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NOTATION 

Acceleration 

Beam 

U/vgL Froude number 

wVB/g Frequency parameter 

Gravity acceleration 

Mass moment of inertia 

Moment of the homogeneous underwater body with 
the density p 

Hydrodynamic moments of inertia 

Inertia coefficient 

m,,/m., 

Jax! Tox 

Added mass, free surface with gravity effects 

Added mass, free surface without gravity effects 

Added mass, rigid wall 

Length 

Mass 

Apparent (virtual) mass, e.g., Wi = i, sb i. 

Hydrodynamic (added) masses 

Added mass, free surface with gravity effects 

Added mass, free surface without gravity effects 

Added mass, rigid wall 

Surface 

Pressure 

Kinetic energy 

Speed of advance 

Velocity 

Volume 

Coordinates 



$,¢ 

Angle of incidence 

Damping coefficient 

Density of water 

Velocity potentials 

Circular frequency 



ON HYDRODYNAMIC MASSES 

by 

Georg P. Weinblum, D.Eng. 

The present synopsis is the English version of a paper in German 

presented on the sixtieth birthday of Professor Schnadel in Hamburg. Although 

it contains only a few original contributions by the author, it has been de- 

cided to publish the review as a TMB report in order that it may serve as an 

introduction to a subject which, despite its importance in many fields of 

hydrodynamics, has been somewhat neglected in the past. 

In the present paper, we shall treat the problem of the hydrodynamic 

(added) masses of bodies which, like the ship, move through the free surface 

of the water. While for bodies in a medium extending infinitely in all direc- 

tions the hydrodynamic inertia factors are defined purely geometrically ex- 

cept for the density of the medium, in our case dependencies on various quan- 

tities such as the Froude number, an acceleration ratio, a frequency para- 

meter, etc., can appear. The nature of these dependencies is known only in a 

general way. It is the purpose of this study to give a review of the status 

of our knowledge in this field. 

1. THE KELVIN FLOW FIELD 

1.1 The study of the motion of a ship in water must, at the present, 

be carried out in various degrees of approximation. We shall assume here 

as an hypothesis that: the fluid is ideal, extends infinitely in all direc- 

tions, and the flow in it is caused only by the motion of the body. 

A "regular" (simply connected) body then produces an irrotational 

and acyclic velocity field which is characterized by a velocity potential @ 

and which, indeed, is also called the classical Kelvin field.? According to 

Kirchhoff, the kinetic energy of this field is given by a quadratic form in 

the velocity components of the body with the hydrodynamic (added) masses as 

the coefficients. The forces exerted by the fluid on the body can be defined 

by means of the hydrodynamic masses without performing the troublesome inte- 

gration of the pressures over the body. 

As usual we shall define the apparent or virtual mass in a given 

direction as the sum of the mass of the body m plus the hydrodynamic mass 

in that direction; we shall here set mo equal to the mass of the displaced 

lReferences are listed on page 1, 



fluid. This nonessential assumption, which practically speaking is generally 

justified in our case, simplifies the presentation. 

As long as the fluid is assumed to extend infinitely in all direc- 

tions, we shall avoid in definitions the expression "ship," although we are 

primarily interested in applications to the ship. 

1.2 With regard to methods for calculating the hydrodynamic mass quan- 

tities or their coefficients, refer to, for example, the textbook of Lamb?+ 

and the dissertation of Wendel.* They are based on knowledge of the velocity 

potential ¢, with whose help the expression for the kinetic energy or the 

components of the force and of the moment can be ascertained. For a "regular' 

body (without a hole) one obtains, as is well known, fifteen hydrodynamic 

inertia quantities, which number is reduced to six if the body has three 

planes of symmetry. Inasmuch as the hydrodynamic mass represents a tensor 

quantity, the notation becomes important. For example, a useful symbolism is 

obtained if one puts the kinetic energy 

6 6 

Ps 22s Tye [1] 

where the components of the velocity of translation are uy = Ue etc., and 

the components of the velocity of rotation are Wy = Ox etc. We cannot 

aspire to completeness here, however; on the contrary, we must frequently be 

satisfied with the implications only. 

