

SMITHSONIAN CONTRIBUTIONS TO KNOWLEDGE. 239

OBSERVATIONS

TERRESTRIAL MAGNETSII

AND ON THE

DEVIATIONS 0F THE COMPASSES

OF THE UNITED STATES IRON CLAD MONADNOCK DURING HER CRUISE FROM PHÍLADELPHIA TO SAN FRANCISCO, IN 1865 AND 1866.

BY
WM. HARKNESS, M.D.,
PROFESSOR OF MATHEMATICS, UNITED STATES NAVY.

INTRODUCTORY NOTE.

This paper was originally an official report presented to the Navy Department by Professor Harkness; but, as that department made no use of it, the National Academy of Sciences, in August, 1867, passed a resolution asking for the manuscript. This request was complied with; and, an abstract of the paper having been read to the A cademy in April, 1869, it was referred to a commission consisting of the President of the Academy, Professors J. H. C. Coffin, and F. Rogers, in accordance with whose recommendation it is now published by the Smithsonian Institution.

Joseph Henry,
Secretary S. I.

TABLE OF CONTENTS.

SECTION I.

INTRODUCTION

SECTION IV.

OBSERVATIONS ON TERRESTRIAL MAGNETISM.

SECTION V.

OBSERVATIONS ON THE MAGNETISM OF THE SHIP.

Description of the Monadnock 119
Positions of the compasses 120
Mode of swinging the ship 120
Corrections peculiar to the After Binnacle and After Ritchic Compasses 121
Officers who observed the compasses 122
Mode of measuring magnetic force on board ship 122
Mathematical theory of the deviations of the compass 123
Correction of observed deviations for constant errors 129
Observations for determining the deviations of the Admiralty Standard Compass 133
Observations for determining the deviations of the After Binnacle Compass 140
Observations for determining the deviations of the After Ritchie Compass 147
Observations for determining the deviations of the After Azimuth Compass 154
Observations for determining the deviations of the Forward Alidade Compass 160
Observations for determining the deviations of the Forward Binnacle Compass 167
Observations for determining the deviations of the Forward Ritchie Compass 174
Mode of computing the coefficients $A_{1}, B_{1}, C_{1}, D_{1}, E_{1}$. 181
Values of these coefficients for each compass at each station 182
Probable errors of the values of the coefficients $A_{1}, B_{1}, C_{1}, D_{1}, E_{1}$ 184
Computation of the constants $A_{1}, \frac{c}{\lambda}, \frac{P}{\lambda}, \frac{\Delta P}{\lambda}, \frac{f}{\lambda}, \frac{Q}{\lambda}$, and $\frac{\Delta Q}{\lambda}$, for each compass 185
Values of the coefficients $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{D}, \mathfrak{G}$, for each compass at each station 191
Table showing the values of the constants $A_{1}=\mathfrak{A}, \frac{c}{\lambda}, \frac{P}{\lambda}, \frac{\Delta P}{\lambda}, \frac{f}{\lambda}, \frac{Q}{\lambda}, \frac{\Delta Q}{\lambda}, \mathscr{D}$, and \mathfrak{F},for each compass193
PAGEComputation of the coefficients $\mathfrak{Y}, \mathfrak{B}, \mathfrak{C}, \mathfrak{B}, \mathcal{C}^{\circ}$, for cach compass at each station, from theconstants, $A_{1}, \frac{c}{\lambda}, \frac{P}{\lambda}, \frac{\Delta P}{\lambda}, \frac{f}{\lambda}, \frac{Q}{\lambda}, \frac{\Delta Q}{\lambda}, \mathfrak{D}$, and \mathbb{C}.193
Comparison of the coeffieients thus computed with those found directly from the observations at cach station 196
Resulting probable errors 198
Does the theory accurately represent the semi-circular deviation? 199
Tables showing the most important features of the deviations of each compass during the cruise 199
Hard and soft iron forees 201
Magnetie moment of magnets used for measuring horizontal force on board ship 202
Observations for absolute force at the Admiralty Standard Compass 205
Observations for absolute force at the After Azimuth Compass 206
Values of λ 207
Values of g, h, k, R and ΔR, for the Admiralty Standard and After Azimuth Compasses 207
Values of a, b, e, and d, for the Admiralty Standard and After Azimuth Compasses 209
General equations for the determination of the deviations of the A dmiralty Standard Compass 210
General equations for the determination of the deviations of the After Azimuth Compass 211
Variations of the hard iron foree, during the cruise, at the Admiralty Standard and After Azimuth Compasses 211
Computation of the coefficients $A_{1}, B_{1}, C_{1}, D_{1}, E_{1}$, for each compass, at places where the deviations were observed on less than thirty-two points 211
Recapitulation of results 219
Final conclusions 220

REPORT ON MAGNETIC OBSERVATIONS.

SECTION I.

INTRODUCTION.

On the fifth of October, 1865, I was ordered to the U. S. Iron-clad Monadnock ${ }^{1}$ for the purpose of making observations on the action of her compasses during the cruise which she was abont to undertake from Pliladelphia to San Francisco, by way of the Straits of Magellan. She was then fitting out at the Philadelphia Navy Yard, and the work on her was so far advanced that it was expected she would sail in about two weeks. As the department had not previously intimated its intention of assigning me to this duty, and as everything relating to the number and kind of observations to be made, and the instruments required, was left entirely to my own discretion, it will be seen that the time available for making plans and collecting the necessary apparatus was very limited.

The plan of observation ultimately adopted was that at every port in which we remained for more than twenty-four hours the following operations should be gone through with. 1st. The ship should be swung, and as her head pointed successively to each of the thirty-two true magnetic points, the reading of every compass on board should be recorded for each point. 2d. That at such of the compasses as were so situated as to render it possible, the horizontal force and inclination should be determined. 3d. The position of the dividing line between tlie north and south polarity should be traced on each turret. 4th. The magnetic declination, inclination, and horizontal force should be determined on shore. While at sea it was intended to observe the declination-and consequently the deviation-and horizontal force daily, by means of the standard compass; but this turned out to be impracticable, because the only place in the ship where it was possible to mount that instrument was on top of the after pilot-house; a situation

[^0]where no binnacle could be put, and where the compass was nearly on a level with the top of the smoke-stack. Thus, while at sea, the position occupied by it was almost constantly enveloped in smoke and gas, rendering it absolutely necessary, whenever we left port, to dismount the instrument in order to preserve it from injury.

Owing to the very short time at my disposal previous to sailing, there was great difficulty in providing proper instruments, but I succeeded in obtaining all that were absolutely necessary. The following is a list of them:

I Portable Declinometer and stand.
I Five-inch Altitude and Azimuth Instrument.
I Dip Circle, with two needles, each three and a half inches long.
I Pair of eight-inch Bar Magnets.
I Pair of eleven-inch Bar Magnets.
2 Admiralty Standard Compasses, with stands and deflectors.
r Burt's Solar Compass and stand.
I Prismatic Sextant of six inches radius.
I Mercurial Artificial Horizon.
I Pocket Chronometer, Fletcher, No. 906.
I Silver Comparing Watch.
2 Pocket Thermometers.
2 Pocket Compasses.
2 Magnetic Needles, not mounted, each 2.75 inches long, and 0.33 of an inch broad.
r Fifty feet Chesterman's Patent Tape Line.
I Case of Drawing Instruments.
I Gunter's Scale, two feet long.
The portable declinometer belonged to the U.S. Coast Survey, and was kindly lent by Prof. J. E. Hilgard.

The small unmounted magnetic needles were intended to be used for measuring the relative horizontal force on shore and at each of the compasses on board ship. For this purpose it was proposed to vibrate one of them on shore, and then taking it on board ship to the compass at which it was desired to measure the relative horizontal force, to remove the compass card from the centre-point, and putting the small needle in its place, vibrate it again. Unfortunately the small needles were not finished till just before we left Philadelphia, and there was no opportunity of trying them till after we were at sea, when, to my great regret, it was found that the jewels were so small that they would not fit on the centre-point of any compass on board, thus rendering them entirely useless. Under the circumstances, for horizontal force on board ship it was necessary to rely entirely upon measures made with the deflectors belonging to the Admiralty standard compasses-a method certainly not so convenient, and, owing to the constant swinging of the ship when at anchor, probably not so accurate as counting the vibrations of a small needle.

The observations on terrestrial magnetism, and for latitude, time, and true bearings, were all made by myself and recorded by Mr. Corrin F. Smith, who was captain's clerk on the Monadnock, and acted as my assistant when I was observing. My best thanks are due to him for the efficient manner in which he performed his duties, sometimes under circumstances of very considerable plysical discomfort.

The reductions and discussions in this report have been made by me, so that I am personally responsible, not only for the general plan of the work, but for every figure contained in it. All the results have been very carefully checked, and it is hoped no material error will be found in them; still, absolute accuracy is scarcely to be expected in any work involving so many figures, the more especially as much of it has been done during moments snatched from other and more pressing professional duties.

The observations naturally divide themselves into three classes: 1st. Those relating to astronomy. 2d. Those relating to terrestrial magnetism. 3d. Those relating to the magnetism of the ship. As that is the order in which they must necessarily be reduced, they will be so treated of in the subsequent sections of this report.

SECTION II.

DESCRIPTIONSOFSTATIONS.

Unless otherwise stated, the assumed positions of light-houses, forts, etc., have been taken from the English Admiralty Charts, or from the English Admiralty List of Lights, the latest editions obtainable in 1865 being employed. The longitudes are counted from the meridian of Greenwich.
The method used in testing a station for local attraction by means of fore and back sights with a compass, was as follows: The compass was set up at the station, and the bearing of a point distant one hundred yards, or more, was observed. Then the compass was transferred to that point, and the bearing of the station was observed. These two bearings should evidently differ from each other by 180°; if they did not, it was certain that local attraction existed at one or both of the points, and a new station was sought for. This process is almost certain to detect any strictly local magnetic attraction, but it will not suffice to demonstrate the existence of an abnormal state of the magnetic elements extending over a large territory.

Pimladelpita, Pa. The magnetic observations were made at a spot on the east bank of the Delaware river, about twenty feet from the water's edge. It is nearly southeast from the U.S. Navy Yard, from which it is distant about three-quarters of a mile. The soil is a dark-nearly black-earth, which appears to have been deposited by the river. The approximate position of the station was

$$
\begin{array}{lcl}
\text { Lat. } & 39^{\circ} & 55^{\prime} \mathrm{N} . \\
\text { Long. } & 5^{\mathrm{h}} & 0^{\mathrm{m}}
\end{array} \quad 32^{s} \mathrm{~W} .
$$

Gosport, Va. The magnetic observations were made on a white sandy beach, on the west bank of the Elizabeth river, about thirty feet from the water's edge. From the place where the instruments stood, the flagstaff in the U. S. Navy Yard bore due north by compass, and was distant about half a mile.

Assuming the position of the flagstaff to be lat. $36^{\circ} 49^{\prime} 32^{\prime \prime} \mathrm{N}$., long. $5^{\mathrm{n}} 5^{\mathrm{m}} 9^{3} .8 \mathrm{~W}$., as stated by the authorities at the Navy Yard, the position of the spot occupied by the instruments is approximately

$$
\begin{array}{lccl}
\text { Lat. } & 36^{\circ} & 49^{\prime \prime} & 0^{\prime \prime} \mathrm{N} . \\
\text { Long. } & 5^{\mathrm{b}} & 5^{\mathrm{m}} & 9^{4} .8 \mathrm{~W} .
\end{array}
$$

The ship was swung at the compass station in Hampton Roads, on November 1 st, 1865 , in the usual manner. Her position at the time was lat. $36^{\circ} 58^{\prime} \mathrm{N}$., long. $76^{\circ} 20^{\prime} \mathrm{W}$. Joint XII on the after turret was 14.4 inches to port.

St. Thomas, West Indies. The ship was swung in this harbor, on November 18th, 1865 , in the usual manner. Her position at the time was lat. $18^{\circ} 19^{\prime}$ N., long. $64^{\circ} 56^{\prime} \mathrm{W}$. Joint XII on the after turret was 14.4 inches to port.

The obscrvations on shore were made in Long Bay, at a spot about thirty feet from the water's cdge, on a gravelly beach, to the eastward of the town. From the place where the instruments stood the true bearing of Fort Cowell, at the entrance to the harbor, is $\mathrm{S} .34^{\circ} 50^{\prime} \mathrm{W}$., and it is distant about one mile.

Assuming the position of Fort Christian to be lat. $18^{\circ} 20^{\prime} 27^{\prime \prime}$ N., long. $4^{\mathrm{h}} 19^{\mathrm{m}}$ $42^{3} .7$ W., then, according to the English Admiralty Chart, the position of the spot where the instruments were set up is

$$
\begin{array}{lrll}
\text { Lat. } & 18^{\circ} & 20^{\prime} & 22^{\prime \prime} \mathrm{N} . \\
\text { Long. } & 4^{2} & 19^{\mathrm{ma}} & 40^{\prime} .6 \mathrm{~W} .
\end{array}
$$

Isle Royal, Salute Islands. An attempt was made to swing the ship here, on November 30 th, 1865 , in the usual manner, but it failed on account of the continual rain which shut off the view of the distant azimuth mark. The position of the ship at the time was lat. $5^{\circ} 17^{\prime}$ N., long. $52^{\circ} 33^{\prime}$ W. Joint XII on the after turret was 0.6 of an inch to starboard.

The magnetic and astronomical observations on shore were made on the southwest side of the island, at. a spot from which the corner made by the southeast and southwest faces of the government coal sheds bears N. $64^{\circ} \mathrm{W}$. (true), and is distant one hundred and thirty-two feet. The place was examined carefully for local attraction by taking fore and back sights with a compass, but none could be detected. The position occupied by the instruments is in

$$
\begin{array}{llll}
\text { Lat. } & 5^{\circ} & 17^{\prime} & 29^{\prime \prime} \mathrm{N} . \\
\text { Long. } & 3^{\mathrm{h}} & 30^{\mathrm{m}} & 11^{\mathrm{s}} .4 \mathrm{~W} .
\end{array}
$$

The latitude was determined from a single set of circummeridian altitudes of the sun observed by me, and the longitude was taken from the French chart.

Ceara, Brazil. An attempt was made to swing the ship here, on December 19th, 1865 , in the usual manner, but although a very favorable opportunity was chosen, she could only be made to turn through ten points. Her position at the time was lat. $3^{\circ} 44^{\prime}$ S., long. $38^{\circ} 34^{\prime}$ W. Joint XII on the after turret was 0.6 of an inch to starboard. The wind, current, and sea are so strong here that vessels at anchor in the roads always ride with their heads nearly in the same direction, never swinging more than about three points.

At this place there is no harbor whatever, merely an open roadstead. A heavy surf is constantly running on the beach, and as there are almost no facilitics for landing in small boats, getting the instruments on shore involved a good deal of trouble and some risk. However, I succeeded in landing them safely, and obtained a very good set of observations on the white sand beach at a spot about one hundred and fifty feet from the water's edge, and from which the true bearing of the southeast corner of the custom-house on the wharf is $\mathrm{N} .53^{\circ} 19^{\prime} \mathrm{W}$., and its distance two hundred fect. From the same spot the true bearing of

Point Macoripe Light-house is N. $75^{\circ} 38^{\prime}$ E. The position occupied by the instruments is in

Lat.	3°	43^{\prime}	$59^{\prime \prime} \mathrm{S}$.
Long.	2^{h}	34^{m}	$6^{\mathrm{B}} \mathrm{W}$.

The latitude was deduced from my own observations, and the longitude was taken from the list of geographical positions given in Raper's Navigation.

Pernambuco, Brazil. The ship was not swung in this port because there was not room to do it in the position where she took her coal, and as she only remained in the harbor twenty-four hours, there was not time to take up another position in order to swing.

The magnetic and astronomical observations on shore were made on the white sand beach, at a spot from which the true bearing of the salient angle of the southeast bastion of Fort Brum is N. $15^{\circ} 46^{\prime} \mathrm{W}$., and its distance four hundred and thirty fect.

Assuming the position of the light-house, near to Fort Picao, to be lat. $8^{\circ} 3^{\prime} 42^{\prime \prime}$ S., long. $2^{\mathrm{h}} 19^{\mathrm{m}} 26^{\mathrm{s}} .8 \mathrm{~W}$., as it is given in the English Admiralty List of Lights, edition of 1866, then, according to the English Admiralty Chart, the position occupied by the instruments is in

$$
\begin{array}{lccc}
\text { Lat. } & 8^{\circ} & 3^{\prime \prime \prime \prime} & 37^{\prime \prime} \mathrm{S} . \\
\text { Long. } & 2^{\text {h }} & 19^{\mathrm{m}} & 28^{s} .2 \mathrm{~W} .
\end{array}
$$

Bahia, Brazil. The ship was swung in this harbor, on December 30th, 1865, in the usual manner. Her position at the time was lat. $12^{\circ} 59^{\prime} \mathrm{S}$., long. $38^{\circ} 31^{\prime} \mathrm{W}$. Joint XII on the after turret was 0.6 of an inch to starboard.

The magnetic and astronomical observations of December 27 th were made at a spot, one hundred and fifty feet from the water's edge, situated in a cocoanut grove on the beach about half-way between Monserat Point and Fort Victoria. The soil is a coarse white sand. It was not possible to get any bearings which would define the exact position, but the above directions are sufficient to enable any one to find the place very nearly.

Assuming the position of Fort St. Antonio Light to be lat. $13^{\circ} 0^{\prime} 55^{\prime \prime}$ S., long. $2^{\mathrm{h}} 34^{\mathrm{m}} 6^{\mathrm{s}} .9 \mathrm{~W}$., then, according to the English Admiralty Chart, the position occupied by the instruments is in

$$
\begin{array}{llll}
\text { Lat. } & 12^{\circ} & 56^{\prime} & 55^{\prime \prime} \mathrm{S} \\
\text { Long. } & 2^{\mathrm{h}} & 34^{\mathrm{m}} & 0^{\mathrm{s}} .5 \mathrm{~W} .
\end{array}
$$

Rio Janeiro, Brazil. The ship was swung in this harbor, on January 10th, 1866, in the usual manner; but, owing to a strong wind which was blowing at the time, it was not possible to get her through more than seventeen points. Her position was lat. $22^{\circ} 54^{\prime}$ S., long. $43^{\circ} 9^{\prime} \mathrm{W}$. Joint XII on the after turret was 0.8 of an inch to port.

During the whole week we were at Rio there was not one clear day. Consequently it was extremely difficult to make astronomical observations, and it was only by patiently watching for the sun and seizing the opportunities when it was
momentarily visible through breaks in the clouds, that the few sights necessary in order to complete the magnetic observations were obtained.

With a single exception, all the magnetic and astronomical observations were made at a spot from which the true bearing of the entrance on the north face of Fort Caraguata (erroneously spelled Gravata on the English charts) is S. $70^{\circ} \mathrm{W}$., and its distance fifty-five feet. There were no guns in the fort at the time. The surrounding country is very hilly, the bare, coarse, granite rocks cropping out everywhere from the hill-sides, but in the more level places they are thinly covered with earth. Assuming the position of Fort.Villegagnon to be lat. $22^{\circ} 54^{\prime} 42^{\prime \prime}$ S., long. $2^{\mathrm{h}} 52^{\mathrm{m}} 36^{\mathrm{s}} .0$ W., then, according to the English Admiralty Chart, the position occupied by the instruments is in

$$
\begin{array}{lrll}
\text { Lat. } & 22^{\circ} & 54^{\prime} & 5^{\prime \prime} \mathrm{S} . \\
\text { Long. } & 2^{\mathrm{h}} & 52^{\mathrm{m}} & 30^{\mathrm{s}} .7
\end{array}
$$

The exception referred to above is some observations of the sun for time, made on January 9th. They were got on Rat Island, the spot where naval officers usually go to rate their chronometers when lying in this harbor. Assuming the position of Fort Villcgagnon as above, then, according to the English Admiralty Chart, the position of Rat Island is

Lat.	22°	53^{\prime}	$45^{\prime \prime} \mathrm{S}$.
Long.	2^{h}	52^{m}	$37^{\mathrm{s}} .9 \mathrm{~W}$.

Monte Video, Uruguay. The ship was swung in this harbor, on January 24th, 1866, in the usual manner. We first attempted to get her around about 1 P. M., but owing to the force of the wind and tide we only obtained ten points, viz., those from E. by S. to S.S. W. Just at sunset we tried it again, and succeeded in getting the remainder of the circle. It was nearly dark when we finished, but as the distant object used for an azimuth mark shone plainly against the sky, there was sufficient light to see pretty distinctly when it was in range with the sights of the compass.

The readings of part of the circle on the After Ritchie compass were lost, owing to the failure of daylight and delay in procuring a lantern. The officer who usually read the After Azimuth compass was on shore at the time, and the duty of making the observations at that instrument was assigned to another, but it turned out that he did not understand how to read an azimuth compass, and his observations were worthless.

While we were lying at Monte Video the tide was very irregular. Most of the time the ship only swung to it about 90°, but two or three times she swung 180°. At the time we swung her to obtain the deviation of the compasses her position was lat. $34^{\circ} 55^{\prime}$ S., long. $56^{\circ} 13^{\prime}$ W., and joint XII on the after turret was 4.5 inches to port.

The greater part of the magnetic observations on shore were made on January 18th, at a station on the ground occupied by 'Tomkinson's slaughtering establishment. The instruments were set up at a spot where there are four large umbu trees standing in a line. The exact position may be recovered by means of the following true bearings. The corner made by the south and west sides of the dwelling-house
bears N. $39^{\circ} \mathrm{E}$., and is distant about one hundred feet. The light-house on the Mount, on the west side of the harbor, bears N. $59^{\circ} 0^{\prime} \mathrm{W}$. The water's edge is distant from the station about four hundred feet. The soil is a thin stratum of very poor earth, covering a greenish-colored slaty rock, which crops out in many places. Assuming the position of the light-house on the Mount to be lat. $34^{\circ} 53^{\prime} 15^{\prime \prime}$ S., long. $3^{\mathrm{h}} 44^{\mathrm{m}} 59^{s} .0 \mathrm{~W}$., then, according to the English Admiralty Charts, the position occupied by the instruments is in

$$
\begin{array}{lrll}
\text { Lat. } & 34^{\circ} & 53^{\prime} & 39^{\prime \prime} \mathrm{S} . \\
\text { Long. } & 3^{\mathrm{h}} & 44^{\mathrm{m}} & 55^{\mathrm{s}} .8 \mathrm{~W} .
\end{array}
$$

As a check, some magnetic observations were made, on January 19th, at a station from which the true bearing of the light-house on the Mount is N. $89^{\circ} \mathbf{4 1 ^ { \prime }} \mathbf{W}$., and the true bearing of the light on the Cathedral is $\mathrm{S} .17^{\circ} 42^{\prime} \mathrm{W}$. Assuming the position of the light-house to be as stated above, and the light on the cathedral to be in lat. $34^{\circ} 54^{\prime} 20^{\prime \prime} \mathrm{S}$., long. $3^{\text {b }} 44^{\mathrm{m}} 50^{s} .0 \mathrm{~W}$., as given in the English Admiralty List of Lights in South America, edition of 1865, the geographical position of this station was

$$
\begin{array}{lrll}
\text { Lat. } & 34^{\circ} & 53^{\prime} & 16^{\prime \prime} \mathrm{S} . \\
\text { Long. } & 3^{\mathrm{h}} & 44^{\mathrm{m}} & 48^{\mathrm{s}} .3 \mathrm{~W} .
\end{array}
$$

It will be observed that the difference of longitude between the lights on the Mount and on the eathedral, as deduced from the Admiralty List cited above, cannot be made to agree with the positions given on the English Admiralty Chart.

On January 24th some observations for time were made on Rat Island. Assuming the position of the light-house on the Mount to be as stated above, then, according to the English Admiralty Chart, the position of the station on Rat Island was

Lat.	34°	53^{\prime}	$18^{\prime \prime} \mathrm{S}$.
Long.	3^{h}	44^{m}	$52^{\prime} .9 \mathrm{~W}$.

Sandy Point, Straits of Magellan. The ship was swung in this harbor, on February 10th, 1866, in the usual manner. Her position at the time was lat. 53° 11^{\prime} S., long. $70^{\circ} 55^{\prime} \mathrm{W}$. Joint XII on the after turret was 4.5 inches to port. While we were lying here the ship was perfectly free to swing to the tide, but she generally turned through an arc of only about ninety degrees, namely, from W.N.W. to N.N.E.

The observations on shore were made in the meadow, between the settlement and the beach, at a spot from which the true bearing of the flagstaff was N. $47^{\circ} 8^{\prime}$ W., and its distance about eight hundred feet. The soil is sandy, and there is no rock anywhere near. The place was examined for local attraction by taking fore and back sights with a compass, but nothing of the kind could be detected.

Assuming the position of the flagstaff to be lat. $53^{\circ} 10^{\prime} 15^{\prime \prime}$ S., long. $4^{\mathrm{h}} 43^{\mathrm{m}} 36^{\circ} .0$ W., as given on the English Admiralty Chart, edition of 1861, the position occupied by the instruments is in

$$
\begin{array}{lrll}
\text { Lat. } & 53^{\circ} & 10^{\prime} & 20^{\prime \prime} \mathrm{S} . \\
\text { Long. } & 4^{n} & 43^{m} & 35^{\circ} .3 \mathrm{~W} .
\end{array}
$$

Valparaiso, Chile. The ship was swung in this harbor, on April 4th, 1866, in the usual manner. Her position at the time was lat. $33^{\circ} 2^{\prime} \mathrm{S}$., long. $71^{\circ} 38^{\prime} \mathrm{W}$. Joint XII on the after turret was 4.25 inches to port. While we were lying at Valparaiso the ship was perfectly free to swing to the tide, and she turned in all directions.

The observations taken on shore March 2 d were made on the south end of the white sand beach at the Estero de Quilpue, at a spot about two hundred and fifty feet from the rocks. Assuming the position of Fort San Antonio to be lat. $33^{\circ} 1^{\prime}$ $53^{\prime \prime}$ S., long. $4^{\mathrm{h}} 46^{\mathrm{m}} 46^{\mathrm{s}} .0 \mathrm{~W}$. , then, according to the English Admiralty Chart, the position of this station was approximately

$$
\begin{array}{lrl}
\text { Lat. } & 33^{\circ} & 1^{\prime} .4 \mathrm{~S} . \\
\text { Long. } & 4^{\mathrm{h}} & 46^{\mathrm{m}} \\
31^{\mathrm{s}}
\end{array} \mathrm{~W} .
$$

The observations of March 19 th, and all taken subsequently to that date, were made at a spot distant about six hundred and fifty feet, nearly true north, from the most northern of the custom-houses. The instruments were set up, near to the watcr's edge, on the public road which here runs along under a high bank of rock. The true bearing of the flagstaff at Fort San Antonio, on the top of the hill, was S. $31^{\circ} 45^{\prime} \mathrm{W}$., and its estimated distance was seven hundred feet. Assuming the position of the fort to be as stated above, the position occupied by the instruments is in

$$
\begin{array}{lccc}
\text { Lat. } & 33^{\circ} & 1^{\prime} & 47^{\prime \prime} \mathrm{S} . \\
\text { Long. } & 4^{\mathrm{h}} & 46^{\mathrm{m}} & 45^{\mathrm{s}} .7 \mathrm{~W} .
\end{array}
$$

Both this station and that of March 2d were carefully tested for local attraction by taking fore and back sights with a compass, but none could be detected.

In adopting $4^{\mathrm{h}} 46^{\mathrm{m}} 46^{3} .0$ as the longitude of Fort San Antonio, I have followed Raper, but this value is doubtless too large. Capt. Jas. M. Gilliss, U. S. N., from a series of occultations and moon culminations, observed during the years 1850-51-52, determined the longitude of the Observatory on the hill of Santa Lucia, in Santiago, to be $4^{\mathrm{h}} 42^{\mathrm{m}} 33^{\mathrm{s}} .8$. Dr. Moesta, from subsequent observations up to the year 1862, corrected this value to $4^{\mathrm{h}} 42^{\mathrm{m}} 33^{9} .0$. Capt. Gilliss, by means of the electric telegraph, found the difference of lougitude between the Observatory at Santiago and Mr. Mouatt's Observatory at Valparaiso to be $3^{\mathrm{m}} 56^{\mathrm{s}} .5$. Hence, adopting Dr. Moesta's value of the longitude of Santiago, we have

$$
4^{\mathrm{h}} \quad 46^{\mathrm{m}} \quad 29^{\mathrm{s}} .5 \mathrm{~W}
$$

as the longitude of Mr. Mouatt's Observatory; but I have been unable to find any description of its position, and consequently cannot refer this longitude to Fort San Antonio.

Findlay, in his "Directory to the South Pacific Ocean," edition of 1863, gives for the longitude of Fort San Antonio $4^{\mathrm{h}} 46^{\mathrm{m}} 28^{\mathrm{s}} .8$, and quotes Dr. Moesta as the authority. The Connaissance des Temps, for the year 1868, on the same authoritygives $4^{\mathrm{h}} 46^{\mathrm{m}} 27^{\mathrm{s}} .5$ for the same position. Which of the two values is nearest correct I am unable to say.

Callao, Peru. The ship was swung in this harbor, on April 29th, 1866, in the usual manner. Her position at the time was lat. $12^{\circ} 3^{\prime}$ S., long. $77^{\circ} 14^{\prime} \mathrm{W}$. Joint

XII on the after turret was 5.5 inches to port. While we were lying at Callao the ship was perfectly free to swing to the tide, but the wind and cmrrent were so strong that she did not do so, but always lay with her head pointing in a southerly direction.

The observations taken on shore, April 26th, were made on the northeast side of San Lorenzo Island, about two and a half miles southeast of the light-house. The island is a mass of hills, rising to an elevation of more than a thousand fect, composed of loose friable rock which seems to be of voleanic origin, and which is constantly disintegrating into a fine yellow sand. The place selected for making the observations is at the foot of a gorge where there is a beach, about a quarter of a mile long, of the yellow sand mentioned above. On the beach stand a number of fishermen's huts, and a few steps back, at the foot of the gorge, stands a large, square, two-story house. The spot where the instruments stood is on the southeast end of the beach, a little beyond the fishermen's huts, and just above high-water mark. Assuming the position of the light-house to be lat. $12^{\circ} 4^{\prime \prime} 0^{\prime \prime}$ S., long. $5^{\text {h }}$ $9^{\mathrm{m}} 18^{3} .0 \mathrm{~W}$., the position occupied by the instruments is in

$$
\begin{array}{lrll}
\text { Lat. } & 12^{\circ} & 5^{\prime} & 14^{\prime \prime} \mathrm{S} . \\
\text { Long. } & 5^{\mathrm{h}} & 9^{\mathrm{m}} & 9^{*} .1 \mathrm{~W} .
\end{array}
$$

The place was carefully tested for local attraction by taking fore and back sights with a compass, but none could be detected.

Parta, Peru. We remained in this port only from $2^{\text {h }} 30^{\mathrm{m}}$ P. M. of May 6th, 1866 , till $6^{\text {h }}$ P. M. of May 7th, and there was neither time nor opportunity to swing the ship. However, a complete set of magnetic observations were made on shore at a station on the beach four-tenths of a mile northwest of the large iron building which stands just back from the mole, and is used by the government as a customhouse, etc. As nearly as could be determined from angles carefully measured, and plotted on the English Admiralty Chart, this station is identical with the one occupied by the officers of H. B. M. smrveying vessel "Beagle," in the year 1836 , when making their observations for determining the position of Payta. According to their determinations it is in

$$
\begin{aligned}
& \text { Lat. } 5^{\circ} \quad 5^{\prime} 36^{\prime \prime} \mathrm{S} \text {. } \\
& \text { Long. } 5^{\mathrm{h}} 24^{\mathrm{m}} 22^{3} .0 \mathrm{~W} \text {., }
\end{aligned}
$$

the longitude depending upon the position of the northeast bastion at Panama, New Granada, which is taken to be $5^{h} 18^{\mathrm{m}} 4^{\mathrm{s}} .6 \mathrm{~W}$.
'The instruments were set up, just above high-water mark, on the gray sand beach, about fifty feet back from which the land rises into bluffs, two hundred feet high, composed of a hard yellow earth, alternating with sedimentary rocks. The station was carefully examined for local attraction, by taking fore and back sights with a compass, but none could be detected.

Panama, Neo Granada. The ship was swung in this roadstead, on May 20th, 1866 , in the usual manner. Her position at the time was lat. $8^{\circ} 55^{\prime}$ N., long. 79° $30^{\prime} \mathrm{W}$. Joint XII on the after turret was 5.5 inches to port. While we were lying here the ship was swinging freely in all directions to the wind and tide.

The observations taken on shore, May 14th, were made on the northern side of Flamenco Island, to the westward of a small cocoanut grove, and northeast of the Naval Cemetery. The instruments were set up about ten feet north of the most western of the ruins which are to be found there. The island is rocky, but at this station the rocks are covered with earth. The spot was carefully tested for local attraction by taking fore and back sights with a compass, but none could be detected.

If we assume the position of the northeast bastion at Panama to be lat. $8^{\circ} 56^{\prime}$ $56^{\prime \prime}$ N., long. $5^{\mathrm{h}} 18^{\mathrm{m}} 4^{\mathrm{s} .6 \mathrm{~W} ., \text { as given by Capt. H. Kcllet, R. N., then, according }}$ to the English Admiralty Chart, the position occupied by the instruments is in

$$
\begin{array}{llll}
\text { Lat. } & 8^{\circ} & 54^{\prime} & 31^{\prime \prime} \\
\text { Long. } & 5^{\mathrm{h}} & 18^{\mathrm{m}} & 1^{\mathrm{s}} .8 \\
\mathrm{~W} .
\end{array}
$$

Acapulco, Mexico. The ship was swung in this harbor, on June 1st, 1866, in the usual manner. Her position at the time was lat. $16^{\circ} 50^{\prime} \mathrm{N}$., long. $99^{\circ} 52^{\prime} \mathrm{W}$. Joint XII on the after turret was 5.5 inches to port. During the three days we were lying at Acapulco the ship was swinging freely to the wind and tide.

At the extreme south end of St. Lucia Bay, in this harbor, are two cocoanut groves, the most western of the two containing the graves of a number of our naval officers. The western end of the eastern grove is the place where the observations taken on shore, on May 30 th, were made. The trees come almost close down to high-water mark, and the soil is a gray sand. The instruments were set up about forty fect from high-water mark, at a spot from which the true bearing of the gate of Fort St. Dicgo is N. $6^{\circ} 22^{\prime}$ E.

If we assume the position of this gate to be lat. $16^{\circ} 50^{\prime} 56^{\prime \prime} \mathrm{N}$., long. $6^{\text {b }} 39^{\mathrm{m}} 29^{\mathrm{s}} .0$ W., as given on the English Admiralty Chart, then, according to that chart, the position occupied by the instruments is in

$$
\begin{aligned}
& \text { Lat. } \quad 16^{\circ} 50^{\prime} \quad 3^{\prime \prime} \mathrm{N} . \\
& \text { Long. } \quad 6^{\mathrm{h}} 39^{\mathrm{m}} 29^{\mathrm{s}} .4 \mathrm{~W} .
\end{aligned}
$$

Magdalena Bay, Lover California. An attempt was made to swing the ship in this bay, on June 9 th, 1866 , in the usual manner, but owing to a very stiff breeze which was blowing at the time, she could only be turned through fourtcen points. Her position was lat. $24^{\circ} 38^{\circ}$ N., long. $112^{\circ} 6^{\prime} \mathrm{W}$. Joint XII on the after turret was 5.5 inches to port. During the three days that we lay in this bay the wind was so strong that the ship did not swing to the tide, but rode with her head constantly to the west.

As it is difficult to describe the land-marks here, the most convenient way of giving positions will be to refer them to the English Admiralty Chart, the position formerly occupied by Capt. Sir Edw. Belcher's observatory being taken to be lat. $24^{\circ} 38^{\prime} 18^{\prime \prime}$ N., long. $7^{\mathrm{h}} 28^{\mathrm{m}} 25^{\mathrm{s}} .4 \mathrm{~W}$., as given on the chart.

On Junc 8th a landing was effected at a spot on the beach, about a mile south of the position of Capt. Belcher's observatory, for the purpose of making a set of magnetic observations; but, after getting a time sight, it was found that there was a great deal of local attraction, nearly all the stones on the beach being magnetic, and consequently it was useless to attempt anything there. The approximate position of this spot is

```
Lat. }2\mp@subsup{4}{}{\circ}\quad3\mp@subsup{8}{}{\prime}\textrm{N}
Long. (7 }\mp@subsup{7}{}{\textrm{h}}\quad2\mp@subsup{8}{}{\textrm{m}}2\mp@subsup{4}{}{\textrm{s}}\textrm{W}
```

On June 9th, after going to the extreme northern end of the bay, and pulling a short distance up a creek, a place was found which, upon careful examination by taking fore and back sights with a compass, seemed to be entirely free from all local attraction. The land there is composed of fine white sand hillocks, which. are constantly being shifted by the wind, and are so loose that a man will sink halfway to his knees in walking over them. The only place where the surface was sufficiently solid to admit of the instruments being set up was below bighowater mark, where the sand was wet. A complete set of magnetic observationş were made there, which, however, were not as satisfactory as could lave been wished, owing to the magnets being disturbed by a stiff breeze which shook the instruments, and from which there was no shelter. The position of this station was

$$
\begin{array}{lrll}
\text { Lat. } & 24^{\circ} & 39^{\prime} & 36^{\prime \prime} \mathrm{N} \\
\text { Long. } & 7^{\mathrm{h}} & 28^{\mathrm{m}} & 26^{\mathrm{s}} .2 \mathrm{~W} .
\end{array}
$$

It was on the east side of the creek (on its left-hand bank), at a place where there ds a sharp bend in its course, and can easily be found by plotting the position, given above, on the chart.

San Difgo Bay, California. We were only in this harbor from 11 A. M. of June 15 th, 1866 , till 11 A. M. of June 16 th, and there was no time to swing the ship. However, during the afternoon of the 15 th a complete and very satisfactory set of magnetic observations were made on shore at a spot on the beach near the extreme southern end of the slightly rising ground at La Playa. 'The instruments were set up just above high-water mark, and nearly due east of the U.S. Coast Survey Astronomical Station. The true bearing of the light-house on Point Loma was $\mathrm{S} .3^{\circ} 56^{\prime} \mathrm{W}$., and its distance exactly two statute miles in a direct line. The spot was tested for local attraction by taking fore and back sights with a compass, but none could be detected.

The position of the station, according to the U.S. Coast Survey Chart, was

$$
\begin{array}{lrll}
\text { Lat.' } & 32^{\circ} & 41^{\prime} & 58^{\prime \prime} \mathrm{N} . \\
\text { Long. } & 7^{\mathrm{n}} & 48^{m} & 52^{s} .6 \mathrm{~W} .
\end{array}
$$

San Francisco, California. The ship was swung in this harbor, on June 23d, 1866 , in the usual manner. Her position at the time was lat. $37^{\circ} 48^{\prime} \mathrm{N}$., long. $122^{\circ} 22^{\prime}$ W. Joint XII on the after turret was 5.3 inches to port. While we were lying liere the ship was swinging freely to the wind and tide.

The observations taken on slore June 26 th were made on the sand beach in a cove on the east side of Yerba Buena Island, the instruments being set up just at ligh-water mark, and about one hundred and fifty feet north of a long pier which runs out over a mud flat. The place was tested for local attraction by taking fore and back sights with a compass, but none could be detected.

According to the U.S. Coast Survey Chart the position of this station was

$$
\begin{array}{llll}
\text { Lat. } & 37^{\circ} & 48^{\prime} & 46^{\prime \prime} \mathrm{N} . \\
\text { Long. } & 8^{\prime \prime} & 9^{\mathrm{m}} & 22^{\prime} .6 \mathrm{~W} .
\end{array}
$$

SECTION III.

ASTRONOMICAL OBSERVATIONS.

The observations contained in this section were all made on the sun, and are for the determination of latitude, local time, and true bearings. The instruments used were a prismatic sextant of six inches radius, by Pistor and Martins; a mercurial artificial horizon; and a pocket mean time chronometer, by Fletcher, marked number 906.

The index correction of the sextant was usually obtained by measuring the diameter of the sun, both on and off the arc. For determining the density of the atmosphere thermometers with Fahrenheit scales, and a mercurial barometer graduated to English inches, were employed.
'The refractions have been computed by means of Bessel's tables, as given in Loomis' "Practical Astronomy;" from which book the tabular parts of the reductions to the meridian have also been taken. The necessary fundamental data have been obtained from the American Nautical Almanac.

Observations of circummeridian altitudes of the sun for latitude were made in sets of twelve, so arranged as to eliminate both the sun's semi-diameter, and all errors depending on the roof of the artificial horizon.

Circummeridian Altitudes of the Sun for Latitude, observed at the south front of Fort Christian, St. Thomas, November 17 th, 1865.

Circummeridian Altitudes of the Sun for Latitude, observed at Isle Royal, Salute Islands, November 28th, 1865.

Observations for time were usually made in such a manner as to eliminate both the sun's semi-diameter and all errors which might be produced by the roof of the artificial horizon. For full details of the method see page 33 of the "Reports on Observations of the Total Eclipse of the Sun, August 7, 1869," published by the U. S. Naval Observatory, Washington.

The reduction of the observations for time has been effected by means of the following formulæ:

$$
\begin{gathered}
a=\frac{A+\omega}{2}-r+p \\
S=\frac{a+d+\phi}{2} \\
\sin \frac{1}{2} t=\sqrt{\sin (S-a) \cos S \sec \phi \operatorname{cosec} d} \\
d t=t+\tau-T
\end{gathered}
$$

$T=$ mean of observed chronometer times.
$A=$ mean of observed double altitudes.
$\omega=$ index correction.
$r=$ refraction.
$p=$ parallax .
$a=$ true geocentric altitude of sun's centre.
$d=$ sun's polar distance, measured from the elevated pole.
$\phi=$ latitude of place where observation is made.
$t=$ hour angle at the pole.
$\tau=$ equation of time.
$d t=$ correction of chronometer to reduce the reading of its face to local mean time.

Double Altitudes of the Sun, for Time, observed at the flagstaff in the Navy-yard at Portsmouth, Va., October 29th, 1865.

Ex. ther. 50°. At. ther. 92°.	Bar. 30.40 inches.
Refraction $=-125^{\prime \prime}$	Sun's declination- $13^{\circ} 35^{\prime \prime} \times 6^{\prime \prime}$
Parallax $=+8$	Latitude $+3^{6} 4932$
Mean of observed double altitudes	$50^{\circ} 7^{\prime} \quad 27^{\prime \prime}$
Local apparent time	$9^{\text {h }} \quad 6^{\text {m }} 40^{\circ} .8$
Equation of time	1610.
Local mean time	$8 \quad 50 \quad 30.2$
Mean of chronometer times	85511.
Chronometer fast of local mean time	4 41.1
Longitude west	9.8
Chronometer slow of Greenwich mean time	- 28.7

Double Altitudes of the Sun for Time, observed at the flagstaff in the Nazy-yard at Portsmouth, Va., October $29 t h, 1865$.

Ex. ther. 55°
Refraction $=-170^{\prime \prime} .1$
Parallax $=+8.0$
Mean of observed double altitudes
79
Bar. 30.3^{6} inches. Latitude $\quad+3^{6} \quad 49 \quad 3^{2}$.
$\cdots \quad, \quad \cdot 39^{\circ} 16^{\prime}-3$
At. ther. 79

Local apparent time .
lot
$3^{\mathrm{h}} 27^{\mathrm{m}} 5^{\mathrm{I}} \cdot 9$

Double Altitudes of the Sun for Time, observed at Fort Christian, St. Thomas, West Indies, November 13 th, 1865.

Ex. ther. 84°
Refraction $=-57^{\prime \prime} \cdot 7$
Parallax $=+6.2$

At. ther. $86^{\circ} \quad$ Bar. 30.12 inches. Sun's declination - $18^{\circ} \quad 5^{\prime} \quad 2^{\prime \prime} \cdot 5$ Latitude $\quad+18 \quad 20 \quad 27$.

Mean of observed double altitudes $86^{\circ} 26^{\prime} 25^{\prime \prime} .8$
Local apparent time $10^{\mathrm{h}} \mathrm{I}^{\mathrm{m}} 20^{8} .0$
Equation of time : - $15 \quad 3 \mathrm{3} .2$
Local mean time 94548 48.8

Mean of chronometer times 9 5.2
Chronometer slow of local mean time 4043.6
Longitude west 4 19 42.7
Chronometer slow of Greenwich mean time . . . 5 ○ ${ }^{26.3}$
Double Altitudes of the Sun for Time, observed at Isle Royal, Salute Islands, November 28th, 1865.

$\left.\begin{array}{rrr}109^{\circ} & 58^{\prime} & 20^{\prime \prime} \\ 110 & 9 & 50 \\ & 20 & 0 \\ 35 & 30 \\ & 45 & 50 \\ & 52 & 50 \\ 112 & 13 & 0 \\ & 30 & 0 \\ & 40 & 0 \\ & 50 & 0 \\ 113 & 0 & 0 \\ & 10 & 0\end{array}\right\} 2 \underline{ }$

Correction $=+16^{\prime} \quad 3 \mathrm{I}^{\prime \prime} .6$

Ex. ther. 93°
Refraction $=-36^{\prime \prime} \cdot 3$
Parallax $=+4.9$
At. ther. $85^{\circ} \quad$ Bar. 30.13 inches.

Mean of observed double altitudes
Sun's declination - $21^{\circ} 23^{\prime} \quad 30^{\prime \prime} \cdot 3$
Latitude $\quad+\begin{array}{lll} & 17 & 29 .\end{array}$
. $\mathrm{III}^{\circ} 35^{\prime} 26^{\prime \prime} .6$
Local apparent time $10^{\mathrm{h}} 33^{\mathrm{m}} 3 \mathrm{I}^{\mathrm{s}} .8$
Equation of time - II 43.8
Local mean time $10 \quad 2148.0$
Mean of chronometer times $8 \quad \mathbf{5}^{1} \quad 28.6$

Chronometer slow of local mean time. $\mathrm{I}^{\mathrm{h}} 30^{\mathrm{m}} 9^{8} \cdot 4$
Longitude west $3 \quad 30$ 11.4
Chronometer slow of Greenwich mean time . . . 5 ○ 30.8
Double Altitudes of the Sun for Time, observed at Ceara, Brazil, December 13 th, 1865 .

Ex. ther. 84°	At. ther. 82°	Bar. 30.05 inches.
Refraction $=-89^{\prime \prime} .5$	Sun's declination $-23^{\circ} \mathrm{I} 2^{\prime} 4^{\prime \prime} .0$	

Parallax $=+7.4$
Mean of observed double altitudes $62^{\circ} 18^{\prime} 0^{\prime \prime} .0$
Mean of chronometer times $\mathbf{I}^{\text {h }} 17^{m} 57^{\text {8. }} .8$
Equation of time - 5
Reducing this observation with latitude $=-3^{\circ} 43^{\prime} 15^{\prime \prime}$, we find the chronometer $2^{\mathrm{h}} 26^{\mathrm{m}} 29^{3} .6$ slow of local mean time. Reducing it with latitude $=-3^{\circ} 44^{\prime} 15^{\prime \prime}$, we find the chronometer $2^{\text {h }} 26^{\text {m }} 32^{3} .0$ slow of local inean time.

Double Altitudes of the Sun for Time, observed at Ceara, Brazil, December 14th, 1865.

Reducing this observation with latitude $=-3^{\circ} 43^{\prime} 15^{\prime \prime}$, we find the chronometer $2^{\mathrm{h}} 26^{\mathrm{m}} 33^{\mathrm{s}} .7$ slow of local mean time. Reducing it with latitude $=-3^{\circ} 44^{\prime} 15^{\prime \prime}$, we find the chronometer $2^{\mathrm{h}} 26^{\mathrm{m}} 30^{\mathrm{s}} .9$ slow of local mean time.

Double Altitudes of the Sun for Time, observed at Ceara, Brazil, December $14^{\text {th }}, 1865$.

Ex. ther. 86°
Refraction $=-45^{\prime \prime} .6$
Parallax $=+5.6$

At. ther. $83^{\circ} \quad$ Bar. 30.00 incles.
Sun's declination - $23^{\circ} 15^{\prime} 27^{\prime \prime} .4$
Mean of observed double altitudes $99^{\circ} 5^{\prime} 0^{\prime \prime} .0$

Equation of time
$4 \quad 53.7$

Reducing this observation with latitude $=-3^{\circ} 43^{\prime} 15^{\prime \prime}$, we find the chronometer $2^{\mathrm{h}} 26^{\mathrm{m}} 30^{\mathrm{s}} .7$ slow of local mean time. Reducing it with latitude $=-3^{\circ} 44^{\prime} 15^{\prime \prime}$, we find the chronometer $2^{\mathrm{h}} 26^{\mathrm{m}} 33^{\mathrm{s}} .1$ slow of local mean time.

In order to determine both the latitude of Ceara and the error of the chronometer from the three observations which have just been given, we proceed as follows:

Comparing the error obtained on the afternoon of December 13th, with that obtained on the afternoon of December 14th, we find that the chronometer was losing 1.17 seconds per day; and this rate is independent of any small change in the adopted value of the latitude.

By means of this rate, reducing all the observed chronometer errors to $2^{\mathrm{h}} 26^{\mathrm{m}}$ P. M. December 14th, and then plotting them according to Sumner's method, we get for the place of observation

$$
\text { Latitude } 3^{\circ} \quad 43^{\prime} 59^{\prime \prime} \mathrm{S} .
$$

and for the chronometer,
Chronometer slow of local mean time $2^{\mathrm{h}} 26^{\mathrm{m}} 3^{2^{8} \cdot 5}$
Longitude west 2346
Chronometer slow of Greenwich mean time 5 o 38.5
Double Allitudes of the Sun for Time, observed at Pernambuco, Brazil, December 23d, 1865.

Double Altitudes of the Sun for Time, observed at Bahia, Brazil, December 27th, 1865.

Ex. ther. 88°
Refraction $=-45^{\prime \prime} \cdot 9$
Parallax $=+5.7$

At. ther.

$$
\text { Sun's declination }-23^{\circ} 19^{\prime} 33^{\prime \prime} .8
$$

$$
\text { Latitude } \quad-12 \quad 56
$$

Mean of observed double altitudes : $98^{\circ} 40^{\prime} 0^{\prime \prime} .0$
Local apparent time $9^{\text {h }} 14^{\mathrm{m}} 22^{\mathrm{B}} \cdot 5$
Equation of time + I $\quad 27.3$
Local mean time 9 i5 49.8
Mean of chronometer times $\begin{aligned} & 6 \\ & 53 \\ & 43.0\end{aligned}$
Chronometer slow of local mean time 2220.8
Longitude west 2340.5
Chronometer slow of Greenwich mean time . . . $4 \quad 56 \quad 7 \cdot 3$
Double Altitudes of the Sun for Time, observed at the Light-house in Fort St. Antonio, Bahia, Brazil, December 29th, 1865.

Double Altitudes of the Sun for Time, observed at Rio Janeiro, Brazil, January 9 th, 1866.

Double Altitudes of the Sun for Time, observed at Rat Island, harbor of Rio Janeiro, January 9th, 1866.

Ex. ther. 75°
Refraction $=-39^{\prime \prime} .8$
Parallax $=+5.1$

At. ther. $77^{\circ} \quad$ Bar. 29.94 inches.
Sun's declination - $22^{\circ} \quad 5^{\prime} \quad 37^{\prime \prime} \cdot 3$ Latitude $\quad-22 \quad 53 \quad 45$.
. $108^{\circ} 20^{\prime} \quad 0^{\prime \prime} .0$ $\begin{array}{llll}9^{\mathrm{h}} & 25^{\mathrm{m}} & 0^{8} .7\end{array}$
$+\quad 726.0$
$9 \quad 32 \quad 26.7$
$\begin{array}{lll}7 & 28 & 53.9\end{array}$

- $2 \quad 3 \quad 32.8$
$\begin{array}{llllllllll}\text { Longitude west . } \\ \text { Chhronometer slow of Greenwich mean time }\end{array} \quad . \quad . \quad \begin{array}{llll}2 & 52 & 37.9 \\ 4 & 56 & 10.7\end{array}$

Double Altitudes of the Sun for Time, observed at Monte Video, Uruguay, January 18 th, 1866.

$\left.\begin{array}{lll}45^{\circ} & 50^{\prime} & 0^{\prime \prime} \\ 40 & 0 \\ 30 & 0 \\ 10 & 0 \\ 45 & 50 & 0 \\ 40 & 0 \\ 30 & 0 \\ 10 & 0\end{array}\right\} 2 \odot$

Ex. ther. 76°	At. ther.	79°	Bar.	02	inches.
Refraction $=-{ }^{1} 0^{\prime \prime} .2$		Sun's declination			$55^{\prime \prime} \cdot 2$
Parallax $=+8.0$		Latitude	34		39
Mean of observed double	ltitudes				$2^{\prime} 30^{\prime \prime \prime} .0$
Local apparent time			$5^{\text {b }}$		$3^{\text {ma }} 5^{\text {ma }}$. 2
Equation of time					5 5.4
Local mean time			- 5	13	35.6
Mean of chronometer tin			- 4		229.6
Chronometer slow of loc	mean tim		- I	II	27.0
Longitude west				44	455.8
Chronometer slow of Gr	nwich mea	time	. 4	56	622.8

Double Altitudes of the Sun for Time, observed on Rat Island, harbor of Monte Video, Uruguay, January 24th, 1866.

Ex. ther. 74°
At. ther.

Bar.
Sun's declination - $19^{\circ} \quad 6^{\prime} \quad 33^{\prime \prime} .8$ $\begin{array}{llll}\text { Latitude } & -34 & 53 & 18\end{array}$

Parallax $=+6.5$
Mean of observed double altitudes $82^{\circ} 10^{\prime} 0^{\prime \prime} .0$
Local apparent time $3^{\mathrm{h}} 30^{\mathrm{mm}} 5^{8} \cdot 7$
Equation of time+ $12 \quad 29.2$
Local mean time 34234.9
Mean of chronometer times 28318.4
Chronometer slow of local mean time I ir 26.5
Longitude west 344522.9
Chronometer slow of Greenwich mean time . . . 45^{56} 19.4
Double Altitudes of the Sun, for Time, observed at Sandy Point, in the Straits of Magellan, February 7 th, 1866.

Local mean time	$16^{\mathrm{m}} 27^{\text {s }} \cdot 7$
Mean of chronometer times	$\begin{array}{lll}3 & 39.6\end{array}$
Chronometer slow of local mean time	1248.1
Longitude west	$43 \quad 35 \cdot 3$
Chronometer slow of Greenwich mean time	$\begin{array}{ll}56 & 23.4\end{array}$

Double Altitudes of the Sun for Time, observed near Valparaiso, Chile, March 2d, 1866.

Ex. ther. 67°
Refraction $=-92^{\prime \prime} .4$
Parallax $=+7.4$
Mean of observed double altitudes
Local apparent time
At. ther.

Bar.
Sun's declination - $7^{\circ} \quad \mathrm{I}^{\prime} \quad 53^{\prime \prime}$
Latitude
. $3^{\text {h }} 49^{\mathrm{m}} 44^{\mathrm{s}} \cdot 3$
Equation of time $+\quad 12 \quad 17.9$
Local mean time 4 2 2.2
Mean of chronometer times $35^{2} \quad 15.8$
Chronometer slow of local mean time o $94^{46.4}$
Longitude west $4 \quad 46$ 3I
Chronometer slow of Greenwich mean time . . . $4 \quad 5^{6} \quad$ 17.4
Double Altitudes of the Sun for Time, observed in Valparaiso, Chile, March 29th, 1866.

Ex. ther. 71°
Refraction $=-75^{\prime \prime}$. 1
Parallax $=+6.9$
At. ther. 69°
Bar. 30.23 inches.

Mean of observed double altitudes

Sun's declination $+3^{\circ} 31^{\prime} 38^{\prime \prime}$
Latitude - 33 I 47

Local apparent time . .
Equation of time + 447.0
Local mean time 2848 39.0
Mean of chronometer times $2 \quad 39 \quad \mathbf{1 2 . 2}$
Chronometer slow of local mean time. $0 \quad 9 \quad 26.8$
Longitude west $4 \quad 46 \quad 45.7$
Chronometer slow of Greenwich mean time . . . $4 \quad \begin{array}{lllllll}6 & 12.5\end{array}$
Double Altitudes of the Sun for Time, observed in Valparaiso, Chile, April 7 th, 1866.
$9^{\text {h }} \quad 33^{6^{m}} \quad 26^{4} \cdot 5$
$\begin{array}{ll}37 & 16.5\end{array}$
$38 \quad 9$
$\begin{array}{ll}40 & 1.5\end{array}$
$40 \quad 53$
$41 \quad 44.5$

Ex. ther. 67°
Refraction $=-69^{\prime \prime} .8$
Parallax $=+6.7$
$\begin{array}{lllll}\text { At. ther. } 65^{\circ} & \text { Bar. } & 30.17 & \text { inches. } \\ \text { Sun's declination } & +6^{\circ} & 53^{\prime} & 28^{\prime \prime} .6 \\ \text { Latitude } & -33 & 1 & 47\end{array}$
Mean of observed double altitudes

- $77^{\circ} 45^{\prime} \quad 0^{\prime \prime} .0$

Local apparent time $9^{\text {h }} 46^{m} 19^{\text {m }} .6$
Equation of time + 28.9
Local mean time $9 \quad 48$ 28.5
Mean of chronometer times $9 \quad 39$. 5.2
Chronometer slow of local mean time $0 \quad 9 \quad 23.3$
Longitude west 44^{6} 45.7
Chronometer slow of Greenwich mean time . . . $4 \quad 5^{6} \quad 9.0$
Double Altitudes of the Sun for Time, observed in Valparaiso, Chile, April jth, 1866.

Ex. ther. 67°
Refraction $=-67^{\prime \prime} \cdot 3$
Parallax $=+6.6$

At. ther. 65° Bar. 30.17 inches.
Sun's declination - $6^{\circ} 53^{\prime} 35^{\prime \prime} .4$
Latitude - 33 I 47

Mean of observed double altitudes $79^{\circ} 45^{\prime} \quad 0^{\prime \prime} .0$
Local apparent time $9^{\text {h }} 53^{\mathrm{m}} 14^{\text {s.0 }}$
Equation of time + 28.8
Local mean time $9 \quad 55 \quad 22.8$
Mean of chronometer times $9 \quad 45 \quad 58.9$
Chronometer slow of local mean time o $9 \quad 23.9$
Longitude west • $4 \quad 46$ 45.7
Chronometer slow of Greenwich mean time . . . $4 \quad 5^{6} \quad 9.6$
Double Altitudes of the Sun for Time, observed in Valparaiso, Chile, April 14 th, 1866.

$3^{\text {h }} 50^{\text {m }} 20^{\text {b }} \cdot 5$	$\begin{array}{ll}36^{\circ} & 30^{\prime} \\ 15\end{array}$	$0^{\prime \prime}$)	Index correction.	
51.5		$0{ }^{-}$-	359°. $10^{\prime} 40^{\prime \prime}$	$0^{\circ} 14^{\prime} 50^{\prime \prime}$
5139	-	0	40	45
537	3630	-	45	50
5346	15	- $\}^{2}$		
$54 \quad 24.5$	0	0	359 10 41. 6	- 1448.3
			Correction	$=+17^{\prime \prime} 15^{\prime \prime} .0$

Ex. ther. 65°
Refraction $=-170^{\prime \prime} \cdot 3$
Parallax $=+8.1$ At. ther. 66°

Bar. 30.13 inches.

Mean of observed double altitudes $3^{6^{\circ}} 15^{\prime} 0^{\prime \prime}$. o
Sun's declination $+9^{\circ} 33^{\prime} 33^{\prime \prime} .6$

Local apparent time $4^{\text {h }} 3^{\mathrm{mm}} 13^{8 .} .2$
Equation of time + 0 II. 6
Local mean time 4 3 24.8
Mean of chronometer times $3 \quad 5^{2} \quad 23.1$
Chronometer slow of local mean time o in 1.7
Longitude west $4 \quad 46$ 45.7
Chronometer slow of Greenwich mean time . . . $4 \quad 57 \quad 47.4$

Double Altitudes of the Sun for Time, observed on the Island of San Lorenso, near Callao, Perne, April 26th, 1866.

Double Altitudes of the Sun for Time, observed at Payta, Peru, May 7 th, 1866.
$8^{\mathrm{h}} 40^{\mathrm{m}} 44^{\mathrm{m}} \cdot 5$

$40^{\text {m }}$	$44^{\prime \prime} .5$			$0^{\prime \prime}$)	
41	17.5		15		$2 \bar{\square}$
41	51		30	-)
43	1.5		-	-	
43	34.5		15	\bigcirc	2 -
44	7.5		30	\bigcirc	

At. ther. 80°

Index correction.

Bar. 30.06 inches.
Sun's declination $+16^{\circ} 50^{\prime} 46^{\prime \prime}$
Latitude $\quad-\quad \begin{array}{llll} & 56\end{array}$

Mean of observed double altitudes $62^{\circ} 15^{\prime} 0^{\prime \prime} .0$
Local apparent time $8^{\text {b }} 19^{m} 22^{8} \cdot 3$
Equation of time- 3 38.1
Local mean time 8 15 44.2
Mean of chronometer times 842 26.1
Chronometer fast of local mean time ○ 264 r .9
Longitude west 524220
Chronometer slow of Greenwich mcan time . . . 45740.1
Double Altitudes of the Sun for Time, observed on Flamenco Island, Panama Bay, May 14th, 1866.

Ex. ther. 85°
Refraction $=-49^{\prime \prime} \cdot 5$
Parallax $=$ - 5.7

At. iner.
Sun's declination $+18^{\circ} 39^{\prime} 49^{\prime \prime}$
Latitude $\quad+8543^{1}$

Double Altitudes of the Sun for Time, observed at Acapulco, Mexico, May 30 th, 1866.

Double Altitudes of the Sun for Time, observed in Magdalena Bay, Lower California, June 8th, 1866.

Ex. ther. 69°
Refraction $=-46^{\prime \prime} .4$
Parallax $=+5.4$

At. ther. 70°
Bar. 30.02 inches.
Sun's declination $+22^{\circ} 53^{\prime} 42^{\prime \prime}$
Latitude $\quad+24 \quad 3^{8}$

4 February, 1872.

Double Altitudes of the Sun for Time, observed at La Playa, San Diego Bay, California, June 15th, 1866.

$5^{\text {b }} 16^{\text {m }} 44^{\text {a }}$.	112°	30^{\prime}	$\circ^{\prime \prime}$)		Index correction.					
$517{ }^{16}$		15	-	$2 \odot$	359		$3{ }^{\prime \prime}$		${ }^{\circ} 14^{\prime}$	$50^{\prime \prime}$
$17 \quad 51.5$		-	-				35			3°
19 10	112	30	-				20			5°
$19{ }^{19}$		15	\bigcirc	${ }^{2} \odot$						
$20 \quad 21.5$		-	\bigcirc		359		$\begin{array}{r} 28.3 \\ \text { eection } \end{array}$		$16^{\prime} 5$	

Double Altitudes of the Sun for Time, observed on Yerba Buena Island, San Francisco Bay, California, June 26th, 1866.

At. ther.
Bar.

The chronometer used in making this observation was T. S. and J. D. Negus' No. 1287.
True bearings were determined by measuring with a sextant the angle between the sun's limb and some well-defined terrestrial object, the time being noted at the instant the angle was observed. If the terrestrial object was much elevated above the horizon its angular altitude was also measured. Knowing the latitude of the place of observation, the local time, and the sun's declination, the sun's zenith distance and true bearing were calculated. Then, having the zenith distance of the sun, the zenith distance of the terrestrial object, and the measured angle between the sun and the terrestrial object, the horizontal angle between them
was computed, and applying it to the sun's true bearing the true bearing of the terrestrial object at once became known.

The formulæ employed were as follows. Let
$T=$ mean of observed chronometer times.
$d t=$ correction of chronometer to reduce the reading of its face to local mean time.
$\tau=$ equation of time.
$t=$ sun's hour angle, or the apparent time.
$\Omega=$ mean of observed angular distances between the sun's limb and the terrestrial object.
$\omega=$ index correction of sextant.
$s=$ sun's semi-diameter.
$a=$ apparent zenith distance of sun's centre.
$b=$ zenith distance of terrestrial object.
$c=$ true angular distance between the sun's centre and the terrestrial object.
$C=$ horizontal angle included between the sun's centre and the terrestrial object.
$\phi=$ latitude of the place of observation.
$A=$ azimuth, or true bearing, of sun's centre.
$\zeta=$ true zenith distance of sun's centre.
$\delta=$ sun's declination.
$r=$ refraction due to apparent altitude of sun's limb.
$B=$ true bearing of terrestrial object.
Then we have

$$
\begin{aligned}
& t=T+d t+\tau \\
& \tan M=\frac{\tan \delta}{\cos t} \\
& \tan A=\frac{\tan t \cos M}{\sin (\phi-M)} \\
& \tan \zeta=\frac{\tan (\phi-M)}{\cos A}
\end{aligned}
$$

where A is to be taken greater or less than 180°, according as t is greater or less than 180°.

$$
\begin{aligned}
& a=\zeta-r \\
& c=\Omega+\omega+8
\end{aligned}
$$

If b is exactly 90°, we have

$$
\cos C=\frac{\cos c}{\sin a}
$$

But if b is either greater or less than 90°, we have

$$
\begin{gathered}
S=\frac{a+b+c}{2} \\
\tan \frac{1}{2} C=\sqrt{\frac{\sin (S-a) \sin (S-b)}{\sin S \sin (S-c)}}
\end{gathered}
$$

Finally

$$
B=A \pm C
$$

In a few instances true bearings were obtained by observing the sun when its apparent elevation above the horizon was equal to its diameter. In that case
and then

$$
\begin{gathered}
\zeta=90^{\circ} \\
\cos A=\frac{\sin \delta}{\cos \phi}
\end{gathered}
$$

in which the azimuth will be north or south of the prime vertical according as the sun's declination is north or south.

Observations of the Sun, made October 31st, 1865, to determine the true bearing of the object used as an azimuth mark in swinging the ship at Hampton Roads, Va.

True bearing of sun S. $28^{\circ} 2 \mathbf{I}^{\prime} \mathrm{E}$.
\angle Seminary to sun $138 \quad 26$
\angle Seminary to Rip Raps 6244
\angle Rip Raps to tree 11437
True bearing of tree S. 10 34 W .
Observations of the Sun, made November 18th, 1865, to determine the true bearing of the object used as an azimuth mark in swinging the ship at St. Thomas, West Indies.

Observations of the Sun, made Novem.er $28 t h, 1865$, to determine the true bearing of the object used as an azimuth mark in swinging the ship at Isle Royal, Salute Islands.

Observations of the Sun, made December 12 th, 1865 , to determine the true bearing of the object used as an azimuth mark in swinging the ship at Ceara; Brazil.

Observations of the Sun, made December 29th, 1865; to determine the true bearing of the object used as an azimuth mark in swinging the ship at Bahia, Brazil.
When the sun's true zenith distance was about 90°, the angle between its nearest limb and a conspicuous tree was measured and found to be $31^{\circ} 38^{\prime}$, the tree being to the right of the sun.

$$
\begin{aligned}
& \Phi=-12^{\circ} 59^{\prime} \quad \delta=-23^{\circ} 12^{\prime} \\
& \text { True bearing of sun } \\
& \text { S. } 66^{\circ} \quad 9^{\prime} \mathrm{W} \text {. } \\
& \angle \text { Sun to tree } \\
& \text { Sun's semi-diameter } \\
& 16 \\
& \text { True bearing of tree } \\
& \text { N. } 8 \mathrm{I} \quad 57 \mathrm{~W} .
\end{aligned}
$$

Observations of the Sun, made January $7^{\text {th, }} \mathbf{1 8 6 6 , ~ t o ~ d e t e r m i n e ~ t h e ~ t r u e ~ b e a r i n g ~ o f ~ t h e ~ o b j e c t ~ u s e d ~ a s ~}$ an azimuth mark in swinging the ship at Rio Janeiro, Brazil.

		$5 \mathrm{I}^{\mathrm{m}}$ 53 55	30^{8} 45 0		112°	$\begin{gathered} 2 \\ 7 \\ 12 \end{gathered}$
T	5	53	25	Ω	112	15
Chronometer slow	2	3	32		+	17
τ	-		36			
Apparent time	7	50	21	c	112	32
t		62°	25^{\prime}	ζ	57	9
δ	-	22	22	r		1
ϕ	-	22	54	a	57 8	
M	-	41	3^{8}	${ }^{\text {b }}$	8516	
¢-M		18	44		12045	
True bearing of sun				8	. $77^{\circ} 2 \mathrm{I}^{\prime}, \mathrm{E}$.	
\angle Sun to Corcovado .					12045	
\angle Corcovado to building					83	
True bearing of building		-		.	N. 5328 W.	

Observations of the Sun, made January $23 d$, 1866, to determine the true bearing of the object used as an azimuth mark in swinging the ship at Monte Video, Uruguay.
Near sunset, when the true zenith distance of the sun was about 90°, the angle between its nearest limb and the Light-house on the Mount, on the west side of the harbor, was measured. The uncorrected reading of the sextant was $69^{\circ} 40^{\prime}$, and the sun was to the left of the Light-house.

Ω	69°	40^{\prime}	ϕ	-34°	53^{\prime}
ω	+	17	δ	-19	19
s	+	16			
	+	70	13		

Observations of the Sun, made February 9 th, 1866, to determine the true bearing of the object used as an azimuth mark in swinging the ship at Sandy Point, in the Straits of Magellan.

	$\begin{array}{lll} 9^{h} & 13^{m} & 57^{8} \\ & 15 & 19 \\ & 16 & 40 \end{array}$			Ω	$\begin{array}{ll} 119^{\circ} & 15^{\prime} \\ & 3^{2} \\ & 42 \end{array}$		
7 Chronometer slow							
	-	12	48				
			30		+	16	
Apparent time	9	13	37	${ }^{\circ}$	120	3	
t	$\begin{array}{lll} & 41^{\circ} & 36^{\prime} \\ \text { 二 } & 14 & 37 \\ \text { 二 } & 53 & 11 \\ & 19 & 14 \\ & 33 & 57 \end{array}$			$\zeta$$r$$a$$b$$C$			
8				50	32 1		
${ }^{\dagger}{ }^{\text {- }}$					${ }_{31}^{1}$		
				89	34		
¢-M				130	54		
True bearing of sun							
\angle Mount St. Felip							54
True bearing of Mount St. Felipe						S. 7	14 W .

Observations of the Sun, made April 2d, 1866, to determine the true bearing of the object used as an azimuth mark in swinging the ship at Valparaiso, Chile.

T Chronometer slow		10 11 12	58 20 10	Ω	$\begin{array}{rr} 110^{\circ} & 20^{\prime} \\ 35 \\ & 4^{2} \end{array}$	
	5	II	12		110	
	\bigcirc	9	25	ω	$+$	17
		3	32	s		-
Apparent time	5	17	5	c	110	49
t		79°	16^{\prime}	$\stackrel{\zeta}{r}$	83	52
		5	7			8
$\stackrel{+}{M}$	-	33	2	a	83	44
$\stackrel{M}{M-M}$	$+$	25 58	40	b nearly	90	
T- True bearing of			42	C	110	56
\angle Sun to Point .					I 71	${ }_{56}{ }^{\prime} \mathrm{W}$
True bearing of		-			N. 31	7 E .

Observations of the Sun, made April 27th, 1866, to determine the true bearing of the object used as an azimuth mark in swinging the ship at Callao, Peru.

Observations of the Sun, made May 13 th, 1866 , to determine the true bearing of the object used as an azimuth mark in swinging the ship in Panama Bay, New Granada.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& \& 17
18 \& \& \multirow[b]{2}{*}{Ω} \& \multicolumn{2}{|l|}{86

5
56^{\prime}
58}

\hline T \& 6 \& 17 \& 39 \& \& 86 \& 57

\hline Chronometer fast \& 0 \& \& 17 \& ω \& $+$ \& 17

\hline τ \& $+$ \& 3 \& 53 \& s \& \& -

\hline Apparent time(P.M.) \& 6 \& 1 \& 15 \& c \& 87 \& 14

\hline t \& \multicolumn{3}{|l|}{- $\quad 90^{\circ} 19^{\prime}$} \& ζ \& 86 \& 54

\hline δ \& \& 18 \& 31 \& r \& - \& 14

\hline 中 \& \& 8 \& 55 \& a \& 86 \& 40

\hline M \& \& 89 \& 3 \& 1 nearly \& 90 \&

\hline ¢- M \& - \& 80 \& 8 \& C \& 86 \& 14

\hline
\end{tabular}

Observations to determine the true bearing of the object used as an azimuth mark in swinging the ship in the harbor of Acapulco, Mexico.
When determining the magnetic declination with the portable declinometer, on May 30th, 1866, an observation of the sun with the theodolite gave N. $6^{\circ} 22^{\prime}$ E. as the true bearing of the gate of Fort St. Diego from the shore station. We then have

Observations of the Sun, made June 9th, 1866, to determine the true bearing of the object used as an azimuth mark in swinging the ship in Magdalena Bay, Lower California.
Owing to a combination of unfortunate circumstances, the only available method of determining a true bearing was by observing with the solar compass, set up on the quarterdeck of the ship. In that way I found
True bearing of Peak
S. $46^{\circ} 30^{\prime}$ E.
which can only be considered as a near approximation to the truth.
Observations of the Sun, made June 23d, 1866, to determine the true bearing of the object used as an azimuth mark in swinging the ship at San Francisco, California.

The following triangulation was made for the purpose of determining the geographical position of some points in and about Ceara, Brazil. The angles were observed on December 14th, 15th, and 16th, 1865. Those between the Powhattan,

Monadnock, and Custom-house were not measured simultaneously, and as the two ships were riding at anchor with a considerable amount of chain out, it is probable that they shifted their positions after the angle at the Powhattan was measured, and before the angles at the Monadnock and Custom-house were taken. This will account for the excess of the sum of the three angles over 180°.

In the accompanying sketch the different points are designated as follows:
$A=$ Point Macoripie Light-house.
$B=$ Northeast corner of Custom-house on the wharf.
$C=$ U. S. Iron-clad Monadnock.
$D=\mathrm{U}$. S. Sloop of War Powhattan.
$E=$ most southern of the two steeples on the Church of the Conception.
$F=$ most southern of the two steeples on St. Joseph's Church.
$M=$ Magnetic and Astronomical Station of December 13th and 14th.

The observed angles were as follows:

Angles at B.
D to $A=55^{\circ} 12^{\prime}$
D to $C=84$
F to $C=73$
F to $C=125$
E to $F=52$
A to $E=95$

Angles at C. D to $A=36^{\circ} 19^{\prime}$ D to $B=71 \quad 14$
B to $F=42 \quad 28$ B to $E=15 \quad 40$

Angles at D. A to $B=101^{\circ} 35^{\prime}$ B to $C=25 \quad 13$ A to $C=12649$

From these we obtain the following corrected

Angles at B.	
A to $E=95^{\circ}$	11^{\prime}
E to $F=5^{2}$	9
F to $C=73$	14
C to $D=84$	5
D to $A=55$	21
$B \quad$ March, 1872.	

Angles at C.
D to $B=70^{\circ} \quad 58$
Angles at D. A tc $B=101^{\circ} 36^{\prime}$ B to $C=24 \quad 57$

The Powhattan fired a salute, and, from the mean of seven observations, the interval between the flash and report, noted at B, was 6.55 seconds. External thermometer 86°. Hence the distance from B to D was 7526 feet.

Distance from B to $M=200$ feet.
Azimuth from M to $A=\mathrm{N} .75^{\circ} 38^{\prime} \mathrm{E}$.
Angle $A M B=128^{\circ} 57^{\prime}$.
From these data we find the distances between the several points as follows:

$A D=15814$ feet.	$C E=4355$ feet.	$B E=1443$ feet.
$A C=21491$	6	$B C=3358$
$A B=18826$	6	$B F=2516$
$A M=18702$	6	

Angle $B A M=0^{\circ} 28^{\prime} \quad \mid$ Angle $A M B=128^{\circ} 57^{\prime} \quad \mid \quad$ Angle $A B M=50^{\circ} 35^{\prime}$
$\begin{aligned} \text { Azimuth from } M \text { to } A=\mathrm{N} .75^{\circ} & 38^{\prime} \mathrm{E} .\end{aligned} \quad$ Azimuth from B to $E=\mathrm{S} . \quad 8^{\circ} \quad 43^{\prime} \mathrm{E}$.
Assuming the position of M to be
we get finally

$$
\begin{array}{lllll}
\text { Lat. } & 3^{\circ} & 43^{\prime} & 59^{\prime \prime} .0 & \mathrm{~S} \\
\text { Long. } & 2^{\mathrm{h}} & 34^{\mathrm{m}} & 6^{\mathrm{s}} .00 & \mathrm{~W} .
\end{array}
$$

Station.	Latitude.			Longitude.		
B	3°	43^{\prime}	$57^{\prime \prime} .8 \mathrm{~S}$	$2^{\text {h }}$	$34^{\text {m }}$	$6^{8} .11$
E	3	44	12.0	2		5.97
F	3		15.9			7.25
A	3	43	13.3	2	33	54.10

For convenience of reference the results of the observations contained in this section, together with the chronometer comparisons made during the cruise, are here collected and appended.

Observed Latitudes.

Name of station.		Latitude.		
Fort Christian, St. Thomas		18°	20^{\prime}	$\mathrm{o}^{\prime \prime} \mathrm{N}$.
Isle Royal, Salute Islands		5		$29 \mathrm{~N} .$
Magnetic Station, Ceara, Brazil	. .	3	43	59 S.
Custom-house, " ".		3	43	58 S.
Church of the Conception, Ceara, Brazil		3		12 S .
St. Joseph's Church, " "		3		16 S .
Point Macoripie Light-house, "	- .			13 S .

Errors of Pocket Chronometer, Fletcher, No. 906.

This chronometer (Fletcher, 906) was habitually carried in my pocket. It was accidentally allowed to run down on the night of December 17th and 18th, 1865, and after remaining stopped twelve hours was wound and compared. Some time between 5^{h} P. M. of April 13th and 3^{h} P. M. of April 14th, 1866, it stopped for about $1^{\mathrm{m}} 37^{\mathrm{s}}$, but started again of itself. On June 20th, 1866, when its face showed $6^{\mathrm{h}} 45^{\mathrm{m}}$ P. M. it stopped without any apparent cause, and, as it would not rum again, it became useless.

In observing at San Francisco the box chronometer T. S. and J. D. Negus, No. 1287 was used. The observations on June 26 th, 1866 , showed it to be
$8^{\mathrm{h}} \cdot 13^{\mathrm{m}} \quad 8^{\mathrm{s}} .2$ fast of local mean time;
and
$0^{1} \quad 3^{\mathrm{m}} \quad 45^{\mathrm{s}} .6$ fast of Greenwich mean time.

Chronometer Comparisons.

