

.

$O \mathbb{U}$ OW N 11

SCH00L ARITHIETIC.

B Y

GREENSBORO, N. C.:
?UBLISHED BY STERLING, CAMPBELL \& ALBEIGHI'. Ricanond, Va., W. Hargrave Wedre.

$$
1863 .
$$

Entered according to Act of Congress, in the year 1863, By S. LANDER,
In the Clerk's Office of the District Court of the Confederate States, for the District of Cape Fear, North-Carolina.

PREFACE.

In presenting to the public perhaps the first Arithmetic whose authorship and publication belong exclusively to the Confederate States, I call attention to the following as its leading characteristics.

1. The pupil is furnished with a model for each class of operations, by which he may lnow precisely what kind of explanation is recquired of him as be recites.
2. The distinction between abstract and conerete numhers is carefully kept up throughout the whole book.
3. The Tables of Relations of Concrete Numbers are unusually full and convenient.
4. The problems are designed to call into exercise the pupil's practical common sense, as well as to assist him in acquiring a correct knowledge of Arithmetic.
5. The results of about two-thirds of the problems are given : those of the remainder are omitted, and a few of those given contain intentional errors, to test the pupil's self-reliance.
6. Progressions, and Mensuration, and the ordinary methods of extracting roots, are excluded entirely, because they lie beyond the province of Arithmetic.
7. No space is wasted by the insertion of questions on the text. A teacher who can not instruct without the help of questions, will succeed but poorly even with them.
8. The discouraging contradictions which are so numerous in "our best Arithmetics," have been sedulously awoided.

For the neat appearance of the book I am much indebted to my publishers, who have spared neither pains nor expense to bring it out creditably; and I am under especial ubligations to my friend Pror. Theo. F. Wolle, of Edgeworth Female Seminary, without whose constant rigilance in revising the sheets, no approximation to its present aceuracy could have been attained.

I invite my fellow-teachers to try the book by the only sure test, the test of the school-room; and I will thankfully receive any propositions of improvement which their examinations may suggest.

Our Own Primary Arithmetic will follow this as soon as possible.
S. LANDER.

Lincointon, N. C., August 1, 1863.

OONTENTS.

Introduction, I.
Arabic Notation 9
Roman Notation, 16
Operations,
Addition of Abstract Integers, 17
Subtraction of Abstract Integers, 2:3
Multiplication of Abstract Integers 31
Division of Abstract Integors, 41
Contraction in Addition 54
Contraction in Subtraction, 55
Contractions in Multiplieation, 56
Contractions in Division, 6.)
Gencral Principles of Division, 72
Measures and IIultiples, S2
Prine Factors, 99
[nvolution, $10 n$
Evolution, 101
Greatest Common Measure, 103
Least Commion Muitiple, 106
Common Fractions, 109
Reduction of Common Fractions, 121
Addition of Common Fractions, 131
Subtraction of Common firactions, 134
Multiplication of Common Tractions. 139
Division of Common Eractions, 146
Cancellation, 15%
Decimal Fractions,-Notation, 154
Addition of Decimal Fractions, 159
Subtraction of Decimal Iractions, 161
Multiplication of Decimal Fractions 162
Division of Decimal Fractions, 164
Contraction in Multiplication, 167
Contraction in Division 168
Relations of Ccmmon and Decimal Fractions, §169
Concrete Numbers,-Relations, 177
Addition of Concrete Numbers, 178
Subtraction of Concrete Numbers 180
Multiplication of Concrete Numbers, 182
Division of Concrete Numbers, 184
Reduction of Concrete Numbers, 186
Compound Numbers, 199
Addition of Compound Numbers, 200
Subtraction of Compound Numbers 201
Multiplication of Compound Numbers, 202
Division of Compound Numbers, 203
Aliquot Parts; or, Practice, 205
Contraction in Multiplication, 208
Contraction in Division, 209
Ratio, 210
Simple Proportion, 216
Compound Proportion, 224
Partitive Proportion ; or, Fellowship, 229
Conjoined Proportion ; or, The Chain Rale, 232
Percentage 233
Interest, 24 ?
Partial Payments, 250
Compound Interest, 251
Discount, 252
Bank Discount, 255
Average, 261
Alligation Medial, 264
Alligation Alternate, $:$ 266
Equation of Payments, 265

ARITHVETIC.

INTRODUCTION.

\$1. Aritimetic is the science of numbers.
§2. A unit is any single thing f as, one, one dollar.
§ 3 . A number is a collection of units; as, three, two dollars, four men.
§ 4. An abstract number is one whose unit is not specified; as, two, forty, serenty-one, eight.
§ 5 . A concrete number is one whose unit is specified; as, ten dollars, forty men, seventy-one bales, eight books.
§ 6 . Two or more numbers are similar when they have the same unit; as, two, five, and serenty; three men and six men.
§ 7. Two or more numbers are dissimilar when they have different units; as, two, five dollars, seventy men, three books.

Note.-All abstract numbers are similar.
§ 8. A compound number is a conorete number exprossed in two or more denominations; as, three dollars, fifty cents; ten hogsheads, forty gallons, three gills; ten miles, seven furlongs, seventeen rods.

ARABIC NOTATION.

99. Notition is the method of expressing numbers lyy figures. The Ar'abic system, which is the one in common use, is called also the decimal system, partly because it employs ten figures. These figures are: 0 naught or zero, 1 one, 2 two, 3 three, 4 four, 5 five, 6 six, 7 seven, 8 eight, 9 nine.

The figure 0 is used to fill racant places, and is omitted in reading.
$\oint 10$. A ten is a collectivis of ten units, and is called a unit of the second order.

A hundred is ten tens, or one hundred units, and is called a unit of the third order.

A thousand is ten hundreds, or one thousand mits; and is called a unit of the fourth order.

So, ten units of any order make one of the next higher.
§11. A single figure denotes units; as, 3, three units. 5, five units, 7, seven units.
§ 12. When two figures are written together, the one on the right denotes units, and the nther tens; as, 23 , two tens and three units, that is, twenty-three units; 34, three tens aad four units, that is, thirty-four units, or, simply, thirtyfour.
Read $27,56,73,37,84,48,99,76,43,55,79,80,15$.
§ 13. When three figures are written together, the one on the right denotes units, the next tens, and the other hundreds; as, 123, one hundred, two tens, and three units. or, one hundred and twenty-three ; 321, three hundred and twenty-one ; 132, one hundred and thirty-two: 402, four hundred and two.

Read 647, 864, 420, 301, 753, 537, 357, 785, 608, 740, 047, 306, 700, 609, 069, 009, 290, 391, 001.
§ 14. When more than three figures are written together, they are separated into periods of three figures each, beginuing at the right; and, in each operiod, the three figures denote respectively units, tens, and hundreds, of that period.
$\$ 15$. The names of the periods and their order from right to left are given in the following

TAR3LTE.

The above number is read,-one handred and twentythree duodecillions, four undecillions, fire hundred decillious, sixty nonillions, scren hundred sextillions, eightynine quintillions, eight hundred and ninets-seren trillions, sixty billions, five hundred and forty-three thousand, twro hundred and ten.
hule for reading aumbers. - Sepurale the figiures into periods of three figures each, beginning at the right; then, beginning at the lejt, recui cach period as if it stood alone, and pronounce the nume of the period after reading it.

Read the following: 12, 21, 37, 96; 793, 842, 209, 319; $2346,7907,5432,864 \cap,-2001,1861,1775 ; 24608,18579$, $10724,40047,78009 ; 475213,570903,400101,800003$; 1230455,2040608,7901035,8000005; 70083790,245000542, 5430102046, 146070080009, 9000800706040, 6000050001

Write the following numbers in figures:
35. Seventy-four.
36. Four hundred and forty-eight.
37. Five thousand, three hundred and ninety-seven.
38. Sixty thousand, and seventeen.
39. Seven hundred and forty thousand, eight hundred and forty-one.
40. Eight millions, seventy thousand, and seventy-nine.
41. Ninety-four millions, sixteen thousand, four hundred and fourteen.
42. Thre hmared millions, and three.
43. Two billions, tro millions, two thousand, and two.
44. Ten billions, ten millions, ten thousand, and ten.
45. Nine hundred and twenty-five billions, eight thousand, and sixteen.
46. Eight trillions, scen billions, sixty millions, five thousand, and four.
47. Seventy trillions, eighty-nine millions, and twentyone.
48. Six hundred and forty-two trillions, three hundred thousand.
49. Fifty-three quadrillions, eleren billions, and seventyn three.
50. Four hundred and four quinkillions, two huadred and two millions.
51. Thirty sextillions, forty quintillions, fifty trillions, six hundred and two.
52. Two octillions, four quadrillions, six hundred and eight thousạnd.
53. Ten decillions, twelve nonillions, fourteen millions, and ninety-nine.
54. Nine nonillions, ten millions, and twenty-seven,

ROMAN NOTATION.

y) 16. The Roman Notation employs the following severi letters: I one, V five, \mathcal{X} ten, I fifty, C one hundred, D five hundred, and II one thousand.

All integral numbers may be denoted by combining these letters according to the following rules:

1. Any letter dombled denotes trice its simple value; tripled denotes threc times, and so on. Thus, $I T=2$, $X X=20, \mathrm{CCC}=300$.
2. If a letter of less value is placed after onc of greater. value, the less is to be added to the greater. Thus, $V I=6$, $\mathrm{XV}=15, \mathrm{CCL}^{2}=250$.
3. If a letter of less value is placed hefore one of greater vilue, the less is to be subtracted from the greater. Thus, $I \mathrm{~V}=4, \mathrm{XC}=90, \mathrm{CD}=400$.
4. If a letter of less value is placed beiceen two of greater value, the less is to be subtracted from the sum of the other tro. Thus, $\mathrm{XIX}=19, \mathrm{XIV}=11, \mathrm{XCIX}=99$.
5. A dash placed over a lotter multiplies its valuc by 1000. Thus, $\overline{\mathrm{L}}=50000, \overline{\mathrm{C}}=100000$.

The above rules are sufficiently exemplified in the following

$I=1$	$\mathrm{XI}=11$	$\mathrm{XNI}=21$	$\mathrm{C}=100$
$\mathrm{I}=2$	$X I T=12$	XXII=	$\mathrm{CC}=200$
III=3	XIII $=13$	XXIII $=23$	$C D=400$
IV $=1$	$\mathrm{XIV}=14$	$\mathrm{XXX}=30$	$D=500$
$\mathrm{V}=5$	$X V=15$	$X L=40$	DC= $=600$
$\mathrm{VI}=6$	$\mathrm{XVI}=10$	$L=50$	$\mathrm{M}=1000$
VII $=$?	$\chi \mathrm{XVI}=17$	LX=60	$3 \mathrm{MC}=1100$
VIII $=8$	XVII $=18$	$\mathrm{LXX}=70$	$\mathrm{M}=2000$
$[\mathrm{X}=9$	XIX $=19$	IXXX $=80$	$\vec{M}=1000000$
$Y=10$	$X \mathrm{X}=20$	工C=90	$115 C C C L X I I=1865$
		11.1	

OPERATIONS.

There are four operations in Arithmetic; Addition, Subtraction, Multiplication, and Division. We will explais these operations in succession, first with reference to abstract numbers, and afterwards with reference to concrete numbers.

ADDITION OF ABSTRACT NUMBERS.

§ 17. ADditiox is the operation of finding one number equal to several other numbers put together.
§ 18. The result of addition is called the sum of the numbers added. Thus, 10 is the sum of 6 and 4 .
§ 19. The sign of addition, + , is read plus. When placod before a number, it denotes that it is to be added to any other addilive number with which it is connected. Thus; $6+4,6$ plus 4, denotes four added to six.
§ 20. The sign of equality, $=$, is read is equal to. When placed between two expressions it denotes that they are equal to each other. Thus, $6+4=10$ Also, $7+4+3=8+6$.

ADDIXION TATBRE.

2 and 0 are 2	3 and 0 are 3
\because and 1 are 3	3 and 1 are 4
2 and 2 are 4	3 and 2 are 5
3 and 3 are 5	3 and 3 are 6
3 and 4 are 6	3 and 4 are 7
-2 and 5 are 7	3 and 5 are 8
2 and 6 are 8	3 and 6 are 9
2 and 7 are 9	3 and 7 are 10
2 and 8 are 10	3 and 8 are 11
2 and 3 are 11	3 and 5 are 12

12

6 and 0 are 6 6 and 1 are i
6 and 2 are 8 © and 3 are 9
4 and 4 are 10
6 and 5 are 11
i and 6 are 12
f and 7 are 13
6 and 8 are 14
(i and 9 are 15

7 and 0 are 7
7 and 1 are 8
7 and 2 are 9
7 and 8 are 10
7 and 4 are 11
7 and 5 are 12
7 and 6 are 13
7 and 7 are 14
7 and 8 are 15
7 and 9 are 16

8 and 0 are 8
3 and 1 are 9
8 and 2 are 10
8 and 3 are 11
8 and 4 are 12
8 and 5 are 13
8 and 6 are 1!
8 aad 7 are 15
8 and 8 are 16
8 and 9 are 17

9 and 0 are !
9 and 1 are 10
9 and 2 are 11
9 and 8 are 12
9 and 4 are 13
3 and 5 are 14
9 and 6 are 15
9 and 7 are 16
0 aud S are 17
?) and 0 are 18

Note.-Let the above table be thoroughly memorized before the mupil advances further.

Fx. 1. Add together 102741,42102 , and 3050.

102741
42102
3050
147893

Note.-Let the teacher see to it that the pupil recites precisely according to the model hoth here and wherever a model is given.

Explanation.-First, the numbers are arranged with units of the same order in the same column. Then, beginning at the right, the numbers in each column are added together, and the sum is placed underneath in the same column.
2. Add together 23456, 10203, and 56030. Sum, 89689.
3. Find the sum of 120242,334124 , and 224612.

Note.-Let the pupil first say, "Add the numbers together," and then proceed as in the model.
4. What is the sum of 2400,1505 , and 3074 ? Ans. 6979.
5. Add 270, 102, 314, and 301 together.

Sum, 987.
6. Add together 94085,16275 , and 3367.

94085
16275
3367
Sum, $\overline{13727}$
are 11, set down 11. The sum is 113727 .

Exphanation.-After arranging the numbers as in $\S 21$, the sum of the column of units is found to be 17 units, that is, 1 ten and 7 units; hence, the 7 is placed under the column of units, and the 1 is afterwards added in with the column of tens. The sum of the column of tens are 22 tens, that is, 2 hundreds and 2 tens; hence, the right hand 2 is placed under the column of tens, and the other 2 is added in with the column of hundreds. The sum of the column of hundreds is 7 hundreds, and the 7 is placed underneath in that column. The sum of the column of thousands is 13 thousands, that is, 1 ten-thousand and 3 thousands; hence, the 3 is placed in the column of thousands, and the 1 is added in with the column of ten-thousands. The sum of the column of ten-thousands is 11 ten-thousands, that is, I hundred-thousand and 1 ten-thousand; hence, the right hand 1 is placed in the column of ten-thousands, and the ather 1 in the place of hundred-thousands.

Rule.-Arrange the numbers with units of the sume order in the same column.

Beginning at the right, find the sum of each column ; if this sum is expressed by one figure, set it down under the column; but if it is expressed by more than one figure, set the right hand figure under this column, and add the remaining figure or figures in with the next column.

Set down the whole sum of the last column.
Proof.-1. Add as before, but begin at the top of each column.

Or, 2. Find the sum of all the numbers but one, and to this sum add the number excepted.

Ex. 7. Add together 234, 156, 987, and 358. Sum, 1735.
8. Add together $1020,304,56$, and 9.

Sum, 1389.
9. Add together $2739,9647,271,17$, and 2950.
10. Add together 169078, 270189 , and 928608.

Sum, 1367875 .
11. Add together $27090,2709,2 \div 905,27,2709050$, and 270.

Sum, 3010051.
12. Find the sum of $369764,275863,10794,273,102469$, and 1861.
13. Find the sum of $173594,240680,10305,678$, and 976531.

Sum, 1401788.
14. Find the sum of $97347825,89734782,28973478$, 828973478, and 98289734. Sum, 1143319297.
15. Find the sum of $1928374560,192837456,1928$, $19283745,1928374,192837$, and 19283.
16. $907050301+80604020+123123123=$ what $?$

Ans. 1110777444.
17. $146+1875+13795+246820+24682=$ what $?$

Ans. 286818.
18. $2630+6202+7593+3694+1735=$ what ?
19. What is the sum of $3426,9120634,52714,9987$, 1137, and 97579 ?
20. What is the sum of $26322,50555,37684,898955$, and 9024 ? Ans. 1022540.
21. What is the sum of $41084,293347,9139919$, and 46552? Ans. 9520902.
22. What is the sum of $245301,586642,51407,1752$, 71283, and 42061?
23. What is the sum of $10,105,1057,10572,105723$, $1057234,10572349,105723496$, and 1057234968 ?

Ans. 1174705532.
24. What is the sum of $135792468,246813579,159483726$, 372684951, 123456789, 896745321, 896453217, and 400500746 ?

Ans. 3231930797.

SUBTRACTION OF ABSTRACT NUMBERS.

§ 23. Subtraction is the operation of finding the difference between two numbers, by taking the less from the greater.
§ 24. The number to be subtracted is called the subtrahend.
§ 25 . The number to be diminished is called the minuend.
§ 26. The result of subtraction is called the remainder or the difference.
§ 27. The sign of subtraction, 一, is read minus. When placed before a number, it denotes that it is to be subtracter? from the number with which it is connected. Thus, $6-4,6$ minus 4 , denotes 4 taken from 6. Also, $7-3=4$.
§28. The remainder is not changed by increasing the minuend and the subtrahend equally. Thus,
$\begin{array}{lllll}\text { Min. } & 27 & 27+15=42 & 27+240=267 & 27+306=333 \\ \text { Sub. } & 16 & 16+15=\frac{31}{11} & 16+240=\frac{256}{11} & 16+306=\frac{322}{11} \\ \text { Rem. } & \end{array}$

SUBSTRACTION TABLE.

2 from 2 leaves 0
2 from 3 leaves 1
2 from 4 leares 2
2 from 5 leaves 3
2 from 6 leaves 4
2 from 7 leaves 5
2 from 8 leaves 6
2 from 9 leaves 7
2 from 10 leaves 8
2 from 11 leaves 9
4 from 4 leaves 0
4 from 5
4 from 6 leaves 1
4 from 7
4 from 8 leaves 8
4 from 9
4 from 30 leaves 5
4 from 11 leaves 5
4 from 12 leaves 5
4 from 13 leaves 9

from 7 leaves 0
from 8 leaves 1
from 9 leaves 2
from 10 leaves 3
from 11 leaves 4
froin 12 leaves 5
from 1: leares 6
from 14 leares 7
from 15 leaves S
from 16 leaves 9

Ex. 1. From 976348 subtract 35127.

Min. 976348 Sub. 35127 Rem. 941221
§ 29. Model.-7 from 8 leaves $1 ; 2$ from 4 leaves 2; 1 from 3 leaves $2 ; 5$ from 6 leaves $1 ; 3$ from 7 leares 4;0 from 9 leaves ?. The remainder is 941221.

Explanation.-The subtrahend is placed under the minuend, with units of the same order in the same column. Then, beginning at the right, each figure of the subtrahend is taken from the corresponding figure of the minuend, and the remainder is set underneath in the same column.
2. From 127936 subtract 14312.
3. From 96898 subtract 13456.
4. Subtract 864231 from 987654 .

Rem. 123423.
5. Subtract 1024370 from 12357799 . Rem. 11333429. B
6. Subtract 327739 from 573647.

Min. 573647 §30. Modfin.-9 from 17 leaves 8; 4 Sub. 327739 from 4 leaves $0 ; 7$ from 16 leares $9 ; 8$ Rem. $\overline{245908}$ from 13 leaves $5 ; 3$ from 7 leaves $4 ; 3$ from 5 leaves?. The remainder is 245008 .
Explanation.-After arranging the numbers as in § 29, it is required to take 9 units from 7 units : this can not be done; lience, 1 ten, that is, 10 units, is added to the minuend, giving 17 units, from which 9 units taken leares 8 units. Then, because the minuend is increased 10 units or 1 ten, the subtrahend must be increased the same amount (\$28). This gives 4 tens to be taken from the \pm tens of the minuend, learing 0 tens. Again, 7 hundreds can not be taken froin 6 hundreds; hence, 1 thousand, that is, 10 hundreds, is added to the minuend, giving 16 hundreds, from which 7 hundreds taken leaves 9 hundreds. Then, because the minuend is increased 10 hundreds or 1 thousand, the subtrahend must be increased the same amount.

The same kind of reasoning will explain the rest of the operation.

Rule.-Place the subtrahend under the minuend, with units of the same order in the same column.

Beginning at the right, take each figure of the subtrahend from the corresponding figure of the minuend.

If any figure of the minuend is less than the corresponding figure of thasubtrahend, add 10 to this minuend figure, and add 1 to the subtraliend figure in the next column.

Proof.-1. Add the remainder to the subtrahend; the sum will be equal to the minuend.

Or, 2. Subtract the remainder from the minuend; the difference will be equal to the subtrahend.

Ex. 7. From 896 take 307.
8. From 1842 take 961.
9. From 2719 take $18 \% 7$.
10. From 12791 take 9872.
11. From 24593 take 20689.
12. From 978637 take 97863.
13. From 1654278 take 755429.
14. Take 678902 from 896454.
15. Take 17 ? 4937 from 1963869.
16. Take 23468579 from 60050040.
17. Take 9879789 from 9900000 .
18. Take 7896845 from 10000000 .
19. Minuend $=1234567$, Subtrahend $=765432$.

Rem. 469135.
Note.-Begin by saying, "Subtract the Subtrahend from the Minucnd."
20. Min. $=290178$, Sub. $=108105$.

Rem. 181765.
21. Sub $=20499$, Min. $=1900623$.
22. Sub $=987631$, Min. $=8765 \frac{1}{2} 13$.

Rem. 7777782.
23. 12646723-975894 = what?

Ans. 2887879.
24. $2468000-970053=$ what ?
25. What is the differcnce between one million, and ninety-nino?

Ans. 999901.
Note-Begin, "Subtract the less number from the greater."
26. What is the differeuce between thirty-seven billions, and eleven?

Ans. 36999999989.
27. What is the difference between nine thousand six kundred and thirteen, and five hundred and forty-two?
28. What is the difference between eight thousand and twenty-six, and eight hundred and twenty-six? Ans. 7200.
29. What is the difference between five thousand four hundred and ninety, and seven hundred and sixty-two?

MULTUPLICATION OF ABSTRACT NLMBERS.

§31. Mumiplication is the operation of finding a numher which shall contain one of two given numbers as many times as there are units in the other.

Thus, 3 times 6 are 18 : here 6 is multiplied by 3 , hecause 18 contains 6,3 times.
§ 32. The number to be multiplied is called the multi, licund.
§ 33. The multiplying namber is called the multiplier.
§ 34 . The result of multiplication is called the product.
§ 35. Either the multiplicand or the multiplier is called a. factor of the product, and they both are called its factors.

In general, one number is a factor of any other number which contains it an exact number of times.

Thus, 3 is a factor of $18 ; 4$ is a factor of 12 , or of 20 ; 5 is a factor of 10 , of 15 , of 30 , or of 45 .
§ 36. The sign of multiplicatiou, x, when placed between two numbers, denotes that one of them is to be multiplied by the other. It is read times, when placed after the multiplier, and multiplied by, when placed after the multiplieand. Thus, to denote that 6 is to be multiplied by 3, we may pay, $3 \times 6,3$ times 6 , or $6 \times 3,6$ multiplicel by 3 .. T'o denote the successive multiplication of more than two numbers, periods are used. Thus, $2.3 .5=30$. 2 times 3 times j) $=30$.
§37. The product of any two abstract factors is the same, no, matter which is used as multiplier. Thus, $3 \times 6=$ $6 \times 3=18 ; 4 \times 5=5 \times 4=20 ; 10 \times 8=8 \times 10=80$.

MULTIELICATMON TAHEE:

times fo are 0	are	6 times
time	re	6 times 1 are
times 2 are	times 2 are 10	6 times 2 aro
are 12	times 3 are 15	6 times 3 are
times 4 are 16	5 times 4 are 20	6 tim
times 5 are 20	5 times 5 are 25	6 times 5 ar
4 times 6 are 24	5 tiwes 6 are 30	6 times 6 ar
times 7 are 28	5 times 7 are 35	6 times 7 ar
times 8 are 32	5 times 8 are 40	6 times 8 arc
nes. 9 are 36	5^{5} times 9 are 45	0 times 9 are
es 10 are 40	5 times 10 are 50	6 times 10 aro
times 11 are 44	5 times 11 are 50,	6 times 11 aro
times 12 are 48	5 times 12 are 60	6 times 12 are

7	times	0	are	0	8	times	0	are	0	9	times	0
7												

				- are		12 times		
	1 are	10	11		11	12		
0	2	20	11		22	12		
0	32	30	11		38	12 t		
10 time	$\frac{1}{t}$ are	40	11 time	4 are	44	12	4 ar	
ti	5 are	50	11 tim	5 are	55	12	5 ar	
0 ti	6 ar	60	11	6 ar	66	12	6	
10 time	7 a	70	11		77	12	7 a	
0 ti	8	80	11.		88	12 tim	8 ar	
times	9 are	90	11	9 are	99	12 times	9 are	
es	10	10	11 times	10 are	110	12 times	10	
0 times		110	11		121		11	
+	12		11					

Ex. 1. Multiply 24307 by 3.

Multiplicand, 24:307
Multiplier,
Product, $\overline{72921}$
§38. Model. - 3 times 7 are 21, set down 1; 3 times 0 are 0, and 2 are $2 ; 3$ times 3 are $9 ; 3$ times 4 are 12, set down 2;3 times 2 are 6, and 1 are 7. The product is 72921 .

Expianation.-The smaller factor is placed under thelarger. Then, beginning at the right, each figure of the upper number is taken 3 times, the right hand figure of each product is set down, and the remaining figure, if any, is added to the next product. 3 times 7 units are 21 units, that is, 2 tens and 1 unit; hence, 1 unit is set in the units' place, and 2 tens are added to the product of the tens.
2. Multiply 24307 by 40 .

Multiplicand, 24307 Multiplier, $\quad 40$ Product, $\overline{972280}$
§ 39. Model. -4 times 7 are 28 , set ${ }^{\circ}$ down 8 ; 4 times 0 are 0 , and 2 are 2; 4 times 3 are 12 , set down 2; 4 times 4 are 16, and 1 are 17 , set down 7; 4 times 2 are 8 , and 1 are 9 : annex 0 . The product is 972280 .

Explanatron, -Since 10 units of any order make one of the next order on the left, any number is niultiplied by 10
by merely moring each of its figures one place to the left, and putting a 0 in the place of units. Hence, to multiply by 40 , each figure of the product by 4 is set one place to the left, and the units' place is filled with a 0 .
3. Multiply 24307 by 43.

Multiplicand,	24307
Multiplicr,	43
Ist partial prod.	72921
2nd partial prod.	$\frac{97228}{1045201}$
Product,	

§ 40. Monel. - 3 times 7 are 21, set down 1; 3 times 0 are 0 , and 2 are 2; 3 times 3 are $9 ; 3$ times 4 are 12, set down $2 ; 3$ times 2 are 6 , and 1 are 7 :-4 times 7 are 28 , set down 8 under $2 ; 4$ times 0 are 0 , and 2 are 2; ftimes 3 are 12, set down 2: 4 times 4 are 16 , and 1 are 17 , set down $7 ; 4$ times 2 are 8 , and 1 are 9 . Add the partial products: $1 ; 8$ ard 2 are 10, set down 0 ; 1 and 2 are 3 , and 9 are 12 , set down $2 ; 1$ and 2 are 3 , and 2 are $5 ; 7$ and 7 are 14, set down $t ; 1$ and 9 are 10 , set down 10. The product is 1045201.

Explanation.-The upper number is multiplied, first by 3 , as in $\S 38$, and then by 40 , as in $\S 39$, except that the 0 at the right is omitted, as being unnecessary, since the several figures can be placed in their proper colmms mithout it. It must be remembered, however, that the second partial product is not 97,228 , but 972,280 .
4. Multiply 3047 by 246279 .

5. Multiply 794378 by 4608 .

Multiplier, Multiplicand,	$\begin{array}{r} 246279 \\ 3047 \end{array}$	Multiplicand Multiplier,	$\begin{array}{r} 794378 \\ 4608 \end{array}$
	1722953		6355024
	985116		766268
	'738837		3177512
Product,	750412113	Product,	3660493824

Rule.-1. When either factor contains but one valuable figure. Set the smaller factor under the larger. Beginning at the right, multiply cach figure of the upper number by the lower number, set down the right hand figure of the product, and add the remaining figure, if any, to the next product; but set down the whiale of the last product.
2. When the smatler fuctor contains more than one valuctble figure. Set it under the larger; multiply the upper factor by each figure of the lower, setting the first figure of each partial product under the mittiplying figure which produced it, and add the partial products together in that order.

Proor.-Mnitiply the lower factor by the upper.
Ex. 6. Multiply 3460 by 3.
7. Multiply 4 by 268.
8. Multiply 45274 by 5 .
9. Multiply 56295 by 6.
10. Maltiply 75397 by 7 .
11. Multiply 9 by 98765 .
12. Multiply 21179 by 27.
13. Multiply $978: 5$ by 34 .
14. Multiply 86906 by 45 .
15. Multiply 279362 by 5%.
16. Multiply 192837 by 67.
17. Multiply 293705 by 75.
18. Multiply 246835 by 83 .
19. $1964326 \times 98=$ what?

Note--Degin, "Maltiply the first number by the second."
20. What is the product of 2975×375 ? Ans. 1115625 .
21. What is the product of 3047×287 ?

24
22. What is the product of 40535×493 ? Aus. 19983755.
23. What is the product of 1027×4027 ? Aus. 16216729.
2.4. $719 \times 729=$ what?
25. $92730465 \times 1794=$ what ? Ans. 166358451210 .
$\because 6$. $8162035 \times 28645=$ what? Ans. 233801492575 .

MUISION OF ABSTRACE NUMBERS.

34. Divisus is the operation of finding how many times one number is contained in an other. Thus, 4 in 20 , 5 times : here 90 is divided by 4 , since $\frac{8}{}$ is entained 5 times in 20 .
§ 42. Ur, Division is the operation of separating ia number into some number of equal parts. Thus, if 20 is divided into 4 equal parts, each of the parts is 5 .
§43. The number to be divided is called the dividend.
\$44. The dividiny number is called the divisor.
$\$ 45$. The resull of division is called the quotient.
§ 46. When the division is not complete, the undivided part of the dividend is called the remuinder. Thus, 8 in 35 , 4 times, with 3 over; here 35 is the dividend, 8 is the divisor, $\frac{1}{}$ is the quotient, and $:$ is the remainder.
§47. The sign of division, \div, is read divided by. When placed betwecn two numbers, it denotes that the one bofore it is to be divided ly the one after it. 'ihus, $20 \div 5=4$.
\$48. Division is sometimes denoted by placing the dividend over the divisor with a line betireen them. Thas, $\frac{20}{6}=4$.

DIVISION TABLIE.

in 0 , no time	in 0, no time	3 in 0, no time
in 1 , once	2 in 2, once	8 in \} 3 , once
in 2, twice	2 in 4, twice	3 in 6, twice
in 3, 3 times	2 in 6, 3 times	3 in 9, 3 times
1 in 4, 4 times	2 in 8,4 times	3 in 12, 4 times
in 5,5 times	2 in 10,5 times	3 in 15, 5 times
in 6, 6 times	2 in 12, 6 times	3 in 18, 6 times
in 7,7 times	2 in 14, 7 times	3 in 21, 7 times
in 8, 8 times	2 in 16, 8 times	3 in 24, 8 times
in 9, 9 times	2 in 18, 9 times	3 in 27,9 times

4 in 0 , no time $\quad .5$ in 0 , no time
4 . in 4 , once
4 in 8 , twice
4 in 12, 3 times
4 in 16, 4 tinues
4 in 20,5 times
4 in 24, 6 times
4 in 26,7 times
4 in 32, 8 times
4 in 36, 9 times

5 in 5, once
5 in 10 , twice
5 in 15,3 times
5 in 20, 4 times
5 in 25,5 times
5 in 30,6 times
5 in 35,7 times
5 in 40, 8 times
5 in 45,9 times

6 in 0, no time
6 in 6, once
6 in 12 , twice
6 in 18, 3 times
6 in 24, 4 times
6 in 30,5 times
6 in 36, 6 times
6 in 42, 7 times
6 in 48,8 times
6 in 54,9 times

7 in 0, no time	8 in 0, no time
7 in 7, once	8
7 in 8, once	
7 in 14, trice	8 in 16, twice
7 in 21,3 times	8 in 24,3 times
7 in 28,4 times	8 in 32,4 times
7 in 35,5 times	8 iu 40,5 times
7 in 42,6 times	8 in 48,6 tinos
7 in 49,7 times	8 in 56,7 times
7 in 56,8 times	8 in 64,8 times
7 in 63,9 , times	8 in 72,9 times

10) in 0, no time

10 in 10 , once
10 in 20 , twice
10 in 30,3 times
10 in 40, a times
10 in 50, 5 times
10 in 60,6 times
10 in 70, 7 times
10 in 80,8 times
10 in 90,9 times

11 in 0 , no time
11 in 11, once
11 in 22, twice
11 in 33, 3 times
11 in 44, 4 times
11 in 55, 5 times
11 in 66, 6 times
11 in 77,7 times
11 in SS; 8 times
11 in 99, 9 times

9 in 0 , no time
9 in 9 , once
(9) in 18, twice

5 in 27,3 times
9 in 36, 4 times
() in 45,5 times

9 in 54, 6 times
9 in 63,7 times
9 in 72,8 times
9 in 81,9 times
12 iu 0, no time
12 in 12, once
12 in 24, twice
12 in 36,8 times
12 in 48,4 times
12 in 60,5 times
12 in 72,6 times
12 in 84,7 times
12 in 96,8 times
12 in 108,9 times

I. SHORT DIVIEION.

> Ex. 1. Divide 3096 hy 3. Divisor, 3)3096, Dividend.

> 1032, Quotient.

§ 49. Model.-3 in 3, once; 3 in 0 , no timic ; 3 in 9,3 times ; 3 in 6, twice.
The quotient is 1032 .
Explatation-The divisor is placed on the left of the dividond. Then, beginning at the left, the number in each order of units is divided by 3 , and each quotient figure is set in its proper column.

Fix. 2. Divide $8062+$ by 2 .
3. Divide 8048 by 4 .

Quot. 40312.
4. Divide 90369 by 3 .

Quot. 2012.
Quot. 30123.
5. Divide 17120 by 8 .
8) 17120 S \quad SODEL - 8 in 17 , twice, with lover, 2140 set down 2; 8 in 11, once, with 3 over, set down 1; 8 in 32, 4 times; 8 in 0 , no time. The quotient is 2140.

Explanation.- δ is not contained in 1 , that is, in 1 tenthousand, in its present form ; bence, 1 ten-theusand is reduced to 10 thousands, and added to the 7 thousards, making 17 thousands. 8 is contained twice in 16 ; so that there is 1 thousand still undivided. This is reduced to 10 hundreds, and added to the 1 hundred, making 11 hundreds. 8 is contained once in 8 ; so that there are 3 hundreds still undivided. These are reduced to 30 tens, and added to the 2 tens, making 32 tens. 8 is contained in 32 just 4 times. The 0 of the dividend is retained in the quotient, to cause the several quotient figures, 2 thousands, 1 humdred, and 4 tens, to occupy their proper places

Ex. 6. Divide 36374 by 9 .
9) 36374 § 51. Model. -9 in 36, 4 times; 9 in $4041 \ldots 53,0$ time, with 3 over, set down 0; 9 in 37, 4 times, with 1 over, set down $4 ; 9$ in 14, once, with 5 over, set down 1 in the quotient, and 5 as remainder. The quotient is 4041, and the remainder 5.

Explanation.-The division of the 5 units might be denoted ${ }_{9}^{5}$, as in $\S 48$.

Rule.-Set the divisor on the left of the dividend, with a Ine between them, and one under the dividend.

Beginning at the left, see how many times the divisor is contained in each figure of the dividend, and set the result wnder the dividend.

Whenever there is a remainder, prefix it to the next figure of the dividend, before dividing.

If the divisor is not contained in any figure, except the first, set 0 under such figure, and regard it as a remuinder.

Proor.-Multiply the quotient by the divisor : the produet, increased by the remainder, if any, will be equal to the dividend.

Ex. 7. Diride 73052 by 2.
Quot. 36526.
8. Divide 222345 by 3 .
9. Divide 123456 by 4.
10. Divide 790530 by 5.
11. Divide 78920472 ly 8.

Quot. 74115.
12. Divide 945 by 7.
13. Divide $12401 \because 8$ by is.
14. Divide 743200173 by 9 .

Quot. 155016.
Quot. 82577797.
15. Divide 4703750 by 10 .
16. Divide 9009 by 11 .
17. Divide 721428 by 12.

Quot. 819.
Quot. 60119.

II. LONG DIVISION.

Ex. 18. Divide 2966232 by 925.

Dividend, $2966232 \left\lvert\, \frac{925}{\frac{2775}{3206}, \text { Dirisor. }}$| $\frac{1912}{1850}$ |
| :---: |
| $\frac{6232}{5550}$ |
| $\frac{682}{}$, Remainder. |\right.

§52. Modec.-9 in 29, 3 times ; multiply the divisor by 3 ; 3 times 5 are 15 , set down 5 ; 3 times 2 are 6 , and 1 are 7 ; 3 times 9 are 27 , set down 27 : subtract the product from the dividend; 2"; 5 from 6 leaves $1 ; 7$ from 16 leares $9 ; 8$ from 9 leaves $1:-9$ in 19 , twice; multiply the divisor by 2 ; twice 5 are 10 , set down 0 ; twice 2 are 4 , and 1 are 5 ; twice 9 are 18 , set down 18: subtract the produet from the previous remainder ; 3; 0 from 2 leaves 2; 5 from 11 leaves $6 ; 9$ from 9 leares $0:-9$ in 6 , no time ; annex 2:-9 in 62, 0 times; multiply the divisor by 6 ; 6 times 5 are 30 , set down 0 ; (f times 2 are 12, and 3 are 15 , set down $5 ; 6$ times 9 are 54 , and 1 are 55 : subtract the product from the previous remainder; 0 from 2 leaves $2 ; 5$ from 13 leaves $3 ; 6$ from 12 leaves $6 ; 6$ from 6 leaves 0 . The quotient is 3206 , and the remainder 682.

Explaration.-The divisor is placed on the right of the dividend, for convenience in multiplying. The number 9 is used throughout as a trial divisor. As two figures of the real divisor are thus omitted, two figures of each partial dividend must be omitted also. Hence, in the third step, we say 9 in 6 , and not 9 in 62 , until we have annexed an additional figure. The first quotient figure stands for 3000 ; hence the first product is really 2775000 , and the first remainder 191232 ; but, as we do not need all these
figures for the next step, we begin to subtract only one place to the right of the last valuable figure in the product. The division of the remainder might be expressed as in § 48.

Ex. 19. Diride 6593 by 19.

659319
$5 \overline{\overline{347}}$
§ 53. Model.-2 in 6, 3 times; multiply the divisor by $3 ; 3$ times 9 are 27 ; set down 7 ; 8 times 1 are 3 , and 2 are 5 : subtract the product from the dividend; 9 ; 7 from 15 leaves $8 ; 6$ from 6 leaves $0:-$ 2 in 8, 4 times; multiply the divisor by 4 ; 4 times 9 are 36 , set down $6 ; 4$ times 1 are 4, and 3 are 7 : subtract this product from the previous remainder; 3; 6 from 9 leaves $3 ; 7$ from 8 leaves 1 :-2 in 13, 7 times; multiply the divisor by $7 ; 7$ times 9 are 63 , set down $3 ; 7$ times 1 are 7, and 6 are 13 , set down 13: subtract the product from the previous remainder; 0 . The quotient is 347.

Explanation.-If the second figure of the divisor is less than 5 , the first figure is the trial divisor; but, if the second figure is greater than 5 , the trial divisor is one more than the first figure. If, on multiplying, a quotient figure be found to be too large or too small, let it be diminished or increased a unit at a time until the right result is attained.

Rule.-Set the divisor on the right of the dividend, with a line between them, and one under the divisor:

Beginning at the left, see how often the divisor is contained in the first part of the dividend: the result will be the first figure of the quotient. Multiply the divisor by this quotient figure, and subtract the product from that part of the dividend which was used, annexing to the remainder the next figure of the dividend.

Talie this remainder us a seconct. purtial dividend, and from it obtain the serond quotient fiyure. Multiply the divisor by this figure, and subtract the product from the provious remuinder, amexing to the second remainder the next figure of the dividend.

Continue this process till all the figures of the divirlend have lieen used.

If any particl Jicidend will not contain the divisor, set 0 in the quolient, amex an other figure of the dividend, and divide again.

Proof. 1.-The same as in $\S 51$, for short division.
Or, 2. Subtract the remainder, if any, from the diri dend ; divide this remainder by the quotient, and the result will be the divisor.

Ex. 20 Divide 18950 by 25 .
Quot. 758.
21 Divide 17136 by 36.
22. Divide 42581 by 49

Quot. 869.
23. Dividend=16701, Divisor= $=$ J7.

Quot. 293.
Note- Begin, "Divide the Dividend by the Diviror."
24. Dividend $=265: 16$, Divisor $=6$.
25. Dividend=15076872, Divisor=72. Quot. 209401.
26. Dividend=-30744, Divisor=84. Quot. 366.
27. Divisor $=97$, Dividend $=84002$.
~8. Divisor $=125$, Dividend $=15625$.
Quot. 125.
29. Divisor $=273$, Dividend $=104832$.

Quet. 384.
30. Divisor $=354$, Dividend $=94164$.
31. Divisor $=465$, Dividend $=267375$.

Quot. 575.
32. Divisor $=531$, Dividend $=34090$ 2.

Quot. 642.
33. Divisor $=685$, Dividend $=543205$.
34. Divisor $=721$, Dividend $=27: 8264$.

Quot. 3784.
35. Divisor $=829$, Dividend $=5697717$.
36. Divisor $=937$, Dividend $=981976$.
37. $5754375 \div 1125=$ what ?

Quet. 1048.
38. $4515625 \div 2125=$ what ?
39. $18284964 \div 3094=$ what?
40. $24896825 \div 4105=$ what?

Ans. 15606. Ans. 6065.
41. $27206656 \div 5210=$ what?
42. $45782172 \div 6327=$ what ?
43. $313201258 \div 7153=$ what ?

Ans. 7236.
44. $293834463995 \div 8405=$ what?
45. $572473044 \div 9516=$ what? An5. 60159.
46. $93939874943 \div 10471=$ what? Ans. 8971433 .
47. $151807041 \div 12321=$ what ?
48. Diridend $=1274153376$, Divisor $=23456$.

Quоt. 54321.
49. Dividend $=1839739176$, Dirisor $=34056$.

Quot. 54021.
50. Dividend=2642079580, Dirisor= 40565 .
51. Dividend $=2900124304$, Divisor $=56504$.

Quot. 51326.
52. Divisor $=65405$, Diridend $=667719645$.

Quot. 10209.
53. Dirisor $=74316$, Dividend $=4734969624$.
54. Divisor $=81634$, Dividend $=7571145330$.

Quot. 92745.
55. Divisor=95703, Dividend=1299551037.

Quot. 13579.
56. Divisor $=97531$, Dividend $=2999956029$. 57. Divisor $=36805$, Dividend $=800655970$.

Quot. 21754.
58. Divisor $=234282$, Dividend $=83596737522$.

Quot. 356821.
59. Divisor=5276431, Dividend $=7105901538475$.

CONTRACTION IN ADDITION.

Note.-The judicious tercher will omit this and most of the following contractions as his classes proceed through the book the first time.

Ex. 1. Add together the following numbers:

469375 237924 472437 853214
975318
242326
3250594
§54. Movel- 26 and 10 are 36 , and 8 are 44 , and 10 are 54 , and 4 are 58 , and 30 are 88 , and 7 are 95 , and 20 are 115 , and 4 are 119, and 70 are 189, and 5 are 194, set down $94:-1$ and 23 are 24 , and 50 are 74 , and 3 are 77, and 30 are 107, and 2 are 109, and 20 are 129, and 4 are 133, and 70 are 203 , and 9 are 212 , and 90 are 302 , and 3 are 305, set down $05:-3$ and 24 are 27, and 90 are 117, and 7 are $12 t$, and 80 are 204, and 5 are 209, and 40 are 249 , and 7 are 256 , and 20 are 276 , and 3 are 279 , and 40 are 319 , and 6 are 325 , set down 325 . The sum is 3250594 .

Explanation.-Beginning at the right, and taking two columns at a time, we take in first the tens and then the units, as we go up the column, and set down the two right hand figures of each sum.

Ex. 2.	3.	4.	5.	6.	7.
123456	1234	235689	14250663	819349	120341.
789012	5678	124578	32215941	720258	989052
345678	9012	135792	10340285	630167	878163
901234	3456	468097	92341967	541076	767274
567890	7890	531086	82395786	452985	656855
987654	1357	420987	17084657	363894	545496
$: 321098$	9246	654321	40558476	274703	432107
$\frac{765432}{4801454}$	$\frac{8987}{46860}$	$\frac{555775}{3126325}$	$\underline{91623378}$	185612	321098
\mathbf{C}			3		

CONTRACTION IN SUBTRACTION.

Ex. 1. From 970347 take the sum of 14375,226899 , 12534, and 369708.

970347 §55. MODEL.-8 and 4 are 12, and 9 are 14375 21, and 5 are 26 , from 27 leaves $1 ; 2$ and 3 226899 are 5, and 9 are 14, and 7 are 21, from 24 12534 leaves $3 ; 2$ and 7 are 9 , and 5 are 14 , and 8 369708 are 22, and 3 are 25, from 33 leaves $8 ; 3$ and $\overline{346831} 9$ are 12, and 2 are 14, and 6 are 20 , and 4 are 24, from 30 leaves $6 ; 3$ and 6 are 9 , and 1 are 10 , and 2 are 12, and 1 are 13 , from 17 leaves $4 ; 1$ and 3 are 4 , and 2 are 6 , from 9 leaves 3 . The remainder is 346831 .

Explanation.-As 26, the sum of the subtrahend units, can not be taken from 7, the units of the minuend, we add 2 tens, that is, 20 units, to the minuend, and afterwards add 2 tens to the subtrahend. (§28.)

Note.-Let the pupil be required to use this contraction whenever it can be applied.

Ex. 2. From 1000 take $9+98+176+254+289$.
Rem. 174.
3. From 9125 take $8+88+888+1297+3945$.

Rem. 2899.
4. From 10275 take $1245+3735+2986+895$.

Rem. 1414.
5. From 87579 take $1477+2796+8972+10896$.

Rem. 63438.
6. From 120225 take $246+1357+97531+1358$.
7. From 72575 take $575+2575+4575+15575$.
8. From 4970 take 250-|-325-|-348-|-2211.
9. From 22907 take $3916-|-2821-|-4302-|-2309$.

CONTRACTIONS IN MULTIPLICATION.

Ex. 1. Multiply 7325 by 100.
732500.
§56. Model.-Annex two naughts to the multiplicand. The product is $73 \div 500$.
Explanation.-We annex to the multiplicand as many ciphers as there are annexed to the 1 of the multiplier. (§ 39.)

Ex. 2. Multiply 1358 by 10.
3. Multiply 2468 by 100.
4. Multiply 4579 by 1000 .

Prod. 13580.
Prod. 246800.
Prod. 4579000.
5. Multiply 86725 by 10000 .
6. Multiply 1020 by 100 .
T. Multiply 32500 by 1000 .
8. Multiply 32500 by 25000 .

32500
25000
1625
650
812500000
§ 57. Monel.-5 times 5 are 25, set down 5; 5 times 2 are 10, and 2 are 12, set down 2; 5 times 3 are 15 , and 1 are 16, set down $16:-$ twice 5 are 10 , set down 0 under 2; twice 2 are 4 , and 1 are 5 ; twice 3 are $6:$-add the partial products : $5 ; 2 ; 5$ and 6 are 11 , set down $1 ; 1$ and 6 are 7 , and 1 are 8 :-annex 5 naughts. The product is 812500000 .

Explanation.-After finding the product of the valuable figures, we annex to it as many naughts as there are in the right of both the factors.

Ex. 9. Multiply 27500 by 350 .
Prod. 9625000.
10. Multiply 1250 by 1500 .
11. Multiply 747000 by 250.
12. Multiply 19500 by 1400 .

Prod. 1875000. Prod. 186750000.
Prod. 27300000.
13. Multiply 124750 by 3000 .
14. Multiply 2795000 by 2700 .
15. Multiply 3759 by 104.
3759×104
$\frac{15036}{390936}$
§ 58. Moder.-4 times 9 are 36, set down 6 , two places to the right of $9 ; 4$ times 5 are 20 , and 3 are 23, set down 3 ; 4 times 7 are 28, and 2 are 30 , set down ${ }^{1}$; 4 times 3 are 12, and 3 are 15, set down 15 :-add the partial products:-6;3;9;5 and 5 are 10, set down 0 ; 1 and 1 are 2, and 7 are $9 ; 3$. The product is 390936 .

Explanation.-If the multiplier has only two valuable figures, the first of which is 1 , we multiply by the other valuable figure, and set the first figure of the product as far to the right of the units figure of the multiplicand as this figure is to the right of the 1 .

Ex. 16. Multiply 2376 by 12 .
17. Multiply 47475 by 107.
18. Multiply 57875 by 10080 .
19. Multiply 275 by 1009.
20. Multiply 4479 by 10000 .
21. Multiply 795310 by 10500 .
22. Multiply 1025 by 7001.
1025×7001
7175
$\overline{7176025}$
§ 59. ModeL.-7 times 5 are 35, set down 5, three places to the left of $5 ; 7$ times 2 are 14, and 3 are 17, set down $7 ; 7$ times 0 are 0 , and 1 is 1 ; 7 times 1 are 7 :-add the partial products: $-5 ; 2 ; 0 ; 5$ and 1 are $6 ; 7 ; 1 ; 7$. The product is 7176025 .

Explanation. - If the multiplier has only two valuable figures, the last of which is 1 , we multiply by the other valuable figure, and set the first figure of the nroduct as far to the left of the units figure of the multiplicand as this figure is to the left of the 1 .

Ex. 23. Multiply 7893 by 51 .
24. Multiply 4685 by 601.
25. Multiply 23795 by 7010.
26. Multiply 1375 by 8001 .
27. Multiply 20478 by 90010 .
23. Multiply 27346 by 99 .

2734600
27346
$270725!$
§ 60. Model.-Annex 2 naughts to the multiplicand:-subtract the multiplicand from the result; 6 from 10 leaves $4 ; 5$ from 10 leaves $5 ; 4$ from 6 leaves 2; 7 from 14 leares $7 ; 3$ from 3 leaves $0 ; 0$ from 7 leaves $7 ; 0$ from 2 leaves 2. The product is 2707254 .

Fxpranation.-Since 9 is 1 less than 10 , we may multiply any number by 9 , by subtracting the number from 10 times itself. If therefore the multiplier consists of 9 's alone, we amex to the multiplicand as many naughts as there are nines in the multiplier, and subtract the multiplicand from the result.

Ex. 29. Multiply 124795 by 9.
30. Multiply 24735 by 99.
31. Multiply 1469 by 999.
32. Multiply 70095 by 99 .
33. Nultiply 9999 by 256. (§ 37.)
34. Nultiply 1276538 by 999.
35. Multiply 8365712 by 99.

