Hoely Price To find the Number of Grand. an annutant must live toreint see Smarts (Laster page. 114. # OBSERVATIONS ON REVERSIONARY PAYMENTS; ON SCHEMES for providing ANNUITIES for Widows, and for Persons in Old Age; O N The Method of Calculating the Values of Assurances on Lives; AND ON THE NATIONAL DEBT. To which are added, ### FOUR ESSAYS On different Subjects in the Doctrine of Life Annuities and Political Arithmetics. A L S O, #### AN APPENDIX, Containing a complete Set of TABLES; particularly, Four New Tables, shewing the Probabilities of Life in London, Norwich, and Northampton; and the Values of joint Lives. BY RICHARD PRICE, D.D. F.R.S. LONDON: Printed for T. CADELL, in the Strand. M.DCC.LXXI. 372,17 m. 00 * # CONTENTS. # INTRODUCTION. - - Page vii ### CHAP. I. Questions relating to Schemes for granting Reversionary Annuities, and the Values of Affurances on Lives. #### CHAP. II. SECT. I. Of the London Annuity, and Laudable Societies for the Benefit of Widows. p. 64. SECT. II. Of the Association among the London Clergy and the Ministers in Scotland, for providing Annuities for their Widows. p. 84 SECT. III. Of the best Schemes for providing Annuities for Widows. - - p. 97 SECT. IV. Of Schemes for providing Life-Annuities, which are not to commence till particular Ages; and, particularly, of the Societies lately established in London for the Benefit of Old Age. - - p. 108 A 2 SECT. SECT. V. Of the Amicable Corporation for a perpetual Assurance-Office: and the Society for Equitable Assurances on Lives and Survivorships. - - p. 122 #### CHAP. III. Of Public Credit, and the National Debt. p. 135 ## ESSAY I. Observations on the Expectations of Lives; the Increase of Mankind; the Number of Inhabitants in London; and the Influence of great Towns on Health and Population. In a Letter to Benjamin Franklin, Esq; L L.D. and F. R. S. p. 167. To which is added, a Postcript, containing Observations on Edinburgh, Paris, and Berlin. - p. 209 #### ESSAY II. On Mr. De Moivre's Rules for calculating the Values of joint Lives. - p. 222 ## ESSAY III. On the Method of calculating the Values of Reversions depending on Survivorships. p.228 ## ESSAY IV. On the proper Method of constructing Tables for determining the Rate of human Mortality, the the Number of Inhabitants, and the Values of Lives in any Town or District, from Bills of Mortality in which are given the Numbers dying annually at all Ages. - p. 235 ## APPENDIX. Containing Algebraical Demonstrations; Tables; and Rules for computing the Increase of Money bearing Compound Interest. p. 277 # Published by the same Author, Review of the principal Questions and Difficulties in Morals. Particularly, those relating to the Original of our Ideas of Virtue, its Nature, Foundation, Reference to the Deity, Obligation, Subject-matter, and Sanctions. The Second Edition corrected. II. FOUR DISSERTATIONS.—I. On PROVIDENCE.—II. On PRAYER.—III. On the Reafons for expecting that virtuous Men shall meet after Death in a State of Happiness.—IV. On the Importance of Christianity, the Nature of Historical Evidence, and Miracles. The Second Edition, with Additions. Printed for T. CADELL, in the Strand. # INTRODUCTION EFORE the Reader enters upon this Work, it will not be improper to give him the following information concerning it. A few years ago, many gentlemen, of the first eminence in the law, formed themselves into a Society, for providing annuities for the widows of all such persons in judicial offices, barristers, civilians, and sollicitors, as should chuse to become members. A plan was agreed upon and printed; but, some doubts happening to arise with respect to it, the directors resolved to ask the opinion and advice of three gentlemen, well known for their skill in calculation. This occasioned a surther reference to me; and the issue was, that the plan being found to be insufficient, the whole design was laid aside. About the same time, several other societies were formed with the same views; but all on plans alike improper and insufficient. A 4 Finding ## viii INTRODUCTION. Finding, therefore, that the public wanted information on this subject, I was led to undertake this work; imagining, that it might be foon finished, and that all I could fay might be brought into a very narrow compass. But in this I have been much mistaken. A defign, which I at first thought would give little trouble, has carried me far into a very wide field of enquiry; and engaged me in many calculations that have taken up much time and labour. I shall, however, be sufficiently rewarded for my labour, should it prove the means of preventing any part of that distress, which is likely to be hereafter produced by the focieties now fubfifting for the benefit of widows. - I have proved the inadequateness of their plans, by undeniable facts and mathematical demonstration (a).-I have, further, given an account of some of the best plans, that are consistent with a sufficient probability of permanency and fuccess. Should, therefore, any of these so- cieties ⁽a) In the note p. 68, I take notice of the five guineas fine required by some of these societies at admission; and mention some reasons for not making any particular allowance for it. But I have since learnt, that it is indeed no more, than the first of the yearly payments, which I have always supposed to begin immediately. No allowance, therefore, was necessary to be made for it. cieties determine to reform themselves; or should any institutions of the same kind be hereaster established, they will here find direction and assistance (b). In (b) I have lately learnt, that Mr. Gadell, the publisher of this work, and also Mr. Becket, Bookseller in the Strand, are commissioned to deliver in London, printed accounts of the scheme of a society, established five years ago at Ansserdam, for granting annuities on survivorship.——I cannot satisfy my own mind without introducing here, though an improper place, the following remarks on this scheme. From the solution of Questions I and IV. in the First Chapter of the following Work, it may be gathered, that, (reckoning interest at 32 per cent. and the probabilities of life as they are in Tables III. IV. and V. in the Appendix) the value of an annuity of 11. for life, to be enjoyed by a person aged 20, provided he survives another person aged 60, is 81. 16s. 6d. in one present payment; and 18s. 6d. in annual payments, during the two joint lives: the first payment to be made immediately. A fingle payment, therefore, of 130 florins, entitles to an annuity of 15 florins; and an annual payment of 110 florins, to an annuity of 119 forins; and both together, to an annuity of 134 florins. If the annual payments are to be made, not during the joint lives, but during the whole continuance of the oldest fingle life, they will, together with the fingle payment, entitle to an annuity of 144 florins. But this fociety promises, for these payments, an annuity of 100 florins, if the oldest life fails in the first year after admisfrom; 200 florins, if it fails in the 2d year; 300 florins, if it fails in the third; 400 florins, if it fails in the 4th; and 500 florins, if it fails in the fifth year, or at any time afterwards. It is, therefore, evident that the scheme of this fociety is, in this instance, grossly defective. There are other instances in which it is even more defective; and the zuhole of it, like the schemes of most of the LonIn Question VI. Chap. I. a general method is described of finding the values, in fingle and annual payments, of all life-annuities which are to begin after a given term of years; and, in the 4th Section of the 2d Chapter, the plans of the societies for granting such annuities are particularly considered; and proved to be extremely desicient.——Indeed, the general disposition which has lately shewn itself to encourage these societies, is a matter of the most serious concern; and ought, I think, to be taken under the notice of the Legislature. The leading persons among the present members, will be the first don focieties, appears to have been contrived by persons who had no principles to go upon. And yet it has been much encouraged. Many have entered themselves into it from different parts of Europe; and the printed plan acquaints us, that it is now in possession of an annual income of 200,000 storins. What disappointment then must it in time produce?——It is provided by its rules, that the terms of admission shall become less and less advantageous, the longer it has subsisted; just as if the value of the annuities it promises depended, not on the probabilities of life, and the improvement to be made of money, but on the age of the society.——I have taken notice of a similar absurdity in the rules of our own societies. But it is easy to see what is meant by it. Mr. Gadell can procure from his correspondents in Holland, any information for those who may want to know more of this society. But indeed I should be forry to find it much enquired after in London. annuitants; and they are fure of being gainers: and the more infufficient the scheme is, on which a fociety is formed, the greater will be the gains of the first annuitants. The fame principle, therefore, that has produced and kept up other bubbles, has a tendency to preserve and promote these; and, for this reason, it is to be feared, that, in the present case, no arguments will be attended with any effect (c). The confideration, that of the gain made by some in these societies, " will be so much plunder taken from " others," ought immediately to engage all to withdraw from them, who have any regard to justice and humanity; but experience proves, that this argument, when opposed to ⁽c) This apprehension has been verified by fact.—At the beginning of last winter a letter was published to the Provident Society, containing a clear proof of the infufficiency of the plans of all these societies. It was at least to be expected, that fuch a publication would prevent
the rife of new focieties, formed on more inadequate plans. But this was so far from being the effect, that, soon afterwards, a fociety sprung up which calls itself the Rational Annuity Society; and which, though it does not take half the values of the annuities it promifes, has had the shamelessiness to assure the public, that it is formed on a plan incontestably durable. The Consolidated, the Public Annuitant, and the Westminster Union Societies, are yet worse institutions, which have been fince formed; and there may, for ought I know, be many more: for, indeed, all LONDON seems to be now entering into associations of this kind. #### INTRODUCTION. XII private interest, is apt to be too feeble in its influence. It cannot be faid with precision, how long these societies may continue their payments to annuitants, after beginning them. A continued increase, and a great proportion of young members, may support them for a longer time than I can foresee. But the longer they are supported by such means, the more mischief they must occasion.—So, a tradesman, who sells cheaper than he buys, may be kept up many years by increasing business and credit; but he will be all the while accumulating distress; and the longer he goes on, the more extensive ruin he will produce at last. In the latter end of the first chapter, I have stated very particularly, the method of computing the values of assurances on lives and survivorships, in all cases where no more than two lives are concerned: and, in the 3d Essay, I have pointed out a considerable error, into which there is danger of falling in computing some of these values. The so-cieties and offices for transacting business in this way, are very useful; and it is necessary that they should go upon the best principles, and possess all the information that can be given them. But there is no part of this work in which the public is so much concerned, as the 3d Chapter. It will be there proved, that had the fums raifed for public fervices fince the REVOLUTION, been much greater than they have been, the increase of the public debts to their present state might have been prevented in the easiest manner, and at a trifling expence. A method, likewise, of reducing within due bounds these debts, heavy as they now are, will be proposed .-- All competent judges will, I believe, fee, that this method, being founded on the most perfect improvement that can be made of money, is the most expeditious and effectual that the natures of things admit of. Nor, in my opinion, if the nation is not yet too near the limit of its refources, can there be any good reason against carrying it into execution .- It is well known, to what prodigious fums, money, improved for some time at compound interest, will increase (a). A state, if there is no mis- application ⁽a) A penny, put out to 5 per cent. coumpound interest at our Saviour's birth, would, by this time, have increased to more money than would be contained in 150 millions of globes, each equal to the earth in magnitude, and all solid gold. application of money, must necessarily make this improvement of any favings, which can be applied to the payment of its debts. It need never, therefore, be under any difficulties; for, with the fmallest favings, it may, in as little time as its interest can require, pay off the largest debts .--- Several of the observations I have made on this subject, have not, perhaps, been duly considered. Could they engage the attention of the managers of our public affairs, they might, I think, be of some service. But this, I am sensible, I cannot expect. I have, however, in some degree, fatisfied my own mind; and I shall always reflect with pleafure, that, in this part of the following treatife, I have endeavoured to convey to the public, an information which is of particular importance to it. In the first Essay I have made many obserservations on the expectations of lives, the pernicious influence of great towns on health, and manners, and population; the increase of mankind; and other subjects in the doctrine of Annuities and Political Arithmetick.—— In the Last Essay I have stated carefully the proper method of forming tables of the probabilities of human life, from given observations: new Tables, I have thought it necessary to give Mr. Simpson's Tables of the values and expectations of London lives; and all the other Tables which can be wanted in the perusal of this work.——I have also, in the Appendix, given the Demonstrations of the Answers to the Questions in Chap. I. These Demonstrations I have chosen to keep out of sight in the body of the work, in order to avoid discouraging such readers as may be unacquainted with mathematics. Upon the whole. A great part of this work is, I believe, new; and I am in hopes also, that it will be found to contain some improvements in those branches of philosophical enquiry, which are the subjects of it. The Reader is defired to correct the following Error. In page 148, line 11. inflead of 11, read 9 years purchase; and in the next line, inflead of $6\frac{1}{2}$, read $15\frac{1}{2}$ years purchase. # CHAP. I. Questions relating to Schemes for granting Reversionary Annuities, and the Values of Assurances on Lives. # QUESTION I. Set of married men enter into a "fociety for fecuring annuities to "their widows. What sum of "money, in a single present pay-"ment, ought every member to contribute, in order to entitle his widow to an annuity of 301. per annum for her life, "estimating interest at 4 per cent?" #### ANSWER. It is evident, that the value of such an expectation is different, according to the different ages of the purchasers, and the proportion of the age of the wife to that of the husband. Let us then suppose, that every person in such a society is of the same age with his wife, and that one with another all the members when they enter may be reckoned oned 40 years of age, as many entering above this age as below it. It has been demonstrated by Mr. De Moivre and Mr. Simpson, that "the value of an annuity on the joint continuance of any two lives, subtracted from the value of an annuity on the life in extraction," gives the true present value of an annuity on what may happen to remain of the latter of the two lives after the other. In the present case, the value of an annuity to be enjoyed during the *joint continuance* of two lives, each (a) 40, (b) is 9.826, accord- ing ### (a) See Table VII. Appendix. (b) The values of joint lives and reversions, as deduced from the Breslaw observations, are not given in any part of this work from Mr. De Moivre's rules in his treatise on annuities on lives. For these rules are approximations, which give results so far from the truth, as to be, not only useless, but dangerous. In the second essay in the Appendix, a particular account of this will be given, and also of the method in which these values have been calculated. Mr. De Moivre has calculated the values of fingle lives, on the supposition of an equal decrement of life thro' all its stages till the age of 86, which he considered as the utmost probable extent of life. Thus; let there be 56 persons alive at 30 years of age. It is supposed that one will die every year till, in 56 years, they will be all dead. The same will happen to 46 at 40, in 46 years. To 36 at 50, in 36 years, and so on for all other ages. The number of years which a given life wants of 86, he calls the complement of that life. Fifty-six, therefore, is the complement of 30; 46 of 40, and 36 of 50. This hypothesis eases very much the labour of calculating the values of lives; and it is so conformable to Dr. Halley's table of observations, that there is little or no rea- ing to the probabilities of life in the table of observations formed by Dr. Halley, from the bills of mortality of Breslaw in Silesia. The value of a single life 40 years of age, as given by Mr. De Moivre, agreeably to the same table, is 13.20 (a); and the former subtracted from the latter, leaves 3.37, or the true number of years purchase, which ought to be paid for any given annuity, to be enjoyed by a fon for distinguishing between the values of lives as deduced from this Table, and the same values deduced from the hypothesis. In order to avoid putting the reader to trouble, I have given this table at the end of this work. And I have also given two other tables which I have formed from the bills of mortality at Northampton and Norwich. These last tables answer more nearly to Mr. De Moivre's hypothesis than even Dr. Halley's table; and the difference between the values of fingle and joint lives by the hypothesis, and the fame values computed strictly from the tables, is generally less in these tables than in Dr. Halley's, as will be shewn in the last Estay. When, therefore, in the course of this work the values of fingle and joint lives are mentioned, as given agreeably to Dr. Halley's table, it must be understood, that they are taken from Tables VI. and VII. in the Appendix, and given in strict agreement only to the hypothesis; and that for this reason, they are in reality still more conformable to the Northampton and Norwich tables. The inhabitants of London, as is well known, not living so long as the rest of mankind, the values of fingle and joint lives there, are considerably less than in any other place where observations have been kept. Whenever, therefore, I have had London lives in view, I have given particular notice of it, and taken their values from Mr. Simpson, who has calculated them with much accuracy from the London tables of observation. See Tables X. and XI. (a) See Table VI. Appendix. person 40 years of age, provided he survives another person of the same age, interest being reckoned at 4 per cent. per annum. The annuity, therefore, proposed in this question being 301. the present value of it is 30 multiplied by 3.37, or 1011. 2s. By calculating from Mr. Simpson's tables (a), formed from the bills of mortality of London, this value
comes out 1021. The difference in the value of the reversion will be inconfiderable, whether the common age is taken a few years more or less than 40. Thus married men of 30 ought not, according to Dr. Halley's table, to give two fifths of a year's purchase more, for any given reverfionary annuity for their wives, than married men of 50, provided they are of the same ages with their wives; and one quarter more, according to Mr. Simpson's table. wives are younger (as is generally the case) there will indeed be a confiderable difference; for the value now determined would be 120%. according to the Breflaw observations, supposing the two lives to be 40 and 33, or that wives are one with another feven years younger than their husbands; and 1181. 10s. according to the London observations. ⁽a) See Table X. and XI. Appendix. ## QUESTION II. "Supposing such a society as that describ-" ed in the preceding question, to be limit-"ted to a certain number of members, and " constantly kept up to that number, by the " admission of new members as old ones are " loft, in consequence of their own deaths, " and the deaths of their wives: What is the " number of annuitants which, in some time " after its establishment, will come to be " constantly upon it?" #### ANSWER. Since every marriage produces either a widow or widower; and fince all marriages taken together would produce as many widows as widowers, were every man and his wife of the same age, and the chance equal which shall die first; it is evident, that the number of widows that have ever existed in the world would, in this case, be equal to half the number of marriages. And what would take place in the world must also, on the same suppositions, take place in this society. — In other words; every other perfon in fuch a fociety leaving a widow, there must arise from it a number of widows equal to half its own number. — But this does not determine what number, all living at one and the same time, the society may expect will come to be constantly upon it. For if every widow lived no more than a year, the fociety would never have more annuitants upon it than came on in a year. And on the contrary, if none ever died, the number of annuitants would go on increasing for ever .-- , 'Tis, therefore, necessary, in order to answer the prefent enquiry, to determine how long the duration of survivorship between persons of equal ages will be, compared with the duration of marriage. And the truth is, that, supposing the probabilities of life to decrease uniformly (a), the former is equal to the latter; and consequently, that the number of furvivors, or (which is the same, suppofing no fecond marriages) of widows and widowers alive together, which will arise from any given fet of fuch marriages constantly kept up, will be equal to the whole number of marriages; or half of them (the number of widows in particular) equal to half ⁽a) That is, supposing that out of any given number alive at any age the same number will die every year 'till all are dead. See the preceding note. That on this hypothesis, the duration of survivorship is equal to the duration of marriage, when the ages are equal; or, in other words, that the expessation of two joint lives, the ages being equal, is the same with the expessation of survivorship, may be learnt from the 18th and 20th problems of Mr. De Moivre's treatise on annuities; and a demonstration of it, together with a particular explanation of this subject, may be sound at the beginning of the first Essay to which I must beg the reader to turn, if he is at any loss about the full meaning of what is here said. the number of marriages.—Now, it appears that the decrease in the probabilities of life, is in fact nearly uniform. According to the Breflaw, the Northampton and Norwich tables of observation, almost the same numbers die every year from 20 years of age to 77 (a). After this, indeed, fewer die, and the rate of decrease in the probabilities of life is retarded. But this deviation from the hypothesis is inconsiderable; and its effect, in the present case, is to render the duration of furvivorship longer than it would otherwise be. According to the London table of observations, the numbers dying every year begin to grow less at 50 years of age; and from hence to extreme old age, there is a constant retardation in the decrease of the probabilities of life (b). Upon the whole, therefore, it appears in answer to the prefent question, that " according to the three " former tables of observations, and suppo-" fing no widows to marry, the number " enquired after is somewhat greater than " half the number of the fociety; but, ac-" cording to the London table, a good deal " greater." It must be carefully remembered, that this has been determined on the supposition, that ⁽a) See Tables III. IV. and V. Appendix. ⁽b) The reason of this difference between the London and other tables, will be given at the end of the fourth Essay. husbands and their wives are of equal ages, and that in this case it becomes an equal chance which shall die first. In reality neither of these suppositions is just. Husbands in general are older than their wives; and in equal ages the mortality of males has been found to be greater than the mortality of females. For both these reasons, it is much more than an equal chance that the husband will die before his wife, or that the woman shall be the survivor of a marriage, and not the man. This will increase considerably the duration of survivorship on the part of the woman, and confequently the number enquired after in this question. The marriage of widows will also diminish this number, and the operation of these causes will be different in different fituations. But it is by no means to be expected (in the fituation of the focieties I have in view) that the diminution from the latter cause will be confiderable enough, to overbalance the operation of all the other causes which have been mentioned, and reduce the number under confideration fo low, as half the number of marriages (a). ## **SCHOLIUM.** In London it appears, that there is a retardation of the decrease in the probabilities ⁽a) It will be observed hereaster, that this observation has been found to be true in fact. of life, which renders the duration of furvivorship between two lives of equal ages, confiderably longer than their joint continuance. It feems worth observing, that this is the reason why, though the probabilities of life, and therefore the values of fingle and joint lives, are less in London than in other places, yet the values of reversions depending on survivorships, are in some cases greater there. It is proper to add, that this likewise is the reason why, in calculating the values of joint lives and reversions, the present value of an annuity payable yearly to the furvivor of two equal lives, may come out equal to, or even greater than, the present value of a like annuity for the joint lives. As an annuity, during fuch furvivorship, will probably not become payable for some years, and therefore the money given for it will have time to accumulate, it is manifest, that the value of it could never be equal to the value of an annuity on the joint lives, the payment of which begins immediately, were not the obfervation now made true. # QUESTION III. "Such a fociety as that described in the preceding questions being supposed, in what time will the number of annuitants upon it come to a maximum?" #### ANSWER. . In order to be more clear in answering this question, I will first suppose the society to comprehend in it from its first establishment, all the married persons of all ages in any town or country, where the number of people continue constantly the same. In this case, the whole collective body of members will be at their greatest age, at the time of the establishment of the fociety; and the number of members, together with the number of widows left every year, will, taking one year with another, admit of no increase or diminution. The number of widows in life together, derived from any given number coming on a fociety every year, will increase continually, till as many die off as are added every year; that is, till they come to die off as fast as possible. But they cannot die off as fast as possible, till the whole collective body of widows are at their greatest age; or, till there is among them the greatest number possible of the oldest widows; and, therefore, not till there has been time for an accession to the oldest widows, from the youngest part of the widows that come on annually. Let us, for the fake of greater precision, divide the whole medium of widows that come on every year, into different classes according to their different ages, and suppose some to be left at 56 years of age, some at 46, fome some at 36, and some at 26. The widows, constantly in life together, derived from the first class, will come to their greatest age, and to a maximum, in 30 years, supposing with Mr. De Moivre, 86 to be the utmost extent of life. The same will happen to the second class in 40 years, and to the third in 50 years (a). But the whole body, composed of these classes, will not come to a maximum, till the same happens to the sourch or youngest class; that is, not till the end of 60 years. After this, the affairs of the society will become stationary, and the number of annuitants upon it of all ages will keep always nearly the same. Such is the answer to this question, supposing a society to begin with its complete number of members, consisting of married persons of all ages, in the same proportions to one another, with the proportions in which they exist in the world.——If it begins with its complete number of members, but at the same time admits none above a particular age: If, for instance, it begins with 200 members all under 50, and afterwards limits itself to this number, and keeps it up by admitting every year, at all ages between 26 and 50, new members as old ones drop
off; ⁽a) In the Appendix, note (a), a rule is given, by which the numbers alive at the end of any particular number of years may be very eafily determined. in this case, the period necessary to bring on the maximum of annuitants will be just doubled. For, in the first place, the whole collective body of members will be 60 years in getting to their greatest age, as may easily appear from what has been just said. The annual medium of widows, therefore, that will come on the fociety will increase continually for 60 years, it being evident, that the older any set of married men are, taken one with another, the faster they will leave widows. And after this annual medium is increased to a maximum, 60 years more will be necessary to bring to a maximum the number in life together, derived from such a fixed annual medium constantly coming on. --- If fuch a fociety is any number of years in gaining its maximum of members, the time necessary to bring on the maximum of annuitants will be still further prolonged, and will be equal to twice 60 years with that number of years added.—Most of the societies for granting annuities to widows are of this kind; and, therefore, supposing them to gain their complete number of members in ten years, and for ever afterwards to preserve it, the number of annuitants upon them will go on increasing for 130 years.—It is proper, however, to be remembered, that the increase will be quicker at first, and afterwards slower; and that, within 20 or 30 years of the end of of this term, it will be so slow as scarcely to be sensible, though still real. All who will bestow due attention on this subject must see these decisions to be just; and a demonstration of them might be given, in a form more strictly mathematical, were it necessary. # QUESTION IV. "Suppose the members of such a society as that described in the preceding questions, to chuse making annual payments during "the continuance of marriage, in lieu of the fum which the reversionary annuity for "their widows is worth in present money: "What ought these annual payments to be, " estimating interest at 4 per cent?" #### ANSWER. This will be easily determined, by finding what annual payments, during two joint lives of given ages, are equivalent to the value of the reversionary annuity in present money.— Suppose, as in Question I. the two joint lives to be each 40, and the reversionary annuity 301. per annum. An annual payment during the continuance of two such lives is worth, according to Dr. Halley's table of observations, 9.82 (a) years purchase. The annual ^{. (}a) See Table VII. payment then ought to be fuch as being multiplied by 9.82, will produce (a) 1.101.1, the present value of the annuity in one payment by Question I. Divide then 1. 101.1 by 9.82, and the quotient, or l. 10.3 will be the answer. This is very nearly the annual payment of all the members at an average, supposing equal numbers to offer themfelves for admission of every age between 30 and 50. As much as some give less, others ought to give more, according to their excess of age. Thus, the annual payment of a married person, 30 years of age, ought to be 1.9.39; and of a person 50 years of age 1. 11.33.—If the values of joint lives and the reversionary annuity are taken agreeably to the London table of observations, these annual payments will be, for 30 years of age (b), l. 10.9,—for 40, l. 12.5,—for 50, l. 14.5. (a) Particular notice should be taken of the method of notation here used, because it will be carried through the whole of this work.—The figures on the right hand of the full-point, signify the decimal parts of 1l. Thus; l. 101.1, is l. 101 and the 10th of 1l. or l. 101 and 2s.—l. 9.39, is l. 9, and 39 hundredths of 1l. or l. 9: 7s.: 10d.—l. 11.33, is l. 11, and 33 hundredths of 1l. or l. 11: 6s.: 7d.—In general; it should be remembered, that 2 shillings allowed for every unit in the first place of decimals, and two-pence half-penny for every unit in the second place of decimals, will give, nearly enough, the value of the decimal part of every such expression. (b) The value of two joint lives of 30, taken from Table XI. is 9.6. This subtracted from the value of the life in expectation, or from 13.1, by Table X. gives 3.5, tne If either the rate of interest is supposed lower, or wives are supposed younger than their husbands, the annual payments will be increased. But there is no occasion for pointing out particularly the difference. It may be easily found in any cases by the directions now given. There is, however, one observation which ought to be here carefully attended to .- This method of calculation supposes, that the first annual payment is not to be made 'till the end of a year. If it is to be made immediately, the value of the joint lives will be increased one year's purchase; and, therefore, in order to find in this case the annual payments required; the value in present money found by Quest. I. must be divided by the value of the joint lives increafed by unity, and, in this way, the preceding values at 4. per cent. according to the Breslaw observations, will be found to be 1.8.62—1.9.35—1.10.07.—According to the London observations, 1. 10, -1.11.2, -1.12.7. the number of years purchase which an annuity for a life of 30 years of age, after another life of the same age, is worth. This remainder, multiplied by 30, gives 1051. the value in a single payment, supposing the reversionary annuity to be 301. And 1051. divided by 9.6, gives 1.10.9, the value of the same annuity in annual payments, during the joint continuance of the two lives, according to the London observations.—By similar operations all the other values above given have been found. ## QUESTION V. "A fociety may chuse to make abate"ments in these annual payments, and to require the remainder of the value of the reversionary annuity to be given, in fines or premiums at the time of admission; it may, for instance, chuse to fix the annual payments of all the members to 5 guineas. What, in this case, would be the premium due at admission, the annuity being supposed 301. per annum, and interest being at 4 per cent?" #### ANSWER. From the whole present value of the annuity in one payment, subtract the value of 5 guineas per annum, during the joint lives; and the remainder will be the answer. Supposing the joint lives both 40, the whole present value of the annuity in one payment is, according to the Breslaw observations, l. 101.1, by Quest. I.—The value of 5 guineas per annum, or of l. 5.25 per annum, during two such joint lives, is 5.25, multiplied by the value of the joint lives; that is, 5.25, multiplied by 9.82, or l. 51.55; and this subtracted from l. 101.1, gives l. 49.5, the answer required for two lives at the age of 40.—The answer found in the same way for two lives whose common age is 30, is l. 46.5,—and for two lives at 50, 50l. According to the London observations, these values are, for two lives at 30, 1.54.6.—At 40, 1.59. 4.—At 50, 1.63. 3. If the first of the annual payments is to be made immediately, the true answer will, in every instance, be the values found in the manner now directed, diminished by the annual payment; or, in the present case, 5 guineas less than the values specified. The values, in *premiums* and *annual payments*, of any other reversionary annuity, will be as much greater or less than these, as the annuity itself is greater or less. ## QUESTION VI. "A person 35 years of age wants to buy an annuity, for what may happen to remain of his life after 50 years of age. What is the value of such an annuity in ready money; and also in annual payments, till he attains to the said age; that is, in annual payments for i5 years, subject in the mean time to failure, should his life fail?" #### ANSWER. The present value of such an annuity is the present value of a life at 50, in money to be received 15 years hence, and the payment of which depends on the contingency of the continuance of the given life 15 years. That is; it is equal to the value of a life at 50, multi- multiplied by the present value of 11. to be received at the end of 15 years, and also by the probability that the given life will continue fo long.—A life at 50, according to Mr. De Moivre's valuation of lives, and reckoning interest at 4 per cent. is worth 11, 34 year's purchase. The present value of 11. to be received at the end of 15 years, is, by Table I, 0.5553. And the probability that a life at 35, will continue 15 years, is, according to the Breslaw observations 346 (a). And these three values, multiplied by one another, give 1.4.44, or the number of years purchase that ought to be given for the annuity.—The annuity then being supposed 501. its value in present money is 2221. (a) The probability that a given life shall continue any number of years, or attain to a given age, is (as is well known) the fraction, whose numerator is the number of the living in any table of observations opposite to the given age, and denominator, the number opposite to the present age of the given life.—Thus, in the present instance; 346 is the number in Dr. Halley's table opposite to 50, and 490 the number opposite to $35.-\frac{346}{470}$, (or the odds of 17 to 7) is, therefore, the probability that a person whose age is 35 shall attain to 50, or live 15 years. In the same manner it will appear, that, according to the same table, the probability that a person at this age shall live 25 years, is $\frac{2400}{400}$; or nearly an even chance. At Northampton and Norwich a person at the same age, has an even chance of living 26 years; but in London, scarcely 20 years. See Tables III, IV, V, and VIII. Appendix. I will add, though foreign to my present purpose, that a person at the same age has in these towns a better chance of living one year, than in London, in the proportion of 3 to 2. In order to find this value in annual payments, while the given life is attaining to 50, it is necessary to find the value of an annuity for
15 years, subject to failure on the extinction of the given life. And the value of fuch an annuity is, evidently, the last value fubtracted from the value of the given life; or, in the prefent instance, 1.4.44, subtracted from 1. 13.97. (See Table VI, Appendix) that is, 1.9.53, -2221. then, being the present value of an annuity of 50%. for the remainder of a life now 35, after attaining to 50; and 9.53 being the number of years purchase, which ought to be given for an annual payment to last 15 years, if a life now 35 lasts fo long, it follows, that the value of the same annuity in annual payments till this life attains to 50, is 222% divided by 9.53; or This calculation supposes, that the first of the annual payments is not to be made till the end of a year. If the first payment is made immediately, the value will be, the fingle payment divided by the value of the life for the given term increased by unity; that is, in the present case, 2221 divided by 10.53; or 1.21.08. If the value of the annuity is required in a fingle payment, over and above any given annual payment; deduct the value of the annual payment from the whole value in a fingle present payment, and the remainder will C_2 be the answer.—Thus; let 5 guineas, in the present instance, be the given annual payment for the assigned term; and let the enquiry be, how much more in present money the supposed annuity is worth. By what has been just said, 9.53, multiplied by 5 guineas, that is, 50% is the value of the annual payment; and this sum deducted from 222% leaves 172% the answer. If the annual payment begins immediately, its value is 10.53, multiplied by 5 guineas, and the answer comes out 1.166.75. In this way may be found the value, in fingle and annual payments, of any other annuity, payable to an affigned life, after a given term of years, taking any valuation of lives or interest of money. But care must be taken to remember, that it is the title to the annuity that will commence at the end of the given term, and that the first payment is not to be made 'till a year afterwards; that is, in the case here specified, not 'till the end of 16 years. #### S сноги и м. The value of the remainder of two joint lives, after a given term of years, is likewise the value of 1 l. due at the end of the given term, multiplied by the value of two joint lives, each older by the given term than the given lives; and this product, multiplied by the probability, that the given joint lives shall not not fail in the given term; or (which is the fame) by the product of the two probabilities, that the fingle lives shall each continue the given term. And the value of an annuity, on any given joint lives for a term of years beginning now, is this last value, subtracted from the whole present value of the joint lives. Thus; the value of two joint lives, one 40 years of age, and the other 50, (see Table VII.) is 8.91; which, multiplied by 0.6755, the value of 11. due 10 years hence, and by 445, (the probability that a life at 30 shall continue 10 years) and also by \(\frac{345}{445}\), (the probability that a life at 40 shall continue 10 years) gives 3.92, the present value of the remainder of two joint lives, aged 30 and 40, after 10 years; and this value, subtracted from 10.43 (the value in Table VII. of two joint lives, aged 30 and 40) leaves 6.51, their value for 10 years. As the value of the longest of two lives is always the value of the joint lives, subtracted from the sum of the values of the two single lives; their value also for any given term, is the value of the joint lives for the given term, subtracted from the sum of the values of the fingle lives for the given term. The truth of these rules may easily appear without particular proof. I have, however, pointed out the method of demonstrating them in a note (a) at the end of this work. ⁽a) See note (B) in the Appendix, By fimilar operations, may be found the values of 3 or more joint lives, or the longest of three or more lives, for a given term of years, or of what shall remain of them after a given term of years. # QUESTION VII. "The present value is required of an annuity to be enjoyed by one life, for what may happen to remain of it beyond another life, after a given term; that is, provided both lives continue, from the prefent time, to the end of a given term of years?" ### ANSWER. Find the value of the annuity for two lives greater, by the given term of years, than the given lives. Discount this value for the given term; and then, multiply by the probability, that the two given lives shall both continue the given term; and the product will be the answer. ## EXAMPLE. Let the two lives be each 30. The term feven years. The annuity, 101. Interest, 4 per cent.—The given lives, increased by 7 years, become each 37. The value of two joint lives each 37, is (by Table VII) 10.25. The value of a fing e life at 37, is (by Table VI) 13.67. The former, subtracted from the latter, is 3.42, or the value of an annuity for the life of a person 37 years of age, after another of the same age, by Quest. I.—3.42 discounted for 7 years, (that is, multiplied by 0.76, the value of 11. due at the end of seven years, by Table I.) is 2.6.—The probability that a single life at 30 shall continue 7 years, is (by the hypothesis explained page 2.) \frac{40}{10} (a). The probability, therefore, that two such (a) In this case, it is on some accounts best, as well as easiest, to take the probabilities of life from the hypothesis, rather than immediately from the Tables .- Fiftyfix persons being supposed alive at 30, one will die every year, according to the hypothesis. At the end of seven years then, the number of the living will be 49, and 43, or the odds of 7 to 1, is, by note p. 18. the probability, that a life, aged 30, will continue 7 years; and this fraction, multiplied by itself, is the probability, that two lives of this age, shall both continue 7 years. In general, it must be remembered, that the probability, that any two or more events shall all happen, is the product arising from multiplying by one another, the probabilities of all the events taken separately. The probability, therefore, that any number of persons will all live any given time, is rightly found by multiplying into one another the probabilities that each of them will live that time. - It may further be of use to some, that I should observe here, that the difference between unity and the fraction expressing the probability, that an event will happen, gives the probability that it will not happen. Thus; the probability, that a person 40 years of age will live 11 years, is by the Breslaw Table 335. The probability, therefore, that he will not live 11 years, is 325, subtracted fuch lives shall both continue 7 years, is \$\frac{2405}{2405}\$, or, in decimals 0.765. And 2.6 multiplied by 0.765, is 1.989, the number of years purchase which ought to be given for an annuity, to be enjoyed by a life now 30 years of age, after a life of the same age, provided both continue 7 years. The annuity then being 101 its present value is 1.19.89. By fimilar operations, it may be found, that supposing the term one year, and the ages and the rate of interest the same, the present value of the same reversionary annuity is 1.32.4; and that if the term is 15 years, the value is 1.9.7. For two lives each 40, these values are 1.30.33.—1.17.44.—1.7.3. the term being 1, 7, or 15 years. For two lives each 50, the fame values for the fame terms, are l. 28.2, -l. 13.86, -l. 4.34 (a). These values, according to the London obfervations and Mr. Simpson's Tables of the values of fingle and joint lives, are, from unity or $\frac{110}{4+5}$.—In like manner: The probability that two persons aged 30, shall both live 7 years, being 0.765, the probability that they will not both live so long, or that one or other us them will die in 7 years, is 0.765 subtracted from unity, or .235. If any reader is unwilling to take these affertions for granted, he should consult the beginning of Mr. De Moivre's, or Mr. Simpson's Treatises on the Doctrine of Chances, where he will find them demonstrated. (a) See Note (C) Appendix. For 2 lives at 30—l.32.05—l.18.62—l.7.66, at 40—l.30.7—l.15.6—l.5.45. at 50—l.29.36—l.12.33—l.3.24, ## QUESTION VIII. "Let the scheme of a society for granting annuities to widows, be, that, if a member lives a year after admission, his widow shall be entitled to a life annuity of 201. If feven years, to 101. more, or 301. in the whole. If fifteen years; to another additional 101. or 401. in the whole. What ought to be the annual payments of the members for the ages of 30, 40, and 50, fupposing them of the same ages with their wives, and allowing compound interest at 4 per cent?" ### ANSWER. According to the *bypothefis*, explained p. 2; and, therefore, very nearly, according to the Tables of observation for *Breslaw*, *Norwich*, and *Northampton*, According to the London observations, These values, are easily deduced from the values in the last question. For example, The value of 101. per annum for life to 40 after 40, provided the joint lives do not fail in one year, is, according to the hypothesis, 1. 30.33. The value of 201. per annum, in the same circumstances, is, therefore, 1.60.66. In like manner, the value of 101. after seven years, is l. 17.44. And of 101. after 15 years 1.7.3.—These values together make 1.85.4, or the value of the expectation, described in this question, in a fingle present payment; which, divided by 9.82, (the value by Table VII. of two joint lives at 40) gives 1.8.69, the value of the same expectation in annual payments, during the joint lives .- In the same manner may be found the answer in all cases to any questions of this kind. These calculations suppose, that the annual payments do not begin till the end of a year. If they are to begin immediately, the true annual payments will be, as was before observed, the fingle payments, divided by the value of the
joint lives increased by unity; and in the present case they will be, by the bypothesis, 1.7.75-1.7.9-1.8.07. By the London observations, By the method of calculation now explained, may be easily found in all cases, supposing the annual payments previously settled, what the reversionary annuities are corresponding to them in value.—Thus, the annuities being the same with those mentioned in this question, the mean annual payments for all ages between 30 and 50, are nearly 81. according to the bigbest probabilities of life; 91. according to the lowest; and 8 guineas the medium (a); interest being at 4 per cent. and the first payment to be made immediately. If the mean annual payments, beginning immediately, are fixed to five guineas, the corresponding life annuities will be nearly (by the *hypothefis*) 121. if the contributor lives a year, and 241. if he lives seven years; or (by the *London* observations) 121. if he lives a year, and 201. if he lives seven years (b). It ⁽a) The value of this expectation, supposing married men 40 years of age, and their wives 30, is, in a fingle payment, 113 l. In annual payments beginning immediately l.9.88, by the hypothesis. And 107 l.—and l. 10.93, by the London observations. ⁽b) If the annuities in expectation are 14l. provided a member lives a year, and 20l. provided he lives feven years, the proper mean fingle payments for all ages, taken one with another, under 50 or 52, is 50 guineas nearly, according to all the Tables of observation, supposing equality of age between men and their wives. And the addition which ought to be made, on account of excess of age on the man's side is, taking the nearest and the casieft It is observable, that the difference in the values of the annuities, arising from difference of ages, and the difference in the probabilities of life, is less in this question than in question 4th; and that, consequently, the plan proposed in it, is the safest, as well as the most equitable and encouraging, that a society can adopt. It is necessary to remark here further, that yearly payments which begin immediately, are more advantageous than half-yearly payments which begin immediately. Mr. Simpson (in his Treatise on The Doctrine of Annuities and Reversions, pag. 78, and also in his Select Exercises, p. 283) has shewn, that, in the case of life annuities, half-yearly payments, which begin at the end of half a year, are \$\frac{1}{4}\$ of a year's purchase better than yearly payments, which begin at the end of a year. And it is manifest, that half-yearly payments, which begin immediately, are no easiest round sums, about a guinea and ½ for every year as far as 17 years; or, in the annual payments, (supposed 5 guineas) ½ a guinea per annum for sive years excess, and ½ a guinea more for every sour years excess, and ½ a guinea more for every sour years excess beyond five years, till the excess comes to be 17 years. And, I believe, that 60 guineas in fingle payments, and six guineas in annual payments beginning immediately, may very well be stated as the lowest common payments proper to be required, supposing all married men under 52, taken into a society, without enquiring into the difference of age between them and their wives, the annuities being all along supposed to be life annuities, and interest reckoned at 4 per cent. more than half a year's purchase better than those which begin at the end of half a year. But yearly payments, which begin immediately, are a whole year's purchase better than the same payments to begin at the end of a year. The difference of value, therefore, between yearly and half-yearly payments, supposing both to begin immediately, is a quarter of a year's purchase in savour of the former. # QUESTION IX. "The value is required of an annuity to be enjoyed for what may happen to re"main of one life after another, provided the life in expectation continues a given time?" #### ANSWER. Find by Question VI. the present value of the annuity for the remainder of the life in expectation, after the given time, and multiply this value by the probability, that the other life shall fail within that time. Find also, by Question VII. the value of the reversion, provided both lives continue the given time. Add these values to one another, and the sum will be the answer in a single present payment. EXAM- ### EXAMPLE. An annuity of 101: for the life of a person how 30, is to commence at the end of 11 years (a), if another person now 40, should be then dead; or, if this should not happen, at the end of any year beyond 11 years in which the former shall happen to survive the latter. What is the present value of such an annuity, reckoning interest at 4 per cent. and taking the probabilities of life as they are in Dr. Halley's Table? The value of 101. per annum, for the remainder of the life of a person now 30, after 11 years, found by Quest. VI: is 1.69.43. The probability that a person 40 years of age shall live 11 years, is, by Dr. Halley's Table; The probability, therefore, that he will die in 11 years, is \(\frac{3}{4}\frac{5}{4}\frac{5}{3}\) fubtracted from unity (b), or 445; which multiplied by 1.69.43; gives 1.17.16.—The value of the reversion, provided both live 11 years, found by Quest: VII. is 171. And this value added to the former, ⁽a) That is, the title to the annuity is to commence at the end of 11 years, and the first payment to be made a year afterwards, in case the life in expectation should continue so long, and the other fail. But if both lives should continue the given term, the first payment is always to be made at the end of the year, in which the former life shall happen to survive the latter. See Quest. VI. ⁽b) See the Note, p. 23. former, makes l. 34.16, the value required in a fingle present payment; which payment divided by l.11.43, (the value by Table VII. of two joint lives, aged 30 and 40, with unity added) gives 3l; (a) or the value required in annual payments during the joint lives, the first payment to be made immediately.—If, every thing else being the same, the assigned term is 15 years, the value required will be 29l. in a single payment, and l. 2.55 in annual payments. # QUESTION X. "What money in hand, and also in an"nual payments during life, ought a person "of an assigned age to give for a sum of mo"ney, payable at his death to his heirs (b)?— "In other words, what money in hand, and "in annual payments during life, ought a "person of a given age to pay for an assu"rance of any given sum on his life?" #### Answer. Subtract the value of the life from the perpetuity. Multiply the remainder by the (a) See the demonstration of this rule in Note (D) Appendix. (b) This question is the same with Problem 16th, in Mr. De Moivre's Treatise on Annuities, and Problem 26th, in Mr. Simpson's Select Exercises; but the answers there given are right only when applied to reversionary estates, and therefore must be materially wrong, when applied to reversionary sims, as will appear from the Scholium to this Question, and from note (E) in the Appendix. product of the given sum into the interest of 1001. for a year: and this last product, divided by 1001. increased by its interest for a year, will give the answer in a fingle present payment. And this payment, divided by the value of the life, will give the answer in annual payments, during the continuance of the life. Example. Let the life be 30. The sum 100%. The rate of interest 4 per cent. And the valuation of lives, that in Table VI. The perpetuity, therefore (a), is 25. The interest of 100%. for a year, is 4%. 100% increased by its interest for a year is 1041. And the value of the life 14.68.—The value of the life, subtracted from the perpetuity, gives 10.32, which, multiplied by the product of 1001. into 4, or by 400, gives 4128. And this, divided by 104, gives 1.39.7, the value of 100%, payable at the death of a person aged 30, in a fingle present payment.—And this payment, divided by 14,68, is 1.2.7, the fame value in annual payments during the continuance of the life. These values found in the same way, agreeably to the valuation of lives for London, in Table X, are 1.45.76, and 1.3.49.—If the life is 36, and interest 4 per cent. these values are 431. and 1.3.1, by Table VI, and 1.49.6, ⁽a) That is; the value of the fee simple of an estate found by dividing 100l. by the rate of interest. and l.4.1, by Table X.—If interest is reckoned at 3 per cent. the same values are, by Table VI, for 30 years of age, l.48.14.—2.86.—For 36 years of age, l.51.43, and l.3.28. It appears here, that difference of interest makes no confiderable difference in the anfwers to questions of this kind, except when the values are required in a single payment. If the first of the annual payments is to be made immediately, the fingle payment is to be divided by the value of the life, with unity added to it, agreeably to what has been already observed; and the annual payments in this case (interest supposed at 4 per cent.) will be by Table VI, for a life at 30, l. 2.53—At 36, l. 2.9. If the payments are half yearly payments beginning immediately, the fingle payment must be divided by the value of the life increased by \(^3\), or .75, (see Quest. VIII.) And the half yearly payments, for the age of 36, will be half 2.9, or 1.45. And half 1.45, or .725, is likewise nearly the proper quar- terly payments. Again; if an annual payment, beginning immediately, of l. 2.9, ought (reckoning interest at 4 per cent.) to purchase 100 l. payable at the failure of a life now 36; 5 l. by the rule of proportion, ought to purchase 172 l. And in like manner, it may be found, that the same annual contribution, in half- yearly or quarterly payments, beginning immediately, ought to purchase 1701.— These sums, according to the London observations, are 1321. and 1301. nearly. The reason of mentioning these particu- lars will be feen in the next chapter. ### SCHOLIUM. If the reversion is not a fum, but an annuity for ever, or an
estate in fee simple, to be entered upon after a given life, its present value, in a fingle payment, will be "the value " of the life subtracted from the perpetuity, " and the remainder multiplied by the an-" nuity, or the annual rent of the estate."-And the value, in annual payments, will be, as before, the fingle payment divided by the value of the life. - Univerfally. It ought to be remembered, that a reversionary estate, after any given life or lives, is worth as much more than a corresponding reversionary fum, as 100% increased by its interest for a year, is greater than 100/.—Thus, the present values, in fingle and annual payments, of 41. per annum for ever, and of 1001. in money after any affigned life, are to one another, (interest being at 4 per cent.) as 104 to 100, or 1.04 to 1.- The reason of this difference is, that the calculations suppose, that the reverhonary fum, and the first yearly rent of the estate, or first payment of the annuity, are to be received at the same time, after the extinction of the lives in possession. It is easy to see, that this is a circumstance which must make the latter of most value. But to prevent any doubts about it, I shall explain it more particularly in a note in the Appendix (a). ## QUESTION XI. "A person of a given age, having an year" ly income which will fail with his life, " wants to make provision for another per" son of a given age, in case the latter should " happen to survive. What ought the for" mer to give in a single payment, and also " in annual payments during their joint lives, " for a given sum, payable at his death to " the latter?" It is manifest, that the value of the given sum in this case, must be less than in the case stated in the last Question; because, here the payment of it is suspended on the contingency, that one life shall survive another, whereas in the other case, it is certainly to be paid at the failure of a given life. ### Answer. Find, by the solution of problem 32d, p. 297, Mr. Simpson's Select Exercises, the (a) Vid. Appendix note (E). D 2 value value of an estate, corresponding to the given sum, and depending on the given survivorship. Divide this value by 1 l. increased by its interest for a year, and the quotient will be the value of the given sum in a single present payment. And the single payment, divided by the value of the given joint lives, will be the answer in annual payments during the joint lives. The folution I have referred to is as fol- lows. " Find the value of an annuity on two e-" qual joint lives, whereof the common age " is equal to the age of the older of the two " proposed lives; which value, subtract from "the perpetuity, and take half the remain-"der. Then fay, as the expectation of the "duration of the younger of the two lives is " to that of the elder, so is the said half re-" mainder to a 4th proportional, which will " be the number of years purchase to be gi-" ven for the estate when the life in expec-" tation is the oldest of the two. But if this " life is the youngest, then add the number " of years purchase just found to the value " of the joint lives, and let the fum be fub-" tracked from the perpetuity, and you will " also have the answer in this case (a)". Let ⁽a) Mr. Simpson has given the following examples of this folution, adapted to London lives.—Example I. Suppose the age of the expectant to be 40; of the posession fession 30. The rate of interest 4 per cent. and the engineer Let the life in expectation be 30; and the other life 40: The sum, 100%. Interest, 4 per cent. The valuation of lives, that in Table VI. The expectation of the first life, is 28; of the second life 23, by Mr. De Moivre's bypothesis. The value of the joint lives is 10.43, " given legacy 5000l. or 200l. per annum. Then the value of two equal joint lives of 40, being 8.1, by " Table XI, and the perpetuity 25, the remainder or " difference will be here 16,9; whereof the half is 8.45. "Therefore, it will be as 23.6 to 19.6, fo 8.45 to 7.02 " years purchase, or l. 1404, the required value." Example II. "Let the age of the expectant be 30, of " the possession 40, and the rest as in the preceding exam-" ple. Here the value of the joint lives 30 and 40, will " be 8.8; which added to 7.02, (found above) the fum " will be 15.82; whence the answer, in this case, is " 9.18 years purchase, or 1836." I have shewn, that the values of reversionary estates, and reversionary fums, are not the same as is here supposed.—The rule gives the true value when applied to the former; but, when applied to the latter, the values given by it must be divided by 11. increased by its interest for a year, as above directed .- The same observation is to be applied to Mr. Simpson's next Problem, or the 33d. In these Examples, 23.6 and 19.6, are the expectations, in Table IX, of 30 and 40, according to the London Tables of Observation; and the method of finding them for any age, and from any Tables of observation, is ex- plained at the beginning of the first Essay. In Mr. De Moivre's hypothesis, the expectation of a life, is always half the complement. See note p. 2.-Sometimes the complement of a life is mentioned without any view to Mr. De Moivre's hypothesis, and it then means double the expectation of the life whatever that may be according to any Table of observations. by D 3 by Table VII. The value of two joint lives, both 40, is 9.82, by the same Table. The estate corresponding to 100% is 41, per ann. and the present value of such an estate to be entered upon by a person 30 years of age, provided he survives a person 40 years of age is, by the rule just quoted, 1.33.32. And this value, divided by 1 /. increased by its interest for a year, or by 1.04, is 1.32.03. the value in a fingle present payment of the sum of 100 l. dependent on the given furvivorship. this fingle payment, divided by 10.43, is 1.3.07, the required value in annual payments, during the joint lives, if the first payment is not to be made till the end of a year. But if the first payment is to be made immediately, the required value in annual payments will be 1.32.03, divided by 11.43, or 1.2.8.—These values, according to the London observations, or Mr. Simpson's Tables founded upon them, are 1.35.30, in a fingle payment, and 1.3.6, in annual payments, beginning immediately. Mr. Simpson, in the Problems following that here quoted, has given folutions of most other Questions, concerning the values of reversions depending on survivorships, where the whole duration of two or three lives is concerned. And I am acquainted with no other folutions of these Questions, which are applicable to all Tables of observations, and which at the same time (proper regard being paid paid to the correction explained in the last Question) may be considered as sufficiently correct (a). ## QUESTION XII. "Suppose an institution for the relief of widows to extend its assistance likewise to the families of married men, provided they leave no widows. Suppose, for instance, that in this case children are to be entitled to 100%. What is such an expectation worth, in present payment, according to Dr. Halley's Table, interest being at 4 per cent?" #### ANSWER. If 40 is the mean age at which members are admitted on such an institution, and 32 the mean age of their wives, the answer (supposing no subsequent marriages) is, by the 33d Problem in Mr. Simpson's Select Exercises, p. 298, and the correction already explained, 1.13.80 (b). But ⁽a) See the third Essay. ⁽b) This Problem and its folution are given by Mr. Simpson in the following words. "A and his heirs are "entitled to an estate of a given value, upon the decease of B, provided B survives A; to find the value of their expectation in present money."—Solution. "Find the value of an annuity on the longest of two equal D 4 "lives, But there is a reduction necessary, on account of the chance there is, that a widower may marry again. Suppose, therefore, one half of all widowers to marry a second and third time, and that two fifths of such widowers survive these subsequent marriages. In this case, $\frac{1}{2}$ added to $\frac{2}{3}$ of $\frac{1}{2}$, or $\frac{7}{3}$ of all who become widowers, will die without leaving widows, and therefore $\frac{7}{13}$ of l. 13.8, or l. 9.66, will be the answer. If only one fourth of all who become widowers marry again, and two sifths of these survive, the answer will be l. 11.73. lives, whereof the common age is that of the older of the lives A and B; which value subtract from the perpetuity, and take half the remainder; then it will be as the expectation of duration of the younger of the lives A and B, is to that of the older, so is the faid half remainder to the number of years purchase required, when the life B is the older of the two. But if B be the younger; then to the number thus found, add the value of an annuity on the longest of the lives A and B, and subtract the sum from the perpetuity, for the answer in this case." If the estate is 4.l. per annum, the age of B 40, and of A 32, interest 4 per cent. the answer by this rule comes out l. 14.35, which divided (as in the preceding question) by 104, gives l. 13.80, the value, as above, of 100 l. in money. If B is 30 and A 40, the same value is 20 l. N. B. The value of the longest of two lives is always the difference between the value of the joint lives, and the fum of the values of the two given fingle lives. Thus; the value of a life at 40, is, by Table VI, 13.2. The fum of the values of two such lives, is 26.4. The value of two joint lives, whose common age is 40, is, by Table VII, 9.82; and the difference is 16.58, or the value of the langest of two lives at 40. This This calculation supposes all marriages to leave children who survive their parents. If this is considered as uncertain, the values now determined must be diminished in the proportion of this uncertainty.—Thus; if one marriage in seven fails of leaving children (a) that survive their parents; these
values will be reduced a seventh part, or to l. 8.28, if half, and l. 10.05, if a quarter of all widowers marry. In this way may any other questions of the same kind be answered on any suppositions that may be thought most reasonable. ## QUESTION XIII. "Let an establishment be supposed which takes in at once all the marriages in a country, or all marriages among persons of a particular profession within a given district, and subjects them for perpetuity to a certain equal and common tax, or annual payments, in order to provide life annuities for such widows as shall result from these marriages. What ought the tax to be, supposing the annuity 20% and calculating at 4 per cent. from Mr. Ds Moivre's valuation of lives; or, which is nearly the same, from the probabilities of life in Dr. Halley's Table of observations?" (a) This for many years has been nearly the fact among the ministers and profesiors in Scotland. ANSWER, #### ANSWER. Since at the commencement of such an establishment, all the oldest, as well as the youngest marriages, are to be entitled equally to the proposed benefit, a much greater number of annuitants will come immediately upon it, than would come upon any fimilar establishment, which limited itself in the admission of members to persons not exceeding a given age. This will check that accumulation of money, which should take place at first, in order to produce an income equal to the disbursements at the time when the number of annuitants comes to a maximum; and, therefore, will be a particular burden upon the establishment in its infancy. For this, some compensation must be provided; and the equitable method of providing it, is, by levying fines at the beginning of the establishment, on every member exceeding a given age, proportioned to the number of years which he has lived beyond that age. But in the present question, it is supposed, that such fines cannot be conveniently levied, or that every payment must be equal and common, whatever disparity there may be in the value of the expectations of different members. The fines, therefore, must be reduced to one common one, answering as nearly as possible to the disadvantage I have mentioned, and payable payable by every member at the time when the establishment begins. After this, the establishment will be the same with one that takes upon it all at the time they marry; and the tax or annual payment of every member adequate to its support, will be the annual payment during marriage, due from persons who marry at the mean age at which, upon an average, all marriages may be confidered as commencing.—There are then two points to be here determined. The fines necessary to be paid at first, according to the account I have just given; and the constant annual payment, necessary to be made by every member, as an equivalent for the expectation provided by the establishment.—The fines to be paid at first are, for every particular member, the same with the difference between the value of the expectation to him at his present age, and what would have been its value to him had the scheme begun at the time he married? Or, they are, for the whole body of members, the difference between the value of the common expectation, to persons at the mean age of all married persons taken together as they exist in the world, and to perfons at that age, which is to be deemed their mean age when they marry. Thus; let 33 for the man, and 25 for the woman, be the mean ages of all that marry annually. Let also 48 be the mean age of all the married men in the world, and 40 of married married women (a).—Now, he that will calculate for these ages, in the manner directed in Quest. IV. will find, that the value in annual payments during marriage, and beginning immediately, of the expectation of an annuity of 201. per annum, by a person 25 years of age, after a life whose age is 33, is 1.6.64.—And that 1.8.04, is the value of the same expectation, the ages being 48 and 40. The former, therefore, is the payment for perpetuity from every member of the establishment; and the value of the difference between it and the latter, or of l. 1.4 per ann. payable during two joint lives, whose ages are 40 and 48, that is, l. 14.2, is the fine necessary to be levied on every married member at the beginning of the establishment (b). It would be easy to extend the benefit of such an establishment, so far as to provide 100% for the children of members, provided ⁽a) I must beg leave to refer to note (F) in the Appendix, for an explanation of what I mean by the mean ages of married men and women, and also for a confirmation of the answer I have given to this question. ⁽b) An annuity for ever, the first payment of which is to be made immediately, is worth 26 years purchase, interest being at 4 per cent. l. 14.2 therefore, is equivalent in value to 0.551. or 11s. per annum, for ever. Add this to 1.6.64, and it will appear, that 1.7.19 per annum, beginning immediately, is the answer to this question, supposing the value of the fine to be provided for in the perpetual annual payments. they leave no widows; and the necessary addition on this account to the perpetual annual payments, can scarcely, in the circumstances this question supposes, be much more than about 15s. payable during life, and excluding from all benefit such as happen to be widowers at the commencement of the establishment, and do not afterwards marry. If, in such an establishment, all persons of a particular denomination, whether married men, widowers, or batchelors, are subjected alike to the taxes and sines; they ought to be as much less, as the whole number of persons subjected to them, is greater than the number of marriages constantly existing. In carrying these schemes into execution, there cannot be a more easy, or equitable way of raising the necessary fines, than by providing, that none shall be entitled to any expectation for a few of the first years. Thus; an establishment, entitling widows to 20%. per annum for life, and confisting of 667 married members, and 344 unmarried, always kept up at an average, ought to begin with a capital of 1.14.2 multiplied by 667, or 94711. besides one payment in hand of the constant annual payments. That is, (the proper annual payment of every member being in this case 1667, multiplied by 1.6.64, or 1.4.38) it ought to begin with a capital of of 13,899 l. over and above the payment of l.4.38, at the end of every year for ever afterwards (a). — The exclusion of all the first members from any benefit, unless they survive the first two years, or live to make three payments, would raise this capital nearly. And such an exclusion for three or four years, would be an advantage so considerable, that it would probably give security and stability to the scheme for all subsequent time. In these observations, I have had in view, several schemes of the kind described in it, which are now actually established in this kingdom; but more particularly, one begun among the London and Middlesex clergy, and another which is established by act of parliament, among the clergy in Scotland, of both which, I shall have occasion in the next chapter to take surther notice. I have chosen to calculate here only from Dr. Halley's Table, or Mr. De Moivre's hypothesis grounded upon it, because the London Table is, by no means, adapted to the cases in view. The difference of eight years between the ages of men and their wives, as here taken, is probably too little; and for this reason, ⁽a) Or, supposing the value of 9471 l. (the fine) provided for in the annual payments, it ought to receive every year, at the beginning of the year, a contribution from each member of l. 4.74. and also on account of the greater mortality of males, the values I have given should be considered as the lowest that any scheme ought to provide. It should be further remembered, that when the mean ages, at which marriages commence, are supposed to be 33 and 25, all second and third marriages are included; and that it is to be expected, that almost all these marriages will begin after these ages; and likewise, that a considerable proportion of the first marriages will begin a much longer time after these mean ages, than any of the other first marriages will begin before them.—Probably, therefore, these mean ages should not be taken younger. One or two years, however, more or less, in every supposition I have made, will make no difference of any consequence. # QUESTION XIV. "A person of a given age has an estate depending on the continuance of his life for a given term. What ought he to give for having it assured to him for that term?" #### ANSWER. From the value of an annuity certain for the given term, found by Table II, subtract the value of the life for the given term, found found by Quest. VI. and reserve the remainder.—Multiply the value of 11. due at the end of the given term, (found by Table I.) by the perpetuity, and also by the probability, that the given life shall fail in the given term. The product added to the reserved remainder, and the sum multiplied by the given annuity, will be the required value of the assurance in one present payment (a). ### EXAMPLE. An estate or annuity of 101. for ever, will be lost to the heirs of a person now 34, should his life sail in 11 years. What ought he to give for the assurance of it for this term?—That is; what is the present value of such an annuity to be entered upon at the sailure of such a life, should that happen in 11 years? The value of the life of a person whose age is 34 for 11 years, is, by Quest. VI. (reckoning interest at 4 per cent. and calculating from Dr. Halley's Table of observations) 7.76; which, subtracted from 8.760, (the value of an annuity certain for 11 years) leaves 11. the remainder to be reserved. The value of 11. to be received at the end of 11 years, is, 0.6496, by Table I. The probability that the life of a person, aged 34, ⁽a) See the demonstration in note (G) Appendix.