Date.			Fletcher, 906.			$\begin{gathered} \text { T. S. and J. D. Negus, } \\ 1317 . \end{gathered}$			T. S. and J. D. Negus, 1287.		
October	29, 1865	-	$7^{\text {b }}$		$56^{8} .8$ A. M.	$12^{\text {b }}$	$44^{\text {m }}$	$0^{3} .0$			
October	29, "	. . .	2		56.0 P. M.	7	33	0.0			
October	3 T ,	. . .	12	8	48.2 "	5	13	0.0			
November	3, "	- •	4		33.0 "	9	22	0.0			
November	13, "		8	21	4.8 A. M.	1	26	0.0			
November	13, "	. . .				1	28	0.0		$16^{\text {m }}$	$23^{3} \cdot 5$
November 1	17,	- .	12	18	46.0	5	24	0.0			
November 28	28, "	- .	6		10.8	12	1	0.0			
November	28, "	- .	6		56.8 "				I I	50	0.0
November	28, "	. . .	2		9.8 P . M.	7		0.0			
December	14,	. . .	6		23.0 A. M.	11		0.0			
December	14, "	- .	6	30	19.8 "				II	25	0.0
December	14, '6'	. . .	12		22.5 P. M.	5	50	0.0			
December	16, "	. . .	8		16.0 A. M.	2	I	0.0			
December	16,	. . .	8		15.2 " ${ }^{\text {c }}$				1	51	0.0
December	18,	. . .	9		42.8 P. M.	2	47	0.0			
December	23, "	. . .	8		28.0 A. M.	1	10	0.0			
December	23, "	. . .	8		32.5 "				12	59	0.0
December	29,	. . .	6	22	59.2		26	0.0			
December	29, "	. . .	6	24	9.0 "	-			11	15	0.0
January	9, 1866	- .	6		21.8 "			0.0			
January	9 9, "	- . .	6		43.2 "				11	3^{8}	
January	24,	. . .	12		4.0 P. M.	5		0.0			
January	24,	. . .	12		50.8 "				5	34	
April	14, "	. . .	4		$24.4{ }^{\prime \prime}$			0.0			
May	7, "	- - .	11		26.4 A. M.	4		0.0			
May	14,	. . .	12		49.6 P. M.	5		0.0			
May	30,	. . .	11		13.2 A. M.	5	12	0.0			
June	8, "	. . .	6		24.8 P. M.			0.0			
June	15, "	. . .	12		46.8 A. M.			0.0			
June	26, "	- . .					34	0.0 P.M.	6	17	

Table showing the True Bearings of the various objects used as azimuth marks in stoinging the U. S. Iron-clad Monadnock during her cruise from Philadelphia to San Francisco in 1865 and 1866.

SECTION IV.

OBSERVATIONS ON TERRESTRIAL MAGNETISM.

The observations of magnetic declination and force were made by means of the same instruments-a portable declinometer, and a transit theodolite.

The Declinometer, kindly lent by the U.S. Coast Survey, and marked D. 22, was originally constructed by Jones, of London, but had been altered in many particulars so as to make it more convenient for field use. It was provided with two collimator magnets which were hollow cylinders of steel, each 0.70 of an inch in external diameter, and 0.58 of an inch in internal diameter. One of them, marked C. 32, was 3.92 inches long; while the other, marked S. 8, was 3.25 inches long. Each of these magnets carried in its south end a lens; and in its north end, at the solar focus of the lens just mentioned, a piece of plane glass on which was cut a scale of equal parts containing one hundred and seventy divisions, each division being equal to 0.00255 of an inch. Both magnets were provided witl light sliding brass rings which were intended to be used for keeping them horizontal under great changes of magnetic declination, but the slight play which the magnets had in the stirrup was found quite sufficient for that purpose, and the rings were never employed. The same suspension was used during the whole of the observations. It consisted originally of six parallel fibres of unspun silk, each about nine inches long; but at Callao one of the fibres was accidentally broken, and after that the remaining five were used. The torsion circle, which formed part of the suspension apparatus, was 0.88 of an inch in diameter, divided to every three degrees, and read by means of a vernier to single degrees.

The Transit Theodolite, which perhaps might be more correctly called an altitude and azimuth instrument, was provided with a horizontal and a vertical circle, each five inches in diameter, and each reading by means of two opposite verniers to thirty seconds. The telescope had an object-glass with a. clear aperture of one inch, and a focal length of about nine inches. It was provided with two eye-pieces; a direct one magnifying about twenty times, which was employed in almost all the observations; and a diagonal one of lower power, which was sometimes used for objects near the zenith. Both these eye-pieces had colored glasses for observing the sun. The system of wires in the focus of the object-glass was a simple rectangular cross, one wire being vertical, the other horizontal.

For the sake of convenience in setting up the instruments, and also for the perfect security which it affords against changes in the angular value of the divisions of the magnet scales depending upon changes in the distance between them and
the telescope, a special table was provided, which was mounted upon a tripod stand, and which carried both the declinometer and theodolite in a fixed and invariable position relatively to each other-the object-glass of the telescope being about three inches from the south end of the magnet.

Pocket Chronometer, Fletcher, No. 906, was always used to note time. Its errors have been already given in detail in Section III.

General remarks on the method of using the instruments. When observations were to be made the tripod stand was set up, and the table, having been placed upon it, was approximately levelled by the cye, and set, by means of a pocket compass, so that its longest side was nearly in the magnetic meridian, the end destined to carry the declinometer being to the north. In packing the declinometer for travelling, the glass suspension tube was never unscrewed from the magnet-box, but when the collimator magnet was lifted from the stirrup a cylinder of wood of the same size was at once substituted, and two pieces of wood, provided for the purpose, were slipped in, one from each side of the magnet-box. These pieces of wood completely filled up the box, and at the same time held the wooden cylinder securely between them in such a manner that it could neither break the suspension fibres, nor allow them to twist in the slightest. With this packing, after the suspension fibres were once thoroughly freed from torsion, they remained so, and it was not necessary to examine them whenever the instrument was used, but only at considerable intervals, thus saving much time in the field. The brass carriers for the deflecting magnet having been screwed, one on each end of the wooden bar, and the bar in its turn having been screwed to the bottom of the magnet-box, the declinometer was placed upon the table in such a position that its three levelling screws fitted into the cavities provided for their reception. Then the packing blocks were taken out of the magnet-box, and the wooden cylinder laving been removed from the stirrup, the collimator magnet was put in its place, and left free to assume its proper direction. The magnet-lox was next levelled. For that purpose the suspension fibres were used as a plumb line, and the box was assumed to be level when they were scen to hang in the axis of the suspension tube throughout its whole length. Finally, the magnet was made to hang nearly level by moving it a little endwise in its stirrup; its scale was placed horizontal, with the figures erect; it was shaded from the direct rays of the sun by covering the glass top of the box; the mirror was screwed to the back of the box and adjusted so as to illuminate the magnet scale properly; and a thermometer was placed inside the magnet-box. The theodolite was next placed in its proper position on the other end of the table and levelled; particular care being taken that the horizontal axis of the telescope was truly level-especially if the altitude of the sun was considerable. The telescope having been turned towards the magnet and adjusted so as to obtain distinct vision of its scale, the horizontal circle was firmly clamped in such a position that the vertical wire in the field of the telescope cut the magnet seale as nearly as possible at the magnetic axis. By means of the vertical circle the optical axis of the telescope was then placed truly level, and the final adjustment of the magnet for horizontality was
made by shifting it endwise in its stirrup till the scale was seen in the field of the telescope parallel to, and just in contact with, the horizontal wire.

When making my first observations considerable difficulty was experienced in getting a proper illumination of the magnet scale, but after some practice the following perfectly satisfactory plan was adopted. In cloudy weather the light of a white cloud was reflected into the magnet by means of the concave mirror. In elear weather the light of the blue sky, reflected from the mirror, was not sufficient, and it would not do to throw in the direct rays of the sun because of their heating power, which would certainly have led to the use of a wrong value of the magnetic moment; because the magnet would have been at a higher temperature than that shown by the thermometer in the box. Under these circumstances, in place of the mirror a piece of perfectly white paper was substituted, and the direct rays of the sun being allowed to fall upon it, it afforded a beautiful illumination of the magnet scale.

The copper damper, provided to slip into the magnet-box for the purpose of quieting the vibrations of the magnet, was never used. As the observations were all made in the open air, and as there was frequently wind enough to canse the instruments to vibrate perceptibly, the magnets seldom or never came to a state of absolute rest. Hence, the plan adopted to secure accurate readings of the scales was as follows. A screw-driver was slightly magnetized, and by approaching its south pole for an instant towards the south pole of the vibrating magnet, at a time when the magnet was moving towards the screw-driver, the arc of vibration was readily made quite small. Then, placing my cye to the telescope, I read off, and called out to my assistant, the scale reading at the instant the magnet attained the limit of its excursion in the eastern direction, and again when it attained the limit in a western direction-in other words, the greatest and least readings of the scale were noted. Five complete vibrations were generally observed, thus giving three eastern and three western readings, and the mean of the six was assumed to be the reading which would have been obtained if the magnet had been in a state of perfect rest.

In order to preserve the magnetism of the collimator magnets, they were always packed in a vertical position, with that pole downwards which would be lowest in a dipping needle.

Absolute Declinations were observed as follows: The instruments having been set up and adjusted in the manner already explained, the long magnet, C. 32, was suspended in the magnet-box, the telescope pointed nearly to its magnetic axis, and the horizontal cirele of the theodolite firmly clamped. Then, 1°. The horizontal limb of the theodolite was read. 2°. The magnet scale being erect-that is, the figures upon it being right side up-the point upon it cut by the vertical wire of the telescope was observed. 3°. The telescope remaining as before, the magnet scale was inverted-that is, the magnet was turned on its axis through 180°, so that the figures upon its scale were seen inverted-and the point upon it cut by the vertical wire was again noted. 4°. The horizontal circle was unclamped, a colored glass placed upon the eye-piece, and the telescope pointed so that its vertical wire was just in advance of the first limb of the sun. Then the horizontal circle
was clamped, the time of transit of the sun's first limb over the vertical wire noted, and the horizontal circle read. 5°. If the observation was made at a time of day when the sun's azimuth was changing tolcrably rapidly, the telescope was not moved in azimuth at all, but, the reading of the horizontal circle remaining precisely as before, the sun was followed by moving the telescope in altitude, and the trausit of its second limb was waited for and noted. If, however, the sun was changing its altitude much more rapidly than its azimuth then, in order to save time, the horizontal circle was unclamped, the telescope moved till its vertical wire was just in advance of the sun's second limb, the horizontal circle clamped, the time of transit of the sun's second limb over the vertical wire noted, and the horizontal circle read. 6°. The telescope of the theodolite was reversed in its Y^{\prime} 's. 7°. 'The transit of the sun's first limb ofer the vertical wire was observed, and the horizontal circle read. 8°. The transit of the sun's second limb over the vertical wire was observed, and the horizontal circle read. 9°. The colored glass was removed from the eyc-piece of the telescope, and a reading of the magnet scale (which was still inverted) was taken. 10°. The magnet was revolved on its axis through 180°, so as to place the seale erect, and another reading of the scale was taken. 11°. The horizontal circle was read.
Immediately before, and immediately after, going through with the operations just described, the telescope should be pointed to some well-defined distant object, and the reading of the horizontal circle noted. By so doing a check is afforded against any accidental shift of the horizontal circle; and if the same station is occupied at another time, absolute declinations may be determined without again referring to the sun, thus rendering it possible to observe during cloudy weather.
In the instruments under consideration the reading of the horizontal circle of the theodolite increases from left to right; and in both the magnets, C. 32 and S. 8 , when the seale is erect an increase of scale reading indicates a motion of the north end of the magnet towards the east.
Let
$\rho=$ reading of magnet, scale erect.
$\rho^{\prime}=$ reading of magnet, seale inverted.
$R^{\prime}=$ reading of horizontal circle of theodolite at the time the readings ρ and ρ^{\prime}. were observed.
$d=$ value, in minutes of arc, of one division of the magnet scale.
$R^{\prime \prime}=$ reading of horizontal circle of the theodolite at the time of transit of sun's first limb over the vertical wire.
$R^{\prime \prime \prime}=$ reading of horizontal circle of the theodolite at the time of transit of sun's second limb over the vertical wire.
$a=$ observed chronometer time of transit of sun's first limb over the vertical wire.
$a^{\prime}=$ observed chronometer time of transit of sun's second limb over the vertical wire.
$\pi t=$ correction of chronometer to reduce the reading of its face to local mean tine.
$\tau=$ equation of time.
$t=$ the sun's hour angle at the pole.
$\phi=$ latitude of the place of observation; positive when north of the equator.
$A=$ azimuth of sun's centre at the time of its transit over the vertical wire: the azimuth being counted from the south around by the west.
$\delta=$ sun's declination; positive when north.
Then we have

$$
\begin{aligned}
& t=\frac{\alpha+\alpha^{\prime}}{2}+d t+\tau \\
& \tan M=\frac{\tan \delta}{\cos t} \\
& \tan A=\frac{\tan t \cos M}{\sin (\phi-M)}
\end{aligned}
$$

where A is to be taken greater or less than 180° according as t is greater or less than 180°.

$$
\text { Magnetie declination }=R^{\prime}+\frac{d}{2}\left(\rho-\rho^{\prime}\right)+A-180^{\circ}-\frac{R^{\prime \prime}+R^{\prime \prime \prime}}{2}
$$

in which the declination is east if its sign is positive; west if its sign is negative.
The reading of the magnetic axis of the magnet is

$$
\frac{1}{2}\left(\rho+\rho^{\prime}\right)
$$

which we will designate by c. It should be constant. Then, if at any station the magnet has only been observed with its scale erect, if c is known the observation may be reduced by the formula

Magnetic declination $=R^{\prime}+d(\rho-c)+A-180^{\circ}-\frac{R^{\prime \prime}+R^{\prime \prime \prime}}{2}$
The following example shows fully the form employed in recording and reducing the observations.

Magnetic Declination.
Station, Acapulco, Mexico. Date, May 30, 1866. Portable Declinometer, D. 22. Magnet C. 32. Observer, Wm. Harkness.

6 March, 1872.

Value of one division of magnet scale $=\boldsymbol{2} .349$.
The telescope is direct when the vertical circle is on the left-hand side.
These observations were made before noon, and time was noted by chronometer Fletcher, 906 , which was $1^{\text {h }} 41^{\text {m }} 22^{*} .2$ fast of local mean time.

At the time the azimuth was observed, the reading of the horizontal circle, telescope direct, to distant referring mark was $10^{\circ} 23^{\prime} 30^{\prime \prime}$.

	Telescope direct.	Telescope reversed.
Equation of time t (in time) t (in arc).	0^{k} 2^{m} -5^{m} $47^{\mathrm{s}} \cdot 1$ - 23, $37 \cdot 1$ -80° 54^{\prime} $16^{\prime \prime}$ +21 47 18	
$\operatorname{Tan} 8$. $\operatorname{Sec} t$.	9.60177 0.80111	9.60178 0.76602
Tan M	0.40288	0.36780
	$\begin{array}{lll}+16^{\circ} & 50^{\prime} & 3^{\prime \prime} \\ +68 & 25 & 21\end{array}$	$\begin{aligned} & +16^{\circ} 50^{\prime} \quad 3^{\prime \prime} \\ & +664735 \end{aligned}$
$(\phi-M)$.	$\begin{array}{llll}-51 & 35 & 18\end{array}$	$\begin{array}{llll}-49 & 57 & 32\end{array}$
$\operatorname{Tan} t$. $\operatorname{Cos} M$ $\operatorname{Cosec}(\phi-M)$.	0.79562 9.56557 0. 10592	$\begin{aligned} & 0.75955 \\ & 9.59556 \\ & 0.11600 \end{aligned}$
$\operatorname{Tan} A$	0.46711	0.47111
Circle reading to magnet . $\Delta \times 1 / 2$ scale division Sun's azimuth	$\begin{array}{rr} 12^{\circ} & 23^{\prime} \cdot 5 \\ -\quad 2.7 \\ 251 & 9.9 \end{array}$	$\begin{array}{rr} 12^{\circ} & 28.10 \\ -\quad 4.8 \\ 251 & 19.6 \end{array}$
Sum $180^{\circ}+$ circle reading to sun	$\begin{array}{ll} 263 & 30.7 \\ 255 & 10.5 \end{array}$	$\begin{array}{ll} 263 & 42.8 \\ 255 & 21.3 \\ \hline \end{array}$
Magnetic declination	$8 \quad 20.2$ E.	$8 \quad 21.5$ E.

Observations of Vibrations were made as follows: The instrument having been set up and adjusted in the manner already explained, the long magnet, C. 32, was
suspended in the magnet-box; and the telescope having been pointed so that its vertical wire cut the magnet scale approximately at the magnetic axis, the horizontal limb of the theodolite was firmly clamped. Then, 1°. By quickly approaching and withdrawing the magnetised screw-driver the magnet was caused to vibrate horizontally through an arc extending to about twenty scale divisions on each side of the magnetic axis-that is, through a total are of about $1^{\circ} 34^{\prime}$. The semi-are of vibration being only 47^{\prime}, no correction to the observed time of vibration was ever required on that account. 2^{3}. My assistant having taken the chronometer, I placed my eye to the telescope, and at the instant the 80th division of the scale (which was rery near the magnetic axis) crossed the vertical wire I cried "time," and my assistant noted the minute, second, and fraction of a second indicated by the chronometcr. Still keeping my eye at the telcscope, I counted the transits of the 80 th division over the wire, calling the one at which time was noted 0 , the next 1 , the next 2 , and so on up to the 10 th, when I again cried "time," and my assistant once more noted the minute, second, and fraction of a second indicated by the chronometer. The difference of these two chronometer times gave a value for the time of ten vibrations of the magnet which was correct within about half a second. However, to guard against mistakes, the process was always repeated a second or third time. 3°. The temperature indicated by the thermometer in the magnet-box was noted; and then putting my eye to the telescope, I read the scale at the instant the magnet attained the eastern extremity, and again when it attained the western extremity, of its arc of vibration. These were the "extreme scale readings." 4°. The chronometer employed was a pocket onc, beating five times in two seconds. Taking it in my hand, I commenced counting its beats at some multiple of ten seconds. Then, holding it to my ear and still mentally counting the beats, I put my eye to the telescope and noted the beat, and fraction of a beat, at which the 80th scale division crossed the vertical wirc. For example, suppose the beat was taken up at the instant the chronometer indicated $10^{\mathrm{h}} 2^{\mathrm{m}} 10^{3}$, and counting the first succeeding beat 1 , the next 2 , and so on, suppose that the 80 th division crossed the wire exactly at the 14 th beat. Then, as 14.0 beats are equal to 5.6 sconds, the time of transit of the 80 th scale division was $10^{\mathrm{h}} 2^{\mathrm{m}} 15^{9} .6$. The time of transit thus obtained was recorded as the 0 vibration. Adding to it the time of making ten vibrations-before determined-the approximate time when the 10 th vibration would be completed became known. 'Taking up the beat of the chronometer at the nearest even ten seconds before that time, I put my eye to the telescope and observed the time of transit of the 80th division at the completion of the 10 th vibration. In the same manner the time of completing the 20 th, 30 th, 40 th, 50 th, 100 th, 150 th, 160 th, 170 th, 180 th, 190 th, and 200 th vibration was observed. Subtracting the time of completing the 0 vibration from the 150 th, the 10 th from the $160 \mathrm{th}, \& \mathrm{c}$. , there result six values of the time of making one hundred and fifty vibrations, from the mean of which a very accurate value of the time of making one vibration is obtained. It will not escape notice that when observing in the manner just described there is no risk of making a mistake of one vibration, because the magnet. must, at all subsequent transits, be moving in the same direction as at the first transit, while in order to make a mistake of one vibration it
would be necessary that it shonld be moving in the opposite direction. 5°. The extreme scale readings attained by the magnet at the castern and western extremitics of its are of vibration were again observed; and then the thermometer in the magnet-box was read. 6°. The necessary observations for determining the coefficient of torsion of the suspension fibres were made. When the instrument was properly adjusted for observation the torsion circle always read 300°. With it remaining at that reading the are of vibration of the magnet was reduced to four or five scale divisions (by means of the magnetized screw-driver) and then the scale was read. Next the torsion circle was turned bacleward one-quarter of a revolution, so as to make it indicate 210°, and the scale was again read. After that, the torsion circle was turned forward half a revolution (passing through the point 300°), so as to make it indicate 30°, and the scale was read. Finally, the torsion circle was turned bacluard one-quarter of a revolution, so as to make it indicate 300°, and the scale was once more read. Subtracting the second scale reading from the first, the second from the third, and the fourth from the third, gave three differences, which were added together and divided by four. The result was the number of scale divisions through which the magnet was deflected by a twist of ninety degrees in the suspension fibres.

Observations of Deflections were made as follows: The instruments having been set up and adjusted in the manner already explained, the short magnet, S. 8, was suspended in the magnet-box, and the telescope having been pointed so that its vertical wire cut the magnet scale approximately at its central division (not necessarily the magnetic axis) the horizontal limb of the theodolite was clamped firmly. Then, 1°. The time was noted. 2°. The thermometer inside the magnet-box was read. 3°. The long magnet C. 32 (which we will now call the deflecting magnet) was placed on the deflecting bar support, with its axis east and west, its centre on a level with and at a distance of two feet to the west of the suspended magnet, and its north end west; the vibrations of the suspended magnet were reduced to four or five scale divisions, by means of the magnetised screw-driver, and then its scale was read. 4°. The deflecting magnet (remaining in the same place on the deflecting bar support as before) was reversed end for end, so as to bring its north end east, and the scale of the suspended magnet was read. 5°. The reversals were repeated twice more, so as to give in all two scale readings with the north end of the deflecting magnet to the west, and two scale readings with it to the east. The mean of the two seale readings obtained with the north end of the deflecting magnet west, were subtracted from the mean of the two scale readings obtained with its north end east. The difference was twice the value of the angle of deflection, as resulting from observations made with the deflecting magnet west of the suspended magnet. 6°. The deflecting magnet was lifted from the deflecting bar support to the west, and placed on that to the east, of the suspended magnet; its distance from the suspended magnet being still two feet, and its north end being to the east, the scale of the suspended magnet. was read. 7°. The deflecting magnet (remaining in the same place on the eastern deflecting bar support) was reversed end for end, so as to bring its north end west, and the scale of the suspended magnet was read, 8°. 'I'le reversals were repeated twice more, so to give in all two
scale readings with the north end of the deflecting magnet to the east, and two scale readings with it to the west. From the mean of the two scale readings obtained with the north end of the deflecting magnet east, the mean of the two scale readings obtained with its north end west were subtracted. The difference was twice the value of the angle of deflection, as resulting from observations made with the deflecting magnet east of the suspended magnet. The mean between this result and that obtained from the observations with the deflecting magnet west of the suspended magnet, was adopted as the true value of twice the angle of deflection, with the deflecting magnet at a distance of two feet from the suspended magnet. 9°. 'The thermometer inside the magnet-box was read. 10°. The time was noted. 11°. All the observations just described were repeated with the deflecting magnet at a distance of two and a half feet from the suspended magnet. 12°. The torsion of the suspension fibres was determined, precisely as described under the head of "observations of vibrations."

Horizontal Force was calculated from the observations of vibrations and deflectious by the following formule:
$T_{0}=$ observed time of one vibration of the magnet.
$T^{\prime \prime}=$ time of vibration, corrected for rate of chronometer and are of vibration.
$T=$ time of vibration, corrected for rate of chronometer, are of vibration, torsion force of the suspending thread, temperature, and induction.
$s=$ daily rate of chronometer, + when gaining, - when losing.
$\alpha, a^{\prime}=$ semiarc of vibration, at the beginning and end of the observation, expressed in parts of radius.
$\frac{H}{F}=$ ratio of the force of torsion of the suspending thread to the magnetic directive force.
$q=$ coefficient of the decrease of the magnetic moment of the magnet produced by an increase of temperature of 1° Fall. (This is not constant for all temperatures, and the correction is more exactly expressed by a formula of the form - correction to $t^{\prime}=q\left(t^{\prime}-t\right)+q^{\prime}\left(t^{\prime}-t\right)^{2}$, where t^{\prime} is the observed temperature, and t an adopted standard temperature.)
$K=$ moment of inertia of the magnet, including its suspending stirrup and other appendages. (This is constant for the same magnet and suspension, but varies slightly with the temperature, owing to the expansion of the materials.)
$\pi=$ batio of the circumference of a circle to its diameter $=3.14159$.
$\mu=$ coefficient of increase in the magnetic moment of the magnet produced by the inducing action of a magnetic force equal to unity of the English system of absolute measurement.
$r_{0}=$ apparent distance between the centres of the deflecting and suspended magnets in the observations of deflections.
$r=$ the same distance corrected for error of graduation and temperature. ($r=r_{0}\left[1+0.00001\left(t^{\prime}-62^{\circ}\right)\right]+$ correction for seale error. $)$
$d=$ value, in minutes of are, of one division of the magnet scale.
$u_{0}=$ observed angle of deflection, in scale divisions.
$u=$ angle of deflection, corrected for torsion force of the suspending thread.
$P=$ a constant depending upon the distribution of magnetism in the deflecting and suspended magnets.
$m=$ magnetic moment of the deflecting or vibrating magnet.
$X=$ horizontal component of the earth's magnetic force.
$\frac{m^{\prime}}{X^{\prime}}=$ value of $\frac{m}{X}$ before the application of the correction $\left(1-\frac{P}{r^{2}}\right)$

$$
\left(1+\frac{H}{F}\right)=\frac{5400+v}{5400}
$$

where $v=$ the angle, expressed in minutes of arc, through which the suspended magnet is deflected by a twist of 90° in the suspension thread.

$$
\begin{aligned}
& T^{\prime}=T_{0}\left(1-\frac{s}{86400}\right)\left(1-\frac{\alpha \alpha^{\prime}}{16}\right) \\
& T^{2}=T^{\nu 2}\left\{1+\frac{H}{F}\right\}\left\{1-\left(t^{\prime}-t\right) q\right\}\left\{1+\mu \frac{X^{\prime}}{m^{\prime}}\right\} \\
& m X=\frac{\pi^{2} K}{T^{2}} \\
& u=d u_{0}\left(1+\frac{H}{F}\right) \\
& m^{\prime}=\frac{1}{2} r^{3} \tan u \\
& \overline{X^{\prime}} \\
& \frac{m}{X}=\frac{m^{\prime}}{X^{\prime}}\left(1-\frac{P}{r^{2}}\right) \\
& m=\sqrt{m X} \frac{m}{X} \\
& X=\frac{m X}{m}
\end{aligned}
$$

In order to facilitate the finding of log. $\tan u$, in the reduction of observations of deflection, the following table has been prepared. With the argument log. u (u being expressed in minutes of arc) it gives the quantity (log. tan $u-\log . u$), or, in other words, the quantity which it is necessary to add to log. u in order to obtain log. $\tan u$. The arrangement of the table is such that the quantity (log. $\tan u-\log . u)$ is to be added to the log. u on the same line with it, or to any other log. u less than the one on the line next below. For example, if it were required to find log. tan u corresponding to any log. u from 8.0000 to 1.4340 , it would only be necessary to add 6.46373 to the given log. u.

Log. u.	Log. $\tan u$ - Log. u.	Log. u.	Log. $\tan u-$ Log. u.
8.0000	6.46373	2. 1159	6.46394
1.4341	6.46374	2.126r	6.46395
1.5957	6.46375	2.1358	6.46396
1.6874	6.46376	2.1452	6.46397
1.7517	6.46377	2. 1541	6.46398
1.8014	6.46378	2.1626	6.46399
1.8414	6.46379	2.1708	6.46400
1.8756	6.46380	2.1787	6.4640 r
1.9047	6.46381	2.1864	6.46402
1.9310	6.46382	2. 1937	6.46403
1.9538	6. 46383	2.2008	6.46404
1.9750	6.46384	2.2079	6.46405
1.9934	6.46385	2.2146	6.46406
2.0111	646386	2.2209	6.46407
2.0274	6.46387	2.2271	6.46408
2.0426	6.46388	2.2332	6.46409
2.0565	6.46389	2.2393	6.46410
2.0700	6.46390	2.2453	6.4641 I
2.0824	6.46391	2.2509	6.46412
2.0941	6.46392	2.2565	6.46413
2.1055	6.46393		

The following are specimens of the forms employed in recording and reducing the observations of vibrations and deflections.

Horizontal Intensity.
Observations of Vibrations.
Station, Acapulco, Mexico. Date, May 3oth, 1866. Magnet C. 32. Inertia ring No. Chron. Fletcher 906 , rate, $I^{8} \cdot 38$ losing on mean time.

	Time.			Temp.	Extreme scale readings.		Time of 150 vibrations	
\bigcirc	$8^{\text {b }}$		$3^{8} .8$	87°	$57^{\text {d }} \cdot 8$	$102{ }^{\text {d }} 2$		
10			57.0					
20		33	50.6					
30	8	34	43.9					
40			37.0					
50			30.6					
100			57.2					
150			23.4					$19^{3} .6$
160			17.2				13	20.2
170		47	10.2				13	19.6
180	8		3.7				13	19.8
190			57.0				${ }^{1}$	20.0
200	8		50.5	91	65.2	95.0	13	19.9
			eans,	89.0			13	19.85

Coefficient of torsion. Value of one scale div. $=2^{\prime} .349$

Tor. cir.	Scale.	Diff's.	$\begin{aligned} & v=8^{\prime} .0 \\ & 5400^{\prime}+v^{\prime} \\ & 5400(\text { ar. co. }) \\ & 1+\frac{H}{F} \end{aligned}$	Log's.
300°	$80^{\text {d }}$. 1			
30	83.5	3.4 6.8		3.73304
210 300	76.7 80.1			
300				0.00065
Mean $=\mathrm{v}=3.40$				

Horizontal Intensity．

Calculation．

$$
T^{2}=T^{\prime 2}\left(i+\frac{H}{F}\right)\left(i-\left(t^{\prime}-t\right) q\right)
$$

Observed time of 150 vibrations $=799^{8} .85$
Time of one vibration $=5.33^{2}$
Correction for rate

$$
\mathrm{T}^{\prime}=5.33^{2}
$$

＊Ob＇s of defl＇n．Date．May 3 oth， 1866.

$$
\mathrm{t}=84^{\circ} \cdot 7 \quad \begin{array}{c|c}
*_{\mathrm{m}} & 8.94854 \\
\mathrm{X} & 0.72363 \\
\mathrm{mX} & 0.72 \\
\mathrm{~m}^{2} & 9.67217 \\
\mathrm{~m} & 9.83608 \\
\hline
\end{array}
$$

The chronometer used in this observation was $\mathbf{I}^{\mathrm{h}} 4 \mathrm{I}^{\mathrm{m}} 22^{\mathrm{s}} .2$ fast of local mean time．

Horizontal Intensity．
Observations of Deflections．
Station，Acapulco，Mexico．Date，May 3oth，1866．Mag．C． 3^{2} deflecting．Mag．S． 8 suspended． Observer，Wm．Harkness．

唇	宕	Time． A．M． h． m ．	$\underset{t}{T e m p}$	Scale Readings．	Alternate Means．	Diff＇s．	Dist．
苍	W． E． W． E．	$7 \quad 22$	86°	$\begin{array}{r} 53^{\mathrm{d}} \cdot 9 \\ 107.0 \\ 53.9 \\ 107.0 \end{array}$	$\begin{array}{r} 53^{\mathrm{d}} \cdot 9 \\ 107 \cdot 0 \end{array}$	$53^{\text {d }} \cdot 1$	n 0 0 0 0
宮	E． W． E． W．	$7 \quad 32$	84	$\begin{array}{r} 107.5 \\ 53.5 \\ 107.7 \\ 53.8 \end{array}$	$\begin{array}{r} 107.6 \\ 53.6 \end{array}$	54.0	$\begin{aligned} & \dot{00} \\ & \stackrel{0}{1} \\ & \dot{4} \\ & \dot{\sim} \\ & \dot{\alpha} \end{aligned}$
Means，			85.0		$2 u^{\text {d }}$	53.53	

Horizontal Intensity.
Observations of Deflections.
Station, Acapulco, Mexico. Date, May 3oth, 1866. Mag. C. 3^{2} deflecting. Mag. S. 8 suspended.
Observer, Wm. Harkness.

The constants, peculiar to the portable declinometer D 22, were obtained as follows:

The Temperature Coefficients of the magnets were furnished by Mr. Chas. A. Schott, of the U. S. Coast Survey. They had been used with the instrument for some years, and I had no opportunity to redetermine them. They are as follows:

$$
\begin{array}{cccc}
\text { For the magnet C } 32 & q=0.00020 \\
\text { " " } \quad \text { " } & \text { S } 8 & q=0.00027
\end{array}
$$

In reducing the observations a correction was always applied to the magnetic moment of the magnet C 32 to reduce it to what it would have been if C 32 had had the same temperature as $S 8$. Hence, the temperature coefficient of $\cdot \mathrm{C} 32$ was the only one used, and in order to facilitate its application the following table was computed which furnishes the value of $\log .\left[1-\left(t^{\prime}-t\right) q\right]$ with the argument $\left(t^{\prime}-t\right)$.

Correction of Magnet C. 32 for Temperature

$\left(t^{\prime}-t\right)$	Log. $\left[1-\left(t^{\prime}-t\right) q\right]$	$\left(t^{\prime}-t\right)$	$\operatorname{Log.}\left[1-\left(t^{\prime}-t\right) q\right]$
$+1^{\circ}$	9.99991	-1°	0.00009
$+2$	9.99983	- 2	0.00017
$+3$	9.99974	- 3	0.00026
$+4$	9.99965	-4.	0.00035
$+5$	9.99957	- 5	0.00043
$+6$	9.99948	- 6	$0.000{ }^{2}$
	9.9948		$0.000{ }^{2}$
$+7$	9.99939	-7	0.00061
$+8$	9.99930	-8	0.00069
$+9$	9.99922	-9	0.00078
$+10$	$9.999^{1} 3$	-10	0.00087

The Value of One Division of the Magnet Scale was determined for each magnet in the following manner: The instruments having been set up and adjusted as usual, the magnet was suspended in the magnet-box, and the packing blocks (before described as being used to prevent the suspension fibres from being twisted when the instrument was packed for travelling) were inserted in such a manner as to hold it perfectly steady. Then, the magnet seale being horizontal, the vertical wire of the theodolite telescope was made to coincide with any convenient scale division, and the horizontal circle of the theodolite was read. Next, the vertical wire was made to coincide with some other scale division, and the circle was again read. The difference of the two circle readings, divided by the difference of the two scale readings, gate the angular value of one scale division.

The following are the observations in detail for each magnet:

Magnet C. 32.

Date.	Circle Readings.			Differences.			Scale Readings.	Diff's.	Value of I Scale Division.
Nov. 16, 1865			$15^{\prime \prime}$						
Nov. 16, 1865						$30^{\prime \prime}$	${ }^{5} 50.0$	$100^{\text {d }} .0$	$2^{\prime} \cdot 335$
Nov. 16, 1865	4		45						
Nov. 16, 1865 Nov. 16, 1865	\bigcirc			3			150.0	100.0	2.350
Nov. 16, 1865 Nov. 16, 1865	I		45 15	1		30	75.0 125.0	50.0	2.350
Nov. 16, 1865	3		45				125.0 75.0		,
Nov. 16, 1865			15	1		30	I 25.0	50.0	2.350
Jan. 18, 1866 Jan. 18,1866			15 30	3	55	45	50.0	100.0	2.357
Jan. 18, 1866							50.0 75.0		2.357
Jan. 18, 1866			30	I		30	75.0 +25.0	50.0	2.350

Hence for the magnet C 32 , we have I scale division $=2^{\prime} .349 \pm 0^{\prime} .0020$.

Magnet S. 8.

Date.	Circle Readings.			Differences.			Scale Readings.	Diff's.	Value of I Scale Division.
Nov. 16, 1865			$45^{\prime \prime}$				$50^{\text {d }} .0$		
Nov. 16, 1865						15	${ }^{1} 50.0$	100 ${ }^{\text {d }} 0$	$2^{\prime} .833$
Nov. 16, 1865	4	9	45		43	15	50.0	100.0	2.832
Nov. 16, 1865 Nov. 16, 1865			30 45		43	15	150.0 75.0	100.0	2.83
Nov. 16, 1865	\bigcirc				21	45	75.0 125.0	50.0	2.835
Nov. 16, 1865	2	59	\bigcirc				75.0		
Nov. 16, 1865			30		21	3°	125.0	50.0	2.830
Jan. 18, 1866			30						
Jan. 18, 1866					44	15	150.0	100.0	2.842
Jan. 18, 1866	4		30				75.0		
Jan. 18, 1866	2		30		22	\bigcirc	125.0	50.0	2.840

Hence, for the magnet $S 8$, we have I scale division $=2^{\prime} .835 \pm 0^{\prime} .0013$.

The Moment of Inertia, and its Temperature Coefficient, of the Magnet C 32, was determined as follows: Let,
$K_{\tau}=$ moment of inertia of the magnet, including its suspending stirrup and other appendages, at the temperature τ.
$\Delta K=$ change in the value of K corresponding to a change of temperature of 1° Fah. in the magnet.
$K_{\tau}^{\prime}=$ moment of inertia of the inertia ring, at the temperature τ.
$d_{i}=$ internal diameter of the incrtia ring, expressed in feet, at the temperature τ_{0}.
$d_{e}=$ external diameter of the inertia ring, expressed in feet, at the temperature τ_{0}.
$\varepsilon=$ cocfficient of expansion for a change of temperature of 1° Fah. in the metal composing the inertia ring.
$W=$ weight of the inertia ring expressed in grains.
$t=$ time in which the magnet makes one vibration at the temperature τ_{0} (corrected for chronometer rate, are of vibration, and torsion.)
$t^{\prime}=$ time in which the maguet, loaded with the incrtia ring, makes one vibration at the temperature τ_{0} (corrected for chronometer rate, are of vibration, and torsion)
Then

$$
\begin{gathered}
K_{\tau}^{\prime}=W\left[1+2 \varepsilon\left(\tau-\tau_{0}\right)\right]\left\{\frac{d_{i}^{2}+d_{e}^{2}}{8}\right\} \\
K_{\tau}=K_{\tau_{0}}^{\prime}\left(\frac{t^{2}}{t^{\prime 2}-t^{2}}\right)+\Delta K\left(\tau-\tau_{0}\right)
\end{gathered}
$$

The incrtia ring used in making my observations was of bronze. Mr. Joseph Saxton, Assistant Superintendent of the Office of Weights and Measures, very obligingly measured and weighed it, with the following result:

$$
\begin{aligned}
& \text { Internal diameter }=2.385 \text { inches }=0.19875 \text { foot } \\
& \text { External diameter }=2.947 \text { inches }=0.24558 \text { foot } \\
& \text { Weight }=798.72 \text { grains }
\end{aligned}
$$

the temperature of the ring being 74° Fah.
Hence, assuming the coefficient of expansion for an increase of temperature of 1° lah. in the metal of this ring to be 0.0000105 , we find by the formula given above

$$
K_{\tau}^{\prime}=9.9601+\left(\tau-50^{\circ}\right) 0.000209
$$

or

$$
\log . K_{\tau}^{\prime}=0.9982 \gamma+\left(\tau-50^{\circ}\right) 0.0000091
$$

The following table contains all the times of vibration which were observed for the purpose of determining the moment of inertia of the magnet, together with the computation of the corresponding values of $\log . K$ from them. The value of t^{\prime} was always obscrved either immediately before, or immediately after, the corresponding value of t which was to be used with it. This was done in order to have the temperature in both cases as nearly as possible the same, so that the correction necessary to reduce t^{\prime} to the same temperature as t was always very small. Then having a sufficient number of values of K, obtained from observations made at widely different temperatures, the value of ΔK was easily found.

Date.	τ	Log. $t^{\prime \prime}$	Log. 12	Log. $\left(t^{\prime 2}-t^{2}\right)$	$\log \cdot\left(\frac{t^{2}}{1^{2}-1^{2}}\right)$	Log. $\mathrm{K}_{\boldsymbol{\prime}}$	Log. \bar{K}_{τ}^{-}
Oct. 28, 1865	${ }^{73} \mathrm{O}$	1.88210	1.66424	r. 4781 I	0.18613	0.99849	1.18462
Nov. 16, 1865	87.7	1.72767	1.50891	1. 32504	0.18613	0.99862	1.18247
Nov. 28, 1865	90.0	1.72835	1.51108	I. 32345	0.18763	0.99864	1.18627
Dec. 13, 1865	89.5	1. 74459	1.52673	1.34060	0.18613	0.99864	1.18477
Dcc. 27, 1865	98.0	1.76681	1.54810	1. 36412	0.18398	0.99872	1.18270
Jan. 18, 1866	87.2	1.77770	I. 5592 I	1.37467	0. 18458	0.99861	1.18315
March 19, 1866	76.2	1.75849	1.54101	1.35391	0.18710	0.99851	1.1856 r
April 11, 1866	74.0	1.75824	1. 54019	1. 35454	0.18565	0.99850	1.18415
May 30, 1866	84.7	1.67351	1. 45405	1.27196	0.18209	0.99859	1.18068
Nov. 2, 1866	70.0	1.90424	1.68479	1.50268	0.18211	0.99846	1.18057
Nov. 2, 1866	70.0	1.90391	1.68450	1.50229	0.1822 I	0.99846	1.18067
Nov. 2, 1866	53.5	I. 92843	1.70989	1.52548	0.18441	0.99830	1.18271
	79.5						1.18320

Let K_{0} represent the mean of all the logarithms of K in the above table; then

$$
K_{0}=1.18320
$$

at a temperature of $79^{\circ} .5$. Now, assuming
we have

$$
\log . K_{\tau}=K_{0}+\left(\tau-79^{\circ} .5\right) \Delta K
$$

$$
0=K_{0}-\log . K_{\tau}+\left(\tau-79^{\circ} .5\right) \Delta K
$$

and each value of \log. K_{τ}, given in the table above, will furnish one equation of condition for the determination of ΔK, as follows: the absolute terms being in units of the fifth place of decimals.

$0=-142-6.5 \Delta K$	$0=-241-3.3 \Delta K$
$0=+73+8.2 \Delta K$	$0=-95=5.5 \Delta K$
$0=+307+10.5 \Delta K$	$0=+252 \pm 5.2 \Delta K$
$0=-157+10.0 \Delta K$	$0=+263 \pm 9.5 \Delta K$
$0=+50+18.5 \Delta K$	$0=+253-9.5 \Delta K$
$0=+5+7.7 \Delta K$	$0=+49-26.0 \Delta K$

From these equations of condition we obtain, by the method of least squares, the normal equation

$$
0=-5856.2+1646.0 \Delta K
$$

whence

$$
\begin{gathered}
\text { Log. } \Delta K=0.55119 \\
\Delta K=+3.56
\end{gathered}
$$

and finally

$$
\log . K_{\tau}=1.18320+\left(\tau-79^{\circ} .5\right) 0.0000356 \pm 0.000368
$$

or
Hence we have

$$
K_{\tau}=15.248+\left(\tau-79^{\circ} .5\right) 0.00125 \pm 0.0129
$$

$$
\pi^{2} K_{\tau}=150.49+\left(\tau-79^{\circ} .5\right) 0.01234
$$

or

$$
\text { Log. } \pi^{2} K_{\tau}=2.17750+\left(\tau-79^{\circ} .5\right) 0.0000356
$$

In order to facilitate the reduction of the observations of vibrations, the following table has been computed from the formula last given. It furnishes the value of $\log . \pi^{2} K_{\tau}$ to the argument τ.

\uparrow	$\log \cdot \pi^{2} K_{\tau}$	P. P.	
50°	2.17645	I°	4
60	2.17681	2 3	${ }_{1} 1$
		4	14
70	2.17716	5	18
80	2.17752		21 25
	2.1775	8	25 28 28
90	2.17787	9	32
100	2.17823		

.The Constant P, depending upon the distribution of the magnetism in the magnets C 32 and S 8, was determined by means of the formula

$$
P=\frac{A-A^{\prime}}{\frac{A}{r^{2}}-\frac{A^{\prime}}{r^{\prime 2}}}
$$

where
$A=$ value of $\frac{m^{\prime}}{X^{\prime}}$ determined from an observation of deflection with the deflecting magnet at the distance r from the suspended magnet.
$A^{\prime}=$ value of $\frac{m}{X^{\prime}}$ determined from an observation of deflection with the deflecting magnet at the distance r^{\prime} from the suspended magnet.
The following table contains all the observed values of A and A ', together with the computation of the corresponding values of P. The values of A were obtained from deflections at a distance of 2.0 feet: those of A^{\prime} from deflections at a distance of 2.5 fect.

Date.		Log. A	Log. A^{\prime}	$\stackrel{\log _{.}}{\left(A \rightarrow A^{\prime}\right)}$	Log. $\frac{A}{r^{2}}$	$\log \cdot \frac{A^{\prime}}{r^{\prime 8}}$	$\left(\frac{A^{\text {Log. }}}{r^{-2}}-\frac{A^{\prime}}{r^{\prime}}\right)$	Log. P	P
October	30, 1865	9.1660	9.1669	$6.4829 n$	8.5640	8.3711	8.1187	8.3643n	-0.023
November	13, 1865	9.0084	9.0094	$6.388 \mathrm{I} n$	8.4063	8.2135	7.9608	$8.4274 n$	0.0268
November	16, 1865	9.0087	9.0088	5.1491n	8.4067	8.2129	7.9629	7.1863n	0.0015
November	28, 1865	9.0068	9.0078	$6.3989 n$	8.4047	8.21 eo	7.9591	$8.4398 n$	-0.0275
December	13, 1865	9.0234	9.0175	7.1527	8.4213	8.2216	7.9879	9.1649	+0.1462
December	23, 1865	9.0295	9.0317	$6.7332 n$	8.4274	8.2358	7.9798	$8.7534 n$	-0.0567
December	27, 1865	9.0421	9.0413	6.3230	8.4400	8.2454	7.9978	8.3252	+0.0211
January	6, 1866	9.0628	9.0633	$6.0587 n$	8.4608	8.2674	8.0163	8.0424n	-0.0110
January	18, 1866	9.0531	9.0536	$6.1399 n$	8.4511	8.2578	8.0064	8. $1335 n$	0.0136
February	7, 1866	9.0486	9.0495	$6.375^{1} n$	8.4465	8.2536	8.0012	8.3739n	0.0237
March	2, 1866	9.0328	9.0339	$6.4250 n$	8.4308	8.2380	7.9852	8.4398n	-0.0275
March	19, 1866	9.0350	9.0342	6.3106	8.4330	8.2383	7.9907	8.3199.	+0.0209
March	29, 1866	9.0347	90347	4.8740	8.4326	8.2388	7.9890	6.8850	+0.0008
April	7, 1866	9.0367	9.0373	6.1551n	8.4346	8.2414	7.9899	$8.1652 n$	-0.0146
April	11, 1866	9.0356	9.0360	5.9295n	8.4336	8.2401	7.9893	$7.9402 n$	0.0087
April	13, 1866	9.0343	9.0368	6.7852n	8.4323	8.2409	7.9842	8.8010n	-0.0632
April	26, 1866	8.9902	8.9896	6.1515	8.3882	8.1937	7.9456	8.2059	+0.0161
May	7, 1866	8.9680	8.9704	6.7188n	8.3659	8.1745	7.9178	8.8010 n	-0.0632
May	14, 1866	8.9468	8.9544	$7.1930 n$	8.3447	8.1585	7.8872	$9 \cdot 3058 n$	0.2022
May	30, 1866	8.9468	8.9472	$5.8890 n$	8.3448	8.1513	7.9004	$7.9886 n$	0.0097
June	9, 1866	8.9775	8.9817	$6.9669 n$	8.3754	8.1858	7.9241	$9.0427 n$	-0.1103
June	15, 1866	9.0376	9.0346	6.8666	8.4355	8.2387	7.9970	8.8697	+0.0741
June	26, 1866	9.0810	9.0826	$6.6509 n$	8.4790	8.2868	8.0324	$8.6185 n$	-0.0415
November	1, 1866	9.1991	9.1972	6.8414	8.5971	8.4014	8.1568	8.6847	+0.0484

The indiscriminate mean of all the observations gives

$$
P=-0.0166 \pm 0.0088
$$

But Peirce's criterion for the rejection of doubtful observations throws ont those of December 13 and May 14. Accordingly, excluding them, and taking the mean of all the others, there results

$$
P=-0.0155 \pm 0.0057
$$

and that value I have adopted. Hence, for $r=2.0$ feet, we have

$$
\log \cdot\left(1-\frac{P}{r^{2}}\right)=0.00168
$$

and for $r=2.5$ feet

$$
\log \cdot\left(1-\frac{P}{r^{2}}\right)=0.00108
$$

The Magnetic Moment of the Magnet $C 32$ was computed as follows: Observations of deflection were always taken at two different distances, viz., at 2.0 fect and at 2.5 fcet. In general, the two values of $\frac{m}{X}$ thus obtained differed slightly from each other, and the mean of the two was assumed to be correct. This mean was combined with the value of $m X$, obtained from a set of vibrations observed on the same day, and thus m was determined. In no case was more than one set of observations of deflections taken on any single day, but in a few instances several sets of observations of vibrations were made. Under such circumstances, the mean of all the observed values of $m X$ was combined with the mean of the two values of $\frac{m}{X}$, and thus a single value of m was deduced.

Let
$m_{\tau}=$ observed value of the magnetic moment at the temperature τ.
$m=$ value of m_{τ} after being multiplied by $\left[1+\left(\tau-75^{\circ} .8\right) q\right]$, or, in other words, after being reduced to the temperature $75^{\circ} .8$ Fah.
$m_{0}=$ mean of all the observed values of m.
$\alpha=$ daily decrease in the value of $\log . m$, expressed in units of the fifth decimal place.
$d=$ time in days at which m is taken; d being counted from March 7 th, 1866.
The following table contains all the observed values of log. n_{τ}, together with the computation from them of the final values of the same quantity. The column headed "days" gives the time in days counted from October 24th, 1865.

Date.	τ	Log. m_{τ}	$\stackrel{\log .}{\left[\mathrm{I}+\left(\tau-75^{\circ} .8\right) q\right]}$	Log. n	Days.	Concluded Log. m	Concluded Log. m_{τ}
October 24, 1865	${ }^{\circ} \mathrm{\circ} 7.5$	9.84148	9.99841	9.83989	\bigcirc	9.83990	9.84149
October 30, 1865	58.7	9.84139	9.99851	9.83990	6	9.83979	9.84128
November 13, 1865	85.5	9.83908	0.00082	9.83990	20	9.83951	9.83869
November 16, 1865	87.7	9.83951	0.00104	9.84055	23	9.83945	9.83841
November 28, 1865	90.0	9.83773	0.00121	9.83894	35	9.83922	9.83801
December 13, 1865	89.5	9.83645	0.00117	9.83762	50	9.83893	9.83776
December 23, 1865	87.2	9.83768	0.00100	9.83868	60	9.83873	9.83773
December 27, r865	98.0	9.83655	0.00191	9.83846	64	9.83865	9.83674
January 6, r 866	74.2	9.83915	9.99986	9.83901	74	9.83846	9.83860
January 18, 1866	87.2	9.83666	0.00100	9.83766	86	9.83823	9.83723
February 7, 1866	69.5	9.83783	9.99945	9.83728	106	9.837^{84}	9.83839
March 2, 1866	69.7	9.83831	9.99947	9.83778	129	9.83739	9.83792
March 19, 1866	76.2	9.83618	0.00004	9.83622	146	9.83706	9.83702
March 29, 1866	68.2	9.83780	9.99934	9.83714	${ }^{1} 56$	9.83686	9.83752
April 7, 1866	67.0	9.83861	9.99923	9.83784	165	9.83669	9.83746
April 11, 1866	74.0	9.83716	9.99984	9.83700	169	9.83661	9.83677
April I3, 1866	65.7	9.83711	9.99912	9.83623	171	9.83657	9.83745
April 26, r866	79.2	9.83626	0.00030	9.83656	184	9.83632	9.83602
May $\quad 7,1866$	77.0	9.83670	0.00009	9.83679	195	9.83610	9.83601
May 14, 1866	82.2	9.83448	0.00056	9.83504	202	9.83596	9.83540
May 30, 1866	84.7	9.83602	0.00078	9.83680	218	9.83565	9.83487
June $\quad 9,1866$	65.0	9.83662	9.99906	9.83568	228	9.83546	9.83640
June 15, 1866	71.0	9.83493	9.99958	9.83451	234	9.83534	9.85576
June 26, 1866	63.0	9.83548	9.99889	9.83437	245	9.83513	9.83624
November 1, 1866	66.2	9.83326	9.99916	9.83242	373	9.83263	9.83347
Means	75.8			9.83729	154		

The mean of the quantities in the column headed τ is $75^{\circ} .8$. Accordingly, adding log. $\left[1+\left(\tau-75^{\circ} .8\right) q\right]$ to each log. m_{τ}, we obtain the values of log. m given in the table. Taking the mean of these values, and also the mean of the numbers in the column "days," we find that at 134 days, which corresponds to March 7th, 1866 , the value of log. m was $9.83729=\log . m_{0}$. Then, assuming

$$
\text { Log. } m=\log . m_{0}-\operatorname{ad}
$$

we have

$$
0=9.83729-\log . m-\alpha d
$$

and each value of \log. m furnishes an equation of condition for the determination of α, as follows.

$0=-260+134 a$	$0=+15-22 a$
$0=-261+128 a$	$0=-55-31 a$
$0=-261+114 a$	$0=+29-35 a$
$0=-326+111 a$	$0=+106-37 a$
$0=-165+99 a$	$0=+73-50 a$
$0=-33+84 a$	$0=+50-61 a$
$0=-139+74 a$	$0=+225-68 a$
$0=-117+70 a$	$0=+49-84 a$
$0=-172+60 a$	$0=+161-94 a$
$0=-37748 a$	$0=+278-100 a$
$0=+1+28 a$	$0=+292-11 a$
$0=-49+5 a$	$0=+487-239 a$
$0=+107-12 a$	

By the method of least squares we obtain the normal equation

$$
0=-397497+203965 \alpha
$$

Solving, we get

$$
\alpha=+1.9488
$$

Hence

$$
\text { Log. } m=9.83729-0.0000195 d \pm 0.000090
$$

or

$$
m=0.68753-0.0000310 d \pm 0.000144
$$

From the first of these expressions the quantities in the column "concluded log. m " were computed.

If, in the expression for log. m, given above, we introduce the correction for temperature, we obtain

$$
\text { Log. } m_{\tau}=9.83729-0.0000195 d-0.000087\left(\tau-75^{\circ} .8\right)
$$

by means of which the quantities in the column "concluded log. m_{τ} " were computed.

The probable error of a single observed value of $\log . m$ is ± 0.000452, and of a single observed value of m it is ± 0.000719.

Observations of Inclination were all made with a dip circle by Henry Barrow \& Co., of London. It was provided with two needles, marked A 1 and A 2, each 3.5 inches long, and having axles 0.016 of an inch in diameter. The distance between the agate planes on which they rested was 0.74 of an inch. By means of two microscopes, one opposite each end of the needle-each of which, assuming distinct vision to be obtained at a distance of ten inches, magnified 18 diametersthe inclination of the needle was referred to, and read off upon a vertical circle six inches in diameter, divided to half degrees, and reading by means of two verniers to single ininutes. The pointing of the microscopes to the ends of the needle was
effected by means of a clamp and tangent screw. The horizontal circle of the instrument was four inches in diameter, divided to half degrees, and reading by means of one vernier to single minutes. It was provided with a clamp, but no tangent sciew.

Readings of the position of the dipping needle were made as follows: In the field of view of each microscope was a plate of glass upon which was engraved three finc parallel lines, the middle one being intended to represent one of the two extremities of a diameter passing through a vertical circle described about the prolongation of the axle of the needle. The north microscope having been turned till the centre line in its field of view coincided with the north end of the needle, the vernier belonging to that microscope was read off, and recorded as the reading of the north end of the needle. Then the south microscope was turned till the centre line in its ficld of view coincided with the south end of the needle, and the vernier belonging to that microscope was read off, and recorded as the reading of the south end of the necdle. In order to distinguish between the two microscopes the letter N was scratched upon one of them, and that one was always, in all positions of the instrument, used to read the north end of the needle.

The instrument having bcen set up and levelled, before beginning to observe it was necessary to place the plane of the vertical circle in the magnetic meridian. At a few of the earlier stations this was accomplished as follows: The needle was placed on the agate planes, with the side on which the letters were marked facing the microscopes. Then 1°. The microscopes having bcen turned till they were nearly in a vertical line, the vernier of the lower one was set to $90^{\circ} 0^{\prime}$, and the vertical circle was moved in azimuth-so that its face (by which is meant the side on which the microscopes were) was south-till the lower end of the needle was bisected by the middle line in the lower microscope; the Y's were raised and lowered gently, and if the bisection of the necdle was altered, it was corrected by turning the circle in azimuth. Then the horizontal circle was clamped and read off; and this reading was called $A .2^{\circ}$. The vernier of the upper microscope was set to $90^{\circ} 0^{\prime}$, and the horizontal circle having been unclamped, the vertical circle was moved in azimuth-its face still remaining south-till the upper end of the needle was bisceted by the middle line in the upper microscope; the Y's were raised and lowered gently, and if the bisection of the needle was altered, it was corrected by turning the circle in azimuth. Then the horizontal circle was clamped and read off, and this reading was called B. 3°. The horizontal circle was unclamped, and turned in azimuth 180°, so as to bring the face of the instrument to the north, and then the 1° and 2° processes just described were repeated; thus giving two more readings of the horizontal circle, which were called C and D . Then

$$
\frac{A+B+C+D}{4}=E
$$

where E is the division of the horizontal circle at which it was necessary to set the vernier in order that the plane of the vertical circle might be at right angles to
the magnetic meridian. Therefore the vernier was set at $90^{\circ}+E$, and the plane of the vertical circle coincided with the magnetic meridian. However, it soon became evident that this process consumed too much time, and the following, which is quite as accurate and much more expeditious, was adopted: A fine line was marked permanently upon the top of the instrument parallel to the plane of the vertical circle; then, after the instrument had been levelled, but before the dipping needle had been placed upon the agrate planes, a pocket compass, with a needle about one and a half inches long, was placed with its centre upon the fine line, and the vertical circle was turned in azimuth till the compass needle and line were parallel to each other. 'That being the case, the plane of the vertical circle was known to be in the magnetic meridian, and the horizontal circle was clamped and read off.

The following is the method which was adopted in making obscrvations of dip: 1°. The agate planes, and those parts of the axle of the needle which would rest upon them, were carcfully wiped with a piece of chamois leather (I have since seen reason to believe that a piece of cork would have answered the purpose better), and then the instrument was set up, levelled, and the plane of the vertical eircle placed in the magnetic meridian by the process before described. 2°. The needle was secured upon a block, provided for the purpose, and magnetised by means of a pair of eight-inch bar magnets, in such a manner that its marked end acquired north polarity. It was considered to be saturated with magnetism when the bar magnets had been drawn from its centre to its extremities six times, the process being performed upon both of its sides, and then it was removed from the block and placed in position upon the agate planes, with its face (by which is meant that side upon which the letters were marked) towards the east. 3°. The plane of the vertical circle being in the magnetic meridian, with the face of the instrument towards the east, and the needle in position upon the agate planes, with its face also towards the east, the north and south ends of the needle were read. Let these readings be designated respectively as ϕ^{\prime} and $\phi^{\prime \prime}$. 4°. The needle was reversed upon the agate planes, so as to bring its face towards the west, and its north and south ends were read. Let these readings be designated respectively $\phi^{\prime \prime \prime}$ and $\phi^{\prime T}$. 5°. 'The horizontal circle was unclamped, the vertieal circle turned in azimuth 180°, so as to bring its face towards the west, and the horizontal circle again clamped. The face of the needle now being towards the east, its north and south ends were read. Let these readings be designated respectively as ϕ^{∇} and $\phi^{\nabla 7}$. 6^{9}. The needle was reversed upon the agate planes, so as to bring its face towards the west, and its north and south ends were read. Let these readings be designated respectively as $\phi^{\text {rII }}$ and $\phi^{\text {rIII }}$. 7°. The time was noted, and then the needle, having been removed from the agate planes, was placed upon the block provided for the purpose, and remagnetised in such a manner that its marked end acquired south polarity; after which it was again placed in position upon the agate planes, with its face towards the west, and its north and south ends were read. Let these readings be designated respectively as ψ^{\prime} and $\psi^{\prime \prime}$. 8°. The needle was reversed upon the agate planes, so as to bring its face towards the east, and its north and south ends were read. Let these readings be designated respectively as $\psi^{m m}$ and $\psi^{s w}$. 9°. The horizontal circle was unclamped, the vertical circle turned in azimuth 180°,
so as to bring its face to the east, and the horizontal circle again clamped. The face of the needle now being towards the west, its north and south ends were read. Let these readings be designated respectively as ψ^{r} and $\psi^{\nabla 1}$. 10°. The needle was reversed upon the agate planes, so as to bring its face towards the east, and its north and south ends were read. Let these readings be designated respectively as $\psi^{V I I}$ and $\psi^{V I I I}$.

At the first few stations each of the readings $\phi^{\prime}, \phi^{\prime \prime}, \phi^{\prime \prime \prime} \ldots \phi^{v I I}, \psi^{\prime}, \psi^{\prime \prime}, \psi^{\prime \prime \prime} \ldots . \psi^{v u I}$, was repeated three times, the Y's being raised and lowered again between each repetition; but after some experience I became convinced that the increase of accuracy obtained by three repetitions, over that obtained by a single careful reading, was not sufficient to warrant the greatly increased expenditure of time, and accordingly the repetitions were abandoned.

The needle A 2 proved to be well balanced, and the observations made with it were therefore reduced by the usual formula, namely

$$
\begin{gathered}
\frac{\phi^{\prime}+\phi^{\prime \prime}+\phi^{\prime \prime \prime}+\phi^{I V}+\phi^{\nabla}+\phi^{V I}+\phi^{\nabla I I}+\phi^{\nabla I I I}}{8}=\alpha \\
\frac{\psi^{\prime}+\psi^{\prime \prime}+\psi^{\prime \prime \prime}+\psi^{I V}+\psi^{\tau}+\psi^{\nabla I}+\psi^{\nabla I I}+\psi^{V I I I}}{8}=\beta \\
\theta=\frac{\alpha+\beta}{2}
\end{gathered}
$$

where θ is the magnetic inclination or dip.
The needle A 1 proved not to be well balanced, which was shown by the great difference between the values of α and β obtaired with it in low magnetic latitudes; although they agreed well enough at places where the dip was large. An examination of all the observations showed that in every case

$$
\frac{\phi^{\prime}+\phi^{\prime \prime}+\phi^{\nabla}+\phi^{V I}}{4}=\frac{\phi^{\prime \prime \prime}+\phi^{I V}+\phi^{\nabla I I}+\phi^{\nabla I I}}{4}
$$

and

$$
\frac{\psi^{\prime}+\psi^{\prime \prime}+\psi^{\nabla}+\psi^{\nabla I}}{4}=\frac{\psi^{\prime \prime \prime}+\psi^{I I}+\psi^{\nabla I I}+\psi^{\nabla I I I}}{4}
$$

at least within about one degree. It therefore followed that, although the centre of gravity of the needle did not lie in its axle, it did lie somewhere in the line joining the two extremities of the needle, and passing through its axle. In such cases we have

$$
\tan \theta=\frac{\tan \alpha+\tan \beta}{2}
$$

and by that formula all the observations made with this needle were reduced.
At St. Thomas some observations of dip were made with the plane of the vertical circle out of the magnetic meridian. They were reduced by the formula

$$
\tan \theta=\tan \theta^{\prime} \cos \alpha
$$

where θ is the true dip, and θ^{\prime} the dip observed with the vertical circle in a plane whose azimuth, measured from the magnetic meridian, was α.

The values of the Vertical and Total Force have been computed from the horizontal force and inclination by the formule

$$
\begin{aligned}
& Z=X \tan \theta \\
& R=X \sec \theta
\end{aligned}
$$

where
$X=$ horizontal component of the earth's magnetic force.
$Z=$ vertical component of the earth's magnetic force.
$R=$ total magnetic intensity.
$\theta=$ magnetic inclination.
All values of force are expressed in English units; namely, in terms of grains, feet, and seconds. If it is desired to have them in metric units, expressed in terms of milligrams, millimeters, and seconds, they must be multiplied by 0.46108 .

The observations of magnetic declination, inclination, and force are given in full at the end of this section, but for convenience of reference the following abstract of them is inserted here.

Taking the means we obtain the final values of the magnetic elements at each station, as follows:

ObSERVATIONS OF MaGNETIC DECLINATION.

Magnetic Declination.
Gosport, Va. October 30, 1865.

These observations were made before noon.
Chronometer $0^{\mathrm{h}} 4^{\mathrm{m}} 40^{8.2}$ fast of local mean time.
Magnetic Declination.
St. Thomas. November 16, 1865.

Circle reading to -2
Circle reading to magnet $\quad 0^{\circ} 111^{\prime} .0$ O $14^{\prime} .5$

$\Delta \times, \frac{1}{2}$ scale division \quad.	.	.	.	-0.1	48
Sun's azimuth 0.8	49	35.1			

Sen -
Tarnetic declination 04.5 W .03 .2 W.
These observations were made after noon.
Chronometer $1^{\text {b }} 30^{\text {m }} 19^{\text {² }} .4$ slow of local mean time.

REPORT ON

Magnetic Declination.
Ceara, December 13, 1865.
These observations were made after noon.
Chronometer $2^{\mathrm{h}} \quad 26^{\mathrm{m}} \quad 3^{2^{\mathrm{s}} \text {. } 1 \text { slow of local mean time. }}$
Magnetic Declination.
Pernambuco, December 23, 1865 .

Telescope Direct. \mid Telescope Reversed.

Equation of time	$:$	$:$	$:$	$:$
t	$:$	$:$	$:$	$:$

Bahia, December $27,186{ }_{5}$.
Magnetic Declination.
Rio Janeiro, January 9, 1866.

	Circle Readings.		Reading of Magnet.
	Vernier	$2^{\circ} 36^{\prime \prime} 45^{\prime \prime}$	(I) Scale erect . (2) Scale inverted $(1)-(2)=\Delta \ldots \ldots$
			Transit of Sun's
	Vernier Vernier Mean .	$\begin{array}{rrrr}111 & 42 & 30 \\ 112 & 4 & 15\end{array}$	Ist limb 2d limb Mean
		$\begin{array}{llll}111 & 53 & 23\end{array}$	
	Vernier Vernier Mean . Vernier		
		$\begin{array}{lll}111 & 37 & 15\end{array}$	Mean 4 57 20.0
			Keading of Magnet.
		$237 \quad 0$	(1) Scale inverted . . . $78^{\mathrm{a}} .3$ (2) Scale erect. 79.8^{2}

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^1]

[^2]Magnetic Declination.
Monte Video, January 18, 186

These observations were made after noon.
Chronometer $\mathrm{o}^{\mathrm{s}} 9^{\mathrm{m}} 4^{6} .4$ slow of local mean time.
Magnetic Declination. Valparaiso, March 19, 1866.

Magnetic Declination.
Valpáraiso, April 7, 1866.

Telescope Direct. \mid Telescope Reversed.

These observations were made after noon, and prior to taking them the telescope was
Chronometer or ${ }^{\mathrm{h}} 9^{\mathrm{m}} 2 \mathrm{I}^{\mathrm{a}} .9$ slow of local mean time.
Magnetic Declination.

Equation of time

[^3]

Magnetic Declination. San Lorenzo Island, April 26, 1866.

	Circle Readings.			Reading of Magnet.				
:		$23^{\circ} 13^{\prime} 33^{\prime \prime \prime}$		(I) Scale erect (2) Scale inverted $(1)-(2)=\Delta$		$\begin{aligned} & 80^{d} .7 \\ & 77.3 \end{aligned}$		
				+ 3.4				
				Transit of Sun's				
						$\substack{\text { rst } \\ \text { zd limb } \\ \text { limb } \ldots \ldots . . . \\ \text { Mean } \\ \hline}$	$\begin{array}{ll} \mathbf{I}^{\mathrm{h}} & 37^{\mathrm{m}} \\ & 26^{\mathrm{s}} \\ 40 & 23 \end{array}$	
		$33{ }^{1}$	9 -	$1{ }^{1} 3^{8} 54.5$				
	Vernier Vernier Mean Vernier \qquad \qquad			Ist limb. 2d limb Mean	$\begin{array}{lll} \mathbf{1}^{\mathrm{h}} & \begin{array}{l} 42^{\mathrm{m}} \\ \\ 45 \\ 45 \\ 10 \end{array} \\ \hline 1 \mathrm{~s} \end{array}$			
		$329^{\circ} 33^{\prime \prime} 30^{\prime \prime}$ 2226 o				4340.5		
				Reading of Magnet.				
				(I) Scale inverted (2) Scale erect. $(2)-(I)=\Delta$		$\begin{aligned} & 57^{\mathrm{d}} .0 \\ & 100.5 \end{aligned}$		
				+ 43.5				
						Telescope Direct.	Telescope Reversed.	
E.	: \quad.		:					
Circle reading to magnet $\Delta \times \frac{1}{2}$ scale division Sun's azimuth				$\begin{gathered} 23^{\circ}{ }^{13 \prime} \cdot 5 \\ \\ \\ \\ 138^{\prime}+21.0 \\ \hline \end{gathered}$	$\begin{array}{r} 22^{\circ}+26^{\prime} .0 \\ +51 \\ 13^{6} 51.1 \\ \hline \end{array}$			
Sum $180^{\circ}+$ circle reading to sun				$\begin{array}{cr}161 & 38.6 \\ 151 & 9.0\end{array}$	$\begin{array}{rr} 160 & 8.0 \\ 149 & 38.5 \end{array}$			
Magnetic declination .				10 29.6 E.	10 29.5 E.			

These observations were made after noon.
Chronometer $\mathrm{o}^{\text {h }} \mathrm{II} \mathrm{I}^{\mathrm{m}} I 3^{\mathrm{s}} \cdot 5$ fast of local mean time.

MAGNETICOBSERVATLONS.
Magnetic Declination.
Payta, May 7, 1866.

[^4]Chronometer $0^{\text {h }} 20^{m} \quad 16^{8} .9$ fast of local mean time.

Magnetic Declination.

Magnetic Declination. Magdalena Bay, June 9, 1866.

	Circle Readings.		Reading of Magnet.		
	Vernier .	$16^{\circ} 9^{\prime} 30^{\prime \prime}$	(I) Scale erect (2) Scale inverted $(1)-(2)=\Delta$		79.4 78.7
					+ 0.7
			Transit of Sun's		
	VernierVernierMean .	$\begin{array}{lll}277 & 48 & 30 \\ 278 & 52 & 30\end{array}$	Ist limb ad limb. Mean	$\begin{array}{cc} 6^{\mathrm{b}} \quad \begin{array}{c} 42^{\mathrm{m}} \\ 40^{\mathrm{s}} \\ 45 \quad \end{array}{ }^{6} 8 \end{array}$	
		$278 \quad 20 \quad 30$		6	358.0
	Vernier Vernier Mean.		Ist limb 2d limb. Mean	$\begin{array}{ccc} 6^{\mathrm{k}} & 46^{\mathrm{m}} & 45^{\mathrm{a}} \\ 47 & 43 \end{array}$	
		278.4515		6	714.0
			Reading of Magnet.		
	Vernier .	163330	(I) Scale inverted (2) Scale erect . .		$\begin{gathered} 88 a .2 \\ 69.7 \end{gathered}$
			(2) $-(1)=\Delta$. .		- 18.5

Telescope Direct. Telescope Reversed.

These observations were made after noon.
Chronometer $2^{\text {b }} 50^{m} 32^{\text {m }} .5$ fast of local mean time.

OBSERVATIONS OF MAGNETIC INCLINATION.
Gosport, October 30, 1865. Needle A. I.
POLARITY OF MARKED END NORTH.
POLARITY OF MARKED END NORTH.

Magnetic Dip. Gosport, October 30, 1865. Needle A. I.								Magnetic Dip. Gosport, October 30, 1865. Needle A. 2.							
POLARITY OF MARKED END NORTH.								POLARITY OF MARKED END NORTH.							
circle east.				circle west.				Circle east.				circle west.			
Face East.		Face West.		Face East.		Face West.		Face East.		Face West.		Face East.		Face West.	
S.	N.														
70° 39^{\prime} 70 49 70 45	70° 22^{\prime} 70 30 70 27	71° 3^{\prime} 71 4 71 5	70° 44^{\prime} 70 44 70 47	109° 58^{\prime} 10 10 110 15	109° 55^{\prime} 110 25 10 30	109° 10 109 109 109 19	109 $6^{\prime \prime}$ 109 37 109 50	71° 47^{\prime} 72 5 71 59	71° 41^{\prime} 71 51 71 46	700 4^{\prime} 70 6 70 14	69° 48^{\prime} 69 52 69 60		109 109 $\mathbf{4 1}^{\prime}$ 109 34 109 $\mathbf{2 1}$	1110° 81 III 8 IIO. 59	$\begin{array}{ll}111^{\circ} & 30^{\prime} \\ 111 & 24 \\ 111 & 18\end{array}$
- 44	$70 \quad 26$	7 l	$70 \quad 45$	10 8	110 17	109 26	10944	71 57 71 46				109 10	109 32	1115	11124
								$70 \quad 56$				$\underbrace{}_{19} 109$	$110 \quad 18$		
POLARITY OF MARKED END SOUTH.								POLARITY OF MARKED END SOUTH.							
circle west.				circle east.				Circle west.				Circle east.			
Face West.		Face East.		Face West.		Face East.		Faoe West.		Face East.		Face West. -		Face East.	
S.	N.														
$\begin{array}{ll} 111^{\circ} & 52^{\prime} \\ 111 & 55 \\ 112 & 25 \end{array}$			$\begin{array}{ll} 112^{\circ} & 29^{\prime} \\ 112 & 26 \\ 112 & 25 \end{array}$	68° 49^{\prime} 68 47 68 37	68° 24^{\prime} 68 27 68 17	$\begin{array}{ll} 68^{\circ} & 45^{\prime} \\ 68 & 30 \\ 68 & 3 \mathrm{I} \end{array}$	$\begin{array}{ll} 68^{\circ} & 26^{\prime} \\ 68 & 13 \\ 68 & 20 \end{array}$	$\begin{array}{ll} 110^{\circ} & 29^{\prime} \\ 110 & 33 \\ 110 & 41 \end{array}$	$\left.\begin{array}{ll} 110^{\circ} & 40^{\prime} \\ 1100 & 54 \\ 110 & 23 \end{array} \right\rvert\,$		$\begin{aligned} & 110^{\circ} \\ & 119 \\ & 111 \\ & 112 \\ & 117 \\ & 12 \end{aligned}$	$\begin{aligned} & 69^{\circ} \quad 57^{\prime} \\ & 69 \\ & 69^{\prime} . \\ & 69 \end{aligned}$	$\begin{array}{ll} 69^{\circ} & 37^{\prime} \\ 69 & 20 \\ 69 & 18 \end{array}$	$\begin{array}{lr} 70^{\circ} & 0^{\prime} \\ 70 & 7 \\ 70 & 10 \end{array}$	$\begin{aligned} & 69^{\circ} 37^{\prime} \\ & 69 \\ & 69 \\ & 69 \end{aligned} 45$
11156	1121	12 Io	$112 \quad 27$	$68 \quad 44$	68 23	$68 \quad 39$	$68 \quad 20$	ro 34	$110 \quad 39$	$\begin{array}{llllll}110 & 50 & 111 & 7\end{array}$		6946	$69 \quad 25$	$70 \quad 6$	6941
	${ }^{3} 112$	\int_{10}^{112}	18 68		34 68	3^{68}	30			${ }_{47}^{110}$	58	29		${ }_{45} \quad 69 \quad 54$	
Resulting Dip: $+69^{\circ} 2 \mathrm{~T}^{\prime}$										Resu	ulting Dip	$\mathrm{p}:+69^{\circ}$	54^{\prime}		

Magnetic Dip. Gosport, October 30, 1865 . Needle A. I.								Magnetic Dip. Gosport, October 30, 1865. Needle A. 2.								
POLARITY OF MARKED END NORTH.								POLARITY OF MARKED END NORTH.								
circle east.				circle west.				Circle east.				circle west.				
Face East.		Face West.		Face East.		Face West.		Face East.		Face West.		Face East.		Face West.		
S.	N.															
70° 39^{\prime} 70 49 70 45	$\begin{aligned} & 70^{\circ} \quad 22^{\prime} \\ & 70 \\ & 70 \\ & 70 \end{aligned}$	71° 3^{\prime} 7 I 4 71 5	$\begin{array}{ll} 70^{\circ} & 44^{\prime} \\ 70 & 44 \\ 70 & 47 \end{array}$	$109^{\circ} 58^{\prime}$ $110 \quad 10$ ifo 15	$\begin{array}{ll} 109^{\circ} & 55^{\prime} \\ \text { 1IO } & 25 \\ \text { rio } & 30 \end{array}$	$\begin{array}{ll} 109^{\circ} & 25^{\prime} \\ 109 & 19 \\ 109 & 33 \end{array}$	$\begin{array}{ll} \mathrm{KO}^{\circ} & 46^{\prime \prime} \\ \mathrm{IO9} & 37 \\ \mathrm{Iog} & 50 \end{array}$	$\begin{array}{lr} 71^{\circ} & 47^{\prime} \\ 72 \\ 71 & 5 \\ 71 & 59 \end{array}$	$\begin{aligned} & 71^{\circ} 4 I^{\prime} \\ & 7151 \\ & 7146 \end{aligned}$	$\begin{array}{\|cr\|}70^{\circ} & 4^{\prime} \\ 70 & 6 \\ 70 & 14\end{array}$	$\begin{aligned} & 69^{\circ} 48^{\prime} \\ & 69 \\ & 69 \\ & 69 \\ & 50 \end{aligned}$	$\begin{array}{rr} 109^{\circ} & 17^{\prime} \\ 109 & 13 \\ 109 & 0 \end{array}$	$\begin{array}{ll} 100^{\circ} & 41^{\prime} \\ 109 & 34 \\ 109 & 21 \end{array}$	$\begin{array}{lr} 11 \mathrm{II}^{\circ} & 81 \\ \mathrm{III} & 8 \\ 1 \mathrm{IIO} & 59 \end{array}$	$\begin{array}{lll} 111^{\circ} & 30^{\prime} \\ \text { III } & 24 \\ \text { III } & 18 \end{array}$	
$70 \quad 44$	$70 \quad 26$	71	$70 \quad 45$	Iro 8	11017	109 26	10944			70 8 69 56		109 10	0932	III 5	III 24	
$70 \quad 45$ $70 \quad 25$ $109 \quad 54$								$70 \quad 56$				$\underbrace{109}_{19}$	110	18^{111}	15	
POLARITY OF MARKED END SOUTH.								POLARITY OF MARKED END SOUTH.								
circle west.				circle east.				Circle west.				circle east.				
Face West.		Face East.		Face West.		Face East.		Faoe West.		Face East.		Face West. -		Face East.		
S.	N.															
$\begin{array}{lll} 111^{\circ} & 52^{\prime} \\ 111 & 55 \\ 112 & 2 \end{array}$	112 4^{\prime} 112 8 112 17 1	\|rr	r	$\begin{array}{ll} 112^{\circ} & 29^{\prime} \\ 112 & 26 \\ 112 & 25 \end{array}$	68° 49^{\prime} 68 47 68 37	68° 24^{\prime} 68 27 68 17	68° 45^{\prime} 68 30 68 4 I	$\begin{array}{ll} 68^{\circ} & 26^{\prime} \\ 68 & 13 \end{array}$ $68 \quad 20$	$\begin{array}{lll} \text { rio } & 29^{\prime} \\ \text { rio } & 33 \\ \text { rio } & 41 \end{array}$	$\left\|\begin{array}{ll} 110^{\circ} & 40^{\prime} \\ 110 & 54 \\ 110 & 23 \end{array}\right\|$		$\left.\begin{array}{cc} 110^{\circ} & 59^{\prime} \\ 111 \\ 111 & 12 \\ 117 \end{array} \right\rvert\,$	69° 67^{\prime} 69 41 69 10	$\begin{array}{ll} 69^{\circ} & 37^{\prime} \\ 69 & 20 \\ 69 & 18 \end{array}$	$\begin{array}{cc} 70^{\circ} & 0^{\prime} \\ 70 & 7 \\ 70 & \mathbf{1 0} \end{array}$	$\begin{aligned} & 69^{\circ} 37^{\prime} \\ & 69 \\ & 69 \\ & 69 \end{aligned} 45$
11156	112	112 Io	$1 \begin{array}{ll}12 & 27\end{array}$	$68 \quad 44$	$68 \quad 23$	$68 \quad 39$	$68 \quad 20$	${ }^{110} 34$	$110 \quad 39$	IIO 50	111	6946	$69 \quad 25$	706	6941	
1	${ }_{112}$	\int_{10}^{112}	18		34 68	3^{68}	30		$3^{36} \text { 110 }$	47^{110}	$\begin{array}{ll} 58 & \\ & 69 \end{array}$			$4{ }^{69}$	54	
			sulting Dip	$\mathrm{p}:+69^{\circ}$	$2 \mathrm{I}^{\prime}$					Resu	ulting Dip	$\mathrm{p}:+69^{\circ}$	54^{\prime}			

Note.-It will be observed that at some stations only one end of the needle was read. In such cases the other end of the needle was hidden by the cross-bar which supports the agate planes.