36 Multiply 2754 by 54 .
27540
2754
24786
6
148716
$\S 61$. Model- $-54=9$ times 6 . First, multiply by $9:-(\S 60$.) 4 from 10 leaves $6 ; 6$ from 14 leaves $8 ; 8$ from 15 leaves $7 ; 3$ from 7 leaves $4 ; 0$ from 2 leaves 2. The product is 24786 . Multiply this product by $6:-6$ times 6 are 36 , set down $6 ; 6$ times 8 are 48, and 3 are 51 , set down $1 ; 6$ times 7 are 42 , and 5 are 47 ,
set down 7; 6 times 4 are 24 , and 4 are 28, set down 8; 6 times 2 are 12, and 2 are 14, set down 14. The product is 148716 .

Explanation.- If the multiplier is the product of two or more numbers, we may multiply the multiplicand by either of those numbers, and this product by an other, and so on.

Ex. 37. Multiply 3725 by 35.
38. Multiply 17575 by 48.
39. Multiply 473729 by 49.
40. Multiply 27936 by 56.
41. Multiply 124684 by 64.
42. Multiply 247372 by 72.
43. Multiply 21857 by 714.

21357
714
149499
298998
15348898
§62. Model.-14 is twice 7. First, multiply by $7:-7$ times 7 are 49 , set down 9 under 7 of the multiplier; 7 times i) are 35 , and 4 are 39 , set down $9 ; 7$ times 3 are 21, and 3 are 24, set down 4; 7 times 1 are 7 , and 2 are $9 ; 7$ times 2 are 14 , set down 14. The product is 149499 . Multiply this product by 2:- twice 9 are 18, set down 8 under 4 of the multiplier; twice 9 are 18, and 1 are 19, set down 9 ; twice 4 are 8 , and 1 are 9 ; twice 9 are 18 , set down 8 ; twice 4 are 8 , and 1 are 9 ; twice 1 are 2. Add the partial products: $8 ; 9 ; 9$ and 9 are 18 , set down $8 ; 1$ and 8 are 9 , and 9 are 18 , set down $8 ; 1$ and 9 are 10 , and 4 are 14 , set down 4 ; 1 and 2 are 3 , and 9 are 12 , set down 2 ; 1 and 4 are 5 ; 1 . The product is 15248898 .

Explanation.-If one part of the multiplier is a factor of an other, the work may be contracted as in the model, placing the first figure of each product immediately under
the right hand figure of the corresponding part of the multiplier.

Ex. 44. Multiply 12479 by 654.
45. Multiply 24793 by 56248 .
46. Multiply 97635 by 53545 .
47. Multiply 86436 by 497 .
48. Multiply 23047 by 488 .
49. Multiply 902756 by 366108 .

Prod. 8161266. Prod. 1394556664. Prod. 5227866075.

Prod. 42958692.
50. Multiply 225 by 25.
4) $\frac{22500}{5625}$
§63. Model.-Annex 2 naughts to the multiplicand:-divide the result by $4:-4$ in 22, 5 times, with 2 over, set down $5 ; 4$ in 25,6 times, with 1 over, set down $6 ; 4$ in 10 , twice, with 2 over, set down 2; 4 in 20, 5 times. The product is 5625.

Explanation.-Annexing 2 naughts multiplies by 100 , ($\$ 56$): hence, since $100=4 \times 25$, we divide the product by 4, to get the true product.

Ex. 51. Multiply 10275 by 25.
52. Multiply 28832 by 25.
53. Multiply 72725 by 25.
54. Multiply 84287 by 25 .
55. Multiply 96248 by 25 .
56. Multiply 8324728 by 25.
57. Multiply 274 by 125 .
8) $\frac{274000}{34: 50}$
§64. Model.-Annex 3 naughts to the multiplicand :-divide the result by $8:-8$ in 27, 3 times, with 3 over, set down $3 ; 8$ in 34, 4 times with 2 over, set down $4 ; 8$ in 20, twice, with 4 over, set down $2 ; 8$ in 40,5 times; 8 in 0 , no time. The product is 34250 .

Explanation - Annexing 3 naughts multiplies by 1000 , (S. 56): hence, siuce $1000=8 \times 125$, we divide the product hy 8 , to get the true prodact.

Eis. 58. Multiply 125 by 125.
59. Multiply 625 by 12.3.
60. Multiply 1776 by 125 .
61. Multiply 34079 by 125.
62. Multiply 934478 by 125.
63. Multiply 7840349 by 125 .

Prod. 15625.
Prod. 78125.
Prod. 222000.
Prod. 4259575.

CONTRACTIONS I: DIVISION.

Rx. 1. Divide 12564!y!us.
125,64 \& 65. Model.-Cut off two figures at the right. The quotient is 125, and the remainder 64.
Bmplination-- We cut off at the right, for remainder, as many figures as there are naughts at the right of the 1 of the dirisor. The remaining figures on the left eonstitute the quotient.
\therefore Divide 34000 by 10 .
3. Divide 74500 by 100 .
4. Divide 19740 by 100 .
5. Divide 246000 by 10010.

Quot. 3400 .
Quot. 745
Quot. 197 ; Rem. 41
(1not. 2-41.
(5. Divide 147375 by 1000
7. Divide 24680 by 100.
8. Diride 98630 by 800 .

8,00) 986,30
$123-230$
§66. Moner. - L'ut off the 2 nanght. at the right of the divisor, and 2 figures at the right of the dividend:then, 8 in 4 , once, with 1 uver, set down 1 ; 8 in 18 , twice, with 2 over, set down $2 ; 5$ in $2(4,3$ times, with 2 over. 'Ths quotiont is 123 , and the remainder w30.

Fxplanation:-The remainder after dividing is prefixed to the dividend figures cut off, to constitute the true remainder.

Ex. 9. Divide 127569 by 270. Quot. 4724 ; Rem. 189.
10. Divide 56000 by 700 .
11. Divide 3230000 by 1700 .

Quot. 80 .
12. Divide 24600 by 2400 .
13. Divide 7346790 by 72900 .
14. Divide 135073 by 21800 .
15. Divide 275 by 5 .

275 . 67 . Mones. -Multiply the dividend by $2:$ 2 twice 5 are 10 , set down 0 ; trice 7 are 14 , and $55,0 \quad 1$ are 15 , set down 5 ; twiee 2 are 4 , and 1 are $5:-$ divide this product by 10 . (§65.) The quotient is 55 .

Explanation--Since the dividend is aheady 5 times the required quotient, multiplying it by 2 gives $(\because \times 5) 10$ times the quotient. The part cut off at the right, by this plan, is twice the true remainder.

Fa. 16. Diride 10024 by 5.
17. Divide 2725 by 5 .
18. Divide 49720 by 5 .
19. Divide 598405 by 5.

Quot. 2004 ; Rem. 4.
Quot. 545.
Quot. 9944.
Quot. 119681.
20. Divide 479324 by 5.
21. Divide 2379456 by 5.
22. Divide 820 by 25.

$\begin{array}{r} 329 \\ 4 \end{array}$	§ CS. Movel.-Multiply the disidend
	1, set down 1. 4 times? $=19$ a
	duet by 100

Explanation.-Since the dividend is already 25 times the required quotient, multiplying it by 4 gives (4×25) 100 times the quotient. The part cut off at the right, by this plan, is 4 times the true remainder.

Ex. 23. Divide -93235 by 25. Quot. 11729 ; Rem. 10.
2t. Divide 148532 by 25.
Quot. 5941 ; Rem. 7.
Quot. 99.
26. Divide 193450 by 25 .

Quot. 7738.
27. Divide 34795 by 25.
28. Divide 107059 by 25 .
29. Divide 23725 by 125.

23725 § 69. Model. - Multiply the dividend by
8
189,800 $8: 8$ times 5 are 40 , set down $0 ; 8$ times 2 189,800 are 16 , and 4 are 20 , set down $0 ; 8$ times 7 are 56 , and 2 are 58 , set down $8 ; 8$ times 3 are 24 , and 5 are 29 , set down $9 ; 8$ times 2 are 16 , and 2 are 18 , set down 18 :-divide this product by 1000 . ($\$ 65$.) The quotient is 189 , and the remainder 100.

Explanation.-Since the dividend is already 125 times the required quotient, multiplying it by 8 gives (8×125) 1000 times the quotient. The part cut off at the right, by this plan, is 8 times the true remainder.

Ex. 30. Divide 724350 by 125 . Quot. 5794 ; Rem. 100.
31 . Divide 111000 by 125 .
Quot. 888.
32. Divide 246625 by 125.

Quot. 1973.
33. Divide 57935 by 125 .

Quot. 463 ; Rem. 60.
34. Divide $\overline{7} 93575$ by 125 .
35. Divide 125364 by 125.
36. Divide 10202 by 42 .
2) 10202
3) 5101
7) $1700-1$
$242-6$
§70. Model. $-42=2$ times 3 times 7. First, divide by $2:-2$ in 10, 5 times; 2 in 2, once; 2 in 0 , no time; 2 in 2 , once :-divide this quotient by $3:-3$ in 5 , once, with 2 over, set down $1 ; 3$ in 21, 7 times; 3 in 0 , no time; 3 in 1, no time, with 1 over, set down 0 in the quotient, and 1 as remainder:-divide this quotient by $7:-7$ in 17 , twice, with 3 over, set down $2 ; 7$ in 30,4 times, with 2 over, set down $4 ; 7$ in 20 , twice, with 6 over, set down 2 in the quotient, and 6 as remainder. The quotient is 242, and the remainder 38.

Explanation.-If the divisor is the product of two or more numbers, we may divide the dividend by either of those numbers, and the quotient by an other, and so on. The true remainder is found by multiplying each remainder by all the divisors previous to the one which produced it, and adding together the several products.

Ex. 37. Divide 7346 by 56.
38. Divide 347934 by 35.
39. Divide 92384 by 64 .
40. Divide 83495 by 45.
41. Divide 745106 by 72 .
42. Divide 656215 by 96 .
43. Divide 34635 by 285.

34635285
$0 1 3 \longdiv { 1 2 1 }$ 435 150
§ 71. Model.-3 in 3, once:-once 5 is 5 , from 6 leaves 1 ; once 8 is 8 , from 14 leaves 6 ; once 2 is 2 , and 1 are 3 , from 3 leaves 0 : annex $3:-3$ in 6 , twice :--twice 5 are 10 , from 13 leaves 3 ; twice 8 are 16 , and 1 are 17 , from 21 leares 4 ; twice 2 are 4 , and 2 are 6, from 6 leaves $0:$ annex $5:-3$ in 4 , once :-once 5 is 5 , from 5 leaves 0 ; once 8 is 8 , from 13 leaves 5 ; once 2 is 2 , and 1 are 3, from 4 leaves 1. The quotient is 121, and the remainder 150.

Explanation.-The products are not written, but are immediately substracted as in $\$ 55$.

Note- - Let all the exercises in Long Division hereafter be performed by this plan.

Ex. 44. Divide 136893 by 725. Quot. 188 ; Rem. 595.
45. Divide 247986 by $836 . \quad$ Quot. 296 ; Rem. 230.
46. Divide 358097 by 749 . Quot. 478 ; Rem. 75.
47. Divide 469108 by $5275 . \quad$ Quot. 88 ; Rem. 4908.
48. Divide 5702195 by 4386.
49. Divide 68132050 by 5295 .

GENERAL PRINCIPLES OF DIVISION.

§ 72°. If the divisor remain unchanged, and the dividend be multiplied by any number, the quotient will be multiplied by the same number. Thus, $32 \div 8=4$: then, $64 \div 8=8$.
\$73. If the divisor remain unchanged, and the dividend be divided by any number, the quotient will be divided by the same number. Thus, $32 \div 8=\frac{4}{4}$: then, $16 \div 8=2$.
§ 7t. If the dividend remain unchanged, and the divisor be multiplied by any number, the quotient will be divided by the same number. Thus, $32 \div 8=4$: then, $32 \div 16=2$.
§75. If the dividend remain unchanged, and the dirisor be divided by any number, the quotiont will be multiplied by the same number. Thus, $32 \div 8=\frac{1}{2}$: then, $32 \div 4=8$.
§76. If the dividend and the divisor be both multiplied by the same number, the quotient will remain unchanged. Thus, $32 \div 8 \div 4$: then, $64 \div 16=4$.
§77. If the dividend and the divisor be both divided by the same number, the quotient will remain unchanged.Thus, $32 \div 8=4$: then, $16 \div 4=1$.

PROMISCUOUS PROBLEMS.

1. The subtrahend is thirty thousand and forty-five; the remainder is forty-six thousand eight hundred and ninety: what is the minuend? Ans. 76935.
§78. Minuend-Subtrahend=Remainder. Minuend-Remainder=Subtrahend.
Subtrahend + Remainder $=$ Minuend.
2. The minuend is three hundred thousand ; the subtrahead is ninety-nine thousand three hundred and seventyfour: what is the remainder? Ans. 200624.
3. The minuend is seventy thousand and twenty-nine; the remainder is sixty-five thousiand and forty-six : what is the subtrahend?
4. The multiplicaad is twenty-seven thousand and four ; the product is seven hundred and twenty-nine millions, two hundred and sisteen thousand, and sisteen: what is the multiplier?

Ans. 27004.
§ 79. Multiplicand \times Multiplier $=$ Product. Product \div Multiplier $=$ Multiplicand. Product \div Multiplicand $=$ Multiplier.
5. The multiplicand is four thousand and seventy-two ; the multiplier is one thousand one hundred and six: what is the product?

Ans. 4503632.
6. The product is ninety-three thousand three hundred and sixty-one; the multiplier is eighty-nine: what is the multiplicand?
7. The divisor is one thousand and nine ; the quotient is nine hundred and ten : what is the dividend? Ans. 918190.
§80. Dividend \div Divisor $=$ Quotient.
Divisor \times Quotient $=$ Dividend.
(Dividend-Remainder) \div Quotient $=$ Divisor.
Quotient \times Divisor + Remainder $=$ Dividend.
8. The dividend is nine hundred and forty-five thousand, eight hundred and eighty-eight; the divisor is two thousand and four: what is the quotient?

Ans. 472.
9. The dividend is one hundred and forty-eight thousand; the quotient is three hundred and forty-two; the remainder is two hundred and fifty-six: what is the divisor?
10. The quotient is one thousand and three; the divisor is one thousand and two: the remainder is one thousand and one: what is the dividend?

Ans. 1006007.
11. Find the sum of two hundred and fo:ty-five thousand, nine hundred and seven, seventy-four thousand and seventy-four, one hundred and nine thousand and nine, and three hundred and ninety-seven.

Sum, 429387.
12. Find the difference between two hundred thousand, and one hundred and eighty-seven thousand six hundred and fifty-four.
13. Find the product of one million three hundred and seventy-five, and one thousand three hundred and seventyfive.

Prod. 1375515625.
14. Find the quotient of three millions divided by six thousand two hundred and seventy-nine.

Quot. 477 ; Rem. 4917.

15. What number is that from which if $2407,4072,724$, and 7240 be subtracted, the remainder will be 7042 ?
16. What number is that to which if 2407, 4072, 724, and 7240 be added, the sum will be 15000 ? Ans. 557.
17. What number is that by which if 2047 be multiplied, the product will be 15151894?

Ans. 7402.
18. What number is that by which if 2025042 be divided, the quotient will be 2021?
19. $247+1023-934+3720-4142+245=$ what?
20. $(247-154) \div 3+(247+154) \times 3=$ what ? Ans. 1234 . 46
§ 81. A parenthesis enclosing two or more numbers shows that their united value is to be subjected to the operation indicated immediately before or after the parenthesis. For example, in the preceding problem, the difference of 247 and 154 is to be divided by 3 , and the sum of 247 and 154 is to be multiplied by 3 , and the product and the quotient are to be added together.

Two numbers thus connected are called a binomial; three numbers are called a trinomial; four, a tetranomial; five. a pentanomial; six, a liexanomial, de.

The 20th problem is read, "Binomial 247 minus 154 divided by 3 plus binomial 247 plus 154 multiplied by 3 is equal to what?"

$$
\begin{aligned}
& \text { 21. } 3247+247-47+7-(247-47+7)=\text { what? } \\
& \text { 22. }(987-876+333) \div(765-543)+210-95=\text { what? } \\
& \text { 23. } 27-30 \div 10+(475-399) \div 4=\text { what? Ans. } 117 \text {. } 43 \text {. } \\
& \text { 24. }(204-60) \div 6-(90-\mid-10) \div 5-(-(76-12) \div 4=\text { what? } \\
& \text { 25. } 204-60 \div 6-90-\mid-10 \div 5-1-(76-1-12) \div 4=\text { what? } \\
& \text { Ans. } 128 \text {. }
\end{aligned}
$$

26. $(204-60) \div 6-|-90-|-10 \div 5 \cdot|-(76-\mid-12) \div 4=$ what?
27. $(204-60) \div 6-(90-\mid-10) \div 5-1-76-12 \div 4=$ what?
28. $204-60 \div 6-(90-|-10 \div 5-|-76)-12 \div 4=$ what?

Ans. 23.
29. $123-|-41-(123-41)-|-123 \times 41-123 \div 41=$ what?

Ans. 5123.
30. $123-\mid-41-(123-41)-1-(123 \times 41-123) \div 41=$ what ?
31. $\{[(742 \div 2) \div 53] \times 27-1\} \div 53=$ what ? Ans. 1. .
32. $[(199-78) \div 11-(199-43) \div 78] \times(12-3)=$ what?

Ans. 81.
33. $[(117-43) \times 2] \div 37-\mid-(138-128) \times 37=$ what ?

47

MEASURES AND MULTTPLES.

§8\%. An cuen number is one which can be exactly divided by 2. Thus, $12,4,36,58$, and 70 , are even numbers.

Note.-All even numbers end in either 2, 4, 6, 8 , or 0 .
§83. An odd number is one which can not be exactly divided by 2. Thus, 9, 17, 25, 33, and 41, are odd numbers. Note.-All odd numbers end in either $1,3,5,7$, or 9 .
§ 84. A prime number is one which is not the product of two other numbers. Thus, $2,3,5,7,11,13,17,19,23,29$, $31,37,41,43,47,53,59,61,67,71,73,79,83,89$, and 97 , are all the prime numbers less than 100 .

TABLE OF PRIMEE NUMEERS un to 1000.

,	43	103	173	241	317	401	479	571	647	739	®07	919
3	47	107	179	251	331	409	487	577	653	743	829	929
5	53	109	181	257	337	419	491	587	659	751	839	937
1	59	113	191	263	347	421	499	593	661	757	85.3	941
11	61	127	193	269	349	431	503	599	673	761	857	947:
13	67	131	197	271	353	433	509	601	677	769	859	95
17	\bigcirc	137	199	27	359	439	521	607	683	773	863	967
19	73	139	211	281	367	443	523	613	691	787	87T	971
23	79	149	223	283	373	449	541	617	701	797	881	977
29	83	151	227	293	379	$45{ }^{\circ}$	547	619	709	809	883	983
31	89	157	229	307	383	461	557	631	719	811	887	991
37	97	163	233	311	389	463	563	641	727	821	907	997
41	101	167	239	31:	397	467	569	643	733	823	91 !	

§85. A composite number is one which is the product of two other numbers. Thus, 4, 6, 9, 15, 21, and 30, are composite numbers, because $2 \times 2=4,2 \times 3=6,3 \times 3=3$, $3 \times 5=15,3 \times 7=21$, and $5 \times 6=30$.

Is 20 prime, or composite? 25? 28? 31? 34? 37? 40? 43? 50? 57 ? 64? 71? 78? 85? 92? 99? 106? 217? 328? 439?
§ S6. Powses. - The first power of a number is the number itself. Thus, 5 is the first power of $5 ; 7$, of $7 ; 10$, of 10 .

The second power of a number is the product of the number unultiplied by itself. Thus, 36 is the second power of 6 , because $6 \times 6=36: 81$, of 9 , because $9 \times ?=81: 100$, of 10 , because $10 \times 10=100$.

The second power of a muber is tisually called its square.
The third power of a number is the product of the number multiplied by its square. Thus, δ is the third power of 2 , because $2 \times 4=8: 64$, of 4 , because $4 \times 16=64: 216$, of 6 , because $6 \times 36=216: 512$, of 8 , becausc $8 \times 64=512$: 1000 , of 10 , because $10 \times 100=1000$.

The third power of a number is usually called its cube.
In like manner, what is the fourth power of a number? What is the sixth power? The ninth power? \&c.
§87. Roots.-The first root of a number is the number itself.

The second root, or the square root, of a number is one of the two equal factors which produce it. Thus, 5 is the square root of 25 , because $5 \times 5=25$.

15 has no square root, because its two factors, 3 and 5 , are not equal.

The third root, or the cube root, of a number is one of the three equal factors which produce it. Thus, 3 is the cube root of 27 , because 3.3.3=27.

30 has no cube root, because its three factors, 2,3 , and 5 , are not equal. 25 has none, because it has only two equal factors, 5 and 5 . 16 has none, because it has four equal factors, $2,2,2$, and 2 .

In like manner, what is the fourth root of a number? What is the seventh root? The sixteenth roet? \&c. D
§ 88. The prime fuctors of a composite number are the prime numbers by whose continued multiphication the number is produced. Thus, the prime factors of 9 are 3 and 3 , hecause $3 \times 3=9$: the prime factors of 60 are $2,2,3$, and 5 , because 2.2.3. $5=60$.
§89. A measure of a number is a number which is contained in it a number of times withoul a remainder. Thus, 3 is a measure of 12 , because 3 is contained exactly 4 times in 12: 4 is a measure of 36 , because 4 is contained exactly 9 times in 36.

Is 5 a measure of 10 ? 25? 37? 40? 53? 65? 80?
Is 6 a measure of 7? 12? 20? 30? 30 ? 48? 54?
Is 7 a measure of 14 ? 19? 28? 36? 42? 48? 63?
\$90. A multiple of a number is a number which contains it a number of times without a remainder. Thus, 12 is a multiple of 3 , because 12 contains 3 exactly 4 , times: 36 is a multiple of 4 , because 36 contains 4 exactly 9 times.

Is 40 a multiple of 2? 3? 4? 5? 6? 7? 8? 9? 10? 20? Is 56 a multiple of 2 ? 4? 7? 8? 3 ? 10? 14? 20? 24? Is 60 a multiple of 2 ? 3? 4? 5? 6? 7? 8? 10? 12? 15?
§91. Common means belencing equally to two or more numbers.
§92. One number is a common measure of two or more numbers, if it is a measure of each of them. Thus, 3 is a measure of 9 , also of 12 , also of 18 ; hence, 3 is a common measure of 9,12 , and 18 . Also, 4 is a common measure of $8,24,32$, and 48.

Is 2 a common measure of 4,6 , and 10 ?
Is 3 a common measure of 6,10 , and 15 ?
Is 4 a common measure of 12,16 , and 20 ?
Two or more numbers may have sereral common meas-
ures. Thas, $2 t$ and 36 have as common measures $2,3,4$, 6, ant 12 . In this case, 1 ? is, of course, the greatest common mensure of 21 and 36 .
§ 93. One number is a comnon multiple of two or more numbers, if it is a multinle of ench of them. Thus, 40 is a unultiple of 5 , alio of 8 , also of 1) ; hence, 40 is a common multiple oí 5,8 , and 10 . Also, 45 is a common multiple of 3,5 , and ?

Is 10 a commou multiple of 2 and 5 ?
Is 15 a common multiple of 3 and 6 ?
Is 50 a common multiple of 2,5 , and 10 ?
Two ur more numbers aliways hare several common multiples. Thus, 4,3 , and 6 , have as common multiples 12 , 21, $3 \mathbf{v}^{3}, 43,60$, \&c. In this case, 12 is, of course, the lectas eommon multiple of 4,3 , and 6 .
§94 Tro or more numbers are prime io each other, if they have no common incasure. Thus, 81 and $6 \pm$ are prime to each other. Also, 20, 27, and 77 are prime to each other.
$\S 95.2$ is a measure of every number which ends in either $2,4,6,8$, or 0 . ($\$ 82$. Note.)

3 is a measure of a number, if it is a measure of the sum of the figures which denote the number. Thus, 3 is a measure of 246 , or 462 , or 624 , or 612 , or 426 , or 264 , or 2064 , or 4602 , \&c., because 3 is a measure of $6+4+2$, that is, of 12 .

4 is a measure of a number, if it is a measure of the number denoted by its two right hand figures. Thus, 4 is a measure of 768 , or 1860 , or 95372 , or 1112316 , because 4 is a measure of 68 , or 60 , or 72 , or 16 .

5 is a measure of every number which ends in either 5 or 0 . Thus, 5 is a measure of 20 , or 55 , or 100 , or 275 .

6 is a measure of erery eren number of which 3 is a measure. Thus, 6 is a measure of 462 , or 4512 , or 1236 : but not of 471, or 6321 .

8 is a measure of a number, if it is a measure of the number deroted by its three right hand figures. Thus, 8 is a measure of 34800 , or 753064 , because 8 is a measure of 800 , or 64.

9 is a measure of a number, if it is a measure of the sum of the figures which denote the number. Thus, 3 is a measare of 891 , or 1728 , or 253269 , because 9 is a measure of 18 , or 18 , or 27 .

10 is a measure of every number which ends in 0 .
100 is a measure of every number which ends in 2 nauglits.
Is 2 a measure of 3040 ? 4047? 28? 1112? 10124?
Is 3 a measure of 258 ? 369? 12345678? 5169? 2571?
Is 4 a measure of 125784? 24680? 57932? 14760? 1112?
Is 5 a measure of 245? 12450? 7824? 12570? 3457?
Is 6 a measure of 570? 378? 45242? 123456? 12324?
Is 8 a measure of 5070120 ? 247080 ? 1479008? 1234?
Is 9 a measure of 1234566 ? 68472? 1357? 1476?
Is 10 a measure of 240? 245? 3795? 7630? 1460?
§ 96. A measure of a number is a measure of any one of its multiples. Thus, 6 is a measure of 18 : then it is a measure of 36 , or 54 , or 72 , or 90 .
§97. A common measure of two or more numbers is a measure of their sum. Thus, 8 is a common measure of 16,24 , and 40 : then it is a measure of 80 .
§98. A common measure of two numbers is maeasure of their difference. Thus, 9 is a commou measure of 18 and 54 : then it is a measure of 36 .

PILME FAETORS.

Ex. 1. Resolve 7 R00 into its prime factors.
2) 7800
2) 3900
2) 1950 5) 975
5) 195 quotient by 3. This quotient is a prime num-
3) $3!$ §39. Moner.-Divide the number by 2. ($\$ 50$). Divide the quotient by 2 . Divide this quotiont by ?. Divide this equotiont by $\overline{5}$. Divide this quotient by 5 . Divide this ber. The prime factors of 7800 are 2, 2, , $5,5,3$, and 13 .

Explanation. -It is better to divide first by 2 as often its possible, then by 5 , and then by the other prime numbers in succession. The several divisors and the last quotient are cridently the prime factors of the number.

Rule.-Divide the given number by one of its prime neasures; divide the quotient by one of its prime measures; continue thus dividing until a prinne number is obtained fo a quotient: the several divisors and the lest quotient will be the prime factors of the given number.

Proor. -The continued product of the prime factors will be equal to the given number.

Ex. 2. Resolve 524 into its prime factors.
P. T. 2, 2, and 131 .
3. Resolve 460 into its prime factors

1. Resolve 770 into its prime factors.
P. F. $2,5,7$, and 11 .
2. Resolve 880 into its prime factors.

$$
\text { P. F. } 2,2,2,2,5 \text {, and } 11 \text {. }
$$

6. Resolve 999 into its prime factors.
7. Find the prime factors of 1040 .

$$
\text { P. H. } 2,2,2,2,5, \text { and } 13 .
$$

8. Find the prime factors of 1160.

$$
\text { P. T. } 2,2,5, \text { and } 29 .
$$

9. Find the prime factors of 1275 .
10. What are the prime factors of 1300 ?

Ans. 2, 2, 5, 5, and 13 .
11. What are the prime factors of 1590 ?

$$
\text { Ans. } 2,5,3 \text {, and } 53
$$

12. What are the prime factors of 1738 ?
13. What are the prime factors of 19500 ?

$$
\text { Ans. } 2,2,5,5,5,3 \text {, and } 13 \text {. }
$$

14. What are the prime factors of 966000 ?

$$
\text { Arse } 2,2,2,2,5,5,5,3,7 \text {, and } 23
$$

15 What are the prime factors of 825000 ?
16. What are the prime factors of 1357200 ?

Ans. 2, 2, 2, 2, 5, 5, 3, 3, 13, and 29.
INVOLUTION.
§100. Involution is the process of finding a power of a number. From the definitions of tho several powers in $\$ 86$, it is evident that any power of a number is found by taking the number as a factor in multiplication $: s$ man times as there are units in the number of the power.

Ex. 1. What is the square of 'y?
Ans 49.
2. What is the cube of 3 ? Ans. 2%.
3. What is the fourth power of 2 ?
4. What is the fifth power of 2 ? Ans. 32.
5. What is the fourth power of 5 ? Ans 625.
6. What is the cube of 9 ?
7. What is the square of 19?
8. What is the cube of 15 ?

Ans. 361.
Ans. 3375.
3. What is the fourth power of 20 ?

EVULUTION.

S 101 Jivorurion is the frocess of finding a root of a given power. The method here explained is applicabie only to such numbers as have precise roots. The method of extracting approximate roots of imperfect powers can. not be explained without the use of algebraie formulas, and consequently is not given in this treatise.

Ex 1. What is the cube root of 216 ?
$\left\{\begin{array}{r}2 \\ 2) \\ 2) 16 \\ 2 \\ 2) 5!\end{array}\right.$
$\left\{\begin{array}{r}3) 27 \\ 3)!3 \\ 3\end{array}\right.$
\$102. Moner,-Resolve the given numiber intu its prime factors. (\$99.) It contains three twos and three threes. Hence. its cube root is $2 \times 3=6$.

Sximaration. - Since the cube rot of a nmber is one of the three equal fiectors which produce it, we separate the prime factors into sets of three equal prime factors each, and selecting one from each set, the product of those celected? is cvidently the cube root of the given number. For any other root, we scparate into sets of as many mame factors cuch as there are inits in the number of the root.

Nute- It the priwe factors can mot be separated as above, the required root can not ie cxactly found, either by this, or by any wher rathoul.

Runs - - Resoive the given pouer into its prime faclors: separute the fuctors into graups of us many equal factors rach as there are units in the number of the root; select one fuctor from each group, and multiply together those selecterl: their product will be the root requivent.

Prone - Ratise the rout to the corresponding power. The result will be equal to the given number.
Ex. 2. What is the square root of 100 ? Ans. 10.3. What is the cube root of 125 ?
4. What is the fourth root of 1296 ? Ans. 6.
5. What is the ifth root of 243 ? Ans. 3.6. What is the sixth root of 64?7. What is the fourth root of 10000 ?Ans. 10.
8. What is the fifth roct of 1024 ?Ans. 4.
9. What is the cube root of 3375 ?
10. What is the square root of 12321 ?Ans. 111.
11. What is the square root of 65536 ? Ans. 256.
12. What is the fourth root of 65536 ?
13. What is the eight? …t of 65536 ?Ans. 4.
14. What is the sixteenth root of 65536 ? Ans. 2.
15. What is the square root of 390625 ?
16. What is the fourth root of 390625 ?17. What is the eighth root of 390625 ?Ans. 25.Ans. 5.
18. What is the cube root of 10077696 ?
19. What is the ninth ront of 10077696 ?Ans. 6.
20. What is the cube root of 42875 ? Ans. 35.
21. What is the square root of 122500 ?
22. What is the square root of 7569 ?Ans. 87.
GREATEST COMMOズ MEASURE.

Ex. 1. Find the greatest common measure of 60,150 , and 480.
2) $60,150,480$
$5) 30, \quad 75,240$
$3) 6, \quad 15, \quad 48$
$2, \quad 5, \quad 16$
$2.5 .3=30$
§ 103. Moner. - Divide each of the given numbers by 2. (850). Divide each of these quotients by 5. Divide each of these quotients by 3. These quotionts are prime to each other. 2.5.3 $=30 . \quad 30$ is the greatest common measure of the given numbers. 56

Explanation.- In this operation it is not necessary for the divisors to be prime numbers. We might have divided by 10 and by 3 , or by 5 and by 6 .

Ruls.-Divide each of the given mumbers by any one of their common measures: rivide each of these quotients by one of their common measures; continue thus dividing uatil the quotients become prime to cacth ofler: the continuse? product of the divisors's will be the greatest common measure of the given numbers.
Lx. 2 . Find the greatest common measure of 36,126 , 216 , and 234.

$$
\begin{aligned}
& 36=2.2 .3 .3 \\
& 126=2.3 .3 .7 \\
& 216=2.2 .3 .3 .2 .3 \\
& 234=\frac{2.3 .3 .}{2.3 .3 .}=18 .
\end{aligned}
$$

§10t. Monel.-Resolve 36 into its prime factors. (\$ 99). $36=2.2 .3 .3$. Resolve 126 into its prime factors. $126=2.3 .3 .7$. Resolve 216 into its prime factors. $216=2.2 .3 .3 .2 .3$. Rcsolve 234 into its prime factors. $23 \frac{1}{t}=2.3 .3 .13 . \quad 2.3 .3=18$. 18 is the greatest common measure of the given numbers.

Exphanation.-The prime factors are arranged with equal factors in the same colunm, as far as possible. The full colums contain the factors that are common to all the numbers. The prodnct of these factors is the greatest common measure of the nambers.

Ruse.-Resolve cach of the given mumbers into iis prime factors; select those factors which are common to all the numbers: the continued product of these factorss will be the greatest common measure of the giver numbers.

> Ex. 3. Find the greatest common moasure of 108 and 261 . 261108 $216 \overline{2}$

10845
90^{\prime}
4518
36
18.9

18
§105. Monex.-Divide 261 by 108. (871). Divide 108 by 45. Divide 45 by'1s. Divide 18 by 9 . There is no remainder. 9 is the greatest common measure of the given numbers.

0
Exphanatron.-- 9 is a measure of $18,(\% 89)$; henco it is a measure of 2×18, or 36 , ((96); bence, of $36+9$, or 45 , (897); hence, of $-\times 45$, or 30 , ($\$ 36$); hence, of 108 , ($\$ 77$): hence, of $216,(\S 96)$; hence, of $261,(\S 97)$; hence it is a common measure of 108 and 261.

Rose.-Divide the larger number by the smaller: then divide the smaller momber by the romender, and continue diviling the last divisor by the lest remuinder, antit there is
 measuric of the given numbers.

To find the grontest common mewsures of more then foo numiors, find the greatest common mensure of tuo of them, then jind the grealrs! common meusure of this mectivure und an ofler of the mumbers, and so on: itw last common measare will be the yrgatent common mershice of ail the numbers.

Withor of the abore mothods anay be weed in the folloming exercises.

Ex. $\frac{1}{2}$. Find the greatest common measure of $48,6 t$, aud 112.
G. (1. M 16.
5. Find the greatest common merare of 68,119 , and 857 . 6. Find the greatest commen measure of 60,30 , and 165 .
7. Fird the srreatest common measuro of $39,5 \%, 3]$, and 1%.

G ('. M. 13.
8. Find the greatest commot meastre of 40 , 60 , and 200 . G. (. M. 20).
9. Find the greatest common measme of 96,128 , and 320 . 10. Find the gratest common meastice of $104,246,28 \%$, aud 451.
(1. C. M2. 41 .
11. Find the greatest common measure of $(33,126,315)$, and 411.

G C. 11. 6%.
12. Iind the greatest common measure of 150 , 375, and (iテ).
13. Find the greatest common mensure of +0 , $60,6 \%$, and $\because 04$.

G (1. M. 4.
14. Find the greatest common mensure of 214 , eft, imnt 85) G. C II. 614.
15. Find the greatest commun measure of $63,189,315$, and $6!3$.
16. Find the groatest common meature if 152 , 500 , and 58 B 。
G. (1. M. 76.
17. Hind the greatest common measuric of $170,38 \%$, mad i, 4 J .
G. S. M. 1%.
18. Hind the sreatest common measure of 100,120 , 18 fl . aud 430 .
19. Thnd the greatest common measare of 114,190 , and 1140.
G. C. M. 88.
20. Inad the greatest common measure of $\overline{4} 4,118,321$, and 378.

G C. M1, 54 .
21. Find the greatest common measure of $56,3 \frac{1}{2}, 141$, and 196.
G. U. M. 28.
22. Find the greatest common measure of $75, \therefore 25, \quad 375$. and 675.

C (1. M. 75.
$\because 3$. Fiud the greatest common measure of 46,115 , and 161 .

LEAET COMMON MULTIPLE.

Fix. 1. Find the least common multiple of 40,60 , and 150 .
2) $40,60,150$

2) | $30,30, \quad 75$ |
| :--- |
| $5 \lcm{10,15, \quad 75}$ |
| 3 $2, \quad 3, \quad 15$ |
| $2 . \quad 1 . \quad 5$ |
| $2.2 .5 .3 .2 .5=600$ |

§ 106 Monel.-Divide each of the numbers by 2 . ($\$ 50$). Divide some of the quotients by 2 . Divide each of these quotients by 5 . Divide some of these quotients by 3 . These quotients are prime to each other. 2.2.5.3.2.5 $=600.600$ is the least common multiple of the given numbers.

Expharation.-We divide two or more of the given numbers by any prime number that will divide them without a remainder ; and two or more of the resulting numbers by any prime number that will divide them without a remainder : and so on, till the quotients are prime to each other:-remembering to repeat in the line below, such numbors as cannot be divided. By this means, every factor of cach number is used, and hence the result is a common mulliple of the numbers; but nio factor of either number is used more than once, and hence the result is their leust common mulitiple.

Rute.- Bivide two or more of the given mumbers by amy mime common measure; talic the quolients and the undividcil numbers for a new set: divite two or more of them by any prime common mectazic ; and so on, untit the resulting. mumbers are prime to carth other; the continued prodact of the resulting numbers's und all the divisors woill lee the letest common multiple of the given numbers.

Fi. 2. Find the least common multiple of 36,126 , and 216.
$36=2.2 .3: 3$
$126=2.3 .3 .7$
$216=2.2 .3 .3 .2 .3$
$2.2 .3 .3 \cdot 7.2 .3=1512$
§ 10\%. Monel-hesolve : 6 into its prime factors. ($\$ 99$. . $36=2.2 .3 .3$. Resolve 126 into its prime factors. $120=2$ 3.3.7. Resolve 216 into its prime factors. $216=2.2 .3 .3 .2 .3-2.2 .3 .3 .7 .2 .3=1512.1512$ is the least common multiple of the given numbers.

Explanation.-The prime factors are armanged as in § 104, and one factor is taken from each column, whether: full or not.

Ruse.-Resolve each of the given numbers into its mime fuctor: ; multiply together all the factors of the lurgest number, and all' the factors of the other numbers that are not found in the largest number; the product will be the least common multiple of the yiven numbers.

Fither of the abore methods may be used in the following exercises.

Ex. 3. Find the least common multiple of 5, 6 , and 7. 4. Find the least common multiple of $2,4,6,8,12$, and 16.
L. C. M. 48.

5 . Find the least common multiple of $3,6,9,12$, and 18 .
L. C. M. 36 .
6. Find the least common multiple of $5,10,12$, and 15 .
7. Find the least common multiple of $6,12,2 \frac{1}{2}$, and $4 S$.
I. C. M. 48.
8. Find the least common multiple of 8,24 , and 72 .
L. C. M. 72.
9. Find the least common multiple of $3,9,18$, and 72 .
10. Find the least common maltiple of $2,3,4,5,6,10,12$, 15 , and 20 .
L. C. M. 60.
11. Find the least common multiple of $3,5,7$, and 11 .
J. C. M. 1155.
12. Find the least commou uultiple of $2,3,4,6,8,12$, and $2 \frac{1}{1}$.
13. Find the least common multiple of 3,7 , and 1 .
I. C. M. 273.
14. Find the least common multiple of 2,4 , 7 , and 14 . L. C. M. 28.
15. Find the least common multiple of $3,5,15$, and 30 .
16. Find the least common multiple of $2,4,8,16$, and 22 .
L. C. M. 32.
17. Wind the least common multiple of $3, \frac{1}{4}, 6,8$, and 9 . I. C. M. T_{2}.
18. Find the least common multiple of $2,3,6$, and 9 .
19. Find the least common multiple of $4,6,8,12,16$, and 33 .
J. C. M. 96 .

20 . Fi se the least come:on multiple of $2,4,5,10$, and 20 .
I. C. M. 20 .

PROMISCUOUS PROBLEMS.

1. Read 279301682038040.
2. Read $12073 ุ 008010009750$.
3. Write twenty-seven billions, three hundred and three willions, four hundred and seventy-five thousand, and eighty-nine.
4. Write five hundred and five billions, and fifty-five.
5. Add 3 millions 24 thousand and 17,4 hundred thousand 7 hundred and 98 , 4 millions 247 thousand and 56 , and 724 thousand 8 hundred and 29. Sum, 8396700 .
6. Add twenty, 2 hundred and 2,2 thousand and 27 , 20 thousand 278,202 thousand 7 hundred and 89 , and 2 millions 27 thousand 8 hundred and 90 .
7. From 9 millions and ? euktriet 5 milliums 788 th msund 6 hundred and 54 . Rem. $3: 10355$.
8. From 80 millions 85 thetrond and 8 . subtract 65 millions 764 thousand 8 hundred and 7\%. Rem. 14820(5.3.
9. Fultiply 4 hundred and to thoueand E hmalred and i, hy 4 thousand \& hundred and 7 .
10. Multiply 90 thousand '7 hancired and 5, by so thousand 6 hundred and t. l'rud. 731118 oiso 20.
11. Divide 2 billions 59 millions 191 thousand and 78, by 50 thousand 7 hundred and \$9. Qunt. 44308.
12. Divide 8 hillions 757 millions 887 thousand 5 hundred and 31 , by 97 thousand 5 huodred and 31.
13. The minuend is 4 hundred thonsand 4 liondren; the subtrahend is $36 \frac{1}{4}$ theneand $\%$ hundred amd 2 : what is the remainder? Ans. 85074.

14 The minuend is 57 thousand and 57 ; the subtrahend is 27 thousand 5 humdred and 79: what is the remainder?

Ans. 13478.
15. The minuend is 75 thousand and 63 ; the remainder is 36 thousand and 57 : what is the subtrahend?
16. The subtrahend is 3 millions and 75 ; the remainder is 5 hundred thousand 7 humdred and 5 : what is the minuend? Ans. 3500780.
17. The remainder is 777 thousand 7 humdred and 7; the subtrahend is 654 thoustnd :3 huadred and 25: what is the minuend? Ans. 1-32032.
18. The multiplicand is 3 millions and ios the multiplier is 5 hundred thousand ? hundred and 5 : What is the product?
19. The multiplier is 3 thousand 3 hundred and 3 ; the multiplicand is 75 thousand 4 hundred and 25 : What is the product?

Ans. 24912S775.
20. The product is 670 millions 592 thousand 745 ; the multiplicr is $1: 2$ thousand 345 : what is the multiplicand? Ans. 54321.
$\because 1$. The multiplicand is 40 thousand 5 hundred and 6 ; Le product is 413 millions 282 thousand 7 hundred and 18 : what is the multiplier?
22. The dividend is 1 billion 546 millions 263 thousand 5 hundred and 4 ; the divisor is 71 thousand $\because 2$ hundred and 17: what is the quotient? Ans. 21712.
23. The dividend is 2 billions 162 millions 6 hundred thousand; the remainder is 19 thousand 4 hundred and 90 ; the quotient is 24 thousand and 6 : what is the divisor?

Ans. 90085.
24. The divisor is 14 thousand and 20 ; the quotient is ? thousand 3 hundred and 45 : what is the dividend?
25. The divisor is 7 thousand and 2 ; the quotient is 2 thousand and 7 ; the remainder is 2 thousand and 7 : what is the dividend?

Ans. 14055021.
26. Resolve 3 thousand and 80 into its prime factors.

$$
\text { P. F. } 2,2,2,5,7,11 \text {. }
$$

27. Resclve 5 thousand 4 hundred and 60 into its prime factors.
28. Resolve 4 thousand and 4 into its prime factors.

$$
\text { P. F. 2, 2, 7, 11, } 13 .
$$

29. Find the greatest common measure of 58,87 , and 2610. G. C. M. 29.
30. Find the greatest common measure of 118,177 , and 295.
31. Find the greatest common measure of $48,80,128$, and 176 . G. C. M. 16.
32. Find the least common multiple of $3,7,9,12$, and 18.
33. Find the least common multiple of $2,5,8,11$, and 14 .
34. Find the least common multiple of $2,4,7,11,16$, and 22. L. C. M. 1232.
35. What number is that to which if $123+8912,5678$, 4567 , and 9123 be added, the sum will be 47275 ?

Ans. 17761.
33. What number is that from which if $1234,891 ?, 5678$, 4547 , and 9123 be subtracted, the remainder will be 47275 ?

37 . What number is that by which if 9876 be multiplied, the product will be 12191922() ?

Ans. 12345.
38. What number is that by which if 5483896 be divided, the quotient will be 2468?

Ans. 2222.

FRACTIONS.

§ 108. A fraction is a part of a unit. Thus, one half, three fourths, two fifths, five sisths, four seventhe, three eighths, five niuthe, and seven tenths, are fractions.

Fractions are of two kinds, Common and Decimal.

COMMON FRACTIONS.

§ 109. A common fraction, or, simply, a fraction, is denoted by two terms, one above, and the other below, a horizontal line. The term above is called the numerator; the term below is called the denominator. Thus, the above fractions are denoted, $\frac{1}{2}, \frac{3}{4}, \frac{2}{5}, \frac{5}{6}, \frac{4}{7}, \frac{3}{8}, \frac{5}{6}, \frac{7}{10}$. The numerators are $1,3,2,5,4,3,5$, and 7 : the denominators are 2 , $4,5,6,7,8,9$, and 10 . E

Point out the numerator and the dennminator of each of the following fractions: $\frac{1}{4}, \frac{2}{3}, \frac{3}{5}, \frac{1}{6}, \frac{2}{7}, \frac{5}{8}, \frac{4}{9}, \frac{3}{10}, \frac{7}{11}, \frac{5}{12}, \frac{4}{13}$, $\frac{5}{14} \cdot \frac{7}{15}, \frac{9}{16}, \frac{3}{17}, \frac{5}{18}, \frac{2}{19}, \frac{3}{20}, \frac{4}{21}, \frac{5}{22}, \frac{6}{23}, \frac{7}{24}, \frac{8}{25}, \frac{9}{26}, \frac{10}{27}, \frac{1}{2} \frac{1}{5}, \frac{13}{29}$, $\frac{43}{30}, \frac{14}{31}, \frac{1}{3} \frac{5}{2}, \frac{16}{33}, \frac{9}{34}, \frac{1}{3} \frac{9}{5}, \frac{250}{1200}, \frac{37}{2000}, \frac{4}{3} \frac{4}{36}, \frac{27}{97} \frac{9}{2}$.
$\S 110$. A fraction is rerid by promonncing after the numerator the ordinal of the denminator in the singular or the plural number according as the numerator is no or more than one. Thns, $\frac{1}{5}$ is: read, ne fifth; $\frac{2}{5}$, two fifths; $\frac{8}{21}$, three twenty firsts; $\frac{4}{3}$, fur thirty-seconds: $\frac{5}{20}$, five two hundred and-ninths: $\frac{-6}{2002}$, six two thousand-and-econds; $\frac{7}{3106}$, seven three thomsand-one-hundred-and sixths

But, if the denominator is 2 , the fraction is read half or balver, and not second or seconds. Thus, $\frac{1}{2}$, one half; $\frac{3}{2}$, three halves.

Read the following: $\frac{2}{3}, \frac{3}{4} \frac{4}{5}, \frac{6}{6}, \frac{6}{5}, \frac{5}{5} \frac{2}{9}, \frac{3}{10}, \frac{4}{11}, \frac{5}{12}, \frac{6}{13}, \frac{3}{14}$, $\frac{4}{15}, \frac{\pi}{16}, \frac{6}{17}, \frac{7}{15}, \frac{8}{19}, \frac{9}{20}, \frac{1}{2} \frac{1}{2}, \frac{3}{2 \frac{3}{2}}, \frac{4}{23}, \frac{5}{2 \frac{5}{4}}, \frac{6}{2} 5, \frac{7}{26}, \frac{8}{27}, \frac{9}{28}, \frac{1}{2} \frac{1}{3}, \frac{11}{30}$, $\frac{12}{3} \frac{2}{1}, \frac{13}{3} \frac{3}{2}, \frac{1}{3} \frac{1}{3}, \frac{15}{34}, \frac{1}{3} \frac{6}{5}, \frac{17}{3}, \frac{18}{3} \frac{1}{3}, \frac{15}{3} \frac{5}{5}$.
§111. A traction is produred by dividing a unit or a number into some number of egual parts. Thus, $\frac{1}{4}$ is produced by dividing the unit into four eynal parts; $\frac{2}{5}$, by dividing 2 into 5 equal parts; $\frac{5}{9}$, by dividing 5 into 9 equal parts.

The numerator is the dividend, the dennminator is the divisor, and the value of the fraction is the quotient. See $\$ 48$.

How is $\frac{3}{4}$ produced ? $\frac{4}{5}$? $\frac{5}{6} ? \frac{7}{8}$? $\frac{9}{10} ? \frac{9}{12}$? $\frac{\pi}{12} ? \frac{1 n}{13} ? \frac{17}{21}$? $\frac{79}{3}$? $\frac{17}{24}$? $\frac{27}{35}$?
§ 112. Utherwise, a fraction may be produced by dividing a unit into some number of equal parts and consilering either noe or several of thest parts. Each of these parts is called a fractiomal unit; and a fraction is pither one or several fractional units. The denominator shows
into linw many parts the unit is divided, and the momerator shows how many parts there are in the fraction. Thns, in $\frac{3}{5}$, one ifth is the fractional unit, and the fraction cumtaing three of these units; $i n{ }_{9}^{?}$, the fractional unit is wne ninthe and the fraction contains seven of them.

In this vieig how is $\frac{8}{11}$ produced? $\frac{3}{13}$? $\frac{5}{8}$? $\frac{9}{7}$? $\frac{1}{16}$? $\frac{n}{4} \frac{5}{8}$ $\frac{7}{4}{ }^{\frac{7}{4}}$? $\frac{5}{2}{ }_{5}^{5}$? $\frac{3}{7}$? $\frac{2}{9}$? $\frac{5}{11}$? $\frac{\pi^{3}}{13}$?
§ 113. The orlue of a fraction is the quotient of its nuzaerator divided by its denominator. This value depende on the value of the fratetional units, as well as in the unuber of them. If the fractional units of sereral fractionst are equill, of course the greatest fraction is the one which has the most frastional mits. That is, if the denmminators are equal, the greates fiaction is the one which has the greatest mumerator. Again, if the number of frutiomal units in several fractions is the same, of course the greatest fraction is rhe one which has the largest frachinal unit. But, the largur the number of parts into which a mit is divided, the smaller each part must be. Therefore, if tha numerators of several fractions are equal, the greatest fraction is the one which has the smallest denominatur.

