XIX Observations on different Kinds of Air. By Jofeph Prieftley, LL. D. F. R. S.

Read March 5, MHE following observations on the I2,19, 26, 1772 . properties of feveral different kinds of air, I am fenfible, are very imperfect, and tome of the courfes of experiments are incomplete; but a confiderable number of facts, which appear to me to be new and important, are fufficiently afcertained; and I am willing to hope, that when philofophers in general are apprized of them, forme perfons may be able to purfue them to more advantage than myelf. I therefore think it my duty to give this Society an account of the progress I have been able to make ; and I hall not fail to communicate any farthe lights that may occur to me, whenever I refuge there inquiries.

In writing upon this fubject, I find myfelf at a lois for proper terms, by which to diftinguifh the different kinds of air. Thofe which have hitherto obtained are by no means fufficiently characteristic, or diftinct. The terms in common ufe are, fixed air, mephitic, and inflammable. The lat, indeed, fufficiently characterizes and diftinguifhes that kind of air which takes fire, and explodes on the approach of flame; but it might have been termed fixed with

[148]

as much propriety as that to which Dr. Black and others have given that denomination, fince it is originally part of fome folid fubftance, and exifts in an unelaftic ftate, and therefore may be alfo called factitious. The term mephitic is equally applicable to what is called fixed air, to that which is inflammable, and to many other kinds; fince they are equally noxious, when breathed by animals. Rather, however, than to introduce new terms, or change the fignification of old ones, I thall ufe the term fixed air, in the fenfe in which it is now commonly ufed, and diftinguifh the other kinds by their properties, or fome other periphrafis. I hall be under a neceffity, however, of giving a name to one fpecies of air, to which no name was given before.

Of fixed air.

Fixed air is that which is expelled by heat from lime, and other calcareous fubitances, and, when deprived of which, they become quick-lime. It is allo contained in alkaline falts, and is generated in great quantities from fermenting vegetables; and being united with water, gives it the principal properties of Pymont-water. This kind of air is alio well known to be fatal to animals; and Dr. Macbride has demonfrated, that it checks or prevents putrefaction.

Living for fome time in the neighbourhood of a public brewery, I was induced to make a few experiments on this kind of air, there being always a targe body of it, ready formed, upon the furface of the fermenting liquor, generally about nine inches

[149]

or a foot in depth, within which any kind of fubftance may be very conveniently placed; and though it muft be continually mixing with the common air, and is far from being perfectly pure, yet there is a conflant fupply from the fermenting liquor, and it is pure enough for many purpofes.

A perfon, who is quite a ftranger to the properties of this kind of air, would be agreeably amufed with extinguihing lighted candles, or chips of wood in it, as it lies upon the furface of the fermenting liquor; for the fmoke readily unites with this kind of air, probably by means of the water which it contains; fo that very little or none of the fmoke will efcape into the open air, which is incumbent upon it. It is remarkable, that the upper furface of this fmoke, floating in the fixed air, is fmooth, and well defined; whereas the lower furface is exceedingly ragged, feveral parts hanging down to a confiderable diftance within the body of the fixed air, and fometimes in the form of balls, connected to the upper ftratum by nender threads, as if they were fufpended. The fmoke is alfo apt to form itfelf into broad flakes, parallel to the furface of the liquor, and at different diftances from it, exactly like clouds. Thefe appearances will fometimes continue above an hour, with very little variation. When this fixed air is very ftrong, the fmoke of a fmall quantity of gunpowder fired in it will be wholly retained by it, no part efcaping into the common air.

Making an agitation in this air, the furface of it, which fill continues to be exactly defined, is thrown into the form of waves, which it is very amufing to look upon; and if, by this agitation, any of the fixed
air be thrown over the fide of the veffel, the fmoke, which is mixed with it, will fall to the ground, as if it was fo much water, the fixed air being heavier than common air.

The red part of burning wood was extinguifhed in this air, but I could not perceive that a red-hot poker was fooner cooled in it.

Fixed air does not inftantly mix with common air. Indeed, if it did, it could not be caught upon the fermenting liquor; for a candle put under a large receiver, and immediately plunged very deep below the furface of the fixed air, will burn fome time. But veffels with the fmalleft orifices, hanging with their mouths downwards in the fixed air, will in time have the common air, which they contain, perfectly mixed with it. When the fermenting liquor is contained in veffels clofe covered up, the fixed air is rendered much ftronger, and then it readily affects the common air which is contiguous to it ; fo that, upon removing the cover, candles held at a confiderable diftance above the furface will inftantly go out. I have been told by the workmen, that this will fometimes be the cale, when the candles are held more than half a yard above the mouth of the veffel.

Fixed air unites with the fmoke of refin, fulphur, and other electrical fubftances, as well as with the vapour of water; and yet, by holding the wire of a charged phial among thefe fumes, I could not make any electrical atmofphere, which furprized me a good deal, as there was a large body of this fmoke, and it was fo confined, that it could not efcape me. I alfo held fome oil of vitriol in a glafs veffel within

[151]

the fixed air, and by plunging a piece of red hot glafs into it, raifed a copious and thick fume. This floated upon the furface of the fixed air like other fumes, and continued as long.

Confidering the near affinity between water and fixed air, I concluded that if a quantity of water was placed near the yeaft of the fermenting liquor, it could not fail to imbibe that air, and thereby acquire the principal properties of Pyrmont, and other medicinal mineral waters. Accordingly, I found, that when the furface of the water was confiderable, it always acquired the pleafant acidulous tafte that Pyrmont water has. The readieft way of impregnating water with this virtue, in thefe circumftances, is to take two veffels, and to keep pouring the water from one into the other, when they are both of them held as near the yeaft as-poffible; for by this means a great quantity of furface is expofed to the air, and the furface is alfo continually changing. In this manner, I have fometimes, in the fpace of two or three minutes, made a glafs of exceedingly pleafant fparkling water, which could hardly be diftinguifhed from very good Pyrmont.

But the moft effectual way of impregnating water with fixed air is to put the veffels which contain the water into glafs jars, filled with the pureft fixed air, made by the folution of chalk in diluted oil of vitriol, ftanding in quickfilver. In this manner I have, in about two days, made a quantity of water to imbibe more than an equal bulk of fixed air, fo that, according to Dr. Brownrigg's experiments, it muft have been much frronger than the beft imported Pyrmont; for though he made his experiments at the foring head,

[15^{2}]

head, he never found that it contained quite fo much as half its bulk of this air. If a fufficient quantity of quickfilver cannot be procured, oil may be ufed with fufficient advantage, for this purpofe, as it imbibes the fixed air very flowly. Fixed air may be kept in veffels ftanding in water for a long time, if they be feparated by a partition of oil, about half an inch thick. Pyrmont water made in thefe circumftances, is little or nothing inferior to that which has ftood in quickfilver.

The readief method of preparing this water for ufe is to agitate it ftrongly with its whole furface expofed to the fixed air. By this means alfo, more than an equal bulk of air may be communicated to a large quantity of water in the face of a few minutes. Eafy directions for doing this I have publifhed in a fmall pamphlet, defigned originally for the ufe of feamen in long voyages, on the prefumption that it might be of ufe for preventing or curing the fea fcurvy, equally with wort, which was recommended by Dr. Macbride for this purpofe, on no other account than its property of generating fixed air, by its fermentation in the ftomach.

Water thus impregnated with fixed air readily diffolves iron, as Mr, Lane has difcovered; fo that if a quantity of iron filings be put to it, it prefently becomes a frong chalybeate, and of the mildeft and moft agreeable kind.

I have recommended the ufe of chalk and oil of vitriol as the cheapeft, and, upon the whole, the beft materials for this purpofe; and whereas fome perfons had fufpected that a quantity of the oil of vitriol was rendered volatile by this procefs, I examined it

[153]

by all the chemical methods that are in ule; but could not find that water thus impregnated contained the leaft perceivable quantity of the acid.

Mr. Hey, indeed, who affifted me in this examination, found that diftilled water, impregnated with fixed air, did not mix fo readily with foap as the diftilled water itfelf; but this was alfo the cafe when the fixed air had paffed through a long glafs tube filled with alkaline falts, which, it may be fuppofed, would have imbibed any of the oil of vitriol that might have been contained in that air *.

It is not improbable but that fixed air itfelf may be of the nature of an acid, though of a weak and peculiar fort. Mr. Bergman of Upfal, who honoured me with a letter upon the fubject, calls it the aërial acid, and, among other experiments to prove it to be an acid, he fays that it changes the blue juice of tournefole into red.

The heat of boiling water will expell all the fixed air, if a phial containing the impregnated water be held in it; but it will often require above half an hour to do it completely.

Dr. Percival, who is particularly attentive to every improvement in the medical art, and who has thought fo well of this impregnation as to prefcribe it in feveral cafes, informs me that it feems to be much ftronger, and fparkles more, like the true Pyrmont water, after it has been kept fome time. This circumftance, however, thews that, in time, the fixed air is more eafily difengaged from the water, and

[^0]
[154]

though, in this ftate, it may affect the tafte more fenfibly, it cannot be of fo much ufe in the ftomach and bowels, as when the air is more firmly retained by the water, though, in confequence of it, it be lefs fenfible to the tafte.

By the procefs defribed in my pamphlet, fixed air may be readily incorporated with wine, beer, and almoft any other liquor whatever; and when beer, wine, or cyder, is become flat or dead (which is the confequence of the efcape of the fixed air they contained) they may be revived by this means; but the delicate and agreeable flavour, or acidulous tafte, communicated by fixed air, and which is very manifeft in water, can hardly be perceived in wine, or any liquors which have much tafte of their own.

I hould think that there can be no doubt, but that water thus impregnated with fixed air muft have all the medicinal virtues of genuine Pyrmont water ; fince thefe depend upon the fixed air it contains. If the genuine Pyrmont water derives any advantage from its being a natural chalybeate, this may alfo be obtained by providing a common chalybeate water, and ufing it in thefe procefles, inftead of common water.

Having fucceeded fo well with this artificial Pyrmont water, I imagined that it might be poffible to give ice the fame virtue, efpecially as cold is known to promote the abforption of fixed air by water; but in this I found myfelf quite miftaken. I put feveral pieces of ice into a quantity of fixed air, confined by quickfilver, but no part of the air was abforbed in two days and two nights; but upon bringing it into a place where the ice melted, the air

[55]

was abforbed as ufual. I then took a quantity of Atrong artificial Pyrmont water, and, putting it into a thin glafs phial, I fet it in a pot that was filled with fnow and falt. This mixture inftantly freezing the water that was contiguous to the fides of the glafs, the air was difcharged plentifully, fo that I catched a confiderable quantity, in a bladder tied to the mouth of the phial. I alfo took two quantities of the fame Pyrmont water, and placed one of them where it might freeze, keeping the other in a cold place, but where it would not freeze. This retained its acidulous tafte, though the phial which contained it was not corked; whereas the other, being brought into the fame place, where the ice .melted very flowly, had at the fame time the tafte of common water only. That quantity of water which had been frozen by the mixture of fnow and falt, was almoft as much like fnow as ice, fuch a quantity of air bubbles were contained in it, by which it was prodigioully increafed in bulk.

The preffure of the atmofphere affilts very confiderably in keeping fixed air confined in water; for in an exhaufted receiver, Pyrmont water will abfolutely boil, by the copious difcharge of its air. This is alfo the reafon why beer and ale froth fo much in vacuo. I do not doubt, therefore, but that, by the help of a condenfing engine, water might be much more highly impregnated with the virtues of the Pyrmont Ipring, and it would not be difficult to contrive a method of doing it.

The manner in which I made feveral experiments to afcertain the abforption of fixed air by different fluid fubftances was to pus the liquid into a difh, X 2
and holding it within the body of the fixed air at the brewery, to fet a glafs veffel into it, with its mouth inverted. This glafs being neceffarily filled with the fixed air, the liquor would rife into it when they were both taken into the common air, if the fixed air was abforbed at all.

Making ufe of ether in this manner, there was a conftant bubbling from under the glafs, occafioned by this fluid eafily rifing in vapour, fo that I could not, in this method, determine whether it imbibed the air or not. I concluded, however, that they did incorporate, from a very difagreeable circumftance, which made me defift from making any more experiments of the kind. For all the beer; over which this experiment was made, contracied a peculiar tafte, the fixed air impregnated with the ether being; I fuppofe, again abforbed by the beer. I have alfo obferved, that water which remained a long time within this air has fometimes acquired a very difagreeable tafte. At one time it was like tar-water. How this was acquired, I was very defirous of making fome experiments to afcertain, but I was difcouraged by the fear of injuring the fermenting liquor. It could not come from the fixed air only.

Having imagined that fixed air coagulated the blood in the lungs of animals, and thereby caufed inftant death; I fuffocated a cat in this kind of air, and examining the lungs prefently after, found them collapfed and white, having little or no blood in them.

In order to try the effect of this air upon the blood itfelf, I took a quantity from a fowl juft killed, and divided it into two parts, holding one of them within

[157]

the fixed air, and the other in the common air, and obferved that the former was coagulated much fooner than the latter. This I could wifh to have tried again.

Infects and animals which breathe very little are fifled in fixed air, but are not foon quite killed in it. Butterflies, and flies of other kinds, will generally become torpid, and feemingly dead, after being held a few minutes over the fermenting liquor ; but they revive again after being brought into the frefh air. But there are very great varieties with refpect to the time in which different kinds of flies will either become torpid in the fixed air, or die in it. A large ftrong frog was much fwelled, and feemed to be nearly dead, after being held about fix minutes over the fermenting liquor; but it recovered upon being brought into the common air. A fnail treated in the fame manner died prefently.

Fixed air is prefently fatal to vegetable life. At leaft fprigs of mint, growing in water, and placed over the fermenting liquor, will often become quite dead in one day, or even in a lefs fpace of time ; nor do they recover when they are afterwards brought into the common air. I am told, however, that fome other plants are much more hardy in this refpect.

A red rofe, frefh gathered, loft its rednefs, and became of a purple colour, after being held over the fermenting liquor about twenty-four hours; but the tips of each leaf were much more affected than the reft of it. Another red rofe turned perfectly white in this fituation; but various other flowers, of different colours, were very litile affected. Thefe expe-

[158]

riments were not repeated, as I wifh they might be done, in pure fixed air, extracted from chalk by means of oil of vitriol.

For every purpofe, in which it was neceffary that the fixed air hould be as unmixed as poffible, I generally made it by pouring oil of vitriol upon chalk and water, catching it in a bladder, faftened to the neck of the phial, in which they were contained, taking care to prefs out all the common air, and alfo the firf, and fometimes the fecond, produce of fixed air ; and alfo, by agitation, making it as quickly as I poffibly could. At other times, I made it pafs from the phial in which it was generated through a glafs tube, without the intervention of any bladder, which, as I found by experience, will not long make a fufficient feparation between feveral kinds of air and common air.

I had once thought that the readieft method of procuring fixed air, and in fufficient purity, would be by the fimple procefs of burning chalk, or pounded lime-ftone in a gun-barrel, making it pafs through the ftem of a tobacco-pipe, or a glafs tube carefully luted to the orifice of it ; and in this man. ner I find that air is produced in great plenty; but, upon examining it, I found, to my very great furprize, that little more than one half of it was fixed air, capable of being abforbed by water; and that the reft was inflammable, fometimes very weakly, but fometimes pretty highly fo. Whence this inflammability proceeds, I am not able to determine, the lime or chalk not being fuppofed to contain any other than fixed air. I conjecture, however, that it muft proceed from the iron, and the feparation of it

[159]

from the calx may be promoted by that fmall quantity of oil of vitriol, which I am informed is contained in chalk, if not in lime-ftone alfo. But it is an objection to this hypothefis, that the inflammable air produced in this manner burns blue, and not at all like that which is produced from iron, or any other metal, by means of an acid. It has alfo the frmell of that kind of inflammable air which is produced from vegetable fubftances. Befides, oil of vitriol without water, will not diffolve iron; nor can inflammable air be got from it, unlefs the acid be confiderably diluted; and when I mixed brimftone with the chalk, neither the quality nor the quantity of the air was changed by it. Indeed no air, or permanently elaftic vapour, can be got from brimftone, or any oil.

In the method in which I generally made the fixed air, and indeed always, unlefs the contrary be particularly mentioned, viz. by diluted oil of vitriol and chalk, I found by experiment that it was as pure as Mr. Cavendifh made it. For after it had paffed through a large body of water in fmall bubbles, ftill $\frac{x}{3} \frac{x}{0}$ or $\frac{x}{80}$ part only was not abforbed by water. In order to try this as expeditioully as poffible, I kept pouring the air from one glafs veffel into another, immerled in a quantity of cold water, in which manner I found by experience, that almoft any quantity may be reduced as far as poffible in little more than a quarter of an hour.

At the fame time that I was trying the purity of my fixed air, I had the curiofity to endeavour to afcertain whether that part of it which is not miffcible in water, be equally diffufed through the whole

[160]

mafs; and, for this purpore, I divided a quantity of about a gallon into three parts, the firft confifting of that which was uppermoft, and the laft of that which was the lowef, contiguous to the water; but all thefe parts were reduced in about an equal proportion, by paffing through the water, fo that the whole mafs had been of an uniform compofition. This I have alfo found to be the cafe with feveral kinds of air, which will not properly incorporate.

A moufe will live very well, though a candle will not burn, in the refiduum of the pureft fixed air that I can make; and I once made a very large quantity for the fole purpofe of this experiment. This, therefore, feems to be one inflance of the generation of genuine common air, though vitiated in fome degree. It is alfo another proof of the refiduum of fixed air being, in part at leaft, common air, that it becomes turbid, and is diminifhed by the mixture of nitrous air, as will be explained hereafter.

That fixed air only wants fome addition to make it permanent, and immilcible with water, if not, in all refpects, common air, I have been led to conclude, from ieveral attempts which I once made to mix it with air, in which a quantity of iron filings and brimftone, made into a pafte with water, had ftood; for, in feveral mixtures of this kind, I imagined that not much more than half of the fixed air could be imbibed by water; but, not being able to repeat the experiment, I conclude that I either deceived myfelf in it, or that I overlooked fome circumftance on which the fuccefs of it depended.

Thefe experiments, however; whether they were fallacious or otherwife, induced me to try whether

[161]

any alteration would be made in the conftitution of fixed air, by this mixture of iron filings and brimPtone. I therefore put a mixture of this kind into a quantity of as pure fixed air as I could make, and confined the whole in quickfilver, left the water fhould abforbe it before the effects of the mixture could take place. The confequence was, that the fixed air was diminifhed, and the quickfilver rofe in the veffel, till about the fifth part was occupied by it ; and, as near as I could judge, the procefs went on, in all refpects, as if the air in the infide had been common air.

What is moft remarkable, in the refult of this experiment, is, that the fixed air, into which this mixture had been put, and which had been in part diminifhed by it, was in part alfo rendered infoluble in water by this means. I made this experiment four times, with the greateft care, and obferved, that in two of them about one fixth, and in the other two about one fourteenth, of the original quantity, was fuch as could not be abforbed by water, but continued permanently elaftic. Left I hould have made any miftake with refpect to the purity of the fixed air, the laft time that I made the experiment, I fet part of the fixed air, which I made ufe of, in a feparate veffel, and found it to be exceedingly pure, fo as to be almoft wholly abforbed by water; whereas the other part, to which I had put the mixture, was far from being fo.

In one of thefe cafes, in which fixed air was made immifcible with water, it appeared to be not very noxious to animals; but in another cafe, a moufe died in it pretty foon.

[162]

As the iron is reduced to a calx by this procefs, I once concluded, that it is phlogifton that fixed air wants, to make it common air ; and, for any thing I yet know, this may be the cafe, though I am ignorant of the method of combining them; and when I calcined a quantity of lead in fixed air, in the manner which will be defcribed hereafter, it did not feem to have been lefs foluble in water than it was before.

II.

On Air in which a candle, or erimstone, has burned out.

It is well known that flame cannot fubfift long without change of air, fo that the common air is neceffary to it, except in the cafe of fubftances, into the compofition of which nitre enters; for thefe will burn in vacuo, in fixed air, and even under water, as is evident in fome rockets, which are made for this purpofe. The quantity of air which even a fmall flame requires to keep it burning is prodigious. It is generally faid, that an ordinary candle confumes, as it is called, about a gallon in a minute. Confidering this amazing confumption of air, by fires of all kinds, volcano's, \&cc. it becomes a great object of philofophical inquiry, to afcertain what change is made in the conftitution of the air by flame, and to difcover what provifion there is in nature for remedying the injury which the atmofphere receives by this means. Some of the following experiments will, perhaps, be thought to ohrow a little light upon the fubject.

[163]

The diminution of the quantity of air in which a candle, or brimfone, has burned out, is various; but I imagine that, at a medium, it may be about one fifteenth, or one fixteenth, of the whole; about one third as much as by animals breathing it as long as they can, by animal or vegetable fubftances putrifying in it, by the calcination of metals, or by a mixture of fteel filings and pounded brimftone ftanding in it.

I have fometimes thought, that flame difpofes the common air to depofit the fixed air it contains; for if any lime-water be expofed to it, it immediately becomes turbid. This is the cafe, when wax candles, tallow candles, chips of wood, firit of wine, æther, and every other fubflance which I have yet tried, except brimftone, is burned in a clofe glafs veffel, ftan ing in lime-water. This precipitation of fixed air (if this be the cafe) may be owing to fomething emitted from the burning bodies, which has a ftronger affinity with the other conffituent parts of the atmofphere.

If brimftone be burned in the fame circumftances, the lime-water continues tranfparent, but ftill there may have been the fame precipitation of the fixed part of the air; but that, uniting with the lime and the vitriolic acid, it forms a felenetic falt, which is foluble in water. Having evaporated a quantity of water thus impregnated, by burning brimftone a great number of times over it, a whitifh powder remained, which had an acid tafte; but repeating the experiment with a quicker evaporation, the powder had no acidity, but was very much like chalk. The burning of brimfone but once over a Y 2

[164]

quantity of lime-water, will affect it in fuch a manner, that breathing into it will not make it turbid, which otherwife it always prefently does.

Dr. Hales fuppofed, that by burning brimftone repeatedly in the fame quantity of air, the diminution would continue without end. But this I have frequently tried, and not found to be the cafe. Indeed, when the ignition has been imperfect in the firft inftance, a fecond firing of the fame fubftance will increafe the effect of the firft, $\& x c$. but this progrefs foon ceafes. In many cafes of the diminution of air, the effect is not immediately apparent, even when it flands in water; for fometimes the bulk of air will not be much reduced, till it has paffed feveral times through a quantity of water, which has thereby a better opportunity of abforbing that fluid part of the air, which had not been perfectly detached from the reft. I have fometimes found a very great reduction of a mafs of air, in confequence of paffing but once thorough cold water. If the air has ftood in quickfilver, the diminution is generally inconfiderable, till it has undergone this operation, there not being any fubftance expofed to the air that could abforb any part of it.

I could not find any confiderable alteration in the fpecific gravity of the air, in which candles, or brimftone, had burned out. I am fatisfied, however, that it is not heavier than common air, which muft have been manifeft, if fo great a diminution of the quantity had bee:n owing, as Dr. Hales and others ruppofed, to the elafticity of the whole mafs being impaired. After making feveral trials for this purpofe, I concluded that air, thus diminithed in bulk,

[165]

is rather lighter than commor air, which favours the fuppofition of the fixed, or heavier part of the common air, having been precipitated.

An animal will live nearly, if not quite as long, in air in which candles have burned out, as in conimon air. This fact furprized me very greatly, having imagined that what is called the confumption of air by flame, or refpitation, to have been of the fame nature; but I have fince found, that this fact has been obferved by many perfons, and even fo early as by Mr. Boyle. I have alfo obferved, that air in which brimftone has burned, is not in the leaft injurious to animals, after the fumes, which at firft make it very cloudy, have intirely fabfided.

Having read, in the Memoirs of the Society at Turin, Vol. I. p. 41. that air in which candles had burned out was perfectly reftored, fo that other candles would burn in it again as well as ever, after having been expofed to a confiderable degree of cold, and likewife after having been compreffed in bladders (for the cold had been fuppofed to have produced this effect by nothing but condenfation): I repeated thefe experiments, and did, indeed, find, that, when I compreffed the air in bladders, as the Count de Saluce, who made the obfervation, had done, the experiment fucceeded: but having had fufficient reafon to difruft bladders, I compreffed the air in a glafs veffel franding in water; and then I found, that this procefs is altogether ineffectual for the purpofe. I kept the air compreffed much more, and much longer, than he had done, but without producing any alteration in it. I alfo find, that a greater degree of cold than that which he applied, and

[166]

of longer continuance, did by no means reftore this kind of air: for when I have expofed the phials which contained it a whole night, in which the froft was very intenfe; and alfo when I kept it furrounded with a mixture of fow and falt, I found it, in all refpects, the fame as before.

It is alfo advanced, in the fame Memoir, p. 41. that heat only, as the reverfe of cold, renders air unfit for candles burning in it. But I repeated the experiment of the Count for that purpofe, without finding any fuch effect from it. I alio remember that, many years ago, I filled an exhaufted receiver with air, that had paffed through a glafs tube made red hot, and found that a candle would burn in it perfectly well. Alfo, rarefaction by the air-pump does not injure air in the leaft degree.

Though this experiment failed, I flatter myfelf that I have accidentally hit upon a method of reftoring air which has been injuted by the burning of candles, and that I have difcovered at leaf one of the reftoratives which nature employs for this purpofe. It is vegetation. In what manner this procefs in nature operates, to produce fo remarkable an effect, I do not pretend to have difcovered; but a number of facts declare in favour of this hypothefis. I hall introduce my account of them, by reciting tome of the obfervations which I made on the growing of plants in confined air, which led to this difcovery.

One might have imagined that, fince common air is neceffary to vegetable, as well as to animal life, both plants and animals had affected it in the fame manner, and I own I had that expectation, when

$[167$]

when I firft put a fprig of mint into a glafs-jar, ftanding inverted in a veffel of water; but when it had continued growing there for fome months, I found that the air would neither extinguifh a candle, nor was it at all inconvenient to a moufe, which L put into it.

The plant was not affected any otherwife than was the neceffary confequence of its confined fituation; for plants growing in feveral other kinds of air, were all affected in the very fame manner. Every fucceffion of leaves was more diminifhed in fize than the preceding, till, at length, they came to be no bigger than the heads of pins. The root decayed, and the ftalk alfo, beginning from the root; and yet the plant continued to grow upwards, drawing its nourihment through a black and rotten ftem. In the third or fourth fet of leaves, long hairy filaments grew from the infertion of each leaf, and fometimes from the body of the ftem, fhooting out as far as the veffel in which it grew would permit, which, in my experiments, was about two inches. In this manner a fprig of mint lived, the old ftem decaying, and new ones fhooting up in its place, but lefs and lefs continually, all the fummer feafon.

In repeating this experiment, care muft be taken to draw away all the dead leaves from about the plant, left they hhould putrefy, and affect the air. I have found that a frefh cabbage leaf, put under a glafs veffel filled with common air, for the fpace of one night only, has fo far affected the air, that a candle would not burn in it the next morning, and yet the leaf had not acquired any fmell of putrefaction.

[168]

Finding that candles burn very well in air in which plants had grown a long time, and having had fome reafon to think, that there was fomething sttending vegetation, which reftored air that had been injured by refpiration, I thought it was poffible that the fame procefs might alfo reftore the air that had been injured by the burning of candles.

Accordingly, on the 17th of Auguft, 177 I, I put a fprig of mint into a quantity of air, in which a wax candle had burned out, and found that, on the $27^{\text {th }}$ of the fame month, another candle burned perfectly well in it. This experiment I repeated, without the leaft variation in the event, not lefs than eight or ten times in the remainder of the fummer. Several times I divided the quantity of air in which the candle had burned out, into two parts, and putting the plant into one of them, left the other in the fame expofure, contained, alfo, in a glafs veffel immerfed in water, but without any plant; and never failed to find, that a candle would burn in the former, but not in the latter. I generally found that five or fix days were fufficient to reftore this air, when the plant was in its vigour ; whereas I have kept this kind of air in glafs veffels, immerfed in water many months, without being able to perceive that the leaft alteration had been made in it. I have alfo tried a great variety of experiments upon it, as by condenfing, rarefying, expofing to the light and heat, \&cc. and throwing into it the effluvia of many different fubftances, but without any effect.

Experiments made in the year 1772 , abundantly confirmed my conclufion concerning the reftoration of air, in which candles had burned out by plants growing

[169]

growing in it. The firft of thefe experiments was made in the month of May; and they were frequently repeated in that and the two following months, without a fingle failure.

For this purpofe I ufed the flames of different fubflances, though I generally ufed wax or tallow candles. On the 24 th of June the experiment fucceeded perfectly well with air in which fpirit of wine had burned out, and on the 27 th of the fame month it fucceeded equally well with air in which brimftone matches had burned out, an effect of which I had defpaired the preceding year.

This reftoration of air I found depended upon the vegetating ftate of the plant; for though I kept a great number of the frefh leaves of mint in a fmall quantity of air in which candles had burned out, and changed them frequently, for a long fpace of time, I could perceive no melioration in the ftate of the air.

This remarkable effect does not depend upon any thing peculiar to mint, which was the plant that I always made ufe of till July 1772; for on the 16th of that month, I found a quantity of this kind of air to be perfectly reftored by fprigs of balm, which had grown in it from the 7 th of the fame month.

That this reftoration of air was not owing to any aromatic effluvia of thefe two plants, not only appeared by the effential oil of mint having no fenfible effect of this kind; but from the equally complete reftoration of this vitiated air by the plant called groundfel, which is ufually ranked among the weeds, and has an offenfive fmell. This was the refult of an experiment made the 16th of July, when the

Vol. LXII.
Z
plant

[170]

plant had been growing in the burned air from the 8th of the fame month. Refides, the plant which I have found to be the moft effectual of any that I have tried for this purpofe is fpinach, which is of quick growth, but will feldom thrive long in water. One jar of burned air was perfectly reftored by thisplant in four days, and another in two days. This laft was obferved on the 22 d of July. In general this effect may be prefumed to have taken place in much lefs time than I have mentioned; becaufe I never chofe to make a trial of the air, till I was pretty fure, from preceding obfervations, that the event which I had expected muft have taken place, if it would fucceed at all; left, returning back that part of the air on which I made the trial, and which would thereby neceffarily receive a fmall mixture of common air, the experiment might not be judged to be quite fair ; though I myfelf might be fufficiently fatisfied with refpect to the allowance that was to be made for that fmall imperfection.

III.

Of inflammable Air.

I have generally made inflammable air in the manner deleribed by Mr. Cavendifh, in the Philofophical Tranfactions, from iron, zinc, or tin; but chiefly from the two former metals, on account of the procefs being the leaft troublefome: but when I extracted it from vegetable or animal fubitances, or from coals, I put them into a gun barrel, to the orifice of which I lated a glafs tube, or the ftem of a to-

[171]

a tobacco pipe, and to the end of this I tied a flaccid bladder, in order to catch the generated air.

There is not, I believe, any vegetable or animal fubftance whatever, nor any mineral fubftance, that is inflammable, but what will yield great plenty of inflammable air, when they are treated in this manner, and urged with a ftrong heat; but, in order to get the moft air, the heat muft be applied as fuddenly, and as vehemently, as poffible. For, notwithftanding the fame care be taken in luting, and in every other refpect, fix or even ten times more air may be got by a fudden heat than by a flow one, though the heat that is laft applied be as intenfe as that which was applied fuddenly. A bit of dry oak, weighing about twelve grains, will generally yield about a fheep's bladder full of inflammable air with a brink heat, when it will only give about two or three ounce meafures if the fame heat be applied to it very gradually. To what this difference is owing, I cannot tell.

Inflammable air, when it is made by a quick procefs, has a very ftrong and offenfive fmell, from whatever fubftance it be generated; but this fmell is of three different kinds, according as the air is extracted from mineral, vegetable, or animal fubftances. The laft is exceedingly fetid; and it makes no difference, whether it be extracted from a bone, or even an old and dry tooth, or from foft mufcular flefh, or any other part of the animal. The burning of any fubftance occafions the fame fmell : for the grofs fume which arifes from them, before they flame, is the inflammable air they contain, which is expelled by heat, and then readily ignited. The fmell of in-

[172]

flammable air is the very fame, as far as \mathbf{I} am able to perceive, from whatever fubftance of the fame kingdom it be extracted. Thus it makes no difference whether it be got from iron, zinc, or tin, from any kind of wood, or, as was obferved before, from any part of an animal.

If a quantity of inflammable air be contained in a glafs veffel ftanding in water, and have been generated very faft, it will fmell even through the water, and this water will alfo foon become covered with a thin film, affuming all the different colours. If the inflammable air have been generated from iron, this matter will appear to be a red okre, or the earth of iron, as I have found by collecting a confiderable quantity of it ; and if it have been generated from zinc, it is a whitifh fubftance, which I fuppofe to be the calx of the metal. It likewife fettles to the bottom of the veffel, and when the water is ftirred, it has very much the appearance of wool. When water is once impregnated in this manner, it will continue to yield this fcum for a confiderable time after the air is removed from it. This I have often obferved with refpect to iron.

Inflammable air, made by a violent effervefcence, I: have obferved to be much more inflammable than that which is made by a weak effervefcence, whether the water or the oil of vitriol prevailed in the mixture. Alfo the offenfive fmell was much ftronger in the former cafe than in the latter. The greater degree of inflammability appeared by the greater number of fucceffive explofions, when a candle was prefented to the neck of a phial filled with it. It is poffible, however, that this diminution of in. flammability

[173]

flammability may, in fome meafure; arife from the air continuing fo much longer in the bladder when it is made very flowly ; though I think the difference is too great for this caufe to have produced the whole of it. It may, perhaps, deferve to be tried by a different procefs, without a bladder.

Inflammable air is not thought to be mifcible with water, and when kept many months, feems, in general, to be as inflammable as ever. Indeed, when it is extracted from vegetable or animal fubflances, a part of it will be imbibed by the water in which it ftands; but it may be prefumed, that in this cafe, there was a mixture of fixed air extracted from the fubftance along with it. I have indifputable evidence, however, that inflammable air, ftanding long in water, has actually lof all its inflammability, and even come to extinguifh flame much more than that air in which candles have burned out. After this change it appears to be greatly diminifhed in quantity, and it fill continues to kill animals the moment they are put into it.

This very remarkable fact firft occurred to my obfervation on the twenty-fifth of May 1771, when I was examining a quantity of inflammable air, which had been made from zinc, near three years before Upon this, I immediately fet by a common quart bottle filled with inflammable air from iron, and another equal quantity from zinc; and examining them in the beginning of December following, that from the iron was reduced near one half in quantity, if I be not greatly miftaken; for I found the bottle half full of water, and I am pretty clear that it was full of air when it was fet by. That which had

[174]

been produced from zinc was not altered, and filled the bottle as at firt.

Another inftance of this kind occurred to my obfervation on the 19 th of June 1772, when a quantity of air, half of which had been inflammable air from zinc, and half air in which mice had died, and which had been put together the 3oth of July 177 I , appeared not to be in the leaft inflammable, but extinguifhed flame, as much as any kind of air that I had ever tried. I think that, in all, I have had four inftances of inflammable air lofing its inflammability, while it ftood in water.

Though air tainted with putrefaction extinguifhes flame, I have not found that animals or vegetables putrefying in inflammable air render it lefs inflammable. But one quantity of inflammable air, which I had fet by in May 177 1, along with the others above mentioned, had had fome putrid fleh in it; and this air had loft its inflammability, when it was examined at the fame time with the other in the December following. The bottle in which this air had been kept, fmelled exactly like very furong Harrowgate water. I do not think that any perfon could have diftinguifhed them.

I have made plants grow for feveral months in inflammable air made from zinc, and alfo from oak; but, though the plants grew pretty well, the air fill continued inflammable. The former, indeed, was not fo highly inflammable as when it was frefh made, but the latter was quite as much fo; and the diminution of inflammability in the former cafe, I attribute to fome other caufe than the growth of the plant.

[175]

No kind of air, on which I have yet made the experiment, will conduct electricity; but the colour of a fpark is remarkably different in fome different kinds of air, which feems to ihew that they are not equally good non-conductors. In fixed air, the electric fpark is exceedingly white; but in inflammable air it is of a purple, or red colour. Now, fince the moft vigorous fparks are always the whiteft, and, in other cafes, when the fpark is red, there is reafon to think that the electric matter paffes with difficulty, and with lefs. rapidity: it is poffible that the inflammable air may contain particles which conduct electricity, though very imperfectly; and that the whitenefs of the fpark in the fixed air, may be owing to its meeting with no conducting particles at all. When an explofion was made in a quantity of inflammable air, it was a little white in the center, but the edges of it were fill tinged with a beautiful purple. The degree of whitenefs in this cafe was probably owing to the electric matter rufhing with more violence in an explofion than in a common fpark.

Inflammable air kills animals as fuddenly as fixed air, and, as far as can be perceived, in the fame manner, throwing them into convulfions, and thereby occafioning prefent death. I had imagined that, by animals dying in a quantity of inflammable air, it would in time become lefs noxious; but this did not appear to be the cafe; for I killed a great number of mice in a fmall quantity of this air, which I kept feveral months for this purpofe, without its being at all fenfibly mended; the laft, as well as the firft moufe, dying the moment it was put into it.

I once

[176]

I once imagined that, fince fixed and inflammable air are the reverfe of one another, in feveral remarkable properties, a mixture of them would make common air; and while I made the mixtures in bladders, I imagined that I had fucceeded in my attempt; but I have fince found that thin bladders do not fufficiently prevent the air that is contained in them from mixing with the external air. Alfo corks will not fufficiently confine different kinds of air, unlefs the phials in which they are confined be fet with their mouths downwards, and a little water lie in the necks of them, which, indeed, is equivalent to the air ftanding in veffels immerfed in water. In this manner, however, I have kept different kinds of air for feveral years.

Whatever methods I took to promote the mixture of fixed and inflammable air, they were all ineffectual. I think it my duty, however, to recite the iffue of an experiment or two of this kind, in which equal mixtures of thefe two kinds of air had ftood near three years, as they feem to thew that they had in part affected one another, in that long fpace of time. Thefe mixtures I examined April 27, 1771. One of them had ftood in quickfilver, and the other in a corked phial, with a little water in it. On opening the latter in water, the water inftantly rufhed in , and filled almoft half of the phial, and very little more was abforbed afterwards. In this cafe the water in the phial had probably abforbed a confiderable part of the fixed air, fo that the inflammable air was exceedingly rarefied; and yet the whole quantity that mult have been rendered non-elaftic was ten times more than the bulk of the water, and it has not

[177]

not been found that water can contain much more than its own bulk of fixed air. But in other cafes I have found the diminution of a quantity of air, and efpecially of fixed air, to be much greater than I could well account for by any kind of abforption.

The phial which had ftood immerfed in quickfilver had loft very little of its original quantity; and being now opened in water, and left there, along with a another phial, which was juit then filled, as this had been three years before, with air half inflammable and half fixed, I obferved that the quantity of both was diminifhed, by the abforption of the water, in the fame proportion.

Upon applying a candle to the mouths of the phials which had been kept three years, that which had food in quickfilver went off at one explofion, exactly as it would have done if there had been a mixture of common air, with the inflammable. As a good deal depends upon the apertures of the veffels in which the inflammable air is fixed, I mixed the two kinds of air in equal proportion in the fame phial, and after letting it ftand fome days in water, that the fixed air might be abforbed, I applied a candle to it; but it made ten or twelve explofions (ftopping the phial after each of them) before the inflammable matter was exhautted.

The air which had been confined in the corked phial exploded in the very fame manner as an equal mixture of the two kinds of air in the fame phial, the experiment being made as foon as the fixed air was abforbed, as before; fo that, in this cafe, the two kinds of air did not feem to have affected one another at all.

Vol. LXII.
A 2
Con.

Confidering inflammable air as air united to or loaded with phlogitton, I expofed to it feveral fubftances, which are faid to have a near affinity with phlogitton, as oil of vitriol, and fpirit of nitre (the former for above a month), but without making any fenfible alteration in it.

I obferved, however, that inflammable air, mixed with the fumes of fmoaking fpirit of nitre, goes off at one explofion, exactly like a mixture of half common and half inflammable air. This I tried feveral times, by throwing the inflammable air into a phial full of firit of nitre, with its mouth immerfed in a bafon containing fome of the fame fpirit, and then applying the flame of a candle to the mouth of the phial, the moment that it was uncovered, after it had been taken out of the bafon. This remarkable effect I hartily concluded to have arifen from the inflammable air having been in part deprived of its inflammability, by means of the ftronger affinity, which the fpirit of nitre had with phlogifton, and therefore I imagined that by letting them fand longer in contact, and efpecially by agitating them ftrongly together, I hould deprive the air of all its inflammability; but neither of thefe operations fucceeded, for ftill the air was only exploded at once, as before. And laftly, when I paffed a quantity of inflammable air, which had been mixed with the fumes of fpirit of nitre, through a body of water, and received it in another vefiel, it appeared not to have undergone any change at all, for it went off in feveral fucceffive explofions, like the pureft inflammable air. The effect abovementioned muft, therefore, have been owing to the fumes of the fpirit of nitre fupplying the

[179]

the place of common air for the purpofe of ignition; which is analogous to other experiments with nitre.

Having had the curiofity, on the 25 th of July 1772, to expofe a great variety of different kinds of air to water out of which the air it contained had been boiled, without any particular view ; the refult was, in feveral refpects, altogether unexpected, and led to a variety of new obfervations on the properties and affinities of feveral kinds of air with refpect to water. Among the reft three fourths of that which was inflammable was abforbed by the water in about two days, and the remainder was inflammable, but weakly fo.

Upon this, I began to agitate a quantity of Atrong inflammable air in a glafs jar, flanding in a pretty large trough of water, the furface of which was expofed to the common air, and I found that when I had continued the operation about ten minutes, near one fourth of the quantity of air had difappeared; and finding that the remainder made an effervefcence with nitrous air, I concluded that it muft have become fit for refpiration, whereas this kind of air is, at the firft, as noxious as any other kind whatever. To afcertain this, I put a moufe into a veffel containing $2 \frac{\pi}{2}$ ounce meafures of it, and obferved that it lived in it twenty minutes, which is as long as a moufe will generally live in the fame quantity of common air. This moufe was even taken out alive, and recovered very well. Still alfo the air in which it had breathed fo long was inflammable, though very weakly fo. I have even found it to be fo when a moufe has actually died in it.

[180]

Inflammable air thus diminifhed by agitation in water, makes but one explofion on the approach of a candle exactly like a mixture of inflammable air with common air.

From this experiment I concluded that, by continuing the fame procefs, I fhould deprive inflammable air of all its inflammability, and this I found to be the cafe; for, after a longer agitation, it admitted a candle to burn in it, like common air, only: more faintly; and indeed by the teft of nitrous airit did not appear to be near fo good as common air. Continuing the fame procefs ftill farther, the air which had been mof ftrongly inflammable a little before, came to extinguih a candle, exactly like airin which a candle had burned out, nor could they be diftinguifhed by the teft of nitrous air.

I found, by repeated trials, that it was difficult to catch the time in which inflammable air obtained from metals, in coming to extinguifh flame, was in the ftate of common air, fo that the tranfition from the one to the other muft be very fhort. I readily, however, found this fate in a quantity of inflammable air extracted from oak, which air I had kept by me a year, and in which a plant had grown, though very poorly, for fome part of the time. A quantity of this air, after being agitated in water till it was diminifhed about one half, admitted a candle to burn in it exceedingly well, and was even hardly to be diftinguighed from common air by the teft of nitrous air.

I took fome pains to afcertain the quantity of diminution, in frefh made and very highly inflammable air from iron, at which it ceafed to be inflammable,

[181]

mable, and, upon the whole, I concluded that it was fo when it was diminibed a little more than one half : for a quantity which was diminifhed exactly one half had fomething inflammable in it, but in the flighteft degree imaginable.

Finding that water would imbibe inflammable air, I endeavoured to impregnate water with it, by the fame procefs by which I had made water imbibe fixed air; but though I found that diftilled water would imbibe about one fourteenth of its bulk of inflammable air, I could not perceive that the tafte of it was fenfibly altered.

IV.

Of Airinfected with animal respiration, OR PUTREFACTION.

That candles will burn only a certain time, is a fact not better known, than it is that animals can live only a certain time, in a given quantity of air ; but the caufe of the death of the animal is not better known than that of the extinction of flame in the: fame circumptances; and when once any quantity of air has been rendered noxious by animals breathing in it as long as they could, I do not know that any methods have been difcovered of rendering it fit for breathing again. It is evident, however, that there muft be fome provifion in nature for this purpofe, as well as for that of rendering the air fit for fuftaining. flame; for without it the whole mafs of the atmofphere would, in time, become unfit for the purpofe: of animal life; and yet there is no reafon to think that it is, at prefent, at all lefs fit for refpiration tham

[182]

it has ever been. I flatter myfelf, however, that I have hit upon two of the methods employed by nature for this great purpofe. How many others there may be, I cannot tell.

When animals die upon being put into air in which other animals have died, after breathing in it as long as they could, it is plain that the caufe of their death is not the want of any pabulum vitre, which has been fuppofed to be contained in the air, but on account of the air being impregnated with fomething ftimulating to their lungs; for they almoft always die in convulfions, and are fometimes affected fo fuddenly, that they are irrecoverable after a fingle infpiration, though they be withdrawn immediately, and every method has been taken to bring them to life again. They are affected in the fame manner, when they are killed in any other kind of noxious air that I have tried, viz. fixed air, inflammable air, air filled with the fumes of brimitone, infected with putrid matter, in which a mixture of iron filings and brimftone has ftood, or in which charcoal has been burned, or metals calcined, or in nitrous air, \&cc.

If a moufe (which is an animal that I have commonly made ufe of for the purpofe of thefe experiments) can ftand the firft fhock of this ftimulus, or has been habituated to it by degrees, it will live a confiderable time in air in which other mice will die inftantaneoufly. I have frequently found that when a number of mice have been confined in a given quantity of air, lefs than half the time that they have actually lived in it, a frefh moufe has been inftantly thrown into convulfions, and died upon being put to them. It is evident, therefore, that if

[183]

the experiment of the Black Hole were to be repeated, a man would ftand the better chance of furviving it, who fhould enter at the firft, than at the laft hour. I have alfo obferved, that young mice will always live much longer than old ones, or than thofe which are full grown, when they are confined in the fame quantity of air. I have fometimes known a young moufe to live fix hours in the fame circumftances in which an old moufe has not lived one. On thefe accounts, experiments with mice, and, for the fame reafon, no doubt, with other animals alfo, have a confiderable degree of uncertainty attending them; and therefore, it is neceffary to repeat them frequently, before the refult can beabfolutely depended upon.

The difcovery of the provifion in nature for reftoring air, which has been injured by the refpiration of animals, having long appeared to me to be one of the moft important problems in natural philofophy, I have tried a great variety of fchemes in order to effect it. In thefe, my guide has generally been to confider the influences to which the atmofphere is, in fact, expofed; and, as fome of my unfucceesful trials may be of ufe to thofe who are difpofed to take pains in the farther inveftigation of this fubject, I fhall mention the principal of them.

The noxious effluvium with which air is loaded by animal refpiration, is not abforbed by ftanding. without agitation in frefh or falt water. I have kept it many months in frefh water, when, inftead of being meliorated, it has feemed to become even more deadly, fo as to require more time to reftore it, by the methods which will be explained hereafter, than

[184]

air which has been lately made noxious. I have even fpent feveral hours in pouring this air from one glafs veffel into another, in water, fometimes as cold, and fometimes as warm, as my hands could bear it, and have fometimes alfo wiped the veffels many times, during the courfe of the experiment, in order to take off that part of the noxious matter, which might adhere to the glafs veffels, and which evidently gave them an offenfive fmell; but all thefe methods were generally without any fenfible effect. The motion, alfo, which the air received in thefe circumftances, it is very evident, was of no ufe for this purpofe.

This kind of air is not reftored by being expofed to the light, or by any other influence to which it is expofed, when confined in a thin phial, in the open air, for fome months.

Among other experiments, I tried a great variety of different effluvia, which are continually exhaling into the air, efpecially of thofe fubftances which are known to refift putrefaction; but I could not by thefe means effect any melioration of the noxious quality of this kind of air.

Having read, in the Memoirs of the Imperial Society, of a plague not afflicting a particular village, in which there was a large fulphur work, I immediately fumigated a quantity of this kind of air; or (which will hereafter appear to be the very fame thing) air tainted with putrefaction, with the fumes of burning brimftone, but without any effect.

I once imagined, that the nitrous acid in the air might be the general reftorative which I was in queft of; and the conjecture was favoured, by finding

[185]

ing that candles would burn, and animals live, in air extracted from faltpetre. I therefore fpent a good deal of time in attempting, by a burning-glafs, and other means, to impregnate this noxious air with fome efluvium of faltpetre, and, with the fame view, introduced into it the fumes of the fmoaking fpirit of nitre; but both thefe methods were altogether ineffectual.

In order to try the effect of heat, I put a quantity of air, in which mice had died, into a bladder, tied to the end of the ftem of a tobacco-pipe, at the other end of which was another bladder; out of which the air was carefully preffed. I then put the middle part of the fiem into a chafing-difh of hot coals, ftrongly urged with a pair of bellows; and, preffing the bladders alternately, I made the air pafs feveral times through the heated part of the pipe. I have alfo made this kind of air very hot, flanding in water before the fire. But neither of thefe methods were of any ufe.

Rarefaction and condenfation by inftruments were alfo tried, but in vain.

Thinking it pofible that the earth might imbibe the noxious quality of the air, and thence fupply the roots of plants with fuch putrefcent matter as is known to be nutritive to them, I kept a quantity of air, in which mice had died, in a phial, one half of which was filled with fine garden mould; but, though it ftood two months in thefe circumftances, it was not the better for it.

I orice imagined that, fince feveral kinds of air cannot be long feparated from common air, by being confined in bladders, in bottles well corked, or even Vol. LXII. B b clofed
clofed with ground ftopples, the affinity between this noxious air and the common air might be fo great, that they would mix through a body of water interpofed between them; the water continually receiving from the one, and giving to the other, efpecially as water receives fome kinds of impregnation from, I believe, every kind of air to which it is contiguous; but I have feen no reafon to conclude, that a mixture of any kind of air with the common air can be produced in this manner. I have kept air in which mice have died, air in which candles have burned out, and inflammable air, feparated from the common air, by the flightef partition of water that I could well make, fo that it might not evaporate in a day or two, if I hould happen not to attend to then; but I found no change in them after a month or fix weeks. The inflammable air was fill inflammable, mice died initantly in the air in which other mice had died before, and candlez would not burn where they had burned oat before.

Since air tainted with animal or vegetable putrefaction is the fame thing with air rendered now xious by animal refpiration, I fhall now recite the obfervations which I have made upon this kind of air, before I treat of the method of reftoring them.

That thefe two kinds of air are, in fact, the famething, I conclude from their having feveral remarkable common properties, and from their differing in. nothing that I have been able to obferve. They equally extinguifh flame, they are equally noxious. to animals, they are equally, and in the fame way, offenfive to the fmell, they are equally diminithect

[187]

In' their quantity, they equally precipitate in limewater, and they are reftored by the fame means.

Since air which has paffed through the lungs is the fame thing with air tainted with animal putrefaction, it is probable that one ufe of the lungs is to carry off a putrid efluvium, without which, perhaps, a living body might putrefy as foon as a dead one.

When a moufe putrefies in any given quantity of air, the bulk of it is generally increafed for a few days; but in a few days more it begins to fhrink up, and generally, in about eight or ten days, if the weather be pretty warm, it will be found to be diminifled $\frac{x}{6}$, or $\frac{t}{5}$ of its bulk. If it do not appear to be diminifhed after this time, it only requires to be paffed through water, and the diminution will not fail to be fenfible. I have fometimes known almoft the whole diminution to take place, upon once or twice pafling through the water. The fame is the cafe with air, in which animals have breathed as long as they could. Alfo, air in which candles have burned out may almoft always be farther reduced by this means. All thefe proceffes, as I obferved before, feem to difpofe the compound mafs of air to part with fome conftituent part belonging to it; and this being mifcible with water, muft be brought into contact with it, in order to mix with it to the moft advantage, efpecially when its union with the other conftituent principles of the air is but partially broken.
I have put mice into veffels which had their mouths immerfed in quickfilver, and obferved that the air was not much contracted after they were dead or cold; but upon withdrawing the mice, and admitting B b 2

[188]

lime-water to the air it immediately became turbid, and was contracted in its dimenfions as ufual.

I tried the fame thing with air tainted with putrefaction, putting a dead moufe to a quantity of common air, in a veffel which had its mouth immerfed in quickfilver, and after a week I took the moufe out, drawing it through the quickfilver, and obferved that for fome time there was an apparent increafe of the air perhaps about $\frac{1}{20}$. After this, it food two days in the quickfilver, without any fenfible alteration; and then admitting water to it, it began to be abforbed, and continued fo, till the original quantity was diminifhed about $\frac{\pi}{6}$. If, inftead of common water, I had made ufe of lime water in this experiment, I make no doubt but it would have become turbid.

If a quantity of lime-water in a phial be put under a glafs veffel ftanding in water, it will not become turbid, and provided the accefs of the common air be prevented, it will continue lime-water, I do not know how long; but if a moure be left to putrefy in the veffel, the water will depofit all its lime in a few days. This may be owing to the fixed air being. transferred from the putrid moufe into the water, and yet it is evident that there is a putrid effluvium intirely: ditinet from this kind of air, and which has very different properties.

It is a doubt with me, however, whether the putrid effluvium be not chiefly fixed air, with the addition of fome other effluvium, which has the power of diminining common air. The refemblance between the true putrid effluvium and fixed: air in the following experiment, which is as decifive

[189]

as I can poffibly contrive it, appeared to be very great; indeed, much greater than I had expected. I put a dead moufe into a tall glafs veffel, and having filled the remainder with quickfilver, and fet it, inverted, in a pot of quickfilver, I let it ftand about two months, in which time the putrid effluvium iffuing from the moufe had filled the whole vefiel, and part of the diffolved blood, which lodged upon the furface of the quikfilver, began to be thrown out. I then filled another glafs veffel, of the fame fize and fhape, with as pure fixed air as I could make, and expofed them both, at the fame time, to a quantity of lime-water. In both cafes the water grew turbid alike, it rofe equally faft in both the veffels, and likewife equally high; fo that about the fame quantity remained unabforbed by the water. One of thefe kinds of air, however, was exceedingly fwect and pleafant, and the other infufferably offenfive ; one of them alfo would have made an addition to any. quantity of common air with which it had been mixed, and the other would have diminifhed it. This, at leaft, would have been the confequence, if the moufe itfelf had putrefied in any quantity of air.

