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THE

OUTLINES OF QUATERNIONS

PART I

SUBTRACTION AND ADDITION OF VECTORS

CHAPTER I

FIRST PRINCIPLES OP VECTORS

SECTION 1

The Nature of a Vector

1. Definition. A Vector is any quantity which has

Magnitude and Direction (Clifford).

It follows that a straight line, AB, considered as having
not only length but direction, is a vector. Its initial point,

A, is called its Origin ;
and its final point, B, is called its

Term.
With the exception of three special vectors

(i, j, k, Pt. II.,

6), vectors will be denoted in these pages either by a symbol

combining their initial and final letters, such as AB, or by a
small letter of the Greek alphabet, in order to distinguish
them from the ordinary straight lines of geometry, such as

AB or a.

2. A vector, AB, may be conceived as having for its

function to transport (vehere, to carry) a particle from A to

.B. A vector thus implies an operation, and represents tran*-

lation in a certain directionfor a certain distance.

B



2 THE NATUEE OF A VECTOR

3. When its origin and term, A and B, are distinct

points, AB is said to be an Actual Vector
;
but when, as a

limit, these points coincide, it is said to be a Null Vector.

Actual is used as opposed to null
; real as opposed to

imaginary.

4. In order to determine the position of any point in

space, B, in relation to any other point, A, three numbers
must be known. Let A be the centre of the earth (supposed
to be a perfect sphere), and B any point upon its surface.

Then, in order to be able to draw a straight line from A to B
we must know, first, the Latitude of B

; secondly, its Longi-
tude

;
and thirdly, the Radius of the Earth.

Every vector, then, implicitly involves three numbers ;

one indicating its length, and two its direction.

5. A vector is not to be confounded with the radius

vector of Algebraic Geometry. The latter represents length

only, and implies but one number. It is, in fact, one of the

three numbers contained in a vector.

6. Opposite Vectors, such as AB and BA, are sometimes
called Vector and Revector.

Coinitial Vectors are vectors whose origins coincide.

If there be any series of vectors such that the origin of the

second coincides with the term of the first, the origin of the

third with the term of the second, &c., &c., these vectors are

called Successive Vectors.

Coplanar Vectors are those that lie in the same plane.

Diplanar Vectors are those that lie in different planes.
We will have hereafter to consider vector arcs

;
but at

present the only vectors considered are rectilinear.

SECTION 2

Equality and Inequality of Vectors

7. Definition. Two given vectors are equal to each other

when (and only when) the origin and term of the one can be

brought to coincide simultaneously with the corresponding

points of the other, by motion of translation, without rotation.

As a consequence of this definition, no two vectors are

equal unless they have, first, equal lengths, and, secondly,
similar directions the phrase

' similar directions
'

meaning
f

parallel directions with the same sense.' Similarly, 'contrary
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(or opposite) directions
' means '

parallel directions with con

trary (or opposite) sense.'

The meaning of the word '

parallel
'

is extended, so as to

include lines which form parts of

one common straight line.

8. If two equal vectors, AB
and CD, do not form part of one

common straight line, they may be __
regarded as the opposite sides of A B

a parallelogram, ACDB, fig. 1.

9. Since the operation implied by a vector transference

in a certain direction for a certain distance is the same,
whatever point in space be selected as the origin of motion ;

all equal vectors are denoted by the same vector-symbol.

Thus, if AB = CD, and if AB be denoted by /3, CD is also

denoted by (3. It follows that a (Hamiltonian) vector has no

particular position in space.

SECTION 3

Subtraction and Addition of Two Vectors

10. Definition. When a first vector, AB, is subtracted

from a second vector, AC, which is coinitial with it, orfrom a

third vector, A'C', which is equal to that second vector, the

remainder is that fourth vector, BC, which is drawn from
the term B of the first to the term C of the second vector

(Hamilton).
In symbols, fig. 1,

- AB = AC - AB = BC.

The foregoing definition is perfectly general, and includes

the case in which the vectors are parallel, i.e. in which

/. CAB = TT, or zero.

If AC be a null vector, the equation AC AB = BC
becomes

- AB = BA.

Similarly, BA = AB.

Therefore, the minus sign reverses the direction of a vector ;

and if AB is represented by a, BA will be represented by a .

B 2



4 SUBTRACTION AND ADDITION OF TWO VECTORS

11. Since, by 10,

AC - AB = BC,

and also AB = BA
;

therefore, AC + BA = BC ;

where AC is said to be added to BA.

Or, if_BA and AC be successive vectors, 6, their sum is

a vector, BC, drawn from the origin of the first, B, to the term
of the second, C.

Hence, BA+^B=l5B = o ..... (1)

12. We have now to consider the sum of two non-
successive vectors.

Definition. If there be two successive vectors, AC and

CD, and if a third vector, C'D', be equal to the second, but not

successive to the first ; the sum obtained by adding the third to

the first is that fourth vector, AC, which is drawn from the

origin of the first to the term of the second (Hamilton).

In symbols, fig. 1,

C'D' + AC = CD + AC =
This definition holds good when the vectors are parallel,

i.e
,
when _ACD = TT or zero.

If CD be a null vector,

+ AC = AC
; or, + AB = AB.

13. By 10 and 12 we have :

AB = BA= - (BA)_=_- (- AB) ; or, a = -(-a) ;

BA = + (BA) = + (-' AB) ; or,
- a = + (- a ) ;

- AB = - (AB) = - (+ AB) ; or,
- a = -

(+ a
).

Also, since

AC - AB = BC,

and AC = BC+AB;
it follows that a vector may be tranferred from one side of an

equation to the other by changing its sign.

14. Since BC + AB = AC, 12,

it follows that directions can be assigned to the sides of any
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triangle, considered as vectors, such that the sum of two of

the vector-sides will be equal to the third.

15. If AC, fig. 1, be a vector equal to BD, but not suc-

cessive to AB, we have, by definition,

AC + AB = BD + AlT= AD.

But since AC = BD, ACDB is a parallelogram. It fol-i

lows that the sum of any two coinitial sides, AC and AB, on

any parallelogram, ACDB, is the intermediate and coinitial

diagonal, AD.
We have also, by definition, AC ABj= BC

; or, the

difference between any two coinitial sides, AC and AB, of

any parallelogram, ACDB, is the non-coinitial diagonal, BC.

We^have, by definition, CD + AC = AD = BD + AB;
or, if AC = y3 and AB = a,

a + (B
=

(3 + a.

We have, similarly, AC - AB = BC = DC + BD
; or,

It follows that the sum, or difference, of any two vectorsN

has a value which is independent of their order.

SECTION 4

Addition and Subtraction of Vectors in general

16- To obtain the sum of three vectors, we have merely
to add the third to the sum of the first and second, obtained
as in 12.

In general, the sum of any number of vectors is formed

by adding the last to the sum of all that precede it. Thus,

fig. 2, AD = CD + AC = CD + BC + AB.

17. From fig. 2,

BD + AB = AB + BD (15) = AD= CD + AC = AC + CD;

or,

(y + /?) + a = a + 03 + T) = y + 03 + a)
= 08 + a) + y
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As these processes may be carried

on to any extent with similar results,

we may infer that the addition and
subtraction of vectors are commu-
tative and associative operations ;

that is, the sum, or difference, of

any number of vectors has a value

which is independent of their order

and of the mode ofgrouping them.

SECTION 5

Coefficients of Vectors

18. The coefficients of vectors obey the ordinary laws of

algebra._
Let AB . . . YZ be a series of m successive and equal

vectors. Then, if AB = a and AZ = ft,

AZ = /3
= a + a + a...m times = ma = mAB . . (1)

Similarly,

ZA = -
ft
= (ma) = ma = - mAB . . (2)

If AH = y be another parallel vector, such that

y = no. = wAB
;

. , 1 1 a o m n o
then, y = a = -p;p = y;y=-p.n m n m

If x and y be any two numbers,

xa ya = (x y} a
;
x (ya) = (xy} a. = xya.

It will presently be shown that

x (8 e)
= x8 xe,

where 8 and c are any two vectors.

19. The equations, ZA = AZ = mAB and AH
= wAB, connecting the three parallel vectors, ZA, AB, and

AH, in the last article, may be written in the form :

ZA AH
AB AB
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and since ZA, AB, and AH may be any parallel vectors, we
conclude that the quotient of two parallel vectors is a number\

which is positive when they have the same, and negative when

they have contrary sense, 7.

Conversely, it is easy to show that if the quotient of two
vectors be a number, the vectors are parallel ;

with the same
sense if the number be positive, and with contrary sense if it

be negative.

2O- The positive or negative number, m, obtained by the

division of one parallel vector by another, is evidently the

ratio of their lengths. For the equation AZ = mAB, merely
asserts that if a moving point be transferred from A, in the

direction of AB, for a distance equal to m times AB, it will

reach Z; which simply means that the length of AZ is m
times the length of AB. Similarly, ZA is m times the

length of AB, or m times the length of AB
;
that is, m

times the length of AB measured in the contrary direction._
If in the equations AZ= mAB, AH = ?tAB, we suppose AB

to be the unit of length, then m will be the length of AZ, and

n the length of AH. The equations,

AZ T/i ZA m

therefore, express the proposition that parallel vectors have
the same ratio as their lengths, or as the lines that represent
them.

21. Let OB and AO be any vectors, fig. 3.

line A'O = mAO. Then, since

parallel vectors are proportional to

their lengths, if the vector AO be

a, the vector A'O will be ma.
Join AB, and produce OB to meet

A'B', drawn parallel to AB. We
know from Euclid that OB'=mOB ;

hence, if OB = 6, OB' = m/?.

Similarly,_ A' B' = mAB. But

A'B' = A'O + OB', and AB = AO + OB. Therefore,

ma + m(3 = m (a + /3).

It can be similarly proved that 7/ia ra/J
= m (a /3),
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and that a _ B = (a 8). Hence, in general, if xm m m
be any number, and if a and 8 be any vectors,

x (a 8) = xa xB.

SECTION 6

Sccdars, Unit- Vectors, and Tensors

22. The positive or negative number, m, obtained by
-dividing one parallel vector by another, is called a Scalar

(scala, a scale). Scalars are the real quantities of algebra,
and as such are combined with each other according to the

ordinary laws of algebra.

23. In equation (1) of 18,

AZ = mAB,
where m is a positive scalar, let the length of AB be unity,
m being consequently the length of AZ, 20. In this case,

still representing AZ by 8, AB will be denoted by the symbol,
U/? ;

read Unit-Vector of 8 i.e., the vector of unit length
with the same direction as 8

;
while m will be denoted by the

symbol, T/J ; read, Tensor of 8 (tendere, to stretch). Hence
we have,

=~-; = -

TJ/3
'

T8\
24. Since TB is the ratio of two vectors with similar

directions, B and IT/?, or 8 and U/?, it is always posi-
tive. Consequently, when multiplied into a vector, it alters

the length of the vector, but cannot reverse its direction. A
scalar, on the other hand, which may be either positive or

negative, not only alters the length of any vector into which
it is multiplied, but, when negative, reverses its direction.

T' =
t7
=
^rp

= T <->> ; - ' (1)

hence, the value of the tensor of a vector remains unchanged
when the direction of the vector is reversed.

If x be any scalar, the unit-vector of xp is obviously
Up, according as x is positive or negative. Hence,

according as x < o.
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In general, TS = S, according as S < o
; or, the tensor of

scalar is that scalar taken positively. The tensor of a tensor

is the tensor itself
; or, TT = T.

If x and y be any scalars,

S (xp+y) = y

because xp is a vector, and a vector has no scalar part, just as

a scalar has no vector part. The scalar of a scalar is the

scalar itself
; consequently, the scalar of a tensor (which is a

positive scalar) is the tensor itself. In symbols,

SV = o
;
VS = o

;
SS = S

;
ST = T . . . (3)

For shortness' sake,jwe will frequently write d for the

tensor of a vector 8, or OD ;
ra for the tensor of /A

= OM, a

for the tensor of a = OA, &c., &c.
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CHAPTER II

ON POINTS AND VECTORS IN A GIVEN PLANE

SECTION 1

Linear Equations connecting Two Vectors

25. Since any number of vectors, which are not coinitial,

may be made so by translating them until their origins
coincide in some common point, O ; we will for the future

suppose, unless the contrary be stated, that all the vectors

under consideration, a, /?, &c., are thus drawn from one

common origin, O.

This point, O, is called the Origin of the System ;
and each

particular vector, say OA, is called the vector of its own
term, A. _

Let OA = a, OB =
/?,

be any two given parallel vectors.

Then, by 19, they are connected together by an equation of

the form

/3
= ma (1)

which expresses the collinearity of the three points, 0, A,
and B.

If /3 be a variable vector, p, and m a variable scalar, a-,

this equation may be written,

P = ** (2)

which expresses that the locus of the variable point, B, is the

indefinite straight line passing through the points O and A.
The equation, ft

= ma, assumes a more symmetric form if

we suppose m = -. Then.
q

pa. + q(3 = o (3)

26. If a and /? are oblique vectors, and if we have

pa + qfi = o
; then, p = o and q = o. For otherwise we

should have, (3
= *- a = to. = y, say, where y is some vector
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with the same direction as a
; or, two vectors with different

directions would be equal, which is contrary to definition.

This principle may also be stated as follows : If a and ft are

oblique vectors, and if we have an equation of the form,

xa + yft = ta + vft ;

then x = t and y = v.

SECTION 2

Linear Equations connecting Three Vectors

27- We have shown that if two oblique vectors, a and /8,

be connected by an equation
of the form, la + mft = o,

then I = o, and m = o. Let
us now suppose two such
vectors to be connected by the

equation, la + m/3 + ny = o,

where n is some third actual

scalar, and y is some third

vector, situated in we know ~
not what plane.

Let OB = ft, OA = a, fig. 4, be the two given vectors.

Then, since

la + mft + ny = o,

I

y = -- a --- .

n n
__ ^_ 7

|
_

/yn

Take OA' = - -
a, and OB' = - - 8 : let OC representn n '

y, and draw B'C and A'C.

We have now, OC = OA' + OB' ;

but, 11, OC = OA'+A7C;
therefore, OB' = A/C".

Therefore, the figure OB'CA' is a parallelogram, and is

consequently plane.

Therefore, if three coinitial vectors are connected by an

equation of the form

la + mfi + ny = o,
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where I, m, n are actual scalars
;
then a, ft, y are coplanar ;

and the converse.

28. If la + mfi + ny = o,

what must be the relation between the scalars I, m, n, in order

that the points A, C, B, fig. 4, may be collinear ?

Let OA = a, OB ==
ft, OC = y. If A, B, C are collinear,

AC
then, by 19, - = some scalar =^>, say. Now, AC = y a,

and AB = B a; hence, p = 3 ; <>r
>

p a

(1 p) a + p(3
-

y = o.

But, by condition,

la + m/3 + ny = o.

Hence, eliminating y from these two equations,

(I + n np) a + (m + np) ft
= o.

But a and ft are oblique vectors
; therefore, 26,

I + n np = o
;
m + np = o.

Eliminating p from these two equations, we get

I + m + n = o (1)

the required relation.

Conversely, if three vectors be connected by an equation
of the form la + m(3 + ny = o, with the condition,

I + m + n = o
;

then the three vectors terminate in a straight line.

If we eliminate successively the scalars I, m, n, from the two

equations
la + mft + ny = o,

I + m + n = o
;

we get

m
(

a + /3) + n (y a) = o,

(- + ?)+ *(a-0) = o,

I (-y + a) + m((j- y)
= o.