shall fail in 11 years, is, by Dr. Halley's Table, $\frac{103}{489}$; and the perpetuity is 25. These numbers, multiplied by one another, and 1 added to the product, make 4.34, which, multiplied by 10, (the given annuity) gives 1.43.4, the required value in a single present payment. 1.43.4, divided by 1.04, gives 1.41.7, the true value, by Scholium to Quest. X. of the affurance of an equivalent sum, or of 2501. for II years on the given life. Again. 41.7, divided by 8.76, (the value of the given life for the given time with unity added to it) gives 4.76, the same value in annual payments beginning immediately, for 11 years (a), subject to failure should the life sail. ### SCHOLIUM. In a fimilar way may the price of affurances on any two joint lives; or the *longest* of two lives for any given terms, be calculated; the rule being as follows: "From the value of an annuity certain for the given term, subtract the value of - "the joint lives, or the longest of the two lives for the given term, found by Scho- - " lium to Quest. VI. and reserve the remain- - " der.—Multiply the value of 1/. to be re- ⁽a) The last payment to be made at the end of the 11th year; or 12 payments in all. "ceived at the end of the given term by the perpetuity, and also by the probability that the joint lives, or the longest of the two lives, shall fail within the given term. This product added to the reserved remainder, and the sum multiplied by the annuity to be assured, will be the value of the assurance in a single present payment." #### EXAMPLE. "What is the value of 101. per annum, to be entered upon, should either of two persons, one 40 and the other 30 years of age, die in ten years, reckoning interest at 4 per cent. and calculating from Dr. " Halley's Table." The value of two joint lives at these ages, for 10 years, (found by Scholium to Quest. VI.) is, 6.51; which, subtracted from 8.111, (the value of an annuity certain for 10 years, at 4 per cent.) leaves 1.60, the remainder to be reserved. The value of 11. to be received at the end of 10 years, is, .6755, by Table I. The probability, that the lives of one or other of two persons, aged 30 and 40, shall fail in 10 years, is, $\frac{185}{331}$, by Table III (a). (a) The probability taken from the Table, that a perfon aged 30, shall live 10 years, is, $\frac{4+5}{5+7}$. That a perfon, aged 40, shall live 10 years, is, $\frac{3+6}{3+7}$. That they shall both live 10 years, is, $\frac{3+6}{3+7}$, multiplied by $\frac{4+5}{5+7}$, or $\frac{3+6}{5+7}$. That they shall not both live 10 years, or that one or other of them shall die in this time, is, $\frac{3+6}{5+7}$, subtracted from unity, or, $\frac{1+5}{5+7}$. See note p. 23. And And the perpetuity 25. These numbers, multiplied by one another, and 1.60 added to the product, make 7.48, which, multiplied by 10, (the given annuity) gives 1.74.8, the answer in a single present payment. 1.74.8, divided by 1.04, gives 1.71.92, the value of the affurance of an equivalent fum; or of 2501.—1.71.92, divided by 7.51, (the value of the two joint lives for 10 years with unity added) gives 9.57, the value of the fame fum in annual payments beginning immediately, for 10 years, subject to failure should the joint lives fail. # EXAMPLE II. "What is the value of 101. per annum, to be entered upon, should two persons one 30, and the other 40, both die; that is, should the longest of the two lives fail in 10 years, " reckoning interest at a per cent. and cal- " culating from Dr. Halley's Table?" The value of the longest of the two lives for 10 years, (that is, the value of the joint lives for 10 years, subtracted from the sum of the (a) values of the single lives for 10 years) is, 7.91; which, subtracted from 8.111, the value of an annuity certain for 10 years, leaves .20 the remainder to be reserved.— The value of 11. to be received at the end ⁽a) See Scholium to Quest. VI. of 10 years, is, .6755. The probability that the lives of two perfons, aged 30 and 40, shall fail in 10 years, is, by Table III, \(\frac{8}{5} \frac{7}{14} \), multiplied by \(\frac{9}{4+5} \), or \(\frac{8}{2} \frac{1}{3} \frac{7}{2} \); and the perpetuity 25. These numbers, multiplied by one another, and .20 added to the product, make .740, which, multiplied by 10, (the given annuity) gives 7.4, the answer in a single payment. 7.4, divided by 1.04, gives 1 1, the va- lue of the affurance of 250%. # REMARK I. The values of fingle lives for given terms, when these terms are less than 10 years, must, in answering these Questions, and also in answering the following Questions, be found true to at least 2 or 3 places of decimals. But they cannot be found to this exactness by any Tables that are extant; and, therefore, they must be calculated in the following manner: "Multiply the probability, taken out of the Table of observations, that the life hall exist 1, 2, 3, &c. years, by the value of 1/2. due at the end of 1, 2, 3, &c. years; and the sum of the products will be the value of the life for 1, 2, 3, &c. years." For Example. The probability, that a person whose age is 34, shall live a year, is, by by Dr. Halley's Table, $\frac{490}{490}$. The probability, at the same age, of living 2 years, is, $\frac{481}{490}$; 3 years, $\frac{472}{490}$. — $\frac{490}{490}$ multiplied by .9615, (the value, by Table I, of 11. due at the end of a year, interest being at 4 per cent.) is, .942; or the value of the life for one year. — $\frac{481}{490}$, multiplied by .9245, (the value of 11. due at the end of 2 years) is, .891. And this added to the former product, gives 1.833; or the value of the life for 2 years. — $\frac{472}{490}$, multiplied by .8890, (the value of 11. due at the end of 3 years) is, .841; and this product, added to 1.833, makes 2.674, or the value of the given life for 3 years. When the term exceeds 10 years, the rule in Quest. VI. will give these values with sufficient exactness; and it would do the same in all cases, were the values of lives given true to 3 or 4 places of decimals, and in strict agreement to the Tables of observation used. The remark now made is to be extended to the values of joint lives for given terms. For these values, like those of fingle lives, cannot be found in solving these Questions with sufficient accuracy, when the terms are small, by any method, except the tedious one, of multiplying the probability that the 2 lives shall both continue 1, 2, 3, &c. years, by the value of 11. due at the end of 1, 2, 3, &c. years, and taking the sum of the products in the manner just described. E 3 REMARK ### REMARK II. If the annuity is to be entered upon, in case of the failure within a given time of any life or lives, at the end of that time; and not at the end of the year in which the failure may bappen; its present value will be the product arising from the continual multiplication by one another of the perpetuity increased by unity; the value of 11. due at the end of the given time; the annuity; and the probability that the life, or lives, shall fail within the given time. And care should be taken not to confound these two sorts of Questions with one another.—Thus; the value in one payment of 101. per ann. to be entered upon eleven years hence, in case a person aged 34 should not live so long, is 26, (the perpetuity increased by unity, interest being at 4 per cent.) multiplied by .6496, and by 10% and also by $\frac{103}{499}$; or 34.8.—This value, divided by 1.04, is, 33.5, the value of an equivalent fum, or of 250% to be obtained on the same conditions. The value of the assurance of any annuity on the whole continuance of any single life is, by Quest. X. the excess of the perpetuity above the value of the life, multiplied by the annuity. And in like manner; the value of the assurance of any annuity on the whole continuance of any two joint lives, or the longest of two lives, is the excess of the perpetuity petuity above the value of the joint lives, or of the longest of two lives, multiplied by the annuity. This is very obvious; but no general method has been yet explained of finding the values of affurances on lives and furvivorships for terms of years less than the whole continuance of the lives. For this reafon, I have been here more explicit than I should otherwise have been; and, as such asfurances are now much practifed, and may be very useful if their values are rightly determined, I have thought proper to add the two following Questions, which, when joined to Question XI. and Mr. Simpson's 33d Problem given in the note p. 39, will, I believe, exhaust this subject as far as two lives can be concerned. # QUESTION XV. "B, expectant, will lose a given sum, should he survive A, within a given time. What ought he to pay for the assurance of it?—In other words: "What ought he to pay for a given sum to be received at the death of A, should he happen to survive him within a given time?" ### ANSWER. Divide the fum of the decrements of life in the Table of observations from the age of A, for the given time, by the given time; and, by the quotient, divide the number of E 4 the living in the Table at the age of A; and again, by this *fecond* quotient (a), divide the given sum reserving the *third* quotient. Find the value of an annuity on the life of B, for the given time. To this value add the quotient, that will arise from dividing the value of an annuity certain, for the given time, by twice the complement of the life of B; and the sum, multiplied by the reserved quotient, will be the required value in a single present (b) payment. ### EXAMPLE. Let the Table of observations be Mr. Simpfon's for London, or Table VIII. Let the rate of interest be 3 per cent. A, seven years of age. B, 30. The given time 14 years. The given sum 100/.—The sum of the decrements, in Table VIII. for 14 years from the age of seven, is 73, which, divided by 14, gives 5.2. The number of the living at seven is 430, which, divided by 5.2, and 100/. divided by the
quotient, gives /. 1.21, the quotient to be reserved. The ⁽a) When the age of A is under 60, and the term fo large as to exceed the difference between it and 70, it will be best, when the *London* Table is used, to divide the given sum, not by the second quotient here mentioned, but by the complement of the life of A, taken out of Table IX. ⁽b) See the demonstration of this rule, and also of the rule that will be given for solving the next Question, in the Appendix, note (H). The value of an annuity for 14 years on the life of B, is, by Quest. VI. 9.5.—The value of an annuity certain for 14 years, is, by Table II. 11.296, which, divided by 94.4, (twice the complement of the life of B, by Table IX) (a), gives .12, which, added to 9.5, gives 9.62; and this again multiplied by 1.21, the reserved quotient, gives 11.64, the present value in one payment of 1001. payable at the death of A aged 37, to B aged 30, should A die and leave B the survivor within 14 years. The present value for 14 years of two joint lives, one 7 and the other 30 years of age, may be found, by the help of Table XI, and the rule in the Scholium to Quest. VI. to be nearly 9 years purchase; and, l.11.64 divided by this value with unity added, or by 10, gives 1.164, the foregoing value in annual payments during the joint lives for 14 years, the first payment to be made immediately, and the last payment at the end of 14 years, should the joint lives not fail. ### SCHOLIUM. It deserves particularly to be remembered, that in this method likewise may be calculated, what sums ought to be paid on any survivorship, within a given time, of one life ⁽a) This Table gives the expectations only, but it should be remembered, that twice the expectation is always the complement of a life. See note, p. 37. beyond beyond another, in confideration of any given fum now advanced.—The following Example of this is a case which has offered it- self in practice. "A person, aged 30, has in expectation an estate which is to come to him, provided he survives a minor, aged 7, before he is out of his minority; that is, provided he should be himself living at the time of the minor's death, should that happen before he is 21.—In these circumstances, he wants to borrow 1000 l. on his expectation. What reversion out of the estate depending on such a survivorship, is a proper equivalent for this sum now advanced, interest being reckoned at 3 per cent. and the probabilities of life being supposed the same with those in Mr. Simpfon's Table of London observations?" #### ANSWER. It appears from what has been just determined, that for l. 11.64 now advanced, the proper equivalent in such circumstances, is, 100% to be paid, in case the survivorship should take place; or, by the correction in page 34, as much of the estate as 100% will buy at 3 per cent. supposing the first rent to be received immediately; (that is, supposing the estate worth 34.33 years purchase.) or l. 2.912 per annum. — By the rule of proportion, therefore, for 1000% the proper equi- equivalent will be 85911. in money, or 2501. per annum out of the estate. # QUESTION XVI, " 100%. will be lost to B's heirs, should he 56 happen to die after A, within a given time. "What is the price of the affurance of it?- "That is: What is the present value of 56 100% payable at the death of B, provided " his death should happen after A's death, 55 within a given time?" # ANSWER. Divide the sum of the decrements of life in the Table of observations from the age of B, for the given time, by the given time; and by the quotient divide the number of the living at the age of B; and again, by this fecond quotient (a), divide the given fum, referving the third quotient. Find the value of an annuity on the life A for a number of years, less by one year than the given time, which subtract from the value of an annuity certain for the same number of years. Multiply the remainder by the referved quotient, and divide the product by the amount of 11. for one year, and let this be a fecond referved quotient. ⁽a) Or rather, if the London Table is used, by the complement of the life of B, when his age is under 60, and the term exceeds the difference between it and 70. Again. Again. Multiply into one another the first referved quotient, and the value of an annuity certain for the given time; and divide the product by twice the complement of A's life. This last quotient, added to the second referved quotient, will be the answer in a present single payment. ### EXAMPLE. Let the age of B be 40. Of A 30. The fum 100 l. Rate of interest 4 per cent. The given time 20 years. The Table of observations, Mr. Simpson's, or Table VIII.—The sum of the decrements of life, in this Table, from the age of 40 for 20 years, is 127, which, divided by 20, (the given time) gives 6.38.—The number of the living at 40 is 229, which, divided by 6.38, gives 35.8; and 100 l. (the given sum) divided by 35.8, gives 2.79, the sirst quotient to be reserved. The value of an annuity for 19 years on a life at 30 years of age, is 10.3; which, fubtracted from 13.134, (the value of an annuity certain for 19 years, by Table II) and the remainder multiplied by 2.79, gives 7.89. This product divided by 1.04, (the amount of 11. in one year) gives 7.60; the fecond reserved quotient. 2.79 multiplied by 13.59, (the value of an annuity certain for 20 years) gives 37.916; and this *product* divided by 94.4, (twice the com- complement of A's life by Table IX.) gives .401, which, added to 7.60, gives 81. the Answer; or, the value of 1001. payable at the death of B, on the contingency of his surviving A aged 30, and both dying in 20 years. It is plain, that this is likewise the sum that ought to be lent to B now, on the expectation of 100 l. at his death, provided it should happen after A's death in 20 years. This rule gives the just folution in all cases, except when B, the expectant, is the youngest of the two lives, and at the same time the term of years greater than the complement of A's life. In this particular case the solution rule was the god. lowing rule must be used. Find, by the preceding rule, the value of the assurance of the given sum for a term of years, equal to the complement of A's life, and let this value be reserved. Multiply by one another the given sum; the value of 11. to be received at the end of a number of years equal to the complement of A's life; and the value of an annuity certain for as many years as the given term exceeds this complement. And the product, divided by the complement of B's life, and the quotient added to the value reserved, will be the true value sought. #### EXAMPLE. Let the age of B be 30; of A 40. The term 47 years; and every thing else as in the the last Example. The complement of A's life, is, by Table IX, 39.2. The value of 1001. to be received at the death of B, if he furvives A within 39 years, may be found by the preceding rule to be 1.16.15; the value to be reserved. - The value of 11. to be received at the end of 39 years is, by Table II, .2166. The value of an annuity certain for 8 years, (the excess of the given term above the complement of the life of B by Table IX.) is, 6.733. And these two values multiplied by one another, and by 100 l. give 145.83; which, divided by 47.2, (the complement of the life of B) and 16.15, added to the quotient, make 1. 19.23, the value fought. # REMARK. As after finding the present value of an estate, or annuity, it is necessary to divide that value by the amount of 1 l. in one year, in order to find the present value of a sum equivalent to the annuity; so, after finding the value of a fum, it is necessary to multiply that value by the faid amount, in order to find from it the value of an equivalent annuity. In the first Example, therefore, the value of an estate of 41. per annum, would be 1.8.32: In the second Example, 201. And this is, as it ought to be, the value for the whole duration of the lives, agreeably to the Pro- blem in the note page 37. In In folving this Question, care also must be taken not to forget the first Remark under the foregoing Question. In the same way with that in which the rules in the three last Questions have been discovered, it is possible to find rules for calculating the values of assurances, for given terms, on lives and survivorships, where three or more lives are concerned. But this is of less importance; and I chuse to leave to others the surther prosecution of this subject. # CHAP. II. Containing an Application of the Queftions in the foregoing Chapter to the Schemes of the Societies in Great Britain, for making Assurances on Lives and Survivorships, and for granting Annuities to Widows, and to Persons in old Age. # SECT. I. Of the London Annuity, and the Laudable Societies for the Benefit of Widows. HE scheme mentioned in Quest. VIII. is nearly that of the London Annuity Society. The Laudable Society is also formed on a similar plan. In both, the annual contribution of every member is five guineas, payable half-yearly; and for this a title is given to an annuity of 20 l. to every widow during widowhood, if the husband, after admission, lives one year according to the first scheme; or three years according to the (a) Second; ⁽a) In this fociety a member who lives but one year, is entitled to no more than an annuity of 10l. for his widow; if he lives two years, 15l. If he lives three years, 20l. four years, 25l. feven years, 30l. ten years, 35l. thirteen years, 40l. fecond; of 301. if the husband lives feven years, according to both schemes; and 401. according to the first scheme, if he lives 15 years, or 13 years, according to the second.— In both schemes also, there is no other premium or fine required, than sive guineas extraordinary, at admission, from every member whose age does not exceed 45. The Laudable Society admits none above 45, and the London Annuity Society obliges every perfon between 45 and 55 to pay, at admission, five guineas extraordinary, for every year
that he is turned of 45. These are the main particulars in these schemes; and, therefore, both of them, were the annuities to be enjoyed for life, would receive (supposing the members all under 46 at admitsion, and of the same ages with their wives, and money at 4 per cent.) but little more than three fifths of the true value of the annuities; or about one half, supposing wives, one with another, 10 years younger than their husbands; as appears from Question VIII. It appears further in that Question, that, supposing the annuities to be life annuities, and men and their wives of equal ages, the expectation to which an annual payment of five guineas beginning immediately, entitles, is nearly 141. if the contributor lives a year, and 201. if he lives seven years (a), taking ⁽a) The fame annual payment will, on the fame suppositions, entitle to 141. if a member lives a year, and 181. if he lives three years. the medium between the London and the other Tables of Observation. It is likely, that many perfons will be very unwilling to believe, that these schemes are so deficient as they have been now represented. I will, therefore, endeavour to prove this in a way which, tho' less strict, is sufficiently decisive, and may be more likely to be intelligible to persons unskilled in mathematical calculation.—I shall here confine myself to the scheme of the London Annuity Society. The differences between it and the scheme of the Laudable Society are inconsiderable, and what shall be said of the one will be fully applicable to the other. According to this scheme, as it has been just described, all that live 15 years in the society will be entitled to annuities of 40%. per annum for their widows. Suppose the whole society, at admission, to be men of 40 years of age, taken one with another. A person of this age has an even chance of living 23 years; and he has an even chance of continuing with a wise of the same age, (that is, of continuing in the society) 13 years and ½ (a). Not much less, therefore, than half ⁽a) This is the exact truth according to Mr. De Moivre's Hypothesis, and the Norwich Table. But according to Dr. Halley's and the Northampton Table, a man 40 years of age has an even chance of living no more than 22 years, and of joint continuance with a wife of the same half the members will continue in the fociety 15 years; and, confequently, not much less than half the widows that will come upon the fociety will be annuitants of 401. per annum. These widows, however, being older than the rest when they commence annuitants, will continue on the fociety a shorter time; and, therefore, the number constantly in life together, to which they will in a course of years increase, will be proportionably smaller. Putting every thing as favourably as possible, let us suppose, that out of 20 annuitants constantly on the society, five will be annuitants of 401. fix of 301. and nine of 201. To 20 annuitants then the fociety will pay 560 l. per annum, or the 20th part of this fum, that is 281. to every annuitant at an average. But fuch an annuity for a life at 40, after another equal life, provided both furvive one year, is worth (by Quest. VII. p. 24.) in a fingle present payment, 85%. nearly, according to the London, and all the Tables of Observations, interest being all along supposed at 4 per cent. It cannot appear improbable to any one, that this should be the true value of such a reversion. It is not credible, that there is fame age, 13 years.—Forty must be more than the mean age of the members of the society at admission, and on this account the number of annuitants of 401. must be proportionably greater. The mean age, therefore, has been taken very moderately. any fituation in which the decrements of life are fuch as can make it a tenth part more or less.—851. in present payment is the same with 31. 8s. per annum for ever.—But is an annual payment of five guineas, which must cease as soon as either of two lives each 40, fails, equal in value to fuch a perpetuity? Every one must see, that there is a great difference.—A fet of marriages between perfons all 40, will, according to the probabilities of life in Dr. Halley's Table, last, one with another, 15 years (a); and an annual payment beginning immediately, during the joint continuance of two persons of this age, is worth 10 year's purchate (b). The comparison then, in the present case, is between 21. 8s. per annum for ever, and five guineas per annum for 15 years; or between an annuity of 31. 8s. worth 25 years purchase, and an annuity of five guineas worth only 10 years purchase. But to throw this subject into another light. (a) See the beginning of Essay I. (b) The value of fuch an annual payment, by Table XI, or the London Observations, is 9.1; and 10.8, by Mr. De Moirre's Hypothesis.—I have not taken into this account the five guineas fine paid at admission, because it is obviously of too little consequence to make any considerable difference. The allowances I have made in savour of these schemes are more than equivalent to it. In particular; it should be remembered, that the payments required by these schemes, are half-yearly payments beginning immediately; and that these, by Quest. VIII. are less advantageous than the payments I all along suppose them to require, or, "yearly payments beginning immediately." Let the number to which the fociety is kept up be supposed to be 200. It has been demonstrated in Quest. II, that at least half this number of widows will in time come to be constantly on the society; and it has also been just now shewn, that the medium of annuities, payable to them, will be at least 281. After a course of years, then, the society will have a constant expence to bear of 28001. per annum. — But what will be its income?—In order to determine this, we must consider, that there are two fources from whence its income will be derived. First, the annual payments of the members. And, secondly, the money accumulated, or the capital raised during the time the number of annuitants is coming to a maximum. — The first of these fources affords 1000 guineas, or 1050l. per annum. This wants 1750% of the annual expence just mentioned; and, therefore, in order to have the income of the fociety equal to the burden upon it, when the annuitants come to a maximum, there must be a fund raised in the mean time equal to 43,750%. or to an estate in perpetuity of 1750l. per annum.—But 10501. per annum beginning immediately, and forborn 24 years, and improved, without loss or delay, all that time at 4 per cent. compound interest, will but just raise such a capital (a). There is, there- ⁽a) Every Question of this kind may be easily solved in the following manner. In Table I, find the value F 3 fore, the fullest proof, that the scheme I am considering is extremely desicient. The truth is, that scarcely a third of such a capital could be raised, as will appear from the following observations. Out of 200 persons, all 40 years of age, more than five, according to the London Table of Observations, and not so many by Dr. Halley's Table, may be expected to die in a year. Suppose then five to be the real number of members that will die the first year of the society. In subsequent years the collective body of members will be continually growing older; and, therefore, the proportion of them that will die every year, will be continually increasing, till it gets to a maximum. I will, however, suppose, that during the first 20 years no more than the of 11. payable at the end of any number of years; and any given annuity divided by that value, will be the annuity to which the given annuity will in that number of years increase. — Thus; the present value of 11. payable at the end of 25 years, is .3751, reckoning interest at 4 per cent. and 10501. per annum divided by .3751, gives 2,8001. per annum, the increased annuity arising from 10501. per annum, the same manner; it may be found, that the same annuity, forborn 11 years, will increase to 10101. per annum. This supposes the first payment of the annuity to be made a year hence. If the first payment is to be made immediately, which is the present case, the annuity will increase to the same sums in one year less time.—But a more particular account of this will be given in the rules annexed to the Tables at the end of this work. number number just specified will die every year; and that, consequently, no more than five widows will come every year on the fociety. The ages of all these widows, when they commence widowhood, will, it is evident, be between 40 and 60. One with another then, they may be confidered as having commenced widowhood at 50 years of age. Now, five widows left every year at this age, will, in 10 years, increase to 43 constantly in life together, according to the expectations of life in Tables III, IV, and V; and, in 20 years, to 70 (a). Suppose the true number alive together at the end of 20 years to be only 62. the greater part of these will be annuitants of 301. and 401. per ann. and the rest 201. Were the former only equal to the latter, the medium of annuities payable to them would exceed 25%. Suppose then this medium to be no more than 26%, and it will F 4 follow ⁽a) Every calculation of this kind is easily made by the rule in note (A) in the Appendix.—I have put the number living together at the end of 20 years at 62, not only that the reader may be better satisfied that I have kept low enough, but also to make an allowance for such widows as will be left by those members who die within a year after admission, and who, therefore, according to these schemes, will be entitled to no annuities. This allowance is too large: For, after the first year of the scheme, it will not happen above once in 4 or 5 years, that the death of a member will be so circumstanced, supposing the probability that a man at 40 will live a year, to be, as all but the London Tables make it, 50 to 1. follow, that, at the end of 20 years, the
fociety will have an annual rent to pay of 26%. multiplied by 62 or 1612 l. and, if then able to bear such an expence, it must, in the intermediate time, have acquired an increase of income equal to the difference between 1050l, and 16121. per ann. That is; it must, with its favings, have accumulated a stock equal to 5621. per ann. and worth 14,0501. But, as during this time, there will be a number of annuitants constantly increasing, to whom yearly payments must be made, the savings of the fociety cannot certainly be one half of what they would have been had it been all the time free from all burdens. Suppose then the stock produced by these savings, to be equal to the stock that would arise from an income of 1050l. per ann. beginning immediately, and improved perfectly at 4 per cent. compound interest, for half the time I have mentioned, or for 10 years, without being subject to any checks or deductions. Such an income thus improved, would, in 10 years, produce an additional income of 560% per annum, or a capital of 14,000 /,-According to these observations, therefore, the annual income of the fociety at the end of 20 years, and before a third part of the highest annuitants could come upon it, would begin to fall short of its expences. About that time then it would necessarily run aground; and long before the number of annuitants could rife rise to a 100, it would spend its whole stock, and find itself under a necessity of either doubling the annual payments of its members, or of reducing the annuities one half. All I have now faid is meant on the supposition, that the society begins with 200 members at 40 years of age, and is afterwards limited to that number, by admitting no more new members than will just supply the vacancies occasioned by the loss of old members. If it is allowed to increase, it may continue a longer time. And, for this reason, a society that wants half the income necessary to render it permanent, may very well subfist, and even prosper for 30 or 40 years.—Thus, the Laudable Society, was it to keep to its present number of members, might possibly feel no deficiencies for 20 or 30 years to come; but if it should continue to increase at the rate of 70 or 80 every year, it would, at the end of that time, possess a balance so much in its favour, as might enable it to support itself for 20 or 30 years more (a). But bankruptcy would come (a) What has been before demonstrated in Quest. III. should be here recollected, that the number of annuitants on such a society as this, must go on to increase for more than 100 years, after acquiring its greatest number of members. The Laudable Society, I am informed, took its rife from a calculation contained in a pamphlet entitled, The Possibility and Probability of a SCHEME intended for the Benefit of Widows being able to support itself. The scheme here referred to, is the same with that which this Society has come at last, and with the more terrible weight the longer it had been deferred. The rule in the London Annuity Society, which obliges every person between the ages of 45 and 55, to pay at admission 5 guineas extraordinary, for every year that he exceeds 45, is an advantage to it, but it is a very inadequate, and also a very unequitable advantage. For at the same time, that it obliges a person 55 years of age, to give more than the value of his expectation, it takes above two sifths less than the value from a person who is 45 years of age. Should any persons remain still doubtful about what I have said, I would beg them to attend to one further argument. It must be reckoned upon that every other member of these societies, supposing them to consist of persons all of the same ages with their wives, will leave widows to whom one with another, (as already shewn) at least 281. fince followed; and I am afraid I shall not be credited, when I say, that the calculation to prove its capacity of supporting itself, is sounded on the supposition, that a hundred married men whose common age is 36, will leave but one widow every year, tho' at the same time it is supposed that two of them will die every year. This mistake has made the whole calculation one half wrong.—Nothing can be plainer than that, if the death of a married man does not leave a widow at the end of the year, the reason must be, that both himself and his wife have happened to die in the year. But it is always very improbable this should happen. per per ann. must be allowed, for as many years as there have been payments from each member. For every 10 guineas then received they must some time or other hereafter pay 28%. But let it be well confidered what can enable them to do this. Did money bear no interest, for any given sum now received, they could not afford at any time hereafter to pay more than an equal sum. That is; (since the duration of furvivorship is in the present case, by Quest. II, equal to the duration of marriage) the proper confideration for any given reversionary annuity, to be allowed to all the furvivors of a fet of marriages, would be, supposing no interest of money, an equal annuity payable by each marriage during its existence; and just half the reverfionary annuity, if it is to be allowed only to half the furvivors, or to widows exclusive of widowers. The annual payment then of five guineas, during marriage, can entitle widows to no more than an annuity of ten guineas, supposing money to bear no interest. But if it does bear interest, the same payment will entitle them to more, in proportion to the degree in which it is capable of being improved, during the time between that in which the annual payments begin, and the commencement of widowhood. Now, it is easy to see, that unless money bears very high interest, this improvement cannot be likely in any circumstances to produce a capital, the interest interest of which shall be equal to the annual payment itself. Any given annual payment perfectly improved at 4 per cent. compound interest, requires 17 years to double itself, supposing the first payment made immediately; or, near 18 years (a), if the first payment is not made till the end of a year. But no marriages are likely to last so long as this, except those among persons who are very young. A marriage between two persons, both 40, will not probably last longer than 13 years, according to the probabilities of life in Dr. Halley's Table. A marriage between two persons, both 50, will not pro-bably, by the same Table, last longer than eleven years; nor a marriage between two persons, both 30, longer than 16 years. Such marriages, it is true, may possibly last 30 or 40 years. But this circumstance is more than balanced by the fact, that no less possibly they may not last one year. The annual payments, then, being incapable of fuch an improvement as shall produce an additional income equal to themselves; it is obvious, that no fociety ought to go fo far as to allow to widows annuities twice as great as those which might be allowed, supposing no ⁽a) At 3 per cent. the period of doubling money by compound interest, is nearly 23 years. At 5 per cent. 14 years. interest of money (a); so far, for instance, as to allow, instead of 10 guineas, 20 guineas for an annual payment of five guineas. In the circumstances of most of these societies three fifths addition may be the full allowance. That is; supposing the annual payment of each member to be five guineas, time may be expected for gaining from hence a capital of 75 guineas, or that shall produce three guineas per annum interest; and the proper reversionary annuity will be 16 guineas; or six guineas more than the proper reversionary annuity, did money admit of no improvement. The preceding observations have gone on the supposition, that the reversionary annuities are to be for life. What difference in savour of these societies arises from the circumstance, that the annuities are to be paid only for widowbood, cannot be exactly determined. Some judgment, however, may be formed of it from what has been said at the conclusion of Quest. II. Were even one half ⁽a) The money accumulated will not be exactly the fame with that to which the annual payment would increase, if improved at compound interest for a number of years, equal to that which the joint lives have an equal chance of existing. Much less will the increase be the same with that which would arise from the annual payment forborn, and improved for a number of years equal to the expectations of the joint lives. It will be less than either of these, for a reason explained in note (L) Appendix. of the widows to marry, still the schemes I have been confidering would probably be infufficient. But in the circumstances of these focieties it cannot be expected, that above one in 10, or perhaps one in 20, will marry. The persons most likely to enter into them, are such as have not the prospect or ability of making competent provisions for their widows in other ways. The widows left, therefore, will in general be unprovided for, and being also left with families of children, it is quite unreasonable to expect, that any considerable proportion should marry. This is true of such as may happen to be left young; but when a fociety has subfisted some time, the greater part will not be young when lest, and these, at the same time that no advantage can be expected from their marrying, will be in general the bigbest annuitants, and, therefore, the beaviest burdens. - Moreover, the prospect of the loss of their annuities will have a particular tendency to check marriage among them.—For all these reasons it seems to me likely, that the benefit, which thefe focieties will derive from marriage among their annuitants, will not be very confiderable; or at least not so considerable as to be equal to the advantages I have allowed them, by calculating on the suppositions, that the money they receive will be always improved perfeetly, without loss or delay, at the rate of 4 per cent. compound interest;
that the probabilities of of life among males and females are the same, and all husbands likewise of the same ages with their wives, and that consequently the maximum of widows on fuch focieties can amount to no more than half the number of marriages (a). - With respect to the last of these suppositions, it deserves to be particularly observed, that by an enquiry made some years ago in Scotland, it was found, that the widows of ministers and professions there, (b) notwithstanding the diminution occasioned by their marrying, did exceed half the number of marriages. And certainly it would be unreasonable in these societies not to reckon that the same will happen among them. -Indeed it seems certain that, notwithstanding (a) Care should be taken in these societies, not to judge of the proportion of widows that will marry, from the proportion that may happen to marry during their first years. For most of the widows that will be left at first will be young; whereas the greater part will not be young when they commence widowhood, after a society has subsisted 30 or 40 years; and, therefore, tho' one in 3 or 4 should marry at first, it will not be reasonable to expect, that half so many should marry after the affairs of the society become stationary. (b) 364 widows, all living at one time, were counted; and the number of married ministers and professors for many years past has been, at an average, 667.—Twenty widows likewise are lest one year with another; and, for 10 years, ending in the year 1767, but nine of these had married.—Of the annuitants likewise (about 160 in number) on the fund established among the Dissenters in London, for relieving the widows of indigent ministers, it is found that sew ever marry. See the latter end of the 4th Effay; and note (A) in the Appendix. the hazards that attend child-bearing, the probability, that the woman shall survive in marriage, and not the man, is much greater (a) than is commonly imagined. It will be shewn in the last Essay, that it is not less than the odds of 3 to 2; and had I calculated agreeably to this fact, the values of annuities for widows, would have been given near a quarter greater than they have been given on the supposition, that the chance of survivorship is equal between men and their wives. - It must be added, that I have made no account of any expences attending the execution and management of the schemes of these societies. Some fuch expences there must be, and some advantages should be always provided in order to compensate them. There are in this kingdom feveral inftitutions for the benefit of widows, befides the two on which I have now remarked; and in general, as far as I have had any information concerning them, they are founded on plans (a) Partly, as observed in page 8, on account of the greater mortality of males, but chiefly on account of the excess of age on the man's side.—According to the printed articles of agreement, the Laudable Society pays no regard to this excess of age; and the allowance required on this account by the London Annuity Society is so trifling that it deserves no notice. In March 1770, thirty-two husbands had died in the Laudable Society, and 27 wives. They seem, therefore, to be already beginning to experience, that the chances of survivorship in marriage are in favour of the wife. equally equally inadequate. The motives which influence the contrivers of these institutions are, without doubt, laudable; but they ought, I think, to have informed themselves better. This appears sufficiently from what has been said; but I will just mention one further proof of it. The London Annuity Society promises that, if in 21 years; and the Laudable Society that, if in 25 years, it shall appear that there has been all along an annual furplus in favour of the focieties, it shall be employed in either raising the annuities, or in finking the annual payments. Now, they may be affured, that, if at the end of these periods, they should not be possessed of a considerable surplus, the true reason will be, their having granted much higher annuities than the annual contributions are able permanently to support: For it has been demonstrated, that the number of annuitants, and confequently the amount of the annual expences, will go increasing for a long course of years beyond these periods. The effect, therefore, of carrying into execution this regulation will be, precipitating that bankruptcy which would have come too foon had there been no fuch regulation. It has been said in defence of these Societies, that the deficiencies in their plans cannot be of much consequence, because their rules oblige them to preserve a constant equality between their income and expences, by reducing the annuities as there shall be occasion. G And from hence it is inferred, that they can never be in any danger of a bankruptcy.-In answer to this, it has appeared, that the time when they will begin to feel deficiencies is fo distant, that it will be too late to remedy past errors, without finking the annuities fo much, as to render them inconsiderable and trifling: All that is given too much to present annuitants is so much taken away from future annuitants. And if a scheme is very deficient, the first annuitants may, for 30 or 40 years, receive fo much more than they ought to receive, as to leave little or nothing for any who come after them. Deficient schemes, therefore, are attended with particular injustice; and this injustice will be the same, if, instead of reducing the annuities, the annual payments should be increased; for all the difference this can make will be, to cause the injustice to fall on future contributors, instead of future annuitants. But what requires most to be considered here is, that, after either the annuities have been for some time in a state of reduction, or the contributions in a state of increase, it will be feen that thefe Societies have gone upon wrong plans, and, therefore, they will be deserted and avoided; the consequence of which will prove still greater deficiencies in their annual income, and a more rapid defertion and decline, 'till a total diffolution and bankruptcy take place. - This will be the death death of most of the present societies for providing for widows, if they continue to be encouraged, and do not soon alter their plans: And at that period the number of annuitants will be greater than ever; whose annuities, having no other support than the poor remains of a stock always insufficient, will be soon left, without the possibility of relief, to lament that ignorance and credulity which gave rise to these societies, and which had To long supported them. In the London Annuity Society, there is an encouragement to batchelors and widowers to join them, arifing from the additional annuities to which they will be immediately entitled, when they marry, in confequence of having made their payments a greater number of years; and it is imagined, that particular advantages will be derived from fuch members. But even these will in general pay much less than the value of their expectations.—A perfon who begins an annual contribution of five guineas at the age of 24 will, should he live II years, and marry a woman of the same age at the end of that time, entitle her immediately to 35%. per ann. during survivorship, and to 4.11. per annum should he live four years after marrying. (interest being at 4 per cent.) (a). In this ⁽a) The value of five guineas per annum (first payment made immediately) for 11 years, subject to failure should a life now 24 fail; and, after 11 years, for the joint lives particular case, therefore, a person will pay nearly the true value of his expectation. But all at all ages who marry; and most of those who die, in less time than 11 years after admission, will pay less than the value of their expectations. ### SECT. II. Of the Association among the London Clergy, and the Ministers in Scotland, for providing Annuities for their Widows. IN April, 1765, the clergy within the bills of mortality, and the county of Middlefex, at a general meeting in Sion-College, agreed to form themselves into a society for the support of their widows and orphans. Many in this respectable body may be capable of doing, in a better manner, what I have attempted in this Treatise; and they are, perhaps, already sensible of the desiciencies in the plan which they have established. I shall not, however, I hope, do wrong, in taking the liberty to recite briefly this plan, in order to introduce a few observations upon it. of two persons both 35, is, by the Table of London Obfervations, 1.69.3.—By Dr. Halley's Table 1.76.44.—The present value of 351. per annum for life to the widow of a person now 24, should he live 11 years, and marry a woman of the same age with himself at the end of that time; and also of 61. more, or 411. per annum in all, should he live after marriage sour years; is, by the Table of London Observations, 1.69.36,—By Dr. Halley's Table, 1.76.03. Accord— According to the printed articles, every clergyman possessed of any benefice, lectureship, or licensed curacy, within the bills of mortality, and the county of Middlesex, who fubscribes annually one guinea, or two guineas, or more, shall entitle his widow to an annuity; or, if he leaves no widow, he shall entitle any fuch children as he shall leave, to the same annuity for seven years as his widow would have had. And, in case a widow possessed of an annuity, should either die or marry before the lapse of 10 years, from the commencement of her annuity, such children of her former husband, as shall be then alive, are to be entitled to as many of the ten years payments of the annuities as the shall not have received.—The annuity is fixed to no particular fum, but instead of this, it is ordered, that a fourth part of the annual fubscriptions and interest shall be divided the first three years after the establishment of the fociety; half only the next four years; and 3-4ths
the next 5 years; provided, however, that in no one of these 12 years the dividend shall exceed 201. to the widows and orphans of the clergy subscribing two guineas or more; and 10% to the widows and orphans of the subscribers of one guinea. And, after the expiration of 12 years, the whole amount of the subscriptions, and of the interest of the capital stock, is to be divided proportionably for ever.—It is further provided, that every clergyman, who shall be married, or have children, G 3 dren, at the time of his subscription, shall pay a fine of two guineas towards a capital stock, if a subscriber of two guineas or more, and 40 years of age or upwards. If 50 years of age or upwards, he shall pay a fine of three guineas; if 60 or upwards, five guineas. But, if not married at the time of his subscribing, and shall afterwards marry, he shall pay a fine according to the age he shall be of at the time of his marrying. The obligation laid upon all, whether married or unmarried, to become fubscribers, is, an incapacity of being admitted members without the confent of a general court, unless, within two years after becoming possessed of any ecclesiastical employment, they fubscribe. Every one who has attended to the observations in this and the preceding chapter, must know what judgment to form of these regulations. Let us suppose, that all the clergy in London and Middlesex came into this association from the sirst; and that one with another they are subscribers of two guineas annually; and that there are among them as many un- married persons as married. In this case, it may be learnt from Quest. XIII, that the annuity to which widows should be entitled, (supposing no allowance to the children of any that die) ought not to exceed 10 or 11 guineas at most, and that, besides the annual subscriptions, there ought to have been a fine paid at the commencement of the scheme, by every married person, of six guineas at least, or, by the whole number of fubscribers, three guineas. If the number of married members is double the unmarried, the annuity ought not to exceed eight guineas; and the fine from every member should be about four guineas .- The order, that only a fourth part of the annual subscriptions and interest shall be divided the first three years, half the next four years, and three quarters the next five, is without reason; because the number of claimants, for the first 12 years of the scheme, will be fo few, that it will not be possible, during that time, that there should be occafion for dividing any proportions fo large of the annual subscriptions and interest, unless they are indeed beyond all bounds too little. -After 12 years, the number of annuitants will go on increasing for near 50 years, as appears from Quest. III. The consequence, therefore, of dividing, after this time, the whole amount of the annual subscriptions and interest, will be a constant yearly diminution in the dividends for near 50 years; and making the payments to the first claimants much more confiderable than they ought to be, at the expence of all subsequent claimants.—For these reasons; it appears to me out of all doubt, that this scheme is by no means likely to answer the good ends proposed by it; and that, therefore, it will be best to lay it aside. At the time it was fettled it was, I find, further agreed, that the annual subscriptions of the laity, together with the interest of their benefactions, unless otherwise directed by the donors; and the annual subscriptions of such of the clergy as shall so direct, shall make a charitable fund to be applied to the relief of the distressed widows or children of all the clergy within the limits I have mentioned, whether subscribers or not, provided that in no one year of the first twelve more than 20%. be given out of the fund to any one family. This is an excellent defign; and if the money arising from all the subscriptions is thrown into this fund, an important means of relief may be provided, for fuch of the more indigent widows and families as will accept the help of charity. There is one more affociation of particular confequence, which it is necessary I should take notice of. I mean, the affociation among the ministers and professors in Scotland, for making provisions for their widows and orphans. The last-mentioned affociation, and also several others of the same kind (a) in this kingdom, have been formed on the ⁽a) There is one among the Diffenting Ministers in the counties of Chester and Lancashire, and another among the Diffenting Ministers in Cumberland, Northumberland, Westmoreland, and Durham.—Even the London Annuity Society, tho' its plan is totally different, prosesses to form itself on the principles of the Scotch establishment, and to derive encouragement from it. model of this establishment; and the success with which it has been hitherto attended, has been the principal cause to which they owe their rife. - I am afraid of being too tedious, and therefore I will not attempt to recite all the particulars contained in the plan of this establishment. It may be sufficient to observe, that for "an annual " payment, which begun immediately, of " five guineas from 1011 contributors, 667 " of whom are married persons; besides a "tax on weddings producing about 1421. " per annum; it entitles every widow to an " annuity of 201. during widowhood; and al-" fo, every family of children that shall be " left by fuch members as die without leav-"ing widows, to 2001." Now, by particular enquiry at the commencement of the scheme, it had been found, that there was reason to believe that, for many years back, 20 widows had been left annually by the whole body of ministers and profesfors; and that, also, fix had died annually and left children without widows; and these facts have been fince confirmed by the experience of 25 years.—Substract, therefore, from 5,450%. (the whole annual income) 1,200%. payable every year to fix families of children; and 4,250 l. per ann. (the first payment of which was made (a) immediately) or 1.4.2 per annum ⁽a) The truth is, that a double payment was made at the beginning of the fecond year. This is of less value than annum from each member, will remain as the standing provision for bearing the burden of the annuitants. - This provision, according to the calculation in Quest. XIII, and note (F) Appendix, ought to be at least 4,745l. per annum, from each member; from whence it feems to follow, that this establishment has not a sufficient income to afford it a permanent support.—But I do not by any means defign to affert this. The difference between the real and calculated incomes, as it has been now stated, is not considerable enough to give sufficient reason for such an affertion. This establishment may have some advantages that I know nothing of, and that are not mentioned in the printed accounts; or, in consequence of the increase of luxury, and the higher price of all the means of subfistence, marriage may decline among the ministers; or, possibly, the probabilities of life among them, tho' much higher 'till towards 50, than is common among mankind in towns, may yet afterwards decrease much faster. The income, therefore, of this establishment, properly improved, may continue to be adequate to all its expences and burdens .- One observation, however, ought to be carefully attended to. The fuccess it has hitherto met with, is no good reason for en- two payments, one of which is made immediately, and the other a year hence; but, the difference not being confiderable, I have reckoned them the fame. tertaining tertaining this expectation, with any degree of confidence. It appears from Quest. III, that the number of annuitants, on fuch an establishment, must go on increasing for 60 years, from the time of its commencement; and it is obvious, that the continuance of a fuccess which has not lasted balf this period, cannot be absolutely depended on. I know, indeed, that, according to the calculations which were made when this establishment begun (a), the number of widows upon it will not increase sensibly after the year 1780, or for more than 10 years to come; and, were this true, all diffidence about it would. perhaps, be unreasonable. But these calculations cannot, in this instance, be right; for they imply, that none are left widows under 52 years of age. 'Tis certain, on the contrary, that many are left widows under 32; and that, consequently, the whole body in life together must go on to increase for 25 years, beyond the period affigned in these calculations; or till the year 1805 (b). It is neceffary (b) This is faid on the supposition, that all the ministers and professors acceded to the scheme from the first. ⁽a) See Table III, in a book printed at Edinburgh in 1748, entitled, Calculations, with the Principles and Data on which they are inflituted, relative to a late act of parliament, entitled, An act for raising and establishing a fund for a provision for the vidows and children of the ministers of the church, and of the heads, principals and masters of the universities of Scotland; shewing the rise and progress of the tund. ceffary I should add, that the whole number alive, when the increase stops, will, most probably, be greater than the number provided for in these calculations. They are made on the supposition, that 52 is the mean age at which women commence widows. If this supposition is right, it is impossible that, according to the probabilities of life in Dr. Halley's Table, the number of widows living together at one time, derived from 20 left annually, should increase to more than 323, if none marry; for about 300, if one marries every year (a): Nor does it appear likely, that obliged to accede; but all their fuccessors have been obliged to accede. This circumstance must add 30 or 35 years to the period of increase which I have mentioned; that is, as many years as are necessary to cause all the non-contributors to die off. See Quest. III. (a)
