS FOR PROGRAM PLTHSP

Job control cards for program PLTHSP which generates CALCOMP plots of time histories computed by program MAIN are described in this section.

Job Control Language Card:
Job Card
Charge Card
REQUEST,TAPE7,HI.
VSN(TAPE7=CK0323).

ATTACH,CALC936.
ATTACH,BINAR,SEFZARNICKPLOTB, $\mathrm{ID}=\mathrm{XXXX}$.

LDSET(LIB=CALC936)
BINAR.
7/8/9 END OF RECORD
DATA CARDS
6/7/8/9 END OF FILE

Comment

Standard facility card
Standard facility card
Tape for CALCOMP plot data
Volume serial number of tape for CALCOMP plot
Attaches CALCOMP library routine
Attaches plot program run file

Loads CALCOMP library routines
Runs plot program

INPUT DATA CARDS FOR PROGRAM PLTHSP

Two or three data cards are made ready by PLTHSP, depending on the options selected.
Standard input format is employed. A description of the necessary data cards follows.

Card 1 (8F10.0 Format)

XAXIS Length of x axis in inches
YAXISP Height of pitch component axis in inches
YAXISH Height of heave component axis in inches
HT Height of lettering in inches

Card 2 (I10 Format)

IA If $=0$, no plots for bow acceleration and center of gravity acceleration
If $=1$, plots previously mentioned information

Card 3 (8F10.0 Format) - Only Necessary If $1 A=1$.

YAXISB Height of bow acceleration axis in inches
YAXISC Height of CG acceleration axis in inches

PROGRAM MAIN

Program MAIN reads all necessary input data from cards, sets up initial values, computes constants, calls KUTMER to determine the state variables at TIME for the period from XA to XE in increments of HMAX. A table state variables is created for every PTIME-th value. The values for λ / H and $\theta_{\mathrm{p}} / 2 \pi \mathrm{H} / \lambda$ are calculated and printed. If the plot option is on, a printer plot will be produced.

Subroutine COMPUT(X)

This routine computes pitch moment NL and lift force FL, excluding added mass terms, using values of integrals computed in subroutine FUNCT. The argument X contains the state vector.

Subroutine DAUX

This subroutine is called from KUTMER or EULER. It determines the values of m_{a}, b. and $\mathrm{b} 1^{*}$, based on the following equations

$$
\mathrm{h}_{\mathrm{w}}(\mathrm{I})=\mathrm{z}_{\mathrm{CG}}-\xi(\mathrm{I}) \sin \theta+\zeta(\mathrm{I}) \cos \theta-\mathrm{r}(\mathrm{I})
$$

where $r(I)=r_{0} \cos k\left[x_{C G}+\xi(I) \cos \theta+\zeta(I) \sin \theta+c t\right]$
Then for

$$
\begin{aligned}
\mathrm{h}_{\mathrm{w}}(\mathrm{I}) & >0, \\
\mathrm{~d}(\mathrm{I}) & =\frac{\mathrm{h}_{\mathrm{w}}(\mathrm{I})}{\cos \theta-(\mathrm{I}) \sin \theta}
\end{aligned}
$$

where $\mathrm{V}(\mathrm{I})=-\mathrm{r}_{\mathrm{o}} \mathrm{k} \sin \theta\left[\mathrm{x}_{\mathrm{CG}}+\xi(\mathrm{I}) \cos \theta+(\mathrm{I}) \sin \theta+\mathrm{ct}\right]$ If

$$
\mathrm{d}(\mathrm{I}) \geqslant \mathrm{b}_{\mathrm{m}}(\mathrm{I}) \tan (\beta(\mathrm{I}) 2 / \pi)
$$

set

$$
\begin{array}{ll}
\mathrm{m}_{\mathrm{a}}(\mathrm{I}) & =\mathrm{m}_{\mathrm{amax}}(\mathrm{I}) \\
\mathrm{b}(\mathrm{I}) & =\mathrm{b}_{\mathrm{m}}^{(\mathrm{I})} \\
\mathrm{bl}(\mathrm{I}) & =0 \\
\mathrm{~m}_{\mathrm{amax}}(\mathrm{I}) & =\mathrm{k}(\mathrm{I})(\rho / 2) \pi \mathrm{b}_{\mathrm{m}}^{2}(\mathrm{I})
\end{array}
$$

If

$$
\mathrm{d}(\mathrm{I})<\mathrm{b}_{\mathrm{m}}(\mathrm{I}) \tan (\beta(\mathrm{I}))(2 / \pi)
$$

set

$$
\begin{aligned}
& \mathrm{b}(\mathrm{I})=\mathrm{d}(\mathrm{I}) \cot (\beta(\mathrm{I}))(\pi / 2) \\
& \mathrm{bl}(\mathrm{I})=\mathrm{b}(\mathrm{I}) \\
& \mathrm{m}_{\mathrm{a}}(\mathrm{I})=\mathrm{k}_{\mathrm{a}}(\mathrm{I})(\rho / 2) \pi \mathrm{b}^{2}(\mathrm{I})
\end{aligned}
$$

for

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{w}}(\mathrm{I}) \leqslant 0 ; \\
& \mathrm{m}_{\mathrm{a}}(\mathrm{I})=0, \quad \mathrm{~b}(\mathrm{I})=0, \quad \mathrm{bl}(\mathrm{I})=0
\end{aligned}
$$

This subroutine then calls FUNCT which in turn calls COMPUT to determine the values of N_{L} and F_{L}, the lift force and moment. The values of N_{L} and F_{L} are used to compute the following

$$
\begin{aligned}
& \mathrm{F}_{1}=\mathrm{T}_{\mathrm{x}}+\mathrm{F}_{\mathrm{L}} \sin \theta-\mathrm{D} \cos \theta \\
& \mathrm{~F}_{2}=\mathrm{T}_{\mathrm{z}}+\mathrm{F}_{\mathrm{L}} \cos \theta+\mathrm{D} \sin \theta+\mathrm{W} \\
& \mathrm{~F}_{3}=\mathrm{N}_{\mathrm{L}}-\mathrm{D}_{\mathrm{x}_{\mathrm{d}}}+\mathrm{T}_{\mathrm{x}_{\mathrm{p}}}
\end{aligned}
$$

[^2]The mass inertia matrix is

$$
\begin{aligned}
& A_{11}=M+M_{a} \sin ^{2} \theta \\
& A_{12}=M_{a} \sin \theta \cos \theta \\
& A_{13}=-Q_{a} \sin \theta \\
& A_{21}=A_{12} \\
& A_{22}=M+M_{a} \cos ^{2} \theta \\
& A_{23}=-Q_{a} \cos \theta \\
& A_{31}=A_{13} \\
& A_{32}=A_{23} \\
& A_{33}=I+I_{a}
\end{aligned}
$$

The matrix is inverted by the system routine MATINS. The inverted matrix is then used to solve the following equations which determine the state vectors.

$$
\begin{aligned}
& \ddot{\mathrm{x}}_{\mathrm{CG}}=\mathrm{A}_{11}^{-1} \mathrm{~F}_{1}+\mathrm{A}_{12}^{-1} \mathrm{~F}_{2}+\mathrm{A}_{13}{ }^{-1} \mathrm{~F}_{3} \\
& \ddot{\mathrm{z}}_{\mathrm{CG}}=\mathrm{A}_{21}^{-1} \mathrm{~F}_{1}+\mathrm{A}_{22}{ }^{-1} \mathrm{~F}_{2}+\mathrm{A}_{23}{ }^{-1} \mathrm{~F}_{3} \\
& \ddot{\theta}=\mathrm{A}_{31}{ }^{-1} \mathrm{~F}_{1}+\mathrm{A}_{32}{ }^{-1} \mathrm{~F}_{2}+\mathrm{A}_{33}{ }^{-1} \mathrm{~F}_{3}
\end{aligned}
$$

Subroutine FUNCT (X)

This routine evaluates various integrals appearing in the force and moment mathematical models. The integrals are evaluated, using a trapezoidal integration algorithm. The argument x contains the state vector. A list of integrals that are evaluated is presented.

$$
\begin{array}{ll}
\int_{\ell} m_{a} d \xi & \int_{\ell} m_{a} \xi d \xi \\
\int_{\ell} m_{a} \xi^{2} d \xi & \int_{\ell} m_{a} U V d \xi \\
\int_{\ell} m_{a} w_{z} d \xi & \int_{\ell} m_{a} w_{z} \xi d \xi \\
\int_{\ell} m_{a} \frac{d w_{z}}{d t} d \xi & \int_{\ell} m_{a} \frac{d w_{z}}{d t} \xi d \xi \\
\int_{\ell} m_{a} V \frac{\partial w_{z}}{\partial \xi} d \xi & \int_{\ell} m_{a} V \frac{\partial w_{z}}{\partial \xi} \xi \mathrm{~d} \xi \\
\int_{\ell} m_{a} U \frac{\partial w_{z}}{\partial \xi} d \xi & \int_{\ell} m_{a} U \frac{\partial w_{z}}{\partial \xi} \xi \mathrm{~d} \xi \\
\int_{\ell} m_{a} V d \xi & \int_{\ell} m_{a} V \xi d \xi \\
\int_{\ell} b V^{2} d \xi & \int_{\ell} b V^{2} \xi d \xi \\
\int_{\ell} b\left(h-\frac{b}{2} \tan \beta\right) d \xi & \int_{\ell} b\left(h-\frac{b}{2} \tan \beta\right) \xi d \xi
\end{array}
$$

Subroutine INPUT

This routine reads in NAMELIST/HSP/ which contains the initial data concerning the craft and sea conditions pertinent to all the runs to be made. It is set up so that most of the data are given default values by means of data statements in subroutine INPUT. These data statements can be overridden during execution by reading values in on cards. For further explanation of the specific variables see section on the input data cards.

This routine also "initializes" constant such as π, ρ, and g . It uses the input values to calculate the keel profile and planform arrays, NO and BM, wave constants, system mass and inertia, and maximum mass and depth of chine at each station.

Subroutine KUTMER (NEQS, TIME, HMAX, X, EPSE, A, HMIN, FIRST)

This is a Runge-Kutta-Merson integration routine that is capable of changing the size of the interval over which it integrates to meet specified error criteria. It is therefore an
accurate method for a system that may oscillate more rapidly than the initial integration interval. A minimum step size prevents the routine from subdividing the interval indefinitely.

The input arguments are:
NEQS Number of dependent variables in the x array
TIME Actual time (independent variable)
HMAX Increment for which the solution is to be returned
$\mathrm{X} \quad$ Vector of dependent variables
EPSE Relative error criteria specified for each component of x and used for the components of x less than the absolute value of A

A Absolute error criteria
HMIN Minimum step size allowed
FIRST Set to zero on first call; a value of 1 is assigned by KUTMER on subsequent calls for which the error criteria are satisfied, otherwise a value of 2 is assigned

Subroutine PLOT2 (F, FMIN, FMAX, NVAR, NFUN, N1, N, XO, DELX)

Data stored in the two-dimensional array F are plotted, using the printer by subroutine PLOT2. As many as 26 different functions, having evenly spaced abscissa values, can be plotted. The output is written on Unit 6. A description of variables follows.

F

FMIN An array of minimum functional values; the minimum of the Ith function is stored in FMIN(I)

FMAX Same as FMIN only for maximum values
NVAR An array of titles for each function to be plotted
NFUN Number of functions to be plotted
N1 First dimension of array F
N
XO
DELX
Array containing data to be plotted; the Jth point of the Ith function is stored in $\mathrm{F}(\mathrm{I}, \mathrm{J})$

Number of points to be plotted
First abscissa value
Abscissa increment

Subroutine PLOTER (FX, XA, HMAX, LAMBDA, IB, NWAVE)

The routine initializes various values required to generate printer plots and computes pitch-and-heave ratios. The printer plots that are generated consists of pitch-and-heave time histories. A description of input variables follows.

FX A two-dimensional array, containing time histories to be plotted
XA
HMAX Time-interval increment; time interval between values in FX is given by HMAX*PTIME

LAMBDA Wavelength
IB Number of values to be plotted
NWAVE Position in FX at which wave is completely turned on

Function RMP (T, START, RISE)

The RMP is a function that calculates a value between 0 and 1 corresponding to time T , based on a straight line from time START with a value of 0 to time START plus RISE with a value of 1 . It is used to lower the initial wave amplitude to avoid large transients at start of the computations.

The arguments are:
T
START Time at which to begin the ramp from 0 to 1
RISE Duration of rise from 0 to 1
The function reaches the value 1 at time START plus RISE, if the rise is 0.0 , RMP will return a value of 0.5 .