Therefore,

_ _ BC
.
TO CA

.
n _ AB

.

m
~
CA ;

n
~~
AB '

I

~
BC '

or, I : m : n = BC : CA : AB (2)



The same two equations give us

_ mfi + ny . ,, _ ny + la
_ _ la + m/? ,.,*

m + n ' P ' '

n + I
' 7 ~

I + m
The third equation of (3) may be put in words^as fol-

lows : If we are given any two vectors, OA = a, OB = /?,

and if there be a third coinitial vector, 00 = y, such that

(I + m) y = la + m3
;

then, C, the term of y, lies upon the straight line AB, which
it cuts in the ratio I I m.

20- If, while a and ft remain constant, we suppose y to be

a variable vector and I '. m to be a variable ratio
;
this last

equation may be written,

_ ."

+ y~

which expresses that the locus of the variable point C, the

term of p, is the indefinite straight line AB
;
which line it

cuts, so that

AC = y
CB x

If C' be another variable point on the line AB, and if its

vector be

x' + y'

we have, in like manner,
AC' y'

C'B ^'

We now define (ABCD) by the following equation :

where A, B, C, D are any four collinear points.
In the present case, therefore, we have

(ACBW - AC BC ' - yx<"
CB C'A

~
*/

When (ACBC') = 1, the range becomes harmonic, and

&, = 1
; or,

^
'

= _ y.. Substituting this value of the
XV 35 C



ratio y
1

: x' in the equation for p', given above, we have

_ xa 4- yft , xa I/ft
P y P ^^ _

x +y x y

where the points C and C' are the harmonic conjugates to the

points A and B. When C and C' vary together owing to the

variation of y '. x, they form divisions in involution upon the

indefinite straight line AB, the double points of the involution

being A and B.

30. () Suppose we have, la + mft + ny = o, with the
condition

I + m + n ^=o ;

then the three vectors are still coplanar, 27, but they no

longer terminate in a straight
line. Their terms are now the
corners of a triangle, ABC, fig. o.

To find the values of the
vectors of the points

A' = OA . BC,
B' = OB . CA,
C' = OC . AB,

A B C and the ratios of the segments
FIG. 5. BA' : A'C, &c.

Let OA' = a', OB' =
ft', OC' = y'.

Since a and a', ft and ft', y and
y',

are respectively parallel

vectors, they are connected together by equations of the

form,
a = .T-v,/3 = r 1^y = ^Y . . . . (i)

Substituting these values of a, ft, y, successively, in the

given equation, we get

lx~ l
a' + mft + ny = o]

la + my'
1

ft
1 + ny= o L (2)

la + mft + nz~l

y = oj

But a', ft, y ; a, ft', y ; a, ft, y', are coinitial vectors

terminating, respectively, in the straight lines BC, CA, AB.
Therefore, 28,

lx~ } + m + n o
j

I + my~
l

-f n = o L
I + m + nz~ l =

oj
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I m n
Hence, x = -

; y = ; z = . . (3)m + n n + I I + m

Substituting these values of x, y, z, in equation (1), we
get

a' = ~ la
8' = ~ mf3

y' =
~ ny

(4}m + n' n + I' I + m

Substituting the same values of x, y, z, in the equations
of (2),

o, _ m/? + ny . a, _ ny + la
. , __ la + m/3 ,^m + n n + l'^'l+m'

Equations (4) and (5) give the sought values of the vectors

of the points A', B', C'.

Comparing the equations of (5) with the equations of (3),

28, it is evident that

BC' _ l_ . CA; _m AB' _ n

C'A
~"
m ' A'B n '

B' C
~

I

(6). Tf we multiply together the three ratios, equations (6),
we get the equation of the Six Segments,

AB' BC' CA' _ -, r .

B'C C'A A'B
*

as the condition of concurrence of the lines AA', BB', CC'.

We have, also (6),

m = BC' : C'A = OBC
n = CA' : A'B = OCA
I = AB' : B'C = OAB

OCA,)
OAB, . . . (8)

OBC.)

Therefore, I : m : n = OBC : OCA : OAB;
where OBC, etc., are the areas of the respective triangles.

(c). In such equations as those of (8), attention must be

paid to the signs of figures, plane and solid.

Any plane figure is positive or negative according as the
rotation of a particle round its periphery, as seen from a given
aspect of the plane, is right-handed or left-handed. Thus, for

any triangle ABC, we have

ABC = BCA = CAB = - BAC = - ACB = - CBA
;

and as for a line we have

AB + BA = o;
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so, for an area, we have

ABC + CBA = o.

The case of solids is strictly analogous :

the sign of the tetrahedron, fig. 6, being

positive or negative according as the

rotation of a particle round one of its

faces is right-handed or left-handed, as

seen from the opposite apex. Thus,

=: A 2AjA3A4
= A2A3A 1

A 4= AtAsA4A1, &c., &c.

\ \
In this case we have

-/i. i .Ti- 2 -'-^ 3 * 4 3*" 4 '* 1
~~

31. If I = in = n, the equation la + mfi + ny= o becomes

and the three vectors can obviously be made the sides of a

triangle ABC, fig. 5, by 14. In this case,

BCf= a, CA = p, AB = r .

Let AA', BB', be drawn, cutting BC and CA respectively
in given ratios

;
and through their_cross D (instead of O,

fig. 5) draw a line from C cutting AB in C'. It is required
to determine the ratios AD : DA'

;
BD : DB'

; CD : DC'
;

and AC' : C'B.

Let the given ratios be

BA' : A'C = lm : m;
CB' : B'A = n : 1 - n

;

so that we have A'C = ma, and CB' = nft.

(1) To determine AD : DA' and BD : DB'.

Since BA' : A'C = 1 - m : m,

by 28 AA' = my - (I m) ft

?J r^*

Similarly, BB' = a + nft.

Let AD = pAA' ;
BD = qEB'.

Then, CA + AD = CD = CB -f BD ;

or, ft pma pft = a + qa + qnft ;

(1 p qn) ft
=

( 1+2+ pm) a.
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But, since a and /3 are not parallel, the coefficients of both

must be zero, 26. Therefore,

1 n 1 ra
f>
~"- "

Q ~"-
.

1 mn '

1 mn
n (1 m) , m (1 n)

1 _ p _A_ 2. 1 _ q A--L.

1 mn 1 mn

Therefore,

AD _ p___
l?i BD__ q _1 ^_m_ /i\

DA7 "! -p~n(l m)' DB7
"~

1 -q~m(\^-ri)
'

(2) To determine CD : DC' and AC' : C'B.

Let CO' = xCD ;
AC' = yAB = yy = y (- a -

/?).

Then, since CC' =~CA + AC',

But, since AD : DA' = (1 n) : n (I m)
- n (1 m) /?

-
(1 n) ma

(_/JL/ sss ,

1 mn

Therefore,

xn (1 m) ft xm (1 n) a = (1 raw) (/? y/J ya),

(an (1 m) (1 mn) + y (1 mn)} ft

= {xm (1 n) y (1 -, ran)} a.

Equating the coefficients to zero,

1 mn m (1 n)x = --
', y =-5-'

:

7i ra 2raw + n

- I = (1
-

ra) (1
-

n) .
! _ y

_. tt (1
- m)

m 2mn + n m 2mn + n

Therefore,

CD __!_ _ m (1
-

ro) + n (1 ra) .
x

DC'
"~

x - 1 (1
-

ra) (1
-

n) /
2 \

AC' _ y = ra (1 - n)

C'B 1 - y n (1
- m)

Had the ratios been given in the form

BA' : A'C = ra, : ra2 ;
CB' : B'A = n, ; n

2 ;
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we should have had

AD _ n? (m, + fflo) .
BD _ m ] (n, 4- n n) /\

DA' T
"

m
l
n

l

' DB'
~

m2rc 2

CD m
} n) 4- m^n* ,

AC'
DC'

~
miw2

'

CTB

Knowing AB, AC, and the ratio BA' : A'C, we obtain AA'

by (3) of 28. JBB' and CC' are similarly obtained. Again,

knowing AC, AC', and the ratio CD : DC', we obtain AD,
and consequently DA'. BD, DB' and CD, DC' are similarly
obtained.
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CHAPTER III

ILLUSTRATIONS IN COPLANAR VECTORS

32. 1. The Mean Point of a triangle, M.
In the following illustrations, the successive sides of the

triangle ABC BC, CA, AB will be represented by the

vectors a, (3, y respectively, so that

a. + /3 + y = o.

The tensors of these vectors, or the lengths of the sides of

the triangle, will be represented by a, b, c.

Let A' and B' be the middle points of BC and CA, and
let AA' and BB' cross in M. Produce CM to meet AB in C'.

Then, making m = n = ^ in (1) of 31, we get

AM
2 .

BM _ 9
MA'

=
' MB'

and (2) of 31,
CM

.
AC' _

MC' '

C'B
=

Therefore, the medians of a triangle meet in a point which
trisects them. This point is called the Mean Point.

2. The Incentre, I, and the (b) Excentre, Eb .

I is the cross of AA' and BB', the bisectors of the angles
CAB and ABC respectively. Produce CI to meet AB in C'.

Then, proceeding by the method of 31, we get

AI _b+c .
BI ^c + a. CI _a + 6. ACT_ 6

IA'~ a 'IB'"" b
'

1C' c

'

} C 7E~a
The last equation shows that the internal angle-bisectors

are concurrent.

c 2
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By (3) of 28,

b + c
' c + a

These three equations are of the form

p = a; (US Ue)

b

e.
ff .,

the negative sign showing that AA' is the bisector of the

supplement of the angle between (3 and y. Were the direction

of /3 reversed, we would have

Equation (3), consequently, is the general expression for

an angle-bisector, the tensors of the lines containing the angle

being arbitrary.

By (3) of 28 and (1) of this article

~
; BI =

From (2) and (4),

z + b + c ' a + b + c'

b ca ay
c + a (5)

Eb is the cross of the external angle-bisectors at C and A
respectively. Let CE produced meet AB' in C"

;
AE meet

BC in A"
;
and let the external angle-bisector at B meet CA

in B". Then,

b c a b

ly
C' A = '-r ', C"B = ', .

a b a o
Hence,

Therefore, 29,
(BC'AC") = - 1

;

or, the sides of a triangle are cut harmonically by the

internal and external bisectors of the opposite angles.
We also have

C"A' c + a A"C' c + a /Q
.

. . (8)C"B' b-cb + c
'
B'G'

Therefore, the points A', B', C" and C', B', A" are respectively
collinear.
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A"C' c - a
.

,v___, ......
or, the crosses of the external angle-bisectors with the opposite
sides are collinear.

Let BE be drawn, and we have

j^y = ca

c + a b c + a 6 v

Therefore, BE bisects the angle ABC ;
BB' and BE coincide ;

and a line drawn from any corner of a triangle to the excentre

of the opposite side passes through the incentre.

By subtraction of BB' from BE, we have

c + a c + a 6

Therefore, (4) and (5),

(BIB'E) = - 1
;

or, the internal angle-bisector is cut harmonically by the

centres of the in- and excircles.

3. The Orthocentre, P.

By the methods explained in 31,
- y tan B (3 tan=

tan A + tan B + tan C'

4. The Circumcentre, Q.

By 31,
-

(tan G 4- tan A) y - (tan A + tan B)
AQ =

2 (tan A + tan B + tan C)

5. The Midcentre, N.
Let M,, M 2 ,

M 3 be the middle points of the sides BC, CA,
AB of the triangle ABC. Then the circumcentre, N, of the

triangle M,M 3M 2 is the midcentre of the triangle ABC.

AN = AM, + M,N ;
which becomes, by 1 and 4,

_ y - # (tan A + tan B) ft (tan G + tan A)y
2 ~~4~(tanA7+ tan B + tan C)

_ (tan A+ 2 tan B+ tan C) y (tanA -f tan B + 2 tan C)/?
" :

4 2 tans

_ j (tan C + tan A) y (tan A + tan B)
*

I L' ^ tilllS

, y tan B ft tan C )

2 tans )

= | (AQ + AP), 4 and 3.
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Hence, AQ + AP - 2 AN = o
;

but l + l-2 = o.

Therefore, 28, the three coinitial vectors AP, AN, AQ,
terminate in a straight line which is bisected in N

; or, the

orthocentre, the midcentre, and the circumcentre are collinear,

and N bisects PQ.
The mean point, M, also lies upon the line PQ. For

_ (tan G + tan A) y
-

(tan A + tan B) /3
2 AQ + AP - -

y tan B /? tan C .

2 tans

2 AQ + AP~= y /?
= 3 AM, 1 ;

hence, 2 AQ + AP - 3 AM = o
;

but 2 + l 3 = o;

therefore, the three coinitial vectors AQ, AP, AM, terminate

in a straight line which is trisected in M.

Therefore, the orthocentre, the midcentre, the mean point,
and the circumcentre are collinear

;
and the line upon which

they lie is bisected in N, and trisected in M.

Hence, (PNMQ) = - 1.

6. Let I' be the point in which a line drawn from A
through I, the incentre of ABC, cuts the line PQ. Then

PT'~ = 2 cos A.
i Q

If A 60, PI' = I'Q ;
and I' is the midcentre of the

triangle.
7. To find the vector-expressions for the isogonal and the

isotomic of a given line.

Let 8 be a vector drawn from the corner B of a triangle

ABC, cutting CA in D so that = -
;
and let ABD=<.

DC* T

P _~

and

Thpn
r

sn < op
Let 8', the isogonal of 8, cut CA in D'. Then,

AD' _ c sin (B - <ft) _ cV
D'C a sin < a2
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Therefore, 8 = &=**
;

8' = c ~
. (1)

p + v
'

c r -t- a*P
If 8" be the isotomic of 8,

Let p : r = c
n

: an . Then,

c
n + an

Let p : r = c
n~2

: an~8
. Then,

Therefore, 8'n.

= 8"n_2 ;

or, the isotomic of 8,,_2 is the isogonal of 8n ; a theorem which

suggests a simple geometric construction for the successive

centres of gravity of weights placed at the corners of the

triangle proportional to the 0, 1, 2 . . . nth

powers of the

opposite sides.

8. Suppose it be desired to obtain symmetric expressions
for the vectors of the mean point, incentre, &c., &c., instead of

the unsymmetric expressions obtained in the preceding illus-

trations. Let O be any point in the plane, and let

OA = a, OB = ft, OC = y.

Then the vector of the orthocentre, 3, may be written :-
y' tan B ft tan C

mA
2 tans

where a', /?', y' are the vectors along the sides of ABC.

But, a' = y-y3;/3' = a-y;y'=/?-a.
Therefore,

_ a tan A + (3 tan B + y tan C ,, ."
S tans

Similarly, for the* circumcentre,

(tan B + tan C)a+ (tan G + tan A)/?+ (tan A+ tan B)yOQ= 2 2 tan7~
and for the midcentre,

(2 tans + tan A)a + (2 tans + tan B)fl + (2 tans + tan 0")-yON=- - - -- . . (3)
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If Gn be the centre of gravity of weights placed at the

corners of the triangle proportional to the nth
power of the

opposite sides,

If n = o,

=
If n = 1,

OG = ^
-

-^, the vector of the mean point.... (5)

Cy
OG, = ,

the vector of the incentre . . . (6)a + o + c

If n = 2,

OG,=: 3
-7-^0 y. the vector of the symmedian point. . (7)

or + o* + c
'
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CHAPTER IV

ON POINTS AND VECTORS IN SPACE

SECTION 1

On the Mean Point

3'^- Definition. If the sum, 2a, of m coinitial vectors,

coplanar or non-coplanar,

OA, = a,, OA2
= a2 . . . OAm = am ,

be divided by their number, m, the resulting vector,

2 (OA) _ Sa
u = OM =- =

>m m
is the Simple Mean of those m vectors, and its term, M, is the

Mean Point of the system ofpoints, A], A 2 . . . Am .