The expectation of a person at the age of 52 is, when taken exactly from Dr. Halley's Table, 16.16; and this number multiplied by 20, gives the maximum, to which 20 widows left annually, at 52, will increase in 34 years, supposing 86 the utmost limit of life. Vid, Estay I.—In the calculation to which I have referred, there is no account taken of those that die in the year in which they are left widows; and, for this reason, they are made to increase to a greater number than is confistent with the supposition, that 52 is their mean age when they commence widowhood.—It should be remembered here, that supposing this mean age, as explained in note (F) Appendix, rightly taken, the maximum of widows will be rightly found in the manner just specified. But the period, in which they would attain to that maximum, would be as many years greater than the difference between the mean age and the utmost limit of life, as the mean age is greater than this establishment will be able to bear the expence of above 30 or 40 more than the last- than the least age at which widowhood ever commences. The calculation, therefore, which I have in view must be very wrong. It supposes not only, that all the widows left at all ages, will increase to a maximum in the fame time with those left at the mean age; but that all left in the course of every year will certainly live to the beginning of the next year. It supposes, likewise, that no widows will marry; and those concerned will understand me when I add, that it supposes further, that acceders, tho' mostly young ministers unmarried, will leave widows as fast as the noncontributors whom they succeed. In confequence of these omissions it has all along given the numbers in life much higher than they ought to have been given; but yet the event has been, that these numbers have in fact corresponded nearly to the calculation: From whence it follows, that the widows in life have hitherto increased at a much greater rate than they could have done, according to Dr. Halley's Table, had their mean age, when left, been 52. Either, then, their mean age has been confiderably less than 52; or, their probabilities of life must be considerably greater than those in Dr. Halley's Table; and, it ought, therefore, to be expected, that they will at last increase to higher numbers than those affigned in this calculation. I cannot help here mentioning one more reason for entertaining this expectation.—Were the decrements of life uniform, and the chances of survivorship between men and their wives equal, the number of widows and widowers in the world, if none married, would also be equal; and both together equal to the whole number of marriages. See Quest. II, and note (F) Appendix. If the chances for the furvivorship of the wise are greatest, the number of widows in the world will be also greatest, and the whole number of widows and widowers greater than the whole number of marriages. In the present case experience proves, that the chances of survivorship in marriage are as 5 to 3 at least, in favour of the last-mentioned number. But it was found; by enquiry, that the number of widows living the wife; or that there are 20 widows left to 12 widowers. (See note (F) Appendix, and the end of the last Eslay). The number of widows and widowers then would certainly, if none married, exceed 667, the whole number of marriages. Suppose, however, that they would be only equal; which is the same with supposing, that widows would not increase to more in life together, in proportion to the number left, than widowers; or that one with another they are of equal ages. 667 then being the number of marriages, this will likewife be the number of widows and widowers, \$16 of whom must be widows and 250 widowers; that is, 5 to 3. Now as widows are certainly, one with another, younger than widowers; and likewife, very probably, more long-lived at equal ages; and as also, in the present case, but one marries of the twenty left annually; it follows, with demonstrative evidence, that if the annuitants on this establishment should not increase to 400, the reason must be, that the decrease in the probabilities of life, inflead of continuing always uniform, is flow in the first stages of mature life, and accelerated afterwards, to a degree of which there is no example in any Tables. And this, possibly, may be indeed the case; for it is uncertain whether, in this particular fituation, life may not waste according to a law not yet observed. This uncertainty it is in the power of the conductors of this scheme to remove, by keeping an account of the ages at which all the ministers and professors enter upon their offices and die; and also of the ages of their wives when they marry and die. From such an account kept for a course of years, Tables of Observation, adapted to the best fort of lives of both sexes, might be formed, which would contribute much to the improvement of this part of knowledge. I have faid nothing above of the advantage which this establishment derives from the marriages among widows. This advantage, it has appeared, were it enjoyed without abatement, would not be considerable; but it is in some measure given up by the order which makes a part of this ing in 1748, was at least 364; (a) and it may be learnt from notes (A and F) in the Appendix, that, according to Dr. Halley's Table, 20 widows left annually, must in time increase to near 400, tho' one of the youngest married every year. And it may be further learnt from note (A) Appendix, that the widows on this establishment have not hitherto increased more flowly, than is confiftent with their actually increasing to 400: Nor, indeed, (as the probabilities of life in this case are higher than those given by Dr. Halley's Table) should I much doubt of their increasing to more than this number, were it not that 364 has been given as the number found upon enquiry. With respect to this, however, it ought to be mentioned, that another account had been taken which made the number of widows only 321. As, therefore, a more careful enquiry discovered 43 new widows; perhaps, an enquiry yet more careful would have made yet further discoveries. In taking fuch accounts, none can well be added; establishment, that such children of an annuitant as are under 16, shall be entitled, if she marries, to as much as shall happen to be then unpaid of ten years purchase of her annuity. The same provision is made for the children of annuitants that die. There are other burdens on this establishment, and it has also advantages of which I have taken no notice; but, as far as I am acquainted with them, they are of no particular consequence, and they also nearly balance one another. (a) See Calculations, with their Principles and Data, &c. Introduction. but in the strictest search it can hardly be possible to avoid omitting some. The refult of the last enquiry, in particular, is faid to have been; not that it was found that there were no more than 364 widows, but that they did exceed this number. (a) However, let 364 be the true number living in 1748. Before that time, there had probably been more marriages among them, than there have been fince; and this may have rendered their number less than it would otherwise have been, and less than it will be hereafter: For it feems to me, that this establishment, at the same time that it encourages marriage among the ministers, has a tendency to check it among their widows, by making the confequence of marrying to be the loss of their annuities. I hope the venerable ministers and profeffors concerned in these remarks, and at prefent so eminent in all the departments of science, will excuse what has been now said. It may, perhaps, be of service, if not to them, yet at least to some in this part of the united kingdoms, by shewing them, that this establishment has been copied in it much too rashly; and that, however successful it may in the end prove, it is yet too soon to make it a model and an authority for similar establishments. (a) See Calculations with their Principles, &c. p. 44. ### SECT. III. Of the best Schemes for providing Annuities for Widows. INstitutions for providing widows with an-I nuities would, without doubt, be extremely ufeful, could fuch be contrived as would be durable, and at the same time easy and encouraging. The natures of things do not admit of this in the degree that is commonly imagined. The calculations and rules, in the preceding chapter, will enable any one to determine in all cases to what reversionary annuities any given payments entitle, according to any given valuation of lives or rate of interest. From Quest, VII and VIII, in particular, it may be inferred that (interest being at 4 per cent. and the probabilities of life as in Mr. De Moivre's Hypothesis, or the Breflaw, Norwich, and Northampton Tables) for an annual payment beginning immediately of four guineas during marriage; and also for a guinea and half in hand, on account of each year that the age of the hufband exceeds the age of the wife, every married man, under 40, might be entitled to an annuity, during life, for his widow of 5 l. if he lives a year, 101. if he lives three years, and 201. if he lives feven years. Money can scarcely now in this kingdom be improved at fo high a rate as 4 per cent. But, perihaps, it might be reasonably expected, that an advantage, sufficient to compensate this disadvantage, would be derived, from changiing the annuities I have mentioned into annuities during widowhood. One may, at least, venture to pronounce, that nothing much worse could befall a society that went on this plan, than the necessity of some time or other adding half a guinea to the annual payments. If such a society chuses, that those who shall happen to continue members the longest time, shall be intitled to still greater annuities, six guineas, additional to all the other payments at admission, would be the sull payment for an annuity of 25% and 12 guineas for an
annuity of 30% if a mem- ber should live 15 years. All batchelors and widowers might be encouraged to join such a society, by admitting them on the following terms.—Four guineas to be paid on admission, and three guineas every year afterwards, during celibacy; and, on marriage, the same payments with those made by persons admitted after marriage; in consideration of which, 11. per annum, for every single payment before marriage, might be added to the annuities, to which such members would have been otherwise entitled. For example. If they have been members four years, or made five payments before marriage, instead of being entitled to life-annuities for their widows of only 51. 101. 201. 251. and 301. on the conditions I have specified, they might be entitled to annuities of 101. 151. 251. 301. and 351. Or, if they have been members nine years, and made 10 payments, they might, instead of the same annuities, be entitled to annuities of 151. 201. 301. 351. and 401.—In this case, the contributions of such members as should happen to desert, or die in celibacy, would be so much prosit to the society, tending to give it more strength and security. This is one of the best schemes that I am able to think of, or would chuse to recommend. There are, however, others no less safe and encouraging which some may prefer, and which therefore, I will just pro- pose. Let the probabilities of life be the same with those in the Tables just mentioned. Let money be supposed to be improved at no higher interest than 3 per cent. Let the reversionary annuities promised to widows be 101. for life, if a member lives sive years after admission, and 151. more, or 251. in all, if he lives 11 years. The proper payments for such an expectation, from married men not exceeding 50 years of age, will, in the H 2 nearest and most convenient round sums, be four guineas in annual payments beginning immediately, and two guineas in hand for every year that his age exceeds his wife's, not admitting any greater excess than 15 years: Or, if the whole value is given in one present payment, 40l. added to a guinea, for every year that his age falls short of 50, besides the payment just mentioned on account of disparity of age. - For example. Four guineas in annual payments, besides 10 or 20 guineas in hand, according as the age of the husband exceeds the wife's 5 or 10 years. Or, if the whole value of the expectation is given in one payment, 10 guineas added to 40% (that is 501. 10s.) from a man whose age is 40; and, in like manner, 20 guineas added to 40%. (that is 611.) from a man whose age is 30; besides the payment just mentioned on account of disparity of age. If money is improved at 4 per cent. or, on account of any advantages attending a scheme, may be justly considered as so improved, the sull payments for the expectation I have mentioned will be about one eighth, or half a guinea, less in the annual payments during marriage; and a quarter less in all the other payments. That is: A married man, at or under 50, would, besides three guineas and half in annual payments during marriage, be bound to add a guinea and half for every year he is older than his wife: Or, if he chuses chuses to give the value of his expectation in one payment; besides the common contribution of 30 l. and a guinea and half for every year his age exceeds his wise's; he would be bound to pay three quarters of a guinea, for every year he is less than 50 years of age; that is, 53 l. 12 s. 6 d. in all, supposing him 40 years of age, and 10 years older than his wife. — All these payments doubled would entitle to double annuities. There is one particular advantage which focieties formed on a plan of this kind would enjoy (a)—Perfons who know themselves subject to disorders, which are likely to render them short-lived, will have no great temptations to endeavour to gain admission into such societies; and, if admitted, the danger from them will be less than on any other plan. Were it not for this danger, one might recommend the following plan, as one of the most inviting. In the plans hitherto mentioned it is implied, that, if either a member or his wife dies within any of the periods specified, the additional annuities, that would otherwise have become due, will be lost. But it would be much more agreeable to a purchaser, that they should be made certain to his wife, provided she lives to the end of these periods, ⁽a) See another advantage mentioned under Quest. VIII, p. 28, tho' in the mean time his own life should fail. The value of fuch annuities may be computed by the rule in Quest. IX. Suppose, for instance, the scheme to be "that' a wife shall be entitled certainly to a se life-annuity of 201. the first payment of " which shall be made at the end of 12 years, " provided she should be then alive, and her " husband dead; or at the end of any year " beyond this term in which she may hap-" pen to be left a widow." Suppose it also stipulated, "that she shall be entitled to "tol. more, or 30% in all, on the fame terms, provided she should live 16 years." -The value of fuch an expectation (interest being at 3 per cent. and the probabilities of life as in Mr. De Moivre's Hypothesis) will be, in the most convenient round sums, suppoling none admitted above 50 years of age, feven guineas in annual payments to be continued during marriage, and to begin immediately; besides four guineas in present money for every year, as far as 15 years, that the husband's age exceeds the wife's, if he is between 40 and 50, and three guineas on the same account if he is under 40: Or, if the whole value of the expectation is given in one present payment, 70% added to a guinea and half, for every year that the husband's age fails short of 50, besides the payment just mentioned on account of disparity of age. If the annuities are made to be annuities during widowhood, and not during life, and the advantage arifing from hence, is supposed equivalent to the difference between the improvement of money at 4 per cent. and its real improvement; the value of the expectation just mentioned, (that is, its value at 4 per cent.) will be fix guineas in annual payments; besides three guineas in present money, for every year that the husband's age exceeds the wife's, if he is between 40 and 50; and 2 guineas, if he is under 40: Or, if the whole value of the expectation is given in one present payment, 561. added to 11. 5s. for every year that his age falls short of 50, befides the payment last mentioned on account of inequality of age. (a) (a) Supposing 16 years the only term, the annuity 201. and interest at 4 per cent. the proper payments will be nearly, in the case of equal ages and fingle payments, 461.-401.-291. as the age of the man is 30, 40, or 50. Or, in annual payments, 1.3.80.-1.3.66.-1.3.13.-Supposing the woman's age 10 years less than the man's, the fame values will be, in fingle payments, 1.58.92.-1.56.56. -1.53.66.—In annual payments 1.4.63.—1.5.—1.5.41.— It appears, therefore, that a fociety, supposing money improved at the rate of 4 per cent, might entitle all married men indiscriminately, who are under 50 years of age, to such an expectation as this for their wives, for either 601. in one payment, or five guineas in annual payments. - But equity requires, that different payments should be made, according to the different comparative ages of men and their wives; and Tables might be formed for flewing, at one view, what these different payments ought to be in all cases. If such Tables are wanting, recourse must be had so some such easy rules as those I have stated above. H 4 . He He that will give himself the trouble to calculate, agreeably to the directions in the Questions to which I have referred, will find that, taking all particular cases together, the rules now given come as near the truth as there is reason to desire in an affair of this nature, the desects in some cases being nearly compensated by the excesses in others. I have calculated here, as well as in most other places, from Mr. De Moivre's Hypothesis, because its conformity to the three Tables which I have so often mentioned, convinces me, that it gives a proper medium between the different values of town and country lives. In the country the probabilities of life are much higher; but in London, and probably in all great towns and some finaller ones, they are much lower. It is proper to add, that, according to the values of lives and survivorships deduced both from the London and Dr. Halley's Table, and taking interest as low as 3 per cent. all women whose husbands are under 50 years of age, might be entitled to an annuity of 24l. during life (the first payment to be made at the end of the year in which they shall be lest widows) for the sum of 100l. supposing 3l. additional given on account of every year that they are younger than their husbands.—At 4 per cent. an annuity of 30l. might be granted on the same terms. In the year 1690, the company of Mercers in London, adopted such a scheme as that last mentioned. For 1001. in one present payment, they entitled every subscriber to a life. annuity for his widow of 30%; and this, at that time, (when money bore 6 per cent. interest) was considerably less than the value of the money advanced, supposing men and their wives of equal ages. As the interest of money funk, they funk also the annuity, first to 25% and then to 20% and 15%. But, at last, after carrying on the scheme for above 50 years, finding the burden of the annuitants too heavy, and likely to go on increafing, they were obliged to drop the scheme and to stop payment. In a little time, however, by a parliamentary aid of 3000l. per ann. which they are now enjoying, they were restored to a capacity of making good all their engagements, and of paying their arrears.-Their failure, is, indeed, much to be lamented; for, in consequence of it, the public has lost the benefit of an institution, that for many years promised the happiest
effects, by encouraging marriage, and affording relief to indigence. The rapid fall of the interest of money; their admitting purchasers at too advanced ages; and, particularly, their paying no regard to the difference of age between hufbands and their wives, must have contribut-'ed much to hurt them. Some of the principal causes, therefore, which have rendered them them unsuccessful, may be now avoided; and for this reason I should be glad to see some similar scheme, providing, as this did, annuities for life, and not for widowbood, undertaken. If well planned it would, I think, be a proper object of parliamentary encount ragement. It must, however, be remembered, that the issue of the best schemes of this kind must be in some degree uncertain. For want of proper observations, it is not possible to determine what allowances ought to be made, on account of the higher probabilities of life among semales than males. No prudence can prevent all losses in the improvement of money; nor can any care guard against the inconveniencies to such schemes, which must arise from those persons being most ready to say to them who, by reason of concealed disorders, feel themselves most likely to want the benefit of them. The focieties, therefore, on which I have remarked in the first Section of this chapter, would have reason to take warning from what has happened to the Mercer's Company, were the schemes on which they are formed perfectly unexceptionable. But I have demonstrated that these schemes are very defective; and that the longer they are carried on, the more mischief they must produce. 'Tis vain (as appears from Quest. III.) to form such establishments with the expectation of see- ing their fate determined foon by experience. If not more extravagant than any ignorance can well make them, they will go on profperously for 20 or 30 years; and, if at all tolerable, they may support themselves for 50 or 60 years; and at last end in distress and ruin. No experiments, therefore, of this fort should be tried hastily. An unsuccessful experiment must be productive of very pernicious essents. All inadequate schemes lay the foundation of present relief on future calamity, and afford assistance to a few by disappointing and oppressing multitudes. As the persons who conduct these schemes can mean nothing but the advantage of the public, they ought to listen to these observations. At present their plans are capable of being reformed; but they cannot continue so always; for the greater number of exorbitant payments they now make to annuitants, the more they consume the property of suture annuitants, and the less practicable a retreat is rendered to a rational and equitable and permanent plan (a). They should, therefore, immediately (b) either reduce ⁽a) See p. 82, 83. Sect. I. ⁽b) Thus; was the London Annuity Society to make their lowest annuity 101. the next 201. and the highest 301, they would probably be safe. But, after proceeding on their present plan some years longer, such a reduction would by no means be sufficient. their schemes, or change them into one of those which I have proposed. But, I am asraid, this is not to be expected. The neglect with which they have received some remonstrances that have been already made to them, gives reason to fear, that what has been now said will be in vain; and that those who are to come after them, must be left to rue the confequences of their mistakes. # SECT. IV. Of Schemes for providing Annuities for Old Age. A General disposition has lately shewn itfelf, to encourage schemes for granting annuities to persons in the latter stages of life; and this has occasioned the 6th Question in the former Chapter; and, as a further and more particular direction in cases of this kind, I have thought it necessary here to give the following Table. | Values of 11. per
ann. for life, af-
ter 50, to per-
fons whose ages
are | present payment,
interest 4 per | Interest 3 per cent. | Values in annu-
al payments, till
50, to begin at
the end of a year,
interest 4 pr ct. | Interest 3 per cens. | |--|--|--|--|--| | 10 | 1.235 | 2.015 | .0789 | .113 | | 15 | 1.583 | 2.444 | .106 | .146 | | 20 | 2.028 | 2.989 | .146 | .193 | | 25 | 2.594 | 3.644 | .203 | .259 | | 30 | 3.369 | 4.508 | .297 | .366 | | 35 | 4.446 | 5.667 | .466 | -559 | | 40 | 5.953 | 7.232 | .822 | .950 | | Values of the fame annuity, after 55, to ages | 2.114
2.722 | 2.937 | .167
.241 | .211 | | 40 | | 1 : " | | 40 | | 45 | 5.000 | 10.115 | 1 .703 | .003 | | Values of the
fame annuity af-
ter 60, to ages | | | | | | 35 | 1.667 | 2.290 | .135 | .168 | | 40 | 2.234 | 2.923 | .203 | *245 | | 45 | 3.043 | 3.811 | .327 | .384 | | 50 | 4.255 | 5.061 | .600 | .679 | | 35
40
45
Values of the fame annuity after 60, to ages
35
40
45 | 2.722
3.732
5.088
1.667
2.234
3.043 | 3.632
4.708
6.115
2.290
2.923
3.811 | .241
.394
.7°3 | .297
.464
.803
.168
.245
.384 | The numbers in the 2d and 3d columns of this Table, multiplied by any annuity, will give the value of that annuity in a fingle pay- payment, to be enjoyed for life, by the ages corresponding to those numbers in the first column, after the age mentioned at the head of that column.—And in the same manner; the numbers in the 4th and 5th columns will give the values in annual payments.—Thus. The value of 44l. per annum, to be enjoyed for life, after 50, by a person now 40, (interest at 4 per cent.) is 5.95, multiplied by 44, or l. 261.9, in a single payment; and .822, multiplied by 44, or l. 36.16, in annual payments till 50, the first payment to be made at the end of a year. In order to find the same values, partly in annual payments, and partly in any given entrance or admission-money; say; "As the va-" lue of the given annuity in a single payment, (found in the way just mentioned) is to the given entrance-money; so is its value in annual payments, to a fourth proportional; which, subtracted from the value in annual payments, the remainder will be the annual payment due, over and above the given entrance-money." #### EXAMPLE. Suppose a person now 40, to be willing to pay 2001. entrance-money, besides such an annual payment for 10 years as shall, together with his entrance-money, be sufficient to entitle him to a life annuity of 44 l. after 50. What ought the annual payment to be? #### Answer. L.8.55. — For, l.261.9, is to 200l. as l.36.16, to l.27.61; which, subtracted from l.36.16, the remainder is l.8.55. This Table has been calculated from the probabilities and values of lives in Tables III. and VI. The probabilities of life among the inhabitants of London, are (as I have often had occasion to observe) much lower than among the generality of mankind; and the values in the preceding Table, had they been given agreeably to the London Observations, would have been less. But, certainly, an office or society, that means to be a permanent advantage to the public, ought always to take higher rather than lower values, for the sake of rendering itself more secure, and gaining some profits to balance losses and expences. There have lately been established, in London, several societies for granting such annuities as those now mentioned; and he that will compare their true values, as they may be learnt from the preceding Table, with the terms of admission into these societies, as given in their printed Abstracts and Tables, Tables, must be surprised and shocked. They are all impositions on the public, proceeding from ignorance, and encouraged by credulity and folly. It has been shewn; that the proper payment, (allowing compound interest at 4 per cent.) for an annuity of 441. to be enjoyed by a person now 40, for what may happen to remain of his life after 50, is 2001. in admiffion-money; besides 1.8.55, or 81. 115., in annual payments till he attains to 50, the first of these payments to be made at the end of a year. - The conditions of obtaining this annuity, according to the Tables of the Laudable Society of Annuitants for the benefit of age, are 76 l. 17 s. in admission-money; and 6 l. 14 s. in annual payments .- According to the Tables of the fociety of London Annuitants for the benefit of age, the conditions of obtaining the same annuity are 30 l. in admission-money, and 101. in annual payments .- The Equitable Society of Annuitants requires for the same annuity 381. 10s. in admission-money, and 131. in annual payments. The true value is, over and above the admission-money just mentioned, an annual payment of 30l. 17s. (interest reckoned at 4 per cent.) or an annual payment of 361. 15s. interest reckoned at 3 per cent .-The London Union Society for the comfortable support of aged members promises an annuity of no less than 50 guineas for life, after 50, to to a person now 40 for 401. 10s. in admisfion-money, and 71. in annual payments. The Amicable Society of Annuitants for the benefit of age, promises an annuity of 261. per annum, for life, to a person now 40, after attaining to 50, for 281. 16s. in admission-money, and 61. in annual payments. - The true value of this annuity is 281. 16s. in admiffion-money, and 171. 8s. in annual payments; (interest supposed at 4 per cent.); or the same fum in admission-money, and 201. 18s. in annual payments, interest supposed at 3 per cent. The Provident Society for the benefit of age promifes an annuity of 25l. to a person now 40, after attaining to 50, for 34 guineas in admission-money, and eight guineas in annual payments. The true value is, 34 guineas in admission-money; and 15%. 12s. in annual payments, interest at 4 per cent.; or, the
same sum in admission-money, and 191. in annual payments, interest being at 3 per cent (a). But I will not tire the reader, by going, in this manner, thro' the schemes of all these societies. The contrivers of them, it is certain, can know nothing of the principles on which the rule in Quest. VI, and the demonstration of it in the Appendix is founded; and, therefore, if unwilling to be guided by the autho- ⁽a) The account here given of the terms on which z person whose age is 40, is admitted into these societies, I have taken from their printed Tables as they flood at the end of the year 1770. - In the younger ages the deficiencies are greater. I rity of mathematicians, it may not be possible to convince them of their mistakes. I will, however, offer to them the following demonstration, which will be understood, without dissiculty, by every one who knows how to compute (a) the increase of money at compound interest. The value of a life at 50, (interest being at 4 per cent.) is 11 3 years purchase by Table VI. For an annuity, therefore, of 441. per annum for life, to be enjoyed by a person at this age, 4981. ought to be given. Two in three of a number of persons at the age of 32 will, (by Tables III, IV, and V,) live to 50; and therefore, in order to be able to pay an annuity to them of 441. for life, after 50, the money now advanced by every three, ought to be fuch as will, in confequence of being laid up to be improved, increase in 18 years to double 4981. or to 9961.—From the preceding Table it may be learnt, that the money which ought to be advanced by every fingle person is 165l. or by three persons 495% and this, in 18 years, will double itfelt, or increase to just the sum that will then be the value of the annuities to be paid. -But the money required in this case by the Laudable Society, is 141. 115. 9d. from each member at admission, besides an annual payment of 41. The admission-money, therefore, of two members, being 291. 3s. 6d. ⁽a) The easiest method of doing this, is taught in the rules annexed to the Tables in the APPENDIX. may be increased to twice this sum, or to 581. 7s. An annual payment of 41. for 18 years will, if perfectly improved at 4 per cent. compound interest, increase to 1021; and two such annual payments will increase to 2041. The whole pay, therefore, of two members will produce at the end of 18 years 2621. 7s. - A third part, I have faid, will die without attaining to 50, and these will live one with another 10 years. An annuity of 41., for this time, will produce a capital of 481. and this capital improved for eight years more will increase to 66%. The whole profit, therefore, from the member who will die is, his admission-money doubled and added to 661. or 951. 3s. 6d. And this fum added to 2621. 7s. makes 3571. 10s. 6d. the whole money with which the fociety can be provided, at the end of 18 years, to bear the expence of two life-annities, worth together 9961. By a fimilar computation it may be found, that the improvement of money at only 3 per cent. will fink the former fum to 329 l. at the fame time that the value of the annuities will be raised to 1100%. The deficiencies in the schemes of all the other societies, except the *Provident Society*, are no less considerable (a). — What confufion ⁽a) Some of these societies teil us, that the payments on admission shall increase, as the number of members increases; and they have practised on this rule just as if fion then must they produce some time or other? How barbarous is it thus to draw mo- ney the value of an annuity was nothing determinate in itself, but depended on the number of persons who have been purchases. But the true design may perhaps be, to quicken the public in their applications. Should any of these societies, sensible of their mistakes, resolve to reform themselves, they ought to consider, that this cannot be done by only obliging suture members to pay the just values of the annuities promised them. All the present members must likewise, besides raising their payments, make compensation for what they have hitherto paid too little; and this compensation is to be calculated in the following manner.—"Find the whole amount to the present time of the payments which have been made. Subtract this from the whole amount of the payments which should have been made; and the " remainder will be the compensation required." EXAMPLE. In the Laudable Society of Annuitants, the condition of a titlé to 441. per annum for life, after 50, to 2 person at the age of 40, was, 4 years ago, 34l. 17s. in admission-money, besides an annual payment of 61. 14s. 'till he attained to 50.-The admission-money will, (reckoning compound interest at 3 per cent.) amount in four years to 39%. 4s. and the annual payment to 28%. whole amount, therefore, of the payments of a member admitted 4 years ago, is 671. 4s.—But the value of the annuity was 37 l. 4s. in annual payments, besides 34 l. 17s. in admission-money; and these payments, during the 4 years, would have amounted to 1951. The difference, therefore, between these two amounts, or 1271. 16s. is the compensation which such member ought to pay; and if he continues a member without paying it, (befides raifing his annual contribution to 37l. 4s.) he must either lose his annuity, or owe it to injustice. I have taken interest here at 3 per cent. because I think these societies cannot reasonably depend on always im- proving the money they receive at a higher rate. Since I writ the above, I have found, that the admiffion-money required by this fociety has lately received another ney from the public by promifes of advantages that cannot be obtained? Have we not already fuffered too much by bubbles; and, if nothing else can check the frenzy that encourages them, ought not the legislature to interpose its authority? I do not, however, mean to condemn all institutions of this kind. They may be very useful, if the sull values are taken, and proper care is used in the improvement of money. Interest, in these cases, ought not to be reckoned higher than 3 per cent. and, supposing money improved at this rate, a person, for a single payment of 50l. before he is 40, might be entitled to a life-annuity of 10 guineas after 55; or, if he chuses it, to a life-annuity of 17l. after 60. But if he pays the same sum before he is 34, he might be entitled to a life annuity of 14l. after 55, or 22l. after 60. 25l. might purchase for him balf these annuities; and 100l. double. A fociety or office that would go on this plan, might do great fervice. Persons in another advance. At the age of 40, in particular, it is advanced to 1081. 7s.—when they have further either advanced the admission-money to double this sum, or tripled the annual payments, they will be almost right with respect to this particular age, provided the compensation-money, just mentioned, has been paid. These societies, tho' their plans are so insufficient, may, after beginning their payments to annuitants, continue them 15, or, perhaps, 20 years; but it will be by rob- bing all the younger members. the lower stations of life might be brought to a habit of industry, in the beginning of life, by striving to get 25% or 50% beforehand in order to purchase such annuities, and thus to make provisions for themselves in the more advanced parts of life, when they will be incapable of labour. There are now established in Holland some institutions of this kind.—Any poor persons there, I am informed, who can, before they attain to a particular age, lay up 501. may make use of it in buying for themselves a right to be admitted, when 50, or at any time afterwards, to houses prepared on purpose, for providing them with all the conveniencies of lodging and board. This is an excellent institution; and I wish there was some imitation of it in this kingdom. Confiderable profits would, in this, case be received, from the payments of *some* who would chuse to *delay* going into such houses; and of others who would grow rich enough to be above them. It is proper to observe here, that institutions of this kind would furnish one of the safest ways of providing for widows.—A married man might, by paying 100% before his wise attained to 40, entitle her, after 55, or 60, to a life annuity of 21% or 34%. Or, by paying the same sum before she attained to 34, he might entitle her, after the same ages, to a life annuity of 281. or 441. (a); and in this case he would have a chance of sharing himself in the benefit of the annuity. I have called this the *fafest* way of providing for widows, because attended with none of the dangers arising from disproportion of age between men and their wives, and from the admission of persons labouring under concealed distempers. I cannot conclude this Section, without mentioning the following plan of a provision for Old Age. Let 13 guineas be given as entrance-money; and let besides 1 l. 2 l. 3 l. 4 l. &c. be given at the beginning of the 1st, 2d, 3d, 4th, &c. years, as the payments for these years respectively; and let the last payment be 16 l. at the beginning of the 16th year. All these payments put together will, according to the probabilities of life in the 3d, 4th and 5th Tables, (interest being at 4 per cent.) entitle a person, whose age was 40 when he begun them, to an annuity, after 15 years, beginning with 15 l. and increasing at the rate of 1 l. every year, 'till, at the end of 15 years more, or (b) when he has attained to 70, it (a) The same payment before 30, would entitle to an annuity of 221. after 50. ⁽b) According to the probabilities of life in the London Table, this annuity should be greater.—A Theorem for finding what the annuity ought to be in these cases, is given in the Appendix, Note (I). becomes a standing annuity of 30% for the remainder of his life. If the addition of three guineas is made to the entrance-money, for every year that any life between 30 and 40 falls short of 40, the value will be obtained nearly, of the same
annuity to be enjoyed by that life, after the fame number of years, and increasing in the same manner, 'till, in 30 years, it becomes stationary and double.—This plan is particularly inviting, as it makes the largest payments become due, when the near approach of the annuity renders-the encouragement to them greatest; and as, likewise, the annuity is to increase continually with age, till it comes to be highest (a), when life is most in the decline, (a) The lower part of mankind are objects of particular compassion, when rendered incapable, by accident, fickness, or age, of earning their subfistence. This has given rife to many very useful societies among them, for granting relief to one another, out of little funds supplied by weekly contributions. A fociety of this kind, formed on the following plan, would probably thrive, and might, on fome accounts, be even more useful than the institu- tions in Holland, mentioned in p. 118. Let the society, at its first establishment, consist of 100 perfons, all between 30 and 40; and whose mean age may therefore be reckoned 36; and let it be supposed to be always kept up to this number, by the admission of new members, between the ages of 30 and 40, as old members die off. Let the contribution of each member be four-pence per week, making, from the whole body, an annual contribution of 851. 17s. - Let it be further supposed, that seven of them will fall every year into disorders, that shall incapacitate them for seven weeks. cline, and when therefore it will be most useful.—It is further a recommendation of this plan, that less depends in it on the improvement of money than in most other plans.—But I must leave these hints to be pursued by others. ## SECT. V. Of the Amicable Society for a perpetual Assurance Office: And the Society for equitable Assurances on Lives and Survivorships. THE 10th Problem has been given, with a particular view to the corporation of the Amicable Society, for a perpetual Assu- 301. 12 s. of the annual contribution will be just sufficient, to enable the society to grant to each of these 12 s. per week, during their illnesses. And the remaining 55 l. per annum, laid up and carefully improved, at 3½ per cent. will increase to a capital that shall be sufficient, according to the chances of life in Tables III, IV, and V, to enable the society to pay to every member, after attaining to 67 years of age, or upon entering his 68th year, an annuity, beginning with 5 l. and increasing at the rate of 1 l. every year for seven years, 'till, at the age of 75, it came to be a standing annuity of 12 l. for the remainder of life. Were such a society to make its contribution sevenpence per week, an allowance of 15s. might be made, on the same suppositions, to every member during sickness; besides the payment of an annuity beginning with 5l. when a member entered his 64th year, and increasing for 15 years, 'till, at 79, it became fixed for the remainder of life at 20l. If the probabilities of life are lower among the labouring poor, than among the generality of mankind, this plan will be so much the more sure of succeeding. rance-office on fingle lives, kept in Serjeant's-Inn. This fociety was established in 1706, and is the only one I am acquainted with, which has stood any considerable trial from time and experience. The annual payment of each member used to be 61. 4s. payable quarterly; but it has been lately reduced to 5/. The whole annual income, hence arising, is equally divided among the nominees, or heirs of fuch members as die every year; and this renders the dividends among the nominees in different years, more or less, according to the number of members who have happened to die in those years. But the society now engages, that the dividends shall not be less than 150% to each claimant, tho' they may be more. - None are admitted whose ages are greater than 45, or less than 12; nor is there any difference of contribution allowed on account of difference of age. This fociety has, I doubt not, been very useful to the public; and its plan is such, that it cannot well fail to continue to be so. It might, however, certainly have been much more useful, had it gone from the first on a different plan. It is obvious, that regulating the dividends among the nominees by the number of members who die every year, is not equitable; because it makes the benefit which a member is to receive to depend, not on the value of his contribution, but on a contingency; that is, the number of members that shall happen to die the same year with him. This regulation must also have been disadvantageous to the society; as will appear from the following account of the natural progress of the affairs of such a society, when established on a right plan. Suppose a thousand persons, whose common age is 36, to form themselves into a society for the purpose of assuring a particular fum at their deaths, to fuch persons as they shall name, in consideration of a particular annual-contribution to be continued during their lives. Suppose the annual contribution to be 51. and the first payment (a) to be made immediately. Suppose, likewise, the original number of the fociety to be constantly kept up by the admission of new members, at 36 years of age, in the room of fuch as die. - In Quest. X. p. 33, it appears, that an annual payment, beginning immediately, of 51. during a life at the age of 36, should entitle, at the failure of such a life, to 1721. reckoning interest at 4 per cent. and taking Mr. De Moivre's valuation of lives .- A thoufand persons, all 36 years of age, will die off at the rate of 20 every year. The disbursements, therefore, of fuch a fociety will be, the first year, 20 times 1721. or 3,4401. and its income will be 5000%. It will, therefore, at the end of the year, have a furplus ⁽a) Such payments, it has been shewn, Quest. VIII. p. 28, are better than any balf yearly or quarterly payments, and at the same time they save some trouble. of 15601. to put to interest. - In consequence of the yearly accessions to supply vacancies, the number dying annually will be always increasing after the first year. In 50 years it will attain to a maximum; and then, the affairs of the fociety will become stationary, and the number dying annually will be 40, and its annual expence will be 6,880%. exceeding the annual contribution 1,8801. But, in the mean time, by improving its furplus moneys, it will have raifed a capital equal to this excess, and, consequently, its affairs will be fixed on a firm basis for all subsequent times. Suppose now, that such a society, at its establishment, should resolve to divide its whole yearly income among the nominees of deceased members. The effect of this would be, that no capital could be raised; that the dividends payable to nominees would diminish continually, till, at the time that the greatest number of members came to die annually, or at the end of 50 years, they would be reduced to half; and all claimants, after this period, receive too little, because the first clai- mants had received too much (a). At ⁽a) The reverse of this will take place, if such a society begins with admitting all at all ages, and afterwards changes its plan, and limits the age of admission. In this case, the number of yearly deaths will be greatest at sirst, and the dividends smallest. In consequence of altering its plan, the yearly deaths will lessen gradually, and the dividends rife; but in time both would return again to their original state. The At the time of the institution of the Amicable Corporation, the interest of money was at 6 per cent. and, as they admit all between 12 and 45, the mean age of admission cannot probably be fo great as 36. It appears, therefore, that had they avoided the error now mentioned, and gone from the first on the plan I have described; they might have all along paid to each nominee 1721. besides raising a capital much greater, in proportion to the number of members, than that I have specified; by the help of the excess of their annual payments above 51. and fome other advantages which they have enjoyed (a). Indeed, I cannot doubt but that, with thefe advantages, they might, before this time, have found themselves able to pay at least 2001. to each nominee; and at the same time The following facts incline me to suspect, that this remark may be applicable to the Amicable Corporation. First. In their original charter, as it is given in their printed abstracts, there is no limitation of age mentioned; but 31 years asterwards, I find a bye-law made against admitting any person who should be above the age of 45, or under 12.—Secondly. In their printed advertisements in 1770, it is said, that in 59 years they had paid, among 3643 claimants, 378,184 l. from whence it follows, that tho' the average of their dividends, for the last 17 years, has been 154 l. the same average, for 59 years, is only 104 l. (a) A furplus from a thousand members of only five shillings per annum, duly improved, at 4 per cent. would, in 41 years, produce a capital of 25,000%. restricted restricted themselves, as they now do, to an annual payment of 51. (a). I have already mentioned one instance in which the plan of this society is not equitable. Another instance of this is, their requiring the same payments from all perfons under 45, without regarding the differences of their ages; whereas, the annual payments of a person admitted at 45, ought to be double the annual payment of a person admitted at 12. Further. The plan of this fociety is fo narrow, as to confine its usefulness too much. It can be of no fervice to any person whose age exceeds 45. It is, likewise, far from being properly adapted to the circumstances of persons, who want to make assurances on their lives, for only short terms of years. — Thus; the true value of the affurance of 1501. for 10 years, on the life of a person whose age is 30, is, by Quest. XIV, (interest being at 3 per cent.) 21. 13s. in annual
payments for 10 years, to begin at the end of the first year; and subject to failure when the life fails. But fuch an affurance could not be made, in this fociety, without an annual payment of 51.-Neither is the plan of this fociety at all adapted ⁽a) It should be remembered, that all this is said on the supposition, that proper care has been taken to keep out unhealthy persons; and that the probabilities of life among the members of this society, are the same with those in the 3d, 4th, and 5th Tables, in the Appendix. adapted to the circumstances of persons, who want to make affurances on particular furvivorships. - For example. A person posfeffed of an estate, or falary, which must be lost with his life, has a person dependent upon him, for whom he defires to secure a fum of money, payable at his death. But, he defires this only as a provision against the danger of his dying first, and leaving a wife, or a parent, without support. In these circumstances, he enters himself into this society; and by an annual payment of 51. entitles his nominee to 1501. In a few years, perhaps, his nominee happens to die; and, having then lost the benefit he had in view, he determines to forfeit his former payments, and to withdraw from the fociety. In this way, probably, this fociety must have gained fome advantages. But the right method would have been, to have taken from such a person the true value of the sum assured, on the supposition of non-payment, pro-" vided he should survive." In this way he would have chosen to contract with the fociety; and had he done this, he would have paid for the affurance, (supposing interest at 3 per cent. his age 30, the age of his nominee 30, and the probabilities of life as in the 3d, 4th, and 5th Tables) 31.8s. (a) in annual payments, to begin immediately, and to ⁽a) The value of 150l. payable at the death of a perfon, aged 30, provided he survives another person of the fame to be continued during the joint continuance of his own life, and the life of his nominee. All these objections are removed by the plan of the fociety kept in Nicholas-Lane, Lombard-Street, which has juffly stiled itself the Society for Equitable Assurances on Lives and Survivorships. This Society, if due care is taken, may prove a very great public benefit. It was founded, in consequence of proposals which had been made, and lectures, recommending fuch a defign, which had been read by Mr. Dodson, the author of the Mathematical Repository. It assures any sums, or reversionary annuities, on any lives, for any number of years, as well as for the whole continuance of the lives, at rates fettled by particular calculation, and in any manner that may be best adapted to the views of the persons assured. That is; either by making the affured fums payable certainly at the failure of any given lives; or on condition of furvivorship; and also, either by taking the price of the affurance in one present payment; or in annual payments, during any fingle or fame age, is, by Quest. XI. Chap. I. 1.45.65; and this value divided by 13.43, (the value increased by unity, of two joint lives both 30) gives 1.3.4, or 31.85.—The value of the same reversion, according to the probabilities of life in London, is, 1.49.19, in one payment; and 4.16, in annual payments, during the joint lives, the first payment to be made immediately. joint lives, or any terms less than the whole continuance of the lives.—In short; the plan of this society is so extensive, and so important, that I cannot satisfy my own mind, without offering to the gentlemen concerned in the direction of it, the following observations, hoping they will not think them impertinent or improper. First. They should consider what distress would arise from the failure of such a scheme in any future time; and what dangers there are, which ought to be carefully guarded against in order to secure success. I have already more than once observed, that those persons will be most for slying to these establishments, who have seeble constitutions, or are subject to distempers, which they know render their lives particularly precarious; and it is to be feared, that no caution will be sufficient to prevent all danger from hence. Again. In matters of chance, it is impoffible to fay, that an unfavourable run of events will not come, which may hurt the best contrived scheme. The calculations only determine probabilities; and, agreeably to these, it may be depended on, that events will happen on the whole. But at particular periods, and in particular instances, great deviations will often happen; and these deviations, at the commencement of a scheme, must prove either very savourable, or very unfavourable. K But further. The calculations suppose, that all the monies received are put out immediately to accumulate at compound interest. They make no allowance for losses, or for any of the expences attending management. On these accounts, the payments to a fociety of this kind, ought to be somewhat more than the calculations will warrant. The interest of money ought to be reckoned low; and fuch Tables of Observations used as give the highest values. Mr. Dodson, I find, has paid due attention to all this, by reckoning interest, in his calculations for this society, at 3 per cent. and taking the lowest of all the known probabilities of life, or those deduced from the London bills of mortality (a). There is, besides, a liberty provided of making a call on all the members, in case of any particular emergency. It is, therefore, highly probable, that this fociety is fecure. The last expedient, however, would be a very disagreeable one, should there be ever any oc- ⁽a) It ought, however, to be remembered here, that in felling life-annuities to commence either immediately, or after given terms; and also in some other cases, the values come out less in consequence of lower probabilities of life. Would it, in such instances, be taking an unsair advantage, to estimate the values by the 3d, 4th, or 5th Table in the Appendix, rather than the London Table?—Thus; was the society to sell 20l. per annum, for life, to a person now 30, after attaining to 50, the value, according to Dr. Halley's Table, would, reckoning interest at 3 per cent. be 90l. in a single payment; but, according to the London Table, the value would be only 70l. affairs casion for having recourse to it; and, in order to guard still more effectually against danger, it would not, I think, be amiss to charge a profit of 3 or 4 per cent. on all the payments. -Should the consequence of this prove, that in some future period the society shall find itself possessed of too large a capital, the harm will be trifling, and future members will reap the advantage. But this leads me to repeat an observation of particular conse- quence. As this fociety is guided in every instance, by frict calculation, it is not to be expected that it can meet with any difficulties for many years; because, not till the end of many years after it has acquired its maximum of members, will the maximum of yearly claimants and annuitants come upon it? Should it, therefore, thro' inattention to this remark, and the encouragement arising from the posfession of a large surplus, be led to check or stop the increase of its stock by enlarging its dividends too foon, the consequences might prove pernicious. Again; I would observe, that it is of great importance to the fafety of fuch a fociety, that its affairs should be under the inspection of able mathematicians. Melancholy experience shews, that none but mathematicians are qualified for forming and conducting schemes of this kind .- In short; dangerous mistakes may sometimes be committed if the K 2 affairs of such a society are not managed carefully and prudently. One instance of this I cannot avoid mentioning. A person, who desires to assure a particular sum, to be paid at the failure of his life, on condition of the survivorship of another life, may chuse to pay the value in annual contributions during the continuance of his own fingle life, rather than during the continuance of the joint lives, because the annual contributions, in this case, ought to be much less. But a society that would practise such a method of assurance would hurt itself; for, as soon as the life, on whose survivorship the affurance depends, is extinct, the person assured, if then living, would have no longer any benefit in view; and, therefore, would make his payments with reluctance, and, in time, perhaps, entirely withdraw them; the consequence of which would be, that the fociety would fuffer a loss by being deprived of the just value of the expectation it had granted. The plan of a fociety ought always to be fuch, as that the losses arising from discontinuance of payment, should fall on the purchaser, and never on the fociety. I must not forget to add, that it is necesfary, that such a society should be furnished with as complete a set of Tables as possible. This will render the business of the society much more easy, and also much more capable of being conducted by persons unskilled in mathematics. It will also contribute much to its fafety. For in all cases to which Tables can be extended, there would be no occasion for employing any calculators; and, consequently, a danger would be prevented to which, tho' it is not now, it may hereafter be exposed; I mean, the danger of happening to trust unskilful, or careless calculators.—Mr. Dodson, I find, has furnished this fociety with fome important Tables; and his skill was fuch, that there is no reason to doubt, but they may be depended on. They have also others which, I believe, are safe and accurate. But there are some still wanting which should be supplied; and all should be subjected to the examination of the best judges, and afterwards published; together with a minute account of the principles affumed, and the method taken in composing them. Such a publication would be a valuable addition to this part of
science; and it would also be the means of increasing and establishing the credit of the society. In Questions 4th, 6th, 10th, 11th, 14th, 15th, and 16th, I have, with a particular view to this society, given rules, by which may be formed every Table it can want, for shewing the values of assurances on the whole duration, or any terms, of any one or two lives, in all possible cases; and nothing but care and attention can be necessary to enable any good arithmetician to calculate from them. K 3 Perhaps, Perhaps, this may be as much business as any one society should undertake. Rules, however, for finding the values of assurances, in most cases, where the whole duration of any three lives is concerned, may be found in Mr. Simpson's Select Exercises, from pag. 299 to p. 307; and it is not possible they should follow a better guide. ## CHAP. III. Of Public Credit, and the National Debt. THE National Debt is a subject in which the public is deeply interested. Some observations have occurred to me upon it, which I think important; and for this reason, though foreign to my chief purpose in this work, I cannot help here begging leave to offer them to the reader's attention. The practice of raising the necessary supplies for every public service, by borrowing money on interest, to be continued 'till the principal is discharged, must be in the highest degree detrimental to a kingdom, unless a plan is settled, for putting its debts into a regular and certain course of payment. When this is not done, a kingdom, by such a practice, obliges itself to return for every sum it borrows infinitely greater sums; and, for the sake of a present advantage, subjects itself to a burden which must be always growing heavier and heavier, 'till it becomes insupportable. This seems to be now the very state of this nation. At the REVOLUTION, an æra K 4 in in other respects truly glorious, the practice I have mentioned begun. Ever fince, the public debt has been increasing fast, and every new war has added much more to it, than was taken from it, during the preceding period of peace. In the year 1700, it was 16 millions. In 1715, it was 55 millions. A peace, which continued 'till 1740, funk it to 47 millions; but the succeeding war increased it to 78 millions; and the next peace funk it no lower than 72 millions. In the last war it rose to 148 millions; and, at a few millions less than this fum it now stands, and probably will stand, 'till another war raises it perhaps to 200 millions.—One cannot reflect on this without terror.—No resources can be sufficient to support a kingdom long in fuch a courfe. 'Tis obvious, that the consequence of accumulating debts fo rapidly; and of mortgaging pofterity, and funding for eternity, in order to pay the interest of them; must in the end prove destructive. Rather than go on in this way, it is absolutely necessary, that no money should be borrowed, except on annuities, which are to terminate within a given period. Were this practifed, there would be a LIMIT beyond which the national debts could not increase; and time would do that necessarily for the public, which, if trusted to the oeconomy of the conductors of its affairs, might possibly never be done. This, This, therefore, is one of the proposals to which, on this occasion, I wish I could engage attention. - I am fenfible, indeed, that the present burdens of the state would, in this case, be increased, in consequence of the greater present interest, that would be necesfary to be given for money. But I do not consider this as an objection of any weight. For let the annuity be an annuity for a 100 years. Such an annuity is, to the present views of men, nearly the same with an annuity for ever; and it is also nearly the same in calculation, its value at 4 per cent. being 242 years purchase, and therefore only half a year's purchase less than the value of a perpetuity. Supposing, therefore, the public able to borrow money at 4 per cent. on annuities for ever, it ought not to give above 1s. 7d. per cent. more for money borrowed on annuities for 100 years: But should it be obliged to give a quarter, or even an half per cent. more (a), the additional burdens derived from hence, (a) These annuities might be kept 18 years without being much diminished in value; for, supposing interest at 4 per cent. an annuity for 82 years, is within a 49th part, or 21. in 981. worth as much as an annuity for a 100 years. Perhaps, in this way of raising money, it might be best to offer a higher interest at first, which should fall to a lower, at the end of given intervals. Thus, tho' $4\frac{1}{2}$ for 100 years is equal in value to 5 per cent. for 17 years, and after that 4 per cent. for 83 years, yet the latter might appear more inviting. would not be such as could be very sensibly felt; and the advantages, arising from the necessary annihilation of the public debts by time, would abundantly overbalance them. These advantages would be, indeed, unspeakably great. By such a method of raising money, the expence of one war would, in time, come to be always discharged, before a new war commenced; and it would be impossible, that a state should ever have upon it, at any one time, the expence of many wars; or any larger debts than could be contracted, within the limited period of the annuities: and, consequently, it would enjoy the invaluable privilege of being rendered, in some degree, independent of the management of its sinances by ignorant or unfaithful fervants. I must add, that it is by no means necessary, that the limited period of the annuities should be so long as I have mentioned, or 100 years: And that, at any time before the expiration of this period, the public might employ any surplus monies, in extinguishing part of the annuities, by purchasing them for itself at the market price; and thus it might aid the operations of time, and keep its debts within any bounds, that its interest rendered necessary.—Our government has, I know, in some instances adopted the plan now proposed; but it is to be wished that, instead of retracting retracting (a) it, as was once done, it had been carried much further. I am, however, far from intending to recommend this plan as the best a state can pursue. There is another method of gaining the same end, which is, on many accounts, preferable to it. I mean, "by providing an annual saving, to be applied invariably, together with the interest of all the sums redeemed by it, to the purpose of discharging the public debts: Or, in other words, by the establishment of a permanent sink- It is well known, that this plan has been also adopted by our government; but, tho capable of producing the greatest effects in the easiest and surest manner, it has never been carried into execution. It will abundantly appear from what follows that this observation is just. Suppose the annual saving to be 100,000 l. This sum, applied now to discharge an equal debt, bearing interest at 4 per cent. will transfer to the public, from its creditors, an annuity of 4,000 l. At the end of a year, then, there would be a saving of 104,000 l. which would transfer to the public another annuity of 4,160 l. and make the saving, at ⁽a) In the year 1720, the nation was put to the expence of three millions, in order to reduce feveral long and fhort annuities then subfishing, to redeemable perpetuities. the end of two years, to be 108,1601. — Thus, the original fund would go on increasing, at the fame rate with money improved at 4 per cent. compound interest. - At the end of three years it would be 112,4861. At the end of 18 years, 202,5871. Of 36 years, 410,3931. and of 95 years (a), 4,151,1381. At the end of 93 years, then, the nation might be eased of above 4 millions per annum in taxes; and above 100 millions of its debts would be discharged, gradually and insensibly, at no greater expence than 100,000 l. per annum; and, without interfering with any of the resources of government; or making any other difference, than caufing funds to be engaged for a course of time to the public, that would have been otherwise necessarily engaged to its creditors, and which, therefore, must have been entirely useless to it. It is an observation that deserves particular attention here, that, on this plan, it is of little importance what interest a state is obliged to give for money: For the higher the interest, the sooner will such a sund pay off the principal. Thus; a 100 millions borrowed at 8 per cent. and bearing an annual interest of eight millions, would be paid off by a sund, producing annually 100,000 l. in 56 years; that is, in 39 years less time, than if the same money had been borrowed at 4 per cent. ⁽a) See the Questions annexed to the Tables in the Appendix. It follows from hence, that reductions of interest would, on this plan, be no great advantage to a state. They would, indeed, lighten its present burdens; but this advantage would be balanced, by the addition that would be made to its future burdens, in confequence of the longer time, during which it would be necessary to bear them.—I mean this on the supposition, that the savings produced by reductions of interest, are immediately applied to the relief of the state, by annihilating taxes equivalent to them. But if this is not the case; and if, likewise, there is either no plan established for putting the public debts into a certain course of payment, or it is not faithfully carried into execution; in these circumstances, reductions of interest may prove hurtful. For, first, They would only furnish with more money for supplying the deficiencies arifing from bad management. And, fecondly, As, in fuch circumstances, they would only retard, and not prevent the increase of the burdens occasioned by the public debts, a period would come when the affairs of the state would get to a criss; and, at such a period, its danger would be increased, in proportion to the reductions of interest that had been made. In order to understand