Therefore, we shall confine ourselves to body forms whose kinetic 

energy is determined by six hydrodynamic masses which we shall designate in 

the usual way by m,., m, m for the translational motions and by Jey? eae, 
Z way 

and Joe for the rotational motions. The corresponding inertia coefficients 

are then defined, although not entirely fortuitously, by 

m, m. 
—i——— k= st etc., 
x my y Mm, 

J J 
ke aa aa Ky Seat etc 

Here, as previously indicated, m is the mass of the displaced 

fluid. 

Js; Desay Jon are the moments of inertia of the displaced fluid or 

of the homogeneous body having the density of water p. Naturally, Dox? etc., 

differ in general from the moment of inertia of the body Jy ete., although 

the mass of the body, as assumed here, is equal to the mass of the fluid. 

For completeness, we note, in addition, that the symmetry of the 



tensor ms j in general vanishes in the presence of a free surface and that the 

conclusions of Kirchhoff concerning the influence of the symmetry of the body 

form are no longer applicable. Again, we must be satisfied with an indication 

only. 

As originally indicated, the hydrodynamic inertia quantities in our 

case are functions of the body form and the density of the medium only. 

The coefficients ky = m,/™, » etc., are pure numerical values, which 

characterize a given geometrical configuration and which are roughly compara- 

ble to the fineness ratios in the various directions. These physical quanti- 

ties are easily determined, and in this lies the great simplicity of the con- 

cept under consideration. 

Despite the abstractness of this theory, it yields valuable practi- 

cal results in cases where the basic hypotheses are satisfied. Above all, 

this is the case for accelerated motions of the body (ship) such as starting 

conditions, oscillations, vibrations, and impact phenomena. 

However, even in calculating the moment My which a body moving 

with a rectilinear uniform motion at an angle of attack mw experiences and 

which can be calculated by the so-called Munk Formula 

M = p(k - k,)¥ Ue [2] 
af 

useful results are obtained if the circulation actually remains small as is 

the case for a "regular" body of revolution. For such a body, experiments 

"correction factor" of ~0.85. For ship models with a sharp stern, give a 

the author and others found a correction factor which naturally differed more 

from unity and in special cases amounted to ~0.60. 

1.5 The explicit calculation of apparent masses is not simple even in 

the classical case. With regard to the two-dimensional problem, we refer to 

the treatment of K. Wendel.* The three-dimensional problem has been solved 

for the sphere and the ellipsoid; in addition, further results can be de- 

rived from a theorem of Munk,* according to which the apparent mass, for 

example, my =m + my, of a body which is built up from a doublet distribu- 

tion w amounts to 

my =m, +m =f | aay [3] 

With this relation, the values of my and m_ = m, are given directly 

for a wide class of bodies of revolution. For the fundamental three- 

dimensional shapes which in simple cases can be produced by distributions of 

singularities in a plane (the so-called "Michell ship"), difficulty in con- 

structing the body arises because no stream function exists. In fact, this 

problem as yet has not been treated at all, although it is solvable in 

principle. 



Recently, several fundamental investigations of forms for which the 

sum ky + Ky + k, is to be a minimum have been undertaken. The sphere and the 

circular cylinder play an important role here. However, these difficult 

treatments contribute nothing at the present to the solution of our problems .* 

1.4. As is well known, existing results can be applied directly in ship 

theory as follows:* We image the submerged portion of the ship about the 

waterline and calculate the inertia coefficients of the double model in an 

infinite medium. At the same time, a strip method is applied and a correction 

for the end flow is made on the basis of the results for the ellipsoid. In 

many cases, one simply sets the values Kk, Ky etc., equal to those of an 

"equivalent" ellipsoid. 

The crude strip method frequently proves to be very good if the 

motion treated is in a vertical plane, therefore, if the determination of ko 

and k is the primary concern. As we shall see later, the values of Lockwood 

Taylor, Equation [12c], should then logically be used for motions in a hori- 

zontal plane. This, however, is not always done. Physically, the described 

procedure is naturally very unsatisfactory. 

However, here we must emphasize a difference between the physical 

and the engineering considerations. From the latter standpoint, a special 

accuracy in determining the added masses is not necessary in many cases, so 

that one can be satisfied with approximate values. The problem of vibration, 

whose solution requires, among other things, very accurate knowledge of the 

hydrodynamic inertia values, constitutes an exception. 

In the next section, we shall make some observations on what has 

been done and on what is being done at the present to arrive at a rational 

procedure. 