If we are given such a system of points, aj, a2 . . . a,,,

and also a system of scalars, p { , p.2 . pn >
the vector

Pi + Pt + . pn p

is the Complex Mean of those n vectors, and its term, C, is the

Centre of Gravity, or Barycentre, of the system of points,

AU A 2 . . . A,,, considered as loaded with the given weights,

P\i Pi ' ' Pn (Hamilton).

34. The position of the mean point depends upon the

configuration of the system, and is independent of the position
of the arbitrary origin, O. For, let C be the mean point of a

given system, A, . . .' An ,
with respect to an assumed origin,

O
; and let C' be the mean point of the same svstem with

respect to another assumed origin O'
;

let O'A,, O'A2 , &c., be
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represented by a',, a'2 , &c., and let y be the mean vector with

respect to O, y' the mean vector with respect to O'. Then,

or, Spa = OO"2p + 2pa.

But, by definition,

therefore, OC == y = OO~' + / = OC~'.

But the equal vectors, OC, OC', have a common origin ;

therefore they must have a common term, or, C = C'. The

position of the mean point has not been altered, therefore, by
selecting O' instead of O as the origin of the system.

35. The sum of the m vectors, p,, p2 . . . pm ,
drawn

from the mean point to every point of the system, is zero.

By definition, So, = mp.,

i.e.,

a
i + a 2 + as + am = f- + P- + P- + (

m times).

Therefore,

(a t /A) + (a2 p.] + (a3 /A) + ... (am /A)
= O.

But

a
l P-

=
Pi )

a2 P-
= P2 ' ' aro P-

=
Pm-

Therefore, 2p = o.

Conversely, if C be such a point that the sum of the vec-

tors drawn from it to each and every point of a given system
is zero

;
then C is the mean point of the system.

36. If any system of points, together with its mean point,
be projected by parallel ordinates upon any plane, the projec-
tion of the mean point is the mean point of the projected

system.
Let A'i . . . A'n be the projections of the points A, ... An.

Find M', the mean point of the projected system ;
draw MM',

and let

MAi . . . MAn = p! . . . pn ; M'A', . . .
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Then,

But, 35,

therefore,

p' l
=

Pl + AjA'i -MM'
p' 2
= P2 + A2A' 2 MM'

P',
= On + A^A'. - MM'

V = 2p + 2AA' wMM

2p' = o = 2p ;

' = 2AA' = say.

Therefore MM' is parallel to
,
that is, to the other

ordinates.

Therefore M' is the projection of M, the mean point.

Since MM' =
'

= A|A/1 ' ' ' A"A\ the ordinate
n n

of the mean point is the mean of the ordinates of the system.

SECTION 2

Linear Equations connecting four Non-coplanar Vectors

37. It has been shown, 27, that if three vectors, a, /?, y,

are coplanar,
scalars can al-

ways be found,

h, I, m, such that,

If, however, a,

/?, y are not

coplanar, the

expression,

ha. + 1(3 + my,
cannot be Fia. 7.

equated to zero unless all three coefficients vanish. For
ha + 1(3

=
p((> t some vector in the plane OAB, fig. 7, and

/?</ + my = q, some vector in the plane containing < and y,

i.e., some plane different from OAB, OBC, and OCA. Hence
the expression, ha + Ifl + my, represents some fourth vector,

say w, whose coefficient, n, is ^ zero.
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In symbols,
ha. + 1(3 + my + n8 = o

;

5,
h

,
I o ,

m
or, S = a H p H y.n n n

If we take OA'= a, OB'= 8, OC'= y, and
n n ^' n l>

complete the parallelepiped OA"B"C", we determine a point

D, such that,

OD =~OC"+ C"D = OC"+ OC'= OA'+ OB'+ OC'

h
, lot m *= a 4 a H y = d.

n n n

Hence, since a, /3, y may be any actual vectors, and since

h, Z, m may have any values whatever, the sum of the three

coinitial edges of a parallelepiped is the internal coinitial

diagonal.

38. If ha + IS + my + n$ = o, what must be the re-

lation between the scalars in order that the point D may be

situated in the fourth given plane ABC ; or, in other words,
what is the condition of coplanarity of the four points,

A, B, C, D ?

If D lies in the plane ABC, the vectors DA, DB, DC are

coplanar, and are consequently, 27, connected together by an

equation of the form

pDA + ?DB + rDC = o
;

or, p (a
-

3) + q (ft
-

8) + r (y
-

3)
= o

;

or, pa + qfi + ry (p + q + r) 8 = o.

But ha + lft + my + n8 = o.

Hence, eliminating 8 from the last two equations,

{h (p + q + r) + np] a + {I (p + q + r) + nq} (3

+ {m (p + q + r) + nr} y = o.

Now, if the coefficients have an actual value, a, /3, y are

coplanar. But, by hypothesis, a, /?, y are not coplanar.
Therefore the coefficients have not an actual value, and must
be equated to zero.

Therefore,

, np j nq nr
h = ; I = ^

: m -
:

p + q + r p + q + r p + q + r



LINEAR EQUATIONS CONNECTING FOUR VECTORS 29

and

h+l+m+n=n (
--

1

--^--
1

---^-)+w = o
;

\ + q+ r p+ q+ r p+ q+ rjp+ q+
the required condition of coplanarity of the four points,

A, B, C, D.

39. The equation just deduced may be written,

h I m __ ,- T T- *
n n n

But, by construction,

h OA' I OB' m _OC''

OA' , OB'
,
00' ,

Therefore, ^- + -^ + -^
= 1

;

the equation of a plane in terms of the intercepts it makes on
the Cartesian axes of coordinates OA, OB, OC.
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PART II

DIVISION AND MULTIPLICATION OF TWO VECTORS

CHAPTER I

FIRST PRINCIPLES OP QUATERNIONS

SECTION 1

Definitions

1. (a). A Quaternion is an operator which turns any one

vector into another (Clifford).

(b). The Reciprocal of any vector, a, which is written, as in

Algebra, - or a" 1

,
is another vector whose unit-vector is the

a

opposite of the unit-vector, and whose tensor is the reciprocal of
the tensor of the vector a.

m _ 1 1 TT _1 1 TT _1 1 - UaTa =-;^ 1 = = -Ua;a !=- =
^-

- - -
la Ua a laUa la

(c).
=

/3

1 = 0a-' ; ,5a
= $\- = -A.

a a a ' a l

(d). If a and ft be any two vectors, and if

then, whatever be the nature of q,

__ p Q /i \

a

jr / n P .

a~ l

then g'a-' =/?a. a" 1 = ^a- 1 =
y3 ... (2)
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The two vectors will in all cases be supposed to be co-

initial, and to be inclined to one another at a Euclidian angle,
between zero and IT, unless the contrary be stated.

ft is the Multiplier and a the Multiplicand of the product
PO. The multiplier is always written to the left, the multi-

plicand to the right ;
and the symbol (3a is to be read ' a

multiplied by /?,' or, shortly,
'

P into a.'

It follows from (1) and (2) that the quotient and product of

two vectors are quaternions.

(e). The Angle of a quaternion, in theform of a quotient, is

the angle contained by its constituent vectors.

The Angle of a quaternion, in theform of a product, is the

supplement ofthe angle contained by its constituent vectors.

(f}. The Plane of a quaternion is the plane containing its

constituent vectors.

(g). Coplanar Quaternions are those whose planes are coin-

cident or parallel.

(A). Diplanar Quaternions are those whose planes are not

parallel.

(i).
If a, (3, y, &c., be any three vectors,

8
_l_

a _ 8 it a 8 a _ 8 8 a _ 8 a _ , P
p-p- ~P~'

}

p' P~a'
}

~a.-y-y' P~ 'a'

(j). If qa = P and q'a.
=

/?,
then q'

=
q.

'

' =
> y = y-

,,8y=Sy y'
=

y, 8' = 8.

> > H 8' = 8, y'
=

y.

SECTION 2

The Nature of a Quaternion

2. (a). Let OA = a, OB = p, fig. 8, be any two vec-

tors in the plane AOB, inclined

to one another at an angle 6. By

definition, 1 (d), if
" =

q', then
a

q'a = l-a = P ;
or q', or C, is such a

a a

factor that when it operates upon the divisor, a, it trans-

forms it into the dividend, /?. Now, since a differs from
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/?, not only in length, but in direction, it is clear that two

independent operations, of a totally different nature, are

necessary in order to transform a into /?. The one is an

operation of tension, the other an operation of torsion, or

version ;
and the order in which the two operations take place

is immaterial. We may make a rotate round the point
until its direction coincides with that of /?, and then alter its

length until it is equal to that of ^ ;
or we may alter its

length until it is equal to that of
(3, and then make it rotate

round O until its direction coincides with that of
(3.

Now, a may acquire the direction of /? either by a rotation

round O in the plane AOB, or by conical rotation round a third

coinitial vector bisecting the angle 0. To avoid ambiquity it

is defined that the rotation from a to /3 takes place in the

plane of the two vectors, AOB. Further, a may rotate in the

plane AOB into the direction of (3 through either the angle 8

or the amplitude, ITT 0. For the same reason it is defined

that rotation from a to /?, in the plane OAB, takes place

through the angle 6, which, 1 (d), lies between zero and TT.

(b).
Let OA = a, OB = (3, fig. 9, still represent any two

vectors in the plane AOB,
inclined to one another at an

angle 6
;
and let OA' be the

reciprocal of OA, 1 (b), or

a- 1
. Then, since Ua- 1

is the

opposite of Ua, the angle
BOA'= TT - 6.

'

By definition, 1 (d),
if

(3a
=

q'', then q"a~
l = {3a . a~ l =

ft ;
or q", or (3a, is such a

factor that when it operates upon the reciprocal of the multi-

plicand, a" 1

,
it transforms it into the multiplier, /?.

As in the

previous case, two operations are necessary in order to effect

this transformation one of tension and one of version, the

order of which is immaterial. As before, also, it is defined

that rotation from a- 1 to /3 takes place in the plane of the

vectors, BOA', and through the angle between them, TT 0,

which lies between zero and TT when lies TT and zero. The
vector a-1

, then, may be transformed into (3 by altering its

length from OA' to OA"= OB, and then making the altered

vector rotate in the plane BOA', through the angle (TT 6)

into the direction of /3.

Such is the nature of the symbols q' or ', and q" or (3a.
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Both, as factors, imply two operations one of tension and
one of version which are heterogeneous and absolutely inde-

pendent. No mere change of length can in any way affect

the direction of a vector
;
no amount of rotation can alter its

length.

3. The operation of Tension is purely metric, and we
need only one number to carry it out namely, the number

(whole or fractional) by which we must multiply the length of

one line in order to make it equal to the length of another.

Given this number, we can make the length of the one line

equal to that of the other, without knowing the absolute

length of either of them.

4. The operation of Version is of a more complex nature,
and will be found to involve a knowledge of three numbers.
The first point to be explained
is the means of giving rotation

to a vector.

(a). Let

OA = Ua, OB = U/?,

fig. 10, be any two unit-

vectors in the plane of the

paper, inclined to each other

at any angle 6
;
and let A

OA' = - Uo, OB'= - Ufl,

be the opposites, or recipro-

cals, of U and Uft 1 (6).

Let OX be a unit-vector perpendicular to the plane
of the paper, drawn from the origin, O, towards the

reader as he reads the book
;
and let OX' be the opposite

unit-vector of OX, drawnyrom the reader through the leaf of

the book. Conceive OA and OA' to be two very fine wires so

connected at with two other very fine wires, OX and OX',
that by twisting either OX or OX' about its longest axis, a

motion of rotation is communicated at will to either OA or

OA'. Motion of rotation would thus be communicated to

OA or OA', as the case might be, in exactly the same way as

if OA or OA' were the minute-hand, and OX or OX' the key
of a clock which it was necessary to set

; the key being

applied in the case of OX to the face of the clock, and to the

back of the clock in the case of OX'. Thus, if we conceive

the unit-vectors to be gifted with the powers of the wires, by
means of OX or OX', we can make Ua or Ua, or any

D
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coinitial vector in the plane of the paper, rotate into the

direction of U/J, or any other direction in that plane.

Generally, rotation is given to any vector lying in any
plane by operating on it with a coinitial unit-vector perpen-
dicular to that plane.

When employed to give rotation to other vectors in planes

perpendicular to themselves, unit-vectors are called Versors

(vertere, to turn).
Versors can only operate upon that is, give rotation to

vectors perpendicular to themselves.

(6). When twisting the wire OX about its longer axis, the

reader is supposed to be in the position he occupies while

reading the book with his eye at X, looking towards O.

When twisting OX' he is supposed to have moved to a

position beyond X', facing his former position, with his eye at

X', looking towards 0. These two positions bear exactly
the same relation to one another as the two positions one

successively occupies when locking a door on the outside and
on the inside. And as one sees different sides of the door
when locking it on the outside and on the inside, so one sees

different sides, or aspects, of the plane A'BA, when twisting
OX' and when twisting OX. Furthermore, a right-handed
twist given to OX at X appears to be a left-handed twist

when seen from X'
; just as locking the door on the inside by

a right-handed turn of the key would appear to be locking it

by a left-handed turn of the key to anyone viewing the

operation through a glass door from the outside. In order,

then, to estimate the direction of the twist, we must imagine
ourselves to be in the position of the person giving the

twist.

Right-handed rotation the rotation of the hands of a

clock when looked at to take the time will be considered as

positive ; left-handed, or anti-clockwise rotation as negative,
in this book.

(c). Ua may be made to rotate through the angle flinto the

direction of U/3 by giving either a negative twist to OX, or a

positive twist to OX'. To avoid ambiguity, it is defined that

OX', which turns Ua into the direction of U/3 by positive

rotation, is the versor by which this operation is to be carried

out.

Similarly, OX, which turns Ua into the direction of U/S

by positive rotation, through the angle IT 0, is defined to be

the versor by which this operation is to be carried out.
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Generally, rotation is communicated to any vector by that

versor which turns it by positive rotation into the required
direction.

We must now place a limitation to the turning powers of

versors. Every versor possesses the power of turning any
vector perpendicular to itself, by positive rotation, through a

certain angle ;
but it cannot produce rotation through any

other angle, greater or less. Thus, if OX possesses the power
of turning OB through a definite angle 0, it can turn any
other vectors, OP, OQ, &c., in the plane AOB, through the

angle ;
but it can turn them through the angle 6 only. In

consequence of this limitation, we must modify our terminology.
There are two different, although coincident, versors along
OX : (a) the versor which turns U/3 through the angle 6 into

the direction of Ua
; (6) the versor which turns Ua through

the angle TT into the direction of U/3. There are also two
different, although coincident, versors along OX': (c) the
versor that turns Ua through the angle 6 into the direction of

U/3 ; (d) the versor that turns Uy8 through the angle TT

into the direction of Ua.
For the moment we will designate these four different

versors by the following symbols :

(a)byOX; (6) by OX,, _ * ;

(c) byOX'*; (d) byOXV*.
Since Ua and U/3 are of equal length, when U/? is turned

by 0X0 into the direction of Ua, it becomes equivalent to, or
is transformed into, Ua. In symbols,

OX fl . U/J = Ua.