Subroutine TRAP (F, DX, NPTS, ANS)

This routine performs the evaluation of an integral using a trapezoidal approximation. The argument variables are defined as follows:

F
DX
NPTS Number of values in F
ANS Result, which is equal to

$$
\mathrm{DX}\left\{\sum_{\mathrm{i}=1}^{\mathrm{NPTS}} \mathrm{~F}(\mathrm{i})-0.5[\mathrm{~F}(1)+\mathrm{F}(\mathrm{NPTS})]\right\}
$$

PROGRAM PLTHSP

This program uses a data file created by program MAIN to create CALCOMP plots. The data are read from logical Unit 9 and are rewritten on Unit 7 for CALCOMP input. Program PLTHSP sets the tape output unit equal to 7 and calls SUBROUTINE CALPHI to execute the plot procedures.

Subroutine CALPLT

This subroutine manages all the I/O operations and performs the necessary calculations required to generate the plots. After reading the card data (two or three cards) subroutine READT is called to read the data file (Tape 9) created by program MAIN. The CALCOMP initializing routines are called next, after which a call to subroutine ESCALE calculates the necessary scaling factors. Subroutine EXAXIS is called next to determine the placement of the plot tick marks and identifying digits. The CALCOMP plot-generation subroutines are now called and, depending on the option defined by the IA parameter on card 2, plots of pitch and heave at the bow and CG location are generated as functions of time if IA $=1$.

Subroutine EAXIS

The subroutine is analogous to the CALCOMP AXIS routine. The only exception is that the tick marks are not necessarily inch, and the height of the characters is defined by the input parameter HT. Function NDIGIT is called to determine the number of digits necessary to print an even increment of the plots functions on the axis.

Subroutine ESCALE, ADJUST, and FUNCTION UNIT

These subroutines find the scale to be used on the plot axis. Function UNIT is called to determine the axis increment size after which subroutine ADJUST is called to extend the minimum (AMIN) and maximum (AMAX) values so that they are even multiples of the axis increments.

FUNCTION NDIGIT

This function finds the number of digits necessary to print even increments of the function on the axis. Both the number of places in the entire number (NDIGIT) and the number of decimal places (ND) are determined, after which the value of each increment on the axis (ANUM) is calculated.

Subroutine READT

This subroutine reads the data file created by program MAIN. Data file records are read until the message end of file is encountered. Each record is read in the same format as it was written in MAIN. The information is printed to allow the user to inspect the created file.

LISTING OF COMPUTER PROGRAM FOR MOTION COMPUTATIONS

```
        PROGRAM MAIN (INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,TAPE3=512, MAIN
    - TAPE2=512,TAPE4=512,TAPE9) MAIN
    REAL IT,K,LAMBDA,M,MA,MMAX,N,NCG,NU,MASS,NL,IA,KAR
    INTEGER ENN
    DIMENSION }\times(6),F\times(2,400
    COMMON /CONST/ NCG,ECG,PI,DPR,RPD,GRAVTY,RHO,K,NUM,MA(120),CD,TA, MAIN
    - B(120),BETA,HW(120),TZ,URAG,W,XD,T,XP,M,IT, MAIN
        DELTÄS,TX,EST(120),C,RO,KAR,MMAX(1 0),TEST(120), MAIN
        N(120), PHALF
    COMMON /SHIP/ MASS,CINT,QA,CE,CE2,CE3,DMU,EOMU,E2DMU,F3DMU,BF,BMM,MAIN
    * NL,FL,IA,E(120)
    COMMON /IN/ BM(120),B1(120),VELIN MAIN
    COMMON/UUT/NPRINT,NPLOT,END MAIN
    COMMON/TERMS/T1,T2,T3,T4,T5,T6,T7,TB
    COMMON /SEAWAVE/ START,RISE,RAMP
    COMMON /INTER/ II,KTT(10),DIFF(10)
    COMMON /IN2/NO(120), XA,XE,HMAX,HMIN,A(6),EPSE(6),LAMBDA MAIN
    COMMON /ACCEL / XACCL,BWACL,CGACL,BL
    CALL INPUT
C
C
            COMPUTE INTEGRATION INTERVAL INFORMATION
    NLESS = NUM-1
    I=1
    II = 1
    DIFFER = EST(I*I)-EST(I)
    KTT(II) = 1
    DIFF(II) = DIFFER
    DO 25 I=2,NLESS
    DIFFER= EST(I +1)-EST(I)
    KTT(II) = KTT(II)+I
    IF(DIFFER.NE,UIFF(II))GO TO 24
    GO TO 25
    24 II = II +1
        KTT(II) = l
        DIFF(II) = DIFFER
    25 CONTINUE
        KrT(II)= KTT(II)+I
C * CHECK IF NUMBER OF INTERVALS EXCEEDS UIMENSION
        IF (II,GT.10) GRITE(6,28) (KTT(I),UIFF(I),I=1,II)
        IF(II.GT.10) STOP 4
C*** PUINT AT WHICH MULTIPLE RUNS START
    8 CONTINUE
        TIME=XA
        KOUNT=1
        END=END-1
        WRITE (6,39)
    39 FORMAT (1H1)
C*** * * * * |ND INITIAL CUNDITIUNS
    X(1) = VELOCITY}, X(2)= Z DOT, X(3) = THETA DOT
        X(4) = \overline{X},.}\quadX(5)=2,\quadX(6)= THETA
        THETA IS READ IN DEGREES THEN CONVERTED TO RADIANS IN PROGRAM
    READ (5,10) (X(I),I=1,6)
C
```

 READ (5,10) START, RISE
 10 FORMAT (8F10.4)
 C * WRITE OUT THE INPUT VALUES
WRITE(6,19) START RISE KAR
19 FORMAT (" START = 10,F10.4,/," RISE = ",F10.4,/," KAK = ",FIOMAIN
.04)
C
TME IS THE TIME AT WHICH THE INTEGRATION INTERVAL IS
TO GE CHANGED
HMX IS THE NEW MAXIMUM INTERVAL SIZE AFTER TIME TME
HMN IS THE NEW MINIMUM INTERVAL SIZE FOR KUTMER TO SUB-DIVIDE
THE MAXIMUM INTERVAL UP TO
MAIN61

```
MAIN ..... 62
MAIN ..... 63
MAIN ..... 64
MAIN ..... 65
MAIN ..... 66
FORMA START \(=\) ",F10.4,/, RISE \(=1,510.4,1,10\) KAK \(=\) ",F10MAIN ..... 67
MAIN ..... 68
TME IS THE TIME AT WHICH THE INTEGRATION INTERVAL IS
```MAIN 69
```

MAIN ..... 70
MAIN ..... 71
hMX IS THE NEW MAXIMUM INTERVAL SIZE AFTER TIME TME ..... 72

```HMN IS THE NEW MINIMUM INTERVAL SIZE FOR KUTMER TO SUB-DIVIDETHE MAXIMUM INTERVAL UP TO
```

MAIN ..... 73
MAIN ..... 74
IF THIS OPTION IS NOT USED SET TME TO THE STOP TIME OF THE RUN

```MAIN 76
```

READ (5,10) TME, HMX,HMN
MAIN
WRITE $(6,11)$ TME, HMAX, HMX, HMIN,HMN ..... MAIN
11 FORMAT AT TIME ,F7. 2 . * THE MAXIMUM INTERVAL SIZE FOR INTEGRATIMAIN ..... 78
*ON WILL BE CHANGED FROM , F 10.4 , * 10 .,F10.4./. ..... MAIN 80

- AND THE MINIMUM SIZE FUR HALVING CHANGES FROM ,F10.4, MAIN ..... 81
- TO ,F10.4) MAIN ..... 82
C ADJUST THE TIME FOR CHANGE OF INTEGRATION INTERVAL ..... MAIN 83
C FOR CHECK AGAINST TIME IN THE INTEGARTION LOOP

```
 TM = TME-(MMAX/2.)
 MAIN
 MAIN }8
 SET SWITCH FOR CALCULATION UF PITCH AND HEAVE RATIOES
 ON NEXT CALL TO PLOTER
 IPT = 0
 IF(TME.EQ. XE) IPT = I
C
 REAO (5,10) PERCNT
 XACCL = ECG-PERCNT*BL
 WRITE (6,12) PERCNT,XACCL
 MAIN 86
 MAIN 87
 MAIN 8B
 MAIN 89
 MAIN 91
 MAIN 92
 MAIN 93
 12 FORMAT** THE X USED FOR THE BOW AND CG ACCELERATION COMPUTATIONS MAIN }9
 IS EQUAL TO ECG-,F10.4,7H*BL OR ,F10.4) MAIN 95
C
 WRITE (6,23)
 WRITE (6,47)
 23 FORMAT(1H,/1)
 47 FORMAT(" STATION NO.",3X,"DEAU RISE",8X,"EST",8X,"NO",
 * 10X,"BEAM")
 WRITE(6,55) ((I, BETA,EST(I),NU(I),BM(I)),I=1,NUM)
 5 5 \text { FORMAT (6X,I2,5X,F10.4,4X,F10.4,4X,F10.4,3X,F10.4)}
 WRITE (6,23)
 WRITE (6,56) (X(I), I=1,6)
 56 FORMAT(" X VALUES", 4X,6(F10.4,2X))
C * * * *HANGE INPUT FROM DEGREES TO RADIANS
 x(3) = X(3) RPD
 X(6)=X(6)#RPD
C
 WAVE = STAET+RISE
 NWAVE = 0
C * * * * *ITE OUT COMPUTED ARRAYS
 WRITE (6,57)M,IT,K,C,PHALF,PI,GRAVTY
 IF (NPRINT.LT.4) GO TO 62
 WRITE (6,58) (E(I),I=1,NUM)
 WRITE (6,59) (N(I),I=1,NUM)
 WRITE (6,64) (MMAX(I),I=I,NUM)
 WRITE (6,65) (TEST(I),I=1,NUM)
 MAIN }9
 MAIN 97
 MAIN 98
 MAIN 99
 MAIN 100
 MAIN 101
 MAIN }10
 MAIN }10
 MAIN }10
 MAIN 105
MAIN 106
MAIN }10
MAIN 108
MAIN 109
MAIN 110
MAIN 111
MAIN 112
MAIN 113
MAIN 114
MAIN 115
MAIN 116
MAIN }11
MAIN 118
MAIN }11
```

```
 62 CONTINUE
 MAIN 120
 WRITE (6,28)(KTT (I),DIFF(I),I=1,II) MAIN 121
 28 FORMAT(* KTT,DIFF #,I10,2X,F10.4)
 MAIN 122
 57 FORMAT (4H M=,F10.4,4HII=,F10.4,4H K=,F10.4,4H C=,F10.4,11H PI#MAIN 123
 बRHO/2=,F10.4,5H PI=,F10.4,10H GRAVITY=,F10.4) MAIN 124
 58 FORMAT (" E(I)",IOF10.4)
 59 FORMAT ("N(I)",10F10.4)
 64 FORMAT (" MMAX(I)",10F10.4)
 66 FORMAT (" TEST(I)",10F10.4)
 IB = 1
 IPRINT = NPRINT
 WRITE (4,91)
C * WRITE HEADINGS AND CONOITIONS AT TIME = 0.
 91 FORMAT(1HL, 2X,"TIME",9X,"XDOT",9X,"ZDOT",9X,"THETA DÜT",6X,
 * 1HX,9X,1HZ,9X,5HTHETA,9X,2HNL,9X,2HFL,
 * 4x,8HBOW ACCL,4x,7HCG ACCL,//)
 WRITE (4,92) TIME,(X(I),I=1,6),NL,FL,BWACL,CGACL
 WRITE(9) TIME,(X(I),I=4,6),BWACL,CGACL
 KOUNT = KOUNT +1
 FX(1,IB)=X(5)
 FX(2,IB)=X(6)
 IKUTM= (XE -XA)/HMAX*.05
 IKUTM = (TME-XA)/HMAX * (XE-TME)/HMX *.05
 FIRST=0.0
 NEQS=6
 IKUTS=0
 C START OF INTEGRATION LOUP
 C 851 CONTINUE
 NPRINT = IPRINT
C CHECK PITCH .GT. . 5236 RADIANS
 IF(X(6),GT..5236)GO TO }85
C * * PERFORM INTEGRATIONS
 IF(TIME.LT.TM.OR.TME.EQ.XE) GU TO }9
 IF(IPT.E(.1) GO TO }9
 HMIN = HMN
 HMAX = HMX
 FIRST = 0.0
 9 8 \text { CONTINUE}
 CALL KUTMEQ(NEQS,TIME,HMAX,X,EPSE,A,HMIN,FIRST)
 IKUTS=IK|TS*I
 IF(FIRST.EO.2)GO TO 861
 IF(KOUNT.NF.1.AND.KOUNT.NE.41) GO TO 99
 WRITE (4,91)
 KOUNT=1
C * * * # *RITE OUT TIME INTERVAL RESULTS
 99 WRITE (4,92) TIME,(X(I),I=1,6),NL,FL,BWACL,CGACL
 WRITE (6,93)T1,T2,T3,T4,T5,T6,T7,TB,BMM, BF
 WRITE(9) TIME,(X(1),I=4,6),BWACL,CGACL
 IF(TIME.LT.TM.OR.TME.EQ.XE) GU TO 200
 IF(IPT.EQ.I) GO TO 200
 CALL PLUTED(FX,XA,HMAX,LAMBDA,IB,NWAVE,IPT)
 IPT = 1
 IB = 0
 XA = TIME
 FIRST = 0.0
 HMIN = HMN
 HMAX = HMXX
 MAIN 125
 MAIN }12
 MAIN }12
 MAIN 128
 MAIN 129
 MAIN 130
 MAIN 131
 MAIN 132
 MAIN }13
 MAIN }13
 MAIN 135
 MAIN 136
 MAIN 137
 MAIN 138
 MAIN 139
 MAIN 140
 MAIN 141
 MAIN }14
 MAIN }14
 MAIN 144
 MAIN }14
 MAIN }14
 MAIN }14
 MAIN 148
 MAIN }14
 MAIN 150
 MAIN 151
 MAIN }15
 MAIN }15
 MAIN }15
 MAIN 155
 MAIN }15
 MAIN }15
 MAIN 158
 MAIN }15
 MAIN 160
 MAIN 161
 MAIN }16
 MAIN 163
 MAIN }16
 MAIN }16
 MAIN 166
 MAIN 167
 MAIN }16
 MAIN }16
 MAIN }17
 MAIN }17
```