Magnetic Dip, St. Thomas, November 13, 1865, Needle A. 2.								Magnetic Dip. St. Thomas, November $1_{3}, 1865$, Needle A. 1.							
POLARITY OF MARKED END NORTH.								POLARITY OF MARKED END SOUTH.							
circle east.				circle west.				circle east.				circle west.			
Face Esst.		Face West.		Face East.		Face West.		Face East.		Face West.		- Face East.		Face West.	
S.	N.														
$\begin{array}{ll} 53^{\circ} & 37^{\prime} \\ 53 & 55 \\ 53 & 55 \end{array}$	$\begin{aligned} & 53^{\circ} \quad 18 \\ & 53 \\ & 53 \\ & 53 \\ & 53 \end{aligned}$	$\begin{array}{ccc} 5_{5} 2^{\circ} & 54^{\prime} \\ 53 & 0 \\ 53 & 5 \\ \hline \end{array}$	$\begin{array}{ll} 52^{\circ} & 30^{\prime} \\ 5^{2} & 34 \\ 5^{2} & 35 \\ \hline \end{array}$	$\begin{aligned} & 127^{\circ} \\ & \begin{array}{l} 23^{\prime} \\ 127 \\ 127 \\ 127 \\ \hline 12 \\ \hline \end{array} \\ & \hline \end{aligned}$	$\begin{cases}1227^{\circ} & 37^{\prime} \\ 127 \\ 127 & 40 \\ 120\end{cases}$	$\left[\begin{array}{ll} 128^{\circ} & 17^{\prime} \\ 128 & 15 \\ 128 & 8 \\ \hline \end{array}\right.$	$\begin{array}{ll} 128^{\circ} & 36 \\ 128 & 35 \\ 128 & 31 \\ \hline \end{array}$	$\begin{array}{ll} 50^{\circ} & 2^{\prime} \\ 50 & 35 \\ 50 & 50 \\ \hline \end{array}$	$\begin{array}{ll} 49^{\circ} & 44^{\prime} \\ 50 & 15 \\ 50 & 24 \end{array}$	$\begin{array}{\|l\|l\|} \hline 50^{\circ} & 12^{\prime} \\ 50 & 15 \\ 50 \\ 50 & 16 \\ \hline \end{array}$	$\begin{array}{ll} 49^{\circ} & 52^{\prime} \\ 49 & 45 \\ 49 & 53 \\ \hline \end{array}$	$\begin{cases}130^{\circ} & 111^{\prime} \\ 315 & 15 \\ 130 & 11 \\ \hline 30 & 10\end{cases}$	$\left\{\begin{array}{lll} 130^{\circ} & 30^{\prime} \\ 130 & 30 \\ 133^{\circ} & 24 \\ \hline \end{array}\right.$	$\begin{array}{\|l\|l\|} 130^{\circ} & 12^{\prime} \\ 130 \\ 130 & 6 \\ 130 & 11 \\ \hline \end{array}$	$\begin{aligned} & 130^{\circ} \\ & \begin{array}{l} 28 \\ 130 \\ 130 \\ 130 \\ 130 \\ \hline \end{array} \\ & \hline \end{aligned}$
5349	$53 \quad 29$	53 -	5233	127 '26	$127 \quad 40$	12813	12834	$50 \quad 29$	50	5014	4950	$13{ }^{\circ} 12$	13028	$130 \quad 10$	$130 \quad 26$
$53 \quad 12$ $127 \quad 58$								5010				$\begin{array}{llll} 130 & 20 & 130 \\ 55 & & 130 & 19 \end{array}$			
POLARITY OF MARKED END SOUTH.								POLARITY OF MARKED END NORTH.							
circle west.				circle east.				circle west.				circle east.			
Face West.		Face East.		Face West.		Face East.		Face West.		Face East.		Face West.		Face East.	
S.	N.														
$\begin{array}{ll} 127^{\circ} & 11^{\prime} \\ 127 \\ 127 & 13 \\ 127 & 16 \end{array}$	$\begin{array}{ll} 127^{\circ} & 30^{\prime} \\ 127 & 32 \\ 127 & 33 \end{array}$	1270	$\begin{aligned} & 128^{\circ} 17^{\prime} \\ & 128 \\ & 128 \\ & 128 \\ & 18 \end{aligned}$	$\begin{array}{lll} & & \\ 53^{\circ} & 24^{\prime} \\ 53 & 35 \\ 53 & 26 \\ \hline \end{array}$	$\begin{aligned} & 53^{\circ} \\ & \hline 13^{\prime} \\ & 53 \\ & 53 \\ & 53 \\ & 53 \end{aligned}$	$\begin{aligned} & 5^{50} 35^{\prime} \\ & 52 \\ & 55^{\prime} \\ & 52^{2} \end{aligned} 3^{0} 8$	$\begin{array}{cc} 5^{2} & 8^{\prime \prime} \\ 52 & 11 \\ 52 & 11 \end{array}$	$\begin{array}{ll} 1124^{\circ} & 4^{\prime} \\ 124 & 22 \\ 124 & 22 \\ 124 & 35 \end{array}$	$\begin{array}{ll} 125^{\circ} & 0^{\prime} \\ 124 \\ 124 & 37 \\ 124 & 5^{2} \end{array}$	$\begin{aligned} & 125^{\circ} \\ & \hline 166 \\ & 125 \\ & 125 \\ & 125 \\ & \hline 18 \\ & \hline \end{aligned}$	$\begin{array}{ll} 125^{\circ} & 50^{\prime} \\ 125 & 51 \\ 125 & 56 \end{array}$	$\begin{aligned} & 55^{\circ} \\ & 53^{\prime} \\ & 55 \\ & 5^{\prime} \end{aligned}$	$\begin{array}{l\|ll} \mathbf{1}^{\prime} & 55^{\circ} & 11^{\prime} \\ \hline & 55 & 24 \\ \hline & 55 & 24 \\ & \end{array}$	$\begin{aligned} & 55^{\circ} \\ & 58^{\prime} \\ & 55 \\ & 55 \\ & 55 \\ & \hline 20 \end{aligned}$	$\begin{aligned} & 55^{\circ} 25^{\prime} \\ & 54 \\ & 50 \\ & 54 \\ & \hline \end{aligned}$
$127 \quad 13$	$127 \quad 32$	127 8	$128 \quad 16$	$53 \quad 28$	$53 \quad 12$	5235	528	124 33	$124 \quad 50$	$125 \quad 37$	$125 \quad 52$	5547	55^{21}	$55 \quad 23$	$55 \quad 3$
127	${ }^{23} 127$	45^{128}		\qquad 53	52	5^{52}	22	124	${ }^{42}{ }^{125}$	$12514 \quad 55 \quad 5 \quad 50$					
Resulting Dip: $+49^{\circ} 33^{\prime}$								Resulting Dip: $+49^{\circ} 3^{6 \prime}$							
of Dip Circle $26^{\circ} 16^{\prime}$								Azimuth of Dip Circle $26^{\circ} 16^{\prime}$							

St. Thomas, November 16, 1865.
Needle A. i.

POLARITY OF Marked end north.											
circle east.					circle west.						
Face East.		Face West.			Face Fast.			Face West.			
S.	N.	S.		N.	S.	N.	.	S	s.		
$\begin{array}{ll} 52^{\circ} & 166^{\prime} \\ 5^{2} & 26 \\ 52 & 40 \end{array}$	$$			$\begin{aligned} & 52^{\circ} 40^{\prime} \\ & 5^{2} 44^{47} \\ & 52 \end{aligned}$	$\begin{array}{ll}1288^{\circ} \\ 128 \\ 128 \\ 128 & 28 \\ 128 & 30\end{array}$	$\begin{aligned} & 1128^{\circ} \\ & 1288 \\ & 128 \end{aligned}$				$\begin{aligned} & 1180^{\circ} \\ & 128 \\ & 128 \end{aligned}$	5 1 7
$52 \quad 27$	52	53	5	5244	$128 \quad 31$	128	47	127	47	128	4
52	52	35		55	128		128	17	127	55	

POLARITY OF MARKED END SOUTH.

polarity of marked end south.
circle east. ctrcle west.

Face East.		Face West.		Face East.		Face West.	
S.	N.	S.	N.	S.	N.	S.	N.
$\begin{aligned} & 49^{40} 9^{42} \\ & 49 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 49^{\circ} 21^{\prime} \\ & 49 \\ & 49 \\ & 49 \\ & 49 \end{aligned}$	$\begin{array}{ll} & \begin{array}{ll} & 10^{\prime} \\ 51 \\ 51 & 5 \\ 50 & 47 \end{array} \end{array}$	$\begin{array}{lll} 49^{\circ} & 55^{\prime} \\ 50 & 42 \\ 50 & 19 \end{array}$		$\begin{array}{ll} 131^{\circ} & 15^{\prime} \\ 13131 & 3 \\ 131 & 31 \end{array}$	$\begin{aligned} & 130^{\circ} \\ & \begin{array}{ll} 130 & 56^{\prime} \\ 130 & 37 \\ 130^{4} \end{array} \end{aligned}$	$\begin{array}{ll} 130^{\circ} & 4 \\ 130 & 47 \\ 130 & 57 \\ 130 & 66 \end{array}$
4946	4922	$50 \quad 40$	5018	13045	131 10	13045	13057
49	$34{ }_{50}$		${ }^{29}$	${ }_{34}^{130}$	${ }^{57}$	5^{130}	51

polarity of marked end north.

Magnetic Dip. Salute Islands, November 28, 1865. Needle A. 2.								Magnetic Dip. Salute Islands, Nov. 28, 1865. Needle A.i.							
Polarity of marked end north.								POLARITY OF MARKED END NORTH.							
circle enst.				circle west.				cricle east.				circle west.			
Face East.		Face West.		Face East.		Face West.		Face East.		Face West.		Face East.		Face West.	
S.	N.														
$\begin{aligned} & 35^{\circ} 28^{\prime} \\ & 35 \\ & 35 \\ & 35 \\ & \hline 55 \end{aligned}$	$\begin{aligned} & 35^{\circ} \\ & 35^{\prime} \\ & 35 \\ & 35 \\ & 35 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 30^{\circ} \quad 377^{\prime \prime} \\ & 34445 \\ & 34 \quad 30 \end{aligned}$	34° 10^{\prime} 34 15 33 53	$\left(\left.\begin{array}{l} 145^{\circ} \\ \hline 17^{\prime} \\ 145 \\ 145 \\ 147 \\ 17 \end{array} \right\rvert\,\right.$		$\begin{aligned} & 145^{\circ} 11^{\prime \prime} \\ & 145 \\ & 145 \\ & 145 \\ & \hline 145 \\ & \hline 45 \end{aligned}$	$\begin{aligned} & 145^{\circ} \\ & 145 \\ & 145 \\ & 146 \\ & 146 \\ & \hline \end{aligned}$	$\begin{array}{rr} 38^{\circ} & 57^{\prime} \\ 39 & 0 \\ 38 & 58 \\ \hline \end{array}$	$\begin{array}{ll} & 38^{\circ} \\ 35^{\prime} & 35 \\ 38 & 25 \\ 38 & 14 \end{array}$	$\left\|\begin{array}{ll} 380 & 50 \\ 39 & 25 \\ 39 & 16 \end{array}\right\|$	$\begin{array}{ll} 38^{\circ} & 15^{\prime} \\ 38 & 50 \\ 38 & 50 \end{array}$		$\begin{aligned} & 1{ }^{142^{\circ}} \begin{array}{ll} 13^{\prime} \\ 142 \\ 142 & 45 \\ 142 & 26 \end{array} \end{aligned}$	$\begin{array}{ll} 144^{\circ} & 40^{\prime} \\ 140^{\prime} & 3 I^{\prime} \\ 14 \mathrm{I} & 30^{\circ} \end{array}$	$\begin{array}{ll} 142^{\circ} & 2^{\prime} \\ 141 \\ 141 & 53 \\ 141 & 53 \end{array}$
3544	$35 \quad 20$	$34 \quad 37$	$34 \quad 6$	$1 \begin{array}{ll}145 & 13\end{array}$	$145 \quad 26$	145	$145 \quad 57$	$38 \quad 58$	$3^{8} \quad 25$	39 ro	$3^{88} \quad 3^{8}$	142 13	14231	14154	1415
35	34	5^{34}	$\begin{aligned} & 22 \\ & +\quad 34 \\ & \hline \end{aligned}$		20 145	3^{145}	40	3^{8}		\int_{48}^{38}	54		${ }^{22}$	4^{141}	45
POLARITY OF'MARKED END SOUTH.								POLARITY OF MARKED END SOUTH.							
circle west.				circle east.				circle west.				circle east.			
Face	West.	Face East.		Face West.		Face East.		Face West.		Face East.		Face West.		Face East.	
s.	N.														
$\begin{aligned} & 145^{\circ} \\ & 145 \\ & 145 \\ & 145 \\ & 145 \\ & \hline 10 \end{aligned}$		$\begin{aligned} & 145^{\circ} \\ & \hline 151 \\ & 145 \\ & 145 \\ & 145 \\ & \hline 15 \\ & \hline \end{aligned}$	$\begin{array}{ll} 145^{\circ} & 45^{\prime} \\ \mathbf{1 4 5} & 55 \\ \mathbf{1 4 5} & 55 \end{array}$	$\begin{array}{lll} 35^{\circ} & 45^{\prime} \\ 35 & 45^{\prime} \\ 35 & 4 \mathbf{1} \end{array}$	$\begin{array}{ll} 35^{\circ} & 15^{\prime} \\ 35 & 12 \\ 35 & 15 \end{array}$	$\begin{array}{ll} 35^{\circ} & 15^{\prime} \\ 34 & 45 \\ 34 & 4^{\circ} \\ \hline \end{array}$	$\begin{array}{r} 34^{\circ} \\ 34^{\prime} \\ 34 \\ 34 \\ 34 \\ \hline \end{array}$	$\left\lvert\, \begin{array}{rl} 150^{\circ} & 55^{\prime} \\ 500 & 50 \\ 150 & 45 \\ \hline \end{array}\right.$			$\begin{array}{lll} 149^{\circ} & 23^{\prime} \\ 149 & 33 \\ 149 & 37 \end{array}$	$\begin{array}{ccc} 3^{\circ} & 6 \\ 30 \\ 30 & 0 \\ 30 & 10 \end{array}$	$\begin{array}{ll} 29^{\circ} & 39^{\prime} \\ 29 & 34 \\ 29 & 45 \end{array}$	$\begin{array}{ll} 3 \mathbf{l}^{\circ} & 5^{\prime} \\ 3 \mathbf{1} & \mathbf{o}^{\prime} \\ \mathbf{3 1}^{\prime} & 29 \end{array}$	$\begin{array}{ll} 30^{\circ} & 34^{\prime} \\ 30 \\ 30 & 39 \\ 30 & 55 \end{array}$
$145 \quad 34$	$145 \quad 56$	$145 \quad 25$	$145 \quad 52$	3542	$35 \quad 14$	$34 \quad 53$	3425	$150 \quad 50$	(15122)	14910	14931	$30 \quad 5$	2939	3115	
145	${ }^{45} 145$	4^{145}	$39 \text {. }$	$\int_{40} 35$		3^{34}	39	151	${ }^{4} 15$	12^{149}	20 30	7^{29}	30		59
Resulting Dip: +											suulting Dip	+ 34°			

Ceara, December r_{3}, 1865 . Needle A. 2.
POLARITY OF MARKED END SOUTH.

POLARITY OF MARKED END SOUTH.							
circle east.				circle west.			
Face East.		Face West.		Face East.		Face West.	
S.	N.	S.	N.	S.	N.	S.	N.
17° 30^{\prime} 17 31 17 45 1		$\begin{array}{cr}16^{\circ} & 5^{\prime} \\ 15 & 5^{2} \\ 15 & 52\end{array}$		(rr ${ }^{163^{\circ}} 20{ }^{\prime}$		$\begin{array}{ccc}166^{\circ} & 50 \\ 165 & 30 \\ 166 & 0\end{array}$	
$17 \quad 35$		$15 \quad 56$		16315		$166 \quad 7$	
1645				2		41	

POLARITY OF MARKED END NORTH.

circle west.				circle east.			
Face West.		Face East.		Face West.		Face East.	
S.	N.	S.	N.	S.	N.	S.	N.
		$\begin{array}{lll}153 & 55^{\prime} \\ 154 & 20 \\ 154 & 40\end{array}$		$\begin{array}{cc}27^{\circ} & 10^{\prime} \\ 27 & 10 \\ 27 & 0\end{array}$		$\begin{array}{cc}27^{\circ} & 10^{\prime} \\ 27 & 0 \\ 27 & 20\end{array}$	
154		$\begin{array}{\|cc\|}154 & 18\end{array}$		$27 \quad 7$		27 10	
15		13		28		9	

Magnetic Dip.
Ceara, December 13,1865 . Needle A. 1.
POLARITY OF MARKED END SOUTH.
POLARITY OF MARKED END NORTH.
Resulting Dip: $+21^{\circ}{ }^{26 \prime}$

Magnetic Dip.
Bahia, December 27,1865 . Needle A. 2 . Magnetic Dip.
Bahia, December 27,1865 . Needle A. 2 .
POLARITY OF MARKED END NORTH.

POLARITY OF MARKED END NORTH.							
circle east.				Circle west.			
Face East.		Face West		Face East.		Face West.	
S.	N.	S.	N.	S.	N.	S.	N.
$11{ }^{\circ}$ 30^{\prime} 11 30 12 0 18		110° 30 II 10 II IO 18		168° 55^{\prime} 169 10 1696 10 169		$\begin{array}{ll}170^{\circ} & 20 \\ 169 & 55 \\ 170 & 25\end{array}$	
11 40		1117		$169 \quad 5$		17013	
1128				54		39	

POLARITY OF MARKED END SOUTH.

circle west.				circle east.			
Face West.		Face East.		Face West.		Face East.	
S.	N.	S.	N.	S.	N.	S.	N.
3° 15^{\prime} 3 35 3 5		10 1 50 1 55 1 55		$\begin{array}{rrr}1777^{\circ} & 25^{\prime} \\ 178 & 20 \\ 178 & 5\end{array}$		$\begin{array}{cc}179 & 20^{\prime} \\ 179 & 10 \\ 179 & 10\end{array}$	
$\begin{array}{ll}3 & 18\end{array}$		153		$177 \quad 57$		17913	
-2 35			-	0		835	

Resulting Dip: $+4^{\circ} 3^{\prime \prime}$
Resulting Dip: $+4^{\circ} \mathbf{1 7}^{\prime}$
POLARITY OF MARKED END SOUTH.

circle east.

| $3 \quad 56$ | |
| :--- | :--- | :--- | :--- |

$\begin{array}{llll}3 \quad 56 & 176\end{array}$
Bahia, December 27,1865 . Needle A. 1.
POLARITY OF MARKED END NORTH.

4

POLARITY OF MARKED END NORTH.								POLARITY OF MARKED END NORTH.							
circle east.				CIRCLE WEst.				circle east.				CTRCLE west.			
Face East.		Face West.		Face East.		Face West.		Face East.		Face West.		Face East.		Face West.	
S.	N.														
	$\begin{array}{\|cc\|} \hline 167^{\circ} & 0 \\ 166 \\ 167 & 45 \\ 10 \end{array}$		$\begin{array}{\|l\|l\|l\|l\|l\|l\|} 1680^{\prime} \\ 1 \\ 169 & 0 \\ 169 & 15 \end{array}$		$\begin{array}{ll} \mathrm{II}^{\circ} & 20 \\ \mathrm{I}_{2} & 30 \\ 12 & 30 \end{array}$		$\begin{array}{\|l\|l\|} \hline 1^{\circ} & 35^{\prime} \\ \text { 11 } & 35 \\ \text { II } & 30 \end{array}$		$\left.\begin{array}{\|ccc\|} 175^{\circ} & 15^{\prime} \\ 175 & 50 \\ 175 & 45 \end{array} \right\rvert\,$		$\left\|\begin{array}{cc} 174^{\circ} & 20 \\ 174 \\ 174 & 15 \\ 174 & 0 \end{array}\right\|$		$\left.\begin{array}{cc} 4^{\circ} & 00 \\ 5 & 30 \\ 5 & 35 \\ 5 & 0 \end{array} \right\rvert\,$		$\begin{array}{cc} 7^{0} & \text { rot } \\ 7 & 0 \\ 6 & 0 \end{array}$
	166		$168 \quad 55$		$12 \quad 7$		1133		$175 \quad 37$		174		58		655
								$174 \quad 55$				62			
POLARITY OF MARKED END SOUTH.								POLARITY OF MARKED END SOUTH.							
ctrcle west.				circle east.				CIrcle west.				circle east.			
Face West.		Face East.		Face West.		Face East.		Face West.		Face East.		Face West.		Face East.	
s.	N.	S.	N.	S.	N.	S.	N .	S.	N.	S.	N.	S.	N.	s.	N.
	$\begin{array}{ll} 100 & 15^{\prime} \\ \text { II } & 15 \\ \text { II } & 15 \end{array}$		$\begin{array}{ll} \mathbf{c}^{20} & 5^{\prime} \\ 12 & 0^{\prime} \\ 12 & 50 \end{array}$		$\begin{array}{l\|} \hline 1680^{\circ} \\ 155^{\prime} \\ 169 \\ 169 \\ 169 \\ \hline \end{array}$		$\begin{array}{\|l\|l} 167^{\circ} & 45^{\prime} \\ 168 & 58 \\ 168 & 10 \end{array}$		$\begin{array}{ll} 18^{\circ} & 5^{\prime} \\ 18 & 15 \\ 18 & 25 \\ \hline \end{array}$		$\begin{array}{ll} 18^{80} & 101 \\ 18 \\ 18 & 5 \\ 18 & 15 \\ \hline \end{array}$		$\begin{array}{ll} 162^{\circ} & 10 \prime \\ 162 & 10^{\prime} \\ 161 & 15 \\ 164 & 45 \\ \hline \end{array}$		$\left\lvert\, \begin{array}{ll} 162^{\circ} & 55^{\prime} \\ 163 & 15 \\ 163 & 35 \end{array}\right.$
	112		1228		169		1688		$18 \quad 15$		18 10				$163 \quad 15$
$\text { II } 45$			1135168					$18 \quad 12$			$17 \quad 46$	$162 \quad 39$			
Resulting Dip: $-11^{\circ}{ }^{46 \prime}$								Resulting Dip: $-1 \mathrm{I}^{\circ} 4^{8 \prime}$							

Magnetic Dip.
Monte Video, January 18,1866
Monte Video, January 18, 1866. Needle A. I.
polarity of marked end north.

POLARITY OF MARKED END NORTH.							
circle east.				circle west.			
Face East.		Face West.		Face East.		Face West.	
s.	N.	S.	N.	S.	N.	S.	N.
			$\begin{array}{ll} 149^{\circ} & 20 \\ 149 \\ 150 & 30 \\ 150 & 10 \end{array}$		$\begin{array}{ll}32^{\circ} & 10 \\ 31 \\ 30^{\prime} \\ 32 \\ 32 & 0\end{array}$		$\begin{array}{rrrr}31^{\circ} & 0 \\ 31 & 0 \\ 33^{1} & \circ \\ 30\end{array}$
	$149 \quad 7$		14940		3150		317
14923			$3{ }^{1}$		$3{ }^{1}$		

Resulting Dip: $-30^{\circ} 5^{\prime}$

Magnetic Dip.

Monte Video, January 18, 1866. Needle A. 2.
POLARITY OF MARKED END NORTH.

circle east.				circle west.			
Face East.		Face West.		Face East.		Face West.	
S.	N.	S.	N.	S.	N.	S.	N.
			149° 20^{\prime} 148 50 I49 0		31° 0^{\prime} 31 10 31 10 31^{1} 20		31° 0^{\prime} 31 40 31 40 31 40
	1497		1493		$31 \quad 10$		$31 \quad 27$
	- 149	5	31	7	31	9	

POLARITY OF MARKED END SOUTH.

Face West.		Face East.		Face West.		Face East.	
S.	N.	S.	N.	S.	N.	S.	N.
	32° 0^{\prime} 32 0 31 50 31 50		31° 0^{\prime} 31^{\prime} 20 3 I 40				$149^{\circ} 10^{\prime}$ $\begin{array}{ll}149 & 30 \\ 149 & 50\end{array}$
	31 57		$31 \quad 20$		149		$149 \quad 30$
$3 \mathrm{3} \quad 39$			3 T	8	149	2	

Resulting Dip: $-3 \mathrm{I}^{\circ} 8^{\prime}$
Magnetic Dip.
Sandy Point, February 7, 1866. ${ }^{\text {Magnetic Dip. }}$ Needle A. 2.

POLARITY OF MARKED END SOUTH.

Magnetic Dip. Sandy Point, February 7, 1866. Needle A. i.								Magnetic Dip. Sandy Point, February 7, 1866. 'Needle A. 2.								
POLARITY OF MARKED END NORTH.								POLARITY OF MARIKED END NORTH.								
circle east.				CIRCLE WESt.				circle east.				circle west.				
Face East.		Face West.		Face East.		Face West.		Face East.		Face West.		Face East.		Face West		
S.	N.	S.		N.												
$\begin{array}{cc} 128^{\circ} & 10 \\ 128 & 0 \\ 128 \\ 128 \\ 10 \end{array}$	128° 0^{\prime} 127 45 128 0	128° 15^{\prime} 127 1 128 30 1 128 20 1	1280 $10{ }^{\prime}$	52° 35^{\prime} 52 45 5^{2} 45		$5^{\circ} 2^{\circ}$ 45^{\prime} 52 45 52 55 ${ }^{2}$	$\begin{array}{ll} 52^{\circ} & 45^{\prime} \\ 52 & 50 \\ 52 & 45 \end{array}$	124° 45^{\prime} 124 55 125 15	124 124 124 45 124 45		I26 11^{\prime}	55° 30^{\prime} 55 10 55 30	56° 0^{\prime} 55 5 56 0	$\begin{array}{lr} 55^{\circ} & 0^{\prime} \\ 54 & 45 \\ 55 & 0 \end{array}$	54° 55 54	$\begin{gathered} 0 \\ 50^{\prime} \\ 10 \\ 0 \end{gathered}$
$128 \quad 7$	$127 \quad 55$	128 2	$127 \quad 52$	52 42	$52 \quad 37$	$52 \quad 48$	$52 \quad 47$	124	$124 \quad 45$	126	12547	$55 \quad 23$	55 42	$54 \quad 55$	54	40
128	127	59^{127}		22^{52}		44^{52}	4^{8}	124	$5^{5^{2}} 125$	22^{125}	53	54		$\text { 10 } \quad 54$	47	
		LARITY	OF MAR	KED EN	ND SOUT					LARITY	OF MAR	RKED EN	ND SOUT	TH.		
	CIRCLE	E WEST.			CIRCLE	EASt.			CIRCLE	WEST.			CIRCLE	EAST.		
Face	West.	Face	East.	Face	West.	Face	East.	Face	West.	Face	East.	Face	West.	Face	East	
S.	N.	S.		N.												
$\begin{array}{ll} 57^{\circ} & 5^{\prime} \\ 57 & 15 \\ 57 & 15 \end{array}$	57° o^{\prime} 57 5 57 5	$\left\|\begin{array}{ll} 57^{\circ} & 40^{\prime} \\ 57 & 40 \\ 57 & 45 \end{array}\right\|$	$\begin{array}{ll} 57^{\circ} & 35^{\prime} \\ 57 & 35 \\ 57 & 40 \\ 57 \end{array}$	$123^{\circ} 10^{\prime}$ $\begin{array}{ll}123 & 20 \\ 123 & 45\end{array}$ $123 \quad 45$	123 15 123 123 10 123 20	$123^{\circ} 0^{\prime}$ 123 IO 123 Io	$\begin{array}{rr} 122^{\circ} & 55^{\prime} \\ 123 & 0 \\ 123 & 0 \end{array}$	$\begin{array}{lll} 56^{\circ} & 15^{\prime} \\ 56 & 15 \\ 56 & 20 \end{array}$	56° 10^{\prime} 56 45 56 15	$\begin{array}{ll} 54^{\circ} & 35^{\prime} \\ 54 & 25 \\ 54 & 35 \\ \hline \end{array}$	$\begin{array}{ll} 54^{\circ} & 30^{\prime} \\ 54 & 40 \\ 54 & 45 \\ \hline \end{array}$	$\begin{array}{ll} 124^{\circ} & 35^{\prime} \\ 124 & 40 \\ 123 & 55 \\ \hline \end{array}$	$\begin{array}{rr} 125^{\circ} & 0^{\prime} \\ \mathrm{I} 24 & 30 \\ 123 & 45 \end{array}$	$\left\|\begin{array}{cc} 126^{\circ} & 0 \\ 126 & 15 \end{array}\right\|$ $125 \quad 50$		$\begin{array}{r} 0 \\ 30^{\prime} \\ 35 \\ 45 \\ \hline \end{array}$
$57 \quad 12$	$57 \quad 3$	$57 \quad 42$	$57 \quad 37$	$123 \quad 25$	12315	$123 \quad 7$	12258	$\begin{array}{lll}56 & 17\end{array}$	$\begin{array}{ll}56 & 23\end{array}$	$54 \quad 32$	$54 \quad 38$	$124 \quad 23$	$124 \quad 25$	$126 \quad 2$		
57	75	24^{57}				i^{123}	3	56	20	$\begin{array}{r} 54 \\ 27 \end{array}$	35	10	$\begin{array}{ll} 24 & \\ & 125 \end{array}$	7^{125}	50	
Resulting Dip: - $54^{\circ} 5^{\prime}$								Resulting Dip: - $55^{\circ} \quad \mathbf{2}^{\prime}$								

Resulting Dip: $-55^{\circ} \quad 2^{\prime}$
Sandy Point, February 7, 1866. Needle A. i.
POLARITY OF MARKED END NORTH.

POLARITY OF MARKED END SOUTH.

Magnetic Dip. .
Valparaiso, March 19, i866. Needle A. i.
POLARITY OF MARKED END NORTH.

circle east.				circle west.			
Face East.		Face West.		Face East.		Face West.	
s.	N.	s.	N.	S.	N.	S.	N.
	$\begin{aligned} & 149^{\circ} \\ & \text { In } \\ & 150 \\ & 140 \\ & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & 148^{\circ} \\ & \begin{array}{l} 140^{\prime} \\ 148 \\ 148 \\ 18 \\ 20 \\ 20 \end{array} \end{aligned}$		$\begin{array}{ll} 30^{\circ} & 15^{\prime} \\ 30 & 30 \\ 30 & 30 \end{array}$		$\begin{aligned} & 3^{\circ} 30^{\prime} \\ & 3^{1} \\ & 3^{1} \\ & 3^{1} \end{aligned}$
	$149 \quad 55$		$148 \quad 33$		3025		3133
149 14 30				$30 \quad 59$			

polarity of marked end south.							
circle west.				circle east.			
Face West.		Face East.		Face West.		Face East.	
S.	N.	s.	N.	S.	N.	S.	N.
	$\begin{aligned} & 39^{\circ} \\ & 30^{\prime} \\ & 39 \\ & 39 \\ & 39 \\ & 30 \end{aligned}$		$\begin{array}{ll} 40^{\circ} & 5^{\prime} \\ 40 & 15 \\ 40 & 15 \end{array}$				$\begin{aligned} & 140^{\circ} \\ & \mathrm{I}^{\circ} 0^{\prime} \\ & 140 \\ & 140 \\ & 10 \end{aligned}$
	3933		4013		1410		$140 \quad 25$
$39 \quad 33 \quad 39$					140		

Resulting Dip: $-35^{\circ}{ }^{28}$

	Magnetic Dip. Valparaiso, March 29, 1866. Needle A. 2.							Magnetic Dip. Valparaiso, March 29, 1866. Needle A. i.							
POLARITY OF MARKED END NORTH.								POLARITY OF MARKED END NORTH.							
circle mast.				circle west.				circle east.				circle west.			
Face East.		Face West.		Face East.		Face West.		Face East.		Face West.		Face East.		Face West.	
s.	N.	S.	N.	s.	N.	s.	N .	S.	N.	S.	N.	S.	N.	s.	N .
	$\begin{array}{ll} 146^{\circ} & 10 \\ 145 & 10 \\ 144 & 10 \\ 144 \end{array}$		$\begin{aligned} & 145^{\circ} \\ & 15^{\prime} \\ & 145 \\ & 145 \\ & 145 \\ & 15 \end{aligned}$		$\begin{array}{ll} 35^{\circ} & 45^{\prime} \\ 35 & 40 \\ 35 & 40 \end{array}$		$\left.\begin{array}{lll} 35^{\circ} & 20^{\prime} \\ 35 & 30 \\ 35 & 30 \end{array} \right\rvert\,$		$\left\|\begin{array}{cc} 149^{\circ} & 30^{\prime} \\ 150 & 0 \\ 150 & 15 \end{array}\right\|$		$\left\|\begin{array}{ll} 149^{\circ} & 15^{\prime} \\ 1488 \\ 148 & 40 \\ 148 \end{array}\right\|$		$\begin{array}{\|l\|l\|} 30^{\circ} & 101 \\ 30 & 20 \\ 30 & 40 \end{array}$		$\begin{aligned} & 31^{\circ} 45^{\prime} \\ & 3^{\prime} 55^{\prime} \\ & 31^{1} \end{aligned}$
	$1 \begin{array}{ll}145 & 23\end{array}$		145		$35 \quad 45$		$35 \quad 27$		14955		$1{ }_{148} \quad 52$		$30 \quad 23$		3145
$\begin{array}{llllll}145 & 22 & 35 & 7 & 35 & 36\end{array}$								$14924 \quad 30$				31.4			
POLARITY OF MARKED END SOUTH.								POLARITY OF MARKED END SOUTH.							
circle west.				circle east.				circle west.				circle east.			
Face West.		Face East.		Face West.		Face East.		Face West.		Face East.		Face West.		Face East.	
S.	N.														
	$\begin{aligned} & 3^{6^{\circ}}{ }^{60} 0^{\prime} \\ & 37 \\ & 30 \\ & \hline \end{aligned}$		$\begin{aligned} & 35^{\circ} 3^{\prime} \\ & 35 \\ & 35 \\ & 35 \\ & \hline 55 \\ & \hline \end{aligned}$		$\left\|\begin{array}{ll} 144^{\circ} & 15^{\prime} \\ 145 & 0 \\ 144 & 20 \end{array}\right\|$.			$\begin{array}{ll} 40^{\circ} & 40^{\prime} \\ 40 & 15 \\ 40 & 10 \\ \hline \end{array}$		$\begin{array}{lll} 40^{\circ} & 20 \prime \\ 40 & 20 \\ 40 & 20 \\ \hline \end{array}$				$\begin{aligned} & 140^{\circ} \\ & 15^{\prime} \\ & 140 \\ & 10 \\ & 140 \\ & \hline 10 \\ & \hline \end{aligned}$
	$36 \quad 53$		3540		1144		14418		$40 \quad 22$		$40 \quad 20$		1410		$140 \quad 28$
$\begin{array}{llllll}36 & 17 & 35 & 46 & 144 & 45\end{array}$													140	44	
Resulting Dip: $-35^{\circ}{ }^{27}$								Resulting Dip: $-35^{\circ} 34^{\prime}$							

Magnetic Dip.
Valparaiso, April 7, 1866. Needle A. 2.
polarity of marked end north.

POLARITY OF MARKED END NORTI.								POLARITY OF MARKED END NORTH.							
circle east.				circle west.				circle east.				circle west.			
Face East.		Face West.		Face East.		Face West.		Face East.		Face West.		Face East.		Face West.	
S.	N.														
	$\begin{aligned} & 144^{\circ} \\ & 10^{\prime} \\ & 145 \\ & 144 \\ & 140 \\ & 30 \end{aligned}$		$\begin{aligned} & 144^{\circ} 30^{\prime} \\ & \text { I45 } 30^{\prime} \\ & \mathrm{I} 45 \\ & \mathrm{IO} \end{aligned}$		$\begin{aligned} & 36^{\circ}{ }^{40} 40^{\prime \prime} \\ & 36 \\ & 35 \\ & \hline 50 \end{aligned}$		$\begin{array}{ll} 35^{\circ} & 10^{\prime} \\ 35 & 10 \\ 34 & 40 \end{array}$		$\left\|\begin{array}{c} 150^{\circ} \\ 10^{\prime} \\ 150 \\ 150 \\ 150 \\ 150 \end{array}\right\|$		$\begin{array}{r} 149^{\circ} \\ \hline 100 \\ 149 \\ 149 \\ 150 \\ 1 \\ \hline \end{array}$		$\begin{array}{lll} 30^{\circ} & 20 \\ 30 & 20 \\ 31 & 25 \\ 31 & 30 \end{array}$		
	14440		145		$36 \quad 12$		$35 \quad 0$		$150 \quad 23$		149		3045		328
$144 \begin{array}{ll}51 & \left.\right\|_{55}{ }^{22}\end{array}$								149.47				3^{127}			
polarity of marked end south.								POLARITY OF MARKED END SOUTH.							
circle west.				circle east.				circle west.				circle east.			
Face West.		Face East.		Face West.		Face East.		Face West.		Face East.		Face West.		Face East.	
s.	N.	s.	N .	s.	N.										
	$\begin{aligned} & 33^{\circ}{ }^{\circ} \quad 20^{\prime} \\ & 3^{\prime} \\ & 36 \\ & 3^{40} \\ & \hline \end{aligned}$		[rr33° 40^{\prime} 35 35 0 35 0				$\begin{aligned} & 145^{\circ} 4^{\prime \prime} \\ & 144 \\ & 144.45 \\ & 145 \\ & \hline 15 \end{aligned}$		$\begin{array}{lll} 39^{\circ} & 50^{\prime} \\ 39 & 30 \\ 39 & 40 \\ \hline \end{array}$		$\begin{array}{\|cc\|} \hline 40^{\circ} & 15^{\prime} \\ 40 \\ 40 & 15 \\ \hline \end{array}$				$\begin{aligned} & 140^{\circ} 20^{\prime} \\ & 140 \\ & 140 \\ & 100 \\ & 100 \\ & \hline \end{aligned}$
	$36 \quad 25$		$34 \quad 53$		$144 \quad 30$		1145		13940		40 \%		1141		$140 \quad 27$
								3955			35	$140 \quad 47$			
Resulting Dip: $-35^{\circ} 23^{\prime}$								Resulting Dip: $-35^{\circ}{ }^{2} 6^{\prime}$							

polarity of marked end south.
Resulting Dip: $-35^{\circ}{ }^{26^{\prime}}$

POLARITY OF MARKED END NORTH.								POLARITY OF MARKED END NORTH.							
circle east.				circle west.				circle enst.				circle west.			
Face East.		Face West.		Face East.		Face West.		Face East.		Face West.		Face East.		Face West.	
s.	N.														
	$\left[\left.\begin{array}{ll} 144^{\circ} & 20^{\prime} \\ 144 \\ 144 & 40 \\ 144 & 50 \end{array} \right\rvert\,\right.$		$\left\|\begin{array}{ll} 145^{\circ} & 20 \\ 145 \\ 145 & 0 \\ 144 & 50 \end{array}\right\|$		$\begin{array}{rr} 36^{\circ} & 11^{\prime} \\ 3^{6} & 0 \\ 35 & 45 \\ \hline \end{array}$		$\begin{array}{ll} 350^{\circ} & 40^{\prime} \\ 35 & 40 \\ 35 & 40 \\ \hline \end{array}$		$\left\|\begin{array}{\|c\|} 149^{\circ} \\ 150^{\prime} \\ 150 \\ 150 \\ 150 \end{array}\right\|$		$\left\|\begin{array}{ll} 150^{\circ} & 10 \prime \\ 148 \\ 149 & 50 \\ 149 & 0 \end{array}\right\|$		$\left.\begin{array}{ll} 30^{\circ} & 40^{\prime} \\ 30 & 20 \\ 30 & 10 \\ 30 & \end{array} \right\rvert\,$		$\begin{array}{ll} 3 \mathrm{I}^{\circ} & 50^{\prime} \\ 3^{\mathrm{I}} & 40 \\ 3^{1} & 40 \end{array}$
	1144		145		$35 \quad 58$		3540		150		$149 \quad 20$		$30 \quad 23$		3143
$144 \begin{array}{lllll}50 & 35 & 30 & 35\end{array}$								$14940 \quad 30$				31			
POLARITY OF MARKED END SOUTH.								POLARITY OF MARKED END SOUTH. ${ }^{\text { }}$							
circle west.				circle east.				circle west.				circle east.			
Face West.		Face East.		Face West.		Face East.		Face West.		Face East.		Face West.		Face East.	
S.	N.	S.	N.	S.	N .	s.	N.								
	$\begin{array}{lll} 30^{6} & 50^{\prime} \\ 36 & 50 \\ 36 & 50 \\ \hline \end{array}$								$\begin{array}{lll\|} \hline 39^{\circ} & 30^{\prime} \\ 39 & 30 \\ 39 & 40 \end{array}$		$\begin{aligned} & 41^{\circ} \\ & \hline 0^{20} \\ & 40 \\ & 40 \\ & 40 \\ & \hline \end{aligned}$		$\begin{array}{ll} 140^{\circ} & 50^{\prime} \\ 140^{141} & 10 \\ 140 & 40 \end{array}$		$\begin{aligned} & 140^{\circ} \\ & 13^{\prime} \\ & 140 \\ & 100 \\ & 140 \\ & 10 \end{aligned}$
	$36 \quad 50$		$35 \quad 30$		14428		145		3933		$40 \quad 35$		$140 \quad 53$		$140 \quad 17$
${ }_{36} 10$			$35 \quad 4^{2} \quad 144 \quad 47$					40			3945	$45 \quad 140 \quad 35$			
Resulting Dip: $-35^{\circ} 3^{6 \prime}$								Resulting Dip: $-35^{\circ} 29^{\prime}$							

Valparaiso, April I3, $\begin{aligned} & \text { Magnetic Dip. } \\ & \text { 866. }\end{aligned}$
Valparaiso, April r_{3}, I866. Needle A. i.
POLARITY OF MARKED END NORTH.

circle east.				circle wfst.			
Face East.		Face West.		Face East.		Face West.	
S.	N.	S.	N.	S.	N.	S.	N .
	$\begin{array}{lll}150^{\circ} & 15^{\prime} \\ 150 & 10 \\ 150 & 10\end{array}$		148° 50 1488 1488 148 50 18		$30^{\circ} 15^{\prime}$		$31^{\circ} 50^{\prime}$
	$150 \quad 12$		$148 \quad 50$				
14931			30		31	2	

CIRCLE west.				circle east.			
Face West.		Face East.		Face West.		Face East.	
S.	N.	S.	N.	S.	N.	S.	N.
	$40^{\circ} 5^{\prime}$		$40^{\circ} 30^{\prime}$		$140^{\circ} 40^{\prime}$		$139^{\circ} 5^{\prime}$
$40 \quad 18$			40	2	140		

Resulting Dip: $-35^{\circ} 40^{\prime}$
POLARITY OF MARKED END NORTH.
circle east.

folarity of marked end south.

Circle west.				circle east.			
Face West.		Face East.		Face West.		Face East.	
S.	N.	S.	N.	S.	N.	S.	N.
	$\begin{aligned} & 360 \\ & 36 \\ & 36 \\ & 36 \\ & 36 \end{aligned}$		$\begin{aligned} & 34^{\circ} \quad 50 \\ & 3450 \\ & 34 \\ & 30 \\ & 50 \end{aligned}$		$\begin{array}{lll} 144^{\circ} & 30 \\ 144 & 30 \\ 144 & 50 \\ 10 \end{array}$		
	$36 \quad 3$		$34 \quad 50$		114437		14430
$35 \quad 26$							
Resulting Dip: $-35^{\circ} \mathbf{1 2}{ }^{\prime}$							

Magnetic Dip.
San Lorenzo Island, April 26, 1866. Needle A. 2.
Magnetic Dip.
San Lorenzo Island, April 26 , 1866. Needle A. 2. POLARITY OF MARKED END NORTH.

$$
\begin{array}{l|l}
\text { ISSM GTOAD } & \cdot \text { 'ISVA GTDAD }
\end{array}
$$

CIRCLE EASt.				cricle west.			
Face East.		Face West.		Face East.		Face West.	
s.	N.	s.	N.	s.	N.	s.	N.
	$172^{\circ} 20^{\prime}$		$175^{\circ} 35^{\prime}$		$8^{\circ} 10^{\prime}$		$6^{\circ} 20^{\prime}$.
$173 \quad 57$			6	715			

POLARITY OF MARKED END SOUTH.

Resulting Dip: $-6^{\circ} 29^{\prime}$
POLARITY OF MARKED END SOUTH.

Resulting Dip: $-6^{\circ}{ }^{28 \prime}$
Magnetic Dip.

		RIT	OF MAR	ED	NOR		
	CIRCLE				CIRCLE	Est.	
			West.				West.
s.	N.	s.	N.	S.	N.	S.	N.
	$\circ^{\circ}{ }^{\prime}$		$+\mathrm{r}^{\circ} 15^{\prime}$		$\circ^{\circ} 35^{\prime}$		$\mathrm{I}^{\circ} 5^{\prime}$
+o37			-0 18		$-1 \quad 13$		

circle west.				circle east.			
Face West.		Face East.		Face West.		Face East.	
s.	N.	s.	N.	S.	N.	S.	N.
	${ }^{13^{\circ} 10}$		$12^{\circ} 40^{\prime}$		$167^{\circ} 30^{\prime}$		$168^{\circ} 20$
	12	55	-12		167	5	
Resulting Dip: - $6^{\circ}{ }^{28}$							

polarity of marked end nortif.

POLARITY OF MARKED END SOUTH.

Magnetic Dip. Payta, May 7, 1866. Needle A. 2.											Mag	tic Dip.			
										Payta, M	y 7 ,	866. Nee	le A		
polarity of marked end north.								POLARITY OF MARKED END NORTH.							
circle east.				circle west.				circie east.				Circte west.			
Face East.		Face West.		Face East.		Face West.		Face East.		Face West.		Face East.		Face West.	
S.	N.	s .	N.	S.	N.										
$4^{\circ} 30^{\prime}$		$4^{\circ} 20^{\prime}$		$176^{\circ} 45^{\prime}$		$175^{\circ}{ }^{\prime}$		$110^{\circ} 15^{\prime}$	$10^{\circ} 30^{\prime}$		$\underline{169}{ }^{\circ} 45^{\prime}$			$169^{\circ} 50^{\prime}$	
425				$17 \quad 175 \quad 52$				1052				$32 \quad 169 \quad 48^{\circ}$			
POLARITY OF MARKED END SOUTH.								POLARITY OF MARKED END SOUTH.							
circle west.				circle east.				circle west.				circle east.			
Face West.		Face East.		Face West.		Face East.		Face West.		Face East.		Face West.		Face East.	
S.	N.	s.	N.	s.	N .	S.	N.								
17448			$175^{\circ} 35^{\prime}$		$6^{\circ} \quad 5^{\prime}$	 ${ }^{\circ} 40^{\prime}$ 22		$1^{\circ} 10^{\prime}$		$\circ^{\circ} 10^{\prime}$	$1779^{\circ} \quad 20^{\prime}$	$179^{\circ} \quad 20 \prime$		$0^{\circ} 45^{\prime}$	
			517					-0 40 - $\mathrm{O}^{-0} 19 \quad+02$							
Resulting Dip: $+4^{\circ} 47^{\prime}$								Resulting Dip: $+5^{\circ} 9^{\prime}$							

POLARITY OF MARKED END NORTH.

POLARITY OF MARKED END SOUTH.

Resulting Dip: $+4^{\circ} 47^{\prime}$
Magnetic Dip.
Flamenco Island, Panama Bay, May 14, 1866. Needle A. i.
Magnetic Dip.
Flamenco Island, Panama Bay, May 14, 1866. Needle A. i.

$s s^{\text {tor }}$				- ${ }^{\text {g }} 9$			
			, sz ${ }_{\text {d }}$ tri		0t 098		102 098
${ }^{\mathrm{N}}$'s	'n	s	${ }^{\mathrm{N}}$	s	${ }^{\mathrm{N}}$	s
${ }^{759} \mathrm{M}$ 200es				${ }_{750} \mathrm{M}^{202 v_{\text {d }}}$			
'isam aтวa							
Hildon ang axyavin to klizviod							

Flamenco Island, Panama Bay, May 14, 1866. Needle A. 2. POLARITY OF MARKED END NORTH.

circle east.				circle west.			
Face East.		Face West.		Face East.		Face West.	
s.	N.	S.	N.	S.	N.	S.	N.
$32^{\circ}{ }^{\circ}{ }^{\prime}$	$32^{\circ} \mathrm{Io}$	$31^{\circ} 35^{\prime}$	$31^{\circ}{ }^{\circ}$	$14^{\circ}{ }^{\circ} 5^{\prime}$	$14^{\circ}{ }^{\circ} 4^{\prime}$	$148^{\circ} 15^{\prime}$	$14^{8}{ }^{\circ} \mathrm{Io}$
32	25	3^{1}	18	148	45	148	12

$3^{1} 42$
POLARITY OF MARKED END SOUTH.

$$
\begin{aligned}
& \text { 'LSVI stoxio } \\
& \hline
\end{aligned}
$$

Face West.		Face East.		Face West.		Face East.	
s.	N.	s.	N.	S.	N.	S.	N.
$148^{\circ} 45^{\prime}$	$148^{\circ} 40^{\prime}$	$14^{8 \circ} 30$	$148^{\circ} 20^{\prime}$	$32^{\circ} 45^{\prime}$	$32^{\circ} \mathrm{I} 0^{\prime}$	$32^{\circ} 30^{\prime}$	$32^{\circ}{ }^{\prime}$
	${ }^{42} 148$		25	${ }_{54}{ }^{32}$	283	22^{32}	15

Resulting Dip: $+3^{1^{\circ}} 4^{\prime}$
POLARIT OF MARKED END NORT.
Magnetic Dip.
Acapulco, May 30, 1866. Needle A. 2.
POLARITY OF MARKED END NORTH. circle wist.

POLARITY OF MARKED END NORTH.							
crrcle east.				cibcle west.			
Face East.		Face West.		Face East.		Face West.	
s.	N.	S.	N.	s.	N.	s.	N.
$43^{\circ} \mathrm{Io}$	$42^{\circ} 40^{\prime}$	$43^{\circ} 40^{\prime}$	$43^{\circ} 15^{\prime}$	$137^{\circ} 40^{\prime}$	$137^{\circ} 35^{\prime}$	$137^{\circ} 3{ }^{\prime}$	$137^{\circ} 20^{\prime}$
	55	${ }_{12} 43$	28.	$\underbrace{137}_{50}$	${ }^{37} \quad 1$	3^{137}	25

POLARITY OF MARKED END SOUTH.

circle west.				circle east.			
Face West.		Face East.		Face West.		Face East.	
s.	N.	S.	N.	s.	N.	s.	N.
144 ${ }^{\circ} 5^{\prime}$	$144^{\circ} 10^{\prime}$	$143^{\circ} 20$	$143^{\circ} 15^{\prime}$	$36^{\circ} 45^{\prime}$	$3^{6} \quad 15^{\prime}$	$37^{\circ} 20^{\prime}$	$36^{\circ} 50^{\prime}$
144		${ }_{45} 143$	18		3^{\prime}	${ }_{47}{ }^{37}$	5

Resulting Dip: $+39^{\circ} 49^{\prime}$

Magnetic Dip.

Acapulco, May 30, 1866 . Needle A. i.
polarity of marked end north.

San Diego Bay, June 15, 1866. Needle A. 2.
polarity of marked end north.

POLARITY OF MARKED END SOUTH.

circle west.				circle east.			
Face West.		Face East.		Face West.		Face East.	
s.	N.	S.	N.	S.	N.	s.	N.
$124^{\circ} 5^{\prime}$	$124^{\circ} 45^{\prime}$	$124^{\circ} 3{ }^{\circ} 1$	$124^{\circ} 30^{\prime}$	$56^{\circ} 20^{\prime}$	$55^{\circ} 50^{\prime}$	$5^{6}{ }^{20}$	$5^{60}{ }^{\prime}$
124	${ }^{47} \quad 124$	3^{124}	30	44	5 56	56	ı

Resulting Dip: $+57^{\circ} 5^{\prime \prime}$
Magnetic Dip.
San Diego Bay, June 15, 1866. Needle A. т.

circle east.				circle west.			
Face East.		Face West.		Face East.		Face West.	
S.	N.	S.	N.	S.	N.	S.	N.
$59^{\circ} 25^{\prime}$	$59^{\circ} \mathrm{o}^{\prime}$	$58^{\circ} 15^{\prime}$	$57^{\circ} 45^{\prime}$	$122^{\circ}{ }^{\prime}$	$121^{\circ} 55^{\prime}$	$122^{\circ} 40^{\prime}$	$122^{\circ} 4^{\prime}$
	1258	3^{58}	58	${ }^{121}$	57 122	18^{122}	40

circle west.					circle east.			
Face West.		Face East.			Face West.		Face East.	
S.	N.	S.		N.	S.	N.	s.	N.
$122^{\circ} 30^{\prime} \mid 122^{\circ} 200^{\prime}$		$123^{\circ} \alpha^{\prime} 123^{\circ}{ }^{\prime}$			$58^{\circ} 30^{\prime}$	$58^{\circ} 10^{\prime}$	$58^{\circ} 15^{\prime}$	$57^{\circ} 4{ }^{\prime}$
122	25	${ }_{42}{ }^{12}$	1	57			57	

Magnetic Dip.
polarity of marked end north.

polarity of marked end north.								POLARITY OF MARKED END NORTH.							
CIRCLE East.				circle west.				circle east.				circle west.			
Face East.		Face West.		Face East.		Face West.		Face East.		Face West.		. Face East.		Face West.	
S.	N.	s.	N .	s.	N.	s.	N.								
$63^{\circ} 3{ }^{\prime}$	$63^{\circ} 10^{\prime}$	$62^{\circ} 5^{\prime}$	$62^{\circ} 20^{\prime}$	${ }_{117}{ }^{\circ} 20^{\prime}{ }^{1}$	${ }_{117}{ }^{\circ} 10^{\prime}$	$117^{\circ} 40^{\prime}$	$117^{\circ} 3{ }^{\prime}$	63°	$63^{\circ} 40^{\prime}$	$64^{\circ} 40^{\prime}$	$64^{\circ} 15^{\prime}$	$116^{\circ} 40^{\prime}$	$116^{\circ} 33^{\prime}$	$11^{\circ}{ }^{20}$	$116^{\circ} 10^{\prime}$
	${ }^{20} \quad{ }_{62}$	${ }_{57}^{62}$	35 62		117		35		${ }^{20}{ }_{63}$	$\begin{aligned} & 64 \\ & 54 \end{aligned}$	$27 \quad$ 63	${ }_{45}^{116}$	$35 \quad 116$	${ }_{25}^{116}$	
POLARITY OF MARKED END SOUTH.								POLARITY OF MARKED END SOUTH.							
circle west.				circle east.				circle west.				circle east.			
Face West.		Face East.		Face West.		Face East.		Face West.		Face East.		Face West.		Face East.	
S.	N.	s.	N .	s.	N.	s.	N .								
${ }^{1188^{\circ} 20^{\prime}}$	$11^{\circ} 20^{\prime}$	$117^{\circ} 5^{\prime}$	$117^{\circ} 30^{\prime}$	$62^{\circ} 3{ }^{\prime}$	$62^{\circ}{ }^{\prime}$	${ }^{\prime} 63^{\circ}{ }^{\prime}$	$62^{\circ} 40^{\prime}$	120°	${ }^{\prime} 1119^{\circ} 45^{\prime}$	120°	$120^{\circ} \mathrm{o}^{\prime}$	61° 10	60 45^{\prime}	$61^{\circ} 10^{\prime}$	$160^{\circ} 40^{\prime}$
	118	0^{117}	62		62				119	56	60			${ }_{56}^{60}$	
Resulting Dip: $+62^{\circ} 3{ }^{1}$								$\text { Resulting Dip: }+62^{\circ} 13^{\prime}$							

polarity of marked end south.
Resulting Dip: $+62^{\circ} 13^{\prime}$

polarity of marked end north.								POLARITY OF MARKED END NORTH.							
circle east.				circle west.				circle east.				circle west.			
Face East.		Face West.		Face East.		Face West.		Face East.		Face West.		Face East.		Face West.	
s.	N.														
$63^{\circ} 3{ }^{\prime}$	$63^{\circ} 10^{\prime}$	$62^{\circ} 5^{\prime}$	$62^{\circ} 20^{\circ}$	${ }^{117}{ }^{\circ}{ }^{0 \prime}{ }^{1}$	${ }_{117}{ }^{\circ} 10^{\prime}$	$117^{\circ} 40^{\prime}$	$117^{\circ} 3{ }^{\prime}$	63°	0^{\prime} 63 ${ }^{\circ} 40^{\prime}$	$64^{\circ} 40^{\prime}$	$64^{\circ} 15^{\prime}$	$116^{\circ} 40^{\prime}$	116 ${ }^{\circ} 3^{\prime}$	$11^{\circ}{ }^{20}$	$116^{\circ} 10^{\prime}$
	${ }^{20} \quad{ }_{62}$	57 62	35 62		117	$\left.\right\|_{25} 117$	35		$\begin{array}{lll} 3 & 20 & \\ & & \\ 63 \end{array}$	$\begin{aligned} & 64 \\ & 54 \end{aligned}$		${ }_{45}^{116}$	35	${ }_{25}^{116}$	
POLARITY OF MARKED END SOUTH.								POLARITY OF MARKED END SOUTH.							
circle west.				circle east.				circle west.				circle east.			
Face West.		Face East.		Face West.		Face East.		Face West.		Face East.		Face West.		Face East.	
S.	N.														
${ }_{1188^{\circ} 20^{\prime}}$	$118^{\circ} 20$	$117^{\circ} 5^{\prime}$	$117^{\circ} 30^{\prime}$	$62^{\circ} 3{ }^{\prime}$	$62^{\circ}{ }^{\prime}$	${ }^{6} 63^{\circ}{ }^{\prime}$	$62^{\circ} 4{ }^{\prime}$	120°	$\mathrm{o}^{\prime} \mid 119^{\circ} 45^{\prime}$	$120^{\circ} \mathrm{o}$	$120^{\circ} \mathrm{o}^{\prime}$	61° 10	600 45^{\prime}	$6 \mathrm{r}^{\circ} 1 \mathrm{O}^{\prime}$	$60^{\circ} 40^{\prime}$
	${ }^{20} 1$	0^{117}	62						$19 \begin{array}{ll} 19 & 52 \\ & \\ & 119 \end{array}$		60			${ }_{56}^{60}$	
Resulting Dip: $+62^{\circ} 3^{1^{\prime}}$								$\text { Resulting Dip: }+62^{\circ} 13^{\prime}$							

Magnetic Dip.
U.S. Naval Observatory, Washington, Nov. r, 1866. Needle A. I. U.S. Naval Observatory, Washington, Nov. r, r866. Needle A. 2.

POLARITY OF MARKED END SOUTH.

Resulting Dip: $+72^{\circ} 13^{\prime}$
Magnetic Dip. POLARITY OF MARKED END NORTH.

$$
\text { -ISEM ATDYID } \quad \text { ・エSVI GTDצID }
$$

Face East.		Face West.		Face East.		Face West.	
S.	N.	S.	N.	S.	N.	S.	N.
$72^{\circ} 45^{\prime}$	$72^{\circ} 45^{\prime}$	$73^{\circ} \quad 15$	$73^{\circ} \quad 5^{\prime}$	$107^{\circ} 45^{\prime}$	${ }^{\circ} 30^{\prime}$	$107{ }^{\circ} 25^{\prime}$	$107^{\circ}{ }^{\circ}$
	4578	${ }_{57} \quad 73$	$10 \quad 7$	4^{107}	107	25^{107}	13

POLARITY OF MARKED END SOUTH.

Resulting Dip: $+71^{\circ} 51^{\prime}$
. CIRCLE west.

POLARITY OF MARKED END SOUTH.

Resulting Dip: $+72^{\circ} 4^{\prime}$ POLARITY OF MARKED END NORTH.

POLARITY OF MARKED END SOUTH.
Resulting Dip: $+7 \mathrm{I}^{\circ}{ }^{\circ} 55^{\prime}$

> CIRCLE WEST.
$70 \quad 46$

East.
N. $70^{\circ} 50^{\prime}$ 0

ம்
1

${ }_{1} 18$
7 9

- Lava atomic

HORIZONTAL INTENSITY. OBSERVATIONS OF VIBRATIONS.

Gosport, October 28, 1865.

No.	Time P. M.			No.	Time P. M.			Time of 150 vibrations.	
\bigcirc	$3^{\text {h }}$	$43^{\text {m }}$	6.4	150		$\mathrm{O}^{\text {m }}$			$57^{\text {. }} 2$
10	3	44	14.4	160	4	1	11.6	16	57.2
20	3	45	22.0	170		2	19.5	16	57.5
30	3	46	29.6	180		3	27.2	16	57.6
40	3	47	37.2	190		4		16	
50		48	45.6	200		5		16	57.2
						an		16	57.

Extreme scale readings,
At beginning 69.2-88.8
At end 72.1 - 85.2
Coefficient of torsion, $v=7.35$ div.
Temperature

- $73^{\circ} .0$

Time of one vibration . $6 . .783$

Gosport, October 28, 1865.
Inertia ring on magnet.

Gosport, October 30, 1865.

No.	Time.			No.	Time.			Time of 150 vibrations.	
0	$12^{\text {h }}$	17^{m}	5\%.1	150	$12^{\text {b }}$		$5^{83} .8$		$53^{8 .} 7$
10	12	18	12.8	160	12	35	7.8	16	55.0
20	12	19	20.7	170		36	16.4	16	55.7
30	12		28.5	180	12	37	24.0	16	55.5
40	12	$21^{\prime \prime}$	36.1	190	12	38	29.6	16	53.5
50	12	22	44.0	200	12	39	39.2	16	55.2
						an	. .	16	$54 \cdot 77$

Extreme scale readings,

St. Thomas, November I3, 1865.

St. Thomas, November $16,1865$.

No.	Time P. M.			No.	Time P. M.			Time of 150 vibrations.	
0	$12^{\text {h }}$	$13^{\text {m }}$	$3^{3} \cdot 4$	150		27^{m}	$15^{8.1}$		11
10	12	14	0.4	160	12	28	12.0	14	11.
20	12	14	57.2	170		29	8.5	14	11.
30		15	54.3	180		30	$5 \cdot 4$	14	11.
40		16	50.6	190		31	2.2	14	11.
50		17	47.8	200		31	59.0	14	11.
						ean		14	11.
	Extreme scale readings,								
	At beginning : : . . . 59.8								
	Coefficient of torsion, $v=4.25$ div.								
	Time of one vibration ${ }^{\circ}$. 5.676								

Horizontal Intensity. Observations of Vibrations.

St. Thomas, November 16, 1865.
Inertia ring on magnet.

No.	Time P. M.			No.	Time P. M.			Time of 150 vibrations.	
0	1*	$0^{\text {mo }}$	6.4	150		$18^{\text {m }}$	$20^{\prime} .5$	18 m	$14^{3} .1$
10	1	1	18.6	160			34. 1	18	15.5
20	1	2	31.8	170			46.6	18	14.8
30	1	3	45.1	180		21	59.8	18	14.7
40	1	4	58.1	190		23	12.9	18	14.8
50		6	11.4	200		24	26.2	18	14.8 .
					Me	18	14.78

Extreme scale readings,
At beginning 61.8-98.0
At end 63.5-96.2
Coefficient of torsion . . $v=5.22$ div.
Temperature $86^{\circ} .0$
Time of one vibration . . 7'. 299

Salute Islands, November 28, 1865.

No.	Time A. M.	No.	Time A. M.		Time of 150 vibrations.	
-	$9^{\text {h }} 43^{\text {m }} \quad 33^{\text {n }} .6$	150	$9^{\text {b }}$	$57^{\text {m }} 17^{\text {b }} \cdot 7$		$14^{1} .1$
10	$\begin{array}{llll}9 & 44 & 0.4\end{array}$	160	9	5814.2	14	13.8
20	$\begin{array}{llll}9 & 44 & 57.4\end{array}$	170		$\begin{array}{lll}59 & 11.4\end{array}$	14	14.0
30	$9 \quad 45 \quad 54.2$	180		- 8.6	14	14.4
40	$\begin{array}{lllllllllll}9 & 46 & 51.3\end{array}$	190		15.6	14	14.3
50	$\begin{array}{llll}9 & 47 & 48.3\end{array}$	200		22.5	14	14.2
				an.	14	14.13
	Extreme scale readings,					
	At beginning . . . $57.5-99.8$					
	At end $71.4-86.0$					
	Coefficient of torsion . . $v=3.72$ div.					
	Temperature $95^{\circ} .5$					
	Time of one vibration . . $5^{\circ} .6$					

Salute Islands, November 28, 1865.
Inertia ring on magnet.

Ceara, December 13, 1865.

No.	Time P. M.			No.	Time P. M.			Time of 150 vibrations.	
0	114		8.3	150	$11^{\text {h }}$	$49^{\text {m }}$	$36^{6.0}$		$27^{3} \cdot 7$
10		36	6.2	160		50	34.2	14	28.0
20		37	4.2	170		51	33.4	14	29.2
30	11	38	1.0	180	11		31.2	14	30.2
40		3^{8}	59.1	190			28.2	14	29.1
50			57.0	200		54	25.6	14	28.6

Extreme scale readings,
At beginning 59.0-101.0
At end 45.5-115.0
Coefficient of torsion : v $=5.40$ div.
Temperature 89°.o
Time of one vibration : . $5^{9} \cdot 792$
A strong breeze blowing, which made the vibrations somewhat unsteady.

Ceara, December 13, 1865.
Inertia ring on magnet.

No.	Time P. M.			No.	Time P. M.			Time of 150 vibrations.	
\bigcirc	$12^{\text {h }}$	$23^{\text {m }}$	$14^{3} .1$	150	$12^{\text {h }}$	$4{ }^{\text {m }}$	$55^{\text {b }} \cdot 5$		$37^{\text {\% }} \cdot 4$
10		24	28.8	160		43	6.1	18	37.3
20	12	25	43.8	170		44	20.0	18	36.2
30	12	26	59.0	180		45	33.6	18	34.6
40			13.6	190		46	49.2	18	35.6
50		29	28.2	200		48	3.8	18	35.6
					Me	n	-•	18	36.12

Extreme scale readings,

At beginning	104.8-58.8
At end	100.0-62.2
Coefficient of torsion	$=7.00 \mathrm{div}$.
Temperature	$89^{\circ} \cdot 5$
Time of one vibration	$7^{8 .} 441$

Pernambuco, December 23, 1865.

No.	Time A. M.	No.	Time A. M.		Time of 150 vibrations.	
\bigcirc	$6^{64} 50^{\text {m }} 16^{6} .8$	150	$7{ }^{\text {b }}$	$4^{\text {m }} 54^{\text {m }}$. 4		$37^{3} 6$
10	$\begin{array}{llll}6 & 51 & 15.7\end{array}$	160	7	552.6	14	35.9
20	$\begin{array}{llll}6 & 52 & 14.0\end{array}$	170	7	651.1	14	37.1
30	$6 \begin{array}{llll}6 & 53 & 12.6\end{array}$	180	7	749.6	14	37.0
40	$\begin{array}{llll}6 & 54 & 10.9\end{array}$	190		848.0	14	37.1
50	$55 \quad 9.6$	200		$9 \quad 46.4$	14	36.8
			Mea		14	37.08
	Extreme scale readings,					
	At beginning . . . ${ }_{\text {At }}$ 46.0- 115.0					
	Coefficient of torsion . . $v=4.27$ div.					
	Temperature $90^{\circ} .5$					

Horizontal Intensity. Observations of Vibrations.

Bahia, December 27, 1865 .

No.	Time A. M.			No.	Time A. M.			Time of 150 vibrations.	
0	$7^{\text {b }} 14^{\text {m }} \quad 5^{\text {s. }} 6$			$\begin{aligned} & 150 \\ & 160 \end{aligned}$	$7^{\text {h }} 28^{\text {mm }} 55^{5} .6$			$14^{\text {m }} 5^{\text {a }}$. 0	
10	7	15	4.9		7	29	55.0	14	50.1
20		716	4.1	170	7	30	54.4	14	50.3
30	7	17	3.6	180		31	53.6	14	
50		718	2.2	200	7	32	53.0	14	50.1
		19				33	52.2	14	50.0
									50.08

Extreme scale readings,

Bahia, December 27, 1865
Inertia ring on magnet.

No.	Time A. M.			No.	'rime A. M.			Time of 150 vibrations.	
-		$3^{\text {m }}$	$4^{3 .} 2$	150		$22^{\text {m }}$		$19^{\text {m }}$	
10	8		20.8	160		23	25.8	19	5.0
20	8	5	37.0	170		24	42.2	19	5.2
30	8	6	53.4	180		25		19	5.2
40		8	9.8	190		27		19	5.0
50		9	26.0	200		28	30.8	19	4.8

Extreme scale readings,
At beginning $57.9-100.4$
Coefficient of torsion : . $v=67.70$ div.
Temperature $97^{\circ} \cdot 5$
Time of one vibration . . $7^{3} .634$

Rio Janeiro, January 6, 1866.

Rio Janeiro, January 9, 1866.

No.	Time A. M.			No.	Time A. M.			Time of 150 vibrations.	
\bigcirc	$5^{\text {b }} 3{ }^{30 \mathrm{~m}} 11^{\text {a }}$. 8			$\begin{aligned} & 150 \\ & 160 \end{aligned}$	$5^{\text {b }} 45^{\text {m }} 20^{\text {a }} .2$			$\begin{array}{ll}15 \mathrm{~m} & 8.4\end{array}$	
10		31	12.4			46	21.0	15	
20		$\begin{array}{llll}5 & 32 & 13.0\end{array}$		170		47	21.5	15	8.5
30		33	13.4	180		48	22.1	15	8.7
40		3435		190		49	22.6	15	8.6
50				200		50	23.2	15	8.6
						an	.	15	8.57

Extreme scale readings,

At beginning	62.2-98.1
At end	69.2-91.2
Temperature	$80^{\circ} .5$
Time of one vibration	6.0571

Monte Video, January 18, 1866.

No.	Time P. M.			No.	Time P. M.			Time of 150 vibrations.	
0	$I^{\text {h }}$	27^{m}	8.2	150		$42^{\text {m }}$	$9^{8.4}$	15^{m}	1. 2
10	I	28	8.2	160	1	43	9.5	15	1.3
20	1	29	8.3	170		44	9.7	15	1.4
30	1	30	8.2	180		45	9.7	15	1.5
40	1	31	8.5	190		46	9.7	15	1.2
50		32	8.5	200		47	9.9	15	1.4
						an	-•	15	1.33

Extreme scale readings,
At beginning 58.4-98.3
At end 66.8-90.2
Coefficient of torsion . $. v=5.10$ div.
Temperature . . . $84^{\circ} .0$
Time of one vibration . . 65.009

Monte Video, January 18, 1866.
Inertia ring on magnet.

No.	Time P. M.		No.	Time P. M.			Time of 150 vibrations.	
\bigcirc	$2^{\text {h }} 1 \mathrm{O}^{\text {m }}$	$3^{8.2}$	150		$29^{\text {m }}$	$22^{3} .9$	$19^{\text {m }}$	$19^{1} .7$
10	2 II	20.5	160		30	40.1		19.6
20	212	37.8	170		31	57.3		19.5
30	13	55. 1	180		33	14.6	19	19.5
40	215	12.4	190		34	31.8		19.4
50	216	29.8	200			49.3	19	19.5
					an		19	19.53

Extreme scale readings,
At beginning 56.9-101.0
At end 65.9-91.4
Cocfficient of torsion . $v=6.25$ div.
Temperature : $84^{\circ} .5$
Time of one vibration :. $\quad 7^{8} \cdot 73^{\circ}$

Horizontal Intensity. Observations of Vibrations.

Monte Video, January 18, 1866.

Monte Video, January 19, 1866.

No.	Time P. M.			No.	Time P. M.			Time of 150 vibrations.	
\bigcirc	$3^{\text {a }}$	$3^{\text {m }}$	8.8	150		18	110.8	$15^{\text {m }}$	3.0
10		4	8.9	160		19	12.2	15	3.3
20	3	5	9.3	170		20	12.6	15	
30	3		9.4	180		21	12.6	15	3.2
40	3	7	9.7	190		22	13.0	15	3.3
50		8	10.1	200		23	13.3	15	3.2
						an		15	3.22

Extreme scale readings,

At beginning	56.0-102.0
At end. .	-66.6-91.5
Temperature	$89^{\circ} .5$
Time of one vibration	6 P .021

Sandy Point, February 7, 1866.

No.	Time A. M.	No.	Time A. M.	Time of 150 vibrations.
0	$\begin{array}{llll}11^{\text {m }} & 37^{\text {m }} & 4^{\text {a }} \text {. } 5\end{array}$	150	$11^{\text {m }} 5^{\text {mm }} 5^{80} 4$	$14^{\text {m }} 533^{\text {P }}$. 9
10	$\begin{array}{llll}11 & 38 & 4.5\end{array}$	160	$11 \quad 5258.4$	$14 \quad 53.9$
20	$\begin{array}{llll}11 & 39 & 3.7\end{array}$	170	115358.2	1454.5
30	$1140 \quad 4.1$	180	1154588.0	1453.9
43	$\begin{array}{llll}11 & 41 & 3.3\end{array}$	190	$\begin{array}{llll}11 & 55 & 57.8 \\ 11 & 56 & 57.8\end{array}$	1454.5
50	$\begin{array}{lll}11 & 42 & 2.5\end{array}$	200	$\begin{array}{llll}11 & 56 & 57.8\end{array}$	1455.3
			Mean	$14 \quad 54.33$
	Extreme scale readings, Al beginning 67.0-100.0			
	Time of one vibration : ${ }^{\text {a }}$ - $5^{\circ} .96$			
	Magnet rendered quite unsteady by the high wind.			

Valparaiso, March 2, 1866.

No.	Time P. M.			No.	Time P. M.			Time of 150 vibrations.	
\bigcirc	$5^{\text {b }}$		$3{ }^{3} .4$	150		$14^{\text {ma }}$	$41^{\text {8 }}$. 0		$37^{1} 6$
10	5	1	2.2	160		15	39.3	14	37.1
20	5	2	0.6	170		16	37.8	14	37.2
30	5	2	59.4	180		17	36.6	14	37.2
40	5	3	57.4	190		18	35.1	14	37.7
50		4		200		19	33.7	14	38.0
						an		14	37.

Extreme scale readings,	
At beginning	99.8-56.8
At end	97.8-57.8
Coefficient of torsion	$v=6.17$ div.
Temperature	
Time of one vibration	$5^{3} .850$

Valparaiso, March 19, 1866.

No.	Time P. M.			No.	Time P. M.			Time of 150 vibrations.	
\bigcirc	$1{ }^{\text {b }}$	$42^{\text {m }}$	$6^{\text {s. }} 6$	150			$50^{\circ} .2$		$43^{3} .6$
10	1	43	5.6	160		57	48.6	14	43.0
20	1	44	4.2	170		58	47.7	14	43.5
30	1	45	3.0	180		59	46.3	14	43.3
40	1	46	1.9	190		-	44.9	14	43.0
50		47	0.8	200	2	1	44.1	14	$43 \cdot 3$
						,			43.28

Extreme scale readings,

At beginning	65.0-95.
At end	61.2-96.8
Coefficient of torsion	$v=4.75$ div.
Temperature	$76^{\circ} .0$
Time of one vibration	

Valparaiso, March 19, 1866.
Inertia ring on magnet.

No.	Time P. M.			No.	Time P. M.			Time of 150 vibrations.	
-				150	$\begin{array}{llll}2^{\text {b }} & 51^{\text {m }} & 0 & 0.4\end{array}$			$18 \mathrm{~m} 55^{\circ} .0$	
10	2	33	21.2	160		52	15.8	18	54.6
20		34	36.8	170		53	30.8	18	54.0
30		35	52.5	180		54	47.2	18	54.7
40			8.2	190		56	1.2	18	53.0
50		238	23.9	200		57	15.8		51.9
					M				53.87

Extreme scale readings,
At beginning • • . 61.6-98.9
At end 73.3-84.0
Coefficient of torsion : $v=6.82$ div
Temperature $73^{\circ} .0$
Time of one vibration . . $7^{3} \cdot 559$

Horizontal Intensity. Observations of Vibrations.

Valparaiso, March 29, 1860.

No.	Time P. M.			No.	Time P. M.			Time of 150 vibrations.	
\bigcirc	$12^{\text {b }}$		9: 0	150	$12^{\text {b }}$		$47^{3} .4$		$3^{88} .4$
10	12	3^{8}	7.4	160		52	45.8	14	38.4
20		39	5.7	170		53	46.2	14	40.5
30		40	4.3	180	12	54	44.2	14	39.9
40		41	3.4	190		55	40.4	14	37.0
50		42	2.0	200		56	-	14	
					Me	-	. .		38.84

Extreme scale readings,

At beginning	$61.3-97.2$
Temperature	$76^{\circ} .0$

Time of one vibration . . $5^{*} .859$
Magnet brought to rest by the vibrations of the instrument caused by the wind.

Valparaiso, March 29, 1866.