It feems to depend, in fome meafure, upon thetime, and other circumfances, in the diffolution of animal or vegetable fubftances, whether they yield the proper putrid effluvium, or fixed, or inflammableair; but the experiments which I have made upon. this fubject, have not been numerous enough to. enable me to decide with certainty concerning thofe circumftances. Putrid cabbage, green, or boiled, in fects the air in the very fame manner as putrid animal fubftances. Air thus tainted is equally contracted
in its dimenfons, it equally extinguifhes flame, and is equally noxious to animals; but they affect the air very differently if the heat that is applied to them be confiderable. If beef or mutton, raw, or boiled, be placed fo near to the fire, that the heat to which it is expored fhall equal, or rather exceed, that of the blood, a confiderable quantity of air will be generated in a day or two, about $\frac{1}{7}$ th of which I have generally found to be abforbed by water, while all the reft was inftammable; but air generated from vegetables, in the fame circumftances, will be almoft all fixed, and no part of it inflammable. This I have repeated again and again, the whole procels being in quickGilver; fo that neither common air, nor water, had any accels to the fubftance on which the experiment was made; and the generation of air, or effluvium of any kind, except what might be abforbed by quickilver, or reforbed by the fubfance itfelf, might be diftinetly noted.

A vegetable fubfance, after fanding a day or two in thefe circumftances, will yield nearly all the air that can be exiracted from it, in that degree of heat ; whereas an animal fubfance will continue to give more air or eflluvium, of fome kind or other, with very little alteration, for many weeks. It is remarkable, however, that though a piece of beef or mutton, plunged in quickfilver, and kept in this deztee of heat, yield air, the bulk of which is inflammable, and contracis no putrid fmell (at leaft, in a day or two), a moufe treated in the fame manner, yields the proper putrid effuviam, as, indeed the imell fufinciently indicates; and this effluvium does

[19 r]

either itfelf extinguih flame, or has in it fuch a mix-tare of fixed air, as to give it that property.

That the putrid effluvium will mix with water feems to be evident from the following experiment. If a moufe be put into a jar full of water, fanding with its mouth inverted in another veff! of water, a confiderable quantity of elaftic matter (and which may, therefore, be called air) will foon be generated, unlefs the weather be fo cold as to check all putrefaction. After a hort time, the water contracts an extremely fetid and offenfive fmell, which feems to indicate that the putrid effluvium pervades the water, and affects the neighbouring air; and fince, after this, there is often no increafe of the air, that feems to be the very fubftance which is carried off through the water, as faft as it is generated; and the offenfive fmell is a fufficient proof that it is not fixed air. For this has a very agreeable flavour, whether it be produced by fermentation, or extraced from chalk by oil of vitriol; affecting not only the mouth, but even the noftrils, with a pungency which is peculiarly pleafing to a certain degree, as any perfon may eafily fatisfy himfelf who will chufe to make the experiment. If the water in which the moufc was immerfed, and which is faturated with the patrid air, be changed, the greater part of the putrid air will, in a day or two, be abforbed, though the moufe continues to yield the putrid effuvium as before; for as foon as this frefh water becomes faturated with it, it begins to be offenfive to the fmell, and the quantity of the putrid air upon its furface increafes as before. I kept a moufe producing putrid air in. this manner for the fpace of feveral months.
Six.:

Six ounce méafures of air not readily abforbed by water, appeared to have been generated from one moufe, which had been putrefy ing eleven daysin confined air, before it was put into a jar which was quite filled with water, for the purpofe of this obfervation.

Air thus generated from putrid mice ftanding in water, without any mixture of common air, extinguifhes flame, and is noxious to animals, but not more fo than common air only tainted with putrefaction. It is exceedingly difficult and tedious to collect a quantity of this putrid air, not mifcible in watcr, fo very great a proportion of what is collectcd being abforbed by the water, in which it is kept; but what that proportion is, I have not endeavoured to afcertain.

Though a quantity of air be diminifhed by any frobfance putrefying in it, I have not yet found the Game effect to be produced by a mixture of putrid air with common air; but, in the manner in which I have hitherto made the experiment, I was obliged to let the putrid air, pals through a body of water; which might infantly abforb whatever it was in the putrid fubftance, that diminifhed the common air.

Infects of various kinds live perfectly well in air tainted with animal or vegetable putrefaction, when a fingle infpiration of it would have inftantly killed any animal. I have frequently tried the experiment with flies and butterflies. I have alfo obferved, that the aphides will thrive as well upon plants growing in this kind of air, as in the open air. I have even been frequently obliged to take plants out of the putrid air in which they were growing, on purpofe to brufh away the fwarms of

[193]

thefe infexts which infected them; and yct fo effeatually did fome of them conceal themfelves, and fo faft did they multiply, in thefe circumftances, that I could feldom keep the plants quite clear of them.

Wher air has been frefhly and ftrongly tainted with putrefaction, fo as to fmell through the water, fprigs of mint have prefently died, upon being put into it, their leaves turning black; but if they do not die prefently, they thrive in a moft furprizing manner. In no other circumftances have I ever feen vegetation fo vigorous as in this kind of air, which is immediately fatal to animal life. Though thefe plants have been crouded in jars filled xvith this air, every leaf has been full of life; frefh hoots have branched out in various directions, and have grown much fafter than other fimilar plants, growing in the fame expofure in common air.

This obfervation led me to conclude, that plants, inftead of affecting the air in the fame manner with animal refpiration, reverfe the effects of breathing, and tend to keep the atmofphere fiweet and wholefome, when it is become noxious, in confequence of animals living and breathing, or dying and putrefying in it.

In order to afcertain this, I took a quantity of air, made thoroughly noxious, by mice breathing and dying in it, and divided it into two parts; one of which I put into a phial immerfed in water; and to the other (which was contained in a glafs jar, ftanding in water) I put a ferig of mint. This was about the begiuning of Auguft 1771, and after eight or nine days, I found that a moufe lived perfectly well

[194]

in that part of the air, in which the fprig of mint had grown, but died the moment it was put into the other part of the fame original quantity of air ; and which I had kept in the very fame expofure, but without any plant growing in it.

This experiment I have feveral times repeated; fometimes ufing air, in which animals had breathed and died; fometimes ufing air tainted with vegetable or animal putrefaction, and generally with the fame fuccefs.

Once, I let a moufe live and die in a quantity of air, which had been noxious, but which had been reftored by this procefs, and it lived nearly as long as I conjectured it might have done in an equal quantity of frefh air ; but, this is fo exceedingly various, that it is not eafy to form any judgment from it ; and in this cafe the fymptom of difficult refpiration feemed to begin earlier than it would have done in common air.

Since the plants that I made ufe of manifefly grow and thrive in putrid air; fince putrid matter is well known to afford proper nourihment for the roots of plants ; and fince it is likewife certain that they receive nourifhment by their leaves as well as by their roots, it feems to be exceedingly probable, that the putrid effluvium is in fome meafure extracted from the air, by means of the leaves of plants, and therefore that they render the remainder more fit for refpiration.

Towards the end of the year fome experiments of this kind did not anfwer fo well as they had done before, and I had inftances of the relapfing of this reftored air to its former noxions ftate. I therefore fufpended

[195]

fufpended my judgment concerning the efficacy of plants to reftore this kind of noxious air, till I fhould have an opportunity of repeating my experiments, and giving more attention to them. Accordingly I refumed the experiments in the fummer of the year 1772, when I prefently had the moft indifputable proof of the reftoration of putrid air by vegetation; and as the fact is of fome importance, and the fubfequent variation in the fate of this kind of air is a little remarkable ; I think it neceffary to relate fome of the facts pretty circumftantially.

The air, on which I made the firf experiments, was rendered exceedingly noxious by mice dying in it on the 20th of June. Into a jar nearly filled with one part of this air, I put a fprig of mint, while I kept another part of it in a phial, in the fame expofure; and on the 27 th of the fame month, and not before, I made a trial of it, by introducing a moufe into a glafs veffel, containing $2 \frac{1}{2}$ ounce meafures filled with each kind of air; and I noted the following facts.

When the veffel was filled with the air in which the mint had grown, a very large moufe lived five minutes in it, before it began to thew any fign of uneafinefs. I then took it out, and found it to be as ftrong and vigorous as when it was firft put in; whereas in that air which had been kept in the phial only, without a plant growing in it, a younger moufe continued not longer than two or three feconds, and was taken out quite dead. It never breathed after, and was immediately motionlefs. After half an hour, in which time the larger moufe Cc 2
(which

[19^{6}]

(which I had kept alive, that the experiment might be made on both the kinds of air with the very fame animal) would have been fufficiently recruited, fuppofing it to have received any injury by the former experiment, was put into the fame veffel of air; but though it was withdrawn again, after being in it hardly one fecond, it was recovered with difficulty, not being able to ftir from the place for near a minute. After two days, I put the fame moufe into an equal quantity of common air, and obferved that it continued feven minutes without any fign of uneafinefs; and being very uneafy after thiree minutes longer, I took it out. Upon the whole, I concluded that the reftored air wanted about one fourth of being as wholefome as common air. The fame thing alfo appeared when I applied the teft of nitrous air.
In the feven days, in which the mint was growing in this jar of noxious air, three old fhoots had extended themfelves about three inches, and feveral new ones had made their appearance in the fame time. Dr. Franklin and Sir John Pringle happened to be with me, when the plant had been three or four days in this ftate, and took notice of its vigorous. vegetation, and remarkably healchy appearance in that confinement.

On the 3 oth of the fame month, a moufe lived fourteen minutes, breathing naturally all the time, and without appearing to be much uneary, till the laft tivo minutes, in air which had been rendered noxious by mice breathing in it almoft a year before, and which I had found to be moft highly noxious on the 1 gth of this month, a plant having grown in it,

[197]

but not exceedingly well, thefe eleven days; on which account, I had deferred making the trial fo long. This reftored air was affected by a mixture of nitrous air, almoft as much as common air.

As this putrid air was thus eafily reftored to a confiderable degree of fitnefs for refpiration, by plants growing in it, I was in hopes that by the fame means it might in time be fo much more perfectly reftored, that a candle would burn in it; and for this purpofe I kept plants growing in the jars which contained this air till the middle of Auguft following, but did not take fufficient care to pull out all the old and rotten leaves. The plants, however, had grown, and looked fo well upon the whole, that I had no doubt but that the air muft conftantly have been in a mending ftate; when I was exceedingly furprized to find, on the $24^{\text {th }}$ of that month, that though the air in one of the jars had not grown worte, it was no better, and that the air in the other jar was fo much worfe than it had been, that a moufe would have died in it in a few feconds. It alfo made no effervefcence with nitrous air, as it had done before.

Sufpecting that the fame plant might be capable of reftoring putrid air to a certain degree only, or that plants might have a contrary tendency in fome ftages of their growth, I withdrew the old plant, and put a frefh one in its place ; and found that, after feven days, the air was reftored to its former wholefome ftate. This fact I confider as a very remarkable one, and well deferving of a farther inveftigation, as it may throw more light upon the principles of vegetation. It is not, however,
a fingle fact ; for I had feveral inftances of the fame kind in the preceding year; but it feemed fo very extraordinary, that air hould grow worfe by the continuance of the fame treatment by which it had grown better, that, whenever I obferved it, I concluded that I had not taken fufficient care to fatisfy myfelf of its previous reftoration.

That plants are capable of perfectly reftoring air injured by refpiration, may, I think, be inferred with certainty from the perfect reftoration, by this means. of air which had paffed through my lungs, fo that a candle would burn in it again, though it had extinguifhed flame before, and a part of the fame original quantity of air ftill continued to do fo. Of this one inftance occurred in the year 177 I , a fprig of mint having grown in a jar of this kind of air, from the 25 th of July to the 1 th of Auguft following; and another trial I made with the fame fuccers the 7 th of July 177^{2}, the plant having grown in it from the 2 gth of June preceding. In this cafe alfo I found that the effect was not owing to any virtue in the leaves of mint ; for I kept them conftantly changed in a quantity of this kind of air, for a confiderable time, without making anyfenfible alteration in it.

Thefe proofs of a partial reftoration of air by plants in a ftate of vegetation, though in a confined and unnatural fituation, cannot but render it highly probable, that the injurywhich is continually done to the atmolphere by the refpiration of fuch a number of animals, and the putrefaction of fuch maffes of both vegetable and animal matter, is, in part at leaft, repaired by the vegetable creation. And,

[199]

And, notwithftanding the prodigious mafs of air that is corrupted daily by the abovementioned caufes; yet, if we confider the immenfe profufion of vegetables upon the face of the earth, growing in places fuited to their nature, and confequently at full liberty to exert all their powers, both inhaling and exhaling, it can hardly be thought, but that it may be a fufficient counterbalance to it, and that the remedy is adequate to the evil.

Dr. Franklin, who, as I have already obferved, faw fome of my plants in a very flourithing ftate, in highly noxious air, was pleafed to exprefs very great fatisfaction with the refult of the experiments. In his anfwer to the letter in which I informed him of it, he fays,
". That the vegetable creation fhould reftore the " air which is fpoiled by the animal part of it, " looks like a rational fyftem, and feems to be of "s a piece with the reft. Thus fire purifies water " all the world over. It purifies it by diftillation, "s when it raifes it in vapours, and lets it fall in "r rain; and farther ftill by filtration, when, keep* ing it fluid, it fuffers that rain to percolate the " earth. We knew before, that putrid animal fub" ftances were converted into fweet vegetables, "s when mixed with the earth, and applied as
" manure; and now, it feems, that the fame pu" trid fubftances, mixed with the air, have a fimi" lar effect. The ftrong thriving ftate of your " mint in putrid air feems to fhew that the air is " mended by taking fomething from it, and not " by adding to it." He adds, "I hope this wilk
6s give fome check to the rage of deftroying trees

[200]

" that grome near houfes, which has accompanied " our late improvements in gardening, from an " opinion of their being unwholefome. I am cer"tain, from long obfervation, that there is no" thing unhealthy in the air of woods; for we "Americans have every where our country habi-
" tations in the midft of woods, and no people on " earth enjoy better health, or are more prolific."

Having rendered inflammable air perfectly innoxious by continued agitation in a trough of water, deprived of its air, I concluded that other kinds of noxious air might be reftored by the fame means; and I prefently found that this was the cafe with putrid air, even of more than a year's flanding. I thall obferve once for all, that this procefs has never failed to reftore any kind of noxious air on which I have tried it, viz. air injured by refpiration or putrefaction, air infected with the fumes of burning charcoal, and of calcined metals, air in which a mixture of iron filings and brimftone, or that in which paint made of white lead and oil has ftood, or air which has been diminifhed by a mixture of nitrous air. Of the remarkable effect which this procefs has on nitrous air itfelf, an account will be given in its proper place.

If this procefs be made in water deprived of air, either by the air pump, by boiling, by diftillation, or if frefh rain water be ufed, the air will always be diminifhed by the agitation; and this is certainly the faireft method of making the experiment. If the water be frefh pump water, there will always be an increafe of the air by agitation, the air contained in the water being fet loofe, and

[201]

joining that which is in the jar. In this care, alfo, the air has never failed to be reftored ; but then it might be fufpected that the melioration was produced by the addition of fome more wholerome ingredient. As thefe agitations were made in jars with wide mouths, and in a trough which had a large furface expofed to the common air, I take it for granted that the noxious effluvia, whatever they be, were firft imbibed by the water, and thereby tranfinitted to the common atmofphere. In fome cafes this was fufficiently indicated by the difagreeable fmell which attended the operation.

After I had made thefe experiments, I was informed that an ingenious phyfician and philofopher had kept a fowl alive twenty-four hour, in a quantity of air in which another fowl of the fame fize had not been able to live longer than an hour, by contriving to make the air, which it breathed, pafs through no very large quantity of acidulated water, the furface of which was not expofed to the common air ; and that even when the water was not acidulated, the fowl lived much longer than it could have done, if the air which it breathed had not been drawn through the water. As I fhould not have concluded that this experiment would have fucceeded fo well, from any obfervations that I had made upon the fubject, I took a quantity of air in which mice had died, and agitated it very ftrongly, firf in about five times its own quantity of diftilled water, in the manner in which I had impregnated water with fixed air; but though the operation was continued a long time, it made no fenfible change in the properties of the air. 1 alfo repeated the operation with Vớ, LXII.

[202]

pump water, but with as little effect. In this cafe, however, though the air was agitated in a phial, which had a narrow neck, the furface of the water in the bafon was confiderably large, and expofed to the common atmofphere, which muft have tended a little to favour the experiment. In order to judge more precifely of the effect of thefe different methods of agitating air, I transfered the very noxious air, which I had not been able to amend in the leaft degree by the former method, into an open jar, ftand ing in a trough of water; and when I had agitated it till it was diminifhed about one third, I found it to be better than air, in which candles had burned out, as appeared by the teft of the nitrous air; and a moufe lived in $2 \frac{1}{4}$ ounce meafures of it a quarter of an hour, and was not fenfibly affected the firf ten or twelve minutes.

In order to determine whether the addition of any acid to the water, would make it more capable of reftoring putridair, I agitated a quantity of it in a phial containing very ftrong vinegar; and after that in aqua fortis, only half diluted with water; but, by neither of thefe proceffes was the air at all mended, though the agitation was repeated at inter vals during a whole day, and it was moreover allowed to ftand in that fituation all night.

Since, however, water in thefe experiments muft have imbibed and retained a certain portion of the noxious effluvia, before they could be tranfmited to the external air, I do not think it improbable but that the agitation of the fea and large lakes may be of fome ufe for the purification of the atmofphere, and the putrid matter contained in water may be

[203]

imbibed by aquatic plants, or be depofited in fome other manner.

Having found, by feveral experiments abovementioned; that the proper putrid effluvium is fomething quite diftinct from fixed air, and finding, by the experiments of Dr. Macbride, that fixed air corrects putrefaction; I once concluded that this effect was produced, not by ftopping the flight of the fixed air, or reftoring to the putrefying fubftance the very fame thing that had efcaped from it; and which was the common vinculum of all its parts (which is that ingenious author's hypothefis) but by an affinity between the fixed air and the putrid effluvium. It therefore occurred to me, that fixed air, and air tainted with putrefaction, though equally noxious when feparate, might make a wholefome mixture, the one correcting the other ; and I was confirmed in thiṣ opinion by, I believe, not lefs than fifty or fixty inftances, in which air, that had been made in the highelt degree noxious, by refpiration or putrefaction, was fo far fweetened, by a mixture of about four times as much fixed air that afterwards mice lived in it exceedingly well, and in fome cafes almoft as long as in common air. I found it, indeed, to be more difficult to reftore old putrid air by this means; but I hardly ever failed to do it, when the two kinds of air had ftood a long time together, by which I mean about a: fortnight or three weeks.

The reafon why I do not abfolutely conclude that the reftoration of air in thefe cafes was the. effect of fixed air, is that, when I made a trial of the mixture, I fometimes agitated the two kinds. D d 2

[204]

of air pretty ftrongly together, in a trough of water, or at leaft paffed it feveral times through the water, from one jar to another, that the fuperfluous fixed air might be abforbed, not fufpecting at that time that the agitation could have any other effect; but having fince found that very violent, and efpecially long continued agitation in water, without any mixture of fixed air, neyer failed to render any kind of noxious air in fome meafure fit for refpiration (and in one particular inftance the mere transferring of the air from one veffel to another through the water, though for a much longer time than I ever ufed for the mixtures of air, was of confiderable ufe for the fame purpofe); I began to entertain fome doubt of the efficacy of fixed air, for that purpofe. In fome cafes alfo the mixture of fixed air had by no means for much effect on the putrid air as, from the generality of my obfervations, I hould have expected.

I was always aware, indeed, that it might be faid, that, the refiduum of fixed air not being very noxious, fuch an addition muft contribute to mend the putrid air; but, in order to obviate this objection, I once mixed the refiduum of as much fixed air as I had found, by a variety of trials, to be fufficient to reftore a given quantity of putrid air, with an equal quantity of putrid air, without making any fenfible melioration of it.

Upon the whole, I am inclined to think that this procefs could hardly have fucceeded fo well as it did with me, and in fo great a number of trials, unlefs fixed air have fome tendency to correct air tainted with refpiration or putrefaction; and it is

[205]

perfectly agreeable to the analogy of Dr . Macbride's difcoveries, and may naturally be expected from them, that it fhould have fuch an effect.

By a mixture of fixed air I have made wholefome the refiduum of air generated by putrefaction only, from mice plunged in water. This, one would imagine, a priori, to be the moft noxious of all kinds of air. For if common air only tainted with putrefaction be fo deadly, much more might one expect that air to be fo, which was generated from putrefaction only; but it feems to be nothing more than common air tainted with putrefaction, and therefore requires no other procefs. to fweeten it. In this cafe, however, we feem to have an inftance of the generation of genuine common air, though mixed with fomething that is foreign to it. Perhaps the refiduum of fixed air may be another inftance of the fame nature.

Fixed air is equally diffufed through the wholemafs of any quantity of purrid air with which it is mixed; for dividing the mixture into two equal parts, they were reduced in the fame proportion by paffing through water. But this is alfo the cafe with fome of the kinds of air which will not incorporate, as inflammable air, and air in which brimftone has burned.

If fixed air tend to correct air which has been injured by animal refpiration or putrefaction, limekilns, which difcharge great quantities of fixed airs, may be wholefome in the neighbourhood of populous cities, the atmofphere of which muft abound with putrid effluvia.. I fhould think alfo that phyficians might avail themfelves of the application
of fixed air in many putrid diforders, efpecially a it may be fo eafily adminiftered by way of clyfter, where it would often find its way to much of the putrid matter. Nothing is to be apprehended from the diftention of the bowels by this kind of air, fince it is fo readily abforbed by any fluid or moift fubftance. Since fixed air is not noxious per $\int e$, but, like fire, only in excefs, I do not think it at all hazardous to attempt to breathe it. It is however eafily conveyed into the flomach, in natural or :artificial Pyrmont water, in brikkly fermenting liquors, or a vegetable diet. It is poffible, however, that a confiderable quantity of fixed air might be imbibed by the abforbing veffels of the fkin, if the whole body, except the head, fhould be furpended over a veffel of ftrongly fermenting liquor; and in fome putrid diforders this treatment might be very falutary. If the body was expofed quite naked, there would be very little danger from the cold in this fituation, and the air having freer accefs to the fkin might produce a greater effect. Being no phyfician, I run no rikk by throwing out thefe random, and perhaps whimfical, propofals.

Having communicated my obfervations on fixed air, and efpecially my fcheme of applying it by way of clyfer in putrid diforders, to Mr. Hey, an ingenious furgeon in this town, a cafe prefently occurred, in which he had an opportunity of giving it a trial; and mentioning it to Dr. Hird and Dr. Crowther, two phyficians who attended the patient, they approved the fcheme, and it was put in execution: both by applying the fixed air by way of clyfter, and at the fame time making the

[207 3

patient drink plentifully of liquors ftrongly impregnated with it. The event was fuch, that 1 requefted. Mr. Hey, to draw up a particular account of the cafe, defcribing the whole of the treatment, that the pub-lic might be fatisfied that this new. application of fixed air is perfectly fafe, and alfo have an opportunity of judging how far it had the effect which I expected from it; and as the application is new, and not unpromifing, I thall beg leave to fubjoin his letter to me on the fubject, by way of Appendix to thefe papers:

V.

Or. Air in which a mixture of brimstone

```
AND FILINGS OF IRON HAS STOOD.
```

Finding in-Dr. Hales's account of his experiments, that there was a great diminution of the quantity of air in which a mixture of powdered brimftone and filings of iron, made into a pafte with water, had food, I repeated the experiment; and found the diminution greater than I had expected. The diminution of air by this procefs is made as effectually, and as expeditioufly, in quickfilver as in water; and it may be meafured with the greateft accuracy, becaufe there is neither any previous expanfion nor increafe of the quantity of air, and becaufe it is fome time before it begins to have any fenfible effect. The diminution of air by this procefs is various; but I have generally

- [208]

generally found it to be between $\frac{\frac{\pi}{4}}{}$ and $\frac{7}{5}$ of the whole.

Air thus diminifhed is not heavier, but rather lighter than common air; and though lime-water does not become turbid when it is expofed to this air, it is probably owing to the formation of a felenitic falt, as was the eafe with the fimple burning of brimflone abovementioned. That fomething proceeding from the brimtone ftrongly affects the water which is confined in the fame place with this brimfone, is manifeft from the very frong fmell that it has of the volatile firit of vitriol. I conclude the diminution of air by this procefs is of the fame kind with the diminution of it in the other cafes, becaufe when this mixture is put into air which has been previoull diminifhed, either by the burning of candles, by refpiration, or putrefaction, though it never fails to diminifh it fomething more, it is, however, no farther than this procefs alone would have done it. If a frefh mixture be introduced into a quantity of air which had been reduced by a former mixture, it has little or no farther effect.

I obferved, that when a mixture of this kind was taken out of a quantity of air in which a candle had before burned out, and in which it had ftood for feveral days, it was quite cold and biack, as it always becomes in a confined place; but it prefently grew veřy hot, fmoaked copioufly, and fimelled very offenfively; and when it was cold, it was brown, like the ruft of iron.

I once put a mixture of this kind to a quantity of inflammable air, made from iron, by which means it was diminifhed $\frac{x}{5}$ or $\frac{2}{50}$ in its bulk; but, as far as

[209]

I could judge, it was fill as inflammable as ever. Another quantity of inflammable air was alio reduced in the fame proportion, by a moufe putrefying in it; but its inflammability was not feemingly leffened.

Air diminifhed by this mixture of iron filings and brimftone, is exceedingly noxious to animals, and I have not perceived that it grows any better by keeping in water. The fmell of it is very pungent and offenfive.

The quantity of this mixture which I made ufe of in the preceding experiments, was from two to four ounce meafures; but I did not perceive, but that the diminution of the quantity of air (which was generally about twenty ounce meafures) was as great with the fmalleft, as with the largeft quantity. How fmall a quantity is neceffary to diminifh a given quantity of air to a maximum, I have made no experiments to afcertain.

As foon as this mixture of iron filings, with brimftone and water, begins to ferment, it alfo turns black, and begins to fwell, and it continues to do fo, till it occupies twice as much fpace as it did at firft ; and the force with which it expands is great; but how great it is I have not endeavoured to determine.

When this mixture is immerfed in water, it generates no air, though it becomes black, and fwells.
VoL. LXII. E e VI.O

[210]

VI,

Of nitrous Air.
Ever fince I firft read Dr. Hates's moft excellent Statical Effays, I was particularly fruck with that experiment of his, of which an account is given, Vol. I. p. 224, and Vol. II. p. 280 ; in which common air, and air generated from the Walton pyrites, by firit of nitre, made a turbid red mixture, and in which part of the common air was abforbed; but I never expected to have the fatisfaction of feeing this remarkable appearance, fuppofing it to. be peculiar to that particular mineral. Happening to mention this fubject to the Hon. Mr. Cavendifh, when I was in London, in the fpring of the year 1772, he faid that he did not imagine but that other kinds of pyrites might anfwer as well as that which Dr. Hales made ufe of, and that probably the red appearance of the mixture depended upon the fpirit of nitre only. This encouraged me to attend to the fubject ; and having no pyrites, I began with the folution of the different metals in fpirit of nitre, and catching the air which was generated in the folution, I prefently found what I wanted, and. a good deal more.

Beginning with the folution of brafs, on the 4 th of June ${ }^{1772}$, I firft found this remarkable fpecies of air; one effect of which, though it was cafually obferved by Dr. Hales, he gave but little attention to ; and which, as far as I know, has paffed altogether unnoticed fince his time, infomueh that no name has been given to it. I therefore found myfelf, contrary

[211]

to my firft refolution, under an abfolute neceffity of giving a name to this kind of air myfelf. When I firft began to fpeak and write of it to my friends, I happened to diftinguifh it by the name of nitrous air, becaufe I had procured it by means of firit of nitre only; and though I cannot fay that I altogether like the term, becaufe this air is not got from all the metals by the fame firit, neither myfelf nor any of my friends, to whom I have applied for the purpofe, have been able to hit upon a better; fo that 1 am obliged, after all, to content myfelf with it.

I have found that this kind of air is readily procured from iron, copper, brafs, tin, filver, quickfilver, bifmuth, and nickel, by the nitrous acid only, and from gold and the regulus of antimony by aqua regia. The circumftances attending the folution of each of thefe metals are various, but hardly worth mentioning, in treating of the properties of the air which they yield, which, from what metal foever it is extracted, has, as far as I have been able to obferve, the very fame properties.

One of the moft confpicuous properties of this kind of air is the great diminution of any quantity of common air with which it is mixed, attended with a turbid red, or deep orange colour, and a conliderable heat. The finell of it, alfo, is very ftrong, and remarkable, but very, much refembling that of fmoking fpirit of nitre.

The diminution of a mixture of this and common air is not an equal diminution of both the kinds, which is all that Dr. Hales could oblerve, but of the common air chiefly, though not wholly. For if one meafure of nitrous air be put to two meafures of
common air, in a few minutes (by which time the effervefcence will be over, and the mixture will have recovered its tranfparency) there will want about one ninth of the original two meafures. I hardly know any experiment that is more adapted to amaze and furprize than this is, which exhibits a quantity of air, which, as it were, devours a quantity of another kind of air half as large as itfelf, and yet is fo far from gaining any addition to its bulk, that it is diminifhed by it. If, after this full faturation of common air with nitrous air, more nitrous air be put to it, it makes an addition equal to its own bulk, without producing the leaft rednefs, or any other vifible effect.

That this diminution is chiefly in the quantity of common air, is evident from this obfervation, that if the fmalleft quantity of common air be put to any larger quantity of nitrous air, though the two together will not occupy fo much face as they did feparately, yet the quantity will be ftill larger than that of the nitrous air only. One ounce meafure of common air being put to near twenty ounce meafures of rittrous air, made an addition to it of about half an ounce meafure. This, however, being a much greater proportion than the diminution of common air, in the former experiment, feems to prove that part of the diminution in the former cafe is in the nitrous air. Befides, it will prefently appear, that nitrous air is fubject to a moft remarkable diminution; and as common air, in a variety of other cafes, fuffers a diminution from one fifth to one fourth, I conclude, that in this cafe alfo it does not exceed that proportion, and therefore that the remainder of the diminution refpects-the nitrous air.

[213]

In order to judge whether the water contributed tothe diminution of this mixture of nitrous and common air, I made the whole procefs feveral times in quickfilver, ufing one third of nitrous, and two thirds of common air, as before. In this cafe the rednefs continued a very long time, and the diminution was not fo great as when the mixtures had been made in water, there remaining one feventh more than the original quantity of common air. This mixture food all night upon the quickfilver ; and the next morning I obferved that it was no farther diminifhed upon the admiffion of water to it, nor by pouring it feveral times through the water, and letting it ftand in water two days. Another mixture, which ftood about fix hours on the quickfilver, was diminifhed a little more upon the admiffion of water, but was never lefs than the original quantity of common air. In another cafe, however, in which the mixture ftood but a very fhort time in quickfilver, the farther diminution, which took place upon the admiffion of water, was much more confiderable; fo that the diminution, upon the whole, was very nearly as great as if the procefs had been intirely in water. It is evident from thefe experiments, that the diminution is in part owing to the abforption by the water; but that when the mixture is kept a long time, in a fituation in which there is no water to abforb any part of it, it acquires a conftitution, by which it is afterwards incapable of being abforbed by water.

In order to determine whether the fixed part of common air was depofited in the diminution of it

[2T4]

by nitrousair, I anclofed a veffel full of lime water in the jar in which the procefs was made, but it occafioned no precipitation of the lime; and when the veffel was taken out, after it had been in that fituation a whole day, the lime was eafly precipitated by breathing into it as ufual.

It is exceedingly remarkable that this effervefcence and diminution, occafioned by the mixture of nitrous air, is peculiar to common air, or air fit for refpiration; and, as far as I can judge, from a great : number of obfervations, is at leant very nearly, if not exactly, in proportion to its fitnels for this purpofe; fo that by this means the goodnefs of air may be diftinguiflaed much more accurately than it can be done by putting mice, or any - other animals, to breathe in it. This was a moft agreeable difcovery to me, as I hope it may be an uleful one to the public; efpecially as, from this time, I had no occafion for fo large a ftock of mice as I had been ufed to keep for the purpofe of thefe experiments, ufing them only in thofe which required to be very decifive; and in thefe cafes I have feldom failed to know beforehand in what manner they would be affected.

It is alfo remarkable that, on whatever account. air is unfit for refpiration, this fame teft is equally applicable. Thus there is not the leaft effervefeence between nitrous and fixed air, or inflammable air, or any fpecies of diminithed air. Alfo the degree of diminution being from nothing at all to more than one third of the whole of any quantity of air, we are by this means in poffeffion of a proadigiounly large foale, by which we may diftinguifh

[215]

very frnall degrees of difference in the goodnefs of air. I have not attended much to this circumftance, having ufed this teft chiefly for greater differences; but, if I did not deceive myfelf, I have perceived a real difference in the air of my ftudy, after a few perfons have been with me in. it, and the air on the outfide of the houfe. Allo a phial of air having been fent me, from the neighbourhood of York, it appeared not to be fo good as the air near Leeds; that is, it was not diminithed fo much by an equal mixture of nitous air ${ }_{2}$ every other circumftance being as nearly the fame as I could contrive. It may perhaps be poffible, but I have not yet attemped it, to diftinguifh fome of the different winds, or the air of different times of the year, by this teft.

By means of this teft I was able to determine what I was before in doubt about, viz. the kind as well as the degree of injury done to air by candles burning in it. I could not tell with certainty by means of mice, whether it was at all injured with refpect to refpiration ; and yet if nitrous air may be depended upon for furnifhing an accurate teft, it muft be rather-more than one third worfe than common air, and have been diminifhed by the fame general caufe of the other diminutions of air. For when, after many trials, I put one meafure of thoroughly putrid and highly noxious air, into the fame veffel with two meatures of good wholsfome air, and into another veffel an equal quantity, viz three meafures of air in which a candle had burned out; and then put equal quantities of nitrous air to each of them, the former was diminihed rather more than the latter.. It agrees
with this oblervation, that burned air is farther dimininifhed both by putrefaction, and a mixture of iron filings and brimftone; and I therefore, take it for granted, by every other caufe of the diminution of air. It is probable, therefore, that burned air is air fo far loaded with phlogifton, as to be able to extinguifh a candle, which it may do long before it is fully faturated.

Inflammable air with a mixture of nitrous air burns with a green flame. This makes a very pleafing experiment when it is properly conducted. As, for fome time, I chiefly made ufe of copper for the generation of nitrous air, I firt afcribed this circumftance to that property of this metal, by which it burns with a green flame; but I was prefently fatisfied that it muft arife from the fpirit of nitre, for the effect is the very fame from whichever of the metals the nitrous air is extracted, all of which I tried for this purpofe, even filver and gold. A mixture of oil of vitriol and fpirit of nitre in equal proportions diffolved iron, and the produce was nitrous air ; but a lefs degree of fpirit of nitre in the misture produced air that was inflammable, and which burned with a green flame. It alfo tinged common air a little red, and diminifhed it, though not much.

The diminution of common air by a mixture of nitrous air, is not fo extraordinary as the diminution which nitrous air itfelf is fubject to from a mixture of iron filings and brimftone, made into a pafte with water. This mixture, as I have already obferved, diminifhes common air between one fifth and one fourth, but has no fuch effect upon

[217]

any kind of air that has been diminifhed, and rensdered noxious by any other procefs; but when it is put to a quantity of nitrous air, it diminifhes it fo much, that no more than one fourth of the original quantity will be left. The effect of this procefs is generally perceived in five or fix hours, about which time the vifible effervefcence of the mixture begins; and in a very fhort time it advances fo rapidly, that in about an hour almoft the whole effect will have taken place. If it be fuffered to ftand a day or two longer, the air will ftill be diminifhed farther, but only a very little farther, in proportion to the firf diminution. The glafs jar, in which the air and this mixture have been confined, has generally been fo much heated in this procefs, that I have not been able to touch it.

Nitrous air thus diminifhed has not the peculiar fimell of nitrous air, but fmells juft like common air in which the fame mixture has ftood; and it is not capable of being diminifhed any farther, by a frefh mixture of iron and brimftone.

Common air faturated with nitrous air is alfo no farther diminifhed by this mixture of iron filings and brimftone, though the mixture ferments with great heat, and fwells very much in it.

Plants die very foon, both in nitrous air, and alfo in common air faturated with nitrous air, but efpecially in the former.

Neither nitrous air, nor common air faturated with nitrous air, differs in fpecific gravity from common air, or, at leaft, fo little, that I could

Vol. LXII.
Ff
not

[218]

not be fute of it, fometimes about three pints of it feeming to be about half a grain heavier, and at other times as much lighter than common air.

Having, among other kinds of air, expofed a quantity of nitrous air, to water out of which the air had been well boiled, in the experiment to which I have more than once referred, as having been the occafion of feveral new and important obfervations, I found that $\frac{10}{20}$ of the whole was abforbed. Perceiving, to my great furprize, that fo very great a proportion of this kind of air was mifcible with water, I immediately began to agitate a confiderable quantity of it, in a jar fanding in a trough of the fame kind of water; and with about four times as much agitation as fixed air requires, it was fo far abforbed by the water, that only about one fifth remained. This remainder extinguifhed flame, and was noxious to animals Afterwards I diminifhed a pretty large quantity of it to one eighth of its original bulk, and the remainder ftill retained much of its peculiar fmell, and diminifhed common air a little.. A moufe alfo died in it, but not fo fuddenly as it would have done in pure nitrous air. In this operation. the peculiar fmell of nitrous air is very manifeft, the water being firft impregnated with the air, and then tranfmitting it to the common atmofphere.

This experiment gave me the hint of impregnating water with nitrous air, in the manner in which I had before done it with fixed air; and I prefently found that diftilled water would imbibe about one tenth of its bulk of this kind of air, and

[219]

that it acquired a remarkably acid and aftringent tafte from it. The fmell of water thus impregnated is at firft peculiarly pungent. I did not chufe to fwallow any of it, though, for any thing that I know, it may be perfectly innocent, and perhaps, in fome cafes, falutary.

This kind of air is retained very obftinately by water. In an exhaufted receiver a quantity of water thus faturated emitted a whitifh fume, fuch as fometimes iffues from bublles of this air when it is firft generated, and alfo fome air bubbles; but though it was fuffered to ftand a long time in this fituation, it ftill retained its peculiar tafte; but when it had food all night pretty near the fire, the water was become quite vapid, and had depofited a filmy kind of matter, of which I had often collected a confiderable quantity from the trough in which jars containing this air had ftood. This I fuppofe to be a precipitate of the metal by the folution of which the nitrous air was generated. I have not given fo much attention to it as to know, with certainty, in what circumftances this depofit is made, any more than I do the matter depofited from inflammable air abovementioned; for I cannot get it, at leaft in any confiderable quantity, when I pleafe; whereas I have often found abundance of it, when I did not expect it at all.

The nitrous air with which I made the firft impregnation of water was extracted from copper; but when I made the impregnation with air from quickfilver, the water had the very fame tafte, though the matter depofited from it feemed to be of a difFI:
ferent

[220]

ferent kind; for it was whitifh, whereas the other had a yellowifh tinge. Except the firft quantity of this impregnated water, I could never deprive any more that I made of its peculiar tafte. I have even let fome of it ftand more than a week, in phials with their mouths open, and fometimes very near the fire, without producing any alteration in it.

Whether any of the fpirit of nitre be properly contained in the nitrous air, and be mixed with the water in this operation, I have not yet endeavoured to determine. This, however, may probably be the cafe, as the fpirit of nitre is in a confiderable degree volatile.

It will perhaps be thought, that the moft ufeo. ful, if not the moft remarkable, of all the properties of this extraordinary kind of air, is its power. of preferving animal fubftances from putrefaction, and of reftoring thofe that are already putrid, which it poffeftes in a far greater degree than fixed air. My firft obfervation of this was altogether cafual: Having found nitrous air to fuffer fo great a diminution as I have already mentioned by a mixture of iron filings and brimftone, I was willing to try whether it would be equally diminifhed by other caufes of the diminution of, common air, efpecially by putrefaction; and for this purpofe I put a dead moufe into a quantity of ${ }^{\circ}$ it, and placed it near the fire, where the tendency to putrefaction was very great. In this cafe there was a confiderable diminution, viz. from $5 \frac{1}{7}$ to $3 \frac{3}{4}$; but not fo great as I had expected, the antifeptic power of the nitrous air having checked
the tendency to putrefaction; for when, after a week, I took the moufe out, I perceived, to my very great furprize, that it had no offenfive fmell.

Upon this 1 took two other mice, one of them juft killed, and the other foft and putrid, and put them both into the fame jar of nitrous air, ftanding in the ufual temperature of the weather, in the months of July and Auguft of 1772 ; and after 25 days, having obferved that there was little or no change in the quantity of the air, I took the mice out ;: and, examining them, found them both perfectly fweet, even when cut through in all places. That which had been put into the air when juft dead was quite firm; and the flefh of the other, which had been putrid and foft, was ftill foft, but perfectly fiweet:.

In order to compare the antifeptic power of this kind of air with that of fixed air, I examined a moufe which I had inclofed in a phial full of fixed air, as pure as I could make it, and which I had corked very clofe; but upon opening this phial in water, about a month after, I perceived that a large quantity of putrid effluvium had been generated'; for it ruhhed with violence out of the phial; and the frell that came from it; the moment the cork was taken out, was : infufferably offenfive. Indeed Dr. Macbride fays, that hee could only reftore very thin pieces of putrid flefh by means of fixed air. Perhaps the antifeptic power of thefe kinds of air may be in proportion to their acidity. If a little pains were taken with this fubject, this remarkable antifeptic power of nitrous air might poffibly: be applied to various ufes, perhaps to the prefervations
prefervation of the more delicate birds, fifhes, fruits, stc. mixing it in different proportions with common or fixed air. Of this property of nitrous air anatomifts may perhaps avail themfelves, as animal fubftances may by this means be preferved in their natural foft ftate; but how long it will anfiwer for this purpofe, experience only can thew.

I calcined lead and tin in the manner hereafter defcribed in a quantity of nitrous air, but with very little fenfible effect; which rather furprized me; as, from the refult of the experiment with the iron filings and brimftone, I had expected a very great diminution of the nitrous air by this procefs, the mixture of iron flings and brimftone, and the calcination of metals, having the fame effect upon common air, both of them diminifhing it in nearly the fame proportion.

Nitrous air is procured from all the proper metals by fpirit of nitre, except lead, and from all the femi-metals that I have tried, except zinc. For this purpofe I have ufed bifmuth and nickel, with firit of nitre only, and regulus of antimony and platina, with aqua regia.

I got little or no air from lead by firit of nitre, and have not yet made any experiments to afcertain the nature of this folution. With zinc I have taken a little pains.

Four penny weights and feventeen grains of zinc diffolved in fpirit of nitre, to which as much water was added, yielded about twelve ounce meafures of air, which had, in fome degree, the properties of nitrous air, making a flight effervefcence with common air, and diminifhing it about as much as ni-

[223]

trous air, which had been itfelf diminifhed one half by wafhing in water. The fimell of them both was alfo the fame; fo that I concluded it to be the fame thing, that part of the nitrous air which is imbibed by water being retained in this folution.

In order to difcover whether this was the cafe, I made the folution boil in a fand heat. Some air came from it in this ftate, which feemed to be the fame thing, as nitrous air diminifhed about one fixth, or one eighth, by wafhing in water. When the fluid part was evaporated, there remained a brown fixed fubftance, which was obferved by Mr. Hellot, who defcribes it, Ac. Par. 1735, M. p. 35. A part of this I threw into a fmall red hot crucible; and covering it immediately with a receiver, ftanding in water, I obferved that very denfe red fumes rofe from it, and filled the receiver. This rednefs continued about as long as that which is occafioned by a mixture of nitrous and common air; the air was alfo confiderably diminifhed within the receiver. This fubitance, therefore, muft certainly have contained within it the very fame thing, or principle, on which the peculiar properties of nitrous air depend. It is remarkable, however, that though the air within the receiver was diminifhed about one fifth by this procefs, it was itfelf as much affected with a mixture of nitrous air, as common air is, and a candle burnt in. it very well. This may perhaps be attributed to fome effect of the firit of nitre, in the compofition of that brown fubftance.

Nitrous air, I find, will be confiderably dimionithed in its bulk by ftanding a long time in wa-terg.

[224]

ter, about as much as inflammable air is dimi nifhed in the fame circumftances. For this purpore I kept for fome months a quart bottle full of each of thefe kinds of air; but as different quantities of inflammable air vary very much in this refpect, it is not improbable but that nitrous air may vary alfo.

From one trial that I made, I conclude that nitrous air may be kept in a bladder much better than moft other kinds of air. The air to which I refer was kept about a fortnight in a bladder, through which the peculiar fmell of the nitrous air was very fenfible for 位eral days. In a day or two the bladder became red, and was much contracted in its dimenfions. The air within it had loft very little of its peculiar property of diminifhing common air.

I did not endeavour to afcertain the exact quantity of nitrous air produced from given quantities of all the metals which yield it; but the few obfervations which I did make for this purpofe I fhall recite in this place:
dwt. gr.

6	\bigcirc	of filver yielded	$17 \frac{1}{2}$ ounce meafures
5	19	of quickfilver	$4 \frac{1}{\frac{1}{2}}$
1	$2{ }^{\frac{1}{2}}$	of copper	$14 \frac{5}{2}$
2	-	of brass	21
-	20	of iron	16
1	5	of bifmuth	6
0	12	of nickel	4

[225]

VII.

Of Air infected with the fumes of burno ING CHARCOAL。

Air infected with the fumes of burning charcoal is well known to be noxious; and the Honourable Mr. Cavendifh favoured me with an account of fome experiments of his, in which a quantity of common air was reduced from 180 to 162 ounce meafures, by paffing through a red-hot iron tube filled with the duft of charcoal. This diminution he afcribed to fuch a deftruction of common air as Dr. Hales imagined to be the confequence of burning. Mr. Cavendifh alfo obferved, that there had been a generation of fixed air in this procefs, but that it was abforbed by fope leys. This experiment I alfo repeated, with a fmall variation of circumftances, and with nearly the fame refult.

Afterwards, I endeavoured to afcertain, by what appears to me to be an eafier and a more certain method, in what manner air is affected with the fumes of charcoal, viz. by furpending bits of charcoal within glafs veffels, filled to a certain height with water, and ftanding inverted in another veffel of water, while I threw the focus of a burning mirror, or lens, upon them. In this manner I diminifhed a given quantity of air one fifth, which is nearly in the fame proportion with other diminutions of air.

Some fixed air feems to be contained in charcoal, and to be fet loofe from it by this procefs; for if I made ufe of lime-water, it never failed to become

Vol. LXII.
Gg
turbid,
terbid, prefently after the heat was applied. This was: the cafe with whatever degree of heat the charcoal had been made. If, however, the charcoal had not been made with a very confiderable degree of heat, there never failed to be a permanent addition of inflammable air produced ; which agrees with what I obferved before, that, in converting dry wood into charcoal, the greateft part is changed into inflammable air. I have fometimes found, that charcoal which was made with the moft intenfe heat of a fmith's fire, which vitrified part of a common crucible in which the charcoal was confined, and which had been continued above half an hour, did not diminifh the air in which the focus of a burning mirror was thrown upon it; a quantity of inflammable air equal to the diminution of the common air being generated in the procefs; whereas, at other times, 1 have not perceived that there was any generation of inflammable air, but a perfect diminution of common air, when the charcoal had: been made with a much lefs degree of heat. This fubject deferves to be farther inveftigated.

To make the preceding experiment with fill more accuracy, I repeated it in quickfilver; when I perceived that there was a fmall increafe of the quantity of air, from a generation either of fixed or inflammable air, but I fuppofe of the former. Thus it ftood without any alteration a whole night, and part of the following day; when lime-water, being admitted to it, it prefently became turbid, and, after fome time, the whole quantity of air, which was about four ounce meafures, was diminihed one fifth, as before. In this cafe, I carefully weighed the piece of charcoal, which was exactly two grains, and could not find

[227]

that it was fenfibly diminifhed in weight by the operation.

Air thus diminifhed by the fumes of burning charcoal not only extinguifhes flame, but is in the higheft degree noxious to animals; it makes no effervefcence with nitrous air, and is incapable of being diminifhed any farther by the fumes of more charcoal, by a mixture of iron filings and brimftone, or by any other caufe of the diminution of air that I am acquainted with.

This obfervation, which refpects all other kinds of diminifhed air, proves that Dr. Hales was miftaken in his notion of the abforption of air in thofe circumftances in which he obferved it. For he fuppofed that the remainder was, in all cafes, of the fame nature with that which had been abforbed, and that the operation of the fame caufe would not have failed to produce a farther diminution; whereas all my obfervations not only fhew that air, which has once been fully diminifhed by any caufe whatever, is not only incapable of any farther diminution, either from the fame or from any other caufe, but that it has likewife acquired new properties, moft remarkably different from thofe which it had before, and that they are, in a great meafure, the fame in all the cafes. Thefe circumftances give reafon to furpect, that the caufe of diminution is, in reality, the fame in all the cafes. What this caufe is, may, perhaps, appear in the next courfe of obfervations.

[228]

VIII.

Of the effect of the calcination of metals, and of the effluvia of paint made with white-lead and oil, on Air.

Having been led to fufpect, from the experiments which I had made with charcoal, that the diminution of air in that cafe, and perhaps in other cafes alfo, was, in fome way or other, the confequence of its having more than its ufual quantity of phlogifton, it occurred to me, that the calcination of metals, which are generally fuppofed to confift of nothing but a metallic earth united to phlogitton, would tend to afcertain the fact, and be a kind of experimentum crucis in the cafe. Accordingly, I fufpended pieces of lead and tin in given quantities of air, in the fame manner as I had before treated the charcoal; and throwing the focus of a burning mirror or lens upon them, in fuch a manner as to make them fume copioufly, I prefently perceived a diminution of the air. In the firftrial that I made, I reduced four ounce meafures of air to three, which is the greatef diminution of common air that I had ever obferved before, and which I account for, by fuppofing that, in other cafes, there was not only a caule of diminution, but caufes of addition alfo, either of fixed or inflammable air, or fome other permanently elaftic matter, but that, the effect of the calcination of metals being fimply the efcape of phlogifton, the caure of diminution was alone and uncontrouled.

The

[229]

The air, which I had thus diminifhed by calcination of lead, I transferred into another clean phial, but found that the calcination of more lead in it had no farther effect upon it. This air alfo, like that which had been infected with the fumes of charcoal, was in the higheft degree noxious, made no effervefcence with nitrous air, was no farther diminifhed by the mixture of iron filings and brimfone, and was not only rendered innoxious, but alfo recovered, in a great meafure, the other properties of common air, by wafhing in water.

It might be fufpected that the noxious quality of the air in which lead was calcined, might be owing to fome fumes peculiar to that metal; but I found no fenfible difference between the properties of this air, and that in which tin was calcined.

The water over which metals are calcined acquires a yellowifh tinge, and an exceedingly pungent fimelland tafte, pretty much, as near as I can recollect, for I did not compare them together, like that over which brimftone has been frequently burned. Alfo a thin and whitifh pellicle covered both the furface of the water, and likewife the fides of the phial in which the calcination was made, infomuch that, without frequently agitating the water, it grew fo opaque by this conftantly accumulating incruftation, that the fun beams could not be tranfinitted through it in a quantity fufficient to produce the calcination.

I imagined, however, that, even when this air was transferred into a clean phial, the metals were not fo eafily melted or calcined as they were in frefh air $;$ for the air being once fully faturated with phlogifton, may not fo readily admit any more, though it be only
to tranfmit it to the water. I alfo fufpected that metals were not eafily melted or calcined in inflammable, fixed, or nitrous, air, or any kind of diminifhed air. None of thefe kinds of air fuffered any change by this operation; nor was there any precipitation of lime, when charcoal was heated in any of thefe kinds of air ftanding in lime-water.

Query. May not water impregnated with phlogifton from calcined metals, or by any other method, be of fome ufe in medicine? The effect of this impregnation is exceedingly remarkable; but the principle with which it is impregnated is volatile, and entirely efcapes in a day or two, if the furface of the water be expofed to the common atmofphere.

It mould feem that phlogifton is retained more obftinately by charcoal than it is by lead or tin; for when any given quantity of air is fully faturated with phlogifton from charcoal, no heat that I have yet applied has been able to produce any more effect upon it; whereas, in the fame circumftances, lead and tin may ftill be calcined. The air, indeed, can take no more; but the water receives it, and the fides of the phial alfo receive an addition of incruftation. This is a white powdery fubftance, and well deferves to be examined. I fhall endeavour to do it at my leifure.

Lime-water never became turbid by the calcination of metals over it; but the colour, fmell, and tafte of the water was always changed, and the furface of it became covered with a yellow pellicle, as before.

When this procefs was made in quickfilver, the air was diminifhed only one fifth; and upon water being

[231]

admitted to it, no more was abforbed; which is an effect fimilar to that of a mixture of nitrous and common air, which was mentioned before.

The preceding experiments on the calcination of metals fuggefted to me a method of explaining the caufe of the mifchief which is known to arife from frefh paint, made with white lead (which I fuppofe is an imperfect calx of lead) and oil. To verify my hypothefis, I firft put a fmall pot full of this kind of paint, and afterwards (which anfwered much better, by expofing a greater furface of the paint) I daubed feveral pieces of paper with it, and put them under a receiver, and obferved, that in about twentyfour hours, the air was diminihed between one fifth and one fourth, for I did not meafure it very exactly. This air alfo was, as I expected to find it, in the higheft degree, noxious; it did not effervefce with nitrous air, it was no farther diminihed by a mixture of iron filings and brimftone, and was made: wholefome by agitation in water deprived of all air.

I think it appears pretty evident, from the preceding experiments on the calcination of metals, that air is fome way or other diminifhed in confequence of being highly charged with phlogifton, and that agitation in water reftores it, hy imbibing a great part of the phlogittic matter. That water has a confiderable affinity with phlogiton, is evident from the Atrong impregnation which it receives from it. May not plants alfo reftore air diminifhed by putrefaction, by abforbing part of the phlogifton with which it is loaded? The greater part of a dry plant, as well as of a dry animal fubftance, confifts of inflammable air, or fomething that is capable of being converted

[232]

into inflammable air ; and it feems to be as probable that this phlogiftic matter may have been imbibed by the roots and leaves of plants, and afterwards incorporated into their fubftance, as that it is altogether produced by the power of vegetation. May not this phlogiftic matter be even the moft effential part of the food and fupport of both vegetable and animal bodies?

In the experiments with metals, the diminution of air feems to be the confequence of nothing but a faturation with phlogifton; and in all the other cafes of the diminution of air, I do not fee but that it may be effected by the fame means. When a vegetable or animal fubftance is diffolved by putrefaction, the efcape of the phlogiftic matter (which, together with all its other conftituent parts, is then let loofe from it) may be the circumftance that produces the diminution of the air in which it putrefies. It is highly improbable that what remains after an animal body has been thoroughly diffolved by putrefaction, fhould yield fo great a quantity of inflammable air, as the dried animal fubftance would have done. Of this I have not made an actual trial, though I have often thought of doing it, and ftill intend to do it; but I think there can be no doubt of the refult. Again, the iron, by its fermentation with brimftone and water, is evidently reduced to a calx, fo that phlogifton muft have efcaped from it. Phlogifton alfo muft evidently be fet loofe by the ignition of charcoal, and is not improbably the matter which flies off from paint, compofed of white lead and oil. Laftly, fince firit of nitre is known to have a very remarkable affinity with phlogiton, it is far from being

[233]

being improbable that nitrous air may alfo produce the fame effect by the fame means.