```
 200 CONTINUE
 IB=I8+1
 FX(1,IB)=X(5)
 FX(2,IB)=X(6)
 93 FORMAT (" ",10E10.4)
 92 FORMAT(1x,11 (FF10.4,2X))
 100 CONTINUE
 KOUNT=KOUNT +1
 IF (NWAVE,GT.0)GO TO 21
 IF (TIME,GT.WAVE)NWAVE=KOUNT
 2l CONTINUE
 IF(TIME.LE.XE.AND.IKUTS.LT.IKUTM)GU TO 851
 WRITE (2,85?)
 84 CONTINUE
 85 FORMAT (" END OF KUTMER")
 83 CONTINUE
 CALL PLUTE?(FX,XA,HMAX,LAMBDA,IB,NWAVE,IPT)
C * CHECK FOR LAST RUN IF NOT CYCLE HACK TO READ
C NEW DATA FOR NEXT RUN
 IF(ENO,NE.l)GO TO 8
 GO TO 999
C * KUTMER ERROR MESSAGES
 861 WRITE (6,86?)
 862 FORMAT " ERROR CRITERIUN IN KUTMER CAN NOT BE MET")
 WRITE (6,56) (X(I),I=1,6)
 WRITE (6,86) TIME
 86 FORMAT (") TIME =",F10.4)
 IF(END.NE.|GÖ TO 8
 GO TO }85
 9 9 9 ~ C O N T I N U E ~
 END FILEE }
 END
 SUBROUTINE PLOTZ(F,FMIN,FMAX,NVAR,NFUN,N1,N,XO,DELX)
C
C PLUT FIRST N POINTS OF UP TO 26 FUNCTIONS F(X)
C F(I,J) CONTAINS THE VALUE FOR THE JTH POINT OF THE ITH FUNCTION
C FMIN(I) AND FMAX(I) CONTAIN THE MIN AND MAX ORDINATE VALUES FOR
 THE ITH FUNCTION.
 NVAR(I) AN ARRAY OF TITLES FUR THE VARIOUS FUNCTIONS
 TO BE PLOTTEO AGAIINST THE ABSCISSA
 NFUN NUMBER OF FUNCTIUNS TU BE PLOTTED - DIMENSIUN OF
 NVAR, FMIN, FMAX
 N1 USED ONLY IN F(N1,1) AS PASSED DIMENSION
 N NUMBER OF POINTS IN A SINGLE PLOT FRAME
 XO FIRST ABSCISSA VALUE
 DELX ABSCISSA INCREMENT
 DIMENSION FSTEP(26),F(N1,N),FMIN(NFUN), FMAX(NFUN),VLAST(26),
 l VFIPST(26),HEAD (6),STEP (26)
 INTEGER CH(26),NVAR(NFUN),DOT,ASTER,PLUS,BLANK
 INTEGER C
 INTEGER A(101)
C
 DATA BLANK,DOT,ASTER,PLUS/1H, 1H, 1H*,1H+/
 DATA CH(1),CH(2),CH(3),CH(4),CH}(5),\textrm{CH}(6),\textrm{CH}(7),\textrm{CH}(8),\textrm{CH}(9),\textrm{CH}(10
 z / 1HA, 1HB, 1HC, 1HD, 1HE, 1HF, 1HG, 1HH,1HI, 1HJ,
 DATA CH(11),CH(12),CH(13),CH(14),CH(15),CH(16),CH(17),CH(18)
 2. 1HK, 1HL, IHM, 1HN, 1HO, IHP, 1HO, IHR/
 DATA CH(19),CH(20),CH(21),CH(22),CH(23),CH(24),CH(25),CH(26)
```

MAIN 179
MAIN 180
MAIN 181
MAIN 182
MAIN 183
MAIN 184
MAIN 185
MAIN 186
MAIN 187
MAIN 188
MAIN 189
MAIN 190
MAIN 191
MAIN 192
MAIN 193
MAIN 194
MAIN 195
MAIN 196
MAIN 197
MAIN 198
MAIN 199
MAIN 200
MAIN 201
MAIN 202
MAIN 203
MAIN 204
MAIN 205
MAIN 206
MAIN 207
MAIN 208
MAIN 209
MAIN 210
PLOT2 2
PLOT2 3
PLOT2 4
PLOT2 5
PLOT2 6
PLOT2 7
PLOTZ 8
PLOT2 9
PLOT2 10
PLOT2 11
PLOT2 12
PLOTR 13
PLOT2 14
PLOT2 15
PLOTZ 16
PLOT2 17
HLOT2 18
PLOTZ 19
PLOT2 20
PLOT2 21
PLOT2 22
PLOTZ 23
Plot2 24
PLGT2 25
Plot2 26
plote 27
PLOT2 28

```
c 2 1HS, 1HT, 1HU, 1HV, 1HW, 1HK, 1HY, 1HZ / HLOTZ 29
C
 IF(NFUN.LE.O.OR.N.LE,O) RETURN
C PRINT HEADINGS.
 WRITE (6.46)
 46 FORMAT (////)
 DO 40 I=1,NFUN
 30 TENM=A甘S(FMAX(I)-FMIN(I))
 EXP=1.
 IF (TENM.EQ.O.) GO TO 2
C BRING TENM TO A VÁLUE BETWEEN 1 AND 10
 IF (TENM.LT.1.) GO TO 1
 3 IF(TENM.LT.10.) GO TO 2
 EXP=EXF*1?.
 TENM=TENM*.1
 GO TO 3
 1 EXP=EXP*.l
 TENM=TÉNM&10.
 IF(TENM.GT.1.) GO TO 2
 GO TO 1
C SET UP VALUE AETWEEN GRID LINES, RSTE゙P.
 PSTEP=5.
 IF(TENM.GE.5.)PSTEP=10.
 IF(TENM.LT.2.)PSTEP=2.
 R RSTEP(I) = DSTEP*EXD*.1
C CUMPUTE VALUE OF STARTING LINE, VFIRST.
 FIRST=FMIN(I)/RSTEP(I)
 IF(FMIN(I).LT,O.)FIRST=FIRST-1.
 FIRST=AINT (FIRST)
 VFIRST(I) =FIRST*RSTEP(I)
C CHECK END LINE VALUE,VLAST.
 VLAST (I)=VFIRST(I) +10.*RSTEP(I)
 IF (VLAST(I).GT,FMAX(I))GU TO 4
C IF GRAPH IS TOO SMALL TAKE NEXT LARGER STEP.
 AA=PSTEP
 IF (AA,LT, 5.)PSTEP=5.
 IF(AA.EQ.5.)PSTEP=10.
 IF(AA.LT.10.) GO TO 5
 PSTEP=2.
 EXP=10.*EXP
 GO TO S
C CUMPUTE VALUE BETWEEN POINTS,STEP.
 4 STEP (I)=R与TEP (I)*.1
 RK=0.
 DO 6 KK=1,6
 HEAD (KK)=VFIRST (I) & . *RK*RSTEP(I)
 6 RK=RK*1.
 40 WRITE (6,45) CH(1), NVAR(I), (HEAD (KK),KK=1,6)
 45 FORMAT (1X,A1;3H=,A10,5X,1PE12.4,5(8X,1PE12.4))
 FORMAT (1X,A1,3H = ,A10,5X,1PE12.4,5(8X,1PE12.4))
 A(J)=BLANK
 IF(MOD(J,1!9),EQ.1) A(J)=DOT
 50 CONTINUE
 WRITE (6,55) A,A
 55 FORMAT (25X,101A1/15X,4HTIME,6X,101A1)
C PLUT EACH PUINT
 DO 100 J=1,N
 DO 100 J=1,N
 DO 70 K=1.101
 PLOTZ 30
 PLOT2 31
 PLOT2 32
 PLOTZ 33
 PLOTZ 34
 PLOT2 35
 PLOT2 36
 PLOT2 }3
 PLOTZ 38
 pLOT2 }3
 PLOT2 40
 PLOT2 41
 PLOTZ 42
 PLOTZ 43
 PLOTZ }4
 PLOTZ }4
 PLOT2 }4
 PLOT2 }4
 PLOTZ 48
 PLOTZ }4
 PLOTZ 50
 PLOTZ 51
 PLOTZ 52
 PLOTZ 53
 PLOTZ }5
 PLOTZ }5
 PLOTZ 56
 PLOTZ }5
 PLOTZ 58
 PLOTZ }5
 PLOTZ }6
 PLor2 61
 Plorz 62
 PLOTZ }6
 PLOTZ }6
 PLOTZ }6
 PLOTZ }6
 PLOTZ }6
 PLOT2 }6
 Plotz 69
 PLOT2 }7
 PLOTZ }7
 PLOTZ }7
 PLOTZ }7
 PLOT2 }7
 PLOT2 }7
 PLOT2 }7
 PLOT2}7
 PLOT2 78
 PLOT2 }7
 PLOTZ }8
 PLOT2 8l
 HLOT2 82
 PLOTZ 83
 PLOT2 }8
 PLOT2 }8
 PLOT2 86
 PLOT2 }8
```

```
 A(K)=8LANK PLOT2 88
 IF(MOD(K,10),EQ.1) A(K)=DOT
 IF(MOD(J,5),EQ.l) A(K)=DUT
 70 CONTINUE
 DO 80 I= 1,NFUN
 LOC=((F (I,J)-VFIRST(I))/STEP(I)+1.5)
 C=A(LOC)
 A(LOC)=CH(I)
 IF(C,NE,BLANK,AND,C,NE,DOT) A(LOC)=ASTER
 80 CONTINUE
 80 CONTINUE
 WRITE (6;85) A
 85 FORMAT (25X,101A1)
 GO TO }10
 95 WRITE (6,15)B,A
 15 FORMAT (12X,1PE12.4,1X,101A1)
 100 CONTINUE
 RETURN
 END
 SUBROUTINE KUTMER(NO,T,H,YO,EPSE,A,HCX,FIRST)
 DIMENSION YO(6),Y1 (6),Y2(6),FO(6),F1(6),F2(6),EPSE (6),A(6)
 COMMON/UUT/NPRINT,NPLOT,END
 COMMON /ACCEL / XACCL,BWACL,CGACL,BL
 DATA NAMI,NAMZ /2HY1,2HY2 /
 ND = NUMBER UF EQUATIONS, NO. OF COMPONENTS OF YO
 T = INOEPENUENT VARIABLE
 H = INCREMENT FOR WHICH SULUTIUN IS TO BE RETURNED * OR -
 YO = THE VECTOR OF DEPENDENT VARIABLES. ENTER WITH INITIAL
 VALUES AT T ANDD RETURN WITH VALUES AT T&H
 EPSE = RELATIVE ERROR CRITERION FOR COMPONENTS OF YO .GT ABS(A)
 SE = RELATIVE ERROR CRITERION FOR COMPONENTS OF YO .GT ABS(A) KUTMERI3
 NUTE-- EPSE AND A MUST BE SPECIFIED FOR EACH COMPONENT OF THE SYSTEM KUTMERIS
 HCX = THE SMALLEST STEP SIZE USED IN THE INTEGRATIUN
 FIRST SHOULD BE O WHEN KÜTMER IS ENTERED FOR THE FIRST TIME
 AFTER THAT FIRSTT IS I IF KUTMEN IS ENTERED WITH THE SAME H OR
 IF IT IS ENTEREO WITH A CHANGEO H
 IF FIRST IS 2 THE ERROR SRITERIA CANNOT BE MEET AND THE STEP SIZE IKUTMERZO
 REDUCED TO H/128.
 IF (FIRST) 20,10,20
```