How du $\frac{2}{5}$ and $\frac{4}{5}$ compare in value? $\frac{1}{6}$ and $\frac{5}{6}$? $\frac{2}{7}$ and $\frac{\pi}{7} 1$ $\frac{4}{y}$ and $\frac{8}{9}$? $\frac{3}{11}$ 2ud $\frac{4}{11}$? $\frac{8}{13}$ and $\frac{6}{13}$? $\frac{7}{15}$ and $\frac{8}{15}$? $\frac{1}{19} \frac{1}{9}$ and $\frac{4}{19}$ $\frac{5}{6}$ and $\frac{5}{7}$? $\frac{7}{13}$ and $\frac{7}{12}$? $\frac{9}{10}$ and $\frac{9}{11}$? $\frac{3}{7}$ and $\frac{3}{10}$? $\frac{4}{9}$ and $\frac{4}{2} \frac{4}{1}$? $\frac{16}{3} \frac{6}{1}$ and $\frac{16}{2} \frac{6}{3}$? $\frac{2 \pi}{29}$ and $\frac{25}{31}$? $\frac{27}{2} \frac{7}{8}$ and $\frac{2}{2} \frac{7}{8}$? $\frac{3}{3} \frac{3}{5}$ and $\frac{3}{3} \frac{3}{6}$? $\frac{7}{11}$ and $\frac{7}{9}$?

From the definition in $\$ 108$, the number of fracifinal units in a fraction must be less than the namber of parta into which the unit is divided; that is, the numerator must be less than the denominator. Lowrger numbers, howener, may be expressed in a fractional form ; and such expressions are improperly called fractions also. Hesce the fullowing distiactions:-
§ 114. A proper traction is one whose numerator is less than its denominator, and whese value is less than a nuit. Thu* ${ }_{3}^{2}, \frac{1}{2}, \frac{3}{3}, \frac{7}{6}, \frac{1}{6}, \frac{7}{3}, \frac{3}{8}, \frac{4}{6}, \frac{7}{10} \frac{4}{0}, \frac{4}{2}, \frac{7}{10}$, and $\frac{1}{12}$, are proper fractions.
§ 115. An improper fraction is one whose numerator is not less than its denominator, and whose value is not less than a unit. Thus, $\frac{3}{3}, \frac{4}{3}, \frac{8}{3}, \frac{7}{2}, \frac{8}{3}, \frac{3}{3}, \frac{17}{7}, \frac{25}{3}, \frac{75}{6}, \frac{100}{20}$, and $\frac{37}{10}$, are improper fractions.

\$116. A unit is often called, for distinction, an infeyral anit; and a number of integral units is called an integer, or an integral number.
§ 117. Λ mixed number is one composed of an integer and a fraction. Thus, $5 \frac{1}{2}$, read five and one half, is a mixed number. So also, $6_{6}^{\frac{1}{4}}, 3 \frac{1}{5}, 18_{\frac{3}{4}}^{3}, 31_{\frac{1}{3}}^{1}, 66_{3}^{2}$.

A fractional unit or a fraction may be divided into any number of equal parts. Thue, if? be divided into as equal pait:, eaclr of the parts is $\frac{1}{3}$ of $\frac{7}{6}$. So, if $\frac{1}{3}$ of $\frac{7}{5}$ be divided into t ermal parte, 8 of these parts are $\frac{3}{3}$ of of ? Such expre-riuns are called compound fractions. Hence,
§118. A comporend fraction is a fractiull of a fraction. Thuk, $\frac{2}{3}$ of $\frac{3}{4}, \frac{1}{9}$ of $\frac{7}{3}$, $\frac{2}{3}$ of $\frac{3}{4}$, $\frac{27}{3} \frac{7}{6}$ of $12 \frac{1}{3}$, and $\frac{5}{6}$ of $\frac{3}{5}$ of $33 \frac{1}{6}$ are compound fractions.
§119. A complex fraction is one which has a fraction for its numerator or its denominator or each. Thus, $\frac{2}{5_{\frac{1}{2}}^{2}}$, read two divided by five and one half, is a complex fraction. So also, $\frac{6 \frac{1}{2}}{\frac{2}{6}}, \frac{12 \frac{1}{2}}{37 \frac{1}{2}} \frac{\frac{1}{2} \text { of } \frac{2}{3}}{33 \frac{1}{3}}, \frac{3}{4}$ of $18 \frac{1}{3}$ of $12 \frac{1}{2}$.

RE'UCTION OE COMMON FRACTIUNS.

§ 123. To reduce any number. either fractinnal or integral, is to change its form of expression withoul rlunging sits vulue. Thus, a unit miy the reduced to $\frac{4}{4}$, or ta $\frac{7}{7}$, or to $\frac{10}{10}:-{ }_{4}^{2}$ may he reduced to ${ }_{5}^{8}$, or ta $\frac{1}{1} \frac{7}{6}$, or to $\frac{9}{12}:-64$ may be rednceal to $\frac{25}{2}$, or to $\frac{50}{5}$: -alld $\frac{25}{2}$ may be redneed to $12 \frac{1}{2}$.
§ 121. A faction is in its lowest ierms when its terma are prime to each other. ("94). Thus, $\frac{1}{2}, \frac{3}{4}, \frac{2}{5}, \frac{31}{7}, \frac{5}{5}, \frac{5}{6}$ and i_{i}, , are each in its luwe-t terms.

Ex. 1. Reduce $\frac{1}{5} \frac{1 \pi}{6}$ to its lowent terms.
 terms by $4: 4$ in 14 t, 36 tilles; 4 in $576,1+4$ times: divide both these quationts by $4: 4$ in $36,!$ times; 4 ín 144,36 times: divide buth these ynoticuts by $9: 9$ in 9, nuce; 9 in $3(i, 4$ times. These yuotients are prime to each other: hence, $\frac{1}{4}$ is the given fraction in its lowest terms.

Lxplavation - By comparing $\S \$ 77$ and 111 , it is evident that the valne of a fration i- not changed hy diviling: both its terms by the same mmber: and by sucerssive divisions, its terms may alwas he made mime to each othor.

Ex. !. Rednce $\frac{5675}{875}$ to its lowest terms.
 mon measure of the terms of the fiacerion. (§ 10:3) Their grealest commmon measme is 27. I) vide borly term: by 27: 27 in 517,21 times; 27 in 67.5, 25 times. El twenty fitths is the given fraction in its luwest terus.

Rul,f, for reducing a fraction to its lowe.t terms.

1. Divile looth term: by dell common m"ravur! ; divide Lath these quentients liy "In!y commann merrsure; amil an one sentil the qualients are primere the rech ultere; the lust quedicuts will be the luwest terms uf the !jiven fiactiun.

Or, 2. Divicle both terms ly their greatest common measare: the quotirnis will le the louest terms.

Ex.3. Reduce $\frac{75^{5}}{2} 5$ to its lowest terms.
4. Reduce $\frac{21 n}{250}$ to its lowest terms.

> Value, Tal. $\frac{4}{3}$
> Val. $\frac{0}{13}$
> Tal. $\frac{2 x}{18}$
5. Reduce $\frac{3 x}{4} \frac{\pi}{5}$ to its lowest terms.
6. Reduce $\frac{460}{552}$ to its lowest terms.
7. Reduce $\frac{2}{2} \frac{29}{7} \frac{3}{7}$ to its lowest terms.
\therefore. Reduce $\frac{16}{2} \frac{6}{8} \frac{1}{5}$ to its lowest terms.
9. Reduce $\frac{-97}{1894}$ tu its lowest terms.
10. Reduce $\frac{42807}{5.0} \frac{7}{9}$ to its lowest terms.
11. Redince $\frac{27}{9} \frac{7}{7} \frac{1}{7}$ to its lowest terms.

Tal. ${ }^{-}$
Val. $\frac{3}{12}$
12. Reduce $\frac{25}{32} \frac{63}{72}$ to its lowest terms.
15. Rednce $\frac{708}{72} \frac{8}{0}$ to its lowest terms.
14. Reduce $\frac{264}{520}$ to its lowest terms.
15. Reduce $\frac{1}{2} \frac{9 n 3}{326}$ to its lowert terms.
16. Reduce $\frac{355}{7} \frac{59}{76}$ to its lowe terms.
17. Reduce $\frac{679}{6979}$ to its lowest terms.
18. Rednce $\frac{24}{8} \frac{4}{1} \frac{8}{2}$ to its lowest terms.
19. Reduce $\frac{108}{81} \frac{1}{7} 3$ to its lowest terms.
20. Reduce $\frac{29699}{6} 672$ to its lowest terms.

Yal. $\frac{80}{60}$
Val. $\frac{25}{6}{ }_{3}^{6}$

Tal. ${ }_{9}^{4} \frac{1}{4} \frac{9}{7}$
Vul. $\frac{87}{907}$

Tal. $\frac{371}{7+8}$
Val. $\frac{1}{9} \frac{01}{7}$.
21. In $\frac{8 \mathrm{as}}{16}$ how many units?

868'16
§ 124. Modet.-Divide the numer-
$6854 \frac{1}{16}=54 \frac{1}{4}$ ator by the demminator. ($\$ 71$). The $4, \quad$ quotient is 54 , and the remainder 4. Redure $\frac{4}{16}$ to its lunest terms. Tho given fraction is equal to $54 \frac{1}{4}$.

Exphanation.-Since 16 sixteenths make a unit, the number of units in 86 sistecnthe is equal to the number of times 16 is contained in 868 . See $\$ 113$.

Trief for reducing an improper fraction to a whole or a nixed number.

Divile the numerulor by the denominator; the qualient will be the integral part. Place the denominator under the remuinder for the fracti-mul part.

Ex. 22. [11 $\frac{75}{3}$ how muy units?
Ans. 25.
23. It $\frac{07}{4}$ how many units?

Ans. $24 \frac{1}{4}$.
24. In $\frac{103}{5}$ how many units?
25. In $\frac{27}{7}$ how many units?

Ans. 3 ${ }^{\frac{6}{9}}$.
26. Reduce 180 to units.

Val. 20.
27. Reduce $\frac{180}{18}$ to units.
28. Reduce ${ }^{220} 15$ to units. Val. 144.2.
29. Reduce $\frac{130}{16}$ to units.
30. Reduce $\frac{27}{19}$ to units.
31. Reduce $\frac{250}{21}$ to a mixed number.

32 . Reduce $\frac{299}{24}$ to a mixed number.
83. Reduce $\frac{320}{27}$ to a mixed number.

3+. Reduce $\frac{3+k}{31}$ to a mixed number.
Val. 8 ${ }_{8}^{\frac{3}{8}}$.
Val. 13知.
Val. $12 \frac{13}{2 \frac{1}{4}}$.
Val. $11 \frac{3}{31}$.
35. Reduce $\frac{371}{36}$ to a mixed number.
36. Reduce $\frac{402}{73}$ to a mised number.

3i. Reduce $\frac{13.8}{58}$ to a mixed number.
85. Reduce $\underset{6 \pm 1}{48}$ to a mixed number.
89. Reduce $\frac{513}{79}$ to a mixed number.
41. Reduce $\frac{577}{95}$ to a mixed number.

Val. $10 \frac{17}{36}$.
Val. $8 \frac{7}{15}$.
Val. 793.
41. Reduce 10 units to fourthe.
§ 125. Modet.-Maltiply 4 fourths hy 10.
$10=\frac{40}{4}$ The prodnct is 40 fuarths : hence 10 usits $=$ 40 fourths.
Explanition.-Since 4 fourths make a unit, 10 units $=$ 10 times 4 fourths; that is, 40 fourths.
liutef for reducing a whole number to any fractional denomination.

Multiply the merber of fractional units in a unit by the number of units.

Ex. 42. In 3 units how many fifths?
43. In 5 units how many sevenths?
44. In 6 units how many ninths?
45. In 7 units how many elevenths?
46. Reduce 8 to thirteenthe.
47. Reduce 9 to filteenths.
48. Reduce 11 to seventeenths.
49. Reduce 12 to twentiethe.
50. Reduce 13 to twente furths.
51. Reduce 14 to twenty-matis.
52. Reduce 15 to thirty-fifthe.
53. Reduce 16 to a fraction with denominator 4 .

$$
\text { Val. } \frac{690}{90^{\circ}}
$$

54 . Reduce 17 to a fraction with denominator 46 . 55 . Reduce 18 to a fraction with denominator 53.

$$
\text { Vall. } \frac{954}{59} \text {. }
$$

56. Reduce 19 to a fraction with denominator 59.

$$
\text { Val. } 1 \frac{122}{51} .
$$

57. Reduce 20 to a fraction with denominator 65.
58. Reduce 21 to a fraction with denominator 71 .

$$
\text { Val. } \frac{1491}{71} .
$$

59. Reduce 22 to a fraction with denominator 77.
60. Reduce 23 to a fraction with denomiuator 85 .
61. Reduce $16 \frac{1}{2}$ to an improper fraction.
$16 \frac{1}{2}=\frac{32}{2}+\frac{1}{2}=\frac{33}{2} \quad \S 1 \because 6$. Monfl.-Reduce 16 units to halves. Add 22 halves and 1 halt.The sum is 33 halves : hence $16 \frac{1}{2}$ is equal to 33 halves.

Rule for reducing a mixed number to an improper fraction.

Reduce the integer to the denomination of the fraction; add the two numerutor's to jether, und under their sum set the common denominator.

Ex. 6). Reduce $3 \frac{2}{3}$ to thirds. Val. $\frac{11}{3}$. 6:3. Reduce $4 \frac{1}{4}$ to fourths.
6 t . Reduce 6_{3}^{2} to fifthe.
65. Reduce $8 \frac{5}{6}$ to sixhi-.
66. Reduce $10 \frac{3}{7}$ to sevenths.
67. Rednce $12{ }^{5}$ to eighths.
68. Reduce $14 \frac{1}{9}$ to uinths.
69. Reduce $16 \frac{3}{10}$ to tenthe.
70. In $17 \frac{2}{11}$ how many elevenths?

Ans. $\frac{189}{112}$.
71. In $18_{1 / \frac{7}{2}}^{7}$ how many twelfins?
72. [n 199_{1}^{3} how wany fourteenths?
73. In 2) $\frac{5}{16}$ how many sixteenths?
74. In $21 \frac{-5}{18}$ how many eighteenths?

76. Rednce $23_{\frac{7}{2 x}}$ to an improper fraction.
77. Radace $24 \frac{12}{2} \frac{1}{7}$ to an improper fraction.
78. Reduce $25{ }^{\frac{2}{2} 9}$ to an improper fraction.
79. Redace $52 \frac{2}{33}$ to all improper fraction.
80. Reduce $65 \frac{56}{65}$ to an improper fraction.

$$
\begin{aligned}
& \text { Val. } \frac{37}{8} \\
& \text { Val. } \frac{53}{6}
\end{aligned}
$$

Val. ${ }^{101}$.
Val. 127.

Ans. ${ }_{12,}^{2,3}$.
Ans. $\frac{325}{18}$. Aus. $\frac{358}{15}$.

Val. $\frac{5 \pi}{2 \pi}$.
Val. $\frac{678}{27}$.
81. Reduce $\frac{3}{4}$ to twenticths.
$\frac{3}{8}=\frac{1}{2} 0 \quad \$ 127$. Monel. - 5 twentieths make one fourth. Multiply beth terme hy $5: 5$ times 3 are $15 ; 5$ times 4 are 20. $\frac{3}{4}$ is equal to 15 twenticthe.

Explanation.-By comparing $\S \$ 76$ and 111 , it is evident that the value of a fraction is mot changed hy multiplying both its terms by the same number. We divide the required denominator by the given one, and multiply botb terms of the fraction by the guotiont.

Ruma fur redacing a fraction to a larger denominator.
Murtiply luth terms liy the quotient of the required denominutor divided ly the gieren one.

Ex. ©2. Reduce $\frac{2}{5}$ to tenthe.

$$
\text { Val. } \frac{A}{10}
$$

83. Reduce $\frac{\pi}{6}$ to eighteenths.

Tal. $\frac{18}{18}$.
81. Reduce $\frac{5}{7}$ to thirty-fifths.
85. Reduce $\frac{3}{8}$ to fortieths.

Val. $\frac{18}{40}$
86. Reduce $\frac{7}{9}$ to sixty-thirds.
87. Reduce $\frac{9}{10}$ to ninctieths.
88. Reduce $\frac{7}{11}$ to nimety-ninths.

Val. $\frac{54}{80}$.
89. Reduce $\frac{5}{12}$ to sixtieths. Val. $\frac{25}{60}$.
90. Reduce $\frac{6}{13}$ to sisty-fifthe.

9i. Reduce $\frac{25}{100}$ to twentieths.
§ $1 \geq 8$. Moner.-Divide both terms hy $5 s$ $\left.5 \frac{25}{100} \right\rvert\, \frac{5}{20} 5$ in $2.5,5$ times; 5 in 100, 20 times. 25 on hundredths $=5$ twentieths.
For explanation, see § 122.
Rusef for reducing a fraction to a dower denominator.
Dinite both terms by the puotient of the given denominator divitled by the required one.

Ex. 02. Rednce $\frac{9}{42}$ to fourteenths.

$$
\text { Val. } \frac{4}{14} \text {. }
$$

93. Reduce $\frac{16}{60}$ to fifteenthi.
94. Reduce $\frac{35}{80}$ to sixfeenths.

Yial. $\frac{7}{30}$
95. Rednce $\frac{30}{108}$ to eighteenths.

Val. $\frac{5}{18}$.
9(i. In $\frac{12}{120}$ how many twentieths?
37. In $\frac{21}{63}$ how many twenty fingts?

Ans. $\frac{q^{2}}{4 T^{*}}$
98. In $\frac{12}{2 \frac{2}{3} 3}$ how many twenty- hirds?

Aus. $\frac{13}{2}$.
9!!. In $\frac{\pi 5}{165}$ how many twenty fourths?
100. In $\frac{3}{890} 00$ how many thirlieths?

Ans. $\frac{7}{8} \frac{1}{5}$
101. Reduce $\frac{7}{2}, \frac{3}{4}$, and $\frac{5}{5}$, to a common denominator. (\$91).
§ 129. Model.--Maltiply both terma $\frac{1}{2} \quad \frac{3}{4} \quad \frac{5}{5}$ of the first fraction by $32 ; 32$ times 1 $\frac{8}{6} \frac{4}{6} \frac{4}{6} \frac{40}{6}$ are $32 ; 32$ times 2 are $6 t$: maliply both terms of the second fraction by 16 ; 16 times 3 are 48 ; 16 times 4 are 64 : multiply both terme
of the thim fraction by $8 ; 8$ times 5 are $40 ; 8$ times 8 are 64. The given fractions are respectively equal to 32,48 , and 40 sixty fuurths.

Expranation.-The values of the fractions are nok ehanged, because both terms of each fraction are multiplied by the same mumber: and the denominators are alike, because each one is produced by multiplying together all the given demominators. The multiplier 32 fur the first fraction is 4×8, the product of the other two denominators. And sn for the others.

Rifle for reducing fractions to a common denominator.
Multiply buth termes of ench fiaction ly the prorluct of the other denrmimutors.

Ex. 102 . Reduce $\frac{2}{3}, \frac{1}{4}$, and $\frac{3}{6}$, to a common denoninator. 103. Reduce $\frac{1}{2}$, $\frac{1}{3}$, and $\frac{2}{5}$, to a common denmminator.

$$
\text { Val. } \frac{1}{3} \frac{5}{9}, \frac{10}{30}, \frac{6}{3 v} .
$$

104. Reduce $\frac{1}{3}, \frac{3}{4}$, and $\frac{2}{6}$, to a common denminator.

$$
\text { Val. } \frac{20}{60}, \frac{4}{65}, \frac{84}{65} .
$$

105. Reduce $\frac{1}{4}, \frac{2}{5}$, and $\frac{5}{6}$, to a common demminaror. 106. Ficduce $\frac{1}{5}, \frac{1}{6}$, and $\frac{2}{7}$, to a common denominator.

$$
\text { Val. } \frac{49}{210} \cdot \frac{35}{210}, \frac{60}{2100}
$$

107. Ficduce $\frac{1}{6}, \frac{2}{7}$, and $\frac{3}{5}$, to a common denommatur.

$$
\text { Val. } \frac{\pi}{336}, \frac{\pi}{33} 36, \frac{120}{336^{\circ}}
$$

108. Reduce $\frac{1}{7}$, $\frac{3}{3}$, and $\frac{5}{9}$, to a common demonitator.
109. Reduce $\frac{1}{8}, \frac{2}{9}$, and $\frac{3}{10}$, to a common denominator.

$$
\text { Val. } \frac{80}{720}, \frac{109}{720}, \frac{21}{72} 0 .
$$

110. Reduce $\frac{1}{6}$, $\frac{3}{10}$, $\frac{5}{12}$, and $\frac{7}{2}$, to a common demmina-

11'. Renluce $\frac{1}{5}$, $\frac{3}{10}$, and $\frac{5}{13}$, to a commm demmmator.
111. Reduce $\frac{1}{7}, \frac{2}{3}$, and $\frac{3}{12}$, to a commo:n demminathr.

$$
\text { Val. } \frac{99}{693}, \frac{1}{6} 9 \frac{5}{3}-\frac{19}{69} \frac{9}{3} .
$$

118. Rechuce $\frac{1}{6}$, $\frac{n}{8}$, and $\frac{\pi}{10}$, to a commund denminator.

11t. Reduce $\frac{1}{6}$, $\frac{2}{6}$, and $\frac{4}{6}$. to a common denominator.
115. Reduce $\frac{2}{2}, \frac{1}{6}$, and $\frac{2}{4}$, to a common denminator.

$$
\mathrm{Va}^{\prime} \cdot \frac{54}{2 \frac{4}{16},} \frac{36}{2 \frac{6}{16}}, \frac{4, N}{210^{\circ}}
$$

115. Reduce $\frac{3}{4}, \frac{2}{5}$, and $\frac{3}{2}$, to a common denominator.

$$
\text { Val. } \frac{35}{140}, \frac{50}{140}, \frac{100}{140}
$$

117. Reduce $\frac{1}{3}, \frac{3}{7}$, and $\frac{2}{9}$, to a common denominator.
118. Reduce $\frac{1}{4}, \frac{2}{5}$, and $\frac{2}{9}$, to a common denominator.

$$
\text { Val. } \frac{45}{180}, \frac{72}{150}, \frac{40}{150} .
$$

119. Reduce $\frac{1}{4}, \frac{2}{7}$, and $\frac{5}{10}$, to a common dennmintor.
120. Reduce $\frac{1}{5}, \frac{3}{5}$, and $\frac{3}{11}$, to a common denominator,
121. Reduce $\frac{1}{2}, \frac{3}{4}$, and $\frac{5}{5}$, to their least common denominator.
$\frac{1}{2} \frac{3}{4} \frac{5}{8} \quad$ 130. Model. - Find the least enmmon $\frac{-1}{2} \quad \frac{9}{4} \quad \frac{8}{8}$ multiple of the denominators. ($\S 10(i) .8$ is $\frac{4}{5} \frac{6}{8} \frac{5}{8}$ their least common multiple. Multiply both terms of the first fraction by $4: 4$ times 1 are $4 ; 4$ times 2 are 8 : multiply both terme of the second fraction by 2 : twice 3 are 6 ; twice 4 are 8 ; the third fraction is already of the reguired demmination.The given fractions are respectively equal to 4,6 , and 5 eighths.

Explanatign.-To fiud the proper multiplier for the termin of eifher faction, we divide the luast cummon multiple by its denominator. See §̧ 127.

Rute fur reducing fractions to their least common denominator.

Firch the least crmmon multiple nj the denominutors, and reduce each fruction to the renominution expressed by this multiple. Einch fruction must first be in its linct:at terms.

Ex. 122. Reduce $\frac{2}{3}, \frac{1}{4}$, and $\frac{5}{6}$, to their least con min denominatur. Vill. ${ }^{5}=$, $\frac{3}{12}, \frac{10}{12}$.
123. Reduce $\frac{1}{4}$, $\frac{2}{5}$, and $\frac{5}{5}$, to their least common dsaminatur.
124. Reduce $\frac{1}{6}$, $\frac{2}{7}$, and $\frac{5}{8}$, to their least common denominator.

125. Reduce $\frac{1}{6}, \frac{3}{6}$, and $\frac{5}{20}$, to their least common denominator.
126. Reduce $\frac{1}{4}, \frac{1}{6}$, and $\frac{2}{9}$, to their least common denomim. tur.
127. Reduce $\frac{1}{4}, \frac{2}{7}$, and $\frac{5}{10}$, to their least common denominator.

$$
\text { Val. } \frac{7}{25}, \frac{5}{25}, \frac{14}{28}
$$

128. Reduce $\frac{1}{3}, \frac{1}{3}, \frac{1}{4}$, and $\frac{1}{6}$, to their least common denominator. Val. $\frac{6}{12}, \frac{4}{12}, \frac{-3}{12}, \frac{2}{12}$.
129. Reduce $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{6}$, and $\frac{1}{1} \frac{1}{2}$, to their least common denominator.
130. Reduce $\frac{2}{5}, \frac{3}{4}, \frac{5}{6}$, $\frac{7}{6}$, and $\frac{1}{1} \frac{1}{2}$, to their least common denommator. Val. $\frac{16}{2} \frac{1}{4}, \frac{18}{2}, \frac{20}{2}, \frac{21}{4}, \frac{92}{24}$.
131. Reduce $\frac{1}{2}, \frac{3}{4}, \frac{5}{8}, \frac{3}{16}$, and $\frac{19}{32}$, to their least common demominatur. Val. $\frac{16}{32}, \frac{24}{3}, \frac{20}{3}, \frac{6}{32}, \frac{19}{32}$. 132. Reduse $\frac{1}{3}, \frac{5}{6}, \frac{1}{12}$, and $\frac{1}{2} \frac{7}{4}$, to their least common denominator.
132. Reduce $\frac{5}{8}, \frac{5}{16}, \frac{7}{25}$, and $\frac{3}{24}$, to their least common dehominatur.

$$
\text { Val. } \frac{5}{5}, \frac{4}{5}, \frac{2}{8}, \frac{7}{3}
$$

134. Reduce $\frac{1}{2}, \frac{3}{6}, \frac{5}{12}$, and $\frac{1}{1} \frac{1}{2}$, to thecir least cummon denominator. Val. $\frac{-\frac{5}{12}}{2}, \frac{4}{12}, \frac{1}{1}_{\frac{8}{2}}^{2}, \frac{0}{12}$.
135. Reduce $\frac{5}{2 \pi}, \frac{5}{2}$, $\frac{2}{1_{6}^{6}}$, and $\frac{5}{16}$, to their least common demminator.
136. Reduce $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}$, and $\frac{5}{6}$, to their least common denominator.

Val. $\frac{30}{60}, \frac{40}{6} 0, \frac{45}{6} 9, \frac{4}{6}, \frac{50}{60}$.
137. Reduce $\frac{1}{5}, \frac{2}{7}, \frac{6}{15}, \frac{18}{21}$, and $\frac{1}{3} \frac{9}{5}$, to their least common denominator.

Val. $\frac{7}{35}, \frac{10}{35}, \frac{14}{3} 5, \frac{30}{3} 5, \frac{19}{35}$.
138. Reduce $\frac{1}{2}, \frac{3}{4}, \frac{4}{5}, \frac{3}{8}, \frac{7}{10}, \frac{3}{20}$, and $\frac{27}{40}$, to their least common denominator.
139. Reduce $\frac{1}{3}, \frac{3}{5}, \frac{4}{9}, \frac{7}{15}$, and $\frac{1}{4} \frac{1}{5}$, to their least common dentminator.

Val. $\frac{15}{45}, \frac{37}{45}, \frac{20}{45}, \frac{22}{45}, \frac{11}{45}$.
140. Reduce $\frac{1}{2}, \frac{3}{3}, \frac{3}{10}, \frac{4}{25}$, and $\frac{7}{50}$, to their least coumon denominator.

Val. $\frac{25}{50}, \frac{20}{50}, \frac{15}{50}, \frac{5}{50}, \frac{7}{50}$.

ADDITION OF COMLION FRACTEONS.

Ex. 1. Add $\frac{1}{8}, \frac{3}{5}, \frac{5}{8}$, and $\frac{7}{8}$.
§ 131. Monel. - 1 and 3 are $\begin{array}{ll}\frac{1}{8}+\frac{3}{8}+\frac{2}{8}+\frac{7}{8}=\frac{16}{5}=2 \quad & \begin{array}{l}4 \text {, and } 5 \text { are } 9, \text { and } 7 \text { are } l i f- \\ \\ \\ \\ \\ \text { sum is } 2 .\end{array}\end{array}$
Expeavatron.-Since all the fraction have the same fractimal mit, their nmerators are adled for the mamerator of the sim, and the common denominator is taken as its denominator.

Ex. 2 . Add $\frac{1}{2}, \frac{9}{4}$, and $\frac{7}{8}$.
§ 132. Modfl.-Rudnce the given
$\frac{1}{4}+\frac{3}{4}+\frac{7}{8} \quad$ fractions to their least cmmuia de-
$\frac{4}{8}+\frac{5}{8}+\frac{7}{8}=\frac{17}{8}=2 \frac{3}{8}$ nominator. (§ 130). tand tiare 10 , and 7 are 17. 17 eightis is equal to $2 \frac{1}{\delta}$. The sum is $2 \frac{1}{8}$.
Expmeatros.-It is evidently impossible to add the given fractions withont reduction. 3 fourths and 7 wighths make neither 10 fonths nor 10 eighths. It is mot essential to reduce to the least common denominator; but this generally reguires less labor than to reduce simply to a common denominator.

Ex. 3. Add $24 \frac{1}{4}, 351 \frac{1}{2}, 179 \frac{7}{8}$, and 187.

$24 \frac{1}{4}$	$\frac{2}{4}+\frac{1}{2}+\frac{7}{8}$
$351 \frac{1}{2}$	$\frac{2}{5}+\frac{4}{8}+\frac{7}{8}=\frac{13}{8}=1 \frac{5}{8}$
$179 \frac{7}{5}$	
$\frac{187}{742 \frac{5}{8}}$	

equal to 1 and 5 cighths, set down $\frac{5}{8} ; 1$ and 7 are 8 . and 9 are 17 , and 1 are 18 , and 4 are 22 , - et down $2: 2$ and 8 are 10 , and 7 are 17 , and 5 are $2 \cdot 2$, and 2 are 24 , set down 4 ; 2 and 1 are 3 , and 1 are 4 , and 3 are 7. The sum is $742 \frac{8}{8}$.

Rude. - Reluce the fiactims to their least common denominutor: whld the mumerators, and under their sum set the common deaminutor. Reveluce the result to its lowest kerms or to a mixel num'ser, us tive cuse muy be.

Ex. 4. Add $\frac{1}{4}, \frac{2}{4}$, and $\frac{3}{4}$.
Sum, $1 \frac{1}{2}$.
5. Add $\frac{1}{5}, \frac{2}{5}, \frac{3}{5}$, and $\frac{4}{5}$.

Sulli, 2.
6. Add $\frac{1}{6}, \frac{2}{6} \cdot \frac{3}{6}, \frac{4}{6}$, and $\frac{5}{6}$.
7. Add $\frac{2}{7}, \frac{4}{7}, \frac{\pi}{7}$, and $\frac{6}{7}$.
8. Add $\frac{1}{5}, \frac{2}{5}, \frac{3}{5}$, and $\frac{7}{5}$.

Su:n, $2 \frac{3}{7}$.
9. Add ${ }_{9}^{2}, \frac{4}{9}, \frac{5}{9}, \frac{7}{9}$, and $\frac{8}{9}$.
10. ANd $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}$, and $\frac{4}{5}$.
11. Add $\frac{3}{4}, \frac{3}{5}, \frac{3}{6}$, and $\frac{3}{7}$.

Sum, $22_{60}^{4.8}$.
12. Add $\frac{1}{2}, \frac{3}{4}, \frac{2}{5}, \frac{3}{10}$, and $\frac{7}{20}$.
13. Add $\frac{1}{2}, \frac{1}{4}, \frac{3}{7}$, and $\frac{9}{17}$.
14. Adel $\frac{1}{2}, \frac{1}{4} . \frac{3}{5}, \frac{7}{16}$, and $\frac{1}{5} \frac{9}{2}$.

Su:1, $2 \frac{39}{1 \pm 0}$.
15. Aild $\frac{1}{3}, \frac{5}{6}, \frac{8}{9}, \frac{1}{1} \frac{1}{2}$, and $\frac{1}{1} \frac{7}{2}$.
16. Add $\frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}, \frac{1}{1} \frac{1}{2}$, and $\frac{1}{1} \frac{5}{6}$.

Sum, $4{ }^{39}$.
17. Add $\frac{3}{4}, \frac{5}{6}, \frac{3}{8}, \frac{5}{12}, \frac{3}{16}$, and $\frac{5}{3} \frac{5}{2}$.

Sum, $2 \frac{23}{3} \frac{3}{2}$.
18. Aldd $\frac{1}{2}, \frac{2}{3}, \frac{5}{6}$, and $\frac{8}{9}$.
19. Add $\frac{1}{3}, \frac{1}{5}, \frac{1}{7}$, and $\frac{1}{11}$.
20. Ald $2 \frac{1}{2}, 3 \frac{2}{3}, 4 \frac{3}{4}$, and $5 \frac{4}{5}$.

Silli, 125.
Sum, $2 \frac{9}{32}$.
21. Add $4,8 \frac{1}{3}, 9 \frac{1}{2}$, and $11 \frac{3}{5}$.
22. Find the sum of $10 \frac{1}{2}, 21_{3}^{3}, 32_{5}^{2}, 43_{\frac{3}{10}}$, and 544_{20}^{7}.

Sum, $162 \frac{s}{10}$.
23. Find the sum of $19,2 \frac{1}{2}, 16 \frac{1}{4}$, and $27 \frac{3}{5}$. Sum, $83 \frac{1}{8}$.
24. Find the sum of $\frac{17}{17}, 2 \frac{1}{2}, 3 \frac{8}{9}, 25 \frac{5}{6}$, and $33 \frac{1}{3}$.
25. Find the sum of $12 \frac{1}{2}, 18 \frac{3}{4}, 33 \frac{1}{3}, 87 \frac{1}{2}$, and $93 \frac{3}{4}$.

Sum, $245 \frac{5}{8}$.
26. What is the sum of $\frac{s}{4}, 6 \frac{5}{6}, 3 \frac{3}{3}, 2 \frac{1}{3}$, and 98 ?

Ans. $111 \frac{8}{8 .}$.
27. What is the sum of $1,2 \frac{1}{3}, 3 \frac{1}{3}, 6 \frac{1}{6}$, and $9 \frac{1}{9}$?
28. What is the sum of $4 \frac{3}{4}, 5 \frac{\pi}{7}, 17 \frac{3}{4}$, and $18 \frac{\pi}{12}$?

Ans. $46 \frac{80}{8}$.
29. What is the sum of $2 \frac{1}{7}, 25 \frac{1}{4}, 125 \frac{1}{7}$, and $325 \frac{5}{12}$?

$$
\text { All } 4.78 \frac{8}{2 \gamma} \text {. }
$$

30. What is the sum of $1 \frac{2}{3}, 4 \frac{5}{6}, 7 \frac{8}{9}, 10 \frac{1}{1} \frac{1}{2}$, and $13 \frac{1}{1 \frac{4}{3}}$?

SUBTRACTION OF COMMON FRACTIONS.
Ex. 1. From $\frac{7}{8}$ take $\frac{3}{8}$.
$\frac{7}{8}-\frac{3}{5}=\frac{4}{8}=\frac{1}{2} \quad \S 134$. Midel.- 3 from 7 leaves 4. 4 eighths is equal to $\frac{1}{2}$. The remainder is $\frac{1}{2}$.
Ex. 2. From $\frac{1}{2}$ take $\frac{1}{3}$.

$$
\begin{aligned}
& \$ 135 . \text { Moner. - Reduce the fractions to } \\
& \frac{1}{2}-\frac{1}{3} \\
& \text { their least common denominator. (\$ } 130 \text {). } \\
& \frac{3}{8}-\frac{2}{6}=\frac{1}{6} \\
& 2 \text { from } 3 \text { leaves } 1 \text {, that } \mathrm{is}, 1 \text { sixch. The re- } \\
& \text { mainder is } \frac{1}{6} .
\end{aligned}
$$

Ex. 3. From $32 \frac{7}{5}$ take $18 \frac{3}{4}$.

$32 \frac{7}{8}$	$\frac{7}{8}-\frac{3}{4}$
$\frac{18}{4}$	$\frac{7}{8}-\frac{6}{5}=\frac{7}{8}$

§ 136. Moobl.-Reduce the fractions to their least common denominator. (\$130). 6 from 7 leavis 1 , set down $\frac{1}{8} ; 8$ from 12 lenves 4 ; 2 from 3 leaves 1 . The remainder is $144_{5}^{?}$.

Eximanation.-Any number of factional units may evidently be subtracted from a larger number of fractional units of the same denomination, just as one number of simple units is subtracted from an other. If the given fractions have different denominaturs, they must first be reduced to a common denominator: $\frac{7}{8}-\frac{3}{4}=$ neither $\frac{4}{8}$ nor $\frac{4}{4}$, just as 7 dollars -3 cents $=$ neither 4 dollars nor 4 cents.

Es. 4. From 27 take $19{ }^{1}$.
27
$19 \frac{1}{8} \frac{7}{8} ; 10$ from 17 leaves $7 ; 2$ from 2 leaves 0 .

Wx. 5. From $9 \frac{1}{5}$ take $6 \frac{1}{2}$.
> $9_{6 \frac{1}{3}}^{\frac{1}{3}} \quad \frac{1}{3}-\frac{1}{2} \quad \S 138$. Monel.-Reduce the fractions to their least common denominator. (§130). 4 from 9 leaves 5 , set down $\frac{5}{8}$; 7 from 9 leaves 2. The remainder is $2 \frac{5}{5}$.

Explanation.-When the fraction in the minuend is less than that in the subtrahend, we add an integral unit to the minuend fraction, subtract the subtrahend fraction from this sum, and then add 1 to the units of the subtrahend before subtracting from the units of the minuend.

Rule.-Reduce the fractions to their least common denominator ; subtract the numerator of the subtrahend from the numerator of the minuond; and under the remainder set the common denominator.

If, in subtracting one mixed number from an other, the subtrahend fraction should be larger than the one in the minuend, reduce an integral unit to the common denomination of the fractions, add it to the minuend fraction, subtract the subtrahend fraction from this sum, and add one to the subtrakond in the column of units.

Ex. 6. Subtract $\frac{3}{4}$ from $\frac{9}{10}$.
7. Subtract $\frac{1}{3}$ from $\frac{3}{5}$.
8. Subtract $\frac{3}{10}$ from $\frac{7}{15}$.

Rem. $\frac{4}{15}$.
Rem. $\frac{1}{6}$.
9. Subtract $\frac{2}{9}$ from $\frac{11}{12}$.
10. Subtract $\frac{2}{7}$ from $\frac{5}{9}$.
11. From $\frac{17}{18}$ take $\frac{3}{4}$.

Rem. $\frac{17}{63}$.
12. From $\frac{17}{20}$ take $\frac{3}{5}$.
13. From $5 \frac{2}{3}$ take $\frac{4}{7}$.
14. From $7 \frac{1}{9}$ take $4 \frac{1}{12}$.

Rem. $\frac{7}{36}$.
15. From $8 \frac{3}{7}$ take $7 \frac{5}{6}$.
16. Minuend $=17_{\frac{1}{17}} ;$ Subtrahend $=6 \frac{1}{3}$.

Rem. $5 \frac{2}{32}$.
Rem. $3 \frac{1}{36}$.

F

17. Minuend $=200_{\frac{5}{13}} ;$ Subtrahend $=105_{13}^{3}$.

Rem. 944_{3}^{2}.
18. Minuend $=42 \frac{1}{2}$; Subtrahend $=27 \frac{9}{10}$.
19. Minuend $=72 \frac{1}{3} ;$ Subtrahend $=24 \frac{5}{12}$.

Rem. $47{ }_{4}^{3}$.
20. Minuend $=175$; Subtrahend $=83 \frac{3}{4}$.

Rem. 91 .
21. Subtrahend $=66 \frac{2}{3}$; Minuend $=106_{\frac{1}{4}}^{1}$.
22. Subtrahend $=17 \frac{1}{7}$; Minuend $=27 \frac{1}{3}$.

Rem. $10 \frac{4}{21}$.
23. Subtrahend $=1 \frac{2}{3}$; Minuend $=4 \frac{5}{6}$.

Rem. $3 \frac{1}{6}$.
24. Subtrahend $=7 \frac{8}{9} ;$ Minuend $=8 \frac{n}{10}$.
25. Subtrahend $=11 \frac{13}{16}$; Minuend $=20 \frac{25}{31}$. Kem. $8 \frac{493}{1966}$.
26. What is the difference between $12 \frac{1}{12}$ and $21 \frac{11}{21}$?

Ans. $8 \frac{17}{23}$.
27. What is the difference between $16 \frac{17}{15}$ and $10 \frac{1}{1} \frac{1}{2}$?
28. What is the difference between 100 and $33 \frac{1}{3}$?

Ans. $66 \frac{2}{3}$.
29. What is the difference betwec: - $9 \frac{1}{9}$ and $20^{\circ} \frac{1}{10}$?

Ans. $\frac{80}{90}$.
30. What is the difference between 75 and $68 \frac{3}{4}$?

nULTIPLICATION OF COMMON FRACTIONS.

Ex. 1. Multiply $\frac{3}{8}$ by 7.
§ 139. Model. 7 times 3 are 21 : $\frac{3}{8} \times 7=\frac{23}{5}=2 \frac{5}{8} \quad 21$ eighths is equal to $2 \frac{5}{8}$. The product is $2 \frac{5}{5}$.
Explanation.-Comparing $\S \S 72$ and 111 , we see that the value of a fraction is multiplied by a whole number by multiplying its numerator by the number.

Ex. 2. Multiply $\frac{5}{9}$ by 3 .
\S 140. Model.-3 in 9, 3 times : 5 $\frac{5}{9} \times 3=\frac{5}{3}=1 \frac{2}{3}$ thirds is equal to $1 \frac{2}{3}$. The product is $1 \frac{2}{3}$.

Explanation.-Tomparing $\$ \S 75$ and 111 , we see that the value of a fraction is multiplied by a whole number by dividing its denominator by the number. When the multiplier is a measure of the denominator, this method is preferable to the other.

Ex. 3. Multiply $4.7 \frac{3}{4}$ by 9 .
4.7 $7^{\frac{3}{4}}$ §141. Model.- 9 times 3 are $27: 27$ fourths 9 is equal to $6 \frac{3}{4}$, set down $\frac{3}{4} ; 9$ times 7 are 63 , and
$429 \frac{3}{1} 6$ are 69 , set down $9 ; 9$ times 4 are 36 , and 6 are 42. The product is $429{ }_{3}^{3}$.
Expianation.-As in whole numbers, we begin with the lowest denomination, and reduce each partial product to the next higher denomination, setting down the remaining units of the denomination in question, and reserving the units of the next denomination to be added to the next product.

Ex. 4. Multiply $\frac{3}{4}$ by $\frac{7}{8}$.
$\frac{3}{4} \times \frac{7}{5}=\frac{21}{3}$ § 142 . Model. -7 times 3 are 21 : § times 4 are 32. The product is $\frac{21}{32}$.
Explanation.-To multiply by $\frac{7}{8}$ is the same as to multiply by 7 and divide the product by 8.7 times 3 fourths $=21$ fourths, and 21 fourths $\div 8=21$ thirty-seconds : since a fraction (or a quotient) is divided by multiplying the denominator (or the divisor). (\$§ 74, 111).

Ex. 5. Multiply $30 \frac{1}{4}$ by $\frac{1}{4}$.

$$
\begin{aligned}
& 30_{4}^{\frac{1}{2}} \times \frac{1}{4} \\
& \frac{121}{4} \times \frac{1}{4}=\frac{121}{16}=7 \frac{8}{16} .
\end{aligned}
$$

§ 143. Model.-Reduce 301 to fourths.(\$126). It is equal to 121 fourths. Once 121, is 121: 4 times 4 are 16. 121 sixteenths is equal to $7 \frac{9}{16}$. The product is $7 \frac{9}{18}$.

Ex. 6. Multiply $30 \frac{1}{4}$ by $5 \frac{1}{2}$.

$$
\begin{aligned}
& 30 \frac{1}{4} \times 5 \frac{1}{2} \\
& \frac{12}{1} \frac{2}{4} \times \frac{21}{3}=\frac{1.332}{8}=166 \frac{3}{8}
\end{aligned}
$$

§ 144: Model.-Reduce the mixed numbers to improper fractions. ((126). 11 times 121 are 1831: twice 4 are 8 : 1331 eighths is equal to $166 \frac{3}{5}$. The product is $166 \frac{3}{3}$.

Pxplanation.-It is often easier to reduce a mixed number to an improper fraction before maltiplying, if the other factor is not a whole number.

Rune.-To multiply a simple fraction by a whole number:
Divide the denominator of the fraction, or else multiply its numerator, by the whole number.

To multiply a fraction by a fraction.
Multiply each term of the one fraciion by the corresponct. ing term of the other.

A mixed number may be reduced to an improper fraction, or its parts may be multiplied separately.

Ex. 7. Reduce $\frac{2}{3}$ of $\frac{4}{5}$ to a simple fraction.
$\frac{2}{3} \times \frac{4}{5}=\frac{8}{15} \quad \S 145$. Model.-Twice 4 are 8: 3 times $\frac{2}{3} \times \frac{4}{5}=\frac{8}{15} \quad 5$ are 15 . The given fraction is equal to $\frac{8}{15}$.
Explanation.-One third of 1 fifth is evidently 1 fifteenth ; 1 third of 4 fifths is 4 times 1 fifteenth, that is, 4 fifteenths; and 2 thirds of 4 fifths is twice 4 fifteenths, that is, 8 fifteenths.

Rule for reducing a compound fraction to a simple one.
Multiply together the several fractions which compose it.
Ex. 8. Multiply $\frac{1}{8}$ by 4.
Prod. $1 \frac{7}{9}$.
9. Multiply $\frac{6}{7}$ by 7.
10. Multiply $\frac{7}{8}$ by 8 .
11. Multiply $\frac{5}{6}$ by 12.

Prod. 7.
12. Multiply $\frac{5}{12}$ by 15 .
13. Multiply $\frac{7}{10}$ by 5 .
14. Multiply $2 \frac{1}{2}$ by 7 .
15. Multiply $8 \frac{2}{3}$ by 8 .
16. Multiply $16 \frac{2}{3}$ by 15 .
17. Multiply 197 by 20 .
18. Multiply $207 \frac{5}{6}$ by 13 .
19. What is the product of $315 \frac{5}{5}$ and 19 ?
20. What is the product of $\frac{5}{7}$ and $\frac{3}{5}$?
21. What is the product of $\frac{2}{9}$ and $\frac{3}{4}$?
22. What is the product of $\frac{15}{10}$ and $\frac{8}{15}$?
23. Reduce $\frac{1}{2}$ of $\frac{2}{3}$ to a simple fraction.
24. Reduce $\frac{5}{3}$ of to a simple fraction.
25. Reduce $\frac{1}{5}$ of $\frac{6}{7}$ to a simple fraction.
26. Reduce $\frac{1}{2}$ of $\frac{3}{13}$ of $\frac{5}{6}$ to a simple fraction.

27 . Reduce $\frac{1}{3}$ of $\frac{5}{7}$ of $\frac{9}{10}$ to a simple fraction.
38. Reduce $\frac{2}{3}$ of $7 \frac{1}{2}$ to a simple fraction.
29. Reduce $\frac{1}{2}$ of $\frac{1}{3}$ of $7 \frac{1}{2}$ to a simple fraction.
30. Reduce $\frac{2}{5}$ of $\frac{3}{7}$ of $8 \frac{1}{3}$ to a simple fraction.
31. Find the product of $\frac{2}{3}$ of $\frac{3}{4}$ and $\frac{1}{4}$ of $12 \frac{1}{3}$.
32. Find the product of $\frac{5}{6}$ of $\frac{7}{8}$ and $33 \frac{1}{3}$.
33. Find the product of $\frac{1}{2}$ of $66 \frac{2}{3}$ and $\frac{2}{3}$ of 100 .
34. Find the product of $\frac{2}{6}$ of 250 and $\frac{3}{7}$ of 21 . Prod. 900 .

35 . Find the product of $\frac{1}{2}$ of $\frac{1}{3}$ of 210 and $\frac{1}{4}$ of $83 \frac{3}{1}$.
Prod. $670 \frac{5}{16}$.
30. What is the product of $16 \frac{1}{2}$ and $16 \frac{1}{2}$?
37. What is the product of $30 \frac{1}{4}$ and $60 \frac{1}{2}$? Ans. 1830 $\frac{1}{5}$. 38. What is the product of $111 \frac{1}{10}$ and $20 \frac{1}{2}$? Ans. $2277 \frac{1}{30}$.
39. What is tho product of 275 and $\frac{1}{3}$ of $\frac{3}{4}$ of 36 ?
40. What is the product of 303 and $\frac{2}{7}$ of 20 ? Ans. $1731 \frac{5}{8}$.
41. What is the product of 3_{7}^{2} and $4 \frac{1}{3} \frac{1}{3}$?
42. What is the product of $\frac{2}{6}$ of $\frac{8}{5}$ and $\frac{5}{5}$ of $3 \frac{3}{7}$?

DIVISION OF COMMON FR.CTIONS.

Ex. 1. Divide $\frac{15}{16}$ by 3.

$$
\frac{15}{16} \div 3=\frac{5}{16} \begin{aligned}
& \text { § 146. Model. } \\
& \text { quotient is } \frac{5}{16} \text {. } 3 \text { in } 15,5 \text { times. The }
\end{aligned}
$$

Explanation.-Comparing $\S \S 73$ and 111, we see that the value of a fraction is divided by a whole number by dividing its numerator by the number.

Ex. 2. Divide $\frac{3}{4}$ by 5 .
$\frac{3}{4} \div 5=\frac{3}{20} \quad \S 147$. Model.-5 times 4 are 20. The quotient is 3 twentieths.
Explanation.-Comparing $\S \S 74$ and 111, we see that the value of a fraction is divided by a whole number by multiplying its denominator by the number.

Ex. 3. Divide $\frac{15}{16}$ by $\frac{3}{4}$.
§ 148. Model.- 3 in 15, 5 times: $\frac{15}{16} \div \frac{3}{4}=\frac{5}{4}=1 \frac{1}{4}$ in 46,4 times. 5 fourths is equal to $1_{\frac{1}{4}}$. The quotient is $1 \frac{1}{1}$.
Explanation.-15 sisteenths $\div 3=5$ sisteenths $(\xi 146)$: but the divisor 3 fourths is only one fourth of 3 ; hence the quotient is 4 times 5 sixteenths, that is, 5 fourths. (§140).

Again, since division is the reverse of multiplication, the process for division should be the reverse of that for multiplication : and since $\frac{3}{4} \times \frac{5}{7}=\frac{15}{2}$, it is evident that $\frac{15}{2} \div \frac{3}{4}=\frac{5}{7}$.

Ex. 4. Divide $\frac{3}{4}$ by $\frac{7}{5}$.
§ 149. Model.-8 times 3 are 24: 7 $\frac{8}{1} \div \frac{7}{8}=\frac{2 \pi}{25}=\frac{6}{7}$ times 4 are 28. 24 twenty-eighths is equal to $\frac{6}{7}$. The quotient is $\frac{\pi}{7}$.
Explanation.-3 fourths $\div 7=3$ twenty-cighths ($\$ 147$): but the divisor 7 eighths is only one eighth of 7 ; hence, by § 75 , the quotient is 8 times 3 twenty-eighths, that is, 24 twenty-eighths. (§ 139).

Again, Multiplying both terms of the dividend by 56, we have $\frac{1685}{2} \frac{5}{2} \div \frac{7}{8}=\frac{27}{2}=\frac{6}{7}$. Or, Multiplying both terms by 14 , we have $\frac{42}{56} \div \frac{7}{8}=\frac{6}{7}$, the same result as before.

