

 R

 ลิ

 crum － 5 上
 シ上AKANE N M Mryas

OUTLINES

GENERAL ZOOLOGY.

MAMMALS, BIRDS,
REPTILES,
FISHES,
INVERTEBRATES, ‘‘
by CHARLES GIRARD.
" JOHN CASSIN.
" SPENCER F. BAIRD.
" SPENCER F. BAIRD.
S. S. HALDEMAN.

REPRINTED FROM THE ICONOGRAPHIC ENCYCLOPEDIA

NEW YORK:
RUDOLPH GARRIGUE, PUBLISHER, 2 bARCLAY ST., ASTOR HOUSE.
1851.

$$
1
$$

0UTLINES

GENERAL
 Z00L0GY.

MAMMALS, BIRDS,
REPTILES, FISHES,
INVERTEBRATES,
by CHARLES GIRARD.
" JOHN CASSIN.
" SPENCER F. BAIRD.
" SPENCER F. BAIRD.
" S. S. HALDEMAN.

NEW YORK:
RUDOLPH GARRIGUE, PUBLISHER, 2 barclay st, astor Hovse.
1851.
manmor

414 1 ha
14 11

NOTICE.

The present extract constitutes the Zoological portion of the work entitled-
"Iconographic Encyclopedia of Science, Literature, and Art. Systematically arranged by J. G. Heck, translated from the German with additions, and edited by Spencer F. Baird, A. M., M. D., Professor of Natural Sciences in Dickinson College, Carlisle, Pa. Illustrated by five hundred steel plates, containing upwards of twelve thousand engravings. In four vols. 8vo. of text, and two vols. oblong quarto of plates. New York, 1851. Published by Rudolph Garrigue, 2 Barclay st., Astor House."

Much of the Encyclopedia, instead of being translated, has been entirely rewritten, with special reference to adaptation to this country. The part on Zoology, among others, has been compiled entirely anew by its authors, and will be found to contain much original matter never before published.

The references to the plates are retained in this extract, though the plates themselves are not supplied.

SPENCER F. BAIRD.

C 0 NTENTS 0 F Z 00 L 0 GY.

[The numbers refer to the bottom paging of the text.]
pagx
General Introduction, 205
Descriptive Zoology, 220
A. Evertebrata, 220
Class Porifera, 220
Class Infusoria, 221
Division I. Radiata, 229
Class 1. Colenterata, 230
" 2. Zoophyta, 237
" 3. Echinodermata, 241
Class Helminthes, 246
Division II. Mollusca, 253
Class 1. Acephala, 526
" 2. Gastropoda, 279
" 3. Cephalopoda, 295
Division III. Articulata, 299
Class 1. Annelida, 300
" 2. Cirrhopoda, 305
" 3. Crustacea, 306
" 4. Arachnida, 322
" 5. Myriapoda, 334
" 6. Insecta, 334
B. Vertebrata, 401
Class I. Pisces, Fishes, 401
Classification of Fishes, 404
Descriptive Enumeration of Fishes, 410
Class II. Reptilia, Reptiles, 448
Sub-Class 1. Reptilia nuda, Naked Reptiles, 453
Order 1. Batrachia, Batrachians, 453
Sub-Class 2. Reptilia squamata, Scaly Reptiles, 465
Order 2. Ophidia, Serpents, 466
" 3. Sauria, Lizards, 475
" 4. Chelonia, Tortoises, 490
Class III. Aves, Birds, 494
Classification of Birds, 497
Descriptive Zoology-(Continued).
Order I. Accipitres, Rapacious Birds, 499
" II. Passeres, Perching Birds, 519
Sub-Order 1. Fissirostres, Split-billed Birds, 520
" 2. Tenuirostres, Slender-billed Birds, 530
" 3. Dentirostres; Tooth-billed Birds, 539
" 4. Conirostres, Cone-billed Birds, 554
Order III. Scansores, Climbing Birds, 565
" IV. Columbæ, Pigeons and Doves, 571
" V. Gallinæ, Fowls, 573
" VI. Struthiones, Ostriches, 580
" VII. Grallæ, Waders, 582
" VIII. Anseres, Swimming Birds, 587
Class IV. Mammalia, Mammals, 596
Classification of Mammals, 602
Order 1. Edentata, Mammals without Front Teeth, 607
Group 1. Monotremata, 607
" 2. Edentata proper, 609
" 3. Tardigrada, 612
Order 2. Marsupialia, Mammals with a pouch, 615
Group 1. Herbivora, 616
" 2. Insectivora, 620
" 3. Carnivora, 621
Order 3. Cetacea, Cetaceans, 623
" 4. Herbivora, Vegetable Eaters, 633
Group 1. Sirenidia, Sirens, 633
" 2. Trichechidæ, Walruses, 636
" 3. Pachydermata, Pachyderms, 638
" 4. Ruminantia, Ruminants, 649
" 5. Rodentia, Gnawers, 659
Order 5. Insectivora, Insect Eaters, 676
" 6.⿻ Cheiroptera, Bats, 679
Group 1. Carnivora or Insectivora, 680
" 2. Frugivora, 683
Order 7. Carnivora, Rapacious Mammals, 684
Group 1. Pinnipedia, Seals, 684
" 2. Unguiculata, With Claws, 686
Order 8. Quadrumana, Monkeys, 695
Geographical Distribution of Mammals, 702
plate 100-(Continued).
Fig. 11. Pastor róseus, rose colored starling,
" 12. Merula viscivorus, missel thrush,
". 13. Merula'iliaca, redwing,
" 14. Merula musica, song thrush, . 546 plate 101.
Fig. 1. Trochilus granatinus, garnet humming bird,
" 2. Pyrrhula europea, bullfinch,
3. Spermophila crassirostris, thickbilled fincl,
" 4. Coccothraustes chloris, green finch,
" 5. Fringilla senegala, Senegal finch,
6. Fringilla amaduva, amaduvat,
" 7. Vidua regia, king widow bird,
" 8. Vidua erythrorhynchus, red-billed widow bird,
". 9. Carduelis spinus, siskin,
$\therefore 561$
" 10. Carduelis elegans, goldfinch, . 561
" 11. Calliste tatao, seven-colored tanager,
". 12. Fringilla colebs, chaftinch, . 561
". 13. Emberiza hortulana, ortolan,
" 14. Emberiza schoeniculus, reed bunting,
" 15. Emberiza citrinella, yellowhammer, .
6. 16. Rupicola aurantia, cock of the rock,
" 17. Muscicapa grisola, grey flycatcher,
" 18. Muscicapa albicollis, whitenecked flycatcher,
" 19. Muscicapa regia, king of the flycatchers,
20. Ampelis carnifex, scarlet-crested chatterer,
21. Ampelis cortinga, banded chatterer,

plate 102.

Fig. 1. Trochilus albicollis, white-necked humming bird,
2. Certhia familiaris, brown creeper,
" 3. Parus cristatus, crested tit,
" 4. Parus major, titmouse,
5. Alauda calandria, field lark,
6. Alauda cristata, crested lark,
7. Alauda arvensis, skylark,
8. Acanthiza campestris, hedge warbler,
9. Cæreba cyanea, blue creeper,

10, 11. Phœenicura, redstarts,
" 12. Phœnicura suecica, blue throated Swedish redstart,
13. Erythaca rubecula, robin,
14. Menura superba, lyre bird,
15. Dicrurus forficatus, fork-tailed drongo,
". 16. Cracticus varius, black and white shrike,
17. Vauga curvirostris, hooked-bill shrike,
" 18. Laniarius barbarus, Barbary shrike,
19. Laniarius collurio, red-backed shrike,
" 20. Laniarius exubitor butcher bird, . 546 546

533
563

561
561

562

Fig. 1. Buceros erythrorhynchus, redbilled hornbill,
2. Buceros rhinoceros, rhinoceros hornbill,5 64
3. Halcyon a tricapilla, black capped kingfisher, 528
4. Ceryle javanicus, Java kingfisher, 529
5. Alcido ispida, commom king- fisher, 528
6. Caprimulgus europrus, goat- sucker, 524
7. Hirundo rustica, swallow, 522
8. Cypselus melba, black martin, 523
9. Tyrannus severus, Cayenne fly- catcher, 549
" 10. Milvulus forficatus, South Amer. flycatcher, 549
11. Parus ater, pine tit, 543
12. Regulus auricapillus, golden crested wren, 541
13. Philomela luscinia, nightingale 539
" 14. Curruca hortensis, garden war- bler, 541
6. 15. Curruca atricapilla, blackeap warbler, 541
", 16. Phonicura ruticilla, common redstart, 541
" 17. Motacilla boarula, grey wagtail, 545
" 18. Saxicola œnanthe, wheatear, 541
plate 104.
Fig. 1. Strix flammea, European barnowl,515
" 2. Otus brachyotus, short-eared owl, 515
" 3. Otus wilsonianus, long-eared owl, 515
4. Bubo maximus, grand duke, 517
5. Falco peregrinus, wandering falcon, 505
6. Falco œesalon, merlin, 506
7. Milvus regalis, kite, 510
8. Buteo vulgaris, common buzzard, 507
9. Gyps fulvus, griffin vulture, 501
10. Sarcoramphus papa, king vulture, 50 ธ
11. Sarcoramphus gryphus, condor, 502
plate 105.
Fig. 1. Aquila chrysaëtos, golden eagle, 507
2. Archibuteo niger, black buzzard, 507
" 3. Pandion ossifragus, osprey, 509
" 4. Haliaëtus albicilla, sea eagle, 508
5. Astur palumbarius, goshawk, 511
" 6. Accipiter nisus, sparrow hawk, 511
" 7. Falco subutes, hobby, 506
" 8. Falco alaudarius, kestril, 506
plate 105, b.
Chart of the migrations of fishes and birds
(Weltkarte in Mercator's Projection zurUebersicht der jährlichen Wanderungender hauptsächlichsten Gattungen derFísche und. Vögel),497

GLOSSARY.
Aleuten: In, Aleutian Islands.
Amazonenstrom, Amazon River.
Arabien, Arabia:
Arabisches Mr, Arabian Sea.
Asien, Asia.
Atlantischer Ocean, Atlantic Ocean.

> glossary-(Continued).

Behringsstrasse, Behring's Straits.
Bafins Meer, Baftin's Bay.
Cclifornien, California.
Canarische In., Canary Islands.
Cap der guten Hoffrung, Cape of Good Hope.
Capstadt, Capetown.
Cap Verds In., Cape Verde Islands.
Caspisches Meer, Caspian Sea.
Doriau, Danube.
Felsen Geb., Rocky Mountains.
Fensterschwalben, Domestic swallows.
Feuerland, Terra del Fuego.
Freundschafts In., Friendly Islands.
Gesellschafts In., Society Islands.
Gr. Büren See, Great Bear Lake.
Grünland, Greenland.
Grossbritannien, Great Britain.
Grosser Ocean, Paciaic.
Häringe, Herrings.
Hudsons Mfeer, Hudson's Bay.
J. Melville, Melville Island.

Indisches AFeer, Indian Ocean.
Lissabon, Lisbon.
Makrelen, Mackerel.
Meerb. u. Bengalen, Bay of Bengal.
Meerb. v. Mexico, Bay of Mexico
Mongolei, Mongolia.
Neusecland, New Zealand.
Neu Sibirien, New Siberia.
Nord Amerika, North America.
Nördliches Eismeer, Arctic Sea.
Patagonien, Patagonia.
Raben u. Krüken, Ravens and crows.
Rauchschuralben, Barn swallows.
Russisch Amerilia, Russian America.
Schiffer In., Navigators' Islands.
Schleiereulen, Barn owls.
Schwarzes Meer, Black Sea.
Sibirien, Siberia.
Sklavensce, Slave Lake.
Staare u. Amseln, Starlings and blackbirds.
Süd Amerika, South America.
Uferschualben, Bank swallows.
Vereinigte Staaten, United States.
Versammlungs- u. Abzugspunkt, Place of meeting and departure.
Wachtcln, Quails.
Warschau, Warsaw.
West Indien, West Indies.
Wien, Vienna.
Wüste Sahara, Desert of Sahara.
Zeichenerklärung, Explanation of the marks.
plate 106.
Fig. 1. Balæna mysticetus, Greenland whale,

" 2, 3. Physeter macrocephalus, sperm whale,

627
" 4. Delphinus delphis, dolphin, . . 629
plate 107.
Fig. 1, 2. Cervus elaphus, stag, . . 654
3. Cervus dama, fallow deer . . 655
4. Cervus capreolus, roebuck, . 653

Lepus timidus, hare, . . . 661
Lepus cuniculus, rabbit, . . 661
7, 8. Bos taurus, common ox, . . 658
9. Ovis aries, sheep, . . . 657
" 10. Capra hircus, goat, . . . 656
" 11. Sciurus vulgaris, squirrel, . . 676

plate 108.

Fig. 1. Camelus bactrianus, two-humped camel,

651
2. Camelus dromedarius, dromedary, 651
3. Camelopardalis girafa, giraffe, . 651
4. Moschus moschiferus, musk, . . 652
5. Antilope dorcas, gazelle, . . 655
6. Antilope redunca, antilope of Senegal,

655
plate 109.
Fig. 1. Bison americanus, buffalo, . . 657
2. Bos bubalus, Indian buffalo, . 658
" 3. Rupicapra tragus, chamois, . 656
" 4. Antilope scripta, Cape-elk, . 655
" 5. Auchenia alpaca, paco, . . 651
" 6. Auchenia lama, lama, . . 651
" 7. Auchenia vicunna, vicunna, . 651
" 8, 9. Tarandus furcifer, reindeer, . 654
" 10. Cervus alces, eland, . . . 654
" 11. Siberian horse, 648
plate 110.
Fig. 1. Equus zebra, zebra,
2. Equus asinus, ass, . . . 648
" 3. Equus mulus, mule, . . . 648
" 4. Equus caballus, horse, . . . 647
" 5. Norman team horse, . . . 648
" 6. Arabian mare and colt, . . 647
" 7. Arabian stallion, 647
plate 111.
Fig. 1. Tapir indicus, tapir,
". 2. Hyrax syriacus, daman, . . 644
" 3. Dicotyle labiatus, peccary, . . 645
" 4. Porcus babyrussa, Asiatic hog, . 646
" 5. Sus domesticus, domestic hog, . 645
" 6. Sus scropha, wild hog, . . 645
" 7. Phacochærus rethiopicus, wart hog,
" 8. Hippopotamus amphibius, hippopotamus,

640
" 9. Elephas indicus, Indian elephant, 643
plate 112.
Fig. 1. Ornithorhynchus anatinus, duckbilled platypus,
" 2. Echidna aculeata, porcupine anteater,

608
" 3. Manis pentadactyla, pangolin, . 609
" 4. Myrmecophaga didactyla, two toed ant-eater,
" 5. Myrmecophaga jubata, great anteater,
" 6. Chlamydophorus truncatus, Chili armadillo,
" 7. Dasypus sexcinctus, six-girdled armadillo,
" 8. Dasypus novemcinctus, ninegirdled armadillo,
" 10. Bradypus tridactylus, aī, . 614
" 11ab. Halmaturus laniger, rufous kangaroo,
" 13. Didelphys murina, Brazilian opossum,
" 14. Didelphys virginiana, Virginia opossum,622
" 15. Nasua rufa, brown coati, . . 687

CUNTENTS OF TIIE PLATES (I. Nos. 74—105, 105 b-118.)

то

Z 00 L 0 G Y

[Including Glossary to plate 105 b.]
*** *. The references for explanations of the subjects are to the bottom paging of the text.pagePlate 74Classification.
Fig. 1. Monas, animalcule,213
2. Monocerca, do. 213
" 3. Spongia, sponge, 213
،: 4. Hydra, naked polypi, 213
5. Diphies, Medusa, 214
" 6. Velella, nautilus, 214
" 7. Sipunculus, tube worm, 214, 246
8. Holothuria, sea jelly 214
" 9. Ligula, strapworm, 214
" 10. Nemertes, cordworm, 214, 353
" 11. Botryllus, sea grape, 214
" 12. Ostrea, oyster, 214
" 13. Chiton, sea cockroach, 214
" 14. Fissurella, fissure shell, 214

* 15. Vermetus, worm shell, 214
" 16. Strombus, screw shell, 214
" 17. Carina, keel shell, 214
" 18. Bulla, wood digger, 214" 19. Phyllidium, leaf shell," 20. Tritonium, triton,
214, 284
214, 283" 21. Limnæus, mud shell,
" 22. Clio, whale louse,214
215" 23. Octopus, polypus,
215" 24, Hirudo, leech,
215
" 25. Aphrodite, sea mouse, 215

6. Amphitrite 215
" 27. Anatifa, duck muscle, 15

- 28. Cancer, crab, 216
" 29. Squilla, shrimp, 216
" 30. Talitrus, sea flea, 216
" 31. Cyamus, whale louse, 216
" 32. Oniscus, cheslip, 016
" 33. Cyclops, water flea, 216
" 34. Caligus, fish louse, 216
" 35. Aranea, spider, 216
" 36. Chelifer, 216
" 37. Scolopendra, 217
" 38. Lepisma, book worm, 217
" 39. Pediculus, louse, 217
" 40. Pulex, flea 217
" 41. Carabus, ground beetle, 217
" 42. Forficula, earwig, 217
" 43. Cimex, bedbug, 217
" 44. Libellula, dragon fly, 217
" 45. Tenthredo, tailed wasp, 217
" 46. Vanessa, butterfly, 217
" 47. Stomoxys, autumn fly, 17
" 48. Petromyzon, lampereel, 217
" 49. Squalus, shark, 217

plate 74-(Coutinued)

Fig. 101. Psittacus, parrot, 102. Picus, woodpecker,
" 103. Buceros, rhinoceros bird,
" 104. Merops, bee-eater,
" 105. Sitta, nut-pecker,
" 106. Alauda, lark,
" 107. Cypselus, sea swallow,
" 108. Pica, magpie, 109. Otus, owl,
" 110. Vultur, vulture, . . . 219
" 111. Milvus, kite, 219
" 112. Balæna, whale 219
" 113. Cervus, dear, 219
" 114. Bos, ox. 219
" 115. Camelus, camel, . . . 219
" 116. Equus, horse, 219
" 117. Sus, hog, 219
" 118. Elephas, elephant, . . . 219
" 119. Ornithorhynchus, duckbilled platypus,

219
" 120. Manis, pangolin, . . 219
" 121. Bradypus, sloth, . . . 219
" 122. Lepus, rabbit, 219
" 123. Sciurus, squirrel, . . . 219
" 124. Castor, beaver, 219
" 125. Mus, mouse, 219
" 126. Didelphys, kangaroo, . . 219
" 127. Phoca, seal, 219
" 128. Mustela, marten, . . . 219
© 129. Viverra, civet, 219
" 130. Felis, cat, 219
" 131. Hyæna, hyena, 219
" 182. Cänis, dog, ." 219
" 133. Ursus, bear, 219
" 134. Erinaccus, hedgehog, . . . 219
" 135. Vespertilio, bat, . . . 219
" 136. Pteropus, rousset, . . . 219
" 137. Lemur, maki, 219
" 188. Hapale, ouistiti, . . . 219
" 139. Simia, monkey, . . . 219
" 140. Homo, man, 219

plate 75.

Fig. 1. Monas lens,
2. Proteus diffluens, . . . 298
" 3. Bursaria vesiculosa, . . . 228
" 4. Cryptomonas ovata, . . . 228
" 5. Trachelocerca olor, . . . 228
" 6. Trachelocerca viridis, . . . 229
" 7. Vibrio anguillula, . . . 227
" 8. Cyclidium glaucoma, . . . 228
" 9. Paramecium compressum, . . 229
" 10. Chilodon cucullatus, . . . 228
" 11. Gonium pectorale, . . . 227
" 12. Bursaria truncatella, . . . 228
" 13. Urocentrum turbo, . . . 228
" 14. Trichodina cometa, . . . 228
" 15. Volvox globator, 227
"16. Rotifer vulgaris, . . 220, 308
" 17. Opercularia articulata, $\quad .228$
" 18. Stentor mylleri, 228
" 19. Melicerta ringens, . . . 229
" 20. Carchesium polypinum, . . 228
" 21. Hydra grisea, 231

* 22. Hydra fusca, 231
" 23. Hydra viridis, 231
" 24. Virgularia juncea, . . . 241
" 25. Pennatula granulosa, . . . 240
" 26. Pennatula phosphorea, . . 240
* 27. Pennatula grisea, . . . 241

plate 75-(Continued).

Figs. 28, 29. Tubularia coronata, . 231
30. Sertularia polyzonalis, . . 231
" 31. Sertularia falcata, . . . 231
". 32. Thuaria thuia, 231
" 33. Sertularia abietina, . . . 231
" 34. Sertularia operculata, . . 251
" 35. Corallina rubens, . . . 221
" 36. Flabellaria opuntia, . . . 221
" 37. Penecillus penecillus, . . . 221
" 38. Corallina officinalis, . 221
" 39. Tubularia sultana, . . 231
" 40. Tubularia campanularia, . . 231
" 41. Acetabulum mediterraneum, . 231
" 42. Tubularia indivisa, . . . 231
" 43. Flustra foliacea, 258
" 44. Spongia fistularis, . . . 221
" 45. Spongia officinalis, . . . $2: 0$
" 46. Alcyonium ficiforme, . . . 241
47. Alcyonium palmatum, . . 241
48. Gorgonia flabellum, - . . 241
" 49. Gorgonia verrucosa, . . . 241
" 50. Gorgonia cerataphyta, . . 241
". 51. Antipathes spiralis, 240
" 52. Coralium nobile, . . . 241
" 53. Isis hippuris, 241
" 54. Flustra, 258
" 55. Pocillopora polymorpha, . . 240
" 56. Retepora, 258
" 57. Eschara, 258
" 58. Oculina virginea, . . . 240
" 59. Oculina gemmascens, . . . 240
" 60. Madrepora prolifera, . . . 240
" 61. Porites porites, 240
" 62. Astrea astroites, . . . 239
" 63. Explanaria ananas, . . . 240
" 64. Meandrina labyrinthica, . . 239
" 65. Fungia fungites, 239
" 66. Tubipora musica, . . . 241
" 67. Teredo navalis, 263
68. Sabella ventilabrum, . . . 305
69. Vermetus lumbricalis, . . 289
70. Serpula glomerata, . . . 304
71. Aspergillum javanum, . 256, 264
72. Serpula arenaria, . . . 304
73. Dentalium elephantinum, . . 286
74. Dentalium politum, . . . 286
75. Dentalium entalis, . . . 286
76. Patella granatina, . . . 285
77. Patella saccharina, . . . 285
78. Calyptræer sinensis, . . . 286
79. Patella laciniosa, . . . 285
80. Fissurella greca, . . . 285
81. Ancylus lacustris, \quad. . 294
82. Emarginula fissura, . . 285
83. Pileopsis hungarica (Trochidx), 289
84. Neritina crepidularia, . . 290
85. Patella vulgata, . . . 285
86. Haliotis tuberculata, . . 289
87. Neritina fluviatilis, . . . 290
88. Natica canrena, . . . 293
89. Sigaretus haliotideus, . . 292
90. Melania amarula, . . . 287
91. Limnea auricularia, . . . 294
92. Limnea stagnalis, . . 294
93. Bulimus decollatus fasciatus, . 295
94. Bulimus decollatus albus, . . 295
95. Paludina vivipara, . . . 287
96. Janthina ianthina, . . . 289
97. Helix nemoralis, . . 295
98. Helix pomathia, . . . 295
plate 75-(Continued).
Fig. 99. Turbo nautileus, 289
100. Clausilia perversa, 295
" 101. Scalaria dathrus, 287
" 102. Scalaria scalaris, 287
" 103. Turbo cochlus, 289

* 104. Delphinula delphinus, 289
" 105. Telescopium indicator, 288
" 106. Trochus solaris, 289
" 107. Trochus magus, 289
" 108. Solarium perspectivum, 289
" 109. Cerithium vertagus, 288
" 110. Pleurotoma babylonia, 290
" 111. Murex ramosa 290
" 112. Murex haustellum 290
" 113. Murex tribulus, 290
" 114. Strombus lentiginosus, 291

115. Pterocera chiragra, 291
116. Rostellaria rectirostris, 291
117. Terebra maculata, 292
118. Purpura lapillus, 290
119. Harpa ventricosa, 291
120. Baccinum undatuin, 290
121. Cassidoria echinophora, 291
122. Oliva ispidula, 292
123. Mitra episcopalis, 292
124. Mitra papalis, 992
" 125. Oliva porphyria, 92
125. Oliva maura, 292 292
plate 76.
Fig.
126. Auricula midæ
127. Auricula midæ 295
128. Ovula volva 292
" 3. Bulla physis, 8.
129. Ovula ovum 292
4
130. ©yprair moneta, 292
131. Cyproa mauritiana, 292
" 7. Суpræa arabica 292
132. Conus aurantiacus, 291
133. Conus summus 291
6 10. Conus cedo nulli, 291
" 11. Conus textillis, 291
" 12. Conus marmoreus, 291
" 13. Spirula spirula, 298
" 14. Nautilus beccari, 99
" 15. Nautilus calcar, 299
" 16. Nautilus pompilius, 98
" 17. Argonauta argo, 297
" 18. Pimna obeliscus, 270
134. Pinna rudis, 271
" 20. Avicula margaritifera, 267
" 21. Mytilus cygneus, 270
" 22. Mytilus bidens, 270
" 23. Terebrata caput serpentis, 259
135. Crania craniolaris, 259
" 25. Ostrea cristigalli, 265
" 26. Malleus malleus, 07
" 27. Pecten corallinus, 260
" 28. Pecten pallium ducale, 266
" 29. Pecten maximus, 266
" 30. Perna ephippium, 267
" 81. Arca senilis, 271
" 32. Arca noæ, 271
" 33. Tridacna gigas, 276
" 34. Isocardia corallina, 277
" 35. Spondylus gæderopus, 267
" 36. Venus mercenaria, 278
" 37. Cytherea dione, 279
" 38. Donax rugosa, 278
" 39. Donax scripta, 278

* 40. Mactra solidissima, 262
plate 76-(Continued).
Fig. 41. Hemicardium cardissa, 277

42. Cardium echinatum, 277
" 43. Cyclas, 277
43. Tellina radiata, 278
44. Solen vagina, 263
" 46. Solen siliqua, 263
" 47. Unio complanatus, 272
" 48. Mya pictorum, 262
" 49. Pholas pusillus, 263
" 50. Pholas dactylus, 263
" 51. Pollicipes mitella, 305
" 52. Lepas anatifi, 305
45. Coronula, 306
" 54. Balanus psittacus, 306
46. Chiton squamosus, 285
47. Holopus rangii, 242
" 57. Encrinus radiatus, 242
" 58. Pentacrinus osteria, 243
" 59. Oreaster turritus, 243
48. Asterias aurantiaca, 243
49. Astrogonium granulare, 243
50. Ophiolepis scolopendrina, 243
51. Astrophyton caput medusæ, 243
52. Ophiurus asterias, 243
53. Stellonia rubens, 243
" 66. Solaster papposa, 243
" 67. Spatangus purpureus, 245
54. Clypeaster rosacea, 24
55. Echinus cidaris, 245
56. Cidaris diadema, 245
57. Cidaris esculentus. $\because 45$
58. Lucernaria quadricomis, 239
59. Thaumantias cymbaloidea, 234
60. Aurelia aurita, $23 \pm$
61. Octopus octopodius, 296
62. Loligo loligo, 298
63. Sepia officinalis, 298
" 78. Clio borealis, 281
64. Scyllxar pelagica (Tritoniidæ), 273
" 80. Leruea branchialis, 308
65. Lernea cyprinacea, 308
66. Terebella conchliega, 305
" 83. Porpita nuda, 234
" 84. Velella spirans, 234
" 85. Cucumaria frondosa, 246
plate 77.
Fig. 1. Physalia physalis, 234
67. Thetis fimbria, 283
68. Salpa maxima, 259
69. Pedicellaria, 221
70. Actinia undata, 238
71. Actinia senilis, 238
72. Ascidia lepadiformis, 258
73. Ascidia venosa, 258
74. Nais serpentina, 302
75. Nais proboscidea, 301
76. Phyllodoce stellifera, 303
77. Nereis tubicola, 303
78. Amphitrite reniformis, 305
plate 77-(Continued.)Fig. 23. Nephelis octoculata (Hirudi-nidx),300
" 24. Clepsina complanata, 301
79. Hæmopis vorax, 301
80. Hirudo officinalis, 301

- 27. Sipunculus saccatus, 246

28. Sipunculus nudus, 246
" 29. Echinocoscus veterinorum suis, 248

- 30. Cysticercus cellulosæ, 249
" 31. Tænia cateniformis, 249
" 32. Bothriocephalus latus, 249

33. Tænia solium, 249
" 34. Ligula cingulum, 249
" 35. Planaria cornuta, 250
" 36. Distoma hepaticum, 250
" 37. Lumbricus variegatus, 302
34. Lumbricus terrestris, 302
35. Echinorhynchus gigas, 251
36. Trichocephalus dispar, 251
37. Ascaris lumbricoides, 251
38. Oxyuris vermicolaris, 251
39. Filaria medinensis, 252
40. Lumbricus aquaticus, 302
41. Filaria papillosa, 259
42. Argas fischeri, 328
43. Argas savignii, 328
44. Chelifer beauvoisii, 329
45. Galeodes phalangium, 329
46. Galeodes arancoides, 329
47. Scorpio europæus, 330
5.. Buthus afer, 330
48. Epeira imperialis, 332
49. Tetragnatha argyra, 334
50. Theridion denticulatum, 333
51. Argyroneta aquatica, 333
" $57 a$. Uloborus walenærius, 334

* 57b. Gasteracantha armata, 333
" 58. Mygale avicularia 332
" 59. Epeira diadema, 332
"60. Pallene brevirostris (Pycnogo- nidæ), 325
- 61. Chelifer cancroides, 329
" 62. Phalangium opilio, 329
" 63. Phalangium ægyptiacum, 329
" 64. Hydrachna abstergens, 328
" 65. Hydrachna despiciens, 328

66. Ixodes annulatus, 327
" 67. Ixodes americanus, 327
67. Sarcoptes scabiei, 326
68. Gamasus coleopterorum, 327
69. Acarus siro, 326
70. Ixodes orbiculatus, 327
71. Pulex penetrans, 352
72. Pulex irritans, 352
74, 75. Nirmidæ, 351
73. Phthirius pubis, 351
74. Pediculus capitis, 351
75. Podura nivicola 349
76. Podura villosa, 349
77. Smynthurus fimetarius, 349
" 81, 84. Machilus polypoda, 350
" 82, 83. Lepisma saccharina, 350
" 84. See 81 .
78. Melophagus ovis, 400
" 86. Hippobosca equina, 400
" 87. Bombylius major, 397
" 88. Dioctria ater, 397
" 89. Asilus cabroniformis, 397
" 90. Conops macrocephala, 398
" 91 Stomoxis calcitrans, 398

plate 77-(Continued.)

Fig. 92, 93. Empidæ 397
" 94. Anopheles bifurcatus, 397
" 95. Culex nemorosus, 397
" 96. Culex pipiens, 397
" 97. Tabanus tropicus, 397
" .98. Tabanus bovinus, 397
" 99-109. Muscidæ, 398
" 110. Clitellaria ephippium, 397
" 111. Volucella pellucens, 398
" 112. Scæva pyrastri, 398
" 113. Crysotoxum vespiformis, 398
" 114. Eristalis tenax, 398
" 115. Helophilus pendulus, 398
" 116. Leptis vermileo, 398
" 117. Stratiomys chamæleon, 397
" 118. Chironomus plumosus, 397
" 119. Anisomera nigra, 397
" 120. Ctenophora elegans, 397
" 121. Psychoda phalænoides, 397
" 122. Mycctophila cericea, 397
" 123. Bibio marci, 397
" 124. Mycetophila mirabilis, 397
" 125 . Cephalemyia ovis, 399
" 126,127 . Gasterophilus equi, 399
" 128. Estrus tarandi, 399
" 129. Estrus bovis, 399
plate 78.
Fig. 1, 2. Cancerinæ, 322
3. Thalamita natator, 322
4. Gecarcinus lateralis, 321
5. Gelasimus annulipes, 321
6. Ocypoda arenaria, 321
7. Philyra scabriuscula, 321
8. Dorippe sima, 321
9. Ranina serrata 321
10. Pagurus diogenes, 321
11. Palinurus guttatus, 320
12. Scyllarus æquinoctialis, 320
13. Stenopus hispidus, 320
14. Callianassa uncinata, 320
15. Squilla maculata, 318
16. Gonodactylus stylifer, 318
17. Phyllosoma stylicornis, 318
18. Orchestia fischeri, 318
19. Ancylomera hunteri, 319
20. Cymadocea armata 316
21. Sphæroma serratum, 316
22. Porcellio granulatus, 317
23. Caprella acuminifera, 317
24. Cyamus ovalis, 317
25. Aprus cancriformis, 313
26. Branchipus pisciformis, 313
27. Cyclops communis, 311
28. Phyllophora cornuta, 311
29. Ergasilus sieboldi, 311
30. Lernæa polycolpus, 309
31. Achtheres percarum, 310
" 32. Pyenogonum litterale, 325
" 33. Nymphon gracile, 325
34. Limullus moluccanus, 315
35. Nemesia cellicola, 333
36. Segestria perfida, 333
N. 24 tridectins marguetus, $\quad 333,334$

* 46. Tegenaria domestica, 333
" 47. Lachesis perversa, .. . 334
" 48. Uloborus walenærius, 334
" 49. Argyroneta aquatica, 333
plate 79.
Fig. 1. Mutilla europæа, 378

2. Apterogyna occidentalis, $\quad .378$
" 3-9. Formicidæ,
" 10. Bombus lapidarius,
378
" 11. Bombus muscorum, 380
" 12. Megachile sementaria, 380

- . 380
" 14. Xylocopa violacea,
" 15. Nomada variegata, 380
" 16. Eucera longicornis,
" 17. Megachile centuncularis,
" 18. Apis mellifica,
" 19. Vespa maculata,
" 20. Polistes paritum,
" 21. Vespa vulgaris,
" 22. Vespa crabro,
" 23. Leucospis dorsigera,
" 24. Chrysis cyanea,
" 25. Chrysis aurata, 380
" 26. Chrysis ignita,
" 27. Pompilus cœruleus,
" 28. Pompilus viaticus; 380
" 29. Crabro cribrarius,
" 30. Peloprus spirifex,
" 31. Ammophila sabulosa, 380
380
379
- - 377
" 32, 33, 36-39. Ichueumonidæ,
380
- 375
" 36-39. See 32.
" 40. Rhyssa persuasoria (Ichneumonidæ),

375
" 41. Urocerus spectrum, © . . 375
" 42. Urocerus gigas, 375
" 43. Lophyrus juniperi, . . . 375
" 44. Nematus capreæ, : . . . 375
" 45. Cimbex americana, 375
" 46. Tenthredinide. . . . 374
" 47. Cimbex variabilis, . . . 375
" 48-53. Cinipidæ, 375
" 54. Mantispa pagana, . . . 372
" 55. Raphidia ophiopsis, 372
" 56. Termes fatalis, 870
" 57. Bittacus tipularia, . $\quad .372$
" 58. Panorpa communis, : . . 372
" 59. Ascalaphus barbarus, 372
" 60. Myrmeleon libelluloides, ". . 372
" 61. Myrmeleon formicarius, 372
" 62-64. Hermerobiidæ, . . . 372
" 65. Hydropsyche plumosa; . 273
" 66. Phryganea striata, . . 373
" 67. Perla bicaudata, 271
" 68. Limnophilus rhombica; .. 37.3
" 69. Phryganea grandis, $\quad \therefore \quad$: 378
" 70-72. Ephemeridx, \quad. . 371
" 73. Agrion puella, 372
" 74. Calepteryx virgo, 372
" 75. Libellula depressa, . . . 372
76. Eischna grandis, $\because \quad 372$
" 77. Pterophorus pentadactyla; : . 383
" 78. Coccyx resinosa, 384
" 79. Carpocapsa pomonella, . . 384
" 80. Hercyna paliotalis, . . . 384
« 81. Tinea granella, 383
83. Gallerea cereana, 30384. Tinea pellionella,383
85. Lemmatophila salicella, 383
86. Hyponomeuta evonymella, 383
87. Hyponomeuta pedella, 383
88. Hypena rostralis, 384
89. Botys verticalis, 384
90. Sciaphila literata, 384
91. Tortrix viridana, 384
92. Halias prasinana, 384
93-102. Geometridæ, 384
103-123, 129, 136. Noctuidæ, 384, 385
124. Callimorpha jacobææ, 385
125. Arctia fuliginosa, 385
126. Arctia matronula, 385
127. Arctia dominula, 385
128. Pygæra bucephala, 385
129. See 103.
130-135, 137-151. Bombycid x, 385
136. See 103.
plate 80.
Fig. 1. Lasiocampa quercus 385
2. Dendrolimus pini, 385
3. Odonestis potatoria, 385
4-7. Bombycidæ, 385
8. Zygæna filipendula, 386
9. Sesia fuciformis, 387
10-21. Sphingid x 386, 387
22. Hesperia malvarum, 388
23-50. Papilionidæ, 387, 388
51. Thrips phisapus, 370
52. Lecanium illicis, 390
53. Lecanium hesperidum, 390
54. Coccus cacti, 389
55. Psylla alni,: 390
56. Dorthesia urticea, 390
57, 59. Aphidæ, 390
58. Chermes ulmi, 390
59. See 57.
60. Pyrrhocoris apterus, 393
61. Coryzus hyoscyami, 393
62. Cydnus biguttatus, 393
63. Pentatoma juniperinus, 393
64. Pentatoma baccarum, 393
65. Acanthosoma hæmorrhoidalis, 393
66. Cimex rufipes, 393
67. Acanthia lectularia, 392
68. Ranatra linearis, 391
69. Nepa cinerea, 391
70. Neucoris cimicoides, 391
71. Belostoma grandis, 391
72. Corixa striata, 391
73. Notonecta glauca, 391
74. Aphrophora spumaria, 390
75. Cicada fraxini, 390
76. Fulgora candelaria, 390
77. Fulgoria laternaria, 390
78. EEdipoda stridula, 370
79. Edipoda cærulescens, 370
80. Edipoda migratoría, 370
81. Acridium cristatum, 370
" 82-85. Locustidæ, 369
86-88. Gryllidx, 369
" 89. Phyllium siccifolium, 368
90. Mantis religiosa, 368
91. Empusa gongylodes, 368
92. Cyphocrana gigas, 568
93. Blatta urientalis, 867

plate 81.

Upper Division

Fig. 1--8. Forficulidæ, 367
4-6. Brachelytra, : . . 359
4 7. Meloë proscarabæus,
" 8. Lytta vesicatoria, . . . 363
" 9. Blaps mortisaga,
" 10. Tenebrio molitor, . . . 364
" 11-16. Carabidæ, 357
" 17. Dyticus marginalis, . . . 357
" 18. Hydrophilus piceus, . . . 358
" 19-21. Mordellidæ, . . . 363
" 22. Buprestis mariana, . . . 362
" 23. Euchroma gigas, . . . 362
" 24. Buprestis chrysostigma, . . 362
" 25. Elaphrus riparius (Carabidæ), . 357
" 26-29. Cicindela, 357
" 30-33. Elateridæ, 362
" 34. Malachius eneus, . . . 362
" 35-38. Cantharis, 363
" 39. Lycus sanguineus.
" 40. Pyrochroa coccinea, . . . 363

* 41, 42. Lampyridæ, . . . 362
" 43. Necydalis cærulea.
" 44-61. Longicornia,
365
" 62-64. Clerida, 362
" 65-76. Rhincophora, . . . 364
" 77-79. Bruchus.
" 80-101. Trimera,
366
" 102, 103. Nitidulidæ, . . . 359
"104. Silpha thoracica, . . . 359
" 105, 106. Necrophorus, . . . 359
" 107, 10s. Anthrenus,
" 109. Byrrhus pilula (Byrrhidæ), . 360
" 110. Gyrinus natator, . . . 111
" 111. Ptinus fur.
" 112. Anobium pertinax, . . . 362
" 113. Apate capucinus.
" 114. Hylesinus piniperda.
" 115, 116. Bostrichus, 345
" 117, 118. Dermestes, . . . 359
" 119-123. Hister, 360
" 124. Lucanus, 360
" $125-127$. Cetoniadæ, . . . 300
. 128-131. Melolonthidæ, . . . 360
132-136-144. Scarabæidæ, . . 360
133--135. Aphodiidæ, . . . 360
" 136-144. See 132.
" 145-148. Dynastidæ,
360

Lower Division.

Fig. 1. Alosa vulgaris, shad,
413
2. Clupea harengus, herring, . 413

* 3. Engraulis eucrasicholus, anchovy, 412
" 4. Harengula sprattus, sprat,
" 5 Thymallus vulguris preyline
. Thymalus valgaris, greyling, 416
" 6. Cobitis fossilis, mudfish, . . 420
" 7. Exoglossuni barbatula, groundling,

420
" 8. Rhombus vulgaris, brill, . . 424
" 9. Platessa flesus, fluke, . . 423
" 10. Zeus faber, dory,
" 11. Lota vulgaris, burbot,
. 423
" 12. Trachinus draco, sea cat, . . 426
" 13. Xiphias gladius, swordfish, . 430
" 14. Amodytes tobianus, sand-eel.
" 15. Syngnathus ophidion, sea-serpent, 436
" 16. Syngnathus acus, sea-needle, . 436

- 17. Pegasus draco, sea-dragon,
* 18. Lumpus anglorum, lump sucker,

437 433
plate 81-(Continued).
Fig. 19. Diodon punctatus, sticklebag, 436

20. Tetraodon lagocephalus, star belly, 436
" 21. Centriscus scolopax, trumpet fish, 433
" 22. Aluteres monoceros, unicorn fish, 435
" 23. Lophius piscatorius, widegap, 434
" 2t. Acipenser ruthenus, caviar stur- geon, 442
" 25. Acipenser sturio, sturgeon, 442
" 26. Sphyrna malleus, hammer-head- ed shark, 445
6 27. Spinax acanthias, thorn-hound, 446
" 28. Petromyzon fluviatilis, lamprey, 411
" 29. Seps chalcides, bronze colored lizard, 477
" 30. Scincus cyanurus, scink, 477
" 31. Plestiodon aldrovandii, 477
" 32. Triton cristatum, eft, 460
" 33. Draco dandini, flying dragon, 483
" 34. Rana temporaria, yellow frog, 462
" 35. Hyla viridis, tree or green frog, 463
" 36. Bufo calamita, toad, 464
" 37. Bombinator igneus, glistering toad, 463
" 38. Pelobatus fuscus, water toad, 483
" 39. Testudo geometrica, tortoise, 491

* 40. Testudo græca, mosaic tortoise, 491
" 41. Cistudo europæa, European tor- toise, 492

42. Emys picta, terrapin, 492
" 43. Sphargis coriacea, leather turtle, 493
plate 82.
Fig. 1. Aspidophorus cataphractus, pogge, 427
" 2. Pristis antiquorum, saw fish, 446
" 3. Esox lucius, pike, 417
" 4. Perca fluviatilis, perch, 424
" 5. Anguilla vulgaris, eel, 411
" 6. Gasterosteus aculeatus, stickle- back, 427
" 7. Salmo fario, salmon trout, 415
" 8. Holocanthus tricolor, tricolor, 432
" 9. Synanceia horrida, dragon's head, 427
" 10. Labrax lupus, bass, 425
" 11. Solea vulgaris, sole, 424
" 12. Platessa limanda, dab, 423
plate 83.
Fig. 1. Holocentrum longipinne, red perch, 426
43. Acanthurus gemmatus, gem fish, 432
44. Amphacanthus corallinus, coral perch, 433
45. Sphyræna spet, barracuda pike, 426
46. Scorpæna scropha, dragon's head, 427
47. Naucrates ductor, pilot fish, 431
48. Trigla lyra, piper, 426
49. Thynnus vulgaris, tunny, 430
50. Scomber vulgaris, mackerel, 430
51. Acerina cornua, ruffe, 426
52. Cepola rubescens, band fish, 432
53. Dactylopterus volitans, flying fish, 426
plate 84.
Fig. 1. Carcharius verus, shark, 445
54. Coryphæna hippuris, dolphin, 431
55. Echineis remora, sucking fish, 424
" 4. Chondrostoma nasus, broad snout 418

page

\square
\square

C

-
-63

 1
-
plate 84-(Continued).
Fig. 5. Cottus gobio, bullhead,
page
427
6. Gobio fluviatilis, gresling, 419
" 7. Alburnus lucidus, bleak, 418
" 8. Acanthurus chirurgus, lancet-tail,432
" 9. Chætodon auriga, angel, 432
" 10. Barbus vulgaris, barbel, 419
" 11. Ciprinus carpio, carp, 419
" 12. Tinca vulgaris, tench, 419
" 13. Anabas scandens, climbing perch, 429plate 85.
Fig. 1. Morrhua vulgaris, codfish, ; 422
" 2. Merlangus vulgaris, whiting, 423
" 3. Raia batis, skate,447
" 4. Trachinus vividus, weever, 426
" 5. Blennius viviparus, guffer, 434
" 6. Ophiocephalus striatus, ophidion, 429
" 7. Mullus barbatus, mullet, 426
" 8. Dipterodon capensis,Cape-dipterodon,432
9. Amphiprion bifasciatus, amphi-prion,432
« 10. Scolopsides vosmari.

" 11. Trachypterus spinolæ, trachyp-terus,432
" 12. Cyprinus auratus, gold-fish, 419
plate 86.
Fig. 1. Deirodon nasutus, green snake, 475
2. Tropidonotus natrix, ringed snake, 474
" 3. Trigonocephalus lanceolatus, cop- perhead, 471
" 4. Naia tripudians, cobra di capello, 471
" 5. Boa constrictor473
" 6. Phrynosoma cornuta, horned frog,
plate 87.
Fig. 1. Anguis fragilis, slow worm, 476
" 2. Vipera berus, viper 471
" 3. Cerastes cornutus, horned viper, 471
" 4. Xiphosoma caninum, dog boa, 473
" 5. Crotalus horridus, rattlesnake, 470
" 6. Seps chalcides, scink, 477
plate 88.
Fig. 1. Siren lacertina, siren, 456
2. Necturus lateralis, water-puppy, 456
" 3. Chamæleo vulgaris, chamæleon, 483
" 4. Platydactylus guttatus, gecko, 484
" 5. Uroplatus fimbriatus, flat headed salamander, 48 ²
6. Lophyrus furcata, Iophyrus, 482
" 7. Crocodilus lucius, alligator,

* 8. Crocodilus vulgaris, crocodile, 487 487
Fig. 1. Salamandra maculata, salaman-460
der,
" 2. Triton teniatum, brook salaman- der, 460
" 3. Draco dandini, flying dragon, 483
" 4. Scincus officinalis, scink, 477
" 5. Basiliscus mitratus, basilisk, 482
" 6. Iguana tuberculata, guana, 482

7. Lacerta viridis, lizard,481
plate 90

Fig. 1. Bufo viridis, green toad,
2. Engystoma ovale, S. Amer toad,
" 3. Dactelythra capensis, Cape toad,
plite 90-(Continued).
plite 90-(Continued).
Fig. 4. Pipa americana, Guiana toad,
Fig. 4. Pipa americana, Guiana toad,
PAGE:
PAGE:
plate 90 -(Continued).
pa americana, Guiana toad
plate 90 -(Continued).
pa americana, Guiana toad 464 464
5. Rana esculenta, frog, 462
" 6. Hyla viridis, tree or green frog, 463
" 7. Achrochordus javanica, Java snake, 472
" 8. Platurus laticaudis, India water snake, 471
" 9. Elaps corallinus, coral snake, 474
" 10. Typhline cuvierii, blind scink, 477
11. Chelouia mydas, green turtle, 493
12. Cistudo europæa, land tortoise, 492
" 13. Testudo geometrica, India tor- toise, 491
Fig. 1. Podiceps cristatus, crested grebe, 591
2. Podiceps minor, little grebe, 591
3. Colymbus glacialis, loon, 581
4. Sterna nigra, sooty tern, 593
5. Larus eburneus, ivory gull, 593
6. Pelecanus crispus, hairy pelican, 594
7. Cygnus olor, mute swan, 589
8. Cygnus ferus, hooper swan, 589
9. Oidemia'americana, scoter, 590
10. Anas crecca, teal, 590
11. Procellaria capensis, Cape pigeon, 593
12. Diomedia exulans, white alba- tross, 592
", 13. Aptenodytes patagonica, Patago- nian penguin, 592
14. Fratercula arctica, puffin, 591
" 15. Alca torda, razor-billed auk, 591
plate 92.
Fig. 1. Carbo cormoranus, cormorant, 595
2. Eudytes cristatus, crested pen- guin, 592
3. Tachypetes aquilus, frigate peli- can, 595
4. Phæton æthereus, tropic bird, 593
5. Plotus anhinga, snake bird, 594
6. Sula bassana, booby, 595
7. Anser segetum, bean goose, 588
" S. Anas boschas, mallard, 590
9. Anas galericulata, mandarin duck, 590
10. Merges cucullatus, hooded mer- ganser, 591
11. Larus argentatus, herring gull, 593
12. Sterna hirundo, sea swallow, 593
plate 93.
Fig. 1. Charadius auratus, plover, 582
2. Vanellus cristatus, lapwing, 582
" 3. Grus cinerea, crane 583
" 4. Platalea leucorrhodia, roseate spoon-bill, 584
" 5. Ardea purpurea, purple heron, 584
6. Egretta candidissima, snowy heron, 584
7. Ciconia alba, white stork, 584
8. Gallinago major, snipe, 586
9. Limosa rufa, rufous godwit, 585
10. Recurvirostra avocetta, avocet, 585
11. Phænicopterus ruber, scarlet flamingo, 588
12. Ardea ralloides, pigmy heron, 584
plate 94.Fig. 1. Struthio camelus, ostrich,581

plate 94-(Continued).

Fig. 2. Otis tarda, great bustard,
PAGE
581
581
" 4. Balearica pavonina, crowned crane,

583

* 5. Botaurus stellaris, bittern,

584

* 6. Ibis alba, white ibis,

585
" 7. Numenius arcuatus, curlew, .
585

* 8. Totanus calidris, sandpiper, . . 586
" 9. Parra indica, Indian jacana, . . 587
" 10. Fulica americana, coot, . . 587
" 11. Porphyrio hyacinthinus, hyacinth gallinule,

587
" 12. Heliornis surinamensis, sun bird, 591
"13. Totanus ochropus, green sandpiper,
plate 95.
Fig. 1. Casuarius galeatus, cassowary, . 581
2. Palamedea cornuta, horned screamer,

586
" 3. Tbis cristatus, crested ibis, . . 585
" 4. Tringa rufescens, rufous sandpiper,
" 5. Glareola torquata, pratincole, . 582
586
" 6. Himantopus albicollis, stilt, . 585
" 7. Cinclus interpras, turnstone,
583
" 8. Rallus aquaticus, dusky rail, . 587
" 9. Rallus crex, corn crake, . . 587
" 10-11. Gallus domesticus, common fowl,
" 12. Meleagris gallopavo, turkey, . 577
" 13. Numida meleagris, guinea fowl, . 578
" 14. Pterocles alchata, desert grouse, . 580
" 15. Turnix dactylisonans, quail, . . 579 plate 96.
Fig. 1. Tetrao urogallus, cock of the woods,

579
" 2. Tetrao tetrix, moor cock, . . 580
" 3. Perdix cinerea, grey partridge, . 578 ,
" 4. Perdix rubra, red partridge, . 578
" 5. Pavo cristatus, peacock, . . 575
" 6. Phasianus colchicus, pheasant,
" 7. Phasianus pictus, golden pheasant,
" 8. Argus giganteus, argus pheasant,
" 9. Tragopan hastingsii, golden breasted horned pheasant, .
" 10. Orax rubra, red curassow,
" 11. Lophortyx californicus, California partridgé,

576
576
576
" 12 partridge,
" 12. Columba livia, rock pigeon,
" 13. Columba œnas, blue-backed dove,
" 14. Goura cruenta, ground pigeon, .
" 15. Columba turtur, turtle dove,
576
574
579

- 572
plate 97.
Fig. 1. Cacatua sulphurea, yellow-crested cockatoo,
" 2. Psittacus erythacus, grey African parrot,
" 3. Palæornis malaccensis, Malacea parrot,
" 4. Palæornis alexandri, redheaded parrot,
" 5. Psittacus melanocephalus, blackheaded parrot,

572
572
573
572
" 6. Trogon curucui, curucui, . . 527
" 7. Trogon viridis, green curucni; 527
" 8. Bucco macrorhynchus, puff-bird.
" 9. Monasa tranquilla, S. American puff-bird,
plate $97-$ (Continued).
Fig. 10. Capito viridiauranthius, green and orange barbet,

567
" 11. Pogonias sulcirostris, groovedbill barbet,
". 12. Pteroglossus aracari, long-tailed \quad aracari, 565
" 13. Ramphastus tucanus, largebilled toucan,

565

Plate 98.

Fig. 1. Platycercus viridis, green parrot, 566
2. Ara ararauna, blue and yellow
maccaw,
566
" 3. Ara militaris, military maccaw, . 566
". 4. Lorius domicellus, lory, .. . 566
" 5. Picus villosus, hairy woodpecker, 567
". 6. Picus cayennensis, Cayenne wood- 567
" 7. Gecinus viridis, green wood- 568 pecker, large woodpecker, . 568
" 8. Picus major, large woodpecker, . 567
" 9. Yunx torquilla, wry neck, . . 567
" 10. Pica caudata, magpie, . . 556
" 11. Corvus monedula, jackdaw, . . 555
" 12. Corvus corax, raven, . . . 555
" 13. Corvus cornix, hooded crow, . 555
plate 99.
Fig. 1, 3. Garrulus glandarius, jay, . . $\quad \mathbf{y} 4$
" 2. Nucifraga caryocatactus, nut- 556
" 3. See Fig. 1.
" 4. Paradisea minor, bird of paradise, 531
*. 5. Paradisea regia, king paradise 531
" 6. Paradisea superba, superb para- 531
" 7. Paradisea sexsetacea, six shafted paradise bird,
". 8. Trochilus moschitus, ruby topaz \quad humming bird, . 533
" $9 a$. Trochilus ornatus, magnificent \quad humming bird, . 533
" 96 . Trochilus colubris, humming bird, 533
". 10. Trochilus delalandii, De La- ${ }^{\text {. }}$ lande's humming bird, 533
" 11. 'frochilus minimus, smallest 533

" 12. Trochilus cristatus, crested hum-
ming bird,

" 13. Trochilus macrourus, swallow \quad tailed humming bird, . 533
" 14. Buphaga africana, beefeater, . 558
" 15. Sturnella ludoviciana, American \quad lark, 558

" 16. Icterus baltimore, Baltimore
oriole,
59

plate 100.
Fig. 1. Sturnus vulgaris, starling, . . 558
2. Loxia pityopsittacus, parrot cross- 563
3. Coccothraustes vulgaris, haw-
finch, -
600
" $4 a b$. Fringilla caviaria, canary bird, . 561
" 5. Fringilla cannabina, red poll, . 561
" 6. Fringilla domestica, house-spar- 561
7. Sylvia hippolais, willow wren, 541
" 8. Oriolus galbula, oriole, . . 547
9. Merula vulgaris, black bird, . 546
10. Merula saxatilis, rock thrush, . 540
plate 113.
Fig. 1. Chinchilla lanigera, chinchilla,
2a. Cavia cobaya, Guinea pig,
" 2b. Lagomys alpinus, pika,
" 3a. Cercolabes villosus, Brazil porcupine,
page 662
662 660
664

* $3 b$. See 16 (mistake of the engraver's).
" 4. Hystrix cristatus, European porcupine,
665
" 5. Halamys caffer, Cape jerboa, . 670

6. Mus sylvaticus, field mouse
669
" 7 Mus yaticus,
669
" 8. Mus musculus, common mouse,
" 9. Cricetus vulgaris, hamster,
668
" 10. M . 669
" 10. Myoxus glis, dormouse,
671
" 11. Arctomys alpinus, marmot, . 673
" 12, 13. Pteromys volucella, flying squirrel,
672

* 14. Sciurus carolinensis, grey squirrel, 676
" 15. Sciurus maximus, Malabar squirrel,
673
" 16. Lutra vulgaris, European otter,
" 17. Talpa europæa, European mole,
" 18. Erinaceus europæus, European hedgehog,
690
677

plate 114.

Fig. 1. Castor fiber americanus, beaver,
679
" 2. Phoca vitulina, seal,
671
" 3. Trichechus rosmarus, walrus, 637
" 4. Felis domesticus, cat,
637
4. Felis domesticus, cat, . . . 695
" 5. Felis domesticus angorensis, Angora cat,
695
" 6. Hyæna striata, striped hyena,
" 7. Canis aureus, jackal, : 694
" 8. Canis lupus, wolf, 693
8. Canis lupus, wolf, . . . 693
9. Canis familiaris pastoreus, shepherd's dog,
692
" 10. Lutra canadensis, Canada otter, 690
" 11. Ursus maritimus, white polar bear,

plate 115.

Fig. 1. Felis leo, lion,
695
2. Felis tigris, tiger, - . 695
" 3. Felis leopardus, leopard, . . 695
" 4. Felis onca, jaguar, . . . 695
" 5. Felis pardus, panther, . . 695
" 6, Lynx europæus, lynx, 695

plate 116.

Fig. 1. Vulpes fulvus, red fox,
2. Meles vulgaris, badger, 687
3. Mustela martes, marten, . 689686
plate 116-(Continued).
Fig. 4. Mustela foina, beech marten, 689
". 5. Mustela putorius, polecat, 689
" 6. Putorius furo, ferret, 689
" 7. Putorius vulgaris, weasel, 689
" 8. Putorius erminea, ermine, 689
9. Ursus arctos, brown bear, 686
" 10. Ursus americanus, black bear, 686
" 11. Canis familiaris sibericus, Siberi- an dog, 693
" 12. Canis familiaris, domestic dog, 692
" 13. Canis familiaris molossus, bull dog, 692
" 14. Canis familiaris leporarius, grey- hound, 692
" 15. Canis fámiliaris normanus, chase dog, 693 93
" 16. Canis familiaris vertagus, badger dog, 693
plate 117.
Fig. 1. Galeopithecus rufus, flying lemur, 697 697
". 2. Plecotus timoriensis, long-eared bat, 681
" 3. Vespertilio noctula, common bat, 682
" 4. Vespertilio serotinus,serotine bat, 682
" 5. Vespertilio murinus, European bat, 682
" 6. Rbinolophus ferrum equinum, horse-shoe bat, 681
" 7. Megaderma lyra, broadwinged bat, 681
" 8. Vampyrus spectrum, vampire, 681
9. Pteropus vulgaris, roussette, 683
10. Otolicnus senegalensis, galago, 697
11. Lemur pusillus, fox-nosed maki, 697
12. Lemur macao, maki, 697
" 13. Cynocephalus maimon, mandrill, 700
" 14. Cercopithecus diana, holoway, 701

* 15. Hylobates agilis, agile gibbon, 701
plate 118.
Fig. 1. Rhinocerus indicus, Indian rhino- ceros, 641
" 2, 3. Cebus capucinus, capucin, 699
" 4. Macacus cynomolgus, hare-lipped monkey, 700
" 5. Cercopithecus ruber, patras, 701
" 6. Cercopithecus griseus,grey patras, 701
" 7. Macacus silenus, maned maca- que, 700
" 8. Cynocephalus sphinx, baboon, 700

9. Inuus ecaudatus, Barbary ape, 700
" 10. Troglodytes niger, chimpanse, 701
" 11. Pithecus satyrus, orang outang, 701
page8929692
20
 E

cosen . (1)

位 $2+2-20-20$

 2
 2

41.

(2) -

Z 00 L 0 G Y.

Plates 74-118.

General Introduction.

Zoology is a systematic exposition of animals according to their external and internal structure, and the functions of their organs. The internal structure can be frequently inferred from the external characters; we may, for example, determine the aliment of an animal, and the structure of the digestive organs, by examining the teeth. This is, however, not sufficient in all cases, so that it becomes necessary also to examine the internal parts, because the relation between animals depends upon the entire organization; and this being well ascertained, the functions of the various organs can generally be determined without much difficulty.

From the earliest period it was found necessary to group those animals together which were observed to have certain natural characters in common. We find, upon inquiry, that the endeavors to arrange animals systematically have taken two principal directions, which have been named natural and artificial classification. The former has in view the classification of animals upon the greater or less perfection of the various organs, among which those connected with the circulation and oxygenation of the blood, locomotion, and digestion, hold a prominent place; the latter depends upon a character or habit arbitrarily chosen, and independent of others. A character, however, which may be regarded as unessential by one observer, will be considered as of the greatest importance by another. In the earlier stages of science, when the number of known species was comparatively small, artificial methods were popular, becanse they were considered easy of acquisition: now, however, it is found that they are calculated to give superficial ideas; and that to present the condition of zoological science in its true light, a more philosophical system must be made use of.

Aristotle, whose great mind was master of many sciences, both moral and physical, and whose works had an authority in Europe for many centuries, second only to that of the sacred Scriptures, takes precedence, in point of time, as the first systematic zoological observer. Born at Stagira, in the year 383 before Christ, he became the instructor of Alexander the Great, who formed a large collection of animals to enable him to pursue his investigations. As a history of zoological systems forms no part of the plan of this work, only a short outline of the most important periods will be given.

Aristotle divides animals into such as have blood, and such as are
without it. The former comprehends the (A) Vertebrata, and, the latter the (B) Evertebrata of later authors. These are subdivided as follows:
A.

B.

Animals without shells, - - - - - Worms.
" with a soft shell, - . . . - - Crabs.
" with a calcareous shell, ... - . Svails.
" with an articulate body, - - . Insects.

Pliny the elder, nearly four hundred years later, compiled an extensive work on natural history, but without offering a system, or adding any original matter of scientific value, although the large collections of living animals in Rome must have afforded him many facilities for study.

Galen paid more attention to the internal structure than to the formation of a system; and from his time, A.D. 200, to the fifteenth century nothing was done of any account.

Belon, the reviver of natural history in modern times, was born in 151 \nearrow, and after travelling three years in Europe, Egypt, Greece, and Asia Minor, at the expense of the bishop of Mans and Clermont, and the cardinals of Tournon and Lorraine, he returned to Paris in 1550 with a large collection, when he published his works.

Rondeletius, a medical professor at Montpellier, published a work in 155t, on Ichthyology; and another appeared in the same year, upon the same subject, by Salviani, a Roman physician.

Conrad Gesner, a physician born at Zurich, in 1516, published an extensive history of animals in 1585.

Aldrovandi, a professor of Bologna, born in 1525, was the author of fourteen folio volumes, published between 1599 and 1640.

Mourfet's Theatrum insectorum, the earliest English zoological work, was published in 1634. Most of the authors of this period repeated the fables of Pliny, or were deceived by those who sold factitious curiosities, a remnant of which still remains in the occasional appearance of a stuffed mermaid or impossible fossil. It was not until the appearance of Limmeus that natural science was placed upon a permanent basis. Born in Sweden, in 1707 , he was at first intended for the Church, but subsequently studied
medicine, suffering much from destitution during the period of his studies. In 1732 the University of Upsal sent him upon his celebrated Lapland tour. After this he taught mineralogy, and in 1735 took his medical degree.

Linnecs, whose great mind embraced the three kingdoms of nature, established the artificial method; since he indicated and arranged animals, plants, and minerals, by means of a few characteristics, enabling every naturalist to find a special name for each animal-a method which should as much as possible serve as a complete catalogue, convenient for ascer taining the names of known species, or of intercalating such as might be unknown. His classification is briefly as follows :

1. Animals whose heart has two ventricles and two auricles; blood warm and red.

Viviparous. Mamanalia. Oviparous. Aves (Birds).
2. Animals whose heart has one ventricle and one auricle ; blood cold and red.

With lungs. Ampribia (Reptiles). With gills. Pisces (Fishes).
2. Animals with one ventricle and no auricle; blood cold and yellowish.

With antennæ. Insecta (Insects). With tentacles. Versess (Worms).
The Limeean Vermes included Intestina, Mollusca (not those of later authors), Testacea, Zoophyta, and Infusoria.
The impulse which Linnæus gave to the study of nature resulted in large collections formed in exotic regions chiefly by his disciples, among whom were Thunberg, Forskol, Spaarman, Hasselquist, and Osbeck; and as these collections contained many species which could not be properly arranged according to his system, the want of a more natural one was soon felt, and this was finally supplied by the immortal Cuvier, who laid the foundation of a natural classification in a deep study of the entire structure of the animal frame; showing, for example, how the characters of an unknown fossil animal might be determined from a few bones.

Cevier was born in 1769 , at Montbéillard, on the Alaine, in France, theu belonging to the house of Wurtemberg; and died in 1832, aged sixty-three. The national museum at Paris, the first in Europe, was the chief scene of his triumphs. He divides animals into Vertebrata and Invertebrata, separating the first into Mammalia or beasts; Aves or birds; Reptilicu or reptiles; and Pisces or fishes. The Invertebrata he separates into Mollusca or shellfish; Articulata or insects, ©c.; and Radiata, including starfish and some heterogeneous materials.

The most recent mode of determining the relative station of animals, is that employed by Agassiz, founded upon the development of the young from the orum ; a mode which, in the hands of this distinguished professor, has in some cases furnished more certain results than the consideration even of the nervous system.

Zonlogy is distinguished as general and special. The former compares the internal and external structure of animals, not only to understand the phenomena of animal growth and life, but also to unravel the laws
according to which the organs are developed from the lowest to the highest classes which associates it with comparative anatomy and physiology; the latter compares individual animals with each other to determine the peculiarities of individual species, treating of their character and habits.

The attempt has been frequently made to arrange animals in a regular scale from the lowest to the highest, under the impression that each animal must have an equal, a higher, or a lower organization when compared with others. This might be the case if there were only one set of organs; but as there are many, an animal may have a simple organization in one, and a complicated one in another. Thus by their organs of locomotion and general economy, insects would be placed above mollusca, whilst the latter are allied to the higher orders by their circulation. One proposes to arrange animals in a series of parallel lines, whilst another thinks that their affinities will be best shown by arranging them in a circle. The entire organism being moved through the nervons system, this has more recently received a great share of attention; and althongh it has proved satisfactory to a certain extent, it is at times difficult to make safe deductions from variations in the details. Under these circumstances, there are to be found those who, like Duméril and Swainson, think that external characters are sufficient for the classification of animals, as it is through these that they are placed in communication with external nature. Blainville makes the external organs the basis of his twenty-five divisions ; considering their position, the skin and its appendages, and the structure and uses of the limbs.

There are many important affinities between plants and animals, as we have already mentioned in the introduction to Botany. One of the most important of these has been discovered in modern times, by means of the improved microscope. Thus it has been shown that the structure and growth, as well in animals as in plants, is due to cells. There are, besides, other points of similarity, which will be stated further on.

It is still doubtful whether certain organisms belong to plants or animals, there being grounds upon each side of the question. Some animal productions, as corals, were at an early day regarded as plants ; whilst certain vegetable productions have, until a recent period, been considered animals, and indeed some are still considered such. These doubtful organisms are to be found chiefly among the low and minute forms which require a microscope for their investigation. In the case of sponges, strong arguments have been brought forward upon both sides, by acute observers who have examined them in a living state, for the sponge of commerce is a mere skeleton.

At first view, animals and plants would seem to be sufficiently separated by the respiration; as the former breathe and assimilate oxygen and expel carbonic acid gas, whilst in the latter this operation is reversed. This view of a contrary action is', however, not strictly correct, because in animals respiration must continue without intermission, whilst plants breathe inwards by day and outwards by night. Leaves and spiral vessels are the breathing organs of plants; gills, trachere, and lungs, those of animals. With regard to nutrition, animals and plants are nourished by extraneous
materials suitable to their organization, which are taken up and distributed by vessels, which do not correspond, however, except that those of plants may be considered similar to the alimentary canal of animals. In certain plants, as in Chelidonium and Vallisneria, a kind of circulation has been observed.

A still greater relation appears in the propagation of animals and plants, which frequently takes place in both kingdoms by means of spontaneous division, and the growth of the separating shoots or buds, as in the case of the creeping roots, and the shoots of many plants ; and also in some animals, where numerous stems united by a common base, give rise to other's which become separated and commence an independent existence, as in the polypi. The spontaneous division of the infusoria belongs to this mode of reproduction. Plant and animal eggs can also be brought into comparison with each other, if the lower orders of both be taken for this purpose. The phenomena of vegetable life which are also present in the animal kingdom, may be stated as follows :

1. The ability of individual portions when detached to grow and live independently, and even to originate others. Many plants can be increased by cuttings, and it is well known that pieces cut from fresh water polypi will grow and form perfect individuals.
2. As plants always produce new shoots, so in the corals are similar parts produced; and as a tree placed with its top in the ground may produce leaves and blossoms from the upturned roots, so the base of a sertularia may become the head by producing young polyps.
3. The formation of buds happens in both kingdoms, of which the polypi again afford examples.
4. In plants we also find traces of irritability, like the movements of the mustard plant when touched. Animals and plants are both subject to sleeping and waking.
5. Plants and animals undergo metamorphosis, and sustain malformation and disense, which sooner or later result in death, after which both are subject to fermentation and putrefaction.
6. Plants and animals, and their organs, are developed gradually according to a certain plan. As the root and stem are formed out of the seed, and the leares from the cotyledons, until at length the flower and its component parts are produced, so we find the several organs of the animal body to be formed from the membrane of the yolk.
7. As there are plants which live but a few days, or even hours, like many fungi, so there are animals, as the ephemera. Most plants, like most insects, live but a single summer. On the other hand, plants as well as animals may attain a very great age, and examples are not rare of trees a thonsand years old. Animals also become very old, although it is difficult to arrive at any certain conclusion upon this point. There is reason to believe that the crevish or river crab (Astacus) lives about twenty years; the honey bee ten years ; the pike several centuries; carps and eels a century; crocodiles and tortoises, whose growth continues during a long period, probably attain a very great age; a toad was watched in a house for thirty-
six years; chickens live from twenty to thirty years; parrots, ravens, and swans, from eighty to one hundred; a goose lived to near one hundred; an ass thirty-six; and a horse sisty. The colossal mammalia may live several centuries.
8. Plants and animals are subject to bybernation, a phenomenon which we find especially in the polar and temperate zones, partly on account of the absence of the necessary heat, the deficiency of the means of subsistence, but also on account of a peculiar organization. In this condition plants lose their leaves and animals fall into a continued death-like sleep, concealed in holes and caves. All the functions are limited to their minimum. In hot regions we find a corresponding summer repose in animals and plants, connected with the great heat and aridity of the season. Then many tropical plants shed their leaves; crocodiles lie in the mud apparently dead, land shells close their aperture by a diaphragm ; and certain freshwater species bury themselves at the bottom of ponds which become desiccated, until the return of the rainy season calls them to reneived life.
9. Plants, like animals, exhibit, under certain circumstances, great tenacity of life. Sceds of plants can preserve their germinating power for a long time, that of beans lasting one hundred years or more. An onion found in the hand of an Egyptian mummy germinated after an interval of not less than two thousand years, and the same thing happened with some cereal grains. The eggs of infusoria seem to afford a parallel in the animal kingdom. The examples cited of living toads found embedded in solid stone have not been sufficiently well authenticated to be admitted as facts, nor have the species thus said to be found ever been described or named.
10. Plants and animals become degencrate, as in the case of cultivated vegetables, which are sometimes quite unlike their original species.
11. There are living plants and animals which are capable of giving light in the dark, as some of the former which grow in subterranean passages, certain roots, and the blossoms of certain orange-flowered plants. Many animals, as the Medusas and fire-flies, emit a phosphorescent light; and it is well known that decaying animal and vegetable matter is luminous under certain circumstances.

But notwithstanding the various relations between plants and animals, there are still essential differences which it is sufficient merely to allude to here. The most essential distinction lies in the free will of the animal, and the power to make use of it in voluntary motion; and the presence of nervous matter to convey sensation. A mouth, muscles, bones, and organs of sense, are not present in any plant. Animal heat, electricity, and art, have no parallel among vegetables.

Instinct is peculiar to animals, like that of migration, defence, the constructions of bees and wasps, the expeditions of war and to make slaves which ants undertake, dec. Instinctive actions are not taught, although a permanent habit may become an instinct. The young duck swims at once, the young snapping turtle bites when taken from the egg, and a harmless serpent without fang or rattle will vibrate its tail like a rattlesnake, producing a similar sound among dry leares. The brain of the young is
modelled upon that of the adult, and where the scale of ideas is limited, they must be as essentially hereditary as the external form.* An English writer endeavors to found a distinction between instinct and reason, by citing the case of a young animal, as a monkey, being terrified by one of it; natural enemies, as a large serpent, when seen for the first time, which would not be the case with a young human being. Nevertheless, if man were for ages subject to be devoured by a large reptile, watching and caution would at length become habitual, and be transmitted as an instinct. The brain of the young is not necessarily that of the adult, but that of the adult at an earlier stage. So a quality or habit is not always transmissible from a parent to its immediate offspring, but it may appear in a more distant descendant, by a kind of "alternation of generations." Colonel Hamilton Smith considers the spotted horse as an original Asiatic race with which the ordinary breeds were sometimes crossed, and he thus accounts for the occasional appearance of examples of it. The original race is mild and intelligent, which is one reason for its frequent use in equestrian exhibitions.

One of the most important inquiries in the history of animals and plants, is that which relates to their distribution. That of the latter has been treated of under Botany; and as regards animals, our contracted space limits us to the following general view.

There are both aquatic and terrestrial animals, the number of which may perhaps be equal; but there are also species which can live both in water and on land, as many of the amphibia, and some other vertebrata. Some aquatic animals live partly in fresh, and some in salt water; but there are others which leave the sea to spawn in the fresh water, as the salmon. In the sea itself there are several regions depending upon the depth. Some marine animals live near or at the surface, others upon the bottom, in some cases within certain limits as to depth. Many land and sea animals live only as parasites upon or within others. Some species have a peculiar parasite, while others support several kinds.

Zoogeography, or the geographical distribution of animals, teaches the circumstances and positions under which animals occur, both as regards individual species, genera, or larger groups. The chief circumstances which seem to control animal distribution, are temperature, elevation, and natural barriers; whence it results that not only the continents, but much smaller regions, have their peculiar fanna. In proceeding from the tropics, species will be found to diminish rapidly. Some animals are circumscribed within very narrow limits, being confined to a single locality, as the curious reptile genus Amblyrhynchus to the Galapagos islands, or the Aurochs (Bison priscus) to a single forest in Russia. The genus Bradypus (sloth) and Dasypus (armadillo), Auchenia (llama), are confined to South America; the Marsupialia (possum, \&ec.) to America and Australia, and the Zebras to Africa. Others are more widely spread, as the dogs, bats, mice, \&c.

[^0]Libellula (pl. 74, fig. 44) ferruginea occurs from Spain to Jara. Peltis pusilla, a coleopterous insect, inhabits China, Madagascar, and Brazil.

The brightest colored and the larger forms of animal life are generally found in the warmer zones, as the large crocodiles and gigantic serpents among reptiles, and the lions and tigers among cats. There are, however, some exceptions, as some of the largest whales inhabit cold climates, whilst the American mastodon was larger than any recent elephant.

Man exercises considerable influence upon the distribution of animals. Cultivation, and the removal of forests, together with hunting and fishing upon a large scale, drive them to other localities, and reduce their numbers; whilst steam navigation causes certain species of fish to leave rivers in other respects well adapted to them. For his own use, man transports various domestic animals, some of which, like the horse and ox in South America, have formed large wild herds. Goats and dogs occur similarly in certain islands. Some animals have been so long domesticated, that the original stock is unknown, if it still exists, as in the case of the cat and camel.

The animal kingdom is usually separated into two large sections by the presence or absence of an internal skeleton; a separation, however, which is not natural, as the two sections are not of equal value, as will appear when we speak of the divisions. The essential part of such a skeleton is the spine, composed of a series of vertebre, whence the animals provided with it are named Vertebrata; and those without it Evertebrata or Invertebrate animals. The latter section is much the richest in genera and species; it is separated into three great divisions (the Vertebrata forming another) and many minor groups; and, from the difficulty which they present, there still remains a good deal of uncertainty in the classification of certain portions. The following sketch, together with pl. 74 , represents the orders according to the classification of Cuvier somewhat modified, and generally in inverse order.

Instead of an internal skeleton, many of the evertebrate animals are provided with a kind of external skeleton for the protection of the inner soft parts. The chief distinction between them and the Vertebrata lies in the nervous system, which is not developed as a brain and spinal marrow, but as a nervous ring round the œesophagus, or as a double chord, with beadlike swellings at various intervals, as if the brain were divided into different centres of vitality, giving rise to varions nerves. Hence, in dividing an insect into several parts, each seems to have nearly the same amount of vitality. Cuvier divides this section into three divisions, which are named Radiata, Mollusca, and Articulata.

The Radiata are named from the arrangement of the parts around an axis somewhat as in plants, whence they are also called Zoophyta. The Mollusca or soft animals, which include the shellfish, are characterized by the soft pulpy and slimy nature of the body, which is inclosed in a kind of mantle ; they are generally without regular limbs, and some are without a head. Their power of locomotion is generally limited, and some are altogether sedentary. The Articulata are distinguished by a winged or
jointed body and limbs, the external part being the hardest, and partaking of the nature of an external skeleton. They are generally provided with well developed limbs, and are able to fly, run, and swim, with great facility. A few are without limbs. This division includes insects; Crustacea, or crabs; Arachnida, or spiders; and Annelida, or ringed worms.

Division I. Radiata.

Class 1. Infusoria.
This class includes animals so minute that many of them cannot be seen with the naked eye. They are named from being found in infusions of organic matter. They are generally provided with vibrilla, or vibratile organs, also named cilia, which resemble a minute fringe of hairs, which are constantly in motion, causing either locomotion of the animalcula, or currents of water, which bring their food within their reach.

Order 1. Polygastrica (Homogenea, Cuvier), to which has been attributed a compound stomach, resembling a bunch of grapes, whence the name applied by Ehrenberg, who made the supposed discovery. The genus Monas ($p l .74, f i g .1$) is an organized globule which moves by rotation. Some authors think they are not animals, but the seeds of Algæ. The smaller kinds are only from one to two thousandths of a line in length, so that a drop of water may contain half as many individuals as there are human beings upon the earth, or five hundred millions of them.

Order 2. Rotifera, in which the action of the vibrillæ is supposed to resemble a wheel in motion. They are now removed to the lowest position ainong the Crustacea. Pl. 74, fig. 2, Monocerca.

Class 2. Zoophyta.

This includes the abundant order of the coral animals, the naked Polypi (fig. 4), of which the freshwater species are the best known. The sponges (pl. 74, fig. 3) have also been placed here. The classification given here (that of $p l .74$) is not followed in the subsequent pages.

Order 1. Corallina. Pl. 75, figs. 58, \&c.
" 2. Gelatinosa. Pl. 74, fig. 4, Hydra.
" 3. Actinia. Pl. 77, figs. 5, 6.

Class 3. Acalephoc.
This class includes the Medusæ, Sea Jellies, Sea Nettles, \&c. Pl. 76, fig. 74, Aurelia.

Order 1. Hydrostatica. Pl. 74, fig. 5, Diphies.
" 2. Acalephia. Medusa. Pl. 74, fig.6, Velella.

Class 4. Echinodermata.

Radiated animals with a hard integument, like those on pl. 76, figs. 60 to 71. Some have and some are without locomotive organs.

Order 1. Epedicellata. Pl. 74, fig. 7, Sipunculus.
" 2. Pedicellata. Pl. 74, fig.8, Holothuria, Asterias, Echinus, \&e.

Class 5. Intestina.

In this class (excluding the Annelida) Cuvier placed the intestinal worms, and others which bear some resemblance to them, but which are not confined to the internal parts of animals.

Order 1. Entozos (Cavitaria, Cuvier). Pl. 74, fig. 9, Ligula.
" 2. Sterelmintha (Parenchymata, Cuvier). Fig. 10, Nemertes.

Division II. Mollusca.

Class 1. Acephala.
This class has no proper head, the mouth opening immediately into the anterior part of the body. The gills are suspended upon each side of the body. The Tunicata are without an external shell; the Conchifera have a bivalve shell.

Order 1. Tunicata. Pl. 7t, fig. 11, Botryllus. Pl. 77, fig. 3, Salpa. " 2. Conchifera. Pl. $74, f i g .12$, Ostrea. See also pl. 76, figs. $2 \check{0}-50$.

Class 2. Gastropoda.

In this class locomotion is effected by means of a fleshy disk, called a foot, upon the lower surface of the body. The orders are distributed according to the structure of the branchiæ. This class is abundant in species, and includes the greater part of the univalve shells.

Order 1. Cyclobranchiata. Pl. 74, fig. 13, Chiton.
66
" 5. Heteropoda. 66" 15, Vermetus." " 18, Bulla." 6. Tectibranchlata." 7. Inferobranchiata." " 19, Phyllidium.
" 8. Nudibranchlata. " " 20, Tritonium.
" 9. Pulmonata. " " 21, Limnea.

Class 3. Pteropoda.
In this class the organs of locomotion are a pair of fleshy, wing-like fins at the sides of the neck. It includes but one order. Pl. 74, fig. 22, Clio.

Class 4. Cephalopoda.

The body is formed like a sack, the head is surrounded with long arms, used for prehension and locomotion; the eyes are large, and the mouth armed with a strong beak. There is but one order in the class. Pl. 74, fig. 23, Octopus. Pl. 76, figs. 16, 17, 75, 76, 77.

Division III. Articulata.

Class 1. Annelida. :

Worms with cold ped blood, the body lengthened and divided into rings, of which the first forms the head. Articulated feet are never present, but many of the genera are provided with stiff movable bristles. Nearly all live in water; the Lumbricus (earth-worm) is, however, an exception. Some live in tubes which they form in the bottom, some form them out of agglutinated particles of sand, and others secrete a kind of shell. Some of these, on account of the shell, have been thoughtlessly classified with the Mollusca.

Order 1. Abranchiata.	Pl. 74 , fig. 24 , Himudo (leech).		
"	2. Dorsibranchiata.	"	"6
"	25 , Aphrodite.		
3. Tubicola.	"	"	26, Amphitrite.

Class 2. Cirrhopoda.
This class was formerly included in the Mollusca, on account of the shell; its affinities are, however, with the Crustacea. They are attached to stones, corals, crabs, shells, the bottoms of ships, whales, and marine tortoises. Pl. 74, fig. 27, and pl. 76, fig. 52, Anatifa. Pl. 76, fig. 54, Balanus.

Class 3. Crustacea.

This class includes the articulata with articulate feet, which breathe by means of gills. Their circulation is double. There are two pair of antennæ, and never less than five pair of feet, and there are frequently
more. The integument is more or less hard, the eyes are either sessile or elevated upon movable pedicles, as in the two highest orders. The situation and form of the gills, the position of the head and tail, the structure and number of the feet and parts of the mouth, afford characters for their classification.

Order 1. Trilobita.

Class 4. Arachnida.

This class is provided with articulate limbs, and includes spiders, mites, and scorpions. They differ from insects in wanting antennæ, in having simple eyes, and in having the head coalescing with the thorax, and forming the cephalothorax. The feet are generally eight in number, being but six in insects; they are not subject to a metamorphosis, but moult the skin instead. The Pulmonaria (spiders and scorpions) breathe by a kind of lungs, or pulmonobranchir ; the Trachearia (including the mites and some small aquatic species) by trachex, as in insects. Most of the Araclnida are predaceous in their habits.
Order 1. Pulionarta. Pl. 74, fig. 35, Aranea.
" 2. Trachearia. " 36 , Chelifer.

Class 5. Insecta.

Insects have articulated feet, a dorsal vessel instead of a heart, and they breathe through lateral spiracles, connected with two principal trachere. Some insects are apterous and some winged, the number of wings being either two or four. The four wings are of a similar texture in some, and of a different texture in others. In the Coleoptera the posterior pair alone are used in flight, the anterior pair being converted into covers for their protection whilst at rest. The number of feet is six, except in the vermiform centipedes and millipedes (Myriapoda), which have characters intermediate to the true insects and the annelida; and, indeed, they are regarded by some as a distinct class. Insects undergo a more or less complete metamorphosis, which, in the Myriapoda, is confined to an increase of the number of segments and feet. Insects do not grow in this perfect state, having attained their full volume previous to their final transformation.

Order 1. Myrlipona: Pl. 74 , fig. 37, Scolopendra.
" 2. Thisanura.
" : " 38, Lepisma.
" 3. Parasita.
". "39, Pediculus.
" 4. Suctoria.
" " 40, Pulex.
" 5. Coleoptera. " " 41 , Carabus.
" 6. Orthoptera. " " 42 , Forficula.
" 7. Hemptera. $6 \quad 6043$, Cimex.
" 8. Neuroptera: " " 44 , Libellula.
6. 9. Hymenopteri.
" 10. Lepidoptera. \quad : " 46 , Vanessa.
" 11. Diptera. " ${ }^{6} 47$, Stomoxys.

Division IV. Vertebrata.

The Vertebrate Division of the animal kingdom, as has been already remarked, includes animals with an internal articulated skeleton or framework, capable of growth, supplied with blood-vessels and nerves, and serving for the support of the soft parts; and it is here that animals of the greatest size are found. The body is divided into head, trunk, and organs of locomotion, and the nervous system has attained its greatest concentration in a single brain or nervous centre. The group of Vertebrata having the same value as the previous Divisions, it is unnatural to consider it as balancing the Evertebrata conjointly, and on this account it will be here considered as a division including the following classes.

Class 1. Pisces.

In all fishes the blood is oxygenated by means of gills, which are supported by a bony framework, named the branchial arches, which generally amount to four. The external structure is adapted for inhabiting and moving through the water. The air-bladder, although not concerned in breathing, is really the homologue of the lungs in the higher classes. It is not present in all fishes.

Fishes are divided into two series, according as the skeleton is cartilaginous or osseous. In the former the organization is low, the ribs are rudimentary, and in the lowest form the spine is a continuous line of cartilage not yet divided into vertebræ. The orders of cartilaginous or chondropterygeous fishes are as follows:

```
Order 1. Cyclostonata. Pl. 74, fig. 48, Petromyzon, lampereel.
    " 2. Selachi!. ". " 49, Squalus, shark.
    " 3. Sturiones. " " 51 , Acipenser, sturgeon.
```

The osseons fishes, which are much the most numerons, are distributed in the following orders:

Order	1. Plectognatur.	Pl. 74, fig. 52, Orthagorisous.
"	2. Lophobranchit.	" " 53, Hippocampus.
"	3. Apodes.	" " 54, Anguilla, eel.
"	4. Subbrachiata.	" " 55, Pleuronectes; 56, Merlangus.
"	5. Abdominales.	" 57, Cyprinus, chub.
"	6. Acavthoyterygit.	" " 58, Xiphias, swordfish.

Class 2. Reptilia.

Reptiles are cold-blooded vertebrata, which breathe by means of lungs, or lungs and gills. The heart is composed of a large ventricle with which the two auricles communicate. The ventricle receives venous blood from the system through the right auricle, and oxygenated blood from the lungs through the left one, so that both pure and impure blood are mixed in the ventricle, previous to being sent through the system, a portion passing through the lungs. This peculiarity of the circulation accounts for these animals being cold-blooded, since in the animals with warm blood, one of the two ventricles transmits unmixed oxygenated blood to the system.

The brain of reptiles is small, and exercises less influence upon the system than in the higher classes, since they can live a considerable time when it is removed. The body is naked or covered with scales, but these are unlike those of fishes. The first order is named Batrachia by Cuvier, and Amphibia by other authors, on account of their adaptation to breathing both air and water at the same time, or at different periods of their life. In some of the amphibia the gills are permanent (Gnesiobranchictici), and in others they disappear (Agnesiobranchiata).

Order 1. Batrachia. Pl. 74, figs. 59, Salamandra; 60, Rana.
2. Ophidi. " " 61, Vipera; 62, Boa.
" 3. Sauria. " " 63, Anguis; 64, Ophisaume; 65, Chirotes; 66, 67, Chalcides; 68, Bipes; 69, Anolis; 70, Scincus; 71, Tilicua; 72, Chamaleo; 73, Ptyodactylus; 74, Basiliscus; 75, Iguana; 76, Draco; 77, Agama; 78, Stellio; 79, Lacerta; 80, Tejus; 81, Crocodilus; 82, Plesiosaurus; 83, Ichthyosaurus.
Order 4. Citelonidea. . Pl. 74, fiys. 84, Chelonia; 8ă, Testudo.

Class 3. Aves.
Birds are oviparous vertebrata, with warm blood and a double circulation, clothed with feathers, and provided with two feet and two wings. The air has access to various parts of the body, which diminishes their specific grarity, and assists them in flight. Of all the classes of animals this is the most strictly defined; and its characters are more uniform, and have fewer exceptions, on which account the classification presents some
difficulties. The chief characters used for this purpose are furnished by the bill and feet.

Order 1. Palampedes. Pl. 74, figs. 86, Anas; 87, Sula; 8S, Pelecanus; 89, Procellaria; 90, Podiceps.

Order 2. Gralle. Pl. 74, figs. 91, Phoenicopterus ; 92, Pallus ; 93, Scolopax ; 94, Ardea ; 95, Grus ; 96, Otis ; 97, Struthio.
Order 3. Gallinacee. Pl. 74, figs. 98, Gallus ; 99, Crax ; 100, Columba.
Order 4. Scansores. Pl. 47, figs. 101, Psittacus; 102, Picus. ${ }^{6}$ 5. Passeres. " " 103, Buceros; 104, Merops; 105,. Sitta; 106, Alauda; 107, Cypselus; 108, Pica.
Order 6. Accipitres. Pl. 74, figs. 109, Otus; 110, Vultur; 111, Milvus.

Class 4. Mammalia.

The young are produced alive in this class, which differs from all others in nourishing the young with milk secreted by the mammary glands. The thorax and abdomen are separated by a diaphragm composed of muscles, which is used in respiration. Man, by his physical characters, stands at the head of this class; although from his moral attributes some naturalists have denied him a place in the animal kingdom.

Order 1. Cethcea. Pl. 74, fig. 112, Balcena.
" 2. Ruminantia. a, Cervidæ; fig. 113, Cervus. b, Bovidæ; fig. 114, Bos. c, Camelidæ; fig. 115, Camelus.
" 3. Pachidermata. a, Solipeda; fig. 116, Equus.
b, Suidæ; fiy. 117, Sus.
c, Proboscidea; fig. 118, Elephas.
" 4. Monotremata. Fig. 119, Ornithorhynchus.
" 5. Edentata. Fig. 120, Manis. Fig. 121, Bradypus.
" 6. Rodentia. Fig. 122, Lepus. Fig. 123, Sciurus. Fig. 124, Castor. Fig. 125, Mus.
" 7. Carnivora. Fig. 126, Didelphis (possum). Fiig. 127, Phoca (seal). Fiy. 128, Mustela (weasel). Fig. 129, Viverra (ferret). Fig. 130, Felis (cat). Fig. 131, Hycena. Fig. 132, Canis (dog). Firg. 133, Ursus (bear).
" 8. Insectivora. Fig. 134, Erinaceus.
" 9. Chiroptera. Fig. 135, Vespertilio (bat). Fig. 136, Pteropus.
" 10. Quadrdiana. Fig. 137, Lemur. Fig. 138, Hapale. Fig. 139, Simia.
" 11. Binana. Fig. 140, Homo.
The order and classification which we propose to adopt, will be found to differ somewhat from the system given above, which is essentially that of Cuvier.

DESCRIPTIVE ZOOLOGY.

Class Porifera.

$I_{\text {F sponges belong to the animal kingdom, they stand at the lowest point, }}^{\text {the }}$ where they will constitute a class to which Grant's name Porifera may be applied. In the living sponges the water is imbibed through the smaller pores, and flows out of the larger ones in a regular stream. They exhibit no sensation when pierced, torn, burnt, or acted upon by acids, so that they are exceeded in sensitiveness by many plants.

Dujardin considers that he has proved them to be groups of animals. In placing a fragment of living sponge under the microscope, it was found to shape itself into rounded masses, the edges of which changed their form continually; and small bits moved by contracting and expanding.

Johnston, in his History of British Zoophytes, classes sponges with plants, on the ground that they are permanently fixed, not irritable, their movements involuntary, a stomach wanting, and from their resembling the cryptogamia in taking their form from the object to which they are attached.

Mr. Hogg states that sponges have no tentacles, vibrillæ, mouth, œesophagus, stomach, gizzard, alimentary canal, intestine, anus, ovaria, ova, muscles, nerves, ganglia, irritability, palpitation, or sensation. "Surely, then, we cannot any longer esteem these natural substances to be individual animals, or even groups of animals, in which not one organ or a single function or property peculiar to an animal can be detected."

Sponges are usually marine, although there are a few species which are found in streams and stagnant water. They have a loose texture, covered and penetrated by a jelly-like substance ; and they are perforated with numerous passages. The gelatinous substance seems alone to be present in the young, the fibrous substance appearing at a later period.

The species of spongia are numerous, about 150 kinds being described by Lamarck. The best known is Spongia officinalis (pl. 75, fig. 45). It is found attached to rocks and stones in the Mediterranean, particularly about the Greek islands, where they are collected by divers. Its reproduction is so rapid, that it may be collected in the same place after an interval of two years. The younger specimens are the most sought after, on account of their greater delicacy. Formerly burnt sponge was used in domestic medical practice for goitre, its action depending upon the presence of iodine.
The form of sponges is subject to an endless variety, and even the same species varies to a great degree, apparently with the locality; so that it is
difficult to classify them properly. They are principally made up of irregular, globular, fan-shaped, palmate, branched, cup-shaped, fumel-shaped (often of great size), tubular, leaf-shaped, or ragged forms, which either surround other objects, or rise upon a short pedicle. The cup-shaped S. usitatissima, and the trumpet-shaped S. tubeformis, are from the American seas. The former is an article of commerce. S. fistularis ($p l$. $75, f g .44$) is a large brown species, with fine and very flexible fibres, from the American seas.

Notwithstanding the investigations of zealous inquirers, polyps have not been found in sponges. A number of observers who have watched their growth from the commencement, first observed the gelatinous substance, and afterwards the filamentous matter in it, which may be regarded as a skeletou. The growth of sponges is quite different from that of corals, as might be expected from the absence of polyps. Some regard the circulation of water through sponges as a kind of breathing process, a view which is inadmissible. With respect to their propagation, but little is satisfactorily known. According to Olivi, small oval bodies are found in the jelly-like mass, especially in autumn, which have been too hastily named eggs.

Sponges contain calcareous or silicions spicula, in which they resemble certain plants. They may be detected by burning a piece of sponge and placing some of the ashes beneath a microscope. These spicula are uniform in each species; so that they are useful in affording specific characters.

The chief peculiarities of marine sponges are also found in the fresh water species, as Spongillce lacustris ; S. fluviatilis ; and S. friabilis, which inhabit swamps and running streams. The three named species, however, constitute probably but one, at different stages of growth.

The following genera are placed here, because, according to Mine Edwards, they have no polyps (new edition of Lamarck, vol. 2, p. 208, $520,522)$. Some of the best authorities place them among plants.

Penecillus penecillus, Linn. ($p l .75$, fig. 37), resembles a hair pencil, and the stem has a whitish calcareous crust (American seas). Flabellaria opuntia, Linn. (fig. 36) (American seas). Acetabulum mediterranoum (fig. 41). Corallina officinalis, Linn. (pl. 75, fig. 38), white, reddish, or green, four inches long. C. rubens (fig. 35) (Mediterranean). These delicate bodies were long supposed to partake of the animal nature of the true corals; but the structure is now considered to be nearer that of the alge.

Pedicellaria, Müller ($p l .75$, fig. 4), is a portion of an Echinus.

Class Infusoria.

These minute animals have been observed and studied only since the discovery and improvement of the microscope. Several species were known in ancient times, because they occurred in such numbers as to discolor the water green or red, in the latter case giving it the appearance
of blood; but no one anticipated this discoloration (which was regarded as a mark of divine displeasure) to be due to animals.

Leeuwenhoek, in 1675 , first observed the infusoria, in standing rain water, without being fully convinced of their animal nature. Subsequently, in pursuing some medical inquiries into the nature of the material which gives its pungency to pepper, he made an infusion of this substance, which he was afterwards astonished to find swarming with animals. They were subsequently found in infusions of other vegetables, and in those of animal and inetallic substances; and although it has been found that infusions are not essential to their production, they still retain the name of Infusoria. They are also called Protozoa, because they were supposed to constitute the first appearance of animal life. In the year 1701, Leeuwenhoek discovered that Rotifera, from the sediment which had been dried for a year in the gutter of a roof, could be revived. From this date, notwithstanding the number of observers, no one seemed disposed to investigate the internal structure of these minute objects, until the researches of Ehrenberg showed that they are provided with at least a mouth and a digestive cavity.

The larger species of Infusoria attain the size of a tenth of a line or more. The body is gelatinous and naked, but some are protected by a coriaceous, calcareous, or silicious defence; and as these mineral materials remain after the death of the animal, they are sometimes so abundant as to form entire geological formations. Some Infusoria have the body covered with minute sandy particles; others have only a shield upon the back; others again have the entire body inclosed in a case with one or more openings. When a defence is present, it is usually in a single piece, although there are some composed of more.

The Infusoria are usually colorless and translucent, but some are green, some yellow, and a few red; and when these colored species are very abundant, they give the water a discolored appearance. The shape is globular, oval, fusiform, cylindrical, vermiform, or irregular; and some are continually varying their form, so that the same individual might'be mistaken for sereral distinct species. This is especially the case in the genus Proteus, which has derived its name from the sudden and great variation of form the same individual assumes under the eye of the observer. A head, neck, and tail, are usually distinguishable, and in some one end is very long, giving the animal a fanciful resemblance to a swan. The tail is sometimes used as a foot, and in some species is capable of being extended like the tube of a telescope. There are various external appendages like spines or bristles, but the most usual of these are the vibrillce, which are used in locomotion, and to draw the food within reach by forming a kind of minute whirlpool in the water. In the Rotifera (which are really Crustacea) the vibrillæ are arranged in two circles at the anterior extremity; and when they are in action, some observers fancy that they resemble wheels in a state of rotation, whence the name of rotifera.

The Baccilarice (now regarded as plants) are united together side by side in ribbon-like bands. B. paradoxa is a very interesting species, which may be compared to a ruler; but as many individuals rest side by side like
rulers upon a table, they may form a square or parallelogram. The motion is peculiar, each single body (the edges remaining in a line) being capable of sliding rapidly along the one with which it is in contact; so that when those upon one side have extended themselves, the whole may resemble a flag attached to a pole, as in the diagram.
The Gaillonellce (plants) are united end to end, forming a chain. In the genus Deridion the individual parts or frustules are wedge-shaped, so that when placed edge to edge they form an arch, or even a circle or spiral. In Mierrasterias the interior is divided into many cells. Isthmia has an end fixed, and forms rows, the parts being in contact at different angles by a small isthmus.

All the animal Infusoria seem to be provided with a mouth, which is generally terminal, but sometimes placed near the middle of the body. The rent is not always present, or at least has not been discovered in all, so that it is possible that the undigested portion of the food may be rejected from the mouth, as in the Polypi. Where it has been observed, the vent was near the mouth; or upon the abdomen; or at the posterior extremity, above or below. The breathing organs, where they have been observed, appear as simple openings. The organs of motion are the tail, foot, bristles, vibrillæ, \&cc.
The organs of sense, as far as known, are those of feeling (of which the snout, and perhaps the bristles, are the organs), and perhaps vision, although Dujardin doubts the existence of the latter. The organs supposed to be eyes are dark red or black stigmas situated anteriorly upon the upper side, and Elirenberg thinks that a glandular body beneath them performs the function of an optic nerve. Most of the polygastrica have a single stigma, Distigma has two; some of the Rotifera (crustacea) two, three, four, or more, arranged in two clusters, as in Theorus ; in a semicircle, as in Cyclogena; or upon pedicles (like those of land snails) as in Otoglena. It is uncertain whether the structure of these eye-like spots resembles that of any of the animals above them; or whether their vision, if they possess this sense, is more than sufficient to distinguish light from darkness. Indeed, a perfect vision would scarcely be of much use to them, as they are said not to sleep, but to be as active in darkness as in light.

The internal organization of these singular animals is not less interesting than their exterior form; and indeed it may be considered the more surprising, when their size, in comparison with that of the larger animals, is taken into consideration. Their movements are extremely multifarions, and for all these there is an appropriate system of muscles. These may be observed running in rarious directions, the most interesting being those which keep up the unceasing play of the vibrillæ. But these organs are not confined to this class, vibrillæ being found externally and internally in many of the higher animals.

In the Polygastrica Ehrenberg represents a long curved intestine with numerous globular bodies suspended to it somewhat like grapes, from the
mouth to the rent, which he regards as so many stomachs. This riew passed undisputed for a considerable time; for although other observers fitiled to detect the connexion between the supposed stomachs and intestine, the failure was attributed to want of skill in microscopic manipulation. Ultimately this structure was doubted, although Pouchet reaffirmed it in 1848, and among others, Professor Rymer Jones expresses his doubts as follows :
"In carnivorous animalcules which devour other species, we might expect, were these the stomachs, that the prey would at once be conreyed into one or other of these cavities; yet, setting aside the difficulty which must manifestly occur in lodging large animalcules in these microscopic sacs, and having recourse to the result of actual experience, we have never in a single instance seen an animalcule, when swallowed, placed in such a position, but have repeatedly traced the prey into what seemed a cavity excavated in the general parenchyma of the body.
"In the second place, the sacculi have no appearance of being pedunculated, and consequently in a certain degree fixed in definite positions.
So far from their having any appearance of connexion with a central canal, they are in continual circulation, moving slowly upwards along one side of the body, and in the opposite direction down the other, changing, moreover, their relative positions with each other, and resembling in every respect the colored granules visible in the gelatinous parenchyma of the hydra.
"With respect to the central canal, we have not in any instance been able to detect it . . . much less the branches represented as leading from it to the vesicles or stomachs, as they are called. Eren the circumstances attending the prehension of food would lead us to imagine a different structure; witness, for example, the changes of form which Enchetis pupe undergoes when taking prey almost equal to itself in bulk. Such a capability of taking in and digesting a prey so disproportionate, would, in itself, go far to prove that the minute sacculi were not stomachs; as it evidently cannot be in one of these that digestion is accomplished."-General Outline of the Animal Kingdom, 1841 .

The observations of Dujardin (Hist. nat. des Zooph. Infusoires, 1841) confirm those of Jones. He thinks that they do not lay eggs.

Many of Ehrenberg's discoveries were made by infusing indigo or carmine in the water in which he kept Infusoria, and this being swallowed, marked the limits of the internal cavity. He did not detect the liver, spleen, or organs of circulation and respiration; but there are two organs in the gullet supposed to be analogous to salivary glands.

All Infusoria live in the water, some being confined to fresh, and others to salt water; but there are others which inhabit both. Some swim about almost continually, some attach themselves at will to plants or animals, and others are attached to particular animals, as to the Cyclops or waterflea, the freshwater Polypus; and even upon or within other Infusoria. One species is found in the rectum of frogs, and another (Paramecium compressum) in the intestines of the earthworm. Agassiz has observed the eggs of Planaria producing a species of "Paramecium" which was consequently an immature condition of that animal. All the attempts of Ehrenberg to detect Infusoria as inhabitants of the air have failed.

The modes of locomotion in the Infusoria are rarious. Some swim by means of the ribrille; some, like the morrads, revolve like a globe on its axis; others roll upon their transverse axis; others glide along with a regular motion like the snails; and others like the leech.

The reproduction of the Infusoria takes place by means of spontaneous division; by budding, which is the least common; and perhaps by the ordinary mode of generation, although this is denied by Dujardin, who affirms that there are no males; and indeed, no indications of sexual instinct have been observed among them. The first mode of reproduction occurs in the so-called Polygastrica, and takes place either transversely or longitudinally, each half forming an independent animal. The division is not always complete, and in this case the two parts remain attached to each other. Some present a singular peculiarity, in which the soft part alone of the animal is divided, whilst the harder parts or armor remain undivided, as in Ophrydium versatite, which often divides itself to the extent of millions, whilst the gelatinous exterior remains entire, althongh it increases in size. In others the protection is completely divided, whilst the animals remain more or less closely united. The division in pedunculated genera does not generally extend beyond the pedicle, which, in case the divisions are numerous, resembles the trunk of a small tree. This remarkable mode of reproduction by division proceeds with such rapidity under favorable circumstances, that a single animal may give rise to a million of descendants in the course of eight or ten days.
The sudden and unaccountable appearance of Infusoria, especially in closed vessels, was once attributed to spontaneous or equivocal generation, a theory which still has its defenders, although it appears to be pretty well ascertained that such a hypothesis is not necessary. We may readily imagine that the inconceivably minute eggs of such creatures (or of those of which these animalcula are the imperfect condition) can be raised into the air with vapor and transported in all directions, penetrating wherever the air itself finds access.

The vital power of some species (and of the crustaceous Rotifera) is so great that they can survive with so little moisture as to be considered dry, exhibiting no signs of vitality until moistened with a drop of water, when they resume their active life. Doyère found that they may be completely dried in sand, in the dry air, or in a vacuum, and be revived by placing them in water. When placed in water at the temperature of 50° Centigrade ($=126^{\circ} \mathrm{F}$.) they were killed, but would revive if the temperature did not exceed 45° or 48° Cent. Some species are said to occur naturally in warm springs whose temperature equals 40° or 50° Cent.; whilst some species are not destroyed by being frozen. Ehrenberg found Infusoria in materials taken from floating masses of ice, and in sea water from a depth of 1100 to 1600 feet, brought by Captain Ross from the regions towards the south pole, between the latitude of 63° and 75°, where the temperature must have been very low, and the light much reduced at such a depth.

The extent of certain geological strata made up of the solid parts of the Infusoria is extraordinary, when the minuteness of the aggregated particles
is considered; some of the silicious shields being so small, that, according to Ehrenberg, one hundred millions weigh but a grain. They are found in flint, semiopal, bog iron ore, ochre, tripoli (and other polishing minerals which owe their action to the shiclds of silicious species), mountain meal, a clay which is eaten in Lapland, and another variety in South America, but which probably merely fills the stomach without affording nourishment. Sometimes these remains form a stone sufficiently light to float in water, and strong enough to be employed in building. In Lüneburg and about Berlin, the infusorial strata are as much as twenty feet deep and twenty miles in extent. Infusorial strata have been discovered by William B. Rogers upon the Rappahannoc river at Stratford cliffs, on the Potomac, and on James River below City Point; and in other parts of Virginia. These deposits belong to the miocene formation.

The extent of the artificial group Infusoria will probably be much reduced as researches are continued. Kützing has separated the Bacillaria and Diatomere as Alga, and he considers Gaillonella fermuginea to be a conferva. He thinks some of these organisms have both a yegetable and an animal nature, and that in such simple forms the distinction between animal and vegetable does not exist.

The olservations of Unger, Flotow, Thuret, and C. Th. Siebold, have thrown doubts upon the animal nature of other Infusoria of the genera Enchelys, Chlamidomonas, Chilomonas, Chretoglena, and others. These researches seem to show that the spores of Algae are locomotive by means of vibrillæ, although Unger and Bory would contend that these supposed spores are animal in their nature, but convertible into plants.

Agassiz considers many of the Infusoria to be the larvæ of worms, \&e., and he seems disposed to suppress the entire class by distributing its members among the other classes of animal and vegetable nature. There is reason to believe that supposed species of Lencophra and Diflugia are immature Alcyonellae. Neverthless, it would be premature to give up the entire class until a greater number of the more distinct forms are ascertained to be larræ, becanse, whilst we admit that individual species may have been described under several distinct names, the number of infusorial species seems too great for the comparatively small number of worms, \&c., likely to be derived from them.

The name Infusoria is adopted here on account of the heterogeneous contents of the division ; but if future observation renders it probable that the remoral of portions will still leare a distinct group incapable of union with other classes, these may take the more appropriate name of Protozoa, sometimes applied to the entire group; and its symbol, to extend the views of Agassiz, will be a circle.

Professor J. W. Bayley of the Military Academy, West Point, is the chief American authority upon the Infusoria. Most of his papers may be consulted in the American Journal of Science.

We now proceed to the consideration of the species figured in the atlas.

Monas lens, Müller ($p l 75$, fig. 1), is about $\frac{1}{8} \frac{1}{0}$ th of a line long. The line used in Natural History is the twelfth part of a French inch.

Vibrio anguillula (p l. 75, fig. 7). This active species, which bears some resemblance to an eel, is found in vinegar and in sour paste, and can be revived after having been desiccated. It is by some placed among the worms, while Dr. Joseph Leidy, a distinguished comparative anatomist of Philadelphia, thinks their nature may be regetable. His remarks, somewhat condensed, are as follows :
"Even those moving filamentary bodies belonging to the genus Vibrio, I am inclined to think, are of the character of algons vegetation. Their movement is no objection to this opinion, for much higher confervæ, as the Oscillatorias, are endowed with inherent power of movement, not very unlike that of the Vibrio. . . In the stomach and small intestine of the toad, Bufo americanus, there exist simple, delicate, filamentary bodies. One is exceedingly minute, forms a single spiral, is endowed with a power of rapid movement, and appears to be the Spirillum undula of Ehrenberg; the second is an exceedingly minute, straight, and short filament, with a movement actively molecular in character, and is probably the Vibrio lineola of the same author; the third consists of straight, motionless filaments, measuring $\frac{1}{11 \frac{1}{5} 5}$ inch long, by ${ }_{15 \cdot \frac{1}{000}}$ broad; some were, however, twice, or even thrice this length, but then I could always detect one or two articulations, and these, in all their characters, excepting want of movement, resemble the Vibrio. In the rectum of the same animal, the same filamentary bodies are found, with myriads of Bodo intestinalis; but the third species, or longest of the filamentary bodies, have increased immensely in number, and now possess the movement peculiar to the Vibrio lineola, which, however, does not appear to be voluntary, but reactionary; they bend and pursue a straight course, until they meet with some obstacle, when they instantly move in the opposite direction, either extremity forward. But it must not be understood that these facts militate against the hypothesis of the production of contagious diseases through the agency of Cryptogamia. It is well established that there are microscopic Cryptogamia capable of producing and transmitting disease, as in the case of the Muscardine, dc."-Proceed. Acad. Nat. Sci. for October, 1849.

Vibrio tritici, which infests wheat, has been revived by moisture after being in a dry condition for six years.

Gonium pectorale ($p l .75$, fig. 11, enlarged) is an interesting species, resembling a table-shaped mass, in which there are about sixteen green animalcula. When abundant they give a green color to the water.

Volvox globator (fig.15, enlarged) was discovered by Leeuwenhoek in 1698, and is abundant in stagnant water. It is globular, of a pale-green color, and from one third to a sixth of a line in diameter. The surface is finely reticulated and provided with vibrillæ, by means of which it advances slowly through the water with a revolving motion. The Volvox is
sufficiently transparent to allow six or eight smaller bodies of the same nature, but of a darker-green color, to be seen moving freely about the interior, which are the young; and even these, towards the period of their exclusion, contain another set of germs. The rupture of the exterior of the large body sets the small ones free.

Bursaria vesiculosa (fig. 3) lives in the rectum of frogs; it is oval, and the margin is provided with vibrille: size one twentieth of a line.

Proters diffluens (the genus has also been named Amobba) (fig. 2), seldom exceeds one twenty-fourth of a line in size. It resembles a mass of translucent jelly, which is continually changing its form from rounded to linear or cordate, sometimes projecting parts of the margin in various directions, so as to present a most varied outline.

Cyclidium glaucorna (fig. 8) is remarkable for its peculiar motion, which resembles that of the genus Gyrinus, a waterbug, which swims rapidly in circles on the surface of the water.

Trichodina cometa (fig.14) is one twenty-fourth of a line long, and lives as a parasite upon the fresh-water polyps ($f i g .21$), of which it gnaws the arms, causing death.

Urocentrum turbo (fig. 13) has an oval-triangular, translucent body, and a stem about one third of its length. Length from one thirty-sixth to one twenty-fourth of a line. Found among duck-weed.

Carchesium polypinum (fig. 20) has a bell-shaped body, mounted upon a slender, spiral, branched stem, formed by incomplete division. Found among aquatic plants.

Enterodela (with the intestines evident).
Opercularia articulata (pl. 75, fig. 17) is composed of a stout-branched stem, two or three lines long, each of which supports a bell-shaped body, which is subject to variations in shape. It attaches itself to water insects, and is sometimes so abundant upon them as to present the appearance of a covering of mould.

Stentor mylleri (fig. 18) inhabits aquatic plants; when extended, it is shaped like a trumpet or funnel, but when contracted, it exhibits the form represented in the plate. Its length varies according to the amount of its contraction, from one tenth to one half a line.

Cryptomonas ovata ($f i g .4$) is a lengthened green body, one forty-eighth of a line long, provided with a delicate shield.

Bursaria truncatella ($f i g .12$) is somewhat egg-shaped, with one end deeply excavated: one fourth to one third of a line long.

Chilodon cucullatus (fig .10) is somewhat lengthened, flat, and rounded, with a small projection in front. Common in stagnant water.

Trachelocerca olor (fig. 5) takes its trivial name from the distant resemblance it bears to a swan. It lives among duck-weed and conferva, and is from one twenty-fourth to one twentieth of a line long.

Trachelocerca viridis (fig. 6) is more rare than the preceding, and inhabits the same places. It takes its trivial name from the green germs within it.
Paramecium compressum ($f i g .9$), already alluded to, is from one twentieth to one twenty-fourth of a line long, and is probably an early stage of Planaria.

The structure of the two next species figured among the Infusoria shows that they are Crustacea. The first is Rotifer vulgaris (pl. 75, fig. 16), remarkable for the two circles of vibrillæ already referred to, and for the posterior forceps by which it attaches itself. Meelicerta ringens (fig. 19) can withdraw itself into an external case; it lives in society, and has the vibrillæ distributed in four divisions.

Division I. Radiata.

The radiated division of the animal kingdom, in the arrangement of Agassiz, and to a certain extent, in that of Milne Edwards, includes all those forms in which the radiated structure is more or less evident, as in the Zoophyta, the Medusæ, and the Echinodermata. In Cuvier's arrangement, the Zoophyta (under which term he includes all the Radiata) are a heterogeneous assemblage of radiated forms, Epizoic Crustacea, Intestinal Worms, and Infusoria.
"In a general point of view, we may, however, compare further, all radiated animals, when we shall find that they really constitute a natural, well circumscribed group in the animal kingdom, agreeing in all important points of their structure, being strictly constructed upon the same plan, although the three classes which we refer to this great department differ in the manner in which the plan is carried out."-Agassiz's Lectures on Embryology, Boston, 1849. P. 43.

The Radiata are distributed into three classes, Colenterata, Zoophyta, and Echinodermata. The first includes the Acalephæ or Medusæ, to which the Hydroida are added; the second the Zoophyta, excluding the Hydroida; and the third the Echinodermata.

The Hydroida have been usually placed in the class Zoophyta, although in the development of some of the families in which it has been observed, they present characters indicating a great affinity with the Acalephe, which in their turn have been regarded as an individual class. In dismembering the Zoophyta to unite the Hydroida and Acalephæ, we may either apply the name of the latter to the united group, or choose a distinct one. The latter course is preferable, being least likely to cause confusion, and we have accordingly adopted the name proposed by Fry and Leuckart. The necessity of this union is insisted upon by Forbes in his British Naked-eyed Medusæ, p. 82 ; and in Agassiz's Lectures on Embryology, p. 44.

Class 1. Colenterata.

This class contains the orders Hydroida, Pulnonigrada, Ciliograda, Cirrigrada, Physograda, and Diphyida, all of which (excepting the first) constitute the Acalephr of Cuvier. For the sake of uniformity in the nomenclature, we here propose the name Systoligrada, instead of Diphyida, the locomotion being similar to that of the Pulmonigrada.

Order 1. Hydroida. The order Hydroida contains animals, some of which have, and some have not a corallum, or the stony material named corcal. This does not constitute an essential distinction here, or among the Zoophyta, because the condition of the hard material is different in different genera, being sometimes merely indicated by the presence of calcareons granules scattered throngh the body.

In the Hydroida the internal cavity is tubular and simple, and the order includes the four fumilies, Hydridæ, Sertularidæ, Campanularidæ, and Tubularidæ.

The IIydrida, of which the fresh water polypus is a familiar example, occur in America as well as in Europe. It forms the genus Hydra, and is a soft naked polyp (pl. 75, figs. 21-23) found attached to plants in stagnant water, and increasing by lateral buds, as represented in figs. 22, 23 ; but unlike some Zoophyta, the young thus produced become detached when they attain a certain size. The internal cavity of the young is for some time continuous with that of the parent, so that the nourishment taken by the latter can be digested by both. Finally the young gets arins of its own, the cavity closes below, and the new animal becomes detacbed and commences an independent life. This mode of increase takes place in summer. Trembley, by watching an individual, fonnd that it produced forty-five young in two months.

This genus was discovered in Europe by Trembley, in the year 1739, and we have observed it here. It attaches itself by the base to plants, rubbish, or even aquatic insects. These animals move somewhat in the manner of a leech, by stretching out the body and attaching the arms to an object, then drawing up and attaching the base, and so on in succession. When placed in a glass of water, they are said to pass from the shade into the light. The figures represent them about the natural size, so that they can be pretty readily detected with the naked eye. When disturbed, the arms and body are contracted into a small compass. The arms are used to catch their prey, which consists of minute Crustacea, and other animal food. The body is usually sufficiently translucent to allow the contents of the internal cavity to be seen.

The structure of the Hydra is of the simplest kind, being limited to the tubular body and its single aperture for the admission and exclusion of food; and the margin of this opening is fringed with from six to eighteen very elastic, flexible, and thread-like arms.

Under a high magnifying power, the arms of IIydra are seen to be studded with hemispherical projections, which resemble a bunch of grapes when
they are drawn together by the contraction of the arms. Most of these projections support a short hair, some are armed with a thorn, and others support a very long hair ending with a spur composed of several thorns around a pear-shaped mass. See the last edition of the Règne Animal, Zoophytes, pl. 64.
It is evident that the Hydre, like the Medusæ or sea nettles, have a stinging power, judging from the manner in which their prey is paralyzed when seized. Worms which will live and move for some time when cut into fragments, die instantly when seized by a hydra : and if a worm which has been seized is taken from the amimal before it is swallowed, it does not revive. When a minute animal comes within reach of one of the arms, it is seized and swallowed, and this sometimes happens to young fishes. They sometimes even swallow each other, but the swallowed individual is cast out again unhurt. The uniformity of structure is proved by the fact that if the animal is turned inside out, the food can be digested by what was once the outside.

The genus IIydra has been named after the fabulous monster of antiquity bearing the sane name, because parts cut away will be reproduced; and under favorable circumstances, when an individual is divided into sereral parts, each part will become a perfect animal. It is probable that IIydra grisea (pl. T5, fig. 21), H. fusca (fig. 22), and II. viridis (fig. 23), are varieties of but a single species.

The order Hydroida, according to Mr. Dana, contains the following families:

1. Hydridar. Not coralligenous.
2. Sertulariclae. Coralla corneous. Sertularia abietina (pl. 75, fig. 33). S. polyzonalis (fig. 30). S. operculata (fig. 34). Planularia falcata (fig. 31). Thuiaria thuia (fig. 32), all European.
"In a single specinen of Plumularia angulosa collected by the author in the East Indies, there are about 12,000 polyps to each plumose branch ; and, as the whole zoophyte, three feet long, bears these plumes on an average every half inch, on opposite sides, the whole number of polyps is not short of eight millions; all the offispring of a single germ, and produced by successive budding."-Dana.
3. Campanularida. Coralla corneous, calicles pedicillate.
4. Tabularidce. Coralla tubular and corneous. Tabularia indivisa (pl. $75, f\left(y .4^{2}\right)$ (Atlantic and Mediterranean), attached to stones in deep water, T. coronata ($p l .75$, fig. 29) (Northern seas). Stem one third of a line in diameter. In this genus the tentacles are not retractile.

The remaining orders of the class Colenterata were called Acalephæ oy Curier, from the Greek word $\alpha \times \alpha \lambda \eta p ; i$ a nettle, from the stinging quality which many of these animals possess. Blainville gave them the expressive name of Arachnoderma, from agaxviov a colweb, and depua the skin, from the extreme tenuity of the tissues. They are also termed Medusæ, sea-nettles, stang-fishes, sea-jellies, and jelly-fish. They are found floating in all seas, particularly those of the tropics; their size varies from one sixth of a line to
two feet, and the weight of large ones reaches fifty or sixty pounds. Yet this great mass is composed almost entirely of water, which pervades the tissues, and these are of such extreme tenuity that the weight of one of these masses is reduced by desiccation to grains instead of pounds.

The nore familiar forms belong to the Pulmonigrada, also termed Discophora, which may be compared to an expanded umbrella, or to a mushroom, the alternate contraction and expansion of which efable the body to move through the water with the convex or upper surface foremost; a mode of progression which has afforded a name to the order, from its resemblance to the action of lungs.

The leauty of many of these animals equals anything in organic nature ; the colors are prismatic or entirely wanting, and in the latter case, the gelatinous transparent body resembles a mass of colorless liquid gum, which cau only be distinguished by its motions from the water which surrounds it.
"When in a jar or basin they are often very difficult to distinguish, but by placing the vessel in the sun, we see their shadows floating over the sides and bottom like the shadows of flitting clonds on a landscape. These soon guide us to the creatures themselves, and before long we distinguish their ocelli and colored reproductive organs."-Forbes.

The disk forming the greater part of the body varies from hemispherical to flattened discoidal, and is sometimes lengthened into a conical or subcylindrical form. The central portion is thickest, and the inferior surface is concave. The margin is either entire or fringed with tentacles, which vary greatly in length, number, and form. Some of these tentacles have a colored spot at their base called an ocellus, and upon this Forbes has divided the Discophora into two groups; namely, the Steganophthalmata (covered eyes), in which the ocelli are protected by membranons lobes, and the Gymnophithalmata (naked eyes), in which the ocelli are not protected. The former are more highly organized than the latter, and in most of the genera the sexes are not united in the same individual. Agassiz has discovered a nervous ring around the mouth, with branches extending to the ocelli; an arrangement which resembles that in the Echinodermata. Ehrenberg had made a less distinct announcement, and Dr. Graut announced the discovery of a nervous system in Beroe, in the year 1833.

From the centre of the concavity of the disk arises the peduncle, which raries much in size and shape, in some genera forming a considerable portion of the animal, and in others being reduced to a slender extensile and contractile tube, at the extremity of which the mouth is situated. The carity of the peduncle, or its base, is the stomach, whence branches are sent towards the disk, around the margin of which there is a canal connecting with them. These radiating gastro-vascular branches vary in number from four to twelve or more. In the naked-eyed genera they are seldom branched; and when they are, the branches run to the marginal canal, as in the genus Wilsia* (Forbes, Monog. of the British Naked-eyed Medusæ

[^1]Iondon, $18 \pm 8, p l .1, f i g .1)$. The same structure occurs i i Berenice (Cuv. Règne An. Zooph., pl. $53, f g .1^{a}$). In the covered-eyed gronp, the branches after extending about two thirds the distance towards the edge anastomose around the margin in a broad and close vascular net work (beautifilly exhibited in Milne Edwards' figure of Rhizostoma, R. An. pl. 50).

The position of the generative system is variable in this class. In general both sexes seem to be united in the same individual.

When the ocelli are present, the sense of sight is probably sufficient to enable the animal to distinguish between light and darkness, and the sense of hearing may also be present. Their food is furnished by small marine animals, among which the crustacea fill a prominent place. The sense of feeling is probably most developed in the palpi, the tentacles, and the arms, arising from the centre, and surrounding the mouth or pedicle.

The stinging quality is not universal in the Medusa, being apparently confined to a few of the higher forms. Bathers sometimes suffer severely by coming in contact with the larger species, whose long tentacles and arms are sometimes entangled around the limbs, and cast off by the animal, leaving the sufferer to disengage himself from these unwelcome appendages at his leisure. The stinging property is supposed to be confined to an external coat of mucus, which the animal can cast off.
The luminousness of the sea is due chiefly to multitudes of acalephre.
"At one time, the evening serene and delightful, a pleasant breeze just filling the sails, and the bow of the ressel throwing the water to each side, as it gracefully parts the yielding waves, all round the ship, far as the eye can reach, may be seen innumerable bright spots of light rising to the surface, and again disappearing, like a host of small stars dancing and sparkling on the bosom of the sea. At another time, the night dark and lowering, a fresh breeze urging the ship rapidly onwards through her pathless track, upon looking over the stern, in addition to the smaller specks just now mentioned, large globes of living fire may be seen dancing in the smooth water in the wake of the rudder; now, at a great depth, shining throngh the water, then rising rapilly to the surface, they may be seen, as they reach the top of the wave, flashing a bright spark of light, sufficient almost to dazzle the eyes of the beholder; and now, again, they may be traced floating majestically along, till they gradually disappear in the darkness of the water in the distance. At other times, again, when light rain is falling; or, perhaps, previously to the rain coming on, when a light, nimbose cloud is overspreading the sky, upon the water being agitated by the ship passing through it, a beautiful general luminousness is diffused all round, bright enough to illuminate the whole ship's side, and the lower large sails; and it is no unusual occurrence to have the appearance so bright, that a person with little difficulty, and near the surface of the water, might be enabled to read a book by its aid. . . It is in warmer regions and more southerly latitudes that this phenomenon attains its greatest degree of brilliancy and beauty."-T. Baird, On the Luminousness of the Sea, with figures. Mag. Nat. Hist. 1830, vol. 3, p. 308 ; vol. 4, p. 500. See also vol. 6, pp. 314-319.

Luminous acalephr occur upon the coast of the United States, and they may be observed on a night passage in a steamboat in Long Island Sound.

The light is usually produced under exciting circumstances, or when the animal is disturbed, and all parts do not produce light. Spallanzani found that in cutting off the margin for about half an inch, the latter remained phosphorescent, which was not the case with the disk.

Order 2. Pclmonigrada. The following species of this order are figured; Thaumantias cymbaloidea (pl. 76, fiy. 73), Northern Sens. Aurelia aurita, Linn. $\left(f y . \quad r \frac{1}{x}\right.$), Northern Seas; six to ten or eleven inches in diameter. In this genus the mouth is surrounded with four arms, and the central peduncle is wanting. This species has a bluish disk, fringed with slender tentacles, and haring eight marginal ocelli, which are black, with a red point above. Beneath there are furr long fringed central arms, with the mouth between them. Sometimes the margin of the arms contains egrgs. The ovaries, however, have their openings between the base of each pair of arms; there are four of them shaped like a horse-shoe, and of a purple color, which renders them visible from above, as seen in the figure.

Order 3. Ciliograda. This order (also named Cteriophora by Eschscholtz) is naned from its organs of motion, which consist of a series of flat phosphorescent vibrillæ, arranged longitudinally upon the surface of the body, along the eight ribs, and by the action of which progression is effected. These vibrillæ are arranged with their flat surfaces nearly in contact, and they are raised slowly and struck rapidly. Some authors suppose them to subserve the purpose of gills as well as organs of locomotion. The genus Beroe, which is a good example, varies in form from globular to cylindrical, but a little compressed. The cavity beneath is very large, and the animal moves with the mouth furemost. In addition to the month there is an excretory orifice. Cestum veneris has a ribbon-shaped body, the two margins of which are fringed with beautifully colored phosphorescent vibrille, which at night give the animal the appearance of a band of flame, as it moves through the water. It attains the length of three or four feet.

Order 4. Cirrigrada. The form is discoidal, and there is an internal subcartilaginous discoidal skeleton, which distinguishes them from the Pulmonigrada. In Porpita ($p 7.76$, fig. S3) the margin is fringed with stout claviform tentacles, prorided with three ranges of pedunculated glands or suckers. The stomachal pedicle is large, and surrounded by numerous tentaculiform cirri, by means of which locomotion is effected. These bear some resemblance to the tentacles of the Actinix, to which Blainville thinks the order has some aftinities. In Velella (V. spirans, Forsk., pl. 76, fig. 8t), besides an oral cartilaginous skeleton, there is a vertical process arising from it which supports a crest-like membrane.

Order 5. Pitrsograda. This order was called Hydrostatic Acalepha by Cuvier, a designation which, like the proper name, points to a peculiarity of structure, namely, the support of the body by one or more air-vessels, which cause the animal to float. Phystalia physalis, Linn. (pl. 77, fig.1), possesses stinging qualities ; it inhabits the Gulf of Mexico and the Atlautic, and is known to sailors as the Portuguese man-of-war. The air-vessel is very large, and has a small aperture at each end, from which the air can be
expelled when the animal wishes to sink. It is probable that this may be accomplished to a certain extent by the muscular power of the air-vessel. Blainville thinks that this order (which wants the radiated chaaacter), with Beroe and Diphyes, may be allied to the Mollusca, and in the year 18,36 he proposed for them the name Mulactinozouria, under the impression that they constitute an intermediate division.

Order 6. Systoligrada. The name Diphyida is derived from that of the genus Diphyes, in allusion to its double nature, each animal being composed of two somewhat conical pieces, the point of one being inserted a short, distance into the larger end of the other, and retained by a very slight attachment. See the Penny Cyclopredia for an extended account, illustrated with figures of this and the preceding orders.

Dars, a distinguished naturalist of Norway, discovered in 1836 that some of the Acalephæ resemble the Zoophyta, in having a gemmiparous reproduction. He observed certain projections from the base of the pedicle (or exterior of the stomach), which proved to be budding young, attached by the upper or outside portion of their disk. These young resemble the adult in all essential particulars, and, like the Hydre, they have an independent action previous to their separation from the parent. This is represented at a, in the annexed figure of Lizia octopunctata of Sars (an animal about one fourth of an inch long), as given by Forbes. The species is named from the eight black ocelli, four of which are large, and towards these the gastric vessels are directed. In Sarsia prolifera, Forbes, the gemmation takes place at the base of the exterior tentacles.

We come now to describe a mode of generation which has no parallel in the higher animal forms, and to which the Meduse and some other animals are subject. This mode is termed Alternation of generations by the Danish naturalist, Steenstrup, who has the credit of generalizing the facts upon which the theory is founded, and of which he is in part the discoverer. An English translation of his work on the subject, by George Busk, was published by the Ray Society in 1845, entitled, "On the Alternation of Generations; or the Propagation and Development of Animals through Alternate Generations : a peculiar form of fostering the young in the lower classes of animals." Besides this author, the chief observers in this curious branch of science are Chamisso, who published observations on the Salpæ in 1819; Sars, on the Medusæ, between 1828 and 1811; Siebold and Lovén in 1837 ; and Van Beneden in 1844-7. (See the Cyclop. of Anat. and Phys., Art. Polypifera.)

This phenomenon is described by Steenstrup as that of "an animal producing an offspring, which at no time resembles its parent, but which,
on the other land, itself brings forth a progeny, which returns in its form and nature to the parent animal, so that the maternal animal does not meet with its resemblance in its own brood, but in its descendants of the second, third, or fourth degree or generation; and this always takes place in the different animals which exhibit the phenomenon in a determinate generation, or with the intervention of a determinate number of generations. This remarkable precedence of one or more generations, whose function it is, as it were, to prepare the way for the later succeeding generation of animals, destined to attain a higher degree of perfection, and which are developed into the form of the mother, and propagate the species by means of ova, can, I believe, be demonstrated in not a few instances in the animal kingdom."

3

4

5

6

When a medusa, as Aurelia curita ($p l .76$, fig 74), produces an egg, the progeny resembles an animalcule (Diagram, fig. 1), which moves in the direction of the arrow by means of vibrillæ. The anterior extremity has a round sucker (but not a mouth), by means of which, after several changes of form, it attaches itself to some extraneous object (Diagram, fig. 2). The changes still continue, the two projections at the free end are extended, a month is formed in the centre, and a second pair of projections arises between the first. About the fifth or sixth day the four tentacles have become longer, and the body quadrate, and the animal now constitutes the supposed perfect genus, Scyphistoma (Diagram, fig. 3), of Sars. In the next place, four additional tentacles arise between the four earlier ones, and this production continues until the number equals twenty-eight or thirty, and by this time the animal resembles a polyp.

In the subsequent changes an entirely new phenomenon is observable. The free extremity of the body begins to show indications of a division into segments, of which one is shown in Diagram, fig. 4 ; the length and number of segments increase, the body becomes cylindrical, and is now about a line in diameter (its original size being that of a grain of sand), the upper margin of the segments becomes free and divided into lobes (Diagram, fig. 5), capable of independent motion, when the form constitutes the supposed genus, Strobila, of Sars, named from its resemblance to the cones of a pine tree.

Finally, the union between the segments is more and more reduced, until they separate like a pile of hemispherical cups, as in Diagram, fig. 6, when they are seen to be separate animals in an inverted position; in fact, the young or larræ of Aurelia ($p l .76$, fig. 74). These larvæ (constituting the supposed genus Ephyra) are about a line in width, and continue growing and passing through such a change as to give it the structure of the adult, which it acquires when about an inch in size. It is not precisely known what becomes of the polypiform head of the Strobila (Diagram, fig. 5), but the base is said to produce a new set.

It appears from these facts that the animal (Diagram, fig. 1) hatched from the egg of a medusa, does not become a free medusa, but a kind of polyp, Scaphistoma strobila, which does not produce its like, but from which meduse are developed. The polypoid nurse, as it has been termed, is uniformly an undeveloped female, whilst of the resulting medusæ, some are male and some female. The nurse, like the adult medusa, has the power of increase by budding.

1

The annexed fig. 1 represents an individual of the presumptive genus Coryne, placed in the family Tubularidæ (p. 27). The head is a sixarmed hydroid, beneath which are four quadrate, bell-shaped bodies, which are not organs, but distinct individuals of an entirely different form from the hydroid. In the concavity of each is suspended a quadrate stomach, as shown in fig. 2. These bodies have an independent motion, sucking the water in, and throwing it out like the Medusæ. They finally detach themselves, and swim freely like meduse, to which they bear a close resemblance. Steenstrup, who observed this species in Iceland, found larger individuals (fig. 3), which he considers the adult medusaform of the former, in which one of the angles bears a lobed organ and two threads, which he regards as female generative organs. Steenstrup regards Conyne as "a previous generation of preparative nurses, which are so far asexual, inasmuch as that their generative organs are not developed."

Forbes describes two minute British species allied to fig. 3, under the generic name of Steenstrupia, suggesting that they may be a stage in the history of some hydroid form.

Class 2. Zoophyta.

The Zoophyta are chiefly marine; some species are sedentary and others free, some live as single independent animals, and others are collected together in large colonies, the base of the stems being united. Some are without a hard support, others secrete a stony skeleton, which is named coral (corallem, coralla in the plural).

The corallum is not usually external like the shell in the Mollusca, as is popularly supposed, but an internal secretion "entirely concealed," in the
words of Dana, " within the polyp, as completely as the skull of an animal beneath its fleshy covering. All corals are more or less cellular, and through these cellules the animal tissues extend." In some, however, the coral is exposed, as when the increase takes place by a terminal secretion upon a separate stem, when the apex alone is living, and as the stem increases in length the part below dies. This increase above and death below are common in most corals, and to this the great masses of coral are attributable. According to Dana, a solid dome of Astrea, twelve feet in diameter, has a living exterior of only a half or three fourths of an inch in thickness.

The classification adopted here is chiefly that of James D. Dana, as given in his magnificent work on Zoophytes, the result of his labors in the United States Exploring Expedition. The characters of the families are in most cases condensed from the same work.

The Order Actinoma includes not only the flower-shaped genera, like Actinic ($p l$. 77, figs. 5, 6), which do not secrete a coral, but also numerous coralligenous genera. The name of this order, from the Greek axiv, a ray, is in allusion to the radiated arrangement of the tentacles, which, when expanded, in many cases resemble the petals of a flower. When contracted this resemblance disappears, and the mass may be compared to a lemon in shape. Lesueur has described a species (A. marginata) from Massachusetts Bay. (Jour. Acad. Nat. Sci. i. 172.)

The Actinir are found in the sea, attached to stones, submerged timber, \&c. They have the power of detaching themselves and floating, and of creeping slowly upon their flat base, at the rate of about two inches in an hour. The texture of the exterior is either fleshy or coriaceous, the surface slimy, smooth, or tuberculous, and very sensitive. The mouth is simple, and fringed by the tentacles. These organs being tubular, they are expanded by having water forced into them, and when they contract, the water is ejected through a minute terminal perforation. The tentacles of some species resemble the Acalephæ in having a stinging power.

The interior of the Actinir is taken up with the stomach, which is a simple sac, of which the mouth is the opening, and extending nearly to the base of the animal, where it communicates with the visceral cavity, occupying the space between the stomach and the exterior wall. The cavity is provided with a series of vertical muscular partitions, more or less perfect, which extend from the exterior wall to the stomach, so that a transverse section of the animal would resemble a wheel, of which the nave would represent the stomach, and the spokes the visceral partitions.

The Actinire feed upon fish, crabs, shell-fish, \&c., the shells and other indigestible parts being ejected from the mouth after a period of ten or twelve hours. A large individual sometimes accidentally swallows a smaller ${ }^{-}$ one, but the latter is usually cast out unharmed, as in the case of the Hydra. The objects swallowed are sometimes as large as the Actinia itself in a state of repose. The following account is given in G. Johnston's excellent History of British Zoophytes.
"I had once brought me a specimen of Act. gemmacea, that might have 238
been originally two inches in diameter, and that had somehow contrived to swallow a valve of Pecten maximus of the size of an ordinary saucer. The shell, fixed within the stomach, was so placed as to divide it completely into two halves, so that the body, stretched tensely over, had become thin and flattened like a pancake. All communication between the inferior portion of the stomach and the mouth was, of course, prevented; yet, instead of emaciating and dying of an atrophy, the animal had availed itself of what undoubtedly had been a very untoward accident, to increase its enjoyments and its chances of double fare. A new mouth, furnished with two rows of numerous tentacula, was opened upon what had been the base, and led to the under stomach; the individual liad, indeed, become a sort of Siamese twin, but with greater intimacy and extent in its unions!"

The Actinix are hermaphrodite ; the reproduction is both by division and by eggs; and the eggs or young (as the case may be) are ejected through the mouth, or rarely, by a kind of abortion, through the tentacles, according to Contarini. The young do not differ essentially from the adult, the chief difference being in the small number of their tentacles.

The Actiniæ reproduce lost parts, especially the tentacles, with great facility; and when the body is cut into two, three, or even four parts, each may survive and become a complete animal. If the section is horizontal, the lower part acquires a new mouth and tentacles, and the upper part a new base, although in one instance the latter produced a second mouth, so that food was taken at both extremities of the new animal. These experiments indicate that the base has the greatest vital power. (See Contarini, Trat. delle Attinie, dec., Agassiz's Lectures, and Johnston's Zooph.)

Actiniæ will survive after being placed in water hot enough to blister the skin, and they may be frozen and thawed with impunity, but immersion for a few minutes in fresh water kills them.

The order Actinoida contains the sub-orders Actinaria and Alcyonaria, and the families, according to Dana, are as follows:

Sub-order 1. Actinaria.

Often coralligenous, cells lamelliradiate.

> Tribe 1. Astreacea.

Many tentacles in imperfect series; coralla calcareous, with multiradiate cells, with the lamellæ extending beyond the cells.

Fam. 1. Actinidce. Not coralligenous, usually attached, but sometimes floating in the sea. Actinia (pl.77, figs.5, 8). Lucernaria (pl. 76, fig. 72). (Johnst. Zooph., p. 228. R. An. pl. 63, with anatomical details.)
Fam. 2. Astreidce. Coralla calcareous, tentacles marginal, coralla with excavate cells, stars circumscribed. Astrea astroites (p l. 75, fig. 62). Meandrina labyrinthica, Linn. ($p l .75$, fig. 64) ; hemispherical, with long winding lines: American seas.

Fum. 3. Fungida. Disks not circumscribed, tentacles scattered, short, or obsolete; simple or aggregate-gemmate; when aggregate the disks are confluent; surface of the coralla stellate, without proper cells. Fungia fungites, Linn. (p c. 75, fig. 65), has a circular coral, with radiating lamellæ, like the under surface of some mushrooms ; beneath granulated.

A common species from the Indian Ocean and Red Sea. In this genus the corallum is formed by a single polyp, which covers it beneath as well as above. The tentacles are scattered, and when touched, are withdrawn between the lamellæ.

Tribe 2. Caryophyllacea.

Tentacles numerons, in two series; coralla calcareous, cells multiradiate, interstitial surface not lamello-striate. The fourth family is not coralligenous.

Fam. 1. Cyathophyllidee. Interior middle of each corallum usually transversely or obliquely cellular.

Fam. 2. Caryophyllidce. Tentacles crowded and long, mouths far exserted; interior of the corallum not transversely cellular, rays of the cells more than twelve. Oculina virginea, Linn. ($p l .75$, fig. 58). White, eighteen inches high, East and West Indies and the Mediterranean. 0 . gemmascens (pl. 75, fig. 59). White, eight inches high.

Fam. 3. Gemmiporidce. Tentacles short and marginal, in two or three series; disk broad, somewhat convex ; coralla porous, calicles with a thick margin. ? Explanaria ananas ($p l .75$, fig. 63).

Fam. 4. Zoanthide. Exterior subcoriaceous, tentacles short and marginal, in two or three series.

Tribe 3. Madreporacea.
Tentacles in a single series, seldom more than twelve, sometimes obsolete; coralla calcareous, cells small, six- to twelve-rayed, or obsolete ; interstitial surface not lamello-striate.

Fam. 1. Madreporidue. Tentacles twelve; cells deep, extending to the centre of the corallum. Madrepora prolifera ($p l .75$, fig. 60).

Fam. 2. Favositidce. Tentacles twelve; lime secreted periodically at base, so that the interior of the corallum is septate, rarely solid. Pocillopora polymorpha. (pl. 75, fig. 55). (Lamarck, 2, 311.) Red Sea.

Fam. 3. Poritida. Tentacles rarely more than twelve; base forming porous calcareous secretions beneath; coralla finely porous, cells shallow, rays indistinct. Porites porites, Linn. (P. clavaria, Blainv.) (pl. 75, fig. 61). American and Indian seas.

Tribe 4. Antipathacea.

Animals six-tentaculate, base forming corneous secretions.
Fam. 1. Antipathidce. Animals fleshy, enveloping a corneous spinulous axis. Antipathes spiralis ($p l .75$, fig. 51); stem entire, long, and spiral, about as thick as a quill, and attaining a length of sisteen feet. Indian Ocean.

Sub-order 2. Alcyonaria.

Eight-tentaculate; tentacles papillose, apex of the papillæ perforate; often coralligenous.

Tribe 1. Alcyonacea.

Fam. 1. Pennatulidce. Free, or with the base sunk in the mud. Pennatula phosphorea, Linn. (pl.75, fig. 26). Bears some resemblance to a quill. It is found in the European seas, and emits a pale-blue phosphorescent light when disturbed. P. granulosa, Lam. (fig. 25), and
P. grisea, Esper (fig. 27), inhabit the Mediterranean; Virgularia juncea, Esper (fig. 24), Europe.

Fam. 2. Alcyonidc. Fleshy, with calcareous granules. Alcyonium ficiforme (p l. $75, f i g .46$), size and shape of a fig, and of a yellowishbrown color; and A.palmatum (fig. 47), stem divided irregularly, somewhat like a hand; pale-red. Mediterranean.

Fam. 3. Cornularidce. With corneous tubular coralla.
Fam. 4. Tubiporicla. With calcareous tubular coralla. Tubipora musica ($p l$. 75, fig. 66) is of a fine red color, the body green. Indian seas.

Fam. 5. Gorgonidke. With basal epidermic secretions. Gorgonia fabellum ($p \mathrm{l} .75$, fig. 48). Reticulate, branches inwardly compressed; three feet long. Warm seas of India and America. G. verrucosa, Linn. ($p l .75$, fig. 49). Atlantic, six to twelve inches. G. ceratophyta (fig. 50), Mediterranean. Isis hippuris, Linn. (fig. 53); stem jointed and strong, branches dichotomons. East Indies. Coralium nobile, Linn. (pl. 75, fig. 52), is branched, one foot high, varies from a fine deep-red to a rose color, or white with a reddish tinge. It admits of a fine polish, and is much used for light ornamental work. When fresh, the exterior is fleshy and polypiferous, which, in drying, forms a crust with scattered cellules.
The forms of the corals which most of the zoophyta secrete, are extremely varied; representing various plants and mosses, variously shaped vessels, domes, obelisks, radiated disks, leaves, icc.; and the size of the coral mass varies from a few lines to twelve or even twenty feet. The large masses have commenced in a single animal, from the successive budding of which, the whole has resulted.
"Calculating the number of polyps that are united in a single Astrea dome of twelve feet diameter, each covering a square half inch, we find it exceeding 100,000 ; and in a Porites of the same dimensions, in which the animals are under a line in breadth, the number exceeds five and a half millions. There are here, consequently, five and a half millions of mouths and stomachs to a single zoophyte, contributing together to the growth of the mass, by eating, and growing, and budding, and connected with one another by their lateral tissues and an imperfect cellular or lacunal com-munication."-Dana, p. 60.

In those cases where single polyps occupy the extremity of dead branching stems, there is no union of the soft parts of different individuals.

Class 3. Echinodermata.

The Echinodermata, which are all marine, and include what are popularly termed star-fish, sea eggs, de., are the most highly organized class in the radiated division of the animal kingdom. The bodies of some are raised upon a pedicle, the base of which is fixed to a single place; others are without a pedicle, and move freely and slowly along the bottom. Some of the latter are provided with a multitude of sucker-like feet, which, in Asterias aurantiaca, amount to 840 , according to Tiedemann. Some are provided with eye dots, which, in Asterias, \&c., are situated at the extremity of the rays; and where the nervous system has been detected, it forms a circle
around the œsophagus, with branches to the rays, \&c. The mouth is armed with hard bony teeth, enabling the animal to live upon crustacea and shell fish. Some live at the bottom of the sea on the surface of the rock, and others burrow in the sand.
The integrment of some of the menbers of this class is sustained by a calcareous skeleton, which incloses the viscera and supports movable spines varying much in size and shape. The skeleton is composed of pieces which are often joined together like polygonal stones in a parement. These plates, the spines, and the entire skeletons, are very abundant in various geological formations, in which they are preserved in great perfection.
The class contains the orders Crinoidea, Asteridea, Echinidea, Holothuridea, to which some add another for the reception of Siponculus, Echiurus, \&c., constituting the apodous Echinodermata of Cuvier.

Order 1. Crinoidea. This order is almost extinct, but is found plentifully in a fossil state in the older rocks. These remains consist of the solid calcareous skeleton, of which the chief parts are the stem, the body, and the arms. The body is oval or cup-shaped, protecting the internal soft parts, and made up of numerous plates, of which the rariations in number and form afford generic characters. The arms are five or more in number, simple or branched, fringed with lateral articulated appendages, and placed around the upper margin of the body, the mouth being situated between them. When the arms are closed, some species resemble a lily, whence the trivial name of Encrinus liliiformis. The vent is distinct and lateral.

The central solid part of the stem has been compared to the bones in a lizard's tail, being made up of a column of disks, which are either circular, polygonal, or star-shaped. The stem is often provided with articulated simple lateral branches, which, like the arms, are filled with calcareons joints, many thousand of which are contained in the remains of a single animal. The disks of the stem have a perforation through them, which admits of their being strung like beads; and, according to Dr. Buckland, they were used for rosaries in ancient times. In northern England they are called St. Cuthbert's beads; and before their nature was known, they were named Entrochites in books.

Pentacrinus asteria, Linn. (P. caputmedusce, Miller) ($p l .76, f i g .58$), is a recent species from the West Indies, of which a specimen is in the British Museum, the Paris Museum, that of the Geological Society of London, and that of the London College of Surgeons. (This and other species of the order are figured in the Penny Cyc. ix. 390, and in the new edition of the Règne Animal.) Encrinus radiatus (fig. 57).

Pentacrinus europoeus, Thompson, a minute animal found on the coast of Ireland, is now considered by this author to be the pedunculated young of Comatula, a starfish somewhat like pl. 76, fig. 62 . This confirms one of the views of Agassiz (Lectures, p. 13), that the earlier fossil animals often resemble the embryonic or immature forms of the more recent periods.

Holopus rangii, Orbigny (pl. 76, fig. 56) (Mag. de Zool. 1837, pl. 3) is a recent genus from Martinique.

Order 2. Asteridea. In this order the supporting stem is wanting, and 242
the animal has the power of locomotion, sometimes by means of the arms, and sometimes with the aid of the sucker-like feet. The arms in some genera are provided with numerous lateral filaments, and in some cases they divide into branches. The genus Astrophyton (named also Euryale and Gorgonocephalus) ($p l .76$, fig. 63), is remarkable for its five dichotomizing arms sending off branches, and terminating in a multitude of curled filaments, which, it is said, may amount to eight thousand in a single individual.
The genus Ophiura ($p l . \tau 6, f i \dot{j} .64$) is named from the resemblance which its long and slender arms bear to the tail of a serpent, not only in form, but in the numerous bony pieces of which they are composed, and which are not unlike the scales of a serpent. The arms are very flexible; and by giving them an undulating motion, the animal can swim to a certain degree. On each side of the base of the arms is an opening which is the outlet of the ovaries, of which there are ten. Several species inhabit the coast of the United States. In Ophiolepis (f fg. 62) , a genus allied to Ophiura, the disk is entire, with smooth plates. In both genera the arms lave movable spines, which in some species are appressed, and in others projecting. The species figured, O. scolopendrina, is found near the Isle of France. In these genera the mouth is in the centre of the ventral surface, and from it are continued five grooves, through which a few sucker-like feet are projected. The mouth is armed with a strong osseous apparatus for masticating food. The arms, when broken off, can be reproduced. Pl. 76, fig. 61, represents Astrogonium granulare of the seas of northern Europe. In this genus the rays are not so well developed as in Asterias (fig .60), which gives it a pentagonal figure.

Oreasici turritus (pl. 76, fig.59) attains a length of ten inches, and inhabits the Indian Ocean.

Solaster is distinguished by an increased number of rays; S. papposus $(. p l .76, f i g .66)$ is a foot in diameter.

Stellonia rubens (fig. 65) attains a foot in size, and is so abundant in the seas of Europe as to be spread over the soil as a manure.

Asterias (fig. 60) has the rays so much enlarged that there is room in the concavity of each for two extensions or appendages of the stomach, with an orary between them, and a liver; which is not the case in the slender rayed genera like Ophiurus. Moreover, the size of the rays renders them less flexible, and badly fitted for locomotion; but as a compensation, they are pierced along their inferior surface (between short transverse bones arranged in series on each side of a deep central groove) with a multitude of ambulacral perforations, through which the feet already mentioned project, and which enable the animal to crawl up a surface as smooth as glass, and also assist in holding its prey. The sucker-like feet are connected within the aperture through which they project, with a globular vesicle filled with water, by the hydrostatic action of which the suckers are extended or withdrawn. Each vesicle is connected by a small tube with a canal which traverses each ray, starting from a circular canal around the œesophagus.
"This apparatus communicates with another tube which penetrates from the dorsal surface downwards, having its opening shut by a perforated plate called the madreporic body, which in starfishes is always seen in the angle between two of the rays; so that we have here an hydraulic apparatus of a very complicated nature." (Agassiz.) Through this series of vessels the water flows in both directions, either downwards through the upper aper ture, or upwards through the tubular feet; subserving in its course the functions of locomotion and respiration. The water which fills the general carity is admitted through the numerous minute perforations of the exterior. "The heart is placed along the calcareous tube which arises from the madreporic body, and the blood-vessels form circular rings around the entrance of the stomach, from which and to which the radiating arteries and veins move." (Agassiz's Lectures, and his Letter to Humboldt in 1847.) There are also movable spines upon the lower surface which assist in locomotion.

When food is taken, the animal bends its rays towards the mouth, so as to form a cup-shaped cavity, when the food is gradually moved to the mouth. There is no vent distinct from the mouth. The rays, when lost by accident, can be reproduced, and it is asserted that if a ray with part of the mouth be detached, it will form a new animal. The stomach is central and sends off two branching divisions or cæca in each ray. There is an English law which imposes a fine upon fishermen who do not kill a species of Asterias which is said to destroy oysters.

Agassiz has discovered that starfish, after their eggs are laid, take them up and retain them below the month between their suckers; and when they are forcibly removed to some distance, the animal will approach and take them up again, showing a remarkable instinct in so low an animal.

We pass from Asterias ($p l .76$, fig. 60), through the pentagonal form Astrogonium (fig.61) to Agassiz' genus Culcita, which resembles the last somewhat'in shape, except that the five sides are convex instead of concave, so that the outline is more nearly circular, approximating the circular and oval forms of the next family.

Order 3. Echinidea. This order includes the oval or circular bodies known as sea-eggs, sea-urchins (oursin in French), the skeleton of which is a calcareous crust composed of twenty equal or unequal rows of polygonal plates pierced by varions pores. The mouth is beneath, and armed or unarmed, central or sub-terminal ; the vent is distinct, and varies in position, being formed beneath and above, and when beneath, marginal or towards the centre. The generative pores are forr or five, placed around the summit.

When the animal dies, the integument (including the spines with which it is covered, and which present much variety in form and size) is soon lost, leaving the calcareous shell which protects the interior soft parts. The integument of the calcareous portion not only secretes the shell, but extends in a thin layer over the solid spines, which are thus formed layer by layer as the animal increases in size.

The circular form of these animals might at first induce an observer to doubt their affinity with the more star-shaped A steridea, but if the rays of
the latter are supposed to be shortened, and the concavity between them filled up, the approximation will appear when the correspondence of the organs is considered.

The plates of an Echinus ($p l .76$, fig. 69) run in vertical rows, two of which are wide and two narrow alternately; the wide pair have tubercles which support the larger spines; and the narrow ones have vertical rows of minute perforations which form the ambulacra, and allow the passage of the sucker-like feet which, in addition to the spines, are concerned in locomotion, and perhaps in passing water to the respiratory organs which lie beneath.

The mouth of the Echini is armed with five jaws working together by means of a complicated piece of mechanism, and which have been compared by Aristotle to a lantern, hence called the lantern of Aristotle.

Among the chief authorities upon this department are Lamarck, Blainville, Delle Chiaje, Goldfuss, Desmoulins, J. Müller, Sars, Milne Edwards, Dufossé, Duvernoy, Klein, Gray, and especially Λ gassiz.

The forms in this order are very varions, from the flat and discoidal Scutella, which is flat beneath and but slightly convex above, to the subglobular Echinus and elevated Galerites, whiph is considerably higher than wide. Some have the ambulacra disposed in oral or elliptic lines upon the upper surface, resembling the four or five petals of a spreading flower. According to Duvernoy, in the Echinide in which the rosette is formed, a series of branchiæ (instead of feet) are passed through these perforations, in addition to the internal branchix; and in consonance with this view, he divides the Echinidre into two sections: the Exobranchia, with external branchiæ (including forms like Clypeaster, Cassidulus, and Spatangus); and the Homopoda for the remainder (including forms like Cidaris and Galerites).

Echinus, and other genera with large spines, are found on the bottom of the sea, whilst the Scutellce, which have short bristly spines, burrow in sand.

Spatangus ($p l .76, f i g .67$) and its allies have the mouth armed and placed towards the anterior end; the vent posterior, and placed upon the upper or lower surface; the shell thin in texture, lengthened, and gibbous; ovarian pores four.

Clypeaster (fig. 68), and the allied genera, have the mouth central, or nearly so, and the vent near the posterior margin, and upon the upper or lower surface, according to the genus.

Echinus (pl. 76, fig. 69), and Cidaris (figs. 70, 71), have a subglobular shell and two kinds of spines, the larger of which are supported upon large tubercles. The mouth is central beneath, and the vent in the apex.

The tendency to take an oblong form in Spatanyus and Ananchytes, and the mouth being placed near the opposite extremities of the body, indicate an approach to the next order.

Order t. Holothuridea. The animals composing this order have au elongated worm-like form, and the shell has disappeared, although some earthy matter is deposited around the mouth. In Holuthuria and the allied genera the body is very contractile; the skin is irritahle and has numerous mucous-secreting pores, and perforations for the passage of the sucker-like feet, which are either generally distributed, or arranged in five rows repre-
senting the ambulacra, or confined to the middle portion of the ventral surface. The mouth is fringed with branching tentacles capable of being withdrawn; the vent is at the opposite extremity of the body; and the entire animal bears a striking resemblance to a cucumber, whence it is called by sailors the sea-cowcomber, and one of the genera bears the nanue of Cucumaria (C. frondosa, pl. 76, fig. S5). They are extensively collected about the islands and reef's of the Eastern oceans as a culinary delicacy for the Chinese markets.

Captain Flinders mentions a Malay fleet of sixty vessels and one thousand men, as forming an expedition to fish for these animals.
"The object was a certain marine animal called trepang; of this they gave me two dried specimens, and it proved to be the beche-de-mer or seacucumber, which we had first seen on the reef's of the east coast, and had afterwards hauled on shore so plentifully with the seine, especially in Caledon Bay. They got the trepang by diving, in from three to eight fathoms water; and where it is abundant, a man will bring up eight or ten at a time. The anmal is split down one side, boiled, and pressed with a weight of stones; then stretched open with slips of bamboo, dried in the sun, and afterwards in smoke, when it is fit to be put away in bags, but requires frerpuent exposure to the sun. A thousand trepangs make a picol, of about 125 Dutch pounds; and one hundred picols is a cargo for a prow."

Order 5. Sipunculidea. These are sometimes included in the order Holothuridea, with which they agree in the tentacles, the intestinal canal, and circulatory system, although they want the tubular feet. Sipunculus (pl. 74, fig. 7 , and pl. 77 , fiys. 27, 28). According to Quatrefages the anatomy of Echiurus indicates an attinity both to the chrotopodous annelida and to Hulothuria, giving it characteristics of distinct types. Some authors, as Blainville and Gervais, place these animals among the Annelida.

Class Helainties.

The classification of the various forms of worms has been attended with difficulties, some of which still remain, notwithstanding the efforts of distinguished naturalists to ascertain their characteristics. The worms, whose body is composed of a series of rings, as in the leech and earth-worm, and whose nervous system is composed of a line of ganglia, united by a double nervous cord, as in insects, form with these the division Articulata, of which they constitute the class Annelida.

After excluding the Annelida from the class of worms, there still remain many forms, both aquatic, and living in the interior of other animals, to which the term IIelminthes is restricted. Here the annulate structure has disappeared, and the median nervous system has been separated into two distinct branches, usually arising from a large ganglion anteriorly, or two ganglia united by a transverse branch. From the characteristics which these animals afford, it is difficult to decide whether they belong to the radiate or articulate division of the animal scale, or, as is probable, form an
inter-class with characters common to both. Milne Edwards, Gervais, and Agassiz, think they form a common type with the Articulata, thus uniting all the worms in one division. The latter disposes of the differences in the nervous system, by considering them essentially the same, the two distinct or bilateral threads (and sets of ganglia, where they exist) being approximated to form a single series. The genus Malacobdella has certain intermediate characters, which render it difficult to place, the nerves being separated, the intestine simple, and the sexes separate. It is about an inch long, white, translucent like Planaria, and has a posterior sucker. It is marine, and lives as a parasite in the mantle of the molluscous genera Mya and Venus. Blanchard thinks it forms a distinct type of worms, as the generative organs alone have an affinity with those of the Annelida; and Duvernoy places it among the Trematoda.

On the other hand, the IIelminthes may be regarded as a two-rayed animal (a view taken in part by Duvernoy), allied to the Radiata by this very nervous system, which, in Tristoma (R. An. pl. 36), forms a complete circle, which may be compared with that of the Radiata. The digestive system of this animal and of Planaria, bears an analogy to that of the Radiata, even the more typical forms, for in the Echinidea it has already departed from the radiated type. In some Planariæ (R. An. pl. 37, fiy. 1^{c}) the gastro-vascular ramification forms a complete net-work, which has its counterpart in Rhizostoma (R. An. pl. 50).

We lay no stress upon the absence of the articulate structure in most IIelminthes, because it is wanting in some of the Epizoa, which, although sometimes arranged with the Radiata, belong to the Crustacea. The articulate appearance of Tænia arises from the fact, that each joint is to a certain extent a single individual, affording an analogy with the Radiata, which is strengthened by the transverse nutrient tubes.

Cuvier, Duvernoy, and others, place the Helminthes among the Radiata. The classification of the latter, in 1848, is as follows, the vernacular names (which have no authority in science) being replaced by systematic ones.

Class Helminthes, comprising the three sub-classes, Helminthophyta, Parenchymata, and Cavitaria.

Sub-class I. Helminthophyta.

Animals simple or compound; form ribbon-shaped, a double alimentary canal, no vent. Including the two orders Cystica (from Kystis, a bladder) and Cestoidea (from Kestos, a band).
a. Cystica, with one family:

> 1. Hydatidæ.
b. Cestoidea, with three familtes:

1. Cysticercidæ.
2. Ligulidæ.
3. Tæniidæ.

Sub-class II. Parenchymata.

Form flattened, rarely cylindrical, nervous system bi-radiate; a bifurcated or branched alimentary sac. It includes the two orders and families:

1. Trematoda.
2. Planariidæ.

Sub-class III. Cavitaria.
Having a visceral cavity, the nervous system bi-radiated. Composed of four orders, the first having a visceral cavity instead of an intestine, the remaining three with two openings at the alimentary canal, at opposite extremities.
a. Enterodela,*" with one family:

> 1. Acanthocephala.
b. Enterodela cylindrica [Nematoidea, Rudolphi], two families:

1. Ascaridæ.
2. Gordiidæ.
c. Enterodela plicata [Acanthotheca, Diesing], a single family and parasitic genus:
3. Linguatulidæ.
d. Enterodela tenioida, one family:
4. Nemertidæ.

The greater part of the Ielminthes live in various parts of other animals, deprived of light, with little occasion for locomotive powers, and governed by circumstances of great uniformity, so that we need not be surprised at the simplicity of structure in individual genera, although they present a considerable amount of variation in the aggregate. From the mode of their occurrence within other animals, they have been termed Entozoo, in which certain external species are included. In some cases the same species is found in waters as well as in the interior of animals. There is scarcely an animal, whether terrestrial or aquatic, which does not nourish some of these parasites, and but few of the latter infest several distinct species. They have been found in beasts, birds, reptiles, fishes, insects, mollusca, and even in the acalephæ.

These entozoa are found, according to the species, in various parts of the bodies they infest, as the intestines, brain, bronchir, liver, kidneys, muscles, bloor, and bones.

I. Helminthophyta.

a. Cystica.

These are named from the resemblance of the posterior part of the body to a bladder, a part which is filled with fluid ($p l .7$ r, fig. 29). This is fibrous and sensitive, at times as large as an egg, and it sometimes forms part of several individuals. In Connurus the head or heads are each attached to a short neck ; they are sub-globular, crowned with hooks, and have suckers arranged around the convexity, to enable it to attach itself to the substance whence it derives its nourishment. It lives in the brain and spinal nerve of sheep, and more rarely in the brain of oxen, destroying parts of it, and giving rise to a fatal disease, called by the expressive name of "staggers," from its chief symptom.

In Echinococcus (called Acephalocyste by the French) there is no head

[^2]outside of the kyst, the animals being restricted to its inside. It oceurs in the liver, spleen, and other parts, and is not exclusively confined to man.
b. Cestoidea.

Cysticercus is found in man as well as in animals, between the tissues of the muscles, sometimes penetrating to the eye-ball, the heart, and the brain. The form is that of the Cystica (with which it is usually and perhaps correctly placed), whilst in some other respects it approaches the Cestoidea.

What is called "measles" in hogs arises from an abundance of enkysted worms (Cysticercus cellulosa, pl. 77, fiy. 30), which have been found ocenpying as much space as the brain in these animals, and causing convulsions and death.

The intestinal worms of the genus Ligula (L. cingulum, pl. ז7, fiy. 34) are flat, ribbon-shaped, without articulations, marked with a longitudinal stria, and also transversely striate. They live in birds, and especially in fishes. The species figured is from one to five feet long, and is found in the Cyprinus brama of Europe. This worm is said to be eaten in some parts of Italy. Bothrimonus sturionis infests the Anerican Acipenser oxyrhynchus. It is not articulated, it has a longitudinal impressed line above and below, with numerous raised points along it, those beneath having a pore. The head is sub-globular, with a double sucker.

The genus Bothriocephalus (namel from bothros, a groove, and kephale, the head) is a long, flat, jointed worm, with a longitudinal groove upon each side of the sub-quadrate head, distinguishing it from Tenia, or the true tape-worm. It is also distinguished by having the segments much wider than long, and the openings from the oraries are beneath, and not lateral. The genus infests birds, fishes, and reptiles; and one specie., B. latus ($p l$. 77, fig. 32), infests man in Russia, Switzerland, and some other parts of Europe.

The common tape-worm, Tcenia solium ($p 7.77$, fig. 33), is composed of flat, sub-quadrate articulations, which are very small and fragile for some distance from the head, so much so that this part is rarely obtained perfect, and the small head was for a long period unknown. The head is globular and provided with four terminal suckers, arranged in a square around the mouth. The alimentary canal is double, being composed of an intestine rumning along each side of the body, with a transverse canal connecting the opposite sides at the beginning of each segment, giving the interstices the appearance of a ladder. The centre of each segment is occupied by distinct generative organs of both sexes, which have their outlet in a lateral pore, alternately upon the right and left side of the segments. As each segment is capable of producing a large number of eggs, it is difficult to conceive why the animals should be comparatively so few in number. This species attains a length of twenty feet or more, and a single one is usually confined to a single individual, although as many as twenty have been found together. Tconia cateniformis (fig. 31) is about an inch long, and infests the cat.
II. Parenchimata.

These are soft contractile bodies, without any appearance of division
into rings, and bearing some resemblance to a leech, but sometimes so short as to be circular.

1. The Trematoda are internal monoicons parasites, having an anterior, suctorial opening, and one or more suctorial disks of attachment, which afford generic characters. Distoma (or Fusciolu) hepaticum (pl. 7T, fig. 36), which is a gool example, is about an inch long, infests the gall-bladder, liver, and rarely the neighboring veins in man, sheep, oxen, deer, gazelles, camels, goats, horses, and hares. In sheep it is the cause of the fatal disease named rot. The severe winter of 1841-2 in Germany, was followed by the death of many deer, which were found to be much infested with Distoma.

Fresh-water suails of the genera Planorbis and Limnea are infested by a minute animal, with a globular body and slender tail, resembling a tadpole, and forming the supposed genus Cercaria, of which two American species were published in 1840 , the motions of which are similar to those of their European analogues, the tail being rapidly thrown into the shape of an S, and easily detached.* Steenstrup has in some measure cleared up the history of the Cercariæ, which are the larvæ of Trematoda. After swimming about freely for some time, they attach themselves to the outside of the snail, and settle in the mucus of the exterior, maintaining themselves by an abdominal sucker, and in the course of their movements losing the tail, a loss which gives them somewhat the appearance of a Distoma. They now enter the pupa state, in which they remain for some months without apparent change. They afterwards acquire spines anteriorly, and such individnals were found within the snail. C. Th. Siebold thinks the Distoma is finally developed in the water-fowls which swallow the snails, an analogous fact having been observed by Creplin, who found a species in a stickleback fish, and also in water-fowls.
2. The Planariidee contain a number of small leech-like animals, found both in fresh and salt water, which glide along like a snail over solid objects, or, passing up an object to the surface, they creep along this with the back downwards, and the belly attached to a thin film of water. The single opening to the ramifications of the stomach is usually about the centre of the inferior surface; and whatever is taken through this that is indigestible, is subsequently rejected by sucking in a quantity of water, and ejecting the whole together.

Planaria (Planocera) cornuta (p l. 77, fig. 35) has two horn-like extensions anteriorly. P. (Dendroccolum) gracilis, Hald. 1840, is three fourths of an inch long, and one tenth broad, fuliginous, veined with black;

[^3]oblong, suddenly tapering to a point posteriorly ; sides nearly parallel ; hicad truncate in front; neck narrowed, eye dots two, on the narrow part, oblong and white, with a black dot upon the internal margin; ventral opening less than one third the entire length from the posterior extremity. It inhabits springs in eastern Pemsylvania, and feeds upon animal matter. When cut in two, each part becomes an entire animal.
III. Cavitaria.
a. Enterodela.

1. The Acanthocephata, which are placed with the Parenchymata by Cuvier, are composed of round *worms represented by the genus Echinorhynchus, the chief character of which is a straight, round, retractile trunk, armed with rows of recurved tooth-like hooks, which retain it in place when thrust into the intestines. A small pore is sometimes observable at the end of this trunk, but it is probable that nourishment is absorbed by its entire surface. A vascular tube runs longitudinally on each side, and is lost towards the posterior extremity. These noxious animals seem not to have been found in man, although numerous species infest vertebrate animals. They sometimes bore through the intestines, and pass into the cavity of the abdomen, and into other parts of the body. Echinorlynchus gigas ($p l .77, f i g .39$) is from three to tifteen inches long, and infests hogs, especially such as are confined to be fattened.
b. Enterodela cylindrica.
2. The Ascaride include various genera of internal parasites, of which the genus Ascaris is among the best known, and contains slender, round worms, tapering towards both ends. The head is provided with three little ralves, between which the mouth is placed. The intestine is straight, the vent terminal, and the nervous system bilateral. Ascaris lumbricoides ($p l .77$, fig. 41) takes its trivial name from its general resemblance to a lumbricus, or earth-worm. It is white, from six to twelve or fifteen inches long, and the female is larger and more abundant than the male. It infests the small intestines of man, and is frequently fatal to children, in which it sometimes penetrates to the stomach, and even to the mouth. As many as five hundred have been ejected by a child in the course of eight days. It is sometimes discharged from abscesses in the abdomen, and it has rarely been passed from the bladder. This species infests the hog and the ox, and an allied one (once considered the same) is found in the horse.

Owen, some years ago, calculated the number of eggs in a female of this species to exceed sixty millions. Gluge and Mandl found eggs of an Ascaris, without the animal, in the lungs of frogs, supposed to be introduced with the air.

Oxyuris vermicularis, Linn. ($p l .77$, fig. 42), is half an inch long, cylindrical, with the posterior portion subulate. It infests the large intestines of children.

Trichocephalus dispar (fig.40) is found with the preceding species, and differs in having the anterior extremity attenuated like a thread, and resembling the lash of a whip, of which the posterior end would be the stock. It is one or two inches long, of which the thick part occupies about a third.
2. Gordieila. The genus Filaria is long, slender, thread-like, and smooth, with a somewhat rigid texture, and many species are found in various animals, including insects and mollusca. Filaria medinensis (pl. 77, fig. 43), the guinea worn, infests the muscles and subcutaneous tissues, chiefly of the lower limhs, in Arabia, Upper Egypt, West Africa, and the West Indies. It is sometimes located about the eye, and beneath the tongue; and occasionally it makes its way to the surface of the body, causing a sore, from which it may be extracted if a little is withdrawn daily, care being taken not to break it, as in that case the inclosed part remains and canses inflammation, which may reuder ahputation necessary. A sailor, who frequently met Λ fricans on shipboard with sores cansed by the worm, had been on shore in West Africa for three hours barefoot, having himself a small sore on the thigh at the time. He arrived in England in October, 1843 ; and in the middle of the subsequent May a sore appeared on the left instep, which finally opened and disclosed part of a white worm, about the size of a violin string, of which five inches were cut off. This was succeeded by violent inflammation and suppuration upon the foot and leg, until the remaining two feet and a half of the worm came away. On the $23 d$ of May another sore appeared upon the left fore-arm, disclosing a second filaria, which was gradually and carefully removed in fourteen days, and found to be thirty-two inches long. A third could then be felt under the integument of the right foot. This species attains a length of six feet, and is said to be sometimes seen swimming in the water of the countries it inhabits.

Filaria papillosa (fig. 45) is found in the abdomen, chest, and eyes of the horse. Dr. Charles A. Lee gives a figure of it in the Am. J. Sci., 1840 , vol. xxxiv. p. 279. He states that it is from one to seven inches long, and one third of a line in diameter. The specimen seen by him seems to have grown from half an inch to about four inches in four months.

Filaria phalangii (pl. 77, fig. 62) has been found in Phalangium cornutum.

Filaria lycosce, Hald. Pale-reddish when recent ; flavous when dried by heat ; rigid, smooth, and shining, slightly tapering towards one end; about five inches long, and one millimetre in diameter at the largest end. Found in Eastern Pennsylvania, in a specimen apparently of Iycosa scutulata, Hentz, ten lines long, and, when the size of the spider is considered, a remarkably large species. The specimen being much contorted, and one end still within the spider, the precise length could not be determined. Fig. 43 might pass for a representation of it, and the spider is a little larger than fig. 37^{a} in pl. 78.

The genus Gordius is found free in water, or as an internal parasite. Gordius aquaticus is found under all these circumstances, as it has been ascertained to infest insects. These worms resemble a thin thread or stout hair, and being seen in rumning water, or in puddles along roads, particularly after rain (see Mag. Nat. Mist., 1836, pp. 9, 241-2, 355), they are popularly supposed to be metamorphosed horse-hairs. They are male and female, oviparous, and have a more complicated organization than their external simplicity might be supposed to indicate.

c. Enterodela plicata:

1. The Linguatulidee are internal parasites infesting various organs; they are flattened and tapering posteriorly, and rugose transversely. In Linguatula the interior extremity is armed with a few recurved spines.
d. Enterodela toenioida.
2. Nemertida. The principal genus is Nemertes, Cuvier ($p 1.74$, fig. 10), an extremely long and soft marine worm, of a flattened form, the anterior extremity slender, and the posterior one ending with a broad attaching disk. It approaches Hirudo in its mouth and vascular system. It lives buried in the sand, and is said to feed on shell-fish.

Division II. Mollusca.

The Mollesca, or Malacozoa (soft animals), constitute one of the great Divisions of the animal kingdom. Except the shell, which is not always present, these animals have nothing in the nature of bones; and they want the ringed structure and jointed members of the Articulata. The body is soft, the integument slimy, and generally without epidermis, and in the testaceous species capable of secreting a shell. The alimentary canal has an opening at each end, and the circulating system is more or less complete. The eyes of univalve mollusca are generally situated upon or near the tentacles; those of bivalves upon the edge of the mantle, as in Pecten ($p l .76$, figs. 27, 29); or on the posterior portion which forms the siphons, as in Unio ($p l .76$, fig. 47).
From the great number, variety, and beauty of the shells of so large a portion of the Mollusca, the study of these, under the name of Conchology, attracted attention at an early period, when a cabinet of shells was often regarded in the same light as a casket of jewels, and great sums were paid for rare and handsome species; and, indeecl, this interest still maintains its ground, there being shells, the price of which is one or two hundred dollars at the present day.
It was at length discovered that little of natural classification and the habits of this class could be known, without a study of the entire animal ; so that Conchology finally became merged into Malacology. There is, however, no impropriety in the use of the former term in an enlarged sense, if it be considered to include the study of those animals which are usually provided with a calcareous shell.
Some of the older conchologists, guided by the shell alone, included radiated forms, like Echinus, in this division; and even at the present day, the cirrhopoda ($p l .76$, figs. $51-54$) and some of the annelida, which have a hard exterior tube, are sometimes described in books avowedly devoted to mollusca. On the other hand, whilst all "shells," whether secreted by the mollusca or the articulata, were classed together, true mollusea, when unprovided with a shell, were often placed among worms and annelida.
The term (Vermes) Mollusca was used by Linnæus in 1758 , in a wide
sense, as it included radiata, like Actinia, Medusa, and Echinus; crustacea like Lernæa, as well as Ascidia, Limax, and the Cephalopoda, and even some annelida; whilst his order (Vermes) Testacea included most of the univalve and bivalve shell-fish." The "class Mollusca" of Lamarck, follows his class Conchifera, and includes the five " orders," as he terms them, of Pteropoda, Gastropoda (excluding the spiral uniralves), Trachelipoda (including the spiral univalres), Cephalopoda, and Heteropoda. Pallas and Cuvier were the first to use the term Mollusca in its modern sense; and the latter, in 1798, recognised three sections, subsequently provided with the systematic names of Cephalopoda, Gastropoda, and Acephala. The term Mollusca having by these means acquired a somewhat indefinite meaning, Blainville proposed that of Malacozoa, which is the preferable term, if the term Malacology supersedes that of Conchology.

The shell of the Malacozoa can have one, two, or more pieces; it may be external or internal, and it varies much in size, being in some cases capable of containing all the soft parts, with room to spare, and in others a mere excrescence upon some part of the animal. It is secreted by the mantle, a fold of the integument which appears as a flap, lining the shell in bivalves, and a continuation of it appears as a collar around the neck, and lining the aperture of the shell in the spiral univalves. In the order Tunicata the body is inclosed in a kind of coriaceous purse instead of a shell.

The mantle usually secretes two kinds of material, the nacre, or pearly portion of the shell, and the epidermis, or periostraca; but in some gencra the latter is absent, as in Oliva (pl.75, figs. 122, 125, 126) and Cyprcea ($p 7.76$, figs. 5-7), in which the wide mantle is turned up on each side, so as to inclose the shell. When the shell is broken by accident, the crevice is closed by layers of nacre; and if a pebble gets into the shell by accident, and cannot be got rid of, it is covered in like manner. When the nacre or " mother-of-pearl" is of a fine quality, the tubercular masses which arise from injuries have a peculiar lustre, which causes them to be admired under the name of pearls. Shells are often found repaired, which had been crushed and distorted to such an extent as to lead one to believe it scarcely possible for an animal to survive after so much mutilation.

The varied spots and lines which ornament so many marine shells, are distributed by the periodical action and inaction of the secreting process. The species of the genus Conus, although covered by a thick epidermis, are usually marked with bands, spots, and reticulations of brilliant colors, which make them a favorite ornament to collections. The epidermis, however, should not be removed, or it should at least be preserved upon a specimen of each species, as it varies considerably according to the species. The former unscientific custom of polishing such shells as have a homely exterior is now discontinued.

The microscopic structure of shells presents many curions features, which have been thoroughly studied by Carpenter, who has illustrated the subject with figures. In some shells the structure resembles that of minerals, and seems to be formed of minute crystals of carbonate of lime, or of fibres resembling arragonite.

In the genus Argonauta ($p 7.76, f i g .17$) the ends of two of the arms are greatly dilated, and these dilations clasp the shell upon each side, which seems to be formed by a secretion from their inner surface.

In some of the naked land-snails, like pl. 77, fig. 21, a small thin shell may be taken out of the back, and the cuttle-fish has a corresponding internal shell, known as cuttle-bone, which is more complex, having a hard, rough surface above, and a series of close-set, thin, parallel plates beneath. The lower end terminates in a point which corresponds to those fossil organic remains of cephalopoda, named Belemnites.

In bivalve shells the mantle is slightly attached to the shell, in some degree parallel with its margin, and at a little distance from it; but this line of attachment, which is named the pallial impression, varies considerably in its course in different families, and through this variation affords distinctive characters. The mantle, or projections from it, secretes the spines, rugosities, and other appendages, by which the shell is varied. Sometimes the deposition of the shell goes on smoothly, when a thickening of the margin, a varix, or a row of spines will be secreted, to be followed by a smooth space, and this alternation takes place as long as the animal grows. See pl. 75 , figs. 101-104, 111, 119. Univalve shells are usually strengthened by having the margin of the aperture thickened, and as this is added from time to time, the shell may acquire a ribbed appearance, as in figs. 101, 102. In other cases, as in fig. 91, the old lip is absorbed before a new growth is started, so that the shell remains smooth. Sometimes the margin is not formed until the animal attains its full growth.

The oblique deposition of calcareous matter in spiral univalves gives them an elongated form, as in pl. 75, fig. 117, and when less oblique, the shell is more robust (fig. 98). In forms like Patella (fig. 77) the calcareous deposit extends in equal degrees; but if the increase is more abundant upon one side, the spine is curved, as in fig. 81 . When the aperture is lateral, and the shell has little or no obliquity, the forms seen in pl. 76 , figs. 2, 4 , 7,11 , are the result.

In spirivalve shells the solid axis is named the columella, and a muscle is attached to it which connects the animal with the shell, and enables it to retire within it. The columella is often marked with prominent folds and tooth-like projections, which afford generic characters. The anterior extremity of the mantle is elongated in some genera, and the edges brought in contact, so as to form a slender tube, through which water passes to the gills; and as this siphon secretes calcareous matter, the shell takes the rostrated form, as in pl. 75, figs. 109-112.

Spiral shells are usually dextral, increasing towards the right, in which they resemble an ordinary screw; but there are a few genera, exceptional species, and varieties of dextral species, which are sinistral ($p l .75$, fig. 100). A bivalve shell is considered sinistral when the projecting points at the hinge, named teeth (which present a certain degree of uniformity in each species), are changed so that the modification which belongs to the one side normally is found upon the other.

Some of the spirivalves, when the animal retires into the shell, as in fig.

8S, close the aperture by an operculum attached to the posterior and upper part of the foot. It is sometimes smaller than the aperture, and can be drawn in some distance ; in other cases it fits the aperture exactly. In texture it is either thin and horny, or thick and shelly, sometimes increasing obliquely or spirally, by deposition upon one side, and at other times enlarging concentrically, but always taking the shape of the aperture. In the genus Hipponyx the anomaly is presented of the operculum being attached to the rocks upon which the animal is found. In dry seasons the land-snails protect themselves by a temporary operculum, formed by a slimy secretion, which hardens, and thus closes the aperture.

Most bivalves, as the name implies, are composed of two valves ($p l .76$, figs. 32-34), united by a ligament upon the back; but some of these have accessory pieces ($f i g .49$), which are not of sufficient importance to remove them from their class. Even the anomalous form, Aspergillum ($p l .75, f i g .71$), belongs to the Bivalves or Conchifera; for, although it is a shelly tube, pierced at the anterior extremity like a pepper-box, an examination will disclose a small open bivalve shell, solidly imbedded in the shelly material of the tube. This is roughly represented near the upper end of the figure, although the artist probably did not recognise its true character.
The nervons system of the Malacozoa is not symmetrical, as in the Articulata, nor radiated, as in the Radiata, but the ganglia are distributed unsymmetrically from the brain, or chief ganglion, situated above the œesophagus.

The Malacozoa are divisible into three sub-divisions or classes, the lowest containing the Acephala (pl. 76, fig. 3t, ide.), named Acephalophora by Blainville; the next the Gastropoda (fig. 1, de.), named Paracephalophora by Blainville, and including the Pteropoda, according to this author; and the highest the Cephalopoda (pl. 76, figs. 16, 17, 75-77).