```
 10 HC=H
 IPLOC = 1
 FIRST = 1.
C - - - - - OTHER ENTRY
 20 LOC = 0
 HCX = HC
 IF (HC.NE.O.) GO TO 30
 WRITE (6,800)
 800 FORMAT (5X,45HKUTMER ENTERED WITH LERO INTEGRATION INTERVAL)
 FIRST = 2.
 RETURN
C - - - - . - . - 5 CALLS TO DAUX
 30 CALL DAUX(T,YO,FO)
 IF (NPRINT,EQ.5)WRITE (6,400)YO,T,FO
 400 FORMAT (6 (2X,F10.4),4HTIMEE; 2X,F10.4)
 IF (NPRINT.EQ.5)WRITE (6,400)HC
 39 DO 40 I=1,ND
Plot2 }8
PLOTZ }9
 PLOT2 91
 PLOT2 }9
 PLOT2 }9
 PLOT2 }9
 PLOT2 }9
 PLOT2 }9
 PLOT2 }9
 PLOT2 98
 PLOTZ }9
 PLOT2l00
 PLOT2101
 Plot2102
 PLOT2103
 PLOT2104
 PLOT2105
 PLOT2106
 kutMER }
 kutmer 3
 KUTMER 4
 KUTMER 5
 KUTMER }
 KUTMER }
 KUTMER 8
 KUTMER }
 KUTMER10
 KUTMERII
 KUTMERI2
 KUTMERI3
 KUTMER14
 KUTMER16
 KUTMER17
 KUTMERI8
 KUTMER19
KUTMER21
 KUTMER2?
 KUTMER23
 KUTMER24
 KUTMER25
 KUTMER26
 KUTMER27
 KUTMER28
KUTMER29
KUTMER30
KUTMER31
KUTMER32
KUTMER33
KUTMER34
KUTMER35
KUTMER36
KUTMER37
KUTMER38
KUTMER39
KUTMER40
KUTMER41
```

```
 40Y1(I) = YO(I)&(HC/3.) #FO(I)
 IF (NPRINT.EQ.5)WRITE (6,400)Y1,T
C
 CALL DAUX(T*HC/3.,Y1,F1)
 IF (NPRINT.EQ.5)WRITE (6,400)FI,T
 QO 50 I=1,ND
 50 Y1(I) = YO(I) +(HC/6.)*FO(I) +(HC/6.)*FI(I)
 IF (NPRINT,ĒQ.5) WRITE (6,400)YI,T
C
CALL DAUX(T+HC/3,,Y1,F1)
 IF (NPRINT. ZQ.5)WRITE (6,400)FI,T
 DO }60 I=1,N
 60Y1(I) = YO(I) +(HC/8.)*FO(I)*.375*HC*FI(I)
 IF (NPRINT,EQ.5) WRITE (6,400) Y1,T
C
 CALL DAUX(T*HC/2, Y1,F2)
 IF (NPRINT.OQ.5)WRITE (6,400)F2,T
 DO }70\mathrm{ I=1,ND
 70Y1(I)=YO(I)*(HC/2.)*FO(I)-1.5*HC*F1(I) +2.*HC*F2(I)
 IF (NPRINT.EQ.5)WRITE (6,400)Y1,T
C
CALL DAUX (T+HC,Y1,F1)
 IF(NPRINT.EQ.5)WRITE (6,400)F1,T
 DO }80I=1,N
 80 YZ(I) = YO(I)*HC/6.*FO(I)*(2./3.)*HC*FZ(I)*(HC/6.)*FI(I)
 IF(NPRINT.EQ.5)WRITE (6,400)Y2,T
 INC = 0
C - - CHECK ERROR CRITERIA
C - - - - - - - - CHECK ERROR CRITERIA
 ZZZ = ABS(YI(I))-A(I)
C-- IF (ZZZ) 85,87,87 ARSOLUTE ERRUR
C-- IF (ZZZ) 85,87,87
 85ERROR = ABS(.2*(Y1(I)-Y2(I)))
 IF (ERROR-A (I)) 100,100,90
C - - - - - _ . RELATIVE\tilde{ ERKOR}
 87ERROR = ABS(.2-.2*YZ(I)/YI(I))
 IF(ERROR-EPSE(I)) 100,100,90
C-IF(ERROR-EPSE (I)) 100,100,90
C->
 90x=128.#ABS(HC)-ABS(H)
 IF(X) 91,95,95
 C-MF(X) 91,95,95
 91 WRITE (6,92)I,T,ERROR,HC
 92 FORMAT (/18H FUR EQUATION NO. I2,27H, THE RELATIVE ERROR AT T = ,
 92 FORMAT(/18H FUR EQUATION NO. I2,27H, THE RELATIVE ERROR AT T = ,
 FIRST = 2.
 RETURN
C - - - . . . - HALVE INTERVAL
 95 HC = HC/2.
 IPLOC = 2*IPLUC
 LOC = 2*LOC
 HCX = HC
 WRITE (2,71n)T,I,ERROR,HC
 710 FORMAT(/8H TIME = F10.3,5X,26HHALVE INTERVAL. EQUATION ,I3,
 .13H HAS EROOR = E 16.8,6X,17H STEP SIZE NOW = ,E15.8)
 WRITE(2,72n) NAM2,(Y2(J),J=1,ND)
 WRITE(2,72n) NAM1,(Y1(J):J=1,ND)
 720. FORMAT(2X.A2 / 3(10E13.5/))
 GO TO 30
KUTMER81
KUTMER44
 KUTMER45
 KUTMER46
 KUTMER47
 KUTMER48
 KUTMER49
KUTMER42
KUTMER43
 CALL DAUX(T+HC/3, Y1,F1)
 KUTMER49
 KUTMERS1
 KUTMER52
 KUTMER52
KUTMER54
 KUTMER55
KUTMER56
KUTMER57
KUTMER58
KUTMER59
KUTMER60
KUTMER61
KUTMER62
KUTMER63
KUTMER64
KUTMER65
KUTMER66
KUTMER67
KUTMER68
KUTMER69
KUTMER70
KUTMER71
KUTMER7Z
KUTMER73
KUTMER74
KUTMER75
KUTMER76
KUTMER77
KUTMER78
KUTMER8?
KUTMER83
C 91 WRITE (6,92)I,T,FRROR.HC
KUTMER84
KUTMER85
KUTMER86
KUTMER87
KUTMER88
 95 HC = HC/2
KUTMER89
KUTMER90
KUTMER91
KUTMER92
KUTMER93
 KUTMER94
KUTMER95
KUTMER96
KUTMER97
KUTMER98
KUTMER99
KUTME100
```

```
C
 100 IF (ERRUR*64.-EPSE(I)) 110,110.101
 101 INC = 1
 110 CONTINUE
C - = - . . . - UPDATE T AND SOLUTION
 111 T = T+HC
 112 MO 1122 I=1,ND
 \12YO 112 I=1,ND
C _GET SOLUTION IN NEXT INTERVAL
 LOC = LOC + }
 IF (LUC-IPLOC) 120,210,210
 120 IF(INC)210,130,210
 130 IF (LUC-(LOC/2)*2) 210,140,210
 140 IF(IPLOC-1)210,210,200
```



```
 200 HC = 2. HC
 LOC = LUC /2
 IPLOC = IPLOC/2
 210 IF(IPLOC-LOC) 30,329,30
 329 BWACL = FO(2)-XACCL*FO(3)
 329 BWACL }=\mp@code{FO(2)-XACCL*FO(3)
 RETURN
 END
 END
 SUBROUTINE DAUX(TIME,X,RHS)
C TIME TIME AT WHICH SYSTEM IS TO BE EVALUATED
C ClOTANE VECTOR
C I STATE VECTOR
 REAL KAK
 REAL IA,IT,M,K,MA,MASS,NCG,NL,N,MMAX
 INTEGER EN`,PTIME
 DIMENSIUN }x(6),\operatorname{RHS}(6),F(3,1),A(3,3),INDEX(3,3), DAUX 11
 - R(120),V(120),D(120)
C
 COMMON/SHIP/ MASS,CINT,QA,CE,CE2,CE3,DMU,EDMU,E2DMU,E3DMU,BF,BMM,DAUX 14
 COMMON /SHIP/ MASS,CINT,QA,CE,CEL,CE3,DMU,EDMU,E2DMU,E3DMU,BF,BMMM,DAUX 14
 COMMON /CUNST/ NCG,ECG,PI,OPR,RPD,GRAVTY,RHO,K,NUM,MA(120),CD,TA, DAUX 16
 - B(12J),BETA,HW(120),TZ,DRAG,W,XD,T,XP,M,IT, DAUX 17
 - DFLTÄS,TX,EST(120),C,RO,KAR,MMAX(1:0),TEST(120), DAUX 18
 * N(120),PHALFF}\mathrm{ DAUX 19
 COMMON /IN/ BM(120),B1(120),VELIN DAUX 20
 COMMON/UUT/NPRINT,NPLOT,ENO UAUX 21
 COMMON /SEAWAVE/ START,RISE,RAMP UAUX 22
 COMMON /NAVE//R,PT(120),ZMA,ZWMA,EMAS,ZLWMA,ZWEMA,Z2WMA,EZMAZ, DAUX 23
 - 2WDOT(120)
OAUX 24
C RAMP = RMP (TIME,START,RISE)
C RAMP = RMP(TIME,START,RISE)
 PIH = PI/Z.
 CT = C*TIME
 Cx6 = CuS (x(6))
 SX6 = SIN(X(6))
C******SET VALUFS UF MA AND B
 OO 75 I=1,NUM
 PT(I) = (X(4)*E(I)*CX6*N(I)*SN6*CT)#K
 R(I) = RU*COS(PT(I))*RAMP OAUX }3
C ** * * * *MPUTE HW SUBMERGENCE OF A POINT AND R THE WAVE DAUX 35
 HW(I) IS IN THE FIXED COORUINATE SYSTEM
KUTME101
C - TEST IF INTERVAL LENGTH CAN BE DOUBLED
 KUTME102
 KUTME103
 KUTMEl04
 KUTME105
C
KUTME106
KUTME107
KUTME107
KUTME109
KUTME110
KUTME111
KUTME112
KUTME113
KUTME114
KUTME115
KUTME116
KUTME117
KUTME118
 KUTME119
 KUTME120
 KUTME121
 KUTME122
 KUTMEl23
 KUTME124
UAUX 2
DAUX }
C
DAUX
 DAUX
C
 DAUX
 7
 INTEGER END,PTIME,MASS,NCG,NL,N,MMAX
 10
DAUX 11
 DAUX 12
DAUX 13
C RAMP = RMP (TIME,START,RISE)
OAUX 25
 DAUX 26
 UAUX 26
 DAUX }2
DAUX 28
 DAUX 29
UAUX 30
DAUX 31
DAUX 32
 DAUX 33
C
DAUX 36
```

```
 HW(I) = X(5)-E(I)*SX6*N(I)*CX6-R(I) UAUX 37
 IF(HW(I).GT.OJ GO TO 65
C
 CRAFT IS NOT SUBMERGED
 MA(I) = 0.
 B1(I)=0.
 B(I)}=0
 GO TO 75
 65V(I) = -RO*K*SIN(PT(I))*RAMP
 D(I) = HW(I)/(CX6-V(I)*SX6)
 D(I) IS IN THE BODY AXIS SYSTEM AND IS THE SUBMERGENCE
 IF(O(I).GE.TEST(I)) GO TU }7
 CRAFT IS PARTLY SUBMERGED
 B(I)=D(I)*(I./TA)*PIH
 BI(I) = D(I) (1./TA)*PIH
 MA(I) = KAR*PHALF*B(I)*B(I)
 GO TO }7
C
C
C OF THE HULL FOR WHICH THE CHINE IS NOT IMMERSED
 70 MA(I)=MMAX(I)
 B(I)=8M(I)
 B1(I)=0.
 75 CONTINUE
 IF(NPRINT.LT.4) GO TO }8
 WRITE (6,74)TIME
 74 FORMAT (" TIME = ",F10.4)
 WRITE (6,76) i}(X(I),I=1,6
 WRITE (6,77) (R(I),I=1,NUM)
 WRITE (6.78) (HW(I),I=1,NUM)
 WRITE (6.79) (B(I),I=1,NUM)
 WRITE (6,8n) (V(I),I=1,NUM)
 WRITE (6,81) (D(I),I=1,NUM)
 WRITE (6,82) (MA(I),I=1,NUM)
 76 FORMAT (" X(I) ",6(2X,E12.6))
 77 FORMAT (" R(I)",10F10.4)
 78 FORMAT (" HW(I)",10F10.4)
 79 FORMAT (" B(I)",10F10.4)
 80 FORMAT (")V(I)",10F10.4)
 8I FORMAT (" D(I)",10F10.4)
 82 FORMAT(" MA(I) ",10F10.4)
 85 CONTINUE
C
C **** COMPUTES NL AND FL AND THE ASSOCIATED INTERGALS
 CALL FUNCT(X)
C
 IF(NPRINT.LT.4)GO TO 17
 WRITE (G,15) TX FL,DRAG TZ,W NL XD T XP
 WRITE (6,15) TX,FL,DRAG,TZ,W,NL,XD,T,XP
 15 FORMAT (" ",10E12.6)
 17 CONTINUE
C * * #OMPUTE THE F VECTOR
 F(1,1)=,TX+FL&SX6-DRAG*CX6
 F(1,1)=0.0
 F(2,1) =TZ*FL#CX6*DRAG*SX6*W
 F(3,1)=NL-DRAG*XD +T \XP
 IF(NPRINT.LT.3)GO TO 18
 WRITE (6,10)(F (I,1),I=1,3)
 18 CONTINUE
C * * COMPUTE THE A MATRIX
 A(1,1)=M+MASS*SX6*SX6
UAUX
```

JAUX 37
DAUX 38
DAUX 39
DAUX 40
DAUX 41
DAUX 42
UAUX 43
DAUX 44
DAUX 45
DAUX 46
DAUX 47
DAUX 48
UAUX 49
UAUX 50
DAUX 51
UAUX 52
DAUX 53
DAUX 54
DAUX 55
UAUX 56
UAUX 57
DAUX 58
DAUX 59
DAUX 60
DAUX 61
DAUX 62
DAUX 63
DAUX 64
DAUX 65
DAUX 66
DAUX 67
DAUX 68
DAUX 69
DAUX 70
DAUX 71
DAUX 72
DAUX 73
DAUX 74
DAUX 75
DAUX 76
DAUX 77
UAUX 78
DAUX 79
DAUX 80
DAUX 81
DAUX 82
DAUX 83
DAUX 84
DAUX 85
DAUX 86
DAUX 87
DAUX 88
DAUX 89
DAUX 90
DAUX 91
DAUX 92
DAUX 93
DAUX 94
DAUX 95