No.	Time P. M.			No.	Time P. M.			Time of 150 vibrations.	
\bigcirc	$\mathrm{I}^{\text {b }}$	28m	$7{ }^{8} .2$	150		$42^{\text {m }}$	$49^{8.0}$		$41^{1 .} 8$
10	1	29	5.2	160	1	43	48.0	14	42.8
20	1	30	6.8	170	1	44	46.9	14	40.1
30		$3{ }^{1}$	2.4	180	1	45	45.2	14	42.8
40		32	0.6	190		46	43.8		43.2
50		32	58.6	200		47	43.0	14	44.4
									42.52

Extreme scale readings,
At beginning 63.0-98.8
At end 65.5-96.0
Coefficient of torsion . . $v=3.80 \mathrm{div}$.
Temperature $75^{\circ} .5$
Time of one vibration . . $5^{5.883}$
Vibrations irregular on acconnt of the wind, which, at one time, almost bronght the magnet to rest.

Valparaiso, April 7, 1866.

No.	Time A. M.		No.	Time A. M.		Time of 150 vibrations.	
0	$10^{\text {h }}$	$2^{\text {ma }} 15.6$	150	$10^{\text {b }}$	$16^{\mathrm{m}} 55^{\text {m }}$. 0		$39^{\text {m }} \cdot 4$
10		$3 \quad 14.2$	160		1754.2	14	40.0
20		$4 \begin{array}{ll}4 & 13.2\end{array}$	170		1853.6	14	40.4
30		511.8	180	10	1953.0	14	41.2
40		$6 \quad 11.2$	190		$20 \quad 52.4$	14	41.2
50		79.6	200	10	2151.2	14	41.6
				Me	n	4	40.63
	Extreme scale readings,						
	At beginning 59.8-102.8						
	At end 56.5-106.5						
	eoefficient of torsion . . $v=3.92$ div.						
	Temperature $66^{\circ} \cdot 5^{\circ}$						
	Time of one vibration . . $5^{8.87}$						

Valparaiso, April in, 1866.

No.	Time P. M.			No.	Time P. M.			Time of 150 vibrations.	
\bigcirc	$12^{\text {b }}$	$15^{\text {m }}$	$14^{3} .0$	150	$12^{\text {b }}$	$29^{\text {mi }}$	$55^{3} .6$		$4^{28} .6$
10	12	16	13.0	160	12	30	55.4	14	42.4
20		17	11.8	170		31	54.2	14	42.4
30		18	10.4	180		32	53.2	14	42.8
40		19	9.0	190		33	52.0	14	43.0
50		20	7.8	200		34	51.0	14	43.2
					Me	n	. .	14	42.73

Extreme scale readings,
At beginning 56.0-103.0
At end 64.5-91.0
Temperature - . . . $74^{\circ} .5$
Time of one vibration . . $5^{\circ} .885$

Valparaiso, April 11, 1866.

No.	Time P. M.			No.	Time P. M.			Time of 150 vibrations.	
\bigcirc	$12^{\text {b }}$	$37^{\text {m }}$	$12^{3} .2$	150	$12^{\text {h }}$	$5 \mathrm{I}^{\mathrm{m}}$	55.0	$14^{\text {m }}$	$42^{\text {s. }} .8$
10	12	38	11.0	160		52	54.0	14	43.0
20		39	9.8	170		53	52.8	14	43.0
30	12	40	8.6	180		54	51.8	14	43.2
40		41	7.4	190		55	50.6	14	43.2
50		42	6.4	200		56	49.4	14	43.0
								14	43.

Extreme scale readings,
At beginning 64.5-91.0
At end $70.0-85.0$
Temperature $81^{\circ} .0$
Time of one vibration . . $5^{3.887}$

Valparaiso, April ir, 1866.
Inertia ring on magnet.

No.	Time P. M.			No.	Time P. M.		Time of 15° vibrations.
\bigcirc	${ }^{14}$	$8{ }^{m}$	6.6	150	I ${ }^{\text {b }} 27^{\text {m }}$	$2^{3} .4$	$18^{\mathrm{m}} 55^{\text {m }} .8$
10	1		22.2	160	128	18.1	1855.9
20	1		37.8	170	I 29	33.8	1856.0
30	1	11	53.7	180	I 30	49.4	$18 \quad 55.7$
40	1	13	9.4	190	I 32	5.2	1855.8
50			25.0	200	133	2 I .0	1856.0
					Mean	-••	1855.87

Extreme scale readings,
At beginning 58.8 - 101.6
At end 67.0-93.2
Coefficient of torsion . . $\quad v=5.50$ div.
Temperature $88^{\circ} .0$
Time of onc vibration . . $7^{3} \cdot 57^{2}$

Horizontal Intensity. Observations of Vibrations.

Valparaiso, April $13,1866$.

No.	Time P. M.			No.	Time P. M.			Time of 150 vibrations.	
0	$2^{\text {b }}$	$45^{\text {m }}$	23.6	150	$3^{\text {h }}$	0^{m}	6.2		$42^{3} .6$
10	2	46	21.8	160	3	1	4.6	14	42.8
20	2	47	21.2	170		2	3.6	14	42.4
30	2	48	19.6	180		3	2.4	14	42.8
40		49	19.0	190		4	0.6	14	41.6
50			17.8	200		4	58.6	14	40.8
						an	. .	14	42.17

Extreme scale readings,

San Lorenzo Island, April 26, 1866.

Extreme scale readings,
At beginning 61.2-101.1
At end 71.0-89.0
Coefficient of torsion . . . $v=3.10$ div.
Temperature $89^{\circ} .0$
Time of one vilbation . . . $5^{\mathrm{m} .601}$

Payta, May 7, 1866.

No.	Time A. M.			No.		me A. M.	Time of 150 vibrations.
0	$9^{\text {b }}$	$21^{\text {m }}$	$9^{2} .8$	150	$9^{\text {b }}$	$34^{\text {m }} 49^{\text {m }} \cdot 4$	$13^{\text {ma }} 39^{\text {a }} .6$
10	9	22	4.4	160		3544.0	1339.6
20	9	22	59.2	170		$36 \quad 38.6$	1339.4
30		23	53.6	180		$37 \quad 33.2$	1339.6
40		24	48.2	190		$\begin{array}{ll}38 & 27.6\end{array}$	$13 \quad 39.4$
50			42.8	200		$\begin{array}{ll}39 & 22.3\end{array}$	13 39.5
						can	$13 \quad 39.52$

Extreme seale readings,
At loginuing 58.2-101.8
At end 67.8-92.2
Coefficient of torsion ...v=3.20 div.
Temperature $87^{\circ} .5$
Time of one vibration . . . $5^{1.463}$

Flamenco Island, Panama Bay, May 14, 1866.

No.	Time A. M.			No.	Time A. M.			Time of 150 vibrations.	
0	8^{4}	$50^{\text {m }}$	113.4	150	$9^{\text {b }}$	$3^{\text {m }}$	$37^{8 .} 8$		$26^{1} \cdot 4$
10	8	51	5.1	160	9	4	31.4	13	26.3
20	8	51	59.0	170		5	25.2	13	26.2
30		52	52.3	180		6	19.0	13	26.2
40		53	46.5	190		7	13.0	13	26.5
50		54		200		8		13	26.5
						an			26.35

Extreme scale readings,
At beginning 58.2- 101.0
At end 66.6-92.9
Coefficient of torsion . . . $v=2.78$ div.
Temperature . . . $92^{\circ} .0$
Time of one vibration . . $5^{8 .} \cdot 376$

Acapulco, May 30, 1866.

No.	Time A. M.		No.	Time A. M.			Time of 150 vibrations.	
\bigcirc	$8^{\text {b }} 32^{\text {m }}$	$3{ }^{\text {B }}$. 8	150	$8{ }^{6}$		$23^{3} \cdot 4$	$13^{\text {m }}$	$19^{8} .6$
10	$8 \quad 32$	57.0	160	8	46	17.2	13	20.2
20	833	50.6	170	8	47	10.2	13	19.6
30	834	43.9	180		48	3.7	13	19.8
40	835	37.0	190			57.0	13	2 c . 0
50	836	30.6	200			50.5	13	19.9
					can	-	13	19.85

Extreme scale readings,

At beginning	57.8-102.2
At end.	65.2-95.0
Coefficient of torsion	$=3.40$ div.
Temperature.	89°.0
Time of one vibration.	$5^{\text {P }} 333$

Acapulco, May 30, 1866.
Inertia ring on magnet.

Extreme scale readings,
At beginning • . : . $\quad 56.2=103.7$
At end.
At end. 65.1 - 94.8
Coefficient of torsion : : $\quad v=4.55$ div.
Temperature $99^{\circ} .5$
Time of one vibration.$\quad 6.870$

Horizontal Intensity. Observations of Vibrations.

Magdalena Bay, June 9, 1866.

No.	Time A. M.			No.	Time A. M.			Time of 150 vibrations.
\bigcirc	$\mathrm{I}^{\text {b }}$	8 m	5.4	150		$21^{\text {m }}$	$52^{3 .} .8$	
10	1	8	59.4	160	1	22	49.0	
20	1	9	54.5	170		23	44.4	
30	1	10	49.0	180		24	40.2	
40	1	11	44.4	190		25	36.0	
50			39.8	200		26	30.8	
100		17	16.4					

Extreme scale readings,

$$
\text { Time of one vibration : } 5^{3.527}
$$

In this and the following observation the vibrations of the magnet were very irregular on account of a high wind which shook the instrument.

Magdalena Bay, June 9, 1866.

No.	Time A. M.			No.	Time A. M.			Time of 150
\bigcirc	$\mathrm{I}^{\mathrm{h}} 4 \mathrm{I}^{\mathrm{mm}} \mathrm{I}^{\text {2 }}$. 2			150				
10	1	42	7.8	160			0.4	
20	1	43	3.0	170			56.0	
30	I	43	59.0	180			51.4	
40	1	44	54.0	190			46.4	
50	1	45	48.4	200	1	59	41.6	
100		50	25.4					

Extreme scale readings,
At beginning $53.5-98.5$
At end . .
Coefficient of torsion . . $v=4.37$ div.
Temperature $86^{\circ} .5$
Time of one vibration . . $5^{3.533}$

San Diego Bay, June $15,1866$.

No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.
0	$6^{\text {h }} 11 \mathrm{Im}^{\text {m }} 9^{3} .2$	150	$6^{\text {b }} 25^{\mathrm{m}} 5^{85} .2$	$14^{\mathrm{m}} 49^{\text {s }}$. 0
10	$\begin{array}{lll}6 & 12 & 8.3\end{array}$	160	$\begin{array}{llll}6 & 26 & 56.6\end{array}$	14 48.3
20	$\begin{array}{lll}6 & 13 & 7.4\end{array}$	170	$\begin{array}{llll}6 & 27 & 55.8\end{array}$	$14 \quad 48.4$
30	$6 \quad 14 \quad 7.0$	180	$6 \quad 2855.4$	$14 \quad 48.4$
40	$\begin{array}{lll}6 & 15 & 6.2\end{array}$	190	$\begin{array}{llll}6 & 29 & 53.8\end{array}$	$14 \quad 47.6$
50	$\begin{array}{lll}6 & 16 & 5.4\end{array}$	200	$6 \quad 30 \quad 53.0$	$14 \quad 47.6$
			Mean	14.48 .22
	Extreme scale readings,			
	At beginning 94.9-108.9			
	At end .		. $70.0-$	
	Coefficient of torsion . . $v=3.60 \mathrm{div}$.			
	Temperature . . . $79^{\circ} .0$			

$$
\begin{aligned}
& \text { At beginning 55.0- } 101.0 \\
& \text { At } 4 . \text {. . . . 69.0-85.0 } \\
& \text { Temperature - . . . } 79^{\circ} .0
\end{aligned}
$$

San Francisco Bay, June 26, 1866.

Extreme scale readings,

$$
\begin{aligned}
& \text { At beginning 57.0- } 102.0 \\
& \text { At end 68.0- } 90.5 \\
& \text { Coefficient of torsion } \cdot . v=4.35 \text { div. } \\
& \text { Temperature - . . } 77^{\circ} .0 \\
& \text { Time of one vibration . . } 6^{5.234}
\end{aligned}
$$

U. S. N. Observatory, Washington, Nov. i, 1866.

No.	Time P. M.	No.		me P. M.	Time of 150 vibrations.	
\bigcirc	$5^{\text {b }}$ 19 ${ }^{\text {m }} 55^{\text {a }}$. 7	150		$37^{\text {m }} 46^{\text {s. }} 5$		$53^{\text {B }}$. 8
10	$5{ }_{5} 215$	160		$38 \quad 58.0$	17	53.0
20	$\begin{array}{llll}5 & 22 & 16.0\end{array}$	170		$40 \quad 9.2$	17	53.2
30	$\begin{array}{llll}5 & 23 & 27.5\end{array}$	180		4120.7	17	53.2
40	$\begin{array}{llll}5 & 24 & 39.0\end{array}$	190		$42 \quad 31.8$	17	52.8
50	$\begin{array}{llll}5 & 25 & 50.7\end{array}$	200		$43 \quad 43.0$	17	52.3
			Mea		17	53.05
	Extreme scale readings,					
	At beginning 52.5 - 106.0					
	Temperature . . . $67^{\circ} .5$					
	Time of one vibration . . $7^{\text {¹, }} 54$					

The following sets of observations of vibrations were made in the basement of the Observatory, where there is much iron, and are to be used only to determine the moment of inertia of the magnet.

Set 1. November 2, 1866.

Extreme scalc readings,

Horizontal Intensity. Observations of Vibrations.

Set No. 2. November 2, 1866.
Inertia ring on magnet.

Extreme scale readings,

At beginning	58.9-100.8
At end	68.3-95.5
Coefficient of torsion	$=7.58$ div.
Temperature	$68^{\circ} .5$
Time of one vibration	8.940

Set No. 3. November 2, 1866.

Set No. 4. November 2, 1866.
Inertia ring on magnet.

No.	Time.			No.	Time.			Time of 150 vibrations.	
0	$7{ }^{\text {b }}$	26m	18. 3	150	$7{ }^{\text {b }}$		$39^{\circ} .0$		201.7
10	7	27	47.7	160	7	50	8.5	22	20.8
20	7		17.2	170			37.9	22	20.7
30	7		46.7	180	7	53	7.3	22	20.6
40	7		16.0	190		54	36.7		20.7
50	7		$45 \cdot 5$	200			5.8	22	20.3
						n	-••		20.63

Set No. 5. November 2, 1866.

No.	Time.			No.	Time.			Time of 150 vibrations.	
-	$8{ }^{\text {b }}$	$7{ }^{\text {m }}$	$22^{3} .7$	150	8	$24^{\text {m }}$	$44^{1} .2$	$17^{\text {m }}$	$21^{10} 5$
10	8	8	32.2	160	8	25	53.7		21.5
20	8	9	41.7	170	8	27	3.2		21.5
30	8	10	51.2	180	8	28	12.7		21.5
40	8	12	0.7	190	8	29	22.0	17	21.3
50	8	13	10.2	200	8	30	31.7		21.5
						an	.	17	21.47

Extreme scale readings,
At beginning . . . $58.7-99.3$
At end poeficient of . . 66.5-91.2
Coefficient of torsion : $v=6.05$ div.
Temperature $69^{\circ} .5$
Time of one vibration . . 6.943

Set No. 6. November 2, 1866.

No.	Time.			No.	Time.			Time of 150 vibrations.	
0	$12^{\text {h }}$	$31^{\text {ma }}$	$5^{8 .} 2$	150	$12^{\text {h }}$	$49^{\text {ma }}$	$51^{18.2}$		53.0
10	12	33	9.2	160		51	2.5	17	53.3
20	12		21.0	170		52	14.2	17	53.2
30	12		32.7	180		53	25.7	17	53.0
40	12		44.0	190		54	37.2	17	53.2
50			55.7	200		55	48.7	17	53.0
					Mea	I	. . .	17	53.12

Extreme seale readings,

Ter

Set No. 7. November 2, 1866.
Inertia ring on magnet.

No.	Time.			No.	Time. -			Time of 150 vibrations.	
-	${ }^{\text {b }}$	3^{m}	m $23^{1} \cdot 5$	150		26 m	${ }^{22^{3} .7}$		$59^{8} .2$
10		4	55.2	160	1	27	54.2	22	59.0
20		6	27.5	170	1	29	26.7	22	59.2
30		7	59.2	180		30	58.5	22	59.3
40		9	31.3	190		32		22	58.9
50		11	3.2	200		34	2.5	22	59.3
								22	59.15

Horizontal Intensity. Observations of Vibrations.
Set No. 8. November 2, 1866.

No.	Time.			No.	Time.			Time of 150 vibrations.	
\bigcirc	${ }^{1}$	$40^{\text {m }}$	$19^{8} .2$	150	$\mathrm{I}^{\text {h }}$		113.5		$5^{23} \cdot 3$
10	I	41	30.7	160	1	59	23.0	17	52.3
20	1	42	42.2	170	2	0	34.5	17	52.3
30	1	43	53.7	180	2	1	46.0	17	52.3
40	1	45	5.2	190	2	2	57.5	17	52.3
50			16.7	200	2	4		17	52.3
					Me	n	-••	17	52.30

Extreme scale readings,
At beginning 60.0- 101.0
At end 68.0-92.8
Temperature 52°. 5
Time of one vibration . $7^{8} .149$

HORIZONTAL INTENSITY. OBSERVATIONS OF DEFLECTIONS.

Horizontal Intensity．Observations of Deflections．
St．Thomas，November ${ }^{1} 3,1865$.
St．Thomas，November 13， 1865.

	등를	Time．	Temp．		菏	Diff＇s．	Dist．	亗	${ }_{5}^{5}$	Time．	Temp．		范它	Diff＇s．	Dist．
$\begin{aligned} & \dot{\Delta} \\ & \stackrel{y}{0} \end{aligned}$	w． E． W． E．	$2^{\text {b }} \quad 5^{\text {m }}$	87°	$\begin{array}{r} 46^{\mathrm{d} .4} \\ 108.1 \\ 46.4 \\ 108.1 \end{array}$	$\begin{aligned} & 4^{6 \mathrm{~d}} .4 \\ & 108.1 \end{aligned}$	61d． 7	$\begin{aligned} & \pm \\ & 0 \\ & \text { í } \\ & \text { II } \\ & \vdots \end{aligned}$	$\begin{aligned} & \dot{\vec{y}} \\ & \stackrel{y}{\mid} \end{aligned}$	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { W. } \\ & \text { E. } \end{aligned}$	$2^{\text {b }} 15^{\text {min }}$	85°	$\begin{aligned} & 6 \mathrm{I}^{\mathrm{d}} .7 \\ & 93.2 \\ & 6 \mathrm{I} .6 \\ & 93.3 \end{aligned}$	$6 \mathrm{r}^{1} .6$ 93.2	$3^{1{ }^{\text {d }} .6}$	
$\begin{aligned} & \dot{H} \\ & \text { 薄 } \end{aligned}$	$\begin{aligned} & \text { E. } \\ & \text { W. } \\ & \text { E. } \\ & \text { W. } \end{aligned}$	215	85.	$\begin{array}{r} 108.3 \\ 46.8 \\ 108.5 \\ 46.9 \end{array}$	$\begin{array}{r} 108.4 \\ 46.8 \end{array}$	61.6		$\begin{aligned} & \dot{y} \\ & \text { 荷 } \end{aligned}$	$\begin{aligned} & \text { E. } \\ & \text { W. } \\ & \text { E. } \\ & \text { W. } \end{aligned}$	235	85.	93.2 61.6 93.3 61.5	93.2 61.5	31.7	－
	eans		86.0		$2 u^{\text {d }}$	61.65		Means			85.0		$24^{\text {d }}$	31.65	

Coefficient of torsion，$v=4.80$ div．

St．Thomas，November I6， 1865.

$\begin{aligned} & \text { 淢 } \\ & \text { 皆 } \end{aligned}$	苞淢	Time．	Temp．		皆容	Diff＇s．	Dist．
$\begin{aligned} & \dot{\Delta} \\ & \stackrel{y}{0} \end{aligned}$	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { W. } \\ & \text { E. } \end{aligned}$	$12^{\text {h }} 10 \mathrm{~m}$	90．${ }^{\circ}$	$\begin{array}{r} 43^{\mathrm{d}} .6 \\ 10.3 \\ 43.7 \\ 105.3 \end{array}$	$\begin{aligned} & 43^{\mathrm{d} .6} \\ & 105.3 \end{aligned}$	$61^{\text {d }} .7$	
$\begin{aligned} & \dot{\Delta} \\ & \dot{H} \end{aligned}$	5： W． E． W．	$12 \quad 20$	87.	$\begin{array}{r} 105.6 \\ 43.9 \\ 105.5 \\ 43.8 \end{array}$	$\begin{array}{r} 105.5 \\ 43.8 \end{array}$	61.7	$\stackrel{\text { II }}{1}$
	eans		88.5		$2 \mathrm{u}^{\text {d }}$	61.70	

St．Thomas，November $16,1865$.

	泀	Time．	Temp．			Diff＇s．	Dist．
$\begin{aligned} & \dot{\ddot{0}} \\ & \stackrel{y}{y} \end{aligned}$	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { W. } \\ & \text { E. } \end{aligned}$	$12^{\text {h }} \quad 20 \mathrm{~m}$	$87{ }^{\circ}$	$\begin{aligned} & 58 \mathrm{8} .7 \\ & 90.4 \\ & 58.6 \\ & 90.4 \end{aligned}$	$\begin{aligned} & 58^{d .6} \\ & 90.4 \end{aligned}$	$31^{\text {d }} .8$	
$\begin{aligned} & \dot{3} \\ & \text { 哯 } \end{aligned}$	$\begin{aligned} & \text { E. } \\ & \text { W. } \\ & \text { E. } \\ & \text { W. } \end{aligned}$	1230	87.	90.4 59.1 9.5 58.9	$\begin{aligned} & 90.4 \\ & 59.0 \end{aligned}$	31.4	
	cans		87.0		$2 u^{\text {d }}$	31.60	

Coefficient of torsion，$v=4.55$ div．

Salute Islands，November 28， 1865.

	気	Time．	Temp． t			Diff＇s．	Dist．
$\begin{aligned} & \dot{\ddot{y}} \\ & \stackrel{y}{シ} \end{aligned}$	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { W. } \\ & \text { E. } \end{aligned}$	$12^{\text {b }} 15^{\text {m }}$	91．${ }^{\circ}$	$\begin{array}{r} 41^{\mathrm{d}} .1 \\ 102.5 \\ 41.1 \\ 102.5 \end{array}$	$\begin{aligned} & 41^{\mathrm{d}} .1 \\ & 102.5 \end{aligned}$	$61^{\text {d }}$－ 4	
$\begin{aligned} & \text { 菏 } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \mathrm{E} . \\ & \mathrm{W} . \\ & \mathrm{E} . \\ & \mathrm{W} . \end{aligned}$	$12 \quad 25$	90.	$\begin{array}{r} 102.8 \\ 41.3 \\ 102.9 \\ 41.3 \end{array}$	$\begin{array}{r} 102.8 \\ 4 \mathrm{I} .3 \end{array}$	61．5	$\begin{gathered} \text { í } \\ i 1 \end{gathered}$
	cans		90，5		$2 u^{\text {d }}$	61.45	

Salute Islands，November 28， 5865.

	唇完	Time．	Temp． t			Diff＇s．	Dist．
$\begin{aligned} & \stackrel{\rightharpoonup}{B} \\ & \stackrel{y}{*} \end{aligned}$	W． E． W． E．	$12^{\text {b }} 25^{\text {m }}$	90．${ }^{\circ}$	$\begin{aligned} & 56 \mathrm{~d} .3 \\ & 87.8 \\ & 56.3 \\ & 87.8 \end{aligned}$	$\begin{aligned} & 56^{4} .3 \\ & 87.8 \end{aligned}$	$3^{1 / 4} 5$	
$\begin{aligned} & \dot{g} \\ & \text { 荷 } \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~W} . \\ & \mathrm{E} . \\ & \mathrm{W} . \end{aligned}$	1235	89.	$\begin{aligned} & 88.0 \\ & 56.4 \\ & 88.0 \\ & 56.4 \end{aligned}$	$\begin{aligned} & 88.0 \\ & 56.4 \end{aligned}$	31.6	！
	cans		89.5		$2 u^{\text {d }}$	31．55	

Coefficient of torsion，$v=4.02$ div．

Horizontal Intensity．Observations of Deflections．

Ceara，December 13， 1865.

	声安完	Time．	Temp．			Diff＇s．	Dist．
安	W． E． W． E．	$12^{\text {h }} 15^{\text {m }}$	89°	$\begin{array}{r} 46^{\mathrm{d}} .7 \\ 110.5 \\ 46.5 \\ 110.6 \end{array}$	$46^{4} .6$ 110.6	$64^{\text {d }}$ ． 0	
苂	E． W． E． W．	1226	90	$\begin{array}{r} 110.7 \\ 47.2 \\ \text { III.0 } \\ 47.4 \end{array}$	$\begin{array}{r} 110.8 \\ 47.3 \end{array}$	63.5	॥
	eans		89.5		$2 \mathrm{u}^{\text {d }}$	63.75	

Ceara，December 13， 1865.

Coefficient of torsion，$v=6.72$ div．
Pernambuco，December 23， 1865 ．

Pernambuco，December 23， 1865.								
	気范	Time．	Temp． t	$\begin{aligned} & \text { 突 } \\ & \text { 荡蔵 } \end{aligned}$	既号	Diff＇s．	Dist．	
岗	W． E． W． E．	$8^{\text {n }} 35^{\text {m }}$	85°	$\begin{array}{r} 48^{\text {d. }} 4 \\ 113.3 \\ 48.5 \\ 113.2 \end{array}$	$\begin{aligned} & 4^{88^{\mathrm{a}}} 4 \\ & 113.2 \end{aligned}$	$64^{4 .} 8$		
葴	E． W． E． W．	850	88	113.9 49.5 114.4 49.7	114.2 49.6	64.6	$\stackrel{\text { ín }}{\\|}$	
	eans		86.5		$2 \mathrm{u}^{\text {d }}$	64.70		

Coefficient of torsion，$v=5.10$ div．

Bahia，December 27， 1865.

Pernambuco，December 23， 1865.

Bahia，December $27,1865$.								Bahia，December $27,1865$.									
$\begin{aligned} & \text { 号 } \\ & \text { 关 } \end{aligned}$	吿艺范	Time．	Temp．		皆它	Diff＇s．	Dist．	岕	¢	Time．	Temp． t		音㲘	Diff＇s，	Dist．		
$\stackrel{\rightharpoonup}{8}$	W． E． W． E．	$11^{\text {b }} \quad 5^{\text {m }}$	98°	$\begin{array}{r} 46^{4} .5 \\ 112.2 \\ 46.6 \\ 112.7 \end{array}$	$\begin{aligned} & 46^{4} \cdot 5 \\ & 112.4 \end{aligned}$	$65^{\text {d }} \cdot 9$	$\begin{aligned} & \pm \\ & 0 \\ & \text { N } \\ & \\| \\ & \\| \end{aligned}$		W． E． W． E．	$11^{\text {b }} 12^{\text {m }}$	98°	$\begin{aligned} & 62^{d} .9 \\ & 96.6 \\ & 62.8 \\ & 96.6 \end{aligned}$	$\begin{gathered} 62^{d} .8 \\ 96.6 \end{gathered}$	$33^{4} .8$			
蒾	$\begin{aligned} & \text { E. } \\ & \text { W. } \\ & \text { E. } \\ & \text { W. } \end{aligned}$	$11 \quad 12$	98	$\begin{array}{r} 113.6 \\ 46.4 \\ 113.9 \\ 46.4 \end{array}$	113.7 46.4	67.3		菏	$\begin{aligned} & \text { E. } \\ & \text { W. } \\ & \text { E. } \\ & \text { W. } \end{aligned}$	$11 \quad 20$	98	96.9 62.6 97.6 62.8	97.0 62.7	$34 \cdot 3$	il		
Means			98.0		$2 u^{4}$	66.60		Means			98.0		$2 u^{\text {d }}$	34.05			

Coefficient of torsion，$v=5.27$ div．

Horizontal Intensity．Observations of Deflections．
Rio Janeiro，January 6， 1866.
Rio Janeiro，January 6， 8866.

		Time．	Temp． \qquad			Diff＇s．	Dist．
$\begin{aligned} & \stackrel{\ddot{\Delta}}{\stackrel{0}{*}} \end{aligned}$	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { W. } \\ & \text { E. } \end{aligned}$	$6^{\text {b }} \quad 0^{\text {m }}$	75°	$\begin{array}{r} 39^{d .1} \\ 109.0 \\ 39.0 \\ 108.6 \end{array}$	$\begin{aligned} & 39^{4.0} \\ & 108.8 \end{aligned}$	$69^{d} .8$	
	$\begin{aligned} & \text { E. } \\ & \text { W. } \\ & \text { E. } \\ & \text { W. } \end{aligned}$	$6 \quad 10$	74	109.4 39.4 109.2 39.3	$\begin{array}{r} 109.3 \\ 39.4 \end{array}$	69.9	sís
	eans		74.5		$2 \mathrm{u}^{\text {d }}$	69.85	

	志荮	Time．	Temp．		爯空	Diff＇s．	Dist．
$\stackrel{\dot{y}}{\tilde{y}}$	W． E． W． E．	$6^{4} 10^{\text {m }}$	74°	$\begin{aligned} & 5^{\mathrm{d} .2} \\ & 92.0 \\ & 56.2 \\ & 9 \mathrm{~m} .8 \end{aligned}$	$\begin{aligned} & 56 \mathrm{~d} .2 \\ & 9 \mathrm{x} .9 \end{aligned}$	$35^{\text {d }} \cdot 7$	
	$\begin{aligned} & \text { E. } \\ & \text { W. } \\ & \text { E. } \\ & \text { W. } \end{aligned}$	$6 \quad 20$	74	92.0 56.2 92.2 56.2	92.1 56.2	35.9	II
	eans		74.0		$24^{\text {d }}$	35.80	

Coefficient of torsion，$v=5.77$ div．

Monte Video，January 18， 1866.

Monte Video，January 18， 1866.

	氙菦	Time．	Temp．	（	爫號	Diff＇s．	Dist．
$\begin{aligned} & \dot{\Delta} \\ & \stackrel{y}{v} \end{aligned}$	W． E． W． E．	$4^{\text {b }} 45^{\text {m }}$	87°	$\begin{aligned} & 54^{d} \cdot 4 \\ & 89.5 \\ & 54.4 \\ & 89.5 \end{aligned}$	$\begin{aligned} & 54^{d} \cdot 4 \\ & 39.5 \end{aligned}$	$35^{\text {d }}$ ． 1	
菭	$\begin{aligned} & \text { E. } \\ & \text { W. } \\ & \text { E. } \\ & \text { W. } \end{aligned}$	455	88	$\begin{aligned} & 89.7 \\ & 54.7 \\ & 89.6 \\ & 54.6 \end{aligned}$	89.6 54.6	35.0	1
	eans		87.5		24^{4}	35.05	

Coefficient of torsion，$v=4.50$ div．

Sandy Point，February 7， 1866.

	気䓽	Time．	Temp．			Diff＇s．	Dist．
$\begin{aligned} & \dot{\ddot{x}} \\ & \dot{v} \end{aligned}$	W． E． W． E．	$12^{\text {h }} 45^{\text {m }}$	72°	$\begin{array}{r} 43^{\text {d.o }} \\ 110.2 \\ 44.0 \\ 110.3 \end{array}$	$\begin{array}{r} 43^{d .5} \\ 110.3 \end{array}$	66a． 8	
㟧	$\begin{aligned} & \mathrm{E} . \\ & \mathrm{W} . \\ & \mathrm{E} . \\ & \mathrm{W} . \end{aligned}$	18	69	$\begin{array}{r} 110.7 \\ 42.6 \\ 110.9 \\ 42.5 \end{array}$	$\begin{array}{r} 110.8 \\ 42.6 \end{array}$	68.2	$\stackrel{\text { II }}{\text { I }}$
	eans		70.5		$2 u^{\text {d }}$	67.50	

Sandy Point，February 7， 1866.

	哭皆	Time．	Temp．		皆碞	Diff＇s．	Dist．
苞	W． E． W． E．	$\mathrm{I}^{\mathrm{b}} 8^{\mathrm{m}}$	69°	$\begin{aligned} & 58^{4.8} \\ & 93.2 \\ & 58.3 \\ & 93.2 \end{aligned}$	$\begin{gathered} 58^{\mathrm{d} .6} \\ 93.2 \end{gathered}$	$34^{\text {d }} .6$	
淢	$\begin{aligned} & \mathrm{E} . \\ & \mathrm{W} . \\ & \mathrm{E} . \\ & \mathrm{W} . \\ & \hline \end{aligned}$	123	68	$\begin{aligned} & 93.4 \\ & 58.9 \\ & 94.9 \\ & 59.1 \end{aligned}$	93.7 59.0	34.7	$\stackrel{N}{N}$
	eans		68.5		24^{4}	34.65	

Coefficient of torsion，$y=8.25$ div．
A high wind blowing which made the maguet very unsteady．

Horizontal Intensity．Observations of Deflections．
Valparaiso，March 2， 1866.
Valparaiso，March 2， 1866.

	E	Time． P．M．	Temp．	$\begin{aligned} & \text { 初 } \\ & \text { 苞㵄 } \end{aligned}$	苂范	Diff＇s．	Dist．	宸	둔	Time． P．M．	Temp．			Diff＇s．	Dist．	
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { W. } \\ & \text { E. } \end{aligned}$	$5^{\mathrm{m}} 5^{\text {m }}$	71° ．	$\begin{array}{r} 38^{d .3} \\ 103.7 \\ 37.9 \\ 103.1 \end{array}$	$\begin{aligned} & 38^{8.1} \\ & 103.4 \end{aligned}$	$65^{\text {d }} \cdot 3$	$\begin{aligned} & \dot{H} \\ & 0 \\ & \dot{N} \\ & \\| \\ & i \end{aligned}$	$\begin{array}{\|l\|l} \stackrel{\rightharpoonup}{0} \\ \stackrel{y}{z} \end{array}$	w． E． W． E．	$6^{\text {n }} 3^{\text {m }}$	$70 .{ }^{\circ}$	$\begin{aligned} & 53^{4} .8 \\ & 87.1 \\ & 53.7 \\ & 87.1 \end{aligned}$	$\begin{aligned} & 53^{\mathrm{d} .7} \\ & 87.1 \end{aligned}$	$33^{\text {d }} \cdot 4$		
荙	$\begin{aligned} & \text { E. } \\ & \text { W. } \\ & \text { E. } \\ & \text { W. } \end{aligned}$	63	70.	$\begin{array}{r} 103.3 \\ 38.7 \\ 103.2 \\ 37.7 \end{array}$	$\begin{array}{r} 103.2 \\ 3^{8.2} \end{array}$	65.0		$\begin{aligned} & \stackrel{\rightharpoonup}{u} \\ & \text { 喊 } \end{aligned}$	$\begin{array}{\|l} \mathbf{E} . \\ \mathbf{W} . \\ \mathbf{E .} \\ \mathbf{W} . \end{array}$	$6 \quad 14$	68.	$\begin{aligned} & 87.2 \\ & 53.6 \\ & 87.1 \\ & 53.6 \end{aligned}$	87.1 53.6	33.5		
	eans		70.5		24^{4}	65.15			ans		69.0		$24^{\text {d }}$	33.45		

Coefficient of torsion，$v=6.87$ div．

Valparaiso，March 19， 1866.

	등 를	Time．	Temp．			Diff＇s．	Dist．
它	W． E． W． E．	$1^{\text {b }} 10^{m}$	$75 .{ }^{\circ}$	$\begin{array}{r} 37.9 \\ 103.6 \\ 37.7 \\ 103.7 \end{array}$	$\begin{aligned} & 37^{\mathrm{d} .8} \\ & 103.6 \end{aligned}$	$65^{4} .8$	
品	E． W． E． W．	120	76.	$\begin{array}{r} 103.7 \\ 38.4 \\ 103.7 \\ 38.5 \end{array}$	$\begin{array}{r} 103.7 \\ 38.4 \end{array}$	$65 \cdot 3$	$\begin{aligned} & \text { Ni } \\ & \text { II } \end{aligned}$
	cans		75.5		$2 \mathrm{u}^{\text {d }}$	65.55	

Valparaiso，March 19， 1866.

Coefficient of torsion，$v=4.80 \mathrm{div}$ ．

Horizontal Intensity．Observations of Deflections．
Valparaiso April 7， 1866.

$\begin{aligned} & \stackrel{\rightharpoonup}{\ddot{U}} \\ & \tilde{E}_{0} \\ & \text { 茫 } \end{aligned}$		Time．	Temp．			Diff＇s．	Dist．
$\begin{aligned} & \dot{\Delta} \\ & \stackrel{y}{0} \end{aligned}$	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { W. } \\ & \text { E. } \end{aligned}$	$8^{\text {h }} 55^{\text {m }}$	65°	$\begin{array}{r} 38^{8.2} \\ 120.9 \\ 37.9 \\ 103.0 \end{array}$	$\begin{gathered} 3^{8 \mathrm{~d} .0} \\ 102.9 \end{gathered}$	$64^{\text {d }} .9$	$\begin{aligned} & \text { İ } \\ & 0 \\ & \text { ín } \\ & \text { II } \end{aligned}$
$\begin{aligned} & \text { 范 } \\ & \text { un } \end{aligned}$	$\begin{aligned} & \text { E. } \\ & \text { W. } \\ & \text { E. } \\ & \text { W. } \end{aligned}$	910	67	$\begin{array}{r} 104.0 \\ 37.2 \\ \text { ro3.9 } \\ 37.2 \end{array}$	$\begin{array}{r} 103.9 \\ 37.2 \end{array}$	66.7	
	ans		66.0		$2 \mathrm{u}^{\text {d }}$	65.80	

Valparaiso，April 7， 1866.

Coefficient of torsion，$v=4.68$ div．

Valparaiso，April Ir， 1866.

Valparaiso，April II， 1866.

$\begin{aligned} & \text { 兑 } \\ & \text { E. } \\ & \text { 芑 } \end{aligned}$	硻	Time．	Temp．			Diff＇s．	Dist．	
荌	W． E． W． E．	$\mathrm{I}^{\text {h }} \mathrm{II}^{\text {mid }}$	74°	$\begin{aligned} & 55^{\mathrm{d} .2} \\ & 88.4 \\ & 55.2 \\ & 88.6 \end{aligned}$	$\begin{aligned} & 55^{d} \cdot 2 \\ & 88.5 \end{aligned}$	$33^{\text {d }} \cdot 3$		
苂	E． W． E． W．	123	74	88.9 54.9 88.9 54.8	88.9 54.9	34.0	$\\|_{\alpha}^{N}$	
	ans		74.0		$2 u^{\text {d }}$	33.65		

Valparaiso，April 13， 1866.

		Time．	Temp．			Diff＇s．	Dist．
$\begin{aligned} & \dot{\ddot{y}} \\ & \stackrel{y}{y} \end{aligned}$	W． E． W． E．	$\mathrm{I}^{\mathrm{n}} 55^{\text {m }}$	71° ．	$\begin{gathered} 37^{\mathrm{d} .2} \\ 12.0 \\ 36.9 \\ 101.6 \end{gathered}$	$\begin{aligned} & 37^{\mathrm{d}} .0 \\ & 10 \mathrm{I} .8 \end{aligned}$	$64^{\text {d }}$ ． 8	
$\begin{aligned} & \text { 滀 } \\ & \text { H } \end{aligned}$	$\begin{aligned} & \text { E. } \\ & \text { W. } \\ & \text { E. } \\ & \text { W. } \end{aligned}$	27	65.	$\begin{array}{r} 102.2 \\ 36.0 \\ 101.7 \\ 35.6 \end{array}$	$\begin{array}{r} \text { roI. } 9 \\ 35.8 \end{array}$	66.1	！
	eans		68.0		$2 \mathrm{u}^{\text {d }}$	65.45	

Valparaiso，April 13， 1866.

$\begin{aligned} & \stackrel{\rightharpoonup}{\ddot{0}} \\ & \tilde{E}_{0}^{0} \\ & \text { ت} \end{aligned}$		Time．	Temp．		皆旨	Diff＇s．	Dist．
	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { W. } \\ & \text { E. } \end{aligned}$	$2^{\text {b }} \quad 7^{\text {m }}$	65° ．	$\begin{aligned} & 51^{\mathrm{d}} \cdot 9 \\ & 84.9 \\ & 51.9 \\ & 84.5 \end{aligned}$	$\begin{aligned} & 51^{\mathrm{d}} .7 \\ & 84.9 \end{aligned}$	$33^{\text {d }} .2$	
菏	$\begin{aligned} & \text { E. } \\ & \text { W. } \\ & \text { E. } \\ & \text { W. } \end{aligned}$	220	62.	$\begin{aligned} & 85.4 \\ & 51.0 \\ & 95.0 \\ & 50.9 \end{aligned}$	85.2 51.0	34.2	$\stackrel{\text { ¢ }}{ }$
	cans		63.5		$2 u^{\text {d }}$	33.70	

Horizontal Intensity．Observations of Deflections．
San Lorenzo Island，April 26， 1866.
San Lorenzo Island，April 26， 1866.

	5	Time．	Temp．			Diff＇s．	Dist．
$\stackrel{\ddot{0}}{8}$	$\begin{aligned} & \mathbf{W} . \\ & \mathbf{E} . \\ & \mathbf{W} . \\ & \mathbf{E} . \end{aligned}$	${ }^{15^{\text {b }}} 4{ }^{\text {am }}$	79°	$\begin{aligned} & 51^{10.0} \\ & 109.7 \\ & 50.9 \\ & 109.6 \end{aligned}$	500.9 109.6	$5^{88 .} 7$	
嵩	$\begin{aligned} & \mathrm{E} . \\ & \mathbf{W} . \\ & \mathbf{E .} \\ & \mathbf{W} . \\ & \hline \end{aligned}$	1152	82	$\begin{array}{r} 110.4 \\ 50.9 \\ 110.4 \\ 50.7 \end{array}$	$\begin{gathered} 110.4 \\ 50.8 \end{gathered}$	59.6	
	eans		80.5		24^{4}	59.15	

$\begin{aligned} & \dot{\ddot{0}} \\ & \stackrel{.}{E_{0}} \\ & \dot{Z} \end{aligned}$	空号	Time．	Temp		皆皆	Diff＇s．	Dist．
	W． E． W． E．	$11^{\text {b }} 52^{\text {m }}$	82°	$\begin{aligned} & 65^{4} \cdot 3 \\ & 95.4 \\ & 65.0 \\ & 94.9 \end{aligned}$	$\begin{aligned} & 65^{\mathrm{d}} .1 \\ & 95.1 \end{aligned}$	$3{ }^{\text {od．}} 0$	
㵄	E． W． E． W．	127	74	95.4 64.8 95.4 65.0	95.4 64.9	30.5	N
	eans		78.0		$24^{\text {d }}$	30.25	

Coefficient of torsion，$v=4.25$ div．

Coefficient of torsion，$y=3.62$ div．

Flamenco Island，Panama Bay，May 14， 1866.

		Time．	Temp．		碳号	Diff＇s．	Dist．
$\stackrel{\stackrel{4}{0}}{\ddot{\circ}}$	W． E． W． E．	$7^{\text {b }} 55^{\text {m }}$	83°	$\begin{array}{r} 50^{d} .7 \\ 104.6 \\ 51.0 \\ 104.7 \end{array}$	$\begin{aligned} & 50 \mathrm{~d} .8 \\ & 104.6 \end{aligned}$	$53^{\text {d }} .8$	
免	E． W． E． W．	85	82	$\begin{array}{r} 105.6 \\ 50.4 \\ 105.5 \\ 50.1 \end{array}$	$\begin{array}{r} 105.5 \\ 52.2 \end{array}$	53．3	$\stackrel{\text { II }}{1}$
	cans		82.5		$2 u^{\text {d }}$	53.55	

Payta，May 7， 1866.

Payta，May 7， 1866.

Horizontal Intensity．Observations of Deflections．

Acapulco，May 30， 1866.

		Time．	Temp．		苂	Diff＇s．	Dist．	
$\stackrel{\stackrel{\rightharpoonup}{\ddot{B}}}{\stackrel{2}{\ddot{2}}}$	W． E． W． E．	$7^{\text {b }} 22^{\text {m }}$	86°	$\begin{array}{r} 53^{d} \cdot 9 \\ 107.0 \\ 53.9 \\ 107.0 \end{array}$	$\begin{array}{r} 53^{\mathrm{d} .9} \\ 107.0 \end{array}$	$53^{\text {d }}$ ： 1		
$\begin{aligned} & \stackrel{\rightharpoonup}{\ddot{g}} \\ & \ddot{\mu} \end{aligned}$	$\begin{aligned} & \mathrm{E} . \\ & \mathrm{W} . \\ & \mathrm{E} . \\ & \mathbf{W} . \end{aligned}$ W.	$7 \quad 32$	84	$\begin{array}{r} 107.5 \\ 53.5 \\ 107.7 \\ 53.8 \end{array}$	$\begin{array}{r} 107.6 \\ 53.6 \end{array}$	54.0	$\\|$	
	eans		85.0		$2 \mathrm{u}^{\text {d }}$	53.55		

Acapulco，May 30， 1866.

	$\begin{aligned} & 5 \\ & 50 \\ & 0 \\ & 0 \\ & 4 \\ & 4 \\ & 0 \end{aligned}$	Time．	Temp．	Readings.		Diff＇s．	Dist．
$\begin{aligned} & \dot{U} \\ & \stackrel{y}{0} \end{aligned}$	W． E． W． E．	$7^{\text {b }} 32^{\text {m }}$	84°	$\begin{aligned} & 66^{\mathrm{d}} \cdot 9 \\ & 94 \cdot \mathrm{I} \\ & 66.9 \\ & 94 \cdot 2 \end{aligned}$	$\begin{aligned} & 66^{\mathrm{d}} \cdot 9 \\ & 94 \cdot 2 \end{aligned}$	$27^{\text {d }} \cdot 3$	
$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \text { 咭 } \end{aligned}$	E． W． E． W．	740	85	94.4 66.8 94.4 66.8	94.4 66.8	27.6	
	eans		84.5		$24^{\text {d }}$	27.45	

Coefficient of torsion，$v=3.45 \mathrm{div}$ ．

Magdalena Bay，June 9， 1866.
Magdalena Bay，June 9， 1866.

Assumed coefficient of torsion，$v=3.87$ div．
Magnet very unsteady，and its readings uncertain on account of a stiff breeze which shook the instrument．

San Diego Bay，June 15， 1866.

San Diego Bay，June 15， 1866.

	它	Time．	Temp．			Diff＇s．	Dist．
$\begin{aligned} & \stackrel{\ddot{0}}{\stackrel{0}{0}} \end{aligned}$	W. E． E.	$2^{\text {b }} 53^{\text {m }}$	71°	$62^{\text {d }} .2$ 95.4 62.2 95.4	$\begin{aligned} & 62^{\mathrm{d}} .2 \\ & 95 \cdot 4 \end{aligned}$	$33^{\text {d }} .2$	
$\begin{aligned} & \dot{y} \\ & \dot{y} \end{aligned}$	$\begin{aligned} & \text { E. } \\ & \text { W. } \\ & \text { E. } \\ & \text { W. } \end{aligned}$	36	70	95.4 61.6 95.8 61.8	95.6 61.7	33.9	II
	eans		70.5		$24^{\text {d }}$	33.55	

Cocfficient of torsion，$v=4.28$ div．

Horizontal Intensity．Observations of Deflections．

San Francisco Bay，June 26， 1866.

San Francisco Bay，June 26， 1866.

	咢皆	Time．	Temp．			Diff＇s．	Dist．
范	W． E． W. E.	$6^{\text {h }} 5^{\text {m }}$	$62 .{ }^{\circ}$	$\begin{aligned} & 60^{d} .8 \\ & 98.0 \\ & 60.7 \\ & 98.4 \end{aligned}$	$\begin{gathered} 60^{d} .8 \\ 98.2 \end{gathered}$	$37^{\text {d }} \cdot 4$	$\begin{aligned} & \pm \\ & \text { L } \\ & \text { N } \\ & \text { II } \end{aligned}$
$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \text { 感 } \end{aligned}$	E． W． E． W．	$6 \quad 59$	63.	$\begin{aligned} & 98.4 \\ & 6 \mathrm{I} .0 \\ & 98.4 \\ & 60.9 \end{aligned}$	98.4 60.9	37.5	
Means			62.5	$2 u^{\text {d }}$		37.45	

U．S．N．Observatory，Washington，Nov．1， 1866.

	势	Time．	Temp．			Diff＇s．	Dist．
$\stackrel{\dot{8}}{\stackrel{8}{8}}$	W. E． W． E．	$\mathrm{I}^{\text {h }} \quad 4{ }^{\text {m }}$	$66 .{ }^{\circ}$	$\begin{array}{r} 28 \mathrm{~d} .5 \\ 123.6 \\ 28.5 \\ 122.8 \end{array}$	$\begin{aligned} & 28^{d} .5 \\ & 123.2 \end{aligned}$	$94^{4} \cdot 7$	
荀	$\begin{aligned} & \text { E. } \\ & \text { W. } \\ & \text { E. } \\ & \text { W. } \end{aligned}$	122	66.	$\begin{array}{r} 124.5 \\ 29.3 \\ 125.5 \\ 28.1 \end{array}$	$\begin{array}{r} 125.0 \\ 28.7 \end{array}$	96.3	iI
	eans		66.0		$2 \mathrm{u}^{\text {d }}$	95.50	

	気	Time．	Temp．		苂㖘	Diff＇s．	Dist．	
$\begin{aligned} & \stackrel{4}{\Delta} \\ & \stackrel{y}{\mid c} \end{aligned}$	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { W. } \\ & \text { E. } \end{aligned}$	$\mathbf{I}^{\text {h }} 22^{\text {m }}$	$66 .{ }^{\circ}$	$\begin{array}{r} 52^{d} .5 \\ 100.9 \\ 52.0 \\ 100.5 \end{array}$	$\begin{aligned} & 52^{d} \cdot 5 \\ & 100.7 \end{aligned}$	$4^{88.2}$		
呂	$\begin{aligned} & \text { E. } \\ & \text { W. } \\ & \text { E. } \\ & \text { W. } \end{aligned}$	I 44	67.	$\begin{array}{r} \text { 102.0 } \\ 52.6 \\ 101.4 \\ 5.4 \end{array}$	$\begin{aligned} & \text { 101.7 } \\ & 52.5 \end{aligned}$	49.2	$\stackrel{N}{\\|}$	
	Ceans		66.5		$2 \mathrm{u}^{\text {d }}$	48.70		

Coefficient of torsion，$v=7.05$ div．

SECTION V.

OBSERVATIONS ON THE MAGNETISM OF THE SHIP.

Tie Monadnock is a second rate iron-clad vessel, of the Monitor type, of 1564 tons old or 1091 tons new measurement. On deck her length is 260.5 feet, and her breadth 52.0 feet. She has a wooden hull, but her deck is covered by three layers of iron plates, each one inch thick; and her sides, for a depth of five feet from the deck, are covered by six layers of iron plates, each one inch thick. Thus the deck is protected by three, and the sides by six inches of iron. She is provided with two iron turrets, cylindrical in form, each 22.8 feet in outside diameter, 9.0 feet high, and 11 inches thick. On top of each of them stands an iron pilot-house, 7.7 feet in outside diameter, 6.4 feet high, and 11 inches thick. Each of these pilot-houses is cylindrical in form, and so placed that its axis coincides with the axis of the turret upon which it stands. The sides of the turrets and pilot-houses are not solid, but are composed of iron plates, each one inch thick, placed one upon the other and bolted together till a total thickness of eleven inches is attained. To each of the iron pilot-houses are bolted wooden stanchions, which carry wooden pilot-houses whose floors are about nine and a half feet above the tops of the iron pilot-houses. The centres of the wooden pilot-houses are respectively in the same vertical lines with the centres of the turrets and iron pilot-houses over which they stand. The centres of the turrets coincide with the midships line. The distance from the stern of the vessel to the centre of the after turret is 84.5 feet; from the centre of the after turret to the centre of the forward turret, 99.1 ; and from the centre of the forward turret to the cut-water, 76.9 feet. Passing forward from the after turret, we come first to the ventilator, which is 6.5 feet in diameter, and 22.8 feet high above the deck; and then to the smoke-stack, which is 9.9 feet in diameter, and 31.0 feet high above the deck, both it and the ventilator being of iron. The distance from the centre of the after turret to the centre of the ventilator is 31.3 feet; from the centre of the ventilator to the centre of the smoke-stack, 16.5 feet; and from the centre of the smoke-stack to the centre of the forward turret, 51.3 feet.

At St. Thomas, before the magnetic observations on board ship were made at that place, a wooden mast 77.7 feet high was placed on the ship in order to enable her to carry some sail. Its centre is 22 feet forward of the centre of the forward turret, and what little iron was used in its construction is so placed that it is not at all probable that it affected the deviation of the compasses in its neighborhood in the slightest.

The following are the designations and positions of the compasses which were used during the cruise :--

The Forward Alidade was a Sands Alidade Compass, and was on top of the forward wooden pilot-house, 33.5 feet above the iron deck.

The Forward Binnacle was a Ritchie Liquid Compass, and was in the binnacle of the forward wooden pilot-house, 27.2 feet above the iron deck.

The Forward Ritchie was a Ritchic Monitor Compass, and was 6.7 feet above the top of the iron pilot-house on the forward turret. It was 22.1 fect above the iron deck.

Of these three compasses, the Forward Alidade and Forward Ritche were placed exactly in the vertical line passing through the centre of the forward turret, and the Forward Binnacle was placed about two feet further forward, but nearly in the same vertical plane.

The Admirally Standard Compass was on top of the after wooden pilot-house, 37.0 feet above the iron deck.

The After Binnacle was a Ritchie Liquid Compass, and was in the binnacle of the after wooden pilot-house, 27.2 feet above the iron deck.

The After Ritchic was a Ritchic Monitor Compass, and was 6.7 feet above the top of the iron pilot-house on the after turret. It was 22.1 feet above the iron deck.

Of these three compasses, the Admiralty Standard and After Ritchie were placed exactly in the vertical line passing through the centre of the after turret, and the After Binnacle was placed about two feet futher forward, but nearly in the same vertical plane.

The After Azimuth was a common Azimuth Compass which was set up temporarily on the quarter deck every time the ship was swung; small cavities having been cut in the iron surface of the deck for the reception of the feet of the tripod, so as to make sure that the instrument always occupied precisely the same position. It stood 47.5 feet abaft the centre of the after turret, and there were two vertical iron stanchions, each two inches in diameter, 10.3 feet high above the deck, and 12.1 feet distant from the compass, one of them being directly forward and the other directly aft of it. This compass was elevated 4.6 feet above the iron deck; but when observations of magnetic force were made, it was necessary to remove it and substitute an Admiralty Standard Compass, which occupied precisely the same position, except that it was 4.8 feet above the deck. When the dip circle was used it also stood 4.8 feet above the deck.

It will be observed that all the compasses stood in the midships line, no matter what their elevation above the deck might be.

All the observations for determining the deviations of the compasses were made by swinging the ship in the following manner: The true azimuth of a well defined distant. object was determined by a solar bearing, as explained in Section III, page 26 , and the declimation of the magnetic needle having been applied to it, its true magnetic azimuth became known; then, supposing the sight vanes of the Admiralty Standard Compass to be kept pointed steadily to that object while the ship was swung, the reading which they would indicate on the azimuth circle attached to
the cover of the compass, as the ship's head pointed successively to each of the true magnetic points, was computed by means of the formula

$$
R=180^{\circ}+A-\zeta
$$

where
$R=$ reading of sight vanes on the azimuth circle attached to the cover of the compass.
$A=$ true magnetic azimuth of the distant object; the azimuth being counted from the south around by the west.
$\zeta=$ azimuth of the ship's head, counted from the correct magnetic north around by the east.

This having been done, on a tolerably calm day steam was got up in the boilers, and, the vessel riding at a single anchor, slack water was waited for. As soon as the tide ceased to run, the executive officer took the deek; an officer was stationed at caeh of the compasses; I'went to the Admiralty Standard; and a quartermaster was stationed at the ship's bell. Then the helm was put hard-a-starboard, or hard-a-port, depending on the direction in which it was desired to lave her head swing, and the engines having been started, one forward and the other backward (the Monadnock was provided with twin screws which were entirely independent of each other), the vessel at once began to turn, without bringing any considerable strain on her cable. Her motion was perfectly under control, and could be made fast or slow at pleasure by merely varying the speed of the engines. I then set the sight vanes of the Admiralty Standard Compass to the reading (on the azimuth circle) of the point at which the ship's head would first arrive, and placing my eye to them I watched for the instant when they pointed to the distant object chosen as an azimuth mark. As the thread of the sight vane approached the object I cautioned the quartermaster to be ready, and at the instant it covered the object I made a signal, by dropping my outstretched arm, and the quartermaster struck a single stroke on the bell. Upon hearing this, every officer at once read off and recorded the heading of the ship, as indicated by the compass at which he was statioued. Then, the engines not liaving been stopped, I turned the sight vanes forward to the reading of the next point, and the same process was repeated; and so on, till the readings of all the compasses had been observed at each of the thirty-two points, which was generally accomplished in about an hour, or an hour and a half. The difference between any observed reading and the true point to which the vessel's head was directed at the time that reading was made, was of course the deviation of the compass on that point.

The forward iron and wooden pilot-houses were fixed and did not revolve with the turret, so that the lubber lines of the compasses in them always remained in the same position. But with the after iron and wooden pilot-houses the case was different. They were attached to the turret and revolved with it, and by so doing caused the lubber lines of the compasses in them also to revolve. As the turrets were frequently turned, it became necessary to establish marks by which the position of the after one could always be referred to some fixed position, so that a correction could be applied to the readings of the compasses in its pilot-houses to
reduce them to what they would have been if their lubber lines had not moved For this purpose, whenever the ship was swung, a fixed line on the under side of the hurricane deck was produced till it tonched the after turret, and then the distance from its point of contact with the turret to a joint (marked number XII) on the outside of the turret was measured. This distance, having been converted into degrees and minutes by means of the known diameter of the turret, was the correction to be applied to the position of the lubber lines. The following table gives the measured distance, and its angular equivalent, at every station where the ship was swung; but it must be noticed that these corrections apply only to the After Bimnaele and After Ritehie Compasses. The lubber line of the Admiralty Standard Compass was always properly adjusted before beginning to observe.

When the ship was being swung, I always read the Admiralty Standard Compass myself. Each of the other compasses was usually read by the officer whose name is set opposite to it in the following table.

Forward Alidade,	Lieutenant M. Miller.
Forward Binnacle,	Lieut. Miller, assisted by a Quartermaster.
Forward Ritchie,	Lieutenant Geo. Smith.
After Binnacle,	Ensign F. Wildes.
After Ritchie,	Master Wm. Barrymore.
After Azimuth,	Mate Jno. Ponte.

My instruments for the measurement of magnetic force restricted me to the method of deflections, and the only compasses on board at which that method could be applied were the Admiralty Standard and the After Azimuth. As the ship was always riding at anchor, and of course swinging a little, when such observations were made, in order to render them as accurate as possible the following plan was adopted.

The deflecting bar was screwed to the movable circle which carried the sight vanes of the Admiralty Standard Compass in such a position as to be at right angles to them. That is, when the sight vanes pointed north and south the deflecting bar pointed east and west. Then, 1°. The sights being directed exactly
north and south, as indicated by the compass card, the point, which we will designate by $I I$, cut by them on the northern or southern horizon, as might be most convenient, was noted. 2°. The deffecting magnets were placed in the carriers, one to the east and the other to the west of the compass card, both being at the same distance from the centre of the card, and with their similar poles pointing in the same direction. Then, keeping the sight vanes pointed steadily to the object H, as soon as the compass card ceased to vibrate it was read off by means of the prism attached to the sight vane. Let this reading be designated as $A .3^{\circ}$. Each deflecting magnet was reversed, end for end, in its own carrier, and, the sight vanes being still kept directed to the object H, the card was again read. Let this reading be designated as B. Then the observed angle of deflection is $\frac{A-B}{2}$.

The dip was obtained by removing the Admiralty Standard Compass with which the deflections had been observed, and putting in its place a dip circle; the axle of the dipping needle occupying precisely the same position that had previously been occupied by the pivot of the compass card.

The observations of the deviations of the compasses made during the cruise have been compared with the following theory, which is taken from the English Admiralty Manual of the Deviations of the Compass, edition of 1863.

Let
X, Y, Z, represent the force of the earth's magnetism drawing the north point of the compass needle to the ship's head, to the starboard side and vertically downwards.
$X^{\prime}, Y^{\prime}, Z^{\prime}$, represent the combined force of the magnetism of the earth and ship in the same directions.
$a, b, c, d, e, f, g, h, k$, represent constant coefficients depending on the amount and arrangement of the soft iron of the ship.
P, Q, R, represent constant coefficients depending on the amonnt, arrangement, and independent magnetism of the hard iron of the ship.
$I=$ the horizontal force of the earth.
$H^{\prime}=$ the horizontal force of the earth and ship.
$\theta=$ the dip.
$\zeta=$ azimuth of the ship's head measured eastward from the correct magnetic north.
$\zeta^{\prime}=$ azimuth of the ship's head measured from the direction of the disturbed needle.
$\delta=\zeta-\zeta^{\prime}=$ the deviation of the compass.
Then the whole mathematical theory of the deviations of the compass is comprised in the three following equations:

$$
\begin{align*}
& \mathbf{X}^{\prime}=\mathbf{Y}+a \mathbf{X}+b Y+c Z+P \tag{1}\\
& Y^{\prime}=Y+d \mathbf{X}+e Y+f Z+Q \tag{2}\\
& Z^{\prime}=Z+g \mathbf{X}+\hbar Y+\pi Z+R \tag{3}
\end{align*}
$$

We have also

$$
\begin{array}{lll}
X=H \cos \zeta & Y=-H \sin \zeta, & Z=H \tan \theta \\
\boldsymbol{X}^{\prime}=H^{\prime} \cos \zeta^{\prime} & Y^{\prime}=-H \sin \zeta^{\prime} &
\end{array}
$$

Substituting these values in equations (1), (2), and (3), and dividing by H, we have

$$
\begin{align*}
\frac{H^{\prime}}{H} \cos \zeta^{\prime} & =(1+a) \cos \zeta-b \sin \zeta+c \tan \theta+\frac{P}{H} \tag{4}\\
-\frac{H}{H} \sin \zeta^{\prime} & =d \cos \zeta-(1+e) \sin \zeta+f \tan \theta+\frac{Q}{H} \tag{5}\\
\frac{Z^{\prime}}{H} & =g \cos \zeta-\hbar \sin \zeta+(1+k) \tan \theta+\frac{R}{H} \tag{6}
\end{align*}
$$

Equation (6) may be written

$$
\begin{equation*}
0=1-\frac{Z^{\prime}}{Z}+g \frac{\cos \zeta}{\tan \theta}-h \frac{\sin \zeta}{\tan \theta}+k+\frac{R}{Z} \tag{6a}
\end{equation*}
$$

From equations (4) and (5) we obtain the following:
(4) $\cos \zeta-(5) \sin \zeta$ gives after some reductions

$$
\begin{gather*}
\frac{H^{\prime}}{H} \cos \delta=1+\frac{a+e}{2}+\left(c \tan \theta+\frac{P}{H}\right) \cos \zeta-\left(f \tan \theta+\frac{Q}{H}\right) \sin \zeta \\
+\frac{a-e}{2} \cos 2 \zeta-\frac{d+b}{2} \sin 2 \zeta
\end{gather*}
$$

(4) $\sin \zeta+(5) \cos \zeta$ gives after some reductions

$$
\begin{gather*}
\frac{H^{\prime}}{H} \sin \delta=\frac{d-b}{2}+\left(c \tan \theta+\frac{P}{H}\right) \sin \zeta+\left(f \tan \theta+\frac{Q}{H}\right) \cos \zeta \\
+\frac{a-e}{2} \sin 2 \zeta+\frac{d+b}{2} \cos 2 \zeta \tag{8}
\end{gather*}
$$

Now let

$$
\begin{array}{rlrl}
1+\frac{a+e}{2} & =\lambda & \frac{d-b}{2} & =\lambda \mathfrak{A} \\
\frac{a-e}{2} & =\lambda \mathfrak{D} & \frac{d+b}{2} & =\lambda \Subset \\
c \tan \theta+\frac{P}{H} & =\lambda \mathfrak{B} & f \tan \theta+\frac{Q}{H} & =\lambda \Subset
\end{array}
$$

Then from equations (7) and (8) we get the following:

$$
\begin{align*}
& \frac{H}{\lambda H} \cos \delta=1+\mathfrak{B} \cos \zeta-\mathfrak{C} \sin \zeta+\mathfrak{D} \cos 2 \zeta-\mathfrak{C} \sin 2 \zeta \tag{9}\\
& \frac{H^{\prime}}{\lambda H} \sin \delta=\mathfrak{A}+\mathfrak{B} \sin \zeta+\mathfrak{C} \cos \zeta+\mathfrak{D} \sin 2 \zeta+\mathfrak{C} \cos 2 \zeta \tag{10}
\end{align*}
$$

Dividing (10) by (9),

$$
\begin{equation*}
\tan \delta=\frac{\mathfrak{A}+\mathfrak{B} \sin \zeta+\mathfrak{C} \cos \zeta+\mathfrak{D} \sin 2 \zeta+\mathfrak{C} \cos 2 \zeta}{1+\mathfrak{B} \cos \zeta-\mathfrak{C} \sin \zeta+\mathfrak{D} \cos 2 \zeta-\mathfrak{C} \sin 2 \zeta} \tag{11}
\end{equation*}
$$

From (11) we easily get

$$
\begin{align*}
\sin \delta & =\mathfrak{A} \cos \delta+\mathfrak{B} \sin \zeta^{\prime}+\mathfrak{C} \cos \zeta^{\prime}+\mathfrak{D} \sin \left(\zeta+\zeta^{\prime}\right)+\mathfrak{C} \cos \left(\zeta+\zeta^{\prime}\right) \tag{12}\\
& =\mathfrak{A} \cos \delta+\mathfrak{B} \sin \zeta^{\prime}+\mathfrak{C} \cos \zeta^{\prime}+\mathfrak{D} \sin \left(2 \zeta^{\prime}+\delta\right)+\mathfrak{C} \cos \left(2 \zeta^{\prime}+\delta\right)
\end{align*}
$$

Of the last three equations (11) is used when the deviations are given on the correct magnetic points, (12) when the deviations are given on the compass points affected by deviation.

Equation (12) may be put under the following form, which is sometimes convenient, and which is very nearly exact, viz.:
$\sin \delta=\frac{1}{1-\mathfrak{D} \cos 2 \zeta^{\prime}}\left\{\mathfrak{A}+\mathfrak{B} \sin \zeta^{\prime}+\mathfrak{C} \cos \zeta^{\prime}+\mathfrak{D} \sin 2 \zeta^{\prime}+\mathfrak{C} \cos 2 \zeta^{\prime}\right\}$
By means of the expressions for $\sin \delta$ we may calculate the values of the coefficients $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{D}, \mathfrak{C}$, if we know the deviations on five points. If we have the deviations on more than five points, we may determine the most probable valnes of the coefficients by the method of least squares; but the calculation will in general be long and difficult.

If, however, the compass points on which the deviations are given divide the circumference into equal parts, we may determine the exact coefficients $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{D}, \mathfrak{E}$, with great casc, and a sufficient degree of approximation, by determining first the approximate coefficients A, B, C, D, E, and then deducing from them the values of the exact coefficients. For that purpose we proceed as follows:

If the coefficients are less than 20° their squares and products may be neglected, and equation (12) may be put under the form

$$
\begin{equation*}
\delta=A+B \sin \zeta^{\prime}+C \cos \zeta^{\prime}+D \sin 2 \zeta^{\prime}+E \cos 2 \zeta^{\prime} \tag{13}
\end{equation*}
$$

Let $\delta_{0} \delta_{1} \delta_{2} \ldots \delta_{31}$ be the deviations observed on the 32 points, by compass, $S_{1} S_{2} S_{3}$ $\ldots S_{7}$ the natural sines of the rhumbs or of the angles $11^{\circ} 15^{\prime}, 22^{\circ} 30^{\prime} \ldots 78^{\circ} 45^{\prime}$ respectively, then if the observations have been made on the 32 points we have the following 32 equations from which to determine A, B, C, D, E.

Compass Courses.	${ }_{\text {Deviation }}$	A	$+B \sin \zeta^{\prime}$	$+C \cos \zeta^{\prime}$	+ $\mathrm{Dand}^{2} \boldsymbol{\zeta}$	$+E \cos 2 \zeta^{\prime}$
North	$\delta{ }_{0}$	A		+ C		$+\mathrm{E}$
N. by E.	δ_{1}	A	$+\mathrm{B} \mathrm{S}$	$+\mathrm{CS}_{7}$		$+\mathrm{ES}_{6}$
N. N. E. N. E. by N.	δ_{2} δ_{3}	A	$+B S_{2}$ $+B S_{3}$	$+\mathrm{CS}_{6}$ $+\mathrm{CS}_{5}$	$\begin{aligned} & +\mathrm{DS}_{4} \\ & +\mathrm{DS}_{6} \end{aligned}$	$\begin{aligned} & +\mathrm{ES}_{4} \\ & +\mathrm{ES}_{2} \end{aligned}$
N. E. by N. N. E.	δ_{3} δ_{4}	A	$+\mathrm{BS}_{3}$ $+\mathrm{BS}_{4}$	$+\mathrm{CS}_{5}$ $+\mathrm{CS}_{4}$	$\begin{aligned} & +\mathrm{D} \mathrm{~S}_{6} \\ & +\mathrm{D} \end{aligned}$	
N. E. by E.	δ_{5}	A	+ B S ${ }_{5}$	$+\mathrm{CS}_{3}$	$+\mathrm{DS}_{6}$	- E S
E. N. E.	δ_{6}	A	$+\mathrm{BS}{ }_{6}$	$+\mathrm{CS}_{2}$	$+\mathrm{DS}$	- E S
E. by N .	$\delta^{\text {, }}$	A	+ B S ${ }_{7}$	$+\mathrm{CS}_{1}$	$+\mathrm{DS}$	- E S
East	δ_{3}	A	+ B			- E
E. by S.	δ_{9}	A	+ BS_{7}	- $\mathrm{CS} \mathrm{S}_{1}$	- D S	- E S ${ }_{6}$
E. S. E.	δ_{10}	A	+ B S ${ }_{6}$	- CS_{2}	- D S	- E S ${ }_{4}$
S. E. by E.	δ_{11}	A	+ B S	$-\mathrm{CS}_{3}$	-D S	- ES_{2}
S. E.	δ_{12}	A	$+\mathrm{BS}{ }_{4}$	- CS_{4}	-D	
S. E. by S.	δ_{13}	A	$+\mathrm{BS}_{3}$	$-\mathrm{CS}_{5}$	- D S ${ }_{6}$	$+\mathrm{ES}_{2}$
S. S. E.	δ_{14}	A	+ BS_{2}	$-\mathrm{CS}_{6}$	-D S_{4}	$+\mathrm{ES}_{4}$
S. by E.	δ_{15}	A	$+\mathrm{BS} \mathrm{S}_{1}$	- CS_{5}	-D Sa	+ E S ${ }_{6}$
South	δ_{16}	A		- C		+ E
S. by W.	δ_{17}	A	$-\mathrm{BS} \mathrm{S}_{1}$	$-\mathrm{CS}_{7}$		
S. S. W.	δ_{18}	A	- BS_{2}	$-\mathrm{CS}_{6}$	$+\mathrm{DS}_{4}$	$+\mathrm{ES}_{4}$
S. W. by S. S. W.	δ_{19} δ^{2}	A	-BS -BS	$\begin{aligned} & -\mathrm{CS}_{5} \\ & -\mathrm{CS}_{4} \end{aligned}$	$\begin{aligned} & +\mathrm{DS}_{6} \\ & +\mathrm{D} \end{aligned}$	$+\mathrm{ES}_{2}$
S. W. S. W. by W.	δ_{20} δ_{21}	A	- BS_{4}	- CS_{4}	$\begin{aligned} & +D \\ & +\mathrm{DS}_{6} \end{aligned}$	- E S
W. S. W	$\delta^{2 z}$	A	- B S ${ }_{6}$	$-\mathrm{CS}_{2}$	$+\mathrm{DS}_{4}$	-E S
W. by S.	δ_{23}	A	- B S ${ }_{7}$	$-\mathrm{C} \mathrm{S}{ }_{1}$	$+\mathrm{DS}_{2}$	- E S ${ }_{6}$
West	δ_{24}	A	-B			- E
W. by N.	δ_{25}	A	$-\mathrm{BS}_{7}$		- D Se	- E S ${ }_{6}$
W. N. W.	8_{28}	A	- B S ${ }_{6}$	$+\mathrm{CS}_{2}$	$-\mathrm{DS}_{4}$	$-\mathrm{ES}_{4}$
N. W. by W. N. W.	δ_{27} δ_{3}	A	- ${ }^{\text {B } S_{5}}$	$\begin{aligned} & +\mathrm{CS}_{3} \\ & +\mathrm{CS}_{4} \end{aligned}$	$\begin{aligned} & -\mathrm{DS}_{6} \\ & -\mathrm{D} \end{aligned}$	$-\mathrm{ES}_{\mathrm{a}}$
N. W. by N.	δ_{23} δ_{20}	A	- BS_{4}	$+\mathrm{CS}_{4}$ $+\mathrm{CS}_{5}$	- D ${ }_{\text {- }}$	$+\mathrm{ES}_{2}$
N. N. W.	δ_{30}	A	- BS_{2}	$+\mathrm{CS}_{6}$	-D S	$+\mathrm{ES}_{4}$
N. by W.	δ_{31}	A	- B S ${ }_{1}$	$+\mathrm{CS}_{7}$	- D S	$+\mathrm{ES}_{6}$

By the method of least squares we obtain, from these 32 equations of condition, the five normal equations

$$
\begin{aligned}
& \delta_{0}+\delta_{1}+\delta_{2} \ldots \ldots \ldots \ldots \ldots+\delta_{31}=32 A \\
& \delta_{1} S_{1}+\delta_{2} S_{2}+\delta_{3} S_{3}+\& c \ldots \ldots \ldots \ldots=16 B \\
& \delta_{1}+\delta_{1} S_{7}+\delta_{2} S_{6}+\& c . \cdots \cdots \cdots=16 C . \\
& \delta_{1} S_{2}+\delta_{2} S_{4}+\delta_{3} S_{6}+\& c . \ldots \ldots \ldots=16 D . \\
& \delta_{0}+\delta_{1} S_{6}+\delta_{2} S_{4}+\& c \ldots \ldots \ldots \ldots=16 E .
\end{aligned}
$$

For convenience of computation these equations have been put under the form

$$
\begin{aligned}
8 A= & \frac{1}{2}\left(\frac{\delta_{0}+\delta_{16}}{2}+\frac{\delta_{8}+\delta_{24}}{2}\right) \\
& +\frac{1}{2}\left(\frac{\delta_{1}+\delta_{17}}{2}+\frac{\delta_{9}+\delta_{25}}{2}\right) \\
& +\frac{1}{2}\left(\frac{\delta_{2}+\delta_{18}}{2}+\frac{\delta_{10}+\delta_{20}}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2}\left(\frac{\delta_{3}+\delta_{19}}{2}+\frac{\delta_{11}+\delta_{27}}{2}\right) \\
& +\frac{1}{2}\left(\frac{\delta_{4}+\delta_{20}!}{2} \perp \frac{\delta_{12}+\delta_{28}}{2}\right) \\
& +\frac{1}{2}\left(\frac{\delta_{5}+\delta_{21}}{2}+\frac{\delta_{13}+\delta_{29}}{2}\right) \\
& +\frac{1}{2}\left(\frac{\delta_{6}+\delta_{22}}{2}+\frac{\delta_{14}+\delta_{30}}{2}\right) \\
& +\frac{1}{2}\left(\frac{\delta_{7}+\delta_{23}}{2}+\frac{\delta_{15}+\delta_{31}}{2}\right) \\
& 8 B=\quad \frac{\delta_{8}+\delta_{24}}{2} \\
& +\frac{\delta_{1}-\delta_{17}}{2} S_{1}+\frac{\delta_{9}-\delta_{25}}{2} S_{7} \\
& +\frac{\delta_{2}-\delta_{18}}{2} S_{2}+\frac{\delta_{10}-\delta_{26}}{2} S_{6} \\
& +\frac{\delta_{3}-\delta_{19}}{2} S_{3}+\frac{\delta_{11}-\delta_{27}}{2} S_{5} \\
& +\frac{\delta_{4}-\delta_{20}}{2} S_{4}+\frac{\delta_{12}-\delta_{28}}{2} S_{4} \\
& +\frac{\delta_{5}-\delta_{21}}{2} S_{5}+\frac{\delta_{13}-\delta_{29}}{2} S_{3} \\
& +\frac{\delta_{6}-\delta_{22}}{2} S_{6}+\frac{\delta_{14}-\delta_{30}}{2} S_{2} \\
& +\frac{\delta_{7}-\delta_{23}}{2} S_{7}+\frac{\delta_{15}-\delta_{31}}{2} S_{1} \\
& 8 C=\frac{\delta_{0}-\delta_{16}}{2} \\
& +\frac{\delta_{1}-\delta_{17}}{2} S_{7}-\frac{\delta_{9}-\delta_{25}}{2} S_{1} \\
& +\frac{\delta_{2}-\delta_{18}}{2} \boldsymbol{S}_{6}-\frac{\delta_{10}-\delta_{26}}{2} \boldsymbol{S}_{2} \\
& +\frac{\delta_{3}-\delta_{19}}{2} S_{5}-\frac{\delta_{11}-\delta_{27}}{2} S_{3} \\
& +\frac{\delta_{4}-\delta_{20}}{2} S_{4}-\frac{\delta_{12}-\delta_{28}}{2} S_{4} \\
& +\frac{\delta_{5}-\delta_{21}}{2} S_{3}-\frac{\delta_{13}-\delta_{29}}{2} S_{5} \\
& +\frac{\delta_{6}-\delta_{22}}{2} S_{2}-{\frac{\delta_{14}}{2}-\delta^{20} S_{\mathrm{S}}}^{2} \\
& +\frac{\delta_{7}-\delta_{23}}{2} S-\frac{\delta_{15}-\delta_{31}}{2} S_{7}
\end{aligned}
$$

$$
\begin{aligned}
4 D= & +\frac{1}{2}\left(\frac{\delta_{4}+\delta_{20}}{2}-\frac{\delta_{12}+\delta_{28}}{2}\right) \\
& +\frac{1}{2}\left(\frac{\delta_{1}+\delta_{17}}{2}-\frac{\delta_{9}+\delta_{25}}{2}\right) S_{2}+\frac{1}{2}\left(\frac{\delta_{5}+\delta_{21}}{2}-\frac{\delta_{13}+\delta_{29}}{2}\right) S_{5} \\
& +\frac{1}{2}\left(\frac{\delta_{2}+\delta_{18}}{2}-\frac{\delta_{10}+\delta_{26}}{2}\right) S_{4}+\frac{1}{2}\left(\frac{\delta_{6}+\delta_{22}}{2}-\frac{\delta_{14}+\delta_{30}}{2}\right) S_{4} \\
& +\frac{1}{2}\left(\frac{\delta_{3}+\delta_{19}}{2}-\frac{\delta_{11}+\delta_{27}}{2}\right) S_{6}+\frac{1}{2}\left(\frac{\delta_{7}+\delta_{23}}{2}-\frac{\delta_{15}+\delta_{31}}{2}\right) S_{2} \\
4 E= & \frac{1}{2}\left(\frac{\delta_{0}+\delta_{16}}{2}-\frac{\delta_{8}+\delta_{24}}{2}\right) \\
& +\frac{1}{2}\left(\frac{\delta_{1}+\delta_{17}}{2}-\frac{\delta_{9}+\delta_{25}}{2}\right) S_{6}-\frac{1}{2}\left(\frac{\delta_{5}+\delta_{21}}{2}-\frac{\delta_{13}+\delta_{29}}{2}\right) S_{2} \\
& +\frac{1}{2}\left(\frac{\delta_{2}+\delta_{18}}{2}-\frac{\delta_{10}+\delta_{26}}{2}\right) S_{4}-\frac{1}{2}\left(\frac{\delta_{6}+\delta_{22}}{2}-\frac{\delta_{14}+\delta_{30}}{2}\right) S_{4} \\
& +\frac{1}{2}\left(\frac{\delta_{3}+\delta_{19}}{2}-\frac{\delta_{11}+\delta_{27}}{2}\right) S_{2}-\frac{1}{2}\left(\frac{\delta_{7}+\delta_{23}}{2}-\frac{\delta_{15}+\delta_{31}}{2}\right) S_{6}
\end{aligned}
$$

But the deviations about to be discussed were all observed, not on the compass points, but on the correct magnetic points. Treating them in the manner which has just been described, we obtain the approximate coefficients $A_{1}, B_{1}, C_{1}, D_{1}, E_{1}$, which belong to the correct magnetic points. Then, from equation (11) we get, going to terms of the third order inclusive,

$$
\begin{align*}
& \delta=\mathfrak{A} \tag{14}\\
+ & (\mathfrak{B}+\mathfrak{H}) \sin \zeta+(\mathbb{C}-\mathfrak{A} \mathfrak{B} \cos \zeta \\
+ & \left\{\mathfrak{D}-\frac{\mathfrak{B}^{2}-\mathbb{C}^{2}}{2}\right\} \sin 2 \zeta+\{\mathbb{C}-\mathfrak{B} \mathbb{C}-\mathfrak{A} \mathfrak{D}\} \cos 2 \zeta \\
+ & \left\{-\mathfrak{B} \mathfrak{D}+\mathbb{C}+\frac{\mathfrak{B}^{3}}{3}-\mathfrak{B} \mathbb{C}^{2}\right\} \sin 3 \zeta \\
+ & \left\{-\mathfrak{B} \mathbb{C}-\mathbb{D}-\frac{\mathbb{C}^{3}}{3}+\mathfrak{B}^{2} \mathfrak{C}\right\} \cos 3 \zeta \\
+ & \left\{-\frac{D^{2}}{2}+\left(\mathfrak{B}^{2}-\mathbb{C}^{2}\right) \mathfrak{D}\right\} \sin 4 \zeta+\{-\mathfrak{D}+2 \mathfrak{B} \mathbb{C} \mathfrak{D}\} \cos 4 \zeta \\
+ & \mathfrak{B} \mathfrak{D}^{2} \sin 5 \zeta+\mathbb{C} \mathfrak{D}^{2} \cos 5 \zeta \\
+ & \frac{1}{3} \mathfrak{D}^{3} \sin 6 \zeta
\end{align*}
$$

where δ is expressed in terms of the arc which is equal to radius. If we suppose the complete expression for δ to be

$$
\begin{align*}
\delta=A_{1} & +B_{1} \sin \zeta+C_{1} \cos \zeta+D_{1} \sin 2 \zeta+E_{1} \cos 2 \zeta \tag{15}\\
& +F_{1} \sin 3 \zeta+G_{1} \cos 3 \zeta+H_{1} \sin 4 \zeta+K_{1} \cos 4 \zeta \\
& +L_{1} \sin 5 \zeta+M_{1} \cos 5 \zeta+N_{1} \sin 6 \zeta
\end{align*}
$$

Thes, comparing equation (14) with equation (15), we find, to terms of the third order inclusive,

$$
\begin{align*}
& \mathfrak{A}=A_{1} \\
& \mathfrak{B}=B_{1}-A_{1} C_{1} \\
& \mathfrak{C}=C_{1}+A_{1} B_{1} \\
& \mathfrak{D}=D_{1}+\frac{B_{1}{ }^{2}-C_{1}{ }^{2}}{2} \\
& \mathfrak{F}=E_{1}+B_{1} C_{1}+A_{1} D_{1} \tag{16}\\
& F_{1}=-B_{1} D_{1}+C_{1} E_{1}-\frac{B_{1}{ }^{3}}{6}-\frac{B_{1} C_{1}{ }^{2}}{2} \\
& G_{1}=-C_{1} D_{1}+B_{1} E_{1} \frac{C_{1}{ }^{3}}{6}+\frac{C_{1} B_{1}{ }^{2}}{2} \\
& H_{1}=-\frac{D_{1}{ }^{2}}{2}+\frac{D_{1} B_{1}{ }^{2}}{2}-\frac{D_{1} C_{1}{ }^{2}}{2} \\
& K_{1}=-D_{1} E_{1}+2 B_{1} C_{1} D_{1} \\
& L_{1}=B_{1} D_{1}{ }^{2} \\
& M_{1}=C_{1} D_{1}{ }^{2} \\
& N_{1}=\frac{1}{3} D_{1}{ }^{3}
\end{align*}
$$

"When the deviation of the compass is small, the several parts of which it is composed are simply added together; these parts are,

1. A, the constant deviation.
2. $B \sin \zeta^{\prime}+C \cos \zeta^{\prime}$, the semicircular deviation.
3. $D \sin 2 \zeta^{\prime}+E \cos 2 \zeta^{\prime}$, the quadrantal deviation.
"When the deviation is large, $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{D}, \mathfrak{C}$, or the angles of which these quantities are the natural sines, may still be considered as the constant and as the several parts of the semicircular and the quadrantal deviation, each of these angles being in fact the maximum deviation which would exist if all the other coefficients were zero; but their effects are no longer combined by simple addition."