To this hypothefis it may be objected, that, if diminifhed air be air faturated with phlogifton, it ought to be inflammable; but this by no means follows, fince its inflammability may depend upon fome particular mode of combination, or degree of affinity, with which we are not acquainted. Beffides, inflammable air feems to confift of fome other principle, or to have fome other conftituent part, befides phlogifion and common air, as is probable from that remarkable depofit, which, as I have obferved, is made by inflammable air, both from iron and zinc.

It is not improbable, however, but that a greater degree of heat may inflame that air which extinguifhes a common candle, if it could be conveniently applied. Air that is inflammable, I obferve, extinguifhes red hot wood; and indeed inflammable fubftances can only be thofe which, in a certain degree of heat, have a lefs affinity with the phlogifton they contain, than the air, or fome other contiguous fubftance, has with it; fo that the phlogifton only quits one fubftance, with which it was before combined, and enters another, with which it may be combined in a very different manner. This fubftance, however, whether it be air or any thing elfe, being now fully faturated with phlogifton, and not being able to take any more, in the fame circumftances, muft neceffarily extinguifh fire, and put a ftop to the ignition of all other bodies, that is, to the farther efcape of phlogifton from them.

That plants reftore noxious air, by imbibing the phlogifton with which it is loaded, is very agreeable to

Vol. LXII,
H h
the

[234]

the conjectures of Dr. Franklin, made many years: ago, and expreffed in the following extract from the: laft edition of his Lecters, p. 346.
"I have been inclined to think that the fluid fire, " as well as the fluid air, is attracted by plants in is their growth, and becomes confolidated with the " other materials of which they are formed, and " makes a great part of their fubftance; that, when " they come to be digefted, and to fuffer in the "s veffels a kind of fermentation, part of the fire, as *s well as part of the air, recovers its fluid active ftate " again, and diffufes itfelf in the body, digefting and ". feparating it ; that the fire fo reproduced, by di"geftion and feparation, continually leaving the ss body, its place is fupplied by freh quantities, " arifing from the continual feparation; that what" ever quickens the motion of the fluids in an anismal quickens the feparation, and re-produces " more of the fire, as exercife; that all the fire "s emitted by wood, and other combuftibles, when " burning, exifted in them before, in a folid ftate, " being only difcovered when feparating; that fome "foffils, as fulphur, fea-coal, \&cc. contain a great " deal of follid fire; and that, in fhort, what efcapes * and is diffipated in the burning of bodies, befides " water and earth, is generally the air, and fire, "s that before made parts of the folid."

IX.

Of Air procured ey means of spirit of saltw
Being very much ftruck with the refult of an experiment of the Hon. Mr. Cavendifh, related Phil.

Tranfo

[235]

Tranf. Vol. LVI. p. 157. by which, though, he fays, he was not able to get any inflammable air from copper, by means of fpirit of falt, he got a much more remarkable kind of air, viz. one that loft its elafticity by coming into contact with water, I was exceedingly defirous of making myfelf acquainted with it. On this account, I began with making the experiment in quickfilver, which I never failed to do in any cafe in which I fufpected that air might either be abforbed by water, or be in any othe 1° manner affected by it ; and by this means I prefently got a much more diftinct idea of the nature and effects of this curious folution.

Having put fome copper filings into a fmall phial with a quantity of firit of falt; and making the air, which was generated in great plenty, on the application of heat, afcend into a tall glafs veffel full of quickfilver, and ftanding in quickfilver, the whole produce continued a confiderable time without any change of dimenfions. I then introduced a fmall quantity of water to it, when about three fourths of it (the whole being about four ounce meafures) prefently, but gradually, difappeared, the quickfilver rifing in the veffel. I then introduced a confiderable quantity of water; but there was no farther diminution of the air, and the remainder I found to be inflammable.

Having frequently continued this procefs a long time after the admiffion of the water, I was much amufed with obferving the large bubbles of the newly generated air, which came through the quickfilver, the fudden diminution of them when they came to the water, and the very fmall bubbles which went Hh_{2}
through

[236]

through the water. They made, however, a continual, though flow, increafe of inflammable air.

Fixed air, being admitted to the whole produce of this air from copper, had no fenfible effect upon it. Upon the admiffion of water, a great part of the mixture, which, no doubt, was the moft fubtle kind of air from the copper, prefently difappeared; another part, which I fuppofe to have been the fixed air, was abforbed flowly; and in this particular cafe the very fmall permanent refiduum did not take fire but it is very poffible that it might have done fo, if the quantity had been greater.

Lime-water being admitted to the whole produce of air from copper became white; but this I fufpect: to have arifen from fome other circumftance than the: precipitation of the lime which, it contained.

The folution of lead in the marine acid is attended: with the very fame phrnomena as the folution of copper in the fame acid; about three fourths of the generated air difappearing on the contact of water, and the remainder being inflammable.

The folutions of iron, tin, and zinc, in the marine. acid, were all attended with the fame phænomena as the folutions of copper and lead, but in a lefs degree; for in iron one eighth, in tin one fixth, and in zinc one tenth of the generated air difappeared on the con$t a \varepsilon$ with water. The remainder of the air from iron, in this cafe, burned with a green, or very light blue flame.

I had always thought it fomething extraordinary that a fpecies of air chould lofe its elafticity by the mere contact of any thing, and from the firft fufpected that it muft have been imbibed by the water

[237]

that was admitted to it; but fo very great a quantity of this air difappeared upon the admiffion of a very fmall quantity of water, that I could not help concluding that appearances favoured the former hypothefis. I found, however, that when I admitted a much fmaller quantity of water, confined in a narrow glafs tube, a part only of the air difappeared, and that very flowly, and that more of it vanifhed upon the admiffion of more water. This obfervation put it beyond a doubt, that this air was properly imbibed by the water, which, being once fully faturated with $\mathrm{it}_{\text {, }}$ was not capable of receiving any more. The water thus impregnated tafted very acid, even when it was much diluted with other water, through which the tube containing it was drawn. It even diffolved iron very faft, and generated inflammable air. This laft obfervation, together with another which immediately follows, led: me to the difcovery of the true nature of this remarkable kind of air, as it had hitherto been called.

Happening, at one time, to ufe a good deal of copper and a fmall quantity of firit of falt, in the generation of this kind of air, I was furprized to find that air was produced long after, I could not but think that the acid muft have been faturated with the metal; and I alfo found that the proportion of inflammable air to that which was abforbed by the water continually diminifhed, till, inftead of being one fourth of the whole as I had firft obferved, it was not fo much as one twentieth. Upon this, I concluded that this fubtie air did not arife from the copper, but from the fpirit of falt; and prefently making the experiment with the acid only, without any cop-

[238]

per, or metal of any kind, this air was immediately produced in as great plenty as before; fo that this remarkable kind of air is, in fact, nothing more than the vapour, or fumes of fpirit of falt, which appear to be of fuch a nature, that they are not liable to be condenfed by cold, like the vapour of water, and other fluids. This vapour, however, feems to lofe its elafticity, in fome meafure, gradually, unlefs it fhould be thought to be affected by the quickfilver, with which it is in contact; for it was always diminifhed, more or lefs, by ftanding.

This elaftic acid vapour extinguifhes flame, and is much heavier than common air; but how much heavier, will not be eafy to afcertain. A cylindrical glafs veffel, about three fourths of an inch in diameter, and four inches deep, being filled with it, and turned upfide down, a lighted candle may be let down into it more than twenty times before it will burn at the bottom. It is pleafing to obferve the colour of the flame in this experiment; for both before the candle goes out, and allo when it is firft lighted again, it burns with a beautifully green, or rather light blue flame, fuch as is feen when common falt is thrown into the fire.

When this elaftic vapour is all expelled from any quantity of fpirit of falt, which is eafily perceived by the vapour being condenfed by cold, the remainder is a very weak acid, barely capable of diffolving iron.

Being now in the poffeffion of a new fubject of experiments, viz. an elaftic acid vapour, in the form of a permanent air, eafily procured, and effectually confined by glafs and quickfilver, with which

[239]

which it did not feem to have any affinity; I immediately began to introduce a variety of fubftances to it, in order to afcertain its peculiar properties and affinities, and alfo the properties of thofe other bodies with refpect to it.

Beginning with water, which, from preceding obfervations, I knew would imbibe it, and become impregnated with it; I found that $2 \frac{7}{2}$ grains of rain water abforbed three ounce meafures of this vapour, after which it was increafed one third in its bulk, and weighed twice as much as before; fo that this concentrated vapour feems to be twice as heavy as rain water. Water impregnated with it makes the ftrongeft firit of falt that I have feen, diffolving iron with the moft rapidity. Confequently, two thirds of the beft firit of falt is nothing more than mere phlegm or water.

Iron filings; being admitted to this vapour, were diffolved by it pretty faft; half of the vapour dif-. appearing, and the other half becoming inflammable air, not abforbed by water. Putting chalk to it, fixed air was produced.

I had not introduced many fubftances to this vapour, before I difcovered that it had an affinity with phlogifton; fo that it would deprive other fubftances of it, and form with it fuch an union as conftitutes inflammable air; which feems to thew, that inflammable air univerfally confifts of the union of fome acid vapour with phlogiton:

Inflammable air was produced; when to this vapour I put fpirit of wine, oil of olives, oil of turpentine, charcoal, phofphorus; bees-wax, and even fulphur. This laft obfervation, I own, furprized:

[240]

prized me; for, the marine acid being reckoned the weakeft of the three mineral acids, 1 did not think that it had been capable of diflodging the oil of vitriol from this fubftance; but I found that it had the very fame effect both upon alum and nitre; the vitriolic acid in the former cafe, and the nitrous in the latter, giving place to the ftronger vapour of fpirit of falt.

The ruft of iron, and the precipitate of nitrous air made from copper, alfo imbibed this vapour very faft, and the little that remained of it was inflammable air; which proves, that thefe calces contain phlogifton. It feems alfo to be pretty evident, from this experiment, that the precipitate above-mentioned is a real calx of the metal, by the folution of which the nitrous air is generated.

As fome remarkable circumftances attend the abSorption of this vapour of fpirit of falt, by the fubftances above-mentioned, I fhall briefly mention them.

Spirit of wine abforbs this vapour as readily as water itfelf, and is increafed in buik by that means. Alfo, when it is faturated, it diffolves iron with as much rapidity, and ftill continues inflammable.

Oil of olives abforbs this vapour very flowly, and, at the fame time, it turns almof black, and becomes glatinous. It is alfo lefs micible with water, and acquires a very difagreeable fmell. By continuing upon the furface of the water, it became white, and its offenfive fmell went off in a few days.

Oil of turpentine abforbed this vapour very faft, turning brown, and almoft black. No inflammable air was formed, till I raifed more of the vapour than

[24T]

the oil was able to abforby and let it ftand a confiderable time; and ftill the air was but weakly inflammable. The fame was the care with the oil of olives, in the laft mentioned experiment; and it feems to be probable, that, the longer this acid vapour had continued in contact with the oil, the more phlogifton it would have extracted from it. It is not improbable, but that, in the intermediate fate, before it becomes inflammable air, it may be nearly of the nature of common air.

Bees-wax abforbed this vapour very flowly. About the bignefs of a hazel-nut of the wax being put to three ounce meafures of the vapour, the vapour was diminifhed onehalf in two days, and, upon the admifo fion of water, half of the remainder alfo difappeared. This air was ftrongly inflammable.

Charcoal abforbed this vapour very faft. About one fourth of it was rendered immifcible in water, and was but weakly inflammable.

A fmall bit of phofphorus, perhaps about half a grain, fmoked, and gave light in the vapour of fpirit of falt, juft as it would have done in commohr air confined. It was not fenfibly wafted after continuing about twelve hours in that ftate, and the bulk of the vapour was very little diminifted. Water being admitted to it abforbed it as before, except about one fifth of the whole, which was but weakly inflam* mable.

Putting feveral pieces of fulphur to this vapour, it was abrorbed but flowly. In about twenty-four hours about one fifth of the quantity had difappeared; and water being admitted to the remainder, very little Vol. LXII.

Ii
more

[242]

more was abforbed. The remainder was inflammable, and burned with a blue flame.

Nowithftanding the affinity which this vapour of fpirit of falt appears to have with phlogifton, it is not capable of depriving all bodies of it. I found that dry wood, crufts of bread, and raw flefh, very readily imbibed this acid vapour, but did not part with any of their phlogifton to it. All there fubftances turned very brown, after they had been fome time expofed to this vapour, and tafted very ftrongly of the acid when they were taken out ; but the flefh, when wafhed in water, became very white, and the fibres eafily feparated from one another, even more than they would have done if it had been boiled or roafted.

When I put a piece of faltpetre to this vapour, it was prefently furrounded with a white fume, which foon filled the whole veffel, exactly like the fums which burfts from the bubbles of nitrous air, when it is generated by a vigorous fermentation, and fuch as is feen when nitrous air is mixed with this vapour of firit of falt. In about a minute, the whole quantity of vapour was abiorbed, except a very fmall quantity, which might be the common air that had lodged upon the farface of the fpirit of falt within the phial.

A piece of alum expofed to this vapour turned yel: low, abforbed it as faft as the faltpetre had done, and was reduced by it to the form of a powder. The furface both of the nitre and alum was, I doubt not, changed into common falt, by this procefs. Common falt, as might be expected, had no effect whatever on this vapour.

[243]

From confidering the affinity which this vapour has with phlogifon, I was induced to try the effect of a mixture of it with nitrous air. Accordingly, to two parts of this vapour, I put one part of nitrous air,' and, in about twenty-four hours, the whole was diminifhed to fomething lefs than the original quantity of the vapour, and was no farther diminifhed by the admiffion of water. Holding the flame of a candle over this air, the lower part of it buined green, but there was no fenfible explofion. At different times I collected $2 \frac{3}{4}$ ounce meafures of this mixture of air; but, upon agitating it in rain-water, it was prefently diminifhed to $1 \frac{1}{2}$ ounce meafures. In this ftate it effervefced with nitrous air, and was confiderably diminifhed by it, but not fo much as common air. Some allowance, no doubt, muft be made for the fmall quantities of common air, which lodged on the top of my phials, when I raifed the fume from the fpirit of falt; but, from the precautions that I made ufe of, I think that very little is to be allowed to this circumfance; and, upon the whole, I am of opinion, that this experiment is an approach to the generation of common air, or air fit for refpiration.

I had alfo imagined, that if air diminifhed by the proceffes above-mentioned was affected in this manner, in confequence of its being faturated with phlogifton, a mixture of this vapour might imbibe that phlogifton, and render it wholefome again; but I put about one fourth of this vapour to a quantity of air in which metals had been calcined, without making any fenfible alteration in it. I do not, however, infer from this, that air is not diminifhed by means of phlogifton, fince the air, like fome other fubfances,

[244]

may hold the phlogifton too faft, to be deprived of it by this acid vapour.

I fhall conclude my account of thefe experiments with obferving, that the electric fpark is vifible in the vapour of firit of falt, exactly as it is in common air; and though I kept making this fpark a confiderable time in a quantity of it, I did not perceive that any fenfible alteration was made in it. A little inflammable air was produced, but not more than might have come from the two iron nails which I made ufe of in taking the fparks.

X.

Miscellaneous Observations.

Many of the preceding obfervations relating to the vinous and putrefactive fermentations, I had the curiofity to endeavour to afcertain in what manner the air would be affected by the acetous fermentation. For this purpofe I inclofed a phiak full of fmall beer in a jar ftanding in water, and obferved that during the firft two or three days there was an increafe of the air in the jar, but from that time it gradually decreafed, till at length there appeared to be a diminution of about $\frac{1}{5}$ of the whole quantity. During this time the whole furface of it was gradually covered with a fcum, beautifully corrugated. After this there was an: increafe of the air till there was more than the original quantity; but this muft have been fixed air, not incorporated with the reft of the mafs; for, withdrawing the beer, which I found to be four, after it had food 18 or 20 days under the jar, and: pafling

[245]

paffing the air feveral times through cold water, the original quantity was diminifhed about $\frac{7}{9}$. In the remainder a candle would not burn, and a moufe would have died prefently. The fmell of this air was exceedingly pungent, but different from that of the putrid effluvium. A moufe lived perfectly well in this air, thus affected with the acetous fermentation; after it had ftood feveral days mixed with four times the quantity of fixed air.

All the kinds of factitious air on which I have yet made the experiment are highly noxious to animals, except that which is extracted from faltpetre, or alum; but in this even a candle burned juft as in common air. In one quantity which I got from falt-petre a candle not only burned, but the flame was increafed, and fomething was heard like a hiffing, fimilar to the decrepitation of nitre in an open fire. This experiment was made when the air was frefh made, and while it probably contained fome particles of nitre, which would have been depofited afterwards. The air was extracted from thefe fubftances by putting them into a gun barrel, which was much corroded and foon fpoiled by the experiment. What effect this circumftance may have had upon the air I have not confidered.

November 6, 1772, I had the curiofity to examine the fate of a quantity of this air, which had been extracted from falt-petre above a year, and which at firft was perfectly wholefome ; when, to my very great furprize, I found that it was become, in the higheft degree, noxious. It made no effervefcence with nitrous air, and a moufe died the moment it was put into it. I had not, however, wafhed it in rain water quite ten minutes

[246]

(and perhaps lefs time would have been fufficient) when I found, upon trial, that it was reftored to its former perfectly wholeforme fate. It effervefced with nitrous air as much as the beft common air ever does, and even a candle burned in it very wwell, which 1 had never before obferved of any kind of noxious air meliorated by agitation in water. This feries of facts, relating to air extracted from nitre, appear to me to be very extraordinary and amportant, and, in able hands, may lead to confiderable difcoveries.

There are many fubfances which impregnate the air in a very remarkable manner, but without making it noxious to animals. Among other things I tried volatile alkaline falts, and camphire the latter of which I melted with a burning glafs, in air inclofed in a phial. The moufe which was put into this air fueezed and coughed very much, efpecially after it was taken out; but it prefently re covered, and did not appear to have been fenfibly injured.

Having made feveral experiments with a mixture of iron filings and brimftone, kneaded to a pafte with water, I had the curiofity to try what would be the effect of fubftituting brafs duft in the place of the iron filings. The refult was, that when this misture had ftood about three weeks, in a given quantity of air, it had tumed black, but was not increafed in bulk. The air alfo was neither fenfibly increafed nor decreafed, but the nature of it was changed, for it extinguifhed flame, it would have killed a moufe prefently, and was not reftored by fixed air, which had been mixed with it feveral days.

[247]

I have frequently mentioned my having, at one time, expofed equal quantities of different kinds of air in jars ftanding in boiled water. The common air in this experiment was diminifhed four fevenths, and the remainder extinguifhed flame. This experiment demonfrates that water does not abforb air equally, but that it decompofes it, taking one part, and leaving the reft. To be quite fure of this fact, I agitated a quantity of common air in boiled water, and when I had reduced it from eleven ounce meafures to feven, I found that it extinguifhed a candle, but a moufe lived in it very well. At another time a candle barely went out when the air was diminifhed one third, and at other times I have found this effect take place at other very-different degrees of diminution. This difference I attribute to the differences in the ftate of the water with refpect to the air contained in it; for fometimes it had ftood longer than at other times before I made ufe of it. I alfo ufed diftilled water, rain water, and water out of which the air had been pumped, promifcuoully with rain water. I even doubt not but that, in a certain ftate of the water, there might be no fenfible difference in the bulk of the agitated air, and yet at the end of the procels it would extinguifh a candle, air being fupplied from the water in the place of that part of the common air which had been abforbed.

It is certainly a little extraordinary that the very fame procefs thould fo far mend putrid air, as to reduce it to the ftandard of air in which candles have burned out ; and yet that it fhould fo far injure common and wholefone air, as to reduce it to about
the fame ftandard: but fo the fact certainly is. If air extinguifh flame in confequence of its being previoufly faturated with phiogifton, it muft, in this cafe, have been transferred from the water to the air.

To a quantity of common air, thus diminifhed by agitation in water, till it extinguifhed a candle, I put a plant, but it did not fo far reftore it as that a candle would burn in it again; which to me appeared not a little extraordinary, as it did not feem to be in a worfe ftate than air in which candles had burned out, and which had never failed to be reftored by the fame means. I had no better fuccefs with a quantity of permanent air; which I had collected from my pump water. Indeed thefe experiments were begun before I was acquainted with that property of nitrous air, which makes it fo accurate a meafure of the goodnefs of other kinds of air ; and it might perhaps be rather too late in the year when I made the experiments. Having neglected thefe two jars of air, the plants died and putrefied in both of them: and then I found the air in them both to be highly noxious, and to make no effervefcence with nitrous air.

I found that a pint of my pump water contains about one fourth of an ounce meafure of air, one half of which was afterwards abforbed by ftanding in frefh pump water. A candle would not bum in the air, but a moufe lived in it very well. Upon the whole, it feemed to be in about the fanie ftate as air in which a candle had burned out.

[249]

I once imagined that, by mere ftagnation, air Inight become unfit for refpiration, or at leaft for the burning of candles; but if this be the cafe, and the change be produced gradually, it muft require a long time for the purpofe. For on the 22d of September 1772, 1 examined a quantity of common air, which had been kept in a phial, without agitation, from May 17.71, and found it to be in no refpect worfe than freh air, even by the teft of the nitrous air.

The cryftallization of nitre makes no fenfible alteration in the air in which the procefs is made. For this purpofe I diffolved as much nitre as a quantity of hot water would contain, and let it cool under a receiver, ftanding in water.

November 6, ${ }^{1772 \text {, a quantity of inflammable }}$ air, which, by long keeping, had come to extinguilh flame, I obferved to fmell véry much like common air in which a mixture of iron filings and brimftone had ftood. It was not, however, quite fo ftrong, but it was equally noxious.

Bifmuth and nickel are diffolved in the marine acid with the application of a confiderable degree of heat; but little or no air is got from either of them; but, what I thought a little remarkable, both of them fmelled very much like Harrowgate water. This fmell I have met with feveral times in the courfe of my experiments, and in proceffes very different from one another.

As I generally made ufe of mice in the experiments which relate to refpiration, and fomé perfons may chufe to repeat them after me, and purfue them farther than I have done; it may be Vol. LXII.

K k
of

[250]

of ufe to them to be informed, that I kept therm without any difficulty in glafís receivers, open at the top and bottom, and having a quantity of paper, or tow, in the infide, which fhould be changed every three or four days; when it will be moft convenient alfo to change the veffel, and wafh it. But they muft be kept in a pretty exact temperature, for either much heat or much cold kills them prefently. The place in which I have generally kept them. is a fhelf over the kitchim fire place, where, as it is ufual in Yorkhire, the fire never goes out; fo that the heat varies very little; and I find it to be at a medium about 90 degrees of Fahrenheit's thermometer. When they had been made to pafs through the water, as they neceflarily muft: be, in order to a cliange of air, they require, and will bear a very confiderable de: gree of heat, to warm and dry them.

I found, to my great furprize, in the courfe of thefe experiments, that mice will live intirely without water; for though I have kept fome of them for three or four months, and have offered them water feveral times, they would never tafte it; and yet they continued in perfect health ard vigour. Two or three of them will live very peaceably together in the fame veffel ; though I had one inftance of one moufe tearing another almoft in pieces, though there was plenty of provifions for both of them.

The apparatus with which the principal of the preceding experiments were made is exceedingly fimple, and cheap. The drawing annexed (TAb. IX.) exhibits a view of every thing that is moft important in π.

A is an oblong trough, about eight inches deep, kept nearly full of water, and B, B are jars ftanding in it, about ten inches long, and two and a half wide; fuch as I have generally ufed for electrical batteries.
C, C are flat ftones, funk about an inch, or half an inch, under the water, on which veffels of any kind may be conveniently placed, during a courfe of experiments.
D, D are pots nearly full of water, in which jars or phials, containing any kind of air, to which plants or any other fubftances may be expofed, and having their mouths immerfed in water ; fo that the air in the infide can have no communication with the external air.
E is a fmall glafs veffel, of a convenient fize for putting a moufe into it, in order to try the wholefomenefs of any kind of air that it may contain.

F is a cylindrical glafs veffel, five inches in length, and one in diameter, very proper for trying whether any kind of air will admit a candle to burn in it. For this purpofe a bit of wax candle, G, may be faftened to the end of a wire, H , and turned up in fuch a manner as to be let down into the veffel with the flame upwards. The veffel fhould be kept carefully covered till the moment that the candle is admitted to it. In this manner I have frequently extinguifhed a candle above twenty times in one of thefe veffels full of air, though it is impoffible to dip the candle into it, without giving the external air an opportunity of mixing with it, more or lefs.

K k 2

[252]

\mathbf{I} is a funnel of glafs or tin, which is neceffary for transferring air into veffels which have narrow nouths.

K is a glafs fyphon, which is very ufeful for drawing air out of a veffel which has its mouth immerfed in water, and thereby raifing the water to whatever height may be moft convenient. I do not think it by any means fafe to depend upon a valve at the top of a veffel, which Dr. Hales very often made ufe of; for, fince my firft difappointments, I have never thought the communications between the external and internal air fufficiently cut off, unlefs glafs, or a body of water, or, in fome cafes, quickfilver, have intervened between them.

L is a piece of a gun barrel, clofed at one end, having the ftem of a tobacco-pipe luted to the other. To the end of this pipe I fometimes faftened a flaccid bladder, in order to receive the air difcharged from the fubftance contained in the barrel ; but, when the air was generated flowily, I commonly contrived to put this end of the pipe under a veffel full of water, and ftanding with its mouth inverted in another veffel of water, that the new air might have a more perfect feparation from the external air than a bladder could make.

M is a fmall phial containing fome mixture that will generate air. This air paffes through a bent glafs tube inferted into the cork at one end, and going under the edge of the jar N at the other ; the jar being placed with part of its mouth projecting beyond the flat ftones C C for that purpoife.

Un the Ceiling of a C'BIOUHTRI at VERDAPETTAH in the? MADURAH COUNTRY turen the '8 of y"ulyp 1 that.

c)
a. (I. ymbol of the 'Inivicral IDeity.
b.b. Theo hootro of e From to werpend a kised of therone'on which the

$$
\begin{aligned}
& \text { On the Ceiling of a CHOUI. T: } \\
& \text { VERDAPETTAH in the MADURAH C }
\end{aligned}
$$

taken the s. of July iv64.
ध"/ぇ
efouth

a. Eymbols of the Universal C b.b. ©The limetier of e tron to suryuend a krind 9 -Deityor en wamy of ten sat, wher achilited

[253]

A N A P P E N D I X,

Containing an account of fome experiments made by Mr. Hey, which prove that there is no oil of vitriol in water impregnated with fixed air extracted from chalk by oil of vitriol ; and alfo a letter from Mr. Hey, to Dr. Prieftley, concerning the effects of fixed air applied by way of clyfter.

Expertments to prove that there is no oil of vitriol in water impregnated with fixed Air.

It having been fuggefted, that air arifing from a fermenting mixture of chalk and oil of vitriol might carry up with it a fmall portion of the vitriolic acid, rendered volatile by the act of fermentation; I made the following experiments, in order to difcover whether the acidulous tafte, which water impregnated with fuch air affords, was owing to the prefence of any acid, or only to: the fixed air it had abforbed.

Experiment 1.

I mixed a tea-fpoonful of fyrup of violèts with an ounce of diftilled water, faturated with fixed air procured from chalk by means of the vitriolic acid; but neither upon the firft mixture, nor after 4.
ftanding
fanding 24 hours, was the colour of the fyrup at all changed, except by its fimple dilution.

Experiment II.
A portion of the fame diftilled water, unim. pregnated with fixed air, was mixed with the fyrup in the fame proportion: not the leaft difference in colour could be perceived betwixt this and the above mentioned mixture.

Experiment III.

One drop of oil of vitriol being mixed with a pint of the fame diftilled water, an ounce of this water was mixed with a tea-fpoonful of the fyrup. This mixture was very diftinguifhable in colour from the two former, having a purplifh caft, which the others wanted.

Experiment IV.

The diftilled water impregnated with fo fmall a quantity of vitriolic acid having a more agreeable tafte than when alone, and yet manifefting the prefence of an acid by means of the fyrup of violets; I fubjected it to fome other tefts of acidity. It formed curds when agitated with foap, lathered with difficulty, and very imperfectly; but not the leaft ebullition could be difcovered upon dropping in firit of fal ammoniac, or folution of falt of tartar, though I had taken care to render the latter free from caufticity by impregnating it with fixed air.

Ex-

[255]

Experiment V.

The diftilled water faturated with fixed air neither effervefced, nor thewed any clouds, when mixed with the fixed or volatile alkali.

Experiment Vi.

No curd was formed by pouring this water upon an equal quantity of milk, and boiling them together.

Experiment VII.

When agitated with foap, this water produced curds, and lathered with fome difficulty; but not fo much as the diftilled water mixed with vitriolic acid in the very fmall proportion above-mentioned. The fame diftilled water without any impregnation of fixed air lathered with foap without the leaft previous curdling. River water, and a pleafant pump water not remarkably hard, were compared with thefe. The former produced curds before it lathered, but not quite in fo great a quantity as the diftilled water impregnated with fixed air: the latter caufed a ftronger curd than any of the others above-mentioned.

Experiment VIII.

Apprehending that the fixed air in the diftilled water occafioned the coagulation, or feparation of the oily part of the foap, only by deftroying the caufticity of the lixivium, and thereby rendering the

K ${ }^{2} 4$
union
union lefs perfect betwixt that and the tallow, and not by the prefence of any acid; I impregnated a frefh parcel of the fame diftilled water with fixed air, which had paffed through half a yard of a wide batometer tube filled with falt of tartar ; but this water caufed the fame curdling with foap as the former had done, and appeared in every refpect to be exactly the fame.

Experiment IX.

Dinilled water faturated with fixed air formed a white cloud and precipitation, upon being mixed with a folution of faccharum Saturni. I found likewife, that fixed air, after paffing through the tube filled with alkaline falt, upon being let into a phial containing a folution of the metallic falt in diffilled water, caufed a perfect feparation of the lead, in form of a white powder; for the water, after this precipitation, thewed no cloudinefs upon a frefh mixture of the fubttances which had before rendered it opaque.

A Letter

[257]

A Letter from Mr. Hey to Dr. Priesteey, concerning the Effects of fixed Air applied by way of Clyfter.

Reverend Sir,

Leeds, Feb. 15 th, 1772.
Having lately experienced the good effects of fixed air in a putrid fever, applied in a manner, I believe, not heretofore made ufe of, I thought it proper to inform you of the agreeable event, as the method of applying this powerful corrector of putrefaction took its rife principally from your obfervations and experiments on factitious air; and now, at your requeft, I fend the particulars of the cafe 1 mentioned to you, as far as concerns the adminiftration of this remedy.

January 8, 1772, Mr. Lightbowne, a young gentleman who lives with me, was feized with a fever, which, after continuing about ten days, began to be attended with thofe fymptoms that indicate a putrefcent ftate of the fluids.

18th, His tongue was black in the morning when I firft vifited him, but the blacknefs went off in the day-time upon drinking: He had begun to doze much the preceding day, and now he took little notice of thofe that were about him: His belly was loofe, and had been fo for fome days: his pulfe beat inoftrokes in a minute, and was rather low: he was ordered to take twenty five grains of Peruvian bark with five of tormentill root in powder every four hours, and to ufe red wine and water cold as his common drink.
Voz. LXII.
L 1
quth.
rgth, I was called to vifit him early in the morning, on account of a bleeding at the nofe which had come on: he loft about eight ounces of blood, which was of a loofe texture: the hæmorrhage was fuppreffed, though not without fome difficulty, by means of tents made of foft lint, dipped in cold water ftrongly impregnated with tincture of iron, which were introduced within the noftrils quite through to their pofterior apertures; a method which has never yet failed me in like cafes. His tongue was now covered with a thick black pellicle, which was not diminifhed by drinking: his teeth were furred withthe fame kind of fordid matter, and even the roof of his mouth and fauces were not free from it : his loofenefs and ftupor continued, and he was almoft inceffantly muttering to himfelf: he took this day a feruple of the Peruvian bark with ten grains of tormentill every two or three hours: a ftarch clyfter containing a drachm of the compound powder of bole, without opium, was given: morning and evening : a window was fet open in his room, though it was a fevere froft, and the floor was frequently fprinkled with vinegar.

20th, He continued nearly in the fame ftate: when rouzed from his dozing, he generally gave a fenfible anfwer to the queftions alked him; but he immediately relapfed, and repeated his muttering. His fkin was dry, and harfh, but without petecbic. He fometimes voided his urine and feces into the bed, but generally had fenfe enough to afk for the bed-pan: as he now naufeated the bark in fubftance, it was exchanged for Huxham's
tinctures.

[259]

tincture, of which he took a table-fpoonful every two hours in a cup full of cold water: he drank fometimes a little of the tincture of rofes, but his common liquors were red wine and water, or rice water and brandy acidulated with elixir of vitriol : before drinking, he was commonly requefted to rinfe his mouth with water to which a little honey and vinegar had been added. His loofenefs rather increafed, and the ftools were watery, black, and foetid: It was judged neceffary to moderate this difcharge, which feemed to fink him, by mixing a drachm of the theriaca Andromachi with each clyfter.

21 ft . The fame putrid fymptoms remained, and a fubfultus tendinum came on: his ftools were more foetid; and fo hot, that the nurfe affured me the could not apply her hand to the bed-pan, immediately after they were difcharged, without feeling pain on this account: The medicine and clyfters were repeated.

Reflecting upon the difagreeable neceffity we feemed to lie under of confining this putrid matter in the inteftines, left the evacuation fhould deftroy the vis vita before there was time to correct its bad quality, and overcome its bad effects, by the means we were ufing; I confidered, that, if this putrid ferment could be more immediately corrected, a ftop would probably be put to the flux, which feemed to arife from, or at leaft to be encreafed by it ; and the fomes of the difeafe would likewife be in a great meafure removed. I thought nothing was fo likely to effect this, as the introduction of fixed air into the alimentary canal,

[260]

which, from the experiments of Dr: Macbride, and thofe you have made fince his publication, appears to be the moft powerful corrector of putrefaction hitherto known. I recollected what you had recommended to me as deferving to be tried in putrid difeafes, I mean, the injection of this kind of air by way of clyfter, and judged that in the prefent cafe fuch a method was clearly indicated.

The next morning I mentioned my reflections to Dr. Hird and Dr. Crowther, who kindly attended this young gentleman at my requeft, and propofed the following method of treatment, which, with their approbation, was immediately entered upon. We firft gave him five grains of ipecacoanha, to evacuate in the moft eafy manner part of the putrid colluvies: he was then allowed to drink freely of brifk orange-wine, which contained a good deal of fixed air, yet had not loft its fweetnefs : the tincture of bark was continued as before; and the water, which he drank along with it, was impregnated with fixed air from the atmofphere of a large vat of fermenting wort, in the manner I had learned from you: inftead of the aftringent, air alone was injected, rollected from a fermenting mixture of chalk and oil of vitriol: he drank a bottle of orange-wine in the courfe of this day, but refufed any other liquor except water and his medicine: two bladders full of air were thrown up in the afternoon.

23d. His ftools were lefs frequent; their heat likewife and peculiar foetor were confiderably diminifhed: his muttering was much abated, and the fubfultus tendinum had left him. Finding that part of the air was rejected when given with a bladder in

[261]

the ufual way, I contrived a method of injecting it which was not fo liable to this inconvenience. I took the flexible tube of that inftrument which is ufed for throwing up the fume of tobacco, and tied a fmall bladder to the end of it that is connected with the box made for receiving the tobacco, which I had previoully taken off from the tube: I then put fome bits of chalk into a fix ounce phial until it was half filled; upon thefe I poured fuch a quantity of oil of vitriol as I: thought capable of faturating the chalk, and immediately tied the bladder, which I. had fixed to the tube, round the neck of the phial : the clyfter pipe, which was faftened to the other end of the tube, was introduced into the anus before the oil of vitriol was poured upon the chalk. By this method the air paffed gradually into the inteftines as it was generated; the rejection of it was in a great meafure prevented; and the inconvenience of keeping the patient uncovered during the operation was. avoided.

24 th, He was fo much better, that there feemed to be no neceffity for repeating the clyfters: the other means were continued. The window of his room was now kept fhut.

25 th, All the fymptoms of putrefency had feft: him; his tongue and teeth were clean; there remained no unnatural blacknefs or feetor in his frools, which had now regained their proper confiftence; his dozing and muttering were gone off; and the difagreeable odour of his breath and perfpiration was no longer perceived. He took nourihment to-day, with pleafure; and, in the afternoon, fat up an hous in his chair.

[262]

His fever, however, did not immediately lēave him; but this we attributed to his having caught cold from being incautioully uncovered, when the window was open, and the weather extremely fevere; for a cough, which had troubled him in fome degree from the beginning, increafed, and he became likewife very hoarfe for feveral days, his pulfe, at the fame time, growing quicker: but thefe complaints alfo went off, and he recovered, without any return of the bad fymtoms above-mentioned.

I am, Reverend Sir,
Your obliged humble fervant,
W^{m} Hey.
P. S.

OAtober 29, 1772.
Fevers of the putrid kina have been fo rare in this town, and in its neighbourhood, fince the commencement of the prefent year, that I have not had an opportunity of trying again the effects of fixed air, given by way of clyfter, in any cafe exactly fimilar to Mr. Lightbowne's. I have twice given water faturated with fixed air in a fever of the putrefcent kind, and it agreed very well with the patients. To one of them the aërial clyfters were adminiftred, on account of a loofenefs, which attended the fever, though the ftools were not black, nor remarkably hot or fetid.

Thefe

[263]

Thefe clyfters did not remove the loofenefs, though there was often a greater interval than ufual betwixt the evacuations, after the injection of them. The patient never complained of any uneafy diftention of the belly from the air thrown up, which, indeed, is not to be wondered at, confidering how readily this kind of air is abforbed by aqueous and other fluids, for which fufficient time was given, by the gradual manner of injecting it. Both thofe patients recovered, though the ufe of fixed air did not produce a crifis before the period on which fuch fevers ufually terminate. They bad neither of them the opportunity of drinking fuch wine as Mr. Lightbowne took after the ufe of fixed air was entered upon; and this, probably, was fome difadvantage to them.

I find the methods of procuring fixed air, and impregnating water wih it, which you have publifhed, are preferable to thofe I made ufe of in Mr. Lightbowne's cafe.

The flexible tube ufed for conveying the fume of tobacco into the inteftines, I find to be a very convenient inffrument in this cafe, by the method be-fore-mentioned (only adding water to the chalk, before the oil of virriol is inftilled, as you direct): the injection of air may be continued at pleafure, without any other inconvenience to the patient, than what may arife from his continuing in one pofition during the operation, which fcarcely deferves to be mentioned, or from the continuance of the clyfter-pipe within the anus, which is but trifling, if it be not fhaken much, or pufhed againft the rectum.

When I faid in my letter, that fixed air appeared to be the greatef corrector of putrefaction hitherto
known,

[264]

known, your philofophical refearches bad not then made you acquainted with that moft remarkably antifeptic property of nitrous air. Since you favoured me with a view of fome aftonifhing proofs of this, I have conceived hopes, that this kind of air may likewife be applied medicinally to great advantage.
W. H.

A Correction.

Upon re-examining Dr. Hales's account of his experiments to meafure the diminution of air by refpiration (Statical Effays, Vol.I. p. 238, 4th edition), I find an error of the prefs, of ${ }_{1} \frac{3}{3}$ for ${ }_{2}{ }^{\frac{1}{3}}$; fo that the diminution of air by refpiration, though very various, is, I believe, always confiderably letis than by putrefaction, or feveral other caufes of diminution. But though I have mentioned this diminution as equal to feveral others, nothing material depends upon it; the quality of the air thus diminifhed being, in all refpects, the fame, notwihnfanding the caufe of increafe (which, as I have obferved, in this and other cafes, co-operates with the caufe of diminution) be greater than I had fuppofed.

I did not endeavour to meafure the quantity of the diminution of air by refpiration, as 1 did that by other caufes; becaufe I imagined that it had been done fufficiently by others, and efpecially by Dr. Hales,

［ 265 ］

Received November 29，17クロ。

XX．An Eday on the periodical Appearing and Difappearing of certain Birds，at different Times of the Year．In a Letter from the Honourable Daines Barrington， Vice－Pref．R．S．to William Watfon， M．D．F．R．S．

Dear Sir，
Read April 2，9，30，S I know，from fome converfo and May 14，I772． ation we have had on this head， that you confider the migration of birds as a very interefting point in natural hiftory，I fend you the following reflections on this fubject as they have oc－ curred to me upon looking into moft of the orni－ thologifts who have written on this queftion．

It will be firft neceffary in the prefent，as in all other difputes，to define the terms on which the controverfy arifes．I therefore premife that I mean by the word Migration，a periodical paffage by a whole fpecies of birds acrofs a confiderable extent of fea．

I do not mean therefore to deny that a bird，or birds，may poffibly fly now and then from Dover to Vol．LXII．

M m
Calais，

Calais, from Gibraltar to Tangier, or any other fuch narrow ftrait, as the oppolite coafts are clearly within: the bird's ken, and the paffage is no more adventurous than acrofs a large frefh water lake.

I as little mean to deny that there may be a periodical flitting of certain birds from one part of a continent to another: the Royfton Crow, and Rock Ouzel, furnifh inftances of fuch a regular mio gration.

What I mean chiefly to contend therefore is, that: it feems to be highly improbable, birds fiould, at certain feafons, traverfe large tracts of fea, or rather: ocean, without leaving any of the fame fpecies behind, but the fick or wounded.

As this litigated point can only receive a fatisfactory decifion from very accurate obfervations, all preceding naturalifts, from Ariftotle to Ray, have fpoken with: much doubt concerning it.

Soon after the appearance of Monf. Adanfon's. woyage to Senegal, however, Mr. Collinfon firf, in the Philofophical Tranfactions*, and after him the moft eminent ornithologifts of Europe, feem to have confidered this traveller's having caught four European Swallows on the 6th of October, not far from the African coaft, as a decifive proof, that the common fwallows, when they difappear in Europe, make for Africa during the winter, and return again to us in the fpring.

It is therefore highly incumbent upon me, who profers that I am by no means fatisfied with the ac-count, given by Monf. Adanfon of thefe European

$$
* \text { Part II. I } 260, \text { p. } 459,8 \text { feq. }
$$

[267]

fraillows, to enter into a very minute difcuifion of what may, or may not, be inferred from his oblervation according to his own narrative.

I flall firt however confider the general arguments, from which it is fuppoled that birds of palage periodically traverfe oceans, which indeed may be almoft reduced to this fingle one, viz. we fee certain birds in particular Yeafons, and afterwards we fee them not ; from which data it is at once inferred, that the caufe of their difappearance is, that they have croffed large tracts of fea.

The obvious anfwer to this is, that no well-attefted infances can be produced of fuch a migration, as I thall endeavour to thew hereafter; but befides this convincing negative proof, there are not others wanting.

Thofe who fend birds periodically acrofs the fea, being preffed with the very obvious anfwer I have before fuggelted, have recourfe to two fuppofitions, by which they would account for their not being obferved by feamen during their paffage.

The firft is, that they rife fo high in the air that they become invifible *; but unfortunately the rifing to this extraordinary height, or the falling from it, is equally deftitute of any ocular proof, as the birds being feen during their paflage.

I have indeed converfed with fome people, whe conceive they have loft fight of birds by their perpendicular flight; I muft own, however, that I have

[^1]
[268]

afways fuppofed them to be fhort-fighted, as I never loft the fight of a bird myfelf, but from its horizontak diftance, and I doubt much whether any bird was ever feen to rife to a greater height than perhaps twice that of St. Paul's crots *.

There feems to be but one method indeed, by which the height of a bird in the air may be eftimated; which is, by comparing its apparent fize with its known one, when very near us; and it need not be faid that method of calculating muft depend entirely upon the fight of the obferver, who, if he happens not to fee objects well at a diftance, will very foon fuppofe the bird to be loft in the clouds.

There is alfo another objection to the hypothefis of birds paffing feas at fuch an extraordinary height arifing from the known rarefaction of the air, which may poffibly be inconvenient for refpiration, as well as flight; and if this was not really the cafe, one fhould fuppofe that birds would frequently rife to fuch uncommon elevations, when they had no ocmcafion to traverfe oceans.

[^2]
[269]

The Scotch Ptarmigan frequents the higheft ground of any Britilh bird, and he takes but very thort flights:

But it is alfo urged by fome, that the reafon why feamen do not regularly fee the migration of birds, is becaufe they choofe the night, and not the day, for: the paffige *.

Now though it may be allowed, that polfibly birds may crofs from the coaft of Holland to the Eaftern coaft of England (for example) during a long night, yet it muft be dark nearly as long as it is within the Arctic circle to afford time for a bird to pafs from the Line to many parts of Europe, which Monf. de Buffon calculates, may be done in about eight or nine days \dagger.

If the paffage happened in half the nights of the year, which have the benefit of moonlight, the birds would be difcovered by the failors almoft as well as in the day time; to which I muft add that feveral fuppofed birds of paffage (the Fieldfare in particular) always call when on their flight, fo that the feamen muft be deaf as well as blind, if fuch flocks of birds efcape their notice.

Other objections however remain to this hypothefis of a paffage during the night.

[^3]Ninety:

[270]

Moft birds not only fleep during the night, but are as much incapacitated from dittinguining obr jects well as we are, in the abfence of the fun: it is therefore inconceivable that they frould choofe owl-light for fuch a diftant journey.

Befides this, the Eaftern coaf of England, to which birds of paflage muft neceflarily firt come from the continent, hath many light-houfes upon it; they would therefore, in a dark night, immediately make for fuch an object, and deftroy themfelves by flying with violence againt it, as is well known to every bat-fowler.

Having endeavoured to anfwer thefe trvo fuppofitions, by which it is contended that birds of paffage may efcape obfervation in their fight; I hall now confider all the inftances I have been able to meet with of any birds being actually feen whilft they were croffing any extent of fea, though I might give a very fhort refutation to them, by infifting, that if this was ever experienced, it muft happen as conftantly in a fea, which is much navigated, as the return of the feafons.

I cannot do better than to follow thefe according to chronological order.

The firft in point of time is that which is cited by Willoughby *, from Bellon, whofe words are thus tranflated, "When we fialed from Rhodes to "Alexandria, many quails flying from the North * towards the South, were taken in our Thip, whence " I am perfuaded that they fhift places; for for" meriy, when I failed out of the Ine of Zant to * Morea, or Negropont, in the fpring, I had ob* B. II. c. 17. §. 8.

* ferved

[275]

* ferved quails flying the contrary way to N . and S .
"s that they might abide there all fummer, at which
"t time alfo a great many were taken in the fhip."
Let us now confider what is to be inferred from this citation.

In the firft place, Bellon does not particularize the longitude and latitude of that part of the Mediterranean, which he was then croffing; and in his courfe from Rhodes to Alexandria, both the iflands of Scarpanto and Crete could be at no great diftance : thefe quails therefore were probably flitting from one: ifland of the Mediteranean * to another.

The fame obfervation may be made with regard to the quails which he faw between Zant and Negropont, as the whole paffage is crouded with inlands, they therefore might be paffing from ifland to ifland, or headland to headland, which might very probably lye Eaft and Weft, fo as to occafion the birds flying in a different direction, from which they paffed: the Thip before.

I have therefore no objection to this proof of migration, if it is only infifted upon to fhew that a quail shifts its ftation at certain feafons of the year; bus cannot admit that it is fair from hence to argue that thefe birds periodically crofs large tracts of fea.

Bellon himfelf ftates, that when the birds fettled upon the fhip, they were taken by the firft perfon who chofe to catch them, and therefore they muft have been unequal to the fhort flight which they, were attempting.

[^4]
[272]

It is very true that quails have been often pitched upon as inftances of birds that migrate acrofs feas, becaufe they are fcarcely ever feen in winter: it is well known, however, to every fportsman, that this bird never flies 300 yards at a time, and the tail being fo fhort, it is highly improbable they fhould be equal to a paffage of any length.

We find therefore, that quails, which are commonly fuppofed to leave our infand in the winter, in reality retire to the fea coafts, and pick up their food amongft the fea weeds.*.

I have happened lately to fee a fpecimen of a particular fpecies of quail, which is defcribed by Dr. Shaw \dagger, and is diftinguifhed from the other kinds by wanting the hind-claw.

Dr. Shaw alfo frates that it is a bird of paffage. Now if quails really migrate from the coaft of Barbary to Italy, as is commonly fuppofed, whence can it have arifen that this remarkable ipecies hath efcaped the notice of Aldrovandus, Olina, and the other Italian ornithologits?

When I had juft finifhed what I have here faid with regard to the migration of quails, I have had an opportunity of feeing the fecond volume of Monf. de Buffon's ornithology ${ }_{+}$; where, under this article, he contends that this bird leaves Europe in the winter.

It is incumbent upon me, therefore, either to own I am convinced by what this moft ingenious and able naturalift hath urged, or to give my reafons why I

> * See Br. Zool. Vol. II. p. 2 IO. 2d Ed. octavo.
> + Phyf. Obf. on the kingdom of Algiers, ch. 2 .
> \ddagger See p. 459 , \& feg.

[273]

ftill continue to diffent from the opinion he maintains.

Though M. de Buffon hath difcuffed this point very much at large, yet I find only the following facts or arguments to be new.

He firft cites the Memoirs of the Academy of Sciences *, for an account given by M. Godeheu of quails coming to the ifland of Malta in the month of May, and leaving it in September.

The firft anfwer to this obfervation is, that the inland of Malta is not only near to the coaft of Africa, but to feveral of the Mediterranean iflands; it therefore amounts to no more than the fitting I have before taken notice of ψ.

Monf. de Buffon fuppofes that a quail only quits one latitude for another, in order to meet with a perpetual crop on the ground.

Now can it be fuppofed that there is that difference between the harveft on the coaft of Africa, and that of the fmall quantity of grain which grows on the rocky ifland of Malta, that it becomes inconvenient to the bird to flay in Africa as foon as May fets in ; and neceffary, on the other hand, to continue in Malta from May till September.

Monf. de Buffon then fuppofes that quails make their paffage in the night, as well as conceives them to be of a remarkably warm temperature \ddagger, and fays

* Tom. III. p. gI and g2.
+ Both Monf. de Godeheu and M. de Buffon feem to conceive that the quail fhould fly in the fame direction as the wind blows; but birds on the wing from point to point, which are at a confiderable diftance, fly againft the wind, as their plumage is otherwife ruffled.
\ddagger As this is given for a reafon why the African quails migrate Northward: Q. what is to become of the Icelandie quails dusing the fummer?

Vol. LXII.
N n
that

$[274]$

that "chaud comme une caille," is in every one's mouth *.

Now in the firft place their migration during the night, is contrary to Belon's account, which M. de Buffon fo much relies upon, who exprefly fays, that the birds were caught in the day time $中$.

In the next place, I apprehend that "cbaud comme " une caille,", alludes to the very remarkable falacioufnefs of this bird, and not to the conftant heat of its body.

Monf. de Buffon then obferves, that if quails are kept in a cage, they are remarkably impatient of confinement in the autumin and fpring, whence he infers that they then want to migrate \mathbb{f}; he alfo adds, in the fame period, that this uneafinefs begins an hour before the fun rifes, and that it continues all the night.

This great naturalift does not ftate this obfervation as having been made by himfelf, and it feems upon the face of it to be a very extraordinary one.

* All birds indeed are warmer by four degrees than other animals. See fome ingenious thermometrical experiments by Mr. Martin of Aberdeen, Edinb. 177 I , I2mo.
+ Upon looking a fecond time into Belon, he does not indeed ftate whether it was in the day or the night; but if it had hap. pened in the latter, this traveller and ornithologift could not well have omitted fuch a circumftance. Befides this, he mentions in what direction the quails were flying, which he could not have difcerned in the night.
\ddagger It may alfo arife from this bird's being of fo quarrelfome a difpofition, and confequentiy moft likely to fight with its fellow prifoners when they are all in greatef vigour aiter moulting, and on the return of the fpring.
M. de Buffon allows that they will fight for a grain of millet, and adds, "car parmi les animaux il faut un fujet reel pour fo "s battre." M. de Buffon hath never been in a cockpit.

[275]

No one (at leaft with us) ever keeps quails in a cage except the poulterers, who always fell them as faft as they are fat, and confequently can give no account of what happens to them during folong an imprifonment as this obfervation neceffarily implies.

No fuch remarkable uneafinefs hath ever been attended to in any other fuppofed bird of paffage during its confinement; but, allowing the fact to be as M. de Buffon ftates, he himfelf fupplies us with the real caufe of this impatience.

He afferts, that quails conftantly moult twice * a year, viz. at the clofe both of fummer and winter; whence it follows, that the bird, in autumn and the fpring, muft be in full vigour upon its recovery from this periodical illnefs: it can therefore as little brook confinement, as the phyfician's patient upon the return of health after illnefs.
Thus much I have thought it neceflary to fay, in anfwer to M. de Buffon, who " dum errat, docet," who fcarcely ever argues ill but when he is milinformed as to facts, and who often, from ftrength of underftanding, difbelieves fuch intelligence as might impofe upon a naturalift of lefs acutenefs and penetration.

[^5]
[276]

The next inftance of a bird being caught at any diftance from land, is in Sir Hans Sloane's voyage to Jamaica, who fays, that a lark was taken in the Chip 40 leagues from the fhore: this therefore was certainly an unfortunate bird, forced out to fea by a ftrong wind in flying from headland to headland, as no one fuppofes the fkylark to be a bird of paffage.

The fame anfwer may be given to a yellow-hammer's fettling upon Haffelquift's thip in the entrance of the Mediterranean, with this difference, that either the European or African coaft muft have been much nearer than 40 leagues*.

The next fact to be confidered is what is mentioned in a letter of Mr. Peter Collinfon's, printed in the Philofophical Tranfactions \downarrow.

He there fays, "That Sir Charles Wager had "frequently informed him, that in one of his "soyages home in the fpring as he came into found" ings in our channel, that a great flock of fwallows " almoft covered his rigging, that they were nearly ss fpent and famimed, and were only feathers and " bones; but being recruited by a night's reft, they " took their flight in the morning."

The firft anfwer to this is, that if thefe were birds which had croffed large tracts of fea in their periodical migrations, the fame accident muft happen eternally, both in the fpring and autumn, which is not however pretended by any one.

In the next place, the fwallows are fated to be fpent both by famine and fatigue; and how were they to procure any flies or other fuftenance on the

[^6]
[277]

rigging of the admiral's chip, though they migth indeed reft themfelves?

Sir Charles, however, exprefly informs us, that he was in the channel, and within foundings: the fe birds, therefore (like Bellon's quails) were only paffing probably from headland to headland; and being forced out by a ftrong wind, were obliged to fettle upon the firft Chip they faw, or otherwife muft have dropped into the fea, which I make no doubt happens to many unfortunate birds under the fame circumftances.

As the birds which thus fettled upon Sir Charles Wager's rigging were fwallows, it very naturally brings me now to confider the celebrated obfervation of Monf. Adanfon, under all its circumftances, as it hath been fo much relied upon, and by naturalifts of fo great eminence.

Monf. Adanfon is a very ingenious writer, and the publick is much indebted to him for many of the remarks which he made whilft he refided in Senegal.