Class 1. Acephala.

This class contains the four orders Bryozoa, Tunicata, Brachiopoda, and Conchifera. The sections, here named orders, are by some naturalists considered to be classes, which they sub-divide into orders of a different value. Indeed, it is extremely difficult to construct groups which shall have the same value under the same name, in different departments of Zoology; and there is no special rule which can be followed in all cases.

Milne Edwards, observing that the Bryozoa, which had previously been confounded with the Zopphyta, bear certain near relations to the Tunicata, united the two in a sub-division of the true mollusca, and Cuvier had previously shown that the Tunicata are related to the Conchifera. Dujardin gives to the group of Bryozoa the same value among the Mollusca that he assigns to the Conchifera and Brachiopoda. Agassiz also unites them to the Acephala, of which he considers them to be the lowest order, corresponding to the Foraminifera, to which he assigns the lowest place among the Gastropoda. In fact, the Bryozoa have much resemblance to the Mollusca in their alimentary canal, which is quite different from that of the Zoophyta.

Order 1. BryozoA. This name was imposed by Ehrenberg, who was one of the first to demonstrate the true nature of them. They are small animals, aggregated in great numbers, like coralligenuus zoophytes, having a distinct stomach and an intestine curred upon itself, with an outlet near the mouth. An analogy with the Cephalopoda is apparent in the tentacles which surround the mouth, and which are covered with vibrillæ. These vibrillæ cause currents of water which bring the animalcula within reach, which serve as food. The tube into which the animal withdraws varies in texture, being membranous, horny, fibro-gelatinous, or calcareous. This tube corresponds to the outer tunic of the Tunicata, in being in organic connexion with the interior parts, even the calcareous matter of the harder kinds being deposited thronghout the membranous tissues. Each tube is in contact with its neighbors, sometimes to the number of many thousands.

Dr. Farre thus describes the tube or cell in the Vesicularidæ: "The transparent horny cell which closely embraces the body of the animal, is nearly unyielding in its lower two thirds, but terminates above by a flexible portion, which serves to protect the upper part of the body when the whole is expanded, in which state it is of the same diameter as the rest of the cell, but, when the animal retracts, is folded up, and drawn in after it, and completely closes the mouth of the cell. The flexible part consists of two portions, the lower half being a simple continuation of the rest of the cell, the upper consisting of a row of delicate bristle-shaped processes or setæ, which are arranged parallel with each other around the top of the cell, and are prevented separating beyond a certain distance by a membrane of excessive tenuity, which surrounds and connects the whole. This mode of termination of the cell is one of constant occurrence, as will be described in other species, and is evidently a provision for allowing of the freest possible motion of the upper part of the body in its expanded state, to which it affords at the same time support and protection."-Phil. Trans., 1837, p. 393.

Johnston thus describes the habits of some of these animals: "Let us now suppose that the polypes are in a state of extrusion, and fully expanded, all the cilia in play, and the water whirling in rapid streams up and down the opposite sides of the tentacula, carrying with them nutriment and the breath of life. All is quietness and security around, and the little creatures are evidently in a state of happiness and enjoyment; no one who has witnessed the microscope scene (the myriads of the little flosculous heads that pullulate and blossom over the entire polypidom, as thickly peopled as the swarming hive) can have any doubt of this, especially when he remarks the acuteness and vivacities of their sensibilities and actions; for, under his eye, one will ever and anon suddenly sink out of vierr, hide itself within the cell, again on a sudden emerge and expand, or, it may be, lay itself down in repose and concealment, until digestion has freed it from a state of repletion, or forgetfulness has removed the alarm of an enemy. These positions are assumed with such rapidity, that the eye cannot trace the steps of the process, and large glasses and minute skill are required to reveal to us its mechanism."-Brit. Zooph., p. 241.

Excellent figures of this group are given by Milne Edwards, in the illustrated edition of the Règne Animal, and by Johnston. The following genera of Escharidæ are figured on pl. T5: Flustra ($f i g .54$), Retepora (fig. 56), and Eschara (fig. 57). The following classification is that of Johnston :
*Natives of tie Sea. Tentacula forming a perfect circle. Polypiaria infundibulati, P. Gervais. Fams. 1 to 6.
"*Laoustrine. Tentacula in the form of a horse-shoe. Polypiaria hippocrepia, P. Gerrais. Fam. 7.

Fam. 1. Vesiculdaridce. Corneous, fistular, confervoid; cells vesicular, deciduous, not operculate. Vesicularia, Serialaria, Valkeria, Baverbancia.

Fam. 2. Crisiadee. Calcareous, branched, confervoid, jointed; cells linked together in series, distinct, tubular, or elliptical, with a terminal or subterminal aperture; no operculum. Crisia, Notania, IIippothoa, Anguinaria.

Fam.3. Tubuliporida. Calcareous, variable in shape, never confervoid; cells tubular, round, rising from a base and projecting, aperture terminal and non-operculate. Tubulipora, Discopora.

Fam.4. Celleporide, Calcareons, lobed, ramous, or crustaceous; cells in quincunx, utricular, in juxta-position, with a contracted terminal aperture. Cellepora, Lepralia, Membranipora.

Fum. 5. Escharita. Calcareons or membranous, variable; cells usually in quincunx, oblong, pentagonal, or hexagonal, conjunct, immersed, or horizontal to the plane of axis, with a subterminal or lateral, and commonly operculate aperture. Flustra, Cellularia, Acamarchis, Farcimia, Retepora, Eschara.

Fam. 6. Alcyonidulce. Polypidoms sponge-like, polymorphous; cells irregular in disposition, immersed and concealed, with a contractile nonoperculate aperture. Alcyonidium, Cliona.

Fam. 7. Limniades. Polypidoms fleshy, spongy or corneons, polymorphous; animals in tubes with angular or round orifices, closed when they recede. Cristatella, Plumatella.

Order 2. Tunicata. These amimals, especially Ascidia (pl. 77, figs. 7, 8) and its allied forms, may be compared to bivalve mollusca or conchifera, in which the margins of the mantle are united so as to form a sac, in which two openings are left, one for alimentation and respiration, and the other for excretion. The mantle is of a tough coriaceous or cartilaginous texture, and is endowed with contractility. Cellulose, which is almost exclusively found in plants, has been ascertained to enter into the composition of the Tunicata. A current is made to flow over the branchir by the action of the vibrillæ, and the contractions and expansions of the body remove the water.

The Tunicata have no external organs of locomotion, so that they float about at random, or are fixed to rocks, sea-weed, or other extraneous bodies. Some species are agglutinated together in masses, or in long chains, but there is no organic connexion between them.

This order includes three families represented by the genera Salpa,

Ascidia, and Pyrosoma. Sulpa (pl. 7t, fig. 3) forms long lines of aggregated individuals. These animals were first distinctly noticed in 1756, and named Thalia in Brown's History of Jamaica, and in 1750 Forskal applied the name of Salpa. The mantle is transparent, and is provided with tubercular suckers, by means of which the bodies adhere together. The aggregated individuals produce young which are free, and which are unlike the parent; and these free individuals produce a brood of aggregated individuals, thus presenting an example of alternate generation. This discovery was published by Chamisso in 1830. These animals abound in the warm seas, swimming at various depths, commonly with the back downwards, and coming to the surface in calm weather. Their power of locomotion is slight, the only means being the ejection of water which has been used in respiration. (See Agassiz's Lect. Einbryol., p. 91.) Pyrosoma includes compound, gelatinous, and nearly transparent animals, remarkable for their brilliant phosphorescence.

Order 3. Brachiopoda. "The Brachiopoda ought to be combined with Lamellibranchia, having the same structure, and differing only in secondary modifications." (Agassiz.) This order includes bivalve mollusca, named from having a long, spiral, fleshy, arm-like, fringed organ on each side of the mouth, used in securing food, and generally capable of being extended and withdrawn into the shell, and when large it is rolled into a spiral. In the genus Spirifer, which is scarcely more than a Productus, these organs are preserved in a mineralized state. The month is provided with fleshy lips, and is situated between the arms. The mantle itself subserves the purposes of respiration, a peculiarity which is recorded in the name Palliobranchiata, given to them by Blainville.

The shell is often adhering, either directly, as in Crania ($p l .70$, fig. 24), or by means of muscles, as in Terebratulco (fig. 23), in which the museles pass through a perforation in the beak of the left valve. This genus has a curious framework within the shell. The species figured, T. caputserpentis, Linn., and T. psittacea, Gmelin, are found upon both sides of the North Atlantic. (See Gould, Invertebrata of Massuchusetts, pp. 141, 142.)

It has been maintained that in this order, the valves, instead of being right and left, are dorsal and ventral, the large or perforated one being dorsal. Professor Agassiz (Moules de Mollusques, p. 14) thinks this view is founded upon a false interpretation of the anatomy, and that the Brachiopoda do not present this anomaly. He considers the larger valve as that of the left side, as in Ostrea and Anomia, but whilst the left valve is perforated in Terebratyla, Anomia has the perforation in the right. The descriptions of some conchologists being founded upon the opinion that there is an absence of orientation in the ralves of this order, must be read with care or they will not be understood.

In the genus Lingula the two valves are so much alike that it is difficult to decide upon their mutual relations. In this genus there is a long pedicle, but probably not for attachment to extraneous bodies, as the species ive buried in the sand.

Order 4. Conchifera. This order contains most of the bivalve shells,
including some with accessory pieces. From the laminated form of the gills, two of which usually hang like a curtain on each side, between the mantle and the body, they are named Lamellibranchia by Blainville.

In the Conchifera the back of the animal is under the hinge of the shell; and when the shell is removed, the heart may be observed in some families beating at the anterior part of the back. Beneath this, at the anterior extremity, is a simple opening constituting the appendages named labial palpi, the vibrillæ of which cause currents, which bring nourishment within reach.

Upon comparing the shell of an oyster with that of a freshwater mussel, a discolored impression will be found near the centre of the former, and two impressions in the latter, situated towards each end. These are the muscular impressions, serving for the attachment of the alductor muscles, which draw the valves together; and when they are relaxed the shell is opened by the elasticity of the dorsal ligament, which may be either external or internal.
Some conchifera remain permanently fixed, like the oyster, which is attached by its left valve. Others, as Pinna ($p l .76$, fig. 18), are attached by a bunch of fibres, named the byssus, which is secreted by the frot. Some can swim by alternately opening and closing the valves, of which Pecten (figs. 27-9) affords an example; whilst others move by means of a foot, which enables them to burrow in the mud, or move along in the sand. The foot is situated below the mouth ; and when present, the mantle must be open to allow it to pass. See pl. 76, fig. 50 , left-hand end.
Posteriorly the mantle has two openings, one above the other, forming siphons for respiration and excretion. These are sometimes made merely by the partial contact of the ends of the mantle, which may project but little, although at other times it extends and forms long perfect tubes (fig. 50). The inferior tube is named the branchial siphon, and is used in breathing; the upper one is the anal siphon, and serves for the excretions. The curve in the pallial impression is caused by the displacement of the mantle, to afford room for the retracted siphons when their size is considerable.

The hinge is usually provided with projections of calcareous matter, named teeth from their shape; and those of one valve are fitted into corresponding vacancies or depressions in the other. These present so many modifications that they have been made a principal character in the construction of genera. Those situated under the beak of the shell are termed cardinal teeth; and those anterior and posterior to these the lateral teeth, a badly selected term, all the teeth being equally lateral. Indeed, the hump of a dromedary, or the dorsal fin of a fish, might as well be termed "lateral." This misapplication arose when the length of a bivalve mollinse from the mouth towards the vent was named its breadth, and Lamarck, Say, and others, named that end "posterior" at which the mouth is situated, and whech precedes in locomotion. A few minutes devoted to observation and dissection of the animal would have prevented this error, which must be borne in mind in reading the descriptions of these authors, or they cannot
be understood. In some genera, as Arca ($p 7.76, f i g .32$), the teeth are alike, and form a crenulated line along the dorsal margin of the shell.

In the seventh volume of the Nouv. Mém. de la Soc. Helvét. des Sc. Nat., Professor Agassiz has proposed an improved nomenclature for the armature of the hinge in Venus and the allied forms, but which may be extended to other families. The annexed diagram represents the relative positions and

names of the teeth, the upper part representing the anterior part of the shell, its back being towards the observer, and the right valve upon the right hand. The presence of the accessory tooth in the left valve distinguishes the genus Cytherea from Venus. The same name is applied to a tooth and its corresponding cavity in the opposite valve.
Most of the Conchifera are marine, living attached, half buried, or entirely buried in the sand or mud, some at the bottom of a perforation from a few inches to several feet deep. Others perforate wood, and some rocks; and as they increase in size, enlarge the prison which they are never to quit, receiving their nourishment through the opening by which they entered.

The Conchifera may be divided into several tribes, named Rudista, Inclusa, and Elatobranchic. The first of these, Rudista, is doubtful as a separate section, being composed of bivalve shells, the lower one of which is adherent, and the upper raised in a conical form; but their true nature and position in the animal scale have not been determined, and they occur only in a fossil state. Some authors place them near Chama in the Elatobranchia; others think them Brachiopoda, and even Tunicata; and others elevate them to the rank of a distinct order. Some of these bivalres were at one time believed to present the chambered structure of Orthoceras, and they have on this account been incorrectly referred to the Cephalopoda by some authors. This was the case with Hippurites, one of the principal genera, which was placed near Belemnites. In Hippurites there is, indeed, an imitation of a chambered structure, but it has an analogy to that observed in certain species of Ostrea, when the shell is samed in two across the foliated layers, the siphon of the Cephalopoda having no existence.

Tribe Inclusa.

The members of this tribe, although inclosed in bivalve shells, resemble the Tunicata in having the margins of the mantle closed for about three fourths of its circumference. The more typical forms have the shell gaping, and a long double siphon posteriorly, which cannot be entirely withdrawn.

Fam. 1. Mactridce. Hinge with an erect V-shaped tooth, ligament internal. The genus Mactra, Limn. ($p l .76$, fig. 40), includes sub trigonal shells which are slightly gaping; hinge with a concave tooth to receive the ligament; two additional striated teeth near the hinge. This genus contains shells which sometimes attain a considerable size. M. solidissima, Chemnitz (Gould, Invertebrata of Massachusetts, p. 51), of the United States coast, is sometimes found six inches long and forr in height. In this family the foot passes through an opening in the mantle, and the two siphons, although distinct, are inclosed in a common integument. Some authors place this family among the Elatobranchia. Lutraria lineata, Say, American Conchology (pl. 9). L. plicatella, Lamarck, vol. vi. p. 93.

Fum. 2. Myidce. This family is difiereutly divided by different authors, some including the two groups of which Osteodesma and Solemya are the types, whilst others believe that these should form distinct families. In Mya the shell is gaping, and there is a broad spoon-shaped tooth projecting from the hinge to the opposite valve, where there is a cavity to receive it. The labial palpi are long, stout, and pointed. The mantle is closed, except a small anterior opening for the passage of a slender foot, and the ordinary openings for the siphons, which are very long, and inclosed in a common envelope. This genus buries itself in the sand, with the exception of the end of the siphons. Mya arenaria, which has a shell three or four inches long, inhabits both sides of the Atlantic, between high and low water-mark. It is extensively used in New England as food, under the name of clam, a name which is applied to Venus mercenaria in the middle States. The genus Corbula forms part of the restricted family of Myadæ.
In the opinion of some authors, Osteodesina and the allied genera Lyonsia, Periploma, Thracia, and Anatina, furm a fanily, although the aggregate of these genera seems to have no higher rank than that of a sub-family. Some of the shells are of an extremely delicate texture; these have no cardinal teeth, and there is an ossiculum or accessory bone forming part of the mechanism of the hinge, upon which Deshayes has founded the family name Osteodesmacea. Mya norvegica was at first the type both of Lyonsia, Turton, 1822, and Osteodesma, Deshayes, 1835, but the latter anthor subsequently admitted Lyonsia, and applied his own term to a different group. Couthouy's paper in the third volume of the Boston Journal of Natural History, and Gould's Invertebrata of Massachusetts, may be consulted upon these genera.

Fam. 3. Solemyida. The genus Solenya is by some considered as forming a distinct family, whilst by others it is placed in the family of the Solenidæ. Some of its characters are very distinct; the branchiæ are thick, and single upon each side, and they are divided so as to resemble those of Crustacea. The foot is truncated and shaped like a sucking disk; the posterior half of the mantle is closed, the siphons are short, and the periostraca of the shell projects in a flap, far beyond the calcareous portion.

Fam. 4. Saxicavidu. This family includes Saxicava and Byssomia. The first contains small species and secretes a byssus. The cardinal teeth
are obsolete, the ligament is external, and the shell gaping. The shell presents many distorted varieties, and some species excavate cavities in rocks. Some authors unite this family to the Lithophaga, among the Elatobranchia.

Fam.5. Pandorida. A small family formed of the single genus Pandora, which has only a single branchia on each side. The shells are small, pearly within, the valves unequal, the ligament interior, the siphons short, the hinge with two diverging teeth in the right or flat ralve, and two corresponding impressions in the left, which is convex. P. trilineata, Say (American Conchology, pl. 2), inhabits the American coast from Maine to Florida. This genus is by some placed with the Solenidx, and by others with the Myidæ.

Fam. 6. Solenidd. This family is composed of the genera Solen ($p l .76$, figs. 45-6), Solecurtus, Glycimeris, Panopæa, and Pholadomya. The ligament is external, the shell gaping at both ends, and the foot is long and fleshy, and is passed out of the anterior extremity. The genus Solen lives in holes several fect deep, in which it passes up and down by means of its foot, and with such rapidity that it is difficult to take. Fishermen take them for bait by suddenly thrusting a barbed spear into their retreat, but if they are not struck at once they descend beyond reach. The genus Glycimeris is remarkable for having the body so large in proportion to the shell, that the latter is unable to inclose it. G. siliqua, the only species of the genus, as now restricted, inhabits the banks of Newfoundland, and the shell is usually got from the stomachs of cod-fish. Panopæa is a genus including species mostly of a large size, few in number, and occurring recent and fossil. P. arctica inhabits the banks of Newfoundland, and about eight fossil species have been named from the tertiary formations of the United States.

Fam. 7. Photadidee. This family contains various genera, which live in perforations which they make in rocks, wood, or clay, each being a prisoner for life in a cell of its own construction. In Pholas ($p l .76$, figs. 49, 50) the shell is widely gaping, and provided with accessory pieces at the hinge ($f y .49$), and the foot is shaped like a sucker. Pholas dactylus (fig. 50) is used as food. A few fossil species are found in the tertiary formations of Europe and America. The genus Teredo is placed by some authors in the next family, Tubicola, on accomnt of its form; but Deshayes thinks the characters of the animal require that it should be placed here. Teredo navalis ($p l .75$, fig.67), which is so destructive to timber and shipping when not protected, appears as a long, sinuous, calcareous tube, lining perforations in wood, and if one of these be followed to its lower end, the valves of the shell will be found. The shell is thick, and so short as to be annular, having a single adductor muscle, and the posterior extremity of the tube is open. According to Laurent, when the young Teredo escapes from the egg, it swims about by means of vibrillæ. At first the body is inclosed in the shell proper, and the little animal can move about with the aid of a long linguiform foot. After spending about twenty-four hours in swimming and moving about upon submarine objects, it attaches itself to wood, making a depression in which it locates itself, and excretes a mucous mass which covers it, but allowing a passage for the siphons. The young animal
is soon after able to commence perforating. The transparent shell of the embryo soon disappears, and is replaced by the permanent one. In boring, the wood is generally entered across the grain, but afterwards the animals turn in the direction of the fibres, though they are sulject to be continually turned from their cuurse by each other, the wood being perfectly honeycombed by their number, and often in the course of a year.

Fum. S. Tubicold. The name indicates the tubular form of the external protection in this family. The tube is secreted by the mantle, and its continuation covering the siphons. In Aspergillum (pl. 75, fig. 71) both valves form part of the tube ; in Clavagella the valves are placed within a short tube, one of them being attached; and in Gastrochicena the shell is not attached, but inclosed in a tube. The mantle is open in front for the passage of a little foot, the siphon and branchire are usually long, and the palpi are small. These shêll-fish inhabit clay, sand, or cavities in stone or wood, pierced by themselves.

The genus Aspergillum was first correctly figured in 1685, by Lister, one of the fathers of conchology; but it was many years before its true approximate place was known, since it required much sagacity to detect a bivalve shell under the form of a tube. We accordingly find it placed at one time among univalve genera, and at another with the Annelida which form tubes, and Limmeus placed it with Dentalium. The happy idea of Aspergillum being a true bivalve is due to De Roissy, and is a remarkable example of the detection of natural affinities. A parallel example appears in the I'lanorbis comuarietis which, to all appearance, was referred to its proper genus, but which Sowerby referred to Ampullaria, with none of which did it seem to be allied; but the subsequent discovery of the animal proved his reasoning to be correct, although strongly opposed at the time. The structure of Clavagella is quite anomalons, the valve of the right side forming part of the inside of the tube, and the left valve being free. The anatomy is essentially that of a bivalve molluse, and shows an affinity with Aspergillum. It is provided with a small foot.
The genns Gustrochiena, Spengler, 1783 (or Fistulana, Lam., 1801), is a boring shell, sometimes found in calcareons rocks, and sometimes in sand, secreting, besides its proper shell, a separate exterior tube; and, as the shell may be accidentally found without the tube, after the death of the animal, an error was committed in describing the shell alone as one genus, and the tube and shell together as another, namely, Fistulana; an error which Deshayes was the first to correct, and he accordingly suppresses the latter mame. Shell symmetrical, and widely gaping anteriorly, without cardinal teeth, a ligament posteriorly, pallial impression deeply simated, foot small, and secreting a lyssus. The following species are found in the tertiary strata of the United States. Gastrochena ligulc, II. C. Lea, Am. Phil. Trans., vol. is. G. larva, Conrad (Fistelan(t), Am. J. Sci., 1846, p. 213. G. elongata, Desh., Conrad, Nat. Inst. Washington.

> Tribe Elatobranchia.

This tribe includes the great mass of Conchifera, after separating the preceding one. With very few exceptions, the Inclusa have two adductor
muscles, and although the same character is possessel by most of the Elatobranchia, a large portion of them have but one, so that the whole are divided by this character into two sections, thus:
§ Monomyaria, with one adductor muscle.
§ Dimyaria, with two adductor muscles.
This character, although of much importance, is not applicable in every case, because a classification that would adhere to it strictly, would sometimes unite dissimilar groups and separate allied ones, as far as the other characters are concerned. The first section includes the five families: 1. Anomiidæ; 2. Placunidæ; 3. Ostreidæ; 4. Pectinidæ; ธ. Aviculidæ.

Fum. 1. Anomiadce. The genus Anomia has a principal central adductor muscle, but besides this it has two approximate, one passing towards the perforation at the apex of the smaller (and in position the lower) valve, where it is attached to a shelly plug, shaped like a short, flat-headed rivet, and inserted in the aperture, its exterior flattened surface being attached to extraneous bodies. The ovary terminates between the membranes of the mantle upon the right side, where the eggs are stored before they are ejected, an anomaly presented by no other conchifer, but which, with some other characters, indicates an affinity with Brachiopoda. On this account Deshayes thinks that this family forms a distinct group, which should stand between the Brachiopoda and the Conchifera. In Anomia the nargins of the mantle are entirely disunited; the shell is very irregular, orbicular, the free or larger valve convex, and the lower one concave or flat, and taking the form of extraneous bodies, to which it is attached. This causes the shell to offer many varieties, and the species to be of difficult determination. The aperture in the perforated valve is only a deep sinus, narrowed at the margin, with the shell projecting upon one side, and forming an ossiculum with a flattened surface of articulation, which enters and is attached to the concavity of the opposite valve by an internal ligament. This family is allied to the next by Broderip's genus, Placunanomia, which has a noteh in the side of the lower valve, presenting an analogy with that in Pedum, a genus of Pectinidæ.

Fam. 2. Placunido. This family is represented by the genus Placuna, the shell of which (the only part known) is allied to Anomia and Ostrea. It is imperforate, free, inclined to circular, thin, and foliaceous in texture, translucent, and the valves are so flat that but little room is left for the animal, which must consequently be very thin. In one valve there is a V shaped tooth, and in the other a corresponding depression ; ligament marginal. This and the preceding family are by some included in the Ostreidr.

Fam. 3. Ostreida. The genus Ostrea (pl. 76, fig. 25, O. cristigalli), well known as an article of food, is widely distributed in various parts of the wrorld, and has been in request from a remote period. The shell is inequivalve and irregular, the ligament partly internal and partly external, and the left and larger valve is usually attached to extraneous bodies. On the western coast of Africa, where the branches of certain aquatic trees hang in the water at high tide, the oysters affix themselres to these
branches, where they may be seen suspended at low tide. There are four lanceolate labial palpi; and the branchise, two upon each side, are conspicuous objects when the shell is opened. The very large liver is recognised by its dark color, which causes it to be indistinctly seen through the translucent integuments. There is no appearance of a rudimentary foot, but eyes have been detected.

The ancient Romans were very fond of oysters, and soon discovered those of Britain to be superior to their own, and imported them in winter packed in snow, and in such a manner as to prevent the valves from opening, a mode still practised when oysters are to be transported a considerable distance. Previous to this period Sergius Aurata had invented and practised the art of breeding oysters in artificial beds, turning his art to great profit. This is still practised in the Mediterranean, where ponds are used, into which the sea enters at high tide. About Naples oysters attach themselves to sticks, and here numerous poles are stuck into the bottom, and when the oysters which become affixed to them have acquired a sufficient size to be taken, they are collected by withdrawing the poles. Oysters attain a marketable size in four or five years, although not yet fully grown, large individuals being considered less delicate than those of a medium size. Those are most highly esteemed which have grown in the mouths of rivers, where the water is less saline, and it is probable that their food raries according to the locality. Oysters feed upon infusoria; and when certain green kinds are abundant, they impart a green color to the animal, a color which is often incorrectly attributed to some mineral substance. The extent to which oysters are consumed would exterminate them in accessible localities were they not prolific. A single oyster may eject 50,000 or 60,000 eggs in a year, commencing in the spring and continuing through the summer.

Deshayes does not think the genera Gryphace, Lamarck, and Exogyra, Say, are sufficiently distinct from Ostrea; whilst Von Buch, the celebrated geologist, insists that they are founded upon good characters. The former author is inclined to look for variations in the soft parts of allied genera, although in such the shell usually presents the more prominent generic and specific characters. Variations in the shell are as important among the Mollusca as in the teeth and horns of the Mammalia, or the bill and feathers of birds; and, although a species may be found which associates it with two genera, this is not sufficient evidence that the two should be united. According to Deshayes, Ostrea passes by insensible gradations into Exogyra, and this, by equally gradual steps, returns to Ostrea, so that in his opinion the species of the three form but one natural genus.

Fam. 4. Pectinitle. In Pecten ($n 1.76$, figs. 27 to 29), the chief genus of the family, the shell is regular, toothless, inequivalve, eared at the hinge margin ; ligament entirely internal, and placed in a triangular depression ; surface often covered with ribs. Mouth with deeply cut lips and a pair of palpi on each side; mantle disunited, margin with numerous cilia, having eyes between them ; branchiæ sub-divided into separate parallel filaments; foot small and dilated, a byssus sometimes present. The genus Pecten is
widely distributed in a recent and fossil state, and is not confined to any particular country or climate.

These shells are free, and live upon a surface of mud or sand, from a trifling depth to twenty fathoms, and they are fished up as an article of food. They present several distinct forms, and many of them possess great beanty. Pecten pleuronectes is named after the generic name of the Hounder, becanse one side is dark colored, and the other white. P. jacobæus was formerly worn by pilgrims who had visited the Holy Land. P. quinquecostatus occurs fossil in the cretaceous deposits of Europe and America, and there are numerous species belonging to the tertiary formations of the United States. Lima, a genus of free shells, is allied to Pecten.

Spondylus (pl. 76, fig. 35) is a genus of attached, rough or spiny, and usually heavy and finely colored shells, allied to Pecten and Ostrea. There are two strong tecth in each valve, and a depression for the ligament. IIimuites is allied to Pecten and Spondylus, and possesses the peculiarity of being free until it attains a certain size, when it becomes permanently affixed.

Farn. 5. Avicutide. This family includes the shells from which most of the pearls of commerce are obtained. They are allied to the two preceding families, and most of the genera are byssiferous, with pearly shells. The large well known shell ($p l .76$, fig. 20), which sometimes attains a size of ten inches, proluces the finest oriental pearls, as well as most of the mother-ofpearl which is used in the arts. It forms the genus Meleagrina, Lamarck, although it is now considered not to be distinct from Avicula, and it is therefore named Aviculc margaritifera, Limn. It inhabits the Indianseas. Avicula, according to the celebrated anatomist Poli, has the mantle unclosed, and fringed with tentacular appendages. The foot is small and secretes a byssus.

The genus Malleus (M. malleus, Linn., pl. 76, fig. 26) is remarkable for having the hinge margin extended in some species in the antero-posterior direction. The shell is very irregular, the foot secretes a byssus, and the mantle has a fringe of small tentacles. Perna (fig. 30) has an irregular shell, hinge straight, with a row of transverse furrows for the insertion of the ligament. The byssus passes through a gaping vacancy in the front of the shell. The genera Malleus, Perna, Vulsella, Crenatula, Catillus Inoceramus, and some others, are placed by some authors in a distinct family, Malleidce.

Pearls are secreted upon the inside of the shell, or in folds of the mantle, the latter being the most regular; and as their quality depends upon that of the nacre, those shells which have this of a fine quality produce the best pearls. The pearls of common oysters are rough concretions of no commercial value, and similar concretions are sometimes formed by univalve species, the mantle of which has, of course, the power of secreting the calcareous matter of the shell. Although pearls are formed out of the same material as the shell, a bead turned out of the latter has not their peculiar lustre, because the arrangement of the material is different, the successive layers being plane in the shell and spherical in the pearl. On this account shaping an irregular pearl does not alter its lustre. Irregular pearls are sometimes worn without being shaped, when the form is agreeable. Pear-
shaped ones have a proper form for ear-jewels, and are highly esteemed. Being composed of carbonate of lime and albumen, pearls are subject to be soiled by the acid in sweat.

Artificial pearls, with a perfect lustre, are made loy lining bubbles of very thin glass with the silvery material which lines the scales of freshwater fish, of the genus Leuciscus. This is introduced in suspension, in a liquid, and when dry, wax is introduced to give strength and solidity.
Pearl fisheries are conducted at many places in various parts of the world, but the chief are in the east. Among the most important are those of the Persian Gulf, and the coasts of Coromandel, Ceylon, and Japan. The Persian Gulf has been a favorite locality from a remote period. Panama and the coast of Columbia were good localities formerly. A round and perfect pearl, as large as a pigeon's egg, belonging to Philip II. of Spain, and worth $\$ 150,000$, was taken at the Island of St. Margarita, on the north coast of South America; and Tavernier bought one from Catifa, in Arabia (an ancient locality), for $£ 110,000$.

About $\$ 450,000$ are annually produced by the fisheries at the Bahrein Islands in the Persian Gulf, which are tished in June and July. At Ceylon the fishing extends from February to the beginning of April, but the fishing days rarely exceed thirty, from many causes. There are various holidays kept by the members of different castes and religions among the divers. A black race from the coast of India profess the Catholic faith, and do not fish on Sunday; and other days are kept as holidays by the heterogeneous population. Storms also interfere with the fishing.
The beds of pearl shells lie at a depth of six or eight fathoms, and the fishing is done by divers who are able to remain under water from a minute to a minute and a half, or even longer. Indeed, the earlier writers upon the subject assert that a diver might remain submerged one furuth or half an hour, but this is an exaggeration.

Pearls from freshwater mussels were sent from Perth to London between the years 1761 and $176 \pm$, to the amount of $£ 10,000$, but the fisheries were soon exhausted. A pearl weighing thirty-three grains was taken at this locality. The price of these pearls varied from ten to thirty-six shillings an ounce.
The pearl fisheries of Ceylon formerly employed 50,000 or 60,000 men at sea or on shore. Captain Percival, in his account of the island, describes the mode of proceeding. The shore, deserted at other times, presents during the fishing season a busy scene made up of people of yarious color's and countries ; fishers, merchants, brokers, jewellers, speculators in shells before they are opened, and conjurors who are well paid to perform incantations to prevent the sharks from attacking the divers. The chief locality is off the coast of Condatchy, twenty miles at sea. The right of fishing is sold every season by the government to the highest bidder for each of the localities into which the bank is divided, and the purchaser is generally a black merchant. The same spot is not allowed to be fished again for three or four years, and the shell is supposed to arrive at maturity in seven years.
At the firing of a signal gun at ten o'clock at night, the fleet of boats
sets out with the land-breeze, reaching the banks in time to commence fishing at sunrise, and starting on its return with the sea-breeze about noon. A gun is fired when the fleet is seen from the shore, to acquaint the owners with the fact. The shells are placed upon mats in pits, and buried until the animal is rotted and become dry, when the shells are easily opened and the pearls readily found.

Each boat has twenty men and a pilot. Of these ten are divers and ten boatmen, who row and assist the divers. Five dive at a time, and when these come up the other five go down, which gives them time to recover for each successive dive. The boat has five stones, of which each diver takes one to accelerate his descent, and this is attached to a distinct rope, to be drawn up at leisure. These men use their toes with great facility in picking up small objects from the ground, and when one of them is ready to descend he catches the rope which holds the stone with the toes of the right foot, his network bag with those of the left, and the rope which is to draw him up with his right hand, the other hand being employed to close his nostrils. When he reaches the bottom the bag is hung round his neck, and he commences filling it as rapidly as possible, returning in the course of about two minutes, first making a signal with the rope in his right hand. A diver may make forty or fifty plunges in a day, and bring up one hundred shells each time. This takes place in water from thirty to fifty feet deep; and as the pressure must diminish the volume of air in the lungs, the water must enter the nostrils to a greater or less distance. In consequence of this, when the diver emerges, water, and often blood, are clischarged from the mouth, nostrils, and ears. Captain Percival states further, that there are divers who can remain under water four or five, and in one case six minutes. Some oiled their bodies and stuffed their ears and nostrils before descending, but this practice was not general.

The Greek divers were celebrated in ancient times, and they seem to have preserved their skill up to the present day. Like those of the Indian seas, they are taught to dive from childhood. Dr. Lefêvre, a French navy surgeon, gives an interesting account of them, having been present when they were employed in recovering property from the vessels sunk at the battle of Navarino. The water was from one hundred to one hundred and twenty feet deep, and jet the divers not only reached the outside of the ressels, tearing off the copper, dec., but they entered the hold and brought out small objects, such as pistols, Turkish pipes, \&c. When ready to descend, the Greeks seat themselves upon the edge of the boat, with their elbows upon their knees, and breathe rapidly with short inspirations, making the sign of the cross at intervals. Finally, they take a deep inspiration, and plunge headforemost, having a small rope attached to the thumb of the right hand, by which they may be drawn up when they dive deep.

Dr. Lefèvre, at three different times, carefully noted the time that the divers remained under water, and with the following result: Out of fourteen divers, the shortest period of submersion was fifty seconds; two remained sixty-five; among the longest, two remained under ninety, one ninety-four, one ninety-five, and one ninety-eight, the arerage being
seventy-six seconds. When the divers emerge, the face is strongly injected, and they often bleed freely from the nose, and sometimes from the ears and eyes. They dive three or four times in an hour, and upon emerging, they put on thick woollen cloaks. The sea is sufficiently clear to enable divers to see objects at the depth to which they go.

The Phocidæ (seals) remain fifteen minutes under water, having not only large lungs, but an adapting peculiarity in the circulation. In a state of inaction they can remain much longer, and when on land as much as two minutes sometimes elapses between each inspiration. According to Frederic Cuvier, the seals in the Paris collection sometimes slept with the head under water for an hour at a time, a period which exceeds that of a harpooned whale. In the case of the whale, however, there is great muscular action, which requires more oxygen than a state of repose demands.

§§ Dimyaria.

The second section, Dimyaria, of the tribe Elatobranchia, includes the two sub-sections, ${ }^{*}$ Mytilacea and ${ }^{* *}$ Cardiacea, the first of which includes the four families, 1. Mytilidæ; 2. Arcidæ ; 3. Unionidæ ; 4. Carditidæ.

Fom. 1. Mytilides. This family includes the genera Mytilus ($p l .76$, fig. 22) and several allied genera, and Pinna (figs. 18, 19). These animals have a linguiform foot, which secretes a byssus by which they are attached to rocks, the byssus being at first applied by the foot. The shell is equivalve, but very inequilateral, so that the umbones or beaks, which are usually situated about the middle of the back, are here placed at or near the anterior extremity of the shell. In Mytilus the lobes of the mantle are disunited, except at a single point posteriorly, which separates the anal siphon. The anterior adductor muscle is much smaller than the posterior one. Lithodomus is a sub-cylindrical bivalve, which, in its young state, is suspended to rocks by a byssus ; but it subsequently perforates the rocks, and lives in a cavity but little larger than the shell, and then the byssus disappears.

The genus Mytilus is used for food, under the name of mussel. Mytilus choros, which is found at Chiloe and other parts of the western coast of South America, attains a length of seven or eight inches; and as the animal is as large as the egg of a goose, and of a fine flavor, it is much esteemed. The favorite mode of cooking it is to make a fire upon flat stones in a pit, and when these are sufficiently heated, the fire and ashes are removed and the shell-fish deposited, and covered, first with leaves, \&cc., and then with clay. This mode of cooking is practised on the coast of Australia, and in the islands of the Pacific.

The common mussel, Mytilus edulis, is easily taken, as it lives in shallow water, and even between high and low water, upon both sides of the north Atlantic. The shell is smooth, and of a blue or violet color. This species is poisonous to some constitutions, perhaps one in a hundred, and it is possible that this quality depends somerrhat upon the season. An emetic, followed by castor oil, is recommended when bad symptoms arise from eating this shell-fish. The symptoms appear in one or two hours, and they
are either internal inflammation, eruption, or resembling a catarrh or asthma, sometimes terminating fatally.

The genus Pinna has a somewhat triangular shell, pointed anteriorly, and it includes several species which attain to a great size, as P. mudi.s ($p l .76, f i g .19$), which is a foot and a half long. The byssus of several species is fine and silky, and six inches or more in length. It is manufactured at Palermo and parts of Italy into gloves, stockings, and other swall articles of dress, which are expensive, and kept as curiosities. The mollusc is eaten, and it produces small amber colored pearls.

From a remote period various fables have been current about the pinna and certain small crabs which are found in the shell, as in mussels, oysters, and other shell-fish. When the pinna opens its shell, the cuttlefish, it is said, "rushes upon her like a lion, and would always devour her but for another animal whom she protects in her shell, and from whom in return she receives very important services." When the crab goes out and sees the cuttle-fish approaching, it "returns with the utmost speed and anxiety" to the pinna, "who, being thus warned of the danger, shuts her doors and keeps out the enemy." Pliny's story has been often repeated, according to which small fishes enter the shell to feast upon the animal, which does not regard their nibbles until the pinnoteres or pinnophylaw gives it a bite, which causes it to close the shell, and thus to kill the fish, some of which is given to the crab as a reward for its watchfulness. Even in the present day similar fables are still recorded by careless compilers.

Fam. 2. Arcidu. The genus Arca (pl. 76, figs. 31, 32) has a byssus in some species; the foot is split, the mantle is open, and the anomaly of two hearts is presented. The hinge margin has a row of numerous teeth, which fit between those of the opposite valve. The shell is rather thick, elongated, oblique, and has the beaks distant. Some species, as A. tortuosa, are curiously curved. In Pectunculus the shell is more nearly circular in outline, and the line of the teeth partakes of the curvature of the shell. In Nucula the lines of the teeth before and behind the beaks form an angle with each other.

The tertiary beds of the United States contain about thirty described species of Arca, and about the same number of Pectunculus. The genus Trigonia is by some authors made the representative of a distinct family, which is objected to by Deshayes and Agassiz. A single living species, T. pectinata, inhabits the seas of Australia. The fossil species are numerous, and extend from the Lias to the Cretaccous group. A single tertiary species occurs in Bolivia. The geuus has been illustrated in a masterly manner by Agassiz in his Etudes critiques sur les Mollusques fossiles: Neuchatel, 1840. Trigonia thoracica (Morton's Synopsis, \&c. p. 65, pl. 15, fig. 13) is from the cretaceous formation of the United States.

Fam. 3. Unionida. To this family the name of Nayades was given by Lamarck, but it is now usually restricted to an order of plants. It includes the greater part of the freshwater bivalve shells, which are so abundant in the waters of the United States, where they surpass, in number and variety of species, those of any other country. They usually live in sand or mud,
ploughing furrows in their course, the ventral half of the shell being generally sunk in the bottom, which gives it a vertical position. Some inhabit gravel bars; and as it is difficult for them to progress through such an unyielding material, these species seldom change their place. A few species, as the genus Mycetopus, live in perforations made apparently with the foot, which has a peculiar development. These species of Unio, when left dry by the fall of the rivers, bury themselves in the moist sand. Unio (Truncilla) triqueter, a shell much like $p 7.76$, fig. 38 , where we have observed it in the Ohio, does not take the more or less horizontal position of those like pl. 76 , figs. 21,47 , but the anterior extremity is sunk diagonally into the mud or gravel, so as to bring the posterior truncation level with the bottom.

The shell is composed of nacre, and varies from little more than the thickness of paper to half an inch, or more, according to the species. It is covered with a periostraca, usually colored with various tints of yellow, green, or brown, sometimes ornamented with markings or radiating lines of a different color, anong which green upon a yellowish ground is the most frequent. The surface is plain, as in the species inhabiting the rivers of the Atlantic coast of the United States, or with undulations or knotty projections, as in those of the tributaries of the Mississippi. Two species, Unio spinosus, Lea, from Georgia, and U. collinus, Conrad, from Virginia, have a few spines upon the shell. The beaks, being the oldest part, and the most exposed to the action of abrading agents, are sulbject to be worn off, and to such an extent that the younger portion in some cases disappears, and is replaced by successive secretions of shelly matter from the mantle. This renders it difficult to refer young and old shells to the same species. On this account no cabinet can be deemed complete without series indicating the gradual changes and variations in size, and other characteristics to which individual species are subject.

The variation in external character is extremely great in this family, where the same species will, in some instances, vary more than distinct species, which present more miform characteristics. The variations of Unio complanatus (one of which is well represented in pl. 76, fig. 4) are so great that not less than fifty specimens are required to illustrate it properly.

The Unionidæ inhabit the rivers and ponds in Europe, Asia, Africa, Australia, both Americas, and particularly those of the United States. Their distribution here has not been as thoronghly studied as it deserves to be, but the following facts may be stated. The species inhabiting the rivers of the Λ tlantic const (excepting U. viridis, which is found in Kentucky, and U. cariosus, which has been taken in White River, Indiana) do not occur in the tributaries of the Mississippi. A few western species, as U. alatus, siliquoidens, ventricosus, and pressus, have found their way through New York, as far east as Lake Champlain. U. rectus is found on the southern border of Lake Superior, in Lake Champlain, the Ohio and Alabama rivers, presenting a wide range. U. complanatus, although it seems not to be found in the tributaries of the Mississippi, occurs in some
of the streams of the southern shore of Lake Superior, and thus belongs to the basin of the St. Lawrence: it is fonnd-in Maine, and probably in every river as far south as the Savannah. Species are found in east Tennessee, as U. intermedius and subtentus, which are not found in Kentucky or the States on the south; and Louisiana has species not found beyond its limits. Unio plicatus and siliquoideus (the latter found in Lake Champlain, and the former above Pittsburgh, and in Grand river, Nichigan) are found as far towards the southwest as San Antonio in southern Texas. U. lanceolatus has no greater range than from Tar river, in North Carolina, to the James and Rappahannoc in Virginia; and U. collinus, subplanus, and constrictus, seem not to extend beyond James river.

The following table exhibits the distribution of some of the species of the Atlantic rivers, from the Connecticut to the James. Asterisks under the name of a river denote the presence of a species in it, and dots indicate where it has not been found. The three first on the list extend into Maine:

Connecticut, IIudson, Delaware, Susquchanna, Potomac, James.

U. complanatus,	$\cdots * *$	\% *	* $\%$	* * *	* *	* *
radiatus,	* $*$	* *	* *	* *	* *	
ochracens,	* * $*$	* * $*$	* *		* \%	* *
cariosus,	***	\% *	* *	***	* *	*
heterodon,	* ${ }^{*}$		\% ${ }^{*}$		***	
nasutus,	***	* $*$	* * *		* *	* *
viridis,		* ${ }^{*}$	* **	* * *	* *	*

The Unionidæ admit of being divided into three sub-families: Unionince, Iridinince, and Etheriince.

Sub-fam. 1. Unionince. The labial palpi are four: the foot is large and linguiform ; the mantle is not united, and the posterior siphons are not tubular, being formed by the mere contact of its posterior margin on each side, but leaving two openings. The extremity scarcely extends beyond the shell; it is papillate, and provided with eyes which have the power of distinguishing light from darkness, as the siphons are suddenly withdrawn when a shadow is cast upon them. Some genera of this sub-family present no distinctive characters by which an Unio or an Anodonta, \&c., can be distinguished without the shell, and on this account some authors insist that a character is worthless in the shell if unaccompanied by some distinction of the soft parts; and forgetting that the shell is part of the animal as the bill is part of a bird, they insist upon having two characters instead of one.

In the genus Unio there are two cardinal teeth in each valve anteriorly, and a lamellar tooth posteriorly in the right valve, fitting between two in the left one.

Anodonta has the hinge margin without teeth, and the shell is usually thin in texture.

Alasmodonta has cardinal teeth, but no lamellar teeth. Say founded this genus in 1818, and it was named Margaritana by Schumacher, in a work, the title-page of which bears the date of 1817. "The priority of this date
would lead me to adopt the name given by that anthor, did it not appear that the work was not published for several years after it was printed. It was not known to the naturalists of this country, France, Germany, or England, until the year 1824." (Say's Am. Conchology.) Swainson uses both names, restricting Schumacher's to the Margaritifera ($p l .76$, fig. 47) of Europe, and Say's to the form A. undulata.

Strophilus, Rafinesque, 1820 (Pseudodon, Gould, 1844, Proceed. Bost. Soc. p. 160, with four species), has a small swelling instead of regular cardinal teeth, and the soft parts differ in liaring the young, after they leare the ovaries, deposited transversely in the exterior branchir, instead of being in vertical folds, as in most of the species. In Diplasma of the same author, founded on some shells from Hindostan, there are anterior as well as posterior lamellar teeth, and these are double in the right valve anteriorly, and in the left posteriorly.

Rafinesque, in the "Continuation" of his Monograph of the Bivalve Shells of the river Ohio, institutes a genus, Loncosilla, for a solenoid shell, brought by Dr. Burrough from the river Jellinghy, in Bengal. Rafinesque considered it to be allied to Anodonta, on account of its fluviatile habits, but the characters of the shell are such as to induce us to coincide with Dr. Burrough in believing it to be essentially a solen. The shell is less than an inch long, "somewhat swelled, both ends rounded, and a little gaping, lack horizontal; outside and inside smooth and whitish."

Lamarck considered these mollusca to be hermaphrodite; and the dissections of competent anatomists, such as Neuryler and Van Beneden, confirm this view.

Dr. J. P. Kirtland of Cleveland, well known as a successful cultivator of natural science, announced, in the twenty-sixth volume of Silliman's Journal, his ability to distinguish the sexes by the shell alone in this subfamily. It is well known that the shells of many (although not all) species present individuals which are more full at the base posteriorly, and these were assumed to be females, the enlargement of the shell being, as it was thought, required for the gravid branchiæ. Some species, as Unio viridis, may be gravid without exhibiting any change of external form. If some individuals remain barren, and others prolific through a course of years, it is possible that the weight of the gravid branchiæ may cause the soft parts to descend and bring with them the shell secreting mantle, which may account for the enlargement without recourse to the theory of separate sexes, which are not found in the allied families. But this explanation will hardly account for the second form in Unio velum or U. flexuosus, or for the extraordinary transverse diameter (as in Unio siliquoideus) which is sometimes assumed in addition to the more common posterior enlargement.

Dr. Kirtland has discovered the presence of a line which he compares to a byssus (Silliman's Jour., 1840, vol. xxxix. p. 166), by which the young of various species of Unio attach themselves to extraneous objects, a character which indicates an affinity with the Arcidæ and Mytilidæ, with which they have other affinities.

The genus Castalia, from the rivers of Sonth America, is allied to Arca
and Trigonia in form, and to the latter by some affinity in the teeth. It was placed next to Trigonia by Lamarck, but an examination of the molluse shows that it is allied to Unio, and the same remark applies to Hyria. The propriety of making a single genus of all these is doubtful, genera being thus made to depend upon the number of species, because the more numerons these are, the more links will there be between dissimilar forms. If Castalia and Unio were distinct genera when the number of species was small, they are still distinct, and the generic basis established by Deshayes in malacology and Temminck in ornithology untenable. (Desh. in Lam. Animaux sans Vertèbres, 6,523 .) Some might extend these views to species, and deny specific distinctions in those genera which have many species, and this has been done by Lamarck in Cerithium, but he is consistent in extending his viers to species in general.
Some have gone so far as to assert that the family of Unionidæ contains not only a single genus but a single species. Without inquiring how the term species is to be limited, we feel confident that most of the Uniones can be determined specifically, as well as most genera of conchifera. The spines of Unio spinosus and U. collinus are often lost with age, and yet there is no difficulty in distinguishing them. U. trapezoides was confounded by Lamarck with one or two other species, yet no great knowledge is requisite to distinguish it. Deshayes donbts the distinctness of Unio lanceolatus, yet a very slight examination is sufficient to show that it is different from all others. Unio subtentus, viridis, cylindricus, heterodon, and a host besides without prominent characters, can always be distinguished.

Sub-fam. 2. Iridinince. This sul-family contains some shells which have a great resemblance to Anodonta, and others which have teeth upon the hinge margin much as in Arca, and which are represented by the transverse elevations upon the teeth of Castalia. Iridina is generally elongated, and differs from the Unioninæ in having the mantle closed posteriorly, the siphons tubular, short, unequal, and withont the retractor muscles of the marine genera with long siphons. Iridina blainvilliana, Lea (Anodonta or Columba, Am. Phil. Tr. v. 77, fig. 35), may be an exception, because the unusual curve in the pallial impression indicates a considerable power to retract the siphons.

The genus Iridina was established by Lamarck upon I. exotica (also named nilotica and elongata) in which the hinge is smooth, but acquires granulations with age, when it conforms to Lamarck's characters. It is also named Spatha, Lea, 1837, and Calliscapha, Swainson, 1840.

The genus Pleiodon was founded by Conrad, in 1834 (J. Acad. Nat. Sci., vol. vii. p. 178, pl. 13, P. ovata, Swainson), for a shell from Liberia in which the teeth "are alternately inserted, a generic character widely differing from Jridina, which is simply crenulated or tuberculated on the margin of the linge." The teeth are further compared with those of Area and Nucula. In a specimen now before us there is a flat internal ligament at the anterior internal extremity of the teeth.

Sub-fam. 3. Etheriince. The genus Etheria presents an irregular and very variable shell, without teeth, and somewhat resembling that of Ostrea, and
although it is attached (indifferently by either valve), it is provided with a large foot. Before the mollusc was known, it was placed near Chama, but its affinities are with the Unionidæ; it resembles Iridina in having the extremity of the branchiæ united by a small comnexion forming the superior siphon. The shell is nacreous, covered with a periostraca, and formed like some species of Ostrea, with laminated cavities, which are so large that the shell is proportionally lighter than that of any other species. They inhabit the Nile from the first cataract upwards, and the Senegal two hundred leagnes from its mouth; and Dr. Goheen brought several imperfect specimens from the upper St. Paul's in Liberia, several hundred miles from the sea. Several species are known.

The genus Mulleria is said to be founded upon young specimens of Etheria.
Fam. 5. Carditida. In Cardita the mantle is united for a short space posteriorly, forming a short anal siphon. It has three or four pair of truncated palpi; the shell is suborbicular or transverse, generally ribbed, and the two cardinal teeth are oblique. This genus occurs plentifully in a fossil state.

> ** Cardiacea.

The sub-section Cardiacea of the section Dimyaria contains the families: 1, Chamidæ; 2, Tridacnidæ; 3, Cardiidæ; 4, Cycladidæ; 5, Tellinidæ; 6, Lucinidæ; 7 , Veneridæ; 8, Crassatellidæ. In these the mantle is closed posteriorly, and the siphons are united or distinct.

Fam. 1. Chamida. This family includes Chama, Diceras (somewhat doubtful as a distinct genus), and Cleidothærus. In Chama the shell is irregular, spinous or rough, and attached, with the valves unequal and the umbones involute. The hinge has an oblique stout tooth fitting into an opposite cavity. The species present many varieties, chiefly from taking the form of the bodies to which they affix themselves. Cleidothærus resembles Chama, but is remarkable for having an internal accessory piece held by a portion of the ligament.

Fam. 2. Tridacnide. This family is represented by the genus Tridacna, which includes the largest species of shell known, Tridacna gigas ($p l .76$, fig. 33). The position of the animal in the shell differs from that of most bivalves, as the foot passes through an opening in the lunule upon the closed or hinge margin of the shell; to effect which the position of the animal is changed so as to bring the open foot of the mantle above. The mantle is nearly closed, leaving a small anal aperture, a large branchial one, and a third corresponding to the lunule, for the foot, which is large and byssiferous. The anterior adductor muscle is obsolete, or confounded with the large posterior one, the two being very close together, forming a single impression.

The shell of Tridacna gigas is said to attain a length of three or four feet, and a weight of 300 pounds. The French name them benitiers, from the use made of them in the Catholic churches to contain holy water. The significant name of the genus was applied by the ancients to certain oriental oysters, which were so large as to require three bites in eating them. The molluse of Hippopus resembles that of Tridacna; and although the shell has no opening, this part varies much in size among the species of

Tridacna, so that the two genera are now usually united. It may be remarked that the lunule of Hippopus is not entirely closed.

Fam. 3. Cardiidoe. In this family the siphons are very short. In Cardium (C. cchinatum, pl. 76, fig. 42) the foot is long, slender, and bent forwards at an angle in the middle, and with the aid of it the molluse can leap with considerable force. The species live buried in sand and mud. Cardium edule is eaten extensively in Europe. It is so abundant in the North Sea that shiploads are raked up and taken to IIolland and other places to be burnt into lime, and a good locality will furnish 200 or 300 cargoes. Hemicardium cardissa ($p l .76$, fig. 41).

Isocardia (I. cor., pl. 76, fig. 34) has a subglobular shell, with the prominent umbones curved or contorted. The species figured inhabits the Mediterranean and the coast of Ireland.

Fam. 4. Cycladidce. This family includes certain freshwater genera which have a general resemblance to marine forms, as Cardium, Tellina. and Venus. They have generally a smooth olivaceous periostraca.

Cyclas ($p l .76, f i g .43$) is a genus of small subglobular shells from one eighth to one half an inch or more in size, inhabiting ponds and streams, sometimes upon the bottom and sometimes beneath it. The foot is long and tongue-shaped, the mouth closed posteriorily, and there are two retractile siphons. Besides the small diverging cardinal teeth, there are short anterior and posterior lamellar teeth. When kept in vessels of water, it is said that they can traverse the surface with the aid of the foot, the body being suspended beneath.

Pisidium is allied to Cyclas, but it is more wedge-shaped, and there is but one siphon. P. dubium, Say (Cyclas), Gould, Invert. of Mass. p. 75, fig. 56 ; P. abditum, Hald., 1841 ; Proc. Acad. N. S. i. 53 , has a strapshaped foot covered with vibrillæ, and considerably longer than the shell; and it can be extended, attached, and the body drawn up. The animal advances in this manner over the bottom of a smooth dish, being sometimes vertical and sometimes throwing itself upon one or the other side. The longer or wedge-shaped end of the shell goes foremost and is anterior ; and although the foot is chiefly extended in this direction, it can be turned backwards, and indeed its flexibility is such as to allow it to be extended in any direction. The shell is one eighth of an inch long, pale yellow, the lines of growth very fine, the cardinal teeth indistinct, and the lamellar teeth robust. Lives in springs beneath the mud. The siphon is scarcely protrudel beyond the margin of the shell, as it is in most species of Cyclas. Immature young are found within them, as in Cyclas.

Cyrena is a genus containing much larger and heavier shells than Cyclas, and chiefly confined to the fresh waters of warm climates. Cyrena carolinensis and Rangia cyrenoides (or Gnathodon cuneatus) are found in the southern United States both recent and fossil. The latter has some affinities with Mactra.
Megadesma is represented by a single species (reclusa, Chemnitz; paradoxa, Born; radiata, Lamarck), about three inches long, thick in texture, of a triangular form, green with violet rays, the inside white
clouded with violet, and the pallial impression curved. The older authors placed it under Yenus and Tellina. It inhabits Junk river and other rivers of west Africa near the mouth."

Glaucomya of Gray belongs here. Mr. Cuming found it living in the fresh waters of the Philippines, and it occurs fossil in the freshwater formations of Paris. It was at first confounded with Venus.

Fum. 5. Tellinidee (also named Nymphacea). In this family the cardinal and accessory teeth are well developed, the shells are seldom covered with a periostraca, the mantle is margined with very sensitive tentacular appendages, and closed posteriorly, the siphons are exserted, and the pallial impression has a deep sinus.

Donax (pl. 76, fiys. 38, 39) has a wedge-shaped shell, truncated upon the posterior slope, making this extremity unusually short. Some authors, as Swainson, have mistaken the posterior for the anterior extremity, although the short ligament and the curve in the pallial impression should have prevented such an error. Donax is a genus of handsome and usually small shells, abundant in individuals, and living rertically in the mud at a triffing depth of water. A few species are found in tertiary formations. Capsa includes shells allied to Donax, but without accessory teetb.

Tellina ($p l .76, f i g .44$) is a genus of handsome and usually elongated shells with a fine nacre, often polished and radiated externally, and in some cases rough. The recent species are numerons, and there are a considerable number of fossil species in the tertiary of Europe and America.

Blainville places Amphidesma as a section of Lucina; Latreille considers it the representative of a family; and Deshayes thinks it has characters intermediate to Mactra and Tellina, to the latter of which he surmises that the unknown animal is allied.

Fum. 6. Lucinida. This family is sometimes united to the Tellinidæ. Lucina presents some important distinguishing characters. The shell is suborbicular, white or pale colored ; the labial palpi are absent, the branchiæ of each side are united so as to appear single, although separable; the foot is vermiform, and there is a siugle anal siphon capable of being turued within itself like the finger of a glove. The branchial siphon is reduced to a simple perforation. The genus has numerous species, recent and fussil in the tertiary formations.

Fam. 7. Veneride. This family contains the extensive genera Venus ($p 7.76$, fig. 36) and Cytherea ($f i g .37$), and also Arthemis of Poli. The species of Venus and Cytherea being numerous, the accessory tooth which distinguishes the latter is found more or less developed, and as it is at times reduced to a mere vestige, Deshayes is inclined to consider the genus as

[^4]not well founded. It is adopted by most conchologists, although rejected by Linnæns; Cuvier, and Blainville.

This family contains some of the most beautiful forms and finely colored species, both in tint and pattern, amorig bivalve shells. There are upwards of 150 living species, and the fossil species are also numerous, and chiefly found in the tertiary strata. There have been about sixty tertiary species named from the formations of the United States. Venus mercenaria is an inhabitant of both coasts of the North Atlantic, and is used for food. In the markets of Philadelphia it bears the name of clam, and in Boston that of cwahog. The colored margin of the shell was used by the aborigines in the manufacture of their wampum. Cytherea dione ($p l .77$, fig. 37) is remarkable for its longitudinal sulcations, and the double rows of long spines posteriorly.

Fam. 8. Crassatellida. This family is represented by the genns Crassatella, the molluse of which being unknown, its affinities are doubtful. There are about twenty recent species known, and a considerable number of fossil ones, chiefly tertiary, but also cretaceous. Some authors place the genus Astarte (also called Crassina) here, but Deshayes thinks the molluse (which is unknown) has an affinity with Venus.

Class 2. Gastropoda.

This class includes most mollusea with univalve shells, whether spiral or not, as well as species without a shell. The head, absent in the Acephala, is here present; and on its presence Blainville's appellation of Paracephalophora is founded, a character which is of more importance than the foot.

Order 1. Polythatami.. This, the first systematic name applied to these animals, was proposed by Soldani, 1789. More recently they have been studied by D'Orbigny, who is the chief authority upon them, and by Dujardin. The original name is defective, and both these authors have conferred French names upon them, in contempt of those rules which keep nomenclature pure and uniform, names which are of no more account than the German name Bauchfiuszler instead of gasteropoda ; and should the systematic name be adopted subsequently to such a vernacular one, and be a translation of it, the author of the latter cannot be quoted for the systematic name.
These animals have been also named Foraminifera and Rhizophoda. Their classification is difficult. Their shell bears a distant resemblance to that of certain cephalopoda, and on this account they were for a considerable period referred to this class. D'Orbigny considers them as a distinct class between the Echinodermata and Zoophyta, and Dujardin regards them as acalephæ, and as allied to infusorial forms like Amiba and Difflugia. Agassiz regards them as the lowest form of the gasteropodous mollusca, and we place them provisionally here, although they seem to have neither head nor foot, two important organs in this class. The apparent want of viscera indicates a position below that of the Bryozoa, and although the locomotive organs may be assumed as giving them a higher position, these are probably merely a modification of the tentacles.

These animals are microscopic, glutinous, and translucent, but tinted with bluish, reddish, brown, or yellow, the tints being uniform in each species. The soft parts are inclosed in a calcareons (rarely cartilaginous) shell, fitted to the varied outline of the body, and presenting numerons variations in form, affording characters for genera and higher groups. It has one or more openings, or numerons pores, which allow egress to certain filaments used as organs of locomotion. These can be extended to six times the diameter of the body, and they recall the allied organs in the Echinodermata and Cirrigrada. They are ramified like the branches of a tree, and have the power of secreting calcareous matter upon the outside of the shell, in which they resemble the extensions of the mantle in some orders. The characteristic name Rhizopoda of authors, has been drawn from these filaments.
The Polythalamia inhabit most seas, and they are so abundant that D'Orbigny calculated that an ounce of sand from the Antilles contained $3,540,000$ individuals. The same author informs us that these little beings from a sixth to half a millimetre long, are more abundant than the minute crustacea, or the infusoria whose shields form the tripoli of commerce. Banks are formed by them dangerous to navigation; they obstruct bays and straits, of which the celebrated harbor of Alexandria is an example; and with the coralligenous zoophyta they form reefs and islands.

In a fussil condition they are no less conspicnous. In Russia calcareous beds are formed by a single species of Fusulina, and rarious species enter largely into the composition of chalk and certain tertiary formations. They are so aboudant as in some cases to amount to $3,000,000,000$ in a cubic metre; and the city of Paris and the surrounding towns are almost built of them, so abundant are they in the materials used. Dr. Buckland makes the following remarks: "Nummulites are so called from their resemblance to a piece of money; they vary in size from that of a crown piece [!] to microscopic littleness, and occupy an important place in the history of fossil shells, on account of the prodigious extent to which they are accumulated in the later members of the secondary, and in many of the tertiary strata. They are often piled on each other nearly in as close contact as the grains in a heap of corn. In this state they form a considerable portion of the eutire bulk of many extensive mountains, e.g. in the tertiary limestones of Verona and Monte Bolca, and in secondary strata of the cretaceous formation in the Alps, Carpathians, and Pyrenees. Some of the pyramids and the sphins of Egypt are composed of limestone loaded with nummulites. It is impossible to see such mountain masses of the remains of a single family of shells thus added to the solid materials of the globe, without recollecting that each individual shell once held an important place within the body of a living animal ; and thus recalling our imagination to those distant epochs when the waters of the ocean which then covered Europe were filled with floating swarms of these extinct molluses, thick as the countless myriads of Beroe and Clio borealis that now crowd the waters of the polar seas. Lamarek, in his observations on Miliola, remarks that these very minute animals have had much more influence on the masses which
compose the surface or exterior crust of our globe than the remains of elephants, hippopotami, and whales."

Viewing this group as a class, D'Orbigny divides it into six orders, each of which, excepting the first, is subdivided into two families. Of the recent species, 68 genera and 900 species are known, more than half of which belong to the warm seas. D'Orbigny's opinion of their classification is as follows: Though less complicated in their*organization than many zoophyta, they have not a common life, nor are they aggregated like them, whilst their locomotive powers and testaceous envelope place them much higher. On the other hand they are in all respects less complete than the echinodermata; and judging from the radiation of their filaments, the position of the foraminifera is in Cuvier's radiated division, between the Echinodermata and the Zoophyta, as a distinct class.

Order 2. Pteropoda. This order takes its name from two large expansions, one on each side anteriorly, which are analogous to the wings of a butterfly both in appearance and action, being used in locomotion. This order was considered by Lamarck and Cuvier to form a distinct class, but Blainville and other distinguished naturalists are of opinion that its contents are essentially gasteropoda. Some species, as Clio borenlis (pl. 76, fig. 78, one inch long), are naked; others, as Myalcoa, are provided with a delicate shell. These molluses are monoicous, and swim about in the sea without the power of creeping or attaching themselves to solid bodies. This order contains the families Hyalwida, Clioüda, and Phillirhoüda. In Hyalæa the branchiæ are composed of pectiniform transverse laminæ or leaves,* a character which would afford a name for the order in consonance with those of the allied orders, because Cuvier's name, Heteropoda, appertains to the group as a class.

Fam. 1. Hyalcida. The shell of Hyalra has a delicate texture and curions form, bearing a distant resemblance to that of Terebratula, to which the genus was at one time referred. The shell which covers the abdomen is translucent, subglobular, and has the appearance of a bivalve in which the two valves unite in a single piece without a hinge. The molluse has two stout tentacles and two lips, and the wing-like expansions are placed near the mouth. They live in the high seas, seldom approaching the shores, flapping themselves along with great facility, and descending when disturbed. Being extremely abundant where they occur, they are devoured in great numbers by whales and other animals. Cleodora and Limacina are other genera.

Fam. 2. Clioïdce. Clio has six retractile tentacles in two groups, and a rudimentary foot. Clio borealis is abundant in the north polar regions, where it is eaten by whales and fishes.

Fam. 3. Phillirhoïdce. The head of Phylliroë is lengthened, and bears two tentacles, the snout is retractile, and the body is gelatinous and transparent, very much compressed laterally, and provided with a caudal fin. According to Peron and Lesueur the branchiæ are internal, and in the form

[^5]of granular cords, but Quor and Gaimard could not detect these organs. Some authors place this family among the Caryobranchia.

Order 3. Caryobranchia. The body is gelatinous, transparent, and capable of being enlarged by absorbing water. The head is proboscidiform; the foot is long, compressed, or vertical, provided with a little sucker, and used as a fin in swimming. The animal is usually inverted in the water, the foot being above. The branchir are pectinated, and arranged around a nucleus, whence the name of the order. Some of the Heteropoda of Lamarck belong here. The order has the additional half Latin and half Greek hybrid name Nucleobranchia, which is inadmissible.

Fam. 1. Atlantidce. The genus Atlanta has an extremely delicate, vitreous, transparent shell, shaped like planorbis, with the aperture trumpetshaped, with one side deeply excised, and having a closely fitting operculum, of the same texture as the shell, the spire projecting from one side. The mollusc is spiral and compressed, the foot large, compressed, and provided with a sinall sucker above. Eyes two, behind the tentacles. This genus is found far at sea, swimming with great facility, and sinking when not in action. Deshayes thinks the fossil genus Bellerophon is allied to this genus in its natural affinities.

Fum. 2. Carinariidle. The shell of Carinaria is extremely delicate, and much smaller than the animal ($p l .7 t, f i g .17$, on the right hand below). Its resemblance in form, and in having a single chamber, incluced some authors formerly to place it near Argonoutce ($p l .76, f(g .17$), with which the animal has no affinity. The molluse is gelatinous, transparent, and rough; the eyes two, situated at the base of the tentacles. The heart and branchix are contained in the shell, and opposite to this is the compressed foot (or ventral fin), the posterior extremity being provided with another fin. The Carinarie are found at sea, and are supposed to feed upon minute crustacea. They can attach themselves to floating bodies with the aid of the sucker upon the foot.

Fam. 3. P'terotracheidce. This family is allied to the preceding one, but the tentacles and shell are wanting. The former are reduced to tubercles (or entirely absent) with the eyes on the outside of their base. A membrane supplies the place of the shell of Carinaria. Pterotrachea (also named Firola) is the principal genus. The habits are identical with those of Carinaria.

Fam. 4. Pterosomicta. Composed of the genus Pterosoma, in which the body is cylindrical, surrounded horizontally with a broad marginal membrane used in swimming. Neither tentacles nor branchise were observed. P. plana is nine centimetres long, and inhabits the sea between the Moluccas and New Guinea.

Order 4. Gymnobranciila (also known by the hybrid term of Nudibranchia). The members of this family are without a shell or a branchial cavity, the organs of respiration are in the form of external appendages upon the back, and their distribution and shape afford characters for the families. The embryonic young have a shell, and they remind us somewhat of Atlanta. These animals are monoicous; they have a large flat disc or
foot to more upon, and their food is either vegetable or animal, some preferring one kind and some another.

Fam. 1. Dorididue. In this family the branchial plumes surround the vent in the form of a flower, situated upon the upper surface towards the posterior extremity ($p l .77$, figs. 16, 17). The upper part is composed of a kind of large mantle, the jaws are corneous, the tentacles four in number, two dorsal and two labial. The dorsal tentacles and the branchise are sometimes retractile.

Doris includes many species whose brilliant coloring renders them conspicuous objects. The dorsal tentacles have transverse ridges varionsly disposed in the different species; the branchire are subdivided in a regular manner, but not uniformly in the different species. The eggs are deposited to the number of several thousand in a ribbon-shaped mass attached by its edge to extraneous objects, and wound in a spiral, varying from one to five or more turns. These animals live upon stones and marine plants; they move very slowly, and are not much addicted to locomotion. The length varies from about half an inch to six or seven inches.

Fam. 2. Tritoniudce. In this family there is a membranous veil or expansion in front, above the mouth (p l. 7 T, $f i g .2$); the branchire are in two longitudinal rows, and laminated, plumose, or papillate; two dorsal retractile tentacles. Tritonia ($p l .74$, fiy. 20), Tethys (pl. 77, fig. 2).

Fam. 3. Eolidida. "Branchiæ papillose or branched, arranged on the sides of the back; stomach simple." (Alder and IIancock.) These authors divide this family into two sub-families, Malibreince and Eolidine, to which Glaucinae may be added. The first contains the genus Dendronotus, of which D. arborescens, Muller, is found upon both sides of the North Atlantic. It is beantifully figured from specimens taken at Boston, by Mr. Couthouy, in the Bost. Jour. Nat. Hist., vol. v. Dr. Gould compares its branchiæ to some fifteen or twenty widely and numerously branched plants. See his Invertebrata of Massachusetts, pp. 4-7, for descriptions of various species in this order.

In Eolis the branchiæ are elongated papillæ resembling short cords arranged in longitudinal rows, and sometimes so numerous as to cover the back entirely. Eolis salmonàcea of Couthouy has about a hundred of them. They are frequently tinted with several bright colors, when they add much to the beauty of the various species.

Glaucus has the branchix (which are used in swimming) in symmetrical pairs upon each side, each being a wing-like projection, with the margin fringed with numerous filaments. There are three or four pair, according to the species, the anterior being the largest, and the remaining ones becoming gradually smaller. Deshayes doubts whether these organs are branchir, since they are cast off by the animal when disturbed; and indeed Couthouy expresses the same doubt in the case of Eolis, from which they can be cast off, and, when cut off, the animal does not seem to suffer much. He regards them as accessory to the general surface in the operation of oxygenating the system. The papillæ in one species dissected by Alder and Hancock contain a hepatic gland in the middle, and a circulation of
blood towards the margin. The surface is covered with vibrillæ, so that they must be used in breathing, although the general surface may be adapted to this function.

Fam. 4. Plachobranchidu. Founded upon the single genus Plachobranchus of Van Hasselt. The body has broad lateral expansions used as swimming organs, and these, and also the back, are covered with branchial lamellæ. The expansions can be turned upwards, and their margins made to meet over the back. P. ocellatus, two inches long, was found at Java.

Order 5. Crypsibranchia (also known by the inadmissible name of Tectibranchia). The branchiæ are unsymmetrical, composed of leaves more or less divided, and they are covered by the upturned mantle. These animals are monoicous, and are comprised in the two families Aplysiidce and Bullidce.

Aplysia (pl. 77, fig. 18) was named lepus marinus by the ancient authors, and many fables entered into its history. The shape is not much unlike that of a naked snail, but the body is larger posteriorly. There are two pair of tentacles, the anterior ones being the largest, and of such a form (in connexion with that of the body) as to suggest the name of sect hare for the animal. The branchire are in a cavity protected by an operculum containing a thin corneous body, which is a rudimentary shell, and have their parietes composed of interlaced fibres; they are pierced with numerous small holes through which the blood may escape into the stomach, and the vascular system receive the liquid products of digestion.

The species of Aplysia are found upon the coasts of continents and islands at no great depth, some crawling upon rocks or hiding in their crevices; others hiding in the mud or sand, but with the branchial siphon exposed. Their food is marine plants or animals. The shell in the different species varies in texture, some approaching the solid shell of Dolabella, and the change is so gradual, that Rang, the chief authority upon these genera, considers the latter genus merely a section of Aplysia.

Fam. 2. Bullidu. The chief genera of this family are the allied Bulla, with the shell external; and Bullæa with the shell internal. In Bulla (B. $p h y s i s, p l .76, f i g .3)$ the tentacles are wanting, the shell is thin in texture, subglobular, more or less completely enrolled, and having the aperture the entire length of the shell.

Order 6. Hypobranchia (also incorrectly named Inferobranchia). This order is named from the position of the branchiæ under the margin of the mantle. It contains three families, represented by the genera Phyllitia, Pleurobranchus, and Umbrella.

Fam. 1. Phyllidiudce. Diphyllidia (pl. 74, fig. 19) is oblong oval, with a coriaceous rough integument, forming a prominent lateral border. The branchiæ surround the body, and are in the form of transverse lamellæ; there are four tentacles, two of which are superior and retractile.

Fam. 2. Pleurobranchidce. In Pleurobranchus the branchiæ resemble a fringe formed of laminæ, on each side of a medial branch placed in a groore upon the right side between the mantle and foot. The animal is shaped
like a slug (Limax) or naked snail; and it has a small internal flat thin shell, and four tentacles.

Fum. 3. Umbrellidce. This family is monoicous; the branchiæ are foliaceons, and disposed in a long line upon the right side. Umbrella has a discoidal, external, dorsal shell, bearing some resemblance to that of a very flat Patella; a very large foot, and four tentacles. Some authors consider this family as a distinct order under the name of Pomatobranchia.

Order 7. Cyclobranchia. In this order the branchiæ, as the name indicates, are arranged in a circle around the body above the foot. It contains the two families Patcllider and Chitonicle, both of which are monoicous, and have a long tongue armed with teeth. Blainville named this order Cervicobranchia, from an erroneous opinion that the organs generally received as branchiæ are merely membranous plaits without the function of branchiæ, which he supposed should be looked for in a sae. above the neck.

Fam. 1. Patellidac. The genus Patella ($p 7.75$, figs. 76, 77, 79) has a simple conical shell with an oval or circular base; inside with a submarginal cicatrix open in front. The shell covers the animal like an inverted cup. The animal is monoicous, creeping slowly upon a large foot, with which it can adhere with great tenacity to rocks. Some species seem not to more, except perhaps at long intervals, as they are found in depressions which they have formed in the rocks, and which correspond to the outline of the shell.

Fam. 2. Chitonidce. The shell of Chiton ($p l .76, f i g .55$) differs su much from that of Patella, that its position among the Mollusca was for a long time doubtful. An examination of the animals of both genera at length proved them to belong to allied families. The shell is oval, and divided transversely into eight pieces resting upon the back of the animal, with the lateral portions united by a coriaceous border. Thus constructed, the Chitons have the power of bending themselves together. The tentacles and eyes are wanting, but the former are replaced by a veil. Their habits are similar to those of Patella. In Chitonellus the animal is long and narrow, and the border of the shell extends so far upon the back that the dorsal plates are reduced to a small size.

Order 8. Aspidobranchia (also incorrectly named Scutibranchia). In this order the shell is allied to that of Patella in form, but it is emarginate, or perforate. The order is divided into the two families Fissurellide and Calyptreida.

Fam. 1. Fissurellidce. The shell of Fissurella, with the perforation through the apex, bears a distant resemblance to a key-hole scutcheon, and, excepting the perforation, resembles that of a Patella; but it is often too small to cover the animal. The perforation admits water to the branchiæ, and allows the fæcal matter to be excluded. There are two pectinated branchire in a cavity at the anterior part of the back; and two tentacles, with the eyes at their external base. Fissurella graeca (pl. 75, fig. s0). Emarginula (fig. 82) differs from Fissurella in having the aperture which admits water to the branchiæ removed to the anterior margin of the
shell, where it forms a notch ; and the apex of the shell is directed backwards, whilst in Fissurella it turns forwards.

Fam. 2. Calyptraida. The shell of Calyptrea is patelliform or trochiform, irregular, somewhat conical, with the apex rather posterior. Towards the apex of the inside there is a plate which is sometimes funnel-shaped, and sometimes like the vertical half of a funnel. In other species it forms a spiral, which approximates the sheil to that of the spirivalve genera. The animal is not spiral, the two tentacles are large and triangular, having the eyes upon an enlargement of the external side; the branchial cavity is large and oblique, and the branchiæ are pectinated, filamentous, and exsertile. Calyptrcea sinensis ($p l .75$, fig. 78).

Crepidula has an ovate or oblong shell, generally convex above, the internal cavity divided some distance by a shelly diaphragm which represents the plate in Calyptræa, and above which the viscera are placed. The animals of these two genera are alike, and the shells of some species present intermediate characters, so that it is difficult to tell to which of the two genera they should be referred. The Crepidulæ are sedentary, seating themselves upon stones, or upon each other, and adapting the margin of their shells to the irregularities of the object upon which they place themselves.

Order 9. Nematobranchia (or Cirrhobranchia). The genus Dentalium ($p l .75$, figs. $73-75$) was for a long time believed to belong to the Annellida, until dissection proved it to be a mollusc. The shell is a long, slender, and slightly curved cone, open at both ends, and sometimes ribbed or striate externally, as in D. elephantinum (fig.73). The convex part of the shell corresponds to the back of the mollusc. The branchiæ are composed of zumerous extensible filaments forming a bundle upon each side of the neck, and it is probable that the branchiæ can be used to convey food to the month. The vent is at the posterior or smaller end of the shell, the lips are scolloped into a number of palpiform projections, and the ordinary tentacles and eyes are absent. The animal lives vertically in the sand with the head downwards. There are some, shells which closely resemble those of Dentalium, and which were classed with them until it was ascertained that their animal is an annellid. They form the genus Ditrupa.

Order 10. Ctenobranchia (also named Pectinibranchia). This is an extensive order of dioicous spirivalve mollusca, in which the branchiæ are pectinated, one or two in number, and placed in a large cavity above the neck; the tongue is armed with numerous teeth, the tentacles and eyes are usually two in number, and the aperture is usually closed by an operculum. Most of the families are marine, but some inhabit fresh water. The families are as follows: 1, Melaniidæ; 2, Cerithiidæ; 3, Vermetidæ; 4, Trochidæ; 5, Pyramidellidæ; 6, Buccinidæ; 7, Purpuridæ; 8, Strombidæ; 9, Conidæ; 10, Cypræidæ; 11, Volutidæ; 12, Sigaretidæ.

Fam. 1. Melaniidcc. Menke's corresponding family named Turbinea is inapplicable, because in its various modifications it is used for the family to which Turbo belongs, by Lamarck and Deshayes, and by Blainville for a family of Polythalamia. Some of the genera of this family inhabit the sea,
and others the fresh waters. The mantle is simple, without fringe or siphon; the head ends in a short trunk, and the food is vegetable, chiefly decaying alga. The family contains a number of sub-families, the limits of which are not well ascertained. Melania amarula (pl. 75, fig. 90).

Littorina is a genus of small marine shells which inhabit the coasts. L. tenebrosa, which inhabits both sides of the North Atlantic, leaves the water for hours, climbing up the grass of the salt meadows. According to Dr. Gould, it may be found " at a considerable distance from any water." He remarks, also, that "it lives a week or more after being removed from the water." The species vary very much in their specific characters. Planaxis and Eulima are placed in this family, as well as Turritella (a shell much like $p l .75$, fig. 117, but with the aperture entire), but as the mantle is stated to be scolloped, it seems to be more nearly allied to the Cerithiidæ. The mantle of Scalaria (pl. 75, fig. 101, S. clathrus; fig. 102, S. scalaris) not having been described, its place remains doubtful, although it probably comes near to Turritella.

Paludina is a genus of freshwater shells of a subglobular or conical form, usually covered with a greenish periostraca, and sometimes ornamented with bands, as in $p l .75$, fig. 95 , which represents the shell of P. viviparca of Europe and the United States, but the animal is incorrectly drawn, so as to resemble a land snail. The foot is a large, flat body, with the sides parallel, truncated in front and rounded behind; the tentacles snbulate, not annulated, and bearing the eyes upon an enlargement of their external side. Paludina decisa is about half an inch long, of a fine green color, and is widely distributed in the United States. The animal is figured in the Freshwater Univalve Mollusea of the United States.

Amnicola resembles a minute Paludina in the form of the shell, but the operculum is subspiral, and not concentric as in that genus.

Valvata is a genus of small shells much like Amnicola, but the aperture is circular and the operculum concentric. The branchire are exserted, and in the form of a minute plume. An exserted organ like a single thread is supposed to be an accessory branchia.

Paludina, Valvata, and A mpullaria, from Lamarck's family Peristomata; and Cuvier and Swainson placed them under a division of which Turbo is the type.

Melania is the type of the sub-family Melaniinæ, which includes a number of genera, among which are Melania, Melanopsis, Pirena, and Anculosa. In Melania the shell is solid, turreted, with a greenish or blackish periostraca, the aperture elliptical, the external margin sharp, and the operculum corneous and subspiral. The species live upon calcareons rocks, or upon the ordinary bottom of the rivers, especially in those of the United States. The zoological characters of the genus are given in the American Journal of Science, 1841, vol. xli. p. 21.

Leptoxis (or Anculosa) is allied to Melania, but the shell is shorter. The animal atteches itself to rocks where the current is very rapid, and it seldom moves from its position. The history of this genus is given in Chenu's Illustrations Conchyologiques, where it is illustrated by 170 figures. The
genus seems to be confined to the rivers of North America. Rafinesque's generic name Leptoxis was published two years before Say's Anculosa. Some authors suppose the former to be a genus of Physidæ, but the question is settled by some manuscript drawings of the former author, which represent the shell, tentacles, and operculum of Anculosa.

Melanopsis is allied to Anculosa, and the species seem to be confined to Europe. It is probable that the few described species of European Melania belong in reality to Melanopsis.

Say's Melania armigera (and also Lea's M. duttonana and M. Catenoides), belongs to Rafinesque's genus Pleurocera, in which there is a short straight canal anteriorly, and when this canal is lengthened as in Fusus, the genus Io of Lea is the result. Strepoma of Rafinesque (or Ceriphasia of Swainson) are slightly different forms, in which the aperture and the vertical plane formed by the anterior portion of the whirls, bear some resemblance to the same parts in Cerithium telescopium.

Fusus fluvialis of Say is the type of $I o$, and as it would be an anomaly to find a genus so decidedly marine as Fusus inhabiting fresh waters, it becomes a matter of interest to know the animal of the American shell. This was observed in 1841, in its native waters in Holston, Powel's, and Clinch rivers, in eastern Tennessee, by Halderman, who made a drawing of the living animal. Its characters and habits are not those of Fesus, but of Melania proper, as distinguished from Leptoxis; for although it inhabits the rapids as well as quiet water, in both cases it avoids the current by seeking shelter beneath shelving rocks, or in hollows or crevices in them. The head is large, and with the tentacles much exposed; the foot is as large as in Melania; the coloration is the same (black lines upon an orange ground); the operculum is subspiral as in Melania, the mantle extends into the canal of the shell, but does not form a closed siphon ; the vent is upon the right side; the mouth is a longitudinal slit; the eyes (which are sensitive to the light) are upon a short enlargement of the outer base of the tentacles, which may be a little longer than in Melania, and they are not visibly annulated. It differs from Fusus, and resembles Melania in living upon vegetable food; and it moves along in a sluggish manner, moving the head from side to side upon the bottom. Io spinosa and I. tenebrosa are merely varietics of I. Aluvialis. The spinose individuals are much the most abundant, although the species is rare when compared with various species of Melania.

Quoy and Gaimard, to whom the science of Malacology is indebted for a knowledge of the animals of many shells, have figured a number of species as belonging to Melania, the shells of which cannot be distinguished from those of that genus, whilst in the figures the mantle is represented as scolloped. Similar species were drawn in the course of the United States Exploring Expedition. These species must be placed in the family Cerithiidæ.

Fam. 2. Cerithiide. The genus Cerithium (pl. 75, figs. 105-109) are remarkable for the great number of species both recent and fossil (tertiary) which it contains. The animal has the general character of Melania, except, that the mantle is scolloped.

The number of species and varieties being so great in this genus, Lamarck was led to doubt the permanency of species, and he judged that those which seemed better established in other cases, would present equal uncertainty were their number greatly increased.

Fam. 3. Vermetidce. The genus Vermetus (V.lumbricalis, pl. 75, fiy. 69) has a loosely and irregularly coiled shell affixed by its posterior extremity. As the animal enlarges it increases the size of the shell, and mores forward in it, cutting off the empty posterior portion by a diaphragm from time to time. The animal is much like that of Turbo or Delphinula, the foot (as there is no locomotion) is olsolete, the posterior portion being adapted to support a thin operculum which closes the aperture. There are two tentacles, with the eyes at their base externally. There is a single branchia. Cuvier placed this genus, with Magilus and Siliquaria, in a distinct order named Tubulibranchia. In the genus Magilus the young has an ordinary short rentricose turbinated shell (having a distant resemblance to $p l .75$, fig. 91). We have seen, in the case of Aspergillum (p. 60), how a bivalve shell can take the form of a tubular one; and Magilus is an example of the same thing in a spirivalve one. The mimal inhabits cavities in living coral, and to prevent being buried by the growth of the surrounding material, it has the power of forming a tube, the margin of which it builds up as the coral increases, so that the aperture retains the level of the general surface. The tube thus attains five or six times the length of the original shell, and it assumes various curves and irregularities, depending upon the growth of the coral.

Fam. 4. Trochidu. The members of this family are herbivorous, and most of them have the mantle or foot ornamented with tentacular appendages. The shell of Trochus is short and conical, solid, and nacreous. The genera Trochus (T. solaris, pl. 75, fig. 106; T. magus, fig. 107; Turbo, fig. 103) Monodonto and Delphinula (D. delphinus, fig. 104) are nearly allied, and the animals do not differ. In Solarium (S. perspectivum, pl. 75, fig. 108), the shell and animal differ, the head not being proboscidiform.

Janthina ianthina ($p l .75$, fig. 96) is the type of a sub-family, distinguished by the possession of an apparatus which enables the animal to float at the surface of the sea. The name is derived from the Greek word for violet, the shells of all the species being of this color. The shell is trochoidal and very fragile, having the right side of the aperture sharp, and often notched. The animal has a large proboscidiform head, two tentacles, and eyes; the mantle with an expansion said to be used in swimming; the foot with an appendage or float formed of a great number of air-vesicles. This appendage can be cast off and renewed. The latter process was observed by Dr. Reynell Coates, who describes it as being formed by inclosing a bubble of air in a cavity formed by contracting the margin of the foot, which then secretes a covering for it. The eggs are attached to the under surface of the float, and subsequently cast off with it. This animal was first described and figured by Fabius Columna, in 1616.

In Hatiotis (II. tuberculata, pl. T5, fig. 86), the shell is ear-shaped, much depressed, very short and flat, the aperture longer than wide, and as large as the base of the shell, left side with a sub-marginal row of perforations;
nacre very brilliant and iridescent. As the animal increases in size a new hole is formed in the shell, and the oldest one is, closed. The head is proboscidiform, with two long tentacles, each with an oculiferous peduncle; foot large, provided above with a double membrane scolloped into leaflets of a very ornamental character. The water is admitted to the branchir through the holes in the shell, which also allow certain filamentous appendages of the mantle to protrude through them. There are two pectinated branchiæ. The genus Stomatia is allied to Haliotis, but the shell has no perforations. This sub-family was included by Cuvier among the Aspidobranchia, but Deshayes assigns good reasons for placing it among the Ctenobranchia.

Neritina (N. fluviatilis, pl. 75, fig. 87) is a genus of small sub-globular or oval fluviatile shells, with a semi-circular aperture closed by a calcareons operculum. The two tentacles are long, and each is accompanied by a short secondary tentacle, with an eye upon its summit.

Fum. 5. Pypamidellidue. This is a small family, composed of the genera Pypamidella and Tornatella.

Fam. 6. Buccinidue. In Buccinum (B. undatum, pl. 75, fig. 120), the foot is narrow, the head small, continued in a proboscis, with two tentacles, each having an exterior oculiferons peduncle; siphon protruding; sexes distinct, the male with a long exterior organ from the right side of the neck; shell oblong-oval, with a notcli anteriorly. The species figured inhabits both sides of the North Atlantic. The genus has numerous species, both recent and fossil. Nassa and Eburna belong to this family. Eburna glebbrata is an Ancillaria, and Deshayes thinks the remaining species of Eburna should be merged into Buccinum.

Fam. 7. Purpuridue. This marine fanily is mostly carnivorous; the water is taken to the branchire through a siphon, which passes out of the notch or canal at the anterior part of the shell. The eyes and tentacles are two in number, and the proboscis is well developed. The operculum is thin, and much smaller than the aperture, to allow the animal to withdraw some distance within the shell. Cancellaria is placed in this family, although it has no operculum, and lives upon vegetable food. The animal resembles Purpura.

Purpura lapillus (pl. 75, fiy. 118) is about an inch long, and abundant on rocky coasts on both sides of the Atlantic.

Pleurotoma (P. babylonic, pl. 75, fig. 110) is a genus with an elongated spire, a straight canal, and a narrow notch posteriorly in the right lip of the shell, corresponding to a notch in the mantle. The species of this genus are numerous, amounting to over a hundred of recent, and more than this number of fossil tertiary species. There have been nearly fifty species described from the tertiary formations of the United States.
Murex (M. ramosa, pl. 75, fig. 111 ; M. haustellum, fig. 112 ; M. tribulus, fig. 113). Rondeletius and Aldrovandi have treated of this and some allied genera. The genus murex of Linnæus was founded in 1758 , but Rondeletius had named several of the species purpura, under the belief of their being the purpurce of Pliny, which were supposed to furnish the purple of the Tyrians. The shell named Murex by Pliny and Rondeletius, belongs to the modern genus Stro nbus. Murex is a genus of
rongh shells, with ridges, spines, or tubercles, which are secreted periodically, in three or four rows around the shell. The right margin of the mantle is divided into lobes, the irregularities of which account for those of the shell in the different species. There are about 170 recent and 1.30 tertiary fossil species known.

Harpa (II. ventricosa, pl. $75, f g y .119$) is a genus of finely formed ribbed shells of brilliant colors, and a polished exterior. The foot is very large, and without an operculum. Ten species are described in Lamarck. The genus occurs fossil in the Paris basin.

Cassidaric (C. echinophora, pl. 75, fy. 121). This genus contains a few recent and fossil species. The animal is like that of Cassis, in which the foot is longer than the shell, the head proboscidiform, with a projecting rostrum and mouth from its extremity.

Fusus is a genus of marine shells, thickest in the middle, and tapering towards both ends; the animal with a small head, ending in two short tentacles, the eyes at their external base, but not upon a peduncle or thickening of the tentacle, thus differing from Murex and Purpura, but allied to Turbinella and Fasciolaria. The head has a terminal slit, whence the rostrum issues, and the nucleus of the operculum is terminal.

Fam. 8. Strombida. In this family the right margin of the aperture is dilated, corresponding to the width of the mantle, but this character is not present in the immature shells, so that a young Strombus (pl. 75, fig. 114) might be mistaken for a Comus ($p l .76$, fig. 11). The head is proboscidiform, with a vertical slit from which a long rostrum is extended; the tentacles are large, divided at the end, and the truncated extremity of the larger external branch bears the large eyes, which have a variously colored iris and a cornea, which have not been observed in any of the allied families. They live on coral banks at no great depth, and some species attain to a considerable size. The locomotion differs from that of most gastropoda, being effected by leaping, for which purpose the operculum (which has a peculiar shape) is applied to the ground. Strombus lentiginosus ($p l$. 75, fig. 114). S. gigas of the Antilles is eight or ten inches long, and remarkable for the fine peach blossom tint of the aperture. The shell is used to ornament grottoes and gardens, and by sawing off the apex it is converted into a rude trumpet. Pterocera (P. chiragra, pl. 75, fig. 115) differs from Strombus in having the adult shell digitated, and the structure of the mantle corresponding with it. Rostellaria (R. rectirostris, fig. 116).

Fam. 9. Conidw. The shell of the genus Comus (pl. 76, figs. 8-12) is obconical, involute, and has a short spire and a narrow aperture as long as the body whirl; and the exterior is covered with a periostraca. The genus includes many beautiful and highly prized species. Linnæus described 35 species, Bruguières 146, Lamarck 181, increased to 219 in the last edition of 1845 , exclusive of 23 European fossil species. At present there are probably 300 recent species known. The head is proboscidiform, the eyes are upon the middle of the tentacles, the foot is long and very narrow, having a corneous sub-spiral operculum, so small in comparison with the aperture, that it canot serve to close the shell. The mantle is scanty (in
which it differs from the next family), and prolonged in a siphon, which extends a little beyond the shell. The animal is carnivorous, and the tongue is armed with hooked teeth.

Fam. 10. Cyprceidce (or Involuta). In this family there is neither operculum nor periostraca, the shell is rolled upon itself nearly as in Conus, but some are rolled upon a cylindrical instead of a conical axis, so that there is no spire exposed. The shells are very beautiful and highly polished, the mantle being so wide that its sides can be turned over the back of the shell, where it secretes the ornamental layer of the shell. The point of union of the margins of the mantle is often indicated by a discolored line upon the back of the shell.

Cypreca (C. moneta, pl. 76, fig. 5; C. mauritiana, fig. 6; C. arabica, fig. 7), has the mantle edged with tentacular filaments, and when they are turned over the back, the shell is hidden. The aperture is long and narrow, each side denticulated, and the external margin turned in. C. moneta is used as money in western Africa.

Ovula (O. ovum, pl. 76, fig. 4 ; O. volva, fig. 2), as the name indicates, is shaped somewhat like an egg, with the ends attenuated, and the inner margin of the aperture without denticulations. The animal resembles that of Cyprea.

Oliva (O. ispidula, pl. 75, fig. 122; O. porphyria, fig. 125 ; O. maura, fig. 126) has the head very small, and the tentacles united at the base. These resemble somewhat the same organs in Strombus, being divided, and having a terminal eye upon one of the branches. O. porphyria is the largest and handsomest species of the genus, being four or more inches long, of a pale brownish purple, marked with numerous zigzag angular lines, and having the anterior extremity violet. It inhabits the coast of South America.

Fam.11. Volutidce. In this carnivorous family there are usually distinct folds upon the columella. Voluta is a genus of large and handsome, generally inoperculate shells, with a wide aperture notched in front, and the apex rounded. A part of the shell has sometimes the appearance of being varnished, which indicates the extent to which it is covered by the mantle. The animal cannot entirely enter the shell, the head is proboscidiform, and the tentacles are short, with the eyes at their external base.

Mitra (M. episcopalis, pl. 75, fig. 123; M. papalis, fig. 124) is a genus of handsome shells extremely rich in species, there being about 250 recent and 100 fossil species known. The animal is very dull in its movements, the head small and V-shaped, on account of the projection of the slender tentacles. These have the eyes upon an external peduncle. In Mitra episcopalis (shell white with red spots), the rostrum is once and a half times the length of the shell, exceeding that of any other genus. This enables it to attack its prey at some distance.

Terebra (T. maculata, pl. 75, fig. 117) has the foot (which bears an operculum) but little longer than the last whirl of the shell, a proboscidiform head, tentacles and eyes in the usual form, and the siphon projecting beyond the shell. There are upwards of a hundred recent species known.

Fam. 12. Sigaretidce. Sigaretus (S. haliotideus, pl. 75, fig. 89) is a
genus in which the shell is somewhat ear-shaped, and the foot very large and thick, nearly hiding the shell, which is sunk into it. The tentacles are flat and triangular, but unaccompanied by eyes. Although the animal is too large to enter the shell, it is provided with an operculum. Natica (N. canrena, pl. 75, fig. 88) is carnivorous like the preceding genus, and like it, has no siphon. It has a large foot (four or five times the length of the shell) bearing an operculum. The head is terminated by a pair of lips from which a rostrum can be protruded.

Order 11. Pnecmonobranchia. This order includes all the spirivalve and naked mollusca, whether inhabiting land or water, in which the branchir, without being proper lungs, are adapted for breathing air, so that the species which inhabit the water are obliged to come to the surface from time to time to breathe air. They seem all to be phytophagons. The order includes eight families.

Fam. 1. Ampullariidae. The genus Ampullaria has a globular shell several inches in size, which is generally covered with a green periostraca, and is provided with a closely fitting concentric operculum, which is in some cases corneons, and in others shelly. With Paludina and Valvata it forms one of Lamarck's families, named Peristomata by Reeve. The North American species is figured with the animal in the monograph already quoted. The head is proboscidiform, the extremity cleft, leaving a conical branch half an inch long on each side, and these are used as palpi. The mouth is purse-shaped, the tentacles slender, tapering, and more than an inch long, the eyes borne upon a secondary tubercle at the base externally. The shell is without a notch, yet there is a siphon an inch long which is formed by an extension of the mantle folded into a tube. This is brought to the surface of the water and air drawn through it, and often expelled from it in bubbles when beneath the surface. Guilding describes a shorter siphon upon the right side. The animal lives in the rice swamps of Georgia, feeding upon living plants. Living mostly in the intertropical regions of both hemispheres, where the waters frequently disappear in the dry season, Ampullaria has the porrer of becoming torpid beneath the mud until the return of the wet season. Some specimens sent from Egypt to France were thrown into water to clean them, and the next day they were found moving about. Deshayes dissected some of these, and found pectinated branchiæ, which would place the genus near Paludina, and he describes a large cavity, to which he assigns the function of holding a store of water to be supplied to the branchire during the period of torpidity. This may be correct; although a further examination will probably show that this cavity is adapted to breathe air, and on this account we place it in the present order. Planorbis bicarinatus (and probably its entire family) hybernates at the bottom of streams with the air cavity filled. The ability to breathe air and water by means of distinct organs is not anomalous, as it appears in certain reptiles. The sexes are separate.

Fam. 2. Amphibotida. The genus Amphibola (also named Ampullacera) has a sub-spiral corneous operculum, and is formed upon a New Zealand shell formerly considered to be an Ampullaria. It was found to breathe air
by Qnoy and Gaimard, who found it abundantly in very shallow brackish water. It has a large head ending in two lobes, is without tentacles, and the eyes are placed flat upon the head. The pulmonary cavity is large, in which it resembles that of Ampullaria. The sexes are united in the same individual. Two species are known, A. avellana and A. fragilis.

Fam. 3. Cyclostomidue. The genus Cyclostoma is monoicous; it has a turbinated shell with a circular aperture, and, unlike most land snails, it has a paucispiral operculum. The head is proboscidiform, the tentacles two, with the eyes at their external base; and the foot is composed of two longitudinal parts which are advanced alternately. Other species have a concentric operculum, and in these the foot has the ordinary construction. Curier and Deshayes consitler the mode of respiration less important than the general structure, and they are consequently of the opinion that the affinities of this family are with the Trochidx. The species are numerons, amounting to nearly 200.

Helicina may be considered the type of a sub-family. It has an oblique aperture, and a closely fitting operculum which is not sub-spiral, but increases from one of the sides or angles.

Fim. 4. Plysidtu. This family is composed of certain genera of inoperculate fragile uniformly colored shells, inhabiting quiet fresh waters, coming to the surface to breathe, and creeping along it with the back downwards by means of the vibrilla which cover the foot as well as the two tentacles and other parts. Many eggs are deposited together in a glairy mass. The breathing aperture is at the external side, and is opened from time to time to take in a supply of air. In Physa the shell is turbinated, sinistral, the mantle large, with a digitated margin turned upon the shell, and the foot long and pointed posteriorly. The tentacles are filiform, and the eyes are situated upon the head near their internal base. Planorbis (pl. 77, fig. 99) has a discoidal shell, with the turns visible on both sides. The mantle is simple, the foot rather small, and the tentacles and eyes as in Physa. In Limnca (L. stagnulis, pl. 75, fig. 92), the shell is dextral, turbinated, and generally larger than in the allied genera ; the tentacles are triangular, and the eyes situated at their anterior base. Ancylus is a genus of little patelliform shells, the position of which in the systems has been a subject of much dispute, some contending that they belong here, and others to the Hypobranchia. The animal is not essentially different from Limnea, and it is possible that some species breathe air, and others water. Some authors have asserted that they come to the surface to breathe air, but this has never been observed in the American species, some of which are found beneath stones, in dead bivalve shells, and under other circumstances, which would render it difficult for them to reach the surface and descend again. But as free air may not be considered necessary to these animals, they may be placed among the Plysadre, especially as a species of Physa inhabiting beneath shelving rocks in rapid water is found at the mouth of the Nolachucky river, Tennessee, in such a position that it could not breathe air. It is probable that a small variety of Physa heterostropha inhabiting springs seldom or never breathes air. It has been ascertained that frogs kept under water can oxygenate the system through the skin, and the

Physadæ may have the same porrer. The passage to the next family scems to be through Gray's genus Chilina, which is a Limnea with folds upon the columella.
Fam. 6. Auriculita. In this monoicous family there are two tentacles, and the eyes are at their external and posterior base. Some species inhabit land, and others plants near the sea, and salt water marshes. Auricula midce ($p l .76, f i y .1$) is the largest species of the genus, being four inches long, and of a solid texture.

Fam. 7. Ifelicida. This family includes most of the numerous species of land snails with an external spirivalve shell. All breathe frea air, are monoicous and inoperculate, and have two large tentacles, with an eye upon the apex, capable of being retracted by being turned within itself. Besides these, there is an inferior and smaller pair of tentacles present in most cases, although in some of the minute species they have not been detected. Most of the land shells of Europe and North America belong to Helix, a very extensive genus, containing upwards of 500 species from various parts of the globe, including the islands of the Pacific, all the continents, high mountains, and cold climates, although the larger species are intertropical. They vary in size from about a tenth of an inch to four inches. The shells vary much in form; the aperture is sometimes reduced to a narrow fissure, or armed with teeth, in such a manner as to lead one to think it impossible for the animal to get out or in. They hybernate under ground, closing the aperture with a temporary operculum. Among the genera may be mentioned Bulimus ($p 7.75$, figs. 93, 94), Clausilia (fig. 100), which has a peculiar operculum attached to the shell within the aperture, Pupa, Streptaxis, dec. Their food is fresh or decaying vegetable matter, and some feed upon fungi. The large European species are cooked and eaten, and the Romans fattened them for the table.

Fam. S. Limacidce. This family includes the naked snails without a turbinated shell, but some of them have an internal shell, or a small external one which is little more than an appendage. The head, tentacles, organization, habits, and food, do not differ essentially from those of the preceding family. The genus Limax (p l. 77, figs. 19-21) is destructive to the plants cultivated by the farmer and gardener in Europe, and new modes of destroying them are continually sought after. The species which occur in North America have not yet proved injurious, and the same remark applies to the snails, which are troublesome to gardeners in Europe. The body of Limax is very contractile, but when moving on its lower surface or foot, it is rather slender, thickest in the middle, and tapering towards the extremity. Upon the back is a kind of fleshy shield, beneath which the head can be drawn.

Class 3. Cephatopoda.

This class was named Malakia by Aristotle, and Mollia by Pliny. It includes certain dioicous marine mollusca, which have the feet or arms around the mouth at the extremity of the head. The body is soft, the
mantle closed beneath according to most authors, but above according to Rang. Most of them have three hearts. The mouth is armed with strong mandibles much like those of a parrot, adapted for crushing the shells of crustacea and mollusca, and the tongue is armed with pointed horny teeth. The eyes are either pedunculated or level with the surface, and they have the sense of vision fully developed. They have also an organ of hearing. The arms are usually cotyligerous, or studled with suckers like cupping glasses, which enable them to hold fish and other living prey. The Greeks, in naming these sucking cups, made use of the word kotylus (in composition), whence the English name cuttle-fish is derived. The cotyls are sometimes armed within with curved hooks, which assist in holding and destroying the prey. Onychoteuthis has a pair of arms much longer than the rest, the terminal expansion of which is studded with rows of hooks, but the power is increased by a simple sucker on each wrist (as it may be called), which are applied together to keep the extremities of the arms in contact.

There is a flesly infundibulum or funnel opening before the neck, and serving as an outlet for the fæces and water from the branchiæ. The water cjected from the branchial sac through the funnel is a principal agent in locomotion, by means of which the animal can move backwards with great swiftness. Inspiration and expiration are regular in these animals. "The first is effected," says Dr. Coldstream, "by a gradual dilatation of the sac in every direction, but particularly at the sides, accompanied by a subsidence of the lateral valves, collapse of the walls of the fumnel, and a rush of water through the lateral openings into the sac. Inspiration being completed, the lateral valves are closed, the sac is gradually contracted, the fumel erected and dilated, and the water expelled through it with great force in a continuous stream." An Octopus with a sac four inches long was found to respire ten times in a minute.

The Cephalopoda are either naked, or provided with an external shell. Some of the former are brilliantly colored, red, purple, or bluish, and they are remarkable for the rapidity and extent to which the colors change. In habits they are rapacious and active, moving continually, and some of them shoot through the water like an arrow.

Agassiz thinks that in this order the Nautilidx are the lowest, and Sepiadæ the highest. We will here follow the classification of D'Orbigny, according to which the class is divided into two orders, Acetabulifera and Tentaculifera, the former being subdivided into two tribes, Octopolla and Decapoda,* containing seven families conjointly. As the name implies, the Acetabulifera are provided with cotyls, and the head is distinct, characters which do not exist in the Tentaculifera; and the former have two, and the latter four branchix, whence Owen's names of Dibranchiata and Tetrabranchiata.

Tribe Octocera.

Fam. 1. Octopidue. The genus Octopus (O. octopodius, Linn. (Sepia) pl. 76, fig. 75) is the polypus of the ancients, whence the French name poulpe

[^6]is derived. The body is obtuse posteriorly, with fins (fin-like expansions), and the interior dorsal shell is wanting. As the name implies, it has eight arms. The species figured attains a length of two feet aud a half, including the arms, which constitute considerably the longest portion. It creeps upon the ground with the mouth downwards, drawing itself along by means of the circle of arms; or leaving the bottom, it swims backwards by flaping the fleshy disk from which the arms arise. It is provided with an ink bag. The eyes can be covered with the surrounding skin, in the manner of an eyelid. There are two complicated branchiæ somewhat like a fern leaf, through which the blood is forced, by a heart at the base of each; a third heart, near the bottom of the cavity, receires the oxy genated bloorl, and distributes it through the body. It is eaten on the shores of the Mediterranean.

Argonauta (A. argo, Linn., pl. T6, fig. 17), six or seven inches long, has a closely rolled involuted shell without partitions, laterally compressed, tuberculate, very thin, white, translucent, with the last turn including the rest. This is the Nautilus of the ancient authors, who were acquainted with A. argo, the Mediterranean species, about the sailing of which so many fables have been related, as in the following lines from the "Pelican Island."
> "Light as a flake of foam upon the wind, Keel upwards from the deep emerged a shell, Shaped like the moon ere half her horn is filled; Fraught with young life, it righted as it rose, And moved at will along the yielding water. The native pilot of this little bark, Put out a tier of oars on either side, Spread to the wafting breeze a twofold sail, And mounted up and glided down the billow In happy freedom, pleased to feel the air, And wander in the luxury of light."

For a long time naturalists considered the maker of the shell of Argonauta to be unknown, believing the inhabitant found in it to be a parasite, like the crabs which take possession of the empty shells of the spirivalve mollusca; and they were led to this belief, by the fact that there is no muscular attachment between the animal and the shell, presenting a peculiarity which is unique among the mollusca. The animal has eight arms, two of which have wide expansions at the extremity, which are applied one to each side of the shell, which is in fact secreted by their internal surface; and should it be intentionally broken, the damage is repaired by the same organs in ten or twelve days, a proof that the shell belongs to no other animal. It creeps upon the bottom with the shell above, or shoots through the water backwards by means of the funnel, with the narrow part of the shell in advance, and the arms extended like a rudder. When it retires within the shell, the expansions of the clasping arms are partly withdrawn, leaving a little of the anterior portion of the shell uncovered; consequently, they are never extended as sails, as many fabulous accounts would lead us to believe. See the Mag. Nat. Hist., 1839, pp. 421 and $521 ; 1840, \mathrm{pp} .8$ and 57.

Tribe Decacera.

Fam. 2. Seprictue. Sepia (p) 76 , fig. 7τ) has the body sumrounded by a narrow fin; and of the ten ams, two are pedunculated and longer than the rest. A light friable oblong-oval and spongy shell, usually named "cuttlebone," is contained within the back. The contents of the ink-bag in this animal are dried and used by painters under the name of sepia.

Fam. 3. Loligida. Loligo (L. loligo, Linn., pl. 76, fig. 76) has the body slender, with lateral fins, the shell thin, horny, and translucent; tire pedunculated arms longer than the rest, and the eyes are without a lid, bui covered with a transparent membrane. Its motion backwards through the water by means of its funnel, is extremely rapid, and it sometimes throws itself out of the water, or upon land. The species are much used for food, especially in China.

Fam. 4. Loligopsida. Loligopsis has a slow motion, the shell is corneons, the body slender and translucent, and has few muscles.

Fam. 5. Teuthididle. Onychoteuthis (already referred to) has a corneons internal shell, a slender body, with a triangular fin upon each side posteriorly, uniting upon the back.

Fum. 6. Belemnititce. Shell cornenus, conical, largest anteriorly, and containing a series of chambers, posteriorly pierced by a siphuncle, and inserted in a hard case or belemnon, which is generally pointed posteriorly. The family is extinct, but its remains are abundant in a fossil state in the oolitic and cretaceous formations.
Fum. 7. Spirulida. The genus Spirula (S. spirula, pl. 76, fig.13) is the only one in the family, and until recently it contained but a single described species. The shell is a thin open spiral (not twisted longitudinally as represented in the figure), with numerons partitions concave externally, through which a small ventral siphuncle runs. The shell is intermal, at the posterior extremity of the body. There are ten arms, of which two are larger than the rest. The common species inhabits the Atlantic and Pacific Oceans, and althongh the shell is common, the animal is very rare, and requires further examination.

The second order, Tentaculifera, contains two families: Nuutilidce, and Ammonitidce.

Fam. 1. Nautilidce. In the genus Nautilus (N.pompitius, Linn., pl. 76, fig. 16), the shell is spiral, many-chambered, the partitions transverse, concave externally, their margins simple; a central siphuncle passing through them; the whirls in contact, the last enveloping the preceding ones. Nautilus pompilius is the best known species; the shell is nacreous, ornamented with irregular reddish bands, the unbilicus closed. It is six or eight inches in diameter, and inhabits the Indian and Pacitic Oceans. A second species is known, N. umbilicatus, which is much rarer than the former, and has the centre of each side widely umbilicate, so that the whirls can be counted. The history of the order is taken from N. pompitius. The animal is contained in the last open chamber of the shell; it has a pediform appendage for creeping, and when it walks upon the bottom, the aperture is downwards. The jaws are like a reversed parrot 298
bill, the mouth is surrounded with numerous tentacles retractile into separate sheaths, and disposed in eight groups corresponding to the arms of Octopus. They are surrounded by a kind of hood, which serves to protect the animal when withdrawn into the shell. The two eyes are large and prominent, the heart single, with a ventricle and auricle, and inclosed in a large pericardium which is connected with the siphuncle. The siphon or fumel, which is ventral, corresponds to the part of the shell furthest from the centre, that is, the external lip. The fossils named rhyncholites, are the beaks of varions species of Noutilus and Ammonites. Several other genera, with the shell both curved and straight, belong to this fannily, and among the latter is the fossil genus Ortloceras, of Breyn (not of Lamarck), of the older formations.

Fam. 2. Ammonitidle (pl. 76, figs. 14, 15). In this family the shell is spiral in the same plane, curved, or straight, with the siphuncle at the dorsal margin. The partitions which divide its chambers are irregular, with the margins digitated or foliated, often in a singular and beautiful manner. All the species are extinct, and they are found from the older fossiliferous formations to the cretaceous strata. This and the preceding family are represented at the present day by the two living species of Noutilus, and four of Spirula, a mere remnant of the profusion of species of chambered shells which lived in the ancient seas. Upwards of 300 species of the genus Ammonites have been described or indicated; and although it is probable that many of these belong to varieties and young individuals, with every allowance, the genus is very extensive.

Division III. Artictlata.

The Articulata are named from having the various parts of the body and limbs articulated to each other. The nervous system is composed of ganglions united by a double cord, and there is usually a kind of exterior skeleton composed of a series of ring; protecting the interior parts, and serving as points of attachment for muscles. In some cases respiration is effected by means of branchix, and in others by tracheæ or air tubes When limbs are present, there are never fewer than six.

Authors upon the Articulata are not agreed upon the number and extent of the classes into which they should be distributed, but they will be treated of in detail, nearly as they are given in pages 11,12 , according to which the classes are five, namely 1, Annelida ; 2, Cirrhopoda ; 3, Crustacea ; 4, Arachnida ; 5, Insecta. The three last of these formed the Insecta of Linnæus, a term which some modern writers wish to maintain according to its original extent; and when this is done, the restricted class of insects must have a distinct name; as Ptilota (winged insects), applied by Aristotle, and Condylopa, applied by Latreille. The Myriapoda will form the fifth, and the Insecta the sixth class, in the succeeding pages.

Class 1. Annelida.

The Annelita or Chetoponda are generaily recognisable by a soft body, a lengthened ammlated form, red blood, and the nervous system central, ganglionic, and distinct. The rings of the body are of a membranous consistency, and never corneous as in insects, or calcareous as in the Crustacea. They are generally numerous, the length of the animal depending to some extent upon the number of rings, which vary from twenty or thirty to more than five hundred. When very numerons, the number is not uniform in the same species. The head is usuaily distinct, and often provided with two or four eyes, and in some cases with a variable number of tentacles and cirri, but the last are not confined to the head. The sides are generally furnished with bunches of bristles and fleshy projections arranged in a line and used in locomotion; and although they are called feet, articulate limbs are never present. The lateral bristles in some cases afford a means of defence, and they vary much in character, some being simple, and others barbed in a variety of ways, presenting uniform characters which are useful in classification, and must be studied by those who wish to be well acquainted with the class. Their forms have been classified and named by Sarigny. The alimentary canal is complete, extending from end to end. Most of the amnelida are marine, some being free, whilst others construct a tube of calcareons matter, and of agglutinated particles of sand, fragments of shells, or other objects. Cuvier divides the class into three orders, named Abranchia, Dorsibranchia, and Tubicole; but as the names of orders should be taken from the same part, the last one is here replaced by the term Cepiialobranchia.*

Order 1. Abranchia. The animals of this order are without branchiæ, respiration being effiected by means of the skin. Cuvier supposed certain lateral pores to be respiratory orifices, but these have been ascertained to be the outlets of the organs which supply the mucus. The order includes the four families: Hirulinide (leeches); Lumbricide (earth-worms); Echiuri; and Maldanice.

Fom. 1. Hirudinida. This family includes the worms known as leeches, of which there are various genera, hoth marine and freshwater. The body is slimy and extensible, narrowing towards each end, composed of from 18 to 140 segments. Some species are cylindrical, and others flattened, and the posterior extremity has a disciform sucker to enable the animal to adhere. In some cases the mouth is surrounded with a sucker also, and in these, besides swimming, locomotion is effected by extending the body, fastening the anterior extremity, and then drawing up the posterior one. The eye-like points vary in number from two to ten. The species feed upon blood or the juices of animal matter. Some have teeth to puncture the integument, but others, not being thus armed, attack only the softer kinds of food, as worms, larrax, or mollusea; and some swallow worms entire.

[^7]A species of leech finds its way under the eyelids, and into the nasal passages of Ardea virescens, in Martinique. In Algeria, Homopis vorax is abundant, and attacks man and animals upon land; and it is found sticking to the inside of the month and throat of slaughtered cattle in that country. According to Baron Larrey, the French soldiers were much plagued by a small species which attached itself to the entrance of the throat. The same species was found in the nasal passages of the horse.

As it is difficult for a leech to affix itself to an animal, except at rare intervals, it has been provided with peculiar digestive organs to enable it to undergo a long fast. The stomach is formed of a number of cells, each of which has a lateral sac upon each side. The entrance from the stomach to the intestine has a valve, and at the posterior extremity of the intestine there is a sphincter to close it, so that the food may be admitted and retained in small portions as it is required, and it is a remarkable fact, that the blood thus kept in store (which may amount to nearly half an ounce) retains its natural properties for many months. Hence the difficulty of employing leeches in medicine when they have been gorged within some months. This difficulty is obviated in some degree, by forcing them todisgorge a part of the blood by pressure, and a mode has been discovered by piercing them with a lancet one third the length from the head, and placing them in tepid water, when the contents of the stomach will escape, especially if assisted by pressure. The wound heals in a few days, and the leech may be applied again in fifteen or eighteen days.
These animals are monoicous and oviparous, the eggs being deposited in a kind of cocoon, resembling in size and form that of the silkworm, its material resembling fine sponge. A Swedish species deposits its eggs in the earth at some distance from the water.

Among the genera are Hirudo (II. officinalis, pl. 77, fig. 26), Malacobdella (M. grossa, fig. 22), referred to in page 43 ; Clepsina (fig. 24), Hœemopis (H. vorax, fig. 25). Two species of leech are almost exclusively used in medicine: Hirudo officinalis, the green or Hungarian leech, the belly of which is without spots; and II. medicinalis, the German or brown leech, with a spotted belly.

The mouth of those leeches which are capable of biting, is tri-radiated, each ray having a tooth which resembles a segment of a minute circular saw, the margin of which is armed with a double row of microscopic denticulations. The suction, whilst it draws the skin within the reach of the teeth, renders it tense, so that they act like lancets, and the apparatus answers the double purpose of a small scarificator and cupping-glass. An examination of the wound made by a leech will show the tri-radiated arrangement of the teeth. Artificial leeches are sometimes made use of, the quality of which must greatly depend upon the accuracy with which the natural instrument is imitated.

Three species of Hirudo, and one of Clepsina, have been described from the waters of the United States.

It was at one time believed that changes in the weather might be foretold from the actions of leeches, but the value of these indications was
much overrated. They have been made to fast two or three years; they require five years to become large enough for use, and they may live twenty years. They seem not to multiply rapidly when they have not access to blood; and on this account, cows and horses are driven into the breeding ponds, and so frequently, that they become emaciated from the loss of blood. Three millions of leeches are used annually in Paris; and four dealers in London import upwards of seven millions annually. In 1819, five or six millions were used in Paris, at a cost of 120,000 francs; and in 1827, thirty-three millions were required in France. To preserve them in health, they must have clay, sticks, \&c., to crawl amongst, to assist them in casting the skin, this part being often renewed; and if the old surface is not removed, respiration is interfered with.

Gervais, who insists upon the identity of the Annelida and Entozoa, places the family which includes Sipunculus (p. 42) next to the Hirudinidæ.

Fam. 2. Lumbricidce. The genus Lumbricus (pl. 77, figs. 38, 44) contains the earth-worms, known by their habits of living in the earth, and coming to the surface in wet weather and at night. The body is reddish or bluish, cylindrical, composed of many rings, the head indistinct, the mouth without teeth, and having neither eyes nor tentacles. The segments are provided beneath with minute bristles, and above with one or two pores. At certain periods, in some of the species, the part of the body containing the reproductive organs has a broad collar named the clitellum.
These worms are monoicous, they feed upon the organic matter contained in the soil, generally ejecting the indigestible portion at the surface of the ground. Some species live in the soft mud at the bottom of streams, and the ordinary species may be kept in vessels of mud and water. The largest European species is a foot and a half long, but there are several exotic species several feet in length.

Earth-worms are very useful to the soil, as their perforations open it and allow the air and moisture to penetrate. They also assist in ameliorating it, and in increasing its depth; and where they are abundant, it is probable that every inch of soil has passed through their digestive system. In old unploughed pastures the soil formed by their castings is known to have amounted to an inch in depth in five years.

Nais (p l. 77, figs. 9, 10), which belongs to this family, has the segments with lateral spines or fascicles. The old genus thus named by Müller, has been subdivided by more recent writers. They inhabit the fresh waters.

Tubifex is a genus of microscopic worms found in fresh water, where they form a tube in the mud, whence they project the greater part of the body, waving it about, but instantly withdrawing when disturbed. Several species of the United States have been described.

Fam. 3. Echiuri. These have been alluded to in page 42. The body is short, composed of but few indistinct articulations, cylindrical, sacciform, provided with pairs of retractile bristles upon some of the segments. Thalassema echiurus, of the European seas, is the best known species.

Fam.4. Maldanice. This is one of the families of the distinguished naturalist Savigny, who accompanied the French expedition to Egypt. Ir
the genus Clymene, the body is long and cylindrical, the extremities abrupt, the segments few and dissimilar, the head distinct, the thoracic portion long, and the abdomen short. The thoracic feet have two branches. It forms a tube with small shells and sand.

Order 2. Dorsibranchia. Here the organs of motion, and especially those of respiration, are arranged in linear series, either from end to end, or at the middle portion of the body. The head and eyes are usually distinct, and there are antennæ, jaws, and an extensible rostrum. The families are arranged by Audouin and Milne Edwards as follows: 1, Aphroditidce; 2, Amphinomida ; 3, Eunicider ; 4, Nereidae ; 5. Ariciidce; 6. Peripatidce; 7, Chetopteridee; 8, Arenicolidu.

Fam. 1. Aphromitida. Body generally depressed, and shorter and wider than in the other annelida. Back with two rows of large membranaceous scales or elytra (except in the genus Palmyra), beneath which are the branchiæ, which are not well developed. Two pairs of jaws are generally present, and the elytra and superior cirri are alternately present and absent upon the segments to a certain extent. Aphrodite has thirteen pairs of elytra, three antennæ. The jaws are cartilaginous or rudimentary. Several species rival the humming birds in the brilliancy and play of their colors. A. aculeata ($p 7.77$, fig. 15), of the European seas, attains a length of six inches, and the dorsal scales are hidden by a hairy covering.

Fam. 2. Amphinomidue. Segments similar, branchiæ ramose, tufted, or plumose, well developed, dorsal, or at the base of the feet; head distinct, mouth unarmed, no aciculi, feet with one or two branches.

Fain. 3. Eunicida. The rostrum has from seven to nine corneous jaws; branchiæ wanting or well developed, in the form of pectinated filaments; feet aciculate. Eunice has two eyes, seven strong jaws, four upon the left and three upon the right side ; five large tentacles above the mouth, and two smaller ones at the nape; branchiæ pectinated upon one side of the supporting branch. The body is long and sub-cylindrical, the segments sometimes numbering four hundred. This genus, contains the largest species of annelida known, E. gigantea of the Antilles, which is four feet or more in length.

Fam. 4. Nereidce. In this family the jaws are either absent, or amounting to two or four; the rostrum extends considerably beyond the head; antennæ mostly well developed. Nereis is a genus of worms found upon the coast, moving about freely, or hidden in the cavities of rocks, or in dead shells; and sometimes sunk in the mud. Like many other annelida, it is used by fishermen as bait. Some are of a considerable size, and the colors are often agreeable. Phyllodoce ($p l .77$, fig. 11) belongs to this family. The place of Spio filicornis (fig .14), which has two very long antennæ, is not ascertained.

Fam. 5. Ariciidce. Head and rostrum distinct; antennæ, eyes, and branchiæ wanting, or rudimentary ; jaws and tentacular cirri absent; each foot with a single cirrus.

Fam 6. Peripatidce. This family contains the single genus Peripatus of Guilding, who observed it in the West Indies, and described it as a mollusc. The body is somerwhat limaciform, both ends obtuse, the annulations not very distinct, each side margined with a row of short, thick,
conical and granular feet, decreasing in size from the middle of the body towards each end, and having short bristles at their extremity; no cirri, gills, nor similar appendages. The head is distinct, with two stout annulate, antennæ, and the month has a pair of corneons jaws. Peripatus juliformis of Guilding, from which the characters are taken, is three inches long, dark brown, annulated with yellow, the dorsal line black; and it has thirty feet on each side. Lacordaire found a specimen in Cayenne, sunk in the mud at the margin of a river, and Goudot found another species near Table Mountain in South Africa, under a stone in a shady place. The nervous system differs from that of the other annelida in being bilateral (somewhat as in Malacobdella) ; and on this account, Gervais is of opinion that it forms the type of a distinct group of worms, whilst Milne Edwards, who discovered this peculiarity, considers it as indicating a passage to Nemertes. See Kirby's Bridgewater Treatise, p. 259, pl. 8, fig. 1, 2.

Fam. 7. Chactopteridae. The genus Chatopterus was formed by Cuvier for a worm from the Antilles, eight or ten inches long, inhabiting a tube of a parchment-like consistence, whence its name $C h$. pergamentacerus. There are neither rostrum, jaws, nor a proper head. There is a lip with two rudimentary antennæ, followed by a disk with eight or nine pair of feet, succeeded on each side by a wing-like projection, bearing bristles. The branchiæ are medial, and in the form of laminæ; posterior extremity with numerons lateral feet.

Fam. 8. Arenicolidue. In Arenicola the body is cylindrical, composed of a moderate number of segments subdivided by numerous wrinkles. The head is rudimentary, with a small terminal rostrum ; no jaws, eyes, antennæ, nor cirri. The feet have two branches, and are armed with simple and armed bristles; branchiæ in bunches divided like the branches of a tree, and arranged in pairs along the middle portion of the body, numbering from thirteen to twenty pair. They burrow in the sand about low water mark, and are extensively used by fishermen as a favorite bait for marine fish. A. piscatorum is eight or ten inches long.

Order 3. Cepialobranchia (or Tubicola). These sedentary annelida live in calcareous, sandy, or membranaceous tubes; the soft appendages are generally confined to the anterior extremity ; the head is indistinct, without eyes, rostrum, or jaws; the branchiæ are plumose, and situated at the anterior extremity ($p 7.75, f i g .68$). They comprise the two families Serpulide and Amplitritidce. The former is distinguished from the latter by having the branchial plumes separated into two masses by a pedunculated operculum, or covered by a solid one when withdrawn within the shell.
Fam. 1. Serpulidce. The genus Serpula (pl. 75, fig. 70) has the body tapering posteriorly, the mouth terminal, and surrounded with a crown of long, feathery, and often finely colored branchix, which give the animal the appearance of a zoophyte. These are used in taking the small living cbjects upon which they feed. The feet are lateral, the seven anterior pair attached to a membranous base. The part bearing these feet forms a kind of thorax distinguishable from the remaining part of the body. From the internal base of each of the two masses of branchix a filament arises, one of which
has its extremity enlarged into an operculum for closing the aperture. The tubes which these animals secrete are calcareous, and twisted in a very irregular manner. They are affixed to submarine bodies, either singly, or a great many in a single mass. The tubes are common in the tertiary and secondary formations.

Fam. 2. Amphitritidce. In this fanily the indistinct head is composed of three segments, the thorax of not less than twelve, and the abdomen of a great many. The mouth has numerous prehensile tentacular filaments, and the tnbe is formed out of a mucous secretion to which extraneous objects, such as fragments of shells, are affixed. They live singly or aggregated. Amphitrite ($p l .77$, fig. 13), Sabella (pl. 75, fig. 68), Terebella ($p l .76$, fig. S2). The genus Hermella resembles the Dorsibranchia in laving the branchire dorsal ; the cephalic appendages not being branchiæ but tentacles, according to Milne Edwards.

Class 2. Cimhopoda.

The animals of this class are monoicous, inclosed in a hard shell or subgelatinous envelope, deprived of locomotive powers, and affixed to extraneous submarine bodies, some by a peduncle ($p l .76$, figs. 51,52), and others by their base (figs. 53,54). The earlier authors placed these animals with the Mollusca, and the shells are often retained in conchological cabinets. Their articulated cirrhi and double nervous axis indicate their true nature; and whilst they have been made a distinct class from the Crustacea, partly on account of the supposed absence of an articulate structure, Dr. St. Ange affirms that evident traces of such a structure exist.

These animals undergo a metanorphosis, the young being bivalvular like bivalve mollusca, and capable of swimming about freely for some time before it affixes itself permanently. In this condition the limbs can be protruded from the front of the shell; the anterior pair being large, and provided with a sucker and hooks for attachment to submarine bodies. The six posterior pairs are used in swimming. The animal, at this period, bears considerable resemblance to the small branchiopoda. Mr. Thompson, of Cork, placed some of them in a vessel of sea wate?, and in a week's time two of them had mantled and were affixed to the ressels as barnacles. A few days afterwards, another individual was observed to throw off its shell and affix itself. Both the orders of Cirrhopoda undergo these changes.

The jars are lateral, articulated, and toothed; the cirrhi are articulated, curved, and arranged along the abdomen, resembling somewhat the members along the lower surface of the tail in the Crustacea. The class contains the two orders Campylosomata and Acomptosomata, both of which are widely distributed by floating wood, ships, sea-weed, mollusca, whales, turtles, dec.

Order 1. Campylosomata. This order contains the pedunculated flattened forms like Mitella (Oken, 1815 ; Pollicipes, Leach, 1817, pl. 76, fig. 51), and Lepas (Linn., 1748; Anatifa, Brug., 1792, pl. 76, fig. 52), in which the shell is generally composed of two large lateral triangular basal
pieces, followed by two smaller pieces with a fifth dorsal piece. Sometimes there are accessory pieces at the base, and the whole are in some cases so much reduced in size as to be rudimentary like the shell in Chitonellus (p . S1). Sowerby's genus, Lithotrya, occupies holes in rocks; but it is not known whether it forms them, or takes possession of those previously made by boring mollusca.

Order 2. Acamptosomata. In this order the animal is short and conical, without a peduncle, the shell solid and conical, sometimes sub-cylindrical, with the base or attached portion open or closed, the aperture provided with a two-valved or four-valved operculum. Those of the order known to the ancients were named Balanus (p l. 76, fig. 54), on account of their resemblance to an acorn, a name which is still retained. They were a favorite article of food with the ancients. The natives of Chili eat a very large species, Balanus psittacus, which is five and a half inches high by three and a half in diameter; it has much the taste of a crab. The young of this species are attached to the adults, and in turn support their desendants, so that they occur in large masses of fifty or a hundred individuals.

Some genera, as Pyryoma, are buried in coral ; Acasta inhabits sponges; Chelonobia is attached to turtles; and Tubicinella and Coronula (pl. 76, $f(g .53)$ are imbedded in the skin of whales.

Class 3. Crustacea.

In this class the sexes are separate; the body and limbs are distinctly articulated; the breathing is by means of gills, or more rarely (in some of the lower forms) by the external surface. The larger forms, as the lobsters and crabs, and the great majority of the smaller ones, inhabit the sea, where they take the place of the insects which are so abundant on land. Some species inhabit the fresh waters, and a few the land. The larger species are many times the bulk of the largest insects, from which they decrease to forms of microscopic size. In some of them the characters of the class are so obscure that they have been placed with the parasitic worms. Named from the hard integument, this affords a prominent characteristic, being a calcareous exterior skeleton of considerable thickness and strength in the larger species; becoming more delicate, and often transparent in the smaller ones, to disappear, or to escape observation in some of the obscure forms. This covering is periodically cast off and renewed, like the integuments of certain reptiles, and the larre of insects.

In comparing various members of this class ($p l .7 \delta$), the number of segments, and the consequent ability to bend the body, will be found to be very variable, so that whilst the body of some (figs. 1-9) is a solid box incapable of flexure, that of others is composed of a number of loosely connected segments moving freely, and chiefly downwards from the horizontal position. This allows some of the members of the class to roll themselves into a ball by approximating the head and tail.

The normal number of the segments in the body of the Crustacea is
twenty-one, of which seven belong to the head, trunk, and tail, respectively, and when a smaller number appears, it is generally to be attributed to the fusion of several into one. In fig. 22, pl. 78, the head is observed to be distinct, whilst in fig. 1 it forms a single piece with the trunk, the tail being articulated and turned beneath, although partly visible in figs. 3 and 8. In Limulus (fig. $3 \pm$), the segments of the tail are fused into a single shelly plate, as well as those of the head and trunk or cephalo-thorax, the shield or plate of which is called the carapace.

The moulting of the larger crustacea takes place about once a year, but Mr. Lyell mentions a species of Cancer covered with oysters six years old, so that the shell could not have been renewed during this period. Young and growing animals moult frequently, as in Daphnia, which may change every two days. I'revious to monlting, a crustacean becomes sickly and refuses food, the carapace becomes loosened, and the corium beneatiu secretes a new, soft, and membranous shell, which finally becomes calcurcous. When the old shell has become loosened, the animal, after various exertions, extricates itself from it in about half an hour, withdrawing the antennæ, feet, and even the gills, from an external film. The shell of the limbs splits to allow the large extremity to pass, and it sometimes happens that a limb is left in the old shell. Some of this class have the power of throwing off a limb.

The Crustacea feed mostly upon animal food, which is taken sometimes solid and sometimes in a liquid state, and the oral organs are modified accordingly. Some small species are very destructive to the timber of ships and docks.

In forms like the lobster, swimming is effected by striking downwards and inwards with the tail, which forces the body in a backward direction. In the branchiopoda the feet are used in swimming, not being adapted to walking; and in the entomostraca (figs. 27, 29), the body is impelled through the water by the feet, in a succession of jerks.

The walking feet of the Crustacea generally amount to ten or fourteen. In some (fig.1, dc.), the anterior pair are robust, the extremity provided with a movable thumb forming pincers. Sometimes the end of a foot can bend, so as to form a hook; and in other cases the last joint closes upon an extension or enlargement of the preceding joint, forming an organ of prehension.

There are two mandibles, four lower jaws, succeeded by six auxiliary or foot-jaws, followed by the feet; and when there are fourteen feet, the four anterior ones are transformed from the four posterior foot-jaws.

Most of the Crustacea see well, and the eyes are either sessile or placed upon pedicles. Some of the parasitic species are without eyes in their perfect and affixed state, although provided with them when young, and capable of swimming about. As in the insects, both compound eyes and stemmata are found in this class, but the former are the most common. In a few cases both are found together.

There are sufficient reasons to believe that the sense of smelling is present in the Crustacea, although its special organ has not been discorered.

There are four antennæ, of which the second pair is supposed to be connected with the sense of hearing, becanse there is near the base a cavity filled with a liquid, and receiving a special nerve. It has an exterior orifice closed with a membrane, which may be compared to a tympanum.
The Crustacea are oviparous; and when the young leave the egg, some resemble the adult of the species to which they belong, although most of them undergo a metamorphosis. Mr. J. V. Thompson, of Cork, discovered an individual of Bosc's supposed genus Zoca, to be only the young of the common crab; and Jurine had observed the change which the small fresh water species undergo. The young of Lernæa and the allied genera are much like those of Cyclops.
There are two sections of the Crustacea: Entomostraca, in which the number of legs varies; and Malacostraca, in which there are ten or fourteen legs.

Entomostraca.

Order 1. Rotatoria (or Rotifera). This order has already been alluded to (pp. 9 and 25) in treating of the Infusoria. It is divided into such as are naked and such as have a shield, and each of these series has three sections according to the arrangement of the vibrillæ. According to Ehrenberg, this order contains fifty-five genera, divided into eight families; but Dujardin reduces the families to five, and the genera to twenty-four. The genus Rotifera ($p l .75$, fig. 16) includes species less than half a millimetre long, which live in water, or among damp moss. The mouth and tail are caprable of holding, so that the animal can move by attaching each end alternately, as in the leeches. They have also the power of swimming through the water by means of the vibrillæ. When at rest they affix themselves by the tail and bring their food within reach in the currents caused by the vibrillæ. Burmeister, in his work on the Organization of Trilobites, 1843, places the Rotatoria as the lowest of the Crustacea, and next to them the Cirrhopoda, under the belief that the latter do not form a distinct class; and in 1842, J. E. Gray placed the Cirrhopoda here. These animals, and the Rotatoria, are monoicous.

Order 2. Cormostomata. Sexes separate, mouth with a suctorial beak, carapace generally in a single piece, feet adapted for holding, walking, or swimming. Parasitic upon fishes, and undergoing metamorphosis. The order, as given here, includes two of Milne Edwards's orders, which contain five families conjointly. It includes Baird's legion Pcecilopoda, which is divided into two orders, five tribes, and eleven families, as given in his Natural History of British Entomostraca, 1850. This order has been named Siphonostoma, but as this designation has been otherwise employed, that of Professor J. D. Dana is adopted. This author gives it as a suborder containing four tribes. (Proceed. Am. Acad. of Arts and Sci. vol. ii. p. 53.)

The Lerncidce ($p l .76$, figs. S0, 81) are withont eyes; the head is small and the thorax large, the separation being sometimes obscure, and the thoracic organs are rudimentary. The single pair of antennæ is sometimes absent, and the number of foot-jaws is two or four. The body is curiously 308
shaped, and irregular in the various genera, in some presenting the appearance of a mal-formed worm, and indeed, some authors have placed them among the worms, and others among the zoophytes. Dr. George Johnston remarks, that " of all the curious creatures which the naturalist meets with in his researches, there are none more paradoxical than the Lernææ; none which are more at variance with our notions of animal conformation, and which exhibit less of that decent proportion between a body and its members which constitutes what we choose to call symmetry or beauty. Of its paradoxicalness, no better proof can be given, than the difficulty which the most experienced systematists have found in determining the proper place and rank of the family among organized beings." Kroyer, as quoted by Baird, says that "the exterior of these animals is often so highly fantastical, that we are disposed to admire the freaks of nature in bringing forth such forms. But it is evident, that when continued observations and investigations have put us in possession of the condition of these forms, we shall see here, as everywhere else, that singularity resolves itself into regularity."

Suriray threw a light upon the affinities of these animals by discovering that the appendages at the extremity of the body (Lerncect, pl. 78, fig. 30, inverted) are egg pouches, as in the admitted Crustacea like Cyclops ($p l$ l. 78, fig. 27). Audouin and Milne Edwards announced the opinion in 1826, that these animals are Crustacea which become monstrous after they have become permanently affixed as parasites. The organization was first satisfactorily ascertained by Nordman; and the knowledge respecting them, although far from complete, has now arrived at such a point, that their station among the Crustacea may be considered to be well ascertained. These results are due chiefly to the labors of Burmeister, Rathke, Kroyer, and Kollar.

Aristotle and Pliny mention several fish which are infested by these parasites, and Conrad Gesner gave an extended history and figure of a species in 1558 , Rondeletius having figured it four years previously. These authors state that it infests the tunny and swordfish, in the flesh of which the anterior extremity is buried, and so firmly fixed that it is difficult to remove without breaking it. Some are found sticking in a similar manner in the eyes of fish, and others to their gills, mouth, or under their fins, where they are less firmly attached.

For a long time the female alone of these animals was known, and it was a subject of wonder how they became transferred from one fish to another, being perfectly stationary and incapable of locomotion; and when carefully removed from their position, but few of them show any signs of life, although some move the head and jaws for a short time. The mode of reproduction was also an obscure point in their history. The ovarian sacs, of course, indicated the female sex, unless all the individuals were supposed to be monoicous. But some individuals were at length found without sacs, and these were naturally taken for males, until Kroyer discovered them to be females after the eggs had been cast and the sacs had disappeared. Nordman at length found adhering to some of the females, certain small
living bodies unlike the females, but somemhat like the young, and these he considered males, a view in which Kroyer concurs. These males are much smaller than the females, and those of different species resemble each other, even when the females are quite dissimilar.

When the young leave the egg, they bear a remarkable resemblance to those of Cyclops, Apus, and other undoubted Crustacea. They have a large eye, a pair of antenmæ, two pair of large swimming feet, by means of which they swim through the water until they find a proper station to which they can attach themselves, as already described in the Cirrhopoda, and other groups of the lower animals. As in the higher forms, they moult frequently during their growth. After affixing themselves, the feet disappear, or are transformed into foot-jaws or other organs adapted to their new mode of life. The eye being now useless, disappears also. In some, two long arms appear (see the inverted figs. 30, 31), which are united at the apex, where they form a sucking cup, with its concavity armed with teeth, forming an organ which is immersed into the flesh of fishes, and is used in maintaining the place of the animal. This metamorphosis, by which an animal is apparently less perfect in the adult state that when a larva, is styled retrogressive by Burmeister.

In the annexed figure, a represents the young, and b the adult female of Lernceocera, a genus named from the horn-like projections upon the head. The body is slender, the feet are entirely alsent in the adult, and the thorax includes most of the body, the abdomen being very small. L. cyprinacea (b) is about eight lines long, and was discovered by Limecus, in 1746. Figure c represents the male, and d the female of Anchorella uncinata. The former is globular,
 and affixes itself by means of two pairs of hooks. The rudimentary ablomen of the latter is at the base of the egg sacs. It is one fourth of a line long, whilst the female is six or eight lines. The long projection in the figure of the latter represents the arms. This species is found upon the fins and gill covers of the cod and haddock.

Achtheres percarum (pl. 78, fig. 31), the female of which is two lines long, affixes itself to the tongue, inside of the mouth and eyes of Perca fluviatilis. The alimentary canal is straight, without any division between stomach and intestine, and the nervous system is said to consist of a longitudinal cord on each side of it.

The Caligida are distinguished from the Lernaida by the better developed organs of motion. The foot-jaws are well developed, and the thorax has several distinct rings and pairs of feet. Like the preceding family, this one is divided into several sul-families. Caligus ($p l .74$, fig. $3 \pm$) has a very large depressed circular head, with large frontal plates having a sucking disk laterally beneath. There are eight feet, and the antennæ are small and bi-articulate. They inhabit the sea, and affix themselves, with the aid of their foot-jaws, to the body or branchial carities of fish. They
readily move from one part of the fish to another, going either backwards or forwards; or leaving the fish, they swim freely through the water. In dissecting them, Pickering and Dana found no blood in the stomach at any time, whence they conclude that the food is the mucus upon the surface of the fish. The cylindrical egg tubes of the female are in some species several times the length of the body in this family, the eyes forming a single row. The integument is renewed periodically. The following generia belong to different sub-families.

Ergasilus (pl. 78, fig. 29), which is parasitic in the gills of fishes, bears a considerable resemblance to Cyclops (fig. 27). They are of a minute size, and when they leave the egg, they have three pairs of swimming feet. The male has not yet been detected.

Phyllophora (P. cornuta, pl. 78, fig. 28) is remarkable for certain dorsal scale-like appendages somervhat analogous to those of the Annelides, as Aphrodite. The single species known is found at Tongatabu.

Order 3. Branchopoda. This order includes a considerable number of marine and freshwater species, gencrally of small size, the head distinct, the eyes generally close to the median line, and often in contact, and apparently single, giving rise to the names Cyclops and Monoculus. They swim freely through the water, either with a uniform motion or by a series of jerks, the organs of motion being the feet, tail, and more rarely the antennæ. They have a pair of mandibles, one pair of foot-jaws, and an upper and lewer lip. Some authors, who consider this group to be of a higher value than an order, divide it into orders and other sub-divisions. The families here given (except the Cyprididet) admit of a further division into sub-families, groups which are sometimes considered to be families.

Fum. 1. Cyclopide. Cyclops (pl. 74, fig. 33) is a freshwater genus in which the body is pyriform, and tapering posteriorly; the head not distinctly separated from the thorax, and having the eye near the anterior extremity. The superior or larger pair of antenne are used to assist in locomotion, and they vary in the two sexes, being usually shorter in the male, besides differing in other characters. Some of the marine species are phosphorescent. The freshwater species inhabit stagnant water and springs, where they may be seen with the naked eye jerking themselves through the water, if looked for attentively. The females may be distinguished by the large pair of egg sacs ($p 7.78$, fig. 27) when these are present. The young undergoes a metamorphosis, which lasts about twenty days. Jurine, who has published an elaborate work upon these microscopic creatures, cut off about two thirds of the antenuæ of a female Cyclops, but observed no change in the mutilated organ until the animal moulted, when both antennæ appeared alike perfect. Inhabiting ponds which often disappear by desiccation, these animals and those of the neighboring families reappear with the first rain, having doubtless remained in the mud or damp earth. When removed from water and dried fifteen or twenty minutes, but few survive, and none when the interval of dryness reaches twenty-five minutes. They will recover their activity after having been thoroughly frozen. They are carnivorous, and when other food is not at hand, they devour their own
young. These animals are extremely prolific, and furnish food to the aquatic larvæ of insects. Cyclops setosa, Hald., Jour. Acad. Nat. Sci. viii. 331, is the American analogue of the European C. quadricornis.

Fam. 2. Cyprididce (Ostracoda of Latreille). In this family the animal is inclosed in a bivalve shell with a dorsal hinge, and capable of being closed when the antenne and feet are withdrawn. There are four antennæ, those of the second pair being large, elbowed, and adapted to assist in swimming. Most of the species are minute, inhabiting fresh or salt water. The species of the genus Cypris are abundant during the summer in puddles of stagnant water, where they may be seen swimming about or walking upon objects at the bottom. The eye is of a dark color, and the shell sufficiently translucent to allow it to be seen at the upper and anterior part. The eggs are attached to extraneous bodies, and the young are not subject to metamorphosis. Their food is stated to be dead animal matter, and confervæ. Many of the species are beantifully marked with variations of color. The following American species are indicated in the Proceed. Acad. Nat. Sci. vol. i. pp. 53 and 184: Cypris agilis, C. simplex, and C. scabra, Hald.

Fam. 3. Daphniidce (or Cladocera). Here a bivalve shell incloses the body, with the exception of the head, which is distinctly exposed, and bears a large compound eye capable of some motion. The inferior antennæ are very large, and generally two-branched. There are four, five, or six paire of feet, which afford characters for the sub-families; or families, if the Cladocera are considered to constitute an order. Daphnia is abundant in the stagnant pools where Cypris and Cyclops are found, and their locomotion resembles that of the latter. The young are retained between the body and shell posteriorly above, where they may be seen through the latter. The Daphniæ are so abundant as sometimes to discolor the water, the red species giving it somewhat the appearance of blood. Dr. W. Baird, in his Natural History of the British Entomostraca, 1850, p. 78, says he has "frequently seen large patches of water in different ponds assume a ruddy hue, like the red rust of iron, or as if blood had been mixed with it, and ascertained the cause to be an immense number of D. pulex. The myriads necessary to produce this effect are really astonishing, and it is extremely interesting to watch their motions. On a sunshiny day, in a large pond, a streak of red, a foot broad, and ten or twelve yards in length, will suddenly appear in a particular spot, and this belt may be seen rapidly changing its position, and in a very short time wheel completely round the pond. Should the mass come near enough the edge to allow the shadow of the observer to fall upon them, or should a dark clond suddenly obscure the sun, the whole body immediately disappear, rising to the surface again when they have reached beyond the shadow, or as soon as the cloud has passed over."
At certain periods Daphniæ may be found with a black saddle-shaped appendage (named the ephippium) upon the back of the shell, which Strauss discovered to be a receptacle for two eggs from which to reproduce the species in the spring. At the fifth monlt, the ephippium is cast off and floats about at random, protecting its contents until the succeeding spring. Daphenia abrupta and D. fenestrata, Hald., Proceed. Acad. i. 184, 196, are

American species. The name of the latter is changed from reticulata, as this has been already applied to a European species.

Fam. 4. Apodidec. This family includes Latreille's fifth order, I'lyylloporla, in which the body is either naked, inclosed in a bivalve shell, or with the head and thorax covered with a carapace. The body is divided into a great nurabe of segments, most of which have foliacenus feet adapted for breathing, the number of which varies from eleven to sixty pair. Antemme two or four in number, and not adapted for swimming; eyes two or three.
Apus (pl.78, fg. 25) has a large carapace covering nearly the entire body; one pair of short antenne, and sixty pair of branchial feet. Scheeffer enumerated the number of pieces which enter into the composition of the body, and found them to amount to $1,5(1-.604$. He found that each of the caudal filaments in Apas cancriformis contains 450 articulations. It inhabits fresh water ponds, and swins equally well with the hack above or below. It reappears in desiccated ponds in two days after a rain ; and it has been found in ponds that have been without water for several years, whence it may be inferred that the eggs retain their vitality for a long time. They feed upon the microscopic Entomostraca, and are in turn deroured by frogs.

The metamorphosis of Apus is much like that of Cyclops, Lernæa, dec. When the young leave the egg, the body is narrowed posteriorly, the tail is wanting, the antenne are large, and the first and only pair of feet are robust, and longer than the body, thas presenting opposite characteristics from the adult. The length of the common European species, A. cuncriformis, is two and a half, and the breadth one and a half inches. There are but few species known. One has been described from the West Indies, one from the eastern side of the Rocky Mountains, and another from the Sandwich Islands.

Branchipus pisciformis (pl. 7s, fig. 26) was described under this name, according to W. Baird, by Schæffer, in 1752, and was subsequently named Chirocephalus diaphanus, by Prévost. It has two pedunculated eyes, four antennæ, eleven pairs of branchial feet, and there is no shield. In the male, the larger pair of antennæ are prehensile, resembling mandibles, their base is large and fleshy, and the outer joint curved and cylindrical. From the base of these antennre arises a pair of large flexible proboscidiform organs with their appendages, all of which are usually rolled up beneath the head. In the female the large antemne have a singular structure, being short, compressed, bent downwards, pointed at the end, and unprovided with appendages. The species figured is more than an inch long, and is found in pools swimming upon its back. As in nearly all the Entomostraca, the branchial feet are kept moving continually. These animals swim with the aid of the tail, darting through the water like small fishes. They feed upon dead animal and vegetable matter. The female has an external branchial sac, and the young undergo a metamorphosis.

Limnadia is inclosed in a bivalve shell somewhat as in Cypris, but the animal is larger, being nearly half an inch long. The American species,
L. coriacea, Inald., 1842 , was found in a puddle a few inches deep, which was subject to desiccation; and although a number of living individuals were transported to a little pond not liable to be dried up, the species has not been seen since, in these or other localities.

Order 4. Trilobites. These animals are known only from their fossil remains, which are limited to the crustaceons covering. In most cases the body is divided into three lobes by two longitudinal impressions, and into transverse segments. The shield of the head is composed of a single piece, fullowed by the thoracic segments, and these by the shield of the posterior extremity or abdomen, which varies much in size, and is either plane or marked with transverse impressions like those which separate the thoracic segments. The cephalic shield or buckler is large, more or less semicircular in front, truncated or concave behind, and generally divided into three longitudinal lobes corresponding to those of the trunk. When they are present the eyes are situated upon the inner portion of the exterior lobes. They are in the form of a more or less elevated tubercle, which is sometimes semilunar or reniform. In some the surface is smooth, whilst in others it is composed of numerons facets forming a compound eye. In the opinion of Burmeister, the eyes of all the Trilobites are compound, and covered with a smooth cornea; and when this has disappeared, the faceted portion is exposed to view. To effect this, the cornea must have been thinner and more destructible in the genera in which faceted eyes appear.

The thorax is composed of a rariable number of distinct segments, which are arched over the back into the longitudinal grooves, whence the lateral flattened portions, or pleure, project and form the external margin, where they are bent beneath and doubled upon themselves. The thoracic segments are generally composed of a wide and narrow portion, the latter being anterior and covered by the posterior margin of the preceding segment, unless the body is bent, when this portion appears. The number of segments in the thorax varies from six (in one case but two) or eight to twenty.

Feet have never been found with the Trilobites, so that it is probable that they did not exist as solid members, but resembled the corresponding parts in the Branchiopoda.

The remains of these animals are found abundantly in the palæozoic and carboniferous formations of varions parts of the world.

Burmeister, who has written an elaborate and satisfactory work on the organization of the Trilobites, assigns reasons for believing them to be allied to the branchiopoda, with similar habits, swimming by means of their soft gill feet; just beneath the surface of the water, with the back below, having the power of creeping upon the bottom, feeding upon small marine animals, and rolling themselves into a ball (those able to do so) as a defence. They probably lived gregariously in the shallow waters of bays and coasts, with but few species in a single locality.

Milne Edwards places the Trilobites between the Branchiopoda and the Isopoda, to the latter of which they have only a distant external resemblance, and the absence of articulate feet indicates a wide difference.

Order 5. Xipiosura. This order is here restricted to the single genus Limulus (p l. 78, fig. 34), which Burmeister makes a tribe, under the name of Precilopoda, a name which has a very different value assigned to it by other authors. On this account we prefer the name given by Gronovius. The terms Epizoa and Parisita are also used in such a manner as to canse confusion, being applied both to the Lernceide and to the Anoplura or lice. Limulus is remarkable for the long, hard, and sharp caudal spine, with which spears are pointed in some countries. They are called king-crab on the coast of the United States, where they are collected as food for hogs, although these animals will not attack them until accustomed to such an unusual kind of food. The body is covered by a large anterior carapace, and a smaller posterior one, the gill feet are attached to the abdomen, and six pairs of strong articulated ambulatory feet to the thoras. The latter are present in the fossil species which have been discovered. The caudal stylet is wanting in the embryonic young, which differs from the adult in some other particulars. The species live upon animal food.

Malacostraca.

Order 6. Isopoda. In this order the body is depressed and oval, and there are seven pairs of feet attached to the seven movable segments of nearly equal size which form the thorax ($p l .78$, fiys. 20-22). The young resemble the adult, but they have only six pairs of walking feet. Some of the species are parasitic upon fishes or Crustacea, and these hare the organs of motion and the eyes rudimentary. Most of the species are marine, although some inhabit the fresh waters, and others the land, the last requiring damp localities to preserve their gills from desiccation. The four antennæ are of a medium size, and directed in front, the first pair being in some cases rudimentary. The organs of manducation are well developed, the thorax occupies a great part of the body, the feet are armed with a single nail, and in some cases they are prehensile. The females have a corneous horizontal plate at the base of the feet, which forms a receptacle in which the eggs are hatched. The abdomen is in the form of a terminal plate above, and beneath it supports six pairs of organs, five of which are respiratory false feet, and the sixth takes rarious forms, according to the family.

Milne Edwards divides the order into three sections, according to their walking, swimming, and sedentary habits. The first includes the Idoteidle, Asellida, and Oniscidce; the second the Spheromidie and Cymothoida, under a different mode of division from that of Latreille; and the third the Epicarides or Bopyrida, under two families.
The walking Isopoda have the terminal false feet in the shape of operculums, or of projecting caudal stylets, which are never flattened into swimming organs; the first pair of antennæ are generally short or rudimentary.

In the swimming Isopoda there is a large caudal fin provided with lateral expansions formed by the modified fourth pair of false feet. All the antennæ have the same form, and the second pair are well developed.

The sedentary Isopodo are parasitic, and whilst the males present the
general characters of the order, and have seven thoracic and five or six abdominal segments which are quite distinct, the females are misshapen, with the segments of the body indistinct. The thorax is narrow in the male and wide in the female, and the cyes are present in the former and absent in the latter. The antennæ are more or less rudimentary, and the feet very short, submarginal, and formed for holding, but not adapted for walking and swimming. The male is much smaller than the female.
Latreille divides the Isopoda into six families, corresponding to the following names: 1, Bopyride; 2, Cymothoidce; 3, Spheeromidce; 4, Idoteidae; 5, Asellidce; 6, Oniscidce.

Fam. 1. Bopyridee. Bopyrus crangorum is found affixed to the gills, and beneath the shell of several large Crustacea, as Palcemon and Hippolyte. The male is only one fifth or one sixth the size of the female, and is found under the abdomen of the latter. When the young leave the egg, they are much like those of Cyclops.
Fam. 2. Cymothoidce. Most of these are parasitic upon marine fish, to which they affix themselves with the aid of their strongly hooked feet. The body is lengthened oval, narrowing towards each end, the head is small, and the feet are large and operculiform. The young leave the egg with only six pairs of feet, and at this period the abdomen is adapted for swimming. Some are sedentary, and others possess the power of walking. The subfamilies are the Serolince, Cirolanince, and Nerocilince.

Fam. 3. Sphatromidle. The genus Spheroma (pl. 78, fig. 21) has the thoracic segments nearly alike in form and size, the feet slender, and the false feet (except the last pair) received into a cavity beneath the abdomen. The species live among submarine plants, and they can roll themselves into a ball. Cymadocea ($p l .78$, fig. 20) is allied to Sphæroma, but it is less flexible, and therefore not able to roll itself into a ball. It contains the two sub-families, Sphceromince and Ancinince.

Fam. 4. Idoteidce. In this family the four antennæ are placed in the same line, and the first pair are very small. The body is slender, not much thicker in the middle, and truncated or concave posteriorly. The respiratory false feet are concealed in an opercular cavity beneath the abdomen. Subfamilies, Arcturince and Illoteince.

Fam. 5. Asellidce. Body elongated and flattened above; the two pairs of antennæ are setaceous, and arranged in two lines, the first pair small. The abdomen is composed of one large scutiform segment withont lateral swimmerets, and with two terminal stylets. Some of the species are marine, and others fluviatile. A species of Asellus is common in the fresh waters of Europe, and A. communis, Say, Jour. Acad. Nat. Sci. i. 427, is abundant in similar localities in the United States; and as it differs from the European representative of the genus in having the sides rectilinear, entire, and gradually diverging posteriorly, and the posterior segment being the widest as well as the largest, and transversely quadrate ; we propose to give it the generic name of Abacura, from $\alpha \beta \alpha_{5}^{\xi}$ a table, and ouga the tail. The antennæ and caudal appendages are as in Asellus. It is half an inch or less in length, and may be found walking upon the bottom of springs.

Fam. 6. Oniscidce. These animals are either marine or terrestrial, the first pair of antemæ are rudimentary, the second only being fully dereloped and conspicuous. The feet are slender, and formed for walking. The terrestrial genera (Porcellio, pl. 78, fig. 22) inhabit humid places, as cellars, crevices in walls, beneath stones or loose bark, and similar localities, feeding upon decaying vegetable matter. The female carries the egge in a sac beneath the body. When the young first make their appearance, they have a segment of the body and a pair of feet fewer than the adult; and the head and antennæ are proportionally larger. The young are retained for a short time between the respiratory laminæ. Oniscus affinis, Say, is a common American species.
The singular marine genera, Pycnogonum and Nymphon (pl.7s, figs. 32, 33), with but four pairs of legs, were formerly placed in this, or the preceding or succeeding order, by various authors, but they are by many believed to belong to the Arachnida.

Order 7. Lemodipods. The animals of this order are small, and present an unusual aspect. The head is small, the thorax has six segments, and the posterior extremity ends in a little tubercle corresponding to the abdomen. There are four antennæ; the mouth has a pair of toothed mandibles, tro pairs of lamellar maxillæ, and one pair of foot-jaws. There are five or seven pairs of feet, and in the former case the missing ones are generally those of the third and fourth pairs, which are represented by lamellar scales. The feet are prehensile, and the first and second pairs have a kind of hand capable of holding; the former are affixed to the head, and the latter to the thorax. Branchial vesicles are attached to the second or third thoracic segments, and sometimes to the first. The order contains two families.

Fam. 1. Caprellidce. Caprella ($p 7.78$, fig. 23) is a small and very slender animal with thin feet, a thick head narrowing posteriorly, and the first pair of antennæ larger than the second. The species live among marine plants, along which they walk in the manner of a leech. In swimining, they bend the posterior extremity and straighten it suddenly.

Fam. 2. Cyamidce. Cyamus ($p l .78$, fig. 24) is a genus found in colonies parasitic upon whales.

Order 8. Aasphipoda. This order takes its name from having two kinds of feet, cheliform and simple, and because the feet vary in the position of the former. The body is compressed, the back generally arched, the mandibles with a palpus, the eyes immovable, and the posterior extremity generally with styliform appendages, and turned beneath. The segment next the head supports the first pair of feet, which correspond to the second pair of foot-jaws. The antennæ are slender and project in front. Most of these little animals swim with great vigor, by curving the tail beneath the body and jerking it back. There are fresh water as well as marine species, and they may be seen in most springs of fresh water. Some are found upon the beach under sea weed, or burrowing in the sand, and as they are too narrow to walk, they jerk themselves along whilst lying upon one side. There are two families, each of which contains several sub-families.

Fam. 1. Gammaridla. In most of these, the thorax is composed of
seven segments, the first pairs of feet are well developed, and used in prehension, and the five succeeding pairs are ambulatory. Orchestia (p l. 78, fig. 18).

Fam. 2. Hyperinidce. Ancylomera (fig. 19). These are generally parasitic upon fishes and medusæ. They swim well, but walk badly.

Order 9. Stomiatopoda. Branchiæ abdominal and free, not affixed to the sides as in the Decapoda; abdominal appendages well developed. The shell is delicate and transparent, the thoracic carapace is large; and the body bears some resemblance to that of a lobster, being semi-cylindric, rounded above, and flat beneath, and the posterior extremity is obtuse and spinose. The large and conspicuous arm-like organs, which resemble the raptorial anterior feet of Mantis ($p l .80$, fig. 90), present a remarkable character, and are doubtless used in taking their prey. The last articnlation closes upon the previous one like the blade of a knife into the handle, and it is well adapted for holding. These organs correspond to the second pair of foot-jaws in the lobster and crab, and to the first pair of thoracic feet in the Isopoda. The oval laminated organ in front of these is an appendage of the second or external pair of antennæ. The last segment of the abdomen and the appendages of the sixth segment, form a caudal fin used in swimming, assisted by the three posterior pair of thoracic feet. Squilla ($p l .78$, fig. 15); Gonodactylus (fig. 16). Gonodactylus chivagra inhabits the Mediterranean, the coasts of the Seychelles, America, Trincomalee, and Tongatabu. The order contains the two families, Erichthiidce and Squillidce.

Order 10. Diplopoda. This is usually included with the preceding, though Milne Edwards separates it as a distinct order, but without assigning to it a systematic name. That here chosen is in allusion to the appendages of the feet, which give them the appearance of being double. It is an order of small extent, of which Phyllosoma (p l. 78, fig. 17) is the type. The eyes are placed upon peduncles, the abdeminal appendages are rudimentary, the branchiæ wanting, the body broad, thin, and scale-like, composed of a large cephalic shield, and a smaller thoracic one bearing the feet upon extensions of its margin. These animals are translucent, and so thin that it is difficult to perceive how there can be room for the internal organs between the upper and lower surface. In Phyllosoma the mandibles are large ; the first and second pairs of mandibles, and first pair of foot-jaws, are small, and the second pair of foot-jaws are not raptorial. The feet are long and slender, and provided with palpiform appendages; and from the ease with which the feet are lost from the point where the appendage is attached, they are seldom seen perfect, so that the latter appears to be the true termination of the foot. The first pair of feet are small, and without a terminal nail, and generally without an appendage. The last pair are often rudimentary. The abdomen is sometimes confounded with the thorax, and at other times rudimentary.

Order 11. Decapoda. The individuals of this order, as the name implies, have ten ambulatory feet; the branchiæ are placed in lateral cavities beneath the sides of the large carapace; the head is immovable; the mouth has numerous organs between the mandibles and first pair of feet; and the 318
eyes are pedunculated. This order contains the largest of the Crustacea, as the lobsters and crabs.
Latreille divides this order into two families, named sub-orders by Westwood and tribes by Burmeister, who includes them with the Stomatopoda in his order Podophthalma, and gives each of these an equal rank with the Stomatopoda, Isopoda, and other orders. Milne Edwards divides the Decapoda into three sections, admitting the Brachyura and DFacrura, but separating certain anomalous genera from both, but chiefly from the Macrura, to form the third section Anomura (also written Anomoura, and meaning, the tail anomalous).
In the Anomura the cephalothorax is large, the abdomen is not fully developed, and is much like that of the Brachyura. The second pair of external antennæ are well developed, the external foot-jaws are generally like feet; the three or four anterior pairs of feet are generally like those of the Brachyura, and adapted to locomotion, but the remaining ones are rudimentary, and in some cases used only for holding.

Fam. 1. Pagurida. The genus Payurus (pl. 75, fig. 10), and several others of the same family, are remarkable for having the abdomen weak and soft, and the two posterior pairs of feet much reduced in size, and not adapted for walking. These animals are protected by the empty spiral shell of a mollusc, and as they increase in size they crawl along the beach hunting a larger shell, and various trials are made until a suitable one is found, the old one being again and again resumed, until the animal has suited itself. The abdomen and small feet enter the shell, and when the animal wishes to be safe, it withdraws itself so far that the head and robust anterior feet close up the aperture like an operculum. The posterior extremity of the body is curved, and with the posterior feet, adapted to maintain the shell in a proper position. One of the anterior pair of feet is larger than the other, and both terminate in a pair of pincers or chelæ. The sub-families are Pagurince, Hippince, and Porcellanince.

Fam. 2. Raninidce. In Ranina (R. serrata, pl. 78, fig.9) the carapace is roughly serrated and transversely truncated before and narrowing posteriorly, producing a sub-triangular form. The anterior feet are cheliform, but not of a very large size, and the succeeding feet have the tarsus or last articulation lamellar. The abdomen is narrow, of seven articulations, the last ones bent downwards. The species figured inhabits the East Indies, and is said to crawl up objects, even to the tops of houses. The sub-families are: Dromiince, Homolince, and Raninince.

The Macrura are named from having a large and well developed tail or abdomen, ending in a fan-shaped fin ($p l .78$, figs. 11-14). The form is generally elongated, the carapace longer than in the crabs, and generally armed with a frontal spine; and the species, with few exceptions, are marine. The antennæ are in general long, the first pair not received into a cavity as in the crabs; the mandibles are well developed; the walking feet are slender, and the first and second pairs frequently cheliform. The abdomen has seven articulations, of which the five basal ones bear the false feet. The caudal fin is formed of five pieces, the middle being an extension of the seventh or last segment, whilst the lateral ones arise from the sides of
the sixtl. These Crustacea, although they walk well, must be regarded as chiefly swimmers, shooting backwards through the water by the action of the abdomen and caudal fin.

Fam. 1. Scyllaride (cuirassés, M. Edwards). In the genus Palinurus pl. 78, fig. 11) the body has much the shape of that of a lobster, but is more cylindrical, and none of the feet are cheliform, although the anterior ones are rather more robust than the others. The carapace is armed anteriorly with two large spines; the external antennæ are very long, with the base spiny; the basal segment of the abdomen is without false feet, although the four following have them. The species are of a large size; they have a very hard shell, and they live upon rocky coasts. The European species, P. vulgaris, attains a length of fifty centimetres, and a weight of eight kilograms. It is the karabos of Aristotle, and the locusta of Suetonius and Belon. The various species are more or less spinous. Scyllarus ($p l$. 78, fig. 12) is remarkable for having the peduncle of the exterior antennæ much dilated laterally, and more or less dentated, the terminal filaments being absent. The sub-families are: Galatheince, Eryonince, Seyllarince, and Palinurince.

Fam. 2. Astacida. This family includes the genus Astacus (lobster) and Potamobia, the analogous fresh water form known under the English names of crawfish, crayfish, crevish, or crevis, the three last of which agree in the first syllable. The latter are caught in Europe for food, by placing decaying meat in nets or bunches of brushwood, from which they cannot readily escape. They are also caught by a bait at the end of a stick, which they will not leave if it is withdrawn slowly, until a net can be passed under them. They are said to live twenty years, and to grow during this period. The genus is well represented in the United States. Callianassa ($p l .78$, fig. 14). C. major, of Say, is four inches and a half long, and was found by this author" by digging in the sand of the bay shore of the river St. John, in East Florida, about eighteen inches below the surface, near lowwater mark; it had formed a tubular domicil, which penetrated the sand in a perpendicular direction to a considerable depth; the sides were of a more compact consistence than the surrounding sand, projecting above the surface half an inch or more, resembling a small chimney, and rather suddenly contracted at the top into a small orifice." The second family, fouisseurs of Milne Edwards, is included in the Astacitce by Latreille. The sub-families are: Glaucothoince, Callianidince, and Astacince.

Fam. 3. Palcemonida. Palamon, which is much used for food, inhabits sandy bottoms near the coasts, or the mouths of rivers, and like the lobsters, boiling turns them red. Stenopus (pl. 78 , fig. 13, exhibiting the false feet under the abdomen). The sub-families are: Crangonince, Alpheince, Palcemonince, and Penceince.

Fam. 4. Mysisidce.* Some authors place this family with the Stomatopoda. It includes two sub-families: Mysisince and Leuciferince.

[^8]In the Brachyura ($p l .78$, figs.1-9), the carapace is generally transverse, and square, oval, or circular, the abdomen is small, without a caudal fin, it is bent beneath and received into a depression of the thorax, and is not used in locomotion. The eye peduncles are generally longer than in the Macrura ; there are two pairs of antennæ, one pair of mandibles, two of jaws or maxillæ, three of foot-jaws, succeeded by ten feet, the first pair having a pinching claw, the rest simple, and adapted in most cases for walking, but sometimes for swimming. The abdomen is wider in the female than in the male, and is composed of seven segments; but some of these are sometimes united together in the female, so as to present from four to six. Linnæus included the various genera of Brachyura in his genus Cancer, which corresponds very nearly to the English name crab. They are divisible into four families.

Fam. 1. Leucosiadce. This family, called Oxystomes by Milne Edwards, includes the four sub-families, Calappince, Leucosiince, Corystiince, and Dorippiince, in which the shell is more or less orbicular, the eyes generally small, and the external foot-jaws triangular.

The Calappince form part of Latreille's Cryptopodes, named from the feet being partly hidden by the projecting margin of the carapace. The Leucosiince are much like the Cancridæ or ordinary crabs. Philyra (pl. 78, fig. 7) is a genus of small Crustacea, with the carapace circular and depressed. In the Corystionce, the external antennæ are robust and rather long, and the sternal plate narrow. In Corystes, the anterior feet are much larger in the male than in the female, and the abdomen has five articulations in the former and seven in the latter. The Dorippiince (Dorippe, pl. 7s, fig. 8), which form part of Latreille's Notopodes, have the sternal plate circular and bent upwards posteriorly, the cheliform feet short, the two next pairs long, and the one or two last pairs, which are generally much reduced in size, are placed higher than the others, as if upon the posterior part of the back.

Fam. 2. Ocypodidce. This family of Leach corresponds to the Catamétopes of Milne Edwards, in which the carapace is depressed, rhomboidal or oroid, and the eye peduncles long and slender. The following are the subfamilies: Thelphusince, Gecarcinince, Pinnotherince, Ocypodince, Gonoplacince, and Grapsince.

Thelphusa is a genus of crabs which lives along the banks of freshwater streams. The Gecarcinince (Gecarcinus, pl. 78, fig. 4) are remarkable for having branchiæ adapted to aerial respiration. They live among damp forests in holes which they make, and where they moult. Their food is vegetable, and they generally move about at night, or in wet weather. They visit the sea at certain periods, for the supposed purpose of depositing their eggs. They run with great agility, and like the crabs in general, in either direction. Pinnotheres ostreum is commonly found within the shell of Ostrea virginiana of the United States coast. In this genus the males are much smaller and more rare than the females. They are found within the shell of various bivalve Mollusca, as Pinna and Mytilus, where they are compensated for the weakness of their shell. The Ocypodince (Ocypoda, pl. 78, fig. 6 ; Gela-
simus, fig. 5) live upon the coast, digging holes several feet deep, where there is not too much sand to cause them to cave in, and some of the species run so rapidly that a man can scarcely catch them. Ocypoda arenaria inhabits the coast of the United States and the Antilles, digging a hole three or four feet deep, just beyond the limit of the surf, whence it wanders in search of food. According to Say, they hybernate at some distance from the water, in a hole made for the purpose, the mouth of which they close. Gelasimus vocans, known on the United States coast urder the name of fiddler, has one of the anterior feet of the male much larger than the other, the large one being indifferently upon the right or left side.

Fam. 3. Cancrida, including the Portunidee and Pilumnidee of Leach, is equivalent to the Cyclométopes of Milne Edwards, and includes, under two sub-families, most of the forms known under the name of crab. The subfamilies are: the C'ancerince (Cancer, pl. 78, figs. 1, 2) and the Portunince (Thalamita, fig. 3), which includes a great number of species under various genera. They are found near the coasts a considerable number together, and are taken for food. They feed upon living or dead animal food, particularly upon decaying carcases. Some of them attain a large size, Pseudocarcinas gigas being ten inches or more in diameter. The Portunince correspond to Latreille's swimming Brachyura, and are distinguishable from the Cancerinæ by the posterior feet being flattened and adapted for swimming, as represented in figure 3. In Lupa, the carapace is wider than long, and has nine tooth-like projections on each side before. The common edible crab of the Atlantic coast of the United States, has been described as Lupa hastata by Say, Jour. Acad. Nat. Sci. i. 65, 1817. It is abundant in bays and inlets, feeds upon putrefying animal matter, and buries itself in the sand to the eyes and antennæ. The shell is generally cast in the spring, when the animals are sought after under the name of soft crabs.

Fam. 4. Mäida. This family includes the thorny and spider-crabs, many of which have long and slender feet. The epistoma, or region between the mouth and antennæ, is large and square ; the carapace is narrowed anteriorly, so as to give it a triangular outline, whence Latreille's names Triangulares and Oxyrhinchi. The front is narrow, and generally extended into a prominent rostrum ; the nervous system is more concentrated than in any of the other Crustacea, and on this account it may be cousidered the highest group among them. They are all marine, living at considerable depths; their motions are tardy, and they do not swim. As American examples, Leptopodia calcarata and Libinia comaliculata, Say, may be mentioned. There are two sub-families: Nairnce and Parthenopiince.

Class 4. Arachnida.

This class includes the various articulate forms known as spiders, mites, and scorpions, the characters of which place them between the Crustacea and Insecta. In general, the head is not distinct from the thorax, but intimately connected with it, forming a large segment named the cephalothorax,
which is followed by the abdomen, and this is cither distinct or united in a single piece with the former. These animals are not subject to a perfect metamorphosis, but they have, in some cases, a partial one. They have neither wings, antennæ, nor upper lip; the number of feet is eight, affixed to the sternum or lower side of the cephalothorax ; the mouth is provided with a pair of mandibles or chelicera which usually project well in front, a pair of jaws or maxillæ supporting palpi, and a lower lip. The chelicera are conssidered byatreille not to be equivalent to the mandibles of the Crustacea and insects, but to correspond to the internal antennæ of the former, and modified into predaceous organs; a view which, if correct, would deny proper mandibles to these animals, although these organs have an important place in the Articulata as a whole. Each of the two maxilla bears a palpus or articulated organ much like the ordinary feet, bat smaller, and like the ordinary feet of the Crustacea. (See pl. 78, figs. 3i-40.) In Scorpio ($p 7$. 75, figs. 51, 52), the palpi are cheliform, and much larger and stronger than the feet, resembling the first pair of true feet in the crab and lobster. There is an affinity between Scorpio and the Xiphosura or genus Limulus, in the mandibles, which are cheliform, each ending in a pincer. The feet correspond to those of insects, the round basal portion or coxa being joined to the thigh or femur by means of a short interposed trochanter, the femur being followed by the tibia, and this by the tarsus, which has three articulations in the more typical forms.

The eyes are simple and smooth, and their number varies from two to eight. Their number and relati ve position are much used as generic characters.

The respiratory organs are of two kinds. The first (which resemble those of the Crustacea) are formed of numerous internal gills or laminæ contained in internal pouches, and answering to lungs. The second kind are composed of tracher or air tubes (as in insects), connected with two spiracles. Those with the former are termed pulmonary, and the latter tracheary arachnidans. Both kinds may occur united, and the Podosomata (Pyonogonum, ©dc.), like some of the lower Crustacea, have no means of respiration except the skin.

The abdomen is generally soft and more or less globular in form, and it bears the spiracles, anal and generative apertures (the latter being near the base beneath), and the spinnerets in those forms which spin webs. The skin is generally of a tough leathery texture, and the muscles are attached to its internal surface, thus assimilating it to the external skeleton of the Crustacea and insects.

Most of the Arachnida feed upon fresh animal food, as insects, which they take alive, either in their nets, or by running or suddenly leaping upon them. Some, as the ticks, are parasitic upon varions animals; whilst others, as some of the mites, feed upon vegetable matter, being found in flour and figs. Some mites infest dried meat and cheese.

The Arachnida are mostly oviparous; the young, upon leaving the egg, are active, and resemble the adult, although some have a pair of feet less, which are finally acquired after several moultings, for, like the Crustacea, the members of this class change their integument from time to time.

The nervous srstem is much concentrated, being principally composed of a large ganglion in the centre of the cephalothorax, before which are two others with branches to the eyes and mouth. The principal ganglion has branches to the abdomen and feet. In the scorpions, instead of the great central ganglion, there are two rows of small ones, each united by a nervous cord.

The class is divisible into the three sections, Aporobranchia, for Pyonogomum, \&cc., in which there are no special breathing organs; Trachearia, in which breathing is effected by means of tracheæ; antl Pulmonaria, in which the gills resemble the leaves of a book, and are adapted to breathing air only. The first section contains one, and each of the others two orders. The orders are named from the characters furnished by the body. The Podosomata, Leach, have the feet and body much alike; the Monomerosomata, Leach, have only one segment apparent; in the Adelarthrosomuta, Westwood, the segments are uncertain; in the Polymerosomata, Leach, they are numerous, as in the scorpion; and in the Dimerosomata, Leach, including the common spiders, the body is divided into two portions.

Order 1. Podosonata. These animals are placed among the Crustacea by Milne Edwards, because they have not the organs of respiration of the Arachnida, but respire by means of the skin, like some of the lower Crustacea, a character which some of the Hydrachnidæ have, although no one would pretend to remove them to the Crustacea on this account. In form, the animals of this order approach to the crustacean genus Cyamus (p). 78, fig. 24), although they have but eight feet like the Arachnida. These are long and slender, and composed of eight articulations, including the claw. The head, or rather the rostrum, is lengthened, and either cylindrical or conical, without appendages, and the mouth is terminal and tri-lobed. The thoracic portion can be distinguished from the snout, which character distinguishes them from the great mass of the Arachnida, and it is composed of four segments, followed by a small abdomen. There are four eyes upon an eminence, situated upon the upper surface of the first segment of the thorax, and as the snout does not, in the opinion of Erichson and Kröyer, comprise the whole head, this must be looked for in the first segment of the thorax, which often bears a pair of cheliform organs, corresponding, in the view of Latreille, to the cheliform mandibles of Scorpio. The female (and in some cases the male also) has attached to the first segment of the thorax a pair of appendages much like the feet (but much smaller in size, and without a terminal claw), used to support the bunches of eggs, and which may be considered maxillæ. As Erichson regards the segment next to the rostrum as the head, he names its feet a third pair of jaws, whilst Kröyer considers them feet, on the ground that the segment to which they are attached is made up of the posterior part of the head (including the eyes) united without a division to the anterior part of the thorax.

The alimentary canal is straight, and it is peculiar in having lateral tubular branches penetrating far into the feet, which dispenses with the necessity of having a regular circulation. In the more typical Arachnida, examples are found of a stomach with branches, but they do not enter the feet.

The order is widely spread, members of it having been found at Spitzbergen, the coasts of Europe and America, and Australia. Their habits are sluggish, and some of the species live together in considerable numbers. Kroyer has found that they have three stages of transformation, the body being in the first roundish or oval, without an abdonen, but with cheliform mandibles even in Pycnogonum, the adult of which is without them, a fact which indicates the little importance of these organs, and the lower condition of the forms which retain them. The third pair of feet, the segments of the body, and the abdomen, appear in an undeveloped state in the second stage; and in the third, the last pair of feet are acquired, the preceding feet have become more perfect, and the body has become longer and more like that of the adult. Another moult brings the body nearly to its final form, whilst the feet, which had diminished in length from the first to the last pair, become of equal length.

This order is not extensive, but it contains a number of genera comprised in two families.

Fam. 1. Pyenogonidce, in which the feet are comparatively short, the body rather robust, and the cheliform organs wanting. Pyonogonum ($p l$ l. $78, f i g .32$) has been erroneously stated to infest whales.

Fam. 2. Nymphonidac Nymphon ($p l .78$, fig. 33, inverted), in which the body and feet are very slender, and having a pair of cheliform mandibles. N. pallida, Say, 1821 (Anaphia), Jour. Acad. Nat. Sci. vol. ii. p. 60, pl. 5 , fig. 7, was found on the coast of South Carolina. The expanse of its feet is one and a half, and its length one fourth of an inch.

Order 2. Monomerosomata (p l. 77, figs. 46, 47, 6 4 - 71). This order contains the small and generally microscopic spider-like animals known as mites and ticks, and to which an aerial and tracheary respiration is usually attributed, including those which are aquatic. According to Dujardin, Gamasus and other genera with cheliform mandibles, have tracher, whilst Acarus and Sarcoptes breathe through the skin. He asserts further, that in Trombidium, inspiration takes place by the latter mode, and expiration by the former; and that in the aquatic genera respiration takes place through spiracles scattered over the surface. The body is not divided by the separation of the abdomen as in the ordinary spiders, nor are various segments apparent as in Chelifer and Scorpio. This being the case, when the anterior portion appears to form a head, it is by the enlargement of the haustellum or parts of the month, the eyes being in nearly every case situated upon the anterior part of the cephalothorax. The labium or lower lip supports or incloses the organs of manducation; the palpi are usually free, of five articulations, and they present many varieties of form which are useful in classification. In some they are adapted for seizing their prey, in some for holding, and in others for drawing their food towards the mouth. The feet are usually composed of seven articulations, including the coxa (which is either attached or movable), so that they correspond with those of the Areneidæ. The extremity has usually two claws, capable of being thrown back and received into a corresponding cavity. The supposed Acari, with six feet, for which genera have been proposed, are the immature
condition of other genera. Dugès divides the order into seven families, the succession of which is here followed in reversed order. The genera are numerous.

Fam. 1. Oribatide. These have a remarkably hard exterior, the back being formed like a carapace, whence Hermann's generic name Notaspis. This carapace sometimes has a transverse division, and Dugès mentions a species in which the feet can be hidden by its lateral borders. The palpi have five articulations, of which the sccond is the thickest and longer than the rest conjointly. The mandibles are cheliform or didactyle, and the eyes are usually absent.