this; let us suppose, that a debt, bearing an annual interest of five millions, is the whole debt, which a state can bear without being so much opprest as to be near finking. Let it, however, be supposed to have still some last resources left, which may enable it to bear, for 23 years to come, this load, together with every additional load, which, during this time, may be necessary to be thrown upon it.-Let it further be supposed, that at this time, the state, urged by the fear of an approaching bankruptcy, resolves upon entering into some effectual measures for preserving itself. - Certain it is, that in this case, no measure so effectual can be pursued, as the establishment of a finking fund, and fuch a faithful application of it as I have explained. Let this then be the measure entered upon; and let the state be supposed capable of providing a fund, producing a million annually. If all the debts bear interest at 6 per cent. this fund would pay off three fifths of them, within the time I have mentioned; or, in 23 years; and the state might be saved. But if, in consequence of reductions, they bear interest at no more than 3 per cent. the same fund would not give the same relief, in less than double that time; and, therefore, a bankruptcy might prove unavoidable (a). ⁽a) In some other kingdoms a spunge might be applied in such circumstances, or the sunds reduced one half by an act of despotism, without occasioning any convulsions; but this is not possible in this free country; and, it is to be hoped, never will be possible. I wish I could think, that there is nothing in this representation, that can be applied to the present state of this nation. The interest of the public debts has been reduced, at different periods, from 6 to 5, and from 5 to 4, and 3 per cent.; but still they have grown with rapidity; and we now see ourselves overloaded, and in no way of gaining relief. Had there been no reductions of interest, we should, indeed, have been in the same condition sooner; but, we might have been relieved also sooner, and with less difficulty and dan- ger. What I have now faid implies, that a state always discharges its debts, whatever interest they bear, by paying the original fum borrowed. It may, perhaps, be imagined, that when a loan is under par, it may be discharged at a less expence. But this is by no means so practicable as it may feem; for it should be confidered, that a public loan, now under par, would not long keep fo, after being put into a course of payment: And, for this reason, as a state can never be obliged, in redeeming its debts, to pay more than the original fum borrowed, so neither ought it to expect, in general, to be able to redeem them by paying lefs. I have faid, in general; for I am fenfible, that at the beginning of the operations of a fund, when its produce is small; and also, in a time of war, a state might derive great advantages from the low price price of its debts. And I am sensible also, that considerable advantages might be derived from lotteries (a), in paying the public debts: But lotteries do great mischief in a state, by softering the destructive spirit of gaming. It is wretched policy to make them familiar, by recurring to them in the ordinary course of government. There are great occasions on which they may be necessary, and for such occasions they should be reserved. But to return to the subject I have princi- pally in view. The advantages of putting the public debts into such a course of payment, as I have described, are scarcely to be imagined. It would give a vigour to public credit, which would enable a state always to borrow money easily, and on the best terms. And the encouragement to lenders might be always improved, without any inconvenience, by making every loan irredeemable, during the first 20 or 30 years; for, there could seldom be any occasion, for beginning to discharge any one loan sooner. It might be easily shewn, that the faithful application, from the beginning of the year ⁽a) Thus; 800,000 l. of the 3 per cents. at 87; of 1,000,000, at 70, might be redeemed with half a million of money, confifting of 50,000 lottery tickets at 10l. each, real value; but capable of being fold at 14l., as was done in fome of the last lotteries. 1700, of only 200,000% annually, would long before this time, notwithstanding the reductions of interest, and every waste that has been made of the public money, have caused above half the public funds to revert to the public, and paid off above 80 millions of its debts. The nation might therefore, some years ago, have been eased of the greatest part of the taxes with which it is loaded. The most important relief might have been given to its trade and manufactures; and it might now have been in much better circumstances, than at the beginning of the last war; its credit firm; respected by foreign nations; dreaded by its enemies; and ready to punish any infult that could be offered to it. The near view, likewise, of such a period, during the course of the last war, would have given higher spirits to the nation, and encouraged it to bear the expence occasioned by the war with more chearfulness, and to continue it with vigour for two or three years longer; the consequence of which would, probably, have been, gaining a full indemnification from our enemies, and weakening them to fuch a degree, as would have given us effectual fecurity against them for many years to come. - A new account might also now have been begun; and another fund, not much more considerable, applied in the same way, would, in 60 or 70 years more, have paid, not only all that would have have been now unpaid, but also, probably, a great proportion of such further debts as must be contracted within this time (a). And thus, without any expence that could be sensibly felt, its debts, as soon as they began to grow heavy, might have been constantly reduced to a half, or a third; and not only all danger, but all considerable inconvenience from them prevented. All I have now faid, supposes a single fund with a general appropriation to the payment of the public debts. The same ends might be answered by particular funds, with small surplusses, appropriated to particular debts. In the wars of King William and Queen Anne, 6 per cent. interest was given for all loans. It would have been easy to have annexed to each loan a fund producing a surplus of 11. per cent. after paying the interest; and such a surplus would have been sufficient to annihilate the principal of every loan in 33 years. Had this plan been followed, the disengagement of the public sunds, and the relief attending it, would have begun 50 years ago; and the debts contracted, during the reigns ⁽a) One of the properest objects of taxation in a state is celibacy. I doubt not, but that by a fund supplied only from hence, the end I have in view might have been easily accomplished; and, consequently, the very means of paying off the debts of the nation, rendered at the same time the means of increasing its chief strength, by promoting population in it. of King William and Queen Anne, would have been all cancelled near 20 years ago, without any of that trouble, tumult and distress, which have been occasioned by reductions of interest, and by the various schemes which have been tried for lessening the debts (a). — A fund, yielding 1 l. per cent. surplus, annexed to a loan at 5 per cent., would discharge the principal in 37 years (b). At 4 per cent., in 41 years. At 3 per cent., in 47 years. These observations relate only to what might have been the state of the nation with respect to its debts, had a right plan been pursued from the first. But it will be asked, What can be done with them as they are?—I wish I was able to give a more satisfactory answer to this enquiry. Every one must see our prospect to be discouraging, and our state hazardous. Some have thought, that a good (a) The sums to be laid out would, in this case, be so small at first, that it would be proper to employ them in purchasing part of the loan to be annihilated at the prices in the public market; and this, as far as it can be carried, is the most easy and quiet and silent way possible of extinguishing the public debts. (b) I have all along supposed the produce of the public sunds to come in yearly. The truth is, that it comes in half-yearly; but this gives no advantage in the payment of the public debts worth taking into account. I l. per annum, together with its growing interest, at 4 per cent. taken yearly out of 100 l. will reduce it to nothing in 41 years; if taken half-yearly, it will annihilate the same capital only four months and 12 days sooner. See the questions annexed to the Tables in the Appendix. 3 method might be found out of discharging the national debt, by life annuities. The following observations will shew how vain an imagination this is. Let us suppose, that 33,333,000 l. is to be paid off, by offering to the public creditors life-annuities, in lieu of their 3 per cents. A life at 60, supposing interest at 3. per cent., and the probabilities of life as in the Breslaw, Norwich, and Northampton Tables of Observation, is worth 11 years purchase. A life at 30 is worth 6 years purchase. Certainly, therefore, no scheme of this kind would be fufficiently inviting, which did not offer 8 per cent. at an average, to all fubscribers. Let us, however, suppose, that no more than 7 is given; and that there are 33333 subscribers, at 10001. stock each, for which a life-annuity is to be granted of 75%. or, for the whole stock subscribed, two millions and a half. A million and a half extraordinary, therefore, must be provided towards paying these annuities. Let us further suppose, that the subscribers are persons between the ages of 30 and 60; and that the numbers of them, at all the intermediate ages, are in the same proportions to one another, with the proportions of the living at these ages, as they exist in the world, or, as they are given
in Tables of Observation. Let us again suppose, that as these annuitants die off, they are immediately replaced replaced by others, who are continually offering themselves at the same ages, and in the same proportional numbers at these ages, with those of the original subscribers at the time they subscribed; in consequence of which, the whole number of annuitants will be kept always the fame. In these circumstances, it will be 30 years, at least, before a number will die off, (a) equal to the whole number; that is, before 33 millions of debts will be annihilated. But had the extraordinary million and half provided for paying these annuities, been employed during this time, in paying off fo much of the debt at par every year, extinguishing at the same time every year an equivalent tax, 45 millions would have been paid. But had the favings, also, instead of being funk as they arose, been employed in the fame manner, 71 millions would have been paid. The nation, therefore, must, without doubt, lose greatly by all schemes of this kind; and yet they have been often much talked of; and, indeed, I shall not wonder, should I hereafter see an attempt made to pay off the national debt in this way. I must beg leave to detain the reader here fome time longer. A more particular explanation of this subject, will lead to some ⁽a) A demonstration of this will be given in the Appendix, note (K). observations on the best methods of raising money which, I think, deserve to be carefully considered. When any fum is faid to be the value of a life-annuity, the meaning is, that, in confequence of being improved at interest, and allowing for the chances of mortality, it will bear the whole expence of the annuity. If, therefore, instead of being laid up for improvement, it is either immediately applied to particular uses, or has been long fince spent; there will be a loss, equal to the sum which would have been added to the purchase-money, had it been improved.—This is the reafon of the loss which, I have shewn, the public would fuffer by offering life-annuities, in lieu of flock, in order to extinguish its debts. And for the same reason, it must always lose confiderably by raifing money on life-annuities. Suppose a million raised by annuities on a set of lives, all at 30 years of age. Persons at this age have, (according to Tables III, IV, and V,) an expectation of 28 years. That is; the duration of their lives, taking them one with another, will be 28 years; (see the beginning of the first Essay) and they will be entitled, supposing interest at 4 per cent. to 71. per annum, for every 1001. advanced. For a million then, the public would make 28 payments of 70,0001.—Let us suppose next, that a fund a fund producing this fum annually, instead of being engaged to pay these life-annuities, is engaged for 28 years, to pay the principal and interest of a million, borrowed on redeemable perpetuities, at 4 per cent. There will, at the end of the first year, be a surplus of 30,000l.-In confequence of applying this to the extinction of the principal, it will be reduced to 970,0001. on which, at the end of the fecond year, the interest due will be 38,800%. There will, therefore, be a faving of 12001. Instead of employing this saving in further finking the principal, which would cause the fund to accumulate in the same manner with money at compound interest, let it be taken and employed in any other way: And let the fame be done with all the subsequent favings, referving only 30,000 l. annually, for the purpose of finking the principal. At the end of the second year, the principal will be 940,000 /.; and the faving of interest upon it, at the end of the third year, 2400 l. At the end of the 28th year, the principal will be reduced to 160,000/. The faving of interest that year will be, 1200%. multiplied by 27, or 32,400; and the fum of all the favings will be 453,600/. - Deduct from hence 160,000 l. remaining then undischarged of the principal; and 293,600 l. will be the loss the public would sustain, in the circumstances I have supposed, by raising money on life-annuities. But if we suppose the favings, as they arise, as well as the constant. L 4 ftant fum of 30,000% to be applied to the discharge of the principal, instead of being spent on current services; the whole million will be annihilated in 21 years and half; and the loss to the public by life-annuities, will be 6½ years purchase of the annuities; or 455,000%.—By similar deductions it may be easily found, that the loss, in younger lives, is greater; in older lives less; but never inconsiderable, except in the oldest lives. It appears, therefore, that, in confequence of such a way of raising money, the public must always pay much more in interest than there is any occasion for; and waste a sum nearly equal to half the principal borrowed (a). This, (a) It is obvious, that the observations here made, may be applied to the common methods of raising money, on life-annuities, for building churches, paving streets, making navigations, &c. &c. And, in general, to all cases where the money received, is not laid up to be improved. -For, to view this subject in another light, let us suppose 10,000 l. borrowed for any public work, on perpetuities, at 4 per cent. And, if that will afford more encouragement, let them be made irredeemable for any number of years less than seventeen. Let us further suppose, such rates, or tolls, established for the payment of the interest and principal, as shall produce double the interest of the sum borrowed; or 800! per annum, instead of 400l. per annum. Let the surplus, as it comes in halfyearly, be laid up to accumulate in the public funds. In 17 years and half, reckoning interest at 4 per cent. a capital will be raifed, equal to the whole fum borrowed; and, therefore; at the end of that time, the whole debt may be discharged, and the whole transaction finished. But if the same sum had been borrowed on annuities, for This, however, tho' so wasteful, is a more frugal way of procuring money than by borrowing on perpetuities, without putting them into a course of redemption; for in this case, (if a spunge is not applied) the loss must be infinite. I must add, that these observations are particularly applicable to all the ways of raising money by the sale of reversions.—The public, for instance, might procure a million, by offering for it a fund, that will be disengaged at the end of 18 years; and then produce 80,000 l. per annum for ever. This, supposing interest at 4 per cent., would be the very same with offering two millions, 18 years hence, for one million now: And a private man, or an office for the sale of reversions, might gain by such a transaction; because, the money advanced, in consequence of being improved, might, in 18 years, be more than the lives of a fet of persons 50 years of age, at 8 per cent. which is 1 l. per cent. less than the true value of such annuities: Had this, I fay, been done, half the annuitants would have been alive at the end of the term I have mentioned; (fee Tables III, IV, and V,) and the whole transaction, together with the expences and trouble attending the management of it, could not have been finally closed 'till the extinction of all the lives; that is, not in less time, most probably, than 35, or, perhaps, 40 years. -It is a necessary observation here, that, if public credit maintains its ground, much will not depend, in the plan now proposed, on the rise and fall of STOCKS. If a war finks them, the money laid out, while the war lasts, will accumulate faster. If a peace raises them, the money that had been previously laid out will be proportionably increafed. doubled. doubled. But, as the *public* always borrows for immediate fervices, and never lays up money, it would necessarily lose a sum equal to the whole sum borrowed: And the same money might have been borrowed on a fund, producing 50,000*l. per annum*; which would not only pay the interest, but discharge the whole principal in 41 years (a). By raising money on life-annuities, the present members of a state take a heavier load on themselves, in order to exempt posterity; and there would be a laudable generosity in this, were it not for the folly of it; the same exemption being equally practicable at half the expence.—On the other hand. By borrowing on reversionary grants, the present members of a state exempt themselves entirely, by throwing the load doubled on posterity; and there is a cruelty and injustice in this that nothing can excuse. It is well known, that both these methods of raising money have been practised among us. This, however, is, by no means, the worst that has been done. It has been common to borrow money to pay the interest of money borrowed, and thus to give compound interest for money; and our parliaments have, sometimes, expressly provided, that this shall be done for a succession of years. But ⁽a) The smallness of the sums, which I have here and elsewhere sometimes supposed to be employed in discharging the public debts, can create no difficulties, because there is no sum which may not be applied to this use by purchasing stock. But to return to the main point I had in view. The enquiry which has occasioned this digression, must be highly interesting to every person who wishes well to his country.—All schemes for discharging the public debts, by life-annuities, have been shewn to be absurd and extravagant.-In general; it may be obferved, that it is far from probable, that any money which the nation can spare, if applied fo as to bear only simple interest, can be capable of reducing its debts within due bounds; or of doing us, in our present circumstances, any essential service. A fund, producing a furplus of even two millions annually, would, when thus applied, pay no more than 40 millions in 20 years; and, in that time, a war might probably come, which would interrupt the application of it; and increase our debts much more than such a fund had
lessened them. Certain it is, therefore, that if our affairs are to be retrieved, it must be by a fund increasing itself in the manner I have explained. The smallest fund of this kind is, indeed, omnipotent, if it is allowed time to operate. But we are, I fear, got so near to the limits of the resources of the nation, that it cannot be allowed much time: And, in order to make amends for this, it is necessary that it should be large.—Let us then suppose, that the nation is still strong enough to enable it to provide a fund, that shall yield a million and half annually, for 20 years to come: And also, that, together with all its present burdens, it is capable of bearing every additional burden that 20 years more can bring upon it. If this is not true, we have, I think, nothing to do but to wait the iffue, and tremble. A fund, producing annually a million and a half, would increase to three millions per ann. in 20 years (a.) At the end of this term, the nation might be eased of the most oppressive taxes, to the amount of a million and a half; and the consequence would prove, that, if there should have been a war, either the whole, or much the greatest part of the addition occasioned by it to the public burdens, would be taken off, and the nation reinstated nearly in its present circumstances. But, if there should have been no war, the national debt and the taxes charged with it, would be reduced a third below the sums at which they now stand; and the nation would be so much relieved as to be prepared for a war.—The remaining million and half would, ⁽a) It should be remembered, that in the year 1779, 11. per cent. on the consolidated 4 per cents, will be annihilated, and that I suppose the savings derived from hence to be taken at that time as a part of the fund.—Methods might be easily contrived for getting this saving immediately, which would be some advantage. in 23 years, increase again to three millions per annum; and then, so much more of the public taxes would be set free; 50 millions more, or 93 millions in all, of the public debts would be discharged, and the difficulties of the nation would be, in a great measure, conquered.—During this whole course of time, there may possibly be but one war; and should that happen, the appropriation at the end of it, of about 400,000 l. per annum, might be enough to answer all purposes. In these observations, I suppose the 3 per cents to be paid off at par; and no advantage taken at any time of their low price. By taking this advantage, and with the help of a little management, a fund, producing annually a million and half, might be made to increase to another million and half, in less time than I have affigned. Should there be a war in a few years, the 3 per cents. would probably fall below 75; and then the proprietors of them must be glad to part with them at this price; the consequence of which, supposing the war to last eight years, would be, that the fund would double itself, and the nation be relieved in the manner I have mentioned, in 18, instead of 20 years.— The advantage will be the same, supposing the government at such a time to go on in paying off the 3 per cents at par. For the effect of this would be, that money might be borrowed for the public service on proportionably ably better terms. Suppose, for instance, that four millions must be borrowed for the fervice of the year; and let the produce of the fund be then increased to two millions; and the interest of money in the stocks, above 4 per cent. In these circumstances, it would be the interest of the lenders of money, to take 3 per cent. for the fums they advanced, in confideration of having their 3 per cents paid off at par, to the amount of half these fums.—War, therefore, would accelerate the redemption of the public debts; and it would do this the more, the longer it lasted, and the higher it raised the interest of money. Or if, in consequence of paying always at par, this could not happen; an equivalent effect would be produced in the way just mentioned. The stocks would be always kept up by the operations of the fund; and, in proportion to the fums yielded by it, the public would be able to borrow money more advantageously, and less would be added to its burdens.—This feems to me an observation of particular consequence. It demonstrates, that the invariable application, in war as well as peace, of the produce of the fund I am supposing, to the payment of the national debts, rather than to any current fervices, would, independently of its effect in (a) redeeming these debts, be attended ⁽a) So true is this, that a war, were we now engaged in it, would only render the present time so much the ed with great advantages to the public. But this is a subject on which I shall have occasion to say more presently. more proper for entering into measures for paying the public debts. And the following observations will put this out of doubt. As it is now become the practice to have recourse to lotteries in peace, we may be fure, that no year will pass without them in war. I would, therefore, propose, that, instead of making use of them in raising the annual supplies in war, they should be then applied as an aid in discharging the public debts.—Suppose the war to last 10 years, and the 3 per cents at 70. Suppose also, each lottery to consist of 750,000l. in tickets, which, when disposed of to subscribers, will bring in 1,050,000%. On these suppositions, the whole loss to the public, from applying the lotteries to the payment of the public debts, rather than to the current supplies, will be 1,050,000l. annually, or 10 millions and in all.—The gain will be as follows. 750,000 l. of the produce of the finking fund, formed into tickets, will be the fame with 1,050,000 l.; and this fum will pay off a million and a half of the 3 per cents, every year, or 15 millions in all; and the growing favings arifing from these payments will, at the end of 10 years, have paid, at least, two millions more. The nation, therefore, having paid off 17 millions of its debts, and added to them only 10 millions and 1, will gain fix millions and 1. But this will be the smallest part of its gains. All the produce of the finking fund, over and above 750,000 l. might be charged with the payment of the interest of such new debts as would be necessary to be contracted during the war; and, at the end of it, the nation, with the help of 200,000l. to be disengaged in 1779, by the reduction of the 4 per cents, would find itself possessed of a fund, producing 1,450,000/. annually; which, faithfully employed, might probably be sufficient to extricate it from all its difficulties. - Besides this; such a scheme would not only preferve, but raife and establish the credit of the public: And he only can be duly sensible of the importance of this, who will confider, what danger there would be in another The finking fund, in its present state, and, after supplying the deficiencies of the peace establishment, yields, I suppose, a considerable part of the million and a half I have mentioned. An annual lottery might easily raise 200,000/. more. But this is a measure which I cannot wish to see carried into execution, unless absolutely necessary. Were the managers of our affairs sufficiently in earnest in this business, I cannot doubt but that such favings might be made in the collection and expenditure of the national revenue, as would cause the finking fund to yield, for 18 or 20 years to come, the whole of this fum, without imposing any new burdens on the public. But, were there, indeed, no way of providing any part of it, but by creating new funds, or imposing new taxes; it ought to be done, because it must be done, or the nation be ruined. The evils and dangers, attending an exorbitant public debt in this country, are so great, that they cannot be exaggerated.—Without repeating, what has been so often said, of its increasing the dependence on the crown, by jobs and places without number; occasioning ther war, should it continue long, of either everwhelming public credit; or of being terrified, by the apprehension of such a calamity, into an ignominious and fatal peace. The establishment, therefore, of some such plan as that now proposed, would, at the beginning of a war, be the most important of all works. execrable execrable practices of the Alley; rendering us tributary to foreigners; and raifing the price of provisions and labour; and, consequently, checking population, and loading our trade and manufactures; I will only take notice of the two following evils which attend it. In the first place. It must check the exertions of the spirit of liberty in the kingdom. The tendency of every government is to despotism; and in this it must end, if the people are not constantly jealous and watchful. Opposition, therefore, and resistance are often necessary. But they may throw things into confusion, and occasion the ruin of the public funds. The apprehension of this must influence all who have their interest connected with the preservation of the funds, and incline them always to acquiescence and servility. But further. It exposes us to particular danger from forcign as well as domestic enemies, by making us fearful of war, and incapable of engaging in it, however necessary, without the hazard of bringing on terrible convulsions by overwhelming public credit. All these are evils which must increase with every increase of the national debt; and there is a point at which, when they arrive, the consequences must be fatal (a).—I am ⁽a) "Either the nation (Mr. Hume fays, Effays Vol. II. p. 145,) must destroy public credit; or public credit will destroy the nation."—A dreadful alternative! surely. now writing under a conviction, that I am doing the little in my power to preserve my country from this danger. I have shewn, that an annual supply of a million and a half for 18, or at most 20 years, may be made the means of restoring and saving us. This, therefore, is
our remedy; and it ought to be applied immediately, least it should not be applied time enough. But to proceed to fome further observa- What has been faid, has all along fupposed a facred and inviolable application of the fund I have described, and of all its earnings, to the purpose of finking the national debt. The whole effect of it depends on its being allowed to operate, WITHOUT INTERRUP-TION, a proper time. But it may be asked, how this can be fecured? Or, by what method an object, that must be continually growing more and more tempting, can be defended against invasion and rapine? - I might here mention the superintendency and care of the representatives of the kingdom, the faithful guardians of the state, to whom ministers are responsible for the use they make of the public money. But experience has thewn, that we cannot rely on this fecurity.—The difficulty, therefore, now mentioned, is the very greatest difficulty the nation tion has to struggle with in the payment of its debts. The finking fund was established in the year 1716, or foon after the accession of the present family, at a time when the public debts, tho' not much more than a third of what they are now, were thought to be so confiderable as to be alarming and dangerous. It was intended as a SACRED DEPOsir never to be touched; the law which established it declaring, that it was to be applied to the payment of the principal and interest of such national debts and incumbrances, as had been incurred before the 25th of December 1716; and to no other use, intent or purpose whatever. - The faith of parliament, therefore, as well as the fecurity of the kingdom, feemed to require, that it should be preferved carefully and rigoroufly from alienation. But, notwithstanding this, it has been generally alienated; and the produce of it employed, in helping to defray fuch current expences as the exigencies of the state rendered necessary. In order to justify this, it has been usual to plead, that when money is wanted, it makes no difference, whether it is taken from hence, or procured by making a new loan. There cannot be a worse sophism than this. The difference between these two methods of procuring money is no less than infinite.—For, let us suppose, a million wanted for any public service. If it is borrowed at M 2 4 per cent. the public will lose by the payment of interest 40,000% the first year, and the fame the fecond year, and the same for ever afterwards. But if it is taken out of the finking fund, the public will lose 40,000 l. the first year; 4160l. the second year; 80,000l. the 18th year; a million the 85th year: For these are the sums that would, at these times, have otherwise necessarily reverted to the public. It loses, therefore, the advantage of paying in 85 years, with money of which otherwise no use could have been made, troenty-five millions of debt.—In other words; by employing the SINKING FUND, in bearing current expences, rather than borrowing new money; the state, in order to avoid giving simple interest for money, is made to alienate money, that must have otherwise been improved at compound interest; and that, in time, would have necessarily increased to any sum (a).--Had a faithful use been made from the first, of only one THIRD of the produce of this fund, near three fourths of our present debts might now have been discharged; and, in a few years more, the whole of them might have been discharged (b).—Can it be possible then (b) See a particular explanation and proof of this in the Questions following the Tables in the Appendix. ⁽a) The principal observations in this Chapter, I have given just as they occurred to my thoughts, without knowing that any of them had been made by other writers. Some proposals of a similar nature, but very differently represented, I have since found in Mr. Postlethwayt's Dictionary, under the articles Public Credit, Debts, Funds, &c. to think, without regret and indignation, of that misapplication of this fund, which, with the consent of parliaments always complying, our ministers have practised?—I find it difficult here to speak with calmness.—But I must restrain myself. Calculation, and not censure, is my business in this work.—I must believe, that the grievance I have mentioned, has proceeded more from inattention and mistake, than from any design to injure the public. ## ESSAY I.* Containing Observations on the Expectations of Lives; the Increase of Mankind; the Number of Inhabitants in London; and the Influence of great Towns, on Health and Population. In a Letter to Benjamin Franklin, Esq; L.L.D. and F.R.S. DEAR SIR, Beg leave to submit to your perusal the following observations. If you think them of any importance, I shall be obliged to you for communicating them to the Royal Society. You will find, that the chief subject of them is the present state of the city of London, with respect to healthfulness and number of inhabitants, as far as it can be collected from the bills of mortality. This is a subject that has been considered by others; but the proper method of calculating M 4 from ^{*} This Essay was read to the ROYAL SOCIETY, April 27th, 1769, and has been published in the Philosophical Transactions, Vol. 59. It is here republished with several additions; particularly, the *Possicipt*. from the bills has not, I think, been suffici- ently explained. No competent judgment can be formed of the following observations, without a clear notion of what the writers on Life-Annuities and Reversions have called the Expectation of Life. Perhaps this is not in common properly understood; and Mr. De Moivre's manner of expressing himself about it is very liable to be mistaken. The most obvious sense of the expectation of a given life is, "That particular number " of years which a life of a given age has an " equal chance of enjoying." This is properly the time that a person may reasonably expect to live; for the chances against his living longer are greater than those for it; and, therefore, he cannot entertain an expectation of living longer, confiftently with probability. This period does not coincide with what the writers on Annuities call the expectation of life, except on the supposition of an uniform decrease in the probabilities of life, as Mr. Simpson has observed in his Select Exercises, p. 273.—It is necessary to add, that, even on this supposition, it does not coincide with what is called the expectation of life, in any case of joint lives. Thus, two lives of 40 have an even chance, according to Mr. De Moivre's hypothesis (a), of continuing together only 132 years. But the expectation ⁽a) See the Notes in pag. 2, and 23. of two equal joint lives being (according to the fame hypothesis) always a third of the common complement; it is in this case 15 3 years. It is necessary, therefore, to observe, that there is another fense of this phrase, which ought to be carefully diftinguished from that now mentioned. It may fignify, "The " mean continuance of any given single, joint, " or furviving lives, according to any given "Table of observations:" that is, the number of years which, taking them one with another, they actually enjoy, and may be considered as sure of enjoying; those who live or furvive beyond that period, enjoying as much more time in proportion to their number, as those who fall short of it enjoy less. Thus; Supposing 46 persons alive, all 40 years of age; and that, according to Mr. De Moivre's hypothesis, one will die every year 'till they are all dead in 46 years; half 46, or 23, will be their expectation of life: That is; The number of years enjoyed by them all, will be just the same as if every one of them had lived 23 years, and then died; fo that, supposing no interest of money, there would be no difference in value between annuities payable for life to every fingle person in such a set, and equal annuities payable to another equal fet of persons of the same common age, supposed to be all sure of living just 23 years and no more. In like manner; the third of 46 years, or 15 years and 4 months (a), is the expectation of two joint lives both 40; and this is also the expectation of the furvivor. That is; supposing a set of marriages between persons all 40, they will, one with another, last just this time; and the furvivors will last the same time. And annuities payable during the continuance of fuch marriages would, supposing no interest of money, be of exactly the same value with annuities to begin at the extinction of fuch marriages, and to be paid, during life, to the furvivors. In adding together the years which any great number of fuch marriages, and their furvivorships have lasted, the fums would be found to be equal. One is naturally led to understand the expectation of life in the first of the senses now explained, when, by Mr. Simpson and Mr. De Moivre, it is called, the number of years which, upon an equality of chance, a perfon may expect to enjoy; or, the time which a person of a given age may justly expect to continue in being; and, in the last sense, when it is called, the share of life due to a person. But, as in reality it is always used in the last of these senses, the former language should not be appplied to it: And it is in this last sense, that it coincides with the sums of the present probabilities, that any given single or joint lives shall attain to the end of the ⁽a) See Note (L) Appendix. tst, 2d, 3d, &c. moments, from this time to the end of their possible existence; or, (in the case of survivorships) with the sum of the probabilities, that there shall be a survivor at the end of the 1st, 2d, 3d, &c. moments, from the present time to the end of the possible existence of survivorship. This coincidence every one conversant in these subjects must see, upon reslecting, that both these senses give the true present value of a life-annuity, secured by land, without interest of money (a). This period in joint lives, I have observed is never the same with the
period which they have an equal chance of enjoying; and in single lives, I have observed, they are the same only on the supposition of an uniform decrease in the probabilities of life. If this decrease, instead of being always uniform, is accelerated in the last stages of life; the former period, in single lives, will be less than the latter; if retarded, it will be greater. It is necessary to add, that the number expressing the former period, multiplied by the number of single or joint lives whose expectation it is, added annually to a society or town, gives the whole number living together, to which such an annual addition would in time grow. Thus; since 19, or the third of 57, is the expectation of two ⁽a) See Note (L) in the Appendix. joint lives whose common age is 29, or common complement 57; twenty marriages every year between persons of this age would, in 57 years, grow to 20 times 19, or 380 marriages always existing together. The number of furvivors also arising from these marriages, and always living together, would, in twice 57 years, increase to the same number. And, fince the expectation of a fingle life is always half its complement; in 57 years likewife, 20 fingle persons aged 29, added annually to a town, would increase to 20 times 28.5 or 570; and, when arrived at this number, the deaths every year will just equal the accessions, and no further increase be possible. It appears from hence, that the particular proportion that becomes extinct every year, out of the whole number constantly existing together of single or joint lives, must, wherever this number undergoes no variation, be exactly the fame with the expetiation of those lives, at the time when their existence commenced. Thus; was it found that a 19th part of all the marriages among any body of men, whose numbers do not vary, are diffolved every year by the deaths of either the husband or wife, it would appear that 19 was, at the time they were contracted, the expectation of these marriages. In like manner; was it found in a fociety, limited to a fixed number of members. members, that a 28th part dies annually out of the whole number of members, it would appear that 28 was their common expectation of life at the time they entered. So likewife; were it found in any town or district, where the number of births and burials are equal, that a 20th or 30th part of the inhabitants die annually, it would appear, that 20 or 30 was the expectation of a child just born in that town or district. These expeEtations, therefore, for all single lives, are easily found by a Table of Observations, shewing the number that die annually at all ages, out of a given number alive at those ages; and the general rule for this purpose, is " to divide " the fum of all the living in the Table, at " the age whose expectation is required, and " at all greater ages, by the fum of all that " die annually at that age, and above it; or; "which is the same, by the number in the " Table of the living at that age; and half " unity subtracted from the quotient will be "the required expectation (a)." Thus, in Dr. - Halley's Table, the fum of all the living at 20 and upwards is, 20,724. The number living at that age is 598; and the former number divided by the latter, and half unity ⁽a) This rule, and also rules for finding in all cases the expectations of joint lives and survivorships, may be deduced with great ease, by having recourse to the doctrine of fluxions. In this method, Mr. De Moivre fays, he discovered them. See Appendix, Note (L), where an account will be given of these deductions, omitted by Mr. De Moivre. (a) subtracted from the quotient, gives 34.15 for the expectation of 20. The expectation of the same life by Mr. Simpson's Table, formed from the bills of mortality of London, is 28.9 (b). These (a) If we conceive the recruit necessary to supply the waste of every year to be made always at the end of the year, the dividend ought to be the medium between the numbers living at the beginning and the end of the year. That is, it ought to be taken less than the sum of the living in the Table at and above the given age, by half the number that die in the year; the effect of which diminution will be the same with the subtraction here directed.—The reason of this subtraction will be further explained, in the beginning of the last Essay. (b) It appears in p. 169 and 170, that the expectations of fingle and joint lives are the same with the values of annuities on these lives, supposing no interest or improvement of money .- In confidering this subject, it will, probably, occur to some, that, allowing interest for money, the values of lives must be the same with the values of annuities certain for a number of years equal to the expectations of the lives. But care must be taken not to fall into this mistake. The latter values are always greater than the former: And the reason is, that, tho' a number of single or joint lives of given ages will, among them, enjoy a given number of years, yet some of them will enjoy a much greater, and some a much less number of years. Thus; 100 marriages among persons, all 29, would, as I have faid, one with another, exist 19 years; and an office bound to pay annuities to fuch marriages during their continuance, might reckon upon making 19 payments for each marriage. But then, many of these payments would not be made 'till the end of 30, and some not 'till the end of 40 years. And it is apparent, that on account of the greater value of quick than late payments, when money bears interest, 19 payments so made cannot be worth as much, as the fame number of payments made regularia These observations bring me to the principal point which I have had all along in view. They fuggest to us an easy method of finding the number of inhabitants in a place, from a Table of Observations, or the bills of mortality for that place, supposing the yearly births and burials equal. "Find by "the Table, in the way just described, the " expectation of an infant just born, and this, " multiplied by the number of yearly births, " will be the number of inhabitants." At Breflaw, according to Dr. Halley's Table, though half die under 16, and therefore an infant just born has an equal chance of living only 16 years; yet his expectation, found by the rule I have given, is near 28 years; and this, multiplied by 1238 the number born annually, gives 34,664, the number of inhabitants. In like manner, it appears from regularly at the end of every year, 'till in 19 years they are all made. This observation might be employed, to demonstrate further, the error of those who have maintained, that the value of a given life is the same, with the value of an annuity certain, for as many years as the life has an equal chance of existing. Were this true, an annuity on a life, supposed to be exposed to such danger in a particular year, as to create an equal chance, whether it will not fail that year, would, at the beginning of the year, be worth nothing, though supposed to be sure of continuing for ever, if it escaped that danger.—But there can be no occasion for taking notice of an opinion, which has been embraced only by persons ignorant of mathematics, and plainly unacquainted with the genuine principles of calculation on this subject.—See a Pamphlet on Life-Annuities by Weyman Lee, Esq; of the Inner Temple. Mr. Mr. Simpson's Table, that, though an infant just born in London has not an equal chance of living 3 years, his expectation is 20 years; and this number, multiplied by the yearly births, would give the number of inhabitants in London, were the births and burials equal .--The medium of the yearly births, for 10 years, from 1759 to 1768, was 15,710. This number multiplied by 20, is 314,200; which is the number of inhabitants that there would be in London, according to the bills, were the yearly burials no more than equal to the births: that is, were it to support itself in its number of inhabitants, without any supply from the country. But for the period I have mentioned, the burials were, at an average, 22,956, and exceeded the christenings 7,246. This is, therefore, at prefent, the yearly addition of people to London from other parts of the kingdom, by whom it is kept up. Suppose them to be all, one with another, persons who have, when they remove to London, an expectation of life equal to 30 years. That is; suppose them to be all of the age of 18 or 20, a supposition certainly far beyond the truth. From hence will arise, according to what has been before observed, an addition of 30 multiplied by 7.246; that is, 217,380 inhabitants. This number, added to the former, makes 531,580; and this, I think, at most, would be the number of inhabitants in London were the bills perfect. But But it is certain, that they give the number of births and burials too little. There are many burying-places that are never brought into the bills. Many also emigrate to the navy and army and country; and these ought to be added to the number of deaths. What the deficiencies arifing from hence are, cannot be determined. Suppose them equivalent to 6000 every year in the births, and 6000 in the burials. This would make an addition of 20 times 6000, or 120,000, to the last number; and the whole number of inhabitants would be 651,580. If the burials are deficient only two-thirds of this number, or 4000; and the births, the whole of it; 20 multiplied by 6000, must be added to 314,290, on account of the defects in the births: And, fince the excess of the burials above the births will then be only 5,246; 30 multiplied by 5,246 or 157,380, will be the number to be added on this account; and the fum, or number of inhabitants, will be 591,580.—But if, on the contrary, the burials are deficient 6000, and the births only 4000; 80,000 must be added to 314,290, on account of the deficiencies in the births; and 30 multiplied by 9,246, or 277,380, on account of the excess of the burials above the births; and the
whole number of inhabitants will be 671,580. Every supposition in these calculations is too high. Emigrants from London are, in N par, particular, allowed the same expectation of continuance in London with those who are born in it, or who come to it in the firmest part of life, and never afterwards leave it; whereas it is not credible that the former expectation should be so much as half the lat-But I have a further reason for thinking that this calculation gives too high numbers, which has with me irrefistible weight. It has been feen, that the number of inhabitants comes out less on the supposition, that the defects in the christenings are greater than those in the burials. Now it seems evident that this is really the case; and, as it is a fact not attended to, I will here endeavour to explain diffinctly the reason which proves it. The proportion of the number of births in London, to the number who live to be 10 years of age, is, by the bills, 16 to 5. Any one may find this to be true, by fubtracting the annual medium of those who have died under 10, for some years past, from the annual medium of births for the same number of years. -- Now, tho', without doubt, London is very fatal to children, yet it feems incredible that it should be so fatal as this implies. The bills, therefore, probably, give the number of those who die under 10 too great in proportion to the number of births; and there can be no other cause of this, than a greater deficiency in the births than in the burials. burials. Were the deficiencies in both equal; that is, were the burials, in proportion to their number, just as deficient as the births are in proportion to their number, the proportion of those who reach 10 years of age to the number born, would be right in the bills, let the deficiencies themselves be ever fo confiderable. On the contrary; were the deficiencies in the burials greater than in the births, this proportion would be given too great; and it is only when the former are least, that this proportion can be given too little.—Thus; let the number of annual burials be 23,000; of births 15,700; and the number dying annually under 10, 10,800. Then 4,900 will reach 10, of 15,700 born annually; that is, 5 out of 16. -Were there no deficiencies in the burials. and were it fact that only balf the number born die under 10; it would follow, that there was an annual deficiency equal to 4,900 fubtracted from 10,800, or 5,900, in the births .- Were the births a third part too little, and the burials also a third part too little, the true number of births, burials, and of children dying under 10, would be 20,933--30,666, and 14,400; and, therefore, the number that would live to 10 years of age, would be 6,533 out of 20,933, or 5 of 16 as before. - Were the births a third part, and the burials so much as two-fifths wrong, the number of births, burials, and children dying under 10 would N 2 be be 20,933-32,200-and 15,120. And, therefore, the number that would live to 10 would be 5;813 out of 20,933, or five out of 18.—Were the births a 3d part wrong, and the burials but a 6th, the foregoing numbers would be 20,933-26,833-12,600; and, therefore, the number that would live to 10 would be 8,333 out of 20,933, or 5 out of 12.56: And this proportion feems as low as is confiftent with probability. It is somewhat less than the proportion in Mr. Simpson's Table of London Observations; and much less than the proportion in the Table of Observations for Breslaw. The deficiencies, therefore, in the births must be greater than those in the burials (a); and the least number I have given, or 591,580 is nearest to the true number of inhabitants. However, should any one, after all, think that it is not improbable that only 5 of 16 should live in London to be 10 years of age; or that above two-thirds die under this age; the consequence will still be, that the foregoing cal- ⁽a) One obvious reason of this sact is, that none of the births among Jews, Quakers, Papists, and the three denominations of Disserters are included in the bills, whereas many of their burials are. It is further to be attended to, that the abortive and still-born, amounting to about 600 annually, are included in the burials, but never in the births. If we add these to the christenings, preserving the burials the same, the proportion of the born, according to the bills, who have reached ten for the last fixteen years, will be very nearly one third instead of five sixtenths. culation has been carried too high. For it will from hence follow, that the expectation of a child just born in London cannot be so much as I have taken it. This expectation is 20, on the supposition that half die under 3 years of age, and that 5 of 16 live to be 29 years of age, agreeably to Mr. Simpson's Table. But if it is indeed true, that balf die under 2 years of age, and 5 of 16 under 10, agreeably to the bills, this expectation cannot be so much as 17 (a); and all the numbers before given will be considerably reduced. Upon the whole: I am forced to conclude from these observations, that the second number I have given, or 651,580, though short of the number of inhabitants commonly supposed in London, is, very probably, much greater, but cannot be less, than the true number. Indeed, it is in general evident, that in cases of this kind numbers are very much over-rated. The ingenious Dr. Brakenridge, 14 years ago, when the bills were lower than they are now, from the number of houses, and allowing fix to a house, made the number of inhabitants 751,800. But his method of determining the (b) number of houses is too precarious; (b) Vid. Phil. Transactions, Vol. XLVIII, p. 788. In a paper subsequent to this, Dr. Brakemidge tells us, N 3 ⁽a) This may be deduced from the observations in the last Essay; and it will be there proved, that, in reality, this expectation does not exceed 18. carious; and, befides, fix to a house is too large an allowance.—Many families now have two houses to live in. - The magistrates of Norwich, in 1752, took an exact account of both the number of houses and individuals in that city. (a) The number of houses that in a late furvey it appeared, that in all Middlefex, London, Westminster, and Southwark, there were 87,614 houses, of which 19,324 were cottages, and 4810 empty. And he acknowledges, that this, if right, proves London to be much less populous than he had made it. See Phil. Trans. Vol. 50, p. 471. He does not mention how this furvey was taken; but most probably it must have been incorrect.-Mr. Maitland gives two accounts of the number of houses within the bills. One carefully taken from the books of all the parishes and precincle belonging to London; and another taken from a particular furvey in 1737, made by himfelf with incredible pains. The first account makes the number of houses 85,805. The fecond account makes it 95,968. And the reason of the difference he observes, is, that many landlords of small places, paying all taxes, they are in the parish books reckoned as fo many fingle houses, tho' each of them contain several houses. See Mr. Maitland's History of London, 2d Book at the end.—This, perhaps, may be alfo the reason of the deficiencies which, I suppose, there must be in the survey, mentioned by Dr. Brakenridge.—It will be observed presently, that the number of inhabitants in London in 1737, was confiderably greater than it is now. (a) Vid. Gentleman's Magazine for 1752, and Dr. Short's Comparative History of the Increase of Mankind, p. 38. In page 58 of this last work the author says, that, in order to be fully fatisfied about the number of persons to be allowed to a family, he procured the true number of families and individuals in 14 market towns, some of them confiderable for trade and populousness; and that in them were 20,371 families, and 97,611 individuals, houses was 7,139, and of individuals 36,169, which gives nearly 5 to a house.—Another or but little more than $4\frac{3}{4}$ to a family. He adds, that, in order to find the difference in this respect between towns of trade and country parishes, he procured, from divers parts of the kingdom, the exact number of families and individuals, in 65 country parishes. The number of families was 17,208; individuals 76,284; or not quite 41 to a family.—In the place I have just referred to, in the Gentleman's Magazine, there is an account of the number of houses and inhabitants in Oxford, exclusive of the colleges; and in Wolverhampton, Coventry and Birmingham, for 1750. The number of persons to a house was, by this account, $4\frac{4}{5}$ in the two former towns, and $5\frac{3}{5}$ in the two latter. - Dr. Davenant, from Mr. King's Observations, gives 413, as the number of persons to a family for the whole kingdom. See An Essay on the probable method of making a people gainers by the balance of trade. From an account with which a friend at Shrewfbury has favoured me, it appears, that in that town, in 1750, the number of inhabitants to a house was 41. - Very exact accounts, of which I shall take further notice, prove, that in the parish of Holy-Cross, one of the suburbs of Shrewsbury, and at Northampton, the same proportion is 45 to a house in the former; and 43 in the latter. - It seems, therefore, that five perfons to a house is an allowance large enough for London, and too large for England in general. From whence it will follow, that Dr. Brakenridge has likewife over-rated the number of people in England. In a letter to George Lewis Scott, Efg; published in 1756, in the Phil. Trans. Vol. 49, p. 877; he says, that he had been certainly informed, that the number of houses rated to the window-tax was 690,000. The number of cottages not rated, he adds, was not accurately known; but from the accounts given in, it appeared, that they could not exceed 200,000; and from these data, in confequence of allowing fix to a house, he makes the number of people in England to be 5,340,000. Perhaps the number of houses in this account