I may, however, I thinks prefume to fay, that he had not before his voyage made ornithology his particular ftudy; proofs of which are not wanting in other parts of his work, which do not relate to fwallows.

For example, he fuppofes, that the Canary birds which are bred in Europe are white, and that they become fo by our climate's being more cold than that of Africa.
" J'ai remarqué que le ferin qui devient tout blanc " en France, eft a Teneriffe d'un gris prefque auffi "foncé que celui de la linotte; ce changement de " couleur provient vraifemblablement de la froidure " de notre climat *"

$$
\text { * Voyage au Senegal, p. I } 3
$$

Mr. Adanfon in this paffage feems to have deduced two falfe inferences from having feen a few white Canary birds in France, which he afterwards compares with thofe of Teneriff, and fuppofes the change of colour to arife merely from alteration of climate : it is known, however, almoft to every one, that there is an infinite variety in the plumage of the European Canary birds, which, as in poultry, arifes from their being pampered with fo much food, as well as confinement *.

Monf. Adanfon, in another part of his voyage 中, defcribes a Roller, which he fuppofes to migrate fometimes to the Southern parts of Europe.

This circumitance fhews that he could not have looked much into books of natural hiftory, becaufe the principal fynonym of this bird is garrulus Argentoratenfis \ddagger; and Linnæus informs us that it is found even in Sweden $\|$.

[^7]
[279]

The ftrong characteriftic mark of this bird, is the outermoft feathers of the tail, which able naturalifts defrribe as three fourths of an inch longer than the reft *. Monf. Adanfon, however, compares their length, not with the other feathers of the tail, but with the lengthr of the bird's body, which is by no means the natural or proper flandard of comparifon.

The reafon of my taking notice of thefe more minute inaccuracies in Monf. Adanfon's account of birds, arifes from Mr. Collinfon's relying upon his obfervations with regard to fwallows being fo abrolutely decifive, becaufe he is reprefented to be fo able a naturalif.

I fhall now ftate (very minutely) under what circumfances thefe fwallows were caught, and what feems to be the true inference from his own ac. count.

He informs us, that four fwallows fettled upon the fhip, no: 50 leagues from the coaft of Senegal, on the 6 th of October; that thefe birds were taken, and that he knew them to be the true fwallow of Europe ψ, which he fuppofes were then returning to the coaft of Africa.

I hall now endeavour to fliew that thefe birds could not be European fwallows; nor, if they were, could they have been on their return from Europe to Africa.

[^8]The

[280]

The word birondelle, in French, is ufed as a general term for the four * fpecies of thefe birds, as the term froallow is with us.

Now the four fwallows thus caught and examined by Monf. Adanfon were either all of the fame fpecies, or intermixed in fome other proportion.

Would not then any naturalift in flating fo material a fact (as he himfelf fuppofes it to be) have particularized of what fpecies of fwallow thefe very interefting birds were?

Should not Monf. Adanfon alfo have taken care to diftinguifh thefe fuppofed European fwallows from two feecies of the fame tribe, which bear a general refemblance to thofe of Europe, and are not only defcribed, but engraved by Briffon, under the name of Hirondelle de Senegal छ Hirondelle de rivage du Senegal \dagger ?

Though Monf. Adanfon was above a year on this part of the African coaft, paid fo much attention to fwallows, and was fo immediately acquainted with the different fpecies on the firft infpection, yet he feems never to have difcovered that there were fuch African fwallows as are thus defcribed and engraved by Briffon, though he mult have feen them daily.

Monf. Adanfon however concludes his account of the fuppofed European fwallow, whilft it continues on the coaft of Senegal, by a circumftance which

[^9]
[281]

feems to prove to demonftration of what fpecies the four fwallows caught in the fhip really were.

He fays that they rooft on the fand either by themfelves, or at moft only in pairs, and that they frequent the coaft much more than the inland parts *.

Thefe fwallows therefore, if they came from Europe, muf have immediately changed at once their known habits: and is it not confequently moft clear that they were of that fpecies which Briffon defcribes under the name of Hirondelle de rivage du Senegal?

But though it fhould be admitted, notwithftanding what I have infifted upon, from Monf. Adanfon's own account, that thefe were really fwallows of the fame kind with thofe of Europe; yet I muft ftill contend that they could not poffibly have been on their return from Europe to Africa, becaufe the high road for a bird from the moft Weftern point of Europe to Senegal, is along the N. Weft coaft of Africa, which projects grearly to the Weftward of any part of Europe.

What then could be the inducement to thefe four fwallows to fly 50 leagues to the Weftward of the coaft of Senegal, fo much out of the proper direction?

It feems to me therefore, very clear, that thefe fwallows (whether of the European kind or not) were flitting from the cape de Verde iflands to the

[^10]
[282]

coaft of Africa, to which fhort flight, however, they were unequal, and were obliged from fatigue to fall into the failors hands.

Monf. Adanfon likewife mentions* that the fhip's company caught a Roller on the 26 th of April, which he fuppoies was on its paffage to Europe, though he was then within fight of the coaft of Senegal : this bird, however, muft be admitted not to have had fufficient itrength to reach the firft flage of this round-about journey, and was therefore probably, forced out to fea by a frong wind, in pafing from head-land to head-land.

But I muft not difmifs what hath been obferved with regard to the fwallows feen by Monf. Adanfon at Senegal, without endeavouring alfo to anfwer what M. de Buffon hath not only inferred from its, but hath endeavoured to confirm by an actual experiment \dagger.
M. de Buffon, from the many inftances of fwallows being found torpid even under water, very readily admits, that all the birds of this genus do not migrate, but only that fpecies which was feen by Monf. Adanfon in Africa, and which he generally refers to as the chimney fwallow \ddagger; but from the outfet, feems

[^11]$$
[\geq 83]
$$
to thew that he hath himfelf confounded this foecies with the martin.
"Prenons un feul oifeau, par exemple, lhironss delle, celle que tout le monde connoit, qui paroit " au printems, difparoit en atomne, $\&$ fait fon nid ss avec de la terre contre les fenetres, ou dans les "cheminees." p. 23.

It is very clear that the defign in this period is to Specify a particular bird in fuch a manner that no doubt could remain with any one about the fpecies referred to; and from other paflages which follow, it is as clear that Monf. de Buffon means to allude to the fwallow nat' є $\xi_{0}^{\prime \prime}$ qu.

Though this was certainly the intention of this moft ingenious naturalift, it is to me very evident that the martin, and not the fwallow, was in his contemplation, becaufe he firf fpeaks of the bird's building againft windows, before he mentions chimneys, and therefore fuppofes that either place is indifferent ; which is not the cafe, becaufe the fwallow feldom builds on the fides of windows, or the martin in chimneys.

There are perhaps three or four maitins to one fwallow in all parts; and from their being the m common bird of the two, as well as from the cumftance of their building at the corner of winduws (and confequently being eternally in ear fight), nine
of the Royal Society, by the directors of the Hudfon's Bay company.

Thefe long feathers would be very :nconvenient to the hen during incubation; and they are likewife confined to the cock widow-bird, as, from their more extraordinary length, they would be fill more s_{0}.

002
 teen

[284]

teen out of twenty, when they fpeak of a fwallow, seally mean a martin *.

I only take notice of this fuppofed inacuracy in Monf. de Buffon, becaufe, if that able naturalift does not fpeak of the different forts of fwallows with that precifion which is neceffary upon fuch an occafion, why fhould he rely fo intirely upon the impoffibility of Monf. Adanfon's being miftaken?

I fhall now fate the experiment of Monf. de Buffon, to prove that the fwallow is not torpid in the winter, and muft therefore migrate to the coaft of Senegal + .

He fhut up fome fwallows (birondelles) in an ice houfe, which were there confined "plus ou moins. "de temps;" and the confequence was, that thofe which remained there the longeft died, nor could they be revived by expofing them to the fun; and, that thofe "qui n'avoient fouffert le froid de la "glaciere que pendant peu de tems" were very lively when permitted to make their efcape.

[^12]
[285]

Monf. de Buffon does not, in this account of his experiment, fate the time during which the birds were confined; but as the trial muft have been made in France, the fwallows which he procured could not be expected to be torpid either in an ice-houfe * or any other place, becaufe the feafon for their being in that ftate was not yet arrived.

I cannot alfo agree with M. de Buffon that thofe birds which were thut up the longeft time died through cold, as he fuppofes, but for want of food, as he neither fupplied them with any flies, nor, if he had, could the fwallows have caught them in the dark : a very fhort faft kills thefe tender animals, which are feeding every inftant when on the wing.

It therefore feems not to follow from this, or any other experiment, that fwallows muft neceffarily migrate (as Monf. de Buffon fuppofes) to the coaft of Senegal.

[^13]
[286]

Swallows are feen during the fummer, in every part of Europe from Lapland to the Southern coaft of Spain; nor is Europe vafty inferior in point of fize to Africa,

If fwallows therefore retreat to Africa in the winter, hould not they be difperfed over the whole Continent of Africa, juft as they are over every part of Europe?

But this moft certainly is not fo: Dr. Shaw, who was a very good naturalift and attended much to the birds in the neighbourhood of Algiers (as appears by his account of that country), makes no mention of any fuch circumftance, nor have we heard of it from any other traveller*.

It muft be admitted indeed, that Herodotus fpeaking of a part of upper Egypt (which he had never feen) fays, that kites and fwallows never leave it 中, this, however, totally differs from Monf. Adanfon's account, who informs us that they difappear in Senegal on the approach of fummer.

It feems to follow therefore, from this filence in others, that fwallows cannot be accommodated for their winter refidence in any part of that vaft continent, but in the neighbourhood of Senegal.

But this is not the whole objection to fuch an hypothefis.

* It may alfo be obferved here, that credit is in fome meafure given to M. Adanfon's eyefight, againft that of all the Englifh, French, Dutch, Portugueze, and Danes, who have been fettled not far from Senegal for above a century, many of which have fpent the greatelt part of their lives there, and whofe notice, fwallows feen during the winter, muft have probably attracted.
 p. 98. ed, Gale.

[287]

If the fwallows of Europe, when they difappear in thofe parts, retreat to the coaft of Senegal, what neceffarily follows with regard to a Lapland fwallow?

I will fuppofe fuch a bird to have arrived fafely at his winter quarters upon the approach of that feafon in Lapland; but he muft then, according both to Monf. Adanfon's and de Bufion's account, return to Lapland in the fpring, or at leaft fome other fwallow from Senegal fill his place *.

Such a bird immediately upon its arrival on the Southern coaft of Spain would find the climate and food which it defired to attain, and all proper conveniences for its neft: what then is to be is inducement for quitting all thefe accommodations which it meets, with in fuch profufion, and purhing on immediately over for many degrees of European continent to Lapland, where both martin and fwallow can procure fo few eaves of houfes to build upon? What alfo is to be the inducement to there birds, when they have arrived at that part of the Norwegian coaft which is oppofite to the Ferroe illands, to crofs degrees of fea, in order

[^14]
[288]

to build in fuch fmall fpots of land, where there are still fewer houfes?

The next fact I have happened to meet with of a bird's being feen at a confiderable diffance from the fhore, is in Mr. Forfter's lately publifhed tranflation of Kalm's account of N. America*.

We are there informed that a bird (which Kalm calls a fwallow) was feen near the fhip on the 2d of September, and, as he fuppofes, 20 degrees from the continent of America \dagger.

It appears however, by what he before ftates in his journal, that the fhip was not above 5 degrees from the ifland of Sable.

Befides, if it is contended that this was an European fwallow on its paffage acrofs the Atlantic on the 2d of September, it is too early even for a fwift, to have been on its migration, which difappears with us fooner than the three other fpecies of European fwallows \ddagger.

Only two more inflances have occurred of birds being feen in open fea that have been defcribed

* Vol. I. p. 24.
+ It may not be improper here to obferve, that in all inftances of birds being feen at fea any great diffance from the coaft, it is not improbable that they may have before fettled on fome other veffel, or perhaps on a piece of floating wreck.

By accidents of this fort, even butterflies have fometimes been caught by the failors at 40 leagues difance from any land. See Monf. I'Abté Courte de la Blanchadiere's Voyage to Brazil, Paris, $1759,21 \mathrm{mo} . \mathrm{p} \cdot 16 \mathrm{~g}$.
\ddagger The bird mentioned by $K_{a l m}$ was probably an American fwallow, forced out to fea by fome accidental florm: there are feveral fpe ies of them and they feem to bear a general affinity to thofe of Eurcpe.

[289]

with any fort of precifion, which I thall jut ftate, as I would not decline giving the beft anfwer I am able to every argument and fact which may be relied upon, by thofe who contend that birds periodically migratè acrofs oceans.

On the 30 th of March, 1751, Ofbeck, in his voyage from Sweden to China *, met with a fingle houfe fwallow near the Canary Illands, which was fo tired that it vas caught by the failors: Ofbeck alfo ftates, that though it had been fine weather for feveral preceding days, the bird was as wet as if it had juft emerged from the bottom of the fea.

If this inftance proves any thing, it is the fubmerfion and not the migration of fwallows fo generally believed in all the, northern parts of Europe. It would fwell this Letter to a mof unreafonable fize, to touch only upon this litigated point ; and I fhall, for the prefent, fupprefs what hath happened to occur to me on this controverted queftion + .

* See the lately publifhed tranflation of this voyage.
+ I will, however, mention one moft decifive fact on this head.

Mr. Stephens, A.S.S. informs me, that, when he was fourteen years of age, a pond of his father's (who was vicar of Shrivenham in Berkfire) was cleaned, during the month of February; that he picked up himfelf a clufter of three or four fwallows (or martins), which were caked together in the mud, and that he earried them into the kitchen, on which they foon afterwards flew about the room, in the prefence of his father, mother, and others. Mr. Stephens alfo told me, that his father (who was a naturalift) obferved at the time, he had read of fimilar inflances in the northern writers. This fact is alfo confirmed to me by the Reverend Dr. Pye, who was then at fchool in Shrivenham, as allo by a very fenfible land-furveyor, who now lives in the village.

Vol. LXII P P Oneck

[290]

Ofbeck afterwards, in the courfe of his voyage;. mentions, that a fwallow (indefinitely), followed the fhip, near Java, on the 24th of July, and another: on the $14^{\text {th }}$ of Auguft, in the Chinefe fea, as he. terms it.

After what I have obferved before with regard to other initances of the fame fort, I need fcarcely fay. that this naturalift does not ftate of what fpecies thefe fiwallows were; and that, from the latitudes in which they were feen, they muft have been fome of the Afiatic kinds.

I cannot, however, difmifs this article of the fwallow, without adding fome general reafons, which feem to prove the great improbability of this or any, other bird's periodically migrating over wide tracts of fea; and I the rather do it in this place, becaufe

There are feveral reafons why fwallows fhould not be frequently thus found ; ponds are feldom cleaned in the winter, as it is fuch cold work for the labourers; and the fame inftinct which prompts the bird thus to conceal itfelf, inftructs it tochoofe fuch a place of fecurity, that common accidents will not difcover it.

But the ftrongeft reafon for fuch accounts not being more numerous, is, that facts of this fort are fo little attended to; for though I was born within half a mile of this pond, and have always had much curiofity with regard to fuch facts, yet I never heard a fyllable about this very material and interefting account, till very lately.

To this fact I muft alfo add, that fwallows may be conftantly taken in the month of October, during the dark nights, whilft they fit on the willows in the Thames, and that one may almoft inftantaneoufly fill a large fack with them, becaufe at this time they will not ftir from the twigs, when you lay your hands upon them. This looks very much like their beginning to be torpid before they hide themfelves under the water.

A man near Brentford fays, that he hath caught them in this State in the eyt oppofite to that town, even fo late as November.

[291]

the fwallow is commonly pitched upon as the moft notorious inftance of fuch a regular paffage.

This feems to arife firf from its being feen in fuch numbers during the fummer, from its appearing almoft always on the wing, and from its feeding in that pofition; from which two latter circumftances it is fuppofed to be the beft adapted for fuch diftant migrations.

And firft, let us confider, from the few facts or reafons we have to argue from, what length of flight either a fwallow or any other bird is probably equal to.

A fwallow, it is true, feems to be always on the wing; but I have frequently attended, as much as I could, on a particular one; and it hath appeared to me, that the bird commonly returned to its neft in eight or ten minutes: as for extent of flight, I believe I may venture to fay, that thefe birds are feldom a quarter of mile from their mate or young ones; they feed whilft on the wing, and are perpetually turning fhort round to catch the infects, who endeavour to elude them as a hare does a greyhound.

It therefore feems to me, that fwallows are by no means equal to long flights, from their practice during their fummer refidence with us.

I have long attended to the flight of birds; and it hath always appeared to me, that they are never on the wing for amufement (as we walk or ride), but merely in fearch of food.

The only bird which I have ever obferved to fly without any particular point of direction, is the rook: thefe birds will, when the wind is high,

$$
\mathrm{P}_{\mathrm{p} 2} \quad \text { R Ride }
$$

[292]

"Ride in the whirlwind, and enjoy the itorm."
They never fly, however, at this time, from point to point, but only tumble in the air, merely for their diverfion.

It feems, therefore, that birds are by no means calculated for fights acrofs oceans, for which they have no previous practice: and they are, in fact, always fo fatigued, that, when they meet a hip at fea, they forget all apprehenfions, and deliver themfelves up to the failors.

Let us now confider another objection to the migration of the fwallow, which Monf. de Buffon fup-- pofes may crofs the Atlantic to the Line in eight days * ; and this not only from the want of reft, but of food, during the paffage.

A fwallow, indeed, feeds on the wing: but where is it to find any infects, whilt it is flying over a wide expanfe of fea? This bird, therefore, if it ever attempted fo adventurous a paffage, would foon feel a want of food, and return again to land, where it had met with a conftant fupply from minute to minute.

I am aware it may be here objeited, that the fwallow leaves us on the approach of winter, when foon no tlying infects can be procured: but I fhall hereafter endeavour to fhew, that there birds are then torpid, and, confequently, can want no fuch food.

Another objection remains to the hypothefis of migration, which is, that birds, when flying from

* Difcours fur la nature des oifeaux, p. 32 .

[293]

point to point, endeavour always to have the wind againft them *, as is periodically experienced by the London bird-catchers, in March and October, when they lay their nets for finging birds \dagger.

The reafon, probably, for birds thus flying againft the wind is, that their plumage may not be ruffled, which indeed I have before had occafion to mention.

Let us fuppofe, then, a fwallow to be equal to a paflage acrofs the Atlantic in other refpects; how is the bird to be infured of the wind's continuing for days in the fame quarter; or how is he to depend upon its continuing to blow againft his flight with moderation? for who can fuppofe that a fwallow can make his way to the point of direction, when buffeted by a form blowing in the teeth of his intended paffage + ?

Lafty, can it be conceived that thefe, or any other birds, can be impelled by a providential inftinct, regularly to attempt what feems to be attended with fuch infuperable difficulties, and what mof frequently leads to certain defruction?

But it will ftill be objected, that as fwallows re. gularly appear and difappear at certain feafons, it is incumbent upon thofe who deny their migration, to

[^15]
$[294]$

Shew what becomes of them in Europe during our winter.

Though it might be anfwered, that it is not neceffary, thofe who endeavour to fhew the impoffibility of another fyftem or hypothefis, fhould from thence be obliged to fet up one of their own; yet-I fhall, without any difficulty, fay, that I at leaft am convinced fwallows (and perhaps fome other birds) are torpid during the winter.

I have not, I muft own, myfelf ever feen them in this ftate ; but, having heard inftances of their being thus found, from others of undoubted veracity, I have not fcarcely the leaft doubt with regard to this point.

It is, indeed, rather difficult to conceive why fome ornithologifts continue to withhold their affents to fuch a cloud of witneffes, except that it perhaps contradicts a favourite hypothefis which they have already maintained.

Why is it more extraordinary that fwallows fhould be torpid during the winter, than that bats are found in this fate, and fo many infects, which are the food of fwallows?

But it may be faid, that as the fwallows have crowded the air during the fummer, in every part of Europe fince the creation, and as regularly difappear in winter, why have not the inftances of their being found in a torpid ftate been more frequent?

To this it may be anfwered, that though our globe may have been formed fo many centuries, yet the inhabitants of it have fcarcely paid any attention to the ftudy of natural hiftory, but within thefe late years.

[295]

As for the ancient Greeks and Romans, their drefs prevented their being fo much in the fields as we are; or, if they heard of a rather extraordinary bird in their neighbourhood; they had not a gun to fhoot it : the only method of attaining real knowledge in natural hiftory, depends almoft entirely upon the having frequent opportunities of thus killing ani-mals, and examining them when dead.

If they did not ftir much in their own country, much lefs did they think of travelling into diftant regions; want of bills of exchange, and of that curiofity which arifes from our being thoroughly acquainted with what is near us at home, probably occafioned this; to which may alfo be added, the want of a variety of languages : fcarcely any Greek feems to have known more than his own tongue, nor Roman more than two *:

Ariftotle, indeed, began fomething like a fyftem of natural hiftory, and Pliny put down, in his common place-book, many an idle ftory; but, before the invention of printing, copies of their works could not be fo generally difperfed; as to occafion much attention to what might be interefting facts for the natural hiftorian.

In the fixteenth century; Gefner, Belon; and Aldrovandus, publifhed fome materials, which might be of ufe to future naturalifts; but, in the feventeenth, Ray and Willoughy firf treated this extenfive branch of fudy, with that clearnefs of method,

[^16]
[296]

perpicuity of defcription, and accuracy of obfervation, as hath not, perhaps, been fince exceeded.

The works of thefe great naturalifts were foon difperfed over Europe, and the merit of them acknowledged; but it fo happened, that Sir Ifaac Newton's amazing difcoveries in natural philofophy making their appearance about the fame time, engaged entirely the attention of the learned.

In procels of time, all controverfy was filenced by the demonftration of the Newtonian fyftem ; and then the philofophical part of Europe naturally turned their thoughts to other branches of fcience.

Since this period, therefore, and not before, natural hiftory hath been ftudied in moft countries of Europe; and confequently, the finding fwallows in a ftate of torpidity, or on the coaft of Senegal, during the winter, begins to be an interefting fact, which is communicated to the world by the perfon who obferves it.

To this I may add, that the common labourers, who have the beft chance of finding torpid birds, have fcarcely any of them a doubt with regard to this point ; and confequently, when they happen to fee them in this flate, make no mention of it to others; becaufe they confider the difcovery as neither uncommon or interefting to any one.

Molyneux, therefore, in the Philofophical Tanfactions ${ }^{*}$, informs us, that this is the general belief of the common people of Ireland, with regard to land-rails; and I have myfelf received the fame anfwer from a perfon who, in December, found wwallows torpid in the fump of an old tree.

* Phil, Tranfo abr. Vol, II, p. 853°

Another

[297]

Another reafon why the inftances of torpid fwallows may not be expected fo frequently, is, that the inftinct of fecreting themfelves at the proper feafon of the year, likewife fuggefts to them, it's being neceffary to hide themfelves in fuch holes and caverns, as may not only elude the fearch of man, but of every other animal which might prey upon them; it is not therefore by any common accident that they are ever difcovered in a fate of torpidity.

Since the fudy of natural hiftory, however, hath become more general, proofs of this fact are frequently communicated, as may appear in the Britih Zoology *.

That it may not be faid, however, I do not refer to any inftance which deferves credit, if properly fifted, I beg leave to cite the letter from Mr. Achard to Mr. Collinfon, printed in the Philofophical Tranfactions + , from whence it feems to be a moft irrefragable fact, that fwallows \ddagger are annually difcovered in a torpid ftate on the banks of the Rhine. I fhall alfo refer to Dr. Birch's Hiftory of the Royal Society $\|$, where it is ftated, that the celebrated Harvey diffected

* See Vol. II. p. 250. Brit, Zool. ill. p. 13, 14. As alfo Mr. Pennant's Tour in Scotland, p. 199-
+1763 , p. ıor.
\ddagger "S Swallows or martins," are Mr. Achard's words, which I the rather mention, becaufe Mr . Collinfon complains that the fpecies is not fpecified.

Mr. Collinfon himfelf had endeavoured to prove, that fand martins are not torpid, Phil. Tranf. 1760 , p. 109, and concludes his letter, by fuppofing that all the fwallow tribe migrates, therefore the fwift is the only fpecies remaining; for his friend Mr . Achard fhews to demonftration, that fwallows or martins are torpid; he does not, indeed, precifely ftate which of them.
$\|$ Vol. IV. p. 537.
Vol. LXII.
Qq. fome,

[298]

fome, which were found in the winter, under water, and in which he could not obferve any circulation of the blood *.

Afluming it, therefore, from there facts, that fwallows have been found in fuch a ftate, I would afk the partifans of migration, whether any inftance can be produced where the fame animal is calculated for a fate of torpidity and, at the fame time of the year, for a flight acrofs oceans?

But it may be urged, poffibly, that if fwallows are torpid when they difappear, the fame thing fhould happen with regard to other birds, which are not feen in particular parts of the year.

To this I anfwer, that this is by no means a neceffary inference: if, for example, it fhould be infifted that other birds befides the cuckow are equally carelels with regard to their eggs, it would be immediately allowed that the argument arifing from

[^17]
[299]

fuch fuppofed analogy could by no means be relied upon *.

It is poffible, however, that fome other birds, which are conceived to migrate, may be really torpid as well as fwallows; and if it be afked why they are not fometimes alfo feen in fuch a fate during the winter, the anfwer feems to be, that perhaps there may be a thoufand fwallows to any other fort of bird, and that they commonly are found torpid in clufters.

[^18] in the fact.

During the prefent fummer, however, a girl brought a full feathered young cuckow to a gentleman's houfe, where I happened to be, who faid, that it had been for feveral days before fed by another bird of equal fize with itfelf; which therefore could not be a hedge-fparrow, or other fmall bird, but the parent cuckow.

I have alfo lately been favoured, by Mr. Pennant, with the following extract from a manufcript of Derham's on inftinct.
"The Rev. Mr. Stafford was walking in Gloffop-dale in the "Peak of Derbyfhire, and faw a cuckow rife from its neft, " which was on the flump of a tree, that had been fome time " felled, fo as much to refemble the colour of the bird. In "s this neft were two young cuckows, one of which he " faftened to the ground, by means of a peg and line, and very " frequently, for many days, beheld the old cuckow feed thefe " her young ones."

It is not impoffible, therefore, that this moft general opinion will turn out like the fuppofed effects of the venom of the tarantula; and, indeed, it is difficult to conceive how fo fmall a bird as a hedge-fparrow can feed a cuckow: it is alfo remarkable, that the witneffes often vary about the fpecies of fmall bird thus employed.

It is poffible, however, that the cuckow (though it may not hatch its young) may feed them, when grown too large for the fofter parent.

$$
\mathrm{Qq}_{2} \quad \text { If }
$$

[300]

If a fingle bird of any other kind happens to be feen in the winter, without motion or apparent warmth, it is immediately conceived that it died by fome common accident.

I hall, however, without any referve, fay, that I rather conceive the notion which prevails with regard to the migration of many birds, may moft commonly arife from the want of obfervation, and ready knowledge of them, when they are feen on the wing, even by profeffed ornitholegifts.

It is an old faying, that " a bird in the hand is " worth two in the bufh;" and this holds equally with regard to their being diftinguifhed, when thofe even who ftudy natural hiftory, have but a tranfient fight of the animal *.

If, therefore, a bird, which is fuppofed to migrate in the winter, paffes almoft under the nofe of a Linnæan, he pays but little attention to it, becaufe he cannot examine the beak, by which he is to clafs the bird. Thus I conceive, that the fuppofing a nightingale to be a bird of paffage arifes from not readily diftinguifhing it, when feen in a hedge, or on the wing \dagger.

This bird is known to the ear of every one, by its moft ftriking and capital notes, but to the eye of very

[^19]
[301]

few indeed; becaufe the plumage is dull, nor is there any thing peculiar in its make.

The nightingale fings perhaps for two months *, and then is never heard again till the return of the fpring, when it is fuppofed to migrate to us from the continent, with redftarts, and feveral other birds.

That it cannot really do fo, feems highly probable, from the following reafons.

This bird is fcarcely ever feen to fly above twenty yards, but creeps at the bottom of the hedges, in fearch of maggots, and other infects, which are found in the ground.

If the fwallow is not fupplied with any food during its paffage acrofs oceans, much lefs can the nightingale be fo accommodated; and I have great reafon to believe, from the death of birds in a cage, which have had nothing to eat for twenty-four hours, that thefe delicate and tender animals cannot fupport a longer faft, though ufing no exercife at all.

To this I may alfo add, that thofe birds which feed on infects are vaftly more feeble than thofe whofe bills can crack feed, and confequently, lefs capable of bearing any extraordinary hardfhips or fatigue.

But other proofs are not wanting, that this bird cannot migrate from England.

[^20]
[302]

Nightingales are very common in Denmark, Sweden, and Ruffia *, as alfo in every other part of Europe, as well as Afia, if the Arabic name is properly tránflated.

Now, if it is fuppofed that many of thefe birds which are obferved in the fouthern parts of England, crofs the German fea, from the oppofite coaft of the continent; why does not the fame inftinct drive thofe of Denmark to Scotland, where no fuch bird was ever feen or heard \dagger ?

But thefe are not all the difficulties which attend the hypothefis of migration ; nightingales are agreed to be fcarcely ever obferved to the weftward of Dorfethire, or in the principality of Wales \ddagger, much lefs in Ireland.

I have alfo been informed, that thefe birds are not uncommon in Worcefterfhire, whereas they are exceflively rare (if found at all) in the neighbouring county of Hereford.

Whence, therefore, can it arife, that this bird fhould at one time be equal to the croffing of feas, and at other times not travel a mile or two into an adjacent county? Does it not afford, on the other hand, a ftrong proof, that the bird really continues

[^21]
[303]

on the fame fpot during the whole year, but happens not to be attended to, from the reafons I have before fuggefted?

I am therefore convinced, that if I was ever to live in the country during the winter, I hould fee nightingales, becaufe I hould be looking after them, and I am accordingly informed, by a perfon who is well acquainted with this bird, that he hath frequently obferved them during this feafon*.

If it be afked, why the nightingales are all this time mute? the anfwer is, that the fame filence is experienced in many other birds, and this very mutenefs is, in part the caufe why the bird is not attended to in winter.

I muft now afk thofe who contend for the migration of a nightingale, what is to be its inducement for croffing from the continent to us? a fwallow, indeed, may want flies in winter, if it ftays in England; but a nightingale is juft as well fupplied with infects on the continent, as it can be with us after its paffage + . I muft alfo afk, in what other part of

* I find they have alfo been feen in France during the winter. See a treatife, intitled, Aëdologue, Paris 1751. p. 23.
+ I have omitted the mention of a more minute proof, that this bird cannot migrate from the continent, from the having kept them for fome years in a cage, and having been very attentive to their fong.

Kircher (in his Mufurgia) hath given us the nightingale's notes in mufical characters, from which it appears that the fong of a German nightingale differs very materially from that of an Englifh one: now, if there was a communication by migration between the continent and England, the fong of thefe birds would not fo materially differ, as I may, perhaps, fhew, by fome experiments I have made, in relation to the notes of birds.

I have before mentioned, that Mr. Fletcher, who was embarfador from England to Ruffia in the time of Queen Elizabeth, the

[304]

the world this bird is feen during the winter? muft it migrate to Senegal with the fwallow?

I am perfuaded likewife, that the cuckow never migrates from this inland any more than the nightingale: this bird is either probably torpid in the winter, or otherwife is miftaken for one of the fmaller kind of hawks * which it would be likewife in the fpring, was it not for its very particular note at that time, and which only lafts during courthip, as it does with the quail.

If there is fine weather in February, this bird fometimes makes this fort of call to its mate, whilft it is fuppofed to continue ftill on the continent.

An inftance is mentioned by Mr . Bradley 中, of not only a fingle cuckow, but feveral, which were heard in Lincolnhhire, during the month of $\mathrm{Fe}-$ bruary; and that able naturalift Mr. Pennant informs me, another was heard near Hatcham in Shrophire, on the 4th of February in the prefent year \ddagger.
obferved that the fong of the Ruffian nightingale differed from that of the Englifh.

* Mr. Hunter, F. R. S. informs me, that he hath feen cuckows in the ifland of Belleifle during the winter, which is not fituated fo much to the fouthward, as to make it improbable that they may equally continue with us.
+ Works of Nature, p. 77.
\ddagger Mr. Pennant received this account from Mr. Plimly, of Longnor in Shrophise.

Thus likewife Mr. Edwards informs us, that the fea fowls near the Needles, which are commonly fuppofed to migrate in winter, appear upon the weather's being very mild. Effays, p. 197.

[305]

It is amazing how much the being interefted to difcover particular objects contributes to our readily diftinguifhing them.

I remember the being much furprized that a greyheaded game-keeper always faw the partridge on the ground before they rofe, when I could not do the fame:- He told me, however, that the reafon was, I lived in a time when the fhootor had no occafion to give himfelf that trouble.

He then further explained himfelf, by faying, that when he was young, no one ever thought of aiming at a bird when on the wing, and confequently they were obliged to fee the game before it was fprung. He added, that from this neceffity he could not oniy diftinguilh partridges, but fnipes and woodcocks, on the ground.

Another inftance of the fame kind, is the great readinefs with which a perfon, who is fond of courfing, finds a hare fitting in her form: thofe, however, who are not interefted about fuch fport, can farcely fee the hare, when it is under their nofe, and pointed out to them.

But more apparent objects efcape cur notice, when we are not interefted about them.

Afk any one, who hath not a botanical turn, what he hath feen in paffing through a rich meadow, at the time it is moft enamelled with plants in flower; and he will tell you, that he hath obferved nothing but grafs and daifies. If moft gardeners even are in like manner afked whether the flowers of a bean grow on every fide of the ftalk, they will fuppofe that they do,

Vol. LXH. \quad Rr wherea

[306]

whereas they, in reality, are only to be found on: one fide.

The mouths of flounders are often turned different ways, which one would think could not well efcape the obfervation of the London fifhmongers; yet; upon afking feveral of them whether they had attended to this particular, I found they had not, till I thewed them the proof in their own hops.

A fifhmonger, however, knows immediately. whether a fiif is in good eating order or not, on the firt infpection; becaule this is a circumftance which interefts him.

I fhall, however, by no means fupprefs two arguments in favour of migration, which feem to require. the fulleft anfwer that can be given to them.

The firft is, that there are certain birds, which appear during the winter, but difappear during the fummer; and it may be afked, where fuch birds can be fuppofed to breed, if they do not migrate from this illand.

There birds are in number four, viz: the fnipe ${ }_{2}$. woodcock, redwing, and fieldfare...

As for the fnipe, I have a very fhort anfwer to give to the objection, as far as it relates to this bird; becaufe it conftantly breeds in the fens of LincolnAhire, Wolmar foreft, and Bodmyn downs; it is therefore highly probable, that it does the fame in almoft every county of England.

1 muftown, however, that, till within thefe few years, I conceived the neft of a fnipe was as rarely feen in England, as that of a woodcock or fieldfare; and that able ornithologift Mr. Edwards fuppofes this to

[307]

be the fact, in the late publication of his ingenious Effays on Natural Hiftory ${ }^{\text {* }}$.

Woodcocks likewife are known to build in fome parts of England every year; but, as the inftances are commonly thofe of a fingle neft, I would by no means pretend to draw the fame proof againft the fummer migration of this bird, as in the former cafe of the fnipe.

I will moif readily admit, that thefe accidental facts are rather to be accounted for, perhaps, from the whimfy or fillinefs of a few birds, which occafions their laying their eggs in a place where they are eafily difcovered, and contrary to what is ufual with the bulk of the fpecies.

I remember to have feen a 'duck's neft once on the top of a pollard willow, near the decoy in St. James's Park ; it would not be, however, fair to infer from fuch an inftance, that all ducks would pitch upon the fame very improper fituation for a neft, upon which it is difficult to conceive how a webfooted bird could fettle.

Some filly birds likewife now and then choofe a place for building, which cannot efcape the obfervation of either man or beaft, as he paffes by.

I therefore fuppofe that the few proofs of woodcocks nefts having been found in England, arife either from one or other of thefe two caules, and all which they feem to prove is, that our climate in fummer is not abfolutely improper for them.

It is to be oblerved, however, that Mr. Catefly confiders fuch inftances as of equal force againft the

[^22]
[. 308]

migration of the woodcock, as of the fnipe *. Willughby alfo fays, that Mr. Jeflop faw young woodcocks fold at Sheffield (which rather implies a certain number being brought to market), and that others had obferved the fame elfewhere + .

We are, indeed, informed by Scopoli \ddagger, that they breed conftantly in Carniola, which is confiderably to the fouthward of any part of England: our. country is therefore certainly not too hot for them.

Woodcocks appear and difappear almoft exactly about the fame time in every part of Europe, and perhaps Africa || : heat and cold, therefore, feem not to have any operation whatfoever with regard to. the fuppofed migration of this bird.

But it may be faid, what fignifies proving the probability of woodcocks breeding in England, if is. is not a known fact that they do fo?

To this it fhould feem there are feveral anfwers, as it is equally incumbent upon thofe who contend for migration, to fhew that thefe birds were ever feen on. fuch paffage.

A nother anfwer is, ak ninety-nine people out of a hundred, whether finipes ever male a neit in Enggland; and they will immediately fay, that they do not ; fo little are facts or obfervations of this fort attended to.

But I hall now endeavoui to give fome other reafons why woodcocks may not only continue with us.

```
* Phil. Tranf. abr. Vol. II. p. 88g.
+ B. iif.c.1.
$ Ornith. Leipfig, 5769.
1.Shaw's Trav. Phyto Obfo cho ii. .
```


[309]

diring the fummer, but alfo breed in large tracts of wood or bog, without being obferved.

In the other parts of Europe, all birds almoft are confidered as game, or, at leaft, are eaten as wholefome food, Ray therefore mentions, that hawks and owls are fold by the poulterers at Rome; every fort of fmall bird alfo is equally the foreign fowler's object *.

An Englifhman does not confider, on the other hand, perhaps twelve kinds of birds worthy his attention, or expence of powder, none of which are ever fhot in our woods during the fummer, nor are birds then dilurbed by felling either coppice or timber.

But it will be faid, why are not woodcocks fometimes feen, however, as they may be fuppofed to leave their cover in fearch of food?

To this I anfwer, that woodcocks fleep always in the daytime, whilf with us in the winter, and feed only during the night + . Whenever a woodsock, therefore, is flumed, he is roufed from his fleep by the fpaniel or foortiman, and therr takes wing, becaule there'are no leaves on the trees to conceal the bird.

Whoever hath looked attentively at a woodcosk's cye, mut fee that, from the appearance of it, the

[^23]
$[3 \mathrm{KO}]$

fight muft be more calculated to diftinguin objects by night than by day＊＊

The fact therefore is notorious to thofe who cut glades in their woods，and fix nets for catching thefe birds，that they never fir but as it begins to be dark， after which they return again by day－break，when their fight even then is fo indifferent，that they ftrike againft the net，and thus become entangled．

No one with us ever thinks of fixing or attending fuch nets in fummer for woodcocks，becaufe it is not then fuppofed that there is any fuch bird in the ifland；if they tried this experiment，however，I muft own that I believe they would have fport ψ ．

Mr．Reinhold Forfter，F．R．S．who is an able naturalift，informs me，that the fowlers in the neigh bourhood of Dantzick kill many woodcocks about St． John＇s day（or Midfummer），in the following man－
＊I conceive alfo，it is from the eyes looking fo dull，that this bird is generally confidered as being fo foolifh ：hence the Africans call the woodcock bammar el badgel，or the partidge＇s afs．Shaw＇s Phyf．Obf。 ch。ii。

+ I would afk thofe who will probably laugh at the very idea of fuch fport（which I do not，however，abfolutely infure），whe－ ther，if I was to fend them to any part of the Britifh coaft to catch the true anchovy，or tunny fifi，they would not fuppofe equally that it was a fool＇s errand．

Notwithftanding，however，this incredulity，I can produce the authority of both Ray（Syn．Pilc．p．107．）and Mr．Pen－ nant（Brit．Zool．ill．p．34．36．），that the true anchovy is caught in the fea not far from Chefter，and the tunny finh on the coaft of Argylehire，together with the herrings，where they are called nackrel fure．

Is it not amazing，however，that a fifli of fuch a fize as the tunny fhould never have been heard of，even by the Scotch na－ suralif Sir Robert Sibbald？

[317]

ner, and that they continue to do fo till the month of Auguft.

They wait on the fide of fome of the extenfive woods in that neighbourhood, before day-break, for the return of the woodcock from his feeding in the night-time, and always depend upon having a very good chance of thus fhooting many of them.

The Dantzickers, however, might be employed the whole fummer near thefe woods in the daytime, without ever feeing fuch a bird; and it feems therefore not improbable, that it arifes from our not waiting for thens at twilight or day-break, that they are never obferved by Englifhmen in the fummer. If this bird fhould, however, be feen in the night, it is immediately fuppofed to be an owl, which a woodcock does not differ much from in its flight.

To thefe reafons for woodcocks not being obferved, it may be added, that the bird is believed to be abfolutely mute, and confequently, never difcovers itfelf by its call.

If it be ftill contended, that the neft or young muft fometimes be fumbled upon, though in the centre of extenfive woods, or large bogs, the fifkin (or aberdavine ${ }^{*}$) is a much more extraordinary inftance of concealing its neft and young.

The plumage of this bird is rather bright than otherwife; and the fong, though not very pleafing, yet is very audible, both which circumftances fhould difcover it at all times; yet Kramer \dagger informs us, that, though immenfe numbers breed annually on:

[^24]
$[312]$

the banks of the Danube, no one ever obferved the neft.

This bird is rather uncommon in England; fo that if 1 afk when the neft was ever found within the verge of the illand, it may be confidered as rather an unfair challenge.

There is another bird, however, called a redpoll *, which is taken in numbers during the Michaelmas and March flights by the London bird-catchers, whofe neft, I believe, was never difcovered in England, though I have feen them in pairs during the fummer, both in the mountainous parts of Wales and hightands of Scotland + .

But I ball now mention another proof that woodcocks breed in England.

The Reverend Mr. White, of Selborn, who is not only a well-read naturalif, but an active fportiman, informs me, that he hath frequently killed woodcocks in March, which, upon being opened, had the rudiments of eggs in them, and that it is urual at that time to fluh them in pairs. Willughby allo obferves the famet.

This bird, therefore, certainly pairs before its fuppofed migration; and can it be corceived that this frict union (which birds in a wild ftate fo faithfully adhere to) II, fhould take place before they

* Brit. Zool. p. 312.

+ This eiegant little bird is very common in Hudfon's Bay, where it feeds chiefly on the birch trees; which being more cummon in the northern than fouthern parts of Great Britain, may account for the bird's being more often feen northward.
\pm B. III. c. i.
If It is believed that no mule-hird was ever feen in a wild Itate, notwithifandiag M. de Buffon furpects many an intrigue
traverfe

[3I3]

traverfe oceans, and when they cannot as yet have pitched upon a proper place for concealing their neft and neflings?

Let us examine if this intercourfe before migration takes place in other birds, which are fuppofed to crofs wide extents of fea: and a quail affords fuch proof.

I have been prefent when thefe birds have been caught in the fpring, which always turn out to be males, and are enticed to the nets by the call of the hen; quails therefore pair after they appear in England.

But I fhall now confider the other two inftances of birds which are feen with us in the winter, and are not obferved in the fummer; I mean, the fieldfare and redwing.

And firft, let us examine, where thefe birds are actually known to breed: the northern naturalifts fay; in Sweden; Klein, in the neighbourhood of Dantzick, which is only in lat. $54^{\circ} 30^{\prime}$; and WilIughby, in Bohemia.
in the receffes of the woods (Hift. Nat. des . Oifeaux, tom. I) fuch irregular intercourfe is only obferved in cages and aviaries, where birds are not only confined, but pampered with food.

* See Klein, de Avibus Erraticis, p. 178. Klein, however, cites Zornius, who lived in the fame part of Germany, and who afferts that the turdus lliavas (or redwing) leaves thole parts in the fpring. The circumftance therefore of the redwing's breeding in numbers (per multitudines) had efcaped the notice of Zornius, though he hath written a differtation on this - ueftion.

Is it at all furprizing, after this, that fuch difcoveries, if made at all, thould not be commonly heard of?
Vol. LXII.
S s,
As

[314]

As they therefore build their neft in more Southern parts of Europe, there is certainly no natural impofibility of their doing fo with us, though, I muft own, I never yet heard but of one inftance, which was a fieldfare's neft found near Paddington *.

I cannot, however, but think it is only from want of obfervation, that more of fuch nefts have not been difcovered, which are only looked after by very young children; and the chief object is the eggs, or neftlings, not the bird which lays them t.

The plumage therefore and flight of the fieldfare -or redwing being neither of them very remarkable, it is not at all improbable they may remain in fummer, without being attended to; and particularly the redwing, which fcarcely differs at all in appearance from other thrufhes. Thus the cough is by no means peçuliar to Cornwall, as is commonly fuppofed, but is miftaken for the jackdaw, or rook.

But it may be faid, that thefe birds fly in flocks during the winter, and if they remain here during the fummer, we fhould fee them equally congregate.

I have not before referred to Klein, who hath written a very able treatife, in which he argues againft the poffibility of migration in birds; becaufe, though I fhould be very happy to fupport my poor opinion by his authority, yet I thought it right neither to repeat his facts, or arguments.

* See alfo Harl. Mifc. Vol. II. p. 56 r.
+ Many birds alfo build in places of fuch difficult acceefs, that boys cannot climb to ; birds nefting is confined alnoft entirely to hedges, and low fhrubs.

'This

[315]

This circumftance, however, is by no means peculiar to the fieldfare and redwing; moft of the hardbilled finging birds do the fame in winter, but feparate in fummer, as it is indeed neceffary all birds fhould during the time of breeding.

I fhall now confider another argument in favour of migration, which I do not know hath been ever infifted upon by thofe writers who have contended for it, and which at firft appearance feems to carry great weight with it.

There are certain birds, which are fuppofed to vifit this ifland only at diftant intervals of years; the Bohemian chatterer and crofs-bill * (for example) once perhaps in twenty.

The fact is not difputed; that fuch birds are not commonly obferved in particular fpots from year to year; but this may arife from two caufes, either a partial migration within the verge of our ifland, or perhaps more frequently from want of a ready knowledge of birds on the wing, when they happen to be feen indeed, but cannot be examined.
I never have difputed fuch a partial migration; and: indeed I have received a moft irrefragable proof of fuch a flitting, from the Rev. Mr. White of Selborn. in Hamphhire, whofe accurate obfervations I have be fore had occafion to argue from.

[^25]
[316]

The rock (or ring-ouzel) hath always hitherto been confidered as frequenting only the more mountainous parts of this ifland: Mr. White, however, informs me that there is a regular migration of thefe birds, which flock in numbers, and regularly vifit the neighbourhood of Selborn, in Hampthire *.

I therefore have little doubt but that they equally appear in others of our Southern counties; though it elcapes common obfervation, as they bear a fort of general refemblance to the black-bird, at leaft to the hen of that fpecies.

I own alfo, that I always conceived the Bohemian chatterer was not obferved in Great Britain but at very diftant intervals of years, and then perhaps only a fingle bird, whereas Dr. Ramfey (profeffor of natural hiftory at Edinburgh) informs Mr. Pennant, that flocks of thefe birds appear conftantly every year in the neighbourhood of that city + .

As for crofs-bills, they are feen more and more in different parts of England, fince there have been fo many plantations of firs: this bird is remarkably fond of the feeds of thefe trees, and therefore changes its place to thore parts where it can procure the greateft plenty of fuch food *.

> * See alfo Br. Zool. Tll. p. 56 .
> + Thefe birds are faid to be paricularly fond of the ben. ries of the mountain-afh, which is an uncommon tree in the Southern parts of Great Britain, but by no means fo in the North.
> \ddagger This bird thould alfo, for the fame reafon, be found from year to year in the cyder counties, if it was true (as is commonly fuppofed) that he is particularly fond of the kernels of

[317]

This flitting therefore by no means amounts to a total and periodical migration over feas, but is no more than what is experienced with regard to feveral birds.

For example, the Britifh Zoology informs us *, that, at an average, 4050 dozen of larks are fent up from the neighbourhood of Dunftable, to fupply the London markets; nor do I hear, upon inquiry, that there is any complaint of the numbers decreafing from year to year, notwithftanding this great confumption.

I hould not fuppofe that 50 dozen of fkylarks are caught in any other county of England ; and it fhould therefore feem that the larks from the more adjacent parts croud in to fupply the vacuum occafioned by the London Epicures, which may be the caule poffibly of a partial migration throughout the whole ifland.

I begin now to approach to fomething like a conclution of this (1 fear) tedious differtation: I think, however, that I fhould notomit what appears to me at leaft as a demonftration, that one bird, which is commonly fuppofed to migrate acrofs feas, cannot poffibly do fo.
apples, which it is conceived he can inftantly extract with his very fingular bill.

Mr. Tunftall, F.R.S. however, at my defire, once placed an apple in the cage of a crofs-bill, which he had kept for fome time in his very valuable and capital collection of live birds: upon examining the apple a fortnight afterwards, it remained untouched.

* P. 235°

[318]

A landrail *, when put up by the fhooter, never flies 100 yards; its motion is exceffively flow, whilft the legs hang down like thofe of the water fowls which have not web feet, and which are known never to take longer flights.

This bird is not very common with us in England, but is exceffively fo in Ireland, where they are called corn-creaks.

Now thofe who contend that the landrail, becaufe it happens to difappear in winter, muft migrate acrofs oceans, are reduced to the following dilemma.

They muft firft either fuppofe that it reaches Ireland periodically from America; which is impoffible, not only becaufe the paffage of the Atlantic includes fo many degrees of longitude, but becaufe there is no fuch bird in that part of the globe.

If the landrail therefore migrates from the continent of Europe to Ireland, which it muft otherwife do, the neceflary confequence is, that many muft pafs over England in their way Weftward to Ireland; and why do not more of thefe birds continue with us, but, on the contrary, immediately proceed acrofs the St. George's channel?

Whence hould it arife alfo, if they pafs over this. ifland periodically in the fpring and autumn, that they are never obferved in fuch paffage, as I have already ftated their rate in flying to be exceffively flow ; to which I may add, that I never faw them. rife to the height of twenty yards from the ground. nor indeed exceed the pitch of a quail.

[^26]I have

[319]

I have now fubmitted the beft anfwers that have occurred, not only to the general arguments for the migration of birds acrofs oceans, but alfo to the particular facts, which are relied upon as actual proofs of fuch a regular and periodical paffage.

Though I may be poffibly miftaken in many of the conjectures I have made, yet I think I cannot be confuted but by new facts, and to fuch frefh evidence, properly authenticated, I fhall moft readily give up every point, which I have from prefent conviction been contending for.

I may then perhaps alfo flatter myfelf, that the having expreffed my doubts with regard to the proofs hitherto relied upon, in fupport of migration, may have contributed to fuch new, and more accurate obfervations.

It is to be wifhed, however, that thefe more convincing and decifive facts may be received from illanders (the more diftant from any land the better*) and not from the inhabitants of a continent; as it does not feem to be a fair inference, becaufe certain birds leave certain fpots at particular times, that they therefore migrate acrofs a wide extent of fea.

For example, ftorks difappear in Holland during the winter, and they have not a very wide tract of fea between them and England; yet this bird never frequents our coafts.

[^27]
[320]

The fork, however, may be truely confidered as a bird of paffage, by the inhabitants of thofe parts of Europe (wherever fituated) to which it may be fuppofed to refort during the winter, and where it is not feen during the fummer.

I am, dear Sir ,
Your moft faithfut,
humble fervant,

Daines Barringtom?
P. Si

[32 I]

P. S.

SINCE I fent to you my very long letter on the migration of birds, I have had an opportunity of examining the "Planches Enluminées," which are 〔aid to be publihed under M. de Buffon's infpection, and which feem to afford a demonftration of M . Adanfon's inaccuracy in fuppofing either the roller, or fwallows, which he caught in his flip, near the coaft of Senegal, to be the fame with thofe of Europe.

In the 8th of thefe plates, there is a coloured figure of a bird, called le rollier d'Angola, which agrees exactly with M. Adanfon's defcription *; but he trufted too much to his memory, when he pronounced it to be the fame with the Garrulus Argentoratenfis of Willughby, and therefore fuppofed it to be on its paffage to Europe.

This bird hath, indeed, in many refpects, a very flrong refemblance to the common roller of Europe, which is reprefented alfo in the Planches Enluminées, plate 486 ; but it differs moft materially in the length of the two exterior feathers of the tail, as well as in the colour of the neck, which in the African roller is of a moit bright green, and in the European of rather a dull blue.

In the 310 th plate, there is likewife a coloured reprefentation of the "Hirondelle a ventre roux du "Senegal," which fpecimen was poffibly furnifhed by Monf. Adanfon himfelf.

[^28]
[322]

It very much refembles the European fwallow, but the tail differs, as the forks (in the Senegal fpecimen) taper from the top of the two exterior feathers to the bettom, at three regular divifions, whereas in the European they are nearly of the fame width throughout.
The convincing proof, however, that the " Hi" rondelle a ventre roux du Senegal" differs from our chimney fwallow is, that the rump is entirely covered with a bright orange or chefnut, which ir the European fwallow " is of a very lovely but dark " purplifh blue colour **"
Having lately looked into Ariftotle's Natural Hiflory, with regard to the cuckow, I take this opportunity alfo of enlarging on the doubts I have thrown out, in relation to the prevailing notion of this bird's. nefllings being hatched and fed by fofter parents.

1 find that this moft general opinion takes its rife from what is faid by this father of natural hiftory, in his ninth book, and twenty-ninth chapter.

Ariftotle there afferts, that the cuckow does not build a neft itfelf, but makes ufe moft commonly of thofe of the wood-pigeon, hedge-fparrow, lark, (which he adds are on the ground); as well as that of the $\chi^{\lambda \text { apps }} \boldsymbol{t}$, which is in trees.

Now, if we take the whole of this account together, it is certainly not to be depended upon; for: the wood-pigeon \ddagger and hedge-fparrow do not build: upon the ground, and no one ever pretended to have

* See Willughby, p. 312.
+ The $\chi^{\text {nusss }}$ is rendered luteola; but, as there is no defcription, it is difficult to fay what bird Ariftotle here alludes to: Zinanni fuppofes it to be the greenfinch.
\ddagger The wood-pigeon, from its fize, feems to be the only bird which is capable of hatchinge or feeding, the joung cuctound.

[323]

found a cuckow's egg in the neft of a lark, which, indeed, is fo placed.

I have before obferved, that the witneffes often vary with regard to the bird in which the cuckow's egg is depofited *; and Arifotle himfelf, in the feventh chapter of his fixth book, confines the fofterparents to the wood-pigeon and hedge-fparrow, but chiefly the former.

If the age + of Ariftotle is confidered, when he began to collect the materials for his Natural Hiftory, by the encouragement of Alexandér after his cons quefts in India $\underset{\underset{\psi}{+} \text {, it is highly improbable he hould }}{ }$ have written from his own obfervations. He therefore feems to have haftily put down the accounts of the perfons who brought him the different fpecimens from moft parts of the then known world.