```
 A(1,2) = MASS*SX6*CX6 OAUX 96
 A(1,3) = -()A*SX6 DAUX 97
 A(1,2) =0. DAUX 98
 A(1,3) = 0.
 A(2,1)=A(1,2)
 A(2,2) = M+MASS*CX6*CX6
 A(2,3) = -OA*CX6
 A(3,1)=A(1,3)
 A(3,2)=A(2,3)
 A (3,3)=IT+IA
 IF(NPRINT.LT.3)GO TO 25
 WRITE (6,12) (A(I,1),I=1,3)
 WRITE (6,13) (A (I,2),I=1,3)
 WRITE (6,14) (A(I,3),I=1,3)
C * * INVERT THE A MATRIX
 25 CALL MATINS(A;3,3,F,1,1,DETERM,IO,INOEX)
 IF(ID.EQ.2)WRITE (6,26)
 26 FORMAT(" MATRIX IS SINGULAK ")
C*****A ON RETURN WILL CONTAIN THE INVERSE MATRIX
C ID=2 MATRIX IS SINGULAR
C =1 INVERSE WAS FOUND
C * COMPUTE THE RIGHT HAND SIDE
 RHS(1) = F(1,1)
 RHS(2)=F(2,1)
 RHS(3)=F(3.1)
 RHS(1) = 0.0
 RHS (4) = \dot{x}(1)
 RHS(5) = X(2)
 RHS(6) = x(3)
 10 FORMAT(" F(I,1) ",3(2x,E12.4))
 12 FORMAT(" A(I,1) ",3(2x,E12.4)) UAUX 127
 13 FORMAT(" A(I,2) ",3(2X,E12.4))
 14 FORMAT(" A(I,3) ",3(2X,E12.4))
 3? IF(NPRINT.LT.2) GO TO 40
 WRITE (6,12) (A(I,1),I=1,3)
 WRITE (6,13) (A(I,2),I=1,3)}\mathrm{ OAUX 132
 WRITE (6,14) (A(I,3),I=1,3)
 WRITE(6,35) (RHS(I),I=1,6)
 35 FORMAT(")RHS(I) ",6(2X,E12.6))
 40 CONTINUE
 RETURN
 END UAUX 138
 SUBROUTINE FUNCT(X)
 REAL KAR
 REAL IA,IAA,IPART,K,KPI,MA,MASS,NL,NCG,IT,M,MMAX,N
 INTEGER ENI
 DIMENSIUN IPART(120),C1(120),C2(120),
 * O1(120),02(120),03(120),04(120),D5(120),D6(120), FUNCT 7
 - QPART(120),21(120),22(120),\angle3(120),Z4(120),25(120),
 - 26(120),27(120)
 * (26(120),27(1)
C
 DAUX 99
 UAUX }10
 UAUX 101
 UAUX }10
 DAUX }10
 UAUX }10
 DAUX }10
 DAUX }10
 DAUX }10
DAUX 108
DAUX }10
 UAUX 110
DAUX 111
DAUX }11
DAUX 113
DAUX 1114
DAUX 115
DAUX 116
UAUX }11
UAUX 118
 DAUX }11
 UAUX 120
 UAUX 121
 UAUX 122
 DAUX 123
AUX }12
UAUX }12
 UAUX }12
 DAUX }12
DAUX }12
UAUX 130
 UAUX
 DAUX 132
 DAUK }13
 DAUX }13
DAUX }13
 DAUX }13
 DAUX 137
UAUX }13
 FUNCT ?
FUNCT 3
 FUNCT 4
FUNCT }
FUNCT
FUNCT 8
 FUNCT }
 - , X(6),VMAA(120
FUNCT 10
 COMMON /SHIP/ MASS,CINT,OA,CE,CE2,CE3,DMU,EDMU,EZDMU,E3DMU,BF,BMM,FUNCT 12
 NL,FL,IA,E(120)
 NL,FL,IA,E(120)
 COMMON /CUNST/ NCG,ECG,PI,DPR,RPD,GRAVTY,RHO,K,NUM,MA(120),CD,TA,
 * B(120),BETA,HW(120),TZ,DRAG,W,XD,T,XP,M,IT,
 FUNCT 15
 - DELTÄS,TX,EST(120),C,RO,KAR,MMAX(1 0),TEST(120),
 -N(120), PHALF
FUNCT }1
FUNCT }1
```

```
 COMMON /IN/ BM(120),B1(120),VELIN FUNCT 18
 COMMON/UIJT/NPRINT,NPLOT,ENDD FUNCT 19
 COMMON /WAVE/ R(120),PT(120),ZMA,ZWMA,EMAS,ZZWMA,ZWEMA,Z2WMA,EZMAZFUNCT 20
 ,ZWDOT(120) FUNCT
 COMMON /INTER/ II,KTT(10),DIFF(10) FUNCT 22
 COMMON /SEAWAVE/ START,RISE,RAMP FUNCT 23
 COMMON /TEST/ VMA FUNCT }2
C * * * * INITIALIZE INTEGRAL SUMS
 MASS = 0.0
FUNCT 25
 FUNCT }2
 OA = 0.0
 IA = 0.0
 CE = 0.0
 CE2 = 0.0
 DMU = 0.0
 EDMU=0.0
 E2DMU = 0.n
 E3DMU = 0.n
 BF=0.0
 BMM = 0.0
 ZMA = 0.0
 ZWMA =0.0
 EMAS =0.%
 ZZIGMA =0.n
 ZWEMA = 0.0
 Z2IMA = 0.?
 E2MAZ = 0.0
 VPART = x(1)*SIN(x(6))*x(2)*CUS(x(6))
 SX6 = SIN(x(6))
 CX6 = COS (X(6))
 WO = K*C
C * * * *ET UP THE FUNCTIUNS FOR THE INTEGRALS (PAGE 4 OF NOFUNCT 48
 DO 90 I=1,NUM
 IPART(I)=E(I)#E(I)#MA(I)
 UPART (I) =E (I)*MA(I)
 ZWDOT(I) = -RUWWOSIN(PT(I)) FRAMP
 U = X(1)*CXG-X(2)*SX6+ZWDUT (I)*SXO
 VEL = VHART-X (3)*E(I)-ZWDUT (I)*CX6
 ZI(I) = MA(I)*ZWOOT(I)
 Z2(I)=-MA(I)*COS(PT(I))*RAMP
 Z3(I) = E(I)*Z2(I)
 Z4(I) = E(I)*Z1(I)
 Z5(1)=(|#2(I)
 Z6(I)=E(I)*25(I)
 Z7(I) = MA(I)#VEL.U
 IF (VEL.LE,O.) GO TO }6
 IF (R1(I).LE.O.0) GO TO 50
 DRDT = 2WDOT (I)* (X(1)*C+X(3)*(N(I)*CX6-E(I)*SX6))/C
 DI(I) = VEL*BI(I)*(X(2)-X(3)*(CX6*E(I)*SXG*N(I)) -DRDT)
 GO TO 51
 50 D1(I) = 0.
 5L CONTINUE
 D2(I) = E(I)#DI(I)
 Cl(I) = VEL*VEL*B(I)
 CZ(I) = E(I)*CI(I)
 GO TO 61
 60 D1(I) = 0.
 DZ(I) = 0.
 CI(I) = 0.
 CZ(I) = 0.
```


## 61 CONTINUE

FUNCT 77
D3(I) = Z2(I) VEL
FUNCT 78
D4(I) $=E(I)=03(I)$
PIH = PI/2.
FUNCT 79
. D5 (I) $=\mathrm{B}(\mathrm{I}) *(\mathrm{HW}(I)-\mathrm{B}(\mathrm{I}) * T A / 2$.
FUNCT 80
66 D6(I) $=$ DS(I)部(I)*.5
90 CONTINUE
RHOG=RHOU GNAVTY
FUNCT 81
FUNCT 82
FUNCT 83
FUNCT 84
C * SET UP THE FUNCTIONS FUR THE INTEGRALS (PAGE 5 UF NOTES)FUNCT 85 $P I H=P I / 2$.
$K P I=K A R$ PI
C EVALUATE INTEGRALS USING TRAP METHOU $I=1$
INDEX $=1$
91 CALL TRAP (MA (INDEX), DIFF (I), KTT(I), TMASS)
CALL TRAP (OPART (INDEX), DIFF (I), KTT(I), QAI)
CALL TRAP (CI (INDEX), OIFF (I), KTT (I), CEA)
CALL TRAP (C2 (INDEX), DIFF (I), KTT (I), CEZA)
CALL TRAP (IPART(INDEX),DIFF (I), KTT(I), IAA)
CALL TRAP (DI (INDEX), DIFF (I), KTT (I), DMUA)
CALL TRAP (D2 (INDEX), DIFF (I), KTT(I), EDMUA)
CALL TRAP (O3(INDEX), DIFF (I), KTT (I), EZDMUA)
CALL TRAP (D4 (INDEX), DIFF(1),KTT(I), E3DMUA)
CALL TRAP (O5(INDEX), DIFF (I), KTT (I), BFA)
CALL TRAP (D6(INDEX), DIFF (I), KTT(I), BMMA)
CALL TRAP (ZI(INDEX), OIFF(I), KTT(I), ZMAA)
CALL TRAP (Z2(INDEX), DIFF(I), KTT(I),ZWMAA)
CALL TRAP (Z.3(INDEX), DIFF (I), KTT(I), EMASA)
CALL TRAP (Z4 (INDEX), DIFF (I), KTT (I), ZZWMAA)
CALL TRAP (75(INDEX), DIFF (I), KTT (I), ZWEMAA)
CALL TRAP (26(INDEX), DIFF (I), KTT(I), 22WMAA)
CALL TRAP (?7(INDEX), DIFF(I), KTT(I), EZMAZA)
C
93 CONTINUE
MASS $=$ MASS + TMASS
$Q A=O A$ - QAI
$I A=I A+I A A$
$C E=C E$ + CEA
CE2 $=$ CE2 + CE2A
DMU $=$ DMU + DMUA
EDMU = EDMII + EDMUA
E2DMU $=$ E2DMU + E2DMUA
E3DMU $=$ E3DMU + E3DMUA
$B F=B F+D H O G * B F A$
$B M M=B M M+R H O G * B M M A$
$Z M A=2 M A+2 M A A$
$Z W M A=Z W M A+Z W M A A$
EMAS $=$ EMAS $+E M A S A$
ZZWMA $=$ ZZWMA + ZZWMAA
ZWEMA $=$ ZWEMA + ZWEMAA
Z2WMA $=$ Z2WMA + Z2WMAA
E2MAZ $=E 2 M A Z+E 2 M A Z A$
94 CONTINUE
IF ( I.GE.II)GO TO 92
FUNCT 86
FUNCT 87
FUNCT 88
FUNCT 89
FUNCT 90
FUNCT 91
FUNCT 92
FUNCT 93
FUNCT 94
FUNCT 95
FUNCT 96
FUNCT 97
FUNCT 98
FUNCT 99
FUNCT100
FUNCT101
FUNCT102
FUNCT 103
FUNCT1 104
FUNCT 105
FUNCT106
FUNCT107
FUNCT 108
FUNCT109
FUNCT110
FUNCT111
FUNCT112
FUNCT113
FUNCT114
FUNCT115
FUNCT116
FUNCT117
FUNCT118
FUNCT119
FUNCT120
FUNCT121
FUNCT 122
FUNCT123
FUNCT124
FUNCT125
FUNCT126
FUNCT 127
FUNCT128
FUNCT129
FUNCT130
INDEX $=$ INกEX + KTT(I) -1
$I=I+1$
GO TO 91
FUNCT131
FUNCT 132
FUNCT133
92 CONTINUE
FUNCT134
C
FUNCT135