Before submitting the observed deviations to comparison with the theory, it is necessary to free them from constant errors. These errors originated in two ways.
1°. When the ship was swung, the variation of the needle at the port where she was lying was seldom accurately known. Hence, in order to obtain the true magnetic azimuth of the object used as an azimuth mark, it was necessary to adopt, for the time being, the best value of the variation which happened to be accessible. In order to facilitate the setting of the sight vanes of the Admiralty Standard Compass while the ship was being swung, the value thus adopted was always so taken that, when the ship's head pointed successively to each of the true -magnetic points, the reading of the sight vanes on the azimuth circle attached to the cover of that compass was always either some whole degree or some quarter of a degree. When the declinometer observations were reduced, the true value of the variation of the compass at each port became known, and then it was discovered
that in some cases the adopted value was in error by more than three degrees. But an error in the adopted value of the variation produced an error of the same amount in the magnetic azimuth of the distant object used as an azimuth mark, and, therefore, in the pointing of the ship's head to each of the true maguetic points. Bearing in mind that the observed deviations were obtained by simply taking the difference between the heading of the ship and the reading of the compass, it will be apparent that if we apply to each observed deviation the difference between the true and adopted variation of the compass, with its proper sign, we shall obtain the true deviations for the directions in which the ship's head actually pointed at the time the readings of the compasses were made. From these corrected deviations the deviations on the true magnetic points can be found by simple interpolation. Therefore, if we let
$m=$ the true, minus the adopted, magnetic azimuth of the distant object used as an azimuth mark: the azimuths being taken as increasing from the south around by the west.
$\delta^{\prime}=$ the observed deviation of the compass when the ship headed in the direction A.
$\delta^{\prime \prime}=$ the observed deviation of the compass when the ship headed in the direction $A \mp 11^{\circ} 15^{\prime}$; the upper sign being taken when m is positive, the lower when m is negative.
$\delta=$ the deviation of the compass when the ship heads to the true magnetic point which lies between A and $A \mp 11^{\circ} 15^{\prime}$; that point being of the same name as A was intended to be when the ship was swung.
Then we shall have with sufficient accuracy

$$
\delta=\delta^{\prime}+m \mp \frac{m\left(\delta^{\prime}-\delta^{\prime \prime}\right)}{11^{\circ} 15^{\prime}}
$$

the upper sign being taken when m is positive, the lower when m is negative. By this formula the deviations of the Forward Alidade, Forward Binnacle, Forward Ritchie, Admiralty Standard, and After Azimuth Compasses, on the true magnetic points, have been computed from the observed deviations.
2°. In addition to the correction which has just been explained, the observed deviations of the After Binnacle and After Ritchic Compasses require a further correction on account of the lubber lines of these instruments revolving with the after turret, and thus being frequently out of their true position. This correction, which we will represent by L, is constant, and is equal in amount to the displacement of the lubber line. Its sign is + if the lubber line is to starboard, - if it is to port, of its true position. 'The deviations of the After Binuacle and After Ritchic Compasses, on the true magnetic points, were therefore computed from the observed deviations by the formula

$$
\delta=\delta^{\prime}+(m+L) \mp \frac{m\left(\delta^{\prime}-\delta^{\prime}\right)}{11^{\circ} 15^{\prime}}
$$

the upper sign being taken when m is positive, the lower when m is negative.
'Io have computed numerically all the values of δ for each compass by means of the expressions just given, would have involved a great amount of labor; it was therefore done graphically as follows:

On a piece of cardboard of suitable size a horizontal line $a b, 5 \frac{5}{8}$ inches long, was drawn, and divided into eighths of an inch; each half inch representing one degrec, and the whole line representing $11^{\circ} 15^{\prime}$, or one point of the compass. Touching the extremities of the line $a b$, and at right angles to it, were drawn the line $c d$ and $e f$; and each of them was divided, upward and downward from the line $a b$, into points and eights of points; ${ }^{1}$ each point occupying the space of $2 \frac{13}{16}$ of an inch. Finally, a straight slip of drawing paper was divided on its edge into degrees and sixths of a degree, each degree occupying a space of one-quarter of an inch; and the graduation was numbered from the middle towards each extremity.

Then, to compute the values of δ for any compass at any place, the paper scale was laid down parallel to, and to the right of, $c d$, and at a distance from it (mcasured on the line $a b$) equal to m; next, without moving the paper scale at all in the direction $a b$, it was slipped up or down, as might be necessary, in the direction parallel to $c d$, till the line $a b$ cut the division on it which was equal to $(m+L)$; the zero of the scale being above the line $a b$ if $(m+L)$ was negative, below it if

[^5]$(m+L)$ was positive. Things being thus arranged, a weight was placed on the paper scale to prevent it from moving. Then a ruler being laid so that, while it crossed the line $e d$ at a distance from a equal to δ^{\prime}, it also crossed the line $e f$ at a distance from b equal to $\delta^{\prime \prime}$ (the distances δ^{\prime} and $\delta^{\prime \prime}$ being taken above the line $a b$ if they were positive, below it if they were negative), the reading of the point on the paper scale where the ruler crossed its edge was the required value of δ. In that way, without again moving the paper seale, the values of the deviations on each of the thirty-two true magnetic points were computed from the observed values.

The following table contains the constants which were used in computing from the observed deviations the deviations on the true magnetic points. The first column gives the name of the station. The second column, the distance in miles from the ship to the object used as an azimuth mark. The third column, the assumed magnetic azimuth of the object used as an azimuth mark; the azimuth being counted from the south around by the west. The fourth column, the true magnetic azimuth of the same object, found by applying the magnetic declination given in the table on page 61, section IV, to the true azimuth given in the table on page 36, section III. The fifth column, the value of m. 'The sixth column, the value of L; and the seventh column, the value of ($m+L$).

Station.	Distance of Object in Miles.	Assumed Magnetic Azimuth.		Truc Magnetic Azimuth.		n		L		$(m+L)$	
Hampton Roads	61	9°	15^{\prime}	13°	12^{\prime}	$+3$			0^{\prime}	$+3^{\circ}$	57^{\prime}
St. Thomas .	42	327		327	45	+0		\bigcirc	\bigcirc	+ 0	
Salute Islands	25	11	0	10	58	-0	2	$+6$	18	$+6$	
Ceara .	4	268	45		36	+ 1	51	$+6$	18	+8	9
Bahia	5	103	30	106		+2	30	$+6$	18	+8	48
Rio Janeiro .	5	126	30	129	14	+2	44	+ 5	43	$+8$	27
Monte Video	5	93	-	92	47	-0	13	+ 4		$+3$	56
Sandy Point .	26	345	15	345	22	+o	7	+ 4 +4	9	+4	
Valparaiso .	$3 \frac{1}{2}$	195	15	195	16	+o	1	+ 4	17	+4	18
Callao .	$5 \frac{1}{2}$	72	45	72	51	+o	6	+ 3	44	$+3$	50
Panama	7	15		15	I	+o	1	+ 3	44	+3	45
Acapulco.	4		15	243	21	+o	6	+ 3	44	+3	50
Magdalena Bay.	8	303	3°	302	50	-0		+3	44	+3	4
San Francisco	9	150	3°	149	45	-0	45	+3	49	+3	4

The following tables contain all the deviations of the compasses which were observed during the crnise. In each table the first column contains the assumed magnetic azimuth of the ship's head at the time the reading of the compass, given on the same line in the second column, was taken. The third column contains the observed deviation of the compass for each point, obtained by subtracting the readings in the second column from those in the first colimn. Hence, a deviation of the north point of the compass to the east is designated by the sign + ; a deviation to the west by the sign - The fourth column contains the deviation of the compass on each of the thirty-two true magnetic points. obtained from the observed deviations in the manner already explained.
Observations for Determining the Deviations of the Admiralty Standard Compass on the U. S. Iron Clad Monadnock.

Observations for Determining the Deviations of the Admiralty Standard Compass on the U. S. Iron Clad Monadnock.

Isle Royal, Salute Islands, November 30, 1865. Assumed Magnetic Bearing of Object $=\mathrm{S} . \mathrm{II}^{\circ} \mathrm{o}^{\prime} \mathrm{W}$. Correction for Object $=-0^{\circ} \quad 2^{\prime}$. Correction for Lubber Line $=0$.					Ceara, December 19, 1865. Assumed Magnetic Bearing of Object $=$ N. $88^{\circ} 45^{\prime} \mathrm{E}$. Correction for Object $=+\mathrm{I}^{\circ} \quad 5^{\prime}$. Correction for Lubber Line $=0$,				
Assumed Magnetic Direction of Ship's Head.	Bearing of Object by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Bearing of Object by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S. E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S . WEST. W. by N . W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.			+ $5^{\circ}{ }^{40}$ +520	+ $5^{\circ} 40^{\prime}$ +520	NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S. E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S. WEST. W. by N. W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.		-	$\begin{array}{ll} +10^{\circ} & 5^{\prime} \\ \mathbf{1} & 45 \\ +2 & 45 \\ +4 & 15 \\ +3 & 45 \\ +3 & 45 \\ +3 & 15 \\ +1 & 45 \\ +1 & 45 \\ +0 & 45 \end{array}$	$\begin{aligned} & +2^{\circ} \quad 50^{\prime} \\ & +33 \\ & +4 \\ & +40 \\ & +5 \\ & +50 \\ & +5 \\ & +5 \\ & +50 \\ & +5 \\ & +30 \\ & +3 \\ & +30 \\ & +20 \\ & +20 \end{aligned}$

[^6]| Bahia, December 30, 1865.
 Assumed Magnetic Bearing of Object $=$ N. $76^{\circ} 30^{\prime} \mathrm{W}$. Correction for Object $=+2^{\circ} 30^{\prime}$. Correction for Lubber Linc $=0$. | | | | | Rio Janeiro, January 10, 1866.
 Assumed Magnetic Bearing of Object $=$ N. $53^{\circ} 30^{\prime} \mathrm{W}$.
 Corrcction for Object $=+2^{\circ} 44^{\prime} . \quad$ Correction for Lubber Line $=0$. | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assumed Marnetic Direction of Ship's Head. | Bearing of Object by Compass. | Deviation of Compass in Points. | Deviation of Compass in Degrees. | Corrected Deviation of Compass. | Assumed Magnetic Direction of Ship's Head. | Bearing of Object by Compass. | $\begin{aligned} & \text { Deviation of } \\ & \text { Compass in } \\ & \text { Points. } \end{aligned}$ | Deviation of Compass in Degrees. | Corrected Deviation of Compass. |
| NORTII.
 N. by E.
 N. N. E.
 N. E. by N.
 N. E.
 N. E. by E.
 E. N. E.
 E. by N.
 E. by S.
 E. S. E.
 S. E. by E.
 S. E.
 S. E. by S.
 S. S. E. S. by E.
 SOUTH.
 S. by W.
 S. W. by S.
 S. W.
 S. W. by W.
 W. by S .
 west.
 W. by N.
 N. W. by W.
 N. W.
 N. W. by N.
 N. N. W.
 NORTH. | | | | | NORTH.
 N. by E.
 N. N. E.
 N. E. by N.
 N. E.
 N. E. by E.
 E. N. E.
 E. by N.
 E. by S .
 E. S. E.
 S. E. by E.
 S. E.
 S. E. by S.
 S. S. E.
 S. by E.
 S. by W.
 S. S. W.
 S. W.
 S. W. by W.
 W. by S.
 W. by S.
 W: by N.
 W. N. W. N. W. by W
 N. W.
 N. W. by N.
 N. N. W.
 NORTH. | | | | |
| a deviation to the W From the observ deviation are obtaine | the sign given given above, the $\begin{array}{ll} 4_{0}^{\prime 0^{\prime} .2} \\ = \end{array} \quad \begin{aligned} & \mathrm{B}=+0^{\circ} \\ & 47^{\prime} \cdot 8 \end{aligned}$ | o the East i
 wing values
 $\stackrel{8}{8} \quad \begin{array}{r}\text { C } \\ =0^{\circ} \\ 0^{\prime} .0\end{array}$ | designated of the coeff $=+0^{\circ} o^{\prime}$ | he sign + ;
 ents of the | | orth Point of the Co by the sign given above, $\begin{aligned} & 35^{\prime} \cdot 7 \\ & D^{\prime} \end{aligned}+0^{\circ} \quad \begin{aligned} & 8 \\ & 53^{\prime} \cdot 5 \end{aligned}$ | | designated
 of the co $=+o^{\circ} o^{\prime}$ | the sign + ; ients of the |

Observations for Determining the Deviations of the Admiralty Standard Compass on the U．S．Iron Clad Monadnock．

Monte Video，January 24， 1866. Assumed Magnetic Bearing of Object $=\mathrm{N} .87^{\circ}$ of W． Correction for Object $=-0^{\circ} 13^{\prime}$ ．Correction for Lubber Line $=0$.					Sandy Point，February io， 1866. Assumed Magnetic Bearing of Object $=\mathrm{S} .14^{\circ}{ }^{4} 5^{\prime} \mathrm{E}$ ． Correction for Object $=+0^{\circ} 7^{\prime}$ ．Correction for Lubber Line $=0$.				
Assumed Magnetic Direction of Ship＇s Head．	Bearing of Object by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．	Assumed Magnetic Direction of Ship＇s Head．	Bearing of Object by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．
NORTH．				$\left(+2^{\circ}{ }^{20}{ }^{\prime}\right)$	NORTH．	S． $15^{\circ} \mathrm{o}^{\prime} \mathrm{E}$ ．		$+0^{\circ}{ }^{15}$	
N，by E．	S． $89^{\circ} 10^{\prime} \mathrm{W}$ ．		$+3^{\circ} 50^{\prime}$	＋ 340	N．by E．	S． $15 \bigcirc$ E．		＋	$+{ }^{\circ} 30$ $+0 \quad 30$
N．N．E．	S． 8920 W ．		＋340	+330	N．N．E．	S． 1540 E ．		＋o 55	＋110
N．E．by N	S． 8840 W.		420	＋ 410	N．E．by N．	S． 16 o E．		＋115	＋130
N．E．	S． 8820 W.		＋ 40	＋ 430	N．E．	S．I6 ○ E．		＋115	130 +130
N．E．hy E．	S． 8720 W．		＋ 540	＋ 530	N．E．by E．	S． 1640 E.		＋155	＋2 10
E．N．E．	S． 8740 W.		＋ 520	＋ 510	E．N．E．	S． $17 \bigcirc$ E．		＋215	＋230
E．by N．	S． 8830 W.		＋ 430	＋420	E．by N．	S． 1640 E．		＋155	＋210
EAST．	S． 88 O W．		＋50	＋450	EAST．	S． 1550 E ．		＋15	＋120
E．by S．	S． 88 40 W．		+420 $+\quad 350$	+400 +30	E．by S．	S． 1620 E ．		＋135	＋150
E．S．E．${ }_{\text {S }}$	$\begin{array}{ll}\text { S．} \\ \mathrm{N} .89 & 10 \mathrm{~W} . \\ \mathrm{N} .89 & 40 \mathrm{~W} .\end{array}$		a +30 +240	＋ +330 +230	E．S．E．${ }_{\text {S }}$	S． $16 \bigcirc 0 \mathrm{E}$ S．		＋115	＋130
S．E．by E．			+240 +30	+230 +250	S．E．by E．	S． 16 20 E．		+135 +135 +15	1 +150 +130
S．E．by S．	N． 8940 W.		＋ 240	＋220	S．E．by S．	S． 1520 E ．		$\begin{array}{r}+135 \\ +0 \quad 35 \\ \hline\end{array}$	1 +130 +050
S．S．E．	N． 89 ○ W．		20	＋140	S．S．E．	S． 1540 E．		+055 $+\quad 055$	＋1 10
S．by E．	N． 89 o W．		2	＋140	S．by E．	S． 1520 E ．		＋035	＋0 50
SOUTH．	N． 8820 W.		120	＋10	SOUTH．	S． 1520 E ．		＋ +035	＋ 50
S．by W．	N． 8820 W.		120	＋10	S．by W．	S． $16 \bigcirc$ E．		1 +15	＋130
S．S．W．	N． 88 O W．		＋10	＋0 ${ }^{\circ}$	S．S．W．	S． $16 \bigcirc$ E．		＋115	＋130
S．W．by S．	S．W．by S．$\frac{1}{4}$ S．				S．W．by S．	S． 15 50 E．		＋15	＋120
S．W．w	S．W．$\frac{1}{8}$ S．		1 +104 0	＋10	S．W．W．	S． 1540 E．		＋055	＋110
S．W．by W．	S．W．by W．		\bigcirc	二0 20	S．W．by W． W．S．W．	S． $1530 \mathrm{E}$.		＋045	＋10
W．by S．	w．by S．		\bigcirc	－	W．by S．	S．If 40 O E．		二－${ }^{0} 5$ －	$\begin{array}{r}\text {＋} \\ +0 \\ -010 \\ \hline\end{array}$
WEST．	W．$\frac{1}{8} \mathrm{~N}$.	－	－ 124	－ 140	WEST．	S． 14 10 E．		－ 35	－ 20
W．by N．	W．by N．$\frac{1}{1}$ ，	－	－2 29	－ 310	W．by N．	S． $13 \bigcirc$ E．		－I 45	－ 130
W．N．W．	W．N．W．${ }^{\frac{1}{4} \text { N．}}$	－	－ 249	－3 ${ }^{10}$	W．N．W．	S． 1250 E.		－ 155	－ 140
N．W．by W．	N．W．${ }^{\text {N }}$ N．		－2 249	－3 ${ }^{\circ} 10$	N．W．by W．	S． 1240 E.		－2 5	－ 150
N．W．by N ．	N． $87^{\circ}{ }^{\frac{8}{8}}$ o W ．		－10	－1 ${ }^{10}$	N．W．by N．	S． 12 ¢ 13 O E．		二2 ${ }^{2}$	－150
N．N．W．	N． 87 ○ W．		－ 0	－0 10	N．N．W．	S． 1320 E ．		［1	－1 30
N．by W． NORTH．	N． 88 ○ W．		＋10	＋o 50	N. by w.	S． $14 \bigcirc$ E．		－0 45	－0 30
NORTH．				$\left(\begin{array}{ll}+20\end{array}\right)$	NORTH．	S， 15 ○ E．		＋015	＋o 30

[^7]Observations for Determining the Deviations of the Admiralty Standard Compass on the U. S. Iron Clad Monadnock.

Assumed Magnetic Bearing of Object $=$ N. $15^{\circ} \quad 15^{\prime}$ E. Correction for Object $=+0^{\circ} \mathbf{1}^{\prime}$. Correction for Lubber Line $=0$.					Callao, April 29, 1866. Assumed Magnetic Bearing of Object $=5.72^{\circ} 45^{\prime} \mathrm{W}$. Correction for Object $=+0^{\circ} 6^{\prime}$. Correction for Lubber Line $=0$.				
Assumed Magnetic Direction of Ship's Head.	Bearing of Object by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass	Assumed Magnetic Direction of Ship's Head.	Bearing of Object by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH.	N. $15^{\circ} 30^{\prime} \mathrm{E}$.		- $0^{\circ}{ }^{15}{ }^{\prime}$	- $0^{\circ} \mathrm{Io}^{\prime}$	NORTH.	S. $72^{\circ}{ }^{\circ} 0^{\prime} \mathrm{W}$.		$+0^{\circ} 5^{\prime}$	$+0^{\circ} 10^{\prime}$
N , by E.	N. $14 \bigcirc$ E.		+115	+120	N. by E.	S. 7240 W.		+o 5	+0 10
N. N. E.	N. I4 ○ E.		+115	+120	N. N. E.	S. 7140 W.		+15	+110
N. E. by N.	N. 1330 E .		+ 145	+ 150	N. E. by N.	S. 71 o W.		+145	+150
N. E.	N. I3 ${ }^{\text {c }}$ E.		+215	+220	N. E.	S. 7020 W.		+225	+230
N. F., by E.	N. 13 o E.		+215	+220	N. E. by E.	S. 7020 W.		+225	+230
E. N. E.	N. 1240 E.		+235	+240	E. N. E.	S. 70 o W.		+245	+250
E. by N.	N. 1240 E .		+235	+240	E. by N.	S. 7030 W.		+215	+220
EAST.	N. $13 \bigcirc$ E.		+215	+220	EAST.	S. 710 W .		+145	+150
E. by S.	N. I4 o E.		+115	+120	E. by S.	S. 70 40 W.		+25	+210
E. S. E.	N. I3 40 E.		+135	+140	E. S. E.	S. 7110 W.		+15	+1 10
S. E. by E.	N. 1420 E .		+o 55	± 10	S. F. by E.	S. 7140 W.		1 +15	+110
S. E. ${ }_{\text {S. E. by S. }}$	N. $1440{ }^{\text {N. }} 15$ E.		+ +035 $+0 \quad 15$	$\begin{array}{r}+1 \\ +0 \\ +0 \\ \hline\end{array}$	S. E. by S.	$\begin{array}{ll}\text { S. } 72 & \circ \\ \text { S. } 72 & \text { W. } \\ \text { S. } \\ \text { c. } & \end{array}$		+1 +045 +05	+150 +0510
S. S. E.	N. $15 \bigcirc \mathrm{E}$.		+015	+020	S. S. E.	S. 7240 W.		+05 +05	+o
S. by E.	N. 15 ○ E.		+o15	+o 20	S. by E.	S. 73 ○ W.		-0 15	-0 10
SOUTH.	N. 1440 E .		+o35	+040	SOUTH.	S. 73 o W.		-0 15	-0 10
S. by W.	N. 1420 E .		+0 55	+10	S. by W.	S. $73 \circ \mathrm{~W}$.		-0 15	-0 10
S. S. W,	N. 1440 E.		+o35	+040	S. S. W.	S. 73 O W.		-0 15	-0 10
S. W. by S.	N. 1440 E.		$\begin{array}{r}\text { + } \\ + \\ +035 \\ \hline\end{array}$	+0 40	S. W. by S.	S. $73 \bigcirc \mathrm{~W}$.			二0 10
S. W. ${ }_{\text {S. W. by }}$	N. 15 o ${ }_{\text {N. }} 14$ E.		$\begin{array}{r}\text { + } \\ +0 \\ +0.15 \\ \hline\end{array}$	$\begin{array}{r}\text { + } \\ + \\ +0 \\ \hline\end{array}$	S. W. by w.	$\begin{array}{ll}\text { S. } 74 & \text { O W. } \\ \text { S. } 74 & \text { O. } \\ \text { W. }\end{array}$		-1 15 15 15	$\begin{array}{ll}\text { - } 110 \\ -1 & 10\end{array}$
W. S. W. W.	N. 14330 E N.		1045 055	$\begin{array}{r}1050 \\ \hline\end{array}$	W. S. W. W.	S. $74 \times$ O.		-1 15 1 15	-1 10
W. by S.	N. 1540 E.		-0 25	- 20	W. by S.	S. 7530 W.		-2 25	-2 40
WEST.	N. 1530 E .		-0 15	- 10	WEST.	S. 76 o W.		-3 5	-3 ${ }^{10}$
W. by N .	N. 1630 E .		-1 15	- 10	W. by N.	S. 7540 W.		-2 55	-2 5^{0}
W. N. W.	N. 1640 E .		-125	- 120	W. N. W.	S. 76 ○ W.		-315	-310
N. W. by W.	N. 1640 E.		-1 25	-120	N. W. by W.	S. 7530 W.		-245	- 240
N. W. N N. W b N.	N. $17{ }^{\circ} \mathrm{O}$ E.		-1 45 15	-1 10.	N. W. ${ }_{\text {N. }}$	S. 7540 W.		-2 - 25	-2 50
N. N. W.	N. 1520 E .		-1	二10	N. N. W. ${ }^{\text {N. }}$	S. 74 O 20 W .			-2 10
N. by W.	N. 1540 E .		-0 25	-0 20	N. by w:	S. 7320 W.		-1	-1 ${ }^{1}$
NORTH.	N. 1530 E .		-0 15	- 10	NORTH.	S. 7240 W.		+o5	+0 10

[^8]Observations for Determining the Deviations of the Admiralty Standard Compass on the U. S. Iron Clad Monadnock.

		 $1+t+++++++++1\| \| 1\|1\|\| \|\| \|\| \|\| \|\| \|\| \|$
		 $1+t+++++t+++1\|1\| 1\|1\| 1\|1\|\| \| 1\|1\| 1 \mid 1$

A deviation of the North Point of the Compass to the East is designated by the sign + ; \quad A deviation of the North Point of the Compass to the East. is designated by the sign + ;
a deviation to the West by the sign From the observations given above, the following values of the coefficients of the $\left\lvert\, \begin{aligned} & \text { From the observations given above, the following values of the coefficients of the } \\ & \text { deviation are obtained: }\end{aligned}\right.$ $\begin{array}{ll}3^{\prime} .6 \\ \mathrm{D}=+0^{\circ} & \mathrm{B}=+3^{\circ} \\ 55^{\prime} .0 & 2^{\prime} . \mathrm{I} \\ \mathrm{E}=+0^{\circ} & \mathrm{C}=+0^{\circ} \mathbf{8}^{\prime} .0\end{array}$
deviation are obsained:

$$
A=+0^{\circ} .
$$ Assumed Magnctic Bearing of Object $=\mathrm{S}$

Correction for Object $=+0^{\circ} \quad 1^{\prime}$. Correction for

 $++++++++++++++++++1| || || || || |+$

	 $+t++++++++++++++++1\| \|\| \|\| \|\| \|\| \|+$

Дi

Magdalena Bay, June 9, 1866.

Magdalena Bay, June 9, 1866. Assumed Magnetic Bearing of Object $=$ S. $56^{\circ} 30^{\prime} \mathrm{E}$. Correction for Object $=-0^{\circ} 4 \mathbf{I}^{\prime} . \quad$ Correction for Lubber Line $=0$.					San Francisco, June 23, 1866. Assumed Magnetic Bcaring of Object $=$ N. $29^{\circ} 30^{\prime} \mathrm{W}$. Correction for Object $=-0^{\circ} 45^{\prime} . \quad$ Correction for Lubber Line $=0$.				
Assumed Magnetic Direction of Ship's Head.	Bearing of Object by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Bearing of Object by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH.	S. $56^{\circ} 33^{\prime} \mathrm{E}$.		$\circ^{\circ} 0^{\prime}$	- $0^{\circ} 40^{\prime}$	NORTH.	N. $28^{\circ} 20^{\prime} \mathrm{W}$.		$-1^{\circ} \mathrm{ro}^{\prime}$	- $\mathrm{I}^{\circ} 50^{\prime}$
N. by E.	S. $5^{6} 40 \mathrm{E}$.		+0 10	-0 30	N. by E.	N. 2930 W.		- 0	-0 40
N. N. E.					N. N. E.	N. 3 I ○ W.		+130	+0 50
N. E. by N.					N. E. by N.	N. 32 o W.		+230	+150
N. E.					N. E.	N. 33 ○ W.		+ 330	+250
N. E. by E.					N. E. by E.	N. 33 N. N 34 30 30		a +4 +50	a +30 +410
E. N. E. E. by N.					E. N. E.	N. N. 34 34 30 30		+50 +50	+410
EAST.					EAST.	N. 3415 l W.		+50 +445	+410 +40
E. by S.					E. by S.	N. 33 30 W.		+ 40	+320
E. S. E.					E. S. E.	N. 34 ○ W.		+ 430	+ 340
S. E. by E.					S. E. by E.	N. $33^{\circ} 30 \mathrm{~W}$.		+40	+320
S. E. S. E. by S.					S. E. by S.	N. 33 n 30 W.		+40	+310
S. S. E.					S. S. E.	N. ${ }^{23} 20$ W.		+330 +250	+ 20 +20
S. by E.					S. by E.	N. 3 I 30 W.		+	+10
SOUTH.					SOUTH.	N. 3 I o W.		+130	+0 ${ }^{0}$
S. by W.					S. by W.	N. 30 o W.		+030	-0 20
S. S. W.					S. S. W.	N. 2940 W.		+o 10	- 040
S. W.			+0 30	-0 20	S. W. by S .	N. 28 do W.		二0 50	- 140
S. W. by W.	S. 5620 E .		- 10	- 10	S. W. by W.	N. 27 o W.		-1 30	-2 20
W. S. W.	S. 5530 E .		-	- 150	W. S. W.	N. 2620 W.		-310	-3 ${ }^{20}$
W. by S.	S. 55 o E.		130	-2 20	W. by S.	N. 2520 W.		-4 10	-5 5
WEST.	S. 5420 E .		210	-3 0	WEST.	N. 25 O V.		-430	-5 20
W. by N.	S. 5320 E .		-3 10	-350	W. by N.	N. 2430 W.		-5 5	- 5 50
W. N. W.	S. 5320 E .		-3 ${ }^{10}$	-3 50	W. N. W.	N. 240 W.		-5 50	-6 20
N. W. by ${ }^{\text {N. }}$	S. 53 O 53 E.		$\begin{array}{r}\text {-3 } \\ -30 \\ \hline\end{array}$	-410 -340	N. W. by W. N.	N. 23 S 30 W.		-6 ${ }^{\circ} \mathrm{O}$	-6 50
N. W. by N.	S. 5330 E .		-3	-340	N. W. by N:	N. 2515 W.		-5 -4	-5 5
N. N. W.	S. 5430 E.		-20	- 240	N. N. W.	N. 26 o W.		-3 30	-4 10
N. by W. NORTH.	S. 55 30 S. 56 30		I 0	-1 40	N. by W.	N. $2733^{\circ} \mathrm{W}$.		-2 ${ }^{3}$	-2 5^{0}
NORTH.	S. $56 \quad 30 \mathrm{E}$.		\bigcirc	-0 40	NORTH.	N. 2820 W.		- 110	- 150

[^9]Observations for Determinlng the Deviations of the After Binnacle Compass on the U.S. Iron Clad Monadnock.

Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH. N. by E. N. N. E. N. E. by N. N. E. N: E. by E. E. N. E. E. by N. EAST. E. by S. E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S . WEST. W. by N , W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	NORTH. N. E . N. N. E. $\frac{1}{4}$ E. N. E. +E. N. E. by E, $\frac{1}{4}$ E. E. N. E. E. by N. E. $\frac{1}{2}$ N. E. by S. E. by S. ${ }^{3}$ S. S. E. ${ }^{3}$ S. S. E. by S. $\frac{1}{2}$ S. S. S. E. $\frac{1}{4}$ S. S. by E. S. $\frac{1}{4}$ E. S. by W. S. S. W. $\frac{1}{4}$ W. S. W. by S. $\frac{1}{4}$ W. S. W. 1 W. S. W. by W. $\frac{1}{2}$ W. W. S. W. $\frac{1}{2}$ W. W. by S. $\frac{1}{2}$ W. W. $\frac{3}{4} \mathrm{~N}$. W. by N. $\frac{1}{2}$ N. W. N. W. N. W. $\frac{1}{2}$ W. N. W. $\frac{1}{2}$ N. N. W. by N. $\frac{1}{3}$ N. N. N. $\frac{3}{4}$ W.		-	- ,

A deviation of the North Point of. the Compass to the East is designated by the sign +;

A deviation of the North Point of the Compass to the East is designated by the sign +;
a deviation to the West yy the sign - .
From the observations From the observations given above, the following values of the coefficients of the
deviation are obtained:

$$
\begin{aligned}
& \text { e obtained: } \\
& A=+0^{\circ}
\end{aligned}
$$ a deviation to the West by the sign 一.

The officer who usually read this compass was on shore when the ship was swung. He was replaced by another who made the atove observations, which, however, are evidently
worthless. No use has been made of them.
Observations for Determining the Deviations of the After Binnacle Compass on the U. S. Iron Clad Monadnock.

Isle Royal, Salute Islands, November 30, 1865. Correction for Object $=-0^{\circ} 2^{\prime}$. Correction for Lubber Line $=+6^{\circ} \mathbf{1 8}^{\prime}$.					Ceara, December 19, 1865. Correction for Object $=+1^{\circ} 5^{\prime}$. Correction for Lubber Line $=+6^{\circ} \quad$ 18 .				
Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S . E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S . WEST. W, by N. W. N. W. -N, W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	$\underset{\text { EAST. by }}{\text { E. }}$	\bigcirc	-	$+6^{\circ} 20^{\prime}$ +620	NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by'N. EAST. E. by S . E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S, W. S. W. by S. S. W. S. W. by W. W. S. V. W. by S . WEST. W. by N. W. N. W. N. W. by W. N. W. N. W. by N. IJ. N. W. N. by W. NORTH.	N. by E. $\frac{3}{8}$ E. N. E. by N. $\frac{3}{4}$ N. N. E. $\frac{7}{8}$ N. N. E. N. E. by E. $\frac{1}{8}$ E. E. by N. $\frac{7}{8}$ N. E. ${ }^{2} \mathrm{~N}$. E. $\frac{3}{3} \mathrm{~S}$. E. by S. $\frac{3}{\text { 最 }}$. S. E. by E. $\frac{1}{2}$ E.			$\begin{aligned} & +3^{\circ} \\ & +50^{\prime} \\ & +6 \\ & 10 \\ & +7 \\ & +70 \\ & +7 \\ & +6 \\ & +6 \\ & +6 \\ & +60 \\ & +4 \\ & +40 \\ & +4 \\ & +20 \end{aligned}$

[^10]Observations for Determining the Deviations of the After Binnacle Compass on the U．S．Iron Clad Monadnock．

Bahia，December 30， 1865. Correction for Object $=+2^{\circ} 30^{\prime}$ ．Correction for Lubber Linc $=+6^{\circ} 18^{\prime}$.					Rio Janeiro，January 10， 1866. Correction for Object $=+2^{\circ} 44^{\prime}$ Correction for Lubber Line $=+5^{\circ} 43^{\prime}$ ．				
Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．	Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．
NORTH． N．by E． N．N．E． N．E．by N． N．E． N．E．by E． E．N．E． E．by N． EAST． E．by S． E．S．E． S．E．by E． S．E． S．E．by S． S．S．E． S，by E ． SOUTH． S．by W． S．S．W． S．W．by S． S．W． S．W．by W． W．S．W． W，by S． WEST． W．by N ． W．N．W． N．W．by W． N．W． N．W．by N． N．N．W． N．by W． NORTH．	N．$\frac{1}{8}$ E． N．by E．$\frac{1}{2}$ E． N．N．E．E． N．E． N．E．by E．$\frac{1}{1}$ E． E．N．E． E．hy N． E．$\frac{1}{2} \mathrm{~S}$ ． E．by S． 1 S． S．E．by E．$\frac{8}{4}$ E． S．E．$\frac{5}{8}$ E． S．E．+ S． S．S．E．． t E． S．咅 E ． S．by W．$\frac{5}{}$ W． S．S．W．${ }^{\text {S }}$ W． S．W．$\frac{1}{\text { S．}}$ S．W． W．S． W． W．by S ． W．$\frac{1}{d} \mathrm{~N}$ ． W．by N．$\frac{1}{1} \mathrm{~N}$ ． N．W．by W．${ }_{3} \mathrm{~W}$ ． N．W．W． N．N．W．${ }^{3}$ W． N．by W．$\frac{1}{8}$ W． N．$\frac{1}{4}$ W．				NORTH． N．by E． N．N．E． N．E．by N． N．E． N．E．by E． E．N．E． E．by N． EAST． E．by S． E．S．E， S．E．by E． S．E． S．E．by S． S．S．E． S．by E． SOUTH． S．by W． S．S．W． S．W．by S． S．W． S．W．by W． W．S．W． W．by S． WEST． W．by N ． W．N．W． N．W．by W． N．W． N．IV．by N． N．N．W． N．by W． NORTH．	N．E． N． N． N． N．E．by E．$\frac{1}{8}$ E． E．by N．$\frac{7}{8}$ N． E．${ }^{\text {E }}$ N． E．by S． 4 S． S．E．by E．告E． S．E．$\frac{8}{8} \mathrm{E}$ ． S．E．$\frac{1}{2}$ S． S．S．E．車E． S．$\frac{2}{8} \mathrm{E}$ ， S．If W． S．by W．$\frac{8}{4} \mathrm{~W}$ ． S．S．W．${ }_{3}^{4}$ W． S．W．$\frac{1}{4}$ S．	$\begin{array}{ll}\text { 二 } & 1 \\ \text { 二 } \\ \text { 二 } \\ \text { 二 } \\ \text { 二 }\end{array}$		
A deviation of the North Point of the Compass to the East is designated by the sign + ； a deviation to the West by the sign－ From the observations given above，the following values of the coefficients of the deviation are obtained： $\begin{array}{rll} \mathrm{A}=+\mathrm{r}^{\circ} & 29^{\prime} .8 & \mathrm{~B}=+5^{\circ} \\ \mathrm{D}=+\mathrm{r}^{\circ} & 4 \mathrm{I}^{\prime} .5 \\ \mathrm{E} & =+0^{\circ} .6 & \mathrm{C}=-0^{\circ} .8 \\ 7^{\prime} .9 \end{array}$					A deviation of the North Point of the Compass to the East is designated by the sign＋； a deviation to the West by the sign－ deviation are obtained： From the observations given above，the following values of the coefficients of the $\begin{gathered} \mathrm{A}=+0^{\circ}{ }^{5 \mathrm{I}^{\prime} .4}=\mathrm{D}^{\circ}=+\mathrm{B}_{56^{\prime} .7}^{=}+5^{\circ} \mathrm{E} \mathrm{E}^{\prime} .9 \\ = \end{gathered} 0^{\circ} \mathrm{C}=-0^{\circ}=24^{\prime} .8$				

Observations for Determining the Deviations of the After Binnacle Compass on the U. S. Iron Clad Monadnock.

Monte Video, January 24, 1866. Correction for Object $=-0^{\circ} 13^{\prime}$. Correction for Lubber Line $=+4^{\circ} 9^{\prime}$.					Sandy Point, February 10, 1866. Correction for Object $=+0^{\circ} 7^{\prime}$. Correction for Lubber Line $=+4^{\circ} 9^{\prime}$.				
Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S. E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S . WEST. W. by N. W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	N. $\frac{3}{8}$ E. N. by E. N. by E. $\frac{7}{8}$ E. N. E. by N. $\frac{1}{4}$ N. N. E. $\frac{1}{4}$ N. N. E. N. E. by E. ${ }^{5}$ E. E. by N. $\frac{3}{8}$ N. E. $\frac{1}{4}$ N. E. by S. 7 S. S. E. by E. S. E. $\frac{1}{8}$ S. S. E. by S. $\frac{1}{4}$ S. S. by E. $\frac{3}{4} \mathrm{E}$. S. $\frac{5}{8}$ E. S. $\frac{3}{8}$ W. S. S. W. $\frac{3}{2}$ W. S. W. $\frac{5}{8} \mathrm{~S}$. S. W. by W. $\frac{1}{2}$ W. W. by S. $\frac{1}{2}$ S. W. $\frac{3}{3} \mathrm{~S}$. W. by N. $\frac{3}{4} \mathrm{~N}$. N. W. by W. $\frac{1}{4}$ W. N. W. N. W. $\frac{1}{3}$ N. N. N. W. $\frac{3}{8} \mathrm{~W}$. N. by W. N. $\frac{1}{2}$ W.		- ,	-0° 20^{\prime} +4 0 +5 20 +6 40 +6 40 +8 10 +8 10 +8 0 +6 40 +6 40 +5 20 +4 0 +2 30 +1 0 +1 0 -0 20 -0 20 -0 20 -1 40 -0 20 -1 40 -1 40 -1 40 -3 20 -4 30 -3 0 -1 40 -1 40 -0 20	NORTH. N. E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S. E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S. WEST. W. by N . W. N. W. N. W. by W. N. W. N.W. by N. N. N. W. N. by W. NORTH.	N. $\frac{1}{2} \mathrm{E}$. N. by E. $\frac{1}{8}$ E. N. N. E. $\frac{1}{8}$ E. N. E. by N. N. E. $\frac{1}{\frac{1}{2}} \mathrm{~N}$. N. E. by E. $\frac{7}{8}$ E. E. by N. $\frac{1}{8}$ N. E. $\frac{1}{8} \mathrm{~N}$. E. by S. E. S. E. S. E. $\frac{7}{\text { S. E. }}$ E. S. E. by S. $\frac{1}{6}$ S. S. by E. $\frac{8}{8} \mathrm{E}$. S. $\frac{8}{\text { 量 }} \mathrm{E}$ W. S. by W. S. S. W. W. S. W. W. S. W. $\frac{1}{8}$ S. W . S. W. by W. ${ }^{\text {E }}$ W. W. by S. $\frac{1}{4}$ S. W. t S. w. A. N. W N. W. by W. N. W. N. W. by N. N. N. W. - $\frac{1}{8}$ W. N. by W. $\frac{8}{8} \mathrm{~W}$: N. $\frac{3}{8}$ W.			-1° 20 +2 50 +2 50 +4 20 +5 40 +4 20 +4 20 +2 50 +1 30 +1 30 0 0 0 0 0 0 0 0 -1 20 -1 20 -2 50 -2 50 -4 10 -5 40 -5 40 -7 0 -7 0 -7 0 -7 0 -5 40 -4 10 2 50 -1 20

[^11]Observations for Determining the Deviations of the After Binnacle Compass on the U．S：Iron Clad Monadnock．

Valparaiso，April 4， 1866.$\text { Correction for Object }=++^{\circ} 1^{\prime} . \text { Correction for Lubber Line }=+4^{\circ} 17^{\prime} .$					Callao，April 29， 1866. Correction for Object $=+0^{\circ} 6 \%$ Correction for Lubber Line $=+3^{\circ} 44^{\prime}$ ．				
Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．	Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．
NORTH．	N．$\frac{8}{3} \mathrm{E}$ ．	－	－，	$0^{\circ} 0^{\prime}$	NORTH．	N．${ }^{\text {E }}$ E．		－ 1	$-0^{\circ} 20^{\prime}$
N ．by E．	N．by E．$\frac{1}{\text { F．}}$			＋130	N．by E．	N．by E． 1 E．			＋10
N．N．E．	N．N．E．\％E．	$\frac{1}{8}$		＋250	N．N．E．	N．N．E．\％E．	－$\frac{1}{8}$		＋230
N．E．by．N．	N．E．by N．			＋ 420	N．E．by N．	N．E．hy N．			＋350
N．E．	N．E．${ }^{\text {d }}$ N．			+540 +540	N．E．	N．E．${ }^{\text {N }}$ N．	＋		＋ 520
N．E．by E．	N．E．$\frac{1}{\text { E E }}$ ．	\＄		+540 +540	N．E．by E．	N．E．${ }^{\text {a }}$ E．	$+\frac{8}{8}$		$\begin{array}{r}\text {＋} \\ +50 \\ \hline\end{array}$
E．by N．	N．E．by E． E．by N．	＋${ }^{\frac{1}{3}}$		+540 +420	E．N．E．	E．N．E．	0		＋350
EAST．	EAST．			+420 +420	EAST．	EAST．	0		＋350
E．by S．	E．by S．$\frac{1}{\text { S }}$ ．	－		＋130	E．by S．	E．by S．$\frac{1}{8}$ ．S．	$\frac{1}{8}$		+33 +23
E．S．E．	S．E．by E．$\frac{7}{8} \mathrm{E}$ ．	－		＋250	E．S．E．	S．E．by E．$\frac{7}{8} \mathrm{E}$ ．	\％		＋230
S．E．by E．	S．E－${ }^{1} \mathrm{E}$ ．	－		＋130	S．E．by E．	S．E．${ }^{\frac{3}{1} \text { E．}}$	－		＋10
S．E．	S．E．$\frac{1}{\text { S }}$ ．	－		＋130	S．E．	S．E．$\frac{1}{4}$ S．	－ 1		＋1
S．E．by S．	S．E．by S．$\frac{3}{8}$ S．	－		－ 0	S．E．by S．	S．S．E．${ }^{\text {a }} \mathrm{E}$ ．	－		－0 20
S．S．E．	S．by E，$\frac{3}{8} \mathrm{E}$ ．	－		\bigcirc	S．S．E．	S．by E．$\frac{\text { gr }}{} \mathrm{E}$ ．	－		－0 20
S．by E．	S．S．${ }_{\text {S }}$ E．	二		\bigcirc	S．by E．	S．$\frac{5}{3} \mathrm{E}$ ．	－$\frac{3}{8}$		－0 20
SouTH．	S．${ }_{\text {s }} \mathrm{W}$ W．			$\bigcirc 0$	SOUTH．	S．${ }^{\text {a }}$ W．	－		－0 20
S．by W．	S．S．W．W．$\frac{3}{8}$ W．	二		\bigcirc	S．by w．	S．by W． S．S．W． d W．W．	二 $\frac{8}{8}$		－0 20 -020
S．W．by S．	S．W．$\frac{5}{8} \mathrm{~S}^{\text {s }}$ ．	－$\frac{8}{8}$		－ 0	S．W．by S．	S．W．$\frac{5}{8} \mathrm{~S}^{\text {g }}$ ．			二0 20
S．W．${ }_{\text {S }}$	S．W．$\frac{1}{2}$ W．	－$\frac{1}{\text { a }}$		－ 20	S．W．	S．W．$\frac{1}{2}$ W．	$\frac{1}{2}$		－ 150
S．W．by W．	S．W．by W，$\frac{1}{2}$ W．	－$\frac{1}{3}$		120	S．W．by W．	S．W．hy W．$\frac{1}{2}$ W．			－ 150
W．S．W．	W．by S．$\frac{3}{8} \mathrm{~S}$ ．	二		－ 250	W．S．W．	W．by S．$\frac{3}{8} \mathrm{~S}$ ．	－		－310
W．by S．	W．${ }^{\text {W．}}$ S． S ．			-250 -410	W．by S．	W．${ }_{\text {W }}^{3} \mathrm{~S}$ ．	二		－3 10
W．by N ．	W．by N． 3 N．	二		－4 ${ }^{10}$	W．by N ．	W．by N． 7 N．	二 ${ }^{\frac{3}{4}}$		－ 40
W．N．W．	N．W．by W．${ }^{\frac{1}{4} \text { W．}}$	－$\frac{1}{4}$		－4 40	W．N．W．	N．W．by W．$\frac{1}{8}$ W．	－		－6 0
N．W．by W．	N．W．$\frac{1}{8}$ W．			－ 540	N．W．by W．	N．W．${ }^{\frac{1}{8} \text { W．}}$	二		－6 0
N．W．	N．W．${ }^{3} \mathrm{~N}$ ．	－		－4 10	N．W．	N．W．$\frac{1}{8} \mathrm{~N}$ ．			－6 0
N．W．by N．	N．N．W． N．by W． W． W．	二		－4 10 20	N．W．by N， N．N．W．	N．N．W． N．by W． W． W．	${ }^{3}$		－4 40
N．by w	N．$\frac{1}{2} \mathrm{~W} .8{ }^{8}$	二		$\begin{array}{ll}\text { 二2 } & 50 \\ \text { 1 } & 20\end{array}$	N．N．W．	N．by W．${ }^{\frac{1}{2} \mathrm{~W}}$ ．${ }^{\text {N }}$	二		-310 -150
NORTH．		－		－	NORTH．		－$\frac{3}{8}$		－ 20

[^12]Observations for Determining the Deviations of the After Binnacle Compass on the U．S．Iron Clad Monadnock．

Panama，May 20， 1866. Correction for Object $=+0^{\circ} 1^{\prime}$ ．Correction for Lubber Line $=+3^{\circ} 44^{\prime}$ ．						Acapulco，June 1， 1866. Correction for Object $=+0^{\circ} 6^{\prime}$ ．Correction for Labber Line $=+3^{\circ} 44^{\prime}$ ．				
	Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．	Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．
	NORTH． N．by E． N．N．E． N．E．by N． N．E． N．E．by E． E．N．E． E．by N． EAST． E．by S ． E．S．E． S．E．by E． S．E． S．E．by S． S．S．E S．by E ． SOUTH． S．by W． S．S．W． S．W．by S． S．W． S．W．b．W． W．S．W． W．by S ． WEST． W．by N． W．N．W． N．W．by W． N．W． N．W．by N． N．N．W． N．by W． NORTII．	N．$\frac{3}{8} \mathrm{E}$ ． N．by E．$\frac{1}{1}$ E． N．E．by N．$\frac{7}{8}$ N． N．E．by N． N．E． N．E．by E． N．E．by E．$\frac{7}{8}$ E． E．by N． E．$\frac{1}{8} \mathrm{~S}$ ． E．by S．$\frac{1}{8}$ S． S．E．by E．$\frac{3}{4} \mathrm{E}$ ． S．E．音E． S．E．$\frac{3}{8}$ S． S．E．by S．$\frac{3}{8}$ S． S．by E．$\frac{1}{2}$ E． S．$\frac{1}{2} \mathrm{E}$ ． S．by W．$\frac{3}{8}$ W． S．W．by S．$\frac{5}{8} \mathrm{~S}$ ． S．W．岳S． S．W．$\frac{1}{2}$ W． W．by S．$\frac{1}{3} \mathrm{~S}$ ． W．$\frac{1}{2}$ S． W．by $\frac{3}{3}$ N． $\mathrm{N} . \frac{3}{4} \mathrm{~N}$ ． N．W．by W．$\frac{1}{8}$ W． N．W． N．W． W． N． N．W．by N．${ }^{3} \mathrm{~N}$ ． N．by W．$\frac{3}{8}$ W． N．$\frac{1}{2}$ W．				NORTH． N．by E． N．N．E． N．E．by N． N．E． N．E．by E． E．N．E． E．hy N． EAST． E．by S ． E．S．E． S．E．by E． S．E． S．E．by S． S．S．E． S．by E． SOUTH． S．by W． S．S．W． S．W．by S． S．W． S．W．by W． W．S．W． W．by S ． WEST． W．by N ． W．N．W． N．W．by W． N，W． N．W．by N． N．N．W． N．by W． NORTH．	N．${ }^{3} \mathrm{E}$ ． N．by E．$\frac{1}{4}$ E． N．N．E．+ E． N．E．${ }^{\frac{7}{8}}$ N．E．by E． E．N．E． E．$\frac{7}{8}$ N． E．$\frac{1}{8} \mathrm{~S}$ ． E．by S．$\frac{1}{4}$ S． S．E．by E．$\frac{3}{4} \mathrm{E}$ ． S．E．$\frac{3}{3} \mathrm{E}$ ． S．S．E．$\frac{1}{2}$ E． S． $1+$ E． S．$\frac{3}{8}$ W． S．by W．． W W． S．S．W．． s W． S．W．量 S． S．W．by W．$\frac{1}{2}$ W． W．by S．$\frac{1}{2}$ S． W．$\frac{3}{4} \mathrm{~S}$ ． W．by N．$\frac{3}{4} \mathrm{~N}$ ． N．W．by W．$\frac{1}{4}$ W． N．W． N．W． W． N． N．N．W． 1 W． N．by W．$\frac{1}{4}$ W． N．$\frac{1}{2}$ W．			 -4° 40^{\prime} +1 0 +1 0 +2 30 +3 50 +3 50 +3 50 +2 30 +2 30 +1 0 +1 0 -0 20 $=0$ 20 $=1$ 50 $=1$ 50 -1 50 -0 20 -1 50 -1 50 -3 10 -4 40 -4 40 -4 40 -6 0 -4 40 -4 40 -4 40 -1 50 -4 40
A deviation of the North Point of the Compass to the East is designated by the sign + ； a deviation to the West by the sign－ From the observations given above，the following values of the coefficients of the deviation are obtained： A deviation of the North Point of the Compass to the Eas a deviation to the West by the sign－ From the observations given above，the following val deviation are obtained： $\mathrm{A}=-\mathrm{I}^{\circ} \stackrel{\mathrm{o}^{\prime} \cdot 2}{\mathrm{D}=+2^{\circ} \quad \mathrm{B}=+3^{\circ} 4^{\prime} \cdot 4}{ }^{\mathrm{E}}=-\mathrm{o}^{\circ}$										

Observations for Determining the Deviations of the After Binvacle Compass on the U．S．Iron Clad Monadnock．

Assumed Magnetic Direction of Ship＇s Head．	Bearing of Object by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．	Assumed Magnetic Direction of＇Ship＇s Head．	Bearing of Object by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees，	Corrected Deviation of Compass．
NORTH． N．by E． N．N．L． N．E．by N． N．E． N．E．by E． E．N．E． E．by N． EAST． E．by S． E．S．E． S．E．by E． S．E． S．E．by S． S．S．E． S．by E． SOUTH． S．by W． S．S．W． S．W．by S． S．W． S．W．by W． W．S．W． W．by S ． WEST． W．by N． W．N．W． N．W．by W． N．W． N．W．by N． N．N．W． N．by W． NORTH．	N．$\frac{1}{2} \mathrm{E}$ ． N．by E．공 E． S．W． 1 W ． S．W．by TV．$\frac{3}{}$ W． W．by S．裉S． IV．$\frac{1}{2} \mathrm{~S}$ ． W．by N．$\frac{3}{4} \mathrm{~N}$ ． N．W．by W．$\frac{1}{4}$ W． N．W． 1 W． N．W．$\frac{1}{1}$ N． N．N．W．$\frac{1}{+} \mathrm{W}$ ． N．by W．$\frac{1}{4} \mathrm{~W}$ ． N．홍 W．	二衰		$\begin{array}{lll}\text {－2 } & 30 \prime \\ -1 & 10 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ \end{array}$	NORTH． N．by E． N．N．E． N．E．by N． N．E． N．E．by E． E．N．E． E．by N． EAST． E．by S ． E．S．E． S．F．by E． S．E． S．E．by S． S．S．E． S．by E． SOUTH． S．by W． S．S．W． S．W．by S． S．W． S．W．by W． W．S．W． W．by S ． WEST． W．by N． W．N，W． N．W．by W． N．W． N．W．by N． N．N．W． N．by W． NORTH．	N．$\frac{1}{2}$ E． N．by E．$\frac{8}{s} \mathrm{E}$ ． N．E．by N．$\frac{\beta}{4}$ N． N．E．$\frac{7}{\mathrm{~T}} \mathrm{~N}$ ． N．E．by E．$\frac{1}{8}$ E． E．N．E． E．by N． EAST． E．by S ． S．E．by E．$\frac{7}{8}$ E． S．E．$\frac{1}{5}$ E． S．E．． A S． S．E．by E．$\frac{1}{8}$ S． S．by E．$\frac{7}{8}$ E． S．$\frac{1}{1}$ E． S．$\frac{1}{8}$ W． S．by W．$\frac{1}{8}$ W． S．W．by S ．$\frac{1}{8}$ S． S．W．$\frac{7}{8}$ S． S．W．$\frac{1}{4} \mathrm{~W}$ ． S．W．by W．峦 IV． W．by S．$\frac{5}{8}$ S． W． W．by N．$\frac{8}{9} \mathrm{~N}$ ． N．W．by W．$\frac{1}{4}$ W． N．W．W． N. W. N．W．Wy N．$\frac{7}{3} \mathrm{~N}$ ． N．hy W．$\frac{1}{4}$ W． N．$\frac{3}{8}$ W．		${ }^{\circ} 1$	 -2° 30^{\prime} -1 10 +0 20 +1 40 +1 40 +1 50 + 3 +3 0 +3 0 +3 0 +1 40 +0 10 -1 10 -1 20 -2 50 -5 20 -5 20 -5 20 -5 30 -6 50 -6 40 -5 20 -3 50 -2 30
A deviation of the North Point of the Compass to the East is designated by the sign + ； a Geviation to the West by the sign－． From the observations given above，the following values of the coefficients of the deviation are obtained：					A deviation of the North Point of the Compass to the East is designated by the sign＋； a deviation to the West by the sign－． From the observations given above，the following values of the coefficients of the deviation are oltained： $\begin{array}{ll} \mathrm{A}=-\mathrm{o}^{\circ} \begin{array}{ll} 35^{\prime} .2 \\ \mathrm{D}=+1^{\circ} & \mathrm{B}=+3^{\circ} \\ 47^{\prime} \cdot 5 & 28^{\prime} .2 \\ \mathrm{E}=2 \end{array}+0^{\circ} \begin{array}{l} \mathrm{C}=-2^{\circ} \\ 10^{\prime} .2 \end{array} 3^{\prime} \cdot 9 \end{array}$				

Observations for Determining the Deviations of the After Ritchie Compass on the U．S．Iron Clad Monadnock．

Hampton Roads，November I， 1865. Correction for Object $=+3^{\circ} 57^{\prime}$ ．Correction for Lubber Line $=0$ ．					St．Thomas，November 18， 1865. Correction for Object $=+0^{\circ} 16^{\prime}$ ．Correction for Lubber Line $=0$.				
Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．	Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．
NORTH． N．by E． N．N．E． N，E．by N． N．E． N．E．by E． E．N．E． E．by N． EAST． E．by S ． E．S．E． S．E．by E． S ．E． S．E．by S． S．S．E． S．by E． SOUTTH． S．by W． S．S．W． S．W．by S． S．W． S．W．by W． W．S．W． W．by S ． WES＇T． W．by N． W．N．W． N．IV．by W． N．W． N．W．by N． N．N．W． N．by W． NORTH．				+ 0° 20^{\prime} + 7 10 +10 50 +14 10 +15 10 +17 0 +18 0 +19 50 +19 0 +19 50 +19 0 +18 0 +16 10 +15 10 +13 20 +10 30 + 9 30 7 40 + 5 0 2 10 0 40 1 40 2 40 2 10 1 40 1 40 1 40 1 40 2 40 2 10 0 10 + 2 0 4 20	NORTH． N．by E． N．N．E N．E．by N． N．E． N．E．by E． E．N．E． E．by N． EAST． E．by S． E．S．E． S．E．by E． S．E． S．E．by S． S．S．E． S．by E． SOUTH． S，by W． S．S．W． S．W．by S． S．W． S．W．by W． W．S．W． W．by S． WEST． W．by N ． W．N．W． N．W．by W． N．W． N．W．by N． N．N．W． N．by W． NORTH．	N．$\frac{3}{1} \mathrm{~W}$. N．by E． N．N．E． $\frac{1}{4}$ E． N．E．by N． N．E．$\frac{1}{5}$ N． N．E．$\frac{7}{8} \mathrm{E}$ ． N．E．by E．$\frac{7}{8}$ E． E．by N． E．$\frac{1}{8} \mathrm{~N}$ ． E．by S． S．E．by E．$\frac{7}{8}$ E． S．E．釆 E． S．E．$\frac{1}{2}$ S． S．E．by S．$\frac{3}{8}$ S． S．by E．$\frac{1}{4}$ E． S．$\frac{1}{\text { E }}$ ． S．$\frac{1}{\text { S．W．}}$ W． S．W．by S ． S．W．$\frac{1}{8}$ W． S．W．by W．$\frac{1}{8}$ W． W．by S．$\frac{7}{8} \mathrm{~S}$ ．${ }^{8}$ W． W ． S ． W．by N．$\frac{1}{2}$ N． N．W．by ${ }^{2}$ W．$\frac{1}{2}$ W． N．W．$\frac{1}{2}$ W． N．W．曾 N． N．W．by N．$\frac{1}{4}$ N． N．N．W． N．by W． $\frac{1}{8}$ W．			
A deviation of the North Point of the Compass to the East is designated by the sign + ； a deviation to the West by the sign－． From the observations given above，the following values of the coefficients of the deviation are obtained： $\mathrm{A}=+7^{\circ} \underset{\mathrm{D}=0^{\prime} .0}{\mathrm{D}=0^{\circ}} \underset{15^{\prime} \cdot 5}{\mathrm{~B}=}+11^{\circ} \stackrel{26^{\prime} \cdot 5}{\mathrm{E}=0^{\circ}} \underset{54^{\prime} \cdot 5}{\mathrm{C}=1^{\circ}} 44^{\prime} \cdot 1$					A deviation of the North Point of the Compass to the East is designated by the sign + ； a deviation to the West by the sign－． From the observations given above，the following values of the coefficients of the deviation are obtained： $\mathrm{A}=+3^{\circ}{ }_{\mathrm{D}}^{14^{\prime} \cdot 4}=+1^{\circ} \quad \mathrm{B}=+8^{\circ} \stackrel{26^{\prime} \cdot 2}{\mathrm{E}=9} \underset{37^{\prime} \cdot 2}{\mathrm{C}=}+0^{\circ} 40^{\prime} \cdot 4$				

Observations for Determining the Deviations of the After Ritchie Compass on the U. S. Iron Clad Monadnock.

Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH. N. by E. N. E. by N N. E. N. E. by E. E. N. E. EAST. E. by S. E. S. E. S. E. by E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. W. by S. S. W. S. W. by W. W. S. W. WEST. W. by N . N. W. by W. N. W. N. W. by N. N. N. W. NORTH.	E. ${ }_{\text {E }} \frac{1}{4} \mathrm{~N}$ N.		- ,	+ $+11^{\circ}$ +140	NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. by N . EAST. E. by S . E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S . WEST. W. by N. W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. NORTH.				
A deviation of the North Point of the Compass to the East is designated by the sign +; a deviation to the West by the sign - From the observations given above, the following values of the coefficients of the deviation are obtained: $\mathrm{A}=\quad \mathrm{D}=\quad \mathrm{B}=\quad \mathrm{E}=\quad \mathrm{C}=$					A deviation of the North Point of the Compass to the East is designated by the sign +; a deviation to the West by the sign - From the observations given above, the following values of the coefficients of the deviation are obtained:				

Observations for Determining the Deviations of the After Ritchie Compass on the U. S. Iron Clad Monadnock.

Bahia, December 30, 1865. Correction for Object $=+2^{\circ} 30^{\prime}$. Correction for Lubber Line $=+6^{\circ} \quad 18^{\prime}$.					Rio Janeiro, January 10, 1866. Correction for Object $=+2^{\circ} 44^{\prime}$. Correction for Lubber Line $=+5^{\circ} 43^{\prime}$.				
Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N . EAST. E. by S . E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S. WEST. W. by N. W. N. W. N. W. by W. N. W. N.W. by N. N. N. W. N. by W. NORTH.					NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S . E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S. WEST. W. by N. W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	N. E. by N. $\frac{1}{2}$ N. N. E. $\frac{1}{2}$ N. N. E. $\frac{1}{2} \mathrm{E}$. N. E. by E. $\frac{1}{4}$ E. E. by N. $\frac{3}{4}$ N. E. $\frac{1}{3} \mathrm{~N}$. E. S. E. $\frac{1}{8}$ E. S. E. by E. $\frac{1}{8} \mathrm{E}$. S. E. $\frac{1}{8}$ E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. hy S.	+ +1		$\begin{array}{rrr}+14^{\circ} & 0 \\ +14 & 0 \\ +14 & 0 \\ +16 & 10 \\ +16 & 50 \\ +14 & 40 \\ +12 & 0 \\ +10 & 10 \\ +9 & 50 \\ +9 & 50 \\ +830 \\ +8 & 30 \\ +830 \\ +830 \\ +830 \\ +830\end{array}$
A deviation of the North Point of the Compass to the East is designated by the sign + ; a deviation to the West by the sign - . From the observations given above, the following values of the coefficients of the deviation are obtained:					A deviation of the North Point of the Compass to the East is designated by the sign + a deviation to the West by the sign - . From the observations given above, the following values of the coefficients of the deviations are obtained:				

Observations for Determining the Deviations of the After Ritchie Conpass on tue U．S．Iron Clad Monadnock．

Sandy Point，February 10， 1866. Correction for Object $=+0^{\circ} 7^{\prime}$ ．Correction for Lubber Line $=+4^{\circ} 9^{\prime}$ ．				
Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Dcgrecs．	Corrected Deviation of Compass．
NORTH．	N．$\frac{1}{2}$ W．	$+$		$+5^{\circ} 4^{\prime}$
N．by E．	N． 3 E ．	$+$		＋ 70
N．N．E．	N．ly E．$\frac{1}{2}$ E．			＋ 950
N．E．by N．	N．E．by N．$\frac{1}{2} \mathrm{~N}$ ．	$+$		＋ 950
N．E．by F	N．E．${ }_{\text {N }} \mathrm{N}$ ．			＋ 950
N．E．by E．		$+$		＋1240
E．hy N．	E．by N．$\frac{1}{3}$ N．	＋		＋ +950 +950
EAST．				+950 $+\quad 950$
E．by S．	E．$\frac{1}{2} \mathrm{~S}$ ．			＋ 950
E．S．E．	E．by S．$\frac{1}{\text { S }}$ ．	$+$		＋1240
S．E．by E．	E．S．E．${ }^{\text {S }}$ S．			＋140
S．E．br S．	S．E．by E．$\frac{1}{1}$ S．	\pm		＋1240
S．E．by S S．S．E．	S．E．by S 1 S	\pm		＋140
S．by E．	S．by E．$\frac{8}{4} \mathrm{E}$ ．	＋		＋14 0
SOUTH．	S．$\frac{1}{2} \mathrm{E}$ ．	＋		a
S．by W．	S．$\frac{1}{2} \mathrm{~W}$ ．	$+$		a $+\quad 950$
S．S．W．	S．by W．$\frac{1}{4}$ W．	＋		＋1240
S．W．by S．	S．W．hy S．$\frac{3}{4}$ S．	$+\frac{3}{4}$		＋1240
S．W．by w．	S．W．$\frac{3}{3}$ W．	\pm		＋ 950
w．S．W．	W．s．W．	＋${ }^{1}$		＋ +40 +420
W，by S．	W．by S，	0		＋ 420
WEST．	WEST．			＋ 420
W．by N，	W．by $\mathrm{N} . \frac{1}{8} \mathrm{~N}$ ．	－$\frac{1}{8}$		＋ 250
W．N．W．	W．N．W．$\frac{1}{8}$ N．			＋ 250
N．W．by W． N．W．	$\mathrm{N} . \mathrm{W}$.	二		P +120 +1
N．W．by N．	N．W．W．${ }^{\text {N }}$ N．${ }^{\text {a }}$ W．	二		＋120
N．N．W．	N．N．W，$\frac{1}{8}$ N．	$\frac{1}{81}$		a
N．by W．	N．by W．	0		＋ 420

$\begin{aligned} & \dot{0} \\ & \stackrel{\circ}{+} \end{aligned}$		 $+t+++t+++++11+t++1++t$
		\cdots
		$0^{+\infty} 00^{+\infty} \circ 0^{+\infty}$ $t+t+++++1\| \|+t . t$
		为

Monte Video，January 24， 1866.
Correction for Object $=-0^{\circ} 13^{\prime}$ ．Correction for Lubber Line $=+4^{\circ} 9^{\prime}$ ．

[^13] $\mathrm{B}=+0^{\circ} 50^{\prime} \cdot 3 \quad \mathrm{C}=+3^{\circ} \quad 10^{\prime} .9$

[^14] $32^{\prime} .8 \quad B=+0^{\circ} \quad 50^{\prime} \cdot 3$
$\mathrm{E}=-0^{\circ}$ $A=+6^{\circ}$
From the observations given above, the following values of the coefficients of the From the observations given above, the following values of the coefficients of the $\mathrm{A}=+4^{\circ} 19^{\prime} .4 \quad \mathrm{~B}=+5^{\circ} \frac{50^{\circ} .1}{\mathrm{E}} \mathrm{C}=+0^{\circ} 14^{\prime} .1$
Callao, April 29, 1866.
Correction for Object $=+0^{\circ} \quad 6$. Correction for Lu

Valparaiso, April 4, 1866. Correction for Object $=+0^{\circ} \quad 1^{\prime}$. Correction for Lubber Line $=+4^{\circ} \quad 17^{\prime}$.					Callao, April 29, 1866. Correction for Object $=+0^{\circ} \quad 6^{\prime}$. Correction for Lubber Linc $=+3^{\circ} 44^{\prime}$.				
Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Cumpass.
NORTH. N. by E. N. N. E. N. E. by.N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S . E. S. E. S. E. by F. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W, by S. S. W. S. W. by W. W. S. IV. W. by S . WEST. W. by N. W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W NORTH.	NORTH. N. ${ }^{3} \mathrm{E}$. N. by E. $\frac{3}{4}$ F. N. E. by N. $\frac{1}{3}$ N. N. E. N. E. N. E. E. N. E. $\frac{1}{4}$ N. E. by N. $\frac{1}{2}$ N. E. $\frac{1}{6} \mathrm{~N}$. E. S. E. $\frac{1}{4}$ E. S. E. S. E. by E. $\frac{1}{4}$ E. S. E. by S. S. S. E. S. by E. S. $\frac{1}{4}$ W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. $\frac{3}{4} \mathrm{~S}$. W, by N. $\frac{1}{2} \mathrm{~N}$. N. W. by ${ }^{2}$ W. $\frac{1}{2}$ W. N. W. $\frac{1}{2}$ W. N. W. by N. $\frac{1}{2}$ N. N. by W. N. by W.				NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S , E. S. E. S. E. by E. S. E. S. E, by S. S. S. E. S. by E. SOUTH. S. by IV. S. S. W. S. W. by S. S. W. S. W. by W. W. S. IW. W. by S. WEST. W. by N. W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	N. ${ }^{\frac{1}{8}} \mathrm{~W}$ W. N. by E. $\frac{1}{2} \mathrm{E}$. N. E. by N. $\frac{1}{2}$ N. N. E. $\frac{1}{2} \begin{aligned} & \text { N. } \\ & \text { N. } \\ & \text {. } \\ & \text { E. }\end{aligned}$ N. E. by E. $\frac{1}{3}$ E. E. $\frac{1}{2}$ N. E. by s. 3 S . S. E. by E. $\frac{1}{4}$ E. S. E. $\frac{1}{3}$ E. S. E. ${ }^{2} \mathrm{~S}$. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. $\frac{1}{4}$ W. S. W. by W. $\frac{1}{4}$ W. W. by S. $\frac{1}{2}$ S. W. $\frac{1}{2}$ S. W. by $\mathrm{N} . \frac{1}{2} \mathrm{~N}$. N. W. by W. $\frac{1}{2}$ W. $\mathrm{N} . \mathrm{W} . \frac{1}{2} \mathrm{~W}$. $\mathrm{N} . \mathrm{W}$. $\frac{1}{2}$ N. N. W. by N. $\frac{1}{\frac{1}{3}} \mathrm{~N}$. N . by W. N. by W.			
A deviation of the North Point of the Compass to the East is designated by the sign + ; a deviation to the West by the sign -. From the observations given above, the following values of the coefficients of the deviation are obtained: $\mathrm{A}=+4^{\circ} \underset{\mathrm{D}=\mathrm{I}^{\prime} .9}{\mathrm{D}=+2^{\circ}{ }_{21^{\prime} .0}^{\mathrm{B}}=+3^{\circ} \stackrel{49^{\prime} \cdot \mathrm{I}}{\mathrm{E}=+0^{\circ}} \underset{7^{\prime} \cdot 5}{\mathrm{C}}=+\mathrm{o}^{\circ} 12^{\prime} \cdot 4}$					A deviation of the North Point of the Compass to the East is designated by the sign + ; a deviation to the West by the sign -. From the observations given above, the following values of the coefficients of the deviations are obtained:				

Observations for Determining the Deviations of the After Ritchie Compass on the U．S．Iron Clad Monadnock．

Panama，May 20， 1866. Correction for Object $=+0^{\circ} \quad 1^{\prime}$ ．Correction for Lubber Line $=+3^{\circ} 44^{\prime}$ ．					Acapulco，June 1， 1866. Correction for Object $=+0^{\circ} 6 \prime$ ．Correction for Lubber Line $=+3^{\circ} 44^{\prime}$ ．				
Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．	Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．
NORTH N．by E． N．N．E． N．E．by N． N．E． N．E．by E． E．N．E． E．by N． EAST． E．by S ． E．S．E． S．E．by E． S．E． S．E．by S． S．S．E． S．by E． SOUTH． S．by W． S．S．W． S．W．by S． S．W． S．W．by W． W．S．W． W．by S ． WEST． W．by N． W．N．W． N．W．by W． N．W． N．W．by N． N．N．W． N．by W． NORTH．	NORTH． N．${ }^{3} \mathrm{E}$ ． N．by E．${ }^{3}$ E． N．E．by N．$\frac{1}{2}$ N． N．E．$\frac{1}{\text { N }}$ N． N．E．by E．$\frac{1}{8}$ E． E．by N．$\frac{3}{4}$ N． E．$\frac{1}{3}$ ． E．$\frac{1}{4}$ S． E．by S．$\frac{1}{2}$ S． S．E．by E．$\frac{1}{2}$ E． S．E．$\frac{1}{\frac{1}{8}} \mathrm{E}$ S． S．E．by S．量S． S．by E． SOUTH． S．by W． S．S．W． S．W．by S． S．W． S．W．by W． W．S．W． W．by S ． W．$\frac{1}{8}$ N． W．by N．$\frac{1}{8} \mathrm{~N}$ ． W．N．W．$\frac{1}{8}$ N． N．W． N．W． $\frac{1}{8}$ N． N．by W．$\frac{3}{4}$ W． N．W．by N．$\frac{1}{4}$ N． N．等W．				NORTII． N．by E． N．N．E． N．E．by N． N．E． N．E．by E． E．N．E． E．by N． EAST． E．by S． E．S．E． S．E．by E． S．E． S．E．by S． S．S．E． S．by E ． SOUTH． S．by W． S．S．W． S．W．by S． S．W． S．W．by W． W．S．W． W．by S． WEST． W．by N． W．N．W． N．W．by W． N．W． N．W．by N． N．N．W． N．by W． NORTH．	N．素 W ． N．by E．${ }^{3} \mathrm{E}$ ． N．E．by N．$\frac{1}{2}$ N． N．E．$\frac{1}{\frac{1}{2}} \mathrm{~N}$ ． N．E．by E．$\frac{1}{\frac{1}{2} \text { E．}}$ E．N． E．${ }^{5}$ ． E．S．E． 1 E． S．E．by E．$\frac{1}{4} \mathrm{E}$ S．E． S．E．by S． S．S．E． S．by E． SOUTH． S．by W． S．S．W． S．W．by S． S．W．$\frac{1}{4}$ W． S．W．by by W．$\frac{1}{2}$ W． W． W．by $\frac{1}{2}$ S． W．$\frac{1}{2} \mathrm{~N}$ ． W．by N．$\frac{1}{4}$ N． N．W．by W．$\frac{3}{4}$ W． N．W．$\frac{1}{\frac{1}{3}} \mathrm{~W}$ ． N．W．by N．$\frac{1}{4}$ N． N．N．W． N．by W．			
A deviation of the North Point of the Compass to the East is designated by the sign + ； deviation to the West by the sign－． From the observations given above，the following values of the coefficients of the deviation are obtained： $\mathrm{A}=+5^{\circ} \frac{20^{\prime} .6}{\mathrm{D}=+1^{\circ}} \begin{aligned} & \mathrm{B}=+4^{\circ} \\ & 17^{\prime} .0 \end{aligned} \frac{3^{\prime} \cdot 1}{\mathrm{E}=}=-1^{\circ} \mathrm{C}=-0^{\circ} 10^{\prime} .2$					A deviation of the North Point of the Compass to the East is designated by the sign＋； a deviation to the West by the sign－． From the observations given above，the following values of the coefficients of the deviation are obtained： $\mathrm{A}=+4^{\circ} \stackrel{\circ^{\prime} .6}{\mathrm{D}=+1^{\circ} \mathrm{B}=+4^{\circ} \stackrel{29^{\prime} \cdot 1}{\mathrm{E}}=+0^{\circ} \mathrm{C}=+1^{\circ} \quad 12^{\prime} .8}$				

Observations for Determining the Deviations of the After Ritchie Compass on the U. S. Iron Clad Monadnock.

	ssumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Dcviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head hy Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
	NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S . E. S. E. S. F. by E. S. E. S. E. by S. S. S. E. S. by E . SOUTH. S, by W. S. S. W. S. W. by S. S. W. S. W. hy W. W. S. W. W. by S. WEST. W. by N. W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	N. $\frac{1}{8}$ E. N. by E. S. W. $\frac{1}{8}$ W. S. W. by W. W. S. W. W. by S . W. $\frac{1}{8}$. W. by N. $\frac{1}{2}$ N. N. W. by W. $\frac{1}{2}$ W. N. W. $\frac{1}{4} \mathrm{~W}$. N. W. by N. $\frac{1}{2}$ N. N. by W. $\frac{1}{2}$ W. N. $\frac{3}{8}$ W.			$\begin{aligned} & +1^{\circ} 40^{\prime} \\ & +310 \end{aligned}$	NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S . E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S . WEST. W. by N . W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	N. $\frac{1}{3} \mathrm{E}$. N. by E. N. N. E. E. E. N. E. 8 N. N. E. by E. $\frac{1}{4}$ E. E. hy N. ${ }_{3}$ N. E. ${ }^{3} \mathrm{~N}$ E. by S. $\frac{1}{2}$ S. S. E. by E. $\frac{1}{2}$ E. S. E. $\frac{1}{2}$ E. S. S. E. $\frac{1}{4}$ E. S. by E. $\frac{1}{4} \mathrm{E}$ S. 18 E . S. by W. $\frac{3}{4}$ W. S. W. by S. $\frac{1}{4}$ S. S. W. S. W. by W. $\frac{1}{2}$ W. W. by S. $\frac{3}{4}$ S. W. W. by N. 3 N. N. W. by W. $\frac{1}{4}$ W. N. W. $\frac{1}{2}$ W. N. W. by N. $\frac{1}{2}$ N. N. N. W. N. $\frac{3}{4}$ W.			+ 2° 0^{\prime} + 5 50 + 6 10 +11 50 +11 30 +11 30 +11 30 +11 10 + 8 40 + 8 40 + 8 40 + 8 40 + 6 0 + 5 40 + 20 + 50 0 00 - 2 30 2 50 5 20 5 10 3 30 2 30 2 20 0 20
A dcviation of the North Point of the Compass to the East is designated by the sign + ; a deviation to the West by the sign - . From the observations given above, the following values of the coefficients of the deviation are obtained:						A deviation of the North Point of the Compass to the East is designated by the sign +; a deviation to the West by the sign -. From the observations given above, the following values of the coefficients of the deviation are obtained:				

Observations for Determining the Deviations of the After Azimuth Compass on tie U. S. Iron Clad Monadnock.