Inaccurate, however, and contradictory as thefereports often turn out, it was the beft compilation which the ancients could have recourfe to; and Pliny
kow; yet, if it is recollected that this bird lives on feeds, it is probable that the cackow, whofe nourifhment is infects, would either be foon ftarved, or incapable of digefting what was brought by the fofter-parent. This objection is equally appliow cable to the $x^{\lambda} \lambda \omega \rho^{2} 5$, if it is our greenfinch.

* Thus Linnæus fuppofes it (in the Fauna Suecica) to be the white wagtail, which bird builds in the banks of rivers, of roofs of houfes, (See Zinanni, p. $5 \mathrm{I}_{0}$) where it is believed no young cuckow was ever found.
+He did not leave the fchool of Plato till the age of thirtyeight (or, as fome fay, forty); after which, fome years paffed Before he became Alexander's preceptor, who was then but fourteen: nor could he have written his Natural Hiftory, probably, till twelve years after this, as Pliny ftates that fecimens were fent to him by Alexander, from his conquefts in India. Arifotle therefore muft have been nearly fixty, when he began this great work, and confequently muft have defcribed from the -bfervations of others.
+ Pliny, Ls viii. c. i6.

[324]

therefore profeffes only to abridge him, in which he often does not do juftice to the original.

Whatever was afferted by Ariftotle, is well known to have been moft implicitly believed, till the laft centary; and I am convinced that many of the learned in Europe would, before that time, not have credited their own eyefight againft what he had delivered.

There cannot be a ftronger proof that the general notion about the cuckow arifes from what is laid down by Ariftotle, than the chapter which immediately tollows, as it relates to the goatfucker, and fates that this bird fucks the teats of that animal.

From this circumftance, the goatfucker hath obtained a fimilar name in moft languages, though it is believed no one (who thinks at all about matters of this fort) continues to believe that this bird fucks the goat \%, any more than the hedgehog does the cow.

I beg leave, however, to explain niyfelf, that I give thefe additional reafons only for my doubting with regard to this moft prevailing opinion; becaufe I am truly fenfible that many things happen in nature, which contradict all arguments from analogy, and I am perfuaded, therefore, that the firf perion who gave an account of the flying frh, was not credited by any one, though the exiftence of this animal is not now to be difputed.

All that I mean to contend for is, that the in fances of fuch extraordinary peculiarities in animals, thould be proportionably well attefted, in all the neceffary circumftances.

I muft own, for example, that nothing fort of the following particulars will thoroughiy fatisfy me on this head.

[^29]
[325]

The hedge-fparrow's neft muft be found with the proper eggs in it, which fhould be defroyed by the cuckow, at the time fhe introduces her fingle egg \%.

The neft fhould then be examined at a proper diftance from day to day, during the hedge-fparrow's incubation, as alfo the motions of the fofter parent attended to, particularly in feeding the young cuckow; till it is able to fhift for itfelf.

As I have little doubt that the laft mentioned circumftance will appear decifive to many, without the others which I have required, it may be proper to give my reafons, why I cannot confider. it alone, as fufficient.

There is fomething in the cry of a nefling for food, which affects all kinds of birds, almoft as much as that of an infant, for the fame purpore, excites the compaffion of every human hearer ψ.

I have taken four young ones from a hen fkylark, and placed in their room five neetling nightingales, as well as five wrens, the greater part of which were reared by the fofter parent.

It can bardly in this experiment be contended, that the fkylark miftook them for her own neflings, be-

[^30]
[326]

canife they differed greatly, not only in number and fize, but in their habits, for nightingales and wrens perch, which a fkylark is almoft incapable of, though, by great affiduity, the at laft taught herfelf the proper equilibre of the body.

I have likewife been witnefs of the following experiment: two robins hatched five young ones in a breeding cage, to which five others were added, and the ofd birds brought up the whole number, making no diftinction between them.

The Aedologie alfo mentions (which is a very fenfible treatife on the nightingale *) that neftlings of all forts may be reared in the fame manner, by introducing them to a caged bird, which is fupplied with the proper food.
Not only old birds, however, attend to this cry of diftrefs from nefllings, but young ones alfo which are able to fhift for themfelves.

I have feen a chicken, not above two months old, take as much care of younger chickens, as the parent would have fhewn to them which they had loft, not only by fratching to procure them food, but by covering them with her wings; and I have little doubs but that fhe would have done the fame by young ducks.

I have likewife been witnefs of neftling thrufhes of a later brood, being fed by a young bird which was hatched earlier, and which indeed rather overcrammed the orphans intrufted to her care ; if the bird however erred in judgement, the was certainly not deficient in tenderneff, which I am perfuaded the swoyld have equally extended to a nefling cuckow.

$$
\text { * Paris, } \mathbf{3} 75 \mathrm{x} \text {, or } \mathbf{1 7 8 1}
$$

XXII. KOE-

Received February ${ }^{13}$, 1772 .

XXII. KOEKINON EPATOE OENOT天.

O R,

The Sieve of Eratofthenes.
Being an account of bis method of finding all the Prime Numbers, by the Rev. Samuel Horlley, F. R. S.

Read May 7. Prime number is fuch a one, as hath 1772. no intregral divifor but unity.
A number, which hath any other integral divifor ${ }_{9}$ is Compofite.

Two or more numbers, which have no common integral divifor, befides unity, are faid to be Prime with refpect to one another.

Two or more numbers, which have any commons integral divifor befides unity, are faid to be Compofite with refpect to one another.

The diftinction of numbers into Prime and Compofite, is fo generally underftood, that I fuppofe it is needlefs to enlarge upon it.

Todetermine, whether feveral numbers propofed be Prime or Compofite with refpect to one another, is an eafy Problem. The folution of it is given by Euclid, in the three firft propofitions of the 7 th 5. book
book of the Elements, and is to be found in many common treatifes of Arithmetic and Algebra. But to determine, concerning any number propofed, whether it be abfolutely Prime or Compofite, is a Problem of much greater dificulty. It feems indeed incapable of a direct folution, by any general method; becaufe the fucceffive formation of the prime numbers doth not feem reducible to any general law. And for the fame reafon, no direct method hath hitherto been hit upon, for conftructing a Table of all the prime numbers to any given Jimit. Eratofthenes, whofe $1 k i l l$ in every branch of the philofophy and literature of his times, rendered his name fo famous among the Sages of the Alexiandrian School, was the inventor of an indireat method, by which fuch a table might be conitructed, and carried to a great length, in a fhort time, and with little labour. This extraordinary and ufeful invention is at prefent, I believe, little, if at all, known; being defcribed only by two writers, who are feldom read, and by them but obifurcly; by Nicomachus Gerafinus, a hallow writer of the 3 d or 4 th century, who feems to have been led into mathematical fpeculations, not fo much by any genius for them, as by a fondners for the myferies of the Pythagorean and Platonic philofophy; and by Boethius, whofe treatife upon nombers is but an abridgment of the ivetched perfomance of Nichomachus*. I flatter myfelf therefore, that a fuccinct account of it will not be unacceptable to this learned Society.

[^31]
[329]

But before I enter exprefsly upon the fubject, I muft take the liberty to animadvert upon a certain Table, which, among other pieces afcribed to Eratofthenes, is printed at the end of the beautiful edition of Aratus publifhed at Oxford in the year 1672 , and is adorned with the title of Korxivov Epdooxever. It contains all the odd numbers from 3 to 113 inclufive, diftributed in little cells, all the divifors of every Compofite number being placed over it, in its proper cell, and the Prime numbers are diftinguifhed, fo far as the table goes, by having no divifors placed over them. It hath probably been copied either from a Greek comment upon the Arithmetic of Nicomachus, preferved among the manufcripts of Mr. Selden in the Bodleian Library, in which, though the manufcript is now fo much decayed as to be in moft places illegible, I find plain veftiges of fuch a table *, which might be more perfect 100 years ago, when the Oxford Aratus was publifhed; or elfe, from another comment, tranflated from a Greek manufcript into Latin, and publifhed in that language, by Camerarius, in which a table of the very fame form occurs, extending from the number 3 to 109 inclufive. It may fufficiently fkreen the editor of Aratus from cenfure, that he had thefe authorities to publifh this table as the Sieve of Eratofthenes; efpecially as they are in fome meafure fupported by paffages of Nicomachus himfelf. But the Sieve of Eratofthenes was quite another thing.

* This manufcript feems to have contained the text of Nicomachus with Scholia in the margin. But the table evidently belongs to the Scholia, not to the text.

[33°]

The Oxford editor hath annexed to his table, to explain the ufe of it, fome detached paffages, which he hath felected from the text of Nicomachus, and from a comment upon Nicomachus afcribed to Joannes Grammaticus. In thefe paffages the difference between Prime and Compofite numbers is explained, in many words indeed, but not with the greateft accuracy; and it is propofed to frame a kind of Table of all the odd numbers, from 3 to any given limit, in which the Compofite numbers. fhould be diftinguithed by certain marks.*. The Primes would confequently be characterifed, as far as the table fhould be carried, by being unmarked. But, upon what principles, or by what rule, fuch a table is to be conftructed, is not at all explained. It is obvious that, in order to mark the Compofite numbers, it is neceffary to know which are fuch. And, without fome rule to diftinguifh which numbers are Prime, and which are Compofite, independent of any table in which they fhall be diftino. guifhed by marks, it is impoffible to judge, whether the table betrue, as far as it goes, or to extend: it, if requifite, to a further limit. Now it was the Rule by which the Prime numbers and the: Compofite might be diftinguifhed, not aTable con-firucted we know not how, that was the inventhon of Eratorthenes, to which from its ufe, as: well as from the nature of the operation, which

[^32]
[331]

proceeds (as will be fhewn) by a gradual extermination of the compofite numbers from the arithmetical feries $3.5 \cdot 7.9 .1$ I. \& cc. infinitely continued, its author gave the name of the Sieve. I have thought it neceffary to premife thefe remarks, to remove a prejudice, which I apprehend many may have conceived, as this beautiful and valuable edition of Aratus is in every ones hands, that this ill-contrived able, the ufelefs work of fome monk in a barbarous age, was the whole of the invention of the great Eratofthenes, and in juftice to myfelf, that I might not be fufpected of attempting to reap another's harveft.
I now proceed, to give a true account of this excellent invention; which, for its ufefulnefs, as well as for its fimplicity, I cannot but confider as one of the moft precious remnants of Ancient Arithmetic. I fhall venture to reprefent it according to my own ideas, not obliging myfelf to conform, in every particular, to the account of Nicomachus, which I am perfuaded is in many circumftances erroneous. In ftating the principles upon which the Operation of the Sieve was founded, he hath added obfervations upon certain relations of the odd numbers to one another, which are certainly his own, becaufe they are of no importance in themfelves, and are quite foreign to the purpofe. Every thing of this kind I omit: and having ftated what I take to have been the genuine Theory of Eratofthenes's method, cleared from the adulterations of Nicomachus, I deduce from it an operation of great fimplicity, which folves the Problem in queftion with wonderful eafe, and which,

[332]

Becaufe it is the moft fimple that the theory feems to afford, I fruple not to adopt as the original Operation of the Sieve, though nothing like it is to be found in Nicomachus; though, on the contrary, Nichomachus, and all his Commentators, would fuggeft an operation very different from it, and far more laborious. For the fatisfaction of the curious and the learned, I have annexed. a copy of fo much of Nicomachus's treatife, as relates to this fubject, with fuch corrections of the text, as it flands in the edition of Wichelius, printed at Paris ann. 1538 , as the fenfe hath fuggefted to me, or I have thought proper to adopt, upon the authority of a manufcript preferved among thofe of Archbifhop Laud, in the Bodleian Library; which, in this part, I have carefully collated. By comparing this with the account which I fubjoin, every one will be able to judge how far I have done juftice to the invention I have undertaken to explain.

PROBLEM.

To. jind all the Prime Numbers:

The number 2 is a Prime number; but, excep ${ }^{2} 2$; no even number is Prime, becaufe every even number, except 2 , is divifible by 2 , and is therefore Compofite. Hence it follows, that all the Prime numbers, except the number 2 , are included in the feries of the odd numbers, in their natural order, infinitely extended; that is, in the feries

$$
3 \cdot 5 \cdot 7 \cdot 9 \cdot 11 \cdot \pm 3 \cdot 15 \cdot 17 \cdot 19 \cdot 21 \cdot 23 \cdot 25 \cdot 27 \%
$$ 39. 31. $33 \cdot 35 \cdot 37 \cdot 39 \cdot 41$. $43 \cdot 45 \cdot 47 \cdot 49 \cdot 5$ 1. \& ca.

Every

[333]

Every number which is not Prime, is a multiple of fome Prime number, as Euclid hath demonftrated (Element. 7. prop. 33.). Therefore the foregoing feries confifts of the Prime numbers, and of multiples of the Primes. And the multiples, of every number in the feries, follow at regular dif tances; by attending to which circumftance, all the multiples, that is, all the Compofite numbers, may be eafily diftinguifhed and exterminated.

I fay, the multiples of all numbers, in the foregoing feries, follow at regular diftances.

For between 3 and its firft multiple in the feries (9) two numbers intervene, which are not multiples of 3. Between 9 and the next multiple of 3 (15) two numbers likewife intervene, which are not multiples of 3. Again between 15 and the mext multiple of 3 (21) two numbers intervene, which are not multiples of 3 ; and fo on. Again ${ }_{2}$ between 5 and its firft multiple (15) four numbers intervene, which are not multiples of 5 . And between 15 and the next multiple of 5 (25) four numbers intervene which are not multiples of 5 ; and fo on. In like manner, between every pair of the multiples of 7 , as they fland in their natural order in the feries, 6 numbers intervene which, are not multiples of 7 . Univerally, between every two multiples of any number n, as they fand in their natural order in the feries, $\overline{n-1}$ numbers intervene, which are not multiples of n.

Hence may be derived an Operation for exterminating the Compofite numbers, which I take to liave been the Operation of the Sieve, and is as sollows.

[334]

The Operation of the Sieve.

Count all the terms of the feries following the number 3, by threes, and expunge every third number. Thus all the multiples of 3 are expunged. The firf uncancelled number that appears in the feries, after 3, is 5. Expunge the fquare of 5 . Count all the terms of the feries, which follow the fquare of 5 , by fives, and expunge every fifth number, if not expunged before. Thus all the multiples of five are expunged, which were not at firft expunged, among the multiples of 3. The next uncancelled number to 5 is 7. Expunge the fquare of 7. Count all the terms of the feries following the fquare of 7 , by fevens, and expunge every feventh number, if not expunged before. Thus all the multiples of 7 are expunged, which were not before expunged among the multiples of 3 or 5 . The next uncancelled number which is now to be found in the feries, after 7 , is II. Expunge the fquare of 11 . Count all the terms of the feries, which follow the fquare

[335]

of II , by elevens, and expunge every eleventh number, if not expunged before. Thus all the multiples of in are expunged, which were not before expunged among the multiples of 3,5 , and 7 . Continue thefe expunctions, till the firft uncancelled number that appears, next to that whofe multiples have been laft expunged, is fuch, that its. fquare is greater than the laft and greateft number to which the feries is extended. The numbers which then remain uncancelled are all the Prime numbers, except the number 2 , which occur in the natural progreffion of number from 1 to the limit of the feries. By the limit of the feries I mean the laft and greateft number to which it is thought proper to extend it.

Thus the prime numbers are found to any given limit.

Nicomachus propofes to make fuch marks over the Compofite numbers, as fhould fhew all the divifors of each. From this circumftance. and from the repeated intimations both of Nicomachus, and his commentator Joannes Grammaticus *, one would be-led to imagine, that the Sieve of Eratofthenes was fomething more than its name imports, a method of fifting out the Prime numbers from the indifcriminate mafs of all numbers Prime and Compofite, and that, in fome way or other, it exhibited all the divifors of every Compofite number, and likewife fhewed whether two or

[^33]
[33^{6}]

more Compofite numbers were Prime or Compofite with refpect to each other. I have many reafons to think, that this was not the cafe. I Thall as briefly as poffible point out fome of the chief, for the matter is not fo important, as to juftify my troubling the Society with a minute detail of them. Finft then, in the natural feries of odd numbers, 3. $5 \cdot 7 . \& \mathrm{c}$. every number is a divifor of fome fucceeding number. Therefore if we are to have marks for all the different divifors of every Compofite number, we muft have a different mark for every odd number. Therefore we muft have as many marks, or fyftems of marks, as numbers; and I do not fee, that it would be poffible, to find any more compendious marks, than the common numeral characters. This being the cafe, it would be impracticable to carry fuch a table as Nicomachus propofes, and his commentators have fketched, to a fufficient length to be of ufe, on account of the multiplicity of the divifors of many numbers, and the confufion which this circumftance would create *. It is hardly to be fuppofed, that Eratofthenes could overlook this obvious difficulty, though Nicomachus hath not attended to it. Eratofthenes therefore could not intend the conftruction of fuch a table.

In the next place, fuch a table not being had, Eratofthenes could not but perceive, that, the determining whether two or more numbers be Prime or Compofite with refpect to one another, is in all cafes to be done more eafily, by the direct method given by Euclid, than by

[^34]
[337]

the method of the Sieve. And he could not mean, to apply this method to a problem, to which another was better adapted.

Laftly, Eratofthenes could not mean, that the method of the Sieve fhould be applied to the finding of all the poffible divifors of any Compofite number propofed, becaufe he could not be unacquainted with a more ready way of doing this, founded upon two obvious Theorems, which could not be unknown to him.

The Theorems I mean are thefe.
1fo. If two Prime numbers multiply each other, the number produced bath no divifors but the two prime factors.

2d. If a Prime number multiply a Compofite number, and likewife multtiply all the divifors of that compofite feverally, the numbers produced by the multiplications of thefe divifors will be divifors of the number produced by the frrf multiplication: And the number produced by the firf multiplication will bive no divifors, but the two factors, the divifors of the Compofite factor, and the numbers made by the multiplication of thefe divijors by the Prime factor feverally.

The method of finding all the divifors of any Compofite number, delivered by Sir Iface Newton in the Arithmetica Univerfalis, and by Mr. Maclaurin in his Treatife of Algebra, may be deduced from thefe propofitions, as every mathematician will eafily perceive. This method requires indeed that the leaft prime divifor fhould be previoully found; and, if the leaft prime divifor fhould happen to be a large number, as it is not affignable by any general method, the

Vol. LXII. $\mathrm{X} x$ inve.

[338]

inveftigation of it by repeated tentations may be very tedious. A table therefore of the odd numbers*, in which the Compofite numbers fhould each have its leaft Prime divifor written over it, would be very ufeful. But Nichomachus's project of framing a table in which each Compofite number fhould have all its divifors written over it, is ridiculous and abfurd, on account of the infuperable difficulties which would attend the execution of it .

Feb. 7, 1772,

S. Horfley.

* A table of the odd numbers would be fufficient: for the number 2 is the leaft prime divifor of every even number; and it is eafy, even in the largeft numbers, to try whether they are divifible by 2. In our method of notation, this may always beknown, by obferving the laft figure in the expreffion of the numbe propofed.

[339]

EXCERPTA QU压DAM

E X

Arithmeticâ Nicomachi

Ad Cribrum Eratofthenis pertinentia.

(a) Mallem $\varepsilon i v p \sigma \omega$, etfi, ne quid diffimulem, lectioni recepte adttipulatur Boethii interpretatio.
(b) Voces uncis inclufas conjecturâ fupplevi; quin et fequenti-
 fcribendo $\tau \alpha u \operatorname{vit} \eta \tilde{n} \chi_{0} \tau_{0} \lambda_{0}$
(c) Vocem 临 tegrum fic interpretor. "Sum horum indaginem Eratofthenes, Cribrum vocavit. Propterea quod imparibus univerfis, nullo generum diferimine, in mediu collocatis, ipfam procreationem continuam, quo tradidit ille modo, infequendo [id eft, procreationis continuæ, Eratoftheris modo, exploratâ lege] fpecies diverfas feorfim fiftimus, cribro tanquam feparatas."

(e) Ex Cod.MS. pro entera

X $\times 2$

[340]

(f) Locum in Editione Wechelii corruptum, in Cod. MS. mutilum \& turbatum, conjecturâ, prout potui, fanatum dedi.

(g) Conjecturâ, pro τ Ejpádio.
(b) Litera numeralem $\bar{\gamma}$, conjecturâ pofui pro voce $\tau \rho t \alpha_{0}$
(i) Reftitui ex Cod. MS pro 影"(0), qua eft Wechelii lectio.
(k) Particulam rà omifio
(l) Wechelium fequor. Cod. MS. habet λ ors, fenfu, ut videtur, nullo.
(m). Ex Cod. MS. pro ảnaps $\mu \pi$ ódisor.

* Conjecturâ pro ulipov.

[341]

(n) Conjectura pro τ ỳvo
(o) Voces $\dot{\varepsilon} \pi$ ' ömeregy ex Cod. MS.refitui.
(p) Nempe feries numerorum imparium $3,5,7,9$, \&č. infinite protenfa, cum numeros impares univerfos contineat, imparis cujufvis multiplices omnes impares neceffario complectitur. Efta jgitur n numerus quilibet impar. In ferie $3,5,7,8 \times c$ infinite protenfâ, habes numeros omnes $\overline{n \times 3}, \overline{n \times 5}, \overline{n \times 7}, \overline{n \times 9}$, , 8 c Et cum feriei ea Lex fit \& Conditio, ut naturali ordine numeri impares fequantur, \& minor omnis numerus majorem præcedat, fieri nequit, quin multiplices numeri n eum inter fe ordinem fervent, ut minor quifque majorem præcedat. - Primus igitur erit $\overline{n \times 3}$, fecundus $\overline{n \times 5}$, tertius $\overline{n \times 7}$, \& univerfim, $\overline{n \times m}$ eum habiturus eft, inter multiplices, locum, quem numerus m in ferie.

(r) Conjecturâ pro $\mathfrak{\varepsilon} x \cup \backslash$ T̃̃.
(s) Particulam μ 注 ex Cod. MS reftitui.

[342]

(u) Literam numeralem γ pro voce τ píry quæ apud Wecheliuns legitur, ex Cod. MS reftitui.
(is) Voces ràp xail äror ex Cod. MS, reflitui.

[343]

Ex Arithmeticâ Boethii.

Lib. I. c. xvii.

GENERATIO autem ipforum atque ortus hujufmodi inveftigatione colligitur, quam fcilicet Eratofthenes Cribrum nominabat; quod cunctis imparibus in medio collocatis, per eam, quam tradituri fumus, artem, qui primi, quive fecundi, quique tertii generis videantur effe diftinguitur. Difponantur enim a ternario numero cuncti in ordinem impares, in quamlibet longiffimam porrectionem 3.5.7.9.11. 13. 15. 17. 19. 21. $23 \cdot 25 \cdot 27 \cdot 29 \cdot 3$ I. $33 \cdot 35 \cdot 37 \cdot 39 \cdot 4$ I. $43 \cdot 45 \cdot$ 47.49. His igitur ita difpofitis, confiderandum, pri= mus numerus quem eorum, qui funt in ordine pofiti, primum metiri poffit : fed, duobus præteritis, illum, qui poft eos eft pofitus, mox metitur: et, fi poft eundem ipfum quem menfus eft, alii duo tranifmiffi funt, illum, qui poft duos eft, rurfus metitur: et, eodem modo fi duos quis reliquerit, poft eos qui eft, a primo numero metiendus eft; eodemque modo, relictis femper duobus, a primo, in infinitum pergentes metientur. Sed id non vulgo neque confufe. Nam primus numerus illum, qui eft poft duos fecundum fe locatos, per fuam quantitatem metitur: ternarius enim numerus ter ${ }^{2} 9$ metitur. Si autem poft novenarium duos reliquero, qui mihi poft illos incurre-

[^35]
[344]

rit, a primo metiendus eff, per fecundi imparis quantitatem; id eft, per quinarium: nam fipoft 9 duos relinquam, id eft 118213 , ternarius numerus I5 metietur, per fecundi numeri quantitatem, id eft, per quinarii; quoniam numerus ternarius 15 quinquies metitur. Rurfus, fi a quindenario inchoans duos intermifero, qui pofterior politus eft, ejus primus numerus menfura eft, per tertii imparis pluralitatem: nam fi pof 15 intermifero 17 \&.19, incurvit 21 , quem ternarius numerus fecundum feptenatium metitur; if enim numeri ternarius feptima pars eft : atque hoc in infinitum faciens, reperio primum numerum, fi binos intermifero, cmmes fequentes poft fe metiri, fecundum quantitatem pofitorum ordine imparium numerosum. Si vero quinarius numerus, qui in fecundo loco eft conftitutus, velit ${ }^{b}$ quis, cujus prima ac dcinceps fit menfura, invenire, tranfmifis quatuor imparibus, quintus ei quem metiri poffit, occurrit. lntermittantur enim quatuor impares, id eft, $7 \leqslant$ 9, \& I I \& r 3; poft hos eft quiñtus decimus quem quinarius metitur, fecundum primi fcilicet quantitatem, id eft, ternarii; quinque cnim 15 tere metiuntur: ac deinceps, fi quatuor intermittat, eum qui poft illos locatus eft, fecundus, id eft, quinarius, fui quantitate metitur: nam poft quindecim intermiffis $17 \& \& 19, \& 21 \& 23$, poft eos 25 reperio, quos quinarius fcilicet numerus fuà plualitate metitur; quinquies enim quinario multiplicato, 25 fuccrefcunt; fil vero poft hunc quilibet quatuor intermittat, eỉdem ordinis fervatâ
b Conjecturâ pro vel.

- Conjecturà pro tertio.

conftantiâ,

[345]

conftantiâ, qui eos fequitur, fecundum tertii, id eft, feptenarii numeri fummam, a quinario metitur: atque hæc eft infinita proceffio. Si vero tertius numerus quem metiri poffit exquiritur, fex in medio relinquentur; \&t quem feptimum ordo monftraverit, hic per primi numeri, id eft, ternarii quantitatem metiendus eft: et post illum, fex aliis interpofitis, quem poft cos numeri feries dabit, per quinarium, id ef, per fecundum, tertii eum menfura percurret: fi vero alios rurfus fex in medio quis relinquat, ille, qui fequitur, per feptenarium ab eodem feptenario metiendus eft; id eft, per tertii quantitatem; atque hic ufque in extremum ratus ordo progreditur. Sufcipient ergo metiendi viciffitudinem, quemadmodum funt in ordine naturaliter impares conftituti: metientur autem, fi per pares numeros, a binario inchoantes, pofitos inter fe impares, ratâ intermiffione, tranfio liant; ut primus duos, fecundus quatuor, tertius fex, quartus octo, quintus decem d: vel fi locos fuos conduplicent, \& fecundum duplicationem terminos intermittant; ut ternarius, qui prımus eft numerus, \& Unus, omnis enim primus Unus eft, bis locum fuum multiplicet, faciatque bis unum; qui cum duo fint, primus duos medios tranfeat. Rurfus fecundus, id eft, quinarius, fi locum fuum multiplicet, 4 explicabitur: hic quoque quatuor e intermittat. Item fi feptenarius, qui tertius eft, locum fuum duplicet, fex creabit; bis enim 3 fenarium jungunt : hic ergo in ordidine ${ }^{f}$ fex relinquat. Quartus quoque, fi locum

[^36]
[346]

furm duplicet, 8 fuccrefent; ille quoque octo tranfiliat: atque hoc quidem in cæteris perfpiciendum. Modum autem menfionis, fecundum ordinem collocatorum, ipfa feries dabit. Nam primus primum quem numerat, fecundum primum numerat g ; id eft, fecundum fe; \& fecundum primus quem numerat, per fecundum numerat g , \& tertium per tertium, \& quartum item per quartum. Cum autem fecundus menfionem ${ }^{\mathrm{h}}$ fufceperit, primum quem numerat fecundum primum metitur; fecundum vero quem numerat per fe, id eft, per fecundum; \& tertium per tertium: \& in cæteris eâdem fimilitudine menfura conftabit. Illos ${ }^{i}$ ergo fi refpicias, vel qui alios menfi funt, vel qui ipfi ab aliis metiuntur, invenies omnium fimul communem menfuram effe non poffe, neque ut omnes quemquam alium fimul numerent; quofdam autem ex his ab alio poffe metiri, ita ut ab uno tantum numerentur ${ }^{k}$; alios vero, ut etiam a plaribus; quofdem autem, ut prater Unitatem eorum nulla menfura fit. Qui ergo nullam menfuram prater Unitatem recipiunt, hos Primos \& Incom-
${ }^{5}$ Conjecturâ pro 8.
g Pro numerat mallem in utroque loco, metitur, ut aliud fit numerare, aliud metiri, \& fenfus fit, "That which the firf "number [of the Series] counts the firft' [of its multiples], it " meafures by the firft [of the Series], i. e. by itfelf. That "6. which it counts the fecond [of its multiples], it meafures by "the fecond [number in the Series]?" Sic enim infra legimus de Numero ordine fecundo, "primum quem numerat feundum of primum metitur."
${ }^{1-}$ Conjecturâ, pro manfionem.
Conjectura, pro alios.

* Ang. "But fo as to be counted in among the multiples of st one number only.".

[347]

pofitos judicamus; qui vero aliquam menfuran prater Unitatem, vel alienigenæ partis vocabulum fortiuntur, eos pronunciemus Secundos atque Compofitos. Tertium vero illud genus, per fe Secundi \& Compofiti, Primi vero \& Imcompofiti ad alterutrum comparati, hâc inquifitor ratione reperiet. Si enim quoflibet primos ${ }^{1}$ numeros, fecundum fuam in femetipfos multiplices quantitatem, qui procreantur, ad alterutrum comparati, nullâ merrfurâ communione junguntur: 3^{m} enim \& 5 , fi multiplices, 3 ter ${ }^{n} 9$ faciunt, \& quinquies 5 reddunt 25. His igitur nulla eft cognatio communis menfuræ. Rurfus $\leq \& 7$ quos procreant, fi compares, hi quoque incommenfurabiles erunt: quinquies enim 5, ut dictum eft, 25 , fepties 7 faciunt 49 ; quorum menfura nulla communis eft, nifi forte omnium horum procreatrix \& mater Unitas ${ }^{\circ}$.

[^37]
[348]

XXIII. A Letter from Mr. ChriftopherGullet to Matthew Maty, M.D. Sec. R. S. on the Effects of Elder, in preferving Growing Plants from Infeets and Flies.

S I R,

Täviftock (Devon) Auguft Tr 177I.
Read May 14, SHOULD not prefume to trouble you.
1775 A as a member of the Royal Society with the following letter, did not the fubject feem to promife to be of great public utility. It relates to the effects of Elder;

Sambucus fructu. in um'ella nigro.

ift. In preferving cabbage plants from being eaten or damaged by caterpillers.

2d. In preventing blights, and their effects on fruit and other trees.

3 d . In the prefervation of crops of wheat from the yellows, and other deffructive infects.
$4^{\text {th }}$. Alfo in faving crops of turnips from the fly, \& c. \& c.
nf, I was led to my firfe experiments, by confidering how difagreeable and offenfive to our olfactory nerves the effuvia emitted by a bruf of green

[349]

elder leaves are, and from thence, reafoning how much more fo they muft be to thofe of a butterfly, whom I contidered as being as much fuperior to us in delicacy as inferior in fize. Accordingly I took fome twigs of young elder, and with them whipt the cabbage plants well, but fo gently as not to hurt them, juft as the butterflies firft appeared; from which time, for thefe two fummers, though the butterflies would hover and flutter round them like gnomes or fylphs, yet I could never fee one pitch, nor was there I believe a fingle catterpiller blown, after the plants were fo whipt; though an adjoining bed was infefted as ufual.

2d. Reffecting on the effects abovementioned, and confidering blights as chiefly and generally occafioned by fmall flies, and minute infects, whofe organs are proportionably finer than the former, I whipt the limbs of a wall plumb tree, as high as I could reach; the leaves of which were preferved green, flourifhing, and unhurt, while thofe not fix inches higher, and from thence upwards, were blighted, fhrivelled up, and full of worms. Some of there laft I afterwards reftored by whipping with, and tying up, elder among them. It muft be noted, that, this tree was in full bloffom at the time of whipping, which was much too late, as it fhould have been done once or twice before the bloflom appeared. But I conclude from the whole, that if an infufion of eider was made in a tub of water, fo that the water might be ftrongly impregnated therewith, and then fprinkled over the tree, by a hand engine, once every week or fortnight, it would effectually

[350]

anfwer every purpole that could be wifhed, without any pofible rik of hurting the bloffoms or fruit.

3 d . What the farmers call the yellows in wheat, and which they confider as a kind of mildew, is in fact, as I have no doubt but you well know, occafioned by a fmall yellow fly with-blue wings, about the fize of a gnat. This blows in the ear of the corn, and produces a worm, almont invifible to the naked eye; but being feen through a pocket microfcope, it appears a large yellow maggot of the colour and glofs of amber, and is fo prolific that I laft week diftinctly counted 4 I living yellow maggots or infects, in the hufk of one fingle grain of wheat, a number fufficient to eat up and deftroy the corn in a whole ear. I intended to have tryed the following experiment fooner; but the dry hot weather bringing on the corn fafter than was expected, it was got and getting into fine bloffoms ere I had an opportunity of ordering as I did; but however the next morning at daybreak, two fervants took two bufhes of elder, and went one on each fide of the ridge from end to end, and fo back again, drawing the elder over the ears of corn of fuch fields as were not too far advanced in bloffoming. I conceived, that the difagreeable effluvia of the elder would effectually prevent thofe flies from pitching their tents in fo noxious a fituation; nor was I difappointed, for I am firmly perfuaded that no flies pitched or blowed on the corn after it had been fo Itruck. But I had the mortification of obTerving the flies (the evening before it was ftruck) already on the corn (fix, feven or eight, on a fingle ear.). fo that what damage hath accrued, was done before

[351]

before the operation took place; for, on examining it laft week, I found the corn which had been ftruck pretty free of the yellows, very much more fo than what was not ftruck. I have, therefore, no doubt but that, had the operation been performed fooner, the corn would have remained totally clear and untouched. If fo, fimple as the proceís is, I flatter myfelf, it bids fair to preferve fine crops of corn from deftruction, as the fmall infects are the crops greateft enemy. One of thofe yellow flies laid at leaft eight or ten eggs of an oblong fhape on my thumb, only while carrying by the wing acrofs three or four ridges, as appeared on viewing it with a pocket microfcope.
$4^{\text {th. }}$ Crops of turnips are frequently deftroyed, when young, by being bitten by fome infects, either flies or fleas; this I flater myfelf may be effectually prevented, by having an elder bufh fpread fo as to cover about the breadth of a ridge, and drawn once forward and backward by a man over the young turnips. I am confirmed in this idea, by having ftruck an elder bufh over a bed of young collyflower plants, which had begun to be bitten, and would otherwife have been deftroyed by thofe infects; but after that operation it remained untouched.

In fupport of my opinion, I beg leave to mention the following fact from very credible information, that about eight or nine years ago this county was fo infefted with cock chaffers or oakwebs, that in many parifhes they eat every green thing, but elder; nor left a green leaf untouched befides elder bufhes, which alone remained green and unhurt, amid the general devaftation of fo voracious a multitude. On reflecting
reflecting on thefe feveral circumftances, a thonght fuggented itfelf to me, whether an elder, now eftermed noxious and offenfive, may not be one day feen planted with, and entwifting its branches among, fruit trees, in order to preferve the fruit from deftruction of infects: and whether the fame means which produced the fe feveral effects, may not be extended to a great variety of other cafes, in the prefervation of the vegetable kingdom.

The dwarf elder (ebulus) I apprehend emits more offenfive efluvia then common elder, therefore muft be preferable to it in the feveral experiments.

On mentioning lately to Sir Richard W. Bampfylde, one of the reprefentatives of this county, my obfervations on the corn crops, and the effects of the elder, \&xc. he perfuaded me to publifh them, which in fome meafure determined my taking this ftep, of - tranfmitting them to a Society incorporated for promoting the knowledge of natural things, and ufeful experiments, in which they have fo happily and amply fucceded, to the unfpeakable advantage and improvement both of the old and new world. I have the honour to fubfcribe myfelf,

Your moft obedient,

humble Servant,

Chr. Gullett.
XXIV. A

[353.]

XXIV. A Letter from John Call, E / q; to Nevil Mafkelyne, F. R. S. Aftronomer Royal, containing a Sketch of the Signs of the Zodiac, found in a Pagoda, near Cape Comorin in India.

SIR,

Read May 14, S a member of the Royal Society, ${ }^{17720}$ - and one whofe fludy is particularly directed to the motions of the heavenly bodies, I think you the moft proper perfon to whom I can fend the inclofed fketch [Tab. X.], which I drew with a pencil, as I lay on my back refting myfelf during the heat of the day, in a journey from Madurah to Twinwelly, near Cape Comorin. And I fend it to you rather in the original, as 1 then fketched it off, than in any more complete form, left it fhould thereby have more the appearance of compofition, and leave not fo ftrong an impreffion of antiquity, as it made on me when I difcovered it.

After fuch a difcovery, I fearched in my travels many other pagodas, or choultrys, for fimilar carvings; but, to the beft of my remembrance, never found Vol. LXII. $\quad \mathrm{Z}$ z but

[354$]$

but one more equally complete, which was on the ceiling of a temple, in the middle of a tank before the pagoda of Teppecolum, near Mindurah, of which tank and temple Mr. Ward, painter in Broadftreet, near Carnaby-market, hath a drawing; but I have often met with the feveral parts in detached pieces.

From the correfpondence of the figns of the zodiac which we at prefent ufe, and which we had, I believe, from the Arabians or Egyptians, I am apt to think that they originally came from India, and were in ufe among the Bramins, when Zoroafter and Pythagoras travelled thither, and confequently adopted and ufed by thofe travellers: and as thefe philofophers are ftill fpoken of in India, under the names of Zerdhurft and Pyttagore, I mould alfo: hazard another idea, that the wormip of the cow which ftill prevails in India, was tranfplanted from thence to Egypt. But this is only conjecture ; and it may with almof equal probability be faid, that Zoroafter or Pythagoras carried that worfhip to India.

However, I think there is an argument ftill in favour of India for its antiquity, in point of civilization and cultivation of the arts and fciences; for it is hardly in difpute that all thefe improvements came from the eaft to the weft; and, if we may be allowed to draw any conclufions from the immenfe buildings now exifting, and from the little of the infriptions, which can be interpreted on feveral of the choultrys and pagodas, I think it may fafely be pronounced, that no part of the world has more maks of antiquity for arts, fciences, and civilization $_{2}$.

[355]

tion, than the peninfula of India, from the Ganges to Cape Comorin; nor is there in the world a finer climate, or face of the country, nor a fpot better inhabited, or filled with towns, temples, and villages, than this fpace is throughout, if China and parts of Europe are excepted.

I think the carvings on fome of the pagodas and choultrys, as well as the grandeur of the work, exceeds any thing executed now-a-days, not only for the delicacy of the chiffel, but the expence of conftruction, confidering, in many inftances, to what diftances the component parts were carried, and to what heights raifed. If Mr. Kittle the painter, now in India, fhould have time and opportunity, after he hath made his fortune by portrait drawing, it would be a great addition to his reputation, and well worth his pains, to inveftigate the nature of the Indian architecture and carving, by painting fome of the moft curious buildings, or parts of pagodas. The great obftacle to afcertaining dates, or hiftorical events, is the lofs of the Sans-Skirrit language, and the confinement of it to the priefthood. I hould have taken fome pains to have collected many things; but the number of revolutions and occupations which happened always prevented me.

I alfo commit to your infpecion the * manufcripts of Mr. Robins, which he gave me at his death;

* There I communicated to the Royal Society, together with this letter; but being examined by myfelf, Mr, Raper, Mr. Cavendifh, and Mr. Horney, at the defire of the Society, they were not found to contain any thing material more than has been already printed; excepting a treatife on military difcipline : which, if it fhould be thought of ufe, may be inferted in the next edition of his works. N. M.

[35^{6}]

I believe moft of them have been printed, but if there are any which have not, or that can amufe you or inftruct others, you are welcome to ufe them as you pleafe: I only wifh they may contain any thing ufeful. While he lived, I purfued thofe fudies; but, foon after his death, new fcenes arofe, and engaged me more in practical fervice, than allowed me time for theory, or experiments. I am, however, a conftant well-wifher to the progrefs of arts and fciences, as well as ftudy; and very much,

SIR,

Your obedient,
humble.fervant,

$$
\mathrm{Jn}^{\circ} \text { Calls }
$$

XXV. An

[357]

XXV. An Account of the Flowing of the Tides in the South Sea; as obferved on board His Majefy's Bark the Endeavour, by Lieut. J. Cook, Commander, in a Letter to Nevil Mafkelyne, AffronomerRoyal, and F. R, S.

$$
\text { Mhe-end, February s, } 1772
$$

Reverend Sir,
Read May 21, THere fend you the few oblervations I 172. made on the tides in the South Sea, to which I have only to add, that, from many circumftances and obfervations, I am fully convinced that the flood comes from the fouthward, or rather: from the S. E. I am,

S I R;

Your moft obedient $\mathrm{t}_{\text {. }}$. humble fervant,
J. Cook:

[359]

XXVI. An Account of a new Electrometer, contrived by Mr. William Henly, and of Several Electrical Experiments made by bim, in a Letter from Dr. Prieftley, F.R.S. to Dr. Franklin, F.R.S.

Dear Sir,
Read May 28 , THINK myfelf happy in an oppor1772. I tunity of giving you a fpecies of pleafure, which I know is peculiarly grateful to you as the father of modern electricity, by tranfmitting to you an account of fome very curious and valuable: improvements in your favourite fcience. The author of them is Mr. Henly, in "the Borough, who has favoured me with the communication of them, and has given me leave to requeft, that you would prefent them to the Royal Society.

In my hiftory of electricity, and elfewhere, I have mentioned a good electrometer, as one of the greateft defiderata among practical electricians, to meafure both the precife degree of the electrification of any body, and alfo the exact quantity of a charge before the explofion, with refpect to the fize of the electrified body, or the jar or battery with which it is connected ; as well as to afcertain the moment of time, in which the electricity of a jar changes, when, without making an explofion, it is difcharged by giving

[360]

giving it a quantity of the contrary electricity. All there purpofes are anfwered, in the moft complete manner, by an electrometer of this gentleman's contrivance, a drawing of which I fend you along with the following defcription.

The whole inftrument is made of ivory or wood, [TTab. XI.] (a) is an exceeding light rod, with a cork ball at the extremity, made to turn upon the center of a Yemicitcle (b), and fo as always to keep pretty near the limb of it, which is graduated: (c) is the iftem that fupports it, and may either be fixed to the prime conductor, or be let into the brafs knob of a jar or battery, or fet in a ftand, to fupport itfelf.

The moment that this little apparatus is electrified, the $\operatorname{rod}(a)$ is repelled by the ftem (c), and confequently begins to move along the graduated edge of the femicircle (b); fo as to mark with the utmoft exactnefs, the degree in which the prime conductor, isc. is electrified, or the height to which the charge of any jar or battery is advanced; and as the materials of which this little inftrument is made are very imperfect conductors, it will continue in contact with any electrified body, or charged jar, without dilfipating any of the electricity.

If it fhould be found, by trial in the dark, that any part of this inftrument contributes to the diffipation of the electric matter, (which, when the electrification was very ftrong, I once obferved mine to do) it fhould be baked * a little, which will prefently prevent it. If it is heated too much, it will not receive electricity readily enough; and then the motion of the index will not correfpond with fufficien ${ }_{t}$

[^38] the index.

exctnefs,

$$
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
$$

[361]

exactnefs, to the degree in which the body to which it is connected is electrified; but this inconvenience is eafily remedied, by moiftening the ftem and the index, for the femicircle cannot be too dry.

I find by experience, that this electrometer anfwers all the purpofes I have mentioned, with the greateft eafe and exactnefs. I am now fure of the force of any explofion before a difcharge of a jar or battery, which I had no better method of gueffing at before, than by prefenting to them a pair of Mr. Canton's balls, and obferving their divergency at a given diftance; but the degree of divergency was ftill to be gueffed at by the eye, and the balls can only be applied occafionally; whereas this inftrument, being conftantly fixed to the prime conductor or the battery, fhews, without any trouble, the whole progrefs of the charge; and, remaining in the fame fituation, the force of different explofions may be afcertained with the utmoft exactnefs before the difcharge.

If a jar be loaded with pofitive electricity, and I want to know the exact time when, by attempting to charge it negatively, it firft becomes difcharged, I fee every ftep of its approach to this ftate by the falling of the index; and the moment I want to feize, is the time when it has got into a perpendicular fituation, which may be obferved, without the leaft danger of a miftake. Accordingly I find that, in this cafe, not the leaft fpark is left in the jar. If I continue the operation, the index, after having gained its perpendicular pofition, begins to advance again, and thereby fhews me the exact quantity of the oppofite electricity that it has acquired.

[352]

Confidering the admirable fimplicity, as well as the great ufefulnefs of this inftrument, it is fomething furprizing that the conftruction fhould not have occurred to fome electrician before this time. Nollet's and Mr. Waits's invention of threads, projecting fhadows upon a graduated board, refembled this apparatus of Mr. Henly's, but was a poor and awkward contrivance in comparifon with it; nor was Richman's gnomon, though a nearer approach to this conftruction, at all comparable to it; and the ingenious author of it had no knowledge of either of thofe methods when he hit upon this.

I have made a receptacle for this inftrament in my prime conductor, and I have alfo a pedeftal in which I can fix it; and by means of which I can very conveniently place it on the wires of a battery.

In either of thofe fituations it anfwers almoft every purpofe of an electrometer, without removing it from its place.

I doubt not that you and all other electricians will join with me in returning our hearty thanks to Mr , Henly for this excellent and ufeful inftrument.

Many of the effects of my battery, in breaking of glafs, and tearing the furface of bodies, Mr. Henly performs by a fingle jar, only increafing the weight with which the bodies are preffed, while the explofion is made to pafs clofe under them.

By this means he raifes exceeding great * weights, and fhatters ftrong pieces of glafs into thoufands of the fmalleft fragments; he even reduces thick plate glafs by this means to an impalpable powder. But

* Frequently fix pounds Troy.

[363]

what is moft remarkable is, that when the pieces of glafs are thick, and ftrong enough to refift the thock, they are marked by the explofion, with the moft lively and beautiful colours, generally covering the fpace of about an inch in length, and half an inch in breadth.

In fome of the pieces which he was fo obliging as to fend me, thefe colours lie all intermixed and confufed; but in others I obferve them to be difpofed in prifmatic order, in lines parallel to the courfe of the explofion, and in fome (as N° I.) I have counted three or four diftinct returns of the fame colour.

He has lately informed me, that, fince he fent me this piece, he has ftruck thefe prifmatic colours into another mafs of glafs, in a till more vivid and beautiful manner, the colours chooting into one another. This effect, he fays, was produced by making a fecond explofion, without moving any of the apparatus after the firt.

When the glafs in which there colours are fixed is examined, it is evident that the furface is Chattered into thin plates, and that thefe give the colours, the thicknefs of them varying regularly, as they recede from the path of the explofion.

In the middle of thefe coloured fpots (as in $\mathrm{N}^{\circ} 2$.) fome of thefe thin plates, or fcales, are ftruck off, I fuppofe by the force of the explofion; and with the edge of a knife they are all eafily fcraped away, when the furface of the glafs is left without its polifh (as in $\mathrm{N}^{\circ} 3$.)

The piece of glafs on which I have marked thefe numbers, as well as that on which he has ftruck the
colours in a ftill more beautiful manner, Mr. Henly will prefent to the Royal Society, for the infpection of the members.

Befides there improvements, Mr. Henly has likewife, in a very ingenious manner, diverfified feveral of the more entertaining experiments in electricity, particularly in his imitation of the effects of earthquakes by the lateral force of explofions; and he has alfo hit upon feveral curious facts, that, unknown to him, had been obferved before by others: the following particular, however, I believe is new, exciting a flick of fealing wax, and ufing a piece of tin foil for the rubber, he found that it would electrify pofitively, as well as glafs rubbed with filk and amalgama.

Wifhing we had more fuch fellow labourers as: Mr. Henly, I am,

$$
\text { Dear } \mathrm{Sim}_{\mathrm{m}}
$$

Your obliged

humble fervant;

J. Priefley:

XXVII, Me-
$[365]$
Read May 28, r

Monk.	Brometer.	Wind.	Falureneits Thermom.	Ombr.
Jempary				Inches. 37.0%

* This is the laft paper of this kind, which the Society will receive from the excellent author of the Natural Hiftory of Cornwall, and fevcral other learned
works; dcath having, though at an advanced age, put a period to a life divided between the purfuit of ufeful and experimental knowledge, and the faithful difworks; dcath having, though at an advanced age, put a period to a life divided between the purfuit of ufeful and experimental knowledge, and the faithful dif-
charge of every moral and religious duty. M. M.
[366]

Month.	Barometer.	State of the Weather and Wind.	Fahrenheit's Thermom.	Ombr
February	$\begin{array}{lrr}\text { Higheft } & 3 & 30,16 \\ \text { Loweft } & 25 & 28,87\end{array}$	Calm, the $3^{\mathrm{d}}, 4^{\text {th }}$, $5^{\text {th, }} 6$ th, 7 th, $9^{\text {th }}, 14^{\text {th }}$, $15^{\text {th }}$, I 7 th, 18 th, 2 Ift, 22 d ; hard froft with fome fnow on the $9^{\text {th, }} 10$ th, IIth, 12th, $13^{\text {th, }} 14^{\text {th }}$. It then thawed, and the reft was hazy, mifty, fhowery, with fome high winds on the $15^{\text {th }}$ and $27^{\text {th. Wind, during the cold, }}$ Eaft and North, the reft South for 18 days.	$\left\{\begin{array}{lll} & & \\ \text { Higheft 2I } & 52 \\ \text { Loweft II } & 30 \end{array}\right\} 43 \frac{2}{2} \frac{2}{8}$	[nches. I, 500
March	Higheft 19 30,6 Loweft 12 29,15	Calm, the $3 \mathrm{~d}, 4^{\text {th }}, 5 \mathrm{th}, 6 \mathrm{th}, 7$ th, 8 th, $15^{\text {th, }} 18$ th, Inth, 20th, 21 ft, 27 th, 3 Ift. Froft 6 th, 7 th, 23 f, $25^{\text {th }}$, 28 th ; hail, fnow, and fleet $23 \mathrm{~d}, 24 \mathrm{th}, 25 \mathrm{th}, 27 \mathrm{th}, 28$ th. Stormy the Ift, $13^{\text {th. Wind }} 27$ days from the Eaft mixed equaily with North and South.		2,900
April	Higheft I8 30,27 Loweft 30 29,50	Calm, the 1 ft, $5^{\text {th, }} 9$ th, 10 th, 12 th, $13^{\text {th, }} 14^{\text {th, }} 19^{\text {th, }}$ 20th, $21 \mathrm{ft}, 23 \mathrm{~d}, 26 \mathrm{th}, 27 \mathrm{th}, 29$ th, 30 th. Hailed, fnow lying only 2 days, viz. the 15 th and 16 th. Reft, moftly fair, and dry. Wind I8 days from the Eaft; the reft mixed, and changeable.	$\left.\begin{array}{lll}\text { digheft } 22 & 53 \\ \text { Loweft } 16 & 35\end{array}\right\} 46 \frac{4}{30}$	0,900
May	Higheft 23 30,8 Loweft 7 29,18	Calm, Ift, 2d, $3^{\mathrm{d}}, 4^{\text {th, }} 5^{\text {th, }} 8 \mathrm{th}$, 9th, Ioth, IIth, 12th, 13 th, 14th, I 5 th, 16 th, I7th, 18th, 19 th, 20 th, 2 Ift, $22 \mathrm{~d}, 23^{\mathrm{d}}, 24^{\text {th }}, 25^{\text {th }}$, in all 23 days. Stormy only fixed. on the 27 th. Wind Southerly 23 days; the reft not fo		2,250

Voz. LXII.
Bbb

XXVIII. Account of feveral Quadrupeds from Hudfon's Bay *, by Mr. John Reinhold Forfter, F. R.S.

- Read May 21, 1772.

1. Anctic Fox, Penn. Synopf. of Quadr. p. 555° n. I 3. Canis Lagopus, Linn.

Severn River.
A moft beautiful fpecimen in its fnowy winter furr; this animal feems to be lower on its legs than the common fox, and is prodigioully well fecured againft the intenfe cold of the climate, by the thickners and length of its hairs, which are at the fame time as foft as filk.

[^39]The

[371]

The account fent along with it fron Severn River fays, that thefe white foxes are filly, inoffenfive animals; and are known to fland by, whillt a trap is baited for them, into which they put their heads immediately: they will, when pinched by hunger, devour thore of their own kind, which are already caught in thefe traps. But the moft curious circumftance is, their migration to the Northward and the Eattern coafts of the bay; for though a few of them are caught every year near York fort and Churchill river, yet, once in three or four years, they come in great numbers; and feveral hundred of their furrs are fent to England in that plentiful fealons, which always begins in November, and ends in April. The fpecimen fent is full grown, and its furr quite in feafon.
2. Lesser Otter. Penn. Syn. Quadr. p. 239. n. 174. Mufela Lutreola Linn. Syft. Nat. 66. Faun. Suec. ${ }^{\circ}{ }^{1} 3$.
Severn River.
I am ftill dubious, whether this animal ought to be looked upon as the fame with the leffer otter of Europe and Afia; many circumftances feem to prove this identity; but fome, fuch as the want of webs, which I could not difcover between the toes, and the white fpot on the neck, will not admit of it. I have, therefore, fubjoined a defcription of this creature at the end of this article. The natives of Hudfon's Bay call this quadruped Bbb2 Jackafh;

[372]

Jackah; Mr. Graham from Severn river fays, that it harbours about creeks, and lives on fifh, like the otter; it travels very flowly, and has from four to feven young at a time; in fize it equals the marten ; its length is about 16 inches; its whole body is covered with flyining dark brown hairs, which lie very clofe, and feem perfectly convenient for an amphibious animal; under thefe brown hairs the woolly hairs are tawny, the whole underjaw is encompaffed by a ftripe of white hairs, and a little irregular (pot of the fame colour appears in the middle of the throat; the feet are quite covered with hair to the very nails, which are fmall, five on each foot, and of a whitifh femipellucid colour; the tail is pretty well befet with hair, though not bufhy, and much blacker than the reft of the body; it. is about half as long as the whole animal.
3. Pine Marten. Penn. Syn. Quad. p. 2i6. n. 155. Muffela Martes (Abietum). Linn.