2. FREE SURFACE 

2.1 When one can no longer consider the fluid to extend infinitely in 

all directions, then it is obvious from physical considerations that the 

hydrodynamic masses depend upon the existing boundary conditions in addition 

to the body form. If, in particular, there is a free surface, then we must 

take the formation of waves into account. In order to differentiate the 

results in this case from our previous results, we shall provide the usual 

symbols with wavy lines, for example, Tm, , Tet etc. 

First of all, consider a physical observation. It is clear that 

the kinetic energy can no longer be represented in the form of Kirchhoff 

because of the creation of waves. The kinetic energy, whose time rate appears 

as generated power or, in the case of oscillations, as the damping effect, 



is constantly dissipated by progressive waves. A "reversible" part of the 

kinetic energy corresponds to local disturbances in the neighborhood of the 

body and may presumably be used for the calculation of the added mass quanti- 

ties. This manner of separation, however, has not been accomplished as yet; 

on the other hand, a direct calculation of the applied forces leads in prin- 

ciple to the goal, although it has been actually successful only in a few 

cases. Independent of the steady or unsteady nature of the body motion, the 

force and moment vectors are given by 

P= [| pnaa m= -{ | prnaa [4] 

where n indicates the exterior normal and r the radius vector. The integra- 

tion is performed over the surface of the body. 

The pressure p is determined by the instantaneously existing flow 

field, the structure of the latter, however, is in general not only a function 

of the instantaneous velocity and acceleration but is also a function of the 

law according to which this acceleration dies out. In other words, the flow 

field and therefore the pressure and the forces developed depend on tie 

history of the motion of the body. 

This means that for a given speed and acceleration the added mass 

of a body may vary with the kind of the motion, for instance, assume different 

values for a translation, a free or a forced oscillation in the same direction. 

Under these circumstances, the question, whether and to what extent 

the concept of hydrodynamic masses can still be maintained in the case of an 

accelerated motion of the body on a free surface, appears justified. We shall 

here anticipate the answer: the concept remains quite suitable, however, the 

quantities in question can be functions of various variables so that they lose 

their simple geometrical character. 

Some simple formal reflections now follow. 

2.2 If our body is moved on or in the neighborhood of the free surface, 

then our velocity potential @ must satisfy, in addition to Laplace's equation 

and the boundary condition on the body, the linearized boundary condition of 

the free surface 

for z = 0 [5] 

We shall consider two important special cases: 

a. The ship undergoes a uniform translational motion U; then one 

writes in place of [5] 

ou +& 22-0 for z = 0 [6] 



b. The ship oscillates harmonically in position. If one sets 

@(x,y,z,t) =o, e*et 

one obtains 

fof) & e) Ou) Se ee 0 
oO w2 Oz [7] 

Furthermore, if we introduce an appropriate length | and if we 

choose 1 equal to the ship length L in Case a so that 

o=9 1, x= x L 

this immediately gives 

(6) 
#1 + BL ore 0 [6a ] 

Ox, U 7 

or 

a¢ a ia o =0 [6 ] 
ae ig Oy 

where F = BU nis the usual Froude number. 

VeL 
In the oscillation problem, Case b, it is obvious that | should be 

set equal to the beam of the ship B, i.e., | = B. With %, = @ 8B, A = zB, 

Equation [7] becomes 

g 00 
—— = 0 = 0 a 6, am 2 ag [7a ] 

or 

1 0g, of se 
® - =e oeted A © [7b ] 

1 

Here the important dimensionless oscillation parameter F, = wVB/e 

is introduced. 

We see that in both of the special cases considered the potential 

and therefore the hydrodynamic masses depend on the Froude number F and the 

oscillation parameter F,, respectively. These cases can be extended to the 

case of a uniform or accelerated translational motion with harmonic oscilla- 

tion; for our purpose, however, Equations [6] and [7], which will now be dis- 

cussed together, are sufficient. In this joint discussion of the two equa- 

tions, we shall use the same symbol @ for both. 



2.3 Let us consider two limiting cases: 

a. The velocity or the frequency is extremely small, i.e., one 

ean set F? > 0 or F2 >» 0. Equations [6] and [7] transform into the simple 

boundary condition 

2 6 z= 0 [8] 
Zz 

i.e., the vertical velocities vanish or the surface acts as a solid boundary. 

b. In the case of extremely high velocities or frequencies, i.e., 

F*» co or F » oo, the boundary conditions simplify to 

2 

ae _ o and @= 0 % 3 © [9] 
Ox2 

2 

It can be shown, although with some difficulties, that the condition ae = 0) 
Ap 

likewise leads to the condition @ = 0. 