Fam. 2. Bdellida. Body oblong and tumid posteriorly, contracted behind the eyes; rostrum in the form of a head, and elongated; palpi resembling antennæ, mandibles with a claw, or cheliform; feet cursorial.

Fum. 3. Acaritue. In this family the feet are carunculated, the mandibles cheliform, and the palpi indistinct, on account of their adherence along the inside margin of the labium. These animals increase rapidly, and various species infest provisions and living amimals, including man. Others roam at large upon the ground, or on plants and other objects. Acarus siro (p l. $\tau \tau, f(g .70)$ is the cheese-mite, which is mentioned by Aristotle. In Sarcoptes, the body is soft and tumid, the four posterior feet are rudimentary and provided with long bristles, the collar below and the base of the feet are armed with hooks, and the anterior feet terminate in vesicles. This genus is parasitic under the skin of rarious animals, including man, causing the disease named itch, and although this fact has been often doubted, it seems now to be established beyond dispute. The species which infests man has been known to the Arabs, and is mentioned by an Arabic author, Abenzoar, of the twelfth century. It has been known from time immemorial in Southern Europe, where it has been considered to be the cause of the itch, under names which are diminutives of the terms used for lice, with which they were naturally confounded in the absence of microscopic examination. Linneus confounded this species with Acarus siro, considering the two to be varieties of a single species, a view which has been contended for in later times. It seems probable that Acarns siro is occasionally found about the itch pustules, but the Sarcoptes must be searched for at the bottom of the tortuous galleries which it forms under the skin, extending from one to six lines. The common Sarcoptes scabiei ($p l$. 77, fig. 68) is marked with curved lines above, the middle has small elevations, and there is a small bristle on each side, and two large ones posteriorly.

The itch, caused probably by different species of Sarcoptes, is spread orer a great portion of the earth, and is endemic in some localities, and although it is readily destroyed, there are those who consider the irritation in the light of a luxury, and refuse to have it removed.

Varions species of Sarcoptes infest man, monkers, horses, and dromedaries. That of the last-named animal (S. dromedarii) is larger and better armed than the ordinary species, and in several instances it has been communicated to man.

According to Dujardin, the supposed genus Hypopus of Dugès, which was placed in this family, is the immature condition of Gamasus.

Fam. 4. Ixodidx. The genus Txodes (pl. 77, figs. 67, 71) includes the parasitic animals known as ticks. The eyes are wanting, and the body has a tough integument; their form is oval, and flat and scale-like when found among grass and bushes; but when they have affixed themselves to the animals which they infest, they become greatly distended, so that an individual a tenth of an inch long may acquire a length of one third of an inch or more by distension, when it resembles a small bean. Being very slow in their movements, they must wait long before they are afforded an opportunity to affix themselves where they can suck blood, so that the distensibility of the body and the division of the stomach into various large branches, enable them to make amends for a long fast, as in the case of the leech. The position of the animal in its parasitic state is maintained by the rostrum, which is composed of three hard corneous pieces, two above (the mandibles), their extremity armed with a movable piece margined with teeth, and one below, which is the labium. This is obtusely rounded at the end, concare above, and armed upon its lower surface with transverse rows of serriform teeth, with their points directed backwards, and recalling the somewhat similar structure in the Acanthocephala (p. 47), and designed for a similar use. In a state of repose, the external margins of the mandibles are clasped by the palpi, the hairs of which cover the labium beneath. The explanation of the parts of the mouth given here, is that of Dugès.
The feet in this family are robust, and have six articulations, and when the animals are among plants, and ready to attack their prey, they suspend themselves by two of their feet, extending the others to affix themselves to any passing animal. Say took Ixodes anmulatus from a deer, and I. orticulatus from a squirrel. They torment and even kill cattle when they are abundant; dogs suffer much from them, and in the West Indies they must be remored from horses and asses once a week. They also attack birds, tortoises, lizards, and serpents. They seem to be common in various parts of the world, but their distribution is local, as they are unknown in certain localities and common to others not very distant from the former. Say has described nine species inhabiting the United States, including the small and troublesome seed-tick, which renders an excursion so disagreeable in some parts of the western states. The species attack man, and cause a troublesome sore, the effects of which may continue in an occasional itching, for a period of several years.
Fam. 5. Gamasidre. Palpi slender, short, free, and incurved, body depressed, eyes wanting; parasitic upon beasts, birds, reptiles, and insects. In Gamasus the body is oval, tough, and scutiform above, the mandibles cheliform, and the first pair of feet are slender, and the second thick. They are often seen running upon the ground, and when they are upon the animals which they infest, they run about from place to place, differing from Lxodes in this respect, and in not gorging themselves to such an extent. Gamasus coleopterorum has the back covered with two pale brown plates dirided and surrounded by a light space. It is found in Europe and the

United States upon rarious Coleoptera, particularly those which live in dung. Five species are described by Say.

The genus Argas (A. fischeri, pl. 7T, fig. 46; A. savinii, fig. 47) is remarkable for containing the poisonous A. persicus, which lives in old honses about Miana in Persia, and is said occasionally to cause the death of foreigners, although it is not fatal to the natives.

A species has been described by Guérin, which was discovered in Central America by Sallé, who states that he and his companion were awakened from profound sleep by sharp bitings or stingings, and upon getting a light he found his hands covered with blood, and swellings like large fleabites. His companion supposed that they had been stung by wasps, but upon awaking the muleteer, it was found that they had been attacked by an insect called talaje, and upon searching, some of the Argas were found swelled with blood, and others empty, with the skin rugose. They live in the crevices of the walls in old houses, coming out at night and returning before morning.

Fam. 6. Hydrachnida. This family includes the small globular and oval forms found in water, in which the coxæ are so broad as to form a kind of sternum. The young of IIydrachna are born with six feet. They swim about for some time, and then affix themselves to the bodies of aquatic insects by the anterior extremity, when the palpi and feet seem gradually to be withdrawn, and the exterior of the body becomes a kind of sac or cocoon, but the rostrum still penetrates the smaller extremity to draw nourishment from the insect to which they are affixed. The young animal leaves this skin by moulting, and attaches itself to a plant, where another moult takes place before it resembles the adult. During the period of attachment to aquatic insects, these animals can be transported by flight, and distributed to the various small detached ponds in which they are found.

The genus Unionicola, Hald., 1842, differs from Hydrachna in being unable to swim, in having the palpi conical, the antepenultimate articulation the longest and very thick, and the point simple, whilst in Hydrachna, as represented by Dugès, these organs are cylindrical, with a double terminal claw; the penultimate articulation is the largest, and the nails of the feet are not bifid as in Unionicola. This genus is parasitic between the folds of the mantle in the Unionidu. II. triangularis, Say (oviformis, Hald.), inhabits Unio cariosus; it is black, and has a Y-shaped white mark upou the back. U. reticulatus, Hald., is pale, ochraceous, and infests Unio viridis. The last is a large species, being a line and a half long, the length in general hardly reaching a line. From their mode of life, it is probable that in this genus the system is oxygenated through the skin from the water.

Fum. 7. Trombidivde. This family is composed of the larger land forms, which bear some resemblance to the Phalangiedde in the next order. The genus Trombidium is usually of a bright red, which extends over the feet and palpi, and the surface is velvety, which characteristics, together with their slow motions, will render them recognisable in the forests. The body is composed of two portions, the trunk, and an anterior and inferior portion,
including the rostrum and the four anterior feet. The larræ have six feet, and resemble small drops of red sealing wax affixed to the legs and other parts of Phalangium (pl. 77, fig. 62) and various insects. These were once considered to be a distinct genus, under the name of Leptus.

Order 3. Adelarturosomata. The animals of this order respire by tracheæ, and have cheliform mandibles. They are included in the three families: Phalangiidar, Cheliferidce, and Galeodidce.
Fain. 1. Phalangiidae (pl. TT, figs. 62, 63). This family includes the slender footed spider-like animals known as harry-long-legs. The mandibles are cheliform and the palpi filiform, the eyes two, central, and near together, and the abdomen annulate and closely united to the cephalothoras. They feed upon small insects, avoid the full glare of the light, and are harmless, except that some of them have the power of exuding a disagreeable scent when disturbed. The slender feet are much like antemuse, the tarsus being in some cases composed of fifty articulations; and when the animal is standing or walking, several of the feet are held up or moved about, as if for the purpose of feeling and ascertaining the presence of objects. Some authors place the Phalangiidte in one order, and the remaining families (including the Scorpionide and Phrynidee) in another, under the name of Solifugce.

Fam. 2. Cheliferida. The genus Chelifer ($p 7$. Th, fig. 48 a, natural size, and 61 , natural size) is remarkable for the large cheliform palpi resembling arms, which give the species the appearance of minute scorpions, except that they have not the tail of the latter. They feed upon minute animals, living in the woods or in houses, especially among books (as noticed by Aristotle), where they are rather beneficial than hurtful. They run rapidly backwards, forwards, or sideways, like the crabs; they are oviparous, have two or four cyes upon the cephalothoras, an annulate abdomen, and the eight feet are of equal size. Say describes two species inhabiting the United States.

Fam. 3. Galeodidce. Galeodes (pl. 77, figs. 49, 50). The animals of this fanily resemble large hairy and fierce looking spiders. The palpi are long and resemble feet, and the abdomen has nine or ten articulations. The generic name Galeodes was proposed by Olivier, in 1791, and Solpuga by Herbst, in 1597, according to Agassiz' Nomenclator, so that the former has priority. The two terms are, however, used by Koch for different genera. The body is divisible into head, thorax, and abdomen, and the eyes are situated upon the head. The first pair of feet, as well as the palpi, are without nails, although the remaining feet have them. They run with great agility, and when interrupted they stop, raise the head, and place themselves upon their posterior feet in a menacing attitude. Lucas, who was sent by the French Government to investigate the entomology of Algeria, says, that when about to catch one of them, it leaped upon his arm and bit the sleere, maintaining its hold until it was secured. According to Captain Hutton's observations, these animals are probably not poisonous, as a lizard bitten by one of them did not die. Another lizard three inches long, exclusive of the tail, was almost entirely devoured by one of them, which gorged it so much
that it remained motionless for fourteen days. It was nocturnal, rapacious, and was able to bite hard coleoptera into pieces. Its chief food was insects, which it masticated, and did not suck out, in the manner of spiders. They fight fiercely with each other, the rictor eating the vanquished. The female watches her eggs and young with much assiduity. The latter, according to the same author, were hatched in fourteen days, and did not stir for three weeks, when they moulted and became active. Galeodes lives under stones, and digs holes for itself in the earth.

Order 4. Polymerosomata. In this order, which is the first of the section Pulmonaria, the body has distinct segments.

Eam. 1. Scorpionidce. Scorpio (pl. 7T, fig. 51); Buthus (fig. 52). These animals are remarkable for the articulated tail-like extension of the abdomen in the typical sub-family Scorpionince, in which the end of the abdomen is armed with a poisonous sting. The scorpions have another peculiar appendage, being a kind of comb upon each side of the base of the abdomen beneath. The eres vary in number and position, and thus afford characters for various genera. The month is situated at the base of the palpi and the two anterior pairs of feet.

The extent to which the sting of scorpions is mortal, and the existence of a pore or pores to give egress to the poison, have been matters of dispute both in ancient and modern times. Pliny and Tertullian assert correctly, that it is not the wound of the sting, but the poisonous liquid, which is the cause of the evil. The poison gland opens by a pore on each side of the point of the sting. The sting of the small species seems to occasion no greater injury than that of a hornet or similar insect, whilst that of the larger species is believed to be fatal in certain cases. The Arabs, and the inhabitants generally of countries infested by the larger scorpions, regard them with horror. The sting is used in defence, and in killing the insects which are taken for food. They carry the tail curved upwards in walking. They are solitary, living in dark places, and often entering houses and taking refuge in beds, clothing, boots, ©c. The scorpions are found in the warm regions of both continents; in North and South America; and two identical species are found in the Mediterranean region of Europe, Asia, and Africa.

In the sub-family, Theliphonince, the sting and abdominal combs are absent, and the abdomen ends in a slender tail.

Fam. 2. Phrynidec. This family forms a link in the passage to the Dimerosomata, as the general appearance approaches that of a spider, the abdomen being oval and pedunculated, although it is segmented, and without a caudal appendage. Phrynus, the only genus of the family, has but six ambulatory feet, the anterior pair being very long and slender, and having all the articulations following the femur replaced by a multitude of small articulations, giving to these organs a kind of antennal character, which is observable in a less degree in Thelyphonus, where the tarsus alone is thus subdivided.

Order 5. Dinerosomata. In this order, which includes the spiders, the body is divided into cephalothorax and abdomen, the latter being joined to
the former by a small peduncle. The mandibles are strong, they move vertically, or to some extent horizontally, and they have a terminal morable curved nail or tooth, which has a pore near the point through which a poisonous fluid escapes. The mandibles of the male are generally larger than in the female, although the individuals of the latter sex are usually the largest. The palpi have five articulations, and are attached to the maxillæ or jaws. They are pediform, simple, and ending with a nail in the female, and variously shaped in the male. The maxillæ vary much in shape, and afford good characters in classification. Between the maxille is the labium or under lip. The feet are of the same shape, but differ in length and thickness. They are usually terminated by a pair of serrated nails. There are six or eight eyes, but generally the latter number, and they are rariously grouped in the different genera. The abdomen is usually soft, and sometimes very large. The generative organs are situated at its base beneath; it contains two or four spiracles, and towards the extremity are the vent, and spinnerets connected with the organs which secrete the silk.

The effect of the poison of spiders has been much exaggerated, although under certain circumstances it may be serious. Walcknaer, a voluminous writer upon these animals, states that he has cansed himself to be bitten by various species, but no ill effects resulted.

Each spinneret of a spider contains a multitude of pores which, in some species, amount to more than a thousand, so that the compound thread from four spimerets may contain four thonsand strands. It has been snggested, that as the strength of a rope is increased by being composed of many separate strands, the strength of the cord of a spider is secured in the same manner; but this is an error. The strands of a rope increase its strengti because the ends of the separate short fibres are thereby better secured; but the silk of the spider, being a uniform fibre, cannot be compared with a compound rope, and at best it is generally comparatively weak. The silk being in a liquid state within the body, and much being required in a short time (as when the spider descends by its thread), the extreme tenuity of the strands enables them to harden almost instantly by contact with the air. Newly born spiders are capable of spinning, and Leuwenhoeck has calculated that it would require four millions of the strands of one of them to form a thread as thick as a hair of his beard.
Some spiders shoot out long lines of silk, which have sufficient bnoyancy to serve them as balloons for transporting themselves through the air. In the autumn, these gossamers are abundant in the air and on the ground, and they may be frequently seen floating in the breeze with a spider attached. Thus an individual has been observed coming across the River Susquehanna upwards of three hundred feet above the water towards a cliff of that height.

The webs of spiders are made according to varions patterns. Some are closely woven into a funnel into which the spider retreats, and opening externally into a wide surface. The tube of the funnel sometimes extends into a hole in the earth, or other material. Among the webs stretched to
take flies, those formed by the large and handsome species of Epeira (p l. 77 , figs. 53,59) are among the most regular.

The cocoon in which the eggs of spiders are inclosed is carefully guarded. Some species seat themselves orer it as if in the act of incubation, some place it in their retreats, some in their webs, and the wandering species affix it to their abdomen. In this case, if it be forcibly removed, it is sought for with great solicitude, and when found, carried off or re-affixed.

Flies and other insects constitute the chief food of spiders, and they must be taken living by the spider itself, or they will be generally rejected. Spiders are capable of fasting several months, and they pass the winter without food, being then torpid. They are eaten by various birds, reptiles, and other animals, and some of the stinging Mymenoptera fill the cells of their young with them for the food of the latter, being endowed with the remarkable instinct of disabling the spiders to such an extent as to render them perfectly helpless, so as to be unable to resist the young IIymenoptera, whilst they have life enough to keep them in a fresh state as long as they are wanted for food.

The spiracles are situated near the base of the abdomen beneath, one or two upon each side of the middle. When there are but two spiracles, they communicate with extremely thin laminated gills which have their extremities directed towards the aperture, so that the air can be readily admitted to them. When there are four spiracles, the two posterior ones communicate with trachere. The latter belong to the family Mygatidce (considered a section or sub-order by some authors, under the name of Tetrapneumones), and containing the sub-families Mygalince, Atypince, and Dysderince. Those with two spiracles have been named Dipneumones. They constitute the family Areneide, with the six sub-families: Areneince, Theridionince, Epeirince, Thomisince, Lycosince, and Salticince.

The species of Mygale ($p l$. Tr, fig. 58) live in holes of their own construction, some of which are closed by a trap-door, which renders them difficult to find, and affords a protection to the ingenious constructor. The trap-door is wider externally than internally, or slightly conical, and the mouth of the aperture is formed so as to receive it with great exactness, whilst the form is such as to prevent it from becoming fastened, as would often be the case were it cylindrical. This door is made of about thirty layers of silk and dirt, the layers being somewhat in the shape of small brass weights, the different sizes of which lie one within the other. Upon learing or entering its burrow the lid closes after the spider by its own weight, and when the animal is upon the outside it must be raised to allow it to enter. The elasticity of the hinge is sufficient to close the aperture if the lid be raised vertically, or drawn still further back; and it is assisted by the distribution of the earthy material, which is thickest towards the hinge, and on this account less likely to be throrn backwards beyond its centre of gravity. Near the margin of the inner side of the lid, and opposite the hinge, the Mygale forms a series of small holes to enable it to insert its claws and jaws to hold it in place, in case of an attempt to raise the lid from without; and if a knife is inserted so as to run beneath the spider, and the 332
clay be then lifted with it, the deceived animal, circumvented in this unexpected manner, suffers itself to be captured without opposition. Nemesia ($p l .78$, fig. 35).

Segestria (S. perfilda, pl. 78, fy. 36) forms a tubular web in crevices. It inhabits Europe and North Africa.

Lycosa (L. tarentula, pl. 78, fig. 37 abc; L. melanogaster, fig. 38) is the genus which contains the poisonous tarantula, the effects of the bite of which were supposed to be cured by music, but denied by competent Italian authority in the last century; and as far back as 1672, Doctor Cornelio, of Naples, asserted the supposed disease tarentismus to be in some cases feigned, and in others a delusion arising from melancholy. This and some allied species live in winding holes a foot or two deep. The genus Lycosa is common in the United States.
Argyroneta (A. aquatica, Linn., pl. 77, fig. 56, and pl. 78, fig. 49) is a genus of spiders with unusual aquatic habits. Breathing air, and with the structure of the land spiders, this animal lives in the water, diving beneath the surface, where it lives among aquatic plants in a kind of diving bell of its own construction, and into which it transports air from the surface. The spider, when about to carry a bubble down, bends its body, draws in its legs, and plunges suddenly, the bubble being retained by some unknown means. This is carried beneath a leaf or flat surface, and a web passed around it, thus forming a nucleus for the structure, which is gradually enlarged as bubbles are added, until it has attained the required size, when it is as large as a small walnut. It must, of course, be closed above, and the entrance must be below. If a fly is thrown into the water, the spider leaves its retreat to get it, and attaching a thread to it, drags it down. The winter is past, and the eggs laid, in this retreat. Soon after the young leave the egg, they ascend to the surface and commence taking down bubbles and constructing habitations of their own. This spider never leaves the water, but will live several days if removed from it. The single species known inhabits Europe from France to Lapland.

The bite of Latrodectus malmignatus ($p l .78$, fig. 44) is said to be very dangerous in Corsica, being compared with that of a viper. This genus was formed from that of Theridion ($p l .77$, fig. 55).
The species of Tegenaria (T. domesticr, pl. 78, fig. 46) are found in buildings, where they live in holes, cellars, crevices, and angles of walls, in which they spin a tube connected with a broad horizontal web externally, supported by numerous lines in various directions. The web is in popular use for checking the bleeding of slight wounds, and individuals of the genus are said to have been sometimes attracted by music.

The genus Gasteracantha (G. armata, pl. 77, fg. 57 b) is remarkable for having an irregular abdomen armed with spines and tubercles. It is widely distributed, appearing in America, Asia, and Australia. It is allied to Epeira.

Hersilia caudata (pl. 77, fig. 39) ; Chersis savinii (fig. 40); Salticus formicarius (fig. 41); Eripus heterogaster (fig. 42 abc); Aroys lanceolarius (fig. 43); this and the preceding one are from Brazil; Nyssa timida
(pl. 78, fig. 45 a b c de) ; Lachesis perversa (pl. 78, fig. 47); Uloborus walcncerius ($p l .77$, fig. 57 a, and pl. 78, fig. 48) ; Tetragnatha argyra (pl. 77, fig. 54).

The papers of Prof. N. M. Hentz, on the spiders of the United States, may be consulted in the Boston Journal of Natural History.

Class 5. IIyriapoda.

The Articulata of this class bear a close external resemblance to worms, having a lengthened multi-articulate wingless and cylindrical or depressed body, and numerous articulated feet, whence they derive their scientific name as well as their common designation of centipedes and millipedes. In the Chilopoda (centipedes) there are generally one, and in the Chilognathe (millipedes) two pairs of feet to each segment, and they are usually terminated by a simple claw. In the former order they are lateral, and in the latter they are placed more towards the middle of the body beneath. In certain accidental cases, there may be three pairs of feet to an odd segment. The number of feet varies from twelve pairs to upwards of three hundred pairs.

The Myriapoda are terrestrial, living in dark and damp places, among moss, or under bark and stones, some feeding upon animal food, and others upon fungi, fruits, or decaying vegetable matter. They differ from insects in the nature of their metamorphosis, being born without members; but the first moult exposes the head, antennæ, and three pairs of feet, the second moult exposes seren pairs of feet towards the anterior part of the body, and finally, with the sixth moult, the full number of feet and segments is acquired, although the generative organs are not developed for two years subsequently. These facts were ascertained upon the genus Iulus, by Savi, a distinguished naturalist of Bologna.

Some of the species are luminous at night, at certain seasons or under certain circumstances, and some secrete a penetrating, pungent, and disagreeable material with an acid scent, although with neither acid nor alkaline qualities. Gervais ascertained that species of Geophilus will live a day or two in water, and that parts of the body will stir after being separated two weeks. Some species are pretty widely spread, Scutigera coleoptrata being found from the North of Europe to Egypt and Barbary; and it is found in the United States, where it has probably been introduced by shipping, according to a suggestion of Say.

This class is placed between the Arachnida and Insecta, by Latreille, in his last work (Cours d'Entomologie), althongh his opinion had varied previously. There are certain analogies between the Annelida and the Myriapoda, as in the genus Peripatus of the former and Polyxenus of the latter, the fascicular setre of which resemble those of some of the Annelida. Their affinity to the Crustacea is observable upon comparing forms like the terrestrial genus Oniscus, and Glomeris, which has a similarly shaped body, the power of rolling itself into a ball, a crustaceous exterior, and similar
habits ; and although the number of feet is fourteen in Oniscus, and thirtytwo in the male and thirty-four in the female of Glomeris, the external resemblance is so striking, that Glomeris marginatus has often been taken for a variety of Armadillo vulgaris. They have also been considered to be Arachnida, and more generally, a subdivision of the true insects. Westwood, following Macleay to a certain extent, places the Ptilota of Aristotle (the winged insects) in one class, and the Ametabola in another, the latter being composed of the four orders, Chilognatha, Chilopoda, Thysanura, and Anoplura. The tro first of these constitute the Myriapoda, and the last includes the lice. These heterogeneous materials are thrown together on account of their imperfect metamorphosis, a character which is indicated in the name Ametabola.

The class contains the two orders, Chilognatha (lip formed from the $j a w s$), and Chilopoda (lip formed from feet), of which the former contains twenty-one and the latter sixteen genera, in the classification of Newport published in the Philosophical Transactions. Various species in the United States are described by Say, in the Journal of the Academy of Natural Science, vol. ii., 1821.

Order 1. Chlognatha. The genus Iulus may be taken as the type of this order, in which the body is slender, composed of many segments of a crustaceous consistence externally, often cylindrical, and provided with a multitude of short feet arranged in double pairs, except anteriorly, where they are single. The motion of these animals is slow, and when disturbed they generally roll themselves into a ball or spiral. The antennæ are short and slender, two in number, and have seven articulations. The mandibles are crustaceous, triarticulate, and without palpi ; the generative organs are situated behind the seventh pair of feet in the male, and behind the second pair in the female. The spiracles are situated behind each pair of feet, and must not be confounded with the lateral outlets of the odoriferous glands.

The order contains the six families, Glomerida, Polyxenida, Polydesmida, Iulida Polyzonido, and Siphonophoride.
The body of Iulus is cylindrical, and composed of forty or more segments. The genus is common, and widely distributed in various parts of the earth. When disturbed, some of the species exude a disagreeable scent, which in the large and common species of the United States (I. marginatus, Say), resembles muriatic acid. This species is three inches long, blackish, and the segments have a rufous margin.

Order 2. Chlopoda. Here the body is depressed and linear, with a tough exterior, and the segments are proportionally longer, and not so numerous as in the Chilognatha. The feet also are less numerous, and the posterior pair are usually projected backwards in the manner of a tail, and used in drawing the body backwards. The antennæ are slender and tapering, and composed of fourteen or more articulations. The mouth is armed with a strong pair of curved jaws with a palpiform appendage. The eyes are usually simple, four or five on each side, or absent. These animals are nocturnal; they live upon animal food, and run rapidly.

The order includes the families, Scutigerida, Lithobiida, Scolopendridce, and Geophilide.

The genus Scolopendra has four pairs of eyes, twenty-one segments, or twenty-two if the head is considered to be composed of two segments. In the latter case the segments may be made to correspond with the thirteen composing the body of insects, if the prescutum, scutum, scutellum, and postscutellum of each of the three thoracic segments, are counted separately. Under this view, the segment preceding the nine abdominal segments in Scolopendra will be the metathoracic postscutellum; and the posterior division of the head will be the prothoracic prescutum. A similar division of the segments appears in Cryptops.
The genus Solopendra is widely distributed over the globe, the larger species (one of which is a foot in length) being peculiar to warm regions. Their bite is poisonous, and may be compared to that of the scorpions.

Class 6. Insecta.

The name of the class of Insects is derived from the insected or articulated structure of the body, and its frequent division into several portions, as in the Hymenoptera. It has been variously applied to portions of the Articulata, but always including the hexapod orders, which are provided with wings in most cases, and to which the term has been more and more restricted.

Insects are dioicous articulate animals, breathing air by means of trachere, and having a head and abdomen united by an intermediate thorax bearing the six feet and two or four wings when these are present. They have a free head bearing two antennæ, and they are subject, during their growth, to certain external and internal changes termed metamorphoses. Most insects have wings, a peculiarity which none of the other classes possess. The integument is usually sufficiently hard to serve as a kind of external skeleton, to the inside of which various muscles are attached.

The body of insects is usually considered to be composed of thirteen (sometimes fourteen) segments, which are apparent in the larva, although some of them are frequently so much reduced in size, or so intimately joined together, that they cannot be distinguished in the adult. The head forms a single segment, followed by the thorax, which is composed of three segments, and the remaining ones belong to the abdomen.

In Orismology, or the application of names to organs, it has become a matter of very great importance to apply the same name to the same part in different groups of animals, so far as this can be satisfactorily ascertained. The neglect of the older entomologists to observe a rule the advantages of which are so apparent, has been productive of much confusion, and we accordingly find the term thorax, which is correctly applied to the part between the head and abdomen of a Hymenopter ($p l .79$, figs. 11, 14, 18), also employed to signify the segment next to the head in Coleoptera
($p l$. 81 , figs. $18,23,43$, \&cc.). The inaccuracy of this will appear, upon reflecting that the thorax in the Iymenoptera bears the wings and all the feet, whilst the segment next to the head in the Colcoptera bears the anterior pair of feet alone, corresponding only to one third the thorax of the former. In the Coleoptera, the elytra or wing-covers, when in a state of repose, generally cover the abdomen and two thirds of the thorax, keeping the latter out of view when the insect is viewed from above. A lateral or ventral view ($p l .81$, figs. $105,106,130$) will exhibit the remaining parts of the thorax bearing the wings and the medial and posterior feet. In some cases the abdomen is entirely exposed, the elytra being so short as not to extend beyond the thorax ($p l .81$, figs. 1-7). The three segments which comprise the thorax both of a hymenopter and a coleopter, may be recognised by the three pairs of feet; but whilst that next to the head (named the prothorax) is conspicuous in the latter, it is reduced to a mere collar in the hymenopter, where the next segment or mesothorax is largely developed, to bear the large anterior pair of wings, whilst the corresponding part in the Coleoptera have to bear the elytra, which are not used as organs of flight. Finally, the metathorax, or third segment of the thorax, is reduced in the Hymenoptera, the wings of this segment being small and of but secondary importance in flight, whilst in the Coleoptera the same organs are the only instruments of flight.

Most insects are oviparous; some, as Mrusca carnaria, are oro-viviparous, the eggs being hatched within the body, and in the Pupipara the young advances to the pupa state before it is excluder, the apparent egg-shell being the pupa case.

The egg of insects is generally oval, but there are many other forms, as globular, hemispherical, cylindrical, lenticular, conical, pyriform, \&c. The eggs of Hemerobius are attached to leaves at the extremity of a long thread. Some are crowned at one extremity, and others have ear-like appendages. In most cases the surface is smooth, but they sometimes occur ribbed or sculptured in various patterns. White, yellow, and green, are almost the only colors observed in them. The eggs of insects are deposited according to the wants of the young to which they are to give birth, either in earth, water, dung, upon dead animals, or in putrid vegetables, beneath the skin of caterpillars, in punctures in living vegetables, where they sometimes cause galls ; some are glued to leaves or branches, and others are placed in cells where the young are fed.

The larva appears when the shell of the egg is burst at the period of its maturity. The name larva is applicable to the young of all insects, although those of butterflies are also named caterpillars, and those of certain flies maggots. The larva is in most cases unlike the adult insect, generally appearing as a cylindrical worm, either without feet or with six or more walking organs, of which six only are articulated feet. In this condition nourishment is taken, often in great quantities; the growth is rapid, and a series of moultings is undergone. When the larva has attained its full size, in many cases it becomes an inactive pupa without external organs, and incapable of locomotion or taking food; but when the pupa case is burst, the

[^9]perfect insect appears. In some cases the larva resembles the adult at all times in most particulars; and when, after successive noultings, it becomes a pupa, this is still much like the adult, and continues to eat and move about, differing from the larva in having incipient wings inclosed in an envelope, and from the adult in not having perfect wings. Insects are thus subject to two principal kinds of metamorphosis, whence the latter have been named Homomorpha, and the former Heteromorpha. The metamorphosis of the Lepidoptera, Coleoptera, IIymenoptera, and Diptera, is heteromorphic; whilst that of the Orthopterca and Hemiptera is homomorphic.

Heteromorphic larve are more or less cylindrical, with or withont feet, and a distinct head. They have generally thirteen segments, each of which has been provided with a name by Newman, as follows, commencing with the head: 1, caput; 2, prothorax; 3, mesothorax ; 4, metuthorax ; 5, propodeon; 6, podeon; 7, metapodeon; 8, octoon; 9, ennaton; 10, decaton; 11, protelum; 12, paratelum; 13, telum.

The head of larvæ is in some cases not different from the other segments, being equally soft, and without antennæ, eyes, or jaws. A larva of this kind (the feet being also absent) is popularly termed a maggot. The caterpillars, which have a more perfect organization, have a corneous head generally bearing the various organs apparent in the perfect insect or imago. The antennæ of larvæ have a simple structure, and but few articulations, even in those cases where the adult has them complicated and very long.

Of the two kinds of eyes found in adult insects, compound and simple, the latter, named stemmata, are alone present in the larve, but these are sometimes entirely destitute of visual organs. When present, there are from one to six upon each side. Some caterpillars have the power of secreting a silken thread, out of which their cocoon is made, the secreting organ being a part of the mouth. The larve of some Coleoptera have an analogous organ at the posterior extremity.

The sides of terrestrial larvæ generally show the spiracles, which usually amount to nine or ten upon each side. All the segments, except the first, or head, third, fourth, and last, are usually supplied with spiracles. In some aquatic larve there are lateral gills, and in others breathing is accomplished through the posterior extremity.

The larva state is that in which insects generally live the longest, the life of the imago being often very short; so short, that in some cases they require no nourishment, and are not provided with a mouth. Some species of Melolontha live a few weeks in the adult state, and three years as larræ. Cicada septendecim (and probably other species) does not survive a single season, although its larva is seventeen years in coming to maturity.

Pupa. In the homomorphous forms the passage from the larva to the pupa state is gradual, and is accompanied by but little external change, especially in the wingless forms, as bed-bugs, and certain grasshoppers. Amongst the latter, the different stages of the genus Phalangopsis can hardly be determined, but we have observed that certain spines upon the legs appear only in the last stage, thus indicating the adult.

338

When the caterpillar incloses itself in a cocoon to take the helpless condition of a pupa, various internal changes take place, tending towards the organization of the future insect; and even previous to this, the internal organization of the larva had been gradually undergoing various changes in the nervous and alimentary systems, unaccompanied by any external change except that of size. Some pupre are protected by a cocoon, and some are not thus protected. Of the latter, some are suspended by the posterior extremity, and others, as Papilio, attach themselves with the head above, and a thread aromnd the body to maintain it in its position. Some suspended pupre are finely marked with bright colors and golden spots, whence the name of Chrysalis, which is seldom used, and aurelia, which is obsolete.

Agassiz has pointed out several curious analogies among the classes of Articulata, composing the larree of Lepidoptera (particularly those with bristly tufts) to the Annelida; and the pupæ in which the abdomen alone is capable of motion (the head and thorax being mited under a kind of carapace) to the decapodons Crustacea, which are, on account of this affinity with one of the conditions of insects, placed at the head of their class. He places the Insects above the Crustacea, because the former leave the condition in which they are covered by a carapace, and advance a step further. Finally, this philosophical author places the Lepidoptera at the head of the insects (as Swainson had done upon different grounds), because the larva is mandibulate, and the adult insect perfectly haustellate, so that it advances further from the larva condition than any of the orders. See Lectures on Embryology; and Proceed. Am. Assoc., Charleston, 1850.

Imago. The perfect insect or imago appears when the case of the pupa is split, and in the winged species, the wings, which were closely folded, begin to expand and take their final shape. The imago differs from the larra in having the body divided into the three principal divisions of head, thorax, and abdomen.

The integument of insects coutains a peculiar principle, named chitine by Odier, which constitutes a third or fourth of its bulk. It resembles bone somewhat in its composition, as it contains phosphate of lime, and a trace of other compounds found in bone. The chitine forms part of the dermis, which is covered by a thin epidermis. Coccine is another chemical constituent, found particularly in the genus Cocous.

The head of insects is usually regarded as a single piece, but as the corresponding part in the Crustacea is considered to be made up of minor parts, it has been proposed to extend the same theory to the class under consideration, either allowing as many theoretical segments as there are kinds of appendages, or allowing two kinds of appendages to some of them. Of these two modes of viewing the question, the former is preferred in studying the Crustacea, and should therefore have the preference in this class.

The organs concerned in manducation (enumerating them from above) are, the upper lip or lubrum, the mandibulce, or upper jaws, the maxillce or lower jaws, the tongue or ligula, and the lower lip or labium. Brullé divides the ligula into an upper organ or epipharynx, and a lower one or
hypopharynx, on the ground that the ligula may be superior or inferior, both portions being sometimes present, although unequally developed. If the lips and ligula be considered to be formed by the union of a right and left hand piece, they will correspond to four pairs of organs like the right and left mandibles and maxillæ, making six sets of organs corresponding to as many theoretical segments. Brullé, who proposes this theory, does not take the eyes or antennæ into account in his enumeration.

The various organs composing the mouth of insects have not the same degree of development in all, some being very conspicuous in certain cases, and obscure, modified, or obsolete in others. The distinguished Sarigny, the entomologist who accompanied Bonaparte's celebrated expedition to Egypt, discovered the remarkable fact that the antlia or spiral sucker of a butterfly, and the maxillæ of a coleopter, are modified conditions of the same organs; and he extended this comparison to the mouth of all the orders. The haustellum of a fly is composed chiefly of the labium, and the promuscis of a hemipter of the maxillæ and mandibles.

Without attempting to divide the head of insects into theoretical segments, its varions minor parts must be indicated for the purposes of reference and description. Its general form is more or less globular, with many variations, and it has projections like horns, but they are never articulated. The head (caput), exclusive of the attached organs, is named the cranium; the upper part from the front backwards, is the epicranium ; the top of the head is the vertex, which is usually the seat of the stemmatio or simple eyes; and the posterior part is the occiput. The anterior margin is the clypeus, and back of this is the front. The part between the eyes is sometimes named the sinciput; and the sides of the head gence or cheeks. The principal part of the head beneath is the gula. The anterior part of the head is often prolonged into a rostrum, as in the Curculionidæ.

The antennce of insects are situated upon the face near the eyes, by which they are sometimes partly surrounded, and they are attached to the head by a ball and socket connexion. These organs are generally capable of moring at the base, and the varions articulations move upon each other. The articulations vary much in form and number, and afford good characters for classification. The antenne may be shorter than the head, and more than twice the length of the body, and the number of articulations may vary from one to fifty, sixty, or more. Long antennæ are made up either of many short articulations or of a ferv long ones. The antennæ often differ in the sexes of the same species, in length, and in the number and form of the articulations. Among the varions forms of antenne may be mentioned the setaccous; moniliform, shaped like a string of beads; serrate; pectinate; lipectinate, with a pectination upon each side; genioulate, or bent like an elbow ; clavate; flabellate, de. Some have supposed the antenne to be organs of feeling, others of hearing, and others of a peculiar sense, but their use is not known, and may vary in different orders.

Eyes. Insects have two kinds of eyes, compound and simple, named respectively eyes and stemmata. The former are situated upon the sides of the head, and are composed of many hexagonal lenses placed in contact,

These have been enumerated in various insects, and it has been ascertained that in the eye of an ant there are fifty lenses, in a dragon-fly twelve thousand, and in various butterflies from six to thirty thousand. The form of a compound eye is round, oval, or kidney-shaped, in the last case frequently receiving an antenna in the concavity. The cyes often nearly cover the entire head, extending upwards to bring their inner margins in contact, so that the greater part of the surface of the head has the function of a vast compound eye, as in the dragon-flies (Libellula). In some insects the eyes of the male cover more of the head than those of the female. Although there is usually but one eye upon each side, this is sometimes divided, as in the flat water insect of the genus Gyrinus, in which half of the divided eye is above and half below. In Tetraopes (meaning four eyes) the eyes have been divided by the base of the antennæ ; and in some cases where they are kidney-shaped, the emargination is so deep that only a narrow strip connects the two ends of the eye. The stemmata are three (less commonly two, or perhaps even one) lenses or simple eyes, situated upon the vertex or forehead, and generally forming a triangle. The stemmata are also named ocelli, but as this term is also applied to spots resembling eyes (as in the wings of butterflies), the former term is preferable.
The mouth of insects, although composed of the same essential parts, has these modified into two principal types of structure, one of which is adapted to masticate, and the other to suck food. The former is termed mandibulate, and the latter haustellate, and we have the corresponding section of insects, Mandibulata and Maustellata ; but in the Hymenoptera we find biting mandibles in cenjunction with sucking organs.

In the Mandibulata the month organs are as follows: The labrum, or upper lip, is a variously shaped horizontal plate, articulated to the clypeus and covering the mandibles. The mandibles, or upper jaws, move laterally and horizontally, like scissors. The internal margin is sharp, and often toothed, and the apex is generally curved inwards. The maxillce, or lower jaws, are situated beneath the former, and have a similar motion, but they are less robust. When fully developed, the maxillæ are composed of four or five pieces, namely, 1 , the cardo, or hinge ; 2 , the stipes. or stalk; 3 , the squama, or palpifer, closely united with the former, and supporting an articulated palpus, or feeler; 4, the mando, or lucinia, which forms the inside of the maxilla, and is clothed with stiff bristles. In the predatory Coleoptera its apex is curved, and often articulated, as in Cicindelco (pl. 81, fig.26). 5, the galea, or external lobe of the maxilla, which becomes a kind of second or internal bi-articulate palpus in Cicindela. In the Orthoptera the galea is large, and articulated at the base, and its internal side is concave, so that it approximates and protects the mando, whence its name of galea. The mando is often absent, or united to the galea, so as to form a single organ.

The labium, or lower lip, closes the mouth below, and although it corresponds with the upper lip, it is a much more complicated organ. In some points of view it may be compared with a pair of maxillæ united in a single
plate, as it has an articulated palpus on each side, much like those of the former organs. The labium is partly covered by and articulated with the mentum, which is articulated to the anterior part of the cranium, beneath named the jugulum. The labial palpi are attached one on each side of the labium near the tongue. The projecting sides of the tongue are named paraglossce.

Thorax. The thorax supports the organs of motion, and is attached to the head of an insect by a membranous connexion. Its entire upper and lower surfaces are named respectively teryum and pectum. It is composed of three divisions, named prothorax, mesothorax, and metathorax; the upper surfaces of which are termed pronotum, mesonotum, and metanotum, and the inferior surfaces antepectus, medipectus, and postpectus.* The prothorax bears the anterior pair of feet, but as it bears no wings it is simpler in its structure, and its theoretical parts are more difficult to discover than those of the two other thoracic segments. It is in the latter, therefore, that we must look for the subdivisions of these segments. These are generally enumerated from the front backwards, when the four subdivisions of the upper part will be the pressoutum, scutum, scutellum, and postscutellum, and those below, the paraptera, stemum, episterna, and epimera. The term pleura is applied to the sides in descriptions, but it is not limited to any particular part. The sternum is the chief central part with which the two episterna articulate, and the two epimera are near the insertion of the feet, and the paraptera (or tegula, or patagia) near the wings. Newport thinks it exists in a rudimentary condition in the prothorax, but Straus Durckheim thinks the part referred to by that author is the rudiment of another segment. The mesothoracic scutellum is often seen wedged letween the base of the elytra in the Coleoptera ($p \mathrm{l} .81$, figs. 23, 124, 131, \&c.) The prothorax and mesothorax have usually each a pair of spiracles, but in the Hymenoptera the second pair is upon the metathorax.

The chief appendages of the thorax are the feet, which are never absent. These organs have many modifications to adapt them to their various uses of walking, swimming, grasping, leaping, digging, de. The thoracic carities into which the base of the feet is fitted are named acetabula, and the basal part of the limb which enters them is the coxa; but this is sometimes firmly attached, so as to have no independent motion. Next to the coxa follows a small articulation naned the trochanter ; then follows the principal articulation, the femur, or thigh, to which succeeds the tibia, which is often armed at the end with fixed or movable spines, named calcaria. This part is more generally provided with spines and cilia than the other parts. The tibia is followed by the tarsus, which is made up of several small articulations named phalanges, of which there are never more than five. The end of the tarsi is usually armed with two claws named ungues.

[^10]Insects which have five articulations to the tarsts are named pentamerous. Those with four are named tetramerous; but as a fifth immorable and microscopic articulation has been discovered, Burmeister names this form cryptopentamerous, and Westwood, pseudotetramerous, a useless addition of names, for, as Mulsant observes, the terms Tetramerc, de., refer to the number of free articulations. Solier goes so far as to consider all the Coleoptera pentamerous; but even could the abortive articulations be detected, the relation of the different groups would not be altered, because the tarsi of the Pentamera would still have five, and those of the Tetramera four movable pieces. In the Heteromera the four anterior tarsi have five, and the posterior pair four articulations. Trimerous, dimerous, and monomerous tarsi are also enumerated. The anterior tarsi are sometimes wanting, as in Ateuchus.

The wings, when present, are either two or four, the anterior pair being affixed to the mesothorax, and the posterior ones to the metathorax. Sometimes the two pairs are equal, and when they are of unequal size, sometimes the anterior ones are the largest, as in the Hymenoptera and Lepidoptera; and sometimes the posterior ones, as in the Orthoptera. In the Coleoptera the anterior wings are converted into clytra for the protection of the true wings, not being used as organs of flight. The wings are composed of two usually transparent membranes, between which various hollow nervures are distributed, and filled with air from the body. In the Orthoptera (grasshoppers, (de.) the upper or anterior wings (named tegmina) are thicker and narrower than the inferior ones, and the latter are folded like a fan. In a part of the Hemiptera the base of the upper wings has a leathery texture. All the wings of the Hymenoptera, Lepidoptera, and Neuroptera, are of a uniform texture respectively. Those of the Lepidoptera are covered with minute scales; those of the Neuroptera have numerous reticulating nervures, and in the Iymenoptera the nervures are but few. In the Diptera, or flies, the anterior wings are used in flight, the posterior ones being reduced to a small knobbed thread (halteres). In the Strepsiptera the posterior wings are fully developed, the anterior ones being abortive. In most of the orders of winged insects there are genera and species which have no wings; and some have wings in one sex and not in the other, as in the female coleoptera, known as glowworms. In one genus of Orthoptera the posterior wings are present, without a restige of the anterior pair.

Abdomen. The abdomen is attached to the metathorax, either by its entire breadth, or by a portion of it only. The upper surface is named the dorsum, and the lower one the venter. Of the nine distinct normal segments some are occasionally absent by a union of several into one. In some cases the segments of the dorsum and venter do not correspond; in Carabus, for example, the former has nine and the latter but five. In many cases the abdomen of the male has one segment more than that of the female, and the dorsum has generally one more than the venter. The connexion between the upper and lower parts of the same segment, and between the segments, is effected by a membrane, and in the latter case the base of each segment slides within the preceding one. The abdomen is more
capable of motion than the thorax, and in some insects it is very flexible, as in the coleoptera with short elytra, the wasps, dec. The abdominal spiracles are situated at the junction of the dorsum and venter, or in the lateral margin of the dorsum, and nearly every segment has a pair of spiracles. The abdomen has various appendages, as the forceps in the male of Panorpa, hooks, stylets, ovipositor, sting, \&ce.

The nervous system of insects corresponds with the articulate type, being composed of a doable cord with a line of ganglions. The principal organ of circulation is a dorsal vessel, which is a long muscular pulsating heart. The alimentary canal offers many modifications to adapt it to the various kinds of food upon which insects subsist.

Many insects, particularly the Coleoptera, are luminous at night. Among these are members of the genera Elater and Lampyris. In both sexes of certain species of the former genus, the light is emitted chiefly from a raised oval spot on each side of the pronotum, but the sides of the abdomen are luminous also. The light is sufficient to enable a person to read small print, if the insect be passed along the lines. In Lampyris the light proceeds from the posterior extremity of the body, and it is more bright in the female (which is sometimes apterous) than in the winged male. The larre of some of the Lampyrides are luminous, and in the southern United States there is a small flat larva (probably of an Elater) about an inch long, which emits a strong phosphorescence from all the segments, equal to that of Elater noctilucus; and when the head and tail are brought together, a brilliant circle, like a ring of diamonds, is formed. According to Kirby and Spence, the eyes of some nocturnal Lepidoptera are luminous. In several North American species of Sphinx we have observed eyes apparently phosphorescent, by dim candlelight, or when shaded from its direct light; but this false phosphorescence has always disappeared when the light was extinguished, so that in these cases, at least, there was only a peculiar reflection.
Many insects imitate the possum in simulating death when disturbed; some allow themselves to drop from leaves; elaters, when unable to escape by running, either simulate death, or by a click throw themselves out of the way. The genus Brachinus, when disturbed, shoots out a vapor accompanied by a slight sound. Some insects defend themselves by biting, some by stinging, some by ejecting acrid matter from the stomach and mouth, and others by exuding a disagreeable scent. The caterpillars of the genus Papilio project, when disturbed, a forked gland from the neck above, which is the seat of a very offensive odor. The spinous tufts of some caterpillars have an irritating quality like that of nettles.

Sounds are emitted by various insects, and by means of various organs, as the rubbing together of the wings in Orthoptera, the end of the abdomen against the inside of the elytra, and the prothorax against the mesothorax. The male Cicada makes a very loud and slurill sound, which is produced ly a peculiar apparatus opening at the base of the abdomen. The vibrating apparatus is lateral, and the mirror-like membranes within the external aperture may be destroyed without interrupting the sound. A nocturnal
butterfly, Acherontia atropos ($p l .50$, fig. 15), produces a plaintive cry, which is said to proceed from the head. We hare discovered that a sound is made by an American species of Lithosia (another nocturnal lepidopter) by vibrating the sides of the thorax; and we have heard a very low and dull musical sound from the hemipterons genus Belostoma ($p l$ l. 80 , fig 71), produced apparently by a vibration within the thorax, and from the lowness of the note produced, a large portion of the organs must be concemed in producing it.

The relations of insects to man are more numerous and important than those of the other classes of animals excepting the domestic breeds, and they exceed these in the importance of their history. Alnost every year new enemies to the various vegetable productions cultivated by the farmer and gardener make their appearance, the history of which nust in many cases be known before the proper means can be taken to prevent their increase. Often the noxious insect has a destroyer in some other insect, and the latter, being seen about the infested vegetable, is often mistaken for the real enemy. Some insects destroy the leaves and blossoms of plants, as the larræ of butterflies; the larve of some Coleoptera, especially those of some of the beetles (pl. 81, fig. 130), are very destructive to the roots of grass, which they sometimes destroy to such an extent that the sod can be taken up in large flakes. An instance is related of a farmer whose crops were entirely destroyed by the larve of Melolontha ($p \mathrm{l}$. S1, fig. 130), of which eighty bushels were collected. At one tine the cultivation of the sugar cane had to be abandoned on account of the increase of an ant (Formica saccharivora), which destroyed all the plantations; and on the eastern continent large tracts are sometimes rendered desolate by the ravages of the large grasshopper, Locusta migratoria. The Curculionitue (including the weevils) ($p l .81$, figs. 67-76) are destructive to various kinds of grain and seed; the Cerambycidee (pl. 81, fig. 50, \&c.) destroy growing and dead wood; Bostrichus, \&c., perforate the bark; and the Aphides and other families suck the sap; so that amongst the various orders, all parts of a plant, from the root to the seed, whether living or dead, are subject to destruction.

Insects are frequently useful to plants in bringing the pollen to the pistils, and thus securing the continuance of the species in cases where this could not be effected except by such extraneous means. The insects which feed upon honey and pollen effect this object, not only in cases where the stamens and pistils, although together, present difficulties in the mode of getting the pollen to the latter, but in those cases where the plants are dioicous, when it sometimes happens that the staminate and pistillate flowers are several miles apart. Moreover, the stamens and pistils often arrive at maturity at different periods in the same blossom, so that the ripe pollen is carried upon the hairy body and limbs of the insect to the mature pistils of a different tree.

The predaceous insects are useful in destroying those which feed upon vegetables, and they attack both the perfect insects and their larve. The parasitic families destroy an immense number of caterpillars, and the larvæ
of flies which destroy regetables, and their size is so graduated that they are capable of destroying larre of all sizes, from those several inches in length, to such as do not exceed one twenty-fifth of an inch.

Insects in their various states constitute the food of many beasts, birds, reptiles, and fishes. Some, as the large grasshoppers, are sometimes dried and eaten in the Levant; some savage nations eat the large grubs found in rottea wood; and the cossus, which the ancients esteemed as a great deli-. cacy, was a larva of some kind, and an allied one is now eaten in Brazil. Ants are eaten by the sarages of Brazil, the formic acid probably replacing the vinegar used in civilized gastronomy ; whilst some of the lowest savage tribes devour their own vermin.

The various species of blistering flies are employed under the name of cantharides; the genus Coccus furnishes the beautiful dyeing material cochineal ; the galls formed on oak trees by insects of the genus Cynips, are used in the arts; and insects furnish honey, silk, and manna.

Caprification is an art which has been practised from a remote period. It consists in causing figs to ripen by suspending upon the trees branches of the wild fig tree (named caprificus by the Romans), which is infested by an insect which pierces the fruit and causes it to ripen.

The indigenes of Brazil have made a curious surgical application of ants, many of which, when they attack with their mandibles, will allow themselves to be pulled to pieces rather than let go. When one of these natives has received a cut, the sides of the wound are brought together carefully, and an ant adapted for the purpose is made to bite the conjoined edges, when the body is torn from the head, the process being repeated according to the length of the wound, so that the natives are often scen with rows of ant heads upon various parts of the body.

Although insects are essentially terrestrial, there are families, the members of which swim upon the surface (as Gyrinus), or walk with the body raised above it (as Gerris, or Hydrometra), the tips of their feet touching the surface, and a few which walk upon the bottom (as Nepa). These are almost entirely confined to the fresh waters. Westwood, however, describes a genus (Micralymma) which inhabits the coasts of the sea between high and low water mark, under such circumstances that it inust remain four hours under water at each tide, and he mentions other instances of Coleoptera remaining beneath salt water for shorter periods. (Mag. Zool. and Bot. ii. 124.) According to Audouin, a small carabideous insect, Aepus fulvescens, passes a great part of the time beneath the sea, holding a small quantity of air among the bristles with which it is in part clothed; but whether it can abstract oxygen from the water when this is exhausted, has not been determined. It is probable, however, that this power exists in the coleopterous genus Elmis, and some allied ones, the species of which are small, tardy in their movements, and unable to swim. They live affixed to stones at the bottom of fresh waters, which are sometimes so rapid that the insects could not reach the surface and return to the position in which they are found.

Among the insects which walk upon the water, the most remarkable is the genus Halobates (allied to Gerris), which is found far at sea in the

Southern Atlantic and the intertropical regions of the Pacific. Most of the species have been described from wingless individuals, probably larve.

Orders of Insects.

The distribution of insects into orders has been one of the chief problems of Entomology, and one abont which there is a great want of unanimity. Latreille, the father of modern Entomology, who was born in 1762, and deroted a long life to the science, proposed a system in 1796 , which he subsequently modified in various editions of his works, in 1806, 1817, 1825, 1829 , and 1832. In these he adopted the following arrangement of the orders, which is still very generally followed:

> A. Insects without wings.
> a. Withont metamorphosis.
> * Mouth mandibulate, . . . 1. Thysanura. \#* " suctorial (lice), . . . 2. Parastra.
> b. A metamorphosis (fleas), . . . 3. Sipion.aptera.
> в. Insects with wings.
> a. Elytroptera,
> (Anterior wing acting as a sheath for the posterior one.)
> * Month mandibulate,
> Wing-covers horny, metam. perfect, . . 4. Coleoptera.
> " . "coriaceous," " . . 6. Orthoptera.
> ** Mouth suctorial, " " . . 7. Hemiptera.
> b. Gymnoptera (wings alike).
> *Wings four.
> \dagger Mandibulate, mandibles distinct.
> Wings reticulated, S. Nedroptera.
> " veined, 9. Hymenoptera.
> \dagger Mouth suctorial, mandibles abortive, . 10. Lepidoptera.
> ** Wings two.
> \dagger Two twisted halteres before the wings, 11. Raipiptera.
> $\dagger \dagger$ Halteres two, behind the wings, . . 12. Dipters.

It nust be borne in mind that the same name is in some cases not given to the same group by different authors, and that the same order sometimes has several names. The English authors exhibit a fondness for numerous orders, separating, for example, the Cicadæ from the Hemiptera, under the name of Homoptera.

After various modifications, Burmeister proposed, in 1839, a very different arrangement, founded principally upon the metamorphosis, of which he admits two grades, one half, the other entire, according to which he names insects Hemimetabola (Ametabola of Leach) and Holometabola (Metabola of Leach), each of which contains haustellate and mandibulate orders, of
which the former contains two: 1, Rhynchota; 2, Gymnognatha ; and the latter four: 3, Antliata, Fabr. (Diptera, Linn.); 4, Piezata, Fabr. (Hymenoptera, Linn.) ; 5, Glossata, Fabr. (Lepidoptera, Linn.) ; and 6, Eleutherata, Fabr. (Colcoptera, Linn.). For all these, except the second, Burmeister adopts the names of Fabricius. The peculiarity of this arrangement is the reduction of the orders to six, and the distribution of the minor parts of each, as will be observed in the following sketch.

The Rlunnchota are made to include the tribe and family Pediculina (the lice), or hanstellate Anoplura; whilst the mandibulate Anoplura, or bird lice, form the second tribe of his order Gymnognatha, under the name of Mallophaga, the first tribe being the Physopoda, from which Haliday and most English entomologists form their order Thysanoptera. The order Thysanura of preceding authors forms a tribe, next to which succeed the Orthoptera (including Blatta) ; Dermatoptera (Forficula, pl. 81, figs. 1-3); Corrodentia (Termes, Embia) ; Subulicornia (Ephemera, Libellula); Plecoptera (Semblis); Trichoptera ; and Plannipennia (Sialis, \&cc.), all as tribes of the same order. It results from this, that the Neuroptera and Orthoptera, as well as other groups usually considered orders, form but one order, in the opinion of Burmeister. Erichson (in Agassiz's Nomenclator) places the Thysunura as an order, except that the Lepismidce are withdrawn and placed in the order Orthoptera, which is further enlarged by the addition of the Libellutidue, which are abstracted from the remaining Neuroptera. Erichson admits the orders Thysanoptera, Epizoa (lice), and Suctoria (fleas).

Burmeister states the principle upon which he establishes his orders as follows: "The more marked the transformation the more heterogeneons is the individual in the several stages of its existence; and as all insects proceed from the same point, those necessarily, whose metamorphosis we call complete, must attain a higher grade than the rest, which transform themselves incompletely. We thus obtain two chief groups among insects, Hemimetabola and IIolometabola. Both commence a new development in the organization of the mouth, as they at first exhibit to us abortive, setiform, oral organs, only adapted to suction, but in the higher grades these suctorial organs develope themselves into free mandibles, with a lip covering them. Thus each group has Insecta haustellata and Insecta mandibulata. Each of these groups may then be further subdivided, according to the form of the larva, the structure of the wings, and the entire internal organization, and these divisions constitute their orders. We thus obtain an arrangement, the principles of which are deduced from the idea of the entire insect, and which, as this idea becomes separated according to its several characters and constituents, it consequently necessarily and spontaneously forms itself by the philosophical laws of thought."

The orders of Latreille will be chiefly followed here, not because they are considered to be correct, but because the accuracy of the modifications proposed by Erichson and Burmeister has not been sufficiently tested. Moreover, the views of these celebrated entomologists do not correspond.

Order 1. Thysanura (pl. 77, figs. 79-84). In this order, established by

Latreille in 1796, and considered a tribe of his order Gymnognatha by Burmeister, the body is apterous, more or less cylindrical, and often covered with minute scales like a silvery dust. The antennæ are longer than the head, and the mouth is provided with mandibles and maxillæ. They are of active habits, living in woods, among moss, or beneath stones and bark. Some of the small species are sometimes found on the surface of the water near the margin, or hopping about on the surface of snow in winter, sometimes in great numbers. The order contains the two families, Poduridce and Lepismidre.

Fam. 1 Poduridce. Here the body is oblong or globular, the antennæ are rarely composed of more than four articulations, but in the genus Dacrotoma the three or four articulations are divided into a great many rings or indistinct segments, indicating an affinity with the Lepismidæ. The palpi are indistinct according to some authors, and absent according to others. The mandibles and maxillæ are membranaceous, the eyes simple, varying in number, and the abdomen is four or six articulate. The prothorax is sometimes much reduced in size, or wanting above, although a part of it remains below, to which the anterior feet are attached. The posterior extremity is provided with a spring or appendage bent along the abdomen, and used in leaping. This, however, is wanting in the genus Anura, in which the mandibles and maxillæ seem to be absent. They are usually confined to damp places, and die very soon if deprived of moisture. The oral aperture is so minute that it is supposed they subsist upon the juices of decaying vegetable matter.

Podura ($p l .77$, fig. $79 a$, natural size; b, magnified, exhibiting the caudal spring). Smynthurus (f fg. s0) has the abdomen large and globular. The species of this genus are often seen hopping upon the surface of water and snow. The dark-colored species of this family are so abundant at times as to give the snow the appearance of being sprinkled with course gunpowder. J. M. M'Minn mentions their occurrence in the mountains of Pennsylrania, in the following words (Proceed. Acad. Nat. Sci. iv. 246): "I have frequently noticed them in mid-winter on the snow, but I never saw such a multitude of them together as I witnessed on the 17 th of Feb., 1849. The snow was entirely covered for the fourth of a mile along the road, and several rods on either side. The mercury in Fahrenheit was standing about fifteen degrees; the atmosphere was dry and clear. These little animals were quite stupid, and to all appearance had been but a short time there, and as it was about nine o'clock in the morning, I judged that they arrived at night. Their motion was slow, and those on the top were quietly endeavoring to get under. The next day, when I again passed the spot, I could not detect a vestige of them. The wind had been strong from the north for several days, and I have noticed that we had strong north winds whenever I had seen them." This species is probably the Podura nivicola described by Dr. A. Fitch, who gives a similar history of it in his account of the "Winter Insects of Eastern New York," published in the Am. Jour. of Agr. and Sci. for May, 1847.

Fam. 2. Lepismidce. In this family the antennæ are setaceous, and
composed of a great number of small articulations; the oral organs are present, the palpi are conspictons, and each side of the abdomen has a row of movable appendages, which Latreille considers false feet, and Gervais respiratory organs. The abdomen is composed of ten segments, and terminated by a number of multi-articulate threads, which vary in number according to the genera. The genus Machitus ($p 7.77$, figs. 81,84) has a leaping spring like Podura, and a large compound eye formed by the fusion of the two which appear in other gencra. The genus Lepisma (figs. 82, 83) is found in houses in Europe and America, and from the silvery color of its scales, it is sometimes called sugar-fish. It runs rapidly, and is difficult to take without removing the scales. The common species is supposed to eat sugar, whence its name Lepisma saccharina.

Order 2. Anoplura. The order Anoplura (thus named by Macleay from the absence of locomotive caudal appendages) was also named Parasita by Latreille, on account of its parasitic habits, and Epizoa by Nitzsch, from its occurrence upon animals. In this order, which includes the lice, there are six feet, no wings, and two or four stemmata. Burmeister, as we have already seen, places the two families of which it is composed in separate orders, one, the Pedicutide or lice, among the Hemiptera, and the Nirmide or bird lice among the Orthoptera, the former being haustellate and the latter mandibulate. The general structure and habits of the two families are very much alike, and we have seen that the best characters, as those afforded by the organs of respiration, are in certain cases not uniform throughout an order; so that in the present case the difference between the oral organs of the two families may be of no more account than the absence of special respiratory organs in some of the Crustacea. The head and thorax are distinct, the antennæ are short, and composed of but few articulations ; the tarsi have but one articulation, terminating in a simple nail, sometimes donbled back, so as to form a claw adapted for holding.

Fam. 1. Pediculida. The mouth is a small suctorial retractile rostrum placed beneath the head. The thorax is narrower than the abdomen, which is large, and with the segments (of which there are from seven to nine) distinct. There are six pairs of spiracles. This family contains several genera, of which the best known is Pediculus. P. capitis (pl .77 , fig. $77, a b c$) infests the human head. The eyes are a black point on each side, the antennæ have five articulations, and the general color is pale yellowish, with a dark line on each side. The skin is tough, and sufficiently translucent to exhibit the internal organs. Lice multiply rapidly with warmth and moisture. Leeuwenhoek, by keeping a male and female in his stocking, which he wore day and night, ascertained that one of them might increase to five thousand in eight weeks. . They are found chiefly on children and dirty persons, more frequently upon the back of the head, and the use of hair powder is favorable to their increase. They are easily destroyed by various mercurial ointments, or an infusion of Cocculus indicus. The louse which infests negroes is a distinct black species with a large flat head. Pediculus vestimente (the clothes louse) is a second species which is found
upon the back and breast, and in the clothing of unclean persons. It is more slender, with a thinner neck than P. capitis, and its eggs are attached to the hair of the breast and arms. It is common upon the lower classes in Russia and Spain. P. tabescentium infests the body also. It resembles P. capitis and P. vestimenti, but is a little larger, the head round, the thorax quadrate, the abdomen ending with four bristles, the antennæ rather long, and the color pale yellow. It inhabits the human body in the folds of the skin, and is found in connexion with the disease named Phthiriasis. It forms small scale-like flaps of the skin, beneath which it is found, particularly upon the back, breast, and neck. Among those who have died of this disease were Antiochus Epiphanes, Herod, Plato, the emperor Maximian, and the poets Alemanus and Ennius. Burmeister thinks this species has a spontaneous origin in the corruption of the fluids in old or enervated subjects. He states that it is not contagious, as a woman of seventy who occupied a bed with her husband did not communicate it to him. This case was cured by the application of oil of turpentine. Cleanliness is of no avail, new lice being in some cases produced until the death of the patient. See Burmeister's Manual of Entomology, English ed., p. 307, § 203 ; and Kirby's Bridgewater Treatise, chap. 1. The human race is attacked by still another and smaller species of parasite, which differs so much from the former one, as to constitute a distinct genus named Phthivius (P. pubis, $p l .77, f i g .76)$. The body of this species is short and wide, and the thorax much wider thau the head. It infests the axillary and inguinal regions.

Fam. 2. Nirmida. These insects are chiefly found infesting birds, and are familiarly termed bird lice. The head is generally large and triangular, rounded in front, and often with pointed projections; the mouth is beneath; the labrum, labium, mandibles, and maxillæ are present, the last being in most cases minute, and either with or without palpi. When the palpi are present, they have four articulations. These insects do not feed upon blood, but the feathers upon which they are usually found seem to supply them with food. A bird may have from one to five species of these lice ; and the same species sometimes inhabits several distinct birds, but in general certain forms are confined to certain orders and families of them.

The genus Trichodectes of Nitzsch belongs to this family, and is found upon Mammalia, as the dog, cat, weasel, bear, porcupine, horse, ox, sheep, deer, ©c. Gyropus also infests Mammalia. The most useful single worl upon this order is Denny's Monographia Anoplurorum Britanniæ, London, 1842, 8vo., with 26 colored plates.

Order 3. Siphonostoma. This name was proposed for the fleas (Putex, and several allied genera) by Latreille, in 1825; Kirby and Spence named them Aphaniptera, in 1826 ; Degeer named them Suctoria, 1778; and some restrict the term Aptera to them. The mouth approaches nearer to that of the higher Diptera, with which order they have the greatest affinity, and in which they would probably be placed by Burmeister. Fleas are parasitic in their perfect state, infesting man, beasts, and birds. The body is compressed, with a tough shining integument, and transverse rows of bristles. There are no wings, but these organs are represented by two scales on
each side. There are tro stemmata; the mouth is provided with a tongue, two lancet-shaped palpi, and a pair of long slender mandibles with serrulate edges. The maxillary palpi have four articulations, and are so long that they resemble antennæ (the antenme being inconspicuous), and below these there are two maxillæ, shaped like triangular plates. The antennæ are minute, situated behind the stemmata, and capable of being hidden in a cavity. The feet are long and bristly, and adapted for leaping, and the tarsi are pentamerous. The larra of the flea is a slender white active grub, without feet, but it is provided with antennæ, and a pair of posterior hooks. It attains its full size in about twelve days, when it spins a silken cocoon, and becomes a quiet pupa, in which the limbs of the imago are visible.

Fleas (Pulex irrituns, pl. 77, fig. $73 a b$) abound where there are dogs and hogs; in camps and barracks, where they often swarm in the quarters of the soldiers. The larva seems not to be parasitic, living upon the litter of stables, ©cc. They are often produced from eggs laid under the toenails, or in the seams of the drawers of uncleanly persons, where they find nourishment adapted to their wants.

Pulex penetrans ($p l .77$, fig. $72 a b c d$), the type of Guérin's genus Dermatophitus, is a small species which lives parasitically beneath the skin of the feet of men and dogs in the warm parts of America, particularly Guiana and Brazil. It is known as the jigger (chegoe, chigo), and by a dozen other names. It is found in sandy places, where it hops about like the other species, until it finds a suitable resting-place, when it penetrates beneath the skin and forms serious sores. In this condition the abdomen of the female enlarges to the size of a small pea (fig. $72 c$, enlarged and inverted), and is found to be full of eggs. The male has not been observed, and is probably not parasitic. They frequently lodge in the toes, especially beneath the nails, causing great pain and inflammation, and it sometimes happens that the toes must be amputated, in consequence of the sores to which they give rise. Waterton saw the foot of a negro which was a mass of ulcers from the neglected attacks of this insect. According to this author, "The Indian and Negro wenches perform the operation of extracting chegoes with surprising skill. They take a pin, and by a very slow process, they lay the part bare, and contrive to work quite round the bag which contains the chegoe and its offspring. As soon as this has been effected, they turn the bag out, whole and uninjured ; by which means none are left in the hole to form a new colony." Besides man and dogs, the sand flea attacks sheep, goats, cats, hogs, oxen, horses and asses. According to Azara, it does not extend beyond 29° of south latitude.

Order 4. Coleoptera ($p l$ l. 81, figs. 84-148). This order includes all the insects with thin membranons wings on the metathorax, covered by hard coriaceous wing-covers or elytra attached to the mesothorax, their colorand texture having more or less resemblance to the general exterior surface of the body. The mouth is mandibulate, and the wings folded transversely to allow them to be withdrawn beneath the elytra. There are, however, exceptions to most of the characters by which groups in the animal kingdom are defined. The wings, and even the elytra, are sometimes wanting. The elytra, which unite in a
straight line along the dorsum, lap the one over the other in a few cases; and in others they are connate, or soldered together into a single piece, there being no wings beneath them.
The galea of the maxillæ in the Orthoptera is rarely represented in the Coleoptera, and when it is, the form is entirely different; and the wings are neither formed nor folded as in that order. The head, thorax, abdomen, and feet, are distinct, and the prothorax is a conspicuous part, capable of motion, and allowing the head to move upon it. The eyes are generally two in number, and stemmata are extremely rare. In rare cases the eyes are absent. The mouth is composed of a labrum, mandibles, maxillæ, and labium, with their appendages. The antennæ and parts of the mouth are extremely variable, and afford characters for genera and higher groups.
The abdomen is attached by its entire base; beneath it is more or less hard, but above it is membranous, being protected by the elytra. Coleoptera, with a few exceptions, do not fly with the ease and rapidity of some of the other orders, and they do not take wing so readily, it being necessary first to raise the elytra and extend the wings; but in the Cicindelidee and some other families, this is done with remarkable quickness.
The head and prothorax are often ornamented by horn-like projections, sometimes resembling jaws, as in ($p l .81$, fig. 148) Scaraberes hercules, in which the upper projection is from the pronotum, and the lower one from the head; and Oryctes nasicornis (fig.145) has a horn arising from its head resembling that of a rhinoceros. The sexes are distinguished in various ways in the different groups, as by the antennæ in some, and the feet in others. In some genera, as Lucanus (f ig. 124), the mandibles are much larger in the male than in the female, and of a different form. This order is oviparous, the male dies soon after pairing, and the female after depositing her eggs. In cases where the male has not paired, it has been preserved alive for a period much beyond that of its ordinary life.

The Coleoptera have been studied more than any other order of insects, the causes of which may be stated as follows. With the exception of the Lepidoptera, they contain the handsomest species. The Lepidoptera are difficult to take in a perfect condition, and when taken they require more attention in carrying and handling, and in expanding the wings, besides taking up more room in cabinets, and being more likely to be destroyed by moths and other destructive larvæ. Coleoptera present great variety in their structure; their exterior hardness renders their preservation a simple matter. It requires but little trouble to collect and bring home a great many at a time, and they can be easily caught and collected when insects which are more upon the wing are not seen. There are more books upon the Coleoptera, which facilitates their study and renders it more easy to discover new species.

In forming a collection of Coleoptera (and these remarks will, in most cases, apply to other orders), various localities must be sought. Many frequent the blossoms and leaves of shrubs and trees, varions species are found in rotten wood, dung, carrion (Necrophorus prefers dead reptiles), beneath stones, logs, bark, or under the earth. Species which live in fungi
may be readily taken by making a pile of this material and looking through it in the course of a day or two. Some species which live in moist places, or beneath the sand along the margins of water courses, can be driven from their retreats by dashing up water with the hand. Hosts of small species are found amongst the grass, from which they may be swept with a canvas net attached to a stout wire ring twelve or thirteen inches in diameter, and fixed in a handle about two feet long. The canvas and fixtures must be sufficiently strong to allow briers and other rough vegetation to be swept without injury to it. A great many species are attracted by a light at night. When captured, Coleoptera (and other insects which are not readily injured) should be put into small short vials in which a little paper has been put to allow them to cling to, but predaceous ones should be put into a bottle with a little ether in it, as they would destroy the others. For the smaller kinds a bottle must be provided with a quill (to be closed with a stopper) inserted through the cork, through which they are to be passed into the bottle, to prevent the inmates from escaping when a new prisoner is to be added. These may be killed by having a little paper in the vial moistened with ether, or by immersing the whole in hot water.

Each specimen should have a pin of a suitable size passed vertically through the right wing cover, to within less than half an inch of the head. When an insect is too small to have a pin passed through it, this must be stuck through the large end of a small triangle or wedge of thin card, about one fourth of an inch long, and one sisteenth of an inch wide at the large end, the opposite end being pointed. Upon the upper surface of the point of this card, small insects must be gummed, and in such a position that the pin being vertical and upon the right, and the point of the card towards the left side, the insect must cross it at right angles, the right elytron being towards the pin, and the abdomen towards the manipulator, and this position must be preserved in the cabinet. The gum used must be grum arabic, with a little starch and inspissated ox gall, this being indispensable to prevent the gum from flying with the extremes of temperature, and it is sufficiently adhesive to prevent insects from being jarred loose by touching the pins. The same material is to be used in mending insects. The pins used for the small cards should be small No. 1 of the German manufacturers, and in general thin pins should be preferred. When iusect pins cannot be procured, the ordinary kinds may be used, but in this case a great many specimens must be attached to cards. If pins are subsequently procured, the carded insects may be placed for a few hours in a closed vessel of moist sand, when they can be detached, and will be sufficiently relaxed to allow them to be pinned without breaking the antennæ and feet.

Specimens are to be arranged in horizontal rows on the drawers of a cabinet, made with every joint close. The drawers for the Coleoptera of the United States may be from twenty to twenty-four in number, of a size to allow a glazed cover to each, of ten by twelve inch glass, the frame of which should both euter about half an inch within, and project over the edge of the drawer on the four sides, to give double security to the joint. This frame should be carefully fitted before the drawer is put in. The
bottom should be smoothly corered with sheet cork, corn-stalk pith, the soft root of the southern tupelo, or the wood of Agave americana. If soft white pine is used, a small hole must be made with an awl before a specimen can be inserted. The depth of the drawers will depend upon the length of the pins used. The German insect pins are $1 \frac{3}{8}$ inches long, and are preferable on account of their toughness and elasticity, in which they excel the English and French pins. The pin that holds the insect will also pass through the label. A piece of camphor wrapped in gauze or other thin material should be placed in one corner of every dratrer, and should it be found from the dust beneath a specimen that there is an enemy at work within it, it should be removed and subjected to a heat nearly equal to that of boiling water. This may be done by placing it in a covered tin ressel, which may be immersed in another containing hot water. A good wash to destroy moths and the various larre found in collections, is composed of one part of oil of turpentine, and six of camphorated alcohol. A few globules of mercury are sometimes placed in the drawers to prevent the ravages of the minute louse-like Troctes pulsatorius. Constant care is necessary to prevent collections from being destroyed, and new specimens should be introduced with great cantion, as they may contain eggs which will produce a destructive larva.

Much of the history of insects remains to be known, and larvæ should be dramn and described, and kept until their final change shows what they are. By a system of numbering, valuable observations may be made without a knowledge of the scientific name of an insect. This knowledge comes slowly, and the observer should not relinquish his studies because he meets with difficulties. New discoreries are made every year in Europe, whose entomology has been long studied by numerous active observers, and still more important ones would reward a similar class upon this continent, where so much remains to be made known in the various orders of insects.

Coleoptera are widely spread, the largest species being found between the tropics. They seem not to be as hardy as some of the Neuroptera and Diptera, none being found in Spitzbergen and similar localities. The richest collection of Coleoptera is that of the Royal Museum of Berlin, which contains 40,000 species.

Various classifications of the Coleoptera have been proposed, not one of which has acquired an exclusive popularity. Here we follow that of Westwood, which agrees better with the arrangement of Stephens and Latreille, than with that of Erichson, which will probably supersede them in time.

The order is divided into sections (Westwood Shuckard), according to the joints of the tarsi, which, although they are not uniform in every case, afford a remarkably good general characteristic. This gives the four sections, Pentamera, Heteromera, Tetramera, and Trimera. Macleay divides the Pentamera into two groups (naned tribes by Westwood), Chilopodomorpha and Chilognathomorpha, according as the larva resembles Scolopendra and Julus; and he endeavors to divide the remaining sections in an analogous
manner according to the forms of the larvæ. There is a discrepancy in Mr. Westwood's nomenclature of the Tetramera, of which he admits the three ordinary groups, but applies to them the name of sub-sections, which he does not apply in the other sections. The tribes are divided into groups termed sub-tribes by Westwood (sub-division by Shuckard, and section by Stephens), and each division of the sub-tribe is named stirps by Westwood and Stephens (and tribe by Shuckard). These divisions may be tabulated as follows:

The Coleoptera of the section Pentamerc have five articulations to each tarsus, and they are the most perfect and the most numerous members of the order. In some of the Hydradephaga and Brachelytra the tarsi are anomalous, and in the latter there are dimerous forms, and such as have four articulations to the anterior and medial feet, and five to the posterior ones. Latreille divides the Pentanera into six families, Camassiers, Brachelytra, Serricomia, Clavicornia, Palpicornia, and Lamellicornia. The first corresponds to the Adephaga of Clairville, which include the predaceous land and water families, the former being the Geodephaga, containing the two families Cicindelider and Carabide; and the latter the Iydradephaga, with the two families Dyticide and Gyrinidae.
The Adephaga have slender antennæ and a palpiform bi-articulate galea to the maxillæ in addition to the ordinary maxillary and labial palpi. The maxilla have a row of stiff bristles along the inner margin, and the apex armed with a hook.

Fam. 1. Cicindelida. In this family the antennæ are slender, the apex of the maxillæ is in most cases a movable tooth bent inwards, and in the male the anterior tarsi are usually wider than in the female. 'Ihese insects are of a moderate size, often of brilliant colors, the head and eyes rather
large, the mandibles strong, pointed, curved, and toothed, and all the organs of manducation and locomotion well developed. They inhabit hot and sandy localities and dusty roads, running rapidly, and when disturbed, taking wing with great facility, and alighting again at a little distance. They are very ferocious, and prey upon other insects. Among the genera, Cicindela (pl. 81, figs. 26-29) is the most abundant and the best known. Between forty and fifty species of the United States are known, for descriptions of which, Say's paper in the Trans. Am. Phil. Soc., vol. i., 1818; and that of Dr. J. L. Le Conte in the Annals of the N. Y. Lyceum of Nat. Hist., may be consulted. The name Cicindèla (accented on the third syllable) is sufficiently well known to prevent names like soldier bug, or Spanish fly, from being applied to them.
Fam. 2. Carabidce (pl. 81, figs. 11-16). This family corresponds very nearly to the genus Carabus, as viewed by Linnæus. It is allied to the preceding, but the terminal tooth of the maxillæ is hardly ever movable, the mandibles have in general the predaceous structure less developed, and the head is generally narrower than the prothorax. These Coleoptera are predaceous, feeding upon insects, but a few feed also upon vegetable food. They are numerous in genera, species, and individuals, and they abound in cold and temperate regions. Many of the species are less than an eighth of an inch in length. They inhabit fields, where they feed upon larve and insects, and they constitute a majority of those found under stones and rubbish. They are generally nocturnal, although some, including the subulipalpi, are diurnal, with habits much like those of the Cicindelidre. Many of the species have a fetid odor, and exude an acrid liquid when disturbed.

The second stirps, Hydradephaga (Hydrocanthari, Latr.), have the posterior and middle feet flattened, and margined with a bristly fringe, adapting them for swimming, and the posterior pair is distant from the medial feet. The body is oval and depressed, sometimes subglobular, the head broad, and the mandibles robust. There is much less variation of form, and fewer genera and species among them than appear in the Geodephaga; and the forms from different countries and climates present but little variety, even in color. Of the two families, the Dyticidce have long antennæ and short anterior feet, whilst the Gyrinidce have the antennæ short and the anterior feet long. The former swim beneath the surface, coming up occasionally to breathe, and the latter swim in circles upon it. These insects swim with great facility, and prefer lakes, ponds, or standing. water. Like the Geodephaga, they are predaceous, both in their larva and perfect state. They seldom leave the water except to find another locality, and then they prefer flying by night.

Fam. 1. Dyticida. Dyticus (D. marginalis, pl. 81, fig. 17) includes certain large species which are destructive to young fish, larvæ, and worms. They are very hardy, and may be sometimes seen in small pieces of water, when the surrounding parts are covered with ice. In some of the members of this family the elytra are smooth in the male and sulcate in the female, and in some males the three basal articulations of the anterior tarsi are enlarged and furnished with little organs like suckers.

Fom. 2. Gyrinidce. Here the antennæ are short, and of eleven articulations, the eye of each side is divided into two parts by the sides of the head, and the posterior and middle feet are flat and very short. They swim in circles upon the surface of the water, sometimes in great numbers, and when disturbed they dive with great facility. Like the preceding family, they are sometimes active in winter; and one species, according to Westwood, has been found upon Mount Etna in the region of perpetual snow.

The second sub-tribe Rypophaga (or cleansers) have the antennæ clavate, or thickening towards the apex, two labial and two maxillary palpi, the galea represented by the exterior maxillary lobe, which is generally dilated, and sometimes jointed, seldom palpiform. There are three stirpes, Philhyctria, Necrophaga, and Brachelytra.

The Philluydrict partake of the aquatic habits of the Hydradephaga, living along its moist margins. They have the body short, and convex above, the abdomen covered by the elytra, the hind feet formed for swimming or walking, the mandibles small, the maxillary palpi with four articulations, and the outer lobe generally articulated. The Philhydria contain the six families: 1, Heteroceridce ; 2, Parnide ; 3, Helophoride: t, IIydrophiliclas ; 5, Spherictivice ; 6, Agathidiidce. The first are the Acanthopoda, the second the Macrodactyla, and the third, fourth, and fifth, the Palpicomia of Latreille.

In the fourth family, Hydrophilidue, the body is ovate or hemispherical, and adapted for swimining or walking upon subaquatic objects. The prothorax is narrowed anteriorly, and the feet are compressed. They are gencrally of dull tints, they prefer stagnant waters, and some are found in those that are brackish. Some of those which swim have the trasi of the four hinder feet fringed with long hairs. Hydrophilus (pl. S1, fig. 18) is a genns of large Coleoptera, with the sternum ending posteriorly with a long spine, the antennæ of nine articulations, and shorter than the maxillary palpi. In swimming, the feet are moved alternately, giving a less rapid motion than in the predaceous families; and being vegetable feeders in their imago state, they have no need of great locomotive powers. The female has a posterior pair of organs for secreting a cocoon to contain the eggs. This is nearly an inch in diameter, and is composed of fine white silk interiorly, with a gummy coating which hardens, and is impervious to the water. It is affixed to floating aquatic plants. It is formed in about half an hour, and the extremity of the abdomen serves as a mould upon which to form it. The eggs, to the number of fifty or sixty, are inclosed in a regular upright position, and the young escape below where the aperture is very slightly closed.

The second stirps, the Necrophaga of Latreille, have the body depressed, the elytra often abbreviated, the apex of the antennie thickened, the mandibles generally prominent, the maxillæ with a double membranous extension, the outer lobe slender, rarely articulate, the maxillary palpi with three articulations, or with the basal articulation minute, and the feet ambulatory. These insects feed upon, and thus remove dead carcases; some remove decaying fungi in the same manner, and some feed upon the exuding juices of
plants. The families, according to Westwood, are : 1, Scapliidiidle ; 2, Silphidee (pl. 81, fiy. 104); 3, Nitidulidu (fig. 102) ; 4, Engidex ; 5, Pausside; 6, Dycetophagide; 7, Dermestidue. Stephens places the Erotylidae here also, but with the exception of the tarsi, their affinities are with the Trimera. In rare cases in the Dycetophagida, the tarsi are tetramerous and heteromerous.
In the Silphidee the body is depressed, the antennæ clavate, with eleven articulations of which the terminal four or fire form the head. The genus Necrophorus (p l. 81, fiys. 105, 106) is remarkable for finding the carcases of small animals soon after death, burying them by working the earth from beneath them, and afterwards covering them. The female deposits her eggs in these buried carcases.

The larre of the Dermestide destroy animal matter, especially dried skins. Dermestes lardarius is well known, from its attacks upon stores of beef and pork; and Anthernus is very destructive to the varions animal objects preserved in museums. In their perfect state, the Anthreni are found upon flowers.

The Brachelytra ($p l$. s1, figs. 4-6) form the third stirps of the sub-tribe Rypophaga, and are distinguished by the elongated form of the body and the shortness of the elytra (which seldom cover half the abdomen), and beneath which the wings are closely folded. The antennæ are generally slightly thickened towards the apex, the mandibles are robust and seldom exserted, and the abdomem is flexible, and often raised over the back in running. They run and fly with great facility, and in their habits are allied both to the Carabide and to the other Rypophaga. They live abont dead animal and vegetable matter, or in damp localities, and some of them eat larve and other living food. The habits of the adult and larro are the same, and they do not differ much from each other, which indicates a low position in the living scale. According to Westwood, this group should be considered a family under the name of Staphylinidu, although it is usnally divided into a number of so-called families. Most of the species are small, and require a good microscope and a good manipulation to study them properly. Westwood states the sub-families to be the six following: 1, Staphylinides; 2, Stenides; 3, Oxytelides; 4, Omaliides; 5, Tachyporides; 6, Pselaphides. In the last group there are only three articulations to the tarsi, one of which is so small as to have been at first overlooked, so that they were considered dimerous, and formed into a primary section named Dimera. They are from two to four millimetres long, and are found under stones, in meadows, and in ants' nests. Dr. J. L. Le Conte has published an interesting memoir on the North American species.

The Cordylocerata of Westwood constitute the third sub-tribe of the Pentamera, and include the stirpes Claricomia and Lamellicomia. The stirps Helocerca, the name of which is adopted from Duméril by Stephens, is named Claviconnia by Westwood, a term under which Latreille included the Necrophaga.

The Clavicornia have the body short, sub-globular or sub-quadrate, the antennæ clubbed, the basal articulation often forming half the entire
length, and the stermum in some cases hiding the mouth below. The feet are compressed, and can be drawn close to the body, which has generally cavities to receive them. This stirps contains the two families Byrrhidee and Misteridu. Mister (pl. 81, fiys. 119 128) is the chief genus of the latter family, in which the body is sub-quadrate, often widest in the middle, of a hard consistence, mostly black, marked with strix and punctures, the disposition of which affords good specific characters. The elytra are somewhat shorter than the abdomen, the antenne are elbowed, and the mandibles strong and projecting. When disturbed, they draw up the feet, withdraw the antennæ into cavities beneath the thorax, and simulate death. They are found in carrion, dung, and decaying fungi. The genus Hololepta is very flat and scale-like, and the species are found beneath moist bark. The American species, Heterius brumneipennis, Randall (Hister), is found in ants' nests. The paper of Major John Le Conte on this family may be consulted in the Boston Jour. Nat. Hist.

The stirps Lamellicornia is extensive and contains numerous distinct forms. The distinctive character is in the antennæ, which are short, of nine or ten articulations, the last (generally three) forming a club composed of flat plates closing upon each other like the leaves of a book. The anterior tibie are generally dentate. The males often differ from the females in having large mandibles and horn-like projections. This stirps contains the largest and some of the handsomest and most splendid among. known insects. Some feed upon pollen and honey, some upon leaves, and many frequent excrementitious and decaying vegetable substances. The larva is a long fleshy grub, generally white, curved in a semicircle, having six feet, little capable of locomotion, and generally living in the ground. The families are: 1, Lucanidse (pl. 81, fig. 124); 2, Geotrupidce (fig. 143); 3, Šcurabuidre (figs. 132, 136-142) ; 4, Aphodrüde (figs. 133-35); 5, Trogider ; 6, Dynastidue (fiys. 145-8) ; 7, Rutelider ; S, Anaplognathide: 9, Melolontlides (figs. 129-131); 10, Glaphyridee; 11, Cetoniade (fiys. 125-127).
The Lucanidic (Lucanus, pl. 81, fig. 124) are considered by Westwood and others to form a group equal in value to the remaining families united, named respectively Priocera and Petalocera by Duméril. The American P^{\prime} cassalus cornutus belongs to this family. Its larva is white, and presents the remarkable peculiarity of having but four feet, the posterior pair being represented by a small scale upon each side, which can be moved rapidly, as if it were a real foot. It is found beneath the bark of rotten logs, and is not bent in a semicircle, but walks freely upon its inferior surface. The adult burrows in rotten wood, and may be recognised by its shining black color, large size, flattened parallel form, and quadrate prothorax separated from the striate elytra. The strongly elbowed antenne in this family indicate an affinity with the Histeridue.
The Scarabeidue ($p l .81$, figs. 132, 136, 140-144) have the front of the head extended into a flat clypeus used in working in the ground, and in the dung upon which they feed. Many of them form a ball of dung (said to contain the eggs) which one or two of them roll along until they have found
a suitable place, when they commence working the earth from beneath it, and gradually burying it. The American Canthon love (or C. volvens) generally works in pairs, one pushing the ball backwards with its hind feet, its posterior extremity raised up, the other walking up the ball on the opposite side, thus causing it to roll. The ball is about three fourths of an inch in diameter, and quite globular. Copris carolina makes a small ball, which it buries at once. Deltochilum gibbosum of the sonthern states makes a small ball, in the exterior of which there is a great deal of cow's hair. The genus Ateuchus (p l. s1, fig. 132) entered largely into the mythology of the ancient Egyptians, and models and figures of it are common among Egyptian antiquities. In Lethrus cephalotes (fig. 144), a European insect, the pronotum and elytra nearly correspond in size and convexity, the feet are long, and inserted near each other, and the antenne terminate in a reversed cone.

The Aphodiudte (figs. 133-5) are small oblong insects found in dung, some of which are black, and some of brighter colors. They may be seen flying slowly along the roads in the warm days of autumn. The elytra cover the entire abdomen.

The Dynastide include some of the largest Coleoptera, as D ynastes hercules (fig. 148), D. acteon (fig. 147), D. alsoëus (fig. 146), Oryctes nasicornis (fig. 145). During the day they live in the earth, or in the decomposed matter of old trees, and fly about at night. Scurabeus tityus, of the United States, is found in old apple trees. In general, the male alone has the horn-like projections.

Melolonthidac. Melolontha vulyaris (pl. 81, fig. 131), M. fullo (fig. 130), Rhizotrogus (fig .129), Serica (fig. 126), are examples of this family, which is important in its relations with agriculture.

The Cetoniidar, of which Cetowia (pl. 81, fig. 125) and Trichius (fig. 127) are examples, contain some of the handsomest of known insects. They feed upon the fluids of plants, as honey and sap, and also upon parts of the blossoms.
The Serricornia constitute the fouth sub-tribe of the Pentamera, and include many handsome forms of vegetable feeders, in which the antenne are generally short, and serrate, pectinate, or filiform, the apex rarely thickened. The form is lengthened, and the elytra generally cover the abdomen. They include the two stirpes, Macrosternia and Aprosternia.

The Macrosternia (Sternoxi of Latreille, pl. 81, figs. 22, 23) contain the genera Buprestis, and many more having the same general characters. They aite included in the three families, Buprestida, Eucnemida, and Elateride.
The Buprestidce include a great number of brilliant, large, and medium species resembling gold or precious stones. The body is hard, cylindrical, flattened, elliptic or oval, the feet short and weak, the elytra narrowed towards the end, the wings adapted for a rapid flight, the head vertical and deeply inserted in the prothoras, which is attached by a wide surface to the mesothorax, so that there is but little motion between these parts. They are chiefly inhabitants of warm climates, and the size of the species varies
from a line to tro and a half inches. Buprestis mariana (fig.22), to which this generic name properly belongs, is much like the North American MI. virginiana. Fig. 23 represents Euchroma gigas, which inhabits Cayenne. The larver in this family bore in wood, and may be frequently discovered under the bark of pine logs.

The Elateridce ($p l .81$, figs. 30-33) are closely allied to the Buprestida, but the colors are not so brilliant, and the body is less hard. The chief difference is in the structure of the prothorax, which moves so freely in a vertical direction that the insect can employ this power to throw the body about, either to regain its position upon its feet or to escape. The prosternum has a projecting spine, which fits into a corresponding impression in the mesosternum. They are generally found among living vegetables. We have found the larva of the large North American Alaus oculatus in the wood of ash trees. This species extends from the northern part of the United States to the latitude $\left(19^{\circ}\right)$ of Vera Cruz in Mexico.

The Aprosternia (or Malacodermia) have the antemæ generally long and serrated, sometimes clavate, and not lodged in a groove of the prosternum, the head deflexed and deeply seated, the body elongate and generally soft, and the feet rather long and slender. The greater part of them are winged. The larvee feed either upon wood or insects, and the adults are found upon flowers or plants, in dead wood, or upon the earth. Some are predaceous. The Malacodermes of Latreille include the families Cebrionides, Lampyrides, Mclyrides, Clairones, and Ptiniorcs; but Stephens and Westwood extend the group considerably further, and the latter adds the family Scydmanidue, which Stephens places with the Heteromera. With this exception, the families of these two authors agree, and are as follows: 1 , Ccbrionidex 2, Cyphonidae; 3 Lampyrider ; 4, Telephoridas; 5, Melyridae; 6, Cleridas; 7, Ptinida; 8, Lymexylonidar ; 9, Bostrichidae; 10, Scydmenide.

The Lampyridce are well known as the family containing the fireflies and glow-worms. The body is lengthened and depressed, and with the elytra of a soft consistence, and the head is more or less hidden by the prothoras. Most of the species seem to be carnivorous. When disturbed they draw in their members and simulate death. The common glow-worm of the middle United States is the female of Photuris versicolor.

In the Melyrida, some of the species of Malachius are remarkable for having red lateral organs which they can swell or relax at pleasure, the use of which is not known. The species of this genus feed upon insects.

In the Cleridce, the larva of the genus Clerus is remarkable for destroying the larvæ of bees. Necrobic and Corynetes are found about old animal carcases, particularly upon the bones.

The family I'tinida contains various small oval insects with the head placed deep in the prothorax, the antenur eleven-articulate, filiform, or sometimes pectinate. They are of obscure colors, and counterfeit death. They are very destructive to the woodwork of houses and furniture, and some destroy books and collections of dried plants and insects. The genus Anobium sometimes strikes its jaws upon the wood in which it
has its station, in such a manner as to imitate the ticking of a watch.

Lymexylon, the type of the family Lymexylonider, is very destructive to ship timber in the dockyards of Europe.

The Bostrichida have a hard cylindrical body, a deeply seated globular head, clavate antennæ, strong mandibles, and the pronotum projecting over the head, and often scabrons. They live in timber, boring holes in the wool and bark.

With few exceptions, the section Heteromera have four articulations to the posterior tarsi, and five to the others. They are generally regetable feeders, and differ much in their habits. Some live upon plants, and are variously colored; others live in dark places, and are of obscure colors; and some, which are allied to the latter, are found in desert plains. Latreille divides this section into four groups, named Melasoma, Taxicomia, Stenelytra, and Trachelides. Westrood divides them into three stirpes, Trachelia, Varicolores, and Melasomata. The Truchelia (P'yrochroa, pl. s1, fig. 40) are an extension of Latreille's group Trachelides, and contain a number of active insects, with the body and elytra soft. They are found upon plants, and are generally of bright colors. The head is enlarged behind the eyes, and the antennæ are slender and branched.

Westwood indicates the following families in his tribe Trachelia: 1, Notoxidas ; 2, Pyrochroida; 3, Lagrïdae ; 4, Horïtle; 5, Morlellide; 6, Meloidce ; 7, Salpingidce ; 8, Oedemerida; 9, Melendryidce.

There is a good deal of confusion in the names of several genera of Heteromera, on account of an endeavor to set aside names which should stand on the ground of priority. Linnæus, the inventor of the modern nomenclature, applied certain ancient names, as Cicinclela, Buprestis, and Cantharis, to insects, without caring particularly to what insects they were applied by the ancients, and properly, because with the ancients these were worthless vernacular names; and as we do not go either to Pliny or to a modern retailer of drugs to learn entomology, we have no particular interest in knowing the names objects bear with them.

With Linnæus, the blistering flies formed a part of his genus Meloe, and he formed a genus, Cantharis, in 1735, for an insect to which Schrffer applied the useless synonym of Telephorus, in 1760. In 176t, Geoffroy properly separated the blistering flies from Meloe, assigning to them the name Cantharis of the druggists, which he had no right to do, that name being already applied to a genus, so that it was virtually without a name until Fabricius, in 1775 , rectified the blunder of Geoffroy, by naming the blister flies Lytta, a name adopted by Dejean, Say, Erichson, and others.

Many of the Meloide have the power of raising blisters when applied to the skin, and different species are used for this purpose in different countries. In Meloe ($p l .81, f i y .7$), one of the elytra laps over the other at the base.

The tribe Atrachelia have the head enlarged and deeply set; they are in general dark-colored, living in dark places, and running slowly upon the ground. A few of the families are bright-colored, and are found upon
flowers. The families are: 1, Cistelidx ; 2, Helopidac ; 3, Diaperidce ; 4, Tenebrionidce; 5, Blapsidue; 6, Pimeliada. Of these, the three first are variously colored, and constitute Westwood's sub-tribe Varicolores. The remaining three are black or obscure, and constitute the Melasomata of Latreille.

The Tenebrionidce are well known from the meal bug (Tenebrio molitor), the round hard larre of which, as well as the perfect insect, are found in flour, sea-biscuits, icc., upon which they feed.

The Blapside of the United States occur in the region of the Rocky Mountains, whence they extend to Texas.

The insects of the section Tetramera include those Coleoptera which have four movable articulations to all the tarsi. They are very numerous, and all of them are vegetable feeders, both in the larva and perfect state. They are divided into three stirpes, of which the Rhincophora have the head produced into a rostrum, and the antennæ generally short and elbowed. The Longicornia have long antenne and an oblong body ; and the Phytophaga have a short round body and short antennæ. There are many beautiful insects among the Tetramera, but except among the Longicornia, they are generally less than an inch long.

The Rhincophora ($p l$. 81, figs. 65-76) are numerous in species, of which about 8000 have been described in the great work of Schœenherr. The mouth is situated at the end of the rostrum, which is sometimes very slender, and as long as the rest of the body. The insects known as weevils, which are destructive to various kinds of seeds, belong here, and the seeds of a great many vegetables are attacked by peculiar species. The elytra are often connate, or united in a single piece, and with the exterior parts, they are often so hard that it is difficult to stick a pin through them. Some are beautifully marked with brilliant minute scales, which are favorite objects for viewing with the microscope. The English have named several of these diamond beetles, on account of the appearance of these scales. The divisions of Rhincophora by Schenherr are here given, from the fifth volume of his Genera et Species Curculionidum, 1839. It will be observed that his use of the words order, family, \&c., is peculiar to himself.

Sub-fam. 1. Genuini.

Ordo I. Gonatoceri. Antennæ geniculate, basal articulation received into a groove in the side of the rostrum.
Legio. 1. Brachyrhinchi. Rostrum short and robust. Divisions (Phalanx 1): Brachycerides, Entimides, Pachyrhynchides, Brachyderides, Cleonides, Molytides, Byrsopsides; (Phalanx 2) Phyllobides, Cyclomides, Otiorhynchides.
Legio 2. Mecorhynchi. Rostrum cylindric, lengthened, with the antenne between its base and middle. Divisions: Erirhinides, Apostasimerides (sub-divisions: Cholides, Baridides, Cryptorhyncides), Conophorides, Cionides, Rhyncophorides, Cossonides.

Ordo II. Orthoceri. Antenne not geniculate, basal articulation not very long, and not received into a groove in the rostrum. Divisions: Tanaonides, Ithycerides, Camerotides, Antliarhinides, Attelabides, Belidés, Apionides, Ramphides, Cylades, Ulocerides, Oxyrhynchides.
Sub-fam. 2. Spurit.
Legro 1. Palpi hidden, very short, antennæ geniculate and clavate, tarsi pentamerous. Division : Dryophthorides.
Legro 2. Palpi hidden, antennæ straight, not properly clavate, tarsi indistinctly pentamerous. Divisions: Oxycorynides, Brenthides.
Legio 3. Palpi exserted and filiform, tarsi distinctly tetramerous. Divisions : Rhinomacerides, Anthribides, Bruchides.

Schœenherr excludes the Scolytidee from the Rhynchophora, and Westwood places them at the end of them. They include various genera destructive to forest trees.

The Longicornia ($p l$. 81, figs. 44-60) have the antennæ long and tapering, generally as long as the body, and not clavate; the eyes generally reniform, and the body elongated. The head is sometimes horizontal and sometimes vertical, the front generally impressed, the prothorax varying, being convex or flattened, transverse, globular, cylindrical; spinose, nodulous, or smooth; presenting in Acrocinus a movable spine (umbo) on each side. The feet are generally slender, the tarsi clothed with short hair beneath, and the third articulation cordate. Some of the females have an ovipositor to insert the eggs in the bark of trees. They are graceful in form, and many of them are brilliantly colored. Some run and fly with great facility, whilst others are tardy in their movements. Some are deprived of wings and confined to the ground and low shrubs. Some frequent flowers and other forest trees, and the larver of the latter are often destructive to useful trees. The beautiful American Clytus pictus, a species marked with yellow lines like fig. 51 , is very destructive to locust trees, in the branches of which the larva bores. It also destroys young hickory saplings which have been cut for hooping casks.
The larva of Oncideres cingulatus lives within the dead branches of hickory, eating the dead wood; and to supply it with this food, the female deposits the eggs in little perforations which she makes in the bark towards the end of the branches, which she kills, by gnawing a groove entirely round, through the bark and into the wood, which effectually accomplishes the object. The dead branch retains its position long after the dead insect has left it. The upright stem is often thus attacked, when a lateral branch shoots forth to supply its place, which may be similarly attacked the next year, and this sometimes happens for four or five years in succession, so that the top of a young hickory tree sometimes presents a curious and mutilated appearance.

There are three families of Longicornia: Prionida, Cerambycidce, and

Lepturidce. Among the genera figured in plate S1, are Prionus (fig. 61), Clytus (figs. 51, 52), Astynomus (fig. 54), Superda (fig. 56), Leptura (fig. 46), Molorchus (fig. 45). In the last the elytra are very short, and the wings are not folded under them. Serville is the chief authority in the arrangement of the Longicornia. For the species inhabiting the United States, the papers of Say, Haldeman, and Le Conte, may be consulted.

The Phytophaga is an extensive group of short and often polished and bright colored insects which inhabit and feed upon plants, and many of the species are destructive to garden regetables. Latreille divided them into Eupoda (from the size of the posterior feet) and Cyclica (from their circular form). The families are: 1, Sagridue ; 2, Crioceridce ; 3, Cassididee ; 4, Galerucide; 5, Chrysomelida. The first and second of these belong to the Eupoda.

In the Chrysomelidec the antennæ are eleven-articulate, and are inserted in front of the eyes ; the head is small, and inserted in the prothorax, which is narrower than the elytra. The colors are generally bright, and resemble polished copper, gold, or steel. There are between six and seven hundred species known. They abound in tropical climates, and are common in temperate regions.
In the last section, Trimera ($p 7$. s1, figs. S3-101), of the Coleoptera, the tarsi have three movable and distinct articulations, with the addition of a minute and immorable one. The species are of a small size, the body is short and often hemispherical, and the antennæ are short, with a tri-articulate club. Some feed upon plants, some upon fungi, and others upon the genus Aphis. The families are: Erotylidae (Clavipalpi, Latr.); 2, Endomichidce (Fungicola, Latr.) ; 3, Coccinellidlee (Aphidiphagi, Latr.). To these some add the Pselaphidce, the characters of which assimilate them to the Brachelytra.

Fam. 1. Erotylidee. These insects are sometimes placed at the end of the preceding section, on account of their tetramerous tarsi. The antennæ have eleven articulations, they end in a compressed club, and are usually inserted in front of the eyes. The edges of the elytra are turned in upon the venter laterally, and they are often marked with impressed points. They live upon plants, and the great majority of the species belong to the American continent. The genera Triplax, Languria, Erotylus, and Dacne, have representatives in the United States.

Fam. 2. Endomychidoe. These are found in fungi, both in the larva and imago state. Their size is small, the antemne are eleven-articulate, placed near the eyes, and they are larger than the head and prothorax together. Mulsant terms them Sulcicolles, from the longitudinal grooves of the pronotum.

Fam. 3. Coccinellidce (p l. 81, figs. 93-100). This family includes the little hemispherical insects known as lady bugs. They are of bright colors, and are often marked with spots. When disturbed they emit a yellow fluid from the joints of the feet, which was formerly supposed to be a specific for the toothache. They feed upon Aphides, but the common large yellow American species with the black spots (Coccinella borealis), eats cucurbitaceous plants both in its larva and perfect state. These insects pass the
winter in crevices, or under bark, in little colonies. Mrulsant has added a considerable number of genera to the family.

Order 5. Orthoptera. In this order (pl. 80, figs. 7s-93) the anterior wings (or tegmina) are somewhat coriaceous and veined, with the inner margins overlapping and not meeting in a straight line as in the Coleoptera. The mouth is mandibulate, and much like that of the Coleoptera; the mandibles and maxillæ are well developed, each of the latter being protected by an external jointed galea. The labrum is transverse, the labium four-parted, and with the tongue, labial palpi, and maxillary palpi, well developed. The body is generally long, the head vertical, the antennæ slender, and the thorax much as in the Coleoptera. In some cases the wings are wanting, and sometimes they are so small as to be useless. Some have the anterior wings only, and in one genus the posterior ones are alone present. The feet'are well developed, but whilst some forms are very active, the movements of others are remarkably slow. The grasshoppers are perhaps more destructive to growing vegetation than any other family. The Mantide eat other insects, and the Blattide or cockroaches destroy both animal and vegetable substances. The Orthoptera are generally of a large size, and although in bulk they probably do not surpass the gigantic beetles, in the length of the body and the expanse of their feet and wings the Phasmidac much exceed them, some of them being eight or ten inches long.

The Orthoptera are much less numerous in species than the Coleoptera, although in the number of individuals they are at times extremely abundant. There are six families: 1, Forficulidae ; 2, Blattidue ; 3, Mantides; 4, Phasmidce ; 5, Aryllidae ; 6, Locustidce ; 7, Acridiida.

Fam. 1. Forficulidar. This family is considered an order by some anthors, under the name of Dermaptera, \&c. They resemble (Forficula, pl. 81, figs. 1, 2) the Brachelytra, having a slender body, and the elytra short, but they differ in the organs of the mouth, which correspond to the type of the Orthoptera. From these they differ in the wings, which have a peculiar structure, and in the peculiar pincer-like organ at the extremity of the abdomen. The wings fold both longitudinally and transversely to bring. them under the elytra. They are active, and feed during the pupa state, in which they resemble the typical Orthoptera. They run and fly well, live in damp places, and feed upon vegetable food. In Europe they feed upon flowers, and are considered a great pest by gardeners, but the American species seems not to destroy anything valuable, nor is it popularly known by any name. Forficula sits over her eggs and carefully watches the young when they appear. The larvæ resemble the adults, but they are without wings, whilst the pupr show indications of them in an undeveloped state. These insects are trimerous, and the antennæ are long, slender, and composed of many articulations. Some authors admit but one genus in the family.

Fam. 2. Blattidce (Blatta, pl. 80, fig. 93). The family of the cockroaches has the body depressed, the head more or less hidden under the prothorax, the elytra horizontal, with the inner edges passing over each other ; the antennæ are long and setaceons, the feet cursorial, the tarsi five-articulate, and the apex of the abdomen with two slender appendages.

The wings of this family are generally better developed in the male than in the female, and the latter has a wider abdomen, with one or two segments less than in the male. The eggs are contained in a capsule resembling a small bean, with one edge serrulate, and this the fernale carries at her abdomen for some time.

These insects are nocturnal, hiding by day and roaming about in search of food at night. In houses they are most abundant about fireplaces. They infest ships, which have distributed several species over the world, so that it is difficult to tell the original country of some of them. In tropical regions they are extremely troublesome, from their voracity and their numbers.

Fam. 3. Mantida (figs. 90, 91). Body lengthened, prothorax longer than in the remaining thoracic portion, anterior feet raptorial, tarsi fivearticulate, antennæ sometimes pectinate, apex of the abdomen with two slender appendages. They are carnivorous, and seize their prey with the anterior feet. The wings are horizontal, and the elytra in the males are larger and narrower than in the females. They remain stationary, waiting for their prey, their prothorax and raptorial feet raised as if in the attitude of supplication, whence they have been called praying insects, and Mantis religiosa ($p 7.30, f i g .90$) has received its trivial name from this circumstance. They are pugnacious, and when confined together will eat each other. The Chinese make them fight for amusement, and it often happens that one will cut off the head of its antagonist by getting its neck within the grasp of one of its raptorial feet. The eggs are deposited in a single body, and covered with a gummy mass which hardens in the air. The egg mass of Mantis carolina, of the Southern United States, will serve as an example. In Einpusa (E. gongylodes, pl. 80, fig. 91), the antennæ are bipectinate in the inale, and setaceous in the female. This genus is remarkable for the leaf-like expansions upon the feet.

Fam. 4. Phasmidce (pl. 80, fiys. s9, 92). Here the elytra are rudimentary, the prothorax shorter than the remaining thoracic portion, the antennæ setaceons, all the feet ambulatory, and the tarsi are usually pentamerous. These insects are phytophagous, and live upon trees; and they present some very curious forms. Some species have wings, whilst others have not the least rudiment of them. In the species which have large wings their anterior margin is thickened, and covers the inner fan-like portion like the outer stiff edge of a fan. Some of these have been named walking-sticks from their resemblance to a stick. Cyphocrana gigas (fig. 92 , from the Moluccas, is ten inches long. The foliaceous expansions upon the feet of the genus Phyllium (P. siccifolium, fig. 89), and the shape and color of the wings, give it the appearance of a leaf, whence its scientific name, that of walking leaf, sometimes given to it in English.

Bacteria femorata, figured in Say's American Entomology, is found from Pennsylvania to Carolina, upon chestnut trees, the leaves of which it eats. The eggs resemble certain seeds; they are mature in autumn, and they are probably laid upon the ground. This is generally a rather rare insect, but Dr. Hiester has discovered that they occur in great numbers in the Monocasy hills in eastern Pennsylvania. He says: "In the latter part
of September, 1846, I observed, at a great distance, the forest on the Monocasy hills to be stripped of its leaves, and to have a peculiar brown appearance. On inquiry, I was told that within a month or six weeks myriads of strange insects had suddenly made their appearance, and were voraciously devouring all the leaves of the forest trees. I had learned, a few days previously, that some insect was committing great ravages on the forest trees at the distance of twenty-four miles in the opposite direction. Individuals from both localities being procured, were found to be the same insect."

Fum. 5. Gryllidae (pl. 80, figs. 86-88). The family of the crickets were included by Linnæus in his great genus Gryllus, and on this account there is some confusion of names. This family was named Gryllides by Latreille, and Achetidce by the English. The antennæ are long and filiform, the tarsi generally trimerous, and the abdomen terminating with two long setæ. In the crickets the males produce a monotonous stridulating noise, by rubbing together a peculiar apparatus upon their elytra. Although they have a general resemblance to the grasshoppers, they differ in their habits, being altogether terrestrial, and having the power of burrowing to a greater or less extent. They run well, but do not leap as well as the grasshoppers.

The true crickets generally remain in their burrows during the day, and search for their food at night. In some countries they infest houses, particularly the kitchens, where they are attracted by the warmth. They seem to live both upon regetable and animal food. The crickets are referred to the genus Gryllus, Linn. ($p l .50$, figs. 86,57), although the English entomologists use the Fabrician name Acheta.

Gryllotalpa (fig. 88) is a genus in which the anterior feet are short and broad, and adapted for digging, like those of the mole, and like this animal, they burrow beneath the soil,forming a small bridge which marks their course. In Europe it is regarded as a noxious insect, but the American species seems not to be known to horticulturists.

Fam. 6. Locustida. Variations of this family name are used by the French and Germans, but the English name them Gryllidce, and the Gryllidæ they name Locustida, apparently for the purpose of making a concession to the vulgar name locust, as used in England. In this family the antennæ are setaceous and very long, the wing-covers deflexed, the posterior feet very long and adapted for leaping, the tarsi tetramerous, the abdomen with a pair of small filiform appendages, that of the female having a sharp flattened ovipositor. The males make a loud stridulation by means of their upper wings, near the base of which is a plate of a peculiar construction for this purpose. Locusta viridissima (pl. 80, fig. S5), the cigale of the French, is a noisy European species, and the Platyphyllum concavum or Catydid, is a familiar American example. Decticus apterus (fig. 83), D. verrucivomus (fig. 84), are European species; Poccilocera morbillosa (fig. 82) is from the Cape of Good Hope. These insects are more arboreal in their habits than those of the next family, and from the fine green color of many of them, they are easily overlooked among foliage.

Fam. 7. Acridiidce (pl. 80, figs. 78-81). This family is named Acridiens by the French, Locustide by the English, and by Burmeister Acridiodea.

The body is flattened and robust. The antemm are short, the posterior feet saltatorial, the tarsi trimerous, the abdomen has two very short appendages, and that of the female is without a prominent ovipositor. These insects produce a stridulation by rubling their hinder thighs against the wing-covers, and the large common species of the United States (Eedipoda caroline), which is found in dry places, such as dusty roads, may be seen hovering a yard or two above the ground over a single spot, the wings then producing a fluttering some which is not heard in its ordinary flight. This species is brown, with the wings black, margined with yellow.

Acridium cristatum (fig. S1), Edipoda stridula (fig. 78), O. corvelescens (fig. i. 9), 0 , migratoria (fig. S0). The last is two inches long, and inhabits 2 central, southern, and eastern Europe, where it occasionally commits great ravages upon the regetation. Various species are abundantly distributed over various parts of the world.

Order 6. Neuroptera (pl. 79, figs. 54-76). This is a somewhat irregular mandibulate order, the characters presented by it being varied, and on this account various modifications have been proposed for it. In the Libellulider, the trophi make an approximation to those of the Orthoptera, to which the order has been united by Erichson, whilst Kirby separates the Trichoptera as a distinct order. The antemæ are generally setaceons and short. The four wings have usually reticulate nervures; they are generally of equal size and consistence, and the posterior pair is not generally folded. The pupa is sometimes active and sometimes quiescent. The larve are hexapod, mostly predaceous, and they are either terrestrial or aquatic.

Blanchard divides the order into nine tribes, named after the genera Termes, Embia, Psocus, Perla, Ephemera, Libellula, Myrmeleon, Raphidia, and I'liryganea, the last belonging to one section, and all the rest to another. Westwood (who considers the Trichoptera to be a distinct order) adopts the following arrangement: 1, Termiticle; 2, Psocitce; 3, Perlicta; 4, Ephemeridas ; 5, Libellulida; 6, Myrmeleonidas ; T, Hemerobidat ; 8, Siatida; 9, Panorpida; 10, Raphidiida; 11, Mantispidce.
The Thripside ($p l . s 0$, fig. 51) form a group of small extent, which Burmeister includes in his great order Gymnoynatha. The species are minute and linear, with four narrow and equal wings, deprived of nervures, strongly fringed with long hairs, and not folded. The mouth is mandibulate, the tarsi dimerous and ending in a vesicle, as in some of the lower Arachenida. They are considered hurtful to plants, and it is probable that an American species attacks the human skin, cansing an itching like that of Simulium. The pupar are active, and their affinities are with the Neuroptera. There are various species in Europe and America. They form Haliday's order Thysanoptera, and include a number of genera.

The Termitide include the genus Termes ($p l .79, f i g .56, a, b, c, d$) or white ant, which presents many curious features in its economy. The body is white and oblong, the antemne short and moniliform, the eyes lateral, the stemmata two in number, and the mouth mandibulate, resembling that of the Orthoptera in having a galea; and the tarsi are four-articulate. They live together in societies composed of various kinds of individuals.

Besides the male and female, there are some with a large head and mandibles, which are the soldiers, named neuters by Latreille. Pupæ with the wings folded under the integument, are sometimes seen, and the great mass is made up of apterous individuals, which, from occurring of all sizes (some of them being very small), must be larvæ. They are active in all their stages, and the larve present the curious fact of being the general workers of the colony. In the American Termes frontalis, Hald., the pupæ take their final form in the spring, when they take wing in the morning in great numbers. In a few days the wings drop off, and no winged individuals are seen. This species works galleries in logs and stumps of trees, and is equally abundant in localities suited for ants, or beneath stones, when it forms galleries in the ground, plastering them with a hard mixture of clay. They are never seen out of their burrows except in the winged state. A species in Western Africa, T. fatalis ($p 7.79, f g .56 c$), builds conical nests ten or twelve feet high, with turrets rising from the surface, and having the entrances beneath the ground. When gravid, the female of this species ($p 7.79, f i g .56 d$) has the abdomen many thousand times its natural size, being nearly three inches long and three fourths of an inch in diameter, and containing about eighty thousand eggs, which are discharged in twenty four hours. The female, at the time of depositing her eggs, is walled within a hollow prison of clay shaped like a flat apple or turnip, the margin of which is perforated with a row of small holes through which the eggs are said to be ejected. A small species in France destroys furniture, woodwork, and records, its presence being seldom known until it is too late. T. frontalis has not been known to appear about houses. Dr. T. S. Savage made extensive observations upon T. fatalis, which are detailed in the fourth vol. of the Proceed. Acad. Nat. Sci.

The little apterous louse-like insect, Troctes pulsatorius, found among books, belongs to the family of Psocidce. Perla bicaudata (pl. 79, fig. 67) is a representative of the Perlidce.

The Ephemeridae ($p 7.79$, figs. $70,71,72$) are well known by the four wings with nervures in both directions, the anterior pair much the largest, the organs of the mouth but little developed, and the abdomen ending with long setæ. The larre live in the water, and the adults are fond of flying in the air, rising vertically above a certain spot, then falling slowly with their wings expanded. These insects were known to Aristotle and Elian, who named them in allusion to their short life, which in general extends from three hours to a day, although by keeping the sexes apart they will live from one to three weeks. When they leave the pupa state they fly off apparently perfect insects, but the succeeding night they cast off another thin pellicle from all parts, including the wings, and this being found at a distance from the water, and bearing a considerable resemblance to the pupa case as it stands attached by the feet to various objects, conveys the false impression that the pupæ are able to walk a great distance before they are transformed. Pictet of Geneva is the chief authority upon this family.

The Libellutida are composed of rarious genera, among which are

Agrion (pl. 79, fig. 73), Calepteryx (fig. 74), Libellula (fig. 75), and Aschna (fig. 76). They have the body slender, the wings large and reticulated, the head, and particularly the eyes, large, the mouth well developed, and they are of predaceous habits in the larva and imago state. In the latter the feet are slender, adapted for standing rather than for locomotion, and they resemble the swallow in passing most of their time and taking their prey in the air. They are sometimes found in forests, but generally along water courses. The larre are aquatic, and the eggs are deposited upon the water by the female, who allows the tip of her abdomen to touch the surface at the time of exclusion.

Among the Myrmeleonidte, the genus Myrmeleon (M. libelluloides, pl. 79, fig. 60 ; MI. formicarius, fig. 61 a) is remarkable for the habits of the larva ($f g .61$) , which forms a conical depression in the ground where the earth is dry and pulverulent (the dust of decayed wood being preferred in the United States). Beneath the bottom of this cavity the larva lies either entirely covered, or with the mandibles exposed. When an ant or other insect wanders across one of these pits, it slides down the sloping side, and the particles which roll to the bottom indicate the presence of an object, upon which the larva, by upward jerks of the head, tosses up a little shower of dust, which, falling on and around the intruder, carries it within reach of its wily enemy. In Virginia this insect is called a hoodlbug, and the repetition of this word over its opening in a half singing tone, is said to cause the bug to come from beneath its cover, although it is probable that the breath of the operator is the true cause. Ascalaphus (A. barbarus, pl. 79, fig. 59) is remarkable for having the antennæ knobbed, as in some of the butterflies.

In the family Hemerobiidae, the larre of Chrysopa (pl. 79, figs. 63, 64) are found upon plants, where they feed upon Aphides. Drepanepteryx phatcenoides is remarkable for its resemblance to some of the small butterflies.

The remarkable American genus, Corydalis belongs to the Sialidce. The insects of this genus are of a large size, the mandibles of the male resembling the horns of an ox. The larva is aquatic and predaceovs.

In the Panorpidce ($p l .79$, fig. 55), the head is produced into a rostrum. Panorpa ($p 7.79$, fig. 58), Bittacus (fig. 57).

In the Raphidiudae (Raphidia, pl. 79, fig. 55), the prothorax is long and the head flattened, presenting a distant resemblance to a snake.

The Mantispidce (Mantispa, pl. 79, fig. 5t) have the body somewhat as in Panorpa, and the anterior feet are raptorial, resembling those of Mantis, with which they were classed by some of the earlier entomologists.

The Phryganeidce ($p l$. 79, figs. 65-69) constitute Kirby's order Trichoptera, which is adopted by a considerable number of entomologists. The body is soft, the wings are membranous, the posterior pair the larger, and generally folded longitudinally, the anterior generally pilose (whence the name of the order), and the antenne setaceous. The mouth is mandibulate, but is unfitted for mastication, and the mandibles are obsolete. The pupa is inactive, and the larve are aquatic, and generally construct 372
a case with bits of gravel, sticks, or grass, which they generally drag with them, but some of these cases are affixed permanently to stones. A few species form their cases in the shape of turbinated shells, and these have been described as Mollusca. In most cases their food is vegetable. The adults inhabit damp places near the water; they run with tolerable ease, but do not fly well. Hydropsyche (pl. 79, fig. 65), Limnophilus (fig. 65), Phryganea (figs. 66, 69).

Order 7. Hymenoptera ($p \mathrm{pl} .79$, figs. 1-53). In this order the body is generally of a hard consistence, divided into three distinct portions. The wings are four in number (although sometimes absent) with few nervures; in repose the tips cross each other horizontally; and the posterior pair is the smallest, and attached to the anterior pair during flight by a row of minute hooks. They have a pair of biting mandibles, membranous maxillæ, with palpi, and a labium or tongue. The feet are well developed, and the tarsi are generally pentamerous. The female has an ovipositor or sting. The head and eyes are generally large, and the stemmata rarely absent. The antennæ are variable, but generally slender, and with thirteen articulations in the male, and twelve in the female. The prothorax is much reduced, and the mesothorax well developed for the insertion of the anterior wings. The larve are with or without feet, and the pupa is incomplete and incapable of locomotion. The habits of this order excite more interest, and their instincts are more striking than those of any other. The nervures or veins of the wings (at least the anterior pair) are extensively used in classification, each longitudinal or transerse part, and each intermediate area or cell having its peculiar name.

The larvæ of the Tenthredinidoe (the only ones which have feet) bear a considerable resemblance to those of the Lepidoptera. These feed upon leaves, others feed upon the juices of living plants and animals in which the eggs have been inserted by the mother. Some larvo feed upon animal food placed near them by the adult, whilst others, like those of ants and bees, are regularly fed by the neuters. The limbs of the pupæ are free, but inclosed in a filament. Adult Hymenoptera are mostly found upon flowers and fruits, the mouth being adapted for taking fluids. In general they do not feed much, and in a few cases they are without a mouth.

These insects fly and run well, and some leap with facility. A few simulate death when taken, bringing the abdomen in contact with the thorax at such times. Some defend themselves by biting, and others by a poisonous sting at the extremity of the abdomen, which can be extended or retracted at will. They are of medium size, the largest species (as Pompilus formusus, Say) being much smaller than the large Coleoptera, Lepidoptera, or Orthoptera, whilst the small species rival in minuteness those of other orders.

Blanchard divides the Hymenoptera into thirteen tribes, with French names, corresponding to the fanily names: 1, Apidae ; 2, Vespidee ; 3, Eumenidos ; 4, Crabronidse ; 5, Sphegidce; 6, Formicidae ; 7, Chrysididue; 8, Chalcidider ; 9, Proctotrupider ; 10, Ichneumonidce ; 11, Cynipides; 12, Siricides; 13, Tenthredinida.

Westrood, who fullows Latreille pretty closely, adopts the following arfangement:
SECT. 1. TEREBRANTIA, Latr. Abdomen with a saw or borer for depositing the eggs.

Sub-sect. 1. Seclrifera. Abdomen sessile, larvæ feeding upon regetable matter, and having a well developed mouth. Fam. 1, Tenthredinidwe ; 2, Uroceridce.
Scb-sect. 2. Pupivora. Abdomen pedunculated, having a borer, larva without feet, having mandibulate trophi slightly developed, and generally parasitic in other living insects.

Division 1. Spiculifera. Abdomen with an elongate plurivalve oviduct; larra generally parasitic in other insects. Fam. 3, Cynipidce ; 4, Evaniödce; 5, Ichneumonidte ; 6, Chalcididce; 7, Proctotrupidce.

Division 2. Tubulifera, Latreille. Extremity of the abdomen tubular, retractile, and furnished with a minute sting. Larvæ feeding upon the larve of other IIymenoptera, or upon dead insects deposited by the parent of such larve for the support of the latter. Fam. 8, Chrysididce.

SECT. II. ACULEATA. Abdomen of the females and neuters armed with a poison sting. Antenne of the male with thirteen, and the female with twelve articulations.
Sub-sect. 1. Predones, Latr. Basal articulation of the posterior tarsi cylindrical, not dilated, nor formed for collecting pollen. Larvæ feeding upon other insects stured up, or upon animal or vegetable fluids provided by the nenters. Fam. 9, Crabronida ; 10, Larrider ; 11, Bembecidae ; 12, S'phecidu; 13, Scolieide; 14, Mrutillidus ; 15, Formicidar ; 16, Eumenida; 17, Vespida.

Sub-sect. 2. Meliffera, Latr. Basal articulation of the posterior tarsi dilated and pollinigerous. Larve feeding upon honey or pollen paste deposited by the parent or collected by the neuters. Fum.18, Andrenidu; 19, Apidu.

Fam. 1. Tenthredinida. In this family the body is short and subcylindrical, the thoras robust, and bearing large wings with more numerous areas than in the other families. The antennæ are short, the mandibles strong, and the maxillary palpi are six-articulate. The abdomen of the female is provided with a pair of saws, which are regularly toothed, and present various modifications, probably adapted to the nature of the material to be sawed, as we know that the saws used in mechanical operations must be varied according as the wood is wet or dry, hard or soft. The two sawrs are applied together and worked with an alternate motion, one being drawn back when the other goes forward, sawing a groove in tender bark, or in leaves, in the latter case either beneath the ribs, or in the edge. In this groove the egg is inserted. The young live either in galls which are the result of the wounds, or, coming forth, they feed upon leaves. Some species do not saw grooves for the eggs, but affix them to leaves and branches. The larre in this family have a close resemblance to those of the Lepidoptera, having, like them, six thoracic feet; but they have generally from twelve to sixteen abdominal or false feet, whilst those of the former have not more
than ten. They are destructive to varions cultivated vegetables, and some feed upon the leaves of the pine.

Lophypus ($p l .79, f g .43$) is remarkable for having the antennæ multiarticulate, those of the male being bi-pectinated, and those of the female serrate. The larva of L. pini is sometimes very destructive to the pines in Europe. Nematus (fig. 44) has the antenne slender and nine-articulate in both sexes. The larva have six true and fourteen false feet. They live upon leares and change in the ground, where they form a cocoon. Cimbex (figs. 45, 4i) has a heavy body, and the antenne with five articulations, in addition to a terminal club. The species are of rather large size, and some of them are finely colored. C. americana is described by Dr. T. W. IIarris in his report on injurions insects.

Fam. 2. Uroceritar. The genus Urocerus, Geoff., 1764 (Sirex, Linn., 1767), of which the European U. gigus ($p l .79, f i g .42$) is a good example, is the type of this family. The body is lengthened, cylindric, and the abdomen united by its entire base, and furnished in the female with a borer for inserting the egg in living trees, chiefly of the resinous kind, to which the larve are at times very destructive.

Fam. 3. Cynipidue (figs. 48-53). This is a family of small insects, the larve of which are generally parasitic in plants, where they cause the excrescences named galls. The antenne are straight, and have from thirteen to sixteen slender articulations. The female has a slender oripositor, which is internal and spiral in a state of repose. The irritation of depositing an egg in the plant canses an excrescence, and the continued feeding of the larva upon its internal part continues to keep up the abnormal action until a gall is formed, of large size, compared with that of the little insect which finally leaves it.

Fam.4. Evaniida. In this fanily the posterior feet are the stoutest, and the abdomen is affixed to the metanotum. Evania has a very small abdomen, and is parasitic in the Blattce. Dr. Reinhardt found a species upon the U. S. ship Constitution, in various parts of the world (including Cochin China and Rio), where it doubtless accompanied the Blatte which infest shipping. In the American genus Pelecinus, the abdomen of the female is remarkably long and slender.

Fam. 5. Ichneumonitue (pl. 79, fiys. 32, 33, 37-39, 45). The body of these insects is narrow, the antennæ rather long, of numerous articulations, and vibratile. The feet are long, and adapted for running, and the ovipositor straight. These insects are abundant in species and individuals, the size varies considerably, but the greater part are small, and some are minute. The larvæ are the chief enemies of the Lepidoptera, under the skin of the larre of which the eggs are deposited by means of the ovipositor of the female Ichneumon. The young feeds upon the internal parts of the caterpillar, avoiding the vital organs, and by the time the young Ichneumon has acquired its full growth, the caterpillar is ready to die. Sometimes the caterpillar changes into the pupa state, from which the parasite makes its appearance. A caterpillar may contain a single larva of an Icleneumon of a large size, or fifty or more small ones. They are not confined to Lepi-
doptera, bat attack Coleoptera, Diptera, and probably members of all the orders. Among the IIemiptera, the Aphides are extensively destroyed by minute Icheumons. In some cases a parasitic Hymenopter is itself attacked by a smaller member of the same order. The eggs of insects and spiders are similarly attacked, and spiders also. These insects are very active, flying and ruming abont in a restless manner, and vibrating the antenne as if excited. In their perfect state they are found upon flowers. They are generally black or red colored, varied with white or red, the middle of the antennre being often white.

Fam. 6. Chalcididue (pl. 79, figs. 34, 35). This is an extensive family mostly of minute parasitic insects, many of which have bright or metallic colors. In some forms the hinder femora are very thick, in some the antenne of the male are branched, and in Lencospis (fig. 23), the ovipositor of the female, when unemployed, is turned up along the dorsum.

Fam. 7. Proctotrupida. This family contains minute species, with halits like the two preceding families. Some of them are so small, that a number of them may be parasitic in a single egg of a butterfly.

Fum. 8. Chrysididue (Chrysis, pl. 79, fiys. 24, 26). This is a family of small, oblong-bodied, brilliant, metallic-colored insects, which have the power of rolling themselves into a ball, or at least of applying the venter to the thorax beneath. The abdomen is attached by a short peduncle, its extremity has a tubular exsertile ovipositor, which is moved like the joints of a telescope, and the termination is a sharp point. They are very active, and may often be seen during hot weather upon fences or dry sand, vibrating their antemne and moving about. Westwood thinks the egg is deposited upon the food intended for the larve of other species, and of which it deprives the proper owner.

Fam. 9. Crabronidee (Crabro, fig. 29). In this, the first family of the Aculeata, the had is large and quadrate, the antennæ short, the feet slender, the anterior tibia with a pectinated spur, and the abdomen of the female provided with a sting. The general color is some dark tint varied with yellow spots. The adults frequent flowers, but feed their young with insects. They gnaw holes in wood, in which they lay their eggs, and a stock of provisions consisting of other larve or adult insects; and we have on two occasions found dead branches of trees (bored probably by members of this family) filled with Diptera, a single species of the latter being taken in each case. The insects taken for the food of the young are not killed entirely, but rendered torpid, so that they may not decay before they are wanted. When the store is complete the aperture is closed.

Fam. 10. Larridce. This is a small family allied to the preceding; the labrum is hidden, and the mandibles have a notch near the external base.

Fam. 11. Bembecidee. This is the smallest family in the order. The mandibles are pointer, have an internal tooth, and the labrum is exserted. It contains the gener: Bembex, Monedula, and Stizus. These insects lay up a store of insects in the ground for their young. Some of the species of Stizus are considerably larger than hornets; of black or dark colors,
generally ornamented with yellow spots. The common species of the United States, S. speciosus, Diury, lills and carries oft Cicarlu (pl. so, fig. 75) pruinosa, a large locust much larger than itself, the locust, during the attack (if a male), making a great noise with its sounding organs.

Fum. 12. Sphegida (pl. 79, figs. 27, 28, 30, 31). Here the body is elongated, the abdomen is attached by a long slender peduncle, and is armed with a sting. The mandibles are slender and curved, and the feet long, and generally fossorial. These insects are very active and restless, running about dry places, or along water courses, keeping their wings in a state of vibration. They suck the fluids of flowers, but the larve are provided with animal food by the adult. Ammophila sabulosa (fig. 31), which seems to inhabit the United States as well as Europe, digs a hole in sandy places, and stores it with spiders for the young. P'lopaus (fig. 30). Γ. flavipes, the mud-wasp of the United States, may be seen forming small balls - of mud along water courses, especially where cattle are watered, as there is no grass present, and the earth and water meet gradually and nearly on the same level, so that the ground is generally made wet a few inches from the margin by the capillary attraction and the small ripples. When the ball of mud (which is about an eighth of an inch in size) is ready, the wasp takes it to its nest, which may be in a garret, or under the eares of a house. Here the nest is formed, a cell at a time, each afier the first one being attached parallel with the preceding ones, and generally (perhaps always) in a horizontal direction, or nearly so. Sometimes a space of three inches in length will be covered by allowing successive cells to be attached side by side, but in other cases not more than three will be attached (perhaps to the lower side of a rafter), and the succeeding ones will be attached or suspended to these until the mass assumes the form of an elongated sub-quadrate prism attached by one end. In rare cases the nest is built upon the upper surface of a rafter. The cells are filled with spiders for the larve, and then closed with mud. The pupa is inclosed in a translucent yellow cocoon resembling very thin oiled paper. Westwood (Introduction, ii. 207), judging from observations made by W. W. Saunders, thinks that these constructions are made by Eumenes; but if the latter is concerned, it is probably the parasite, or the Pelopous may take a cell already formed in preference to building one. The United States species of Eumenes are not known to enter houses, where Pelopaus is constantly seen, although they may both be found in the same vicinity out of doors.

Some authors separate Pompilus (figs. 27, 28), and some allied genera, to form a separate family.

Fum. 13. Scoliidce. Some authors divide this family into two portions (considered sub-families by Westwood) of which Scolice and Sapyga are the types. In the former the antennæ are short and curled, and the feet thick and spinose; whilst in the latter the antennæ are straight and long, and the feet thin. The first contains some large species. The European S. flavifions deposits its eggs in cavities in the earth occupied by the larva of the large Coleopter, Oryctes nasicomis (pl. 81, fig. 145), upon which it lives.

Fam 14. Mutillida. This family approaches the Formicida (ants) in general appearance, but the species are solitary, and provided with a long curved sting which can be used rery effectually, on account of the flexibility of the abdomen. There are but two kinds of individuals, male and female, the latter being apterous. The species inhabit hot and sandy localities, and they are often coverel with short hair, sometimes vividly colored with red, yellow, and black. Mutilla (pl. 79, fig. 1), Apterogyna fig. 2).

Fam. 15. Formicidce (p l. 79, figs. 3-9). This is the family of the ants, in which the head is triangular, the antennæ filiform, and elbowed at the end of the basal articulation, the mandibles robust, the abdomen oral and attached by a narrow pedicle, and the feet slender and cursorial. These insects live in society in burrows of their own construction, which are found in the earth, or in dead trunks of trees. Some form a rough hill out of clay mixed with bits of vegetable material. Formica merdicola, of Brazil, builds a nest of dry horse excrement, upon the stems of reeds and trunks of trees. A somewhat similar nest (figured in Kirby's Bridgewater Treatise) is constructed upon the branches of trees by Myrmica kirbii.

The Brazilian Formica elata of Dr. Lund makes a nest upon the trunks of trees out of clay and leaves. A minute species of the United States, which seems to be Myrmica domestica, is found in small colonies under stones, but it occasionally takes up its residence in old galls upon oak shrubs, entering by the aperture made by the retiring Cynips, and adapting the interior to its purpose. The same species swarms in some houses, both in Ainerica and England.

A few individuals like workers, but with a very large head, are sometimes found. Among the driver ants of Western Africa, according to the observation of Dr. T. S. Sarage, there are three or four kinds: neuters, soldiers, workers, and carriers.

Besides the ordinary males and females, which are not numerous, the societies of ants are made up chiefly of workers, sometimes named neuters, which are abortive females without wings, of a smaller size and more industrious habits than the others. These have all the work of the establishment to perform, whether in building, collecting food, or taking care of the eggs and young. The difference between a worker and a female is probably due to a peculiar mode of feeding, as with the bees, where the larva, if a worker, is transformed into a queen when accident deprives the hive of the latter. The male and female are winged, but the wings are dropped after a certain time, and the latter is larger than the former.

In cold climates the male and female ants die in winter, and the neuters remain torpid, so that they do not require a stock of food. But under other circumstances a store of food is collected. Thus an East Indian species collects a great quantity of grass-seed, which is brought to the surface to dry after the heavy rains of that country. Ants are fond of the liquid matter exuded by the Aphides, and they frequent the trees where they are found, for the purpose of getting it ; and by annoying the Aphis they can cause it to furnish a globule. Certain species of Membracis are treated
similarly before they have attained their perfect state. Sometimes Aphides are kept prisoners by the ants; and we have observed a number of one of the species which infests the roots of grass, in their natural position upon the roots beneath a stone occupied as an ants' nest.

In the genus Polyergus the mouth is not adapted for building; and as the economy of the nest must be carried on, they make predatory excursions to the nests of two other species of ant, and take their young workers in the pupa state. These assume their perfect state in the domicile of their captors, and become the slaves of their community, all the labor of building, collecting food, and taking care of the young, falling to them.

St. Fargeau thinks that Polyergues exhibits the "perfection of instinct," being capable of laboring, but preferring idleness; but IInber asserts that they have no talent except that of war, and on placing some of them in a glass with their pupe, they began to die from want, until an individual of Formica fusca was introduced, which preserved the remainder. In Europe, a true working Formica makes slaves of two other species, although it assists in the work; and in the United States the large yellow ant makes slaves of the black ones, both being true Formice, and both working. (Sce Westwood's Introduction, ii. 232.)

The habits of the driver ants of West Africa (which are the neuters of the genus Dorylus) are carefully detailed in the Proceed. Acad. Nat. Sci., iv. 196. They are very fierce, have no permanent abode, and live temporarily in crevices. They travel at night or in cloudy weather, and if overtaken by the sun they protect themselves by an arch of earth made adhesive by a fluid from the mouth. Without this they would die, the direct rays of the sun killing them in two minutes. It being necessary to protect the young in migrating, an arch is made of the bolies of the soldiers, which interlock their jars and feet for the purpose of forming it. They move in great armies, and when they enter a house, rats, lizards, \&c., and even man, take their departure. They destroy large serpents, and domestic animals confined in stables. Dogs and asses are afraid to leap over their line when on a march.

Fam. 16. Eumenidse. In this family the sexes appear in their ordinary condition, and the species do not live in society. They resemble wasps, and construct mud cells in which the egg is placed with insects, larve, or spiders, the aperture being then closed.

Fam. 17. Vespidee (pl. 79, figs. 20-22). This includes the wasps, which in some points of their economy approach the bees, and like these, there are males, females, and workers. Many of the species are black or dark colored, varied with white and yellow. They are widely distributed, especially in warm regions, and they live in societies during the summer, building nests of hexagonal cells, made of a paper-like material, and often inclosed in a globular covering of the same material, as in the case of the horpets. They feed upon insects, fruit, honey, and other materials; and the large American hornet, Vespa maculata, often comes about houses to catch flies. The larve are fed by the adults, and when they are ready to assume the pupa state they inclose themselves by spinning a convex cap over the
mouth of their cell. The fecundated females survive the winter, and each commences a new colony, luilding cells, depositing eggs, and feeding the young, until thesa are old enough to take part in the labors of the establishment, which is about a month from the time the eggs are laid. Two or three broods are raised successively from the same set of cells during a season. The nests of Vespu may be seen upon trees (where they are sometimes from twelve to eighteen inches in diameter), or under the projecting parts of houses. The small American species known as "yellow jackets," build under ground; and the "paper-wasp," Polistes fuscata, attaches its comb (with the month of the cells downwards) to the branch of a tree, to the shelving parts of houses, or beneath a stone which has a cavity under it. Polistes (fiy. 20), Vespa vulyaris (fig. 21), Vespa crabro (fig. 22). A few species of Polistes collect stores of honey.

Fam. 18. Andrenidu. In this family, which is allied to the bees in form, there are only males and females. They are solitary; the female digs a hole in the ground where she deposits her eggs and a stock of paste made of pollen and honey, the hole being afterwards closed.

Fam. 19. Apidce ($p l .79$, figs. 10-18). The family of the bees contains various groups differing in their character and habits. Xylocopa (X. violtcea, fig. 14) bores passages in wood in which the young are placed with a quantity of pollen paste. In the United States, X. victima bores in the lower surface or edge of white pme structures, particularly about houses. The species of Bombus (figs. 10, 13) known as bumble bees, make their nests under ground, in fields and pastures. The females (which are not restricted in number) assist the nenters in working. The colony does not remain together in the winter. Megachile (fig. $12 a$, male; b, female). Nomada (fig.15) is distinguished by its bright colors, and Eucera (fig. 16) by its long antennæ.

Apis mellifica (fig. $18 a$, female; b, male; c, worker) is the common hive bee. The male (or drone) is somewhat larger than the workers, it is without a sting, the eyes meet upon the top of the head, the posterior tarsi have the basal articulation lengthened, and not square, as in the neuters, the thorax and abdomen are less distinctly separated, and the wings are longer than in the female and neuter. There may be from six or seven hundred to two thousand males in a hive, but this number is not in proportion to the other inmates. The females have the wings abbreviated, and the abdomen lengthened and provided with a curved sting, that of the workers being straight. The antennæ and feet are paler than in the workers.

Bees collect honey, pollen, and propolis, the young being fed with a mixture of the two former, whilst the latter (which is a mixture of one part wax to four of resin) is used to stop crevices and make repairs. The wax is a secretion between the segments of the lower side of the abdomen of the workers, where it appears in the form of small scales.

When accident or death deprives a hive of its queen, great confusion follows, but in a few hours several cells containing worker larvæ two or three days old are enlarged, and these young are supplied with the peculiar
food given to queen larre. Several new queens finally appear, and a conflict ensues, till one only survives. If a strange queen is introduced soon after the origimal one has been removed, it is surrounded and starved, but never stung; though if the interval of eighteen hours has elapsed, the stranger will be at first surrounded, but afterwards allowed to go. If, however, the hive has been twenty-four hours without a queen, the new comer takes her place as queen. When two queens come together they fight until one of them is killed.

Most of the eggs laid by the female bee are those of workers, until she is about eleven months old, when two or three thousand male eggs are laid at the rate of forty or fifty a day, and this generally happens in March and April, a smaller amount of male eggs being laid in autumn. Whilst laying the male eggs, the queen also lays the few which are to produce females, and these are deposited in "royal cells" constructed for the purpose, of a large size, and not placed in regular series like the others. These eggs are not laid faster than one a day, and seldom to the number of twenty; and they are placed at once in the royal cells by the queen, who inserts her abdomen for the purpose.
When the young females approach their adult state, the queen becomes uneasy, she communicates her uneasiness to the workers, and in their confusion they all go forth with the old queen, thus forming a new swarm; but as this occurs in fine weather when many of the bees are abroad, these, upon their return, take care of the hive, and others soon leave the pupa state.

The female eggs (not being laid simultaneously) come to maturity at different times; and when the young female leares its pupa state, it begins to gnaw an aperture for its egress, but the workers prevent this for two days by stopping the place with wax. When she finally emerges, she endeavors to go to the other royal cells to destroy them and their inmates, but she is prevented by the workers, and another scene of confusion ensues which, in a full hive, ends in a second swarming. This reduces the workers so much, that when another fenale emerges she cannot be prevented from destroying the royal cells and their contents, so that she becomes queen of the hive, although she may have to fight with others which emerge about the same time. Small hives do not send off swarms, and in this case royal cells are not made nor female eggs laid. After swarming the males are killed, and being without a sting, they readily succumb under the stings of the workers.

Various species of the bee are kept for the honey. That of Italy is different from the Apis mellifica of Northern Europe and the United States.

Order 8. Lepioptera. In this order the metamorphosis is complete, the antennæ multi-articulate, the labrum and mandibles rudimentary, the maxillæ forming a spiral sucker, the labial palpi are large, the wings broad with branching nervures, and having both surfaces covered with minute scales.
These insects are known under the general name of butterfies; some small species which destroy cloth in their larva state (or the larro them-
selves) are called moths, and the species of Sphinx are named hummingbirds. The body is generally clothed with a hairy covering, the eyes are usually large, and the stemmata, when present, are usually hidden by the hair. The antennæ present several types of form, but in their details they offer some important rariations from the simple types. The scales of the wings contribute much to the variety and splendor of the tints observable in these insects, which probably surpass all the other orders in their coloring. In a few the disks of the wings are without scales, leaving them transparent. The distribution of the nervures in the wings varies, and is now employed in classification. The wings are reduced in size, or wanting, in some females. In some genera they are carried vertically over the back, in some they are horizontal, and in others deflexed. The feet are pentamerous, generally hairy, and in most cases of equal length; but in some the anterior pair are so much reduced in size as to be of no use in walking.

The liquids of flowers furnish the Lepidoptera with food, but in some cases they require none in the adult state.

In the larva state they are known as voracious eaters, under the name of caterpillars. These have a mandibulate month, composed of a pair of corneous mandibles, a pair of maxillæ each with a small palpus, and a labium with two palpi. They have six thoracic feet corresponding to those of the imago, and a number of abdominal or false feet, varying from four to ten. These are used chiefly for holding, and the former for walking. They generally move forwards, but those of the Tortricidce can move rapidly backwards, and some, by bending and straightening the body suddenly, can/ leap. Some caterpillars are smooth, some covered with hair, which may be harmless, or with the quality of nettles, and it may be long or short, dense or sparse, bristly or woolly; and some of them have horn-like projections. Some are ornamented with various bright colors; some which feed upon leaves are green, some found among lichens have their color, and others which feed upon branches resemble a projecting stick, as if to prevent their numerous enemies from readily recognising them. In a few cases the caterpillar forms a case for itself, with which it moves about, and into which it withdraws when danger threatens. In growing, caterpillars moult frequently, and undergo varions changes in color. They usually rest by day and feed by night. Some are solitary and wandering, and some live in society, either in large webs, or congregated upon a single spot. A few live upon skins, hair, and wool, but the great majority of caterpillars feed upon vegetables, including leaves, roots, seeds, and grain. The most acrid and acid leaves are eaten by some species; some devour almost every kind of plant, and some plants feed various species. The pupa has the feet, \&c., hidden, and is motionless, except that the articulations of the abdomen are capable of moving. Some of these are inclosed in a silken cocoon, some in a cocoon formed chiefly of the hair of the caterpillar, whilst others suspend themselves without any exterior covering.

These insects are divided according to their habits into three sections by Latreille: The first (Diurna) include those which fly by day, and with very few exceptions they have the antennæ knobbed; the second (Crepuscularia),
those which fly by twilight, and have the antennæ gradually thickened; and the third (Nocturna), the night-fliers, in which the antennæ are usually filiform. These sections correspond respectively to the extensive Linnæan genera, Papilio, Sphinx, and Phalcena. But the terms of these sections are not exact, because some of the Crepuscularia and Nocturna are day-fliers, and on this account Boisduval applied the name Rhopalocera (meaning club-horned) to the Diurna, and Heterocera to the others, on account of their antenne being variously formed. Blanchard names the latter Chalinoptera, because they (generally) have a kind of bridle to unite the posterior to the anterior wings, and the former (the Diurna), Achalinoptera, becanse they want this contrivance. The Achalinoptera (or Diurna) he separates into five tribes: Papilioniens, Nymphaliens, Eryciniens, Hesperiens, and Cydimoniens.
The Chalinoptera he divides into nine tribes; Castniens, Sesiens, Zyganiens, Sphingiens, Bombyciens, Noctueliens, Uraniens, Phaleniens, aud Pyraliens.

Westrood divides the Rhopalocera into the families: 1, Papilionida; 2, Meliconiedse ; 3, Nymphalidex ; 4, Erycinide: 5, Lycconidce; 6, Hesperiida; and the Heterocers into: 1, Sphingida; 2, Uranïdae ; 3, Anthroceridee (or Zygeenidee); 4, Trachiliidee (or Sesiades, Latr.) ; 5, Hepialide ; 6, Bombycider ; T, Arctïdce ; 8, Lithosidar ; 9, Noctuidu; 10, Geometridu; 11, Pyralidex; 12, Tortricider ; 13, Yponomeutidue; 14, Tineider; 15, Alucitidce.
In the Nomenclator Zoologicus of Agassiz the following families are admitted, but a uniform termination is not given: Papilionides, Nyctatidece, Sphingides, Sesic, Zygøenides, Chelonarii, Bombyces, Noctuc, Geometre, Pyralides, Tortrices, Tinea Pterophorii.
Fam. 1. Pterophoridce. This family includes several genera of small insects remarkable for having all the wings deeply split into narrow pieces which are fringed and resemble feathers, whence one of the genera has been named Pterophorus (P. pentadactylus, pl. 79, fig. 77). The rays of the wings can be folded over each other.

Fam. 2. Tineidce ($p l .79$, figs. 81-87). This is an extensive family of small narrow-winged butterflies, with the rostrum generally rudimentary, and the antennæ ordinarily raised over the head. These insects are among the smallest of the Lepidoptera, and although their colors are generally sombre, many of them are beautiful objects. In their larva state various species, as Tinea pellionella (fig. $8 t$), are destructive to clothing, feathers, hair, and similar materials, which are used as food, and to construct a kind of cocoon which the larva carries with it. The larve of other species (as Tinea granella, fig. 81) feed upon stored grain.

Gallerea cereana (fig. 83) lives in beehives, where it destroys the honey and causes the death of the bees. The larva seems to feed upon the wax. Some authors separate Hyponomeuta and a few other genera in which the wings inclose the sides, and the posterior ones are the largest, and folded. Hyponomeuta' (figs. 86, 87), Plutella (fig. 82), Lemmatophila (fig. 85).

Fam. 3. Tortricidee (pl. 79, figs. $78,79,90,91,92$). In this family the wings are enlarged near the shoulder, a little deflexed, and when closed,
forming a triangle. The larre are naked, and have sixteen feet. They feed chiefly upon leaves, the edges of which they roll up into a tube and fasten with silk. In this they readily move backwards and forwards.

The larva of Caipocapsa pomonella (f ig. 79), known as the apple worm, lives in apples, causing them to fall prematurely. Tortrix viridana (fig. 91) is very destructive to the foliage of oak forests. The larve of Cocoyx resinosa (fig. 78), and two other species, eat the buds and leaves of pine trees in Germany; and being very abundant, they cause great damage. Sciaphila literata (fig. 90), Halias prasinana (fig. 92).

Fam. 4. Pyralidce (pl.79, figs. $80,88,89$). These insects are of a small size; in repose the wings generally form a triangle, and the feet are long, particularly the anterior ones, which are often fasciculate. Hypena (H. rostralis, fig. 88) is found in grass; and the larva, which has fourteen feet, rolls the edges of a leaf in which it undergoes its transformations. Hercyna (II. palliotalis, fig. 80) has a stout body, the wings short and dark satin colored, and the species inhabit mountainous regions in Europe. The larva of Botys (B. verticalis, fig. 89) has sixteen feet, and has the habits of that of Hypena. The adult inhabits moist and shady places, and is generally found upon the lower side of leaves.

Fam. 5. Geometride (pl. 79, figs. 93-101). The name of this family is derived from the locomotion of the larvæ, which, having often but four false feet, and these placed at the posterior extremity, move by stretching the body, holding by their thoracic feet, and then bringing up the posterior portion, forming a loop with the central part; and when the posterior false feet have taken a new hold, the anterior part is again stretched forward. Some of the larve have twelve or fourteen feet; they feed upon the leares of various plants; and like the caterpillars of some other families, they can suspend themselres by a thread. The body of the imago is slender, and the wings are sometimes irregularly shaped, and somewhat varied in their coloring. They are nocturual, and common in forests. When disturbed during the day, they fly a short distance, and hide in the herbage.

The species figured in $p l .79$, are Abraxis grossulariata ($f i y .94$), Acidalia brumata (fig. 93), A. viridata (fig. 97), Boarmia hortaria (fig. 95), Geometra papilionaria (fig. 96), Crocallis elinguaria (fig. 98), Fidonia wavaria (fig. 99), Ennomos syringaria (fig. 100), E. alniaria (fig. 101), Ourapterys sambucaria (fig. 102).

Fam.6. Noctuidee (pl. 79, figs. 103-123,129,136). In this family the'body is robust, the tergum often with a bunch of hair, the antennæ simple, but sometimes pectinate or crenulate in the males, wings often declivent in repose, and marked in many species with undulating lines. The larve are generally sixteen-footed, and live upon trees between leares which they join with silk. The pupa occupies the same places, or a cocoon upon or beneath the earth. The distinctions between many of the genera are slight and difficult toidentify. The mouth is well developed, and the maxilis long. The species figured are IIeliothis delphinii (fig. 103), Mamestra pisi (fig. 104), II. oleracea (fig. 105), M. brassicae (fig. 107), Trachea atriplicis (fig. 108), Tr. proceox (fig. 111), Polia chi (fig. 112), Acronycta rumicis (fig. 106), A. psi (fig. 384
113), Miselia oxycanthce (fig. 109), Plusia triplasia (fig. 110), P. gamma (fig. 118), Xilina exoleta (fig. 114), Cucullia umbratica (fig. 115), C. verbasci (fig. 116), Phlogophora meticulosa (fig. 117), Triphicena pronuba (fig. 119), Catocala fraxini (fig.120), C. pacta (fig. 121), C. sponsa (fig. 122), C. paranympha (fig. 123), Scoliopteryx libatrix (fig. 129), one of the few species found in America as well as in Europe; Episema cocruleocephala (fig. 136).

Fam. 7. Bombycidee (pl. 79, figs. 130-135̆, 13ヶ-1551; pl. 80, figs. 4-7). This is the family of the silkworms, which contains some of the largest and handsomest species of nocturnal butterflies. The mouth is in most cases rudimentary, the wings in repose are either horizontal or deflexed, and the antennæ bi-pectinate in the males. The larvæ have sixteen feet; they feed upon leaves, and spin a silken cocoon out of a single thread, with the aid of a gummy matter, which soon hardens. Several species are reared for the silk, and this valuable material might be furnished in greater quantity, were it not that in some cases warm water will not dissolve the gum of the cocoon as it does in Bombyx mori ($p l$. 79 , fig. 149), and in others the silk is so intermixed with leaves, and wrapped about branches, that there is a difficulty in unwinding it. Some of the larvæ are gregarious, living together in large numbers, spinning webs upon trees, and often destroying vegetation. Some of the large members of this family, as the Chinese IYyalophora atlas, have a bare space in the wings which is as transparent as mica. In others this is replaced by colored spots.

Cossus ligniperda ($p 7.79$, fig. 135), is three inches or more in the expanse of the wings; its color is whitish varied with brown, and streaked with black. The larra burrows in the living wood of willows, poplars, and ash, feeding upon the chips which it separates with its powerful jaws. It grows three years in the larva state, when it becomes a pupa in one of its galleries, in a cocoon made of silk mixed with fragments of wood.

Clisiocampa castrensis (pl.79, fig. 146), C. neustria (fig. 147), Eriogaster lanestris (fig. 1乞ّ0), Pœcilocampa populi (fig. 140), Lasiocampa rubi (fig. 151), Notodonta camelina (fig. 130), N. ziczac (fig.134), Cerura vinula (fig. 148), Orgya antiqua (fig. 133), O. fascilena (fig. 137), Liparis chrysorhoea (fig. 141), L. dispar (fig. 142), Pygara bucephala (fig. 128), Clostera curtula (fig. 138), Demas coryli (fig. 139).

Lasiocampa quercus (pl. 80, fig. 1), Dendrolimus pini (fig. 2), Odonestis potatoria (fig.3), Gastropacha quercifolia (fig. 5), Aglia tau (fig. 6), Nagelfecknusstrauchrothbuchenspinner.

Fam. 8. Aretiodce. This family is named Chelonides by Boisduval, and is recognised by the spotted abdomen, and the bright colors of the wings, particularly the inferior ones. Westwood places Notodonta and its allies in this family, whilst Boisduval and Stephens place them in a distinct one. The genus Arctia, as given here, admits of a division into various subgenera.

Callimorpha jacobcece ($p 7.79$, fig. 124), Arctia fuliginosa (fig. 125), A. matronula (fig .126), A. dominula (fig. 127), A. purpurea (fig. 131), A. lubricipeda (fig. 132), A. hera (fig. 143), A. caja (fig. 144).
tCONOGRAPHIC ENCYCLOPEDIA.-VOL. II.

Fam. 9. Zygcenidu. This family is sometimes namea Antliroceridae, but as the genus Zygana, Fabr., 1775, has priority of Anthrocera, Scopoli, $17 ⿰ 7$, it must be preferred. The generic name Zyggena, applied to a fish by Cuvier, in 1817, can have no influence against the former name. The members of this family resemble Sesia and Eyeria in being diurnal fliers, and in some the antennæ are terminated in a club. The wings are narrow, and have numerous nervures, and the feet and maxillæ are long. They are of small size and bright colors, and their movements are sluggish.
$Z_{y g}$ cena filipendulce ($p l .80$, fig. 8) has the upper wings black, spotted with crimson, and the lower ones of the latter color margined with blue. Its expanse is an inch or more. Europe.

Fam. 10. Trochiliidle. The insects of this family are day-fliers, and bear some resemblance to Sesia (pl. S0, fig. 9), but the body is more slender, and the movements are more sluggish. Some of them are gandily colored, and have naked wings, which, with their form, give them a general resemblance to Hymenoptera and Diptera, whence have been derived the trivial names of Sphecia apiformis, Trochilium vespiforme, sphegiforme, culiciforme, and many similar ones. The larve bore under the bark and in the wood of trees, which they sometimes danage, as in the case of the American Egeria cxetiosa, which destroys peach trees by attacking them below the surface of the ground. In this species the wings are transparent in the male alone. A closely allied, but smaller species (Trochitium cerasi), causes rough excrescences upon the branches of cherry trees in the United States.

Fam. 11. Splingida, (pl. 80, figs. 10-21). These have a robust hairy body, the abdomen conical, the antennæ thickened towards the end, and prismatic ; the rostrum is in some cases longer than the body, and the wings are narrow and strong, with the posterior pair small. Their flight is rapid and well sustained, resembling that of birds; and as the common words bird and fish are applied in a general and not in a technical sense, the common name of these nocturnal butterflies is humming-birds. The species fly from flower to flower, in the dusk of evening, balancing themselves on the wing in front of a flower, and without alighting, inserting their rostrum and sucking the honey. Λ similar mode of taking food, and an equally rapid flight, being subsequently observed in the class more generally known as birds or fowls, the term Kumming-bird was extended to the genus Trochilus among feathered vertebrate animals. The larve have sixteen feet, and often a curved horn near the posterior extremity. They often raise up the anterior part of the body, giving somewhat the appearance of the Egyptian sphinx, which has become the name of one of the genera. The larve known as the tobacco-worm, which eat the leaves of growing tobacco, are those of Sphins. The imago is often found about the flowers of Datura stramonium (or jimson weed). The posterior wings have a projection which passes through a ring upon the anterior ones, tending to keep the two together.

Cherocampa (Ch. nerii, fig.21) is remarkable for the structure of the larra, the head and anterior part of the body being retractile. As in Macroglossa, the cocoon is placed upon the ground. Deilephila (D.euphor356
bive, fig. 12 ; D. elpenor, fig. 13 ; D. celerio, fig. 14). The maxillie are not very long in this genus. Sphinx (S. pinustri, fig. 11; S. ligustri, fig. 16; S. convoluuli, fig. 17). In this genus the spiral maxillæ are very long, and the antennæ somewhat lengthened, and hooked at the aper. Most of the caterpillars have oblique pale stripes upon the sides, and a horn near the posterior extremity. The pupæ have the rostrum case detached, and forming a hook. They change in the earth. Sppinx carolina and S. quinquemaculata are common in the United States. Acherontia atropos (fig. 15) is the largest member of this family in Europe. It is known by a mark upon the thorax in the shape of a human skull. Smerinthus (S. tilice, fig. 18 ; S. populi, fig. 19 ; S. ocelluta, fig. 20) has the maxillæ very short, and the outer margin of the anterior wings irregular. The species are of sluggish habits, and do not feed upon the wing. The larva enters the ground to change, and the pupa is without the hooked rostrum case. Dr. T. W. Harris has published a valuable paper upon this family in the 36th rol. of the Am. Jour. of Science.

Macroglossa (M. stellatarum, pl. S0, fig. 10) is a day-flying genus having a tuft at the end of the abdomen. Its habits on the wing are those of Trochilus, with which it may be readily confounded.

Sesia fuciformis ($p 7.80$, fiy. 9). This small group has no characters sufficient to separate it from the Sphingita, with which Westwood unites it. Sesia has the wings transparent, and the body robust and hairy. The species fly about flowers in the bright sunshine. This genus differs but little from MFacroglossa, and both are called humming-birds.

Fam. 12. Uraniedde (or Nyctaloidece). These splendid insects have the general appearance of the diurnal Lepidoptera, except that instead of having the antenne knobbed, the basal half is filiform, and the remainder gradually thickened, and then tapering to the point. The discoidal cell of all the wings is open. The chief color is a bright golden green, mixed with black and sometimes red. They fly during the day ; and their flight is high and rapid, so that they cannot readily be taken except by rearing them from the larve.

Fam. 13. Papilionida, Diurna, or Rhopalocera. This family contains a great many large and beautiful insects which fly about in the brightest sunshine, but become dull in damp and cloudy days. They are sometimes of a large size, the expanse of the tropical genus Ornithopterus reaching ten inches. The colors are at times very gorgeous, reflecting like polished metal. The patterns are very various, composed of stripes, spots, or rings. Sometimes the lower surface of the wings differs but little from the upper one, but in other cases the pattern is very distinct. In most cases, the upper surface presents the most variety, and the brightest tints. The coloring is sometimes uniform through certain genera and groups: Colias being yellow and white, with the margins of the wings black; Polyommatus, blue; and Argynnis fulvous, with black spots above and silvery ones below. Butterflies seldom live over one season, but a few survive the winter and appear early in spring. Some are solitary, and others gregarious. The genus Papilio is very extensive, containing about three hundred
species. It is well represented in the United States, where it includes the large diurnal species. One of the most common is Papilio turnus, which is yellow, ornamented with black stripes, like pl. 80, fig. 48. The posterior edge of each posterior wing has a spatulate projection.

The group to which Hesperia (II. malvarum, pl. 80, fig. 22) belongs, sometimes have a small hook at the end of the knob of the antennæ, and the discoidal cell of the inferior wing is open. They fly about with a succession of jerks, and when they sit, the lower wings are held in a horizontal position. The larvæ are smooth, with a large head. That of Eudamus tityrus is green with the head rufous. It feeds upon the leaves of Robinia.

Lycuna hippothoë (pl. 80, fig. 23), Polyommatus argiolus (fig. 24) P. argus (fig. 25), Thecla quercus (fig. 27), T. pruni (fig. 28), T. betulce (fig. 29). These insects (the Lyconidce of Leach) are small and slightly made, with delicate marks and spots, the colors pale beneath and dark above, as brown in Thecla, coppery in Lycæna, and blue in Polyommatus.

Argynnis paphia (pl. 80, fig. 30), A. aglaia (fig.31), Vanessa c-album (fig. 32), V. atalanta (fig. 33), V. urticce (fig. 34), V. antiopa (fig. 35), V. cardui (fig. 35), V. orithia (fig. 41), V.io (fig. 42), Apatura iris (fig. 3i), Hipparchia scmele (fig. 39), H. galathea (fig. 40), H. pamphilus (fig. 43). These constitute a group, considered a family (Nymphalidæ) by some. They are finely ornamented, and the inferior surface is ofen marked with eye-like circles and silvery spots. The anterior fest are rudimentary.

Gonepteryx rhamni (pl. 80, fig. 44), Colias hyale (fig. 45), Pontic cardamines (fig. 46), belong to Westwood's sub-family Pierides.

Dorites apollo (pl. 80, fig. 47), Papilio podalirius (fig. 48), P. machaon (fig. 49), P. ceneus (fig. 50), are typical members of the family.

Order 9. Hemiptera (q l. S0, figs. 52-77). This order is distinguished by the compound rostrum formed for piercing and sucking, and of which the lower lip incloses the mandibles and maxillæ, which are in the form of bristles. These insects live upon vegetable and animal juices, those which feed upon the former being the most numerous. The Linnæan name Hemiptera indicates a character which some members of the order possess, namely, a thickening of the basal portion of the anterior wings, whilst the remaining part is thin and transparent. Fabricius and Burmeister reject this name as inapplicable, and apply one (Rhynchota) founded upon the character of the mouth. The larva and pupa are active and take food at all times, so that the metamorphosis is not complete.

This order is divisible into two sections, according as the wings are of a uniform or varied texture ; and this slight distinction has been taken as a sufficient basis to form these sections into orders named Homoptera and Heteroptera.

Blanchard divides the order into eight "tribes," of which the four first are homopterous and the four last are heteropterous, as follows: Cocciniens, Aphidiens, Fulgoriens, Cicadiens, Nepiens, Reduviens, Lygéens, Scutelleriens.

Burmeister divides the Rhynchota into tribes and families, as follows:
Tribe (1). Fam. 1, Pediculina.
Tribe (2). Fam. 2, Coccina.
Tribe (3) Phytophthires. Fam. 3, Aphidina; 4, Psyllodes.
Tribe (t) Cicadina. Fam. 5, Cicadellina ; 6, Membracina ; 7, Fulgo. rina ; 8, Stridulantia.
Tribe (5) Hydrocores. Fam. 9, Notonectici ; 10, Nepini; 11, Galgulini.

Tribe (6) Geocores. Fam. 12, Hydrodromici ; 13, Riparii; 14, Reduvini ; 15, Membranacei ; 16, Caspini ; 17, Lygcodes; 18, Coreodes ; 19, Scutati.

Westwood, who admits the Homoptera as a distinct order, divides them as follows:

Section 1. Trimera. Fam. 1, Cicadida; 2, Fulgorida ; 3, Cercopidce. Section 2. Dinera. Fum. 4, Psyllidae; 5, Aphidre ; 6, Aleurodida.
Section 3. Monomera. Fam. 7, Coccidce.
The Heteroptera he distributes as follows:
Section 1. Hydrocorisa. Fam. 1, Notonectide \$2, Nepidu.
Section 2. Aurocorisa. Fam. 3, Galgulita ; 4, Acanthiudlé; 5, IFydrometridas; 6, Reduvïda; 7, Cimicidae; 8, Tingidue; 9, Capsida; 10, Lygaider ; 11, Coreidas; 12, Scutelleridee.

Fam. 1. Coccidce. The principal genus of this family is Coccus, one of which (Coccus cacti, pl. 80, fig. $54 a b$) has been named cochineal in commerce. This family was named Gallinsectes by Latreille, on account of the resemblance which the female bears to galls, neither wings nor articulate structure being present, the inert oval or hemispherical body being attached during life to the branch of a tree. They affix themselves by means of their rostrum, which is inserted so as to reach the sap, and their rudimentary feet when these are present. They resemble the lower crustacea in having a retrograde metamorphosis, the larve being active and capable of moving about to select a place upon which to affix themselves. The young remain for some time beneath the dead body of the female, which is well adapted for their protection. The males are active and winged, and their antenme are longer than in the females. Some genera secrete from the skin a waxen or cottony substance which covers the body, and is often blown off by the wind in little flakes. In some genera the females are active.

Some of these insects increase rapidly, and are very hurtful to vegetation. Coccus cacti, on account of its beautiful crimson color, is used as a coloring material, and is extensively cultivated for this purpose, particularly in Mexico, its native country. It has been introduced into the Canary islands, Spain, Algeria, and St. Domingo, and it is cultivated in Guatemala
and Honduras. It is probable that it would flourish in the southern United States wherever the species of cactus suitable for its food are found. IIumboldt calculated the annual amount of cochineal imported into Europe to be 800,000 pounds, and it requires about 70,000 insects to make a pound. Lac (or shell lac), which is used in making sealing-wax, varnishes, dce., is the product of a coccus. Manna has a similar origin; and a white wax is collected from another species. Lecanium (figs. 52, 53), Dorthesic (fig. 56), and Chermes (fig. 58), belong to this family.

Fum. 2. Aphitce (figs. 57, 59). The plant lice, like the preceding family, are small insects which infest the tender shoots of vegetables, and by their numbers sometimes cause great damage. The body is robust, the head small, the antemæ seven articulate, the feet slender, the wings transparent, with few nervures, and the abdomen is sometimes provided with two tubular stylets connected with glands bearing a saccharine liquid, upon which the newly excluded young are said to feed, and which is eagerly sought by ants. The Aphides are generally without wings, although they are anomalous in sometimes having and sometimes being without them in the same species. The apterous individuals are generally females. The pupe are active, and can be distinguished by their incipient wings, unless they are to produce wingless individuals. A single impregnation will fecundate several generations, the offspring being females which are capable of continuing the race. Kyber thus continued a species for four years, and Bonnet raised nine generations in three months. In some cases eggs are produced, and in others living young, and of these about ninety are produced at a time.

Fum. 3. Psyllidee (fig.55). A small family allied to the Aphides, but they are more active. They have ten articulate antenne, the females have an ovipositor, and the male several abdominal apperdages.
Fum. 4. Cercopitae. This is an extensive and widely spread family of small and handsome insects, which suck the juices of plants, and are found abundantly in grass and low vegetation. The antennæ are tri-articulate, the stemmata two, the feet slender and adapted for leaping. The larva of Aphrophora ($f i y .74$) pierces small branches, and causes the sap to exude, which forms a mass of bubbles like spittle, under which the larva is hidden.

Fam. 5. Membracidu. This family is closely allied to the preceding one in natural characters and habits, and is united with it by some authors. The pronotum is dilated so as to cover the posterior part of the body entirely or in part, forming a conspicuous object, and giving to some of these insects a very strange appearance.

Fam 6. Fulgoridu. This family is remarkable for the large projecting head, bright colors, and large size of some species. The Chinese Fullgora candelaria (fig. 76) is yellow, and the elytra black, marked with flavous spots. F. laternaria (fig. 7T) inhabits South America.

Fum. 7. Cicadida. This family is named from the genus Cicade (C. freaxini, pl. 80, fig. 75), which has attracted attention from a remote period on account of the noise of the male. This sound differs considerably in the different species, that of C. pruinosa, Say, for example,
being very different from that of C. septendecim. The body is robust, the head large and triangular, with three stemmata, the eyes prominent, the antenne short and thin, with six articulations, and the wings are large, and generally trausparent.
The history of Cicada septendecim, known in the United States as the seventeen year locust, has been given in a valuable pamphlet by Dr. Potter, of Baltimore, who, deceived by the popular name, fancied that anything called locust must belong to the genus Locusta, and he accordingly names the insect Locusta Septentrionalis Americanc decem septima, confounding these hemiptera with the grasshoppers, and naming the latter Cicada. Vernacular names being entirely independent of the scientific ones, attempts to make them correspond generally result in confusion. Dr. Harris gives some useful details in his Injurious Insects of Massachusetts, and Dr. S. P. Hildreth has written upon it in Silliman's Jomrnal, vol. xriii. p. 47 , and 2 d Series, vol. iii. p. 216. See also vol. xiii. p. 224 . The pupa of this insect leaves the ground in the Southern States in February and March, in Pennsylvania in May, and in Massachusetts in June. The female cuts openings with her ovipositor in the tender branches of trees, where her eggs are inserted; this causes the branches to die, and one observer relates an instance in which "the tops of the forests for upwards of a hundred miles appeared as if scorched by fire." It requires fifty-two days for the young to hatch, when they immediately precipitate themselves to the ground, which they enter and attack the roots, the juices of which they suck. Miss M. A. Morris (Proceed. Acad. Nat. Sci., vol. iv. pp. 132 and 190) has ascertained that these larvae do much damage to fruit trees by their attacks upon the roots. She found them in great numbers upon all the roots which were more than six inches beneath the surface, and the trees were evidently suffering under their attacks. The larve were firmly attached to the roots by the insertion of their rostrum, and inclosed in a compact cell of clay without outlet, rendering it probable that they are sedentary where they first attash themselves. Acoarding to Miss Morris, they are destroyed by moles. The anterior feet of the larva and pupa are robust and adapted for digging, but those of the imago do not exhibit this character.
Fam. 8. Notonectidx ($p 7.80$, figs. 72, 73). This family of sinall predaceous insects is named from the habit which the species have of swimming with the back below. They are aquatic, the head and eyes are large, the antenne small, with four articulations, and the posterior feet are long and fringed, held out in repose like a pair of oars, and used like them in swimming. They are able to fly from one piece of water to another. Corixa striata ($p l .80$, fig. $72 a b$); Notonecta glaucx (fig. 73).

Fam. 9. Nepidce (pl. 80, figs. 68-71). This family is predaceous and aquatic, the species living at the bottom of quiet waters. The body is generally depressed, the antennæ about as long as the head, and inserted below the eyes so as to be hidden. The tarsi are dimerons, and the anterior feet raptorial. Ranatra linearis (fig. 68); Nepa cinerea (fig. 69) ; Naworis cimicoides (fig. 70) ; Belostoma (fig. 71). The last genus
attains a length of thres incher, and is sufficiently strong to kill small fish and frogs. Dr. Joseph Leidy has given the anatomy and characters of several North American species in the Journal Acad. Nat. Sci.

Fam. 10. Galgulidce. Galgulus oculatus is a small North American insect, with an oval, depressed form, a broad head, and pedunculated lateral eyes. It may be seen during the day running along the grassy and sandy shores of rivers, but it is not aquatic, although it can swim to the shore if thrown into the water. It has the power of leaping a few inches, although the feet do not present saltatorial characters. When pursued they do not endeayor to escape by flight.

Fam. 11. Hydrometrille. The members of this family live upon the surface of the water, over which some of them move with great rapidity. Hydrometra moves rather slowly over the surface, with the body elevated above it. The ordinary boat-shaped species, with four of the feet adapted to locomotion, belong to the genus IHydrometra. The larva of this genus has the abdomen very small, and as this is a characteristic of the corresponding occanic genus IIalobates, it sustains Professor Agassiz's view that freshwater forms are higher than marine ones. Hulobates being rarely found with the wings developed, Westwood thinks they are not to be considered as imagos, especially as the ablomen is small ; but an extension of the views of Agassiz affords a more satisfactory explanation. Many individuals of Gerris, which seem to be perfect, are without wings, and seem never to acquire any.

Fum. 12. Leptopida. This is a small family with the body oval and depressed, the eyes large, the feet slender, and the rostrum long. These insects are small and active, rumning and flying along the margins of water. The principal genus is Salda, improperly named Acanthia by Latreille, a name used previonsly by Fabricius for the Cimex lectularius. This family is named Riparii by Burmeister.

Fam. 13. Reduvizda. This family includes active predaceons species with a short, stout rostrum, sufficiently strong to pierce insects with a tolerably hard integument. The head is narrow behind, forming a kind of neck, the eyes are prominent, and there are two stemmata. The Noith American Arilus novenarius, Say, Am. Ent., has the pronotum arched above, and notched like the cogs of a small wheel. The puncture of these insects is somewhat poisonous.

Fam. 14. Tingida. The species of Tingis have a small body with the wings strongly reticulated, and a membranous expansion upon each side of the prothorax. They move very slowly, and are found upon leaves, the juices of which they suck in all their stages. It is probable that the larve do not move from their first station. Syrtis is also very torpid in its movements; it lives upon trees, and probably feeds upon insects, as the anterior feet are very stout, and apparently raptorial. The genus Acanthia, first separated from the Limnean genus Cimex by Fabricius, includes the bedbug, Acanthica lectularia (p l. 80, fig. 67). Amyot and Serville state that the name Acantlicic, Fabr., 1776 , must stand, being the first given after the dismemberment of the old genus Cimex, and on this account they 392
reject the name Cimex, which Olivier proposed for the bedbug (or chinch) in 1789. They also reject Pentatoma of this author, using Cimex instead. Hist. Nat. des Ins. Hemipt., pp. 149, 311.

Fam. 15. Capsida. This family contains Capsus, Fhytocoris, and other genera of small and ornamental insects found upon plants, upon the juices of which they seem to feed. They run and fly well; they have no stemmata, the ovipositor is contained in a groove of the abdomen, and the rostrum is four-articulate.

Fam. 16. Lygaida. This family is allied to the preceding, the species are small or of medium size, and the colors varied. They inhabit plants. Pyrrhocoris apterus (pl. 80. fig. 60).

Fam. 17. Coreide. The first articulation of the antennæ is as long as the head or longer, and the last one thickened or lengthened in this family. These insects are large, of varied colors and active habits, and they frequent plants. In some species the hind feet have various forms and foliaceous expansions. Coryzus hyoscyami (pl. 80. fig. 61).

Fam. 18. Scutellerida. Some of the members of this family have the scutellum so large as to cover the abdomen and wings. The body is robust, sometimes subglobular, the antennæ long, and the feet slender. Some of the species are above the medium size, and many of them are ornamented with brilliant colors. They are vegetable feeders, sucking the juices of leaves, and some of them have glands which secrete a fluid with a very disagreeable scent. There are three sub-families corresponding to the genera Scutellera, Cimex, and Cydnus (fig. 62). The first have a very large scutellum ; the second and third a smaller one; and the third is distinguished from the second by having spinose feet. Fabricius left the name Cimex for insects subsequently named Pentatoma, with which Amyot and Serville agree, although they admit a genus Pentatoma. Other authors improperly reject the name Cimex entirely. Cimex rufipes ($p l .80$, fig. 66). This species is also referred to the genus Tropicoris of Hahn, and to Pentatoma. Pentatoma juniperinus (fig. 63); P. baccarum (fig. 64); Acanthosoma (fig. 65).

Order 10. Strepsiptera. This order of Kirby was subsequently named Rhipiptera by Latreille. It includes a limited number of insects of small size, which are parasitic in the bodies of Hymenoptera. The anterior wings are replaced by a kind of twisted halteres, and the posterior ones are large and folded like a fan. The mouth has two small awl-shaped jaws, and two bi-articulate antennæ ; the eyes are large, prominent, and lateral, with a few large facets, and these separated by partitions raised above their surface. The antenne are simple or furcate, with few articulations; the thorax very robust, the metathorax very long, removing the posterior feet far back. The tarsi have from two to four articulations. Specimens of certain wasps and bees may be sometimes seen with the abdomen distorted, and an examination discloses one or more heads of a minute insect sticking from between the segments, which belong to these parasites when near the time of their appearance. Siebold has discovered the winged individuals to be males, and the females to be without wings, and
never learing the wasp. The larvæ resemble minute parasites; they have six feet, and are active, running about to find an insect upon which they may become parasitic. When they have penetrated to a proper place they lose their feet and become larve of a different form, presenting an example of a retrograde metamorphosis.

Order 11. Diptera (pl. 77, figs. 87-129). In this order the body and integument are rather solt, the head generally free, and attached by a very short thin neck. The labium forms a kind of soft extensile rostrum adapted for suction ; its sides are turned up to form a canal, and it incloses a varying number of sharp slender organs, sometimes adapted for piercing. These are well developed in the bloodsucking genera, in which the mandibles, maxillæ, labrum, and tongue are present. The two palpi of the Diptera are supposed to correspond to those of the maxillæ of the other orders, although the question is not settled. In some cases the mouth is obsolete. There are two or three stemmata; the eyes are large, being in some males larger than in the females, and in some cases they occupy nearly the entire head. The antennæ are sometimes composed of a succession of simple articulations, as in other orders; but in generai they are short, composed of few articulations, the last of which bears a bristle (arista) on its upper surface. The prothorax is reduced to a narrow collar, the metathorax is also much reduced, having no wings, and bearing their representatives, the small knobbed organs named halteres, so that the thorax is made up chiefly of the mesothorax, which bears the single pair of wings, constituting the distinguishing character of the Diptera. The wings are absent in some cases, but the halteres are nearly always present. The precise use of the halteres is not known. They are vibrated in flight, and if they are removed an insect is prevented from flying. Many Diptera have a pair of single or double membranes (calypta) in connexion with the halteres, and varying in size in inverse proportion with them. The tarsi are pentamerous, and the abdomen has from four to seven segments apparent.

The pupæ of the Diptera are of two kinds: in one the integument of the larva is not cast, but contracts into the form of a cocoon, from the inside of which the pupa becomes disengaged; in the other the larva skin is cast, and the pupa takes the incomplete form (in which the limbs are visible) without a cocoon. In the Culicida the pupæ are active.

The larvæ are cylindric and without feet, the head corneous or fleshy, and the mouth is generally provided with a pair of hooks. The aquatic larvæ have jaws and palpi, and respiration is sometimes effected by means of tubes which are held at the surface of the water, and they swim with the aid of appendages at the posterior extremity.

The larvæ occur under various circumstances, as in carrion, fungi, in galls, like those of Cynips; or in living caterpillars, like Ichneumon. Some are to be found in vessels of vegetables pickled with vinegar, and others in the acrid brine of salted fish, or in the brine vats of salt works. The greater part are produced from eggs laid by the female; some are excluded alive ; and in the Pupipara the young are not excluded until they have reached the pupa state.

In their perfect state the Diptera are found upon flowers or plants, feeding upon vegetable juices, or upon various decaying animal and regetable products. Some suck the blood of vertebrate animals, or kill insects to suck their juices. They are very abundant, and are found in all climates, including the polar regions.

Although the Diptera are generally of a small size, they are so abundant in individuals that they occupy a prominent place in the economy of the animal creation. They fill the air in clouds, and afford food to various birds, whilst they are always ready to remove liquid decaying matter. The rapidity with which certain carrion flies increase under favorable circumstances, caused Linnæus to assert that three of them with their progeny can consume the carcase of a horse in as short a time as a lion would.

The Diptera contain a considerable number of noxious species, among which may be mentioned mosquitoes, the flies which torment cattle, botflies, and the grain flies which destroy wheat and other cereals.