Ex. 5. Divide $273 \frac{1}{3}$ by 5 .
5) $\frac{273 \frac{1}{3}}{54 \frac{2}{3}}$
§ 150. Model.-5 in 27, 5 times with 2 over, set down $5 ; 5$ in 23, 4 times with 3 over, set down $4 ; 5$ in 10 , twice, set down $\frac{2}{3}$. The cquotient is $54 \frac{2}{3}$.
Expianation.-We divide the integer as usual; and reduce the 3 remaining units to thirds, making 9 thirds, which added to the given 1 third makes 10 thirds, and this divided by 5 gives 2 thirds. If the numerator of $\frac{10}{3} \mathrm{had}$ not been divisible by 5 , we would have multiplied its denominator by the divisor, as in § 147.

Ex. 6. Divide $3 \frac{1}{3}$ by $12 \frac{2}{3}$.

$$
\begin{aligned}
& 3 \frac{1}{3} \div 12 \frac{2}{3} \\
& \frac{10}{3} \div \frac{35}{3}=\frac{30}{112}=\frac{5}{19}
\end{aligned}
$$

§ 151. Model.-Reduce the given mixed numbers to improper fractions. (§126). 3 times 10 are $30: 38$ times 3 are 114. 30 one-hundred-and-fourteenths is equal to 5 nineteenths. The quotient is 5 nineteenths.

Rules.--To divide a simple fraction by a whole number.
Divide the numerator of the fraction, or else multiply its denominator, by the whole number.

To divide a fraction by a fraction.
Divide each term of the dividend by the corresponding term of the divisor. Or, Multiply each term of the dividend by the other term of the divisor.

To divide a whole number by a fraction.
Divide the dividend by the denominator of the divisor, and multiply the quotient by the numerator.

A mixced number will mostly better be reduced to an improper fraction.

Ex. 7. Reduce $\frac{2 \frac{1}{2}}{\frac{1}{y} \text { of } \frac{3}{6}}$ to a simple fraction.
§ 152. Model,-Reduce the terms

$$
\begin{array}{ll}
2 \frac{1}{2} \div \frac{1}{2} \text { of } \frac{3}{1} & \text { to simple fractions. Divide } \frac{5}{2} \text { by } \frac{3}{5} \text {. } \\
\frac{5}{2} \div \frac{3}{8}=\frac{40}{6}=6 \frac{2}{3} & \begin{array}{l}
\text { times } 5 \text { are } 40: 3 \text { times } 2 \\
\text { are } 6 .- \\
\\
\\
\\
\text { fraction is equal to } 6 \frac{2}{3} .
\end{array}
\end{array}
$$

Rume for relucing a complex fraction to a simple one.
Divide its numerator by its denominator.
Ex. 8. Divide $\frac{3}{4}$ by 5.
Quot. $\frac{3}{20}$.
9. Divide $\frac{\pi}{7}$ by 8 .
10. Divide $\frac{15}{21}$ by 3 .

Quot. $\frac{5}{21}$:
11. Divide $\frac{18}{25}$ by 6 .

Quot. $\frac{3}{25}$.
12. Divide 40 by $\frac{4}{5}$.
13. Divide 200 by $\frac{3}{7}$.

Quot. 466_{3}^{2}.
14. Divide 175 by $\frac{7}{25}$.

Quot. 49.
15. Divide $\frac{15}{16}$ by $\frac{3}{8}$.
16. Divide $\frac{20}{3}$ by $\frac{2}{3}$.

Quot. $\frac{10}{11}$.
17. Divide $\frac{12}{25}$ by $\frac{3}{5}$.

Quot. $\frac{1}{5}$.
18. Dividend $=\frac{5}{9}$: divisor $=\frac{2}{3}$.
19. Dividend $=\frac{3}{5}$: divisor $=\frac{3}{7}$.

Quot. $2 \frac{1}{10}$.
20. Dividend $=\frac{2}{9}:$ divisor $=\frac{3}{3}$.

Quot. $\frac{30}{27}$.
21. Dividend $=\frac{1}{10}$: divisor $=\frac{1}{3}$.
22. Divisor $=\frac{3}{4}$: dividend $=\frac{5}{6}$.
23. Divisor $=\frac{5}{6}$: dividend $=\frac{3}{4}$.

Quot. $1 \frac{3}{3}$.
24. Divisor $=\frac{7}{5}$: dividend $=\frac{5}{5}$.
25. Divisor $=\frac{7}{5}$: dividend $=\frac{7}{8}$.
26. Divisor $=\frac{1}{2}$ of $\frac{3}{5}$: dividend $=\frac{4}{9}$. Quot. $1 \frac{1}{2} \frac{3}{7}$.
27. Divisor $=\frac{2}{3}$ of $\frac{4}{5}$: dividend $=\frac{5}{7}$.
28. Divisor $=\frac{5}{6}$ of $\frac{3}{5}$: dividend $=\frac{1}{2}$ of $\frac{8}{3}$.

Quot. $\frac{24}{2} 5^{5}$
29. Divisor $=\frac{3}{7}$ of $\frac{2}{9}$: dividend $=\frac{2}{5}$ of $\frac{3}{10}$. Quot: $1 \frac{1}{5} \frac{3}{5}$.
30. Divisor $=\frac{1}{2}$ of $12 \frac{1}{2}$: dividend $=\frac{2}{3}$ of $\frac{3}{11}$.
31. Dividend $=12 \frac{1}{2}:$ divisor $=4$.
32. Dividend $=207 \frac{1}{5}$: divisor $=6$.

Quot. 31 . Quot. 34_{15}^{s}.
33. Dividend $=45^{\frac{3}{4}}$: divisor $=188_{1}^{3}$.
34. Dividend $=70 \frac{1}{2}$: divisor $=68_{3}^{3}$.
35. Dividend $=27 \frac{1}{3}:$ divisor $=55 \frac{1}{7}$.
36. Dividend $=\frac{1}{3}$ of $28 \frac{1}{4}$: divisor $=\frac{2}{3}$ of $43 \frac{3}{4}$.
37. Dividend $=\frac{2}{7}$ of $\frac{3}{5}:$ divisor $=\frac{1}{3}$ of 275 .
38. Dividend $=\frac{3}{6}$ of $\frac{5}{6}$ of $\frac{7}{5}$: divisor $=\frac{2}{5}$ of $17 \frac{1}{2}$. 39. Dividend $=\frac{2}{7}$ of $27 \frac{1}{2}$: divisor $=\frac{3}{8}$ of $38 \frac{1}{3}$.
40. Reduce $\frac{2 \frac{1}{2}}{\frac{3}{4}}$ to a simple fraction.
41. Reduce $\frac{4 \frac{1}{1}}{5_{5}^{2}}$ to a simple fraction.
42. Reduee $\frac{6_{6}^{5}}{4 \frac{1}{3}}$ to a simple fraction.
43. Reduce $\frac{\frac{1}{2} \text { of } \frac{3}{5}}{7 \frac{1}{2}}$ to a simple fraction.
44. Reduce $\frac{\frac{2}{3} \text { of } 4 \frac{1}{2}}{\frac{1}{3} \text { of } 19}$ to a simple fraction.
45. Reduce $\frac{\frac{1}{2} \text { of } \frac{3}{5} \text { of } 7 \frac{1}{2} \text { to a simple fraction. }}{\frac{2}{3}}$.
46. Reduce $\frac{27}{\frac{1}{3} \text { of } 30}$ to a simple fraction.
47. Reduce $\frac{\frac{1}{3} \text { of } 20}{\frac{2}{3} \text { of } 17 \frac{1}{3}}$ to a simple fraction.
48. Reduce $\frac{\frac{2}{7} \text { of } 2 \frac{2}{2}}{346 \frac{1}{2}}$ to a simple fraction.
49. Reduce $\frac{2 \frac{1}{2}}{7 \frac{1}{2}}$ to a simple fraction.
50. Reduce $\frac{\frac{1}{9} \text { of } 27 \frac{1}{3}}{\frac{2}{7} \text { of } 72 \frac{2}{7}}$ to a simple fraction. Val. $\frac{2009}{12663}$

CANCELLATION.

§ 153. In multiplication of fractions, and in some other similar operations, the labor may bo often diminished by canceling all the factors common to the numerators and the denominators, and afterwards multiplying together the remaining factors of each. This is simply reducing the re: sult to its lowest terms in advance.

It is customary to draw a line through a number that has been canceled.

Ex. 1. Multiply $\frac{45}{49}$ by $\frac{7}{90}$.
$\frac{47}{40} \times \frac{7}{90}=\frac{1}{14} \quad$ MODEL. -45 in 45 , once ; 45 in 90 , twice: 7 in 7 , once; 7 in 49, 7 times:the numerator is 1 ; the denominator is $7 \times 2=14$. The product is $\frac{1}{14}$.
Ex. 2. Divide $\frac{1}{2}$ of $\frac{3}{7}$ of $\frac{5}{9}$ by $\frac{6}{6}$ of $\frac{10}{2} \frac{1}{1}$ of $\frac{1}{2} \frac{1}{7}$.

$$
\begin{aligned}
& \frac{1}{2} \text { of } \frac{3}{7} \text { of } \frac{5}{9} \div \frac{6}{9} \text { of } \frac{10}{2} \frac{0}{3} \text { of } \frac{1}{2} \frac{7}{7}
\end{aligned}
$$

Model.- 3 in 3 , once; 3 in 6, twice : 7 in 7, once; 7 in 21,3 times: 9 in 9 , once:

9 in 9, onee: 5 in 5 , once; 5 in 10, twice: the numerator is $3 \times 27=81$; the denominator is $2 \cdot 2 \cdot 2=8$. The quotient is $\frac{87}{8}=10 \frac{1}{8}$.

Ex. 3. Divide the product of 77 and 96 by the product of 22 and 24 .
2
7
$\frac{77}{77} \times 96$
$\frac{74}{24} \times 74$
$\underset{\sim}{2}$

Model.- 11 in 77,7 times; 11 in 22 , twice: 2 in 2, once; 2 in 96,48 times: 24 in 24, once; 24 in 48 , twice. The quotient is $7 \times 2=14$.

Ex. 4. Divide $11 \times 21 \times 26$ by $3 \times 13 \times 14$.
$11 \times 2^{7} \times 2^{7} \quad$ Model. -3 in 3 , once; 3 in 21,7 $\frac{11 \times 2 \mu \times 2 \phi}{3 \times 1.8 \times \gamma 4}$ times: 7 in 7, once; 7 in 14, twice: 13 $3 \times 1: 3 \times 14$ in 26, twice; 13 in 13 , once: 2 in 2 , ; once; 2 in 2, once. The quotient is 11 .
Ex. 5. Multiply $\frac{3}{7}$ of $\frac{1}{2} \frac{4}{7}$ by $\frac{9}{10}$ of $\frac{2 n}{38}$ of $\frac{1}{2} \frac{9}{5}$. Prod. $\frac{2}{25}$.
6. Multiply $\frac{2}{4}$ of $\frac{2}{5}$ of $\frac{10}{15}$ by $\frac{3}{5}$ of $\frac{25}{25}$.
7. Nultiply $\frac{2}{7}$ of $\frac{14}{3}$ by $\frac{3}{4}$ of $\frac{12}{15}$.
8. Divide $\frac{17}{2 \frac{7}{1}}$ of $\frac{13}{20}$ by $\frac{3 \pi}{7}$ of $\frac{28}{5}$ of $\frac{1}{12}$.

Prod. $\frac{4}{15}$.
9. Divide $\frac{27}{25}$ of $\frac{155}{15}$ by $\frac{9}{15}$ of $\frac{80}{36}$.
10. Divide $\frac{3}{4}$ of $\frac{5}{6}$ of $\frac{7}{5}$ by $\frac{3}{8}$ of $\frac{1}{2} \frac{5}{4}$. Quot. $2 \frac{1}{3}$.
11. Divide the product of 22 and 56 by the product of 44 , 2S, and 16 .

Quot. $\frac{1}{4}$.
R. Quot. $\frac{1}{10}$.
12. Divide the product of 72 and 96 by the product of 60 and 64.
13. Divide the product of 27,28 , and 29 by the product of 35,36 , and 37.
14. Divide $10 \times 11 \times 12$ by $22 \times 24 \times 30$.

Quot. $\frac{87}{185}$.
Quot. $\frac{1}{12}$.
15. Divide $25 \times 27 \times 32 \times 36$ by $15 \times 18 \times 24 \times 28$.

PROMISCUOUS PRORLEMS.

1. What is the sum of $275,386,497$, and 608 ?
2. What is the difference between 275386 and 497608 ?

Ans. 222222.
3. What is the product of 275386497 and 608 ?
4. What is the quotient of 275386497 by 608 ? 39,54 , and 202.

Sum, 3
6. Subtract the sum of 25 and 19 from their product.
7. Multiply the difference of 25 and 19 by tineir sum.

Prod. 264.
8. Divide the product of 36 and 45 by their difference.

Quot. 180.
9. Resolve 7050 into its prime factors.
10. What is the greatest common measure of 25,250 , and 375 ?

Ans. 25.
11. What is the least common multiple of $5, C, 10$, and 12 ?

Ans. 60.
12. Reduce $\frac{999}{1236}$ to its lowest terms.
13. In $\frac{565}{55}$ how many units?

Ans. $10 \frac{8}{1 \frac{8}{1}}$.
14. In 19 units how many ninctecuths?

Alls. $\frac{361}{18}$.
15. In $15 \frac{3}{5}$ how many fifths?
16. In $\frac{5}{9}$ how many forty-fifths? Aus. $\frac{23}{15}$.
17. In $\frac{28}{100}$ how many twenty-fifths? Ans. $\frac{7}{25}$.
18. Reduce $\frac{3}{4}, \frac{5}{6}$, and $\frac{7}{8}$ to a common donominator.
19. Reduce $\frac{3}{4}, \frac{5}{6}$, and $\frac{7}{6}$ to their least common denominator. Val. $\frac{27}{36}, \frac{30}{36}, \frac{25}{86}$. Sum, 1.
20. $\operatorname{Add} \frac{3}{1 \cdot x}, \frac{1}{25}$, and $\frac{3}{4}$.
21. What is the sum of $\frac{2}{2}$ of $\frac{4}{5}$ and $\frac{4}{9}$ of $\frac{1}{2}$?
22. What is the sum of $\frac{2}{3}$ of $10 \frac{1}{3}$ and $\frac{2 \frac{1}{2}}{\frac{3}{4} \text { of } 17}$? Ans. $7_{\frac{7}{1} \frac{3}{3 \pi}}$.
23. What is the difference between $19 \frac{7}{3}$ and $26 \frac{1}{2}$?

Ans. $6 \frac{13}{18}$.
24. What is the difference between $\frac{1}{3}$ of 27 and $\frac{2}{9}$ of 24 ?
25. What is the product of $27 \frac{1}{2}$, and $\frac{1}{3}$ of 77 ? Ans. $705 \frac{5}{6}$.
26. What is the product of $\frac{\frac{1}{2} \text { of } 5 \frac{1}{2}}{22^{\frac{1}{2}}}$ and $\frac{45}{\frac{1}{2} \text { of } 11}$? Ans. 1 .
27. What is the quotient of $\frac{2}{9}$ of 47 by $25 \frac{1}{6}$?
28. What is the product of $\frac{2}{3}$ of 4.7 and $\frac{1}{6}$ of 25 ?

Ans. $4: 8 \frac{1}{2} \frac{1}{7}$.
29. What is the quotiont of $\frac{\frac{1}{2} \text { of } 27 \frac{1}{4}}{25 \frac{1}{1}}$ by $\frac{\frac{3}{4} \text { of } 19}{83^{\frac{3}{2}}}$? Aus. $\left.3 \frac{183}{11} 162\right\}$
30. Add the product of $\frac{1}{4}$ of 27 and $\frac{3}{4}$ of 5 to their difference. 31. Subtract the quotient of $\frac{2}{2}$ of 45 by $\frac{7}{6}$ of 24 from their sum.

Rem. 191.
32. Multiply the sum of $\frac{\frac{1}{2} \text { of } \frac{5}{8}}{\frac{2}{3} \text { of } \frac{5}{12}}$ and $\frac{5}{6}$ of $73 \frac{1}{3}$ by their difference.

Prod. 262607 ${ }^{6016}$.
33. Divide the product of $25 \frac{1}{5}$ and $17 \frac{1}{7}$ by their sum.
34. What number is that to which. if $3 \frac{2}{3}, 5 \frac{3}{5}, 6 \frac{5}{6}$, and $10 \frac{9}{1 \text { (1) }}$ be added, the sum will be $30 \frac{1}{3}$? Ans. $3 \frac{1}{3}$.
35. What number is that rom which if $3 \frac{3}{3}, 5 \frac{5}{5}, 6 \frac{5}{5}$, and $10 \frac{9}{10}$, be subtracted, the remainder will be $30 \frac{1}{3}$? Ans. $57 \frac{1}{3}$. 36. What number is that by which if the sum of $3 \frac{2}{8}, 5 \frac{3}{5}$, $6 \frac{5}{6}$, and $10_{10}^{\frac{9}{0}}$, be multiplied, the product will be $30 \frac{1}{3}$? 37. What number is that by which if the sum of $3 \frac{3}{3}, 5 \frac{3}{5}$, $6 \frac{5}{6}$, and $10 \frac{9}{10}$, be divided, the quotient will be $30 \frac{1}{3}$?

Ans. $\frac{51}{31}$.
38. What is the sum of $\frac{3}{7}, \frac{3}{9}, 13$, and $18 \frac{3}{15}$?
39. What is the differonec between $\frac{3}{5}$ and $\frac{9}{16}$? Ans. $\frac{3}{50}$.
40. What is the product of $5 \frac{1}{4}$ and $\frac{1}{6}$?
41. What is the quotient of $\frac{27}{37} \frac{5}{5} 5$ by 19 ?
42. $3+5-7 \div 5+16 \div 7-15 \div 6=$ what? Ans. $6 \frac{27}{70}$.
43. $(3+5-7) \div 5+16 \div 7-15 \div 6=$ what?
44. $3+(5+7) \div 5+16 \div 7-15 \div 6=$ what ?

Ans. $5 \frac{1}{7} \frac{3}{6}$.
45. $3+5-7 \div 5+16+7-15 \div 6=$ what?

Ans. $27 \frac{1}{1} \frac{1}{0}$.
46. $(3+5-7) \div 5+(16+15-7) \div 6=$ what?
47. $3+(5+7) \div 5+16+(15-7) \div 6=$ what?

Ans. $22 \frac{11}{11^{\circ}}$.
48. $3+(7-5) \div(5+16)+(15-7) \div 6=$ what ?

Ans. 4_{7}^{3}.
49. $3+7-5 \div(5+16+15)-7 \div 6=$ what?

DECIMAL FRACTIONS.

§ 154. A decimal fraction is one whose denominator is some power of ten and is not expressed in writing.
§ 155. In the Arabic or decimal system of notation (§10), we observed that, in passing from the units' place to the left, a unit of any order is ten times a unit of the preceding order; or that, in passing from left to right, a unit of any order is one tenth of a unit of the preceding order. If this law be extended to the right of units, the next order will be tenths, the next hundredths, the next thousandths, dec., as in the following

> TARKTE.

As 100 is $\frac{1}{10}$ of 1000,10 is $\frac{1}{10}$ of 100 , and 1 is $\frac{1}{10}$ of 10 , so one tenth is $\frac{1}{10}$ of 1 , one hundreath is $\frac{1}{10}$ of 1 tenth, one thousandth is $\frac{1}{10}$ of one hundredth, \&c.
§156. To write any number of tenths, then, we simply put the proper figure one place to the right of units; for hundredths, we put the figure two places to the right, \&c. To determine the position of units and the relative positions of the fractional orders, we place a period, called the 94
units' point, between units and tenths; or to the left of tenths, if the expression is entirely fractional. Thus, 2.3, two and three tenths; 3.02, three and tro hundredths; 5.32 , five and three tenths and two hundredths; .005, five thousandths; .0006, six ten-thousandths; .00004, four hundred-thousandths; .000008 , eight millionths.

In integral numbers, this point, being unnecessary, is never written: but in fractional or mixed expressions, it must never be omitted.
§157. It will be observed that the number of places necupied by the numerator of a decimal fraction is equal to the number of naughts in its denominator. If the ordinary expression of the numerator does not require so many places, each place intervening betrreen the units' point and the left hand figure of the numerator must be filled with a naught. Thus, .002, 2 thousandths; .023, 23 thousandths; .0203, 203 ten-thousandths; .0023, 23 ten-thousandths; .0004, 4 ten-thousandths ; .002034, 2034 millionths.
§ 158. A decimal fraction is recul, like a common fraction, by pronouneing after the numerator the ordinal of the denominator. Sometimes, in reading a mixed number, to prevent ambiguity, it is necessary to pronounce the word "units" after the integer. Thus, three hundred and fifteen thousandths is written .315 ; but 300.015 is three hundred units and fifteen thousandths: so, 7000.0275 is read seven thousand units and two hundred and seventy-five tenthousandths.

Read the following decimal fractions:-. $1, .3, .5, .7, .8$; $.01, .05, .09, .11, .25, .34, .47, .51, .63, .75, .87, .99 ; .001$, $.005, .015, .025, .075, .125, .219, .375, .487, .567, .605, .777$, $.808, .999 ; .0001, .0012, .0125, .1275, .3525, .6225, .7203$,
.800 T, $.9883, .9999 ; .00001, .60014, .00225, .03275, .33125$, $.42075, .53003, .70007, .87078, .03999 ; .000001, .000017$, $.000175, .003175, .063175, .475327, .796305, .634008$, $.320075, .200017, .200325 ; .0000001, .0000025, .0000275$, $.0020705, .0357675, .7500786 ; .00027625, .02 \% 00625$, .23450275, . $00073513, .23570025, .125346793, .000000125$, $.0007600025, .27340709025, .70030005345, .000257025702$.

Read the fullowing mixed numbers:- $3.3,70.5,35.7$, $2.02,3.25,75.75,24.05,7.07,30.003,400.025,25.125$, $375.375,1.001,2.325,2.0275,300.0025,17.0017,1.0005$, $2000.0002,21.2125,325.03725,3180.20025,1000.02207$, $7025.00025,6278.374375,2000.0002325,3375.00000765$, $27.0000027,3200.000000075,2500.0000036975$.

Write the following in figures:
110. Seventy-four hundredths.
111. Four hundred and forty-eight thousandths.
112. Five hundred units and three hundredths.
113. Seventy-five thousandths.
114. Five hundred and three thousandths.
115. Five hundred units and three thousandths.
116. Three hundred and twenty-seven ten-thousandths.
117. Three hundred units and twenty-seven ten-thousandths.
118. Seventeen and seventeen hundred-thousandths.
119. One thousand units and two thousand two hundred and seven hundred-thousandths.
120. Three thousand two hundred units and seventy-five millionths.
121. Six hundred and three ten-thousandths.
122. Two thousand four hundred and sisty-one and three hundred and nineteen millionths.

ADDITION OF DECIMAL FRACTIONS.

Ex. 1. Add .3, .23, .175, and . 025.
. 3
. 23
.175
.025 .73
Explanation.-Beginning at the right, we find the sum of the first column to be 10 thousandths, equal to 1 hundredth exactly. We do not set down the naught here, because a naught at the right of a decimal fraction does not assist in determining the orders of the other figures. The 1 hundredth is added in with the column of hundredths, which amounts to 13 hundredths, equal to 1 tenth and 3 hundredths. Setting 3 under the column of hundredths, we add the 1 tenth in with the column of tenths. We then place the units' point at the left of the tenths. ($\S 156$).

Ex. 2. Add .3, 3.5, 3.15, 35.25 , and 171.275.
§ 160. Model- - $5 ; 7$ and 5 are 12, and

.3
3.5
3.15
35.25
171.275
213.475

Explanation.-The sum of the column of tenths being 14 , that is, 1 unit and 4 tenths, we set 4 under the column of tenths, and add 1 to the column of units. We place the units' point between the units and the tenths. (§ 156).

Rule.-Arrange the numbers with units of the sanie order in the same column; and add as in whole numbers. (§ 22).

Place the units' point on the left of the tenths figure in the sum.

Proor.-The same as in whole numbers. (§ 22).
Ex. 3. Add 1.2, 3.56, 45.67, and 56.789.
4. Add $1.3,5.79,24.68$, and 90.275 .
5. Add $27.72,365.9,125.008$, and 236.115 .

Sum, 122.045.
Sum, 754.743.
6. Add 135.709, 246.008, 145.008, and 236.709.
7. Add 1.35795, 135.795, and 13579.5.
8. Find the sum of $2.465,25.009,160.206$, and 146.27 .

Sum, 333.950.
9. Find the sum of $100.0001,-1.4012,412.5124$, and 421.5214 .
10. Find the sum of $1234.56,78.9012,3456.789,10.234567$, and 890.13575 .

Sum, 5670.620517.
11. Find the sum of $907.0503,890.7054,785.4321$, and 25.457.

Sum, 2608.6448.
12. Find the sum of $12.012575,120.125725,1201.257725$, and . 276825.
18. Find the sum of $.760027, .000176, .012012$, and .027915.

Sum, . 800160.
14. What is the sum of $.230495, .341507, .452618$, and .563729 ? Ans. 1.588349.
15. What is the sum of $2.30495,34.1507,452.618$, and 5637.029?
16. What is the sum of $12.000012,250.0025,75.075$, and 175.0175 ? Ans. 512.095012.
17. $175+6.115+123.1341+172.21275+5637.175 \stackrel{\text { e what } ? ~}{\text { ? }}$

Ans. 6113.63685.
18. $52.8672+549.72+927.365+57.10715+13.575=$ what $?$ 19. $79.105+131.187+19.4201+2643.13+34.8564=$ what? Ans. 2907.6785.
20. $3844.04+.444584+6.14614+6847.34+77.9899=$ what?

Ans. 10775.960924.

SUBTRACLION OF DECLMAL FRACTIONS.

Ex. 1. From 275.075 take 87.1275.
275.075
87.1275 $\overline{187.9475}$
§ 161. Model.-5 from 10 leares 5; \& from 15 leaves $7 ; 3$ from 7 leaves $4 ; 1$ from 10 leaves $9 ; 8$ from 15 leaves $7 ; 2$ from 17 leaves 8 ; 1 from 2 leaves 1 . Point before 9 . The remainder is 187.9475 .

Explanation.-After placing the subtrahend under the minuend with units of the same order in the same column, we find 5 ten-thousandths in the subtrabend aud no tenthousandths in the minuend. Adding 1 thousandth, that is, 10 ten-thousandths, to the minuend, we subtract from this the 5 ten-thousandths of the subtrahend. Then, because the minuend is increased 10 ten-thousandths or 1 thousandth, the subtrahend must be increased the same amount. ($\$ 28$). The same kind of reasoning will explain the rest of the operation. We place the units' point between the units and the tenths. (\$156).

Rule.-Place the subtrahend under the minuend, with units of the same order in the same column, and sultract as in whole numbers. (§30).

Place the units' point on the left of the tenths figure in the remainder. (\$156).

Proof.-The same as in whole numbers. (§30).

Ex. 2. From 8.96 take 3.07 .
Rem. 5.89.
3. From 2.719 take 1.827.
4. From 97.8637 take 9.7863 .
5. Take 07.8902 from 896.454 .
6. Take 17.24937 from 1963.869 .
7. Take 234.68579 from 6005.004 .
8. Take 98.79789 from 99.000099 .

Rem. 88.0774. Rem. 828.5638.
9. Minuend is 1234.567 ; Subtrahend is .76542.
10. Minuend is 29017.05 ; Subtrahend is 10.8405.

Rem. 29006.2095.
11. Minuend is 2098.76 ; Subtrahend is 454.698.

Rem. 1644.062.
12. Minuend is 1201.257725 ; Subtrahend is 120.125575.
13. Subtrahend is .012095 ; Minuend is .027945 .

Rem. . 01585.
14. Subtrahend is 2.30495 ; Minuend is 34.1507 .

Rem. 31.84575.
15. Subtrahend is 12.000012 ; Minuend is 250.0025 .
16. Subtrabend is 75.075 ; Minuend is 175.0175 .

Rem. 99.9425.
17. $5637.175-172.21275=$ what? Ans. 5464.96225.
18. $927.305-57.190715=$ what ?
19. What is the difference between one millionth, and ninety-nine thousandths?

Ans. 098999.
20. What is the difference between thirty-seven billionths, and one hundred and eleven thousandths?

Ans. . 110939963.
21. What is the difference between six billionths, and nine hundred and ninety-nine thousandths?
22. What is the difference between three millionths, and three hundred and six thousandths? Ans. . 305997.

IULTIPLICATION OF DECIMAL FRACTIONS.
Ex. 1. Multiply 5.3 by 6.25 .
6.25

1875 ; 3 times 2 are 6 , and 1 are $7 ; 3$ times 6

3125
$\longdiv { 3 3 . 1 2 5 }$ are 18 :- 5 times 5 are 25 , set down 5 under $7 ; 5$ times 2 are 10 , and 2 are 12, set down 2; 5 times 6 are 30 , and 1 are 31:-add the partial products: $5 ; 5$ and 7 are 12 , set down 2; 1 and 2 are 3 , and 8 are 11 , set down $1 ; 1$ and 1 are 2, and 1 are $3 ; 3$. Point before 1 . The product is 33.125 .

Explanation.-Reducing both factors to improper fractions, and multiplying as in § 142 , we have $\frac{625}{100} \times \frac{53}{10}=\frac{33125}{1000}$; and this product reduced to a mixed number becomes 33.125 , as in the model. If any decimal mixed number be reduced to an improper fraction, the numerator will consist of the same figures as the given mixed number. Hence we multiply as in whole numbers. The location of the units' point in the product is found by observing that the number of paughts in the denominator of either factor is the same as the number of figures in the numerator, and that the product of any two powers of ten is obtained by annexing to 1 as many naughts as there are in both factors together. There are, therefore, as many fractional figures in the product as in both factors together.

Ex. 2. Multiply 15 by .3.
$.15 \S 163$. Model.-3 times 5 are 15, set down 5 ; .3 times 1 are 3 , and 1 are 4. Prefix one naught.
$\overline{045}$ Point before 0 . The product is .045 .
Explanition.-When the product does not contain enough figures to express its proper denomination, we prefix one or more naughts to supply this deficiency.

Rule.-Multiply as in whote numbers, and point off as many fractional figures in the product as there are in both the factors, prefixing naughts when necessary to make up the number.

Proof.-The same as in whole numbers. (§ 40).
Ex. 3. Multiply 12.42 by 3.2 .
4. Multiply 25.25 by 2.5 .

Prod. 63.125.
5. Multiply .25 by .25 .
6. Multiply 5.5 by 5.5 .
7. Multiply 211.79 by 2.7 .

Prod. 571.833.
8. Multiply 97.825 by . 34 . Prod. 33.2605.
9. Multiply 275.005 by 5.005 ,
10. Multiply 869.06 by .045 .
11. Multiply 27.9362 by .0052 .

Prod. 39.1077.
12. $192.837 \times 6.7=$ what ?
13. $293.705 \times .075=$ what?
14. $\quad 3.0 .77 \times 2.87=$ what ?
15. $2.975 \times .375=$ what ?
16. $4.027 \times 402.7=$ what?

Ans. 1621.6729.
17. What is the product of 247.742 and 10.035 ?
18. What is the product of 307.0005 and .000375 ?
19. What is the product of 175.025 and 25.0175 ?

Ans. $4378.6879375 .{ }^{\circ}$
20. What is the product of 1200.375 and 162.625 ?

division of decimal fractions.

Ex. 1. Divide 2.25 by .3.
$\frac{.3) 2.25}{7.5}$ § 164. Model.- 3 in 22, 7 times, with 1
7.5 over, set down 7 ; 3 in 15,5 times. Point
before 5. The quotient is 7.5.

Explanation.-Since the divisor and the quotient are factors of the dividend, there must be as many fractional figures in the dividend as there are in both the factors. (§ 162). Hence, to find the number of fractional figures in the quotient, we subtract the number in the divisor from the number in the dividend.

Ex. 2. Divide 26.4 by 8.25 .
$\frac{26.40 \mid}{2475} \frac{8.25^{\circ}}{3.2}$
$\frac{1650}{0}$
$\frac{1650}{0}$
§ 165. Model.-Annex one naught to the dividend: 8 in 26,3 times; multiply the divisor by $3 ; 15,7,24$; subtract the product from the dividend; $5,6,1$; annex $0: 8$ in 16 , twice; multiply the divisor by $2 ; 10,5,16$; subtract the product from the previous remainder; 0 . Point before 2. The quotient is 3.2 .

Explanation.-As the number of fractional figures in the divisor exceeds the number in the dividend, we annex a naught to the dividend to make them equal. We afterwards find it necessary to annex an other naught to complete the division. This makes 3 fractional figures in the dividend; and, as there are 2 in the divisor, there must be one in the quotient.

Ex. 3. Divide 4 by 15.
$\frac{4.00 \mid}{30} \frac{15}{266}+$

100
$\frac{90}{100}$
$\frac{90}{10}$

§ 166. Model.-Annex 2 naughts to the dividend; 15 in 40 , twice ; multiply the divisor by $2 ; 10,3$; subtract the product from the dividend; $0,0,1 ; 15$ in 100, 6 times; multiply the divisor by $6 ; 30,9$; subtract the product from the previous remainder; 0,1 ; annex 1: 15 in 100, 6 times ; de. Point before 2.The quotient is $.266+$.

Explanation.--Since the dividend can be extended only by annexing naughts, it is evident that, if the same remainder should occur twice in succession, the same quotient figure will occur and will give rise to the same remainder again ; so that the same circuit of operations will occur perpetually. In such cases the quotient can not be obtained exactly, but we can always make an approximation sufficiently near for any practical purpose.

Rule.-Divide as in m?n'e numbers, and point off' as many fractional figures in wuotient as the number in the dividend exceeds the number in the divisor, prefixtry naughts when necessary to make up the number.

If the number of fractional figures in the divisor exceeds the number in the dividend, annex to the dividend as many nunghts as may be necessary to make the number in the dividend at least equal to the number in the divisor.

Note. When the division can not be exactly performed, we put the sign + at the right of the quotient.

Proor.-The same as in whole numbers. (§53).
Ex. 4. Divide 1728 by .12.
5. Divide 1728 by 1.2 .
6. Divide 172.8 by 12 .
7. Divide 17.28 by 12.
8. Divide 13 by 245 .
9. Divide 2.7 by 900 .
10. Divide 189.75 by .759 .

Quot. 250.
11. Divide 84.095 by .097 .

Quot. 867.
12. Dividend is 4435.2 , divisor is .84 .
13. Dividend is .8928 , divisor is 1.24 .

Quot. .72.
14. Dividend is 7049.754, divisor is 8.7034. Quot. 810.
15. Dividend is 2.4416, divisor is 43.6 .
16. Divisor is 47 , dividend is 22.09 .
17. Divisor is 18.07 , dividend is .12649 .
18. Divisor is 180.7 , dividend is .012649 .
19. Divisor is .125 , dividend is 2.25 .

Quot. . 47.
Quot. . 007.
Quot. 18. 20. Divisor is 18 , dividend is 19 .

CONTRACTION IN MULTIPLICATION.

Rx. 1. Multiply 23.25 by 10 .
§ 167. Model.-Rmore the $23.25 \times 10=232.5$ point one place to the right. The product is 232.5 .
Eximanation.-T'o multiply by any power of ten, we simply remove the units' point as many places to the right as there are naughts in the multiplier, annexing naughts when necessary. See § 155.

Ex. 2. Mulkiply 232.5 by $100 . \quad$ Prod. 23250.
3. Multiply 10.25 by 1000 .
4. Multiply 246.25 by 100 .
5. Multiply 875.275 by 10 .
6. Multiply 96.0025 by 10000 .
7. Multiply .0025 by 1000 .
8. Multiply .0007 by 100000 .

Prod. 24625.
Prod. 8752.75.
9. Multiply .05 by 1000000 .
10. Multiply .0065 by 10000 .

Prod. 2.5.
Prod. 70.

Prod. 65.

CONTRAOTIOX IN DIVISION.

Ex. 1. Divide 23.25 by 10 .
§168. Model.-Remove the
$23.25 \div 10=2.325$ point one place to the left. The quotient is 2.325 .
105

Explanation.- To divide by any power of ten, we sim. ply remove the units' point as many places to the left as there are naughts in the divisor, prefixing naughts when necessary. See §155.

Ex. 2. Divide 2.325 by 100 .
Quot. . 02325.
3. Divide 10.25 by 1000 .
4. Divide 246.25 by 100 .
5. Divide 875.275 by 10 .
6. Divide 96.0025 by 10000 .
7. Divide 2500 by 1000 .
8. Divide 7000 by 100000 .

Quot. 2.4625.
Quot. 87.5275.
9. Divide .05 by 1000000 . 10. Divide .0065 by 10000 .

Quot. 2.5.
Quot. . 07.
Quot. . 00000065 .

RELATIONS OF COMMON AND DECIMAL FRACTIONS.

§169. Every decimal fraction may be expressed in the form of a common fraction by simply removing the units' point, writing the denominator under the numerator, and reducing, if necessary, to its lowest terms. Thus, $.5=\frac{5}{10}=\frac{1}{2}$. Also, $.25=\frac{25}{100}=\frac{1}{4}$.

Ex. 1. Reduce .375 to a common fraction. Val. $\frac{3}{5}$.
2. Reduce . 625 to a common fraction. Val.
3. Reduce .1875 to a common fraction.
4. Reduce . 3125 to a common fraction.

Val. $\frac{5}{16}$.
5. Reduce . 05 to a common fraction.

Val. $\frac{1}{02}$.
6. Reduce .0015 to a common fraction.
7. Reduce 00025 to a common fraction:

Val. $\frac{1}{\square 000}$.
106
8. Reduce .004375 to a common fraction. Val. $\frac{7}{1600}$.
9. Reduce .08125 to a common fraction. 10. Reduce .0175 to a common fraction. Val. $\frac{7}{400}$.
§170. If the denominator of a common fraction has no other prime factor than 2 or 5 , it may, be reduced to a decimal form by multiplying both its terms by such a number as will make the denominator a power of ten, renoving the denominator, and putting the units' point at its proper place in the numerator. Thus, multiplying both terms of $\frac{1}{4}$ by 25, we have $\frac{25}{100}$, which may be written, .25 .

Ex. 11. Reduce $\frac{2}{5}$ to a decimal fraction. Val. . 4. 12. Reduce $\frac{3}{4}$ to a decimal fraction.
13. Reduce $\frac{5}{8}$ to a decimal fraction. Val. .625.
14. Reduce $\frac{7}{20}$ to a decimal fraction. Val. . 35. 15. Reduce $\frac{14}{2}$ to a decimal fraction. 16. Reduce $\frac{19}{10}$ to a decimal fraction. Val. . 475. 17. Reduce $\frac{3}{80}$ to a decimal fraction. Val. . 0375. 18. Reduce $\frac{27}{50}$ to a decimal fraction. 19. Reduce $\frac{9}{16}$ to a decimal fraction. Val. . 5625. 20. Reduce $\frac{3}{32}$ to a decimal fraction. Val. 09375.
§ 171. If the denominator of a common fraction has neither 2 nor $\overline{5}$ as a prime factor, it cannot be reduced to a decimal form. We can make an approximation, however, sufficiently near for all practical purposes, by the following plan. Taking the example of last section, if we multiply both terms of $\frac{1}{4}$ by 100 , we have $\frac{100}{100}$, and then dividing both terms by 4 , we have $\frac{25}{100}$, that is, 25 . In other words, A common fraction is recluced to a decimal form by dividing its numerator by its denominator. (§ 166). This is the general rule, and is but a repetition of what we learned in §113. But let us attempt to apply this rule to the frac-
tion $\frac{2}{3}$. Dividing, we have 3 in 20, 6 times, with 2 over; again, annexing an other naught, we have : in 20, 6 times, with 2 over; and so on, evidently forever. Again, reduce $\frac{2}{17}$ to a decimal form. Dividing, we have, 11 jn 20 , once, with 9 over; 11 in 90,8 times, with 2
> 11)2.0000 $.1818+$ over; 11 in 20, once, with 9 over, again; and 11 in 90,8 times, with 2 over, again; and so, evidently, these two quotient figures might be repeated to the ond of time.
§ 172. Such expressions as those are called pure repetends, and they are denoted by placing a dot over the repeating figure when there is but one, or by placing dots over the first and last repeating figures when there are several.

Thus, $\frac{2}{3}=. \dot{6} ; \frac{2}{11}=. \dot{18} ; \frac{275}{99}=.27 \dot{5}$.
Ex. 21. Reduce $\frac{1}{3}$ to a repetend.
22. Reduce $\frac{2}{7}$ to a repetend.

Val. . 285714.
23. Reduce $\frac{3}{11}$ to a repetend.

Val. .2ं7.
24. Reduce $\frac{4}{13}$ to a repetend.
25. Reduce $\frac{5}{17}$ to a repetend. Val. $\dot{2} 941176470588235$.
§173. If the denominator of a common fraction has cither 2 or 5 or both, and other prime factors, the quotient of its numerator by its denominator will be partly a decimal fraction and partly a repetend.

Thus, $\frac{5}{6}=.8333+$, or .83 . Also, $\frac{5}{12}=.41666+$, or .416 . Also, $\frac{-5}{24}=.2083^{\circ}$; and $\frac{5}{48}=.10416$.

These expressions are called mixed repetends.
Ex. 26. Reduce $\frac{7}{1 \pm}$ to a mixed repetend. Val. . 583. 27. Reduce $\frac{1}{6}$ to a mixed repetend.
28. Reduce $\frac{3}{14}$ to a mixed repetend. Val. .2142857.
29. Reduce $\frac{7}{15}$ to a mixed repetend. Val. . 46.
30. Reduce $\frac{11}{18}$ to a mixed repetend.
§174. To reduce a pure repetent to a common fraction, we remove the units' point, write for clenominutor as many nines as there are repeating figures, and ratuce the result to its lowest terms.

$$
\begin{aligned}
& \text { For, } \frac{1}{8}=.1, \frac{2}{5}=.2, \frac{3}{6} \text { or } \frac{1}{3}=.3, \frac{7}{9}=. \dot{7}, \frac{5}{8}=. \\
& \text { Again, } \frac{1}{99}=.01, \frac{5}{99}=.05, \frac{10}{19}=.10, \frac{25}{95}=.25, \frac{50}{99}=.50 \text { : } \\
& \text { Also, } \frac{9^{2} 9}{99}=.001, \frac{10}{990}=.010, \frac{75}{405}=.075, \frac{275}{499}=.275 \text {, } \text {, }
\end{aligned}
$$

§ 175. From these facts we learn that a pure repetend is read by pronouncing after its numerator the ordinal of the number formed of as many nines as there are figures in the repetend. Thus, $.7=\frac{7}{9}$, $.87=\frac{57}{9}$, de.

Ex. 31. Reduce .27 to a common fraction. 82. Reduce . $\dot{7} \dot{2}$ to a common fraction.
33. Reduce . 36 to a common fraction.
34. Reduce 135 to a common fraction. 35. Reduce . 279 to a common fraction. 36. Reduce . 792 to a common fraction. 37. Reduce . 801 to a common fraction. 38. Reduce . 900 i to a common fraction.

$$
\frac{5}{37} .
$$ $\frac{31}{112}$. $\frac{89}{111}$. 9001 . 39. Reduce . 8877 to a common fraction. 40. Reduce $.976 \dot{5}$ to a common fraction. $\frac{105 \pi}{1111}$

§176. A mixed repetend is a complex fraction, having for its denominator some power of ten, and for its numerator a mixed number: the fractional part of the mixed number having for its denominator a ssries of nines.

Thus, .83 is $\frac{8 \frac{3}{9}}{10} ; .416$ is $\frac{41 \frac{6}{9}}{100} ; .2083$ is $\frac{208 \frac{3}{9}}{1000}$.
To reduce a mixed repetend to a simple common fraction, we must first reduce the numerator to an improper fraction. This makes it necessary to multiply the integral part by 9 or by a series of nines; and this multiplication can be most
readily accomplished by $\S 60$. Take the sccond of the above examples, for instance. Annexing one naught to 41, and subtracting 41 from

410	369	$\frac{375}{41}$
$\frac{6}{369}$	$\frac{6}{\frac{375}{9}}$	

This result could be more easily obtained by subtracting the decimal part from the whole repetend for the numerator, and by taking for the denominator as many nines as there are repeating figures, followed by as many naughts as there are decimal figures.

Thus, $.83=\frac{75}{9}=\frac{5}{6} ; .2083=(2083-208)=\frac{1875}{3000}=\frac{5}{24}$.
Ex. 41. Reduce .123 to a common fraction fraction.
2. Reduce .5075 to a common raction.
43. Reduce .7797 to a common fraction.
44. Reduce .176 to a common fraction.
45. Reduce .4554 to a common fraction.

PROMISCUOUS PROBLEMS.

1. What is the sum of 247 millionths, 26 ten-thousandths, 163 hundred-thousandths, 3 thousandths, and 19 hundredths?

Ans. 197477.
2. What is the difference between 19 units and 19 millionths?

Ans. 18.999981.
3. What is the product of 273 thousandths and 117 tenthoussudths?
4. What is the quotient of 17 ten-thousandths by 16 hundredths?

Ans. 10625.
5. What is the sum of the product of 5 tenths and 5 hundredths, and the quotient of 5 tenths by 5 hundredths?

Ans. 10.025.
6. What is the difference between the sum of 6 hundredths and 6 units, and the product of 6 hundredths and 6 units?
7. What is the product of the sum of 12 thousandths and 34 hundredths, and their difference? Ans. . 115456.
8. What is the quotient of the product of 506 thousandths and 78 hundredtes by their sum? Ans. $306905+$.
9. 1 dd 27 hundredths, 538 thousandths, 64 ten-thousandths, and 9768 millionthe.
10. Subtract the product of 39 hundredths and $5 \frac{1}{4}$ thousandths from their sum.

Rem. . 42294.
11. Multiply the quotient of 36 hundredths by 45 tenthousandths by their difference. Prod. 28.44.
12. Divide the sum of 497 thousandths and 608 ten-thousandihs by their difference.
13. What number is that to which if 13 hundredths, 13 thousandths, 13 ten-thousandths, and 13 millionths be added, the sum will be 13 units? Ans. 12.855687.
14. What number is that from which if 11 hundredths, 12 thousandths, 13 ten-thousandths, and 14 hundred-thousandths be subtracted, the remainder will be 15 millionths?

Ans. 123455.
15. What number is that by which if 70 thousandths be multiplied, the product will be 54115 billionths?
16. What number is that by which if 6375 millionths be divided, the quotient will be 5 thousandths?

Ans. 1.275.
17. The subtrahend is 25 ten thousandths, the minuend is 2 tenths; what is the remainder? Ans. 1975.
18. The subtrahend is 25 thousandtlus, the remainder is 2 hundredths; what is the minuend?
19. The remainder is 13 millionths, the minuend is 13 thousandths; what is the subtrahend? Ans. . 012987.
20. The multiplicand is 75 thousandths, the multiplier is 25 ten-thousandths; what is the product?

Ans. . 0001875.
21. The multiplier is 18 thousandths, the product is 369 millionths; what is the multiplicand?
22. The product is 1482 ten-millionths, the multiplicand is 95 hundredths; what is the multiplier?

Ans. . 000156.
23. The divisor is 19 hưdredths, the quotient is 21 thousandths; what is the dividend? Ans. 00399.
24. The dividend is 65 and 12 hundredths, the divisor is 17 and 6 tenths; what is the quotient?
25. The quotient is 14 hundredths, the dividend is 322 thousandths; what is the divisor? Ans. 2.3.
26. What are the prime factors of 3500 ?

Ans. 2, 2, 5, 5, 5, and 7.
27. What are the prime factors of 756 ?
28. What different prime numbers will exactly divide 700 ? Ans. 2, 5, and 7.
29. What different prime numbers will exactly divide 850 ? Ans. 2, 5, and 17.
30. What is the least common multiple of $7,8,10$, and 14 ?
31. What is the smallest number that may be exactly divided by either $9,10,12$, or 15 ?

Ans. 180.
32. What is the smallest number that may be exactly divided by either $24,36,48$, or 72 ?

Ans. 144.
33. What is the greatest common measure of 45,54 , and 108 ?
34. What is the largest number that will exactly divide cither 75,100 , or 150 ? Ans. 25.
35. What is the largest number that will exactly divide either 96,192 , or 240 ?

Ans. 48.
36. What is the sum of $\frac{7}{2}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}$, and $\frac{9}{10}$?
37. What is the difference between $\frac{3}{7}$ and $\frac{3}{5_{0}}$? Ans. $\frac{3}{56}$.
38. What is the product of $\frac{7}{9}$ and $\frac{10}{11}$?

Ans. $\frac{7 n}{99}$.
39. What is the quotient of $\frac{7}{10}$ divided by $\frac{9}{14}$?
40. What is the value of $\frac{7 \frac{1}{2}}{15^{\frac{1}{4}}}$?

Ans. $\frac{30}{61}$.
41. What is the value of $\frac{2}{5}$ of $\frac{3}{7}$ of $7 \frac{1}{4}$?

Ans. $1 \frac{17}{70}$.
42. What is the value of $.25+.025+.715+.225$?
43. What is the value of $.0237-.002375$? Ans. .021325 .
44. What is the value of $.027 \times .0027$? Ans. .0000729 .
45. What is the value of $.0144 \div 3.6$?
46. What is the sum of $\frac{3}{10}, \frac{4}{12}, \frac{7}{15}$, and $\frac{11}{20}$? Ans. $1 \frac{13}{20}$.
47. What is the difference between $\frac{9}{21}$ and $\frac{7}{30}$?
48. What is the sum of 216 thousandths, 37 hundredths, 15 ten-thousandths, and 10 units? Ans. 10.5875.
49. What is the difference between 206 ten-thousandths, and 27 millionths?
50. What is the value of $.211+3.07+29.6+.0735$?

Ans. 32.9545.
51. What is the value of $.6501 \times .736089$?
52. What is the value of $.4396 \div 9.3$?

CONCRETE NUMBERS.

§ 177. The relations of the concrete numbers in most common use are set forth in the following

TABIES.

H. United States Money.

1 mill, (m.) $=\frac{1}{10}$ of a cent;
10 mills $=\cdot 1$ cent, (ct.) $=\frac{1}{10}$ " ${ }^{\text {d }}$ dime;
10 cents $=1$ dime, (d.) $=\frac{1}{10} "$ d dollar;
10 dimes $=1$ dollar, (\$) $=\frac{1}{10} "$ " eagle ;
10 dollars $=1$ eagle, (E.)

The denominations dime and cagle are very little used in calculation. In stead of $14 \mathrm{E} .5 \$, 7 \mathrm{~d}$, 5ct., we usually write \$145.75.

Hi. English Currency; or, Sterling Mowey.

| 4 farthings | $=1$ penny, | $($ d. $)=\frac{1}{12} " \%$ shilling; |
| ---: | :--- | ---: | :--- |
| 12 pence | $=1$ shilling, | (s.) $=\frac{1}{20} "$ pound; |
| 20 shillings | $=1$ pound, | $(£)$. |

The pound sterling is represented by a gold coin, called a sovereign, valued at $\$ 4.84$, U. S. currency.

Farthings are usually written as fractions of a penny.

耳II. Fresth Currency.

1 centime, (cent.) $=\frac{1}{10}$ of a decime;
10 contimes $=1$ decime, (dec.) $=\frac{1}{10}$ " "franc;
10 decimes $=1$ franc, (fr.).

cent.	dec.			
1	$=$	fr.		
10	$=$	$\frac{1}{10}$	$=$	$\frac{1}{100}$
100	$=$	10	$=$	$\frac{1}{10}$
10				

Accounts are kept in francs and centimes.
The franc is valued at $18 \mathrm{ct} .6 \mathrm{~m} ., \mathrm{U}$. S. currency.