is too little. N 4 Suppose ther method which Dr. Brakenridge took to determine the number of inhabitants in London was from the annual number of burials, adding 2000 to the bills for omiffions, and supposing a 30th part to die every year. In order to prove this to be a moderate suppofition he observes that, according to Dr. Halley's Observations, a 34th part die every year at Breslaw. But this observation was made too inadvertently. The number of annual burials there, according to Dr. Halley's account, was 1174, and the number of inhabitants, as deduced by him from his Table, was 34,000; and therefore a 29th part died every year. Besides; any one may find, that in reality the Table is constructed on the supposition, that the whole number born, or 1238, die every year; from whence it will follow that a 28th part died every year. (a) Dr. Brakenridge, therefore, Suppose it a million; and let five be allowed to a house; and the number of people in England will be five millions: Which, fince five to a house is too large an allowance, ought to be considered as, probably, more than the true number. — The number of people in Scotland and Ireland, Dr. Brakenridge estimates at three millions. See Phil. Trans. Vol. 50, p. 473. (a) Care should be taken, in considering Dr. Halley's Table, not to take the first number in it, or 1000, for so many just born. 1238, he tells us, was the annual medium of births, and 1000 is the number he supposes all living at one year and under. It was inattention to this that led Dr. Brakenridge to his mistake. Ţ\$ had he attended to this, would have stated a 24th part as the proportion that dies in London every year, and this would have taken off 150,000 from the number he has given. But even this must be less than the just proportion. For let three-fourths of all who either die in London or migrate from it, be such as have been born in London; and let the rest be persons who have removed to London from the country, or from foreign nations. The expectation of the former, it has been shewn, cannot exceed 20 years; and 30 years have been allowed to the latter. One with another, then, they will have an expectation of $22\frac{1}{2}$ years. That is; one of $22\frac{1}{2}$ will die every year. (a) And, consequently, It will be shewn in the 4th Essay, that the number of the living, under 20, is given too high in this Table; and from hence it will follow, that more than a 28th part of the inhabitants die at Breslaw annually. (a) The whole number of inhabitants in Rome in 1743, was 147,476, and the annual medium of burials for three years, from 1741 to 1743, was 6338. A 23d part, therefore, died every year. See a Treatife in German, on the different degrees of human mortality in different fituations, by Sufmilch, first counsellor of his Prussian Majesty's Consistory, and member of the Royal Academy of sciences at Berlin, p. 15. In 1761, the whole number of inhabitants in the same town, was 157,452. The annual medium of births, for three years, from 1759 to 1761, was 5167; and of burials 7153. One in 22, therefore, died annually. See Dr. Short's Comparative History of the Increase and Decrease of Mankind in England and several Countries abroad, p. 159, quently, supposing the annual recruit from the country to be 7000, the number of births 60.—In 1752, the accurate and diligent Mr. Struyk, took particular pains to determine the number of inhabitants in Amsterdam; and the result of his enquiry was, that very probably it did not amount to 200,000. The annual medium of burials for fix years, from 1747 to 1752, was 8247. One in 24, therefore, died annually. See Susmilch ibid .- At Amsterdam, there is a great number of Jews, and their burials are not included in the bills. There must, I suppose, be other deficiencies, and an allowance for these would, I doubt not, increase the proportion of inhabitants, who die annually, to one in 21 or 22.—At Dublin, in the year 1695, the number of inhabitants was found, by an exact furvey, to be 40,508, (see Philos. Transactions, Nº 261). I find no account of the annual burials just at that time; but from 1661 to 1681, the medium had been 1613; and from 1715 to 1728 it was 2123. There can, therefore, be no material error in supposing that, in 1695, it was 1800; and this makes 1 in 22 to die annually.-In 1745 the number of families in the same city appeared, by an exact account laid before the Lord Mayor, to be 9,214. It is highly probable this number of families did not confift of fo many as 45,000 individuals. Suppose them, however, 50,000; and, as at this time the medium of annual burials appears to have been 2,360, 1 in 21 died annually: fee Dr. Short's Comparative Hostory, p. 15, and New Observations, p. 228.—These facts prove that I have been very moderate in making only 1 in 221, including emigrants, to die in London annually.—In 1631 the number of people in the city and liberties of London was taken, by order of the Privy Council, and found to be 130,178.—This account was taken five years after a plague that had fwept off near a quarter of the inhabitants; and when, therefore, the town being full of recruits in the vigour of life, the medium of annual burials must have been lower than usual, and the births higher. Could, therefore, the me- births 3 times 7000 or 21,000, and the burials and migrations 28,000 (which are all high suppositions), the number of inhabitants will be, 22 multiplied by 28,000, or 630,000. I will just mention here one other instance of exaggeration on the present sub- ject. dium of annual burials at that time, within the walls, and in the 16 parishes without the walls, be settled, exclusive of those who died in such parts of the 16 parishes without the walls, as are not in the liberties, the proportion dying annually obtained from hence might be depended on, as less than the common and just proportion. But this medium cannot be discovered with any accuracy. Graunt estimates that two-thirds of these 16 parishes are within the liberties; and, if this is right, the medium of annual burials in the city and liberties in 1631, was 5,500, and I in 233 died annually; or, making a small allowance for deficiencies in the bills, 1 in 22. - Mr. Maitland, in his Hiftory of London, Vol. II. p. 744, by a laborious, but too unsatisfactory, investigation, reduces this proportion to 1 in 241; and on the suppositions, that this is the true proportion dying annually, at all times, in London, and that the deficiencies in the burials (including the burials in Marybone and Pancrass parishes) amount to 3,038 annually; he determines, that the number of inhabitants within the bills was 725,903, in the year 1737. The number of burials not brought to account in the bills is, probably, now much greater than either Dr. Brakenridge or Mr. Maitland suppose it. I have reckoned it so high as 6000, in order to include emigrants, and also to be more sure of not falling below the truth. It will appear in the last Essay, with an evidence little short of demonstration, that, at least, I in $20\frac{3}{x}$ die annually in London, and that, confequently, the number of inhabitants, if the omissions in the burials are 6000, cannot exceed 601,750. Mr. Mr. Corbyn Morris, in his useful Observations on the past growth and present state of the city of London, published in 1751, supposes that no more than a 60th part of the inhabitants of London, who are above 20, die every year, and from hence he concludes that the number of inhabitants was near a million. In this supposition there was an error of at least one half. According to Dr. Halley's Table, it has been shewn, that a 34th part of all at 20 and upwards, die every year at Breslaw. In London, a 29th part, according to Mr. Simpson's Table, and also according to all other Tables of London Observations. And in Scotland it has been found for many years, that, of 974 ministers and professors whose ages are 27 and upwards, a 33d part have died every year. Had, therefore, Mr. Morris stated a 30th part of all above 20 as dying annually in London, he would have gone beyond the truth, and his conclusion would have been 400,000 less than it is. Dr. Brakenridge observed, that the number of inhabitants, at the time he calculated, was 127,000 less than it had been. The bills have lately advanced a little, but still they are much below what they were from 1717 to 1743. The medium of the annual births, for 20 years, from 1716 to 1736, was 18,000, and of burials 26,529; and, by calculating from hence on all the same suppositions with those which made 651,580 to be the present number of inhabitants in London, it will be found that the number then was 735,840, or 84,260 greater than the number at present. London, therefore, for the last 30 years, has been decreasing; and though now it is increasing again, yet there is reason to think that the additions lately made to the number of buildings round it, are owing, chiefly to the increase of luxury, and the inhabitants requiring more room to live upon (a). It should be remembered, that the number of inhabitants in *London* is now so much less as I have made it, than it was 40 years (a) The medium of annual burials in the 97 parishes within the walls was, From 1655 to 1664, — 3264 From 1680 to 1690, — 3139 From 1730 to 1740, — 2316 From 1758 to 1768, — 1620 This account proves, that though, fince 1655, London has doubled its inhabitants, yet, within the walls, they have decreased; and so rapidly for the last 30 years as to be now reduced to one half.—The like may be observed of the 17 parishes immediately without the walls. Since 1730, these parishes have been decreasing so fast, that the annual burials in them have funk from 8,672 to 5,432, and are now lower than they were before the year 1660. In Westminster, on the contrary, and the 23 out-parishes in Middlesex and Surrey, the annual burials have fince 1660, advanced from about 4000 to 16,000. — Thefe facts prove, that the inhabitants of London are now
much lefs crowded together than they were. It appears, in particular, that within the walls the inhabitants take as much room to live upon as double their number did formerly. -The very fame conclusions may be drawn from an examination of the christenings. ago, on the supposition, that the proportion of the omiffions in the births to those in the burials, was the same then that it is now. But it appears that this is not the fact.—From 1728, (the year when the ages of the dead were first given in the bills) to 1742, near fivefixths of those who were born died under 10, according to the bills. From 1742 to 1752 three quarters: And ever fince 1752, this proportion has stood nearly as it is now, or at fomewhat more than two-thirds. The omissions in the births, therefore, compared with those in the burials, were greater formerly; and this must render the difference between the number of inhabitants now and formerly less considerable than it may seem to be from the face of the bills. One reafon, why the proportion of the amounts of the births and burials in the bills, comes now nearer than it did, to the true proportion, may, perhaps, be, that the number of Dissenters is lessened. The Foundling Hospital also may have contributed a little to this event, by lessening the number given in the bills as having died under 10, without taking off any from the births; for all that die in this hospital are buried at Pancrass church, which is not within the bills. the preface to a collection of the yearly bills of mortality from 1657 to 1758 inclusive, p. 15. I will I will add, that it is probable that London is now become less fatal to children than it was; and that this is a further circumstance which must reduce the difference I have mentioned; and which is likewise necessary to be joined to the greater deficiencies in the births, in order to account for the very small proportion of children who furvived 10 years of age, during the two first of the periods I have specified.—Since 1752, London has been thrown more open. The custom of keeping country-houses, and of sending children to be nursed in the country, has prevailed more. But, particularly, the destructive use spirituous liquors among the poor has been checked. I have shown that in London, even in its present state, and according to the most moderate computation, half the number born die under three years of age. But it appears from Graunt's (a) accurate account of the births, weddings, and burials in three country parishes for 90 years; and also, from Dr. Short's collection of observations in his Comparative History, and his treatise entitled, New Observations on Town and Country Bills ⁽a) See Natural and Political Observations on the Bills of Mortality, by Capt. John Graunt, F. R. S.—See also Mr. Derham's Phisico-Theology, p. 174, where it appears, that in the parish of Aynho in Northamptonshire, tho' the births had been, for 118 years, to the marriages as 6 to 1; yet the burials had been to the marriages only as $3\frac{3}{4}$ to 1. of Mortality; that in country villages and parishes, the major part live to mature age, and even to marry. In the parish of Holy-Cross (a), in Salop, it appears from a curious register, which has been kept by the Rev. Mr. Gorsuch, the vicar, that of 655 who have died there at all ages for the last 20 years, 321, or near one half, have lived to 30 years of age: And, by forming a Table of Observations from this (a) This parish contains in it a village which is a part of the suburbs of Shrewsbury. It consists of 1400 acres of arable and pasture land; besides 300 acres taken up by houses and gardens. It is fix miles in circumference; half of which lies along the banks of the river Severn .--I mention these particulars to shew, that it may be reckoned a country parish; tho', perhaps, not perfectly so, on account of its nearness to Shrewsbury.—The christenings in it exceed the burials a little; and the number of inhabitants (mostly labouring people) has, for the last 20 years, kept nearly to 1050, without any confiderable increate.—The register of this parish, from 1750 to 1760, has been published in the 52d volume of the Philosophical Transactions, Part I. Art. 25. And a continuation of it from 1760 to 1770, has been lately communicated and read to the Royal Society. It is to be wished, that more fuch accounts, specifying, as this does, the males and females dying at all ages, were kept in different fituations in the country. This is the only one that I have ever heard of. It is kept with particular care and accuracy by Mr. Gorfueb; and furnishes very useful data for determining the difference in value between town and country lives .- It deferves to be mentioned particularly, that no foreigners or strangers, who happen to die in this parish, or who may be brought into it to be buried, are entered into the register: Nor are any of the fixed inhabitants omitted, tho' carried out to be buried. register, in the manner which will be described in the last Essay, I find that a child just born in this parish has an expectation of 33 years; and that in general, under the age of 50, the expectations of lives here exceed those in London, in the proportion of about 4 to 3.—So great is the difference, especially to children, between living in great towns and in the country.-But nothing can place this observation in a more striking light, than the account given by Dr. Thomas Heberden, and published in the Philosophical Transactions (vol. LVII. p. 461), of the increase and mortality of the inhabitants of the island of Madeira. In this island, it seems, the weddings have been to the births, for 8 years, from 1759 to 1766, as 10 to 46.8; and to the burials, as 10 to 27.5. Double these proportions, therefore, or the proportion of 20 to 46.8, and of 20 to 27.5, are the proportions of the number marrying annually, to the number born and the number dying. Let I marriage in 10 be a 2d or 3d marriage on the fide of either the man or the woman; and 10 marriages will imply 19 individuals who have grown up to maturity, and lived to marry once or oftener; and the proportion of the number marrying annually the first time, to the number dying annually, will be 19 to 27.5, or near 3 to 4. It may feem to follow from hence, that in this island near three-fourths of those who die have been been married; and, consequently, that not many more than a quarter of the inhabitants die in childhood and celibacy; and this would be a just conclusion were there no increase, or had the births and burials been equal. But it must be remembered, that the general effect of an increase while it is going on in a country, is to render the proportion of persons marrying annually, to the annual deaths, greater, and to the annual births less, than the true proportion marrying, out of any given number born. This proportion generally lies between the other two proportions, but always nearest to the first (a); and, in the present cale. (a) In a country where there is no increase or decrease of the inhabitants, and where also life, in its first periods, is fo stable, and marriage fo much encouraged, as that half of all who are born live to be married, the annual births and burials must be equal, and also quadruple the number of weddings, after allowing for 2d and 3d marriages. Suppose in these circumstances (every thing else remaining the same) the probabilities of life, during its first stages, to be improved. In this case, more than half the born will live to be married, and an increase will take place. The births will exceed the burials, and both fall below quadruple the weddings; or, which is the fame, below double the number annually married.—Suppose next (the probabilities of life and the encouragement to marriage remaining the fame) the prolifickness only of the marriages to be improved. In this case it is plain, that an increase also will take place; but the annual births and burials, inflead of being lefs, will now both rife above quadruple the weddings; and therefore the proportion of the born to that part of the born who marry (being by supposition two to one) will be less than the proportion the State of London, Population, &c. case, it is sufficiently evident that it cannot be much less than two-thirds. In of either the annual births or the annual burials, to the number marrying annually .- Suppose again (the encouragement to marriage remaining the same) that the probabilities of life and the prolifickness of marriages are both improved. In this case, a more rapid increase will take place, or a greater excess of the births above the burials; but at the fame time they will keep nearer to quadruple the weddings, than if the latter cause only had operated, and produced the same increase. - I should be too minute and tedious, were I to explain these observations at large. It follows from them, that, in every country or fituation where, for a course of years, the burials have been either equal to or less than the births, and both under quadruple the marriages; and also that, wherever the burials are less than quadruple the annual marriages, and at the same time the births greater, there the major part of all that are born live to marry. In the instance which I have confidered above, and which occasions this note, the annual births are so much greater than quadruple the marriages, and at the same time the annual burials so much less, that the proportion that live to marry of those who are born, can scarcely be much less than I have said; or two-thirds. I have shewn how the allowance is to be made for 2d and 3d marriages; but it is not so considerable as to be of any particular consequence; and, besides, it is, in part, compensated by the natural children which are included in the births, and which raife the proportion of the births to the weddings higher than it ought to be, and therefore bring it nearer to the true proportion of the number born annually, to those who marry annually, after
deducting those who marry a 2d or 3d time. In drawing conclusions from the proportion of annual births and burials, in different fituations, fome writers on the increase of mankind, have not given due attention to the difference in these proportions, arising from the different In London, then, balf die under three years of age; and in Madeira about twothirds of all who are born live to be married. Agreeable to this, it appears also from the account I have referred to, that the expectation of a child just born in Madeira is about 39 years; or double the expectation of a child just born in London. For the number of inhabitants was found, by a furvey made in the beginning of the year 1767, to be 64,614. The annual medium of burials had been, for eight years, 1293; of births 2201. The number of inhabitants, divided by the annual medium of burials, gives 49.89; or the expectation nearly of a child just born, supposing the births had been 1293, and constantly equal to the burials, the number of inhabitants remaining the fame. And the fame number, divided by the annual medium of births, gives 29.35; or the expectation of a child just born, supposing the burials 2201, the number of births different circumstances of increase or decrease among a people. One instance of this I have now mentioned; and one surther instance of it is necessary to be mentioned. The proportion of annual births to weddings has been considered as giving the true number of children derived from each marriage, taking all marriages one with another. But this is true only when, for many years, the births and burials have kept nearly equal. Where there is an excess of the births occasioning an increase, the proportion of annual births to weddings must be less than the proportion of children derived from each marriage; and the contrary must take place where there is a decrease. and of inhabitants remaining the same. And the true expectation of life must be somewhere near the mean between 49.89 and 29.35. Again: A 50th part of the inhabitants of Madeira, it appears, die annually. In London, I have shewn, that above twice this proportion dies annually. In finaller towns a fmaller proportion dies; and the births also come nearer to the burials. In general; there feems reason to thing that in towns (allowing for particular advantages of fituation, trade, police, cleanliness, and openness, which some towns may have,) the excess of the burials above the births, and the annual deaths are more or less as the towns are greater or smaller. In London itself, about 160 years ago, when it was scarcely a fourth of its present bulk, the births were much nearer to the burials, than they are now. But in country parishes and villages the births almost always exceed the burials; and I believe it feldom happens that so many as a 30th, or more than a 40th part of the inhabitants, die annually (a). In the four provinces ⁽a) In the year 1733, a furvey was taken of the inhabitants of the parish of Stoke-Damerel in Devonshire, and the number of men, women, and children was found to be 3361.— The christenings for the year were 122—the weddings 28—burials 62.—No more, therefore, than the 54th part of the inhabitants died in the year.—In part of this year an epidemical sever prevailed in the parish. See Martyn's Abridgment of the Philos. Transactions, vol. provinces of New-England there is a very rapid increase of the inhabitants; but, not-withstanding this, at Boston, the capital, the inhabitants would decrease were there no supply from the country: for, if the account I have seen is just, from 1731 to 1762, the burials all along exceeded the births (a). So remarkably do towns, in consequence of their unfavourableness to health, and the IX. p. 325.—According to Graunt's account of a parish in Hampshire, not reckoned, he says, remarkably healthful, a 50th part of the inhabitants had died annually for 90 years. Natural and political Observations, &c. Chap. XII. In 1098 country parishes, mentioned by Susmileh, the annual average of deaths, for fix years, ending in 1749, was 5255. The number of inhabitants was 225,357. One, therefore, in 43 died annually. - In 106 other parishes, mentioned by him, this proportion was 1 in 50, -In the Dukedom of Wurtemberg, the inhabitants, he fays, are numbered every year; and from the average of five years, ending in 1754, it appeared that, taking the towns and country together, I in 32 died annually .-In another province, which he mentions, confisting of 635,998 inhabitants, 1 in 33 died annually. From these facts he concludes, that, taking a whole country in grofs, including all cities and villages, mankind enjoy among them about 32 or 33 years each of existence. And this, very probably, may not be far from the truth in the prefent state of most of the kingdoms of Europe. And it will follow, that a child born in a country parish or village, has, at least, an expectation of 36 or 37 years; supposing the proportion of country to town inhabitants to be as 31 to 1; which, I think, this ingenious writer's observations prove to be nearly the case in Pomerania, Brandenburgh, and some other kingdoms. (a) See a particular account of the births and burials in this town from 1731 to 1752 in the Gentleman's Ma- gazine for 1753, p. 413. the State of London, Population, &c. 199 Fuxury which generally prevails in them, check the increase of countries. Healthfulness and Prolifickness are, probably, causes of increase seldom separated. In conformity to this observation, it appears from comparing the births and weddings, in countries and towns where registers of them have been kept, that in the former, marriages, one with another, seldom produce less than four children each; generally between four and five, and sometimes above five. But in towns seldom above four; generally between three and four; and sometimes under three (a). I have fometimes heard the great number of old people in London mentioned, to prove its favourableness to health and long life. But no observation can be more erroneous. There ought, in reality, to be more old people in London, in proportion to the number of inhabitants, than in any smaller towns; because at least one quarter of its inhabitants are persons who come in- 0 4 ⁽a) Any one may see what evidence there is for this, by consulting Dr. Short's two books already quoted, and the Abridgment of the Philosophical Transactions, vol. VII. part iv. p. 46, and Graum's account already quoted, of the births, weddings and burials in three country parishes for 90 years; compared with similar accounts in towns. In considering these accounts, it should not be forgotten that allowances must be made for the different circumstances of increase or decrease in a place, agreeably to the observation at the end of the note in page 194. to it, from the country, in the most robust part of life, and with a much greater probability of attaining to old age, than if they had come into it in the weakness of infancy. But, notwithstanding this advantage, there are much fewer persons who attain to great ages in London, than in most other places where observations have been made. - At Vienna; of 22,704 who died in the four years 1717, 1718, 1724, 1725 (a), 109 reached 90 years; that is, 48 in 10,000. But in London, for 30 years before 1769 only 35 of the same number have reached this age .- At Breslaw it appears, by Dr. Halley's Table, that 41 of 1238 born, or a 30th part live to be 80 years of age. - In the parish of All-faints, in Northampton, an account has been kept ever fince 1733 of the ages at which the inhabitants die; and I find that a 22d part die there turned of 80. At Norwich a like account has been kept; and it appears, that for the last 30 years, a 27th part of the inhabitants have died, turned of the faine age .- According to Mr. Kersseboom's Table of Observations, published at the end of the last edition of Mr. De Moivre's Treatife on the Doctrine of Chances, a 14th part of all that are born live to 80 .- And in the parish of Holy-Cross, already mentioned p. 183 and p. 192, ⁽a) Vid. Abridgment of the Philosophical Transactions, vol. VII. part iv. p. 46.—It appears also that more than three-fifths of all who died in these years at Vienna were boys and girls, by whom, I suppose, are meant pertins under 16. the eleventh part of the inhabitants live to 80 (a).—But in London, for 30 years, ending at the year 1768, only 25 of every 1000, who have died, or a 40th part, have lived to this age; which may be easily discovered, by dividing the sum of all who have died during these years at all ages, by the sum of all who have died above 80. Among the peculiar evils to which great towns are subject, I might further mention the Plague. Before the year 1666, this dreadful calamity laid London almost waste once in every 15 or 20 years; and there is no reason to think, that it was not generally bred within itself. A most happy alteration has taken place; which, perhaps, in part is owing to the greater advantages of cleanliness and openness, which London has enjoyed since it was rebuilt; and which lately have been very wifely improved. The facts I have now taken notice of are fo important that, I think, they deferve more attention than has been hitherto bestowed See the Annual Register for 1761, p. 191. ⁽a) This, however, will appear itself inconsiderable, when compared with the following account: "In 1761 the burials in the district of Christianna, in Norway, amounted to 6,929, and the christenings to 11,024. Among those who died, 394, or 1 in 18, had lived to the age of 90; 63 to the age of 100, and seven to the age of 101. — In the diocese of Bergen, the persons who died amounted only to 2,580, of whom 18 lived to the age of 100; one woman to the age of 104, and another woman to the age of 108." upon them. Every one knows that the strength of a state consists in the number of people. The encouragement of population, therefore, ought to be one of the first
objects of policy in every state; and some of the worst enemies of population are the luxury, the licentiousness, and debility produced and propagated by great towns. I have observed that London is now (a) increasing. But it appears that, in truth, this is an event more to be dreaded than defired. The more London increases, the more the rest of the kingdom must be deserted; the fewer hands must be left for agriculture; and, confequently, the less must be the plenty and the higher the price of all the means of subfistence. - Moderate towns, being seats of refinement, emulation, and arts, may be public advantages. But great towns, long before they grow to half the bulk of London, become checks on population of too hurtful a nature, nurseries of debauchery and voluptuousness; and, in many respects, greater evils than can be compensated by any advantages (b). Dr. (b) The mean annual births, weddings, and burials in the following towns, for some of the last years, have been nearly, ⁽a) This increase is greater than the bills shew, on account of the omission in them of the two parishes which have been most increased by new buildings; I mean Marybone and Pancrass parishes. The former of these parishes is, I suppose, now one of the largest in London. # the State of London, Population, &c. 203 Dr. Heberden observes that, in Madeira, the inhabitants double their own number in 84 years. But this (as you, Sir, well know) is a very flow increase, compared with that which takes place among our colonies in AMERICA. In the back fettlements, where the inhabitants apply themselves entirely to agriculture, and luxury is not known, they double their own number in 15 years; and all thro' the northern colonies, in 25 years (a). This is an instance of increase so rapid, as to have scarcely any parallel. The births in these countries must exceed the burials much more than in Madeira; and a greater proportion of the born must reach maturity.—In 1738, the number of inhabitants in New Jersey was taken by order of the government, and found to be 47,369. Seven years afterwards, the number of inhabitants was again taken; and found to be increased, by procreation only, above 14,000; and very near one balf of the inhabitants were found | | Births. | Weddings. | | Burials. | | |--|---------|-----------|-------|----------|--------| | At Paris, - | 19,100 | - | 4,400 | | 19,400 | | Vienna, — | 5,500 | - | | - | 6,800 | | Amsterdam, - | - 4,600 | | 2,400 | | 8,000 | | Copenhagen, - | - 2,700 | | 886 | - | 3,300. | | Berlin, for 5 years, end-
ing at 1751 | 3,634 | | 936 | - | 4,092 | (a) See a discourse on Christian Union, by Dr. Styles, Beston. 1761, p. 103. 100, &c. — See also The Interest of Great Britain considered with regard to her Colonies, together with Observations concerning the increase of mankind, peopling of countries, &c. p. 35. 2d cdit. London, 1761. to be under (a) 16 years of age. In 22 years, therefore, they must have doubled their own number, and the births must have exceeded the burials 2000 annually. As the increase here is much quicker than in Madeira, we may be fure that a smaller proportion of the inhabitants must die annually. however, suppose it the same, or a 50th part. This will make the annual burials to have been, during these seven years, 1000; and the annual births 3000; or an 18th part of the inhabitants.—Similar observations may be made on the much quicker increase in Rhode Island, as related in the preface to the Collection of the London Bills of Mortality; and also in the valuable pamphlet, last quoted, on the Interest of Great Britain with regard to her Colonies, p. 36. - What a prodigious difference must there be, between the vigour and the happiness of human life in such situations, and in such a place as London? - The original number of persons who, in 1643, had settled in New-England, was 21,200. Ever fince, it is reckoned, that more have left them than have gone to them (b). In the year 1760, they were increased to half a million. They have, therefore, all along ⁽a) According to Dr. Halley's Table, the number of the living under 16, is but a third of all the living at all ages. ⁽b) See Dr. Styles's pamphlet just quoted, p. 110, &c. doubled their own number in 25 years. And if they continue to increase at the same rate, they will, 70 years hence, in New-England alone, be four millions; and in all North America, above twice the number of inhabitants in Great-Britain (a).—But I am wandering (a) The rate of increase, supposing the procreative powers the same, depends on two causes: The "encou-" ragement to marriage;" and the " expectation of a child just born." When one of these is given, the increase will be always in proportion to the other. That is; As much greater or less as the ratio is of the numbers who reach maturity, and of those who marry, to the number born, fo much quicker or flower will be the increase. - Let us suppose the operation of these causes such, as to produce an annual excess of the births above the burials, equal to a 36th part of the whole number of inhabitants. It may feem to follow from hence, that the inhabitants would double their own number in 36 years; and thus some have calculated. But the truth is, that they would double their own number in much less time. Every addition to the number of inhabitants from the births, produces a proportionably greater number of births, and a greater excess of these above the burials; and if we suppose the excess to increase annually at the same rate with the inhabitants, or so as to preserve the ratio of it to the number of inhabitants always the fame, and call this ratio , the period of doubling will be, the quotient produced by dividing the logarithm of 2, by the difference between the logarithms of r + 1 and r; as might be easily demonftrated. In the present case, r being 36, and r + 1 being 37, the period of doubling comes out 25 years. If r is taken equal to 22, the period of doubling will be 15 years. - But it is certain that this ratio may, in many fituations, be greater than 1/32; and, instead of remaining the same, or becoming less, it may increase, the consequence of which will be, that the period of doubling will be shorter than this rule gives it .- According to Dr. Halley's Table, the number of persons between 20 and dering from my purpose in this letter. The point I had chiefly in view was, the present state 42 years of age is a third part of the whole number living at all ages. The prolific part, therefore, of a country may very well be a 4th of the whole number of inhabitants; and supposing four of these, or every other marriage between persons all under 42, to produce one birth every year, the annual number of births will be a 16th part of the whole number of people. And, therefore, supposing the burials to be a 48th part, the annual excess of the births above the burials will be a 24th part, and the period of doubling 17 years. - The number of inhabitants in New-England was, as I have faid from Dr. Styles's pamphlet, half a million in 1760. If they have gone on increasing at the same rate ever since, they must be now 640,000; and it feems to appear that in fact they are now more than this number. For, fince writing the above observations, I have seen a particular account, grounded chiefly on furveys lately taken with a view to taxation and for other purposes, of the number of males, between 16 and 60, in the four provinces. According to this account, the number of fuch males is 218,000. The whole number of people, therefore, between 16 and 60, must be nearly 436,000. In order to be more sure of avoiding excess, I will call them only 400,000. In Dr. Halley's Table the proportion of all the living under 16 and above 60, to the rest of the living, is 13.33 to 20; and this will make the number of people now living in the four provinces of New-England to be 666,000. But on account of the rapid increase, this proportion must be confiderably greater in New-England, than that given by Dr. Halley's Table. In New-Ferfey, I have said the number of people under 16, was found to be almost equal to the number above 16. Suppose, however, that in New-England, where the increase is slower, the proportion I have mentioned is only 16 to 20; and then the whole number of people will be 720,000. I cannot conclude this note without adding a remark to remove an objection which may occur to fome in reading state of London as to healthfulness, number of inhabitants, and its influence on population. The observations I have made may, perhaps, help to shew, how the most is to be made of the lights afforded by the London bills; and ferve as a specimen of the proper method of calculating from them. It is indeed extremely to be wished, that they were less imperfect than they are, and extended further. More parishes round London might be taken into them; and, by an easy improvement in the parish registers now kept, they might be extended through all the parishes and towns in the kingdom. The advantages arifing from hence would be very confiderable. It would give the precise law according to which human life wastes in its different stages; and thus supply the necessary data for computing accurately the values of all life-annuities and reversions. It would, likewise, shew the different degrees of health- Dr. Heberden's account of Madeira, to which I have referred. In that account 5945 is given as the number of children under feven in the island, at the beginning of the year 1767. The medium of annual births, for eight years, had been 2201; of burials 1293. In fix years, therefore, 13,206 must have been born; and if, at the end of fix years, no more than 5945 of these were alive, 1210 must have died every year. That is; almost all the burials in the island, for fix years, must have been burials of children under seven years of age. This is plainly incredible; and, therefore, it seems certain, that the number of
children under seven years of age must, through some mistake, be given, in that account, 3000 or 4000 too little. fulness fulness of different situations, mark the progress of population from year to year, keep always in view the number of people in the kingdom, and, in many other respects, furnish instruction of the greatest importance to the state. Mr. De Moivre, at the end of his book on the doctrine of chances, has recommended a general regulation of this kind; and observed, particularly, that at least it is to be wished, that an account was taken, at proper intervals, of all the living in the kingdom, with their ages and occupations; which would, in some degree, answer most of the purposes I have mentioned. — But, dear Sir, I am sensible it is high time to finish these remarks. I have been carried in them far beyond the limits I at first intended. I always think with pleasure and gratitude of your friendship. The world owes to you many important discoveries; and your name must live as long as there is any knowledge of philosophy among mankind. That your happiness in this, and every other respect, may continually increase, is the sincere wish of, SIR. > Your much obliged, and very humble fervant, Newington-Green, April 3, 1769. RICHARD PRICE. #### POSTSCRIPT. AT Edinburgh, bills of mortality, of the fame kind with those in London, have. been kept for many years. I have, fince the foregoing letter was written, examined these bills, and formed a Table of Observations from them, as I found them for a period of 20 years, beginning in 1739, and ending in 1758.—As this is a town of moderate bulk, and feems to have a particular advantage of fituation; I expected to find the probabilities of life in it, nearly the same with those at Breslaw, Northampton and Norwich; but I have been surprized to observe, that this is not the case. During the period I have mentioned, only one in 42 of all who died at Edinburgh, reached 80 years of age; which is a fmaller proportion than attains to the same age in London. See p. 201.—In general; it appears, that the probabilities of life in this town are much the same, thro' all the stages of life, with those in London, the chief difference being, that after 30, they are rather lower at Edinburgh.—It is not difficult to account for this. It affords, I think, a striking proof of the pernicious effects arising from uncleanliness, and crouding together on one spot too many inhabitants. At Edinburgh, Mr. Maitland fays, "the build-"ings, elsewhere called houses, are denomi-" nated "nated lands; and the apartments, in other " places named stories, here called bouses, are " fo many freeholds inhabited by different " families; whereby the houses are so ex-" cestively crouded with people, that the "inhabitants of this city may be justly pre-" fumed to be more numerous than those of " fome towns of triple its dimensions." Maitland's History of Edinburgh, p. 140. In the year 1748, the whole number of apartments or families in the city and liberties of Edinburgh, was 9064. This Mr. Maitland mentions as the refult of particular examination, and undoubtedly right. Ib. p. 217, 218.—In 1743, an accurate account was taken, by the defire of this writer, of the number of families and inhabitants in the parish of St. Cuthbert. Ib. p. 171. The number of families was 2370, and of inhabitants at all ages, 9731. The proportion, therefore, of inhabitants to families, was 4 to 1; and, supposing this the true proportion for the whole town, the number of inhabitants will be 410 multiplied by 9064, or 37,162.— The yearly medium of deaths in the town and liberties for eight years, from 1741 to 1748, was 1783. Ib. p. 220 and 222. And, consequently, one in 204 died annually. Mr. Maitland, tho' poffessed of the data from which these conclusions necessarily follow, has made the number of inhabitants -50,120, in consequence of a disposition to exaggerate in these matters, and of assuming, without any reason, a 28th part of the inha- bitants as dying annually. In page 220, he expresses much surprize at finding, that the number of males in this town was less than the number of semales, in the proportion of 3 to 4. But this is by no means peculiar to Edinburgh. All I have been faying must be understood of the state of Edinburgh, before the year 1758. The bills, for the last 12 years, have been so irregular, and so different from the same bills for the preceding years, and from all other bills, that I cannot give them any credit. Either some particular incorrectness has crept into the method of keeping them; or there has been some change in the state of the town which renders them of no use. Probably the former is the truth. From the note in p. 203, it appears, that the christenings and burials at PARIS, come very near to equality. This once led me to suspect, that there must be some particular singularity in the state of Paris, which rendered it much less prejudicial to health and population than great towns commonly are. But better information has lately obliged me to entertain very different sentiments.—The difference between the births and burials at Paris, is much greater than the bills shew. P 2 "Children "Children here are baptized the instant "they are born; and, in a day or two af-" terwards, it is the custom to send them to "the adjacent villages to be nurfed. A " great number therefore, of the infants born " at Paris, die in the country, and these "appear only in the register of christen-"ings." See a book entitled the Police of France, page 127. And Buffon's Natural History, Tom. II. at the end. - " All the " children also received into the Foundling-" Hospital, are immediately sent to be nurs-" ed in the country, at a distance from Paris, "where they remain 5 or 6 years; at the end " of which time they are brought again to " Paris, the boys to be placed in the suburbs " of St. Antoine, and the girls at Salpetriere, " to be further maintained till they arrive at "the age of twelve years." Police of France, p. 81. - The following paffage in the fame writer, containing a further account of this Hospital, is important; and, therefore, tho' long, I cannot help transcribing it - " Let " us suppose, that out of 4000 children an-" nually carried into the country, two thirds " may die, during the five years they are de-" flined to remain at nurse; so that only " 1333 would constantly be the annual " number fent back to Paris; who, being " kept at the two Hospitals St. Antoine and " Salpetriere just mentioned, 'till they are 12, " and fucceeded by a like number each year, " the " the total number composed of all brought "in the fuccessive years, would make the " constant resting stock to amount to 9331. "But of these we will suppose a 5th part to die every year. Yet even then the " constant resting stock of children ought to " be 7465. How greatly then must we be " furprized to find, by the authentic account "taken from their own books, only 640 " boys in the college of St. Antoine, and not " more tham 600 girls at the Salpetriere; " fo that the resting stock of returned found-"lings appears to be no more than 1240, " which being deducted from 7465, will make "the difference in the deficiencies 6225. "What then becomes of these? - Are they " reclaimed by their parents? - Or do they " perish for want of care? — In answer to "which questions it was explained to me; "that as many of the lower class of people " were induced to marry, in order to be ex-" cufed from ferving in the militia; fo when "these have children, which they are una-" ble to maintain, they usually fend them to "this hospital; which, therefore, must be "looked upon, as not only a charity for the " care of exposed and deserted children whose " parents are unknown, but also as a public " nursery for the sustenance of the children " of poor people, who, tho' registered at the " office, are often reclaimed from their coun-" try nurses by their parents. This accounts, ## 214 On the Expectation of Lives; "in some measure, for the small stock of children brought back to the hospital at Paris.—The further difference is suspected to be owing to the insufficient nourishment they receive; as this particular charity, as well as the General Hospital, adopts that "well as the General Hospital, adopts that preposterous method of taking in an unlimited number, while there is only a li- " mited income for their subsistence." Ib. page 83. These facts prove, that, at the same time that the register of christenings at Paris must be full, the register of burials must be very deficient. Let the deficiencies be reckoned at 4600; and, consequently, the annual burials at 24,000. The annual average of weddings, given in p. 203, is 4300; and, therefore, the number of persons who marry annually must be 8600. The difference between the christenings and burials is 5000; which, therefore, is the number of annual recruits from the country. These, in general, must be persons in mature life. Suppose 3600 of them to marry after fettling at Paris. Then, 8600 leffened by 3600 or 5000, will be the number of persons born at Paris who marry annually; and 14,100, or near threefourths of all who are born at Paris, will be the number dying annually in childhood and celibacy. The suppositions on which I have made this computation seem moderate; but if any the State of London, Population, &c. 215 one thinks otherwise, he may make the same calculation on any other suppositions. The births at Paris are above four times the weddings; and it may feem, therefore, that here, as well as in the most healthy country fituations, every wedding produces above four children. I have observed nothing like this in any other great town. Many children born in the country are, I suppose (a), brought to the Foundling-Hofpital, and there christened. This Hospital may likewife occasion a more than common number of illegitimate births. And, besides, fome who leave the country to fettle at Paris, may come thither
already married. These are circumstances that will swell the register of births, without having any effect on the weddings. I do not, however, know that any of them take place at Paris; and, perhaps, it must be granted, that it is distinguished in this respect from most other towns. Nor can I wonder at this, if it be indeed true, not only, that all married men in France are excused serving in the militia from whence draughts are made for the army, but also, that a fifth of all the children born at Paris are fent to the Foundling-Hospital (b). These are (b) See Police of France, &c. p. 83.—This writer adds, that a third of all that die at Paris die in Hospitals. ⁽a) "If the parents of a child brought to this Hospital "are known, the register of its baptism must be produced. If the parents are unknown, the child must be baptised after being received." Police of France, pag. 82. are encouragements to marriage that no other city enjoys. It has been feen that the Foundling-Hospital, tho' attended with this effect, is, probably, in the highest degree pernicicus; but it is to be wished, that some policy of the same kind with that first mentioned, was pursued in this kingdom. - At the end of the 2d vol. of Monsieur De Busson's Natural History, there are Tables formed from the Observations of M. Du Pre de S. Mour, of the French Academy, containing an account of the ages at which 13,189 persons died in three parishes at Paris; and also, of the ages at which 10,805 persons died in 12 country parishes and villages near Paris. - According to these Tables, many more die in the beginning of life, and much fewer in the latter part of life, in the country than in Paris. But the circumstances of Paris, and the country round it, are fuch, that no argument can be drawn 3 [&]quot;In the Hotel Dien (a great Hospital situated in the 56 middle of the city) we may, he fays, behold a horrid " scene of misery; for, the beds being too few for the or numbers admitted, it is common to fee 4, or 6, or even 8 in a bed together, lying 4 at one end, and 4 so at the other, ill of various diffempers in feveral degrees; fome bad, others worfe; fome dying, others " dead .- Above a fifth of all admitted to this Hospital " die; the annual numbers admitted being 21,823. The 56 medium of deaths for three years from 1751 to 1753, 4650.—The medium of deaths for the same years in " all the Hospitals was 6181." Ib. p. 85. - In our two great city Hospitals, St. Thomas's and St. Bartholomew's, about 600 die annually; or one in 13 of all admitted as in patients. from from hence in favour of Paris. Many of the children dying in the country, are children fent thither from Paris to be nursed; and, on the other hand, many, perhaps most, of those who die in old age at Paris, are perfons who have removed thither from the country, fome to Hospitals, and fome to places and fettlements. It is evident, therefore, that these Tables give a representation of the probabilities of life at Paris, which, when compared with those in the adjacent country (a), is just the reverse of the truth. Were the children born at Paris, who die in the country, to be transferred to the town register; and, on the contrary, the adults born in the country, who die at Paris, to be transferred to the country register, there is no reason to doubt, but that the probabilities of life at Paris, would be found as low, in comparison with those in the country, as the probabilities of life in London are; or, perhaps, much lower. - This obfervation is applicable, in fome degree, to most other great towns; and, in general, on account of the migrations from the country to towns, navies and armies, we may be fatisfied, that we err on the fide of defect, ⁽a) It is for this reason that these Tables, when combined, exhibit justly the mean probabilities of life for town and country taken together; and that the Table of the decrements of life deduced from them by M. Buffon and M. Du Pre, agrees nearly with Dr. Halley's Table. whenever we judge of the probabilities of life in the country, from the numbers dying in the several stages of life; and, on the fide of excess, whenever, in the same way, we judge of the probabilities of life in towns. And this, it is obvious, has a tendency to confirm all that has been faid in the preceding Essay, concerning the pernicious effects of great towns on human life. There are feveral ordonances and arrets of council which fix the boundaries of Paris, and prohibit all new buildings beyond those boundaries.—The reasons of this regulation, as fet forth in one of these arrets, are remarkable; and it will not be improper to recite them.-" By the excessive aggrandiz-" ing of the city, it is faid, the air would be " rendered unwholesome, and the cleaning "the streets more difficult." -- "Augment-" ing the number of inhabitants would aug-" ment the price of provisions, labour and "manufactures."—"That ground would be " covered with buildings, which ought to be " cultivated in raifing the necessary subfift-" ence for the inhabitants; and thereby ha-"zard a scarcity." - "The people in the " neighbouring towns and villages would be " tempted to come and fix their refidence in "the capital, and defert the country."-" And lastly; the difficulty of governing so " great a number of people would occasion " a disorder in the Police, and give an oppor-" tunity "tunity to rogues to commit robberies and " murders (a)." No one can think overgrown cities greater evils than I do. But, yet, I can by no means approve of this policy. The effect of it must be, crouding together too many people within the prescribed boundaries, and rendering a town more the seat of uncleanliness, infection and disease.—The number of houses in *Paris* is reckoned to be 28,000 (b), or 30,000; but the number of inhabitants, supposing a 20th part to die annually, cannot be much less than 480,000, or 16 times the number of houses. It is happy for London, that there have been no laws to restrain its increase. In consequence of being allowed to extend itself on all sides into the country, the inhabitants now take near twice the room to live upon that they did; and it is become less the means of shortening human life. See p. 189, 191, and 201. In page 203, I have given the annual medium of births, weddings and burials at Ber-LIN, from 1747 to 1751.—In 1747, an account was taken with the utmost care, by the order of the King of Prussia, of the number of inhabitants in this town; and, it was found to be 107,224.—In order to be more certain, a fecond account was taken the (a) Vid. Police of France, p. 130. ⁽b) Ibid.—There are other accounts which makes this number above 50,000. same year; and the number found the same within 200.—In 1749, the inhabitants were increased to 110,933. Their number, therefore, compared with the annual burials, was as 27 to 1.—This is a higher proportion than could be expected in a town fo confiderable; and also so much crouded, as to have, at an average, 16 inhabitants in every house. But there is a plain reason to be given for this fact. - BERLIN, for many years, had been increasing very fast, by a conflux of people from the furrounding country and provinces. About the year 1700, the medium of annual burials was no more than 1000. In 50 years, therefore, it quadrupled itself .- In a city increating with fuch rapidity, the ratio of inhabitants to the annual deaths, must be greatly below the just standard.—Were there now, fuch accessions to London of deserters from the country, in the beginning of mature life, as would cause the number of inhabitants to increase at the rate of 10,000 every year, it would in 60 years be doubled; and the proportion of inhabitants to deaths would rife gradually, 'till it came to be about one third greater. BERLIN, we have feen, has, in fact, increased at more than double this rate; and, therefore, the proportion of inhabitants dying annually in it is in reality very low. The ingenious Susmileb, to whose curious book, already quoted, I owe my information concerning Berlin, makes the proportion of people who die annually in great towns, to be from 1/2 to 1/2 ; in moderate towns, from is to is; and, in the country from to to so. -The observations and facts in this Essay, joined to those which will be found in the 4th Effay, prove, I think, that thefe proportions may be more truly stated as follows.— Great towns, from to to to Moderate towns, from \(\frac{1}{23}\) to \(\frac{1}{28}\). The country, from \(\frac{1}{30}\) or \(\frac{1}{35}\), to \(\frac{1}{30}\) or \(\frac{1}{60}\).—This, however, must be understood with exceptions. There may be moderate towns fo ill fituated, or whose inhabitants may be fo crouded together, as to render the proportion of deaths in them greater than in the largest towns: And, of this, Edinburgh, if it is not now, was 20 years ago, an example.—There may be also great towns in which, from a fudden increase, this proportion may be less than in small towns: And of this, I have just given an example in BERLIN. #### ESSAY II. On Mr. DE MOIVRE'S Rules for calculating the Values of Joint Lives. THE calculation of the values of fingle and joint lives, from given Tables of Observation, being tedious and troublesome; Mr. De Moivre has had recourse to two Hypotheses, which give easy rules for this purpose; and which, he thought, corresponded with sufficient exactness to Observations.-The first of these Hypotheses is, that the probabilities of life decrease, as we advance from childhood to old age, in an arithmetical progression; or in such a manner, that the difference is always the same, between the number of persons living at the beginning of any one year, and the number living at the beginning of the next following year. - The other Hypothesis is, that the probabilities of life decrease in a geometrical progression; or in fuch a manner, that the proportion is always the same, between the number of perfons living at the beginning of any one year, and the
number living at the beginning of the next following year. - All the Tables of Observation shew, that the real law, according to which human life wastes, comes much much nearer to the former Hypothesis, than the latter.—In Tables III, IV, and V, in the Appendix, it is so near the former Hypothesis, that the difference is scarcely worth regarding. According to this Hypothelis, therefore, (accommodated to the Breflaw Table, in the manner mentioned in the note, page 2.) Mr. De Moivre calculated the values of fingle lives; and the rules founded upon it for this purpose are so easy, that an operation which would otherwise take up much time, may be performed almost immediately. By proceeding on the same principles, the values of joint lives might have been calculated; but the rules for this purpose derived from these principles, are far from being equally easy in practise. Here, therefore, Mr. De Moivre quitted his first Hypothesis; and finding, that the fecond Hypothesis afforded, in the case of joint lives, rules that were as easy, as the rules given by the other Hypothesis were in the case of single lives, he chose to adopt this Hypothesis; believing at the same time, that the values of joint lives, obtained by rules derived from it, would not deviate much from the truth. But in this he was greatly mistaken. The values of two joint lives obtained by these rules are fo wrong, that in finding the prefent value, in a fingle payment, of one life after another, they generally give results which are near of the true value too great; and about twofifths fifths too great, when the value is fought in annual payments during the joint lives .-These are errors so considerable, that I think it is of particular importance that the public should be informed of them, in order to prevent the inconveniencies and perplexities they may occasion. Mr. Simpson (in the Appendix to his Treatise on the Dostrine of Annuities and Reverfions) has observed, that Mr. De Moivre's rules for finding the values of joint lives are wrong. But I don't know, that it has been ever attended to, that they are so wrong as I have found them. Mr. Simpjon's remarks point out chiefly the errors in these rules, when the values of three or more joint lives are calculated by them; but, 'till I was forced to a particular examination of this subject by fome difficulties into which I found myself brought by following Mr. De Moivre too implicitly, I did not at all suspect, that any fuch errors as I have mentioned, could arife from these rules, when the values of only truo joint lives are calculated by them. Mr. De Moivre, in consequence of other remarks contained in Mr. Simpson's Appendix, altered in the 4th edition of his Treatife some of his rules. It is furprizing he did not fee reason at the same time to alter these. That there may be no doubt about the truth of these observations, I will just mention a few examples of the difference between the the values of a given reversionary annuity, according to the rules to which I have objected, and the true values, according to the exact method of deducing them from Mr. De Moivre's first Hypothesis. Let the proposed annuity be 30%, to be enjoyed for what shall happen to remain of the life of a person now 40 years of age, after the life of another person of the same age. The value of the joint lives (interest being at 4. per cent.) is, by problem 2d of Mr. De Moivre's Treatise on Life-annuities, 8.964; which subtracted from 13.196, (the value by Table VI, of a fingle life at 40) gives 4.23; which remainder, multiplied by 30, gives 1.126.9, or the value of the reversion in a single present payment. And 126.9, divided by the foregoing value of the joint lives, is 1. 14. 16; or, the value of the reverfion in annual payments during the joint lives.—But the true values are l. 101.1 in a fingle payment, by Quest. I. chap. I.; and 1. 10.2, in annual payments, by Quest. IV.— The former values, therefore, are near a quarter of the true value too great in the fingle payment; and near two-fifths too great in the annual payments. The true value of the same annuity for a life at 66, after another life of the same age, is, (reckoning interest as before, at 4 per cent.) 681. in a single payment; and 13.5, in annual payments.—But these values, according to the Problem just quoted, are 911., and 211. one of which is near a third, and the other above half the true value too great. In unequal lives these errors may be no less considerable.—Thus; if the value of the proposed annuity be required for a life at 70, after a life at 30 years of age; it will, by the same Problem, be 1.26.5, in a single payment; and 1.5.1, in annual payments during the joint lives. But the true values are 171. and 1.3.05. Where 3 or more lives are concerned the errors will be still greater. The true values of the joint lives, mentioned in these Examples, have been calculated by a rule in pag. 16, of Mr. Simpson's Treatise on the Doctrine of Annuities and Reversions, and explained in note (M) Appendix.—To save, however, a great deal of trouble hereafter, I have thought proper to calculate Table VII, which gives the exact values, according to Mr. De Moivre's suffer Hypothesis, of two joint lives, for every five years of human life from, 10 to 70. This Hypothesis, I have observed, does not differ much from the Tables of Observation in the Appendix, for Breslaw, Northampton and Norwich. Between the ages of 30 and 40, it gives the values of single lives almost the same with the Breslaw Table. Under 30, it gives them somewhat less; and above 40, somewhat greater. But it ought to be remembered, membered, that wherever it does this, it gives, at the same ages, the values of the joint lives also too little or too great; and that, consequently, the results from it, in calculating the values of Reversions, and of the longest of given lives, come so much nearer to exactness. The rules to which I have objected are the only ones given by Mr. De Moivre, in all the editions of his Treatise on Life-Annuities. But it seems, this great mathematician became at last sensible, that they were too incorrect; and, therefore, at the end of the last edition of his Treatise on the Dostrine of Chances, pag. 320, (a work which gets into comparatively sew hands) he has given other rules which come nearer the truth. But even these rules produce errors so great in many cases, (particularly when combined with the errors of the Hypothesis) that it will be best never to use them. ## ESSAY III. Of the Method of calculating the Values of Reversions depending on Survivorships. ALL Questions relating to the values of lives and reversions, are at present of particular importance in this kingdom. Much business is continually transacted in this way; and any confiderable errors in the methods of folving fuch questions, must in time produce very bad confequences.—The defign of the following observations is to point out a particular error, into which there is danger of falling, in finding the values of fuch reversions as depend on survivorships. In doing this, I shall, in order to be as plain as possible, take the following case. " A, aged "40, expects to come to the possession of " an estate, should he survive B, aged like-" wise 40. In these circumstances he offers, " in order to raise a present sum, to give se-" curity for 40 l. per annum, out of the estate " at his death, provided he should get into " pollefoffession; that is, provided he should fur-"vive B. What is the fum that ought now " to be advanced to him, in confideration of " fuch fecurity, reckoning compound interest " at 4 per cent?" Mr. De Moivre's directions in his Treatise on Annuities, Problems 17th and 20th, lead us to feek the required fum in this case, by the following process. Find first, the present sum A should receive, for the reversion of 401. per annum for ever after his death; supposing it not dependent on his furviving B. The present value of fuch a reversion is "the (a) value of the life " fubtracted from the perpetuity, and the re-" mainder multiplied by the annual rent."— The value of the life is, by Table VI, 13.196. This subtracted from 25, the perpetuity, leaves 11.80; which, multiplied by 40, gives 1.472; the value of the supposed estate, after the life of A. But, as Mr. De Moivre observes, the lender having a chance to lose his money, a compensation ought to be made to him for the risk he runs, which is founded on the poffibility, that a man of 40 years of age may not furvive another person of the same age. This chance is an equal chance; and, therefore, half the preceding fum, or 2361. is the money which should be advanced now on the expectation mentioned. ⁽a) By Scholium, p. 34, and Problem 26th, p. 293, of Mr. Simpfon's Select Exercises. This folution carries a plaufible appearance; and most persons will, probably, be ready to pronounce it right; nor will this be at all wonderful, as fo great a master of these subjects as Mr. De Moivre appears to have been misled by it. - Nothing more is necessary to prove it to be fallacious, than proceeding in the same way to solve the following fimilar Question. "A, aged 40, offers to give fecurity for " 401. per annum, to be entered upon at his " death, provided it should happen before the " death of B, aged likewise 40. What sum " should now be advanced to him for such a " reversion, interest being reckoned at 4 per " cent?" In folving this Problem, agreeably to the method just described, we are to find the value of 40 l. per annum, to be entered upon certainly at the death of A; and then to multiply this value by the chance that A shall not survive B, or by 1; and in this way the answer comes out the same with that already given. Now it may be eafily feen, that this must be wrong. The value of a reversion, to be received when a person of a given age dies, cannot be the same, whether the condition of obtaining it is, that he shall die before, or that he shall die after another