Observations for Determining the Deviations of the After Aztmuth Compass on the U. S. Iron Clad Monadnock.

Isle Royal, Salute Islands, November 30 , 1865. Correction for Object $=-0^{\circ} 2^{\prime}$. Correction for Lubber Line $=0$					Ceara, December 19, 1865. Correction for Object $=+1^{\circ} 51^{\prime}$ Correction for Lubber Line $=0$.				
Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S . E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S. WEST. W. by N . W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	S. $\mathrm{So}^{7} \mathrm{O}$ E.		- $20^{\circ} \mathrm{o}$ -15	$\begin{array}{cc}-20^{\circ} & 0^{\prime} \\ -15 & 50\end{array}$	NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S. E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S. WEST. W. by N . W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	N. 4° E. N. N. 24 E. N. E. N. 38 E. N. 45 E. N. 78 E. S. 69 E. S. 59 E. S. 48 E. The compass not sufficiently g	traverse we be worth th		$+9^{\circ} 0^{\prime}$ +10 +110 +920 +1220 +11 +40 +4 -15 -18 -10 -17
A deviation of the North Point of the Compass to the East is designated by the sign + ; a deviation to the West by the sign - From the observations given above, the following values of the coefficients of the deviation are obtained: $\mathrm{A}=$ $\mathrm{D}=\quad \mathrm{B}=\quad \mathrm{E}=\quad \mathrm{C}=$					A deviation of the North Point of the Compass to the East is designated by the sign + ; a deviation to the West by the sign -. From the observations given above, the following values of the coefficients of the deviation are obtained: $\mathrm{A}=\quad \mathrm{D}=\quad \mathrm{B}=\quad \mathrm{E}=\quad \mathrm{C}=$				

Observations for Determining the Deviations of the After Azimuth Compass on the U. S. Iron Clad Monadnock.

Bahia, December 30, 1865. Correction for Object $=+2^{\circ} 3^{\circ}$. Correction for Lubber Line $=0$.					Rio Janeiro, January 10, 1866. Correction for Object $=+2^{\circ} 44^{\prime}$. Correction for Lubber Line $=0^{\circ}$.				
Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnelic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH. N. by E. N. N. E. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. W. by S. S. W. S. W. by W. W. by S WEST. W. by N. N. W. by W. N. W. N.W. by N. N. N. W. NORTII.					NORTH. N. by E. N. N.E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. E. by S . E. S. E. S. E. by E. S. E. S. E. by S. S. by E. SOUTH. S. by W. S. S. W. S. W. S. W. by W. W. by S. WEST W. by N. W. N. W. N. W. by W. N. W. N. W. by N. N. N. W NORTH.				
A deviation of the North Point of the Compass to the East is designated by the sign + ; a deviation to the West by the sign -. From the observations given above, the following values of the coefficients of the deviation arc obtained: $A=-3^{\circ} D^{36^{\circ} \cdot 9}=+7^{\circ} \underset{22^{\prime} .0}{B}=-4^{\circ}{ }^{28^{\prime} .6}=-1^{\circ} \quad \mathrm{C}=-0^{\circ} 19^{\prime} .5$					A deviation of the North Point of the Compass to the East is designated by the sign + a deviation to the West by the sign -. From the observations given above, the following values of the coefficients of the deviations are obtained:				

Observations for Determining the Deviations of the After Azimuth Compass on the U．S．Iron Clad Monadnock．

Sandy Point，February ro， 1866. Correction for Object $=+0^{\circ} 7^{\prime} . \quad$ Correction for Lubber Line $=0$.					Valparaiso，April 4， 1866. Correction for Object $=+0^{\circ} \mathbf{1}^{\prime} . \quad$ Correction for Lubber Line $=0$.				
Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．	Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．
NORTH．	N．$I^{\circ} \mathrm{E}$ ．		$-1^{\circ} 0^{\prime}$	$-0^{\circ} 5^{\prime}$	NORTH．	N． $2^{\circ} \mathrm{E}$ ．		－ $2^{\circ} \mathrm{o}^{\prime}$	－ $2^{\circ} 0^{\prime}$
N．by E．	N．II E．		＋0 15	＋0 20	N．by E．	N ．ic E．		＋15	＋ 120
N．N．E．	N． 19 E．		＋330	＋ 340	N．N．E．	N． 21 E ．		＋130	＋130
N．E．by N．	N． 30 E．		+345 +35	＋350	N．E．by N．	N． 33 E．		＋ 045	＋ 0.50
N．E．	N． 40 E．		＋ 50	＋ 5 10	N．E．	N． 45 E ．		－ 0	＋
N．E．by E．	N． 54 E ．		＋215	＋ 20	N．E．by E．	N． 57 E ．		－○ 45	－ 040
E．N．E．	N． 63 E ．		＋430	＋ 40	E．N．E．	N． 70 E．		－ 230	－ 230
E．by N ．			1 15 	110 -150	E．by N．	N． 84 S． 82 E． E．		－ 5^{515}	－ 58
E．by S ．	S． 71 E ，		二115 7 45	－ $7 \quad 40$	E．by ${ }^{\text {E }}$ ．	S． 66 E．		二 880	－ 180 -1240
E．S．E．	S． 60 E ．		－7 30	－720	E．S．E．	S． 56 E ．		－11 30	$\begin{array}{ll}\text {－} 1240 \\ \text {－} 11 & 30\end{array}$
S．E．by E．	S． 47 E ．		－9 15	－910	S．E．by E ，	S． 45 E ．		－11 15	－ 11
S．E．	S． 36 E．		－9 0	－8 80	S．E．	S． 33 E ．		－120	－ 12
S．E．by S．	S． 27 E ．		－645	－6 60	S．E．by S．	S． 24 E ．		－ 945	－ 940
S．S．E．			－6 30	－6 20	S．S．E．	S． 16 E ．		－ 630	－ 630
S．by E． SOUTH．	S． 8 S．		－315	－310	S．by E．	S． 6 E．		－ 515	－ 5 10
SOUTH． S．by W．	$\begin{array}{llll}\text { S．} & \text { I } & \mathrm{E} . \\ \mathrm{S} . & 6 & \mathrm{~W} .\end{array}$		a +15 +515	a +10 +520	SOUTH．	S．$\quad 2 \cdot \mathrm{~W}$		－ 20	－ 20
S．S．W．	S．$\quad 6 \mathrm{~W}$.		+515 +530	+520 +540	S．by W．	S． 11 W．		＋ 015	＋ 020
S．W．by S．	S． 26 W ．		+515 +745	+540 +750	S．W．by S．	S． 20 W．		P $+\quad 30$ $+\quad 45$	a $+\quad 230$ $+\quad 450$
S．W．	S． 37 W ．		＋80	＋810	S．w．	S．${ }^{29} \mathrm{~W}$ W．		$+\quad 445$ $+\quad 70$	＋ 40 +70
S．W．by W．	S． 47 W ．		＋ 915	＋920	S．W．by W．	S． 50 W ．		＋	＋ 620
W．S．W．	S． 58 W W．		+930 $+\quad 45$	＋ +940 +450	W．S．W．	S． 60 W．		＋ 730	＋ 730
WEST．	S． 860 W.		+445 +40	+450 +410	W．by S．	S． 74 W W．		＋ 445	＋ 450
W．by N ．	N． 80 W．		+415 +15	+410 +120	W．by N ．	N． 78 W．		$\begin{array}{r}+3 \\ +\quad 3 \\ \hline\end{array}$	$\begin{aligned} & \pm \\ & \pm \\ & 0 \end{aligned}$
W．N．W．	N． 66 W ．		－130	－120	W．N．W．	N． $65-\mathrm{W}$.		二 230	230
N．W．by W．	N． 50 W．		－6 15	－6 6	N．W．by W．	N． $5^{2} \mathrm{~W}$ ．		－ 415	－ 410
N．W．by N ，	N．${ }^{39}$ N． 28 W．		－6 0	-550 -540	N．W．	N． 40 W.		－ 50	－ 5 －
N．N．W．${ }^{\text {N，}}$	N． N ． 28 W． W W．		－ 545 － 40	二 540 －4 20	N．W．by N．	N． 29 W．		－ 445	－ 440
N．by w． NokTH．	N． 6 w．		－ 4	－4 20 -510	N．by W．	N． N .89 W		－ 3130	－ 3130
NORTH．				－0 50	NORTH．				二 20

[^15]Observations for Determining the Deviations of the After Azimuth Compass on the U. S. Iron Clad Monadnock.

Observations for Determining the Deviations of the After Azimuth Compass on the U. S. Iron Clad Monadnock.

Acapulco, June 1, 1866. Correction for Object $=+0^{\circ} 6^{\prime}$. Correction for Lubber Line $=0$.					Magdalena Bay, June 9, 1866. Correction for Object $=-0^{\circ} 4 \mathrm{I}^{\prime} . \quad$ Correction for Lubber Line $=0$.				
Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S . E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S . WEST. W. by N . W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N . by W. NORTH.					NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S. E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W, by S . WEST. W. by N . W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	N. $7^{\circ} \mathrm{E}$ N. 15 E. S. 34 W . S. 47 W. S. 58 W. S. 71 W. S. 85 W . N. 87 W. N. 73 W. N. 59 W. N. 41 W. N. 38 W. N. 27 N. 4 4 W.			
A deviation of the North Point of the Compass to the East is designated by the sign + ; a deviation to the West by the sign - . From the observations given above, the following values of the coefficients of the deviation are obtained: $\mathrm{A}=-3^{\circ} \stackrel{11^{\prime} .2}{\mathrm{D}=}+\mathrm{s}^{\circ} \mathrm{B}=-3^{\circ} \cdot 25^{\circ} \cdot 2.8 \mathrm{E}=+0^{\circ} \mathrm{C}=-0^{\circ} 0^{\circ} .8$					A deviation of the North Point of the Compass to the East is designated by the sign +; a deviation to the West by the sign -. These observations exhibit such discordancies among themselves that they do not seem worth the trouble of reducing.				

Observations for Determining the Deviations of the Forward Alidade Compass on the U．S．Iron Clad Monadnock．

Hampton Roads，November I， 1865. Correction for Object $=+3^{\circ} 57^{\prime}$ ．Correction for Lubber Line $=0$ ．					St．Thomas，November 18， 1865. Correction for Object $=+0^{\circ} 16^{\prime}$ ．Corrcction for Lubber Line $=0$ ．				
Assumed Magnetic Direction of Sbip＇s Head．	Sbip＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．	Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Mead by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．
NORTH．	N．$\frac{1}{8} \mathrm{E}$ ．	－		$+0^{\circ} 1^{\prime}$	NORTH．	N．	－		－ $0^{\circ} 10^{1}$
N．by E．	N．by E．${ }^{\text {E F．}}$	－		－ 20	N．by E．	N． 7 E ．			＋110
N．N．E．	N．E．by N．$\frac{8}{8} \mathrm{~N}$ ．	－		－0 20	N．N．E．	N．by E．赛E．	交		＋110
N．E．by N．	N．E．${ }^{\text {N．}}$			＋o 40	N．E．by N．	N．E．by N．$\frac{1}{8} \mathrm{~N}$ ．			＋1 10
N．E．by E．	N．E．by E．${ }^{\text {a }}$ E．	－		$\begin{array}{r}+010 \\ +0 \quad 20 \\ \hline\end{array}$	N．E．br E．				+110 +110
E．N．E．	E．by N．${ }^{\text {E N }}$ ．	－		－0 20	E．N．E．	N．E．by E．$\frac{7}{8}$ E．	－		＋110
E．by N ．	E．$\frac{3}{2}$ N．	－		－0 20	E．by N．	E．by N．	\％		－0 20
EAST．	E．${ }^{\text {d }}$ S	－		－0 20	EAST．		－		－0 20
E．by S．	E．S．E．${ }^{\text {P }}$ E．	－		＋0 40	E．by S．	E．by S． 1	\bigcirc		一0 20
E．S．E．	S．E．by E．$\frac{8}{8}$ E．	－		＋o 10	E．S．E．	E．S．E．	－		－0 20
S．E．by E．	S．E．$\frac{5}{\text { E }}$ E．	－		－0 20	S．E．by E．	S．E．by E．	－		－0 20
S．E．	S．E．${ }^{\text {S }}$ S．	－		＋o 40	S．E．	S．E．	－		－0 20
S．E．by S．	S．S．E．${ }^{3} \mathrm{E}$ ．	－		＋110	S．E．by S．	S．E．by S．	\bigcirc		－0 20
S．S．E．	S．by E．$\frac{7}{8}$ E．	\％		+210 +230	S．S．E．	S．S．E．+ E．	$+{ }^{\circ}$		－0 10
SOUTH．	SOUTH．			＋ 330	SOUTH．	S． 1 E．			＋ 230 +230
S．by W．	S． 7 \％ 1 W ．	＋		＋ 450	S．by W．	S．$\frac{1}{6} \mathrm{~W}$ ．			＋230
S．S．W．	S．by W． 3 W．	$+$		＋620	S．S．W．	S．by W，$\frac{3}{\text { W }}$ W．			＋230
S．W．by S．	S．W．by S．$\frac{1}{\text { S }}$ ．	＋		＋640	S．W．by S．	S．W．by S．$\frac{1}{4}$ S．			＋230
S．W．w	S．W．${ }^{\text {a }}$ S．	$+$		＋640	S．W．${ }_{\text {S }}$	S．W．咅S．			＋350
S．W．by W．	S．W．$\frac{1}{\text { W }}$ W．	\pm		＋ 5150	S．W．by W．	S．W．I IV．			＋230
w．by S．	W．by S．$\frac{1}{8} \mathrm{~S}$ ．${ }^{\frac{1}{8} \text { W．}}$	＋		+520 +520	w．by S．	W．S．W．$\frac{7}{8}$ W．			+230 +110
WEST．	WEST．	$+$		＋430	WEST．	W．${ }^{\text {d }}$ S．${ }^{8}$	8		＋i 10
W．by N ．	W．by N ．			＋40	W．by N ．	W．$\frac{7}{8} \mathrm{~N}$ ．	＋		＋110
W．N．W．	N．W．by W．$\frac{7}{8}$ W．	－		＋30	W．N．W．	W．N．W．	－		－0 20
N．W．by W．	N．W．W．	－		＋140	N．W．by W．	N．W．by W．	\bigcirc		－ 20
N．W．	N．W．${ }^{\text {N }}$ ，w	－		＋110	N．W．	N．W．	－		－0 20
N．W．by N． N．N．W．	N．N．W．W．	－		1 +110 +110	N．W．by N． N．N．W．	N．W．by N． N．N．W．	\circ		－0 20
N. by W．	N．${ }^{\text {a }}$ W．	－$\frac{1}{4}$		＋110	$\mathrm{N} . \mathrm{by}$ W．	N．by W．	\bigcirc		二－0 20
NORTH．				＋0 10	NORTII．				－0 20

[^16]Observations for Determining the Deviations of the Forward Alidade Compass on the U. S. Iron Clad Monadnock.

Isle Royal, Salute Islands, November 30, 1865. Correction for Object $=-0^{\circ} 2^{\prime}$. Correction for Lubber Line $=0 .^{\circ}$						Ceara, December 19, 1865. Correction for Object $=+1^{\circ} 5 I^{\prime} . \quad$ Correction for Lubber Line $=0^{\circ}$.				
	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
	NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S . E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E . SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S . WEST. W. by N. W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by w. NORTH.	EAST.		- '		NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S. E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E . SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W, W. S. W. W. by S . WEST. W. by N. W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	N. $\frac{7}{8} \mathrm{E}$. N. N. E. $\frac{1}{4}$ N. N. E. by N. $\frac{1}{4}$ N. N. E. 1 N. N. E. 晴 E. E. N. E. $\frac{1}{8}$ N. E. by N. EAST. E. by S. S. E. by E. 7 百 E.	$\begin{aligned} & +\frac{1}{4} \\ & +\frac{1}{4} \\ & +\frac{1}{4} \\ & +\frac{1}{8} \\ & +\frac{1}{8} \\ & 0 \\ & 0 \\ & 0 \\ & -\frac{1}{8} \end{aligned}$		$\begin{aligned} & +3^{\circ} 0 \\ & +430 \\ & +440 \\ & +430 \\ & +330 \\ & +320 \\ & +210 \\ & +130 \\ & +1 \\ & +10 \\ & +10 \end{aligned}$
A deviation of the North Point of the Compass to the East is designated by the sign + ; a deviation to the West by the sign - . From the observations given above, the following values of the coefficients of the deviation are obtained: $\mathrm{A}=$ $\mathrm{B}=$ $\mathrm{C}=$ $\mathrm{E}=$ A deviation of the North Point of the Compass to the Ea a deviation to the West by the sign -. From the observations given above, the following val deviation are obtained: $\mathrm{A}=+2^{\circ} \stackrel{3^{\prime} \cdot 6}{=}+1^{\circ} \quad \underset{2 I^{\prime} \cdot 4}{=}+0^{\circ} 0^{\prime} \cdot 1 \quad \mathrm{E}=-1$										

Observations for Determining the Deviations of the Forward Alidade Compass on the U. S. Iron Clad Monadnock.

Bahia, December 30, 1865. Correction for Object $=+2^{\circ} 30^{\circ}$. Correction for Lubber Line $=0$.					Rio Janciro, January 10, 1866. Correction for Object $=+2^{\circ} 44^{\prime}$. Correction for Lubber Line $=0^{\circ}$.				
Assumed Magnctic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points,	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH, N. by E. N. N, E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S . E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S. WEST. W. by N. W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NOR'TH.	NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S. $\frac{1}{8}$ S. S. E. by E. $\frac{7}{8}$ E. S. E. S. E. E. S. S. E $\frac{7}{8}$ E. S. S. E. S. by E. SOUTH. S. $\frac{7}{8} \mathrm{~W}$. S. by W. $\frac{7}{8}$ W. S. W. by S. $\frac{1}{8}$ S. S. W. $\frac{1}{8}$ S. S. W. by W. $\frac{7}{8}$ W. W. by S . WEST. W. by N. $\frac{1}{4}$ N. N. W. by W. ${ }_{4} \mathrm{~W}$. N. W. N. W. W. N. N. W. by N. $\frac{1}{8}$ N. N. by W. $\frac{1}{8}$ W. \qquad		\bullet	+20 10 +2 30 +1 30 +1 10 +1 10 +1 10 +1 10 +2 10 +2 30 +2 30 +3 30 +3 50 +2 50 +2 30 +0 20 0 20 +0 50 +1 10 +1 10 +1 10 +1 10 +2 10	NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S. E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W.' by S. S. W. S. W. by W. W. S. W. W. by S. WEST. W. by N. W. N. W, N. W. by W. N. W. N. W. by N. N N. W. N. by W. NORTH.	N. E. by N. $\frac{7}{8}$ N. N. E. $\frac{1}{8}$ N. N. E. E . E. by N. EAST. E. by S. E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. $\frac{1}{8}$ E. E. $\frac{1}{8} \mathrm{E}$. S. $\frac{3}{4}$ W. S. by W, ${ }^{3}$ W. S. S. W. $\frac{3}{4}$ W.			$\begin{array}{lc} +4^{\circ} & 10 \\ +4 & 10 \\ +4 & 10 \\ +3 & 0 \\ +2 & 40 \\ +2 & 40 \\ +2 & 40 \\ +2 & 40 \\ +2 & 40 \\ +2 & 40 \\ +2 & 40 \\ +3 & 50 \\ +4 & 10 \\ +4 & 10 \\ +5 & 10 \\ +5 & 30 \\ +5 & 30 \end{array}$
A deviation of the North Point of the Compass to the East is designated by the sign + ; a deviation to the West by the sign - From the observations given above, the following values of the coefficients of the deviation are obtained: $\mathrm{A}=+2^{\circ} \mathrm{D}^{9^{\prime} \cdot 4}=+1^{\mathrm{B}}=-0^{\circ} \quad 0^{\prime} \cdot 6^{\prime} .0 \quad \mathrm{C}=+0^{\mathrm{C}}=-0^{\circ} \quad 34^{\prime} \cdot 5^{\prime} \cdot 1$					A deviation of the North Point of the Compass to the East is designated by the sign + ; a deviation to the West by the sign - . From the observations given above, the following values of the cofficients of the deviation are obtained:				

Observations for Determining the Deviations of the Forward Alidade Compass on the U. S. Iron Clad Monadnock."

Monte Video, January 24, 1866. Correction for Object $=-0^{\circ} \quad 13^{\prime}$ Correction for Lubber Line $=0$.					Sandy Point, February io, 1866. Correction for Object $=+0^{\circ} 7^{\prime}$. Correction for Lubber Line $=0$.				
Assumed Magnetic Direction of Ship's Hèad.	Ship's Mead by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S. E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S . WEST. W. by N. W. N. W. N. W. by W, N. W. N.W. by N. N, N. W. N. by W. NORTH.	NORTH. N. $\frac{7}{8} \mathrm{E}$. N. by E. ${ }^{3}$ E, N. E. by N. $\frac{3}{8}$ N. N. E. $\frac{3}{8}$ N. E. N. E. $\frac{3}{8}$ N.. E. by N. $\frac{3}{8}$ N. E. $\frac{1}{\mathrm{E}} \mathrm{N}$. E. S. E. $\frac{1}{4}$ E. S. E. by E. $\frac{1}{8}$ E. S. E. $\frac{1}{1}$ E. S. S. E. $\frac{1}{4}$ E. S. by E. $\frac{1}{4}$ E. S. $\frac{1}{2} \mathrm{E}$. S. by W. 愿 W. S. W. by S. $\frac{3}{8} \mathrm{~S}$. S. W. $\frac{1}{4}$ S. S. W. $\frac{3}{4}$ W. S. W. by WV. $\frac{3}{4} \mathrm{~W}$. W. by S. $\frac{1}{8} \mathrm{~S}$, W. $\frac{1}{8}$ S. W. $\frac{7}{8}$ N. N. W. by W. N. W. N. W. by N. N. N. W. N. $\frac{7}{8}$ W.		- ,		NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S . E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W, W. by S. WEST. W. by N. W. N. W. N. IV. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	NOR'TH. N. $\frac{7}{8}$ E. N. by E. $\frac{3}{4} \mathrm{E}$. N. N. E. $\frac{3}{4}$ E. N. E. $\frac{1}{1}$ N. N. E. by E. $\frac{5}{8}$ E. E. by N. E. $\frac{3}{8} \mathrm{~N}$. E. by S. 8 S. S. E. by E. $\frac{1}{4}$ E. S. E. $\frac{1}{4} \mathrm{E}$. S. S. E. $\frac{1}{1}$ E. S. by E. $\frac{3}{8} \mathrm{E}$. S. $\frac{3}{8} \mathrm{E}$. S. by W. $\frac{8}{8}$ W. S. W. by S. $\frac{1}{2}$ S. S. W. S. W. I I S. W. S. W. by W. 3 W. W. by S. $\frac{1}{4} \mathrm{~S}$. W. $\frac{1}{4}$ S. W. by N. W. N. W. N. W. $\frac{1}{8}$ W. N. W. by N. $\frac{1}{8} \mathrm{~N}$. N. N. WV N. $\frac{7}{8}$ W.			$\begin{array}{lc} +0^{\circ} & 10 \\ +1 & 30 \\ +3 & 0 \\ +3 & 0 \\ +3 & 0 \\ +3 & 0 \\ +4 & 0 \\ +4 & 20 \\ +4 & 20 \\ +3 & 0 \\ +3 & 0 \\ +3 & 0 \\ +3 & 0 \\ +1 & 0 \\ +3 & 0 \\ +4 & 0 \\ +4 & 20 \\ +4 & 20 \\ +4 & 20 \\ +5 & 50 \\ +4 & 20 \\ +4 & 20 \\ +3 & 0 \\ +3 & 0 \\ +3 & 0 \\ +0 & 10 \\ +0 & 10 \\ -1 & 20 \\ =1 & 20 \\ -1 & 20 \\ -1 & 20 \\ \hline 1 & 20 \\ +0 & 10 \end{array}$

[^17]Observations for Determining the Deviations of the Forward Alidade Compass on the U．S．Iron Clad Monadnock．

Valparaiso，April 4， 1866. Correction for Object $=+0^{\circ} 1^{\prime}$ ．Correction for Lubber Line $=0$.					Callao，April 29， 1866. Correction for Object $=+0^{\circ} 6^{\prime}$ ．Correction for Lubber Line $=0$ ．				
Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．	Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．
NORTII． N．by E． N．N．E． N．E．by N． N．E． N．E．by E． E．N．E． E．by N． EAST． E．by S． E．S．E． S．E．by E． S．E． S．E．by S． S．S．E． S．by E． SOUTH． S．by W， S．S．W． S．W．by S． S．W． S．W．by W． W．S．IV． W．by S． WEST． W．by N． W．N．W． N．W．by W． N．W． N．W．by N． N．N．W． N．by W． NORTH．	NORTH． N．$\frac{7}{8} \mathrm{E}$ ． N．by E．${ }^{3}$ E． N．E．by N．$\frac{1}{4}$ N． N．E．$\frac{1}{N}$ N． N．E．by E．${ }^{3}$ E． E．hy N E．$\frac{1}{2}$ N． E．S．E．$\frac{1}{\text { S．E．}}$ E． S．E．$\frac{1}{8}$ E． S．S．E． 4 E． S．by E．$\frac{1}{4}$ E． S．专E． S． W ． S．by W．W． S．W．by S． 1 S． S．W． 1 S． S．W． W． S．W．by W． 3 W． W．by S．$\frac{1}{1}$ S． W．$\frac{1}{s}$ S． W．． s ．W． N．W．by W． N．W． N．W．by N． N．by W． N．N．W．			$\begin{array}{rl} 0^{\circ} & 0 \\ +1 & 30 \\ +1 & 50 \\ +2 & 50 \\ +2 & 50 \\ +2 & 50 \\ +2 & 50 \\ +2 & 50 \\ +2 & 50 \\ +1 & 30 \\ +1 & 30 \\ +1 & 30 \\ +1 & 30 \\ +2 & 50 \\ +2 & 50 \\ +2 & 50 \\ +2 & 50 \\ +2 & 50 \\ +2 & 50 \\ +2 & 50 \\ +2 & 50 \\ +2 & 50 \\ +2 & 50 \\ +2 & 50 \\ +1 & 30 \\ +1 & 30 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	NORTH． N．by E． N．N．E． N．E．by N． N．E． N．E．by E． E．N．E． E．by N． EAST． E．by S ． E．S．E． S．E．by E． S．E． S．E．by S． S．S．E． S．by E． SOUTH． S．by W． S．S．W． S．W．by S． S．W． S．W．by W． W．S．W． W．by S． WEST． W．by N． W．N．W． N．W．by W． N．W． N．W．by N． N．N．W． N．by W． NORTH．	N． 1 E． N．by E． N．N．E． N．E．by N． N．E． N．E．by E．$\frac{7}{8}$ E． E．by N．$\frac{1}{8}$ N． EAST． E．素S． S．E．by E．$\frac{1}{8}$ E． S．E． S．E．by S． S．S．E． S．by E． E． E． S．$\frac{1}{\mathrm{t}} \mathrm{E}$ ． S．$\frac{7}{8}$ W． S．by W．矛 IW． S．W．by S．\ddagger S． S．W．$\frac{1}{1}$ S． S．W．$\frac{1}{8} \mathrm{~W}$ ． S．W．by W．$\frac{7}{8}$ W． W．by S． WEST． W．by N．$\frac{1}{8} \mathrm{~N}$ ． N．W．by IV．$\frac{7}{8}$ W． N．W． N．W．W． N．N．W． 3 W． N．by W，$\frac{3}{4}$ W． N． $3_{4} \mathrm{WV}$ ．		－ 1	$\begin{array}{ll} -10 & 20^{\prime} \\ +0 & 10 \\ +0 & 10 \\ +0 & 10 \\ +1 & 30 \\ +1 & 30 \\ +1 & 30 \\ +1 & 30 \\ +0 & 10 \\ +1 & 30 \\ +0 & 10 \\ +1 & 30 \\ +0 & 10 \\ +0 & 10 \\ +1 & 30 \\ +1 & 30 \\ +1 & 30 \\ +1 & 30 \\ +3 & 0 \\ +3 & 0 \\ +3 & 0 \\ +1 & 30 \\ +1 & 30 \\ +0 & 10 \\ +0 & 10 \\ \hline 1 & 20 \\ -1 & 20 \\ -2 & 40 \\ \hline 2 & 40 \\ -2 & 40 \\ \hline 2 & 40 \\ \hline & 40 \\ -1 & 20 \end{array}$

A deviation of the North Point of the Compass to the East is designated by the sign + ；A deviation of the North Point of the Compass to the East is designated by the sign + ；
a deviation to the West by the sign－ From the observations given above，the following values of the coefficients of the From the observations given above，the following values of the coefficients of the

Observations for Determining the Deviations of the Forward Alidade Compass on the U．S．Iron Clad Monadnock．：

Panama，May 20， 1866.$\text { Correction for Object }=+0^{\circ} 1^{\prime} . \text { Correction for Lubber Line }=0$					Acapulco，June r， 1866. Correction for Object $=+0^{\circ} \quad 6^{\prime}$ ．Correction for Lubber Line $=0$ ．				
Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．	Assumed Magnetic Direction of Ship＇s Head．	Snip＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．
NORTH． N．by E． N．N．E． N．E．by N． N．E． N．E．by E． E．N．E． E．by N． EAST． E．by S． E．S．E． S．E．by E． S．E． S．E．by S． S．S．E． S．by E， SOUTH． S．hy W． S．S．W． S．W．by S． S，W． S．W．by W． W．S．W． W．by S． WEST． W．by N． W．N．W． N．W．by W． N．W． N．W．by N． N．N．W． N．by W． NORTH．	NORTH． N．$\frac{7}{8} \mathrm{E}$ ． N．by E．$\frac{3}{4}$ E． N．E．by N．$\frac{1}{4}$ N． N．E．$\frac{1}{1}$ N． N．E．by E．$\frac{7}{8}$ E． E．by N．$\frac{1}{4}$ N． E．$\frac{1}{3}$ N． E．by S．$\frac{7}{8}$ S． S．E．by E．$\frac{1}{8}$ E． S．E．$\frac{1}{3}$ E． S．S．E．$\frac{1}{4}$ E． S．by E．$\frac{1}{4}$ E． S．$\frac{1}{2} \mathrm{E}$ ． S．by W．量 W． S．W．by S．竜 S． S．W．童 S． S．W． S．W．by W．$\frac{8}{8}$ W． W．by S．$\frac{3}{8} \mathrm{~S}$ ． W．${ }^{\frac{1}{2}} \mathrm{~S}$ ． N ． N．W．by W． N．W． N．W．by N． N．N．W． N．by W．			$\begin{array}{rll}0^{\circ} & 0 \\ +1 & 30 \\ +2 & 50 \\ +2 & 50 \\ +2 & 50 \\ +2 & 50 \\ 1 & 30 \\ +2 & 50 \\ +2 & 50 \\ +1 & 30 \\ +1 & 30 \\ +1 & 30 \\ +2 & 50 \\ +2 & 50 \\ +2 & 50 \\ +2 & 50 \\ +2 & 50 \\ +4 & 10 \\ +4 & 10 \\ +4 & 10 \\ +4 & 10 \\ +4 & 10 \\ +4 & 10 \\ +4 & 10 \\ +2 & 50 \\ +1 & 30 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$	NORTH． N．by E． N．N．E． N．E．by N． N．＇E． N．E．by E． E．N．E． E．by N． EAST． E．by S ． E．S．E． S．E．by E． S．E． S．E．by S． S．S．E． S．by E ． SOUTH． S．by W． S．S．W． S．W．by S． S．W． S．W．by W． W．S．W． W．by S． WEST． W．by N ． W．N．W． N．W．by W． N．W． N．W．by N． N．N．W． N．by W． NORTH．	NORTH． N．$\frac{7}{8}$ E． N．by E．$\frac{7}{8} \mathrm{E}$ ． N．E．by N．$\frac{1}{8}$ N． N．E． N．E． N． E． N，E．by E．$\frac{7}{8} \mathrm{E}$ ． E．by N． E．$\frac{1}{3} \mathrm{~S}$ ． E．by S，$\frac{1}{8}$ S． S．E．hy E．$\frac{7}{8} \mathrm{E}$ ． S．E．$\frac{7}{8} \mathrm{E}$ ． S．E．by S．$\frac{1}{8}$ S． S．S．E． S．by E．$\frac{1}{8}$ E． S．$\frac{1}{\frac{1}{4}} \mathrm{E}$ ． S．by W．$\frac{3}{4}$ w． S．W．by S．$\frac{3}{8} \mathrm{~S}$ ． S．W．量 S． S．W．by W．量 W W．by S．$\frac{1}{4} \mathrm{~S}$ ． W．$\frac{1}{2} \mathrm{~S}$ ． W．N．W． N．W．by W． N, W ． N．W．by N． N．N．W． N．by W．			
A deviation of the North Point of the Compass to the East is designated by the sign + ； a deviation to the West by the sign－． From the observations given above，the following values of the coefficients of the deviation are obtained：					A deviation of the North Point of the Compass to the East is designated by the sign + ； a deviation to the West by the sign－． From the observations given above，the following values of the coefficients of the deviation are obtained；				

Observations for Determintng the Deviations of the Foriward Alidade Compass on the U．S．Iron Clad Monadnock．

Magdalena Bay，June 9， 1866. Correction for Object $=-0^{\circ} 4 \mathbf{I}^{\prime}$ ．Correction for Lubber Line $=0$.					San Francisco，June 23， 1866. Correction for Object $=-0^{\circ} 45^{\prime}$ ．Correction for Lubber Line $=0$.				
Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．	Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrecs．	Corrected Deviation of Compass．
NORTH．	NORTif．		－	－ $0^{\circ} 40^{\prime}$					
N．by E．	N．$\frac{7}{3} \mathrm{E}$ ．	$+\frac{1}{8}$		－	NORTH．	N．$\frac{1}{8}$ E． N．by E．$\frac{1}{d}$ E．		－，	$-2^{\circ} 10^{\prime}$ -210
N．N．E．					N．N．E．	N．N．E．E．	－${ }^{8}$		二20
N．E．					N．E．by N．	N．E．by N．	0		－0 40
N．E．by E．					N．E．by E．	N．E．be	\bigcirc		－0 40
E．N．E．					E．N．E．	N．N．by E．	\bigcirc		－ 40
E．by N．					E．by N．	E．$\frac{7}{8}$ N．			－0 50
EAST．					EAST．	E．$\frac{1}{} \mathrm{~S}$ ．	－		二2 ${ }^{10} 10$
E．by S．					E．by S．	E．by S．$\frac{1}{8} \mathrm{~S}$ ．	$\frac{1}{8}$		二2 ${ }^{2} 0$
S．E．by E．					E．S．E．	E．S．E．	${ }^{\circ}$		－0 40
S．E．					S．E．by E．	S．E．by E．	\bigcirc		－0 40
S．E．by S．					S．E．by S．	S．E． 7 S．	${ }^{\circ}$		－0 ${ }^{10}$
S．S．E．					S．S．E．	S．S．E．${ }^{\text {E }}$ E．			a + +20 +20
S．by E．					S．by E．	S．by E．$\frac{3}{8} \mathrm{E}$ ．			1 +21 +3
SOUTH．					SOUTH．	S．${ }^{3} \mathrm{E}$ ．	8		+330 +330
S．by W．					S．by W．	S．亚W．	－${ }^{8}$		3 +30 +330
${ }_{\text {S．S．W．}}$					S．S．W．	S．by W．$\frac{1}{2}$ W．			＋ 430.
S．W．by S． S．W．					S．W．by S．	S．W．by S．$\frac{1}{2}$ S．			＋430．
S．W．by W．	S．W．${ }^{\text {W }}$ W．			＋5	S．W．	S．W．$\frac{1}{2}$ S．			＋450
W．S．W．	S．W．by W．$\frac{\text { s．}}{\text { d }}$ W．			＋ 610	S．W．by W．	S．W．${ }^{\text {S }}$ W．			＋450
W．by S．	W．by S．$\frac{1}{4}$ S．	＋		+310 +210	W．by S．	S．W．by W．$\frac{3}{\text { I W }}$ W．	$\frac{3}{8}$		＋320
WEST．	W．$\frac{1}{1} \mathrm{~S}$ ．	＋		＋210	WEST．	W． 1 S．	\％		＋2
W．by N ．	W．$\frac{3}{8} \mathrm{~N}$ ．			＋ 330	W．by N ．	W．$\frac{1}{} \mathrm{~N}$ ．	，		+20 +150
W．N．W．	W．by N． 3 N．	，		＋210	W．N．W．	w．N．w．			$\begin{array}{r}1 \\ +150 \\ \hline 0\end{array}$
N．W．by W．	N．W．by W．$\frac{1}{4} \mathrm{~W}$ ．			＋20	N．W．by W．	N．W．by W．$\frac{1}{1}$ W．	＋$\frac{1}{4}$		－130
N．W．	N．W．$\frac{1}{8}$ W．	\％		＋0 40	N．W．	N．W．	${ }^{4}$		＋130
N．W．by N．	N．W．${ }^{\text {N }}$	$\frac{1}{8}$		＋o40	N．W．by N．	N．W．by N．	－		－0 40
N．N．W．	N．N．W．			－0 40	N．N．W．	N．N．W．	－		－0 50
NORTH．	N．by W．	－		－0 40	N．by W．	N．$\frac{7}{8}$ W．	$-\frac{1}{8}$		－ 210
				－0 40	NORTII．				－2 10

[^18]Observations for Determining the Deviations of the Forward Binnacle Compass on the U．S．Iron Clad Monadnock．

Hampton Roads，November 1， 1865. Correction for Object $=+3^{\circ} 57^{\prime}$ ．Correction for Lubber Line $=0$.					St．Thomas，November 18， 1865. Correction for Object $=+0^{\circ} 16^{\prime}$ ．Correction for Lubber Line $=0$.				
Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．	Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．
NORTH． N．by E． N．N．E． N．E．by N． N．E． N．E．by E． E．N．E． E．by N． EAST． E．by S ． E．S．E． S．E．by E． S．E． S．E．by S． S．S．E． S．by E． SOUTH． S．by W． S．S．W． S．W．by S． S．W． S．W．by W． W．S．W． W．by S． WEST． W．by N． W．N．W． N．W．by W． N．W． N．W．by N． N．N．W． N．by W． NORTH．	N．$\frac{1}{2}$ E． N．by E． 1 E． N．E．by N．$\frac{1}{2}$ N． N．E．$\frac{1}{1} \mathrm{~N}$ ． N．E．hy E．${ }_{4}^{3}$ E． E．by N．$\frac{1}{8} \mathrm{~N}$ ． E．章 N ． E．S．E． 1 E． S．E．by E．$\frac{1}{4}$ E． S．E．$\frac{3}{8} \mathrm{E}$ ． S．E．$\frac{3}{8}$ S． S．S．E．$\frac{1}{2}$ E． S．by E．豪 E． S．$\frac{1}{8} \mathrm{~W}$ ． S．by W．$\frac{a}{7}$ W． S．W．by S．$\frac{3}{8}$ S． S．W．$\frac{1}{2}$ S． S．W．by w．$\frac{1}{2}$ W． W．by S．$\frac{1}{4}$ S． W．$\frac{1}{} \mathrm{~S}$ ． W．N．W．$\frac{7}{8}$ W． N．W．s． W ． N．N．W．$\frac{1}{2}$ W． N．by W．W．$\frac{1}{2}$ W． N．$\frac{1}{2}$ W．				NORTH． N．hy E． N．N．E． N．E．by N． N．E． N．E．by E． E．N．E． E．by N． EAST． E．by S ． E．S．E． S．E．by E． S．E． S．E．by S． S．S．E． S．by E． SOUTH． S．by W． S．S．W． S．W．by S． S．W． S．W．by W． W．S．W． W．by S ． WEST． W．by N． W．N．W． N．W．by W． N．W． N．W．by N． N．N．W． N．hy W． NORTH．	N． N．by E． N．N．E． N．E．by N． N．E． N．E．by E． E．by N．$\frac{7}{8}$ N． E．$\frac{7}{8} \mathrm{~N}$ ． E．by S．$\frac{1}{4}$ S． S．E．by E．䂞 E． S．E． 3 E． S．E．by S．$\frac{1}{2}$ S． S．by E．$\frac{3}{4}$ E． S．$\frac{7}{8}$ E． S．by W． S．hy W．$\frac{7}{8}$ W． S．W．hy $\frac{8}{8} . \frac{1}{8}$ S． S．W．$\frac{1}{2}$ S． S．W．by W．$\frac{8}{8}$ W． W．by S．$\frac{1}{4}$ S． W．$\frac{1}{8}$ S． W．by N ． W．N．W． N．W．$\frac{7}{8}$ W． N．W．$\frac{1}{8}$ N． N．W．by N．$\frac{1}{8} \mathrm{~N}$ ， N．by W．$\frac{7}{8}$ W． N $\frac{7}{8}$ W．		－，	

A deviation of the North Point of the Compass to the East is designated by the sign＋；A deviation of the North Point of the Compass to the East is designated by the sign＋；
a deviation the the West by the sign－．the following values of the coefficients of the deviation are obtained： $\mathrm{A}=+0^{\circ} \stackrel{49^{\prime} .0}{\mathrm{D}=+2^{\circ} \mathrm{B}=17^{\prime} \cdot 7} \stackrel{5^{\circ}}{\mathrm{E}} \stackrel{40^{\prime} .8}{\mathrm{E}=+0^{\circ} \mathrm{C}=-2^{\circ} 33^{\prime} \cdot 4}$ deviation are obtained：

$$
\mathrm{A}=+0^{\circ}
$$

From the observations given above，the following values of the coefficients of the

From the ohservations given above，the following values of the coefficients of the
Observations for Determining the Deviations of the Forward Binnacle Compass on the U. S. Iron Clad Monadnock.

Isle Royal, Salute Islands, November 30, 1865. Correction for Object $=-0^{\circ} 2^{\prime}$. Correction for Lubber Line $=0$.					Ceara, December 19, 1865. Correction for Object $=+1^{\circ} 5 I^{\prime} . \quad$ Correction for Lubber Line $=0$.				
Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S . E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S. WEST. W. by N . W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	EAST.	0	-	0 o	NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S. E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S. WEST. W. by N. W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	N. by E. N. N. E. N. E. by N. N. E. $\frac{1}{8}$ N. N. E. by E. E. N. E. E. $\frac{7}{8} \mathrm{~N}$. E. $\frac{1}{4} \mathrm{~S}$. E. by S. $\frac{3}{8}$ S. S. E. by E. $\frac{5}{8}$ E.	$\begin{array}{r}0 \\ 0 \\ 0 \\ +\quad \frac{1}{8} \\ 0 \\ 0 \\ - \\ \hline \\ \hline\end{array}$	- 1	$\begin{array}{ll} +1 & 50 \\ +1 & 50 \\ +1 & 50 \\ +3 & 0 \\ +2 & 10 \\ +1 & 50 \\ +0 & 40 \\ -0 & 40 \\ -2 & 10 \\ -2 & 20 \end{array}$
A deviation of the North Point of the Compass to the East is designated by the sign +; a deviation to the West by the sign - From the observations given above, the following values of the coefficients of the deviation are obtained: $A=$ $\mathrm{D}=\quad \mathrm{B}=\quad \mathrm{E}=\quad \mathrm{C}=$					A deviation of the North Point of the Compass to the East is designated by the sign +; a deviation to the West by the sign -. From the observations given above, the following values of the coefficients of the deviation are obtained: $\mathrm{A}=-0^{\circ} \stackrel{54^{\prime} \cdot 7}{\mathrm{D}=+2^{\circ}} \begin{aligned} & \mathrm{B}=+0^{\circ}=24^{\prime} .6 \\ & \mathrm{E}=+0^{\circ}= \\ & 3^{\prime} \cdot 2 \end{aligned}$				

Observations for Determining the Deviations of the Forward Binnacle Compassion the U．S．Iron Clad Monadnock．

Bahia，December 30， 1865. Correction for Object $=+2^{\circ} 30^{\prime}$ ．Correction for Lubber Line $=0$ ．					Rio Janeiro，January 10， 1865. Correction for Object $=+2^{\circ} 44^{\prime}$ ．Correction for Lubber Line $=0$ ．				
Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Dcviation of Compass in Degrees．	Corrected Deviation of Compass．	Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．
NORTH． N．by E． N．N．E． N．E．by N． N．E． N．E．by E． E．N．E． E．by N ． EAST． E．by S ． E．S．E． S．F．by E． S．E． S．E．by S． S．S．E． S．by E． SOÚTH． S．by W． S．S．W． S．W．by S． S．W． S．W，by W． W．S．W． W．by S． WEST． W．by N． W．N．W． N．W．by W． N．W． N．W．by N． N．N．W． N．by IV． NORTI．	NORTH． N．by E． N．N．E． N．E．by N． N．E． N．E．by E． E．N．E． E．by N． E．$\frac{1}{8} \mathrm{~S}$ ． E．by S．$\frac{1}{8} \mathrm{~S}$ ． S．E．by E．$\frac{3}{4}$ E． S．E． 3^{3} E． S．E．$\frac{1}{4}$ ． S．E．by S．$\frac{1}{4}$ S． S．by E．$\frac{3}{4}$ E． S．$\frac{7}{8}$ E． SOUTH． S．by W． S．S．W． S．W．by S． S．W． S．W．hy W． W．S．W． W．$\frac{7}{1}$ S． W．$\frac{1}{4} \mathrm{~N}$ ． W．by N．$\frac{1}{8}$ N． N． N N W． ． $\frac{1}{2}$ W ． N．W．by N．$\frac{1}{3}$ N． N．N．W．$\frac{1}{2}$ N． N．$\frac{3}{4}$ W．	0 二 ＝ 二		$\begin{array}{lc} +10^{\circ} \\ +2 & 50 \\ +2 & 30 \\ +2 & 30 \\ +2 & 30 \\ +2 & 30 \\ +2 & 30 \\ +2 & 30 \\ +1 & 30 \\ +1 & 10 \\ 0 & 0 \\ -0 & 20 \\ -0 & 20 \\ -0 & 20 \\ \hline 0 & 20 \\ +0 & 50 \\ +2 & 10 \\ +2 & 30 \\ +2 & 30 \\ +2 & 30 \\ +2 & 30 \\ +2 & 30 \\ +2 & 30 \\ +1 & 30 \\ 0 & 0 \\ +0 & 50 \\ +2 & 10 \\ -1 & 50 \\ \hline 3 & 10 \\ \hline 3 & 10 \\ \hline 3 & 10 \\ \hline 1 & 0 \\ \hline 1 & 50 \end{array}$	NORTH． N．by E． N．N．E． N．E．by N． N．E． N．E．by E． E．N．E． E．by N． EAST． E．by S． E．S．E． S．E．by E． S．E． S．E．by S． S．S．E． S．by E． SOUTH． S．by W． S．S．W． S．W．by S． S．W． S．W．by W． W．S．W． W．by S． WEST． W．by N， W．N，W． N．W．by W． N．W． N．W．by N． N．N．W． N．by W． NORTH．	N．E．by N． N．E． N．E．by E． E．N．E． E．by N． EAST． E．by S．$\frac{1}{8}$ S． E．S．E． S．E．$\frac{7}{8} \mathrm{E}$ ． S．E．$\frac{1}{4} \mathrm{~S}$ ． S．E．by S．$\frac{1}{8}$ S． S．by E．$\frac{7}{8}$ E． SOUTH． S．by W．$\frac{1}{8}$ W． S．S．W．$\frac{1}{8}$ WV． S．W．$\frac{7}{8} \mathrm{~S}^{8}$ ．		。	$\begin{array}{rl} +2^{\circ} & 40 \\ +2 & 40 \\ +2 & 40 \\ +2 & 40 \\ +2 & 40 \\ +2 & 40 \\ +1 & 40 \\ +2 & 20 \\ +1 & 40 \\ +0 & 20 \\ +1 & 0 \\ +1 & 20 \\ +1 & 20 \\ +2 & 20 \\ +1 & 40 \\ +1 & 20 \\ +1 & 20 \end{array}$

[^19]Observations for Determining the Deviations of the Forward Binnacle Compass on the U. S. Irun Clad Monadnock.

Monte Video, January 24, 1866. Correction for Object $=-0^{\circ} \quad 13^{\prime}$ Correction for Lubber Line $=0$.					Sandy Point, February 10, 1866. Correction for Object $=+0^{\circ} 7^{\prime}$. Correction for Lubber Line $=0$.				
Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N . EAST. E. by S . E. S. E. S. E. by E, S. E. S. E. by S. S. S. E. S. by E. SOUTH. S, by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S . WEST. W. by N. w. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	NORTH. N. $\frac{7}{8} \mathrm{E}$. N. by E. ${ }^{3} \mathrm{E}$. N. E. by N. $\frac{1}{4}$ N. N. E. A N. E. N. E. E. by N. N. N. E. $\frac{1}{4} \mathrm{~N}$. E. S. E. \ddagger E. S. E. by E. $\frac{1}{8} \mathrm{E}$. S. E. $\frac{1}{8}$ E. S. E. $\frac{2}{8}$ S. S. S. E E. $\frac{1}{\text { E }}$ E. SOUTH. S. $\frac{7}{8} \mathrm{~W}$. S. by W. $\frac{7}{8}$ W. S. W. by S. $\frac{1}{8}$ S. S. W. S. W. by W. W. S. W. W. $\frac{7}{1} \mathrm{~S}$. W. by N. $\frac{1}{4}$ N. N. W. $\frac{5}{8}$ W. N. W. $\frac{1}{4} \mathrm{~N}$. N. by W. ${ }^{3}$ W. N. W. by N. $\frac{1}{4} \mathrm{~N}$. N. 1 W .				NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S. E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S. WEST. W. by N . W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	N. $\frac{1}{4}$ E. N. by E. $\frac{1}{8}$ E. N. N.E. N. E. by N. $\frac{1}{8}$ N. N. E. $\frac{1}{\text { N. }}$. N. E. by E. $\frac{8}{8}$ E. E. by N. $\frac{3}{8}$ N. E. $\frac{3}{8} \mathrm{~N}$. E. by S. ${ }^{3}$ S. S. E. by E. $\frac{1}{4}$ E. S. E. $\frac{1}{8}$ E. S. E. 豪S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. $\frac{1}{8} \mathrm{~W}$. S. W. by W. $\frac{1}{4}$ W. W. by S. $\frac{8}{4}$ S. W. $\frac{1}{2}$ S. W. $\frac{5}{8} \mathrm{~N}$. W. by N. 3 N. N. WV. by W. $\frac{1}{4}$ W. N. W. $\frac{1}{4}$ W. N. W. by N, ${ }_{3}^{3} \mathrm{~N}$. N. by W. $\frac{3}{8}$ W. N. $\frac{1}{2}$ W.			$\begin{array}{lc} -2^{\circ} & 40 \\ -1 & 20 \\ +0 & 10 \\ +1 & 30 \\ +3 & 0 \\ +3 & 0 \\ +4 & 20 \\ +4 & 20 \\ +4 & 20 \\ +3 & 0 \\ +3 & 0 \\ +3 & 0 \\ +1 & 30 \\ +4 & 20 \\ +0 & 10 \\ +0 & 10 \\ +0 & 10 \\ +0 & 10 \\ +0 & 10 \\ +0 & 10 \\ -1 & 20 \\ -2 & 40 \\ -2 & 40 \\ -5 & 30 \\ -7 & 0 \\ -8 & 20 \\ -8 & 20 \\ -8 & 20 \\ -8 & 20 \\ =8 & 20 \\ =7 & 0 \\ =5 & 30 \\ -2 & 40 \end{array}$
A deviation of the North Point of the Compass to the East is designated by the sign + ; a deviation to the West by the sign -. From the observations given above, the following values of the coefficients of the deviation are obtained: $\begin{array}{r} \mathrm{A}=+0^{\circ} 1^{\prime} .8 \\ \mathrm{D}=+1^{\circ} \underset{45^{\prime} .2}{\mathrm{~B}}=+2^{\circ} \mathrm{E}=5^{\prime} \cdot 4 \\ =0^{\circ} \underset{2^{\prime} .2}{\mathrm{C}}=-0^{\circ} 41^{\prime} .1 \end{array}$					A deviation of the North Point of the Compass to the East is designated by the sign + ; a deviation to the West by the sign -. From the observations given above, the following values of the coefficients of the deviation are obtained:				

Observations for-Determining the Deviations of the Forward Binnacle Compass on the U. S. Iron Clad Monadnock.

Valparaiso, April 4, 1866. Correction for Object $=+0^{\circ} \quad 1^{\prime} . \quad$ Correction for Lubber Line $=0$.					Callao, April 29, 1866. Correction for Object $=+0^{\circ} 6^{\prime}$. Correction for Lubber Line $=0$.				
Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S. E. S. E. S. E, by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. WV. S. W. by W. W. S. W. W. by S. WEST. W. by N . W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTII.	N. $\frac{1}{8}$ E. N. by E. N. N. E. N. E. by N. $\frac{1}{8}$ N. N. E. $\frac{1}{2}$ N. N. E. by E. ${ }_{4}$ E. E. by N. $\frac{1}{8} \mathrm{~N}$. E. $\frac{1}{\frac{3}{8}} \mathrm{~N}$. E. 今. E . S. E. by E. S. E. S. E. by S. S. S. E. S. by E. S. $\frac{1}{8} \mathrm{E}$. S. 홓 W . S. S. W. S. W. by S. S. W. by w. w. S. W. W. by S . W. 1 N. W. by N. $\frac{1}{4}$ N. W. N. W. $\frac{1}{4}$ N. N. W. ${ }^{\frac{3}{3}} \mathrm{~W}$. N . N. W. by N. $\frac{3}{3}$ N. N. by W. $\frac{3}{4}$ W. N. $\frac{3}{4}$ W.			r° 20^{\prime} -0^{\prime} 0 0 0 +1 30 +2 50 +2 50 +2 50 +1 30 1 1 30 +1 30 0 0 +1 30 +1 30 0 0 -2 50 -2 50 2 50 2 50 4 10 2 50 2 50 2 50 -1 20	NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S . E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E . SOU'TH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W, by S. WEST. W. by N. W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.			- ,	$\begin{array}{ll} -2^{\circ} & 40^{\prime} \\ -1 & 20 \\ -1 & 20 \\ +0 & 10 \\ +0 & 10 \\ +0 & 10 \\ +0 & 10 \\ +0 & 10 \\ +0 & 10 \\ +0 & 10 \\ -1 & 20 \\ -1 & 20 \\ -1 & 20 \\ +0 & 10 \\ +0 & 10 \\ +0 & 10 \\ +1 & 30 \\ +1 & 30 \\ +3 & 0 \\ +3 & 0 \\ +1 & 30 \\ +0 & 10 \\ +0 & 10 \\ -1 & 20 \\ \hline 2 & 40 \\ -4 & 10 \\ \hline 4 & 10 \\ -5 & 30 \\ -5 & 30 \\ \hline 5 & 30 \\ \hline-5 & 30 \\ \hline \end{array}$

[^20]Observations for Determining the Deviations of the Forward Dinnacle Compass on the U. S. Iron Clad Monadnock.

[^21]MAGNETICOBSERVATIONS.
Gaservations for Deilnmining the Deviations of the Forward Binnacle Compass on the U. S. Iron Clad Monadnock.

Magdalena Bay, June 9, 1866. Correction for Object $=-0^{\circ} 4 \mathbf{I}^{\prime} . \quad$ Correction for Lubber Line $=0$.					San Francisco, June 23, 1866. Correction for Object $=-0^{\circ} 45^{\prime}$. Correction for Lubber Line $=0$.				
Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N . EAST. E. by S . E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S. WEST. W. hy N. W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	N. $\frac{1}{2} \mathrm{E}$. N. by E. $\frac{3}{8}$ E. S. W. $\frac{1}{2}$ S. S. W. $\frac{2}{2}$ w. S. W. by W. $\frac{3}{8}$ W. W. by S. $\frac{3}{8}$ S. W. $\frac{1}{4} \mathrm{~S}$. W. by N. N. W. by W. $\frac{7}{8}$ W. $\mathrm{N} . \mathrm{W} . \frac{3}{\mathrm{~J}} \mathrm{~W}$. N. W. by N. $\frac{1}{2} \mathrm{~N}$. N. by W. $\frac{1}{2}$ W. N. $\frac{1}{2}$ W.		- ,	$\begin{aligned} & -6^{\circ} 10^{\prime} \\ & -450 \end{aligned}$+5 0 +4 50 +3 30 +3 30 +2 0 -0 50 -2 10 -3 30 -5 0 -6 20 -6 20 -6 20 -6 10	NORTH, N. by E. N, N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S. E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W: by S. WEST. W. by N . W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	N. $\frac{1}{2}$ E. N. by E. $\frac{1}{8}$ E. N. E. by N. $\frac{1}{2}$ N. N. E. $\frac{3}{8}$ N. N. E. N. E. by E. $\frac{1}{2}$ E. E. by N. $\frac{3}{8}$ N. E. $\frac{3}{8}$ N. E. by S. $\frac{3}{4}$ S. S. E. by E. $\frac{3}{8}$ E. S. E. $\frac{1}{2}$ E. S. E. $\frac{1}{2}$ S. S. E. by S. $\frac{1}{4}$ S. S. by E. $\frac{3}{4}$ E. S. by E. S. S. S. E. W. S. by W. $\frac{8}{8}$ W. S. W. by S. $\frac{1}{2}$ S. S. W. W. $\frac{1}{2}$ S. S. W. by W. $\frac{5}{8}$ W. W. by S. $\frac{1}{4} \mathrm{~S}$. W. $\frac{1}{8}$ S. W. by N. N. W. by W. $\frac{7}{8}$ W. N. W. $\frac{7}{8}$ W. N. W. by N. $\frac{3}{8}$ N. N. by W. $\frac{1}{2}$ W. N. $\frac{1}{2}$ W.			

[^22]Observations for Determining tife Deviations of the Forward Ritchie Compass on the U. S. Iron Clad Monadnock.

Assumed Magnetic Direction of Ship's Head.	Ship's IIead by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTII. N. by E. N. N.E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S. E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. hy E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S . WEST. W. by N. W. N. W. N. W. by W. N . W. N. W. by N. N. N. W. N. by W. NORTH.	N. \downarrow E. N. by E. te. N. E. by N. N. E. $\frac{1}{N}$ N. N. E. by E. E. E. by N. $\frac{1}{8}$ N. E. $\frac{1}{8}$ N. E. by S. E. by S. $\frac{7}{8} \mathrm{~S}$. S. E. by E. $\frac{1}{8}$ E. S. E. $\begin{aligned} & \text { d } \\ & \text { S. } \\ & \text { S. } \\ & \text { S. }\end{aligned}$ S. S. E. $\frac{1}{\text { S. }}$ E. S. $\frac{1}{\frac{1}{2}} \mathrm{E}$ W. S. by W. 올 W. S. W. by S. $\frac{1}{2}$ S S. W. $\frac{3}{8} \mathrm{~S}$. S. W. ${ }_{4}^{8} \mathrm{~W}$. W. S. W. W. by S . W. $\frac{1}{8} \mathrm{~N}$. W. by N. $\frac{3}{\text { S. }} \mathrm{N}$. N. W. by W. N. W. N. W. $\frac{1}{2}$ N. N. N. W. by N. $\frac{1}{2}$ N. N. hy W. N. $\frac{3}{4}$ W	二		$\begin{array}{ll} +10^{\circ} & 10^{\prime} \\ +2 & 0 \\ +3 & 30 \\ +4 & 0 \\ +4 & 50 \\ +5 & 20 \\ +6 & 20 \\ +5 & 50 \\ +5 & 20 \\ +4 & 30 \\ +4 & 50 \\ +5 & 20 \\ +5 & 20 \\ +6 & 10 \\ +6 & 40 \\ +7 & 40 \\ +9 & 0 \\ +9 & 30 \\ +8 & 40 \\ +9 & 0 \\ +8 & 40 \\ +7 & 10 \\ +5 & 0 \\ +4 & 0 \\ +3 & 0 \\ +0 & 40 \\ +0 & 40 \\ \hline 0 & 40 \\ -1 & 40 \\ \hline 1 & 40 \\ \hline 0 & 50 \\ +0 & 40 \\ +1 & 10 \end{array}$	NORTH. N. by E. N. N. E. N, E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S . E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. IV. by S. S. IV. S. W. by W. W. S. W. W. by S . WEST. W. by N. W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	N. $\frac{1}{d}$ W. N. by E. N. by E. ${ }^{3}$ E. N. E. by N. $\frac{1}{2}$ N. N. E. $\frac{1}{2} \mathrm{~N}$. N.E. $\frac{1}{2}$ E. E. by N. $\frac{1}{4}$ N. E. $\frac{1}{4}$ N. E. $\frac{1}{}$ S. E. S. E. S. E. by E. \ddagger E. S. E. 1 E. S. E. $\frac{1}{4}$. S. S. E. S, by E. S. S. $\frac{7}{8}$ W. S. by W. *W. S. W. by S. $\frac{1}{2}$ S. S. W. $\frac{1}{2}$ S. S. W. $\frac{1}{2}$ W. S. W. by W. $\frac{3}{3}$ W. W. $\frac{7}{8} \mathrm{~S}$. W. $\frac{1}{8} \mathrm{~N}$. W. by N . N. W. by W. 3 W. $\begin{array}{ll}\text { N. W. } \\ \mathrm{N} . & \mathrm{I} \\ \mathrm{N} . & \mathrm{W} . \\ \mathrm{N} .\end{array}$ N. W. by N. $\frac{1}{2} \mathrm{~N}$. N. by W. ${ }_{4}^{3}$ W. N. $\frac{3}{4}$ W.			$\begin{array}{ll} +10^{\circ} & 10^{\prime} \\ \pm 0 & 10 \\ +2 & 40 \\ +5 & 20 \\ +5 & 20 \\ +5 & 20 \\ +5 & 20 \\ +2 & 30 \\ +2 & 30 \\ +2 & 30 \\ \hline 0 & 10 \\ +2 & 30 \\ +2 & 30 \\ +2 & 30 \\ -0 & 10 \\ -0 & 20 \\ -0 & 20 \\ +1 & 10 \\ +2 & 40 \\ +5 & 20 \\ +5 & 20 \\ +5 & 20 \\ +2 & 40 \\ -1 & 40 \\ -1 & 40 \\ -0 & 20 \\ -3 & 0 \\ \hline 5 & 50 \\ \hline 3 & 10 \\ -5 & 50 \\ -3 & 0 \\ \hline 3 & 0 \\ \hline 1 & 10 \end{array}$

A deviation of the North Point of the Compass to the East is designated by the sign + ; \quad A deviation of the North Point of the Compass to the East is designated by the sign + ; From the observations given above, the following values of the coefficients of the From the observations given above, the following values of the coefficients of the deviation are obtained:
Observations for Determining the Deviations of tife Forward Ritchie Compass on the U. S. Iron Clad Monadnock

Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S. E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S. WEST. W. by N. W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	E. $\frac{1}{\frac{1}{2}} \mathrm{~N}$.	$+\frac{1}{2}$	- ,	+ 540	NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. hy N. EAST. E. by S. E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S. WEST. W. by N. W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	N. $\frac{1}{2}$ E. N. by E. $\frac{3}{8}$ E. N. E. by N. 3 N. N. E. $\frac{1}{3}$ N. N. E. $\frac{2}{8}$ E. N. E. hy E. $\frac{3}{4}$ E. E. by $N \frac{1}{2}$ N. EAST. E. by S. $\frac{1}{8} \mathrm{~S}$. S. E. by E. $\frac{7}{8}$ E.	$\begin{aligned} & +\frac{1}{2} \\ & + \\ & + \\ & +\frac{8}{8} \\ & + \\ & + \\ & + \\ & + \\ & +\frac{1}{8} \\ & = \\ & \hline \end{aligned}$	-	$\begin{array}{rr} 0 & 1 \\ + & 70 \\ +8 & 40 \\ +10 & 0 \\ +8 & 0 \\ + & 60 \\ + & 5 \\ +7 & 0 \\ + & 2 \\ + & 50 \\ +0 & 40 \\ +0 & 30 \end{array}$
a deviation to the West by the sign - A deviation of the North Point of the Compass to the East is designated by the sign + ; deviation are obtained: From the observations given above, the following values of the coefficients of the					a deviation to the West by the sign -. A deviation of the North Point of the Compass to the East is designated by the sign + ; deviation are obtained: From the observations given above, the following values of the coefficients of the				

Observations for Determining the Deviations of the Forward Ritchie Compass on the U．S．Iron Clad Monadnock．

Bahia，December 3o， 1865. Correction for Object $=+2^{\circ} 30^{\circ}$ ．Correction for Lubber Line $=0$ ．					Rio Janeiro，January 10， 1865. Correction for Object $=+2^{\circ} 44^{\prime}$ ．Correction for Lubber Line $=0$ ．				
Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．	Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．
NORTI N．by E． N．N．E． N．E．by N． N．E． N．E．by E． E．N．E． E．by N ． EAST． E．by S． E．S．E． S．F．by E． S．E． S．E．by S． S．S．E． S．by E． SOUTH． S．by W． S．S．W． S．W．by S． S．W． S．W．by W． W．S．W． W．by S． WEST． W．by N． W．N．W． N．W．by W． N．W． N．W．by N． N．N．W． N．by W． NORTH．	N．\ddagger E． N．Ny E．E． N．E．by N．$\frac{1}{8}$ N． N．E．$\frac{1}{2}$ N． N．E．by E．$\frac{1}{2}$ E． E．by N．$\frac{1}{8}$ N． E． 1 N ． E．$\frac{1}{3} \mathrm{~S}$ ． E．by S．$\frac{1}{4}$ S． S．E．by E． S．E． S．E．by S． S．S．E． S．by E．$\frac{1}{8} \mathrm{E}$ ． S．古 E ． S．by W．音W． S．W．by S．$\frac{1}{8}$ S． S．W．$\frac{1}{8}$ S． S．W．by W． W．by S．$\frac{7}{8}$ S． W．${ }^{3} \mathrm{~S}$ ． W．by N． N ． N．W．by W．$\frac{1}{2}$ W． N．W． N W．$\frac{1}{2} \mathrm{~N}$ ． N．W．by N．$\frac{1}{2}$ N． N．by W．$\frac{3}{4}$ W． N． 3 W．				NORTH． N．by E． N，N．E． N．E．by N． N．E． N．E．by E． E．N．E． E．by N． EAST． E．by S． E．S．E． S．E．by E． S．E． S．E．by S， S．S．E． S．by E． SOUTH． S．by W． S．S．W． S．W．by S． S．W． S．W．by W． W．S．W． W．by S． WEST． W．by N． W．N．W． N．W．by W． N．W． N．W．by N． N．N．W． N．by W． NORTH．		+ +	。	
A deviation of the North Point of the Compass to the East is designated by the sign + ； a deviation to the West by the sign－． From the observations given above，the following values of the coefficients of the deviation are obtained：					a deviation to the West by the sign－． A deviation of the North Point of the Compass to the East is designated by the sign + ； deviations are obtained： From the observations given above，the following values of the coefficients of the				

Observations for Determining the Deviations of the Forward Ritchie Compass on the U．S．Iron Clad Monadnock，

Monte Video，January 24， 1866. Correction for Object $=-0^{\circ} \quad 13^{\prime}$ Correction for Lubber Line $=0$.						Sandy Point，February 10， 1866. Correction for Object $=+0^{\circ} 7^{\prime}$ ．Correction for Lubber Line $=0$.				
	Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．	Assumed Magnetic Direction of 3hip＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．
	NORTH． N．by E． N．N．E． N．E．by N． N．E． N．E．by E． E．N．E． E．by N． EAST． E．by S ． E．S．E． S．E．by E． S．E． S．E．by S． S．S．E． S．by E． SOUTH． S．by W． S．S．W． S．W．by S ． S．W． S．W．by W． W，S．W． W．by S． WEST． W．by N． W．N．W． N．W．by W． N．W． N．W，by N． N．N．W． N．by W． NORTII．	N．$\frac{1}{4}$ W． N．$\frac{1}{2} \mathrm{E}$ ． N．by E．${ }^{3}$ E． N．E．by N．$\frac{3}{4}$ N． N．E．$\frac{8}{1}$ N． N．E．by E．$\frac{1}{4}$ E． E．by N．$\frac{7}{8}$ N． E．$\frac{8}{3} \mathrm{~N}$ ． E．by S．$\frac{1}{2}$ S． S．E．by E．妾 E． S．E．$\frac{3}{2}$ E． S．S．E．音 E ． S．by E．$\frac{3}{3} \mathrm{E}$ ． S．$\frac{1}{\mathrm{E}} \mathrm{E}$ ． S．by W．${ }^{3}$ W． S．S．W． S． S．W．${ }^{\frac{2}{4}}$ S． S．W．by W．${ }^{3}$ W． W．by S．$\frac{1}{8}$ S． WEST． W．by N ． W．N．W． N．W．${ }^{3}$ W． N．W．$\frac{1}{8}$ N． N．N．W．${ }^{\text {N }}$ N．be W．				NORTH． N．by E． N．N．E． N．E，by N． N．E． N．E．by E． E．N．E． E，by N． EAST． E．by S ． E．S．E． S．E．by E． S．E． S．E．by S． S．S．E． S．by E． SOUTH． S．by W． S．S．W． S．W．by S． S．W． S．W．by W． W．S．W． W．by S． WEST． W．by N． W．N．W． \dot{N} ．W．by W． N．W． N．W．by N． N．N．W． N．by W． NORTH．	N． N． $\frac{1}{8}$ Ey E． N．by E．$\frac{7}{8}$ E． N．E．$\frac{1}{2}$ N． N．E．by E．$\frac{1}{2}$ E． E．by N． E．$\frac{1}{2} \mathrm{~N}$ ． E．by S．${ }^{3} \mathrm{~S}$ ． S．E．by E．$\frac{3}{8}$ E． S．E． 4 E． S．E．$\frac{5}{8}$ S． S．E．bly S．$\frac{1}{2}$ S． S．by E．$\frac{3}{8} \mathrm{E}$ ． S．골 E ． S．量 W． S．by W． 4 W． S．W．by S．$\frac{3}{8} \mathrm{~S}$ ． S．W． S ． W．S．W．$\frac{1}{8}$ S． W．by S． W．$\frac{1}{8} \mathrm{~N}$ ． W．by N．$\frac{1}{4}$ N． N．W．by W．$\frac{1}{2}$ W． N．W． N．W． $\frac{1}{2}$ W． N．W．by N．$\frac{3}{8}$ N． N．by W．$\frac{3}{6}$ W．			-1° 20^{\prime} +0 10 +1 30 +3 0 +5 50 +4 20 +4 20 +3 0 +4 20 +4 50 +4 20 +4 20 +3 0 +4 20 +3 0 +1 30 +1 30 +0 10 -1 20 -2 40 -5 30 -5 30 -5 30 -2 10 -2 40 -1 20
A deviation of the North Point of the Compass to the East is designated by the sign + ； a deviation to the West by the sign－． deviation are obtained： From the observations given above，the following values of the coefficients of the $\begin{array}{cc} \mathrm{A}=+3^{\circ} & 23^{\prime} .8 \\ \mathrm{D} & =+2^{\circ} \mathrm{B}_{11^{\prime} .0}+3^{\circ} \quad 4^{8^{\prime} .0} \quad \mathrm{E}=-0^{\circ} \quad \mathrm{C}=-0^{\circ} \quad 0^{\prime} .4 \end{array}$ A deviation of the North Point of the Compass to the Eas a deviation to the West by the sign－． From the observations given above，the following val deviation are obtained： $A=+1^{\circ} \underset{D=+2^{\circ}}{6_{11^{\prime}} \cdot 2}+3^{\circ} \stackrel{49^{\prime} \cdot 5}{E}=-0^{\circ}$										

Observations for Determining the Deviations of the Forifard Ritchie Compass on the U．S．Iron Clad Monadnock．

Valparaiso，April 4， 1866. Correction for Object $=+0^{\circ} \%$ Correction for Lubber Line $=0$.					Callao，April 29， 1866. Correction for Object $=+0^{\circ} 6^{\prime}$ ．Correction for Lubher Line $=0$				
Assumed Magnetic Direction of Ship＇s Head．	Ship＇s Head by Compass．	Deviation of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．	Assumed Magnetic Direction of Ship＇s Ilead．	Ship＇s Head by Compass．	Deviatlon of Compass in Points．	Deviation of Compass in Degrees．	Corrected Deviation of Compass．
NORTH． N．by E． N．N．E． N．E．by N． N，E． N．E．by E． E．N．E． E．by N． EAST． E．by S． E．S．E． S．E．by E． S．E． S．E．by S． S．S．E． S．by E． SOUTH． S．by W． S．S．W． S．W．by S． S．W． S．W．by W． W．S．W． W，by S ． WEST． W．by N． W．N．W． N．W．by W． N．W． N．W．by N． N．N．W． N．by W． NORTH．	N． N． W． W． N．by E．音E． N．N．E．$\frac{1}{3}$ E． N．E． N． N． ． E． E．N．E．A N． E．by N．$\frac{1}{4} \mathrm{~N}$ ． E．$\frac{1}{\text { E．}}$ E．by S．$\frac{3}{8}$ S． S．E．by E．$\frac{1}{2}$ E． S．E．$\frac{1}{4}$ E． S．S．E． S．by E．$\frac{1}{2}$ E． S．$\frac{1}{2} \mathbf{E}$ ． S．by W．$\frac{1}{2}$ W． S．W．by $\stackrel{2}{5} . \frac{5}{8} \mathrm{~S}$ ． S．W． S．W． W． W．S．iv．寻 S ． W．by $\mathrm{S} . \frac{1}{4} \mathrm{~S}$ ． W． 1 S． －W．$\frac{8}{8} \mathrm{~N}$ N．W．$\frac{7}{8}$ W． N．W． N．W．by N． N．N．W． N．by W． $\frac{1}{8}$ W．	$\begin{aligned} & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & \hline \end{aligned}$			NORTH． N．by E． N．N．E． N．E．by N． N．E． N．E．by E． E．N．E． E．by N． EAST． E．by S． E．S．E． S．E．by E． S．E． S．E．by S． S．S．E． S．by E． SOUTH． S．by W． S．S．W． S．W．by S． S．W． S．W．by W． W．S．IW． W．by s． WEST． W．by N ． W．N．W． N．W．by W． N．W． N．W．by N． N．N．W． N．by W． NORTH．	NOR＇TH． N．$\frac{7}{8} E$ ． N．by E．${ }^{1} \mathrm{E}$ ． N．E．by N．$\frac{3}{8}$ N． N．E．$\frac{1}{2}$ N． E．N．E．$\frac{1}{2}$ N． E．by N．$\frac{1}{2} \mathrm{~N}$ ． E．量 N． E．$\frac{8}{8} S$ ． E．by S．$\frac{8}{4}$ S． S．E．by E．$\frac{1}{4}$ E． S．E． 1 E． S．S． $\mathrm{E}+\mathrm{E}$ ． S．by E．$\frac{3}{8} \mathrm{E}$ ． S．$\frac{1}{2} \mathrm{E}$ ． S．$\frac{1}{2}$ W． S．by W．$\frac{8}{8} \mathrm{~W}$ ． S．W．by S．$\frac{1}{2}$ S． S．W．${ }_{\text {S．}}^{2}$ S． S ． W．S．W．$\frac{1}{4}$ S． W．by S．$\frac{1}{8} \mathrm{~S}$ ． WEST． W．by N．$\frac{1}{8} \mathrm{~N}$ ． W．N．W．${ }^{4} \mathrm{~N}$ ． N．W．$\frac{1}{4} \mathrm{~N}$ ． N．W．by N．$\frac{1}{8}$ N． N．by W． N．by W．			$\begin{array}{lc} +0^{\circ} & 10 \\ +1 & 30 \\ +3 & 0 \\ +4 & 20 \\ +5 & 40 \\ +5 & 40 \\ +5 & 40 \\ +5 & 40 \\ +4 & 20 \\ +4 & 20 \\ +3 & 0 \\ +3 & 0 \\ +3 & 0 \\ +3 & 0 \\ +3 & 0 \\ +4 & 20 \\ +5 & 40 \\ +5 & 40 \\ +4 & 20 \\ +5 & 40 \\ +5 & 40 \\ +4 & 20 \\ +3 & 0 \\ +1 & 30 \\ +0 & 10 \\ -1 & 20 \\ -2 & 40 \\ \hline & 40 \\ -2 & 40 \\ -1 & 20 \\ \hline 1 & 20 \\ +0 & 10 \\ +0 & 10 \end{array}$
A deviation of the North Point of the Compass to the East is designated by the sign＋； a deviation to the West by the sign－ From the observations given above，the following values of the coefficients of the deviation are obtained： $\begin{array}{ccc} \mathrm{A}=+3^{\circ} & 33^{\prime} .4 & \mathrm{~B}=+1^{\circ} \\ \mathrm{D}=+2^{\circ} & 7^{\prime} .8 & \mathrm{E}=0^{\prime} .2 \\ =+0^{\circ} & \mathrm{C}=-1^{\circ} & 1^{\circ} .2 \end{array}$					A deviation of the North Point of the Compass to the East is designated by the sign + ； a deviation to the West by the sign－． From the observations given above，the following values of the coefficients of the deviation are obtained： $\begin{array}{lll} \mathrm{A}=+2^{\circ} & 37^{\prime} .1 & \mathrm{~B}=+1^{\circ} \\ \mathrm{D}=+2^{\circ} & \begin{array}{l} 2^{\prime} .8 \\ 3^{\prime} \cdot 5 \end{array} & \begin{array}{l} \mathrm{E}=0^{\circ}=-1^{\circ} 58^{\prime} .0 \\ 12^{\prime} .0 \end{array} \end{array}$				

Observations for Determining the Deviations of the Forward Ritchie Compass on the U. S. Iron Clad Monadnock.