IF. 'Troy Weight.

USED FOR WEIGHNG GOLD, SILTER, JEWELS, \&c.
1 grain, (gr.) $=\frac{1}{2 x}$ of a pennyweight; 24 grains $\quad=1$ pennyweight, $(d w t)=.\frac{1}{20}$ of an ounce ; 20 pennyweights $=1$ ounce, (oz.) $=\frac{1}{12}$ of a pound; 12 ounces $=1$ pound,

W. Apoticcarics Wergbit.

USED IN MITIING MEDICINES.

The pound Apothecaries' is the same as the pound Troy.

VH. Avoindupois Weciglat.

USED FOR WEIGHING ALL ARTICLES EXCEPT THOSE MENTIONED ABOVE.

16 drams
1 dram, $\quad\left(\mathrm{dr}_{\mathrm{r}}\right)=\frac{1}{16}$ of an ounce;

16 ounces
$=1$ ounce, $(\mathrm{oz})=.\frac{1}{16}$ of a pound;

25 pounds
$=1$ pound, (lb.) $=\frac{1}{25}$ of a quarter ;

4 quarters $\quad=1$ hundredweight, $\left(\mathrm{cwt}_{\mathrm{o}}\right)=\frac{1}{20}$ of a ton;
20 hundredweight $=1$ ton,
(T.).

116

144 pounds Avoirdupois $=175$ pounds Troy or Apothecaries?

1 lb. Avoir. $=7000 \mathrm{gr}$. Troy ; 1 oz. Avoir. $=437.5 \mathrm{gr}$. Troy.

The following denominations also belong here: 28 pounds $=1$ long quarter;

$112 "$	$=1$ long hundred weight $;$
$2240 "$	$=1$ long ton;
14	$=1$ stone;
$21 \frac{1}{2}$ stone	$=1$ pig;
8 pigs	$=1$ fother.

50 pounds of salt	$=1$ bushel.		
56	"6 " corn	$=1$ bushel.	
60	"	" wheat	$=1$ bushel.
56	"6 " butter	$=1$ firkin.	
100	"	" salt fish	$=1$ quintal.
196	"	"flour	$=1$ barrel.
200	"	beef, pork, or fish	$=1$ barrel.

WII. French Weights.

1 milligramme $=\frac{1}{10}$ of a centigramme;
10 milligrammes $=1$ centigramme $=\frac{1}{10}$ " " decigramme;
10 centigrammes $=1$ decigramme $=\frac{1}{10}$ " " gramme; 10 decigrammes $=1$ gramme $=\frac{1}{10}$ " " decagramme; 10 grammes $=1$ decagramme $=\frac{1}{10}$ " " hectogramme; 10 decagrammes $=1$ hectogramme $=\frac{1}{10}$ " "kilogramme; 10 hectogrammes $=1$ kilogramme $=\frac{1}{100}$ " "quintal; 100 kilogrammes $=1$ quintal $=\frac{1}{10}$ " " millier; 10 qquintals $=1$ millier, or 1 ton of sea water.

1 gramine $=15.433$ grains Troy.

VIHI. Hong Measure; or, Linear Measure. used in measuring lines, of distances.

The following denominations are sometimes used :

3 barley corns	$=1$ inch;
6 points	$=1$ line;
12 lines	$=1$ inch;
4 inches	$=1$ hand;
966	$=1$ span;
1866	$=1$ cubit;
21.966	$=1$ sacred cubit;
3 feet	$=1$ face;
6 feet	$=1$ degree of latitude.

IX. Surveyor's Long Measure.

7.92 inches $=1$ link,
(1.) $=\frac{1}{25}$ of a rod;
25 links $=1$ rod,
$(\mathrm{rd})=.\frac{1}{4}$ " ${ }^{6}$ chain;
4 rods $=1$ chain; (ch.) $=\frac{1}{10}$ " 6 furlong;
10 chains $=1$ furlong, (fur.) $=\frac{1}{8}{ }^{6}{ }^{6}$ mile;
8 furlongs $=1$ mile,
(mi.)

K. Square Measure.

USED FOR MEASURING SURFACES OF LAND, PAINTING, PLASTERING. PAVING, \&c.
1 squareinch, (sq.in.) $=\frac{1}{1 \pm \pm}$ of asquarefoot;
144 square inches =1 " foot, (sq.ft.) $=\frac{1}{9}$ " "6 " yard; 9 " feet $=1$ " yard,(sq.yd.) $=\frac{1+121}{12}$ " ${ }^{6}$ perch; $30_{1}{ }^{\frac{1}{4}}$ " yards $=1$ perch, $\quad(\mathrm{P})=.\frac{1}{40}$ " " rood; 40 perches $=1$ rood, $\quad(R)=.\frac{1}{4}$ "، acre;
4 roods $\quad=1$ acre, \quad (A.) $=\frac{1}{6} \frac{1}{6}$ " ${ }^{6}$ square mile 640 acres $\quad=1$ square mile, (sq.mi.).
sq.in.sq.ft.sq.yd. P. R. A. sq. mi.
$1=\frac{1}{14.5}=\frac{1}{1296}=\frac{1}{39204}=\frac{1}{156 \frac{1}{8160}}=\frac{1}{627^{\frac{1}{2} 640}}=\frac{1}{4014 \pm 89600}$
$144=1=\frac{1}{9}=\frac{T^{4}}{1059}=\frac{1}{10890}=\frac{1}{43560}=\frac{1}{27875400}$
$1296=9=1=\frac{1}{121}=\frac{1}{1210}=\frac{1}{45^{100}}=\frac{1}{3097600}$
$39204=272 \frac{1}{4}=30 \frac{1}{4}=1=\frac{1}{40}=\frac{1}{160}=\frac{10}{102^{1}+00}$
$1568160=10890=1210=40=1=\frac{1}{4}=\frac{1}{2560}$
$6272640=43560=4840=160=4=1=\frac{10}{\frac{1}{640}}$ $4014489600=27878400=3097600=102400=2560=640=1$

XI. Cubic Measure.

USLD FOR Measuring the contents of solids.
1 cubic inch, (cu.in.) $=\frac{1}{1725}$ of acubicft.; 1728 cubic inches $=1 \quad$ ぃ foot, (cu.ft.) $=\frac{1}{27}$ ‘ $6 \quad$ з yd.; 27 " feet $=1$ " yard,(cu.yd.).

$$
\mathrm{cu} . \mathrm{in} . \quad \mathrm{cu} . \mathrm{ft} . \quad \mathrm{cu} . \mathrm{yd}
$$

119

Also, 40 cubic feet of round timber $=1$ ton;

Also, 231 cubic inches $=1$ gallon Liquid or Wine Measure;
268䊗" ${ }^{6}=1 \quad$ " Dry Measure ;
282 " $\quad=1 \quad$ " Ale Measure, (out of use.)

XEF. Hiquid Measmre; or, Jine Measure. used in measurivg liquids; as, molasses, spirits. wine, Water, \&c.

KHIL. Me Illeannre,

FORMERLY USED FOR MEASURING MAL'X LIQUORS AND MILK, WHICII NOW, HOWEVER, AlE GENEHALLJ MEASURED BY LlQUID MEASURE.

KIE. KIY NHEasare.

Uged for measurivg grain, mbuts, vegetables, sali, sc.

Also, 5 bushels $=1$ barrel, of corn ;
8 bushels = I quarter ;
36 bushels $=1$ chaldron.
In the Confederate States, corn is usually bought and sold by the barrel. A barrel of corn should contain 280 pounds.

$$
\begin{aligned}
& 1 \text { pint, } \quad(p t .)=\frac{1}{2} \text { of a quart; } \\
& \because \text { pints }=1 \text { quart, } \quad(q t .)=\frac{1}{x} \text { " }{ }^{6} \text { gallon; } \\
& \frac{1}{4} \text { quarts }=1 \text { gallon, (gal.) }=\frac{1}{2} \text { " }{ }^{6} \text { peck; } \\
& { }^{2} \text { gallons }=1 \text { peck, } \quad(p k .)=\frac{1}{4} \text { " }{ }^{\prime} \text { bushel; } \\
& 4 \text { pecks }=1 \text { bushel, (bu.) }
\end{aligned}
$$

KW. Time.

sec. min. hr. da. yr. dec. cent.
$1=\frac{1}{60}=\frac{1}{3600}=\frac{1}{86400}=\frac{1}{31557600}=\frac{1}{315576000}=\frac{1}{3155760000}$
$60=1=\frac{1}{60}=\frac{1}{1440}=\frac{1}{525960}=\frac{1}{5259600} \doteq \frac{1}{52596000}$
$3600=60=1=\frac{1}{2}=\frac{1}{5766}=\frac{1}{57660}=\frac{1}{876600}$
$86400=1440=24=1=\frac{4}{1461}=\frac{2}{7305}=\frac{1}{36525}$
$31557600=525960=8766=365 \frac{1}{4}=1=\frac{1}{10}=\frac{1}{100}$
$315576000=5259600=87660=3652 \frac{1}{2}=10=1=\frac{1}{10}$
$3155760000=52596000=876600=36525=100=10=1$

$$
\begin{aligned}
\text { Also, } 7 \text { days } & =1 \text { week, (wk.) } \\
30 \text { or } 31 \text { days } & =1 \text { month, (mo.) } \\
12 \text { mouths } & =1 \text { year. }
\end{aligned}
$$

According to the table, $365^{\frac{1}{4}}$ days make a year. To obviate the difficulty arising from the fraction, we reckon three years of 365 days each, and one of 366 days. This long year is called leap year. The leap years are those whose numbers are exactly divisible by 4 ; except that the centennial years are not leap years unless their numbers are exactly divisible by 400 . Thus, 1860 and 1848 were leap years; but 1900 will not be leap year, because it is not divisible by 400 .

The year is also divided into four seasons; Spring, Summer, Autumn, and Winter. These consist of the following months:

In most business transactions 30 days are considered a month.

NVI. Circular Measure.

USED IN SURVEYING, GLOGRAPHY, AND ASTRONCMY.
1 second, (" or sec.) $=\frac{1}{60}$ of a minute;
60 seconds $=1$ minute, (' or min.) $=\frac{7}{60} "$ " degree;
60 minutes $=1$ degree, $\left({ }^{\circ}\right.$ or deg. $)=\frac{1}{30}$ " " sign ;
30 degrees $=1$ sign,
(S.) $=\frac{1}{12}$ " " circumference;

12 signs $=1$ circumference,(C.)

$\prime \prime$			
1	$=$	$\frac{1}{6} 0$	$=\frac{1}{3600}=\frac{\mathrm{S}}{10 \frac{2}{1000}}=\frac{\mathrm{C}}{129 \frac{1}{6000}}$
60	$=$	1	$=\frac{1}{60}=\frac{1}{1500}=\frac{1}{21600}$
3600	$=60$	$=1=\frac{1}{330}=\frac{1}{360}$	
108000	$=1800$	$=30=1$	$=\frac{1}{13}$
1296000	$=21600$	$=360=12=1$	

Also, 60 degrees $=1$ sextant $=\frac{1}{6}$ of a circumference;
And, 90 " $=1$ quadrant $=\frac{1}{4}$ " $"$ "

	et,	
24 sheets	$=1$ quire,	(qr.) $=\frac{1}{20}$ " " ${ }^{\text {c }}$ ream;
20 quires	$=1$ ream,	$(\mathrm{rm})=.\frac{1}{2}$ " " bundle;
2 reams	$=1$ bundle,	(bdle.) $=\frac{1}{5}$ " " bale;
5 bundles	$=1$ bale.	

KVIII. Duodecimais.

1 unit,

$$
=\frac{1}{12} \text { of a dozen }
$$

12 units $=1$ dozen, $\quad($ doz. $)=\frac{1}{12}$ " " gross;
12 dozen $=1$ gross, $\quad($ gr. $)=\frac{1}{12}$ " " great gross;
12 gross $=1$ great gross.
Also, 20 units $=1$ score.

OPERATIONS ON CONCRETE NUMBERS.

The numerical processes are the same for concrete numbers as for abstract. In this place, therefore, we are to discuss only the denominations of the several results.

ADDITION OF CONCRETE NUMBERS.
§178. Dissimilar numbers can not be added together. Thus, 3 dollars and 5 cents make neither 8 dollars nor 8 cents.
§179. The sum of several similar numbers is similar to the numbers added. Thus, 3 dollars and 5 dollars make 8 dollars; 3 cents and 5 cents make 8 cents.

Ex. 1. Add $\$ 1075, \$ 2157, \$ 3779$, and $\$ 4209$.
2. Add $\mathbb{L 4 7}, £ 53, £ 29$, and $£ 63$.

Sum, 2192.
\because Add 27 fr ., 36 fr ., 297 fr ., and 365 fr .
4. Add 291b., 371b., 491b., and 581b.

Sum, 17311.
5. Add 45 sc ., 28sc., 143 sc ., and 297 sc .

Sum, 50:3sc.
6. Add 100 cwt ., 205 cwt ., 177 cwt , and 329 cwt .
7. Add 2479 grammes, 147 grammes, and 986 grammes.

Sum, 3612 gram.
8. Add $276 \mathrm{yd} ., 299 \mathrm{yd} ., 469 \mathrm{yd}$., and 357 yd .

Sum, 1401 yd .
9. Add 79 mi ., 227 mi ., 37 mi ., and 475 mi .
10. Add 306 cu . ft., 279 cu . ft., and 520 cu . ft.

Sum, 1105 cu .ft.
11. Add 575A., 209A., 105A., and 258A. Sum, 1147 A. 12. Add $27 \mathrm{gal} ., 72 \mathrm{gal} ., 298 \mathrm{gal}$, and 143 gal .
13. Add 15bbl., 28bbl., 19bhl., 247bbl., and 86 bbl .

Sum, 395 bbl .
14. Add $47 \mathrm{bu} ., 475 \mathrm{bu}$., 407 bu ., and 4750 bu .

Sum, 5679bu.
15. Add 27da., 38da., 52da., and 93da.
16. $\operatorname{Add} 12^{\circ}, 26^{\circ}, 37^{\circ}$, and 45°.
17. Add $10 \mathrm{rm} ., 14 \mathrm{rm}$., 7 rm ., and 22 rm .

Sum, 120°.
Sum, 53 rm .
18. Add 6doz., $27 d o z$., 14 doz , and 97 doz .
19. Add $12 \frac{1}{2} l \mathrm{lb} ., 33 \frac{1}{3} \mathrm{lb}$., $37 \frac{1}{2} \mathrm{lb}$., and $83 \frac{1}{3} \mathrm{lb}$. Sum, $166 \frac{2}{3} 1 \mathrm{lb}$.
20. Add $3 \frac{2}{3} \mathrm{mi} ., 16 \frac{2}{3} \mathrm{mi}$., $18 \frac{3}{1} \mathrm{mi}$., $62 \frac{1}{2} \mathrm{mi}$., and $42 \frac{1}{8} \mathrm{mi}$.

Sum, $143_{\frac{1}{2} \frac{7}{4}} \mathrm{mi}$.
21. Add $19 \frac{1}{5} q \mathrm{t}$., $20 \frac{1}{2} q \mathrm{t}$., $7 \frac{3}{4} q^{t}$, and $28 \frac{2}{3} q \mathrm{t}$.
22. Add 3.25 hr ., $6.5 \mathrm{hr} ., ~ .275 \mathrm{hr}$., and 700.075 hr .

Sum, 710.Ihr.
23. Add 47.5pt., 57.75 pt ., .375 pt ., and .0625 pt .

Sum, 105.6875pt.
24. Add $9.73 \mathrm{pk} ., 10.01 \mathrm{pk} ., 17.75 \mathrm{pk}$., and .1775 pk .
25. Add $10.11 \mathrm{pk} ., 7.369 \mathrm{pk}$., and 1.002 pk .

125

SUBTRACTION OF CONCRETE NUMBERS.
§180. Subtraction can not be performed upon dissimilar numbers. Thus, 3 cents from 5 dollars leaves neither 2 cents nor 2 dollars.
§ 181. The difference of two similar numbers is similar to those numbers. Thus, 3 dollars from 5 dollars leaves 2 dollars ; 3 cents from 5 cents leaves 2 cents.

Ex. 1. From £245 take $£ 190$.
Rem. £49.
2. From 25 cwt . take 6 cwt .

Rem. 19cwt.
3. From 793 rd. take 546 rd .
4. From 17246 sq . ft. take 8472 sq . ft. Rem. 8774 sq . ft.
5. From 635cu. yd. take 473 cu . yd. Rem. 162cu. yd.
6. From 47 decigrammes take 29 decigrammes.
7. From 470 hh d. take 398 hhd .
8. From 272 pt. take 199 pt.

Rem. 81hhd.
9. From 365da. take 175 da.
10. From 360° take 275° Rem. 85°.
11. From $27 \frac{3}{1} \mathrm{~s}$. take $19 \frac{1}{2} \mathrm{~s}$. Rem. $8 \frac{1}{4} \mathrm{~s}$.
12. From $\$ 75 \frac{1}{2}$ take $\$ 59 \frac{1}{4}$.
13. From $\$ 19.75$ take $\$.99$.
14. From $270 \frac{1}{4} \mathrm{fr}$. take $197 \frac{3}{4} \mathrm{fr}$.

Rem. \$18.76.
15. From 77in. take 17.75 in.
16. From 3706 sq. yd. take $897 \frac{1}{8}$ sq. yd. Rem. $2508 \frac{7}{8}$ sq. yd.
17. From $\frac{1}{2}$ of $246 \mathrm{cu} . \mathrm{ft}$. take $\frac{1}{4}$ of $317 \mathrm{cu} . \mathrm{ft}$.
18. From $525{ }_{5}^{1} q$ t. take $252{ }_{5}^{7}$ qt.
19. From 27 bu . take 17.25 bu .
20. From $33 \frac{1}{3}$ cu. in. take $31 \frac{1}{4}$ cu. in.
21. From 725 dwt . take 339.17 dwt .
22. From .2468 d. take $.08642 d$.
23. From .175lb. take .017 lb .

Rem. 9.75bu.
Rem. $2 \frac{1}{1 \overline{2}} \mathrm{cu}$. in.
Rem. .16038d.
Rem. .1581b.

MULTIPLICATION OF CONCRETE NUMBERS.
§182. Every multiplier must be an abstract number.Thus, if we wish to find the cost of 3 yards at 25 cents a yard, it is evidently absurd to say, "3 yards times 25 cents," or, " 25 cents multiplied by 3 yards." We multiply 25 cents by 3 , because 3 yards cost 3 times the price of 1 yard, that is, 3 times 25 cents.
§ 183. The product is always similar to the multiplicand. Thus, 3 times 25 cents are evidently 75 cents; $6 \times 7 \mathrm{ab}$ stract units $=42$ abstract units ; $4 \times \$ 10=\$ 40 ; 5 \times 6$-yards $=30$ yards.

Ex. 1. Multiply $\$ 3179$ by 27.
2. Multiply 2764 bu. by 46.
3. Multiply 365da. by 19 .
4. Multiply 347 oz . by 83 .
5. Multiply 2047 cwt . by 109.
6. Multiply 347 fr . by 201.
7. Multiply 467A. by 5297 .
8. Multiply 6386 pi. by 578.
9. Multiply 7475 pk . by 689 .
10. Multiply $£ 69$ by 4234 . Prod. £292146.
11. Multiply 224 by 4759 .
12. Multiply 8564 wk. by 790 .
13. Multiply 9563 by 801 .
14. Multiply 10742 doz. by 912 .
15. Multiply 20 s. by 16750 .
16. Multiply $5 \frac{1}{2}$ yd. by 746 .
17. Multiply 16.5 ft . by 165 .
18. Multiply 30.25 sq. yd. by 3.025 .
19. Multiply 7.92 in . by 198.

Prod. 28801oz.

Prod. 7659963.
Prod. £292146.
Prod. 1066016.
Prod. \$85833.
Prod. 127144 bu .

Prod. 223123cwt.
Prod. 2473699A.
Prod. 3691108pi.

Prod. 9769704 doz .
Prod. 4103yd.
Prod. 2722.5ft.
Prod. 1568.16in.
20. Muitiply $31 \frac{1}{2}$ gal. by 100 S

Prod. 31752gal.
21. Multiply $365 \frac{1}{4}$ da. by $365{ }^{2}$.
22. Multiply $\$ 29.75$ by 29.75 .
23. Multiply $\$ 100.375$ by 37.5 .

Prod. \$885.0625.
Prod. \$3764.0625.
24. Nultiply 279.5 by 27.95 .

DIVISIOY OF CONCRETE NUMBERS.
§184. Division is the reverse of multiplication. In multiplication, the two factors are given, to find the product; in division, the product and one of its factors are given, to find the other factor. The dividend corresponds to the product; the divisor may correspond to either the multiplicand or the multiplier, and the quotient corresponds to the other.

Thus, $6 \times 25 \mathrm{gal} .=150 \mathrm{gal}$.

$$
\begin{aligned}
& \text { Conversely, } 150 \text { gal. } \div 6=25 \mathrm{gal} \\
& \text { Or, } \quad 150 \mathrm{gal} . \div 25 \mathrm{gal}=0
\end{aligned}
$$

§ 185. Fither the divisor or the quotient must be abstract, and the other must be similar to the dividend.

In other words, if the dividend and the divisor are similar, the quotient is abstract: if the divisor is abstract, the protient is similar to the dividend.

The remainder is always similar to the dividend. ($\$ 46$).
Ex. 1. Dividend $=45 \mathrm{ct}$., divisor $=-3$.
Quot. 15ct.
Quot. 30 .
\therefore Divideud $=\$ 750$, divisor $=\$ 25$.
3. Dividend $=1000$ bu., divisor $=40$.
4. Dividend $=245 \mathrm{lb}$., divisor $=5$.
5. Dividend $=3003$, divisor $=11$.

Quot. 491b.
Quot. 273.
6. Dividend $=1728 \mathrm{cu}$. in., divisor $=48 \mathrm{cu}$. in.
7. Dividend $=7007 \mathrm{yd}$., divisor $=13 \mathrm{y}$.

Quot. 539.
8. Divisor $=17 \mathrm{mi} .$, dividend $=289 \mathrm{mi}$.

Quot. 17.
9. Divisor $=25$, dividend $=1175$ gi.
10. Divisor $=27$, dividend $=297 \mathrm{hr}$. Quot. 11 hr .
11. Divisor $=100$, dividend $=2398$ qt. Quot. 22qt.
12. Divisor $=245 \mathrm{cu} . \mathrm{ft}$., dividend $=5880 \mathrm{cu} . \mathrm{ft}$.
13. Divide 642780 dozen by 36 dozen.

Quot. 17855.
14. Divide 79008 oz. by 96 .

Quot. 823oz.
15. Divide 847665 qr. by $345 q$ r.
16. Divide 3475 c wt. by 296 . Quot. $11.739+$ ewt.
17. Divide 1001 s . by 27 s .

Quot. 37.074.
18. Divide $35 \frac{1}{2} \mathrm{ft}$. by $17 \frac{3}{4} \mathrm{ft}$.
19. Divide $372.25 \mathrm{sq} . \mathrm{yd}$. by $250 \mathrm{sq} . \mathrm{yd}$.

Quot. 1.489.
20. Divide $\frac{1}{2}$ A. by $13 \frac{1}{2}$.
21. Divide $243 \frac{3}{4} 1 \mathrm{~b}$. by $19 \frac{1}{5}$.
22. Divido 799.6 T . by 87.5 T .

Quot. 9.104+.
23. Divide 34.15 grammes by 19.25 grammes.
24. Divide 177 pt. by 771 .

Quot. . $2295+$ pt.

REDUCTION OF CONCRETE NUMBERS.

§186. A compound number may be reduced to a simple one, or a simple concrete number to a compound one by the application of the following rule according to the circumstances of the case.
§ 187. Rule. - Find from the proper table the value of one of the given units in terms of the required denomination; and multiply this value by the number of the given units.

Ex. 1. Reduce 6 gallons to pints.
§ 188. Model. $6 \mathrm{gal} .=6 \times 4 \mathrm{qt} .=24 \mathrm{qt}$.
$24 \mathrm{qt} .=24 \times 2 \mathrm{pt} .=48 \mathrm{pt}$.
Hence, 6gal. $=48 \mathrm{pt}$.

Explanation. - Since $4 \mathrm{qt} .=1 \mathrm{gal}$., Ggal., that is, 6 times $1 \mathrm{gal} .=6$ times 4 qt . And since $2 \mathrm{pt} .=1 \mathrm{qt}$., 24 qt ., or 24 times 1 qt . $=24$ times 2 pt .

Observe that in each instance the product is similar to the multiplicand. ($\$ 183$.)

Otherwise, 6 gal.$=6 \times 8 \mathrm{pt} .=48 \mathrm{pt}$.
Ex. 2. Reduce 6gal. 3qt. 1pt. to pt.
§189. Model. $6 \mathrm{gal} .=6 \times 4 \mathrm{qt} .=24 \mathrm{qt}$.

$$
\begin{array}{ll}
24+3=27 & 27 \mathrm{qt} .=27 \times 2 \mathrm{pt} .=54 \mathrm{pt} . \\
54+1=55 & \text { Hence, 6gal. 3qt. } 1 \mathrm{pt} .=55 \mathrm{pt} .
\end{array}
$$

Explanation.-After reducing the 6gal. to gt., the given 3qt. may be added to the result. (§ 179.) And after reducing the 27 qt t. to pt., the give, 1pt. may be added to this result.

Otherwise, $6 \mathrm{gal} .=6 \times 4 \mathrm{qt} .=24 \mathrm{qt} .=24 \times 2 \mathrm{pt} .=48 \mathrm{pt}$.

$$
\begin{array}{r}
3 *=3 \times 2 *=6 " \\
1 *=1 *
\end{array}
$$

Hence, 6 gal. $3 q \mathrm{t} .1 \mathrm{pt} .=55 \mathrm{pt}$.
Otherwise, 6 gal. $=6 \times 8 \mathrm{pt} .=48 \mathrm{pt}$.

$$
\begin{aligned}
& 3 q \mathrm{t} .=3 \times 2^{\prime \prime}=6{ }^{6} \\
& 1 \text { pt. }=\quad 1{ }^{6} \\
& \text { Hence, 6gal. 3qt. 1pt. }=55 \mathrm{pt} \text {. }
\end{aligned}
$$

Evidently the final result is not affected by the order in which the several reductions are performed.

Ex. 3. Reduce $\frac{1}{10} \mathrm{lb}$. to oz., dwt., $\& c$.
§ 190. ModeL. $\frac{1}{10} \mathrm{lb} .=\frac{1}{10}$ of $12 \mathrm{oz} .=1 \frac{1}{5} \mathrm{oz}$. $\frac{1}{5} 0 \mathrm{Oz} .=\frac{1}{4}$ of $20 \mathrm{dwt} .=4 \mathrm{dwt}$.
Hence, $\frac{1}{10} 1 \mathrm{~b} .=1 \mathrm{oz} .4 \mathrm{dwt}$.
Explanation.-This example differs from the first only in the fact that here each multiplier is a fraction.

Ex. 4. Reduce 3795 P . to Λ., R., \&c. §191. Model. $3795 \mathrm{P} .=3795 \times \frac{1}{40} \mathrm{TR} .=\frac{3795}{40} \mathrm{R} .=94 \mathrm{R}, 35 \mathrm{P}$.

$$
94 \mathrm{R}=94 \times \frac{1}{4} \mathrm{~A}=\frac{9 .}{4} \mathrm{~A}=23 \mathrm{~A}, \quad 2 \mathrm{R} .
$$

Hence, $3795 \mathrm{P} .=23 \mathrm{~A} .2 \mathrm{R} .35 \mathrm{P}$.
Explanation.-This example differs from the preceding only in the fact that here each multiplicand is a fraction.

Ex. 5. Reduce 6gal. 3qt. 1pt. 3 gi. to hhd.
§192. Model. 3gi. $=3 \times \frac{1}{4} \mathrm{pt} .=\frac{3}{4} \mathrm{pt}$.

$$
\begin{aligned}
& 1 \frac{3}{3} \mathrm{pt} .=1 \frac{3}{4} \times \frac{1}{2} \mathrm{qt} .=\frac{7}{8} \mathrm{qt} . \\
& 37 \mathrm{qt} .=3 \frac{7}{5} \times \frac{1}{4} \mathrm{gal} .=\frac{31}{32} \text { gal. } \\
& 6 \frac{37}{32} \mathrm{gal} .=6 \frac{37}{32} \times \frac{1}{63} \mathrm{hhd} .=\frac{223}{2016} \mathrm{hhd},
\end{aligned}
$$

Explanation.- Here both factors are fractional.
Ex. 6. Reduce 30 bu . 1 pk . $3 q \mathrm{t}$. 1pt. to pk.
§ 193. Model. $30 \mathrm{bu} .=30 \times 4 \mathrm{pk} .=120 \mathrm{pk}$.

$$
\begin{aligned}
& 1 \mathrm{pk} . \\
& 3 \mathrm{qt} .=3 \times \frac{1}{5} \mathrm{pk}=16 \\
& 1 \mathrm{pt}= \\
& \frac{1}{16} \mathrm{pk}=
\end{aligned}
$$

Hence, 30 bu. 1pk. $3 \mathrm{qt} .1 \mathrm{pt} .=121.4375 \mathrm{pk}$.
Explanation.-This example is but a combination of two of the preceding ones, and seems to require no additional explanation.

Ex. 7. In $\$ 14$, how many mills?
8. In $£ 15$, how many pence?

Ans. 14000 m .
9. In $19 \mathrm{fr} .$, how many centimes?
10. In 22lb., Troy, how many dwt.? Ans. 5280 dwt . 11. In 251b., Apothecaries', how many scruples?

Ans. 7200sc.
12. In 261b., Avoirdupois, how many drams?
13. In 31 hectogrammes, how many decigrammes?

Ans. 31000 dec.
14. In 45 miles, how many feet?

Ans. 237600 ft .
15. In 49 fur., how many chains?
16. In 50 A., how many square yards? Ans. 242000 sq. yd.
17. In 55 cu. yd., how many cu. in.? Ans. 2566080 cu . in.
18. In 72 gal , how many gi.?
19. In $64 b u .$, how many qt.?
20. In 20da., how many sec.?
21. In 29°, how many seconds?
22. In 17 rm ., how many sheets?
23. In 5 gr. gross, how many doz.?

Ans. 2048 qt .
Ans. 1728000sec.
24. In $£ 4,3$ s. 2 d., how many qr. ?
25. In 5 fr. 7 dec. 8cent., how many centimes?

Ans. 578cent.
26. In 61 b . 5 oz . 3 dwt., how many gr.? Ans. 37032 gr .
27. In 31b. 6oz. 5dr. 2sc., how many sc.?
28. In 28 T .10 cwt . 3qr., how many lb.? Ans. 570751 b .
29. In 1 millier, 5 quintals, how many grammes?

Ans. 1500000 gr .
30. In 2rd. 3yd. 2ft., how many in.?
31. In 10 chains, 1 rod, how many links? Ans. 1025 lk .
32. In 4sq. yd. 6 sq. ft., how many sq. in.? Ans. 6048 sq.in.
33. In 10 cu . ft. 400 cu . in., how many cu. in.?
34. In 2 tuns, 1pi. 1hhd., how many gal.? Ans. 693gal.
35. In 5bu. 2pk. 1gal. 3qt., how many pt.? Ans. 366pt.
36. In lcent. 6dec. 5yr., how many yr.?
37. In $2 \mathrm{~S} .25^{\circ} 45^{\prime}$, how many seconds? Ans. $308700^{\prime \prime}$.
38. In 2 rm . 10 qr r. 12 sh , how many sh.? Ans. 1212 sh.
39. In 3gr. 4doz., how many units?
40. Reduce $\frac{1}{3} £$ to s . and d.
41. Reduce $\frac{2}{3} \mathrm{fr}$. to decimes.

Val. 6s. 8d.
Val. $6 \frac{2}{3}$ dee.
42. Reduce $\frac{2}{5} \mathrm{lb}$. Troy, to oz., dwt., \&c.
43. Reduce $\frac{1}{5} \mathrm{lb}$. Apothecaries', to oz., \&ce.

Val. 2oz. 3dr. 12 gr.
44. Reduce $\frac{1}{6} T$. to cwt., qr., de.

Val. 3ewt. 1qur. $8 \frac{1}{2} l \mathrm{lb}$. 45. Reduce $\frac{1}{3} \mathrm{mi}$. to fur., \&c.
46. Reduce $\frac{1}{7} \mathrm{~A}$. to R., P., dc. Val. 22 ${ }_{\frac{\circ}{7}} \mathrm{P}$. 47. Reduce $\frac{1}{6} \mathrm{cu} . \mathrm{yd}$. to cu. ft., \&cc. Val. 4cu. ft. 864cu, in. 48. Reduce $\frac{7}{7}$ gal. to qt., pt., and gi. 49. Reduce $\frac{7}{10}$ bu. to pl., gal., \&e.
50. Reduce $\frac{1}{5}$ da. to hr., min., \&ce.

Val. 2pk. 1gal. 2 2 ${ }^{2}$ q.
51. Reduce $.375^{\circ}$ to min . and sec.
52. Reduce .13 rm . to qr. and sh.

Val. 2qr. 14.4sh.
53. Reduce .15 gr . to dor. and units. Val. 1doz. 9.6 un . 54. Reduce $975 q$ r. to $£$.
55. Reduce 5000 gr . to lb .

Val. 10oz. 8dwt. 8gr. 56. Reduce 300 sc. to lb. Apothecaries'. Val, 1lb. 4 dr. 57. Reduce 600000 dr. to T.
58. Reduce 11000 in . to mi . Val. 1 fur. $15 \mathrm{rd}$.3 yd . 2 in . 59. Reduce 600001 k . to mi . Val. 7 mi .40 ch .
60. Reduce 4000000 sq. yd. to sq. mi.
61. Reduce 60000 cu . in. to cu. yd.

Val. 1cu. yd. 7cu.ft. 1248cu. in.
62. Reduce 10000 gi. to tuns.
63. Reduce 1000 pt. to hhd., Ale Measure.

64 . Reduce 250 pt . to bu.
Val. 3bu. 3pk. 5qt.
65 . Reduce 600000 min . to yr. Val. 1yr. 51 da .16 hr .
66. Reduce $2000000^{\prime \prime}$ to circumferences.
67. Reduce 27000 sh. to rm .
68. Roduce 19000 units to gr. gross.

Val. 10 gr . gr. 11 gr .11 doz .4 units.
69. Reduce 11d. 3 qr. to $£$.
70. Reduce 90 z . 9 dirt. 9 gr . to 1 lb .

Val. 56 rm .5 qr .
71. Reduce 6 dr . 2 sc . 15 gr . to lb .

Val. $.789+1 \mathrm{lb}$.
72. Reduce 1qr. 15lb. to T.
73. Reduce 20 rd. 5yd. to fur. Val. .52è̇fur. 7!. Reduce 2rd. 201k. to ch. Val. .7ch.
75. Reduce 1R. 10P. to A.
76. Reduce 1cu. ft. 10 cu . in. to cu. yd.
77. Reduce 1 pt. 1 gi. to gal.

Val. $.0372 \check{0}+\mathrm{cu}$. yd. Val. . 15625 gal .
78. Reduce 1 hh . 1bbl. to tuns.
79. Reduce 3pk. 1gal. 3qt. to bu. Val. .96875bu.
80. Reduce 10 hr .15 min .30 sec . to da. Val. $.4274+$ da.
81. Reduce $1^{\circ} 10^{\prime} 30^{\prime \prime}$ to S .
82. Reduce 2 qr . 12 sh . to rm .

Val. .125rm.
83. Reduce 1 gr. 10 doz .10 units, to gr. gross.

Val. . $1585648 \mathrm{i} \mathrm{gr} . \mathrm{gr}$.
84. Reduce £2, 10s. 6d. 3qr. to s.
85. Reduce 101b. 9oz. 9dwt. 9 gr . to oz. Val. 129.468750 z.
86. Reduce 31 b . 5 oz. 5 dr . 1 sc .10 gr . to dr. Val. 333.5 dr .
87. Reduce 1 T . $10 \mathrm{cwt}$.1 qr . 201b. to cwt.
88. Reduce 1 mi . 7 fur. 20 wd . 3 yd . to rd. Val. 620.54 rd .
89. Reduce 3ch. 2rd. 101k. to rd.
90. Reduce 10A. 3R. 20P. to R.
91. Reduce $2 \mathrm{cu} . \mathrm{yd}$. 6 cu . ft. 75 cu . in. to cu. ft.

Val. $60.0434+\mathrm{cu} . \mathrm{ft}$.
92. Reduce 10 gal . 1 qt t. 1 pt . 3 gi. to pt. Val. 83.75pt.
93. Reduce $2 b u$. 1 pk . $3 q \mathrm{t}$. to pk .
94. Reduce 1da. 1hr. 1 min . 1 sec . to min .

Val. 1501.016 min.
95. Reduce $1^{\circ} 10^{\prime} 30^{\prime \prime}$ to minutes. Val. 70 $\frac{1}{2}^{\prime}$.
96. Reduce 2 rm . 3 qr . 5sh. to qr.

97 . Reduce 1 'r. 1cwt. 1qr. 1lb. 1oz. to lb.
Val. 2126.06251b.
98. Reduce 1 sq. $y d .1$ sq. ft. 1 sq . in. to sq. ft.

Val. 10.0069 isq. ft.

PROMISCUOUS PROBLEMS.

1. Bought a dress for $\$ 12$, a cloak for $\$ 15$, a bonuet for $\$ 7$, and a pair of gloves for $\$ 1$: what did they all cost? the several prices : hence, add $\$ 12, \$ 15, \$ 7$, and $\$ 1$ (($\$ 179$). The sum is $\$ 35$: hence, they all $\frac{1}{\$ 35}$ cost $\$ 35$.
2. A owns $\$ 10475$ in real estate, $\$ 3850$ in slaves, $\$ 1095$ in good notes, and $\$ 1415$ in cash; what is the value of his whole estate?
3. Three men form a partnership: A invests $\$ 2445 ; B$, $\$ 2890$; C, $\$ 1950$: what is the whole investment?
4. A miller bought from one man 147 bushels of wheat, from an other 98 bushels, and from a third 273 bushels; how muoh wheat did he buy from the three?
5. A farmer raised on one farm 415 bushels of wheat, 548° bushels of corn, 327 hundred weight of hay; on the other, 293 bushels of wheat, 487 bushels of corn, 286 hundred weight of hay: how much did he raise on both farms?
A. 708 sbu . wheat, 1035 bu . corn, 613 cwt . hay.
6. Bought a farm for $\$ 2875$, and sold it for $\$ 3225$; what did I gain?
§ 195. Modil.-The gain is the difference
\$3225
2875
$\$ 350$
\S 194. Modme.-The whole cost is the sum of

7. A man divides $\$ 3000$ among three sons, giving A $\$ 985$, and $\mathrm{B} \$ 1235$: how much does he give C ? A. $\$ 780$.
8. Burnt a kiln of 100000 bricks; sold at different timès $3475,2800,40150$, and 35000 ; how many are still unsold?
9. The distance from Charlotte to Goldsboro', via High Point, is 223 mi ., from Charlotte to High Point is 79 mi .; how far is High Point from Goldsboro'? A. 144 mi .
10. What cost 247 lb . of hor n. at 19 ct . per lb.?
$247 \times 19 \mathrm{ct} . \quad \S 196$. Hudel. -247 lb . cost 247 times 2223 4693ct. the cost of 11 b. : hence, multiply 19ct. by 247. (§ 183.) The product is 4693ct.: hence, the bacon cost 4693 ct .
11. How many cents are in 25 dollars?
12. How many gallons in 14hkd.? A. 882 gal.
13. What will 94 bbl . of flour cost at $\$ 8$ per bbl.? $\$ 752$.
14. How many pages in 475 volumes of 296 pages each?
15. A father divides $\$ 5460$ equally among his 4 sons; what does each son receive?
§ 197. Moder.-Wach son's share is one 4) $\$ 5460$ fourth of the whole: hence, divide $\$ 5460$ $\$ 1.365$ by 4 . ($\$ 185$.) The quotient is $\$ 1365$: hence, each son's share is \$1365.
16. If 755 A . of land cost $\$ 12835$, what will one acre cost ? A. $\$ 17$.
17. If 125 slaves sell for $\$ 75125$, what is their average value?
18. If 85 bales of cotton weigh 38675 lb ., what does each bale weigh?
A. 4551 l .
19. On 475 A . of land I raised 15675 bu . of wheat; how
much per acre?
20. In 478241 l . flour, how many bbl.

136

478241b. 1961 lb . $8 6 2 \longdiv { 2 4 4 }$ 784 000
§ 198. Model.-As 196lb. make a bbl., the number of bbl. is equal to the number of times 1961b. are contained in 47824lb.: hence, divide 478241b. by 1961b. (§ 185.) The quotient is 244 : hence, there are 244 bbl .
22. How many cu. yd. iu 13122 cu. ft.?
A. 486cu. yed.
23. In 11823s., how many G.? A. 563 G .
24. How many Acres can be bought for $\$ 5658$ at $\$ 23$ per Acre?
25. If a ressel make 376 mi . per day, how long will she be in making 7144 mi .?
A. 19da.
20. Find the sum of two thousand and forty-seren, three thousand six hundred and fifty, sixty-three thousand and five, ten thousand four hundred and three, and four hundred and seven.

Sum, 79512.
27. Find the difference between ten thousand and fortytwo, and eight thousand seven hundred and ninetynine.
28. What is the product of seven thousand three hundred and seventy-fire, and owe hundred and twenty-five?
A. 921875.
29. What is the quotient of eight thousand six hundred and twenty-five, by one hundred and twenty-five? A. 69.
30. How many days in 4 whk?
31. How many hours in 28da.?
A. 672 hr .
32. How many minutes in c72hr.?

A, 40320 min .
33. How many seconds in 40320 min ?
34. The minuend is 91 thousand 8 hundred and 75 , the subtrahend 8 thousand 9 hundied and 69 ; what is the remainder?
A. 82906.
35. The subtialiend is 4 thousand 2 hundred and 96 , the 137
remainder 6 thousand 2 hundred and 84 ; what is the minuend?
A. 10580 .
36. The remainder is 7 hundred thousand and 94 , the minuand 2 millions 3 thousand; what is the subtrahend?
37. How many hours in 40320 min ?
A. 672 hr
38. How many days in 672hr.?
A. 28da.
39. How many weeks in 28da.?
40. How many min. in 2419200 sec .? A. 40320 min .
41. The multiplicand is 37 millions 43 thousand and 25 , the multiplier 8 thousand and 64 ; what is the product? A. 298714953600.
42. The multiplicand is 7 hundred and 25 , the product 593 thousand 7 hundred and 75 ; what is the multiplier?
43. The multiplier is 4 thousand 9 hundred and 7 , the product 42 millions 813 thousand 575 ; what is the multiplicand?
A. 8725.
44. What cost 347 yd . of rope at 9 ct . per foot? A. \$93.69.
45. How many qt. in 7gal. 2qt.?
46. How many qt. in 8 gal. 1qt.?
47. How many pt. in 8 gal. 1qt. 1pt.?
48. How many gi. in 7 gal . 3 qt t. 1pt. 3 gi .?
49. The dividend is 11 millions 210 thousand 202 , the divisor 7 thousand and 2; what is the quotient?
A. 161.
50. The divisor is 8 thousand and 4 , the quotient 5 thousand and 90 ; what is the dividend? A. 40740360.
51. The quotient is 1 million 2 thonsand and 3 , the dividend 1 trillion 4 billions 10 millions 12 thousand and 9 ; what is the divisor?
52. How many sq. mi. in 228888.P.?
A. 2sq. mi. 150 A .2 R .8 P .
53. How many R. in 1728??
A. 43 R .8 P .
54. How many sq. mi. in 1895A.?
55. How many A. in 1806P? A. 11 A .1 R .6 P .
56. What is the sum of 7 thousand, 83 thousand and 40,9 hundred and 70, and 17 times 5 hundred and 79?
A. 100853.
57. What is the difference between the product of 85 and 307 , and the quotient of 999875 by 125 ?
58. How many lb. in 7qr.?
A. 1751 b .
59. How mary oz. in 251b. Avoir?
A. 400 oz .
60. The distance from High Point to Greensboro' is 15 mi ., from Greensboro' to Shops 22mi., from Shops to Raleigh 53 mi .; how far is it from High Point to Raleigh, via Greensboro' and Shops?
61. The distance from Charlotte to High Point is 79 mi ., from High Point to Raleigh 95 mi ., from Raleigh to Goldsboro' $49 \mathrm{mi} . ;$ how far is it from Charlotte to Goldsboro', via High Point and Raleigh? A. 223mi.
62. Bought a pair of horses for $\$ 375$, a set of harness for $\$ 55$, and a buggy for $\$ 187$; what did the whole cost? A. \$617.
63. Paid $\$ 789$ for a lot of tobacco, and sold it for $\$ 910$; gained how much ?
61. How many units in 14 doz. and 7 ?
A. 175 .
65. How many units in 3 score and 10 ?
A. 70 .
66. How many doz. in 12 gross?
67. How many units in 10 great gross? A. 17280.
68. Bought 3 stone of potatoes at 2 ct . per 1 lb .; what did they cost ?
A. 84ct.
69. Bought 10001b. of fish at $\$ 9$ per quintal ; what did I paẏ?
70. What cost 6161 b . of butter at $\$ 15$ a firkin? A. $\$ 175$.
71. What cost 247 bbl . of flour at $\$ 5$ per bbl.? A. $\$ 1235$.
72. How far will a train of cars go in 3 days, at 16 miles per hour?
73. Bought $16 y \mathrm{~d}$. of calico at 15 ct ., 7 yd . of gingham at 25 ct ., 9 yd . of flannel at 68 ct ., and 25 yd . of domestics at 10 ct .; paid 16 bu . of corn at 69 ct .; how much is still due?
A. $\$ 1.89$.
74. If a book of 155 pages has 29 lines on each page, and 39 letters in each line, how many letters are in the book? A. 175305 letters.
75. I deposited in bank $\$ 10050$: having drawn out $\$ 15$, $\$ 175, \$ 237, \$ 375, \$ 165, \$ 391$, and $\$ 3968$, how much have I still on deposit?
76. The Bible contains 31173 verses: how many verses must I read each day, to finish it in one year?
A. 85 verses a day, and 148 verses over.
77. How many sheets of paper in 20 quires? A. 480 sh.
78. How many sheets in 14 reams?
79. How many reams in 180 quires? A. 9 rm .
80. How many quires in 19 reams? A. 380 qr.
81. A stock-dealer bought 47 cows at $\$ 19,29$ horses at $\$ 135,53$ mules at $\$ 97$, and 155 sheep at $\$ 3$: he received for them 347 acres of land at $\$ 26$, and $\$ 4125$ in money; how much did he gain?
82. What will 574 bbl . of pork cost at $\$ 13$ per bbl.?
A. \$7462.
83. How far will a man travel in 6da. at 29 mi . per da.?
A. 174 mi .
84. A planter who worked 57 hands, raised 399 bales of cotton : how many bales did he raise to the hand?
85. In $\$ 45$, how many ct.?
A. 4500 ct .
36. In £4, $5 \mathrm{~s}, 6 \mathrm{~d}$., how many d.?
A. 1026d.
87. In 240dwt., how many oz.?
88. In 39sc., how many dr.?
A. 10 d r .
89. In 3T. 3qr. 201b. 12oz, how many oz.? A.97532oz.
90. In 7920in., how many yd.?
91. In 4 mi ., how many ch.?
A. 320 ch .
92. In 1568160 sq . in., how many sq.yd.? - 1. $1210 \mathrm{sq} \cdot \mathrm{yd}$. 93. In 4 sq. mi., how many A.?
94. In 4cu.yd. 12cu.ft., how many cu.in.? 1. 207360cu.in. 95 . In 3025 gi., how many hhd.? A. 1hhd. 31 gal. $2 q t .1$ gi. 96. In 5bu., how many pt.?
37. In 3da. 10hr. 15min., how many sec.? A. 296100 sec. 98. In 3 S. $3^{\circ} 3^{\prime} 3^{\prime \prime}$, how many seconds? A. $33 \frac{1}{9} 983^{\prime \prime}$. 99. In 2 gr . gr, 3 gr . 4 d doz . and 5 , how many units?
100. In 6rm. 7qr. 8sh., how many sh.?
A. 3056 sh .
101. In 3gal. 3qt. 3gi., how many qt.? A. 15.375 qt.
102. In 10bu: 1pk. 1gal. 1pt., how many pk.?
103. In $£ 6,6 \mathrm{~s} .6 \mathrm{~d} .3 \mathrm{qr}$., how many s.? A. 126.5625 .

10t. Add $\frac{1}{4}$ lb., $\frac{1}{2}$ oz., $\frac{1}{3} d \pi t$., and $\frac{1}{5}$ gr., in gr.
Sum, 1688.2gr.
105. Add 3.5hr., 7.75 min , and . 15 sec ., in min.
106. Add $\frac{1}{4} A ., \frac{1}{5} R$., and $\frac{1}{10} P$., in P.

Sum, 48.1P.
107. Add . 25 cu . yd., .375 cu . ft., and .625 cu . in., in cu. ft. Sum, $7.12536+\mathrm{cu} . \mathrm{ft}$.
108. From .9cwt., take .251b., in oz.
109. From .75lb., take .5dwt., in oz.
110. From 10.875 s., take 9.15 d., in qr.

Rem. 8.9750z.
Rem. 485.4 qr .
111. From 5.5 da., take 5.5 min ., in min.
112. Multiply .75 gal . by 7.5 , in pt.

Prod. 45pt.
113. Multiply 2.25 A. by .125 , in P.

Prod. 45P.
114. Divide 4.5 mi . by 5.4 , in rd.
115. Divide 1.55 s . by 2.3 , in d.

Quot. 8.08695d.

141

OPERATLONS ON COMPOUND NUMBERS.

§199. The operations on compound numbers are analogous to the corresponding ones on abstract numbers.

ADDITION OF COMPOUND NUMBERS.

Ex. 1. Add together 4hhd. 25gal. 3qt., 5hhd. 20 gal 2qt., 7hhd. 17 gal . 2 qt.

41 5 7	hhd.		80		qt
	'		6		$2{ }^{6}$
	"	17			2^{6}
17	"				

§200. Model.-2 and 2 are 4, and 3 are $7,7 \mathrm{qt}$., equal to 1 gal . $3 q t$. , set down $3: 1$ and 17 are 18, and 20 are 38 , and 25 are 63, 63 gal., equal to lhhd., set down 0 : 1 and 7 are 8 , and 5 are 13, and 4 are 17 , 1 hhhd. The sum is 17 hh . 3 qqt .

Explanation.-In simple numbers ten units of any denomination make one of the next higher., In compound numbers this uniformity of relation does not exist. Thus, in the example above, 4 qt . make 1 gal ., but 63 gal . make 1 hhd. With this exception, the explanation in $\S 22$ will suffice for this case.

Ex. 2. Add £10, 14s. 9d. 3qr., £5, 16s. 6d. 2qr., $£ 7,10 \mathrm{~d}$. $1 \mathrm{qr} ., \AA 12,9 \mathrm{~s} .9 \mathrm{~d} .3 q \mathrm{r}$.
3. Add $£ 4,10 \mathrm{~s} .11 \mathrm{~d}$., £. E_{y} 8s. 9 d .3 qr ., $£ 8,10 \mathrm{~d}$., and 16 s . $3 q \mathrm{r}$.