Therefore, 1 (d), QX, = fL ....... (1)

Sin.ilarly, OXT _ e . Ua - = U/?.

Therefore, 1 (d),

<.-.-^j?I-Wfc .... (2)

In like manner,

' ....... <>

(4)

D 2
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It follows that the quotient or product of any two unit-

vectors is a third coinitial unit-vector perpendicular to their

plane.

(d). Since an operation of version implies rotation in a
certain plane, towards a certain hand, through a certain angle,
at least three numbers are required for the complete determina-
tion of a versor

;
one to represent the magnitude of the angle

of rotation, and two to fix the direction of the plane of rota-

tion, or of the versor itself.

It will be observed that, as in the case of a vector, two
numbers are required to determine its direction, and a third

to define the amount of motion of translation communicated
to a particle in that direction ; so in the case of a versor, two
numbers are required to determine its direction, and a third

to define the amount of motion of rotation communicated to a

vector at right angles to that direction.

5. Since the operation of Tension depends upon one

number, while the operation of Version depends upon three

numbers, it is clear that for the complete determination of a

quaternion a set of four numbers is required. Hence the

name quaternion (quaternio, a set of four).
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CHAPTER II

THE PROPERTIES OP A SYSTEM OP THREE MUTUALLY
RECTANGULAR UNIT-VECTORS, i, j, k

Definitions

6. () The unit of versor measurement is one right angle.

(b). All unit-vectors which possess the property, as versors, of
turning vectors perpendicular to themselves through a quadrant
are designated by symbols whose index is unity, positive or

negative according as the rotation is positive or negative.

(c).
The function, or effect, as versors, of all unit-vectors

designated by symbols whose index is unity, is to turn vectors

perpendicular to themselves through a quadrant, positively or

negatively according as the index is positive or negative.

Such unit-vectors are called quadrantal, or right versors,
and right-angled quaternions right quaternions.

7. Let i (OI)J (OJ), k (OK), fig. 11, be three given and

mutually rectangular unit-

vectors, with such relative

directions that rotation

from j to k (as seen from

I), from k to i (as seen

from J), and from i to j |^'^_

(as seen from K), is posi-
tive. Then the opposite
unit-vectors,

OF, OJ7
,
OK'

will be i, j, k,

respectively. For the sake
of clearness, let the plane K'JK be the plane of the paper, i

being drawn towards us, and ifrom us.

From the definitions, 6, it follows that when i operates as
a versor upon the vector j, the result of the operation is the

J'
FIG. 11.
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vector k. Similarly, j operating upon k produces i, and k

operating upon i produces,/. In symbols,

ij
= k

; jk = i
; ki =j (1)

similarly,

ji = - k
; kj = i

; ik = - j . . . (2)

From these two series of equations it is clear that the sign
of the product changes when the order of the factors is

changed. In other words, the Commutative Law of Multipli-
cation ab = ba does not hold good for right versors. In

algebra, ab = ba
;

in quaternions, ij ^ ji. But it will be
observed that,

or, the product of two right versors is equal to the product of

their opposites.

8. The Distributive Law of Multiplication, however

j p (6 + c)
= ab + ac still holds true.

Let 01, OJ, OK, fig 12, represent
i, j, k. Complete the squares OJPK
and OKQJ', and draw OP, OQ^

Then, since T . OP = T . OQ, and

_ QOP = -, we have by definition

(c), 6,
i . OP = OQ.

But OP=j + k; and

FIG. 12. therefore, i (j + k) = ij + ik.

It may be similarly shown that i (j k) = ij ik.

Therefore, the distributive law applies to right versors.

9. By (1) of 1,
i .

and by (c) of 6,

therefore, by (j) of 1'

Similarly,

Further,

- kj i
;
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Hence, by inverting a fraction, the sign of the quotient is

changed.
In using a quotient as a factor, the same precautions as to

multiplier and multiplicand must be observed as in the case

of single vectors, 1 (d). For example,

-J = i
;
but j . -.^i. Forj .

*
=j (-k) = i.

J J J

Similarly,
j ^
=

|
;
while .

j
= - i (- k) = -j =

k
..

10. () By the method of 9 we have * = i
;
and also

K
k- = i. Therefore, writing i2 for ii, we have
t

2 _ j k _ j _ ,

k
'

j i

for the square of any right versor.

Similarly, j* = - 1
j
A2 = - 1.

Again, we have j -y, and j = -,
K Z

Therefore,

Similarly, (-/t)
2 = - 1

; (- t)
2 = - 1.

Therefore,

i* = j* = k*=-l=(-i)* = (-j)* = (-k)* . . (5)

In words, the square of any, and every, right versor is

negative unity.
It must be observed that

( j)
2
^= j

z
. For, as has just

been shown, ( j)*
=

1, while j'
i= 0'

2)= -( !)= + !.

(6). i . jk = i . i = i2
\ ij . k = k . k= A;

2
;

j *i = j . j = j
2

; .;* . * = i . i = i2
;

k . ij
= k. k= K1

;
ki . j =j.j = j

2
;

Hence, i . jk = ij . k =j . ki =jk.i = k. ij
= ki . j . . . (G)
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The Associative Law of Multiplication, therefore,
holds good for right versors. We may, consequently, suppress
the points in (6), and write

ijk=jki=kij=i*=j*=k*=(-i)*=(-j)*=(-k)*=-l . . (7)

(c). It may be similarly shown that

ikj = kji =jik = i
z = J

2 = &2 = + 1.

Hence a derangement in the cyclical order of the symbols
changes the sign of the product.

11. (a). It follows from 10 (7), that i,j, k, i, -j, - k,

denote six of the geometric square roots of negative unity, or,

i = j = k = N/^T = i= -j = - k . . . (8)

In the present Calculus, therefore, the imaginary of

Algebra, v/ 1 admits of a geometrically real interpretation
as an indeterminate right versor. It is indeterminate, because

its direction is indeterminate. In other words, the equation,
i2 + 1 = o, has indefinitely many roots, all of which are

geometric reals.

We have now reached the point which Sir W. R. Hamilton

pronounced (' Life, &c.,' III., 90) to be ' the difficulty in the

theory of the geometrical interpretation of Quaternions
'

;

namely, the two meanings of i, as a vector, and as a versor.

In the equation, ij
= k, j and k are vectors, while i is a

versor. In fact we may regard k as the vector generated,
when the versor i operates upon the vector j. Further, i is a

perfectly definite versor, operating in the plane of j and k, to

which it is perpendicular, so that rotation round it from j to k

is positive.

In the equation, i = / -
1, by analytically determining a

value of i independent of j and k, we have abstracted from
the conception of i the idea of a plane in which, and conse-

quently of a hand towards which, it operates. Equation (8) is

a corollary of definition
(c), 6. It asserts that all right

versors are equivalent in respect to angle ; and it asserts

no more.

(6). It maybe said that equation (8) violates the definition

of equal vectors. This is not so. The definition asserts that

unit-vectors with given directions are only equal, as vectors,

when those directions are similar. Equation (8) asserts that

all unit-vectors in the first power are equal, as versors, in

respect to angle.
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(c). Again, it may be said that since i =jk, and also

t= k=j= *J 1
;
we must have, \J 1 = ^ I . \/ 1 = 1,

which is absurd.

We cannot substitute >/ 1 for i and k in the equation,

i=jk; because i and k are vectors, and the symbol, \/ 1,

represents them only in their character of indeterminate right

versors. It would be a contradiction to write, i = */ 1 . k ;

for in this case k and i being given, the versor is not the

indeterminate >/~i, but the definite versor^*.

12. By 9 (3), (4),
* = i t = - i

j 'k

But
j
= 1 : . ; therefore, t = - = i~ 1

; or, the reci-

procal of a unit-vector is its opposite. Hence,

* J = y == k.

In words, J may be turned into the direction of k
t

either by operating upon it with i and turning it through
a positive quadrant, or by operating upon it with i and

turning it through a negative quadrant ;
definition (c), 6.

But 4
(c),

i (not i~ l

)
is the versor of the quaternion-^}

J
because it operates positively.

13. By 12 we obviously have,

_ j
1 _ 1_ _1_ _1_

/ TT \ Ua~
a

~~
Ta Ua

~
Ti ^ ~Ta~'

To exhibit graphically a vector and its reciprocal : through

any point C in the diameter A'A of a

circle, tig. 13, draw ED perpendicular
to A'A ;

draw any chord FG through
C

;
and let CE, or CD, be the unit of

length. Then,

and consequently, CF = n ~ .

OvT

Therefore, since T . CF =

and U . CF = - U . CG
;
if CF = p,

then CG = p~
1

.

FIG. i
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14. Since ii
~ l = i

( i)
= ikj = kji,

and also, i~ li = ( i) i = kji ;

we have ii~ l =i~ l

i;

or, a unit-vector and its reciprocal are commutative. But
this only holds good for unit-vectors of the same name,

ii
-

l = i
- l

i
;
but ki

~
l ^ i

~
}
k.
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CHAPTER III

THE VARIOUS FORMS OP A QUATERNION

SECTION 1

A Quaternion as the Product of a Tensor and a Versor

15. A quaternion may be thrown into the form of the

product of a tensor and a versor.

Let*?, = -

, fig. 10. Then, resolving a and /? into their

tensors and unit-vectors, we have,

TaUa _ Ta Ua _ Ta-~ ~ OX(?>
4 P* W-

^~
ig called the tensor, and Or 6xe,

the versor, of the

quaternion . In symbols,

(1)

Similarly, if q% = fta, we have

= T/3Ta . OX^-fc 4 (c), (2)._

T/3Ta is called the tensor, and U/?TJo, or 6Xw_s, the versor,
of the quaternion fia. In symbols,

T?2
= TySa = T/3Ta ;

U?2 = U/?a = OX^ ;)

7 2
= 0a = T^3a . Uy8a = T<7 2U72 J

'

In general, q = T^U^ ....... (3)
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In this equation, Tq is the quotient or product of the two

tensors, according as the quaternion is the quotient or product

of the two vectors. In both cases Ug is a unit-vector drawn

jrom the assumed origin, O, perpendicular to the plane of the

quaternion, such that rotation round it, from the divisor to

the dividend, or from the multiplier to the multiplicand, is

positive.
As a quaternion is the product of a tensor and a versor, so,

conversely, every product of a tensor and a versor is a qua-
ternion. For if (Tq . U<?) operate upon any vector at right

angles to itself, it will obviously alter both its length and

direction, that is, transform it into another vector, 1 (a).

16. The versor of a versor is the versor itself :

U (U) = TJ/? ;
U (Uq) = Vq.

It may be observed that the value of a composite vector

expression is not altered by altering the order of the numerical

quantities it may contain : ftbyfdS
= bfifybd = bdffiyti.

SECTION 2

A Quaternion as the sum of a Scalar and a Vector

17. We are now in a position to investigate,an expression
for a quaternion explicitly involving
its angle.

(a). Let OA(Ua) and OB~(U0),
fig. 14, be the unit-vectors of any
two given vectors, a, /?, inclined to

one another at an angle 0, different

from zero, TJTT, and ?r
;
and draw OC,

of unit length, perpendicular to OB
in the plane AOB. Let fall per-

pendiculars from A on OB, OC,
cutting them in A', A" respectively ;

and draw from O, towards us, the

unit-vector OX, perpendicular to the plane AOB. Then,
4

(c), (1),

Ua _ OA _ OA' A'A _ OA' OA"
UyS OB OB OB OB + OB

'

OA'
Now, j~yn

is a scalar the ratio of the lengths of OA' and
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OB. The length of OA' = OA cos = cos 0, since

OA = 1 : the length of OB is unity.

r> A'
Therefore, ~ = cos 0. OA"= TOA". UOA".

OB

But TOA" = OA sin = sin 0, and UOA" = OC".

OA" OC
Therefore, OA" = sin . OC, and^ = sin V.

But OC, OB are rectangular unit-vectors. Their quotient,

therefore, is a versor in the first power in the direction of

OX, which we will call e. In symbols,

OC , OA"

Therefore,

Ua OA' OA"
OX0 = = + = cos + e sin . (\)

or, U^ = cos + c sin (2)

Equation (2) gives us an expression for the versor of the

quaternion,
-

,
in terms of its angle, which will enable us for

the future to discard the temporary symbol OX,,.

If = o, we have =-r = 1, or U/? = Ua.

If 0=7r,^=
-

1, or U/? = - Ua.
U (3

If = "*
- = f

;
which is merely the equation, .

=
{,

2 U/i> j
with different symbols.

T
Multiplying equation (2) by -^,

we get, 15,
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Equation (3) gives us an expression for the quater-
rn

nion ^ as the product of its tensor, -=^ and its versor,

(cos 6 + e sin 0), which turns (3 into the direction of

a by positive rotation through the angle 0.

Equation (4) gives us the expression for the quaternion
-

To.
as the sum of a scalar and a vector quantity. r

~ cos 6 is called

m
the Scalar

;
= sin . e, the Vector, of the quaternion -. In

symbols,

= cos*;V- = sin*. ... (5)

To.- sin 0, (5), is called the Tensor of the Vector
; e, the

Versor of the Vector, of the quaternion ^.
In symbols,

For shortness' sake the versor of the vector is often called

the Axis of a quaternion. It is a unit-vector coincident with
the versor of the quaternion, U<? ;

but the two are generally

unequal versors, because although they produce rotation in

the same direction they operate in general through different

angles. UV<7, or A.X . q, is always a quadrantal versor : \Jq

is a quadrantal versor only when _ q = .

Z

The term, cos 9 (2), is called the Scalar of the Versor
;

sin , e, the Vector of the Versor
;
sin 6, the Tensor of the

Vector of the Versor of the quaternion ^ .

In symbols,

SU | = cos 0; VU "- = e sin
; TVU = sin 6 . (8)

P P P
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(b). Let G:
/cQg e _ f gin

} ........ (C)same angle, as

until OB' = <X
l (_ cos 0_|

_ sin 0) }

unit length, pe
{cog (

_ ^ f sin (,
_

fl) } f
(D)

in the plane A l

pendiculars froi ^ions of (B) and (D) express the versors of

cutting them ir ,s of ^ the angle of the quotients ^ and ^ ;

tively ; and dra P a

us, the unit-ve ns express them in terms of (?r 0), the

pendicular to th, te themselves, 1
(e).

lhen, 4
(c), (4), w reacne(j the remarkable result that a

pr^p/ TT TT essed as the sum of a Number and aUA ,r_9 = UaU,

that a number and a line are hetero-

oan no more be added together than

or, Ua/? = "ulty exactly analogous is presented

Multiplying across by To^f
e
,

nces
,
J

5

^
*he

.Sym,
bo1 l

+.*.''
m / /,

to be added to the characteristic

V C S
/)

~ '

but the siffn f the operation
cos 6 - Ta., ^ is> in factj ^ symbol of

In this case
( cos e sin

0), function ofx to the same
the value of the versor OX'ff _ e, which " Calculus, what the

the angle (TT
-

6) positively, into'the direction'^ (Hamilton's

Equations (10) are expressed in terms of 6, the au
fe

s!n,^
the quaternion To express them in terms of

(TT
-

0), the

angle of aft, we have merely to write,

a/? = TaT/? {cos (TT
-

ff)
- 6 sin

(IT
-

0)} .... (11)
Sa/3 = -

TaT/? COS 6
; Va/? = -

TaT/? sin . e . . (12)

a^=Sa^ + Va/? ............ (13)

TVa/3=TaT/?sin^; UVa/3 = - e ....... (14)

SUap^-costf; VUay8=-csin^;TVUa^= sin^. . (15)

(c). It may be similarly shown, by slight modifications of
fig. 14 and 15, that

(3a = T/3Ta (- cos + sin 0) ..... (18)= -
T/3Ta cos + TTa sin . e . . . (19)
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Equation (3) gives us an expression for
rp

nion - as the product of its tensor, -=
,

a
P A ff

(cos 6 + e sin 6), which turns y3 into tht

a by positive rotation through the angle 0. jo

Equation (4) gives us the expression for t.

cos f. sin 6.
r

as the sum of a scalar and a vector quantity. TaT/2 cos 0.

rp
the Scalar

;
sin . e, the Vector, of thr _

TaT/3 sin 9 . c.