Severn River. Male and Female.
Thefe feem to be a variety of the yellowbreafted marten, Br . Zool. I. 8 r. their colour, efpecially in the females, being much paler than that defcribed in Mr. Pennant's works. The male is of a chefnut brown, the female a bright tawny yellow; the former has here fome dark brown hairs, the latter in the fame manner has fome bright bay hairs. They both have white cheeks, and white tips of the ears. Their furrs are very full of hair,

[373]

proper to preferve them from the cold. The tail in both fexes is buhhy, and darker than the reft of the body; in the female indeed it is tawny, with a black tip; in both it is fhorter than deferibed by Mr. Pennant, Mr. Briffon, and others, and was perhaps mutilated. This fpecies feeds on mice, rabbits, \&cc. though it will not touch a dead moufe which is put as a bait in a trap, and therefore the inhabitants are obliged to make ufe of a partridge's head, or the like, for that purpofe. If purfued with noife, it immediately gets upinto a tree. Some gentlemen have unfuccefsfully attempted to tame thefe creatures, and thofe kept in cages with that view have been obferved to be troubled with epileptick fits. Numbers of them are caught at Hudfon's Bay in traps made of fmall ticks. They burrow under ground, and bring forth from four to feven young at a time.
4. Stoat and Ermine. Penn. Syn. Quad. p. 212 . n. ${ }_{51}$ I. a. B. Muftala Erminea. Linn.

Severn River, Albany Fort.
One in the fummer and another in the winter drefs. The natives about Albany call them Sic-cule-fue, but it is not known why they give them that name. They feed on mice, fmall birds, all fort of fith, flefh, and fowl.
5. Common Weesel. Penn. Syn. Quadr, p. 21 I. n. 150. Muftela nivalis. Linn.

One in its winter drefs, length 7 inches, tail about: xinch, perhaps mutilated, it is quite white, but

[374]

the coat is mixed here and there with a brownifh hair, efpecially in the tail. Another in the fummer coat, the fame as our weefel.
6. Skunk. Penn. Syn. Quadr. p. 233. n. 167. Kalm's Travels, 1. 273. tab. I. It anfwers to Mr. Pennant's defcription, except that the white ftripe on the head is not connected with that on the back, and that the brown area, which is left between the two white ftripes on the back, is broader than he defrribes it.
7. Canada Porcupine. Penn. Syn. Quadr. p. 266. n. 196. Hy/trix dorfata. Linn.

Severn River.
It agrees perfectly with the defrriptions. Thefe animals live among the pine trees, of which the bark is their food in winter, as willow tops and the like are in fummer. They copulate in September, and bring forth only one young the firft week in April. During winter they feldom travel above five hundred yards, fo that one is always fure of finding a porcupine, as foon as one meets with a tree that has been frefh ftripped of its bark. The longeft quills of an old porcupine are about five inches long. The Europeans are very fond of the fleh of thefe animals, as it taftes, when roafted, exactly like that of a fucking pig. Their bones in winter have a greenifh yellow colour, perhaps owing to their continually feeding on the bark of pine trees. It is known

[375]

that the bones of animals will become red by their feeding on madder.
8. Beaver. Penn. Syn. Quadr. p. 255 n. 190. Caftor Fiber. Linn.
Churchill River, $\mathrm{N}^{\circ} \mathrm{I}$.
A moft beautiful fpecimen, in high prefervation, and in full feafon; the furr is of a fine jetty black : the fkull of another has likewife been fent. There is a great fimilarity in the conformation of the cutting teeth of this and the preceding quadruped (the porcupine); only the latter has them longer.
9. Musk-Beaver. Penn. Syn. Quadr. p. 259.n. 121. Cafor Zibetbicus. Linn.

Mufquaf. Severn River.
It frequents the plains, builds a houfe like the beaver, brings forth from five to feven young at a time, and feeds on poplars, willows, and grafs.
10. Alpine Hare. Penn. Syn. Quadr. p. 249. n. 185. Lepus timidus. Linn. Kalm's Trav. into N. Amer. III. p. 59.
York Fort.
A fine fpecimen, in its compleat winter furr, being quite white, except the ears, which have black tips. It is much larger than the following animal. The common hare, Penn. Syn. Quadr. does not feem to be a native of America.

II. Ame-

[376]

i1. American Hare, called Rabbit at Hudfon's Bay. Kalm's Trav. into N. Amer. I. 105. II. 45°. Severn and Churchill Rivers.

This fpecies, which has been improperly called Rabbit, perhaps becaufe it is lefs than the hare, is certainly new, and was never defcribed before, except by Kalm in his travels through North America, Vol. I. 105. 11. 45. The account he there gives correfponds with that of Mr. Graham, and with the fpecimen now in the Royal Society's collection. Thefe animals are numerous at Hudfon's Bay; they do not burrow under ground, but live fummer and winter under windfalls and roots of trees. They do not migrate, but always keep about the tame place, unlefs difurbed. They breed once or twice a year, and have five to feven young at a time : their weight is from 3 to $4 \frac{\pi}{2}$ pounds. Their flefh is not fo white and delicate as that of the common rabbit, but yet is good food in fummer and winter. Great numbers of them are annually caught in the following manner: as they always are ufed to go one particular path, the Englifh and matives lay young trees acrofs it, forming a hedge, in which there is an opening for the creature to go through; in this place they fix a frare, made of brafs wire, packthread, or the like, faftened with a flipping knot to a crofs piece, the end being tied to an elaftic pole; fo that when the animal puts its head into

[377]

into the fare, the knot is drawn from the crols piece above, and the pole flying up, immediately furpends the animal in the air.
The proper characterifticks of this fpecies feem to be,

1. Its fize, which is fomewhat bigger than a rabbit's, but lefs then that of the Alpine or leffer hare.
2. The proportion of its limbs, ist hind feet being longer in proportion to the body than thofe of the rabbit and the common hare. Vide the Hon. Daines Barrington's, V.P.R.S. letter to Dr. Wation on this new fpecies of hare, in this volume, p. 6.
3. The tips of the ears and tail, which are conftantly grey not black. Kalm's Trav. II. p 45 .
Perhaps fome other characters might be afcertained, if the animal was brought over in its perfect fummer furr; for all the fpecimens in the Royal Society's Mufeum are either entirely in their winter drefs, or in a changing condition. Mr. Kalm mentions, that thofe which are found in New Jerfey, where the climate is much more mild than at Hudfon's Bay, keep the fame grey colour both fummer and winter ; that in fpring they breed in hollow trees, but in fummer in the grafs; that, when purfued, they immediately take refuge in hollow trees, whence they are driven out by crooked fticks, fmoak, \&cc.; laftly, that they do much mifchief to cabbage fields and orchards, by eating the cabbage plants, and Oox. LXII. Ccc the

[378]

the bark of the apple trees, feeding only by night, as the common hare.
12. Quebec Marmot; Penn. Syn. Quadr. p. 270. n. 199.

Churchill River, $\mathrm{N}^{\circ}{ }_{5}$ -
This creature is called a ground fquirrel, at Churchill fort ; it differs much in fize from that defcribed in the Syn. Quadr. being much lefs than a rabbit, perhaps it is a young one. I took down the following defcription, as 1 did not find it exactly correfponding with that of the Canada marmor. The nofe is blunt, the ears are fhort and roundifh, the top of the head chefinut, back all over fprinkled with whitifh, black, and yellowih brown: the legs and whole underfide of the animal are of a bright ferruginous colour ; the tail is very fhort, and black at the tip. The length of the animal from the nole to the beginning of the tail is about 11 inches, that of the tail 3 inches. Its toes on the fore feet 4 , hind feet 5 .
13. Comimon Seuirrel. Penn. Syn. Quadr. p. 279. n. 206. Sciurus vuldaris, Linn.

A variety of the common fecies, being fomewhat inferior in fize, having a ferruginous back and grey belly, a fhorter tail than the common European fort, of a fine ferruginous red, edged only with black. This animal lives in pine trees, of which the cones are its food; it lies dormant the greater part of the winter

[379]

14. Greater fiying SQuirrel. Severn River.

It is equal in fize, if not bigger than the common fquirrel; has pretty long hairs, dufky at bottom, tawny brown at the very tips only; and difpofed fo that the back appears wholly of that reddin brown colour; the tail is very buhhy, fomewhat compreffed, but not pinnated (i.e. with the hairs difpofed horizontally on each fide of it, as for example in the common fquirrel), it is brownifh on the upperfide with a dufky tip, of a yellowifh white below; the whole underfide of the animal has the fame yellowifh white colour. The membrane reaches from the forefeet to the hindfeet, without extending to the ears : it is found in James's Bay, about 51° north latitude.
This is perhaps Linneus's Sciurus volans, and the fame with the fiying fquirrel of the Arctick parts of Europe. Mr. Briffon feems to have confounded this, and the little Virginian fquirrel together, and his quotations are quite confured. Linneus's Mus volons certainly is a variety of the little flying fquirrel, of the milder parts of North America, New York, PennTylvania, Virginion which is vaftly different from this in fize and colour.
15. A small Animal, called a Field Moufe.

Churchill River.
A fpecimen in very bad prefervation, wanting legs, tail, \&ci. which makes it impoffible to deCcc 2
termine

[380]

termine of what fpecies it is ; its fize is fomewhat fuperior to that of a moufe, its colour dufky, mixed wirh tawny brown, and dirty white on the belly; its head is broad, like that of the fhort-tailed field moufe, and has a dufky line in the middle between the eyes, which extends, though rather indiftinctly, all along the back; its ears are very fmall and roundifh.
16.

This is likewife a very bad mutilated fpecimen, lefs than the common moufe, dufky and brown above, and whitifh below; its ears are pretty large and prominent.
\%7. Field Mouse. Penn. Syn. Quadr. p. 302. n. 230. Mus Sylvaticus, Linn.

Two fpecimens; the defcriptions anfwer pretty well, the ears are large and round, the tail is very long and whitifh below.
48. Short-talled Mouse. Penn. Syn. Quadr. pe 305. n. 233. Mus terrefiris, Linn. Le Campagnol de Buffon.

Mr. Pennant's admeafurements do not quite anfwer, but M. d'Aubenton's coincide.

1g. Foetid Shrew. Penn. Syn. Quadr. p. 307. n. 235. Sorex Araneus, Linn.

The fpecimen is much blacker on the back than the European Shrew, its fides are reddifh brown.

[3^{81}]

20. Shrew; two fpecimens.

The colour is of a dunky grey above, and a dirty white or yellowifh below; the nofe is very long and flender; the length from the nofe to the tail, in the one fpecimen is $2 \frac{1}{4}$, in the other almoft 2 inches; the tail is about an inch and half long, thinly befet with hairs, brown above, and yellowith below. If this fpecies had no tail, I fhould take it to be the minute Shrew, which the Rev. Mr. Laxman found in Siberia, and which is the Sorex minutus. Linn.

[382]

XXIX. An Account of the Birds fent from Hudfon's Bay; with Obfervations relative to their Natural Hifory; and Latin Deforiptions of fome of the mof uncommon. By J. R. Forfter, F. R. S.

Read June 18-25, $17 \% 2$.

1. Land-Birds.
2. $\left\{\begin{array}{l}\text { Accipitres } \\ \text { Rapacious. Faun. Am. Sept. }\end{array}\right.$
3. Falco, r. Columbarius. 128. 21. Pigeon Hawk.

Falcon. Faun. Am. Sept. p. 9. Catefby I. t. 3. Epervier de la Caroline. Briffon I. p. 37^{8}. Severn river, N° Ig.

This fpecies is called a fall-bird bawk at Hudfon's Bay. It is migratory, arriving near Severn River in May, breeding on the coaft, and then retiring to a warmer climate in autumn. It feeds on fmall birds; and, on the approach of any perfon, will fly in circles, making a hideous hrieking noife. The breaft and

[383]

and belly are yellowifh, with brown ftreaks, which are not mentioned by the ornithologifts, though their defrriptions anfwer in other refpects. It weighs fix ounces and a half, its length is $10 \frac{\mathrm{I}}{2}$, the breadth $22 \frac{1}{2}$. Catefby's figure is a very indifferent one.

Falco, 2, Spadiceus. Nerw Species. Chocolate Falcon. Faun. Am. Sept. p. 9.
This fpecies, at firt fight, bears fome refemblance to the European Moor Buzzard, or Aeruginofus, Linn. but is much lefs, and wants the light fpots on the head and thoulders. No number or defcription was fent along with it.

Falco, 3. Sacer, Briffon, I. p. 337. Sacre dé Buffon, Oifeaux, (edition in 12 mo.) Tom. II. p. 349. t. 14. Faun. Am. Sept. p. 9.

Severn River, ${ }^{\circ} 16$.
Speckled Partridge Hawk, at Hudfon's Bay. The name is derived from its feeding on the birds of the Grous tribe, commonly called partridges, at Hudfon's Bay. Its irides are yellow, and the legs blue. It comes neareft the Sacre of Briffon, Buffon, and Belon; but Buffon fays it has black eyes, which is very indiftinct; for the irides are black in none of the falcons, and in few other birds; and the pupil, if he means that, is black in all birds. It is faid, by Belon, to come from Tartary and Ruffia, and is, therefore, probably a northern bita. It is very voracious

[3^{84}]

and bold, catching partridges out of a covey, which the Europeans are driving into their nefts. It breeds in April and May. Its young are ready to fly in the middle of June. Its nefts, as thofe of all other falcons, are built in unfrequented places; therefore, the author of the account from Severn River could not afcertain how many eggs it lays; however, the Indians told him it commonly lay two. It never migrates, and weighs $2 \frac{1}{2}$ pounds; its length is 22 inches, its breadth 3 feet.
2. Strix,) 4. Brachyotos. The fhort-eared Owl. Owl. § Brit. Zoology, folio, plate B. 3. octavo, I. p. 156. Faun. Am. Sept. 9.

Severn River, $\mathrm{N}^{\circ}{ }_{17}$ and 64.
Moufe Hawk at Hudfon's Bay. It anfwers the defcription and figure in the Britih Zoology; but its ears or long feathers do not appear. The fmallnefs of the head has, probably, given occafion to call it a hawk, though it does not fly about in quelt of prey, like other hawks (as the account from Severn River fays); it fits quiet on the flumps of trees, waiting mice with all the attention of a domeftic cat, being an inveterate enemy of thofe little animals. It migrates fouthward in autumn; and breeds along the coaf. Its irides are yellow. Its weight is 14 ounces; its length 16 inches, the breadth 3 feet.

[385]

Strix, 5. NyClea. 132. 6. Snowy Owl. Fauno Am. Sept. 9.
Churchill River, $\mathrm{N}^{\circ} 7$. White O_{wl}.
It feems to be in its winter drefs, as it is intirely white. The feet are covered with lang white hair-like feathers to the very nails, but there are none on the foles or under parts of the toes.

Strix, 6. Funerea. I33. if. Canada Owl. Fauni Am. Sept. 9.
Severn River, $\mathrm{N}^{\circ}{ }_{13}$. Churchill River, $\mathrm{N}^{\circ}{ }_{1 \mathrm{I}}$.
Cabeticuch, or Cabaducutch, is the Indian name of this bird. Linneus's defcription anfwers. perfectly. The male, which in the clafs of birds of prey is generally fmaller, is, however, in this fpecies, larger than the female, according to the account from Severn River. Its colour is likewife much blacker, and the fpots more diftinct. The eyes are large and prominent; the irides of a bright yellow. The weight is 12 ounces; its length 17 inches, the breadth 2 feet. It has only two young at one hatching.
Strix, 7. Pafferina. 133. 12، Little Owl. Brito Zool. Faun. Am. Sept. 9 .
(The number belonging to this bird is loft, but it is moft probably that from Severn River, $\mathrm{N}^{\circ}{ }_{15}$. called Sbipomof(pibla by the natives).
The crown of the head is fpeckled with white, as in the Strix funerea.
Voi, LXII, Ddd

[386]

Strix, 8. Nebulofa. New Species. The grey Owl. Sevèrn River, ${ }^{\circ}{ }_{3} 6$.

This fine non-defcript owl lives upon hares, ptarmigans, mice, \&c. It has two young at a time. The fpecimen fent over is faid to be one of the largeft. It is not defcribed by any author. Its weight is 3 pounds, length 16 inches, breadth 4 feet.
3. Lanius, 9 . Excubitor. 135. 11. Great ButcherShrike. bied. Brit. Zool. Cinereous Shrike. Faun. Am. Sept.
Severn River, $\mathrm{N}^{\circ} 1 \mathrm{I}$.
White Whikijobn at Hudfon's Bay. The fpecimen is a male; it weighs two ounces and a half, is feldom found on the coaft, but frequent about a hundred miles inland; and feeds on fmall birds. It correfponds with ours in every refpect.
II. $\{$ $\left\{\begin{array}{l}\text { Picæ. }\end{array}\right.$ Pies, Faun. Am. Sept.
4. Corvus, 10. Canadenfis. 158. 16. Cinereous Crow. S Crow. Faun. Am. Sept. 9.
Severn River, ${ }^{\circ} 9$ and 10.
Thefe birds are called Whikijobn and Whikijack at the Hudfon's Bay. They weigh 2 ounces; and are 9 inches long, and is broad. Their eyes are black, and their feet of the fame colour. Their characters correfpond with the Linnean defcription. They breed early in fpring; their nefts are made of fticks and grafs,

[387]

grafs, and built in pine trees; they have two, rarely three, young ones at a time; their eggs are blue; they fly in pairs; the male and female are perfectly alike; they feed on black mofs, worms, and even flefh. When near habitations or tents, they are apt to pilfer every thing they can come at, even falt meat ; they are bold, and come into the tents to eat victuals out of the difhes. They watch perfons baiting the traps for martins, and devour the bait as foon as they turn their backs. Thefe birds lay up ftores for the winter, and are feldom feen in January, unlefs near habitations; they are a kind of mock-bird; when caught, they pine away and die, though their appetite never fails them.

Corvus, 1 i. Pica. 157. I 3. Magpie. Brit. Zool. Faun. Am. Sept. 9.
Albany Fort, $\mathrm{N}^{\circ} 5$.
It is called Oue-ta-kee a/ke, i. e. Heart-bird, by the Indians. It is a bird of paflage, and rarely feen; it agrees, in all refpects, with the European magpie, upon comparifon.
5. Picus, \} 12. Auratus. 174. 9. Gold-wing Woodpecker. $\}$ Woodpecker. Faun. Am. Sept. Io. Catefby, I. i 8.
Albany Fort, N° 4. the large Woodpecker.
The natives of America call this bird Ou -tbee-quan-nor-now, from the yellow colour of the thafts of the quill and underfide of the tail fexthers. It is a bird of paffage; vifits the Ddd 2 neigh_

[388]

neighourhood of Albany Fort in April, leaves it in September ; lays from four to fix eggs in hollow trees, feeds on fmall worms and other infects. Its defcriptions anfwer exactly.

Picus, 13. Villofus, 175. 16. Hairy Woodpecker.
Faun. Am. Sept. 1o. Catefby I. Ig.
Severn River, $\mathrm{N}^{\circ}{ }_{56}$.
The fpecimen fent over is a female, by its wanting the red on the head. The defriptions of Linneus and Briffon agree; only the two middlemoft feathers are black, the next are of the fame colour, but have a white rhomboidal fpot near the tip; the next are black, with the upper half obliquely white, the very tip being black; the next after that are white, with a round black fpot on the inner fide clofe to the bafe, and the lower part of the fhaft is black, the outermoft feathers are quite white, the fhaft only at the bafe being black.
14. Tridactylus. 177.2 1. Three-toid Woodpecker. Faun. Am. Sept.
Severn River, $\mathrm{N}^{\circ} 8$.
A female, weight 2 ounces, length 8 inches, breadth 13 ; eyes dark blue, legs black. It builds its neft in trees, lives in woods upon worms picked out of trees, is not very common at Severn River. The defcriptions an fwer.
III. Gallin x_{x}

[389]

III. $\left\{\begin{array}{l}\text { Gallinæ. } \\ \text { Gallinaceous. Faun. Am. Sept. }\end{array}\right.$
6. Tetrao. $\{15$ Canadenfis, $274 \cdot 3 \cdot\}$ Faun. Am. Sept. 10 . Grous. \{Canace, 275.7. \}Spotted Grous.
Gelinotte du Canada, male et femelle, Pl. enl. 131 et 132. Buffon Oifeaux lI. p. 279. 4 to. Briflon I. p. 203. t. 20. f. 1, 2, and p. 201. app. 10. Edwards, t. 118 and 7I.

Severn River, $\mathrm{N}^{\circ}{ }_{5}$. Woodpartridge.
Thefe birds are all the year long at Hudfon's.
Bay, and never change the colour of their plumage. The accounts from Hudfon's Bay fay, there is no material difference between the male and female; which muft be a miftake, as they are really very different. Linneus's defcriptions of the Tetrao Canadenfis, and Canace, both anfwer to the fpecimens fere over, fo that, after comparing them, I find they are only one and the fame fpecies. I fuppofe the dividing them into two, was occafioned by Briffon's and Edwards's defcriptions, being taken from fpecimens fent from different parts of the continent of America, and perhaps caught at different feafons. Mr. de Buffon has, I find, the fame opinion with me, and by comparing the drawings of Edwards, with thofe of the Planches enluminees, it is put beyond a doubt. Thefe birds are very ftupid, may be knocked down with a ftick, and are frequently caught by the na-

[390]

tives with a ftick and a loop. In fummer they are good eating; but in winter they tafte ftrongly of the pine fpruce, upon which they feed during that feafon, eating berries in fummer. They live in pine woods, their nefts are on the ground; they generally lay but five eggs.

Tetrao, 16. Lagapus, 274. 4. White Grous. Faun. Am. Sept. io. Ptarmigan. Br. Zool. Lagopéde de la Baye de Hudfon. Buffon Oifeaux II. p. 276. Edw. t. 72.
Severn River. N ${ }^{\circ}$ 1-4. Willow-partridges.
The Hudfon's Bay ptarmigan has been feparated from the European in the Britif Zoology, and afterwards by M. de Buffon : however, I muft own, I cannot yet find the differences which they aflign to thefe fpecies, They contend that the Hudfon's Bay bird figured by Edwards is twice as big as the European ptarmigan ; Mr. Edwards, I think; does not intimate this, when he fays, the bird is of a middie fize, between partridge and pheafant; he on the contrary fuppofes them to be the fame fpecies. The Britifh Zoology, after Willoughby, fays, the ptarmigan's length is $13 \frac{3}{4}$ inches. The account from Severn River fays it is $16_{\text {〒 }}$ inches. The breadth in the Britifh Zoology is faid to be 23 inches. The breadth in the Hudfon's Bay birds, according to the accounts from Severn River, is. 23 inches. Willoughby's ptarmigan weighed 14 ounces; that in the Britifh

[391]

Zool. illuftr. t. 13 , I 9 ounces; that from the Hudfon's Bay ($1 \frac{1}{2}$ tib) 24 ounces. Thefe differences are of little confequence, and far from increafing the Hudfon's Bay bird to double the fize of the European. The Bri~ tifh Zoology fays, there is a difference in the fummer colours; but Mr. Edwards informs us, that he compared the Hudfon's Bay bird with the defcriptions of former ornitho. logifts, and found them to anfwer ; he likewife affures us he had the fame bird from Norway. Therefore I cannot help diffenting from the Britifh Zoology, in this one particular, and thinking with Linneus and Briffon, that the European and Hudfon's Bay ptarmigans are the fame, efpecially as the colours vary very much in the different fexes and at different feafons. To this we may add the teftimony of a gentleman well verfed in natural hiftory, who, having had opportunities of comparing numbers of Hudfon's Bay and European ptarmigans, affured me that he did not fee any difference between them. They go together in great flocks in the beginning of October, living among the willows, of which they eat the tops (whence they have got the name of willow partridges): about that time they lofe their beautiful fummer plumage, and exchange it it for a fnowy white drefs, moff providently adapted by its thicknels to fcreen them againt the feverity of the feacon, and by its colour againft their enemies

[392]

the hawks and owls, againft whofe attacks they would otherwife find no fhelter. Each feather is double, that is, a fhort one under a long one, to keep them warm. In the latter end of March, they begin again to change their plumage, and have got their full fummer drefs by the end of June. They breed every where-along the coaft, and have from nine to eleven young at a time; making their nefts on the ground, generally on dry sidges. They are excellent eating, and fo plentiful that ten thoufand have been taken at Severn, York, and Churchill Forts. The method of netting or catching them, is as follows: a net made of jack-twine, twenty feet fquare, is laced to four long poles, and fupported in front with the fticks, in a perpendicular fituation; a long line is faftened to thefe fupports, one end of it reaching to a place where a perfon lies concealed; feveral men drive the ptarmigans (which are as tame as chickens, efpecially on a mild, fnowy day), towards the net, which they run to, as foon as they fee it. The perfon concealed draws the line, by which means the net falls down, and catches 50 or 70 ptarmigaus at once. They are fometimes rather wild, but grow better humoured (as Mr. Graham fays) by being driven about, for they feldom forfake thofe willows which they have once frequented.

Tetrac. 17. Togatus, 275. 8. Shoulder-knot Grous. Groffe Gelinotte du Canada. Pl. enl. Io4. Briff. I. 207. t. 21. f. I. Buffon Oifeaux II. p. 287.

Severn River, No. 60 and 6r. Albany Fort I and 2.
This bird anfwers the defcriptions given of it by the ornithologifts in all refpects, and perfectly refembles the figure in Briffon, and in the Planches enluminées. It differs from Edwards's ruffed heathcock, t. 248 . or Linneus's Tetrao umbellus, as the latter has not the chining black axillar feathers, or fhoulder-knot, but a ferruginous one, is much lefs, and has brighter colours. M. de Buffon, however, thinks they are the fame, and fufpects at the fame time, that the bird which he calls la groffe Gelinotte du Canada (and which is the fame with the Society's (pecimens) is the female of Mr. Edwards's bird, t. 248. This conjecture is deftroyed by the fpecimens now fent from Hudfon's Bay, which by the accounts from thence are expreflly faid to be males. The choulderknot groufes bear the Indian name of $P u / k e e$, or Pufpukkee, at Hudfon's Bay, on account of the leannefs and drynefs of their flefh, which is extremely white, and of a very clofe texture, but when well prepared is excellent eating. They are pretty common at Moofe Fort and Henly Houfe, but are feldom feen at Albany Fort, or to the northward of the above places, In winter they feed upon juVoL. LXII. E e e niper

[394]

niper tops, in fummer on goofe-berries, rafpberries, currants, cranberries, \&c. They are not migratory, ftaying all the year at Moofe Fort ; they build their nefts on dry ground, hatch nine young at a time, to which the mother clucks, as our common hen does; and on the leaft appearance of danger, or in orderto enjoy a comfortable degree of warmth, the young ones retire under the wings of their parent.
N.B. A fpecimen, which is fuppofed to be either a young bird or a female, wants the blueifh black thoulder-knot; but it is the fame in all other refpects.

Tetrao, 18. Phafianellus. Linn. Syft. Nat. Ed. X. p. 160. n. 5. Edw. II7. Longtailed Grous. Faun. Am. Septentr. Io.
Severn River, $\mathrm{N}^{\circ} 6$ and 7. Albany Fort, $\mathrm{N}^{\circ} 3$.
This bird, which Mr. Edwards has drawn plate 117, was by Linneus in the tenth edition of his Syftem, ranged as a new fpecies of grous or tetrao, by the fpecific name of Phafianellus (alluding to the name of Pheafant which it bears at Hudfon's Bay, and likewife to its pointed tail). He afterwards in the new or twelfth edition of the Syftem, p. 273. makes it a variety of the great Cock of the Wood, or Tetrao Urogallus, probably from the account in Mr. Edwards, that the male ffruts very upright, is in general of a darker colour than the female, and has a glofly neck: There circumftances, however, e are not fuficient to bring

[395]

bring them under the fame fpecies, for it is known that the males of all the grous tribe, and indeed of moft of the gallinaceous birds, are ufed to ftrut in a very ftately manner, and that the colours of their plumage are much more diftinct than thofe of the females. But the fpecific difference alone, which Linneus affigns to the cock of the wood, abfolutely excludes our Hudfon's Bay fpecies; he calls it Tetrao pedibus hirfutis, cauda rotundata, axillis albis. Whoever examines Mr. Edwards's figure, and the fpecimens now in the Society's poffeffion, will find the tail very fhort, but pointed, the two middle feathers being half an inch longer than the reft, (Mr. Edwards fays two inches) and the axillw, or fhoulders, by no means white: befides this difference, the colour and fize of the Hudfon's Bay bird are likewife vafly different from thofe of the cock of the wood. Its length is 17 inches, its breadth 24, and, as Mr. Edwards juftly fays, it is fomewhat bigger than the common pheafant. The great cock of the wood is as big as a turky; and its female, which is much lefs, however far exceeds our bird, it being 26 inches long, and 40 broad. See Britifh Zool. octavo, p. 200. The figures given of the female of the T. Urogallus, or great cook of the wood, in the Br. Zool. folio, plate $\mathrm{MI}^{\text {w }}$, and the Planche enlumineé 75 , will ferve upon comparion as a convincing proof of the vaft diference there is between the Hudfon's Bay pheafant grous and the Enropeancock Eee 2

[396]

of the wood. The figure, which Mr. Edwards has given of the former bird, does not exactly correfpond with the Society's fpecimen, as he has reprefented the marks on the breaft half-moon haped, though they are heart-haped as thofe on the belly in the dried bird ; that is, they are white fpots, with a pale brownifh yellow cordated brim. Nor can I agree with Mr. Edwards, when he calls this bird the long-tailed grous from Hudfon's Bay; for its tail is really very fhort, in comparifon with that of other groufe, and its fmallnefs and acutenefs afford one of the moft diftinguifhing characters of the fpecies.
The native Indians call thefe pheafant groufes, Oc-kijs-cow: they are found all the year long, amongit the fmall juniper bufhes, of which the buds are their principal food, as alfo the buds of birch in winter, and all forts of berries in fummer. They never vary their colours; nor is there any great difference between the male and female, except in the caruncula or comb over the eye, which in the male is an inch long, and $\frac{3}{3}$ of an inch high. The account from Albany Fort adds, that the colour of the male is fomewhat browner, and almoft a chocolate on the breaft. Their flefh is of a light brown, exceeding juicy, and they are very plump. They lay from 9 to 13 eggs; their young can run almoft as foon as they are hatched; they make a piping noife fomewhat like a chicken. The cock has a fhrill crowing note, not very loud;
but when difturbed, or whilf flying, he makes a repeated noife of cuck, cock. They are moft common in winter at Albany Fort.
Before I leave the genus of groufes, I muft obferve that their feet have a peculiarity, taken notice of by few authors; the toes, in feveral feccies, have on each fide a row of fhort flexible teeth, like thofe of a comb; fo that the toes appear pectinated. The fpecies, which are known to have fucb pectinated toes, are,

1. The great Cock of the Wood, Tetrao Urogallus, Linn.
2. The Black Cock, T. Tetrix, Linn.
3. The Spotted Grous, $\{$ T. Canaden/is, and $\{T$. Canace, Linn.
4. The Ruffed Grous, T. Umbellus, Linn.
5. The Shoulder-knot Grous, T. Togatus, Linn.
6 The Pheafant Grous, T. Pbafianellus
6. The Hazel Hen, T. Bonafia, Linn.
7. The Pyrenæan Grous, T. Alcbata, Linn.

This is a circumftance, which ought to be attended to in all other fpecies of groufes, as it may in time afford a diftinguifhing character for a divifion in this great genus; the ptarmigan, or T. Lagopus, Linn is without thefe teeth

[398]

IV. $\left\{\begin{array}{l}\text { Columbx. } \\ \text { Columbine. Faun. Am. Sept. }\end{array}\right.$
\%. Columbis 3 19. Migratoria. 285. 36. Migratory Pigeon. J Pigeon. Catefb. 1. 23. Kalm, II. p. 82. t. Paferger Pigeon, Faun. Am. Sept. II. 'Severn River, N63. "Wood-pigeon.

Thefe pigeons are very farce fo far northward as Severn river, but abound near Moofe-fort, and further inland to the fouthward. Their common food are berries and juniper buds in winter; they fly about in great flocks, and are reckoned good eating. This account is confirmed by Kalm in his travels (Englifh edition) Vol. II. p. 82 and 311 . They hatch only two eggs at a time, and their neits are built in trees. Their eyes are rmall and black, the irides yellow, the fect red : the \& inely gloffed with purple, brighter in the ale. They weigh 9 , ounces.
$\mathrm{V} \cdot\left\{\begin{array}{l}\text { Pafferes. } \\ \text { Pafferine. Faun. Am. Sept. }\end{array}\right.$
8. Alauda. 2 20. Alpeftris. 239. 10. Klein, Hift. of

Lark. \int Birds, 4to. p. 73. Shore Lark, Faun.
A:a. Sept. Iz. Cattib. I. 32. Abany Eort, $\mathrm{N}^{\circ} 6$.

This fpecies is indifferently defribed by Linneus, who fays that all the tail-feathers on their inner web are white, (rectricibus dimidio interiore albis); though it does not appear that be faw a fpecimen of it himfelf. Both the

[399]

quill and tail-feathers are dukky, and in both the outermolt fee ther only has a white exterior margin. : The coverts of the tail are of a pale ferruginous colour, and two of them are nearly as long as the tail itfelf. The fcapulars are ferruginous; in the male, the head and whole back have a tinge of the fame colour, marked with dufky ftreaks; in the female, the back is grey, and the dufky ftripes of a darker hue. The crown of the head is black in the male, duiky in the female; the forehead is yellow, the bill and feet are black, the belly of a ditty reddifh white. Thefe larks are migratory, they vifit the environs of Albany Fort in the beginning of May, but go further northward to breed: they feed on grafs-feeds, and buds of the fprig-birch; run into fmall holes, and keep clofe to the ground, from whence the natives give them the name of Cbi-cbup-pi-fue.
9. Turdus. 72 I. Migratorius, 292. 6. American Thruh. $\}$ Fieldfare. Kalm II. p. 90: Faun. Am. Sept. II. Caterby I. 29. Severn River, N° 59. Albany Fort, $7,8,9$.

The defcriptions of thefe birds in various authors coincide with the fuecimens; at Severn River they appear at the beginning of May, and leave the environs before the frof fets in. At Moofe Fort, in the north latitude 51°. they build their neft, lay their eggs, and hatch their young in the ipace of fourteen days; but, at Xork fortandSevern fertement this is

[400]

done in 26 days: they build their nefts in trees, lay four beautiful light-blue eggs, feed on worms and carrion: when at liberty they fing very prettily, but confined in a cage, they lofe their melody. There is no material diftinction between the male and female. Their weight is $2 \frac{T}{\frac{T}{3}}$ ounces, the length 9 inches, and the breadth I foot; they are called red birds at Hudfon's Bay ; their Indian name is Pee-pee-cbuse.

Turdus, 22.
Severn River, $\mathrm{N}^{\circ} 54$ and 55 , male and female.
From the ftriking fimilarity with our blackbird, the Englifh at Hudion's Bay have given this bird the fame name. However, upon a clofe examination, I find the difference very great between our European blackbird, and the ,Hudfon's Bay or American one. The plumage of the male, inftead of being deep black without any glofs, as in ours, has a fhining purple caft, not unlike the plumage ot the Gracula Quijcula, Linn. or fhining Gracule, Faun. Am. Sept.; or the Maize thief, of Kalm. The female indeed is very like our female blackbird, being of a dufky colour on the back, and a dark grey on the breaft. The feet and bill are quite black in both fexes; the former have the back claw almoft as long again as any of the other claws. There are no veftiges of yellow palpebre in either the male or the female; the bill in tooth is ftrong, fimooth, and fubulated; the upper

[401]

upper mandible being carinated, but very little arched, and without any tooth or indenture whatever, on the lower fide. The noftrils are as in other thrufhes. This bird has no briftles at the bafe of its bill, its feet have fuch fegments as Scopoli in the Annus I. Hiftorico-Naturalis attributes to the ftares. Inftead of being folitary and living retired like the European blackbirds, thefe American ones come in flocks to Severn River in June, live among the willows, build in all kinds of trees, and return to the fouthward in autumn. They feed on worms and maggots; their weight is $2 \frac{1}{4}$ ounces, and they are nine inches long, and one foot broad. One that was kept twelve months in a cage pined away, and died. Notwithftanding thefe circumftances, I cannot help remaining undetermined with regard to this bird, which at firft fight is like the blackbird, has the bill of a thrufh, and the feet and gregarious nature of a ftare. It is to be hoped, that future accounts from Hudfon's Bay may inform us further, of the nature of this bird, its time of incubation, the number of eggs, it lays, and the colour of thofe eggs, together with the note of the bird, the difference and characteriftick marles of both the male and female, and other circumftances, which may ferve to determine to what genus and fpecies we are to refer this bird.

[^40]
[402]

10. Loxia, $\{$ 23. Curviroftra, 299. 1. Crofsbill. Grofbeak, Br. Zool. Faun. Am. Sept. I I. The fmall variety:
Severn River, $\mathrm{N}^{\circ} 27$ and 2.8.
This bird comes to Severn River the latter end of May, breeds more to the northward, and returns in autumn, in its way to the fouth, departing at the fetting in of the frof. The irides in the male are of a beautiful red, in the female yellow : the weight is faid to be Io ounces (probably by miftake for I ounce, as it is impoffible fo fmall a bird fhould weigh more), the length is 6 inches, the breadth 10 .
11. Enucleator, 299. 3. Pine Grofbeak. Br. Zool. and Faun. Am. Sept. Edw. 123 , 12:4. Pl. enl. 135 , f. I.
Severn River, $\mathrm{N}^{\circ} 29,30$.
It anfwers to the defcriptions and figures of the ornithologifts pretty well ; only Edwards's female has the red too bright, which is rather orange in our fpecimen, on the head, neck, and coverts of the tail. This bird only vifits the Hudfon's Bay fettlements in May, on its way to the north, and is not obferved to return in autumn; its food confifts of birchwillow buds, and others of the fame nature; it weighs 2 ounces, is 9 inches long, and I3 broad,

[403]

11. Emberiza. \{25. Nivalis. 308. I. Greater Bunting. \{Brambling, Br. Zool. Snowbird Snowflake, ibid. Snow-bunting. Faun. Am. Sept. II.

Severn River, № 24-26.
The bird, in fummer drefs, correfponds exactly with the defcription of the greater brambling, Br. Zool. The defcription of the fnowflake, or the fame bird in winter drefs, ibid. vol. IV p. 19. is fomewhat different, perhaps owing to the different feafons the birds were caught in, as it is well known they change their colour gradually. They are the firft of the migratory birds, which come in fpring to Severn fettlement; in the year 1771 they appeared April the it th, flayed about a month or five weeks, and then proceeded further northward in order to breed there; they return in September, flay till the cold grows fevere in November, then retire fouth ward to a warmer climate. They live in flocks, feed on grafsfeeds, and about the dunghills, are eafily caught under a fmall net, fome oatmeal being ftrewed under it to allure them; they are very fat, and fine eating. The weight is i ounce and 5 drams, the length $6 \frac{1}{2}$ inches, and the breadth 10 inches.

Em briza. 26. Leucophrys. New Species. White Crowned Bunting.
Severn River, ${ }^{\circ}{ }^{50}$. Albany Fort, 10.
This elegant little fpecies of Bunting is called a hedge fparrow at Hudfon's Bay, and has Fff 2 not

[404]

not hitherto been defcribed. It vifits Severn fettlement in June, and feeds on grafs-feeds,little worms, grubs, \&c. It weighs $\frac{3}{4}$ of an ounce, and is $7^{\frac{\pi}{2}}$ inches long, and 9 inches broad ; the bill and legs are flefh-coloured; the male is not materially different from the female, its. nefts are built in the bottom of willow bufhes, it lays three eggs of a chocolate colour. It vifits Albany Fort in May, breeds there, and leaves it in September.
12. Fringilla, $\{27$. Lapponica. 317. r. Faun. Finch. Suec. 235°
Severn river, $\mathrm{N}^{\circ} 52$.
It is called \mathcal{T} ecurmaßbib, by the natives at Hudfon's Bay. The defrription in Linneus's. Fauna Suecica coincides exactly with the fpecimen; that in his Syitem anfwers very nearly: Mr. Briffon's defcription (though he quotes Linneus, and Linneus quotes him) is widely different. The fpecimen fent over is a female; the males have more of the ferruginous colour on the head; the eyes areblue, the legs dark brown. It is only a winter inhabitant near Severn river, appears. not before November, and is commonly found among the juniper trees; it weighs $\frac{1}{2}$ of an ounce, its length is 5 inches, and its. breadth 7.

[405]

Firingilia. 28. Linaria. 322. 29. Leffer red headed Linnet: Br. Zool. Severn River, $\mathrm{N}^{\circ}{ }_{2}{ }_{3}$.

The defcriptions of Linneus, Briffon, and the Britifh Zoology, anfwer perfectly well. The figure in Planche enluminée 151. f. 2. has a quite ferruginous back contrary to all the defcriptions and the fpecimen before us, in which all the feathers on the back are dufky, edged with dirty white.
29. Montana, 324. 37. Mountain Sparrow, Tree Sparrow. Br. Zool. Edw. 269. Briffon III. p. 79.- Faun. Am. Sept.

Severn River, $\mathrm{N}^{\circ}{ }^{20}$.
This feems to be a variety, as its tail is rather longer than ufual, and forked; it anfwers nearly to the defcriptions given by the ornithologifts, and feems to be a female, as it has no black under the throat and eyes, and no white collar. The bill and legs are black, the eyes blue. At Severn fettlement it arrives in May, goes to breed further northwards, and returns in autumn : the weight is $\frac{3}{4}$ of an ounce, the length $6 \frac{1}{3}$ inches, and breadth 10. I was inclined to make this bird a new fpecies, on account of the many differences between it and the mountain faarrow; but confidering the fpecimen fent over. was not in the beft order, and might be a female, I thought it beft to leave it where it is, till we are better informed.

[406]

Fringilla. 3o. Hudfonias. New Specimen. Severn River, $\mathrm{N}^{\circ} 18$.

This is certainly a nondefcript fpecies; it only vifits Severn fettlement in fummer, not being feen there before June, when it flays about a fortnight, goes further to the northward to breed, and paffes by Severn again in autumn on its return fouth. It is very difficult to procure, and therefore it could not be determined whether the fpecimen was a male or female. It frequents the plains, and lives on grafs-feeds; it weighs $\frac{\pi}{2}$ an ounce, is $6 \frac{1}{4}$ inches long, and 9 inches broad: it has a fmall blue eye, and a whitifh bill faintly tinged with red; the whole body is blackinh, or of a foot colour, the belly alone with the two outermoft tail feathers on each fide being white. It is to be wifhed that more fpecimens and circumftantial accounts of this bird were fent over, which would enable us to determine its character with more precifion.
13. Muscicapa, 3 31. Striata. New Species, Striped Flycatcher. Flycatcher.
Severn River, $N^{\circ} 48$ and 49. Male and Female.
This fpecies vifits Severn river only in fummer, feeding on grafs-feeds, etc.; it weighs half an ounce, is 5 inches long, and feven broad; the male is widely different from the female: this fpecies is entirely nondefrript.

[407]

14. Motacilla, 3 2. Calendula. 337. 47 . Ruby Wagtail. \{crowned Wren. Edw. 254. Faun. Am. Sept.
(The number belongithg to this bird is loft; however, it is moft probably that fent from Severn river, N° 53.)
It anfwers to the defcriptions and the figure of Ediwards; its weight is 4 drams, its length 4 inches, and its breath 5. It migrates, feeds on grafs-feeds and the like, and breeds in the plains; the number of eggs is not known.

I5. Parus, 3 3. Atricapillus. 341.6. Black Cap Titmoufe. $\{$ Titmoufe. Albany Fort, $\mathrm{N}^{\circ} \mathrm{I}$ i.

The defcription given by Linneus anfwers, and fo does M. Briffon's in mof particulars, except that the quill-feathers are not white on the infide. Thefe birds flay at Albany Fort all the year, yet feem moft numerous in the coldeft weather; probably being then more in want of food, they come nearer the fettlements, in order to pick up all remnants. They feed on flies and fmall maggots, and likewife on the buds of the fprig-birch, in which they perhaps only fearch for infects; they make a twittering noife, from which the native call them $\mathrm{Ki} / \mathrm{s}-\mathrm{ki} j \mathrm{~s}-\mathrm{ke} \cdot \mathrm{J} / \mathrm{h} / \mathrm{h}$.

Parus. 34. Hudfonicus. Nere Species. Hudfon's Bay Titmoufe.
Severn River, ${ }^{\circ}{ }^{\circ} 12$.
This new Ipecies of titmoufe, is called Peche-ke$k e-\beta i j h$, by the natives. They are common about the juniper bufhes, of which the buds are their food; in winter they fly about from tree to tree in fmall flocks, the fevereft weather not excepted. They breed about the fettlements, and lay 5 eggs; they have fmall eyes, with a white ftreak under them, and black legs: the male and female are quite alike; they weigh half an ounce, are $5_{\frac{1}{t}}$ inches long, and 7 inches broad.
16. Hirundo, 35.

Swallow.
Severn River, $\mathrm{N}^{\circ}{ }_{58}$.
The fwallows build under the windows, and on the face of fteep banks of the river, they difappear in autumn; and the Indians fay, they were never found torpid under water, probably becaufe they have no large nets to firh with under the ice. The fpecimen fent anfwers in fome particulars to the defcription of the Martin, Hirundo Urbica, Linn. but feems to be fmaller, and has no white on the rump. I have, therefore, thought it beft to leave the fpecies undetermined, till further informations are received from Hudron's Bay, on this fubject.
2. Water-

[409]

2: Water-Birds.
VI. $\left\{\begin{array}{l}\text { Grallex, } \\ \text { Clovenfooted. Faun. Am. Sept. }\end{array}\right.$
17. Ardea, $\{$ 36. Canadenfis. 234. 3. Edw. I33.

Heron. Canada Crane. Faun. Am. Sept. 14. Severn River, $\mathrm{N}^{\circ} 35^{-}$Blue Crane.

The account from Severn fettlement fays, there is no material difference between the male and female; however, the fpecimen fent over, I take to be a female, as its plumage is in general duller than that figured by Edwards, and as the laft row of white coverts of the wing are wanting. Thefe cranes arrive near Severn in May, have only two young at a time, retire fouthward in autumn; frequent lakes and ponds, and feed on filh, worms, \&c. They weigh feven pounds and a half, are $3^{\frac{1}{4}}$ feet long, and 3 feet 5 inches broad; the bill is 4 inches long, the legs 7 inches, but the leg and thigh 19 .

Ardea. 37. Americana, 234. 5. Hooping Crane. Edw. 1 32. Catefby, 1. 75. Faun. Am. Sept. 14.

York Fort.
Edwards's figure is very exact ; Catefby's is not fo good, as it reprefents the bill too thick towards the point.

Voz. LXII.
Ggg
38. Stele

[4io]

38. Stellaris, 239. 21. Varietas. The Bittern, Br. Zool. Edw. 136. Faun. Am. Sept. pag. 14 *. Severn River, Ni 64

At firt fight, 1 thought the frecimen fent from Hudion's Bay, was a young bird; but upon nearer examination and comparing it with Mr. Edwards's account and figure, I take it to be a variety of the common bittern peculiar to North America; it is fmaller, but upon the whole very much refeinbles our bittern. Mr. Edwards's meafurements and drawings correfpond very well with the fpecimen.
This bird appears at Severn river the latter end of May, lives chiefly among the fwamps and willows, where it builds its neft, and lays only two eggs at a time; it is very indolent, and, when roufed, removes only to a fhors diftance.

This bird is called a yellow leg at Albany fort, from the bright yellow colour of the legs, efpecially in old birds; a circumftance, in which it varies from the defcriptions of Linneus and Brifion, probably becaufe they de-

[^41]
[4II]

feribed from dried fpecimens, in which the yellow colour always changes into brown. It agrees in other refpects perfectly well with the defcriptions: it comes to Albany fort in April or beginning of May, and leaves it the latter end of September. It feeds on fmall thell fifh, worms, and maggots; and frequents the banks of rivers, fwamps, \&\&c. It is called by the natives $S a-\int a-$-here, from the noife it makes.

Scolopax. 40. Lapponica. 246. 15. Red Godwit. Br. Zool. Faun. Am. Sept. I4. Ed. I38. Churchill River, ${ }^{\circ}{ }^{\circ}{ }_{13}$.

Linneus defcribes this bird very exactly in his Syitema Naturæ : the middle of the belly has no white in the Society's fpecimen, as that had from which the defcription in the Br . Zool. octavo I. P. 353, 354, was taken. All the other characters correfpond.

Scolopax. 41. Borealis. Nerw Species. Efkimaux Curlew. Faun. Am. Sept, I4.
Albany Fort, $\mathrm{N}^{\circ}{ }_{15}$.
This fpecies of Curlew, is not yet known to the ornithologifts; the firft mention is made of it in the Faunula Americæ Septentrionalis, or catalogue of North American animals. It is called Wee-kee-me-nafe-fu, by the natives; feeds on fwamps, worms, grubs, \&cc; vifits Albany Fort in April or beginning of May ; breeds to the northward of it, returns in AuGgg2 guft.

[412]

guft, and goes away fouthward again the latter end of September.
19. Tringa, $\{$ 42. Interpres. 248. 4. Turnftone.

Sand-piper. Edw. 141. Faun. Am. Sept. 14. Severn River, $\mathrm{N}^{\circ} 3 \mathrm{I}$ and 32 .

This fpecies is well defcribed by the ornithologifts; its weight is $3 \frac{\pi}{2}$ ounces, the length $8 \frac{3}{3}$ inches, and the breadth 17 inches; it has four young at a time; its eyes are black, and the feet of a bright orange: this bird frequents the fides of the river.
43. Helvetica. 250. 12, Briffon. Av. V. p. 106. t. Io. f. 2.
(The number was loft, perhaps it is $\mathrm{N}^{\circ}{ }^{17}$, from Fort Albany; upon that fuppofition the account is as follows: " the natives call it "Warw-pulk-abrea-/bijh, or white bear bird; " it feeds on berries, infects, grubs, worms, "s and fmall thell-fif ; vifits and leaves Al" bany fort at the fame time with the Sco"lopax Totanus, and Borealis.")
I find this bird anfwers very well to its defcription ; the throat, brealf, and upper part of the belly are blackifh, as in the defriptions, but mixed with white lunulated fpots, which are neither defrribed nor exprefled in M. Briffon's figure, and may be owing to the difference of fex, or climate.
WII;

$[413]$

VII. $\left\{\begin{array}{l}\text { Anseres. } \\ \text { Webbed-footed. Faun. Am. Sept. }\end{array}\right.$
29. Anas, $\{$ 44. Marila. 196. 8. Scaup Duck. Br. Duck, Zool. Faun. Am. Sept. 17. Severn River, $\mathrm{N}^{\circ} 44$ and 45. Fifhing Ducks.

Linneus's defcription, and the figure in the Br . Zoology, folio, plate Q. p. I 53 , agree perfectly well with the fpecimens. The female, as Linneus obferves, is quite brown, the breaft and upper part of the back being of a gloffy reddifh brown; the fpeculum of the wing and the belly are white. The eyes of the male have very bright yellow irides; thofe of the female are of a faint dirty yellow. The female is two ounces heavier than the male, which weighs one pound and an half, is ' $16 \frac{1}{2}$ inches long, and 20 inches broad.

Anas. 45. Nivalis. Snow Goofe. Faun. Am. Sept. p. 16. Lawfon's Carolina. Anfer niveus Briff. VI. 288. Klein. Anfer nivis. Schwenkfeld, Marfigli. Danub. p. 802. t. 49.
Severn River, $\mathrm{N}^{\circ} 40$, and a young one, $\mathrm{N}^{\circ} 4 \mathrm{I}$. white Goofe.
Thefe white geefe are very numerous at Hudfon's Bay, many thoufands being annually killed with the gun, for the ufe of the fettlements. They are ufually fhot whilft on the wing, the Indians being very expert at that exercife, which they learn from their youth; they weigh five or fix pounds, are $2 \frac{2}{3}$ feet:

[414]

$=2 \frac{2}{3}$ feet long, and $3 \frac{1}{2}$ broad; their eyes are black, the irides fmall and red, the legs likewife red ; they feed along the fea, and are fine eating; their young are bluifh grey, and do not attain a perfect whitenefs till they are a year old. They vifit Severn river firft in the middle of May, on their journey northward, where they breed; return in the beginning of September, with their young, ftaying at Severn fettlement about a fortnight each time. The Indian name is Way-way, at Churchill river. Linneus has not taken notice of this fpecies.

Anas. 46. Canadenfis. 198. 14. Canada Goofe. Faun. Am. Sept. 16. Edw. 1 5I. Catelby I. 92, \& cc .
Severn River, No 42.
The Canada geefe are very plentiful at Hudfon's Bay, great quantities of them are falted, but they have a filhy tafte. The feecimen fent over agrees perfectly with the defcriptions and drawings. At Hudfon's Bay this fpecies is called the Small Grey Goofe. Befides this, and the preceding white goofe, Mr. Graham, the gentleman who fent the account from Severn fettlement, mentions three other fpecies of wild geefe to be met with at Hudfon's Bxy; he calls them,

1. The large Grey Goofe.
2. The Blue Goofe.
3. The Laughing Goofe.

[415]

The firft of thefe, the large grey goofe, he fays, is fo common in England, that he thought it unneceffary to fend fpecimens of it over. It is however prefumed, that though Mr . Graham has thewn himfelf a careful obferver, and an indefatigable collector ; yet, not being a naturalift, he could not enter into any minute examination about the fpecies to which each goofe belongs, nor from mere recollection know; that his grey goofe was actually to be met with in England. A natural hiftorian, by examination, often finds material differences, which would efcapea perfon unacquainted with natural hiftory. The wih, therefore, of feeing the fpecimens of thefe species of geefe, muft occur to every lover of that fcience. Mr. Graham fays, the large grey geefe are the only feccies that breed about Severn river. . They frequent the plains and fwamps along the ceaft. Their weight is nine pounds:
The blue goofe is as big as the white goofe; and the laughing goofe is of the fize of the Canada or fmall grey goofe. Thefe two Laft fpecies are very common along Hudfon's Bay to the fouthward, but very rare to the northward of Severn river. The Indians have a peculiar method of killing all there fpecies of geefe, and likewife fwans. As there birds fly regularly along the marhes, the Indians range themfelves in a line acrofs the marlh; from the wood to high water mark, about mulket hot from eath other,

[416]

fo as to be fure of intercepting any geefe which fly that way. Each perfon conceals himfelf, by putting round him fome bruh wood; they likewife make artificial geefe of fticks and mud, placing them at a fhort diftance from themfelves, in order to decoy the real geefe within fhot: thus prepared, they fit down, and keep a good look out; and as foon as the flock approaches, they all lie down, imitating the call or note of geefe, which thele birds no fooner hear, and perceive the decoys, than they go ffraight down towards them ; then the Indians rife on their knees, and difcharge one, two or three guns each, killing two or even three geefe at each thot, for they are very expert. Mr. Graham fays, he has feen a row of Indians, by calling round a flock of geefe, keep them hovering among them, till every one of the geefe was killed. Every fpecies of geefe has its peculiar note or call, which muft greatly increafe the difficulty of enticing them.

Anas. 47. Albeola. 199. 18. The Red Duck. Faun. Am. Sept. 17. Edw. t. 100. Sarcelle de la Lonifiane, Brifon VI. t. 41. f. I. Severn River, $\mathrm{N}^{\circ} 37$ and 38. Fifhing Birds.