```
C * * *ALL COMPUT TO FIND THE VALUE OF NL AND FL USING
C THE VALUES OF THE ABOVE INTEGRALS
 CALL COMPUT(X)
C
 IF (NPRINT.LT.3) GO TO 111
 IF (NPRINT.EQ.3) GO TO 108
 IF(NPRINT.EQ.4)GO TO 10B
 WRITE (6,97) (IPART (I),I=1,NUM)
 GRITE (6,98) (QPART(I),I=1,NUM)
 WRITE(6,99) (CI(I),I=1,NUM)
 WRITE(6,100) (C2(I),I=1,NUM)
 WRITE(6,101) (C3(I),I=1,NUM)
 WRITE (6,102) (DI(I),I=1,NUM)
 WRITE(6,103) (D2(I),I=1,NUM)
 WRITE(6,104) (D3(I),I=1,NUM)
 GRITE(6,105) (D4(I),I=1,NUM)
 WRITE(6,106) (D5(I),I=1,NUM)
 WRITE(6,112) (D6(I),I=1,NUM)
 WRIFE (6,113)(21(I),I=1,NUM)
 WRITE (6,114)(22(I),I=1,NUM)
 WRITE (6,115) (23(I), I =1,NUM)
 GRITE (6,116)(24(I),I=1,NUM)
 WRITE (6,118)(25(I),I=1,NUM)
 WRITE (6,119)(Z6(I),I=1,NUM)
 WRITE (6,120)(27(I),I=1,NUM)
 WRITE (6,107)KPI,RHOG,PIH
 108 WRITE (6,109) MASS,CINT,QA,CE,CE2,CE3
 WRITE (6,121)IA
 121 FORMAT(* IA *,E10.4)
 WRITE (6,110)DMU,EDMU,E2DMU,E3UMU,BF,BMM
 WRITE (6,117) ZMA,ZWMA,EMAS,ZZWMA, ZWEMA, ZZWMA,EZMAZ
```



```
 96 FORMAT(" CPART(I)",10(2X,E10.4))
 9 7 \text { FORMAT(" IPART(I)",10(2X,E10.4))}
 98 FORMAT("! OPART(I)",10(2X,E10.4))
 9 9 \text { FORMAT(" Cl ",10(2X,E10.4))}
 100 FORMAT(" C2 ",10(2X,E10.4))
 101 FORMAT (" C3 ",10(2X,E10.4))
 102 FORMAT (" D1 ",10(2x,E10.4))
 103 FORMAT(" D2 ",10(2X,E10.4))
 104 FORMAT(" D3 ",10(2X,E10.4))
 105 FORMAT (" 04 ",10(2X,E10.4))
 106 FORMAT (" D5 ",10(2X,E10.4))
 112 FORMAT(" D6 ",10(2X,E10.4))
 107 FORMAT(" KPHI ",E10.4,"RHOG ",E10.4," PHIH ",E10.4)
 109 FORMAT(" MASS ",E10.4," CINT ",EIO.4," OA ",EIO.4," CE ",ELO.4,
 *"CE2 ",E10.4," CE3 ",E10.4)
 110 FORHAT(" DMU ",E10.4," EDMU ",E10.4," EZDMU ",E10.4," E3DMU ",
 *E10.4," BF ",E10.4," BMM ",E10.4)
 113 FORMAT(4H Z1, ;10(2X,E10.4))
 114 FORMAT (4H 22 ,10(2X,E10.4))
 115 FORMAT (4H Z3,10(2X,E10.4))
 116 FORMAT (4H Z4, ,10(2X,E10.4))
 118 FORMAT (4H 25 ,10(2X,E10.4))
 119 FORMAT (4H 26,10(2X,E10.4))
 120 FORMAT (4H Z7, 10(2X,E10.4))
 117 FORMAT (5H ZMA ,E10.4,6H 2WMA ,E10.4,6H EMAS ,E10.4,
 - 7H ZZWMA ,E10.4,7H ZWEMA ,E10.4,7H ZZWMA ,E10.4,
 - 7H E2MAZ ,E10.4)
```

FUNCT 136
FUNCT 137
FUNCT138
FUNCT139
FUNCT 140
FUNCT 141
FUNCT 142
FUNCT 143
FUNCT144
FUNCT 145
FUNCT 146
FUNCT147
FUNCT148
FUNCT 149
FUNCT 150
FUNCT 151
FUNCT 152
FUNCT 153
FUNCT 154
FUNCT155
FUNCT 156
FUNCT157
FUNCT158
FUNCT 159
FUNCT 160
FUNCT161
FUNCT162
FUNCT163
FUNCT 164
FUNCT 165
FUNCT166
FUNCT167
FUNCT168
FUNCT169
FUNCT170
FUNCT171
FUNCT172
FUNCT173
FUNCT174
FUNCT175
FUNCT176
FUNCT 177
FUNCT178
FUNCT179
FUNCT 180
FUNCT181
FUNCT182
FUNCT183
FUNCT184
FUNCT185
FUNCT186
FUNCT187
FUNCT188
FUNCT189
FUNCT190
FUNCT191
FUNCT192
FUNCT193
FUNCT194

END
FUNCT197
SUBROUTINE COMPUT (X)
COMPUT 2
DIMENSION $\times(6)$
COMPUT 3
REAL KAR,KPI
REAL NL,MASS,NCG,M,IT,IA,K,MA,MMAX,N
COMPUT 4
INTEGER END
COMPUT 5
COMPUT 6
COMPUT 7
COMMON /SHIP/ MASS,CINT,QA,CE,CE2,CE3,DMU,EUMU, EZUMU,E3UMU,BF, BMM, COMPUT 8
COMMON /CONST/ NCG,ECG,PI,DPR,RPU,GRAVTY,RHO,K,NUM,MA(120),CD,TA, COMPUT10

- $\quad B(120), B E T A, H W(120), T Z, O R A G, W, X O, T, X P, M, I T, \quad$ COMPUTII
- DELTAS,TX,EST(120),C,RO,KAR,MMAX(1 0),TEST(120), COMPUT12
- N(120), PhalF

COMPUT13
COMMON/OUT/NPRINT, NPLOT, END
COMPUT14
COMMON /TEPMS/ T1,T2,T3,T4,T5,T6,T7,T8
COMMON/WAVE/ R(120), PT(120), ZMA, $\angle W M A, E M A S, Z Z W M A, Z W E M A, Z 2 W M A, ~$
COMPUT15
COMPUT 16

- E2MAZ,ZWDOT(120)

COMMON /TEST/ VMA
MPUTI7
COMPUT18
COMPUT19
cx6 $=\cos (x(6))$
COMPUTZO
$\operatorname{Sx6}=\operatorname{SIN}(x(6))$
WO $=K$ C
PIH $=$ PI/2.0
$K P I=K A R * P I$
CONS $1=$ RO*WOWWOWCX6
CONS2 $=($ KPI*RHU*PIH/TA)/CX6
CONS $=$ RU\&WOKKCX6*SX6
COMPUT21
COMPUTZ2
COMPUTZ3
COMPUT24
COMPUT25
COMPUT26
COMPUT27
CONS 4 = RO*WO*K*CX6*CX6
TERM1 $=X(1) *$ CX6
COMPUTZ8

TERH2 $=x(2)$ S $5 \times 6$
COMPUT29

UVNUMM $=(X(1) * C \times 6-(X(2)-2$ WDOT (NUM) $) * S \times 6)$ *
COMPUT30
COMPUT31

- $\quad(X(1) \# S X 6-X(3) \# E(N U M)+(X(2)-2$ WDOT (NUM) $) \# C \times 6)$

COMPUT32
COMPUT33
$Z M A=Z M A *(3)-S \times 6$
COMPUT 34
ZZWMA $=$ ZZWMA $\times$ (3) W $^{2} \times 6$
COMPUT35
ZWMA = ZWMA CUNS 1
COMPUT36
EMAS $=$ EMAS*CUNS 1
DMU $=$ DMU CONS2
EDMU $=$ EDMUCUNS2
CE $=$ CE CO*RHO
CE2 = CE2*CD*RHO
COMPUT37
COMPUT38
COMPUT39
COMPUT40

E2DMU $=$ E2ПMU*CONS3
COMPUT41
COMPUT42
E3DMU $=$ E3DMU*CONS3
ZWEMA $=$ ZWEMA ${ }^{\text {W }}$ CONS 4
Z2WMA = Z2WMA ${ }^{2}$ CONS4
COMPUT43
COMPUT44
COMPUT45
COMPUT46
C




```
 IF (EST (NUM).LT.3.75) STOP 3 INPUT109
C
COMPUTE NO AND BM ARRAYS
CO 32 I=1,NUM
 IF(EST(I).GE.0.75) GO TO 30
 NO (I) = 00.46875%(1.0-SORT (EST (1) 10.375-(EST (I)/0.75)**2.01)
 BM(I)=.375*SQRT(1.0-(EST(I)/.75-1.)**2.0)
 GO TO 32
 30 NO(I)=0.0
 BM(I) = 0.375
 3 2 ~ C O N T I N U E ~
C*******COMPUTE CONSTANTS AND INITIALIZE ARRAYS
M*****W/GRAVTY CONSTANTS AND INITIIALIZE ARRAYS
 RHO=1.99
 IT=M*RG*RG
 K = 2.*HI/LAMBDA
 C=SQRT (GRAVTY/K)
 NU=RO*K
 PHALF=(PI/2.)*RHO
C
 BETA = BETA#RPD
 CD = COS(BFTA)
 TA = TAN(BETA)
 DO 60 I=1,NUM
 E(I) = ECG-EST(I)
 N(I) = NCG*NO(I)
 MMAX(I) = KAR*PHALF*BM(I)*BM(I)
 TEST(I) = (2.*BM(I)*TA)/PI
 60 CONTINUE
 END=END+1
 RETURN
 END
 SUBROUTINE PLOTER(FX,XA,HMAX,LAMBUA,IB,NWAVE,IPT)
C
C INPUT:
C FX A TWO DIMENSIONAL ARHAY CONTAINING PITCH AND
 HEAVE VALUES AT EACH TIME STEP
 XA INITIAL TIME
 HMAX TIME INTERVAL, PTIME#HMAX = INTERVAL BETWEEN
 FX VALUES
 LAMBDA WAVELENGTH USED IN CALCULATING PITCH AND
 HEAVE RATIOES
 IB NUMBER OF FX VALUES
 NWAVE START OF VALUES AFTER WAVE IS COMPLETELY ON
 REAL IT,K,LAMBDA,M,MA,MMAX,N,NCG
 INTEGER ENT
 C
 DIMENSIUN FX(2,400),FMIN(2),FMAX(2),NVAR(2)
 C
 COMMON /CONST/ NCG,ECG,PI,DPR,RPO,GRAVTY,RHO,K,NUM,MA(120),CD,TA,
 B(120),BETA,HW(120),TZ,ORAG,W,XD,T,XP,M,IT,
 B(120),BETA,HW(120),TZ,ORAG,W,XD,T,XP,M,IT,
 * N(120),PHALF
 COMMON/OUT/NPRINT,NPLOT,END
C * * * * | UT UP VALUES FOR PLOT AND CREATE PLOT
C # * * * | UET UP VALUES FOR PLOT AND CREATE PLOT
INPUT110
INPUT111
C
INPUT112
INPUT113
INPUT114
 INPUT115
INPUT116
 INPUT117
INPUT118
 INPUT119
 NPUTl20
 INPUT121
 INPUT122
 INPUT123
 INPUT124
 INPUT125
INPUT126
INPUT127
INPUT128
 INPUT
C
 NUMBER OF FX VALUES
INPUT129
INPUT130
INPUT131
INPUT132
INPUT133
INPUT134
INPUT135
INPUT136
INPUT137
INPUT138
INPUT139
INPUT140
INPUT141
PLOTER 2
PLOTER 3
PLOTER 4
PLOTER 5
PLOTER 6
PLOTER }
PLOTER }
PLOTER }
PLOTER10
PLOTERII
PLOTERI2
PLOTER13
PLOTER14
PLOTER15
PLOTER16
PLOTER17
PLOTER18
PLOTER19
PLOTER20
PLOTER21
PLOTER22
PLOTER22
PLOTER24
PLOTER25
PLOTER26
PLOTER27
```

NFUN=2
C * SET UP MIN AND MAX LIMITS FOR PLOT
FMIN(1) $=F \times(1, \overline{1})$
$\operatorname{FMIN}(2)=F X(2,1)$
$F \operatorname{MAX}(1)=F X(1,1)$
$F \operatorname{MAX}(2)=F X(2,1)$
C * E UET UP MIN AND MAX LIMIMTS FOR HITCH AND HEAVE RATIO
FMNP $=F X(2$, NWAVE $)$
FMXP $=F \times(2$, NWAVE $)$
FMNH $=F \times(1$, NWAVE)
$F M X H=F X(1$, NWAVE)
C
DO $200 \mathrm{I}=1.18$
$\operatorname{IF}(F X(1, I), L T, F M I N(1)) F M I N(1)=F \times(1, I)$
IF $(F X(1,1), G T, F \operatorname{MAX}(1)) F \operatorname{MAX}(1)=F X(1,1)$
IF $(F X(2, I), L T \circ F M I N(2))$ FMIN $(2)=F X(2, I)$
IF $(F X(2, I), G T, F \operatorname{MAX}(2)) F \operatorname{MAX}(2)=F X(2,1)$
IF (I.LE.NHAVE) GO TO 200
IF $(F X(1,1), L T, F M N H) F M N H=F X(1, I)$
If $(F X(1, I), G T, F M X H) F M X H=F \times(1, I)$
IF $(F X(2, I), L T, F$ MNP $)$ FMNP $=F X(2,1)$
If $(F X(2,1), G T, F M X P) F M X P=F X(2,1)$
200 CONTINUE
IF (IPT.EQ.O) GO TO 800
C * . COMPUTE RATIOES
COL $3=($ FMXH-FMNH $) /(2$. .RO)
COL $4=(F M \times P-F M N P) /((4, * P I$ RO) $/$ LAMBDA $)$
WRITE (4,700) COL3,COL4
700 FORMAT (1H1." HEAVE AMPLITUDE/WAVEHEIGHT $=", E 12.6, /, 2 X$,

- "PITCH AMPLITUDE/(2.*PI*WAVEHEIGHT/LAMBDA) $=$ ".EE12.6)

C
ROO CONTINUE
NVAR (1) $=10 \mathrm{H}$ HEAVE
$\operatorname{NVAR}(2)=10^{\mathrm{H}}$ PITCH
$\mathrm{Nl}=2$
XO $=\times A$
DELX $=$ HMAX
IF (NPLOT.E日, 1) CALL PLOTZ (FX,FMIN,FMAX,NVAR,NFUN,N1,IB,XO,DELX)
RETURN
END
SUBROUTINE TRAP (F,OX,NPTS,ANS)
$C$
$C$
$C$
$C$
$C$
$C$
$C$
$C$