^r^

symbols,
T = TaT/3 sin 6.

Ta-

_ g'

. * /KX .
,, , ., msm ^, (5), is called the '

Versor of the Vector, of
' '

= cos 6 e sin ^.

SU? = cos ^.

VU^ = sin

TVU? = sin 6.

= COS 0.

VUq = - c sin 0.

= sin 0.

Tg = T/3Ta.

Ug- = cos 6 + sin

Sq = - TfiTa cos 0.

Vq = TftTa sin 6 . e.

= T/3Ta sin 6.

su? = cos e.

VU? = sin 0.

TVU? = sin ft

(A)

a/3 = TaT/3 (
cos e sin 0)

= TaT/3 {cos (TT
-

0)
- e sin

(rr
-

&)}
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^ = (cos
- e sin 0) (C)

a la

pa = TpTa ( cos + c sin 0) }

= T/3Ta {COS (IT
-

0} + e sin (TT
-

6)} \

The first equations of (B) and (D) express the versors of

a/3 and (3a in terms of 0, the angle of the quotients and ^ ;

P a

the second equations express them in terms of (TT 0), the

angle of the products themselves, 1 (e).

19. We have now reached the remarkable result that a

versor may be expressed as the sum of a Number and a

Vector.

It may be objected that a number and a line are hetero-

geneous quantities, and can no more be added together than
a pint and a mile. A difficulty exactly analogous is presented
in the Calculus of Finite Differences by the symbol 1 + A

;

4 where the number 1 appears to be added to the characteristic

A, which is not a number at all, but the sign of the operation

of taking afinite difference.' 1 + A is, in fact,
' the symbol of

an operator which changes any given function of x to the same

function ofx+ 1
'

;
and we learn, in that Calculus, what the

proposed sum 1 + A is by learning what it does (Hamilton's
4

Lectures, &c.,' p. 388). In a similar way (cos + e sin 0}

is the symbol of an operator, a Versor, which has the power
of turning any line upon which it operates in a plane perpen-
dicular to itself, through an angle 6, positively.

This symbol represents a unit-vector, as may be proved by
taking its tensor,

T/aj m rpO^ + OA" OA TU ,~~ T = -

Its square is not negative unity, as are the squares of

i, j, k, because it is not in general a right versor. In the

special case when = \ IT, how-

ever, its square is negative unity.

20. It has been shown in

17 that a quaternion is the sum
of a scalar and a vector. It

remains to prove the converse :

the sum of a scalar and a vector P ""

is a quaternion.
Fia - 16 -

Let w and p be any scalar and any vector which
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it is proposed to add together. Let OA (a), fig. 16, be

any assumed vector in the plane of the paper, to which

plane p is supposed to be perpendicular at O. Operat-

ing upon a with w, we obtain a vector, OB, equal to wa.

Operating upon a with p, we obtain a new vector, OC, equal
to pa at right angles to a. Completing the rectangle OBDC,
and drawing the diagonal OD, we obtain OD = wa + pa ;

hence,

wa . pa wa + pa ODw -|-
= --H = = = a quaternion.p = OA

21. It is evident from equations (10), (18), and (19) of

17 that the commutative law of multiplication does not hold

good for vectors : (3a j^ aft.

22. From equations B and D, 18, we obtain, by adding
and subtracting,

Sa/3 = S/?a = 1
(a/3 + y8a) ..... (1)

Va/3 = -
VySa = (aj8

-
j8a) . . . . (2)

23. If = o or IT, the vector parts of (A), (B), (C), (D)
vanish, and the quaternions degrade to scalars.

If q be a product, and 6 = o, we have

/3a
= T/2Ta = ba = a negative scalar

;

and for =
TT, (3a = TfiTa = ba = a positive scalar.

Hence the product of two parallel vectors is a scalar which is

negative when the vectors have similar, and positive when

they have contrary, directions.

If q be a quotient, and 6 = o, we have
" = -

;
and for

=
TT,

= -
;
results which confirm those of 19, Part I.

a a

Conversely, if V<y = o, the constituent vectors, a and j3, are

parallel, or a =x/3. For if Ta and T/2 have actual and real

values, the vector of a quaternion can only vanish when 6 = o

or TT.

It follows that if a quaternion degrade into a scalar, or

if q = x, then

T? = T
( x) = x

; Ug = U ( x) = 1.

In words, the versor of a scalar, regarded as the limit of



a quaternion, is equal to positive or negative unity, according
as the scalar itself is positive or negative (Hamilton).

24. For the future (Ta)
2 will generally be written T2a

;

T(a
2
)
will be written Ta2

; (V?)
2 will be written V2

? ; Vfa
2
)

will be written V#2
, &c., &c.

If 6 = o and Ta = T/3, then (3
= a and

/3a = /3
2 =

(T/3TJ/3)
2 = T/3U/3T/3U/3 = T2

/3U
2
/3

= T2
/3 (- 1)

= - T2
/3
= - & 2

;

or, the square of a vector is a negative scalar, being the

square of its tensor combined with the minus sign. It follows

that the square of a vector must be considered as having no
direction in space.

Since /3
2

is a scalar,

V/3
2 = o

; S/3
2 =

/3
2 = - 62

.

25. If =
|,

the scalar parts of (A), (B), (C), (D)

vanish, and the quaternions degrade to vectors. For example,

/3a becomes T/3Tu . t, a vector which Sir W. R. Hamilton
called the Index of the Right Quaternion fia, or IV/3a. Con-

versely, if q be any quaternion, and if Sq = o, then the

constituent vectors are at right angles to each other. For,

provided that Ta and Tfl have real and actual values, the

scalar of a quaternion can only vanish when & =
^.

26. S/3a, or T/3Ta cos B, is (neglecting signs) the area

of a parallelogram whose sides are equal to OB and OA, and
whose angle is the complement of /. BOA.

TV/3a, or T/3Ta sin 0, is the area of the parallelogram
BOA.

V/3a, or T/5Ta sin . e, is the Vector-Area of the same

parallelogram, Tfta sin representing its numerical value, and
e indicating its sign, which is positive or negative according
as the rotation of a particle round the periphery is positive or

negative as seen from the term of e. Thus,

V/3a = ba sin . e = OABC
;

Va/3 = ab sin (- e)
= - ab sin $ . e = OCBA.

x 2
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SECTION 3

A Quaternion as the Power of a Vector

27- Since i, or i
1

,
is a versor which turns any vector on

which it operates, say^', through one right angle positively,
it is natural to define i

2 to be a versor which turns the same
vector through two right angles positively ;

i3 through three

right angles positively . . . im through m right angles

positively, m being a positive integer.
In the same way, since i~ l

is a versor which turns the

vector upon which it operates through one right angle

negatively, we define i~2 to be a versor which turns the same
vector through two right angles negatively, i~3 through three

right angles negatively . . . i~ through m right angles

negatively, m being still a positive integer.
In perfect consistency with the foregoing, we define t* to

be a versor which turns the vector upon which it operates

through one-half a right angle positively, i* through one-third

of a right angle positively . . . im through one mth of a

right angle positively.

Similarly, i m is a versor which turns the vector upon
which it operates through one mth of a right angle negatively.

Definition. If-r\ is any unit-vector and t any scalar, whole

or fractional, positive or negative, rf is a versor which twists

any vector at right angles to
77 through an angle t x -, the

direction of rotation depending upon the sign oft.

Hence, every such power of a unit-vector is a versor
; and,

conversely, every versor may be represented by such a power
(Professor Hardy).

Since the angle of a quaternion has been defined to lie

between o and TT, the value of t must lie between o and 2.

If the angle of the versor in degrees be 6, then = t~

2
and t = -6, or (as it will for the future be written) cO.

TT

Hence 17*'
=

Tj
ce

,

28- It was shown in 17 (a) that the value of the versor

of % which turns (3 positively through the angle 0, is

cos + e sin 0.
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But the versor <?9 would turn /3 positively through the same

angle. Therefore,
cos + e sin 6 = ecd...... (1)

Similarly, the value of the versor of ", which turns a
a

positively through the angle 0, is cos 6 e sin 6, But the

versor
( c)

cfl would turn a positively through the same angle.

Therefore,
cos 6 - f sin =

(
f
)
c9 ..... (2)

If it be desired to give the value of this versor in terms
of + e, we have only to bear in mind that the effect of

turning any vector through any angle negatively by means of

a versor OX, is equivalent to the effect of turning the same
vector through the same angle positively by means of the

versor OX, and vice versd. Hence, ( )
ce = f~ ce

,
and

consequently,
cos0 esin0 = (- e)<*=-*. ... (3)

But
( e)

c0
,
not e~c9

,
is the versor of ", because it operatesa

through 6 positively, 4
(c).

In precisely the same way, we have for the versor of (3a,

cos (IT 0} + e sin (IT 6)
= <? (

-
*>

; . . (4)

and for the versor of a/2,

COS
(IT
-

0) e sin
(TT
-

6}
=

( e)
c <->. . (5)

_We may now discard the notion ofjtwo coincident versors,

0X0 and OX^-g, in the direction of OX, 4 (c), which was
introduced merely for the purpose of explanation. The base

OX may be considered as one and the same in both cases, being
expressed by cce when it operates through the angle 0, and by
fC(it-e) when it operates through the angle (TT 0), &c., &c.

29. As in the case of quadrantal versors, i~ l = -, so in

the case of non-quadrantal versors, f~ ce= . For,

Tj/3 = U/3 _ Ua U/3 Ua . Ua = ,
.
Ua

a Ua Ua
'

Ua Ua
*

U/3
'

U/*'

But U^ = cos - sin 6 = (- e)
e = ~ ee

j

^

and U = cos 6 + e sin 6 = fc .
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Jl^

e*'
Therefore,

~

But although

i~ l =
i, yet f~ ce

7= ec9
,
and ccfl ^ ( e)*

9
.

For, c-c* =
( f)

c6 = cos c sin &,

and - <* = (e^) = - cos 6 - c sin 6 ;

and the right-hand members of these two equations can only

be equal in the particular case when = -, that is, when

t = 1. Therefore, in general,

~ ce
=f t?8

,
and ce ^ ( e)

c
.

30. Let a, 0, y,

fig. 17 (a), be any three

coinitial, coplanar vec-

tors, the angle between
a and /3 being <, that

between /3 and
y, x-

Then,

TJ- = cos s^n X =

U^ = 5?
. =(cos

p y Up U y

Now,

sn cos = e*
. e<*.

- =Yp j
an(l (cos + e sin <) (cos x + c sin

= cos
(</> + x) + e sin

(</> + x) = ec(*+ x)
.

Therefore,

= - = cos e sn . . (1)

Suppose that y lies between a and /3, fig. 17 (>), and con-

sequently that the angle between a and y is (0 x)' Then,
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" = UV^ since the rotations from 8 to a and from
7 P

y to ft
are contrary in direction.

Hence,

U- = cos < + e sin
(f>
= e *,

U- = cos x
~ e s*n X = ~ c " =

>

U" . U - = (cos <}> + sin <) (cos x e sin x) = -^ .

Now, U^ U^ = U-
;
and (cos < + e sin <) (cos x sin x)

= cos
(<j> x) + e sin

(< x) = c(*" x)
.

Therefore, -^= ec(*- x1

(2)

The meaning of (e
c

*)
m
may be investigated in the same way

as that of if. e
c
", or (e *)

1

,
is a versor which turns a vector at

right angles to itself once through the angle 0, positively ;

(c
c

*)
2 turns the vector twice through the angle 6

;
. . .

(
c

")
m

turns it m times through the angle 0. And since the opera-
tion of turning a vector m times through the angle is equiva-
lent to the operation of turning it once through the angle m#,
we have,

(*) = '""
(3)

Hence, (1), (2), (3), the Algebraic Law of Indices holds

good for versors :

P
m x p- = P

m+n
;

= P
m -

'

; (P'")
= P

mn
.

31. Suppose that the plane of a quaternion is indeter-

minate, and consequently that the versor of its vector is V 1.

Then the equation,

(^) =
',
becomes {(N/^I)

c

'}

m = (v/^l)*
1

";

or, (cos + sin . V l)
m = cos m0 + sin mO . \/ 1,

which is Moivre's formula. This formula, then, admits of a

real geometric interpretation when the symbol \/ 1 receives

the interpretation assigned to it in this Calculus. According
to that interpretation, Moivre's theorem asserts that the

operation of turning a line m times successively through any
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angle 0, is equivalent to the operation of turning it once

through an angle mO.
Those who wish to go further into this matter are referred

to Professor A. S. Hardy's 'Elements of Quaternions,'

pp. 50-55.

. 32. If we assign any integer values to t, positive, nega-
tive, or null, it will be found that

if tf
= 1, t is an even multiple of 2

;

if = 1, odd ;

if =
77,

odd number.

In symbols, ^=1^+1 = +^
the upper or lower signs being taken according as the number t

(assumed to be a positive, negative, or null integer) is even or

odd.

33. From the preceding considerations we are justified
in defining, that if p be any vector and t any scalar,

p'
= T<p.u<p; .......... (i)

= product of a tensor and a versor
;

,,
= a quaternion, 15.

From this equation we have at once

Up' = Up" = cos 6 + sin 0Up ;

Sp< = Sp" = Tp" cos
;

Vp
( = Vpc> = Tp<" sin 0Up ;

UVp' = UVp* = Up ;

(2)

the upper and lower signs accompanying each other, and n

being an integer, positive, negative, or null.

With regard to the expression for Z.p
cS

,
it must be borne

in mind that the amount of rotation from U/3 to Ua, fig. 10,
admits of being increased or diminished by any whole number
of circumferences, or of entire revolutions, without altering
the final direction of U/3. In symbols,

2w7r 6 is the Amplitude, the Angle, of p
c*
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In the particular case when t = 1, p is the representative

of a right quaternion ; and since its angle is ~, the general

expression,

becomes = TpUp.

34. It is now clear that any quaternion may be reduced

to the form p' by a suitable choice of the base, p, and of the

scalar index, t. The conditions are,

Tp = T; Up =

t>o; t < 2.

f.

. . . (4)

SECTION 4

A Quaternion in the form of a Quadrinomial

35. Let XY, YZ, ZX, fig. 18, be three rectangular co-

ordinate planes, and let i, j, k

be unit-vectors along the three

axes OX, OY, OZ respectively. ^^ JM _L'

Let OP = p be any vector ; |\| ;'-'-'- ~/'P
from its term let fall perpen-
diculars PL', PM', PN', on
the three planes ;

and com-
|_ ..

plete the rectangular parallelo- .^ "M*

piped LL'._
Then T . OL, T . OM, T . ON

are the Cartesian coordinates, x, y, z, of P, the term of p.