The defcriptions and figures anfwer very well with the male, except that the three exterior feathers are not white on the outfide, but all dufky.
The female is not defcribed by any one of the ornithologitts; and therefore deferves to be noticed,

[417]

noticed, to prevent future miftakes. The whole bird is dunky, a few. feathers on the forehead are rufty, and fome about the ears of a dirty white; the breaft is grey, the belly and fpeculum in the wings white; the bill and legs are black. They vifit Severn fettlement in Junie, build their nefts in trees, and breed among the woods, and near ponds; the weight of the female is one pound, its length 14 inches, and its breath 21 .

Anas. 48. Clangula. 201. 23. Golden Eye. Br. Zool. Faun. Am. Sept. if. Severn River, $\mathrm{N}^{\circ}{ }_{51}$.

Thefe birds frequent lakes and ponds, and breed there : they eat fifh and flime, and cannot rife off the dry land. The legs and irides are yellow; their weight is $2 \frac{3}{4}$ pounds, and their meafure 19 inches in length, and two feet in breadth. The fpecimen fent is the male.

Anas. 49. Perfpicillata. 201. 25. Black Duck. Faun. Am. Sept. 16. Edw. 155.
Churchill River, ${ }^{\circ}{ }^{\circ} 14$.
This fpecies is exactly defcribed, and well drawn by Edwards. The Indians call it Sbe-ke-ficpartem. It ought to come into the firft divifion of Linneus's ducks, "roftro bafi " gibbo," as its bill is really very* unequal at the bafe.

Vor. LXII.
Hhb

[418]

Anas. 50. Glacialis. 203.30, and Hyemalis, 202. 29. Edw. t. 156. Swallow-tail. Br. Zool. Faun. Am. Sept. ${ }^{17}$.
Churchill River, ${ }^{\circ}{ }^{12}$.
At Churchill River the Indians call this fpecies, Har-bar-vey; it correfponds with Edwards's defcription and drawing, plate 156 , but differs much from Linneus's inexact defcription of the Anas Hyemalis, to which he, however, quotes Edwards. Upon the whole it is almoft without a doubt that the bird reprefented by Edwards, plate 280, and Br . Zool. folio, plate Q. 7, and quoted by Linneus for his Anas glacialis, is the male, and that the bird figured by Edwards t. 1 56, and quoted by Linneus for the Anas Hyemalis, is the female, of one and the fame fpecies. Linneus mentions a white body (in his Anas hyemalis) which in Edw. Tab. I 56, and in the Society's fpecimen, is all brown and dulky, except the belly, temples, a fpot on the back of the head, and the fides of the rump, which are white. Linneus fays, that the temples are black; in the fpecimen now fent

- over, and in Mr. Edwards's figure, which Linneus quotes, they are white; the breaft, back, and wings, are not black as he fays, but rather brown and dufky. A further proof, that Linneus's Anas Glacialis and Hyemalis are the fame, is that the feet in both t. 156 and 280 of. Edwards are red, and the bill black, with an orange fpot.

[419]

Anas. 51. Crecca. 204. 33. Varietas. Teal. Br. Zool. Faun. Am. Sept. I7. Severn River, $\mathrm{N}^{\circ} 33$, 34. Male and female.

This is a variety of the teal, for it wants the two white ftreaks above and below the eyes; the lower one indeed is faintly expreffed in the male, which has alfo a lunated bar of white over each fhoulder ; this is not to be found in the European teal. This fpecies is not very plentiful near Severn river; they live in the woods and plains near little ponds of water, and have from five to feven young at a time.

Anas. 52. Hiftrionica. 204. 35. Harlequin Duck. Faun. Am. Sept. 16. Edw. t. 99.
This bird had no number fixed to it ; it agrees perfectly with Edwards's figure.

Anas. 53. Bofchas. 205. 40. Mallard Drake. Faun. Am. Sept. Br. Zool.

Severn River, $\mathrm{N}^{\circ} 39$.

It is called Stock Drake at Hudron's Bay, and correfponds in every refpect with the European one, upon comparifon.

21. Pelecanus, 3 54. Onocrotalus. 251. 1. A vaPelecan. 1 riety.

York Fort.

This variety of the pelecan, agrees in every paticular with Linneus's oriental pelecan (Pele-

Hhh2 canus

[420]

canus onocrotalus orientalis), but has a peculiar tuft or fringe of fibres in the middle of the upper mandible, fomething nearer the apex than the bafe. This tuft has not been mentioned by any author, and is likewife wanting in Edwards's pelican, t. 92. with which the Society's fpecimen correfponds in every other circumftance. The P. Onocrotalus occidentalis, Linn. or Edw. t. 93 American pelican, is very different from it: the chief differences are the colour, which in our Hudfon's Bay bird is white, but in Edwards's is of a greyifh brown; and the fize, which in the white bird is almoft double of the brown one. - The quill-feathers are black, and the Chafts of the larger ones white. The Alula, or baftard wing, is black. The bill and legs are yellow.
22. Colymbus. 7 55. Glacialis. 221. 5. Northern * Diver, $\}$ Diver. Br. Zool. Faun. Am. Sept. 16.
Churchill River, No 8, called a Loon there.
This bird is well defcribed and drawn in the Britifh Zoology, in folio.
** 356. Auritus, c. 222. 8. Edw. 145. Grebe. $\}_{\text {Eared Grebe. Faun. Am. Sept. } 15 .}$ Severn River, ${ }^{\circ}{ }^{43}$.

This is exactly the bird drawn by Edwards, t. 145. The fpecimen fent over is a female. It differs much from our leffer crefted Grebe.

[42I]

Br. Zool. octavo I. p. 396, and Br. Zool. illuftr. plate 77. fig. 2. and Ed. 96. fig. 2. However, in both thefe works, it is looked on only as a variety, or different in fex. Mr. Graham has the fame opinion. It lives on fifh, frequenting the lakes near the fea coaft. It lays its eggs in water, and cannot rife off dry land. It is feen about the beginning of June, but migrates fouthward in autumn. It is called Sekeep, by the natives. Its eyes are fmall, the jrides red; it weighs one pound, and meafures one foot in length, and one third more in breadth.
23. Larus: 7 57. Parafiticus. 226. 10. Arctic Gull. Gull. $\}$ Br. Zool. Faun. Am. Sept. 16. Edw, 148. 149.

Churchill River, N°. 15 .
This fpecies is called a Man of Wir, at Hudfon's Bay. . It feems to be a female, by the dirty white colour of its plumage below; it agrees very well with Edwards's drawing, and: that in the Br . Zool. illuftr.
24. Sterna.) 58. Hirundo (Variety), 227. 2. Tern. \int The greater Tern. Br. Zool. Faun. Am. Sept.
(The number belonging to this bird is loft, perhaps it is $\mathrm{N}^{\circ} \mathbf{1 7}$, from Churchill River, called "A fort:

[422]

"t A fort of Gull, called Egg-breakers, by " the natives.")
The feet are black; the tail is Chorter and much lefs forked than that defcribed and drawn in the Br. Zool. The outermoft tailfeather likewife wants the black, which that in the Britifh Zoology has. In other refpects it is the fame.

$[423]$

DESCRIPTIONES Avium Rariorum e Sinu Hudfonis.

I: Falco sacer.

Falco, cerâ pedibufque coeruleis, corpore, remigibus rectricibufque fufcis, fafciis pallidis; capite, pectore \& abdomine albis, maculis longitudinalibus fufcis.
Habitat ad finum Hudfonis et in reliqua America Septentrionali; victitat Lagopodibus \& Tetraonum fpeciebus.-
Descr. Magnitudo Corvi.
Roftrum, cera, pedes coerulea; roftrum: breve, curvum, coeruleo-atrum; mandibula utraque, bafi pallide coerulea, apice nigrefcente, utraque emarginata.
Gaput tectum pennis albidis, maculis longitudinalibus, fufcis.
Oculi magni ; irides flavæ.
Gula alba, fufco-maculata.
Dorfum et tectrices alarum, plumis fufcis, ferrugineo-pallide marginatis, maculatifque, maculis rachin non attingentibus.
Pectus, venter, criffum, tectrices alakum inferiores, \& femora alba ${ }_{1}$ maculis longitudinalibus nigro-fufcis.
Remiges fufco-nigri, viginti duo; primores apicibus margine albis, maculis fero$3 \quad$ rugineog

[42.4]

rugineo-pallidis, intra majoribus, tranfverfis, extra minoribus, rotundatis.
ReEtrices duodecim, fupra fufcæ, fafciis circiter duodecim \& apice albidis; infra cinerea, fafciis albidis.

> 2. STRIX NEBULOSA.

Strix capite lævi, corpore fufco, albido undulatim ftriato, remige fexto longiore, apice nigricante. Habitat circa Sinum Hudfonis, victitat Leporibus, Lagopodibus, Muribufque.
Descr. Roftrun fufco-flavum, mandibula fuperiore fuperius magis flava.
Oculi magni, iridibus flavis.
Caput facie cinerea, e pennis fufco et pallde cinereo alternàtim ftriatis. Pone hafce pennas collum verfus eit ordo plumularum fufcarum ad utramque ge. nam, femicirculum nigrum efficiens.
Occiput, cervix, et collum fufca, pennis, marginibus albo-maculatis.
Pectus albidum, maculis longitudinalibus tranfverfifque fufcis.
Abdomen album, fuperius uti pectas maculis longitudinalibus, fed inferius ftriis tranfverfis notatum.
Dorfum totum et tectrices alx, caudæque confertim ex fufco $\&$ albido undulatoftriatx.
Alue fufcæ; remiges primores fufci, grifeo tranfverfim fafciati, fafciis latis nebulofis. Remex fextus, reliquis longior, apice

[425]

magis nigricans; primus vero reliquis primoribus brevior. Remiges reliqui pallidiores, obfcurius fafciati.
Cauda rotundata, reCtricibus duodecim: duæ intermediæ paullo longiores, totæ cinerafcente albido fufcoque undulatim ftriatæ, lineis duplicatis fufcis tranfverfis pluribus. Rectrices reliquæ fufcz albido fubftriatæ.
Pedes tecti pennis albidis fufco-ftriatis. Magnitudo fere Strigis Nyctex, Linn. Longitudo unciarum 16 pedis Anglicani. Latitudo pedum quatuor. Pondus librarum trium.
3. Tetrao Phasianellus.

Linn. Ed. X. p. 160. n. 5 .
Tetrao pedibus hirfutis, cauda cuneiformi, remigibus nigris, exterius albo-maculatis.
Habitat ad Sinum Hudfonis.
Descr. Magnitudo fere Tetraonis Tetricis. Linn. Rofrum nigrum.
Oculorum irides avellaneæ.
Caput, collum $\&$ dorfum teftacea, nigro tranfverfim fafciata : macula albida inter roftrum et oculos: latera colli notata maculis rotundatis albidis.
Dorfum teftaceum, plumis omnibus late nigro-farciatis.

Vor. LXII。
1ii
Uropygiune

[426]

Uropysium magis albido-cinereum, nigredine fimbriata fecundum rachin plumarum.
Pectus \mathcal{E} Venter albida, maculis cordatis fufco-teftaceis in ventre faturatioribus.
Alarum tectrices dilute teftaceo, nigro, alboque tranfverfim fafciatæ, maculis pluribus rotundis albis. Remiges primores nigri, latere exteriore albo-maculati; fecundarii fufci, apice \& ad marginem exteriorem albo fubfafciati: poftremi vero teftaceo fafciati, apice tantum albi.
Rectrices breves, exteriores pallide fufcæ, apice albæ, duæ intermediæ reliquis longiores, teftaceo-maculata.
Pedes plumis albo-grifeis venti digitis pectinatis.
Longitudo unciarum 16 pedis Anglicani. Latitudo pedum duorum.
4. Emberiza leucophrys *

Emberiza remigibus rectricibufque fufcis, eapite nigro, fafcia verticis, fuperciliifque niveis.
Habitat in America Boreali ad Sinum Hudfonis.
Descr. Magnitudo circiter fringilla calibis.
Roftrum rubrum, f. carnei coloris: Nares fubrotundæ.
Caput fafcia verticali lata candida, paululum ante roftrum definente; fafcia atra

* Aeskiés albus. Oppùs fupercilium.

[427]

lata ad utrumque latus fafcix albx. Sufo percilia alba, definentia in lineas, fafciam albam verticalem adtingentes; arcus dein atri, ex angulis oculorum, fere in occipite confluentes.
Collumz cinerafcens, in pectore dilutius.
Dorfum ferrugineo-fufcum, marginibas plumularum cinereis.
Alo fufce; remigum primorum margines exteriores tenuiffimi pallidi, interiores cinerafcentes: fecundarii \&c pennæ tectrices fufce, marginibus latiufculis, verfus apicem albis, efficientibus fafciam albam; fuper quam fafcia altera alba ex maculis albis in apice tectricum minorum, f. plumarum fcapularium. Alule albx. Remiges fubtus cinerei, marginibus albis.
PeEfus cinereum, abdomen dilutius, fere album.
Criflum \&x.plumula femora tegentes latefo centia.
Uropygiunn cinereo-fufcum.
Culuda æqualis; ; rectrices duodecim fufca, marginibus paullo pallidioribus, fubtas cinerex.
Pedes carnei coloris, digito intermedio \& ungue pottico reliquis lóngioribus.
Longitudo unciarum 7 pedis Auglicani.
Latitudo inter alas extenfas 9 unciarum pedis Anglicani.
Cauda partem tertiam longitudinis totius aviculæ efficit.

[428]

Ale complicatæ paululum ultra caudz. exortum protenduntur.
Pondus drachmarum fex.

5. Fringilla Hudsonias.

Fringilla fufco-cinerafcens, roftro albido, pecetore inferiore, abdomine, rectricibufque quatuor extremis albis.
Habitat in America Boreali.
Descr. Magnituda circiter fringilla carduelis.
Rofrum albidum, rubedine aliqua imbue tum.
Oculi parvi, cœerulei.
Corpus totum cinereo-nigricans, fo potius. fuliginofum.
Pectus inferius \& abdomen alba.
Remiges fufci, cinereo-marginati : alæ complicate mediam fere caudam adtingunt.
Rectrices fufcæ, extimæutrinque duæ totæ albæ, tertia fufca, macula oblonga alba, ad latus interius, prope rachin, apicem. attingens; reliquæ totæ fufcæ.
Pondus femunciz.
Longitudo unciarum $6 \frac{1}{4}$ pedis Anglicani.
Latitudo unciarum novem.

6. Muscicapa striata.

Nuscicapa cinereo-virens, dorfo nigro friato, fubtus flavefcenti-alba, gula lateribufque pectoris fufco maculatis.

Habitat

[429]

Habitat ad Sinum Hudfonis.
Quum mas à fæmina multum differat, utique congruum eft, utrumque fexum feparatim defcribere.
Descr. Mas.
Rofrum trigonum, mandibu fuperiore paululum longiore, ante apicem leviter emarginata, nigra; inferiore bafi flavefcente.
Nares fubrotundæ.
Vibriffe nigræ.
Caput fupra totum atrum ad oculos ufque. Gence à roftro in occiput totæ albæ; occiput albo \& nigro variegatum.
Gula flavefcenti-alba maculis fufcis.
Pectus albidum, lateribus, five verfus occiput maculis nigris variegatum.
Dorfum cinereo-virens, ftriis five maculis longitudinalibus nigris latioribus, è plumulis nigris, margine virentibus.
Abdomen album.
Uropygium cinereum, nigro-maculatum.
Ale fufcæ; remiges primores pallido marginati, fecundarii apice tenuififo albo; duæ ultimæ margine exteriore albo; tectrices fufcæ, majores flavefcenti albo, minores candido in apice maculatæ, unde fafciæ albæ binæ in alis.
Cauda fufca; reetrix utrinque prima f. extima, latere interiore macula magna alba, marginem interiorem attingente; proxima f. fecunda macula oblonga minore alba, etiam marginem interiorem attingente;

[430]

attingente ; utrinque tertia, latere interiore verfus apicem albo-marginata.
"Pedes lutei; ungues breves, pallide fufci.
Magnitudo circiter Pari atricapilli; Linn. Longitudo 5 unciarum.
Latitudo 7 unciarum pedis Anglicani.
Fœmina.

- Rofrrim, alx, cauda, abdomen, uropygium, pedes $\&$ menfura ut in mare.
Caput flavo-virens, ftriis brevibus tenuibufque longitudinalibus nigris; linsa flaviffima à bafi roftri incipiens fuper oculos duca; palpebre flave.
Gula, genæ \& pectus albido-flava; macula fparfe oblongiufculx fufce, ab utroque oris angulo ufque in pectoris latera.
Dorfum, ut in mare, fed viridius, \&t ftrix nigre minores.

7. Parus Hudsonicus.

- Parvi capite fufco-rubefcente, dorfo cinereo, jugulo atro, fafcia fuboculari, pectoreque albis, hypochondriis rufis.
Habitat ad Sinum Hudfonis.
Descr. Roltram fubulatum, integerrimum, atrum, bafi è regione narium tectum fafciculis fetarum ferruginearum, lineas 4 (uncia pedis Anglicani) longum.
Caput fufco-ferrugineum, fafcia fub oculis alba; gula atra, nigredine extenfa fub - bac fatcia alba.

[431]

Dorfom cinereo-virens, è plumis longioribus, fufcis, apice tantúm cinereo-virentibus, £. olivaceis.
Pectus © Abdomen alba, fed plumæ omnes bafí nigra, apice tantum albæ.
Latera abdominis \& lumbi feraginei.
Ala fufcæ, remigum margine omni cinereo.
Cauda fufca, rotundata, rectricibus 12 , margine cinereis.
Uropygium tectum plumulis aliquot nigris, apice albido-rufis.
Pedes nigri ; digitus pofticus cum ungue anticorum digitorum medio, duplo longior.
Longitude unciarum $5^{\frac{1}{8}}$ pedis Anglicani.
Latitudo unciarum 7 .
Cauda uncias 2 $\frac{I}{2}$ longa.

8. Scolopax borealis.

Scolopax roftro arcuato, pedibufque nigris, corpore fufco, grifeo-maculato, fubtus ochroleuco.
Habitat in Sinus Hudfonis inundatis, \& pratis humidis, victitans vermibus \& infeetis : menfe Aprili vel initio Maii primum vifa eft, circa Caftellum Albany, inde in terras magis arcticas migrat, ibique nidificat; redit ad idem caftellum menfe Augufto; regiones Auftraliores petit circa finem Septembris.

Affinis fcolopace arquata Linn. fed differt corpore triplo minore, roftro ratione corporis breviore ,

[432]

breviore, colore in dorfo faturate fufco, in - abdomine ochroleuco.

Descr. Caput pallidum, lineolis confertis longitudinalibus fufcis: finciput faturate fufcum, pallido maculatum.
Roftrum nigricans, arcuatum, longitudine duarum unciarum pedis Anglicani, mandibula inferiore bafi rufa.
Collum, pectus, abdomen \& criffum ochroleuca; pectore colloque lineolis longitudinalibus fufcis confertioribus, abdomine \& criffo fere nullis, vel tenuibus notatis.
Femora femi-tecta plumulis ochroleucis, fufco maculatis.
Latera abdominis fub alis prefertim, rufa, pennis tranfverfim fufco fafciatis.
Dorfunn totum faturate fufcum, pennis margine albido grifeis.
Ale fufce; remiges primores immaculati, primores rachi tota alba ; reliqui, f. fecundarii pallide grifeo-marginati. Tectrices late grifeo-marginate. Tectrices inferiores alæ, ferrugineæ fufco tranfo verfim fafciatæ. Alæ complicatæ fere mediam caudam attingunt.
Uropygium fufcum, marginibus maculifque pennarum albidis.
Cauda brevis, fufca, rectricibus albido tranfverfim fafciatis
Pedes nigri, f. cœerulefcentes.
Longitudo unciarum $I_{3} \frac{1}{2}$.
Latitudo circiter unciarum 21 .
9. Anas

[433]

9. Anas nivalis.

AnAs, roftio cylindrico, corpore albo, remigibus primoribus nigris.
Habitat in America Boreali, per Sinum Hudfonis migrans.
Descr. Corpus totum album, magnitudine anferis domeftici noftratis.
Roftrum luteum, mandibulis fubferratis. Oculi iride rubra.
Remiges decem primores nigri, fcapis aibis: tectrices infimæ cinereæ, fcapis nigris; pennæ duæ alulæ, itidem cinereæ, fcapis nigris.
Pedes rubri.
Longitudo pedum duorum \& unciarum octo.
Latitudo pedum $3^{\frac{\pi}{2}}$.
londzis librarum 5 vel 6.

[434]

XXX. Geometrical Solutions of three celebrated Afronomical Problems, by the late Dr. Henry Pemberton, F. R. S. Communicated by Matthew Raper, Efq; F. R.S.

Lemma.

Read June $4, \square$ O form a triangle with two givens fides, that the rectangle under the fine of the angle contained by the two given. Sides, and the tangent of the angle oppofite to the leffer of the given fides, frall be the greated that can be.

Let [Tab. XII. Fig. I.] the two given fides be equal to $A B$ and $A C$: round the center A, with the interval AC, defcribe the circle CDE, and produce BA to E ; take BF a mean proportional between BE and BC , and erect the perpendicular F G, and complete the triangle AGB.

Here the fine of BAG is to the radius, as FG to AG; and the tangent of ABG to the radius, as F G to FB: therefore, the rectangle under the fine of $B A G$ and the tangent of $A B G$ is to the fquare of the

$$
\text { ecting. } 1 .
$$

Buderexda.

$[435]$

the radius, as the fquare of FG , or the rectangle EFC, to the rectangle under AG (or AC) and FB, But, EB being to BF as BF to BC, by converfion, EB is to EF as BF to FC, and alfo, by taking the difference of the antecedents and of the conequents, EF is to twice AF as BF to FC; and twice AFB is equal to EFC.

Now, let the triangle BAH be formed, where the angle BAH is greater than B A G. Here, the perpendicular HI being drawn, the rectangle under the fine of BAH and the tangent of ABH will be to the fquare of the radius, as the rectangle EIC to the rectangle under AC, IB. But IF is to FB as 2 AFI to 2 AFB , or EFC; and 2 AFI is greater than $A F^{q}-A I q$; alfo $A F^{q}-A I^{q}$ together with EFC, is equal to EIC; therefore, by compofition, the ratio of $I B$ to $B F$ is greater than that of EIC to EFC; and the ratio of $\mathrm{AC} \times I B$ to $A C \times F B$ greater than that of EIC to EFC: alfo, by permutation, the ratio of $\mathrm{AC} \times I \mathrm{~B}$ to EIC greater than the ratio of $A C \times F B$ to EFC. But the firft of thefe ratios is the fame with that of the fquare of the radius to the rectangle under the fine of BAH and the tangent of ABH; and the latter is the fame with that of the fquare of the radius to the rectangle under the fine of BAG and the tangent of $A B G$; therefore, the latter of thefe two rectangles is greater than the other.

Again, let the triangle BAK be formed, with the angle $B A K$ les than $B A G$, and the perpendicular $K \mathrm{~L}$ be drawn. Then the rectangle under the fine of $B A K$ and the tangent of $A B K$ is to the fquare of the radius, as the fquare of K L to the rectangle under Kkk 2 AC,

[436]

AC, BL. Here, FL being to FB as 2 AFL to 2 AFB or EFC , and 2 AFL lefs than $\mathrm{AL}^{q}-\mathrm{AFr}$, by converfion, the ratio of LB to FB will be greater than the ratio of ELC to EFC; therefore, as before, the rectangle under the fine of BAG and the tangent of $A B G$ is greater than that under the fine of BAK and the tangent of $A B K$.

Corollary i.

$B F$ is equal to the tangent of the circle from the point B ; therefore, BF is the tangent, and AB the fecant, to the radius AC , of the angle, whofe cofine is to the radius as AC to AB. Therefore, AF is the tangent, to the fame radius, of half the complement of that angle; and AF is alfo the cofine of the angle BAG to this radius.

$$
\text { COROL. } 2 .
$$

The fine of the angle compofed of the complement of $A G B$, and twice the complement of $A B G$, is equal to three times the fine of the complement of AGB. Let fall the perpendicular AH (Fig. 2.), cutting the circle in I ; continue GF to K , and draw $A K$. Then $\mathrm{BF}^{q}=\mathrm{EBC}=\mathrm{GBL}$. Therefore, $\mathrm{GB}: \mathrm{BF}:: \mathrm{BF}: \mathrm{BL}$, and the triangles $G B F$, FBL are fimilar. Confequently FL is perpendicular to GB, and parallel to AH; whence GH being equal to $H L, G M$ is equal to $M E$, and M K equal to three times GM.

Now, the arc $I K=2 I C+G I$; and the angle $I A K=21 A C+G A I$; alfo $G M$ is to $M K$ as the

[437]

the fine of the arc GI to the line of the arc $I \mathrm{~K}$; that is, as the fine of the angle GAI to the fine of the angle IAK. Therefore, the fine of the angle IAK ($=2 I A C+G A I$) is equal to three times the fine of the angle GAI; but GAI is the complement of $A G B$, and IAC the complement of $A B G$.

Corol. 3:

If (Fig. 3.) any line BN be drawn to divide the angle $A B G$, and $A N$ be joined, alfo $A O$ be drawn perpendicular to BN , and continued to the circle in P , the fine of the angle compofed of NAP. and 2 PAC will be lefs than three times the fine of the angle NAP. Draw N.QR perpendicular to $A B$, cutting $A P$ in S; join $A R$, and draw $Q T$ perpendicular to BN , and parallel to $\mathrm{A} \mathrm{O}_{;}$; then $\mathrm{BQ}_{2}=\mathrm{NBT}$. But BQ^{2} is greater than the rectangle EBC, that is, greater than the rectangle NBV, under the two fegments of the line BN . drawn from B, to cut the circle in N and V : therefore, TB is greater than VB, and NO greater than OT. Confequently N.S is greater than S Q. Hence RS is lefs than three times N.S; and therefore, the fine of the angle PAR $(=N A P+2 P A C)$ is lefs than three times the fine of NAP.

[438]

PROBLEMI.

To find in the ecliptic the point of longeft afcenfor.

AnAlysis.

Let (Fig. 4.) ABC be the equator, $A D C$ the ecliptic, $B D$ the fituation of the horizon, when D is the point of longeft afcenfion. Let EFG be another fituation of the horizon. Then the ratio of the fine of $E B$ to the fine of $F D$ is compounded of the ratio of the fine of BG to the fine of $G D$, and of the ratio of the fine of $A E$ to the fine of $A F$; but the angles B and E being equal, the arcs E G, GB together make a femicircle; and, by the approach of EG towards GB, the ultimate magnitude of $B G$ will be a quadrant, and the ultimate ratio of EB to FD will be compounded of the ratio of the radius to the fine of $D G$ (that is, the cofine of $B D$) and of the ratio of the fine of $A B$ to the fine of $A D$. Draw the arc DH perpendicular to AB . Then, in the triangle BDH , the radius is to the cofine of BD , ás the tangent of the angle BDH to the cotangent of HBD . Alfo, in the triangle $B D A$, the fine of $A B$ is to the fine of AD as the fine of the angle BDA (or BDC) to the fine of ABD ; therefore, the ultimate ratio of BE to DF is compounded of the ratio of the tangent of BDH to the cotangent of ABD , and of the ratio of the fine of $B D C$ to the fine of ABD; which two ratios compound that of the rectangle under the tangent of BDH and the fine of BDC to the rectangle under the cotangent and the fine of the given angle ABD .

[439]

But, when D is the point of longeft afcenfion, the satio of $B E$ to $D F$ is the greateft that can be; therefore, then the ratio of the rectangle under the tangent of BDH and the fine of BDC to the given rectangle under the cotangent and fine of the given angle ABD murt be the greateft that can be; and confequently, the rectangle under the tangent of BDH , and the fine of BDC , mult be the greateft that can be.

In the triangle BDA , the fine of BDH is to the Ine of HDA , as the cofine of ABD to the cofine of $B A D$. Now, in the preceding lemma, let the angle $B A G$ of the triangle $A G B$ be equal to the fpherical angle $B D C$: then will the fum of the angles $A B G$, AGB be equal to the fuherical angle BDA. And, if $A G$ in the triangle $A G B$, be to $A B$ as the cofine of the ipherical angle DBA to the cofine of DAB, that is, as the fine of BDH to the fine of HDA, the angle ABG , in the triangle, will be equal to the fpherical angle $B D H$; and the angle $A G B$, in the triangle, equal to the fpherical angle HDA. Therefore, by the firf corollary of the lemma, that the rectangle under the tangent of the fpherical angle BDH and the fine of BDC be the greateft that can be, the cofine of BDC muft be equal to the tangent of half the complement of the angle, whofe coine is to the radius, as $A G$ to $A B$, in the triangle, or as the cofine of the foherical angle $A B D$ to the cofine of the fpherical angle BAD.

If IK be the fituation of the horizon, when the folftitial point is afcending, in the quadrantal triangle AIK, the cofine of KIC is to the radius as the caane of IKA $(\equiv \mathrm{DBA})$ to the cofine of IAK. Therefore,

[440]

Wore, the cafine of BDC , when D is the point of longeft afcenfion, is equal to the tangent of half the complement of the angle, which the ecliptic makes with the horizon, when the folftitial point is afcending.

But, the fine of the angle compofed of DAB, and twice $A B D$, muft be lefs than three times the fine of the angle BAD . In the fpherical triangle ABD , the angles $\mathrm{BAD}, \mathrm{ABD}$ together exceed the external angle BDC. Therefore, in the third corollaty of the lemma, let the angle BAN be equal to the fum of the fpherical angles BAD, ABD: but here, AN is to A B as the cofine of the fpherical angle ABD to the cofine of BAD ; and AN is alfo to $A B$ as the fine of $A B N$ to the fine of $A N B$, that is, as the cofine of BAP to the cofine of NAP; confequently, fince the angle BAN is equal to the fum of the fipherical angles $\mathrm{BAD}, \mathrm{ABD}$, the angle NAP is equal to the fpherical angle BAD, and the angle BAP equal to the fpherical angle ABD; but the fine of the angle compofed of NAP and twice PAB is lefs than three times the fine of NAP; therefore, the fine of the angle compofed of the fpherical angle B AD and 2 ABD will be lefs than three times the fine of the angle BAD; otherwife no fuch triangle DBA, as is here required, can take place, but the point A will be the point of longeft afcention.

If the fine of the angle A be greater than one third of the radius, the point A can never be the point of longeft afcenfion; but when the fine of this angle is lefs, the angle compounded of BAD and twise $A B D$, may be greater or lefs than a quadrant;

[441]

and therefore, the magnitude of the angle ABD, that A be the point of longeft afcenfion, is confined within two limits, of which the double of one added to the angle A, as much exceeds a quadrant, as the double of the other added to that angle falls fhort of it ; therefore, double the fum of thofe two angles, together with twice A, makes a femicircle ; and the fingle fum of thofe two angles added to A makes a quadrant.

Problem II.

To fund when the arc of the ecliptic differs mof from its oblique afcenfion.

Analysis.

If (Fig. 5.) BD be the fituation of the horizon, when CD differs moft from CB, as before, the ultimate ratio of BE to DF will be compounded of the ratio of the radius to the fine of DG (or the cofine of $D B$) and of the ratio of the fine of $C B$ to the fine of CD: but, when CD differs moft from CB, BE and DF are ultimately equal; therefore, then the cofine of $B D$ is to the radius as the fine of $C B$ to the fine of CD .

Draw the arc CHI of a great circle, that DH be equal to DB ; then, BH being double BD , half the fine of BH is to the fine of BD or DH , as the cofine of BD to the radius; therefore, half the fine of BH is to the fine of DH as the fine of CB to the fine of $C D$; but the fine of the angle BCH is to the fine of BH as the fine of the angle CHB to the

Vol. LXII,
L 11
fine

[442]

fine of CB ; whence, by equality, half the fine of BCH is to the fine of DH as the fine of CHB to the fine of CD : but as the fine of CHB to the fine of $C D, f_{0}$, in the triangle $C H D$, is the fine of $D C H$ to the fine of HD: confequently, the fine of DCH is equal to half the fine of BCH. Hence, the difference of the angles $\mathrm{BCH}, \mathrm{DCH}$ being given, thofe angles are given, and the arc CHI is given by pofition.

Moreover, in the triangle BCH , the bafe BH being bifected by the arc CD , the fine of the angle CHD is to the fine of the given angle CBD, as the fine of the given angle HCD to the fine of the given angle $B C D$; therefore, the angle $C H B$ is given; in fo much, that in the triangle CBH all the angles are given.

The fum of the fines of the angles BCH, DCH is to the difference of their fines, as the tangent of half the fum of thofe angles to the tangent of half their difference; therefore, the tangent of half the fum of $\mathrm{BCH}, \mathrm{DCH}$ is three times the tangent of half BCD.
\ln (Fig. 6.) the ifofceles triangle ABC , let the angle BAC be equal to the fpherical angle BCD , and let AE be perpendicular to BC ; alfo, CF being taken equal to $C B$, join $A F$: then $E F$ is equal to three times EB; and as EF to EB, fo is the tangent of the angle EAF to the tangent of EAB; but EAB is equal to half the fpherical angle BCD : therefore, the angle EAF is equal to half the fum of the ípherical angles $\mathrm{BCD}, \mathrm{BCH}$; and confequently, the angle CAF equal to the fpherical angle DCH. Here, AF is to CF as the fine of the angle ACF

[443]

to the fine of CAF; and $C B$ is to $A B$ as the fine of the angle BAC to the fine of ACB : therefore, CF being equal to $C B$, and the fine of $A C F$ to the fine of $A C B$, by equality, $A F$ is to $A B$ as the fine of the angle $B A C$ to the fine of CAF, that is, as the fine of the fpherical angle BCD to the fine of the fpherical angle DCH.

Let (Fig. 7.) the triangle A GB have the angle ABG equal to the fpherical angle CBD, and the fide $A G$ equal to $A F$. Then, $A G$ is to $A B$ as the fine of the fpherical angle BCD to the fine of the fpherical angle DCH, that is, as the fine of the fpherical angle CBH to the fine of the fpherical angle CHB : but $A G$ is to $A B$ alfo as the fine of the angle $A B G$ to the fine of $A G B$; therefore, the angle ABG being equal to the fpherical angle CBH, the angle AGB is equal to the fpherical angle CHB : and moreover, when the angle ABG is greater than ABF, that is, when the fpherical angle CBH is greater than the complement of half BCD , the three angles $\mathrm{ABG}, \mathrm{AGB}$ and BAC together exceed two right.

Hence, (Fig. 8.) towards the equinoctial point C, where the angle CBD is obtufe, a fituation of the horizon, as BD, may always be found, wherein CD more exceeds CB than in any other fituation: and when the acute angle DBA is greater than the complement of half BCD, another fituation of the horizon, as KLM, may be found, toward the other equinoctial point A, wherein the arc of the ecliptic CK will be lefs than the arc of the equator, and their difference be greater than in any other fituation. But, if the angle DBA be not greater than the com-

[444]

plement of half BCD, the arc of the ecliptic, between C and the horizon, will never be lefs than the arc of the equator, between the fame point C and the horizon.

In the two fituations of the horizon, the angles CHB and KMA are equal.

Scholiumi.

To find the point in the ecliptic, where the arc of the ecliptic moft exceeds the right afcenfion, is a known problem : that point is, where the cofine of the declination is a mean proportional between the radius and the cofine of the greateft declination.

In the preceding figure, fuppofing the angle CBD to be right, then, becaufe when CD moft exceeds CB , the cofine of BD is to the radius as the fine of CB to the fine of CD , and, in the triangle CBD , the fine of $C B$ is to the fine of $C D$ as the fine of the angle CDB to the radius, alfo the fine of CDB is to the radius as the cofine of BCD to the cofine of BD ; therefore, the cofine of BD is to the radius as the cofine of the angle BCD to the cofine of the fame $B \mathrm{D}$, and the cofine of $\mathrm{B} D$ is a mean proportional between the radius and the cofine of BCD.

$$
\text { SCHOLIUM } 2 \text {. }
$$

In any given declination of the Sun, to find when the azimuth moft exceeds the angle which meafures the time from noon, is a problem analogous to the preceding.

Problem III.

The tropic found, by Dr. Halley's metbod *, reithout any confideration of the parabola.

The obfervations are fuppofed to give the proportions between the differences of the fines of three declinations of the Sun near the tropic ; but the fine of the Sun's place is in a given proportion to the fine of the declination; therefore, the fame obfervations give equally the proportion between the differences of the fines of the Sun's place, in each obfervation.

Now (Fig. 9.), let ACE be the ecliptic, AE its diameter between γ and \bumpeq, and its center F ; let B, C, D be three places of the Sun; BG, CI, DH the fines of thofe places refpectively. Draw CK, BL parallel to AE, which may meet HD, in N and M . Then, by the obfervations, the ratio of DM to DN is given. Therefore, if BD be drawn to meet KL in O , the ratio of BD to OD is given; and the ratio of BD to DC is alfo given, they being the chords of the given angles BFD, CFD: hence the ratio of CD to D O, in the triangle CDO, is given; and confequently, the angle COD will be given: which angle is the diftance of the tropic from the middle point of the ecliptic between B and D: for, FPR being perpendicular to OC , and FQS perpendicular to DB , the angle QFP is equal to QUP , the points $\mathrm{O}, \mathrm{P}, \mathrm{Q}, \mathrm{F}$, being in a circle.

[^42]
[446]

The Calculation.
DN:DM
f. $\left.\frac{\pi}{2} B F D: f . \frac{1}{2} C F D\right\}::$ rad. $: \mathrm{t},<x$
rad. : t. $\angle \overline{\chi \cos 45^{\circ}}::$ t. $\frac{3}{4} \mathrm{BFC}: \mathrm{t} . \frac{\mathrm{COD} \sim \mathrm{DCO}}{2}$
If $x>45^{\circ}, \angle \mathrm{COD}>\mathrm{DCO}$
And
if $x<45^{\circ}, \angle \mathrm{COD}<\mathrm{DCO}$.
If the intervals between the obfervations are fo fmall, that the fines differ not much from the arches, the arches BC, CD may be counted in time, and the calculation may be abbreviated thus:
DM:DN :: arc. BD:Z (for DO) $\mathrm{DC}+\mathrm{Z}: 2 \mathrm{DC}:: \frac{\mathrm{I}}{4} \mathrm{BC}: \mathrm{SR}$. Or,
$\mathrm{DM} \times \mathrm{DC}+\mathrm{DN} \times \mathrm{BD}: \mathrm{DM} \times \mathrm{DC}:: \frac{x}{2} \mathrm{BC}: S R$.

[447]

Received May 18, 1772.

XXXI. On the Digeftion of the Stomach after Death, by John Hunter, F. R. S. and Surgeon to St. George's Hofpital.

AN accurate knowledge of the appearances in animal bodies that die of a violent death, that is, in perfect health, or in a found ftate, ought to be confidered as a neceffary foundation for judging of the ftate of the body in thofe that are difeafed.

But as an animal body undergoes changes after death, or when dead, it has never been fufficiently confidered what thofe changes are; and till this be done, it is impoffible we fhould judge accurately of the appearances in dead bodies. The difeafes which the living body undergoes (mortification excepted) are always connected with the living principle, and are not in the leaft fimilar to what may be called difeafes or changes in the dead body: without this knowledge, our judgment of the appearances in dead bodies muft often be very imperfect, or very erroneous; we may fee appearances which are natural, and may fuppofe them to have arifen from difeafe; we may fee difeafed parts, and fuppofe them in a natural ftate; and we may fuppofe a circumftance to have exifted be-

[448.]

fore death, which was really a confequence of it ; or we may imagine it to be a natural change after death, when it was truly a difeafe of the living body. It is eafy to fee therefore, how a man in this ftate of ignorance muft blunder, when he comes to connect the appearances in a dead body with the fymptoms that were obferved in life; and indeed all the ufefulners of opening dead bodies depends upon the judgement and fagacity with which this fort of comparifon is made.

There is a cafe of a mixed nature, which cannot be reckoned a procefs of the living body, nor of the dead; it participates of both, inafmuch as its caufe arifes from the living, yet cannot take effect till after death.

This fhall be the object of the prefent paper; and, to render the fubject more intelligible, it will be neceffary to give fome general ideas concerning the caufe and effects.

An animal fubitance, when joined with the living principle, cannot undergo any change in its properties but as an animal; this principle always acting and preferving the fubftance, which it inhabits, from diffolution, and from being changed according to the natural changes, which other fubftances, applied to it, undergo.

There are a great many powers in nature, which the living principle does not enable the animal matter, with which it is combined, to refift, viz. the mechanical and moft of the ftronger chemical folvents. It renders it however capable of refifting the powers of fermentation, digeftion, and perhaps feveral others, which are well known to

[449]

act on this fame matter, when deprived of the living principle, and entirely to decompofe it. The number of powers, which thus act differently on the living and dead animal fubftance, is not afcertained: we thall take notice of two, which can only affect this fubftance when deprived of the living principle; which are, putrefaction and digeftion. Putrefaction is an effect which arifes fpontaneoufly; digeftion is an effect of another principle acting upon it, and fhall here be confidered a little more particularly.

Animals, or parts of animals, poffeffed of the living principie, when taken into the ftomach, are not the leaft affected by the powers of that vifcus, fo long as the animal principle remains; thence it is that we find animals of various kinds living in the ftomach, or even hatched and bred there: but the moment that any of thofe lofe the living principle, they become fubject to the digeftive powers of the ftomach. If it were poffible for a man's hand, for example, to be introduced into the ftomach of a living animal, and kept there for fome confiderable time, it would be found, that the diffolvent powers of the ftomach could have no effect upon it; but if the fame hand were feparated from the body, and introduced into the fame ftomach, we fhould then find that the ftomach would immediately act upon it.

Indeed, if this were not the cafe, we fhould find that the ftomach itfelf ought to have been made of indigeftible materials; for, if the living principle was not capable of preferving animal Vol. LXII. . M m m fubfances

[450]

fubftances from undergoing that procefs, the ftom mach itfelf would be digefted.

But we find on the contrary, that the ftomach, which at one inftant, that is, while poffeffed of the living principle, was capable of refifting the digeftive powers which it contained, the next moment, viz. when deprived of the living principle is itfelf capable of being digefted, eithen by the digeftive powers of other ftomachs, or by the remains of that power which it had of digefting other things.

From thefe obfervations, we are led to account for an appearance which we find often in the ftomachs of dead bodies; and at the fame time they throw a confiderable light upon the nature of digettion. The appearance which has been hinted at, is a diffolution of the ftomach at its great extremity ; in confequence of which, there is frequently a confiderable aperture made in that vifcus. The edges of this opening appear to be half diffolved, very much like that kind of diffolution which fefhy parts undergo when half digetted in a living ftomach, or when diffolved by a cauftic alkali, viz pulpy, tender, and ragged.

In thefe cafes the contents of the ftomach are generally found loofe in the cavity of the abdomen, abont the fipleen and diaphragm. In many fubjects this digettive power extends much further than through the ftomach. I have often found, that after it had diffolved the ftomach at the ufual place, the contents of the ftomach had come into contact with the fpleen and diaphragm,

[451]

had partly diffolved the adjacent fide of the fpleen, and had diffolved the diaphragm quite through; fo that the contents of the fomach were found in the cavity of the thorax, and had even affected the lungs in a finall degree.

There are very few dead bodies, in which the ftomach is not, at its great end, in fome degree digefted; and one who is acquainted with diffections, can eafily trace the gradations from the fmallent to the greateft.

To be fenfible of this effect, nothing more is neceffary, than to compare the inner furface of the great end of the ftomach, with any other part of the inner furface; what is found, will appear foft, fpongy, and granulated, and without diftinct blood veffels, opaque and thick; while the other will appear fmooth, thin, and more tranfparent; and the veffels will be feen ramifying in its fubftance, and upon fqueezing the blood which they contain from the larger branches to the fmaller, it will be found to pafs out at the digefted ends of the veffels, and appear like drops on the inner furface.
Thefe appearances I had often feen, and I do fuppofe that they had been feen by others; but I was at a lofs to account for them; at firft, I fuppofed them to have been produced during life, and was therefore difpofed to look upon them as the caufe of death; but I never found that they had any connection with the fymptoms: and I was ftill more at a lofs to account for thefe appearances when I found that they were moft frequent in thofe who died of violent deaths, which made $\mathrm{Mm} \mathrm{m} \mathrm{z}^{2}$

[452]

me fufpect that the true caufe was not even imain gined*.

At this time I was making many experiments upon digeftion, on different animals, all of which were killed, at different times, after being fed with different kinds of food; fome of them were not opened immediately after death, and in fome of them I found the appearances above defcribed in the ftomach. For, purfuing the enquiry about digeftion, I got the ftomachs of a vaft variety of fifh, which all die of violent deaths, and all may be faid to die in perfect health, and with their ftomach. commonly full; in thefe animals we fee the progrefs of digeftion moft diftinctly; for as they fwallow their food whole, that is, without matication, and fwallow filh that are much. larger than

* The firft time that I had occafion to obferve this appearance in fuch as died of violence and fuddenly, and in whom therefore I could not eafily fuppofe it to be the effect of difeafe in the living body, was in a man who had his fkull fractured and was killed outright by one blow of a poker. Juft before this accident ${ }_{3}$, he had been in perfect health, and had taken a hearty fupper of cold meat, cheefe, bread, and ale. Upon opening the abdomen, I found that the ftomach, though it ftill contained a good deal, was diffolved at its great end, and a confiderable part of thefe its contents lay loofe in the general cavity of the belly . This appearance puzzled me very much. The fecond time was at St. George's Hofpital, in a man who died a few hours after rectiving a blow on his head, which fractured his fkulf likewife. From thofe two cafes, among other conjectures about fo ftrange an appearance, I began to fufpect that it might be peculiar to cafes of fractured fkulls; and therefore, whenever L had'an opportunity, I examined the ftomach in every perfon who died of that accident : but I found many of them which had not this appearance. Afterwards L met with it in a foldier who had been hanged.

[453]

the digefting part of the ftomach can contain (the thape of the firh fwallowed being very favourable for this enquiry,) we find in many inftances that the part of the fwallowed firh which is lodged in the digeffing part of the ftomach is more or lefs diffolved, while that part which remains in the refoptagags is perfectly found.

And in many of thefe I found, that this digefting part of the flomach was itfelf reduced to the fame diffolved ftate as the digefted part of the food.

Being employed upon this fubject, and therefore enabled to account more readily for appearances which had any connection with it, and obferving that the half-diffolved parts of the ftomach, $\& \mathrm{c}$. were fimilar to the half-digefted food, it immediately ftruck me that it was from the procefs of digeftion going on after death, that the ftomach, being dead, was no longer capable of refifting the powers of that menftruum, which itfelf had formed for the digeftion of its contents; with this idea, I fet about making experiments to produce thefe appearances at pleafure, which would have taught us how long the animal ought to live after feeding, and how long it fhould remain after death before it is opened; and above all, to find out the method of producing the greateft digeftive power in the living fomach: but this purfuit led me into an unbounded field.

Thefe appearances throw confiderable light on the principles of digeftion ; they fhew that it is not mechanical power, nor contractions of the ftomach, nor heat, but fomething fecreted in the coats of the fromach .

[454]

ftomach, which is thrown iñto its cavity, and there animalifes the food *, or affimilates it to the nature of the blood. The power of this juice is confined or limited to certain fubftances, efpecially of the vegetable and animal kingdoms; and although this menftruum is capable of acting independently of the ftomach, yet it is obliged to that vifcus for its continuance.

* In all the animals, whether carnivorous or not, upon which I made obfervations or experiments to difcover whether or not there was an acid in the ftomach, (and I tried this in a great variety, I conftantly found that there was an acid, but not a ftrong one, in the juices contained in that vijcus in a natural Atate.
XXXII. E_{x} 。

[455]

XXXII. Experiments and Obfervations on

 the Waters of Buxton and Matlock, in Derbyfhire, by Thomas Percival, of Manchefter, M. D. and F.R.S.Read June 25, HE water of faint Ann's-well is 177.2. A found, by analyfis, to contain calcareous earth, foffil- alkali, and fea falts; but in very fimall proportions: for a gallon of the water, when evaporated, yields only twenty three, or twenty four grains of fediment. It ftrikes a light green colour with fyrup of violets, fuffers no change from an infufion of galls, from the fixed vegetable alkali, or from the mineral acids; becomes milky with the volatile alkali, and with Saccharum Saturnt; and lets fall a precipitate on the addition of a few drops of a folution of filver, in the nitrous acid. The fpecific gravity of this water is precifely equal to that of rain. water, when their temperatures are the fame; but it weighs four grains in a pint lighter, when firft taken from the fpring. . The heat of the bath is about 82 degrees of F ahrenheit's thermometer; that of Saint Ann's well, as it is a fmaller body of water, and expofed to the open air, is fomewhat lefs. The water is tranfparent, fparkling, and highly grateful to the palate *.

[^43]
[456]

In October 1 769 , I paffed a few days at Buxton: and during my ftay there amufed myfelf with the following experiments on the effects of the water of Saint Ann's well, on my pulfe.

Experiment I .

October 12, eight o'clock in the morning. The day cold and moift, my pulfe beat 84 ftrokes in a minute; I drank at the well, the third of a pint of water, and, ufing every neceffary precaution, examined my pulfe at certain intervals of time; in five minutes, pulfe 80, in ten minutes pulfe 80 , fuller and harder; in twenty minutes pulfe 85 ; in half an hour pulfe 90 .

Experiment II.

Eleven o'clock in the forenoon, two hours after breakfaft, the air warm and ferene, pulfe 90 ; I repeated the draught of water. In feven minutes pulfe 109; in fifteen minutes pulfe 103; in thirty minutes pulfe 100, head-ach; in an hour and a half pulfe 9.5 , head-ach abated.

Experiment III.

October 13, eight in the morning; the day cold, pulfe 92 ; I drank the quantity of water above-mentioned; in five minutes pulfe 86 ; in fifteen minutes pulfe 86, full and hard; in twenty minutes pulfe 100 ; in half an hour pulfe 92.

From the firft and third experiments, it appears that the coldnefs of the morning counteracted for a time, the effects of the Buxton water ; and reduced the

[457]

the vibrations of my pulfe from 84 to 80 , and from 92 to 86. But the ftimulus of the water foon be came fuperior to the fedative powers of the cold to which I was expofed; for within the fpace of half an hour my pulfe rofe to 90 in the firft, and to 100 ftrokes in the fecond trial. At eleven o'clock before noon, when the air was warm and ferene, the water in a much thorter time excited its force, increafing the velocity of my pulfe from 90 , to 109 vibrations in a minute. Thefe experiments evince the heating quality of Buxton water, and fuggeft to us the precautions to be obferved in the ufe of it. Small quantities fhould only be drunk at once, and frequently repeated; the belly fhould be kept foluble with lenitive Electuary, or any other mild purgative and at the beginning of the courfe, the patient may be directed to fuffer the water to remain a few feconds in the glafs, before he fwallows it. For this celebrated fpring abounds with a mineral fipit, or mephitic air, in which its ftimulus, and indeed its efficacy refides, and which is quickly diffipated by expofure to the air.

The honourable and ingenious Mr. Cavendifh has fhewn by his Experiments on Rathbone Place water, Ph . Tranfactions, vol. LVII, that calcareous earths may be rendered foluble in water, by furnifhing them with more than their natural property of fixed air. And it has lately been difcovered that iron alfo may be furpended by this principle, in the fame menftruum *. It appeared therefore highly probable to me, that a chalybeate impregnation might with great facility

[^44]
[458]

be communicated to the Buxton water, when freh drawn from the fpring; a quality, which in many cafes would add greatly to its medicinal efficacy. I fuggefted the trial to Mr. Buxton, a very worthy and fenfible apothecary near the wells, who has lately at my requeft made the following experiment.

Experiment $1 V$.

A quart bottle containing two drachms of iron filings, was filled by immerfion, with the water of Saint Anne's well, corked and agitated brifkly under the furface of the water: it was then fuffered to remain in the well till the filings had fubfided, when the water was carefully decanted into a half pint glafs; to this were added three drops of the tinctureof galls, which immediately occafioned a deep purple colour, and tranfparency was prefently reftored by a few drops of the acid of vitriol; evident proofs that a folution of the iron was effected in a few minutes. The water alio without the tincture of galls had a chalybeate tafte, and left an agreeable aftringency on the palate.

By this experiment, it appears that a warm chalybeate abounding with a mineral fpirit, and grateful to the tafte, may with very little trouble be obtained. And this method of impregnating the Buxton water with iron, muft increare its tonic powers, and in many cafes improve its medicinal virtues. It is a common practice to join the ufe of a chalybeate fpring in the neighbourhood of St. Anne's well, wish that of the Buxton water: but, the fuperiority of the artificial mineral water muft be apparent, if we confider its agreeable warmth, volatility, levity, and gratefulnefs to the palate.

Buxton.

[459]

Buxton bath is very frequently employed as a temperate cold bath. For as the heat of the water is about fixteen or eighteen degrees below that of the human body, a gentle fhock is produced on the firft immerfion, the heart and arteries are made to contract more powerfully, and the whole fyftem is braced and invigorated. But this falutary operation muft be greatly diminifhed, often indeed more than counter balanced, by the relaxing vapours which copioufly exhale from the bath, to which the patients are expofed during the time of dreffing and undrefling. A feparate room is indeed provided for the ladies; but the gentlemen have no other accommodations than what the vault affords in which the bath is contained, and are therefore liable to all the inconveniences arifing from warmth and moifture. June 12, 1772, the mercury ftood in the fhade at 65 , but in this vault quickly arofe to 7^{8} degrees.

Experiments on MATLOCK WATER.

Experiment I.

A thermometer made by Dollond, and graduated according to Fahrenheit's fcale, was expofed for a fufficient length of time, to the fteam of the water, as it gufhes from the rock, and alfo inmmerfed in the bafon that receives it. The mercury rofe to 66 degrees.

Experiment li.

Six drops of Sp. Sal. Ammon. vol. wera poured into a glafs of the fpring water, which contained Nnn 2 about

[460]

about the fixth of a pint; a very flight cloudinefs immediately enfued, but no precipitation was afterwards obfervable.

> Experiment III.

Six drops of a folution of falt of tartar occafioned a cloudinefs, juft perceptible, in the fame quantity of water; no precipitation enfued.

> EXPERIMENT IV.

Six drops of a folution of faccharum faturni immediately produced a milkiness in the water, but no fenfible precipitation.

$$
\text { Experiment } \quad \text { V. }
$$

Six drops of a folution of filver in the nitrous acid inftantly occafioned a milkinefs in the water; and after ftanding an hour, a grey powder was obfervable at the bottom of the glafs.

Experiment VI.

Ten drops of the infufion of galls neither produced any change of colour in the water at the time they were added, nor was the flighteft purple hue perceptible two hours afterwards.

Experiment VIf.

A piece of paper befmeared with fyrup of violets was dipped into a glafs full of water; no change of colour enfued.

Expe-

[461]

Experiment VIII.

Another piece of paper,-moiftened in the fame manner with the fyrup, was placed over a glafs of water, as foon as it was taken from the fpring. The paper fuffered no change of colour, although it remained an hour upon the glafs.

Exprriment IX.

My pulfe beat 84 itrokes in a minute, at the time when I drank a half pint glafs of the Matlock water; in 20 minutes my pulie rofe to 86 ; in half an hour after they funk to 82, and continued to vibrate the fame number of times for an hour, which was as long as I thought it was neceffary to examine them.