Macquart divides the Diptera as follows, most of the names being latinized. The names between parentheses are called families, and the numbered names are given as tribes.

Divis. I. Nematocera. Antemæe with at least six articulations, palpi with four or five.
Subdivis. 1. Rectipalpi. 1, Culicida.
Subdivis. 2. Curvipalpi. 2, Chironomida; 3, Tipulida; 4, Mycetophilida; 5, Cecidomyiida; 6, Ryphides; 7, Phalanoides; 8, Bitho. nida.
Divis. II. Brachocera. Antennæ with three, and palpi with one or two articulations.

Subdivis. 1. Entomocera ; last articulation of the antennæ divided into segments. (Thaniens.) 9, Tabunida. (Notacantha.) 10, Acanthomeride; 11, Sicarii; 12, Xylophagida; 13, Stratiomyda.
Subdivis. 2. Aplocera; last articulation of the antennæ not annulate.
§ Tetrachetes, mouth with four lancets. 14, Midasida; 15, Asilida; 16, Hybotida; 17, Empide ; 18, Vesiculosa; 19, Nemestrinida, 20, Xylostomes; 21, Leptides; 22, Bombylida; 23, Syrphida; 24, Dolichopida.
§§ Dichetes, mouth with two lancets. (Athericera.) 25, Scenopinida; 26, Cephalopsida; 27, Lonchopterida; 28, Platypezida; 29, Conopsida; 30, Myodaria; 31, Qestrida; 32, Muscida. (Pupipara.) 33, Coriacea, 34, Phthiromyia.

The following is Westwood's classification as given in his Introduction.
Section 1. Cephalota, Westwood. Head distinct from the thorax; claws not dentated; larva annulose, not undergoing its transformations to the pupa state within the body of the parent; oviparous (or larvaparous in some Muscida).

Livis. 1. (Stirps 1.) Nemocera, Latr. Antennæ of more than six joints ; palpi four- or five-jointed; pupa incomplete. Fam. 1, Culicida: 2, Tipulida.

Divis. 2. Brachocera, Macq. Antennæ short, not having apparently more than three distinct joints; palpi one- or two-jointed.
(Stirps 2.) Notacantha, Latr. Antennæ apparently composed of only three joints, the last, however, being articulated ; proboscis exserted, seldom inclosing more than two lancets. The structure of the mouth is very incomplete, and the number of setæ variable. Pupa coarctate, the skin of the larva, however, nearly retaining its previous form. Fam. 3, Stratiomyda; 4, Beride; 5, Cæпотyida.
(Stirps 3.) Tanystoma, Latr. Antennæ with only three joints, ordinarily terminated by a seta (Tabanus and Midas excepted) ; proboscis exserted, generally with four setæ (six in female Tabanida; mouth obsolete in Acrocerida) ; larva with a scaly head; pupa incomplete. Fam. 6, Tabanida; 7, Bombyliida; 8, Anthracida; 9, Acrocerida; 10, Empida; 11, Tachydromiide; 12, Bybotide; 13, Asilida; 14, Mydasida; 15, Therevida; 16, Leptida; 17, Dolichopida; 18, Scenopinida.
(Stirps 4.) Athericera, Latr. Antennæ with only two or three joints, terminated by a seta; proboscis generally withdrawn into the oral cavity, with two setæ (four in the Syrphida; mouth obsolete in the Estrida); pupa coarctate, the skin of the larva forming an oval case. Fam. 19, Syrphida; 20, Conopida; 21, Muscida; 22, EEstrida.

Section 2. Thoracocephala. (Stirps 5.) Pupipara, Latr. (Ordei -Homaloptera, Leach). Head immersed in the thorax; claws denticulated; larva nourished in the abdomen of the mother, and not deposited until after it has passed to the pupa state. Fam. 23, Hippoboscide ; 24, Nycteribiida.

The first section includes a great majority of the Diptera (including those to which the term $f y$ is popularly assigned), in which the head and antennæ are free. The mouth is a soft rostrum, containing several bristleshaped organs in a groove along its upper surface, which also forms a channel for the liquid food.

The Culicide is a family of which Culex (including the mosquitoes) is the best known genus, and notwithstanding their small size, their organization is very perfect. The rostrum is very long and slender, apparently simple, but composed of seven organs. The male, which does not sting, can be readily distinguished by the feathery antennæ. These tormenting insects do not move about much during the day; but where they abound, as soon as the sun sets, they fill the air in myriads, and become a serious evil. They abound in warm climates ; and in the low regions of the lower Mississippi, they fill the houses and the cabins of the steamboats as evening advances. In many parts of the United States it is necessary to exclude them from beds by a netting of gauze called a mosquito bar. In districts where they are rare, a house may be infected with them from a vessel used to catch rain water, and in which a passing female may deposit her eggs. These are laid upon the surface of stagnant water one at a time, but in contact with each other, and to the number of two or three hundred. In two days the larva make their appearance, in fifteen days they become
pupæ, and instead of respiring through the posterior extremity, they have two horn-like tubes on the thorax for this purpose. The pupæ are active, but do not take food. The entire period required for the transformations is about three weeks. Culex (pl. 77, figs. 95, 96), Anopheles (fig. 94).

The Tipulida are an extensive family, which bear a considerable resemblance to the Culicidæ, on account of their slender body and feet. The rostrum is short, robust, and eading in a pair of fleshy lips ; the palpi are generally four-articulate, and turned back. The abdomen of the male is often thickened at the tip, the antennæ have in general from fourteen to sixteen articulations, those of the male being often verticillate or pectinate. The larvæ of some are aquatic; some live in the ground, where they destroy the roots of grass; some in fungi or decaying matter, and some in galls. The minute but destructive insects of the genus Cecidomyia (Hessian fly) belong to this family. There are several sub-families which Westwood names Chironomides, Cecidomyides, Mycetophilides, Tipulides, and Bibionides. The genera figured are, Chironomus (pl. 77, fig. 118), Anisomera (fig. 119), Ctenophora (fig. 120), Psychoda (fig. 121), Mycetophila (figs. 122, 124), Bibio (fig. 123).

The Stratiomyda are generally gaudily colored; they are found upor. flowers, and have the body usually depressed, and the scutellum often spinose. The larvæ are aquatic or terrestrial, and the pupa is formed within the skin of the larva. Stratiomys (pl. 77, fig. 117), Clitellaria (fig. 110).

The Tabanide have the eyes large, the mouth well developed, that of the female having six and that of the male four piercers. The labium is fleshy, with the end lobed; and the palpi have two articulations, of which the second is long. Tabanus (T. tropicus, fig. 97, T. bovinus, fig. 98) has the third articulation of the antennæ excised upon one side. The genus contains some of the largest of the Diptera, and from their size, number, and the perfection of their oral organs, they are a great pest to cattle when numerous. The males frequent flowers, the females alone sucking blood.

The Bombyliida (Bombylius, pl. 77, fig. 87) resemble certain bees, and the analogy is preserved by the buzzing sound they make in flying. The rostrum is very long, and projecting in front, and with this they suck flowers without alighting. Their wings stand horizontally, and their flight is very rapid.

In the Empida (figs. 92, 93) the body is narrow, the head small and round, with a distinct neck, the wings are large, and the feet generally long. The males generally live upon honey, and the females upon the juices of insects which they take on the wing with the aid of their feet.
The Asilide include several large predaceous Diptera, with a slendet bristly body, a depressed head, bearded below, and a robust thorax. They fly with a buzzing noise, and take other insects upon the wing. The larvæ feed upon roots. Dioctria (fig. 88), Asilus (fig. 89).

The Midasida contain a number of very large Diptera with clubbea antennæ. Millas filatus (black, with a transverse orange band near the base of the abdomen) inhabits the United States.

Leptis (fig. 116) is the representative of a family (Leptida) of small flies of varied colors. In this genus the head is depressed, the antennæ end in a bristle, and the thorax is tuberculate.

The Athericera contain the four families Syrphida, in which the labium incloses four setæ; Conopsida, Muscida, having two setæ ; and Estrida, with the mouth obsolete.

The Syrphida are tolerably large variously colored flies, which move swiftly through the air, and often hover over a spot for some time without changing their position. They have a hemispherical head, a great part of which is taken up by the eyes, a soft rostrum elbowed towards the base, with a pair of lip-like expansions at the tip, and the palpi small and inarticulate.

The genus Volucella (V. pellucens, pl. 77, fig. 111) is remarkable for its resemblance to the genus Bombus (bumble bee), which was designed to enable it to reach without suspicion the nests of the latter, in which the larvæ are parasitic, feeding upon the larvæ of the bees.

The eggs of Syrphus are deposited among the Aphides, upon which the larve feed. Other larvæ are vegetable feeders, and those of Eristalis (E. tenax, fig. 114) and Helophilus (fig. 115) are aquatic, and have the posterior part of the body attenuated into a breathing tube. These leave the water to transform in the ground. Scava pyrastri (fig. 112), Chrysotoxum (fig. 113).

The family Conopsida (Conops macrocephala, fig. 90) are parasitic in the nests of bees in the larva state, and the imagos frequent flowers. Latreille reared a species which was parasitic in bees, and we have met with a living grasshopper in Pennsylvania, with the abdomen filled with several dipterous larvæ which we did not succeed in rearing. They may have belonged to this genus, or to Tachinus. Latreille placed the genus Stomoxys (S. calcitrans, fig. 91) in this family.

The family Muscida (figs. 101, 103, 106, 108) is very extensive, and contains many minor groups. The habits of the species are very various. Sarcophaga carnaria (fig. 109) deposits its larvæ upon rotten vegetables, caterpillars, and even on earthworms, which they penetrate, leaving their posterior extremity at the surface. Several genera deposit their eggs upon flesh the moment it has become tainted ; and Tachina and allied genera resemble the Ichneumonida in being parasitic in other living insects. Musca domestica, the house fly, accompanies civilized man in his migrations. The transformations of this species are said to take place in dung. Various larve attack different kinds of fruits, roots, and branches, causing galls, and decaying vegetable matter of different kinds. The larva of Piophila casei (fig. 103) infests cheese, and that of P. petasionis is found in preserved hams. Both are known as skippers. The larvæ of Oscanis and Chlorops are destructive to growing grain.

The CEstrida (figs. 125-129) are a singular family of flies which live at the expense of different Mammalia, each species being generally confined to a single species of the latter. Among the animals subject to their attacks are the horse, ass, ox, various species of deer and antelope, camel, hare, and in Peru there is a species which attacks man under the skin. Animals which do not fear ordinary biting flies, often exhibit great uneasiness and terror at the presence of these insects. The larvæ occur in three different modes, some in subcutaneous tumors, as in oxen ; some in the head, as that of the sheep; and some in the stomach, as in the horse. The eggs of the first kind (as Estrus bovis, fig. 129) are deposited on the skin; those of the second (as Cephalemyia ovis, fig. 125) within the nostrils; and those of the third (as Gasterophilus equi, fig. 127) upon the hairs of those parts which can be reached by the tongue of the animal, or about the nostril, as in the case of Gasterophilus nasalis.

The moisture and warmth of the mouth of the horse hatch the eggs of Gasterophilus equi, when the larva passes to the stomach with the food. Here it affixes itself to the inner surface by means of a pair of oral hooks, forming a little cavity for its head. The eggs are mostly laid in August, and the larva remains upon the stomach until the next summer, when it is an inch long. It now detaches itself and is passed through the intestines, when it becomes a pupa in the ground, and in the course of a few weeks it emerges as a fly. The male dies after fecundation, and the female after depositing her fifty or a hundred eggs. The larvæ sometimes affix themselves to the windpipe, or pass on to the small intestines, when a horse is apt to die from the irritation, and in a few cases they perforate the stomach. In most cases the presence of bots (as these larvæ are named) causes no injury to a horse, and their head is so deeply imbedded that no medicine sufficiently active for their expulsion can be administered with safety.

The presence of Cephalemyia ovis, or the fly of the sheep, puts the animals to flight and causes them to huddle together upon some sandy or bare spot (as if to prevent the fly from having a resting place), with their heads down and turned together, and their feet in continual motion to keep it from effecting its object. The fly, however, by a rapid dart, reaches the nostril, where it deposits an egg, the larva of which ascends the nostril, causing great uneasiness to the sheep, which runs around with every mark of distress. The larva makes its way to the frontal sinus, the antrum, or the nasal bones, where it affixes itself with its oral hooks, and remains until the next spring, when it crawls out and enters the ground to change. It remains in the earth six or eight weeks in the pupa state, and when it becomes an imago it is as short-lived as the horse bot-fly.

The Estrus hovis, the larva of which lives beneath the skin of the back in oxen, causes great terror among these animals, which run for protection to bodies of water. The larvæ of OEstrus tarandi (fig. 128) are found under the skin of the reindeer. Another member of the family infests the frontal sinus, throat, and mouth (under the tongue) of the same animal.

The Pupipara are a singular group of insects, having the antennæ (which are of one or two short articulations) deeply set in the head. The mouth is without a fleshy exsertile labium, but it is provided with a sharp spicula and several bristles. They are separated into two families, Hippoboscida and Nycteribiida.

The Hippoboscida have a depressed, tough, and hairy body, and they live upon beasts and birds, moving quickly (and sometimes sideways) among the hair and feathers. The wings, and even the halteres, are sometimes absent, as in Melophagus ovis (pl. 77, fig. 85), known as the sheep tick. The feet are short, and the claws denticulated. The larva remains unexcluded until it becomes a pupa, and as but one is developed at a time, it is, when excluded, nearly as large as the abdomen of the female.

The $N y c t e r i b i i d c e ~ a r e ~ w i t h o u t ~ w i n g s ~ a n d ~ h a l t e r e s, ~ t h e ~ f e e t ~ a r e ~ v e r y ~ l o n g, ~$ and so is the basal articulation of the tarsi, which present an analogy with the feet of some of the Arachnida in being annulated, presenting the appearance of being divided into numerous minor parts. These insects infest bats ; and from the position of the head, which is small and turned up on the thorax so as to be dorsal, it is necessary for them to turn over and stand with the back downwards when they suck. This is readily effected, the feet being so constructed as to allow them to stand erect or inverted. They move rapidly through the hair, but cannot walk upon a smooth surface. Some authors have classed these insects with the Arachnida.

VERTEBRATA.

Class I. Pisces. Fishes.

The animals of this class are distinguished from those already examined, by their countless numbers, their varied shapes, their brilliant colors, and especially by their economical value. Destined by nature to inhabit and people the water, all their structures and functions tend to this end. Their most general characteristics lie in the possession of cold red blood, breathing by gills instead of lungs, a bicamerated or two-chambered heart, fins as organs of progression, and a skin either naked or covered with scales of varied structure.

To consider these characteristics more closely, the fins consist of a delicate membrane investing a series of bony or cartilaginous rays, projecting from the body along the median line, and from the four homologues of the extremities of the terrestrial vertebrata. They have received names derived from their situation upon the body. The dorsal $f i n$ is on the median line of the back, usually single, sometimes sub-divided into two or three fins, of various degrees of contiguity. The caudal fin terminates the vertebral column in the median line, and is situated in a vertical plane ; the true fishes differing in this respect from the fish-like mammalia, the caudal fin in the latter being placed horizontally. The third median single fin is the anal, situated anteriorly to the caudal, on the anterior median line. This also is sometimes divided into two or more portions. The remaining four fins, two pectoral and two ventral, situated in pairs, are the homologues of the anterior and posterior extremities of the other vertebrata. Their relative positions may vary, but they are always found rather on the inferior surface, between the anal fin and the head. The pectoral fins are always situated just behind the head, and are articulated directly to the skull. The ventrals may be entirely posterior to the pectorals, exactly inferior to them, or entirely anterior and under the throat. The fins serve as organs of motion, and to sustain the fish in an upright position. The principal instrument of motion is the caudal fin, which, by its rapid and vigorous strokes from one side to the other, causes the animal to move forwards in a straight line, the resultant of this lateral flexion. The median fins serve to balance the fish ; the pectorals and ventrals, although to a certain extent instruments of motion, yet act almost entirely in balancing the fish, and diverting its course to the right or left, as also to regulate the rising and sinking in the water. Sometimes the rays of several of the fins are thickened into regular spines, retaining, to a greater or less extent, the proper integument. Fins without distinguishable rays, or where the rays are enveloped in a mass of fatty
iconographic encyclopedia.-vol. if. 26
matter, or else entirely wanting, are called adipose. A fin of this character is found on the back of the trout (Salmo fontinalis) posterior to the main dorsal.

The gills consist of bony or cartilaginous spines, arranged parallel to each other, like the teeth of a comb; over which run blood-vessels from the heart, for the sake of the purification to be experienced by contact with the oxygen dissolved in the water. Sometimes the gills, instead of being pectinate, are arranged in bunches. The gill-cover consists of four bones, of which the one immediately behind the orbit is called the pre-operculum. Posterior to this are the operculum and inter-operculum, the former above the latter. Inferior to these, or slightly posterior, is the suh-operculum. Anterior to the lower part of the opercular bones is the branchial membrane, supported by the branchiostegous rays. In cases where the gill-covers are wanting or concealed, there are generally five to seven apertures in each side. Respiration in the fish is performed by taking in water through the mouth, and forcing it through the gill-openings by muscular contraction. By the contact of water with the venous blood in the gills, oxygen is imparted, and the requisite decarbonization effected. The entire circulation of the blood is as follows: Venous blood collected from the venous system, is accumulated in the single auricle. Thence it is forced into the ventricle, and this drives it into the gills. Here the blood is changed from venous to arterial, and is distributed to the different parts of the body. The heart thus never contains any but venous blood, the arterial first proceeding from the gills.

The swimming bladder of the fish is the true homologue of the lungs in the higher vertebrata; a fact well shown by its intermediate character in Amia and other fishes. Whenever present, it appears to contribute, to a greater or less extent, to the function of respiration. It exhibits various forms, bi-lobed, bi-partite, \&c., and in the young fish, or even in some adults, there is a distinct communication by a tube with the œesophagus, answering to the trachea. It usually contains a gas, with oxygen in greater proportion than in atmospheric air. Some species are destitute, either entirely, of an air-bladder, or possess it in a very rudimentary state, as in Cobitis. Those without it are generally ground fish, which keep close to the bottom. Besides the use of the air-bladder in respiration, it serves an important purpose in enabling the fish to vary its specific gravity, and thus float at any desired elevation in the water.

The body of the fish, with a few exceptions, is longer than broad, and compressed. There is little expression in the face, the features being on the same level, and the nose not projecting. The line of distinction between the head and body is difficult to draw, owing to the entire absence of neck. The heart is situated far forward, between the branchial apparatus. The simple brain does not fill the cavity of the cranium. The tongue is mostly cartilaginous, sometimes covered with teeth. The salivary glands are inconspicuous, and it is not probable that the fish possesses much sense of taste. There is no external ear, and the entire auditory apparatus is here at its minimum of vertebrate development ; although not so simple as
in the Cephalopoda. The eyes are characterized by their immovable position, flattened cornea, spherical crystalline lens, and brilliant color, as well as by certain internal anatomical peculiarities. The organs of touch lie either in the lips, or in the apparently sensitive barbels or cirri so conspicuous in some species.

The teeth are rarely entirely wanting, although sometimes absent from the mouth. In this case they are generally to be found in the posterior arch of the gills, when they are called pharyngeal teeth. Such is the case in most of the Cyprinida. Some fish have teeth in nearly every bone in the mouth; on the maxillary, intermaxillary, palatine, vomerine, spheroidal, as well as on the tongue and gill arches. The shape of the teeth, as also their disposition, varies greatly.

As already remarked, the skin is either naked, or covered with scales; these occurring in various conditions of development, as true imbricated scales, as isolated scales, as spiny prickles, bristles, hard bony enamelled plates, \&c. The side of the fish generally exhibits a longitudinal row of scales, in each of which is a perforation. These holes, constituting by their linear arrangement, the lateral line of the fish, were formerly supposed to secrete mucus. The recent researches of Professor Agassiz have, however, shown that these are the openings of tubes, which, together with similar tubes opening on the skull, penetrate all parts of the body, brain, muscles, bones, and viscera ; freely admitting water, whose hydrostatic action thus equalizes the pressure of the incumbent water, both on the outside and within.

The colors of fishes are among the most beautiful in nature, being only assimilated, and that in an inferior degree, by those of birds. All shades are represented, as well as all lustres. These hues, however, are very evanescent, sometimes departing immediately after death.

The organs of voice are entirely wanting, and there are but few that are capable of making any sound whatever. The North American cat-fish (Pimelodus) is said to make a peculiar sound by a vibration of its cirri. The weak fish (Otolithus regalis) makes a peculiar grunting when caught, apparently abdominal in its character. The same applies to the black drum (Pogonias chromis).

While some fish are confined to salt water, and others to fresh, certain species live habitually in a mixture of the two. Others again, at different seasons of the year, occupy both salt and fresh, as the salmon. The distribution of species is much affected by the temperature of the water, and the character of the bottom. But few fishes can live out of water for any length of time, owing to the rapid desiccation of the gills, and the consequent asphyxia. The eel and the cat-fish (Pimelodus) can exist for some days in a simply moist or damp situation, as wet grass. Certain species, as the Anabas, habitually leave the water in search of food.

Fishes are almost incredibly prolific. It has been calculated that the progeny of a single herring, allowed to reproduce and multiply undisturbed for twenty years, would not only supply the whole earth with an abundance of these fish, but would become inconveniently numerous. Yet among
millions of young herrings, hardly one comes to maturity, owing to the ravages made among their number by the rapacious fish and other animals, man not excepted. Yet although they form the food of myriads of fishes, of hundreds and thousands of men, the supply is always equal to the demand, and no perceptible decrease in number can be observed. Similar instances might be furnished by the cod, the shad, the mackerel, dec.

Of all oviparous animals, fish are perhaps the most prolific. Among these the cod-fish (Morrhua) is pre-eminently conspicuous. A single female has been calculated to produce as many as $9,000,000$ eggs in a single season. There is no intercourse of sexes, excepting among a few of the Plagiostomes, the eggs being fertilized by the male after their evacuation by the female. Some species are ovo-viviparous, the eggs being hatched in the abdomen, or else in especially contrived pouches, as in Syngnathus. A slight approach to a placental connexion of mother and embryo, is made in some of the sharks. The eggs are deposited in various places, on sticks, stones, grass, in furrows of the sand, ©c.; in rare cases a nest is built, consisting either of a single pile of stones, as in some of the North American Cyprinida, or else a more complicated structure of grass and sticks is built, as in the Callichlthys of Demerara, and in rarious species of Gasterosteus. It is a little singular, that it is generally the male who takes upon himself the care of the eggs and the construction of the nest.

It is difficult to speak with any certainty as to the longevity of fishes, as few are permitted to reach their natural term of years. Some species, as Pike and Carp, kept in fish ponds, have, however, been known to live to a great age. Thus Buffon speaks of carp, in the moat of the Comte de Maurepas, 150 years old. Gesner refers to a pike having been caught in Suabia, in 1497, bearing an inscription purporting to have been appended in 1230 , the age thus being (at least) 267 years. The animal was said to weigh 350 lbs ., and to have a length of nineteen feet.

The flesh of most fishes is edible, although that of some is difficult of digestion. They are rarely, or never, poisonous in themselves ; a property only acquired by consuming poisonous plants or animals. Fresh-water fishes are more generally edible than marine, although, as a class, not so savory. Other parts of the fish are of economical value besides the flesh. The oil of some is very valuable ; the air-bladder of the sturgeon furnishes the isinglass of commerce ; the roes of the sturgeon, pike, carp, dcc., furnish caviar. The shagreen skin of some Placoids is used for polishing, and for making ornamental coverings. The bones are used for fish-hooks, and other purposes. The Gymnotus or electric eel, the Torpedo, and the Silurus electricus, are capable of giving powerful electric shocks.

Classification of Fishes.

The first scientific classification of fishes is that of Artedi (1738), who distinguishes them into cartilaginous (Chondropterygii) and bony; these being subdivided into fishes with bony branchiæ and soft fin rays (Mala-
copterygii), or with spinous rays (Acanthopterygii), and fishes with boneless branchiæ (Branchiostegi). Fifty-eight genera were distributed under these four heads, corresponding for the most part with those of Linnæus, whose arrangement comes next in order. This is based upon the position of the vertical fins, or the structure of the gills. The following tabular view exhibits the orders of Linnæus, with the genera of each order, taken from the thirteenth edition of $\mathbf{1 7 6 7}$.

I. Apodes. Ventral fins none.

1. Muræna.
2. Anarhichas.
3. Stromateus.
4. Gymnotus.
5. Ammodytes.
6. Xiphias.
7. Trichiurus.
8. Ophidium.
II. Jugulares. Ventral fins before the pectoral.
9. Callionymus.
10. Trachinus.
11. Blennius.
12. Uranoscopus.
13. Gadus.
III. Thoracici. Ventral fins under the pectoral.
14. Cepola.
15. Echineis.
16. Coryphæna.
17. Gobius.
18. Cottus.
19. Scorpæna.
20. Zeus.
21. Pleuronectes.
22. Chætodon.
23. Sparus.
24. Labrus.
25. Sciæna.
26. Perca.
27. Gasterosteus.
28. Scomber.
29. Mullus.
30. Trigla.
IV. Abdominales. Ventral fins behind the pectoral.
31. Cobitis.
32. Amia.
33. Silurus.
34. Teuthis.
35. Loricaria.
36. Salmo.
37. Fistularia.
38. Esox.
39. Elops.
40. Argentina.
41. Atherina.
42. Mugil.
43. Mormyrus.
44. Exocætus.
45. Polynemus.
46. Clupea.
47. Cyprinus.

The remaining genera were arranged under the head of Amplibia, as Amplibia nantes, and characterized by having fixed gills without a bony structure.
V. Spiracula Composita.
48. Petromyzon.
49. Raja.
VI. Spiracula Solitaria.
52. Lophius.
53. Acipenser.
54. Cyclopterus.
55. Balistes.
50. Squalus.
51. Chimæra.
56. Ostracion.
57. Tetraodon.
58. Diodon.
59. Centriscus.
60. Syngnathus.
61. Pegasus.

The classification of Cuvier is the one more generally adopted. He dirides the entire class into bony and cartilaginous; the former again into spinous rayed and soft rayed ; the latter into those with free gills, and such as have them fixed. We have here room only for the Orders and Families.
I. Acanthopterygia. Fin rays spinous.

Percidæ.
Triglidæ.
Sciænidæ.
Sparidæ.
Mænidæ.

Chætodontidæ.
Scombridæ.
Teuthidæ. Tænidæ. A therinidæ.

Mugilidæ.
Gobidæ.
Lophidæ.
Labridæ.
Siluridx.
II. Malacopterygii Abdominales. Fin rays soft. Ventrals behind the pectoral.

Cyprinidæ.
Esocidæ. Fistularidæ. Clupeidæ. Salmonidæ.
III. Malacopterygii Subbrachiati. Fin rays soft. Ventrals beneath the pectoral.
Gadidæ.
Cyclopteridæ.
Echineidæ.
Planidx.
IV. Malacopterygii Apodạ. Fin rays soft. Ventrals wanting. Anguillidæ.
V. Lophobranchit. Gills in tufts; not pectinate. Syngnathidæ.
VI. Plectognathi. Bones of the head closely combined.

Gymnodontidæ. Balistidæ. Ostracionidæ.
VII. Chondropterygi Brancuis Liberis. Gills pectinate, free. A single gill opening.

Sturionidæ.

VIII. Chondropterygir Branchis Fixis. Gill apertures more than one on each side. Gills not free.
Squalidæ. Raiadæ. Petromyzonidæ.

A highly philosophical classification is that of Prof. Agassiz, which is especially applicable to the arrangement of fossil forms. This eminent naturalist divides fishes into four Orders from characters derived from the scales. They are as follows:
I. Placoids. Characterized by having the skin provided with osseous plates of various sizes and numbers, as in the sharks, rays, \&c. The 406

Plagiostomes of authors fall under this order. The families are : Rajacei, Cestraciones, Hybodontes, Squalini, Chimara, Ichthyodorulithes.
II. Ganoids. Here the scales are bony and covered externally with enamel, generally angular and continuous. Most Ganoids are extinct; the most striking and typical recent representation is the Lepidosteus or gar-fish. Families : Sturionini, Lophobranchii, Gymnodontes, Sclerodermi, Cephalaspides, Pycnodontes, Celacanthi, Suuroidei, Lepidosteini.
III. Ctenoids. This order corresponds nearly to the Acanthopterygii of Cuvier. It is characterized by the roughness of the scales, the border of which is generally dentated, and by the usual presence of spinous rays in the dorsal and anal fins. Families: Mugiloidei, Aulostomi, Pleuronectidei, Squamipennes, Theutyes, Gobioidei, Scicnoidei, Sparoidei, Percoidei.
IV. Cycloids. These are represented by the greater number of the Malacopterygii of Cuvier. The scales are generally smooth, and not dentated. The dorsal and anal fins have generally soft rays. Families: Anguilliformes, Halecoidei, Esocini, Cyprinodontes, Cyprini, Labroidei, Lophioidei, Blennioidei, Sphyranoidei, Xiphioidei, Scomberoidei.

The most recent classification of fishes is that of Prof. J. Müller (Ueber den Bau und die Grenzen der Ganoiden u. über das natürliche System der Fische. 1846). We append a brief summary of this system as modified by several authors.

Order I. Dermopteri.

Internal skeleton unossified : external skeleton and vertical fins mucous, naked. Shape vermiform, or without any lateral fins. No pancreas nor air-bladder.

Sub-order 1. Pharyngobranchii.

Amphioxidæ.

Sub-order 2. Marsipobranchii.

Myxinoidei.
Petromyzontidæ.
Order II. Malacopteri.
Internal skeleton ossified. Scales of the external skeleton mostly cycloid, in some ganoid. Fins all supported by rays, all of these jointed excepting sometimes the first in the dorsal and pectoral ; abdominal or apodal. Gills free, operculate. A swimming bladder and air duct.

Sub-order 1. Apodes.
Symbranchidæ. Murænidæ. Gymnotidæ.
Sub-order 2. Abdominales.

Clupeidæ.
Salmonidæ.
Scopelidæ.
Characini.
Galaxidæ.
Esocidæ.
Mormyridæ.
Hypsocidæ.

Cyprinodontidæ.
Cyprinidæ.
Silu:idæ.

Order III. Pharyngognathí.

Internal skeleton ossified. Scales sometimes cycloid, sometimes ctenoid. Inferior pharyngeal bones coalesced. Air-bladder without a duct in the adult.

Sub-order 1. Malacopterygii.

Scomberesocidæ.
Sub-order 2. Acanthopterygiv.
Chromidæ.
Cyclo-Labridæ.
Cteno-Labridæ.

Order IV. Anacanthini.

Internal skeleton ossified. Scales sometimes cycloid, sometimes ctenoid. Fins sustained by flexible or jointed rays. Ventrals beneath the pectorals or entirely absent. Swimming bladder without air-duct.

Sub-order 1. Apodes.
Ophididæ.

Sub-order 2. Thoracici.

Gadidæ. Pleuronectidæ. Echineidæ.

Order V. Acanthopteri.

Internal skeleton ossified. Scales ctenoid. Fins with one or more of the anterior rays unjointed or inflexible. Ventrals generally beneath or anterior to the pectorals. Swimming bladder without duct.

Percidæ.	Atherinidæ.	Theutyidæ.
Sclerogenidæ.	Mugilidæ.	Fistularidæ.
Sciænidæ.	Notacanthidæ.	Gobiidæ.
Labyrinthi-branchii.	Scomberidæ.	Blenniidæ.
Sparidæ.	Squamipennes.	Lophiidæ.
Mænidæ.	Tænioidei.	

Order VI. Plectognathi.

Internal skeleton only partly ossified. Scales ganoid or spinous. Maxillaries and intermaxillaries firmly united. Swimming bladder without airduct.

Balistidæ.
Ostracionidx.
Gymnodontidæ.

Order VII. Lophobranchit.

Internal skeleton only partly ossified. Scales ganoid. Giils tufted, gillopening small. Swimming bladder without air-duct.

Hippocampidæ.
Syngnathidæ.
Order Vili. Ganuidet.
Internal skeleton bony or cartilaginous. Scales ganoid. First fin-ray usually a spine. Swimming bladder with an air-duct.

Sauridæ.
Pycnodontidæ.
Lepidoidei.

Sturionidæ.
Acanthodei.
Dipteridæ.

Order IX. Protopteri.

Internal skeleton partly bony, partly cartilaginous. Scales cycloid. Pectorals and ventrals as flexible filaments. Gills filamentary, free. No pancreas. Swimming bladder as a double lung, with an air-duct. Intestine with a spinal valve.

Sirenoidei.

Order X. Holocephalr.

Internal skeleton cartilaginous. External skeleton as placoid grains. Most of the fins with a spinous first ray; ventrals behind the pectorals. Gills laminated, attached by their margins; a single external aperture. No swimming bladder. Intestine with a spiral valve. Copulation between the sexes.

Chimæroidei.
Edaphontidæ.

Order XI. Plagiostomi.

Internal skeleton cartilaginous, or partly ossified. External skeleton *placoid. Gills fixed; with five or more gill-openings. Swimming bladder none. Scapular arch not attached to head. Ventrals behind the pecterals. Intestine with spiral valve.

Hybodontidæ.	Lamnidæ.	Rhinobatidæ.
Cestraciontidæ.	Alopeciidæ.	Torpedinidæ.
Notodanidæ.	Scymniidæ.	Raiidæ.
Spinacidæ.	Squatinæ.	Trygonidæ.
Scylliidæ.	Zygænidæ.	Myliobatidæ.
Nictitantes.	Pristidæ.	Cephalopteridæ.

We come in the next place to the consideration of the more prominent of the families above mentioned; taking them up in the order in which they occur in the system of Müller, as modified above, and which we shall for the most part adopt. The subject of Ichthyology is of such vast extent, that our limits would be transgressed even by mentioning the names alone of all the species. We can only refer particularly to the species distinguished by their economical value or physiological interest.

Amphioxide. This family, at present represented by the single genus Brancliostoma, occupies the lowest position in the scale of fishes. It is characterized by the naked skin, the single dorsal extending over the entire length of the back, the absence of pectorals and ventrals. Mouth entirely inferior, elongated, or circular, the margins provided with a row of free filaments. Anterior to the anus is a median fin representing the transition embryonic fin of higher fishes. The brain, as an expansion of the nervous centres, is entirely absent ; being represented by a simple extension of the spinal cord, which runs out to a blunt point. The absence of brain and of heart sufficiently distinguishes Branchiostoma from all other fishes. Its aspect, in fact, is hardly that of a fish at all, being highly vermiform in appearance. The species hitherto described are all from European or North African waters.

Myxinoider. The Myxinoids are hardly more fish-like in their appearance than the Branchiostoma, having been classed, by Linnæus and other writers, among the worms. The vertebral column, as in Branchiostoma, exhibits the persistence of the usually temporary chorda-dorsalis. The mouth is terminal, nearly circular, and provided with a powsrful hooked tooth on the palate, with others in the tentaculated mouth. The lateral fins are entirely absent, as in the other Dermopteri. The species of this family, though small in size, are formidable from the manner in which they attack their prey, which consists of larger fish. Myxine glutinosa, a European form, is most generally found embedded in the bodies of other fish, as the cod, haddock, and others. The manner of its entrance is not exactly known ; probably, however, by a perforation made by the mouth, assisted by the powerful hook. No species of this family are found in No:th America.

Petromyzontide. This family, the last of the Dermopteri, is also without lateral fins: a continuous median fin is formed by the coalescence of the dorsal, caudal, and anal. Respiration is generally performed by means of fixed gills, the lateral openings to which are seven in number on each sided A single nostril is placed on the top of the head. The principal forms belong to the genera Petromyzon or true lamprey eel, and Ammocates, or sand lamprey. The former have a circular mouth provided with numerous teeth, and fringed with ciliæ to assist the animal in attaching itself to the bodies of its prey. The mouth is a true sucker, adhesion being effected by atmospheric pressure. Fishes of various kinds are not unfrequently caught bearing the bloody circular scar produced by the bite of the lamprey, and quite often the lamprey itself. The catfish, or Pimelodus, appears to be especially liable to such attacks. The lampreys attain to great size, and
are highly prized by some nations. The love borne them by the ancient Romans is a matter of classical history, and at the present day they are favorite food of epicures. A prominent European species is the Petromyzon fluviatilis, shown in pl. 81, fig. 28. The Petromyzon americanus is the largest and best known American species. The genus Ammocates, with the general characters of the lampreys, differs mainly in the form of the mouth. This, instead of being continuous and suctorial, is composed of a circular projecting upper lip, the lower being transverse. The opening of the throat is guarded by a fringe of ciliæ. This genus is extensively distributed over North America, where several species are known. They accumulate in vast numbers in certain sand or mud flats, as those of the Susquehanna river, whence they are dug from a depth of four or five inches below the level of the water, to serve as bait for other fishes.

The Symbranchide are anguilliform fishes, distinguished from their allies by the greater or less union of both branchial apertures into one. The fins also are variously suppressed, some being without pectorals, and others without either these or vertical fins. The next family,

The Murenides or eels, with the normal structure of the gill apertures, yet have them very small and capable of being completely closed. The body is serpentiform, and although provided with scales, these are scarcely apparent, being embedded in a thick mucous skin. The airbladder is polymorphous, and the intestines without cœeca. The eels, in their different species, are inhabitants of both fresh and salt waters; those living in the former belonging generally to the restricted genus Anguilla. Species of Anguilla occur in greater or less number throughout the United States, being, however, very rare in many if not most of the waters of the Mississippi basin. Popular opinion assigns to these species a viviparous reproduction, owing to the apparent absence of individuals containing eggs. The ova are yet, probably, present in a due proportion of the supposed males, escaping observation by their diminutive size. The eel hardly yields to any other fish in the power of sustaining a deprivation of its proper element for a considerable length of time. To transport these animals over a considerable space, all that is necessary is to pack them in damp grass or some similar substance. They even leave the water spontaneously at night in search of food, or of a body of water better suited to their convenience than the one in which they may happen to be placed. Eels are said to be very susceptible to magnetic or galvanic influence: the simple contact of a knife being sufficient to paralyse them. When a magnet is presented to the dish in which the living animal may happen to be, violent contortions, a painful gasping after breath, and other signs of inconvenience, are reported to be exhibited. Pl. 82, fig. 5, is a figure of Anguilla vulgaris.

The Gymotide, highly interesting on account of their electrical properties, are characterized by the anterior position of the anus, the entire absence of dorsal fin, the extent of the anal, and the position of the gillopening. The best known species, Gymnotus electricus or electric eel, is a native of the tropical portions of South America. It attains to a great size, being sometimes over six feet in length, and almost a full load for a
strong man to carry. The electric or galvanic apparatus consists of four longitudinal bundles, disposed in two pairs, one larger above, and a smaller below, against the base of the anal fin. The fasciculi are divided by longitudinal partitions into hexagonal prisms, and transverse divisions separate these into small cells. The cells are filled with a gelatinous matter, and the whole apparatus is abundantly supplied with nerres from the spinal marrow. In the Torpedo, these nerves come directly from the brain.

The amount of electricity furnished by the Gymnotus is enormous. Faraday made a calculation in regard to a specimen of ordinary size examined by him, that a single medium discharge was equal to that from a battery of 3500 square inches charged to its maximum. It need not then be a matter of surprise that the Gymnotus is capable of killing a horse by repeated discharges; which it does by applying its whole length along the belly of the animal when in the water. The method of capturing the Gymnotus made use of by the South American Indians, consists in driving a number of horses and other cattle into the muddy pools in which the electric eels abound. Roused from their retreats in the mud, the Gymnoti emerge into the water, and gliding in among the animals, give to them violent shocks. A succession of discharges results in weakening the eels to such a degree, as to make it a matter of little danger or difficulty to capture them. The Voltaic pile, formed by the electric apparatus of the Gymnotus, is much like that of the Torpedo ; the column being longitudinal, however, in the natural position of the animal, instead of vertical. The anterior or cephalic extremity is positive; the caudal negative; and the animal is capable of discharging any portion of its column. The substance occupying the cells is a dense albuminous liquid, with a small amount of common salt. Each cell is separate and independent, answering to the cell of the galvanic battery. This electrical power is not confined to the Gymnotus. Various species of Torpedo, one of which is found on the coast of Massachusetts, exhibit the same property in a high degree. Other electrical fishes are Malapterurus electricus, Trichiurus electricus, and Tetraodon electricus. Some insects, too, as Redivivus serratus and Mantis electricus, are reported to give electric shocks. It may be proper to mention, in conclusion, that the electricity of the Torpedo and Gymnotus is capable of exhibiting all the effects of ordinary electricity, and is in most cases entirely at the command of the animal, whether to emit or withhold it.

Clupeide. The fishes of this family exhibit considerable analogies to the Salmonoids, differing, however, in the absence of an adipose dorsal. Both maxillaries and intermaxillaries are employed in forming the margin of the upper jaw, instead of the usual introduction of the latter alone. The body is well scaled, the scales sometimes very large. Bones of the mouth variously provided with teeth, these occurring sometimes on the pectinated tongue.

The fishes of this family are among the most useful and indispensable to man. It includes the anchovy, the sardine, the sprat, the various herrings, and the shad. The Anchovy, Engraulis encrasicholus (pl. 81, fig. 3), is a small fish, a few inches in length, distributed throughout Europe, and
especially abundant in various parts of the Mediterranean. It is distinguished, as a genus, by the projecting and pointed upper jaw, and the long anal. The top of the head and back is blue; irids, sides, and belly, silvery white. This fish was well known to the ancient Greeks and Romans, who prepared from it a sauce called garum, held in great favor. They are taken in countless numbers on the coast of Sardinia, 400,000 having been caught at a single haul. The fishing is highly successful by niglit, when the anchovies are readily attracted by the glare of fire-pans. In preparing them for purposes of commerce the head and viscera must be removed ; the former being bitter, and for this reason called Encrassicholus by Aristotle. The anchovies, after being washed clean, are placed with the belly upwards in vessels, a layer of fish alternating with one of salt, until the whole is full. Pressure must be exerted to drive out the oil as much as possible. A hole is left in the top of the vessel, which is then exposed to the sun. After fermentation has commenced, the hole is stopped up, and the vessel removed to a store-house. The operation is not completed until the following year. The anchovy is taken from December to May.

The Clupeida, with non-projecting upper jaws, are divided into various genera, as Clupea, Sardinella, Harengula, Pellona, Meletta, Alosa, and others. A distinction was formerly made between a genus Alosa, characterized by an emargination of the upper jaw, and Clupea, with the border os the jaw continuous or entire. This division, however, has been found to be inadequate to the wants of the present system.

Alosa vulgaris, a European species, figured in pl. 81, fig. 1, is represented in America by one of much finer flavor, the A. sapidissima, or common American shad. This well known species commences its entrance into our rivers, at periods varying from January to May, according to the latitude. It penetrates all the Atlantic streams, and when unobstructed by dams or other impediments, travels to a considerable distance from the mouth for the purpose of depositing its spawn. They are taken in great numbers, especially in Chesapeake and Delaware bays, by various means, the most conspicuous of which are large seines and gill nets. The price varies from five to fifty dollars per hundred, according to the abundance or size. As already remarked, various herrings occur in immense numbers. Conspicuous among European species, in this respect, is the sprat, Harengula sprattus (pl. 81, fig. 4) ; but vastly more so the common herring, Clupea larengus (pl. 81, fig. 2). The true abode of the immense hordes of herring is not, even at this day, definitely ascertained, the fish being scarcely known, except in its wanderings. Some naturalists suppose it to come from the high north to deposit its spawn upon the shores of the North Sea; others, again, consider the bottom of the North Sea to be its home, since it is first visible at the Shetland Islands in April. Here myriads of herrings combine into armies many miles in length, and then pass on to the coasts of Norway, England, Germany, and the Netherlands. From the main army, branches go off in various directions, supplying almost the whole coast of Europe, and possibly extend their migrations even to the northern coast of North

America. They have never been seen to return to the north, and their migrations themselves occur neither at perfectly regular intervals nor in the same direction. The density of the columns also varies much in different parts of the army. In some seasons the numbers are countless, in others very limited; at one time the individuals will be fat and large, at another very lean. By the end of August they are no longer seen. The Dutch, who, since 1164, have prosecuted the herring fishery with the greatest success, sometimes employ whole fleets of boats in the pursuit. At no very remote period, the number of boats annually leaving the Texel, under the protection of vessels of war, amounted to not less than eleven or twelve hundred. This trade was at its highest state of prosperity in the year 1618, at which time the number of boats employed was 3000 , manned by fifty to sixty thousand men. Since that time the trade has passed out of the hands of the Dutch, to a certain extent, and is carried on by many nations of northern Europe. According to Black, the fishermen of Gothenburg alone, in his time, took upwards of $700,000,000$ herrings. More than 130,000 barrels have been exported from Bergen in Norway; the amount consumed in the entire land exceeding double this number. At the present day, the largest quantities are taken on the shores of England. Recent investigations have rendered it probable that the herring actually does live within a moderate distance of the localities where it is caught, coming in from the deep water for the sake of depositing its spawn.

A beautiful spectacle is exhibited when the herring approach the shores; the rays of the sun are reflected from myriads of silver scales, and above the army may be seen hovering hosts of guils, terns, and other sea birds. Behind and alongside are numerous rapacious fish, which, with seals, porpoises, and other marine animals, devour immense numbers. The water is filled with loose scales, rubbed off by their close proximity. On account of their vast numbers, these fish are very easily captured. This is done by means of nets, either on shore or at sea. Every Dutch smack has four smaller boats along with it, to carry fresh fish to the sea ports, and for other purposes. They use nets of 500 or 600 fathoms in length, made of coarse Persian silk, as being stronger than hemp. These are blackened by smoke, in order that the fish may not be frightened by the white thread. The nets are set in the evening, buoyed by empty barrels, and stretched by weights ; they thus rest at the surface of the sea. In the morning they are drawn in by means of a windlass. The herrings are sometimes attracted within reach of the nets by lanterns suspended at various intervals. But a faint idea can be formed of the actual number of these prolific fishes, which exists at one time in the ocean. When we remember, however, that an annual consumption of over two thousand millions in Europe, not to mention the myriads devoured by fishes, birds, and various marine vertebrata, scarcely appears to affect their number, we may obtain an approximate conception of what that number must be to which the sum of those annually destroyed is in such small proportion.

As the herrings are so abundant, and the flesh at the same time so excellent, various modes have been adopted to preserve them for a certain length
of time. Even at sea many are salted down, and sold in this state. This is called by the French saler en vrac. To keep them longer than is permitted by this method, two other ways are made use of: they are called white-salting and red-salting (saler en blanc and saurer). To white-salt herring, they are gutted on being caught, and packed in barrels, with a thick brine poured over them. They are there retained, until it is convenient to give them a final packing. After the bustle of the fishing is over, the smacks or busses run in and discharge their cargoes, when the barrels are inspected, and the fish sorted under the inspection of official authorities. They are then repacked with fresh lime and salt, and the particular quality marked on the barrel by the brand of an inspector. The red-salting is effected by allowing fat herrings to lie for a considerable time in the brine, then arranging them on hurdles, and placing them in ovens holding from ten to twelve thousand, for the purpose of being dried and smoked. The invention of pickling, as applied to herring, has been ascribed to Wilhelm Böekelson, or Beukelson, a fisherman of Viervliet in the province of Zealand (about 1440): he, however, only improved an art known before his time. The Emperor Charles V. eat a herring over his grave, in thankful acknowledgment of his worth, and erected a monument to his honor in 1556.

Several species of herring are caught in vast numbers on the coast and in the Atlantic rivers of the United States. The principal of these is the Clupea elongata, the representative of C. harengus. Besides Alosa sapidissima, or shad, already mentioned, Alosa tyrannus and A. menhaden are of economical value, the former as an article of food, the latter for manure. Immense numbers are taken and spread on poor lands, to which they impart a fertility not inferior to that produced by guano.
Salmonide. The Salmonide, or trout family, agree with the Clupeida in the structure of the upper jaw, and are most prominently distinguished by the presence of an adipose dorsal, a small fatty fin behind the true dorsal, near the tail. The intestinal canal is provided with numerous cœeca. The scales are more or less conspicuous. All the bones of the mouth are furnished with teeth, as is also the tongue. The branchiostegal rays are about ten in number.

The entire family is eminent for delicacy of flesh, and for the possession of those game qualities so dear to the angler. Species are spread over the more northern regions of America, Europe, and Asia; although the number of such is greater in North America than anywhere else. The principal genera are: Salmo, Thymallus, Osmerus, Mallotus, and Coregonus. Conspicuous among the species of Salmo, is S. salar, or the true salmon, found on the northern shores of both Europe and America. It attains to a great size, an individual of 811 bs . having been taken in England. The largest American specimens do not exceed 50lbs., the usual weight being considerably less. Salmon were formerly caught in large numbers in the Connecticut river, but at the present day few are taken south of the Kennebec river in Maine. Pl. 82, fig. 7, represents Salmo fario, a species very abundant in Europe, especially in England. Its maximum size is about 25 lbs ., although a weight of a few pounds is nearer the average standard.

Its nearest representative in the United States is the Salmo fontinalis or common brook trout, occurring from Maine to the southern parts of Virginia, and perhaps below this in the mountainous regions. It does not attain a great size in running streams, a weight of four pounds being considered enormous. In small lakes, however, it is found much larger than this, being sometimes mistaken for the Mackinaw or great lake trout, Salmo amethystus of Mitchell. This most gigantic of all Salmonida inhabits the great lakes of North America, and is especially abundant about Lake Huron. Individuals of 35 lbs . weight are of no great rarity, although 15 is perhaps the average. Dr. Mitchell records one weighing 120!bs., but at the present day they seldom exceed 80. Salmo confinis, a less gigantic species, inhabits the smaller lakes of the northern United States: S. siskewit is a native of Lake Superior, and numerous species are found represented in the waters of Arctic America. The genus Thymallus or greyling, represented in Arctic America by T. vexillifer, is distinguished from the true Salmo by the larger scales and the elongated dorsal. The European greyling is T. vulgaris. Mallotus villosus, or the capelin, is found on the coast of Labrador and Newfoundland, where it is used as a bait for the cod. It is sometimes found in a fossil state, in diluvial formations, on the eastern coast of the United States, as in New Hampshire. The genus Osmerus, or smelt, is represented by O. viridescens. It is known in some portions of the country as the frost fish, and is exceedingly abundant in the northern United States. In the winter season it congregates in large numbers in Lake Champlain, and may be taken with great ease through holes cut in the ice. Coregonus is another genus of the Nalmonider, famed for the excellence of its flesh. The celebrated "white fish" of the lakes is included under several species of Coregonus. A species, C. otsego, from the small lakes of New York, is known as the Otsego bass. Additional species occur in the regions north of the United States. Species of this same genus are abundantly distributed over northern Europe.

Scopelide. Fishes of this family have the upper jaw formed entirely by the intermaxillaries. The branchiostegous rays are ten to fifteen in number. Mouth deeply cleft. A second adipose dorsal. The species are mostly marine, one occurring, however, in the Lake of Mexico, Saurus mexicanus. Another genus remarkable for its extreme beauty and diminutive size is Scopelus.

The Characini are salmonoid fish with a posterior adipose dorsal, and only six or seven branchiostegal rays. The divided air-bladder and tympanic ossicles ally them to the Cyprinide. The intestine has numerous cœeca, and the superior maxillary enters considerably into the composition of the mouth. Many of them are highly ferocious, and characterize the rivers of South America, where they are sometimes dangerous even to man. The only exceptions to this distribution are to be found in the genus Percopsis of North America, one species of which is found in Lake Superior, another in Lake Champlain, and a third in the Alleghany river. They are highly interesting on account of their palæontological relations as well as their structure, which combines a ctenoid scale, with a general
cycloid structure. These have recently been placed by Prof. Agassiz in a new family, Percopsida.*

Galaxide. This family, containing but few forms, exhibits characters intermediate between the Salmonoids and the Esocida. With a structure somewhat similar to some of the former, it has the dorsal far back, and the intestinal character of the latter. The upper jaw is formed partly by a short intermaxillary, partly by the maxillary. The mouth presents much of the cyprinoid structure. The species are mostly oriental.

Esocide. In the Esocida the body is elongated, the single dorsal placed far back, and opposite the anal. The upper jaw is constituted by the intermaxillaries, almost entirely ; the maxillaries when they enter as an element are destitute of teeth. Intestines without coeca. Teeth generally well developed in various parts of the large mouth. Branchiostegous rays from three to eighteen.

The genus Esox is characterized by the broad depressed head and mouth ; the latter with teeth on the tongue, vomer, palatines, and branchial arches. The jaws have long, sharp, compressed teeth. The Esoces, or pikes, are among the most formidable of all fresh-water fish. By reason of their slender elongated form, they are able to live in shallow waters; penetrating, even when of considerable size, into very small brooks. Tyrants of the fresh water, no fish can compete with them except the trout ; and it is very seldom that both forms are found in the same waters. Of tivo branches of the same stream, one may be peopled by the former, and the other by the latter. The only species of pike found in Europe is the Esox lucius, shown in pl. 82, fig. 3. It is found in all the principal fresh waters of Europe ; where, there is reason to suppose, they are much more abundant at the present time than formerly. This species attains to a weight of 70 lbs ., although individuals of this size are of rare occurrence. North America is especially rich in species of pike: those inhabiting the northern lakes, as the Maskalonge, Esox nobilior, Esox estor, and others, attain a great size. Specimens of the former have been known of over 70lbs. The more southern species, as Esox clathratus, and others, are of more moderate dimensions. The American species may all be referred to two types, one with the opercula entirely scaled, and with fasciated or reticulated darker markings, with a vertical bar under the eye ; the other with the lower half of the operculum free from scales, and the marks in the form of light spots on a dark ground.

Mormyride. This family contains fish characterized by an elongated body provided with oblong scales. The entire head, not excepting the cheeks and operculum, covered by a thick skin completely concealing the bones of the head. This is drawn over the operculum, in such a manner as only to leave a vertical narrow slit in each side : this skin is perforated by a number of pores. Mouth, with the tongue, well armed with teeth. Two cœcal appendages. The fishes of this family are almost all inhabitants of Africa.

[^11]Hypseid.f. This highly remarkable family is established on a single species, the Amblyopsis spelaens, or blind fish of the Mammoth Cave of Kentucky. It is characterized by a form much like that of a Hydrargira, to which it would at first be referred. The head, however, is much depressed, and the eyes are entirely wanting, none being evident even on dissection. The body is covered with scales, and the jaws provided with fine teeth. The intestinal canal is shorter than the body. Cœcal appendages two, pyriform, and opening by distinct orifices in each side of the intestine. Airbladder heart-shaped, deeply cleft anteriorly. The anus is situated anterior to the base of the pectorals. The fins are provided with filamentous tips.

This very curious fish combines the characters of the Esocida, Salmonida, and Cyprinodontida, although its affinities are most with the latter. Like these, too, it is ovo-viviparous, the young being from ten to twenty in number. The color is a dull white. The animal is caught in a stream of water flowing across the Mammoth Cave, in which it is readily seen by the contrast of its white sides with the darker body of the water. A species of Astacus, A. pellucidus, likewise white and destitute of eyes, inhabits the same water in great quantity.

Cyprinodontide. The species of this family, which experiences its greatest development in America, are generally of small size. In fact a certain species found in South Carolina is not much over half an inch in length, even when comparatively large, and the others are not of much greater magnitude. Most are inhabitants of brackish water, although all the fresh waters of North America have their representatives. Body rariously shaped, generally elongated and sub-depressed, especially anteriorly. The fins are all rounded, and the dorsal is situated far back, above the anal. The jaws are provided with small teeth which are sometimes denticulated. Hooked teeth on the pharyngeals. Air-bladder single. The principal genera are: Fundulus, Lebias, Mollinesia, Hydrargira, and Cyprinodon. Some of these are remarkably tenacious of life. Species of Hydrargira have resisted the influence of the air-pump vacuum, under circumstances where the same deprivation of air would have killed almost any other fish. This genus can live for months buried in soft mud, after their native pond dries up, coming out again on the accession of fresh water

Cyprinide. We come now to the consideration of the family of the Cyprinida, which embraces by far the greater number of the exclusive residents of fresh waters. Every variety of size and shape occurs; the flesh, however, of but few, is worth much as an article of food. They are distributed over all the temperate and cooler waters of the globe, their occurrence in tropical waters being very limited. The family is characterized by the absence of teeth in the mouth, and the development of teeth of various kinds and shapes upon the posterior branchial arch, or pharyngeal bone. The shape and number of these teeth furnish excellent generic characters. The former are exceedingly varied, each region having some peculiar to it: as Schizothorax for Syria, Catastomus and Exoylossum for North America, \&c. A prominent European form is Chondrostoma nasus (pl. 84, fig. 4). Alburnus lucidus, or the bleak, represented in pl. 84, fig.

7, is another ; the silvery pigment lining whose scales is used in the manufacture of artificial pearls. Tinca vulgaris (pl. 84, fig. 12) sometimes attains a considerable size. Gobio fluviatilis (fig. 6) is likewise extensively distributed. Barbus vulgaris (pl. 81, fig. 10), or the barbel, a fish of some reputation among anglers, has been known to attain a weight of $15 \frac{1}{2} 1 \mathrm{lbs}$. Cyprinus auratus, or the common gold fish ($p l .85$, fig. 12), is pre-eminently conspicuous among fresh-water fish for the beauty of the colors. The young fish is of a brown color, in which, after a time, there appear silver specks, which increase until the entire fish becomes silvery white. In this state it is known as the silver fish. Subsequently it gradually assumes a golden red color. The true home of this fish, called kin-yu in China, appears to be a lake near Tschang-Hon in the province of The-Kiang, whence it was carried to the different waters of China and Japan, and subsequently to Europe. It is generally kept in glass globes, or small vessels, in the house, care being taken to provide an abundance of fresh water every day. The gold fish are easily kept in fish ponds, where they multiply rapidly. In the cisterns or tanks used to contain the water for condensing the steam of steam-engines, they thrive remarkably well, owing to the amount of greasy matter floating on the surface; even though the temperature of the water reaches $100^{\circ} \mathrm{F}$. and upwards. The river Schuylkill, near Philadelphia, is well stocked with gold fish, from individuals which escaped from certain fish ponds near that city. They also occur in the Hudson River.

When kept in globes, the gold fish devour insects, worms, bread, fat earth, \&c., with avidity at certain times, although they totally refuse all food at others. They eat pieces of cracker with great greediness ; care, however, should be taken, not to give them more than they can consume at the time, as any portion uneaten, when dissolved in the water, affects its respiratory properties. In confinement, the form is apt to vary considerably, certain monstrosities, as three or four tails, being sometimes produced. These fish spawn in May, and if not watched will eat their own eggs. This should be prevented by removing the latter to a separate vessel, and exposing to the sun. The flesh is very pleasantly flavored.

Another species, Cyprinus carpio (a variety of which, Cyprinus rex cyprinorum, is shown in $p l .84$, fig. 11), is found abundantly throughout Europe, where it is highly prized as an article of food. For this purpose it is kept in preserves and ponds, where it attains to a large size. Individuals of eighteen pounds' weight have occasionally been caught. Like the gold fish, this carp has been naturalized in North America, especially in the Hudson River, where it abounds, and is protected by legislative enactment.

North America abounds in species of Cyprinida, many of which are yet undescribed. With species belonging to some of the genera abovementioned, as flburnus, Gobio, \&c., there are many of genera peculiar to herself. No true Cyprinus is, however, found, nor perhaps Barbus, although there are many species with the barbels characteristic of these genera. Closely allied to Leuciscus, in size and general structure, but differing in the possession of barbels, is the genus Chilonemus, one species of which, C.
cataractus, or the fall fish of Pennsylvania, attains to a considerable size, perhaps larger than that of any other allied form in this country ; specimens have been seen nearly two feet in length, and weighing several pounds. This size is, however, exceeded by many of the European species. The peculiar genus Exoglossum is characterized by a trilobed lower jaw, the middle lobe formed by the extremity of the lower jaw, the lateral by cartilaginous expansions. Another interesting sub-family, embracing several genera and many species, is that of the Suckers, or Catastomi, known by the highly fleshy lips, which can be applied to any object like a sucker. The pharyngeal teeth are columnar or prismatic, not hooked and truncated. They are found abundantly throughout North America; and different species are known by the various names of carp, sucker, mullet, buffalo-fish, redhorse, \&c. Pl. 81, figs. 6, 7, represent Cobitis fossilis and E. barbatula, European species of a form not found in North America.

The concluding family of the order Malacopteri, or Physostomi, is found in the Siluridee, represented in North America by the catfish. Fishes of this family have the skin either naked, and covered with a slimy secretion, or provided with osseous plates of various number and shape. The head is usually depressed, and provided with a variable number of barbels. In most, there is a second and adipose dorsal, sometimes confluent with the caudal. The first rays of the dorsal and pectoral fins are generally enlarged into strong spines; and the pectoral spine is capable of being inflexibly fixed, by peculiar mechanism, in a direction perpendicular to the axis of the body. The edge of the mouth is formed by the intermaxillaries suspended from the sides of the ethmoid, which enters into the outline of the mouth, forming the superior median portion. The sub-operculum is absent in the whole family.

Species of this polymorphous family are found distributed throughout the globe. In Europe, however, there is found but one species, the Silurus glanis, or sheat fish. This species, interesting from the fact of its being the largest fresh-water fish in Europe, the sturgeons excepted, is most abundant in central Europe, its existence in England being hypothetical. The weight has been known to exceed 100lbs., in this respect equalling some of the American Silurida. It differs from the North American species in the absence of a posterior adipose dorsal, in the very small true dorsal, and in the very long anal. Other species of this restricted genus, Silurus, are found in various parts of Asia, and perhaps Africa, but not in America. The American forms are highly varied, those of the northern continent, however, being quite uniform in structure. The two most conspicuous fresh-water genera are Pimelodus and Noturus; the former with a distinct adipose dorsal, the latter with this dorsal confluent with the caudal. Numerous species of Pimelodus (cat-fish, horned-pout, bull-head) occur in the various waters of North America, some of which acquire a large size. One species, from the Mississippi, has been known to weigh over 100ibs. The flesh of many species is highly prized, owing to its sweetness and freedom from bones. The genus Noturus, known provincially as stone cat-fish, embraces but few species, found in the Atlantic streams south of

New York, and in those of the Mississippi valley. They will probably be discovered in the eastern rivers (in the Hudson at least), when their ichthyology has been more fully studied. Marine forms are met with in Galeichthys, Arius, and Bagrus, the former characterized by the high dorsa! and pectorals.
South America exhibits some Siluroids of especial interest. Conspicuous among these are Arges cyclopum, or Pimelodus cyclopum of Humboldt, and Brontes prenadilla, which inhabit the highest regions in which fish are known to live. They are found in Quito, at elevations of more than 16,000 feet above the level of the sea, living in the streams running down the sides of Cotopaxi and Tungaragua. The most interesting fact in the history of these fishes is, that they are frequently ejected from the craters of the abovementioned volcanoes, in immense numbers; the supply being probably derived from the subterranean lakes in the body of the mountains. Our space will not permit us to mention any other members of this interesting family, excepting the Malapterus electricus, the Silurus electricus of older authors. This species is characterized generically by the absence of the first dorsal, the adipose dorsal alone existing, as also by the possession of an electric apparatus or battery, somewhat intermediate in character between those of Gymnotus and Torpedo, although of much finer texture. The whole body beneath the integuments is inclosed by the apparatus in two layers of great compactness, and at first sight suggesting a deposit of fat. A dense fascia separates the battery from the muscular system. The cells, formed by transverse and longitudinal fibrous partitions, are rhombic in shape, and exceedingly minute. The nerves of the outer organ come from branches of the fifth pair of nerves, the inner organ is supplied by the intercostal nerves. The direction of the current is probably from the head to the tail ; the cephalic extremity being positive, and the caudal negative.

We now come to the third order, Pharyngognathi, of our classification, divided into two sub-orders, Malacopterygii, or soft finned forms, and Acanthopterygii, or spiny finned. The only family belonging to the first division is that of the

Scomberesocide, characterized by a structure intermediate between that of Esocida and Scombrida. The body is greatly elongated, and the jaws produced into long, very narrow beaks. The scales are minute, and hardly apparent in some species. The more conspicuous genera are Belone and Scomberesox; the former having a considerable external resemblance to the gar-fish, Lepidosteus, but with very minute soft scales, the latter having the posterior portion of the anal and dorsal divided into finlets, as in the mackerel, in other respects like Belone. This last mentioned fish is represented by several species in North America, one of which, B. truncata, occasionally penetrates the Atlantic rivers, as the Delaware and Susquehanna, and is known also as the silver-gar, or bill-fish. Neither genus is of any economical value. Inconspicuous in this respect, also, are the families Chromide, Cyclo-Labride, and Cteno-Labride, sufficiently characterized by the spurious fin rays, and the ordinal characteristics. The old family of Labrida, including the two latter sub-divisions, which differ
in the one having cycloid scales, the other ctenoid, has a single dorsal supported in front by spines, each of which has generally a membranous appendage. The jaws are provided with fleshy lips. There are three pharyngeals, the two upper attached to the cranium, the lower larger, all armed with teeth of various kinds. Intestinal canal, with cœeca, rudimentary, or none. The most interesting American genera are Ctenolabrus and Tautoga. The former is represented by C. caruleus, found along the Atlantic coast from New Jersey, north ; and known by the fishermen by the various names of bergall, cunner, blue perch, and chogset. Tautoga Americana, tautog, or black-fish, is much esteemed for the table, and is caught along the more northern Atlantic coast.

The order Anacanthini contains fishes of great importance to mankind as articles of food. This is divided into two sub-orders, the first Apodes, without ventral fins, the second Thoracici, with the ventrals under the pectorals, and the pelvis suspended to the bones of the shoulder. The typical genus of the single family Ophidide, included in the first sub-order, is Ophidium, having the dorsal, caudal, and anal, either united, or separated by a small interval. The ventrals are wanting. A small barbel at each angle of the jaw. The North American species, O. marginatum and O. stigma, are quite inconspicuous in every respect. The next two thoracic families, Gadida or codfish, and the Pleuronectida or flat-fish, embrace species standing in the very first rank in economical value.

The Gadide have an elongated body, covered with soft scales, these not extending on the head. Jaws, and front of vomer, with pointed irregular teeth of various size, and gills with seven rays. Dorsal fins, three, or less ; anal two, or one: cœca numerous. Air-bladder large, frequently indentated. The genus Morrhua, or true cod, has three dorsal fins, two anal; pointed rentrals. A median barbel at the end of the lower jaw. The best known species of cod is the Morrhua vulgaris (pl. 85, fig. 1), found in the European seas as far south as Gibraltar, and in the American to Newfoundland. The codfish caught off the coast of the United States belong to another species, M. americana. M. vulgaris is found in immense numbers on the banks of Newfoundland, where they give employment, in fishing, to vessels of all nations. They are caught with hooks, or seines sunk to a considerable depth in the sea. On the banks of Newfoundland, the usual fishing season is during the months of May and June. They are preserved by simple green salting, or are salted and then dried. The maximum size of this species, of 60 to 70 lbs ., is exceeded by that of M. americana, which has been known to weigh 107 lbs ., according to Dr. Storer. A cod of fifty pounds is, however, considered to be very large. Various applications are made of the cod, other than as an article of food; the oil from the liver (known technically as oleum jecori), in particular, is considered to be a highly valuable medicinal agent, especially in cases of pulmonary consumption. The roe, also, is used as bait for various species of herrings, as anchovies, pilchards, \&c. Another species, M. aglefinus, or haddock, common to Northern Europe and America, is distinguished irom the cod proper, among other features, by the jet black lateral line. Inferior
to the cod as an article of food, it is yet very palatable, and sold at a cheap rate. They do not attain to the enormous size of the cod, although they are caugbt off the New England coast, and consumed in great numbers. Other American species are M. minuta, or power-cod, M. pruinosa, or tom-cod, and others.

The genus. Merlangus, which comes next to Morrhua, is similar to it in other respects, but is without the filament on the chin. A prominent European species, the Merlangus vulgaris, or whiting, is shown in pl. 85, fig. 2. It is, as far as known, not an inhabitant of American waters, its place being supplied, among others, by Merlangus carbonarius and M. purpurinus, both found abundantly off the coast of New England, where they are indifferently called pollack. The genus Merlucius, or hake, has two dorsals, the first short, the second very long ; a single very long anal, and no barbel to the chin. A species, M. albidus, occurs in moderate numbers off the coast of New England, and is generally termed whiting. The genus Lota, or ling, is an inhabitant of fresh waters, being found of several species in the great lakes, and various parts of the New England States, as well as north of these. It is characterized by the elongated body, swollen belly, two dorsal and one anal fin, and the barbel on the chin. The lings, or eel-pouts, are not favorites in the United States, although a European species, Lota vulgaris, or burbot, is much esteemed. It is represented in pl. 81, fig. 11. The genus Brosmius has but a single dorsal, extending the entire length of the back; a single barbel at the chin. The American species, B. flavescens, or cusk, is much esteemed as an article of food. The genus Phycis has two dorsals, one short, the posterior very long; the ventrals of two long rays united at the base. A single barbel on the chin. An American species, Phycis americanus, known as the hake or codling, is taken in considerable quantity, as an article of food. Other genera, as Macrourus, Motella, which occur in the American seas, are of little economical value.

The family of Pleuronectide, or Planide, of some systematic writers, exhibits a remarkable anomaly, in having both eyes placed on the same side of the head. The body is compressed and broad, with a single dorsal extending from the head to the tail. There is no air bladder, and the fishes of this family swim at the bottom of the water on one side, which is generally white. The occurrence of both eyes in either the right or left side may be either accidental or else a constant generic or specific character. Branchiostegous rays six. The genus Platessa has both the eyes and the color on the right or left side of the head; the body rhomboidal. A row of teeth in each jaw, and others in the pharyngeals. Dorsal fin commencing over the upper eye, and with the anal extending nearly the whole length of the body, but not joined to the tail. The genus is represented in America by seven or eight species of various character, the larger of which, known as flat-fish or flounders, furnish an excellent article of food. Platessa flesus, known in England as the flook or fluke, is figured in pl. 81, fig. 9. Another European species is P. limanda, or the dab. The genus Hippoglossus has a more elongated form, and stronger
and sharper teeth. In it is the species H. vulgaris, or halibut, found on the coasts of both Europe and America. It attains to a very large size, individuals of even 500 and 600 lbs , having been met with. Its flesh is highly prized, and the fins are world-renowned as an epicurean morsel. In Rhombus both the eyes and color are on the left side: the dorsal commences anterior to the eye : dorsal and anal fins extend nearly to the tail. Teeth exist both in the jaw and pharynx. Conspicuous in this genus is Rhombus maximus, or the turbot, celebrated as the best of all European fishes. A turbot, probably of a different species, has recently been detected off the coast of Massachusetts. Pl. 81, fig. 8, represents Rhombus vulgaris, or the brill, a common European species. The genus Achirus is without pectoral fins, and has the eyes on the right side of the head. Mouth distorted to the side opposite the eyes, and very small. Dorsal and anal not united to the tail, as is the case in the genus Plagusia. The Achirus mollis, or common sole, is very abundant on the Atlantic coast of the United States. Pl. 82, fig. 11, represents the Solea vulgaris, European sole.
The family Ecuineide is represented by the genus Echineis, which comprehends fishes with a flattened disk upon the top of the head; this being composed of a variable number of cartilaginous plates, movable in such a manner as to admit of their being attached by suction to an object in the water. A single dorsal opposite the anal. Teeth on the jaws, vomer, and tongue. Pl. 84, fig. 3, represents the Echineis remora, or sucking-fish, found throughout the Atlantic ocean. There are additional species with various characters.

We come now to an order of fishes, Acanthopteri, corresponding nearly with, but rather more restricted than, Acanthopterygii of Cuvier. This order is characterized by the ctenoid scales, the advanced ventrals, the spinous fins, \&c. It embraces many species of considerable value. The first family, Percide, is known by the rough scales, the dentated operculum or preoperculum, and the occurrence of teeth in the jaws, the front of the vomer, and generally on the palatines.

The number of genera and species in this family is very great, distributed as they are over the entire globe, and occupying both salt and fresh water. Two principal types may be distinguished, one with a single continuous dorsal, the other with this dorsal more or less deeply divided, and separated into two. The typical genus is that of Perca, with two separated dorsals, the rays of the first spinous, of the second flexible; teeth in both jaws, in front of the vomer, and on the palatines; tongue smooth; operculum with a short, flattened, backward spine. Perca fluviatilis, the most common European species, is figured in pl. 82, fig. 4. Numerous species occur in North America, the most conspicuous of which is the Perca flavescens, or common yellow perch, which is found in almost all sorts of situations, both salt-water and fresh. Several closely allied species occur in the different lakes and rivers of the North American continent. The genus, or rather subfamily, Etheostoma, is altogether peculiar to North America, where nearly every large river has one or more species peculiar to it. They are all of rather small size, some of them very minute. Professor Agassiz has recently
placed these fish amongst the Cottoids. The genus Labrax is allied to Perca, but has scales on the two-spined operculum, and teeth, or prickles, on the tongue. The most conspicuous species is the Labrax lineatus, the rockfish, or striped-bass, of the United States, a fish of great excellence in the opinion of many persons, especially when taken in autumn. It is caught in the winter and spring along with the shad, and like it is an anadromous fish, running up from the salt-waters into the fresh streams for the purpose of spawning. It "attains a size of 60 to 70lbs., although more usually weighing from 4 to 20lbs. Its European analogue is the Labrax lupus, or bass, shown in pl. 82, fig. 10, and highly esteemed as an article of food. Other species occur in the United States, as L. mucronatus, or the white perch of the eastern waters, L. multilineatus, and others. The genus Luciopercu combines the general characters of perca with teeth like those of the pike. Its most striking resemblance is, however, to the salmon, for which reason it generally bears this name in the rivers of the interior of America. Lucioperca americana is the most abundant species, and, as already mentioned, is usually called salmon, sometimes pike, as in Lake Champlain. It is a bold, voracious fish, of great strength, and affords excellent sport to the angler. An allied species is found in the rivers of central Europe. Centropristis has a single dorsal, and an oblique tail; preoperculum dentated, and operculum spinous; teeth small and crowded, no canines. A common American species, C. nigricans, known as seabass, or black perch, is much esteemed as an article of food. Girystes also has a single dorsal, and a considerable resemblance to Centropristis; having, however, the preoperculum entire, and the tail truncate. It occurs in various rivers of North America, and is represented by several species in the waters of the Mississippi and of the great lakes, as also in the waters of several streams having their outlets on the southern Atlantic coast. None have been found in the Potomac or Susquehanna; and those met with in the Hudson River have been introduced from Lake Champlain, through the Hudson and Champlain canal. They are generally known as black bass in the North; another species of a different color in the South, being improperly called trout and white salmon. They afford excellent sport to fishermen, ranking in point of "game" qualities above most other freshwater species, after the Salmonidæ. Their flesh also is excellent eating. Centrarchus has an oval, compressed body, with two flattened spines to the operculum, six or more spines to the anal fin; a single dorsal ; and velvetlike teeth in both jaws, on the vomer, palatines, and the base of the tongue. Several species inhabit the waters of the United States; one of these, Centrarchus aneus, rock-bass, or black sunfish, being found in the waters of the Mississippi, and in the great lakes. This species is also highly prized for the sport it affords in fishing. The genus Pomotis is distinguished from the preceding, mainly by the presence of an opercular, membranous flap, posterior to the flattened spines. The palatines and tongue are without teeth. Species of this genus are numerous, and generally distributed, in North America. They are known as sun-fish, pumpkin-seed, sun-perch, and bream.

Another genus of Percoids, Holocentrum, has brilliant and denticulated scales, a spinous and denticulated operculum, and a preoperculum, with a well developed spine, projecting posteriorly. A species, H. longipinne (pl. 83, fig. 1), is found in the American waters. The genus Sphyrcena has a greatly elongated body, with two separated dorsals. Lower jaw longer than upper: both with strong teeth. Ventrals posterior to the pectorals. A species of this genus, S. barracuda, is found on the southern shores of the United States, particularly about the Florida reefs, where it is more dreaded for its ferocity than the shark. It is there called barracuda pike, or barracuda, and attains a length of six or seven feet. Sphyrcena spet, a Mediterranean species, is figured in pl. 83, fig. 4. A species of Trachinus, T. draco, sea-cat, or weever ($p l .81$, fig. 12), is much feared for the injuries it can inflict with its spinous dorsal. A special regulation in France requires that these spines be cut off before the fish is exposed to sale. It has not yet been found in American waters. Acerina constitutes a genus of fresh-water fish, allied to the true perches, but has a single dorsal fin. Of two species, both European, A. cornua, or the ruffe, is found in various waters of England and the continent. Its flesh is well esteemed, but the fish never attains to a large size. Figured in $p l$. 83, fig. 10. The genus Mullus, or mullet, has two separated dorsals, and two cirri at the symphysis of the lower jaw. The genus is not found in America. Pl. 85, fig. 7, represents M. barbatus.

The next family is that of the Sclerogenide, or Triglide, with the head spined and armed in various ways. The suborbital bone is extended more or less backwards, and articulated to the preoperculum. The genus Trigla has the operculum and shoulder-plate running out backwards in a spine ; seven branchiostegous rays, and three detached rays at the base of each pectoral fin. Trigla lyra, or the piper (pl. 83, fig. 7), is a rather rare European species. T. cuculus occurs on the coast of the United States. More American species are found in the genus Prionotus, closely allied to Trigla. Dactylopterus has the detached filament of Trigla greatly elongated, so as to exceed in length the fish itself, and united by a fin by means of which it can be sustained in the air for a short period of time. The best known species is D. volitans, or flying-fish, and is shown in pl. 83, fig. 12. There is another flying-fish, Exncatus, belonging to the Esocida, which is a better flyer than Dactylopterus. The genus Cottus has a variously-armed head, which is large and depressed; teeth in both jaws, and on the front of the vomer ; branchiostegous rays six ; two dorsals, distinct or but slightly connected, ventrals small. Two distinct types of this genus exist, one with the head strongly armed with spines of various kinds, and the other with the spines few in number, and nearly obsolete. The latter are all fresh water, the former marine. Numerous species of fresh water Cottus occur both in Europe and America, all closely resembling each other. They may be distinguished geographically by the fact, that while the small subcutaneous plates along the lateral line are continued out to the tail in the European species, in the American they cease within a short distance (one fourth, perhaps) of the total length, and
the lateral line extends to the tail only as a light furrow. Pl. 84, fig. 5, represents one of the European species of fresh water Cottus, known as the bullhead, miller's-thumb, chabot, \&c. The salt water species are termed, provincially, sculpins or bull-heads. Aspidophorus has the body octagonal, and covered with scaly plates; snout with recurved spines; no teeth in the vomer ; two dorsal fins. A. cataphractus (pl. 82, fig. 1) is found both in Europe and America. The genus Scorpona resembles Cottus, but has a compressed head, an undivided dorsal, and palatine teeth; as also cutaneous filaments in various parts of the body. S. scropha is represented in pl. 83, fig. 5. Somewhat allied to Scorpara is the genus Synanceia, a species of which, S. horrida, is shown in pl. 82, fig. 9. It is from the Indian seas. The genus Sebastes has some resemblance to the perch, but differs in the spined operculum and preoperculum. All parts of the head are covered with scales; branchiostegous rays seven ; teeth on the jaws, vomer, and the palatines. Sebastes norvegius, Norway haddock, snapper, or rose fish, is a highly beautiful fish, of a reddish color, and is taken in deep water, off the coast of New England and further north. The genus Gasterosteus, or stickleback, closes the series of those Triglida which we have room to mention here. They have a body without scales, but variously armed with plates on the sides and back. A variable number of the anterior dorsal rays occur as separated spines. Ventral fins represented by a single spine. Branchiostegous rays three. The species of this genus are mostly of small size, and inhabitants of brackish water; yet some species occur in perfectly fresh water. They are highly quarrelsome, active little fish; and one European species, at least, is remarkable for constructing a regular nest of grass. The male performs this labor of love, and forces females successively into the nest, there to deposit their spawn, which he immediately fecundates. The nest and its contents are watched with the most jealous vigilance by the male stickleback, who exercises a careful guardianship over the young after they are hatched. Other species of Gasterosteus will probably be found to possess the same habit, shared also by some other genera, at least by Callichthys of South America. Pl. 82, fig. 6, represents the common European species, Gasterosteus aculeatus.

The third family, Sclenide, exhibits a close parallelism with the Percoidce. The vomer and palatines are, however, destitute of teeth, and the head is generally enlarged by cavernous swellings. The ventral fins are sometimes scaled.

The first genus with an American representative is Otolithus, characterized by the two dorsals, the weak anal, the absence of barbels, and the two or three highly developed front teeth. The principal species is O. regalis, or weak fish, abundant on the whole Atlantic coast. It is called salt water trout, or simply trout on the southern coast. Another species is called salmon trout. When caught in the latter part of the summer, and eaten within a few hours after its capture, it is, perhaps, superior in delicacy of flavor to any salt water American species, excepting the farfamed sheepshead, and scarcely inferior even to this most delightful of fish. Corvina differs in the strong second anal spine and the perfectly
even, velvety teeth. Generally there is a series of larger, equal, and sharp teeth in the upper jaw. Corvina oscula is found in the interior waters of North America, where it is generally called "sheepshead." The flesh is of little value as an article of food. Its southern congener, the C. ocellata, or red fish, found abundantly in the Gulf of Mexico and about New Orleans, is much more highly prized in this respect. It bears various names, as bass, sea-bass, red bass, at different points along the Atlantic coast, and is occasionally caught as far north as Long Island Sound. Leiostomus has a feeble anai spine, with minute denticulations in the preoperculum. Teeth in the jaws equal, and very minute. Pharyngeals paved posteriorly ; two dorsals. One species, Leiostomus obliquus, known as Lafayette, or crocus, or chub, is abundant along the middle Atlantic shores of America, and somewhat esteemed as an article of food. Another, L. xanthurus, is found along the coast of South Carolina, where it is called yellowtail, or yellow Jack. The genus Umbrina is distinguished from the other Scienoids by the presence of a cirrus under the symphysis of the lower jaw. Umbrina nebulosa, or the kingfish, is highly prized as an article of food, being considered by many the best fish afforded by the New York market. \boldsymbol{U}. alburnus is a closely allied species, found along the southern coast of the United States, called whiting in South Carolina. The genus Pogonias differs from Unbrina, in having several barbules under the jaw. Pogonias chromis is the well known drum of the Atlantic coast, a fish of very large size and excellent flavor. P. Fasciatus is the young drum of fishermen.

The next family, the Sparide, has unarmed opercles, the head not cavernous, the palate without teeth, and the jaws not protractile. Branchial rays not exceeding six. The genus Sargus has cutting incisors in front of the jaws, somewhat like those of man ; the molars rounded. The most important species is Sargus ovis, the well known sheepshead, a fish among the first, if not the very first, in America, in point of excellence. It is caught along the entire Atlantic and Gulf coast, and is occasionally found of extreme size. Sheepshead are exceedingly abundant about the Florida keys, but are there considered very inferior fish. The further north they are taken, the better the flavor. Other and smaller species also occur. The genus Pagrus has two rows of small rounded molars in each jaw. Pagrus argyrops is the porgee of the Atlantic, in some estimation for the table.

The family of Menide is similar to the Sparida, but has a highly protractile mouth, and occasionally teeth on the vomer, and denticulations on the preoperculum. There are no American species of any special interest in this family.

Nature has given to the next family of Labyrinthibranchie a remarkable provision, enabling it to leave the water, and travel to a considerable distance in search of food. The eels, we have shown, possess this power also, by reason of the smallness of their gill-openings, which can be closed up very firmly. In the Labyrinthiforms there is a highly vascular membrane, folded together in a number of laminæ, and occupying the upper part of the anterior branchial arches. This membrane is highly
vascular, and appears to serve as a respiratory organ in itself, and also to intercept and retain water for a considerable time, sufficient to keep the gills moist during the terrestrial journeys of the fish. An Indian species, Anabas scandens, or climbing perch ($p l$. 84, fig. 13), can spend some considerable time out of the water in search of food. It is even said to climb inclined trees hanging over the water, but this has been doubted. Several genera of this curious family are known; all, however, Asiatic or African. Pl. 85, fig. 6, represents Ophiocephalus striatus, an Indian form.
Mugilide. These have a nearly cylindrical body, with two distinct dorsal fins, the first with four spinous rays. Ventrals rather behind the pectorals ; gills, six-rayed. Head depressed, covered with large scales or polygonal plates. Teeth very fine. The most conspicuous genus is Mugil, several species of which occur in the United States. Mugil albula or the common mullet, is caught in great abundance along the whole southern Atlantic coast of the United States; where, indeed, it forms a much esteemed article of food, although rather too fat and rich. The roe is considered to be an especial delicacy. These fish are caught in seines throughout the greater part of the year. The genus Atherina is composed of small fish, with very protractile mouth, elongated body, two dorsals far apart, the anterior spinous. A silvery band on the side, ventrals behind the pectorals. First branchial arch with bony pectinations. This genus is represented in North America by several species, mostly marine.

The passage to the true Scombrida, or mackerel family, is made by the Notacanthide. The body is long, and supplied with small soft scales; snout obtuse, projecting beyond the mouth, which is furnished with fine close teeth. No true dorsal fin, but a series of free spines on the back, unconnected by a membrane. Free spines before the anal. Notacanthus nasus is found in the Greenland seas.

Scombride. This family, in the economical value of its component species, yields to no others, the Gadida and Clupeida not excepted. It embraces the various mackerels, tunnies, dories, \&c., together with many others, of less general distribution, but of great local abundance and excellence. The fishes of this family have small scales, so minute, indeed, as to cause the skin to appear smooth; the ventrals are without scales, the opercles without spines or denticulations, the caudal generally large and powerful, and the intestines mostly with numerous cœeca.

At the head of the family stands the genus Scomber, or true mackerel, characterized by the fusiform elongated body, two small cutaneous crests on the sides of the tail ; some of the posterior rays of the anal and second dorsal fins free, forming finlets; and one row of small conical teeth in the jaw. Scomber vernalis, or the common mackerel, is very abundant along the more northern coast of the United States. It is not usually caught in quantity before the beginning or middle of June, although obtained in greater or less number along the coast of Massachusetts throughout the year. This fish is exceedingly voracious, but capricious as voracious, sometimes biting with the greatest readiness, and at others entirely refusing the bait. The number and occurrence of mackerel in particular localities
are also very variable, in some seasons the returns hardly paying the expense of the expeditions. Some idea of the extent of the trade may be formed from the fact that, in a single year, upwards of 234,000 barrels were taken by Massachusetts fishermen alone. A closely allied, but smaller species, S. grex, or chub-mackerel, is distinguished by a dark spot at the tip of the lower jaw. S. colias, or the Spanish mackerel, is also much esteemed, but rarer than the two preceding. It is distinguished from S. vernalis by the fact that the transverse undulations do not cross the lateral line, as in the latter species. In S. vernalis, also, there is a dusky line beneath the lateral line, and a black spot at the base of the pectoral and ventral fins. Scomber vulgaris, or the common European mackerel, is represented in pl. 83, fig. 9. The genus Thynnus, or tunny, is distinguished from Scomber by the presence of a corselet round the thorax, formed by scales larger and coarser than those of the rest of the body. There is a bony and elevated crest on each side of the tail. The anterior dorsal reaches nearly to the posterior. Numerous finlets behind the dorsal and anal fins. A single row of small pointed teeth in each jaw. The common tunny, Thynnus vulgaris, is a mackerel of a gigantic size, and famed for the excellence of its flesh, which tastes something like lean pork. Fish of this species are caught in immense numbers in the Mediterranean, and eaten both fresh and salted. The usual method of preserving them for any length of time is to cut them into slices, which are packed away in barrels, with layers of salt interposed. They are generally caught in nets. This species is of rare occurrence out of the Mediterranean, where it is met with in great shoals. But few are recorded as being caught off the United States coast; one specimen, taken near Cape Anne, weighed 1000 lbs ,, and was fifteen feet in length. In New England it is known as horse mackerel and albicore. A European specimen \cdot is figured in pl. 83, fig. 8, A second species, of much smaller size, is found in the Gulf of Mexico. The bonito is also a species of Thynnus (T. pelamys), differing mainly in several large longitudinal stripes below the lateral line. It is this species, among others, which causes the flying-fish to leave the water in order to escape from its terrible enemy. The flesh is greatly inferior to that of the common tunny. The genus Pelamys differs from the last, in having strong separated and pointed teeth. The principal species, \boldsymbol{P}. sarda, also called bonito, is of rare occurrence in American waters, where it is known as the skip-jack, especially in Massachusetts. Cybium is without a corselet, and has large compressed sharp teeth; the palatines with short and even teeth. One species, C. maculatum, or spetted mackerel, is of rare occurrence on the American coast. The genus Xiphias, or sword-fish, has a spindle-shaped body, covered with minute scales, a single elongated dorsal fin, ventrals wanting, upper jaw elongated, forming a sword-shaped protuberance; mouth without teeth. This curious genus, represented by Xiphias gladius, or the well known sword-fish (pl. 81, fig. 13), is generally distributed throughout the Atlantic, being found on both the European and American shores. It attains to a great size, being sometimes fifteen feet in length, and weighing many hundreds of pounds. The flesh, especially of the
smaller individuals, is highly esteemed, being considered equal to that of any of the mackerel family. Numerous instances are recorded of fish of this species having struck the snout through, or into, the timbers of a ship, mistaking it, as is supposed, for a whale, the sword-fish having, it is said, a great antipathy to this animal. It is highly destructive to other species, preying on the weaker mackerels to a great degree. The genus Naucrates has a single elongated dorsal, free spinous rays before the dorsal and anal fins; sides of the tail carinated ; and numerous small teeth. The pilot-fish, Naucrates ductor (pl. 83, fig. 6), belongs to this genus. The pilot-fish, as is well known, possesses the curious propensity of following in the wake of large masses in the water, whether these be vessels or large marine animals. Instances have occurred of their following ships during a voyage of eighty or more days. Their attendance upon the shark has been supposed to be for the purpose of giving warning to their less vigilant or less acute companion, of the dangers to which it may be exposed. The interest, however, is probably, in both cases, that of protection against enemies and starvation. The genus Coryphæna, has a compressed elongated body, and a head with a globular outline; eyes low, near the angle of the mouth; dorsal fin rising from the cranium, and extending to the tail, diminishing in elevation posteriorly. This genus, including the fishes generally known as dolphins, and celebrated for their beauty, are mostly inhabitants of mid-ocean, being rarely found off the coasts. Coryphena hippuris (pl. 84, fig. 2) is a well known companion of vessels, and greatly celebrated for the beautiful play of colors which it exhibits when dying. The dolphins are extremely voracious, and are conspicuous enemies of the flying-fish; it is also noted for the extreme velocity of its motions, a characteristic, however, of nearly all the Scombrida. Several species occur off the American coast, where, however, C. hippuris has not yet been observed. The genus Temnodon, with the general port of a true mackerel, is more compressed, and has the second dorsal higher and longer than the anterior dorsal, and with the anal covered by small scales. The most striking characteristic lies in the possession of a single row, in each jaw, of large, distinct, compressed, and very sharp teeth, which give quite a formidable feature to the fish. The principal species is T. saltator, the blue-fish of the northern American waters, the tailor or skip-jack of those more southern. It is much esteemed both by the angler and the epicure. The genus Zeus has an oval compressed body, a protractile mouth, and the dorsal spines with long filaments, as the most striking characteristic. Zeus faber ($p l .81$, fig. 10) is the well known dory, or John Dory, a European species much esteemed by epicures. It has a large round black spot on each side, ascribed by popular superstition to the marks of St . Peter's thumb, when he took the tribute money out of its mouth. In some parts of Europe it is called "king of the herrings," from the fact of its accompanying these fish for the purpose of feeding upon them.

The family of Squamipennes is readily known by the dorsal and anal fins, especially the soft portion, being covered with scales. The body is compressed, and more or less oval or rhomboidal. Teeth setigerous, or
like fine, close bristles, or cutting. Preoperculum occasionally spinous. Dorsals either two or one. The Chatodons, belonging to this family, are remarkable for their brilliant colors, the rhomboidal body, and the curious property possessed by the species, Chelmon rostratus and Toxotes jaculator, of ejecting drops of water, with unerring accuracy, at insects which may be within a moderate distance of the surface. In China and Java they are kept in vessels for the amusement afforded in watching the dexterity with which they will bring down flies at the distance of several feet. Pl. 84, fig. 9, represents a common species of Chetodon, C. auriga. A few species of Chatodon are found in America, especially in the Gulf of Mexico. The genus Ephippus, represented by two species, is found along the coast of the United States, where it is known as angel-fish, moon-fish, three-tailed sheepshead, \&c. An American species of Holocanthus, \boldsymbol{H}. tricolor, found in the Gulf of Mexico, is shown in pl. 82, fig. 8. Another genus, Dipterodon, contains a single species, D. capensis (pl. 85, fig. 8), from the Cape of Good Hope. The genus Amphiprion, a species of which, A. bifasciatus, is figured in pl. 85, fig. 9, is, perhaps, more properly referrible to the family of Scienoids.

The family of Teniones is closely allied to the Scombrida, under which head some authors include it; the principal distinction consists in the elongated flattened shape. The genus Trichiurus has the ventrals and caudal wanting; the dorsal extending all along the back, which runs out into a long slender filament. A few small spines represent the anal. The mouth is well armed and large, the jaw projecting. The general appearance of this genus is that of a bright silver ribbon ; one species, Trichiurus lepturus, is occasionally caught off the coast of the United States. In the West Indies it is called sword-fish, and sometimes attains a length of twelve or fifteen feet. A remarkable genus, Trachypterus, has the body ending in a caudal appendage of varied shape, and a second caudal standing up vertically from the tail. The ventrals are more or less developed. Pl. 85, fig. 11, represents Trachypterus spinola, from the Mediterranean. Cepola has a long dorsal and anal, both reaching to the base of the caudal, which runs out to an acute point. Muzzle short and rounded. Cepola rubescens, in England called band-fish, is represented in pl. 83, fig. 11.

The family of Theuthyde, with much the same general appearance with the Scombrida, the same armature of the tail, but in different development, a horizontal spine before the dorsal, \&c., differs in the small nonprotractile mouth, the single row of occasionally dentated trenchant teeth, the absence of teeth on the tongue and palate, \&c., and the single dorsal. They are also generally herbivorous. The genus Acanthurus has cutting and serrated teeth, and a strong movable spine in the side of the tail, which is exceedingly sharp, and capable of inflicting a severe wound wher incautiously approached. Several species are found off the coast of the United States, as A. phlebotomus, A. corulus, and A. chirurgus. This latter species is represented in pl. 84, fig. 8. The genus Amphacanthus presents the highly remarkable and indeed unique feature, of an internal spinous ray to the rentral, as well as the one which is external. There is a con-
cealed spine before the dorsal fin. Amphacanthus corallinus (pl. 83, fig. 3) is from the Seychelles.

The family of Fistularide is characterized by a long tube in the fore part of the cranium, formed by the prolongation of the ethmoid, vomer, opercules, pterygoid, and tympanic bones. The mouth is placed at the extremity, as usual. The ribs are short, or absent. The body is either cylindrical, as in the Fistularia, or compressed, as in the Centriscus. The genus Fistularia, known as the tobacco-pipe fish, is represented on the coast of the United States by several species, which are readily recognised by their greatly elongated, nearly cylindrical body, the dorsal far back and opposite to the anal, and the filament proceeding from between the two lobes of the caudal. The genus Centriscus, in addition to the tubular snout, has a compressed short body, of which the head forms the greater portion of the whole. The tubular mouth is probably used in drawing up their food, as by a syringe. Centriscus scolopax (pl. 81, fig. 21), a European species, is called in England snipe or trumpet-fish.

The two next families, Gobider and Blennidee, formerly united into one, possess a common feature in the slender and flexible character of the spinous rays. There is also no swimming bladder. While the latter, however, have the ventral fins either consisting of two rays, or else absent; the former have them united into a single sucking-disk, or else very closely approximated. In the genus Gobius proper, the ventrals are united throughout their entire length, so as to form a concave sucking-disk. There are two dorsal fins, the last of which is long. Some of the species are without visible scales. They are mostly fish of small size, and inconspicuous in their appearance, many of them belonging to the United States. Gobius alepidotus, a very rare species, has in several instances been procured, by inland naturalists, from the empty valves of oysters, into which they must have crept before the oysters were removed from the bed. The lump-fish, formerly placed in a distinct family, that of the Discoboli, are represented by the genera Lepadogaster, Lumpus, and Liparis, the two lattes pussessing American representatives. The former exhibits two disks, formed, the one by the base of the pectorals, the other by the ventrals. The dorsal and anal are near the tail. By means of their sucking apparatus these small and otherwise defenceless fish are able to attach themselves to sticks and stones, and thus retain a secure hold in a boisterous sea. In the genus Lumpus the pectorals uniting with the ventrals form a single disk. The skin of the back is elevated on both sides, so as to inclose spinous rays in a fleshy ridge. The head and body are short, stout, and deep. The Lumpus anglorum, or lump-sucker, is a grotesquelooking fish, found on the more northern coasts of Europe and America, possessing the power of adhering to objects in water, with great tenacity, by means of the sucking-disk. A vessel of water containing several gallons has been lifted up by means of the close attachment of a lump-fish to the bottom. This is one of the few fish which pay attention to the eggs after they are discharged. The male here, as in most other cases of the kind, assumes the office of protector; remaining close to the precious

ICONCGRAPHIC ENCYCLOPEDIA.-VOL. II. 28 . 433
deposit, even in the presence of man, or other fish. The young, when hatched, fasten themselves to the back and sides of the parent, who thus transports them to safer localities than the shallow water in which the eggs were deposited. The genus Liparis, found in the seas of Arctic America, with somewhat the same structure of the sucking-disk as lumpus, is without the fleshy ridge on the back, and has a more elongated and smooth body. There is a single, rather lengthened, dorsal fin. Echeneis is by some included ir. this family. The genus Callionymus has the ventrals separated and broader than the pectorals. The gill-openings are reduced to a small hole on each side of the nape. There are no species in American waters.

The first genus of the family Blenniide is constituted by Blennius, with a single elongated dorsal, the ventrals before the pectorals, and distinct, consisting of two rays, united at the base. Teeth slender, in a single row. The species of this genus are small, lively fish, living among seaweeds, and possessing, some of them at least, curious crests or cirri over the eyes. They derive their name from the shining mucus with which their skin is clothed. They are numerous in species on the coast of the United States, and form several subdivisions of the old Linnæan genus Blennius proper, Pholis, Chasmodes, \&c. One genus, Zoarces, with the dorsal, anal, and caudal united, is ovo-viviparous, a peculiarity in all probability shared with it by others. Of this latter genus there are three American species. The genus Gunnellus, or butter-fish, has an elongated compressed body, and the ventrals rudimentary. The most conspicuous fish of this family, however, is the wolf-fish, or sea-cat, Anarrhichas lupus, armed more formidably with teeth than any other known species of equal size. The dorsal fin is composed of simple rays, and extends from the nape to the tail ; the anal likewise reaches to the tail. The body is smooth and shining. The palatines, vomer, and mandibles, are armed with stout, prismatic, grinding teeth, the interior being longer and conical. The wolffish is exceedingly voracious, and is the pest of the Arctic seas, where it sometimes attains a length of eight feet. It is likewise quite abundant as far south as Massachusetts, on the one continent, and England, on the other. The flesh is highly esteemed by some, although from its exceedingly repulsive appearance, it is not often eaten, except by the inhabitants of Iceland and Greenland.

The conclusion of Müller's order Acanthopteri is furnished by the family Lophide, characterized by the elongation of the carpal bones, upon which the pectoral fin is supported, as on an arm. The branchial apertures are small, in the form either of a circular aperture or a vertical slit.

This family includes genera which are among the most repulsive in appearance of all fishes. Conspicuous in this respect is Lophius, known by the very large broad head, slender body, broad and thick pectorals, and other characters. Lophius piscatorius, or the fishing-frog, angler, wide-gap ($p l .81$, fig. 23), found in European waters, and L. americanus, are fishes which attain to a considerable size, and are objects of interest to fishermen; not so much on their own account, as for the other fishes which
nave been accumulated in their stomachs, and which it is considered worth the trouble to extract. Their extreme voracity causes them to devour whatever comes in their way, and as the animals may be several feet in length, with a breadth of one third the length, the short, wide stomach and cesophagus readily permit a great accumulation of contents. They retain life for a long time after being removed from the water. A curious feature in Lophius consists in the possession of two long-jointed filaments on the head, possessing great freedom of motion in every direction, and composed of bone covered by skin, which at the end is dilated into a flattened appendage. The fish conceals itself in a dense muddiness produced by the action of its pectoral fins, and elevates these long filaments above its place of concealment, thus attracting the surrounding fishes to the glittering bait. To this habit it owes its name of fishing-frog. It also exhibits a peculiar structure of the teeth, which are articulated in such a manner as to permit them to be pressed back towards the throat, but maintaining an erect position when they are moved in any other direction. Thus a fish, on being seized and swallowed, readily passes over these jointed teeth, which become depressed for the purpose ; but any attempt to return is prevented by the now erect fangs. A genus Malthea is still more repulsive in appearance than Lophius, various parts of the body being provided with fleshy filaments. The mouth is small and inferior. There are three known American species, some of which possess the power of executing considerable leaps, when left by the tide on the shore. The genus Batrachus, with somewhat the shape of Lophius, although much smaller and more elongated, is without filaments, except short ones on the edges of the lips. The first dorsal is small, the second low and long. The North American species are three in number, the largest of which, Batrachus tau, is known as the toad-fish.

The order Plectognathi, distinguished by the internal union of some of the bones of the head, is composed of three families, the Balistince, the Ostracionida, and the Gymnodontes. The first of these, the Balistinee, is known by the compressed body and prolonged snout; the small mouth, with a few distinct teeth; the skin roughened by prickles or scales; the two dorsals, the first sometimes replaced by a single spine. The ventrals are often obsolete, and the pelvic bone is prominent. The three principal North American genera are: Balistes, covered with large scales; Monacanthus, with the scales very small; and Aluteres, with the skin covered with small and almost invisible granules.
In the Ostracionide the entire body is enveloped by an inferior inflexible triangular, or quadrangular, long case, composed of numerous plates soldered together, leaving only apertures for the mouth and fins. There are no ventral fins, and but a single dorsal. The only North American genus of this family is Lactophrys, or trunk-fish, of which there are three species.

The most striking characteristic of the family Gymnodontes consists in the peculiar structure of the teeth. There are either two, or one, in each jaw, occupying its whole extent in a compact mass, and resembling some-
what the bill of a parrot. The teeth are compound, composed of numerous laminæ, which are constantly being renewed as they are worn away. In Diodon there is but one such compound tooth, occupying the whole of each jaw : the skin is armed with slender prickles, or stout spines. Several species are known in the United States, the most abundant of which is \boldsymbol{D}. maculo-striatus, or the balloon-fish. D. punctatus (pl. 81, fig. 19) is a common species of tropical waters. In Tetraodon the single tooth appears to be divided in each jaw by a deep incision, producing four pieces in the mouth. The body is not cased in an inflexible coat, as Diodon, and the dermal appendages are less highly developed. Some species of the genus will inflate themselves to a great extent by swallowing air and causing it to pass into a sac immediately beneath the skin: irritating them will cause them to exhibit this property. When thus inflated they become much lighter than the water, and float about on the surface. The spines with which the body is provided then stand up erect, and furnish a secure guard to the animal. These same remarks apply, in a less degree, to Diodon. One species of Tetraodon is electrical, T. electricus. Pl. 81, fig. 20, represents T. lagocephalus. Four species are known in American waters.

The remaining genus Orthagoriscus is composed of fishes which appear to have had the tail abruptly cut off. The jaws are undivided, as ${ }^{\circ}$ in Diodon, but the skin is not capable of inflation. The high dorsal and anal are united to the caudal. The largest species, Orthagoriscus mola, known as the sunfish, or head-fish, is occasionally caught off the coast of the United States. It is a fish of large size, weighing sometimes as much as 400 lbs .

The order Lophobranchii, characterized by having the gills in small tufts instead of being pectiniform, is composed of two families, the Syngnathide and the Hippocampide, both much restricted in their genera and species. Considering them most conveniently as one family (as we may here), we find three prominent genera, Syngnathus, Hippocampus, and Pegasus. The genus Syngnathus embraces fishes with a tubular snout, somewhat like that of the Fistularidæ: the body generally straight and elongated, and the ventrals absent. The whole body covered with plates. The most eurious feature consists in the possession by the male of a false pouch under the tail, into which the ova are conveyed by the female, and there hatched; being retained for a considerable time before final expulsion. This is the case in Syngnathus acus (pl. 81, fig. 16). In Syngnathus ophidion ($p l .81$, fig. 15) the eggs are merely attached beneath the abdomen, and not protected by lateral folds of the skin. One species, \boldsymbol{S}. peckianus, or pipe-fish, is known on the coast of the United States. In Hippocampus, called the sea-horse, the body is broader and shorter; the tail, however, is slender: there are no ventral and caudal fins; and an anal only in the females. One species, \boldsymbol{H}. hudsonius, is frequently thrown up on the Atlantic beaches of the United States. Pegasus has long, broad pectorals, and a mailed body, which is shorter and stouter than that of the preceding. The dorsal and anal fins are opposite. The mouth is placed at the end of a salient snout, but is inferior, not terminal. One of the most
peculiar species of Pegasus is \boldsymbol{P}. draco ($p l$. 81, fig. 17), from the Indian seas.

The order of fishes we have now to consider is one of the most interesting in the whole department of Ichthyology. It includes forms, which, predominating exclusively at the dawn of vertebrate creation, have long since passed away, leaving nothing but the casts or imperfect skeleton remains to bear witness of animals which once inhabited the waters of a Palæozoic age. But few genera of any of these families remain to testify as to what was once the rule, and not, as now, the exception in nature. We may, with some authors, divide all fishes into Teleostei, Ganoidei, and Selachii. The Teleostei are fishes with a bony skeleton, the bones of the head being also united by sutures. Other characters are to be found in the structure of the heart, where the bulbus arteriosus is simply an expansion of the aorta, and does not, as in the Ganoids and Selachians, pulsate independently. There are no traces of the transverse fasciculi of the heart, but only pale fasciculi of soft fibres, which taper gradually into an uniform layer of the artery. There are also two opposite valves, separating the bulbus from the heart. The Cyclostomes have these valves, but are without the swelling of the bulb. Deferring for the present the consideration of the comparative peculiarities of the Selachian division, we proceed to the Ganoidei, the second division of this classification, the ninth order of the one we have already adopted. They form a true bond of union between the Teleostei and the Seluchii, having properties common to both. Their most conspicuous external characters are the possession of angular bony or horny scales, covered with enamel. Their internal peculiarities consist in the multiple valves and the muscular investment of the aorta, in the non-decussating optic nerves, in the free gills and operculum, and in the abdominal ventral fins. Other characters no less important, but more variable in their appearance, are to be found in the single or double series of spinous plates or imbrications in the interior edge of the tail, and in the inequilobal or heterocercal tail, a structure in which the vertebral column, instead of running out to the middle of the caudal fin, has its termination in the upper lobe. This feature is highly characteristic of the Plagiostomes of the present day. Some of these, besides the pseudo-branchiæ, have an additional organ of respiration in an opercular gill. Finally, to the above mentioned characters are to be added more or less of the following: the spiral valve in the intestine, the air-duct of the swimming bladder, the discharge of the ova from the abdominal cavity through tubes, and the partly imperfect skeleton; as also the tubular, angular, or round enamelled scales, or bony plates, where any covering whatever exists.

Thus of cartilaginous fishes, they have the accessory gill before the first, the spiracles; the valves and muscles of the aorta, the vascular distribution of the pseudo-branchiæ, the oviducts, and the peculiarity of the optic nerves. Of osseous, or bony fishes, they have these characters: the structure of the nose, the operculum, and the free gills. There is a swimming bladder in all Ganoids, with a free air-duct, and without a rete mirabile.

It has already been mentioned that most Ganoids are only known from their fossil remains. The living genera and species are few in number: the Amice and Lepidostei of North America, the Polypterus of Africa, and the Sturgeons of both hemispheres, being all that now exist. A convenient division of the Ganoids is into those with a bony skeleton, Holostei, and those with a cartilaginous skeleton, Chondrostei. In the Holostei, while the entirely bony character of the skeleton is the rule, yet an exception is found in some genera, in which ossified ribs and spinous processes are attached to a cartilaginous chorda. The ganoid scales are of various character, and in the first family the scales are even cycloid; other features, however, still retaining it among the Ganoids. A progression also is observable in the really Ganoid scale. At first it is rounded, and with a very slight coating of enamel; then this thickens, and the scale becomes more and more angular, still retaining the imbricated character. Finally, the scales become angular plates, in which a pin in the upper edge of one fits into a depression in the lower border of another immediately above, the whole thus riveted together, as it were, into a coat of mail.

The first family of the Holostei is that of Amiade, the type of which is Amia, a genus of fishes exclusively confined to North America. Most species of this family, as of most of the Holostei, are extinct, the recent being only those which belong to the above mentioned genus, and to Butyrinus, if this be properly included. The title of Amia to a distinct position, as the type of a family, among the Ganoida, insteąd of forming, as heretofore, one of the Clupeida, is mainly to be found in the five or six valves in the aorta. The Amiada have an elongated, nearly cylindrical body, with a rounded or emarginated sub-homocercal caudal, one dorsal fin, variable in position, and flexible rounded, or subangular, mailed or imbricated scales. The jaws are provided with conical teeth, of greater or less size. The fishes of this family first appear in the Jura, occurring in small number in the Lias. Extending through the middle Jura, they disappear as fossil forms in the Cretaceous, leaving only Amia as their now living representative. None occur fossil in America, except a species of Aspilorhynchus, probably found in South America. The genus Amia, with the general characters already referred to, has the head exhibiting conspicuous sutures; a long dorsal and a short anal; a long buckler between the branches of the lower jaw ; branchiostegal rays 12; conical teeth in the jaw, within which are smaller paved teeth. The head is short and rounded ; the nostrils have tubular appendages. The most conspicuous feature in the Amias is, however, to be found in the air-bladder, which is sub-divided into small cells exhibiting a structure very similar to that of some Reptilia. It is in this genus that the homology of the lung of the air-breathing vertebrate, with the air-bladder of the fish, is most clearly established. Amias, of which eight or ten species are known, all live more or less in the muddy bottoms of sluggish streams or ditches; and are generally shunned as repulsive objects unfit for food. They have been found throughout the United States, excepting in those rivers (and their tributaries) which empty into the Atlantic, between the St. Lawrence
and the lower part of Chesapeake Bay. They are called bow-fin in Lake Champlain, dog-fish in Lake Erie, mud-fish in South Carolina, \&c.

The next family, the Sauroider, embraces but two genera, Lepidosteus and Polypterus, both recent. The genus Lepidosteus is confined to North America, where it is represented by about ten species peculiar to different sections of country. There are two types of structure in Lepidosteus, one with broad short jaws, the other with the jaws very narrow and elongated. The dorsal is single, and placed far back opposite to the anal; and the whole appearance, at first sight, is not unlike a pike, for which reason one species was called by Linnæus Esox osseus, or bony pike. The airbladder presents a cellular character, somewhat like that of Amia. The principal osteological features consist in the vomer being divided into two; an upper jaw composed of many pieces, a lower jaw similar in structure to some Reptilia, as also in the vertebræ, one of whose articulations is convex, the other concave. There are two series of imbricated spines on the anterior ray of each fin, the remaining rays being jointed. The scales are combined into an impenetrable coat of mail, of almost adamantine hardness; and the jaws being provided with large conical teeth, with smaller ones interspersed, and on the vomer, give the gar-fish, or gar-pike, a truly formidable appearance. Gars attain a large size, especially the broad-billed species, which has been known to measure ten feet in length. When of proportions like this, it justly deserves the name of "Alligator Gar," from the striking resemblance borne by the head to that of the alligator. It would carry us too far out of our limits to extend these observations to the remaining structural peculiarities of this highly remarkable and unique genus, which ranges the waters of America, an isolated memorial of a past generation.

The genus Polypterus, by some justly made the type of a distinct family, consists of four species, found only in the rivers of Africa. The most striking external feature, by which it is distinguished from its nearest ally, the preceding genus, is to be found in the great number of separate finlets along the back, each consisting of a spine with some posterior rays. The body is enveloped in mailed scales, of great hardness, as in Lepidosteus. The upper jaw is undivided ; the lower, fish-like, not reptilian ; the vomer is simple ; the vertebræ bi-concave ; and the fins without imbrications.

The remaining families of the Holostean ganoids are all extinct; and we shall therefore confine ourselves to a brief synopsis only of their characters. But few of the species, hitherto described, belong to North America: these will be referred to in the proper place.

The Rostrati have a greatly elongated body, the head running out into a narrow snout. The vertebral column is not much developed, only the heal and the ribs being ossified. The dorsal and anal fins are of great development. The scales are variable in shape and number.

The Pycnodontes were fish of medium, or considerable size, with a short, high, and much compressed body. The caudal fin alone is well developed; the dorsal and anal, which begin in the middle of the body and extend to
the caudal, are composed of weak rays. The ventrals are mostly wanting. In addition to smaller teeth, variously situated, the lower jaw and the roof of the mouth bear several series of broad depressed teeth, increasing in extent, as they occur further back in the mouth. The surface of these teeth is sometimes smooth, sometimes furrowed, and either flat, convex, or concave. The roots of the teeth, which possess an internal cavity, are firmly fixed to the jaw. There are strong sternal ribs, and peculiar slender bones in the nape. The scales are of considerable size, of a thick rhomboidal shape. None of the Pycnodontes have as yet been found in North America.

The family of the Lepidotini embraces species of slender form and powerful build, whose anterior fin-edge is provided with a double series of fulcra, or imbricated scales, as in Lepidosteus. The inner dental series sometimes have expanded obtuse teeth, the outer exhibits them conical and slender. The caudal fin is always highly developed, attached obliquely, and with the base of the upper lobe covered with small scales. The ventrals are sinall, the pectorals well developed, and the dorsal of moderate size. The genera of this family first present themselves in the Jura, and disappear at the beginning of the Tertiary. None belong to North America.

In the family Monosticuir the anterior fin rays are provided with a simple series of fulcra, which rest by two branches upon the main ray. The body is more and more developed in a vertical direction. All the fins are feebly developed, the caudal most so. The scales diminish remarkably in size, from the sides, where they are greatest and higher than long, towards the back, belly, and tail : becoming equilaterally rhomboidal, or lozenge-shaped. The teeth are acutely conical, or bluntly cylindrical.

The Dipterini homocerci are distinguished from all the preceding families by the two dorsal fins, and from the succeeding by the homocercal or equilobed character of the tail. This is generally highly developed at the expense of the other fins, which appear small in proportion. The forked dorsal fin-rays rest upon the intercalary spines, which in turn are supported immediately by the spinous processes. The head is of moderate size, and the jaws armed with strong, paved, or conical teeth.

Dipterini heterocerci have the double dorsal of the preceding, and a slightly developed, always heterocercal, or inequilobed tail. The bases of all the fins are encompassed by smaller scales; and the anterior ray, instead of fulcra, sustains small close pressed jointed rays, which sometimes form alone the upper lobe of the caudal fin. The body is generally elongated, and the jaws armed with a series of conical teeth, of equal or unequal size. The thin scales pass from rhomboidal to cyc ${ }^{1}$ oidal in shape, in which latter case they are imbricated over the body. From the configuration of head, they exhibit a remarkable approximation to the living ganoids.

In the family of Acantriodir we find the same heterocercal tail as in the preceding; but the anal fin is simple, and the anterior dorsal soon disappears. Both these median fins, as well as the lateral, have a first strong elongated spine, with neither fulera nor jointed rays, thus distinguishing the genera of this family from all other ganoids. The exceedingly small scales
give to the skin an appearance like shagreen. Under the lens they seem to be of a rhomboidal form, with the characteristic enamel. The body is generally fusiform, compressed. The head large and broad, the jaws broad, and armed with conical teeth, and opening widely.

The family is represented, in North America, by a single species of Acanthodes. The genus is recognised by the projecting lower jaw, the absence of an anterior dorsal, the small caudal, and the very minute scales. The small ventrals lie close together in the middle line of the body and in the middle line of the belly, and the dorsal stands opposite to the somewhat larger anal. The species Acanthodes sulcatus, from the carboniferous of New Haven, has regularly rhomboidal scales, with an arched enamelling, and vertically diagonas broad furrows.

Iu the Heterocerci monopterygir, the larger scales, and the absence of a strong spine in the lateral fins; form the distinctive feature in respect to the preceding family; and the single dorsal separates it from the one before that. The positive characters of the fumily are very variable; the teeth, however, are generally small and acutely conical, rarely obtuse. The rhomboidal scales are never imbricated. The fulcra on the fin borders are almost always present. It is in this family that most of the American Holostei are included. In the genus Eurynotus, the dorsal extending over nearly the whole back, with its elongated first ray, is situated anterior to the anal; the body is rather slender; the pectorals are greatly elongated, the ventrals moderate. The head is rather small, the jaws armed with very minute obtuse teeth, the scales of medium size. Eurynotus tenuiceps, from the new red sandstone of Sunderland, Mass., and Middletown, Conn., and E. fimbriatus, from New Haven, are the American species.

The extensive genus Palaoniscus embraces fish of moderate size, with fins of no great development. The body is elongated, or slender, or compact. The head is small and rounded; the mouth deeply cleft, the jaws well supplied with small card teeth; the operculum large and broad, the preoperculum strongly curved. The scales vary in form and size, but always have a rhomboidal outline. The pectorals and ventrals are not much developed, the short anal more so, and still more the long rayed dorsal. The caudal is deeply cleft, and perfectly heterocercal. The American species are : Palaoniscus fultus, from Sunderland, Mass., Durham and Middletown, Conn., Pompton and Boonton, New Jersey. P. carinatus, New Haven, P. agassizii and P. ovatus, Middletown, Durham, and Westfield, Conn.; Sunderland, Mass.; Boonton and Pompton, N.J. P. macropterus, Sunderland, Middletown, Durham, and Boonton. The genus Amblypterus, with some affinities with Palaoniscus, exhibits a greater development of fins, and a longer and broader body. The fin rays are thin, short jointed, and split only at the end. The ventrals are anterior to the middle of the body, the dorsal in the middle, the extended anal only a little behind it. The moderate scales are rhomboidal, smooth, or furrowed. The head is provided with large orbits and opercular pieces, the powerful jaws
are furnished with card teeth. The American species are: Amblypterus nemopterus and A. punctatus, from New Haven.

We now proceed to take up the consideration of the cartilaginous Ganoids, or the Chondrostei, which are represented in the living fauna by the Sturionida, and are characterized by the cartilaginous vertebral column, and by other features, which will appear in the description of the families. The genera of the Sturionide are all found in America, two of them being peculiar to it.

In Polyodon the snout is enormously prolonged, and much dilated, and, together with the head, is nearly as long as the body. The gape of the mouth is very wide, and the operculum is prolonged behind into a membranous flap, this reaching beyond the middle of the fish. The tail, as in all Chondrostei, is highly heterocercal, and the skin entirely naked. The single species Polyodon folium, is an inhabitant of the waters of the Mississippi, where it attains to a size of five feet, although usually not more than one or two. It bears the various names of spoonbill, spade-, paddle-, or shovel-fish, and is by some considered a great delicacy for the table. The teeth are very distinct when young; but when old, the species become edentulous, in which state it has been mistaken for a different form.
In Acipenser the fusiform body is prolonged into an acute snout, projecting beyond the transverse protractile mouth, and with several depending cirri. The skin is furnished with several rows of large plates, more or less developed, with ganoid granules, or smaller plates, interspersed. Of the larger plates there is one row on the back, one on each side, and two or more on the belly. The preoperculum is absent, and the caudal termination of the vertebral column is provided with a fin above. The sculpture on the head, and the arrangement and character of the plates, furnish good specific characters. The American species of this mostly fluviatile species have not yet been distinctly defined; the number, however, is quite considerable. They bear the generic name of sturgeons, and attain to a great size. The oil is sometimes collected for economical purposes, and the flesh by some is highly esteemed. On the Hudson river it is called "Albany beef," from its frequent exposure in the markets of that city. The European Acipenser ruthenus, and A. sturio, are represented in pl. 81, figs. 24 and 25. It may perhaps be worthy of mention, that most of the isinglass of commerce is furnished by the air-bladders of sturgeons. In the genus Scaphirhynchus, found associated with Polyodon, we have a much greater development of the dermal plates than in Acipenser. The posterior half of the body is entirely embraced by these sharply angular plates, and is of a remarkably depressed, though highly attenuated form. The upper edge of the caudal extremity of the body is bordered by imbricated scales, instead of regular fin-rays. The snout, also, is broader, and more shovel-shaped than in Acipenser, and the whole fish more slender. But one species, the Scaphirhynchus platirhynchus, or shovel-fish of the Mississippi waters, is known.

The remaining families of the Chondrostei are composed of entirely extinct species, and among them we find the oldest forms known to the
palecontologist. The family of Cephalaspides exhibited features so bizarre, as to cause them to be placed anywhere else than among fishes: it was Agassiz whe first recognised their true character, and placed them in the position to which they properly belong. The essential character is to be found in the broad, tesselated, bony plates, which encircle the head and a part of the trunk. The form, number, and arrangement of these, vary greatly in the different genera, although they possess one general character in the enamel coating, the smooth inner face, and the variously marked or granulated exterior. The head is covered by a simple or compound, always flat, buckler, of various characters. The body, like the head, is flat, and variously covered with plates. The fins exhibit a peculiar development, the ventrals are entirely absent, the pectorals of a narrow rayless plate, situated behind the head, produced more or less into a wing. With a single exception, the caudal fin is entirely wanting, and the dorsal and anal, when developed, never attain to any considerable size. In the structure of the skeleton they exhibit some close affinities to the sturgeons. $\mathrm{N} o$ species have as yet been found in North America.

The concluding family of the Chondrostei, Holoptychit, is composed of fishes with slender and powerful bodies, thick heads, wide jaws, and well developed fins. The jaws are furnished with small, sharp teeth, at the edge, and with a few others that are very large, strongly conical, at considerable distances apart; these, with the fins, indicate a highly predacious character. All the teeth are covered with vertical folds, which become lost towards the apex. The scales, in form and arrangement, resemble those of the true cycloids, and overlap each other in oblique series. Their coating of enamel, however, indicates clearly their ganoid structure. Even the bones of the head are covered with enamel, and variously sculptured on the surface. The fin rays and bones, as far as these exist, possess internal cavities, an unique character peculiar to these fish. The genera belong to the old red sandstone and the Devonian, but it is doubtful whether any species, either of this family or of the preceding, occur in North America. The reported occurrence of Holoptychius nobilissimus in Pennsylvania and New York wants confirmation.

Before commencing the consideration of the truly cartilaginous fishes forming the division Selachii, as distinguished from the Teleostei and Ganoidei, it will be necessary to dwell for a moment upon the ninth order of the tabular classification placed at the head of our article, and constituted by a single family, the Sirenoider. This family includes two species, of, perhaps, two different genera, the Lepidosiren paradoxa from Brazil, and Lepidosiren, perhaps Protopterus annectens, from the Gambia River, Africa. By most Continental naturalists the Lepidosiren is considered to be a reptile, while Professor Owen is confident as to its ichthyal character. It in fact combines the characters of both reptile and fish, to a most remarkable degree, the African species inclining more to the latter, the South American to the former. Deferring further consideration of the subject until we come to the class of Reptiles, we proceed to the subject of the Selachii, above referred to.

The genuine cartilaginous fishes are distinguished from the two other grand divisions by the undivided skull, with independent jaws, by the covering of all the cartilages with a fine mosaic of tessellated particles of bone, by the fixed gills with spiracles, by the presence of branchial bones, by the absence of gill covers, by the extension of the labyrinth of the ear out to the skin, and by the structure of the organs of generation.
In spite of all these differences, however, there are, as already mentioned, many analogies between the Selachii and the Ganoidei, these consisting of the number of valves in the aorta, the muscular investment of the bulbus arteriosus, which pulsates like a true heart, and of other features already mentioned. The most striking difference lies in the peculiar sexual apparatus of the former. The Selachians of the present day are divided into two orders, the Plagiostomi and Holocephali. The former have distinct jaws, and a well defined, often entirely osseous, column of vertebræ. In the Holocephali, or Chimerer, the jaws are fused to the skull, and the vertebral column is only a soft vertebral cord. The two divisions are represented by both fossil and recent forms in variable proportion.

The Holocephali, in addition to the characters already mentioned, have a single lateral gill opening; two dorsal fins, the first being a simple dentated spine ; the tail running out into a fine thread. The teeth are composed of great plates, which rest upon the uninterrupted anteriorly prolonged base of the skull; upon the lower jaw they articulate in the cartilage of the skull. The two living forms are Chinera and Callorhynchus, the former well deserving the name. The Chimara has a simply conical snout, the second dorsal immediately behind the first, and extending to the tip of the tail, which is drawn out into a long filament. Chimara monstrosa, the only species, is abundant in the Arctic seas. Callorhynchus has a fleshy appendage to the snout ; the second dorsal commences over the ventrals, and terminates opposite to the subcaudal fin. The single species, Callorhynchus australis, is a native of the Antarctic Ocean.

The order Plagiostomi has a cartilaginous cranium, in which the individual parts are not recognisable; cartilaginous dentigerous jaws attached to the cranium, also by cartilages. The face is prolonged anteriorly; and in its under side, at a greater or less distance from the extremity, opens the broad transverse mouth, near to which are five or more lateral spiracles or gill openings, before it the two nasal fossa. The vertebral column always exhibits greater or less indication of transverse separation. Ventrals and pectorals are always present, but like the other fins they are soft and fleshy. The external investment consists of shagreen, or of small plates variously modified. The teeth are placed on the roof of the mouth and the lower jaw. The swimming bladder is wanting, and the intestine is provided with a spiral valve. We distinguish two principal divisions, or sub-orders, Squalida, sharks, with the branchial fissures lateral, eyelids free, scapular arch incomplete, pectoral fins distinct from the head, body slender, fusiform; and Raiada, or rays, fish with depressed body, spiracles, five branchial fissures on the ventral surface of the body, beneath the pectoral fins, the upper eyelid grown to the eye, or eyelids absent,
the scapular arch complete, and the pectoral fins continuous with the head.

Sub-order 1. Squalida.

A. Two dorsal fins, one anal. First dorsal above, or posterior to the ventral.
Fam. 1. Scyllinı. With spiracles, and no nictitating membrane; five branchial fissures; an oral groove ; pectorals broad ; anal anterior, posterior, or inferior to the second dorsal. Caudal elongated, truncate, or rounded at the extremity. No caudal furrow. Teeth with a median cone, and one to four lateral denticles. Colors lively. Ex. : Scyllium, Pristiurus. Recent genera seven.
B. Two dorsal fins, and one anal. First dorsal between the pectoral and ventral.
a. Without spiracles, and with a nictitating membrane.
Fam. 2. Carchariadini. Teeth triangular, flat, with cutting edges, smooth, or denticulated. Anal fin opposite the second dorsal, or nearly so. A small triangular notch generally present, above and below the base of the caudal fin. The nostrils have generally a small triangular valve at the upper border. Convolution of the intestinal valve, longitudinal, not helicoid. Scales small, skin smooth. Ex.: Carcharias, with five sub-genera (Prionodon obscurus, United States), Sphyrna. S. zygena is the curious hammer-headed shark. Several species of the genus are found fossil in the United States. Pl. 84, fig. 1, represents Carcharias verus ; pl. 81, fig. 26, Sphyrna malleus, the hammer-headed shark of Europe.

Fam. 3. Trienodontini. Valve of the nostrils broad, or even prolonged into a cirrus. Teeth much as in Scyllini. Anal and second dorsal nearly opposite. Caudal notches or furrows, present, or absent. Scales with three to seven ridges. Ex. : Triænodon.
b. With both nictitating membrane and spiracles.
Fam. 4. Galeini. Spiracles small, longitudinal, or round. Teeth in both jaws equal, flat, with cutting edges ; the jaws oblique externally, anal nearly opposite to the second dorsal. The upper lobe of the caudal fin with one or two notches anterior to the extremity. Convolutions of intestinal valve either longitudinal or helicoid. Scales small, three-ridged, with a central point. Ex. : Galeus.

Faim. 5. Scylliodontini. Snout obtuse. Valve of nostril broad, and tolerably long. Spiracles moderate. Teeth as in Scyllini, one large central fang, with several lateral at the base. Shape of the fins as in this family, the lower lobe abortive, and the caudal furrow wanting. Ex. : Triakis.

Fam. 6. Mustelini. Spiracles large. Nictitating membrane appearing like a duplicature of the lower eyelid. Teeth depressed, without point or cutting edge, as in Raiada. First dorsal nearly intermediate between pectorals and ventrals. Valve of intestine helicoid. Ex. : Mustelus.
c. Nictitating membrane wanting, spiracles present.

Fam. 7. Lamnini. Branchial apertures large, and anterior to the pectorals. Caudal furrows evident. Caudal fin semilunate. A ridge on each side of the tail. Spiracles very small. Intestinal valve helicoid. Second dorsal, and the anal small, and opposite to each other. Ex. : Lamna, Oxyrhina, Selache. S. maxima is the gigantic basking shark of the coast of the United States.

Fam. 8. Odontaspidini. Branchial apertures large, all anterior to the pectorals. Anal and second dorsal large. Upper lobe of the caudal fin elongated, as in Carcharias. The lateral ridge of Lamnini is wanting. Ex.: Odontaspis.

Fam. 9. Alopiadini. Snout short and conical. Spiracles very smali. Nostrils small, with a small valve at the upper border. No labial cartilage. Branchial apertures small, the last standing over the pectorals. Teeth triangular, flat, with cutting undenticulated margins, the same in both jaws. Anal and second dorsal opposite, very small. Upper lobe of caudal fin very long; a furrow at its base. Intestinal canal helicoid. Ex. : Alopias.

Fam. 10. Cestracionini. Mouth at the anterior border of the snout. Nostrils extending to the mouth. Distinct spiracles. A spine before each dorsal. Ex. : Cestracion. The single living species, C. phillipsii, or PortJackson shark, is of great interest on account of the peculiarities of its anatomical structure, which exhibit a close relation to many extinct forms.

Fam. 11. Rhinodontini. Mouth and nostrils at the anterior extremity of the flat head. Teeth exceedingly small, conical, very numerous. Spiracles very small. Ex. : Rhinodon.
c. An anal, and but one dorsal.

Fam. 12. Notidani. A median tooth in the lower jaw. Ex.: Heptanchus, Hexanchus.
d. Anal fin absent.

Fam. 13. Spinicini. A spine before each dorsal. Ex.: Acanthias, Spinax. Pl. 81, fig. 27, represents Spinax acanthias.

Fam. 14. Scymnini. Dorsal fins without spines. Ex.: Scymnus.
Fam. 15. Squatinini. Pectoral fins very broad, the base extending to the head, but separated by a fissure. At the bottom of this fissure are situated the branchial apertures, which follow in close succession, and are only separated by membranous laminæ. Ex. : Squatina.

Sub-order 2. Raiada.

Fam. 16. Pristidini. Body elongated; snout prolonged into a long saw, with teeth implanted in the two edges. Ex.: Pristis. Pristis antiquorum is the saw-fish found in various parts of the globe ($p l .82, f i g .2$).

Fam. 17. Rhinobatini. Body rhomboidal, elongated; tail thick, fleshy ; dorsal fins two, remote ; caudal fin terminal ; teeth minute, paved, arranged in quincunx. Ex. : Rhinobatus.
Fam. 18. Torpedinini. Body orbicular; head margined by the extended pectorals; tail thick, depressed at the base, moderately long, the fin terminal, large, triangular ; teeth small, acute ; a peculiar electrical apparatus in
the anterior part of the body. Ex.: Torpedo. An American species of this family has recently been described.
Fam. 19. Rajini. Head margined by the broad pectoral fins; body rhomboidal ; tail slender, elongated ; two dorsal fins; teeth slender, numerous, polymorphous, arranged in quincunx. Ex.: Raia, Uraptera. The species of Raia are numerous in various parts of the world. Raia batis is represented in pl. 85, fig. 1.

Fam. 20. Trygoninı. Head margined by the broad pectorals; tail slender, with a strong serrated spine ; teeth minute, paved, arranged in quincunx. Ex.: Trygon.

Fam. 21. Anacanthini. Similar to the last, but without the caudal spine. Ex.: Anacanthus.

Fam. 22. Myliobatini. Head ovate, separate from the broadly acuminate pectoral fins; tail very slender, elongated; dorsal fin with a strong serrated spine ; teeth large, paved somewhat like mosaic. Ex.: Myliobatis, Atobatis, Rhinoptera.
Fam. 23. Cephalopterini. Head truncate, with foliaceous appendages on each side; pectorals very broad, laterally extended; tail very slender, elongated; dorsal fin with a serrated spine; teeth minute. Ex.: Cephaloptera. Species of this family, some of them of immense size, are taken in Delaware Bay, as well as on other parts of the coast of the United States. They are universally known to American fishermen by the name of "devil-fish," and individuals have been captured measuring eighteen feet across the back.

Fish belonging to the family Trygonini, above referred to, abound in the sounds which extend along the coast of New Jersey, where they are called "sting-rays," or more commonly "sting-rees." They have been known to inflict severe, and often very dangerous wounds, with the spine of the tail, when handled incautiously.

In the above enumeration of the families of the Selachii we have departed from our usual custom of illustrating the different sections by special reference to North American genera and species. Unfortunately, the materials at our command, owing to the little attention paid to the subject by American naturalists, are too scanty to permit any accurate comparisons or indications of the kind desirable. The fossil species have recently been ably worked up by Dr. R. W. Gibbes in a monograph published in the Journal of the Academy of Natural Sciences. From this valuable paper we find that there are 6 fossil species of Carcharodon, 6 of Galeocerdo, Hemipristis 1, Glyphis 1, Sphyrna 3, Notidanus 1, Lamna 9, Otodus 7, Oxyrhina 9, Pristis 1, Spinax 1, Hybodus 1, Myliobatis 2; making 13 genera, and 48 species.

VERTEBRATA.

Class II. Reptilia.

The Reptilia are cold-blooded vertebrates like fishes, but are distinguished from these by the pulmonary respiration, the heart with three chambers, the presence of organs of motion other than fins, and by various other points of organization.

The circulation of the blood is incomplete; less complete even than in fishes. The heart consists of two auricles and one ventricle. The venous blood, collected from the various parts of the body, accumulates in the vena cava, and thence passes into the right auricle. From the right auricle it passes into the single ventricle, and by it is impelled through the aorta into all parts of the body. A small branch leads to the lungs, and the blood when purified is returned to the left auricle, which drives it into the ventricle. This ventricle thus receives venous blood from one auricle, arterial from the other, and it is a mixture of this kind which is distributed through the body. The naked skin of the Batrachian reptiles serves a good purpose in the decarbonization of the blood, owing to the extensive distribution of bloodvessels immediately on the under side of the skin.

The blood of Reptilia is characterized by the possession of the largest globules to be found in the entire vertebrate sub-kingdom. These, in the tailed batrachians, as Siren, \&c., are distinctly visible to the naked eye. As in fishes and birds these globules are elliptical in outline ; in mammalia, with the single exception of the Camelida, they are circular.

The lungs lie free in the abdominal cavity ; these, with the heart, not being separated from the other viscera by a diaphragm. The cells of the lungs are of greater or less subdivision ; in many of the North American Salamandra they are mere sacs. Reptiles are better able to sustain the deprivation of oxygen than other vertebrates: this, however, depends greatly upon the temperature and season. Thus a frog will bear the deprivation of atmospheric air in summer for a space of time not much exceeding two hours, while in winter it can sustain its absence for several days.

A point of great physiological interest in the structure of reptiles consists in the fact that some forms present, at different times of life, both fish-like and reptilian features of respiration. Thus the salamanders and frogs, when young, respire for a certain length of time, for years in some, by means of external gills, the lungs being entirely rudimentary. In course of time the lungs acquire a greater development, and the gills disappear. This fish-like condition of things, transitory in some, is permanent in others, as in Menobranchus, Siren, and Proteus, which throughout life possess external gills.

So true is it that the skin in the naked reptilia is accessory to the function of respiration, that the experiment has been tried with perfect success as to how far respiration might be carried on entirely by means of the skin. Thus the lungs of the frog have been tied in such a manner
as to prevent the access of blood to these organs, yet the animal appeared to experience but little inconvenience.

All Reptilia are cold-blooded, that is, are not able to maintain a uniform temperature, this being regulated, within certain limits, by that of the external air. Variations of external temperature, however, exercise a great influence upon the functions of these animals. Many species are sensibly affected by a temperature of $120^{\circ} \mathrm{F}$., and the other extreme of cold retards the activity of living animals, and even destroys them altogether. The salamanders, however, are capable of sustaining a considerable degree of cold without its having any effect upon the system. Thus Notopthalinus viridescens has been seen frozen up in ice, yet exhibiting a considerable degree of activity when liberated. In many reptiles torpidity ensues upon a certain reduction of temperature.

Most reptiles possess the four typical vertebrate extremities, two anterior and two posterior, serving either for running, leaping, or swimming. These, however, are not characterized by external development, being generally short in proportion to the rest of the body, so that the belly either drags along the ground, or nearly touches it. The Ophidia are, however, destitute of limbs, either entirely, or possess them only in a rudimentary state. Other forms again, as among the Scincide, have only two hind feet, while others, as Siren, possess the anterior pair alone.

There is a much greater difference in the skeleton of different forms of Reptilia than among birds and mammalia. The bones are characterized, microscopically, by the cellular structure and the almost entire absence of central cavities. The cranium is exceedingly small in proportion to the entire head. The skull, on examination, will be found to exhibit more pieces than that of the mammal or bird, owing to the fact that fusion among the individual elements does not take place to anything like the extent observed in the classes just mentioned. Certain bones of the mouth, as the sphenoid and vomer, are armed with teeth; a condition of things which does not again recur, although existing in fishes. In the scaly reptile the articulation of the vertebral column with the head is by means of a single occipital condyle placed below the foramen. This is spherically convex, and produced by the combination of the basi- and ex-occipitals. In the naked forms, however, the basi-occipital retreats from this position, and the single condyle is divided into two, one on each side. These thus represent mammalia in their double condyles, while the squamiferous forms resemble birds and fishes, in having a single occipital articulation between the skull and vertebral column.

The vertebral column of the reptiles is highly characteristic of the class. In most recent adult forms the articulations are spherically convex at one extremity, and spherically concave at the other. The dried skeletons of some of the perennibranchiate batrachians, as Proteus, Menobranchus, as well as of the young caducibranchiates, exhibit the biconcave structure of the fish vertebra. This, however, is only an apparent deviation from the law, as in most instances it will be found that the gelatinous ball, representing the convex part of the articulations, has dried up, and thus disappeared.

ICONOGRAFHIC ENCYCLOPEDIA.-VOL. II.

The number of vertebræ varies exceedingly. Thus in Pipa there are seven, and in Python upwards of four hundred. The ribs, also, occur in various stages of development. In many of the anourous batrachians, they are entirely wanting. They are very numerous in serpents, where, however, they are not attached to a sternum. In the Crocodile family, the entire thorax is highly developed. In the Chelonia, the ribs and sternal plates are so expanded as to form a continuous investment for the body. The entire bony structure of the turtles presents considerable deviations from the usual type.

Each class of vertebrate animals possesses a form capable of sustaining itself in the air, to a greater or less extent. Thus, among fishes, the Dactylopterus and E.cocatus exhibit a power of feeble flight, as a means of escape from their rapacious fellows. Flying is the rule, not the exception, in birds. The bat, among mammalia, can sustain itself in the air by a true process of flight. The Pteromys, or flying squirrel, and some other forms, can glide through the air for a certain distance by means of the expansion of the lateral folds of skin, which are stretched by the agency of the limbs. In reptiles, the Draco volans exhibits the same power to the degree possessed by the last-mentioned mammal. A lateral fold of skin, supported on several ribs, enables this animal to pass to a considerable distance through the air. An extinct form of reptile, the Pterodactylus, possessed a power of flight much like that of the bat of the present day. The general apparatus is similar in both, the principal osteological difference being this, that in the reptile but one finger was used to stretch the wings, while in the bat four are employed for the purpose.

The muscles of reptiles are strong, but not well provided with blood, and consequently exhibit rather a bleached appearance. They retain their irritability for a long time after life may reasonably be supposed to be extinct. Thus the head of the snapping turtle, Chelonura serpentina, will snap at a stick touching it, twenty-four hours and more after decapitation. The removal, too, of a great part of the brain, or the severing of the spinal cord, is far from producing the same immediately injurious effect as is found to supervene in birds and mammalia.

The brain of reptiles, although superior to that of fishes, is yet considerably inferior to that of birds. It, however, fills up the cranial cavity to a much greater degree than that of the class last described. The surface of the brain is smooth, without lobes. The two halves of the cerebrum are ovate, and are hollowed out into capacious ventricles. The optic lobes are exposed, or not covered by the backward prolongation of the cerebrum. The cerebellum is minute, and nearly median. The medulla oblongata is large in respect to the rest of the brain, and the nerves have a proportional thickness at their exit, exceeding the higher vertebrata in this respect.
Two modifications of the skeleton are met with among reptiles, a naked skin as in the Batrachia, and a series of scales or plates as in the remainder of the class. The tessellated epithelium covering the naked skin is continually being shed, in patches, or entire, and is generally swallowed by the toad and frog. The epithelium of the scaled reptiles is generally shed in
one piece, as may be seen to great advantage in the case of the Ophidia. This epithelium is continuous over the cornea in the serpent, and comes off from the latter in a sub-transparent disk like a watch-glass. It is to an opacity resulting from the partial separation of this epithelium from the subjacent cornea that the temporary blindness of these animals is due. Some of the naked reptiles are provided with glands, distributed partially or entirely over the whole surface, from which a more or less acrid juice exudes. This may be seen conspicuously in the toad, and the salamanders of the genus Ambystoma.

The apparatus of hearing also exhibits a condition intermediate between that of the fish and the bird. In the fish there is no external ear and no tympanum, the apparatus being represented only by the internal ear. A tympanum is observed, for the first time, in the anourous batrachians; and a meatus exterior to this in most of the Squamifera, the Ophidia excepted. The apparatus of vision is not very highly developed. The sclerotic membrane, in some cases, has a bony ring, developed either in one piece or in several, as in birds. The nasal apparatus is but slightly developed : the posterior nares perforate the palatal bones. The tongue is sometimes thick and fleshy, in which case it generally serves as an organ of prehension, as in the Batrachia, which catch their insect prey in many cases by means of a riscid secretion borne in the tip of the tongue. In the chameleon the tongue can be protruded to a great length for the same purpose. In general, this organ is thin and horny, or cartilaginous. It is sometimes bifurcated, as in the serpents.

All reptiles, the Chelonia, and some of the caudate batrachians excepted, have teeth, whose office is rather one of prehension than of mastication. These teeth are either inserted in sockets, as in the Rhizodonta, represented by the alligator; or, secondly, anchylosed to processes of the jaws; or, thirdly, attached to the inside of a thin vertical plate passing round the mouth. Teeth may also exist in the vomer, as in the North American salamanders. The peculiarities of the teeth in serpents will be treated of in the appropriate place.

There is but slight development of salivary glands in most reptiles; owing to the great size of the throat, the food is gulped down almost immediately, without remaining in the mouth. The œesophagus expands into the stomach, from which it is, in many cases, scarcely distinguishable. The most striking exception is found in the alligator, whose stomach presents a very strong resemblance to the muscular gizzard of a bird. The intestinal canal is short and without cœcum. A slight constriction only separates the greater from the lesser intestine. The fæces and urinary secretions are all emptied into an expansion of the rectum, the cloaca; and there is but one orifice of discharge for all secretions and excretions. Through, or into, the same cloaca, pass the oviducts of the female and the vasa deferentia of the male.

The organ of voice is not generally distributed, occurring to any extent only in the anourous batrachians and the crocodiles. The hiss of the serpent and tortoise can hardly be termed voice.

The influence of temperature upon reptiles has already been adverted to: we will only add that in the temperate zones many species exhibit a winter sleep; while this takes place in summer with inhabitants of tropical regions. Soft mud, with many, forms the medium in which they spend this period of repose. The probable effect upon the more vital functions consists in a sluggish and interrupted circulation, and a very slight respiration. Digestion must be entirely destroyed for the time.

With regard to their geographical distribution, no reptiles whatever are found in the far north. They occur sparingly in the higher temperate regions, increasing in number to the tropics.

The fecundity of many reptiles is very great. The frogs and toads lay as many as 12,000 eggs, salamanders from 10 to 40 , crocodiles from 20 to 60 , serpents 10 to 100 , and turtles from 20 to 30 . In some, as in many lizards and serpents, as well as in a few salamanders, the eggs are developed before exclusion from the body. This, however, must not be mistaken for the viviparous placental reproduction of the mammalia. In most cases the eggs are laid, covered lonsely with sand, mud, or leaves, and developed by the solar heat: in others, again, the animal itself incubates, as in Python tigris. Special peculiarities of reproduction will be referred to under the appropriate head. The external investment of the ovum may be simply membranous, or else calcareous: a mucous coating is found in the case of such species as deposit their eggs in the water.

The number of reptiles is not fully known, new ones being described almost every day. Upwards of 1500 are already ascertained to exist, and 2000 may not be beyond the maximum. The Ophidia are perhaps the most numerous, and next to these the Sauria; the Batrachia are more abundant than the Chelonia. Furthermore, while serpents preponderate in torrid regions, the batrachians are more properly inhabitants of the temperate zone. Thus, in North America alone there are upwards of 80 species, 50 of them belonging to the urodelian, or tailed forms.

Reptiles live partly on land alone, partly in water alone; others, again, occupy either indifferently, or at different times of the year. For this reason, the latter have received the name of Amphibia from some zoologists.

The flesh of reptiles is not used as food to any great extent, although there is no doubt of its extreme excellence in many cases. In various parts of the world, however, serpents, large saurians as the iguana and alligator, turtles, frogs, \&c., are favorite articles of food. The eggs of turtles, and of the iguana, are highly prized. They are extracted, by some South American tribes, from the oviduct of the living iguana, without any serious injury to the animal. The shell of the Chelonia imbricata, or hawks-bill turtle, furnishes the tortoise-shell of commerce. The teeth of the alligator furnish ivory of an excellent quality. Beyond these instances but little economical value attaches to reptiles.

Sub-class 1. Reptilia nuda.

Order 1. Batrachia.

We have already spoken of the general characteristics of Reptiles as a class. It now becomes our duty to refer more particularly to the distinguishing features of the subdivisions, taking them up in the order of the preceding systematic arrangement. Our space will not permit us to treat of these interesting animals, beyond giving a brief summary of the families, recent and fossil; with more particular reference to such genera and species as are noteworthy for special properties or peculiarities, or as being conspicuous inhabitants of North America.

The most striking external character of the Reptilia nuda, or the Batrachia, is to be found in the perfectly naked, moist skin. This single character, conspicuous at first glance, does not yet express all the points of difference ; and indeed, of itself, would be far from justifying us in making a distinct class of the Batrachia, as some authors have done, or even perhaps a separate order. An important feature is to be found, as already mentioned, in the double occipital condyles, one on each side of the foramen occipitale, constituted by processes from the ex-occipitals, into which the basi-occipital of Professor R. Owen does not enter as in the Squamata. The skull is depressed and broad, the face having a great development at the expense of the cranium, which, with its inclosed brain, is small. It is unnecessary for us, in this general description, to do more than present the naked skin (the only exception to which is to be found in the Peromeles), and the double condyles (the latter shared, however, by the Sauroid Labyrinthodonts) : the other peculiarities, by which the Batrachia differ from the scaled reptiles, will fall with the greater propriety under more special heads.

The Batrachia are appropriately divided into three orders: the first, Batrachia urodela, having a distinct tail, with the limbs either four (represented by the Salamanders) or two ; the Batrachia anoura, with the tail wanting, but with four legs, always present in the adults, as in the frogs and toads; and the Batrachia peromeles, with very minute scales, but without limbs and tail, the anus being situated at the extremity of the body, as in the Anoura. Lepidosiren would constitute a fourth order, by its introduction into the class of Reptilia, but it has already been referred to the class of fishes, and the characters of the species are such as almost to place it in either at pleasure:

There is no order in the animal kingdom more interesting to the naturalist and physiologist than the tailed batrachians. This results not only from the variety of forms, but the progressive changes which are observed from an inferior state to a higher, these changes not restricted to the embryonic period of existence, as in most other animals, the rest of the Batrachia excepted, but extending over periods sometimes of considerable length. The two principal sections are characterized, the one by the permanent exhibition of lateral spiracles or holes in the neck, the other by
their temporary existence only. Now taking the full series of metamorphoses exhibited by animals of this latter division as the standard, and establishing, as we may, a number of successive stages of development through which the animal passes from the egg to the adult condition, we shall find in the former division instances of different species coming up to each one of all these stages, and its progress there arrested, and its then condition becoming permanent. This will be more fully illustrated in subsequent observations. The characters of the Batrachia urodela, as an order, consist, among others, in the permanent tail, the rudimentary ribs, the limbs four or two, the absence of a sternum, the simple lungs, the teeth in both jaws, and the absence of an external ear. They are distributed throughout the north temperate regions of both continents, especially Northern America, Asia, Europe, Northern Africa, Japan, and the Sandwich Islands. Of all these regions North America is most favored in this respect, all the Tremadotera, with two exceptions, and the great majority of the Atredodera, being found here. Japan comes next in regard to variety of form, although not in number of species; in this respect, as in many others, exhibiting a remarkable relation to temperate North America.

To give some idea of the changes which are exhibited by the tailed batrachians, in their progress from the embryonic condition to the adult state, we will take a particular example in the case of a species of Ambystoma, A. punctata, a salamander quite common in the United States, and whose descriptive features will be referred to hereafter. Early in April, or towards the end of March, large masses of a gelatinous matter may be observed in ditches, pools of water, or mountain streamlets, which on closer inspection will be found to consist of a number of hollow spheres, about a quarter of an inch in diameter, embedded in or combined together by a perfectly transparent jelly. Within each sphere is a dark object, a spheroidal yolk, which in the course of some days becomes considerably elongated, and exhibits signs of animation. Omitting, as unsuited to our pages at present, any account of the embryonic development of the animal, we resume its history at the time when its struggles have freed it from the shell of the sphere in which it was inclosed. At this time it is about half an inch in length, and consists simply of head, body, and tail, the latter with a well developed fin, extending from the head and anus to the extremity of the body. Respiration is performed by means of three gills projecting from each side of the neck, of very simple construction, however, and with but few branches. The absence of limbs is compensated by the existence of a club-shaped appendage on each side of the head, proceeding from the angle of the mouth, and representing the cirri observed in some adult salamanders. By means of these appendages, the young salamanders are enabled to anchor themselves securely to objects in the water. In the course of a few days a tubercle is seen to form on each side, just behind the head and under the gills, which elongates, and finally forks at the end, first into two, then three, and at last into four branches, thus exhibiting the anterior extremities, with the four fingers, which latter,
in the larva, are very long. Before the forelegs become completely formed, those behind sprout out in a similar manner, with first three, then four, and finally five toes. During this time the gills have increased in the number of branches, and finally exhibit a beautiful arborescent appearance, in which the circulation of the blood can be distinctly seen by means of a simple lens. At the time, then, that the individual has attained its perfect larval state, it has four legs, with four fingers on the anterior, and five on the posterior ; the jaws are wide, the mouth well provided with teeth; the superior maxillary bones, however, not developed, and the pterygoid bone with card teeth, as in Proteus, Menobranchus, and Siren. The animal presents a perfect fac-simile of the Mexican axolotl, which, although by many naturalists considered to be a permanent form, is, in all probability, only a larval state of some very large species of salamander. Our animal is now exceedingly voracious, devouring tadpoles, and weaker larvæ of its own species, with great avidity. Its entire food, in fact, has consisted throughout of animal matter in some form or other. This state of things, in all probability, continues from one spring to the next, or for nearly a year: at the expiration of which time the gills will be seen to wither gradually away, the lateral holes in the neck to grow together, and all these traces of larval life finally to disappear. The superior maxillary becomes developed and ossified, the temporary teeth in the roof of the mouth vanish, the lungs acquire a great development, yellow spots break out of the dark ground of the body, and finally the animal leaves the water, never to return to it again except for a short period in the spring of the year, when it is engaged in the function of reproduction. Such is a brief outline of these changes, which vary in different genera and species.

Proceeding now to the more particular consideration of the Batrachia urodela, we commence, first, with the sub-order Trematodera. Here we find that the apertures in the side of the neck remain open throughout life, and in several genera even the gills are persistent. The first genus that would come properly here is that of Siredon, or the Axolotl, whose distinguishing characteristic is to be found in the opercular flap being detached from the subjacent integuments, and continuous across the throat. The gills and gill-openings are very highly developed, the tail strongly compressed, and provided with a well developed fin. Toes, four in front, five behind, all much elongated. Two species have been described, the one S. mexicanus, from the lakes in the vicinity of the city of Mexico, the other S. maculatus, from the New Mexican Rio Grande. For reasons above mentioned, we prefer to consider them as larvæ, and proceed to the consideration of the genus Proteus. The single species of this genus, P. anguinus, has long been an object of great interest to naturalists, on account of its individual features, as well as the circumstances under which it is found. It is an inhabitant of the subterranean waters of Sittich in Lower Carniola, and of the great cave of Adelsburg on the main road from Trieste to Vienna. Occasionally it has been caught in the external outlets of these waters, but, like the blind fish of the Mammoth Cave of Kentucky, its usual residence is at a distance of some miles from
the entrances of the caves. Its color is a pale reddish white, and, like the fish above mentioned, it is blind, although rudiments of eyes are discoverable under the integuments by dissection; differing in this respect from the Amblyopsis speleus, or the blind fish, which has not even rudiments of eyes. The body is elongated and slender, the head depressed, but the muzzle rather broad; the anterior feet are provided with three toes, the posterior with two. The gills are well developed, but, unlike the Axolotl, the opercular flap is not free, but united to the subjacent integument, so that there are simply the two lateral cervical slits or fissures. It in fact presents a magnified and quite striking likeness to the larva of the American Spelerpes longicauda, with the exception of the adnate opercular flap. The fish-like character is also exhibited in the biconcave vertebræ, which, however, may be produced by the drying up in the prepared skeleton of the gelatinous bulb which constitutes the convex articulation of the higher larvæ. It is highly probable that Proteus is ovo-viviparous, although the fact has not been distinctly ascertained. Closely related to the Proteus is the genus Necturus, peculiar to North America. The form of this genus is stouter than that of the last, and there are four toes to each foot. Of the three species known, the first, N. lateralis ($p l .88$, fig. 2), is an inhabitant of the Mississippi, and the great lakes, Superior, Huron, Michigan, Erie, and Ontario; the second, N. maculatus, lives in Lakes George and Champlain; while the third, N. punctatus, and differing from the others by its uniform markings, is an inhabitant of the Santee River, South Carolina. In common with the Menopoma, they are termed "alligator," in the central portion of the United States; "salamander" or " water-puppy" in some other districts.

The genus Siren is also an inhabitant of the United States, being confined, however, to its southern portion. Here, with the external gills of less development than in the preceding genera, the hind legs are entirely wanting, the two anterior being provided with four toes each. The lungs in this genus play a more important part than in the last; the animal, when in full activity, being obliged to communicate occasionally with the air. One species, S. lacertina ($p l .88$, fig. 1), attains to a considerable size, and although having the reputation of being venomous, is perfectly free from any power of offence. It is probable that the fossil genus Orthophya, from Eningen, belongs to this family.

The family of living Menopomide, like that of the Proteida, is, with a single exception, confined to North America. The branchiæ, which are found to exist permanently in the preceding family, here disappear after a certain length of time, leaving a simple perforation on each side of the neck. This, however, is closed up in the genus Megalobatrachus, from Japan. The genus Amphiuma is known by the anguilliform body, rudimentary feet, and pointed head with two parallel series of teeth in the upper jaw. Of the two species known, one having two-toed feet is found generally in the Southern States; the other, with three toes, occurs in the southern part of the Mississippi valley. Menopoma has a stout, flattened body, broad and much depressed head, eyes very minute, skin corrugated
into numerous folds, four toes on the anterior, and five on the posterior feet. The tail is much compressed, and the soles of the feet margined with a fold of skin enabling the animal to move with facility in the water. It is known generally as the "alligator," although, of course, improperly; and spends most of its time in the water, very rarely coming upon land, except possibly at night. These animals are exceedingly voracious, feeding on insects, fish, and, in some known instances, small mammalia. They bite at a baited hook, in the spring and autumn, with as much greediness as fishes, and are frequently caught in this way, to the great disappointment of the western angler, who, in most cases, is so much afraid of his prize as to cut the line rather than risk the danger of contact with so repulsive an object. No danger exists, however, as the animal, with his short teeth, is unable to produce any injury, even if willing to do so. It sometimes attains a large size, as upwards of two feet, although the average is, perhaps, twelve or fifteen inches. Little is known of its larval history, except that it loses its external gills when only a few inches long. The known species are M. alleghaniensis, from the waters of the Mississippi, and M. fusca, from those of South Carolina and Georgia. The next, and last, living genus of this family is Megalobatrachus, the most gigantic of all living Batrachia urodela. It resembles Menopoma closely in appearance, the principal difference being found in the entire obliteration of the lateral cervical foramen. The single species, M. sieboldtii, inhabits certain elevated lakes in Japan, where it grows to a great size. One specimen, now or recently living in the Museum at Leyden, exceeds three feet in length, weighing upwards of eighteen pounds.

The passage from the Menopoma to Megalobatrachus is to be found in a gigantic fossil genus, Andrias, from the fossiliferous marls of Eningen. Scheuchzer, who published the first description of the single species, A. scheuchzeri, called it Homo diluvii testis; being impressed with the idea that the skeleton obtained was human, and, as he thought, entombed by the Noachian deluge. In size it is about equal to that of the Japanese giant, from which it differs in having the peculiar structure of the petrous and pterygoid bones, as well as the great breadth of the head observed in Menopoma. The anterior toes are longer in proportion than in the allied genera.

The sub-order of Atretodera, to which we are led by the genus Megalobatrachus, are without branchial apertures or gills when in the adult state. Although there is a great variety of form in this sub-order, yet it is difficult to constitute more than one family, that of the Salamandrina. Of the three principal regions of the salamanders, Europe, Japan, and North America, each is characterized by some peculiarity of structure. Thus while most of the European forms have parotid glands, like those of the toad, and one at least of the Japanese is provided with temporary claws, the American alone have teeth on the sphenoid bone: neither is there any vestige of the parotid gland, above referred to, in the latter.

The salamanders were formerly divided into two great genera, Salamandra and Triton; the former with rounded tail and terrestrial habits,
the latter with compressed tail and aquatic. The necessity of further sub-division has, however, become fully apparent, and the old distinction into land and water salamanders no longer tenable as parallel to any anatomical features. Thus, of the highly natural genus Notophthalmus, one species is the most aquatic of all American forms, and the other the most terrestrial ; yet the two are so much alike in shape as to render it a matter of some difficulty to distinguish them. Without attempting any systematic arrangement of the genera of salamanders we shall take them up in geographical order, beginning with those of North America.

The genus Ambystoma embraces the greatest number of species and those of largest size. Its characteristics are, the entire absence of teeth on the sphenoid bone, the nearly transverse undulating line of vomerine teeth, in a measure forming the chord of the arc constituted by the outline of the upper jaw. The tongue is broad and fleshy, and entirely adherent except at the very edge. The species are mostly stout and clumsy, some of them, as \boldsymbol{A}. punctata, \boldsymbol{A}. opaca, and \boldsymbol{A}. jeffersoniana, terrestrial in their habits, with rounded tail and cylindrical toes; others again sub-aquatic, with a much compressed tail, and short, broad, flattened toes. The genus is found throughout the United States, and across to the Pacific ocean, peculiar species occurring in California, Oregon, and New Mexico. The terrestrial species exude a copious, milky, viscid excretion, from all parts of the body. The development of the larva of the best known species has already been referred to. The lungs have a higher degree of organization than in the other genera, being subdivided into cells of moderate size.

The next genus is Notophthalmus, known by the ocellated spot on the back in all but one species, the small rudimentary tongue, the absence of teeth on the sphenoid bone, the arrangement of the vomerine teeth in an acute V , as in the true Tritons, the densely granulose skin, the three foramina in the side of the neck, \&c. The best known species are, N. viridescens (Triton dorsalis) and N. miniatus (Triton symmetrica). The former species is exceedingly abundant throughout the United States, and is entirely aquatic. It has even been kept for more than a year in a glass jar filled with water, coming up to the surface from time to time to take in a mouthful of air. In the spring of the year a broad fin becomes developed along the back and tail of the male, and the feet enlarge with the addition of a black cartilaginous mass on the toes and inside of the thighs, for the purpose of enabling it to hold on to the female. This is done by clasping her round the throat with the hind legs, and retaining the hold for some hours, or longer, jerking her round in the water most unmercifully during the whole time. A quantity of seminal matter is finally discharged, which, becoming diffused in the water, fecundates the ova while still in the lower part of the oviduct. The eggs are laid singly, of an ellipsoidal shape, and invested by a very glutinous coat, by which it is attached to the middle of an immersed leaf, which is then doubled over it by the exertions of the female. The eggs, after remaining for some time in this way, finally give birth to small larvæ, the general character of whose metamorphoses is much the same with that of the species already described. The male
subsequently loses the crest and cartilaginous excrescences of the feet. While it is probable that similar habits are possessed by the second species mentioned, the fact has not yet been observed, and the species only seen in rather dry situations and occasionally exposed to the air during damp weather. This is very rarely the case in other species, which are generally seen only in turning up some log or stone.

The next genus, Plethodon, with the fleshy adherent tongue of Ambystoma, has two dense patches of card-like teeth on the sphenoid bone. The body is long, slender, and cylindrical, the toes of considerable size. The skin exudes a highly glutinous secretion, and the animal is eminently terrestrial. The eggs are deposited in packages, or aggregations, in moist situations, under stones and logs, not, however, in the water; and the larvæ lose their branchiæ at a very early age. The type of the genus is P. glutinosus, and species are found all across the North American continent.

The genus Desmognathus is highly conspicuous in the possession of strong ligaments, passing from each end of the transverse crest of the first cervical vertebra and inserted into the lower jaw, preventing any othes than a slight opening of the mouth. The occipital condyles, instead of being inclined at an angle with each other and presenting an elongated concavity, are here short cylinders, whose axes are parallel to each other and to that of the body, with the articulating face nearly spherically convex. The species are pretty generally distributed, and inhabit the edges of streams or the waters of marshes, under stones and logs, exhibiting great activity of movement when observed. The eggs are wrapped about the body of the parent, who remains in a cavity of some moist situation until they are hatched, just before which they are probably taken to the water, as in Alytes obstetricans. The young lose their branchiæ at a very early age. It may be mentioned of this genus, in conclusion, that the tongue is attached anteriorly, and free posteriorly, and that there are two narrow plates of weak teeth on the sphenoid bone.

The genus Hemidactylium, with much the same structure of teeth and tongue as the last, has a granular, rather dry skin, and but four toes to the hind feet. The tail also presents a curious feature, in being thicker in the middle than at either the base or the end.

Odipus, represented by but a single species from Mexico, has the tongue circular, capable of protrusion from the mouth, two contiguous dense patches of card teeth on the sphenoid, and the extremities of the toes dilated into small disks, as in the Hyle or tree frogs.

Pseudotriton has a structure of tongue and sphenoidal teeth much as in the last, with a thick body, short tail, and simple toes. The species are found in wet situations, under logs or stones resting in the water, or among the loose stones and earth, along the edges, or at the heads of springs. The young retain the branchiæ for a long time, and pass a year at least in the larval state. The principal species are P. rubrum, P. salmoneum, and P. montanum.

The genus Spelerpes, with much of the general features of the last, has a
very slender body, with a long tail, which is sometimes much longer than the body. The species are very active in their movements, and inhabit the edges of streams under flat stones. They are distributed throughout North America, although none as yet are known from the regions west of the Rocky Mountains, where, however, it is represented by an allied genus, Batrachoseps, with but four toes on the hind feet.

It is among the European salamanders that the genera Salamandra and Triton are still retained. There are others, however, in considerable number. To the former genus belongs S. maculata ($p l .89$, fig. 1), the famed salamander of antiquity, respecting which many fables as to a highly venomous bite and a power of resisting the action of fire were long current. The animal is ovo-viviparous, the eggs being retained in the oviduct of the female until ready for hatching, upon which they are conveyed to the water, and the branchiated young there deposited. The changes experienced by the young, as well as the general appearance and habits of the adult, present a not uninteresting similitude to what is observed in the case of Ambystoma punctata already referred to. A remarkable fact, which has been observed in a second species, S. atra, will recall a similar provision in the case of the ostrich. The female retains the eggs in the oviduct until they are hatched; the number of young produced amounts, however, to but two, which are born without branchiæ, and consequently without a necessity of being deposited in water. The actual number of eggs laid amounts, however, to about twenty, and the eighteen are destined merely to serve as food for the young larvæ after birth. It has already been observed that the restricted genus Salamandra differs from the American genera in the possession of parotid glands. The vomerine teeth form an angular row, the body is thick and clumsy, and the toes are four in front and five behind. A genus, Salamandrina, differs from other European genera in the possession of but four toes on the hind feet. The genus Triton, differing essentially from the American genus Notophthalmus, yet bears a striking external resemblance to it ; and the habits, as detailed by Rusconi and others, are also very similar. It was upon species of Triton that the cruel experiments of Bonnet, Dumeril, and others, were performed as to the reproduction of lost parts. Toes were cut off, and indeed entire limbs and the tail were removed many times in succession, and an individual lived for many months which had had the lungs extirpated and the entire face cut away, leaving nothing but the cranium. Conspicuous species are to be found in T. torniatum ($p l .89, f i g .2$) and T. cristatum ($p l .81$, fig. 32). The remaining genera, the names alone of which we can mention, are, Geotriton, Euproctus, Bradybates, Pleurodeles, Glossoliga, and Megapterna.

The Japanese species belong chiefly to the genus Onychodactylus, known especially for the claws developed during the breeding season; Cynops, with a supra-orbitar foramen, and a skull almost precisely like that of Notophthalmus, but with parotid glands; and Hynobius. The species are but five in number.

The last form to be mentioned is the genus Anaides from the Island of

Maui, one of the Sandwich Islands. This genus, thus far represented by a single species, Aneides lugubris, has much the form and size of Plethodon glutinosus, but the tail is not so long. Head broader than body, tapering anteriorly. Mouth opening from behind the eyes, outline undulating as in the alligator, and the teeth of the jaws very large, compressed, and sharp, the lower the larger, and all apparently unattached to the bone, but united to the gum, and admitting of a depression backward. The sphenoidal teeth are in a single close-set patch. The tongue is large, cordiform, and attached along the median line. Its place is, perhaps, between Plethodon and Desmognathus, the peculiar ligament of the latter even appearing present.

The great interest felt by the naturalist in the order Batrachia urodela, has caused us to dwell more at length upon these animals than we shall upon those which succeed it in the series. The next in regular order is that of Batrachia anoura. As already remarked, its most conspicuous external character is the absence of a tail in the adult, and the presence of four legs, the posterior the longest. The skull is very short and broad. The lower jaw is generally without teeth, which also are never found in the sphenoid, but occur almost always in the divided vomer. The vertebral column consists of but few bones, rarely more than eight. The articulations are transversely convex behind, and vertically concave before ; the spinous processes are mostly wanting; the transverse processes are well developed, and only occasionally are there rudiments of cartilaginous ribs attached. The sternum is present, sometimes cartilaginous in part, and terminates behind by a broad xiphoid cartilage. The posterior vertebræ are replaced by a long bone situated in the middle between the two parallel ilia, whose posterior portion, embracing the ischium and pubes, are combined into a vertical plate with a glenoid cavity on each side, and so close together as almost to constitute a perforation in the compressed bone: these sockets receive the heads of the tibir.

The structure of the tongue affords a convenient opportunity of dividing the anourous batrachians into two sub-orders, Phaneroglossa with a distinct tongue, and Phrynaglossa without a tongue ; the latter embracing a very small number of species. Considering, first, the Phaneroglossa, we find it divisible into three families: the Ranida, with teeth in the upper jaw, and the ends of the toes simple; the Hylada, with teeth in the upper jaw, and the ends of the toes dilated into sucker-like disks; and Bufonida, with no teeth around the upper jaw.

The generic characters of the first family are derived from the varying shape of the tongue, from the greater or less extent and occasional absence of the external tympanum, and the number and arrangement of the vomerine teeth. Species of this family, as of the two others, are found in all quarters of the globe, not confined, like the urodela, to the more temperate regions. The true Ranidae are, more or less, inhabitants of water or its vicinity, feeding on aquatic insects, and other animals, which they devour with great voracity. The flesh is much esteemed, especially that of the hind legs, and the animals are caught for the table in nets or by hooks. The
simplest and most efficacious way is to tie three large hooks back to back, and affix a piece of red flannel, at which, especially in bright, sunshiny weather, the frog will often spring with great avidity, and thus hook itself. Of the 16 genera into which this family is divided, but three are natives of North America, one of them being peculiar to it. The first genus, Rana, or true frog, has the large fleshy tongue divided more or less posteriorly into two cornua or branches, capable of considerable motion, and used in capturing the food of the animal, by which character it is distinguished from all the other genera. Species of this genus are quite numerous in North America, one of them, Rana pipiens, known as the bull-frog, attaining to an enormous size, and celebrated for the loud bellowing audible at a great distance. Individuals have been seen that measured 22 inches between the ends of the extended extremities, and even this size has been exceeded. The next largest species is the \boldsymbol{R}. fontinalis, distinguished from the first by the presence of a fold of skin running along the side of the animal. The other species are not very conspicuous excepting the Rana sylvatica, or wood frog, an animal often found in damp woods among the leaves, and exciting attention by its yellowish color, and black stripe on the sides of the head passing through the eyes, as also by the extreme agility of its movements. The R. temporaria of Europe (pl. 81, fig. 34) is exceedingly like it, the principal difference lying in a smaller tympanum. Another European species, R. esculenta, is shown in pl. 90, fig. 5. This, like all the true frogs, or Rana, has a membrane between the hind toes to assist in aquatic propulsion. The number of eggs laid by the frogs is very considerable, in some cases amounting to several thousands. They are generally deposited around some aquatic plant enveloped in a gelatinous mass. When the ova are ready for exclusion, the male mounts upon the back of the female, and as the eggs are discharged ejects a small quantity of seminal fluid into the water where the operation takes place-this sometimes occupying days and even weeks, during the whole of which time the pair thus remain attached. The egg after passing through the embryonic changes appears as a larva, all head and tail, with simple entire gills which soon disappear, to be followed by others of more complicated structure, situated within the cavity of the body as in fishes. After a certain length of time the hind legs begin to appear, and still later the forelegs are found to exist, fully formed beneath the skin, ultimately to burst forth. The tail then disappears by absorption, this taking place very rapidly. A remarkable internal transformation takes place during these external changes, from the herbivorous tadpole to the carnivorous frog. The reproductive history of nearly all the Batrachia anoura is very similar to that just described, with special modifications, to be referred to under the proper head.

The genus Scaphiopus, with much of the appearance of a toad, is yet distinguished by the teeth in the upper jaw. There is a cartilaginous process on the hind foot, serving the purpose of a shovel in excavating the holes in which the animal dwells. The toes are palmated, and the tongue nearly entire. Cystignathus is well distinguished by the entire absence of
a web between the toes of the hinder feet. The European genus Alytes is remarkable for the peculiar habit exhibited by the single species with regard to its eggs. When these have been deposited by the female, the male takes possession of them, and wrapping them round his body repairs to some moist spot, where he remains patiently until they are nearly ready to become disclosed, upon which he carries them to the water, this being the proper element'of the tadpoles. This habit will recall to the mind of our reader what has been said of Desmognatlus. Pelobates fuscus is represented in pl. 81, fig. 38 ab ; 'Bombinator igneus, in fig. 37 ab ; both European.

The family of Hylada, known by the dilated toes, is almost entirely arboreal in its habits. While the Ranida dwell in the marshes and wet places of the earth's surface, and the Bufonide live on the drier land, the Hylada are mostly to be sought for among the thick foliage of trees, where they make the woods resound with their piping melody. They are especially abundant in the dense forests of tropical regions, where they occur of various shades of color, among which the green of the leaf and the grey of the bark predominate. In the spring of the year they betake themselves to the water for the purpose of reproduction; and the tadpole undergoes the same changes which we have described in the case of the true frogs.

The genera of Hylada, found in North America, are but two. Hyla is known by the semi-palmated toes with very decided disks, by means of which it can adhere with great tenacity to any surface, even that of glass. The slightly emarginated tongue is round or oval. Here belong the well known tree frogs, the two best known species of which are \boldsymbol{H}. versicolor, so similar to the European H. viridis ($p l .90$, fig. 6, female, pl. 81, fig. 35, male), and H. lateralis. The species \boldsymbol{H}. pickeringii, possibly constituting a separate genus, lays its eggs singly on submerged grass, and they develope in the very short space of three days. The remaining genus, Acris, has a cordiform tongue, and the dilatations of the toes are less conspicuous. The species of this genus are not arboreal, being found principally among the high grass of marshes and streams. It is among the Bufonide that we are to look for the highest development of the anourous batrachian structure. Most species are far from presenting that variety of colors, that freshness of appearance, and agility of movement, which make the frogs so conspicuous. They are not confined to the vicinity of water, but inhabit districts in which but little moisture exists, and remaining concealed during the day, emerge at night to gather up such insect food as they may chance to come across. Species of the typical genus of this family, Bufo, or the toad, although repulsive in their appearance, are yet perfectly harmless in themselves, and may be of great benefit to the horticulturist, in devouring large numbers of insects injurious to vegetation. A milky juice exudes from the skin of most species, secreted by special glands : this, in some species, is quite acrid, while in others it is entirely free from any such property. A striking difference is observed between the frogs and true toads, in the manner in which the ova are laid in the water. In the former they appear as amorphous, generally globular masses, enveloped in
a jelly; in the latter as two long, perfectly cylindrical cords of transparent jelly, with the eggs inclosed at regular intervals. The development of the egg takes place much as in the case of the frog, already referred to; the tadpole, however, never attains to a great size, and the transformations are completed in much less time. A difference in the amount of metamorphosis is also observed.

While the embryonic fin of the hind foot is permanent in the water-frog, and disappears but partially in the tree-frog, in the toad it vanishes entirely, leaving the hind feet cleft to the base. Of the true genus Bufo, with simple toes and a distinct tympanum, there are several species known in the United States, but one, however, B. americanus, occurring in the northern portions. A common European species, B. viridis, is seen in $p l$. 90, fig. 1. Pl. 81, fig. 36, represents a variety of this, known as B. calamita, with a yellow dorsal stripe. The genus Engystoma is also an inhabitant of the southern parts of the United States. It is distinguished from Bufo by the absence of a tympanum, and the rather long and slender toes. Pl. 90, fig. 2, represents a species, E. ovale, from South America.

As already observed, the most conspicuous character of the sub-order Phrynaglossa is to be found in the entire absence of a tongue: this organ existing, in greater or less development, in all the other anoura. A second character, no less important, is to be found in the fact that the Eustachian tube is single, and situated on the posterior median portion of the palate. In the others, there are two, one on each side, sometimes at a considerable distance from each other. There are but two genera included in this suborder.

The genus Dactelythra is provided with teeth in the upper mandible, but not on the vomer. The Eustachian orifice is of considerable size at the posterior part of the palate. The toes are simple, four anterior and five posterior, the three first of those on the hind foot encased by their terminal extremity in a horny, thimble-like process. The single species, D. capensis (pl. 90, fig. 3), is a native of South Africa.
With the same ordinal characteristics as the last the genus Pipa is distinguished by the entire absence of teeth, the small Eustachian orifice situated nearly in the centre of the palate, and the four anterior toes, each subdivided into four small branches at the terminal extremity. The hind feet are entirely palmated. The most singular feature in the history of the single species P. americana ($p l, 90$, fig. 4) is to be found in the manner in which the eggs are developed. The eggs, as laid by the female, are placed upon her back by the male, who fertilizes them there with his seminal fluid. The eggs, adhering with great tenacity to the back of the female Pipa, produce a peculiar irritation, which results in the evolution of a membranous or cellular matter, which, g: owing round the eggs, envelopes them completely. Here they undergo a. their changes from the embryo to the larva or tadpole, and thence to the perfect frog; emerging, after the lapse of about eighty days, in a fully formed and tailless state, although exceedingly minute. The Pipa is an inhabitant of various parts of South America, especially of Guiana and Brazil.

The third and last order of the naked Reptilia or Batrachia is to be found in the Peromeles, embracing but one family, the Caciliada. Until within a comparatively recent period the species of this family were included among the Ophidia, on account of their serpentiform body. This, however, while cylindrical, and entirely destitute of limbs, yet has the scales so minute as to be almost entirely concealed in the folds of the skin. The anus is situated at the extremity of the body, and presents a rounded, plicated orifice, instead of a transverse slit. The most striking batrachian characters, however, are to be found in the double occipital condyle, and the existence of branchiæ in the young. The principal difference between the Cœciliadæ and the other batrachians is to be found in the entire absence of limbs and the presence of true ribs.

Of the eight known species, distributed in four genera, five are natives of America, two of Asia, and one of Africa. The most conspicuous characters of the genera are to be found in the position of the pits or false nostrils, which in Cacilia are below the true nostrils, in Siphonops one at least before each eye, in Epicrium below the eyes on the lips, and in Rhinatrema are entirely wanting. The third of these genera is peculiar to Asia, the others are all represented by South American species. One species of Siphonops, S. mexicanus, is a native of Mexico.

Having thus finished the consideration of the living batrachian fauna, it becomes necessary to devote a small space to that of the fossil species. We have already referred to the genus Orthophya, as being probably one of the Proteidæ, and to Andrias, as occupying a station intermediate between the living Menopoma and Megalobatrachus. Three species of true Salamandrinæ are described as occurring in Central Europe, and referred to the ambiguous genus Triton. Among the oldest indications of air-breathing vertebrates are to be found certain tracks or foot-marks, from the coal measures of Westmoreland county, Pennsylvania. These decidedly salamandrine vestiges indicate an animal far exceeding in size any of its allies of the present day. Somewhat similar foot-prints have been found in various quarries of Central Europe, and ascribed to a hypothetical Cheirotherium. It is supposed, by some geologists, that they were made by a Labyrinthodont. Traces, also, of probably batrachian footmarks are to be found in the new red sandstone of Connecticut and Massachusetts. A few of the anourous batrachia have been found fossil in France and Germany, some of them referred to the modern genus Rana.

Sub-class 2. Reptilia squamata.

We have already referred to the principal features of this sub-class in treating of Reptilia in general. It only remains for us briefly to state in what it differs from the Reptilia nuda, and then proceed to an illustration of the various orders and their subdivisions. This difference consists mainly in the dry horny or bony covering, as distinguished from the moist, naked skin of the Batrachia. Instead of a condyle on each side of the iconographic encyclopedia.-vol. if. 30
occipital foramen, there is a single one placed below, formed either by the basi-occipital, or by this together with part of the ex-occipitals, as in the Chelonia. The ribs are always present, sometimes in great development and number. The vertebre exhibit a great diversity in the shape of their articulating faces, and are generally quite complicated in structure. The entire system exhibits a higher state of development, ossification is more complete, the apparatus of sense more perfect, this being well exhibited in the tympanic apparatus. Respiration is carried on by means of lungs. The eggs are generally protected by a calcareous or toughly membranous opaque covering; and the development of the embryo is complicated by the presence of an allantois, and the amniotic sac with its peculiar liquid, the liquor amnii.

Order 2. Ophidia.

The Ophidia, or Serpents, are especially characterized among Reptilia by the limbs being either entirely absent, as in the majority of the species, or else being so rudimentary as to be discoverable only on dissection or very close examination. The bones of the face, excepting in a few species, possess a great deal of mobility. The lower jaw, instead of a direct articulation with the upper, is brought into connexion with it through the medium of two bones, movable on each other. The extremities of the lower jaw, also, instead of being anchylosed, are united by an extensile ligament. The mouth is variously provided wh teeth, these in some species serving as a tube for the injection of a peculiar poison secreted by special glands. There are no movable eyelids, nor is there any external ear. The vertebræ are very numerous, always exceeding 100, the posterior articulation spherically convex, the anterior spherically concave. Ribs, very numerous, free. The skin is covered with scales of various shapes and proportion, an epithelium from which is shed once or several times in a year, usually in one entire piece. The tongue is soft, fleshy, bifurcated, and capable of considerable protrusion, and working in a sheath. It is never venomous, as is commonly supposed. The male organs of generation are usually concealed within the cloaca; they are bifurcated and armed with recurved spines. The protrusion of this bifurcated and thickened penis, under certain circumstances, has no doubt given rise to the vulgar idea of the possession of distinct feet by the common snakes of the United States. The transverse slit of the cloacal orifice marks the line of distinction between the body and tail. One lung of the two is more generally abortive or rudimentary.

Although destitute of limbs, the usual organs of motion, yet some serpents are capable of a very rapid progression. This progression may take place in various ways: thus the body may be straightened out entirely in contact with the ground, and a slow motion produced by the action of the scales and ribs, somewhat similar to that of the earthworm with its setæ. Again, the body may be thrown into several undulations in
a vertical plane, the posterior of which being used as a fulcrum, or point d'appui, the straightening of the anterior must result in the advance of the head, which in turn is fixed while the rest of the body is again flexed. The same condition may also prevail where the undulations are horizontal, and the snake constantly in contact with the ground. The most rapid movements, in all probability, are those occurring when the whole body is gathered up into one vertical loop like a bent spring, the head and tail more or less approximated : the sudden straightening of this loop or spring, with the tail as the point d'appui, might enable the animal to spring forward, at one operation, to a distance greater than the length of its body. The great flexibility of their bodies enables serpents to obtain access to the most varied situations, by climbing or otherwise. Many species can climb trees in search of their prey, while others live habitually in such situations. Others are as constant inhabitants of the water.

The phenomena of reproduction are different in different species. It may, perhaps, be considered as a general rule, that most of the venomous serpents are ovo-viviparous. This, however, with some appears in a measure to depend upon the latitude and mean temperature. Some harmless species, again, are ovo-viviparous, as most of the North American Tropidonoti. Providence has taken the usual precautions against the increase of dangerous animals by assigning a small number of young to the venomous species. Thus the rattlesnake (Crotalus durissus) rarely produces over nine or ten at a birth, while in one instance, 81 living gartersnakes (Tropidonotus sirtalis), of over nine inches in length, have been taken from a single individual.