Consequently, OL = xi, OM = yj, ON = zk
; and the equa-

tion of OP is, Part I., 37,

p = xi + yj + zk . (1)

If the coordinate planes are not rectangular, and if a, (3, y
are unit-vectors along OX, OY, OZ, the equation of OP
becomes,

p = xa + y{3 + zy, (2)
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where x, y, z are the Cartesian coordinates of P, referred to

oblique axes.

Since a quaternion is the sum of a scalar and a vector
;

if w be a scalar, any quaternion may be represented by an

equation of the form,

q = w + xi + yj + zk
; (3)

which, depending as it does upon the values of the four
scalars, w, x, y, z, furnishes a new reason for calling the

complex quantity, q, a quaternion.
From the last equation,

?2 = (w* -x> -y 1 - z2
) + 2w (xi + yj + zk) . (4)

q = ^,
10 = o in equation (3), and

q = xi + yj + zk, (5)
2 / />2 i 2 __i_ 2 \ / &\

~/
"

\**
/

i y i /* * * * *
\ /

If

36- (a). Suppose we have any two vectors,

a = m^i + m^j + mjc,

/?
= r^i + n^j + njc.

Multiplying, first a into
/?,

and then /? into a, we have

*
> 3

= (m l
n

l

= (m l
n

l

m3 3)

(1)

Hence, we see again that the commutative law of multipli-

cation does not hold good for vectors. 1

(6). The multiplication of vectors, however, obeys the

distributive law.

Let, a = l\i + I 2j + lzk,

m
3k,

be any three vectors.

1 This section was written a considerable time before I saw Herr

Dillner's article on quaternions in the ' Mathematische Annalen,"
vol. xi., for 1877.
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Then,
a + (3

and (a),

(a + ft)y

3)k ;

m

*
, J 1

n lf n2 ,

*

m2 ,

i,
w2 ,

n3

= ay + fly.

It can be proved in the same way that

y(a + (3)
= ya + y(3.

Therefore the multiplication of vectors is a doubly distribu-

tive operation in the case of three vectors.

(c).
The associative law of multiplication also holds good

for vectors.

Taking the vectors a, /3, y of (6), we have,

i
, j ,

^

a/3 . y = -

m 2 ,
m3

(nit + nyj + n3k) ;

i , 3 ,
k

'it 'i i ^3

'l >

m2 ,
m
n^j^lm

*,-!,
*1 I ^2i

,' ,'
1

Jt I
>

x

*1 , k, k
j,
m2 ,

m3

Expanding the three determinants and rearranging the

terms of the whole, we get

y =
-1, *> J

HI ,
M 2 >

713

-A, -1, i

m, ,
m2 ,m3

Wj , Tlj ,
713

,
"

m2 ,
m3
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a.8 . y = l^i^mn i

*
> 3 >

k 1
i J *

. J

n3

= a . /3y.

The multiplication of vectors, therefore, is an associative

operation in the case of three vectors.

The method by which it has been proved that the distribu-

tive and associative laws apply to three vectors can obviously
be extended to the multiplication of any number of vectors.

37. By the aid of the distributive principle we can now
find the values of

(a + /3)
2
, (a /3)

2
, (a + /3)(a /3),

and aft . pa. /

(i
O\S / i O\/ i /3\ _ . 2 i O i (3*, i

/">9 ~2 i OCJ Q i ^2 / O\
OL *t~ /3 /

-*
\ Ot i* AJ M Q* "i fJ / "~-Gl "T" Cto ~t~ OCt ~j~ /j - - CL "T" -JioCto "i O \ I

(a
-

y8)
2 = a2 -

2Sa/? + yS
2

(3)

(
a 4. ^(a^) = a2

a/3 + /3a /3
2 = a2

(a/3 /3a) /3
2

= a2 2Va/3 /3
2

(4)

a/3 . /3a
=

(Sa/3 + Va/3)(Sa/3
-

Ya/3) ;

= S2
a/3 Sa/3Va/3 + Sa/3Va/3

- V2
a/3 ;

= S2
a/3
- V2

a/3 (5)
=

( TaT/3 cos 0)
2 -

(
- TaT/3 sin . c)

2
;

=T2
a/3 (6)

By the associative law,

a/3 . /3a
= a . /3

2a = a . a/3
2
(since /3

2 is a scalar, 24) ;

=a2
/3

2
(7)

but this last expression is not to be confounded with (a/3)
2

.

38. If a, /3, y be any three vectors, in general,

For

and

But
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a/3-'y ^ ay/3-
1

;therefore,

or,

If, however,

then,

for

Again,

for

y'/3
=ay '

But

therefore,

and

In such an expression as "^ the denominator must be
yp

treated as one quaternion ;
so that, if we equate the fraction

to q, we have ay = qy/3,

and q = ay/J-'y'
1

(Prof. Tait).

?- =, 36, a . y-y . /T' = a/3''
= =*?.

39. From equations (1), 36 (a),

Sa/3 = S/3a = (m^j

Returning to the simpler form,

q = w + xi + yj + zk,

we have at once

Sq = w

V? = xi + yj + zk

(1)

(2)
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Also, since (TV?)
2 = -

(V?)
2 = a2 + y

2 + z2
,

TV? = V*2 + y
2 + z2 ...... (3)

** +
'

+ zk
/ 9

^/a;
2 + 2/

2 + z2

Further, since T2
? = S2

? V2
^, 37 (5) and (6),

Tq = Via2 + x2 + y
2 + z2 .... (5)

Ua = -5L = tg + si + atf + st

Tg ^w2 + x2 + y
2 + zs

'

~

Tq N/to
2 + a;

2 + y
2 +

to2 + x2 + y
2 +
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CHAPTER IV

EQUALITY AND INEQUALITY OF QUATERNIONS

40. (a). Definition. If the tensors and versors, or the.

scalars and vectors, of two quaternions are respectively equal,
the two quaternions are equal. And the converse. In symbols,

q'
=

q, if Tq> = Tq, and U?' = U? ;|= S?' = S?, V?' = Vq )

Tq' = Tq, and U?' = Vq, if q'
=

q, ;\

Sq> = Sq, Vq' = Vq, = J

(b). On the equality of the tensors of two such quaternions

as fla = Sy, _ = -, there is nothing to be said
;
the tensors are

P T

positive numbers obedient to the rules of Arithmetic.

(c). Definition. Two versors are equal, and only equal, if
the rotations they communicate to the vectors on which they

operate, in planes perpendicular to themselves, are similar in
direction and equal in amount. And the converse.

As in the case of vectors, Part I., 7, the phrase 'similar

directions,' was denned to mean '

parallel directions with the
same sense

'

;
so in the case of versors the phrase is defined

to mean ' in coincident, or parallel, planes towards the same
hand, as seen from the same side of the two planes.' The

phrase 'equal in amount' means 'through angles equal in

magnitude.'
This definition may be expressed in symbols as follows :

l_q= _q'> and,

If /_ q = 0, UVq = ; L q'
=

<A, U V?' = rj ; (1) becomes,

if = 1 and e = 77J
( 2)
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41- If &) and
v/x,

are coplanar quaternions, and if
>/
=

v/x,

then, obviously, >?
=

p.v, for their tensors and angles are equal,
and the direction of rotation is the same for both quater-
nions.

n 8

For the same reasons, if I- =
, then - = Xay /3 8

8 R
Further, - = A For, let be made to slide and revolvepa a

in the common plane until its origin coincides with that of

g
-, and a and y are collinear. Then, /3 and 8 will be collinear,

i d b d C TIJ.T nr\o 8 V
and since - =-, y = -; or, Part I., 20,- = J

.

c a o a p a.

42 . Any two quaternions, considered as geometric
fractions, may be reduced to a common denominator. Let

the two quaternions be in the plane LMQP, and - in
OA OL-

the plane PQSR, fig. 19. Whatever be the planes of the

PIG. 19.

quaternions, or however they may be posited in these

planes, by causing the quaternions to slide about and
rotate in their own planes (without turning them over),

they can be made to assume the positions shown in the figure,
where their origins are coincident, and the divisor vectors are

collinear, in the line of intersection of the two planes, PQ.
Let E be any point in that line. Produce OB, and draw
EF and EG parallel respectively to AB and CD. Then,

OF OB
.
OG OD

OE OA'OE OC'
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Let another vector, OH, be drawn in the plane LMQP,
making the angle HOE = EOF, and of such a length that

OF : OE :: OE : OH. Then we have,

OE OF OB
.

OH OE OA '

and, therefore,
OD OB OG OF OGOF

. m
OC OA OE ~ OE OE
OD . OB = pG OE = OG.

(s>
.

bC ' OA OE 'OF OF '

PJ2 J. _ O^ 91 - OG OE _ OG ,

3
v

OC
'

OA~~OE ' OE~~OE'OH OH

Any two quaternions, then, such as - -- and -^ may be

., , OF , OG ,, , OE , OG
reduced to the form ~ and -^,, or to the form -= and

^-^,
Olii OJii OM Oili,

without undergoing any change in value.

43. It follows that no two diplanar quaternions can be
OR OT) OF OC1

equal. For suppose p-r-= ^^r. Then -
-_- = -, and conse-

OA OG OJuj OJtli

quently OF = OG, which is contrary to definition, since the

two vectors have not similar directions.

Conversely, if two quaternions are equal, they are

coplanar.

44. If q and q' are equal quaternions, so that

S? + V? = S?' + Vq' ;

then, by definition,

S? = S?', and Vq = Vq'.
More generally, if an equation involves any number of

scalar and vector quantities, the sums of the scalars and of

the vectors on either side are respectively equal. For

example, let

X + ma + n(3 = y + z + ty.

Then, ma + n/3 = (say) 8,

and x + 18 = (y + z) + ty.

But (x + IS) and {(y + z) + ty} are quaternions, 20.

Therefore, 40,
8 (x + 18), or S

(a; + ma + n(3)
= S {(y + z) + ty} ,

V (x + ma + n/3)
= V {(y + z) + ty} ;

therefore, x = y + z
; ma + n(3 = ty.

F
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CHAPTER V

THE VARIOUS KINDS OF QUATERNIONS

45. Collinear Quaternions.

Quaternions whose planes intersect in, or are parallel to, a

common line are said to be Collinear. For example, the

quaternions OB . OA and OD . PC, fig. 19, 42, are

collinear
;
and OL . ON, OM . ON, fig. 18, 35, are also

collinear, whatever be the angles YZ, ZX, ZY.
Since the versors of collinears are each perpendicular to

the common vector, it follows that if q, q', q", &c., be collinear,

\Jq, U<7', I!*?", Ac., are coplanar ;
and the converse.

Coplanar quaternions are always collinear (or can be made
so by sliding and rotation in the plane\ but the converse is

not true. Collinears are not always coplanar.

46. Reciprocal Quaternions.
The Reciprocal of a quaternion in theform of a fraction i

obtained by interchanging its divisor and dividend vectors

Thus, c is the reciprocal of ~.
a p

Since 1 :
- = ", 1 (i), and ^ I- = - = 1, it follows thapa p a a.

either of two reciprocals is equal to unity divided by th

other, and that the product of the two is positive unity. In

symbols, if q and q' be reciprocal,

9

qq' = q'q=l=q-
Reciprocal quaternions have, obviously, a common plane

and angle, reciprocal tensors, and opposite axes rotatioi

from a. to ft being contrary to rotation from ft to a ; or,

(2

UV0

'
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Hence, if

q =
^
=

TJ|(cos0
+ csin 0)

=
T^

. <*,

then,

= TP.(-c)
c = TP.c- . . (3)

The versors of reciprocals are reciprocal, e" and f~ ce

being

reciprocal,

U 1 = U?- 1 = --, and Uq-i-Uq = UtfU?-' = 1; . . (4)

or, the versor of the reciprocal is equal to the reciprocal of

the versor.

47- Opposite Quaternions.

If any two opposite vectors, /? and /3, be divided by any
one common vector, a, the two unequal quotients thus formed,
"
and -, are called opposite quaternions. Accordingly, q

a a

is the opposite of q.

Since, 1
(t),

and

a
'

the sum of any two opposite quaternions is zero, and their

quotient is negative unity,

Opposite quaternions, fig. 20, have a com-
mon plane, equal tensors, supplementary
angles, and opposite axes,

T(-q) = Tq; L (- q) = * - L q;

Hence, if q = " =
T| (cos ^ + e sin

tf)
= Ta . e

c
',

then,
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48- Let OA, OB, fig. 21, be any two vectors. From
draw OB'= OB in the plane AOB, making {_ AOB' = AOB

;

and draw BB', cutting OA produced in A'. Let OB' = B'.

B B'
(a). The unequal quotients,

" and *
t
are called Conjugate

Quaternions, and if ^ =
q,

*=- Kq, read '

conjugate of q'
a. a

Conjugate quaternions have a common plane, equal angles
and tensors, and opposite axes :

. . . .(1)

Hence, if q = - =
T| (cos + c sin 0)

=
T|

.

c

',

then, Kq K^
=
T^ (cos 6 sin 6) = T- . c~ c'

. . (2)p P B
The versors of conjugates are reciprocal, since c

c* and e
~ ci

are reciprocal, and the product of the versors is positive
unity :

From the foregoing it is evident that a/3 and Ba are con-

jugate quaternions.

(b). Since aB = Ta/3 (- cos 6 - sin 6),

and KaB = Ba = TBa (
- cos + 6 sin 0),

we evidently have

VKq=-Vq\ (
4

>

Hence, we have as general expressions for a quaternion
and its conjugate,

q = Sq + Vq, (5)

Kg = S^ V<7 ; (6)

whence,

q + Kq = 2Sq, (7)

q - Kq = 2Vq (8)

(c). If /_ q = o, V<7 vanishes in
(5), q degrades to a

positive scalar, say x, and (6) becomes
TT-r y W\*** x

\
y
/
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"

Similarly, if _ q = IT, q in (5) degrades to a negative
scalar, say cc, and (6) becomes

K(-x) = x (10)

If q = -, S vanishes in (5), q degrades to a positive
2 q

vector, say y, and (6) becomes

Ky=-y (11)

Since, 47 (3),

(_ g) = _ S? - Vft (12)

K(-q) = -Sq + -Vq (13)

If, therefore, q = ^, S# vanishes in (12), <jr

degrades to a negative vector, say y, and (13) becomes

K(-y) = y (14)

From (9), (10), (11), and (14), it is clear that,

(1) The conjugate of a scalar is the scalar itself
;

(2) vector is its opposite :

K(ar)= x; K ( 8)
= +8 . . .(15)

(d). By adding and subtracting equations (5) and (6), it

is seen that while the sum of a quaternion and its conjugate
is a scalar, their difference is a vector.

(e). The most important formulae of the last three sections

are collected here for facility of reference :

Quaternion = q = ^
=

^ (cos d + c sin 0) . = T^ . e"* . . (j)

Reciprocal = q~
' = ^=^ (cos 6 c sin 0)

= T^ . e~ c'
. . (L)a Ta a

Opposite =
_gr.^!g |cosO-0)-sinO-0)| -|?