Experiment X.

The mercury in the thermometer, when immerfed in each of the baths, ftood at 68 : in the river Der went, which flows through the valley of Matlock, at 52 . Thefe experiments were made in the month of June 177^{2}, and the weather was warm.

Experiment XI.

A four ounce phial, after being accurately counterpoifed in a very nice balance, was filled to the brim with diftilled water, which weighed three ounces, four drachms, forty five grains and a half. The fame phial, exactly balanced as before, was then filled to the brim with Matlock water, of the fame temperature

[462]

perature with the diftilled water, which weighed three ounces, four drachms, and forty fix grains.

Matlock water is grateful to the palate, and of an agreeable temperature, but exhibits no marks of any mineral fpirit, either by its tafte, fparkling appearance in the glafs, or by the chemical teft employed in experiment 8. The fecond and third experiments fhew that it is very nlightly impregnated with Selenites or other earthly falts; and of this its comparative levity affords alfo a further proof: for it weighs twenty-fix grains in a pint lighter than the Manchefter pump water*, and only four grains heavier than diftilled water. The precipitation of a grey powder, by the adding of a folution of filver in aqua fortis to the water, renders it probable that a fmall portion of fea falt is contained in it. For the powder is found to confift of the particles of filver, combined with the muriatic acid, which is feparated from the foffil alkali by the fuperior affinity the nitrous acid bears to it ; and thus a double elective attraction takes place in this experiment.

This water is faid to contain iron, but the affertion is at leaft rendered doubtful by the 6th experiment, which was made with the utmoft accuracy; and I am inclined to think, that it is entirely without foundation. The fpring is juftly celebrated for its efficacy in hæmoptoes; and hence it may have been too haftily concluded that it poffeffes fome flight degree of ftypticity, by means of a chalybeate impregnation.

[^45]
[463]

The 9 th experiment, which my fhort flay at Matlock would not allow me leifure to repeat, affords a prefumption that the water is not poffeffed of any ftimulating powers; for the fmall increafe of quicknefs in my pulfe, on drinking half a pint of it, may be afcribed more to the quantity received into the ftomach, than to the heating quality of the water,

The Briftol and Matlock waters appear to refemble each other, both in their chemical and medicinal qualities. I have examined and compared them together by the teft mentioned above, and fo far as fuch trials may be be deemed conclufive, there feems to be no other than the following night dif-ference between them,

Briftol water becomes a little more milky on the addition of a folution of fixed alkali, and of Saccharum Saturni than that of Matlock; the former alfo. weighs near a grain in a pint heavier than the latter. Is it not to be lamented therefore, that fo little attention is paid to Matlock, even by the phyficians who refide in the neighbourhood of it? In hectic. cafes, hæmoptoes, the diabetes, and other diforders, in which the circulation of the blood is rapid and irregular, I hould apprehend that Matlock water, on fome accounts, claims the preference to that of Briftol; for it is lefs difpofed to quicken the pulfe, and may therefore be drunk in larger quantities. But it muft be acknowledged that the climate of: Briftol is fuperior to that of Matlock, a circumftance of the higheft importance to confumptive patients. Situated in a deep though delightful valley, and furrounded by very high mountains, the fun difappears.
at Matlock earlier in the evenings, the fogs are longer in difperfing, and it may be prefumed that rain falls here more frequently and copioully than in other places. For at Catforth, which is encompaffed alfo with hills, and is about ten miles diftant, in $1764,1765,1767$, and 1768 , about 33 inches of rain fell at a medium each year.

The following table exhibits a comparative view of the different temperatures of Bath, Buxton, Briftol, and Matlock waters, meafured by Fahrenheit's thermometer.

* * BATH.	
King's Bath Pump	$112{ }^{\circ}$
Hot Bath Pump	$11.4{ }^{\frac{1}{2}}$
Crofs Bath Pump ${ }_{\text {* B R I S O L. }}$	110
Hot Well Pump B UXTON.	76
Bath	82
St. Ann's Well MATLOCK.	$81 \times$
Baths	68
spring	66

* Vid. Mr. Canton's experiments. Ph. Tranf. Vol. LVII. P. 203.

[465]

XXXIII. Some Account of a Body lately found in uncommon Prefervation, under the Ruins of the Abbey, at St. Edmund'sBury, Suffolk; with fome Reflections upon the Subject: By Charles Collignon, M.D. F.R.S. and Profeffor of Anatomy at Cambridge.

Read June 25, N the month of February laft, fome 1772. Workmen, digging among the ruins of the above abbey, difcovered a leaden coffin, fuppofed, from fome circumftances, to contain the remains of Thomas Beaufort, Duke of Exeter, uncle to king Henry the Fifth. As it certainly was buried before the diffolution of the abbey, it muft have been there between two and three hundred years. It was found near the wall, on the left-hand fide of the choir of the chapel of the bleffed Virgin; not inclofed in a vault, but covered over with the common earth. Upon examining the appearance of the body, the following circumftances were remarkable, as communicated to me, by an ingenious furgeon, on the fpot, Mr. Thomas Cullum.
" The body was inclofed in a leaden coffin, furrounding it very clofe, fo that you might eafily diftin..

Vol. LXII. Ooo guin
guih the head and feet. The corpfe was wrapped round with two or three large layers of cere-cloth, fo exactly applied to the parts, that the piece, which covered the face, retained the exact impreffion of the eyes and nofe. The dura mater was entire. The brain was of a dark afh colour, with fome remaining appearance of the medullary part. The coats of the eye were fill whole, and had not totally loft their gliftening appearance. There was about half a pint of a bloody-black water in the thorax; and a mafs that feemed to be part of the lungs. The pericardium and diaphragm were quite entire. The abdominal vifcera had been taken out very clean, and the integuments and mufcles ftuck very clofe to the vertebre of the back. This cavity looked frefher than that of the thorax. I cut into the pfoas magnus, where there were evident marks of red mufcular fibres. The other mufcles had loft all their red colour, and were become of a dark brown. The tendons were till ftrong, and retained their natural appearance. The hands, which are preferved in fpirits, retain the nails. There were fome very fmall holes in the coffin, out of which had run fome bloody water, of an offenfive fmell. All the principal blood-veffels muft have been cut through, in taking out the abdominal vifcera: and if no ligature was made upon the veffels, their contents would efcape, particularly as affitted by the preffure of the cere-cloth, which is of confiderable weight, and, doubtlefs, put on hot. This fluid running out of the coffin, upon its being moved, might occafion the fufpicion of the body being put in pickle."

Thus

[467]

Thus far Mr. Cullum's account, by which it appears, that the vifcera of the abdomen had been taken out, fo that the greateft part of the blood, he obferves, did probably flow out, during that operation, from the mouths of the divided veffels, and whofe diameter is confiderable. This would greatly reduce the quantity of the fluids. The holes in the coffin, if purpofely made, would feem defigned to let out extravafated or tranfuding fluids; but are irreconcileable with the notion of the body being in pickle. If the holes were accidental, the notion of a pickle may ftill be allowed. Might not the cerecloth, impregnated, perhaps, with gums or refins, and, from its taking fo exact an impreffion, moft probably laid on hot preclude the external air; and, if done immediately after the party's death, obviate the depofition of eggs, or incapacitate them from ever hatching ? The lead grafping clofe, would co-operate with the cere-cloth in the exclufion of air and infects.

We have undoubted accounts of bodies found very little changed, after long interment, where there was no appearance of any art having been ufed. And there is no doubt fome conftitutions are more prone to putrefaction after death than others; thefe circumftances may be dependant on the age, fex, and laft difeafe ; to which predifpofing caufes, thus attending perfons to the grave, are to be added the foil and fituation in which they are depofited. Could we be mafters of all thefe particulars, in the few dead bodies hitherto difcovered greatly free from the ufual patrefaction, it would lead, perhaps, to the probable OOO2 caufe

$$
[468]
$$

caufe of the phænomenon, and point out a proper method of imitation. And till that is done, it is difficult to know how much merit is to be affigned to the art or myftery of embalming, and how much to the power of natural caufes.

XXXIV. A

[469]

XXXIV. A Letter from Richard Pulteney, M. D. F. R. S. to William Watfon, M. D. F. R. S. concerning the medicinal Effects of a poijonous Plant exbibited infead of the Water Parfnep.

Dear Sir,

Read July 177 , COME circumftances having lately.
1772. D come to my knowledge, relating to the effects of a poironous plant, I thought them rather too remarkable not to merit further notice ; and, I addrefs them to you with the more propriety, as you have already laid before the publick fome obfervations* concerning the deleterious qualities of the plant in queftion, which holds a diftinguifhed place among the poifonous ones that are indigenots in Britain.

Mr. H—n, an attorney of this place, now upwards of forty, at the age of fifteen, began to be affected (after taking cold upon violent exercife, as he thinks) with what is ufually called a fcorbutick diforder; which fhewed itfelf more particularly on the outfides of his arms, about the elbows, and on,

[^46]
[470]

the outfides of his legs, from the knees to the ancles, as well as in blotches upon other parts of his body. It had the appearance of a dry branny fcab or fcurf, which every night fell off, more or lefs, in fcales, as is ufual in leprous cafes. At times it pufhed out more than ufual, and thickened the integuments of the limbs confiderably, after which the feparation of fcales would become very abundant.

For feveral years paft he had been trying a variety of things commonly recommended in fuch cafes, particularly the quack medicine known by the name of Maredant's Drops, which he continued for near a twelvemonth, without finding the leaft fenfible relief: alfo an electuary of Flos fulphuris and Cremor tartari, which he had perfevered in for near three years, without finding any other alteration, than that of its preventing coftivenefs, to which he was habitually fubject.

In the winter 1770, this diforder increafed upon him very rapidly, without being able to affign any reafon, from any accident that had happened to him, or from any irregularity of his own in point of regimen, in which he was always very exact. At this time, befides the farther fpreading of the eruption itfelf, the integuments of the legs thickened very much, and the limbs fwelled to fuch a degree, as to render him unable to walk. The quantity of branny fcurf and fcales thrown off, at this time, was very great; he fays " handfuls might have been taken out of his bed every morning."

In this unhappy fituation, even loathfome to himfelf, it was recommended to him to take the juice of water parnep, in the quantity of one common tablefpoonful

[$4 ; 1$]

fpoonful every morning, fatting, mixed with two fpoonfuls of white mountain wine.

Accordingly, about the middle of January 1771 , he procured a half-pint phial of what was fo called; by means of the perfon who had recommended it, and who had affured him that he had been greatly relieved, in a fimilar diforder, by it.

The firft fpoonful he took did not begin to give any great uneafinefs for two hours, but after that time, his head began to be affected in a very extraordinary manner ; a violent ficknefs foon fucceeded, and violent vomiting; and, after he was put to bed, there came on cold fweats, and a very ffrong and long-continued rigor, fo that the people about him thought him dying for fome time; but, in a few hours, all thefe fymptoms wore off.

Such, however, had been the inveteracy of his diforder, and fo ftrong bis defire to find relief, that he determined not to defift; and, after having omitted his medicine for one day, he repeated it, in nearly the fame dofe, and with fimilar effects as to ficknefs and vomiting, though the uncommon fenfation in his head, and the fucceeding rigor, were by no means fo violent. He had refolution enough to continue this dofe every other morning, for more than a fortnight, and then reduced it to three teafpoonfulls which was juft the half of the firft dofe.

Before he had taken this juice one month, he was fenfible of a very great change for the better; encouraged, therefore, by thefe appearances he perfevered in its ufe until the middle of April, by which time his 1 kin, though not quite cleared, yet had ceafed to throw off any more fcurf, was be-

[472]

come foft, clean, and well conditioned, and, as he has repeatedly affured me, he got then into a much better conditioned fate, then he had experienced for many years before.

From firft to laft, this juice never purged him; though he fays, even in its reduced dofe, it never failed to occafion a dizzinefs of the head, a naufea, and ficknefs, which were not infrequently fucceeded by a vomiting, that always inftantly relieved his head.

From the middle of April to the middle of June, he defifted from the ufe of the juice, but, in its ftead, drank every morning for breakfatt, the infufion of the leaves of the fame plant, which, he fays, is like common bohea tea. The infufion feldom occalioned naufea, or ficknefs, but always brought on a fmall degree of vertigo, and in a llight manner produced the effects of intoxication from liquor.

In June he went to Harrowgate, as he had defigned in the fummer before. Upon firlt drinking and bathing there, he thought himfelf worfe; and his eruptions, having gradually increafed during the two months that he flaid in that place, he was convinced that thofe waters were of no real fervice to him. On his coming home, he returned to the ufe of the infurion, and he affures me, that he again found, even by that weak preparation, a very fpeedy alteration for the better. From that time, he continued it ever fince, until his ftock of the herb was exhaufted ; his Ikin is now fo very little affected, that he has but here and there, upon his arms and legs, a very fmall appearance of his diforder.

Upon queftioning him relating to the fenfible qualtites of this medicine, he fays again, that he

[473]

particularly remembers that it never once purged him; not even the firft dofe, which had fo nearly poifoned him. He does not think that it increafed the fenfible perfpiration, but is convinced that it was diuretick; and adds, that he thinks it occafioned, befides the increafed flow of urine, a copious fediment in it, and which he believes was always wanting before.

This is the plain, narrative of the fact. He has affured me that no medicine or regimen, among the great variety that he has tried, ever had any fenfible effect upon his diforder before; and that nothing but the very early and fenfible relief he experienced from this juice, could have induced him to perfevere in its ufe, under fuch uneafy feelings, as it never failed to produce. Indeed, he makes nothing of the lighter effects of the infufion, from which, however, he thinks, he has likewife reaped no fmall benefit.

This cafe, the nature and inveteracy of his diforder, being well known among his neighbours, was much talked of, and raifed the curiofity of many people. When I firt heard of it, and was informed of the fmallnefs of the dofe, and its virulent operation, I could fcarce doubt that the juice of fome other plant had been adminiftered inftead of that of the water parfnep, which we know to be a fafe and harmlefs vegetable; medical writers having directed its juice to be drunk, even to the quantity of four ounces for a dofe: and as I know, the Oenantbe crocata, hemlock dropwort, to be exceedingly plentiful in this country, fo much, as to be more eafily procured than the water parfnep itfelf; I thought it

Vol. LXII. - Ppp probable

[474]

probable that that plant had been ufed in its ftead. Upon getting a fpecimen, it appeared that this had been indeed the cafe; as alfo, upon farther enquiry, that it was the juice of the root only, and not of the leaves and ftalks, that had been adminiftered. I might here obferve, that the expreffion from the root is not to be depended upon after the plant is advanced towards its flowering flate, as the root then becomes light, fpungy, and almoft deftitute of juice.

If you judge this cafe not improper to be laid before the Royal Society, you will do me the honour of prefenting it. Mr. H-n himfelf is fo much convinced of the efficacy of the medicine, that he is deffrous of its being known to the world.

I do not enter into any reafoning on this occurrence; 1 relate it only as a fact, and defire it may have no more weight than every judicious phyfician knows is due to a fingle inflance. How far it may be proper to give this juice a farther trial, I will not take upon me to determine; but muft, as an encouragement to any who may chufe to venture upon it, inform them, that it has not on all perfons fo much power in producing naufea and ficknefs, as in the cafe here before us. I am, S I R,
wih great efteem,
Your obliged humble fervant,

Biandford, Narch 12,1772 。
R. Pulteney.
P. S.

[475]

P. S. MrH is defirous that it fhould be known, that he " tried very fruitlefly, among other methods, the drinking of tar-water and fea-water, of each of which, he fays, he did not drink lefs than an hoghead.".

[476]

XXXV. April 21, 1772. Experiments ors two Dipping-Needles, which DippingNeedles were made agreeable to a Plan of the Reverend Mr. Mitchell, F. R. S. Recior of Thornhill in Yorkfhire, and executed for the Board of Longitude, by Mr. Edward Nairne, of Cornhill, London.

Read July 9 , HE magnetic needles were twelve

${ }^{15720}$inches long, and their axes (the ends of which were of gold allayed with copper) refted on friction-wheels of four inches diameter, each end on two friction-wheels, which wheels were balanced with great care. The ends of the axes of the friction-wheels were likewife of gold allayed with copper, and moved in fmall holes made in bell-metal; and oppofite the ends of the axes of the needles, and the friction-wheels, were flat agates, finely polifhed. Each magnetic needle vibrated in a circle of bell-metal, divided into degrees and halfdeg:ees, and a line paffing through the middle of the needle to the ends pointed to the divifions. The minutes fet down in the experiments were, by eftimation, as the third of half a degree is counted ten minutes. The inftruments were carefully placed, fo that the needles vibrated exactly in the magnetic meridian.

1

[477]

meridian. The two needles were nearly balanced before they were made magnetical; but, by a curious contrivance of the Reverend Mr. Mitchell of a crofs fixed on the axes of the needles (on the arms of which were cut very fine frrews, to receive fmall buttons, that might be fcrewed nearer or farther from the axis), the needles could be adjufted both ways, to a great nicety, after they were made magnetical, by reverfing the poles, and changing the fides of the needle.

Firf fet of experiments made by Edward Nairne, at his houfe, $\mathrm{N}^{\circ} 2 \mathrm{O}$, Cornhill.

```
7220
7220
7220
7220
7220
7220.
```

Second fet of experiments, with that fide of the inftrument to the Eaft, which was to the Weft in the firft obfervation.

```
O /
72 10
72 15
7245}
7245
72.5
72.
```

Third

[478]

Third fet of experiments, in which the poles of the needle were reverfed, but the fame fide of the inftrument to the Eaft, as in the fecond fet of experiments, and the needle rather more magnetical, being touched with a larger fet of magnets.

$$
\begin{array}{cc}
\circ & 1 \\
72 & 30 \\
72 & 30 \\
72 & 30 \\
72 & 30 \\
72 & 30 \\
72 & 30
\end{array}
$$

Fourth fet of experiments, viz. the fame fide of the inffrument to the Eaft, as in the firft fet of experiments.

```
O ,
7210
72 10
72 15 Obferved by Mr. Wales.
72 10
72 10
7210.
```

Fifth experiment, viz. the fame end of the needle made North, as in the firft fet of experiments, and alfo the fame fide of the inftrument to the Weft, as in the firlt fet of experiments.

[479]

Experiments made April 22, 1772, with the other Dipping-needle, the inftrument being put in the fame place, and with great care, in the magnetic meridian, the needle pointed as under.

7215
72 10 The poles of the needle changed.
$7220\left\{\begin{array}{l}\text { The fide of the inftrument to the } \\ \text { Eaft, which in the firf obfervation } \\ \text { was to the Weft. }\end{array}\right.$
Left any thing magnetical fhould have affeced the needle in Mr. Nairne's houfe, he took this inftrument, and placed it in the middle of a large room belonging to the London Affurance in BirchinLane, and then the needle pointed to

```
\circ /
72 10 or I 5
7220
72 30 The poles of the needle changed.
72 10{\begin{array}{l}{\mathrm{ The fide of the inftrument to the Eaft,}}\\{\mathrm{ which in the firft obfervation was to}}\end{array} the Weft.
```

The dipping-needle brought back to Mr. Edward Nairne's, and put in the fame place as before, ftood at

```
0,
%210+
```


[480]

In the foregoing experiments, the needle was raifed to an horizontal pofition, and left to vibrate. It was between 8 or 9 minutes before the vibration ceafed.

The needle brought to an horizontal pofition, and one grain and a half laid on the extremity of the South end, was not fufficient to keep it in an horizontal pofition; but the North end pointed to $35^{\circ} 30^{\prime}$. One grain and three quarters laid on the extremity of the South end of the needle, was more than fufficient to keep it in an horizontal pofition, the South end then pointing $6^{\circ} 45^{\prime}$ below 0 .

It having been judged proper to have a Drawing of the Dipping - Needle, the following Plate [TAb. XIII.] has been made, wherein
A A Reprefents the needle.
B B The ends of the axis refting on the friction-wheels. CCCC The four friction-wheels.
DDD Where flat agate caps are fet in.
EEE The divided circle of bell-metal.
FFFF The ends of the crofs for adjufting the needle.
GG Two levels, whereby the line of o degrees of the inftrument is fet horizontal.
H The perpendicular axis, whereby the inftrument may be turned, that the divided face of the circle may front the Eaft or Weft.
I An index fixed to the perpendicular axis H , and which points to an oppofite line on the horizontal plate K , when the inftrument is turned half round.
LLLL Four adjufting ferews to fet the inftrument horizontal. One of them is hid behind the circle.
MMMM Sirews which hold on the glafs covers, to keep the needle ftom being difturbed by the wind.

A N
 I N D E X
 T O T H E
 Sixty-Second V OL U M E
 OFTHE

Pbilofophical Tranfactions.
A.
$A^{\text {CETOUS fermentation, its effects, p. } 244 .}$ Acbard, Mr. his letter on fwallows found annually torpid in the Rhine, p. 297.
Acids do not affift in curing air fpoiled by putrefaction, p. 202.

Adanfon, Mr. his account of European fwallows caught near the African coaft, examined, p. 277. His miltake about Canary birds, p. 278. His inaccuracy about the Roller, p. 32 I .
Air artificial, obfervations upon different kinds of it, p. 147, 148. No kind a conductor of electricity, p. 175. See Fixed, Inflammable, Nitrous.

Vol. ILXII. $\quad \mathrm{Qqq}$
Air

I N D E X.

Air diminifhed by a mixture of iron filings and brimftone, p. 207, 208. Very noxious to animals, p. 209.

Air infected with refpiration, p. 181. Unfucceffful trials to reftore it, p. 183, 184, \& c. Is the fame with air tainted with animal putrefaction, p. 186, 187. Different from, though analogous to, fixed air, p. 188, 189. Not fatal to feveral infects, p. 192. Cured by vegetation, p. 193, \&c. ; and probably by a mixture of fixed air, P. 204.
Air in Ireland, and likewife in England, obferved to be in a conftant ftate of pofitive electricity, during winter, p. I38. Probably by the effect of cold, p. 139.

Air tainted with the fumes of charcoal, P. 225. Extinguifhes flame, and deftroys animals, p. 227 .
Air vitiated by flame, p. 162. How much diminifhed by it, p. 163. Not altered in its fpecific gravity, p. 164. Not fatal to animals, p. 165 . Whether reftored by cold, ibid. Is fo by vegetation, p. 166, $167,8 \times$.
Angular diftance between two near land objects; how obferved by Hadley's quadrant, p. I 19, i20.
Animal living, not diffolved in the ftomach of another animal, p. 449.
Antipodes our, may have a contrary electricity in the air, p. 189.

Antium, fanzous for its worłhip of the goddefs Fortune, p. 63.

Ariftotle, the auchor of the opinion about the cuckows having no nett of their own, p. 322. Did not write from his own obfervations, p. 323.
Afcenfion, the point of the longett in the ecliptic, found, p. $43^{8 .}$

Afroncomical obfervationsat Portfmouth, po. 36, \&c.
Affronomical problems folved by Dr. Pemberton, p. 434.
Atmojpbere injured by the refpiration of animals and
putrefaction; probably reftored by vegetation, p. 198.
Atmofpherical electricity. See Air ${ }_{2}$ Fogs, Elęricity.

B.

Babelmandel, ftreight of, how diftinguifhed, p. 80, 8 r .
Badenach, Dr. James, his defrription of a bird from Malacca, p. I.
Barker, Mr. Thomas, his meteorological regitter, P. 42, 43 , \& c c.
Barrington, Hon. Daines, inveftigation of the fpecific characters of the rabbit, and the hare, p.4. On the periodical appearing or difappearing of certain birds, p. 265 .

Beaufort, duke, uncle to Henry V. his body found laft year, p. 465.
Belon, his account of quails found at fea, p. 270. No argument for their migration, p. 271.
Birds, their periodical migration acrofs confiderable extents of fea, called in queftion, p. 266. Objections againft this opiaion, p .267 . At what height they can rite, p. 268. Whether night is a proper time for their flight, p. 269. Would want food, p. 292. Always fly againtt the wind, p. 293. Their difappearing during winter, accounted for, $\mathrm{P} \cdot 300,301$. And during fummer, p. 306.
Bladders not fufficient to fecure different kinds of factitious air, p.
Body, well preferved 2 or 300 years after death, defcribed, p. $466, \$$.

Bobemian cbatterer, a bird, why only feen now and then? p. 315.

Borlafe, Dr. William, his meteorological obfervations for 1771, p. 365.
Bradley, the late Dr. James, a paper of his, containing directions for ufing the common micrometer, p. 46.

Buffon, M. attempts to prove the hare and rabbit to be really diftinct fpecies, from their not breeding together,
p. 9. Affirms the fame of wolves and dogs, p. 8. Uncertainty of thefe trials, p. 9. His opinion of quails leaving Europe during winter, examined, p. 272, 273° Thinks that one fpecies of fwallow is migratory, p. 282. Miftakes the martin for the fwallow, p. 283. His experiment on the torpidity of a fwallow fallacious, p. 284.

Buxton waters analyfed and examined, p. $455,45^{6}$.
C.

Calcination of metals, its effects upon air, p. 228.
Call, John, Efq. on an Indian nketch of the figns of the Zodiac, P. 353.
Gafcalote, a plant employed in California to dye in the deepeft and moft lafting black, p. $5^{8 .}$
Cafle Loed, in the county of Rofs, a ftrong fulphureous water found there, p.i5. Defcribed by Dr. Mackenzie, po.I6, 17. Analyfed by Dr. Mónro, p. I8, 19, \&c. Mixed with fea-water, becomes fimilar to that of Harrowgate, p. 24.
Cbarcoab, its fumes infect common air, p. 225, 226.
Cbart of the Red Sea, by Capt. Newland, p. 77.
Clouds, the nature and degree of their electricity afcertained, p. 142, 143.
Clyfer of fixed air adminitered in a purrid fever, p. 260.
Collignon, profeffor Charles, on a body found 2 or 300 years after death, p. 465 .
Collinfon, Mr. his account of fwallows found at fea ex. amined, p. 276. Relies too much upon Mr. Adanfon's obfervations, p. 279.
Cook, Capt. John, his account of the flowing of the tides in the South Sea, P. 357°
Crofs-bills, grown more common fince the plantation of firs, p. 316. Whether they feed on the kernels of apples, p. 317.

I N D E X.

485
Cuckow, the common opinion about its neftlings doubtful, p. 299. 322. 324, \&c. Never migrates from this inand, p. 304.

D.

Denarius, of the Plætorian family, defcribed, p. 60. Dipping-needle a new, defribed, p. 476.480.
Dog, breeds with a wolf, p. 9 .
Dollond, Mr. Peter, his improvement of Hadiey's Quar.drant, p. 95, \&c.
Dyes in red and yellow, p. 56.

E.

Eldiptic, the point of the longef alcenfion in it found, p. 438. The greateft difference of the arc from its : oblique afcenfion, p. 444.
Elder, ferviceable in preferving plants and trees from infects and flies, p. 348.
Elearicity, the theory of it confirmed by a late violent lightring, P. 134, 135. Of the air, fogs, and clouds, p. 138. 145.

Electrometer a new, invented by Mr. Henley, p. 360. Its advantages, p. ${ }_{3} 61$.
Eratoftenes, his fieve miftaken, p. 329. Ill explained, p. 330. Retrieved, P. 332.

Etber imbibes fixed air; po, 156 .

F.

Fairnburn reater in Scotland analyfed, by Dr. Monro, p. 25.

Fermentivg liquors emit a great quantity of fixed air, f. 148, 149. Recovered when flat by a mixture of it, p. $154 \times$
p. 154. Contract a bad fmell by a reabforption of fixed air incorporated with ether, p. 156.
Fieldfare, where they breed, $\mathrm{P} .313,314$.
Fixed air how produced, p. 148. Its effects upon fermenting liquors, p. 149. Does not inftantly mix with common air, p. 150. How incorporated with water, p. I5I, 152. May be of the nature of an acid, p. 153. Is not abforbed by ice, P. I54. Fatal to animals and vegetables, p. 157. Cannot fufficiently be retained in a bladder, p. 158. May be rendered immifcible with water, p. 160, 161. Tends to correct putrid air, p. 204, 205. Serviceable in putrid diforders, p. 206. 257.

Flounders have their mouths turned different ways, p. 306. Fogs always occafion a pofitive electricity in the air, p. 139. Attended with the fmell of an excited glafs tube, p. 140. How their influence on electrical balls may be meafured, ibid. and p. 145, 146.
Forfer, Mr. John Reinhold, his account of the roots ufed by the Indians at Hudfon's bay to dye porcupine quills, p. 54. His account of feveral quadrupeds from Hudfon's bay, p. 370. And of birds from the fame place, p. 382. His obfervation on the pectinated toes of feveral fpecies of the grous kind, p. 397. His Latin defcriptions of fome fcarce birds from Hudfon's bay, p. 423.

Fortune, fee Sors.
Franklyn, Dr. Benjamin, his thoughts on the vegetable creation, p. 199. On the attraction of fire by plants, p. 234.

Frefb water, manner of diftilling it from falt water at fea, p. 90.
. G.

Geefe wild, the higheft fliers of all birds, p. 268.

George

George Ifland, its latitude and longitude, by Capr. Wallis, p. 34. Its longitude determined by Mr. Lexell, p. 73, 74.

Glafs broken by electricity marked with beautiful colors, p. 363 .

Grabam, Mr. his remarks on feveral quadrupeds and birds found at Hudfon's bay, p. 370.
Groufes, their genus, may be divided by the form of their toes, p. 297.
Gullet, Mr. Chriftopher, on the effects of elder upon infects, P. 348.
Guns, heard at a vaft diftance on the Red Sea, by the pilots at Judda, p. 85 .

H.

Hadley's Quadrant, improvements made in it by Mr . Dollond, p. 95, 96. And by Mr. Mafkeline, p. 99.

Hare Alpine, defcribed, p. II. 375.
Hare, the genus not eafily diftinguifhed from that of the rabbit, p. 4. Miftakes of authors in attempting to fettle proper criteria between them, p. 5, 6. Two new characters propofed, p. 10.
Hare, from Hudfon's bay, is one third lefs than the European hare; p. 5. Its different cloathing at different times of the year, p. 12. Manner of this change, p. 13. Some particulars of his way of living, p. 14-376.

Henley, Mr. William, his account of the lightning which fell on the chapel of Tottenham-Court-Road, p. 131, 132, \&c. His new electrometer, p. 259. His experiments on breaking glafs by means of electricity, p. 3^{62}.

Hey, Mr. his experiments to prove that there is no oil of vitriol in water inpregnated with fixed air, p. 253.

Hoteel, J. Z. Efq; his account of a new fpecies of oak, p. 128.

Horfley, Mr. on Eratofthenes's fieve, being a fimple method of finding the prime numbers, p. $3^{2} \%$.
Hudfon's bay, feveral animals fent from thence and defcribed, p. 370.
Hunter, Mr. John, on the digeftion of the ftomach after death, P. 447.
I.

13ce-boufe, temperature in it moderate, p. 285.
India has the more ancient remnants of arts, fciences, and civilization, p. 354, 355.
Inflammable air, extracted from moft kind of fubftances, p. 171. Differs in fmell when made of vegetable, animal, or mineral fubitances, p. 172. Thought to be immifcible with water, p. 173. Rendered lefs inflammable, and even deftructive of flame, by ftanding long, or being ftrongly agitated, in water, p. 174, 180. Kills animals inftantaneoully, p. 175. Immifcible with fixed air, p. 175. Partly abforbed by water, p. I79. The remaining part rendered fit for refpiration, and like common air, p. 180.
Judda, a port on the Red Sea, its longitude and latitude, p. 77.

K.

Kalm, Mr . his account of a fwallow found 20 degrees from the American hore, confidered, p. 288.

Land-rails,

L.

Land-rail cannot fly over the fea, p. 318.
Letters, the ancient Roman, were Etrufcan, p. 63.
Lexell, Mr. of Peterfburgh, his determination of the Sun's parallax from the obfervations of the tranfit of Venus, p. 69, \&c.

Lime-kilns, ufeful in putrid diforders, P. 205.
Ligbtning, effects of a violent flah, on the chapel at Tottenham Court Road, p. 233. Struck and killed a man there, p. 135.
Linneus, his fpecific characters of the rabbit-confidered, p. 6.

Lyndon, in Rutland, meteorological obfervations in that place, p. 43, 44.

M.

Malacca, a fingular bird from thence defcribed, p. 1, 2. Mafkelyne, Rev. Nevil, communicates a paper of the late Dr. Bradley on the common micrometers, p. 46. His improvements of Hadiey's quadrant, p. 99, \&c.
Matlock water examined, p. 459.
Meteorological obfervations at Ludgvan in Cornwall, p. 365.

Mice, employed in the experiments about the noxioufntis of air, p. 175, 182, \&c. How kept, p. 249. Live without water, p. 250.
Micrometers, the ufe of them deferibed by Dr. Bradiey, p. $4^{6}, \& c$.

Milky appearance of fome fpots of water in the Red Sea afcribed to animalcules, p. 93, 94:
Mocka on the Red Sea, draughts of its road, p. 77. Its latitude and longitude, ibid.

Vol. LXII.
R r
Manta,

Monro, Dr. Donald, his account of feveral mineral waters in Scotiand, p. 15.
N.

Nairne, Mr. contriver of a new dipping needle, p. $47{ }^{6}$. His experiments with it, p. 477.
Natural Hiftory, its progrefs during feveral centuries and among different people, p. 295°
Neroland, Capt. Charles, obfervations in a voyage to the Red Sea, p. $77,78,8 c$. His method of diftilling fre?h from fea water, p. 90. His obfervations on the milky appearance of fome fpots of water, p. 93.

Nicomachus, Extracts from his arithmetic about Eratofthenes's fieve corrected and explained, p. 339 .
Nigbtingales, whether they can migrate at any diftance? p. 300. Not attended to at certain times, p. 32.

Nitrous air, formed from a folution of metals in fpirits of nitre or aqua regia, p. 210 . Its reduction of common air, p. 211. The beft teft of the fitnefs of air for refpiration, p. 214 . Its phenomena with different kinds of noxious air, p. 215, 216. Reduced to one fourth by a misture of iron filings and brimitone, p. 217. Noxious to plants and animals, ibid. Readily abforbed and obftinately retained in water, p. 218,219 . A great preferver from putref ction, p. 223. Proportion in which it may be got from feveral metals, p. 322.
Numbers, Sec Primes

$$
\mathrm{O}
$$

Dak, a new fecies oblerved and reared by Mr. Lucombe, 128. Its fpeeay growth deficibed by Mr. Holwell, p. 139, \& \& c.
Oboles, Six in a dram, p. 470.

Oenanthe crocata, a poifonous plant, found to have great virtues in the cure of fome cutaneous diforders, p. 470, $8 c$.

P.

Parallax of the Sun, deduced from the obfervations of the laft tranfit of Venus, p. 69, \&c.
Parallelijm of the two furfaces of the index glafs in Hadley's quadrant, neceflary for the exactnefs of obfervations, p. ${ }^{115}$, 116 . How the errors arifing from the want of it may be remedied, p. iI6, 117 .
Pemberton, Dr. Henry, his geometrical folutions of fome aftronomical problems, p. 434.
Percival, Dr. Thomas, on the waters of Buston and Matlock, P. 455.
Perfon killed by lightning, p. 135°.
Pblogifon, an overload of it may infect air, p. 231. and is probaby abforbed by growing plants, P. 233 .
Pitkeatly, near Perth, its purging water defcribed by Dr. Wood, p. 2\%. Analyfed by Dr. Monro, p. 27, 28.
Plants, in aftate of vegetation, prevent the alteration which flame produces in the air, p. 166. And reftore it when vitiated, p. $163,169$.
Porcupine quills, dyed by the natives of Hudron's Bay in red and yellow, p. 46.
Portfmouth, its latitude deduced from aftronomical ob. fervations, p. 38.
Prenefe the town of, worhiped Fortune, p. 63.
Priefley, Dr. Jofeph, his oblervations on different kinds of air, p. 147. His defcription of Mr. Henley's new electrometer, P. 359.
Pultney, Dr. Richard, on the medicinal virtues of a poi:fonous plant, p. 469.
Prime numbers, how to be found, p. 3^{28-332}.
Ptarmigan, the fame bird in Europe and inA merica, p. 390.
Putrefaizion, fee Air, Vegetation.

Pyrmont water imitated by means of fixed air incorporated in common water, p. 151, \&c.
Q.

Quails, whether migratory, p. 272.
R.

Rabbit, not indigenous in Sweden, p. 6. Which of them have red pupils, ibid. Difference between a warren and a tame rabbit, p. 7. See Hare.
Ray, his characterifticks of the hare and rabbit examined, p. 4, 5.

Redroings, their migrations confidered, p. 313, 314.
Ronayne, Thomas Eiq; his obfervations on Atmofpherical electricity, P. I 37.
Root, ufed by the Indians at Canada and at Hudfon's-bay to dye in red and in yellow, p. 55. Afcertained and tried by Mr. Fortter, P. 56, \&c.

S.

Ses Salt, the ftrongeft fpirit of, confifts of two thirds of pure water, p. 239.
Snipes, conftantly in fome part of England, p. 306.
Solar eclipfe obferved in George Ifland, p. 34, 35.
Solway Mofs, its irruption defcribed, P. 123, 124. Phenomena attending this fudden inundation, p. 125, 126. Sors, or Fortune, the goddefs on feveral Denarii of the Plætorian family, p. 6I. Worfhiped at Antium and Prænefte, p. 63.
Spinach, the mort effectual plant in reftoring vitiated air, p. 170.

I N D E X.

Stomach cannot act upon itfelf during life, p. 449. But deftroys itfelf after death, p. 450. This appearance more fenfible after violent death, p. 452.
Storks never crofs the fea from Holland to Erigland, p. 319, 320.
Sun's alcitude how to be obferved with the quadrant, p . 128.

Swallows, whether they migrate over the fea, p. 276,2gr. Diffrent fpecies confounded, p. 280 . Found torp.d and cluftered together in a pond, p. 289. In the Rhine, 297. And in feveral other places, p. 298.

Swinton, Rev. John, an account of a Denarius of the Plætorian family, p. 60.

T.

Temperature comparative, of feveral waters, p. 4_{4}.
Fides, obfervations on them in the South Seas, p. 358.
TiJavoyanne jaune, what root it is, p. 54.
Tropic found, p. 445.
Tully, a paffage of that author relative to the deities named Sortes, explained from an ancient coin, p. 62.

V.

Vapour of fpirit of falt, p. 235. Its properties, ibid. Vegetation reftores air vitiated by flame, p. 166. And that which has been tainted by refpiration or putrefaction, p. 194, \& cc.
Vitriolic acid, no fign of it in fixed air, p. 253.

> W.

Walker, Mr. John, his account of the irruption of Solway Mofs near Carlifle, p. 123.

> Water,

Water imbibes fixed air, p. 151. And inflammable air; p. 180, 18 r . Abforbs in part putrid air, p. 191. Reftores all kinds of noxious air, p. 200. Seems to decompofe air, p. 247.
White lead, its effluvia noxious, p. 231 :
Witchel, Mr. George, fome of his Aftronomical obfervations at Portfmouth, p. 33.
Woodcocks, where they breed, p. 308, 309. Sleep in the day time, p. 309. If feen in the night, miftaken for owls, p. 3 II.
Woods, not unhealthy, p. 200:
Z.

Zodiac, figns of the, delineated in feveral temples in India, p. 353. Probably had their origin from thence, p. 3546

The End of the Sixty-Second Volume.

[^47]
$\mathrm{E} R \mathrm{R} A \mathrm{~T} A$

Vol. LXI.
Pag. 39. line II. from the bottom, read upon, with regard to 141.1. 1. notes, erafe the comma after Ex, 143. notes, i. penult, r. Archiepifcopis. 1. 1 5. r. Redleiam 144, 1. 2, r. Dena. Notes, 1. 14, from the bottom, r. Noewera,

1. ult. r. Vincentii.
2. notes, 1. 4, r. Creyecor.

I47. 1. 3. the $4^{\text {th }}$ letter in the Saxon word Should be r.
Vol. LXII.
Pag. xi. line penult. for vingtimee read vingtieme

6.	6	Caniculus male	Cuniculus mule
ibid.	14.	is in other	is other
37\%	7.	Juptiter	Jupiter
55.	27.	grows	it grows
75.	21	diftantis	diftantia
77.	23.	(Tab. IV.)	(Tab.IV.\&Tab.IV.*)
125.	note \dagger, 1. 4.	weter	water
146.		them	it
303.	note *, 1. 2 .	Aëdologue	Aëdologie
314.	17.	cough	chough
388.	21.	Three-toid	Three-toed
426.	17.	velti	veftiti
429.	6%	mandibu	mandibula
457.	27.	property	proportion
462.	note, line laft,	207	287.

[^0]: * An account of Mr. Hey's experiments will be found in the Appendix to thefe papers.

 Vol. LXII. X
 though,

[^1]: * It is well known that fome ornithologifts bave even fuppofed that they leave our atmofphere for that of the Moon. See Harlo Mif. Wol. H. p. 56 \%

[^2]: * Wild geefe fly at the greateft height of any bird I ever happened to attend to; and from comparing them with rooks, which I have frequently looked at, when perched on the crofs of St. Paul's, I cannot think that a wild-goofe was ever diminifhed, to my fight at leaft, more than he would be at twice the beight of St. Paul's, or perhaps 300 yards. Mr. Hunter, F. R. S. informs me, that the bird which hath appeared to him as the higheft flier, is a fmall eagle on the confines of Spain and Portugal, which frequents high rocks. Mr. Hunter hath firft feen this fpecies of eagle from the bottom of a mountain, and followed it to the top, when the bird hath rifen fo high as to appear lefs than he did from the bottom. Mr. Hunter however adds, that he could fill hear the cry, and diftinguinh the bird.

[^3]: * Mr. Catefby fuppofes that they may thus pafs in the night time, to avoid birds of prey. Phil. Tranf. Abr. Vol. 1I. p. 88.7. But are not owls then ftirring?

 On the other hand, if they migrate in the day time, kites, hawks, and other birds of prey, muft be very bad fportfmen not to attend (like Arabs) thefe large and periodical caravans.

 + In the preface to the firft volume of his lately publifhed Ornithology, p. 32.

[^4]: * One of the Mediterranean iflands is fuppofed to have obo sained its ancient name of Ortygia from the numbers of quails,

[^5]: * I have often heard that certain birds moult twice a year, fome of which I have kept myfelf without their changing their feathers more than once.

 I fhould fuppofe that this notion arifes from fome birds not moulting regularly in the autumn every year; and when the change takes place in the following foring, they very commonly die: I can fcarcely think that many of them are equal to two illneffes of fo long a continuance, which are conftantly to return within twelvemonths.

 I fhould therefore rather account for the extraordinary briksnefs of a quail in autumn and the fpring, from its recovery after moulting in the former, and from the known effeets of the fpring as to moft animals in the latter.

[^6]: * See Haffelquift's Travels, in princ.
 +1760. Part II. p. 46x.

[^7]: * In the fame paffage, he compares the colour of the African Canary bird to that of the European linnet, and fays it is d'un gris prefque aufl foncé, whereas the European linnet is well known to be brown, and not grey. The linnet affords a very decifive proof that the change of plumage does not arife from the difference of climate, but the two caufes I have affigned. The cock bird, whilft at liberty, hath a red breaft : yet if it is either bred up in a cage from the neft, or is caught with its red plumage, and afterwards moults in the houfe, it never recovers the red feathers.

 That moft able naturalift, Monf. de Buffon, from having feen fome cock linnets which had thus moulted off, or perhaps fome hen linnets (which have not a red breaft) confiders them as a diftinct fpecies, and compares their breeding together in an aviary, to that of the Canary bird and goldfinch. Ornith. p. xxir.

 + P. 16. \ddagger Or of Strafburgh.
 $\$$ Faun. Suec. 94.

[^8]: * Willoughby, p. 13r. Br. Zool. Vol. II. in append.
 + I have before endeavoured to thew that Monf. Adanfon does not always recollect with accuracy the plumage of the mofe common European birds, by what he fays with regard to the linnet.

[^9]: * Viz. the fwallow rop $\varepsilon \xi_{0} \nless \chi \eta$, the martin, the fand martin, and the fwift: I omit the goatfucker, becaufe this bird, though properly claffed as a fpecies of fwallow by ornithologifts, is not fo confidered by others.
 \dagger See Briffon, Tom. II. pl. xiv.

[^10]: * Voyage au Senegal, p. 67. I wifh Monf. Adanfon had alfo informed us whether thefe fwallows had the fame notes with thofe of Europe, which is a very material circumftance in the natural hiftory of birds, though little attended to by molt ornithologits.
 Vol. LXII.
 O
 coaft

[^11]: * Voyage au Senegal, p. 15.
 + See the two prefatory difcourfes to his fixteenth volume of natural hiftory.
 \$ So little do naturalifts know of this very common bird, that I believe it hath never yet been oblerved by any writer, that the male fwallow hath only the long fender feathers in the tail, which are confidered as its moft diftinguifhing marks. I venture to make this remark upon having feen the difference in twa fwallows which are in Mr. Tunftall's collection, F. R. S. as alfo in two others, which have dately been prefented to the Mufeum

[^12]: * In the fame manner the generical name in other languages, for this tribe of birds, always means the martin, and not the fwallow.

 Thus Anacreon complains of the $\chi^{\varepsilon \lambda} \mathrm{D}^{\circ} \dot{\omega} \mathrm{w}$ for waking him by its twittering.

 Now if it be confidered that there was only the kitchen chimney in a Grecian houfe, it muft have been the martin which built under the eaves of the window, that was troublefome to Anacreon, and not the fwallow.

 Ovid alfo fpeaking of the neft of the birundo, fays,
 -luteum fub trabe figit opus.
 by which be neceffarily alludes to the martin, and not the fwallow.
 t Plan de l'ouvrage, p. 15.

[^13]: * The very name of an ice-houfe almoft frikes one with a: chill; I placed, however, a thermometer in one near Hyde Park Corner, on the 23^{d} of November, where it continued 48 hours, and the mercury then flood at $43 \frac{\pi}{2}$ by Fahrenheit's fcale.

 This is therefore a degree of cold which fwallows fometimes experience whilft they continue in fome parts of Europe, without any apparent inconvenience; and it fhould feem that the cold vapours which may arife from the included ice, fink the thermometer only 7 or 8 degrees, as the temperature in approved cellars is commonly from 50 or 51 throughout the year.

 Sir William Hamilton informs me, that he hath frequently feen fwallows in the winter between Naples and Puzzuoli, when the weather was warm; as does Mr. Hunter, F. R. S. that he hath obferved them during the fame feafon, on the confines of Spain and Portugal. It fhould feem from this, that very mild and warm weather for any continuance always wakes thefe birds from their ftate of torpidity.

[^14]: * Mr. Stephens, A. S. S. informs me, that there was a neft of matins for twenty years together in the hall of his houfe in Somerfethire (near Bath) ; nor could the old birds procure food: either for themfelves, or their young, till the door was opened in the morning.

 Can it it be fuppofed that the fame birds or their defcendants. could have fo long fixed upon fo very inconvenient a fpot, to which they conftantly returned from the coaft of Africa, neglecting fo many others, which they muft have always paffied by? Does it not alfo afford a moft ftrong prefumption, that they were torpid during winter in the neighbourhood of this old: hall ?

[^15]: * Kalm, in his voyage to America, makes the fame obferva. tion; with regard to flying filh, and Valentine fays, that if the wind does not continue to blow againft the bird of paradife, it immediately drops to the ground.
 + Thefe birds, as it fhould feem, are then in motion; becaufe, at thofe feafons, the ground is plowed either for the winter or lent corn.
 \ddagger I have myfelf attended to fwallows during a high wind, and have obferved that they fly only in fheltered places, whilft they almoft touch the furface of the ground.

[^16]: * It need be fcarcely here mentioned alfo, that their navigation was confined to the Mediteranean, from the compafs not having been then difcovered.

[^17]: * As the fwallows were found in the winter, they mult have been in a ftate of torpidity, as otherwife the animals muft have been putrid.
 I fhall likewife here refer to Phil. Tranf. abr. Vol. V. p. 33. where Mr. Derham fays, that he heard a fwift fqueak in an hole of his houfe on the 17 th of April; but that, the weather being cold, it did not ftir abroad for feveral days.

 This feems to be a ftrong inftance of a bird's firft waking from a fate of torpidity, but refuming its fleep on the weather being fevere.

 I fhall clofe the proofs on this head (which I could much enlarge) by the dignified teftimony of Sigifmond, King of Poland, who affirmed on his oath, to the cardinal Commendon, that he had frequently feen fwallows, which were found at the bottom of lakes. See the life of cardinal Commendon, p. 211. Paris, $36 \% 104^{\text {to }}$.

[^18]: * I here fuppofe the common notion about the cuckow to be true; becaufe both learned and ignorant feem equally to agree

[^19]: * An ingenious friend of mine makes always a very proper diftinction between what he calls in*door and out-door naturalifts.

 Thomas Willifel, who affifted Ray and Willughby much with regard to the natural hiftory of the animals of this ifland, never flirred any where without his gun and fiming-tackle.

 + No two birds fly in the fame manner, if their motions are accurately attended to.

[^20]: * Whill it fings even, the bird can feldom be diftinguifhed, becaufe it is then almoft perpetually in hedges, when the foliage is thickeft, upon the firft burft of the fpring, and when no infects can as yet have deftroyed confiderable parts of the leaves.

[^21]: * See Dr. Birch's Hiftory of the Royal Society, Vol. III. p. 189. Linnæi Fauna Suecica. and Biographia Britannica, art. Fletcher; where it is faid, that they have in Ruffia a greater variety of notes than elfewhere.
 + Sir Robert Sibbald, indeed, conceives the nightingale to be a bird of North Britain; but, if I can depend upon many concurrent teftimonies, no fuch bird is ever feen or heard fo far northward at prefent, nor could I ever trace them in that direction further than Durham.
 \ddagger I have, however, frequently feen the nightingale's congener (and fuppofed fellow-traveller) the redftart in Wales.

[^22]: *P. 72.
 R12
 migration

[^23]: * In one of Boccace's Novels; a lover, who lives at Florerce, dreffes a falcon for the dinner of his miftrefs. Gtorna: V. Movel. IX.
 + Almoft all the wild fowl of the duck kind alifo deep iri the deytime, and. feed at nighr.

[^24]: * Brit. Zool. p. 309.
 + Elenchus Animalium per Aufriam, p. 26I. Viennæ, 1756 .

[^25]: * This bird changes the colour of its plumage at different feafons of the year, which is fometimes red.

 The firt account we have of their being feen, is in the Ph . Tro. abro. Vol. V. p. 33. where Mr. Edward Lhwyd fufpects them to be Virginia nightingales, from their feathers being red, and had no difficulty of at once fnppofing that they had croffed the Atlantic.

 $$
 \text { S. } 2 \text { The: }
 $$

[^26]: *) Bra Zool. p. 387 .

[^27]: * I would particularly propofe the iflands of Madera and St. Helena; to thefe, I would alfo add the inland of Afcenfion (had it any inhabitants), as likewife Juan Fernandez, for the Pacifick ocean.

[^28]: * Voyage au Senegal, P. I5. There is alfo another African bird, repr fented in the "Planches Enluminées,". which might very eafily, on a hafty infpecion, be miftaken for the Garrulus Argentoritenfis, viz. the Gucpier a longue queue du Senegal. P1. Enl. p. 34.

 The roller of Angola is alfo engrayed by Bilifon, To it. pi. 7.

 Vor, LXII.
 Tt
 It

[^29]: * See Zinaani p. 95 . who took great pains to detect this yulgar error.

[^30]: * I could alfo wioh that the following experiment was-tried. When a hedge-fparrow hath laid all her eggs, a fingle one of: any other bird, as !arge as a cuckow, might be introcuced, after whith if either the neft was defured, or the egg too latroe to be hatched, it would afford a ftrorg prefumption againt this prevailing ofinion. I mut here alfo take notice, that Mif . Hunter, F.R.S. who hath diffected hen cuckows, informs me. that they are not incapacitated from hatching the if eggs, as thetis been fuppofed by fome crnitholonits.
 t I am perfuaded that a cuckow is oftener anoorphan, then any other miffling, beraufe, from the curiofly whith prevails with regard to this bird, the parents are eterialiy flot,

[^31]: * There are more pieces than one of this Nichomachus extant. That which I refer to is intitled Eเoraw

[^32]: * Nicomachus and Joannes Grammaticus propofe that thefe marks thould be fuch, as fhould not only diftinguifh the compofite numbers, but likewife ferve to exprefs all the divifors of every fuch number. It will be fhewn, in a proper place, that this was no part of the original contrivance of the Sieve.

[^33]: * The Comment of Joannes Grammaticus is extant in manufcript in the Savilian Library at Oxford, to which I haye frequent accefs, by the favour of the Reverend and Learned Mr . Hornfly, the Savilian Pofeffor of Aftronomy.

[^34]: * The number 3465 hath no lefs than 22 different divifors.

[^35]: ${ }^{2}$. Conjecturâ pro tertio.

[^36]: ${ }^{\text {a }}$ Conjecturâ reftitui pro 12.

 - Conjecturâ pro 4.
 f Conjecturâ pro ordinem.
 Vol. LXII.

[^37]: ${ }^{1}$ Conjectura pro illos.
 ${ }^{\text {m }}$ Conjecturâ, pro tres. n Conjecturẫ pro trestertio.

 - Sed cave credas, Lector, numeros inter fe primos nulloe dari preter Primorum Quadratos.

[^38]: * Warmed a listle, to dry off the damps, particularly from

[^39]: * Among the occafional advantages, which the obfetvations of the laft Tranfit of Venus have procured, that of receiving ufeful informutions from, and fetting correfpondencies in, feveral parts of the world, is not the leaft confiderable. From the faciory at Hu'fon's Bay, the Royal Society were favoured with a large collection of uncommon quadrupeds, birds, fifhes, \&c. togetner with fome account of their names, place of abode, manner of life, ufes, by Mr. Graham, a gentleman belonging to the fettiement on Severn River; and the governors of the Hudfon's Bay Company have moft obligingly fent orders, that thefe communications fhould be from time to time continued. The defcriptions contained in the following papers wele prepared and given by Mr. Forfter, before his departure on an expedition, which will probably open an ample field to the moft important difcoveries. M. M.

[^40]: Vi. LXII.

 Fff
 10. Loxia

[^41]: * In the Faunala America Septentrionalis, p. 34. the fynonym of Ardea Hudfonias, Linn. has by miftake been annexed to the Bittern, and likewife pl. 135 of Edwards has been quoted inftead of plate 136. They are two very different birds. frribed

[^42]: * Vide Philofophical Tranfactions $\mathrm{N}^{\circ} 215$.

[^43]: * I am indebted to the information of the worthy phyfician who attends at Buxton, for fome of thefe facts.

[^44]: *Vid. Mr. Lane's experiments, Ph. TranfaQions, Vol. LIX.
 Voi.LX. II. Nna be

[^45]: * Vid. the author's treatife on the pump water of Manchefter. Elfays medical and experimental, po 207. 2d edit.

[^46]: * See Philofophical Tranfactions, Vol. XLIV. p. 227. and Vol. L. p. 856.

[^47]: ** There are Fourteen Copper-Plates in this Volume, as Table IV. is double.