Sum, $220,16 \mathrm{~s} .7 \mathrm{~d} .2 \mathrm{qr}$.
4. Add 101 lb .10 oz .10 dwt . $10 \mathrm{gr} ., 12 \mathrm{lb}$. 9 oz . 6dipt. 3gr., 91 b .11 oz .13 dwt .15 gr ., and 24 lb . 8oz. $15 \mathrm{dwt}$.20 gr .

Sum, 5Slb. 4oz. 6dwt.
5. Add 3lb. 6oz. 9dwit. 12gr., 61b. 8oz. 10dwt. 12gr., 8ib. 11 oz .14 dwt . 17 gr ., and 141 b . 11 oz . 8 dwt . 5 gr .
8. Add 101b. 9 oz. 7 dr . 2sc. 15 gr ., 10 oz .6 dr . 1 sc. 10 gr ., 15 1 b .11 oz .7 dr . 2 sc .19 gr ., and 3 lb .4 oz .5 dr .6 gr . Sum, 311b. 1oz. 3dr. 1sc. 10 gr .
T. Add 10T. 10owt. 101b. 10oz. 10dr., 14T. 15cwt. 3qr. 15lb. 13oz. 15dr., and 25T. 7cwt. 1qr. 201b. 8oz. 8dr.

Sum, 50T. 13cwt. 1qr. 221b. 1oz. 1dr.
8. Add 3sq.mi, 300A. 2R. 25P., 7sq.mi. 525A. 3R. 10P., 19 sq.mi. 285 A .3 R .19 P ., and 250 A .25 P .

Sum, 31sq.mi, 82A. 1R. 39 P.
9. Add $19 \mathrm{cu} . \mathrm{yd}$. $19 \mathrm{cu} . \mathrm{ft}$. $19 \mathrm{cu} . \mathrm{in}$., $25 \mathrm{cu} . y \mathrm{y}$. $25 \mathrm{cu} . \mathrm{ft}$. 250 cu . in., and $100 \mathrm{cu} . \mathrm{yd}$. $15 \mathrm{cu} . \mathrm{ft} .1555 \mathrm{cu} . \mathrm{in}$.
10. Add 4 hidd. 40 gal . $2 q \mathrm{q} .1 \mathrm{pt} .3 \mathrm{gi}$., 10 hhd . 10 gal . 1 qt. 1 pt . 1 gi., and 20 hhd . 43 gal . 3 q t. 1 pt . 3 gi .

6um, 35hhd. 32gal. 3gi.
11. Add $10 b u .3 p k .7 q t .1 p t ., 9 b u .2 p k .6 q t .1 p t ., 16 b u$. 3pk. Cqt., and 15bu. 1pk. $5 q \mathrm{t} .1 \mathrm{pt}$. Sum, 53 bu .1 qt .1 pt .
12. Add 30 da . $10 \mathrm{hr} .30 \mathrm{~min} .30 \mathrm{sec} ., 15 \mathrm{da}$. 15 hr .15 miv . 15 sec., and 10 da. 20 hr .45 min .15 sec.
13. Add $25^{\circ} 15^{\prime} 25^{\prime \prime}, 75^{\circ} 24^{\prime} 50^{\prime \prime}$, and $15^{\circ} 50^{\prime} 45^{\prime \prime}$.

Sum, $116^{\circ} 31^{\prime}$.
14. Add 2 rm .10 qr . 12 sh ., 4 rm .15 qr .18 sh ., and 3 rm .9 qr . 10sh.
15. Add 2 gr . gross, 10 gross, 7 doz. 5 units, 4 gr. gross, 8 gross, 6 doz. 7 units, and 5 gross, 8 doz. 6 units.

SUBTRACTION OF COMPOUND NUMBERS.

Ex. 1. From ££17, 5s. 6d. 3qr., take £8, 10s. 9d. 2qr. £17, 5.s. 6d. Зqr. §201. Model.-2 from 3 leaves 8, $10<9$ " 2 " $8,14^{6} 0^{61}{ }^{6}$ 1; 9 from 18 leaves $9 ; 11$ from 25 leaves $14 ; 9$ from 17 leaves 8 . The remainder is $£ 8,14 \mathrm{~s} .9 \mathrm{~d}$. 1 qr .

Explanation.-As 9d. can not be taken from 6d., we add Is., that is 12 d ., to the minuend, and subtract 9 d . from 18 d . We then add 1s. to the subtrahend, and procced. See \$ $28,30$.

Ex. 2. From 501b. 6oz. 15 dwt . $19 \mathrm{gr} .$, take 101 b . 17 dwt . Rem. 401 b . 5 zz .18 dwt .19 gr .
3. From 151b. $15 \mathrm{gr} .$, take 12lb. 9oz. 10dwt. 12 gr .
4. From 10T. 10 cwt . 10 oz ., take 5T. 15cwt. 201b. 12 oz . 10 dr . Rem. 4T. 14cwt. 3qr. 41b. 13oz. 6dr.
5. From 6sq.mi. 2R., take 375A. 25P.

Rem. 5 sq.mi. 265A. 1R. 15 P .
6. Fiom $250 \mathrm{cu} . \mathrm{yd} .20 \mathrm{cu} . f \mathrm{ft} .875 \mathrm{cu}$.in., take $79 \mathrm{cu} . y \mathrm{~d} .25 \mathrm{cu}$. ft. 695 cu .in.
7. From $15 \mathrm{~T} .15 \mathrm{cwt} .3 q \mathrm{r} .15 \mathrm{lb}$., take $10 \mathrm{~T} .19 \mathrm{cwt}$.3 qr . 191b. Rem. 4T. 15cwt. 3qr. 211b.
8. From 10 hh d. 10 gal . 1 qt. 1 pt., take 9 hhd .33 gal . $3 q \mathrm{t}$. 3 gi.

Rem. 39gal. 2qt. 1 gi .
9. From 4 tuns, 1 pi. 1 hhd. 5 gal. $2 q t .3$ gi., take 2 tuns, 60 gal. 3qt. 3gi.
10. From 175 bu. 1pk. 3qt. 1pt., take 54 bu. 3pk. $2 q$ t.
, Rem. 120bu. 2pk. 1qt. 1pt.
11. From 27bu. 2pk. 1pt., take 13bu. 5qt.

Rem. 14bu. 1pk. Зqt. 1pt.
12. From 30 da. 10 hr . 15 min , take 17 da . 15 hr . 15 sec.
13. From 180°, take $74^{\circ} 14^{\prime} 45^{\prime \prime}$.

Rem. $105^{\circ} 45^{\prime} 15^{\prime \prime}$.
14. From 90°, take $35^{\circ} 41^{\prime} 15^{\prime \prime}$. Rem. $55^{\circ} 18^{\prime} 45^{\prime \prime}$.
15. From $100^{\circ} 17^{\prime} 30^{\prime \prime}$, take $90^{\circ} 25^{\prime} 45^{\prime \prime}$.
16. From 22T. 8cwt. 2qr. 201b., take 12T. 18cwt. 22 lb .

Rem. 9T. 10 cwt .1 qr . 23 lb .
17. From 16 hh . $24 \mathrm{gal} .3 q \mathrm{t} .2 \mathrm{pt} .$, take 14 hhd .37 gal . $3 q \mathrm{t}$. 18. From 236bu. 2pk. 5 qt. 1pt., take 17 bu. 2pk. 7 qt. 2 pt.

MULTIPLICATION OF COMPOUND NUMBFRS.

Ex. 1. Multiply £17, 5s. 6d. 3qr. by 15.
£17, 5s. 6d. 3qr.
15
$2 \overline{259,3 " 5 " 1 "}$
§202. Model. $-15 \times 3=45.45 q \mathrm{r} .=$ 11d. 1qr.; set down $1: 15 \times 6=90$, and $11=101.101 \mathrm{~d} .=8 \mathrm{~s} .5$ d.; set down $5: 15 \times 5=75$, and $8=83.83 s .=\mathfrak{L} 4$, 3s. ; set down $3: 15 \times 17=255$, and $4=259$. The product is $£ 259,3 \mathrm{~s} .5 \mathrm{~d} .1 \mathrm{qr}$.

Explanation.-See $\S \S 38,200$.
Ex. 2. Multiply $£ 53,10$ s. 9 d. $2 q$ r. by 4.
Prod. £214, 3s. 2 d.
3. Multiply $13^{\circ} 15^{\prime} 45^{\prime \prime}$ by 7 .
4. Multiply $25^{\circ} 30^{\prime} 45^{\prime \prime}$ by 10 . Prod. $255^{\circ} 7^{\prime} 30^{\prime \prime}$.
5. Multiply 501b. Goz: $15 d$ wt. 19 yr r. by 13.

Prod. 657lb. 4oz. 5dwt. 7 gr .
6. Multiply 12 lb .9 oz . 10 dwt .12 gr . by 16.
7. Multiply 5 T. $15 \mathrm{c} w \mathrm{t} .20 \mathrm{lb}$. 12oz. 10 dr. by 19.

Prod. 109T. 8 cwt . 3 qr. 17lb. 9 oz . 14 dr .
8. Multiply 2sq. mi. 200A. 2R. 20P. by 22.

Prod. 50sq. mi. 573A. 3R.
9. Multiply 3 cu. yd. $25 \mathrm{cu} . \mathrm{ft} .750 \mathrm{cu}$. in. by 25.

Prod. $98 \mathrm{cu} . \mathrm{yd}$. $14 \mathrm{cu} . \mathrm{ft} .1470 \mathrm{cu}$. in.
10. Multiply 9 hhd. 33 gal . 3 qt. 3 gi . by 21.
11. Multiply 2 tuns, 60 gal. 3qt. 3gi. by 24.

Prod. 53 tuns, 1 pi. 1 hhd .11 gal. 1 qt.
12. Multiply 25 hu .3 pk . 1 qt t. 1pt. by 29 .
13. Multiply 10 bu .1 pk . 4 qt t. by 35 . Prod. 363 bu .4 q t.
14. Multiply 10 da . 10 hr .10 min .10 sec. by 41.

Prod. 1 yr. 62da. 8 hr. 56 min .50 sec .
15. Multiply 17 da. 15 min . 15 sec . by 50 .

DIVISION OF COMPOUND NUMBERS.

Ex. 1. Divide $15^{\circ} 15^{\prime} 50^{\prime \prime}$ by 10 .
10) $15^{\circ} 15^{\prime} 50^{\prime \prime} \quad \S 203$. Model.- 10 in 15 , once, $1^{\circ} 31^{\prime} 35^{\prime \prime}$ with 5 over, set down 1 ; 10 in 315 , 31 times, with 5 over, set down 31: 10 in 350,35 times. The quotient is $1^{\circ} 31^{\prime} 35^{\prime \prime}$.

Explanation. -10 is contained once in 10 ; so that there are 5° undivided. These 5° are reduced to 300^{\prime}, and added to the 15^{\prime}, making 315 . In like manner, the 5^{\prime} undivided are reduced to $300^{\prime \prime}$, and added to the $50^{\prime \prime}$, making $350^{\prime \prime}$.

Ex. 2. Divide $£ 30,16 s .2 d .1$ 1gr. by 3.
3. Divide $£ 60,1 \mathrm{~s} .5 \mathrm{~d}$. by 4.
4. Divide 291b. 2oz. 2 dwt. 2gr. Wy \therefore

Quot. 5 lb. 10 oz .10 gr .
5. Divide 242lb. 5oz. 11 dwt. 16 gr . by 8.

Quot. 301b. 3oz. 13dwt. 23 gr .
6. Divide 448 lb . 10 oz . 14 dr . by 11.
7. Divide 32 'T. 2qr. by 15. Quot. 2T. 2cwt. 2qr. 201b.
8. Divide $52 \mathrm{sq} . \mathrm{yd}$. 5 sq. ft. 128 sq. in. by 20.

Quot. 2sq. yd. 5 sq. ft. 100 sq. in.
9. Divide $97 \mathrm{cu} . \mathrm{yd} .22 \mathrm{cu}$. ft. 80 cu . in. by 26 .
10. Divide 91 gal . 1qt. 1pt. by 34.

Quot. 2 سal. 2qt. 1pt. 2gi.
11. Divide 79 tuns, 1 qt. 1 gi. by 45 .

Quot. Itun, 1pi. 1hhd. 1gal. 1qt. 1pt. 1gi.
12. Divide 600 bu. 3 pk. $6 q$ t. by 60.
13. Divide 8 wk. 3da. 7hr. 43 min . 20 sec . by 70 .

Quot. 20 hr . 20 min .20 sec.
14. Divide $1150^{\circ} 31^{\prime} 15^{\prime \prime}$ by 75 .

Quot. $15^{\circ} 20^{\prime} 25^{\prime \prime}$.
15. Divide $1^{\circ} 41^{\prime} 40^{\prime \prime}$ by 100 .

16: Divide 57 T .19 cwt . 1 qr . 17 lb . 14oz. by 9 cwt . 1 qr. 171 lb . 10 zz .

57 T .19 cwt .1 qr. $171 \mathrm{~b} .14 \mathrm{oz} .=1855086 \mathrm{oz}$.
$9 \mathrm{cwt} .1 \mathrm{qr} .171 \mathrm{~b} .10 \mathrm{oz} .=15082 \mathrm{oz}$.
$.1855086 \mathrm{zz} . \div 15082 \mathrm{oz} .=123$.
§ 204. Model.-Reduce the dividend to oz. (§189). Reduce the divisor to or. (§ 189). Divide the dividend by the divisor. (§ 185). The quotient is 123.

Ex. 17. Divide 2941bu. by 45 bu. 3 pk . $6 q$ t. 1 pt .
Quot. 64.
18. Divide 97 T .11 cwt . 3qr. 11lb. 10oz. by 1T. 6cwt. $2 q \mathrm{r}$. 26 lb . 10 oz .
19. Divide $17 \mathrm{bu} .1 \mathrm{pk} .6 q \mathrm{t}$. by 2bu. 3pk. 5qt. Quot. 6 . 20. Divide 51A. 1R. 11P. by 1A. 1P.

Quot. 51.
21. Divide 10 tuns, 2hhd. 17gal. 2pt. by 39 gal. 6pt.
22. Divide £27, 2s. 6d. by 15 s . 6d. Quot. 35.

PROMISCUOUS PROBLEMS.

1. What is the least common multiple of 15,24 , and 27 ?
2. What is the least common multiple of 9,25 , and 45 ? L. C. M. 225.
3. What is the greatest common measure of 505,1111 , and 3434?
4. What is the greatest common measure of 1015,1260 , and 1330 ?
G. C. M. 35 .
5. What are the prime factors of 6105 ?
6. What are the prime factors of 4060 ?
7. Divide £113, 13s. 4 d. by 31.

Quot. £3, 13s. 4 d.
8. Divide 10 tuns, 1 pi. 17 gal . 2 pt. by 67 .
9. Divide 50 T. 4 cwt . $2 q \mathrm{r}$. 141b. by 23 cwt . 3qr. 17 lb .

147
10. Divide 1572 yd . by 32 yd . 3qr.

Quot. 48.
11. Multiply 25 oz . 8 dwt. 17 gr . by 100.

Prod. 2111b. 11oz. 10dwt, 20gr.
12. Multiply 21 da . 18 hr . 42 min . by 75.
13. Subtract 40 A. 3R. 25 P. from 79A. 15 P .

Rem. 38A. 30P.
14. Subtract 4 tuns, 1 pi. 1hhd. 25 gal. $3 q$ t. from 5 tuns, 1 qt. 15. Add $60 \mathrm{mi} ., 40 \mathrm{mi} .7$ fur. 39 rd ., and 19 mi . 1 rd .
16. Add $13^{\circ} 14^{\prime} 15^{\prime \prime}, 16^{\circ} 17^{\prime} 25^{\prime \prime}, 25^{\circ} 19^{\prime} 47^{\prime \prime}$, and $3^{\circ} 15^{\prime \prime}$.
17. Divide $\$ 1521808938$ by 234.

Quot. \$6503457.
18. Divide 14265 hh . by 45 hh .
19. Multiply 4327 bu. by 102.

Prod. 441354bu.
20. Multiply 47935 gal . by 275.

Prod. 13182125gal.
21. Subtract 2598328 fur. from 3002575 fur.
22. Subtract 187564329 gi. from 923465781 gi.

Rem. 735901452gi.
23. Add 2479A., 3580 A., 1358A., and 9745 A .
24. Add $£ 13575, \mathfrak{£} 23495, £ 9475$, and $£ 31525$.
25. Divide 82960332 by $84 . \quad$ Quot. 987265 ; Rem. 72.
26. Divide 82071 by 99 .

Quot. 829.
27. Multiply 24068 by 13579 .
28. Multiply 1020908 by 8979091 . Prod. 9166825834628.
29. Subtract 3987456002 from 4567398745 .
30. Subtract $246+357+1298+982$ from 3120 .
31. Add $20030405,910285,5821090$, and 9706845.

Sum, 36468625.
32. Add 123, 1234, 12345, 123456, 12345567, 12345678, and 123456789.

Sum, 137174192.
33. A. raised 125 bales of cotton, 517 bu . corn, 629 bu . wheat, and 119 bu. rye ; B., 217 bales of cotton, 865 bu. corn, 798 bu . wheat, and 143 bu . rye ; C., 94 bales of cotton, 424 bu . corn, 517 bu . Wheat, and 77 bu . rye; and D.,

111 bales of cotton, 512bu. corn, 558bu. Wheat, and 98bu. rye. How much of each article did they all raise?
34. A farmer went to towi with $\$ 100$, and spent $\$ 9$ for molasses, $\$ 13$ for sugar, $\$ 11$ for coffee, $\$ 8$ for rice, $\$ 17$ for dry goods, and $\$ 25$ for leather. How much money had he left?

Ans. \$17.
35. Bought 47 acres of land at $\% 19,5$ horses at $\$ 125,10$ head of cattle at $\$ 21,14$ sheep at $\$ 3$, and a two-horse wagon for $\$ 65$; what did they all cost? Ans. $\$ 1835$.
36. Sold 75 firkins of butter for $\$ 1350$; how much was that a firkin?
37. What number is that, to which if $215,379,124,212$, and 399 be added, the sum will be 1525? Ans. 166.
38. What number is that, from which if the sum of 245 , $379,124,212$, and 399 be subtracted, the remainder will be 1525 ? Ans. 2884.
39. What number is that, by which if twice 19 be multiplied, the product will be the difference between 4127 and 2750?
40. What number is that, by which if 4235 be divided, the quotient will be 77?

Ans. 55.
41. A miller has 5 bins, one of which holds 43 bu .3 pk . 5 qt .; the second, 39 bu .1 pk .3 qt .; the third, 45 bu . 1qt. 1pt.; the fourth, 53bu. 2pk.; the fifth, $34 b \mathrm{bu} .3 \mathrm{pk}$. 1pt. a what is their united capacity? Ans. 216bu. 2pk, 2qt.
42. How much time elapsed between Jan. 20th, 1883, and May 25th, 1861 ?
43. Bought 4 lots of land, containing 3R. 2TP. each; how many A. did I buy? Ans. 3A. 2R. 28P.
44. A wine merchant has 269 gal . 2 gi. of wine in 30 equal vessels; how much wine is there in each ressel?
45. Reduce $£ 40,19 \mathrm{~s} .11 \mathrm{~d}$. 3 qr . to qr.
46. Reduce 111b. 11oz. 19dwt. 23gr. to gr. Val. 69119 gr . 47. Reduce 31 b . 11 亏. 73.2 2. 19 gr . to gr. Val. 23039gr. 48. Reduce 2 T. 19 cwt . 3 qr . $24 \mathrm{lb}, 15 \mathrm{oz}$. 15 dr . to dr.
49. Reduce 4L. 2 mi . 7 fur. 35 rd . to rd. Val. 4795 rd .
50. Reduce $12 y d .2 \mathrm{ft} .11 \mathrm{in}$. to in. Val. 467 in .
51. Reduce 2sq. mi. 600A. 3R. 35P. to P.
52. Reduce 25 sq . yd. $8 \mathrm{sq} . \mathrm{ft} .100 \mathrm{sq}$. in. to sq. in.
53. Reduce 21 sq. mi. 250A. 2 R . to R. Val. 54762 R .
54. Reduce $5 \mathrm{cu} . \mathrm{in} .20 \mathrm{cu} . \mathrm{ft} .1600 \mathrm{cu}$. in. to cu. in.
55. Reduce 3 tuns, lpi. 1hhd. to lhd. Val. 15 hhd .
56. Reduce 3 khd . 60 gal . 3 q t. 1 pt t to pt. Val. 1999 pt .
57. Reduce 2 gal . $1 \mathrm{qt}$. 1pt. 3 gi . to gi.
58. Reduce 5bu. 3pk. 7qt. 1pt. to pt. Val. 383pt.
59. Reduce 3C. 75yr. 300da. to da.
60. Reduce 4 da. 10 hr . 25 min . to sec.
61. Reduce $25^{\circ} 10^{\prime} 15^{\prime \prime}$ to sceonds.
62. Reduce 2 rm . 15 qr . 12 sh . to sh .

Val. 137175 da.
63. Reduce 4 score and 5 to units.
64. Reduce 1000 qr. to $£$.
65. Reduce 6000 gr . to Ib. Troy.

Val. 90615".
Val. 1332sh.
66. Reduce 600000 dr . to T.
67. Reduce 1000 rd , to mi . Val. 3 m . 1 fur.
68. Reduce 2000 sq. in. to sq. yd.
69. Reduce 200000 sq. rd. to sq. mi.
70. Reduce 60000 cu . in. to cu. yd.
71. Reduce 100 gi . to gal.

Val. 3gal. 1pt.
72. Reduce 500 qt t. to hhd.
73. Reduce 100 pt . to bu.

Val. 1bu. 2pk. ${ }^{2 q}$ t.
74. Reduce 4000 sec. to hr .

Val. 1hr. 6min. 40sec.
75. Reduce 200 hr . to wk.
76. Reduce $4000^{\prime \prime}$ to degrees.

Val. $1^{\circ} 6^{\prime} 40^{\prime \prime}$
77. Bought 3 firkins of butter at 20 ct . per 1 lb ., 20 qt. molasses at $\$ 1$ per gal., 3 stone of potatoes at 3 ct . per 1 b ., and 9801 l . flow at $\$ 8$ per bbl.; what did they all cost?
78. Bought 5doz. Arithmetics at 30 ct. apiece; sold them all for $\$ 27$: how much apiece did I gain or lose?
79. A owes B for 500 lb . of salt fish at $\$ 8$ a quintal; B owes A for 3 bbl . flour at $\$ 7$ a bbl., 10 bu . corn at 70 ct . per bu., and 5bu. rye at 80 ct . per bu. : how does their account stand?

A owes B $\$ 18$.
80. From 500 subtract the sum of 225,120 , and 75 ; divide the remainder by the difference between 1000 and 960 ; multiply the quotient by 17 ; and add 16 to the product.

Sum, 50.
81. Find the sum of the product of 88 and 11 , and the quotient of 88 by 8 .
82. A man has $1184 b u$. of wheat and 468 bu . of corn, which he wishes to pack in equal bags as large as possible. How many bushels will each bag hold ; and how many bags will be required? Ans. 46 u., and 413 bags.
83. What is the value of $85+77-64+6 \times 19-132 \div \frac{4}{4}$?
84. What is the value of $15498 \div 54+41 \times 63-27 \times 55$?
85. Find the least common multiple of $4,44,132$, and 792.
86. Find the greatest common measure of $4,44,132$, and 792.
G. C. M. 4.
87. Two men travel in the same direction from the same place, one 40 mi . a day, the other 33 mi . a day; how far apart are they in 7 days?
88. Two men travel in contrary directions from the same place, one 40 mi . per day, the other 33 mi . per day; how far apart are they in 7 days? Ans. 511 mi .
S9. If 10 persons use a barrel of flour in 57 days, how long will a barrel last one person?

Ans. 570 da.
90. What is the sum of 3 numbers, of which the first is $2 S$, the second 8 times the first, and the third one serenth of the second?
91. The difference is one hundred thousand four hundred and seventy-six, the minuend is one million; what is the subtrabend?

Ans. 899524.
92. The minuend is one hundred thousand, the subtrahend is sixty-seven thousand seven hundred and forty-four; what is the remainder?

Ans. 32256.
93. The subtrabend is ce... inndred thousand and fortynine, the remainder is ninety-nive thousand two humdred and seventy-eight; what is the minuend?
94. The multiplicand is thirty-six thousand seven hundred and seven, the multiplier is cighty thousand and one; what is the product?

Ans. 2936596707.
95. The multiplier is eight horadred and four, the product is sixty-one thousand nine hundred aud eight; what is the multiplicand?

Ans. 77.
96. The product is cighteen billions two hundred and twenty thousand, the multiplicand is two thousand two hundred; what is the multiplier?
97. The divisor is one hundred and twenty-five, the dividend is nine huudred and eighty-seren thousand six hundred and trenty-five; what is the quotient?

$$
\text { Ans. } 7901 .
$$

98. The dividend is thirty-four thousand eight hundred and forty-eight, the quotient is one hundred and thir-ty-two ; what is the divisor?

Ans. $26 t$.
99. The quotient is thirty thousand and seventy, the divisor is seven hundred and eight; what is the dividend?
100. What cost 18 rm . of paper at $\$ 4,3 \mathrm{doz}$. Arithmetics at $\$ 6$ a dozen, and 24 Algebras at $\$ 12$ a dozen ?

ALIQUOT PARTS.

§205. An aliquot fraction is a simple fraction whose numerator is 1. Thus, $\frac{1}{3}, \frac{1}{3}, \frac{1}{5}, \frac{1}{10}$, $\frac{1}{30}$, are aliquot fractions.

An aliquot part of a number is a part denoted by an aliquot fraction. Thus, 3 is an aliquot part of $12,10 \mathrm{~s}$. is an aliquot part of $\in 1,20 \mathrm{da}$. is an aliquot part of 2 mo .

Fix. 1. What is the cost of 5 A .3 R .25 P . of land at $\$ 45$. 50 per Λ.?
2) $\$ 45.50=1 \mathrm{~A}$.
$\frac{5}{\omega 227.50}=5 \mathrm{~A}$.
$\left.\begin{array}{l}\text { 2) } \quad 22.75=2 \mathrm{R} . \\ \text { 2) } 11.375=1 \mathrm{R} .\end{array}\right\} 3 \mathrm{R}$.
4) $\left.\quad \begin{array}{rl}5.687 & =20 \mathrm{P} . \\ 1.421 & =5 \mathrm{P} .\end{array}\right\} 25 \mathrm{P}$.
$\$ 268.733$
§ 206. Model.-5A. cost 5 times as much as 1A.; hence, multiply the cost of 1 A . by 5 . (§ 183). 2R. is one half of 1 A.; hence, divide the cost of 1 A . by 2 . (§ 185). 1 R . is one half of 2 R.; hence, divide the cost of $2 R$. by 2 . 20 P . is one half of 1 R . ; hence, divide the cost of 1 R . by 2 . 5 P . is one fourth of 20 P .; hence, diride the cost of 20 P . by 4 . Add the several costs toge ther. The sum is \$268.733: hence, 5A. 3R. 25P. cost $\$ 268.733$.

Fx. 2. What is the cost of 17 T . 15 cwt . 3 qr . 101b. of iron at $\$ 36$ per T.?

Ans. \$040.53.
3. What is the cost of 10 bu .3 pk . 4 qt . Ipt. of grass sech at $\$ 8$ per bu.?
4. What is the yield of 45 A .3 P .15 P . of wheat land at 20bu. per A.? Ans. 916.875 bu.
5. What is the value of 21b. $903.10 \mathrm{dwt}^{2}$. 6 gr . of plate at $\$ 15$ per lb.?

Aise, $\$ 41.88$.
6. What is the value of 5 T .10 ewt . ${ }^{2} \mathrm{qr}$. 5lb. of hay at $\$ 25$ per ? ?
7. What is the cost of 15 bu. 1 pk . 5 q t . of dried peaches at So per bu?

Ans. \$92.4.375.
8. What is the cost of 4 gal . 1yt. Ipt. of wine at $\$ 4$ per gal.?

Ans. $\$ 17.50$.
9. What is the cost of 37 rd . $-\frac{3}{4} \mathrm{yd}$. of fencing at $\$ 3.50$ per rd.?
10. What is the cost of 7 yd .2 ft . 6 in . of cloth at $\$ 7.25$ per yd.?

Ans. $\$ 5.791+$.
11. What is the cost of $30 \mathrm{sq} . y \mathrm{~d}$. 1sq.ft. 72sq.iu. of painting at 8.75 per sq.yd.?

Ans. \$22.875.
12. What is the cost of 10 cd . $80 \mathrm{cu} . \mathrm{ft}$. of wood at $\$ 2.50$ per cd.?
13. What will a man carn in 9 mo. 10 da. at $\$ 25$ per mo.?

Ans. \$233.53 ${ }_{3}$.
14. What will 10 cd . of wood cost at $\$ 2.62 \frac{1}{2}$ per cd.?
2) $\$ 10=$ cost of 10 cd . at $\$ 1.00$ per cd.

$\overline{\$ 20}={ }^{2}$	"	"	2.00	"	"
4) $5=6$	"	"	. 50	"	"
$1: 25="$	"	"	.123	"	"
\$26:25 $=6$		"	2.621	"	

$\$ 207$. Monel.- 10 cords at $\$ 1$ would cost $\$ 10$. The cost at $\$ 2$ is twice the cost at $\$ 1$; hence, multiply the cost at $\$ 1$ by 2 . The cost at 50 ct . is one half of the cost at $\$ 1$; hence, divide the cost at $\$ 1$ by 2 . The cost at 121 ct. is one fourth of the cost at 50 ct .; hence, divide the cost at 50 ct . by 4. Add the several costs together. The sum is $\$ 26.25$: hence, 10 cords at $\$ 2.62 \frac{1}{2}$ cost $\$ 2.25$.
15. What is the cost of 360 bu . of wheat at $\$ 1.37 \frac{1}{2}$ per bu.? 16. What is the cost of 15 yd . of cloth at $£ 1,4 \mathrm{~s} .9 \mathrm{~d}$. per yd.?

Ans. £18, 11s. 3d.

CONTRACTION IN MULTIPLICATION.

Ex. 1. Multiply 279 by $33 \frac{1}{3}$.
3)27900 9300
§208. Model.-Annex 2 naughts to the multiplicand :-divide the result by 3 . The product is 9300 .
Explanation.-See §63. When the multiplier is an aliquot part of any power of ten, we may abridge the work by multiplying by this power of ten ($\$ 56$) and dividing the result by the denominator of the aliquot fraction.

Ex. 2. Multiply 72 by $12 \frac{1}{2}$.
Prod. 900.
3. Multiply 72 by $16 \frac{2}{3}$.
4. Multiply 77 by $14 \frac{2}{7}$.

Prod. 1100.
5. Multiply 63 by $1_{\frac{1}{9}}$.

Prod. 70.
6. Multiply $68 t$ by $166 \frac{2}{3}$.
7. Multiply 273 by $333 \frac{1}{3}$.

Prod. 91000.

CONTRACTION IN DIVISION.

Ex. 1. Divide 2000 by 142 .
2000 §209. Monel.-Multiply the dividend by 7 7:-divide the product by 1000 . ($\$ 65$.) The $\overline{14,000}$ quotient is 14.
Expianation.-See $\S 68$. When the divisor is an aliquot part of any power of ten, we may abridge the work by multiplying the dividend by the denominator of the aliquot fraction and dividing the product by the porver of ten. (\$65.)

Ex. 2. Divide 150 by $33 \frac{1}{3}$.
Quot. 4.5.
3. Divide 250 by $14 \frac{2}{7}$.
4. Divide 1500 by $166 \frac{2}{3}$.

Quot. 9.
5. Divide 245 by $12 \frac{1}{2}$.

Quot. 19.6.
6. Divide 1375 by $11 \frac{1}{9}$.
7. Divide 2468 by $333 \frac{1}{3}$.

Quot. 7.404.

PROMISCUOUS PROBLEMS.

1. Find $246+2468+24650+20468+24068+24608$. Sum, 96538.
2. Find the sum of one half, three fourths, tro fifths, and one sixth. Sum, $1_{\frac{70}{60}}$.
3. Add 315, 31.57, 3157, 3.157, and . 3157 .
4. A farmer raised $\$ 357$ morth of corn, $\$ 475.50$ worth of wheat, $\$ 123.75$ worth of rye, and $\$ 446.37 \frac{1}{2}$ worth of other products; what was the total value of the products of his farm?

Aus. \$1402.62 ${ }_{2}^{2}$.
5. A's gold mine yielded $\frac{1}{2} 1 \mathrm{~b}$. in one week, I 's yielded 7 oz., and C's 125.5 dwt .; how many ounces did the three mines yield?

Ans. 19.2750 z .
6. A tobaceo planter raised from one field 7 ewt. 1 qr. 20 1b., from an other 10 cwt . 3qr. 101b., and from an other 15 cr t. 15 lb .; what amount did he raise in all?
7. A man sold 14 horses at $\$ 125.75$ a head, and 25 hear of cattle at $\$ 19.87 \frac{1}{2}$ a head; what did he receive for them all?

Ans. \$22.57.375.
8. Find the value of $135-1357+13570-3571-3157$.

$$
\text { Val. } 5620 .
$$

9. What is the difference between thirteen fourteenths and fourt en fil'teonths?
10. From 500.05 take $65.556 . \quad$ Rem, 434.494.
11. A dealer sold a lot of bacon for $\$ 2425.16^{3}$, which cost him $\$ 2177.43$ a ; what did he gain by the trade?
12. Find the difference in R . between $\frac{1}{6} \mathrm{~A}$, and 27.5 P .
13. Washington was born Feb. 22, 1732, and died Dec. 14, 1799 ; what was his age? Ans. 67 yr .9 mo . 22 da.
14. A gave B 2501b. of beef at 8ct. for 331b. of leather at 60 ct .; how does their account stand?

Ans. B owes 1 noct,
15. What is the product of 7903×3907 ?
16. Multiply three eighths by two and two thirds.

Prod. 1.
17. Find the value of 19.275×21.725. Val. 407.184375.
18. A planter who works 47 hands raises to each hand ten bales of cotton averaging 4451 b .; how much does his cottou yield him at 9ct. per lb.?
19. A farmer owns 4 farms containing each 47 A . 25 P .; what do the four contain?

Ans. 188A. 2R. 20P.
20. A jeweller has 25 gold rings weighing $3 \frac{1}{2}$ dwt. each; how many oz. do they all weigh ?

Ans. $4 \frac{3}{5} \mathrm{oz}$.
21. Bought 22gal. of molasses at 75ct., 2471b. of sugar at $16 \frac{2}{3} \mathrm{ct}$., 175 lb . of rice at $6 \frac{1}{4} \mathrm{ct}$., and $57 \frac{1}{2} \mathrm{lb}$. of coffee at $18 \frac{3}{4} \mathrm{ct} . ;$ what was my bill?
22. Find the valuc of $25000 \div 125+1475 \div 25$. Val. 259 .
23. What is the quotient of three fourths by seventeen thirty-thirds?

Ans. $1 \frac{31}{65}$.
24. What is the value of $17.375 \div 2.5-9.63 \div 3.3$?
25. In 39298lb. of flour, how many bbl.? Ans. $200 \frac{1}{2} \mathrm{bbl}$.
26. A father divided 778A. 3R. 21P. equally among his seven children; what was each child's share?

Ans. 111A. 1R, 3 P .
27. What is the cost of 273 bu . of wheat at $\$ 1.66 \frac{2}{3}$ per bu? ?
28. What is the cost of 29 rm . of paper at $\$ 2.75$ per rm.?

Ans. $\$ 79.75$.
29. What part of 10 da . is 7 hr . 15 min ?

Ans. $\frac{29}{060}$.
30. What part of 5 gal .1 qt . is 3 qt . 3 gi i ?
31. Bought $\frac{4}{5}$ of 17 T . 3 qr . of iron at 5 ct . per lb .; what did I pay? Ans. $\$ 1363$.
32. In 31b. Avoirdupois, how many oz. Troy?

Ans. 43.75 oz .
33. What part of 11 lb . Aroir. is 11 b . Troy?
34. How many cubic inches in 40qt. Wine Measure?

Ans. 2310 cu.in.
35. What cost 3 doz . Arithmetics at $\$ 2.75$ per doz., 17 slates at 14 ct ., 5 gross of steel pens at $93 \frac{3}{4} \mathrm{ct}$. per gross, and 300 slate pencils at $31 \frac{1}{4}$ et. per hundred?
36. Bought 156 bbl . of flour for $\$ 936$, and sold the same at $\$ 8.45$ per bbl.; what did I gain?
37. In 1bu., how many qt. Wine Measure?

Ans. 37.236 qt .
38. How much heavier is a pound of feathers than a pound of gold? Ans. 1240 gr .
39. Virginia contains 61352sq.mi.; North Carolina, 55500 ; South Carolina, 28000; Georgia, 58000; Florida, 59268; Alabama,50722; Mississippi,47151; Louisiana, 41346 ; Texas, 325520 ; Arkansas, 52198 ; Missouri, 65037; Tennessee, 44000; and Kentucky, 37680. What is the area of the Confederate States of America? 40. In 1lb. Troy, how many oz. Avoir.?

Ans. $13.0281+\mathrm{oz}$.
41. What will $33 \frac{1}{2} y d$. of cloth cost at $\$ 4.75$ per $y d . ?$ Ans. \$159.125.
42. What will 17 bbl . of flour cost at $\$ 7.875$ per bbl .?
43. What will 66 bu . of wheat cost at $\$ 1.125$ per bu.?
44. A man borrowed $\$ 189.75$, and paid at one time $\$ 37.375$, at an other $\$ 23.625$, and at an other $\$ 19.4375$; how much does he still owe?

Ans. \$109.3125.
45. A lady bought a silk dress for $\$ 21.575$, a lace mantle for $\$ 15.50$, a pair of cloth gaiters for $\$ 3.25$, and a bonnet for $\$ 9.625$; what did they all cost?
46. If $25 y$ d. of cloth cost $\$ 85.50$, what does 1 yd. cost?

Ans. \$3.42.
47. What will 3651 lb . of flour cost at $\$ 4$ per hundred ?

Ans. \$14.60.
48. How many working days are there in a common year?
49. If a man receives $\$ 2000$ a year, how much is that a day? Ans. $\$ 5.479$.
50. Bought 5 bu. at $\$ 1.37 \frac{1}{2}$ per bu., and sold them at 5 ct . per qt. Wine Meásure ; how much did I gain?

Ans. \$2.434t.
51. How many, steps of 2 Sin . each, does a soldier take in marching 5 miles?
52. How many bottles containing 1 qt. $\frac{1}{2}$ gi. each, can be filled from a hogshead of French Brandy?

Ans. 237.295 bottles.
53. If a family use 15bbl. of flour in a year, how much is that a day?

Ans. 8.05 lb .
54. If a man travel 29 mi . 7 fur: 15 rd . per day, how far will he travel in 5 wk . if he rest on Sunday?
55. A lady went shopping with $£_{\frac{5}{9}}$, and spent $\frac{1}{3}$ of 14 s .; how much had she left? Ans. $6 \frac{1}{9}$ s.
50. How many days are there from Jan. 17 to April 6 ?

Ans. 79da.
57. Sold one load of hay weighing 1.1T., an other weighing $1 \frac{5}{6} \mathrm{~T}$. , and a third weighing 17.3 c ewt.; what did the three loads weigh?
58. Bought $\frac{1}{2}$ of $\frac{1}{3}$ of an acre in one lot, 49 P . in an other, and $\frac{1}{3}$ of 10 R . in an other; what did the three lots cost at $\$ 69.6875$ per A.?

Ans. $\$ 91.029+$.
59. What will 25.001 b . of corn cost at 40 ct . per bu.?

Aus. \$18.21.
60. What will 10001 l . of wheat cost at $\$ 1.37_{2}^{\frac{1}{2}}$ per bu?
61. If thu of wheat will make 45 lb . of flour, how many, hbl. will 1500 lb . make?

Ans. 5.74 bbl .
62. How many secouds were there in the winter of $18.59-60$? Ans. 7862400 sec.
63. How many minutes were there in the summer of 1860 ? 64. How many aeres of land at $\$ 1$ por sq.jd. can be bought for $\$ 15000$?

Ans. 3.099A.
65. What will 200 mi . of Telegraph wire cost at 10 ct . per yd.?

Ans. $\$ 35200$.
66. How many pounds of flour in T5bbl.?
67. What is the difference in lecight between a man 5 ft . 11 in . high, aud a horse 16 hands high? Ans. Tin.
(88. Bought 101b. of rhubarb at $\$ 6.50$ per 1b. Avoir., and sold it at 50 ct . per oz. Troy; what did I gain?

$$
\text { Ans. } \$ 7.916 .
$$

69. What cust 2127 ft . of lumber at $\$.8375$ per hundred? 70. What cost 37560 bricks at $\$ 7.75$ per thousand?

Ans. \$291.09.
71. What cost 17 firkins of butter at 18 ct. per lb.?

Ans. \$178.50.
72. What cost 5.5 stone of potatoes at 1.5 ct . per $1 \mathrm{~b} . ?$
73. What decimal fraction is equal to $62 \frac{1}{2} \div 129$?

Ans. . $484496+$.
74. A man dying left $\$ 27000$ to be divided so that his widow should have one third of it, each one of 4 sons one seventh of the remainder, and each one of 5 daughters one fifth of what was left; what was each daughter's share?

Ans. \$1542.857.

75. A druggist having bought 60 gal . of oil for $\$ 97.50$, lost 6.25 gal . by leakage, and sold the remainder at $\$ 2.125$ per gal.: what did lic gain?
76. A merchant bought two bales of̂ domestic, containing each 20 bolts of 33 yd . at 13.25 ct . per yd.: what did he pay?

Ans. \$174.90.
77. Bought 300 bbl . flour at $\$ 6.75$ per bbl.; sold one third of it at $\$ 7.375$ per bbl., one half of the remainder at $\$ 7.9375$ per bbl., and the rest at $\$ 8.50$ per bbl. : how much did I gain?

Ans. §356.25.
78. What will 2250 bu. corn cost at $\frac{5}{8}$ of a dollar per bu.?
79. A gentleman's house cost him four times as much as his furniture, and both together cost $\$ 4435$; what did his furniture cost? Ans. \$887.
80. A grocer had 7 cwt . 3qr. of sugar, and sold at different times $3 \frac{1}{3}$ crrt., $3 \frac{1}{3} q r$., and 127 lb .: how many 1 b . has he remaining?

Ans. $231 \frac{1}{3} \mathrm{lb}$.
81. A planter sold 15 bales of catton averaging 445.5 lb . at 9 ct . per lb., and with the proceeds bought land at $\$ 21.25$ per A.: how much did he buy?
82. If $4 \frac{3}{4} \mathrm{y}$ d. of cloth cost $\$ 12 \frac{5}{9}$, what will lyd. cost?
83. What cost 29 A . 1R. 18 P . of land at $\$ 45.625$ per A.?

Ans. $\$ 1339.664+$.
84. What cost 9 T. 16 cwt . 15 lb . of iron at $\$ 37.75$ per T.?
85. A man left $\frac{1}{2}$ of his estate to his wife, $\frac{1}{3}$ of the remainder to his son, and the remaining $\$ 2500$ to his daughter: what was his estate?

Ans. $\$ 7500$.
86. If $16 \frac{1}{2}$ days' work cost $\$ 19.75$, what will $3 \frac{1}{4}$ days' work cost?

Ans. $\$ 3.89+$.
87 . What must I pay for $6 \frac{3}{1} \mathrm{lb}$. of butter at 35 ct . per 1 lb ., $12 \frac{1}{2}$ doz. eggs at 15 ct . per doz., 10 chickens at $18 \frac{3}{4} \mathrm{ct}$. apiece, and 30 cucumbers at 10 ct . per doz.?

K
161
88. If 1 bbl . of tar cost $\$ 3.875$, what will 17 bbl . cost?

Ans. \$65.875.
89. What cost 2471 b . dried blackberries, at 15 ct . per 1 l. .?

Ans. \$37.05.
90. What will 1001 lb . of coffec cost at 61b. to the dollar?
91. How many dollars will pay for 15 pieces of French calico, each containing 27 yd ., at 1.2 fr . per yd.?

Ans. \$90.396.
92. How many dollars will pay for 75 gross of Gillott's pens at 3s. 6d. per gross? Ans. §63.525.
93. What will 45 bu . corn cost at $5 \frac{1}{2}$ dimes per bu.?
94. What will 727 lb . salt cost at $\$ 1.25$ per bu.?

Ans. \$18.175.
95. What will 3bbl. flour cost at \$.05 per lb.? Ans. \$29.40. 96. How many bu. of corn can be hauled by a team which can haul just 50 bu . of wheat?
97. John's height is 3 cubits and a span ; his pony is 14 hands high ; what is the difference of their heights?

Ans. 7in.
98. How many ft . of water is drawn by a vessel which can not sail in less than 3 fathoms 2 feet? Ans. 20 ft .
99. What will 1280 cu.ft. of wood cost at $\$ 1.75$ per cord ?
100. What should be paid for 570 bu . of corn, at $\$ 2.50$ per bbl.?

Aus. \$285.
101. A merchant boright 21 pieces of cloth, each containing 41 yards, for which he paid $\$ 1260$; he sold the cloth at $\$ 1.75$ per yd.: did he gain or lose by the bargain?

Ans. He gained \$246.75.
102. A man receives $\frac{3}{5}$ of his income, and finds it equal to $\$ 3724.16$: how much is his whole income?
103. If 322 books cost $\$ 371.91$, what will 248 books cost at the same rate?

Ans. \$286.44

RATIO.

§210. The ratio of one number to an other of the same denomination is the quotient of the second divided by the first. Thus, the ratio of 3 to 12 is 4 ; the ratio of 5 ft . to 15 ft . is 3 ; the ratio of $\$ 17$ to $\$ 8$ is $\frac{8}{17}$.
$\S 211$. Since the two numbers compared are necessarily of the same denomination, every ratio is an abstract number. (§ 185.)
§212. Of two numbers compared, the first is called the antecedent, the second is called the consequent, and botin together are called the terms of the ratio. Thus, in the first ratio above, 3 is the antecedent, 12 is the consequent, and 3 and 12 are the terms.
§213. A ratio is usually denoted by a colon placed between the tro terms. Thus, $3: 12$ is the ratio of 3 to 12 ; so also, 5 ft . : $15 \mathrm{ft} .=3 ; \$ 17: \$ 8=\frac{\mathrm{s}}{17}$.
§ 214. The ratio of two numbers of the same nature but of different denominations may be found by first reducing them to the same denomination. Thus, 3 ft . : $5 \mathrm{yd} .=5$; 5ct. : $\$ 1=20$.
§215. The ratio of two numbers of different natures can not be found. Thus, 3 ft . has no ratio to 3 gal .

Ex. 1. What is the ratio of 3 to 6 ?
Ans. 2.
2. What is the ratio of 10 to 75 ? Ans. 7.5.
3. What is the ratio of 27 to 9 ?
4. What is the ratio of 446 to 1338 ?
5. What is the ratio of $\$ 97$ to $\$ 485$?

Ans. 3.
Ans. 5.
6. What is the ratio of 27 qt . to 9 qt .?
7. What is the ratio of $3 q \mathrm{t}$. to 5 gal.?

Ans. 6.6.

8. What is the ratio of 7 fur. to 11 mi ? Ans. 12.57142.
9. What is the ratio of $£ .5$ to 15 s .?
10. What is the ratio of $\frac{1}{2}$ to $\frac{7}{5}$?

Ans. 1.75.
11. What is the ratio of 3.75 to 11.25 ?

Ans. 3.
12. What is the ratio of $5 \frac{1}{2}$ to $17 \frac{3}{4}$?
13. What is the ratio of $3 \frac{1}{4} \mathrm{oz}$. to $1 \frac{1}{4} \mathrm{lb}$. Aroir.? Ans. $6 \frac{2}{13}$.
14. What is the ratio of 45 min . to $\frac{1}{4} \mathrm{hr}$? Ans. $\frac{2}{3}$.
15. What is the ratio of $1.25 \mathrm{cu} . \mathrm{ft}$. to 2.5 cu .in.?
16. What is the ratio of $\frac{3}{4} \mathrm{~A}$. to 15 P ?

Ans. 125.
17. What is the ratio of 1 hh . to $25 \mathrm{gal} . ?$ Ans. . $3668+$.
18. What is the ratio of 1.5 cubits to 65 inches?

SIMPLE PROPORTION.

§216. A proportion is an equality of two ratios. Thus, the two ratios, $5: 10$, and $3 \mathrm{in} .: 6 \mathrm{in}$., form a proportion.
§217. A proportion is denoted by a double colon between the two ratios, or by a sign of equality between them.Thus, $5: 10:: 3 \mathrm{in}$. : 6 in ., read, 5 is to 10 as 3 in . is to 6 in . Or, $5: 10=3 \mathrm{in}$. : 6 in ., read, the ratio of 5 to 10 is equal to the ratio of 3 in . to 6 in .
§ 218. The first two terms of a proportion are called the first couplet; the last two are called the second couplet:the first and third terms are called the anteccdents; the second and fourth are called the consequents :-the first and fourth terms are called the extromes; the second and third are called the means.

Also, the fourth term is called a fourth proportional to the other three: and, when the means are equal to each other, either mean is called a mean proportional between the two extremes.
§219. In every proportion, the product of the extremes is equal to the product of the means.

For, if $3: 6:: 7: 14,6 \div 3=14 \div 7$, or $\frac{6}{3}=\frac{12}{7}$, multiplying both terms of the first fraction by 7 , and both terms of the second by 3 , we have $\frac{6 \times 7}{21}=\frac{3 \times 14}{21}$, or $6 \times 7=3 \times 14$.
§220. This property enables us to find any term of a proportion when the other terms are given.

If the two means and either extreme are given, to find the other extreme, we divide the product of the means by the given extreme.

If the two extremes and either mean are given, to find the other mean, we divide the product of the extremes by the given mean.

Ex. 1. lst Term : $6:: 5: 15$, what is the first term?
2. 7 : 2nd Term .. 4 : 70, Ans. 2.
2. $7: 2$ nd Term :: $14: 70$, what is the second term?

Ans. 35.
3. $5 \frac{1}{2}: 22:: 3$ rd Term $: 40$, what is the third term?
4. $8: 1.6:: 50: 4$ th Term, what is the fourth term?

Ans. 10.
5. $15: 1.875:: 3 \mathrm{rd}$ Term : 5, what is the third term?

Ans. 40.
6. $2 \frac{1}{2}: 2$ nd Term $:: 7 \frac{1}{2}: 12 \frac{1}{2}$, what is the second term? 7. 1st Term : $1_{\frac{1}{1}}:: \frac{2}{3}$ of $\frac{4}{5}: 17$, what is the first term?

Ans. $\frac{2}{51}$.
8. $29: 2$ nd Term $:: 17: 49$, what is the second term?

Ans. $83 \frac{10}{1 \frac{1}{7}}$.
9. $15: 18:: 3$ rd Term : 24, what is the third term? 10. $2 \frac{1}{2}: 3 \frac{1}{2}:: 4 \frac{1}{2}: 4$ th Term, what is the fourth term?

Ans. 6.3.
§ 221. Whichever term is required, however, the given terms may always be arranged in the first, second, and third places, so that the work shall consist in finding a fourth proportional to the three given terms. Thus,

The first question would become, $15: 5:: 6:$ Ath Term;
The second, $14: 70:: 7: 4$ th Term;
The third, $12: 5 \frac{1}{2}:: 40: 4$ th Term.
In finding a fourth proportional to three concrete numbers, the first two terms must be of the same denomination, and this common denomination must be canceled before the operation is performed. In speaking, hereafter, of the first or the second term, we will always mean the number of ab. stract units in such term.

Ex. 11. Find a fourth proportional to 3in., 7in., and $\$ 12$.