. -^-*>. . (M)

Conjugate = Kq = K^
=^ (cos

- sin 6}
=
T^

. e
- c

*. . (N)

49. Miscellaneous Theorems.

(a). The reciprocal of the reciprocal, the opposite of the
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opposite, or the conjugate of the conjugate, of a quaternion is

the quaternion itself :

1 :
- = ? ;-(-?) = ?; KK? = q-

(b). Let
tj
be any versor. Then, since

or, the conjugate of the versor of any quaternion is equal to

versor of the conjugate (N). Hence,

KU? = UK? = U- =
,
46 (4) (1)

q U?
Since TKq = Tq, and UK? = 1 : U?, we have

q = Tq . U? ; Kq = Tq : U? ;
. . . . (2)

whence, by multiplication and division,

.... (3)

a Ta'U/3 Ta
'

-U)8 Ta T/3 p-
1

'

Hence,

Ka/3 = a = -A =
K-p .... (5)

(d). The conjugates of opposite quaternions are themselves

opposite ; or,

K(-q)=-Kq;
an equation which is a particular case of a more general

formula,

~Kxq = xKq, (6)

where x is any scalar.

This may be proved by supposing that the vectors

OB, OB', fig. 21, are multiplied by any common scalar; or,

that both are cut by any parallel to the line BB'.

(e).
The conjugates of reciprocals are reciprocal ; or,

rrl 1

For, suppose the two triangles AOB, AOB', fig. 21, to

revolve inwards round O in the plane B'OB until the points

B, B', coincide in D, a point in the line OA produced. Then
FOD and EOD represent respectively the two triangles after

the revolution. From B and B' draw lines parallel to ED
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and FD, cutting OD produced in C
;
circumscribe a circle to

the triangle ABC ;
and with as centre and OB as radius

describe the circle BDB'.

Via. 21.

OB
OA'

Let q =

K
i-

Kl- :

Then

WJ -TT ^^ __ VJ> /4o (a\\ V&
OD OC OC v v ;; OD

_ _,~
OB'

~ OB'

OA
_L
Kg

(7)

(/). If we are given such an equation as

7 -K- . , a _xr a
' = K c

, or,
- = K

,

a a y p

we can infer first, that a, (3, y are coinitial and coplanar ;

secondly, that Ty = T/3 ;
and thirdly, that a bisects the angle

between ft and y, or, that a (produced either way if necessary)
bisects the join of the terms of (3 and y at right angles ; or,

again, since the angles of incidence and reflexion of a ray of

light are equal, that the ray y is the reflexion of the ray /3

(O being supposed to be a point on a plane mirror whose sur-

face is perpendicular to a).

(y). Since L OBA = {_ OB'A = L ODE = i_ OCB,
fig. 21, it follows first, that AB and BC are antiparallel,
or that the triangles AOB and COB are inversely similar (the

triangles DOE and COB are directly similar) ; and, secondly,
that ()J> is a tangent to the circle ABC at the point B. Hence,
the circles BDB' and ABC are orthogonal, because a tangent
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to BDB' at B would be perpendicular to OB, which is a

tangent to ABC.
(7i). Again,

OA : OB :: OB : 00.

Therefore, OB or OD is a mean proportional between 00
and OA, and C and A are inverse points with respect to the

circle BDB'. If, therefore,

OD = vOA. = va,

where v is a scalar > o
; then,

Consequently, the equation,

OC = KOB

may be written,

an equation which expresses that AB and BC are antiparallel,
or that the triangles AOB and COB are inversely similar, but

expresses nothing more. Now, in order that this relation

should hold good, it is only necessary either that (1) T . OB
should be a geometric mean between T . OA and T . OC

; or,

that (2) T . OB = T . OD. If, then, _O,L A, I), C be fixed

points, while B is a variable point and OB = OP = p, it is

evident that the locus of P is the surface of a sphere with

centre O and radius T . OD = via. Equation (8) then

becomes

^ = KP;or,PKP = v*. . (9,

(i). If, then, we meet with an equation of this form, we
can infer that the locus of P is the surface of a sphere with

centre O and radius vTa. Further, if we take a point C such

that OC = v2
a, the sphere will be a common orthogonal to all

the circles APC that pass through the fixed points A and C ;

because every radius of the sphere is a tangent, at the variable

point P, to the circle APC, AP and PC being antiparallel.

(j).
Since



THE VAKIOUS KINDS OF QUATERNIONS 73

and the first equation of (9) becomes

^
.
5

a p

. T- U- = TK UK = T KTJ, (6) (1) ;

p p a a a a

p a

(k). Since, fig. 21,

BO BC OB OP __ P

AB ED OA OA 1'

we have

OB = OP = vOA
;
BC = vAB. . . . (10)

From the first equation we have at once,

Tf>
= <yTa ....... (11)

From the second,

T
(p
- 2a)

= vT
(P
-

a)..... (12)

_Since,

AB = p
-

a, and T(BC)= T( BC)= T(CB) = T(OB - OC).

(I). Article (A) contains the solution of the problem of

Apollonius of Perga : given any two points, C and A, in a

plane, and a ratio of inequality, 1 : v
;
to construct a circle

BDB' in the plane such that the lengths of the two straight
lines AB and CB, or AP and CP, which are inflected from the

two given points to any common point, B or P, of its circum-

ference, shall be to each other in the given ratio.

Cut AC externally at O in the duplicate of the given ratio

of sides, so as to have OC = v2OA. Take OD, a geometric
mean, to OA, OC ; and, with O as centre and OD as radius,

describe a circle. This is the locus of all points for which

CP = vAP.

Paragraphs (e) to (I) are chiefly from Sir W. R. Hamil-
ton's ' Elements.'
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(2)

CHAPTER VI

THE POWERS OF QUATERNIONS

50. Let q = p
(

, Lq = Q> and UV? = e. Then, by 33C

(2), we have U'p = c', and

q- = () = (TV UV>)
n = (Tq. <)"

= T"? .

"' = Tn
q . <"",

gr"
= T"g (cos nO + e sin nO) (1)

From this equation we have at once,

8q
n = T"q . cos nO

; V?" = T"q . sin n6 . e.

51. If n = 2,

?
2 = T2

? (cos 20 + e sin 20) . . . . (

As this is the only power of a quaternion with which we
will have to do in the following pages, it is desirable to inquire

particularly into its nature.

The first question that arises is, has q* two square roots

like an ordinary
algebraic quantity 1

Let OA, OB, fig.

22(1) and (2), be the

unit-vectors of any
two vectors a and

/3,

inclined to each other
at an acute angle
in (1), and at an

obtuseangle x ^n (2).

Draw OC making {_ COA = < in (1),
and = ^ in (2) ;

and

produce AO to meet the circle in A'. Then, if

TJ _ OA -

(J(_ , _ -OA __ OA/
q OB' OB OB

'

Since q* = T 2
^ . IT2

*?,
if q

2 has two square roots, either

T2
g or U 2

<7
must have two square roots. But as Tq is always
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positive, T2
<7

can have only one square root, namely -f- Tg.

If, therefore, q
2 has two square roots, !)*<? must have two

square roots. What is U2
<7

?

Since

OC OA

T72 _ 00 OA _ 00
^" OB~"OB'

OC
Now, - has two geometric square roots. For, first,

O.B

PP. = oc OA _ OA OA _ (OAy
OB OA

'

OB OB
'

OB VOB/
'

Secondly,

OC OC OA' OA' OA
OB OA'

'

OB OB
'

OB

'

/OA'\ /_ OA\ 2

"
\OB/

==
\ OB/

'

Therefore,

Therefore, q* has two square roots
; or,

v/?
2 = q = Tq . U? or T^ ( U?),

whatever be the form of q.

Were the angle of a quaternion unlimited in magnitude,
either of these real and unequal square roots might be used at

will in calculation. But as the angle is defined to lie between
the limits o and TT, we must discriminate between them, and
select as the square root (or the principal square root) of the

quaternion, ^
2

,
that one of the two which enables us to con-

fine the angle of q* within the prescribed limits. If tq
is acute, fig. 22 (1), {_(- q}(= "* q, 47

j
is obtuse ;

q, therefore, cannot be regarded as the square root of g* ;

for, were it so, /_q^ (= 2 L( ?) )
would be > TT. In this

case, consequently, \/q
2 = + q- For a similar reason, if

L q is obtuse, fig. 22 (2), ^/q* = q.

That one, therefore, of the two opposite quaternions,
q and q, whose angle is acute is the square root of q*.
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In symbols,

=UV?;^=T^ . ew
;
if z<?=<

?=%w-q)i

L N/<p = i z. <?

2
;
uv v^ = uv?2

.

If /. is o or TT, UV<? is indeterminate.

?=!> TJ?
2=e 2

,and?
2=T2

? .
2=-(T 2

?), a scalar.

OC OA OC

or, OC = OB.

Therefore, T . OC = T . OB, and U . OC = U . OB,
whatever be the length of the radii of the circles, fig. 22.

Consequently, L q* = *
; L q = i L <? , (4) ;

2

or, q is a right quaternion whose constituent vectors are of

equal length.

By (3),

8Uq* = cos 2 /_ q = 2 cos2 L q 1 = 2 SU 2
? 1, . . (5)

where SU 2
^ represents (SU<7)

2
.

S?
2 = T?

2 SU02 = T2
? (2 SU2

? - 1) = 2 T2
? SU 2

? - T2
^

= 2S2?-T2
? . . .... (6)

Again,

S?
2 + Vq* = q

z = (87 + V?)
2 = S2

? + 2 SqVq + V2
? .

Therefore, equating the scalar and vector parts, 44,

S^S^ + V2
?;)

(

.

V?
2 = 2 SqVq.

T92= T2
?= qKq= (Sq + Vq) (Sq

- Vq) = Sg -V2
g. . . (8)

Finally, if we meet with an equation of the form

S_ y

we know that 8 bisects the angle between /3 and y.

This equation may be written,

8f = yA ....... (9)

where 8 is called the Mean Proportional between /? and y.
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CHAPTER VII

ADDITION AND SUBTRACTION OF QUATERNIONS

52. The sum or difference of any two quaternions is a

quaternion. For q q' = (Sq Sq') + (V? Vg>')
= the

sum of a Scalar and Vector = a quaternion. Since this

process can be carried on to any extent with the same result,

we may conclude that the sum, or difference, of any number
of quaternions is a quaternion.

In symbols, if 2? = (?, + q<i + q),
and A? = (?,

-
? 2 . . . qn) ;

2<?
= a quaternion, ]

/, >

A? = ,, t
()

The commutative and associative laws of addition and
subtraction apply to quaternions.

For the sum or difference of n quaternions is the sum or

difference of n scalars and n vectors
;
and it has been already

shown, Part I., 20, that the subtraction and addition of

vectors are associative and commutative operations. There-

fore &c.

53. Let the quaternion Q be the sum of n quaternions,

tfi
= S?i + V?,,

?2
=

85-2 + V?2 ,

Then,

Q=(S<?l +S<?2 +
But
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Therefore, 44,

(V?i+V? 2 + V?n )
=V (?i + ?2 + <?n) )

or, 2S? = S2? ; 2V? = V2? (1)

Similarly, AS? = SA? ; AV? = VA? (2)

In words, S and V are distributive symbols.

Taking the conjugates of the constituent quaternions above,

= By,
-

we have

Similarly, AK? = KA?
Therefore, K is a distributive symbol.

Also, since

and

it follows that K is commutative with S and V.

(3)

(4)

(5)

(6)

54. Let any two qua-
Y

ternions, ?i= -, q.2
= -, be

w v

reduced to a common de-

nominator, OA, fig. 23,

OA not lying in the plane
OBC, but being drawn
towards us from O. Let
the reduced quaternions be
OB , OO B , y- and or c and L>OA OA a a

Complete the parallelo-

gram OCDB
; draw the

diagonals CB and OD = 8 ; and draw,

Then,

FlG. 23.

_T.OB+T.OC^T.OB+T.B
.OA T.OA"
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Consequently,

T?, + T?2 = T
(qi +qj, if, T . OB + T . BD = T . OD.

But T . OB + T . BD > T . OD, Euclid I., 20.

Therefore, T^ 4- T?2 > T (?, + ?2 )

Let q } + #2
= w, and let q3 be any third quaternion.

Then, similarly,

Tw + Tq3 > T (w + q3)
= T

(qi + qz + q3 ).

But T?, + T? 2 > Tw.

Therefore, afortiori,

Tq, + T?2 + T<73 > T (?, + q, + ?,).

As this process may be carried on to any extent with

similar results, we may infer that, generally,

T2^ STq ....... (1)

It may be similarly proved that

(2)

If L BOC=o, that is, if Uy = U/3; then

If

In general, if the quaternions, </,, q% . . . qM bear scalar

and positive ratios to each other, i.e., if they are coplanar,
with versors similarly directed

; then, T^q =

55. In fig. 23, let the angles

AOB=,/>, AOC=X, AOD=0, BOD=o-,, DOC= (r2 , BOC=o-.

Then, for the three trihedral angles,

- BAD, O - CDA, O - CBA,

X + v* > 0*

or, (</> + X) + o- > 29
;

and
<f> + ^ > or.

Therefore, 2
(< + x) + o- > 20 + o-,

and
</> + x > ;

or
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If q3 be any other quaternion, it may be proved in a

similar way that

L (q\ + i

But L

therefore, afortiori,

Lq\ -

As this process may be carried on to any extent with

similar results, we may infer that

It may be similarly proved that

A L q ^ L A? (2)

56. Let / BOG = (9, fig. 23. Then,

Op OB OC
_

OA OA OA q q '

and T (q + q') U (q + q')
= TqUq + Tq'Vq'.

If, therefore, U (q + q')
= IJq + IJq', we must have

T(g + q')
= Tq = Tq';

or, OD = OB = OC.

Let OB = OC, and we have

OD2 = 2OB 2
(1 + cos 6),

and OD = 2OB . cos

In order, therefore, that OD = OB, we must have

oos
|
= |; or, = 120.

Evidently, then,

TJ
(<7 + q'\

= \Jq + Uq',

only when Tq = Tq', and _ 6 = BOG =
, i.e., in a special

9
case. In general, therefore,

^ (q + <?') 7^ ^? + ^y.
More generally still,

U2^ 7^ 2U? (1

Similarly,

AUg1

7^ TlAi?

The result of 53 to 56 is, that the symbols S, V, and

are, while T, ,
and U are not, distributive in the additio

and subtraction of quaternions.
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CHAPTER VIII

MULTIPLICATION AND DIVISION OF TWO QUATERNIONS

SECTION I

Diplanar Quaternions

57- Before proceeding further it is necessary to explain
the meaning of certain forms of expression that will be met
with in the present and succeeding chapters. Sq ,<72 means the

scalar of the product q\q^ Similarly, Kg^j means the conju-

gate of the product q\q^ It does not mean the conjugate of

<7i multiplied into q2 ,
which will be written Kg-j . q2 , or,

Ki?,^), or (K^ 1 )g
f

2 - And so on for the other symbols.
Points and brackets should never be omitted if their

omission is likely to lead to any misapprehension.
The product of any two quaternions is a quaternion.