But few species of Ophidia have been found in a fossil state. None from North America have been described; some of their remains have been procured in the bone caves of Pennsylvania. All that are known belong to the tertiary epoch. Remains of a species, 20 feet in length, have been found in the London clay at Sheppey. Doubtful indications of fossil Crotali exist in the vicinity of Brussels:

A scientific exposition of the Ophidia, according to their natural affinities, is a matter of considerable difficulty, as the recent discovery of numerous new species, and the obscurity which hangs over many of the old, have completely unsettled the older views on this subject. In no other department of Zoology have the views of systematists been more at variance with each other than in that of Ophiology ; the important labors of Oppel, Fitzinger, Bonaparte, Schlegel, Gray, and others, only serving to render this truth more conspicuous. We shall, with J. E. Gray, divide the order into five families: Crotalida, Viperida, Hydrida, Boida, and Colubrida; the two first arranged under a sub-order Viperina, the remaining three under Colubrina.

Sub-order 1: Viperina.

This sub-order includes most of the species which, on account of their venomous properties, have been the terror of mankind. They are dis-
tributed over most of the world, being much more abundant, however, in tropical and'sub-tropical latitudes. The first and most characteristic feature is the scarcity of small teeth in the jaws. The upper jaw presents few if any teeth on its exterior, contrasting strikingly in this respect with harmless colubrine snakes, in which the teeth, though small, are in very great numbers. This absence of prehensile instruments is more than compensated by the formidable poison fangs. These are situated in the diminutive superior maxillary bone, which is so articulated to the external pterygoid bone that when the latter is pulled back by the muscle of the jaw the maxillary is drawn back also, and its attached fangs are imbedded in the soft mucous gum, with the point directed backwards. On the other hand, a drawing forward of the pterygoid pushes up the maxillary, and the fangs then stand more or less perpendicular to the roof of the mouth. The fang itself consists of a tube, very sharp at the point, and formed by the bending over of the sides of the growing tooth, leaving a seam in front, which ultimately becomes wholly or partly obliterated. A tin tube, bent up, but not soldered, and cut off obliquely below, so as to form a cutting point, affords a good illustration of the character of the fang; or else we may imagine a solid conical tooth, flattened out and bent so as to form a hollow tube. The glands which secrete the poison are situated one on each side of the posterior part of the head, and consist of lobules which discharge the venom into the common duct continuous with the hollow of the fang. These glands are surrounded by a strong aponeurotic bag in connexion with muscles which are capable thereby of exerting a powerful compression, and of forcing out the venom with great violence into a wound.

Antidotes to the bite of venomous serpents have been anxiously sought for in all countries where such species exist. No directions applicable to all possible cases can be given, but the following indications, chiefly by Dr. Leuz, as the result of his long continued observations on the European viper, are worthy of all attention, as applicable in general to the rattlesnakes and copperheads of our own country.

No time is to be lost in obtaining assistance after being bitten by a serpent ; if a pair of sharp scissors or a knife be at hand, open up the wound immediately and allow it to bleed freely, after which it is to be well washed; if the wound be a simple scratch, washing alone will, perhaps, suffice. If the bite is not to be managed in this way, endeavor to apply, as soon as possible, a powerful pressure to the wound, by laying a small pebble or other minute object directly on (not merely near) it, tying round a handkerchief, or using the finger, to keep up a direct pressure on the spot, and continuing this application until the place affected can be conveniently cut out, or cupping-glasses applied. As long as the direct pressure lasts there will be no absorption of the poison, and if no other application be possible the thumb may be kept upon the wound until help can be obtained. The puncture of the wound may sometimes be reached by the mouth of the patient or a companion, in which case prompt suction of the spot may render further remedies unnecessary. This may be done by the
operator with impunity if the mouth be sound, as the virulence of the poison is only manifested when introduced into the circulation; repeated experiment has shown that a moderate amount may be taken into the stomach without danger. A well fitted syringe, with rather a long nozzle, is often used to great advantage in sucking out the poison, the same purpose also being answered by cupping instruments. If none of these methods can be employed, and the venom has become absorbed, then attention must be turned towards the proper internal remedies, those merely external being of no further avail. The wound is to be carefully bathed with chlorinated water, or with water to which has been added some chloride of lime, and the patient put to bed. Of the internal appliances now to be made we have our choice of two kinds : the first consists in employing some sudorific, by which a copious perspiration may be brought about ; this, though not always successful, is yet almost always advisable. The second remedy is chlorine, which is to be used instead of the sudorific; this may be in the form of chlorinated water, or of the chloride of lime dissolved in water.

It is almost needless to add that many of the applications to a serpent bite, such as a chicken stripped of its feathers, \&c., depend almost entirely for their efficacy upon the controlling influence of a powerful faith, and the same may likewise be said of many of the vegetable remedies. The mucilaginous juices of plants in general appear to exert a controlling influence upon the result, although some species, as Impatiens pallida and fulva (glassweed), Eupatorium perfoliatum (boneset), Plantago major (plantain), and others, appear to have specific influence. The use of alcoholic liquors, as brandy, in large doses, has been recommended by some members of the Faculty. Ammonia, or spirits of hartshorn, olive oil, and many other substances, to be applied both externally and internally, have all had their supporters. Generally speaking, however, the only sure remedy lies in the immediate removal of the poison by suction, washing, increased flow of blood, excision of the part, \&c.

We have thus gone into some detail on the subject, believing it to be of intrinsic importance in a country abounding in venomous serpents, to be aware of what may be done to arrest the progress of an affliction, which, if not always mortal, is yet productive of a great deal of pain, and often chronic affections of the system.

We proceed to enumerate in brief terms the remaining characters of the sub-order Viperina. The lower jaw is provided with teeth as in the Colubrina. The head is usually broad, so as to exhibit a very strongly marked distinction between it and the neck. The crown is generally covered with scales much like those of the back, rarely with shields or plates. The hinder limbs are not present even in a rudimentary condition. The eyes are on the side of the head, often shaded by an overhanging brow; the nostrils are placed at the side of the snout, near the tip. The two families, included in the sub-order, are distinguished by the presence or absence of a pit or depression between the eye and the nostril.

Fam. Crotalide. Face with a large pit on each side. The head is
large behind, with a flat crown, which is covered by scales (except in one or two genera, which have plates). The belly is covered by broad bandlike shields, and there are no spurs or rudimentary feet on each side of the anus. The species are all more or less venomous, and generally ovoviviparous.

The genus Crotalus, or rattlesnake, forms the type of this family, and its species are distinguished from all the rest by the presence of a rattle at the end of the tail. This consists of several joints of a horny texture loosely united together, so that when quickly vibrated a noise is produced much like that of peas shaken about in a dried bladder, and bearing a considerable resemblance to the sound produced by the locust or cicada. There are two or three species of the restricted genus Crotalus in North America: one the C.durissus, another the C.adamanteus. The former is abundantly distributed throughout the United States, although limited in northern extent, and rarely found north of the parallel of 45°; it is especially common in the Alleghany region of the United States, where its habits are familiar to every resident. It is a sluggish animal, and not disposed to act on the offensive, so that a person may pass within a few feet of it without being molested. An approximation of that kind is generally followed by an alarm from the snake, which most usually precedes any blow. The animal never strikes except when coiled, and rarely, if ever, follows a retreating enemy. Its food consists of small animals, rabbits, squirrels, rats, birds, \&c., all of which are speedily destroyed by a single blow. Even dogs are sometimes killed by them, although larger animals are not generally destroyed. The immense Crotalus adamanteus, or diamond rattlesnake of the Southern States, is vastly more formidable. This species appears restricted to the southern coast below the latitude of North Carolina, and has been known to exceed eight feet in length, with a thickness equal to that of a stout man's leg. They keep much about the water, and have hence been called the water-rattle, in distinction from the preceding species, which affects high dry land. A third species, common in South America, is C. horridus, sometimes called Cascavella, and represented in pl. 87, fig. 5. There are also several small species in North America belonging to an allied genus Crotalophorus, and usually termed ground rattlesnakes. These have the head covered with plates, and the rattles very small, even in individuals of considerable size. One of the species, called the Massasauga, occurs in Northern Ohio, others in the Southern States, and in the region west of the Mississippi.

The copperheads (genus Trigonocephalus) of America are, if possible, more dreaded than even the rattlesnakes, owing to the fact that, with equal venom, they are more vindictive and give no warning of their presence. The most generally distributed species, T. contortrix, is fond of damp meadows, where it is often revealed to the cost of persons engaged in mowing or passing through. They not unfrequently get into cellars, where they perform an acceptable service in destroying mice and rats. The water-moccasin of the Southern States (T. piscivorus) is the pest of rice plantations, where negroes are often bitten. This species lives in the
water, much like the harmless water-snakes of the Middle States, and like them may frequently be observed lying over bushes which overhang the water, into which they plunge at the slightest alarm. Another species, T. lanceolatus, or the fer de lance ($p l .86$, fig. 3), is abundantly distributed through several of the West India Islands, where it inhabits all kinds of situations. Their favorite resort is the sugar plantations, where they prove fatal in many instances to the unlucky laborers.

All the poisonous serpents of North America have been referred to in the preceding remarks, and none except the rattlesnakes, copperheads, and water-moccasins, are to be feared in the slightest degree. The last mentioned species does not occur north of Virginia, nor does the Crotalus adamanteus, so that in the whole Middle and Northern States there are but two venomous species, the banded rattlesnake and the copperhead, both of which are readily recognisable. Nothing can be more ridiculous than a fear of the common watersnakes, greensnakes, blacksnakes, gartersnakes, housesnakes, and other species. It is true that many of these show fight when attacked, and many even inflict a wound with their teeth, though this can never be more than a scratch which may draw blood freely, but will not produce any more unpleasant consequences than the scratch of a pin or of the point of a knife. The same may be said of the blowing or hissing snakes of the genus Heterodon, usually termed viper or adder in the United States, and which present a formidable appearance from flatrening the head and whole body when irritated.

The family Viperida, with the poisonous apparatus, as the Crotalida, is distinguished by the absence of the pit or depression on each side of the face. Of the 20 species and 9 genera of this family, none are found in America. The most conspicuous and typical species is the viper of Europe, Vipera berus (pl. 87, fig. 2), which is pretty generally distributed and greatly feared, although far from being so formidable as the copperheads and rattlesnakes of the United States. Great pains are taken to destroy the species, although ineffectually, owing to their rapid reproduction ; in Gotha, Coburg, and Meiningen, a stated price per head is paid for them by the civil authorities. The famed \boldsymbol{A} spic or asp of antiquity is another species of viper (\boldsymbol{V}. aspis) found along the Mediterranean. The horned-viper (Cerastes cornutus, pl. 87, fig. 3) is a common inhabitant of the sandy desert of Africa, and is remarkable for having a group of elevated horn-like scales over each eye.

The celebrated Cobra di capello, or hooded-snake (Naia tripudians, pl. 86, fig. 4), is a species which has been variously allotted by herpetologists, and even placed among the Colubrine snakes. It is an inhabitant of the East Indies, where it is often tamed by jugglers and taught to dance to their rude music. This class of persons appear capable of exercising some peculiar influence over the cobras, by means of which they are enabled to handle them with impunity. Another genus, of which one East India species, Platurus laticaudatus, is figured in pl. 90, fig. 8, has been referred to the Colubrida. It lives in the water, and is very dangerous to bathers.

In the Colubrina we miss the highly developed poison fangs which are so conspicuous in the Viperina; and the upper maxillary bones, or edges of the jaw, are well supplied with teeth. Some few of the species, however, are poisonous, this being especially the case with the Hydrida, or watersnakes, of the East Indies. Their venom fangs, however, are small, and there are several teeth in a line behind the fangs. The head is of moderate size, not conspicuously wider than the neck, and the crown in one family is covered by a regular shield. Of the three families of the sub-order, Hydrida, Boida, and Colubrida, the two first have the belly covered with small, narrow, elongated scales, like those of the back; while in the Colubrida the belly is covered with large, broad plates, each one extending entirely across the abdominal surface.

Fam. Hydrida. This family, the species of which live almost altogether in the water of seas, lakes, and rivers, are distinguished from the Boide, with which they agree in the small scales on the belly, by the entire absence of spurs on each side of the anus, like rudimentary feet. The ventral scales are narrow, hexagonal, or bandlike; the eyes and nostrils look upwards, the latter generally placed in the middle of a shield with a slit or groove to its outer edge; the fangs are of moderate size, intermixed with the maxillary teeth; the pupil is small and round, and the tail is usually compressed into an oar, but sometimes conical. Very many are poisonous. The species with compressed tails belonging to Pelamis, Lapemis, Hydrus, \&c., are true snakes, coiling themselves up on the shore, where they lay their eggs. Their food is said to çonsist of seaweeds, although perhaps incorrectly. They are often found asleep on , the surface of the sea, and are then easily caught, as they cannot descend without first throwing themselves on their backs, probably to expel the air from their large vesicular lungs. They are often thrown ashore by the surf, and are occasionally found in fresh water, having been brought in by the tide, but they appear unable to live long out of salt water. The fishermen of the Eastern seas often catch them in their nets, and hold them in great dread on account of the venom of their bite. The species with conical tails appear to live principally in fresh waters. Some recent authors have placed North American species under this family, though apparently with much impropriety (Helicips abacurus, and erythrogrammus of Holbrook, with some others). Pl. 90, fig. 7, represents Achrochordus jav nica, a species of this family from Java.

Fam. Boidce. In this family, which contains species not poisonous, indeed, but terrific on account of their gigantic size, we find the ventral scales or shields to be narrow, transverse, and often six-sided. The hinder limbs are developed under the skin, form ed of several bones, and ending in a short exserted spur, placed one on each side by the vent. The tail is short, generally prehensile, and the pupil is oblong and erect, except in the genus Tortrix.

One of the best known species of Boide is the anaconda (Elunectes murinus, pl. 74, fig. 62). It is found in Brazil, and is said to attain to a length of 40 feet, although the specimens exhibited in museums and menageries rarely exceed 10 or $\mathbf{1 5}$. In a wild state it is often found with the tail coiled round a tree on the river's edge, and the body floating in the water, thus awaiting the approach of its prey. It feeds on animals of moderate size, pecearies, agoutis, de., which it kills by crushing, and then swallows whole, but does not disdain fish, frogs, \&c. Little fear is experienced by the inhabitants of the country, as it is quite timorous and rarely disposed to attack man.

The Boa Constrictor ($p l .86, f i g .5$) is another familiar species from Brazil; it is more terrestrial in its habits than the anaconda, keeping in dry desert situations, among bushes, trees, and rocks. It readily climbs trees, from which it hangs suspended by its prehensile tail, ready to drop upon any unlucky animal which may pass beneath. Like the anaconda, it is destroyed in various ways, by shooting, lassoing, noosing, \&c. The thick skin is frequently tanned and converted into leather for boots and saddles. The fat is made use of for rarious fanciful purposes, and the dried excrement emplosed as medicinc. Another species, Boa, or rather Xiphosoma canimum, from Brazil, is represented in pl. 87, fig. 4. The giant snakes of the Old World belong chiefly to the genus Python.

Fam. Colubrida. In this, the last family of Ophidia, we find species which are very rarely provided with poisonous fangs. The belly is corered with broad scales. and there are no rudiments of hind fect as in the last fanily. The tail is conical and tapering, and rarely compressed. The nostrils are open and placed at the side of the snout, near the top. The head is most generally covered with regular plates, which by their number and shape afford excellent distinctive characters. They are distributed all over the world, and are in much greater number, both of individuals and species, than in any other family of Oplidia.

This family is especiglly abundant in the Cnited States, where it occurs under two principal types, Coluber and Tropidonotus, with several sections of less extent. The genus Coluber embraces most of the larger familiar species with the scales smooth and without a longitudinal ridge along the centre of each, as in Tropidonotus. The body is generally slender and cylindrical, and incapable of being flattened in a horizontal plane like Tropidonotus. They are rarely seen in the water, and are mostly oriparous, the eggs being depcsited in decayed wood, sand, or other localities. The other genus, Tropidonotus, on the other hand, possesses the power of depressing the body, and is generally viviparous, the eggs being developed in the oviduct. Coluber constrictor, or the Black Snake, is a familiar instance of the American species of Coluber. It is abundant in all parts of the country, and sometimes attains the length of six feet. It climbs trees with great readiness, and moves over the ground with much velocity. Numerous stories are current of their pursuing individuals, and thereby earning their common name of "Racers." It is quite possible that under some circumstances they may follow after a person who flies in terror
before them, but such is not the experience of herpetologists, with whom the case is exactly reversed ; the snake here being usually the fugitive, and too often escaping by his superior agility, thus also eluding the just claims of sccience to his body.

The agility with which the black snake can climb trees renders it a formidable enemy to young birls and squirrels in their nests. The fabled fasciuation exerted by the serpent in all probability has reference to the distress occasioned by his vicinity to a bird with a brood of young, the whole of which are sometimes devoured at a meal. It is needless to add, after what has alredy been said on the subject, that the black srakes, and all other colubrine snakes of North America, are perfectly harmless. A closely allied black species, called Coluber alleghaniensis, attains to a much larger size than the Constrictor, individuals of 7 and 8 feet not being very rare. This is much more gentle than the other, rarely manifesting any inclination to bite, which the more common true black snake is very apt to do. The black snakes, as well as some other large colubrine species, often engage in deadly battle with the rattlesnakes, and, strange to say, usually come off victorious, owing to their superior agility, and the quickness with which they evade the poison thrusts of their antagonists, and secure an opportunity of squeezing them to death.

The type of the genus Tropidonotus is found in the familiar garter snake, T' sirtalis, the most abundant species in this country. Like all of its genus, it is frequently found about the water, but as often on high dry land. Its fecundity is very great, as in one instance eighty-one young, of over nine inches in length each, were taken from a single female. The water snake of the Middle States (T. sipedon) is a species sometimes called moceasin, and wrongly dreade:l as venomous, on account of its supposed identity with the species of the lowlands of Georgia. Other species are, T. leberis, dekayi, \&c. Pl. 86, fig. 2, represents the European T. natrix.

We shall conclude this subject by a brief consideration of some other American species with that of an interesting African genus. In addition to the colubrines already enumerated, there is the beautiful Coluber vernalis, or green snake, found rather abundantly in the Northern and more rarely in the Middle States. In the South it is replacel by the beautiful green Leptophis astivus. A long, slender, exceedingly ssift species of the Southern States (Psammophis flagelliformis) is called the whip snake. The diamond or ring snake, Coronella sayi, is conspicuous for its minute white specks scattered all over a black ground. It is one of the species most frequently engaged in successful conflict with the rattlesnake. Elaps fulvus is a beautiful species, variegated with rings of red, black, and yellow, known in its abode, the Southern States, as the harlequin or scarlet snake. It has one large immorable fang on each side of the upper jaw, which is perhaps provided with a rudimentary poison gland, but the animal is considered to be perfectly harmless. A South American species (E. corallinus) of equal beauty and harmlessness, is represented in pl. 90 , fig. 9. The Heterodons have already been referred to under the name of adder or viper. Of two large and common species, H. niger and platyrhinus, known as black and
yellow vipers, neither is poisonous, nor even in the slightest degree noxious, although of quite terrific appearance and demeanor when enraged.

An exceedingly interesting illustration of the special provision which nature sometimes makes for particular cases is seen in the African genus Deirolon. To this has been imputed the instinct of living almost entirely on the eggs of birds, and its whole organization fits it expressly for this end. The mouth is entirely without teeth, at least in the adult, so that nothing interferes to prevent the ready entrance of an egg into the open jaw, and there is no liability of its losing any of the contents by a premature brakage. The inferior spinous processes of the seven or eight inferior cervical vertebree project with the oesophagus, where they are capped by a layer of hard cement and made to resemble long sharp teeth. The descending egrs press against these teeth and are sawed open longitudinally, and then, crushed by the contractions of the gullet, are carried into the stomach, where the shell is probably dissolved by the gastric juice and digested with the contents.

Order 3. Sauria.

The third order of Reptiles, the Sauria or Lizards, embraces species of very diversified character, especially when we take into consideration certain fossil forms. Their size, too, varies from that of a few inches to 30 feet, as in some recent crocodiles. This magnitude, however, is far exceeded by certain extinct species. The body is generally cylindrical, sometimes slightly depressed, elongated, and with a skin provided with scales (photides), granulations, or bony plates. The photides they share with the Ophidia, and the two orders are thus distinguishable from Batrachia, only a single family of which, the Coeciliade, has minute cycloidal, fish-like scales, nearly concealed in the folds of the skin. By the four feet they are distinguishable from serpents, although, in a few instances, these members are partly or entirely wanting externally. The feet, when present, are usually provided with true claws, supported on the terminal phalanges. The tail is developed to a greater or less extent, while the cloaca presents itself externally as a transverse slit. The almost universal presence of an external meatus auditorius, or at least of a tympanum (excepting in Acontias, Typhline, and a few others), distinguishes the Sauria from the Ophidia; as also the presence of a sternum, connected with the vertebral column by movable ribs, and the greater immobility of the bones of the head. The rami of the lower jaw are firmly united together, and the entire skull is compact. Few Sauria are without movable eyelids, although these are occasionally very rudimentary. The teeth are variously disposed, as will be seen when we come to consider the different families. Many species are only known to us in a fossil state, these generally of great size.

Fam. 1. Scincidc. This family, standing at the foot of the great order of Saurians, is characterized, in the first place, by the possession of large plates on the top of the head, which are in contact along the edges; and by their angular and regular shapes, closely resemble the homologous plates of
serpents. By this character the Scincider are distinguishable from the other Saurians, excepting the Chalcidide and Lacertida. The rest of the body is corered by imbricated and smooth scales, with rounded margins arranged in quincunx, much as in fishes: those of the belly and sides are nearly of the same shape and size as those of the back. By this latter feature they are distinguishable from the Lacertide, in which the ventral scales are much larger than the dorsal, with the outlines angular. The absence of a furrow or lateral foll of skin, extending along the flanks, as also the imbricated or mailed scales, separates them from the Chalcidida. The spines and crests of other Saurians are never found in this family. The tongue is free, broad, not playing in a sheath, and slightly emarginate anteriorly. It is fleshy, and usually covered with papille; sometimes with scales, or filifurn appendages.

The Scincide are variously distributed throughout the world. The largest number of species is found in Australia, then Asia, next Africa, and finally America. Europe counts but six species. Five species are found in the United States.

The family may conveniently be divided into three sub-families, according to certain peculiarities about the eyes.

Sub. Fam. Santroplthalmoi. This section is known by the possession of movable eyelids, which, as in most air-breathing vertebrata, can come together so as completely to cover the eye. Most of the species are provided with four feet; some, however, have but two, while others again appear to be entirely deprived of these appendages. None of them appear to have inguinal or femoral pores. The lowest form of the Saurophthalmian Scinks is presented in the genus Acontias, but one species of which, A. meleagris, a native of South Africa, is known to naturalists. With a striking resemblance to a serpent, in the absence of feet and of a tympanic orifice, it has most of the characters of the Scincidæ. The eyes are very minute, and there is but a single (inferior) cyelid. Another genus, Ophiomorus, resembling the last, is found in Southern Europe. The best known representative of the apodal scinks is the blind or slow worm, Anguis fragilis (pl. 74, fig. 63, and pl. 87, fig. 1). This beautiful animal is found in various parts of Europe, making its appearance early in the spring, and retiring to winter quarters about October. Its food consists principally of slugs and earth-worms. About the end of August the female lays 8 to 16 eggs, from which the young escape very shortly after their deposit, development having proceeded for a considerable time in the oviduct. The animal is perfectly innocuous, and never makes any attempt to bite.

In the genera Ophiodes, Soridia, and Scelotes, we have the first external indications of feet, in the form of two feeble posterior extremities, which exhibit a division into toes in the latter genus only. The first of these is South American, the two last South African.

Anterior extremities first present themselves in the genus Evesia, where, however, with the hind feet, they exist as mere stumps without any toes. In Nessia, each foot, although still very rudimentary, is terminated by three nearly equal toes, provided with claws. Brachystopus, it South African
reptile, has the anterior feet without toes, the posterior with two each. This case is exactly reversed in the genus Brachymeles, where the anterior feet have two toes, the posterior none. In the Australian Chelomeles, each foot has two toes; while Heteromeles (from Algiers) has two toes on the fore, and three on the hind feet. Seps, represented by a single species, \mathbb{S}. chalcides ($p l .87$, fig. 6), a native of Southern Europe, exhibits three toes on each, rather weak, foot. In Tetradactylus we find four toes on each foot; in Campsodactylus, five toes in front, and four behind ; and in Heteropus, four in front, and five behind. Finally, Trachysaurus and Gongylus have five toes to each foot. The above illustrations, far from embracing the whole of the Sciucida, may serve as an indication of the great variety of structure and appearance, presented by this extensive family.

To us, the most interesting genera of Saurophthalmian scinks are Plestiodon and Lygosoma, these being the only ones which are found in the United States. The species, of various size, are known in the Southern States, indiscriminately, as scorpions, and dreaded as venomous. They are, however, like all reptiles, excepting a few scrpents, perfectly free from any such properties, although the larger individuals may be capable of inflicting a severe bite. Only one species, Plestiodon fasciatus, is found in the North, the rest rarely occurring north of Maryland. The largest species, P. americanus, sometimes attains a length of 25 inches. The smaller species are usually found about old logs, their food consisting of minute insects. Plestiodon aldrovandii, an Egyptian species, is represented in pl. 81, fig. 31. The genus Scincus, as at present restricted, embraces but a single species, S. officinalis (pl. 89, fig. 4). This animal, a native of Northern Africa, has been celebrated from the time of Pliny, for certain supposed medicinal virtues, for which reason it was long considered as one of the most valuable articles of the pharmacopoia, and even now is kept by the druggists of Southern Europe. It was supposed to be effectual in all eruptive diseases, but the chief application was as an aphrodisiac. Gongylus ocellatus (pl.74, fg. 71) is a common European reptile.

The second sub-family of Scincida is that of the Ophiophthalmoi, in which the eyes, like those of serpents, are either entirely deprived of eyelids, or else have these in the form of a narrow ring, partly or entirely surrounding the eye. Two of the species exhibit a series of pores along the anterior margin of the cloaca; none, however, have femoral pores. Most of the species are natives of New Holland. The genus Hysteropus, with a highly serpentiform body, is without fore-feet, the posterior being very feeble, and flattened, without any division into fingers. (H. nove hollandia is represented in $p l .74$, fig. 68.) Other genera have four feet, variously provided with toes.

The third and last sub-family, the Typhlophthalmoi, comprises species which are perfectly blind, having the eyes so minute as to be entirely rudimentary. There are but two species known, one, Dibamus novce-guinece, with posterior remiform feet, the other, Typhline cuvierii, an inhabitant of South Africa, without any feet whatever.

Fam. 2. Chalcidida. This family, with a striking resemblance in external form to some members of the last, is readily distinguishable, as already remarked, by the different disposition of the scales, or the markings of the skin, and by the lateral furrov found in many species. We find some species provided with four legs, others with but two; while another series, again, is entirely serpentiform in appearance, owing to the absence of these members exterior to the skin. There is rarely any constriction posterior to the head, answering to a neck, the borly and head being usually continuous. The scales, insteal of being imbricated or arranged like those of most fishes, are disposed in whorls or rings inclosing the body. In other cases, where the scales (photides) are absent, furrows in the indurated skin present similar markings. The dorsal and ventral scales, like those of the Scincide, and unlike what we shall find to be the case in the Lacertida, are arranged much in the same manner, and are of no striking difference in size. The teeth are not implanted in the jaws, but applied along the inner margin, thus exhibiting the true pleurodont character. The tongue is free, slightly extensible, broad, and emarginate at the tip, clothed with filiform or scaly papillæ, and not plying in a sheath. The ears are apparent externally in some species, while in others there are no such indications of them. The eyes are generally small, and slightly developed. Some species have movable eyelids ; in others these organs are not movable ; while in a few the skin covers the entire ball of the eye.

This family is confined mainly to Africa and America, although a few speries are found in other regions of the globe. Mexico, California, and the southern United States contain quite a number of them. The entire number of species described amounts to about 50 , arranged in 16 genera.

We distinguish the Chalcidide into two sub-families, according as the skin is covered with scales or is free from these appendages. The first subfamily, that of the Ptychopleures, possesses true scales arranged in the manner already described. All the species, with a fers exceptions, have a longitudinal furrow, more or less deep, on each side; and, without any exception, are in the possession of eyelids. Some species possess an external auditory cavity, others are without one. The first genus to be mentioned is Ophiosaurus (pl. 74, fig. 63), an inhabitant of North America, and known as the "glass snake." This animal, although usually considered as a serpent, may readily be distinguished by the compact skull and non-dilatable mouth, the fleshy tongue, the external auditory cavity, and the peculiar distribution of the scales. The name is derived from the fact that a slight blow is sufficient to produce a fracture of the very brittle body, the muscles of which, instead of the longitudinal arrangement of the serpents, have the arrangement in hollow cones so conspicuous in the equally brittle tails of lizards. It is a common, although entirely erroneous opinion, that the pieces of a broken glass snake will reunite after a time. Two species are known in the United States, one, O. ventralis, restricted to the Southern or South Eastern States, the other, O. lineatus, occurring in the South West, and as far north as Michigan.

In the genus Pseudopus, a native of Eastern Europe and of Africa, we 478
have indications of a posterior pair of extremities, in the form of scaly, undivided appendages, one on each side of the anus. The single species is known in Russia as the sheltopusik. The genus Chalcides, whose species are mainly South American, has both pairs of extremities, but in a rudimentary state. The anterior pair terminates in three or four scaly tubercles, while the posterior is represented by two slender spines. By the absence of an external auditory cavity, it is distinguished from Chamasaurus, in which none of the rudimentary extremities exhibit any subdivision. The genus Saurophis introduces us to the species having more highly developed extremities. Here each foot has four toes. The single species known, S. tetradactyla (pl. 74, fig. 67), inhabits the southern portions of Africa. The remaining genera have five toes on each foot; the most interesting of these is the genus Gerrhonotus, which, represented by eight species, inhabits Mexico and California.
The second sub-family, that of the Glyptodermes, corresponds very nearly to the family Amphisbænidæ of some authors. Here the body is entirely deprived of scales, in place of which the skin is divided by circular and longitudinal furrows into small quadrilateral compartments, sometimes variously colored, and then resembling mosaic work. These subdivisions are generally slightly tubercular and projecting. There are faint indications of the lateral furrow of the more typical Chalcidida. Most of the species bear a striking resemblance to the Ophidia, with which they have usually been classed; they may, however, be distinguished by the entirely saurian skull, with the symphisis of the two halves of the lower jaw; by the saurian tongue; and by the fact that the vertebre are united by fibro-cartilage. In one of the ophioid genera, Trogonophis, the teeth are acrodont, or attached on the cutting edge of the jaws, while in all the rest they are pleurodont, or applied along the inner edge. The genus Amphisbana, or double walkers, are so called from the close resemblance between the anterior and posterior extremities of the membranous body. They appear as if possessing a head at each end, and are hence supposed to be capable of progression in either direction. They are often found in the nest of the termites, where they feed upon the young ants. The genus Chirotes presents the remarkable anomaly among saurians of having two fore feet, each with five fingers. In the absence of hind feet, the anterior being present, we see a strong resemblance to the batrachian genus Siren. The presence of a sternum further distinguishes Chirotes from Amphisbana. The single species, Chirotes canaliculatus, is found in various parts of Mexico, extending northwards along the eastern base of the Rocky Mountains.

Fam. 3. Lacertida. Species of this family have a cylindrical elongated body, with the tail sometimes of very great length, and always well developed. The feet are four in number, with four or five distinct toes of unequal length, all provided with curved claws. The head is in the shape of a truncated four-sided pyramid, depressed, and covered with polygonal symmetrical plates. The typanum is distinct, sometimes externally apparent. Eyes usually with three movable eyelids. The mouth is deeply cleft, and
provided with large labial and submaxillary scales. The teeth are variously shaped and arranged, generally, however, inserted on the internal margin of a common maxillary groove. Sometimes they are found in the palate. The tongue is free, fleshy, flat, more or less extensible, the base sometimes contained in a sheath, the apex always emarginate, sometimes deeply cleft. The tail is very long and conical, the scales arranged in regular rings or whorls. The skin is scaly, without projecting crests; the dorsal scales variable; the central plates always larger, rectangular or rounded. Most of the species exhibit femoral pores.
The Lacertida, like several other families of Sauria, are extensively distributed. About one third of the entire number of species belongs to America; only one, however, is found to North America. Somewhat the largest proportion occurs in Africa; Europe comes next in point of numbers. About 70 species in all are known to naturalists. Some occur in a fossil state, but, for the sake of greater convenience, we shall refer to all of the lacertoid species when we come to consider the Varanida.

The Lacertide may be conveniently divided into two sul-families, the Pleodontes and the Coelodontes. In the Pleodontes, the teeth are entirely solid, without any internal cavity; and attached by the bases and external faces to the inside of the maxillary bones. They are usually bent a little outwards, especially those more anterior. All the species of pleodont lizards belong to the New World. There are two strongly marked divisions of the sub-family; the one with the tail compressed, the other with it conical. Those with compressed tails exhibit a striking resemblance to the crocodiles, which is not diminished by their great size. The tail, flattened like an oar, and with the surface increased still more by caudal crests, enables these animals to move with great readiness in the water, which they inhabit to as great an extent as the crocodiles. Their feet, like those of these latter animals, are palmated. The Tupinambis of some writers is the Crocodilurus lacertinus, a gigantic species nearly six feet in length, inhabiting the waters of Brazil and Guiana. Thorictes dracena, found in Guiana, is still larger, individuals of almost seven feet in length being known. Here the tail alone occupied nearly five feet.

The section of Pleodonts, embracing species with conical tails, is more extensive than the last. Here the animals are more terrestrial or arboreal. A single genus, Aporomera, is entirely destitute of femoral pores. Acrantus, a large South American genus, has but four tocs visible on the hinder feet. The other forms represent no remarkable deviation from the usual structure. The genus Salvator (pl. 74, fig. 80) includes the true Tupinambis or Sauvegardes. Individuals of eight feet in length are not uncommon. The genus Cnemidophorus is interesting as containing the only representative of the Lacertidæ in North America. This species (C. sex-lineatus) occurs abundantly in the Southern States, and as far north as north-eastern Maryland. It is readily distinguishable from the other lizards by the six yellow lines along the back, and the long tail. When pursued, it runs with incredible swiftness, climbing trees with great facility, but not leaping from branch to branch, like the green lizard, Anolis carolinensis.

The second sub-family, the Coclodontes, embraces species whose teeth possess an internal cavity, and are applied vertically against the inner wall of the maxillary bones, their bases, however, never being in intimate union with the bottom of the maxillary groove. All are natives of the old world, some living entirely in a sandy desert, or places where their rapid motions are facilitated by a fringe of scales to the feet, preventing them from sinking in the sand; others, again, with smooth feet, live on trees, or play habitually alons walls and rocks. None are aquatic. Thetypical genus Lacerta (pl. 74, fig. 79), widely spread in Europe and Africa, contains species eminent for the quickness and beauty of their movements, as well as for their brilliant colors.
L. viridis ($p l .89$, fig. 7), is a species abundant on the continent of Europe, but not found in Great Britain.

Fan. 4. Iguanide. This extensive family is well distinguished from the three already considered, by the absence of large polygonal plates on the top of the head. The body is furnished with scales, which are never arranged in whorled rings, nor occur on the belly as large square plates. Most usually the back or tail is provided with a crest, and there is a general tendency to a greater or less degree of roughness externally. The teeth rary in their mode of attachment, but are never implanted in sockets or rhizodont. The moderate tongue is free at the extremity only: it is thick, spongy, or villous, never cylindrical, nor playing in a sheath. The eyes are provided with movable pupils; and the fingers are free, distinct, and all provided with claws.

Of the entire number of species belonging to this family, two thirds (about 100) are natives of America. Of these, North America possesses a considerable number, only three, however, being found within the limits of the United States. The rest are found in Asia, Africa, and Australia; a single species only occurs in Southern Europe. Some of the Iguanida, South American species especially, attain to a large size, and constitute a favorite article of food. This is especially the case in the vegetable-eating species. The eggs, too, of several are considered to be a great delicacy.

All the American species of Iguanida belong to one sub-family, that of the Pleurodontes, distinguished from the natives of the old world, the Acrodontes, in having the teeth applied along the internal margin of a furrow excarated in the mandibles. These teeth, which are very close to each other, diminish in height as they approach the extremity of the jaws. The summits of the maxillary teeth are usually more or less trilobed; in a few species the edges are denticulated; nearly all have one or two ranges of palatine teeth on each side. All possess an external auditory apparatus. Some have the toes dilated, as in the Geckotida.

Of the numerous genera (upwards of 50) into which the family Iguanida is divided, our space will permit us to mention only a few. The first that comes under our review is the genus Anolis (pl. 74, fig. 69), distinguished by a dilation of the skin of the penultimate joint of the toes; by the presence of palatine teeth; by the minute scales; and by the absence of pores on the thighs. Of numerous species, but one is found in the United States. This
iConograrmic encyclopedia.-vol. If.
one, A. carolinensis, is very abundant in the United States, where it is known as the green lizard or chameleon. It is an exceedingly beautiful animal, of a light golden green above, and greenish white beneath; the gular pouch, when inflated with air, is of a vermilion color. It keeps about gardens, and frequently enters the windows of houses in search of flies; climbs trees with ease, and is even capable of walking over glass by means of the disks of the toes. Basiliscus (pl. 74, fig. 74) exhibits curious appendages in the form of a vertical fold of skin on the occiput, and a high crest on the back and tail, which, in the male, is supported by osseous appendages. The absence of femoral pores, and the palatine teeth, distinguish it from other genera with crests. Of the two species known, both inhabiting Mexico and the regions south, one (B, mitratus) is represented in p1. 89, fig. 5. Amblyrhynchus is an anomalous genus first detected in the Gallapagos Islands. This volcanic group, so remarkable for its peculiar fauna, is said to contain two species of the genus: one terrestrial and burrowing under ground, the other living in salt water and feeding on seaweeds. The genus Iguana ($p l .74$, fig. 75) is distinguished by the long flap or fold of skin under the throat; two series of palatine teeth; the long compressed tail, and the dentated crest along the back. A well known species, inhabiting South America, is the Iguana tuberculata (pl. 89, fig. 6). The genus Tropidolepis, with ten species, is interesting on account of being confined to North America. Only one species, however, comes within the limits of the Atlantic States, the rest belonging to Mexico and California. The species just referred to, T. undulatus, is the common grey or brown lizard, seen so commonly running along fences or among trees, especially in hilly or sandy districts abounding in pine trees. The males have an azure blue cross on the belly. There are no crests or other appendages in this genus, anly a roughness of the scales. The pine or fence lizard, as it is sometimes called, is entirely inoffensive. The closely allied genus Phrynosoma is also North American. Several species inhabit the sandy or sterile plains of Texas, Mexico, and California. The short, squat, nearly orbicular body, the weak limbs, the long spines fringing the occiput, and the shorter ones scattered over the back, give the animal quite a curious appearance. The two most abundant species, P. cormuta and P. orbiculare, are known as the Mexican or horned frog, although there is nothing frog-like in their appearance. They feed upon insects, which they capture by stealing imperceptibly upon them; and they hare the curious habit of feigning death, when handled, or even approached. Pl. 86, fig. 6, represents the latter of the species just mentioned.

The second sub-family, that of the Acrodontes, embraces species whose teeth are applied by their bases, and intimately united to the jaws. The anterior teeth differ in shape from the posterior. There are no palatine teeth. All the species belong to the Old World. Lophyrus (pl. 88, fig. 6) is a curious genus, inhabiting Asia and Africa. In Draco (pl. 74, fig. 76) the skin of the sides is extended out in the form of a wing supported by the prolonged ribs. By this means-which much resembles the flying apparatus of Pteromys, or the flying-squirrel, excepting that in the latter the
ribs do not support the membrane-the animal is enabled to glide in safety for a considerable distance through the air. The best known species is D. dandini, or flying dragon of Java (pl .81 , fig. 33, and pl. 89, fig. 3). The genus Agama (pl. 74, fig. 77) was formerly made to include the North American Tropidolepis and Plrynosoma. As restricted it now includes no American species. Stellio ($p l .74$, fig. 78) contains the only European representatives of the Iguanida, S. vulgaris.

Fam. 5. Chameleontide (the chamæleons). This family, containing but a single genus, Chamaleo, with 14 or 15 species, is separated by the most strikingly marked characters from all the other divisions of the Saurian order. The first peculiarity of the chamæleons consists in the absence of scales. The skin, however, unlike that of the Batrachia, is dry, and supplied with fine granulations of unequal size but of symmetrical distribution. The body is much compressed, so much so that the back and belly, in some cases, appear provided with crests. The feet, longer in proportion than those of any other saurian, are provided with five toes each, arranged in two sets, one including two and the other three. In the fore feet, the binary packet is exterior, the opposite being the case in the posterior extremities. In fact, the toes are all united together as far as the claws by the skin, and this then appears divided between the second and third, or between the third and fourth toes. The head is large, and, owing to the shortness of the neck, appears to rest on the shoulders. The orbits are very large, and the eyes are covered by a single annular pupil, with a dilatable central aperture. Either eye can be moved separately, and the two may be looking in entirely opposite directions at the same time. There is no external meatus auditorius. The mouth opens beyond the eyes, and is provided with trilobed cutting teeth, arranged in a single series along the sharp edges of the two jaws. A highly curious feature is to be found in the tongue, which, when at rest, appears like a fleshy tubercle, capable, however, of being suddenly protruded to a distance equal to the length of the body. The tip of the tongue is covered with a sticky secretion, by means of which small insects are secured. The tail is prehensile, and like that of the American monkeys can be used as an instrument of progression. The chamæleons are especially arboreal, a condition of life for which they are well fitted by reason of the opposable divisions of the feet and the prehensile tail. Their motions are exceedingly slow, and when stealing on their prey (minute insects) almost imperceptible. When arrived within a proper distance of the object of their pursuit, the tongue is protruded with inconceivable velocity, and retracted almost as quickly. The changes of color experienced by the skin of the chamæleon have made it an object of curiosity from the most remote time. Highly exaggerated notices of this phenomenon are to be found in the writings of many of the ancients ; more recent investigations, howerer, have dispelled much of the fable attaching to this curious animal. A change of color, under different circumstances, is not peculiar to the chamæleon, but is exhibited by many of the tree-frogs, and in fact by most of the anourous batrachia. In all, it appears to depend, in some obscure way, upon the loose attachment of the
skin to the suljacent muscles,-a feature highly conspicuous in the chamæleon. The skin appears to be provided with various coloring matters, in different layers, which may be exhibited at or near the surface, under different circumstances and to different degrees, thus producing the various shades of color. These colors depend much upon external conditions, but are especially seen when the animal is irritated, or exposed to an elevated temperature. When remaining in a dark, cool place, the color of the skin is nearly white, which the stimulus of light and heat sonn converts into a bottlegreen, or venous red, this sometimes of such intensity as to appear almost black. These colors may be partial in their distribution, or may cover the whole body.

The family is represented by a single genus, Chamaleo ($p l .74$, fig. 72), which is confined entirely to the Old World. Most of the species are African. One species, C. vulgaris (pl. 88, fig. 3), is found in the South of Eúrope.

Fam. 6. Geckonide. The Gecko family is eminently nocturnal, the entire organization fitting the species for this life. With some resemblance to the last, in some parts, the geckos are characterized in the first place by a clumsy, depressed body, so low on the legs as to permit the abdomen to drag along the ground; the greatest thickness is in the middle, and the back is without crest. The feet are short ; the toes usually dilated, and provided beneath with transverse folds of skin, by means of which they are enabled to athere firmly to the surface over which they may be moving. The claws are sharp, curved, and in some species retractile. The head is large and depressed, the mouth extensive, the cyes very large and protruding. In most species the pupil is a vertical slit, with or without denticulated margins. The tongue is short, fleshy, not protractile, and free at the extremity. The teeth are small, uniform, and implanted along the inner margin of the jaws. The tail is frequently provided with curious appendages, never, however, with a dorsal crest. The skin is granulated, somewhat as in the Chamæleons. In some species, it is extended along the sides and limbs into a kind of marginal fringe.

The Geckonida, unlike the last family, are pretty generally distributed. Asia, Africa, America, and Australia, divide the species pretty equally. Europe possesses two species. None are found in the United States, a species of Platydactylus having been assigned erroneously. The entire family may, with Cuvier, be conveniently divided into seven sections, according to the structure of the toes. In the first section, Platydactyla, the toes are more or less enlarged along their entire length, and provided beneath with transverse imbricated laminæ, which are either entire or divided by a longitudinal median furrow. A species of Gecko, Platydactylus muralis, is common in Southern Europe, where it excites attention by its power of ascending smooth perpendicular walls. It is this species which is called Tarantola or Tarantula, by the Italians. Another species, P. guttatus ($p l .88$, fig. 4), is a native of Asia.

The second section, Hemidactyla, embraces species in which the toes
are dilated at the base only. A single species only, \boldsymbol{H}. verruculatus, is found in Europe, the rest are principally Asiatic and Australasian.

The three next sections are known by the enlargement of the toes at the extremity only. In the first of these, Ptyodactyla, the disk is emarginate in front, and provided beneath with imbricated lamellæ arranged in a fan-shaped manner. One species, Uroplatus fimbriatus (pl. 88, fig. 5), inhabits Madagascar. The Phyllodactyla differ from the last in the absence of the inferior lamellæ. One species, P. tuberculosus, is found in California. The Sphariodactyla have the toes dilated at the extremity into an entire disk, and are entirely without claws. The species inhabit the West Indies.
The two remaining sections are without the usual dilatation of the toes. One of them, Gymnodactyla, has the simple toes unmargined and with transverse strix on the inferior face. The fifth toe of the hinder feet is versatile, answering the purpose of a thumb. Under this head is to be ranged the curious New Holland genus Phyllurus, with a tail flattened horizontally in the shape of a leaf. The concluding section, Stenoductyla, embraces but a single species, Stenodactylus guttatus, a native of Egypt. The simple cylindrical toes are indented along the edges, and are granular on the inferior face. The fifth toe of the hind foot is very slightly versatile.

Fam. 7. Varanida. This family, interesting on account of the size of some of its species, which comes next to that of the crocodiles, is also important for the light which it throws upon the organization of certain fossil saurians. The body is greatly elongated, rounded, or cylindrical, and without dorsal crests. The tail is slightly compressed, and several times as long as the body. The body is provided with non-imbricated tubercles, which are set in the skin, rounded, except on the belly, and arranged in circular bands or rings. The belly is frequently provided with angular plates. The tongue is more like that of serpents than of the other saurians: it is protractile, playing in a sheath, and deeply split into two forks, which are capable of separation. The teeth, which are usually pointed and recurved, sometimes tubercular, are confined to the jaws, where they are inserted by their roots in a common groove. Some of the Varanide attain to a size which, among living saurians, is only exceeded by the crocodiles. None, as far as known, are arboreal. They inhabit sandy deserts, rocky situations, or the banks of rivers, where they feed upon insects, or even the smaller vertebrate animals. The Monitor of the Nile, Varanus niloticus, is said to perform essential service in devouring the eggs of the crocodile.

Of the few species of this family, but one, Heloderma horridum, belongs to North America, where it is found in Mexico and California. None are European: Asia, Africa, and Oceania dividing the species pretty equally.

We shall now briefly indicate a few of the more conspicuous fossil saurians, whose alliance is, to a greater or less extent, with the preceding families, especially with the Varanida. The genera Geosanrus and Mosasaurus were gigantic forms, each represented in the cretacean
system of the United States ; one, Geosauris mitchelli, from New Jersey, the other, Mosasaurus maximiliani, from the banks of the Yellowstone River. Dicynodon is a highly anomalous genus found recently in South Africa; and, in some peculiarities, exhibiting a resemblance to the Chelonia and to birds. There are no teeth at all along the margins of the jaws; but below each orbit there is a single cylindrical acute tooth, which appears to have grown at the base as it was worn away at the apex (as in the Rodentia), and presenting a character entirely unique among reptiles. Other genera are Palcosaurus, Thecodontosaurus, Rhynchosaurus, \&c. There are obscure indications of species of Varamus, Igruana, Lacerta, Scincus, \&c., or of very closely allied genera.

We come now to the consideration of Saurians, of a type of organization in many respects much superior to those hitherto considered. The most striking feature consists in the rhizodont character of the teeth, or the implantation of the teeth either in so many distinct sockets, or else in a deep furrow. Some authors make a distinct order of Rhizodontes. Comparatively few of the species known belong to the fauna of the present day; the remainder being entirely extinct, and exhibiting forms the most different from those which now abound on the surface of the earth. But one family has living representatives, and most of its species are now extinct.

This family, Crocodilide, the eighth of our classification, is readily distinguishable from other recent families by important characters, in addition to the implantation of the teeth in distinct sockets. The tongue is broad, fleshy, and entirely attached between the rami of the lower jaw. The latter are longer than the cranium. The skin of the head is closely adherent to the subjacent bone, and is without scales. The external nostrils are close together at the superior extremity of the snout, and are provided with movable valves. The posterior nostrils open in the pharynx, and not in the mouth, as in other saurians. The external ears also present an unique character, in being provided with two movable opercula, simulating the concha of the mammalian ear. The pupil consists of a vertical slit. The skin of the back is covered with solid bony shields, with longitudinal carinæ, and arranged in longitudinal bands. The belly is covered with transverse series of square plates. The greatly compressed tail is surmounted by longitudinal crests, and provided with whorled square plates. The anterior extremities have five distinct toes, the two exterior without claws; the posterior have but four toes, which are palmated, or semi-palmated; three only have claws. The penis of the male is simple, and the cloaca opens by a longitudinal slit, instead of the double penis and transverse slit of most other saurians.

The living Crocodilide are most abundant in the New World, where about one half of the entire number is found. Europe presents us with not a single species, Asia has three, and Africa perhaps four. Among the crocodiles of the present day, we distinguish three distinct genera, the alligators or caymans (Alligator), the true crocodiles (Crocodilus), and the gavials (Gavialis). The two first genera are distinguished from the last
by the comparatively short, broad skull. In Alligator, again, the fourth tooth of the lower jaw, or canine, is received into a cavity of the palatal surface of the upper jaw, where it is concealed when the mouth is shut: in old individuals the upper jaw is completely perforated by these large canines. The entire genus is confined to the New World. In Crocodilus, the first tooth in the lower jaw perforates the palatal process of the intermaxillary bone when the mouth is closed: the fourth tooth in the lower jaw is received into a notch cut in the edge of the upper jaw, and is visible externally when the mouth is closed. The genus is represented in the West India Islands, but probably not on the continent of America: it is also found in both Asia and Africa. The commissure of the jaws, in both species, presents a sinuous or waved margin, and the teeth are of unequal size. In Gavialis the jaws are very straight, and greatly elongated, so as to form a sub-cylindrical beak. The teeth are nearly equal in size, and similar in form, in both jaws ; and the first, as well as the fourth tooth, on each side of the lower jaw, passes in a groove in the margin of the upper jaw when the mouth is closed. The best known species, Gavialis gangeticus, or the common gavial, is found in the Ganges, and probably in other rivers of Asia. The best known species of alligator proper is A. mississippiensis, a conspicuous inhabitant of North America. On the Atlantic coast, it occurs as far north as Capo Fear River in North Carolina. They were formerly very abundant in Florida, and of great size, individuals of 20 feet in length having been met with. They construct a curious nest, consisting of a cone of about four feet in diameter and height, composed of alternate layers of eggs and mud mixed with grass. The males in spring make a noise resembling the bellowing of a bull. Pl. 88, fig. 7 , represents one of the South American alligators. The genus Crocodilus is illustrated by C. vulgaris (pl. 88, fig. 8), or the common crocodile of the Nile.
The Crocodilides of the present day all possess vertebre with concaroconvex articulations, or the anterior face concave and the posterior convex. Instances of this same character occur in the fossil species. Others, however, as Pleurosaurus, Teleosaurus, Macrospondylus, \&c., have concave articulations at both extremities. In a third series the reverse of the first takes place; the anterior articulations being convex, the posterior concave, as in Streptospondylus, Cetiosaurus, \&c. About 70 fossil members of the family are known, comparatively few of these, however, belonging to the United States. Many species were of enormous size, exceeding those of the present day, although some of the latter have been known upwards of thirty feet in length.

Fam. 9. Enaliosaurii. The remaining families of Saurians are all composed of extinct species; many of them of enormous size, and of most remarkable organization, fitting them for the water, the air, the land. The enaliosaurians are the most highly aquatic of all known saurians, and perhaps of all reptiles. For this mode of life they were well calculated, by the highly unique structure of the extremities. While all other known reptiles never have more than five toes, nor more than five joints to each toe, the enaliosaurians have to each foot an indefinite number of toes, of an
indefinite number of joints, all united into a strong paddle or oar. In this respect they resemble fishes, an analogy which perhaps detracts from that eminence which the alveolar character of the teeth would imply. The entire framework is cminently calculated for progression in the water, the anterior extremities being more powerful than the posterior. The numerous vertebre have biconcave articulating surfaces, and the bodies are rather broader than long. The immense eyes were provided with a bony sclerotic hoop, as in birds, composed of numerous pieces. This hoop, however, instead of being imbedled in the sclerotic of the eye, was probably attached to the margins of the orbit anterior to the eye. The teeth were large and conical, arranged in a longitudinal groove, bearing traces of a subdivision into alveoli. The skin was probably naked. The entire structure of the enaliosaurians indicates a highly rapacious character, well fitted to make them the terror of the deep. That their food consisted mainly of fishes is shown by the fact that their coprolites, or fossilized excrement, always contain scales or bones of these animals.

The enaliosaurians inhabited the seas of Europe during the deposit of the Trias and Jura formations. No species have as yet been detected in North America.
Of the numerous genera of this family, we have space to mention but two, which perhaps offer the extremes of structure. The first of these is Ichthyosatrus (pl. 74. fig. 83), a form which probably resembled that of some living cetaceans, as the dolphin. Like some of them, too, it was probably furnished with a vertical cartilaginous fin near the tail. The head was very large and pointed, the neck very short, and the tail very long; the entire animal having an acutely sub-fusiform slape. Plesiosaurus ($p l .74$, fig. 82) presents conditions of external appearance precisely the reverse of the last genus. With a very small head, the neck was of such enormous length as greatly to exceed, in this respect, any other animal. Some species have as many as 40 cervical vertebre, and the neck must have had a flexibility and freedom of motion far exceeding that of the swan, or any of the herons. In mammalia, this number never exceeds seven; birds have from nine to twenty-three ; in living reptiles, from three to eight. The tail of Plesiosaurus was shorter, and the feet weaker and more slender than those of Ichthyosaurus. Some species of both genera exceeded 20 feet in length.

Fam. 10. Pterosaurii. Of all anomalous reptilian animals, Pterodactylus, the single genus composing the family, presents perhaps the most remarkable features. Even its position in the class Reptilia has been allowed, comparatively speaking, but recently, some writers assigning it to fishes, some to mammalia, others to birds; while a few saw in it a connecting link between the two last mentioned classes. Wagler went so far as to construct for it a new class of vertebrate animals, in which he likewise placed the enaliosaurians and the monotrematous mammalia. In appearance they must have somewhat resembled, when living, enormous bats; and would have well illustrated the fabulous dragon of olden times. The peculiarity which distinguishes the pterodactyle from all other reptiles is to
be found in the conversion of the anterior extremities into true wings. It is indeed true that one genus of living saurians, Draco, possesses the power of gliding through the air, but this is effected by means of the extended ribs alone, which, covered with skin, and margining the sides of the body, support the animal in its aerial movements, precisely as does the outstretched skin of the Pteromys, or flying squirrel. The entire structure of the pterorlactyle fitted it for living in the atmosphere, where it probably possessel as much, if not more, freedom of motion than the bat of the present day. The lightness and hollowness of the bones, the bony connexion of the ribs with the sternum, the processes of the ribs, the numerous anchylosed sacral vertebre, \&c., all conclusively indicate this fact. The external or little finger of the anterior extremities, was of enormous development, and a membrane extended from this, probably to the tail, including the feet. The remaining four interior fingers were of moderate size, and all provided with strong claws. In the bats, it is the four external fingers which are greatly developed, and over which the wing membrane is stretehed, leaving the thumb alone, of normal size, and provided with a claw. The clongated jaws were provided with teeth arranged at intervals, and each implanted in distinct sockets, to the number of from 10 to $3 t$ in each jaw. The food of the smaller species consisted of insects, the larger preying upon fishes or the marsupial mammalia of their day. None of these highly curious animals have been detected in North America.

Fam. 11. Dinosauria. While the Pterosauria inhabited the air and the Enaliosauria exclusively the water, the Dinosauria seem to have had the dry land as the stage on which they played their part in the cconomy of an ancient world. The species of this family exhibit a striking manmalian feature in the anchylosis of five vertebre to form the sacrum. In no other saurians, excepting the pterodactyles, is the number greater than tro. The bones of the extremities were much developed, with crests for the attachment of muscles, and with a medullary cavity in the interior, as in mammalia and birds. The species were all of gigantic size, and divisible into two sections, the one carnivorous, the other herbivorous. The former, including the genera Megalosaurus and Hylæosaurus, exhibited peculiar serrated sabre-shaped teeth, arranged in listinct sockets; while the latter, embracing Iguanodon (and perhaps Plateosaurus) had teeth not unlike those of Iguana, which were pleurodont in their attachment to the jaws. For a long time the single species of Iguanodon was supposed to have attained a length of from $\mathbf{7 0}$ to 100 feet; and although this size is now denied, yet this gigantic saurian must be ranked among the largest of all terrestrial animals. Of the four known species of Dinosauria, none have been found out of Europe.

Fam. 12. Labyrinthodonta. This remarkable family should, perhaps, in a strictly natural arrangement, come next to or be included among the Batrachia, although several features would seem to require a position superior to that of the family just mentioned. The more essential differences consist in the implantation of the teeth in distinct sockets, and in the development of certain of the anterior teeth of both jaws into large and
formidable tusks. Other important points of distinction are to be found in the particular relations of several bones of the skull, some of which strikingly resemble those found in the crocodiles. The two occipital condyles impart a batrachian feature not to be found in any other saurian. Various genera are ranged in this family by the German palæontologists: the more conspicuous of these are Mastodonsaurus and Labyrinthodon, the latter of which, in addition to a close set series of nearly equal teeth along both jaws, has another along the anterior part of the outer margin of each vomerine bone. Two or three canine-shaped teeth, much larger than the rest, are placed in the intermaxillary bones, and in each vomer; other tusks being somewhat irregularly implanted in other situations. So few fragments of the rest of the skeleton have been found that we cannot have a clear idea of the animal, which may, however, have resembled a frog in external appearance. Some species are known to have possessed an armor of bony plates like that of the crocodiles. Not the least interesting feature of the Labyrinthodonts is presented by the peculiar structure of the teeth, a transverse section of which exhibits the most complicated cerebriform convolutions and sinuosities of the cement and dentine. The only parallel to this, among recent animals, is to be found in some species of the North American ganoid fish; Lepidosieus or the gar. It is highly probable that the curious hand-like fossil foot-marks found in Scotland and Germany, and provisionally assigned to a Cheirotherium, were impressed by some labyrinthodont. No species of the family have been found in North America.

Order 4. Chelonia.

The order Chelonia, or tortoises, is readily distinguished from other reptiles by the entire absence of teeth and the immovable union of the ribs and sternum into a kind of box, within which the soft parts are inclosed, and from which project the head, tail, and four extremities. This box is always broader than high, sometimes nearly as broad as long, and consists of two portions: one superior, or dorsal, called the carapace, or buckler; the other inferior, or ventral, known as the plastron or shield. The carapace is usually much arched, the degree of curvature varying with the family: the plastron is flat or sub-concave. The plastron usually consists of eight elements united in successive pairs, and a ninth occupying a notch between the first pair. In the carapace there are two sets of bony elements, one margining the other. This solid framework is covered by horny plates of various shapes and sizes, not necessarily similar in this respect to the osseous elements; more rarely by a simple coriaceous integument. The extremities are covered by a scaly skin. There are additional peculiarities in the osteology of the Chelonia, to which our limits forbid us to refer.

The head, neck, and tail are movable, and often retractile within the shell; the eyelids are always three in number; no external auditory
meatus; nostrils anterior; tongue fleshy, depressed, and thick. The cloaca is situated under the tail, with the orifice rounded and puckered. The male organ is simple.

Fam. 1. Testudinida. The family first to be considered embraces species which are exclusively terrestrial. They are known by their high-arched carapace, their full ossification, the complete investment of all the toes by a common skin, forming a true club-foot, on the exterior of which are to be found the blunt nails. The jaws are naked; the tympanum visible; the eyes lateral, with the lower eyelid higher than the upper. The tongue also is papillose. The four generic forms are, Kinixys, Homopus, Pyxis, and Testudo. But one of these genera, Testudo, is found in North America, where it is represented by a single species, T. polyphemus, or the gopher. This animal is found in Georgia and Florida, in sandy districts, where it excavates holes in the ground which much impede the movements of horsemen. Another species, T. elephantopus, is found in great numbers in the Gallapagos Islands, were they average 60lbs. in weight. They are eagerly sought for by the crews of ressels, and when captured serve for fresh meat, and may be kept in the hold of a ship for a year without food or drink. One species, T. graca (pl. 81, fig. 40), is found in the South of Europe ; while ' Γ. geometrica (pl. 81, fig. 39, and pl. 90, fig. 13) lives in the East Indies.

Fam. 2. Emydide. In this family, the feet are more perfectly formed than in the last, the toes being five in number and movable, most generally united by a membrane or palmated. The mandibles are usually horny, trenchant, and naked. The tympanum is visible, and the eyelids are of equal height. The tongue, of nearly equal thickness throughout, is smooth at the surface, but presenting longitudinal folds. In most species the shell is considerably depressed.

This extensive family presents two sub-divisions or sub-families, whose distinguishing features are to be found in the shape of the head, in the position of the eyes, and in the manner in which the head and neck are retracted within the shell.

In the first sub-family, the Cryptoderes, the head is conical, sometimes as as high as broad; the eyes are lateral. The neck is short, thick, cylindrical, invested by a loose non-adherent skin. When the head is retracted the neck assumes an S shape, and both are nearly, if not entirely, concealed by the anterior margin of the shell, or by the loose skin of the neck. The most striking anatomical difference between the two sub-families is that in this the pelvis is attached to the carapace by a cartilaginous symphysis, and not at all to the plastron, this permitting a certain freedom of movement; while in the second sub-family, the pelvis is immovably attached to both carapace and plastron.

The first genus to be referred to among the Cryptoderes is Cistudo, which includes the common land tortoise (C. clausa) of the United States. Here the carapace is very high and arched, while the lower shell or plastron is divided into two pieces by a hinge, which enables them to shut close against the upper shell, and thus completely to inclose the entire
animal. The principal food of the land tortoise consists of vegetable matter; as fungi, of slugs, \&c. Other species are found in the Old World, as C. europea ($p l .81$, fig. 41, and pl.90, fig. 12). Sternothrerus, with some resemblance to the last genus, has the anterior half only of the lower shell movable. The single North American species, S. odoratus, or the stinkpot of the Middle States, is a small species, exclusively aquatic, and often ciaught on a hook. It exhales a very disagrecable musky smell. Commonly confounded with this species is Kinosternon pennsylvanicum, a turtle of about the same size, but with the lower shell in three pieces, of which the middle is fixed, and the anterior and posterior move on this by cartilaginous hinges. The next noteworthy genus is Chelonura, or the snapping-turtle of the United States. Of this, there are two species, one confined to the South-West, and of immense size. The genus Emys includes species with depressed bodies and immovable plastron; five toes to the feet, the posterior with four claws only. Of this single genus there are 17 species known in the United States. The most remarkable is E. terrapin, the common diamond-back terrapin, so highly prized by epicures. It is caught in the brackish waters of the Chesapeake, and other bays and rivers, and commands a high price. Another species, E. picta (pl. 81, fig. 42), is exceedingly abundant.

In the second sub-family of the Emydida, or the Pleurodeles, the neck and head are not capable of complete retraction within the anterior part of the shell, but only partially to one side. The cranium is more or less depressed, and the eyes are more or less superior, and approximated. The skin which covers the neck is closely adherent to the subjacent muscles, and follows the neck in all its movements. None of the species belong to North America; many, however, to South America. The most remarkable is the Chelys matamata, or matamata tortoise of Cayenne, remarkable for the numerous fringes and other appendages which give it so grotesque an appearance.

Fam. 3. Trionycida. This family is known by the complete absence of scales upon the body, the shell being covered by a soft skin, and with free and flexible borders detached from the sternum. The feet and head are equally clothed with a nakel skin, the latter without visible tympanum, and with nostrils prolongel into a kind of tube. The feet are provided with five toes each, with, however, but three claws. The species are all highly aquatic, with a much depressed shell, which, with their oar-shaped feet, well fits them for rapid progression in the water. But two genera are known, Tryonix and Cryptopas; species of which are found in North America, Asia, and Africa. Two species of Trionyx are found in the United States, where they are known as the soft-shelled turtle. One species is exceedingly abundant in the Mississippi and its tributaries. It bites readily at a night line, and is esteemed, in many places, a great delicacy.

Fam. 4, or the Chelonida proper, includes the marine species, which are all of immense size. Their carapace is much depressed, and the upper jaw usually presents a curved beak somewhat like that of a hawk. The feet
are true oars or paddles, with but a faint trace of one or two claws externally; the anterior are much larger than the posterior. There are two genera, one Sphargis, with a naked skin on the shell, and Chelonia with plates. Sphargis coriacea (pl .81, fig. 43), or the leather turtle, is the largest of all living Chelonia, individuals having been known to weigh $15001 b s$., with a shell six feet in length. Chelonia imbricata, or the hawks-bill turtle, found among the West India Islands, and in other localities, furnishes the valuable tortoiseshell of commerce. C. mydas, or the green-turtle ($p l .90, f i g .11$), is highly prized by epicures. It is caught in great numbers among the West India Islands and on the coast of Florida, especially about Key West. Most sea turtles are vegetable eaters.

We shall now make a brief reference to the fossil Chelonia, having purposely deferred their consideration until the last. Numerous species of Testudo are found in the Tertiary of Europe, and one or two in that of Brazil. The Himalaya furnishes an enormous species of land tortoise closely allied to Testudo, in Colossochelys atlas, an animal which with a total length of 18 feet, had a carapace or back shell $12 \frac{1}{2}$ feet in length, 8 feet broad, and 6 feet high. The sternal shell or plastron was $9 \frac{1}{2}$ feet long, 8 broad, and over 6 inches in thickness. The feet must have equalled, or exceeded in size, those of the largest rhinoceros. Many species of Emys have been found in the Jurassic and tertiary strata of Europe. A species of Chelonura, or snapping-turtle, is described, from the Eningen marl. Triony.x, Chelys, and several other modern genera, have their fossil representatives. Fossil species of Chelonida, or sea turtles, are not uncommon in the Jurassic, cretaceous, and tertiary strata of Europe ; and one species, Chelonia cooperi, is indicated from the State of Georgia. Many species of Emydida are found in the bone caves of Pennsylvania, most of them, however, identical with recent species.

VERTEBRATA.

Class III. Aves. Birds.

No class of the Animal Kingdom is more stongly marked or more competely isolated from other classes than that of Birds. Having the body covered with feathers, which are peculiar to this class, with the two anterior extremities analogous to the fore legs in quadrupeds transformed into wings, and an organization completely adapted to inhabiting the air, at various altitudes, during the greater portion of their lives, they are capable of swiftness of motion surpassing any other of the Vertebrata, and wander over the regions of space with great ease and celerity. We wish to be understood, however, as speaking of the general character of the class; for nature, ever disposed to vary her productions, has given to some species very limited powers of flight, and totally denied them to others.

For the purposes of flight, and especially for such long continued exertion upon the wing as may be observed in many birds, an admirable adaptation of anatomical organization subserves. It is obvious that a great degree of musctlar power is indispensable, and we accordingly find it, and sustained too by a provision for producing the most energetic and protracted respiration. This is the curious arrangement by which the air which enters the body is not restricted to a pair of lungs, but is transmitted to various large air-cells in the abdomen and other parts of the body, and even into the interior of the bones. By this means the respiratory surface is incalculably extended, and the specific gravity of the body greatly diminished. There are also other anatomical characters, from which it is demonstrable that to be filled with air is the natural or healthy state of these cavities, and that they are always filled by active or unimpaired inspiration. This extraordinary arrangement is lighly developed in rapacious and other birds which habitually fly to great heights in the atmosphere; but it is also found in great perfection in singing birds, and has evidently an additional use in enabling them by deep and less frequent inspirations to sustain protracted song.

For general clegance of form no class of vertebrated animals can be compared to birds, and they alone of the entire circle of animal life are gifted with voice which can be considered as musical or even agreeable to the ear. It is the latter character which immediately recommends them to all nations and classes of mankind, and establishes them as favorites. It has somewhat an aspect of misfortune, though, so far as relates to many of the pre-eminently superior songsters of Europe, the business of catching them and reducing them to subjection has been long pursued and carried on to an extent which would be scarcely credited in America.

Singing birds are almost exclusively restricted to the Insessorial or perching birds. The song was formerly supposed to be peculiarly the expression of love during the breeding season, but this is not strictly the case, for many species sing in the autumn long after the labors of incubation
have been accomplished, and it even appears to happen occasionally that a bachelor bird sings all summer apparently for his own exclusive amusement. Mr. Broderip, in Zoological Recreations, mentions a case of this kind as follows: "We have heard the wild thrush, one of the sweetest singers of his tribe, sing far into September, but we watched narrowly and never could find that he had a mate." He was either too much of a genius to be troubled with the cares of ornithological matrimony, or was culpably unambitious about perpetuating the ancient house of the Thrushes.

Many birds which have no song possess notes of remarkable beauty and purity of intonation.

It appears to be nearly or quite impossible to set to music any lengthened song of a bird. This is owing to its being, as termed by musicians, out of time. This remark does not imply, however, to some birds which have a few melodious notes; these can often be accurately recorded, though it must be borne in mind that it is nearly impossible to imitate them with any instrument.

Nearly all birds can be taught strains other than their natural notes, by the more or less long continued repetition of such in their hearing; and several families, especially of the Parrots, can be taught to imitate the human voice with considerable success. No animals except birds are capable of this kind of imitation. The strength and compass of a bird's voice depend on the size and proportionate force of the larynx. The male only possesses this organ in sufficient development ; in the female it is weak and small. It is found by experiment that this organ may be greatly improved in all singing birds by exercise and habit, so as to greatly enlarge and improve the song. Nutritive food, fresh air, and exposure to sounds which excite attention and emulation, in the season of courtship especially, are productive of this effect.

The highest degree of merit as a songster, from time immemorial and by universal assent, has been awarded to the nightingale, of which we shall speak at length in its proper place, and also of the greatest of our American songsters, the mocking-bird.

In the economy of the bird the bill is, perhaps, the most important organ, as it not only performs the offices of the jaws in other animals, to some extent, but is also a substitute in a great measure for the hand or fore paw of other vertebrata. It has considerable analogy, however, to the lengthened snout of the crocodiles, or the long-nosed fishes or quadrupeds. By this organ the food is seized in all birds, and in rapacious birds it is constructed for tearing their prey in conjunction with the feet and claws, and such is the case also so far as relates to many of the small insect-eating birds. Some birds, the horn-bills (Bucerida) for instance, have large and grotesque appendages to this organ, the uses of which have never been ascertained. (See pl. 103, fig. 2).

The possession of wings is the most peculiar character of birds amongst the vertebrated animals, but in several groups these members are so materially modified as to be almost useless. In very many of the Gallinaceous birds, which comprise the common fowls, the pheasants, quails, $\& c .(p l .96)$, the wings are so short and weak as to be only capable of
restricted and noisy fight; while in the ostrich, emu ($p l .94,95$), and some swimming birds, they are only useful to assist in running or swimming. In all cases, however, there appears to be ample compensation in enlarged powers of the two latter methods of locomotion.

All birds are protected from external injury by a more or less densely arranged growth of feathers, which are their peculiar clothing. In the smaller birds these are frequently highly ornamental; while in the tribes inhabiting the water or found only within the limits of excessive cold, in which utility is more strictly an object, this clothing is remarkably compact, and adapted in the most wonderful manner to the retention of warmth. In the swimming birds it is absolutely impervious to water, and is constantly lubricated by an oily secretion from a gland near the rump, more or less developed in all birds.
The periodical renewal of this plumage is termed moulting, and usually takes place in all birds once in a year. It usually occurs several times before the mature plumage of the species is attained. The plumage alters also considerably in the course of a year, the brightest colors and otherwise most complete plumage being observable during the season of courtship and incubation; after which it fades and in some species a moult takes place, during which the male bird assumes a plumage resembling that of the female, only attaining his own again in the spring.

The digestive power of all birds is very powerful, and the demand for food is accordingly of frequent recurrence. All birds are great eaters, and seem necessarily to require a comparatively large quantity of food to sustain their active habits and peculiar organization. The food is at first temporarily deposited in a sac, which is merely an extension of the gullet, and termed the crav, from which it is generally transferred to the stomach proper. This is composed of two apartments, in one of which the food is moistened by a secretion from peculiar glands, and then transferred to the second part or gizzard, in which the digestion is completed. The gizzard is furnished with enormously strong muscles in birds which feed upon grains, as the common fowl, but in those which subsist upon animal food the muscles are of but ordinary development. Many birds swallow particles of sand or gravel, for the purpose, it is believed, of assisting the powers of digestion. The craw is wanting in some birds which feed upon soft fruits. In parrots and pigeons it has the function of secreting a milk-like substance with which the food of the parent is mixel, and afterwards disgorged for the purpose of feeding the young.

Of the senses possessed by birds that of sight is the most acute, and exceeds in power that of all other animals and even of man. The rapacious vultures and eagles have this sense in the highest degree, but all birds have it very acutely developed. The sense of smell does not seem to be at all remarkable in any birds, notwithstanding the opinion formerly entertained that by this sense vultures were attracted to their prey. This opinion has been completely disproved, and the fact fully established that they depend upon sight alone. Hearing is usually acute, and is very delicate in the owls, some of which are the only birds which have external
ears. The sense of taste is very imperfect in all birds, and touch little better, though the latter is amply developed in the ducks and other aquatic birds which seek for sustenance with the bill. In all other birds this sense is very dull, and almost exclusively confined to the feet.

Birds are eminently migratory. The majority of the species found in the temperate zones during the summer, rearing their young, pass the winter many degrees south of the place of their nativity, and even penetrate into the torrid zone. In the course of these migrations many of the small birds perform journeys which would appear almost incredible. Many of the American warblers, for instance, pass the winter on the shores of the Gulf of Mexico, and proceed in the spring as far north as Labrador.
The red winged starling and other birds of North America, known as blackbixds, also proceed during winter to the extreme southern limits of the United States; while a few species, such as the rose-breasted grosbeak and yellow-breasted chat, push into South America. The migrations of European birds are very remarkable, many of the common species passing the winter in Africa, some species crossing the Straits of Gibraltar, and others venturing boldly across the Mediterranean.

Pl. 105 b presents a view of the migrations of numerous species. These extensive flights are performed during both day and night; the latter time appears, however, to be that most universally adopted. Some small birds during their migrations fly at very considerable heights, much greater than is attempted by them at any other period.

Classificition of Birds.

Birds occupy a station in the great circle of the Vertebrata between Quadrupeds and Reptiles. No class of animals has engaged the attention of naturalists to a greater extent, nor have their conclusions respecting subdivision or classifying been more various upon any other subject.

There are nearly as many systems as there are ornithologists.
We are disposed to look upon the circular or quinary system of Vigors and Swainson as the first approximation to the natural system, and in all respects the most philosophical. It will be impossible, however, to bring within our limits more than a mere outline of this remarkable system.

Birds are naturally divided into five orders, each of which, of course, is characterized by general characters. The following is according to the vierrs of Mr. Swainson.

1. Insessores, or typical Birds, comprising all the well known Sparrows, Warblers, Thrushes, Woodpeckers, and other small birds. In this order is found the highest development of the general characters of Birds, the greatest variety and beauty of plumage, and an organization especially enabling them to live habitually amongst trees.
2. Raptores, or rapacious Birds, composed of the Vultures, Falcons, and $0_{\text {wlls }}$. These subsist entirely upon animal substances, and are the strongest and most powerful of all birds. They are strictly analogous to the tigers, dogs, hyenas, and other carnivorous quadrupeds.
iconographic excyclopedia.-vol. in.
3. Natatores, or swimming Birds, of which the Goose and Duck are familiar examples. They habitually live in the water, for which they are admirably constructed, like the whales, dolphins, and other aquatic mammalia to which they are analogous.
4. Grallatores, or wading Birds, well represented by the common Herons and Cranes. In these birds the long legs and neck are striking characters, and their entire organization has for its object the pursuit of such fishes or other animals as inhabit shallow waters or marshes.
5. Rasores, or walking Birds, represented by the domestic Fowl and the Turkey, by the Pheasants, Partridges, Quails, and other birds. They live almost entirely on the ground, and are almost the only birds which have been completely domesticated.
We cannot, however, possibly enter into any details of this system, and are sorry to say that it has not been elaborated by any author to such extent as to enable us to avail ourselves of his labors so far as to present a view of the various families of birds upon its basis. The reader can consult with great advantage, upon this subject, the volumes of Lardner's Cyclopædia by Swainson.

The publication of "The Genera of Birds" by George Robert Gray, an ornithologist of great acquirements attached to the British Museum, has placed in the hands of naturalists the most complete synopsis of the genera and species of birds ever produced. His method and views of classification we propose to adopt in the following pages.

Gray divides the class of birds into eight orders, as follows :

1. Accipitres, Rapacious birds. (Pls. 104, 105.)
2. Passeres, Sparrows, Thrushes, and generally all the small birds.
(Pls. 99, 100, 101, 102.)
3. Scansores, Parrots, Woodpeckers, Cuckoos, ©c.
(Part of pls. 97, 98.)
4. Columber, Pigeons and Doves. (Pl. 96, figs. 12 to 15.)
5. Galline, Cocks, Pheasants, Grouse, Turkeys, \&c. (Part of pls. 95, 96.)
6. Struthiones, Ostriches, Bustards, and the Emu.
(Pl. 94, figs. 1, 2.)
7. Gralle, or Wading birds. (Pl. 93.)
8. Anseres, or Swimming birds. (Pls. 91, 92.)

These orders contain, according to the views of Gray, about fifty families, which are again divided into about one hundred and fifty sub-families, admitting about eight hundred genera.

The number of species of birds known is variously estimated. Gray enumerates in his great work about six thousand species, but Des Murs of Paris, in a beautiful and important work the Iconographia Ornithologica, now in the course of publication, and in which he intends to give plates of all known birds not previously figured, estimates them at ten thousand. The probability is that there are at this time about seven thousand well determined birds, many of which have been discovered since the commencement of Gray's work; and to this number constant and large accessions 498
must continue to be made. Linnæus in 1766, which is the date of the last edition of his Systema Naturæ, mentions only nine hundred and forty-seven species. The progress of discovery in ornithology may be inferred from the vast increase of known species since that period; and there is yet no symptom of cessation or respite, new discoveries being made almost daily.

The largest and most complete collections of birds in the world are those of the Academy of Natural Sciences of Philadelphia, of the British Museum, of the Royal Museum at Leyden, and of the Jardin des Plantes at Paris. The first is probably the most extensive, though the number of species contained in it has not been ascertained. There are upwards of twenty thousand specimens exhibited, which, with the other collections of the Academy, are with great liberality gratuitously thrown open to the public.

We shall now proceed to give in detail notices of all the families and subfamilies of birds nearly as proposed by Gray, and shall also give brief sketches of the principal genera and species, more particularly of those inhabiting North America and Europe, but shall not neglect others; hoping, upon the whole, to present to the reader a general view of ornithology sufficiently interesting to induce him to pursue further the study of this delightful branch of natural history.

Order 1. Accipitres; or Rapacious Birds,

Immediately recognised by their strong and hooked bills, their formidable claws, and an organization entirely adapted to the pursuit and destruction of other animals, or to subsisting only upon animal food. These birds are found in all countries, and, although not numerous, are universally known.

The rapacious birds comprise some of the largest of the whole class, and are by far the most muscular and powerful. They are usually solitary and very retired in their habits, and are more unproductive than any other birds. The female is the larger of the two sexes, and frequently has more handsome plumage.

This order contains three families, which are the Vultures, the Falcons, and the 0 wls .

Fam. 1. Vulturide, or Vultures. Head naked; bill more or less strong, sometimes rather long, hooked, and acute; wings long and pointed; tail moderate ; tarsi short, strong, covered with scales ; toes moderate ; claws weak, but slightly curved. Size large ; body thick and heavy ; region of the crop or craw usually naked, or covered with woolly hair.
This family presents an assemblage of large birds of remarkably uniform general habits and history. The name vulture has not inaptly been borrowed to express features of character which are repulsive in our own race, but which are common to the whole family of useful but disagreeable birds now before us. Cowardly and excessively voracious, they delight in dead animal matter in all stages of decay and putridity, of their indulgence in which they usually give sufficient evidence in the offensive effluvia which emanate from their plumage. Nevertheless, the unenviable tastes of
the Vultures are directed to a wise end. They are the scavengers of the hot parts of the earth, performing valuable services in destroying dead animals immediately after life has ceased, in countries where large quadrupeds and all animals most abound.

It was long believed that Vultures were attracted to decaying matter by a very exquisite power of scent, which was supposed to enable them to distinguish it at a great distance. The testimony of modern naturalists, especially Le Vaillant and Audubon, has completely disproved this opinon. The former found it impossible to protect animals which he had killed, except by covering them, which he sometimes did, with branches and leaves of trees, and found that they were no more interfered with. Audubon made several careful and conclusive experiments to the same purpose. It would, however, perhaps be venturing too much to assert that birds of this family have not the sense of smell in rather an unusual degree, since a well developed olfactory apparatus has been satisfactorily demonstrated. We may safely conclude though, that in cases where Vultures are seen to converge from various directions in the atmosphere towards a recently dead animal, they are guided exclusively by their piercing vision.

Of all families of birds the Vultures sustain the most lofty flight. Thus the traveller in the highest ranges of the Andes often sees the Condor, the largest of Vultures, soaring yet far above him, a mere speck in the heavens. For this purpose they are well fitted by the lightness of their bones, which in some species are hollow throughout, even to the toes. The common Turkey buzzard (Cathartes aura) has a skeleton so light as to weigh little over four ounces.

Except in the capacity of scavengers the Vultures are of little economical importance. Nothing but the most direct and pressing necessity would cause their rank flesh to be eaten, and their feathers are not useful. They occur in all torrid and temperate regions, very abundant in the former and frequently met with in the latter, rarely passing beyond the limits of the temperate zone.

Sub-fam. 1. Vulturince, or true Vultures. Bill strong and somewhat elongated, more or less compressed, the basal half covered with a cere; upper mandible abruptly hooked; nostrils generally placed transversely in the cere and exposed ; wings long; tarsi covered with small scales. Head naked, with the skin generally wrinkled and with scattering hairs; neck partially naked.

The true or typical Vultures are restricted to the old world, and are found in great numbers (though of few species) in the warmer parts of Asia and in Africa, while in Europe one species only occurs sparingly. Nearly all the species are large birds, and they perform the same offices of scavengers as their relatives, the Turkey buzzards and Carrion crows, do in America, in which capacity they are of great importance in the densely populated Asiatic cities, and, in fact, in all tropical countries. This subfamily presents in the highest degree the general characters of the Vulture family, the naked head, neck, and tarsi, by which they are better enabled to partake of their putrescent food than if those parts were clothed with
feathers. Truthful to the instinct of cleanliness, however, which appears to prevail amongst all animals, vultures are said frequently to wash themselves thoroughly.

Vultur monachus, Linn., is the European species; in addition to which there are of this sub-family two African and one Asiatic species (Vultur ponticerianus, Lath.), well known as one of the Indian vultures. Little or nothing is reported concerning them other than the general habits of the family.
S'ub-fam. 2. Gypince or griffin Vultures. Bill lengthened, compressed, hooked, and very sharp. Wings long and powerful ; tarsi moderate, very strong; tail rather long, rounded. Head more or less covered with hairs, more so than in the preceding. Size large ; colors mostly fulvous.

This sub-family is composed of species which appear to be analogous to the more savage types of rapacious animals.

One species, Gyps fulvus, Linn. (pl. 104, fig. 9), inhabits Europe and is supposed to be common to Asia and Africa ; it is popularly called the Tawny Vulture or Griffin, and by the latter name appears to have been known to the ancients. There are about four other species inhabiting Asia and Africa, the most remarkable of which are the Bengal Vulture and the Indian Vulture, which are in many places common features of Indian scenery and remarkable for their numbers and voracity.

Sub-fam. 3. Gypaëtince or bearded Vultures. Head and neck completely clothed. Bill strong, long, elevated towards the end, which is hooked. A well defined beard, or bunch of stiff hair-like bristles directed forwards from beneath the lower mandible, is the peculiar character of this sub-family amongst rapacious birds. Legs short, middle toe long. Wings and tail long, the former pointed and very powerful.

The bearded Vultures, with most of the characters of their family, have also the swiftness of flight of the Falcons, to which they have been attached by some ornithologists. This sub-family is composed of a single genus. Gypaëtos, of which the principal species is the Gypaëtos barbatus (Linn.), the Bearded Vulture or Lämmergeyer of the Alps. It derives its English name from the stiff beard-like tuft which characterizes the genus, and is much dreaded in some mountainous districts of Europe on account of its preying upon lambs and other young and feeble animals, added to which it has the traditionary reputation of being disposed to carry off young children when left unprotected within range of its keen sight. The latter, however, is not well established, and the form of its talons, which are weak as in all the Vultures, tends to throw further doubt on the subject; though, if very hungry, we would not trust him.

The same species is supposed to inhabit all the high mountain ranges of the old continent, but the birds inhabiting those of both Asia and Africa are represented by competent naturalists as different species, which is probably the case. If so, there are three species of the bearded vultures.

Sub-fam. 4. Neophrince or slender-billed Vultures. Bill much lengthened and slender. Nostrils longitudinal, nearly medial ; cere extended; face and part of the neck only naked. Size smaller than the preceding.

This sub-family consists of tro genera of small vultures inhabiting southern Asia and Africa, one of which, the Neophron percnopterus, Linn., occasionally visits Europe, and has been found in Great Britain. It has been represented as exceedingly disgusting in its habits, preying only upon decaying animal matter, and very familiar in the streets and neigldborhood of cities. It is this species which is most frequently alluded to by travellers in countries (and especially the cities) of Southern Asia and Northern Africa, and is usually called the Egyptian Vulture. Another species has been discovered in Abyssinia ; and a distinct genus, comprising only one species, is found in Western Africa. It is the Gypolierax angolensis, Gm., or the Angola Vulture.

These are all timid and weak birds, and devour all forms of animal filth with unexampled greediness.

Sul-fam. 5. Sarcoramphince or American Vultures. Head and neck more or less naked, and with the skin either carunculated or corrugated. Bill lengthened and rather slender, but strong at the tip, which is curved and acute ; nostrils placed in the cere, with the opening large, exposed, and longitudinal. Wings long and pointed; tarsi long; middle toe long. Size various, comprehending the largest and the smallest of the vultures. Color black.

The species of this sub-family are peculiar to America and constitute two well defined genera, Sarcoramphus, or the Condors, and Cathartes, which includes the Turkey Buzzard and Carrion Crows. The Condor ($p l$. 104, fig. 11) is the largest of all rapacious birds. It inhabits Central and South America, generally frequenting the vicinity of the high mountain ranges, in which it rears its young at an elevation of ten to sixteen thousand feet above the level of the sea, above which it is represented by travellers as soaring to a vastly greater height. The eggs are laid upon the bare rock, two in number, white, and about four inches in length. The condor feeds principally upon young animals, but several in company are said to attack the llama and other large quadrupeds, and readily overpower them. Very extravagant stories were carried to Europe by the earlier voyagers respecting the size and prowess of the condor, some of which gained considerable currency, and in fact the bird and its habits were little known until observed in South America by the celebrated Humboldt. It appears, notwithstanding its large size and great strength, to partake in a considerable measure of the disposition to familiarity and susceptibility of semi-domestication which prevail amongst the carrion crows and other of the American vultures. Dr. Gambel, in an account of this bird published in the Journal of the Academy of Nat. Sci. of Phila., vol. i. p. 25 (quarto), has the following remarkable and interesting paragraph: "A condor which I saw at Valparaiso in 1845 lived at large in the city, and appeared to be an universal favorite. It would follow after or walk alongside of a person like a dog, and offered no resistance to being handled or haring its feathers smoothed down: so goodnatured was it that it would receive the caresses of children, and permit them to beat it with switches or even attempt to get upon its back. In fact, I have never met with any bird which exhibited more tame-
ness or greater confidence in man than this large and powerful condor." He adds, that this individual possessed its full powers of flight, and would occasionally soar to a great height, and, upon returning to the city, would alight upon a steeple or other elevated object. He continues: "It (the condor) appears to be frequently caught by the Peruvians and Chilians, and thus tamed. I have several times seen birds nearly full grown offered for sale on the mole or market-place at Callao, being confined only by strong strings passed through their open nostrils."

Bonaparte's speciinen figured in his American Ornithology, vol. iv. pl. 22 (continuation of Wilson's Orn.), fully sustained the character given above, as the following extract (vol. iv. p. 21) will show: "The individual represented in our plate was remarkable for playfulness and a kind of stupid good-nature. During Mr. Lawson's almost daily visits, for the purpose of measuring and examining accurately every part for his engraving, it became so familiar and well acquainted that it would pull the paper out of his hands, or take the spectacles from his nose, so that Mr. Lawson" (the famous engraver of birds), "seduced by these blandishments, and forgetting its character in other respects, did not hesitate to declare the condor the gentlest bird he ever had to deal with." The best history of the condor extant is that in Bonaparte's volume above cited ; it may be of interest to add that he introduces it as a bird of North America, from the fact that a bill and a quill feather were brought home by the celebrated travellers Lewis and Clark, and were supposed to have belonged to an individual killed in the Rocky Mountains. No later travellers have observed it, however, though it is quite probable it will be found to inhabit that lofty range. The male condor is said to be the larger, which, if a fact, is an isolated exception to the entire family of rapacious birds. (Proc. Acad. Philada., iv. p. 159.)

The King Vulture, Sarcoramphus papa, Linn. (pl. 104, fig. 10), is a species which has beauty of colors remarkable in a bird of this family. It is much inferior to the condor in size, and is very common in the lower countries and the neighborhood of some of the cities of South America. It is indolent and inactive in its habits. Bartram, the celebrated botanist, saw large numbers of a bird which he represents to be the king vulture, during his travels in Florida. Singularly enough, he has not been confirmed by any subsequent observer, and the fact of this bird ever having been seen in any of that part of North America on the Atlantic Ocean yet rests entirely upon his authority. It is, however, known to inhabit Yucatan and other countries of Central America.
The genus Cathartes is composed of several species, some of which inhabit North and others South America. The most remarkable is the Californian Vulture (C. Californiamus, Shaw), which appears to be peculiar to the Pacific coast of North America. It is a large species, with the plumage entirely black, and is the bird alluded to as the "large black vulture" by travellers in those countries. It feeds upon carrion and dead fish, the latter of which it procures abundantly on the shores of the Columbia and other rivers. The nest is said to be built in the immense
pine trees of that region ; and the eggs, two in number, are as large as those of the goose.

The well known Turkey Buzzard and the Carrion Crow belong to this genus. Both are abundant in the southern states of North America, where they are found to be so useful in the removal of dead animals as to be protected by law. The former species (C. aura, Linn.) inhabits the north, though sparingly, as far as about latitude 41°. It makes its nest in the hollow stump of a tree; its eggs are about the size of those of a turkey, of a yellowish white color, with dark brown and blackish spots. The young are covered with down of a white color, which gives them a very singular appearance, and contrasts strongly with the black plumage of their parents.

There is a small species (C. burrovianus, Cassin) which inhabits Mexico, somewhat similar to the common species (C. atratus, Bertram), but is much smaller. It is, in fact, the least of known vultures. America, therefore, produces the largest and smallest of the vultures of the world, which are the condor and the bird here alluded to. Those birds of this genus found in great numbers in South America were long supposed to be strictly identical with those of the northern continent, but have recently been represented to be different; they appear, however, to be strictly similar in their general characters and habits, which are the same as those of all other vultures.

Fair. 2. Falconide. Size greatly varied, but generally moderate and formed for rapid flight. Head and neck generally fully clothed; bill strongly curved and generally conspicuously toothed or festooned, very acute. Claws generally very strong and exceedingly sharp, especially those of the inner and hinder toes. Wings generally long; tail mioderately broad.

The Falconida, which include the Hawks, Eagles, Kites, and other genera of similar general form and habits, exhibit the perfection of the rapacious characters. They differ essentially from the vultures; their forms are more graceful and their courage much greater. Endowed with great swiftness and generally much boldness and cunning, and with beaks and claws expressly adapted to such purpose, they prey almost exclusively upon animals killed by themselves. The larger species feed upon quadrupeds, birds, and reptiles; a few upon fishes, and many of the smaller live exclusively upon insects. The plumage varies greatly with sex and age, and maturity of plumage is usually only attained in several years. The female is usually fully one third larger than the male, and is frequently more vigorous and rapacious. The young have generally elongated spots on the breast and belly, where the adult has transverse bands or lines, or is unspotted.

The Falconide vary in size greatly, the largest species, the Great Sca Eagle of northern Asia and America (Haliaëtus pelagicus), being nearly the size of the condor, and one of the largest of birds; while the smallest, which is the little Java Hawk (Hierax cerulescens), is scarcely superior in size to our common bluebird.

The geographic range of this family includes the whole world: it is in tropical countries, where life teems most profusely, that the species are
most numerous. They are everywhere, however, alike in habits; and the unrelenting destroyers of everything that has life.

Notwithstanding the nobility of character usually attributed to this family, there is little that is noble or magnanimous about thern, except whatever of such may be attributed to their usually graceful forms, instinctive cunning, and soaring flight; on the contrary, they are in habits the veriest robbers and most pitiful thieves of the feathered tribes, and the writer begs leave to add, that there is more decent respectability and true nobility in one honest gander, plebeian though he may be, than in all the noble falcons and imperial eagles that ever lived. We are sorry to differ so materially from the generality of naturalists, but this is our opinion, in which we only acquiesce in the conclusion of the great Dr. Franklin, who thought the bald eagle had scarcely a sufficiently good character to entitle him to the distinction of representing the American republic, and hinted that the turkey would have done better. We will not, however, at present venture quite so far as to insist upon the latter.

Sub-fam. 1. Falconince or true Falcons. Bill short, very strong and sharp; upper mandible with a well defined tooth, sometimes two, and also more or less festooned; under mandible truncated or emarginated at the end. Feet strong, middle toe long, claws strong and acute. Wings usually lengthened and formed for rapid flight. Size moderate or small; never large.

In this sub-family we find the most complete development of characters indicating and in accordance with habits of rapine and violence. The boldest and most daring of birds of prey, their whole structure fits them for carrying on a life of warfare ; their great muscular development, their long wings and powerful claws, enable them to pursuc their prey with incredible swiftness and seize it with unerring and deadly grasp. The restricted genus Falco contains the species most noted in these respects, among which are some of the fastest flyers of all birds. Several of these were formerly highly valued when trained for falconry, especially the Falco peregrinus, Linn., or wandering falcon ($p l .104$, fig. 5), which is an European species, but also found sparingly along the sea-coasts of the United States. It is known in New Jersey by the name of the duck hawk, and also as the bullet hawk, and preys almost exclusively upon ducks, which it overtakes and strikes upon the wing. The latter name (bullet hawk) appears to have been given from a supposition which is prevalent, that it actually strikes the duck with its breast and knocks it down by mere momentum. An inspection of its ferocious-looking beak and claws will, however, justify quite a different conclusion.

Another of the larger falcons is the Jer Falcon (F. islandicus), which is a native of the northern regions of both the Old and New Worlds, though most abundant in the north of Europe, byaving the coldest climates, and, in fact, rarely making its appearance in temperate latitudes. It is of a beautiful white color striped with black, which with its courage seems to have made it a great favorite with falconers, and its use appears to have been almost monopolized by persons of noble blood.

There are several small species of this genus, all of which appear to have been trained for falconry, such as the merlin ($F \cdot$ œesalon), the hobby (F. subbutes, pl. 105, fig. 7), and others. Of North American species there are several, such as the pigeon hawk (F. columbarius), which is frequently met with throughout the United States, and the beautiful little sparrow hawk (F. sparverius), a familiar and remarkable bird inhabiting the whole continent. It may be seen in the Middle States throughout the year, especially, however, in summer, and excites attention by its capricious movements. Seated upon a fence or isolated tree, it suddenly darts to some point in the field, hovering in a peculiar manner over a single spot, and frequently returning unsuccessful to begin a fresh look-out. Spying a straggling grasshopper or beetle, it makes sure of him, and solaces its appetite leisurely. It raucly feeds upon anything clse than insects, generally grasshoppers, an abundance of which is usually found in localities which it frequents. It builds its nest in the hole of a tree, sometimes in one deserted by a woodpecker, and lays four or five yellowish spotted eggs. The young are readily caught and casily tamed. It is a species very remarkable on account of its quiet and more lird-like habits than any other of our falcons, and has been ranked as generically distinct.

The Kestril, F. alaudarius (pl. 105, fig. 8), appears to resemble in many respects the sparrow-hawk, and is also clothed in gay plumage.

The foreign species of this sub-family are numerous. There is a South American genus (Harpagus, Vigors) and another of Africa (Aviceda, Swainson), which have two strong teeth in the upper mandible instead of one, which is usual. An Indian species (Falco lophotes) is probably the most beautiful of rapacious birds. In this sub-family we also find the very sinall hawks constituting the genus Hierax, Vigors, which are the smallest of tho family. This distinction belongs to H. corrulescens, or the little Java hawk of the books.

Sub-fam. 2. Buteonince, or Buzzards. Bill short, broad at the base, much curved, festooned on the margins of the upper mandible. Head usually broad and rather flattened. Wings long, though scarcely formed for rapid flight, tarsi rather lengthened, feet moderate, toes rather short. Size moderate, sometimes large, never very small.

The buzzards compose a sub-family of strong and massive formed birds with broad wings and soaring flight, but of inactive and rather sedentary habits. They feed on all descriptions of the smaller and weaker quadrupeds, birds or reptiles, nor do they reject the flesh of dead animals. Some species live almost exclusively upon frogs and snakes, others upon insects.

They are widely disseminated. Of the American species the redtailed hawk (Buten borealis, Linn.), and the winter falcon (B. lineatus), are the most common and universally known, and have received rarious names from the farmers and housewives amongst whose poultry, especially the junior part of it, in the spriug, they make considerable havoc. They generally, however, go by the common denomination of hen hawks, or occasionally chicken hawks. These birds build their nests in
high trees, and it is when rearing their young that they are most destructive. They are destroyed without mercy by our agricultural population, and are becoming rare, as resident birds, in the more densely populated districts; but when the rigors of winter urge them to more excursive habits they are frequently met with. A smaller species is also occasionally seen in all the Northern States; it is the broad-winged hawk of Wilsen (B. pennsylvanicns). It is a landsome plumaged and rather graceful birl, and comparatively harmless in its habits.

Of the European species the common buzzard, B. vulgaris (pl. 10t, fig. 8), is the best known. In disposition and general history it is much like the common species of America. It is frequently met with in England and Scotland, and is disseminated over the whole continent ; it has been observed to prey upon almost every description of small animals.

The genus Archibuteo comprises several fine species which have the legs completely feathered to the toes, and which are restricted to Europe and North America. Here is classed the black hawk of Wilson (A. sancti-johamis, Gm., A. niger, Wils.), a common species, though rarely seen in mature plumage, which is perfectly black; also another western species (A.ferruginens, Licht.) which has recently become known.

Closely allied to the American black hawk, and resembling it in a remarkable degree when in young plumage, is the rough-legged buzzard of Europe (A. lagopus), a well known species disseminated over the entire continent, but appearing only occasionally in the south of England. Its history is little known.

Several of the South American species of this sub-family are remarkable for a beautiful white and black plumage, such as Buteo melanops and B. pacilonotus; and one Mexican species is almost perfectly pure white, though the name is not so attractive, being Buteo ghiesbreghtii.

The African and Asiatic species are not numerous. Of the former may be mentioned several first made known by the celebrated Le Vaillant, such as Circatus thoracicus and Buteo bacha; and of the latter, Buteo plumipes and others.

Sub-fam. $\because 3$. Aquiline, or the Eagles. Bill moderate, rather lengthened and large, compressed, margins more or less festooned; nostrils large; wings long and generally pointed; tail long, ample, and usually rounded at the tip; tarsi and feet very strong, the former more or less feathered, the latter and generally part of the former covered with very distinct scales; claws very strong, much curved and acute, that of the inner toe strongest. Size large, flight generally very rapid and vigorous.

The eagles are distributed over the entire surface of the globe, and the typical species, the golden eagle, Aquila chrysaëtos, Linn. (pl. 105, fig. 1), is common to the northern parts of both continents; which is also the case with the typical fishing eagle, better known in the United States as the bald eagle, Haliaëtus leucocephalus, though it is rarely met with in the old world.

The eagles have been celebrated since the earliest times for their extraordinary vigor of flight, their large and graceful figure, and, we may
add, for some imaginary qualities which modern science has failed to demonstrate, but of which we will omit further notice, having, as the great Wilson observes of himself respecting the subject, "no ambition to excite surprise and astonishment at the expense of truth, or to attempt to elevate and embellish the subject beyond the plain realities of nature." Whoever wishes to find the subject treated in a very beautiful, but quite imaginative manner, can do so by referring to Buffon or Gollsmith's account of the golden eagle.

The habits of the golden eagle appear to be precisely those of the other large birds of prey; it generally captures living animals, but does not reject dead or even putrid bodies, though the reverse is distinctly asserted by the older writers. It builds in the recesses of mountains, laying two or three eggs. In America it is frequently met with, though most common on the western side of the continent. Its feathers are in much request among the Indian tribes as decorations, especially of the pipe of peace and other objects of their respect.

Of the typical eagles, which are characterized by densely feathered tarsi, there are several other species. The great black African eagle (Aquila verreauxii) deserves especial mention; he is larger than the golden eagle, and clothed in perfectly black plumage, except a space upon his back which is pure white. He would make a fine figure upon the coat of arms of an African republic. His habits have not been recorded.

The wedge-tailed eagle (A. fucosa, Cuv.) is another large species, inhabiting Australia, and remarkable for a peculiar shaped tail, the central feathers being longest. There are also other species found principally in Europe and the adjacent continents, such as the spotted eagle (A. navia), the imperial eagle (A. imperialis), the little eagle (A. pennata), and several others.
The fishing eagles, genus Haliaëtus, consist of several species which are found in various parts of the world. In this genus is the great sea eagle of the north of Asia and America, H. pelagicus, which is the largest of its tribe. Little is known of its habits. Here too is classed the bald, or American eagle, which has had the good fortune to be immortalized as the emblem of vur country. He lives principally in the neighborhood of rivers and upon the sea-coast, feeding mainly upon fish, which he does not hesitate to take by violence from more expert fishers, such as the osprey. This handsome bird does not attain his perfect plumage for several years, being in early stages entirely deep brown, without a vestige of the beautiful white head and tail which adorn the adult.

A large species has been described by Audubon as the Washington eagle (H. washingtoni), which, however, appears to be exceedingly rare, and much resembles the young of the common species.
The European sea eagle (\boldsymbol{H}. albicilla) is a well known species, much resembling in general characters its American relative. It breeds in ledges of the elevated rocks upon the sea-coast, and is frequently a fine feature in the wild landscape of those localities.

There are several African species of the fishers, the most remarkable of 508
which is the vocifer of Le Vaillant (H. vocifer), the plumage of which, especially the white head, gives it somewhat the appearance of the American species. Several Indian species also occur, constituting the genera Ichtlyyiaëtus, Lafres., Limnaëtus, Vig., and Spilornis, Gray, all the species of which seem to partake of general characters and habits.
In this sub-family we find the ospreys, genus Pandion, one species of which is a common and familiar bird upon the North American sea-coast, known as the fish-hawk, and much respected as one of the harbingers of the fishing season. It builds a large and conspicuous nest composed of a great quantity of sticks and leaves, in which it is universally allowed by the people upon the coast to rear its young without molestation, though quite the reverse is practised towards all others of this family of birds. The European species, P. ossifragus (pl. 105, fig. 3), is distinct from that of the American coast, though very similar, as are others inhabiting various parts of the world.

The harpy eagles, genus Harpyia, Cuv, also belong here. The principal species is the great harpy (Harpyia destructor), which, in addition to a full share of other rapacious characters, possesses the most formidable claws of all known birds. It subsists on sloths, monkeys, and other quadrapeds. Other smaller species belong to this genus which are found in South America. Related to these are the very handsome crested eagles of the genus $S_{p i-}$ zaëtus, Vieill, which inhabit the same country ; the S. ornatus is especially beautiful.

The African short-tailed eagle (Helotarsus ecomutatus) may be especially designated, if for no other purpose than merely to mention that although he is a bird nearly as large as the bald eagle, his tail is so short as to be scarcely discernible without examination.

The little Pondicherry eagle, or Brahman kite, as it is sometimes callel (Haliastur pondicerianus), belongs here. It is a small species, with white and chestnut colored plumage, and is one of the most common of the Indian birds of prey. Many other species are found in various parts of the world. They are the largest of the birds of prey of this family, and are only equalled in size in the class of rapacious birds by the vultures.

Sub-fam. 4. Polyborina, or Caracara Eagles. Bill rather weak, and but slightly hooked at the tip, lateral margins of the upper mandible festooned or sinuated ; wings long, tail long, rounded. Tarsi slender, naked, and covered with scales; feet moderate, rather weak; claws moderate, acute. Face and region about the eyes naked. Size small.

The Polyborince compose a small group of very peculiar birds confined exclusively to the warmer parts of America, one species only, Polyborus braziliensis, occurring as far north as Mexico, Texas, and nceasionally Florida. It is rather remarkable for its beauty of plumage, and is said to combine the destructive qualities of the hawks with the indiscriminating roraciousness of the vultures. In fact these characters are attributed to all the species of this group, and are sanctioned by their appearance. Their naked faces and comparatively weak bills give them much the appearance of the vultures with which they have sometimes been classed;
while in general characters, structure, and in mode of fight, they are essentially members of the great family of the falcons.

The few species of this sub-family constitute the genera lbycter, Vieill, of which I. aquilimus is the principal species; Daptrius, Vieill, of which D. ater is the only species ; and Milvago, Spix, of which there are several, such as M. ochroceplala, and others ; and the genus Polyborus, above alluded to. All the species are common in South America, but nothing is mentioned of their habits different from those of other birds of prey.

Sub-fam. 5. Milvince, oi Kites. Bill rather short and weak, tip hooked and acute, lateral margins sinuated, nostrils oval, wings long and pointed. Tarsi short and slender. Tail long, ample, frequently forked or graduated. Size moderate.

The sub-family of kites is characterized by the remarkably graceful fight of all the species, many of which have also considerable beauty of plumage. The principal genus (Milvus) contains several fine species; one of them, the common kite of Europe, M. rearalis (pl. 104, fig. 7), is one of the most familiarly known birds of its family inhabiting that continent. Other nearly allied species are found in Asia and Africa, none in America.

The honey buzzard (Pernis apivorus) of the South of Europe belongs here. It is a handsome species, and although as large as the winter falcon, feeds upon bees and other insects, the nests of which it is said to attack and destroy for the sake of the young. It preys also upon reptiles.

There are two North American gencra, Nuuclerus and Ictinia, which belong to this sub-family, each composed of a single species. The Nauclerus furcatus, or swallow-tailed hawk of the Southern States, is the most beautiful species. Its long and deeply-forked tail, white head, and glossy black body, added to its swift and graceful flight, make it conspicuous wherever it occurs. Abundant in the South, it occasionally strays as far north as Pennsylvania, and upon the Mississippi it has been seen as far north as the Falls of St. Anthony. It feeds almost exclusively upon reptiles and insects; and it is said that numerous individuals may often be seen upon the edge of the fires which sometimes occur upon the western prairies in the United States, darting like swallows amongst the smoke in pursuit of retreating grasshoppers and other insects. The swallow-tailed hawk is abundant in Florida during the winter season, but appears to breed further northwards. It has the remarkable habit of feeding upon the wing, holding its recently acquired plunder in its claws somewhat like a parrot.

The Ictinia plumbea, or Mississippi kite, is another common Southern species. It feeds chiefly upon insects, with an occasional relish of reptiles or small birds.

Species of two other genera, Elanus and Rostramus, have been found in the extreme south of the United States. The Elamus leucurus, or whitetailed hawk, and the Rostramus humatus, or little hookbilled kite, have been observed in Florida. Of either of these species little is known, though both appear to be common in South America. The latter is remarkable for its very slender and hooked bill.

This sub-family is represented by several African and Asiatic species, of which may be mentioned those composing the genera Avicida and Bazu, while in South America we find the genus Cymindis, of which there are several common species. The C.cayanensis is one of the most numerous; another remarkable for its disproportionately large bill (Cymindis vilsonii) inhabits the Island of Cuba.

Sub-fam. 6. Accipitrince, ar Sparrow Hawks. Bill short, much curvel from the base to the tip, which is very sharp, margins conspicuously festooned ; hear small ; wings moderate ; tail ample. Tarsi lengthened, middle toe much the longest, anterior claws very unequal, the inmost being much the strongest. Size generally small, never decidedly large.

The numerous birls of this large sub-family are distributed throughout the worlh, though each continent has pecuiliar species. They are generally characterized by their slender elongated bodies, rounded wings, and long tail, and are amongst the fiercest and most destructive of all the hawks. While the true falcons, eagles, and buzzards, are in great measure restricted to such prey as may be accidentally exposed, the sparrowhawks push boldly into the densest thickets and deepest recesses of the forest in pursuit of birds and small quadrupeds which habitually resort to such localities.

The most remarkable species of this sub-fimily are the goshawks, the European species of which is the Astur palumbarius (pl . 105, fig. 5). It is a beautiful bird, with lead-colored and white plumage, and was formerly held in high estimation for the purposes of falcomry. This species is more frequently represented in pictures having falconry for their subject than any other. The American species, A. atricapillus, is very similar to its European brother; it is frequently met with along the northern frontier of the United States, and occasionally ventures as far south as Philadelphia. Little is known of its history.

A second American species, Cooper's hawk (A. cooperi), is much more frequent. It is about one third less than the goshark, and of the same active and destructive habits ; it is very extensively diffused over the continent, having been observed from the sea-coast of New Jersey to the Rocky Mountains and Mexico.

The genus Accipiter, which belongs to this sub-family, contains the smallest hawks of Europe and America. Of the former continent the common sparrow-hawk, A. nisus (pl. 105, fig. 6), is the smallest. It is widely distributed, and is a very bold and successful little hunter after small mammalia, birds, and insects. The smallest American species is the sharp-shinned hawk of Wilson, A. fuscus, which is remarkable for possessing almost exactly the plumage of the much larger Cooper's hawk, and resembles to a considerable degree also the sparrow-hawk of Europe. Incapable, of course, on account of its diminutive size, of seizing any other than the smallest animals, it is yet conspicuous for the ferocity of its attacks upon small birds or young chickens. It is the "chicken hawk" of the farmer, and has well earned its appellation. Rather less than the sparrow-hawk, it may at once be distinguished by its more slender form,
longer tail, and more active and shy habits; its breeding place is not well ascertained, notwithstanding that it is a common species.

One genus only, Micrastur, Gray, is exclusively eonfined to tropical America, two species of which, M. brachypterius and guerilla, are found as far north as Mexico. They differ from the other Accipitrince in haring stouter and much stronger bills, and are otherwise more robust. The latter species, M. guevilla, was discovered in Mexico by a young naturalist, who was attached to the American army, under General Scott, during the late war.
There is also one African genus, Micronisus, Gray, of which the M. gabar is the best known species, resembling, however, in most respects its Europearn and American relatives.

Sub-fam. 7. Circince, or Harriers. Bill we:ak, high at base, compressed, greatly curvel to the tip, margins slightly festooned in the middle, cere large, gape wide, ears large, and surrounded by a ruff of thickly curved feathers, similar to those of the owls. Wings long and pointel ; tail long, broad, and generally rounded. Tarsi long, slender, smooth; tnes short ; claws moderate, very acute. Size greatly varied.

In this, the last of the seven sub-families which constitute the great family of the Falconide, we find characters begin to show themselves indicating a relationship to another family, the Strigidce, or owls, which we are approaching, but still retaining the essential and unmistakable characters of their own family.

The typical genus Circus, well represented by the hen harrier of Europe (C. суaenus), has a decidedly ow-like ruff of small recurved feathers arcund the face, and the eyes of all the species have a less lateral aspect than those of any other falcons. The species just mentioned is common throughout Europe; its plumage varies very greatly during its progress to maturity, a circumstance which has caused it to be mistaken by the carlier naturalists, and the same birl to be described as several different species. The fully adult bird is light sky blue with the under parts white, and is a handsome and showy birl. It is very shy and harmless in its habits, living almost entirely upon reptiles. There are several other European species, of which the moor buzzard (C. aruginosus), is, perhaps, the most remarkable. Its geographical range extends into Africa; it is said to frequent the vicinity of swamps and rivers, and to feed upon small aquatic birds and the eggs of larger species, and upon snakes, frogs, and other small animals.

One species only of this sub-family inhabits North America, which is the marsh hawk (C.uliginosus), one of the most common species. It is an exceedingly graceful bird when flying, and may often be seen about marshes and meadows, constantly on the wing near the surface of the earth, in search of small quadrupeds and reptiles. The young bird has its plumage of dark reddish colors, with a very conspicuous snow-white rump; while the adult, which is more rarely seen, is of nearly the same light blue color as its European representative. It appears to be particularly fond of frogs, upon finding one of which it generally secures him with its exceedingly short claws without difficulty, and if undisturbed devours him on the 512
spot. It builds its nest usually on the ground, and breeds throughout the United States.

Several South American species are known, though their history has never been investigated; they are C. palustris, C. histrionicus, which is a bird remarkable for its gaily striped plumage, and others.

The only hawk which possesses a musical voice, the singing hawk of the old authors (Melierax musicus), belongs to this sub-family. It is a common bird in Southern Africa, and is described by Le Vaillant as capable of performing quite respectably a considerable variety of notes. It appears to be a timid species, living upon reptiles, and partaking of the general habits of its family.

Here also has been classed a curious African genus, Polyboroides, the species of which have entirely bare faces, and necks also bare to some extent. They appear, however, to be more nearly related to the Polyborina, or to the vultures. Little is known about them beyond the mere fact of their existence in Western and Southern Africa, and future investigations must decide their claims to classification.

The extraordinary and apparently anomalous genus Serpentarius has also been assigned by late ornithologists to this sub-family. The only species is the secretary, or great serpent-eater, of the plains of Southern Africa, which, with a decidedly aquiline head and beak, has the long legs of a crane, and lengthened crest and tail. It lives almost exclusively upon the larger snakes, the most poisonous species of which it is said to seize with much dexterity and despatch with great quickness, regardless of their bites upon its long and well shielded tarsi. Spending its time in search of serpents, this powerful bird constantly walks upon the ground, presenting more the appearance of a crane, or large heron, than a bird of prey. It is a shy and very cautious bird, and is regarded by the colonists as very useful in destroying serpents, which it pursues on foot. The stomach of a specimen examined by the celebrated Le Vaillant contained no less than three snakes, eleven lizards, and portions of others.

With this sub-family we conclude the Falconidæ, and now proceed to the last family of rapacious birds.

Fam. III. Strigide, or Owls. Head usually very large; eyes large, directed forwards, and surrounded by a circle more or less complete of slender hair-like feathers, forming a facial disk. Bill short, generally strong, and partially concealed by projecting bristles, curved and much hooked. Wings usually strong. Tarsi short, and usually thickly clothed with short feathers, but sometimes naked or partially covered ; claws long and acute. Plumage soft, habits almost exclusively nocturnal.

This family embraces the nocturnal birds of prey, all of which are familiarly known under the general cognomen of owls. They differ in many respects from the birds of the two preceding families, but yield to them in nothing of the ferocity or destructiveness characteristic of this class. The most striking and peculiar external character of the owls is the position of their large and staring eyes, which enables them to look directly forwards, and is not the case in any other birds. Their soft and
loose plumage is also quite characteristic, but is not peculiar, being occasionally met with in the Caprimulgide (night-hawks).

The brain is more voluminous than in other rapacious birds, and is protected by a remarkably thick, cellular cranium, which contributes to the great size of the head, as apparent in the living bird. The organ of hearing is very large and possesses much quickness and delicacy, and a. peculiar formation of the eye gives the owls a power of sight of the most exquisite character. It is so constructed that the small amount of light at twilight, or even in the night, is sufficient to produce perfect vision, though the full daylight is too strong and dazzling for most of the species.

The flight of the owls is less graceful and less capable of being long continued than that of the preceding families. It is produced by repeated flappings and has the advantage of being entirely without noise, owing to the peculiar general structure of the wings, and a fine hair-like web on the outer edge of the first quill. They are thus enabled to steal upon their prey unawares and under cover of the darkness of night.

Their plumage is almost invariably of dull and uniform colors, and is in a great measure free from the diversity characteristic of age and sex in the Falconida. Being nocturnal strictly, or active only in the twilight of the evening or the morning, is generally characteristic of this class; a few species, however, are diurnal, and pursue their prey or attend to the wants of their young in the full glare of daylight. Of these the great snowy owl (Nyctea nivea) and the hawk owl (Surnia ulula), both found in the northern parts of America, are examples. These are exceptions only, much the greater number of species being of the former character.

The owls rarely devour any animals which have not recently suffered death, though they are not always contented with being themselves the instruments of destruction ; some species instinctively follow the hunter in the northern countries, and pick up with eagerness grouse and other birds recently killed by his gun. Their period of activity being in the night, their repose is necessarily during the day, and if then disturbed most of the species make gestures of a very ludicrous character, which seem chiefly intended, however, to enable them to get a fair view of the intruder. Some species fly off immediately upon perceiving that they are discovered.

Some owls tear their food like the falcons, but the greater number swallow small quadrupeds, birds, and insects entire, subsequently ejecting from the mouth the hair, bones, and other indigestible matter rolled into pellets by a peculiar action of the stomach. Their food is entirely animal, and embraces every living thing which can be conquered by force or stealth.

The nesting-places of the owls are usually in hollow trees, fissures, or caverns in rocks, dilapidated buildings, or similar places. They also frequent such localities habitually during the day, or sometimes the protection of a pine tree serves them when belated in the morning. This peculiar family has been regarded with feelings nearly akin to superstition from the earliest ages. The grotesque and oddly-shaped forms of most of the species, their preference for the darkness of night or the gloomiest
recesses of the caverns or the forest, their shrill hooting voices, and above all their staring goggle-like eyes, have combined to form for them attributes of mystery, and occasionally of veneration or of terror. Elevated by thr refined Greeks to be the symbol of wisdom, by several modern European nations the owl is known by no other name than "night hag," and its character regarded equally contemptuously. No other bird has flourished so largely amongst the poets. Virgil introduces it in various passages; Shakspeare gives great effect at its expense to the exclamation of Lady Macbeth in the murder scene :

> "Hark! Peace!
> It was the owl that shrieked, the fatal bellman Which gives the stem'st.good night-le is about it."

More pleasantly, and without such a repulsive fart to play, Coleridge makes him sing in a chorus in "Christabel:"
> " 'Tis the middle of the night by the castle clock And the owls have awakened the crowing cock, Tu-whit !-tu-whoo! And hark again !-the crowing cock How drowsily he crew."

Sub-fam. 1. Strigina, or Barn Owls. Head large with the facial disk complete or nearly so. Ears very large and with an operculum. Wings usually long; tarsi moderate ; legs long and rather slender. Size much varied.

To this sub-family belong several of the most common American and Eurepean owls. The American barn owl (Strix pratincola) is a species which, though not abundant, is generally known. It is, notwithstanding its curious and rather comical physiognomy, a graceful and handsome bird. The common Strix flammea of Europe (pl. 104, fig. 1) very nearly resembles the American species, and was long considered the same bird; this remark applies, in fact, to several other species found -in various parts of the world. The European species is the bird usually alluded to by authors, in English literature, as "The Owl." It is he who "mopes in the ivy mantled tower" and "chaunts high mass at midnight" in many an abbey where no one else does nowadays.

Two other common American species are the long-eared and the shorteared owls (Otus wilsonianus, and brachyotus), both of which inhabit the whole of North America. The latter, represented in pl. 104, fig. 2, is common also in Europe. It is partial to meadows and marshes, and is not afraid to venture from its hiding-place by daylight as are the majority of owls. The former is found exclusively in the deep pine or other forests, and is a very shy and retired species. The long-eared owl of Europe (p l. 104, fig. 3) much resembles that of North America.

The barred owl (Syrnium nebulosum) is the most familiar and abundant. of all the large North American species. It may frequently be met with
in the pine or cedar lands, and may immediately be recognised by its entirely black eyes and head without horns or ear tufts. It usually preys upon small mammalia and birds, but it is said to resort occasionally to fishes and reptiles. It breeds in the forests of all the Northern States, making a nest in the forks of a large tree, and like some other owls lays eggs which are perfectly spherical.
Another species, the great grey owl (S. cinereum), is a rare visitor in the United States, though common in the north. It is one of the largest of owls, with plumage of an almost uniform deep grey. The screech owl of Europe (S. aluco) belongs here. It is a common species, and appears to be similar in its habits and history to our barred owl. Many other species are found in all parts of the world.

Sub-fam. 2. Bubonince, or Horned Owls. Head large, broad, and furnished with two conspicuous tufts of feathers capable of being erected (usually called ears). Facial disk not perfect ; ears moderate ; bill short, strong, and curved; legs and feet robust, with the claws very strong and sharp. Size various, frequently large. Tarsi densely feathered.

The Great Horned Owl (Bubo virginianus), which is the largest species common in the United States, is a good illustration of this sub-family. Though still quite common in Western America, it has become almost extinct in the more densely populated districts of the States upon the Atlantic seaboard. It is, however, sufficiently well known for its depredations upon the poultry of the housewife, and for its peculiar and sonorous notes in almost all parts of North America. Wilson most admirably describes this bird in the first volume of his incomparable Ornithology. "This noted and formidable owl," he says, "is found in almost every quarter of the United States. His favorite residence, however, is in the dark solitudes of deep swamps, covered with a growth of gigantic timber, and here, as soon as evening draws on and mankind retire to rest, he sends forth such sounds as seem scarcely to belong to this world, startling the solitary pilgrim as he slumbers by his forest fire,

'Making night hideous.'

Along the mountainous shores of the Ohio, and amidst the deep forests of Indiana, alone, and reposing in the woods, this ghostly watchman has frequently warned me of the approach of morning, and amused me with his singular exclamations, sometimes sweeping down and around my fire, uttering a loud and sudden 'Waugh, O! Waugh, O!' sufficient to have alarmed a whole garrison. He has other nocturnal solos no less melodious, one of which very strikingly resembles the half-suppressed screams of a person suffocating or throttled, and cannot fail of being exceedingly entertaining to a lonely benighted traveller, in the midst of an Indian wilderness.
"The great horned owl is not migratory, but remains with us the whole year. During the day he slumbers in the thick evergreens of deep swamps, or seeks shelter in large hollow trees. He is rarely seen abroad by day,
and never but when disturbed. In the month of May they usually begin to build. The nest is generally placed in the fork of a tall tree, and is constructed of sticks piled in considerable quantities, lined with dry leaves and a few feathers. Sometimes they choose a hollow tree, and in that case carry in but few materials. The female lays four eggs, nearly as large as those of a hen, almost globular, and of a pure white. It is conjectured that they hatch but once in the season."

Several large species are found in Europe, one of which, Bubo maximus ($p l .104, f \mathrm{fg} .4$), the Grand Duke, as it is called upon the continent, is the largest of all the owls. It is common in the forests of the North of Europe, and is more or less met with throughout the continent, though rare in the British Islands.

Other species of the great horned owls inhabit various countries of the world, all of which are of large size, and many of them possess considerable beauty of plumage. In South America are found the B. magellanicus, and crassirostus, both much resembling the northern species. India has several fine species, B. bengalensis, orientals, and coromandus. In Africa, also, several species are found, one of which, B. lacteus, is very large, with the under parts of the body of a pure white color.

In India is found a remarkable genus (Ketupa), which differs only from the great horned owls in having long and entirely bare legs.

The common small or screech owls, as they are usually called in the United States (Ephialtes navia, and asio), belong to this sub-family. The two here mentioned are usually considered to be the adult and young of the same bird, and are the most familiar and best known of the North American species. Both are common in the Northern and Middle States, and come in the dusk of the evening boldly about the houses and out-buildings of the farmers, and even may occasionally be seen in the cities. The notes of the screech owls are peculiarly melancholy, and are no favorites with the juvenile population; and, in fact, not at all pleasant to us of a larger growth. The nests of the screech owls are made in hollow trees, of a little grass or leaves, in which three to five eggs are laid, perfectly white and nearly globular.

Some twelve other species of these small horned owls inhabit all parts of the world except Australia.

Sub-fam. 3. Athenince, or Bird Owls. Facial disk imperfect; bill moderate and usually exposed; wings and tail moderate, rounded. Tarsi and feet moderate, sometimes long, but partially feathered. Size usually small. Head smooth, wilhout egrets.

The principal genus of this sub-family is Athene, which comprises numerous species of small owls distributed throughout the globe. A species inhabiting the island of Cuba, the \boldsymbol{A}. siju, is the smallest of all the owls, and several others found in South America and Mexico are but little larger.

Three species have been observed in North America, no one of which has yet been found upon the Atlantic seaboard. In California the Athene passerinoides, one of the smallest species, has been observed. It is about
the size of the common bluebird, and preys almost entirely upon insects. The most remarkable species of North America, and one of the most curious birds of this family, is the Burrowing Owl (A. hypugea), inhabiting western America, which lives in a hole in the ground, instead of taking up its abode in a hollow tree like the others of these birds. It is said to make an excavation occasionally for itself, but more commonly takes possession of one already finished by the prairie dog (Arctomys ludoviciana), in which it makes its nest and rears its young. One of the most singular features in the history of this bird is that it inhabits a hole frequently in the midst of a large village or settlement of these animals, with which it appears to live in perfect harmony. This remark applies, however, also to various kinds of rattlesnakes, which have a partiality for the villages and comfortable quarters of the prairie dog, and both have been suspected of a liking for the young of their entertainers. Travellers disagree, however,. upon this point, so that it remains unsettled whether the owls and rattlesnakes most relish the good fare or the pleasant society of their hosts. The burrowing owl is strictly diurnal, and devours grasshoppers and other insects, and small quadrupeds; according to the Indians, it retires to the depths of its burrow in autumn, and spends the winter in a state bordering on torpidity.

Australia produces several species of this genus which are remarkable for their large size, though in all other respects they are very similar to the minute owls above alluded to.

Two large species, constituting the genus Ciccaba, are classed in this sub-family, one of which, \boldsymbol{C}. personata, in young plumage has a black space around each eye, presenting the appearance of a pair of spectacles, on account of which it has acquired the name of the spectacled owl.

Sub-fum. 4. Surnince, or Hawk Owls. Head comparatively small, with the facial disk imperfect; eyes small, deeply sunk in the head. Wings long; tarsi short and densely feathered; claws strong. Diurnal.

Two species only are included in this sub-family, both of which are almost restricted to the Arctic regions, visiting only the northern parts of the temperate zone, in both continents, during the winter. They are the great snow owl (Nyctea nivea) and the hawk owl (Surnia ulula).

The former is a large species, distinguished for its plumage of beautiful snowy whiteness. Its tarsi and feet are so thickly clothed with plumes that they often entirely conceal the toes, and when the bird is sitting at rest frequently nothing but the black tips of its claws is visible. The eyes, which are very large, are of a beautiful gamboge yellow, which contrasts advantageously with its white plumage. This magnificent bird is abundant in the extreme northern regions yet attained to by voyagers, and frequently visits in winter the northern countries of both continents, but appears to be the more plentiful in North America. It is often shot in the neighborhood of Philadelphia during some winters, and those, too, are frequently such winters as are remarkable for their mildness; however, more or less numerous specimens find their way to city markets every winter, and it probably wanders occasionally to the southern limits of the United States.

The Snow Owl is often seen in Norway and Sweden, but is of rare occurrence in France or the British Islands. In Ireland it appears to be of more frequent occurrence than in Great Britain.

Audubon mentions that a specimen in captivity fed upon small fishes or pieces of fish placed in water, and Wilson also mentions having seen this bird engaged in fishing. Its usual food is said, however, to be the northern hares, grouse, ducks, mice, and even carrion, which it feeds upon by daylight as well as in the twilight of the evening. It breeds in the far north, and is said to make its nest upon the ground, and to lay three or four white eggs.

The Hawk Owl is another northern species, though not inhabiting regions so far north as the preceding, nor does it proceed so far south in its winter migrations, being very rarely found in the latitude of Philadelphia. Wilson's description of this curious bird is, as usual, much to the purpose: "This is an inhabitant of both continents, a kind of equivocal species, or rather a connecting link between the hawk and owl tribes, resembling the latter in the feet and in the radiating feathers around the eye and bill, but approaching nearer to the former in the smallness of its head, narrowness of its face, and in its length of tail. In short, it seems just such a figure as one would expect to see generated between a hawk and an owl of the same size, were it possible for them to produce, and yet is as distinct, independent, and original a species as any other. It has also another strong trait of the hawk tribe, in flying and preying by day, contrary to the general habit of owls. It is characterized as a bold and active species, following the fowler and carrying off his game as soon as it is shot. It is said to prey on partridges and other birds, and is very common at Hudson's Bay. We are also informed that this same species inhabits Denmark and Sweden, is frequent in all Siberia, and on the west side of the Uralian chain as far as the Volga. This species is very rare in Pennsylvania and the more southern parts of the United States. Its favorite range seems to be along the borders of the Arctic regions, making occasional excursions southwardly, when compelled by severity of weather and consequent scarcity of food. I some time ago received a drawing of this bird from Maine ; that and another specimen which was shot in the neighborhood of Philadelphia are the only two that have come under my notice. Of their nest or manner of breeding we have no account."

With this sub-family we conclude the Rapacious Birds.

Order II. Passeres.

This order contains more birds than all the other orders together. It comprises all the birds which have feet especially formed for perching and a general organization enabling them to live amongst trees, in which a large majority of the species habitually pass their lives.

The claws are weak and not retractile as in the Accipitres, and the hind toe is not only upon the same plane, but is as much capable of grasp-
ing as are the others, by which character the birds of this order may at once be distinguished from any of the others, except the Scansores, in which, however, the arrangement of the toes in pairs is so peculiar that no chance of confusion exists.

The food of the Passeres consists principally of fruits or seeds and insects, the greater part of the species being omnivorous, or eating indiscriminately almost any description of these two classes of food which can be most readily obtained. There are many genera, however, the food of which is exclusively insects, and many others which never or rarely eat anything else than seeds; and others, again, which subsist almost entirely upon the pulp of fruits. All these, however, admit of classification, and will be regarded by us as constituting sub-orders or tribes.

The larynx, or organ of voice, is generally of complex structure in the birds of this order, which contains all that are commonly known as singing birds. There are few species which do not either sing or utter notes more or less musical, especially during the season of courtship; and even of those whose voices are harsh, some are frequently capable of being taught to imitate other sounds.

In this order the female is very generally smaller and less brilliant in her plumage than the male. They usually live in pairs, build mostly in trees, and frequently display great art in the construction of their nests.

We shall divide this extensive order into four sub-orders or tribes, viz.: Fissirustres, or split-billed birds, Tenuirostres, or slender-billed, Dentirostres, or birds with toothed bills, and Conirostres, or conic-billed birds.

Sub-Order 1. Fissirostres.

This is comparatively a small group when compared with the extensive sub-orders of Dentirostres and Conirostres. It comprises all the birds commonly known by the names of Swallows, Night-hawks, Kingfishers, Trogons, Bee-eaters, and some others of similar general characters.

The Fissirostres are generally distinguished by having the powers of flight developed to the highest degree. The beak is usually short, broad, and very deeply cleft, so that the opening of the mouth is very wide, or, as some of the old writers express it, they are very big in the swallow. Possessing this kind of bill they are adapted to capturing insects on the wing, receiving them into their mouths while in full flight. There are, however, some genera in which the characters of this group are not so strongly marked, and in which the bill is longer and stronger and the flight not so rapid nor long continued, but they all have the characteristic wide mouth.

These birds subsist almost entirely upon winged insects.
Fam. 1. Hirundinide, or Swallows. Bill small, much depressed, somewhat triangular; wings mostly very long, curved; tail various, frequently long and forked, sometimes short and truncate. Plumage compact, glossy; size small.

No birds are more universally or more favorably known than the swallows. Distributed through the entire globe, and usually conspicuous
on account of their numbers and rapidity of flight, they have found a place in the literature of all civilized people, ancient and modern.

These birds exhibit the social instinct to an extent rarely observable. Individuals of the same and sometimes of different species build their nests close together, and the birds themselves are almost constantly seen in flocks. They are very fond of frequenting the vicinity of the water, over the surface of which they may be seen skimming for hours. In fair weather they occasionally ascend to a great height in the atmosphere, but are usually occupied in the lower strata.

Although the species are small birds, the swallows are sought after as articles of food in some countries, to the neglect of those laws of common sense which would protect birds so useful in the destruction of hosts of diurnal insects, which are their only food. They are, however, generally protected by public sentiment and by special enactment in some of the states of North America. In Europe, also, they are generally much regarded; but in one country, Tuscany, they are placed directly beyond protection, being classed amongst those vermin which it is always lawful to destroy.

The swallows are eminently migratory, and show great regularity in therr periods of departure and return. In the course of several years, some species will hardly vary more than a day or two in arriving at their nesting places from the south. Thus the Chimney bird (Acanthylis pelasgia) arrives in Pennsylvania from the 17th to the 20th of April ; the Martin (Progne purpurea) from the 28th of March to the 5th of April ; the Barn Swallow (Hirundo rufa) from the 9 th to the 13 th of April. These dates are of course subject to some variation from the different states of the weather, as, for instance, in case of a few days of severe cold or of a snow storm; but the mean results of the observations of several seasons show surprising uniformity.
Sub-fam. 1. Hirundinince, or House Swallows. Head rather broad and depressed; bill short and more or less flattened and triangular, with the sides rather abruptly compressed towards the point, gape very wide. Wings long and pointed, first quill longest; tail usually forked; tarsi short ; toes rather long and slender. Size small.

The true swallows are more beautiful in their plumage and more graceful in their movements than any other birds of this family. Several species occur in North America, the largest and most conspicuous of which is the Purple Martin, or House Martin, as it is frequently called from its sociable and familiar disposition (Progne purpurea). It is spread abundantly throughout the United States in the summer, spending the winter in South America. It is an universal favorite with the American population, and comes confidently to take possession of the little boxes or other habitations everywhere provided for its accommodation, as a sort of compensation for which it drives away all the hawks disposed to visit the establishment, destroys numerous insects injurious to vegetation, and, it may be added, if its box is near the house of its protector, is as good as an alarm clock to awaken :im precisely at daybreak, by its incessant though not unpleasant chattering.

As the bluebird is the first to make its appearance in the spring and has the same partiality for a ready made domicil, the martin frequently finds himself anticipated and his right of possession stoutly resisted; he is, however, generally successful, though often not without a stubborn contest.

When forced to seek a habitation for himself, the martin selects a hollow tree, in which he constructs his nest, which, as is the case with most of the swallows, is formed principally of mud gathered from the neighboring ponds. The eggs are pure white.

The other species of American swallows may all be included in the genus Hirundo, although otherwise arranged by some naturalists.

The Cliff or Republican Swallow (H. hunifrons) is one of the most remarkable. A curious feature in the history of this bird is the fact that it has spread over the Atlantic States only at a late period. It has been long known in the valley of the Mississippi, but has only extended itself eastward within fifteen or twenty years. It was not until about 1840 that it was known in Pennsylvania except as a rare straggler, but it has since then become conmon, and in some districts abundant, hundreds being sometimes found nesting along the eaves of a single barn, which is a favorite locality. The nest is built entirely of mud, and is universally noticed on account of its singular shape, which is similar to that of a gourd, with the entrance at the smaller end and curved downwards. A lining of grass completes it, and three to five eggs are the usual contents.

The Barn Swallow (H.rufa) is the most common and best known species. The birds of this species build their nests in nearly all barns, or other large outhouses, in the Northern States, to which they can gain admittance, and it very rarely happens during the summer months that they are not observable in almost any landscape. This species is a great favorite.

The Swallow of Europe, H. rustica (pl. 103, fig. 7), is very similar to the common American species.

Another common species is the white bellied swallow (\boldsymbol{H}. bicolor), though not so well known and constantly observed as the last.

The violet green swallow (\boldsymbol{H}. thalassina), a species inhabiting the western slope of the Rocky Mountains, is the most beautiful of the American species. The bank swallow (\boldsymbol{H}. riparia) derives its name from its predilection for streams of water, in the banks of which it excavates a hole and constructs its nest. The rough winged swallow (H. serripennis) has much the same habits, though it sometimes makes its nest in other places, such as the crevices in large walls, abutments of bridges, or the like.

Sub-fam. 2. Cypselina, or Swifts. Bill less flattened than the preceding, longer, and with the margins inflexed and somewhat gaping. Wings very long, curved ; tarsi short; feet small and weak. Tarsi generally feathered; tail various, sometimes forked, often truncate. Size small.

A sub-family composed of numerous species of birds found in all parts of the world, and usually known as Swifts on account of their extraordinary rapidity of flight. The Chimney Swallow, or Swift of the United States (Cypselus pelasgius), is a good example of the birds of this group. It
arrives in the United States early in May, and is distributed throughout the entire Union. The birds of this species build their nests exclusively in unoccupied chimneys, for which they have, of course, abandoned the locations used by them prior to the introduction of chimneys into this newly settled country, previous to which memorable event they appear to have been quite content with such accommodations as were afforded by hollow trees. It is very remarkable, however, that these birds have, without any exception whatever, uniformly adopted the chimneys as fast as the settlement of the country has proceeded; and that, at this time, in the thickly populated Northern States, though this species is abundant, not a single pair have been observed to resort to the woods in many years. It is an exceedingly active little bird and a very fast flyer, and is known to the whole population of North America.

In Europe, two large species are found. They are about the size of the American purple martin, which is a namesake of the European species. The black martin of Europe (Cypselus apus) is very common, and, though so much larger, resembles the chimney swallow, though it builds its nest much like the swallows in old buildings or the crevices of rocks. The other species, the alpine martin, C. melba ($p l .103$, fig. 8), is not so common, being restricted to the mountainous districts of the continent, where it makes its nest and rears its young.

The little birds which construct eatable nests are arranged here. They compose the genus Collocalia, and are among the smallest of the swallow family. The nests of several species are cooked in a great variety of styles by the Chinese and Japanese, and are highly esteemed.

Several species found in India (genus Macropteryx) are remarkable for beauty of plumage and gracefulness of form.

Fam. 2. Caprimulgide, or Goatsuckers. Bill very small and generally weak; gape very wide and extending beneath the eye. Tarsi and feet very short; toes long and sometimes strong. Plumage soft and loosely imbricated.

This extensive family of birds is well represented by the common Whip-poor-will and Night Hawk. It is composed exclusively of birds which like them prefer the twilight of the evening, or even the darkness of night, in which to pursue their prey or attend to the business of courtship and rearing their young.

The birds of this family are found in all parts of the world.
Sub-fam. 1. Caprimulgine, or Night Hawks. Bill short and broad at base, with the gape extending under the eye, and furnished with a series of bristles on each side. Wings long and pointed; tail rather lengthened, mostly rounded, or sometimes deeply forked. Tarsi short and usually clothed with velvet-like feathers; toes long, the middle one of which is always armed with a serrated claw. Size small.

The species of this sub-family, which comprises the true Caprimulgida, are scattered over the entire globe, and, although not numbering many species, are yet sufficiently numerous in point of individuals to be universally known. They feed on moths and beetles, which they catch with
great dexterity on the wing in the dusk of the evening. They usually spend the day like the owls in the darkest recesses of the forest. Incubation is generally performed upon the ground; no nest is constructed, but a dry, sheltered spot only selected, wherein two eggs only are deposited.

There is but one well established European species, which is the Caprimulgus europcus, and even it is not very common. It partakes exclusively of the general habits of its sub-family.

The species best known in North America is the Whip-poor-will, so called from its very remarkable note. "These notes," says Wilson, "seem pretty plainly to articulate the, words which have been generally applied to them, whip-poor-will, the first and last syllables being uttered with great emphasis, and the whole in about a second to each repetition; but when two or more males meet, their whip-poor-will altercations become much more rapid and incessant, as if each were striving to overpower or silence the other. When near, you often hear an introductory click between the notes. Towards midnight they generally become silent, unless in clear moonlight, when they are heard with little intermission till morning." A much larger species, the Chuck-wills-widow, so called also from its note, inhabits the southern part of the United States.

Many species of this sub-family are found in all parts of the world.
The common European species, C. europœus (pl. 103, fig. 6), resembles. to some extent, in general appearance and habits, the whip-poor-will, though it is almost without voice.

Sub-fam. 2. Podargina, or Large Night Hawks. Bill short, curved at the point, very strong, gape enormous; base of the bill with projecting plumes, but without bristles. Tarsi and feet short, and comparatively weak; tail rather long. Wings moderate. Size large.

These extraordinary birds are the largest of this family, many of the species being as large as the common crow. On account of the unusual broadness of their heads, and consequent wideness of their mouths and throats, they present a very grotesque and singular appearance.

The genus Podargus, which emoraces the greater number of the species, is confined to Australia and some other of the most southerly islands of the Pacific ocean. In Australia the largest species (P. cinereus) lives in thick woods, venturing out on the wing only in the evening. It lives upon winged insects, and has been named by the colonists, in imitation of its note, "More pork." Another genus (Batrachostomus) is found in the interior of India.

In America the singular genus Steatornis is found. It contains one species only, which was discovered in caverns in South America by the celebrated Humboldt, and is remarkable for possessing a strongly hooked bill and other rapacious characters, showing a close affinity to the owls. It is said, however, to subsist upon fruits, and that it is eaten by the natives. Another American genus is Nyctibius, which contains several large species inhabiting South America, of which may be mentioned the N. grandis, a species as large as a hen.

Sub-fam. 3. Podagerina. Bill much depressed, with the culmen curved
and compressed on the sides to the tip, gape furnished usually with bristles or hairs. Wings long and pointed. Tail ample, sometimes long; tarsi short, partly covered, sometimes bare. Size small.

In this sub-family we arrange the American night hawks (Chordeiles), of which one species only inhabits the United States, although several nthers are found in Mexico and South America.

The long-shafted night jar of Africa (Macrodipterix longipennis), which belongs to this sub-family, is remarkable for having a plume, which is sometimes five times the length of its body growing out of each wing. This gives the bird, especially when flying, a very curious appearance, and its use is entirely unknown. Several species of another genus (Podager) are found in South America.
Fam. 3. Coractade, or Rollers. Bill more or less lengthened and broad at base, compressed, with the tip hooked; wings long and powerful; tail rather short, but with the two external feathers frequently much lengthened ; tarsi and feet short.

A family composed of a few birds strictly confined to the Old World. They are all remarkable for beauty of plumage and elegance of form.
Sub-fam. 1. Coracianc, or Rollers. Bill moderate, straight, upper mandible slightly longer; nostrils basal, oblique, linear. Wings moderate, pointed; tail long, wide, with the lateral feathers frequently lengthened; tarsi short ; gape wide. Size moderate. All the species with gay colored plumage.

This is a small sub-family of beautiful birds which are found in Africa, Asia, and the larger Pacific islands. Their plumage is almost invariably of brilliant colors, and usually contains more or less green or blue of the richest hue. One species occasionally visits Europe, Coracias garrula ($p l .99, f i g .3$), where it is much sought after by collectors as one of the few bright plumaged European species. The most common species in collections is the Bengal roller (C. lengalensis), skins of which are brought abundantly from India, where it is common. The food of the rollers consists of both fruits and insects, the latter of which they catch after the manner of the flycatchers.

Sub-fam. 2. Todince, or Todies. Bill lengthened, much flattened, slightly compressed towards the tip, which is rounded; nostrils lateral with the opening exposed. Wings short and rounded; tail moderate, emarginated. Tarsi long, slender; toes moderate. Size small.

A sub-family consisting of a few small birds found in tropical America. They are represented as being dull and stupid little birds, living upon grasshoppers and other insects, and partaking much of the habits of some of the flycatchers. The most common species is the Todus viridis, which is a beautiful green bird with a scarlet throat. It is said to construct a curious bag-shaped nest, composed of wool and with a narrow entrance.

Sul-fam. 3. Eurylaimince, or Boatbills. Bill large and extremely broad at base, curved and gradually compressed to the tip; nostrils lateral, exposed ; wings moderate ; tail moderate ; tarsi short. Size small.

India is the country of this sub-family. It contains a few species only
of handsome birds, with remarkably wide and strong bills which are said to be used in the capture of coleopterous insects, upon which these birds subsist. No one of the species is very common in collections, though the Eurylaimus nasutus is frequent. It lives in the retired and shaded jungles, where it constructs a pendent nest, usually in the neighborhood of the water.

Sub-fam. 4. Momotina, or Motmots. Bill long, elevated, and broad at the base, with the sides compressed, and the margins serrated. Wings short, rounded ; tail long, graduated, with the two middle feathers usually much the longest, and generally with their shafts bare for a considerable distance; tarsi and feet moderate. Size moderate, much larger than either of the two last sub-families; colors brilliant.

This is a sub-family consisting of some twelve or thirteen species of beautiful birds, which are restricted to the warmer parts of America. They prefer the shades of the forest, but seem occasionally to frequent deserted or dilapidated buildings. They feed indiscriminately upon fruits, snakes, lizards, and insects, which are taken with the point of the bill and tossed upwards to be caught in the extended mouth. It is said that they also rob the nests of other birds. The Brazilian motmot (Momotus brasiliensis) is the most common species, being very abundant in Brazil and other countries of South America. Several species have been found in Mexico and the West Indies.

Fam. 4. Trogonide, or Trogons. General form stout, but rather graceful. Bill short, strong, broad at the base, with the tip hooked; nostrils basal generally, and concealed by the projecting feathers. Plumage very beautiful.

This family is composed of a few genera of handsome birds, most numerous in tropical America and Asia, one species alone having been found in Africa.

Sub-fam. 1. Trogonince, or true Trogons, of America. Bill short, strong, with the base very broad and nostrils concealed ; wings short ; tail ample, sometimes long; tarsi short and feathered; plumage of the head frequently elongated and crest-like. Colors brilliant metallic green and red.

These splendid birds are peculiar to tropical America. They are represented by travellers as solitary and quiet birds, remaining within the dense foliage of the tropical forests, and feeding upon both fruits and insects. Beetles are their favorite food, upon which as well as berries they dart in the manner of swallows. Incubation is performed in hollow trees, in which no nests are built, but the eggs are laid upon the bare wood.

About thirty species of the Trogons are known to inhabit South America and Mexico, all of which possess much beauty of plumage; but there is a small genus (Calurus) remarkable for the great length of the upper tail-coverts, which are amongst the most splendid of birds. The \boldsymbol{C}. resplendens is a species found in Yucatan, and is the bird alluded to by Stephens as having been considered sacred by the ancient inhabitants of that country. It has the tail-coverts developed to several times th length of its body, and the whole plumage of the most beautiful metallic green
imaginable. Another species, C. auriceps, is common in the north of Brazil, and in addition to the beautiful green of the plumage of its body, it has the head of splendid golden, almost appearing to be gilded artificially. The genus Trogon, T. viridis (pl. 97, fig. 7), and the Curucui, T. curucui ($p l$. 97, fig. 6) are common in collections.

Sub-fam. 2. Harpactince, or Asiatic Trogons. Bill stronger than in the preceding, both mandibles notched at their tips ; nostrils partially covered; tarsi slightly feathered, short; anterior toes united. Colors gay, usually brown or reddish, fulvous, and scarlet.

India and the Malay Archipelago are the countries of the birds of this sub-family. They are showy, but not so splendid as their American relatives, though they appear to be very similar in all other respects. They are usually noticed sitting quietly on a dead tree, occasionally darting after an insect and returning to the same position, or wandering about from tree to tree. Harpactes malabaricus, rutilus, and diardii, are amongst the most common species ; while one large species, \boldsymbol{H}. gigas, well established as having been known to the older ornithologists, is unknown in modern collections.

One species only, which constitutes a genus of its own, has been found in South Africa; it is the Apaloderma narina, and it appears to differ in no respect from the general characters of the Trogons.
Fam. 5. Alcedinide. General form, short, thick, and strong. Bill long, and mostly adapted to striking as well as seizing their prey. Wings generally moderately strong; tail generally short ; tarsi short ; toes long.

A very extensive family, composed of the kingfishers, puff-birds, and jacamars, distributed amongst a large number of genera. They inhabit all parts of the world, and far the greater part show a disposition to frequent the vicinity of water.
Sub-fam. 1. Bucconince, or Puff-birds. Bill rather long, elevated, and broad at the base, with the tip curved and frequently emarginated or fissured. Wings mostly rather short; tail moderate ; tarsi short, covered with scales. Size various, never large; plumage plain.

The birds of this sub-family derive their name from the habit of raising or puffing up their profuse plumage, which, it appears, is more or less the case in all the species. Southern America is their native country, and their habits appear to be very similar to those of the birds of the last sub-families. They live upon coleopterous and other insects, which they capture upon the wing.

Bucco macrorhynchus (pl. 97, fig. 8) is the best known species. Monasa tranquilla and leucops are, however, common in collections of South American birds.

Sub-fam. 2. Halcyonina, or Broad-billed Kingfishers. Bill broad, long, and nearly quadrangular, with the lateral margins straight, or curved slightly upwards. Wings broad, short, and rounded; tail moderate; tarsi very short, robust. Size various; plumage generally containing more or less blue and green colors.

This sub-family may be said to comprise the kingfishers which frequent
salt water. All parts of the world, except America, are inhabited by these birds. Australia produces a genus (Dacelo) which contains the largest species of this sub-family. They feed upon small quadrupeds, reptiles, insects, and other animals, and are remarkable for a peculiar gurgling laugh, from which the colonists have named the commonest species "the laughing jackass."

The genus Halcyon comprises about fifty species, which are mostly found in Africa and India, and the islands of the Indian and Pacific oceans. These birds live exclusively in the immediate vicinity of the water, from the animals inhabiting which they derive their subsistence.

The black-capped kingfisher of India, H. atricapilla ($p l .103$, fig. 3), is one of the most common species, though many others are common in collections. The birds of this group are said to nestle in hollow trees.

Sub-fam. 3. Alcedinina, or Narrow-billed Kingfishers. Bill very straight, compressed, and sometimes slender, points of both mandibles acute, commissure straight. Wings and tail short; tarsi very short, but robust; toes very unequal, the two anterior of which are united. Size small; colors of plumage more or less blue and.green.

The birds of this sub-family, though not constituting so many species as are contained in the preceding, are more generally diffused over the entire surface of the temperate and torrid zones. They may be considered as the fresh-water kingfishers in distinction from the Halcyonidae, as they are found only in the vicinity of rivers or small streams, upon the fishes inhabiting which they live. In the banks of those streams these birds excavate holes, frequently of considerable depth, in which they construct their nests and rear their young.

The common European kingfisher, Alcido ispida (pl. 103, fig. 5), belongs here. It is a very pretty little species, found sparingly throughout the continent, inhabiting the banks of small streams, and usually seen perched upon a small bough overhanging the stream, whence it darts upon such fishes as expose themselves to its keen vision. About twenty other species, more or less related generically to the common European species, are found in Asia and Africa. Some species of the latter country are quite diminutive, being not larger than the North American wren.

All the American kingfishers belong to the genus Ceryle, which contains, however, species from other parts of the world. There are about ten American species, the only one of which found in the United States is the common belted kingfisher (C. alcyon). This bird is distributed throughout the United States, and being the only species of its kind found in the north is universally known. It is constantly to be seen along the courses of brooks or creeks, ready to seize upon the small fishes which are its favorite food. The nest is constructed in a hole in the bank of the stream, and this species is said to breed for several successive years in the same nest.

Several species have been found as far north as Mexico, though they are all common in South America. The C. amazona is one of the most common, and has very handsome silky green plumage; others have, however, much the same. The giant kingfisher of authors (C. torquata) is
one of the largest of this family, and appears to be common in Brazil ; while the little American kingfisher (C. americana) is one of the smallest. It also is found abundantly in South America, and has recently been discovered in Texas. Several species are known to inhabit Mexico, and some large species inhabit India and Africa. The great Java kingfisher, C. javanicus (pl. 103, fig. 4), is one of the most common.

Sub-fam. 4. Galbulinee, or Jacamars. Bill very long, straight, and pointed, greatly compressed, culmen sharp; wings short; tail more or less lengthened, and usually graduated. Tarsi short, feathered; feet weak; toes usually two before and two behind. Size small; plumage usually brilliant metallic green.
A sub-family, composed of about a dozen species of brilliantly colored and peculiar looking little birds, exclusively confined to South America and the West Indies. They inhabit damp places in the forests, and are said to subsist entirely upon insects, which they devour after having divested them of their wings and other hard parts. These birds breed in holes in trees or in the banks of streams in the manner of kingfishers.

Several species are common in collections: they are the green jacamar (Galbula viridis), the white-bellied jacamar (G. albirostris), and others. One of the most beautiful is the largest species known; it is called the grand jacamar, and is found in the interior of South America, though nothing respecting its history or habits has been reported by travellers.

A recently discovered species of this sub-family, a very modest and unpresuming bird apparently, is remarkable for having had given to it one of the longest of ornithological names, Jacamaralcyonides leucotis.

Fam. 6. Meropide, or Bee-eaters. A family composed of birds exclusively inhabiting the warm regions of the Old World, and universally known by the name of "bee-eaters." They form one sub-family only, as below.

Sub-fam. Meropince. Bill long, curved, slender and pointed, compressed. and with the tip very acute; wings long, pointed, secondary quills emarginated; tail long, broad, usually with the two middle tail feathers longest. Tarsi short, strong; toes long; claws moderate. Size small; plumage generally green.

This sub-family contains about forty species of birds found almost exclusively in Asia and Africa. They are migratory in their habits, and one species occasionally visits northern and central Europe; it is the common bee-eater (Merops apiaster). All the species are said to subsist entirely upon insects, which they catch upon the wing with great dexterity, and in pursuit of which they skim over the surface of the ground like swallows. Nearly all the species are handsome little birds with green and yellow plumage, and several are very commonly brought from India and Western Africa. The Indian species usually met with are the green bee-eater (Merops viridis) and the Java bee-eater (M. javanicus); from Africa we frequently have the swallow bee-eater (M. hirundinaceus), the red-throated bee-eater (M. ruficollis), and many others. One species has been discovered in Australia, M. ornatus.

Sub-Order 2. Tenuirostres, or Slender-billed Birds.

Bill always slender, generally long and curved; tongue usually with a fascicle of slender hair-like filaments at the point. Size generally small. This tribe contains the smallest of all birds.

The length and slenderness of the bill are the peculiar characters of this group, which is composed of birds found in all parts of the world. Nearly all the species are supposed to derive their subsistence, in a measure, from the nectar of flowers, though it is quite certain that very many of them capture small winged insects also. There is scarcely a species in this group which does not possess elegance of form and beauty of plumage.

Fam. 1. Upupide, or Hoopoes. Bill lengthened, slender, generally curved, compressed; wings long, rounded ; tail generally long and ample ; tarsi generally strong and short ; feet strong. Size rather large.

A family containing some of the most magnificent of birds. They are restricted to the old world, and are said to feed upon succulent fruits and the juices of flowers.

Sub łam. 1. Upupina, or Hoopoes. Bill lengthened, slender, and greatly compressed. Wings and tail more or less long and rounded; tarsi strong and usually short ; toes long, strong, claws strong and curved. Size rather large, generally crested.

The species of this sub-family are restricted to the old world. The Hoopoe of Europe (Upupa epops) is its representative in that continent. It derives its name from its note, and is very common in the south during the summer.

There are several other species of Hoopoes inhabiting Africa and India.
In Africa is also found the genus Irrisor, which belongs here, composed of a considerable number of very handsome dark plumaged birds, generally of elegant form and with long graceful tails. They are found throughout the entire continent of Africa and live in trees, creeping among the branches in search of insects, which with fruits compose their food. They roost and breed also in the holes of trees. Irrisor erythrorhynchus and melanorhynchus are the most common species. Several species are found in Liberia and other countries of Western Africa.

Sub-fam. 2. Epimachina, or Plumed Birds. Bill long, rather strong, curved margins obtuse and tip acute; wings moderate, rather rounded; tail various, generally even or graduated. Tarsi more or less strong, long, and usually covered with scales; toes long and strong, hind toe armed with a strong claw. Size rather large. Colors dark in the males and very beautiful.

Nearly all these beautiful birds are found in the island of New Guinea, one species only in New Zealand, and one in Australia. Though long known to naturalists, and known also extensively on account of the trade in their skins, which the natives of New Guinea have maintained for centuries, their habits and history are entirely unknown. The Epimachus superbus is common in collections, and is frequently met with in ornamental cases of stuffed birds. It has very fine, black, velvet-like plumage, with a curious breast-plate, or rather apron, of detached feathers, which are

AVES.

of splendid metallic green. Amongst traders these are usually confounded with the Paradise birds. Epimachus magnificus and resplendens are other very beautiful species.

Sub-fam. 3. Paradiseina, or Paradise Birds. Bill strong, slightly curved only, compressed, tip notched; wings moderate, rounded; tail various; tarsi and feet strong, sometimes short; toes long; strong claws, curved and acute. Sides of the body, breast, tail, and sometimes the head, generally with long and very ornamental plumes. Size rather large.

The Paradise birds are, perhaps, the most beautiful of birds. They are peculiar to the large island of New Guinea, in the forests of which they live on the tops of the highest trees, and subsist upon fruits and insects. It is said that they have loud and unpleasant notes, somerwhat like those of the crow family ; but little is known, however, of their history.

The greater and lesser Birds of Paradise, Paradisea major and minor ($p l$. 99, fig. 4), are the species most common in collections, though the king paradise bird, P. regia (pl.99, fig. 5), is frequent. The other known species are, the red-plumed (P. rubra), the magnificent (P. magnifica), the superb, P. superba ($p l .99$, fig. 6), the six-shafted, P. sexsetacea ($p l .99, f i g .7$), so called from the curious appendages of that number growing from the sides of its head, the republican (P. respublica), and Wilson's paradise bird (P. wilsonii). From the two first species (the greater and lesser paradise birds) the plumes worn in ladies' head-dresses are obtained, and their skins have been articles of merchandise for centuries.

Fam. 2. Nectarineade, or Sun Birds. Bill more or less lengthened, slender, and curved; wings generally short and incapable of long-continued flight ; tail usually moderate, generally short and truncate, sometimes long and graduated. Tarsi and feet moderate, generally rather weak.

A very numerous family of birds, nearly all of which are of very small size and distinguished for brilliancy of plumage, in which they are only excelled by their immediate relatives, the humming birds. The species are most abundant in Asia and Africa.

Sub-fam. 1. Nectarinina, or Sun Birds. Bill slender, curved, compressed, and with the tip entire, acute; nostrils basal, with the opening closed by a membrane. Wings moderate, rounded; tail generally lengthened, but frequently truncate. Tarsi usually moderate or weak. Size small ; colors of plumage usually metallic and very showy.

This sub-family consists of about one hundred and fifty species of beautiful hittle birds, which are restricted to the tropical countries of Asia and Africa, and are known by the universal name of sun birds, though the American colonists of Western Africa call them humming birds. They are usually seen in pairs or in small flocks, and fly with a tremulous or humming noise like the humming birds, which in most respects they appear to resemble. They feed principally upon minute insects, and are said to be fond of spiders, for which they search in the crevices of the bark of trees. Many species are found in Liberia, some of which are exceedingly beautiful, such as the Senegal sun bird (Nectarinia senegalensis), the red-backed sun bird (N. cuprea), and many others.

A variety of species inhabit India, of which the most common appear to be the N. zeylonica, malrattensis, and others.

Sub-fam. 2. Carebina, or American Creepers. Bill generally rather short, wide at the base, curved or sometimes nearly straight, sides compressed. Wings long and pointed; tail short, usually even; tarsi short; feet moderate. Size small. Colors usually blue or green and showy.

A sub-family of beautiful little birds peculiar to South America, said to feed upon the minute insects which frequent expanded flowers, about which they are observed to fly in the manner of humming birds. Their nests are suspended from the branches of trees, pear-shaped, composed of grass and woody fibres woven together, and with a tubular entrance from below. This mode of construction warrants security from monkeys, serpents, or other depredators.

There are about twenty species of these birds, the most common of which are the Careba cyanea ($p l .102$, fig. 9) and coruleat, the Dacnis spiza, a beautiful green bird with a black head, and the Certhiola flavenla.

Fam. 3. Trochllde, or Huming Birds. Bill generally long, very slender, usually curved but sometimes straight, with the lateral margins of the upper mandible dilated. Wings generally long and flattened in a peculiar manner; tail usually ample, truncated or cuneated; tarsi and feet usually very small and weak. Size very small.

The most diminutive birds in existence, and among the most beautiful. Swainson gives the following description in Lardner's Cyclopædia, Birds 11. page 146, in his usual forcible and pleasant manner. "In speaking of these charming birds, the naturalist is almost tempted to abandon that didactic style best suited to his subject, and to clothe his information in the language of poetry ; yét both must fail in conveying to the mind an adequate idea of their surpassing beauty. The rainbow colors of the most resplendent gems are here superadded to a living form which in itself is exquisitely graceful and animated in all its movements. The flight of these pigmy birds is so rapid as to elude the eye; for a few moments they may be seen hovering over a flower, but as soon as they have supped its sweetness they vanish in an instant ; they may, in truth, be said to 'come like shadows, so depart.' "

This celebrated family of birds is exclusively American and very numerous, there not being less than three hundred species now known, to which almost every traveller in South America yet makes additions.

Sub-fam. 1. Grypince, or Wedge-tailed Humming Birds. Bill long, slender, and curved throughout its length; culmen of the upper mandible distinctly keeled, tip acute, lateral margins dilated and overlapping the under mandible ; wings long and pointed ; tail long, broad, and generally cuneated; tarsi short and very slender. Colors generally plain, not metallic.

About thirty birds compose this sub-family. They are very distinct from the other sub-families of Humming Birds, and are nearly all remarkable for their plain plumage and long tails. They inhabit all parts of South America, but one genus (Oreotrochilus, Gould) contains species which are found only in the Andes, immediately below the line of perpetual snow.

532

Sub-fam. 2. Trochilince, or true Humming Birds. Bill usually long, straight, or slightly curved, and very slender; wings long, pointed; tail various, generally truncate, sometimes rounded; tarsi and feet very short and weak; toes long and slender. Size small; plumage more or less metallic and very beautiful.
This sub-family contains about one hundred species of humming birds, amongst which are some of the most beautiful little birds in existence. The mango (Trochilus mango), the swallow-tailed (T. macrourus), the emerald (T. glaucopis), the long-tailed Jamaica humming bird (T. polytmus), a magnificent species, the topaz (T. pella), the evening humming bird (T. vesper), and many other splendid species belong here.
They are exclusively restricted to South America and the West Indies, except the Mango, which has been found in Mexico and may be classed as a North American bird.

The ruby topaz, T. moschitus (pl. 99, fig. 8), a splendid and common species, the magnificent T. ornatus (pl. 99, fig. 9 a), De Lalande's humming bird, T. delalandii ($p l .99$, fig. 10), and some others, are common in collections. The crested humming bird, T. cristatus (pl. 99, fig. 12), and the smallest humming bird, T. minimus ($p l .99$, fig. 11), are more rare. The latter is the smallest of all known species.

Sub-fam. 3. Mellisugina, or straight-billed Humming Birds. Bill usually lengthened, slender, and straight ; wings long, pointed; tail various, mostly truncate, sometimes with the two middle feathers or the two external feathers long; tarsi and feet short and weak. Colors usually very brilliant.

The species of this sub-family are diffused over the entire tropical and temperate regions of America, though the much larger portion of them exclusively inhabit the southern countries of this continent.

The common humming bird, T. colubris (pl. 99, fig. $9^{\text {b }}$), belongs here, and is the only species the history of which is well known. It appears in the northern part of the United States from the beginning to the middle of May, and was observed by Dr. Richardson in the fur countries of the north, bordering upon the Arctic circle. The nest is built upon the projecting branch of a tree, and is very artfully constructed and covered with moss or with lichens, giving it much the appearance of a knot upon the branch where it is located. Within are laid copious quantities of the pappus or down of plants, forming a soft and very suitable bed for the reception of the diminutive eggs. These are generally two onfy, and are hatched in the short space of ten days.

One of the most remarkable qualities of this little bird is its great pugnacity : the male does not hesitate to attack other birds much larger than himself, and has even been known to challenge the king-bird or the martin, the latter of which he sometimes compels to retreat. To man this bird shows little aversion, quietly hovering around its favorite flowers when so nearly approached as almost to be caught in the hand. It frequently enters at the windows of houses and is caught. Both old and young, are soon reconciled to confinement. In a very short time they will feed freely ypon diluted honey, or sugar and water, and suffer themselves to be
approached, or even touched, without showing signs of alarm. The male only of this humming bird has the brilliant gorget on the throat.

Several other species have been observed as far north as California, of which we may mention the Anna humming bird (T. anna) and the rufous humming bird (T. rufus).

The latter is supposed to proceed on the western side of North America nearly to the region of perpetual ice. It is abundant on the Columbia river, and was observed by the celebrated naturalist Nuttall, engaged in the duties of incubation, in the latter part of May. "The female was sitting upon two eggs of the same shape and color as those of the common species. The nest was also similar, but somewhat deeper, made of the same downy substances, and coated with lichens. At my approach the female came hovering round the nest ; and soon after, when all was still, she contentedly resumed her place."

There are from one hundred and fifty to two hundred species of humming birds in this sub-family, nearly all of which, we may say, are confined to South America. Several very handsome species are, however, known to inhabit Mexico.

The giant humming bird (T. gigas) is arranged here. It is the largest species known, being nearly as large as the orchard oriole. The swordbilled humming bird is worthy of being mentioned on account of its excessively long bill, which considerably exceeds the length of its body. It feeds upon insects which frequent the flowers of Bignonia (trumpet flowers) and other plants which have very large tubular flowers, for which its bill is admirably adapted. The white-necked humming bird, T. albicollis (pl. 102, fig. 1), is a common species.

The birds of this sub-family seem to prefer the northern parts of South, and probably will be discovered to be numerous in Central America.

Fam. 4. Meliphagide, or Honey-suckers. Bill generally long, curved, and acute, tip sometimes emarginate; wings moderate or rounded; tail mostly long and broad; tarsi rather short and strong; toes long. Tongue extensile and furnished at the tip with a fascicle of short, slender fibres.

A small family of birds, peculiar to Australia and the adjacent islands.
Sub-fam. 1. Myzomelina, or Honey-creepers. Bill long, slender, and curved ; wings short ; tail short and emarginate ; tarsi and feet moderate, rather slender ; claws curved, acute.

These are observed fo frequent the flowers of various species of plants indigenous to the continent of Australia, and are represented as feeding upon their secretions as well as upon the small insects which abundantly infest them. Whilst occupied in this pursuit, they may be seen clinging to and hanging from the flowering branches in a variety of attitudes. Their flight is rapid, and occasionally at a considerable height in the air. These birds are not common in collections. Myzomela sanguinolenta, Glyciphila melanops, and some others are, however, frequently brought by travellers and collectors.

Sub-fum. 2. Meliphagince, or Honey-eaters. Bill long, slender, and usually acute ; wings moderate, rounded ; tarsi short, strong ; toes moderate, sometimes strong; claws curved, acute.

This sub-family is composed of nearly one hundred birds, the majority of which are restricted to Australia, and much resemble the preceding in general characters and habits. In addition to the food of the birds of that sub-family, some of the species of the present eat berries and other fruits.

The Tropidorhynchus corniculatus is one of the best known species of Australian birds. It has received from the colonists the significant but not very poetical name of "Leather-head," from the baldness of the part alluded to.

About a dozen species, constituting the genus Phyllornis, which are arranged here, inhabit Java and other islands of the Indian Archipelago. They are mostly clothed in plumage of a beautiful green or blue color, and appear to be abundant in those localities.

Sub-fam. 3. Melithreptince. Bill short, somewhat conic, compressed towards the tip, which is curved; wings more or less long ; tarsi short and strong ; thes long; claws moderate.

A group of about twenty birds, strictly peculiar to Australia. Their habits and manners appear to be very similar to those of the preceding subfamilies, though they appear to be more insectivorous. For the purpose of capturing insects they frequent flowering plants, and occasionally are observed on the ground in the pursuit of beetles and other similar insects. The Psophodes crepitans, which belongs here, is one of the common birds brought in collections from Australia.

Fam. 5. Certhiade, or Creepers. Bill long, slender, more or less curved; nostrils small; wings usually short and rounded, sometimes rather pointed. Tail various, frequently terminated in abrupt points; tarsi and feet generally rather strong.

These are the Creepers, Nuthatches, \&c., some species of which inhabit the northern, but the much larger portion the southern regions of the globe. They are generally of small size, and resemble, in some respects, the scansorial birds (woodpeckers, \&c.).

Sub-fam. 1. Furnarince, or Oven Birds. Bill rather long, curved, frequently compressed; wings short, rounded; tarsi and feet strong; toes long. Tail broad, rounded, the feathers of which are frequently terminated in soft points.

This sub-family consists of about thirty birds, which have obtained the name of oven birds from their constructing nests somewhat of the shape indicated by the name, which are generally built in an exposed situation, as on the dead branch of a tree, or sometimes in the immediate neighborhood of houses or other buildings. When finished, it has the appearance of an oven several inches in diameter, with the entrance in the side. There are, however, several species of this sub-family which construct nests of the ordinary description, and some which live almost exclusively upon the ground, and make their nests in holes.

The birds here classed are exclusively found in South America and the West Indies. Furnarius rufus, Lochmias squamatula, and some others, are common species.

Sub-fam. 2. Synallaxince, or Sharp-tailed Creepers. Bill rather short and strong ; frontal feathers rather rigid. Wings very short and rounded ; tail broad, more or less lengthened, and usually graduated or cuneated, with the tips of the feathers lanceolate. Tarsi and feet large and strong; claws acute.

Another sub-family of birds peculiar to South America and Mexico, and which partake of the general characters of the last mentioned. They are generally plain colored little birds, somewhat resembling wrens in general appearance.

Sub-fam. 3. Dendrocolaptina, or Long-billed Creepers. Bill usually long and curved, compressed; wings moderate, generally rounded; tail long, broad, and graduated, with the feathers ending in hard points. Tarsi and feet strong; claws large and acute.

This sub-family is also essentially South American. About forty species are classed in it, which much resemble those of the two preceding subfamilies, but differ from them in being larger and having longer bills. The greater part of the species inhabit the vast forests of South America, and appear to have somewhat the habits of woodpeckers. In one genus (Xiphorhynchus, or sword-bills) the bill is exceedingly long. The Cayenne creeper (Dendrocolaptes cayennensis) and the white-throated creeper (D. albicollis) are commonly met with.

Sub-fum. 4. Certhiana, or Creepers. Bill rather long, slender, curved; wing rather long; tail lengthened, graduated, the feathers of which are slightly rigid. Tarsi and feet slender ; claws moderate. Size small.

Although not comprising more than a dozen species, the birds of this sub-family are found in all parts of the world. They are very active and shy little birds, subsisting upon minute insects, which nearly all the species search for in the crevices of the bark of trees, after the manner of woodpeckers.

The Certhia fumiliaris, or the brown creeper (pl. 102, fig. 2), is frequently met with in the forests of Europe and North America. It much resembles, in general character, the small woodpeckers and nuthatches with which it constantly associates in the forest, though it is much smaller, being, next to the golden-crested wren, the smallest of European birds. In the United States it is not so common as in Europe.
The rock creeper (C. muraria) of Europe also belongs here. It is found exclusively in the mountains of Europe and Asia, and is usually observed flitting from one projecting rock to another, in search of spiders and other insects, of which its food consists.

One genus (Climacteris) of this sub-family is peculiar to Australia, the birds of which inhabit the woods and partake of the general characters of the others with which they are classified.

Sub-fam. 5. Sittince, or Nuthatches. Bill rather short, very straight, more or less cylindrical; wings long and pointed; tail very short ; tarsi and feet rather long and slender. Size small.

The nuthatches, though numbering scarcely more than twenty species, are seattered over the whole world. Several species inhabit North America,
and are usually known by the name of "Sapsuckers," and one species is common in Europe (Sitta europaa).

The most common species of the United States is the white-breasted nuthatch (S. carolinensis), which is a very familiar and favorite little bird, living throughout the year in the same district, and, in fact, is supposed to ramble but little from the woods in which it was born. Its habits are very similar to those of the small woodpeckers, being seen constantly creeping on the surface of limbs and trunks of trees. So secure is its foothold, that it creeps equally well with its head upwards or downwards upon the tree, and is said to roost with the same indifference to position. It frequently in the winter approaches the precincts of dwellings or out-houses, and picks up whatever of insect or other suitable food it can discover.

Two smaller species are occasionally met with in the United States, the red-bellied and the brown-headed nuthatches (S. canadensis and pusilla). They entirely resemble in habits the common species. Another and still smaller species (S. pygmea) is found in California.
Some six or eight species of these little birds are peculiar to Australia and New Zealand.

Sub-fam. 6. Troglodytina, or Wrens. Bill more or less long and slender, usually slightly curved and somewhat compressed; wings short and rounded; tail various, generally rounded; tarsi long and slender ; toes long, rather slender. Size various, generally small. Colors plain.

There are about fifty species of the true wrens, which inhabit all parts of the world except Africa. In America, they are more numerous than elsewhere, and are well represented by that universal favorite the housewren of the United States (Troglodytes adon), the history of which by the incomparable Wilson we beg leave to extract: "This well known and familiar bird arrives in Pennsylvania about the middle of April, and about the 8th or 10 th of May begins to build his nest, sometimes in the wooden cornicing under the eaves or in a hollow tree, but most commonly in small boxes fixed on the top of a pole, in or near the garden, to which he is extremely partial, for the great number of caterpillars and other larvæ which it constantly supplies him. If all these conveniences are wanting, he will even put up with an old hat, nailed on the weatherboards, with a small hole for entrance; and if even this be denied him he will find some hole, corner, or crevice about the house, barn, or stable, rather than abandon the dwellings of man. In the month of June a mower hung up his coat, under a shed near the barn, and two or three days elapsed before he had occasion to put it on again ; thrusting his arm up the sleeve, he found it completely filled with some rubbish, as he expressed it, and on extracting the whole mass found it to be the nest of a wren completely finished and lined with a large quantity of feathers. In his retreat he was followed by the little forlorn proprietors, who scolded him with great vehemence for thus ruining the whole economy of their household affairs. The twigs with which the outward parts of the nest are constructed are short and crooked, that they may the better hook in with one another ; and the hole or entrance is so much shut up, to prevent the intrusion of snakes or cats, that it appears
almost impossible the body of the bird could be admitted; within this, is a layer of fine dried stalks of grass, and lastly feathers. The eggs are six a a seven, and sometimes nine, of a red purplish flesh color, innumerable fine grains of that tint being thickly sprinkled over the whole egg. They generally raise two broods in a scason, the first about the beginning of June, the second in July.
"This little bird has a strong antipathy to cats; for having frequent occasion to glean among the currant bushes and other shrubbery in the garden, those lurking enemies of the feathered race often prove fatal to him. A box fixed up in the window of the room where I slept, was taken possession of by a pair of wrens. Already the nest was built and two eggs laid, when one day the windows being open, as well as the room door, the female wren venturing too far into the room to reconnoitre, was sprung upon by grimalkin, who had planted herself there for the purpose, and before relief could be given was destroyed. Curious to see how the survivor would demean himself, I watched him carefully for several days. At first he sang with great vivacity for an hour or so, but becoming uneasy, went off for half an hour ; on his return he chanted again as before, went to the top of the house, stable, and weeping-willow, that she might hear him, but seeing no appearance of her, he returned once more, visited the nest, ventured cautiously into the window, gazed about with suspicious looks, his voice sinking to a low melancholy note, as he stretched his little neck about in every direction. Returning to the box, he seemed for some minutes at a loss what to do, and soon after went off, as I thought, altogether, for I saw him no more that day. Towards the afternoon of the second day, he again made his appearance accompanied by a new female, who seemed exceedingly timorous and shy, and who, after great hesitation, entered the box. At this moment the little widower, or bridegroom, seemed as if he would warble out his very life with ecstasy of joy. After remaining in about half a minute, they both flew off, but returned in a few minutes, and instantly began to carry out the eggs, feathers, and some of the sticks, supplying the place of the two latter with materials of the same sort, and ultimately succeeded in raising a brood of seven young, all of which escaped in safety."

Several other species of wrens inhabit America, most of which live in the woods and do not partake of the sociable character of the house-wren. The European wren is of the same description in some measure as the latter, though it builds its nest in low bushes near the ground. It does not appear to be so great a favorite as the American house-wren.

In this sub-family the lyre bird of Australia, Menura superba ($p l$. 102, fig. 14), is classed. It is remarkable for the singular beauty of its long tail. Australia is its peculiar country, in which it appears to prefer the woods upon the sea-coast, though it has been met with in those of the interior, living habitually upon the ground, and constructing its nest upon a projecting rock, or the stump of a tree. Its food consists of insects which are obtained by scratching amongst the fallen leaves.

Several genera, comprising about forty species, of the birds of this
sub-family, are peculiar to South America. They all resemble to a greater or less extent the wrens with which we are familiar, though some species live almost exclusively upon the ground. There is one genus (Hylactes) the species of which are remarkable for very robust legs and feet. H. rufus is the best known species.

Sub-Order 3. Dentirostres, or toothed-billed Birds.

This group embraces an immense number of birds, all of which in a greater or less degree subsist on insects. For this purpose the bill is always more or less toothed near the tip, which is frequently strongly hooked. The shrikes, thrushes, and robins, are familiar examples of the birds of this group.

Fam. 1. Sylitade, or Warblers. Bill subulate, generally slender, tip of upper mandible emarginated; wings more or less lengthened, generally rounded, sometimes pointed; tail various, frequently rounded. Tarsi long, slender ; toes mostly long, claws curved and acute. Size small.

This extensive family is composed of a large number of birds, many of which are noted for their powers of song. They are found in all parts of the world.

Sub-fam. 1. Malurina, or soft-tailed, Warblers. Bill moderate, generally slender and straight, tip of upper mandible curved; wings short, rounded; tail more or less lengthened and rounded ; tarsi generally long and slender • toes long, claws strong, acute.

About one hundred and twenty species of birds are classed here, which are restricted to the old world and Australia. They have derived the name of soft-tailed warblers from having generally fan-like tails, the feathers of which frequently have webs of remarkable softness to the touch. Many of the species have very loud notes, sometimes agreeable, but frequently unpleasant.

Australia produces about a dozen little birds of this sub-family which are very beautiful. The superb warbler (Malurus superbus) is one of the most common, and is clothed in plumage of splendid sky blue and black, presenting a singular contrast of colors. Others of this genus are equally handsome, though the species of this sub-family are generally of plain plumage.

Sub-fam. 2. Sylviance, or true Warblers. Bill rather long, slender, néarly straight, compressed, curved at the tip; wings moderate, rounded; tail rather long, rounded; tarsi lengthened, slender; toes long, slender; claws long, curved, and sharp. Size small.

This sub-family comprises about one hundred birds, including the warblers of Europe, the nightingales, golden crested wrens, and some other genera of birds not so well known, species of which inhabit the entire surface of the globe. The former, composing the old genus Sylvia, are common European birds. The nightingales, of which there are two species, have been celebrated for their transcendent powers of song from the earliest period of recorded history.

The smaller species (Philomela luscinia, pl. 103, fig. 13) is the best singer, and is the bird usually alluded to as the nightingale. It is a small
bird of very plain plumage, light brownish grey above and white on the lower parts of the body, native of the whole of Europe as far north as Sweden, all Asia as far as Siberia, and northern Africa, everywhere choosing its residence in shady woods, thickets, or even hedges in the fields. It is also partial to thickly set orchards and gardens, and is supposed to have a great preference for the neighborhood of its birth.

The nightingale is migratory, and appears in northern Europe about the middle of April; and it is during the season of selecting his mate and attending to the duties of rearing his young, that the male pours out that incomparable song which has established him as the greatest of feathered vocalists, beyond comparison.
"The nightingale," says Dr. Bechstein (Nat. Hist. of Cage Birds), "expresses his different emotions by suitable and particular tones. The most unmeaning cry when he is alone appears to be a simple whistle, 'fitt;' but if the syllable ' err' is added, it is then the call of the male to the female. The sign of displeasure or fear is 'fitt,' repeated rapidly and loudly before adding the terminating 'err ; whilst that of satisfaction and pleasure, such for example as conjugal endearments, or on the occasion of finding a delicate morsel, is a deep 'tack,' which may be imitated by smacking the tongue.
"In anger, jealousy, rivalry, or any extraordinary event, he utters hoarse and disagreeable sounds somewhat like a jay or a cat. Lastly, in the season of pairing, when the male and female entice and pursue each other from the top of a tree to its base, and thence again to the top, a gentle subdued warbling is all that is heard.
"Nature has granted these tones to both sexes; but the male is particularly endowed with such very striking musical talents, that in this respect he surpasses all birds, and has acquired the name of the king of songsters. The strength of his vocal organ is indeed wonderful, and it has been found that the muscles of his larynx are much more powerful than those of any other bird. But it is less the strength than the compass, flexibility, prodigious variety, and harmony of his voice which make it so admired by all lovers of the beautiful. Sometimes dwelling for minutes on a strain composed of only two or three melancholy tones, he begins in an under voice, and swelling it gradually by the most superb crescendos to the highest point of strength, he ends it by a dying cadence ; or it consists of a rapid succession of more brilliant sounds, terminated, like many other strains of his song, by some detached ascending notes. Twenty-four different strains or couplets may be reckoned in the song of a fine nightingale, without including its delicate variations; for among these, as among other musicians, there are some great performers and many middling ones.
"It is true that the nightingales of all countries, the south as well as the north, appear to sing in the same manner ; there is, however, as has beest already observed, so great a difference in the degree of perfection that we cannot help acknowledging that one has a great superiority over another. On points of beauty, however, when the senses are the judges, each has his peculiar taste. If one nightingale has the talent of dwelling agreeably on
his notes, another utters his with peculiar brilliancy, a third le. gthens his strain in a peculiar manner, and a fourth excels in the silveriness of his voice. All four may excel in their style, and each will find his admirer ; and truly it is very difficult to decide which merits the palm of victory."