Acapulco, June 1, 1866. Correction for Object $=+0^{\circ} \quad 6^{\prime}$. Correction for Lubber Line $=0$.				
Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Conpass.
NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S. E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTII. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S . wEST. W. by N. W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	NORTH. N. $\frac{7}{8}$ E. N. by E. $\frac{7}{8}$ E. N. E. by N. $\frac{1}{4}$ N. N. E. $\frac{1}{4} \mathrm{~N}$. E. N. E. $\frac{1}{1}$ N. E. $\frac{1}{8} \mathrm{~N}$. E. S. E. S. E. ly E. $\frac{1}{8}$ E. S. E. $\frac{1}{8}$ E. S. E. ${ }_{4}^{3}$ S. S. S. E. $\frac{1}{4}$ E. S. hy E. $\frac{1}{4}$ E. S. $\frac{3}{8} \mathrm{E}$. S. $\frac{1}{2}$ W, S. by W. $\frac{1}{2}$ W. S. W. by S. $\frac{1}{2} \mathrm{~S}$. S. W. S. W. $\frac{1}{8}$ S. W. W. S. W. $\frac{1}{4}$ S. W. by $\mathrm{S} . \frac{1}{8} \mathrm{~S}$. W. $\frac{1}{8} \mathrm{~S}$. W. N. W. ${ }^{\frac{1}{8}} \mathrm{~N}$. $\mathrm{N} . \mathrm{W}$. $\mathrm{N} . \mathrm{W} .1 \mathrm{~V}$. N. N. W. l,y N. $\frac{1}{8}$ N. N. by W. N. $\frac{7}{8}$ W.	P + + + + +		$\begin{array}{lc} +0^{\circ} & 10 \\ +1 & 30 \\ +1 & 30 \\ +3 & 0 \\ +3 & 0 \\ +4 & 20 \\ +3 & 0 \\ +3 & 0 \\ +1 & 30 \\ +1 & 30 \\ +0 & 10 \\ +1 & 30 \\ +1 & 30 \\ +3 & 0 \\ +3 & 0 \\ +3 & 0 \\ +4 & 20 \\ +5 & 40 \\ +5 & 40 \\ +5 & 40 \\ +5 & 40 \\ +4 & 20 \\ +3 & 0 \\ +1 & 30 \\ +1 & 30 \\ +0 & 10 \\ -1 & 20 \\ -2 & 40 \\ -2 & 40 \\ -1 & 20 \\ -2 & 40 \\ \hline 1 & 20 \\ +0 & 10 \end{array}$

A deviation of the North Point of the Compass to the Cast is designated hy the sign + ; From the observations given above, the following values of the coefficients of the

Observations for Determining the Deviations of the Forivard Ritchie Compass on the U. S. Iron Clad Monadnock.

Magdalena Bay, June 9, 1866. Correction for Object $=-0^{\circ} 41^{\prime}$. Correction for Lubber Line $=0$.					San Francisco, June 23, 1866. Correction for Object $=-0^{\circ} 45^{\prime}$. Correction for Lubber Line $=0$.				
Assumed Magnetic Direction of Ship's Ifead.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTII. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S . E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. .W. S. W. by W. W. S. W. W, by S . WES'I. W. by N. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	N. 1 E. N. by E. $\frac{1}{8}$ E. S. W. $\frac{7}{8}$ S. S. W. I W. W. S. W. S. $\frac{5}{8} \mathrm{~S}$. W. by S. $\frac{1}{2} \mathrm{~S}$. W. $\frac{2}{8} \mathrm{~S}$. W. by N . W. N. W. $\frac{1}{\text { N }}$ N. W. N. W. $\frac{3}{4}$ W. N. N . W. by $\mathrm{N} . \frac{3}{8} \mathrm{~N}$. N. by W. $\frac{1}{2}$ W. N. $\frac{3}{4}$ W.	二 1 		$\begin{array}{ll} -3^{\circ} & 30^{\prime} \\ -2^{2} & 0 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ +9 & 0 \\ +7 & 40 \\ +6 & 20 \\ +4 & 50 \\ +3 & 20 \\ -0 & 50 \\ -3 & 30 \\ =3 & 30 \\ -3 & 30 \\ =5 & 0 \\ -6 & 10 \\ \hline & 30 \\ -3 & 30 \end{array}$	NORTH. N. by E. N. N. E. N. E. by N. N. E. N. E. by E. E. N. E. E. by N. EAST. E. by S. E. S. E. S. E. by E. S. E. S. E. by S. S. S. E. S. by E. SOUTH. S. by W. S. S. W. S. W. by S. S. W. S. W. by W. W. S. W. W. by S. WEST. W. by N. W. N. W. N. W. by W. N. W. N. W. by N. N. N. W. N. by W. NORTH.	N. $\frac{1}{2}$ E. N. by E. $\frac{8}{8} \mathrm{E}$. N. N. E. + E. N. E. ${ }^{3}$ N. N. E. by E. E. N. E. $\begin{aligned} & \text { N. } \\ & \text { E. by N. } \\ & \text { N. } \\ & \text { N. }\end{aligned}$ EAST. E. $\frac{7}{8} \mathrm{~S}$. E. by S. ${ }_{1} \mathrm{~S}$. S. E. by E. $\frac{3}{8}$ E. S. E. S. E. ${ }^{\text {S }}$ S. S. S. E. $\frac{1}{\text { E. }} \mathrm{E}$. S. ${ }^{3} \mathrm{E}$. S. 1 W . S. by W. $\frac{1}{4}$ W. S. W. by S. $\frac{7}{8} \mathrm{~S}$. S. W. ${ }^{3} \mathrm{~S}$ S. W. S. W. $\frac{6}{8}$ S W. by S. $\frac{1}{2} \mathrm{~S}$. W. $\frac{1}{8} \mathrm{~S}$. W. by N. $\frac{1}{8} \mathrm{~N}$. N. W. 3 W. N. W. $\frac{1}{8} \mathrm{~N}$. N. UV. by N. $\frac{1}{3}$ N. N. by W. $\frac{1}{2}$ W. N. $\frac{1}{8}$ W.		-	

A deviation of the North Point of the Compass to the East is designated by the sign +; A deviation of the North Point of the Compass to the East is designated by the sign + ; From the observations given above, the following values of the coefficients of the a deviation to the West by the sign - From the observations given above, the following values of the coefficients of the $\begin{array}{rlll}\text { deviation are obtained: } \\ \mathrm{A}=+1^{\circ} & 3^{\prime} .8 \\ \mathrm{D}=+\mathrm{I}^{\circ} & \mathrm{B}=-0^{\circ} \quad 16^{\prime} .2 & \mathrm{C}=-6^{\circ} .5 & \mathrm{E}=-0^{\circ} \quad 33^{\prime} \cdot 5\end{array}$

The obscrrations made at stations where the deviations liad been determined on all of the thirty-two points were first discussed. For that purpose the values of the coefficients $A_{1}, B_{1}, C_{1}, D_{1}, E_{1}$, for each compass, at cach station, were computed from the deviations on the true magnetic points by means of the equations given on pages 126 to 128 . A specimen of the form employed in making these computations is appended. It sufficiently explains itself.

Admiralty Standard Compass. Computation of Coefficients B_{1} and C_{1}, from Deviations observed on 32 Points, on the U.S. Iron Clad Monadnock.

Bahia, December 30, 1865.

N. B.-Easterly deviations are to be entered in this table with the sign + ; Westerly deviations with the sign - .

Computation of Coefficients A_{1}, D_{1}, E_{1}, from Deviations observed on 32 Points.

$$
\text { Nоте. }-S_{1}=.195 . \quad S_{2}=.383 . \quad S_{3}=.556 . \quad S_{4}=.707 . \quad S_{8}=.831 . \quad S_{6}=.924 . \quad S_{1}=.981
$$

The resulting values of the cocfficients for each compass, at each station, are given in the following tables:

Coefficients of the Deviations of the Admiralty Standard Compass.

STATION.	DATE.	A_{1}	B_{1}	C_{1}	D_{1}	E_{1}
Hampton Roads	November 1, 1865	+ $\mathrm{s}^{\circ} 37^{\prime} .4$	$+9^{\circ} 4^{\prime} .6$	- $0^{\circ} 33^{\prime} .1$	$+0^{\circ} 29^{\prime} .2$	- $0^{\circ} \quad 7^{\prime} \cdot 5$
St. Thomas	November 18, 1865	+o 14.6	+ 545.5	+ 033.5	+o 3.2	-0 48.2
Bahia	December 30, 1865	+ 140.2	+ 338.5	+o 0.4	+o 07.8	- 0.0
Monte Vidco	January 24, 1866	+ 132.8	+ 34.8	+o 5.8	+ 119.5	+o 14.5
Sandy Point	Fehruary IO, 1866	+o 35.9	+120.6	-0 40.6	+o 53.5	+o 1.5
Valuaraiso.	April 4,1866	+o 35.6	+120.2	-0 6.9	+o 54.2	-o 10.2
Callia .	April 29,1866	+o 9.1	+221.1	-0 1.8	+o 52.5	+o. 5.8
Panama	May 20, 1866	+o ${ }^{1} 1.6$	+ 32.1	+o 1.9	+o 55.0	+o8.0
Acapulco	June 1,1866	-o 36.9	+245.4	+o 5.5	+o 56.8.	+o 8.0
San Francisco.	June 23,1866	-0 39.6	+ 453.2	-1 15.4	+o51.2	+o. 5.8

Coefficients of the Deviations of the After Binnacle Compass.

Coefficients of the Deviations of the After Ritchie Compass.

STATION.	DATE.	A_{1}	B_{1}	C_{1}	D_{1}	E_{1}
Hampton Roads	November 1, 1865	$+7^{\circ} 40^{\prime} .0$	+ $11^{\circ} 26^{\prime} \cdot 5$	$-1^{0} 44^{\prime} \cdot 1$	$+0^{\circ} 15^{\prime} .5$	- $0^{\circ} 54^{\prime} .5$
St. Thomas	November 18, 1865 Necember 30, 1865	+ +314.4 $+8 \quad 47.1$	$\begin{array}{r}\text { a } \\ + \\ +\quad 8.26 .9 \\ \hline\end{array}$	+	+154.2 +15	-0 37.2
Mlonte Video	December 30,1865 January 24, 2466	+847.1	+ 655.6	-0 57.2	+ I 59.7	+o 14.2
Sandy Point	February 10, 1866	+818.4	+ ${ }^{+} \times 3.2$	$-3^{. . .1 .} 25.6$	+1 14.5	
Valparaiso.	April 4,1866	+ 421.9	+ +39.1	+		+0 ${ }^{58.5}$
Callao .	April 29,1866	+ 419.4	+ ${ }^{1} 50.1$	+	+121.0 +130.5	$\begin{array}{rl}+0 & 7.5 \\ +0 \\ +0 & 52.0\end{array}$
Fanama.	May 20, 1866	+ 520.6	+ 4 3.1	-0 10.2	+1 17.0	-1 33.0
Acapulco ${ }_{\text {San }}$ Francisco.		+40.6	+ 429.1	+1 12.8	+1 12.2	+o 47.0
San Francisco.	June 23, 1866	+ 411.6	+ 646.2	- 131.4	+ 28.5	+0 21.2

Coefficients of the Deviations of the After Azimuth Compass.

STATION.	DATE.	A_{1}	B	C_{1}	D_{1}	E_{1}
Hampton Roads .	Novernber 1, 1865	- $1^{\circ} \quad 5^{\prime} .0$	$-4^{\circ} 53^{\prime} .0$	- $0^{\circ} 9^{\prime} \cdot 1$	$+5^{\circ} 35^{\prime} .2$	$+0^{\circ} 17^{\prime} .0$
St. Thomas	November 18, 1865	- 117.5	-3 30.9	+120.0	+649.2	+o 12.2
Bahia Nonte Video.	December 30, 1865	$\begin{array}{lll}-3 & 36.9\end{array}$	-4 28.6	-o 19.5	+ 722.0	- 15.5
Monte Vicleo Sandy Point		$-0^{\text {…... }} 5$	-2 27.8			
Valparaiso.	April 4, 1866	-2 16.2	- 2857.8	+0 47.2	$\begin{array}{r}\text { + } \\ + \\ +50.2 \\ \hline\end{array}$	-025.5
Callao .	April 29,1866	$-3 \quad 56.2$	-2 20.6	-0 49.6	+ $5 \cdot 6.5$	+ +035.5 $+0 \quad 35.7$
Fanama.	May 20, 1866	-2 6.9	-3 47.2	+144.6	+6 21.2	-0 34.0
${ }_{\text {Acapulco }}$ -	June 1, 1866	$\begin{array}{ll}-3 & 11.2\end{array}$	- $\begin{array}{ll} & 25.8\end{array}$	-0 0.8	+ 5 54.2	+ ${ }^{\text {a }}$ 23.8
San Francisco.	June 23, 1866			

Coefficients of the Deviations of the Forward Alidade Compass.

STATION.	DATE.	A_{1}	B_{1}	C_{1}	I_{1}	E_{1}
Hampton Roads	November 1, 1865	$+2^{\circ} 8^{\prime} .1$	- $2^{\circ} 28^{\prime} .4$	- $1^{\circ} 5^{2} .0$	$+1^{0} 4^{\prime} .2$	$0^{\circ} 0.0$
St. Thomas	November 18, 1865	+o 50.9	- 35.1	-o 46.2	+115.7	+0 20.5
Bahia . ${ }^{\text {a }}$	December 30, 1865	+29.4	-0 6.0	-0 34.1	+115.0	+ 014.5
Monte Video	January 24, 1866	+27.1	+0 57.2	- 15.0	+ 123.0	-0 9.8
Sandy Point	February 10, 1866	+225.6	+os8.5	- I 54.4	+ I 47.0	- 20.2
Valparaiso.	April 4, 1866	+155.2	+o 30.0	-0 53.9	+ 14.2	-0 5.2
Callao.	April 29, 1866		+ 040.9		+ 129.0	-0 6.8
Panama.	May 20, 1866	+2.15.2	+o 1.1	-1 22.1	+121.0	-0 6.8
Acapulco .	June 1, 1866	+18.1	- 128.4	-0 33.1	+152.8	+0 10.2
San Francisco.	June 23, 1866	+0 40.6	154.2	-2 25.1	+o58.0	+0 21.5

Coefficients of the Deviations of the Forward Binnacle Compass.

STATION.	DATE.	A_{1}	B_{1}	C_{1}	D_{1}	E_{1}
IIampton Roads	November I, 1865	$+0^{\circ} 49^{\prime} .0$	- $5^{\circ} 40^{\prime} .8$	- $2^{\circ} 33^{\prime} .4$	$+2^{\circ} 17^{\prime} .7$	+ 0 \% $8^{\prime} .2$
St. Thomas	November 18, 1865	-0 44.4	- 156.2	-0 12.4	+159.5	-0 7.2
Thahia	December 30, 1865	+o57.9	+o 26.5	-o 33.8	+26.5	-0 11.2
Monte Video	January 24, 1866	+ 017.8	+ 255.4	-0 41.1	+ 1445.2	-0 2.2
Sandy Point	February 10, 1866	- I 16.5	+ 516.9	-2 11.0	+20.5	03.2
Valparaiso.	April 4,1866	-o 146	+ I 47.9	-o 46.1	+ 133.7	-0 9.0
Callao -	April 29,1866	- 13.4	$\underline{1} 10.2$	-2 26.8	+28.2	+0 24.7
Panama.	May 20, I866	-231.9	$\begin{array}{ll}1 & 1.5 \\ 2 & 2.4\end{array}$	-133.0	+26.5 +23	$\begin{array}{rl} -0 & 23.5 \\ +0 & 10.7 \end{array}$
Acapulco	June 1, 1866	-2 31.2	-2 2.4	$\begin{array}{ll} -1 & 41.1 \\ -3 & 34.9 \end{array}$	+239.2 +1356.5	$\begin{array}{r} +010.7 \\ +030.2 \end{array}$
San Francisco.	June 23,1866	-3 9.0	-4 41.1	-3 34.9	+ 156.5	$+0 \quad 30.2$

Coefficients of tie Deviations of the Forward Ritchie Compass.

STATION.		DA		A_{1}	B_{1}	C_{1}	D_{1}	E_{1}
IIamplon Roads		November	1, 1865	$+4^{\circ}{ }^{2 \prime}{ }^{\prime} 5$	$+1^{\circ} 19^{\prime} .2$	$-3^{\circ} 37^{\prime} .2$	$+2^{\circ} 17^{\prime} .2$	+ $0^{\circ} 27^{\prime} .5$
St. Thomas -		November	18,1865					-0 25.5
B ${ }^{\text {hia }}$		December	30, 1865	+ 26.2	+ 329.1	-1 33.9	+ 235.7	-0 0.5
Monte Video		January	24, 1866	+ 323.8	+348.0	- 0.4	+211.0	-0 28.5
Sandy Point		February	10, 1866	+146.2	+349.5	- 244.2	+ 211.2	-0 10.0
Valparaiso.		April	4, 1866	+ 333.4	+120.2	- 129.0	+27.8	+0 31.2
Callao		April	29, 1866	+ 237.1	+ 152.8	-158.0	+ 230.5	+o 12.0
Panama.		May	20, 1866	+134.0	+o12.2	-1 153.8	+210.8	-0 14.0
${ }_{\text {Acapulco }}$ San Francisco.		June	1, 1866	+ +152.8 +13	+ 038.2 +016.2	$\begin{array}{ll}-2 & 11.8 \\ -6 & 41.6\end{array}$	+2 24.2 +148.5	+ +0.2 0 33.5
San Francisco.			23, IS66	+13.8	-0 16.2	-6 41.6	+148.5	-0 33.5

In the case of the Admiralty Standard Compass, for some not very evident reason, the variations in the value of the coefficient. A_{1} are greater than might have been expected. The After Binnacle, Forward Alidade, and Forward Binnacle Compasses were frequently removed from their places, and the fittings were not sufficiently exact to give any certainty of replacing then with their lubber lines always precisely in the same position. This source of error sufficiently accounts for the variations in the values of the $A_{1} s$ belonging to them. 'The Forward and After Ritchic Compasses were firmly fixed in their places, and were not removed during the cruise, except at Valparaiso; but the arrangements for reading off their cards were such that an improper position of the eye of the observer might easily introduce a large parallax, which accounts for the changes in the values of the A_{1} s belonging to them. 'The After Azimuth Compass was always taken down after each swing, and as there was, no fixed mark by which to adjust its lubber line, the changes in the value of its A_{1} are not surprising.

It now becomes necessary to determine the probable errors of the values of the coefficients which have just been given. 'To do this for any compass, at any particular station, the value of δ at each of the thirty-two points must be computed from the coefficients for that station. Comparing the values thus found with the corrected observed values, a series of thirty-two residuals are obtained, from which the probable ciror of δ for that station is deduced by means of the formula

$$
r=0.6745 \sqrt{\frac{[v v]}{m-\mu}}
$$

where r is the probable error of a single observed value of $\delta ;[v v]$ the sum of the squares of the thirty-two residuals; m the number of the residuals, in this case thirty-two; and μ the number of the coefficients, in the present instance five. Then, letting $p_{A}, p_{B}, p_{C}, p_{D}, p_{E}$, represent respectively the weights, and $r_{A}, r_{B}, r_{C}, r_{D}, r_{E}$, the probable errors, of the values of $A_{1}, B_{1}, C_{1}, D_{1}, E_{1}$, when determined from a set of deviations observed on each of the thirty-two true magnetic points; we have

$$
r_{A}=\frac{r}{\sqrt{p_{A}}} \quad r_{B}=\frac{r}{\sqrt{p_{B}}}
$$

From the normal equations on page 126, we also have,

$$
\begin{array}{ll}
p_{A}=32 & p_{D}=16 \\
p_{B}=16 & p_{E}=16 \\
p_{C}=16 &
\end{array}
$$

It is therefore evident that the probable errors of B_{1}, C_{1}, D_{1}, and E_{1}, will all be equal to each other.

The probable error of a single observed value of δ has been computed in this way, for each compass, at three stations; namely, Bahia, Sandy Point, and l'anama, and the results are given in the following table. The column headed "mean value of r " was obtained by adding together, for each compass, the sum of the squares of the residuals at Bahia, Sandy Point, and Panama; dividing the result by three; and then computing the value of r from the mean value of $[v v]$ thus found. The column headed " $\frac{r}{\sqrt{32}}$ " gives the probable error of A_{1}; and the columu headed " $\frac{r}{\sqrt{16}}$ " gives the probable error of B_{1}, C_{3}, D_{1}, and E_{1}, for each compass, when these coefficients have been computed from a set of deviations observed on thirty-two points.

Compass.	Value of r.			Mean value of r.	$\frac{r}{\sqrt{32}}$	$\frac{r}{\sqrt{16}}$
	Bahia.	Sandy Point.	Panama.			
Admiralty Standard	$\pm 9^{\prime} .8$	$\pm 12^{\prime} .2$	$\pm 1 \mathrm{I}^{\prime} \cdot 3$	$\pm 1 \mathrm{I}^{\prime} .1$	$\pm \quad \mathbf{2}^{\prime} .0$	$\pm 2^{\prime} .8$
After Binnacle .	± 25.8	± 20.1	± 26.2	± 24.2	± 4.3	± 6.1
After Ritchie	± 30.6	± 56.6	± 38.8	± 43.4	± 7.7	± 10.8
After Azimuth	± 39.3	± 51.1	± 32.6	± 41.7	± 7.4	± 10.4
Forward Alidade	± 19.0	± 24.5	± 23.6	± 22.5	± 4.0	± 5.6
Forward Binnacle.	± 40.2	± 31.2	± 25.3	± 32.8	± 5.8	± 8.2
Forward Ritchie	± 59.7	± 30.2	± 37.8	± 44.4	± 7.8	± 11.1

As an incidental result, this table shows that for ordinary steering compasses (such as the Forward Alidade, Forward Binnacle, and After Binnacle) when read to the nearest eighth of a point, the probable accidental error of a single reading is about half a degree; for Ritchie Monitor Compasses (such as the Forward and After Ritchie) when read to the nearest eighth of a point, the probable accidental error of a single reading is about three-quarters of a degree; and for Admiralty Standard Compasses, read to the nearest ten minutes, the probable accidental error of a single reading is about eleven minutes.

From the mathematical theory of the deviations of the compass, given in a preceding part of this section, we have

$$
\mathfrak{F}=B_{1}-A_{1} C_{1}
$$

and also

$$
\mathfrak{B}=\frac{c}{\lambda} \tan 0+\frac{P}{\lambda} \times \frac{1}{H}
$$

Hence

$$
0=-B_{1}+A_{1} C_{1}+\frac{c}{\lambda} \tan \theta+\frac{P}{\lambda} \times \frac{1}{H}
$$

But as P is liable to undergo a slow change, we introduce a term depending upon the time, and the equation becomes

$$
\begin{equation*}
0=-B_{1}+A_{1} C_{1}+\frac{c}{\lambda} \tan \theta+\frac{P}{\lambda} \times \frac{1}{H}+\frac{\Delta P}{\lambda} \times \frac{t}{H} \tag{17}
\end{equation*}
$$

where ΔP is the change of the value of P in one day, and t is the elapsed time in days, counted from November 1st, 1865.

We have further

$$
\Subset=C_{1}+A_{1} B_{1}
$$

and also

$$
\Theta=\frac{f}{\lambda} \tan 0+\frac{Q}{\lambda} \times \frac{1}{H}
$$

Hence

$$
0=-C_{1}-A_{1} B_{1}+\frac{f}{\lambda} \tan \theta+\frac{Q}{\lambda} \times \frac{1}{H}
$$

But as Q is liable to undergo a slow change, we introduce a term depending upon the time, in the same manner as above, and the equation becomes

$$
\begin{equation*}
0=-C_{1}-A_{1} B_{1}+\frac{f}{\lambda} \tan \theta+\frac{Q}{\lambda} \times \frac{1}{H}+\frac{\Delta Q}{\lambda} \times \frac{t}{H} \tag{18}
\end{equation*}
$$

Each observed value of B_{1} and C_{1} gives two equations of condition; one of the same form as (17), the other of the same form as (18); and from all the equations of condition thus obtained for any compass, the values of $A_{1}, \frac{c}{\lambda}, \frac{P}{\lambda}, \frac{\Delta P}{\lambda}, \frac{f}{\lambda}, \frac{Q}{\lambda}$, and $\frac{\Delta Q}{\lambda}$, for that compass, have been computed by the method of least squares.

The value of A_{1} thus found we will designate as the "true A_{1} " in order to distinguish it from the "apparent A_{1} " obtained directly from the corrected observed values of the deviations. The value of the true A_{1} depends only upon the value of the constants a, b, d, and e, in equations (1) and (2); but the apparent A_{1} is made up of the true A_{1}, together with any errors that may exist in the placing of the lubber line of the compass, or in the determination of the true magnetic bearing of the distant object used as an azimuth mark in swinging the ship.

The equations of condition, formed in the manner just explained; the normal equations derived from them by the method of least squares; and the resulting values of the constants, $A_{1}, \frac{c}{\lambda}, \frac{P}{\lambda}, \frac{\Delta P}{\lambda}, \frac{f}{\lambda}, \frac{Q}{\lambda}$, and $\frac{\Delta Q}{\lambda}$, for each compass are as follows: the values of B_{1} and C_{1} being expressed in parts of radius.

Admiralty Standard Compass.

Equations of Condition.

Absolute Terms.	A_{1}	$\frac{c}{\lambda}$	$\frac{P}{\lambda}$	$\frac{\Delta P}{\lambda}$	$\frac{f}{\lambda}$	$\frac{Q}{\lambda}$	ΔQ
$0=-0.158$	-0.010	+ 2.694	+ 0.212				
$0=-0.100$	+0.010	+1.176	+0.148	+ 2.520			
$0=-0.064$	0.000	+ 0.077	+0.161	+ 9.516			
$0=-0.054$	+0.002	- 0.603	$+0.166$	+13.933			
$0=-0.023$	-0.012	- 1.426	+ 0.164	+16.522			
$0=-0.023$	-0.002	-0.710	+0.158	+ 24.375			
$0=-0.04 \mathrm{I}$	-0.001	-0.113	+ 0.143	+ 25.608			
$0=-0.053$	+0.001	+ 0.623	+ 0.132	+ 26.316			
$0=-0.048$	+0.002	$+\quad 0.836$	+0.129 $+\quad 0.177$	+ 27.440			
$0=-0.085$	-0.022	+ 1.910	+0.177	+41.519			
$0=+0.010$	-0.158						
$0=-0.010$	-0.100				+1.176 $+\quad 0.077$	+0.148	
$0=0.000$	-0.064				+ 0.077	a $+\quad 0.161$ $+\quad 0.166$	+9.516
$0=-0.002$ $0=+0.012$	-0.054				- 0.603	+0.166 $+\quad 0.164$	$+13.933$
$\begin{aligned} & 0=+0.012 \\ & 0=+0.002 \end{aligned}$	-0.023 -0.023				- 1.426	+0.164 $+\quad 0.158$	$\begin{aligned} & +16.522 \\ & +24.375 \end{aligned}$
$0=+0.001$	-0.041				- 0.113	+0.104 $+\quad 0.143$	+2.35 $+\quad 25.608$
$0=-0.001$	-0.053				+0.623	+0.132	+26.316
$0=-0.002$	-0.048				+ 0.836	+0.129	+ 27.440
$0=+0.022$	-0.085				- 1.910	+0.177	+ 41.519

Normal Equations.

$0=0.000$	+0.058					
$0=-0.699$	-0.037	+16.294				
$0=-0.109$	-0.006	+0.826	+0.258			
$0=-9.869$	-1.057	+70.177	+28.825	+4983.3		
$0=+0.037$	-0.699			+16.294		
$0=+0.006$	-0.109			+0.826	+0.258	
$0=+1.057$	-9.869			+70.177	+28.825	+4983.3

Hence

$$
\begin{aligned}
& A_{1}=0.000 \\
& \frac{c}{\lambda}=+0.0240
\end{aligned}
$$

$$
\frac{P}{\lambda}=+0.460
$$

$$
\frac{f}{\lambda}=-0.0016
$$

$$
\frac{\Delta P}{\lambda}=+0.00102 \quad \frac{Q}{\lambda}=+0.006
$$

$$
\frac{\Delta Q}{\lambda}=-0.00023
$$

After Binnacle Compass.

Equations of Condition.

Absolute Terms.	A_{1}	$\frac{c}{\lambda}$	$\frac{P}{\lambda}$	$\frac{\Delta P}{\lambda}$	$\frac{f}{\lambda}$	$\frac{Q}{\lambda}$	$\triangle \frac{\square}{\lambda}$
$0=-0.127$	- 0.022	+2.694	+0.212				
$0=-0.100$	-0.002	+0.077	$+0.161$	+ 9.516			
$0=-0.096$	+0.012	-0.603	$+0.166$	+ 13.933			
$0=-0.100$	-0.004	-1.426	+0.164	+16.522			
$0=-0.070$	+0.002	-0.710	+0.158	+ 24.375			
$0=-0.073$	-0.001	-0.113	$+0.143$	+ 25.608			
$0=-0.058$	+0.006	$+0.623$	+0.132	+ 26.316			
$0=-0.054$	-0.005	+0.836	+0.129	+ 27.440			
$0=-0.061$	-0.039	+1.910	+0.177	+ 41.519			
$0=+0.022$	-0.127				+2.694 +0.077	+0.212 +0.161	
$0=+0.002$	-0.100				+ 0.077	+0.161 +0.166	+ 9.516 $+\quad 13.933$
$0=-0.012$	-0.096				- 0.603	+ 0.166 +0.164	+13.933
$0=+0.004$	-0.100				- 1.426	+0.164 +0.158	+16.522
$0=-0.002$	-0.070				-0.710	+o.158	+ 24.375
$0=f$-0.001	-0.073				-0.113	+0.143	+ 25608
$0=-0.006$	-0.058				+0.623	$\underline{+0.132}$	+ 26.316
$0=+0.005$	-0.054				+ 0.836	+0.129	+27.440
$0=+0.039$	-0.061				910	0.177	+41.519

After Binnacle Compass．

Normal Equations．

Absolute Terms．	A_{1}	$\frac{c}{\lambda}$	$\frac{P}{\lambda}$	$\frac{\Delta P}{\lambda}$	$\frac{f}{\lambda}$	$\frac{Q}{\lambda}$	$\frac{\Delta Q}{\lambda}$
$0=0.000$	＋ 0.068						
$0=-0.288$	－ 0.136	$+14.910$					
$0=-0.122$	－0．010	＋ 0.652	$+\quad 0.236$ $+\quad 28.451$				
$0=-13.033$	－ 1.478	$+67.212$	＋28．451	＋ 4977.0			
$0=+0.136$	－ 0.288				$\begin{array}{r} 14.910 \\ +\quad 0.652 \end{array}$	＋ 0.236	
$0=+0.010$ $0=1.478$	－ $\begin{array}{r}\text {－} \\ \hline\end{array}$				＋67．212	＋28．451	$+4977.0$

Hence

$$
\begin{array}{lll}
A_{1}=-0.010 & \frac{P}{\lambda}=+0.664 & \frac{f}{\lambda} \\
\frac{c}{\lambda}=-0.0048 & \frac{\Delta P}{\lambda}=-0.00112 & \frac{Q}{\lambda}
\end{array}=+0.0024 .
$$

After Ritchie Compass．
Equations of Condition．

Absolute Terms．	A_{1}	$\frac{c}{\lambda}$	$\frac{P}{\lambda}$	$\frac{\Delta P}{\lambda}$	$\frac{f}{\lambda}$	$\frac{Q}{\lambda}$	$\frac{\Delta Q}{\lambda}$
$0=-0.200$	－ 0.030	＋ 2.694	＋ 0.212				
$0=-0.148$	＋ 0.012	＋ 1.176	$\underline{+0.148}$	＋ 2.520			
$0=-0.121$	－ $\begin{aligned} & 0.017 \\ & -0.060\end{aligned}$		＋ $\begin{array}{r}\text {＋} \\ +\quad 0.161 \\ + \\ \hline\end{array}$	＋ 9.516 +16.522			
$0=-0.071$ $0=-0.067$	耳 0.0004	二 0.710	+0.154 $+\quad 0.158$	＋ 24.375			
$0=-0.102$	＋ 0.004 $+\quad 0.00$	－ 0.113	＋0．143	＋ 25.608			
$0=-0.071$	$\bigcirc 0.003$	＋ 0.623	＋0．132	＋26．316			
$0=-0.078$	$\underline{0.021}$	＋ 0.836	$+\quad 0.129$ $+\quad 0.177$	＋ 27.440			
$0=-0.118$ $0=+0.030$	二 0.027	＋ 1.910	＋0．177	＋ 41.519	＋ 2.694	＋ 0.212	
$0=-0.012$	－0．148				＋ 1.176	＋ 0.148	＋2．520
$0=+0.017$ $0=+0.060$	二 $\begin{array}{r}0.121 \\ \hline\end{array}$				$\begin{array}{r}+ \\ \pm \\ \hline \\ \hline\end{array}$	a $+\quad 0.161$ $+\quad 0.164$	$\begin{array}{r}\text {（ } \\ + \\ \hline\end{array}$
$0= \pm 0.060$ $0=-0.004$	二 $\begin{array}{r}0.071 \\ \hline\end{array}$				二 $\begin{array}{r}1.426 \\ \hline\end{array}$	$\begin{array}{r}1 \\ +\quad 0.164 \\ +\quad 0.158 \\ \hline\end{array}$	＋ +16.522 +24.375
$0=-0.004$	－ 0.102				－ 0.113	+0.143 $+\quad 0.132$	＋25．608
$0=+0.003$	－ 0.071				（	$\begin{array}{r}+\quad 0.132 \\ +\quad 0.129 \\ \hline\end{array}$	26.316 27.440
$0=-0.021$ $0=+0.027$	－ 0.078				＋ 0.83 $+\quad 0.836$ $+\quad 1.910$	$\begin{array}{r}1 \\ +\quad 0.129 \\ +\quad 0.177 \\ \hline\end{array}$	＋ +27.440 +41.519

Normal Equations．

$0=0.000$ $0=-0.896$	$+\quad 0.127$ -0.022	＋15．930					
$0=-0.161$	－ 0.018	＋ 0.926	＋0．231				
$0=-15.837$	－ 1.525	＋78．581	＋26．514	$+4789.2$			
$0=+0.022$	－ 0.896				15.930		
$0=+0.018$	－ 0.161				＋ 0.926	$+0.231$	
$0=+1.525$	－ 15.837				＋ 78.581	＋26．514	

Hence

$$
\begin{aligned}
& \begin{array}{l}
A_{1}=0.000 \\
\frac{c}{\lambda}=+0.0178
\end{array} \\
& \begin{array}{c}
\frac{P}{\lambda}=+0.766 \\
\frac{\Delta P}{\lambda}=-0.00122
\end{array} \\
& \begin{aligned}
\frac{f}{\lambda} & =+0.0052 \\
\frac{Q}{\lambda} & =-0.149 \\
\frac{\Delta Q}{\lambda} & =+0.00042
\end{aligned}
\end{aligned}
$$

After Azmuth Compass.

Equations of Condition.

Absolute Terms.	A,	$\frac{c}{\lambda}$	$\frac{P}{\lambda}$	$\frac{\Delta P}{\lambda}$	$\frac{f}{\lambda}$	$\frac{Q}{\lambda}$	$\frac{\Delta Q}{\lambda}$
$0=+0.085$	-0.003	+2.694	+0.212				
$0=+0.053$	+0.023	+1.176	+0.148	+ 2.520			
$0=+0.078$	-0.006	+ 0.077	$+0.161$	+ 9.516			
$0=+0.052$	-0.014	-1.426	+0.164	+16.522			
$0=+0.086$	+ 0.006	-0.710	$+0.158$	+ 24.375			
$0=+0.035$	-0.014	-0.113	+0.143	+25.608			
$0=+0.066$	$+0.030$	+0.623	+0.132	+26.316			
$0=+0.060$	0.000	+0.836	+0.129	+ 27.440			
$0=+0.003$	+0.085				+2.694	$+0.212$	
$0=-0.023$	$+0.053$				+1.176	+0.148	+ 2.520
$0=+0.006$	+ 0.078				+ 0.077	+0.161	+ 9.516
$0=+0.014$	+0.052				- 1.426	$+0.164$	+16.522
$0=-0.006$	+0.086				-0.710	$+0.158$	+ 24.375
$0=+0.014$	$+0.035$				-0.113	$+0.143$	+ 25.608
$0=-0.030$	$+0.066$				+0.623	+0.132	$+26.316$
$0=0.000$	+ 0.060				+0.836	+0.129	+27.440

Normal Equations.

Hence

Forward Alidade Compass.
Equations of Condition.

Forward Alidade Compass.
Normal Equations.

Absolute Terms.	A_{1}	$\frac{c}{\lambda}$	$\frac{P}{\lambda}$	$\frac{\Delta P}{\lambda}$	$\frac{f}{\lambda}$	$\frac{Q}{\lambda}$	$\frac{\Delta Q}{\lambda}$
$0=0.000$	+0.011						
$0=+0.255$	-0.135	16.294 $+\quad 0.826$					
$0=+0.012$ $0=+1.089$	-0.037 -4.686	$+\quad 0.826$ $+\quad 70.177$	+ 0.258 +28.825	$+4983.3$			
$0=+0.135$	+0.255				+16.294		
$0=+0.037$	+0.012					8	

Hence

$$
\begin{array}{lll}
A_{1}=-0.025 & \frac{P}{\lambda}=+0.014 & \frac{f}{\lambda}=-0.0012 \\
\frac{c}{\lambda}=-0.0162 & \frac{\Delta P}{\lambda}=-0.00010 & \frac{Q}{\lambda}=-0.106 \\
& \frac{\Delta Q}{\lambda}=-0.00031
\end{array}
$$

Forward Binnacle Compass.
Equations of Condition.

Absolute Terms.	A	$\frac{c}{\lambda}$	$\frac{P}{\lambda}$	$\frac{\Delta P}{\lambda}$	$\frac{f}{\lambda}$	$\frac{Q}{\lambda}$	$\frac{\Delta Q}{\lambda}$
$0=+0.099$	-0.045	+2.694	+0.212				
$0=+0.034$	-0.004	+1.176	+0.148	$+2.520$			
$0=-0.008$	-0.010	+0.077	+0.161	+ 9.516			
$0=-0.051$	-0.012	-0.603	+0.166	+13.933			
$0=-0.092$	-0.038	- 1.426	$+0.164$	+16.522			
$0=-0.03 \mathrm{I}$	-0.013	-0.710	+0.158	+ 24.375			
$0=-0.020$	-0.037	$-\mathrm{O}, 113$	$+0.143$	+ 25.608			
$0=+0.018$	-0.027	+0.623	+0.132	+26.316			
$0=+0.036$	-0.029	+o836	$+0.129$	+27.440			
$0=+0.082$	-0.062	+ 1.910	+0.177	$+41.519$			
$0=+0.045$ $0=+0.004$	+0.099 +0.034				+2.694 +1.176	+0.212 +0.148	+ 2.520
$0=+0.010$	+0.008				+1.076 +0.077	+0.1481 +0.156	$+\quad 2.520$ $+\quad 9.516$
$0=+0.012$	-0.051				-0.603	+0.166	+13.933
$0=+0.038$	-0.092				- 1.426	+0.164	+16.522
$0=+0.013$	-0.031				-0.710	+0.158	+ 24.375
$0=+0.037$	-0.020				-0.113	+0.143	$\underline{+25.608}$
$0=+0.027$	+0.018				$+0.623$	+0.132	+26.316
$0=+0.029$	$+0.036$				+0.836	+0.129	+ 27.440
$0=+0.062$	+0.082				+1.910	+0.177	+41.519

Normal Equations.

Hence

$$
\begin{aligned}
& A_{1}=0.000 \\
& \frac{c}{\lambda}=-0.0477
\end{aligned}
$$

$\frac{f}{\lambda}=-0.0059$
$\frac{Q}{\lambda}=-0.075$
$\frac{\Delta Q}{\lambda}=-0.00074$

Forward Ritchie Compass．
Equations of Condition．

Absolute Terms．	A_{1}	$\frac{c}{\lambda}$	$\frac{P}{\lambda}$	$\frac{\Delta P}{\lambda}$	${ }_{\lambda}$	\bigcirc	$\frac{\Delta Q}{\lambda}$
$0=-0.023$	－0．063	＋ 2.694	＋0．212				
$0=-0.036$	－0．022	＋ 1.176	＋0．2128	＋ 2.520			
$0=-0.061$ $0=-0.066$	-0.027 0.000	+0.077 +0.603	＋0．161	$+\quad 9.516$ $+\quad .593$			
$0=-0.067$	0.020 -0.048	－0．603	＋0．166	＋13．933			
$0=-0.023$	－0．026	－0．710	+0.164 +0.158	＋ 16.522 $+\quad 24.375$			
$0=-0.033$ $0=-0.004$	－0．034	－0．113	＋0．143	（ $+\quad 24.375$ $+\quad 25.68$			
$0=-0.004$ $0=-0.011$	－0．033	＋0．623	＋0．132	＋26．316			
$0=-0.011$ $0=0.005$	－0．038	＋0．836	＋0．129	＋ 27.440			
$0=+0.005$ $0=+0.063$	－0．117	＋ 1.910	＋0．177	＋ 41.519			
0 $=+0.022$	二－0．033				＋2．694	$+0.212$	
$0=+0.027$	－0．061				＋ 1.176	＋0．148	＋2．520
$0=0.000$	－0．066				+0.077 -0.603	+0.161 +0.166	＋ 9.516
$0=+0.048$	－0．067				－0．603	+0.166 +0.164	＋13．933
$0=+0.026$	－0．023				二 0.426	+0.1664 +0.1558	$\begin{array}{r}\text {＋} 16.522 \\ +\quad 24.375 \\ \hline\end{array}$
$0=+0.034$ $0=+0.033$	－0．033				－0．113	+0.158 +0.143	＋ 24.375 $+\quad 25.608$
$0=+0.038$	二0．004				＋0．623	＋0．132	＋26．316
$0=+0.117$	＋0．005				+0.836 $+\quad 1.910$	+0.143 +0.129 +0.177	＋ 27.440
					＋1．910	＋0．177	＋41．519

$0=0.000$
$0=+0.044$
$0=-0.052$
$0=-4.306$
$0=+0.384$
$0=+0.068$
$0=+9.388$
$\left|\begin{array}{|} \pm 0.042 \\ \pm 0.384 \\ =0.068 \\ \pm 9.388 \\ \pm 0.044 \\ -0.052 \\ -4.306\end{array}\right|$

$\begin{array}{r} +16.294 \\ +\quad 0.826 \\ +70.177 \end{array}$	$+\quad 0.258$ +28.825	＋4983．3	+16.294 $+\quad 0.826$ +70.177	+0.258 +28.825

Hence

$$
\begin{aligned}
& A_{1}=0.000 \quad \frac{P}{\lambda}=+0.367 \quad \frac{f}{\lambda}=-0.014 \mathrm{I} \\
& \frac{c}{\lambda}=-0.0169 \quad \frac{\Delta P}{\lambda}=-0.00102 \quad Q_{\lambda}=-0.083 \\
& \frac{\Delta Q}{\lambda}=-0.00120
\end{aligned}
$$

The value of the true A_{1} having thus become known for each compass，the values of the coefficients $\mathfrak{B}, \mathfrak{C}, \mathfrak{D}$ ，and \mathfrak{C} ，for each compass，at each station，were next computed by means of the formulæ（16）．The results，expressed in parts of radius，are as follows：

Coefficients of the Deviations of the Admiralty Standard Compass．

STATION．	DATE．	91	\mathfrak{Y}	\bigcirc	D	\mathcal{G}
Hampton Roads ．	November I， 1865	0.000	＋0．158	－ 0.010	$+0.021$	－0．004
St．Thomas ．．．．	November 18， 1865	0.000	＋0．100	＋ 0.010	＋0．006	－0．013
Bahia ．．．．	December 30，186\％	0.000	＋0．064	0.000	$+0.016$	0．000
Monte Video ．．．．	January 24， 1866	－0．000	$+0.054$	＋0．002	$+0.024$	$+0.004$
Sandy Point－．．	February 10， 1866	0.000	＋0．023	-0.012	＋0．016	0.000
Valparaiso ．．．．	April 4，1866	0.000	＋0．023	－0．002	$+0.016$	-0.003
Callao ．．．．．	April 29．1866	0.000	＋0．041	0.000	$+0.016$	$+0.002$
Panama．．．．．	May 20， 1866	0.000	＋0．053	＋0．001	＋0．017	$+0.002$
Acapulco．．	June 1，1866	0.000	+0.048 +0.085	＋0．002	+0.018 +0.018	＋0．002
San Francisco．	June 23， 1866	0.000	＋ 0.085		＋ 0.018	0.000
Means					$+0.017$	－－0．001

Coefficients of the Deviations of the After Binvacle.

STATION.	DATE.	21	W	5	D	(1)
Hamplon Roads	November 1, 1865	-0.010	+0.127	-0.023	+ 0.037	-0.001
St. Thomas	November 18, 1865	-0.010		0,00
Bahia .	December 30, 1865	-0.010	+0.100	-0.003	+0.034	$\begin{array}{r}+0.002 \\ \hline 0.012\end{array}$
Monte Video		-0.010	+0.096 +0.100	+0.011 ± 0.005		-0.012
Sandy Point	February April 10, 1860 4,150	-0.010	+0.100 +0.070	- 0.005 +0.002	+0.040 +0.038	-0.001 0.000
Valparaiso .	April 4 4, 106	$\begin{array}{r}\text { - } 0.010 \\ \hline 0.010\end{array}$	+0.070 $+\quad 0.073$	+ 0.002 -0.002	+0.038 +0.040	0.000 +0.002
Callao.	April ${ }^{\text {a }}$ 20, isbu	-0.010	+0.70 +0.058	+0.006	+0.046	-0.005
Acapulco	June 1, 1560	-0.010	+0.054	-0.006	+ 0.041	- 0.006
San Francisco.	June 23, 1866	- 0.010	+0.060	-0.040	+0.032	0.000
Means					+ 0.038	-0.002

Coefficients of the Deviations of the After Ritchie Compass.

STATION.	DATE.	$\mathfrak{} 2$	\mathfrak{W}	C	(1)	C
Hampton Roads	November 1, 1865	0.000	$+0.200$	-0.030	+ 0.024	-0.022
St. Thomas	November 18, 1865	0.000	+0.148	+0.012	+ 0.044	-0.009
Bahia ${ }^{\text {a }}$	December 30, 1865	0.000	+0.121	-0.017	+0.042	+0.002
Monte Video	January 24, 1866	\ldots
Sandy Point	February 10, 1866	0.000	+0.071	-0.060	+0.022	+0.013
\checkmark alparaiso.	April 4, 1866	0.000	+0.067	+0.004	+0.043	+0.002
Calla - .	April 29, 1866	0.000	+0.102	+0.004	+0.032	+0.016
Panama.	May 20, 1866	0.000	+0.071	-0.003	+0.025	-0.027
Acapulco	June 1, 1866	0.000	+0.078	+0.021	+0.024	+0.015
San Francisco.	June 23, 1866	0.000	+0.118	-0.027	+ 0.050	+0.003
Means					+0.034	-0.001

Coefficients of the Deviations of the After Azimuth Compass.

STATION.	DATE.	21	\mathfrak{P}	C	(C
Hampton Roads .	November 1,1865	0.000	-0.085	-0.003	+0.101	+ 0.005
St. Thomas -	November 18, 1865	0.000	-0.053	+0.023	+0.120	+0.002
Bahia	December 30, 1865	0.000	-0.078	-0.006	+0.132	-0.019
Monte Video .	January 24, 1866	
Sandy Point	February 10, 1866	0.000	-0.052	-0.014	+0.126	-0.007
Valparaiso .	April 4,1866	0.000	-0.086	+0.006	+0.106	+ 0.010
Callao - -	April 29,1866	0.000	-0.035	-0.014	+0.090	+ 0.011
Pamama. -	$\begin{array}{lr}\text { May } & \text { 20, } 1866 \\ \text { June } & \text { 1, } 1866\end{array}$	0.000 0.000	-0.066	+0.030	+0.113	± 0.012
${ }_{\text {San }}^{\text {Acapulco }}$ Francisco.	$\begin{array}{lr}\text { June } \\ \text { June } & \begin{array}{r}1,1866 \\ 23,1866\end{array}\end{array}$	0.000	-0.060	0.000	+0.105	+ 0.007
		
Means					+0.112	0.000

Coefficients of the Deviations of the Forward Alidade Compass.

Station.	DATE.	21	\mathfrak{W}	\bigcirc	(1)	C
Hampton Roads	November 1, 1865	-0.025	-0.044	-0.032	+ 0.019	+0.001
St. Thomas	November 18, 1865	-0.025	-0.010	-0.013	+0.019 +0.022	+0.006
Bahia ${ }^{\text {a }}$.	December 30, 1865	-0.025	-0.002	-0.010	+0.022	+0.004
Mante Video.	January 24, 1866	-0.025	+0.016	-0.019	+0.024	-0.004
Sandy Point -	February 10, 1866	-0.025	+0.017	- 0.034	+0.031	-0.007
Valparaiso Callao	$\begin{array}{lr}\text { April } \\ \text { April } & \text { 4, } 1866 \\ \text { 2, } \\ \text { a }\end{array}$	-0.025	+0.008	- 0.016	+0.019	-0.002
Panama.	$\begin{array}{ll}\text { Aprit } & \text { 29, } \\ \text { May } & \text { 20, } 8866\end{array}$	-0.025	+0.012 +0.001	-0.029	+0.026	-0.003
Acapulco .	June 1,1866	-0.025	-0.026	-0.024	+0.023 +0.033	- 0.003 +0.002
San Francisco.	June 23, 1866	-0.025	-0.034	-0.041	+0.017	+ +0.007
Means					$+0.024$	0.000

Coefficients of the Deviations of the Forward Binnacle Compass.

Station.	DATE.	31	\mathfrak{B}	(5)	(1)	6
Hampton Roads .	November 1, 1865	0.000	-0.099	-0.045	+ 0.044	$+0.007$
St. Thomas .	November 18, 1865	0.000	-0.034	-0.004	+0.035	-0.002
Bahia	Deccmber 30, 1865	0.050	+0.008	- 0.010	+0.037	-0.003
Monte Video .	January 24, 1866	0.000	+0.051	-0.012	+0.032	-0.001
Sandy Point	February 10, 1866	0.000	+0.092	-0.038	+0.039	-0.004
Valparaiso.	April 4, 1866	0.000	+0.031	-0.013		-0.003
Callao -	April 29, 1866	0.000	+0.020	-0.037	+0.037	+0.006
Panama.	May 20, 1866	0.000	-0.018	-0.027	+0.037	-0.006
Acapulco.	June 1, 1866	0.000	-0.036	-0.029	+0.046	
San Francisco.	June 23, 1866	0.000	-0.082	-0.062	+0.035	+ 0.014
Means					+0.037	+ 0.001

Coefficients of the Deviations of the Forward Ritchie Compass.

STATION.	DATE.	91	$\mathfrak{}$	5	($)$	\mathfrak{G}
Hampton Roads .	November 1, 1865	0.000	+0.023	-0.063	$+0.038$	+0.006
St. Thomas . .	November 18, 1865	0.000	+0.036	-0.022	+0.057	-0.008
Bahia	December 30, 1865	0.000	+0.061	-0.027	+ 0.047	-0.002
Monte Video .	January 24, 1866	0.000	+0.066	0.000	+0.040	-0.008
Sandy Point	February 10, 1866	0.000	+0.067	-0.048	+0.039	-0.006
Valparaiso.	April 4, 1866	0.000	+0.023	-0.026	+0.037	a +0.008 +0.002
Callao -	April 20, 1866	0.000	+0.033	-0.034	+0.044	+0.002 +0.004
Panama.	$\begin{array}{rrr}\text { May } & \text { 20, } 1866 \\ \text { June } \\ \text { I, } \\ \text { 1 } & 866\end{array}$	0.000 0.000	+0.004 +0.011	-0.033	+0.038 +0.041	- $\begin{array}{r}0.004 \\ +0.007\end{array}$
San Francisco.	June 23, 1866	0.000	+0.005	-0.117	+0.025	-0.009
Means					+ 0.041	-0.001

The values of the coefficients \mathfrak{D} and \mathbb{C} for any compass should be constant. Therefore the mean of all the observed values has been assumed as the truth, and is given on the line marked "means" in the case of each compass.

The constants thus far determined furnish the data with which to compute the values of the coefficients $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{D}, \mathfrak{E}$, in any part of the world, for any of the compasses nuder discussion. For convenience of reference these constants are collected in the following table:

Compass.	$\mathrm{A}_{1}=\mathfrak{2}$	$\frac{c}{\lambda}$	$\frac{P}{\lambda}$	$\frac{P}{\lambda}$	$\frac{f}{1}$	$\frac{Q}{\lambda}$	$\frac{\Delta Q}{\lambda}$	(1)	E
Admiralty Standard	. 000	+ 0.0240	+ 0.460	0.00102	0.0016	$+0.006$	-0.00023	+0.017	-0.001
After IBinnacle .	0.010	-0.0048	0.664	-0.00112	-0.0084	+0.002	-0.00022	+0.038	-0.002
After Ritchie	0.000	+0.0178	+0.766	-0.00122	+0.0052	-0.149	+0.00042	+0.034	-0.001
After Azimuth	0.000	-0.0026	-0.373	-0.00032	+0.0066	- 0.044	+0.00039	+0.112	0.000
Forward Alidade	-0.025	-0.0162	+ 0.014	-0.00010	-0.0012	-0.106	-0.00031	+0.024	0.000
Forward Binnacle .	0.000	-0.0477	+0.140	-0.0004 1	-0.0059	-0.075	-0.00074	+0.037	+0.001
Forward Ritchie	0.000	-0.0169	+0.367	0.00102	-0.01		-0.00120		

The values of the coefficients $\mathfrak{N}, \mathfrak{F}, \mathfrak{C}, \mathfrak{D}, \mathfrak{E}$, for each compass at each station, were next computed from the quantities given in this table, in the following manner. The coefficients $\mathfrak{A}, \mathfrak{D}$, and \mathbb{C} are constant for each compass, and were taken
directly from the table; while the cocfficients \mathfrak{B} and \mathfrak{C} were obtained by means of the formulæ

$$
\begin{aligned}
& \mathfrak{B}=\frac{c}{\lambda} \tan 0+\frac{P}{\lambda} \times \frac{1}{H}+\frac{\Delta P}{\lambda} \times \frac{t}{H} \\
& \mathfrak{C}=\frac{f}{\lambda} \tan \theta+\frac{Q}{\lambda} \times \frac{1}{H}+\frac{\Delta Q}{\lambda} \times \frac{t}{H}
\end{aligned}
$$

where 0 is the true magnetic dip; H the earth's magnetic horizontal force, expressed in English units, namely, in feet, grains, and seconds; and t the time in days, counted from November 1st, 1865. The results, expressed in parts of radius, are as follows:

Coefficients of the Deviations of the Admiralty Standard Compass.

STATION.	DATE.	91	$\mathfrak{1}$	c	()	¢
Hampton Roads	November 1, 1865	0.000	+0.162	-0.003	+ 0.017	-0.001
St. Thomas	November 18, 1865	0.000	+0.094	- 0.002	+0.017	-0.001
Bahia	December 30, 1865	0.000	+0.066	-0.001	+0.017	-0.001
Monte Video .	January 24, 1866	0.000	+0.048	-0.001	+0.017	-0.001
Sandy Point	February 10, 1866	0.000	+ 0.024	0.000	+0.017	-0.001
Valparaiso.	April 4,1866	0.000	+0.031	-0.003	+0.017	-0.001
Callao .	April 29, 1866	0.000	+0.037	- 0.005	+0.017	-0.001
Panama.	May 20, 1866	0.000	-0.049	-0.006	+0.017	-0.001
Acapulco	June 1,1866	0.000	+0.052	-0.007	+0.017	-0.001
San Francisco.	June 23, 1866	0.000	+0.085	-0.011	+0.017	-0.001

Coefficients of the Deviations of the After Binnacle Compass.

STATION.	DATE.	91	\mathfrak{P}	c	D	\mathcal{C}
Hampton Roads	November 1, 1865	-0.010	+ 0.128	-0.022	+0.038	-0.002
St. Thomas	November 18, 1865	-.....		
Bahia	December 30, 1865	- 0.010	$+0.096$	-0.002	+0,038	-0.002
Monte Video -		- 0.010	+0.098	+0.002	+0.038	-0.002
Sandy Point	February 10, 1866	-0.010	+0.097	+0.009	+0.038	-0.002
Valparaiso.	$\begin{array}{lr}\text { April } & \text { 4, } 1866 \\ \text { April } & 29,1866\end{array}$	- 0.010	+0.081 +0.067	$\begin{array}{r}+0.001 \\ \hline 0.004\end{array}$	+0.038 +0.038	-0.002
${ }_{\text {Calliao }}$ Panama	$\begin{array}{ll}\text { April } & \text { 29, } 1866 \\ \text { May } & 20,1866\end{array}$	-0.010	+0.067 +0.055	-0.004	+0.038 +0.038	$\begin{array}{r}\text {-0.002 } \\ \hline 0.002\end{array}$
Acapulco .	June 1,1866	-0.010	+0.051 $+\quad$	-0.013	+0.038 +0.038	-0.002
San Francisco.	June 23, 1866	-0.010	+0.062	- 0.025	+0.038	-0.002

Coefficients of the Deviations of the After Ritchie Compass.

STATION.	DATE.	$\mathfrak{1}$	\mathfrak{B}	c	(1)	C.
Hampton Roads .	November 1, 1865	0.000	+0.211	-0.018	+0.034	-0.001
St. Thomas -	November 18, 1865	0.000	+0.131	-0.015	+0.034	-0.001
${ }^{\text {Bahara }}$ Monte Video.	1)ecember 30, 1865	0.000	+0.113	-0.020	+ 0.034	-0.001
Monte Video .	January February 24, 10, 2	-1...00	+0.1.0	-0.025	+1... +0.034	-
Valparaiso.	April 4,1866	0.000	+0.079	-0.017 ${ }^{\circ}$	+0.034 $+\quad .034$	- 0.001
Callao	April 29,1866	0.000	$\underline{+0.076}$	- 0.011	+0.034	-0.801
Panama.	May 20, 1866	0.000	+0.080	-0.005	+0.034	-0.001
Acapulco	June 1,1866	0.000	+ 0.080	-0.003	+0.034	-0.001
San Francisco.	June 23,1866	0.000	+0.119	+0.001	+0.034	-0.001

Coefficients of the Deviations of the After Azimuth Compass.

STATION.	DATE.	21	$\mathfrak{3}$	(5)	($)$	C
Hampton Roads .	November 1, 1865	0.000	- 0.086	+0.008	+0.112	0.000
St. Thomas -	November 18, 1865	0.000	-0.059	+0.002	+0.112	0.000
Bahia ${ }^{\text {a }}$	December 30, 1865	0.000	-0.063	-0.003	+0.112	0.000
Monte Video	$\begin{array}{ll}\text { January } & \text { 24, } \\ \text { February } \\ \text { Io, } \\ 18666 \\ 1866\end{array}$	\ldots
Valparaiso.	$\begin{array}{ll}\text { February } & \text { 10, } 1866 \\ \text { April } & 4,1866\end{array}$	0.000 0.000	-0.062	-0.010	+0.112 +0.112	0.000 0.000
Callao .	April 29, 1866	0.000	-0.061	+0.003	+0.112	0.000 0.000
Panama.	May 20, 1866	0.000	-0.059	+0.009 +0.009	+0.112	0.000
Acapulco	June 1, 1866	0.000	-0.059	+0.011	+0.112	0.000
San Francisco.	June 23, 1866

Coefficients of the Deviations of the Forward Alidade Compass.

STATION.	DATE.	21	\mathfrak{F}	\bigcirc	(1)	(
Hampton Roarls .	November 1, 1865	-0.025	-0.041	-0.026	+ 0.024	0.000
St. Thomas	November 18, 1865	-0.025	-0.017	-0.018	+ 0.024	0.000
Bahia ${ }^{\text {a }}$.	December 30, 1865	-0.025	0.000	-0.020	+0.024	0.000
Monte Video	January 24, 1866	-0.025	+0.011	-0.021	+ 0.024	0.000
Sandy Point	February 10, 1866	-0.025	+0.024	-0.021	+0.024	0.000
Valparaiso.	April 4,1866	-0.025	+ 0.011	-0.023	+0.024	0.000
Callao.	April 29, 1866	-0.025	+ 0.001	-0.023	+0.024	0.000
Panama.	May 20, 1866	-0.025	-0.011	-0.023	+0.024	0.000
Acapulco .	June 1, 1866	-0.025	-0.014	-0.023	+0.024	0.000
San Francisco.	June 23, 1866	-0.025	-0.032	-0.034	+0.024	0.000

Coefficients of the Deviations of the Forward Binnacle Compass.

Coefficients of the Deviations of the Forward Ritchie Compass.

STATION.	DATE.	9	59	\bigcirc	5	6
Hampton Roads	November I, 1865	0.000	$+0.032$	-0.056	+0.041	-0.001
St. Thomas .	November 18, 1865	0.000	$+0.032$	-0.032	$+0.041$	-0.001
Bahia	December 30, 1865	0.000	$+0.048$	-0.026	+0.041	-0.001
Monte Video .	Tanuary 24,1866	0.000	$+0.057$	-0.022	+0.041	-0.001
Sandy Point .	February 10, 1866	0.000	$+0.067$	-0.013	$+0.041$	-0.001
Valparaiso .	April 4,1866	0.000	$+0.045$	-0.032	$+0.041$	- 0.001
Callao. .	April 29, 1866	0.000	$+0.028$	-0.041	+0.041	-0.001
Panama.	May 20, 1866	0.000	$+0.011$	-0.051	$+0.041$	-0.001
Acapulco .	June I, 1866	0.000	$+0.005$	-0.056	$+0.041$	-0.001
San Francisco.	Junc 23, 1866	0.000	-0.010	-0.092	+0.041	- 0.001

Comparing these computed values with the values before founa directly from the observations, the following residuals are obtained:

Value of the Computed minus the Observed Coefficients of the Deviations of the Admiralty Standard Compass.

STATION.	DATE.	21	\mathfrak{W}	5	(1)	C
Hampton Roads .	November 1, 1865		$+0.004$	+0.007	-0.004	$+0.003$
St. Thomas	November 18, 1865		-0.006	-0.012	+0.011	$+0.012$
Bahia	December 30, 1865		+0.002	-0.001	+0.001	-0.001
Monte Video	January 24, 1866		-0.006	-0.003	-0.007	-0.005
Sandy Point	February 10, 1866		+0.001	+0.012	+0.001	-0.001
Valparaiso: . . .	April 4, 1866		+0.008	-0.001	+0.001	$+0.002$
Callao	April 29, 1866		-0.004	-0.005	+0.001	-0.003
Panama.	May 20, 1866		-0.004	-0.007	0.000	-0.003
Acapulco .	June 1,1866		+0.004	-0.009	-0.001	-0.003
San Francisco.	June 23,1866		0.000	+0.011	-0.001	-0.001

Value of the Computed minus the Observed Coefficients of the Deviations of the
After Binnacle Compass.

STATION.	DATE.	21	$\mathfrak{1}$	5	(1	C-
Ilampton Roads .	November 1, 1865		+ 0.001	+0.001	+0.001	-0.001
St. Thomas	November 18, 1865					
Bahia ${ }^{\text {a }}$	December 30, 1865		-0.004	+ 0.001	+0.004	-0.004
Monte Video .	January 24, 1866		+0.002	-0.009	-0.001	+ 0.010
Sandy Point	February 10, 1866		-0.003	+ 0.014	-0002	-0.001
Valparaiso . Callao	$\begin{array}{lr}\text { April } & 4,1866 \\ \text { April } & \text { 2, } 1866\end{array}$		+0.011	-0.001	0.000	-0.002
${ }_{\text {Panama }}$ Call	$\begin{array}{ll}\text { April } & \text { 29, } \\ \text { May } & \text { 20,1866 }\end{array}$		- 0.006	-0.002 -0.017	$\begin{array}{r}\text {-0.002 } \\ \hline 0.008\end{array}$	-0.004
Acapalco.	June 1,1866		-0.003	-0.007	-0.003	+0.04 +0.004
San Francisco.	June 23, 1866		+0.002	+0.015	+0.006	-0.002

Value of the Computed minus the Observed Coefficients of the Deviations of the
After Ritchie Compass.

Value of the Computed minus the Observed Coefficients of the Deviations of the After Azimuth Compass.

STATION.	DATE.	21	2	5	(1)	C6
Hampton Roads	November 1, 1865		-0.001	+0.011	+ 0.011	-0.cos
St. Thomas ${ }_{\text {Bahia }}$	November 18, 1865		-0.006	-0.021	-0.008	-0.002
${ }_{\text {Monia }}{ }^{\text {Bate }}$ Video :	$\begin{array}{ll}\text { December } & 30,1865 \\ \text { January } & 24,1866\end{array}$		+0.015	$+0.003$	-0.020	+0.019
Sandy Point .	February 10, 1866		-	+	-	$+\ldots .$. +0.007
Valparaiso.	April 4,1866		+0.021	$\begin{array}{r}\text { +0.004 } \\ \hline 0.008\end{array}$	工 $\begin{array}{r}0.014 \\ +0.006\end{array}$	+0.007 -0.010
Callao	April 29,1866		-0.026	+0.017	+ 0.006 +0.022	二0.010
Panama.	May 20, 1866		+0.007	-0.021	-0.001	+0.012
Acapulco .	June 1, 1866		+0.001	+0.011	+0.007	-0.007
San Francisco.	June 23, 1866		

Value of the Computed minus the Observed Coefficients of the Deviations of the
Forward Alidade Compass.

STATION.	DATE.	21	W	5	D	C
Irampton Roads .	November 1, 1865		+0.003	+0.006	+0.005	- o.col
St. Thomas	November 18, 1865		-0.037	-0.005	+0.002	-0.006
Bahia ${ }^{\text {a }}$ -	December 30, 1865		+0.002	-0.010	+0.002	-0.004
Monte Video ${ }^{\text {\% }}$	January 24, 1866		-0.005	-0.002	0.000	+0.004
Sandy Point	February 10, 1866		+0.007 +0.003	+0.013	-0.007	+0.007
Valparaiso.	$\begin{array}{lr}\text { April } & \text { 4, } 1866 \\ \text { April } & 29,1866\end{array}$		+0.003 +0.011	-0.007	+0.005 ± 0.002	+0.002 +0.003 +0.003
Panama.	$\begin{array}{ll}\text { April } & 29,1866 \\ \text { May } & \text { 20, } 1866\end{array}$		-0.011	+0.006 +0.001	+ 0.002 +0.001	+0.003 +0.003
Acapulco .	June 1, 1866		+0.012	-0.014	+0.001	+0.002
San Francisco.	June 23, 1866		+0.002	$+0.007$	+0.007	-0.007

Value of the Computed minus the Observed Coefficients of the Deviations of the
Forward Binnacle Compass.

STATION.	DATE.	2	\mathfrak{B}	C	(1)	C
Hampton Roads	November 1, 1865		0.000	+0.013	-0.007	-0.006
St. Thomas	November 18, 1865		-0.002	-0.016	+0.002	+0.003
Bahia	December 30, 1865		+ 0.007	- 0.010	0.000	+0.004
Monte Video	January 24, 1866		-0.005	-0.007	+0.005	+0.002
Sandy Point	February 10, 1866		-0.008	+0.022	-0.002	+0.005
Valparaiso.			± 0.015	± 0.013	+0.009	+0.004
Callao .	$\begin{array}{ll}\text { April } & 29,1866 \\ \text { May } & 20,1866\end{array}$		$\begin{array}{r}1 \\ -0.005 \\ \hline 0.004\end{array}$	$\begin{array}{r}+0.008 \\ \hline 0.006\end{array}$	0.000	-0.005
Panama.	$\begin{array}{rrr}\text { May } & \text { 20, } 1866 \\ \text { June } & \text { 1, } 1866\end{array}$		-0.004 +0.003	-0.006	0.000 -0.009	$\begin{array}{r}+0.007 \\ \hline 0.003\end{array}$
San Fraucisco.	June 23, 1866		[0.001	+0.006	- 0.009 +0.002	-0.003

Value of the Computed minus the Observed Coefficients of the Deviations of the Forward Ritchie Compass.

In the following table the columns headed $r_{\mathfrak{B}}, r_{\mathbb{E}}, r_{\mathbb{D}}, r_{\mathbb{E}}$, contain respectively the probable errors of a single observed value of $\mathfrak{B}, \mathfrak{C}, \mathfrak{D}$, and \mathfrak{C}, for cach compass, computed from the residuals just given. But as these residuals were got by subtracting the computed from the obscrved values of the coefficients, and as each observed value was found from a set of deviations observed on all the thirty-two points, it follows that the probable errors here given belong to the coefficients when they have been computed from a set of deviations observed on all the thirtytwo points. For convenience of reference we will designate these as the probable errors derived from all the observations of the cruise.

Compass.	${ }_{8}$	r	\mathfrak{D}	r	$\frac{r}{\sqrt{16}}$
Admiralty Standard.	± 0.0033	± 0.0053	± 0.0032	± 0.0033	± 0.0008
After Binnacle	± 0.0036	± 0.0069	± 0.0026	± 0.0028	± 0.0018
After Ritchie .	± 0.0090	± 0.0153	± 0.0072	± 0.0106	± 0.0031
After Azimuth	± 0.0100	± 0.0100	± 0.0094	± 0.0074	± 0.0030
Forward Alidade	± 0.0050	± 0.0059	± 0.0035	± 0.0031	± 0.0016
Forward Binnacle	± 0.0046	± 0.0084	± 0.0036	± 0.0043	± 0.0024
Forward Ritchie.	± 0.0070	± 0.0127	± 0.0056	$\pm 0.0047^{\circ}$	$\pm 0.003^{2}$
Means	± 0.0061	± 0.0092	$\pm 0.005^{\circ}$	$\pm 0.005^{2}$	± 0.0023

But we have before found the probable crrors of B_{1}, C_{1}, D_{1}, and E_{1}, when computed from observations made at a single station on each of the thirty-two points, by a totally different process, namely, from the thirty-two observed deviations the values of $A_{1}, B_{1}, C_{1}, D_{1}$, and E_{1}, were computed; next, with the values of A_{1}, B_{1}, C_{1}, D_{1}, and E_{1}, thus found, the deviations were computed for each point; then, comparing these computed values of the deviation with the observed values, a series of residuals were obtained from which the probable errors in question (which are given in the table on page 185) were easily got. These we will designate as the probable crrors obtained from observations at a single station; and it will be remembered that it was shown that, no matter what their numerical values might be, the probable errors of B_{1}, C_{1}, D_{1}, and E_{1} must all be equal to each other. Although the difference between the probable crrors of $B_{1}, C_{1}, D_{1}, E_{1}$, and those of $\mathfrak{B}, \mathfrak{C}, \mathscr{D}, \mathfrak{E}$, can never be great, yet, in general, it would not be rigorously correct to assume that they are equal to each other. However, in the case of the compasses under discussion we will make this assumption, for by so doing no error greater than the uncertainty of the probable errors themselves will be introduced. In order to facilitate the comparison of the two sets of probable errors, those of B_{1}, C_{1}, D_{1}, E_{1} are given in the table above, in the column headed $\frac{r}{\sqrt{16}}$. This column is identical with the column headed in the same manner in the table on page 185 , except that the quantities are here expressed in parts of radius instead of minutes of arc.

Now, comparing the probable crrors derived from all the observations of the cruise with those derived from observations at any single station, we see that, taking the mean of the results for all the compasses, r_{D} and $r_{\mathbb{E}}$ are almost identical, as they should be, bnt they are each more than twice as great as $\frac{\gamma}{\sqrt{16}}$. On the other hand,
$r_{\mathfrak{B}}$ and $r_{\mathbb{C}}$ are neither equal to each other, nor yet to r_{∞} and $r_{\mathbb{E}}$, but are, the one nearly three, and the other four, times as great as $\frac{r}{\sqrt{16}}$. Assuming the theory employed in this discussion to be correct, we should have expected to find $r_{\mathfrak{F}}, r_{⿷}$, $r_{\mathbb{I}}, r_{\mathbb{E}}$ sensibly equal to each other, and all sensibly equal to $\frac{r}{\sqrt{16}}$. Such, however, is not the case; and, as the results for each compass all tend in precisely the same direction as the mean result, a doubt naturally arises whether or not the theory really represents the semi-circular deviation as accurately as it does the quadrantal. As this doubt is founded upon observations which may possibly have been affected by some unknown cause of constant error-as they were all made on a single vessel during a single cruise-perhaps it would not be well to insist upon it too strongly; but at all events, it shows the necessity for further investigation of the subject, and especially the great want of more observations.

The probable errors of the cocfficients $\mathfrak{B}, \mathfrak{C}, \mathfrak{D}, \mathfrak{C}$, for each compass, when computed from the values of $A_{1}, \frac{c}{\lambda}, \frac{P}{\lambda}, \frac{\Delta P}{\lambda}, \frac{f}{\lambda}, \frac{Q}{\lambda}, \frac{\Delta Q}{\lambda}, \mathscr{D}$, and \mathbb{E}, given in the table on page 193, are as follows:

The following table shows, for each compass, the place at which the maximum value of its deviation, δ, was the greatest, together with the point on which that maximum value occurred, and its amount. Also, the place at which the maximum value of its deviation was the least, together with the point on which that maximum occurred, and its amount. These deviations are given on the compass points, and in computing them the true A was used.

| Compass and Station. | | |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- |

Compass and Station.							

The following table shows, for each compass, the maximum change, $\Delta \delta$, in its deviation, which occurred on any single point, together with the azimuth at which, and the places between which that change occurred.

In order to show the difference between the values of the deviation computed from observations made at a single station, and those computed from all the observations of the cruise, or, in other words, the difference between the theory and the observations, let δ be the deviation of a compass on any point, ζ, at a given station, as computed from values of $A_{1}, B_{1}, C_{1}, D_{1}, E_{1}$, derived from all the observations of that compass made during the cruise; and also let δ^{\prime} be the deviation of the same compass, on the same point, at the same station, as computed from values of A_{1}, $B_{1}, C_{1}, D_{1}, E_{1}$, derived from observations of that compass made on each of the thirty-two points at the station in question. Then the following table shows, for each compass, the maximum value attained by $\delta-\delta^{\prime}$ during the cruise, together with the point on which, and the station at which, that maximum occurred.

As the After Azimuth Compass was a very poor instrument, the descrepancy between theory and observation in the case of its deviations is not surprising. In the case of all the other compasses, except perhaps the Forward and After Ritchie, the agreement of the observed and computed values of the deviations is much more satisfactory; and indeed the differences between them are so small as to be of very little consequence for the ordinary purposes of navigation; still, viewed from a purely scientific stand-point, they are larger than might have been expected.

The hard and soft iron forees involved in the production of the semi-circular deviation were next examined in order to ascertain whether or not their relations to each other were such as to render it possible, in the ease of a vessel swung for the first time, to predict from the observed deviations of her standard compass what the deviations would be at any other place. The coefficients of the semi-circular deviation are \mathfrak{B} and \mathfrak{C}, and the components of the hard iron force involved in their production are $\frac{P}{2}$ and $\frac{Q}{\lambda}$; while the components of the soft iron force are $\frac{c}{\lambda}$ and $\frac{f}{\lambda}$. As these components act at right angles to each other, the total hard iron force will be

$$
\sqrt{\frac{P^{2}}{\lambda^{2}}+\frac{Q^{2}}{\lambda^{2}}}
$$

and if we let α represent the direction in which it acts, measured from the ship's head toward the right hand, we have

$$
\tan \alpha=\frac{\frac{Q}{\lambda}}{\frac{P}{\lambda}}
$$

In the same way the total soft iron force will be

$$
\sqrt{\frac{c^{2}}{\lambda^{2}}+\frac{f^{2}}{\lambda^{2}}}
$$

and to determine its direction we have

$$
\tan \alpha^{\prime}=\frac{\frac{f}{\lambda}}{\frac{c}{\lambda}}
$$

By means of these formule the following table was computed. It shows the amount and direction of the hard and soft iron forces acting on each compass on November 1, 1865, and June 23, 1866.

Compass.	Hard Iron Force.				Soft Iron Force.	
	November 1, 1865.		June 23, 1866.			
	Amount.	Direction.	Amount.	Direction.	Amount.	Direction.
Admiralty Standard	0.460	$000^{\circ} .8$	0.226	$348^{\circ} .0$	0.024	$356^{\circ} .1$
After Binnacle.	0.664	000.2	0.639	353.0	0.010 0.018	240.4
After Ritchie	0.780	349.0	0.43 r	354.0	0.018	16.3
After Azimuth	0.375	186.8	0.449	173.9	0.007	III. 2
Forward Alidade.	0.107	277.6	0.178	267.3	0.016	184.2
Forward Binnacle	0.159	331.9	0.254	280.1	0.048 0.022	187.1
Forward Ritchie .	0.376	347.2	0.387	289.1	0.022	219.9

The following table shows the change, in amount and direction, of the hard iron force between November 1, 1865, and June 23, 1866; the ratio of the lard to the soft iron force on each of these dates; and also the mean ratio of the same forces.