```
INPUT:
```

F ARRAY OF FUNCTIONAL VALUES OF THE INTEGRAND
DX THE $X$ INTERVAL BETWEEN VALUES
NPTS THE NUMBER OF VALUES GIVEN
UUTPUTI
ans the value of the integral
DIMENSION F (NPTS)
$A N S=0.0$
IF (NPTS.LT. 2)GO TO 999
DO $1 \mathrm{I}=1, \mathrm{NPTS}$
1 ANS=ANS*F (I)
ANS $=\mathrm{DX}$ ( $\mathrm{ANS}=0.5 *(F(1)+F(N P T S)))$
999 CONTINUE
RETURN
END
FUNCTION RMP (T,START,RISE)

HLOTER28
PLOTER29
Ploter30
PLOTER31
PLOTER32
PLOTER33
PLOTER34
PLOTER35
PLOTER36
PLOTER37
PLOTER38
PLOTER39
PLOTER40
PLOTER41
PLOTER42
PLOTER43
PLOTER44
PLOTER45
PLOTER46
PLOTER47
PLOTER48
PLOTER49
PLOTER50
PLOTERS1
PLOTER52
Ploters3
PLOTER54
PLOTER55
PLOTER56
PLOTER57
PLOTER58
PLOTER59
PLoter60
PLOTER61
PLOTER62
PLOTER63
PLOTER64
PLOTER65
PLOTER66
HLOTER67
TRAP
TRAP 3
TRAP 4
TRAP 5
TRAP 6
TRAP 7
TRAP $B$
TRAP 9
TRAP 10
TRAP 11
TRAP 12
TRAP 13
TRAP 14
TRAP 15
TRAP 16
TRAP 17
TRAP 18
TRAP 19
RMP Z


## LISTING OF COMPUTER PROGRAM FOR CALCOMP PLOTS

```
 PROGRAM PLTHSP(INPUT,OUTPUT,TAPE5=INPUT,TAPEG=OUTPUT,TAPE7,TAPE9) MAIN
 ITAPE = 7 MAIN
 CALL CALPLT(ITAPE) MAIN
 STOP
 MAIN
 END
 MAIN
 SUBROUTINE CALPLT(ITAPE)
 DIMENSIUN TIME (4003), PITCH(4003), HEAVE (4003)
 , IBUF}(1000),BWACL (4003), CGACL (4003
 LOGICAL ACCEL
 CAL CUMP PLOT OF PITCH AND HEAVE VERSUS TIME
 IREAD = 5
 READ(IREAD,10) XAXIS,YAXISP,YAXISH,HT
10 FORMAT (8F10.0)
 ACCEL = .FALSE.
 READ(IREAD.20) IA
20 FORMAT (110)
 IF(IA.EU.I) ACCEL = .TRUE.
 IF(ACCEL) OEAU(IREAD,10) YAXISH,YAXISC
 CALL REAOT (TIME,HEAVE,PITCH,BWACL,CGACL,NPTS)
 CALL PLOTS(IBUF,1000,7)
 CALL PLUT (0.5,1.0,-3)
 CALL ESCALE (TIME,XAXIS,NPTS,1)
 CALL ESCALE (HEAVE,YAXISH,NPTS,I)
 CALL ESCALE (PITCH,YAXISP,NPTS,1)
 IF (ACCEL) CALL ESCALE (BWACL,YAXISB,NPTS,1)
 IF(ACCEL) CALL ESCALE(CGACL,YAXISC,NPTS,1)
 Nl = NPTS+1
 N2 = NPTS*?
 N3 = NPTS*3
 CALL EAXIS (0.0,0.0,15HTIME IN SECUNDS,-15,XAXIS,0.0,
 TIME (N1),TIME (N2), TIME (N3),HT)
 CALL EAXIS (0.0,0.0,13HHEAVE IN FELT,13,YAXISH.90.0,
 - HEAVE (N1),HEAVE (N2),HEAVE (N3),HT)
 TEMP = TIME (NZ)
 TIME(N2) = TIME(N2)/TIME (N3)
 HEAVE (N2) = HEAVE (N2)/HEAVE (N3)
 CALL LINE (TIME,HEAVE,NPTS;1,0,0)
 TIME(N2) = TEMP
 XNEW = XAXIS+3.
 YNEW = 1.0
 CALL PLUT (XNEW,0,0,-3)
 CALL EAXIS (0.0゙,0.0,15HTIME IN SECUNUS, -15, XAXIS,0.0,
 TIME (N1),TIME (N2),TIME (N3),HT)
 CALL EAXIS (0.0,0.0,13HPITCH IN RAU., 13,YAXISP,90.0,
 PITCH(NII,PITCH(N2),PITCH(N3),HT)
 *TME (N2) = TIME (N2)/TIME(N3)
 PITCH(N2) = PITCH(N2)/PITCH(N3)
 CALL LINE (TIME,PITCH,NPTS,1,0,0)
 IF(.NOT.ACCEL) GO TO 30
 TIME(NZ) = TEMP
 CALL PLUT (XNEW,0.0.-3)
 CALL EAXIS(0.0,0.0,15HTIME IN SECUNOS,-15,XAXIS,0.0,TIME (NI), CALP 50
 TIME゙(N2),TIME (N3),HT) CALP 51
 CALL EAXIS(0.0,0.0,16HHUW ACCELERATION,16,YAXIS8,90.0,BWACL(N1),CALP 52
 * BWACL(N2),BWACL(N3),HT) CALP 53
 CALP }5
 BWACL (N2) = UWACL (N2)/BWACL(N3) CALP 55
```

CALP
56
C
TIME(N2) $=\operatorname{TEMP}$
CALL PLUT (XNEW, 0.0, -3)
CALP 57

CALL EAXTS $(0,0,0,0,15 \mathrm{HTIME}$ IN SLCUNOS, -15, XAXIS,0.0,TIME (N1), TIME (N2), TIME (N3), HT)

CALP 58
CALP 59
-
CALL EAXIS $(0.0,0.0,15 H C G$ ACCELERATION,15,YAXISC,90.0,CGACL(N1),

- ĊGACL (N2), CGACL (N3), HT)
$\operatorname{TIME}(N 2)=\operatorname{TIME}(N 2) / T I M E(N 3)$
CGACL (N2) $=$ CGACL (N2)/CGACL (N3)
CALL LINE (TIME, CGACL,NPTS,1,0,0)
30 CONTINUE
CALL PLUT (30.0.0.0.999)
RETURN
END
SUBROUTINE READT (TIME,HEAVE,PITCH,BWACL,CGACL,NPTS)
DIMENSIUN $x(6)$, $\operatorname{HEAVE}(1), P$ ITCH(1)
CALP 60
CALP 61
CALP 62
CALP 63
CALP 64
CALP 65
CALP 66
CALP 67
CALP 68
CALP 69
CALP 70
- TIME (1), BWACL (1), CGACL (1)
$I=0$
5 CONTINUE
$I=I+I$
READ (9) TIME(I), (X(I),I=4,6), BWACL(I),CGACL(I)
IF (EOF (9) ) 10,15
15 CONTINUE
WRITE (6,20) TIME (I), (X(J), J=4,6), BWACL (I), CGACL (I)
20 FORMAT(1H •6(F7.2,2X))
HEAVE(I) $=X(5)$
PITCH(I) $=X(6)$
IF(I.GE.40NO) GO TO 10
GO TO 5
10 CONTINUE
NPTS $=1-1$
RETURN
END
SUBROUTINE EAXIS (XPAGE,YPAGE, IBCD,NCHAR,AXLEN, ANGLE,FIRSTV,
- DELTAV,DELTAU,HT)

DIMENSION IBCD(1)
C
C
C
C
C
THIS RUITINE WORKS LIKE THE CALCOMP AXIS WITH THE
EXCEPTION THAT THE TICK MAKKS ARE NOT NECCESSARILY
EVERY INCH AND THE HEIGHT UF THE CHARACTERS IS INPUTTED
CALL PLUT (XPAGE, YPAGE,3)
ISN = ISIGN(I,NCHAR)
ISGN $=$ SIGN(1.,OELTAV)
AMIN = FIRSTV
$X=X P A G E$
$Y \quad=$ YPAGE
XNUM $=$ FIRSTV-DELTAV
$N=A X L E N / D E L T A U$
IF ( $N * D E L T A U . L T$. AXLEN) $N=N+1$
$A M A X=A M I N+(N * D E L T A V)$
HEAD 2
READ 3
READ 4
READ 5
READ 6
READ 7
READ 8
READ 9
READ 10
KEAD 11
READ 12
READ 13
READ 14
READ 15
READ 16
READ 17
READ 18
READ 19
READ 20
EAXIS 2
EAXIS 3
EAXIS 4
EAXIS 5
EAXIS 6
EAXIS 7
EAXIS 8
EAXIS 9
EAXIS 10
EAXIS 11
EAXIS 12
EAXIS 13
EAXIS 14
EAXIS 15
EAXIS 16
EAXIS 17
EAXIS 18
EAXIS 19
NDIG $=$ NDIGIT(AMIN,AMAX,DELTAU,ND) EAXIS 20
10 CONTINUE
EAXIS 21
TEST $=(N D I G * H T) * H T$
IF (TEST.GT. DELTAU) HT=HT/2.
IF (TEST.GT.UELTAU) GO 1010
AYN $=(1.50 \mathrm{HT})$
EAXIS 22
EAXIS 23
EAXIS 24
EAXIS 25 BYN $=(((N D I G-2) * H T) / 2 . * .5 * H T)$

EAXIS 26