§~n?. Model. - Multiply the third term by the secoud. (§183). Divide the product by the first term. ($\$ 185$). The fourth term is $\$: 8$.
Explanation.-The necessity of considering the first. two terms abstract, is evident from the fact that $\$ 12$ can. not be multiplied by 7 in., neither can $\$ 84$ be divided by 8 in.

Rule.-Multiply the third term by the second, and rlivide the product by the first.

Or, Multip? ${ }^{\prime}$ the third term by the ratio of the first to the second.

Ex. 12. Find a fourth proportional to $15 y d ., 25 y d .$, and 10da.
13. Find a fourth proportional to $\$ 5, \$ 75$, and $\$ 40$.
14. Find a fourth proportional to 7 da., 15da., and 82,63 . 9d.

4th T'Term, £5, $2 \frac{1}{7} \mathrm{~d}$.
15. Find a fourth proportional to $5 \frac{1}{5} q \mathrm{t} ., 14 \mathrm{qt}$., and $\$ 17.75$. 16. Find a fourth proportional to 3 pk., 2bu., and $\$ 7.50$.

4th Term, \$20.
17. Find a fourth proportional to $7.7,4.3$, and 14 s . 4th Term, 7s. 9d. $3 \frac{3}{12} \mathrm{qr}$.
18. Find a fourth proportional to $3 \frac{3}{4}, 7 \frac{3}{4}$, and 10 gal . 3 qt .
19. Find a fourth proportional to 10 gal ., 3qt., and 5.5 da.

4th Term, .4125da.
20. Find a fourth proportional to 3 s , 10 da., and 5yd. 4th Term, 1.38 yd .
21. If $15 b u$. of corn cost $\$ 10$, what will $27 b u$. cost ?

$$
\begin{array}{r}
15: 27:: \$ 10: \$ 18 \\
27 \\
\$ 270 \mid 15 \\
120 \\
0 \\
018 \\
\hline \$ 18
\end{array}
$$

third term by the second. (\$183.) Divide the product by the first term. ($\$ 185$.$) Hence, 27bu. cost \$ 18$.

Explanation.-The ratio of 15 bu . to 27 bu . is cridently the same as the ratio of the value of $15 b u$. to the value of 27 bu ., that is, the ratio of $\$ 10$ to the required amount. Hence, the propriety of the proportion. The first and second terms are considered abstract from the necessity of the case.

Rule.-I'ake for the third term the given number whiche is of the sume nature with the required term: and, if the required term is evidently greater than this third terms, take the greater of the remaining terms for the second and the less for the first; but, if the required term is less than the third term, take the less of the remaining terms for the second and the: greater for the first.

Find a fourth propartional lo the three terms ithes arraniged.

Ex. 22. If 101 b . of sugar cost $\$ 1.2 \overline{5}$, what will 17.51 b . cost?

Ans. \$2.1875.
23. If 27 bbl . of flour cost $\$ 150.75$, what will 94.5 bbl . cost? Ans. \$527.625.
24. What cost 11 gal . of molasses, if 49 gal . cost $\$ 34.47$?

25 . What cost 3.75 A . of land, if 16.375 A . cost $\$ 400$?
Ans. $\$ 91.60+$.
26. If 12 horses eat a load of hay in 10 days, how long would a load last 5 horses?

Ans. 24da.
27. If 12 horses eat a load in 10 days, how many horses would eat it in 5 days?
28. If 91 lb . of tea cost $\$ 10$, what will 11lb. cost?
29. If a 6 penny loaf of bread weigh 5.50 z . when flour is $\$ 4.50$ per bhl., what should it weigh when flour is $\$ 7$ per bbl.?

Ans. 3.535oz.
30. If $\frac{1}{2}$ of a yard of cloth cost $\$ \geqslant .75$, what will $\frac{7}{16}$ of a yard cost?
31. What cost 175 lb . of coffee, at $5 \frac{1}{2} \mathrm{lb}$. for a dollar?

Ans. $\$ 31.81+$.
32. What cost 45 pr. of shoes, if ' 14 pr. cost $\$ 35.50$?

Ans. $\$ 114.107+$.
33. If $\$ 100$ gain $\$ 6$ in 1 yr ., in how many years will it gain $\$ 100$?
34. If 12 men build 20 rd . of masonry in a woek, how many men could build 75 rd . in the same time? Ans. 45 men.
35. If 10 bbl . of flour will last a company of soldicrs 1.5 da ., how long will 10001b. last them? Ans. 7.653da.
36. If 14 lb . of butter cost $\$ 4.25$, what will 1.75 firkins cost?
37. If a boat travels 75 mi . in 6hr., how far does it go in 25 min ? Ans. 5 mi , 1fur. 26.6̊rd.
38. If 87.5 lb . of coffee cost $£ 4,125.6 \mathrm{~d}$, what will 7.51 lb . cost?

Ans. 7s. 11d.
39. If a man oan walk 10 mi . in 3 hr ., how far can he walk in 5da. of Shr. each ?
40. If 5.5 lb . of sugar cost $\$ 1.00$, what will 1 lb . cost?

Ans. \$.iś.
41. If $5 \frac{1}{2}$ bu. of wheat make 1 bbl . of flour, how much flour will 2500 lb . of wheat make?

Ans. 7.57 bbl .
42. If $1 \frac{5}{6} \mathrm{gal}$. of molasses cost $\$ 1.29$, what will $1_{\frac{1}{2}} \mathrm{~h} h \mathrm{~d}$. cost?
43. If $10 \frac{1}{2} y \mathrm{~d}$. of cloth cost $\$ 11.625$, what wili $16 \frac{2}{3} \mathrm{yd}$. cost?

Ans. $\$ 18.452+$.
44. If $\frac{3}{5}$ of a ship cost $£ 500,7 \mathrm{~s} .3 \mathrm{~d}$., what will $\frac{5}{16}$ of her cost? Ans. £260, 12s. 1.3125 d .
45. If 3 reams of paper cost $\$ 7.75$, how many reams can be bought for $\$ 17.75$?
46. How many lb. Avoir. are equal to 500 lb . Troy?
47. A grocer was detected in using as a gallon measure a vessel containing $3 q$ t. 1 pt. $2 \frac{1}{2}$ gi. : how many true gallons were in 47.5 of his false gallons? A. $45.273+$ gal.
48. The same man used for his purchases a vessel containing 4 qt. 2 gi.: how many true gallons were in 47.5 of these false gallons?
49. How many of his selling gallons were in 47.5 of his buying gallons?

Ans. $52.95+$.
50 . If 100 lb . of gunpowder require 75 lb . of saltpetre, how much saltpetre will 22.251 b . of gunpowder require?

COMPOUND PROPORTION.

§ 224. Λ compound ratio is the product of two or more simple ratios.

Thus, $\left.\begin{array}{l}3: 5 \\ 4\end{array}: 7 \begin{array}{l}7\end{array}\right\}:: 12: 35$, is a compound ratio.
§225. A compound proportion is an expression of equality between a compound and a simple ratio.
§226. A compound ratio is reduced to a simple one, by multiplying together its corresponding terms. Thus, in the above instance, the antecedent 12 is the product of the antecedents 3 and 4 , and the consequent 35 is the product of the consequents 5 and 7.
§227. If the first three terms of a compound proportion are given, the fourth term may be found by multiplying the third term by the product of the second terms, and dividing this product by the product of the first terms: the first and second terms being reduced to the same denomination in each simple ratio, and then considered abstract.

Ex. 1. If 5 hands can hoe 24 A . of cotton in 4 da., how many Acres can 17 hands hoe in 11da.?

§ 228. Model.-24A. is the third term. Since 17 hands ean hoe more than 5 hands, 5 is a first term, and. 17 a second. Since more land ean be hoed in 11da. than in 4 da., 4 is a first term and 11 a second. 4 times 5 are 20. 11 times 17 are 187. Multiply the third term by 187. (§ 183.) Divide the product by 20. (§185.) Hence the required number is $224 \frac{2}{5} \mathrm{~A}$.

Explanation.-As in simple proportion, we take for the third term that which is of the same nature with the required term. The remaining numbers are in pairs of similar terms, and each pair is arranged as if the question depended upon it alone.

Rule.-Talie for the third term the given number which is of the same nature with the requircd term. Take the remaining numbers in pairs of the same nature, and arrange each pair as in sinpple proportion.

Multiply the third term by the product of the second terms, and divide this product by the product of the first terms.

Hx. 2. If 60 men can do a piece of wark in 40 days of 8 hours each, how many men can do three times the work in 90 days of 10 hours each ?

Ans. 64 men.
3. If 10 horses eat 88 bu . of corn in 45 days, how many horses will eat 120 bu . in 50 days?
4. If I can travel 75 miles in $2 \frac{1}{2} d a$. of $7 \frac{1}{2} h r$. each, how many da. of 10 hr . each would it take me to travel 225mi.?

Ans. $5{ }_{5}^{5} \mathrm{da}$.
5. If 5 white men can do as much work as 7 negroes, how many days of 10 hr . each will be required for 25 negrocs to do a piece of work which 30 white men can do in 10 days of 9 hr. each?

Ans. 15.12da:
6. If by traveling 7 hr . per da. at 4 mi . per hr. I go 280 mi . in 10 da., how far will I go in 12da. by traveling Shr. per da. at $4 \frac{1}{2}$ mi. per br.?
7. If 12 men build 9 rods of wall in 10 days, how many mou can build 27 rods in 5 days? Ans. 72 men.
8. If $\$ 100$ gain $\$ 6$ in 12 no., what will $\$ 375$ gain in 9 mo.? Ans. 816.875.
9. If 100 lb . be carried 100 mi . for 35 ct ., what will be the freight on 100001 b . carried 75 mi ?
10. If 9 men, in 10 days, can build a wall 25 rd . long, 3yd. high, and 5 ft. thick, in what time can 20 men build a wall 30 rd . long, 4 yd . high, and 4 ft . thick? A. 5.76 da .
11. If 100 men , in 5 da of 10 hr . each, can dig a diteh 150 yd. long, 3yd. wide, and 5 ft . dee?, how many men, in

Sda. of 9 hr . each, can dig a ditch 200 yd . long, $3 \frac{1}{3} y \mathrm{y}$. wide, and $2 y$ d. deep? A. omitting fraction, 123 men. 12. If $\$ 100$ gain $\$ 7$ in 12 mo ., in how many months will $\$ 700$ gain $\$ 100$?
13. If $\$ 100$ gain $\$ 8$ in $12 m 0$., what sum of money will gain $\$ 160$ in 18mo.?

Ans. $1333.33 \frac{1}{3}$.
14. If $\$ 900$ gain $\$ 135$ in 18 mo , what will $\$ 100$ gain in 12 mo ?

Ans. $\$ 10$.
15. If 6 school-girls spend $\$ 72$ pocket-money in 4 wk ., what will 10 girls spend in 6 wk .?
16. If 900 soldiers eat 70 bbl . of flour in 20 da ., how many days will 200 bbl . last 3000 soldiers at half rations?

Ans. $34 \frac{2}{7} \mathrm{da}$.

PARTITIVE PROPORTION ; OR, FELLOWSHIP.

§ 229. Partitive Proportion is the division of a number into two or more parts which shall have to each other a given ratio.

The terms of the ratio are called the proportional terms, and in the operation they must be regarded abstract.

Ex. 1. Divide 450 into three parts, which shall be to each other as 2,3 , and 4 .
$9: 2:: 450: 100 \quad \S 230$. Model. 2 and 3 are 5,
$9: 3:: 450: 150$ and 4 are 9. 9 is to 2 as 450 is
$9: 4:: 450: 200$ to the first part. Multiply 450 by 2. Diride the product by 9 . The first part is 100. 9 is to 3 as 450 is to the second part. Multiply 450 by 3. Divide the product by 9 . The second part is 150.9 is to 4 as 450 is to the third part. Nultiply 450 by 4 . Divide the product by 9 . The third part is 200 . Hence, 100,150 , and 200 , are the three parts required.

Explanation.-One half of the first part is evidently equal to one third of the second or one fourth of the third : so that if the whole number be divided into 9 equal parts, the first will contain 2 , the second 3 , and the third 4 , of those parts. Hence the truth of the proportions.

Rule.-As the sum of the proportional terms is to cither term, so is the whole number to be divided to the part corresponding to that term.

Proof.-Add the several parts together : their sum is equal to the whole number divided.

Ex. 2. Divide $\$ 1000$ into three parts which shall be to each other as, 6,1 , and 3 . $\$ 600, \$ 100$, and $\$ 300$.
3. Divide $14 \frac{1}{4}$. into three parts in the proportion of 1_{4}^{3}, $3 \frac{1}{4}$, and $4 \frac{1}{2}$.
4. Divide 226gal. into four parts in the proportion of $1 \frac{3}{4}$, $2 \frac{1}{3}, 2 \frac{1}{2}$, and $2 \frac{5}{6}$. 42 gal ., $56 \mathrm{gal} ., 60 \mathrm{gal}$., and 68 gal .
5 . Divide 992.95 into four parts in the proportion of 1.25 , $3.2,4.73$, and 5.005 . $\quad 97.5,224,331.1,350.35$.
6. Divide $\$ 43.20$ into four parts in the proportion of 1,3 , 5 , and 7.
7. Two men, A and B, engage in business with a joint capital of $\$ 6000$, of which A furnishes $\$ 2500$ and B the remainder. What is each one's share of a gain of $\$ 1200$?

Ans. $\$ 500, \$ 700$.
S. Two men, C and D, gain $\$ 1275$ on a capital of which C's share is double D's; what is each one's share of this gain?

Ans. $\$ 850, \$ 425$.
9. If E invests $\$ 2375$, and $\mathrm{F} \$ 3225$, and the firm loses $\$ 700$, how much must each partner lose?
10. A invests $\$ 3000$, and $\mathrm{B} \$ 3500$, in a certain business, in which the first year they lose $\$ 325$. After paying
this loss from the funds of the firm, they take in C as a partner with a capital of $\$ 4000$, and the second year the new firm gains \$2035. How much of this gain is due to each partner? Ans. A, $\$ 570 ; \mathrm{B}, \$ 665 ; \mathrm{C}, \$ 800$.
11. D and E form a partnership for two years, D contributing $\$ 5000$, and $\mathrm{E} \$ 1750$. The first year they gain \$1350. D spends his share of the gain, but E leaves his share among the funds of the firm. The second year they gain $\$ 2130$. What is each partner's share of this last gain ? Ans. D, \$150n; E, $\$ 630$.
12. Messrs. Jones, Smith, and Brown gained $\$ 5000$; what is each man's share of this gain, if Smith owns twice as much of the capital as Brown, and Jones as much as Smith and Brown together?
13. In a certain firm, A owns $1_{\frac{1}{1}}$ times as much stock as B , Cowns $1_{\frac{1}{5}}$ times as much as A, and D owns $1_{\frac{1}{6}}$ times as much as C: A's gain on a year's transactions is $\$ 500$; what is the gain of each of the other partners? Ans. B, $\$ 400 ; \mathrm{C}, \$ 600 ; \mathrm{D}, \$ 700$.
14. A merchant owes one creditor $\$ 2000$, and an other $\$ 3500$: having failed, he can pay them both only $\$ 4015$: how much should each creditor receive?

Ans. $\$ 2555$, and $\$ 1460$.
15. A man dying wills to one son $\$ 2000$, to an other son $\$ 1500$, and to his daughter $\$ 1250$; but after paying his debts his executor has in his hands only $\$ 3000$. How much should he pay to each legatee?
16. Three partners, A, B, and C , invest as follows:- A invests $\$ 500$ for 2 months; $\mathrm{B}, \$ 400$ for 3 months; and C, $\$ 300$ for 5 months. They gain $\$ 740$. What ought each partner to receive?

$500 \times 2=1000$	$3700: 1000:: \$ 740: \$ 200$
$400 \times 3=1200$	$3700: 1200: \$ 740: \$ 240$
$300 \times 5=\frac{1500}{3700}$	$3700: 1500:: \$ 140: \$ 300$

§231. Model.-Twice 500 are 1000. 3 times 400 arc 1200. 5 times 300 are 1500. The sum of these propertional parts is 3700 . [Proceed as in §230.] Hence A ought to receive $\$ 200,13, \$ 240$, and $\mathrm{C}, \$ 300$.

Explanation.-A's investment of $\$ 500$ for 2 months is equal to an investment of twice $\$ 500$, or $\$ 1000$, for 1 month; so B's $\$ 400$ for 3 months is equal to 3 times $\$ 400$, or $\$ 1200$, for 1 month; and C's $\$ 300$ for 5 months is equal to 5 times $\$ 300$, or $\$ 1500$, for 1 month. The several investments, being thus referred to the same unit of time, evidently furnish equitable proportional terms.

This is an example of what is called Compound FellowsHip.

Ex. 17. A firm of two partners gained $\$ 1750$: what was each partner's share of the gain, if A contributed $\$ 3000$ for 10 months, and $B \$ 2500$ for 1 year?

Ans. A's, \$875; B's, \$875. 18. $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D , rented a pasture for $\$ 100$. A kept 20 head of cattle in it 6 months; B kept 25 head 5 months; C kept 30 head $5 \frac{1}{2}$ months; and D kept 50 head 3 months. What part of the rent ought each man to pay? 19. In a certain partncrship A contributed $\$ 3000 \mathrm{Jan}$. 1st; B contributed $\$ 2500 \mathrm{Feb}$. 1st; and C contributed $\$ 4000$ May 1st. On the 1st of August, they lost by fire $\$ 4000$. What part of the loss did each partner sustain? Ans. A, $\$ 1750 ; B, \$ 1250 ; C, \$ 1000$.
20. Three partners in trade gained $\$ 3008$ after 15 months' business. A put in $\$ 1000$ at first, and $\$ 20003$ months
afterwards; B put in at first $\$ 4000$, but took out $\$ 2000$ 6 months afterwards; and C put in $\$ 2000$ at the end of 5 months, and $\$ 20005$ months afterwards. What was each partner's share of the gain?

Ans. A's, \$1092; B's, \$1176; C's, \$740.

PROMISCUOUS PROBLEMS.

1. If $8 b u$. of wheat are worth as much as $15 b u$. of corn, and 5 bu. of corn as much as 2 cwt . of hay, and 4 cwt . of hay are worth $\$ 6$; how many bu. of wheat can be bought for $\$ 45$?

Sbu.	15	$45.4 .5 .8 \mathrm{bu} .=7200 \mathrm{bu}$.
5	2	$6.2 .15=180$
4	6	$7200 \mathrm{bu} . \div 180=40 \mathrm{bu}$.
45		

Set 8 bu . on the left, and 15 on the right; 5 on the left, and 2 on the right; 4 on the left, and 6 on the right, and 45 on the left. Multiply together the terms on the left. Multiply together the terms on the right. Divide 7200bu. by 180. The quotient is 40 bu . Hence $\$ 45$ will pay for 40 bu . of wheat.

Explanation.-This question, communly referred to a distinct head, called Conjoined Proportion, or the Chain Rule, is merely a complicated case of simple proportion, as will be seen by stating it thus :-

1. If 4 cwt . hay cost $\$ 6$, how many cirt. will cost $\$ 45$? $6: 45:: 4 \mathrm{cwt}$. : 30 cwt . Hence, 30 cwt . hay $=\$ 45$.
?. If 2 cwt. hay $=5$ bu. corn, how many bu. corn $=30$ cwt. hay? $2: 30:: 5 b u .: 75 b u . \quad$ Hence, 75 bu. corn $=\$ 45$.
2. If $8 b u$. wheat $=15 b u$. corn, how many bu. wheat $=75$ bu. corn?
$15: 75:: 8 \mathrm{bu} .: 40 \mathrm{bu}$. Hence, 40 bu. wheat $=\$ 45$.

Comparing this work with the model, we see that the means in the proportions are $45,4,(30) 5,,(75$,$) and 8$; and the extremes, except the last, are $6,(80) 2,,(75$,$) and$ 15 ; and that, omitting the two terms, 30 and 75 , common to both, we have left in the one case the terms on the left in the model, and in the other the terms ou the right. And since the product of the means is equal to the product of the oxtromes, the product of the ternis on the left divided by the product of the terms on the right will give the required term.

The term similar to the required term is called the odd term, and the one equivalent to the required term is called the term of demand. Both of these must be placed on the left of the vertical line, and the other terms must be arranged so that equivalents shall be opposite each other, and no two similar terms on the sane side. In the operation, all but the odd term must be regarded abstract.
Q. If 2 bbl . of flour are worth as much as $26 \frac{2}{3} \mathrm{bu}$. of corn, sud 3bur. of corn as much as $7 \frac{1}{2} l \mathrm{~b}$. of bacon, how many 1b. of hacon are equivalent to 3 bbl . of flour?

Ans. 1001b.
§. If $£ 93$ are cqual to 2420 fr., and $166 \frac{2}{3}$ fr. are equal to $\$ 31$, and $\$ 7$ are oqual to 4 bu. of wheat, how many bu. of wheat are equal to $£ 15$?
4. If A can do as much work in 5 days as B can do in 6 , 13 can do as much in 7 days as C can do in 8 , and C can do as much in 9 days as D can do in 10 ; in how many days can A do as much as D can do in 15 ?

Ans. 9.84 da .
5. If 10 Ells Flemish are equal to 6 Ells English, and 4 Ells English to 5 yards, and 12 yards to 8 Ells French;

L

how many Ells French are equal to 16 Ells Fleinish? Ans. 8 E. Fr.
6. If 191 b . of butter are worth 301 lb . of cheese, and 191b. of cheese are worth $\$ 3$; how many lb. of butter are worth $\$ 7.50$?
7. If a train of cars travel a mile in 2.5 min ., how long will it be in going 45 miles? Ans. 7 hr ? 52.5 min .
\$. If 8 men can mow a meadow in 10 days of $13 h r$. each, in how many days of 11 hr . each can 12 men mow it?

$$
\text { Ans. } 17.7 \dot{\partial} \text { da. }
$$

9. A, B, and C formed a partnership for two years: the first year, they lost $\$ 500$; the second year, they gained $\$ 750$; how much is each partner entitled to at the end of the second year, if A contributed $\$ 4000$, and B and $\mathrm{C} \$ 3000$ each to the funds of the firm?
10. A and B formed a partnership for two years from Jan. 1,1860 . On that day, A contributed $\$ 1000$, and B $\$ 500$: July 1, 1860, A added $\$ 500$ to his investment, and Oct. 1, 1860, B added $\$ 500$ to his: Jan. 1, 1861, A withdrew $\$ 250$ from the funds of the firm, and Mar. $1,1861, \mathrm{~B}$ contributed $\$ 500$ more. They gain $\$ 1090$. How much of this ought each partner to receive?

$$
\text { Ans. A, } \$ 600 ; B, \$ 490
$$

11. If 5 bbl . of cider are worth 8 bu . of wheat, and 11 bu . of wheat are worth 2 T . of coal, and 3 T . of coal are worth 50 lb . of tea, and 4 lb . of tea are worth 5oz. of quinine, and 7 oz . of quinine are worth $\$ 6.50$; how many dollars are 10 bbl . of cider worth ? Ans. $\$ 56.277$.
12. If the transportation of 1001 lb .100 mi . cost $\$ 2.15$, what will it cost to transport 2500 lb . 25 mi .?
13. What is the smallest number that can be exactly divided by either, 12,13 , or 14 ?

Ans. 1092.
14. What is the largest number that will exactly divide either 240,720 , or 840 ?

Ans. 120.
15. What is the total cost of 4 yd . of silk at $\$ 1.875$ per yd., Syd. of berege at $\$.625$ per yd., 3doz. buttons at $\$.75$ per doz., and $7.5 y d$. of calico at $\$.25$ per yd.?
16. What is the total cost of 5 lb . of tea at $5 \mathrm{~s} .6 \mathrm{~d} ., 7 \mathrm{bu}$. of corn at 4s. $4 \mathrm{~d} ., 8 \mathrm{bu}$. of wheat at 11 s .9 d ., and 11 gal . of molasses at 7s. 3d.?

Ans. £11, 11s. 7d.
17. What interval elapsed between Dec. 5, 1813, and Mar. 17, 1842 ?

Ans. 28 yr . 3 mo . 12 da .
18. What interval elapsed between Jan. 30, 1833, and Sept. 3, 1862 ?
19. John Jones was born Mar. 9, 1827, and was married when he was 22 yr .6 mo .19 da , old ; when was he married?

Aus. Scpt. 28, 1849.
20. If 5 men can plough $47 \frac{1}{2} \frac{9}{4}$ acres in $7 \frac{2}{5}$ days, in how many days can 6 men plough 31 acres? Ans. 4 days.
21. If $5_{2}^{1} \mathrm{cwt}$. of hemp cost $\$ 27.50$, how much hemp will cost $\$ 30.53 \frac{1}{3}$?
22. A merchant bought 3000 bu. of salt: after having sold to A 100.5 bu., to $B 477.75 b u$., to C 329.8375 bu ., and to D 1200.25bu., how much has he left?

Ans. S91.6625bu.
23. What is the produce of 15.375 A . of corn, at 8 bbl . 3 bu . 3 pk. to the acre? Ans. 134bbl. 2bu. 2pk. 5qt.
$\because 4$. A field of 25 acres produced 637.5 bu . of wheat; how much was that per acre?
25. A sum of money divided equally among 17 men gives to each $\$ 17.765$; if divided equally among 11 men, how much would each get?

Ans. \$27.455.
26 . If 20 men in 35 da. earn $\$ 320$, how many men will earn $\$ 480$ in 70da?

Ans. 15 men.
27. If 18 horses eat $10 b u$. of oats in 20 da ., how many horses will cat 60 bu. in $36 d a$.?
28. What is the greatest common measure of 75,825 , an d 1575 ? Ans. 75.
29. What is the least common multiple of 46,230 , and 115 ? Ans. 230.
30. What are the different prime factors of 24400 ?

PERCENTAGE.

§ 233. Percentage includes si" cases of proportion in which the first term is one hund.:.,

The phrase, per contum, that is, per hundred, is usually written, and often pronounced, per cent. Thus, in stead of "six dollars per hundred," we usually say " 6 per cent."

Ex. 1. A lawyer collected $\$ 3725$; what is his commis. sion at 3 per cent.?
$100: 3725: \$ 3: \$ 112.75 \quad$ This proportion is evidently correct: and all similar problems may be solved in the same manner. But, inasmuch as the three given terms have always the same unit, the same result will be obtained by regarding the second term concrete and the first and third abstract, by dividing the third by the first and multiplying the second by this quotient. This method, being a little less troublesome, is the one usually adopted. To explain it more fully, we must give the following definitions.
$\S 234$. The price or amount per hundred is called the rate per cent. Thus, in the above example, 3 is the rate per cent.
§ 235. If the rate per cent. be divided by 100 , the quotient is called the rate per unit. In all operations, this is regarded as an abstract number. Thus, .63 is the rate per unit in the example above.

What is the rate per unit for 6 per cent.? for 10 per cent.? for 50 per cent.? for 75 per cent.? for $1_{\frac{1}{2}}$ per cent.? for $\frac{1}{4}$ per cent.? for 100 per cent.? for $33 \frac{1}{3}$ per cent.? for $12 \frac{1}{2}$ per cent.? for $18 \frac{3}{女}$ per cent.? for $\frac{3}{2}$ per cent? for $\frac{7}{25}$ per cent.?
§ 236. The number on which percentage is calculated, is called the basis of percentage. Thus, above, $\$ 3725$ is the basis.
§237. The result of the operation is called the percentage. Thus, above, $\$ 112.75$ is the percentage.

Ex. 2. Find 5 per cent. of $\$ 5750$.
$\$ 5750$ § 238. Model.-Multiply the basis by the .05 rate per unit. ($\S 183$.) The product is $\$ 287$. $\overline{\$ 287.50}$ 50. Hence the percentage is $\$ 287.50$.
Explanation.-5 per cent. of any number is evidently 5 hundredths of that number, and this is found by multiplying the number by .05 . Observe that the rate per unit is simply one hundredth of the rate per cent., and is most conveniently expressed as a decimal fraction.

Rume.-Multiply the basis by the rate per unit. The protuct will be the percentage.

Ex. 3. What is 1 per cent. of 7500 ?
4. What is 2 per cent. of 250 ?
5. What is 3 per cent. of 275 ?

Ans. 5.
Ans. 8.25.
6. What is 4 per cent. of 775 ?
7. What is 6 per cent. of $\$ 325$?

Ans. \$19.50.
8. What is 7 per cent. of $\$ 9250$?

Ans. $\$ 647.50$.
9. What is 8 per cent. of 725 men ?
10. What is 9 per cent. of 1700 men ?
11. What is $\frac{1}{10}$ per cent. of $\$ 1000$?
12. What is 1_{5}^{1} per cent. of $\$ 175$?.
13. What is $2 \frac{5}{5}$ per cent. of $\$ 27.75$?
14. What is $3 \frac{1}{3}$ per cent. of $\$ 630$?
15. What is $4 \frac{3}{5}$ per cent. of 795 ?
16. What is $7 \frac{1}{2}$ per cent. of 2775.25 ?
17. What is $9 \frac{3}{4}$ per cent. of 473.75 ?
18. What is $10 \frac{1}{10}$ per cent. of 275 ?
19. What is $16 \frac{2}{3}$ per cent. of 3500 ?
20. What is $66 \frac{2}{3}$ per cent. of $\$ 750$?
21. What per cent. of 690 is 115 ?

$\begin{gathered} 115.00 \\ 690 \end{gathered}$	$\frac{690}{16^{2}}$
4600	$1.16 \frac{2}{3}$
4140	$16 \frac{2}{3}$
$230 \|$4.60 690	

§ 239. Model.-Divide the percentage by the basis. (\$52.) The quotient is. $16 \frac{2}{3}$. Multiply this quotient by 100 . The product is 16_{3}^{2}. Hence, 115 is $16 \frac{2}{3}$ per cent. of 690°.

Explanation.-Since the percentage is equal to the basis multiplied by the rate per unit, conversely the rate per unit is equal to the percentage divided by the basis. And, since the rate per unit is one hundredth of the rate per cent., conversely the rate per cent. is found by multiplying the rate per unit by 100 .

Rune.-Divide the percentage by the basis. The quatient will be the rate per unit. Multiply the rate per unit by 100. The product will be the rate per cent.

Ex. 22. What per cent. of 700 is 70 ? Ans. 10 per cent. 23. What per cent. of 375 is 125 ? Ans. $33 \frac{1}{3}$ per cent. 24. What per cent. of 1000 is 125 ?
25. What per cent. of 550 is 110 ? Aus. 20 per cent. 182
26. What per cent. of $\$ 675$ is $\$ 337.50$? Ans. 50 per cent. 27. What per cent. of $\$ 1000$ is $\$ 875$?
28. What per cent. of $\$ 5000$ is $\$ 250$?
29. What per cent. oî $\$ 10000$ is $\$ 50$?
30. What per cent. of $\$ 150$ is $\$ 300$?
31. What per cent. of 3000 is 4000 ? Aus. $133 \frac{1}{3}$ per cent. 32. What per cent. of 2.5 is 302.5 ?
33. What per cent. of 245 is 735 ?
34. What per cent. of 200 is 500 ? Ans. 250 per cent. 35. Whiat per cent. of 325 is 2925 ?
36. What per cent. of $\$ 1.25$ is $\$ 1.50$?
87. What per cent. of $\$ 1.00$ is $\$.375$?
38. What per cent. of $\$.875$ is $\$.50$?
39. What per cent. of $\$.66 \frac{2}{3}$ is $\$.22 \frac{6}{9}$?
40. What per cent. of $\$.125$ is $\$.0625$? Ans. 50 per cent.
41. A commission merchant purchases articles amounting to 8247.75 ; what is his commission, at $2 \frac{1}{2}$ per cent.?
42. What is the commission on $\$ 312$, at 12 per cont.?
4.3. A merchant insured a vessel and cargo, valued at $\$ 75000$, at $7 \frac{3}{4}$ per cent.; what did he pay?
44. What premium must I pay for the insurance of my life, the policy being $\$ 5000$, and the rate 2.35 per cent.?

Ans. \$117.50.
45. What is the premium for insuring $\$ 9450$, at $\frac{3}{5}$ per cent.? 46. What is the insurance on a dwelling and furniture valued at $\$ 25550$, at $1 \frac{1}{1}$ ner cent.?
47. What is the duty, at 40 per cent., on French broadcloths valued at $\$ 15375$?

Ans. $\$ 6150$,
48. What is the duty, at 20 per cent., on $\$ 6250$ worth of Italian silk?
4.9. At $7 \frac{1}{2}$ per cent., what is the duty on an invoice of Geneva tratches, valued at $\$ 7475$?

Aus. $\$ 560.625$.
50. At 50 per cent., what is the duty on a case of Leghorn hats, worth $\$ 1500$?

Ans. $\$ 750$.
51. What tax should be paid on $\$ 17725$ worth of real estate, at $\frac{1}{2}$ per cent.?
52. What is the tax on $\$ 261000$, at . 15 per cent.?

Ans. \$391.50.
53. What is the tax on $\$ 17150$, at 60 ct . on $\$ 100$?

Ans. \$102.90.
54. What is the amount of a dividend of 3 per cent., on $\$ 4200$ of bank stock?
55. The North Carolina Railroad company declared a dividend of $2 \frac{1}{2}$ per cent. : what did I receive on 14 shares of $\$ 100$ each?

Ans. \$35.
56. A merchant bought broadcloth at $\$ 3.50$ per yard; at what price must he sell it, to gain 40 per cent.?

Ans. \$4.90.
The percentage must be added to the basis.
57. A grocer bought candles at 25ct. per lb.: horv must he sell them, to gain 30 per cent.?
58. If broadeloth cost $\$ 4.00$ per yd., how much will it bring at a loss of 35 per cent.?

Ans. \$2.60.
The percentage must be subtracted from the basis.
59. A dealer bought 50 bbl . of fiour at $\$ 12$ per bbl., but.was forced to sell it at a decline of 20 per cent. : what did he get for it all?

Ans. \$480.
60. A speculator bought $\$ 35000$ worth of cotton, and sold it at a loss of 15 per cent. : what did he receive for it?
61. A man pays $\$ 406.25$ for the insurance of his dwelling, valued at $\$ 32500$: what is the rate per cent.?

Ans. $1 \frac{1}{4}$ per cent.
62. A vessel worth $\$ 15400$ was insured for $\$ 539$: what was the rate per cent.?

Ans. $3 \frac{1}{2}$ per cent.
63. At what rate per cent. will the insurance on $\$ 11500$ cost \$172.50?
64. A man had his life insured for $\$ 277.50$: what was the rate per cent., the policy being $\$ 10000$?

Ans. 2.775 per cent.
65. If the duty on $\$ 3457$ worth of goods is $\$ 1037.10$, what is the rate per cent.? Ans. 30 per cent.
66. What is the rate of duty, when $\$ 12657$ worth of clothing pays $\$ 6328.50$?
67. If $\$ 15000$ worth of property pays a tax of $\$ 229.50$, what is the tax on $\$ 100$?

Ans. $\% .51$.
68. I paid a broker $\$ 21.125$ for investing $\$ 8450$ in Government stocks; what was his rate of brokerage?

Ans. $\frac{1}{4}$ per cent.
69. My attorney charged me $\$ 260.73 \frac{3}{2}$ for collecting $\$ 3476$. 50 : what was his rate of commission?
70. I bought a farm for $\$ 4000$, and sold it for $\$ 5000$; what did I gain per cent.?

Aus. 25 per cent.
The first cost subtracted from the selling price leaves the total gain.
71. I bought a farm for $\$ 5000$, and sold it for $\$ 4000$; what did I lose per cent.?

Ans. 20 per cent.
The selling price subtracted from the first cost leaves the total loss. Observe that in each case the first cost is the basis. Hence the difference in the answers of the last two questions. 72. If I buy calico at 10 ct ., and sell it at $12 \frac{1}{\mathrm{i}} \mathrm{ct}$., what do I gain per cent.?
73. If I buy calico at $12 \frac{1}{2} \mathrm{ct}$., and sell it at 15 ct ., what do I gain per cent.?

Ans. 20 per cent.
74. A man bought a house for $\$ 7625$, and sold it for $\$ 8387$. 50 ; what did he gain per cent.? Ans. 10 per cent.
75. A man having paid $\$ 7625$ for his house, was compelled to sell it for $\$ 6862.50$: how much per cent. did he lose?
76. Dy selling an article for $\$ 1300$, I gain 30 per cent. on it: what did it cost me?
$\$ 1300.001 .30$ 240. Monel.-Divide the sell-
$130 \quad 1 \overline{1000}$ 0000 ing price by $1+$ the rate per unit. ($\$ 165$.). The quotient $\$ 1000$ is tho first cost.

Wxplanation.-It is evident that $1+$ the gain per unit : 1 :: the first cost + the whole gain : the first cost. But the selling price, $\$ 1300$, is evidently the first cost + the whole gain. Then sinee the second term of the proportion is always 1, it is easy to see the truth of the

Rule.-To find the first cost, when the selling price and the rate per cent. of gain are given. Divide the selling price by $1+$ the rate per unit. The quotient will be the first cost.

Ex. 77. By selling a piece of muslin for $\$ 50$, I gain 100 per cent.; what did I give for it? Ans. $\$ 25$.
78. What did I pay for eggs, if I gain 33_{3}^{2} per cent. by selling them for 16 ct. per doz.?
79. A grocer sold a lot of sugar for $\$ 1058$, gaining thereby 15 per cent.: what did the sugar cost him? A. $\$ 920$. 80. A merchant sells some flour for $\$ 924$, and gains 12 per cent. on it: what did he pay for it? Ans. $\$ 825$. 81. The selling price is $\$ 1800$, the gain 20 per cent.: what is the first cost?
82. A merchant sold a quantity of cloth for $\$ 1410$, and thus sustained a loss of 6 per cent. : what did the cloth cost him?

81410.00	.94
841	51500

§211. Mmmer - Divide the selling price by 1 - the rate per unit. ($\$ 165$.) The quotient $\$ 1500$ is the first cost.

Explanation.-Wridently, 1 - the loss per unit: 1 :: the first cost-the whole loss : the first cost. But the first cost-the whole loss is evidently the selling price, $\$ 1410$. The second term of this proportion is always 1 , and hence the following

Rule.- T'o find the first cost, when the selling price and the rate $\hat{1}$ er cent. of loss are given. Divide the selling price by 1 - the rate per unit. The quotient will be the first cost.
Lix. 88. The selling price is $\$ 8000$; the loss 20 per cent.: what is the first cost?

Ans. $\$ 10000$.
$\$ \frac{1}{2}$. By selling flour at $\$ 12.25$ per bbl., I lost $12 \frac{1}{2}$ per cent. of what it cost me; what did it cost?
Sis. Iremitted $\$ 3150$ to my commission merchants to lay out in groceries after retaining 5 per cent. of what he spent: how much did he spend for me? Ans. $\$ 3000$.
This is precisely similer in principle to the foregoing.
86. How much sugar at 10 ct . per lib. can I get by remitting $\$ 364.37 \frac{1}{2}$ to a merchaut who ciarges 5 per cent. commission?

Ans. 34751 lb.
87. How much stock at 35 per cent. adrance can I buy for \$1265?
58. How much stock at 15 per cent. below par can I buy far 〔935?

Ans. $\$ 1100$.
89. A father retuld his sun with property worth $\$ 10000$: the first year he lost 20 per cent. of it, and the second year he gained 25 per cent. of what he had left; how much had he then?

Ans. $\$ 10000$.
90. A merchant sold some sugar for $\$ 1402.50$, and lost thereby 15 per cent. What did it costi him?
91. How much stosk at a discount of $3 \frac{1}{3}$ per cent. can le bought for $\$ 5790$?

Aus. 86000.

SIMPLE INTEREST.

§242. Interest is the price paid by the borrome: fur the use of money loaned.
$\S 243$. The sum of money on which interest is calculated is called the principal.
§ 244. The sum of the principal and interest is called the amount.
§ 245. The price paid for the use of one hundred dollats one year is called the rale per cent. per annum.

Ex. 1. What is the interest of $\$ 375$, for 2 yr . 10 mo . 20 da.. at 7 per cent. per annum?

$$
\$ 375 \quad 2 \mathrm{yr} .10 \mathrm{mo} .20 \mathrm{da} .7 \text { p. с. }
$$

. 07
$2 \begin{aligned} & \$ 26.25=1 \mathrm{yr} . \\ & 2 \\ & \$ 52.50=2 \mathrm{yr} .\end{aligned}$

$\$ 75.831=2 \mathrm{yr} .10 \mathrm{mo}$. 2 Oda .
§ 246. Modal.Multiply the pria. cipal by the rate per unit. (s!83.) The product, 826.25 , is the interest for 1 year. Multiply the interest for lyr. by 2. The product is $\$ 52.50$, the interest for 2 yr . 6mo. is one half of lyr. Divide the interest for 1 yr. by 2. The quotient is $\$ 13.125$, the interest for 6 mo . 3 mo . is one half of 6 mo . Divide the in terest for 6mo. by 2. The quotient is 86.562 , the iuterest 188
for 3 mm . 1 mog . is one third of 3 mo . Divide the iuterest for 3 mo . by 3. The quotient is $\$ 2.187$, the interest for 1 mo. 15da. is one half of 1 mo . Divide the interest for 1 mo. by 2. The quatient is $\$ 1.093$, the interest fur $15 d$ a 5 da . is one third of 15 da . Divide the interest for 15 da . by 3. The quotient is $\$.364$, the interest for 5da. Add the partial interests together. The sum is $\$ 75.831$, the interest for the whole time.

Expranation. - Since the rate is 7 per cent. per amum, the interest of the given principal for 1 . year is found by multiplying the principal by the rate per unit. Thas far the work is simple percentage. For longer or shorter periods of time the interest is proportional to the time: hence we take such aliquot parts of the interest for 1 year, \&c., as the periods in question severally require.

In the calculation of interest, a month is cousidered equal to 30 days, and a year to 360 days.

Rourr. - Multiply the principal by the rate per unit. The praduct will be the interest for 1 yerr.

Multiply the interest for 1 year by the number of years, and take celiquot parts for period's of time less than a year.

To find the amount, add the interest to the principal.
Ex. ㅇ. What is the iuterest of $\$ 50$ for $2 y r$. at 6 per cent. per anuem?

Ans. \$6.
3. What is the interest of $\$ 75$ for 6 mo . at 7 per cent. per annum?
4. What is the amount of $\$ 100$ for 9 mo. at 8 per cent. pes annum? Ans. \$106.
5. What is the interest of $\$ 125$ for $3 y$ r. at 9 per cent. per aunum? Ans. $\$ 35.75$.
6. What is the interest of $\$ 225$ for 2 yr . 6mo. at 10 per cent. per annum?
7. What is the interest of $\$ 150.75$ for lyr. 3 mon . at 5 per cent. per annum?

Ans. $\$ 10.67$.
8. What is the amount of $\$ 175.50$ for $2 y$ r. 9 mo. at 6 per cent. per annum?

Ans. \$204.45.
9. What is the interest of $\$ 305.50$ for $3 y r$. 5 mo . 15 da at 6 per cent. per : mimm?
10. What is the interest of $\$ 574.55$ for 4 yr .7 mo .25 da . at 5 per cent. per ammim? Ans. 3130.75 .
11. What is the interest of $\$ 615.49$ for 5 yr . 11 mo . 22da. at 7 per cent. per annuin?

Ans. \$257.47.
12. Find the amount of $\$ 777.75$ for Byr. 2mo. SOda. at 8 per cent. per annum.
13. Find the interest of $\$ 1225$ for $5 y r$. 5 mo. 5da. at 5 per cent. per arnum. Ans. §332.62.
14. Find the interest of $\$ 1525.25$ for 1 yw. 2no. at 8 pe: cent. per annum. Ans. $\$ 142.3 \overline{5} 6$.
15. Find the interest of $\$ 2790$ for $2 y$. Tmo. at 9 per cent. per annum.
16. Find the amount of $\$ 1724.25$ for $12 y \mathrm{r}$. 6 mo . at 8 per cent. per annum. Ans. 83445.50 .
17. Tind the interest of $\$ 3500$ for 7 yr . 3 mo . 10 da . at 7 per cent. per annum. Ans. 81783.0 .u.
18. Find the interest of $\$ 4275$ for 16 yr . Smo. at 6 per cent. per annum.
19. Find the interest of $\$ 5550$ for $15 y r$. 11 nio. 27 da . at 9 per cent. per annum.

Aus. $\$ 7987.83^{3 .}$.
20. Find the amount of $\$ 2 j 95$ for $8 y r$. tmo. at 12 per cent. per annum. Ans. $\$ 5990$.
21. Find the interest of $\$ 3827$ for 17 yr . 3mo. 15 da . at 10 per cent. per annum.

CONCISE METHOD FOR G PER CRAT. PLR AMUUM

Ex. 22. What is the interest of $S 247.50$ fur $2 y r, 6 \mathrm{me}$, 16 da. at 6 per cent. per annum?
$2 y \mathrm{r} .6 \mathrm{mo} .18 \mathrm{da}=30.6 \mathrm{mo}$.

$200) 30.6$	$\$ 247.50$
.153	$\frac{.153}{74.250}$
	123750
	$\frac{24750}{\$ 37.86750}$

Explanation.-Since the rate is 6 per cent. per anmum, or for 12 months, one half of the number of months is the rate per cent. for any length of time : and this rate per cent. divided by 100 , gives the corresponding rate per unit, by which the principal must be multiplied, to find tho interest.

For any other rate, we may find the interest at 6 por eent., and increase or diminish it, as the case may require. For instance, for 7 per cent., add to the intorest found by this method, one sixth of itsalf : for 5 per cent., from the interest thus found subtract one sixth of itself; \&e. Or, generally, find the interest at 6 per cent., divide it by 6 , and multiply the quotient by the given rate.

Rone.-Divide the number of months in the given time by 200, and multiply the principal by the quotient. The product will be the interest.

Or, Multiply the number of years by 6, and divide the product by 100: Divide the number of months by 2 , and divide the quotient by 100 : Divide the number of days by 191

6, and dicide the quotient by 1000 : Add these three results faycther, and multtiply the principal by their sum.

After finding the interest at 6 per cent., as above, to fincd the interest at any other rate; Divide the interest at 6 per rent. by 6 , and multiply the quotient by the required rate.

SECOND METHOD FOR PER CENT.

Ex. 23. Find the interest of $\$ 275.75$ for $3 y r$. 10 mo . 21 da. at 6 per cent. per annum.

Explanation.-This method is evidently the same in principle as the preceding, and is preferable to the other only on account of its greater freedom from liability to fractions. Of course, the multiplier in each of these methods must be considered abstract.

Ruse.-To the number of months annex one third of the number of days. Divide the number thus produced by 1000. Multiply one half of the principal by this quotient.

Or, Mulliply the whole principal by this quotient, and divide the product by 2.

The interest for any other rate may be found as in § 247.

CONCISE METHOD FOR ANT TRATR PER CENT.

Ex. 2t. Find the interest of $\$ 360.60$ for 6 mo. 15 da. at 8 per cent. per annum.
12,00) $\$ 3,60.60$

\$.3005	§ 249. MnDEt.-Divide the princi-
5	
15025	
18030	
\$1.95325	

$\$ 15.62600$
Explination.-The principal $\div 100=$ the interest for 1 year at 1 per cent. This interest $\div 12=$ the interest for 1 month at 1 per cent. This last $\times 6.5=$ the interest for 6.5 months at 1 per cent. And this $\times S=$ the interest for 6.5 months at 8 per cent.

Rule.-Divide the principal by 1200. Multiply the quotient by the number of months in the given time, and this product by the rate per cent. This last product will be the interest.

Either of the above methods may be used in any case.
Ex. 2.). Fud the interest of $\$ 1319.50$ for 9 days, at 6 per cent. prannum.
26. Fiud the interest of $\$ 36.78 .75$ for 17 days at 6 per cent. per annum.

Int. $\$ 10.366$.
27. Find the interest of $\$ 5739.25$ for 2 mo .24 da . at 6 per cent. per annum.

Int. \$80.349.
28. Find the amount of $\$ 3768$?.375 for 2 mo . 6 da . at 6 per cent. per annum.

Amt. §38096.88.
29. Find the amount of $\$ 1665.25$ for 1 yr . 11 mo . 9 da . at 6 per cent. per annum. Amt. \$1859.25.
30. Find the interest of $\$ 4336.30$ for 4 yr . 8 mo . 13 da . at 6 per cent. per annum.
31. Find the interest of $\$ 2758.50$ from July 3,1846 , to May 19, 1855, at 6 per cent. per annum.

Int. \$1469.36.
'To find the interval of time, the earliest date must be
 subtracted from the latest. In this subtraction, the number of each month in the calendar is used, and each month is
taken as equal to 30 days.
Ex. 32. Find the amount of $\$ 8140.75$ from Dec. 9, 1847, to Apr. 27, 1855, at 6 per cent. per annum.

Amt. \$11747.10.
33. Find the interest of $\$ 34219.15$ from Apr. 8, 1850, to June 15, 1855, at 7 per cent. per annum.
34. Find the interest of $\$ 6813.45$ from Mar. 5, 1855, to Oct. 8, 1862, at 8 per cent. per annum.

Int. $\$ 4138.035$.
35. Find the interest of $\$ 856.85$ for 6 yr . 8 mo .9 da . at 8 per cent. per annum.

Int. \$458.699.
36. Find the amount of $\$ 742.40$ from June 24,1854 , to Mar. 13, 1860, at 7 per cent. per annum.
37. Find the interest of $\$ 171.80$ from July 29,1857 , to Sept. 1, 1861, at 10 per cent. per annum. Int. $\$ 70.24$.
38. Find the interest of $\$ 670.70$ from Apr. 7, 1859, to Oct. 13,1862 , at 9 per cent. per annum.

Int. $\$ 212.276$
39. Find the interest of $\$ 976.18$ from Mar. 1,1861 , to Feb. 10,1862 , at $8 \frac{1}{2}$ per cent. per annum.
40. Find the interest of $\$ 375.85$ from Jan. 19, 1860, to Jan. 1, 1862, at 11 per cent. per anaum.

Int. \$80.619.
41. Find the amount of $\$ 6.89$ from June 11, 1860, to June 1, 1862, at 9 per cent. per annum. Amt. \$8.11.
42. What is the interest of $\$ 89.06$ for 2 yr . 3 mo . 16 da . at 8 per cent. per annum?
43. What is the interest of $\$ 325$ for 6 yr . 7 mo . $2 \overline{\mathrm{~d}}$ da. at $7 \frac{1}{4}$ per eent. per annum?

Ans. $\$ 156.88$.
44. What is the amount of $\$ 1728$ from Dec. 29, 1859, to Oct. 9,1852 , at 10 per cent. per annum? Ans. $\$ 2208$.
45. What is the interest of $\$ 160.08$ from May 1,1851 , to Sept. 9, 1854, at 7 per cent. per annum?
46. What is the interest of $\$ 18.62$ for $3 y r$. 18 da. at 5 per cent. per annum?

Ans. $\$ 2.839$.
47. What is the interest of $£ 17,6 \mathrm{~s} .9 \mathrm{~d}$. for 18 mo . at 6 per cent. per annum?
£17, $6 \mathrm{~s} .9 \mathrm{~d} .=£ 17.3375 \quad$ The principal must first be .09 reduced to pounds, and then $£ 1.560375$ the interest may be found by $£ 1.56=£ 1,11 \mathrm{~s} .2 \frac{1}{2} \mathrm{~d}$. any one of the preceding methods.
Hx. 48 . What is the interest of $£ 427,18$ s. 9 d . for 2 years at $5{ }^{3}$ per cent. per annum?
4.9. What is the amount of $£ 1096,15 \mathrm{~s} .6 \mathrm{~d}$. for 4 years at $6 \frac{1}{2}$ per cent. per annum? Ans. £1381, 18s. 8d.
50. What is the amount of $£ 120,10 \mathrm{~s}$. for 2 yr . 6 mo . at $4 \frac{3}{4}$ per cent. per annum? Ans. $£ 134,16$ s. $1{ }_{4}^{3} \mathrm{~d}$.
51. What is the interest of $£ 270,10 \mathrm{~s} .9 \mathrm{~d}$. for 1 yr .4 mo .20 da. at 7 per cent. per annum?
52. What is the interest of 1775 fr . 75 cent. for 3 yr . 6 mo . at 6 per cent. per annum?