Physically, this boundary condition indicates, as is well known, 

that we can neglect gravity in comparison to the inertia forces. Therefore, 

this is true in particular for impact phenomena on the surface. 

The solution for the hydrodynamic masses obtained on the basis of 

the simplified boundary conditions ee = O and @ = O are self-evidently no 

longer dependent on the parameters F and F.,, and consequently fail as general 

solutions of the problem. An indiscriminate application of the results, as 

frequently occurs at the present time, is therefore misleading. On the other 

hand, they represent important limiting cases and reveal some interesting 

facts so that it is worthwhile to discuss them in some detail. 

First of all, we shall complete the system of our symbols. To 

differentiate from the previously introduced concepts ce m. (briefly be0.208 

called the "deeply immersed" values) and Tepe dos Mey. (the "wave" values), 

we shall designate the hydrodynamic mass values for the solid boundary 9¢ = 0 

by Ropes Thy» and for the free surface neglecting gravity »= 0 by 
° ° 

-» Myyee- 

We obtain a physical understanding of the relations between the 

xe 

values ky. ke etc., and the deeply immersed values kK, from the following 

sketches: 

We mirror first the immersed part of the body S, which in principle 

may have an arbitrary shape, at the line OY. Thus above the axis a body S', 

symmetric to S, is generated. 

In Figures 1 and 2 we consider a vertical translation of the body 

and indicate tne resulting motion of the body by introducing sources and 

sinks. Clearly, the disturbances are larger for the rigid wall than for the 



Figure 1 - Vertical Motion, Figure 2 ~- Vertical Motion, 
Rigid Wall Free Surface 

free surface without gravity; we expect therefore that 

— ° 

i > [10] 

One derives further from Figure 2 that 

° 

k, = Kk, [11] 

since S + S' together behave like a double body. Hence, the coefficient ae 

is known when k, is given, Similarly, as for Equation {11], we conclude 

° 

ee fe [11a] 
ISL yV 

ce] 

Kyx a Ky fe 1 

Figures 3 and 4 explain conditions when the body moves horizontally. 

The rigid wall (Figure 3) has the function of a plane of symmetry; S + S! 

move again together as a double model. We conclude therefore that in this 

case 

ky = ky [12] 
and by analogy 

Te she ca [12a ] 

k, = k, [12b } 

Figure 4 pictures the conditions at the free surface; obviously, one follows 

that ky Sk, and therefore k_<k.. The same applies to the other components. 

The difference in the results obtained for motions in a vertical 

and a horizontal plane is essential. Using one of the approximate boundary 

conditions, we can substitute a double model for the ship only for a single 

direction of motion. The difference in the effects involved is appreciable: 

in the case of an elliptic cylinder which floats at its plane of symmetry, 

the ratio k/y is only 4/n*. 

i = 0.4 [12c¢] 



Figure 3 - Horizontal Motion, Figure 4 - Horizontal Motion, 
Rigid Wall Free surface 

To my knowledge the evaluation of hydrodynamic masses for the 

boundary condition @= 0 has been carried out comprehensively for the first 

time by Lockwood Taylor .° 

The foregoing reasoning can be illustrated by well known first 

order results for the circular cylinder and the sphere (Figure 5). The ratio 

radius r, over depth of immersion f, is assumed to be small.+ 

For a motion in a horizontal plane Z = -f parallel to the wall and 

to the free surface one obtains: 

Cylinder Sphere 

Rete Sey a Rate weal oe 

Beet 2(R) 15a) Cpe oka ee 
In the case of a motion vertical to the wall (surface) similar 

expressions with larger correction terms are valid.+ 

As compared with the inertia coefficients calculated for infinite 

depth of immersion, f » o, a dependence upon the wall distance arises. It 

is easy to estimate the magnitude of f for which this wall influence disap- 

pears. Such estimates also will be valuatle for the general case of a fluid 

with gravity; this can be, for instance, important in experimental tank work. 

The change in the sign of the correction term [13] and [13a] for 

the wall and the free surface is due to the difference in the procedure of 

mirroring the images involved. 