person. is, whether it is provided, that a purchaser, if he fucceeds, shall get into possession fooner or later. The reversion in the latter case must, without doubt, be of less value than in the former. The first Question here proposed, resolves itself into the following general Question. "What is the present value of a given re"versionary estate, to be entered upon after "the failure of two lives, provided one in "particular of them should be the longest " life?" Now, the present value of an estate to be enjoyed for ever, after the failure of the longest of two lives, is "the value of the longest " of the two lives, subtracted from the per-" petuity; and the remainder multiplied by "the annual rent of the estate."-The value of the longest of two lives is, (as is well-known) the value of the two joint lives, subtracted from the sum of the (a) values of the two single lives. In the present case, therefore, it is 9.82, (the value of two joint lives at the age of 40 by Table VII,) subtracted from twice 13.196; (the value of a fingle life at the same age by Table VI,) that is, 16.57 year's purchase. And this subtracted from 25, (the perpetuity) gives 8.43; which, multiplied by 40, gives 1.337.2, the value of the given estate were it certainly to be enjoyed, after the ex- ⁽a) See Mr. De Moivre on Annuities, Problem IV; or Mr. Simpson's Destrine of Annuities and Reversions, Prob. II. tinction of the longest of two lives both 40; that is, whether one or other of them failed last. But that A's life in particular should fail last, rather than B's, is an even chance. The true value of the reversion, therefore, is half the last value, or 1.168.6. In like manner. The fecond Question is the fame with the Question, "What is the pre"fent value of 401. per ann. for ever, to be en"tered upon after the extinction of two joint" lives both 40; that is, whenever either of them shall fail; provided the first that fails fhould happen to be A's life in particular?" —And the answer is found by subtracting the present value of the two joint lives from the perpetuity, and multiplying the remainder by to or by the chance that A in particular shall die first: And this will give the required value, 1.303.4 (a). In short. It appears in both these cases, that, according to the first method of solution, we are to subtract from the perpetuity the value of one of the single lives; when, in the former case, the value of the longest of the two lives; and, in the latter case, the value of their joint continuance, ought, in reality, to be subtracted. I need not say what prodigious errors may often arise from hence; and how unfit such a method of solution is for practice. ⁽a) I have, the fearcely necessary, given a demonstration of these Solutions in the Appendix, note (N). Mr. Simpson, in p. 322, of his Select Exercifes, speaks on this subject in the following manner. - " I have been very particular " on these kinds of Problems; and the more " fo, as there has been no method before pub-" lished, that I know of, by which they can " be rightly determined. 'Tis true, the man-" ner of proceeding, by first finding the pro-" bability of survivorship, (which method is " used in my former work, and which a cele-" brated author has largely infifted on in three " fuccessive editions) may be applied to good " advantage, when the given ages are nearly " equal; but then it is certain, that this is or not a genuine way of going to work, and "that the conclusions hence derived are at " best but near approximations." This excellent mathematician has here expressed himself much too favourably of the method of folution on which I have remarked. - In both the cases I have specified the ages are equal; and yet, in one of them the error is a good deal above a third of the true value, and in the other, a fifth: And, it is obvious, that in cases where three equal lives are taken, the errors will be much greater. -Mr. Simpson's Observations in this passage are true only, when applied to a different method used by himself, in the 28th and sollowing Problems of his Treatife on the Doctring of Annuities and Reversions. This method is exact when the lives are equal; but, ## 234 Of the Values of Reversions, &c. it gives refults which are too far from the truth, when there is any confiderable inequality between the lives. It is with reluctance I have made some of these remarks. Mr. De Moivre has made very important improvements in this branch of science; and the highest respect is due to his name and authority. This, however, only renders these remarks more necessary. In the first Chapter (Questions 10th, 11th, 12th, 14th, &c.) I have given a minute account of the method of finding, in all cases, the values of the reversions which have been the subject of this Essay. Observations on the proper Method of constructing Tables for determining the Rate of human Mortality, the Number of Inhabitants, and the Values of Lives in any Town or District, from Bills of Mortality in which are given, the Numbers dying annually at all Ages. IN every place that just supports itself in the number of its inhabitants, without any recruits from other places; or where, for a course of years, there has been no increase or decrease, the number of persons dying every year at any particular age, and above it, must be equal to the number of the living at that age.—The number, for example, dying every year, at all ages, from the beginning to the utmost extremity of life, must, in such a fituation, be just equal to the whole number born every year. And for the same reafon, the number dying every year at one year of age and upwards; at two years of age and upwards; at three and upwards, and so on; must be equal to the numbers that attain to those ages every year; or, which is the same, to the numbers of the living at those ages. It is obvious, that unless this happens, the number of inhabitants cannot remain the fame. If the former number is greater than the latter, the inhabitants must decrease; if less, they must increase. - From this observation it follows, that in a town or country, where there is no increase or decrease, bills of mortality which give the ages at which all die, will shew the exact number of inhabitants; and also the exact law, according to which human life wastes in that town or country. In order to find the number of inhabitants: the mean numbers dying annually, at every particular age and upwards, must be taken as given by the bills, and placed under one another in the order of the fecond column of the 12th Table in the Appendix. These numbers will, it has appeared, be the numbers of the living at 1, 2, 3, &c. years of age; and, confequently, the fum, diminished by half the number born annually (a), will be the whole ⁽a) This fubtraction is necessary for the following reafon.-In a Table formed in the manner here directed, it is supposed, that the numbers in the second column are all living together at the beginning of every year. Thus; the number in the fecond column opposite to o in the first column, the Table supposes to be all just born to-gether on the first day of the year. The number, likewife, opposite to 1, it supposes to attain to one year of 270 whole number of inhabitants.—In such a series of numbers, the excess of each number above that which immediately follows it, will be the number dying every year, out of the particular number alive at the beginning of the year; and these excesses set down regularly as in the third column of the Table to which I have referred, will shew the different rates at which human life wastes thro all its different periods, and the different probabilities of life at all particular ages. It must be remembered, that what has been now said goes on the supposition, that the place whose bills of mortality are given, supports itself, by procreation only, in the number of its inhabitants. In towns this very seldom happens, on account of the luxury and debauchery which generally prevail in them. They are, therefore, commonly kept up by a constant accession of strangers or settlers, age just at the same time that the former number is born. And the like is true of every number in the second column.—During the course of the year, as many will die at all ages as were born at the beginning of the year; and, consequently, there will be an excess of the number alive at the beginning of the year, above the number alive at the end of the year, equal to the whole number of the annual births; and the true number constantly alive together, is the arithmetical mean between these two numbers; or, agreeably to the rule I have given, the sum of the numbers in the second column of the Table, lessened by balf the number of annual births. See Essay 1, page 174. who remove to them from country parishes and villages. In these circumstances, in order to find the true number of inhabitants, and probabilities of life, from bills of mortality containing an account of the ages at which all die; it is necessary, that the proportion of the annual births to the annual settlers should be known; and also the period of life at which the latter remove.— Both these particulars may be discovered in the following method. If for a course of years there has been no sensible increase or decrease in a place, the number of annual settlers will be equal to the excess of the annual burials above the annual births. If there is an increase, it will be greater than this excess. If there is a de- crease, it will be less. The period of life at which these settlers remove, will appear in the bills by an increase in the number of deaths at that period and beyond it. Thus; in the London bills, the number of deaths, between 20 and 30, is generally above double; and between 30 and 40, near triple the number of deaths between 10 and 20: And the true account of this is, that from the age of 18 or 20, to 35 or 40, there is an afflux of people every year to London from the country, which occasions a great
increase in the number of inhabitants at these ages; and, consequently, raises the deaths for all ages above 20, confiderably fiderably above their due proportion, when, compared with the number of deaths before 20. — This is observable in all the bills of mortality for towns with which I am acquainted, not excepting even the Breslaw bills. Dr. Halley takes notice, that these bills gave the number of deaths, between 10 and 20, too small. This he considered as an irregularity in them, owing to chance; and, therefore, in forming his Table of Observations, he took the liberty fo far to correct it, as to render the proportion of those who die to the living in this division of life, nearly the same with the proportion which, he says, he had been informed (a) die annually of the young lads in Christ-Church Hospital. the truth is, that this irregularity in the bills was derived from the cause I have just affigned .- During the five years for which the Breflaw bills are given by Dr. Halley, the births did, indeed, a little exceed the burials; but, it appears, that this was the effect of fome peculiar causes that happened to operate just at that time; for, during a complete century from 1633 to 1734, the annual medium of births was 1089 (b), and of bu- ⁽a) See Lowthorp's Abridgment of the Philosophical Transactions, vol. III. p. 670.—Dr. Halley's information in this instance was not right, as will appear presently; and, therefore, he has by no means sufficiently corrected the irregularity I have mentioned. ⁽b) See Dr. Short's Comparative History, p. 63. rials 1256 (a). This town, therefore, must have been all along kept up by a number of yearly recruits from other places, equal to about a *seventh* part of the yearly births. What has been now observed, concerning the period of life at which people remove from the country to settle in towns, would appear sufficiently probable, were there no such evidence for it as I have mentioned; for it might be well reckoned, that these people in general, must be single persons in the beginning of mature life, who, not having yet obtained settlements in the places where they were born, migrate to towns in quest of employments. Having premifed these Observations, I shall next endeavour to explain distinctly, the effect which these accessions to towns must have, on Tables of Observation formed from their bills of mortality. This is a subject proper to be insisted on, because mistakes have been committed about it; and because also, the discussion of it is necessary to shew, how near to truth the values of lives come as deduced from such Tables. The following general rule may be given on this subject. If ⁽a) It appears from the account in the Philosophical Transactions, (Abridgment, vol. VII, No. 380, p. 46, &c.) that from 1717 to 1725, the annual medium of births at Breslaw was 1252, of burials 1507; and also, that much the greatest part of the births died under 10 years of age. If a place has, for a course of years, been maintained in a state nearly stationary, as to number of inhabitants, by recruits coming in every year, to prevent the decrease that would arise from the excess of the burials above the births; a Table formed on the principle, "that the number dying annually, after every " particular age, is equal to the number liv-"ing at that age," will give the number of inhabitants, and the probabilities of life, too great, for all ages preceding that at which the recruits ccase; and after this, it will give them right.—If the accessions are so great as to cause an increase in the place, such a Table will give the number of inhabitants, and the probabilities of life, too little, after the age at which the accessions cease (a); and too great, if there is a decrease. Before that age it will in both cases give them too great; but most considerably so in the former case, or when there is an increase. (a) Agreeably to these Observations; if a place increases, not in consequence of accessions from other places, but of a constant excess of the births above the deaths; a Table, constructed on the principle I have mentioned, will give the probabilities of life too low through the whole extent of life; because, in such circumstances, the number of deaths in the first stages of life must be too great, in comparison of the number of deaths in the latter stages; and more or less so, as the increase is more or less rapid. — The contrary, in all respects, takes place where there is a decrease, arising from the excess of the deaths above the births. For example. Let us suppose, that 244 of those born in a town, attain annually to 20 years of age; and that 250 more, all likewife 20 years of age, come into it annually from other places; in consequence of which, it has, for a course of years, been just maintained in the number of its inhabitants, without any fensible increase or decrease. In these circumstances, the number of the living in the town of the age of 20, will be always 244 natives and 250 settlers, or 494 in all; and, fince these are supposed all to die in the town, and no more recruits are supposed to come in; 404 will be likewise the number dying annually at 20 and upwards. - In the fame manner; it will appear on these suppositions, that the number of the living, at every age, subsequent to 20, will be equal to the number dying annually at that age and above it; and, confequently, that the number of inhabitants and the decrements of life, for every fuch age, will be given exactly by the Table I have supposed. But for all ages before 20, they will be given much too great. For let 280 of all born in the town, reach 10. In this case, 280 will be the true number of the living in the town at the age of 10; and the recruits not coming in 'till 20, the number given by the bills, as dying between 10 and 20, will be the true number dying annually of the living in this division of life. Let this number be 36; and it will follow. 3 follow, that the Table ought to make the numbers of the living at the ages between 10 and 20, a feries of decreasing means between 280 and (280 diminished by 36, or) 244. But in forming the Table on the principle I have mentioned, 250 (the number above 20 dying annually in the town who were not born in it) will be added to each number in this series; and, therefore, the Table will give the numbers of the living, and the probabilities of life in this division of life, almost twice as great as they really are.—This observation, it is manifest, may be applied to all the ages under 20. It is necessary to add, that such a Table will give the number of inhabitants, and the probabilities of life, equally wrong before 20, whether the recruits all come in at 20, agreeably to the supposition just made, or only begin then to come in. In this last case, the Table will give the number of inhabitants, and probabilities of life, too great throughout the whole extent of life, if the recruits come in at all ages above 20. But if they cease at any particular age, it will give them right only from that age; and before, it will err all along on the fide of excess; but less confiderably between 20 and that age, than before 20. — For example. If, of the 250 I have supposed to come in at 20, only 150 then come in, and the rest at 30; the numbers of the living will be given 100 too high, at every age between 20 and 30; but, as just fhewn, they will be given 250 too high at every age before 20.- In general, therefore, the number of the living at any particular age, must be given by the supposed Table, as many too great as there are annual fettlers after that age; and, if these settlers come in at all ages indifcriminately, during any certain interval of life; the number of inhabitants and the probabilities of life will be continually growing less and less wrong, the nearer any age is to the end of that interval. -These observations prove, that Tables of Observation formed in the common way, from bills of mortality for places, where there is an excess of the burials above the births, must be erroneous, for a great part of the duration of life, in proportion to the degree of that excess. They shew likewise, at what parts of life the errors in fuch Tables are most confiderable, and how they may be in a great measure corrected. All this I shall beg leave to exemplify and illustrate a little further, in the particular case of London. The number of deaths, between the ages of 10 and 20, is always so small in the London bills, that it seems certain sew recruits come to London under 20; or at least, not so many as before this age are sent out for education to schools and universities. After 20, great numbers come in 'till 30, and some, perhaps, perhaps, 'till 40 or 50. — But, at every age after 50, it is probable, that more retire from London than come to it.—The London Tables of Observation, therefore, being formed on the principle I have mentioned, cannot give the probabilities of life right 'till 40. Between 30 and 40 they must be a little too high; but more so between 20 and 30; and most of all so before 20.—It follows also, that these Tables must give the number of inha- bitants in London much too great. Table XII, in the Appendix, is a Table formed in the manner I have explained, from the London bills for 10 years, from 1759 to 1768; and adapted to a 1000 born as a radix. The fum of the numbers in the fecond column, diminished by half the number born, is 25,757. According to this Table then, for every 1000 deaths in London, there are 253 as many inhibitants; or, in other words, the expectation of a child just born is 2; ; and the inhabitants are to the annual burials, as $25\frac{3}{2}$ to 1. -But it has appeared, that the numbers in the fecond column being given on the fupposition, that all who die in London were born there, must be too great; and we have from hence a DEMONSTRATION, that the probabilities of life are given in the common Tables of London Observations, too high, for, at least,
the first 30 years of life; and also, that the number of inhabitants in London must be less, than 253, multiplied by the annual burials. The common Tables, therefore, of London R_3 ObserObservations, undoubtedly want to be corrected (a); and the way of doing this, and in general, the right method of forming genuine Tables of Observation for towns, may be learnt from the following rule. " From the fum of all that die annually, " after any given age, fubtract the number of annual fettlers after that age; and the remainder will be the number of the liv- "ing at the given age." This rule can want no explication or proof, after what has been already faid. If, therefore, the number of annual fettlers in a town at every age could be afcertained; a perfect Table of Observations might be formed for that town, from bills of mortality, containing an account of the ages at which all die in it. But no more can be learnt in this instance, from any bills, than the whole number of annual fettlers, and the general division of life in which they enter. This, however, may be sufficient to enable us to form Tables that shall be tolerably exact.—For instance. Suppose the annual deaths in a town which has not increased or decreased, ⁽a) The ingenious and accurate Mr. Simpson faw that it was necessary to correct the London Tables, and he has done it with great judgment; but, I think, too impertectly, and without going upon any fixt principles, or shewing particularly, how Tables of Observation ought to be formed, and how far in different circumstances, and at different ages, they are to be depended on. to have been for many years, in the proportion of 4 to 3, to the annual births. It will hence follow, that - of the persons who die in such a town are fettlers, or emigrants from other places; and not natives: And the fudden increase in the deaths after 20, will also fnew, agreeably to what was before observed, that they enter after this age. In forming, therefore, a Table for fuch a town, a quarter of all that die at all ages throughout the whole extent of life, must be deducted from the sum of all that die after every given age before 20; and the remainder will be the true number living at that given age. And if, at 20, and every age above it, this deduction is omitted, or the number of the living at every fuch age is taken the same with the sum of all that die after it, the refult will be (supposing most of the settlers to come in before 30, and all before 40) a Table exact 'till 20; too high between 20 and 30; but nearly right for some years before 40; and after 40 exact again .- Such a Table, it is evident, will be the same with the Table last described at all ages above 20; and different from it only under 20. — It is evident also that, on account of its giving the probabilities of life too great for some years after 20, the number of inhabitants deduced from it may be depended on as fomewhat greater than the truth; and more or less so, as the annual recruits enter in general later or sooner after 20. Let Let us now confider, what the result of these remarks will be, when applied particu- larly to the London bills. It must be here first observed, that, at least, one quarter of all that die in London are fettlers from the country, and not natives.—The medium of annual burials for 10 years, from 1759 to 1768, was 22,956; of births 15,710. The excess is 7246; or near a third of the burials.—The same excess, during 10 years, before 1750, was 10,500; or, near half the burials. London was then decreasing. For the last 12 or 15 years it has been increasing. This excess, therefore, agreeably to the foregoing observations, was then greater than the number of annual fettlers; and it is now less. I have chosen, however, to suppose the number of annual fettlers to be now, no more than a quarter of the annual burials, in order to allow for more omissions in the births than the burials; and also, in order to be more sure of obtaining refults that shall not exceed the truth. Of every thousand then who die in London, only 750 are natives, and 250 are set-tlers, who come to it after 18 or 20 years of age: And, consequently, in order to obtain from the bills a more correct Table than the 12th in the Appendix, 250 must be subtracted from every one of the numbers in the second column 'till 20; and the numbers in the third column must be kept the same, the bills always giving these right.—After 20, the Table is to be continued unaltered; and the refult will be, a Table which will give the numbers of the living at all ages in London much nearer the truth, but still somewhat too high.—Such is the 13th Table in the Appendix.—The fum of all the numbers in the second column of this Table, diminished by 500, is 20,750. For every 1000 deaths, therefore, in London, there are, according to this Table, 20,750 living persons in it; or for every fingle death, 203 inhabitants. It was before shewn, that the number of inhabitants in London could not be so great as 25 times 3 the deaths. It now appears, (fince the numbers in the fecond column of this Table are too high) that the number of inhabitants in London cannot be fo great as even 20 times 3 the deaths. And this is a conclusion which, I believe, every one who will bestow due attention on what has been faid, will find himfelf forced to receive. It will not be amis, however, to confirm it by the following fact, the knowledge of which I owe to the particular enquiry, and kind information of Mr. Harris, the ingenious mafter of the Royal Mathematical School in Christ-Church Hospital. -The average of lads in this school has, for 30 years past, been 831. They are admitted at all ages between seven and eleven; and few stay beyond 16. They are, therefore, in general lads between the ages of eight and 16. They have better accommodations than it can be supposed children commonly have; and about 300 of them have the particular advantage of being educated in the country. In such circumstances it may be well reckoned, that the proportion of children dying annually, must be less than the general proportion of children dying annually at the same ages in London. — The fact is, that, for the last 30 years, 11 \frac{2}{5} have died annually; or one in $70\frac{2}{5}$. According to Table XIII, one in 73 dies between 10 and 20, and one in 70 between eight and 16. That Table, therefore, probably gives the decrements of life in London, at these ages, too little, and the numbers of the living too great: And, if this is true of these ages, it must be true of all other ages under 20; and it follows demonstrably, in conformity to what was before shewn, that more people settle in London after 20, than the ½ I have supposed; and that from 20 to at least 30 or 35, the numbers of the living are given too great, in proportion to the decrements of life. In this Table the numbers in the fecond column are doubled at 20, agreeably to what really happens in London; and the fum of the numbers in this column diminished by half the whole number of deaths, gives the expectation of life, not of a child just born, as in other Tables, but of all the inhabitants of London at the time they enter it, whether that be at birth, or at 20 years of age. The expectations, therefore, and the values of London lives under 20, cannot be calculated from this Table. But it may be very eafily fitted for this purpose, by finding the number of births which, according to the given decrements of life, will leave 494 alive at 20; and then adapting the intermediate numbers in fuch a manner to this radix, as to preserve all along the number of the living, in the same proportion to the numbers of the dead. This is done in the 14th Table in the Appendix; and this Table may, I fancy, be recommended as better adapted to the present state of London than any other Table. The values of lives, however, deduced from it, are in general nearly the fame with those deduced by Mr. Simpson, from the London bills as they stood 40 years ago. The main difference is, that after 52, and in old age, this Table gives them somewhat lower than Mr. Simpson's Table. It has sufficiently appeared, what judgment we are to form of the values of lives thus deduced. During the greatest part of the interval of life, in which the annual recruits that keep up *London* come to it, these values err on the side of excess; and after that interval, they err, perhaps, a little on the side of defect (a), on account of retirements from London in the last stages of life. The ⁽a) I have not taken into account the effect of migrations from towns, on Tables formed in the manner I have explained; The number of inhabitants in London may also be learnt from what has been offered, more explained; because, towns in general being kept up by recruits from the country, the migrations from them are of little consequence, compared with the migrations to them.—Thus; in London, it appears, from the much greater number of deaths between 40 and 50, than in any other equal interval of life after 10, that more people come to it than leave it, at every age between 20 and 50. After 50, it is probable, that the contrary happens. But, it should be considered, that emigrants from LON-DON after 50, are chiefly perfons who, having got fortunes in business, chuse to leave off, and to spend the latter part of their lives in country retirements. But how few are these compared with the multitudes who, tho' possessed of good fortunes, never retire; and with the bulk of the inhabitants in lower stations, who never can be able, without the greatest inconveniencies, to quit the fettlements by which they are supported? It is, however, likely, that retirements from London are now more numerous than they ever were; and that they have fome effect on the bills of mortality, and on Tables formed from them; by cauting these Tables to give the number of the living too little, in comparison with the decrements of life, at every age, from that at which the
migrations to and from London become equal, to the age at which the latter cease.—To explain this; let us suppose, that none settle in London after 50; but that, between 35 and 50, as many come to it as retire from it at all ages after 35; and that these retirements cease at 70. In this case, the Tables will give the proportion of the living to the decrements of life too high 'till 35. At 35, this proportion will be given right. After 35, it will begin to be given too low; and this error will increase 'till 50; from which age it will decrease gradually 'till it vanishes at 70: And after 70, the Tables will be exactly right again.—This is the exact flate of the effect of retirements from London, on the London Table of Observations. But this effect appears, indeed, to be inconsiderable; for, more nearly than by any method which has been hitherto taken. It cannot, it has been shewn, exceed 20 times i the number of annual deaths. Could, therefore, the annual deaths be afcertained, we should know the number of inhabitants within pretty narrow limits. But the omissions in the bills are fuch, that it is not possible to ascertain, with exactness, the annual deaths. Dr. Brakenridge supposed these omissions to amount to 2000 annually. The result of a very minute enquiry by Mr. Maitland is, that in the year 1729, they amounted to 3038. But they are probably now much more confiderable, than either of these writers have reckoned them (a). Let them be 6000; and the number of inhabitants will be 601,750 at most. All the preceding Observations are, it is plain, applicable to bills of mortality for towns in general; and point out the way of deducing from them genuine Tables of Ob- after 50, the values of lives by the London Table, are continually approaching nearer and nearer to the same values by other Tables; which could not happen were retirements attended with any great effect.—It is proper to add, that in summing up, as above-explained, the numbers of the living, in order to find the number of inhabitants in London, the circumstance that these numbers may be too small for some years after 40 or 50, in consequence of retirements, is, undoubtedly, much more than balanced by their being given too high between 20 and 40. fervations, ⁽a) Vid. Preface to a Collection of the Bills of Mortality from 1657 to 1758, p. 4, &c. fervations, which shall give the true probabilities and values of lives, and the true number of inhabitants, in the town whose bills are given.—I shall beg leave to confirm and illustrate this, in the particular case of the town of Northampton. In this town, containing four parishes, namely, All-Saints, St. Sepulchre's, St. Giles, and St. Peter's, an account has been kept ever since the year 1741, of the number of males and semales that have been christened and buried (Dissenters included) in the whole town. And in the parish of All-Saints, containing the greatest part of the town, an account has been kept ever since 1735, of the ages at which all have died there. In 1746, an account was taken of the number of houses, and of inhabitants in the town. The number of houses was found to be 1083; and the number of inhabitants 5136.—In the parishes of All-Saints and St. Giles, the number of male and female heads of families, servants, lodgers, and children, were particularly distinguished.—The heads of families were,707 males; and 846 females.—Children, males 624; females 759.—Servants, males 203; females 280.—Lodgers, males 137; females 287.—In St. Peter's, males 99; females 129.—In St. Sepulchre's, adults 638; children 427. In this parish the sexes were not distinguished. The Christenings and Burials in the whole town for 28 years, from 1741 to 1770, have been as follows. Christened { Males 2361 } 4649 — Annual medium 155 { Males 2860 } 5747 — Annual medium 191 Buried In the parish of All-Saints, from 1735 to 1770, or 36 years, Christened \{ Males 1632 \} 3242 —Annual medium Males 1856 3690—Annual medium 1022 Buriel ## Of these died, Under 2 years of age — 1206 Between 20 and 30 — 297 Between 30 and 40 — 257 Between 40 and 50 — 297 Between 50 and 60 — 300 Between 70 and 80 — 293 Between 80 and 90 — 155 Between 80 and 90 — 155 Between 90 and 100 — Total 3690 A Table formed from these data in the manner of Table XII; or, on the supposition, that all who die in Northampton were born there, would give the expectation of a child just born 28.83 years; or, the proportion of the inhabitants to the annual deaths, as 28.83 to 1. It has been shewn, that this proportion, in a place where the burials exceed the births, must be greater than the true proportion of the number of inhabitants to the annual deaths: And this appears to be the real case. For the bills shew, that, from 1741 to 1750, or for 10 years, about the time when the number of inhabitants was 5136, the annual medium of burials was 197.5; which, multiplied by 28.83, gives 5693; or a 9th part more than the true number. A Table formed in the manner of Table XIII, would give the proportion of inhabitants to the annual deaths, as 26.41 to 1; and this makes the inhabitants 5216; or very near the true number. The IVth Table, in the Appendix, is formed in the same manner with Table XIV, for London: And this is the genuine Table of Observations for Northampton, from which may be calculated the true probabilities and values of lives, at all ages, in that town. At Norwich, bills of mortality, of the fame kind with those in London and Northampton, have been kept for many years. I have have been favoured with a copy of these bills for 30 years, from 1740 to 1769. The annual medium of christenings, during this period, has been 1057 (a), of burials 1206. And from hence, together with the account of the numbers dying in the several decade of life, after 10, I have formed Table V, which shews the true probabilities of life in this town. The following particulars feem to deserve notice here. First. Had these Tables been formed from the Northampton and Norwich bills, for no longer time than any 10 years taken together, of the periods I have mentioned; they would have given the probabilities and values of lives nearly the same. These Tables, therefore, are sounded on a sufficient number of Observations; and it appears, that there is an invariable law which (a) In this register all that die before baptism, and also all that are born and die among Quakers, Jews, &c. are omitted. There are also some other omissions; and the true annual medium of births and burials must be greater than they are given in the bills. But this will have no effect on a Table of Observations, supposing the proportions of the births to the burials, and of the numbers dying in the different stages of life, given right.—It is proper I should mention surther here, that these bills give only the whole number of children dying under 10, without specifying the numbers dying under two years of age, between 2 and 5, and between 5 and 10, as in other bills. I have, therefore, in forming the Table for Norwich, supposed the proportions of these numbers the same that they are at Northampton. 5 governs the waste of human life in these towns.—The same remark might be made concerning London (a). See p. 251. Secondly. An account was taken at Shrewsbury, in 1750, of the whole number of inhabitants; diftinguishing, particularly, the number at the age of 21 and upwards.—The former number was 8141; and the latter, 5187.—According to a Table formed for Northampton, in the same manner with Table XIII, for London, the whole number of the living is to the number of the living at 21 and upwards, as 26,411 to 16,586; that is, as 8141 to 5113.—According to a like Table for Norwich, these numbers are to one another, as 24,500 to ⁽a) Some have entertained a very wrong notion of the imperfections in the LONDON bills. They do, indeed, give the whole number of births and deaths much too little; but the conclusions with respect to the probabilities. of life in LONDON, and the proportion of inhabitants dying annually, depend only (agreeably to the observation in the last note) on the proportions of the numbers dying in the feveral divisions of life; and these are given right in the LONDON bills .- For first. There feems nothing in this case, that can be likely to cause the deficiencies in the bills to fall in one division of life more than in another: But what decides this point is, that these proportions, as given by the bills for any ten, or even any five years, come out nearly the same with one another; and always very different from the proportions given by other bills.—There are no other variations, than fuch as must arise from the fluctuations of London, as to increase and decrease; and also from some improvements in its state, which have lately taken place. See Essay I. p. 190, 191, 201. 15,680; Tables, therefore, give the proportion of the whole number of inhabitants, to the number of the living at 21 and upwards, almost exactly the same with the true proportion, as it is at Shrewsbury (a): And this affords a kind of demonstration of the rectitude of the principles on which these Tables have been formed. In the parish of Holy-Cross near Shrews-Bury, an account was taken, in 1760 and 1770, of the whole number of inhabitants; distinguishing, both times, the number at the age of 70 and upwards; and the last time, the number at 10 and upwards: And, I find, that a Table formed from the Register of this parish, mentioned p. 192, gives, likewise, these numbers as nearly the same as could possibly be expected. But further.—The number of inhabitants, not reckoning children, in the parishes of St. (a) The annual medium of births at SHREWSBURY, for 7 years, from 1762 to 1768, was 301; of burials, 329. It appears, therefore, that one in 24\frac{3}{2} of the inhabitants die annually. But it should be remembered, that in 1766, the small-pox and measles increased very much the mortality in this town; and I find also, that, since 1750, a nursery for
foundlings from London, was established here; and that in 1768 this nursery contained 660 children and servants. It seems, therefore, probable, that the true medium of burials about the year 1750, must have been less than 329; and that the proportion of inhabitants dying annually, may not be much greater than it is at NORTHAMPTON; or I in 26.41. Giles Giles and All-Saints, NORTHAMPTON, Was, in 1746, 2460; and the whole number of inhabitants in these two parishes was 3843. See p. 254.—In the account I have received, the particular age at which the limit of childhood was fixed in taking this furvey, is not mentioned; but there is sufficient reason to believe, that it was 21: And, taking this for granted, the number of inhabitants, not children, will come out, (by fuch a Table for NORTHAMPTON, as Table XIII for Lon-DON) 2414; or, nearly the same with the number really found in these parishes.-Had this number been computed, from a Table formed for NORTHAMPTON, in the manner of Table XII, Appendix, it would have come out only 2176. This remark is applicable to the Table for Breflaw, formed by Dr. Halley, compared with the same Table, corrected for all the ages under 20 (a), by the rule, p. 246. ⁽a) I have given Dr. Halley's Table in the Appendix just as he framed it. A correction of it might be made from the proportion of births to burials, mentioned p. 239. And it would then appear, that a 25th part of the inhabitants at Breflaw die annually; and that half the number born die there under fix, as well as at Norwich. This Table, as we now have it, makes half live to 16; but the account mentioned in the note, page 240, shews this not to be the truth. It likewise makes the number of inhabitants at Shrewsbury, above the age of 21, to be 4730; and in the parishes of All Saints and St. Giles in NORTHAMPTON, 2230. It gives, therefore, these numbers wrong; whereas, as observed above, a corrected Table would give them true. The necessity, therefore, of this correction is verified by facts; and it appears, abundantly, that the Tables I have given for North-Ampton and Norwich may be depended on. But, thirdly. In comparing these two Tables, it may be observed, that there is a difference between them in favour of North-AMPTON, fewer dying there in childhood, and more in old age. The same would be found to be true, were the NORTHAMPTON Table to be compared with a corrected BRES-LAW Table. It appears, therefore, agreeably to what might have been expected, that NORTHAMPTON, being a fmall town compared with Breslaw and Norwich, is less unfavourable to health and longevity. The difference, however, is not confiderable. After the age of 20, there is a striking conformity between all the three Tables, which gives them great weight and authority. Further. It ought to be particularly noted, that these Tables prove, the decrements of life in moderate towns, to be nearly equal thro' most of its stages. At NORTHAMPTON it appears that, of a given number of persons alive at 20, the same number die every year 'till 78, without any interruption worth notice, except between the ages of 30 and 40.—A like uniform decrease in the probabilities of life appear in the BRESLAW S_3 and Norwich Tables; but not so remarkably. It was this circumstance in the Breslaw Table, that led Mr. De Moivre to the Hypothesis, described in p. 2, and so often mentioned in this work.—The values of lives, I have said, deduced from this Hypothesis, agree so nearly with the same values deduced immediately from the Tables, that it is scarcely worth while to distinguish them. But that every one may be able to judge of this for himself, I have calculated (a) the following Table. | Value of a li
at the age | 1 | By Norwich Table. | By Northamp-
ton Table. | By Mr. De Moi-
wre's Hypothesis. | |-----------------------------|----------|-------------------|----------------------------|-------------------------------------| | 1: | 2 17.617 | 17.48 | 17.20 | 16.69 | | Reckon-
ing in- 3 | 0 16.49 | 16.41 | 15.93 | 15.89 | | | 0 14.77 | 15.15 | 14.85 | 14.68 | | 4 per 4 | 1 | 13.36 | 13.10 | 13.19 | | cent. 5 | 1 0 '- | 1 | 11.25 | 11.34 | | 6 | 0 8.58 | 8.54 | 9.02 | 9.01 | | 7 | 0 5.59 | 1 | 6.26 | 6.06 | | 7 | 5 4.21 | 1 4.86 | 4.79 | 4.29 | It may be observed in this Table, that the values, by the Hypothesis, come nearer to the true values by the NORTHAMPTON and NORWICH Tables, than by the BRESLAW Table; and also, that, before the age of 60, they are all much higher than the values for the ⁽a) Every calculation of this kind may be made without much labour, by a rule explained in note (O) Appendix. the same ages in London by Table X; the inhabitants of London, (as Mr. De Moivre obferves) being "for causes (a) too well known, "more short-lived than the rest of mankind."—The Hypothesis, therefore, is by no means applicable to London lives. It is proper to add, that neither can it be applied to the valuation of Country lives.—It appears, from the register of the parish of Holy-Cross (b), that the expectations of lives there are much greater than the expectations by the Hypothesis.—The expectation there of a life (c) At 20 is 38 By Hypoth. 33 In Lond. 28.9 27 33.9 25.I 30 23.6 32 40 25.7 19.6 50 16 20 60 14.5 12.4 8.8 70 10 From ## (a) Doctrine of Chances, p. 347. S 4 I wil ⁽b) See Essay I. p. 191.—I have not given the Table of Observations from whence these conclusions are deduced, because it is possible, some may think 20 years not a period long enough, to afford data in this case of sufficient authority. I have in p. 257, mentioned a fact which seems to prove the contrary. It is, however, certain, that the same register continued 10 or 20 years longer, will afford data more to be depended on. ⁽c) The expectation of a child just born in this parish, is 33. At Northampton, $25\frac{1}{2}$. At Norwich, $23\frac{3}{4}$. In London, 18.—In this parish, 1 in 11 dies at 80, and upwards. In Northampton; 1 in 22. In Norwich; 1 in 27. In London; 1 in 40. See Essay I. p. 200. From this comparison it appears, that the Hypothesis, from 20 to 60, gives nearly the medium I will add, that the probabilities of life here, appear to be much the fame, with the probabilities of life among the ministers and professors in Scotland.—This is a fact of some consequence; and, therefore, I shall beg leave to give a brief account of it. The mean age at which the ministers and professors enter into benefices and profesiorships in Scotland, is reckoned to be 27. Their number is 974. The establishment among them for providing for their widows, begun on the 25th of March 1744; from which time to November 22, 1768, 721 have died: That is, 29.23 annually; or 1 in 331. The expectation, therefore, of a life among them, at the age of 27, is 331; which is nearly the same with the expectation, as given above, of a life of the same age in the parish of Holy-Cross; and 31 years more, than the expectation of the same age by Tables III, IV and V. -Now, the expectation at a given age, being composed of all the probabilities of life from that age to the extremity of life; there arises from hence reason for concluding, that the probabilities of life among the ministers in Scotland, cannot differ much in any part of life, from those in this parish. — But there is another fact that confirms this observation. The annual average of weddings among the ministers and professors in Scotland, for the last 24 years, has been at most 32. The average of married persons among them, for 17 years ending in 1767, had been 667. This number, divided by 32, gives 20.84, the expessation of marriage among them; which is $2\frac{\pi}{4}$ years more than the expessation of marriage would be, by Dr. Halley's Table, on the supposition, that all 1st, 2d and 3d marriages may be justly considered as commencing, one with another, so early as the age of 30.—The expessation of two equal joint lives is to the expessation of a single life of the same age, as 2 to 3, by note (L) Appendix. It follows, therefore, that among the ministers in Scotland, the expessation of a single medium between the expectations of London and Country lives; and for this reason it is excellently adapted to general use.—After 60, the expectations and values of lives in London approach nearer and nearer to the expectations and values of lives in Northampton, Norwich and Breslaw; 'till, at 70, they come to be almost the same. This is a circumstance which, I believe, has not been attended to: And it is the more surprizing, as there is no cause known, which can produce any error in the values of lives after 60, deduced from the London Table, except migrations from London; and the effect of these must be to diminish these values. The following observations will, perhaps, account for this. It has been proved, that at least balf the inhabitants of London, turned of 20 years of age, are emigrants to London from the country. So great a change as that, from the country air and modes of life, to the air and modes of life in London, must be parti- life at 30 cannot be less than 31.26. Most probably it is more; on account of the later commencement of marriage in the situation of the Scotch ministers. — I reckon also, that 27 must be less than the mean age at which they enter their benefices and professionships; meaning by it, not the age on each fide of which equal numbers enter; but the age at which, the excess of the interval of time taken to enter on one side, is just such as to compensate the greater numbers who enter on the other side. See the conclusion of note (F) Appendix. cularly cularly hurtful to these persons; and, therefore, (except infants) it is in them, probably, that the pernicious influence of London on its inhabitants chiefly appears. They come in at every age 'till near 50; and this is the reason why the deaths continually increase in London' till that age; but, after that age, the inhabitants consisting chiefly of persons, who (like men used to drink) have been
seasoned to London, or with whom it does not happen particularly to disagree; the number of deaths becomes less, and the values of lives begin to approach nearer to the common standard in other towns. There is one more fact which I shall here take notice of; and which deserves more attention than has been hitherto bestowed upon it. I mean; "the difference between the probabilities of life among males and fe"males, in favour of the latter." From the account in p. 254, it appears, that at Northampton, tho' more males are born than females, and nearly the fame number die; yet the number of living females is greater than the number of males, in the proportion of 2301 to 1770, or 39 to 30. This cannot be accounted for, without supposing, that males are more short-lived than females.—One obvious reason of this fact is, that males are more subject to untimely deaths by accidents of various kinds; and also, in general, more addicted to the excesses and irregularities which which shorten life. But this is by no means the only reason. For it should be observed, that at Northampton the number of female children was, in 1746, greater than the number of male children, in the proportion of 759 to 624.—The greater mortality of males, therefore, takes place among children.—But this, together with the greater mortality in general of males at all ages, will more particularly appear from the following recital of facts. In the parish of Holy-Cross, Salop, the ingenious Vicar, Mr. Gorsuch, in 1760, and again in 1770, took the number of male and female inhabitants turned of 70. In 1760, the number of females turned of this age, was 35; of males, 8. In 1770, these numbers were, semales, 35; males, 26. And for the last 10 years 11, out of 365 have died between the ages of 85 and 102; and they were all females. At BERLIN, it appeared, from the accurate account which was taken of the inhabitants in 1747, and which has been mentioned in p. 219, that the number of female citizens exceeded the number of male citizens, in the proportion of 459 to 391: And yet, out of this smaller number of males, more had died, for 20 years preceding 1751, in the proportion of 19 to 17 (a). ⁽a) Vid. Sufmilch, p. 8, and p. 32, &c. where a minute account is given of the number of males and females at Berlin in 1747; and also, of the numbers of each fex that had died from 1722 to 1750. At Edinburgh, in 1743, the number of females was to the number of males, as 4 to 3; (See Essay I. p. 211) but the semales that died annually, from 1749 to 1758, were to the males, in no higher proportion than 3; to 3. Before 1749, the bills give the totals of burials, without distinguishing them into the totals of males and semales dying every year. Mr. Kerseboom, in his Essay on the numbers of people in Holland, informs us, that from the Tables of assignable Annuities for lives in Holland, which had been kept there for 125 years, wherein the ages of the persons dying are truly entered; it appears, that semales have, in all accidents of age, lived about 3 or 4 years longer than the same number of males. See Philosophical Transactions abridged, Vol. IX, p. 326. In Volume the 7th of the Philosophical Transactions abridged, Part IV, p. 46, &c. there is an account of the numbers of male and female still-born children and chrysoms, and of boys and girls under 10, of married men and married women, and of widows and widowers, who died for a course of years at Vienna, Breslaw, Dresden, Leipsic, Ratisbon, He that will take the pains to examine these accounts will find that, though in these towns the proportion of males and semales born is no higher than 19 to 18, yet the and some other towns in GERMANY. pro- proportion of boys and girls (a) that die is 8 to 7; and that, in particular, the still-born and chrysom males, are to the still-born and chrysom females, as 3 to 2. In these accounts it appears also, that of 7270 married persons who had died in these towns (b), 4336 were married men, and but 2934 married women; that is, three married men died to two married women.—The scheme for making provision for the widows and orphans of the ministers in Scotland, has obliged them to keep an account of the number of weddings among them, and the number of widows left annually; and it appears, from the reports of the trustees for carrying this scheme into execution, that the annual medium of weddings (c), is (as observed in the note, p. 264) at most 32. And the annual - (a) In the accounts from Breslaw it is particularly mentioned, that by boys and girls are meant children to 10 years of age, of whom, for 8 years from 1717 to 1725, feven males died to fix females, exclusively of the still-born and chrysoms. - (b) In Breslaw alone, for the eight years mentioned in the last note, 1891 married men died, to 1196 married women; that is 5 to 3.—In Dreslan alone, for five years, these numbers were 1080 and 849. - (c) The annual medium of weddings, among the ministers admitted to benefices, has been, for 24 years from the commencement of the scheme, 27. Besides these I find there have been 4 weddings annually among them, before admission to benefices. The whole annual medium, therefore, is no more than 31. But I have supposed it 32, in order to go upon more sure grounds. medium medium of widows, who have come upon the scheme for 24 years, is 20. Of 32 marriages then contracted annually, 20 become extinct by the deaths of busbands; and but 12 by the deaths of wives. That is; among the ministers and proteffors in Scotland, 20 married men die to 12 married women; or 5 to 3. It appears, therefore, that there is the chance of 3 to 2, and in some circumstances even a greater chance, that the woman shall be the furvivor of a marriage, and not the man. In order to account for this by the difference of age between men and their wives, this difference ought to be at least 12 years (a). That is; supposing the mean age at which women marry to be 23, the mean age at which men marry ought to be 35. But this feems to exceed the bounds of credibility; and, therefore, very probably, the greater mortality of males must operate in this case. It is further observable in the accounts from Germany, to which I have referred, that the number of widows dying annually, is four times the number of widowers (b); and, as quidores ⁽a) The chance of survivorship between two persons aged 21 and 34, is nearly 3 to 2 in favour of the former. There is the same chance of survivorship between 25 and 37; and 28 and 39. This may be learnt from Problem XVI, in Mr. De Moivre's Treatise on Life-Annuities. ⁽b) In Drefden alone, the number of widows who died, in four years, was 584. The number of widowers, 149. That is; 4 to 1.—It appears from note (b) in the last widows are certainly, one with another, feveral years younger than widowers; it may be concluded from hence, that the number of the former in life together could not be less than five times the latter.—This fact is likewife confirmed, by the observations which have been made among the ministers in Scotland. At the commencement of the scheme which I have so often had occasion to mention, an account was taken of the number of the widows of ministers in the whole country. 364 were counted; and, probably, the true number was greater. See p. 95 and 96. On the contrary; the number of widowers among the ministers has, one year with another, been scarcely 90; that is, not so much as a quarter of the number of widows. — It may be eafily feen, and it would not be difficult to demonstrate, that neither the greater number of persons left widows, nor any probable supposition concerning the greater frequency of marriages among widowers, can completely account for this, without admitting the greater mortality of males. - This, therefore, appears, on the whole to be a fact page, that the chance of furvivorship in this city in favour of the wife, is less than among the ministers in Scotland.—Does not this fact afford a reason, additional to that mentioned above, and in p. 92, 93, 94, &c. and notes (A) and (F), for believing, or at least suspecting that the number of widows on the Scotch establishment, if marriage does not decline among the ministers, will not at last be found to be so little as 400? well well established: And it follows from it, that in order to calculate the values of Life-Annuities and Reversions with exactness, there ought to be distinct Tables of the probabilities of life for males and females. But there are no fuch Tables extant; nor, indeed, has it been suspected, that there is so much occasion for them as the facts I have mentioned feem to shew. All that is necessary to obtain the proper data for forming such Tables is, that the fexes as well as the ages of the dead should be specified in the bills; and this is an improvement of bills (a) of mortality which would give little trouble, and which, therefore, I hope, will be some time or other made. It has been observed, that the author of nature has provided, that more males should be born than females, on account of the particular waste of males, occasioned by wars and other causes. Perhaps it might have been added, that this provision had also in view, that particular weakness or delicacy in the constitution of males, which makes them more subject to mortality; and which, con- ⁽a) This improvement would be rendered more complete, by diffinguishing the males that die, under the denominations of married men, widowers, and batchelors; and the females, under the denominations of married women, widows, and virgins.—The use I have made of some accounts of this kind which have been kept in Germany, shews that this would be of considerable service. sequently, renders it necessary, that more of them should be produced, in order to preferve in the world a due proportion between the two fexes. In the course of this Essay, it has often appeared, that I have been particularly indebted to an information which I have received from NORTHAMPTON.