The larger species of nightingale (Philomela major) is abundant in some parts of the continent of Europe, especially Austria, Hungary, and Poland. It is said to sing more generally at night than the former, but does not appear to approach it in general vocal ability. It pronounces notes similar to the names David and Jacob with great distinctness, and with the latter it generally begins its song.
The black cap warbler, Curruca atricapilla (pl. 103, fig. 15), is abundant throughout Europe as far north as Sweden. The garden warbler, C. hortensis ($p l .103$, fig. 14), is not so common, and is of more retired habits. The willow wren, Sylvia hippoläis ($p l .100$, fig. 7), is another European species.

This sub-family includes also the redstarts of Europe (Phoenicura), the most abundant species of which is the common redstart, P. ruticilla ($p l .103, f i g .16$). It is a very pretty little bird, with the tail entirely of a deep orange-red color, and inhabits the whole of Europe and probably Asia. Another species is the blue-throated or Swedish redstart, P. suecica (pl. 102, fig. 12), one of the prettiest of European birds.

The crested wrens also belong here (Regulus), of which thers are numerous species. They are amongst the smallest of birds, and are remarkable for their active habits, and the hardihood with which they brave the northern winters. They are restricted to North America, Northern Europe, and Asia; the golden-crested wren, R. auricapillus ($p l$. 103, fig. 12), is the most numerous species of Europe.

Sub-fam. 3. Erythacinc, or Robins of the Old World. Bill moderate, more or less slender, rather depressed at base, compressed towards the tip; wings generally rather short and rounded, sometimes long; tail usually short and broad, generally even and rather rounded at the end. Tarsi long, slender; toes moderate, claws curved and acute. Size small.

This sub-family contains the robins, stonechats, and several other genera of the old world, and the familiar blue-birds of America; in all about onehundred species.

The stonechats and wheatears of Europe are classed in the genus Saxicola. They are birds common throughout the continent. The wheatear, S. ænanthe ($p l .103$, fig. 18), in Great Britain lives in the moors and open fields, where it makes its nest under large stones or in the crevices of walls. It is a bird of handsome form, but very shy and timid; though vast numbers are caught in traps for the table, being esteemed a great delicacy.

The robin or redbreast of Europe is a famous and long established favorite. It is a small bird, not larger than the blue-bird, to which it bears considerable resemblance in habits and general history. Erythaca rubecula (pl. 102, fig. 13).
"The common robin," says Sir William Jardine, "has been frequently described, and has been the subject of many anecdotes from the time of the
publication of the 'Babes in the Wood' to the present day. A marked peculiarity in the manners of this bird is its familiarity. A constant attendant on the works of man, it follows him during his out of door avocations, and enters his dwellings, as if conscious of the general feeling with which it is beheld, and unsuspicious of the possibility of being entrapped by the closing of the doors or windows. This may be accounted for both by a disposition to sociality with mankind and cultivation, undoubtedly innate to many tribes of creatures, and particularly to the Ruminantia and Rasores, which this bird in its own circle will partly represent; and it may also be attracted by the prospect of food, which instinct teaches will be found in its vicinity. When the weather becomes severe many are drawn towards our houses, entering for warmth and to collect food. At first they are wary and watchful, but if unmolested and allowed a free egress, they will take up their abode in a room or a lobby for a month at a time, selecting a roosting-place on the cornice or on some curtain top, warbling their song when the day is clear or the fire burns brightly, and in every way seeming at ease and in confidence with the inmates."

The robin is distributed over the whole of Europe and the adjoining parts of Asia and Africa.

The pretty and familiar blue-bird (Sialia wilsoni) of the United States belongs here.
"The pleasing manners and sociable disposition," says Wilson, "of this "little bird entitle him to particular notice. As one of the first messengers of spring, bringing the charming tidings to our very doors, he bears his own recommendation always along with him, and meets with a hearty welcome from everybody.
"Though generally accounted a bird of passage, yet so early as the middle of February (in Pennsylvania), if the weather be open, he usually makes his appearance about the old haunts, the barn, orchard, and fence posts. Storms and deep snows sometimes succeeding, he disappears for a time; but about the middle of March is again seen accompanied by his mate, visiting the box in the garden, or the hole in the old apple tree, the cradle of some generations of his ancestors. The preliminaries being settled and the spot fixed on, they begin to clean out the old nest and the rubbish of the former year, and to prepare for their future offspring. Soon after this another sociable little pilgrim, the house wren, also arrives from the south; and finding such a snug berth pre-occupied shows his spite by watching a convenient opportunity, and in the absence of the owner popping in and pulling out sticks, but takes special care to make off as fast as possible.
"The usual spring and summer song of the blue-bird is a soft, agreeable and oft-repeated warble, uttered with open, quivering wings, and is extremely pleasing.
"In his motions and general character he has great resemblance to the robin redbreast of Britain, and had he the brown olive of that bird, instead of his own blue, could scarcely be distinguished from him. Like him he is
known to almost every child, and shows as much confidence in man by associating with him in summer, as the other by his familiarity in winter. He is also of a mild and peaceful disposition, seldom fighting or quarrelling with other birds.
"Towards fall, that is in the month of October, his song changes to a single plaintive note as he passes over the yellow many-colored woods, and its melancholy air recalls to our minds the approaching decay of the face of nature. Even after the trees are stripped of their leaves, he still lingers over his native fields as if loth to leave them.
"Indeed he appears scarcely ever totally to forsake us, but to follow fair weather through all its journeyings till the return of spring."
There are two other species of blue birds, one of which is found in California and other countries of Western America, and the other in the countries of North-western America. They both bear a general resemblance to Sialia wilsoni.

About one hundred birds belong to this sub-family, which inhabit all parts of the world, and are generally pretty and cheerful little birds, more or less similar to the American blue-bird and the European robin.

Sub-fam. 4. Accentorina, or Hedge Warblers. Bill short, straight, sometimes conical, sides compressed towards the tip; wings more or less long, pointed, sometimes rounded; tail moderate; tarsi and feet rather long, claws strong.

The most familiar of these birds are the hedge sparrow (Accentor modularis) and the Alpine warbler (A. alpinus), both common European birds.

Other birds of this sub-family are found in all parts of the world, but are most numerous in Australia. The species of this continent constitute the genus Acanthiza, and are represented as usually observed in the lower branches of trees, in the bushes, and on the ground, and possessing generally the characters and general history of insect-eating birds.

Sub-fam. 5. Parine, or Tits. Bills rather short, strong, sometimes conical and straight; wings moderate or short; tail generally long, rounded ; tarsi and feet rather long. Size small.

A sub-family of birds universally known as tits or titmice, and found all over the world.

The most common American species is the crested tit (Parus bicolor), which is a constant resident in all parts of the United States, and distinguished for the promptness with which he pipes out his few but musical notes on the very first days of fine weather in spring. Notwithstanding his plain plumage he is an exceedingly graceful and in fact elegant little bird, and very quick and rather eccentric in his actions.

Several other species of crested tits have been discovered within the limits of the United States. The plain tit (P. inornatus) was discovered by Dr. Gambel in the Rocky Mountains ; two others, the black-crested tit (P. atricristatus) and the Texan tit (P. annexus), were discovered by Mr. John Audubon (son of the celebrated ornithologist) in Texas.

The black-capped tits (not crested) seem to form a distinct genus. The
fwo most common in the United States are the common tit and the Carolina tit (P. atricapillus and carolinensis).

There are several European species, of which the common titmouse, Parus major (pl. 102, fig. 4), and the European crested tit, P. cristatus (pl. 102, fig. 3), are well known.

About fifty species of these pleasant little birds are distributed over the various countries of the globe, and are generally very similar in habits to those more particularly enumerated.

Sub-fam. 6. Sylvicolina, or American Warblers. Bill straight, more or less conical, sides compressed; nostrils basal, with the opening rather large and exposed ; wings rather long, generally pointed ; tail moderate ; tarsi and feet rather long and stout. Size small; colors generally gay and agreeable.

This sub-family embraces all the American warblers, of which there are about one hundred species described, and several genera of similar birds which are natives of India and Africa.

The species of the United States are amongst the most beautiful and lively of our birds, though, on account of their living almost exclusively in the woods, they are little observed. A few species reside exclusively in the South, but the greater number breed in all the Northern States and British territories adjacent.

One of the most common species is the summer yellow-bird (Sylvicola astiva), a beautiful little bird with bright yellow plumage, striped on the breast and belly with a deeper orange yellow. It is a very lively and by no means shy little bird, often seen in the garden or among the blossoms of trees in the spring, and makes its nests in bushes or shrubbery.

The magnolia warbler (S. maculosa) is a beautiful species, though never venturing far from the woods. It is black above and bright yellow below, with black stripes. It breeds in the far north, migrating only through the middle states in the spring and autumn.

The yellow-crowned warbler, or yellow rump, as it is mostly called (S. coronata), is a very common species in the spring. It is dark-colored above and white below, with a bright golden yellow crown, and with the rump yellow.

The golden-winged warbler (\mathbf{S}. chrysoptera), the black-throated green warbler (S. virens), the blackburnian (S. blackburnice), the yellow-throated (S. pensilis), the bay-breasted (S. cástanea), the chrestnut-sided (S. icterocephala), the Maryland yellow-throat (S. marylandica), and some others, are more or less frequently met with every spring; sometimes very common, at other times very rare.

The Connecticut warbler (S. agilis), the Cape May warbler (S. maritima), and the mourning warbler (S. philadelphia), have hitherto appeared but rarely in any part of the United States or elsewhere.

The genus Zostercps comprises about twenty birds of India and Africa. They appear to bear considerable resemblance to our warblers, being mostly observed in the trees or bushes actively engaged in searching for insects, which constitute their only food.

Sub-fam. 7. Motacillina, or Wagtails. Bill rather long, slender, and straight, sides much compressed ; nostrils lateral ; wings long, pointed ; tail generally long; tarsi long, slender; feet rather strong. Size small.

About seventy-five birds are classed here. They inhabit all parts of the world, and habitually frequent the ground, and very often are partial to the vicinity of streams of water.

One of the best known species is the grey wagtail of Europe, M. boarula (pl. 103, fig. 17). It inhabits all Europe and contiguous parts of Asia and Africa, but does not appear to be very common. It lives in the vicinity of streams, and frequently nestles in the immediate neighborhood of mills or other buildings.

The birds of this sub-family all bear more or less resemblance to the wagtails of Europe.

Fam. 2. Turdide, or Thrushes: . Bill various, but always more or less strong and curved, generally compressed; wings generally more or less long, frequently pointed, sometimes rounded; tail generally moderate ; tarsi and feet generally strong. Size moderate, but larger than the last family.

The thrushes constitute a very extensive and completely cosmopolitan family of birds, generally distinguished by considerable powers of song, and frequently familiar and sociable in their habits.

There are not less than six hundred species of thrushes.
Sub-fam. 1. Formicarince, or Ant-tîrushes. Bill long, straight, curved at the tip, which is frequently hooked; wings generally short, rounded; tail short ; tarsi long; toes generally long and stout. Size moderate.

A sub-family, nearly all the species of which subsist upon insects captured upon the ground. They are almost invariably long-legged and short-tailed birds, with long stout bills, and are frequently of gay plumage, though of odd, and, in fact, rather droll general appearance.

The ant-thrushes are natives of all parts of the world, though most numerous in India and South America. The species which inhabit the former and some other countries and islands of Asia, form the genus Pitta of naturalists, and are for the most part very beautiful. They live almost entirely upon the ground, and, if disturbed, like almost all other birds of this group, seek safety in running rather than by flight. The short-tailed Indian ant-thrush (P.brachyura) and the blue-tailed ant-thrush (P.cyanura) are frequently met with.

The American ant-thrushes are numerous, and, though inferior in size and beauty of plumage to their Indian relatives, are represented as precisely the same in general characters and habits. About seventy-five species inhabit tropical America, some of the best known of which are the Cayenne ant-thrush (Formicaria colma), the king ant-thrush (Grallaria rex), the rufous crowned (G. ruficapilla), and others.

Sub-fam. 2. Turdince, or true Thrushes. Bill long, generally strong, and more or less curved and compressed ; wings moderate ; tail long, broad, and generally graduated ; tarsi and feet moderately long and strong.

Contains all the birds commonly known in Europe and America as thrushes, of which there are about one hundred and fifty species. They

ICONOGRAFHIC ENCYCLOPEDIA.- VOL. II.
are found in all parts of the world, and are conspicuous for variety and sweetness of song. The European species are represented as birds of rather shy disposition, most usually frequenting the skirts of the forests, and the thickets and bushes of extensive pastures, while some prefer the wilds of mountains or deserts. They are all in a greater or less degree migratory, residing in the south during the winter.

The fieldfare, Merula pilaris, the missel thrush, M. viscivorus ($p l$. 100, fig. 12), the song thrush, M. musica (pl. 100, fig. 14), the European blackbird, M. vulgaris (pl. 100, fig. 9), the ring ouzel, M. torquata, the redwing, M. iliaca (pl. 100, fig. 13), and the rock thrush, M. saxatilis (pl. 100, fig. 10), are the more common European species.

The common migratory thrush or American robin, Merula migratoria, belongs here. It is found in all parts of North America, and in the United States is known to everybody. It is migratory, but may almost be considered resident in all parts of the United States south of Baltimore. It lives almost entirely in the orchards and cultivated grounds of farmers, making its nest generally in a tree of the former, substantially plastering it inside with mud.

In autumn, robins are favorite game with our juvenile and other amateur sporting population, with whom they have the reputation of being good at sitting still to be shot at. Vast numbers are destroyed every autumn, especially in the vicinity of cities.

In this division is classed also the family of American mocking birds, of which there are about twelve or fourteen species.

The mocking bird of the United States, Mimus polyglottus, is our most famous singer, which high position his accomplishments fully entitle him to.
" His own native notes," as Wilson observes, " are easily distinguishable by such as are well acquainted with those of our various song birds. They consist of short expressions of two, three, or at most of five or six syllables, generally interspersed with imitations, and all of them uttered with great emphasis and rapidity. He many times deceives the sportsman, and sends him in search of birds that perhaps are not within miles of him, but whose notes he exactly imitates; even birds themselves are frequently imposed on by this admirable mimic, and are decoyed by the fancied calls of their mates, or dive with precipitation into the depth of the thicket, at the scream of what they suppose to be the sparrow-hawk.
"This excessive fondness for variety, however, in the opinion of some, injures his song. His elevated imitations of the brown thrush are frequently interrupted by the crowing of cocks; and the warblings of the bluebird, which he exquisitely manages, are mingled with the screaming of swallows or the cackling of hens ; amidst the simple melody of the robin, we are suddenly surprised by the shrill reiterations of the whip-poor-will; while the notes of the killdeer, blue jay, martin, Baltimore oriole, and twenty others, succeed with such imposing reality, that we look round for the originals, and discover with astonishment that the sole performer in this singular concert is the admirable bird now before us."

The mocking bird is found throughout the United States.

The other species of mocking birds inhabit South America, but are not represented as possessing vocal powers at all comparable to the species of the north.

The rufous thrush or thrasher, Mimus rufus, is classed here. He is usually rated as the next best songster of all birds, appearing in Pennsylvania about the first of May, and thence extending northwards to Canada.
The cat bird, M. carolinensis, is also a member of this extensive group, of birds. No bird is better known in the United States, and, notwithstanding his usually unpleasant notes, he can, upon sufficient inducement, raise a very respectable song.

Sub-fam. 3. Timalina, or Babblers. Bill moderate, rather long, compressed; wings short, rounded; tail generally rather long and graduated; tarsi long, robust ; toes long, strong ; claws long, acute. Size moderate.

A remarkable group of long-tailed thrush-like birds inhabiting all parts of the world except Europe, and remarkable for their fantastic movements and singular voices. The note uttered by one of these birds is compared by a distinguished naturalist (Mr. Jerdon), who long resided in India, to a sort of cracked Punch-and-Judy laugh, which is no sooner begun by one, than the others of the flock follow in chorus.

The Indian babblers (genus Timalia) are abundant in the cultivated grounds around the villages of India, generally frequenting the ground in search of insects and seeds. They utter continually a low chattering noise, which is occasionally changed to a loud guttural cry, though some of the species are capable of singing quite agreeably.

The only representative of this sub-family in the United States is the yellow-breasted chat, Icteria viridis, which is rather frequently heard in marshy and bushy places, but, being very shy, is less frequently seen. It is a very handsome bird, olive green above, and fine yellow on the lower parts of its body. Like the other birds of this sub-fanily, it is remarkable for its curious voice. "First is heard," says Wilson, "a repetition of short notes resembling the whistling of the wings of a duck or teal, beginning loud and rapid, and falling lower and slower till they end in detached notes; then a succession of others, something like the barking of young puppies, followed by a variety of hollow guttural sounds, each eight or ten times repeated, more like those proceeding from the throat of a quadruped than that of a bird, which are succeeded by others not unlike the mewing of a cat, but considerably hoarser."

This bird inhabits the whole of the United States; another species, very similar, has been discovered in California.

Sub-fam. 4. Oriolinee, or Orioles. Bill rather long, broad at base, stout, and compressed; wings long, rather rounded ; tail moderate, rather wide ; tarsi and feet short and strong. Colors mostly yellow.

These birds are confined to the old world, being most abundant in India. One species, O. galbula ($p l .100$, fig. 8), occasionally visits Europe. It is a very handsome bird, of pure lemon yellow plumage, somewhat resembling the Baltimore oriole, though much larger. The birds of the present subfamily must not, however, be confounded with the American orioles, which
do not belong here. The black-headed oriole, O. melanocephalus, is one of the most common Indian species. Its plumage is fine yellow, with the head black.

One of the most beautiful of this group is the golden-headed oriole, Sericulus chrysocephalus, of Australia. Its plumage is of the most splendid golden yellow and black. It is frequently met with in collections of birds, and sold by dealers as a species of paradise bird. It appears to be a common bird in Australia.

Sub-fam. 5. Pycnonotina, or Bulbuls. Bill short, curved, compressed ; wings moderate, rather short, rounded ; tail long, broad, rather rounded ; tarsi long ; feet moderate, rather short and weak. Size small ; head frequently crested.

A small group, composed of about seventy-five species of birds, which exclusively inhabit Asia and Africa. They appear to have the general characters of the other groups of thrushes, live mostly in small parties, and feed indiscriminately upon fruits and insects. The Asiatic species are frequently remarkable for eminent vocal powers; and one of them, Pycnonotus jocosus, is the Eastern nightingale, or bulbul, of oriental poets. It is a bird scarcely as large as the cat bird of the United States, of plain brown on the back, and white below, with a black head and crest. Its song is said to be very melodious.

There are a number of birds belonging to this sub-family, and nearly related to the bulbuls, which are found in Africa.
Fam. 3. Muscicapide, or Flycatciers. Bill of various lengths, generally broad and depressed at the base, with the sides compressed at the tip; gape usually furnished with long and strong bristles; wings and tail generally long; tarsi and feet generally short and weak. Size various, never very large, frequently quite small.

A large family of birds, generally of small size and plain plumage, which are found in every country of the world. They most abound, however, within the tropics.

There are about five hundred and fifty species of flycatchers.
Sub-fam. 1. Queruline, or Mourning Flycatchers. Bill rather long, depressed, broad at base ; gape furnished with strong bristles ; wings more or less lengthened ; tail long and broad; tarsi and feet short and strong. Size rather large.

Containing only eight or ten birds, found in South America. They inhabit the forests, and are mostly observed in small parties. feeding on insects or fruits in the loftiest trees, and are said to have very plaintive notes.

The red-necked flycatcher, Querula rubricollis, is the best known species. Its plumage is fine black, with a scarlet throat. The military flycatcher, Q. militaris, is another very showy species, though more rare. Its plumage. is of fine scarlet.

Sub-fam. 2. Alectrurina, or Walking Flycatchers. Bill more or less lengthened, broad at base, and rather depressed ; wings more or less long ; tail generally lengthened; tarsi long and slender. Size small.

About twenty-five birds are arranged here, which are restricted to the warm regions of South America. They generally live in low bushes, among the lower branches of trees, or on the ground, and their food is said to consist principally of coleopterous insects (beetles, \&c.).

Fluvicola cursoria is a common species.
Sub-fam. 3. Tyrannince, or Tyrant Flycatchers. Bill more or less long, broad, and depressed at base, sides compressed to the tip, which is hooked; wings generally lengthened and pointed; tail moderate, generally broad; tarsi and feet short and generally weak. Size mostly small.

Another exclusively American group, containing a large number of birds, king birds, pewees, tyrants, \&c., of which the greater part are found only in South America.

There are several North American species, however, of which the common king bird of the United States, Tyrannus intrepidus, is a good example.

He is abundant from Florida to Canada, and is quite sociable and familiar in his habits and disposition, almost invariably building his nest in the immediate vicinity of dwelling-houses. He is very pugnacious, and makes a very respectable show of fight with almost any other bird that dares to intrude upon his privileges, although it may be much larger and stronger than himself.
The king bird has no song, and but little voice of any kind.
The great crested flycatcher, T. crinitus, is another species, though much less frequently seen than the king bird.

The greater part, however, of the North American flycatchers belong to the genus Tyrannula, or little tyrants, of which the species are numerous in both North and South America.

One of the best known species is the common pewee, or pewit, T. nunciola, which is a universal favorite with our population.

Though possessing very limited vocal abilities, the notes of this little bird are pleasing, because they are almost the first heard at the return of spring, and he forthwith begins the construction of his nest, about the barn, in a shed, or some such place, little annoyed by the family of his landlord or by domestic animals.

This common and favorite bird spends the winter in the south. "I have found," says Audubon, "this species abundant in Florida in winter, in full song, and as lively as ever; also in Louisiana and the Carolinas, particularly in the cotton fields. They leave Louisiana in February and return in October."

The wood pewee, T. virens, is very common in the woods
Several other species are found in North America, such as Say's flycatcher, T. saya, Cooper's flycatcher, T. cooperii, the green crested, T. acadica, the yellow-bellied, T. flaviventris, and some others.

A large number of species, composing several genera, inhabit South America, such as Milvulus forficatus (pl. 103, fig. 10) and Tyrannus severus (pl. 103, fig. 9).

Sub-fam. 4. Tityrina, or Becards. Bill rather short, broad at base,
depressed; wings long, pointed; tail short, rounded; tarsi and feet short and strong. Size moderate ; colors plain.

About fifty species of peculiar-looking birds constitute this sub-family. They are strictly confined to South America and the West Indies, migrating according to the seasons, and living exclusively on insects.

The Cayenne flycatcher, Tityra cayanus, is a well known species. Its plumage is almost entirely dusky white, with a black head.

Sub-fam. 5. Muscicapince, or true Flycatchers. Bill moderate, broad at base, gradually compressed to the tip; gape furnished with strong bristles; wings long and generally pointed ; tarsi and feet short and slender. Size generally small.

An extensive sub-family, containing not less than two hundred and fifty species of birds, inhabiting all parts of the world.

The North American species belong to the genus Setophaga, one of the most common species of which is the American redstart, S. ruticilla. It is abundant in the woods during summer, and is a very lively and pretty little bird.
"This," says Audubon, "is one of the most lively as well as one of the handsomest of our flycatchers, and ornaments our woods during spring and summer, when it cannot fail to attract the attention of any person who may visit the interior of the shady forests. It is to be met with over the whole of the United States, where it arrives, according to the different localities, between the first of March and the first of May. It takes its departure, on its way southward, late in September and in the beginning of October."

The hooded flycatcher, S. mitrata, is a very handsome species belonging to this sub-family. Its plumage is of bright yellow and green, with a black hood covering the greater part of the head.

The Canada flycatcher. S. canadensis, is another beautiful little bird, which is frequently met with in all parts of the United States.

The most abundant European species are the grey flycatcher, Muscicapa grisola (pl. 101, fig. 17), and the white-necked flycatcher, M. albicollis (fig. 18).

Nearly all the many remaining species of these birds are natives of the tropical regions of Asia, Africa, and America.

A very beautiful species of South America is the great-crested, or king of the flycatchers, M. regia (pl. 101, fig. 19), remarkable for its large crest of purple and crimson feathers. It is frequently brought in collections.

Sub-fam. 6. Vireonina, or Greenlets. Bill moderate, straight, compressed, tip curved; gape with short bristles; wings rather long; tail moderate ; tarsi and feet rather long, and moderately strong. Size small ; colors generally olive green and white.

About a dozen birds of peculiar form and habits are arranged here. They are alnost exclusively North American, two or three species only having been found in the southern parts of this continent.
The red-eve, Vireo olivaceus, the warbling flycatcher, V. gilvus, the solitary, V. solitarius, the white-eye, V. noveboracensis, and the yellow. breasted, V. flavifrons, are the commonest species.

The first (the red-eye) is one of the most abundant birds in the woods of the northern states. In the spring months, he is one of the most conspicuous of our singers, and, though his notes are short, they are very musical and lively. He builds a very pretty hanging nest, frequently on a low bush, in which he raises two broods in the season.

The white-eyed flycatcher is remarkable for his exceedingly loud voice, and great disposition to use it upon all occasions. He frequents bushes and places overgrown with briers, especially the green brier (Smilax), where he makes himself heard at all hours of the day.

The other species mentioned above are less frequently met with.
Fam. 4. Ampelide, or Chatterers. Bill moderately strong, generally broad at base, and depressed, compressed to the tip; wings long; tail moderate ; tarsi and feet usually short.
This family, though not so numerous in species as the preceding, is distributed throughout the world; most abundant, however, in tropical regions.

The species are for the greater part showy birds, but many of the smallest species especially are remarkable for the richness of their colors.

Sub-fam. 1. Pachycephalince, or Broad-headed Chatterers. Bill moderate, broad at base, compressed to the tip, gape with a few slender bristles; wings moderate, more or less rounded; tarsi and feet rather lengthened and slender.

A group of about fifty little birds peculiar to India and Australia. The Australian species are most numerous, and are pretty little birds found in localities of very various characters, sometimes in the forest and occa sionally in the vicinity of dwellings. Pardalotus puctatus is one of the common species.

Sulb-fam. 2. Piprina, or Manakins. Bill short, broad at base, depressed, rather arched, compressed to the tip; wings short; tail short, truncate; tarsi and feet rather long and slender. Size small, plumage frequently handsome. Found in South America, except one species which inhabits India. They are represented as being very lively and active in their habits, and are said to have very discordant voices, the note of one species having been compared by a traveller to the sound produced by cracking a nut.

The long-tailed manakin (Pipra caudata), the black-headed (P. melanocephala), the blue manakin (P. pareola), and the red-headed (P. erythrocephala), are common species.

The cock of the rock, Rupiccla aurantia (pl. 101, fig. 16), is arranged here. It is a beautiful bird, entirely clothed in bright orange-red plumage, with a crest laterally compressed, giving it a very peculiar appearance. It inhabits the warmer parts of South America, and frequents the vicinity of retired, rocky places, in the interior of the forests.

The green cock of the rock (Calyptomina viridis) is the Indian species which is placed in this group. It is found in the forests, and appears to be quite similar in habits to the South American bird.

Sub-fam. 3. Ampelince, or True Chatterers. Bill rather long, very
wide at base, depressed; wings moderate ; tail generally short and truncate ; tarsi short, toes long. Colors gay ; size various.

The majority of these birds inhabit South America, and are remarkable for the richness of the colors of their plumage. They feed on fruits and insects, and migrate according to the season. The blue chatterer (Ampelis carulea), the banded chatterer, A. cortinga (pl. 101, fig. 21), and the purple chatterer (A. pompadora), are frequently met with, as is also a beautiful scarlet-crested species, A. carnifix (fig. 20).

The Bohemian chatterer of Europe (Bombycilla garrula), and the cedar bird of America (B. cedrorum), belong to this sub-family. The former species is found in the forests of Northern Europe and also in the northern parts of America. The latter, which is the cedar bird of the United States, frequents cedar woods and such localities throughout this country. This and the other species of the same genus have very fine silky plumage of deep ashy color, and are remarkable for the curious appendages to the tips of their wing feathers, which have much the appearance of small drops of red sealing-wax.

Sub-fam. 4. Campephagina, or Caterpillar-catchers. Bill short, depressed, gape furnished with short bristles; wings moderate; tail rather long; tarsi and feet short.

About sixty birds compose this group, which are distributed over the tropical regions of the old and new worlds. Many of the Indian species are very showy birds, with bright scarlet plumage, living in the recesses of the forests, and disposed to hide themselves when approached. At least thirty of the species are restricted to the Indian islands and to Australia. Others have plain grey or ashy plumage, such as Campephaya nigra and melanops, which are frequently seen in collections.

Sub-fam. 5. Dicrurince, or Drongo Shrikes. Bill rather lengthened, broad at base, curved, gape with strong bristles; wings long; tarsi and feet short and strong; tail frequently long and forked. Size larger than the preceding. Colors frequently black.

This sub-family is composed of about forty birds, strictly confined to Asia and Africa.
The location of this sub-family here is of very doubtful accuracy, as the affinities of the birds composing it are evidently more to the family immediately succeeding.

A genus (Artamus) composed of ten or twelve species is arranged here. They are called swallow shrikes on account of their having long, swallowlike wings. They principally inhabit India, and are commonly observed in pursuit of insects on the wing.

The drongo shrikes (Dicrurus) are mostly rather large birds of perfectly black plumage, with the tail long and deeply forked. They exclusively inhabit India and Africa. The Malabar shrike (D. malabaricus), and the forked-tailed drongo, D. forficatus ($p l .102$, fig. 15), are frequent species.

The hooked-bill shrike, Vauga curvirostris ($p l .102$, fig. 17), belongs here.

Fam. 5. Lanidee, or Shrikes. Bill rather long, very strong and 552
straight, generally toothed and hooked, gape generally with bristles; wings generally moderate ; tail more or less lengthened ; tarsi and feet strong; claws curved and sharp.

A family consisting of about one hundred and fifty birds, which represent the strongest rapacious characters of the Dentirostres. .No others have the bill so strongly toothed as those of the genus Lanius, which fact induced Linnæus to arrange them as rapacious birds.

These birds are distributed throughout the world.
Sub-fam. 1. Laniince, Butcher Birds, or Shrikes. Bill strong, rather short, curved, much compressed, hooked, and generally strongly toothed; wings generally long and rounded; tail moderate; tarsi and feet rather short and robust ; claws curved and acute.

This sub-family is distributed over the whole surface of the globe. All the species are of remarkably predaceous habits, preying upon insects, reptiles, and even other birds, which, it is said, they destroy by strangling. Some of the species impale insects on thorns for the purpose of securing them while feeding. The butcher bird of Europe, Lanius exulitor (pl. 102, fig. 20), is well known, being a very common bird in France, and generally distributed throughout the continent. The red-backed shrike, L. collurio ($p l .102$, fig. 19), is another European species of frequent occurrence.

The North American species best known are the northern butcher bird (L. septentrionalis) and the Louisiana butcher bird (L. ludovicianus). The former inhabits the whole territory of the United States, and is almost as rapacious as the small hawks. He is rather a handsome bird, with fine grey and white plumage, and is known in some districts by the name of the winter mocking-bird, having some resemblance to the bird indicated. The Louisiana species is similar in general appearance and habits, and is almost restricted to the Southern States.

Several other species are natives of Asia and South America.
Sub-fam. 2. Thamnophilina, or Bush Shrikes. Bill lengthened, straight, compressed, hooked at the tip, gape more or less bristled; wings moderate, rounded ; tail long, rounded ; tarsi and feet moderate. Size various.

Africa and South America are the countries inhabited by the bush shrikes, though one genus found in New Guinea is arranged here.

The South American species inhabit the vast forests of that portion of this continent, and are said to live almost exclusively on beetles and other hard-shelled insects. The striped shrike (Thamnophitus doliatus) and the spotted shrike (T. naevius) are common species.

The African birds of this sub-family (genus Laniarius) generally have considerable beauty of plumage, the prevailing colors being fine black and scarlet; the Barbary shrike, L. barbarus (pl. 102, fig. 18), and the olivecolored shrike (L. olivaceus), are frequently met with. The species from New Guinea belong to the genus Cracticus; they are similar in general habits and history to the others of this sub-family. One of the most common species is the black and white shrike, C. varius ($p l .102$ fig. 16).

Sub-Order 4. Conirostres, or Cone-bileed Birds.

Another very large assemblage of birds, comprising the crows, starlings, sparrows, finches, grosbeaks, tanagers, and many other birds distributed throughout the world. They have the bill always strong, and more or less conical, and are in all respects fitted for subsisting on fruits or seeds, which are the exclusive food of many groups, though others are omnivorous, and eat indiscriminately vegetable or animal substances; the latter, however, more by necessity than choice.

Fam. 1. Corvide, or Crows. Bill rather lengthened and strong, somewhat curved, and frequently with bristle-like plumes at its base. Wings generally long and pointed; tail rather long; tarsi and feet strong.

This family comprises all the birds known as crows, jays, magpies, and several other groups of birds more or less nearly related to them.

Sub-fam. 1. Phonygamina, or Piping Crows. Bill lengthened, broad at base, extended upon the forehead; wings long, pointed ; tail rather long; tarsi and feet strong. Size rather large.

About ten species only of very peculiar birds are arranged in this group. They are found only in Australia and the Island of New Guinea. The Australian species have rather handsome plumage of white and black colors, and although they appear to possess habits bearing a general resemblance to those of the crows, some of the species have voices which are rather agreeable ; others, however, have such clamorous and discordant notes that they have acquired the generic name of Strepera. S. graculina is a common species.

Sub-fum. 2. Garrulina, or Jays. Bill moderate; rather strong, compressed, curved; wings moderate, rounded; tail various, usually lengthened and rounded ; tarsi and feet moderate; toes long. Size smallest of this family, colors more or less blue and white.

This sub-family contains the jays of Europe and Asia, and of America, of which there are about forty species.

The common jay of Europe, Garrulus glandarius (pl. 99, fig. 1), inhabits the entire continent, and is one of the most handsome of European birds. His general plumage is of pale reddish purple, contrasting with the deep black of his wings and tail, and the brilliant blue of a few feathers of his wing. To these may be added his quick movements and lively habits, which altogether make him quite an ornament to the woods. He builds on high old trees, and when taken young is easily tamed.
There are about twenty-five species of American jays, of which the crested jay or jay bird of the United States is a familiar example (\boldsymbol{G}. cristatus). This elegant bird is peculiar to North America, and is distinguished by the brilliancy, or perhaps gaudiness, of his plumage, which is very agreeably variegated with blue, black, and white. He is very loquacious and capricious in his manners, and so remarkable for his odd gestures that he may appropriately enough be called the fop of the American forest.

Steller's jay (G. stelleri) and several other species inhabit western North

America, but the majority of the species are natives of South America and Mexico.

Sub-fam. 3. Callaatince, or Tree Crows. Bill short, much curved, compressed; wings short, rounded ; tail lengthened ; tarsi and toes rather long, scaled.

A small group of fifteen or twenty birds found in Asia and Africa. They are represented as partaking in some measure of both crow and jay-like characters, frequenting open places or skirts of the forest or on the ground, and feeding on fruits or small animals. They are birds of very plain plumage, and unattpactive general characters and appearance. Temnurus leucopterus and rufus are frequently seen in collections from India.

Sub-fam. 4. Corvince, or Crows. Bill long, large, broad at base, curved, with projecting plumes at base; wings long, rounded; tail rather long; tarsi and feet strong. Size various, frequently large, color generally black.

Contains the ravens, crows, magpies, and nutcrackers. Of the ravens about ten species are known, which inhabit all parts of the world except South America. The raven of Europe, Corvus corax (pl. 98, fig. 12), has been observed since the earliest period of history. He is found in all parts of the old world, and inhabits all climates, braving the cold of polar regions or the heat of the tropics. In the eating line nothing comes amiss to him, for he can accommodate himself to fruits or insects if he cannot obtain his favorite grain or recently dead animal matter.

The raven is said to be the most long-lived of birds, having been known to live nearly a hundred years. His voice is peculiarly harsh and startling, and with his black plumage has induced various superstitious notions respecting him. His sudden appearance near a human dwelling has been regarded as especially portentous, as expressed in Othello ${ }^{\circ}$
"It comes o'er my memory
As doth the raven o'er the infected house, Boding to all."

The American raven is very similar in all respects to that of Europe. He is met with in all mountainous districts of North America, and in the winter frequently resorts to the shores of both the Atlantic and Pacific oceans. He is much more abundant, however, on the Pacific side of North America. There appear to be no superstitious ideas amongst the Indians attached to this bird.

Several other Ravens are known, one of which, a large species of Southern Africa (C. albicollis), though the greater portion of his plumage is perfectly black, has the back pure white.

The common crow of Europe (C. corone) is a species which inhabits the entire continent, and is next in size to the raven amongst the European birds of this genus. The hooded crow, C. cornix (pl. 98, fig. 13), is another common European species. His plumage is unlike the greater number of crows, being ashy grey, having the head and tail only black. The jackdaw, C. monedula (p l. 98, fig. 11), is, however, the best known of
all the European crows on account of his forward and familiar habits. The rook (C. frugilegus) is another common species.

No American bird is more universally known than the crow of the United States (C. americanus), though nowhere favorably regarded. He is constantly to be observed at all seasons, but much more abundant in the Atlantic States during winter. It would be difficult to find a winter landscape without the crow as a conspicuous feature.

The fish crow (C. ossifragus) is the only other species inhabiting the United Staies. He is a small species, being little larger than the jackdaw of Europe, and is never seen far from the sea side, where he subsists principally on fishes washed up by the waves.

Of the magpies there are eight or ten species. The magpie of Europe, Pica caudata ($p l .98$, fig. 10), is a good example. It is rather a favorite throughout Europe, and a constant attendant on cultivation. In captivity this bird is very remarkable for a propensity to steal, which even extends to the purloining of silver plate and other articles of no possible service to its wants.

There are two American species intimately resembling the European species, the American magpie (P. hudsonica) and the yellow-billed magpie (P. nuttallii), both of which are natives of the western side of North America. They will probably adopt the familiar and acquisitive habits of the European bird when their native country shall have become more fully settled; but are yet represented as rather shy and unobtrusive birds, though resembling in form and color of plumage the common magpie to such an extent as to be scarcely distinguishable.

Of the nutcrackers there are three species, one of which is common in Europe, Nucifraga curyocatactes (pl. 99, fig. 2), though rare in Great Britain. It frequents wooded regions, feeding on the kernels of nuts and on insects. It breeds in a hole of a decayed tree, and in climbing sometimes assumes the attitude and appearance of a woodpecker.

Two other nutcrackers have been discovered in India. The only American bird which appears to be very nearly related to them is Corvus columbianus, or Clark's crow, which is found in the Rocky Mountains and western North America. It was discovered by the exploring party of Lewis and Clark, but little is yet known of its history.

Many other species of crows are known which are scattered over the entire surface of the globe.

Sub-fam. 5. Gymnoderince, or Fruit Crows. Bill strong, straight, rather depressed; wings long, pointed; tail moderate, rounded; tarsi and feet long. Size smaller.

Six birds only constitute this sub-family. They are natives of South America, and are represented as found exclusively in the vast forests of that continent, feeding on berries and other fruits. The red-breasted crow (Pyroderus scutatus) is as large as the common crow, and has the plumage perfectly black, with a wide belt on the breast which is deep red, giving this bird a very remarkable appearance.

The umbrella chatterer (Cephalopterus ornatus) also belongs here. Its
plumage is shiny black, and it has a very peculiar and elegant crest rising from the top of the head and spreading somewhat like an umbrella.

The other species of this group are the bald-headed crows, which have the part indicated by the name entirely naked. Their habits appear to be much like those of the common American or European species.

Sub-fam. 6. Pyrrhocoracince, or Choughs. Bill long, slender, and curved; wings lengthened, pointed; tail long; tarsi and feet rather short and strong. Size moderate ; color black.

This sub-family contains four species only, of which the chough of Europe (Pyrrhocorax alpinus) is found in the mountains of that continent, where in the summer it lives in the regions approaching the greatest altitude, but in the winter descends to the lower countries. Its food consists of insects, worms, and seeds. It is said to breed in the remote recesses of the mountains, and to construct its nest in the fissure of a rock.

The red-legged chough (Coracia gracula) is another European species very similar to the last.

There is no representative of these birds yet discovered in America; the two other birds of this sub-family are natives of Africa and Australia.

Fam. 2. Sturnide, or Starlings. Bill more or less long, compressed, often with an angle near the base of both mandibles; wings generally long and pointed ; tail generally long; tarsi and feet more or less robust ; claws frequently well developed. Size small.
An extensive family, containing all the birds known as grakles, starlings, hanging birds, troopials, and many others. Very many of the species are exceedingly gregarious and appear in vast flocks, of which those of North America, known as blackbirds, are familiar illustrations.

Sub-fam. 1. Ptilonorhynchinae, or Glossy Starlings. Bill moderate, strong, compressed; wings moderate, pointed; tail various, frequently long ; tarsi strong, with scales ; toes rather long and robust. Size moderate.

The splendid starlings or shining thrushes, as they were formerly called, of Africa are arranged here. Twenty-five species are known, nearly all of which are remarkable for the brilliant metallic tints of their plumage, which is frequently dark. Ptilonorhynchus nitens and P. chrysotis are common in collections brought from Liberia and Sierra Leone. These birds inhabit the entire continent of Africa, and partake of the general characters of the American blackbirds, by which name they are known to the colonists.

Several similar Australian and Indian genera are classed here.
Sub-fam. 2. Graculince, or Grakles. Bill long, strong, broad at base, compressed to the tip; wings long; tail short, sometimes moderate; tarsi rather short, robust ; toes rather long, strongly scaled. Size small.

This sub-family does not comprise the birds known in the United States as grakles, but is restricted to some five or six species of Asia and its islands.

The mino bird (Gracula religiosa) is best known. It is a native of India, and possesses considerable powers of song. It is a heavy-formed bird, of black plumage, with very singular appendages on the sides of its
head, capable of being erected. It is frequently brought from India living, and can be taught to articulate words with great exactness.

The African beef-eater, Buphaga africana (pl. 99, fig. 14), is arranged here. It is a plain-plumaged little bird, only remarkable for the fact that it follows herds of buffaloes and other animals for the purpose of preying upon the larvæ of insects which infest them, for which purpose it alights upon their backs.

Sub-fam. 3. Sturnince, or Starlings. Bill rather long, frequently straight, sometimes curved; wings moderate, sometimes rather long; tail short; tarsi and feet long, robust. Size various, frequently small.

An assemblage of about fifty species of birds which are distributed throughout the surface of the globe. The common starling of Europe, Sturnus vulgaris ($p l .100$, fig. 1), lives in the fields, having apparently a partiality for marshy or wet places. It walks on the ground in search of its food, which consists of seeds, worms, and insects. There are several birds of this sub-family, which are abundant in Asia and Africa, one of which visits the South of Europe. It is the rose-colored starling, Pastor roseus ($p l .100, f i g .11$), one of the most beautiful of this family, having the entire plumage of a delicate rose red, except the head and crest, which are shining black.

The American larks belong here. The well known species, Sturnella ludoviciana ($p l .99$, fig. 15), frequents every pasture field and meadow to a greater or less extent throughout the United States. It lives almost entirely on the ground, and constructs a very ingenious oven-shaped nest.

There are two other species very nearly related to the common bird, one of which (S. neglecta) is found in the Rocky Mountains and the country westward, the other (S. hippocrepis) inhabits Mexico. A beautiful species (S. militaris) is found in South America, which considerably resembles the common lark, except that instead of the yellow under surface of the body it has those parts very handsome of a reddish pink color.

Sub-fam. 4. Quiscalina, or American Grakles. Bill lengthened, curved; wings moderate, pointed; tail lengthened, graduated, with the sides frequently curved upwards; tarsi and feet long and robust. Size various; color black.

This sub-family contains about twenty birds, which are strictly confined to America. They are generally seen in immense flocks migrating northwards or southwards according to the season. The purple grakle (Quiscalus versicolor), or crow blackbird, is the largest of the species found as far north as Pennsylvania. The rusty grakle (Q. ferrugineus) is equally abundant.

There are about a dozen species of Mexico and South America which more or less resemble the last named bird.

Sub-fam. 5. Icterince, or American Orioles. Bill rather long, straight; wings long, pointed; tail generally rather long; tarsi and feet moderate, or sometimes long. Size various; colors gay, frequently orange or other yellow, and black.

These birds have been called Hang Nests, on account of their constructing pensile or hanging nests like that of the Baltimore oriole or hanging bird of the United States, Icterus baltimore (pl. 99, fig. 16). This bird, which is a good representation of the family, is one of the handsomest and most sociable of the birds of the United States, making his nest almost at the very doors of all farmhouses throughout the country. In addition to his elegant form and brilliant orange and black plumage he has a very agreeable voice, and is a universal favorite.

About fifty other species are found in other parts of the continent of America and the West Indies. They are amongst the most beautiful and graceful of American birds.

Sub-fam. 6. Agelaince, or Troopials. Bill moderate, or rather short, conical, with the culmen flattened, and more or less broad; wings moderate; tarsi and feet rather lengthened and slender; claws strong and sharp. Size small ; colors frequently black.

Another sub-family of American birds, all the species of which bear more or less intimate relationship to the red-winged blackbird of the United States (Agelaius phceniceus), a bird known to everybody. After passing the winter in the Southern States of the Union it arrives in the North in April, and frequents the vicinity of swampy meadows, or similar situations, where it constructs its nest, and continues to make itself very conspicuous by its oft-repeated and rather agreeable notes, and handsome black plumage and red shoulders. During September, however, the birds of this species assemble in flocks and proceed south.

The cow bird (Molothrus pecoris) belongs here. It is a plain little bird with entirely black plumage, remarkable for its partiality for cattle, which it walks after in their pastures, and for the curious habit of depositing its eggs, like the cuckoo of Europe, in the nests of other birds. It is common throughout North America.

Fam. 3. Fringillide, or Sparrows and Finches. Bill short, thick, strong, generally conic and angular at the base; wings and tail generally moderate ; tarsi and feet usually slender.

An immense family of little birds known as sparrows, finches, tanagers, weaver birds, and by many other names. They inhabit the entire globe, and are more or less numerous in all countries.

Not less than six hundred birds belong to this family.
Sub-fam. 1. Ploceina, or Weaver Birds. Bill strong, conic, extending slightly on the head; wings somewhat rounded; tarsi and feet robust. Size small.

This sub-family is restricted to Asia and Africa, and comprises numerous species of little birds remarkable for constructing curlous bag-shaped nests, for which purpose they use cotton and the fibres of plants. Some of the species are clothed in very brilliant scarlet plumage, as the grenadier grosbeaks (Ploceus oryx and ignicolor), which inhabit Africa.

The widow birds as they are called, but properly Whidah birds, from the name of a place from which they are brought in Western Africa, belong here. The species usually seen in collections are the common widow bird
(Vidua paradisea), the king widow bird, V. regia (pl. 101, fig. 7), and the red-billed, V. erythrorkynchus (pl. 101, fig. 8). They appear to be very similar in habits to the little sparrows of the United States.

Sub-fam. 2. Coccothraustince, or Grosbeaks. Bill large, very strong, broad at the base, conic; wings lengthened, more or less pointed; tail generally short; tarsi and feet rather short and robust.

Contains about forty species of birds, which have the largest and strongest bills of all the birds of this family. They inhabit various parts of the world, subsisting almost exclusively on seeds, for the purpose of obtaining which some of the species employ their strong bills in breaking such fruits as almonds, cherry-stones, \&c. Many birds of this sub-family are very showy. The rose-breasted grosbeak of the United States belongs here (Guiraca ludoviciana). It is one of the most handsome of American birds, having the entire superior parts shining black, and the lower parts of the body white, with the breast very delicate rose red.

The cardinal grosbeak (Cardinalis virginianus) also belongs here. The entire plumage is fine scarlet, except a small space around the bill, which is black ; and its high pointed crest gives it a graceful and elegant appearance. The males have loud and musical notes resembling those of a fife, which are constantly heard during the spring. The bird inhabits all North America.

The hawfinch, Coccothraustes vulgaris (pl .100, fig. 3), is the best known European species. It is a bird of plain plumage inhabiting the entire continent. The green finch, C. chloris (pl. 101, fig. 4), is another common European species.

Other birds of this group are distributed throughout the entire surface of the globe.

Sub-fam. 3. Tanagrince, or Tanagers. Bill various, generally rather short, somewhat triangular at base, and slightly curved; wings moderate, sometimes pointed; tarsi and feet generally short and rather slender. Size various; colors frequently gay.

A sub-family of American birds, containing some of the most beautiful species which inhabit this continent.

There are about two hundred and fifty species of tanagers, of which two only visit the Northern States in the summer. The best known is the scarlet tanager, or black-winged red-bird (Pyranga rubra), a beautiful bird with very brilliant scarlet plumage except the wings, which are deep black. It appears in Pennsylvania about the first of May, and lives during the summer almost exclusively in the woods, rarely approaching the habitations of man, though not very shy or timid.

The other northern species is the summer red-bird (P. estiva), which is entirely purplish red, though not so showy as the former bird.

Vastly the larger number of these birds inhabit South America, where they live in all descriptions of localities, generally perhaps preferring low trees and bushes in the vicinity of water. They feed indiscriminately on insects, fruits, and seeds. The bishop tanager (Tanagra episcopus) © a common and singulariy colored species; it is of a light blue, with a shading of greyish white.

Several of the handsome crested tanagers are common in collections, especially the scarlet crested species (Tachyphonus cristatus), which is a bird about the size of the orchard oriole, with the plumage entirely black except a brilliant erect scarlet crest. The most richly colored birds of this large sub-family are, however, the paradise tanagers. Of these, perhaps, the most beautiful is a species sometimes called the seven-colored tanager, Calliste tatao ($p l .101$, fig. 11), which has the plumage of that number of distinct colors. Another is the tricolored tanager (C. tricolor), which has three colors, blue, green, and orange. Many other species have very gay and agreeably colored plumage, though said to possess little or no song.

The Towhe buntings or chewinks are arranged here, of which one species (Pipilo erythrophthalma) is very common in the United States.

Sub-fam. 4. Fringilline, Sparrows and Finches. Bill short, conic, compressed to the tip; wings generally lengthened and pointed; tail various, usually rather lengthened and rounded ; tarsi and feet generally long and slender. Size small.

An extensive group, comprising about two hundred and fifty little birds, found in all countries. They are well known everywhere for their familiar and harmless habits, and general disposition to frequent the vicinity of cultivated places or the abodes of man. They feed on seeds and fruits, and many species live habitually on the ground.

There are several European species, among the most common of which are the house-sparrow, Fringilla domestica (pl. 100, fig. 6 a) ; the mountain sparrow (F. montana) ; the chaffinch, F. celebs (pl. 101, fig. 12) ; the brambling (F. montifringella), and some others.

The North American species are the white-throated sparrow (Zonotrichia albicollis), the song sparrow (Z. melodia), the white-crowned sparrow (Z. leucophrys), the grass sparrow (Z. graminea), the rush sparrow (Z. juncorum), the chipping sparrow (Z. socialis), the fox sparrow (Z. iliaca), and a number of others less common.
The song sparrow, and the chipping sparrow or chippy, as it is usually called, are perhaps the most abundant birds in the United States. The former may be met with almost every day in the year in all hedges or in the neighborhood of small water-courses; and the latter, in all the gardens and orchards, fields and meadows, of the whole country. Both are plainplumaged, but very agreeable little birds, possessing very pleasant voices, and are great favorites with our rural population.

The goldfinches belong here. The best known European species is the common goldfinch, Carduelis elegans (pl. 101, fig. 10); another is the siskin, C. spinus (pl. 101, fig. 9). The American species are the thistle bird (C. tristis), the western goldfinch (C. psaltria), the Mexican goldfinch (C. mexicana), Lawrence's goldfinch (C. lawrencei), and several others.

Many other little birds of all countries are arranged in this group. The amaduvat, Fringilla amaduva ($p l$. 101, fig. 6), is an Indian species; the little Senegal finch, F. senegala ($p l .101$, fig. 5), inhabits Africa.

Sub-fam. 5. Emberizina, or Buntings. Bill conic, acute, lateral margins sinuated, interior of upper mandible furnished with a knob-like projection from the palate ; wings moderate, rather pointed ; tarsi and feet rather long and slender. Size small, but generally larger than the preceding.

This sub-family contains about sixty species of birds, considerably resembling those of the preceding in general characters and appearance. They are natives of all countries of the globe, but principally the northern and temperate regions.

The black-throated bunting (Emberiza americana) inhabits the whole of the United States. It is a very pretty bird, with plumage striped brown above and pale yellow beneath the body, with the throat black. It lives almost exclusively in meadows where the grass is most abundant, in which it constructs its nest. It is remarkable for being one of the very first birds that leaves for the south towards the end of summer, and before there is any decrease of temperature or appearance of autumn. This bird leaves in August. The European species are the yellowhammer, E. citrinella ($p l .101$, fig. 15), the corn bunting (E. miliaria), the cirl bunting (E. cirlus), the ortolan, \boldsymbol{E}. hortulana ($p l$. 101, fig. 13), the reed bunting, \boldsymbol{E}. scheniculus ($p l .101$, fig. 14), and some others.
Several birds belonging to this group inhabit the high northern latitudes, but occasionally visit the temperate parts of Europe and North America in winter. The snow bunting (Plectrophanes nivalis), the Lapland long-spur (P. lapponicus), the painted bunting (P. pictus), and another species (P. ornatus), are the species alluded to.

Sub-fam. 6. Alaudince, or Larks. Bill usually lengthened and slender, but sometimes short; wings long, with the tertials as long as the primaries; tarsi and feet long, and rather robust ; claws long. Size small.

A small sub-family containing the larks of the old continent, and a few American birds known as shore or horned larks.

One European species is very celebrated; it is the skylark, Alauda arvensis ($p l .102$, fig. 7), which sings while rising in the air to an immense height, and especially in the early morning. Several other species are also admired songsters, such as the crested lark, A. cristata (pl. 102, fig. 6), and the field lark, A. calandria (pl. 102, fig. 5).

The shore lark or horned lark of the Atlantic portion of the United States (A. alpestris) is a bird which is native of the north, and migrates towards the Southern States in the winter, at which time this bird is abundant along the roadsides and other exposed places.

Several species inhabit India and Africa, and appear to be very common in similar situations during their migrations.

These birds must not be confounded with the birds usually called larks in the United States, which do not belong here.

Through the taste and perseverance of some gentlemen of the city of New York the European skylark has been naturalized to a considerable extent in Long Island, and is likely to become a permanent and very agreeable addition to the singing birds of the United States.

Sub-fam. 7. Pyrrhulinae, or Bullfinches. Bill very short, strong, arched,
and convex ; wings moderate, somewhat rounded ; tail moderate; tarsi and feet rather short and robust. Size small.

Rather less than one hundred birds are arranged here, nearly all of which inhabit northern and temperate regions.

The European bullfinch, Pyrrhula europea ($p l$. 101, fig. 2), is one of the prettiest little birds of that continent. He is much esteemed as a cage bird, and large numbers are exported from Germany to all pa:ts of the world.

The purple finch (Carpodacus purpureus), a common and very handsome American bird, belongs here. The male is of a uniform purple color, though seldom observed, on account of alnost exclusively frequenting the forest.

There are several western species, of which the crimson-fronted bullfinch (C. frontalis) appears to be most common.

Some ten or twelve little birds of this sul-family, forming the genus Crithagra, are peculiar to the continent of Africa. There are a large number of South American species (genus Spermophila), of which the thick-billed finch, S. crassirostris (pl. 101, fig. 3), is a good example.

Sub-fam. 8. Loxiance, or Crossbills. Bill rather long, both mandibles compressed towards the tips, which are curved and cross each other; wings lengthened, pointed; tail moderate, emarginated; tarsi and feet short and strong. Size small ; color generally purple.

These birds inhabit the forests of pine, fir, or other trees of similar character, in the northern regions of America, Europe, and Asia. The seeds of those trees are readily extracted by their curiously formed bills, and appear to be their principal food.

The parrot crossbill (Loxia pityopsittacus), the common crossbill (L. curvi. rostra ($p l .100$, fig. 2), and the white-winged crossbill (L. leucoptera), are the European species. The two latter are common in the northern United States.

Several others have been observed in India and other countries of Asia.
Sub-fam. 9. Phytotomina, or Plantcutters. Bill short, strong, broad at base, lateral edges finely serrated; wings moderate; tail rather short, truncate ; tarsi strong; toes long and slender.

Three birds of South America constitute this sub-family. They are found in the forests, and occasionally visit gardens and plantations, in which they are said to commit much injury, by a peculiar manner of cutting off buds and fruits. Their notes are represented as very unpleasant, and somewhat similar to the sounds produced by sharpening a saw. The common plantcutter (Phytotoma silens), the narrow-billed (P. angustirostris), and the rusty plantcutter (P. rutila), are the known species.

Sub-fum. 10. Colince, or Colies. Bill small, elevated at base; wings short ; tail very long, graduated ; tarsi short and robust; toes lengthened and all directed forwards. Head crested.

This group comprises eight or ten birds, which are natives of Africa. They have a peculiar formation of their feet, by which all the toes (including the hind toe of other birds) are directed forwards, though its use has
not been observed. They feed on fruits and green buds, and build their nests in society, closely together on the same tree. The great-tailed coly (Colius macrourus) and the striped coly (C. striatus) are frequently seen.

Fam. 4. Musophagide. A small family, composed of about fifteen species of birds, which inhabit the torrid zone. They have no representatives in northern or temperate regions.

Sub-fam. 1. Musophagince, or Plantain Eaters. Bill broad and elevated at base, frequently advancing upon the forehead, compressed towards the tip, and mostly with the lateral margins serrated; wings short and rounded; tail long ; tarsi and feet strong. Size larger ; plumage usually gay.

All the birds of this group inhabit Africa, except one, which is found in South America. Many of the species are remarkable for their beauty. They are represented as being timid birds, inhabiting the densest parts of the forest, and perching upon branches of trees longitudinally, like the goatsuckers. They are birds of but limited powers of flight, and have discordant and disagreeable notes. The violet plantain eater (Musophaga violacea) and several species with green plumage appear to be common. The South American bird is the crested hoazin of some travellers (Opisthocomus cristatus). It is abundant on the banks of the Amazon, living in small flocks, and eating fruits and buds, particularly of some species of Arum.

Fam. 5. Bucerotide, or Hornbills. A family of large birds, very remarkable for the extraordinary size and shape of their bills. They are strictly confined to Asia and Africa.

About forty species are well established.
Sub-fam. 1. Bucerotince, or Hornbills. Bill generally very large and iengthened, curved, with the upper mandible furnished with appendages of very various shapes and sizes, sometimes flat and cap-shaped, sometimes curved upwards, crescent-shaped; wings moderate, rather short ; tail usually long ; tarsi and feet short, strong. Size various, frequently large; colors generally white and black.

These extraordinary birds are found in the continents and islands of Africa and Asia. The use, if any, of the singular appendages to their bills, has never been discovered, nor even conjectured with any plausibility. It is stated that these birds feed principally on fruits, though occasionally feeding upon dead quadrupeds and sometimes reptiles. Their flight is said to be heavy and noisy, though frequently at considerable height. The nest is formed in the hollow of a tree.

The rhinoceros hornbill, Buceros rhinoceros ($p l$ l. 103, fig. 2), is a common Indian species, which has a very large bill and appendage. The red-billed hornbill, B. erythrorhynchus (pl. 103, fig. 1), is a small species, with the bill almost simple.

One large bird of this sub-family, the Abyssinian hornbill (B. abyssinicus), which inhabits various countries of eastern and southern Africa, habitually frequents the ground, subsisting in a great measure on large beetles and other insects. It builds, however, in trees, and is said to construct a very large and curious nest, completely covered, having a lateral entrance.

Order III. Scansores

Embraces the Toucans, Parrots, Woodpeckers, and some other families of birds, which are grouped together under the common denomination of climbing birds.

They can be recognised immediately by the peculiar disposition of their toes, which are placed in pairs, two before and two behind. This arrangement, which is characteristic of the order, gives them great facility in climbing on the trunks and about the branches of trees.
The species of this order are not numerous, and principally inhabit warm countries.

Fam. 1. Ramphastide, or Toucans. A group of about fifty birds of South and Central America and Mexico. They are all singular and rather grotesque in their appearance, on account of their disproportionately large bills. They are known by the names of Toucans and Aracaris.

Sub-fam. 1. Ramphastince. Bill very large, long, smooth, broad at the base, curved, compressed to the point, lateral margins finely serrated; wings short, rounded ; tail various, sometimes lengthened, frequently short and truncated. Tarsi and feet rather short and strong. Size rather large; colors gay.

The only sub-family contains two genera, Ramphastos, or Toucans, and Pteroglossus, or Aracaris, the species of which are very similar in habits and history.

These singular birds are represented as being common in the vast forests of South America, though shy and cautious. They feed on various tropical fruits, but are also said to devour reptiles, young birds, and other small animals. They breed in hollow trees, building little or no nest. Several species of these birds have been discovered in Mexico. Nearly all the species possess more or less beauty of plumage, being mostly fine black with red and yellow.

The red-billed toucan (Ramphastos erythrorhynchus), the large-billed, R. tucanus ($p l .97$, fig. 13), and the long-tailed aracari, Pteroglossus aracari (pl. 97, fig. 12), are the most common species.

Fam. 2. Psittacide, or Parrots. This large family of birds, some of which are universally known, is distributed throughout the warmer regions of the world. They are easily recognised by their peculiar general form and plumage, familiar disposition, and the capability of many of the species of being taught to imitate the human voice.

There are about three hundred species of parrots.
Sub-fam. 1. Pezoporince, or Ground Parrots. Bill moderate, abruptly arched from the base to the tip; wings short; tail long, broad; tarsi and feet short and robust. Size small ; colors gay.

These birds inhabit southern Asia and Australia, generally living on the ground or in thickets, or in low woods. Many of them are very richly colored. The ring-necked parrot (Palaornis torquatus) of India and the beautiful ground parrot of Australia (Pezoporus formosus) are suitable
examples. The red-headed parrot of India, Palaornis alexandri ($p l .97$, fig. 4), and the Malacca parrot, P. malaccensis (pl. 97, fig. 3), are also included in this group.

Sub-fam. 2. Araince, or Maccaws. Bill large, arched from the base to the tip, which is prolonged and sharp ; wings moderate ; tail long, graduated, tip of each feather pointed. Size large ; colors gaudy.

A sub-family of about seventy birds, comprising nearly all the American parrots. The maccaws are large parrots, with very showy plumage, found in the forests of South America, living principally on the fruits which abound in such localities. Their notes, or rather screams, are represented as being very harsh and disagreeable. The common blue and yellow maccaw, Ara ararauna ($p l .98$, fig. 2), the military maccaw, A. militaris ($p l .98, f i g .3$), and the great blue maccaw (A. hyacinthina), are frequently to be seen living in menageries, and appear to be the most common species of this sub-family.

Many other parrots of South America, composing the genus Conurus, belong here, some of which have very beautiful red and green plumage. One species only visits the Atlantic States, which is the Carolina parrot (C. carolinensis). This bird is frequent in Louisiana and others of the Southern States, and has occasionally been seen as far north as Illinois. It is a very handsome species, with green and yellow plumage, and is generally observed in flocks, on the appearance of which in unusual localities great curiosity is excited amongst the inhabitants. In some sections of the country this parrot is eaten, and considered a great delicacy.

Sub-fam. 3. Lorince, or Lories. Bill large, slender, arched from the base to the tip, which is prolonged and acute ; wings moderate, sometimes long, pointed ; tail long ; tarsi and feet short, strong. Size small.

A small group of beautiful little parrots found only in India and the islands of the Pacific ocean Little is known of them except that they live in the banana and palm trees, in which they rear their young. Lorius domicella ($p l .98$, fig. 4) and L. tricolor are frequently seen in collections. An Australian group belongs here, of which the beautiful green parrot, Platycercus viridis ($p l .98, f i g .1$), is a good example.

Sub-fam. 4. Psittacince, or typical Parrots. Bill generally large, broad at base, compressed, arched, lateral margins dentated or festooned; wings long, pointed ; tail generally short ; tarsi and feet short and strong. Size various; colors usually gay.

These parrots are found in all the warmer regions of the globe. They. mostly inhabit the forests, where they live in pairs or small flocks, climbing among the upper branches of the trees on the fruits of which they live. Some species, it is said, sleep suspended from the branch of a tree with their heads downwards. Nearly all parrots are migratory, and move from place to place in flocks at immense heights in the air. They feed their young by disgorgement like the pigeons.

Nearly all the talking parrots belong here, of which one of the best is the grey African parrot (Psittacus erythacus), a plain but very intelligent species, common in Liberia and other countries of Western Africa. The
black headed parrot, P. melanocephalus ($p l .97$, fig. 5), is a very fine Indian species. There are many other birds belonging to this group.

Sub-fam. 5. Cacatuince, or Cockatoos. Bill large, but generally short and very strong; wings generally long; tail long, broad, usually truncate; tarsi short and strong. Size mostly large ; colors plain.

This group contains about thirty species, which are restricted to Australia and some of the Indian islands. Many of these birds are large species with pure white plumage and handsome crests, which they can erect at pleasure. These crests are sometimes very finely colored, as in the yellow-crested cockatoo, Cacatua sulphurea (pl. 97, fig. 1), and the citron-crested (C. citrino-cristata) and others.

There is another genus of this sub-family which have nearly black plumage, with their tails frequently variegated with red and yellow, such as Banks's cockatoo (Calyptorhynchus banksii), and Cook's parrot (C. cookii), and others. These are large birds, represented by travellers as being very common and noisy in the forests of Australia.

Fam. 3. Picide, or Woodpeckers. A family of about two hundred and fifty birds, which are scattered over the surface of the whole world. They are readily recognised by their straight bills and erect position when perched.

Sul-fam. 1. Capitonina, or Barbets. Bill large, broad at base, which is usually furnished with bristles; wings moderate, rather short ; tail generally short ; tarsi and feet short, strong.

The birds of this sub-family are abundant in all tropical countries. They feed on fruits and insects, and make nests in hollow trees or in holes like the woodpeckers. The grooved-bill barbet, Pogonias sulcirastris ($p l .97$, fig. 11), is an African species ; the green and orange barbet, Capito viridiaurantius ($p l .97$, fig. 10), is a native of India.

Sub-fam. 2. Picina, or typical Woodpeckers. Bill rather long, straight, broad at base, upper mandible with a lateral ridge; wings generally short; tail lengthened, with the feathers pointed; tarsi short, strong; toes long. Size generally small ; colors mostly black and white.

The most numerous of all groups of woodpeckers, and comprises birds of all countries. The American species of this sub-family are commonly known by the name of sapsuckers; the red-headed woodpecker, which belongs to another sub-family, being the only species called by the name of woodpecker in the United States.

The hairy woodpecker (Picus villosus), the downy woodperker (P. pubescens), and the yellow-bellied woodpecker (\boldsymbol{P}. varius), are the most common species, though there are several others. They are very active and harmless little birds, always seen in pursuit of insects on the trunks and branches of trees.

There are three common European species, known as Picus major ($p l .98$, fig. 8), P. medius, and P. minor. Many others are natives of Asia and Africa, all of which partake of the same general habits and appearance as those of America. The Cayenne woodpecker, P. cayennensis ($p l .98$, fig. 6), is a common South American species.

Sub-fam. 4. Gecina, or Green Woodpeckers. Bill more or less long. straight, base broad, sides with a lateral ridge; wings long, pointed; tail long; tarsi and feet short and strong. Size larger, color generally green or yellow.

The greater number of the birds of this sub-family are confined to the old world, many of which are large and handsome species, with plumage of varous shades of green, and with the top of the head usualiy bright scarlet. They live entirely in the forests. The green woodpecker of Europe, Gecinus viridis ($p l .98$, fig. 7), is a common bird of that continent, everywhere to be seen climbing amongst trees of small growth, and sometimes in hedges and on the ground. There are several Indian species of beautiful plumage ; and a few are found in South America which have the plumage of dark brown or cinnamon color, with long crests of pale yellow, such as the citron-colored woodpecker (Celeus citrinus) and others.

Sub-fam. 5. Melanerpince, or Black Woodpeckers. Bill rather long, compressed, with a lateral ridge ; wings long and pointed; tail rather long; tarsi and feet short. Size various, color mostly black, or striped black and white.
A sub-family of exclusively American birds inhabiting the entire continent.

The red-headed woodpecker (Melanerpes erythrocephalus) is the best known species. "There is, perhaps," says Wilson, "no bird in North America more universally known than this. His tricolored plumage, red, white, and black, glossed with steel blue, is so striking and characteristic, and his predatory habits in the orchards and cornfields, added to his numbers and fondness for hovering along the fences, so very notorious, that almost every child is acquainted with the red-headed woodpecker.
"Wherever you travel in the interior in the summer you hear them screaming from the adjoining woods, rattling on the dead limbs of trees, or on the fences, where they are perpetually seen flitting from stake to stake on the roadside before you. Wherever there is a tree or trees of the wild cherry, covered with ripe fruit, there you see them busy among the branches; he is fond of the ripe berries of the sour gum, and pays pretty regular visits to the cherry trees when loaded with fruit. Towards fall, he often approaches the barn or farmhouse, and raps on the shingles and weatherboards; he is of a gay and frolicsome disposition, and half-a-dozen of the fraternity are frequently seen diving and vociferating around the high dead limbs of some large tree, pursuing and playing with each other, and amusing the passenger with their gambols." He inhabits the whole of North America, passing the winter in the extreme south.

There are two species found in western North America, which are related to the red-headed woodpecker, Lewis's woodpecker (M. torquatus) and the red woodpecker (M. ruber).

The other birds of this group are peculiar to Mexico and South America.
Sub-fam. 6. Colaptince, or Ground Woodpeckers. Bill long, curved, broad at base, compressed; wings long ; tail rather long; tarsi short; toes long. Size rather large ; colors green and yellow.

A group composed of about a dozen American woodpeckers and a few which are natives of India.

The golden-winged woodpecker or flicker of the United States (Colaptus auratus) is the best known. He is a very elegant bird, with plumage of dark umber, transversely marked with black on the upper parts of his body, below of very delicate fawn-color, with a broad crescent of deep black He is well known to our country people and to all amateur sportsmen, who are attracted by his size and handsome appearance, though not very readily shot on account of his easily excited suspicions and quick movements.

Several species intimately resembling the yellow-winged woodpecker have been discovered in California and Mexico.

The Indian species are smaller birds of similar general habits.
Sub-fam. 7. Yuncina, or Wrynecks. Bill. short, straight, acute; wings moderate and pointed ; tail moderate, rounded, composed of soft feathers ; tarsi and feet short. Size small, colors plain.
Three birds only are contained in this sub-family; the only one of which the history is well known is the wryneck of Europe, Yunx torquilla ($p l .98$, fig. 9), so called from its having a peculiar twisting motion of the head and neck. Its principal food is ants, which it obtains by pecking away the earth from about their nests, and then allowing the insects to adhere to its glutinous tongue. It is found throughout Europe.
Fam. 4. Cuculide, or Cuckoos. A family of birds very different in form and manner from the preceding climbers, and much more resembling the permohing birds. They have, however, the peculiar form of foot which characterizes the other climbers, and by which they may be recognised.

There are about one hundred and fifty species of cuckoos, which are found in all the countries of the world.

Sub-fam. 1. Indicatorince, or Honey Guides. Bill short, broad at base, curved, compressed; wings long, pointed; tail moderate, emarginated; tarsi and feet short. Size small, colors plain.

Contains about ten little birds of Africa and India, which have obtained the names of honey guides from the fact that they are usually observed in the vicinity of nests of wild bees. The honey from those is said to be their chief food, in the obtaining of which they are frequently attacked by the bees and stung to death. The best known are the greater and smaller honey guides of Africa (Indicator major and minor), which inhabit Liberia and other countries of Western Africa.

Sub-fam. 2. Saurotherince, or Ground Cuckoos. Bill long. straight, hooked at the tip, compressed; wings moderate, rounded; tail lengthened; tarsi and feet long and robust. Size rather large.

A sub-family of about six birds only, which are exclusively American. Several species which are found in Mexico and California habitually frequent the ground, on which they run with great swiftness. They are partial to dry, bushy places, and are very shy and difficult to approach. Their food consists of reptiles, insects, and other small animals.

Sub-fam. 3. Coccyzina, or Curved-bill Cuckoos. Bill arched, com-
pressed, rather long; wings moderate, rounded; tail long; tarsi and feet long. Size small, colors plain.

This group is composed of rather an anomalous collection of Cuckoos, natives of all parts of the world except Europe. Africa and South America produce much the larger number of species.

The two North American cuckoos (Coccyzus americanus and C. erythrophthalmns) belong here. The former, or yellow-billed cuckoo, is quite frequently seen and oftener heard, as it is most generally perched in a tree of thick foliage, and has a loud note. It is a plain-colored though rather elegant-looking bird, with glossy drab plumage above and pure white below, arriving early in May in the northern States. Unlike the cuckoo of Europe this bird has sufficient regard for its reputation to have a home of its own, which is generally constructed in the orchard or an isolated fruit tree. Its note is something similar to the syllables kow-e, rapidly repeated, from which it has acquired the name of "cow-bird" in some districts.

The red-eyed or black-billed cuckoo is not so numerous, but very similar in habits and appearance.

Sub-fam. 4. Crotophagince, or Anis. Bill rather long, arched, and much compressed ; wings short, rounded; tail long, broad; tarsi and feet long. Size various; colors generally dull, sometimes black.
This assemblage of birds is confined to tropical regions, and is composed of about twenty species of very dissimilar general appearance.

The American species, or anis, as they are usually called, are black birds with singularly compressed and elevated upper mandibles, in fact having the appearance of a prominent appendage in front. They inhabit the West Indies and South America, being partial to cultivated grounds, pastures, and meadows, through the thickest grass of which they readily make their way by means of their ploughshare-like bills, in pursuit of grasshoppers and other insects on which they subsist. The common ani (Crotophaga ani), the greater ani (C. major), and the grooved-bill ani (C. sulcirostris) are common species. The latter has been observed in Mexico.

Sub-fam. 5. Cuculinae, or Cuckoos. Bill broad, curved, compressed; wings long, pointed; tail long, graduated; tarsi short, feet strong. Size rather large ; colors various.

A large sub-family, entirely confined to the old world. Nearly all the species are found in the warmer regions of Asia and Africa, two only being regarded as properly European birds. They are the crested cuckoo (Oxylophus glandarius) and the common cuckoo (Cuculus canorus).

The latter is one of the birds of Europe which has attracted attention from the earliest period, and has found a place in the literature of all European nations. He is a plain-plumaged bird, of deep bluish grey above, and white with blackish bars beneath the body.
"There are few birds," as Sir William Jardine observes, "which have excited so much interest as the common cuckoo. Its note in spring heralding the return of sunny skies and bursting vegetation, carries with it dear associations in every country where it is known; while the singular provision of its making use of the nests of other birds in which to deposit its
eggs has created an interest and curiosity to ascertain its history. It has been ascertained without doubt that the European cuckoo and several foreign species deposit their eggs in the manner we have alluded to, not attending afterwards to the fate of the egg nor to the after-rearing of the young. In choosing the nest for the reception of its eggs, it has been remarked that those of insect-eating birds (like itself) chiefly are selected. The young bird is endowed with a remarkable feeling to get rid of its companions in the nest, which is continued, it is said, for twelve days ; after which time, if it has been unsuccessful in its efforts, it remains quiet and at peace with its neighbors. It is attended to for a certain time by its foster parents, and afterwards left to itself. The young remain in the summer longer than the old birds, as we have frequently seen them late in August, at which time they utter a note or whistle very dissimilar to the cuck-oo of the love season."

The cuckoo is spread over the whole of Europe, decreasing in numbers in the north. It subsists entirely on insects.

Several other species have been discovered in Asia and Africa, very similar in appearance to the common bird, and they are supposed to be also similar in habits and history.

Several small African species, sometimes called golden cuckoos (Chalcites auratus, and others), have very splendid golden-green plumage, and are the most beautiful of this family. One of these is worthy of special notice from the fact that it was named by the celebrated naturalist and traveller Le Vaillant in honor of a faithful Hottentot servant who accompanied him during one of his expeditions, and continues to be known by his name, as "Klaas' cuckoo" (C. klaasii).

Order IV. Columbe, Pigeons and Duves.

Contains an assemblage of birds of elegant forms, and much isolated in appearance and general characters from all other birds. They are said to live almost invariably in pairs, and one of their chief characters is that they feed their young by disgorging the food previously swallowed by the parent.

All the species are known by the names of pigeons and doves, and they inhabit all the countries of the world.

Fam. 1. Columbide (only family).
Sub-fam. 1. Treronince, or Tree Pigeons. Bill short, ends of both mandibles knobbed or thickened ; wings moderate, strong; tail broad, truncate; tarsi very short, generally feathered, feet robust. Size rather large ; colors gay.

The birds of this sub-family are restricted to India and the Asiatic islands. Many of them are large and showy, living entirely in trees and mostly found in the depths of the forests, on the fruits obtained in which they subsist.

The aromatic pigeon (Treron aromatica), an Indian species, is remark-
able on account of its plumage having a spice-like flavor. One genus of this group (Ptilonopus) contains several species found in the islands of the Pacific, which have very fine green and red plumage, and are amongst the most handsome of the pigeons.
Sub-fam. 2. Columbince, or Pigeons. Bill moderate, slender, base covered with a tumid skin; wings moderate, pointed; tail various, generally ample and truncate ; tarsi short, feet robust. Size various.

This assemblage contains all the familiar birds of Europe and North America usually known by the names of pigeons and doves, as well as many others only known to inhabit the wilds of Asia and Africa. The European species are the best known, one of which is the original of the domestic pigeon. It is the rock pigeon, Columba livia (pl. 96, fig. 12), a bird common in many parts of Europe, living and rearing its young in the holes or fissures of rocks. It is abundant in many places on the coasts of England and Scotland. Its manners are represented as very simrilar to those of the domesticated pigeon; when in search of food it walks with facility, and has the same manners and gestures during courtship as may be observed in the common bird of the city. The rock dove has the entire plumage plain, dark-lead color, with a white space on its back. All the pigeons known as tumblers, croppers, carriers, fantails, and many others, are considered as being derived from this one species.

The blue-backed dove, C. cnas (pl. 96, fig. 13), is a species nearly allied to the preceding. The ringdove (C. palumbus) is the largest of the European species. It has never been domesticated.

One of the most elegant as well as favorite European species is the turtle-dove, C. turtur ($p l .96$, fig. 15). It is a plain little bird with greyishblue plumage, spending the summer in central and southern Europe, and migrating southwards in the autumn. It lives in the woods, and its notes in the spring are peculiarly sweet and plaintive.

Several North American pigeons belong here, the largest of which are several species found in the Rocky Mountains and the western territory of the United States. But there is no species so universally known, nor which appears in such numbers, as the passenger pigeon or wild pigeon (Ectopistes migratorius), a bird which is distributed throughout the United States. It is a very graceful and handsome plumaged bird, with dark leadcolored plumage above and reddish beneath the body.
"The multitudes of wild pigeons," says Audubon, "in our woods are astonishing. In the autumn of 1813 I left my house at Henderson, on the banks of the Ohio, on my way to Louisville. A few miles beyond Hardensburgh I observed the pigeons flying in greater numbers than I though* I had ever seen them before, and feeling an inclination to count the flocks that might pass within the reach of my vision, I dismounted, and found that 163 flocks passed in twenty-one minutes. I travelled on, and still met more the further I proceeded. The air was literally filled with pigeons, the light of noonday was obscured as by an eclipse, and the continued buzz of wings had a tendency to lull my senses to repose."

Another and great favorite is the Carolina or turtle-dove (E. caroli-
nensis), a plain, but very pretty bird, frequently to be seen in the woods and fields, and like the turtle of Europe it is one of the first to announce the advent of spring by its harmonious but rather melancholy cooings.

Many other birds belong here, of the greater part of which little is known.

Sub-fum. 3. Gourince, or Ground Pigeons. Bill moderate, rather slender, straight, apex strong; wings moderate, pointed; tail moderate, rounded; tarsi and feet rather long, robust. Size very various.

Contains a large number of pigeons which live habitually on the ground. They are most numerous in tropical countries, though a few species have been discovered to inhabit the extreme southern limits of the United States in summer. Of these the Zenaida dove (Zenaida amabilis) is one of the most remarkable. It occasionally visits Florida, and is said to be very gentle in its manners, and to possess a voice of remarkable softness.

The little bird-like dove (Chamapelia passerina) is another, which has been observed in Florida, and more abundant than the preceding. It is a very smail species, and is often tamed.

The two largest birds of the family of pigeons belong to this assemblage. They are the crowned pigeon and the queen's pigeon (Goura coronata and \boldsymbol{G}. victoria), both of which are considerably larger than common fowls. They are much alike in general appearance, having fine ashy blue plumage and beautiful erect crests, and inhabit the large islands of the Indian archipelago.
Numerous other beautiful pigeons and doves belong here, which are found in all warm countries. Goura cruenta (pl.96, fig. 14) is an Indian species.

Sub-fam. 4. Didina, or Dodos. Bill longer than the head, much curved towards the tip, which is hooked and acute ; tarsi short, robust; feet strong ; wings and tail unknown. Size large.

This sub-family has been founded on one bird only, which is called "the dodo" by some early voyagers to the island of Mauritius, which it formerly inhabited. It is now supposed to be extinct, and no perfect specimen is known to exist, though several fragments are preserved in European museums. It is represented as having been a large bird, somewhat resembling a turkey, and to have lived on the ground in the forests of palm trees; on the fruits of which it subsisted.

Order V. Gallinte.

This order consists of the common fowls, pheasants, grouse, turkeys, and other birds of similar manners and character. They are invariably formed essentially for living upon dry ground. Their food, with few exceptions, is entirely vegetable, and their chief support is derived from the seeds and grains of plants. Many of them eat also the green or leafy portions, and are in this respect nearly peculiar among birds. Almost all of them have large crops or craws, and extremely muscular and powerful gizzards.

The Gallinæ are for the greater part very sociable birds, and many species are readily domesticated. They are more practically useful to man than all other birds together.

Fam. 1. Cracide, or Curassows. A family of birds principally found in Mexico and Central America, and known by the names of curassow birds, penelopes, guans, Mexican turkeys, and others.

There are about thirty-five species.
Sub-fam. 1. Penelopince, or Guans. Bill moderate, slender; nostrils large ; wings short, rounded; tail long; legs and feet long and robust; sides of the head and throat more or less naked. Size large.

These birds inhabit South America, mostly residing in the forests and subsisting on fruits and insects, which they are répresented as pursuing in the morning and evening. They construct their nests in trees, and are habitually wary and difficult to approach. The crested penelope (Penelope cristata) appears to be common.

Sub-fam. 2. Cracince, or Curassows. Bill generally long, curved, compressed; wings short, rounded; tail long; tarsi and feet very strong and lengthened; head crested. Size large.
The curassow birds are found mostly in Mexico and Central America, in the countries of which they are domesticated to some extent, and hence are sometimes called Mexican turkeys. They are large birds, generaliy of plain black plumage, with erect handsome crests. The red curassow, Crax rubra (pl. 96, fig. 10), is one of the species frequently met with.

Fam. 2. Megapodide. A small family of about twelve or fifteen species of birds inhabiting Australia and the Pacific islands. They are large birds, having very thick and strong legs, and short curved bills, said to live mostly on berries.

Sub-fam 1. Tallegallince. Bill moderate, rather robust, curved towards the tip; wings moderate, rounded ; tail long; tarsi very thick and lengthened; feet robust. Size large.

Contains three birds only, which are natives of Australia and New Guinea, where they have acquired the name of bush turkeys. They are mostly observed in small flocks on the ground, and when apprised of danger seek safety by running into the deepest thickets, or into the recesses of the forest. The bush turkey of Australia (Tallegallus lathami) is the only common species in collections.

Sub-fam. 2. Megapodince, or Mound Birds. Bill moderate, rather weak; wings short, rounded; tail rather short; tarsi and feet very robust. Size smaller.

The birds of this sub-family are found only in the Asiatic islands and Australia. Some of the species, particularly one which inhabits Australia (Megapodius tumulus), build very curious mounds of a large size for the purpose of depositing their eggs therein. These mounds have been observed upwards of twenty feet in circumference and ten feet high, and are composed of sand and vegetable matter.
Fam. 3. Phasianide, Pheasants, Peacocks, and Fowls. All the birds
of this family are restricted to the old world. They are the most beautiful of the gallinaceous birds, and have no superiors in the whole feathered creation.

Few of these birds have been domesticated, and they are generally not highly prized for other qualities than their beauty of plumage.
Sub-fam. 1. Pavonine, or Peacocks. Bill moderate, compressed, curved; wings short, rounded; tail long, with the upper tail coverts very much lengthened and extending beyond the tail; tarsi long, robust ; feet strong. Size various, generally large ; colors generally very beautiful.

This sub-family is composed of some of the most magnificent of birds. The peacocks, of which there are two species, belong here; both inhabit India and its islands, and they present plumage certainly not surpassed by that of any other known birds.

We find the splendor of the common peacock, Pavo cristatus (pl. 96, fig. 5), mentioned at a very early period. It attracted the notice of the mariners of Solomon, in the time of whom it appears to have been well known. It was afterwards discovered by the army of Alexander, by whom it was so much admired that he imposed a penalty on its destruction. Hence it became known to Greece, Rome, and to Europe generally.

Peacock shooting is a favorite amusement in India, where in some districts they are abundant. "About the passes in the Jungletery district," says Colonel Williamson, "I have seen such numbers of pea fowls as have absolutely surprised me. Whole woods were covered with their beautiful plumage, to which a rising sun imparted additional brilliancy. The small patches of plain among the long grass, most of them cultivated, and with mustard then in bloom, which induced the birds to feed, increased the beauty of the scene; and I speak within bounds when I assert, that there could not have been less than twelve or fifteen hundred pea fowls of various sizes, within sight of the spot where I stood for near an hour.
"When they are in numbers scattered in a jungle it is easy to get a shot, but I have always found much difficulty when the birds flock together, as they frequently do, to the amount of forty or fifty. At such times it is not easy to raise them. When on the wing, they fly heavy and strong, generally within an easy shot; but if only winged, they speedily recover, and if not very closely pursued will nine times out of ten disappear."

It is worthy of notice that domestication has not changed the appearance of the peacock in the slightest degree, though nearly all other birds and quadrupeds have been more or less subject to variety from this source.

The other known species is the Java peacock (P. muticus), of which little is known, though it is now frequently seen in museums. It has the neck brilliant green instead of blue as in the common species, and differs in other respects, though presenting a similar general appearance. It is not domesticated.

Another superb bird of this group, scarcely inferior in beauty to the pea-
cocks, is the Argus pheasant, Argus giganteus (pl. 96, fig. 8). It is a native of Sumatra, and is supposed also to inhabit continental Asia as far north as China. In size the Argus is not much superior to the common fowl, but the great length of the wing and tail feathers makes it appear much larger. It is almost impossible to convey by description only any illea of the blending of colors in this magnificent bird. The throat and cheeks are naked. The lower part of the body is reddish-brown, every feather regularly spotted with yellow and black; the upper parts are covered with large black spots separated by lines of ochre-yellow; the upper tail coverts are clear yellow and the tail deep chestnut. The wing feathers are spotted with green and shades of brown in the most beautiful manner. The Argus has not been domesticated.

The diamond pheasant (Polyplectron chinguis) and several other birds of splendid plumage are arranged here, nearly all of which are natives of India.

Sub-fam. 2. Phasianina, or Pheasants. Bill moderate, strong, straight, and slightly arched at the tip; wings short, rounded; tail greatly lengthened ; tarsi and feet very strong. Size various; colors generally very beautiful.

Another group of splendid birds exclusively belonging to the old worid. The pheasant of Europe, Phasianus colchicus (pl. 96, fig. 6), now distributed over the entire continent, is well ascertained to have been introduced from Asia by the ancient Greeks. Its plumage is of the most beautiful glossy chestnut color, with black crescent-shaped marks. Its favorite haunts are thick or tangled woods near streams, where it passes the night, but betaking itself to the open fields during the day in search of food. It walks and runs much in the same manner as the common fowl, which it greatly resembles in its manners.

The most beautiful of pheasants and one of the most splendid of birds is the golden pheasant, P. pictus ($p l .96$, fig. 7), which is a native of China. Its plumage is almost entirely of golden yellow, barred with red and black. It is called in China "kinki," or golden-flower fowl, and is kept extensively in domestication.

The silver pheasant (P. nycthemerus) is another fine species. Its entire plumage is beautiful silvery white with black lines, and the head adorned with a long crest of glossy purple feathers.

The fire-backed pheasant (Euplocomus ignitus) and several other species of the same genus belong here, as do also the curious and very handsome horned pheasants, of which the most common species is the goldenbreasted, Tragopan hastingsii ($p l .96$, fig. 9). They have fine red and white plumage, and are peculiar for possessing fleshy protuberances about the head resembling horns. They are also Asiatic birds, but are little known.

Sub-fam. 3. Gallina, or Fowls. Bill moderate, curved towards the tip: wings moderate, rounded; tail lengthened, frequently compressed and arched; tarsi and feet robust and rather long. Size smaller than preceding; colors gay.

This group is composed of species of wild cocks from several of which the domestic poultry is probably derived. They are all natives of India and the adjacent islands, frequenting the forests. They are remarkable for their pugnacity, especially when questions regarding their females have to be settled, and all the species crow in a manner more or less resembling the cock of the farmyard.

It is difficult to determine which of the wild species have been domesticated, as varieties of the latter occur which resemble several, though naturalists are apparently quite justified in pointing out at least two species, which are the Malay cock (Gallus giganteus) and the jungle cock (G. bankiva). The former is a large and rather clumsy bird, long domesticated in the islands of Java and Sumatra, and is very probably the original stock of all the large and more peaceable birds of the common fowl (pl. 95, figs. 10, 11).

The jungle cock is the forefather of the gamecock, and joint progenitor of many and various colored crossbreeds between it and the offspring of the Malay cock, and possibly of others. He inhabits continental India, and is clothed in fine red and golden orange plumage, much resembling that of the well known game birds, though he is considerably smaller. This species is yet abundant in the forests and jungles of India, in which country he has been domesticated from time immemorial. There are, however, no traces of the manner or period in which he was introduced into Europe, though known familiarly at the earliest date of recorded history, both as a delicacy for the table and for his pugnacious character.

Cockfighting was carried to a great extent by the Hindoos long prior to the invasion of Alexander, but seems originally to have partaken somewhat of the character of a religious rite, as did many games. This amusement was practised by the ancient Greeks and Romans, and by them transmitted to modern times.

The bronzed cock (G. aneus), the fork-tailed cock (G. furcatus), and Sonnerat's cock (\boldsymbol{G}. sonneratii), are other species which also inhabit India.

Sub-fam. 4. Meleagrince, or Turkeys. Head and neck bare, and generally hairy and carunculated; bill moderate, strong; wings short; tail moderate ; tarsi and feet very robust. Size various, frequently large; colors dark.

This sub-family comprises the turkeys, of which there are two species, and the Guinea fowls, of which there are five.

The common turkey, Meleagris gallopavo ($p l .95$, fig. 12), is a native of the forests of North America, and was formerly distributed throughout the entire country. It has now, however, become extinct or nearly so in the States on the Atlantic seaboard, but is still abundant in the west and south. The turkey is strictly gregarious, and flocks of several hundreds are generally seen together; their movements from place to place are entirely performed on foot, and when apprehensive of danger they usually trust to their legs rather than resort to flight. It is said, however, that they are capable of flying a short distance with great swiftness, and that when their progress is impeded by a river, after a considerable delay and exami

[^12]nation, they ascend to the tops of the neighboring trees, and at the cluck of their leader launch into the air for the opposite shore. Their favorite food consists of acorns and other nuts found in the forest, but they also devour with avidity Indian corn, berries, insects, lizards, and in fact almost anything capable of sustaining life. Since the discovery of America the turkey has been extensively domesticated in all civilized countries.

Another and very beautiful species of turkey has been discovered within a few years in Honduras. Its habits and manners are little known, but represented as very similar to the common species. It is domesticated among the inhabitants of Central America, and is probably extensively diffused over the country in a wild state.

The Guinea fowls are natives of Africa, where they frequent the forests principally in the neighborhood of rivers. They associate in flocks of many hundreds, and are said to commit great depredations on the crops of the colonists and natives. Their food consists of grain, rice, grasshoppers, and various insects. Several species of wild Guinea fowl are found in Liberia and other countries of Wêstern Africa.

- The common species, Numida meleagris ($p l .95$, fig. 13), is abundant in the country from which it has taken its name. There are several other and larger species, none of which have been domesticated.

Sub-fam. 5. Lophophorince, or Shining Pheasants. Bill moderate, broad at base, upper mandibles projecting; wings moderate ; tail large and broad; tarsi and feet rather short, but very robust. Size rather large ; colors metallic and very handsome.

A few beautiful birds of the Himalayah Mountains compose this group, the most splendid of which is the fire pheasant (Lophophorus refulgens). Its plumage has a deep black for its ground color, but with metallic tints of every hue. It is said to be abundant in the ranges of the Himalayah Mountains and to take wing readily, uttering a loud whistle, and that its food consists principally of bulbous roots and insects.

Fam. 4. Tetraonide, or Grouse and Partridges. Is composed of the birds familiarly known by the names of grouse, partridges, quails, and others, all of which are frequently alluded to as game birds. They are generally birds of plump form and with plumage of dull colors. Their flesh is highly esteemed as an article of food.

Sub-fam. 1. Perdicince, or Partridges of the Old World. Bill short, curved; wings moderate, rounded; tail short; tarsi and feet moderate, but strong. Size generally small ; colors plain.

Contains all the partridges of the old world, of which there are nearly seventy species. These are most abundant in India and other countries of Asia, two only being found in Europe. Of these the red partridge, Perdix rulra ($p l .96$, fig. 4), is the larger, and one of the handsomest birds of the genus. It is found plentifully in the South of Europe, where it inhabits cultivated grounds, and is hunted like the other species.

The grey partridge, P. cinerea ($p l .96$, fig. 3), is the smaller of the European species, but is abundant throughout the continent. It is a plaincolored but elegant bird, living in fields or other cultivated places, and is
one of the few birds which do not appear to diminish in numbers on account of the proximity of man. All the other species seem to be quite similar in their general habits to the two birds here mentioned.

Sub-fam. 2. Turnicina, or Quails. Bill moderate, straight, compressed; wings short, rounded; tail short, almost concealed by the long feathers of the back; tarsi moderate, strong. Size quite small ; colors plain.

These birds are found in the South of Europe, India, Africa, and Australia. They have much the same habits as the partridges, which they resemble in appearance, though they are much smaller. They live entirely on the ground, running with great swiftness, and seeking their food amongst the grass and other herbage. The common quail of Europe, Turnix dactylisonans (pl. 95, fig. 15), is distributed throughout the continent and Asia.

Sub-fam. 3. Odontophorina, or American Partridges. Bill short, curved to the tip, upper mandible slightly prolonged; wings moderate, rounded; tail rather long; tarsi and feet moderate. Size various; colors various, frequently gay.

This sub-family embraces the partridges of America, of which there are about thirty-five species, mostly natives of Mexico and Central America. One of the most beautiful of these is the California partridge, Lophortyx californicus (pl. 96, fig. 11), which is a common bird in that country. This and other species of these elegant birds seem to prefer the sandy plains or open woods, generally living in bands of several hundred individuals, and seeking their food on the ground. There are numerous species of these birds found in California and Mexico, some of which are amongst the most beautiful of the birds of North America.

The common partridge of the United States (Odontophorus virginianus) is spread over the whole of North America. It rarely frequents the forest, but is most partial to the cultivated plantations where there is plenty of grain. When not too much persecuted by gunners this pleasant bird becomes almost half-domesticated, in winter approaching the barn and outhouses, and feeding amongst the poultry of the farmyard. Buckwheat is a particular favorite, in the fields of which the partridge may almost invariably be detected. His note in the spring is somewhat similar to the words "Bob White," which has been given to him for a name, and by which he is extensively known.

Sub-fam. 4. Tetraonine, or Grouse. Bill short, rather broad, curved; nostrils covered ; wings moderate, rounded; tail wide, sometimes rounded or forked; tarsi rather short, feathered; feet strong; size various, frequently large ; colors generally plain.

These birds are residents of the northern parts of both continents; inhabiting all descriptions of localities, but rather preferring barren or bushy plains. They are in much request as articles of food, and are much sought after by hunters and sportsmen.

The largest species is the cock of the woods, or capercailze, Tetrao urogallus ($p l .96$, fig. 1), a European species, formerly abundant but now more rare, and entirely extinct in Great Britain. It is not much inferior to
the turkey in size, and has fine black plumage. It is yet frequently met with in the forests of the north of Europe.

The moor cock, T. tetrix ($p l .96$, fig. 2), is another fine European species, formerly very abundant, and yet frequent in the Highlands of Scotland. It is entirely black with a forked tail, and is represented as living principally on twigs and buds of the heath and on blades of grass.

Several species of these birds inhabit the United States, of which the largest is the cock of the plains (T. urophasianus). The others are, the sharp-tailed grouse (T. phasienellus), the Canada grouse (T. canadensis), the dusky grouse (T.obscurus), and the prairie hen (T.cupido). The latter was formerly abundant throughout the United States, but is now almost extinct in the Atlantic states. The most common species is, however, the ruffed grouse or pheasant, T. umbellus, which is frequent throughout the country.

The most curious birds of this group are the ptarmigans, which live in the extreme north of both continents. They are usually seen on the barren grounds, or among thickets of willows and birches, on the banks of marshes or lakes. The plumage varies with the season; in the winter they are pure white, but as the spring advances they assume a dark chestnut color, which gradually extends over the whole body. The white ptarmigan (Lagopus albus) is a frequent species in the north of Europe, and the rock ptarmigan (L. mutus) in northern America. In the winter season, when alarmed, they are said to plunge into the snow, under which they proceed to considerable distances.

Sub-fam. 5. Pteroclince, or Sand Grouse. Bill short, curved, compressed ; wings and tail long and pointed; tarsi and feet robust and feathered; size small ; colors plain.

These singular birds inhabit the sandy deserts of Africa and Asia, and nearly all the species have their plumage of dull brown, much resembling the color of dry sand. Their food consists of hard seeds, grass, and insects. The banded sand grouse (Pterocles bicinctus) is frequently brought from Africa; the desert grouse, P. alchata ($p l .95 . \operatorname{fig}$. 14), is another species.

Sub-fam. 6. Tinamina, or Tinamous. Bill rather long and slender; wings short, rounded; tail very short, rounded; tarsi and feet moderate and strong. Size various; colors plain.

About twenty-five species of these birds are known, all of which are found in South America. Their general appearance is much that of a partridge with a long bill, and their habits and manners are said to be very similar. The larger tinamou (Tinamus major) and others are common.

Order VI. Struthiones.

This order embraces the ostrich, the cassowary, the bustards, and a ferv other birds, mostly of large size.

Fan. 1. Struthionide, or Ostriches. The only family of the order, the species of which are easily distinguished by their large size and exclu-
sive organization for walking. About thirty birds are included in this family.

Sub-fam. 1. Struthionince, or Ostriches. Bill broad, flattened, somewhat rounded; wings and tail very short ; tarsi very long and robust ; toes two or three in number, and all directed forwards. Size large.

The ostrich, Struthio camelus ($p l .94$, fig. 1), which is the largest of all birds now known to be living, is arranged here. It inhabits the open plains of Africa, where it is sometimes observed in large flocks, especially when the herbage is abundant, as that forms its chief food. When alarmed, it runs with great rapidity, with the assistance of its wings. The nest is a slight hollow scratched in the sand, and, it is said, is generally occupied by two females, both of which lay their eggs, and with the males attend mutually to the young.

The South American ostriches, of which there are two species, Rhea americana and darwinii, are frequent on the plains of Patagonia and the other more southerly countries of South America. They are much smaller than the ostrich of Africa, but bear considerable resemblance in general appearance and manners.

The emu of Australia (Dromaius nova hollandia) and the cassowary of New Guinea, Casuarius galeatus ($p l .95$, fig. 1), complete the birds of this group. They are both large birds, almost destitute of wings, but are said to run with great rapidity. They feed exclusively on vegetables.

Sub-fam. 2. Apterygina, or Kivis. Bill long and slender; wings and tail very short, almost obsolete; tarsi and feet short and robust; entire plumage hair-like.

Two very curious birds found in New Zealand belong here. They frequent the extensive and dense beds of ferns which occur in that country, and feed on snails and insects. The plumage of these birds is very singular and peculiar, being composed of long feathers more resembling the hair of some quadrupeds than the covering of birds. The common kivi, Apteryx australis, and Owen's apteryx, A. owenii, are the known species.

Sub-fam. 3. Otinæ, or Bustards. Bill rather long, straight; wings and tail moderate ; tarsi long, robust ; toes short. Size various, rather large.

The bustards are found in the sandy or grassy plains and the open cultivated lands of various countries of the old continent. They are shy and watchful, and when alarmed, fly with considerable swiftness for a short distance, then running off. They feed on seeds and other parts of vegetables, and are said to be very destructive to crops of wheat and other grain in some parts of Asia and Africa. The great bustard, Otis tarda ($p l .94, f i g .2$), was formerly frequently seen throughout Europe, but has now become rare. It is the largest known species, and was a favorite bird with sportsmen, as are many species of other countries. The smaller bustard, O. tetrax ($p l .94, f i g .3$), is found occasionally in the south of Europe, but principally in northern Africa. There are about twenty species of these birds, nearly all of which inhabit northern Africa and Asia.

Order Vil. Gralle, or Waders.

With this order we enter upon the birds which habitually reside in the neighborhood of water, and are usually denominated water birds, in contradistinction to those which live habitually on the dry land.

This rather extensive order is composed of birds recognised immediately by their long legs and long necks, and by their constantly being observed in search of fishes and other aquatic animals, which they mostly pursue by wading into shallow waters. A few species, however, content themselves with such animals as are to be found on the shores or on dry land.

The herons, storks, snipes, woodcooks, curlews, and other birds of such appearance and habits, belong here.

Fam. 1. Charadriade. Comprises all the plovers, turnstones, oystercatchers, \&c. They are generally small and timid birds, living on the banks of inland streams, in the neighborhood of ponds or lakes, or the shores of the ocean.

Sub-fam. 1. EEdicnemince, or Runners. Bill rather long, somewhat curved to the tip; wings long, pointed; tarsi long ; toes three only, directed forwards, and rather small; tail short. Size rather small; color plain.

A small group of birds, which reside in the warmer regions of both continents. One species, the thick-leg (Edicnemus crepitans), visits the south of Europe, frequenting open fields, and feeding in the evening or at night. ${ }^{\top}$ t is said to remain squatted behind a stone, or any other object admitting of concealment, during the day. Other birds of this sub-family are found in the plains and deserts of Africa and Asia, such as the Cursorius senegalensis, and others.

Sub-fam. 2. Glareolince, or Pratincoles. Bill short, broad at base, compressed; wings very long; tarsi and feet moderate ; tail short. Size small.

About seven species of very peculiar birds compose this sub-family. They inhabit the temperate and warmer parts of the Old World, subsisting on flies and other insects, which they take on the wing, like swallows, and on the ground. The European pratincole, Glareola torquata ($p l .95$, fig. 5), is the only well described species.

Sub-fam. 3. Charadriance, or Plovers. Bill long, slender, depressed; wings long, pointed; tail moderate, frequently broad; tarsi long, slender ; feet rather small. Size various, generally small.

Rather an extensive assemblage of about one hundred species of birds, embracing all the lapwings and plovers which inhabit the whole surface of the globe. The European lapwing, Vanellus cristatus (pl. 93, fig. 2), is spread over the entire continent, and is remarkable for its graceful form and rapid flight, which is at times performed with numerous singular evolutions in the air, and accompanied by a series of oft-repeated notes. The golden plover of the United States (Charadius pluvialis) belongs here, as does also the kill-deer plover (C. vociferus), Wilson's plover (C.wilsonius), and some others. The plover of Europe, C. auratus (pl. 93, fig. 1), is a common and handsome species.

Sub-fam.4. Hematopince, or Oyster-calchers. Bill long, strong, and much compressed; wings long, pointed; tarsi and feet very robust; tail short; size larger; colors mostly black and white.

The species of this sub-family are distributed in most parts of the world. They live on the sea-shores, subsisting on the animals of sea-shells, which they obtain by inserting their compressed wedge-like bills between the valves. They build on the bare sands, or in such scanty herbage as may be found growing near the reach of high water. The best known species are the European oyster-catcher (Hamatopus ostralegus), and the American oyster-catcher (H. palliatus). The latter is frequently met with on the shores of the Atlantic.

Sub-fam. 5. Cinclince, or Turnstones. Bill short, straight, and rather acute ; wings long; tail short; tarsi rather short; toes long. Size small; colors mostly red, and black and white.

Four or five curious little birds are arranged here. They frequent the sea-shores of all parts of the world, feeding entirely on such shell-fish and other small animals as are thrown up by the waves, and are said to turn over small stones in quest of insects with much dexterity. The common turnstone, Cinclus interpras ($p l .95$, fig. 7), is abundant in Europe, while the American species (C. melanocephalus) is quite as abundant in America.

Fam. 2. Ardeide. Another large family, containing the cranes, herons, storks, and ibises. They inhabit every country of the world, and may generally be readily distinguished by their long necks and legs, and attenuated general appearance. They are mostly birds of large size.

Sub-fam. 1. Psophina, or Trumpeters. Bill moderate, rather short; wings and tail short ; tarsi long ; feet moderate. Size large ; color dark.

The trumpeters, so called from their loud notes, inhabit South America, where they are found in danp or marshy places in the forests. They seem to partake somewhat of the character of gallinaceous birds, and some species have very handsome plumage. The common trumpeter (Psophia crepitans) is frequently seen in collections.

Sub-fam. 2. Gruine, or Cranes. Bill long, straight, strong; wings rather long, with the tertial quills lengthened and pendent; tail short, pendent; tarsi very long, slender. Size large; colors plain.

The cranes are large birds, usually partial to marshes or swamps, though frequently seen on dry plains. They regularly migrate to the warmer regions during autumn and winter, and in summer return to the north. Their flights are performed during the night in large flocks, under the direction of a leader, and at such a great elevation that they are invisible to the naked eye, though their loud cries may be distinctly heard. Their nests are usually made amongst the herbage of marshy places, and are raised above the surface of the ground, sometimes to the height of the body when standing. The crane of Europe, Grus cinerea (pl. 93, fig. 3), and the American hooping crane (\mathcal{G}. americana), are examples of these birds.

The crowned crane, Balearica pavonina (pl. 94, fig. 4), is an African species.

Sub-fam. 4. Ardeince, or Herons. Bill long, acute, much compressed;
wings long; tail short, truncate; tarsi long, slender. Size large; colors plain.

A sub-family containing about one hundred birds, distributed throughout the world. They are usually seen walking over the surface of marshy grounds in quest of small quadrupeds or reptiles, or standing in shallow pools, quictly waiting the approach of fishes, which they capture by suddenly darting upon them with their powerful bills. They build their nests in trees. The purple heron, Ardea purpurea (pl.93, fig. 5), is one of the European species, as is also the pigmy heron, A. ralloides (pl. 93, fig. 12). The most common American species is the great heron (A. herodias), which is one of the largest wading birds of the United States.

The egrets form a distinct genus, distinguished readily by their beautiful snowy white plumage, of which the snowy heron of the United States, Esretta candidissima ($p l .93$, fig. 6), is an example.

The bitterns, which belorg here, are noted for their loud and peculiar cries. The best known are the European bittern, Botaurus stellaris (pl.94, $f i g .5)$, and the American species, B. minor.

The spoonbills are also arranged here. They are large birds, with beautiful rose colored and white plumage; and their name has been derived from the singular form of the bill, which is expanded and flattened at the cond, somewhat resembling a spoon. The roseate spoonbill, Platalea leucorrhodia ($p l .93$, fig. 4), is a native of Southern Europe and Africa.

Suh_fam. 4. Ciconine, or Storks. Bill long, straight, rather thick, and somewhat conical; wings long and ample; tail' moderate, broad; tarsi lengthened; feet moderate. Size large.

A small group of about twenty birds which, with one exception, reside only in the old world. In tropical countries, some of the storks l:equent the vicinity of towns and villages, feeding on the offal cast into the streets. They are, however, usually observed stalking about plains or marshy districts in quest of reptiles or other small animals. The Bengal aljutant (Ciconia argala) is protected by law in some of the cities of India, in consideration of his services as a scavenger.

The white stork of Europe, Ciconia alba (pl. 93, fig. 7), is a bird of sociable and mild disposition, held in much popular respect on account of its utility in destroying snakes and other animals usually considered noxious, and is easily tamed. In Turkey and other eastern countries, it is considered a sacred bird, and its destruction is strictly prohibited. The stork is known to have the singular habit of sleeping while standing on one leg, holding the other drawn up amongst the feathers of the abdomen, which is also the habit of the American sand-hill crane. The great Audubon made the curious discovery that the latter invariably rested on the same one, or, as he pleasantly expresses it, "has a favorite leg for resting upon."

The black stork (C. nigra) is another European species.
The only American species allied to the stork is the Mycteria americana, found in South America.

Sub-fam. 5. Tantalince, or Ibises. Bill lengthened, slender, curved, compressed; wings rather long; tail moderate; tarsi usually rather long,
robust ; toes long; size mostly rather large; colors usually gay, sometimes with metallic lustre.

About twenty-five species of handsome birds form this sub-family, which inhabit all countries, and resemble in general characters the herons and storks. The North American species are the wood ibis (Tantalus loculator) ; the scarlet ibis (Ibis rubra), which is clothed in beautiful scarlet plumage ; the white ibis (I. alba); and the Mexican ibis (I. falcinellus). There are, however, several South American species. The crested ibis, I. cristatus (pl. 95, fig. 3), is an Asiatic species.

The most distinguished species of ali these birds is the Egyptian ibis (I. religiosa), which was held sacred by the ancient Egyptians, and is found embalmed in immense numbers. It is yet found inhabiting the banks of the Nile. The large white ibis (I. alba) is another African species.

Fam. 3. Scolopacide. Embraces the snipes, godwits, avocets, sandpipers, and other birds, which frequent the shores of both salt and fresh waters. They are easily recognised by their small size, long, slender bills, and long legs, and are shy and harmless in their dispositions. Several species are esteemed as delicate articles of food.

Sitb-fam. 1. Limosina, or Godwits. Bill long, slender, curved; wings long and pointed; tail short; tarsi long, slender ; toes long. Size larger than usual in this family; colors plain.

About twenty-five species of these birds, known by the names of godwits and curlews, inhabit the various countries of the world. Those resident in the United States are the great marbled godwit (Limosa fedoa); the smaller godwit (L. hudsonica) ; the long-billed curlew (Numenius longirostris) ; and the northern curlew (N. borealis). The rufous godwit, L. rufa ($p l .93$, fig. 9), and the curlew, N. arcuatus (pl. 94, fig. 7), are European species.

Sub-fam. 2. Recurvirostrina, or Avocets. Bill long, slender, compressed, sometimes curved upwards; wings long, pointed; tail short; tarsi very long. Size various, never large ; colors varied.

The avocets and stilts, which are the birds constituting this group, are distributed throughout the globe. The former have the bill curved upwards very decidedly; the latter but slightly, and are remarkable as being the longest legged birds, in proportion to the size of their bodies, of any of the waders; hence they have derived their name. The European avocet, Recurvirostra avocetta (pl. 93, fig. 10); the American avocet (R. americanu) ; the European stilt, Himantopus allicollis (pl. 95, fig. 6) ; and the American black necked stilt (H. nigricollis), are common species.

Sub-fam. 3. Tringince, or Sandpipers. Bill long, slender, compressed; wings long, pointed; tail moderate, truncate; tarsi generally long and slender, sometimes rather short ; toes long. Size mostly small.

An assemblage of about fifty little birds which inhabit the sea shores as well as the borders of lakes, rivers, and small inland streams of all countries. It is on the sea shore, however, that they are most abundant, and may constantly be seen running into the advancing waves, or during the recess
of the tide, ever busy in quest of minute shell-fish and other small marine animals upon which they subsist.

Several species are found on the Atlantic coast of the United States, of which the rufous sandpiper, Tringa rufescens ($p l .95$, fig. 4), and the pigmy sandpiper (T. minuta), are good examples. Others inhabit the small lakes and the borders of small streams, such as Bartram's sandpiper (Totanus burtramius), and the spotted sandpiper (T. macularius). There are several European species, of which the common sandpiper, T. calidris ($p l .94$, fig. 8), and the green sandpiper, T. ochropus ($p l .94$, fig. 13), are examples.

Sub-fam. 4. Scolopacinee, or Snipes. Bill long, straight, rather slender; wings moderate, pointed; tail short, rounded; tarsi long; toes long, slender. Size larger.

These birds frequent swampy woods and forests, or open marshes and borders of rivers. The snipe of Europe, Gallinago major (pl. 93, fig. 8), and the grey snipe of the United States (G. wilsoni), are good examples of this group.

The woodcocks belong here. There are two species only, one of which, Scolopax rusticola, is diffused throughout the old world, while its relative, the American woodcock (S.minor), is restricted to North America. Both are in much request by sportsmen, and in high esteem as delicacies for the table.

Sub-fam. 5. Phalaropince, or Phalaropes. Bill rather long, straight, and slender; wings long, pointed; tail short; tarsi short; toes moderate, and semi-webbed or lobed. 'Size small : colors handsome.

The few birds composing this group inhabit the north of both continents. They are usually observed in small parties swimming on the borders of the sea, or of lakes or ponds, which they are enabled to do with great facility, by means of their curiously lobed feet. The northern phalarope (Phalaropus hyperboreus), and Wilson's phalarope (P. wilsoni), are often met with.

Fam. 4. Palamedeide. A limited family, comprising a few tropical birds remarkable for their very large tarsi and feet, and otherwise singular forms.

Sul-fam. 1. Palamedeina, or Screamers. Bill short, curved, wings lengthened, with the shoulders furnished with spurs; tail moderate, tarsi long, very robust ; toes lengthened. Size large.

The birds of this group are peculiar to South and Central America, frequenting marshes and the borders of lakes and rivers. They are said to have very discordant voices. The horned screamer, Palamedea cornuta (pl. 95, fig. 2), a common species, has a singular projecting, horn-like protuberance from its forehead, and its wings armed with curved, acute spurs, which it is said to use defensively with great readiness.

Sub-fam. 2. Parrince, or Jacanas. Bill long, slender, straight; wings long, pointed; tail short; tarsi long, slender; toes very long, slender; shoulders armed with spurs. Size small.

These singularly footed birds are found in the warmer parts of the world. The extraordinary length of their toes and claws enables them to walk over the plants that float on the surface of the water while seeking their food, which consists principally of aquatic insects. The chestnut-colored jacana
(Parra jacana), and the Indian jacana, P. indica (pl. 94, fig. 9), are suitable examples and common species.
Fam. 5. Rallide. This family contains a large number of birds, which are more aquatic in their habits than any of the preceding, and live almost exclusively in marshes. The American and European species are known by the names of rails, crakes, coots, mud-hens, and gallinules.

Sub-fum. 1. Rallina, or Rails. Bill various, frequently short, straight, sometimes long, curved ; wings short, rounded ; tail short ; tarsi and feet long, slender. Size mostly small ; colors plain.

The rails and crakes inhabit all parts of the world, taking refuge in marshes and the thick vegetation of the margins of rivers, through which the peculiarly compressed form of their bodies enables them to pass very readily. They also swim and dive with much ease. There are several European species, such as the dusky rail, Rallus aquaticus (pl. 95, fig. 8), and the corn crake, R. crex ($p l$. 95, fig. 9). The American species are the Carolina rail (Ortygometra carolina), the little black rail (O. jamaicensis), the New York rail (O. noveboracensis), the clapper rail (Rallus crepitans), and the river mud-hen (R. elegans).

Sub-fam. 2. Galdinulince, or Gallinules. Bill short, upper mandible advancing on the forehead, compressed; wings short, rounded; tail short ; tarsi and toes long and slender. Size larger ; colors generally gay.

These are amongst the most richly colored birds in this order. They are natives of the warmer and temperate regions, and are represented as being less aquatic than many of the preceding tribes. The genus Porphyrio, which is classed here, contains numerous species, nearly all of which have their plumage of deep blue color, such as the hyacinth gallinule, Porphyrio hyacinthinus (pl. 94, fig. 11).

The coots also belong to this group. They are remarkable for their curiously lobed feet, which seem to give them an intermediate character between the wading and swimming birds. The black cont (Fulica atra) is the European species; the only species found in the United States is the American coot (F. americana).

Order VIII. Anseres, or Swimming Birds.

This order contains all the birds which have the feet webbed and are otherwise prepared to inhabit the water, upon the surface of which the majority of species pass the greater part of their lives. They usually have the tarsi placed more posteriorly than is the case with those which compose the other orders, so much so that some species can walk only with difficulty. The toes in all the birds of this division are connected by a membrane, which thus forms the instrument by which swimming is accomplished, in addition to which many species have their bodies and plumage admirably constructed for living in their favorite element.

Fam. 1. Anatide. This family comprises the flamingoes, geese, swans, and ducks.

Sub-fum. 1. Phcenicopterince, or Flamingoes. Bill large, compressed, suddenly bent downwards in the middle; tarsi very long, slender; toes short and webbed. Size large ; colors usually scarlet and white.

These singular birds are natives of the warmer parts of the world. They are usually observed on the sea shore or in the salt marshes, in flocks of many individuals, one of which, it is said, acts as sentinel while the others are feeding or resting. They are very shy birds, and have very handsome scarlet and white plumage. The unusual form of the bill enables these birds to search for small shell-fish and other animals in the sands or marshes by a process resembling hoeing. The scarlet flamingo, Phenicopterus ruber (pl. 93, fig. 11), is an American species, common on the banks and at the mouths of the great rivers of South America, and which occasionally visits Florida. There are four other species.

Sub-fam. 2. Anserince, or Geese. Bill about as long as the head, sloping to the tip, which has a large, broad nail, compressed, and with the marginal laminæ apparent; wings long; tarsi short; toes short and strongly webbed. Size large ; colors plain.

There are about forty species of geese, which are natives of all parts of the world. On the land they walk with facility, and are very buoyant and graceful on the surface of the water. They possess great power and rapidity of flight, and in their migrations mostly move in two lines meeting in a point anteriorly, which is supposed to be always occupied by an experienced leader.

The domestic goose is principally derived from the grey goose (Anser ferus), an European species, which appears formerly to have been abundant throughout that continent, but is now much more rare. The white-fronted goose (A. albifrons) is also probably the ancestor of some of the varieties of the domesticated bird. It is an inhabitant of both Europe and America, and breeds in the north of both continents. These two species resemble, to a greater or less extent, in appearance and habits the geese of the farm-yard ; but many other species have been tamed in different countries, and in fact nearly all the geese appear to be capable of domestication. The other European species are, the bean goose, A. segetum ($p l .92$, fig. 7), the pink-footed goose (A. brachyrhynchus), the barnacle goose (A. leucopsis), so called from the ridiculous idea which formerly prevailed, that it was hatched from a shell called the barnacle, the red-breasted goose (A.ruficollis), the Egyptian goose (A. agyptiaca), and some others.

The most common wild goose of the United States is the Canada goose (Anser canadensis), which migrates northwards in the spring and returns in autumn, during both of which journeys it attracts great attention on account of its peculiarly formed flocks when flying, and its loud cries. "The flight of the wild goose," says Wilson, "is heavy and laborious, generally in a straight line or in two lines approximating to a point (like the letter V) ; in both cases the van is led by an old gander, who every now and then pipes his well known honk, as if to ask how they come on, and the honk of 'all's well' is generally returned by some of the party. Their course is in a straight line, with the exception of the undulations of their
flight. When bewildered in foggy weather they appear sometimes to be in great distress, flying about in an irregular manner and for a considerable length of time over the same quarter, making a great clamor. On these occasions, should they approach the earth and alight, which they sometimes do to rest and recollect themselves, the only hospitality they meet with is death and destruction from a whole neighborhood already in arms for their reception. Wounded geese have in numerous instances been completely domesticated, and readily pair with the tame grey goose. The offspring is said to be larger than either, but the characteristic marks of the wild goose still predominate."
Another large American species is the snow goose, A. hyperboreus, which is entirely white. It is not so frequently seen as the Canada goose, butoccasionally is shot on the Atlantic coast and in the rivers. The other American geese are the brant (A. bernicla) and some others which are also European species. Other geese are inhabitants of Asia and Africa.

Sub-fam. 3. Cygnince, or Swans. Bill about the length of the head, covered at base with a soft cere ; wings moderate ; tail short ; tarsi moderate ; feet large; neck very long. Size large, color mostly white.

There are about ten species of swans inhabiting various countries of the globe, but principally distributed in the northern latitudes. They live on the lakes and rivers generally in small parties, subsisting on various aquatic plants. There are several European species, one of which, the mute or tame swan, Cygnus olor (pl. 91, fig. 7), is well known as being almost domesticated. "This species," observes Sir William Jardine, "is chiefly known as an ornament on our rivers and artificial waters, and at a very early period of our history so much importance was attached to having these birds that laws were enacted, and it required a certain qualification and sometimes royal consent for persons to keep them on their domain." At the enumeration of these birds in 1843 the number owned by Queen Victoria in the various lakes and waters of the grounds attached to her palaces was 232, a fact which shows the high estimation in which it is yet held as an ornamental bird. The other European species are the hooper swan, C. ferus (pl. 91, fig. 8), Bewick's swan (C. bewickii), and the Polish swan (C. immutabilis).

There are two American species, the trumpeter swan (C. buccinator) and the western swan (C. americanus). The former is frequently met with in the waters throughout the whole country, the latter is more western and southern in its range. They much resemble in history the European swans. In California and Oregon a large species is found which has a black neck and back (C. nigricollis). An entirely black swan inhabits Australia, C. atrata.

Sub-fam. 4. Anatinee, or Fresh Water Ducks. Bill rather long; broad, depressed, lateral margins lamellated; tarsi short, compressed; feet large. Size smaller than the preceding, colors various.

This sub-family contains about seventy-five species of ducks, all of which habitually live in fresh waters though occasionally seen on the seashores, and reside in all countries.

The origin of the common domestic duck is the mallard, Anas boschas ($p l .92$, fig. 8), a species which inhabits both Europe and America. It is very abundant in some districts of the United States in the winter, and is shot and otherwise captured in large numbers. It has been domesticated for many centuries, and is now in the western United States frequently taken young and reared in the farmyard. The other species of North America are the dusky duck (A. obscura), the gadwall (A. strepera), the widgeon (A. americana), the pintail duck (A. acuta), the shoveller (\boldsymbol{A}. clypeata), the green-winged teal (A. carolinensis), the blue-winged teal (A. disons), and the summer or wood duck (A. sponsa). The latter is the most beautiful of the American ducks, and has no superior in its class except the mandarin duck of China, A. galericulata (pl. 92, fig. 9). The summer duck inhabits the whole of North America, and unlike any other species makes its nest in a hollow tree, sometimes at considerable elevation. Nearly all the American species are found in Europe, though a few are peculiar to the latter continent, as the European teal, A. crecca ($p l$ 91, fig. 10).

The musk duck or Muscovy duck, as it is mostly called (A. moschata), belongs here. It is a native of South America, and is extensively domesticated.

Sub-fam. 5. Fuliguline, or Sea Ducks. Bill rather lengthened, sometimes short, elevated at base; wings moderate, pointed; tail generally short; tarsi short; toes long and fully webbed. Size various, colors often gay.

About forty species are arranged here, which live almost exclusively in salt water, subsisting on shell fish, crustacea, fishes, and marine plants. The most celebrated species is the canvas-back duck (Fuligula valisneria), which is esteemed as a great delicacy for the table. It inhabits the whole of North America. There are several other North American species, such as the pochard or red-headed duck (F. ferina) ; the scaup or black-headed duck (F. marila); the ring-necked duck (F. rufitorques) ; the ruddy duck (F. rubida) ; the velvet duck (Oidemia velvetina), which has its entire plumage of fine black resembling velvet; the surf duck (O. perspicellata) ; the scoter, O. americana (p l. 91, fig. 9) ; the king duck (O. spectabilis) ; a large species, the eider duck (O. molissima), remarkable for the softness of its feathers ; the golden eye (Clangula americana) ; the western duck (C. dispar) ; the buffel-headed duck (C. albeola) ; a very handsome and common small species, the harlequin (C. histrionica) ; the long-tailed duck or south southerly (Harelda glacialis), and some others.

Nearly all the species here mentioned are also found in Europe.
Sub-fam. 6. Mergina, or Mergansers. Bill straight, slender, elevated at base and covered towards the tip, lateral margins serrated; wings moderate, pointed ; tail short; tarsi short; toes moderate. Size various; colors generally rather gay and agreeable.

About ten species only constitute this group. They are birds of very singular appearance, being apparently ducks in all respects except their narrow and lengthened bills. They inhabit the northern portions of both
hemispheres, where they remain until the lakes and rivers are entirely covered with ice, when they return to more temperate regions. They subsist almost entirely on fishes and other aquatic animals which they catch by diving. The merganser or large sheldrake (Mergus merganser), the red-breasted merganser (M. serrutor), and the hooded merganser, M. cucullatus ($p l .92$, fig. 10), are the species common to the shores of North America and Europe. Another, which is occasionally observed, is the white merganser (M. albellus).

Fam. 11. Colymbide. A small group containing the divers and grebes, birds which live almost entirely in the water, rarely venturing on the land. They have the legs inserted more posteriorly than any other swimmers, which enables them to move on the water with great velocity.

Sub-fam. 1. Colymỏina, or Divers. Bill long, straight, compressed, very acute; wings long, pointed; tail short ; tarsi short, compressed; toes long, fully webbed before. Size large.

Three birds only belong here. They breed within the arctic circle, but migrate to more temperate climates during winter, and are usually observed on the rivers and lakes swimming in search of aquatic animals which constitute their food. They swim and dive with great faciiity and swiftness, and are able to remain a long time under water, exposing only the bill or part of the head when they return to the surface. The great northern

- diver or loon, Colymbus glacialis (pl.91, fig. 3), the black-throated diver (C. arcticus), and the red-throated diver (C. septentrionalis), are the known species.

Sub-fam. 2. Podicepince, or Grebes. Bill rather long, straight, compressed, tip acute; wings short; tail very short or rudimental ; tarsi short, compressed; toes long and broadly lobed. Size smaller.

There are about twenty-five species of grebes, which are scattered over the world, and usually observed near the sea-coast. They are excellent swimmers and divers, and are said to pursue fishes to a considerable depth in the water. The crested grebe, Podiceps cristatus ($p l .91$, fig. 1), the horned grebe (P. cornutus), the little grebe, P. minor ($p l .91$, fig. 2), and several other species are found in both Europe and America. A very curious bird of this group is the sun bird or sun grebe of South America, Heliornis surinamensis (pl.94, fig. 12). It is chiefly seen on the banks of rivers and creeks, and possesses considerable beauty of plumage.

Fam. 3. Alcide. Contains the auks, guillemots, penguins, and some other similar birds, the greater part of which inhabit the polar circles.

Sub-fam. 1. Alcine, or Auks. Bill rather short, much compressed, tip of upper mandible hooked and acute; wings long and perfectly formed; tail short ; tarsi short, compressed; toes webbed. Size various.

These birds are very abundant in northern latitudes, but appear only occasionally in more temperate regions. They live chiefly in the water, but are capable of flying (which is not the case with some birds of this family). The great or king auk (Alca impennis) is the largest species, the razor-billed auk, A. torda ($p l .91, f i g .15$), and the puffin, Fratercula arctica ($p l .91$, fig. 14), are other well known species.

The little auks of the genus Phaleris are arranged here. They inhabit exclusively the northern regions, and partake of the general characters of the other birds of this group.

Sub-fam. 2. Spheniscince, or Penguins. Bill rather long, straight, compressed; wings very short or rudimental, and covered with scale-like feathers; tail short, stiff; tarsi very short; toes moderate. Size generally rather large.

The penguins, of which about twenty species are known, are found in the Southern Ocean, having been observed in the highest southern latitudes yet visited by voyagers, though some species inhabit the islands of the extreme south of both continents. They are mostly seen in small parties in the open sea, or standing upright on the floating fields of ice; but, as the breeding season advances, they approach the islands in immense flocks. Their power of swimming is extraordinary; and, assisted by their fin-like wings, they dart with great swiftness through the most stormy sea. These birds have been observed swimming in the ocean at a distance of three hundred miles from land. The crested penguin, Eudytes cristatus (pl. 92, fig. 2), the Patagonian penguin, Aptenodytes patagonica (pl. 91, fig. 13), and other species, are frequently seen in collections.

Sub-fam. 3. Urina, or Guillemots. Bill rather long, slender, and strong; wings and tail short; tarsi short and compressed; toes moderate. Size small.

A group of birds almost entirely confined to the northern regions, whence they occasionally migrate into more temperate latitudes. The little guillemot (Mergulus alle), the black-throated guillemot (Uria antiqua), the foolish guillemot (\boldsymbol{U}. troile), the black guillemot (\boldsymbol{U}. grylle), and about ten other species are known.

Fam. 4. Procellaride. Embraces the albatrosses and petrels, birds of great power of flight, inhabiting the sea-shores of the whole world, but most abundant in southern latitudes.

Sub-fam. 1. Diomedeina, or Albatrosses. Bill long, robust, curved at the tip; wings very long, narrow ; tail short, rounded; tarsi short, robust ; feet large. Size large.

These, which are the largest of sea-birds, inhabit both hemispheres, but are most abundant in the Southern Ocean. They are sometimes seen at great distances from the land, and are capable of long-continued and vigorous flight. The great white albatross, Diomedia exulans (pl. 91, fig. 12), the green-billed albatross (D. chlororhyncha), the sooty albatross (D. fuliginosa), are the principal known species.

Sub-fam. 2. Procellarina, or Petrels. Bill rather short, slender, compressed, tip hooked; wings long, pointed ; tail moderate, sometimes forked; tarsi generally long, slender; feet moderate, fully webbed. Size small.

A group of about sixty birds, mostly of small size, known to seamen by the names of sea-pigeons, petrels, Mother Carey's chickens, \&c., inhabiting the seas of the whole world. During heavy gales, some of the species are most active, and appear to walk, with their wings expanded, on the tops of the waves. They feed on small marine animals and sea-weeds, and will
follow ships for immense distances, for the purpose of picking up such articles suitable for their food as may be thrown overboard. The cape pigeon, Procellaria capensis (pl. 91, fig. 11), and the stormy petrel (Thalassidroma pelagica), are common species.

Fam. 5. Laride. This extensive family embraces all the common and generally handsome sea-birds known by the names of gulls and terns. They are natives of the sea-shores of all countries.

Sub-fam. 1. Larina, or Gulls. Bill rather long, straight, curved at the tip, which is acute; wings long, pointed ; tail moderate ; tarsi short, strong; feet moderate, fully webbed. Size various; colors mostly white, and light cinereous.

Nearly fifty species of these birds are scattered over the marine portions of the world, sometimes, during winter, being found in the marshes or on the borders of rivers, but returning to the sea coast during summer. They are generally gracefully formed birds, with pure white or cinereous plumage. The black-headed gull (Larus atricilla), the kittiwake (L. rissa), the ivory gull, L. eburneus ($p l .91, f i g .5$), a beautiful pure white species, the burgomaster (L. glaucus), the black-backed gull or saddle-back (L. marinus), and the herring gull, L. argentatus ($p l .92$, fig. 11), are the principal species of the American sea-coasts, and are also found on those of Europe.
Sub-fam. 2. Sternince, or Terns. Bill rather long, slender, straight, sharp; wings very long, pointed; tail long, generally forked; tarsi and feet short; Size various; color mostly white.
These handsome birds, known on the Atlantic coasts of the United States by the name of sea-swallows, frequent all the sea-coasts of the world. They are continually on the wing, and their flight is frequently elevated, but at other times near the surface, and of long continuance. When seeking their food, which consists of small marine animals, they generally perform large circles, and, upon discerning a suitable object, suddenly dart upon it. At other times they sweep over the surface of the water in the manner of swallows, seizing with their bills any floating objects. The great sea swallow, Sterna hirundo (pl. 92, fig. 12), the little tern (S. minuta), and the sooty tern, S. nigra (pl. 91, fig. 4), are common species.

There are nearly one hundred species of terns.
Fam. 6. Pelecanide. Contains the pelicans, cormorants, tropic birds, and some others. They are generally large and powerful birds, and inhabit principally the southern hemisphere.

Sub-fam. 1. Phcetonince, or Tropic Birds. Bill rather long, broad at base; wings long, pointed; tail moderate, two middle feathers lengthened ; tarsi and feet short. Size rather small; color white.
Four or five species of these birds inhabit the southern seas, and are usually observed at a considerable distance from land, skimming over the surface of the water, seizing such fishes and other marine animals as approach the surface. They are the especial enemies of the flying fish, and are said to rear their young in hollow trees or in the fissures of rocks. The white tropic bird, Phaton athereus (pl. 92, fig. 4), is a good example of these birds.

Sub-fam. 2. Plotine, or Darters. Bill long, slender, acute; wings long; tail rather long; tarsi short, very strong; feet large, fully webbed; neck long and slender. Size rather large ; color black.

The darters, of which only four species are known, inhabit the southern regions of both continents. In the southern states of the North American confederacy, a species is frequent, and is known by the name of "snake bird," on account of its long, slender neck, and its habit of swimming with its body submerged, the neek and head only being visible, and presenting much the appearance of a serpent. It is a constant resident in Florida, and is the Plotus anhinga ($p l .92$, fig. 5). The other species inhabit Africa and Australia.

Sub-fam. 3. Pelecanina, Pelicans and Gannets. Bill long, rather slender, tip hooked; lower mandible and throat furnished with a pouch, capable of more or less distension ; wings long, pointed; tail moderate; tarsi short; toes moderate, rather long, all four of which are united by the web. Size generally large ; color mostly white in adults.

The pelicans, which are at once recognised by their large pouches attached to the under mandible, are scattered throughout the world, living indifferently on rivers, lakes, or the sea coast. The principal American species is the large white pelican (Pelecanus americanus), of which we beg the liberty of extracting the following account from Audubon.
"As this species is often seen along the sea shores, as well as on fresh water, I will give you a description of its manners there. While on the island of Barataria, in April, 1837, I one afternoon observed a number of white pelicans swimming against the wind and current, with their wings partially extended, and the neck stretched out, the upper mandible alone appearing above the surface, while the lower must have been used as a scoop net, as I saw it raised from time to time, and brought to meet the upper, when the whole bill immediately fell into a perpendicular position, the water was allowed to run out, and being again raised upwards, the fish was swallowed. After thus swimming for about a hundred yards in an extended line, and parallel to each other, they would rise on wing, wheel about, and re-alight at the place where their fishing had commenced, when they would repeat the same actions. I continued watching them more than an hour, concealed among a large quantity of drifted logs, until their fishing was finished, when they all flew off to the lee of another island, no doubt to spend the night there, for these birds are altogether diurnal. When gorged, they retire to the shores, to small islands in bays or rivers, or sit on logs floating in shallow waters at a good distance from the beach, in all which situations they are prone to lie down or stand closely together."

This bird is a constant resident in the southern parts of the United States, as is also the brown pelican (P. fuscus), a smaller species, but very similar in general history.

The great pelican (P. onocrotalus), and the hairy pelican, P. crispus ($p l .91$, fig. 6), which are the largest of all species, inhabit the seas of Europe and Asia. Six or eight other species are known.

The frigate pelican, or man-of-war bird, Tachypetes aquilus (pl. 92, fig. 3), is common to hoth the old and new worlds.

The gannets are also arranged here. These are not so large as the pelicans, though similar in many respects, and are found in immense numbers on desert and rocky islands in various parts of the world. The booby, Sula bassana (pl. 92, fig. 6), and the brown gannet (S. fusca), are good examples of these birds, of which there are about a dozen species.

Sub-fan. 4. Carbonina, or Cormorants. Bill straight, slender, hooked at the tip; wings moderate, pointed; tail moderate, rounded; tarsi short, compressed ; toes ling, all four united by the web of the feet. Size rather large ; color mostly black.

The cormorants have been proverbial for their voracity from time immemorial, and may be termed the vultures of the sea. They are found in small parties on all sea coasts, and are very successful fishers, being capable of diving and swimming under the water with great velocity. In this manner they capture their prey, which consists principally of fishes, and which, it is said, are caught carefully by the head, so that the scales and fins may not impede their being swallowed.

- There are about thirty species of cormorants, of which the common cormorant, Carbo cormoranus ($p l .92$, fig. 1), the crested cormorant (C. dilophus), the violet cormorant (C. violaceus), are the most common American species; the first of which is also common on the sea shores of Europe.

With this sub-family we complete the Class of Birds.

VERTEBRATA.

Class IV. Mammalia (Mammals).

The class of Mammalia, it is well known, stands at the head of the vertebrated animals ; the decided superiority of its organization, the multiplicity of its aptitudes, sensations, and motions, which other classes do not possess, entitle us to consider it a step in the ascending scale of beings, and indeed the last of the animal creation.

The mammals are vertebrates whose body is cuvered with hairs, or modified hairs, by opposition to the feathers of birds and scales of reptiles and fishes ; possessing, like birds, warm and red blood; a heart with two ventricles and two auricles, and breathing by lungs. Mammals, instead of laying eggs like other vertebrates, bring forth living young, which are nourished by mammæ situated on the inferior surface of the female, sometimes on the breast and sometimes on the abdomen.

The skin of the mammals is more or less thick, sometimes transformed into a cuirass, as in the tatous, or else the upper part of the body is covered by imbricated scales, as in the pangolins. Generally its exterior surface is covered with hairs, which sometimes appear under the form of spines, bristles, or wool. The ordinary hairs are smooth, in most cases directed backwards. When the hairs on the nape and neck are very long, they form a mane; on the lips and cheeks, or on the chin, they constitute a beard; above, on the top of the head, a tuft, or wig; and on the extremity of the tail, a tuft again.

Sometimes, as in the horse, the tail is furnished with long depending hairs hanging down from its very base ; at other times, long hairs hang down from each side of the tail. In several mammals, as, for example, squirrels, the long hairs on the head are directed towards both sides, right and left. Some, again, as the lynx and squirrel, have a long bush of hairs at the end of each ear. There are also mammals whose whole body is covered with long hairs. The hairs are called wool when they are fine, soft, and curled or crisped. In some, as the sheep, the body is only covered with wool, but in many mammals the wool is found between the smooth hairs, and covered by the latter, which extend beyond it. This is the under-wool analogous to the down in birds. Bristles are the stiff, stout hairs ; in the hog, for instance, the whole body is covered with them; in other animals they are limited to the angle of the mouth, or behind it, where they are very long, and are then called moustaches or whiskers. When the hairs are very thick, acute at the extremities, and horny, they are called spines, as in the urchin or hedgehog, and porcupine. In some mammals we find the posterior part of the body, or a part of the breast, the knees and the sole of the feet, deprived of hair. Usually in such cases the skin is harder in those parts than where it is covered with hairs. These bald
places are called callosities. The end of the snout and the under surface of the toes want the hair in most of the mammals. The Cetacea have no hairs at all, and the Sirenida only at the margin of the snout and eyelids.
Often the color changes according to the age, the climate, the locality, and the season of the year. In domesticated animals the color of the hair undergoes quite as many variations, and becomes also often longer or shorter, or it crisps like wool, although the hair may have been straight in the original stock of their race. Many mammals are provided with appendages on their forehead, which may be presented under three types: horns, as in sheep and oxen ; antlers, as in deer ; and agglutinated hairs, as in the giraffe and rhinoceros. Horns proper are so placed as to cover a horn core, a projection of the frontal bone. They increase in size every year, without being ever shed, and usually occur in both sexes. They are found in oxen, sheep, goats, antelopes, chamois, \&c.

The horns of deer are more properly termed antlers, in French called bois, or wood. These are entirely solid, and are shed every year, to give place to a larger pair. The female rarely possesses them; an exception is, however, found in the reindeer. The annual shedding and growth of the horns is very curious and interesting. We take the example of the deer, according to Bell's History of British Quadrupeds. "Let it be stated first that the horn is placed upon a protuberance on each side of the frontal bone : the part which rests upon the bone, forming the base of the horn, is surrounded by a rough protuberant ring called the burr. Now the principal stem of the horn has the name of the beam; the irregular divisions near its extremity are termed branches, and are distinguished from the true antlers, which are the essential branches belonging to the species, and stand generally forwards, of which the first is called the brow-antler, the next the bezantler, and the third the royal; the crown is termed the surroyal. By the number of these antlers, and other marks in the development of the horns, the age of the animal may be nearly ascertained. The growth of the horns is an astonishing instance of the rapidity of the production of bone under particular circumstances, and is certainly unparalleled in its extent in so short a period of time. A full grown stag's horn probably weighs twentyfour pounds, and the whole of this immense mass of true bone is produced in about ten weeks. During its growth, the branches of the external carotid arteries, which perform the office of secreting this new bone, are considerably enlarged, for the purpose of conveying so large a supply of blood as is necessary for this rapid formation. These vessels extend over the whole surface of the horn as it grows. and the horn itself is at first soft and extremely vascular, so that a slight injury, and even merely pricking it, produces a flood of blood from the wound. It is also protected at this time with a soft hairy or downy coat, which is termed the velvet; and hence the horns are said to be in the velvet during their growth. When completed, the substance of the horns becomes dense, the arteries become obliterated, and the velvet dries and falls off in shreds, a process which is hastened by the animal rubbing his horns against the branches of a tree. The horns remain solid and hard, constituting the most effectual weapons
of defence; and they are often used during the pairing season in violent and sometimes fatal combats between the males. After this season is over, absorption takes place at the point where the horn joins the boss or frontal process, and at length falls off, to be renewed again in due time. Such is this remarkable process in deer generally; the period at which it takes place varies according to the species."

Several maminals have on their faces membranous appendages, or else prominent folds of the skin, as, for example, on the nose of some bats. The lips in mammals are generally fleshy, the upper one sometimes fissured, and in a few cases even entirely wanting. The tongue, fleshy and movable, is connected with a bone called the hyoid, which is composed of several pieces, and suspended to the cranium by ligaments. The upper surface of the tongue possesses small warts or papillæ, which are generally blunt and soft, but in some genera are acute and more or less hardened. The nerves of taste extend to these papillæ, whence the name of nervous papillæ given to the latter. In some mammals the tongue is vermiform, long, and protractile ; in the leafnosed bat (Vampyrus phyllostoma) it is tubular, folded together, and also provided at its extremity with projecting papillæ. The giraffe can protrude the tongue considerably, and by this means take hold of surrounding objects.

In some mammals the nose grows into a proboscis; in others, on the contrary, it is very little or not at all apparent. Many kinds which live in water can shut the nostrils, or openings of the nose, when diving. The nostrils in the whale are on the top of the head, and in some of them they open exteriorly by a single opening. The sense of smell is more or less developed in mammals.

The eyes, invariably lodged in an orbit, are protected by two or three lids. They are of different sizes; in some very small, even hidden under the epidermis, as, for instance, the blind mouse (Spalax typhlus). The pupil is generally circular; but in some animals, as in cats, foxes, \&c., it is elongated vertically, while in others the elongation is horizontal. The eyes are furnished with eye-lashes. Many ruminants have a lachrymal opening at the inner angle of the eye; at least, there exists a cavity which secretes a fatty and black (often hardened) substance.

The size of the ear-opening, as well as that of the concha itself, is very variable; the latter sometimes is entirely wanting; where it exists, it is either erect, or hangs partially or completely down; the animal can also direct it more or less towards the place whence a sound comes. Most of the bats have before the ear an erect membrane, which is called ear-cover (antitragus), serving in a measure to this purpose. The seals have a similar adaptation, although less conspicuous. The ears of many other mammals can also be shut. The bats appear to possess a very delicate sensibility in the membrane of the ear, which is furnished with an abundance of nerves, as well as in the membrane of the wings.

In inost of the mammals the snout and toes perform the functions of prehensory organs; in the proboscidians, it is the proboscis. The snout, in some cases, is provided with peculiar papillæ-like projections: this is seen in the mole; the finger-like, elongated appendages of the proboscis of the
elephant; and of the upper, prehensile lip of the rhinoceros. The upper jaw is always immovable, and united to the skull, whilst the lower moves vertically against it, the latter always possessing two simple articulations placed at right angles in the higher groups.

The teeth, which are wanting in some few, vary very much in their number and their shape, and when they exist they are confined to the jaws upon which they rest, implanted into alveolæ. They are of four kinds, incisors, canines, molars, and premolars, which sometimes exist together, whilst sometimes only two kinds, or even only one is met with. Their relative position is invariable and well known, and their form very characteristic. The incisors are generally chisel shaped, sharp, and straight, seldom curved, and always prominent among the others, occurring in variable number, and inserted above in the premaxillary, and below on the symphyses of the lower jaw; in some genera, completely wanting. The canines, still oftener absent, are acute, with a conical crown and a single root, more or less curved, one in each half of the jaw, behind the incisors ; they are often much larger than the other teeth; sometimes, however, shorter, as for example in the shrews. The molars and premolars vary greatly, according to the nature of the food. In the Carnivora proper they have a compressed and cutting crown ; they are compressed, again, but tuberculous, in the beasts of prey feeding also upon vegetable matter; finally, they are sometimes flat, but usually furnished with enamelled ridges in all those mammals which feed chiefly upon plants or vegetable substances. They are generally provided with several roots. In the whales, the teeth in the upper jaw are replaced by the whalebones, which are elongated, falcate, elastic, and flexible plates, their points directed downwards, provided at their inner extremities with innumerable elongated and loose threads of the same substance as the whalebone itself. Ornithorhynchus instead of teeth has a pair of horny tubercles, and Echidna is provided on the palate with several rows of spines directed backwards.

Every bone composing the skull is united to its neighbor by intimate suture, and sooner or later is soldered to it, so as to form a continuous cavity for the brain. The skull articulates to the vertebral column, by means of two condyles, with the atlas or first vertebra of the neck. The articulation takes place below the great posterior opening through which the brain passes into the spinal canal. The lateral motion of the head does not take place upon the first vertebra, being performed by the first vertebra upon the second. The neck, whatever be its length, consists of seven vertebræ. In the supposed exception, the sloth, which appears to have nine, we find, on careful examination, that the two last are really the two anterior dorsal vertebræ, as shown by the presence of floating ribs. They are distinguished by the small development of the lateral apophysis. The vertebræ of the back, to which ribs are always attached, vary greatly in number, but are always more numerous than the abdominal ones; their body is stouter than that of the neck vertebræ, and they diminish in size backwards. The abdominal vertebræ, on the contrary, increase in size backwards; they are easily distinguished from the vertebræ of the back by the absence of articu-
lating surfaces, there being no ribs connecting with them. The vertebræ which follow the abdominal ones are soldered together, and constitute the quadrangular ossa sacra, or sacrum, concave below and convex above. Their number is generally very restricted, and varies within narrow limits. The vertebral column terminates by the vertebræ of the tail, which in their form and number differ greatly from the others. The first ones still possess the canal for the spinal marrow, but it vanishes gradually ; and the last of the series consists of a cylindrical or prismatical body, more or less elongated, with rudimentary apophyses, or completely deprived of them.

The ribs correspond in number to the dorsal vertebræ ; they are elongated and curved cylindrical, prismatical, or compressed bones, without lateral processes, and never immediately connected with the breast bone below. The breast bone itself is composed of numerous cylindrical or compressed pieces, situated behind each other, with which the true ribs are united by means of cartilages. The others, or false ribs, are situated behind the breast bone; are always shorter, and are connected together by cartilaginous pieces.

Most of the mammals are provided with four legs ; the hind pair consisting of a thigh, a shank, a tarsus, and a foot; the fore pair, of an arm, a fore arm, a wrist, and a hand. The fore legs are generally shorter than the hind ones, and usually bent a little inwards; but, again, in some they are so short, and the hind so long, that when the animal attempts to walk on four legs, the anterior part of the body is much lower than the posterior part, even though the hind legs be considerably bent. Hence, it results that these animals, as kangaroos, \&c., prefer jumping or running on the hind legs alone. The opposite development of the legs, or the presence of fore legs longer than the hinder, is observed in the Asiatic orang outang, in the long-armed monkey, the sloth, \&c. In the bat, also, the fore legs, or rather the fingers, are very long, and between them and the hind legs the skin of the body is extended, so that by this means these animals can keep on the wing. In others the skin is less expanded, and serves only as a parachute, and not for the real act of flying. Mammals walk either on the toes alone, or else, as in the bear, on the entire sole of the foot. In the first case, the foot is generally long, and forms, with the lower end of the leg, the backward directed knee.

The feet are usually directed forwards; only in the walrus and seal, and slightly in the bat, the hind feet are directed backwards. Some are provided with short and broad fore feet, fitted for digging or scratching in the sand.

The normal number of toes is five, viz. the thumb, the innermost toe; next to this, the indicator-finger ; then the middle finger ; next to the latter, the ring-finger; and finally the outermost, the little finger. But in several genera there is one finger wanting to the hind feet; or two are wanting; or we find four toes to the fore feet, and five behind; or four everywhere ; or four to the fore, and three to the hind feet; or two before, and four behind; or two before, and three behind. These toes, however, are not always developed; as, for instance, in the case of a single hoof, or of two hoofs.

In others, again, they assume diverse degrees of development, more or less elongated, as, for instance, in those which are used for clasping or seizing. They are longer and thinner when destined only to walk or to dig. In some manmals, the thumb is opposed to the other fingers or toes, so that it works with the latter as a pincer. In this case, the feet are called hands. The use of the thumb is sometimes also very much reduced.

Generally, the extremities of the toes terminate by horny bodies, which are called hoofs, when they surround all the toes at once; nails, when they present themselves as mere plates on the upper surface and extremity of the toes; and finally claws, when they are compressed, pointed, curved, seldom straight, and inserted above at the extremity of the toes. When the claws approach nearer to the nature of the hoof, they are then called hoof-nails. Sloths and ant-eaters, when at rest, can bend backwards their long claws under the sole of the foot, whilst most of the cats and carnivora retract them into a fold of the skin. The two-hoofed mammals, and the hogs and the allied genera, besides the developed toes which are surrounded by the hoof, have usually two small rudimentary ones, provided with hoofs, which are called posterior hoofs, placed above and posterior to the true hoofs. The males of Ornithorhynchus and of Echidna possess, on the heels of the hind feet, a horny spur. The horny envelope sometimes is wanting to many toes, and this is especially the case for the thumb of a few genera. Sometimes, also, the toes are partly or entirely soldered together, or they are united into a membrane fitted for swimming. This membrane sometimes extends beyond the tips of the toes, and sometimes reaches only half their length (semi-palmated feet). The fore feet of Cetacea are in a very rudimentary state, and the hind feet are completely wanting.
For their protection and their defence, the mammals are provided with teeth, claws, or hoofs, and with antlers or horns. The elephant defends itself not only by means of the tusks, but also with its proboscis ; the skunk discharges at its enemy a fetid fluid, secreted by special anal glands; others attempt to escape by flight, or by feigned death; still others have spines, scales, or bony cuirasses, as means of defence. The quadrumana, or monkeys, make use of surrounding objects, as stones and sticks, to keep off their enemies.

The male lives either with one female alone or with several. The female brings forth young either once only or several times a year; and in the colder regions, this takes place during the warmest season. The female of most genera prepares for its young a soft bed; those only whose young can see and walk, or swim, immediately after birth, as is the case with the hoofed mammals, the seals and cetacea, \&c., do not provide such a litter, nor do those which carry about their young. The young of other mammals are very weak when just born, and are often unable to see before nine or fourteen days. The number of young at a birth varies; usually less as the animal is greater. The hog, however, constitutes an exception. Dogs, foxes, and cats bring forth three to six at a birth. The young are first suckled by the mother, and as long as she feeds them she displays towards them the warmest affection, exposing herself to every danger in protecting
them. In the case of mammals living in pairs, as in Carnivora, the male usually takes his part in this safeguard.

All mammals have a voice, which is very diversified, although not so much so as in birds.

Among all classes of animals, that of mammals is undoubtedly the one which is the most profitable to man, especially the domesticated kinds. Their flesh serves as food, as also the milk. The skin, fur, hair, and wool have a thousand applications. Several animal substances are used as medicines, and others as perfumery, still others as fuel (as for instance, the excrements of the camel) ; teeth, bones, hairs, horns, antlers, entrails, skin, muscle, tendons, as also blood and fat, are worked up and made use of in various ways. Finally, many serve us as guides in hunting, as beasts of burden, or as vigilant guards of life and property.

The class of mammalia exhibits the greatest variety of habits among its members. Created to inhabit chiefly dry land, it is met with in every situation and locality, from the edge of the water to the top of the mountains, from the surface of the ground and under it to the top of the trees, in forests, open land, dry and wet, everywhere, exposed to the bright sun of the equator and to the frozen regions of the poles. Some frequent watery places, the banks of rivers, lakes, the beaches and sea shores Still others, entirely pelagic, are never seen near the land, except when thrown ashore by storms or other accidental causes. Again, in relation with all these circumstances of habitation, there are habits and instincts by which each species secures its food, escapes the dangers of its enemies or attacks a defenceless prey, and provides for the perpetuity of its race.

Classification.

Of the numerous systems of classification of mammals hitherto proposed, no one appears satisfactory to us. From the time that whales and dolphins (Cetacea) were acknowledged to be mammals, they have been considered as the lowest of all, on account of their inhabiting the water, and the analogy of their form with that of fishes. In all systems of classification they are placed lowest. This position is assigned them in the Systema Naturæ of the great Linnæus. In Cuvier's Animal Kingdom, the Cetacea, as usual, are placed at the bottom of the class, the Ruminantia come next, then Pachydermata, then Edentata, then Rodentia, then Marsupialia, then Carnivora, Insectivora, Cheiroptera, and, finally, Quadrumana. Others make Pachydermata follow the Cetacea and precede Ruminantia, which appears to us much more correct. But the place assigned to Edentata and Marsupialia, we believe, is arbitrary, for, as they stand, they rather obscure than enlighten the affinities of the neighboring orders.

During the last ten years, a modification has been introduced into our systems, which consists of dividing the class into two sub-classes, namely, the Monodelphes, including the generality of mammals whose young, when just born, require no other care from their parent except to suckle them;
and the Didelphes, much less numerous, whose young come into the world at an epoch when they are not yet fully developed, and for that reason require more special and extraordinary care from the female, who is furnished with an abdominal pouch, where the young are sheltered, and at first permanently attached to the teat. The Didelphes have besides, two additional bones to their skeleton, called the marsupial bones.

This was a decided improvement, but the Edentata still remain isolated or scattered, without permanent place.

This fundamental division into two parallel groups corresponds exactly to another, based upon the presence or absence of a placenta, that part of the fæotal envelopes which unites the young more intimately with the mother, and by means of which they are supplied with blood. The Monodelphes are called Placentalia, whilst the Didelphes are Aplacentalia, or deprived of this organic connexion. Such a division may appear natural at first sight, as it seems to express some embryonic law. But embryology has not yet done all that we may expect from it with regard to our classification. It will furnish us one day with data by which the natural affinities and mutual relationships of the fundamental, and also minor groups, shall be unfolded. The embryology of mammals is still in its infancy, especially in that part of the genesis which relates to the earliest phenomena which take place immediately after the fecundation of the eggs.

The disposition of the minor groups in the systems just alluded to varies among the various authors, showing how far this class is from being understood. Thus the following arrangement was published in France in 1845.

Sub-Class I. Placentalia.

Order I. Primates: Families, Simiadæ, Lemuridæ, Tarsidæ, Chiromyidæ.
Order II. Tardigrada: Fam., Bradipodidæ.
Order III. Cheiroptera: Fam., Galeopithecidæ, Pteropodidæ, Vespertilionidæ, Noctilionidæ, Vampyridæ, Desmodidæ.
Order IV. Carnivora: A. Carnivora proper; Fam., Cercoleptidæ, Viverridæ. B.: Amphibia ; Fam., Phocidæ, Trichechidæ. C. Insectivora; Fam., Eupleridæ, Tupaiadæ, Gymnuridæ, Macroscelidæ, Soricidæ, Talpidæ, Erinaceidæ.
Order V. Rodentia: Fam., Sciuridæ, Muridæ, Pseudostomidæ, Spalacidæ, Hystricidæ, Leporidæ, Cavidæ.
Order VI. Pachydermata: Fam., Hyracidæ, Elephantidæ, Tapiridæ, Rhinocerotidæ, Hippopotamidæ, Suidæ, Equidæ.
Order VII. Ruminantia: Fam., Camelidæ, Antilopidæ.
Order VIII. Edentata: Fam., Dasypodidæ, Myrmecophagidæ, Manidæ.
Order IX. Sirenidia: Fam., Manatidæ, Halicoridæ, Rytinidæ.
Order X. Cétacea : Fam., Delphinidæ, Physeteridæ, Balænidæ.

Sub-Class II. Aplacentalia.
Order I. Marsupialia carnaria : Fam., Dasyuridæ, Didelphidæ, Peramelidæ, Myrmecobidæ, Tarsipedidæ.
Order II. Marsupialia frugivora : Fam., Phalangidæ, Phascolarctidæ, Macropodidæ, Phascolomydæ.
Order III. Monotremata: Fam., Ornithorhynchidæ, Echidnidæ.
In 1846, Ch. L. Bonaparte gave to the scientific world the following system.

Sub-Class I. Placentalia.

Series.
Section.
Order.
Family.

Sub-Class II. Ovovivipara.

Order 12. Marsupialia : Families ; Thylacinidæ, Dasyuridæ, Didelphidæ, Peramelidæ, Phalangistidæ, Halmaturidæ, Phascolomyidæ.
Order 13. Monotremata: Fam., Echidnidæ, Ornithorhynchidæ.
The above systematic arrangement does not appear satisfactory to us, and we therefore substitute the one which follows, although well aware that it is far from being perfect. It will no doubt undergo some changes in the relative position of the minor groups ; but so far as our great groups follow each other, we are confident that they express more exactly the development of the mammalian structure.

Class Mammalia.

I. Quidrumana.

Simiadæ, Cebidæ, Lemuridæ, Galeopithecidæ, Chiromyidæ.
II. Carnivora.
a. Unguiculata.

1. Digitigrada.

Felidæ, Hyænidæ, Canidæ, Viverridæ, Mustelidæ.
2. Plantigrada.

Cercoleptidæ, Procyonidæ, Ursidæ.
b. Pinnipedia.

Phocidæ.
III. Cheiroptera.
a. Frugivora.

Pteropodidæ.
b. Carnivora.

Vespertilionidæ, Vampyridæ.
IV. Insectivora.

Erinaceidæ, Soricidæ, Talpidæ:
V. Herbivora.
a. Rodentia.

Sciuridæ, Castoridæ, Muridæ (including Myoxina, Dipodina, Ctenodactylina, Murina, Spalacina, Arvicolina, Bathyergina, Saccomyina), Hystricidæ (including Hystricina, Dasyproctina, Echimyina, Octodontina, Chinchillina, Caviina), and Leporidæ.
b. Ruminantia.

Bovidæ, Antilopidæ, Cervidæ, Moschidæ, Camelopardalidæ; Camelidæ.
c. Pachydermata.

Equidæ, Suidæ, Hyracidæ, Elephantidæ, Palæotheridæ, Rhinocerotidæ, Hippopotamidæ, Anoplotheridæ.

d. Trichechida.
e. Sirenidia.
Rytinidæ, Halichoridæ, Manatidæ, Dinotheridæ.
\section*{VI. Cetacea.}

Heterodontidæ, Delphinidæ, Physeteridæ; Balænidæ.
VII. Marsupialia.
a. Carnivora.

Thylacinidæ, Didelphidæ, Dasyuridæ.
b. Insectivora.

Peramelidæ.
c. Herbivora.

Phalangistidæ, Phascolomyidæ,Macropodidæ (Halmaturidæ).
VIII. Edentata.
a. Tardigrada.

Bradipodidæ, Megatheridæ.
b. Edentata proper.

Manidæ, Myrmecophagidæ, Orycteropodidæ, Dasypodidæ.
c. Monotremata.

Echidnidæ, Ornithorhynchidæ.

A glance at the actual and terrestrial mammalian fauna of North America shows a scarcity of the types which we have placed at the bottom of the class: the two great groups of Edentata and Marsupialia have each but one species, both confined to the warmer part of the continent. The Pachydermata are represented by a single species also, not taking into consideration the introduced species, the horse, the ass, and hog. The Ruminantia are distributed into eight genera, seven of which comprise but one species, the introduced not included. The Rodentia are the most numerous: they form twenty-one or twenty-two genera, and count from eighty to ninety species; the rodents, it must be observed, are among the smallest mammals, and therefore strike the attention less than either the ruminants or pachyderms. Insectivora, twenty to twenty-five in number, are arranged into six genera. The Carnivora, the number of which is a little above thirty, are distributed into fourteen genera, several of which have only one species. The viverrine carnivora are almost completely absent. If future investigations shall increase the number of North American mammals, it cannot be but in favor of the rodents mostly: that group, therefore, may be considered as the most numerous in North America; next the carnivora proper; next the insectivora, then ruminants. The reasons for such proportions must be sought for in the physical condition of the continent: the small number of grass feeders is a very remarkable fact, and doubtless in direct relation with the proportion of carnivora. Thus America, although the continent of vegetation, has not received a proportional number of herbivora, showing that the equilibrium between the different orders of animals is more important than that of the vegetable and animal kingdom.

In our narrative of the history of each group we shall start from below and ascend the series which we have just presented, commencing accordingly with Edentata. In a natural method the extinct groups should always precede the living ones; but as they are generally less known, they will be found sometimes to follow the latter, and more specially so when doubts are entertained with regard to the family and genera to which they may belong.

Order I. Edentata.

The order of Edentata is composed of comparatively few animals, differing widely from each other, but agreeing in the common characters of absence of front teeth or incisors, and the presence of feet that are unguiculated, that is to say, terminated by large claws or nails. The Edentata existed in larger proportion during the tertiary epoch than in our days, and from considerations derived from palæontological evidences to be discussed hereafter, we suppose that they have lived during the deposition of the secondary beds, although no remains have yet been found in those deposits. It is also a fact of great importance that during the tertiary period the animals of this order attained to a bulk far surpassing that of any living representatives.

The Edentata may be divided into three groups, according to certain modifications in their organization, the Monotremata, the Edentata proper, and the Tardigrada.

Group 1. Monotremata.

The group of Monotremata has received its name from the peculiarity of having only one external opening for the seminal fluid, urine, and excrement, as in birds. They possess the marsupial bones, but have no external pouch in which the young pass one part of their embryonic life, as in Marsupialia. The mammæ themselves have been long a matter of doubt, as well as their mode of generation. According to some travellers these animals lay eggs. But if the mammæ do not exhibit a projecting nipple, still the mammary glands have been shown to exist on the abdomen in the form of numerous elongated, sub-cylindrical lobes, converging and opening into a small oval areola. The ear has no external concha. The structure of the skeleton presents many peculiarities by which this family is distinguished from any other. The sternum and shoulder bones join and encircle the fore part of the trunk. Their brain wants the corpus callosum, and the mass called corpora quadrigemina is imperfectly divided.

This group contains but two families, Ornithorhynchide and Echidnida, both of them belonging to Australia.

Fam. 1. Ornithoraynchide, includes but one genus, Ornithorhynchus,
with its bird-like snout, a broad and depressed bill, covered by naked skin. The jaws are furnished on each side and towards the front with a long narrow, horny appendage, and towards the hinder part with a broad, nearly ovate crushing tooth, of the same material. The tongue is short, and provided in part with horny papillæ. The eye is small. The body depressed, nearly oval, and clothed with a dense fur. The legs are short, and the feet organized for swimming. Each foot is provided with five well developed toes, between which a membrane extends considerably beyond the toes in the forefoot, the claws of which are large, solid, and depressed, and fitted for burrowing. The tail is rather short, broad, and depressed. The male is provided with a spur to the hind foot. The name of Ornithorhynchus has reference to the peculiar structure of the bill. A single species is well determined, namely, O. anatinus ($p l .112$, fig. 1), of about eighteen inches in length, the general color dusky brown, on the upper part of the body rather dark, on the under paler. It inhabits New South Wales and Van Diemen's Land, where it is called water mole by the colonists, on account of its aquatic habits and some slight resemblance which it bears to the common mole of Europe. It is very difficult to watch them in their native element, as they remain but a short time on the surface of the water, diving with an extraordinary rapidity at the approach of the slightest danger. The other species described in systematic works are established upon insufficient data, some of them being undoubtedly immature individuals.

Fanc. 2. Echidnide, containing likewise but one genus, Echidna, or porcupine ant-eater, is known by its naked, elongated, slender, and attenuated snout, and the small opening of the mouth. The tongue is protractile, slender, cylindrical, and very long; the palate is furnished with horny papillæ ; the teeth are completely wanting. The body is furnished above with spines and hairs intermixed. The legs are short and powerful ; the fore and hind feet each with five well developed toes, having large nails; fore feet fitted for burrowing; the hind feet in the male furnished with a spur of a horny substance. The tail is very short. The animals of this genus are found in Australia exclusively. Two species only are enumerated, and one will perhaps prove to be a local variety. At a cursory glance they resemble the hedgehog, were it not for their long and slender snout. E. aculeata (pl.112, fig. 2) is a small animal, about one foot in length, of a brownish black color. It was originally found at New South Wales, and more recently on the west coast, in Swan river district. E. setosa is from Van Diemen's Land, from fourteen to seventeen inches in length.

Both species of Echidna are terrestrial and fossorial ; they feed almost exclusively on ants, and play in their zoological district the same part in the economy of nature which is assigned to the pangolins in Asia and Africa, and to the ant-eaters of South America.

Group 2. Edentata proper.

This group is characterized by a pointed snout, some of the species still possessing cheek teeth. It may be conveniently divided into four families, the Manida, the Myrmecophagida, the Orycteropodida, and the Dasypodida.

Fam. 1. Manide. A small fanily very nearly allied to Myrmecophagide, differing only from it in having the body covered with scales instead of hairs. The habits are the same ; they are ant-eaters, and therefore myrmecophagous. This family is confined to the eastern continent, Asia and Africa, and to it must be referred the only remains of Edentata found in Europe, a fact of no small interest, as respects the geographical distribution of animals.

The genus Manis, or pangolins, has an elongated head, a slender snout, with a small mouth, and a long, filiform, protractile tongue ; five compresseć and slightly curved claws on each foot. The tail is more or less elongated, and protected, as well as the body and head, by tile shaped scales. These animals live in the tropical regions of Africa and southern Asia, where they feed like ant-eaters. In some the tail is longer, and in others shorter than the body ; the fore feet are covered exteriorly with scales ; the internal nail is nearly equal to the external. Other species have a tail much longer than the body itself, the fore feet hairy, and only covered with scales at their base and exteriorly, but the nails all compressed. Manis pentadactylu, three or four feet in length, from East India ($p l .112, f i g .3$), is very abundant at Madras, Pondichery, and Bengal. The long-tailed pangolin (M. tetradactyla): of the same size as the preceding, is from Senegal, Guinea, \&c. The tail is double the length of the body.

The genus Macrotherium lived towards the end of the tertiary epoch, in the centre of the old continent, in France and Germany. The nails are like those of the pangolins, but the teeth most resemble those of the sloths. A single species is known, the M. giganteum, the gigantic pangolin.

Fam. 2. Myrmecophagide, is characterized by the absence of teeth of any description; the body covered with hairs. This family is restrictea to one single genus, comprehending several species, confined to South America. None have hitherto been found in a fossil state, but we may look for some yet unknown genera to fill up the present gaps in the series.

The genus Myrmecophaga, or ant-eater, is characterized by a long, thin, and slender muzzle, at the termination of which is a small mouth, provided with a long, filiform, protractile tongue. This they insinuate into ant hills, and the nests of the termites, whence these insects are withdrawn by being entangled in the viscid saliva that covers it. The claws or nails of the fore feet are strong, curved, and compressed, varying according to the species ; the body covered with hair ; the tail elongated, and prehensile in two of the species. The fore limbs are a little shorter than the hinder, the humerus short and very stout; hind feet smaller and more slender than the
fore. When at rest, as well as during motion, the anterior claws of the large Myrmecophaga are bent against the naked sole, on the outer edge of which the animal walks. All ant-eaters live in the warmest part of South America, west of the Cordilleras, from the Gulf of Mexico to the Rio de la Plata. The great ant-eater, M. jubata (pl. 112, fig. 5), from seven to eight feet long, the tail included, is an inhabitant of the forests, and conceals itself in a hole under the ground, which it leaves during night in search of its food, which consists, as we know, of ants, the small and large termites so abundant in South America. The female brings forth only one young, which is carried about for a time on the mother's back. Another species, M. didactyla ($p l .112$, fig. 4), has only two nails to the fore feet, whence its specific appellation. The tail is prehensile. Inhabits the northern part of tropical South America, living chiefly on trees, where it procures its insect food.

Fam. 3. Orycteropodide, contains as yet but two genera, one now existing, and another extinct.

The genus Orycteropus, comprising only one living species (O. capensis, the Cape ground hog), inhabits the Cape of Good Hope. The head is similar to that of the ant-eater, and the tongue somewhat extensile, but distinguished from the latter by being furnished with grinders, and by having flat nails, formed for digging, not trenchant. The structure of their teeth differs from that of all other quadrupeds; they are solid cylinders, traversed like reeds, in a longitudinal direction, by numerous little tubes. The body is covered with short hairs of a brownish grey color. The tail is shorter than the body, and covered with equally short hairs. There are four toes to the fore feet and five behind. It inhabits burrows, which it excavates with great facility. There is a fossil species of this order from the Pampas of Brazil, Glossotherium, which was established upon a small fragment of bone from the posterior part of the cranium. The size of the holes through which the nerves and blood-vessels for the tongue pass, has induced the supposition that the tongue was very much developed, and that the animal could very likely use it like the ant-eaters. On the other hand, the extent of the temporal muscle and the strength of the zygomatic arch, seemed to show that the animal could grind, and necessarily had molar teeth. For these reasons it has been located in the vicinity of the Orycteropus of the present fauna; but more recent investigations have led to the discovery that these remains belonged to Megatherium.

Fam. 4. Dasypodide, is distinguished among Edentata by the scaly and hard shell, formed of divisions resembling little paving stones, which covers the head and body, and frequently the tail. This substance forms one shield over the forehead, a second, very large and convex, over the shoulders, a third on the neck, very similar to the second, and between the two latter, several parallel and movable bands, which allow the body to bend. The tail is sometimes furnished with successive rings, and at others, like the legs, merely with tubercles.

In the genus Dasypus, or armadilloes, the ears are very large. There are four, sometimes five, great nails to the fore feet; always five hehind. The
molars are cylindrical, seven or eight in number throughout, separated from each other, and without enamel on the inside. The tongue is smooth, and but slightly extensible. Between their scales, or on those parts of the body not covered by the shell, there are few scattered hairs. They dig burrows, and live partly on vegetables and partly on insects and dead bodies. They all belong to the hot, or at least to the temperate parts of America. Dasypus peba is found in the southern United States. They may be divided into sub-genera, from considerations drawn from the structure of their fore feet, and the number of their teeth. Cachicamus has four toes to the anterior feet, the two middle ones of which are the longest ; only seven teeth on each side, and in each jaw. The tail is long, and encircled with bony rings. Dasypus novemcinctus (pl. 112, fig. 8) is the type of this section. Apara has the same toes as in Cachicamus, and nine or ten teeth throughout (D. tricinctus). Encoubertus has five toes to the fore feet, the three middle of which are the longest. The greater part of the tail is covered with scales, arranged in quincunx. There are nine or ten teeth throughout, as in Apara. D. sexcinctus (pl. 112, fig. 7) belongs to this type. Cabassous has five toes to the fore feet, but directed obliquely, so that the thumb and index are slender, and the latter the longest; the middle one has an enormous sharp nail : the following one has also a nail, but a shorter one, and the last toe is the shortest of all. This form of the foot enables these animals to divide the earth, and burrow into it with rapidity, or at any rate to cling with such tenacity that it is extremely difficult to tear them from it. They have but eight or nine teeth on each side, and in each jaw. D. unicinctus is an example. Priodon has the toes more unequal, and the nails larger than in the preceding sub-genera. There are twenty-two to twenty-four small teeth throughout, or ninety-two to ninety-six in all. D. gigas, the largest species of the tatous, belongs to this section. It is sometimes more than three feet in length, the tail included.

Several species of the genus Dasypus are known in a fossil state, which seem to indicate a wider geographical range, inasmuch as two of them are said to occur in North America, D. maximus and D. antiquus.

The genus Chlamydophorus has the upper part of the body covered with a cuirass composed of rhomboidal plates, truncated behind, only connected to the body along the spine. The rest of the body is hairy. Above and below it is provided with eight cutting teeth. The fingers of the fore feet are inclosed within a membrane, and provided with five strong, shovel-like nails. A single species is known, Chl. truncatus (pl. 112, fig. 6), from the interior of Chili, where it passes the most of its time under the ground.

The extinct genera of this family, among which are some gigantic forms, are not without affinities with Bradipodidæ, which they connect more intimately with Dasypodidæ, so distant from each other when the living types alone are taken into consideration. The genus Glyptodon has the characteristic descending zygomatic apophysis of the Megatheridæ; but the feet are bulky, and the phalanges, to which nails articulate, are short and depressed. The molars, eight above and eight below, come nearer those
of the tatous by their structure; but the two deep grooves which are seen on their interior surface seem also to indicate a sort of passage to the pachyderms through the genus Toxodon. The cuirass is composed of appårently hexagonal plates, united together by serrated sutures. A single species is known, G. clavipes, which reached a very large size; it inhabited the pampas of Buenos Ayres during the pliocene period.

The genus Hoplophorus has also the descending apophysis of the zygomatic arch and the heavy forms of Megatheridæ. But the feet are shortened as in Glyptodon, and the molars recall to mind those of some rodents. It was secured with a cuirass composed of hexagonal plates. Several species are found in the Brazilian caverns, two of which, H. euphractus and H. sellowii, reached the bulk of an ox.

The genus Pachytherium is known only by a few bones of the extremities, which indicate still heavier forms. A single species is known, P. magnum, from the caverns of Brazil.

The genus Chlamidotherium comes very near the tatous. It has the osteology and the cuirass of the encouberts, and the fore feet of the cachicames. There are small incisors analogous to those of the encouberts, and molars which call to mind by their forms those of the sloths and Megatheridæ. Two species were discovered in the caverns of Brazil, Ch. humboldtii, of the size of the tapir, and Ch. gigas, equalling the largest rhinoceros.
The genus Euryodon is characterized by the molars transversely compressed. As yet only a single species, of the size of a small hog, is known. From Brazil.

In the genus Heterodon the teeth are more unequal in form as well as in size. The first and the last ones are like thin cylinders. The anterior is oval in transverse section, while in the posterior it is cordiform. The only species known was of the size of a rabbit. From Brazil.

Group 3. Tardigrada.

The group of Tardigrada, characterized by a short face, is composed of two families, one of them hitherto known only in a fossil state, the Megatherida, the other only as recent, the Tardigrada proper, or Bradipodida, or Gravigrada.

Fam. 1. Megatiferide, whose history belongs to the ancient world, resemble Tardigrada proper in having teeth in the shape of hollow cylinders, composed only of ivory and cement, without enamel. The ivory forms a tube filled by a more porous substance. The shape of the head is also very similar; it is short, as if truncated, and the zygomatic bone forms a great descending apophysis, a character found nowhere else in the class of mammalia. The skeletons are very much alike, particularly in the structure of the shoulder, where the acromion and coracoid bones are soldered together. But in the other peculiarities of their structure they come nearer the other families of Edentata. Their general form was bulky, their body heavy,
their feet nearly equal, the anterior possessing four or five fingers, and the posterior three or four ; the external fingers were deprived of nails. The tail was very long and powerful.

The genus Megatherium is characterized by its teeth, which are tetragonal, and have their crowns transversely furrowed. There are five above and four below on each side. The fibula is soldered to the tibia by both of its extremities. The fore feet have four fingers, the hind feet only three, the two external without nail. Only one species is well known, M. curieri, from South America. In size this exceeded the rhinoceros. Some fragments of Megatherium have also been found in North America, particularly on the coast of Georgia. The Megatherium is supposed to have fed upon the leaves of trees, previously uprooted by the animal.

The genus Megalonyx is distinguished by its molars, five above and four below on each side, sub-elliptical in form, the crown of which is hollowed in the middle, whilst the edge remains prominent. The anterior limbs are a little longer than the posterior ones, a character which brings them nearer the Tardigrada proper than Megatherium. The tibia and fibula are not soldered together; the hind foot is obliquely articulated. The tail is stout and robust. The body of Megalonyx was not so heavy as that of the Megatherium, but the habits were very likely the same. The first species known is \boldsymbol{M}. jeffersonii, of the size of an ox. It was found in a cavern in Virginia. A few other species of the same genus have been discovered in South America.

The genus Mylodon had the heavy form of Megatherium, but with a quite different dentition. The molars, five above and four below, are worn off in plane surfaces. In the upper jaw, the first tooth is sub-elliptical, the second elliptical, and the others triangular with the internal surface furrowed. In the lower jaw, the first is elliptical, the last but one tetragonal, and the last large and bilobated. The form of the head resembles that of Megatherium. The feet are equal, the anterior with five fingers and the posterior with four ; the two external fingers are deprived of nails, the others provided with large phalanges, terminated with semi-conical and unequal nails. Species of this genus are found in South America, as far as the pampas of Brazil (M.darwinii), and also in North America, in a cave in Kentucky (M. harlani).

The genus Scelidotherium is nearly allied to Mylodon. The molar teeth are five above and four below. The upper ones are all triangular. In the lower jaw, the first is triangular too, the second and third a little compressed, and the fourth large and hilobated. The body heavy and bulky. The complete skeleton is not yet known. Four species have already been discovered in South America. The largest, \boldsymbol{S}. leptocephalon, was an inhabitant of the southern extremity of the continent. The others belong to Brazil.

The genus Platyonyx, with its skull and teeth similar to Bradypus, recalls to mind the armadillo, but resembles Megalonyx by its skeleton. The character by which it is distinguished from all its congeners consists in the high development of its feet. The fore feet, having five depressed
(instead of compressed) claws or nails, could not be used in burrowing, for the articulating surfaces between the tarsus and the first phalanx are flat instead of being rounded, thus excluding at once a vertical motion. They were furnished with longitudinal carinæ, which did not allow of any lateral movement. The habits of Platyonyx were like those of the sloth, probably moving on the earth with more difficulty. Several species are described by Mr. Lund, the size of which varies from that of the ox (P. cuvieri) to that of the hog (\boldsymbol{P}. minutus).

The genus Calodon had only four molars above and four below, shortened and unequal fingers, compressed nails, oblique feet, and a tail like that of the Megalonyx. One single species is known, C. maquinense, of the size of the tapir, from the caverns of Brazil.

The genus Sphenodon had also four molars above and four below, originally conical and becoming cylindrical in being worn off. A single species of the size of the hog was found in the caverns of Brazil.

Fam. 2. Bradypodide is represented by a single living genus, Bradypus, or sloths. The dentition consists of four cylindrical molars above and three below of the same shape, and with sharp canines longer than the molars themselves. The fingers are united by a membrane, and only marked externally by enormous crooked nails, which, when at rest, are always bent towards the palm of the hand or the sole of the foot. The hind feet are obliquely articulated on the leg, and rest only upon their outer edge ; the phalanges of the toes are articulated by a close ginglymus, and the first at a certain age become soldered to the bone of the metacarpus or metatarsus, which also in time present the same feature. To this inconvenience of the organization of the extremities another not less great is added, that is, their proportions. The arm and forearm are much longer than the thigh and leg, so that when these animals walk they are compelled to drag themselves along on their elbows. Their large pelvis and the inclination of their thighs to the sides prevent the approximation of their knees. Their gait is the necessary effect of such a disproportioned structure. They live in trees, and never remove from the one they are on until they have stripped it of every leaf, so painful to them is the requisite exertion to reach another. It is even asserted that, to avoid the trouble of a regular descent, they let themselves fall from the branches. The female produces but a single young at a birth. There are two mammæ on the breast. The sloths possess great muscular power in their fore limbs, which, combined with the stout nails, constitutes an excellent means of defence. This is well known to hunters, who keep their dogs at a certain distance, in fear that they should be killed by them, which is often the case. The species that have three nails on the fore feet and a very short tail have received the sub-generic name of Achceus. The aï, of the size of a cat, Br. tridactylus (pl. 112, fig. 10), is an example of this section. Those species which have only two nails to the fore feet and possess no tail at all have been designated by the name of Cholapus, or Bradypus proper, of which the unau, B. didactylus ($p l .112, f i g .9$), is the type. It is about one half larger than the ai. The sloths inhabit the warmer portions of South America.

Order 2. Marsupialia.

The order of Marsupialia, like that of Edentata, includes animals differing very much from each other, although much more numerous in genera and species. A character common to all Marsupialia consists in the presence of two bones, called marsupial bones, attached to the anterior margin of the pelvis. The same bones also exist in the Monotremata of the order Edentata. Another character is that of a pouch situated on the lower part of the abdomen of the female, into which are received the prematurely born young. This generative pouch is not possessed by the Monotremata, although implacental like the Marsupialia. Upon the signification and relative importance of both the marsupial bones and the pouch, we shall have a few words more to say hereafter. The bones of the cranium in Marsupialia do not anchylose, but remain permanently separated. The palatine part of the skull is imperfect, and presents large openings. The angle of the lower jaw is bent inwards, with one single exception, the Tarsipes. The structure of the brain presents also many peculiarities proper to the animals of this order, such as the absence of the corpus callosum and the imperfect division of the corpora quadrigemina.

To a great diversity in their structure and organization corresponds a no less difference in their habits; some being carnivorous, some insecti vorous, and others frugivorous and herbivorous, in different degrees. The kangaroos are more especially grass and herb feeders; the burrowing wombats, root feeders ; the phalangers eat the leaves, buds, and fruits of trees.

Among Halmaturidæ, the true kangaroos, we find some species fitted for one region of country, and some for another; some prefer the swamps, and others the high table land. The Dendrolagus and Phalangistidæ inhabit trees, the wombats are subterranean, and the Chironectes aquatic. Of course, we find in several families nocturnal and diurnal genera.