One could assume that the ————————— 

"wave values" k are included between k | 

and k as bounds. This may be frequent - 

ly a useful approximation, but is by no 

means exact, as will be proved below. | 

It will be shown later that ——L— 

the boundary condition ¢ = 0 leads to 

a further important solution of the 

general case. Figure 5 
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In general, however, we must look for a better mechanical model 

than that presented by the rigid wall or the free surface neglecting gravity. 

2.4 It is natural to substitute systems of singularities (sources or 

dipols) for the body (ship) and to calculate the hydrodynamic masses using 

these images and the boundary condition, Equation [5]. Following a procedure 

known in the theory of wave resistance, these images apparently could be de- 

termined using a uniform flow in an unbounded medium. Since this approach is 

successful when calculating the resistance at uniform speeds of translation, 

it has been applied several times to investigations of accelerated transla- 

tions and oscillations in calm water and in a seaway.®’’ The result is sur- 

prising; the SCHOO SHEMNE inertia factors like k, ae found in such a way be- 

come equal to kK, kK,» etc.; there is no dependence upon the Froude number or 

other characteristic parameters. 

This obvious contradiction to simple physical reasoning has not 

been detected for some time. It induced.the author to make some similitude 

investigations; from these the importance of such parameters as F, F,, and 

a/g and the history of the flow field has been realized when calculating the 

added masses. In the meantime, three fundamental papers have been published 

which clarified, at least in principle, the intricate problem, although an 

exhaustive solution is still lacking. 

2.5 For the special case of a horizontal accelerated motion of a circu- 

lar cylinder, Sir T.H. Havelock proved that the hydrodynamic masses can only 

be found by using a second approximation for the image distribution.® 

He further obtained explicit values when the acceleration of the 

cylinder a is constant. Beside the depth of immersion ratio r/f discussed 

before, the ratio a/g becomes a decisive parameter. An interesting diagram® 

shows the coefficient k_ as function of the Froude number F when the cylinder 

has been accelerated from rest with a given a/g = constant. It is surprising 

that k_ = k holds not only for F » «©, which is well known, but also for 

F+>0O. Otherwise expressed, in the present case of a uniform acceleration, 

the hydrodynamic masses in the starting condition are the same as for an im- 

pulsive motion; the influence of gravity can be neglected. Starting condi- 

tions are especially important in the theory of directional stability. 

Unfortunately, at present we are not yet able to generalize the 

results obtained under the assumption a/g = constant for other acceleration 

laws which may be more realistic. But following Havelock, another generaliza- 

tion seems to be plausible: the result k= k remains valid for the start 

of the constantly accelerated motion when the acceleration begins not at U = 0, 

but even at U # 0. 



From Havelock's investigation, the fact, mentioned before, follows 

that Ky and ky are not bounds of k.. 

There exist two pertinent publications on forced heaving oscilla- 

tions in the moored condition. They deal with the dependence of the hydrody- 

namic masses upon the frequency of the oscillation. Figure 6 shows results for 

a circular cylinder immersed up to a plane of symmetry following F. Ursell?® 

and for a ship model following M. Haskind.*® Remarkable is the hump in the 

k, curve in the range of small frequency parameters F,, = w VB/e; aie aligyelal= 

cates that the condition 0¢/dz is approximately satisfied. We emphasize 

further that in a certain region k, becomes smaller than k, ms 1, which again 

means that the condition @ = 0 does not furnish a bound for Kk. Unfortunately, 

nothing is known about the method used by Haskind; we stress, however, the 

importance of the curve of experimental values due to the same distinguished 

scientist. We face now the question as to how far experiments in general have , 

contributed to our knowledge in this field. 

2.6 When the derivation of theoretical solutions is difficult, the ex- 

perimental approach suggests itself. In the field of wave resistance of 

ships, an overwhelming number of mostly unsystematic tests have been performed 

which nevertheless have yielded important results. Since the problem of 

added masses is less important from a practical viewpoint, the amount of ex- 

perimental work is small and correspondingly the success too is modest. The 

last fact becomes especially evident because in older publications even the 

decisive parameters of the problem remained unknown. 