Compass.	Change of 1lard Iron Force.		Ratio of Mard to Soft Iron Force.		
	Amount.	Direction.	Nov. 1, 1865.	Junc 23, 1866.	Mcan.
Admiralty Standard.	-0.234	- $122^{\circ} .8$	19.2	9.4	143
After Binnacle .	-0.025	- 7.2	68.8	66.1	67.4
After Ritchie .	-0.299	+ 5.0	42.1	26.0	34.0
After Azimuth.	+ 0.074	- 12.9	52.6	62.8	57.7
Forward Alidade	+0.071	-10.3	6.6	11.0	8.8
Forward Binnacle	+ 0.095	- 51.8	$3 \cdot 3$	$5 \cdot 3$	$4 \cdot 3$
Forward Ritchie	+0.011	-58.1	17.1	17.6	17.3

An examination of the last two tables shows that during the whole cruise the hard iron force was changing in a very remarkable manner, both in anount and direction. In the case of the three compasses mounted above the forward turret, the force was increasing: while in the case of those mounted above the after turret, it was decreasing. In other words, there seems to have been a transfer of hard iron force from aft forward. Now, looking at the change in direction of the force, we sec that in every case, excepting only that of the After Ritchie, it took place in such a manner as to correspond to a rotation from right to left. Further, the ratio of the hard to the soft iron force was slowly varying at each compass; and for the different compasses it ranged between 4.3 and 67.4. Finally, there was not a single compass on board at which the direction of the hard and soft iron force coincided; from which it follows that in no case was the ratio of the hard and soft iron forces the same in the coefficient \mathfrak{B} as it was in the coefficient \mathfrak{C}. Under these circumstances we are forced to conclude that, so far as can be judged from the observations here given, in the case of a vessel swung for the first time it is impossible to make any reliable estimate of the ratio of the hard to the soft iron force in the coefficients \mathfrak{B} and \mathfrak{C}; and, therefore, it is also impossible to make any reliable estimate as to what changes her deviations will undergo upon a change of magnetic latitude. As a further proof of this, we see that the After Azimuth Compass, with a maximum deviation of $10^{\circ} 5^{\prime}$, changed its deviation during the cruise by only $1^{\circ} 43^{\prime}$, that is, by about one-sixth of its whole amount; while the Forward Binnacle Compass, with a maximum deviation of only $7^{\circ} 43^{\prime}$ changed its deviation during the cruise by $9^{\circ} 42$, that is, by about one and a quarter times its whole amount.

In the beginning of this section it was stated that, at the positions oceupied by the Admiralty Standard and Λ fter Azimuth Compasses, observations of deflection and dip were made in order to determine the absolute magnetic force; and the details of the metlood followed in taking these observations were explained. We will now proceed to reduce and discuss the observations themselves, and for that purpose the first thing necessary to be known is the magnetic moment of the deflecting magnets. For its determination we have the observations recorded in the following table, which were all made on shore. The first and second columns
of the table give the place where, and the date when, each observation was made. The third and fourth columns give respectively the observed deflections when the north ends of the deflecting magnets were directed towards the west and towards the east; the distance of their centres from the centre of the compass needle being in both eases eleven inches. The fifth column gives the mean of the four observed deflections recorded in the third and fourth columns. The sixth, seventh, and eighth columns contain, in precisely the same manner, the observed deflections, and their mean, when the centres of the deflecting magnets were at a distance of fifteen inches from the centre of the compass needle. Now, let r be the distance, expressed in fect, between the centres of the deflecting magnets and the centre of the compass needle ; u, the observed angle of deflection given for each value of r in the column headed "mean"; m, the combined magnetic moment of the two deflecting magnets; and H, the earth's horizontal force at the place where the observation was made, taken from the table on page 61 . Then we shall have

$$
\frac{1}{2} r^{3} \tan u=\frac{m}{\bar{H}}
$$

and the ninth column contains the mean of the two values of $\log \cdot \frac{m}{H}$ computed respectively from the angles of deflection observed with $r=11$ inches $=0.917$ foot, and $r=15$ inches $=1.250$ feet. The tenth column contains the value of $\log . m$, found by adding to $\log \frac{m}{H}$ the known value of $\log . H$.

Station.	Date.	Deflections.						$\log \cdot \frac{m^{2}}{H}$.	Log. m.
		$r=11$ inches.			$r=15$ inches.				
		West.	East.	Mean.	West.	East.	Mean.		
Gosport . - .St. Thomas . .	Oct. 30, 1865	$\begin{array}{ll} 19^{\circ} & 30^{\prime} \\ 19 \end{array}$	$\begin{array}{ll} 22^{\circ} & 40^{\prime} \\ 22 & 20 \end{array}$	$20^{\circ} 52^{\prime}$	$\begin{array}{ll} 14^{\circ} & 30^{\prime} \\ 14 & 20 \end{array}$	$\begin{aligned} & 17^{\circ} 30^{\prime} \\ & 17 \end{aligned}$	*16 $6^{\circ}{ }^{\prime}$	9.1617	9.8344
	Nov. 13, 1865	$\begin{array}{ll}15 & 20 \\ 15 & 30\end{array}$	14 14 14 150		4 4 4 5	640 640	$5 \quad 32$	8.9961	9.8251
Salute Islands	Nov. 28, 1865	1435			520	$5 \quad 20$			
	Dec. 27, 1865	1435	$\begin{array}{ll}15 & 5 \\ 16\end{array}$	14.49	$\begin{array}{ll}4 & 55 \\ 6 & 10\end{array}$	$\begin{array}{ll}5 & 20 \\ 5 & 30\end{array}$	514	8.9799	9.8079
Bahia. - .		15 15 16 16	16 10	1610	$\begin{array}{ll}6 & 10 \\ 5 & 40\end{array}$		542	9.0184	9.8108
Rio Janeiro .	Jan. 6, 1866	17.0	178		$\begin{array}{ll}5 & 40 \\ 6 & 0\end{array}$	$\begin{array}{ll}6 \\ 6 & 0 \\ 5\end{array}$	610	9.0476	9.8216
Monte Video	Jan. 18, 1866	$\begin{array}{rrr}17 & 0 \\ 16 & 40\end{array}$	1640		620				
	Feb. 7, 1866	$17 \quad 0$	1640	1645	6 10		$5 \quad 52$	9.0328	9.8130
Sandy Point		$\begin{array}{ll} 16 & 30 \\ 16 & 40 \end{array}$	$\begin{aligned} & 1620 \\ & 16 \quad 20 \end{aligned}$	$16 \quad 27$	5 6 40 0	$\begin{array}{ll}6 & 40 \\ 6 & 30\end{array}$	$6 \quad 12$	9.0408	9.8270
Valparaiso	March 2, 1866	17 o	15 o		720	5 5			
Valparaiso		$16 \quad 40$	1440	$15 \quad 50$			12	9.0320	9.8326
	April 7, 1866	$\begin{array}{ll}14 & 40 \\ 14 & 30\end{array}$	$\begin{array}{ll}17 & 40 \\ 17 & 30\end{array}$	16	$\begin{array}{ll}4 & 30 \\ 4 & 20 \\ \end{array}$	$\begin{array}{ll}7 & 30 \\ 7 & 40\end{array}$		9.0284	9.8290
Callao	April 26, 1866	$\begin{array}{ll}14 & 30 \\ 14 & 30 \\ 14 & 30\end{array}$	14 14 14 13 13		$\begin{array}{ll}5 & 20 \\ 5 & 10\end{array}$	$\begin{array}{ll}5 & 10 \\ 5 & 30\end{array}$			
Panama . . .	May 14, 1866	$\begin{array}{ll}14 & 30 \\ 12 & 50\end{array}$	$\begin{array}{lll}14 & 30 \\ 13 & 30 \\ \\ \\ & 30\end{array}$		5 4 4 40 30	$\begin{array}{ll}5 & 30 \\ 5 & 20\end{array}$	518	8.9777	9.8222
		1310	1330	$13 \quad 15$				8.93	9.8195°
Acapulco	May 30, 1866	12 12 12 12	$\begin{array}{ll}12 & 20 \\ 12 & 10\end{array}$		4 5 50	4 4 4 40		8.9227	9.8107
San Francisco	June 26, 1866	1740	170		$7{ }^{5}$	(10			9.8208
		18 -	1640	1720	710		42	9.0698	9.8208

[^23]The observed values of log. m show no trace whatever of any change depending upon the time, and therefore the indiscriminate mean of them all has been taken as the truth, and we have

$$
\text { Log. } m=9.8211 \pm 0.0016
$$

The probable error of a single observed value of $\log . m$ is ± 0.0058.
The following table contains all the observations which were made at the position occupied by the Admiralty Standard Compass on board the Monadnock, for the determination of absolute force. The first nine columns contain quantities precisely similar to those in the columns headed in the same manner in the table last given. The column headed "Log. H^{\prime} " gives the logarithm of the combined horizontal force of the earth and ship, obtained by subtracting $\log \cdot \frac{m}{H^{\prime}}$ from the value of \log. m given above. The column " θ '" contains the dip, which was observed immediately after the deflections. The column "Log. $Z^{\prime \prime}$ " contains the logarithm of the combined vertical force of the earth and ship, computed from the quantities in the tenth and eleventh columns by the formula $Z^{\prime}=H^{\prime} \tan \theta^{\prime}$. The columns " $\log \cdot \frac{H^{\prime}}{H}$," and "Log. $\frac{Z}{Z}$ ", explain themselves when it is stated that H represents the horizontal force of the earth; H^{\prime} the combined horizontal force of the earth and ship; Z the earth's vertical force; and Z^{\prime} the combined vertical force of the earth and - ship. The column " ζ "" contains the azimuth of the ship's head as read off from the compass card at the time the deflections were observed; and the column " ζ " contains the same azimuth, counted from the true magnetic north.
Admiralty Standard Compass.

Station.	Date.	Deffection.						$\log \cdot \frac{n z}{H^{\prime}}$	Log. II' $^{\prime}$	θ^{\prime}	Log. Z^{\prime}	Log. $\frac{H I^{\prime}}{H}$	Log. $\frac{Z^{\prime}}{Z}$	ζ^{\prime}	ζ
		$r=11$ inches.			$r=15$ inches.										
		West.	East.	Mean.	West.	East.	Mean.								
Hampton Roads	Nov. 1, 1865	$\begin{aligned} & 22^{20} 201 \\ & 21 \end{aligned}$	$\begin{array}{ll} 26^{\circ} & 0^{\prime} \\ 26 & 3^{\circ} \end{array}$												
		230	${ }^{23} 40$	$23^{\circ} 44^{\prime}$				9.2288	0.5923			9.9196		W. (?)	
St. Thomas	Nov. 15, 8865	$\begin{array}{ll} 17 & 10 \\ 17 & 20 . \end{array}$	$\begin{array}{ll} 15 & 40 \\ 15 & 50 \end{array}$	$16 \quad 30$	$\left.\begin{array}{lll} 6^{\circ} & 3^{\prime \prime} \\ 6 & 40 \end{array} \right\rvert\,$	$\begin{aligned} & 7^{\circ} 10 \\ & 7 \end{aligned}$	$6^{\circ} 5^{\prime}$	9.0628	0.7583			9.9293		East.	
Salute Islands	Nov. 30, 1865	$\begin{array}{ll} 16 & 20 \\ 16 & 30 \end{array}$	$\begin{array}{lll} 16 & 0 \\ 16 & 0 \end{array}$	$16 \quad 12$	$\left.\begin{array}{ll} 6 & 20 \\ 6 & 40 \end{array} \right\rvert\,$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	6 10	9.0361	0.7850	$+41^{\circ} 30^{\prime}$	0.7318	9.9570	0.0644	N. $85^{\circ} \mathrm{E}$.	N. $89^{\circ} 41^{\prime} \mathrm{E}$.
Ceara	Dec. 18, 1865	$\begin{array}{lll} 18 & \circ \\ 17 & 0 \end{array}$	$\begin{array}{cc} 16 \\ 16 \\ 16 \\ 0 \end{array}$	$16 \quad 50$	$\begin{array}{cc}7 & 0 \\ 6 & 30\end{array}$	6	622	9.0519	0.7692.			9.9566		N. 70 E.	N. 7430 E .
Bahia	Dec. 29, 1865	$\begin{array}{cc} 16 \\ 16 \\ 16 & 0 \\ 0 \end{array}$	$\begin{array}{ll} 16 \\ 16 \\ 16 \end{array}$	$16 \quad 5$	$\begin{array}{ll} 6 & 20 \\ 6 & 30 \end{array}$	$\begin{array}{lr}6 & 0 \\ 6 & 20\end{array}$	617	9.0385	0.7826	$+830$	9.957 ${ }^{\text {r }}$	9.9902	0.2786	N. 35 E.	N. $3^{8} \quad 2 \mathrm{E}$.
Rio Janeiro	Jan. 4, 8866	$\begin{array}{ll} 16 & 30 \\ 16 & 30 \\ 40 \end{array}$	$\begin{aligned} & 1640 \\ & 16440 \end{aligned}$	$16 \quad 37$	$\begin{array}{ll}6 & 20 \\ 6 & 20\end{array}$	${ }_{6}^{6}$ \%	612	9.0431	0.7780	-8	9.9258	0.0040	9. 8324	N. 4 W.	N. $43^{\circ} \mathrm{W}$.
Rio Janeiro	Jan. 4, r866	$\begin{array}{ll} 18 \\ 18 & 40 \\ 18 \end{array}$	$\begin{array}{ll} 18 & 40 \\ 18 & 40 \end{array}$	$18 \quad 37$	$\begin{array}{ll} 7 & 0 \\ 7 & 0 \end{array}$	$\begin{array}{ll} 7 & \text { ro } \\ 7 & 10 \end{array}$	75	9.0985	0.7226	-15 0	0.1506	9.9486	0.0572	S. 2 W .	S. I $5^{8} \mathrm{~W}$.
Monte Video	Jan. 24, 1866	$\begin{array}{lll} 18 & 0 \\ 18 & 0 \end{array}$	$\begin{array}{ll} 18 & 20 \\ 18 & 20 \end{array}$	$18 \quad 10$	$\begin{array}{lll}7 & 10 \\ 6 & 40\end{array}$	${ }^{6} 840$		g.0861	0.7350	-3630	0.6042	9.9548	0.0435	S. 20 E.	S. 1940 E .
Sandy Point	Fel. 9, 1866	$\begin{array}{lr} 16 & 0 \\ 16 & 4 \end{array}$	$\begin{array}{ll} 180 \\ 18 & 20 \\ 18 \end{array}$	$17 \quad 22$	$\begin{array}{lll} & 40 \\ 6 & 20 \\ 6 & 20 \end{array}$	$\begin{array}{ll} 7 & 20 \\ 7 & 30 \end{array}$	$6 \quad 52$	9.0757	0.7454	-60 30	0.9928	9.9592	0.0526	S. 39 W.	S. 394 W .
Valparaiso	March 20, 1866	$\begin{array}{ll} 16 & 40 \\ 16 & 30 \end{array}$	$\begin{array}{ll} 17 & 20 \\ 17 & 10 \end{array}$		$\begin{array}{ll} 6 & 30 \\ 6 & 30 \end{array}$	7 6 6 50		9.0631	0.7580	-42	0.7124	9:9574	0.0604	S. 20 W.	S. 209 W.
Valparaiso	April 4, 1866	$\begin{array}{ll} 17 & 20 \\ 17 & 20 \end{array}$	$\begin{array}{ll}14 & 40 \\ 14 & 40\end{array}$		$\begin{array}{cc} 7 & 0 \\ 7 & 20 \end{array}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$		9.0273	0.7938	-3615	0.6590	9.993 ${ }^{2}$	0.0070	N. 5 W.	N. 534 W .
Callao	April 30, 8866	$\begin{array}{ll} 16 & 30 \\ 15 & 40 \end{array}$	$\begin{aligned} & 16 \circ \\ & 15 \end{aligned}$	1548	$\begin{array}{ll} 6 & 20 \\ 6 & 30 \end{array}$	5 30 6		9.0274	0.7937	-745	9.9275	9.9492	0.0288	South.	S. - 13 W .
Panama	May 17, 1866	$\begin{array}{ll} 14 & 0 \\ 14 & \circ \end{array}$	$\begin{aligned} & 1240 \\ & 1340 \end{aligned}$	1325	$\begin{array}{lll} 5 & 20 \\ 5 & 20 \end{array}$	5 4 3 3		8.9489	0.8722	$+3645$	0.7454	9.9914	0.0699	N. 42 W.	N. 45
Acapulco.	M2y 3r, 1866	$\begin{array}{ll} 13 & 30 \\ 13 & 30 \end{array}$	$\begin{aligned} & 14 \quad 40 \\ & 14 \quad 40 \end{aligned}$	$14 \quad 5$	$\begin{array}{ll} 5 & 0 \\ 5 & 0 \end{array}$	$\begin{aligned} & 5 \\ & 5 \\ & 50 \end{aligned}$		8.9739	0.8472	+45 45	0.8586	$9.959{ }^{2}$	0.0484	S. 30 E .	S. 29 2 E.
San Francisco:	June 23, 1866	$\begin{gathered} 20 \\ 19 \\ 19 \end{gathered}$	$\begin{gathered} 20 \\ 20 \\ 20 \end{gathered}$	$20 \quad$	$\begin{array}{ll} 6 & 40 \\ 5 & 30 \end{array}$	${ }_{10}{ }^{\text {c }}$ -				$+67$	I. 0567		7	S. 20 E.	18

The following table contains, in precisely the same manner, all the observations which were made for the determination of absolute force at the position occupied by the Jfter Azimuth Compass on board the Monadnock.
After Azimuth Compass.

From the data already given, the value of λ was next computed by means of the formulæ

$$
\begin{aligned}
\sin \delta & =\frac{1}{1-\mathfrak{D} \cos 2 \zeta^{\prime}\left[2 \ddots+\mathfrak{B} \sin \zeta^{\prime}+\mathfrak{C} \cos \zeta^{\prime}+\mathfrak{D} \sin 2 \zeta^{\prime}+\mathbb{C} \cos 2 \zeta^{\prime}\right]} \\
\lambda & =\frac{H^{\prime}}{\Pi} \times \frac{\sin \delta}{21+\mathfrak{B} \sin \zeta+\mathfrak{C} \cos \zeta+\mathfrak{D} \sin 2 \zeta+\mathbb{C} \cos 2 \zeta}
\end{aligned}
$$

The individual results obtained from the observed values of $\frac{H^{\prime}}{\bar{H}}$ are as follows:

Taking the means, for the Admiralty Standard Compass, we have finally

$$
\lambda=0.924 \pm 0.0036
$$

and the probable error of a single observed value of λ is ± 0.013. For the After Azimuth compass we have finally

$$
\lambda=0.864 \pm 0.0107
$$

and the probable error of a single observed value of λ is ± 0.034.
In order to determine these coefficients which depend upon the value of $\frac{Z^{\prime}}{Z}$, we have equation (6 a), which is

$$
0=1-\frac{Z^{\prime}}{Z}+g \times \frac{\cos \zeta}{\tan \theta}-h \times \frac{\sin \zeta}{\tan \theta}+\pi+R \times \frac{1}{Z}
$$

But as R is liable to a slow change, a term depending upon the time is introduced, and then we get

$$
\begin{equation*}
0=1-\frac{Z^{\prime}}{Z}+g \times \frac{\cos \zeta}{\tan \theta}-h \times \frac{\sin \zeta}{\tan \theta}+\hbar+R \times \frac{1}{Z}+\Delta R \times \frac{t}{Z} \tag{6~b}
\end{equation*}
$$

where ΔR is the daily change in the value of R, and t is the time in days, counted from November 1,1865 . Each observed value of $\frac{Z^{\prime}}{Z}$ furnishes an equation of condition of the same form as (6 b), and from all the equations of condition thus obtained the most probable values of $g, h, 7, R$, and ΔR, can be found by the method of least squares.

The following are the equations of condition, formed in the manner just explained, for the Admiralty Standard Compass.

Absolute Term.	g	h	k	R	ΔR
$0=-0.160$	$+0.008$	-1.448	$+1.000$	$+0.215$	$+6.24$
$0-0.899$	$+10.23$	-8.007	$+1.000$	+ 2.097	+125.8
$0-+0.320$	-4.779	-0.376	$+1.000$	-0.806	-51.61
$0-0.141$	+ 4.791	-0.164	$+1.000$	-0.806	- 51.61
$0-0.108$	+ 1.561	$+0.558$	+1.000	-0.275	23.10
$0=-0.129$	$+0.545$	-0.442	+1.000	-0.115	- 11.48
$0=-0.149$	+ 1.322	-0.485	+1.000	-0.223	- 30.76
$0=-0.016$	I. 401	-0.140	$+1.000$	-0.223	- 34.32
$0=-0.068$	$+8.822$	-0.033	$+1.000$	-1.263	-227.3
$0=-0.175$	+ 1.132	+1.136	$+1.000$	+0.211	$+\quad 41.59$
$0=-0.118$	- 1.046	-0.580	+1.000	$+0.155$	+ 32.66
$0=-0.058$	- 0.497	-0.165	$+1.000$	$+0.093$	$+\quad 21.74$

From these equations of condition, the following normal equations have been obtained by the method of least squares.

Absolute Term.	g	h	k	R	$100 \Delta R$
$0=-12.462$	+ 237.337				
$\bigcirc \times \pm{ }^{\circ} \mathrm{C}=\begin{aligned} & 7.286 \\ & 1.701\end{aligned}$	[+ 68.794			
$\bigcirc=$ - 1.957	$+\quad 9.858$	-16.451	$\begin{array}{r}\text { a } \\ +\quad 12.000 \\ \hline 0.941 \\ \hline\end{array}$	$+7.605$	
$0=-1.112$	- 7.513	- 9.444	- 2.022	+6.735	$+7.892$

Solving, we find

$$
\begin{array}{lr}
g=+0.04070 & k=+0.1006 \\
h=+0.00504 & R=+0.1665 \\
& 100 \Delta R=+0.0694
\end{array}
$$

Substituting these results in the equations of condition, we find that the probable error of a single observed value of $\frac{Z^{\prime}}{Z}$ is ± 0.024, and the probable error of a computed value of $\frac{Z^{\prime}}{Z}$ is ± 0.007.

In a precisely similar manner, from the values of $\frac{Z^{\prime}}{Z}$ observed at the position of the After Azimuth Compass, we obtain the following equations of condition.

Absolute Term.	g	h	k	R	ΔR
$0=+0.501$	-4.790	+0.173	$+1.000$	-0.806	51.61
$0=-0.625$	+4.663	-1.114	+1.000	-0.806	- 51.61
$0=-0.115$	+0.979	+1.338	$+1.000$	-0.275	- 23.10
$0=+0.059$	+0.358	-0.603	$+1.000$	-0.115	- 11.48
$0=-0.101$	+1.370	-0.324	$+1.000$	-0.223	- 30.76
$0=+0.152$	-1.393	-0.205	$+1.000$	-0.223	-34.32
$0=-0.602$	+8.823	$+0.031$	$+1.000$	- 1.263	- 227.3
$0=-0.165$	+ 1.250	+1.006	$+1.000$	+ 0.211	+ 41.59
$0=-0.049$	+0.314	+ 1.154	+1.000	+0.155	+ 32.66
$0=+0.094$	-0.257	-0.456	+1.000	+0.093	P1 $+\quad 32.74$

And the resulting normal equations are

Absolute Term.	g	h	k	R	$100 \Delta R$
$0=-11.313$	+ 129.164				
$0=+0.311$	- 3.078	+6.125			
$0=-0.851$	+ 11.317	+1.000	+ 10.000		
$0=+0.840$	- 11.053	+ 0.888	- 3.253	$+3.161$	
$0=+1.367$	- 19.634	+1.042	- 3.342	+ 4.084	$+6.305$

Solving, we find

$$
\begin{array}{lr}
g=+0.11398 & k=-0.0509 \\
h=+0.00981 & R=-0.3918 \\
& 100 \Delta R=+0.3634
\end{array}
$$

Substituting these results in the equations of condition, the probable error of a single observed value of $\frac{Z^{\prime}}{Z}$ comes out ± 0.030, and the probable error of a computed value of $\frac{Z^{\prime}}{Z}$ comes out ± 0.010.

For the Admiralty Standard Compass we found $\mathfrak{F}=0.000, \mathfrak{D}=+0.017$, and $\mathfrak{E}=-0.001$. We have also

$$
\begin{aligned}
& a=\lambda(1+\mathfrak{D})-1 \\
& e=\lambda(1-D)-1 \\
& b=\lambda(\mathfrak{H}-\mathfrak{Y}) \\
& d=\lambda(\mathbb{C}+\mathfrak{2})
\end{aligned}
$$

Hence

$$
\begin{array}{ll}
a=-0.0605 & e=-0.0917 \\
b=-0.0008 & d=-0.0008
\end{array}
$$

For the After Azimuth Compass we found $\mathfrak{\imath}=0.000, \mathfrak{D}=+0.112$, and $\mathfrak{F}=0.000$. Hence, in the same manner,

$$
\begin{array}{ll}
a=-0.0396 & e=-0.2324 \\
h-00000 & d=0.0000
\end{array}
$$

Collecting our results, we have the following final values of the coefficients of the

Admiralty Standard Compass.

$\mathfrak{A}=0.000$
$\mathfrak{B}=+0.0240 \tan \theta+0.460 \frac{\mathrm{r}}{H}-0.00102 \frac{t}{H} \pm 0.001$
$\mathbb{C}=-0.0016 \tan \theta+0.006 \frac{\mathrm{r}}{H}-0.00023 \frac{t}{H} \pm 0.002$
$D=+0.017 \pm 0.001$
$\mathrm{C}=-0.001 \pm 0.001$
$\frac{Z^{\prime}}{Z}=1+0.0407 \frac{\cos \zeta}{\tan \theta}-0.0050 \frac{\sin \zeta}{\tan \theta}+0.1006+0.1665 \frac{1}{Z}+0.000694 \frac{t}{Z} \pm 0.007$
27 December, 1872.

$$
\begin{array}{l|c|c}
\lambda=+0.924 \pm 0.004 & & \\
\frac{c}{\lambda}=+0.0240 & c=+0.022 \mathrm{I} & b=-0.0008 \\
\frac{P}{\lambda}=+0.460 & P=+0.425 & d=-0.0008 \\
\frac{\Delta P}{\lambda}=-0.00102 & \Delta P=+0.00094 & e=-0.0917 \\
\frac{f}{\lambda}=-0.0016 & f=-0.0015 & g=+0.0407 \\
\frac{Q}{\lambda}=+0.006 & Q=+0.006 & h=+0.0050 \\
\frac{\Delta Q}{\lambda}=-0.00023 & \Delta Q=-0.00021 & k=+0.1006 \\
& a=-0.0605 & R=+0.166 \\
& & \Delta R=+0.00069
\end{array}
$$

Hence, the general equations for the determination of the deviations of this compass are

$$
\begin{aligned}
X^{\prime} & =X-0.0605 X-0.0008 Y+0.0221 Z+0.425-0.00094 t \\
Y^{\prime} & =Y-0.0008 X-0.0917 Y-0.0015 Z+0.006-0.00021 t \\
Z^{\prime} & =Z+0.0407 X+0.0050 Y+0.1006 Z+0.166+0.00069 t
\end{aligned}
$$

The following are the final values of the coefficients of the

After Azimuth Compass.

$$
\begin{aligned}
& \mathfrak{Y}=0.000 \\
& \mathfrak{B}=-0.0026 \tan \theta-0.373 \frac{1}{H}-0.00032 \frac{t}{H} \pm 0.004 \\
& \text { § }=+0.0066 \tan \theta-0.044 \frac{1}{H}+0.00039 \frac{t}{H} \pm 0.004 \\
& \mathfrak{D}=+0.112 \pm 0.003 \\
& \text { ほ. }=0.000 \pm 0.003 \\
& \frac{Z^{\prime}}{Z}=1+0.1140 \frac{\cos \zeta}{\tan \theta}-0.0098 \frac{\sin \zeta}{\tan \theta}-0.0509-0.3918 \frac{1}{Z}+0.00363 \frac{t}{Z} \pm 0.010 \\
& \lambda=+0.864 \pm 0.011 \\
& \begin{array}{l|c|c}
\frac{c}{\lambda}=-0.0026 & c=-0.0022 & b=0.0000 \\
\frac{P}{\lambda}=-0.373 & P=-0.322 & d=0.0000 \\
\frac{\Delta P}{\lambda}=-0.0003^{2} & \Delta P=-0.00027 & e=-0.2324 \\
\frac{f}{\lambda}=+0.0066 & f=+0.0058 & g=+0.1140 \\
\frac{Q}{\lambda}=-0.044 & Q=-0.038 & h=+0.0098 \\
\frac{\Delta Q}{\lambda}=+0.00039 & \Delta Q=+0.00034 & k=-0.0509 \\
& a=-0.0396 & R=-0.392 \\
\Delta R=+0.00363
\end{array}
\end{aligned}
$$

Hence, the general equations for the determination of the deviations of this compass are

$$
\begin{aligned}
X^{\prime} & =X-0.0396 X-0.0000 Y-0.0022 Z-0.322-0.00027 t \\
Y^{\prime} & =Y-0.0000 X-0.23^{24} Y-0.0058 Z-0.03^{8}+0.00034 t \\
Z^{\prime} & =Z+0.1140 X+0.0098 Y-0.0509 Z-0.39^{2}+0.00363 t
\end{aligned}
$$

The constants P, Q, R, are the resolved values of the hard iron magnetism of the slip; and in order to show as clearly as possible how it varied during the cruise, at the positions occupied by the two compasses under discussion, the following table is appended. The columns headed " F " contain the values of the total hard iron force, computed by means of the formula

$$
F=\sqrt{P^{2}+Q^{2}+R^{2}}
$$

Date.	Admiralty Standard Compass.				After Azimuth Compass.			
	P.	ϱ.	R.	F.	P.	Q.	R.	F.
November 1, 1865	+0.425	$+0.006$	+0.166	0.456	-0.322	-0.038	-0.392	0.509
June 23, 1866	+0.205	-0.043	+0.327	0.388	-0.385	+0.042	+0.457	0.599

Thus it appears that in the interval between November 1, 1865, and June 23, 1866, the total hard iron force had decreased fifteen per centum at the position of the Admiralty Standard Compass, while it had increased eighteen per centum at the position of the After Azinuth Compass; and in both cases the changes in the direction of the force were very great. On the whole, the so-called permanent and sub-permanent magnetism of the Monadnock seem to have been in a very unstable condition.

There were some places where observations of the deviations of the compasses were obtained on a number of points less than thirty-two, because the ship could not be made to swing completely around. In order to deduce from these observations the corresponding values of the coefficients $A_{1}, B_{1}, C_{1}, D_{1}, E_{1}$, we remark that each observed deviation furnishes an equation of condition of the form

$$
0=-\delta+A_{1}+B_{1} \sin \zeta+C_{1} \cos \zeta+D_{1} \sin 2 \zeta+E_{1} \cos 2 \zeta
$$

and from all the equations thus obtained the values of the cocfficients must be found by the method of least squares. As all the compasses were observed simultaneously; the deviations at each place are given on the same points in the case of each compass. Hence, although the absolute terms in the equations of condition will be different, the numerical coefficients of the unknown quantities A_{1}, B_{1}, C_{1}, D_{1}, E_{1}, will be identical for all the compasses at any one station. Advantage has been taken of this circumstance in forming the following table, which gives the equations of condition for all the compasses at Ceara. The absolute terms of the equations of condition belonging ${ }^{\circ}$ to any compass will be found in the column headed with the name of that compass, while the coefficients of the remaining terms of the equations will be found in the columns headed $A_{1}, B_{1}, C_{1}, D, E_{1}$. For example, the first equation of condition for the Admiralty Standard Compass is

$$
0=-170+A_{1}+0.195 B_{1}+0.981 C_{1}+0.383 D_{1}+0.92+E_{1} .
$$

In the same way, the first equation of condition for the After Bmacle Compass is

$$
0=-220+A_{1}+0.195 B_{1}+0.981 C_{1}+0.383 D_{1}+0.924 E_{1} .
$$

Equations of Condition at Ceara.

Absolute Terms.						Coefficients of the Unknown Quantities.				
		我		?						
						A_{1}	B_{1}	C_{1}	D_{1}	E_{1}
-170	- 220	- 820	- 180^{\prime}	- 110^{\prime}	-430^{\prime}	+1.000	+0.195	+0.981	$+0.383$	+0.924
210	-310	- 820	- 270	110	- 520	+1.000	+0.383	+0.924	+0.707	+0.707
260	- 390	- 820	- -280	- 110	-600	+1.000	+0.556	+0.831	+0.924	+0.383
-350	- 470	- 970	- 280	- 180	- 480	+1.000	+0.707	+0.707	+1.000	0.000
-340	-420	- 990	- 211	- 130	- 380		+0.831		+0.924	-0.383
-330	-410	- 1140	- 200	- 110	- 300	+1.000	+0.924	+0.383	+0.707	-0.707
-310	- 410	- 1020	- 130	- 40	- 420	+1.000	+0.981	+0.195	+0.383	-0.924
- 230	-260	- 850	- 110	+ 40	-170	+1.000	+1.000	0.000	0.000	- 8.000
- 210	- 240	-690 660	- 110	a	- 40	+1.000	+0.981	-0.195	-0.383	-0.924
- 170	- 170	- 660	- 40	+ 140	- 30	+1.000	+0.924	-0.383	-0.707	-0.707

From these equations of condition five normal equations were obtained for each compass by the method of least squares; but on attempting to solve them the numerical coefficients of D_{1} and E_{1} came out so small that no confidence could be placed in the resulting values of these quantities; and moreover, the uncertainty of them vitiated the values of A_{1}, B_{1}, and C_{1}. It was therefore considered best to reject the normal equations in D_{1} and E_{1}, and to employ in their stead the equations

$$
\begin{aligned}
& 0=-D+\mathrm{D}_{1}+\frac{1}{2}\left(B_{1}{ }^{2}-C_{1}^{2}\right) \\
& 0=-\mathbb{C}+\mathrm{E}_{1}+B_{1} C_{1}+A_{1} D_{1}
\end{aligned}
$$

using for \mathfrak{D} and \mathbb{C} the numerical values already found. The following are the normal equations thus formed, and the resulting values of $A_{1}, B_{1}, C_{1} D_{1}$, and E_{1}, for each compass. For convenience of computation, the unit of the absolute terms of the normal equations has been changed from minutes of are to radius.

Admiralty Standard Compass.

$$
\begin{aligned}
& 0=-0.7505+10.000 A_{1}+7.482 B_{1}+3.999 C_{1}+3.938 D_{1}-2.631 E_{1}{ }_{1}+7.482 A_{1}+6.357 B_{1}+1.969 C_{1}+2.334 D_{1}-3.774 E_{1} \\
& 0=-0.5789+3.999 A_{1}+1.969 B_{1}+3.685 C_{1}+3.708 D_{1}+1.665 E_{1} \\
& 0=-0.3183+3.0 .2\left(B_{1}^{2}-C_{1}^{2}\right) \\
& 0=-0.0169+D_{1}+\frac{1}{2}\left(B_{1} C_{1}\right. \\
& 0=+0.0009+E_{1}+B_{1}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& A_{1}=-0.0102=-0^{\circ} 35^{\prime} .1 \\
& B_{1}=+0.0833=+446.3 \\
& C_{1}=+0.0405=+219.2 \\
& D_{1}=+0.0142=+0 \\
& E_{1}=-0.0043=-0 \\
& \hline 1.8 \\
& \hline
\end{aligned}
$$

After Binnacle Compass.

$$
\begin{aligned}
& 0=-0.9599+10.000 A_{1}+7.482 B_{1}+3.999 C_{1}+3.938 D_{1}-2.631 E_{1} \\
& 0=-0.7253+7.482 A_{1}+6.317 B_{1}+1.969 C_{1}+2.334 D_{1}-3.774 E_{1} \\
& 0=-0.4413+3.999 A_{1}+1.969 B_{1}+3.685 C_{1}+3.708 D_{1}+1.665 E_{1} \\
& 0=-0.0385+D_{1}+\frac{1}{2}\left(B_{1}^{2}-C_{1}^{2}\right) \\
& 0=+0.0018+E_{1}+B_{1} C_{1}+0.0047\left(B_{1}^{2}-C_{1}^{2}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& A_{1}=+0.0062=+0^{\circ}{ }_{21} 1^{\prime} \cdot 3 \\
& B_{1}=+0.080 \mathrm{r}=+4 \\
& C_{1}=+0.0362=+2 \\
& D_{1}=+0.0360=+2 \\
& E_{1}=-0.0048=-0 \\
& 16.6
\end{aligned}
$$

After Ritchie Compass.

$0=-2.5540+10.000 A_{1}+7.482 B_{1}+3.999 C_{1}+3.938 D_{1}-2.631 E_{1}$
$0=-1.9282+7.482 A_{1}+6.317 B_{1}+1.969 C_{1}+2.334 D_{1}-3.774 E_{1}$
$0=-1.0844+3.999 A_{1}+1.969 B_{1}+3.685 C_{1}+3.708 D_{1}+1.665 E_{1}$
$0=-0.0340+D_{1}+\frac{1}{2}\left(B_{1}^{2}-C_{1}{ }^{3}\right)$
$0=+0.0008+E_{1}+B_{1} C_{1}$
Hence

$$
\begin{aligned}
& A_{1}=+0.1030=+5^{\circ} 54^{\prime} .2 \\
& B_{1}=+0.1385=+7 \\
& C_{1}=+0.0859=+4 \\
& D_{1}=+0.0281=+1 \\
& E_{1}=-0.0127=-0.6 \\
& E_{1}=-43.7
\end{aligned}
$$

Forward Alidade Compass.

$$
\begin{aligned}
& 0=-0.5265+10.000 A_{1}+7.482 B_{1}+3.999 C_{1}+3.938 D_{1}-2.631 E_{1} \\
& 0=-0.3589+7.482 A_{1}+6.317 B_{1}+1.969 C_{1}+2.334 D_{1}-3.774 E_{1} \\
& 0=-0.3022+3.999 A_{1}+1.969 B_{1}+3.685 C_{1}+3.708 D_{1}+1.665 E_{1} \\
& 0=-0.0235+D_{1}+\frac{1}{2}\left(B_{1}^{3}-C_{1}^{2}\right) \\
& 0=-0.0007+E_{1}+B_{1} C_{1}+0.0125\left(B_{1}^{2}-C_{1}^{3}\right)
\end{aligned}
$$

Hence

$$
\begin{array}{ll}
A_{1}=+0.0359=+2^{\circ} & 3^{\prime} \cdot 5 \\
B_{1}=+0.0001=+0 & 0.2 \\
C_{1}=+0.0188=+1 & 4.8 \\
D_{1}=+0.0237=+1 & 21.4 \\
E_{1}=+0.0007=+0 & 2.4
\end{array}
$$

Forward Binnacle Compass.

$$
\begin{aligned}
& 0=-0.1396+10.000 A_{1}+7.482 B_{1}+3.999 C_{1}+3.938 D_{1}-2.631 E_{1} \\
& 0=-0.0593+7.482 A_{1}+6.317 B_{1}+1.969 C_{1}+2.334 D_{1}-3.774 E_{1} \\
& 0=-0.1831+3.999 A_{1}+1.969 B_{1}+3.685 C_{1}+3.708 D_{1}+1.665 E_{1} \\
& 0=-0.0369+D_{1}+\frac{1}{2}\left(B_{1}{ }^{2}-C_{1}^{2}\right) \\
& 0=-0.0011+E_{1}+B_{1} C_{1}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& A_{1}=-0.0159=-0^{0} 54^{\prime} .7 \\
& B_{1}=+0.0072=+0 \\
& C_{1}=+0.0253=+1 \\
& D_{1}=+0.0372=+2 \\
& E_{1}=+0.0009=+0 \\
& E_{1}=+3.2
\end{aligned}
$$

Forward Ritchie Compass．

$$
\begin{aligned}
& 0=-0.9803+10.000 A_{1}+7.482 B_{1}+3.999 C_{1}+3.938 D_{1}-2.631 E_{1} \\
& 0=-0.6394+7.482 A_{1}+6.317 B_{1}+1.969 C_{1}+2.334 D_{1}-3.774 E_{1} \\
& 0=-0.6193+3.999 A_{1}+1.969 B_{1}+3.685 C_{1}+3.708 D_{1}+1.665 E_{1} \\
& 0=-0.0407+D_{1}+\frac{1}{2}\left(B_{1}^{3}-C_{1}^{3}\right) \\
& 0=+0.0013+E_{1}+B_{1} C_{1}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& A_{1}=+0.0614=+3^{0} 3^{\mathrm{I}^{\prime} .0} \\
& B_{1}=-0.0076=-0 \quad 26.1 \\
& C_{1}=+0.063^{\mathrm{I}}=+33^{6.9} \\
& D_{\mathrm{r}}=+0.0427=+2 \\
& E_{1}=-0.0011=-0 \quad 3.9
\end{aligned}
$$

The following are the equations of condition，together with the resulting normal equations，and the values of the coefficients $A_{1}, B_{1}, C_{1}, D_{1}, E_{1}$ ，as determined for each compass from the obscrvations made at Rio Janciro．

Equations of Condition at Rio Janeiro．

Absolute Terms．							Coefficients of the Unknown Quantities．				
	萛	范	感								
							A_{1}				
290＇	－ 320^{\prime}	－ 840°	－ 160^{\prime}	－ 250^{\prime}		－500＇		＋0．556	＋0．831	＋0．924	$+0.383$
360	－ 410	二 840	－ 160	－ 250	-160 -160	－ 500	＋1．000	＋0．707	＋0．831	＋1．000	0．000
390	－430	－ 840	－ 20	－ 250		－370	＋1．000	＋0．831	＋0．556	＋0．924	-0.383
350	－ 430-360	－ 970	＋130+160	a -180 -160	－ 160	－ 460	＋ 1.000+1.000	＋0．924	＋0．383	＋0．707	－0．707
330		－ 970		－160	－ 160	$\begin{aligned} & \text { 二 } 460 \\ & -500 \end{aligned}$		＋0．98ı	＋0．195	＋0．383	－0．924
320	$\begin{array}{r} \quad 340 \\ -340 \end{array}$	－880	＋ 280	－ 160	－ 160	$\begin{array}{r} 500 \\ -440 \end{array}$		＋1．000	0.000	0.000	－ 1.000
300		－ 720		－ 160	-100	$\begin{array}{r} 420 \\ -420 \end{array}$	$\begin{gathered} +1.000 \\ +1.000 \end{gathered}$	＋0．98ı	－0．195	－0．383	－0．924
280	$\begin{aligned} & -340 \\ & -280 \end{aligned}$	－ 720		－ 160 -160	-140	-350		＋0．824	－0．383	－0．707	－0．707
＋ 260 +240	－ 280	－ 510	+410 $+\quad 440$	-160	-100		$\begin{aligned} & +1.000 \\ & +1.000 \end{aligned}$		－0．556	－0．924	-0.383
＋ 203 +200	－ 170	－ 590	$\begin{array}{r} +440 \\ +400 \end{array}$	－ 160	$\begin{aligned} & -\quad 100 \\ & -\quad 20 \end{aligned}$	-33°	$\begin{aligned} & +1.000 \\ & +1.000 \end{aligned}$	$+0.556$	二－0．787	－ 1.000	0.000
210	－ 110	－ 510	+200 $+\quad 70$	－ 230	－ 80	－ 330	$\begin{aligned} & 1.000 \\ & +\quad 1.000 \end{aligned}$		－0．924	－0．707	$\begin{array}{r}\text {＋} 0.383 \\ +\quad 0.707 \\ \hline\end{array}$
－170	90	－ 510	+70 $+\quad 20$	－ 250	－ 80	－ 270	$\begin{array}{r} +1.000 \\ +1.000 \end{array}$	$\begin{array}{r} +0.383 \\ +\quad 0.195 \end{array}$	－0．98t	－0．383	$\begin{array}{r} +0.924 \\ +\quad 1.000 \end{array}$
150	－ 90	－ 510	$\begin{array}{r} 20 \\ -\quad 190 \end{array}$	－ 250	－ 140			$\begin{array}{r} +0.195 \\ 0.000 \end{array}$	－ 1.000	0.000+0.383+0.707	
140	20	－ 510		－310		－ 230 -180	$\begin{array}{r} +1.000 \\ +1.000 \end{array}$	－0．195	－0．981		$\begin{array}{r} +0.924 \\ +0.707 \\ +0.383 \end{array}$
			－ 290	$\begin{array}{r} -330 \\ -330 \end{array}$	－ 80	－ 230	$+1.000$				
－ 90		－ $5101-310$				－ 250	＋ 1.000	－0．383	$\left\lvert\, \begin{aligned} & -0.924 \\ & -0.831 \end{aligned}\right.$	＋0．924	

Normal Equations．

Admralty Standard Compass．

$$
\begin{aligned}
& 0=-1.2217+17.000 A_{1}+8.442 B_{1}-5.641 C_{1}+0.924 D_{1}+0.383 E_{1} \\
& 0=-0.7991+8.442 A_{1}+8.310 B_{1}+0.462 C_{1}-1.205 D_{1}-4.543 E_{1} \\
& 0=+0.1662-5.641 A_{1}+0.462 B_{1}+8.691 C_{1}+3.900 D_{1}-4.438 E_{1} \\
& 0=-0.0169+D_{1}+\frac{1}{2}\left(B_{1}^{2}-C_{1}^{2}\right) \\
& 0=+0.0009+E_{1}+B_{1} C_{1}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& A_{1}=+0.0453=+2^{\circ} \quad 35^{\prime} .7 \\
& B_{1}=+0.0519=+25 \\
& C_{1}=+0.0001=+0 \\
& D_{1}=+0.0156=+0 \\
& D_{1}=+0.2 \\
& E_{1}=-0.0009=-0 \\
& \hline 0.1
\end{aligned}
$$

After Binnacle Compass.

$$
\begin{aligned}
& \circ=-1.1228+17.000 A_{1}+8.442 B_{1}-5.641 C_{1}+0.924 D_{1}+0.383 E_{1} \\
& 0=-0.8724+8.442 A_{1}+8.310 B_{1}+0.462 C_{1}-1.205 D_{1}-4.543 E_{1} \\
& 0=-0.0346-5.641 A_{1}+0.462 B_{1}+8.691 C_{1}+3.900 D^{1}-4.43^{8} E_{1} \\
& 0=-0.0385+D_{1}+\frac{1}{2}\left(B_{1}{ }^{2}-C_{1}{ }^{2}\right) \\
& 0=+0.0018+E_{1}+B_{1}{ }^{2} C_{1}+0.0047\left(B_{1}{ }^{2}-C_{1}{ }^{2}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& A_{1}=+0.0148=+0^{\circ} \quad 50^{\prime} .8 \\
& B_{1}=+0.0947=+5 \\
& C_{1}=-0.0073=-0 . \\
& D_{1}=+0.0340=+1 \\
& E_{1}=-0.0012=-0.1 \\
& \hline 27.1
\end{aligned}
$$

After Ritchie Compass.

$0=-3.3336+17.000 A_{1}+8.442 B_{1}-5.64 \mathrm{I} C_{1}+0.924 D_{1}+0.383 E_{1}$ $0=$ - $1.9499+8.442 A_{1}+8.310 B_{1}+0.462 C_{1}-1.205 D_{1}-4.543 E_{1}$ $0=+0.6086-5.641 A_{1}+0.462 B_{1}+8.691 C_{1}+3.900 D_{1}-4.438 E_{1}$ $0=-0.0340+D_{1}+\frac{1}{2}\left(B_{1}{ }^{2}-C_{1}{ }^{2}\right)$ $0=+0.0008+E_{1}+B_{1} C_{1}$

$$
\begin{aligned}
& A_{1}=+0.1684=+9^{\circ} \\
& B_{1}=+0.0659=+3 \\
& C_{1}=+0.0 \\
& D_{1}=+0.03203=+1 \\
& E_{1}=-0.0021=-1 \\
& \hline 0.8 \\
& 50.1 \\
& 7.0
\end{aligned}
$$

After Azimuth Compass.

$0=+0.4916+17.000 A_{1}+8.442 B_{1}-5.641 C_{1}+0.924 D_{1}+0.383 E_{1}$
$0=+0.6880+8.442 A_{1}+8.310 B_{1}+0.462 C_{1}-1.205 D_{1}-4.543 E_{1}$
$0=-0.2024-5.641 A_{1}+0.462 B_{1}+8.691 C_{1}+3.900 D_{1}-4.438 E_{1}$
$0=-0.1116+D_{1}+\frac{1}{2}\left(B_{1}^{3}-C_{1}^{2}\right)$
$0=+0.0002+E_{1}+B_{1} C_{1}$
Hence

$$
\begin{array}{lr}
A_{1}=-0.0434=-2^{\circ} & 29^{\prime} \cdot 3 \\
B_{1}=-0.0199=-1 & 8.5 \\
C_{1}=-0.055^{2}=-3 & 9.7 \\
D_{1}=+0.1129=+6 & 28.2 \\
E_{1}=-0.0013=-0 & 4.5
\end{array}
$$

Forward Alidade Compass.

$0=-1.0908+17.000 A_{1}+8.442 B_{1}-5.641 C_{1}+0.924 D_{1}+0.383 E_{1}$ $0=-0.411 \mathrm{I}+8.442 A_{1}+8.310 B_{1}+0.462 C_{1}-1.205 D_{1}-4.543 E_{1}$ $0=+0.4058-5.641 A_{1}+0.462 B_{1}+8.691 C_{1}+3.900 D_{1}-4.438 E_{1}$ $0=-0.0235+D_{1}+\frac{1}{2}\left(B_{1}{ }^{\text { }}-C_{1}{ }^{2}\right)$ $0=-0.0007+E_{1}+B_{1} C_{1}+0.0125\left(B_{1}^{2}-C_{1}^{2}\right)$
Hence

$$
\begin{aligned}
& A_{1}=+0.0615=+3^{0} 3 \mathrm{I}^{\prime} .5 \\
& B_{1}=-0.0084=-0 \\
& C_{1}=-0.0166=-0 \\
& C_{1}=+0.8 \\
& D_{1}=+0.0236+1 \\
& E_{1}=+0.0006=+0 \\
& 21.1 \\
& 1.9
\end{aligned}
$$

Forward Binnacle Compass.

$$
\begin{aligned}
& \circ=-0.5643+17.000 A_{1}+8.442 B_{1}-5.641 C_{1}+0.924 D_{1}+0.383 E_{1} \\
& \circ=-0.3^{2228}+8.442 A_{1}+8.3^{10} B_{1}+0.462 C_{1}-1.205 D_{1}-4.543 E_{1} \\
& \circ=+0.0861-5.641 A_{1}+0.462 B_{1}+8.691 C_{1}+3.900 D_{1}-4.438 E_{1} \\
& \circ=-0.0369+D_{1}+\frac{1}{2}\left(B_{1}^{2}-C_{1}^{2}\right) \\
& \circ=-0.0011+E_{1}+B_{1} C_{1}
\end{aligned}
$$

Hence

$$
\begin{array}{ll}
A_{1}=-0.0050=-0^{\circ} & 17^{\prime} \cdot 1 \\
B_{1}=+0.0523=+2 & 59.8 \\
C_{1}=-0.0307=-1 & 45.5 \\
D_{1}=+0.0360=+2 & 3.7 \\
E_{1}=+0.0027=+\circ & 9.3
\end{array}
$$

Forward Ritchie Compass.

```
\(0=-1.7570+17.000 A_{1}+8.442 B_{1}-5.641 C_{1}+0.924 D_{1}+0.383 E_{1}\)
\(0=-1.0582+8.442 A_{1}+8.310 B_{1}+0.462 C_{1}-1.205 D_{1}-4.543 E_{1}\)
\(0=+0.3128-5.641 A_{1}+0.462 B_{1}+8.691 C_{1}+3.900 D_{1}-4.438 E_{1}\)
\(\circ=-0.0407+D_{1}+\frac{1}{2}\left(B_{1}^{2}-C_{1}^{2}\right)\)
\(\circ=+0.0013+E_{1}+B_{1} C_{1}\)
```

Hence

$$
\begin{aligned}
& A_{1}=+0.0564=+3^{\circ} 14^{\prime} .0 \\
& B_{1}=+0.0766=+4 \\
& C_{1}=-0.0205=-1 \\
& C_{1}=-10.4 \\
& D_{1}=+0.0380=+2 \\
& E_{1}=0.0000=\quad 0 \quad 0.5
\end{aligned}
$$

The following are the equations of condition for the determination of the coefficients of the After Ritchie Compass at Monte Video.

```
0 = - 240' +1.000 A A 0.000 \mp@subsup{B}{1}{}+1.000 C C 0.000 \mp@subsup{D}{1}{}+1.000 \mp@subsup{E}{1}{}
0}=-570+1.000\mp@subsup{A}{1}{}+0.195\mp@subsup{B}{1}{}+0.981\mp@subsup{C}{1}{}+0.383\mp@subsup{D}{1}{}+0.924\mp@subsup{E}{1}{
0=-570 +1.000 A A +0.383 B1 +0.924 C1+0.707 D D + 0.707 E E
0}=-740+1.000\mp@subsup{A}{1}{}+0.556\mp@subsup{B}{1}{}+0.831\mp@subsup{C}{1}{}+0.924\mp@subsup{D}{1}{}+0.383\mp@subsup{E}{1}{
0=-740+1.000 A A +0.707 \mp@subsup{B}{1}{}+0.707\mp@subsup{C}{1}{}+1.000 \mp@subsup{D}{1}{}0.000 E E
0}=-740+1.000\mp@subsup{A}{1}{}+0.831\mp@subsup{B}{1}{}+0.556\mp@subsup{C}{1}{}+0.924\mp@subsup{D}{1}{}-0.383\mp@subsup{E}{1}{
0}=-910+1.000\mp@subsup{A}{1}{}+0.924\mp@subsup{B}{1}{}+0.383\mp@subsup{C}{1}{}+0.707\mp@subsup{D}{1}{}-0.707\mp@subsup{E}{1}{
0}=-900+\textrm{r}.000\mp@subsup{A}{1}{}+0.981\mp@subsup{B}{1}{}+0.195\mp@subsup{C}{1}{}+0.383\mp@subsup{D}{1}{}-0.924\mp@subsup{E}{1}{
0}=-560+1.000\mp@subsup{A}{1}{}+1.000\mp@subsup{B}{1}{}\quad0.000\mp@subsup{C}{1}{}\quad0.000\mp@subsup{D}{1}{}-1.000 \mp@subsup{E}{1}{
0}=-240+1.000 \mp@subsup{A}{1}{}+0.981\mp@subsup{B}{1}{}-0.195\mp@subsup{C}{1}{}-0.383\mp@subsup{D}{1}{}-0.924\mp@subsup{E}{1}{
0}=-230+1.000 \mp@subsup{A}{1}{}+0.924\mp@subsup{B}{1}{}-0.383\mp@subsup{C}{1}{}-0.707\mp@subsup{D}{1}{}-0.707\mp@subsup{E}{1}{
0}=-60+1.000\mp@subsup{A}{1}{}+0.831\mp@subsup{B}{1}{}-0.556\mp@subsup{C}{1}{}-0.924\mp@subsup{D}{1}{}-0.383\mp@subsup{E}{1}{
0=+270 +1.000 A A +0.707 \mp@subsup{B}{1}{}-0.707\mp@subsup{C}{1}{}-1.000 \mp@subsup{D}{1}{}\quad0.000 \mp@subsup{E}{1}{}
0}=+100+1.000\mp@subsup{A}{1}{}+0.556\mp@subsup{B}{1}{}-0.831\cdot\mp@subsup{C}{1}{}-0.924\mp@subsup{D}{1}{}+0.383\mp@subsup{E}{1}{
0= - 240 +1.000 A A +0.383 B1-0.924 C1-0.707 D D +0.707 E1
0}=-240+1.000\mp@subsup{A}{1}{}+0.195\mp@subsup{B}{1}{}-0.98\textrm{r}\mp@subsup{C}{1}{}-0.383\mp@subsup{D}{1}{}+0.924\mp@subsup{E}{1}{
0}=-240+1.000\mp@subsup{A}{1}{}\quad0.000\mp@subsup{B}{1}{}-1.000\mp@subsup{C}{1}{}\quad0.000\mp@subsup{D}{1}{}+1.000\mp@subsup{E}{1}{
0= - 410 +1.000 A - 0.195 B1 - 0.981 C C +0.383 D D + 0.924 E E
0}=-410+1.000\mp@subsup{A}{1}{}-0.383\mp@subsup{B}{1}{}-0.924\mp@subsup{C}{1}{}+0.707\mp@subsup{D}{1}{}+0.707\mp@subsup{E}{1}{
0}=-240+1.000 \mp@subsup{A}{1}{}-0.556\mp@subsup{B}{1}{}-0.831\mp@subsup{C}{1}{}+0.924\mp@subsup{D}{1}{}+0.383\mp@subsup{E}{1}{
0}=-240+1.000\mp@subsup{A}{1}{}-0.707\mp@subsup{B}{1}{}-0.707\mp@subsup{C}{1}{}+1.000\mp@subsup{D}{1}{}\quad0.000 \mp@subsup{E}{1}{
0}=-570+1.000\mp@subsup{A}{1}{}-0.831\mp@subsup{B}{1}{}-0.556\mp@subsup{C}{1}{}+0.924\mp@subsup{D}{1}{}-0.383\mp@subsup{E}{1}{
```

The resulting normal equations are

Hence

$$
\begin{aligned}
& 0=-2.5365+22.000 A_{1}+7.482 B_{1}-3.999 C_{1}+3.938 D_{1}+2.631 E_{1} \\
& 0=-1.0294+7.482 A_{1}+9.685 B_{1}+1.969 C_{1}-2.334 D_{1}-3.774 E_{1} \\
& 0=-0.3901-3.999 A_{1}+1.969 B_{1}+12.316 C_{1}+3.708 D_{1}-1.665 E_{1} \\
& 0=-0.0340+D_{1}+\frac{1}{2}\left(B_{1}^{2}-C_{1}^{2}\right) \\
& 0=+0.0008+E_{1}+B_{1} C_{1}
\end{aligned}
$$

$$
\begin{aligned}
& A_{1}=+0.1143=+6^{\circ} \\
& B_{1} 2^{\prime} .8 \\
& B_{1}=+0.0146=+0 \\
& C_{1}=+0.0555=+3 \\
& D_{1}=+0.0354=+2 \\
& E_{1}=-0.0016=-0 \\
& 10.9 \\
& \hline 0.5
\end{aligned}
$$

The following are the equations of condition, together with the resulting normal equations, and the values of the coefficients $A_{1}, B_{1}, C_{1}, D_{1}, E_{1}$, as determined for each compass from the observations made in Magdalena Bay.

Equations of Condition at Magdalena Bay.

Absolute Terms.										
		范				Coefficients of the Unknown Quantities.				
						A_{1}	- B_{1}	C_{1}	D_{1}	E_{1}
+ 20'	10^{\prime}	- 100'	-300^{\prime}	-300'	- 540 ${ }^{\prime}$	+1.000	-0.707	-0.707	+ 1.000	0.000
60	-10	- 180	-370	- 290	-460	+ 1.000	-0.831	-0.556	+0.924	-0.383
+ 110	+ 80	- 180	- 210	-210	-380	+1.000	-0.924	-0.383	+0.707	-0.707
+ 140	+160	- 180	- 130	- 210	- 290	+ 1.000	-0.981	-0.195	+0.383	-0.924
+ 180	+170	- 80	- 130	- 120	$\overline{-}^{200}$	+1.000	- 1.000	0.000	0.000	- 1.000
+ 230	+320	+170	- ${ }^{1210}$	+ 50	+ 50	+1.000	-0.981	+0.195	-0.383	-0.924
+ 230 $+\quad 250$	+ 320	$+330$	-130	+130	+210	+1.000	-0.924	+0.383	-0.707	-0.707
+ 250 $+\quad 220$	+ 320	+320	- 120	+210	+210	+1.000	-0.831	+0.556	-0.924	-0.383
220	+	+	- 40	+ 300 +380	+210 +300	+1.000 +1.000	$\begin{array}{r}\text {-0.707 } \\ \hline-0.556\end{array}$	+0.707 +0.831	- $\begin{array}{r}\text { I. } \\ \hline\end{array}$	0.000 +0.383
160	+ 320	+150	+ 40	+ 380 +	+370	+1.000	-0.383	+0.924	-0.707	+
100	+230 $+\quad 150$	+ 60	+ 40	+ 380	+210	+ 1.000	-0.195	+0.981	-0.383	+0.924
- 40	+150	- 100	+ 40	+370	+	+1.000	-0.000	+1.000	0.000 $+\quad 0.383$	+1.000
+ 30	+ 70	- 190	- 50	+ 290	+120	+ 1.000	+0.195	+0.981	+0.383	+0.924

Normal Equations.

Admiralty Standard Compass.

$$
\begin{aligned}
& 0=+0.5789+14.000 A_{1}-8.825 B_{1}+4.717 C_{1}-\mathbf{1 . 6 3 1} D_{1}-1.090 E_{1} \\
& 0=-0.4310-8.825 A_{1}+7.545 B_{1}-0.816 C_{1}+0.934 D_{1}+4.272 E_{1} \\
& 0=+0.2352+4.717 A_{1}-0.816 B_{1}+6.456 C_{1}-4.554 D_{1}+3.784 E_{1} \\
& 0=-0.0169+D_{1}+\frac{1}{2}\left(B_{1}^{3}-C_{1}^{3}\right) \\
& 0=+0.0009+E_{1}+B_{1} C_{1}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& A_{1}=+0.0026=+0^{\circ} \quad 9^{\prime} \cdot 1 \\
& B_{1}=+0.0559=+3 \quad 12.1 \\
& C_{1}=-0.0204=-\mathrm{r} \\
& D_{1}=+0.0156=+0 \\
& D_{1}=0.3 \\
& E_{1}=+0.0002=+0 \\
& 0.8
\end{aligned}
$$

After Binnacle Compass.

$0=+0.8029+14.000 A_{1}-8.825 B_{1}+4.717 C_{1}-1.631 D_{1}-1.090 E_{1}$
$0=-0.5291-8.825 A_{1}+7.545 B_{1}-0.816 C_{1}+0.934 D_{1}+4.272 E_{1}$
$0=+0.4497+4.717 A_{1}-0.816 B_{1}+6.456 C_{1}-4.554 D_{1}+3.784 E_{1}$
$0=-0.0385+D_{1}+\frac{1}{2}\left(B_{1}^{2}-C_{1}^{2}\right)$
$0=+0.0018+E_{1}+B_{1} C_{1}+0.0047\left(B_{1}{ }^{2}-C_{1}{ }^{2}\right)$
Hence

$$
\begin{array}{lr}
A_{1}=-0.0208=-1^{\circ} & 11^{\prime} .4 \\
B_{1}=+0.0393=+2 & 15.0 \\
C_{1}=-0.0222=-1 & 16.2 \\
D_{1}=+0.0380=+2 & 10.5 \\
E_{1}=-0.0010=-0 & 3.3
\end{array}
$$

After Ritchie Compass.
$0=+0.0989+14.000 A_{1}-8.825 B_{1}+4.717 C_{1}-1.631 D_{1}-1.090 E_{1}$
$0=-0.1171-8.825 A_{1}+7.545 B_{1}-0.816 C_{1}+0.934 D_{1}+4.272 E_{1}$
$0=+0.2238+4.717 A_{1}-0.816 B_{1}+6.456 C_{1}-4.554 D_{1}+3.784 E_{1}$
$0=-0.0340+D_{1}+\frac{1}{2}\left(B_{1}^{2}-C_{1}{ }^{2}\right)$
$0=+0.0008+E_{1}+B_{1} C_{1}$
Hence

$$
\begin{aligned}
& A_{1}=+0.0627=+3^{\circ} 35^{\prime} \cdot 5 \\
& B_{1}=+0.0778=+4227.3 \\
& C_{1}=-0.0497=-2 \quad 51.0 \\
& D_{1}=+0.03^{22}=+1 \\
& E_{1}=+0.003^{1}=+0 \\
& E_{1}=10.6
\end{aligned}
$$

Forward Alidade Compass.

$0=-0.4683+14.000 A_{1}-8.825 B_{1}+4.717 C_{1}-1.631 D_{1}-1.090 E_{1}$ $0=+0.4115-8.825 A_{1}+7.545 B_{1}-0.816 C_{1}+0.934 D_{1}+4.272 E_{1}$ $0=+0.1082+4.717 A_{1}-0.816 B_{1}+6.456 C_{1}-4.554 D_{1}+3.784 E_{1}$
$0=-0.0235+D_{1}+\frac{1}{2}\left(B_{1}{ }^{2}-C_{1}{ }^{2}\right)$
$0=-0.0007+E_{1}+B_{1} C_{1}+0.0125\left(B_{1}^{2}-C_{1}^{2}\right)$
Hence

$$
\begin{array}{lr}
A_{1}=+0.0200=+1^{\circ} & 8^{\prime} .8 \\
B_{1}=-0.0361=-2 & 4.1 \\
C_{1}=-0.0197=-1 & 7.6 \\
D_{1}=+0.0230=+1 & 19.2 \\
E_{1}=0.0000=0 & 0.0
\end{array}
$$

Forward Binnacle Compass.

```
\(0=+0.3956+14.000 A_{1}-8.825 B_{1}+4.717 C_{1}-1.631 D_{1}-1.090 E_{1}\)
\(0=+0.0125-8.825 A_{1}+7.545 B_{1}-0.816 C_{1}+0.934 D_{1}+4.272 E_{1}\)
\(0=+0.7497+4.717 A_{1}-0.816 B_{1}+6.456 C_{1}-4.554 D_{1}+3.784 E_{1}\)
\(0=-0.0369+D_{1}+\frac{1}{2}\left(B_{1}^{2}-C_{1}^{2}\right)\)
\(0=-0.0011+E_{1}+B_{1} C_{1}\)
```

Hence

$$
\begin{array}{lr}
A_{1}=-0.0298=-1^{\circ} & 42^{\prime} .6 \\
B_{1}=-0.0478=-2 & 44.3 \\
C_{1}=-0.0719=-4 & 7.3 \\
D_{1}=+0.0384=+2 & 11.8 \\
E_{1}=-0.0023=-0 & 7.9
\end{array}
$$

Forward Ritchie Compass．

$$
\begin{aligned}
& 0=+0.0058+14.000 A_{1}-8.825 B_{1}+4.717 C_{1}-1.631 D_{1}-1.090 E_{1} \\
& 0=+0.2058-8.825 A_{1}+7.545 B_{1}-0.816 C_{1}+0.934 D_{1}+4.272 E_{1} \\
& 0=+0.6749+4.717 A_{1}-0.816 B_{1}+6.456 C_{1}-4.554 D_{1}+3.784 E_{1} \\
& 0=-0.0407+D_{1}+\frac{1}{2}\left(B_{1}{ }^{2}-C_{1}{ }^{2}\right) \\
& 0=+0.0013+E_{1}+B_{1} C_{1}
\end{aligned}
$$

Hence

$$
\begin{array}{lr}
A_{1}=+0.0477=+2^{\circ} & 43^{\prime} .8 \\
B_{1}=+0.0116=+0 & 39.9 \\
C_{1}=-0.1051=-6 & 1.3 \\
D_{1}=+0.0462=+2 & 38.7 \\
E_{1}=-0.0004=-0 & 1.3
\end{array}
$$

For convenience of reference the values of the coefficients $A_{1}, B_{1}, C_{1}, D_{1}, E_{1}$ ， obtained at stations where the compasses were not read on all the thirty－two points， have been collected in the following table．No use has been made of them．

Stations and Compasses．	A_{1}	B_{1}	C_{1}	D_{1}	E_{1}
Ceara，December 19， 1865.					
Admiralty Standard Compass	－ $0^{\circ} 35^{\prime} .1$	$+4^{\circ} 46^{\prime} \cdot 3$	$+2^{\circ} 19^{\prime} .2$	$+0^{\circ} 4^{\prime \prime} .8$	$-0^{\circ} 14^{\prime} .8$
After Binnacle Compass．	＋0 21.3	＋ 435.2	＋ 24.6	＋ 23.6	－0 16.3
After Ritchie Compass ．	＋ 5 54．2	＋ 756.0	＋ 455.4	+136.6 +1368	－0 43.7
Forward Alidade Compass．	＋ 23.5	＋00．2	＋14．8	＋121．4	＋${ }^{2} 4$
Forward Binnacle Compass Forward Ritchie Compass	＋	＋0 24.6	＋ 126.9	$\begin{array}{r}+1 \\ + \\ + \\ \hline\end{array}$	＋${ }^{\text {a }}$
Forward Ritchie Compass ．	$+3{ }^{11.0}$	－0 26.1	+36.9	＋26．6	3.9
Rio Janeiro，January 10， 1866.					
Admiralty Standard Compass	$+235.7$	＋258．5	＋o 0.2	＋o 53．5	3.1
After Binnacle Compass．	＋0 50.8	＋ 525.4	－0 25.2	＋157．1	4.1
After Ritchie Compass－	＋939．0	＋ 346.6	＋ 19.8	＋150．1	－0 7.4
After Azimuth Compass ． Forward Alidade Compass ．	+239.3 +331.5	1 -18.5 -088.8	－ $\begin{array}{lr}1 & 9.7 \\ -0 & 57.2\end{array}$	+628.2 +1821.1	0
Forward Binnacle Compass	＋0	＋	二⿺－	$\begin{aligned} &+ \\ &+1.1 \\ &+ 3.7\end{aligned}$	$\begin{array}{rl}\text {＋} & 1.9 \\ +0 & 9.3\end{array}$
Forward Ritchie Compass ．	＋314．0	＋	［10．4	+1318 +23 +210.5	+0 +0 0
Monte Video，January 24， 1866. After Ritchie Compass	＋632．8	＋o 50．3	＋310．9	＋2 1.8	○ $5 \cdot 5$
Magdalena Bay，June 9， 1866.					
After Binnacle Compass．．	$\begin{array}{r}\text {＋0 } \\ \hline 11.1 \\ \hline 10.4\end{array}$	+312.1 +215.0	二110．3	+053.5 +210.5	$\begin{array}{rl}+0 & 0.8 \\ -0 & 3.3\end{array}$
After Ritchie Compass．	＋ 335.5	＋ 427.3	251.0	＋150．7	＋0 10.6
Forward Alidade Compass	＋18．8	－2 4.1	－ 17.6	＋ 119.2	－ 0.0
Forward Binnacle Compass	－1 42.6	－2 ${ }^{2} 44.3$	$\begin{array}{ll}-4 & 7.3\end{array}$	＋211．8	－0 7.9
Forward Ritchie Compass	＋ 243.8	＋o 39.9	$\begin{array}{ll}-6 & 1.3\end{array}$	＋238．7	－ 1.3

At a number of the ports visited during the cruise，the line dividing the north from the south polarity，on the exterior of the turrets，was traced out；but as the boundary between the two kinds of magnetism was frequently very badly defined， and the observations were otherwise unsatisfactory；and further，as they throw no light whatever on the theory of the deviations of the compasses，and can only be shown by means of drawings on a rather large scale，it has not been deemed worth while to insert them here．

In conclusion，the results of the observations made during the cruise may be briefly recapitulated as follows：
1° ．The latitudes of seven points have been determined．
2° ．The magnetic declination，inclination，and horizontal force，have been deter－ mined at eighteen places．
(2)

UNIVERSITY OF CALIFORNIA LIBRARY BERKELEY

Return to desk from which borrowed.
This book is DUE on the last date stamped below.

LD 21-95m-11,'50(2877816) 4 $24^{\prime} 66^{2} 4$ RCD

(

[^0]: ${ }^{1}$ The Monadnock is a double-turreted vessel of the monitor type. During the cruise in question, Lieutenant Commander Francis M. Bunce, U.S. N., was her captain, and she was attached to the squadron commanded by Commodore (now Rear-Admiral) Joln Rogers, U.S. N., at whose special request I was detailed by the Navy Department to make the observations which are the subject of this paper.

[^1]: These observations were made before noon.
 Chronometer $2^{\text {h }} 3^{\text {m }} 3^{8^{\text {a }}} .4$ slow of local mean time.

[^2]: These observations were made before noon.
 Chronometer $2^{\text {b }} 22^{\mathrm{m}} 6^{\mathrm{E}} .8$ slow of local mean time.
 onometer $2^{2} 22^{\text {m }} 6^{2} .8$ slow of local mean time.

[^3]: These observations were made before noon. Chronometer $0^{\mathrm{n}} 9^{\mathrm{m}} 23^{\mathrm{n}} .6$ slow of local mean time.

[^4]: These observations were made before noon.

[^5]: ${ }^{1}$ For computing the deviations of the Admiralty Standard and After Azimath Compasses the lines $c d$ and ef were divided into degrees and sixths of a degree, cach degree occupying the space of one-quarter of an inch.

[^6]: A deviation of the North Point of the Compass to the East is designated by the sign +; A deviation of the North Point of the Compass to the East is designated by the sign + ; From the observations given above, the following values of the coefficients of the
 deviation are obtained: $\begin{array}{ll}34^{\prime} \cdot 7 \\ \mathrm{D}=+0^{\circ} & \mathrm{B}=+4^{\circ} \\ 49^{\prime} \cdot 2\end{array} \underset{\mathrm{E}=6^{\prime} \cdot 1}{\mathrm{E}=0^{\circ}} \begin{aligned} & \mathrm{C}=+4^{\prime} \cdot 4\end{aligned}$

[^7]: A deviation of the North Point of the Compass to the East is designated by the sign + ；
 a deviation to the West by the sign－
 From the observations given above，the following valucs of the coefficients of the
 $\begin{aligned} & \text { deviation are obtained：} \\ & \mathrm{A}=+\mathrm{o}^{\circ} 35^{\prime} \cdot 9 \\ & \mathrm{D}=+0^{\circ} \mathrm{B}=+1^{\circ} \\ & 53^{\prime} \cdot 5 20^{\prime} .6 \\ & \mathrm{E}=+0^{\circ} \mathrm{C}=1^{\prime} \cdot 5\end{aligned} 0^{\circ} 40^{\prime} .6$

[^8]: a deviation to the West by the sign -.

[^9]: a deviation to the West by the sign-.
 From the observations given above, the following values of the coefficients of the $\quad \begin{aligned} & \text { a deviation to the West by the sign -. } \\ & \text { From the observations given above, the following values of the coefficients of the }\end{aligned}$ $\mathrm{A}=+0^{\circ} \frac{9^{\prime} .0}{\mathrm{D}=+0^{\circ} \mathrm{B}=+3^{\circ} \quad 12^{\prime} \cdot 1} \quad \mathrm{C}=-\mathrm{I}^{\circ} 10^{\prime} \cdot 3$
 A deviation of the North Point of the Compass to the East is designated by the sign +; \quad A deviation of the North Point of the Compass to the East is designated by the sign + ;

[^10]: A deviation of the North Point of the Compass to the East is designated by the sign + ; A deviation of the North Point of the Compass to the East is designated by the sign + ; From the observations given above, the following values of the coefficients of the \quad From the observations given above, the following values of the coefficients of the deviation are obtained:

[^11]: a deviation to the West by the sign -.
 From the observations given above, the following values of the coefficients of th A deviation of the North Point of the Compass to the East is designated by the sign + ;
 a deviation to the West by the sign - . From the observations given above, the following values of the coefficients of the
 deviation are obtained:

 $$
 \mathbf{A}=+\mathbf{I}^{\circ}
 $$ $=-0^{\circ} 14^{\prime} .6$ C

 $\mathrm{o}^{\prime} .2$

[^12]: A deviation of the North Point of the Compass to the East is designated by the sign＋；A deviation of the North Point of the Compass to the East is designated by the sign + ；
 deviation to the West by the sign－ a deviation to the West by the sign－ From the observations given above，the following values of the coefficients of the
 deviation are obtained：

[^13]: A deviation of the North Point of the Compass to the East is designated by the sign + ；
 a deviation to the West by the sign－．
 From the observations given above，the following values of the coefficients of the

[^14]: a deviation to the West by the sign－． deviation are oblain 6°
 A deviation of the North Point of the Compass to the East is designated by the sign + ；

[^15]: A deviation of the North Point of the Compass to the East is designated by the sign + ；
 A deviation of the North Point of the Compass to the East is designated by the sign + ；
 a deviation to the West by the sign－ From the observations given above，the following values of the cocfficients of the
 deviation are obtained：
 deviation are obtained：

 $$
 A=-2^{\circ} 16^{\circ} .
 $$

[^16]: $B=-0^{\circ} \quad \frac{35^{\prime} .1}{E}=+c^{\circ} \quad \begin{aligned} & \mathrm{C}=-0^{\prime} .5\end{aligned} 0^{\circ} \quad 6^{\prime} .2$

[^17]: A deviation of the North Point of the Compass to the East is designated by the sign + a deviation to the West by the sign -, Co, the following values of the coefficients of the deviations are obtained:
 $A=+2^{\circ}$

[^18]: a deviation to the West by the sign－o．the following values of the coefficients of the a deviation to the West by the sign－
 From the olservations given abova，
 deviation
 A deviation of the North Point of the Compass to the East is designated by the sign＋； A deviation of the North Point of the Compass to the East is designated by the sign + ；
 a deviation to the West by the eign ．
 From the observations given above，the following values of the coefficients of the deviation are obtained：$A=-1^{8^{\prime} .8} \quad B=-2^{\circ} \quad 4^{\prime} .1 \quad C=-1^{\circ} \quad 7^{\prime .6}$ $\| \quad \mathrm{A}=+0^{\circ} \underset{\mathrm{D}}{40^{\prime} .6}=+0^{\mathrm{B}}{ }_{58^{\prime} .0}=\mathrm{I}^{\circ} \stackrel{54^{\prime} .2}{\mathrm{E}}=+0^{\circ} \mathrm{C}=-1^{\prime} \cdot 5^{2^{\circ}} 25^{\prime} \cdot \mathrm{I}$

[^19]: A deviation of the North Point of the Compass to the East is designated by the sign + From the obscrvations given above，the following values of the coefficients of the
 deviations are obtained

 A deviation of the North Point of the Compass to the East is designated by the sign + ； From the observations given above，the following values of the coefficients of the
 deviation are obtained：

[^20]: a deviation to the West by the sign - .
 From the observations given above, the following values of the coefficients of th

[^21]: A deviation of the North Point of the Compass to the East is designated by the sign + ; From the observations given above, the following values of the coefficients of the
 A deviation of the North Point of the Compass to the East is designated by the sign + ;
 deviation to the West by the sign From the observations given above, the following values of the enefficients of the
 $=2^{\circ}$

[^22]: A deviation of the North Point of the Compass to the East is designated by the sign + ; A deviation of the North Point of the Compass to the East is designated by the sign + ; a deviation to the West by the sign - .
 From the observations given above, the following values of the coefficients of the $\mathrm{A}=-3^{\circ} 9^{\prime} \cdot 0 \quad \mathrm{D}=+\mathrm{I}^{\mathrm{B}}=-4^{\circ} 4^{\circ} \quad 4 \mathrm{I}^{\prime} \cdot \mathrm{I} \quad \mathrm{E}=+0^{\mathrm{C}}=-3^{\circ} 34^{\prime} \cdot 9$

[^23]: * In this observation $r=12$ inches.