- I should be inexcusable, did I not mention, that I owe this information to Mr. Lawton, an ingenious gentleman in that town, who has preferved the bills of mortality there with much care, and been very obliging in communicating them to me. - It is much to be defired, that like accounts were kept in every town and parish. It would be extremely agreeable to learn from them the different rates of human mortality in different places, and the number of people and progress of population in the kingdom. The trouble of keeping them would be trifling; but the instruction derived from them (a), would be very important.—I have already proposed one improvement of fuch accounts. I will add, that they would be still more useful, did they give the ages of the dead after 10, within periods of five, instead of ten years. - During every period, so short as five years, the decrements of life may, in constructing Tables, be safely ⁽a) See Essay I. p. 207, 208. taken to be uniform. But this cannot be equally depended on, in periods fo long as ten years. There is yet another improvement of these accounts, which I will take this opportunity to mention. They should contain not only a list of the distempers of which all die, like that in the London bills; but they should specify particularly the numbers dying of these distempers, in the feveral divisions of life. Accurate registers of mortality kept in this manner, in all parts of the kingdom; and compared with records of the feafons, and of the weather, and with the particular circumstances which discriminate different situations. might contribute, more than can be eafily imagined, to the increase of physical knowledge. — But to proceed no farther in these Observations; I shall now beg leave to shut up this whole work with the following general reflexion. I have represented particularly, the great difference between the probabilities of human life in towns and in country parishes; and from the facts I have recited, and the observations I have made, it appears, that the further we go from the artificial and irregular modes of living in great towns, the fewer of mankind die in the first stages of life, and the more in its last stages. The lower lower animals (except fuch (a) as have been taken under human management) feem in general to enjoy the full period of existence allotted them, and to die chiefly of old age: And were any observations to be made among favages, perhaps the same would be found to be true of them. - DEATH is an evil to which the order of providence has subjected every inhabitant of this earth; but to man it has been rendered unspeakably more an evil than it was defigned to be. The greatest part of that black catalogue of diseases which ravage human life, is the off-spring of the tendernefs, the luxury, and the corruptions introduced by the vices and false refinements of civil fociety (b). That delicacy which is injured (a) Calves are the only animals taken under our peculiar care immediately after birth; and, in consequence of then administring to them the same fort of physic that is given to infants, and treating them in other respects in the same manner, it is probable, that more of them die soon after being born, than of all the other species of animals, which we see in the same circumstances. See the Comparative View of the State and Faculties of Man with those of the Animal World, p. 23.—It is, indeed, melancholy to think of the havock made among the human species by the unnatural customs as well as the vices, which prevail in polished societies. I have no doubt, but that the custom, in particular, of committing infants, as soon as born, to the care of foster-mothers, destroys more lives than the sword, famine and pestilence put together. (b) The ingenious and excellent writer quoted in the last note, observes, that the whole class of diseases which arise from catching cold, are found only among the civilized part of mankind, p. 51.—And, concerning that ## 276 Of the Method of forming Tables, &c. jured by every breath of air, and that rottenness of constitution which is the effect of intemperance and debauchery, were never intended by the author of nature; and it is impossible, that they should not lay the foundation of numberless sufferings, and terminate in premature and miserable deaths. -Let us then value more the fimplicity and innocence of a life agreeable to nature; and learn to confider nothing as favageness but malevolence, ignorance and wickedness. The order of nature is wife and kind. a conformity to it confifts health and long life; grace, honour, virtue and joy. But nature turned out of its way will always punish. The wicked shall not live out half their days. Criminal excesses embitter and cut short our present existence; and the highest authority has taught us to expect, that they will not only kill the body, but the foul; and deprive of an EVERLASTING EXISTENCE. loss of all our higher powers which often attends the decline of life, and which is so humiliating to human pride; he observes, that it exhibits a scene singular in nature, and that there is the greatest reason to believe, that it proceeds from adventitious causes, and would not take place among us if we led natural lives, p. 62. # APPENDIX. Note (A). See Question III. Page 11. Let E be any given expectation of life; and $\frac{4E-x}{4E} \times px$ will be the number of persons alive at the end of x years, arising from p persons left annually as widows, (or added annually to a town or society) at the age whose expectation is E. The maximum, therefore, is always pE. In Mr. De Moivre's Hypothesis, E is always $\frac{1}{2}$ the difference between the given age and 86. See the note page 2, and the latter end of the note in page 37. See likewise the beginning of the First Essay, and note (L) in this Appendix, where the investigation of this rule will be given. It will not be amiss to give the following ex- ample of the application of this rule. At the time of the commencement of the scheme, among the ministers and professors in Scotland, for making provision for their widows, it was necessary, that a calculation should be made of the number of widows that would be upon the scheme at the end of every year, till they came to a maximum, on the supposition that, (agreeably to what particular enquiry had shewn to have happened for many preceding years,) 20 new widows would be left every year. In order to make this calculation, let 4 of the 20 widows be supposed to be under 32 years of age when left; and let 28 be supposed their mean age. Let the same number be left between 32 and 39, and let 35 be their mean age; between 39 and 47, and 43 their mean age; between 47 and 57, and 52 their mean age; between 57 and the extremity of life, and 63 their mean age. The number in life together, to which, in 10 years, 4 widows left annually at the age of 28 will grow, is, by the rule, (E being 29) \frac{116-10}{116} \times 40, or 36.55—The number alive at the end of 20 years, will be $\frac{116-20}{116} \times 80$, or 66.2. At the end of 20 years, the number alive will be 89; of 40 years, 104.82; of 58 years 116-These numbers, found in the same way, for the 2d class, (E being 25.5), at the end of 10, 20, 30, 40, and 51 years, will be 36.7-64.31-84.7-97.25-102 for the 3d class, (E being 21.5) at the end of 10, 20, 30, 40, and 43 years, 35.34-61.4-78.13-85.6-86-For the 4th class, (E being 17) at the end of 10, 20, 30, and 34 years, 34.11 -56.47-67-68-For the 5th class, (E being 11.5) at the end of 10, 20, and 23 years, 31.3-45.2—46—The whole number, therefore, confifting of all the classes, will come to a maximum nearly in 58 years; and the totals in life, at the end of 10, 20, 30, 40, 50, and 58 years, will be 173.37-293.58-364.83-401.67-418. These determinations suppose none to marry. In 10 years, from 1757 to 1767, I have been informed, that but 9 widows married. Let us then suppose, that one widow of the first class marries every year; and let all that marry, be supposed to continue, one with another, 5 years in widow-hood before they marry. On these suppositions, 5 the the foregoing totals will, at the end of the same periods of years, be 169.23-282-347.5- 380.47-394. These calculations are made from Mr. De Moivre's Hypothesis. Had they been made exactly from Dr. Halley's table, or any other of the Tables I have given at the end of this work, except the London one, the results would have been very nearly the same.—It appears, that the probabilities of life, among these widows, are greater than those given by these tables. See the Last Essay, pages 263, 264 266, 270, &c. The effect of this must be, to raise the maximum without sensibly increasing the numbers in life for the first 20 or 25 years: and its effect may be, to raise the maximum, and at the same time even to diminish these numbers. Twenty-five years have now elapsed since the commencement of this scheme; and the number of widows living every year have, in sact, corresponded to the last numbers I have given, as nearly as could possibly be expected in an affair of this nature. ## Note (B). Question VI. Page 21. ET r fignify the fum of 1l. and its interest, for one year. The value of a life, whose complement is n, being (by Mr. De Moivre on Annuities, 4th edition, page 14. and p. 100.) $\frac{n-1}{nr} + \frac{n-2}{nr^2} + \frac{n-3}{nr^3} + \frac{n-4}{nr^4}, &c. the present value of the remainder of it after two years must be$ $\frac{n-3}{nr^3} + \frac{n-4}{nr^4}, &c. which is equal to <math>\frac{1}{r^2} \times \frac{n-2}{n} \times \frac{n-3}{n-2r} + \frac{n-4}{n-2r^2} + \frac{n-5}{n-2r^3}, &c.$ Now $\frac{1}{r^2}$ is the present value of 1*l*. due at the end of two years. $\frac{n-2}{n}$ is the probability that a life, whose complement is *n*, shall continue two years, and $\frac{n-3}{n-2r} + \frac{n-4}{n-2r^2} + \frac{n-5}{n-2r^3}$, &c. is the va- lue of a life two years older than the life whose complement is n. And, therefore, (fince any
number of years less than n may be substituted for two years) the first rule given in this question is right. The same process, applied to joint lives, will demonstrate what is said in the Scholium. Note (C). See Question VII. Page 22. ET the complements of any two affigned lives be n and m. The present value of the first possible payment of an annuity to be enjoyed by the life whose complement is n, provided both lives continue 7 years, and the life, whose complement is n, furvives the other after that term, is the probability, that the life of the expectant shall continue 8 years, and the other life 7 years and then fail in the 8th year, multiplied by $\frac{1}{r^8}$, or by 11. discounted for 8 years.—The probability that the life of the expectant shall continue 8 years is $\frac{n-8}{n}$. The probability that the other life shall continue 7 years is $\frac{m-7}{m}$. The probability that it shall continue 7 years, and fail in the 8th year, is $\frac{m-7}{m} \times 1 - \frac{m-8}{m-7} = \frac{1}{m}$. The probability, therefore, that the life of the expectant shall continue & years, and the other life 7 and fail in the 8th year, is $\frac{n-8}{n} \times \frac{1}{m}$; and the present value of the first possible payment of the annuity supposed, is $\frac{n-8}{nr^3} \times \frac{r}{m}$. See The Doctrine of Annuities by Mr. Simpson, p. 6-15, or his Selett Exercises, p. 315, &c. In like manner, the present value of the 2d payment, at the end of the 9th year, may be found to to be $\frac{n-9}{nr^9} \times \frac{m-7}{m} \times 1 - \frac{m-9}{m-7}$, or $\frac{n-9}{nr^9} \times \frac{2}{m}$. and the present value of all the possible payments, $\frac{1}{r^7} \times \frac{n-5}{mr} \times \frac{1}{m} + \frac{n-9}{mr^2} \times \frac{2}{m} + \frac{n-10}{mr^3} \times \frac{3}{m}$, &c. But this feries is equal to $\frac{1}{r^7} \times \frac{n-7}{r} \times \frac{m-7}{r} \times \frac{m-7}{r}$ $\frac{n-8}{n-7r} \times \frac{1}{m-7} \times \frac{\pi-9}{n-7r^2} \times \frac{2}{m-7} + \frac{n-10}{n-7r^3} \times$ $\frac{3}{m-7}$, &c. Now $\frac{n-8}{n-7r} \times \frac{1}{m-7} + \frac{n-9}{n-7r^2} \times \frac{2}{m-7}$, &c. is the value of an annuity for a life seven years older than the expectant, after another life feven years older than the life whose complement is m. $\frac{n-7}{n} \times \frac{m-7}{m}$ is the probability that both the affigned lives shall continue 7 years. And is the value of 11. due at the end of 7 years. The rule, therefore, given for folving this question, is right. This demonstration, as well as that in the last note, is, for the fake of more ease and clearness, applied to the hypothesis of an equal decrement of life. It does not, however, depend upon it, but may be applied to any table of observations. Note (D). Question IX. Page 29. ET the complement of any two assigned lives be n and m, and the given term be seven years, as in note (C). The probability that the former life (supposed to be the life in expectation) shall last 8 years, is, by Mr. De Moivre's Hypothesis, $\frac{n-8}{n}$; and the probability that the latter life shall fail in 8 years, is $\frac{8}{m}$; and the first payment of the annuity mentioned in this question, depends on the happening of both these events, the probability of which is $\frac{n-8}{n} \times \frac{8}{m}$. The prefent value, therefore, of the first possible payment of the annuity is $\frac{n-8}{nr^3} \times \frac{8}{m}$.—In like manner; the present value of the *second* possible payment is $\frac{n-9}{nr^9} \times \frac{9}{m}$; and of all the payments, $\frac{n-8}{nr^8} \times \frac{8}{m} + \frac{n-9}{nr^9} \times \frac{9}{m} + \frac{n-10}{nr^{10}} \times \frac{10}{m}$, &c. But $\frac{n-8}{nr^8} \times \frac{8}{m} = \frac{n-8}{nr^8} \times \frac{1}{m} + \frac{n-8}{nr^8} \times \frac{7}{m}$; and $\frac{n-9}{nr^9} \times \frac{9}{m} = \frac{n-9}{nr^9} \times \frac{2}{m} + \frac{n-9}{nr^9} \times \frac{7}{m}$. The foregoing series, therefore, is equal to the two series's $\frac{1}{r^7} \times \frac{n-8}{n-8} \times \frac{1}{r^7} \times \frac{n-9}{n-9} \times \frac{2}{m} + \frac{n-9}{n-9} \times \frac{3}{m} \times \frac{8rc}{n-9}$ $\frac{n-8}{nr} \times \frac{1}{m} + \frac{n-9}{nr^2} \times \frac{2}{m} + \frac{n-10}{nr^3} \times \frac{3}{m}$, &c. and $\frac{1}{r^7}$ $$\frac{\mathbf{I}}{r^7} \times \frac{\overline{n-8}}{nr} \times \frac{7}{m} + \frac{n-9}{nr^2} \times \frac{7}{m} + \frac{n-10}{nr^3} \times \frac{7}{m}, &c. \text{ or}$$ $$to \frac{\mathbf{I}}{r^7} \times \frac{n-7}{n} \times \frac{m-7}{m} \times \frac{n-8}{n-7r} \times \frac{\mathbf{I}}{m-7} + \frac{n-9}{n-7r^2} \times \frac{2}{m-7} + \frac{n-10}{n-7r^3} \times \frac{3}{m-7}, &c. + \frac{\mathbf{I}}{r^7} \times \frac{7}{m} \times \frac{n-7}{n} \times \frac{n-7}{n} \times \frac{n-8}{n-7r} + \frac{n-9}{n-7r^2} + \frac{n-10}{n-7r^3}, &c. \text{ which is the very rule given for folving this question, as will appear from notes (B) and (C).}$$ Note (E). See the Scholium to Quest. X. A CCORDING to the calculations, the time in which the first yearly payment of a reversionary annuity becomes due, is the end of the year in which the event happens that entitles to it, however little or much of the year may then happen to be unelapsed. And this, likewise, is the time when a reversionary sum becomes due. Those who know how the calculations of the values of reversions are instituted, must know this. But an annuity, the first payment of which is to be made at the same time with another payment of a sum in hand, sufficient to buy an equal annuity, is worth one year's purchase more than the sum. For instance. Reckoning interest at 4 per cent. and r being 11 increased by its interest for a year, or 1.04, $\frac{1}{r} + \frac{1}{r^2} + \frac{1}{r^3}$, &c. = 25l. is the present value of an estate of 1l. per annum for ever. That is, it is the value of it, supposing the first rent of it is to be paid a year hence.——If the first rent is to be received immediately, or at the same time with another payment of 25l. it is worth one year's purchase more, or equivalent to 26l.——I have not found, that any of the writers on annuities and reversions, have attended to this observation. It suggests a correction necessary to be applied to the common solutions of several important problems: particularly to the 21st and 22d in Mr. Simpson's Treatise on Annuities, and the 26th, 27th, 32d, 33d, and 40th problems in his Select Exercises; and to all other problems of the same kind in other writers. There can can be no great occasion for being more explicit. It will not, however, be amiss to add the following demonstration: $-\frac{1}{n}$ is the present probability that a life, whose complement is n, will fail in any one affignable year of its duration. $S \times \frac{1}{nr} + \frac{1}{nr^2}$, &c. (n), or the present value of 1l. per annum for n years, multiplied by $\frac{S}{n}$, is the present value of the sum or legacy denoted by S, payable at the failure of the given life. Therefore, (n being 56; the life 30; interest 4 per cent. r=1.04; the sum 25l.) the value of the expectation, by Mr. De Moivre's hypothesis, is 9.919. Further. The value of 1l, to be received at the end of a year, provided the life whose complement is n fails, is the probability of the failure of the life multiplied by 1l, discounted for a year, or life multiplied by 1l. discounted for a year, or $\frac{n-1}{n} \times \frac{1}{r}$. In like manner; the value of 1l. to be received at the end of 2 years, if the same life fails in 2 years, is $1 - \frac{n-2}{n} \times \frac{1}{r^2}$. And, therefore, the value of all the *possible* payments of an estate or annuity of 1l. for ever, to be entered upon after the given life, is $1 - \frac{n-1}{n} \times \frac{1}{r} + 1 - \frac{1}{n}$ $$\frac{1}{n-2} \times \frac{1}{r^2} + \frac{1}{1-\frac{n-3}{n}} \times \frac{1}{r^3}$$, &c. (n) + $\frac{1}{r^{n+1}}$ + I 1 +2 $\frac{1}{r^{n+2}}$, &c. or $\frac{1}{r} + \frac{1}{r^2} + \frac{1}{r^3}$, &c. $-\frac{n-1}{nr} + \frac{n-2}{nr^2} + \frac{1}{r^2}$ $\frac{n-3}{nr^3}$, &c. that is, the value of the life subtracted from the perpetuity; or, in this example, 141. 684, (the value of a life at 30) subtracted from 25; that is, 101. 316. But 10.316 is to 9.919, in the same ratio with 104 to 100, or 26 to 25, agreeably to the rule in the Scholium. # Note (F.) Question XIII. Page 44. * 7 HEN I here call 48 the mean age of all married men, and 40 the mean age of married women, I do not intend to suppose, that there are as many married persons who exceed these ages, as there are who fall short of them. It is likely that the latter are most numerous; and it is necessary that this should be the case, to render the supposition I make just --- If all marriages commenced at 33 for the man, and 25 for the woman, one half of them would be diffolved by the time the men were 50, and the women 42; for (by the Hypothesis, and also nearly by the Breslaw, Norwich, and Northampton tables) there is an equal chance for the joint continuance of two lives, whose ages are 25 and 33, seventeen years. Forty-two and fifty then would be properly the mean ages at which widowhood would commence; meaning by thefe, "the " ages on each fide of which equal numbers are left widows and widowers."—But, tho' in this case half the marriages of every year would be disfolved in 17 years, they would not be all diffolved in twice that time. So far would this be from happening, that about a 7th part would continue beyond twice 17 years; nor would it be certain, that they would be all diffolved till near the extremity of the possible extent of life. Tho', therefore, an equal number of marriages would be diffolved, or an equal number of widows and widowers left before 50 and 42, and afterwards, yet the ages of the latter would, one with another, much more exceed 50 and 42, than the ages of the the former (that is, of the widows and widowers left before 50 and 42) would fall short of them. And the number of marriages also
in the world, among perfons of greater ages than these, would be much fewer than among persons of lesser ages—In other words: the period, at which the marriages that have been contracted are half dissolved, is not the period at which the number of marriages constantly existing is equally divided, but this period falls some years sooner; and the period I have in view, falls in that part of the interval between these two periods, where the greater ages of the marriages, on one side, are just enough to compensate (in such a calculation as that I have given) their desiciencies in number, compared with the number of marriages on the other side. In fhort. Suppose 35 marriages every year, between persons 33 and 25. In 12 years there would be half as many in the world, as could possibly arise from such a number of yearly weddings. In 17 years, half every fet would be extinct. The expectation of every marriage would be 19 years, by prob. 21 of Mr. De Moivre's Treatise on Annuities, or by the note p. 299: that is, taking them all together, they would exist just as long as an equal number of fingle persons, supposed to be fure of living just 19 years, and no more; or, as long as an equal number of fingle persons, all 48 years of age, supposed to be subject to the common laws of mortality. One with another, then, they will be all extinct in 19 years: the marriages which continue beyond this term, tho' fewer in number, enjoying among them just as much more duration, as those that fall short of it enjoy less. Widows, then, at a medium, will commence widowhood at 44 (that is, 25 increased by 19) years of age, and widowers at 52. The values, therefore, of the lives of the former, when they commence widowhood, will, one with another, be the same with the value of a life at 44; or, (reckoning interest at 4 per cent.) 12.5 years purchase, in present payment, (the annuity to begin at the end of a year); and their expectations of life will be 21 years, or half the difference between 44 and 86. The value of the lives of the latter will be 10.92, and their expellation 17 years—The whole number of marriages conftantly existing, which would result from 35 supposed to commence annually, would be 19×35, or 665; and 53 years (the difference between 33 and 86) would be the time in which they would increase to this number -- The chance of furvivorship would be 69 to 53, by prob. 18th, Mr. De Moivre on Annuities; that is, in 53 years, 35 relicts of these marriages would be left every year, and the number of widows would be to the number of widowers, as 69 to 53; or 19.8 widows would be left annually, and 15.2 widowers. The maximum of widows in life together, if none married, would be 21×19.8, or 416; and they would increase to this number in 114 years (or 61 years after the number of marriages had attained to a meximum) —— The maximum of widowers would be 15.2 × 17, or 258; and they would increase to this number in 106 years. An easy method may be hence deduced of solving the question which occasions this note-If the number of the members of the cftablishment I have supposed, is 665, and the mean ages at which marriage may be deemed to commence are 25 and 33, 19.8 widows will (it has just appeared) be left every year; and the values of their lives, when they commence widowhood, will be, one with with another, 12½ years purchase. An annuity of 20l. will, therefore, be worth, to each widow, 250l. and 19.8 such annuities must be worth 4950l. which, consequently, is the annual income necessary for the support of the establishment, the first payment to be received immediately: or l. 7.44 from each of the 665 members; which answers nearly to the determination in page 44. In the Last Essay, p. 296, it has been shewn, that observations determine the chance of survivorship in favour of the wife in marriage, to be really so great as 2 to 2; and in some circumstances greater. I have also there observed, that in order to account for this, from the difference of age between men and their wives, this difference must be at least 12 years, and the mean ages of all who marry annually, must be supposed to be about 23 and 35. In this case, 19, as before, will nearly be the expectation of all mar-The mean age at which widows and widowers will commence fuch will be 42 and 54. The number of annual marriages necessary to keep up 665 marriages conftantly existing, will be 35. The number of widows left annually, by fuch a number of marriages, will be 21; and the values of their lives, at the time they commence widowhood, will be 12.85 years purchase by Table VI: and therefore, the whole annual income necessary for the support of the supposed establishment, will be 53971. or an annual payment, beginning immediately, of 1.8.11 from each member—The number of widows on fuch an establishment will, in 63 years, grow, if none marry, to 462; and the number of widowers to 224.- It may be depended on, that all this would happen as far as Dr. Halley's table, or the tables for Norwich and Northampton, exhibit the true state of human mortality. U 2 Among the ministers and professors in Scor-LAND, the number of married men being 667, or nearly that here mentioned, the number of annual weddings has, for manyyears, been at an average 32, and the number of widows left annually 20; and, therefore, the chance of furvivorship in favour of the wife, as 20 to 12, or 5 to 3. See Essay IV. p. 269. This is not more different, from the refults I have given, than might have been expected; and the chief reason of the difference is, that the expectations of fingle and joint lives among the ministers and their wives in Scotland, are greater than those given by Dr. Helley's, and the other tables of observation—— These tables give the expectations of lives as they are among the bulk of mankind in moderate towns. The expectations of lives among the better fort of men, living mostly in country villages and parishes, are much greater. The fact is, that among the ministers in Scotland, the expectation of a fingle life at the age of 27, is three years and an half greater; and, confequently, of joint lives, above two years greater, than the same expectations by Dr. Halley's Table. Ibid, page 264. I cannot help just mentioning another remark here.—It may be observed, that supposing no second marriages, and, at the same time, that the odds for the woman's surviving in marriage is 3 to 2, the number of widows in the world would be double the number of widowers. But it has been found, in sact, that the number of widowers is sive times the number of widowers. How this is to be accounted for, I have shewn in the Essay just re- terred to, page 270, 271. # Note (G). Question XIV. Page 43. ET r be 1/2 increased by its interest for one year; t the given time or number of years tor which the affurance is to be made; a, b, c, &c. the probabilities taken out of a table of observations, that the person whose age is given shall live 1, 2, 3, &c. years; and P the probability that he fhall live t years. Then $\frac{1-a}{r} + \frac{1-b}{r^2} + \frac{1-c}{r^3}$, &c. $(t-1) + \frac{1-P}{r^t} + \frac{1-P}{t^{t+1}} + \frac{1-P}{r^{t+2}} &c. = \frac{1}{r} + \frac{1}{r^2} + \frac{1}{r^2}$ $\frac{1}{r^3}$, &c. $(t) - \frac{a}{r} + \frac{b}{r^2} + \frac{c}{r^3}$, &c. $(t-1) + \frac{P}{r^t} + \frac{1}{r^2}$ $\frac{1-P}{r} \times \frac{I}{r} + \frac{I}{r^2} + \frac{I}{r^3}$, &c. will be the exact value of an annuity to be entered upon at the failure of the given life, provided it happens in t years. And the rule is nothing but this value expressed in words. In a fimilar manner may be demonstrated the other rule for finding the values of assurances, for a given time, on two joint lives, or the longest of two lives. ## Note (H). Question XV. page 56. ET r fignify as before; S the given fum to be affured; t the given time; N and n the number of the living in the table of observations, at the age of A and B respectively; A, B, C, &c. and a, b, c, &c. the number of the living in the table, at the end of 1, 2, 3, &c. years from the ages of A and B; D, D, D, D, &c. and d, d, d, &c. the decrements of life in the table, at the end of 1, 2, 3, &c. years from the same ages. Then, by reasoning in the same manner with Mr. Simpson, in p. 316, &c. Select Exercises, it will appear that $S \times C$ $$\frac{A \times d}{Nnr} + \frac{B \times d}{Nnr^{2}} + \frac{C \times d}{Nnr^{3}}, &c. (t) + S \times \frac{Dd}{2Nnr} + \frac{Dd}{2Nnr^{2}} + \frac{Dd}{2Nnr^{3}}, &c. (t) = \frac{S}{n} \times \frac{Ad}{Nr} + \frac{Bd}{Nr^{2}} + \frac{Dd}{Nr^{2}} + \frac{Cd}{Nr}, &c. (t) = \frac{S}{n} \times \frac{Dd}{Nr} + \frac{Dd}{Nr^{2}} + \frac{Dd}{Nr^{2}} + \frac{Dd}{Nr^{2}}, &c. (t) + \frac{S}{2N} \times \frac{Dd}{nr} + \frac{Dd}{nr^{2}}, &c. (t). This$$ is the exact answer to Question XV. and the rule is as near an approximation to it as there is reason to defire. In the fame manner, retaining all the fame fymbols, it may be found, that the answer to Question XVI. is $$S \times \frac{Dd}{2Nnr} + \frac{Dd}{Nnr^{2}} + \frac{D+D\times d}{Nnr^{3}} + \frac{D+D+D\times d}{Nnr^{4}}$$ $$(t), &c. + S \times \frac{Dd}{2Nnr^{2}} + \frac{Dd}{2Nnr^{3}} + \frac{Dd}{2Nnr^{4}}, &c.$$ $$(t-1)$$ $$(i-1) = \frac{S}{nr} \times \frac{Dd}{\frac{1}{Nr}} + \frac{D+D+D \times d}{\frac{1}{Nr^2}} + \frac{D+D+D \times d}{\frac{1}{Nr^3}},$$ &c. $(t-1) + \frac{S}{2N} \times \frac{Dd}{nr} + \frac{Dd}{nr^2} + \frac{Dd}{nr^3}$, &c. (t) . But $\frac{D}{Nr} + \frac{D+D}{Nr^2} + \frac{D+D+D}{\frac{1}{Nr^3}}$, &c. $(t-1)$ is the Same with the excess of the value of an annuity certain for a number of years less by one year than the given term, above the value of an annuity on the life of A, for the same number of years; from whence the reason of the rule for solving this question, may be easily discovered. # Note (I). Page 119, &c. ET t be any given term of years; p the value of 1l. due at the end of the given term; A the value of an annuity certain for the same term; n the complement of
a given life; G the value for the given term, of two joint lives, both equal to the given life; (to be found by Quest.VI.) P the perpetuity; r, 1l. increased by its interest for one year. Then $\overline{A-G} \times n + t \times p \times P - A \times P \times r$ will be the present value of 1l. 2l. 3l. &c. (t) payable at the end of 1, 2, 3, &c. (t) years; but subject to failure when the given life fails. If fuch a course of payment is to begin immediately, and to be made at the beginning of every year, till t+1 payments are made in t years; add to the preceding value, the value increased by unity of an annuity on the given life for t years, found by Question VI. and the sum will be the value sought. And this value, divided by the present value of what may happen to remain of the given life after t years, found by Question VI. will give the standing annuity to which such a series of increasing annual payments, beginning immediately, will entitle, for the remainder of the given life after t years. With the affiftance of this theorem, all that is faid in page 119, &c. may be investigated. It would be too tedious to enter into a more minute account. ## Note (K). Page 149. ET d fignify the difference between the complements of the youngest and the oldest life in the body of Annuitants, here described, at the time they enter; let S fignify the fum of these complements; n any given number of years not greater than $\frac{S}{2} - \frac{d}{2}$; and x the ratio of the whole number of Annuitants to $\frac{S \times d}{2}$. Then $x \times d$ will be the number that will die the 1st year : $x \times d + \frac{2d}{S}$ the number that will die the 2d year; $x \times d + \frac{4d}{S} + \frac{4d}{S^2}$, 3d year; $n \times d + \frac{6d}{5} + \frac{8d}{5^2} + \frac{8d}{5^3}$, 4th year; $x \times d + \frac{8d}{5} + \frac{12d}{5^2} + \frac{16d}{5^3} + \frac{16d}{5^4}$, 5th year; and $n \times nd + n^2 - n \times \frac{d}{s} + n - 2 + n - 2l^2 \times \frac{2d}{s^2} + n - 3$ $+\frac{1}{n-3}|^2 \times \frac{4d}{s^3} + \frac{1}{n-4} + \frac{1}{n-4}|^2 \times \frac{8d}{s^4}$, &c. (n) will be the whole number dying in n years. When n is greater than $\frac{S}{2} - \frac{d}{2}$, this feries is greater than the whole number dying in n years; but in all other cases it gives this number exactly, supposing the probabilities of life to decrease uniformly. In In the prefent inftance, the youngest life being 30, and the oldest 60, the two complements are 56 and 26. S = 82. d = 30. $\frac{Sd}{2} = 1230$. And therefore $x = \frac{33.333}{1230} = 27.1$. Take n = 30 years, and the foregoing series will be $27.1 \times 900 + 318.2 + 7.242 + 164 = 33.214$, which is a little greater than the whole number dying in 30 years, but at the same time less than the whole number of Annuitants. Note (L). See Essay I. Page 169, 170, 172. HE sum of the probabilities that any given lives will attain to the end of the ift, 2d, 3d, &c. years from the present time to the utmost extremity of life (for instance, $\frac{45}{16} + \frac{44}{16} + \frac{43}{16}$, &c. to $\frac{1}{46} = 22\frac{1}{2}$ for lives of 40, by the hypothesis) may be called their expectation, or the number of payments due to them, as yearly annuitants. The fum of the probabilities that they will attain to the end of the 1st, 2d, 3d, &c. balf years (or, in the particular case specified, $\frac{9}{9}\frac{1}{2} + \frac{9}{9}\frac{0}{2} + \frac{8}{9}\frac{9}{2} + \frac{8}{9}\frac{8}{2}$, &c. = balf years, or 223 years) is their expectation as balf yearly annuitants. And the sums just mentioned of the probabilities of their attaining to the end of the 1st, 2d, 3d, &c. moments (equal in the fame particular case to 23 years) is properly their expectation of life, or their expectation as annuitants fecured by land. Mr. De Moivre has omitted the demonstrations of the rules he has given for finding the expectations of lives, and only intimated, in general, that he discovered them by a calculation deduced from the method of fluxions. See his Treatise on Annuities, page 66. It will, perhaps, be agreeable to some to see how easily they are deduced in this method, upon the hypothesis of an equal decre- ment of life. Let \dot{x} ftand for a moment of time, and n the complement of any affigned life. Then $\frac{n-\dot{x}}{n}$, $\frac{n-2\dot{x}}{n}$, $\frac{n-3\dot{x}}{n}$, &c. will be the prefent probabilities of its continuing to the end of the 1st, 2d, 3d, &c. moments; and $\frac{n-x}{x}$ the probability of its continuing to the end of x time. $\frac{n-x}{x} \times \dot{x}$ will therefore be the fluxion of the sum of the probabilities, or of an erea representing this fum, whose ordinates are $\frac{n-x}{n}$, and axis x.—The fluent of this expression, or $\omega = \frac{x^2}{2n}$, is the fum it felf for the time ω ; and this, when x=n, becomes $\frac{1}{2}n$, and gives the expectation of the affigned life, or the fum of all the probabilities just mentioned for its whole possible duration.—In like manner: fince $\frac{n-x^2}{n^2}$ is the probability that two equal joint lives will continue x time, $\frac{n-x^2}{x^2} \times \dot{x}$ will be the fluxion of the fum of the probabilities. The fluent is $x = \frac{x^2}{n} + \frac{x^3}{2n^2}$, which, when n = x, is $\frac{n}{3}$, or the expectation of two equal joint lives. Again: fince $\frac{n-x}{n} \times \frac{2x}{n}$ is the probability that there will be a furvivor of two equal joint lives at end of x time, $\frac{n-x}{2} \times \frac{2x}{n} \times \dot{x}$ will be the fluxion of the fum of the probabilities; and the fluent, or $\frac{x^2}{n} - \frac{2x^3}{3x^2}$ is (when x = n) $\frac{7}{3}n$, or the expectation of survivorship between two equal lives; which, therefore, appears to be equal to the expectaexpectation of their joint continuance. The expectation of two unequal joint lives, found in the same way, is $\frac{m}{2} - \frac{m^2}{6n}$, m being the complement of the oldest life, and n the complement of the youngest. The whole expectation of survivorship is $\frac{n}{2} - \frac{m}{2} + \frac{m^2}{3n}$. The expectation of survivorship, on the part of the oldest is $\frac{m^2}{6n}$; and the expectation, on the part of the youngest, is $\frac{n}{2} - \frac{m}{2} + \frac{m^2}{6n}$. It is easy to apply this investigation to any number of joint lives, and to all cases of survivorship. It may be observed, concerning the first of the fluents here given, that it expresses not only the expectation of a given life for the time x, and therefore its whole expectation when x=n, but likewise, the number of persons alive, to which one person added annually to a society, at a given age, will increase in x time.—Thus: Suppose one annuitant, whose age is 28, (and whose complement of life, therefore, is 58, or expectation of life 29) to come upon a society every year; the number of annuitants alive, deduced from hence, will, in x years, be $x - \frac{x^2}{4 \times 29}$, or $\frac{4 \times 29 - x^2}{4 + 29} \times x$; and, therefore, the number of annuitants alive, deduced in the fame time from p annuitants left annually at the fame age, will be $\frac{4 \times 29 - x^2}{4 \times 29} \times px$.—In like manner, the 2d fluent, or $\frac{x^3}{2n^2} - \frac{x^3}{n} + x$, gives the number number of marriages in being together, that will, in x years, grow out of one yearly marriage, between persons of equal ages, whose complement of life is n. If they are of unequal ages, and the complement of the oldest life is m, and of the youngest n, this number will be $\frac{x^3}{3nm} - \frac{\overline{n+m} \times x^2}{2nm} + x$. And if the number of years is required, in which any given number of yearly marriages, between men and women at given ages, will increase so far as to be in any given proportion to the greatest number that can possibly grow out of such marriages, this expression must be made equal to the expettation of the joint lives, or of each marriage, multiplied by the fraction expressing the given proportion; and the root of the equation will be the anfwer. Thus: it may be found, that one marriage every year, between persons 33 and 25 years of age, would in 10 years increase to 8.35; in 15 years, to 11.38; and in 53 years, to 19, or their greatest possible number: and, consequently, that 35 fuch yearly marriages would, in 10 years, increase to 292; in 15 years, to 398; and in 53 years, to 665.—And if it is enquired in what number of years 35 fuch yearly marriages would increase to half the number in being together, possible to be derived from them, the value of x, in the cubic equation $\frac{x^3}{3nm} - \frac{\overline{n+m} \times x^2}{2nm} + z = \frac{\overline{m}}{2} - \frac{\overline{m}}{6n} \times \frac{1}{2}$, must be found; which, in the present instance, is nearly I have, in some parts of this work, had occasion to make such deductions as these. See note (A), p. 277; and note (F), p. 288; and Questions III. and XIII. Note ## Note (M). Essay II. Page 226. ET r fignify 1l, increased by its interest for one year. V the PERPETUITY. n the difference between the age of the youngest life, and 86; or its complement. m the complement of the oldest life. P the value (in Table II.) of an annuity certain for m years. And the exact value of any two given joint lives, according to the hypothesis of an equal decrement- of life, will be $$V = \frac{V+1}{n} \times \frac{P}{n-2v-1} \times \frac{P}{m}$$ + 2v. Example: Let the ages be 27 and 38; and the rate of interest 4 per cent. Then n = 59. m = 48. V = 25. P = 21.195. n - m - 2v - 1 = -40. n - m - 2v - 1 = -40. And $$V - \frac{V + I}{n} \times \frac{1}{n - m - 2v - 1} \times \frac{1}{m} + 2v = 25 - \frac{2}{3} \frac{c}{5}$$ \times 32.340 = 10.748, the value of two joint lives whose ages are 27 and 38. ## Note (N). Essay III. Page 232. T is plain, that the purchaser of A's right, as stated in the first of the questions, to which this note refers, cannot get into possession, till the year when A
and B shall be both dead; nor then, unless A happens to die last. Now, supposing the common complement of life n; the probability that A and B shall be both dead at the end of the first year, and A die last, is $1 - \frac{n-1}{n} \times 1 - \frac{n-1}{n}$ $\times \frac{1}{2} = \frac{1}{2} - \frac{n-1}{2n} - \frac{n-1}{2n} + \frac{n-1}{2n^2}$.— In like manner, the probability that they shall be both dead at the end of the 2d, 3d, &c. years, and A furvive, is $\frac{1}{2} - \frac{n-2}{2n} - \frac{n-2}{2n} + \frac{n-2}{2n^2}$; $\frac{1}{2} - \frac{n-3}{2n}$ $\frac{n-3}{3} + \frac{n-3}{3}^2$, &c. The prefent value, therefore, of the 1st, 2d, 3d, &c. rents of the reversionary eftate is $\frac{1}{2r} - \frac{n-1}{2nr} - \frac{n-1}{2nr} + \frac{n-1}{2nr}^2$, $\frac{1}{2r^2} - \frac{n-2}{2nr^2}$ $\frac{n-2}{2nr^2} + \frac{n-2}{2n^2r^2}$, $\frac{1}{2r^2} - \frac{n-3}{2nr^3} - \frac{n-3}{2nr^3} + \frac{n-3}{2n^2r^3}$, &c. Supposing r to signify 1l, increased by its interest for a year; and the estate to be 11. per annum. And the sum of these terms continued in infinitum, is the value required.—But $\frac{1}{2r} + \frac{1}{2r^2} + \frac{1}{2r^3}$, &c. is balf the the perpetuity. And $\frac{n-1}{2nr} + \frac{n-1}{2nr} - \frac{\overline{n-1})^2}{2n^2r} +$ $$\frac{n-2}{2nr^2} + \frac{n-2}{2nr^2} - \frac{n-2^{1/2}}{2n^2r^2} + \frac{n-3}{2nr^3} + \frac{n-3}{2nr^3} - \frac{n-3^2}{2n^2r^3}, &c.$$ is balf the value of the joint lives, subtracted from balf the sum of the values of the two single lives; that is, balf the value of the longest of the two. lives. A similar demonstration may be applied to the other question. ## Note (O). Effay IV. Page 262. ET r be 1l. increased by its interest for one year. Let S represent any given interval of time, or number of years, during which the decrements of life in a table of observations continue equal. a the number of the living in the table at the beginning of the first year of that interval. b the number of the living in the table at the beginning of the year immediately following the same interval. P the value of an annuity certain for S years. p the value, in Table I. of 11. due at the end of S years. Q the value, in Table VI. of an annuity for the life of a person whose age wants S years of 86. N the value, in strict agreement with the given table of observations, of an annuity on the life of a person whose age is S years greater than the age at which the interval of equal decrements begins. Then $Q + \frac{b}{a} \times P - Q$ will be the value, according to the table of observations, of an annuity for S years, on a life of the same age with that at which the interval of equal decrements begins. And $Q + \frac{b}{a} \times \overline{P - Q} + \rho N$ will be the value of an annuity on the whole duration of that life. When S represents one year, Q vanishes, and the last expression becomes $\frac{b}{ar} \times \overline{1 + N}$; which is the rule for finding, from the value given of any life, the value of a life one year younger. These Theorems save much labour in calculating the values of life-annuities from tables of ob- fervations. The first of them, with its investigation, may be found in page 341, 3d edition, of Mr. De Moivre's Treatise on the Dodrine of Chances. But it is necessary to observe, that the direction Mr. De Moivre has given for finding the value of Q is wrong. In consequence of calculating agreeably to this direction, he gives the value of a life at the age of 42, by Dr. Halley's table, greater than the value of the same life by his own hypothesis; whereas, it is evident, that the probabilities of living after 42, being all along less in Dr. Halley's table, than in the hypothesis, the value of the life must be also less. The mathematical reader may easily satisfy himself, that the value of Q ought to be taken from Table VI. as I have directed. An easy and accurate method of finding the values of singles lives, agreeably to any given table of observations, is given by Mr. *Dodson* in his Mathematical Repository, vol. II. page 161. There is also in Mr. Simpson's Select Exercises, page 275, a very easy rule for approximating to the values of single lives, according to Dr. Halley's table. But this rule must not be depended on; for I have found it ½ a year's purchase, and sometimes three-quarters of a year's purchase wrong. To prevent the danger of mistaking the Theorem I have given, I have thought proper to subjoin the following example. Let the table of observations be the Broslaw Table, or Table III. The value of a life at 78, by this X 2 Table, Table, is $\frac{49}{58r} + \frac{41}{58r^2} + \frac{34}{58r^3}$, &c. to the end of life. The number of terms in this feries being small, it may be easily found to be 3.514, supposing interest at 4 per cent. and $\frac{1}{r}$, $\frac{1}{r^2}$, $\frac{1}{r^3}$, &c. being the values, in Table I. of 1l. at the end of 1, 2, 3, &c. years.—From 78 to 74 the decrements of life continue equal; and therefore S=4. a=98. b=58. P=3.6298, by Table II; p=3.8548, by Table I; Q=1.406, by Table VI; N=3.514. P-Q+pN=5.227; and $Q+\frac{b}{a}$ $\times P-Q+pN=4.500$, or the value of a life at 74. From 74 to 70 there is another interval of equal decrements; and, by a like easy operation, the value of a life at 70 will be found to be 5.595. ### TABLE I. The present Value of 11. to be received at the end of any number of years, not exceeding 100; discounting at the rates of 3, 3, 4, 4, 5 and 6 per cent. compound interest. | | | 3 per Ct. | 3 ½ per Ct. | 4 per Ct. | 4½ per Ct. | 5 per Ct. | 6 per Ct. | |-----|-------------|-----------|-------------|---|------------|-----------|----------------------| | | 1 | ,970874 | 1 / | ,961538 | 1 | 952381 | ,943396 | | | 2 | ,942596 | | ,924556 | | ,907029 | ,889996 | | | 3 | ,915142 | | ,888996 | | ,863838 | ,839619 | | | 4 | ,888487 | ,871442 | ,854804 | | ,822702 | ,792094 | | | 6 | .862609 | 1.841973 | ,821927 | ,802451 | .783526 | .747258 | | | | ,837484 | ,813501 | ,790315 | ,767896 | ,746215 | ,704961 | | | 7 | ,813092 | | ,759918 | ,734828 | ,710681 | ,665057 | | | 8 | ,789409 | ,759412 | ,730690 | | ,676839 | ,627412 | | 1 | 9 | ,766417 | .733731 | .702587 | ,672904 | ,644609 | ,591898 | | 1 | 10 | ,744094 | ,708919 | ,675564 | ,643928 | ,613913 | ,55 ⁸ 395 | | | 11 | ,722421 | ,684946 | ,649581 | ,616199 | ,584679 | .526788 | | 1 | 12 | ,701380 | ,661783 | ,624597 | | | ,495969 | | 1 | 13 | ,680951 | ,639404 | ,600574 | | | ,468839 | | 1 | 14 | ,661118 | ,617782 | ,577475 | | | ,442301 | | 1 | 15 | ,641862 | ,596891 | ,555265 | | | ,417265 | | 1 | 16 | ,623167 | ,576706 | ,533908 | | | 393646 | | 1 | 17 | ,605016 | ,557204 | 513373 | | | 371364 | | 1 | 18 | ,587395 | ,538361 | ,493628 | | | 350344 | | 1 | 19 | ,570286 | ,520156 | ,474642 | | | 330513 | | 1 | 20 | ,553676 | | ,456387 | | | 311805 | | 1 | | | | | | | | | | 21 | ,537549 | | ,438834 | ,396787 | 358942 . | 294155 | | 1 | 22 | ,521893 | .469151 | ,421955 | ,379701 | 341850 | 277505 | | 1 | 23 | ,506692 | ,453286 | ,405726 | | | 251797 | | | 24 | ,491934 | | ,390121 | | | 246979 | | - 1 | 25 | ,477606 | | | | | 232999 | | | 26 | ,463695 | | | | | 219810 | | | 27 | ,450189 | | | | | 207368 | | 3 | 28 | ,437077 | | | | 255094, | 195630 | | | 29 | | | 320651 | | | 184557 | | 13 | 30 | ,411987 | .356278 | 308319 | ,267000 ,: | 231377 | 174110 | | 1 | 115 | .399987 | 211220 | 206460 | .255502 | 270250 | 161255 | | ž – | 32 | .388337 | 332500 | 285058 | 244500 | 209866 | 154057 | | ~ | *********** | 2.037/1 | .3.1~39~11 | -,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | , | 9000 11 | 14971 | # 310 APPENDIX. # TABLE I. Continued, | - | | 3 per Ct. | 3½ per Ct. | 4 per Ct. | 41 per Ct. | 5 per Ct. | 6 per Ct. | | |----------------|----------|--|--------------------|--------------------|--------------------|----------------------|--------------------|----| | - | 33
34 | 377026
,366045 | ,321343 | ,274094
,263552 | ,233971 | ,1998 7 3 | ,146186
,137912 | | | - | 35
36 | ,3553 ⁸ 3
,345 ⁰ 3 ² | ,299977 | ,253415 | ,214254 | ,181290 | ,130105 | | | and division | 37
38 | ,334983 | ,280032
,270562 | ,234297 | ,196199
,187750 | ,164436 | ,115793 | | | A new fillians | 39
40 | ,315754 | ,261413
,252572 | ,216621
,208289 | ,179665
,171929 | ,149148 | ,103056 | | | - | 4I
42 | ,297628 | | ,200278 | | ,135282 | ,091719 | | | | 43
44 | ,280543 | ,227800 | ,185168
,178046 | ,150663 | ,122704 | ,081630 | - | | | +5 | ,264439 | ,212659 | ,171198 | ,137964 | ,111297 | ,072650 | 1 | | | 47 | 1,249259 | ,198520 | ,158283 | ,126338 | ,100949 | ,064658 | 1 | | | 49 | ,234950 | ,185320 | ,146341 | 1,115692 | ,091564 | 1;057546 | 1 | | | 51 | ,22146 | ,172998 | ,13530 | | , , | ,051215 | | | | 52 | ,20875 | 0,161496 | ,12509 | 3,097014 | 1,075330 | ,045582 | 2 | | | 54
54 | ,19676 | 7 ,15075 | 8,11565 | 6 ,088830 | ,068326 | ,04056 | 7 | | | 5 | ,18547 | 2 .14073. | 1,10693 | 0,08135 | ,06197 | 4,03610 | 5 | | | 50 | 9 ,17482 | 5 ,13137 | 7 ,09896 | 3,07449 | 7 ,05621 | 2 ,03213 | 3 | | | 6 | | | - | | | _ | -1 | | | 6 | 1. | c,11849 | 5,08788 | 9,06528 | 1 ,04855 | 8 ,02698 | 9 | | | | 4,15080 | 6,11061 | 6 ,08125 | 8 ,05978 | 0,04404 | 4 ,02401 | 2 | | | 16 | 6,14212 | 19,10326 | 1,07512 | 8 ,05474 | 2 ,03994 | .9 ,02137 | 0 | | | 6 | 8,1339 | 39 ,09639 | 5 .06946 | ,05012 | 9 ,03623 | 5 ,01902 | 0 | | | 7 | | 07 .01998 | | 19 ,04590 | | | | # TABLE I. Continued. | | 3 per Ct. | 3½ per Ct. | 4 per Ct. | 4 t per Ct. | 5 par Ct. | 6 per Ct. | |--|---|--|--
--|--|---| | 71
72
73
74
75
76
77
78
79
80 | ,122619
,119047
,115580
,112214
,108945
,105772
,102691
,099700
,096796 | ,086943
,084005
,081162
,078418
,075766
,073204
,070728
,068336
,066026
,063793 | ,061749
,059374
,057091
,054895
,052784
,050754
,048801
,046924
,045120
,043384 | ,043928
,042037
,040226
,038494
,036836
,035250
,033732
,032280
,030890
,029559 | ,031301
,029311
,028391
,027039
,025752
,024525
,023357
,022245
,021186
,020177 | ,015969
,015065
,014212
,013408
,012649
,011933
,010620
,010019
,009452 | | 81 | ,091240 | ,061636 | .041716 | ,028287 | ,019216 | ,008917 | | 82 | ,088582 | ,059551 | ,040111 | ,027068 | ,018301 | ,008412 | | 83 | ,086002 | ,057538 | ,038569 | ,025903 | ,017430 | ,007936 | | 84 | ,083497 | ,055592 | ,037085 | ,024787 | ,016600 | ,007487 | | 85 | ,081065 | ,053712 | ,035659 | ,023720 | ,015809 | ,007063 | | 86 | ,078704 | ,051896 | ,034287 | ,022699 | ,015056 | ,006663 | | 87 | ,076412 | ,050141 | ,032968 | ,021721 | ,014339 | ,006286 | | 88 | ,074186 | ,048445 | ,031700 | ,020786 | ,013657 | ,005930 | | 89 | ,072027 | ,046807 | ,030481 | ,019891 | ,013006 | ,005595 | | 90 | ,069928 | ,045224 | ,029309 | ,019034 | ,012387 | ,005278 | | 91 | 1 2221 | ,043695 | ,028182 | ,018215 | ,011797 | ,co4979 | | 92 | | ,042217 | ,027098 | ,017430 | ,011235 | ,oo4697 | | 93 | | ,040789 | ,026055 | ,016680 | ,010700 | ,oo4132 | | 94 | | ,039410 | ,025053 | ,015961 | ,010191 | ,oo4181 | | 95 | | ,038077 | ,024090 | ,015274 | ,009705 | ,oo3944 | | 96 | | ,036790 | ,023163 | ,014616 | ,009243 | ,oo3721 | | 97 | | ,035546 | ,022272 | ,013987 | ,008803 | ,oo3510 | | 98 | | ,934344 | ,021416 | ,013385 | ,008384 | ,oo3312 | | 99 | | ,033182 | ,020592 | ,012868 | ,007985 | ,co3124 | | 100 | | ,032060 | ,019800 | ,012257 | ,007604 | ,oo2057 | ## TABLE II. The present Value of an Annuity of One Pound, for any Number of Years not exceeding 100, at the several Rates of 3, 3½, 4, 5, and 6l. per Cent. | Ye. | 3 per Ct. | 3½ per Ct. | 4 per Ct. | 5 per Ct. | 6 per Ct. | |-----|-----------|------------|-----------|-----------|-----------| | I | .9708 | .9662 | .9615 | .9523 | .9433 | | 2 | 1.9133 | 1.8997 | 1.8860 | 1.8594 | 1.8333 | | 3 | 2.8286 | 2.8016 | 2.7750 | 2.7232 | 2.6730 | | 4 | 3.7170 | 3.6731 | 3.6298 | 3.5459 | 3.4651 | | 5 | 4.5797 | 4.5151 | 4.4518 | 4.3294 | 4.2123 | | 6 | 5.4971 | 5.3286 | 5.2421 | 5.0756 | 4.9173 | | 7 | 6.2302 | 6.1145 | 6.0020 | 5.7863 | 5.5823 | | 8 | 7.0196 | 6.8740 | 6.7327 | 6.4632 | 6.2097 | | 9 | 7.7861 | 7.6077 | 7.4353 | 7.1078 | 6.8016 | | 10 | 8.5302 | 8.3166 | 8.1108 | 7.7212 | 7.3600 | | II | 9.2526 | | 8.7604 | 8.3064 | 7.8868 | | 12 | 9.9540 | 9.6633 | 9.3850 | 8.8632 | 8.3838 | | 13 | 10.6349 | 10.3027 | 9.9856 | 9.3935 | 8.8526 | | 14 | 11.2960 | 10.9205 | 10.5631 | 9.8986 | 9.2949 | | 15 | 11.9379 | 11.5174 | 11.1183 | 10.3796 | 9.7122 | | 16 | 12.5611 | 12.0941 | 11.6522 | 10.8377 | 10.1058 | | 17 | 13.1661 | 12.6513 | 12.1656 | 11.2740 | 10.4772 | | 8 | 13.7535 | 13.1897 | 12.6592 | 11.6895 | 10.8276 | | 19 | 14.3238 | 13.7093 | 13.1339 | 12.0853 | 11.1581 | | 20 | 14.8774 | 14.2124 | 13.5903 | 12.4622 | 11.4699 | | 21 | 15.4150 | 14.6980 | 14.0291 | 12.8211 | 11.7640 | | 22 | 15.9389 | 15.1671 | 14.4511 | 13.1630 | 12.0415 | | 123 | 16.4436 | 15.6204 | 14.8568 | 13.4885 | 12.3033 | | 24 | 16.9355 | 16.0584 | 15.2469 | 13.7986 | 12.5503 | | 25 | 17.4131 | 16.4815 | 15.6220 | 14.0939 | 12.7833 | # APPENDIX. # TABLE II. Continued. | Te: | 3 per Ct. | 3 ½ per € t. | + per Ct. | 5 per Ct. | 6 per Ct | |-----|-----------|------------------|-----------|-----------|----------| | 26 | 17.8768 | 16.8904 | 15.9827 | 14.3751 | 13.0031 | | -27 | 18.3270 | 17.2854 | 16.3295 | 14.6430 | 13.2105 | | 28 | 18.7641 | 17.6670 | 16.6630 | 14.8981 | 13.4061 | | 29 | 19.1884 | 18.0358 | 16.9837 | 15.1410 | 13.5907 | | 30 | 19.6004 | 18.3920 | 17.2920 | 15.3724 | 13.7648 | | 31 | 20.0004 | 18.7363 | 17.5884 | 15.5928 | 13.9290 | | 32 | 20.3887 | 19.0689 | 17.8735 | 15.8026 | 14.0840 | | 33 | 20.7657 | 19.3902 | 18.1476 | 16.0025 | 14.2302 | | 34 | 21.1318 | 19. 7 007 | 18.4111 | 16.1929 | 14.3681 | | 35 | 21.4872 | 20.0007 | 18.6646 | 16.3741 | 14.4982 | | 36 | 21.8322 | 20.2905 | 18.9082 | 16.5468 | 14.6209. | | 37 | 22.1672 | 20.5705 | 19.1425 | 16.7112 | 14.7367 | | 38 | 22.4924 | 20.8411 | 19.3678 | 16.8678 | 14.8460 | | 39 | 22.8082 | 21.1025 | 19.5844 | 17.0170 | 14.9490 | | 40 | 23.1147 | 21.3551 | 19.7927 | 17.1590 | 15.0462 | | 41 | 23.4124 | 21.5991 | 19.9930 | 17.2943 | 15.1380 | | 42 | 23.7013 | 21.8349 | 20.1856 | 17.4232 | 15.2245 | | 43 | 23.9819 | 22.0627 | 20.3707 | 17.5459 | 15.3061 | | 44 | 24.2542 | 22.2828 | 20.5488 | 17.6627 | 15.3831 | | 45 | 24.5187 | 22.4955 | 20.7200 | 17.7740 | 15.4558 | | 46 | 24.7754 | 22.7009 | 20.8846 | 17.8800 | 15.5243 | | 47 | 25.0247 | 22.8994 | 21.0429 | 17.9810 | 15.5890 | | 48 | 25.2667 | 23.0912 | 21.1951 | 18.0771 | 15.6500 | | 49 | 25.5016 | 23.2766 | 21.3414 | 18.1687 | 15.7075 | | 50 | 25.7297 | 23.4556 | 21.4821 | 18.2559 | 15.7618 | | 51 | 25.9512 | 23.6286 | 21.6174 | 18.3389 | 15.8130 | | 52 | 26.1662 | 23.7958 | 21.7475 | 18.4180 | 15.8613 | | 53 | 26.3749 | 23.9573 | 21.8726 | 18.4934 | 15.9069 | | 54 | 26.5776 | 24.1133 | 21.9929 | 18.5651 | 15.9499 | | 55 | 26.7744 | 24.2641 | 22.1086 | 18.6334 | 15.9905 | # TABLE II. Continued. | - | Ye. | 3 per Ct. | 3½ per Ct. | 4 per Ct. | 5 per Ct. | 6 per Ct. | |-----------------------|----------------------------|---|--|--|---|--| | | 56
57 | 26.9654
27.1509 | 24.4097
24.5504 | 22.2198 | 18.6985 | 16.0288
16.0649 | | and the second second | 58
59
60 | 27.3310
27.5058
27.6755 | 24.6864
24.8178
24.9447 | 22.4295
22.5284
22.6234 | 18.8195
18.8757
18.9292 | 16.0989
16.1311
16.1614 | | | 61
62
63
64
65 | 27.8403
28.0003
28.1556
28.3064
28.4528 | 25.0674
25.1839
25.3004
25.4110 | 22.7148
22.8027
22.8872
22.9085 | 18.9802
19.0288
19.0750
19.1191
19.1610 | 16.1900
16.2170
16.2424
16.2664
16.2891 | | | 66
67
68
69
70 | 28.5950
28.7330
28.8670
28.9971
29.1234 | 25.5178
25.6211
25.7209
25.8173
25.9104
26.0004 | 23.0466
23.1218
23.1940
23.2635
23.3302
23.3945 | 19.2010
19.2390
19.2753
19.3098
19.3426 | 16.3104
16.3306
16.3496
16.3676
16.3845 | | | 71
72
73
74
75 | 29.2460
29.3650
29.4806
29.5928
29.7018 | 26.0873
26.1713
26.2525
26.3309
26.4067 | 23.4562
23.5156
23.5727
23.6276
23.6804 | 19.3739
19.4037
19.4321
19.4592
19.4849 | 16.4005
16.4155
16.4297
16.4431
16.4558 | | | 76
77
78
79
80 | 29.8076
29.9102
30.0099
30.1067
30.2007 | 26.4799
26.5506
26.6190
26.6850
26.7488 | 23.7311
23.7799
23.8268
23.8720
23.9153 | 19.5094
19.5328
19.5550
19.5762
19.5964 | 16.4677
16.4 7 90
16.4896
16.4996
16.5091 | | | 81
82
83
84
85 | 30.2920
30.3805
30.4665
30.5500
30.6311 | 26.8104
26.8700
26.9275
26.9831
27.0368 | | 19.6156
19.6339
19.6514
19.6680
19.6838 | 16.5180
16.5264
16.5343
16.5418
16.5489 | # TABLE II. Continued. | - | Ye. | 3 per Ct. | $3^{\frac{1}{2}}$ per Ct. | + per C. | 5 per Ct. | 6 per Ct. | |---|-----|-----------|---------------------------|----------|-----------|-----------| | 1 | 86 | 30.7098 | 27.0887 | 24.1428 | 19.6988 | 16.5556 | | 1 | 87 | 30.7862 | 27.1388 | 24.1757 | 19.7132 | 16.5618 | | Į | 88 | 30.8604 | 27.1873 | 24.2074 | 19.7268 | 16.5678 | | 1 | 89 | 30.9324 | 27.2341 | 24.2379 | 19.7398 | 16.5734 | | ١ | 80 | 31.0024 | 27.2793 | 24.2672 | 19.7522 | 16.5786 | | ŀ | | | | | | -6 -0 -6 | | ١ | 91 | 31.0703 | 27.3230 | 24.2954 | 19.7640 | 16.5836 | | ١ | 92 | 31.1362 | 27.3652 | 24.3225 | 19.7752 | 16.5883 | | ١ | 93 | 31.2002 | 27.4060 | 24.3486 | 19.7859 | 16.5928 | | 1 | 94 | 31.2623 | 27.4454 | 24.3736 | 19.7961 | 16.5969 | | 1 | 95 | 31.3226 | 27.4835 | 24.3977 | 19.8058 | 16.6009 | | | | 0 | | | 0 | -66-6 | | | 96 | 0 | 27.5203 | 24.4209 | 19.8151 | 16.6046 | | | 97 | 10 | 27.5558 | 24.4431 | 19.8239 | 16.6081 | | | 98 | 10 .70 | 27.5902 | 24.4646 | 19.8323 | 16.6114 | | | 99 | 31.5468 | 27.6234 | 24.4852 | 19.8403 | 16.6145 | | | 100 | 131.5989 | 27.6554 | 24.5050 | 19.8479 | 16.6175 | ### TABLE III. Shewing the Probabilities of the Duration of Life, as deduced by Dr. Halley from Observations on the Bills of Mortality of Breslaw. | Ages | Persons
living. | Decr.;
of Life. | Ages. | Persons
living. | Decr.
of Life. | Ages | Persons
living. | Decr.
of Life | |------|--------------------|--------------------|-------|--------------------|-------------------|----------|--------------------|------------------| | I | 1000 | 145 | 31 | 523 | 8 | 61 | 232 | 10 | | 2 | 855 | 57 | 32 | 515 | 8 | 62 | 222 | 10 | | 3 | 798 | 38 | 33 | 507 | 8 | 63 | 212 | 10 | | 14 | 760 | 28 | 34 | 499 | 9 | 64 | 202 | 10 | | | 732 | 22 | 35 | 490 | 9 | 65 | 192 | 10 | | 56 | 710 | 18 | 36 | 481 | 9 | 66 | 182 | 10 | | 7 | 692 | 12 | 37 | 472 | 9 | 67 | 172 | 10 | | 7 8 | 680 | 10 | 38 | 463 | 9 |
68 | 162 | 10 | | 9 | 670 | 9 8 | 39 | 454 | 9 | 69 | 152 | 10 | | 10 | 661 | 8 | 40 | 445 | 9 | 70 | 142 | II | | II | 653 | 7 6 | 41 | 436 | 9 | 71 | 131 | ΙĮ | | 12 | 646 | | 42 | 427 | 10 | 72 | 120 | 11 | | 13 | 640 | 6 | 4.3 | 417 | 10 | 73 | 109 | ΙI | | 14 | 634 | 6 | 44 | 407 | 10 | 74 | 98 | 10 | | 15 | 628 | 6 | 45 | 397 | 10 | 75 | 88 | 10 | | 16 | 622 | 6 | 46 | 387 | 10 | 76 | 78 | 10 | | 17 | 616 | 6 | 47 | 377 | 10 | 77 | 68 | 10 | | 18 | 610 | 6 | 48 | 367 | 10 | 78 | 58 | 9 8 | | 119 | 604 | 6 | 49 | 357 | II | 79 | 49 | | | 20 | 598 | 6 | 50 | 346 | II | 80 | 4 I | 7 | | 21 | 592 | 6 | 5 I | 335 | 11 | 81 | 34 | | | 22 | 586 | 7 6 | 52 | 324 | 11 | 82 | 28 | 5 | | 23 | 579 | | 53 | 313 | II | 83 | 23 | 4 | | 24 | 573 | 6 | 54 | 302 | 10 | 84. | 19 | 4 | | 25 | .567 | 7 | 55 | 292 | 10 | 85 | 15 | 4 | | 26 | 560 | 7 | 56 | 282 | 10 | 86 | II | 3 | | 27 | 553 | 7 | 57 | 272 | 10 | 87
88 | 8 | 3 2 | | 28 | 546 | 7 8 | 58 | 262 | 10 | 80 | 5 | 2 | | 29 | 539 | 8 | 59 | 252 | 10 | 89 | 3 | 2
I | | 30 | 531 | U | | 242 | 10 | 90 | 1 | * | | - | | 1 | 1 | 1 | 1 | ! | | | ### TABLE IV. Shewing the Probabilities of Life at NORTH-AMPTON. See page 255, 256. ## TABLE V. Shewing the Probabilities of Life at Norwick. See page 256, 257. | Ages Perfons Oper Ilving. Of Life. Ages Perfons Oper Ilving. Of Life. Ages Oper Ilving. Of Life. Ages Oper Ilving. Oper | | | | | | | | | | |--|------|--------------------|-------------------|------|--------------------|-----|-----|--------------------|-------------------| | 1 865 160 33 386 6 64 165 9 2 705 60 34 380 6 65 156 9 3 645 32 35 374 6 66 147 9 4 613 23 36 368 6 67 138 9 5 590 20 37 362 6 68 129 9 6 570 16 38 356 6 69 120 9 7 554 13 39 350 7 70 111 9 8 541 11 40 343 6 72 94 8 9 530 9 41 337 6 72 94 8 10 521 7 42 331 6 72 94 8 12 508 6 44 318 7 75 70 8 13 502 | Ages | Perfons
living. | Decr.
of Life. | Ages | Persons
living. | | _ | Perfons
living. | Decr.