Brazil seems to be the country chiefly adapted by nature to the development of Didelphidæ. From this region they spread north as far as the United States, and south to the great river Plata, diminishing in number as they become more remote from this centre. Peru, Guiana, and Paraguay, the nearest provinces to Brazil, have about half a dozen species.

Five zoological provinces may be established in Australia; an eastern, a western, a northern, and a southern; Van Diemen's Land forms the fifth. The northern province has the greatest number of species peculiar to it, since, out of ten, eight are not found elsewhere. In the eastern province, the species are, for the most part, distinct from those of the opposite side of the continent; out of sixty species, eight are found in both provinces. South Australia, on the contrary, possesses a large proportion of species identical with those of other districts, four species only being peculiar to it. Sixteen species occur in common with western Australia, and fifteen with eastern Australia. The western province has two peculiar genera (Tarsipes
and Macrotis). About half of the species found in Van Diemen's Land are peculiar to it, the other half are found on the eastern part of the main land.

The species of Marsupialia of the continent of Australia, which are very nearly allied and have very nearly similar habits, are not associated together in the same limited district.

Fossil remains of Marsupialia have been found chiefly in Australia and South America; that is to say, in the same localities inhabited by these animals in our days. Most of them are referable to the same genera. In Europe a species of the genus Didelphis, and the new genus Pterodon, are from the tertiary beds, and the extinct genera Amphitherium and Phascolotherium, from the oolite of Stonesfield, the oldest representatives hitherto known of the class of Mammalia.

Group 1. Herbivora.

Fam. 1. Macropodide. The true herbivorous group of Marsupialia is characterized by six incisors in the upper jaw, and two in the lower; by the absence of canines in most cases (there is sometimes a small one in the upper jaw); by one premolar and four molars, making twenty-eight or thirty teeth. The fore limbs are smaller than the hind, usually much inferior in proportions; the hands naked beneath, and having five well developed fingers; each finger armed with a strong curved claw. The hind legs are large and strong; the foot long, and the toes four in number. The tail is long, and usually very powerful. There are four mammæ. The kangaroos are regetable feeding animals, browsing upon herbage like the ruminants. Some are of a great size, whilst others are as small as a hare.

This family constitutes the main bulk of the marsupial population of Australia, the only place where remains of extinct species of kangaroos proper have been hitherto found.

Kangaroos use their fore feet less for walking than for gathering their food, which they take sitting erect on the hind legs and tail, in the fashion of the hare and squirrel. They live in small troops, conducted by an old individual, and pass from place to place in the forests and mountains to procure food. If frightened or hunted, they jump and run with great agility and swiftness, sometimes making leaps of from twenty to thirty feet, over ravines, precipices, and bushes. In this their powerful tail is used as well for preserving their equilibrium as for a means of propulsion. The kangaroos defend themselves with courage and skill against their enemies. Many species weigh two hundred pounds when full grown, whilst others only reach a weight of fifty to sixty pounds. All afford a wholesome and agreeable food. There are species of all colors, grey, black, red, \&c. The female produces only one young, which is carried about in the pouch, and is the object of constant care until fully grown. Kangaroos, when taken young, are said to have been tamed to such a degree as to make no effort at escape when allowed to run free.

The genus Macropus contains upwards of thirty species, and has been subdivided into several divisions, into the details of which we cannot here enter. The great kangaroo (M. giganteus) is the type of the genus. It inhabits New South Wales, Southern and Western Australia, and Van Diemen's Land, preferring low grassy hills, and plains, and open parts of the country. In Macropus proper the disproportion between the fore and hind legs is much greater, and the tail more powerful, than in the othet section of the genus. The snout is hairy.

The section to which the name of Onychogalea has been given, comprises some of the most graceful species of the kangaroo tribe. The size is moderate ; the snout is clothed with hair ; the fur short.

In the sub-generic section of Lagorchestis the snout is clothed with velvet-like hairs; the fore legs are small, and the hand provided with small sharp-pointed nails. They inhabit open plains, and have a general resemblance to the common hare.

In Halmaturus, the snout or muzzle is naked in front. This section contains the most numerous species, which are found in districts that are well clothed with shrubs. Two species are represented in our plates, H. laniger (pl. 112, fig. 11, a b), and H. dorsalis (pl. 112, fig. 12, a b).

Heteropus are kangaroos with a naked snout; the hind foot short and stout, and densely clothed with coarse hairs; nails small; tail cylindrical, and provided with long hairs, especially on the tip. They inhabit rocky situations. Several species of Macropus have been found in a fossil state, all of them confined to Australia. Some had attained a very large size.

The genus Dendrolagus includes kangaroos with anterior extremities large and powerful, being but little inferior in size to the posterior ones. The claws of the fore feet are very large, curved, and pointed; the muzzle is clothed with small hairs as far forwards as the anterior angle of the nostrils; the tail is long, cylindrical, and somewhat bushy. Two species of this genus are known, both of which inhabit New Guinea, and are said to ascend the trees, for which habit their strong fore legs, added to the curved and powerful claws, are adapted.

The genus Hypsiprymnus has a distinct canine tooth in the upper jaw, and the anterior pair of incisors descends considerably below the level of the two remaining pairs. The rat-kangaroo, or Potoroo, as the animals of this genus are called, is of small size, being about equal in bulk to the conmmon rabbit. The form of the body is compact, and the fore parts but little elongated. The small and rounded ears give them a different aspect from the rabbit; the toes of the fore foot are more unevenly developed in the rat-kangaroo ; the nails are much compressed, solid, and broadest above. The rat-kangaroos feed upon the roots of plants, which they scratch up with their fore feet. In some species the snout is almost entirely clothed with hairs (Hypsiprymnus proper), whilst in others (Bettongia) it is naked; and in others again (Potorous) the head is elongated, the tarsi short, the tail sparingly clothed with short stiff hairs, and exhibiting a scaly skin; the snout is naked. Hypsiprymnus inhabits Australia and Van Diemen's Land.

The two extinct genera which follow partake to a certain extent of the
character of the kangaroo group which precedes; and of the wombat which follows. For a graphic representation of their affinities they should, therefore, be placed at the bottom of these two families, since they have preceded both in the biological history of our planet.

The genus Diprotodon, which contains but one species (D. australis), we are told must have attained a bulk superior to that of the rhinoceros. The lower jaw was provided with one incisor tooth and five molars, in each - ramus. The size of this incisor was very great; it is very long, deeply implanted in the jaw, and nearly approaches a horizontal position, the extremity alone being slightly curved upwards. From La Condamine river.

The genus Nototherium reached the same size and bulk as the preceding, that is to say, to something like that of the rhinoceros. Two species are known, both of them from the deposits near La Condamine river. There are no lower incisor tusks, and apparently four molar rooted teeth.

Fam. 2. Phascolomyide, differs from the following by having rootless teeth, and also by the reduced number of incisors in the upper jaw. The whole number of teeth is twenty-four, sixteen molars, four pre-molars, and four incisors, two above and two below. The toes of the fore feet have short, broad, and solid náils, fitted for burrowing.

The sole genus, Phuscolomys, has a stout body, a large head flattened above, the muzzle obtuse; contains but two recent species, P. wombat and P. latifrons, inhabiting Australia, Van Diemen's Land, and some of the islands of Bass's Straits; naked, the eyes small, the ears small and pointed, the limbs equal, short, and stout. A third species, but fossil, from the caves of Wellington Valley, approaches very much to the living species. The wombat is a burrowing animal which remains concealed under the ground during the day, quitting its hole at night to feed. Its food consists chiefly of roots and grasses.

Fam. 3. Pifalangistide, derives its name from the peculiarity of having the second and third toes of the hinder foot united in a common integument. They are expert climbers and live upon trees, feeding upon their leaves, buds, and fruits. Nocturnal in their habits, the phalangers remain concealed during the day on the branches or in the hollows of trees. If we except the section of Petaurus they may be described as not very active in their movements. The upper jaw is furnished with six incisors and the lower with two, nearly horizontal or directed obliquely upwards ; a canine on either side of the upper jaw. The molars may vary somewhat in the same species; one pre-molar and four molars generally. This family includes three genera: Phascolarctos, Phalangista, and Pelaurus.

The genus Phascolarctos, which comes nearest the wombats, is characterized by the absence of a tail, a stout body, a moderate head, and by the two inner toes of the fore feet being slightly opposable to the remaining three. It contains but one species, which inhabits New South Wales, the koala (P. cinereus), called frequently by the colonists "native bear." It is usually about two feet in length, and when on all fours stands ten or eleven inches in height. Its limbs are of moderate size and of great strength.

The genus Phalangista has a prehensile tail, and for the sake of convenience may be divided into four sections. In the first, Cuscus, the basal portion of the tail only is covered with hair ; the ears are short, almost hidden by the fur of the head, and the eyes with vertical or nearly vertical pupils. The species of this section are of moderate size, and have a dense fur more or less woolly in its texture. They are confined to the islands of Celebes, Amboyna, Banda, Waigiu, Timor, New Guinea, and New Ireland. In Trichosurus the tail is densely clothed with fur, with the exception of a part of the under surface commencing at the point, and more or less extended towards the root of the tail ; ears distinct, usually long ; eyes with the pupil round. Fore feet normal. The species of this section inhabit Australia. The section Pseudochirus includes the species with the two inner toes df the fore-foot separated from, and partially opposed to, the other three; the tail clothed, excepting at the apex beneath, with short adpressed hairs; the ears short and rounded; and with six molar teeth, forming a continuous series, on either side of the upper jaw. Inhabits Australia. In Dromicia the ears are moderate, nearly naked, and folded; toes with the nails small ; tail covered with small adpressed hairs, excepting at the base where it is covered with fur like that of the body, naked beneath at the extremity. Small species, inhabiting Australia and Van Diemen's Land.

A fossil species of Phalangista, agreeing in its general features with P. vulpina, has been discovered in the caverns of Wellington Valley.

The genus Petaurus, or flying phalangers, is composed of those Phalangistidæ provided with a membrane extending from the fore to the hind legs, and filling the interspace of these legs ; the tail is well clothed with hair throughout, and generally very long. In the section Petaurista the ears are broad, rather short, rounded, and densely clothed with long fur on the outer surface; the toes of the fore feet nearly equal in length; the flank membrane extending only to the elbow joint; with seven well developed molar teeth in the upper jaw and six in the lower. The true molar, provided with pyramidal cups. The petauri are nocturnal in their habits, and hide during the day in the hollows of trees. In Belideus the ears are long and nearly naked; the tail bushy; the lateral membrane extending to the outer finger; the two outer fingers of the hand are long and equal to each other, or very nearly so ; the second and third fingers distinctly shorter than these ; the second the shortest of the two latter, and the inner, or first finger, very short. The Acrobata have a tail moderately long, clothed above and beneath with short adpressed hairs, and fringed on either side with long hairs; the ears are moderate, well clothed externally with fine hairs ; the feet provided with small claws, the thumb of the hind foot is large, the flank membrane scarcely extending to the wrist. The type of this section is the pigmy flying opossum (A. pygmeus).

The genus Tarsipes includes a very remarkable species (T. rostratus) from the western coast of Australia, resembling the phalangista in dentition, only with the difference that the teeth are in rather a rudimentary condition. The head is elongated, the snout pointed as in some Peramelidæ.

It has, however, a long and slender tongue suited for the purpose of collecting honey. The lower incisors are sharp, horizontal, and supposed to assist in piercing and opening a passage for the tongue into the inner parts of the flowers where the honey is lodged. The tail is long, slender, rather sparingly clothed with small stiff hairs, and having the skin scaly; a small space at the apex beneath is naked. The limbs are all nearly of equal length, the hind legs slightly longer.

Group 2. Insectivora.

Fam. Peramelide, is composed of animals of small size, the largest species known being scarcely equal in bulk to the common rabbit. The head is elongated, the facial part narrow and pointed; the muzzle is naked. The incisors are ten in number in the upper jaw, and six in the lower. There are three pre-molars and four true ones ; one canine ; making fortyeight in all. The limbs are unequal, the posterior being considerably longer than the anterior. Outer toes of the fore feet, and inner toes of the hind feet, rudimentary or wanting. The tail is usually short, and clothed with small hairs; sometimes long, and clothed, in parts at least, with very long hairs. Peramelidæ have been found in Van Diemen's Land, on the continent of Australia, and New Guinea. They are insect feeders, although they will likewise eat vegetable substances.

Fossil remains of this family have been found in the caverns of Wellington - Valley.

The genus Perameles may be divided into several sections. In Macrotis, the ears are very large, the auditory bullæ in the form of a double bulb; the tail long, and clothed with long hairs; tarsus long, the metatarsus clothed with hair beneath; the innermost toe of the hind foot wanting; the lower half of the fibula firmly jointed to the tibia, and the point with its opening directed towards the head of the animal. M. lagotis inhabits Swan River district. In Perameles proper, the feet, tail, and ears are proportionally short; the hind foot with a rudimentary inner toe, naked beneath, in front, and at the heel. The fur is distinctly composed of hairs of two kinds, the one forming a soft under fur, the other hairs coarse, flattened, and longitudinally grooved. The tail is clothed with very short adpressed hairs only. The opening of the pouch is turned backwards. The second section contains most of the species.

The genus Chœropus, or pig-footed Perameles, has very slender limbs ; the fore feet provided with two toes only, and these small, equal, and furnished with short, compressed nails; the hind feet with but one developed toe, the joined toes being very small, and far removed from the extremity of the foot, and the outer toe being represented by a mere tubercle, placed about midway between the extremities of the foot. All the toes of the hind foot are provided with nails. The muzzle is very narrow, and the ears unusually large. The limbs are very long, too, and remarkable for their slenderness. The hind ones are longer than the anterior. The tail
is short and slender. The pouch opens backwards. C. castanotis, from South Australia, is the only species known.

Group 2. Carnivora.

Fam. 1. Dasyuride, includes Marsupialia, whose habits are either carnivorous or insectivorous. The second and third toes of the hind foot disunited and well developed; the thumb, or first toe, is small or absent. The tail is hairy, and not prehensile. There are eight incisors in the upper jaw, and six in the lower; the canine teeth are well developed; the molar teeth either with trenchant crowns, or with the masticating surface presenting numerous prickly points. Several fossil species of this family have been found in Australia, to which continent the recent species are also confined, with one exception only, the Phascogale melas, which is a native of New Guinea.

The genus Myrmecobius contains but one species from western and southern Australia (M. fasciatus), remarkable for the number of its teeth, four incisors in the upper jaw and three below, two canines above and two below, and eight molars above and nine below, fifty-two in number, the molar teeth provided with prickly points. The head is somewhat depressed above; the muzzle elongated; the snout naked; the nostrils lateral ; the ears of moderate size, and pointed; tongue very long and slender. The legs are rather short and strong; five toes to the fore and four toes to the hind feet. The tail is long and bushy. The female is destitute of pouch, and has apparently eight mammæ, arranged in a circle.

The genus Phascogale embraces quite a number of species, having four incisors above and four below, canines as usual, three pre-molars and four molars on each side, making in all fifty teeth. The feet are provided with five toes; the inner toe of the hind feet is in the form of a small, nailless, prehensile thumb. The tail is either clothed with short hair throughout, or with short hairs only on the basal portion, the apical having long and bushy hair. The female is sometimes destitute of the pouch; the mammæ are eight, arranged in a circle. In the first section, that of Phascogale proper, of which P. penicillata is the type, the terminal half of the tail is clothed with very long and bushy hair. In the second section, the Antechinus, the tail is clothed throughout with very short hairs. The P. flavipes and leucogaster are examples of this section.

The genus Dasyurus is characterized by having the incisor teeth equal, eight above and six below. There are two pre-molars and four molars on each side, which, with the usual number of eanines, makes forty-two teeth. The tail is long, and well clothed with long or moderately long hairs. Some species have no inner toe to the hind feet. The Dasyuri inhabit the continent of Australia and Van Diemen's Land. They are all of moderate size, and nearly all have the fur spotted. D. hallucatus, from North Australia, is the smallest species ; the D. maculatus has the taill spotted, as well as the body, and is confined to Van Diemen's Land.

The genus or sub-genus Sarcophitus is intended for those species the body of which is stout; the head short, and very broad; the tail shorter than the body; the pre-molar teeth with the antero-posterior and transverse diameter equal, or nearly so. The S. ursinus, from Van Diemen's Land, is the only species known of this section.

It may be compared to a bear in the general proportions of its body and limbs, as well as in the texture of its fur. A fossil species, D. laniarius, has been found in the caves of Wellington Valley, and seems to come nearer S. ursinus; thus, Sarcophilus would not be exclusively limited to Van Diemen's Land, if it has to contain the fossil species.

Fam. 2. Didelphide, or opossums, composed of numerous species, generally of small size, all of them confined to the American continent. Their food consists chiefly of insects; the largest species may occasionally attack reptiles, birds and their eggs. There are ten incisors in the upper jaw and eight in the lower, arranged nearly in a semicircle. In the upper jaw the two foremost incisors are rather longer than the rest, and are generally separated from them by a narrow space. The canines of the upper jaw are the largest. We find three pre-molars and four molars in each jaw. The feet are five-toed, and plantigrade. The general form of most of these animals resembles that of the common rat, but they have the muzzle more elongated, and terminated in a distinct, naked snout. The prehensile tail is almost always very long, nearly destitute of hair, excepting at the root, and covered by a scaly skin. Some Didelphidæ have no pouch, or else one in a very rudimentary state. At first the young remain very firmly attached to the nipple, and subsequently are carried upon the back of the parent, where they retain their position by entwining their tails round that of the mother. The mamme vary in number from nine to thirteen. The species live in the hollows of trees, or amongst their foliage, where they remain concealed during the daytime, becoming active in the night only to procure their food. One species lives in water, to which habit the webbed feet correspond.

The genus Didelphys contains animals without cheek pouches, and in which the toes of the feet are free. It may be divided into two sections, the first including those opossums in which the marsupial pouch is well developed, and the second those in which the pouch is rudimentary or entirely wanting.

To the first section belongs the Virginia opossum (D. virginiana), peculiar to North America, together with the Californian opossum and some Brazilian species; the second chiefly includes species from South America.

A fossil Didelphys (D.cuvieri) was discovered in the eocene of Paris. A few fragments have been found in European other localities. But the caverns of Brazil have already yielded six or more, which resemble very much those now living in the same country. There is, however, an exception: some fragments seem to indicate a new genus, according to the researches of Mr. Lund, a Danish naturalist. This, however, has not yet been named.

The genus Chironectes contains but one species, the water opossum 622
(C. variegatys), characterized by large hind feet, the toes of which are united by a web; the fore feet moderate, and with an unusual elongation of the pisiform bone. Females are provided with a perfect pouch. The ears are large and naked; the tail is longer than the head and body taken together; the fur is dense, short, and somewhat woolly. Its habits are aquatic. It is found in Guinea and Brazil.

The oldest representatives of the order Marsupialia, found in the oolite of Stonesfield (England), belong to the family of Didelphidæ.

The genus Amphitherium, or Thylacotherium, as both names are used, differs from Didelphis by its molars, which are more numerous and smaller; and from Myrmecobius in having proportionally larger teeth. We know only the lower jaw, which has six incisors, one moderate canine, six premolars, and six tricuspid molars. Two species are already described. The genera Amphigonus and Heterotherium are other denominations by which the same remains have been designated.

The genus Phascolotherium resembles Didelphis still more closely, since it has but three premolars and four molars. The form of the teeth themselves has something of that of Myrmecobius. One single species is known.

The genus Pterodon we mention here, although, according to Blainville, it comes nearer Dasyurus. It is known by a fragment of a lower jaw, from the gypsum of Montmartre, in Paris; its true affinities are still a matter of doubt.

Fam. 3. Thylacinide. Includes but one genus, Thylacinus, with a single living species, T. cynocephalus, or dog-faced opossum, about equal in size to the wolf. The form of the head is like that of a dog; the tail about half the length of the body; the fur is short, and closely applied to the skin. Inhabits Van Diemen's Land.

The premolars are more numerous in Thylacinus than in Dasyurus, there being three of these teeth on either side of each jaw. The canine teeth are of large size, of a simple, elongated, conical form, and slightly recurved at the apex. The marsupial bones are wanting. The femate is provided with a distinct pouch and four mammæ.

The caves of Wellington Valley have yielded remains of one species of this family, T. spelaus.

Order 3. Cetacea.

The order of Cetacea is one whose history is still very incomplete. Although comprising the largest of all mammalia, it belongs to an element in which science is often powerless, and thus naturally escapes our investigation. Cetacea are by no means scarce, but their large size prevents them from being preserved complete in our collections, so that we have no materials for comparison. Occasionally a skull, a jaw, a rib, or a vertebra, are the only data on which we can base our researches. This order, restricted within the limits we assign to it, is characterized by a naked and smooth
skin, under which is found a layer of fat, varying in thickness according to the genera and species. The general structure of the skin is the same as in other mammals, but in addition we find an apparatus of inhalation, composed of vessels of an extreme tenuity, which anastomose together, and are in direct communication with the arteries and veins. They are absorbing vessels common to all animals which live permanently in water. This apparatus is very conspicuous in some fishes.

There is one pair of short limbs, the anterior, constructed for swimming. The toes, being surrounded by a continuous membrane, give to them the shape of a fin, and are used as such, these animals having been created to live in water. The toes themselves possess a greater number of phalanges than in any of the other mammals. The collar bone and hind limbs are always wanting. The posterior extremity of the body terminates in a broad, but horizontal, fibro-cartilaginous, fish-like tail, composed of two lobes or paddles, a right and a left, differently shaped according to the genera and species. On the back, a fin-like organ is often but not always observed; it contains no bones, and consists merely of a fold of the skin. The vertebræ of the neck are very short, and often soldered together. The neck itself cannot be said properly to exist, the head being continuous with the body, as is generally the case in fishes, and only indicated in some of them by a slight contraction in this region of the body. The head possesses so little of motion that it cannot change its situation without the whole body changing it at the same time. The eyes are exceedingly small; the nostrils simple, with one or two openings, through which water is ejected ; the external ear never exists; the teeth vary very much in number, and in some genera instead of teeth we find beards, or the so-called whalebones. Their food consists of fishes, crustacea, and mollusca, but never of plants; their pelagic habits preclude a vegetable diet. The only mode of progression among Cetacea is swimming, for which they are especially constituted.

This order may be divided into four families: the xvales (Balconida); the sperm whales (Physeterida) ; the dolphins (Delphinida) ; and the heterodonts (Heterodontides).

Fam. 1. Balenide, includes those gigantic marine mammals whose jaws are edentate or toothless. Instead of teeth, there are on the upper jaw horny laminæ, situated transversely and parallel to each other upon two rows. These are the whalebones, provided along their inner margin with numerous filaments of the same horny nature, by means of which the very small animals on which the whales feed are retained in the mouth. One whale yields from 700 to 1000 such bones, of which the largest is often ten to thirteen feet long, and ten to twelve inches wide at the base. Two genera compose this family.

The genus Balanoptera is characterized by an elongated head, which has sometimes been compared to the head of the pike; by the presence of that expansion of the skin.called dorsal fin on the posterior part of the back; and by folds or ridges on the anterior and inferior part of the body. It has always been a matter of great difficulty to ascertain the number of species
of whales, and there is a great difference of opinion upon this subject among naturalists. This is very natural, as these great cetaceans are seldom met with by practical observers, and come ashore at periods of long intervals only. Moreover, they cannot be compared directly with one another; and their remains cannot be easily preserved, nor their forms easily reproduced correctly in drawing.

Of the genus Balcenoptera, three species seem to be well characterized; B. jubartes, the rorqual, from the northern Atlantic, and from seventy to eighty feet in length; B. musculus, from the Mediterranean, and B. antarctica, from the Cape of Good Hope. Some other species are cited as belonging to the northern seas, but are not satisfactorily described, such as B. gibbar, seen between Cherie Island and Nova Zembla, B. acuto-rostrata, or sharp nosed whale, inhabiting chiefly the Norwegian seas.

The genus Bakena differs from the preceding by its great, thick, and obtuse head, in being deprived of the fin-like expansion of the back, and in having the inferior part of the body smooth, that is to say, deprived of the longitudinal folds, more or less deep, as seen in Balænoptera. A single species of this genus is adopted by some authors, B. mysticetus, or black common Greenland whale ($p l .106, f i g .1$), the one constituting the chief object of the whale fishery. The head forms one third of the total length. The broad jaw extends along the whole length of the head to behind the small eyes. The œesophagus is narrow, for which reason the whale can swallow small marine animals alone. The color is velvet black, marbled with grey and white; the belly is entirely white. It would be highly interesting to know whether the same species of whale be found in all the fishing grounds, a question which we may be authorized to doubt, as we have some accounts and some facts which indicate a second species around the Cape of Good Hope, B. antarctica differing from B. mysticetus in some peculiarities in the structure of the bony head. We are told also, that the ice-whale, or B. islandica, differs from B. mysticetus in having a more lengthened body, and a proportionally smaller head. The two spiracles or air holes represent two small semicircles, which are a little separated from each other, the convexities of which are opposed. The eye is very small, and its shortest diameter is placed obliquely. The general color of B. islandica is grey, more or less distinct in its shades. The lower part of the head often appears like a great oval of very shining white, at the centre and circumference of which are seen grey or black spots, irregular and confused.

Several fossil species of Balæna and Balænoptera have been found in the tertiary deposits of Europe. The genus Cetotherium is extinct ; its remains have been found in the upper tertiary of Russia, and assimilated at first to other cetaceans, when the present genus was established and placed in the vicinity of Balænoptera, from which it differs by the broadness and flatness of the posterior part of the skull, the elevated and thick arch, and the deep temporal grooves. C. rathkei is the only species known and found in several localities in the Russian empire.

Balcena mysticetus, Greenland or right whale, is most frequently found iconographic encyclopedia.-vol. ii. $40 \quad 625$
in the Greenland seas, Davis's Straits west of Spitzbergen, Iceland, and Norway, on the coast of Labrador, in the Gulf of St. Lawrence, and round Newfoundland, by the bays of Baffin and Hudson, and in the sea north of Behring's Straits. It is also found among the Philippine Islands, near Socotora (coast of Arabia Felix), and on the coast of Ceylon. It likewise frequents the Chinese seas. Formerly the whales were abundant about Spitzbergen and the Island of Jan Mayen. But since so many whaling vessels have appeared in those places, these animals have left their shores and have retired to the open ocean, where their catching is more expensive, difficult, and dangerous, and less productive. It is by no means improbable, however, that several species will hereafter be found to have been confounded within the above limits. Thus there is pretty good evidence for supposing that the right whale of the Arctic Ocean of America west of Point Barrow, is different from that of Hudson's Bay.

It appears from the testimony of ancient naturalists, that the whales advanced more southwards in the ocean than at present, the numerous vessels traversing the ocean having caused them to retire to more northern regions, where they enjoy a more tranquil life, and are less exposed to destruction. Man, however, has found out their favorite haunts, and yearly spends a season on those fishing grounds, and exposes himself to numerous dangers for the purpose of capturing them. Dewhurst, in his natural history of the cetaceans, states that the black whale comes from the south polar seas in May to bring forth its offspring; remains in the bays of New IIolland, Africa, and South America, till August, and on the coasts till November, when it returns in a southwesterly direction.

According to ancient records, the whales captured at the earlier periods of the fishery were larger than those known at the present day. The Greenland whale is, however, said still to reach sixty to seventy feet in length. The greatest circumference measures thirty to forty feet; the length of the tail five to six feet; the width eighteen to twenty-six feet; and the weight of the whole animal about 200,000 pounds. The layer of fat under the skin is ten to twenty inches thick. The lips are almost entirely composed of fatt, and yield alone one or two tuns of oil. Generally a large whale gives one hundred and twenty tons of lard, from which thirty tuns of oil are obtained.

When a whaling vessel arrives on one of the above mentioned fishing grounds, the first thing is to set up the so-called crow's nest or watch-house. This crow's nest consists of an old barrel, open above, and which is fastened vertically to the top-galiant mast. One man of the crew, relieved at intervals, stands in it, and keeps watch for the appearance of whales in the vicinity of the vessel. It is often a very dangerous post for the one who takes it; for, besides the intense cold which reigns in those regions, the winds are sometimes so powerful, that the sailor in the crow's nest runs the risk of being thrown out of it.

The appearance of a whale in the neighborhood is indicated by the columns of water ascending from nostrils into the air, when the animal comes near the surface of the ocean to breathe, and which are visible from
a certain distance. Immediately a large boat, with six or eight seamen and one harpooner, is despatched as noiselessly as possible. When at a convenient distance, the harpooner, seizing a favorable occasion, hurls the harpoon into the side or back of the animal, where it remains fastened by the barb. The whale becomes furious, and takes to flight with rapidity. A long rope, connected with the harpoon, is immediately thrown overboard, in order that the boat may not be drawn under water by the wounded animal. After a certain time (half an hour or an hour generally), the loss of blood has reduced the strength of the whale, which comes again to the surface to breathe, when it receives a new harpoon that makes it disappear again ; and this is repeated until the animal is dead. The lives of the whalers are constantly exposed to dangers, of which we have many accounts. A single stroke with the tail of a whale upsets a boat or throws it high in the air.

When dead, the whale lies on the surface of the water, where its fat is carved into large strips, which are hoisted aboard the ship. After the fat of one side is removed, the whalebones are taken, and the body is turned on the opposite side, which undergoes the same operation. The carcase and fleshy remains of the giant are left to sharks, skates, birds of prey, and other carnivorous animals.

The whaling business was formerly more productive than it is now. One hundred and twenty-four individuals are recorded as having been killed by one crew in eight voyages; but now, five to eight whales are considered a rich prize for one voyage.
Faid. 2. Physeteride, or spermaceti whales, is distinguished from the family of whales proper by being provided with teeth on the lower jaw. They are the largest animals among all Cetacea. The size of the head is remarkably large, equalling the half or the third of the whole animal. The upper jaw is excessively broad and deep, and has usually a few indistinct teeth, almost covered with the gum; the lower jaw is long and narrow, and enters into a fissure of the upper jaw, and is furnished on each side with a row of thick conical teeth, more or less obtuse. The dorsal fin exists in a, rudimentary condition, or presents itself as a callous protuberance. There is one external opening to the spiracles near the anterior part of the snout. Physeteridce are more or less social in their habits.

The genus Physeter is the only one of the family, to which it gives its name. The same uncertainty is met with here as in Balæna, with regard © to the number of species. As many as seven species, if not more, have been described, and still are not generally adopted, the characters upon which they are founded being too vague and contradictory. The latest writers on the sulject admit but one, P. macrocephalus (pl. 106, fig. 2), the great-headed cachalot, or great spermaceti whale; fig. 3 represents another form, that described by Lacépède under the name of P. cylindricus, and given by others as the true P. macrocephatus. If the differences which the drawings exlibit are copied from nature, and prove not to be sexual, they are obvious enough for specific differences. However, from their gigantic mass, which is rarely presented at once in all its parts to the eye, unless the
spectator be placed at quite a considerable distance, many mistakes might readily have been introduced into drawings, which are, with a few exceptions, the only data in our possession. Thus, the small spermaceti (P. catodon), the blunt-headed cachalot (P. trumpo), the round spermaceti whale (P. cylindricus), the small-eyed cachalot (P. microps), the great-finned cachalot (P. muler $)$, and the bunched cachalot (P. gibbosus), are still doubtful species; the two-toothed cachalot of Sowerby (P. bidens sowerbyi) belongs to the family of Heterodonts, but is not sufficiently known to decide upon its real place. It constitutes a genus by itself, nearly allied to Delphinus proper, with a peculiar organic structure, uniting Physeteridæ to Delphinidæ more intimately than any other group.

The fishing grounds for the spermaceti whale are from the Seychelles Isles to 'Timor, and all the coast of New Holland as far as Shark's Bay, the Japanese seas as far as the Philippine Isles, and to the eastward as far as California.

The fossil remains of Physeter, which have already been discovered, have not been made the subject of a careful examination. Fragments were obtained in France and England, and, we are told, also in North America; but the specimens alluded to here, and upon which the genus Nephrosteon has been established, are said to belong to a recent and still living species.
The generic name Arionius has, however, been given to a skull discovered in the meiocene of Germany. The upper part of its posterior surface is concave, and along the middle a vertical ridge is seen, vanishing as it goes downwards ; the forehead is flat, horizontal, and remarkably broad, decreasing gradually in the elongated snout; the sides, formed by the temporals and frontals, are very concave from above downwards; the nasal canal widens in its way along the snout; the jaws are armed with numerous teeth; those on the lower jaw are longer and more acute, with almost rounded roots, and the crown pointed, conical, scarcely bent, provided in front and behind with a sharp edge, whilst on the sides a slight, not quite regular furrow is to be seen. A single species (A. servatus) is described.
This genus may perhaps prove hereafter to belong to the next family, or even an intermediate between both the latter and this.

The genus Balcenodon is known by a single fragment of a tooth, whose structure differs from the same parts in Physeter in having the dentine layer thicker. The species is designated under the name of B. physaloides.

Fam. 3. Delphinide, constitutes a very natural group among Cetacea. It is composed of the smallest species of the order, although some of them attain a considerable size, as between twenty-five and thirty-six feet in length. The dolphins have a fusiform body, which seems completely deprived oí a neck, the anterior region of which terminates by a snout more or less elongated, whilst the posterior region, the tail, is terminated by the horizontal fin common to all Cetacea. The size of the head is not disproportionate when compared to the body. The jaws are nearly of equal length, and both are furnished with a row of more or less conical or compressed teeth, varying in number in the particular species. They are developed on the margin of the maxillaries, and in some species inserted in
a groove of the socket rather than in a proper socket for each tonth. From this disposition they have but little adhesion, which a slight effort may displace. The number of teeth varies among individuals of the same species as well as among the species themselves, as if these organs hold but a secondary importance in the existence of the dolphins. The spiracles or blow-holes, after traversing the upper jaw, unite without in a single orifice, which is in the form of a crescent, and is situated at the top of the head. Their organs of sense seem to be in equal number with those of the other mammals, although most of them are less developed. The eye is very small, and furnished with narrow eyelids deprived of eyelashes; the pupil is cordiform. The external orifice of the ear is scarcely perceptible. The tongue is thick, short, smooth, susceptible of but very little motion, and sometimes fringed on its margins. The sense of touch is rendered very obtuse by the fact of their having a smooth skin deprived of hairs, and the presence of a layer of fat underneath. The seat of the sense of smell is not yet known. Besides the tail and its fin, the dolphins have, as organs of motion, two pectoral fins, and often on the middle of the back a fold of the skin which has the appearance of a fin.

The genus Delphinorhyncus is characterized by a vaulted head and an clongated and narrow snout, with or without conical and crooked teeth. An osteological character is found in the bony structure of the head. The D. micropterus is distinguished by its small dorsal fin and the want of teeth; it was found only once at the mouth of the Seinc. Its geographical range is unknown. The second species of the genus, D. coronatus, is the largest of the family. Its lower jaw is a little longer than the upper one; both are beset with small, conical, very acute tecth, more numerous on the lower than on the upper jaw. The dorsal fin is semi-crescent-shaped; the caudal forms a complete crescent. The head is rather small in proportion. There are two concentric yellow circles on the forehead, whence the specific name is derived. This species is very common in the Arctic seas around the island of Spitzbergen. A third species, very imperfectly known as yet, is D. frontatus, quite distinct from the two preceding. The jaws are very much elongated, narrow, and thin, provided with twenty-four to twenty-five teeth on each side of both jaws. The forehead is much vaulted; the dorsal fin reduced to a mere fold of the skin. The pectorals are scythe-shaped, and the caudals concave. The blow-hole is immediately above the eye; its convexity being turned towards the snout. The, haunts of this species are not accurately known.

The genus Delphimus is distinguished by the form of the snout being less elongated and broader than in the preceding. The species are numerous, and found in every ocean; none of them are of a considerable size. A dorsal fin generally exists, a single species only wanting this appendage. The most common one, D. delphis ($p l .106, f i g .4$), congregates in numbers of individuals, and is met with in the Mediterranean as well as in the Atlantic and northern seas and near the equator. Its history, however, is little known, although spoken of by the ancients. It never reaches a length of more than six or eight feet. Its large jaws are covered with thin lips sus-
ceptible of but little expansion. There are from thirty-two to forty-seven teeth on each side according to the age of the individuals. These conical, acute, and a little crooked tecth are slightly dilated on their middle. They are larger on the middle of the maxillaries than at their extremities, but are as simple in their roots as in their crown. When the jaws close, the teeth of one jaw lodge themselves in the intervals left between those of the other. The use of such teeth is to retain prey rather than to masticate it, for they swallow their food entire. The nesarnak or nisamak of the Greenlanders (D. tursio) is another species of this genus, known also under the name of bottle-nosed whale. It is quite rare, being seldom seen near the shores. It differs from the common dolphin by a shorter snout and a smaller number of teeth, the form of which is obtuse. The body is short, the snout flattened above, the color entirely black with the exception of a small portion of the abdomen, which is whitish. Nearly forty species of Delphinus are described or mentioned in Cuvier's "Histoire Naturelle des Cétacés," many of which are still very doubtful, as they were never examined, but only seen in open sea from vessels. We would only mention one species more, D. peronii, from the south of Van Diemen's Land, as it is deprived of a dorsal fin, the only one of the genus as it would seem. The lower part of the body and the snout are completely white, a peculiarity which caused Peron to bestow upon it the name of D. leucorhamphus. Several extinct species of Delphinus are described as peculiar to the old world. Lately another species has been detected in the State of Vermont, which differs from all others.

The genus Inia resembles closely the dolphins proper by the general appearance of its external form and proportions. The snout is, however, more elongated, the pectoral fins broader, and the dorsal fin represented by a mere elevation of the skin. But the most prominent character is derived from the teeth, which are nipple-shaped. Only one species is known of this genus, inhabiting the rivers of the province of Moxos, South America. 'This is the I. boliviensis, which is said to attain a length of twelve feet. The angle of the mouth extends as far back as the eyes. The mouth itself is linear and only a little arched posteriorly. The skull is depressed, the snout thin, nearly cylindrical, and obtuse at its extremity. The number of teeth ranges from one hundred and thirty to one hundred and thirty-four; sixty-six or sixty-eight in the upper jaw, and sixty-four or sixty-six in the lower. Their surface is rough with deep interrupted grooves. On the front of the jaws the teeth are conical and crooked, whilst the others are thicker.

The genus Platanista comprehends one single species from the river Ganges, representing with the genus Inia the family of dolphins in the fresh waters. The chief character of the genus consists in the narrowness of the jaws, with thin and prominent crests projecting forwards from the maxillaries on each side of the blow-hole. The Pl. gangetica reaches seven feet and more in length. The head is short and rounded; the beak long, thin, narrow, without lips, dilated upon its extremity. There is a rudimentary dorsal fin; the pectorals are very large, and the caudal nearly even.

The genus Phocana, Porpoises, is easily recognisable by the shortness of the snout, which can scarcely be distinguished from the forehead. The jaws, however, are elongated, and very distinct from the skull when the soft parts are removed, which in the living condition give to the head and snout that roundness which distinguishes this genus. The porpoises live associated in large numbers, and sometimes ascend rivers far from the sea. Their food consists of fishes and molluses, which they consume in large quantities. P. communis is the most common species met with in the European seas, and is often caught by fishermen. A species very much related to it, and with which it has been confounded until very lately, is peculiar to the American shore of the Atlantic (P. americana). It differs from the former in having the teeth grooved on the broad faces near the summit, so as nearly to divide them into three lobes, whilst in P. communis they are smooth. The dorsal fin is serrated and tuberculous. The largest species of this genus, the common grampus, P. orca (with some authors Orca communis), measures from twenty to twenty-four feet in length, with a body of proportional bulk. The snout is very short, the dorsal fin very high, the teeth large and in small number, eleven in each side of both jaws, conical and a little bent backwards. Those near the extremity of the lower jaw are worn off first. The upper part of the body is black, the lower white, and a white oblong spot above the eyes. Found in the Mediterranean and the Atlantic. The P. gladiator, or sword grampus, is remarkable for its dorsal fin, which is higher than the body itself under it. The skull is vaulted, the snout depressed, very obtuse, and the lower jaw a little longer than the upper one. This species lives in Davis's Straits, on the coasts of America and Spitzbergen, in troops of from six to eight. The P.globiceps, also large and bulky, has a snout still shorter and more rounded, and a large triangular dorsal. The number of teeth varies very much; in adult specimens each jaw has from eighteen to twenty-six of them. Their form is conical, slightly curved inwards at their tip. This species keeps the open seas, but was once seen at the mouth of Charles River, between Boston and Charlestown (Mass.). A similar species, P. rissoana, is found in the Mediterranean, and has a snout still shorter, a character which has led some naturalists to place it in a special genus, Globicephalus, which included those porpoises with a round and more or less spheroidal head. Some other species of Phocæna are described in systematic works.

The genus Delphinapterus includes only one species as far as known, the beluga or white whale, whose characters consist in the absence of a dorsal fin, instead of which it has only a kind of longitudinal projection on the back. The head is proportionally small, spheroidal, and the snout truncated, or rather rounded off. Both jaws are equal, and furnished with nine or ten small teeth, blunt at the top, but unequal and distinct from each other. The D. beluga is a native of the northern seas, the Arctic, and especially of Hudson's Bay and Davis's Straits.

The genus Oxypterus is known only from vague information. Rafinesque established it for a species from the seas of Sicily, calling it O. mongitori. According to Quoi and Gaimard (Voyage de l'Uranie, Zool., p. 86, pl. ii.,
fig. 1) the genus would rest upon the presence of two dorsal prominences, one situated near the fin and the other near the head. The form of the snout is unknown, so that we are in doubt as to whether it is elongated as in the dolphin, or truncated as in porpoises. The naturalists of the "Uranie" met a second species in 1819 , between the Sandwich Islands and New South Wales, in $5^{\circ} 28^{\prime}$ north latitude. This is known also under the name of O. rhinoceros.

Fing. 4. Heteronontide, is difficult to characterize on account of the dissimilarity between the few genera and species of which it is composed, and the little knowledge possessed of them. The teeth are of different sorts, always few in number, and sometimes even wanting in the adult state.

The extinct genus Ziphicus, which we place here for the sake of convenience, is intermediate between Hyperoodon and Physeter, and seems to have preceded and foreshadowed in the tertiary epoch these two genera of our days. Three European species are described, but none of them are fully known.

The genus Ityperoodon is based upon a singular structure of the head, which consists of a large and elevated apophysis rising from the middle of each upper maxillary, giving to the posterior part of the head that peculiar shape which characterizes it. Their teeth, two in number, small, acute, near the extremity of the jaw, sometimes hidden under the gum or wanting, whence the name of Delphimus edentulus, and the generic appellation of Aodon. The absence of teeth has led some others to place this animal among whales proper, but as it has no whalebones others have been induced to bring it nearer the dolphins. Only one species is described as belonging to this genus, the H. baussardii from the northern European seas. It has a dorsal fin and small pectorals. The beak is detached from the forehead, which is rounded and abrupt. The eyes are quite distant from the angles of the mouth, a peculiarity which distinguishes it from the dolphins proper. The body is fusiform, and tapers rapidly away from the dorsal fin to the tail.

The genus Heterorlon must provisionally include the two-toothed cachalot of Sowerby (Physeter bidens sowerbyi, Dewh.), which we shall designate by the name of H. sowerbyi. Its characters consist of a narrow and elongated snout, the upper jaw longer than the lower, which receives it; one single tooth below on each side, compressed, and obliquely directed backwards, placed in the middle of the margin of the jaw. A blow-hole, crescentshaped, with the concavity forwards. This species was observed on the coast of England. The two-toothed dolphin (Delphinus bidens) resembles the Hyperoodon by the form of its head. Its place is, at any rate, in this family; but whether it belongs to the genus İeterodon, or to any other, we cannot decide at present.

We place here the genus Arnanacus of Lacépède, created for one species of cetacean, called by the Greenlanders Arnancil, from the supposed purgative qualities of its flesh and fat. It has also been referred to the genus Monodon, and is the M. spurius of the "Encyclopédie Méthodique." The Arnanicus grenlandicus has one or two small obtuse, conic, and crooked
teeth at the extremity of the upper jaw, none in the lower, and a dorsal fin; thus, much nearer Hyperoodon and Heterodon than to Monodon. It is one of the rarest species of Cetacea, inhabiting the main ocean, seldom approaching the shores, and feeding chiefly upon pelagic molluses.

The genus Monodon, or narwhales, resembles the porpoises in the spheroidal head, but is deprived of a dorsal fin like Delphinapterus. The structure of its skull brings it nearer the dolphins proper. The character by which it is distinguished from either one of them is the presence of tusks instead of teeth, originating from an alveolus common to both of the upper maxillaries and premaxillaries, which tusks are directed horizontally forwards, and reach a length of eight or ten feet. They are more or less twisted. Generally only one tusk is developed, the other remaining rudimentary. The mouth is small ; the dorsal fin rudimentary. The narwhales are chiefly found in the polar sens, where they live in troops more or less numerous.

Monodon monoceros (unicornis and bicomis) inhabits the seas of Greenlaud and Spitzbergen. Another species is mentioned by Dewhurst, under the name of M. microcephalus, seen near Spitzbergen.

Fossil remains of Monodon have been found in the upper tertiary beds of England and Russia, but have not yet been fully examined, so that the species are not determined and not compared with the living ones.

Order 4. Herbivora.

Group 1. Sirenidia.

The section of Sirenidia is composed of some aquatic mammals formerly placed among Cetacea, although by their herbivorous habits they have always constituted a natural group. Ancient writers have transmitted to us many fables respecting these animals; but modern investigation has removed the thick veil of ignorance which has enveloped this subject, especially with regard to the mermaids, those fabulous human-like beings, with the posterior parts of the body covered with scales, and terminated by a fin. It is perhaps unnecessary to state that no such things as mermaids exist in nature. The seals, too, share with the Sirenidia the honor of giving rise to the mermaids and sirens of ancient and modern times. The pretended specimens usually exhibited in peripatetic or stationary museums, are generally fabricated from skins of monkeys artistically combined with those of fishes.

The general form of the body of the animals comprised in this group is sub-cylindrical, tapering posteriorly, where it terminates by a horizontal fin similar to that of the whale. The head is somewhat detached from the trunk by a neck more or less apparent, and rises above the horizontal line of the body. The lower jaw is generally shorter than the upper one ; both are furnished with teeth with a flat crown, more or less irregular, and adapted for the grinding purposes suited to their herbivorous habits. Tastead
of the b'owing-holes of Cetacea, we find here nostrils constructed like those of other mammals. There exists no external ear ; the eyes, proportionally sinall, are provided with a nictitating membrane, which is wanting in Cetacea; the upper lip and snout are beset with thick beard-like bristles; the skin itself is generally smooth, and deprived of hair. Of the locomotive organs, the anterior ones alone are present, as in Cetacea, and similarly constructed for swimming ; for this its adaptation is very great. The posterior limbs are completely wanting. Sirenidia live in society, not far from the shores, and at the mouths of rivers. They often go ashore to feed upon marine or aquatic plants, and may occasionally drag themselves on dry land, which Cetacea never do.

Several fossil genera of this group have already been described, and we may expect some more to be discovered hereafter. The living genera are only three, Manatus, Halicore, and Rytina, comprising a very small number of species. We shall first introduce the extinct members, as the oldest data of the history which we endeavor here to relate.

Fam. 1. Dinotheride. The genus Dinotherium is founded upon a gigantic fossil from the tertiary beds of Germany, which created a great sensation at the time of its discovery. Different opinions have been entertained with regard to its true zoological affinities. First placed near the tapir and mastodon, it is now generally associated to the Manati and other Sirenidia. At any rate, the Dinotheria are pachyderms, and were never mistaken as such. And when brought in the same group with Manati, this fact ought to have revealed to us the affinities of the so-called herbivorous Cetacea with pachyderms, of which they form the lower grade, and among the latter the Dinotheria are the lowest. Their lower jaw is terminated by two tusks, curved downwards and backwards. The existence of great sub-orbital holes, and the form of the nasal bones, have induced the belief that Dinotherium was provided with a proboscis similar to that of the tapir and elephant. The molar teeth, five above and five below, remind us of those of the tapir and manatee. Several species have been clescribed from the tertiary beds of Europe. D giganterm is the largest and best known. Its habits are thought to have been similar to those of the Manati ; it frequented the mouths of rivers, feeding upon aquatic plants; the tusks were occasionally used to force them out of the ground. A species of Dinotherium has been announced from the eocene of South Carolina.

The genus Metaxytherium possesses all the osteological characters of the Dugong, as also its tusks, but the grinding teeth resemble those of the Manati. Although several species are known to have existed in Europe during the tertiary epoch, they are imperfectly characterized. Some of their remains have previously been referred to the genera Hippopotamus and Manatus, until Christol created the genus which we here record.

The genera Halitherium and Pygmeodon come near the Manati and Dugong, but are too imperfectly known to allow us to give a more detailed account of their history.

The genus Cheirotherium, with a skull and skeleton constructed like the skull and skeleton of the Dugong and Manati, is provided with teeth,
reminding us of those of the Hippopotamus. The remains of but one species, C. subapenninum, of this genus have been found in the tertiary deposits of Italy.

A fossil genus Chirotherium has been established from some foot-prints, at first referred to the opossum family, and afterwards believed to be a gigantic batrachian animal. Although differently spelt, its etymology is the same as that of Cheirotherium, making two homonymous genera in the nomenclature, one in the class of Mammalia, another, still doubtful, in the class of reptiles. The latter is probably identical with Labyrinthodon.

The genus Cymathotherium is placed among Sirenidia, perhaps with no propriety. The only part which we possess of that animal is a fragment of the lower jaw. This jaw seems to bear but one single developed tooth, a little elevated above the margin of the bone. The crown of the tooth itself is compressed, and its base dilated; the root is long, exteriorly curved ; its surfice is furrowed, and the inner side exhibits a deep groove. C. antiquum is from the diluvial deposits of Germany. Its size, we are told, reached that of the Dugong.

The genus Toxodon bears a great resemblance to pachyderms, and will undoubtedly prove to be a synthetic type of the latter and Sirenidia. Its real affinities, however, are not understood, inasmuch as great diversity of opivion exists among naturalists on their account. It is compared alternately with Rodentia, Cetacea, Edentata, and Pachydermata. By some it is brought near the seals; by others near the pachyderms, which it resembles most in the structure of its teetli. Now, if Toxodon approximates to pachyderms, and was constructed to lead an aquatic life, it must enter the group of Sirenidia. Toxodon had no canines; trenchant incisors. The molars recall to the mind those of Edentata ; they are seven in number on each side, and implanted in the jaws with the convexity outwards.

The only well ascertained species of this genus was found at Bahia Blanca, on the banks of the Rio Negro (South America). Another, but doubtful species, is established upon a humeral bone found in Colombia (South America).

Fam. 2. Manatide. In the genus Manatus, the grinding teeth are more numerous than in the others of the same family, being eight in number. The crown of these is square and flat, marked with transverse ridges, and provided with a root distinct from the crown. The incisors are in a rudimentary state in the young; the canines constantly wanting. The pectoral fins exhibit on their edge the tips of four nails. The caudal fin is rounded. The species hitherto known in a recent state are few in number, and seem to differ but little from each other. M. americanus or australis is found on the Atlantic coast of South America, from which it ascends into the rivers, especially the Amazon and tributaries. NI. senegatensis is another, from the western coast of Africa. This species is smaller than that of America, being seldom more than about eight feet long. Its color is blackish ash. A third but doubtful species, M. latirostris, is said to be peculiar to East Florida, the Gulf of Mexico, and perhaps the West Indian seas.

The latter might be identical with the species of South America. Fossil remains of the genus Manatus have been found in the tertiary deposits of North America. We possess but vague information respecting the fossil Manati of Europe. No one has been as yet satisfactorily determined.

Fam. 3. Halicoride. The genus Halicore is distinguished from Manatus by the teeth, which are destitute of a root properly so called, by their plane upper surface, and by powerful, tusk-like incisors at the upper jaw, and covered by the lips. The anterior limbs are uniform, and destitute of nails. The caudal is crescent-shaped, as in Cetacea. The nostrils are placed near the upper surface of the snout, and quite distant from its extremity. The inter-maxillaries and lower jaw are bent downwards, another striking difference between this genus and Manatus, in which both jaws are nearly straight. H. indicus, the only species known, inhabits the East Indian archipelago.

Fam. 4. Rytinide. The genus Rytina is remarkable for the structure of the outer layer of the skin, which possesses below the thin and deciduous epidermis, a crust composed of fibres or tubes, placed vertically on the skin. This crust is so hard that steel can scarcely penetrate it, and when cut it resembles ebony by its compact tissue and its color. The entire surface is unequal, rough, cracked, and destitute of hairs. The lips are double, an internal and an external one. The jaws are provided on each side with a plate or compound tooth, destitute of a root, and resting on the jaws. There are no tusks. The caudal fin is crescent-shaped; the pectoral fins, or anterior limbs, have no nails externally visible. One single species is known, R. borealis, inhabiting Behring's island. It reaches twenty-four to twenty-five feet in length, and is therefore the largest of the living representatives of the family, and was only exceeded by the gigantic Dinotherium.

Group 2. Trichechidee.

The Walruses constitute quite a peculiar group, hitherto placed near the seals on account of a gencral resemblance in the form of their body and in the similar structure of the limbs, which are four, the normal number in Vertebrata. In the head and teeth, however, they differ widely. There are neither incisors nor canines in the lower jaw, which is compressed anteriorly in order to pass between two enormous tusks, sometimes two feet in length, which project downwards from the upper jaw. The molars are all short, obliquely truncated cylinders; there are four of them on each side, above and below, but at a given age two of the upper ones fall off. The upper jaw possesses two deciduous incisors, which in form and structure are similar to the molars. The walrus differs chiefly from Sirenidia by the presence of hind limbs, and short hairs covering the body, to which characters we may conveniently add the tusks. They have received the vulgar appellations of morse, horse-whale, sea horse, sea elephant, and also sea cow, now more restricted to Manati.

In removing the walruses from the seals, to bring them near the pachyderms, we agree with the views brought forth a year ago by a most skilful American anatomist (Proceedings of the Boston Society of Natural History, III. 1850, p. 242).

Sirenidia and Walrus together undoubtedly belong to that great group called Pachydermata, but do not constitute a single series. The pachyderms need to be revised carefully, and the numerous extinct genera once more compared with both the aquatic and terrestrial living types.

Fam. Trichechide is the only one of the group, and contains but one single genus, the genus Trichechus, composed only of one well ascertained species, T. rosmarus ($p l .114, f i g .3$), of the history of which the following is an extract from Bell's History of the British Quadrupeds :-
"The form of this animal is extremely unwieldy ; its bulk, in comparison with its length, being greater than in any other form of Phocido. This, with the relative small size of the head, the full, thick muzzle, and the long tusks, directed downwards, gives it a most strange appearance. Like the seals, it frequents principally the northern regions, where multitudes of them associate in herds on the rocks or ice fields, throwing themselves off on the first approach of danger into the sea, where they are as active and as much at home as the seals themselves. The walrus, however, from the form and structure of its teeth, cannot live upon fish to the exclusion of vegetable food. The small number of grinding teeth, and more especially their extreme shortness and rounded form, are calculated rather to bruise the half pulpy mass of marine vegetables, than to hold and pierce the slippery hardness of the fish's scaly cuirass. One of the most remarkable peculiarities is the form and size of the superior canine teeth, which are directed downwards, and are extremely long and powerful, constituting a pair of defences of immense strength.
"The walrus is found only in the colder regions; it comes often on shores or on the ice, and remains there sometimes in herds of forty, eighty, a hundred or more, for days together, until they are driven to the sea either by alarm or hunger. They are often killed on land at Spitzbergen and other northern coasts, by means of a lance or spear, for the sake of their oil, and the ivory of their tusks, which is much more valuable than that of the elephant, on account of its superior whiteness and density. Of late years, the pursuit of these animals has greatly diminished their numbers, or at least taught them more caution, and rendered them extremely fearful of their arch-enemy. In the water, the chase of the walrus is exceedingly difficult. The extreme thickness and hardness of their skin render it impervious even to the stroke of the harpoon, unless well directed and sent with great force.
"Before the persecution above alluded to had tanght them to be apprehensive of the approach of mankind, they were often found at a considerable distance from the sea; and as the hunters placed themselves between them: and the water, numbers were intercepted in their retreat, and readily destroyed. Of the carcases of the first that fell the hunters made a sort of barrier to oppose the remainder; and in this way, on some occasions, three
or four hundred have been killed. When wounded they become furious, striking from side to side with their long tusks, seizing and breaking asunder the weapon with which they are attacked, and at length, placing the head downwards between the fore paws, roll themselves like an immense ball into the sea."

The walrus was formerly met with along the Atlantic coast of New England, and about the year $16 \check{0} 0$ extensive fisheries were carried on along the coast of New Brunswick. Fossil species of the same genus are found within the limits of the United States, one of which is described under the name of Trichechus virginianus. Others, as it seems, have left their remains in the old world.

In size the walrus surpasses the largest ox, and attains twenty feet in length. The body is covered with short yellowish hair.

Group 3. Pachydermata.

The group of Pachydermata is a very natural one amongst the Herbivora of our days. It includes those hoofed mammals which are not ruminants. Among terrestrial animals they are the largest. They are characterized by the thickness of their skin, to which their name has reference; most of them are bulky and heavily built, even in the species of middling size. The clavicle or collar bone is absent: the pachyderms have limbs destined to support the body, and not for seizing any object. They are terrestrial or semi-aquatic, and constitute the natural ascending transition from the Cetacea and Sirenidia.

Fam. 1. Anoplotheride. This family combines the characters of the ruminants and those of the multungulate or many-hoofed pachyderms. The skeleton still presents much of the slender and light forms of the twohoofed ruminants. The genera composing this family are all extinct, having only existed during the tertiary epoch. The typical forms lived in the eocene period, and towards the end of the meiocene they became less numerous, disappearing completely during the pleiocene period.

The genus Anoplotherium is considered as having some affinities with the rhinoceros, the horse, the hippopotamus, the hog, and the camel ; and indeed this is not at all surprising, for Anoplotherium has preceded all these genera in the history of life upon the surface of our globe. They are the prototypical or synthetical creation, combining, during the eocene, the forms which were to appear distinct at a later date. Anoplotherium has forty-four teeth disposed in a continuous and uninterrupted series, a character found nowhere else except in man. Complete skeletons of Anoplotherium are preserved in collections; the feet are provided with only two developed toes, as in ruminants; in some speeies, however, there are small accessory toes. The Anoplotheria were bulky and stout animals possessing a large and thick tail, calling to mind that of the otters, whence the opinion that these animals were divers and had habits similar to those of the hippopotamus. Remains of two anoplotheria have been found in Paris; the A.com-
mune also existed on the Isle of Wight. Another species is mentioned as peculiar to the Sivalik Mountains in Asia.

The genus Xiphodon is composed of one species of Anoplotherium, the light and slender form of which seems to indicate great agility, comparable only to that of the gazelle and the roe. The tail is short and slender.

The genus Dichobune, with the same essential characters, is of the size of the hare, with the same proportion between the anterior and posterior limbs, which according to all probability gave to them a similar walk. Three species occur in the tertiary basin of Paris, and a fourth is peculiar to England.

The genus Oplotherium exhibits great affinities with Anoplotherium, and more especially with Dichobune, but differs by an essential character; the canines, which in the preceding genera are scarcely to be distinguished from the incisors, are prominent and curved like those of the tapirs and Palæotherium. Species of this genus have been found in France and Germany. The genus Microtherium was established upon one of them.

The genus Macrauchenia combines in a remarkable manner the forms of the camel and Palæotherium. The head and teeth are yet unknown; but the vertebræ of the neck indicate that this region of the body was elongated, as in the lama. The legs or limbs resemble those in ruminants, but the feet are constructed as in pachyderms. The only species known was found in Patagonia, south of St. Julian harbor. Its size was nearly equal to that of the rhinoceros and hippopotamus of our days.

The genus Chalicotherium is known only by its dentition, which indicates an affinity with Anoplotherium. Two species have been found in the meincene deposits of Germany, whose bulk, it is supposed, reached that of the rhinoceros.

The genus Cainotherium we merely mention here. It is but little known. In the opinion of some it is the same as Chalicotherium, and in that of others the same as Oplotherium. Two species, we are told, have been found in the eocene deposits of France.

Fam. 2. Hippopotamide, or Pachydermata proper, in the actual fauna, generally comprehends clumsy and colossal beings the limbs of which are very short, the hind feet with three and the fore feet with three or four hoofed toes. The hoofs themselves are of irregular forms, as in the following family, and all of them rest on the bottom. For this reason there are no posterior rudimentary toes. The dentition exhibits both analogies and affinities with the other families of the order. The incisors are either wanting or vary in number from two to six. Canines seldom exist, and where they happen to be present their length is not disproportioned. The molars are generally seven in each jaw, sometimes only six in the lower, exhibiting various forms. The few living genera, with equally few species, inhabit the warmer parts of both the old and new worlds. Fossil remains of species belonging to the recent genera, together with others belonging to genera entirely extinct, have been found in the tertiary beds of America, Europe, and Asia.

The genus Hippopotamus is characterized by a very massive and naked
body, very short legs, the belly reaching nearly to the ground; by an enormous head terminated by a broad muzzle. The tail is short; the ears and eyes small. There are to each foot four nearly equal toes terminated by little hoofs. These animals frequent rivers, and feed upon roots and other vegetables. They are stupid and ferocious. The H. amphibius from southern Africa is represented on pl. 111, fig. 8. Hippopotami were formerly found throughout Egypt, very abundantly in the Nile, but are confined now to Nubia and to the rivers of central and southern Africa, in Senegal, Zaira, and Gambia. During daytime they keep in the rivers, hidden among marshy grasses. They are good swimmers, and can remain immersed a very long time. When swimming they snort heavily, and exhibit only the snout above the water. They are often met with in flocks of fifty individuals or more. They sleep and lie exposed to the sun in shallow water. The female produces only one young at a time. Hippopotami are not dangerous to man, unless attacked by him and wounded. They are killed either by the musket or the harpoon. The Africans make use of the fat and tongue as food, the skin for whips, and the canines (sometimes two feet in length) are worked in the same way as the tusk of the elephant, and seem to be a finer article. A small species, H. liberiensis, is found in the rivers of Liberia, where it is rather common. Fossil species of Hippopotamus are quite numerous in Asia, less so in Europe. Their discovery in America is quite recent. Where they possess only four incisors they form the genus Tetraprotodon, and when six incisors exist in both jaws we have the genus Hexaprotodon. The species with six incisors in both jaws are more numerous than the others.

The genus Potamolippus is extinct and little known. It has been established upon some teeth from the tertiary beds of Germany, resembling much the upper canines of the Hippopotamus, or the lower milk internal incisor of the same animals, but with the difference of being deprived of a furrow at their inner surface.

The genus Siderotherium was created from a fragment of an upper grinding tooth from the tertiary of Wirtemberg, whose surface is somewhat like that of Hippopotamus.

The genus Elasmotherium was established upon a fragment of the lower jaw, and said to have come from Siberia. Since then one tooth was discovered near the Caspian Sea, and a posterior part of a head found on the Rhine has also been referred to it. The molar teeth remind us of those of the rhinoceros; but the enamelled plate of the interior is more undulated, and presents nearly the same complication as in the teeth of the horse, and perhaps still more that in Hippotherium, or horses of the tertiary era, which sometimes undulate. Their elongated and prismatic form constitutes another analogy with the teeth of the horse. The form of the jaw itself, its size and thickness, indicate a stout animal resembling probably the rhinoceros in its general outlines, and reaching the bulk of the largest species of this genus. Its habits were probably also similar to those of the rhinoceros.

Fam. 3. Rhinocerotide. The genus Rhinoceros is easily distinguished
by the horn-like processes which it exhibits on the nose, and to which its name refers. The horn or horns (there being one or two present) consist of a fibrous and horny substance, resembling agglutinated hairs, and adhering to the skin. Each foot is divided into three toes. There are four incisors above and four below, two being very small or completely wanting, and seven molars on each side. No canines. The rhinoceros of India (R. indicus) is represented on $p l$. 118, fig. 1 , and will give an idea of its clumsy appearance. The African species is provided with two horns on the snout. Rhinoceroses have been much more numerous during the tertiary epoch than in our days, and have inhabited countries from which they are now completely excluded. Their fossil remains have been found from the north of Europe to the south, in France, Italy, England, and especially in Germany. Ten to eleven extinct species are already on record. Some of them are relatively small sized. Several species are known from the eocene of the Upper Missouri. It is perhaps worth mentioning here that the genera Celodonta and Aceratherium have been established on immature specimens of true rhinoceros.

Fam. 4. Paleotheride. The genus Palcootherium is without living representatives, but its outlines have been restored from the study of complete skeletons. The nasal bones resemble somewhat those of the tapir, indicating clearly that Palæotherium had similar forms and a small flexible proboscis. The fore and hind limbs have three hoofed toes. Upwards of twelve species are described as having been found in the old world. The western tertiary deposits of Anerica have also yielded jaws and other fragments belonging to the same genus.

The genus Lophiodon comes nearer Tapirus, from which it differs in the structure of the molars, the relative number and proportion of the folds of enamel. A dozen species of this genus have already been made known by fragments more or less numerous. These remains were found chiefly in France and Germany, where the animals referred to lived mostly during the meiocene period.
The genus Tapirotherium was founded upon one species of Lophiodon. The genus Listriodon is distinguished from Lophiodon by the structure of the teeth. The genus Coryphodon, in the actual state of our knowledge, is not certainly distinct from Lophiodon. The affinities of the genus Tapiroporcus are still to be investigated, as they might prove, perhaps, relationship with the Suiline family instead of the present one.

The genus Platygonus is American, as far at least as our knowledge of irs history goes. Its remains, all belonging to one species, were found in the lead region of Illinois. It presents a peculiarity whith is only observed in Hippopotamus, although to a much less degree, consisting in the dilata.tion of the angle of the lower jaw into a large and broad expansion, concave outwards. The superior canines are compressed, acute, and slightly curved, directed forwards and downwards so as to be entirely concealed by the lips as in Tapirus and Lophiodon. We have, therefore, here a type which combines the characters of several quite distinct genera, although not yet fully understood.

The genus Anthracotherium is very remarkable, as it forms a link of relationship between the Anoplotheridæ and Suidæ. By the upper molars they are allied to Anoplotherium, whilst those of the lower jaw resemble those of the hog, and more particularly of the extinct genus Chæropotamus. The remains of several species have been found in the meiocene deposits of central Europe.

The genus Tapirus possesses twenty-seven molars, which present two transverse and rectilinear prominences when not worn off. Each jaw has six incisors and two canines, separated from the molars by an empty space. The nose resembles a small fleshy proboscis; there are four toes to the fore feet, and three to the hind ones. For a long time only a single species was known of this genus, the American tapir (T. americanus), quite common in Paraguay, of the size of a small ass. It frequents wet places along the rivers of South America. The skin is nearly naked, the tail moderate, the neck fleshy, forming a sort of crest on the nape. Another species is now known to inhabit the Andes. A third, T. indicus (pl. 111, fig. 1), occurs on the eastern continent. Many fossil species, some of them of gigantic size, are on record, three from central Europe, and one from Brazil.

Faim. 5. Elephantide, or Proboscidla, is characterized by having an elongated, flexible, and powerful proboseis, an organ of touch as well as of smell, together with very large projecting tusks. There are no canines or incisors, properly so called; in place of them we find the tusks. The toes are five in number on each foot, very complete in the skeleton, but so incrusted by the callous skin which surrounds the foot that their only external appearance is in the nails attached to the edge of this kind of hoof. The representatives of this family are not very numerous in genera and species, as if their enormous size had forbidden a greater profusion. Two genera, one extinct (Mastodon), and the other living (Elephas), constitute the whole of it; most of the species are extinct.

The genus Dastodon is very nearly allied to the elephants. It had, like the latter, a large proboscis, by means of which it could gather on the surface of the earth the plants and roots upon which it fed. The head and neck are short, and could not easily reach to the feet without some such provision. It differs from elephants in the structure of the molar teeth, the crown of which, instead of being flattened above, exhibits small cones arranged in a certain number of transverse rows. In size mastodonts were generally superior to elephants. Many species are described, but some of them are still doubtful. They all lived during the tertiary epoch, and in larger number towards the end of it. They were very common in America, and the discolyery of the remains of some of them has from time to time produced a very great sensation. Various names have been applied to these remains. The following belong to the Mastodon giganteum, the largest and first species known : Mammutlo olioticum, Mastotherium, Harpagmotherium canadense, Elephas carnivorus (the tuberculous crown of whose teeth, when first discovered, led some to imagine carnivorous habits), Tetracaulodon mastodontoideum, Missourium theristo-caulodon, and many other specific denominations. Species of this genus have left
their remains nearly all over the world. When young, mastodonts are provided with two small, short, and straight tusks at the lower jaw, a character upon which was founded the genus Tetracaulodon, alluding to the presence of four tusks.

The genus Elephas comprehends the largest of the terrestrial mammals now living. They are provided with molar teeth or grinders, the bodies of which are composed of a variable number of vertical laminæ, bony in their structure, but enveloped with enamel and cemented together by a third substance called cortical or cement. These grinders succeed each other from behind forwards and not vertically, as in most species of Mammalia. As fast as one tooth is worn, it is pushed forwards by that which comes after it; hence it happens that the elephant has sometimes one, sometimes two grinders on each side, or four or eight in all, according to circumstances. The first of these teeth is always composed of fewer lamine than those which replace them. TVe are told that elephants thus shed their teeth eight times; their tusks, however, are changed but once. The elephants of our days are clothed with a rough skin nearly destitute of hair, and are only found in the torrid zone of the eastern continent, where hitherto only two species have been ascertained. The Indian elephant (E. indicus) is represented on $p l$. 111, fig. 9. The other species belong to Africa. Fossil remains of elephan's have been found throughout the whole continent of Europe, in Spain, Italy, Switzerland, Belgium, France, England, Germany, and Russia. But they appear nowhere so abundant as in Siberia, where the tusks have become an active branch of trade. The inhabitants of Siberia explain the presence of those large deposits of tusks and bones by the following fiction: They believe that the soil of their country is excavated by animals of a gigantic stature, which they call mammouths or subteraneous moles, imagining that these animals are destined to live constantly in the dark, and that they are killed by the light when they dare to approach the surface of the earth. Similar ideas are spread all over the Asiatic continent, for accumulations of such bones have been discovered near the boundaries of China. Elephants also inhabited North America during the tertiary period; fossil tusks, teeth, and bones have been found from the north to the south. The Elephas primigenius, or Siberian mammoth, is more commonly found near the Arctic polar ice, and buried in it, as if it had lived there at a given period and been suddenly surrounded by snow and ice in which it is preserved, skin, hair, flesh, and all. We have authentic reports that dogs have been fed upon their flesh. The white bears have probably devoured many of these colossi. Like mastodonts, the elephants were formerly spread all over the surface of our globe.

Fam. 6. Hyracide. The genus Hyrax, or damans, is constituted by the smallest living pachyderms, which are not larger than an ordinary rabbit, and on that account referred by some to Rodentia. Their molars are similar to those of the rhinoceros, and their upper jaw is furnished with two strong incisors, curved downwards; and at a very early age they are provided with two very small canines. There are four toes to the fore feet and three to the
hind ones, all of them terminated by a very small, thin, and rounded hoof, except the internal posterior, which is armed with a hooked and oblique nail ; the upper lip is cleft; the snout and ears are short; the body densely covered with hair; and the tail reduced to a mere tubercle. One species inhabits the Cape of Good Hope ; another, H. syriacus (pl. 111, fig. 2), is peculiar to Asia.

Fanc. 7. Suide. In the actual fauna, this family is characterized by a fluctuation in the proportional numbers of the teeth, and by four toes to each foot, by which it differs at once from Anoplotheridæ, with which it would seem to bear some affinity. The number of the molars varies from three to seven; the canines are always distinctly developed; and the incisors may either be absent, or six and less may exist, situated more or less horizontally in the jaw. The two central toes alone touch the bottom with their three-sided pyramidal hoof; the other toes are much developed, as posterior claws provided with hoofs. The nasal bones elongate forward, and terminate by a proboscis-like nose, fitted for digging. The structure of the skeleton is more clumsy than in Anoplotherium, from which the Suidæ are always distinguished by a shorter stature. The living genera of this family contain but four species, and are distributed all over the surface of the globe, within the temperate and torrid zones.

The genus Adapis, from the oldest tertiary beds, is considered by some as belonging to Anoplotheridæ, by others to Suidæ. There are four sharp and oblique incisors above, and four below ; behind these, and on each side, a stout and prominent canine, straight in the upper jaw, oblique and curved forwards in the lower; the upper molars, seven in number, are variable in form, as also the lower ones, the number of which could not be ascertained, from want of complete jaws. We know but one single species of this genus (A. parisiensis), from the eocene of Montmartre.

The genus Hyotherium is not yet sufficiently claracterized. Its remains were found in Central Europe, and indicate an animal of the suiline family, resembling very much the babiroussa now living in the Indian Archipelago. The number of the incisors is not known; the molars, it is supposed, were six on each side of each jaw. Five species are already described, one of which had first been referred to the following genus.

The genus Charopotamus, therefore, must have some close affinities with Hyotherium, from which it differs in the structure of the molars. There are on each side seven above, and six below, of these teeth, intermediate between those of the peccaries and hippopotamus. Several species have been distinguished ; one from Paris, another from Switzerland, and a third from Spain. Undescribed fragments are known from the south of France and Turkey.

The genus Protochocrus appears to be an American form; as the only species known was found in Illinois. The canines resemble those of Chœeropotamus, but differ from it in having no accessory tubercles on the molars.

The genus Hyracotherium, from the London clay (eocene), is very nearly allied to Chœropotamus, by its dentition. The four anterior molars are
proportionally greater and more complicated ; the canines resemble most those of the peccaries; the skull, by its form, is intermediate between the damans and the hogs. It exhibits very large orbits, a character chiefly prominent among the timid rodents. Its size is supposed to have been about the same as that of the daman, which is among the smallest of the pachyderms. The only two species known belong to the eocene period, and to the British isles.

The genus Microchoerus shows a general resemblance with Hyracotherium in the structure of its teeth, but differs from it by the form of the posterior molars, and by the absence of a free space between the incisors and the two first molars. The genus is not yet sufficiently characterized. The only species known attained to the size of the European hedgehog.
The genus Hyops is another American form, discovered in the same locality with Platygonus; that is, in the lead region of Illinois. It has been rather announced to the scientific world than described. It bears very close affinities with the peccaries, and is on that account interesting, as peccaries of our days are confined on the same continent to more southern localities.

The genus Dicotyle (the peccaries) is characterized by the upper canines directed straight upwards, and projecting very little out of the mouth. The hind feet are deprived of external toes; the tail is absent, and on the back a glandular opening is observed, from which a fetid secretion is exuded. The metatarsal and metacarpal bones of their two greater toes are soldered together like those of the ruminants, to which they seem also related in possessing a stomach divided into several sacs. This genus is peculiar to the American continent, from Arkansas to Brazil, more abur dant as we proceed from the north of that limit towards the south. D. torquatus (the patira) or Mexican hog is the one met with in North America, as far north as Red River (Arkansas). Another (D. albirostris or labiatus), from Guiana, is represented on $p l .111$, fig. 3. The peccaries seem to have been more abundant in South America during the tertiary epoch than in our days, as five species are said to have left their remains in the caverns of Brazil.

The genus Sus (the hogs) has twenty-four or twenty-eight molars or grinding teeth, of which the posterior are oblong with tuberculous crowns, and the anterior more or less compressed, and six incisors in each jaw. Each foot of the hog consists of two large middle toes armed with strong hoofs, and two much shorter lateral ones that hardly reach the ground. The incisors vary in number; the canines project from the mouth and curve upwards; the snout terminates by a sort of truncated button fitted for turning up the earth. The wild hog, Sus scrophia (pl. 111, fig. 6), is the parent stock of our domestic hog, Sus domesticus (pl. 111, fig. 5), and its varieties. The color is generally black; the ears are straight. It is found all over the surface of the globe; its flesh is eaten by all except by Jews and Mahomedans. The eight following varieties are the most prominent ones. 1. The Hungarian race (Wallachia, Bosnia, and Moldavia), with very large ears and woolly bristles, greyish black, or yellowish red.
2. The Champagne race, very large too, body elongatted, legs high, head and ears long, the latter pendent; hams proportionally small. 3. The Bavarian race, with delicate structure of the limbs and fine bristles, generally reddish brown spotted. 4. The Poland race, very large, yellowish, with a brown stripe along the back. 5. The Westphatian race, of a considerable size and very prolific. 6. The ordinary German race, not very large, white, grey, black, or spotted. 7. The African race, with a compressed body, straight ears, and remarkably thick and round hams. 8. The Chinese hog, which has been introduced into England and Germany: it is small, the dorsal line very much elongated, short limbs, a thick belly nearly reaching the ground, a short tail, and an almost naked body.

Fossil remains of hogs are found in America, Europe, and Asia; those of Europe belong to the genus Sus proper, those of Asia and Americar constitute the genera Chcerotherium and Harlanus. Of the genus Sus seven species are described, whilst others are still doubtful.

The genus Harlamus contains but one species, first described by Dr. Harlan. under the name of Sus cmericanus, found in Georgia associated with bones of mastodonts, elephants, and megatherium. Remains of the same species have since been discovered in the lead region of Illinois. They resemble more Porcus babyrussa than any species of Sus.

The genus Phacochcerus, or wart-hogs, comprehends hogs of the actual fauna, having molars composed of cylinders cemented together by a kind of cortical substance, very similar to the transverse laminæ of those of the elephant, and also succeeding each other from behind. The head is very large; the tusks, like canines, are inclined laterally upwards, and of a remarkable magnitude. On each of their cheeks hangs down a thick fleshy lobe, rendering them very hideous. The species of this genus are mostly African; that from the Cape of Good Hope (P. cethiopicus) is represented on $p l$. 111, fig. 7.

The genus Porcus includes Asiatic living hogs known as babiroussa or babyrussa ($p .111$, fiy. 4), as the name has been latinized. They are slender and more elegantly constructed animals than the other members of the family. The canines are conical, and directed upwards and backwards, almost crescent-shaped. There are five molars above and five below on each side ; four incisors to the upper jaw and six below. Fossil remains of this genus have been discovered in the Sivalic Mountains (Himalaya), showing once more that genera which have existed during the tertiary epoch and are perpetuated in ours, inhabit nearly the same spot as that upon which they were at first placed.

The genus Charotherium contains one extinct species of hog, from the upper tertiary of the Sivalic Mountains. It is a genus peculiar to that part of the world, and ceased to exist before the establishment of the present creation. It much resembled the hogs.

The genus Calydonius, from the tertiary beds of Switzerland, resembles somewhat Sus and Phacochorus; the canines are provided with a rough and striated vertical band of enamel. Only two species are known.

Fam. 8. Equide. With this family we close the series of pachyderms.

Nothing is more striking than the characters by which it is distinguished from all others, namely, a single hoof with an apparently single toe to each foot; but on the skeleton, on each side of the metatarsus and metacarpus, there are spurs representing two lateral toes. Only one genus of the present family is found in the actual fauna and with but comparatively few species, whilst in the tertiary deposits we find at least as many extinct species together with extinct genera.

The genus Equus is characterized by six incisors in each jaw, the crowns of which, at an early age, are marked with a fossula, and six molars throughout, with a square crown, marked by lamina of enamel which dip into them, with four crescents, and in the upper ones, with a small disk on the inner edge. The male has also two small additional canines in the upper jaw, sometimes in both, which are almost always wanting in the female. Between these canines and the first molar is a free space corresponding to the angle of the lips where the bit is placed, and by which, as Cuvier remarks, man alone has been enabled to subdue and tame this powerful animal.

The common horse, Equus caballus (pl. 110, fig. 4), is the most important of all the animals that man has subdued. His associate in the chase, in war, and in the operations of agriculture, of arts and commerce, or raised for luxury, the horse has received by that perpetual contact a noble port and proud carriage. The horse, however, does not exist in a wild state at the present time, except in those places where horses were formerly domesticated and set at liberty, as in Tartary and America. They live in troops, each of which is conducted and defended by an old male. The young males are forcibly expelled as soon as they have reached the age of puberty, and follow the troop at a distance until they are joined by some of the younger mares. They propagate at four years; the period of gestation is eleven months. The age of horses is known by the incisors. The milk teeth begin to grow about fifteen days after the colt is foaled; at two years and a half the middle ones are replaced; at three and a half the two succeeding ones; at four and a half the outermost, or the corners. All these teeth, with an originally indented crown, gradually lose that mark by detrition. When seven or eight years old they are entirely effaced, and the horse is no longer marked. The life of the horse seldom extends beyond thirty years. This animal varies very much in size and color. The principal races exhibit sensible differences in the form of the head, in their proportions, and in their fitness for the various uses to which they are applied.

1. The most beautiful and swift is the Arab (of which pl. 110, fig. 6, represents the mare with her colt, and fig. 7 the stallion), which has been instrumental in mproving the Spanish race, and in connexion with the latter has contributed to form the English race; the Barbary, Persian, Circassian, and Turkish horses descend from the Arab. The Arab horse inhabits western Asia and northern Africa, where it is found of medium size.
2. The northern horse, rather small than large, light, docile, swift, hardworking, enduring, and satisfied with little and common food. The Tartar,

Russian, Polish, Lithuanian, and Swedish horses descend from the same stock, to which also belongs the Siberian horse ($p l .109$, fig. 11), which düring winter is covered with very thick and long hair.
3. The West European horse is large, less enduring, however, than either of the preceding ones; here belongs also the Spanish horse, the Sicilian, the French, English, Hungarian, Transylvanian, German, and Italian. Pl. 110, fig. 5, represents the Norman team. horse, supposed to be of Danish breed. It is raised in lower Normandy.

The ass, Equis asinus ($p l .110, f i g .2$), is another species of the same genus, originally from the great desert of central Asia, and still to be found there in a wild state, in innumerable troops, ranging from north to south, according to the season. The ass has been domestitated like the horse, and renders very great service to man, whom it has followed through. almost all his migrations. A cross breed between the ass and the mare is called a mule, well known to the ancients, who called it Mulus, or the: mule proper ($p l .110, f i y .3$), produced by the male ass and female horse; whilst they termed Hinnus the mule arising from the union of the male horse with the female ass. Mules are very valuable animals, and capable of being employed where the horse and ass would be useless. The mule stock cannot perpetuate itself, for it soon degenerates when it is not sterile. At any rate, sterility declares itself after the second or third generation. To keep the stock perfect, the parent of both species, the horse and the ass, must alivays breed together.

The zebra, Equus zebra (pl. 110, fig.1), originally from the south of Africa, has never been domesticated, and seldom tamed by man. It is nearly of the same form as the ass, but regularly marked with black and white transverse stripes. A female zebra has successively produced an offspring with the horse and the ass.

The dzigguetai (Equus hemionus), intermediate by its proportions between the horse and the ass, lives in troops in the sandy deserts of central Asia. It is of an isabella or light bay color, with a black mane and a dorsal line of the same color. Supposed to be the wild mule of the ancients.

The couagga and the onagga or dawn are two other wild species of horses.

If the American continent has no indigenous horse in the present fauna, the remains of several species are found in the tertiary deposits of North and another in South America. A few fossil species have been discovered in Europe and in the Sivalic Mountains in Asia. Two extinct genera of this family are already known.

The genus Hippotherium differs from Equus by the structure of the molars, the lamine of which are much more complicated, forming numerous zigzag folds. It forms also a transition towards the pachyderms proper, inasmuch as the anterior feet possess the rudiments of a fourth finger or toe. Several species have been described as belonging to Europe, but more recent observations seem to reduce their number to one, which lived in numerous individuals in the centre and south of Europe during the meiocene period up to the diluvium.

The genus Hipparion closely resembles the horses, but was of a much smaller stature. Its remains were found in the south of France.

We have thus sketched out at some extent the history of the great group of pachyderms. The reasons for enumerating so many genera whose existence is confined to a past order of things, will appear when recapitulating the succession of the mammalia upon the surface of the earth. We have done this also with regard to Edentata, Marsupialia, and Cetacea. These groups are generally less known, and nevertheless of much greater importance, because they are the lowest of the class, and give us the key for its full understanding.

Group 4. Ruminantia.

We now proceed to the group Ruminantia, through which we may pass more rapidly, as the families of which it is composed are generally better known, most of them having representatives in the fauna of the present day. Several genera are found in North America, some of them of quite imposing stature, and inhabiting the sparsely populated portions of the country. Some belong to the prairies, some to the forests, and others te the mountains. The characters of the group consist essentially in the singular faculty of masticating their food a second time by bringing it back to the mouth after a first deglutition. This power depends upon the structure of their stomachs, of which they always have four, the three first being so disposed that the food may enter into either of them, the cesophagus terminating at the point of communication. The first, which is also the largest, is called the paunch, into which vegetable matters, coarsely bruised by a first mastication, are introduced. From the paunch they pass into the second, called the honeycomb or bonnet, from its peculiar structure, the walls being laminated like a honeycomb. This second stomach is comparatively very small, globular in form, and seizes the food, moistens, and compresses it into little pellets, which afterwards successively ascend to the mouth to be re-chewed. The animal remains at rest during this operation, which lasts until all the food first taken into the paunch has been submitted to it . The aliment thus re-masticated descends directly into the third stomach called the leaflet, on account of its walls being longitudinally laminated, or resembling the leaves of a book; and thence to the fourth or the caillette, the sides of which are wrinkled, and which is the true organ of digestion, analogous to the simple stomach of other animals. In the young, as long as they subsist on the milk of the mother, the caillette is the largest of the four stomachs. The paunch is only developed by the reception of larger and larger quantities of grass, which finally give it an enormous expansion.

The feet in ruminants are terminated by two toes, each cased in a hoof, which face each other by a flat surface, presenting the appearance of a single hoof which has been cleft; hence the name of cloven-footed, bifurcated, \&c., applied to these animals. Behind the hoof are sometimes found
two small spurs, the restiges of lateral toes. The two bones of the metatarsus and metacarpus are united into one called the camnon, but in certain species there are also vestiges of lateral metatarsal and metacarpal bones. The incisors are totally absent in the upper jaw, being only found in the lower one, and almost always eight in number. A callous pad is substitnted for them above. Between the incisors and molars is a vacant space, where, in some gencra only, are found one or two canines. The molars, almost always six throughout, have their crowns marked with two double crescents, the convexity of which is turned inwards in the upper and outwards in the lower ones.

Of all mammals, the ruminants are the most useful to man. They furnish him with food; some serve him as beasts of burden; others with their milk, their leather, horns, tallow, \&c. The tallow is produced by the fat, which in cooling down becomes brittle, a peculiarity that the fat of no other animal possesses.

The group of Ruminantia divides naturally into four families, the camels, giraffes, deer and antelopes, and oxen.

Farr. 1. Cayelide. The few members composing this family deviate a little from the ordinary ruminants, and show some slight affinity to the pachyderms. The number of molar teeth is smaller than usual ; the first of these teeth is separated from the others by a large free space, and placed near the canine, which it resembles by its form, but generally falls off at an early age. In advance of the canine and in the upper jaw are found on each side an incisor, also resembling in its form that of the true canine, giving to the jaw the appearance of possessing three canines. In the lower jaw, the height of which reminds us of that of the horse, are only six incisors. Horns or other frontal processes are always wanting, as well as posterior claws or rudimentary toes. The hoofs are very small, situated near the extremity of the toe, and unable to support the body of the animal, which rests much more on a callous sole behind it. Of the two living genera composing this family, one is peculiar to the old, the other to the new world, both inhabiting the warm zone. The remains of an extinct genus have been found in Siberia.

The genus Cametus is characterized by the presence of canines in both jaws, and six molars above and five below on each side. The jaws themselves are slender, elongated, the nasal bones small; the posterior part of the skull is provided with very prominent crests and ridges; the temporal grooves are very deep. The lip is turned and cleft, the orbits prominent, the neck very long, the legs and feet disproportioned, giving to the camels a somewhat deformed appearance. The ease with which they are fed, and the faculty they possess of passing several days without drinking, make them of the highest importance for crossing the deserts. The inner wall of the paunch or first stomach is covered with large masses of cells, which retain for some time a certain quantity of water. Nothing of the kind is seen in other ruminants, although some pachyderms possess a similar provision. The camels have two toes united below nearly to the extremity by a common sole, and their back is furnished with lumps of fat.

They are large animals of the eastern continent, of which two species are known, both completely reduced to a domestic state in the hot regions of Africa and Asia. Wild camels are said to be found in central Asia.

The two humped camel, C. bactrianus ($p l .108$, fig. 1), is originally from central Asia, and descends much less to the south than the dromedary or one humped camel, C. dromedarius (fig. 2), which has spread from Arabia into all the north of Africa, a great part of Syria, Persia, \&c.

The remains of two fossil species of camels lave been detected in Asia about the Sivalic Mountains. Others, but still doubtful, are from France, from the shores of the Red Sea, and South America, if the latter do not belong to the following genus.

The genus Auchenia differs from the preceding in being destitute of humps on the back. The legs are shorter than in the carnel. The neck is long, more vertical. The ears and hoofs are long. The two toes are separated, or not united as in the camels by a callous sole. Five molars above and four below, on each side. The actual species of this genus belong to the western continent exclusively, where they represent the camels of the eastern. They are confined to the mountainous regions of South America. The lama, A. lama ($p l .109, f i g .6$), the most common of the species, is as large as a stag, and was already known at the time of the conquest of Peru by Pizarro in 1534, and indeed was the only domesticated animal, being for the inhabitants of that country what the reindeer is to the Lap. landers. The paco. A. alpaca ($p l .109$, fig. 5), is a variety with long woolly hair. Another species, the vicunna, A. vicunna (pl. 109, fig. 7), is of the size of a sheep, covered with fawn-colored wool, extremely soft and fine, of which valuable stuffs are manufactured.
Two fossil species, one of the size of a horse, the other smaller, have been discovered in the caverns of South America.

The genus Merycotherium was established upon some molar teeth of the upper jaw, which, according to Cuvier, scarcely differs from the above genera. Only one species is known. Its remains were found in a fossil state in Siberia.

Fam. 2. Camelopardalide. Another eccentric type among ruminants, although not related so much to pachyderms as the camels are. This family contains but one single living genus, Camelopardalis, in which both sexes have conical horns, always covered with a hairy skin, and which are never shed. The lachrymal holes are wanting, as also the posterior hoofs and the canine tecth. It is one of the most remarkable forms in existence, from the length of its neck, the shortness of its body, and the disproportionate height of its fore legs. The back is much inclined. The only living species known is the giraffe, C. girafa ($p l .108$, fig. 3), which is confined to the deserts of Africa. Its hairs are short and grey, sprinkled with fawn-colored angular spots, and a small fawn-colored mane. It is the tallest of all animals, its head being frequently elevated eighteen feet from the ground. Its disposition is gentle, and it feeds upon leaves.

Fossil remains of several species of this singular genus have been found
in the tertiary deposits of both Europe and Asia, showing a wider geographical range at an epoch previous to ours.

The genus Sivatherium is extinct, and belongs very likely to this family, although presenting some affinities with pachyderms. The upper molars are six in number. The only species known exhibits characters found only in ruminants. The heavier forms, shorter neck, and especially the probable existence of a proboscis, seemingly indicated by the form of the nasal bones, would refer it to pachyderms. It is one of the most remarkable and extraordinary fossils hitherto discovered in the Sivalic Mountains. The size of the head approaches that of the elephant, and hence we conclude that the species to which it belongs was nearly of the bulk of that proboscidian.

Another extinct genus is indicated, but not yet sufficiently known, which seems to be intermediate between Sivatherium and Camelopardalis proper, or the giraffe. A skull of this was found in the island of Perim in the Gulf of Cambay.

Fair. 3. Moschide. A very small family, represented in the actual fauna by a single genus, differing from the ordinary ruminants by the complete absence of horns in both sexes. The incisors as in the following are wanting above, and are eight in number below.

The genus Moschus is provided in the upper jaw with a long canine, directed downwards and backwards. The lachrymal holes are wanting, as in the giraffe; but there are posterior claws very much developed. The species inhabit the highest mountains from the Altai to Java. They are remarkably light and elegant animals. The most common species, the musk, MI. moschiferus (pl. 108, fig. 4), celebrated for a well known, strong perfume, which it carries in a membranous pouch under the tail, and whose medicinal qualities are much esteemed, is of the size of a goat, has searcely any tail, and is covered with hairs so coarse and brittle that they might be termed spines. Its habits are solitary and nocturnal ; it is of an extreme timidity. The other species have no musk pouch, and are the smallest and most elegant of all the ruminants.

Fossil remains of several species were discovered in the middle and upper tertiary beds of Europe and Asia, but the European are not well determined.

The genus Dremotherium is known only in a fossil state, the fragments of which were found in the fresh water tertiary strata of Auvergne (France), differing from Moschus in the absence of the canine teeth. Among these numerous remains there seem to be several species, two of which have already been described.

In the following ruminants, in the male at least, there are two horns; that is to say, prominences of the frontal bones, which are not found in any other family of mammals.

In some, these prominences are covered with an elastic sheath, composed as it were of agglutinated hairs, which increase by layers during life. The substance of this sheath is the horn, properly so called, and the sheath itself
a hollow horn (cavicornia). The bony prominence which it envelopes, and which grows with it, never falls, and remains permanently through life. Such are the horns of pxen, sheep, goats, and antelopes.

In others, the bony prominences are covered for a time with a hairy skin, similar to that of the rest of the head, but have at their base a ring of bony tubercles, which, as they enlarge, obliterate the vessels which carry the fluid to that skin. The latter becomes dry, and is cast off, the bony prominences being left bare, and after a certain period separate from the cranium to which they were attached; they fall off, and the animal remains for a time defenceless. They are reproduced, and generally larger than before, and again destined to undergo the same fate. Such horns, purely osseous, and subject to periodical changes, are styled antlers. Stags, deer, \&c., bear antlers. We have referred to this subject in the introduction to the present article (p. 393).

Fam. 4. Cervide. Very numerous in species, and containing ruminants with a slender stature, a short tail, and an elegant body, possessing eight incisors in the lower jaw, and none at all in the upper one; the feet are bisulcated, but the posterior toes are not always developed, and in that case the antlers are also absent. The antlers consist of a solid bony mass, branching off several times, and differently, according to the genera. Often it is the male alone which is provided with these appendages; but in a few species they are developed in both sexes. These animals are exceedingly fleet, live commonly in the forests, and feed on leaves, buds, grasses, \&c. The genera contain generally numerous species, distributed over the whole world. Fossil remains of this family are found in profusion in the meiocene deposits.
The genus Cervus (the deer) exhibits constantly horns in the male, branched, subpalmated, or simple, rounded at their root. The ears are large ; there are no canine teeth at all ; the tail is short and bushy. The American species of this genus are the following:

1. The common or American deer (C. virginianus) is reddish or bluishgrey, according to the season. The young are spotted with white. The horns are moderate, curving forwards, with the concave part turned in front, provided with from one to six points, occasionally palmated.
2. The black-tailed deer (C. mucrotis) is greyish, with a black-tipped tail, large ears, and horns with three branches ; the forehead is dark-brown. This species is larger than the common deer (C. virginianus), and inhabits the plains of Missouri.
3. The long-tailed deer (C. leucurus) is reddish-brown in summer, lightgrey in winter. The tail is long, white beneath and at the tip. It is smaller than the common deer, and inhabits the Rocky Mountains. It resembles most the roebuck of Europe (C. capreolus), represented on pl. 107, fig. 4, which lives in couples and inhabits the high mountains of the temperate part of Europe. The flesh is held in much better esteem than that of the common deer.

Cervus richardsoniï is a species nearly like the black-tailed deer, and inhabiting the plains of the Columbia.

Fossil remains of deer have been found in both Europe and Asia, in such proportions as to induce the supposition that species were more numerous during the tertiary epoch than in our days. More than forty species are already named, and others not yet determined. Two species have been signalized in the caverns of South America. There can be no doubt that some of them belong to the other genera of the family, and some others will constitute new ones, when they shall be better known; for of a good many we as yet possess but a fragment of the horns or of the teeth. The genus Dicrocera has already been proposed for the oldest species of the meiocene of France ; and the genus Megaceros for the gigantic fossil Irish deer, the whole skeleton of which is known.
The genus Dorcatherium differs from the deer in having seven molars above and seven below, whilst the usual number is six in each side of both jaws. Two species are described, one from Germany, the other from France, both from the upper tertiary beds.

The genus Palcoomeryx is characterized by a different folding of the enamelled plate of the teeth. Five extinct species have already been referred to it.

The genus Alces (the moose) is characterized by having the points of the horns united into one blade or palm, more or less indented. The tail very short. The moose (A. lobatus) belongs to this genus, the largest of all the species of the cervine family. It is of the size of a horse, of a blackish-grey, the adult male provided with broad flattened horns. The snout is long and prehensile; the neck provided with a mane. Inhabits the American continent. The European elk or eland, Cervus alces (pl. 109, fig. 10), was formerly thought not to differ from it. A closer comparison has shown that they are distinct.

The genus Elaphus (the stags) is provided with horns in the male only, which are round, very large, and rarely palmated. Canine teeth exist in the upper jaw of the male; the snout terminates by a distinct muzzle. The American stag or elk (E. canadensis) is one fourth larger than the European stag or red deer ($p l .107$, figs. 1 and 2), and nearly of the same color. The antlers are equally rounded, but more developed, and mostly without a palm. Inhabits the temperate part of North America. The remains of a fossil stag have been found in the United States, and a similar one in Europe, for which the genus Strongyloceros has been proposed.

The genus Tarandus (reindeer) is characterized by the presence of horns and canine teeth in both sexes. The horns themselves are smooth and palmated; the muzzle is small; the tail short; the ears moderate. The reindeer or cariboo of North America (T. hastalis) is a different species from the European, T. furcifer (pl. 109, figs. 8 and 9). The latter, it is well known, inhabits Lapland, where it is domesticated by the Laplanders, who have numerous herds of them, which, during the summer, they lead to the mountains, and in winter bring back to the plains. They are their only beasts of burden and draught ; their flesh and milk serve them for food, their skin for elothing, \&c.

The American cariboo is found abundantly in North America, its southorn limit falling in the State of Maine.

The European fallow deer, Cervus dama, is represented on pl. 107, fig. 3.
Faits. 5 and 6. Cavicornia, or Antilopide and Bovide. These families are characterized by hollow horns, having always developed posterior toes and seldom canine teeth. The dentition is very similar to that of the preceding family. The members of this family are distributed over the whole surface of the globe, and some of them are the most excellent domestic animals.
The genus Antilope is the most numerous in species of the whole group of ruminants. In the general form of their body the antelopes resemble the deer and elk; they are slender and swift, inhabiting rather the warm than the cold zone. They have been greatly subdivided into sections, subgenera, or genera, according to the various authors. 1. The horns may be annulated, with a double curvature directed forwards, inwards, or upwards, and then we have the type of the gazelle, A. dorcas ($p l .108, f i g .5$), which inhabits North Africa, and lives in large herds, which form a circle when attacked, presenting their horns at all points. The soft expression of its eyes furnished numerous images to the Arabian poets. 2. Sometimes the horns are annulated, and curved three times, such as in the antelope of India and Nubia. 3. The horns may be annulated and curved only twice, but winding in an opposite direction to those of the preceding ones, the points directed backwards; the genus Damalis, of some writers. 4. The horns are small, straight, or but slightly curved, shorter than the head, and in the greater number found only on the male. The A.pygmoeus belongs to this section. 5. The horns may be annulated, with a simple curve, the point directed forwards, as in the section of Reduncee; A. redunco, from Senegal (pl. 108, fig. 6). 6. The horns may be straight, or but slightly curved, and longer than the head, as in Oryx. 7. The horns may be annulated, with a simple curve, the points directed backwards, as is the case in the blue and the equine antelope from Senegal. 8. The horns may be encircled with a spiral ridge, as in the elk of the Cape of Good Hope, which is as large as the largest horse, living in troops in the mountains north of the cape. The A. scripta or maculata (pl. 109, fig. 4) belongs to this section. 9. The horns may be bifurcate, as in the genus Antilocapra, of all the forms of hollow horns the most singular. In the male the horns are forked, compressed, their extremities turned backwards; the female has no horns. The lachrymal holes are absent. The tail is very short. The best known species is A. americana, which inhabits the vast prairies of the middle and western parts of North America, where it roams in large herds. The tine of the horns is about the middle of the height. 10. There may be four horns, as in the genus Tetracera, inhabiting the forests of Hindostan. 11. There may be two smooth horns in the male only, short and bent forwards, as in a species from India, A. picta.

The fossil species of Antilope are far from being as numerous as in the actual fauna, and their number, although small, might be reduced by a more complete study of the remains, as some of them show a great resemblance
to those of the goats and sheep. These remains are found in the middle tertiary beds in Europe and Asia, and what is still more remarkable is to find them in the caverns of Brazil, where the genus does not exist in our days.

The genus Leptotherium is completely extinct, and lived in Brazil during the epoch of the diluvium. Two species are known already; the structure of their skeleton is slender and graceful like that of the deer to which they come nearest, and from which they, however, differ as well as from all other ruminants.

The genus Rupicapra has the form of the common goat; both sexes are provided with horns, straight, suddenly bent backwards like a hook. The limbs are strong. Behind the horns are two glandular openings. The hairs are long; of the under-wool there is but a little. R. tragus, the chamois ($p l$ l. 109, fig. 3), inhabits the highest mountains of Europe. The swiftness of its course among rocks and precipices is wonderful ; it is seen in small herds in the middle region. The number of individuals, however, is decreasing every year, for, although they are difficult to hunt, the inhabitants expose themselves to the greatest dangers for the sake of killing some of them.

The genus Catoblepas contains but one species, the gnou or gnu, a very singular being, which, at first glance, seems to be a monster composed of parts of different animals. It has the body and croup of a small horse, covered with brown hairs; the tail is furnished with long white hairs, like that of the horse, and on the neck a straight mane, the hairs of which are white at the base and black at the tip. The horns are approximated and enlarged at the base like those of the Cape buffalo; they descend outwardly, and turn up at the point ; its snout is large, flat, and surrounded by a circle of projecting hairs ; under the throat and dewlap is another black mane; the feet have all the lightness of the stag's. Horns exist in both sexes. This animal inhabits the mountains north of the Cape of Good Hope, where it is rather rare. The ancients appear to have had some knowledge of it.

The genus Capra (the goats) is provided in both sexes with horns directed upwards and backwards; the chin generally furnished with a long beard. The wild goat (C. cegagrus) appears to be the stock of all our domesticated varieties of goats. It lives in herds in the mountains of Persia, and perhaps in those of other countries, even in the Swiss Alps. The oriental bezoar is a concretion found in its intestines. The domesticated species of goat which has been introduced into America, C. hircus or crgagrus ($p l, 107, f i g .10$), varies infinitely in size, color, and in the length and fineness of the hairs ; in the size of the horns, and even in their number. The Angora goats have the longest and most silky hair. Those of Thibet are renowned for the admirable fine wool which grows among their hair, and out of the celebrated Cashmere shawls are manufactured. All these animals are stout, capricious, and fond of wandering. Sensible of their mountain origin, they prefer dry and wild places, feeding on coarse grass and shoots of young trees. They do much injury to the forests. The kid only is eaten, but their milk is useful and applied medi-
cinally in several diseases. The period of gestation of the female is five months, and she generally has two kids at a birth.

The genus Ovis (the sheep) differs very slightly from the preceding except by the external covering, which in the sheep is generally wool throughout. The horns are directed backwards, and then inclinied spirally more or less forwards. There is no beard under the chin. The goats and sheep produce together a prolific offspring, showing a very intimate relationship between these two animals. As in the goats, there are several wild races or species very nearly allied. The argali of Siberia (O. ammon) and the moufflon of Sardinia (0 . musimon) appear to differ from each other only in size. Both are supposed to be the original stocks from which are descended the innumerable races of our woolly animals which vary so greatly. Ovis aries or domesticus (pl. 107. fig. 9). The wool may be coarse or fine, the animal itself large or small, provided with horns of various size, which are either wanting in the female or present in both sexes. The most interesting sheep are those of Spain, which have a fine curled fleece, with large spiral horns on the male; it is now more diffused through Europe than formerly. The English variety has a long and fine wool. The most common variety in the south of Russia has a very long tail. Those of India and Guinea, which also have a long tail, are distinguished by their long legs, very convex foreheads, pendent ears, no horns, and short hair. Those of Syria and Barbary have a long tail loaded with an immense mass of fatty substance. In the race of Tartary and China the tail is transformed into a double globe of fat. The ears are pendent, the horns of the male large, those of the females moderate, and the wool mixed with hair. Sheep are valuable for their flesh, suet, milk, skin, and wool; when well managed, flocks of them are everywhere the source of wealth. The period of gestation lasts five months. Usually two lambs are produced at a birth.

The Rocky Mountain sheep (0 . montana) is a species nearly allied to the argali, and inhabiting the mountain range west of the Mississippi. It is strikingly characterized by the immense size of the horns.

Fossil species of goats and sheep have been discovered in the caverns of the greatest part of Europe, and referred either to the genus Capra or Ovis, the generic difference being so slight as not to allow of much discrimination in fragmentary skeletons.

The genus Bos (the oxen) is characterized by the lateral direction of the horns, existing generally on both sexes, then inclined upwards or forwards, constituting a crescent. The oxen are large animals, with a broad snout, short and thick body, and stout legs. The different species of oxen in their wild state are distributed as follows:-In the temperate part of North America, the buffalo, Bos, or Bison americanus (pl. 109, fig. 1). The horns are black, and very thick near the head, whence they curve upwards and outwards, rapidly tapering towards their point. The physiognomy of the bison is menacing and ferocious. Its hairs are more shaggy in winter than in summer. It lives in herds of innumerable individuals in the country west of the Missouri.

Formerly its range was much more extensive, overspreading most of the United States. It is, however, probable that the bison did not occur east of Hudson River and Lake Champlain, and perhaps in no point on the immediate Atlantic coast.

The common ox, Bos taurus ($p l .107$, figs. 7 and 8), is supposed to be derived from a stock now extinct, and which formerly inhabited Europe, and only found now in a fossil state. How far this is the case it is impossible to say. In the numberless varieties the horns have very different directions, and are of very different sizes, sometimes even totally wanting. The common races of the torrid zone have all a lump of fat upon their shoulders, and some of them are not larger than the hog.

The ure-ox (Bos urus), which formerly inhabited all the temperate parts of Europe, but has now taken refuge in the great marshy forests of Lithuania and the Caucasus, where it is become so exceedingly rare, that in order to prevent its complete destruction and disappearance from among living animals, the penalty of death is threatened to all who may liill one of them. It has been generally considered, and perhaps very erroneously, as the wild stock of our domestic horned cattle.

Another species is Bos bubalus (pl. 109, fig. 2), originally confined to India, and brought into Egypt and Greece during the middle ages. This animal is subdued with great difficulty, being extremely powerful; it prefers marshy grounds, and feeds upon coarse plants which the common ox would refuse. Its flesh is not esteemed. In the mountainous districts of the northwest of India there is a domestic race, which very likely is descended from this species.

A third species is the yak (B. grumiens), originally from the mountains of Thibet, and now very widely spread in Turkey. It is a small species, the tail of which is completely covered with long hairs like that of the horse, and provided with a long mane on the back.

A very large species, of an excessively ferocious disposition, inhabits the woods of Caffraria, the Cape buffalo (B. caffer), provided with very large horns directed outwards and downwards, ascending from the point, flattened, and so wide at their base that they nearly cover the forehead, leaving merely a triangular space between them.

The oxen made their first appearance in Europe towards the end of the tertiary epoch, and seem to have been quite numerous, for their remains are found in almost all the caverns and sandy deposits. Two species are described as peculiar to the State of Kentucky (B. bombifrons and B. latifrons). A fragment of the head of an ox was found near one of the tributaries of the Orange river (Africa); several species are indicated in the Sivalic Mountains and other parts of the Asiatic continent, showing a distribution similar in both the tertiary and modern eras.

The genus Ovibos contains bat one species, the musk ox of North America (0 . moschatus). The horns are approximated and similarly directed, but meet on the forehead in a straight line; those of the fermale are smaller and more widely separated; the end of the snout is furnished with hairs. It stands low, and is covered with tufted hair that reaches to
the ground. The body is covered with a coat of long, dense hairs. The taii is extremely short. Musk oxen are found in the greatest numbers within the Arctic circle ; considerable herds are occasionally seen near the coast of Hudson's Bay. The horns of the musk ox are employed for various purposes by the Indians and Esquimaux, especially for making cups and spoons. From the long hairs growing on the neck and chest, the Esquimaux make a kind of wig drooping down to the shoulders, to defend their faces from troublesome insects.

A fossil species (B. pallusii), which seems to be related to the musk ox, has been discovered in the States of Kentucky and Missouri, and we are told also, in Siberia. Whether these remains are perfectly identical is still to be ascertained.

Group 5. Rodentia.

The group of Rodentia includes those herbivorous mammals whose jaws are provided in front with long, curved, and cylindrical or nearly cylindrical teeth, the exposed ends of which are bevelled off on the inner surface, so that they terminate in a sharp, cutting edge. These teeth, two in number in each jaw, and sometimes four in the upper, are separated by a wide empty space from the molars, and thus cannot seize a living prey, nor tear any flesh; they cannot even cut the food, but serve to file, and by continued action they reduce it into separate molecules; in a word, they gnaw: hence the term Rodentia or gnawers. The molars have a flat crown, whose enamelled eminences are always transverse, and studded with blunt and but little elevated tubercles. When these eminences are simple lines, and the crown is very flat, the genera are more exclusively frugivorous; when the eminences are divided into blunt tubercles, they are omnivorous. The condyle of the lower jaw is longitudinal or rounded, and inclosed in the glenoid cavity in such a manner as to permit very little lateral motion to the jaw, which, however, moves freely in the longitudinal direction. This group, one of the most clearly defined, has representatives in all parts of the world, the species of which are very numerous, feeding upon vegetable sulstances, and generally of small size, a few exceeding the common rabbit in bulk. The form of the body is generally such that the hinder parts of it exceed those of the front, so that they rather leap than walk. In some of them this disproportion is even as excessive as it is in the kangaroo.

Fain. 1. Leporide. The hare family is less numerous in species than other families of rodents, and offers many exceptions to the general or normal characters of the order. The large size of the openings in the skull, combined with the very imperfect condition of the palate; the perforations in the nasal process of the superior maxillary bone; large orbits meeting in the mesial line of the cranium ; the small temporal fosse ; and the increased number of incisors and molar teeth, are among the more striking characters presented by the skull. The extra pair of incisors in the upper jaw is
small, and placed behind the principal pair, and these latter are grooved in front. The upper incisors are double ; both the upper and under ones are shorter, that is, less deeply implanted in the jaw than in other rodents, and they are always white. The molar teeth are always rootless, five above and five below, or six above and five below, on both sides of the jaws.

Only two living genera compose this family; a third is extinct.
The genus Lagomys has no visible tail, short and rounded ears, short hind legs, and the molars twenty in number, five above and five below on each side. The species are generally of small size. One is American (L. princeps), and inhabits the Rocky Mountains. Other species occur in Siberia and Central Asia, as L. alpinus ($p l .113$, fig. 2 b). The pikas, as the Lagomys are commonly called, although found in considerable number, are not, strictly speaking, gregarious; they occur only in alpine or subalpine districts, where they form burrows in the ground, or sometimes take shelter amongst the loose stones. Occasionally, when the weather is cloudy, they will quit these retreats in quest of food during the day, but the night is their ordinary time of feeding. Their food consists of various kinds of grass, and as in the high and cold regions which they inhabit the herbage is covered with snow during the winter months, their instincts lead them to lay up a stock for this season. Large quantities of dried grass and other vegetable matters are collected by the pikas for their winter's consumption; these they pile up in the autumn, like small haystacks, which gradually disappear as the spring approaches, unless, as not unfrequently happens, these stores are robbed by the sable hunters to feed their horses. The species of this genus seem to have been more numerous during the tertiary epoch than in our days, and inhabited the southern part of Europe. Some of the species have been made the type of the genus Ancema of some German palæontologists.

The genus Titanomys is extinct, of which several fragments of jaws with prismatical teeth have been found in Germany. The upper molars are provided only at the inner side with a very superficial furrow, and the under ones, especially the posterior, exhibit characters wanting in Lagomys. Only one species is known.

The genus Lepus (the hares and rabbits) is characterized by the presence of six molars above and only five below. The ears are large and elongated, sometimes longer than the head itself; the tail short and very bushy; the hind legs powerful and much longer than the fore legs. Under this genus come both the hares and rabbits, for no structural difference as yet has been discovered between them; the rabbits burrow, whilst the hares make a kind of nest, called a form, on the surface of the ground, on which they lie. The young of the rabbits, at least such is the case in the common kind, are blind and naked when born; those of the hares are clothed with hair and have the eyes open. By far the greater number of the species of this genus agree with the hare in the habits noticed, and that animal may therefore be regarded as the type of the genus. Destitute of means of defence, the hares are timid, have remarkable power of flight, and to warn them of danger, their senses of hearing, seeing, and smelling are usually
highly developed. The eyes are very large and prominent, and being placed laterally, enable the animal to see in all directions, or nearly so, at the same time. The common hare of Europe (L.timidus) is figured in pl. 107, fig. 5, whilst fig. 6 represents the rabbit or cony (L. cuniculus). North America has many species: the polar hare (L. glacialis), inhabiting the northernmost part of the continent, its southern limit being 62° north latitude. The American hare (L. americanus), found about Hudson's Bay, Canada, Newfoundland, all the New England States, and in the northern portions of New York, Pennsylvania, and Ohio; confined to the eastern portion of the continent. The swamp hare (L. aquaticus), from Alabama, Mississippi, lower part of Louisiana, and even Texas. The wood hare (L. sylvaticus), or common grey rabbit, is found almost throughout the United States. The marsh hare (L.palustris) inhabits the southern and western parts of the United States. The Nuttall's hare (L. nuttalli) is originally from the west side of the Rocky Mountains, in the neighborhood of the Columbia and Shoshonee rivers. The Bachman's hare (L. bachmani) inhabits the south-west portion of North America. The wormwood hare (L. artemisice) is from the Rocky Mountains. The prairie hare (L. townsendi) is found on both sides of the Rocky Mountains in the region of the Columbia River, and ranges eastwards on the Missouri, beyond the Yellowstone River. The Californian hare (L. californicus) inhabits California, in the open hilly country which surrounds the harbor of San Diego. The Texan hare (L. texianus). The Mexican hare (L. nigri-caudatus) in Mexico and adjoining parts of California.

In South America there is but one species of hare hitherto noticed. The remains of a fossil species were discovered in the caverns of Brazil, which resemble very closely the species now living in the same country. The hares were numerous in Europe during the epoch of the diluvium, and resemble also very closely the actual species inhabiting the ancient continent.

Fair. 2. Hystricide. The hystricine rodents have four molar teeth above and four below, rooted or rootless, and the terminal portion of the snout clothed with short hairs. This family may be divided into six sub-families.
Sub-fam. 1. Cavïna have rootless molar teeth divided by folds of enamel, so as to form lobes having acute angles; the series of molars on opposite sides of the upper jaw converging, and nearly meeting in front. The incisor teeth are comparatively short, those of the lower jaw not being extended backwards as far as the springing of the angular portion, or descending ramus. There are four toes to the fore feet and three to the hind. The tail is wanting, or rudimentary ; the upper lip entire. The clavicles are wanting.
The genus Dolichotis comprehends the cavies provided with long limbs; ears fully half as long as the head, pointed, broad at the base, and deeply emarginated behind; the tail is very short, and recurved. The Patagonian aavy is the only species contained in this genus.

The genus Cavia (cavies) is composed of species provided with short
limbs, and with ears likewise short. The feet are naked beneath ; the molar teeth nearly of equal size, each molar with two principal lobes. To this genus belongs the domesticated Guinea pig, Cavia cobaya (pl. 113, fig. 2 a); it inhabits the banks of the Rio de la Plata, and extends northwards into Paraguay, Bolivia, and Brazil.

Fossil species of this genus were found in the caverns of Brazil ; it is interesting to know that another species existed in Europe during the tertiary epoch.
Some species of cavies are grouped under the sub-generic name of Cerodon or Kerodon, to which three South American species are referred, from the diluvial period.

The genus Hydrocherus includes cavies with the upper incisor teeth having a broad and shallow groove in front; the molars unequal in size; the feet short and broad, and semi-palmated, the toes terminating in broad and depressed nails; the ears small. The capybara (H. capybara) is the only living species known; a second, but fossil and extinct, has been discovered in the caverns of Brazil.

Sub-fam. 2. Chinchillina (Lagostomidce of some authors, both names being indifferently used) are those hystricines with rootless molar teeth, having parallel, or nearly parallel transverse plates of enamel; the series of molars on either side of each jaw converging in front; the tail is long or of moderate length, recurved and bushy ; clavicles perfect and slender. They inhabit the mountains of Peru and Chili, and one species occurs in the plains of La Plata.

The genus Lagostomus is composed of but one species (the viscacha), that which inhabits the plains of La Plata. It is burrowing in its habits, easily distinguished from the other Chinchillina by the reduced number of the toes, three in number, to its hind feet, and the comparatively long, compressed, and sharply pointed nails, with which they are provided. The fore feet have four toes, armed with rather short, arched, and pointed nails. The upper lip has a vertical groove; the snout is broad and expanded. A fossil species of this genus occurs in the Brazilian caverns.

The genus Lagidium is characterized by long ears, a tail long and bushy, the tarsi entirely naked beneath, with four toes to the fore feet, the nails of the toes short. Two species belong to this section.
The genus Chinchilla differs from the preceding only in being provided with large and rounded ears, five toes to the fore feet and four behind. The name of Eriomys is sometimes given to this genus; Eriomys laniger, or Chinchilla lanigera ($p l .113$, fig. 1). As belonging to this group, and more particularly related to Lagostomus, we must insert here the genus Megamys, one of the largest known, although extinct, rodents. It contains but one species, from Patagoniá.

Sub-fum. 3. Octodontina are hystricines with rootless molar teeth, having but a single indenting fold of enamel on either side, or rarely with an extra fold on the inner side of the molars of the lower jaw ; zygomatic arch with an angular process on the lower edge; the hind feet provided with five toes; the fore feet likewise with five toes, or sometimes with four. The 682
species of this section inhabit the middle and southern parts of South America, on both sides of the Andes.

In the genus Habrocoma the fore feet possess four toes; the ears are very large. The species, two in number, inhabit Chili.

The genus Octodon has moderately large ears; a tail as long as the body, slightly bushy at the extremity; five toes to the fore and hind feet; the claws small. The species inhabit Chili.

The genus Schizodon, again, has moderate sized ears, a tail shorter than the body, clothed throughout with small adpressed hairs ; the fore feet strong ; the claws about equal to the toes in length; five toes throughout; incisor teeth stout. The species inhabit the eastern side of the Southern Andes.

The genus Spalacopus is characterized by having rudimentary ears, almost entirely hidden by the fur of the head; the tail is short, and clothed with short hairs; the nails of the toes of the fore feet rather shorter than the toes; the incisor teeth are moderately broad, those of the upper jaw distinctly directed forwards as well as downwards. Inhabit Chili, and live almost entirely under ground.
In the genus Ctenomys the ears are also rudimentary, but the eyes are small, the tail short, the fore feet large and powerful, and armed with nails which exceed the toes in length; the incisor teeth are very broad, the upper pair distinctly convex in front, the lower pair flat at the same part; molars with two unequal lobes. Extends from westwards of Brazil into Bolivia, and southwards to the Straits of Magellan. The species, four in number, live under ground. Two fossil species of this genus have been discovered in South America, at Bahia Bianca and Monte Hermoso.

Sub-fam. 4. Echimyina, have complicated molar teeth, and generally rooted; the hind and fore feet provided with five toes.

The genus Capromys still possess rootless molar teeth; each upper molar has a single deep fold of enamel on the inner side, and two deep folds on the outer ; the upper lip is slightly cleft ; the ears are moderate ; the tail of moderate length, and somewhat sparingly clothed with hairs, which do not hide the scaly skin ; the feet are naked beneath, and covered with small tubercles; the nails of the toes are large, and much curved; the pupil of the eye is vertical. There are two species of this genus known, and they both inhabit the island of Cuba. One of them, C. pilorides, is the type of the genus Isodon of Say; this species is seen in the forests, climbing the trees with great activity, botlh for safety when danger threatens, and to seek its food, which not only consists of fruits and the leaves and bark of trees, but likewise of the flesh of animals, especially of the lizard of the genus Anolius, which it hunts with great preseverance. It is readily tamed.
The genus Archcoomys had a species in Europe during the upper tertiary period, very nearly approximated to Capromys, and representing evidently at that time, on the Old Continent, that latter genus now confined to the West Indies. The name Gergoviamys is applied to the same genus.

The genera Plagiodontia, Dyopotamus, Cercomys, Petromys, Dactylomys,

Lonchercs, Isothrix, Mesomys, Echimys, Nelomys, and Aulacodon, belong to this section of hystricines.

Several fossil remains of this sub-family have been found in the caverns of Brazil, and which were described as species of Aulacodon, Nelomys, and Echimys; but the characters by which these genera are distinguished being so difficult to trace out upon fragmentary remains, the genus Carterodon has been proposed, to unite them all. Besides, there is another species referred to the genus Loncheres, and still another to the genus Phyllomys, and a third, Lonchophorus, has been established. Its affinities place it between Echimys and Loncheres, and it existed only during the period of the diluvium.

Sub-fam. 5. Dasyproctina, are characterized among the other hystricines by semi-rooted molar teeth, arranged in parallel series. The feet are constructed for rumning, with five toes, or three only to the hind feet, terminated by sub-solid nails, which are but little arched. The tail is rudimentary; the body clothed with hair ouly, there being no admixture of spines. This sub-family includes two living genera.

The genus Celogenys contains but one well established species, the Paca. The zygomatic arch is very well developed and of great depth, the incisors slender, and five toes to the fore and hind feet. The Osteopera platycephala, of Harlan, is referred to this species. Fossil remains of one or more species of the present genus have been discovered in the Brazilian caverns.

The genus Dasyprocta (aguti) has but three toes to the hind feet; the limbs are long and slender; the crown of the molar teeth rounded with a single fold of enamel, and four or five isolated grooves surrounded by enamel. The hinder parts of the back are covered with very long and coarse hairs. Several species of this genus are known in the actual fauna; the fossil remains of others are found in the Brazilian caverns.

Sub-fam. 6. Iystricina proper, or porcupines, are provided with rooted or semi-rooted molar teeth; the fect are short, the number of toes variable, and the body more or less armed with spines.

The porcupines are divided into two sections. One is composed of species living upon the ground and seeking shelter in burrows which they themselves form. They have five toes both to the fore and hind feet; the soles of the feet naked and smooth; the molar teeth semi-rooted and arranged in parallel scries. The species of this section (Philogoces) are confined to the old world. Those of the other section (Philodendrice) are peculiar to the new world. They have climbing habits, and live almost entirely in trees. Their feet are usually provided with but four toes, and these are nearly equal in length, armed with long, compressed, and curved claws; sometimes, however, the hind feet have five toes. The soles of the feet are thickly studded with minute, depressed warts.

The porcupines of the new world, the Philodendrce, are divided into three genera, Chatomys, Cercolabes, and Erethizon. The first contains but one species, from Brazil; the second is more numerons, and is more widely spread. One of the species, C. villosus ($p l .113$, fig. 3 a), inhabits

Brazil. Finally, the third genus, characterized by a thick, short, and depressed tail, covered above at the base with hairs and spines; at the apex, and on the under surface, with stiff bristles. The feet short and broad; four toes to the fore and five to the hind feet, armed with long and curved claws. To this genus belongs the Canada porcupine (Erethizon dorsatus), which inhabits North America. That from the western coast (California, Unalaschka, Sitka) has been described as a distinct species, but there are still doubts entertained whether it is really distinct or not. Two fossil species of this section are found in Brazil.

The porcupines of the old world form two genera. The genus Hystrix includes the common porcupine of Europe, H. cristatus (pl. 113, fig. 4), together with other species from different regions of Asia. The genus Atherura, with its tail nearly as long as the body, contains two species, one from Africa, the other from southern Asia.

Remains of the porcupine have been found in the centre of Europe, and about the Sivalic Mountains in Asia, but not yet characterized.

The fresh water tertiary deposits of France have yielded other remains which seem more intimately related to the new world porcupine than to those of the old, and for which the genus Theridomys was proposed to include temporarily one species.

Fam. 3. Muride. This is the largest family of the rodents, and is composed of animals of moderate size ; indeed, some of the smallest of the class belong to it. The cutting teeth, two in each jaw, are awl-shaped in the lower; the molars are simple or compound, the upper shelving backwards, the lower forwards; the limbs are proportionate ; the tail scaly ; fur, with scattered long hairs. The family may conveniently be subdivided into eight sub-families.

Sub-fam. 1. Saccomyina, is a somewhat doubtful or excentrical group, as far as known at present, its affinities with the other sub-families having not yet been made out fully. The animals which compose it, known as sand and mole rats, are provided with cheek pouches which open externally, four molar teeth, sometimes rootless and sometimes rooted. The tail, short in some, is long in others.

Here are referred the following genera:-Dipodomys, Macrocolus, Heteromys, Saccomys, Perognathus, and Geomys.

The genus Geomys comprehends the largest number of species which constitute the sub-family, and chiefly North American. The Columbia sand rat (G. douglasii) is one of them. Its body is shaped like that of the mole, and covered with soft, dense, velvety fur, of a uniform brown color. It has large cheek pouches hanging down the sides of the head, the latter being large and depressed, the nose obtuse, particularly when viewed in profile. The tail is more than half the length of the body, round, tapering, and obtuse, covered with hairs, particularly near its base. The legs are short and thick. The claws are very sharp pointed, compressed, curved, and about as long as their respective toes. The palm is naked, and its posterior part is filled by a large, rounded, callous eminence. The hind feet are a little more slender than the fore ones, and they are armed with
smaller claws, shaped like those of the Spermophiles. The hind soles are entirely naked, without any conspicuous tubercles; the heel is naked and narrow.
"These little sand rats," says Dr. Richardson, "are numerous in the neighborhood of Fort Vancouver, where they inhabit the declivities of low hills, and burrow in the sandy soil. They feed on acorns, nuts (Corylus rostratu), and grass, and commit great havoc in the potato fields adjoining the fort, not only by eating the potatoes on the spot, but by carrying off large quantities of them in their pouches."

The genus Saccomys is founded upon a North American Geomys. The genus Perognathus was created for a new species inhabiting the upper Missouri. The genus Heteromys contains two species; one inhabits Central America, the other Colombia and Guiana. The genera Macrocolus and Dipodomys are Mexican, and include each only one species. Dipodomys phillipsï is the well known jumping or kangaroo rat of Galifornia.
Sul-fum. 2. Bathyergina, composed only of the genera Bathyergus and Georyclus, the first with one, the second with two species, all three from southern Africa. The Bathyergus capensis burrows in the sand flats of the Cape of Good Hope in very great numbers. In every part of these flats mole-hills are observed, and when walking on the surface the foot often sinks into their galleries, thus making it very dangerous to ride on horseback in those localities, owing to the danger of being thrown by the unexpected sinking of the horse's feet into these holes.

Sub-fam. 3. Arvicolina, have, like the rats (Iurina), three molars above and below on each side, but rootless, each one being composed of triangular prisms, placed on two alternate lines.

The genus Arvicola includes the common field-rats, which have a hairy cylindrical tail, shorter than the body, and the ears clothed with hair. The fore feet have four toes and a rudimentary thumb; the hind feet are fivetoed, furnished with weak nails. They burrow in the earth and feed on grain, bulbous roots, and grasses; some are omnivorous, they do not climb, are not dormant in winter, but seek their food during cold weather, eating roots, grasses, and the bark of trees.

The species of this genus are found all over the world; nine of them belong to North America. The meadow mouse or campagnol (A. pennsylvanical is very abundant in the northern and eastern United States, and extends northwards as far as Hudson's Bay, and westwards to the banks of the Ohio. It swims and dives well. A dozen more species are found in North America; some inhabit the Eastern States, others belong to the western territories, Texas, Oregon, California, \&c.

The genus Lemmus (the lemmings) includes those Arvicolina which have very short ears and tails, and the toes of the fore feet adapted for digging. There are five distinct nails to the fore feet. The species of this genus are peculiar to the northern hemisphere. One of them, of the size of a large rat, is celebrated for its occasional migrations in innumerable bodies. At these periods they are said to march in a straight line, regard-
less of rivers or mountains; and while no obstacle can impede their progress, they devastate the country through which they pass. Their usual residence appears to be the shores of the Arctic Ocean. Two species of this genus are found in North America.

The lemming of Hudson's Bay has become the type of the genus Myodes, which differs slightly from the genus Lemmus. Its specific name is 1/. hudsomius. The two middle toes of the fore feet seem to have double claws, which is owing to the skin at the end of the toe being callous and projecting from under the nail. Of the size of the rat, and lives under the ground.

The genus Fiber contains but one species, peculiar to North America, the musk-rat (F. zibethicus). The lower incisors (two in number as above) are sharp-pointed and convex in front; the molars, three on each side, above and below, have a flat crown furnished with scaly transverse zigzag lamine. The fore feet have four toes with the rudiment of a thumb, and the hind feet five, the edge furnished with stiff hairs, which assist the animal in swimming, the hind toes semi-palmated. The tail is long, compressed, granular, nearly naked, having a few scattered hairs. A gland near the origin of the tail secretes a white, musky, and somewhat offensive fluid. The musk-rats are nocturnal in their habits, consequently their manners and customs are difficult to observe. In winter they construct a hut on the ice, in which several of them reside together. "A pond," say Audubon and Bachman, "supplied chiefly, if not entirely, by springs, and surrounded by low and marshy ground, is preferred by the musk-rats; they seem to be aware that the spring-water it contains probably will not be solidly frozen, and there they prepare to pass the winter. Such a place, as you may well imagine, cannot, without great difficulty, be approached until its boggy and treacherous foundation has been congealed by the hard frost, and the water is frozen over; before this time the musk-rats collect coarse grasses and mud, with which, together with sticks, twigs, leaves, and anything in the vicinity that will serve their purpose, they raise their little houses from two to four feet above the water, the entrance being always from below. We have frequently opened these nests, and found in the centre a dry, comfortable bed of grass, sufficiently large to accommodate several of them. When the ponds are frozen over, and a slight fall of snow covers the ground, these edifices resemble small haycocks. There is another peculiarity that, it appears to us, indicates a greater degree of intelligence in the musk-rat than we are usually disposed to award to it. The animal seems to know that the ice will cover the pond in winter, and that if it has no places to which it can resort to breathe, it will be suffocated. Hence you here and there see what are called breathing-places. These are covered over with mud on the sides, with some loose grass in the centre, to preserve them from being too easily frozen over. We have occasionally seen these winter huts of the musk-rat, in the vicinity of their snug summer retreats in some neighboring river's bank, and have sometimes been half inclined to suppose that, for some cause or other, they gave a preference to this kind of residence. We are not, however, aware that these nests are made use of by the musk-rat in spring, for the purpose of rearing its young. We
believe these animals always for that purpose resort to holes in the sides of ponds, sluggish streams, or dykes."

The arvicoline Muridæ were present in the tertiary faiuna. Several species of Arvicola or Hypudeus are mentioned and deseribed from continental Europe.
The genus Stcrofiber, referred to the arvicolines by some and to beavers by others, has been established upon a skull found in the middle tertiary beds of Auvergne. Its forms are intermediate between the beaver and the musk-rat.

Sul-fam. 4. Spalacina, of which there are no representatives in North America, is a small group composed of but thirteen species, distributed into seven genera, as follows: Rhizomys, six species, Asiatic and African; Tachyoryctes and Heterocephctus, each one species, both African; Ellobius, two species, European and Asiatic; Ommatostergus and Spalax, each one species, both in France; and Siphneus, one species, in Siberia.

The genus Spalax (the rat-moles) has very short legs, each foot provided with five toes and as many flat and slender nails. The tail is very short or completely wanting, and the same observation applies to the external ear. They live under ground like the moles, raising up the earth like them, although provided with much inferior means for dividing it; but they subsist on roots only. The blind rat-mole (S. typhius) is a very singular animal, which, from its large head, angular on the sides, its short legs, and total absence of a tail and of any appendage externally, has the most shapeless physiognomy. In the opinion of some writers, this should be the animal alluded to by the ancients, when they spoke of the mole as being perfectly blind.

Sub-fam. 5. Murina, has a greater number of representatives in the old than in the new world. The genera into which they are distributed amount to not less than twenty-eight to thirty, and the species to more than two hundred. There are comparatively very few in North America, where the genera Mus, with eight species; Neotoma, with two; and Sigmodon and Hesperomys, with only one, in all twelve species, represent Murina.

The Asiatic and African mice and rats are distributed into the genera Isomys, Akomys, Golunda, Vandeleuria, Nesokia, Dendromys, Pithecheir, Cricetomys, Phloomys, Psammomys, Malacothrix, Euryotis, Mystromys. The genera Hapalotis and Hydromys are Australian. In South America we find forty-five species of Hesperomys, the genera Cxymycterus, Calomys, Akodon, Drymomys, and Reithrodon, with a few only. The European species belong to the genera Smintlus, Gerbillus, and Cricetus, which have also representatives in Asia and northern Africa.

The genus Mus (rats and mice) is distributed throughout the whole surface of the globe. It is characterized by three molars on each side above and below, the anterior of which is the largest; its crown is divided into blunt tubercles, which, by being worn, give it the shape of a disk, sloped in various directions; the tail is long and scaly. The ears oblong or round, nearly naked. The common mouse, Mus musculus (pl. 113, fig. 8), originally from the East, has been introduced into America with the white
race, as well as the black rat, M. rattus (pl. 113, fi. 7), which has the same origin. The latter is now replaced by the Norway or brown rat (M. decumanus), which did not appear in Europe until the eighteenth century, and has now become more abundant than the black rat. It has also reached America in the same manner as the two preceding species. Besiles these three introduced species America possesses several others (five are well ascertained) which are peculiar to her. The field mouse of France, M. sylvaticus ($p l .113$, fig. 6), is never found to reside in the houses.

The genus Gerbillus (the gerbils) has three molars that differ very little from those of rats. Their superior incisors are furrowed with a groove. Their hind feet are somewhat longer in proportion than those of rats in general. The tail is long and hairy.

In the genus Cricetus (hamsters) the teeth also differ very slightly from those of rats, but the tail is short and hairy, and on each side of their mouth, internally are sacs or cheek pouches in which they transport the grains they collect to their subterranean abodes, accumulating large heaps. Most of the species of this genus inhabit the northern parts of Europe. Pl. 113, fig. 9 , represents the common hamster (C. vulgaris).

The genus Signodon has three molars above and below on each side, provided with small roots, and very profound, alternate folds towards the summit. The tail is hairy, the feet simple, the fore feet four-toed with the rudiment of a fifth; the hind feet five-toed. Two species of this genus exist in North America; one is S. hispidum or the cotton rat from Florida, very numerous in the deserted plantations lying on the River St. John, particularly in the gardens. Its burrows are seen in every direction.

The genus Neotoma embraces two North American species. The grinding surfaces of the molar teeth differ somewhat in this genus from what they are in Arvicola, and their large roots constitute a very essential character. The fore feet are provided with four toes and the rudiment of a fifth; the hind ones are five-toed. The tail is hairy.

The Florida rats (N. floridana) in Florida burrow under stones and the ruins of dilapidated buildings. In Georgia and South Carolina they prefer remaining in the woods. In some swampy situations, in the vicinity of sluggish streams, amid tangled vines interspersed with leaves and long moss, they gather a heap of dry sticks, which they pile up into a conical shape, and which, with grasses, mud, and dead leaves, mixed in by the wind and rain, form, as they proceed, a structure impervious to rain, and inaccessible to the wild cat, racoon, or fox. At other times their nest, composed of somewhat lighter materials, is placed in the fork of a tree. Another species (N. drummondii) has been discovered in the Rocky Mountains.

A third species has recently been detected in Rockland county, New York, by John G. Bell, Esq., but not characterized. Numerous remains of an extinct species, the largest of the genus, are found in the bone caves of Pennsylvania.

The Murina were represented in the fauna of the tertiary epoch by species belonging to the genera Mus (rats) and Cricetus (hamsters), and were very abundant during the diluvial period, at least in Europe.

Sub-fam. 6. Ctenodactylina, is the smallest section among Muridæ, there being only one species known, and therefore constituting one genus, the 'genus Ctenoductylus (the hairy-footed jerboa), belonging to Barbary, in northern Africa. The head is more compressed than in any of its congeners. There are only three toes to the hind feet, as in the jerboa (Dipus), but they are more hairy.

Sub-fam. 7. Dipodina, are those murines in which the hind legs are much longer than the fore ones, the consequence of which is that they jump instead of run on the ground. In general appearance they have some resemblance to the kangaroos. The species are distributed into four genera, three of which belong to the old hemisphere and one to North America. The latter is the genus Meriones, with but one species, M. americanus (the jumping mouse). The upper incisors are grooved, and a very small tooth is observed in advance of the upper molars. The tail is very long and nearly naked. A very active animal, that shuts itself up in its burrow and passes the winter in a state of lethargy.

In the genus Dipus (jerboas) the tail is long and tufted at its extremity; the head is large; the eyes also are large and prominent. The ancients called these animals the biped rats, from the enormous disproportion of their posterior limbs. They seldom move otherwise than by great leaps on their hind feet. There are five toes to each of the fore feet, and in certain species, besides the three great toes to the hind feet, there are small lateral ones. They live in burrows, and become torpid during the winter. Six species are contained in this genus, all of them inhabiting the old hemisphere.

The genus Alactaga contains eight species also inhabiting the old hemisphere. They are distinguished from the jerboas (Dipus) by much longer ears. They also possess two small lateral toes.

The genus Pedetes has a large and flattish head, a thick snout, and long ears. The anterior limbs have five toes armed with very long claws; the posterior legs, very long, have but four toes. The tail is long and bushy. 'The molars are simple, four above and four below on each side. A single species, P. capensis or Helamys caffer ($p 7.113$, fig. 5), is known from the Cape of Good Hope.

A fossil species of Dipodina (Dipus dipoides) has been discovered in central Europe.

Sub-fam. 8. Myoxina, are exeluded from the new world. The genus Myoxus or dormice, characterized by the presence of four molars above and below on each side; a very long tail, sometimes well clothed with hair and round, sometimes depressed, and sometimes tufted at the extremity only. The fur is very soft and fine. There are five toes behind, four and the vestiges of a fifth in front. Dormice are pretty little animals with lively eyes, living on trees like squirrels, and feed on fruits. They become torpid in winter. This genus is compased of ten species, seventeen of
which are European, two Asiatic, and five African. Pl. 113, fig. 10, represents Myoxus glis, or fat dormouse of Europe.
The genus Graphiurus is entirely African, and contains only two species from the south and interior of that continent. The molars are remarkable for their small size ; the tail is short, very fleshy. All the toes are armed with pointed, compressed, arched, and strong claws. The limbs themselves short, delicate, and not differing much from each other in length.

Two or three fossil species referred to the genus Myoxus have left their remains in the tertiary beds of Europe.

Fais. 4. Castoride, is composed of only one living genus (Castor), beavers.

The genus Castor (the beaver) has very strong incisors, those of the lower jaw a little smaller. In the upper jaw the molars, four in number, differ slightly from each other in size, and have one internal and three external grooves; whilst in the lower one, where four also is the number, there are three grooves on the immer side, and one on the external. The eyes are small; the ears short and round. Each foot possesses five toes; those of the fore feet are short and close, whilst on the hind feet they are long and palmated. The tail is large, horizontally flat, and scaly. Near the base of the tail exists a pouch which secretes an unctuous matter. Only two species are known to belong to this genus, one in Europe and an ther in America, C. filer americanus ($p l .114, f i g .1$), which, however, resemble each other so closely that they have been pronounced identical by many naturalists.

The beavers are larger than the badger, and of all quadrupeds the most industrious in constructing a common dwelling. They choose water of such a depth as is not likely to be frozen to the bottom, and as far as possible a running stream, in order that the wood which they cut above may be carried downwards by the current to the spot where it is to be used. They keep the water at an equal height, by dams composed of branches of trees, mixed with clay and stone, the strength of which is annually increased, and which finally, by the progress of vegetation, becomes converted into a hedge. Each hut serves for two or three families, and consists of two stories: the upper is dry for the residence of the animals, and the lower, under water, for their stores of bark. The latter alone is open, and the entrance is under water, having no communication with the land. The huts are a kind of rude wickerwork, being made of interwoven branches and twigs of trees plastered with mud. There are always several burrows along the bank, in which they seek for shelter when their huts are attacked. They only reside in these habitations during the winter; in the summer they separate, and live solitary. The beavers may be easily tamed, and accustomed to feed on animal matters.

Several species of the genus Castor proper have been found in a fossil state in the tertiary deposits of the old hemisphere. Some of them have been considered as new generic types, and form the genera Chalicomys and Trogontherium, which are not universally admitted as differing sufficiently from the genus Castor.

An animal nearly allied to the beaver existed in North America during the tertiary epoch, but far surpassing in bulk those of the present time. Its remains were discovered in the State of Ohio, and described under the name of Castoroides ohioënsis. Its life was probably aquatic, and its food consisted of vegetable substances, which it gnawed off with its powerful incisors.

The genus Palcoomys has been admitted as an extinct genus of the old world, and has left the remains of one species (P. castoroides) in the tertiary deposits of Germany. Its dentition comes near that of the beavers, but sufficiently different in some peculiarities of structure to permit the establishment of a new genus.

Fam. 5. Sciuride. The characters of this family consist in having simple molars with tuberculous crowns, five above and four below on each side ; the lower incisors very much compressed. The toes are long, armed with sharp claws, four on the anterior and five on the posterior feet; the anterior thumb is very short. The tail is long and tufted. Some are provided with cheek pouches. In others the skin of the sides is extended between the anterior and posterior limbs. We distinguish three kinds of squirrels: the true squirrels, the ground squirrels, and the flying squirrels.

The genus Pteromys (flying squirrels) is easily distinguished from any other of the same family by the expansion of the skin between the hind and fore legs, by means of which they are enabled to support themselves for a moment in the air, and to make very great leaps. The American flying squirrel, Pteromys volucella (pl. 113, figs. 12 and 13). An analogous species is found in Poland, Russia, and Siberia. Besides, there are three more species in North America inhabiting the north and west. There is one found in the Indian Archipelago that is nearly of the size of a cat.

The genus Pseudostoma possesses four prismatic molars above and below and on each side, the first of which is double, the others simple. The upper incisors are furrowed with a double groove in front. There are five toes to each foot. They have very short legs and very deep pouches which open externally, enlarging the sides of the head and neck. Four species are known to exist in North America. One is the Canada hamster or pouched rat (P. bursarius), which inhabits deep burrows. Another is from Hudson's Bay, and receives the common appellation of mole-shaped sand rat (P. talpoidea). A third species is found in the northern regions, and the fourth in Florida.

The genus Aplodontict is destitute of cheek pouches. Its body is thick and short, clothed with fur like that of the musk-rat, but neither so long nor so fine. The head is flat and broad; the nose a little arched, thick, and obtuse. There are five molars above and four below on each side. The limbs are robust and short, the feet moderately strong, with naked soles, all provided with five toes, rather short, but well separated. The thumb of the fore feet, however, is much shorter than the other toes. The claws, particularly the anterior ones, are very long, strong, much compressed, and but little curved. The tail is very short, and concealed by the fur of the hips. These animals form small societies, live in burrows, and feed, as
usual, on vegetable substances. One species only is described, and belongs to the northwest portion of North America, the sewellel of Lewis and Clark (A. leporina). A second species is indicated, if the characters alluded to by the author are not differences occurring in the young.

The genus Arctomys (the marmots) has, like the squirrels, five molars above and four below, all of them bristled with points ; accordingly some species are inclined to eat flesh and feed upon insects as well as grass. As to their general form, the marmots are the very reverse of the squirrels, being heavy, provided with short legs, a middle-sized or short hairy tail, and a large, flat head, passing the winter in a state of torpor and shut up in deep holes, the entrance of which they close with a heap of grass. They live in societies, and are easily tamed. The alpine marmot, A. marmotta or alpinus ($p l .113, f i g .11$), is about the size of the hare. Four species are described from North Ainerica, among which is the common Maryland marmot, or ground-hog (A. monax) of the northern, eastern, and middle states.

The genus Spermophitus possesses cheek pouches, two incisors above and below, and five molars above and four below, exactly as in the ground squirrels; but whilst the external appearance of the latter is more like that of squirrel proper (Sciurus), the general appearance of Spermophilus. is more that of the marmots, from which it is distinguished by the dentition. The molars are more narrow transversely than longitudinally. The ears are generally short. The feet are of moderate length, adapted for walking on the ground ; the nails are inferior in size to those of the marmots, and less hooked than those of the squirrels. There are four toes to the fore feet, with the rudiment of a thumb protected by a blunt nail; the hind feet have five toes. The tail is always shorter than the body. The form of the body is rather slender, and possesses a degree of lightness and agility approaching the activity of the squirrels. Twelve species of this genus are known to exist in North America, three in Europe, and a few in Asia and Africa, if some of the latter are not to be referred to the genus Arctomys.

In North America they are commonly known by the names of marmot squirrels, prairie marmot or prairie dog, tawny Arnerican marmot, leopard marmot, small grey squirrel (Lewis and Clark), and other similar appellintions more or less arbitrary. They chiefly inhabit the northern regions. The following is an extract from Say, in Long's Expedition to the Rocky Mountains, on the habits of the prairie dog (S. ludovicianus):
"This interesting and sprightly little animal has received the name of prairie dog, from a fancied resemblance of its warning cry to the hurried barking of a small dog. The sound may be imitated by the pronunciation of the syllable 'chek, chek, chek!' in a sibillated manner, and in rapid succession, by propelling the breath between the tip of the tongue and the roof of the mouth. As particular places are in general occupied by the burrows of these animals, such assemblages of dwellings are denominated prairie dog villages by the hunters. They vary widely in extent, some being confined to an area of a few miles, others bounded by a circumference of many miles. Only one of these villages occurred between the

Missouri and the prairie towns; thence to the Platte they were much more numerous. The entrance to the burrow is at the summit of the little mound of earth brought up by the animal during the process of the excavation below. These mounds are sometimes inconspicuous, but generally somewhat elevated above the common surface, though rarely to the height of eighteen inches. Their form is that of a truncated cone, on a base of two or three feet, perforated by a comparatively large hole or entrance at the summit or in the side. The whole surface, but more particularly the summit, is trodden down and compacted, like a well worn pathway. The hole descends, vertically, to the depth of one or two feet, whence it continues in an oblique direction downwards. A single burrow may have many occupants. We have seen seven or eight individuals sitting upon one mound. The burrows occur usually at intervals of about twenty feet. They delight to sport about the entrance of their burrows in pleasant weather. At the approach of danger they retreat to their dens, or when its proximity is not too immediate, they remain, barking and flourishing their tails, on the edge of their holes, or sitting erect to reconnoitre. When fired upon in this situation, they never fail to escape, or, if killed, to fall into their burrows, where they are beyond the reach of the hunter. As they pass the winter in a lethargic slecp, they lay up no provision of food for that season, but defend themselves from its rigors by accurately closing up the entrance of the burrow. The further arrangements which the prairie dog makes for his comfort and security are well worthy of attention. IIe constructs for himself a very neat globular cell with fine dry grass, having an aperture at the top large enough to admit the finger, and so compactly formed, that it might almost be rolled over the floor without injury."

The genus Tamias (the ground squirrels) is very nearly allied to the squirrels proper (Sciurus), from which it differs by many particulars, among which is the presence of ample cheek-pouches, a longer head, the ears placed further back, a more slender body, and shorter extremities. The ears themselves are rounded, and without any tufts on the edge or behind them. The tail is shorter than the body, rounded, narrow, seldom turned up. There are four toes to the fore feet, with a minute blunt nail in place of a thumb, and five to the hind ones. The claws are hooked. Two incisors above and two below, smooth, the lower ones compressed and sharp. The molars are five above and four below on each side, short, and the crown tuberculous. The species are all of small size, and longitudinally striped on the back and sides. They do not mount trees unless driven thither by necessity, but dig burrows, and spend their nights and the season of winter under the ground.

Several species of this genus exist in North America; one is known in South America, and another in the northern portions of the eastern continent. The chipping squirrel or hackee (Tamias lysteri) is found from the northern lakes (Huron and Superior) all along the eastern, northern, and middle states and range of Alleghany Mountains.

The genus Sciurus is characterized by an elongated body; a long tail, 671
furnished with hair; a large head, with erect ears ; projecting and brilliant eyes; the upper lip divided. There are four toes before, with a tubercle covered by a blunt nail, and five behind; four molars on each side, above and below, variously tuberculated; a very small additional molar is seen in front and above, permanent in some species, but drops out in most cases when the young have attained the age of six to twelve weeks; the fingers are long, slender, and deeply cleft ; the nails very acute, and greatly compressed. We quote the following description of the habits of the squirrels from Audubon and Bachman, Quadrupeds, p. 38:
"Squirrels are able to leap from branch to branch, and from tree to tree, clinging to the smallest twig, and seldom missing their hold. When this happens to be the case, these animals have an instinctive habit of grasping, in the descent, at the first object which may present itself; or, if about to fall to the earth, they spread themselves out in the manner of the flying squirrels, and thus, by presenting a greater resistance to the air, are enabled to reach the ground without injury, and, recovering instantaneously, they ascend the nearest tree.
"All the American species of this genus, as far as'ive have been able to become acquainted with their habits, build their nests either in the fork of a tree, or on some secure portion of its branches. The nest is hemispherical in shape, and is composed of sticks, leaves, the bark of trees, and various kinds of mosses and lichens. In the vicinity of these nests, however, they have a still more secure retreat in some hollow tree, to which they retire in cold or in very wet weather, and where their first litter of young is generally produced.
"Several species of squirrels collect and hide away food during the abundant season of autumn, to serve as a winter store. This hoard is composed of various kinds of walnuts and hickory nuts, chestnuts, chinquepins, acorns, corn, \&c., which may be found in their vicinity. The species, however, that inhabit the southern portion of the United States, where the ground is seldom covered with snow, and where they can always derive a precarious support from the seeds, insects, and worms, which they scratch up among the leaves, \&c., are less provident in this respect ; and of all these species, the chickaree, or Hudson Bay squirrel (S. hudsonius), is by far the most iudustrious, and lays up the greatest quantity of food.
"In the spring, the squirrels shed their hair, which is replaced by a thinner and less furry coat; during summer, their tails are narrower and less feathery than in autumn, when they either receive an entirely new coat, or a very great accession of fur; at this season, also, the outer surfaces of the ears are more thickly and prominently clothed with fur than in the spring and summer.
"Squirrels are notorious depredators of Indian corn fields of the farmers, in some portions of the country consuming great quantities of this grain, and, by tearing off the husks, exposing an immense number of the unripe ears to the mouldering influence of the dew and rain."

Twenty species of this genus inhabit North America. The common or red squirrel (S. hudsonius) has a great geographical range, and extends
very far nortl; is found again in Labrador, Newfoundland, and Canada; it is most common, however, in the New England States, and even occasionally in the hilly portions of New Jersey and Pennsylvania. The Carolina grey squirrel, S. carolinensis (pl. 113, fig. 14), is most abundant in Florida, Georgia, and South Carolina; the other species live in different districts of the country. The common squirrel of Europe (S. vulgaris) is figured on pl. 107, fig. 11.

Among the fossil remains of Sciuridæ hitherto discovered in the tertiary deposits of Europe, species belonging to the genera Sciurus, Arctomys, and Spermophilus, were recognised. They resembled very much the existing species.

Ordek 5. Insectivora.

This is a small order, and composed also chiefly of small animals, the largest having but twice the bulk of the common rat. They all possess molar teeth studded with conical points; their principal food consists of insects. They lead a nocturnal or subterranean life, and in cold climates many of them pass the winter in a torpid state. Their feet are short and their motion feeble ; in walking they all place the whole sole of the foot on the gound.

Insectivora may be divided into three families: Talpidce, or moles; Soricidce, or shrews; and Erinaceidce, or hedgehogs. The latter has no representatives in North America.

Among the fossil remains of Insectivora hitherto known there is a fragment of a lower jaw from the fresh water strata of Wordwell, England, whose affinities with either one of the families constituting this order have not yet been ascertained. The genus Spalacodon has been proposed for it.

Fam. 1. Talpide. The body, rather thick and plump, is covered with hair throughout; the limbs are short, the anterior ones terminating by a rounded hand provided with five toes as well as the hind feet. The eyes are so minute as to escape notice, whence the assertion that moles are blind. The fact is that the eyes are in a very rudimentary or undeveloped condition. The animals of this fumily are subterranean, and appear but very seldom on the surface.

The genus Chrysochloris (or golden mole) has, like the Mygale, two incisors above and four below. The molars are long, distinct, and almost all shaped in triangular prisms. The snout is short, broad, and recurved. There are only three nails to the fore feet; the external one, very large, curved and pointed, serves as a powerful instrument for excavating and piercing the earth.

The genus Talpa (mole proper) has very feeble jaws, the food consisting of worms and insects. There are six incisors above and eight below. The canines have two roots, partaking of the nature of the false molar; the false molars themselves are four in number above and three below, backwards of which are three bristled or true molars. The common mole
of Europe, Talpa europcea ($p 1.113$, fig. 17), is a very troublesome animal in orchards, gardens, and cultivated lands generally. It was once supposed to exist in North America, but this is now known not to be the case. Three well ascertained species of moles have been discovered in a fossil state in the tertiary beds of Europe. The moles are replaced in North America by the two following genera.

The genus Scalops is strictly North American, and has a long head terminated by an extended, cartilaginous, flexible, and pointed snout; the eyes and ears are concealed by the hair, and very minute. The hind feet are short and slender, with five toes, and delicate hooked nails; the fore feet or hands are broad, their claws long and flat, fitted, as in the mole, for excavating the earth. The common American shrewmole (S.' aquaticus) is an example of this genus. It is spread over a wide area of the United States from Canada to Florida, and westwards as far as Kentucky. Three or four species more are known.

The genus Condylura, also North American, is characterized by cerrtain cutaneous filaments which surround the nostrils and give to the nose a starlike appearance, whence the name of star-nosed mole. The only species of the genus hitherto known is C. cristata. In their feet and their general appearance they resemble the mole, but their tail is longer.

This family existed in North America during the tertiary epoch, and it is highly probable that species belonging to the above genera will some day be discovered.

The genus Anomodon rests upon a canine tooth which possesses a general resemblance to those of Scalops, but indicates an animal of a much larger size. The tooth itself is much more compressed than in any of the genera of the same family. The remains of the only species were found in the lead region of Illinois together with some pachyderms, of which we have already spoken.

In Europe is found the genus Dimylus, with one species from the tertiary beds of Wirtemberg, known by a lower jaw in which only two molars are left, possessing a double row of tubercles; whilst in the genus Talpa, to which it comes nearer, these tubercles form three rows.

Fam. 2. Soricide. This family is composed generally of very small animals, whose body is covered with hair, with the general appearance of the mice, from which they greatly differ in their dentition. The tail is more or less elongated, the body itself disproportionately slender; the limbs short; the snout more or less pointed. They live under the ground, come seldom to the light, and are provided with very minute eyes. Some possess glands emitting peculiar odors.

The genus Sorex (the shrews) is distinguished from the others of the family by having under the skin, and upon each flank, a small band of stiff thickly set setæe, between which, in the rutting season particularly, peculiar glands secrete an odorous fluid. The two upper middle incisors are hooked, and dentated at their base, the lower ones slanted and elongated; on each side, five above and two below, are small false molars, and three bristled or true molars throughout. The shrews live in holes, which they excavate in
the earth, and which they seldom leave till evening; they feed on worms and insects. Of this genus North America possesses many species, inhabiting different districts.

The shrews are found also in Asia, Europe, and Africa, and are more numerous towards the tropical parts; the countries where they most abound are tropical Africa, central and tropical Asia. They constitute particular genera in Asia, such as Hylogale, Hylomys, \&c.

The extinct genus Oxygomplius had a great resemblance to Hylogale javanica, and differs from it in the tubercular structure of the molar teeth. Two species were found in the tertiary deposits of Wirtemberg.

Several species of Sorex have left their remains on the continent of Europe.

The genus Mygale (the desmans) is peculiar to Europe; it differs from that of the shrews in having two very small teeth placed between the two great lower incisors, and the two upper incisors flattened and triangular. There are six or seven false molars, and four bristled ones; the snout is prolonged into a flexible proboscis; the external ear is short and not conspicuous; the tail long, scaly, and laterally compressed ; there are five unguiculated toes to each foot, united by a membrane; the eyes are very small. A species is very common in Southern Russia, along the rivers and lakes, where it feeds on worms, larvæ of insects, and particularly on leeches. Its burrows, which are constructed in the bank, commence under water, and ascend to such a height as to be above its level in the greatest flood. Another, but smaller, inhabits the Pyrenees. Of this genus, remains of two fossil species have been discovered in. France.

The genus Palcospalax is extinct, and known only by a fragment of the lower jaw, with six teeth in their natural position, which in their structure are intermediate between Mygale and Talpa. A single species was discovered on the coast of Norfolk (England).

The genus Macroscelides is characterized by a narrow snout, ending anteriorly in a long and sub-cylindrical proboscis, having the nostrils at its apex; the eyes are moderate ; the ears large and round ; the body furry; the tail elongated and scaly, annulated, and furnished scantily with hairs; the feet are five-toed; there are two incisors above and two below, and five true molars; between these and the incisors are, above and below, four teeth, which have been called canines, three of which are probably false molars.

The five known species of this genus belong to tropical Africa; the M. typicus inhabits the open country in the interior of South Africa, and is occasionally seen during the day about the roots of bushes or among brushwood, whence, upon being discovered, it instantly retreats to its natural and subterraneous habitation.

Fan. 3. Erinaceide. The body is generally covered with spines instead of hairs, sometimes with spines and setæ intermingled. This family includes the largest species of the order ; they live in woods and hedges, sometimes in burrows. Although chiefly nocturnal in their habits, they often come to the light. The eyes are perfectly developed. Some present the remarkable phenomenon of a lethargic sleep under the tropical zone.

This family, as far as our knowledge extends, existed during the tertiary epoch, under the same generic form as in our days. Several species of the genus Erinaceus, and one of the genus Centetes, have been found in Europe; none yet in America, where the living types are also absent.
The genus Erinaceus (hedgehog) has its body covered with spines instead of hairs, showing thus a resemblance to the porcupine. The skin of the back is furnished with powerful muscles, by which, when the head and the feet are brought towards the abdomen, the animal can shut itself up, presenting to its enemies spines all around. The tail is very short, and there are five toes to each foot; there are six incisors in each jaw, the middle ones being the longest; on each side three false molars, three true molars bristled with points, and a small one studded with tubercles.

The common hedgehog, E. europceus ($p l .113$, fig. 18), is common in the woods and hedges, and also in houses. It passes the winter in its burrow. Its skin, it is said, was formerly used to dress hemp.

The genus Centetes (tenrecs) is composed of four species, inhabiting tropical Africa and the Island of Madagasear. Their body is covered with spines, like the hedgehog, but much shorter; and the animals do not possess the faculty of rolling themselves so completely into a ball. The tail is absent; the snout is sometimes elongated, always much pointed; there are four or six incisors, and two great canines in each jaw ; there are one or two false molars, and four true ones, triangular and bristled; each foot has five distinct toes, armed with crooked spines. They are nocturnal animals, passing three months in the year in a state of lethargy, although inhabiting the torrid zone. We are even fold that it is during the greatest heat that they grow torpid.

The Oriental or Asiatic hedgehog constitutes the genus Gymnura.

Order 6. Cheiroptera.

This order is composed of the animals commonly known as bats, and easily distinguished from all other mammals by a membranous expansion which extends from the sides of the neck between the fore limbs and toes down to the tip of the tail, and which enables them not only to sustain themselves in the air, but also to move through it in any direction they may desire. They thus possess the power of true flight as in birds, with which indeed they are frequently confounded. The bones of which the anterior extremities are composed are very much elongated, especially those of the fingers, and constitute an umbrella-like framework, over which is spread a thin, naked membrane continued from the membranous expansion of the body. The whole locomotive power of these animals seems concentrated upon this organ of flight. It can only move along a solid surface by folding its wings and using the hooked thumbs to lay hold of any irregularity, and thus draw itself forwards. Hence its motions are awkward and shuffling; and on a polished surface, like that of a table, it is greatly embarrassed. But in the hollows of trees, the crevices of masonry, and the
chinks or fissures of a rock, it can climb and crawl about with great facility The air, however, is its home, and through this it moves with considerable swiftness, and with great apparent ease, wheeling in every direction, and performing the most abrupt evolutions in search of its insect prey. In these movements it is very much assisted by the tail, which serves as a rudder; and we shall find that this organ is most developed in bats which pursue insects on the wing, whilst it is small, or entirely wanting, in those which live on fruits. In their mode of flight, bats bear a very strong resemblance to swallows, which like them pursue insects on the wing ; but whilst the latter seek their food during the day, the former come forth only at twilight. During the day the bats sleep in their recesses, suspended by their hind feet, their heads consequently hanging downwards; and they assume the same position during the whole winter, which in the temperate zone is passed by them in a state of torpidity.

The bats may be divided into two sections: the carnivorous or insectivorous, and the frugivorous.

Group 1. Carnivora or Insectivora.

The insectivorous or insect eating bats are by far the most numerous of the order; they possess a dentition and a digestive system in accordance with their particular kind of food. The molars are beset with pointed tubercles, adapted to crush the hard envelopes of insects; the canines are sometimes of a large size. The intestinal canal is much shorter than in the frugivorous tribe.

The insectivorous bats are subdivided into several families, the number of which is variable according to the views of systematic writers. Some adopt five or six; we only two: the Vampyridte and Vespertilionidce.

The bats existed during the tertiary epoch, and have left some of their remains in the deposits of past ages. As far as hitherto known, they belong to the family of Vespertilionide. The frugivorous bats are not yet known to have existed prior to our days. We must, however, expect many discoveries to be made in the extinct fauna of this singular order of animals.

Fam. 1. Vampyride. The genus Dysopes or Molossus (bull-dog bats) belongs both to the old and new world. The snout is simple; the ears are broad and short, arising near the angle of the lips, and uniting with each other on the snout. The tail occupies the whole length of their inter-femoral membrane, and most generally even extends beyond it. Two species of this genus are found in the southern United States. The fossil remains of one species have been discovered in the Brazilian caverns. The genera Dinops, Nyctinomus, and Cheiromeles, are mere subdivisions of this genus.

The genus Diclurus (fox-tailed bats), nearly related to the preceding, contains but one species, from tropical America.
The genus Noctilio (hare-lipped bats) is distinguished by a short snout,
which is inflated and split into a double hare-lip, covered with old looking warts and seams. The ears are separated. There are four incisors above and two below. The tail is short, and free above the inter-femoral membrane. There are two species of this genus in tropical America.

The genus Phyllostoma (javelin bats) possess four incisors in each jaw, sume of which fall off by the growth of the canines. 'The genus is moreover distinguished by a membrane resembling a double leaf that is placel crosswise on the end of the nose. The tongue is very extensible, terminated in papillæ, which appear to be so arranged as to form an organ of suction. Symmetrically arranged tubercles are also observed on the lips. Upwards of twelve species of this genus are known to inhabit tropical America, to which country the genus is completely limited, and where a fossil species has also been discovered in the caverns.
In the genus Vampyrus the tail is absent; in other respects it resembles the preceding. One species only belongs to it, V. spectrum (pl. 117, fig. 8), and this is peculiar to the new world, and more especially to tropical America. Its wings measure two or thre feet across when expanded.

The genus Glossophaga (long-tongued bats, differs from Phyllostoma by a narrow tongue, susceptible of elongation, and furnished with hair-like papillæ. Four species are known, and all of them belong to tropical America.

The genus Meguderma (the broad-winged bats) has the leaf-like membrane of the nose more complicated than that of Phyllostoma. The ears are very large, and united on the top of the head. The tongue and lips are smooth; the inter-femoral membrane is entire, and the tail absent. There are four incisors below, but none above. The genus belongs entirely to the old continent; species are found in Africa and in the Indian Archipelago. From the latter locality is M. lyra (pl. 117, fig. 7).

The genus. Plecotus (long-eared bats) has ears larger than the head, and united on the cranium as is the case in Megaderma. P. timoriensis (p l. 117, fig. 2) belongs here. Two species of this genus inhabit North America, one in the southern States (P. lecontii), and the other in Oregon (P. townsendi).

In the genus Rhinolophus (the horse shoe bats), the nose is furnished with very complex crests and membranes laid upon the chanfrain, presenting the figure of a horse-shoe; the tail is long, and placed in the inter-femoral membrane. This genus is very numerous in species, all of which belong to the old continent; example, R. ferrum equinum (pl. 117, fig. 6). A fossil species very nearly allied to it is found in the tertiary deposits of Germany.

In the genus Nycteris (cheek-pouched bats) the forehead is furrowed by $^{\text {fol }}$ a longitudinal groove, which is even marked upon the cranium, and bordered by a fold of the skin which partly covers it. The nostrils are simple; there are four incisors above and six below; the ears are large and separated, and the tail involved in the inter-femoral membrane. The species are African and Asiatic.

The genus Nyctophilus includes only one species, which inhabits the
islands of the South Seas. There are two incisors above, elongated, conical, and indented; and six below, equal and trifid, with rounded lobes; the tail projects a little beyond the inter-femoral membrane.
The genus Desmodeus (curved-tooth bats) inhabits tropical America, where three species are known; the character of the genus resides in the peculiar formation of the teeth.

In the genus Rhinopoma (lid-nosed bats) the groove on the forehead is less distinctly marked than in Nycteris; the nostrils are placed at the end of the snout, above which is a little leaf; the ears are united; the tail extends far beyond the membrane. One species only is known, principally found in the pyramids of Egypt.

The genus Tephozus (wing-pouched bats) is distinguished by a little prolongation of the membrane of the wings, which forms a sort of sac near the carpus. The head is pyramidal ; no recurved leaf is attached to the nostrils; there is a small rounded pit on the nose. Nine species of this genus are known, some of which belong to the Old, and some to the New World. One particular species was discovered in the catacombs of Egypt.

The genus Normoops contains but one species, proper to the tropical region of the New World, distinguished in having on each side of the nose a triangular leaf, which extends to the ears. There are four incisors each jaw, the superior tolerably large, the inferior trilobate; the cranium is raised like a pyramid above the snout. One species only, which inhabits tropical America.

Fam. 2. Vespertilionide. The genus Vespertilio (bats proper) has a snout deprived of leaf, or any other peculiar appendage; the ears are separated, and independent from each other; the tail is contained in the membrane between the hind limbs. This genus is the most numerous in species, and is found in both the Old and New Worlds. Seven are described from North America, from the Atlantic to the Rocky Mountains, known as hoary bat (V. pruinosus), little brown bat (V. subulatus), silver-haired bat (V. noctiregans,) in the Northern, Middle, and Western States; others are found in the Carolinas and Virginia.

Of European bats we mention the common bat of Europe, V. murinus ($p 1.117$, fig. 5); V. noctula ($p l .117$, fig. 3); and the serotine bat, V. serotinus (pl. 117, fig. 4).

The genera Emballonura (long-nosed bats) and Nycticejus (roquet dogbats) include numbers of species allied to Vespertilio, and peculiar to the tropical regions of both the Old and New Worlds.

The genus Furia (fury bats) is composed of one species from tropical America, which differs generically from all others.

Of the genus Vespertilio proper, several fossil species have been described from the tertiary strata of the Old World, one of which is very nearly allied to the common bat of the same hemisphere.

Group 2. Frugivora.

The frugivorous tribe of bats has no representatives in the New World; the few genera of which it is composed belong chiefly to tropical Asia. They have molar teeth, with rounded eminences for bruising and grinding their food; their intestinal canal is very long, in some instances seven times as long as the body itself, indicating that these animals were destined to subsist, in part at least, upon vegetable diet. Like many of the monkeys, however, they are probably omnivorous in some degree, feeding chiefly upon fruits, but pursuing small birds, or large soft-bodied insects, which may be obtained without much difficulty. This tribe contains but one family.

Fami. Pteropodide. Is characterized by the entire absence of the noseleaf, the simplicity of the ears, the shortness of the tail. The flesh of many of the frugivorous bats is eaten as a dainty by the inhabitants of the countries in which they are found, having a flavor which has been compared to that of the hare and partridge. Possibly some of the largest kinds were known to the ancients, and gave rise to the fabulous account of the harpy.

The genus Pteropus (roussette bats) belongs exclusively to the Old WWorld, and comprehends numerous species. There are trenchant incisors in each jaw, and the molars have flat crowns; the food consists chiefly of fruits, of which these animals destroy large quantities; they pursue bids and small quadrupedswith much success. This genus includes the largest species known of bats; their flesh is eaten; they inhabit the East Indies. The tail is absent, or nearly so ; the membranous expansion is deeply notched between the legs; the snout is simple, somewhat elongated, and the nostrils widely separated; the ears are of a middling size. The species belong to Asia and the Indian Archipelago.

The common roussette (P. vulgaris) is represented on p7. 117, fig. 9. These animals generally preserve a perfect silence during the day; but if disturbed, they will emit sharp piercing shrieks.

The genus Harpyia (tube-nosed roussette) comprehends a single species, which inhabits Timor. It is a singular looking bat, having nostrils projecting in a kind of cylinder, and a claw on the fore-finger.

The genus Cephatotes contains also a single species, from tropical Asia. The membranes of their wings, instead of meeting at their flanks, are joined to each other on the middle of the back, to which they adhere by a vertical and longitudinal partition.

The genus Macroglossa (great-tongued roussette) is very closely allied to Pteropus. It is characterized by the extreme length of the head, the absence of false molars, the great development of the posterior molar, and the extensile tongue. One species, from tropical Asia.

The genus Pachysoma (stout-bodied roussette) is composed of at least six species, which resemble Pteropus, and are found inhabiting tropical Asia.

Order 7. Carnivora.

Group 1. Pinnipedia.

The seals, which constitute this group, were for a long time not distinguished from the herbivorous Cetacea, the name of sea-cow, now restricted to Manati, being indifferently applied to them, with those of sea-calf, seadog, sea-bear, sea-lion, \&c. Seals, as already remarked, are also among those curious animals which have given rise to the stories of the mermaids of our forefathers, their head generally bearing some resemblance to that of a dog, whose intelligence (we are told) and soft expressive look they also possess. Some species liave very inconspicuous ears, and others have merely an auditory aperture; their jaws are furnished with strong teeth, consisting of incisors, canines, and molars, all well adapted for seizing, holding, and crushing the scaly and slippery prey upon which they feed. The tongue is smooth, and slightly notched at the end; the feet are formed for swimming; the front pair is enveloped in the skin of the body as far as the tarsus, and the hinder pair, which is flattened and directed backwards, is enveloped almost to the heel. All the feet have five toes, the anterior ones regularly decreasing in length from the thumb to the little toe; while in the hinder feet the thumb and the last toe are the longest, and the intermediate ones the shortest. The tail is short, and when the animal is out of the water, is generally concealed by the hind legs pressing close to it. When they dive, they close their nostrils by a kind of valve; and the large venous sinus in the liver must assist them in diving, by rendering respiration less necessary to the circulation of the blood, which in them is very abundant and very dark colored.

These animals pass the greater portion of their time in the water, never landing except for the purpose of basking in the sun and suckling their young. They are excellent swimmers, having an elongated body; a very movable dorsal spine provided with muscles that strongly flex it ; a narrow pelvis; short hairs that adhere closely to the skin.

The Pinnipedia form but one family, that of Phocidæ, since we have removed the walruses from this group.

Fam. Phocide, or the seals, have six or four incisors above, four or two below, pointed canines, and grinders from twenty to twenty-four, all trenchant or conical, and without any tuberculous part whatever; five toes to all the feet.

The genus Phoca includes the species deprived of external ears, provided with pointed incisors; all their toes enjoy a certain degree of motion, and are terminated by pointed nails, planted at the edge of the membrane which unites them. When the number of incisors is six above and four below, we have then the sub-genus Calocephala, of which the common seal, Phoca vitulina ($p l .114, f i g .2$), is an example. It is from three to five feet in length; found on the coast of Europe in great herds. When the incisors are four above and four below, and the molars deeply notched into three
points, as in the Ploca leptonix, from the Australian seas, we have the subgenus Stenorlynchus. The sub-genus Pelagus has four incisors above and four below associated to grinders with obtuse cones, with a slightly marked heel before and behind, as in Phoca monacha (the monk), from the Mediterranean. When there are four incisors above and only two below, the molars or grinders compressed, slightly trilobate, and supported by thick roots, the species belong to the sub-genus Stemmatopus. The hooded seal (Ph. cristata), which is an example of the last sub-genus and an inhabitants of the Arctic Ocean, has been noticed on the shores of New England. It is seven or eight feet long; possesses a piece of loose skin on the head, which can be inflated at the pleasure of the animal, and is drawn over the eye when it is menacel, at which time the nostrils also are inflated like bladders. Lastly, when the incisors are four above and two below, but the molars obtuse and conical, and the snout resembling a short movable proboscis, the sub-genus is called Macrortinus, to which the largest known seal (Phoca leonina) must be referred. This is the sea-lion, or sea-wolf, or sea elephant of the various writers. It is from twenty to twenty-five feet in length. Common in the northern latitudes of the Pacific Ocean. It constitutes an important object of the fisheries, on account of the oik which it yields abundantly.

The genus Oturia is composed of seals with external ears, and besides the four superior middle incisors have a double cutting edge, a circumstance hitherto unknown in any animal ; the external ones are simple and smaller, and the four inferior, bifurcaterl. The molars are simply conical, and the toes of the fore feet almost immovable; the membrane of the hind feet lengthened out into a slip behind each toe; all the nails are flat and slender. The sea-bear (O. ursina), eight feet long, is from the North Pacific Occan. Another species (O. jubata) is from fifteen to twenty feet in length; found in all the Pacific Ocean.

Fossil remains of seals proper (Phoca) have been discovered in the tertiary beds of Europe, and referred to three different species, with others not yet determined.

There is also a form found in Germany which differs more widely from the seals proper, and for which the genus Pachyodon has been proposed, the full characteristic of which has not as yet been made known.

The genus Phocodon is another extinct genus, peculiar to North America and Europe, which, when first discovered among us, was described as a gigantic reptile, and received the name of Basilosaurus. Subsequently it was found, by the structure of its teeth and the manner in which the latter were implanted in the jaw, to belong to the class of Mammalia, and to come near the aquatic tribe. By some, however, it is erroneously placed among herbivorous cetaceans. The general character of the teeth reminds us of those of the seals (Phoca), whence the name of Phocodon. They have also the external appearance of the teeth of some sharks, and the name of Squalodoro was suggested for them by a French naturalist, who had found some of them in the tertiary deposits of Bordeaux. Zeuglodon is another appellation for these remains, alluding to the structure of the teeth. One species
is from the tertiary deposits of Alabama, which must have reacbed a very large size. Another; smaller; is from South Carolina.

The Trichechidke, or walruses, which we have already described among Herbivora, were formerly placed near the seals among Pinnipedia.

The family of IIydrarchidec was established,for an extinct genus (Hydrarchos), which at first was supposed to have been the most gigantic creature ever called into existence. Indeed it was one of the largest at the time when it lived, but its remains have been found to belong to the genus Basilosaurus; or Phocodon.

Group 2. Unguiculata.

This group is composed of those mammals whose food consists chiefly of flesh, generally of a living prey, which they devour with more or less avidity. Some of them, however, the bears for example, have almost a frugivorous diet, eating flesh only by necessity. To these habits correspond a set of teeth fitted for the wants of the animals. The incisors and canines are adapted to seize a prey to the best advantage, and the molars to tear it into pieces. The limbs are sometimes short, and sometimes moderately long, never out of proportion; always strong built, either for the purpose of running after prey or of leaping upon it. The Unguiculata may be divided into two tribes.

Tribe 1. Plantigrada.

The anmals of this tribe, when walking, place the whole sole of the foot on the ground, a circumstance which enables them to stand vertically upon their hind feet. They partake of the slowness and nocturnal life of the Insectivora. .They are all provided with five toes to each foot. Most of those that inhabit cold countries pass the winter in a state of torpor.

Famr. 1. Ursides, contains but one genus, Uisus (or bears), characterized by a large head, a body and limbs large and powerful, the body itself covered with long and shaggy hairs. The tail is very short. There is no glandular pouch. The number of the molars is variable, the four last are large and tuberculous. Several species of bears are found in North America. In common with the old continent there is the polar white bear, U. maritimus ($p l .114$, fig. 11), which inhabits the Arctic seas. The black bear, U. americanus ($p l .116$, fig. 10), inhabits the east and north of the United States, whilst in the western regions we have the grisly bear (U. ferox). The brown bear of Europe (U. arctos) is represented in p l. 116, fig. 9. Several other black bears are found in the East Indies.

The species of this genus were very numerous during the tertiary epoch, and their remains are found in nearly all bone caverns, especially in Europe. They have also existed in Brazil and the East Indies.

The genus Amphiarctos is nearly allied to the bears, from which it differs by the structure of the jaws, in which there is one tooth less. Only one species is known from the Sivalic Mountains.

Faik. 2. Procyonide. United by some with the preceding, this family is composed of animals generally smaller than the bears. They have the general appearance of the latter in miniature, but are provided with a long tail, which bears have not.

The genus Procyon (racoon) has a short and triangular head, which gives to it a fox-like appearance. The snout is tapering, and projects considerably beyond the mouth. The ears are small. The tail long and bushy, not prehensile. The feet are five-toed, armed with large and strong nails, There is a glandular pouch on each side of the vent. The habits are nocturnal. In eastern North America but one species of this genus is found, the racoon (P. lotor), more common in the middle and southern States than in the northern. It is a restless, mischievous animal, feeding on wild and domesticated fowls, frogs, lizards, fish, and insects; it is very fond of oysters. Most usually found in low wooded swamps. A second species is found in California.

The remains of an extinct species of racoon were found in Illinois.
The genus Ailurus (panda) includes a racoon-like species from tropical Asia.

The genus Ictides or Arctitis (benturong) is also composed of East Indian species related to the racoon by their teeth. Their body is covered with long hair, and there is a tuft to each ear. The tail is long, hairy, and has a propensity to curl, as if prehensile.

The genus Nasua (coati) belongs to the tropical zone of America. It contains six species, remarkable for their long and flexible snout, by which they are at once distinguished from the racoons. The feet are semipalmated, notwithstanding which they climb trees. Their long claws are used for digging. The brown coati (N. rufa) is represented in $p l .112$, fig. 15. A fossil species of this genus occurs in the caverns of Brazil. Another is found in the south of Europe.

The genus Meles (badger) is provided with rather large and strong canines. Two of the upper molars are deciduous and fall off when the animal is still very young, so that four only are left in the adult. The nose is somewhat elongated and obtuse at the point ; the ears are short and round ; the eyes small; the legs short. There are transverse glandular follicles between the anus and the base of the tail which discharge a fetid odor.

The American badger (II. labradorica) belongs to this genus. The Euro: pean badger (1 . vulgaris) is figured on $p l .116$, fig. 2.

Three fossil species of this genus are on record as having been found in the old continent.

The extinct genus Trochichis is intermediate between Meles and Gulo. It is composed of a single species which inhabited Switzerland during the tertiary epoch.

The genus Gulo (glutton) has a head of moderate length, an elongated body supporting short legs, a bushy tail, feet with five deeply divided toes,
terminated by long curved nails. Some species, instead of a glandular pouch, have a simple fold bencath the tail. The habits are nocturnal. Four species of this genus are known : the wolverine or glutton (Gulo luscus) existing in the arctic regions of both hemispheres, another in Africa, and two in tropical America.
"This animal," says Buffon, who kept one alive for several months, " is pretty wild; he avoids water, and dreads horses, and men dressed in black. He moves by a kind of leap, and eats pretty voraciously. After taking a full meal, he covers himself in the cage with straw. Whien drinking he laps like a dog. He utters no cry. After drinking he throws the remainder of the water on his belly with his paws. He is almost perpetually in motion. If allowed he would devour more than four pounds of flesh in a day; he eats no bread, and devours his food so voraciously, and almost without chewing, that he is apt to choke himself."

The French name of Glouton is an allusion to its avidity in swallowing its food.

There is one fossil species of the genus Gulo from central Europe, and another from the Brazilian caverns, if it belongs not to another genus.

The genus Tuxotherium is extinct, and contains but one species from the tertiary basin of Paris. It belongs undoubtedly to this family, and comes perhaps nearer to Procyon than to any other genus.

The genus Ratelus (the ratel) approaches the cats by its teeth, while its whole exterior is that of the grison or badger. The legs are short, five toes to each, and the nails very strong. One species, of the size of the badger, inhabits the Cape of Good Hope, where it digs up the earth with its long claws in search of the honeycomb of the wild bees.

Fam. 3. Cercoleptide. Composed only of one species, known by the name of potto in tropical America and the West Indies. It constitutes the genus Cercoleptes, which gave its name to the family. It has, according to Cuvier, a plantigrade walk, and possesses a prehensile tail. It climbs, like a lemur, with agility, is nocturnal in its habits, and feeds also on some vegetable substances, and we are told by Humboldt that it is fond of the honey of wild bees. It has puzzled all the systematic writers.

Fossil remains found in France, described under the name of Palocyon, seem to belong to this family, or rather the Procyonidæ, if the present one is a mere deviation from the latter. The only species known had been previously named Arctocyon primaevus.

Again, in the Brazilian caverns, there are remains found which bear the same relation to this tribe as the preceding genus. The genus Amphicyon has been proposed for them. It contains several species.

Tribe 2. Digitigrada.

The animals of this group, instead of placing the whole of the foot on the ground, walk on the ends of their toes. None of them pass the winter in a torpid state.

Fam. 1. Mustelide. The body is long and vermiform, with short
feet. The neck is elongated. The ears are short and rounded. The tail is long, but rarely bushy ; generally diffusing a strong odor, which in some genera becomes a defensive weapon. Five genera of this family are found in North America: Putorius, Mephitis, Mustela, Lutra, and Enhydra.

The genus Mristela (the weasel proper) is characterized by a small and oval head; a snout rather large; ears short and round ; a long and vermiform body; a tail usually long and cylindrical ; the legs short, each foot provided with five toes, armed with sharp, crooked, and slightly retractile claws. There is no anal pouch, but a small gland which secretes a thickish offensive fluid. The fur is very fine. There are four carnivorous teeth on each side of the upper jaw, and the last carnivorous tooth on the lower jaw has a round lobe on the inner side. Several species of this genus are found in North America, but the largest number belong to the old world. The weasel, fisher, or pekan (M. canadensis), as all these names are indifferently applied, formerly very common in every part of the northern and middle States, has greatly diminished and is still diminishing in number with the increased population of the country. It frequents the water edges.