Experiments dealing with added masses of ships in accelerated and 

retarded translations (inertia tests) are especially precarious. The longi- 

tudinal coefficient k, is normally smell; ay 

additionally we must consider that the 

wave resistance in its proper sense, and 

even the frictional resistance, depend 

upon the acceleration. In the light of 

our present knowledge, tne foundation 

of inertia tests which in principle are 

very suggestive, must be reconsidered. iS. 

The determination of k, by such experi- 

ments is not promising, at least for 

the time being; on the contrary, one 

would prefer to estimate ke and derive 

thus conclusions about the magnitude 

of the resistance. 



Let us finally consider oscillations. Roll experiments are a well- 

established requisite of the testing technique. However, the author does not 

know of any systematic experiment dealing with ia as a function of the speed 

of advance cr the frequency of roll. It has been reported without further 

explanations that a variability of the period with the Froude number has been 

observed on a model of the Conte di Savoia.++ Probably it would be worth- 

while to check the few pertinent publications if a dependence of ka upon F 

can be stated; obviously, possible variations of the metacentric height must 

be known. 

Some twenty years ago I recorded extinction curves of the heave and 

pitch motion; the work was carried out at the Berlin Model Pasin.’* We in- 

vestigated a full and a moderately-full model. Within the range of Froude 

numbers 0 < F < 0.20 one eculd not find a dependency of the inertia coeffi- 

eients k, ee and of the damping 26, » 20, upon the speed. The measured 

values of k,» Ky were slightly esc than those computed by the "strip method 

with ellipsoidal corrections" (see Section 1.4). Later, similar experimental 

results for ship models have been published only occasionally. 

More detailed heaving experiments with geometrically defined bodies 

have been performed by Dimpker?® and Holstein.** Although Holstein's experi- 

ments were carefully conducted, their accuracy is not high enough to establish 

a consistent dependency of the added mass values upon F,,. Following Wendel, 

the experimental values of kK, plotted over the beam-draft ratio are somewhat 

lower than the corresponding "theoretical" values of k,. Holstein was unable 

to detect the hump in the range of small F, since the frequencies tested cor- 

respond to a range F, > 1.5. 

As has been mentioned before, the usefulness of the added mass con- 

cept can be questioned when its value becomes a function of many variables. 

However, it can oe asserted that the concept remains important since 

1. With increasing depth of immersion f the values k approach quickly 

the: "classical" values k. 

2. The order of magnitude of k is generally identical with that of k. 

5 The solutions k, k, and k obtained under Saree conditions, 

yield over large ranges, valuable estimates for k. 

We mention two special problems, shallow water effects and gravity 

effects. In a well-known paper I.1. Koch has calculated the inertia factors 

15 Sehnadel has suc- 

cessfully applied these results to the interpretation of vibration experi- 

16 

Ky and k.. of a rectangle, using an electrical analogy. 

ments. Since gravity effects so far have not been considered, we restrict 
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ourselves to this remark. 

Finally, the influence of viscosity must be mentioned. Except for 

small Reynolds numbers, no information is available on the subject. One makes 

the plausible assumption that because of the small displacement thickness of 

the boundary Layer, the influence of viscosity on the magnitude of the added 

masses is negligible. 

3. SUMMARY 

The hydrodynamic masses of a body moving at the free surface are 

mathematically formulated functionals of the body motion. In principle, 

beside the form of the body, the history of its motion and thus the resulting 

velocity field must be given. 

Only few solutions for some simple kinds of motion are known, from 

which the dependence of the added masses from an acceleration parameter a/g, 

the Froude number F, a frequency parameter F,, etc., can be established. 

From a physical point of view we are just beginning to tackle the problem. 

From a pcint of view of technical application, conditions are 

sligntly more favorable, since one is able to make estimates which, however, 

frequently are rather coarse. The most familiar estimates are: 

For oscillations in a vertical plane, one assumes 

ku 2 eh lee 2p 
vY yV 

The values ie, k are, at least up to moderate Froude numbers, 

rather independent of the speed of advance. Because of the high values of 

the frequency parameter involved, one can hope that the mentioned approximate 

relations may even be accurate enough for calculating free vibration periods. 

But, again, we do not possess a satisfactory general solution and 

serious endeavors will be needed in the field of theory and experiment to 

improve the present state of knowledge. 

Acknowledgment is made to Mr. R.D. Cooper of the Taylor Model 

Basin for kind help in editing this preliminary memorandum. 
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