Ans. 372 fr. 90 cent.
53. What is the interest of 2070 fr . 65cent. for 2 yr .8 mo . 20 da . at 7 per cent. per annum? Ans. 394 fr . 5 Teent. 54. What is the amount of 3297 fr . 15 cent. for $3 y \mathrm{r}$. 15 da . at 8 per cent. per annum?
55. What is the interest of 10720 fr . 25 cent. for 5 yr . 7 mo . 10 da. at 5 per cent. per annum? Ans. 3007.62fr. 56. What is the amount of 20625 fr . 30 cent. for 6 yr . 6 mo . 6 da. at 6 per cent. per annum? Ans. 28699.79fr.

PARTIAL PAYMENTS.

The method here given is the one enjoined by the Supreme Court of Nortb Carolina, and used in most, if not all, the States of the Confederacy.
§ 250. Rule. - Find the amount of the given principal to the time of the first payment, and if this payment is greater than the interest then due, subtract the payment from the amount. Consider the remuinder as a second principal, and find the amount of it from the time of the first payment to the time of the second, and if the second payment is greater than the interest last found, subtract the second payment from the second amount, and consider the remainder as a third principal: and so on.

But if any payment is less than its corresponding interest, find the amount of the same principal to the time of the next payment, and if the sum of these two pryments is greater than the interest then due, subtract their sum from the amount: lut if the sum of the two payments is less than the interest then due, extend the time until the sum of the payments made shall exceed the interest due at the time of the last payment.

The principle of the rule is that the payment of a part of the debt shall not increase the debt.

Ex. 57. \$725.50. Ricinoni, Va., Jan. 1, 1858.
One day after date, I promise to pay J.-Jones, or order, seren hundred and twenty-five dollars and fifty cents, for value received.

On this note were the following endorsements :

Mar. 16, 1858,	$\$ 100.00$
May 16, 1859,	25.50
July 1, 1861,	300.00

How much was due Oct. 8, 1862 ?
solution.
$\$ 725.50$
9.068
Original Principal,
Interest to Mar. 16, 1858,-2m. 15da.,
Amount then due,
Amount then paid,
Second Principal,
Interest from Mar. 16, 185S, to May 16, 1859, $\$ 44.419$
$\$ 7 \overline{34.568}$
100.
$\$ 634.568$

Amount then paid (less than interest) 25.50
Interest from Mar. 16, 1858, to July 1, 1861,$3 y .3 \mathrm{~m} .15 \mathrm{~d}$.
Amount then due,
125.327

Sum of the two payments,
Third Principal,
$\$ 759.895$

Interest from July 1, 1861, to Oct. 8, 1862, 1 y .3 m .7 d .
Amount due Oct. 8, 1862,
58. \$3256.37. Lincolnton, N. C., Mar. 12, 1853.

On demand I promise to pay to the order of J. Reinhardt, three thousand two hundred and fifty-six dollars and thirty-seven cents, for value received.

On this note were the following endorsements:

July 12, 1855,	received $\$ 654.33$	
Sept. 20, 1857,	"	$\$ 246.50$
Jan. 5, 1859,	"	$\$ 945.87$

What was the balance due Sept. 7,1860 ? Ans. \$2755.41.
59. \$108.43.

Columbia, S. C., Dec. 9, 1857.
With interest from date, for value received, I promise to pay J. Townsend or order oue hundred and eight dollars and forty-three cents.

Endorsements. Mar. 3, 1858 , received $\$ 50.0 \frac{1}{2}$; Dec. 10 , $1858, \$ 13.19$; May 1, 1860, $\$ 50.11$. How much was due Oct. 9, 1862?

Ans. \$5.844.
60. A note was given at Savannah, Geo., Apr. 16, 1856 , for $\$ 450$. On it the following endorsements were made :-Jan. 1, 1857, received $\$ 20 ;$ Apr. 1, 1857, \$14; July 16, 1857, \$31; Dec. 25, 1857, \$10; July $4,1858, \$ 18$. What balance was due June 1,1859 ?
Note.-When no rate of interest is mentioned in'a note, the legal rate at the place where it is given is to be used. In Louisiana the legal rate is 5 per cent.: in Arkansas, Kentucky, Maryland, Missouri, North Carolina, T'ennessee, and Virgiuia, it is 6 per cont.: in South Carolina it is 7 per cent.; and in Alabamn, Florida, Georgia, Mississippi, and Texas, it is 8 per cent.

198

COMPOUND INTEREST.

\& 251. Compound Interest is the interest on both principal and interest when the interest is not paid as it falls due. In ordinary business transactions it is not allowed by law; but in a fow classes of debts it is required that the interest shall be compounded annually. In such cases, the interest for one year is added to the principal; this amount becomes the principal for the second year; its amount for the third yoar, and so on to the last year or part of a year. The original principal subtracted from the final amount gives the compound interest.

Ex. 61. What is the compound interest of $\$ 525.75$ for Byr. 6mo. at 6 per cent., interest due annually ?

SOLUUTION.
Original Principal,
$\$ 525.75$
Interest for the first year,
31.545

Amount,-Second Principal, $\overline{\$ 557.295}$
Interest on $\$ 557.295$ for the second year,
Amount,-Third Principal,
33.437
$\$ 590.73$ 2
Interest on $\$ 590.732$ for the third jear,
35.443

Amount,-Fourth Principal,
$\$ 626.175$
Interest on $\$ 6.2 .175$ for the remaining 6 mo .,
18.785

Total Amount at Compound Interest,
Original Principal,
Compound Interest,
$\$ 644.960$
525.75
$\$ 119.21$

Ex. 62. What is the amount at compound interest of $\$ 500$ at 6 per cent. for 4 yr . 3 mo ., interest due annually? 63. What is the amount of $\$ 1000$ for 7 years at 7 per cents, compounded annually?
84. What is the amount of $\$ 1000$ for 6 years at 6 per cent., compounded semi-annually? Ans. \$1425.76.
05. What is the interest of $\$ 1000$ for 4 years at 6 per cent., compounded quarterly?

Ans. \$268.98.

DISCOUNT.

§ 252. Discount is a deduction made for the payment of money before it is due.
§ 253. The present worth of a future debt is that sum which, at ordinary interest, will amount to the debt at the time it becomes due. The present worth bears the same relation to the debt, that the principal bears to the amount.

The problem to be solved, then, is, laving given the amount, the time, and the rate, to find the principal and the interest.
§ 254. Rule.-Find the amount of $\$ 1$ for the given time at the given rate. Then, as the amount of $\$ 1$ is to $\$ 1$, so is the amount of the debt to its present worth.

To find the discount, subtract the present worth from the amount of the debt. Or say, as the amount of $\$ 1$ is to its interest, so is the amount of the debt to the discount.

Ex. 66. What is the present worth, and what is the discount, of a note due 6 months hence for $\$ 550$ at 6 per cent.? solution.
Amount of $\$ 1$ for 6 months at 6 per cent.,
$\$ 1.03: \$ 1:: \$ 550: \$ 533.98$, present worth.
$\$ 550-\$ 533.98=\$ 16.02=$ the discount.
Or, $\$ 1.03: \$.03:: \$ 550: \$ 16.02$, the discount. 200

Ex. 67. What is the present worth of a note for $\$ 245$, due 1 year hence when the rate of interest is 6 per cent.? 68. What discount should be allowed on a note for $\$ 525$, if paid 3 mo . before it is due, interest being at 7 per cent.? 69. What is the present worth of a debt of $\$ 375.50$, due in 7mo. 15da., if interest is at 8 per cent.?
70. What is the discount of a note for $\$ 725$, due in 10 mo . 10 da., interest being 7 per cent.?
71. In Mobile, Ala., one man gave another his note for $\$ 247.50$, due twelve months after date. What was the present worth of the note?
72. What discount would be allowed at New Orleans on a debt of $\$ 650$, due 9 months hence?
73. What is the present worth, at Little Rock, Ark., of a note for $\$ 769.35$, due 5 mo . 18da. hence?
74. What is the proper discount on a debt of $\$ 75.75$, due 7 mo. hence at Memphis, Tenn?
75. What is the present worth of $\$ 1250$, due 12 months hence at Galveston, Texas?
76. What is the discount of $\$ 250$, due 8 mo. hence at Lexington, Ky.?
77. What is the present worth of $\$ 55.55$, due 7 mo . hence at St. Louis, Mo.?

BANK DISCOUNT.

$\S 255$. The present worth or procceds of a note payable in bank is the remainder obtained by subtracting from its face its interest for the time it has to run, including three additional days-called days of grace.

Thus, if I deposit with the Cashier of the Bank of Cape 201

Feir my note for $\$ 1000$ due in 60 days, he will pay me on it only $\$ 1000$-the interest of $\$ 1000$ for 63 days, that is, \$989.50.
§2056. The bank discount of a note not yet due is the interest of the face of the note for three days more than the time it has to run.

Ex. 78. What is the present worth in bank of a note for $\$ 500$ due in 30 days, at 6 per cent.?

SOLUTION.
Face of the note,
nterest of $\$ 500$ for 33 da., -bank discount, $\quad \frac{2.75}{}$
Present Worth or proceeds,
Ex. 79. What is the proceeds of a note due in bank 60 da. hence for $\$ 250$ at 6 per cent.?
80. What is the bank discount on a note for $\$ 750$ due in bank in 90 days, at 6 per cent.?
81. What discount would a bank require on a note for $\$ 550.75$, due 90 days hence at 8 per cênt.?
82. What is the present worth of a note due in bank 90 da. hence for $\$ 333.33$ at 6 per cent.?
83. What is the face of a note due 60 da . hence, if its present worth in bank is $\$ 500$, interest being at 6 per cent.?
$\S 257$. The present worth of $\$ 1: \$ 1::$ present worth of the note : face of the note. In this case, $\$.9895: \$ 1::$ $\$ 500$: the answer.

Ex. 84 . What sum, payable in 90 days, will produce $\$ 750$, if discounted at a bank at 6 per cent.?
85. What sum, payable in 60 days, will produce $\$ 3000$, if discounted at bank at 7 per cent.?

202
86. For what amount must a note be drawn, payable in 30 days, so that, if discounted in bank at 5 per cent., the proceeds will be $\$ 250$?
87. What inust be the face of a note payable in bank in 90 days, so that, if discounted at 6 per cent., its present worth may be $\$ 75.75$?

THME TNISKTE,

Showing the number of days from any day of one month to the same day of any other month next following.

	To the same day of the next											
1					May	June	July	Aug.		Oct.		
Jan.	36			90	$\overline{120}$		181	212	2		304	334
Teb.	334	36:	28	59	89	120	150	181	1212	242		03
Mar.	306	33736	365	31	61	92	122	153	184	214	4245	75
Apr.	275	3063	33.4	365	30	61	91	122	153	18:3	$\because 14$	44
May	245	276130	304 :3	335	365	31	61	92	123	153	184	14
June	211	245	273	304	334	365	30	61		122	153	83
July	18.	215	243	274	$30+$		365	31	(i2		1223	53
Aug.	153	1842	2122	243	273		-334	365	5	61		22
Sept.	122	15318	1812	21%	24.			334	(365	30		,
Oct.	92	12315	151		212			304		365	31	61
Nov.	61	9212	120					273	304	334	-365	
Dec.	31	62				-	-					

To find the interval of time betreen Sept. 8, 186․2, and May 19, 1863. Find Sept. in the left hand column and May in the upper line: then at the right of Sept. and under May, is 242, the number of days from Sept. 3 to May 3. To this add 16 , the number of days from May 3 to May 19. The sum 258 is the number of days required.

Agaị, from Jan. 25, to Sept. 9, is (243-16) 227 days.

PROMISCUOUS PROBLEMS.

1. In what time will $\$ 100$ amount to $\$ 200$ at 6 per cent. simple interest?
$\S 258$. As the interest of the given principal for 1 year : the given interest $:: 1$ year : the number of years.

In this case, as $\$ 6: \$ 100:: 1 \mathrm{yr}$. : 16 yr . Smo., the answer.
2. In what time will $\$ 200$ gain $\$ 50$ interest at 6 per cent. per annum?
3. In what time will $\$ 500$ gain $\$ 49$ interest at 7 per cent.?
4. In what time will $\$ 1000$ gain $\$ 10$ simple interest at 5 per cent. per annum?
5. At what rate will $\$ 100$ gain $\$ 15$ interest in 2 yr .6 mo ?
§ 259. As the interest of the given principal at 1 per cent. : the given interest $:: 1$: the rate per cent.

In this case, as $\$ 2.50: \$ 15:: 1: 6$, the answer.
6. At what rate will $\$ 250$ gain $\$ 250$ interest in $10 y r$.?
7. At what rate will $\$ 427.25$ gain $\$ 143.60$ in $3 y r$. 4 mo . 10da.? Ans. 10 per cent.
8. At what rate will $\$ 746$ gain $\$ 83.92$ in $2 y r$. 3no.?
9. What principal will gain $\$ 174.56$ in 1 yr . 7 mo . at 7 per cent.?
§ 260. As the interest of $\$ 1$ for the given time at the given rate : the given interest :: $\$ 1$: the principal.

In this case, $\$.1108 \frac{1}{3}: \$ 174.56:: \$ 1: \$ 1575$, the answer.
10. What principal will gain $\$ 42$ in $3 y r$. 6 mo . at 6 per cent.?

Ans. \$200.
11. What principal will gain $\$ 210$ in $5 y r$. at 6 per cent.? 204
12. What principal will gain $8 t 00$ in 4 years at S per cent.?
13. What is the fourth root of 810000 ?

Ans. 30.
14. What is the value of $2,3.5,7.11$?

15 . What are the prime factors of 1800 ?
16. A commission uerchant sold goods worth $\$ 9072$; what was his commission at $2 \frac{1}{2}$ per cent.? Ans. $\$ 226.80$.
17. A capitalist sent his broker $\$ 15400$ to lay out in stocks, after retaining $\frac{1}{4}$ per cent. of the amount purchased. How much stock did he purchase? 'Ans. \$15361.60.
18. A gentleman laid out $\$ 3025$ in stocks which were 10 per cent. below par. What was the nominal value of the stock purehased?
19. If [buy coffee at 30 ct . per 1 b ., and sell it for 36 ct . per 1b., what per cent. do I gain? Ans. 20 per cent.
20. A merchant bought 125 bushels of wheat at $\$ 1.60$ per bu., and sold it at a profit of 20 per cent.; what did he get for it?

Ans. $\$ 240$.
21. If I pay $\$ 12000$ for a house and lot and sell them at an advatuce of 25 per cent., what do I gain by the transaction?
22. A werchant gave $\$ 3.51$ for an article which he is willing to sell at a profit of $33 \frac{1}{3}$ per cent., how must he mark it?
23. By selling a tract of land for 84704 I gain 12 per cent. ou it; how much did it cust me ?

Ans. $\$ 4200$.
24. If Bewt. of sugar cost $\$ 23.40$, what will 16 cwt . 3 qr . cost?
25. A merchant, failing, pays only 60 ct . on the dollar of his indebteduess; how much will a man receive to whom he owes $\$ 1800$?

Ans. \$1080.
26. What cost 462 yd . of cloth at $\$ 1.06^{\frac{2}{4}}$ per yd .?

Ans. $\$ 490.87 \frac{1}{2}$.
27. What cost $83 b u$. 3 plk. 2qt. of clover seed at $\$ 8$ per bu.? 205
28. What per cent. of $\$ 50$ is $\$ 6$?
29. What is 115 per cent. of $\$ 287.50$?
30. At 5 per cent. commission, what would I receive for selling $\$ 240$ worth of property?
31. A commission merchant sells property amounting to \$550. Retaining his commission of 5 per cent., he lays out the balance after deducting a commission of $2 \frac{1}{2}$ per cent. on the amount purchased. How much did he lay out?
32. What amount can I retain for commission at 8 per cent. on the amount invested, if I have received $\$ 2647.08$?

AVERAGE.

\$261. The average of two numbers is one half of their sum. Thus, the average of 7 and 13 is $(7+13) \div 2=10$.

The average of three numbers is one third of their sum.
The average of four numbers is one fourth of their sum. And so on.
§262. The average of two daies is a date lying half way between them. Thus, in any year June 23 is the arerage between June 1 and July 15.

Ex. 1. Find the average of $2,4.5,5.75,7$, and 9.25 .

2.

4.5
5.75 § 263. Moder.- Find the sum of the five 7.
9.25
$5 \longdiv { 2 8 . 5 0 }$
5.7

This needs no explanation.

Ex. 2. What is the average of $9,3,5$, and 6 ?
33. What is the average of $2,5,7$, and 10 ?
4. What is the average of 25 and 32 ?
5. What is the average of 34 and 19 ?
6. What is the average of 25,32 , and 41 ?
7. What is the average of 17,29 , and 63 ?
8. What is the average of 25,170 , and 195 ?
9. What is the average of $2,102,111$, and 115 ?
10. What is the average of $0,5,7.5,25$, and 40 ?
11. What is the arerage of $1,7,15,25.25$, and 37.5 ?
12. What is the average of $3,7.5,5.75,11.75$, and . 625 ?
13. What is the arerage of $20,47,35,94.5,79.5$, and 10.01 ?
14. What is the average of $13,15,17,29.5,37.5$, and 63.75 ?
15. What is the average of $0,1,7,9,25,37$, and 39 ?

ALLIGATION MEDIAL.

§ 264. This uame is given to the process of finding the mean value of a mixture, when the values of the substances composing it are known.

Ex. 16. If 41 l . of sugar worth 10 ct. per 1 l . are mixed with 101b. worth 12ct. per lb., what is a pound of the mixture worth?

§265. Model.-Multiply 10ct. by 4. (§ 183.) Multiply 12ct. by 10. (§ 183.)Add the products together. (§ 179.) Divide the sum by 14. (§ 185.) The quotient, $11 \frac{3}{7} \mathrm{ct}$., is the average price per lb.

Explanation.-The whole mixture weighs 14 lb ., which evidently cost 160 ct. : and 1 fourteeath of this amount is the average price per $1 b$.

Rule.-Divide the whole cost by the number of articles ; the quotient will be the average cost per unit.

This rule applies to several things not embraced in the definition.

Ex. 17. During 24 hours the thermometer stood for 2hr. at 55°, for 3 hr . at 60°, for thr. at 65°, for 5 hr . at 70°, for 6 hr . at 75°, and for 4 hr . at 80°. What was the mean temperature of the day?
18. A goldsmith mixes 10 oz . of gold 16 carats fine with 60 . 17 curats fine and 8oz. 19 carats fine; what ishthe fineness of the mixture?
19. A grocer mixed 4 gal . of wine worth $\$ 1$ i gallon, 5 gal . worth $\$ 1.25$ a gallon, ande 10 gal . worth $\$ 1.50$ a gallon; wh t syas the mixture worth per gal.?
20. If 33 gal . of molasses at 4 Jet., 40 gul. at 5)ét, $70 \mathrm{~g} a \mathrm{l}$. at 6 Jot., and 80 gal at $80 \mathrm{ct}$. , be mixed to 弓土ather, wat is a gallon of the mixtuae worth? Aas. $62 \frac{s}{12} \mathrm{ct}$.
21. A farmer has 10 sheep worth $\$ 4$ each, 12 worth $\$ 5$ each, and 8 worth $\$ 10$ each; what is their average vaiue?
alligation alternate.
§266. This consists in finding the proportional quantities of sev tral simple substances which shall make a compound of a given mean value. It is, therefore, the converse of the preceding.

Ex. 22. In what proportions mast sugars worth 10 ct , $11 \mathrm{ct} ., 13 \mathrm{ct}$., and 15 ct ., be mixed, that the compound may be worth 1fet.?
from 14 leaves 1 ; set 1 opposite $15:-14$ from 15 leaves 1 ; fet 1 opposite 10,11 , and 13 . H.nce there must be 11 b . at 10 ct ., 1ib. at 11 ct , and 11 h . at 13 ct ., to 8 lb , at 15 ct .

Expianation.-After arranging the several prices as in the model, and placing the mean price on the left, we connect each price below the mean wih one above it, and each price above the mean with one helow it. Then taking the difference between each price and the mean, we set this difference opposite the price with which this price is connected; observing during the operation to consider all the prices as abstract numbers. The reason for all this is evident when we consider that each pound at 10 ol . falls 4 et. below the mean, while cach pound at 15 ct . is only lot. above it. To average these two values, therefore, we must have 41 b . of the sugar at 1.5 ct . to every one at llot. Fur a imilar reason, it requires 31 b . at 15 ct . to counterbalance 1 lb . at 11 er. And as the mean price is equidistant between 13ct. and 15 et., these two qualities must be taken in equal quantities. So that to bring the three i . ferior qualities up to the required average, it is necessary to take $4+3+1$, i. e., 8 lb . of the superior quality to 11 b . of each of the iuferior qualities.

Rule. I. - Arrange the several prices in a verlical coeumn, and place the mein price on the left.

Connect each price below the mean with one above it, and each price above the mean with one below it.

Find the difference between each price and the mean, and set it opposite the price with which it is connected. If only one difference stands opposite any price, it denotes the proportion of that value; but if several differences stand opposite any price, their sum denotes the proportion of that value.
II. If it is required to have a specified quantity of any value.-Find the proportions as above. Then say, As the proportion found for this value: the quantity required for it :: the proportion for any other value : the quantitys required for it.
III. If the whole quantity of the mixture is speci-fied.-Find the proportions as abive. Then take the sum of the proportional numbers, and say, As the sum of the proportional numbers : the required quantity of the mixture :: the proportion for any value : the quantity required for that value.

Proor.-By Alligation Medial.
Ex. 23. In what proportions may gold of $10,13,14$, and 22 carats fine, be mixed so that the compound may be 17 carats fine?
24. A grocer having brandy worth $\$ 1$ a gallon, wishes to mix it with water so that he can sell the mixture at 80 ct. a gallon. In what proportions must he mix them?
25. In what proportions may liquors worth respectively $\$ 1$, $\$ 1.20, \$ 1.40$, and $\$ 1.50$ be mixed, that the mixture may be worth $\$ 1.25$?
26. A farmer wishes to mix 14 bu . of wheat worth $\$ 1$ per bu. with such a quantity worth $\$ 1.24$ as will make the mixture worth $\$ 1.03$; how much must he take?
27. How much tea at 80 ct ., 70 ct ., and 60 ct ., respectively, should be mixed with 901 l . at 90 ct ., so that the mixture may be worth 75 ct . per lb.?
28. A merchant having 1001 b . of sugar worth 10 ct . per lb., mixed it with other sugar worth respectively 5,8 , and 9 ct ., and sold the mixture at $\delta_{\frac{1}{2}}$ ct. How much of each quality was there in the mixture?
29. How much sugar at 10 ct ., and how much at 15 ct . per lb., must be taken to make 601 b . worth $\$ 7.20$?

Ans. 36 lb . at 10 ct , and 24 lb . at 15 ct .
30. A grocer mixes 1441 b . of sugars worth respectively 12 , 10,6 , and 4 ct . per 1 lb ., and sells the mixture at 8et. per lb.; how much of each quality does he take?
31. Λ man paid $\$ 165$ to 55 persons-men, women, and boys; to each man he paid $\$ 5$, to each woman $\$ 1$, to each boy 50 ct .; how many were there of each?

Ans. 30 men, 5 women, 20 boys.

EQUATION OF PAYMENTS.
§ 268. This consists in finding the average date at which several amounts due at different times may all be paid, so that no interest shall be either gained or lost.

Ex. 32. A owes B $\$ 25$ due in 4 mo., $\$ 50$ due in 6 mo., and $\$ 75$ due in 8 mo .; what is the mean time of payment?

$$
25 \times 4 \mathrm{mo}=100 \mathrm{mo} \quad \S 269 . \text { Model. Multiply } 4 \mathrm{mo}
$$

$$
50 \times 6 \ll=300 " \text { by } 25 .(\$ 183 .) \text { Multiply } 6 \mathrm{mo} \text {. }
$$

$$
75 \times 8 "=600 \text { " by } 50 \text {. Multiply } 8 \mathrm{mo.} \text { by } 75 .
$$

$\overline{150} 15,0) \overline{\overline{000,0 \mathrm{mo}} \text {. Add the products together. Add }}$ the multipliers together. Divide 1000 mo . by 150 . The quotient $6{ }_{\frac{2}{s}}^{2} \mathrm{mo}$. is the mean time of payment.

Explanation.-The interest of $\$ 25$ dollars fur 4 months is equal to the interest of 1 dullar for 100 months: the interest of $\$ 50$ for 6 mm . $=$ the interest of $\$ 1$ for 300 mo : the interes of $\$ 75$ tor $81 m \ldots$. $=$ the interest of $\$ 1$ fur $600 . \ldots 0$. Hence the interest of the several am suts for their respectice times is equal to the interest of $\$ 1$ for 1000 mon , and this is equal to the interest of $\$ 150$ for $6 \frac{2}{3}$ mo. Hence it is fair that the Whole ammunt would be paid in $6 \frac{2}{3}$ mo.

Rus.E.-Multiply each term of credit by the number of units in the correvpunding fuyment, and divide the sum of. the produrts by the sum of the mult pliers: the quotient wirt be the mern time of payment.

W区 3 3. A man owes an wher $\$ 500$ due in 3mo., $\$ 100$ dur in (5mn., and $\$ 600$ due in $9 m n$. what is the averaga tem of eredit for the three debis?
84. Buaght tronds as follows: \$400) on a credit of ©mo.s sivu mis $\frac{1}{2} 411$. , and $\$.560$ on 6 mo .; what average credit -hnuld be allowed me on the ahole?
35. 13 ught \$lvolu worth of goods to the faid for as follows; $\$ 200$ on the day of purchase, $\$ 100$ in 5 mo ., and $\$ 100$ in 15 mon . What average credit should be alluwed me on the whole?
86. In what the should the fullowing amounte be paid all at.once : $\$ 1600$ due in $5 m 0$., $\$ 1200 \mathrm{in} 6 m 0$., and $\$ 1200$ in 8 mo.?
37. I uwe $\$ 100$ to be paid Jan. 15, $\$ 200$ due Feb. 15, and $\$ 300$ due Mar. 9 ; on what day way the whole debt be paid at once?
Note- Selec: some day from which the perinds of credit may be supposed tur comenence in this insiance. Jan 15 is the most convituitit filud the intersal elafsing tutween this date and each of the wh r e and then pruceed according to the rule. Cunsider ouch monih 30 days.
39. A man nwe his neiehhor $\$ 1250$ due in 8 mo. : but at the end of 3 mo . he pays $\$ 550$, and in -m . more he pay- \$15l; what extension of eredit shonld be alluwed on the remainder?
$250 \times 5 \mathrm{mon}=150 \mathrm{mo}$-270. Moned.-Mnltip'y 5 $150 \times 3{ }^{6}=450^{6}$ 850)1700 mı. $2 m u$.
mo. by 250. (\$183) Multiply Smb. hy 15: Ald the pindnets myether. Wivide 1700 mo. by 850 . The quatient $2 m \ldots$. is
the externsion of crellit.
Exphanatun. - The debtor. having paid \$2io ($8-3$) 5 mo befure it was due, is entitled to a eredit uf $125011 m 0$. on \$1: and, having pail \$150. Smu, before it was due, is therefore entitled to a craht of 45 (imn. an $\$ 1$. Fur hoth prepayments he is entitled to a eredit equivalent rn \$1 for 1700mo. The remainder anpaid is $\$ 1250-(\$ 2.5)+8100)$ $=\$ 50$: and a credit of 1700 mo. on $\$ 1$ is equal to a credit of 2 mon กा Ss5!.

Ex. 3!. I wwe $\$ 1000$ due in 12 mo . If I pay $\$ 100$ at the and of 3 mon., ald $\$ 100$ at the end of 4 mu.. haw long be yond the $1: 2 m$. should my ereditor wait for the piajment of the halamee?
40. I owe $\$ 2100$ due in 6 mn . If I pay $\$ 500 \mathrm{down}, 53^{\circ} \mathrm{O}$ is 2mo.. sul \$200 in Ömo, in how many montha fram the contraction of the debr should I fay the balance?
41. A merchant nwes $\$ 12 J 0$, of which $\$ 200$ is to be paid in 4 momh $\$ 400$ in 10 months, and the remainder in 10 months: if he pays the whole at onee, ati what time must he make the payment?
42. A merchant owes \$ISun to he paid in 12 monthes, eqfoo to he paid ia 6 manshs, and $\$ 2.00$ tor. We paid in 0 mouths: what is the averane time of pagment?

PROMISCUOUS PROBLEMS.

PROMISCUOUS PROBLEMS.

1. Reduce $£ 19, \delta_{\frac{3}{8}}$ s. to pence.
2. Reduce 9 oz . $16 \frac{3}{7} \mathrm{dwt}$. to grains.
3. Reduce $\frac{\frac{2}{3}}{\frac{7}{8}}$ of $\frac{\frac{3}{1}}{12}$ of $16 \frac{1}{2}$ to its simplest form.
4. Reduce $\frac{1}{1} \frac{1}{2}, \frac{6 \frac{7}{6}}{20 \frac{5}{8}}, \frac{6 \frac{1}{2}}{26}$, and $\frac{2}{3}$ of $\frac{4 \frac{1}{2}}{9}$ to their least common denominator.
5. Add $900.01,450.037$, and 696.9 together.
6. Add $2 \frac{8}{11}, 6 \frac{1}{5}$, and $12 \frac{19}{22}$ together.
7. Add $\frac{7}{10}$ of $\frac{4}{5}$ of 20 , $\frac{3}{7}$ of $\frac{6}{7}$ of $24 \frac{1}{2}$, and $\frac{6}{11}$ of $2 \frac{1}{4}$ together.
8. From $\frac{6 \frac{3}{4}}{20}$ take $\frac{2 \frac{1}{2}}{12}$.
9. From $\frac{5}{7}$ of $\frac{2}{3}$ of $3 \frac{1}{2}$ take $\frac{5}{9}$ of $\frac{7}{8}$.
10. From $\$ 49 \frac{3}{4}$ take $\$ 4.75+\$ 5 \frac{5}{10}+\$ 9.30$.
11. Multiply $\frac{8 \frac{1}{2}}{12}$ by $\frac{17}{20 \frac{2}{5}}$.
12. What is the product of $\frac{31}{50}$ by $\frac{17}{20 \frac{2}{5}}$?
13. Multiply $\frac{9.1}{18.2}$ by $\frac{7}{11}$ of $\frac{18}{19}$ of $5 \frac{3}{7}$.
14. Divide $\frac{2}{3}$ of $3 \frac{3}{4}$ by $\frac{5}{7}$ of $6 \frac{1}{9}$.
15. Divide $1301 \frac{2}{5}$ by 161.3 .
16. Divide $\$ 1843 \frac{1}{4}$ by $368 \frac{3}{4}$.
17. What is the insurance on $\$ 3125$ at $6 \frac{1}{4}$ per cent.?
18. A commission merchant sold 19 firkins at 45 ct . per lb., and retained 5 per cent. commission; how much did he return to the owner?
19. What is the par value of two certificates of stock; one 214
for $\$ 350$ at $2 \frac{1}{2}$ per cent. discount, the other for $\$ 527$. 50 at 5 per cent. advance?
20. What is the amount of $£ 1054,10 \mathrm{~s} .9 \mathrm{~d}$. for 2 yr . 9 mo . at 4 per cent. per annum?
21. If the interest of a certain amount of money at 6 per cent. is $\$ 241.80$, what is the interest of the same sum for the same time at $7 \frac{1}{2}$ per cent.?
22. At what rate per cent. per annum will $£ 1829,10$ s. amount to $£ 1898,2 \mathrm{~s}$. $1 \frac{1}{2} \mathrm{~d}$. in 9 months?
23. What is the greatest common measure of 560,880 , 1028, and 1296 ?
24. What is the least common multiple of $36,18,33,11$, and 6?
25. What is the greatest common measure of 56,154 , and 182?
26. What is the least common multiple of $2,4,10,7,14$, 15 , and 21 ?
27. Resolve 528 into its prime factors.
28. What prime factors are common to 360,420 , and 840 ?
29. I sold 125 A . 2 R. 20 P . of land for $\$ 2050$; how much did I gain or lose, if I gave $\$ 15.50$ per A. for the land?
30. I bought a lot of English paper for $£ 698,10$ s. $6 d$., and sold it at a profit of 75 per cent. ; how much did I receive for it in Federal currency?
31. What is the amount of $£ 300,10 \mathrm{~s}$. for 2 yr . 3 mo . at interest compounded semi-annually, at 8 per cent. per annuin?
32. What is the square root of 509796 ?
33. What is the cube root of 16003008 ?
34. Find the greatest common measure of 1538,2307 , and 3845.

PROMISCUOUS PROBLEMS.

35. I sold $\frac{1}{3}$ of my land to $\mathrm{A}, \frac{1}{4}$ of it to B , and retained 200A. for myself; how much had I at first?
36. A, B, and C trade in partuership. A invests $\$ 1000$ for 12 mon'hs; B, $\$ 1500$ for 10 months; and $\mathrm{C}, 82000$ for 9 months. How shall their profit of $\$ 1000$ be dirided?
37. How many harrels of potatnes at $\$ 2.50$ per bbl. should be exchanged for a hogshead of sugar weighing 1375 lb . grnse, worth $\bar{\Sigma} 15.00$ a hundred pounds net, tare being 8 per cent.?
38. How many firkins of butter, at 25 ct . per 1b., can bo bonght fur $9 m 0$. interest of $\S 800$ at 7 per cent. per annum?
39. Having been engaged in merchandise with a capital of $\$ 19500$, I realized a profit of $33_{3}^{\frac{1}{3}}$ per cent., which I immediately invented in land at $\$ 16.50$ per A .; how many acres did I buy?
40. If I owe three notes, one for $\$ 600$ due 3 mo . henep, an other: for $\$ 300$ due $6 m o$. hence, and the wher for $\$ 1000$ due 15 mo. hence, in what time night I fairly pay the three notes together?
41. If l2lh. of tea@s1.20,151b.@\$1.44, and 181b.@\$1.80, be mixed together, what is the value of 111b. of the mixture?
42. What is the $4!h$ power of $7 \frac{1}{2}$?
43. What is the culie of 3.5 ?
44. What is the eabe root of 19.693 ?
45. What is the square root of $76_{1 \frac{9}{16}}$?
46. Regaired to fill a hog:head with two kinds of wine worth $\$ 1.20$ and $\$ 1.05$ per gal. respectively, so that the misture will be worth $\$ 1.15$ per gal.; how many galluns of each kind will the reguired?
47. The total stock in a Railroad is \$10un500 the met in-
 ceive fro $\$ 100010$ routh of atwok?
48. I exchanged a house and lot worth 2500,150 fur land worsh $\$ 10.50$ per A. ; how much laud did I racefic? 49. A pedlar exclunned a piece $n i$ calica, rated at 21 et. per yl., for a firkin of butter worh $2 \cdot \frac{1}{2}$ ct. per Ib ; how many yards of calico were there?
49. I impmoted 95T. of irnu wumh S8: per T. what was the dury on it at $33 \frac{1}{3}$ per ennt?
50. What is the net reight of 275 bags of coffee, weighing cach 731h. gross, tare being 4 pur celt.?
51. What cost $70 \mathrm{~A}, 3 \mathrm{R}, 25 \mathrm{P}$. nf land at $\$ 25.75$ per A ?
52. What cont 5T. 16ews. 3y'. on irun at \$t.125 per cart.? 34. If, by se'ling a tract of land for Sitith), I lose 4 per cent. of what it cost me, for what would I have had to sell it, to qain $6 \frac{1}{4}$ prer cellt.?
53. Bonght, 25 T . 18 cw . of from at $£ 1 t, 16 \mathrm{~s}$. per T .; and old the whole for $\$ 2000$, what dad $[$ gain or lave pee ' I '?
54. What is the present worth of \$2000, due in 2 y r. 3 mo. 15 da, intere t being at 6 fer cent. per amma?
55. What is the discount on £ \& R 1 , due in 3yr. Gun., interest being at \& per cell. per annum?
56. I wish tu borrow $\$ 1150$ in bank: interest being at 6 per cent. per anmilli, what must be the fare of th: proper mote at 90 days?
57. In what time will $\mathfrak{f} 43 ?, 154$, at 6 per cent. per annum, ammut. to $\mathscr{E} 5(62,11$. lid.?
58. If the insurance of $\$ 2.5050$ is $\$ 100$, what is the rate per crilt?
59. What per cent. of 60 is 1.25 ?
60. What per cent. of 75 is 125 ?
61. What is $3_{\frac{1}{16}}$ per cent. of $\$ 11755$?
62. If $5 \frac{1}{2} \mathrm{~A}$. of land cost $\$ 144.50$, what will 17A. 3R. 19.375P. cost?
63. If 1.37 gal . of sorghum molasses cost $\$ 1.4375$, what will 13.7 gal . cost?
64. Divide 17 mi . 5 fur. 25 rd . by 1.5 .
65. Multiply 3 deg. 17 min .45 sec . by 2.03 .
66. Dividend is $£ 1,18 \mathrm{~s}$. 9.5 d., divisor is 4.9 , what is the quotient?
67. Dividend is 1bu. 3pk. 4.5qt., quotient is 75bu. 2 pk . $4 q t$., what is the divisor?
68. From 1.475T. take 17 cwt . lqr. 19.291 lb .
69. Add together 4.75 gal ., $3.07 \mathrm{qt} ., 7.45 \mathrm{pt}$., and 6.19 gi
70. What cost 17 bbl . flour at $\$ 10$ per 100lb., 3 bu . salt at $\$ 1.25$ per bu., and 677.5 lb . pork at $\$ 0.065$ per 1 lb .?
71. If 75 persons eat 800 bu. corn in 1 year, how long will 600 bu. last 90 persods?
72. If 150 copies of a book of 200 pages require 6 rm .4 qr . of paper, how many reams will 15000 copies of a book of 224 pages require?
73. If 1 rm . of paper weigh 30 lb . and cost 30 ct . per 1 lb ., what will the paper cost for an edition of 1000 copies of a book which requires 5 rm .10 qr . for 96 copies?
74. If $83 \frac{1}{2} \mathrm{~T}$. of coal cost $\$ 405.50$, what will 17 T . 3 cwt . 1 qr. bring at $16 \frac{2}{3}$ per cent. advance?
75. The second, third, and fourth terms of a proportion are $\frac{2}{5}, \frac{7}{9}$, and 2.5 , respectively; what is the first term?
76. If the first, third, and fourth terms of a proportion are $\$ 64.96,7 \mathrm{cwt}$. 1 qr., and 4 cmt . 2 qr ., respectively, what is the second term?
77. Multiplicand is 94 ; product is 66 ; what is the multiplier?
78. I bought 625 lb . of cheese for $\$ 62.50$, and sold it at $12 \frac{1}{2}$ et. per lb. ; how much per cent. did I gain?
79. I own $\frac{3}{5}$ of a ship worth $\$ 20000$, and have insured it at 2.375 per cent.; what insurance do I pay?
80. What is the amount of $\$ 2169.845$ for 1 yr . 10 mo . 17 da . at 7 per cent. per annum?
81. What are the prime factors of 7825 ?

84 . What are the common prime factors of 875 and 1.750 ?
85. How many hours will there be in the year 1900 ?
86. The Mecklenburg Declaration of Independence was made May 20, 1775 ; North Carolina unanimously seceded from the United States May 20, 1861; how many days elapsed between these two great events?
87. What cost 30001 l . of corn at $\$ 3.00$ per bbl.?
88. What cost 5.25 bbl . of flour at $\$.04$ per lb.?
89. An officer, in pursuit of a criminal, goes 10 mi . per hr.; the criminal, who has 36 mi . the start, goes 7 mi . per hr.; how far must the officer go, to catch the criminal?
90. Bought 40 gal. wine at $\$ 2.50$ per gal.; lost 5 gal. by leakage : how must I sell the remainder per gal. so as to gain 25 per cent. on the whole ?
91. A vessel laden with 3000 bu . Wheat, found it necessary to throw 25 per cent. of her cargo overboard; what was her loss at $\$ 1.25$ per bushel ?
92. What is the value in Aroirdupois weight of 16 lb .5 oz . 10dwt. 12gr. Troy?
93. How many sheets in 7 reams of paper?
94. If 7 silver spoons weigh 11b. 2oz. 3dwt., what will each spoon weigh?
95. If 2 A . produce 45 bu .3 pk. 6 qq. 1 pt. of corn, how much will 32A. produce?
96. Ald thgether $\frac{1}{3}$ of $\frac{1}{4}$ of an Acre, $75 \frac{1}{2} \mathrm{P} . \frac{\pi}{7} \mathrm{R}$., and $\frac{3}{8} \mathrm{~A}$? 27. What part of a fathom is $3 \frac{1}{2} f t$??
98. What is the amonnt of $\$ 3000$ for 6 mo. 24 da. at $7 \frac{1}{2}$ pe: cent. per antum?
99. A 2 mil 13 purchased a house for $\$ 3000$, of which A paid $\$ 1800$, how shall they divide a rent of $\$ 350$?
100. What is the square rout of 576 ?
101. What is the 4 th root of 6561 ?
102. What is the cube root of $\frac{9112}{1000} \frac{2}{00}$?
103. How much stuck at 7 per ceut. adrance may be bought fur $\$ 5350$?
104. Bunght 10 rm . of paper at $£ 3.50$ per rin., and sold it at $\$.25$ per quire, h.w much did I gain or lose on it all?
105. Brught soubh. of flour for $\$ 2250$, sohd $\frac{1}{4}$ of it at $\$ 8$ per hbl., and the remainder at $\$ 8$ per bbl., how much did I receive for the whole?
106. Reduce $26 \frac{7}{8}$ to a decimal form.
107. Inltiply four thousandthes by five hundredthe.
108. Multiply fuur hundred and fifty by two hundredths.
109. Drvide even tenthe by one hundredth.
110. What is the difference between thirty-ive handredths, and thirty five thousathdis?
111. What is the 2nd term of a proportion whise 1et, 3rd, and $4!1$ terms are $7,1.3$, and 19 , respectively?
112. If oue acre uf land onsts $\mathcal{\delta}: 15 \mathrm{~s} .4 \mathrm{~d}$., what will be the cost of $173 \mathrm{~A} . \because \mathrm{R} .14 \mathrm{P}$. at the same rate?
113. A gentleman's estate is worth 24215 , tw. a year: what may he spend fer day and yet save $£ 1000$ per annum?
114. A father left his son a fortune, $\frac{1}{4}$ of which he ran through in 8 monthis, $\frac{3}{7}$ uf the remainder lasted him 13 monthis longer, when he han barely $E 8: 0$ leit: what sum did his father luave lim?
115. There are 1000 men besiged in a town with provisims for 5 receks, allowing each man 16 ounces a day. If thoy are reinforced by 500 more and no relief can be afforded till the end of 8 weeks, bow many ounces must be given daily to each man?
116. A father gave $\bar{\beta}^{7}$ of his entate to one son, and $\frac{7}{18}$ of the remainder to another, leaving the rest to his widuw. The difference of the childien's lequcies was $E 5!\frac{1}{2}$, 6s. Sil. : what was the widuw's pirtion?
117. If 14 cwt. 2 gr. of sugar cost $\$ 120.92$, what will be the price of newt?
118. If the freight of 80 tierees of sugar, each weighing $3 \frac{1}{3}$ cort.. 150 miles, cost $\$ 8!$, what must he paid fur the freight of $30 h h d$ of sugar, each weighing licwt., 50 miles?
119. If one pound of tea be equal in value to 50 oranger, and 70 oranges be worth 8 t lemons, what is the value of a pound of tea when a lemon is worth 2 cents?
120. If Gil bushels of oats willserve 2t horses fir 4^{\prime}) (iaye, how long will 30 bushels serve 43 horses at the same rate?
121. What will be the cost of Thhd. 5gal. Bgt. 2gi. of molasece, at $12 \frac{1}{2}$ cents pur gnart?
122. What is the interent of $\$ 3153.82$ for 9 years, at $4 \frac{\pi}{4}$ per cent. per annum?
123. What is the interest of $\$ 31573.25$ for 10 monthe at 6 per cent, per annum?
124. What will be the amount of $\$ 9537.15$ for 11 years, 2 months, and 18 days at 7 per cent. per annum?
125. What will be the amount of $\$ 3558.56$ for 3 years at 7 per cent., the interest being cumpunded semi-annua:lly?
126. If I buy 895 gallons of molasses and lose 17 per cent. by leakage, how much have I left?
127. Bought a piece of cloth containing 150 yards for $\$ 650$: what must it be sold for per yard, in order to gain $\$ 300$?
128. What is the bank discount on a note of $\$ 556.27$ payable in 60 days, discounted at 6 per cent. per annum?
129. The sum of two numbers is 5330 , their difference is 1999 : what are the two numbers?
130. How many scholars are there in a class, to which if 11 be added the number will be augmented one-sixteenth?
132. Sound travels about 1142 feet in a second. If then the flash of a cannon be seen at the moment it is fired, and the report heard 45 seconds after, what distance would the observer be from the gun?
133. What number is that which being augmented by 85 , and this sum divided by 9 , will give 25 for the quotient?
134. One-fifth of an army was killed in battle, $\frac{1}{6}$ part was taken prisoners, and $\frac{1}{10}$ died by sickness: if 4000 men were left, how many mendid the army at first consist of?
135. The greatest of two numbers is 15 and the sum of their squares is 346 : what are the two numbers?
136. At what rate per cent. will $\$ 1720.75$ amount to $\$ 2325$:86 in 7 years?
137. In what time will $\$ 2377.50$ amount to $\$ 2852.42$ at 4 per cent. per annum?
138. What principal put at interest for 7 years, at 5 per cent. per annum, will amount to $\$ 2327.89$?
139. What is the greatest common measure of 945,1560 , and 22683 ?
140. What is the greatest common measure of 204,1190 , 1445 , and 2006 ?
141. Find the least common multiple of $6,9,4,14$, and 16.
142. What is the least common inultiple of $11,17,19,21$, and 7?
143. What is the least common multiple of 7, 15, 21, 28. $35,100,125$?
144. Reduce $\frac{375941}{909}$ to a mixed number.
145. Reduce 149_{5}^{5} to an improper fraction.
146. Reduce $375 \frac{94}{9-4}$ to an improper fraction.
147. Reduce $17494 \frac{5 \cdot 3}{959} 9$ to an improper fraction.
148. Reduce $\frac{410}{510}$ to its lowest terms.
149. Reduce $\frac{3+5}{17 \pm 5}$ to its lowest terms.
150. Reduce $\frac{\frac{8}{9} \frac{3}{74} \frac{3}{7}}{}$ to its lowest terms.
151. Reduce $\frac{4}{6}, \frac{8}{8}$, and $\frac{3}{15}$ to their least common denominator.
152. Reduce $\frac{3}{15}, \frac{4}{3}$, and $\frac{8}{3}$ to their leaşt common denominator.
153. Find the least common denominator and add the fractions, $\frac{1}{16}, \frac{3}{5}, \frac{2}{8}$, and $\frac{4}{9}$.
154. Find the least common denominator and add $\frac{6}{15}, \frac{3}{3}, \frac{4}{5}$, and $\frac{5}{30}$.
155. Multiply $5 \frac{1}{4}$ by $\frac{1}{6}$.
156. Multiply $\frac{12}{10}$ by $\frac{3}{4}$ of 9 .
157. If 80 yards of cloth cost $\$ 340$, what will 650 yards cost?
158. If 120 sheep yield 330 pounds of wool, how many pounds will be obtained from 1200 sheep?
159. If 6 gallons of molasses cost $\$ 1.95$, what will 6 hogsheads cost?
160. If $\frac{4}{5}$ of a yard of cloth cost $\$ 1 \frac{5}{9}$, what will $7 \frac{1}{3}$ yards cost?
161. What is the cost of $2 S_{\frac{1}{2}}$ yards of cloth, at $\$ 4 \frac{3}{4}$ per yard?
162. What is the interest of $\$ 1914.16$ fur 18 years at 3 ? per cent. per annam?
163. What is the amount of $\$ 7953.70$ for 9 months at 6 per cent per allinam?
164. A merchant ha* 1200 barrels of flour ; he shipped 64 per cont. of it and sold the remainder: how much did he sell?
165. Two men had each $\$ 210$. One of them spends 14 per cent., and the other $18 \frac{1}{2}$ per cent. : bow many dollar mare did one speed than the other?
166. What is the difference between $5 \frac{1}{2}$ per cent. of $£ 800$ and $6 \frac{1}{3}$ per cent of $\$ 1050$?
16\%. What is the square root of 15193593 ?
368. What is the rymare root of $3 \mathbf{3} 372061$?
169. What is the cube runt of $18285+4$?
170. What is the cube rout of 2765056008 ?
171. If a person receives $\$ 1$ fur $\frac{4}{7}$ of a day's work, bow mush is that a day?
17?. What number is that of which $\frac{1}{2}, \frac{1}{3}$, and added togetter, will make 65?

$$
\cdots
$$

Date Due

L. B. Cat. No. 1137

Our Own Series of School Books.

PREPARED BY

CONSIST: VG OF

I. Oum Own Primex. For the use of children, pp. $34,12 m o$
II. Dur Own Spelling Book. For schools. pp. 112.

1I. C \boldsymbol{x} Cun Hirest EReader. Arranged to follow the Primer and co taining easy lessons for those beginning to read, with sptlling leesons accompanying each, $\mathrm{pp} .72,12 \mathrm{mo}$.
IV. Oar Own Second Reader. The lossons in this book hare been carefully selected to suit the progress of thoso who hare finished the First Reader, and at the samu time to furnisla both entertaiment and instruction, Ip. 168, 12110.
V. Oir Civn Third Readex. In this book tho most difficult words uf each lesson are de ned, th aid t ! $\stackrel{1}{ }$ upil in understanding what ho read Each lesson if also folls, d by in Tx, se to we written on the black-boazio . slate, for the : $n: n$ e "e traching t^{t}, ${ }^{\prime \prime}$, ill to s_{1} rell and punctuate. pp. 200.
VI. Our Divn Hourth Readex. The lessons in this book will be found to possess high literary merit, without ! eing above tho capacity of the young reader. Definitions of 'st ie difficui. word: are continued.

VII. Oux Orvn Eiftl Readex. A Khetorical Reader for the more adranced classes in Academies and High Sche

OUR OWN SCHOOL GRAMMARS.

BY C. W SMYTHE, A. M!
Our Own Primazy Grammar. Designed for tho use of beginners, and containing only the simple facts of the lanesurge. pp. $72,12 \mathrm{mo}$.

Our Own Tilementary Grami 1aix, Designed for our Schools and Academies, as a sequel to the Primary Gramman, and unbracing a complete elementary tratement of the subject.

OURE DWVN SCHOOI」 AHETHMETTI

 BY S. LANDER, A. M.Oize Own Primary Ax-ithmeitc. For the use of beginners. pp. $96,12 \mathrm{mo}$.
Orx Own Mental Arithmeise. In course of preparation.
Oux Own School Apithmetic. pp. 22t, 1Emo.

TBINGITAMIS LATHN GHAMMATE. For the use of Schnols, with Exercises and Vocabularics.
Bingham's Cresax, with Notes and Vocabulary.
Stunling, Campbell \& Alloriont, Publishers, GREENSBORO, N. C.