The common marten, M. martes ($p 1.116$, fig. 3), inhabits the woods. It is extensively hunted in the Adirondack region of northern New York, where it is called sable. The beech marten of Europe, M. foina (pl. 116, fig. 4). The sable (M. zibellina), which inhabits Siberia, is highly valued for its rich fur.

Of this genus several fossil species have been described, the remains of which are found in the Old World.
The genus Pulceogale comes nearest to Mustela, from which it is generically distinct in the structure of the teeth. Two extinct species are found in Wirtemberg.

The genus Putorius is composed of species generally small in size, which seldom climb trees like the martens. They emit a fetid odor, and have nocturnal habits. They differ from the martens in having one tooth less on each side of the upper jaw ; their snout, short and blunt, is also shorter and thicker than that of the marten. Their head is small and oval; their ears short and round; their body long and vermiform; their neck elongated; their legs short. There are five toes on each foot, armed with sharp crooked claws; the tail is long and cylindrical. Five species of this genus inhabit North America, and twice that number are found on the eastern continent. The mink (P. vison) is spread nearly all over North America, inhabiting water courses, and exceedingly destructive to poultry. The ermine, P. erminea ($p l .116, f i g .8$), which becomes white in winter, except the tip of the tail, which is always black, inhabits the northern portions of both continents. The American one has been described as a distinct species.
The common polecat of Europe, Mustela putorius (pl. 116, fig. 5) ; the European weasel, P. vulgaris (pl. 116, fig. 7) ; and the ferret, P. furo ($p l .116$, fig. 6), belong to this genus.
iconographic encyclopedia,-vol. it.

The genus Putorius had representatives during the last period of the tertiary epoch only; a few only are known.

The genus Mephitis (skunk) is composed of species emitting a very strong odor from a liquid secreted by anal glands. They burrow in the ground, or dwell in fissures of rocks, living on poultry, birds' eggs, small quadrupeds, and insects. Large families are occasionally found in the same hole. The head in this genus is short, the nose somewhat projecting, and the snout generally blunt. The body is usually covered with long hair, very long on the tail. There are five toes to each foot; the toes of the fore feet armed with long and curved nails, indicating the habit of burrowing in the earth. In walking the heel is very little raised; they are semi-plantigrade. The species of this genus are quite numerous, most of them are South American or Mexican ; three are found in North America. The common American skunk (M. chinga) is one of them. The two others are also found in Mexico. Of the genus Mephitis, the only fossil remains which are known indicate one species in the caverns of Brazil.

The genus Mydaus includes a species from Java (M. meliceps), differing from the skunk by a truncated snout resembling that of the hog.

The genus Palcoomephitis resembles very much Mephitis, but differs from it by a broader and more depressed skull. A single species is known, from the fresh water strata of Wirtemberg.

The genus Lutra (the otters) is distinguished from all the preceding genera of the same family by palmated feet, and a horizontally flattened tail. The head is broad and rounded, terminated by a blunt snout. The ears are very short, as well as the legs. The body itself is robust. They have aquatic habits, live along the banks of streams, and feed upon fishes.

The common otter of Europe (L. vulgaris) is represented on pl. 113, fig. 16. We have one species in North America, L. canadensis (pl. 114, fig. 10), very nearly allied to it. Other species of this genus occur in Brazil and in the East Indies.

The genus Lutra had several species in the tertiary fauna of Europe, one of which is the type of Geoffroy's genus Potamotherium.

The genus Enhydra, which embraces the sea otter, is characterized by six incisors above, as is usually the case, but only four beneath. The body is very long, otherwise resembling the preceding genus.

Enhydra marina is found in North America along the Pacific coast. At one time the fur of this animal was the most valuable known.

Faik. 2. Viverride. This family is composed of small but purely carnivorous animals, chiefly distinguished from the Mustelidæ or weasels in their external characters. They have an anal pouch more or less developer, which serves to secrete an unctuous matter, in some species highly odoriferous. Their tongue is rough, with sharp papillse. This family is nearly absent in North America; a single species is found in its warmer portions.

In the genus Viverra (the civets), the anal pouch is deep, and divided into two sacs; the abundant pomade, which is secreted by the glands of the pouch, has a strong musky odor, and is an article of commerce, used
by the perfumers. It is less employed since musk has become known. The pupil is round during the daytime: the claws are semi-retractile. The species of this genus and the following are chiefly Asiatic and African; a few are met with in the south of Europe.

In the genus Genetta (the genets), the pouch is reduced to a slight depression, scarcely perceptible, although secreting and emitting an odor. In the daytime the pupil forms a vertical fissure; the nails are completely retractile, as in the cat.

The genus Paradoxurus, with a general resemblance to the genets, has the limbs stouter, and the feet semi-palmated. But what distinguishes it more particularly is the tail; when it is straight, as it is ever carried, it is nevertheless twisted from right to left towards its extremity. Only one species is known, and this inhabits the East Indies.

The genus Herpestes contains an animal, the Ichneumon, well known by the ancients, and celebrated in Egypt, where it was considered as sacred, and many fables attached to its history. It hunts chiefly for the eggs of the crocodile, and thus destroys a great many of these reptiles. It feeds also on all sorts of small animals. Other species are found near the Cape of Good Hope, and others in Asia.

The genus Ryzena (suricate) is composed of two species from tropical Africa, resembling the ichneumon, but having only four toes to each foot.

The genus Bassaris includes only one species (B.astuta), from Central America, Mexico, and Texas. In the latter country it is called civet cat. The head is short and pointed; the ears long and oblong; the tail as long as the body. The sole of the feet is hairy.

The family of Viverridæ was represented in the tertiary fauna by several species belonging to the genera Viverra and Genetta, and one to the genus Herpestes, all of which have inhabited Europe. Other fragments yet undescribed seem to indicate that this family has existed in the East Indies and New Holland. No living species exist in our days in Australia.

Fam. 3. Canide. The snout is elongated and naked. The ears are moderately large, and the tail mostly bushy. The fore feet with five, the hind feet with four retractile claws. They frequently feed on carrion. The dogs, wolves, and foxes belong to this family, of which several species are found in North America.

The fossil Canidæ are numerous, especially those species belonging to the great genus Canis, of which about twenty species have been described. Some of them were undoubtedly wolwes and foxes as well as dogs, and inhabited not only the European continent, but also Asia and Brazil. iSeveral extinct genera have been noticed, as follows.

The genus Speothos is nearly related to the dogs; the teeth are nearer each other, and the snout less elongated. A single species is known, from the Brazilian caverns.

The genus Paleocyon, from the same locality, seems to bear greater affinities with the C.jubatus, still living in Brazil, than with any other of the same group. Two species were discovered.

The genus Hycenodon, with a certain resemblance to Hyæna, is, how-
ever, more intimately related to Canidæ by the whole of its dentition. This genus contains two species, both from the tertiary beds of France; therefore, as far as hitherto known, a European type.

The genus Abathmodon, from Brazil, will perhaps go to the group of Viverridæ, after a more complete study of its remains, or indicate a synthetical type of both Viverrini and Canini. A single species was found in the caverns.

The genera Galeotherium, Harpogodon, Agnotherium, and Machairodus, from the tertiary deposits of the Old World, have not yet a fixed place in the system. They will prove to be either viverrines or canines.

We come now to the living fauna of the family.
The genus Canis would include all the species of the family, so uniform are they in general form and structure. Nevertheless, for systematic convenience they are subdivided, the name of Canis being applied more particularly to the dogs, that of Lupus to the wolves, and that of Vulpes to the foxes. The dogs and wolves resembling each other more than the foxes, we shall leave them in the same genus, and mention first the domestic dog, C. familiaris (pl. 116, fig. 12), and quote Cuvier on this subject. "He is distinguished by his recurved tail, otherwise varying infinitely as to the size, form, color, and quality of the hair. He is the most complete, singular, and useful conquest ever made by man. The whole species has become his property; each individual is devoted to his particular master, assumes liis manners, knows and defends his possessions, and remains his true and faithful friend till death; and all this, neither from constraint nor want, but solely from the purest gratitude and the truest friendship. The swiftness, strength, and scent of the dog have rendered him man's powerful ally against all other animals, and were even perhaps necessary to the establishment of society. Of all animals, he is the only one which has followed man through every region of the globe.
"Some naturalists think the dog is a domesticated jackal, and yet those dogs which have become wild again in desert islands resemble neither the one nor the other. The wild dogs, and those that belong to savages, such as the inhabitants of New Holland, have straight ears, which has occasioned a belief that the European races which approach the most to the original type are the shepherd's dog, C. familiaris pastoreus (pl. 114, fig. 9), and the wolf dog ; but the comparison of the crania indicates a closer affinity in the mastiff and Danish dog, subsequently to which come the hound, the pointer, and the terrier, differing amongst themselves only in size and in the proportion of the limbs. The greyhound, C. fam. leporarius (pl. 116, fig. 14), is longer and more lank, its frontal sinuses are smaller, and its scent weaker. The shepherd's dog and wolf dog resume the straight ears of the wild ones, with a greater cerebral development, which continues to increase together with the intelligence in the barbet and the spaniel. The bull-dog, C. fam. molossus (pl. 116, fig. 13), on the other hand, is remarkable for the shortness and strength of his jaws. The small pet dogs, the pugs, spaniels, shocks, \&c., are the most degenerate productions, and exhibit the most striking marks of that power to which man subjects all nature."

There are upwards of thirty varieties of dogs enumerated by systematic writers; several of them are represented on our plates. Some we have already quoted in the above paragraph; the remaining ones are the Siberian variety, Canis familiaris sibericus (pl. 116, fig. 11), the badger dog, C. fum. vertagus ($p l .116, f i g .16$), and the thin-snouted chase dog, C. fam. normamus (pl. 116, fig. 15).

The varieties introduced in North America are thus enumerated in the Fauna of the State of New York:

Variety borealis (Esquimaux dog). Fur long, thick, and woolly beneath; top of the head and back black; nose, cheek, belly, and legs white ; ears short and erect.

Var. lagopus. White, with patches of blackish grey ; ears pointed and erect; foot broad and hairy; tail bushy.
Var. terrce novce (Newfoundland dog). Head broad; nose blunt; ears long, soft, and pendulous.

Var. canadensis. Black and grey, mixed with white ; ears erect, long, shaggy.

Var. novce caledonice. Spotted; body long; legs short, straight; ears erect.
The views of the older systematists as to the origin of the dog have been much modified by more recent investigations. It is now pretty well established that the different races of dogs in different countries are mostly descended from the wolves of their respective regions. This, at any rate, is certainly the case with the different breeds of Indian dogs found in North America, as the Esquimaux dog, the Californian, the Hare Indian, the Missouri Indian, \&c.

The wolves may be generally distinguished from the dogs by their straight tail. The common wo'f of Europe, C. lupus (pl. 114, fig. 8), the most mischievous of all Carnivora, is found from Egypt to Lapland. The North American species amount already to four well established: the giant wolf (Lupus gigas), from Oregon and the Rocky Mountains; the common wolf (L. occidentalis), from the plains of Missouri, and confounded sometimes with the European wolf; the prairie wolf (L. latrans) ; and finally, L. frustror, from Fort Gibson and vicinity. The Mexican wolf (L. mexicanus) is of the size of the common wolf. In the marshes of South America exists a red wolf (L. jubotus). The chacal or jackal of the Indies and Caspian Sea (Canis aureus) is represented on pl. 114, fig. 7. In Senegal, again, there is another, which stands higher and is provided with a sharper snout (C. anthus), allied to the chacal.

The genus Tulpes (the foxes), so nearly allied to Canis, may be characterized by its pointed snout, and its upper incisors, less curved than in the genus Canis. The pupils of the eyes form a vertical fissure. The tail is long, bushy, and cylindrical. Foxes diffuse a fetid odor; they dig burrows, and attack only the weaker quadrupeds and birds. Their habits are nocturnal. The red fox, V. fulvus (pl. 116, fig. 1), and the cross fox (V. decussatus), are both found in North America, and considered by some as mere varieties of the same species. The prairie fox ($V . v e l o x$) is smaller
in size than the preceding. Towards the north, beyond the Arctic Circle, the blue fox (V. lagopus) is met with, as well as in Norway and Siberia.

Fam. 4. Hyenide. Sometimes united with Viverridæ by systematic writers, but differing from them, being generally larger; their fore limbs are longer than the hind ones, making the posterior part of the body stand lower than the anterior, and giving to the back a regular inclination from the head towards the tail. The head is more or less pointed, somewhat intermediate in form between the Felidæ and Viverridæ. They inhabit caverns, and are the most ferocious of all Carnivora, although not the largest. They feed on living animals or on carrion, and often dig up dead bodies from their graves. This family is completely excluded from the New World.

The Hyænidæ seem to have played an important part, as shown in the bone caverns of Europe, during the tertiary epoch. Several species of the genus Hyæna are described, and show in their distribution a wider geographical range than in our days. Two extinct genera (Smilodon and Amyxo. don) exhibit peculiarities which no species of the actual creation presents.

The genus Smilodon is peculiar to Brazil, in the caverns of which country the remains were found. It is distinguished from the genus Hyæna by the canines, which are much compressed, nearly lancet shaped. In size and osteological structure they come near the hyena.

The genus Amyxodon is Asiatic, and was discovered about the Sivalic Mountains.

The genus Proteles is a South African species, the earth wolf of the colonists of the Cape of Good Hope. The body resembles that of Hyæna, the head that of civets, being a little more pointed than usual in Hyæna proper. There are five toes to the fore feet, and four to the hind ones. The canines are of considerable size. The animal is very destructive to the young lambs, and is said to attack the massive fatty protuberance of the African sheep.

The genus Hycena has only four toes to each foot. The teeth are enormously strong, and peculiarly adapted for grinding the hardest bones. The jaws and muscles by which the latter move are also indicative of the greatest strength. The species of this genus are all natives of the warm latitudes of the old world, but excluded from Europe. The striped hyena, H. vulgaris or striata ($p l .114$, fig. 6), is found from India to Abyssinia and Senegal. Two other species, the brown and spotted hyena, inhabit the Cape of Good Hope.

Fam. 5. Felide. The head is short proportionally to its length, rounded, and the snout itself short and obtuse. The limbs moderately long and equal sized. The claws are retractile; the habits nocturnal.

We quote the following paragraph from Swainson's Natural History of Quadrupeds:
"The Felidæ constitute the most formidable race of quadrupeds now existing on the earth, the most bloodthirsty in their habits, and the most dreaded by mankind. Their whole structure is evidently formed to effect destruction of the most fearful description. Enormous muscular strength,
surprising activity, great cunning, and an insatiable love for blood, are the prominent characteristics of this race. Among themselves they are unsocial, quarrelsome, and savage ; the parent will devour its own offspring; and even the sexes are seldom seen together after the season of courtship. Yet many even of these animals, when they are in confinement, evince some kindness to those from whom they receive their daily food."

The representatives of this family during the tertiary epoch belong to the same generic forms of the existing fauna.

The genus Felis (the cats) is the most completely and powerfully armed among all Carnivora. Their short and round snout, short jaws, and particularly their retractile nails, render the largest species the most formidable of animals. The legs and tail are moderately long. The species of this genus are numerous. To it belong the lion, F. leo ($p 7.115$, fig. 1), of all beasts of prey the strongest and the most courageous, now confined to Africa and some neighboring parts of Asia. The tiger, F. tigris (pl. 115, fig. 2), is larger, has shorter hair, and generally striped ; the most cruel of all quadrupeds, and the scourge of the East Indies. The leopard, F. leopardus ($p l .115$, fig. 3), inhabits Africa. The panther, F. pardus ($p l$. 115, fig. 5), found in Africa, Asia, and the Indian Archipelago. Several species are found in North America; one is the jaguar, F. onca ($p l .115, f i g .4$), of the size of the panther. The ocelot or panther (F. pardalis) and the couguar or puma (F. concolor) are two others.

The domestic cat, F. domesticus (pl. 114, fig. 4), is originally from the forests of Europe. Wild (F. catus) it is of a more uniform color. In a domesticated state it varies in color, in the length and fineness of the hair; less, however, than the dog. One of these varieties, F. domesticus angorensis, the Angora cat, is represented in $p l$. 114, $f i g .5$.

Numerous species of this genus existed during the tertiary epoch, and have left remains of their presence in the deposits of that time. Several have been discovered in South American caverns.

The genus Lynx scarcely differs from Felis in the arrangement and structure of the teeth; the only difference is one tooth less in the upper jaw on both sides. The head is short, round, and arched; the ears are short, erect, and more or less tufted. The fore feet have five toes, the hind ones only four. The tail is sometimes much shorter than the body, and sometimes nearly as long. The common American wild cat or bay lynx (L. rufus) is found throughout the United States.

The Canada lynx (L. borealis or canadensis) is another species.
The common European lynx is figured on $p l .115, f i g .6$.

Order 8. Quadrumana.

The order of Quadrumana or four-handed mammals embraces the monkey tribe. The thumb of the extremities is sometimes opposable to the other fingers in both anterior and posterior limbs, sometimes only in the fore ones, giving nevertheless to all of them the power of prehension.

These extremities are also concerned in locomotion. Quadrumana therefore have four hand-like feet; the distinction between the anterior and posterior extremities, so remarkable in man, does not strike us here, except to a very slight degree. These animals climb trees with facility, or may walk on their four limbs, in which case the foot rests only on its outer edge. Sometimes they may stand upright, but this they always accomplish with difficulty.

Quadrumana may be conveniently divided into two groups: the monkeys (Simice) and the lemurs or makis (Prosimic), the latter being preceded or followed by two genera whose strange combination of characters has thrown a certain obscurity upon their true affinities.

Fam. 1. Chiromyide. The genus Chiromys or aye-aye of Madagascar is the only one which composes this family, and is placed by some among Rodentia. This animal is rare even in its native country. In its general conformation it is strictly lemurine, though having much of the aspect of a squirrel. The extremities have five fingers; the first is separated from the rest, and shorter, so as clearly to represent the thumb, although the latter is not opposable. The first toe is armed with a straight, pointed claw, as in the lemur. Its habits are those of the lemurs, being concealed most of the time during the day in some hollow, and sleeping. At night it issues forth in search of its food, which consists of buds and fruits, with insects and larve. The tail is long, and always kept trailing. Each jaw has only two front teeth, very large, strong, flattened, and their roots extend backwards along almost the whole length of the jaw ; between these and the molars there is a wide interval, as in the rodents. The molars, however, are simple in their structure. There are two marnmæ situated near the groin, as in Rodentia, but again, in the tarsiers, we find two pairs of them, one pair on the chest, the other in the groin. Only one species is known (C. psylodactylus), the aye-aye.

Fam. 2. Galeopithecide. This family, like the preceding, is composed of a single genus, the genus Galeopithecus, or flying lemur, a native of the Moluccas, Philippines, and other islands of the Indian Archipelago. Its chief peculiarity consists in the extension of its skin between the anterior and posterior limbs on each side, and also between the two posterior limbs, including the tail, so as to form a parachute of considerable extent, which, though it does not enable the animal to fly, gives it support in the air sufficient to enable it to take long sweeping leaps from tree to tree with the utmost facility. The extraordinary combination of characters exhibited by this animal has puzzled the naturalists as to the place which it should occupy in the series of beings. The general aspect of the head is lemurine ; the extremities are all furnished with five fingers, but the first or the thumb is separated from the rest, and does not antagonize with them, being short, whilst the remaining ones are nearly equal, and armed with large, deep, hooked, sharp-edged, retractile claws, resembling those of the cat tribe. There are four incisors in each jaw ; the canines are absent in the lower; the molars are six on either side in each jaw, and are raised up into pointed tubercles. During the day, these animals remain in the depth of
the forests, suspended like bats from the branches, with the head downwards, and clinging by their hind claws. They are active at night, and traverse the trees in all directions, sweeping from one to another with great address in search of their food, which consists of fruit, eggs, birds, \&c. The flying lemur (G. rufus or volans) is represented on $p l .117$, fig. 1.

Fam. 3. Lemuride (Prosimice or makis). The animals which compose this family have, like the monkeys, opposable thumbs on both pairs of extremities. The number and form of the teeth are very variable. The general form of the body is slender and elongated; the head pointed and somewhat fox-like. The nostrils terminate at the end of the snout, which is sharp, naked, and somewhat pointed. The eyes are large, as in all nocturnal animals. The first and sometimes the two first fingers of the hind feet are terminated by a long curved claw, a character which at once distinguishes the lemurs from the other Quadrumana. The tail varies in length; sometimes it is large, and sometimes nearly absent; never prehensile. The teeth are more adapted to an animal diet than in the typical Quadrumana; and they show great address in seizing their food, as well as courage in defending themselves when attacked. The hind limbs greatly exceed the anterior ones in length, and make of these animals agile leapers. The greatest number, however, are active only during night, spending the whole day in sleep, and always secluding themselves from the light, which seems painful to them.

Animals belonging to this family are not known in a fossil state.
The genus Lemur (makis) includes those species which have been called fox-nosed monkeys, on account of their pointed head. The ears are very small. Their food consists of fruit. The species are numerous and only met with in Madagascar, where they replace the monkeys, none of which are found there. One of them (L. macaco) is represented in pl. 117, fig. 12. Another, L. pusillus (fig. 11), is the type of the genus Microcebus of some authors.

The genus Lichanotus (indris) resembles Lemur, but instead of six molars in the lower jaw, it has only four of them. A species (L. indri) deprived of a tail, and three feet high, is tamed by the inhabitants of Madagascar.

The genus Stenops (loris), the species of which are called the lazy monkeys, have teeth like the lemur, except the molars, the points of which are more acute. The snout is short, the body slender, the tail absent, the eyes large, and the tongue rough. They feed on insects, and occasionally on small birds and quadrupeds. Their gait is excessively slow ; their habits are nocturnal. The species inhabit the East Indies.

The genus Otolicnus (galago) has the teeth and insectivorous habits of the preceding genus. The tarsi are elongated, and produce a disproportion in the dimensions of the hind feet. The tail is long and tufted; the ears large and membranous; the eyes very great. The specics are African, one of which (O. senegalensis) is represented on pl. 117, fig. 10.

The genus Tarsius has an elongated tarsus, and all other details of form belonging to the preceding genus; but the space between the molars and
incisors is ocoupied by several shorter teeth. The snout is very short, and the eyes still larger than in the galagos. The species are from the Moluccas and feed upon insects.

The Monkeys (Simiæ) are divided into two groups or families, one exclusively peculiar to the Old, the other to the New World.

Fam. 4. Cebiide (Simie platyrrhini), comprises the monkeys of the New World. They have the nostrils directed laterally and outwards, placed at the side, and wide asunder, and are provided with three false molars on each side of both jaws. The thumb of the fore hands is not opposable to the fingers, and is wanting very frequently. The cheek pouches and callosities are absent. The tail is long and always present, often prehensile, especially in those species that are destitute of thumbs. The molars are six above and six beneath, on each side, a single case excepted, that is one more than the monkeys of the Old World. Cebiidæ are confined to the warmer portions of the New World, from the Caribbean Sea to about the twenty-fifth degree of south latitude, and are especially numerous in those vast forests extending over the plains between the rivers Oronoco and Amazon. All of them are arboreal in their mode of life.

The genus Hapale (ouistitis), like the majority of American monkeys, has a rounded head, a flat face, the buttocks hairy. They have only twenty molars, like the monkeys of the Old World. They have compressed and pointed nails, except to the hind thumbs; the thumbs of the anterior extremities are but slightly separated from the fingers. They are pretty little creatures, with agreeable forms, which is seldom the case in monkeys, and are easily tamed. The name of lacchus is restricted to those species whose inferior incisors are pointed and arranged on a curved line equal to the canines. The tail is annulated and well covered with hairs, the ears themselves being generally tufted. In those species in which the incisors are placed on a straight line and less than the canines, the name of Mydaus (tamarins) is applied. The tail is not annulated and more slender.

The species are quite numerous, and spread all over the area occupied by the order. Two are known in a fossil state, the remains of which are found in the diluvial deposits of Brazil.

The genus Nyctipithecus (night monkeys) has a large and round head, a short snout, very small ears, and large approximating eyes. The tail is long, and covered with short hairs, not prehensile. The nails are all flat. A species lives in Guiana and Brazil.

The genus Callithrix (squirrel monkeys) is distinguished by a tail very long and slender, but not prehensile. It has a general resemblance to the squirrels, from which it, however, greatly differs by the shape of the head. The ears are very large, the snout short, and the nostrils narrow. The animals of this genus are little and extremely light creatures, active during daytime and resting during night. Their food seems to consist more of insects, eggs, and small birds, than of fruits; and although habitually gentle and timid, they become animated even to ferocity at the sight of a living prey.

A species of Callithrix has been found in a fossil state in South America.

The genus Protopithecus is composed of a fossil species found in Brazil and nearly related to Callithrix.
In the genus Pithecia the tail is tufted, whence the name of fox-tailed monkeys, which is commonly given to them. These animals live in small troops of ten or twelve individuals, usually residing in the outskirts of forests bordering rivers. They display a morose and savage temper, menacing the offender with their teeth upon very slight provocation.

The genus Cebus comprehends the monkeys known as sapajous, sajous, \&c., whose tail is covered with fur to its extrenty. The latter is prehensile, but not so delicate an organ of touch as in the following genera. The thumb is present on all the extremities. The species are for the most part of small size, and are very lively and docile in their temper as well as active in their movements; somewhat capricious, however, in their dispo-, sition. They live in troops in their native forests, feeding on fruits, grains, eggs, and insects. They have been termed weepers, from the plaintive, piping noise which many of them utter. The capucin (C. capucinus) is represented in $p l$. 118, figs. 2 and 3. A fossil species of this genus is described from Brazil.

The genus Lagothric (silver-haired monkeys) has a round head, resembling Ateles, a thumb to the anterior hands, and the tail rather naked. The species live in the interior of South America.

The genus Ateles (four-fingered monkeys) is distinguished by the great length, slenderness, and flexibility of their limbs, whence the appellation of spider monkeys, and by the prehensile power of their tail. The anterior thumbs are either totally or nearly bidden under the skin. Their movements on the ground are wanting in firmness, even when they are resting on all the four extremities. Their general aspect is rather that of crawlers than of walkers. They tread on the inner edge of the fore paws and on the outer edge of the hind paws, and endeavor to assist themselves by attaching the tail to any object as they proceed. They often assume the erect attitude, however, and then use the tail as a means of balancing themselves. The proper place for these monkeys, however, is among the branches of the forest, where their movements are very rapid, easy, and unconstrained, as they swing from branch to branch by means of their spider-like limbs and their prehensile tails with the greatest agility. The tail is an organ of touch as well as of prehension; its end is destitute of hair, and furnished beneath with a sensitive skin. It is capable of seizing small objects with great address. These animals are said to introduce the extremity of their tail, as a feeler, into the fissures and hollows of trees, ior the purpose of hooking out the eggs or other substances.

The genus Mycetus (alouattes), or howling monkeys, is distinguished from the last by their greater size and the diminished length of their limbs; by the presence of a thumb which is, however, not opposable. The head is pyramidal. The howlings uttered by the troops of these monkeys are described by travellers as astounding. They are usually sent forth early in the morning, at sunset, and during the darkness at night; but they are also heard when the overclouded sky threatens an approaching storm. In
disposition the howlers are melancholy and morose; their movemente are tardy and inert; and, when on the ground, they never attempt tc walk on the hinder limbs alone. They feed principally upon fruits and leaves.

Fam. 5. Simine (Simie catarrhini), contains the monkeys of the Old World. They have oblique and very wide-set nostrils, and a human-like system of teeth. They are known as apes, monkeys, and baboons. They may be divided into two sections: The tailed monkeys, by far the more numerous, and the tailless monkeys.

Beginning with those of the first section, we have the genus Cynocephalus (dog-headed monkeys), characterized by a long snout resembling that of a dog, and a short tail. These animals are of a large stature and prodigious in force. They never assume voluntarily the erect attitude, and dwell among craggy rocks and precipices, which they climb with great agility. Their diet partly consists of bulbous roots, berries, and grain, and partly of eggs, insects, and scorpions. They are morose and daring in their temper. They congregate in troops, and are bold and skilful in their predatory excursions, maintaining their ground even against large parties of men. The mandrill, C. maimon ($p l .117$, fig. 13), is the largest and most ferocious of all the baboons. Another species, C. sphinx (p l. 118, fig. 8), constitute the genus Papio of some naturalists. These monkeys are African.

The gerius Inuus (the magots), or Barbary apes, is characterized by a slightly lengthened snout, the nose being hardly longer than half the length of the face, and not terminal; the tail is very short. One species (I. ecaudatus) may be seen on $p l .118$, fig. 9. This is the only quadrumanous mammal which is at present a regular inhabitant of Europe, a large number occurring on the rocks of Gibraltar on both sides of the strait. When young it may be educated in some degree, but as it advances towards maturity it becomes morose, sullen, and mischievous in confinement. In its native haunts, however, it is represented as social, active, and courageous, and is particularly distinguished by its attachment to its young.

The genus Macacus differs but slightly from the preceding ones; the snout is lengthened as in baboons, generally more or less in the different genera into which they are subdivided. The tail, however, is longer in this genus; it is pendent, and takes no part in their motions. There are distinct cheek-pouches and callosities. The species inhabit India. Examples: the hare-lipped monkey, M. cynomolgus (pl. 118, fig. 4), and the maned macaque, MF. silenus (fig. 7). A fossil species of this genus is found in England.

The genus Colobus is destitute of the thumb; in some species only a rudiment of it may be perceived. Several species of this genus exist in Africa; they are generally of small size, but nothing is known of their habits and distinguishing characters.

The genus Cercopithecus (guenons) possesses cheek-pouches, callosities on the buttocks, well developed thumbs to their hands, and a long tail.

They are further known by the annulated or ringed character of their fur, which gives them a speckled appearance. They are slender in their structure, and light and agile in their movements. Their character displays vivacity, impetuosity, and restlessness, with occasional caprice, and petulance. They never abandon the forests, and live chiefly upon wild fruits, and the seeds and buds of trees, with an occasional intermixture of insects and birds' eggs. The true Cercopitheci are confined to Africa. The patras, C. rubra (pl. 118, fig. 5), is from Senegal ; the holoway, C. diana (p l. 117, fig. 14), is from Guinea; and C. griseus (pl. 118, fig. 6) from the north-west of Africa.

The genus Presbytis (tailed gibbons) is destitute of cheek-pouches and possesses callosities. The arms reach the knees ; the tail is very long. The species inhabit India and Sumatra.

The genus Semnopithecus differs from the long-tailed monkeys generally by an additional small tubercle on the last of the inferior molars; their long limbs and very long tail give them a peculiar appearance. They have, like gibbons, callosities on the buttocks. The animals included in this genus are commonly termed slow monkeys, from their gravity of habits, and the absence of the restlessness usually seen in the tribe. Several species of this genus inhabit India, Cochin-China, Borneo, and the Malay Archipelago.

The second section of monkeys, those totally without a tail, are subdivided into the following genera.

The genus Hylobates (gibbons) has the long arms of the true orangs, and the low forehead of the chimpanse, along with the callous buttocks of the guenons. All the species inhabit the most remote parts of India. Their hands and feet are adapted for climbing. They sweep from branch to branch with arrow-like velocity ; their mode is to suspend themselves by their long arms, and by an energetic muscular movement to launch themselves onwards, aiming at distant branches, which they seize with the most wonderful precision; and often without any pause, and almost without any perceptible effort, they swing themselves forwards in a similar manner to another equally distant branch. The most remarkable known species in this respect is the agile gibbon, H. agilis ($p l .117$, fig. 15).

The genus Simia (orang-outang and chimpanse) is principally confined to the peninsula of Malacca and the great islands of the Indian Ocean. One species, the chimpanse, Troglodytes niger or Simia troglodytes (pl. 118, fig.10), inhabits Western Africa; and this is the one which presents the nearest approach to man of the entire group. The conformation of the lower extremities enables it to walk erect with considerable firmness; and, in the same proportion, it is rendered unfit for climbing. All the accounts we possess represent this animal in its natural state as living on the ground rather than among trees. In many respects it exhibits a degree of intelligence which is manifested by no other monkey. The orang-outangs, Pithecus satyrus, (p l. 118, fig.11), of which several species are known, are natives of Borneo and Sumatra. They are evidently adapted for arboreal rather than terrestrial habits; that is, for living among trees rather than for residing on the ground.

The legs are bowed outwards at the knees, and the soles turned inwards and opposed to one another. The arms are long enough to reach the ground when standing, whilst in the chimpanse they only reach to the knees. The orangs display great unsociability and gloominess of temper. They feed entirely on fruits, and are never known to eat flesh or even eggs in their natural state.

Two fossil species of this genus have been described; one from the tertiary deposits of France; the locality of the other is not positively known. The latter was considered as an extinct genus and called Mesopithecus by a German naturalist. Other remains have been discovered in the Sub-Himalayan Mountains.

Geographical Distribution of Mammalia.

Although we have generally mentioned the native country of the animals the history of which we have attempted to sketch out, it still remains for us to throw a rapid glance upon the map of the world, and recapitulate in a few words the distribution of the Mammals over the surface of the earth.

If it can be said that in general water is the element most prolific in animal life, where the animal kingdom displays its richest forms and beauties, this is no longer absolutely true when we consider the class of Mammalia in particular. Although numbers of mammals never leave the water, being bound to it as the prime necessity of their existence, still the majority of forms, the great variety of the class, inhabits gry land.

We shall now take up, one after the other, the different orders of the classes in the order in which we have made them follow each other in the above pages, beginning with Edentata.

The Edentata we have divided into three orders: Monotremata, Edentata proper, and Tardigrada. The Monotremata belong exclusively to New Holland; the Edentata proper belong chiefly to South America, a few species of ant-eaters occurring also in Africa and the adjoining portions of Asia. The Tardigrada are all South American. So that it can be said that the great body of Edentata reside in the South American continent.

Marsupialia are mostly confined to Australia, and there the different families or natural groups are submitted to special laws of distribution in different localities. Some species extend north into the Asiatic Archipelago, comprising the islands of Java, Celebes, Timor, Ceram, Amboina, Banda, and Waigiou. New Guinea and New Zealand possess also Marsupialia. Van Diemen's Land of course possesses its share of Marsupialia. The opossum family (Didelphidce) is found exclusively in the new world, and more particularly South America; a single species extending to the warmer portion of North America. We may say of Marsupialia that their headquarters is in Australia.

The Cetacea are aquatic, and inhabit chiefly the Arctic and Antarctic zones, equally abundant all round the poles, where they acquire a gigantic
size. We are told that Cetacea attained a greater bulk in earlier times than in ours, before whaling expeditions had become so frequent. Cetacea, then, are excluded from the warm regions. Some few of the Delphinidro are met with in the warm part of the temperate zone. But the Delphinida are the smallest of all Cetacea; the large, massive species are inhabitants of the frigid zones, so that the native place of Cetacea is the cold waters of both poles.

The Sirenidia are aquatic, like Cetacea, but less pelagic; they come near the shores, crawl sometimes on the beaches, and ascend the fresh waters a good way above the seas. Some species even are fluviatile. Thus Manati have been found only in the great rivers of South America and of Africa (also in Cuba, Florida, \&c.), which discharge their waters into the Atlantic within the tropics, and, as it seems, in the warmer part of the temperate zone on the American continent. The genus Halicore is proper to the Indian Archipelago, and the genus Rytina to the arctic zone; these three genera being the only representatives of the group.

The Trichechidæ (walruses), sub-aquatic or amphibian, as Sirenidia and Cetacea, are inhabitants of the northern seas.
The Pachydermata, after Cetacea the largest mammals, are inhabitants of warm climates. It is a singular fact to be noticed, that animals which occupy a low position in the class should be found in the tropical regions, when we know that Cetacea, which are still lower, belong to the northern latitudes, according to the natural laws of the distribution of the animal kingdom, whose lower groups are always found in the coldest climate. But pachyderms cannot be said to belong to our epoch, and therefore cannot be subjected to the same law. We must therefore find in the past history of the class the reasons of its actual distribution. Let us state now that a single pachyderm is found originating from Europe, the hog, and among pachyderms a small species. In central Asia, six species, one hog also and five horses; in southern Asia, four species, a suiline, an elephant, a rhinoceros, and a horse; and in the Asiatic Archipelago, nine species, an elephant, two rhinoceroses, and six hogs. In the north of Africa, three species only occur, a hippopotamus, a daman, and a hog; in central and southern Africa together, seventeen species, an elephant, a hippopotamus, four rhinoceroses, three damans, four hogs, a tapir, and three Equidæ. In the new world and south, four species are found, two peccaries and two tapirs, one species advancing in the warmer parts of North America. In southern America, three species, two peccaries and one tapir only.

The elephants, rhinoceroses, hippopotamuses, Hyracidæ, suilines, and Equidæ, are exclusively peculiar in the present day to the ancient hemisphere, and, therefore, the majority of the pachyderms. The pecearies are exclusively inhabitants of the New World, and this is nearly the case for the tapirs, a species only being found in southern Africa.

The ruminants are distributed all over the world, and seem created for the temperate region, although some species extend north and south. Ruminants, however, are much more abundant in the old continent in
those parts inhabited by the largest and most carnivorous of Carnivora. In North America, where Carnivora are comparatively scarce, ruminants are much less numerous.
The genus Camelus is peculiar to the old contineut, and the genus Auchenia to the new; they are two equivalent groups. The aberrant giraffe is exclusively African. The antelopes proper are also absent from the New World. A single species occurs in North America, the Rocky Mountain antelope (Antilocapra umericana).

The rodents constitute the most numerous order of the class of mammals, and are at the same time among the smallest.

The family of Leporidæ has representatives both in the Old and New Worlds, but they are chiefly confined to the northern hemisphere; some, like the Lepus glacialis, extend into the polar regions. About 35° south latitude is the most southern range of the family in either hemisphere. The great continent of South America has yielded but a single species, and that does not occur south of the Rio de la Plata; whilst, on the other hand, it is in North America that the species are proportionally more numerous. In the Old World, the group in like manner almost disappears in the tropical portions; it reappears, however, south of the tropics, there being several species found at the Cape of Good Hope. But one species has been discovered in the Indian islands, and in Australia there are no hares; indeed, all Rodentia found in that continent belong to the family Muridæ.

The hystricine rodents are essentially South American, and under that head we include Hystricidæ, Dasyproctidæ, Echimyidæ, Octodontidæ, Chinchillidæ, and Cavidæ. Hystricidæ has a wide geographical range, having representatives in the four quarters of the globe, with the exception of two species, Aulacodus swinderianus and Pteromys typicus; the whole of the species forming the five remaining sub-families are exclusively found in the New World, being chiefly confined to South America. Two or three species in the West India islands, and about the same number in Central America, form the exceptions. The members of the Hystricidæ, Dasyproctidæ, and Echimyidæ increase in number towards the tropical portion of South America; whilst in the southern part of that continent, the less lighly organized species only are found, these being members of the Octodontidæ, Chinchillidæ, and Cavidæ. On the western side of the southern Andes the Octodontidæ alone have representatives.

The Saccomyina are exclusively American, from the extreme north to Colombia and Guiana, the greatest development of the group being in Central America.

The Bathyergina are African, three species constituting the group, forming two genera. The Arvicolina are excluded from Africa and Australia, but are found in North America, Northern Asia, and Europe. Tne Spalacina are not found in the New World ; three species are European and three African; the remainder are Asiatic. The Murina are common to hoth hemispheres. The domestic mice and rats have spread all over the world; each country also possesses its own kinds. Furthermore, we
observe in that extensive group other genera limited to either one of the continents. Thus seven genera belong exclusively to Asia, six exclusively to Africa, two to Australia, whilst five others are found in South America alone, and two again in North America. A few others are common to Europe and Asia, and still others to Asia and Africa.
The group Ctenodactylina is African with one single species.
The Dipodina is European, North Asiatic, and North African; one species only occurring in North America.

The Myoxina is excluded from the new world; the species of this group are chiefly European, two are Asiatic, and a few North African.

The Sciuride are equally common to North America, Europe, Asia, and Africa. The genus Pteromys is Asiatic and North American ; the genus Anomalurus, African; the last continent possessing besides that genus only a few species of Sciurus.

The genus Aplodontia is North American.
The Insectivora are completely absent in the Australian provinces. Among Talpidæ, or moles, the genera Cendylura and Scalops are North American; the genus Chrysochloris is from tropical Africa, with one species in tropical America; and the genus Talpa (mole proper) from temperate Europe.

The shrews, or Soricidæ, are quite as much limited. The shrews proper (Sorex) are European, African, and Asiatic. The genera Hylogale and Hylomys are from tropical Asia; the genus Mygale from temperate Europe; and the genus Macroscelides from the Cape of Good Hope. The family of Erinaceidæ, or hedgehogs, possesses species of the genus Erinaceus in Northern Africa, Asia, and Central Europe. The genus Centetes belongs to tropical Africa, and the genus Gymnura to tropical Asia.

The Cheiroptera, or bats, we have seen above, are divided into two groups according to the nature of their food, the Frugivora and Insectivora.

The insectivorous bats constitute the main bulk of the order. They abound chiefly in the tropical provinces, where they reach their greatest diversity. Two species occur in Australia, a bat proper (Vespertilio) and a bull-dog bat (Dysopes); species of the last genus being found also in tropical America, Africa, and Asia, with a single species in Europe. The genera Dididurus, Noctilio, Vampyrus, Phyllostoma, Glossophaga, Desmodus, Mormoops, and Furia all belong to tropical America. In temperate South America there is only one species of bat proper to be found. In arctic America only one species of Vespertilionidæ. In tropical Africa we have a single genus which is not found elsewhere; this is Rhinopoma. Several genera have species in both tropical Africa and Asia, such as Megaderma, Nycteris. The other genera have a wider range ; Vespertilio is cosmopolite; of the latter group a species exists in arctic America, seven in arctic Europe, and six in arctic Asia.

The frugivorous bats are totally excluded from the New World. One species of Pteropus is a native of Australia; the other species of the same genus belong to the oceanic provinces, tropical Africa, tropical and central Asia. The genus Pachysomus is exclusively proper to tropical Asia; the
genera Macroglossus, Harpyia, and Cephalotes are at once Asiatic and Oceanic.

The aquatic Carnivora, the Pinnipedia or seals, are again rather northern and temperate than southern and tropical. These animals are met, with the Rytina of the Sirenidia group, generally near and beyond the arctic circle.

Among terrestrial Carnivora, if we examine first the Plantigrada we find that they are absent from Australia, the oceanic provinces, and the temperate part of South America. In North America five or six species. In both tropical America and Asia they abound most; the genus Ailurus belongs exclusively to the latter country, whilst Cercoleptes is tropical American. The genera Nasua and Procyon are peculiar to the New World; the genus Arctitis is peculiar to Asia. The badgers (Meles) are chiefly European and North American; the bears are more widely spread.

The Digitigrada have a wider distribution than the Plantigrada. Australia possesses one species of dog ; the oceanic provinces have a dog and a Paradoxurus ; and temperate South America has several skunks, dogs (Canis), otters, and cats. The cats, dogs, and martens are distributed over a wider area than the other genera. The genus Hyman is African and Asiatic; the genus Bassaris is tropical American; the genera Cynictis, Proteles, and Pyrena belong to tropical Africa. The ichneumons are chiefly African and Asiatic. The Lingsang and Potomophilus are limited to tropical Asia. The greatest development of this division is in tropical Africa and Asia, next in Central Asia, then in tropical America.

The Quadrumana or monkeys, as already remarked, divide into two groups, one exclusively proper to the Old, the other to the New World.
The first section of the Quadrumana of the Old World is that of Prosimiæ, Lemuridæ, or makis, which is distributed over western and central Africa, the island of Madagascar and adjacent islands, the south Asiatic provinces, and the Indian Archipelago. To the latter districts belongs exclusively the genus Tarsius. The genera Otolicnus, Lichanotus, and Lemur are African.

The Simidee are all African and Asiatic. The genus Colobus is peculiar to Africa, whilst the genera Presbytis, Semnopithecus, and Hylobates belong exclusively to Asia.
The Cebiidæ are from tropical and temperate South America.
The group Chiromyidæ is composed of one species which inhabits Madagascar.

That of Galeopithecidx also comprises one species, peculiar to the Indian Archipelago.

With this sketch of the geographical distribution of mammals we close the class of Mammalia, which is the last of the animal kingdom if we except Man, to whose natural history we devote the entire last subdivision of this volume, under the head of ANTHROPOLOGY.

INDEX T0 Z00L0GY,

[The numbers refer to the top paging of the text.]

Abacura; 112.
Abathmodon, 488.
Abdomen, the, of insects, general structure of, 139, 140.
Abdominales, 14,201 .
Abranchia, 96 ; abranchiata, 11.
Abraxis grossulariata, 180 .
Acalephe, principal animals included among the, 9,27 ; orders of 10 ; derivation of the word; 27; luminousness of the sea chiefly due to the, 29 ; the hydrostatic, $30 ;$ resemblance between the, and the zoophyta, 31.
Acalephia, 10.
Acamarchis, 54.
Acamptosomata, 102.
Acanthia, 187; acanthias; 242 .
Acanthiza, 339
Acanthoccphala, 47.
Acanthodes, 237; acanthodii, 236.
Acanthopoda, 154.
Acunthopteri, 204, 220 .
Acanthopterygia, 202; acanthopterygii, 14, $201,217$.
Acanthosoma, 189.

Acanthurus, 288.

Acanthylis pelasgia, 317 .
Acari, 121 ; acaridæ, 122 ; acarus, 121 , 122.

Acasta, 102.
Accentorinæ, 339; accentor alpinus, ib.
Accipiter nisus, fuscus, \&ce, 307.
Accipitres, 15, 294, 295; accipitrinæ, 307.

Acephala, animals included among the, 10 ; orders of, ib . $;$ a class of the malucozoa, 52.
Acephalocyste, 44.
Aceratherium, 437.
Acerina, 222
Acetabulifera, 02.
Acetabulum mediterraneum, 17.
Achrus, 410.
Achalinoptera, 179.
Acherontia atropos, 141, 183.
Acheta, $165 ;$, achetidæ, ib.
Achirus mollis, 20.
Achrochordus javanica, 268.
Achtheres percarum, 106.
Acidalia brumata and viridata, 180.
Acipenser, 13, 238.
Acontias meleagris, 272
Acrantus, 276.
Acridiid $\mathfrak{2}$, 165 ; acridium cristatum, 166.

Acris, 259.
Acrobata, 415.
Acrocinus, 161.
Acrodontes, 277, 278.
Acronycta rumicis and psi, 180.
Actinia, 9,35 ; habits, \&c., of the actinix, 34, 35.
Actinoida, 34; actinaria, 35 ; actinidæ, ib.
Aculeata, 170.
Adapis, 440
Adephaga, 152.
Aepus fulvescens, 142.
Eschna, 168.
Etobatis, 243 .
Agama, 14, 279.
Agassiz, author of the most recent mode of determining the relative stations of animals, 3 ; his arrangement of the radiata, 25 ; discovers a nervous ring round the mouth of the discophors, 28: extract from, on the anatomy of the asterias, 40; the
culcita of, ib.; views of, as to the
anatomy of the brachiopoda, 55 :Amphitrite, 11, 101; amphitritida, nomenclature proposed by, for the 101 .
armature of the hinge in the genus Amphiuma, 252
Venus, 57 ; great utility of the No- Ampullacera, 89; ampullaria, ib.; am-
menclator Zoologicus of, 74 ; curious pullariidæ, ib.
analogies pointed out by, among the Amyxodon, 490.
classes of articulata, 135; families Anabas scandens, 225.
of the lepidoptera according to, 179; Anacanthini, 204, 218, 243.
classification of fishes according to, Anaconda; the, 269.

202, 203.

Agathididæ, 154.
Agelainæ, 355 ; agelaius phæeniceus, ib. Aglia tau, 181.
Agnesiobranchiata, 14.
Agnotherium, 488.
Agrion, 168.
Ai , the, 410.
Ailurus, 483.
Air-bladder, the, of fishes, 198.
Akodon, 464.
Akomys, 464.
Alactaga, 466.
Alasmodunta, 69
Alauda, 15; A. arvenis, \&c., 358;
alaudinæ, ib.
Alaus oculatus, 158.
Albany beef, 238.
Albatrosses, the, 388.
Albicore, the, 226.
Alburnus lucidus, 214.
Alca impennis, torda, \&c., 387; alcidæ, ib.
Alcedinidæ, 323 ; alcidininæ, 324.
Alces, 450.
Alcido ispida, 324.
Alcyonaria, \&c., $36 ;$ A. ficiforme and palmatum, 37.
Alcyonidium, 54 ; alcyonidule, ib.
Aldrovandi, ${ }^{\text {a }}$ a voluminous writer on natural history, 2.
Alectrurinæ, 344 .
Alligator gar, the, 235
Alligators, the, 252, 253, 282.
Alopiadini, 242.
Alosa vulgaris and sapidissima, 209;
A. tyrannus and menhaden, 211.

Alouattes, 495.
Alpaca, the 447.
Alpheinæ, 116.
Aluteres, 231.
Alytes, 959 ; A. obstetricans, 255.
Amaduvat, the, 357.
Amblyopsis spelaens, 214 .
Amblypterus, 237.
Amblyrhynchus 278.
Ambystoma, 250, 254.
Ametabola, 131.
Amia, 234; amiadæ, ib.
Ammocretes, 207.
Ammonites, 95 ; ammonitidx, ib.
Ammophita sabulosa, 173.
Amnicola. 83.
Amœba, 24.
Ampelide, 347; ampelis ccerulea, cortinga, \&c.,. 348.
Amphacanthus, 228 ; A. corallinus, 오.
Amphiarctos, 483.
Amphibia, 201.
Amphibola avellana, \&c., 89,80 ; am-
phibolidæ, 89.
Amphicyon, 484.
Amphidesma, 74.
Amphigonus. 419.
Amphinomidæ, 99 .
Amphioxidæ, 206.
Amphipoda, 12, 113
Amphiprion, 228.
mphistoæna, 275 : ampa

Anaides, 256; A. lugubris, 257.
Anaplognathidæ, 156.
Anarrhichas lupus, 230.
Anns, 15; A. boschas, strepera, \&cc., 386.

Anatidæ, 383.
Anatifa, 11, 101.
Anatinæ, 385.
Anchovy, the, 208.
Ancininæ, 112.
Anculosa, 83.
Ancylomera, 114.
Ancylus, 90.
Andrenidæ, 176.
Andrias scheuchzeri, 253.
Anentera, the, a sub-division of infusoria, 23.
Angel-fish, the, 288.
Angler, the, 230 .
Anguilla, 14 ; A. vulgaris; 207.
Anguinaria, 54.
Animal kingdom, the division of, into vertebrata and evertebrata, 8; classification of the orders of, based on the system of Cuvier, 9-15.
Animals and plants, important affinities between, 4 ; cases of doubtrul organism, ib. ; organs of breathing and nutrition in, 4,5 ; propagation of, 5 ; summary of the phenomena of vegetable life which are also present in the animal kingdom, 5, 6 ; essential differences between, 6: geographical distribution of, 7; influence of man on the distribution of animals, 8.
Anis, the, 366.
Anisomera, 193.
Amelida, 11, 96.
Anobium, 158 .
Anodonta, 69.
Ancema, 456.
Anolis, 14, 277; A. carolinensis, 276, 278.

Anomiidæ, 61.
Anomorlon, 473.
Anomura, 115.
Anopheles, 193.
Anoplotheridæ, 434; anoplotherium, ib.
Anoplura, 131, 146.
Anser albifrons. ferus, \&c., 384, 385 ; anseres, 294, 383 ; anserinæ, 384.
Ant, the white, 166 ; the anis, 142 , 174.

Ant-eater, the, 404, 405, 406.
Antechinus, 417.
Antelopes, the, 451.
Antenne, the, of insects, principal forms of, and scientific terms referring to, 136 .
Anthrenus, 155.
Antilocapra, 451.
Antilope dorcas, pygmæus, \&c., 45L antilopidæ, ib.
Antipathacea, 36 ; A. spiralis, ib.
Anura, 145.
Aodon, 428.
Apaloderma narina, 323.
Apara, 407.

Apatura iris, 184

A pes, the, 496.
Aphodiidæ, 156, 157.
Aphrodite, 11,99 ; aphroditidæ, 99.
Aphrophora, 186.
A pidx, 176; apis mellifica, ib.
Aplacentalia, 400.
Aplodontia, 468; A. leporina, 469.
Aplysia, 80 ; aplysiidæ, ib.
Apodes, 14, 201, 218.
Apodidæ, 109.
Aporobranchia. or pyenogonum, 120.
Aporomera, 276.
Apple worm, the, 180.
Aprosternia, 157, 158.
A ptenodytes patagonica, 388.
Apterogyna, 174.
Apterygine, 377 ; .apteryx australis, ib.
Apus, 109; A. cancriformis, ib.
Aquilinæ, 303 : aquila chrysas̃tos, verreauxii, \&c., 303, 304.
Ara ararauna, \&c., 362 ; arainæ, ib.
Aracaris, the, 361 .
Arachnida, general characters of the, 12, 118, 119 ; orders of, 12 ; anatomy, mode of life, and method of reproduction of the, 119 : nervous system of the, 120 ; divisible into three sections, ib.
Arachnoderma, derivation of the word, and animals included under, 27.

Aranea, 12.
Arca, 67; arcidæ, ib.
Archibuteo, 303.
Archæomys, 459.
Arctia fuliginosa, matronula, \&cc., 181 ; arctiide, ib.
Arctitis, 483.
Arctocyon primævus, 484.
Arctomys marmotta, monax, \&cc., 469.
Arcys lanceolarius, 129.
Ardea, 15 ; A. purpurea, ralloides, \&c., 380.

Ardeidæ, 379 ; ardeinæ, ib.
Areneidæ, 128 ; archeinæ, ib.
Arenicola, 100; arenicolidæ, ib .
Argali, the, 453.
Argas, 124.
Arges cyclopum, 217.
Argonauta, 78, 93.
Argus giganteus, 372.
Argynnis, 183, 184.
Argyroneta, 129.
Aricidæ, 99.
Arilus novenarius, 188.
Arionius, 424.
Aristotle, the zoological system of, 1 , 2.

Arius, 217.
Armadilloes, the, 406.
Arnanacus, 428.
Artamus, 348.
Artedi, the first to make a scientific classification of fishes, $200,201$.
Arthemis, 74.
Articulata, the, distinctive features of, 8,9 ; brief summary of the classes included under, 11-13; general characters and classification of, 95 ; curious analogies among the classes of, pointed out by Agassiz, 135.
Arvicola, 462; arvicolina, ib.
Ascalaphus barbarus, 168.
Ascaridæ, 47; ascaris lumbricoides, ib.
Ascidia, 54.
Asellidæ, 112 ; asellus, ib .
Asilidæ, 193 ; asilus, ib.
Aspergillum, 60.
Aspic, the, or asp of the ancients, 267.
Aspidobranchia, 81.
Aspidophorus catapliractus, 223.
Aspidorhynchus, 234 .
Ass, the, 444.
Astacidæ, \&c., 116 ; astacus, ib.; A. pellucidus, 214.
Astarte, 75.
Asterias, 10, 39, 40; asteridea, 38.
Astræidæ, 35.
Astrea astroites, 35.
Astrogonium granulare, 39.
Astrophyton, 39.
Astur palumbarius, atricapillus, \&cc., 307.

Astynomus, 162.
Ateles, 495.
Ateuchus, 15%.
Athene siju, passerinoides, \&c., 313,
314 ; atheninse, 313.
Athericera, 191.
Atherina, 205.
Atherurs, 461 .
Atlanta, 78; atlantidæ, ib.
Atrachelia, 159.
Atretodera, 253.
Atypinæ, 128.
Auchenia lama, alpaca, \&c., 447.
Audubon, extract from, on the flight of wild pigeons, 368 ; account of the large white pelican by, 390 .
Audubon and Bachman, description of the musk rat by, 463,464 ; habits of the squirrels described by 471.
Auks, the, 387.
Aulacodon, 460.
Aurelia, 9; A. aurita, 30, 32.
Auricula, 91 ; auriculidæ, ib.
Aves chief characteristics and orders of, $14,15,290-293$; classification of ${ }_{j}$ 293, 294; number of species of, 294. Aviceda, 302.
Avicida, 307.
Aviculide, 63.
A vocete, the, 381.
Axolotl, the, of Mexico, $\Omega 51$.
Aye-aye, the, 492.
Babblers, the, 343 .
Babiroussi, or babyrussa, 442.
Baboons, the, 496.
Baccilarix, 18: B. paradoxa, 18, 19.
Bacteria femorata, 164.
Badger, the, 483.
Bagrus, 217.
Baird, \mathbf{W}., on the luminousness of the sea, $29 ;$ on the discoloration of water by the daphniæ, 108.
Balæna, 15; B. mysticetus, \& C., 421.
Balænidæ, 420 ; balænodon, 424 ; ba-
lænoptera, $490,421$.
Balanus, 11, 102.
Balearica pavonina, 379 .
Balistes, 231: balistinæ, ib.
Balloon fish, the, 232.
Band-fish, the, 228.
Barbel, the, 215.
Barbets, the, 363 .
Barbus vulgaris, 215.
Barn owls, the, 311 .
Barracuda pike, the, 202.
Basiliscus, 14, 278.
Basilosaurus, 481.
Bass, the Otsego, 212 ; the sea, rock,
red, and black, $221,224$.
Bassaris, 487.
Bat, the, 15 ; the bats, 475-479.
Bathyergina, 462 ; bathyergus capensis, ib.
Batrachia, 14, 249 ; B. urodela anoura, \&c., 249, 257, 261.
Batrachians, the tailed, 250, 251.
Batrachoseps, 256.
Batrachostomus, 320.
Batrachus, 231.

Baverbancia, 54.

Bayley, Prof, J. W., the chief American authority upon the infusoria, 22.

Baza, 30%.
Bddellidæ, 122.
Bear, the, 15 ; the bears, 482.
Beaver, the, 467.
Becards, the, 345.
Beche de mer, 42.
Bechstein, Dr., description of the
nightingale by, 336, 337 -
Bee-eaters, the, 325.
Beefenter, the African, 354.
Bees, the, 176, 177.
Beetles, the, 141; the diamond, 160.
Belemnitide, 94.
Belideus, 415.
Bell's History of British Quadrupeds, extract from, on the shedding and growth of horns, 393,394 ; on the walrus, 433, 434.
Belon, the reviver of natural history in modern times, 2.
Belone, 217.
Belostoma, 18%.

Beluga, 427.
Bembecidæ, 1\%2; bembex, ib.
Benturong, the, 483.
Bergall, the, 218.
Beroe, 30.
Bettongia, 413.
Bezoar. stone, an animal concretion, 452.

Bibio, 193.
Bill-fish, the, 217.
Bimana, 15.
Bipes, 14.
Birds, chief characteristics and orders of, $14,15,290-293$; classification of, 293,294 ; number of species of, 294 ; chief collections of, 295.
Bison americanus, 453.
Bittacus, 168.
Bitterns, the, 380.
Black bass, the, 221.
Black bird, the, 342.
Blainville, the arachinoderma of, 27; the malactinozoaria of, 31 ; the paracephalophora of, 75; the cervicobravehia of, 81 .
Blanchard, his division of the neuroptera, 166-of the hymenoptera, 169 -of the chalinoptera and achali
noptera, 179-of the hemiptera, 184.
Blapside, 160.
Blatta, 163; blattidæ, ib.
Bleak, the, 214.
Blennidæ, 229,230 ; blennius, 230 .
Blind fish, the, 214 .
Blind worm, the, 272.
Blistering flies, 159.
Blue-bird, the, 338.
Blue-fish, the, 297.
Blue-perch, the, 218.
Boa, 14 ; boa constrictor, 269.
Boarmia hortaria, 180.
Boatbills, the, 331 .
Bob White, the bird so called, 375.
Buidæ, 263, 268.
Bombinator ignens, 259.
Bombycidæ, 181 ; bombyx mori, ib.
Bombycilla garrula and cedrorum, 348.

Bombyliidæ, 193 ; bombylius, ib.
Bombus, 176.
Bonaparte, Ch. L., his system of classification of the mammalia, 400, 401.

Bonito, the, 226.
Booby, the, 391.
Bopyridx, 112 ; bopyrus crangorum, ib.
Bos, 15 :' B. americanus, taurus, \&c. 453-455.
Bostrichidæ, 158, 159.
Bostrichus, 141.
Bot-flies, 195.
Botaurus stellaris and minor, 380
Bothrimonus sturionis, 45.
Bothriocephalus, 45.
Botryllus, 10.
Botys verticalis, 180.
Bovidæ, 15.
Bow-fin, the, 235.
Brachelytra, 154, 155.
Brachinus, 140.
Brachiopoda, 55.
Brachymeles, 273.
Brach yrhynchi, 160.
Brachystopus, 272.
Brachyura, 117.
Brady bates, 256.
Bradypodidæ, 410.
Bradypus, 15; B. didactylus, \&C., 410.
Brahman kite, the, 305.
Brambling, the, 357.
Branchiopoda, $12,107$.
Branchiostegi, 201 :
Branchiostoma, 206.
Branchipus pisciforinis, 109.
Brant, the, 385.
Bream, the, 221
Brill, the, 220.
Brontes prenadilla, 217.
Brosmius, 219.
Bryozoa, form and habits of the, 53 .
Bubo virginianus, \&c., 312, 313; , Dubominæ, 312.
Buccinide, 86 ; huccinum, jb .
Bucco macrorhynchus, 3×3; buccoиіпæ, ib.

Buceros, 15; B. rhinoceros, \&cci, 360 : ! Capromys, 459. bucerotidie, ib
Buckland, Dr., on nummulites, 76 .
Buffalo, the, 453, 454.
Bufo americanus, viridis, \&c. 260.
Bufonidæ, 257, 259 .
Bulbuis, the, 344.
Bulimus, 91.
Bull-dog, the, 488.
Bull-head, the, 216
Bulla, 10, 80 ; bullidæ, 80
Bullet hawk, the, 301 .
Bullinches, the, 358.
Bullhead, the, 223 .
Bumble bees, the, 176
Buntings, the, 357, 358
Buprestidax, 157; buprestis mariana, \& C $\mathrm{c}_{\mathrm{a}}, 158,159$.
Burbot, the, 219
Burgomaster, the, 389 .
Burmeister, orders of insects according to, 143,144 ; his division of the rhynchota, 185.
Jurrowing owl, the, 314
Bursaria vesiculosa and truncatella, 24.

Bush turkey, the, 370
Bustards, the, 377.
Butcher birds, the, 349.
Buteo borealis, \&c., 302, 303; buteoninæ, 302.
Butter-fish, the, 230.
Butterfies, the, 177,-183.
Buzzard, the honey, 306 ; the moor, 308.

Buzzards, the, $302,303$.
Byrrhidæ, 156.
Cabassous, 407.
Cacatua sulphurea, \&c., 363 ; cacatuinæ, ib .
Cachalot, the, 423, 424
Cachicamus, 407.
Cæreba cyanea, \&c., 328; cærebinæ, ib.
Cainotherium, 435.
Calappinre, 117.
Calepteryx, 168
Caligidre, 107 ; caligus, 12, 107.
Callæatinæ, 351.
Callianassa, 116.
Callianidinæ, 116.
Callichthys, 223.
Callimorpha jacobææ, 181.
Callionymus, 230.
Callíscapha, 71.
Calliste tatao and tricolor, 357.
Callithrix, 494.
Callorhynchus, 240.
Calocephala, 480.
Calomys, 464
Calurus resplendens and auriceps, 322, 323.

Calydonius, 442.
Calyptomina viridis, 347.
Calyptorhynchus banksii and cookii, 363.

Calyptræa sinensis, 82; calyptræidæ, ib.
Camelidæ, the camels, 15, 446; camelius, $15,446,447$.
Camelopardalidæ, 447.
Compagnol, the, 462.
Campanularidæ, 27.
Campephaga nigra, \&c., 348 ; campephagina, ib.
Campsodactylus, 273.
Campylosomata, 101.
Cancer, 12,118 ; cancerinæ, 118; cancridxe, ib.
Canidæ, 487 ; canis familiaris, \&cc., 15, $482,489$.
Cantharis, 159.
Canthon læve or volvens, 157.
Canvas-back duck, the, 386.
Cape pigeon, the, 389.
Capelin, the, 212.
Capercailzé, the, 375.
Capito viridiaurantius, 363 ; capitoninæ, ib .
Capra ægagrus, hircus, \&c., 452
Caprella, 113; caprellidæ, ib.
Caprification, the art of, practised from a remote period, 142.
Caprimulgidæ, 319 ; caprimulgus europæus, 320 .

Capsa, 74
Capsidæ, 189 ; capsus, ib.
Capucin, the, 495.
Capybara, the, 458.
Carabidæ, 153 ; carabus, 13, 153.
Caracara eagles, 305.
Carbo cormoranus, dilophus, \&ec., 391
carboninæ, ib .
Carchariadini, 241 ; carcharias, ib.
Carcharodon; 243.
Carchesium polypinum, 24.
Cardiacea, 7\%.
Cardiidse, 73 ; cardium, ib.
Cardinalis virginianus, 350 .
Carditidre, 72.
Carduelis elegans, spinus, \&c., 357.
Cariboo, the, 450.
Carinaria, 10,$78 ;$ carinaridd, 78.
Carnivora, 15, 417, 476, 480.
Carp, the, longevity of, 200 .
Carpocapsa pomonella, 180.
Carpodacus purpureus and frontalis, 359.

Carriers, 368.
Carterodon, 460.
Caryobranchia, 78.
Caryophyllacea, 36 ; caryophyllidx, ib.
Cascavella, 266.
Cassidaria, 87.
Cassididæ, 162.
Cassowary, the, 377.
Castalia, 71.
Castor, 15; C. fiber americanus, 467 castoridæ, ib; castoroides ohiöensis, 468.
Casuarius galeatus, 377.
Cat, the, 15, 491.
Cat bird, the, 343 .
Cat fish, the, 199, 216.
Catastomi, 216: catastomus, 214.
Caterpiltar-catchers, the, 348.
Caterpillars, 133, 178.
Cathartes, 299,$300 ;$ C. aura, 296.
Catillus inoceramus, 63.
Catoblepas, 452.
Catocala fraxini, pacta, \&zc., 181.
Catydid, the, 165.
Cavia cobaya, 458.
Cavicornia, 451.
Cavies, the, 457, 458.
Caviina, 457.
Cavitaria, 10.
Caymans, the, 282.
Cebiidæ; 494.
Cebrionidæ, 158.
Cebus, 495.
Cecidomyia, 193.
Cedar bird, the, 348.
Celeus citrinus, 364,
Cellepora, 54 ; celleporidæ, ib.
Cellularia, 54.
Centetes, 475.
Centipedes, 130.
Centrarchus, 221.
Centriscus, 229.
Centropristis, 221
Cephalaspides, 239 .
Cephalemyia ovis, 195.
Cephalobranchia, 100.
Cephalopoda, 11, 91; anatomy and method of respiration of, 92 ; classification of, by D'Orbigay, ib.
Cephalopterini, 243.
Cephalopterus ornatus, 352.
Cephalotes, 479.
Cepola, 228.
Cerambycidæ, 141, 161.
Cerastes cornutus, 267.
Cercaria hyalocauda and bilineata, 46.

Cercolabes, 460
Cercoleptes, 484 ; cercoleptidæ, ib.
Cercomys, 459.
Cercopidæ, 186.
Cercopithecus, 496 ; C. rubra, diana, Sc.., 497.
Ceriphasia, 84.
Cerithiida, 84 ; cerithium, ib:
Cerodon, 458.
Certhis familiaris \&c.; 332 ; verthiadxe, \&cc., 331, 332.
Certhiola flaveola, 328.
Cerura vinula, 181.
Cervicobranchia, the, of Blainville; 81.

Cervida, 15, 449 ; cervus virginianus, macrotis, \&c., 449-451.
Ceryle alcyon, amazona, \&c., 324: 325.

Cestoidea, 45
Cestracionini, 242.
Cestum veneris, 30.
Cetacea, 15, 419.
Cetiosaurus, 283.
Cetonia, 157 ; cetoniadæ, 156 ; cetonidre, 157.
Cetotherium rathkei, 421.
Ceylon, the pearl fisheries of, 64.
Chabot, the, 223.
Chacal, the, 489.
Chaeropotamus, 440.
Chætodons, 298.
Chretomys villosus, 460.
Chætopoda, 96.
Chætopteridx, 100 ; chætopterus, ib .
Chaffinch, the, 357.
Chalcides, 14, 275; chalcididx, 172 274.

Chalcites auratus and klaasii, 367.
Chalicomys, 467.
Chalicoterium, 435.
Chalinoptera, 179.
Chamæleo, 14.
Chamxeontidæ, the chamæleons, 279 280.

Chamæpelia passerina, 369
Chamæsaurus, 275.
Chamidæ, 72.
Chamois, the, 452.
Characini, 212.
Charadius pluvialis, rociferus, \& C_{n} 378.

Charadriadre, 378.
Chasmodes, 230 .
Chat, the yellow breasted, 343.
Chatterer, the umbrella, 352 ; the chatterers, 347, 348
Cheiromeles, 476.
Cheiroptera, 475.
Cheirotherium, 430; chirotherium, 431.

Chelicera, the, or mandibles of the arachnida, 118.
Chelifer, 12,125 ; cheliferidæ, 125.
Chelmon rostratus, 228.
Chelomeles, 273.
Chelonia, 14, 286, 289 ; chelonid $æ, 14$, 988, 289.
Chelonides, 181.
Chelonobia, 102.
Chelonura, 288.
Chelys matamata, 288
Chermes, 186.
Chersis savinii, 129 .
Chewinks, the, 357 ,
Chicken hawk, the, 307.
Chilina, 91.
Chilodon cucullatus, 24.
Chilognatha, 130, 131.
Chilonemus cataractus, 215, 216.
Chilupoda, 130, 131.
Chimerax, 240.
Chimney bird, the, 317 ; chimney swallow, 318.
Chimpanse, the, 497.
Chinchilla lánigera, 458 ; chinchillina, ib.

Chippy, the, 357.

Chirocephalus diaphanus, 109
Chiromyidæ, 492 ; chiromys psilodactylus, ib.
Chironectes, 411 ; C. variegatus, 418, 419.

Chironomus, 193
Chiruptera, 15.
Chirotes, 14, 275
Chitine, a peculiar principle in the integument of insects, 135.
Chiton, 10,81 ; chitonidæ, 81.
Chitonellus, 102.
Chlamidotherium, 408.
Chlamydophorus, 407.
Chlorops, 194.
Chœerocampa, 182.
Chceropus, 416 ; C. castanotis, 417.
Chorotherium, 442.
Chogset, the, 218
Cholœрия, 410.
Chondropterygii, 200, 202.
Chondrostei, 234,238 .
Chondrostoma nasus, 21

Chorueiles, 321.
Choughs, the, 353.
Chromidæ, 217.
Chrysididæ, $172 ;$ chrysis, ib .
Chrysochloris, 472.
Chrysomelidæ, 162.
Chrysupan 168.
Chrysotoxum, 194.
Chub, the, 14.
Cicada pruinosa, \&c., 140, 173, 186, 187; cicadidæ, 186.
Ciccaba, 314.
Cicindela, 137, 153, 159; cicindelidæ, 152.

Ciconia alba, nigra, \&ec., 380 ; ciconinæ, ib.
Cidaris, 41.
Cigale, the, of the French, 165.
Cilia, nature of, 9 .
Ciliograda, 30.
Cimbex, 171.
Cimex, 13,.188, 189.
Cinclinæ, 379 ; cinclus interpras and melanocephalus, ib .
Circætus thoracicus, 303.
Circine, 308 ; circus, $308,309$.
Cirolanine, 112.
Cirrhobranchia, 82.
Cirrhopoda, 11, 101.
Cirrigrada, 30.
Cistelidæ, 160.
"Cistudo clausa and europæa, 287, 288.

Civets, the, 486, 487.
Cladocera, 108.
Clam, the, $58,75$.
Clangula americana, dispar, \&c.; 386.'
Clausilia, 91.
Clavagella, 60.
Clavicurnia, 155.
Cleidotherus, 72.
Clepsina, 97.
Cleridæ, 158.
Cliff swallow, the, 318.
Climacteris, 332.
Climbing perch, the, 225.
Clio, 11 ; C: burealis, 77; clioidæ, 77.
Cliona, 54.
Clisiocampa castrensis and neustria, 181.

Cliteliaria, 193.
Clostera curtula, 181.
Clupea harengus, \&c.., 209, 211; clupeidx, 208.
Clymene, 99.
Clypeaster, 41.
Clytus, 162 ; C. pictus, 161.
Cnemidophorus; 276.
Coati, the, 483.
Cobitis fossilis, 916.
Cobra di capello, 267.
Coccidæ, 185.
Coccine, a chemical constituent in the integument of insects, 135.
Coccinella borealis, 162 ; coccinellidæ, ib.
Coccothraustes vulgaris, 356 ; coccothraustinæ, ib.
Coccus cacti, 185.
Coccyx resinosa, 180.
Coccyzinæ, 365 ; coccyzus americanus, de., 366.
Cochineal insect, the, 185.
Cock of the rock, the, 347 ; of the woods, 375.
Cockatoos, the, 363.
Cockroaches, 163.
Cocks, the wild and domestic, 373.
Cod, the, 200, 218 .
Codling, the, 219.
Cæcilia, 261 ; cerciliadæ, ib.
Cœelodon maquinense, 410.
celodonta, 437.
Celodontes, 27%.
Celogenys, 460.
Cœenurus, 44.
Colaptinæ, 364 ; colaptus auratus, 365.
Coldstream, Dr., on the inspiration and expiration of the cephalopoda, 92.

Colenterata, 26 .
Coleoptera, 13,143 ; general comparison between, and hymenoptera, 132, 133; anatomical structure of, 148 , 149; more studied than any other order, 149 ; various localities of,

149, 150 ; wide distribution of, 151 : various classifications of, ib. it various divisions of the section pentamera of the, $151, .152$.
Colias, 183, 184.
Colies, the, 359.
Colinæ, 359 ; colius macrourus and striatus, 360 .
Collocalia, 319.
Colobus, 496.
Colossochelys atlas, 289.
Coluber, $269, .270$; colubridæ, 263, 269.

Colubrina, $263,268$.
Columba. 15, 368; columbæ, 294.
Columbide, 367; columbinte, 368 .
Colymbidæ, 387 ; colymbus glacialis, arcticus, \&c., ib.
Conchifera, 10 ; general forms of the shells of the, 55,56 ; mostly marine, 57; various tribes of, ib.
Cunchology, the science of, merged in malacology, 49.

Condors, the, 298.

Condylopa, the, of Latreille, 95.
Condylura, 473.
Conidæ, 87.
Conirostres, 350.
Conops, 194; conopsidæ, ib.
Conurus carolinensis, 362.
Conus, 87.
Cony, the, 45%.
Cooper's hawk, 307.
Coots, the, 383 .
Copperheads, the, 266.
Copris carulina, 157.
Coracia gracula, 353.
Coraciadæ, 321 .
Coracias garrula and bengalensis, 321.
Cordi, 26, 37.
Coralium nobile, 37.
Corallina, 9 ; C. officinalis and rubens, 17.

Corallum, the, of the zoophyta, 33 , 34.

Cordylocerata, 155.
Coregonus, 211; C. otsego, 212.
Coreidæ, 189.
Corixa striata, 187.
Cormorants, the, 391.
Cormustomata, 104.
Corniger, 213.
Cornularidæ, 37.
Coronella sayi, 270.
Coronula, 102.
Corvidæ, 350 ; corvinæ, 351 ; 'corvus corax, \&c., 351, 352.
Corvina, 223 ; C. oscula and ocellata, 224.

Corydalus, 168.
Curyne, description and engraving of, 33.

Corynetes, 158.
Coryphæna hippuris, 227.
Coryphodon, 437.
Corystes, 117; corystinæ, ib.
Coryzus hyoscyami, 189.
Cossus, the of the ancients, 142 ; C.
ligniperda, 181.
Cottus, $222,223$.
Couagga, the, 444.
Couguar, the, 491.
Cow bird, the, $355,366$.
Crab, the, 103; the crabs, 117, 118.
Crabro, 172; crabronidæ,ib.
Cracidæ, 370.
Cracticus varius. 349.
Crakes, the, 383.
Cranes, the, 379.
Crangoninæ, 116.
Crassatella, 75; crassatellidæ; ib.
Crassina, 75.
Craw fish or crayfish, 116.
Crax, 15; C. rubra, 370.
Creepers, American, 328 ; the creepers, 331, 332.
Crenatula, 63.
Crepidula, 82.
Cricetomys, 454.
Cricetus, 464, 465.
Crickets, the, 165.
Crinuidea, 38.
Crioceridæ, 169.
Crisia, 54 ; crisiadæ, $\mathfrak{i b}$.
Cristatella, 54.
Crithagra, 359.

Crocallis elinguaria, 180.
Crocodilidæ, the crocodiles, 28.
Crocodilurus lacertinus, 276.
Crocodilus, 14, 282.
Croppers, 368.
Crossbills, the, 359.
Crotalidæ, 263, 265; crotalus, 266.
Crutophaga ani, major, \&cc.; 366 ; crotophaginæ, ib.
Crow, the carrion, 300.
Crows, the, 350-353.
Crustacea, characteristics of the, 11, 12; orders of, 12 : general view of the appearance and habits of the principal varieties of the, 102-104.
Crypsibranchia; 80.
Cryptoderes, 287.
Cryptomonas ovata, 24.
Cryptopodes, the, of Latreille, why so named, 117.
Cryptops, 132.
Cryptopus, 988.
Ctenobranchia, 82.
Ctenobranchiata, 10.
Ctenodactylina, 466; ctenodactylus, ib.
Ctenoids, 203.
Ctenolabridæ, 217.
Ctenolabrus ceeruleus, 218.
Ctenomys, 459 .
Ctenophora, 30, 193.
Cuckous, the, 365-367.
Cuculidæ, 365 ; cuculinæ, 366 ; cuculus canorus, ib.
Cucullia umbratica and verbasci, 181.
Culcita, 40.
Culex, 192, 193; culicidæ, 193.
Cumer, the, 218.
Curassows, the, 370.
Curculionidæ, the, 141.
Curruca atricapilla and hortensis, 337.

Cursorius senegalensis, 378.
Curucui, the, 323.
Cuscus, 415.
Cusk, the, 219.
Cuttle-bone, 51, 94.
Cuttle fish, derivation of the term, 92.
Cuvier, chief features of the classitication of, 3 ; classification of the orders of the animal kingdom based on the system of, $9-15$; his arrangement of the zoophyta; 95 ; the acalephæ of, $26,-27$; the hydrostatic acalephæ of, 30 ; the apodous echinodermata of, 38 ; the mollusca of, 50 ; the heteropoda of, 77; the tubulibranchia of, 85 ; his division of the anuelida, 96 ; orders and familios of fishes according to, 202 ; description of the dog by, 488.
Cwahug, 75.
Cyamidx, 113; cyamus, 12, 113, 120
Cyathophyllidæ, 36.
Cybium, 226 .
Cycladide, 73 ; cyclas, ib.
Cyclica, 162.
Cyclidium glaucoma, 24.
Cyclo-labridæ, 217.
Cyclobranchia, 81.
Cyclobranchiata, 10.
Cycloids, 203.
Cyclopidæ, 107 , cyclops, $12,107$.
Cyclostoma, 90 ; cyclostomid $æ$, ib.
Cyclostomata, 13.
Cydnus, 189.
Cygninæ, 385 ; cygnus olor, ferus, \&c., ib.
Cymadocea, 112 .
Cymatotherium, 431.
Cymindis cayanensis and wilsonii, 307.

Cymothoidæ, 112.
Cynipidæ, 171.
Cynocephalus : maimon and sphinx, 496.

Cynops, 256.
Cyphocrana gigas, 164.
Cyphonidæ, 158.
Сургжа, 50, 88; сургæідæ; 88.
Cypridide, 108 ; cypris, ib.
Cyprinide, 214.
Cyprinodon, 214 ; cyprinodontidæ, ib.
Cyprinus, 14 ; C. auratus, carpio, \&c., 915.

Cypselinæ, 318.

Cypselus, 15; C. pelasgius; apus, \&c., 318, 319.
Cyrena, 73.
Cystica, 44 ; cysticercus; 45
Cystignathus, 258.
Cytherea, 74 ; C. dione, 75.
Dab; the, 219.
Dacelo, 324.
Dacne, 162.
Dacnis spica, 328.
Dactelythra, 260 .
Dactylomys, 459.
Dactylopterus volitans,
Damalis, 451.
Damans; the, 439.
Dana, the families of the hydroida according to, 27 ; his classification of the zoophytes adopted in the present work, 34 ; extrict from, on coral masses, 37.
Daphnia, 108; daphniidæ, ib.
Daptrius, 306.
Darters, the, 390.
Dasypodidæ, 406; dasypus, 406, 407.
Dasyproctina, 460 .
Dasyuride, 417 ; dasyurus haliucatus, \&C., ib. ; D. laniarius, 418.
Dawn, the, 444.
Decacera, 94 .
Decapoda, 12, 92, 114
Decticus apterus and verrucivorus, $16 \overline{.}$.
Deer, the, 449.
Deilephils, 18.
Deirodon, 271.
Delphinapterus, 497:
Delphinidæ, 420, 424; delphinorhyncus, 425; delphinus delphis, tursio, \&c.. $425,426,428$.
Deltochilum gibbosum, 157.
Demas coryli, 181.
Dendrocolaptinx, 332 ; dendrocolaptes cayennensis, \&c., ib.
Dendrolagus, 411, 413.
Dendrolimus pini, 181.
Dendromys, 464.
Dendronotus, 79
Dentalium, 82.
Dentirostres, 335 :
Derinaptera, 143, 163.
Dermestes lardarius, 155 ; dermestidæ, ib.
Dermopteri, 203; 206.
Desmans, the, 474.
Desmodus, 478.
Desmognathus, 2.55.
Devil-fish, 243.
Diamond beetles, the, 160.
Diaperider, 160.
Dibamus novæ guineæ, 273.
Dibranchiata, 92.
Diceras, 72.
Dichobune, 435.
Diclurus, 476.
Dicotyle. torquatus; albirostris, \&c., 441.

Dicrocera, 450.
Dicrurinæ, 348 ; dicrurus malabaricus, \&c., ib.
Dicynodon, 282.
Didelphidæ, 411, 418; didelphys virginiana and cuvieri, ib.
Didelphis, 15.
Didinæ, 369.
Digitigrada, 484.
Dinerosomata, 126.
Dimyaria, 66.
Dimylus, 473
Dinops, 476.
Dinosauria, 985.
Dinotheridæ, 430; dinotherium giganteum, ib.
Dioctria, 193.
Diodon maculo-striatus and punctaius, 932.

Diomedeinæ, 388.
Diomedia exulans, chlororhyncha, \&cc., 388.

Diphies, 10.

Diphyida, the, the name systoligrada proposed for, 26 ; characters of, 31 .
Diphyllidia, 80.
Diplopoda, 114.
Dipneumones, 128.
Dipodina, 466; dipus, ib.

Dinodomys, 461, 462
Diprotodon australis, 414.
Diptera, 13, 143, 190; classification of, by Macquart and Westwood, 191, 192.

Dipterini homocerci and heterocerci 236.

Dipterodon, 228.
Discophora, appearance of the, 28: divided into two groups, ib.
Discopora, 54.
Distona or fasciola hepaticum, 46.
Ditrupa, 82.
Diurna, 183.
Divers, the, 386.
Dodo, the, 369.
Dog, the, 15 ; the dogs, $488,489$.
Dog fish, the, 235.
Dolichotis, 457.
Dolphins, the, 237, 420, 424-426.
Donax, 74.
D'Orbigny, the chief authority upon
the polythalamia, 75 ; his views as
to their classification, 77 ; classifica-
tion of the cephalopoda by, 92.
Dorcatherium. 450.
Dorididæ, 79; doris, ib.
Dorippe, 117 ; dorippiinæ, ib.
Dorites apollo, 184.
Dormice, the, 466.
Dorsibranchiata, 11, 99.
Dorthesia, 186.
Dory, the, 927.
Dorylus, 175.
Doves, the, 368.
Draco, 14, 278; D. dandini, 279.
Dragon, the flying, of Java, 279 .
Dremotherium, 448.
Drepanepteryx phalænoides, 168.
Driver ants, the, 174, 175
Dromaius nove hollandiæ, 37\%.
Dromedary, the, 447.
Dromicia, 415.
Dromiinte, 115
Drongo shrikes, 348.
Drum, the black, 199 ; the common 294.

Drymomys, 464.
Duck hawk, the, 301.
Ducks, fresh water, 385 ; the sea, 386.
Dujardin, views of, as to the nature of sponges, 16.
Duvernoy, classification of the helminthes by, 43, 44.
Dynastes hercules, acteon, \&c., 157.
Dynastidæ, 156, 157.
Dysderinæ, 198.
Bysopes, 476.
Dyticidæ, 153 ; dyticus marginalis, ib .
Dzigguetai, the, 44 .
Eagles, the, 303 et seq.
Eburna glabrata, 86.
Echeneis, 230.
Echidna aculeata and setosa, 404.
Echimyina, 459.
Echimys, 460.
Echineidæe, 220; echineis, ib.
Echinidea, 40 ; echinus, 41; various forms of, ib.
Echinococcus, 44.
Echinodermata, animals included under the, 10 ; orders of, ib. ; general characters of the, $37,38$.
Echinorhynchus gigas, 47.
Echinus. 10.
Echiuri, 98.
Ectopistes migratorius and carolinensis, 368,369 .
Edentata, 15, 403, 405.
Edwards, Milne, his arrangement of the radiata, 25-of the isopoda, 111 -of the decapoda, 115.
Eel, the, 14, 207; the electric, 207, 208. Eel pouts, 219.
Egeria exctiosa, 182.
Egg, the, of insects, various forms and general characters of, 133.
Egrets, the, 380.
Egretta candidissima, 380
Ehrenberg, his views respecting various infusoria, 18,19 ; his theory respecting the polygastrica received with doubt, 20 ; his method of investigating, ib.
Eider duck, the, 386.

Eland, the, 450.
Elanus leucurus, 306.
Elaphus, 450.
Elaps fulvus and corallinus, 270.
Elasmotherium, 436.
Elater, 140.
Elateridæ, 158.
Elatobranchia, 60.
Elephantidæ, 438; elephas indicus,
\&c., the elephant, $15,439$.
Elk, the, 450.
Ellobius, 464
Elmis, 142.
Emarginula, 81.
Emballonura, 478.
Emberiza americana, citrinella, \&ce, 358 ; emberizinæ, ib.
Empidæ, 193.
Empusa gongylodes, 164.
Emu, the, 377.
Emydidæ, 287 ; emys terrapin, \&cc., 288.
Enaliosaurii, 283.
Encoubertus, 407.
Encrinus radiatus and liliiformis, 38.
Eudomichidæ, 162.
Engidæ, 155.
Engraulis encrasicholus, 208.
Engystoma, 260.
Enhydra marina, 486
Ennomos syringaria and alniaria, 180.
Enterodela, 24, 47 ; E. cylindrica, ib. ;
E. plicata and trenioida, 49.

Entomology, systems of, by Latreille and Burmeister, 143,144 : directions
to the entomologist concerning the
search for, and preservation and ar-
rangement of specimens, 149-151.
Entomostraca, 104.
Entozoa, 10, 44.
Entrochites, 38.
Eolididæ, 79: eolis, ib.
Epedicellata, 10.
Epeira, 188; epeirinæ, ib.
Ephemeridz, $166,167$.
Ephialtes navia and asio, 313.
Ephippium, a peculiar appendage of the daphniæ, 108.
Ephippus, 228.
Ephyra, 33.
Epicriuin, 261.
Epimachinæ, 396 ; epimachus super
bus, \&c., 326, 327.
Episema cæruleo cephala, 181.
Epizoa, 111, 146.
Equidæ. 442 ; equus caballus, \&c., 15 , 443, 444.
Erethizon dorsatus, 461.
Ergasilus, 107
Erichthiidæ, 114.
Erinaccidæ, 474.
Erinaceus, 15 ; E. europæus, 475.
Eriogaster lanestris, 181.
Eriomys laniger, 458.
Eripus heterogaster, 129.
Eristalis, 194.
Ermine, the, 485.
Erotylidæ, 155, 162 ; erotylus, ib.
Eryoninæ, 116.
Erythacinæ, 337; erythaca rubecula, ib.
Eschara, 54 ; escharidæ, ib.
Eschscholtz, the ctenophora of, 30.
Esocidæ, 213, 222; esox, 213; E. Iu-
cius, nobilior, \&c., ib.
Etheostoma, 220.
Etherinze, 71; etheria, 71, 72.
Eucera, 176.
Euchroma gigas, 158.
Eudamus tityrus, 184.
Eudytes cristatus, 388.
Eulima, 83.
Eumenidæ, 175.
Eunectes murinus, 269.
Eunice, 99 ; eunicidæ, ib.
Euplocomus ignitus, 372.
Eupoda, 162.
Euproctus, 956.
Euryale, 39.
Eurylaiminze, 321; eurylaimus nasu-
tus, 322.
Eurynotus, 237.
Euryodon, 408.
Euryotis, 464.
Evania, 171 : evaniidæ, ib.
Evesia, 272.
Exocyetus, $\underset{2}{202}$.

Exoglossum, 214, 216; E. Barbatula 216.

Explanaria ansnas, 36.
Eyes, compound and simple, of insects, 136, 137.

Falconidæ, 300 ; falconinæ, the falcons, 301, 302.
Fall fish, the, 216.
Fantails, 368 .
Farcimia, 54.
Furre, Dr., his description of the tube or cell in the vesicularidæ, 53.
Favositidre, 36.
Feet, the, of insects, general structure of, and scientific terms applied to the several parts of, 138,139 .
Felidse, 490; felis leo, tigris, \&c., 15, 491.

Fer de lance; the, 267.
Ferret, the, 15, 485.
Fiber zibethicus, 463.
Fiddler, the, 118.
Fidonia wavaria, 180.
Fiekdare, the, 342.
Filaria medinensis, 48; F. papillosa, phalangii, and lycosse, ib.
Finches, the, 355, 357-359
Fins, the, of fishes, 197.
Fireflies, the, 158.
Fish-hawk, the, 305.
Fisher, the, or weasel, or pekan, 485.
Fishes, chief characteristics and divisions of. 13 ; structure and functions of, 197-199; prolitic nature of, 199, 200 ; longevity of, 200 ; classification of, according to Artedi, Linneus, Cuvier, Agassiz, and Müller, $200-205$; fossil, 233.
Fishing-frog, the, 230.
Fissirostres, 316.
Fissurella, 10 ; F. græca, 81 ; fissurellidie, ib.
Fistularia, 299; fistularidæ, ib.
Mabellaria opuntia, 17.
Flamingoes, the, 384.
Flat-fish, the, $218,219$.
Fleas, the, $143,147,148$.
Flicker, the, 365 .
Flies, the, 191, 192.
Flinders, Capt., extract from, on fishing for trepang, 42.
Flounders, the, 219.
Fiuke, the, 219.
Flustra, 54.
Fluvicola cursoria, 345.
Flycatchers, the, $344-347$.
Fiying fish, the, 222.
Flying squirrel, the, 278.
Flying lemur, the, 493.
Forminifera, 75.
Forbes, remarks of, on the discophora, 28.

Forficula, 13, 163 ; forticulidæ, 163.
lormica saccharivoran 141 ; F ; merdicola and elata, 174 ; formicidæ, ib.
Formicaria colma, 341 ; formicarinæ, ib.
Foxes, the, 489.
Fowls, the, 372-374.
Fratercula aretica, 387.
Frigate pelican, the, 391.
Fringilla amaduva, senegala, \&cc., 357.
Fringillidæ, 355 ; fringillinæ, 357 .
Frog, the, 258; the bull-frog, woodfrog, tree-frog, \&c., 258, 259.
Frost fish, the, 212.
Fragivora, 479 .
Fulgora candelaria and laternaria, 186 ; fulgoride, ib.
Fulica atra and americana, 383.
F'uligula valisueria, ferina, \&c., 386 ; fulizulina, ib.
Fundulus, 214.
Fungia fungites, 35 ; fungidx, ib.
Furia, 478.
Furnarine, 331 ; furnarius rufus, $i b$.
Fusulina, immense numbers of, in a fossil state, 76 .
Fusus, 87; F. Aluvialis, 84.
(Exdidx, 218.
Gadwall, the, 386.
Gaillonelle, 19.
Galago, 493.
Galatheinæ, 116.

Galaxidæ, 213.
Galbula viridis and albirostris, 325.
Galbuline, 325.
Galeichthys, ${ }^{6} 17$.
Galeini, 241.
Galen, nature of his zoological researches, 2.
Galeocerdo, 243.
Galeodes, 125 : galeodidæ, ib.
Galeopithecidæ, 492; galeopithecus rufus, 493.
Galeotherium. 488.
Galerucidæ, 169.
Galeus, 241.
Galgulidx, 188; galgulus oculatus; ib.
Gallerea cereana, 179.
Galinacer, 15.
Gallinx, $294,369,372-374$; gallus giganteus, bankiva, \&c.., 15, 373.
Gallinago major and wilsoni, 382.
Gallinsectes, 185.
Gallimulinæ, the gallinules, 383.
Gamasidae, 121; gamasus, 121, 123.
Gammaridæ, 113.
Gannets, the, 390, 391:
Ganoidei, the ganoids, 203, 205, 233, 238.

Gar-fish, the, or gar-pike, 217, 235.
Garrulinæ, 35; garrulus glandarius, \&c., ib.
Garter snake, the, 270.
Garum, the, of the ancients, 209.
Gasteracantha, 129.
Gasterophilus equi and nasalis, 195.
Gasterosteus, 223.
Gastrochæna ligula, larva, and elongata, 60.
Gastropacha quercifolia, 181.
Gastropoda, 10, 75.
Gavialis gangeticus, 983.
Gavials, the, 282.
Gazelle, the, 451.
Gecarcininæ, 117 ; gecarcinus, ib.
Gecinse, 364: gecinus viridis, ib.
Geckotidæ, 277, 280.
Gelasimus vocans, 118
Gelatinosa, 9.
Gemmiporidæ, 36.
Generations, alternation of, with illus-
trative engraving, 31, 32; instance
of, among the tunicata, 55.
Genetta, the genets, 48%
Genuini, 160.
Geometra papilionaria, 180 ; geometridæ, ib.
Geomys, 461.
Geophilidæ, 132.
Geophilus, 130.
(ieorychus, 462.
Geosaurus, 281, 289.
Geutriton, 256.
Geotrupidæ, 156.
Gerbillus, the gerbils, 464, 465. .
Gergoviamys, 459.
Gerrhonotus, 275.
Gerris, 142, 188.
Gesner, Conrad, author of a history of animals, 2.
Gibbons, the, 49%.
Gills, the, of fishes, 198.
Giraffe, the, 447.
Glaucomya, the, of Gray, 74.
Glaucus, 79.
Glaphyridæ, 156.
Glareola torquata, 378; glareolinæ, ib.
Glass snake, the, 274 .
Glaucathoinæ, 116.
Globicephalus, 427.
Glomerida; 131.
Glossoliga, 256.
Glossophaga, 477.
Glossotherium, 406.
Glow-worms, $1 \overline{\text { B }}$.
Glution, the, 484.
Glycimeris siliqua, 59.
Glyciphila melanops; 330.
Glyphis, 243.
Glyptodermes, 275.
Glyptodon, 407.
Gnesiobranchiata, 14.
Gnou, or gnu, the, 452.
Gouts, the, 452.
Goatsuckers, the, 319.
Gobiidæ, 229.

Gobio fluviatilis, 215.
Gobius, 229.
Godwits, the, 381.
Gold fish, the, 215
Golden-flower fowl, the; of China, 372.

Goldfinches, the, 357.
Golunda, 464.
Gonatoceri, 160.
Gonepteryx rhamni, 184.
Gongylus, 273.
Gonium pectorale, 23.
Gonodactylus, 114.
Gonoplacinæ, 117.
Goose, the domestic and wild, 384 :
Gopher, the. 287.
Gordiidæ, 48 : gordius aqnaticus, ib.
Gorgonia flabellum, verrucosa, \&c-, 37 ;
gorgonidx, ib.
Gorgonocephalus, 30.
Goshawks, the, 307.
Goura coronata, victoria, \&c., 369 ;
gourinæ, ib.
Gracula religiosa, 353 ; graculinæ, ib.
Grakles. the, $3 \overline{5} 3,354$.
Grallæ, 15, 294, 378.
Grallaria rex and ruficapilla, 341.
Grallatores, 294.
Grimpus, the, 427.
Grand duke, the, a species of owl, 313.

Graphiurus, 467.
Grapsinae, 117.
Gray, G. R. classification of birds according to, 294.
Grebes the, 387.
Greek divers, skill of the, 65 .
Greenfinch, the, 356.
Greenlets, the, 346 .
Greybound, the, 488.
Greyling, the, 212.
Grosbeaks, the, 355, 356 .
Ground hog, the cape, 406.
Grouse the, 375, 376 .
Gruine, 379 ; grus cinerea and americana, 15, 379.
Gryllida, 165 : gryllus, ib.
Gryllotalpa, 165.
Grypinx, 328.
Grystes, 221.
Guans, the, 370.
Guenons, the, 496.
Guillemots, the, 388.
Guinea fowls, the, 374.
Guinea pig, the, 458.
Guinea worm, the, 48.
Guiraca ludoviciana, 356.
Gulls, the, 389.
Gulo, 483; G. luscus, 484.
Gunnellus, 230 .
Gymnobranchia, 78.
Gymnodaciyla, 981.
Gymuoderinæ, 352.
Gymnodontes, 231.
Gymnophthalmata, 28.
Gymnotidse, 207, 208; gymnotus, ib.
Gymnura, 475.
Gypaëtina, 297.
Gypinæ, 297 ; gyps fulvus, i b.
Gypohierax angolensis, 298.
Gyrinidæ, 154.
Gyrinus, 142.
Gyropus, 147.
Habrocoma, 459.
Hackee, the, 470.
Haddock, the, 218; the Norway, 223.
Hemopis vorax, 97.
Hæmatopinæ, 3 \% 9 ; hæmatopus ostra-
legus, \&c., ib.
Hake, the, 219.
Halcyonine, 323 ; halcyon atricapilla, 324.

Haliaëtus pelagicus, 300,304 ; H. leacocephalus, 303.
Halias prasinana, 180.
Haliastur pondicerianus, 305.
Halibut, the, 220.
Haticore, 432 ; halicoridæ, ib.
Haliotis, 85.
Halitherium, 430.
Hialmaturidre, 411.
Halmaturus laniger and dorsalis, 413.
Halobates, 18z.
Hamsters, the, 465 ; the Canada hamster, 468.

Hang nests, the, 355.
Hapale, 15, 494
Hapalotis, 464.
Harelda glacialis, 386.
Harengula sprattus, 209:
Hares, the, 455-457
Harlanus, 442
Harlequin, the, 386.
Награ, 87.
Harpactes malabaricus, rutiluss \&ic., 323.

Harpactinæ, 323.
Harpagmotherium canadense; 438.
Harpagus, 302.
Harporodon, 488
Harpyii, 305, 479 .
Harriers, the, 308.
Harry-loug-legs, spider-like animals so called, 125.
Haustellata; derivation of the term, 137.

Hawfinch, the, 356.
Hawk owls, the; 314
Hawks, the, 302, 306, 307-309, 319, 320.

IIawksbill turtle, the, 289 .
llead, the, of insects' and its appendages, with scientific terms refer ring to the different parts, 135, 136.
Head-fish, the, 232.
Hedgehog, the, 475.
Helamys caffer, 466.
Helicina 90 ; helicinæ, 91 ;-helix' ib.
Heliornis surinamensis, 387.
Heliothis delphinii, 180.
Helminthes, general characters of the, 40,43 ; classification of the, by Duvernoy, 43, 44; manner of life of, 4i; helminthophyta, ib.
Helocera, 155.
Heloderma horridum, 281.
Helophilus, 194.
Helophoridæ, 154.
Helopidæ, 160.
Helotarsus ecaudatus, 305.
Hemerobiidæ, 168.
Hemicardium cardissa, 73.
Hemidactyla, 280.
Hemidactylium, 255
Hemipristis, 243.
Hemiptera, 13, 143, 184.
Heptanchus, 242.
Herbivora, 412, 429.
Hercyna palliotalis, 180.
Hermella, 101.
Uerons, the, 379, 380.
Herpestes, 487.
Herring, the common, 209; immense shoals of, 209,210 ; account of the herring fishéry, 210,211 :
Hersilia caudata, 129.
Hesperia, 181.
Hesperomys, 464.
Hessian Hy, the, 193.
Hetærius brunneipennis, 156.
Heterocephalus, 464.
Heterocera, 179.
Heterocerci monopterygii; 237.
Heteroceridæ, 154.
Heterodon, 408, 428; H: niger, \&ec., 470.

Heterodontidæ, $420,428$.
Heteromeles, 273.
Heteromera, 151, 152, 159.
Heteromorpha, 134.
Heteromys, $461,462$.
Heteropoda, 10,77.
Heteroptera, 184, 185.
Heteropus, 273,413 .
Heterohicrium, 419.
Hexanchus, 242.
Hexaprotodon, 436.
Hierux coerulescens, 300,302
Hiester, Dr., account of the bacteria femorata by, $164,165$.
Himantopus albicollis and nigricollis 381.

Hinnites; 63.
Hianus, 444.
Hipparchia semele, galathea, \&ec:? 184.

Hipparion, 445.
Hippinæ, 115.
lippoboscidæ, 196.
Hippocumpidæ, 232 ; hippocampus, 14,

IIlippoglossus, 219 : H. sulgaris, 220.
Hippopotamida, 435; hippopotamils, 435, 436 .
Hippopus, resemblance of, to tridacna,
Hippotherium, 444.
Hippothoa; 54.
IIrudo, 11; H. officinalis, \&c..; 97.
Hirudinidæ, 96.
Hirundinidæ, the, 316;--hirundinine, 317.

Hirundo rufa; lunifrons, rustica, \&c., 317, 318.
Hister, 156 ; histeridæ, ib.
Hoazin, the crested, 360.
Hobby, the, 302 .
Hogg, views of, as to the nature of sponges, 16.
Hogs, the, 441,442 ; cause of measles in, 45.
Holocanthus, 228.
Holocentrum longipinne,
Holocephali, 205, 240.
Hololepta, 156.
Holoptychii, 239.
Holopus rangii, 38
Holostei, 234, 237.
Holothuria, 10.
Holothuridea, 41.
Holoway, the, 497.
Homo, $15 ;$ H: diluviilestis, 253.
Homolinæ, 115.
Homomorph月, 134.
Homoptera, 184, 185.
Homopus, 28%.
Honey buzzard, the, 306.
Honey creepers, eaters, and suckers, 330.

Honey guides, the, 365.
Hooded snake, the, 267.
Hoodlbug, the, 168.
Hoopoes, the, 326.
Hoplophorus, 408.
Horiidx, 159.
Hornbills, the 360.
Horned frog, the, 278.
Horned owls, the, 312 .
Horned pout; the, 216.
Hornet, the, 175.
Horns, the shedding and growth of, 393, 394:
Horse, the, 443.
Horse mackerel, the, 226 .
Horse whale, the , 432 .
Humming-birds, 178, 182, 338 et seq.
Нуæna, 15, 490; hyænidæ, ib.
Hyzenodon, 487.
Hyalæa, 77; hyalæidæ, ib.
Hybodus, 943 .
Hydra, $9 ; H$. grisea, fusca, and viridis, 27.

Hydrachna, 124 ; hydrachnidæ, ib.
Hydradephaga, 153.
Hydrarchidæ, 482; bydrarchos, ib .
Hydrargira, 214.
Hydridæ, 263, 268; hydrus, 268.
Hydrocanthari, 153.
Hydrochærus, 458.
Hydroida, new arrangement of the, 25 ; characters of the, $20 ;$ hydridæ and hydra, ib. $:$ structure and habils of the hydra, $26,27$.
Hydrometra, 142, 188; 'hydrometridæ, 188.

Hydromys, 464.
Hydrophilidæ, 154; hydrophilus, ib.
Hydropsyche, 169.
Hydrostatica, 10.
 ladæ, $257,259$.
Hyłzosaurus, 285.
Hylactes, 335.
Ilylobates agilis, 497.
Hylogale, 474.
Hylowns, 474.
Iymenoptera, 13, 132, 137, 143, 169.
Hynobius, 256 .
Hyops, 441.
Hyotherium, 440.
Hypena rostralis, 180.
Hyperinidæ, 114.
Hyperoodon, 428.
Hypobranchia, 80.
Hyponomeuta, 179.
Hypopus, 123.
Hypopus, 123.

Ǔypsiprỳmnus, 413.
Hyputerus, 464.
Hyracotherium, 440.
Hy racidæ, 439: hyrax, 439, 440.
Hysteropus, 273.
Hystriciden, 457 ; hystricina, 460.
Hystrix cristatus, 461.
Iacchus, 49!.
lbis rubra, alba, \&cc., 381 ; the ibises, 380. 381.

Ibycter, 306
Iehneumon, 171, 487 ; ichneumonidæ, 171.

Ichthyiaztus, 305.
Ichthyology, early works on, 2; various classifications of fishes, 200-205.
Ichthyosaurus, $14,284$.
Icteria viridis, 343.
Icterinæ, 354 ; icterus baltimore, 355.
lctides, 483.
Ictinia plumbea, 306.
Iduteidæ, 112.
Iguana, 14, 278; igluanidæ, 27\%.
Iguanodon, 285.
Imago, the, or perfect insect, 135.
Inclusa, 57.
Indicator major and minor, 365 ; indicatorinæ, ib.
Indris, 493.
Inferobranchia, 80 ; juferobranchiats, 10.

Infusoria, nature of the, 9% only known since the invention of the microscope, 17 ; first discovered by Leeuwenhoek; 18:' size 'and shape of, ib. ; different forms and organization of, 19 ; inhabitants of water not of air, 20 ; modes of locomotion and methods of reproduction of, 21 ; vital power of, jb. ; extent of geological strata made up of the solid parts of, 21, 22; doubts existing among naturalists as to the exact nature of many of the, 22; the class anentera, 23,24 ; enterodela, 24, 25 .
Inia boliviensis, 426.
Insecta, 12, 13, 95, 132.
Insectivora, 15, 416, 472, 476.
Insects, chief characteristics of, 12 132; application of names to the organs of, 132, 133; the egg and larva of, 33; metamorphoses of, 134; the pupa, ib. ; the imago or perfect insect, 135; general observations upon the component parts of the head of, with an explanation of the scientific terms applied to them, 135-138-on the thorax and its appendages, 138,139 -on the abdomen, 139, 140; nervous system of, 140; luminosity of, ib. ; methods of defence of; and sounds emitted by, 140, 141 ; ravages of, among vegetable productions, 141: uses of, 141, 142; essentially terrestrial, 149; orders of, according to Latreille, 143: Burmeister's arrangement of, 143, 144; directions concerning the search for, and preservation and arrangement of specimens, 149-151. Insessores, 293.
Intestina, animals included under the, 10: orders of, ib.
Inuus ecaudatus, 496.
Involuta; 88.
Io flevialis, 84 .
Iridina, 71 ; iridininæ, ib.
ltrisor erythrorhynchus and melanorhynchus, 236.
Isis hippuris, 37.

Isocardia, 73.

Isomys, 464.
Isopoda, 12; the walking, swimming, and sedentary, 111; families' of, according to latreille, 112.
Isothrix. 460.
[ulid $x, 131$; iulus, ib.
Ixodes, 123 ; ixodidæ, ib .
Jacamaralcyonides leucotis, 325.
Jacamars, the, 325.
Jacanas, the, 382.
Jackal, the, 489.
Jackdaw, the, 351.

Jaguar, the, 491.
Janthina ianthina, 85.
Jardine, Sir Wm., his description of the common robin, 337, 338-of the cuckoo, 366, 367 .
Jays, the, 350.
Jeily-fish, 27 .
Jer falcon, the, 301.
Jerboas, the, 466.
Jigger, the, 148.
John lory, the, 227.
Jobnston, reasons of, for classing sponges with plants, 16; observations of, on the actinia, 31,35 ; on the habits of some of the polypes, 53: on the lernææ, 105.
Jones, Prof. R., his doubts as to the correctness of Ehrenberg's view of the polygastrica, 20 : confirmed by Dujardin, ib.
Jugulares, 201.
Kangaroos, the, 412, 413; the kangaruo rat, 462.
Karabos, the, of Aristotle, 116.
Kerodon, 458.
Kestril, the, 302.
Ketupa, 313.
King of the herrings, the, 227.
King birds, the, 345 .
Kingfish, the, 224.
Kingfishers, the, $323,324$.
Kin-yu, the ${ }_{2}$ or gold fish, 215.
Kinixys $28{ }^{3}$ 。
Kinki, the, of China, 372.
Kinosternon pennsylvanicum, 288.
Kirtland, Dr. J. P., his method of dis-
tinguishing the sexes in the unio-
ninie by the shell, 79.
Kites' the, 306.
Kittiwake, the, 389.
Kivis, the, 377.
Kroyer, remarks of, on the lemææ; 105.

Labrax lineatus, lupus, \&c., 221.
Labridæ, 217.
Labyrinthibranchiæ, 294.
Labyrinthodonta, 285, 286.
Lacerta, 14, 277 ; lacertidæ, 275.
Lachesis perversa, 130.
Lactophrys, 231.
Lady-bugs, 162.
Læmodipoda, 12, 113.
Lagidium; 458.
Lagomys princeps, alpinus; \&c., 456.

Lagopus albus and mutus, 376.
Lagorchestis, 413.
Lagostomidæ, 458; lagostomus, ib.
Lagothrix, 495.
Lagriidæ, 159.
Lake trout, the, 212.
Lama, the, 447.
Lamellibranchia, 56.
Lamellicorni̊, 156.
Lammergeyer, the; 297.
Lamna, 242, 243; lamnini, 242.
Jamper-eel, 13.
Lamprey or lamper-eel, 206.
Lampyridæ, 158 .
Lampyris, 140.
Languria, 162.
Laniarius barbarus and olivaceus, 349.

Laniidæ, 348 ; laniinæ, 349; lanius exubitor, \&c., ib .
Lapemis, 268.
Lapland long-spur, the, 358.
Lapwings, the, 378.
Laride, 389 ; larus atricilla, rissa, \&cc., ib.
Iarks, the, 358 ; the American, 354. Larride, 172.
Larva, a name applied to the young of all insects, 133; various forms and characters of, 133,134 ; terms employed to denote the different segments of heteromorphic laivie, 134; duration of the larva state, ib.
Lasiocampa quercus and rubi, 181.
Latreille, his division of the decapoda,
115-of the isopoda, 112-of insects, 143-of the lepidoptera, 178, 179.

Latrodectus malmignatus, 129.

Leather-head, the, 331.
Lebias, 214.
Lecaniuin, 186.
Leech, the, 11, 96, 97: use of, in medicine, 97 ; particulars as to the numbers of. leeches annually used, method of preserving, \&c., 98.
Leeuwenhoek, the first observer of the infusoria, 18.
Lefevre, Dr., account of the Greek divers by, 65, 66 .
Leidy, Dr. Joseph, his observations on vibrio anguillula, 23 .
Leiostomus obliquus and xanthurus; 224.

Lemmatophila, 179.
Lemmings. the, 469.
Lemmus, 462.
Lemur macaco, pusillus, \&c., 15, 492, 493 ; lemuridæ, ib.
Leopard, the, 491.
Lepadogaster, 229.
Lepas, 101.
Lepidoptera, 13, 143, 177.
Lepidosiren, 249; L. paradoxa, 239.
Lepidostei, 234, 235.
Lepidosteus, 217.
Lepidotini, 236.
Lepisma, 13, 146 lepismidæ, 145.
Leporidæ, 455.
Lepralia, 54.
Leptidæ, 194 ; leptis, ib.
Leptophis æstivus, 270.
L.eptopidæ, 188.

Leptopodia calcarata, 118.
Leptotherium, 459.
Leptoxis, 83.
Leptura, 162 ; lepturidæ, ib.
Leptus, 125.
Lepus, 15 ; L. timidus, cuniculus, \&c., $456,457$.
Lepus marinus, the, of the ancients, 80.

Lernæidæ, 104 ; lernæa, 105 ; difficulty of determining the affinities of, ib. ; particulars relating to the mode of reproduction of, 105,106 ; engraving of two species of lernæocera, 106.
Lethrus cephalotes, 157.
Leucî̃i'inæ, 116.
Leucosiadæ, 117; leucosiinæ, ib.
Leucospis, 172.
Leuz, Dr., advice of, as to the treatment of the bites of serpents, 264 , 265.

Libellula, 13, 168; libellulidæ, 166, 167.

Libinia comaliculata, 118.
Lice, the, $131,143,146,147$
Lichanotus, 493.
Ligula; 10,45
Limacidæ, 91 , limax, ib.
Limnadia, 109.
Limnaëtus, 305.
Limnea, 10, 90.
Limniades, 54.
Limnophilus, 169.
Limosa fedon, hudsonica, \&c.; 381 ; limosinæ, ib.
Limulus, $103,111$.
Ling the 219.
Linguatulidæ, 49.
Lingula, 55.
Linnæus, brief outline of the system of classification of, 3; the insecta of, 95 ; orders and genera of fishes according to, 201; his classification of mammalia, 398.
Lion, the, 491.
Liparis, 229,$230 ;$ L. chrysorhcea and
dispar, 181.
Iistriodon, 437.
Lithobiidæ, 332.
Lithodomus, 66.
Lithosia, 141.
Lithotrya, 102.
Littorina, 83.
Lizards, the, 971,974 et seq.
Lizia octopunctata, engraving of the, 31.

Lobster, the, 103, 116.
Lochmias squamatula, 331.
Locust, the, 165 ; the seventeen year;
187.

Locusfa, the, of Suetonins and Belon, 116: L. migratoria, \& c., 141,165 ; locustiden, 165.
Loligidæ, 94 ; loligo, ib:
Loligopsidx; 94; loligopsis, ib.
Loncheres, 460.
Lonchophorus, 461.
Loncosilla, a genus instituted by Rafiresque, 70.
Long-shafted night jar, the, 321 .
Longicornia, 160, 161.
Loon, the, 387.
Lophiidæ, 230 ; lophius piscatorius and americanus, ib.

Lophiodon, 437.

Lophobranchii, 14, 209, 205, 232 .
Lophophorine, 374;: lophophorus refulgens, $\mathbf{i b}$.
Lophortyx californicus, 375.
Lophyrus, 171, 278.
Lories, the, 369.
Lorinæ, 362 ; lorius domicella, \&c., ib.
Loris, 493.
Lota, 219.
Loxia pityopsittacus, \&c., 359 ; loxianæ, ib.
Lucanidæ, 156; lucanus, 149, 156.
Lucernaria, 35.
Lucinid $x, 74$.
Lucioperca americana, 221:
Lumbricidæ, 98 ; lumbricus, 11, 98.
Luminosity of insects, 140.
Lump-fish, the, 2 29.
Lump-sucker; the,' 29.
Lumpus, 229.
Lupa, 118.
Lutra vulgaris and canadensis, 486.
Lutraria Iineata and plicatella, 58.
Lycæna hippothoé, 184; lycænidæ, 185.

Lycosa, 129 ; L. scutulata, 48.
Lycosinæ, 128.
Lygæidæ, 189.
Lygosoma, 273.
Lymexylonidæ, 158.
Lynx, the, 491.
Lytta, 159.
Macacus cynomolgus and silenus, 496.

Macaque, the maned, 496 :
Maccaws, the, 369 .
Machairodus, 488.
Machilus, 146.
Mackerel, the, 925.
Mackinaw trout, the, 212.
Macquart, classification of the alptera according to, 191.
Macrauchenia, 435.
Macrocolus, 461; 462
Macrodactyla, 154.
Macrodipteryx longipennis, 321.
Macroglossa, 183, 479.
Macropodidæ, 412 ; macropus giganteus, 413.
Macropteryx, 319.
Macrorhinms, 481.
Macroscelides, 474.
Macrospondylus, 383.
Macrosternia, 157.
Macrotherium, 405.
Macrotis, 416.
Macrotoma, 145.
Nacrourus, 219.
Macrura, 115.
Mactra, 58 ; mactridæ, ib.
Madrepora prolifera, 36 ; madreporidæ, \&cc., $i b$:
Maggots, 133.
Magilus, 85.
Magnolia warbler, the, 340.
Magots, the, 496.
Magpies, the, 352.
Maiidæ, 118.
Nakis, the, 493.
Malachius, 158.
Malacobdella, 43.
Malacodermia, 158.
Malacology, or the study of animals provided with a calcareous shell, 49.

Malacopteri, 203.
Malacopterygii, $200 ; 201 ; 202,217$.
Malacostraca, 111.
Malacothrix, 464.

Malacozos, 49 ; shell and mantle-of the, 50 ; divided into three classes, 52.

Malactinozoaria, the, of Blainville, 31.

Malakia, the, of Aristotle, 91.
Malapterurus or malapterus electricus, 208, 217
Naldaniæ, 98 .
Mallard, the, 386.
Malleus, 63.
Mallotus, 211 ; M. villosus, 212.
Malthea, 231.
Malurinæ, 335 ; malurus superbus, $\mathbf{i b}$.
Mamestra pisi, oleracea, and brassicæ, 180.

Mammalia, the, characteristics and orders of .15 ; general account of the organizstion of, 392-399; systems of classification of, 398-402; geographical distribution of, 498-502.
Mammoth ohioticus, $438 ;$ the Siberian mammoth, 439.
Man of war bird, the, 391.
Manakins, the, 347 .
Manatidæ, 431 : manatus americanus, senegalensis, ib.
Mandibulata, derivation of the term 137; organs of the mouth in the, with scientific terms applied to the several parts, 137, 138.
Mandrill, the, 496.
Manidæ, 405; manis pentadactyla, \&c., $15,405$.
Manna, whence derived, 186
Mantidæ, 163, 164.
Mantis, 114 : M. religiosa, 164
Mantispa, 168 ; muntispidæ, ib.
Margaritana, the, of Schumacher, 69.
Margaritilera, 70.
Marmots, the; 469.
Marsupialia, structure of the, 411.
Marten, the, 485.
Martin, the, 317 ; the black, 319
Maskalonge, 213.
Massasauga, 266.
Mastiff, the, 488
Mastodon, 438.
Mastodonsaurus, 286
Mastotherium, 438.
Matamata tortoise, the, $\mathbf{3 8 8}$.
Meal bug, the, 160.
Meandrina labyrinthica, 35.
Mecorhynchi, 160.
Medusæ, 9,10 ; general characters and anatomy of, $27-29$; stinging property not universal in, 29 ; luminousness of the sea chiefly due to, ib.; mode of generation peculiar to, 31, 32.

Megaceros, 450.
Megachile, 176.
Megaderma, 477.
Megadesma, 73.
Megalobatrachus, 252, 953
Megalonyx; 409.
Megaiosaurus, 285.
Megamys, 458.
Megapodidæ, 370 ; nlegapodius tumulus, ib.
Megapterna, 25.
Megatheridæ, 408.
Megatherium, 409.
Melandryidæ, 159.
Melanerpes erythrocephalus, \&ce., 364 ; melanerpinæ, ib.
Melania amarula, \&c., 83, 84; melaniidæ, 82
Melanopsis, 8:
Melasoma, 159.
Meleagrinæ, 373 ; meleagris gallopavo, ib.

Meles labradorica and vulgaris, 483
Meletta, 209.
Melicerta ringens, 25.
Melierax musicus, 309.
Meliphagidæ, 330 .
Melithreptinæ, 331
Mellifera, 170.
Mellisuginæ, 329.
Meloe, 159 ; meloidr, ib.
Melolontha, 141; M. vulgaris and fullo, 157.

Melolonthidæ, 156, 15%.
Melophagus ovis, 196.
Melyridæ, 158.

Membracidæ, 186.
Menidæ, 22t
Menopoma, 259 ; menopomidx, ib.
Menura superba, 334.
Mephitis, 486.
Mergansers, the, 386.
Merginæ, 386: mergus merganser, ser rator, \&c., 387.
Mergulus alle, 388.
Meridion, 19.
Meriones, 466
Merlangus, 14; M. vulgaris, \&c., 219.
Merlin, the, 302
Merlucius, 219.
Meropidæ, 325
Merops, 15; M, apiaster, \&cc.; 325.
Merula pilaris, visci $\begin{gathered}\text { orus, } \& c ., 34 \%\end{gathered}$
Merycatherium, 447.
Mesomys, 460.
Mesopithecus, 498.
Metaxytherium, 430.
Mice, the, 464
Micralymma, 142.
Micrasterias, 19.
Micrastur brachypterus and guerilla 308.

Microcebus, 493.
Microchcerus, 441
Micronisus, 308.
Microtherium, 435.
Midas, 194 : midasidæ, ib.
Miller's thumb, the, 293 .
Millipedes, I30.
Milvago, 306.
Milvinæ, 306.
Milvulus forficatus, 345.
Milvus, 15 ; M. regalis, 306.
Mimus polyglottus, rufus, \&c., 342 343.

Mink, the, 485.
Miselia uxycanthæ, 181.
Missel thrush, the, 342 .
Mississippi kite, the, 306
Missourium theristo-caulodon, 438
Mitella, 101.
Mites, 12, 118, 119, 120.
Mitra, 88.
Mocking bird, the, 342 ; the winter, 349.

Moles, the, 472
Mollia, the, of Pliny, 91.
Mollinesia, 214.
Mollusca, leading characters of the, 8 ; brief summary of the chasses included under, 10 ; wide sense in which the term was used by Linnreus, 49, 50 ; Cuvier the first to use the term in its modern sense, 50.
Molorchus, 162
Molossus, 476.
Molothrus pecoris, 355.
Momotinæ, 322; momotus brasiliensis, 1 b.
Monacanthus, 231.
Monas, 9 ; M. leno, 23.
Monasa tranquilla and leucops, 383.
Monedula, 172.
Monitor of the Nile. the, 281.
Monk, the, a species of seal, 481.
Monkeys, the, 491-498.
Monocerca, 9.
Monodon monoceros and microcephslus, 429.
Monomerosomata, 191
Monomyaria, 61.
Monostichii, 236.
Monotremata, 15, 403.
Moon-fish, the, 228.
Moor buzzard, the, 308.
Moor cock, the, 376.
Moose, the, 450.
Mordellida, 159
"More pork," a bird so called, 320.
Mormoops, 478.
Mormyridæ, 213.
Morrhua, 200; M. vulgaris, \&c., 218 , 219.

Morse, the, 432.
Mosasaurus, 281, 282
Moschidæ, 448; moschus moschiferus, ib.

Mosquitoes, the, 192
Motacillinæ, 341 ; M. boarula, ib.
Motelia, 219.
Mother Carey's Chickens, 388.

Mother of pearl, 50, 63
Moths, 178.
Notmots, the, 322
Mouffet, the Theatrum Insectorum of the earliest English zoological work 2.

Moufflon, the, 453
Mound birds, the, 370.
Mouse, the meadow, 462.
Mouth, the, of insects, structure of with the terms applied to the different parts of, 137, 138.
Mud-fish, the, 235.
Mud-hens, the, 383.
Mud-wasp, the, 173
Mugil albula, 205 ; mugilidæ, ib
Mule, the, 444.
Nüller, classification of fishes according to, 203- 005.
Mulleria, 72.
Mullet, the, 222, 225.
Mullus, 222.
Mulus, 444.
Murex, 86.
Murænidæ, 207.
Muridæ, 461 ; murina, 462, 464
Mus, 15 ; M. musculus, rattus, \&ce 464, 465.
Musca, 194 ; muscidæ, jb.
Muscicapa grisole, albicollis, \&c., 346.
Muscicapidæ, 344 ; muscicapinæ, 346
Muscovy duck, the, 386.
Musk, the, 448.
Musk ox, the, 454.
Musk rat, the, 463.
Musophaga violacea, 360 ; Musophagida, ib.
Mussel, the common, 66; method of cooking, and remedy for dangerous symptoms arising from eating, ib.
Mustela, 15, 485; mustelidæ, 485.
Mustelini, 241 ; mustelus, ib.
Mutilla, 174 ; mutillide, ib.
Mya arenaria, \&c.; 58.
Mycetophagidæ, 155 .
Mycetophilín 193.
Mycetopus, 68.
Mycetus, 495.
Mycteria americana, 380
Mydaus, 486, 494.
Mygale, 128, 474; mygalidæ, \&c: 128.

Myidæ, 58
Myliobatini, $\quad 43$; myliobatis, ib .
Mylodon, 409; M. Darwinii and harlani, ib.
Myodes hudsonius, 463.
Myopotamus, 459.
Myoxina, 466 ; myoxus, $466,467$.
Myriapoda, 13, 130.
Myrmecobius fasciatus, 417.
Myrmecophagidæ, 405, 406.
Myrmeleon, 168; myrmeleonidæ, ib.
Myrmica domestica and kirbii, 174.
Mysisidæ, 116.
Mystromys, 464.
Mytilidæ, 66 ; mytilus, ib.
Myxine glutinosa, 206 .
Myxinoidei, ${ }_{2} 06$.
Myzomelinæ, 330.
Nacre, or mother of pearl, 50,63 .
Naia tripudians, 967.
Nais, 98.
Names, carelessness in the application of, by the older entomologists, 132.

Narwhales, 429
Nassa, 86.
Nasua rufa, 483.
Natatores, 294.
Natica, 89
Nauclerus furcatus, 306.
Naucoris cimicoides, 187.
Naucrates ductor, 227 .
Nautilidæ, 94.
Nautilus the, of the ancients, $93 ; \mathbf{N}$. pompilius, \&c., 94.
Nayades, the, of Lamarck, 67.
Necrobia, 158.
Necrophaga, 154.
Necrophorus, $149,155$.
Nectarineadæ, 327 ; nectarinia senegalensis, \&c., 327, 328.
Necturus lateralis, maculatus, and punctatuk, 252.

Nelomys, 460.
Nematobranchia, 89.
Nematus, 171.
Nemertes, 10, 49 ; nemertidæ, 49.
Nemesia, 129.
Neophrinz, 297.
Neotoma, 464; N. floridana and drum mondii, 465.
Nephrosteon, 424.
Nepa cinerea, 187: nepidæ, ib.
Nereidse, 99 ; nereis, io.
Neritina, 86.
Nerucilinæ, 112.
Nesarnak or nisarnak, the, of Greenland, 426.
Nèsokia, 464.
Nessia, 972.
Neuropteria, 13, 143, 165.
Newman, names applied by, to the segments of heteronorphic larvie, 134.

Night hawks, the, 319, 320.
Nightingale, the, $335,336$.
Nirmida, 147.
Nitidulide, 155.
Noctilio, 476.
Noctuidæ, 180.
Nómada, 176.
Nomenclator Zoologicus, of Agassiz, great utility of, 74.
Notacanthidæ, £25; notacanthus nasus, ib.
Notamia, 54.
Notaspis, the, of Hermann, 122.
Notidani, 242 ; notidanus, 243.
Notodonta camelina and ziczac, 181.
Notonecta glauca, 187; notonectidæ, ib.
Notophthalmus, 254.
Nototherium, 414.
Notoxide, 159.
Noturus, 216 .
Nucifriga caryocatactes, 352.
Nucleobranchis, 78.
Nucula, 67.
Nudibranchia, 78.
Nudibranchiata, 10.
Numenius longirustris, borealis, \&c. 381.

Numida meleagris, 374.
Nummulites, explanation of the term, 76.

Nutcrackers, the, 352.
Nuthatches, the. 33e.
Nyctaloidere, 183.
Nyctea nivea, $310,314$.
Nycteribiidæ, 196.
Nycteris, 477.
Nyctibius, $3: 0$.
Nycticejus, 478.
Nyctinomus, 476.
Nyctipithecus, 494.
Nyctophilus, 477, 478.
Nymphacea, 74.
Nymphalide, 184.
Nymphon, 113, 121 ; nymphonidæ, 121.

Nyssa timida, 129.
Ocelot, the, 491.
Octocera, 92.
Octodon, 459 ; octodontinæ, 458.
Octopodia, 92; octopus, 11, 92.
Oculina virginea and gemmascens, 36.

Ocypoda, 117; O. arenaria, 118; ocypodinæ, 117.
Odonestis potatoria, 181.
Odontaspidini, 242.
Odontophorinze, 375 ; odontophorus virginianus, $i b$.
Oedemeridæ, 159.
CEdicneminæ, 378 ; œdicnemus crepitans, ib.
CEdipoda carolina, stridula, \&c., 166.
CEdipus, 255.
CEstridæ, 195 ; œstrus bovis; \&c., ib.
Oidemia velvetina, perspicellata, \&c., 386.

Oliva, 50, 88.
Omaliides, 155.
Ommatostergus, 464.
Oncideres cingulatus, 161.
Oniscidae, 113 ; oniscus, 12, 113.
Onychodactylus, 25.
Onychogalea, 413.

Onychoteuthis, 92, 94.
Opercularia articulata, 24.
Ophidia, 14, 262.
Ophididæ, 218: ophidium; ib.
Ophiocephalus striatus, 225 .
Ophiodes, 272.
Ophiolepis, 39 ; ophiura, $\mathbf{j b}$.
Ophiology, or a systematic arrange
ment of the ophidia, 263.
Ophiomorus, 272.
Ophiophthalmi, 273.
Ophiosaurus, 274.
Ophisaurus, 14.
Opisthocomus cristatus, 360.
Oplotherium, 435.
Opossum, the pigmy flying, 415; opos-
sums, the, $418,419$.
Orang outang, the, 49\%.
Orca communis, 427.
Orchestia, 114.
Oreaster turritus, 39.
Oreotrochilus, $3 \geq 8$.
Orgya antiqua and fascilena, 181.
Oribatidæ, 122.
Orioles, the, 343 ; the American, 354.
Oriolinæ, 343; oriole galbula, \&c., $343,344$.
Orismology, or the application of names to organs, 132.
Ornithopterus, 183.
Ornithorhynchidæ, 40f; ornithorhynchus, 15.
Orthagoriscus, 14, 232.
Orthuceri, 161.
Orthoptera, 13; 143, 163, 252.
Ortolan, the, 358.
Orlygometra carolina, jamaicensis, \&ce., 383.
Orycteropodidæ, 406 ; orycteropus, ib.
Oryctes uasicornis, 149, 173.
Oryx, 451.
Oscanis, 194.
Osmerus, 211; O. viridescens, 212.
Osteodesma, 58.
Osteopera platycephala, 460.
Ustracionidæ, 231 .
Ostracoda, 108.
Ostrea, 10, 61; ostreidæ, 61.
Ostriches, the, 376,3 7. 7.
Otaria ursina and jubata, 481.
Otinx, 377.
Otis, 15; O. tarda and tetrax, 377. Otodus, 243.
Otolicnus senegalensis, 493.
Otolithus regalis, 199, 2\%3.
Otsego bass, the, 212.
Otters, the, 486.
Otus, 15 ; O. wilsonianus and brachyotus, 311.
Ouagga, the, 444.
Ouistitis, 194.
Ourapteryx sambucaria, 180.
Ouzel, the ring, $3+2$.
Oven birds, the, 331 .
Ovibos moschatus, 454.
Ovis ammon, aries, \&c., 453.
Ovovivipara, 401.
Ovula, 88.
Owls, the, 309-315.
Oxen, the, $453,454$.
Oxygomphius, 474.
Oxylophus glandarius, 366 .
Oxymycterus, 464.
Oxypterus, 427.
Oxyrhina, 242, 243.
Oxystomes, 117.
Oxytelides, 155.
Oxyuris vermicularis, 47.
Oyster, the, 61 ; art of breeding, 62.
Oyster-catchers, the, 379 .
Pachycephalinæ, 347.
Pachydermata, 15, 434.
Pachyodon, 481.
Pachysoma, 478.
Pachytherium, 408.
Paco, the, 447.
Pæcilopoda, 104.
Pagrus argyrops, ఐ24.
Paguridæ, 115 ; pagurus, ib.
Palecyon, 484.
Palæmon, 116 ; palæmonidæ, \&c., ib.
Palæocyon, 48\%.
Palacogale, 485.
Palæomephitis, 486.
Palæomeryx, 450.

Palæomys, 468.
Palæoniscus, 237.
Palæornis torquatus, $361 ;$ P: alexandri, \&cic., 362.
Palæosaurus, 282.
Palæospalax, 474.
Palæotheridæ, 437 ; palæotherium, ib
Palamedea cornuta, 382; palame. deid \mathfrak{e}, ib.
Palinurinæ, 116 ; palinurus, ib:
Palliobranchiata, 55.
Palmipedes, 15.
Palmyra, 99.
Palpicornia, 154,
Paludina, 83.
Panda, 483.
Pandion, 305.
Pandora, 59 ; pandoridæ, ib.
Pangolins, the, 405.
Panopæa arctica; 59.
Panorpa, 168 ; panorpidx, ib.
Panther, the, 491.
Papilio, 179, 183, 184 ; papilionidæ, $183,184$.
Papio, 496.
Paracephalophora, the, of Blainville, 75.

Paradise birds, the, 327.
Paradiseine, $3: 77$; paradisea major and minor, \&c., ib.

Paradoxurus, 487.

Paramecium compressum, $\mathbf{2 5}$.
Parasita, 13, 143, 146.
Pareachymata, $10,45$.
Purdalotus puctatus, 347.
Parinz, 339 ; parus bicolor, \&cc., 339, 340.

Parisita, confusion in the use of the term, 111.
Parnidæ, 154.
Parra jacana and indica, 383.
Parrina, 382.
Parrots, the, 361, 362.
Parthenopinæ, 11%.
Partridges, the, 374, 375.
Passalus cornutus, 156.
P'asseres, 15, 294, 315.
Pastor roseus, 354.
Patella, 81 ; patellidæ, ib.
Yatira, the, 441.
Patras, the, 497.
Paussidae, 155.
Pavo cristatus, \&c., 371; payoninæ, ib.
Peacocks, the, 37].
Pearls, whence derived, and various qualities of, 63 ; artiticial, 64 : principal fisheries for, ib. description of the manuer of fishing for, 64 , 65.

Peccaries, the, 441.
Pecten, 49, 62; P. pleuronectes, jacobæus, \&cc, 63.
Pectinibranchia, 89.
Pectinid $6,62$.
Pectunculus, 67.
Pedetes capensis, 466.
Pedicellaria, 17.
Pedicellata, 10.
Pediculidæ, 146 ; pediculus, $13,146$.
Pegasus, $232,233$.
Pekan, the, 485.
Pelagus, 481 .
Pelamis, 208.
Pelamys, 296.
Pelecanidæ, 389 ; pelecaninæ, 390.
Pelecanus, 15 ; P. americanus, fiscus, \&c., 390.
Pelecinus, 171.
Pelicaus, the, 390.
Pellona, 209.
Pelobates fuscus, 259.
Pelopaeus flavipes, 173.
Penæinæ, 116.
Penecillus penecillus, 17.
Penelope cristata, 370 ; penelopinæ, ib.
Penguins, the, 388.
Pennatula granulosa, \&c., 36 ; P. grisea, 37; pennatulidx, 36 .
Pentacrinus asteria and europæus, 38.
Pentamera, various divisions of the, by Nacleay, Westwood, and Latreille, 151, 152.
Pentatoma, 189.
Perameles, 416 ; peramelidæ, ib.

Perca fluviatlis and flavescens, 220 ; percidæ, ib.
Perch, the, 200 ; the climbing, an In dian species, 225.
Percival, Capta description of the pearl fisheries of Ceylon by, 64 , 65.

Percopsidx, 213 ; percopsis, 212.
Perdicince, 374 ; perdix rubra and cinerea, ib.
Peripatide, 99.
Peripatus, 95, 100.
Peristomata, 89.
Perla bicaudata, 167; perlidæ, 166, 167.

Perna, 63.
Pernis apivorus, 306.
Perognathus, 461, 462.
Peromeles, 261.
Petalocera, 156
Petaurista, 415.
Petaurus, 415.
Petrels, the, 388
Petromys, 459.
Petromyzon, 13 ; P. fluviatilis and americauus, 207.
Petromyzontidio, 206.
Pewee, the, or pewit, a species of flycatcher, 345.
Pezoporinæ, 361 ; pezoporus formosus, ib.
Phacochrerus, 442.
Phanicopterine, 384 ; phænicopterus ruber, 384.
Phaenicura ruticilla and suecica, 337.
Phæton zthereus, 389; phetonine, ib.
Phalæna, 179
Phalangers, the, 414 ; the flying, or petaurus, 415.
Phalangidex, 125
Phalangista, 414, 415; phalangistida, 414.

Phalangium, 125.
Phalaropes, the, 382.
Phalaropinæ, 382.
Phalaropus hyperboreus and Wilsoni, 382.
Phateris, $3 * 8$.
Phaneroglossa, 257.
Pharyngognathi, 204, 217.
I'hascogale, 417; P. melas, penicillata, \&c., ib.
Phascolarctos cinereus, 414.
Phascolomyidr, 414; phascolomys wumbat, \&c., ib.
Phascolotherium, 412, 419 .
Phasianide, 370 ; phasianinæ, 37®; phasianus colchicus, pictus, and nycthemerus, ib.
Phasmidæ, 164.
Pheasants, the, 370-372, 374.
Philhydria, 154.
Phillirö̈de, 77.
Philodendræ, 460
Philogreæ, 460.
Philomela luscinia, 335: P. major, 337.

Philyra, 117.
Phlœomys, 464.
Phlogophora meticulosa, 181.
Phoca, 15 ; P. vitulina, 480 ; P. leptonix, monocha, \&ec., 481 ; phocidæ, 480.

Phocæna communis, americana, \&cc., 427.

Phocidx, ability of the, to remain under water a long time, 66
Phocodon, 481.
Phcenicopterus, 15.
Pholadidre, 59.
Pholadomya, 59
Pholas, 59.
Pholis, 230.
Phonygaminze, 350.
Phryganeidæ, 168.
Phrynaglossa, 257, 960.
Phrynida, 126.
Phynosoma, 278.
Phrynns, 126.
Phthirius, 14%.
Phycis americanus, 219.
Phyllidiidx, 80.
Phyllidium, 10.
Phylliroë, 77.
Phyllium siccifolium, 164,

Phyllodactyla, 181
Phyllodoce, 99
Phyllomys, 460
Phyllophora. 107.
Phyllopoda, 109.
Phyllornis, 331.
Phyllosoma, 114.
Phyllostoma, 477.
Phyllurus, 281.
Physa, 90.
Physalia physalis, 30.
Physeter macrocephalus, catodon \&c., 423, 424; P. bidens sowerbyi 42%
Physidæ, 90.
Physograda, 30.
Phytocoris, 189.
Phytophaga, 160, 162.
Phytotoma silens, \&c., 359 ; phytotomine, ib.
Pica, 15 ; P. caudata, hudsonica, \&c. 3 32.
Picidee, 363 ; picus, 15 ; P. villosus, pubescens, \&c.. ib.
Pigeons, the, 367-369; immense tlights of wild pigeons, 368: the cape pigeon, a species of petrel, 389.

Pikas, the, 456.
Pike, the, longevity of, 200.
Pikes, the, 213 .
Pilot-fish, the, curious propensity of 227.

Pimeliidx, 160
Pimelodus, 199, 216; P. cyclopum, 217.

Pinna, 66,67
Pinnipedia, 480.
Pinnotheres ostreum, 117 ; pinnotherina, ib.
Piophila casei and pelasionis, 194.
Pipa americana, 260.
Pipe fish, the, 232.
Piper, the, g\%2.
Pipilo erythrophthalma, 357.
Pipra caudata, melanocephala, \&c., 347.

Piprinze, 347.
['isces, their chief characteristics and orders, 13; divided into cartilaginous or chondropterygeous and osseous, 13, 14; their structure and functions, 197-200; their prolific nature, 199, 500 ; their longevity, 200 ; their classification, according to Artedi, Linnzens, Cuvier, Agassiz, and Müller, 200-205.
Pisidium, 73.
Pithecheir, 464.
Pithecia, 495.
Pilhecus satyrus, 497.
Pitta brachyura and cyanura, 341.
Placentalia, 399, 400.
Plachobranchidæ, 80.
Placoids, 202.
Placunidse, 61.
Plagiodontia, 459.
Plagiostomes, 233.
Plagiostomi, 205, 240.
Plagusia, ${ }_{2}^{2} \geq 0$.
Planaria cornuta and gracilis, 46 ; planariida, ib.
Planaxis, 83.
Planidæe, 219.
Planorbis, $90 ;$ P. cornuarietis, $60 ;$ P. bicarinatus, 89 .
Plant lice, 186.
Plantain eaters, the, 360 .
Plantcutters, the, 359.
Plantigrada, 48 .
Planularia falcata, 27.
Platalea leucorrhodia, 380
Platanista gangetica, 426.
Plateosaurus. $2 \star 5$.
Platessa flesus and limanda, 219
Platurus laticaudatus, 267.
Platycercus viridis, 362.
Platydactyla, 980.
Platydactylus muralis and guttatus, 280.

Platygonus, 437.
Platyonyx, 409 ; P.cuvieri and minutus, 410.
Platyphyllum concavum, 165.
Plecotus timoriensis, lecontii, \&c., 477.

Plectognathi, 14, 202, 204, 231.
Plectrophanes nivalis, lapponicus, \&c., 358.

Pleiodon, 71.
Pleodontes, 276.
Plesiosaurus, 14, 284.
Plestiodon fasciatus, americanus, and aldrovandii, 273.
Plethodon, 255.
Pleurobranchida, 80 ; pleurobranchus, ib.
Pleurodeles, 256, 288.
Pleurodontes, 977.
Pleuronectes, 14.
Pleuronectidæ, 218, 219.
Pleurosaurus, 283.
Pleurotoma, 86.
Pliny the elder, his work on natural history, 2.
Ploceine, 355 ; ploceus oryx and ignicolor, ib.
Plotinæ, 390
Plotus anhinga, 390.
Plovers, the, 378.
Plumatella, 54.
Plumed birds, the habits and history of, entirely unknown, 326.
Plumularia angulosa, 27.
Plusia triplasia and gamma, 181.
Plutella, 179.
Pneumonobranchia, 89.
Poccilocera morbillosa, 165.
Pochard, the, or red-beaded duck, 386.

Pocillopora polymorpha, 36
Podagerina, 320.
Podargine, 320 ; podargus cinereus, ib.
Podicepinæ, 387.
Pudiceps, 15 ; P. cristacus, cornutus, \&c., 387.
Podosomata, 120.
Podura, 145.
Poduridæ, 145.
Pocilocampa populi, 181.
Pecilopoda, 19, 111.
Pogonias chromis, 199: P. fasciatus, 224: P. sulcirostris, 363.
Polecat, the, 485.
Polia chi, 180.
Polistes, 176.
Pollack, the, 219
Pollicipes, 101.
Polyborinæ, 305.
Polyboroides, 309.
Polyborus, 306 ; P. braziliensis, 305.
Polydesmida, 131.
l'olyergus, 175.
Polygastrica, $9 ;$ doubts as to the correctness of Ehrenberg's view of the structure of, 19,20 .
l'olymerosomata, 126.
Polyodon, 238.
Polyommatus, 183, 184.
Polypi, 9 ; description of the habits of some of the polypes, 53 .
Polypiaria infundibulati and hippocrepia, 54.
Polyplectron chinguis, 37 .
Polypterus, 234, 235.
Polypus, the, of the ancients, 94.

Polythalamin, 75; general structure and abundance of, 76 ; conspicuous in a fossil condition, ib. ; classification of, $75,77$.
Polyxenidæ, 131.
Polyzonidre, 131.
Pomatobranchia, 81.
Pomotis, $\mathfrak{2} \geq 1$.
Pompilus, 173.
Pontia cardamines, 184.
Porcellaninæ, 115.
Porcellio, 113.
Porcupines, the, 460.
Porcus, 449.
Porgee, the, 2ฉ4.
Porifera, the, a name applied by Grant to the sponges, 16 .
Porites porites, 36.
Porilidxe, 36.
Porphyrio hyacinthinus, 383.
Porpita, 30.
Porpoises, the, 427.
Portuguese man of war, the, 30
Portuninæ, 118.

Possum, the, 15.
Potamohippus, 436.
Potamotherium, 486.
Potoroo, the, 413.
Potto, the, 484.
Poulpe, derivation of the Frencn'term, 92.

Power-cod, the, 919.
Predones, 170.
Prairie dog, the, 469, 470.
Prairie hen, the, 376.
Pratincoles, the, 378.
Presbytis, 497.
Priocera, 156.
Priodon, 407.
Prionidre, 161.
Prionodon obscurus, 241.
Prionotus, 222
Prionus, 162.
Pristidini, 242.
Pristis, 242, 243.
Pristiurus, 241.
Proboscidea, 15.
Proboscidíans, the, 438.
Procellaria 15 ; P. capensis, 389 ; procellaridæ, 388.
Proctotrupidæ, 172.
Procyon, 483.
Procyonidæ, 483.
Progne purpurea, 317.
Prosimite, 493.
Proteles, 490.
Proteus, a genus of infusoria, description of the, 18; proteus diffuens,
24: P. anguinus, 251.
Protochærus, 440.
Protopithecus, 495.
Protopterí, $20 \overline{3}$.
Protopterus annectens, 239.
Protozoa, a name sometimes given to infusoria, 18.
Psammoinys, 464.
Psammophis flagelliformis, 250.
Pselaphidre, 169.
Pseluphides, 15.5.
Pseudocarcinas gigas, 118.
Pseudochirus, 415.
Pseudodon, the, of Gould, 70.
Pseudopus, 274.
Psendostoma bursarius and talpoidea, 468.

Pseudutriton, 255.
Psittacidae, 361.
Psittacines 362.
Psittacus, 15 ; P. erythacus, \&c., 363 , 363.

Psocidæ, 166, 167.
Psophia crepitans, 379; psophinæ, ib.
Psophodes crepitans, 331.
Psychoda, 193.
Psyllida, 186.
Ptarmigans, the, 376.
Pterocera, 87.
Pterocles bicinctus and alchata, 376 ; pteroclinæ, ib.
Pterodactylus, 284.
Pterodon, 419.
Pteroglossus aracari, 361.
Pteromys, si78; 7; P. volucella, 468.
Pterophoridæ, 179; pterophorus pentadactylus, ib.
Pteropoda, 11, 77.
Pteropodidæ, 479; pteropus, 15; P. vulgaris, ib.
Pterosaurii, 284.
Pterosomidæ, 78.
Pterotracheidie, 78.
Ptilonopus, 368.
Ptilonorhynchinx, 353; ptilonorhynchus nitens, \&c., ib.
Ptilota, the, or winged insects, of Aristorle, 95, 131.
Ptinidre, 158.
Ptychopieures, 274.
Ptyodactyla, 281.
Plyodactylus, 14 .
Puff-birds, the, 323,
Puffin, the, 387.
Pulex, 13; P. irritans and penetrans, 148.

Pulmonaria, 12, 120.
Pulmonata, 10.
Pulmonigrada, 28,30 .
Puma, the, 491.
Pumpkin-seed, 221.

Pupa state of insects, general obser-1 vations on the, 134,135 ; external appearance of the pupæ, 135.
Pupipara, 196.
Pupivora, 170.
Purpura lapillus, 86.
Purpuridæ, 86.
Putorius, 485.
Pycnodontes, 235.
Pycnogonidæ, 121 ; pycnogonum, 113, $120,121$.
Pychionotinæ, 344.
Pycnonotus jocosus, 344.
Pygæra bucephala, 181.
Pygmeodon, 430.
Pyralidæ, 180.
Pyramidella, 86.
Pyramidellidæ, 86.
Pyranga rubra, \&c., 356.
Pyrgoma, 102.
Pyrochroa, 159.
Pyrochroidæ, 159.
Pyroderus scutatus, 352.
Pyrosoma, ${ }^{\text {ã5. }}$
Pyrrtıocoracinæ, 353; pyrrhocorax alpinus, ib.
Pyrrhocoris apterus, 189.
Pyrrhula europea, 359; pyrrhulinæ, 358.

Python, 269.
Pyxis, 287.
Quadrumans., 15, 491.
Quails, the, 375.
Querula rubricollis and militaris, 344.

Querulinæ, 344.
Quiscalinæ, 354 ; quiscalus versicolor, \&c., ib.
Rabbits, the, 456.
Racers, a species of snake so called, 269.

Racoons, the, 483,
Radiati, the, why so called, 8 ; brief summary of the classes included under, 9,10 ; all forms in which radiated structure is evident included under, 25 ; included by Cuvier under the zoophyta, ib.; divided into three classes-Colenterata, Zoophyta, and Echinodermata, ib.
Rafinesque, the genus loncosilla instituted: by, 70.
Raia, 243.
Raiadæ, 240, 242.
Rails; the, 383.
Rajini, 243.
Rallidæ, 383.
Rallus, 15 ; R. aquaticus, crex, \&c., 383.

Ramphastidæ, 361.
Ramphastos erythrorhynchus, \&c., 361.

Rana, 14, 258.
Ranatra linearis, 187.
Ranidæ, 257.
Ranina, 115.
Raninidæ, 115.
Raphidia, 168.
Raphidiidæ, 168.
Raptores, 293.
Rasores, 294.
Rat-kangaroo, the, 413.
Ratel, the, 484.
Ratelus, 484.
Rats, the, 461-465, 468 ,
Rattlesnake, the, 266.
Ravens, the, 351.
Rays, the, 240.
Recurvirostra avocetta, \&c., 351 ; recurvirostrinz, ib.
Red-birds, the, 356.
Red-fish, the, 224
Redstarts, the, 337 ; the American; 346.

Reduviidæ, 188.
Redwing, the, 342.
Regulus auricapillus, 33%.
Reindeer, the, 450.
Reithrodon, 464.
Reptiles, chief characteristics and orders of, 14.
Reptilia, chief characteristics and orders of, 11; circulation of the
blood in, 244 ; respiration of, ib:; effect of temperature 0n, 245; rudimentary limbs of, ib. : particulars respecting the anatomical structure of, 245-947; hybernation of, 248 ; fecundity of, iv.; distinguishing features of the reptilia nuda, 949 ; principal differences between the reptilia nuda and the reptilia squamata, 261, 262.
Republican swallow, the, curious feature in the history of, 318 .
Retepora, 54.
Reticulata, 109.
Rhea americana and darwinii, 37%.
Rhinatrema, 261.
Rhincophora, 160.
Rhinobatini, 212.
Rhinoceros, 436 ; rhinocerotidre; 430_{4} 437.

Rhinodontini, 242.
Rhinolophus ferrum equinum, 47%.
Rhinopoma, 478.
Rhinoptera, 243.
Rhipiptera, 143, 189.
Rhizodontes, 282.
Rhizomys, 464.
Rhizopoda, 75.
Rhizotrogus, 157.
Rhombus maximus and: vulgaris, 220.

Rhopalocera, 179, 183.
Rhyncholites, the fossils ${ }^{\star}$ so called, 95.

Rhynchosaurus, 282.
Rhynchota, 184, 185.
Ringdove, the, 368.
Riparii, 188.
Robin, the American, or common migratory thrush, 342 .
Robins, the, 337.
Ruck-fish, the 221.
Rodentia, 15, 455.
Roebuck, the, 449.
Rollers, the, 321.
Rondeletius, author of a work on ichthyology, 2.
Rook, the, 352.
Rorqual, the, 421,
Rose fish, the, 223 .
Rostellaria rectirostris, 87.
Fostramus hamatus, 30t.
Rostrati, 235.
Rot, the, in sheep, ca'sed by a species of trematoda, 46.
Rotatoria, 104.
Rotifer vulgaris, $\overbrace{}^{\circ} \mathrm{j}$.
Rotifera, $9,104$.
Roussettes, the, 479.
Ruffe, the $2 \underset{\text { 2as }}{ }$
Ruminantia, 15, 445.
Runners, the, 378.
Rupicapra, 459.
Rupicola aurantia, 34%.
Rutelidæ, 156.
Rypophaga, 154, 155.
Rytura, 432.
Rytinidæ, 432.
Ryzæna, 48%.

Sabella, 101.

Sable, the, 485.
Saccomyina, 461.
Saccomys, $461,462$.
Saddleback, the, or black-backed gull, 389.

Sagridæ, 162.
Sajous, the, or sapajous, 495.
Salamander, the, $250,252,253$, 256 :
Salamandra, 14, 253, ${ }^{25} 6$; salaman. drinæ, 261.
Salda, 188.
Salmo, 211 ; salmonidæ, ib. : salmo salar and fario, ib.: S. fontinalis, amethystus, confinis, and siskewit, 212.

Salmon, the, 211, 212; 221.

Salpa, 10, 55.
Salpingidæ, 159.
Salt water trout, the, or weak fish, 923.

Salticinæ, 128; salticus formicarius, 129.

Salvator, 276.
Salviani, author of a work on ichthyo. logy, 2.

Sandpipers, the, 381, 382
Saperda, 162.
Sapeuckers, the, 333, 303.
Sapyga, 173.
Sarcophaga carnaria, 194,
Sarcophilus ursinus, 41 .
Sarcoptes, 121, 122; S. scabiei, $122:$ the itch supposed to be occasioned
by different species of, ib.
Sarcoramphinæ, 298; sarcoramphus, $298,299$.
Sardine, the, 208.
Sardinella, 209.
Sargus ovis, 22%.
Sars, the researches of, on the aca lephe, 31 : the scyphistoma and strobila of, 32.
Sauria, 14, 271.
Saurians. fossil, 28 ?
Sauroidei, 235.
Saurophis tetradactyla, 275.
Saurophthalmoi, 272 .
Saurotherinæ, 365.
Saurus mexicanus, 212.
Sauvegardes, 276.
Savigny, discovery of, respecting the antlia of the butterfiy, 136.
Saxicavidæ, 58 .
Saxicola cenanthe, 337 .
Say, description of the prairie dog by, $469,470$.
Scæva pyrastri, 194.
Scalaria clathrus, 83.
Scalaris, 83.
Sculops aquaticus, 173.
Scansores, 15, 294, 361.
Scaphidiidæ, 155.
Scaphiopus, 258.
Scaphirhynchus, 238.
Scarabzeide, 150.
Scarabæus hercules, 149 ; S. tityus, 157:
Scaup, the, or black-headed duck, 386.

Scelidotherium, 409.
Scelotes; 272
Schizodon, 459.
Schizothorax, 214
Schoenherr, divisions of the rhincophor'a according to, $160,161$.
Sciænidæ, 223.
Sciaphila literata, 180
Scincide, 271, 279.
Scincus, 14: S: officinalis, 273.
Sciuride, 468.
Sciurus, 15, 470-472.2.
Sclerogenidæ, 222.
Scolia, 173.
Scoliidæ, 173.
Scoliopteryx libatrix, 181.
Scolopacide, 381 ; scolopacinæ, 389.
Scolopax, 15: S. rusticula, 382.
Scolopendra, 13, 132.
Scolopendridæ, 132.
Scolytidx, 161.
Scumber vernalis, grex, colias, \&c., 225, 226.
Scomberesucidæ, 217.
Scombridx, the, 225.
Scopelidæ, 212 ; scopelus; ib.
Scorpana scropha, 223.
Scorpio, the scorpion, 12,118, 119 126, 273.

Scorpionidæ, 126.
Scoter, the, 386.
Screamers; the, 382.
Sculpins, 223.
Scutellera, 189
Sculelleridæ, 189
Scutibranchia, 81.
Sculibranchiata, 10.
Scutigera coleoptrata, 130 ; scutigeridæ, 132.
Scydmænidæ, 158.
Scyllaride, 116 ; scyllarinæ, ib; ; scyllarus, ib .
Scyllini. 241.
Scylliodontini, 241.
Scyllium, 241.
Scymnini, 2t2; scymnus, ib.
Scyphistoma, 32
Sea-buss, the, 221.
Sea-cat, the, or weever, or wolf fish, 222, 230 .
Sea cow, 432.
Sea cowcumber, 42.

Sea-cggs, or sea-urchins, 40.
Sea eleplant, sea lion, or, sea wolf, 433, 481.
Sea-horse, the, 233, 432.
Sea jellies, $9,57$.
Sea-netles, 9,27 .
Sea-pigeons, the, 388.
Seal, the, 15; the seals, 480, 481:
length of time which they can re-
main under water, 66.
Sebastes norvegius, 923
Secrebary, the, 309.
Securifera, 170.
Segestria, 159.
Selache, 242.
Selachii, 13, 233, 239.
Semnopithecus, 497.
Sepia, 94.
Sepiidæ, 94.
Seps chalcides, 273.
Serialaria, 54.
Serica, 157.
Sericulus chrysocephalus, 344.
Seroline, 112.
Serpent-eater, the great, 309.
Serpentarius, 309.
Serpents, the, general description of the anatomical peculiarities of, 261, 262; organs of motion of,262; 263; the phenomena of reproduction different in different species, 263 ; few serpents found in a fossil state, ib. ; scientific exposition of, a matter of considerabie difficulty, ib.; antidutes to the bites of, 264,265 ; only two venomous species in the middle and northern states, 267.
Serpula, 100.
Serpulide, 100.
Serricornia, 157.
Sertularia abietina, polyzonalis, and operculata, 27.
Seriularide, 27
Sesia, 182 ; S. fuciformis, 183.
Setophaya ruticilla, mitrata, \&cc., 346 .
Shad, the, 209.
Shark, the, 13 ; the sharks, 240 242.

Sheat fish, the, 216.
Sheep, the, 453.
Sheepshead, the, 224 ; the three-tailed, 24.

Sheldrake, the large, or merganser, 387.

Shell lac, obtained from a species of coccus, 186.
Shells, structure of, 50 ; bivalve, univalve, and spiral, different forms of, and technical terms applied to, 51, $52,56,57,68$; the sexes among the unionine distinguishable by the, 70 .
Sheltopusik, the 275 .
Shovel-fish, the, 238 .
Shoveller, the, 386.
Shrewmole, the, 473 ; the shrews; ib.
Sbrikes, the, $348,349$.
Sialia wilsoni, 338.
Sialidæ, 168.
Siderotherium, 436.
Sigaretidæ, 88 .
Sigaretus; 88.
Sigmodon, 464, 465.
Silkworms, the, 181.
Silphidæ, 155.
Siluridæ, 216.
Silurus glanis, 216 ; S. electricus, 217.

Sitver fish, the, 215
Simia, 15; S. troglodytes, 497.
Simiæ platyrrhini, 494; S. catarrhini, 496; simidx, ib.
Siphneus, 464.
Siphonaptera, 143.
Siphonophoridæ, 131.
Siphonops, 261 .
Siphonostoma, 104, 147.
Sipunculidea, 42.
Sipunculus, 10, 42.
Siredon mexicanus and maculatus, 251.

Siren, 252.
Sirenidia, 429.
Sirenoidei, 239.

Siskin, the, 357.
Sitta, 15 ; S. europrea, 333 ; sittinæ, 33\%.
Sivatherium, 448.
Skip-jack, the, $226,227$.
skippers, 194.
Skruk; the, 486.
Skylark, the, 358.
Sloths, the, 410.
Show worm, the, 272 ; innocuous nature of, ib.
Smelt, the, 21 .
Smerinthus, 183.
Smilodon, 490.
Sminthus, 464.
Smynthurus, 145.
Snake bird, the, 390.
Snakes, the, 268; the black snake, 269,270 ; the garter snake, green snake, \&c., 270.
Snapper, the, 223 .
Snapping turtle, the, 288 , 289.
Snipe fish, the 229 .
snipes, the, 38
Solarium, 85.
Solaster, 39.
Soldier buy, 153.
Sole, the, 220 .
Solea vulgaris, æu.
solemya, 58.
Solemyidæ, 58.
Solen, loncosilla supposed to be a species of, 59 .
Solenidre, 59.
Solifuge, 125.
Solipeda, 15.
Solpuga, 125.
Surex, 473.
Soricide, 473.
Soridia, 272.
Sounds, various, emitted by insects, 140, 141.
Spralacina, 464.
Spalacodon, 472.
Spalacopus, 459.
Spalax typhlus, 464.
Spanish tyy, 153.
Sparidx, wht.
Sparrow, the hedge, 339 ; the sparrows, $355,357$.
Sparrow hawks, the, 307.
Spatangus, 41.
spatha, 71.
Spelerpes, 255.
Speothos, 487.
Spermophila crassirostris, 350 .
Spermophilus, 469.
Spheridiide, 154.
Spheriodactyla, 281.
Spheroma, 112.
Sphæromidæ, 112; sphærominæ, ib.
Sphargis, 289 .
Sphegide, 1733.
Spheniscinæ, 388.
Sphenodon, 410.
Sphinyidæ, 182.
Sphinx, 179, 182 ; S. pinastri, ligustri, convolvali, \&ce., 183.
Sphyrena barracuda and spet, 22.
Sphyrna, 243; S. zygzas and malleus, 24.

Spiculifera, 170.
Spiders, the, 12, 118, 126; effects of
the poison of, much exaggerated, 127; anatomy and method of spinning of, ib.; various patterns of the webs of, ib.; their care of their cocoons, 128 ; food of, ib. : descrip-. tion of various kinds of, 128, 129.
Spilornis, 305.
Spinax, 242, 243.
Spinicini, 242.
Spio filicornis, 99.
Spiracula composita and solitaria, 201.

Spirula, 94; spirulidæ, ib.
Spizaëtus, 355.
Spondylus, 63.
Sponges, uncertainty whether they belong to the animal or vegetable kingdom, 9 ; numerous species and endless forms of, 16, 17: growth, contents, and various genera of, ib.
Spongia officinalis, 16; S. usitatissima, tubeformis, fistularis, \&c., 17.

Spongilla lacustris, fluviatilis," and friabilis, 17.
Spoonbills, the, 380.
Sprat, the, 209.
Spurii, 161.
Squalidæ, 240, 241.
Squalodon, 481.
Squalus, 13.
Squamipennes, 227.
Squatinini, 242.
Squilla, 12, 114
Squillidre, 114.
Squirrels, the, 468-472; the flying squirrel, 278
St. Cuthbert's beads, 38
Staggers, the, in oxen, caused by a species of eystica, 44.
Stags, the, 450.
Stang-fishes, medusæ, or sea nettles, \& c., 27.
Staphylinides, the, 155،
Starlings, the, 353, 354.
Steatornis. 320 .
Steenstrup, description of the alternation of generations by, 31, 32: his observations on coryne, 33.
Steganophthalmata, 28.
Stellio, 14, 279 .
Stellonia rubens, 39.
Stemmati, the, or ocelli, of insects, 136, 137.
Stemmatopis, 481.
Stenelytra, 159
Stenides, 155.
Stenodactylus guttatus, 981
Stenops, 493.
Stenopus, 116.
Stenorhynchus, 481.
Stentor mylleri, 24 .
Sterelmintha, 10.
Sterna hirundo, minuta, \&c.. 389 sterninae, ib.
Sternothæerus, 288.
Sternoxi, 157.
Stickleback, the, 223.
Stilts, the, 381.
Sting-rays or sting-rees, dangerous character of, 243 .
Stinkpot, the, a species of land tortoise, 288.
Stizus, 172.
Stomatopoda, 12, 114.
Stomoxys, 13, 194.
Stone catish, 216.
Stonechats, the, 337.
Storks, the, 380.
Stratiomydæ, 193.
Strátiomys, 193.
Strepera graculina, 350.
Strepoma, 84.
Strepsiptera, 189
Streptospondylus, 283.
Strigidze, 309-315.
Striginæ, 311.
Striped bass, the, 221.
Strix pratincola and flammea, \&c., 311.

Strobila, 32.
Strombide, 8%.
Strombus, $10,87$.
Stongyloceros, 450.
Strophilus, 70.
Struthio, 15 ; S: camelus, 377.
Struthiones, 94, 376.
Struthionide, 376; struthioninæ, 37%.
Sturgeon, 13; the sturgeons, 234 .
Sturiones, 13.
Sturionidae, 238.
Sturnella ludoviciana, neglecta, \&ic., 354.

Sturnidæ, 353.
Sturninæ, 354 ; sternus vulgaris, \&c., ib.
Subbrachiata, 14.
Suckers, the, 216.
Sucking-lish, the, 220.
Suctoria, 13.
Sugar-fish, 146.
Suidx, 15, 440.
Sula, $15 ; \mathrm{S}$. bassana and fusca, 391.

Sulcicolles, 162
Sun bird or grebe, the; 387 .
Sun birds, the, 327.
Sunfish, the 221, 232.
Sun-perch, 221.

Suricate, the, 487.
Surnia ulula, 310,314 ; surninae, 314.

Sus, 15 ; S. scropha, domesticus, Svc., 441.

Swainsom classification of: birds according to, 293 ; description of humming birds by, 328; remarks of, on the felidse, 490, 491.
Swallows, the $316-318$; the great sea swallow, 381).
Swans, the, 385.
Swifts, the, 318.
Swimming bladder, the, of fishes, 198.

Sword-bills, the; 332.
Swordfish, 14, 226, 228
Sylvia hippolais, 337.
Sylviadæ, 335 ;'sylvianæ, ib.
Sylvicola restiva, maculosa, coronata, chrysoptera, \&ec., 310 ; sylvicolinæ, ib.
Symbranchidæ, .007.
Synallaxinæ, 332.
Synanceia, 223.
Syngnathide, 232
Syngnathus, 232.
Syrnium nebulosum, \&c., 311, 312.
Byrphidx, 194.
Syrtis, 188.
Systoligrada, a name proposed for the Diphyida, 26 ; characters of the, 31.

Tabanidæ, 193
Tabanus, 193.
Tachinus, 194.
Tachyoryctes, 464.
Tachypetes aquilus, 391.
Tachyphonus cristatus, 357
rachyporides, 155.
Tadpoles, 258.
Tænil solium and cateniformis, 45. *
Texnioides, 228.
Tailor, the, $2 \leadsto 7$
Talaje, a South American insect of the family graasidz, 124.
Talitrus, 12.
Tallegallinee, 370.
Talpa, 472.
Talpidæ, 472, 473.
Tamarins, the, 49.
Tamias, 470.
Tanagers, the, 35.6
Tanagra episcopus, 356 ; tanagrinæ, ib.
Tantalinæ, 380; tantalus loculator, 381.

Taphozous, 478.
Tapiroporcus, 437.
Tapirotherium, 437.
Tapirs, the, 438.
Tapirus americanus and indicus,
Tarandus hastalis and furcifer, 450 .
Tarantula, the, 159, 280.
Tardigradu, 408 .
Tarsipes rostratus, 415 .
Tarsiths, 493.
Tatous, the, 407.
Tautoga americana, the tautog, 218.
Taxicornia, 159.
'axotherium, 484.
Teal, the green and blue winged, 386.

Tectibranchia, 80; tectibranchiata 10.

Tegenaria, 129.
Tejus, 14.
Telegallus lathami, 370.
Teleosaurus, 283.
Teleostei, 233.
Telephoridx, 158.
Telephorus, 159.
Tellina, 73, 74.
Tellinidx, 74.
Temnodon, 2.27.
Temnurus leucopterus and rufus, 351.

Tenebrio molitor, 160 ; tenebrionidx, ib.
Tenrecs, the, 475.
Tentaculifera, 92.
Tenthredinidx, 169, 170
Tenthredo, 13.
Tenuirostres, 326.

Terebella, 101.
Terebra, 88.
Terebrantia, 170.
Teredo navalis, 59.
Termes, 166.
Termitidx, 166.
Terns, the, 389.
Terrapin, the common, 288.
Testudinidæ, 287.
Testudo, 14 ; T. polyphemus elephan-
topus, \&c. 287.
Tethys, 79.
Tetrubranchiata, 92.
Tetracera, 45 l.
Tetracaulodon mastodontoideum, 438.
Tetradactylus, 273.
Tetragnatha argyri, 130.
Tetramera, 151, 152, 160.
Tetrao urogallus, tetrix, urophasia-
nus, cunadensis, \&c., $375,376$.
Tetraodon, $232 ;$ T. electricus, 208.
Tetraonidæ, 374 ; tetraoninæ, 375.
Tetrapneumones, 128
Tetraprotodon, 436.
Teuthididae, 94.
Thalamita, 118.
Thalassema echiurus, 98.
Thalassidroma pelagica, 389.
Thamnophiline, 349 ; thamnophilus
doliatus, \&c.s, ib.
Thaumantias cymbaloidea, 30 .
Thecla quercus, pruni, and betulæ, 184.

Thecodontosaurus, 989
Theliphoninae, 126.
Thelphusa, 117; thelphusinæ, ib.
Thelyphonus, 126.
Theridion, 129 ; theridioninx, 128.
Theridomys, 461.
Theuthydæ, 228.
Thick-leg, the, 378.
Thistle bird, the, 357.
Thomisinæ, 128.
Thuracici, $201,218$.
Thorax, the, of insects, general strueture of, and its appendages, and the scientific terms applied to the same, 138, 139.
Thorictes dracrena, 276
Thrasher, the, 343 .
Three-tailed sheepshead, the, 298.
Thripsidze, 166.
Thrushes, the, 341.
Thuiaria thuia, 27.
Thylacinidæ, 419 ; thylacinus, ib.
Thylacotherium, 419.
Thymallus, 211, 212 ; T. vexillifer and vulgaris, 212.
Thynnus, 226.
Thysanura, 13, 131, 143, 144.
Tick, the, infesting the sheep, 196.
Ticks, 123 ; troublesome character of,
ib.
Tiger, the, 491
Tilicua, 14.
Timalia, 343 ; timalinx, ib.
Tinamine, 376.
Tinamous, the, 376.
Tinamus major, 376.
Tinca vulgaris, 215 .
Tinea pellionella und granella, 179 ;
tineidæ, ib.
Tingidæ, 188: tingis, ib.
Tipulidæ, 193.
Titanomys, 456.
Titmouse, the common, 340 .
Tits, the, 339.
Tityra cayanus, 346 ; tityrinæ, 345.
Toad; the, 259 ; striking difference between the frogs and true toads, 259, 260.
Toad-fish, the, 231.
Tobacco-pipe fish, the, 229.
Tobacco-worm, the, 182.
Todinæ, the toadies, 321 ; todus viridis, ib.
Tomeod, the, 219.
Tornatella, 86.
Torpedo, 208, 243.
Torpedini, $949,243$.
Tortoise-shell, the of commerce, procured from the hawksbill turtle, 248.

Tortoises, the, 286.
Tortricide, 179.
Tortrix, 968 ; T. viridana, 180.

Totanus bartramius, macularius, \&c. 382.

Toucans, the, 361.
Towhe buntings, the, 357 .
Toxodon, 431.
Toxotes jaculator, ≈ 28.
Trachea atriplicis and precox, 180.
Trachearia. 12, 120.
Trachelia, 159.
Trachelucerca olor, $24 ;$ T. viridis, 25.

Trachypterus, $2 \geq 8$.
Trachysaurus, 273.
Tragopan hastingsii, 372.
Tremitoda, 46.
Trematodera, 251.0
Trembley, the discoverer of the genus hydra, 26.
Trepane, method of fishing for and preserving, 42.
Treron uromatica, 367; treroninæ, ib.
Trixnodontint, 241.
Triakis, 241 .
Trichechidre, 432; trichechus rosma rus, \&ec., 433, 434.
Trichiurus, 228 ; T. electricus, 208.
Trichius, 157.
Trichocephalus dispar, 47.
Trichotectes, 147.
Trichodina cometa, 24 .
Trichoptera, 168.
Trichosurus, 415.
Tridacna, 72; tridacnidæ, ib.
Trigh lyra and cucalus, 222 ; triglidæ, ib.
Trigonia pectinata and thoracica, 6%.
Trigonocephalus contortrix, \&c., 266 , 207.

Trilobita, 12.
Trilobites, 110 ; known only from fossil remains, ib.
Trimera, 151, 152, 162.
Trinya rufescens and minutil, 382.
Tringinex, 381.
Trionycidæ, 288.
Trionyx, $288,989$.
Triphena pronuba, 181.
Triplax, 162.
Triton, $253,2.54$; T. teeniatum and cristatum, 256 .
Tritonia, 79; tritoniidæ, ib.
Tritonium, 10.
Trochichis, 483.
Trochidæ; 85.
Trochilidæ, 328 et seq.
Trochiliidæ, 182; trochilium cerasi, ib.
Trochilus mango, macrourus, glaticopis, polytmus, pella, \&c., $3 \stackrel{9}{ }$, 330.

Trochus, 85.
Troctes pulsatorius; 167.
Trogidæ, 156.
Troglodytes ædon, 333; T. niger, 497.

Troglodytinæ, 333;
Trogon viridis and curucui, 323.
Trogoninæ, $322,323$.
Trogonophis, 275.
Trogons, the, 322, 393.
Trogontherium, 467.
Trombidiidæ, 124; trombidium, 121, 124.

Tropic birds, the, 389.
Tropidolepis, 278.
Tropidonotus, 200 ; T. sirtalis, sipedon, $\& \mathrm{c} ., 270$.
Tropidorhynchus corniculatus, 331.
Trout, the, improper application of the name, 221 ; the saimon tront, s.alt water trout, or weak fish, 23.

Trout family, the, 211, 212.
Trumpet-fish, the, ay9.
Trumpeters, the, 379.
Trunk-fish, the, 231.
Trygonini, 243.
Tabicinelia, 102.
Tubicola, 11, 60, 100.
Tnbifex, 98.
Tubipora musica, 37; tubiporidæ, ib.
Tubularia indivisa and coronata, 27.

Tubulibranchiata, 10
Tubulifera, 170
Tubulipora, 54 ; tubuliporidæ, ib .
Tumblers, the, 368 .
Tunicata, 10,51 .
Tunny, the, 288.
Tupinambis, ai6.
Turbo, 85.
Turbot, the, 200
Turdidæ; 341.
Turkey buzzard, the, $296,298,300$.
Turkeys, the, 373, 374,
'rurnianse, 375; turnix dactylisonans, ib.
Turnstones, the, 370.
Turitella, 83.
Turtle-dove, 368.
Turtles, the, 288, 289.
Typhline cuvierii, 273.
Typhlophthalmi, 273.
Tyranninæ, 345 .
Tyrannula, 345 .
Tyramus intrepidus, crinitus, nuncio $1 \mathrm{a}, \& \mathrm{c} ., 345$.

Uloborus walenærius, 130.
Umbrella, 81 ; umbrellidæ, ib.
Umbrina nebulosa and alburnus, 24
Unau, the, 410 .
Unguiculata, 482
Unio, 49, 68.
Unionicola, 124.
Unionide, 67 ; composition of the shell of, numerous variations and distribution of some of the species of, 68,69 ; unioninæ, 69 ; no ditticulty in distinguishing the characters of, 71.
Upupa epops, 326.
Upupidæ, 326.
Uraniidx, 183.
Uraptera, 243.
Ure-ox, the, 454.
Uria antiqua, troile, \&c., 388.
Urinæ, 388.
Urocentrum turbo, 24 .
Uroceridæ, 171 ; urocerus gigas; ib.
Uroplatus fimbriatus, 281.
Ursidæ, 482.
Ursus, 15 ; U. maritimus, americanus, ferox, and arctos, 482.

Valkeria, 54.
Valvata, 83.
Vampyride, 476 ; vampyrus spectrum, 477.

Vandeleuria, 464.
Vanellus cristatus, 378
Vanessa, 13; V. c-album, atalanta, urtice, antiopa, cardui, \&ce:, 184.
Varanidæ, 281; varanus niloticus, ib.
Varicolores, 159, 160.
Vauga curvirostris, 348.
Velella, 10, 30.
Veneridæ, 74.
Venus, 73, 74.
Vermetidæ, 85
Vermetus, 10, 85.
Vertebrata, chief distinction between the, and the evertebrata, 8 ; characteristics of, $\mathbf{1 3}$; brief summary of the classes included under, 13-15; detailed description of the classes and orders of, 197 et seq.
Vesicularia, 54.
Vesicularidæ, 53, 54.
Vespa, 175; V. vulgaris and crabro, 176.

Vespertilio, 15; V. pruinosus, noctivagans, \&c., 478.
Vespidæe, 175.
Vibrille, definition of the term, 9.
Vibrio anguillula and tritici, 23 .
Vicunna, the; 447.
Vidua paradisea, regia, and erythrorhynchus, 356 .
Vipera, 14.
Viperidæ, 263,267 ; viperina, 263 , 265.

Vipers, the, $263,264, ~, 267,270$.
Vireo olivaceus, \&c., 346 ; vireoninæ, ib.
Virgularia juncea, 37.
Viscacha, the, 458.

Viverra, 15, 486; viverridæ, 15,486
Vociter, the, of Le Vaillant, 305.
Volucella, 194
Voluta, 88 ; volutidæ, ib .
Volvox globator, 23.
Vulpes fulvus, decussatus, velox, and lagopus, 489, 490.
Vulselia, 63.
Vulturidæ, the vultures, 295 et seq.
Vulturinæ, 296.
Waders, the, 378.
Waytails, the, 341.
Waiking leaf, the, 164.
Walruses, the, 432,433
Wampum, the colured margin of cytherea used in the manufacture of, 75.

Warblers, the, 335-340.
Wart-hogs, the, 442.
Wasps, the, 175.
Water, discoloration of, by the daph nix, 108.
Water-flea, 12
Water-moccasin, the, 266.
Water-puppy, the, 952.
Weak fish, the, 199, 2:3.
Weasel, the, 15 ; the weasels, 485.
Weaver birds, the, 355.
Weever, the, 222,
Weerils, the, $141,160$.
Westwood, classification of the coleoptera by, 151, 152; arrangement of the hymenoptera according to, 170; divisions of the rhopalocera and heterocera according to, 179 division of the homoptera and he teroptera according to, 185 ; classification of the diptera according to, 191, 192.
Whale-lonse, 12.
Whales, the, $420,421-424$; the bottlenosed whate, 420 ; the white whale, 427.

Wheatears, 337.
Whip-poor-will, the, 320 .
White fish, the, 212.
Whiting, the, $219,24$.
Wide-gap, the, 230.
Widgeoll, the, 386.
Widow or Whidah birds, the, 35J, 356.

Wilson, description of the horned owl by, 312, 313-of the hawk owl, 315-of the whip-poor-will, $320-$ of the wren, 333, 334 -of the bluebird, 338,339 -of the mocking bird, 342-of the yellow-breasted chat, 343 -of the red headed woodpecker, 364; description of the flight of the wild goose by, $384,385$.
Wings, the, of insects, general structure of, 139; of birds, 291. 292.

Wolffish, the, 230 .
Wolverine, the, 484.
Wolves, the, $488,489$.
Wombats, the, 414.
Woodcocks, the, 382.
Woodpeckers, the, 363-365.
Worms, general characteristics of, 11 ; difficulties attending the classification of,' 42 ; intestinal, 44 ; the common tape-worm, 44: the guinea worm, 45 ; earth-worms, 98.
Wrens, the, $333,337$.
Wrynecks, the, 365.
Xilina exoleta, 181.
Xiphias, 14, 226.
Xiphodon, 435.
Xiphorhynchus, 332.
Xiphosoma caninum, 269 .
Xiphosura, 111.
Xylocopa violacea and victima, 176.
Yak, the, 454.
Yellow-bird, the summer, 340
Yellowhammer, the, 358.
Yellow jack, the, or yellowtail, 224.
Yellow rump, the, 340 .
Yuncinæ, 365.
Yunx torquilla, 365.
Zebra, the, 444.
Zenaida amabilis, 369.

Zeuglodon, 481.
Zeus faber, 227.
Ziphius, 428.
Zoanthidæ, 36.
Zoarces, 230.
Zonotrichia albicollis, melodia; leuco-
phrys, graminea, \&c., $35 \overline{7}$.
Zoogeography, or the geographical distribution of animals, 7; survey of the geographical distribution of mammalia, 498-502.
Zoology, definition of, and intro-
ductory remarks upon, 1 ; brief outline of the history of the science and of the principal systems of 1-3; distinguished as general and special, 3 ; various principles proposed for the classification of animals, 4 ; important affinities between plants and animals, 4-6 -and essential differences between, 6 ; observations on the geographical distribution of animals, 7, 8; sketch of the orders of the Zygæna, 182; zygænidæ, ib.

－ล－ลวลลลลลลลว

ฉニーละละニニ

[^0]: * These views are favorable to the doctrine of innate ideas, which is generally opposed by speculative reasoners.

[^1]: * Named after Dr. Will, who wrote on this subject.

[^2]: * This name is inadmissible, having been previously used by Ehrenberg in the Infusoria, p. 24.

[^3]: * C. hyalocauda, Hald. Body dark brown, or blackish, about as long as the tail ; tail transparent, tapering, and suddenly diminished at its junction with the body. Just visible to the naked eye. Parasitic upon Physa heterostropha. Susquehanna.
 C. bilineata. Perfectly white. Microscopic characters: Head and tail translucent; body with two dark longitudiual lines, which have a tendency to connect, so as to form a circle when the animal contracts ; there is a light posterior circular spot occasionally visible, the tail is shorter than the extended body, and is not contracted at the base. Exceedingly numerous upon specimens of Limnca catascopium; collected at Camden on the Delaware.

[^4]: * Magadesma of Bowditch was probably published in his treatise on Conchology. It was named Galathica by Bruguieres, a name which has been already used. Sowerby called it Potemophila, and De Roissy Egerin, a name which occurs three times in Entomology, being instituted by Dumeril in 1806, Fabricius in 1808, and Desvoidy in 1830. Leach used it in 1815 in the Crustacea, and Lea in 1833 in the Mollusca. The constant use of Agassiz' important and laborious Nomexclator Zoologicts (containing 83,000 names of genera, de.) can alone prevent such confusion.

[^5]: * The group which Latreille named Phyllobranchia, had already been provided with a пание

[^6]: * A name pre-occupied among the Crustacea, and on this account we employ the terms Octocera and Decacera, usually attributed to Blainville.

[^7]: * Some authors use the final syllable a, and some atc, in words like these, and as either form is correct, the shortest one may be deemed the best.

[^8]: * Under a different form this name might be supposed to be derived from Mysia or Mysidia, instead of Mysis.

[^9]: ICONOGRAPHIC ENCYCLOP.EDIA.-VOL. II.

[^10]: * Prostethus, de., would be more uniform with prothorax, de., than antepectus. The name prosternuon cannot be used with propriety, as it is applied to a minor division (sternum, episterna) of the breast of each thoracic segment.

[^11]: * Since the above paragraph was written it has been ascertained by Prof. Agassiz that the genus Percopsis, with Corniger (from Brazil) must constitute a distinct order of fishes. It is likewise possible that the three species referred to are really one.

 ICONOGRAPHIC ENCYCLOPADIA.-VOL. II.

[^12]: iconografhic encyclopedia.-vol. in.