```
 N=N+1 EAXIS 27
 TANG = (90. +ANGLE)/57.2958 EAXIS 28
 ANG = ANGLE/57.2958 EAXIS 29
 ST = SIN(TANG) EAXIS 30
 CT = COS(TANG)
 S = SIN(ANG)
 C = COS(ANG)
 00 30 I=1.N
 IF(I.EQ.I) GO TO 20
 x = x+DELTAU#C
 Y = Y DELTAU#S
 CALL PLOT (X,Y,Z)
 IF(I.EQ.N) GU TO 20
 XT = x+(.1*CT*ISN)
 YT = Y (.1*ST*ISN)
 CALL PLUT(XT,YT,Z)
20 XN = X +AYN#CT*ISN-BYN*C
 YN = Y +AYN*ST*ISN-BYN*S
 XNUM = XNUM+DELTAV
 CALL NUMBER(XN,YN,HT,XNUM,ANGLE,NO)
 CALL PLOT (X,Y,3)
30 CONTINUE
 XSP = (((AXLEN/HT)/2.)-(IABS(NCHAR)/2.))*HT
 YSP = 3.5%HT
 XT = XPAGE * XSP#C * ISN*YSP#CT
 YT = YPAGE + XSP*S + ISN*YSP#ST
 CALL SYMBOL (XT,YT,HT,IBCD,ANGLE,IABS (NCHAR))
 RETURN
 END
 FUNCTION NDIGIT(AMIN,AMAX,ANUM,ND)
 FINDS THE NUMBER OF DIGITS NECCESSARY TO PRINT
 EvEN INCREMENT OF THE FUNCTION UN THE AXIS
 NDIGIT THE NUMBER OF PLACES IN THE ENTIRE NUMBER
 NO THE NUMBER OF DECIMAL PLACES
 ANUM THE VALJE GIVEN TU EACH INCREMENT ON THE AXIS
 IF(ABS(AMIN).LT.ABS(AMAX)) GO TO 20
 IF (AHS (AMIN),EQ.ABS (AMAX),AND.AMAX,NE,0) GO TO 20
 IF(ABS(AMIN).GT.ABS(AMAX)) GO TO 10
 AMAX = 1.
 AMIN = -1.
 GO TO 20
10 AMAX = ABS(AMIN)
 NDIV = 10
 I = 1
30 IF(AMAX/NDIV.LT.1) GO TO 40
 I = I +I
 NDIV = NDIV*10
 GO TU }3
40 NDIGIT = I + 3
 ND = 2
 GO TO 80
5 0 ~ N D I V ~ = ~ I ̇ 0
 I = 1
60 IF(AMAXWNDIV.GT.1.) GO TO 70
 I = I + I
 EAXIS 31
 EAXIS 32
 EAXIS 33
 EAXIS 34
 EAXIS 35
 EAXIS 36
 EAXIS 37
 EAXIS 38
 EAXIS 39
 EAXIS 40
 EAXIS 41
 EAXIS 42
 EAXIS 43
 EAXIS 44
 EAXIS 45
 EAXIS 46
 EAXIS 47
 EAXIS 48
 EAXIS 49
 EAXIS }5
 EAXIS 51
 EAXIS 52
 EAXIS 53
 EAXIS 54
 EAXIS 55
 NDIG }
 NDIG }
 NDIG }
 NDIG }
 NOIG }
 NDIG }
 NDIG }
 NDIG }
 NDIG 10
 NDIG 11
 NDIG 12
 NDIG }1
 NDIG 14
 NDIG }1
 NDIG }1
 NDIG }1
 NDIG 18
 NDIG 19
 NDIG }2
 NDIG 21
 NDIG 22
 NDIG 23
 INDIG }2
NDIG }2
NDIG }2
NDIG 27
NOIG 28
NOIG 29
NDIG 30
NDIG 31
```




```
 GO TO 10 JUST
 20 AUNIT = AXLEN/(N-K+1) JUST
 N = AXLEN/AUNIT +1 JUST
 RETURN JUST
 -END
 FUNCTION UNIT(AMIN,AMAX,AXLEN,N,ANUM)
C
FINDS THE INCREMENT BETWEEN VALUES TO BE USED UN THE
 AXIS IN AS FAR AS LABELING THE TICK MARKS
 FINDS THE NUMBER OF DIVISIONS TO BE MADE ON THE AXIS
 FINDS THE SIZE IN INCHES OF THESE DIVISIUNS
 IF (AMIN.NE.AMAX) GO TO 10
 AMIN = AMIN-1
 2MAX = AMAX +1
 10 IF(AMAX.LT.1.AND.AMIN.GT.-1)GU TO 110
 30 MIN = AMIN
 MAX = AMAX
 IF (AMAX,GT,MAX) MAX=MAX+1
 IF (AMIN.LT.MIN) MIN=MIN-1
 IF(MIN.LT.O) NWID = MAX+IABS(MIN)
 IF(MIN,GE.O) NWID = MAX-MIN
 NUM = 10
40 IF(NWID.LT.NUM) GO TO 60
 NUM = NUMM10
 GO TO 40
60 N = NHID/(NUM/10)
 IF(MIN.LT.?.AND.MAX.GT.O) GO TO 70
 IF(N*(NUM/IO),LT.NWID) N=N+1
 ANUM = NUM/10.
 AUNIT = AXLEN/N
 GO TO 160
70 NN = IABS(MIN)/(NUM/10)
 IF(NN*(NUM/IU).LT.IABS(MIN)) NN = NN+1
 N = MAX/(NISM/10)
 IF (N*(NUM/10).LT.MAX) N=N*I
 N = N*NN
 ANUM = NUM/10.
 AUNIT = AXLEN/N
 GO TO 160
110 NUM=10
120. IF (AMAXX*NUM.GT.1) GO TO 130
 NUM = NUM*10
 GO TO 120
130 UNITT = 1./NUM
140 N1 = AMIN#NUM
 N2 = AMAX#NUM
 IF(AMIN*NUM.LT,NI) N1=N1-1
 IF (AMAX*NUM.GT,N2) N2=N2*1
 IF(N1.NE.N2) GO TO 150
 AMIN = AMIN-UNITT
 AMAX = AMAX-UNITT
 GU TO 140
 N = N2-N1
 ANUM = UNITT
 IF (AMIN.LT,O.AND.AMAX.LT.O) N=N1-N2
 IF(AMIN.LT.O.AND.AMAX.GE.Ó) N=NZ-N1
 AUNIT = AXLEN/N
```

JUST
16
17
18
19
20
JUST 21
UNIT 2
UNIT 3
UNIT 4
UNIT 5
UNIT 6
UNIT 7
UNIT 8
UNIT 9
UNIT 10
UNIT 11
UNIT 12
UNIT 13
UNIT 14
UNIT 15
UNIT 16
UNIT 17
UNIT 18
UNIT 19
UNIT 20
UNIT 21
UNIT 22
UNIT 23
UNIT 24
UNIT 25
UNIT 26
UNIT 27
UNIT 28
UNIT 29
UNIT 30
UNIT 31
UNIT 32
UNIT 33
UNIT 34
UNIT 35
UNIT 36
UNIT 37
UNIT 38
UNIT 39
UNIT 40
UNIT 41
UNIT 42
UNIT 43
UNIT 44
UNIT 45
UNIT 46
UNIT 47
UNIT 48
UNIT 49
150
$\mathrm{N}=\mathrm{N} 2-\mathrm{N} 1$
UNIT 50
UNIT 51
UNIT 52
UNIT 53
UNIT 54

160	IF (N.GT.S) GO TO 170	UNIT	55
	$N=N * 2$	UNIT	56
	ANUM $=$ ANUM/2.	UNIT	57
	AUNIT $=$ AUNIT/2.	UNIT	58
	GO TO 160	UNIT	59
170	UNIT = AUNIT	UNIT	60
	RETURN	UNIT	61
	END	UNIT	62

## INITIAL DISTRIBUTION

## Copies

1

WES
CHONR/438 Cooper
NRL
1 Code 2027
1 Code 2629
ONR/Boston
ONR/Chicago
ONR/Pasadena
NORDA
USNA
1 Tech Lib
1 Nav Sys Eng Dept
1 B. Johnson
1 Bhattacheryya
NAVPGSCOL
1 Library
1 T. Sarpkaya
1 J. Miller
NADC
NOSC
1 Library
1 Fabula
1 Hoyt
NCSL/712 D. Humphreys
NCEL/Code L31
NSWC, Dahlgren
NUSC/Lib
NAVSEA
1 SEA 0322
1 SEA 033
1 SEA 03512/Pierce
1 SEA 037
3 SEA 09G32
NAVFAC/Code 032C
NAVSHIPYD PTSMH/Lib
NAVSHIPYD PHILA/Lib
NAVSHIPYD NORVA/Lib
NAVSHIPYD CHASN/Lib
NAVSHIPYD LBEACH/Lib

## Copies

2
NAVSHIPYD MARE
1 Library
1 Code 250
NAVSHIPYD BREM/Lib
NAVSHIPYD PEARL/Code 202.32
NAVSEC
1 SEC 6034B
1 SEC 6110
1 SEC 6114 H
1 SEC 6120
1 SEC 6136
1 SEC 6140B
1 SEC 6144G
1 SEC 6148
NAVSEC, NORVA/6660.03 Blount
DDC
AFOSR/NAM
AFFOL/FYS, J. Olsen
NSF/Eng Lib
LC/Sci and Tech
DOT/Lib TAD-491.1
MMA, Library
U. of BRIDGEPORT/E. Uram
U. of CAL/Dept Naval Arch, Berkeley

1 Library
1 Webster
1 Paulling
1 Wehausen
U. of CAL, San Diego

1 A.T. Ellis
1 Scripps Inst Lib
CIT
1 Aero Lib
1 T.Y. Wu
1 A. Acosta
CATHOLIC U. of AMER/CIVIL MECH ENG
COLORADO STATE U./ENG RES CEN
U. of CONNECTICUT/Scottron

CORNELL U./Sears

2 FLORIDA ATLANTIC U.
1 Tech Lib
1 S. Dunne
2
HARVARD U.
1 G. Carrier
1 Gordon McKay Lib
U. of HAWAII/Bretschneider

1
3
U. of ILL.INOIS/J. Robertson
U. of IOWA

1 Library
1 Landweber
1 Kennedy
JOHN HOPKINS U./Phillips
1 KANSAS STATE U./Nesmith
1
1
5

4
U. of KANSAS/Civil Eng Lib

LEHIGH U./Fritz Eng Lab Lib
MIT
1 Library
1 Leehey
1 Mandel
1 Abkowitz
1 Newman
U. of MIN/ST. ANTHONY FALLS

1 Silberman
1 Schiebe
1 Wetze!
1 Song
U. of MICH/NAME

1 Library
1 Ogilivie
1 Hammitt
U. of NOTRE DAME

1 Eng Lib
1 Strandhagen
PENN STATE/ARL/B. Parkin
PRINCETON U./Mellor
SIT
1 Library
1 Breslin
1 Savitsky
1 P.W. Brown
1 Fridsma
U. of TEXAS/ARL Lib

UTAH STATE U./Jeppson

Copies

SOUTHWEST RES INST
1 Applied Mech Rev
1 Abramson
STANFORD U.
1 Eng Lib
1 R. Street
STANFORD RES INST/Lib
U. of WASHINGTON/ARL Tech Lib

WEBB INST
1 Library
1 Lewis
1 Ward
WOODS HOLE/Ocean Eng WORCHESTER PI/Tech Lib SNAME/Tech Lib BETHLEHEM STEEL/Sparrows Point BETHLEHEM STEEL/New York/Lib BOLT, BERANEK and NEWMAN/Lib GENERAL DYNAMICS, EB/Boatwright GIBBS and COX/Tech Info

HYDRONAUTICS
1 Library
1 E. Miller
1 A. Goodman
1 V. Johnson
1 C.C. Hsu
LOCKHEED, Sunnyvale/Waid
McDONNELL DOUGLAS, Long Beach
1 J. Hess
1 T. Cebeci
NEWPORT NEWS SHIPBUILDING/Lib NIELSEN ENG and RES

OCEANICS
ROCKWELL INTERNATIONAL/B.
Ujihara
SPERRY RAND/Tech Lib
SUN SHIPBUILDING/Chief Naval Arch
ROBERT TAGGART
TRACOR

## CENTER DISTRIBUTION

Copies	Code	Name
1	1500	W.E. Cummins
1	1504	V.J. Monacella
1	1506	M.K. Ochi
1	1507	D. Cieslowski
1	1512	J.B. Hadler
1	1520	R. Wermter
1	1521	P. Pien
1	1524	Y.T. Shen
1	1524	W.C. Lin
1	1532	G. Dobay
1	1532	R. Roddy
1	1540	W.B. Morgan
1	1552	J. McCarthy
1	1552	N. Salvesen
1	1560	G. Hagen
1	1560	N. Hubble
10	1562	M. Martin
1	1564	J. Feldman
1	1568	G. Cox
1	1572	M.D. Ochi
1	1572	C.M. Lee
1	1576	W.E. Smith
10	5214.1	Reports Distribution
1	522.1	Unclassified Library (C)
1	522.2	Unclassified Library (A)
1		

1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECH. NICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.
2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.
3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR INTERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.

[^0]:    *A complete listing of references is given on page 33.

[^1]:    *If this option is not used set TME to stop time on run.

[^2]:    *b1 array is set up for integrations for portion of hull for which chine is not immersed.