of Life. | | 1 865 160 33 386 6 64 165 9 2 705 60 34 380 6 65 156 9 3 645 32 35 374 6 66 147 9 4 613 23 36 368 6 67 138 9 5 590 20 37 362 6 68 129 9 6 570 16 38 356 6 69 120 9 7 554 13 39 350 7 70 111 9 8 541 11 40 343 6 72 94 8 9 530 9 41 337 6 72 94 8 10 521 7 42 331 6 72 94 8 12 508 6 44 318 7 75 70 8 13 502 | 0 | 1185 | 320 | 32 | 392 | | 63 | 174 | 9 | | 2 705 60 34 380 6 65 156 9 3 645 32 35 374 6 66 147 9 4 613 23 36 368 6 67 138 9 5 590 20 37 362 6 68 129 9 6 570 16 38 356 6 69 120 9 7 554 13 39 350 7 70 111 9 8 541 11 40 343 6 71 102 8 9 530 9 41 337 6 72 94 8 10 521 7 42 331 6 72 94 8 12 508 6 44 318 7 75 70 8 13 502 5 45 311 7 76 62 7 14 497 | I | 865 | 160 | | 386 | 6 | 64 | 165 | 9 | | 3 645 32 35 374 6 66 147 9 4 613 23 36 368 6 67 138 9 5 590 20 37 362 6 68 129 9 6 570 16 38 356 6 69 120 9 7 554 13 39 350 7 70 111 9 8 541 11 40 343 6 71 102 8 9 530 9 41 337 6 72 94 8 10 521 7 42 331 6 72 94 8 12 508 6 44 318 7 75 70 8 13 502 5 45 311 7 76 62 7 14 497 5 46 304 7 77 55 7 15 492 | 2 | 705 | 60 | | 380 | 6 | 65 | 156 | 9 | | 4 613 23 36 368 6 67 138 9 5 590 20 37 362 6 68 129 9 6 570 16 38 356 6 69 120 9 7 554 13 39 350 7 70 111 9 8 541 11 40 343 6 71 102 8 9 530 9 41 337 6 72 94 8 10 521 7 42 331 6 72 94 8 11 514 6 43 325 7 74 78 8 12 508 6 44 318 7 75 70 8 13 502 5 45 311 7 76 62 7 14 497 5 46 304 7 77 55 7 15 492 | 3 | 645 | | | 374 | | 66 | | 9 | | 7 554 13 39 350 7 70 111 9 8 541 11 40 343 6 71 102 8 9 530 9 41 337 6 72 94 8 10 521 7 42 331 6 73 86 8 11 514 6 43 325 7 74 78 8 12 508 6 44 318 7 75 70 8 13 502 5 45 311 7 76 62 7 14 497 5 46 304 7 77 55 7 15 492 5 47 297 7 78 48 6 16 487 5 49 283 7 80 37 5 16 487 5 50 276 7 81 32 4 19 472 < | | 613 | 23 | 36 | 368 | 6 | 67 | 138 | 9 | | 7 554 13 39 350 7 70 111 9 8 541 11 40 343 6 71 102 8 9 530 9 41 337 6 72 94 8 10 521 7 42 331 6 73 86 8 11 514 6 43 325 7 74 78 8 12 508 6 44 318 7 75 70 8 13 502 5 45 311 7 76 62 7 14 497 5 46 304 7 77 55 7 15 492 5 47 297 7 78 48 6 16 487 5 49 283 7 80 37 5 16 487 5 50 276 7 81 32 4 19 472 < | | 590 | 20 | 37 | 362 | | 68 | 120 | 9 | | 7 554 13 39 350 7 70 111 9 8 541 11 40 343 6 71 102 8 9 530 9 41 337 6 72 94 8 10 521 7 42 331 6 73 86 8 11 514 6 43 325 7 74 78 8 12 508 6 44 318 7 75 70 8 13 502 5 45 311 7 76 62 7 14 497 5 46 304 7 77 55 7 15 492 5 47 297 7 78 48 6 16 487 5 49 283 7 80 37 5 16 487 5 50 276 7 81 32 4 19 472 < | 16 | 570 | 16 | 28 | 256 | 6 | 69 | 120 | 0 | | 9 530 9 41 337 6 72 94 8 10 521 7 42 331 6 73 86 8 11 514 6 43 325 7 74 78 8 12 508 6 44 318 7 75 70 8 13 502 5 45 311 7 76 62 7 14 497 5 46 304 7 77 55 7 16 487 5 48 290 7 79 42 5 16 487 5 49 283 7 80 37 5 16 487 5 49 283 7 80 37 5 17 482 5 49 283 7 80 37 5 19 472 5 51 269 7 82 28 4 20 467 <td< td=""><td></td><td>554</td><td></td><td>39</td><td>250</td><td></td><td>70</td><td></td><td>9</td></td<> | | 554 | | 39 | 250 | | 70 | | 9 | | 9 530 9 41 337 6 72 94 8 10 521 7 42 331 6 73 86 8 11 514 6 43 325 7 74 78 8 12 508 6 44 318 7 75 70 8 13 502 5 45 311 7 76 62 7 14 497 5 46 304 7 77 55 7 16 487 5 48 290 7 79 42 5 16 487 5 49 283 7 80 37 5 16 487 5 49 283 7 80 37 5 17 482 5 49 283 7 80 37 5 19 472 5 51 269 7 82 28 4 20 467 <td< td=""><td>8</td><td>541</td><td>11</td><td>40</td><td>242</td><td>6</td><td></td><td></td><td>8</td></td<> | 8 | 541 | 11 | 40 | 242 | 6 | | | 8 | | 10 521 7 42 331 6 73 86 8 11 514 6 43 325 7 74 78 8 12 508 6 44 318 7 75 70 8 13 502 5 45 311 7 76 62 7 14 497 5 46 304 7 77 55 7 15 492 5 47 297 7 78 48 6 16 487 5 48 290 7 79 42 5 16 487 5 49 283 7 80 37 5 18 477 5 50 276 7 81 32 4 19 472 5 51 269 7 83 24 4 20 467 6< | | 520 | | | | 6 | 72 | | | | 11 514 6 43 325 7 74 78 8 12 508 6 44 318 7 75 70 8 13 502 5 45 311 7 76 62 7 14 497 5 46 304 7 77 55 7 15 492 5 47 297 7 78 48 6 16 487 5 48 290 7 79 42 5 16 487 5 49 283 7 80 37 5 18 477 5 50 276 7 81 32 4 19 472 5 51 269 7 82 28 4 20 467 6 52 262 7 83 24 4 21 461 6< | 10 | 52.1 | 7 | | | 6 | | 86 | 8 | | 12 508 6 44 318 7 75 70 8 13 502 5 45 311 7 76 62 7 14 497 5 46 304 7 77 55 7 15 492 5 47 297 7 78 48 6 16 487 5 48 290 7 79 42 5 17 482 5 49 283 7 80 37 5 18 477 5 50 276 7 81 32 4 19 472 5 51 269 7 82 28 4 20 467 6 52 262 7 83 24 4 21 461 6 53 255 8 84 20 3 23 449 6< | | 511 | 6 | | 225 | | 71 | 78 | 8 | | 14 497 5 40 304 7 77 55 7 15 492 5 47 297 7 78 48 6 16 487 5 48 290 7 79 42 5 17 482 5 49 283 7 80 37 5 18 477 5 50 276 7 81 32 4 19 472 5 51 269 7 82 28 4 20 467 6 52 262 7 83 24 4 21 461 6 53 255 8 84 20 3 22 455 6 54 247 8 85 17 3 23 449 6 55 239 8 86 14 3 24 443 6 56 231 8 87 11 2 25 437 <t< td=""><td></td><td>508</td><td>6</td><td></td><td>218</td><td>7</td><td>75</td><td>70</td><td>8</td></t<> | | 508 | 6 | | 218 | 7 | 75 | 70 | 8 | | 14 497 5 40 304 7 77 55 7 15 492 5 47 297 7 78 48 6 16 487 5 48 290 7 79 42 5 17 482 5 49 283 7 80 37 5 18 477 5 50 276 7 81 32 4 19 472 5 51 269 7 82 28 4 20 467 6 52 262 7 83 24 4 21 461 6 53 255 8 84 20 3 22 455 6 54 247 8 85 17 3 23 449 6 55 239 8 86 14 3 24 443 6 56 231 8 87 11 2 25 437 <t< td=""><td></td><td>502</td><td></td><td></td><td>271</td><td>7</td><td>76</td><td>62</td><td></td></t<> | | 502 | | | 271 | 7 | 76 | 62 | | | 16 487 5 48 290 7 79 42 5 17 482 5 49 283 7 80 37 5 18 477 5 50 276 7 81 32 4 19 472 5 51 269 7 82 28 4 20 467 6 52 262 7 83 24 4 21 461 6 53 255 8 84 20 3 22 455 6 54 247 8 85 17 3 23 449 6 55 239 8 86 14 3 24 443 6 56 231 8 87 11 2 25 437 6 57 223 8 88 9 2 26 431 7 59 207 8 90 5 2 28 417 7 60 199 8 91 3 2 29 410 6 62 183 9 93 1 1 | | 107 | 5 | 16 | 204 | 7 | 77 | | 7 | | 16 487 5 48 290 7 79 42 5 17 482 5 49 283 7 80 37 5 18 477 5 50 276 7 81 32 4 19 472 5 51 269 7 82 28 4 20 467 6 52 262 7 83 24 4 21 461 6 53 255 8 84 20 3 22 455 6 54 247 8 85 17 3 23 449 6 55 239 8 86 14 3 24 443 6 56 231 8 87 11 2 25 437 6 57 223 8 88 9 2 26 431 7 59 207 8 90 5 2 28 417 7 60 199 8 91 3 2 29 410 6 62 183 9 93 1 1 | | 102 | 5 | | 207 | 7 | 78 | 18 | 6 | | 20 | 16 | 187 | 5 | 47 | 29/ | 7 | 70 | 40 | ri . | | 20 | | 407 | 5 | | 290 | 7 | 19 | 44 | 5 | | 20 | 1 / | | 5 | 49 | 203 | 7 | Q + |
37 | 5 | | 20 | | 4// | 5 | | 2/0 | - | 01 | 34 | 4 | | 26 431 7 58 215 8 89 7 2 27 424 7 59 207 8 90 5 2 28 417 7 60 199 8 91 3 2 29 410 6 61 191 8 92 1 1 30 404 6 62 183 9 93 1 1 | | 4/2 | 5 | | 209 | - | 02 | | 4 | | 26 431 7 58 215 8 89 7 2 27 424 7 59 207 8 90 5 2 28 417 7 60 199 8 91 3 2 29 410 6 61 191 8 92 1 1 30 404 6 62 183 9 93 1 1 | , , | 4.07 | 6 | | | 6 | 03 | | 4 | | 26 431 7 58 215 8 89 7 2 27 424 7 59 207 8 90 5 2 28 417 7 60 199 8 91 3 2 29 410 6 61 191 8 92 1 1 30 404 6 62 183 9 93 1 1 | | 401 | 0 | | | 0 | 04 | | 3 | | 26 431 7 58 215 8 89 7 2 27 424 7 59 207 8 90 5 2 28 417 7 60 199 8 91 3 2 29 410 6 61 191 8 92 1 1 30 404 6 62 183 9 93 1 1 | | | 0 | | | 8 | 05 | | 3 | | 26 431 7 58 215 8 89 7 2 27 424 7 59 207 8 90 5 2 28 417 7 60 199 8 91 3 2 29 410 6 61 191 8 92 1 1 30 404 6 62 183 9 93 1 1 | | | 0 | 55 | 239 | 8 | 80 | | 3 | | 26 431 7 58 215 8 89 7 2 27 424 7 59 207 8 90 5 2 28 417 7 60 199 8 91 3 2 29 410 6 61 191 8 92 1 1 30 404 6 62 183 9 93 1 1 | | | 0 | 50 | 231 | 8 | 87 | | 2 | | 27 424 7 59 207 8 90 5 2 28 417 7 60 199 8 91 3 2 29 410 6 61 191 8 92 1 1 30 404 6 62 183 9 93 1 1 | 125 | 437 | | 57 | 223 | 3 | 88 | | 2 | | 27 | | 431 | | 58 | | 8 | 89 | 7 | 2 | | 29 410 . 6 61 191 8 92 1 1
30 404 6 62 183 9 93 1 1 | 27 | 42-1 | | 59 | 207 | | 90 | 5 | | | 30 404 6 62 183 9 93 1 1 | | | 7 | 60 | 199 | 8 | 91 | 3 | 2 | | | | | . 6 | | 191 | 11 | | | I | | 398 6 1 | | | 6 | 62 | 183 | 9 1 | 93 | I | I | | The state of s | 21 | 398 | 6 | | | | | | | ## TABLE VI. (a). Shewing the prefent Values of an Annuity of 11. on a fingle life, according to Mr. De Moivre's hypothesis; and, therefore, nearly, according to the probabilities of life at Breslaw, Norwich, and Northampton. See p. 2, and p. 262. | Ī | Age. | 3 per Ct. | 3½ per Ct. | 4 per Ct. | 4½ per Ct. | 5 per Ct. | 6 per Ct. | |---|----------|-----------|------------------|------------------|------------|-----------|-----------| | | 8 | 19,736 | 18,160
18,269 | 16,791
16,882 | 15,595 | 14,544 | 12,790 | | | 10 | 19,868 | 18,269 | 16,882 | 15,672 | 14,607 | 12,839 | | | 11 | 19,736 | 18,160 | 16,791 | 15,595 | 14,544 | 12,790 | | | 13 | 19,469 | 17,937 | 16,604 | 15,437 | 14,412 | 12,691 | | | 14 | 19,331 | 17,823 | 16,508 | 15,356 | 14,342 | 12,639 | | - | 16 | 19,050 | 17,588 | 16,311 | 15,189 | 14,197 | 12,532 | | | 18 | 18,759 | 17,344 | 16,105 | 15,015 | 14,047 | 12,419 | | | 20 | 18,458 | 17,093 | 15,891 | 14,831 | 13,891 | 12,301 | | | 21 | 18,305 | 16,963 | 15,781 | 14,737 | 13,810 | 12,239 | | - | 23 | 17,990 | 16,695 | 15,554 | 14,543 | 13,727 | 12,112 | | - | 24 | 17,827 | 16,559 | 15.437 | 14,442 | 13,555 | 12,045 | | | 26
27 | 17,497 | 16,277 | 15,197 | 14,235 | 13,375 | 11,908 | | | 28 | 17,154 | 15.985 | 14,946 | 14,018 | 13,186 | 11,763 | | | 30 | 16,800 | 15,682 | 14,684 | 13,791 | 12,988 | 11,610 | | | 31 | 16,620 | 15,526 | 14,549 | 13,673 | 12,855 | 11,530 | | | 32
33 | 16,248 | | | 13,553 | 12,673 | 11,449 | ⁽a) This Table is the same with Mr. De Moivre's Table of the values of single lives, published in his Treatise on Life Annuities, and carried as far as the age of 79 to three places of decimals by Mr. Dodson in his Mathematical Repository, vol. ii. p. 169. # APPENDIX. ## 320 # TABLE VI. Continued. | | _ | | | | | 1 | | |--------|------|-----------|-------------|-----------|------------|-----------|-----------| | | Age | 3 per Ct. | 3 ½ per Ct. | 4 per Ct. | 4½ per Ct. | 5'per Ct. | 6 per Ct- | | | 34 | 16,057 | 15,039 | 14,126 | 13,304 | 12,562 | 11,278 | | | 35 | 15,864 | 14,871 | 13,979 | 13,175 | 12,449 | 11,189 | | - | 36 | 15,666 | 14,699 | 13,829 | 13,044 | 12,333 | 11,098 | | 1 | 37 | 15,465 | 14,524 | 13,676 | 12,909 | 12,214 | 11,003 | | - | 38 | 15,260 | 14.345 | 13,519 | 12,771 | 12,091 | 10,907 | | - | 39 | 15,053 | 14,163 | 13,359 | 12,630 | 11,966 | 10,807 | | 9 | 40 | 14,842 | 13,978 | 13,196 | 12,485 | 11,837 | 10,704 | | | - | | -3,970 | - 3,.90 | | | | | 1 | 41 | 14,626 | 13,789 | 13,028 | i 2,337 | 11,705 | 10,599 | | - | 42 | 14,407 | 13,596 | 12,858 | 12,185 | 11,570 | 10,490 | | ì | +3 | 14,185 | 13,399 | 12,683 | 12,029 | 11,431 | 10,378 | | 1 | 44 | 13,958 | 13,199 | 12,504 | 11,870 | 11,288 | 10,263 | | * | 45 | 13,728 | 12,993 | 12,322 | 11,707 | 11,142 | 10,144 | | 91010 | 46 | 13,493 | 12,784 | 12,135 | 11,540 | 10,992 | 10,021 | | 4 | 47 | 13,254 | 12,571 | 11,944 | 11,368 | 10,837 | 9,895 | | Marke | 48 | 13,012 | 12,354 | 11,748 | 11,192 | 10,679 | 9,765 | | -9-6- | 49 | 12,764 | 12,131 | 11,548 | 11,012 | 10,515 | 9,630 | | gay-gu | 50 | 12,511 | 11,904 | 11,344 | 10,827 | 10,348 | 9,492 | | - | - | | | | | | | | Ì | 5 I | 12,255 | 11,673 | 11,135 | 10,638 | 10,176 | 9.349 | | 1 | 52 | 11,994 | 11,437 | 10,921 | 10,443 | 9,999 | 9,201 | | | 53 | 11,729 | 11,195 | 10,702 | 10,243 | 9,817 | 9,049 | | - | - 54 | 11,457 | 10,950 | 10,478 | 10,039 | 9,630 | 8,891 | | - | 55 | 11,183 | 10,698 | 10,248 | 9,829 | 9,437 | 8,729 | | 1 | _56 | 10,902 | 10,443 | 10,014 | 9,614 | 9,239 | 8,561 | | 1 | 57 | 10,616 | 10,181 | 9,773 | 9,393 | 9,036 | 8,387 | | 1 | 58 | 10 325 | 9,913 | 9,527 | 9,166 | 8,826 | 8,208 | | 1 | 59 | 10,029 | 9,640 | 9.27.5 | 8,933 | 8,611 | 8,023 | | 1 | 60 | 9,727 | 9,361 | 9,017 | 8,694 | 8,389 | 7,831 | | 1 | 61 | 9,419 | 9,076 | 8,753 | 8,449 | 8,161 | - 600 | | i | 62 | 9,107 | 8,786 | 8,482 | 8,197 | 7,926 | 7,633 | | 1 | 63 | 8,787 | 8,488 | 8,205 | 7,938 | 7,684 | 7,428 | | - | 64 | 8,462 | 8,185 | 7,921 | 7,672 | | 6,007 | | - | 65 | 8,132 | 7,875 | -7,631 | 7,399 | 7,435. | 6,997 | | - | 66 | 7.794 | 7,558 | 7,333 | 7,119 | 6,915 | 6,535 | | - | 67 | 7,450 | 7,234 | 7,027 | 6,831 | 6,643 | 6,292 | | 1 | 68 | 7,099 | 6,902 | 6,714 | 6,534 | 6,362 | 6,010 | | - | 69 | 6,743 | 6,565 | 6,394 | 6,230 | 6,073 | 5,779 | | 1 | 70 | 6.378 | 6,219 | 6,065 | 5,918 | 5,775 | 5,508 | | - | / | , , , | | 1-) | 3,3-01 | 7/// | 3,,,00 | ## TABLE VI. Continued. | Age. | 3 per Ct. | 3½ per Ct. | 4 per Ct. | 4½ per Ct | 5 per Ct. | 6 per Ct. | |------|-----------|------------|-----------|-----------|-----------|-----------| | 71 | 6,008 | 5,865 | 5,728 | 5,596 | 5,468 | 5,228 | | 72 | 5,631 | 5,505 | 5,383 | 5,265 | 5,152 | 4,937 | | 73 | 5,246 | 5,136 | 5,029 | 4,926 | 4,826 | 4,636 | | 74 | 4,854 | 4,759 | 4,666 | 4,576 | 4,489 | 4,324 | | 75 | 4,453 | 4,373 | 4,293 | 4,217 | 4,143 | 4,000 | | 76 | 4,046 | 3,978 | 3,912 | 3,847 | 3,734 | 3,664 | | 77 | 3,632 | 3,575 | 3,520 | 3,467 | 3,415 | 3,315 | | 78 | 3,207 | 3,163 | 3,111 | 3.076 | 3,034 | 2,953 | | 79 | 2,776 | 2,741 | 2,707 | 2,673 | 2,641 | 2,578 | | 80 | 2,334 | 2,309 | 2,284 | 2,259 | 2,235 | 2,188 | | 81 | 1,886 | 1,867 | 1,850 | 1,832 | 1,816 | 1,783 | | 82 | 1,429 | 1,411 | 1,406 | 1,394 | 1,384 | 1,362 | | 83 | 0,96i | 0,955 | 0,950 | 0,943 | .0,937 | 0,925 | | 84 | 0,484 | 0,483 | 0,481 | 0,479 | 0,476 | 0,472 | | 85 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | ### TABLE VII. Shewing the Value of an Annuity on the joint continuance of two lives, according to Mr. De Moivre's Hypothesis; and, therefore, nearly according to the probabilities of life at Breslaw, Norwich, and Northampton. See Essay II, and p. 2, 3, 226, 262. | . be | - P | t 3 | t 4 | it 5 | |----------------------|--------------------|-------------------------|-------------------------|-------------------------| | of t | of t | Cen
Cen | ue a
Cen | Cer | | Age of the youngeft. | Age of the eldeft. | Value at 3
per Cent. | Value at 4
per Cent. | Value at 5
per Cent. | | | 10 | 15.206 | 13.342 | 11.855 | | | 15 | 14.878 | 13.093 | 11.661 | | | 20 | 14.503 | 12.808 | 11.430 | | | 25 | 14.074 | 12.480 | 11.182 | | 10 | 30 | 13.585 | 12.102 | 10.884 | | | 35 | 13.025 | 11.665 | 10.537 | | | 40 | 12.381 | 11.156 | 10.128 | | | 45 | 11.644 | 10.564 | 9.646 | | | 50 | 10.796 | 9.871 | 9.074 | | | 55 | 9.822 | 9.059 | 8.391 | | | 60 | 8.704 | 8.105 | 7.572 | | | 65 | 7.417 | 6.980 | 6.585 | | | 70 | 5.936 | 5.652 | 5.391 | | | 15 | 14.574 | 12.860 | 11.478 | | | 20 | 14.225 | 12.593 | 11.266 | | | 25 | 13.822 | 12.281 | 11.022 | | | 30 | 13.359 | 11.921 | 10.736 | | | 35 | 12.824 | 11.501 | 10.402 | | 15 | 40 | 12.207 | 11.013 | 10.008 | | | 45 | 11.496 | 10.440 | 9.541 | | | 50 | 10.675 | 9.767 | 8.985 | | | 55 | 9.727 | 8.975 | 8.318 | | | 60 | 8.632 | 8.041 | 7.515 | | | 65 | 7.377 | 6.934 | 6.544 | | | 70 | 5.932 | 5.623 | 5.364 | TABLE VII. Continued. | Age of the youngeft. | Age of the eldeft. | Value at 3
per Ccnt. | Value at 4
per Cent. | e at 5
Cent. | |----------------------|--------------------|-------------------------|-------------------------|-----------------| | Age | Age | Valu | Valu | Val. | | | 20 | 13.904 | 12.341 | 11.067 | | | 25 | 13.531 | 12.051 | 10.840 | | | 30 | 13.098 | 11.711 | 10.565 | | 1 | 35 | 12.594 | 11.314 | 10.278 | | | 40 | 12.008 | 10.847 | 9.870 | | 20 | 45 | 11.325 | 10.297 | . 9.420 | | | 50 | 10.536 | 9.648 | 8.880 | | 1 | 55 | 9.617 | 8.879 | 8.233 | | | 60 | 8.549 | 7.967 | 7.448 | | | 65 | 7.308 | 6.882 | 6.495 | | | 70 | 5.868 | 5.590 | 5.333 | | | 25 | 13.192 | 11.786 | 10.621 | | | 30 | 12.794 | 11.468 | 10.367 | | | 35 | 12.333 | 11.095 | 10.067 | | | 40 | 11.776 | 10.655 | 9.708 | | 25 | 45 | 11.130 | 10.131 | 9.278 | | | 50 | 10.374 | 9.509 | 8.761 | | | 55 | 9.488 | 8.766 | 8.134 | | | 60 | 8.452 | 7.880
6.826 | 7.371 | | | 65 | 7.241 | | 6.440 | | | 70 | 5.826 | 5.551 | 5.294 | | | 30 | 12.434 | 11.182 | 10.133 | | | 35 | 12.010 | 10.838 | 9.854 | | | 40 | 11.502 | 10.428 | 9.514 | | 00 | 45 | 10.898 | 9.936 | 9.112 | | 30 | 50 | 10.183 | 9·345
8.634 | 8.620
8.018 | | | 55 | 9.338
8.338 | | 7.280 | | | 65 | 7.161 | 7:779
6.748 | 6.373 | | | 70 | 5.777 | 5.505 | 5.254. | | | 10.1 | 3./// | 5.505 | 2.024 | ## TABLE VII. Continued. | Age of the youngest. | Age of the eldeft. | Value at 3
per Cent. | Value at 4
per Cent. | Value at 5
per Cent. | |----------------------|--------------------|-------------------------
-------------------------|-------------------------| | 35 | 35 | 11.632 | 10.530 | 9.600 | | | 40 | 11.175 | 10.157 | 9.291 | | | 45 | 10.622 | 9.702 | 8.913 | | | 50 | 9.955 | 9.149 | 8.450 | | | 55 | 9.156 | 8.476 | 7.879 | | | 60 | 8.202 | 7.658 | 7.172 | | | 65 | 7.066 | 6.662 | 6.294 | | 40 | 70 | 5.718 | 5.450 | 5.203 | | | 40 | 10.777 | 9.826 | 9.014 | | | 45 | 10.283 | 9.418 | 8.671 | | | 50 | 9.677 | 8.911 | 8.244 | | | 55 | 8.936 | 8.283 | 7.710 | | | 60 | 8.038 | 7.510 | 7.039 | | | 65 | 6.951 | 6.556 | 6.198 | | | 70 | 5.646 | 5.383 | 5.141 | | 45 | 45 | 9.863 | 9.063 | 8.370 | | | 50 | 9.331 | 8.619 | 7.987 | | | 55 | 8.662 | 8.044 | 7.500 | | | 60 | 7.831 | 7.332 | 6.875 | | | 65 | 6.807 | 6.425 | 6.080 | | | 70 | 5.556 | 5.300 | 5.063 | | 50 | 50 | 8.892 | 8.235 | 7.660 | | | 55 | 8.312 | 7.738 | 7.230 | | | 60 | 7.568 | 7.091 | 6.664 | | | 65 | 6.623 | 6.258 | 5.926 | | | 70 | 5.442 | 5.193 | 4.964 | | 55 | 55 | 7.849 | 7.332 | 6.873 | | | 60 | 7.220 | 6.781 | 6.386 | | | 65 | 6.379 | 6.036 | 5.724 | | | 70 | 5.291 | 5.053 | 4.833 | # TABLE VII. Continued. | Age of the youngeft. | Age of the eldeft. | Value at 3
per Cent. | Value at 4
per Cent. | Value at 5
per Cent. | |----------------------|--------------------|-------------------------|-------------------------|-------------------------| | 60 | 60 | 6.737 | 6.351 | 6.001 | | | 65 | 6.043 | 5.730 | 5.444 | | | 70 | 5.081 | 4.858 | 4.653 | | 65 | 65 | 5·547 | 5·277 | 5.031 | | | 70 | 4·773 | 4·571 | 4.385 | | 70 | 70 | 4.270 | 4.104 | 3.952 | ### TABLE VIII. Shewing the Probability of the Duration of Life in London, deduced by Mr. Simpson from observations on the bills of mortality in London for 10 years, from 1728 to 1737. | Ages | Perfons
living. | Decr.
of Life. | Ages. | Persons
living. | of Life. | Ages. | l'erion-
living. | of Life. | |------------------|--|-------------------|-------|------------------------------|-------------|-------|---------------------|-----------| | 0 | 1000 | 320 | 27 | 321 | 6 | 54 | 135 | 6 | | I | 680 | 133 | 28 | 315 | 7 | 55 | 129 | 6 | | 2 | 547 | 51 | 29 | 308 | 7 | 56 | 123 | 6 | | 3 | 496 | | 30 | 301 | | 57 | 117 | 5 | | 4 | 469 | 17 | 31 | 294 | 7 7 7 | 58 | 112 | 5 | | | 452 | 12 | 32 | 287 | 7 | 59 | 107 | 5 | | 5 | 440 | 10 | 33 | 280 | 7 | 60 | 102 | 5 | | | 430 | | 34 | 273 | 7 | 61 | 97 | 5 | | 7 8 | 422 | | 35 | 266 | 7 | 62 | 92 | 5 | | 9 | 415 | | 36 | 259 | 7 | 63 | 87 | 5 | | 10 | 410 | | 37 | 252 | 7 | 64 | 82 | 5 | | 11 | 405 | | 38 | 245 | 7
8
8 | 65 | 77 | 5 | | 12 | 400 | 5 | 39 | 237 | 8 | 166 | 72 | 5 | | 13 | 395 | | 40 | 229 | 1 | 67 | 67 | 5 | | 14 | 390 | | 41 | 222 | 7 8 | 11 68 | 62 | 4 | | 15 | 385 | 5 | 42 | 214 | 8 | 69 | 58 | 4 | | 16 | 380 | 5 | 4-3 | 206 | 7 | 70 | 54 | 4 | | 17 | 375 | | 44 | 199 | 7 | 71 | 50 | 4 | | 18 | 370 | | 45 | 192 | 7 | 72 | 46 | 4 | | 19 | 365 | 5 | 46 | 185 | 7 | 73 | 42 | | | 20 | 360 | 5 | 47 | 178 | 7 | 74 | 39 | 3 | | 21 | 355 | | 48 | 171 | 6 | 75 | 36 | 3 | | 22 | 350 | | 4.9 | 165 | 6 | 76 | 33 | 3 | | 23 | 345 | 6 | 50 | 159 | 6 | 77 | 30 | 3 3 3 3 2 | | 24 | 339 | 6 | 51 | 153 | 6 | 78 | 27 | 2 | | 25 | 333 | 1 | 52 | 14.7 | 6 | 79 | 25 | | | 26 | 327 | | 53 | 141 | 6 | 11 | | | | | | | | | | | | | | Springer or do 1 | The state of s | - | - | STORES OF THE REAL PROPERTY. | 1 | | - | | #### TABLE IX. Shewing the Expectations of Life in London, according to the preceding Table. See Mr. Simpson's Select Exercises, p. 255. | Age. | Expectation. | Age. | Expectation. | Age. | Expectation. | |------|--------------|------|--------------|------|--------------| | I | 27.0 | 28 | 24.6 | 55 | 14.2 | | 2 | 32.0 | 29 | 24.1 | 56 | 13.8 | | 3 | 34.0 | 30 | 23.6 | 57 | 13.4 | | 4 | 35.6 | 31 | 23.1 | 58 | 13.1 | | 5 | 36.0 | 32 | 22.7 | 59 | 12.7 | | 6 | 36.0 | 33 | 22.3 | 60 | 12.4 | | 7 8 | 35.8 | 34 | 21.9 | 61 | 12.0 | | 8 | 35.6 | 35 | 21.5 | 62 | 11.6 | | 9 | 35.2 | 36 | 21.1 | 63 | 11.2 | | 10 | 34.8 | 37 | 20.7 | 64 | 10.8 | | II | 34.3 | 38 | 20.3 | 65 | 10.5 | | 12 | 33.7 | 39 | 19.9 | 66 | 10.1 | | 13 | 33.I | 40 | 19.6 | 67 | 9.8 | | 14 | 32.5 | 41 | 19.2 | 68 | 9.4 | | 15 | 31.9 | 42 | 18.8 | 69 | 9.1 | | 16 | 31.3 | 43 | 18.5 | 70 | 8.8 | | 17 | 30.7 | 44 | 18.1 | 71 | 8.4 | | 18 | 30.1 | 45 | 17.8 | 72 | 8.1 | | 19 | 29.5 | 46 | 17.4 | 73 | 7.8 | | 20 | 28.9 | 4.7 | 17.0 | 74 | 7.5 | | 2 I | 28.3 | 48 | 16.7 | 75 | 7.2 | | 22 | 27.7 | 49 | 16.3 | 76 | 6.3 | | 23 | 27.2 | 50 | 16.0 | 77 | 6.4 | | 24 | 26.6 | 51 | 15.6 | 78 | 6.0 | | 25 | 26.1 | 52 | 15.2 | 79 | 5.5 | | 26 | 25.6 | 53 | 149 | 80 | 5.0 | | 27 | 25.1 | 54 | 14.5 | | | ### TABLE X. Shewing the Value of an Annuity on One Life, according to the probabilities of life in London. See Mr. Simpson's Select Exercises, p. 260. | Age. Yrs. purchale at 3 per Cent. Yrs. purchale at 4 per Cent. Yrs. purchale at cert. | Age. Vrs. purchafe at 3 per Cent. | Yrs, purchafe
at 4 per Cent.
Yrs, purchafe
at 5 per Cent. | Age.
Yrs. purchafe
at 3 per Cent. | Yrs, purchase
at 4 per Cent.
Yrs, purchase
at 5 per Cent. | |--|---|--|---|--| | 6 18.8 16.2 14.
7 18.9 16.3 14.
8 19.0 16.4 14.
9 19.0 16.4 14.
10 19.0 16.4 14. | 2 32 14.6
3 33 14.4
3 34 14.2 | 12.9 11.4
12.7 11.3
12.6 11.2
12.4 11.0
12.3 10.9 | 56 10.1
57 9.6
58 9.6
59 9.4
60 9.2 | 8.9 8.2
8.7 8.1
8.6 8.0 | | 11 19.0 16.4 14.
12 18.9 16.3 14.
13 18.7 16.2 14.
14 18.5 16.0 14 | 36 13.6
37 13.7
38 13.5
.0 39 13.5 | 12.1 10.8
7 11.9 10.6
5 11.8 10.5
3 11.6 10.4 | 61 8.6
62 8.6
63 8.6
64 8. | 9 8.2 7.7
7 8.1 7.6
5 7.9 7.4
3 7.7 7.3 | | 15 18.3 15.8 13
16 18.1 15.6 13
17 17.9 15.4 13
18 17.6 15.2 13 | .7 41 I3.
.5 42 I2.
.4 43 I2. | 0 11.4 10.2
8 11.2 10.1
6 11.1 10.0 | 65 8.
66 7.
67 7.
68 7. | 7.5 7.1
8 7.3 6.9
6 7.1 6.7
4 6.9 6.6 | | 19 17.4 15.0 13
20 17.2 14.8 13
21 17.0 14.7 12
22 16.8 14.5 12 | 2.9 46 12.
2.7 47 11. | 9 10.5 9.5 | 7 7 6.
7 7 1 6
7 7 2 6 | 9 6.5 6.2
7 6.3 6.0
.5 6.1 5.8 | | 23 16.5 14.3 1.
24 16.3 14.1 12
25 16.1 14.0 12
26 15.9 13.8 12 | 2.4 49 11
2.3 50 11
2.1 51 11 | .6 10.2 9.
.4 10.1 9. | 3 74 5
75 5 | .2 5.9 5.6
.9 5.6 5.4
.6 5.4 5.2 | | 27 15.6 13.6 1
28 15.4 13.4 1
29 15.2 13.2 1
30 15.0 13.1 1 | 1.8 53 10 | 9.6 8. | 8 | | #### TABLE XI. Shewing the Value of an Annuity on the joint continuance of Two Lives, according to the probabilities of life in London. See Mr. Simpson's Selett Exercises, p. 266. | Age of the youngest. | Age of the eldeft. | Value at 3
per Cent. | Value at 4
per Cent. | Value at 5
per Cent. | Age of the youngeft. | Age of the eldeft. | Value at 3
per Cent, | Value at 4
per Cent. | Value at 5
per Cent. | |----------------------|--|--|---|---|----------------------|--|---|--|---| | 10 | 10
15
20
25
30
35
40 | 14.7
14.3
13.8
13.1
12.3
11.5 | 13.0
12.7
12.2
11.6
10.9
10.2
9.6 | 11.6
11.3
10.8
10.2
9.7
9.1
8.6 | 20 | 20
25
30
35
40
45
50 | 12.8
12.2
11.6
10.9
10.2
9.5
8.8 | 11.3
10.8
10.3
9.8
9.2
8.6
8.0 |
9.7
9.2
8.8
8.4
7.9
7.4 | | | 45
50
55
60
65
70
75 | 9.3
8.6
7.8
6.9
6.1
5.3 | 9.0
8.4
7.8
7.2
6.5
5.8
5.1 | 8.1
7.6
7.1
6.6
6.1
5.5
4.9 | | 55
60
65
70
75
25
30 | 8.1
7.4
6.7
6.0
5.2
11.8 | 7.5
6.9
6.3
5.7
5.0 | 6.9
6.4
5.9
5.4
4.8
9.4
9.0 | | 15 | 50
55 | | 8.8
8.2
7.6 | 7.5
7.0 | 25 | 35
40
45
50
55
60
65
70 | 10.7
10.0
9.4
8.7
8.0
7.3
6.6
5.9
5.1 | 9.6
9.1
8.5
7.9
7.4
6.8
6.2 | 8.6
8.2
7.8
7.3
6.8
6.3
5.8 | | | 60
65
70
75 | 6.8 | 6.4 | 6.0 | 30 | 30
35
40 | 10.8 | 9.2 | 8.3 | # TABLE XI. Continued. | Age of the youngeft. | Age of the eldeft. | Value at 3
per Cent. | Value at 4 | Value at 5
per Cent. | Age of the youngest, | Age of the eldeft. | Value at 3 | Value at 4 per Cent. | Value at 5 | |----------------------|------------------------|--------------------------|--------------------------|--------------------------|----------------------|----------------------------|--------------------------|--------------------------|---------------------------------| | 200 | 45
50
55
60 | 9.1
8.5
7.9 | 8.3
7.8
7.3 | 7.6
7.2
6.7
6.2 | 45 | 65
70
75 | 6.3
5.6
4.9 | 5.8
5.3
4.7 | 5 4
5.0
4·5 | | .30 | 65
7 0
75 | 7.2
6.5
5.8
5.1 | 6.7
6.1
5.5
4.9 | 5·7
5·2
4·7 | 50 | 50
55
60
65 | 7.6
7.2
6.7
6.2 | 6.8
6.5
6.1 | 6.2
6.0
5.7 | | | 35
40
45 | 9.9
9.4
8.9 | 8.8
8.5
8.1 | 8.0
7·7
7·4 | | 70
75 | 5.5
4.8
6.9 | 5.7
5.2
4.6 | 5·3
4·9
4·4 | | 35 | 50
55
60
65 | 8.3
7.7
7.1
6.4 | 7.6
7.1
6.5
6.0 | 7.0
6.6
6.1
5.6 | 55 | 55
60
65
70
75 | 6.5
6.0
5.4
4.7 | 5.9
5.6
5.1
4.5 | 5·7
5·5
5·2
4.8
4·3 | | | 70
75 | 5·7
5·0 | 5·4
4.8 | 5.1
4.6 | | 60 | 6.1 | 5.6 | 5.2 | | | 40
45
50 | 9.1
8.7
8.2 | 8.1
7.8
7.4 | 7·3
7·1
6.8 | 60 | 6 ₅
70
75 | 5·7
5·2
4.6 | 5·3
4·9
4·4 | 4.9
4.6
4.2 | | 40 | 55
60
65
70 | 7.6
7.0
6.4
5.7 | 6 9
6.4
5 9
5.4 | 6.0
5.5
5.1 | 65 | 65
70
75 | 5·4
4·9
4·4 | 5.0
4.6
4.2 | 4·7
4·4
4.0 | | | 75
45 | 5.0
8.3 | 7.4 | 6.7 | 70 | 70
75 | 4.6 | 4.4 | 4·2
3·9 | | 45 | 50
55
60 | 7·9
7·4
6.8 | 7.1
6.7
6.3 | 6.5
6.2
5.8 | 75 | 75 | 3.8 | 3.7 | 3.6 | ### TABLE XII. Shewing the Probabilities of Life in London, on the supposition, that all who die in London were born there. Formed from the Bills, for 10 years, from 1759 to 1768. See page 245. | , | | | | | | | | | | |---|--------------------|-------------------|----------|--------------------|-------------------|----------|--------------------|----------------------------|--| | Ages | Perfons
living. | Decr.
of Life. | Ages | Perfons
living. | Decr.
of Life. | Ages | Persons
living. | Decr.
of Life. | | | 0 | 1000 | 240 | 31 | 104 | 9 | 62 | 132 | 7 | | | I | 760 | 99 | 32 | 395 | 9 | 63 | 125 | 7 | | | 2 | 661 | 42 | 33 | 386 | 9 | 64 | 118 | 7 | | | 3 | 619 | 29 | 34 | 377 | 9 | 65 | 111 | 7 | | | 4 | 590 | 21 | 35 | 368 | 9 | 00 | 104 | | | | 5 | 569 | 11 | 36 | 359 | 9 | 67 | 97 | 7. 7 | | | 5
6
7
8 | 558 | 10 | 37 | 350 | 9 | 68 | 90 | 7 | | | 7 | 548 | 7 | 38 | 341 | 9 | 69 | 83 | 7 | | | 8 | 541 | 1 | 39 | 332 | 10 | 70 | 76 | 6 | | | 9 | 535 | 5 | 40 | 322 | 10 | 71 | 70 | 6 | | | 10 | 530 | 4 | 4 I | 312 | 10 | 72 | 64 | 6 | | | II | 526 | 4 | 42 | 302 | 10 | 73 | 58 | 5 | | | 12 | 522 | 4 | 43 | 292 | 10 | 74 | 53 | 5 | | | 13 | 518 | 3 | 44 | 282 | 10 | 75 | 48 | 5 5 | | | 14. | 515 | 3 | 15 | 272 | IO | 76 | 43 | 5 | | | 15 | 512 | 3 | 46 | 262 | 10 | 77 78 | 38
33 | 5 | | | 16 | 509 | 3 | 47 | 252 | 10 | 78. | 33 | 4 | | | 17 | 506 | 3 | 48 | 242 | 9 | 79 | 29 | 4 | | | 18 | 503 | 4 | 49 | 233 | 9 | 80 | 25 | 3 | | | 19 | 499 | 5 | 50 | 224 | 9 | SI | 22 | 3 | | | 20 | 494 | 7 8 | 51 | 215 | 9 | 82 | 19 | 3 | | | 2 I | 487 | | 52 | 206 | | 83 | 16 | 3 | | | 22 | 479 | 8 8 | 53 | 198 | 8 | 84 | 13 | 4
3
3
3
2
2 | | | 23 | 471 | 8 | 54 | 190 | 7 | 85 | 11 | | | | 24 | 463 | 8 | 55 | 183 | 7 | 86 | 9 | 2 | | | 25 | 455 | 8 | 56 | 176 | 7 | 87
88 | 7 | 2 | | | 26 | 447 | 8 | 57 | 169 | 7 | 80 | 5 | I | | | 27 | 439 | 1 | 58 | 162 | 7
8
8 | 89 | 4 | I | | | 1 | 431 | 9 | 59
60 | 155 | 8 | 90 | 3 | I | | | 29 | 422 | 9 | 61 | 147 | 7 | | | | | | 30 | 413 | 9 | 101 | 139 | / | | 1 | 1 | | ### TABLE XIII. Shewing the true Probabilities of Life in London till the Age of 19. See page 249. The numbers in the fecond column to be continued as in the last Table. #### TABLE XIV. Shewing the true Probabilities of Life in London for all Ages. Formed from the bills for 10 years, from 1759 to 1768. See page 251. | | Ages. | Persons
living. | Decr.
of Life. | Ages. | Persons
living. | Decr.
of Life. | Ages. | Persons
living. | Decr.
of Life. | Ì | |---|-------|--------------------|-------------------|----------|--------------------|-------------------|----------|--|-----------------------|---| | | 0 | 1518 | 486 | 31 | 404 | 9 | 62 | 132 | 7 | | | ı | 1 | 1032 | 200 | 32 | 395
386 | 9 | 63 | 125 | | l | | ı | 2 | 832 | 85 | 33 | 386 | . 9 | 64 | 118 | 7 | | | 1 | 3 | 747 | 59 | 34 | 377 | 9 | 65 | III | 7 | | | 1 | 4 | 688 | 42 | 35
36 | 368 | 9 | 66 | 104 | 7 | ĺ | | ı | 5 | 646 | 23 | 36 | 359 | 9 | 67
68 | 97 | 7 | | | ı | | 623 | 20 | 37
38 | 350 | 9 | 68 | 90 | 7 | | | | 7 8 | 603 | 14 | 38 | 341 | 9 | 69 | 83 | 7 | | | | | 589 | 12 | 39 | 332 | 10 | 70 | 76 | 6 | | | | 9 | 577 | 10 | 40 | 322 | 10 | 71 | 70 | 0 | | | | | 567 | 9 | 41 | 312 | 10 | 72 | 04 | 0 | | | | II | 558 | 9 8 | 42 | 302 | 10 | 73 | 50 | 5 | | | | 12 | 549 | | 43 | 29 2
282 | 10 | 74 | 53 | 5 | | | | 13 | 541 | 7 6 | 44 | 272 | 10 | 75
76 | 40 | 5 | | | | 14 | 534
528 | 6 | 45
46 | 262 | 10 | 77 | 28 | 5 | | | | 16 | 522 | 4 1 | 47 | 252 | 10 | 77
78 | 97
90
83
76
76
48
53
48
38
33 | 5 | | | | | 515 | 7 | 48 | 242 | 9 | 79 | 29 | 4 | | | | 17 | 508 | 7 7 7 | 49 | 233 | 9 | 80 | 25 | 777777666555544333322 | | | | 19 | 501 | 7 | 50 | 224 | 9 | 81 | 22 | 2 | | | | 20 | 494 | | 51 | 215 | 9 | 82 | 19 | 2 | | | | 21 | 487 | 7
8
8 | 52 | 206 | 9 | 83 | 16 | 3 | | | | 22 | 479 | 8 | 53 | 198 | 8 | 84 | 13 | 2 | | | | 23 | 471 | 8 | 54 | 183 | 7 | 85 | 11 | 2 | | | | 24 | 463 | 8 | 55 | 183 | 7 7 7 | 86 | 9 | 2 | | | | 25 | 455 | 8 | 56 | 176 | 7 | 87 | 7 | 2 | | | | 26 | 447 | 8 | 57 | 169 | 7 | 88 | 5 | 1 | | | | 27 | 439 | | 58 | 162 | 7
7
8
8 | 89 | 7
5
4
3 | 1 | | | | 28 | 431 | 9 | 59 | 155 | 8 | 90 | 3 | 1 | | | | 29 | 422 | 9 | 60 | 147 | | | | | | | | 30 | 413 | 9 | 61 | 139 | 7 | | | | | | | 4 | 1 | 1 | 1 | 1 | | 11 | 1 | J | ſ | ## OBSERVATIONS #### ON ### TABLES I. and II. HESE Tables may be met with in most of the books that treat of compound interest and annuities; but there has been, in this work, so much occasion for referring to them, that it was necessary to save the reader the trouble of turning to other books for them. The 2d, 3d, 4th, &c. numbers in the Second Table, are only the fums of the first 2, 3, 4, &c. numbers in the First Table. This Table, therefore, is the foundation of the Second; and, indeed, of all the common tables of compound interest; and, with the help of it, almost all the questions in compound interest may be easily answered. The following specimen of this may, I think, be of considerable use. QUESTION I. "To what fum or annuity will any given fum or annuity, now to be laid up for improvement, at a given rate of compound interest, increase, in a given number of years?" ANA Answer. Divide the given fum or annuity by the value of 11. payable at the end of the given number of years, and the quotient will be the answer. Example. Let the given sum be 50 l. and the given time 18 years. The rate of interest 4 per cent.—The present value, at 4 per cent. of 1l. payable at the end of 18 years is, by Table I. .4936; and 50 l. divided by this value, gives l. 101.296, or 101l. 5s. the sum to which 50 l. will increase in 18 years. In like manner; 2 l. per annum, the first payment of which is to be made a year hence, will increase (interest supposed the same) in 18 years, to an annuity of l. 4.05: for 2l. the given annuity, divided by .4936, gives l. 4.05, or 4l. 1s. QUESTION II. "To what fum will a given annuity amount, in confequence of being forborn and improved, at a given rate of compound interest, for a given number of years?" Answer. From the increased annuity, found by the last Question, subtract the given annuity; and multiply the remainder by the PERPETUITY, and the product will be the answer. Example. 21. per ann. improved at 4 per cent. compound interest, will, by the last Question, increase, in 18 years; to 1.4.05 per ann. 21. subtracted from 4.05, leaves 2.05, which, which, multiplied by 25, the perpetuity, gives 1.51.25, or 511.5s, the amount in 18 years. In the same manner it may be found, that 101. per ann. (interest being the same) will amount, in 41 years, to 9981. It should be remembered, that the PER-PETUITY is 33.33,-28.57,-25-20,-or 16.666, according as interest is reckoned at $3,-3\frac{1}{2},-4,-5$ or 6 per cent: And that the annuity meant in all these Questions is an annuity, the first payment of which is to be made at the end of a year. QUESTION III. "In what number of years will a given fum or annuity increase to another given fum or annuity, in consequence of being improved at a given rate of interest?" Answer. Divide
the original sum or annuity by the increased sum or annuity; and look for the quotient, or the number nearest to it, in Table I; and the number of years corresponding to it will be the answer. Example. Let the fum be 50%. The increased sum 1.101.29. The rate of interest, 4 per cent. The former sum divided by the latter gives .4936, which stands opposite in the Table to 18 years, or the time in which 50%. Will gain the required increase.—In like manner, it may be found, that 18 years is the time in which 2% per ann. will increase to 1.4.05 per ann. QUESTION QUESTION IV. "In what time will any given annuity amount to a given fum, in "consequence of being forborn and improved, at a given rate of compound interest?" Answer. Divide the given fum to which the annuity must amount by the Perpetu-ITY. Add the given annuity to the quotient; and by the quotient so increased, divide the given annuity; and this fecond quotient, found in Table I. will shew the answer. In the same manner it will appear, that the same annuity, if improved at 5 per cent. will amount to 1000 l. in 37 years. QUESTION V. "In what time will a "given principal be annihilated, by taking "out of it, at the end of a year, a given fum, and after that, the same sum annually, together with its growing interests?" Z. An- Answer. In the same time plainly in which an equal annuity would amount to the given principal. A person, therefore, posses'd of 1000/. capital, bearing interest at 4 per cent. would, by Question IV. reduce it to nothing in 41 years, by taking out of it 10/. the first year, and as much more every following year, as would be necessary, together with the interest of the remaining capital, to make his annual income constantly 50%. Remark. The sum to which a given annuity will amount in a given time, is the same with the value of an annuity for the given time, equal to the given annuity increased by the yearly interest of the amount. That is, 1000/. is the value of 50/. per ann. for 41 years, at 4 per cent: And the same sum is likewise the value of 60/. per annum, for 37 years, at 5 per cent. The reason is plain: 1000/. it has appeared, would, in consequence of being put out to these different rates of interest, be just sufficient to pay the annuities. I have been the more explicit in these rules, because they point out a very easy method of deducing and examining all I have said, in different parts of this work, and particularly in Chap. III. concerning the increase of money at interest.—I will just mention one instance. 400,000 l. per annum, applied in the manner supposed in Questions IV and V. would annihilate 55 millions, bearing interest at 5 per cent. in 42 years. In 1716, when the finking fund was established, the public debts were near this sum, and bore 5 per cent. interest. This fund then, had but 400,000 l. of it been inviolably applied to the annihilation of the public debts, would, in 1758, have discharged all the debts contracted before 1716.—And it may be further found very eafily, by the answer to Question IV. that had it been suffered to go on in its operation, and been applied, fince 1758, to the redemption of only 3 per cents at par, it would by this time have discharged 104 millions; and seven years hence, 140 millions. -- The affertion, therefore, in page 164, is strictly true. But the following proof of that affertion will, perhaps, be more clear and striking. Suppose an annuity of 400,000 l, beginning in 1716, to have been applied till 1730, to the annihilation of debts bearing interest at 5 per cent; from 1730 to 1743, to the annihilation of debts bearing interest at 4 per cent. and from 1748 to 1771, to the annihilation of debts bearing interest at 3 per cent. In the first of these periods the annuity would have increased to 800,000l.; in the second, to 1,600,000l.; in the last, to 3,200,000l.——In the present year, therefore, the nation Z 2 might might have been eased of above three millions per annum in taxes. And, at the same time, (supposing all the same measures taken in other respects) it would have enjoyed that very sinking fund it now has; and no detriment could have arisen to the public, from any applications of it to current expences. As I am now again on the national debt, I will beg leave to add the following proof of another observation on this subject, in page 140. The difbursements, on account of any loans, will be the same, whatever different interests they bear, supposing a provision made for discharging the principal, by applying to that purpose surplusses bearing to one another the same proportions with those interests. For Example. Let a million be borrowed at 3 per cent. and let a fund be charged with it which brings in 6s. per cent. per annum more than the interest; or 33,000l. instead of 30,000l. per annum. This surplus, applied in the manner I have explained, will annihilate the principal in 81 years, as may be gathered from Question V. At the end of this time, the disbursements on account of the loan will be 33,000l. multiplied by 81; that is, 2,673,000l. Let us again suppose a million borrowed at 6 per cent. and let a fund be charged with it producing a surplus of 12s. per cent. per annum. annum. Such a fund, besides paying the interest, will discharge the principal in 41 years; and the disbursements on account of the loan, will be 66,000 l. multiplied by 41; that is, 2,706,000 l. or very nearly the same with the disbursements on account of an equal loan at 3 per cent. It appears, therefore, agreeably to the obfervation to which I have referred, that were the public, in raising money, to adopt the plan I have proposed, it would be of little consequence what interest was given for money. The practicability of fuch a plan is felf-evident, for it cannot be less easy to apply the interest of a sum, to the payment of a debt, than the fum itself: and this plan requires no more.—One particular advantage attending it, already hinted, I will beg leave here to repeat. By keeping the focks steadily at or near par, that fluctuation in them would be in a great measure prevented, which now produces fo many evils; and which, with the aid of annual lotteries, will, I fear, in time, ruin all honest industry, and turn us into a nation of sharpers and gamblers. DIRECTIONS for finding the VA-LUES of Two JOINT LIVES of given Ages, by TABLE VII. F both the ages are given in the Table, the value wanted will be found immediately by inspection. If the ages are not given in the Table, it will be best to proceed in the following manner. Suppose the rate of interest 4 per cent. and the proposed ages 40 and 66.——It will appear, from inspecting the Table, that the value fought would be 6.556, were the age of the elder life 65; and 5.383, were it 70. Since, therefore, it is 66, the value must be the first of four arithmetical means between 6.556 and 5.383, or 6.322.—For the same reason, had the ages of the elder been 68, the value would have been the 3d arithmetical mean between 6.556 and 5.383, or 5.854. —In like manner, were the proposed ages 43 and 65, the value would be the 3d arithmetical mean between 6.556 (the value of two joint lives whose ages are 40 and 65) and 6.425, (the value of two joint lives whose ages are 45 and 65) or 6.478. Again, let the ages be 43 and 66. That is, let it be supposed, that neither of the proposed ages is given in the Table. The values corresponding to the ages $\begin{cases} 40 \\ 45 \end{cases}$ and $\begin{cases} 66 \\ 66 \end{cases}$, are $\begin{cases} 6.322 \\ 6.200 \end{cases}$. The The value, therefore, corresponding to the ages 43 and 66, must be the 3d mean between 6.322 and 6.200, or 6.250. N. B. The 1st, 2d, 3d, and 4th of four arithmetical means between two numbers are found by subtracting $\frac{1}{5}$, $\frac{2}{5}$, $\frac{3}{5}$, and $\frac{4}{5}$ of the difference between the two numbers, from the greatest of them. Thus. The difference between 6.556, and 5.383, is 1.173. One fifth of this difference is .234; which, fubtracted from 6.556, leaves 6.322; the first of 4 means between 6.556 and 5.383.—In like manner; the difference between 6.322 and 6.200 is .122. One fifth of this difference is .024; and, therefore, three-fifths of this difference is .072, which, subtracted from 6.322, leaves 6.250, the third arithmetical mean between 6.322 and 6.200. In order to avoid trouble, if the ages are nearly equal, a year or two may be added to the least, and as much subtracted from the greatest; and the value taken by inspection. But if one of them much exceeds the other, it will in general be sufficient to take the nearest number in the Table for the lesser. The mean between the values at 3 per cent. and 4 per cent. may be taken for the value at $3\frac{1}{2}$ per cent. without any error of consequence. And the like may be said of the values at $4\frac{1}{2}$ per cent. The values of the longest of two lives is found by subtracting the value of the joint lives lives from the *fum* of the values of the two *fingle* lives.—Thus, the values of two fingle lives, whose ages are 25 and 30, are by Table VI. (interest reckoned at 4 per cent.) 15.31 and 14.68. The sum of these two values is 29.99; the value of the joint lives is (by Table VII) 11.46; and this value; subtracted from 29.99, gives 18.53, or the value of an annuity on the longest of the two lives. The value of two joint lives being given, the value of three joint lives may be found by the following rule, taken from Mr. Simpson's Select Exercises, page 279. Let A be the youngest, and C the oldest of the three proposed lives. Take the value of the two joint lives B and C, and find the age of a *fingle* life D of the same value. Then find the value of the *joint* lives A and D, which will be the answer. Example. Let the three given ages be 25, 30, and 40, and let the rate of interest be 4 per cent. Then the value of the two oldest joint lives B and C, will (by Tab.VII.) be 10.428, answering, in Tab.VI. to a single life D of
54 years of age. And the value of the joint lives A and D, which is 8.917 year's purchase, will be the value sought. FINIS. Rules for Nota honofy Decemals hage 14 Note; a.