For, let the quaternions be thrown into the form
,

a ft
<1\
=

-Tf ?2 =
ft y

Then, q l q z
= ^ . = - = a quaternion . . (1)pry

The quotient of any two quaternions is a quaternion.
For, let the two quaternions be reduced to the form,

Then,
?' = :

I = *
.
^ = ". = a quaternion . . (2)

qt A A A T T

58. The tensor of the quotient (or product) of any two
quaternions is equal to the quotient (or product) of the tensors
of the two quaternions.

o
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For, let the two quaternions, reduced to a commc
denominator, be

Then,

* = ^ = y . ,

s T/3 To
'

T/3 Ta
'

Ta T?2
*

Again, if the two quaternions be reduced to the forms

1.-*;*.-;.
Then,

a

Equation (2) embodies Euler's theorem, that the sum
of four squares may be resolved into two factors, each of

which is the sum of four squares.
For the tensors of the quaternions q { , q%, may, 39 (5),

be thrown into the form,

Jw* + x* + y,
2 + zf

and ^/wz
~ + a2

2 + y<? + z2
2

respectively ;
and the product, q\q^, is some quaternion, say.W + Xi + Yj + Zk,

whose tensor is s/W2 + X2 + Y2
-t Z2

.

Hence, by squaring the equation,

we have at once

59- The versor of the product (or quotient) of any two
quaternions is equal to the product (or quotient) of the versors
of the two quaternions.

For, let q = q l q2 -

Then T^Ug- = T^T^TJ^TT?.,.
But Tq = T?,?2

= T?1T? 2,

and U<7 = Ug^ ;

therefore, Tq^Tq^q^q^ = r

qiTq 2 Uq l ~Uq.2 ;

Similarly,
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60. "Let q (= $q + Vq) and r (= Sr + Vr) be any two
uaternions.

Then, qr = SqSr + SrVq + S?Vr + V^Vr,
rq = SrSq + SrV? + SqVr + VrVq ;

resolving the quaternions VqVr and VrVq,
= (S?Sr + S . V9Vr) + (SrVq + S?Vr + Y . VqVr)..(l)

rq -.-= (SrS? + S . VrV^) + (SrVq + SqVr + V . VrV?)..(2)

iSince the right hand member of both of these two equa-
tion.' is the sum of a scalar and a vector, we have a fresh

prooi that the product of any two quaternions is a quaternion.

(a). From (1) and (2) we have

Sqr = SqSr + S . V?Vr,
Sr? = SrS? + S . VrVq.

Now, obviously,

SrS? = S?Sr ;

and, 22 (1), S . VrV? = S . V?Vr ;

therefore, Srq = Sqr ....... (3)

unless S . V^Vr = o,

i.e. unless the planes of the two quaternions are at right
angles.

(b). From (1) and (2) we also have

Vqr == SrV? + SgVr + V . VqVr,
Vrq = SrVq + SqVr + V . VrVq.

But, 22 (2),
V . VrV? = V . V?Vr.

Therefore,

Vqr = SrV? + S^Vr + V . VqVr,}
Vrq = SrV? + SqVr V . V^Vr. f

' '

Therefore, Vqr j= Vrq........ (o)

unless, V . VqVr = o,

/ . unless the quaternions are coplanar.

Hence, in general,

Adding and subtracting the equations of (4),

Vqr + Vrq = 2 (SrVq + SqVr)}
V<yr- Vrq = 2 V. V-yV/-
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61. (a). Sqr = Tqr . SUgr,

Srq = Trq . SUr?.
But Sqr = Srq ; Tgr =

therefore, SUgr = SUrq,
and Z. qr = l_ rq

(b). Further, since Sgr ^
Tqr . SUgr ^

and STJgr 96 STfySUr (2)

62. (a). From (1) of 60,

Kgr = (SgSr + S . Y?Yr) - (SrVq + SgVr + V . VgVr)
= S?Sr - SrVq - SgYr + (S . VrYg + V . VrVg)
= SgSr - SrV^ - SgVr + VrV^
= (Sr

-
Vr) (89

-V?)

=KrK^ (1)

(b). Let gr = a. Then, 48 (b), (7),

s + Ks = 2 Ss
j

0r + Kgr = 2 Sgr = 2 (S?Sr + S . VgVr) ... (2)

(c).
S . gKr= S . (S?+V?) (Sr-Vr)=S?Sr-S

S(Ky . r)= S . (S?
- Yg) (Sr +Yr)=S?Sr- S

therefore, S . qKr = $(Kq . r) (3)

63- () Since gr =^ rg, 60 (6), it follows that the

multiplication of diplanar quaternions does not obey the

commutative law.

(b).
The distributive law applies to the multiplication of

quaternions. For, if we take four quaternions, p, q, r, s, in

the quadrinomial form, 35, it will be found by actual multi-

plication that

(p+ q) (r+ s)
= pr+ qr+ ps+ qs = pr+ps + qr+ qs = &c.

The distributive law, therefore, applies to four quaternions.

(c).
If we actually multiply the product pq into r, the

result will be found to be equal to the result of multiplying p
into the product qr. The associative law, therefore, applies
to three quaternions.

It may be similarly shown that the multiplication of any
number of quaternions is distributive and associative.
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SECTION 2

Coplanar Quaternions

64. The multiplication of diplanar quaternions is not

commutative : the multiplication of coplanar quaternions is

commutative.

For, if two quaternions, q and r, are coplanar, V<7 and Vr are

parallel ; and, consequently, V . Vg-Vr= o = V . VrV^-, 23.
Therefore the two equations of 60 (4) are equal, and

qr = rq.

(J5 . Hence, any quaternion, its reciprocal, its opposite, its

conjugate, and any power of the quaternion, all of which are

coplanar, are commutative ; or,

qKq = Kq . q } q~
l

(
-

q) = -
q . q~

l

; Kq . q
n= q

n
Kq, <fcc., &c.

SECTION 3

Right Quaternions

66. Let v 1}
v2 be any two right quaternions, with axes

and
t] respectively. Then,

St?
t
= o

; Vv, = v
l ; Uvj = Ax ,v

l
= f;

with corresponding values for v2 .

Consequently, equations (1) and (2) of 60 become,

Adding and subtracting,

Sw^a = i (t>, a + v2v,),l /O v

V2V,). J

Again, 62 (a),

Kv,^ = Kt>2Kv, = (
v2) ( v,)

=
Wg-w, . . (3)

67- Suppose the plane of v, to be at right angles to the

plane of v2 ,
and the direction of rotation to be such that

,
= Tw,.t; v^Tv.,../;

Then, v,v2
= Tv,Tva . ij

= Ti?,Tv2 . k, . . . . (1)

V& = Tv2Tv, .ji = - Tv,Tu2 . k . . . (2)

Therefore, v2v t
= -

r,v2 ; ...... (3)

and L v iv l
= /_ v {

v z
=

^, 25, and (1) and (2).
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Further, the versors of v
}

v z and v 3v l (k and k) aro

perpendicular to the versors of both v
{
and v2 (i andj) ; or,

the plane of v^v^ (and consequently the plane of its opposit' ,

ro^i, or v^g) is perpendicular to the plane of v
}
and to the

plane of v%.

Hence, the product of any two right quaternions in

rectangular planes is a third right quaternion ( 1
v 2)

in a

plane rectangular to both, which is changed to its own

opposite ( ^,^2) by reversing the order of the factors

(Hamilton). In symbols,

SECTION 4

On Circular Vector-Arcs

68. Let O be the centre of a sphere of unit-radius.

Then any arc AB of any great circle of the sphere may be
OB

regarded as the representative of the versor -
. For the

vJ-A.

plane of the versor is the plane of the arc
;
the angle of the

versor is measured by the length of the arc
;
and the direction

of rotation is indicated by the direction in which the arc AB
is drawn from A to B, fig. 24.

Definition. Two vector-arcs are equal, and only equal,
when the origin and term of the first can be brought to coincide

simultaneously with the origin and term of the second, by

sliding the first backwards orforwards on its own great circle.

Thus, if on sliding (either way) the
arc AB round the great circle of a

unit-sphere, shown in fig. 24, the

point B coincides with D when A
coincides with C

; then,

AB = CD.
Two consequences follow from this

definition. First, no two vector-arcs

of the same great circle are equal,
unless the direction of both, as seen

from either pole of the common great

circle, is towards the same hand.

Secondly, whatever their length, no two vector-arcs of

different great circles can be equal, except in one particular
case. This case occurs when both the arcs are great semi-
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circles. All great semicircles are equal vector-arcs, since they

}11 represent versors of the form =
1, and the plane

1 is indeterminate.

69. Let any two arcs, C'C and AA', of different great
circles bisect each other in B, fig. 25.

Join A and C, C' and A', by arcs of

great circles, and let the versors of any
two quaternions, reduced to the form

;?= OB
=

Then,

where BC is said to be added to AB.

Similarly,

OB OCOA' __ /_ /
(f)

,

OB-OB '

00'- '-

Tlie multiplication of versors is thus reduced to the addition

of circular vector arcs.

70. Unlike the addition of rectilinear vectors, and of

quaternions, the addition of diplanar vector-arcs is not
commutative

;

BC + AB ^ AB + BC.

For BC+AB = AC ;
and AB + BC = BA' + CTB=C'A'.

Hut AC ^ C'A', although the two arcs are of equal length.

For, if C'C and AA' are both less than great semicircles (as
shown in fig. 25), or if one of the two is a semicircle and the

other less than a semicircle, in both cases AC and C'A' belong
to two distinct great circles, and are therefore unequal by

definition. Were CC and AA' both semicircles, AC and



88 ON CIRCULAR VECTOR-ARCS

C'A' would both belong to the same great circle, of which B
would be a pole ;

but they would have contrary directions,

and would therefore be unequal by definition. In every case.

therefore, AC ^ C'A', and, consequently,

AB + BCVBCr + AB;

or, the addition of diplanar vector-arcs is not commutative.

71. We now see why (in general)

q'q ^ qq', 60 (6).

For C'A' ^ AC
;

therefore, VqUq' -^ ~Uq'TJq ; therefore, qq' ^ q'q.

We also see why /. qq
1 = Lq'q, 61 (1).

For L Uqq' = L (%%') = L^ = {_ C OA'
;

L Vq'q = ^(LYU?)
= L

^
= L AOC.

But L C'OA' = L AOC, because CAA*' and AC are equally

long. Therefore, _ Vqq' = _ Uq'q ', or,

L qq'= Lq'q.

72- The addition of coplanar vector-arcs, however, is

commutative ; for, evidently, fig. 25,

BC + 6~B = crc = C'B 4- B~a . . . .

(ij

These equations show that the multiplication of coplanar
quaternions is commutative, since they are equivalent to

OC OB =OB OC
.

OB
'

OC' OC'
'

OB ;

or, U?' . U? = Uq . Uy'.

Hence, qq' = q'q,

a confirmation of 64.
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I ^
\ 73- For the same reason that AB represents the versor

K, BA represents the versor -. But, if

OA O>

= u* -= u UK* 48 <3) -

Hence, if a vector-arc represents the versor of any quater-

nion, the revector-arc (or the arc reversed) represents the

versor of the reciprocal, or of the conjugate, of the quater-
nion. Consequently, fig. 25,

CA represents U = UKoV :

qq

BA U- = UK? ;

CB U^-= UKo'.
?

But CA = BA + CB
;111

therefore, = -
. -,,

q'q q q'

TLq'q = KqKq',
a confirmation of 62.

74. If C'C and AA', fig. 25, are both great semicircles,

AB (= U?) and BC (= IT?') will be quadrants, i.e. q and q'

will l>e right quaternions ;
and C'A' and AC will belong to

the same great circle, but will have contrary directions.

Therefore, since C^A' and AC are equally long, C^' is the

revector of AC
;
and since AC =

0)

Equation (1) is simply equation (3) of 66, in different

ymbols,
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If the semicircles C C and AA' cut each other at right

angles, C'A' and AC will be quadrants of the same great
circle with contrary directions, i.e. qq' and q'q will be right

quaternions, and. consequently,

Vgq' = UKq'q = KUq'q = - VU q'q, 66
;

or, qq' = q q,

which is a confirmation of (3) of 67, v.
2
v

l
= v

[
v 2 .

75. It remains to show how either of the two unequal
quaternions, q'q and qq , may be geometrically transformed
into the other.

Let ABC be any spherical triangle, O being the centre of

the unit-sphere ;
and let the versors of any two quaternions,

reduced to the form c and -X be \Jq = , ~Uq' = --. Let
a p OA OB

P be the Positive Pole of AB, i.e. that one of its two poles
round which rotation from A to B, or OA to OB, would

appear to be right-handed to an observer standing upon the

surface of the sphere at P. Let Q be the positive pole of

BC, and S the positive pole of CA
; S being, consequently, the

negative pole of AC. Then, joining the points P, Q, and S by
arcs of great circles, we have

and, from the known properties of the polar triangle,

Z.? =AOB = APB= 7r-QPS; or, -/lQPS = 7r-Z q, . . (2)

/l?'=BOC=BQC=7r-SQP; or, L SQP= A- - L q'- . -H
Further, since the angle of a quaternion is equal to the

,
. -, , OA OC

angle of its conjugate, or, Z. oc
= Z. QA

= Zl ? ?,

/ q'q= COA= CSA = TT- PSQ ; or, /. PSQ=;r- /_ q'q . . (4)

Let us now pass from the triangle PQS to a third triangle,

PQR, where R is the point upon the sphere diametrically

opposite to S, and is consequently the positive pole of AC.
Then, since the versors of conjugate quaternions are opposite

unit-vectors, and since OS = UK^'g, (1),
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Calling the angles of the triangle PQR, P, Q, R, we have

, ' / A\ f l u /
- TT /_ q q, (4) j

In fig.
26 the arcs C'C and AA' bisect each other in B, as

in tig. 25, and the triangle PQR Q
is derived from the original tri

angle ABC in the manner just
di -.scribed. Let R' be the posi-
tive pole of C A'

; join R' with

P and Q by arcs of great
circles ;

and draw OR'. Then,

Since the angle between the PIO . 26.

perpendiculars to two planes is

the supplement of the angle between the planes,

L QOR = 7r- ^ C = -n-
- C' = L QOR',

/ "POT? " / A ^ TT / A' ~~" / "POT?'

Therefore, QR = QR', and PR = PR' (in length) ;
and

from the equality of the triangles PQR, PQR', it follows

that

L QPR = L QPR'.

But, (6),
= ZlP= Lq\

therefore, _ RPR' ^Lq (8)

Since PR = PR', a small circle, described with P as its

positive pole, which passes through R, will also pass through
R'. Therefore, OR (= Uq'q) may be transformed into

OR'(=l%') by the Conical Rotation of OR round OP
through the angle RPR' = 2 /_ q.

In symbols,

_ OB OC OB OC OA ^=
OA OB OA OA OB

It is evident that the symbol q ( ) q
~

'
is an operator

which produces a positive conical rotation of the versor, or

axis, of the operand quaternion (which is written within the

l>;uvntheses) round the versor, or axis, of the operating
quaternion, q, through an angle = 2 q, without altering
tin- angle or tensor of the operand q'q (since
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' =
.q'q). This rotation is positive, because it is right-

handed as seen from P, the term of U^. Were it negative,
the operator would be written q

~
l

( ) q. Thus,

OC OB OA OB OC OB TT

or, q-
l

(qq'}q = q'q ......
Regarding vectors as right quaternions, it follows from the

preceding argument that, if

vfa-
l =P; ...... (ii)

then (3 is the vector generated by the positive conical rota-

tion of ft round the axis of q through %q. Evidently

Finally, if

a/3a~
l = /? ; (12)

then
y8' or OB', fig. 21, is the vector generated by the posi-

tive conical rotation of /3 round Ua through twice the angle
of a considered as a right quaternion, that is, through TT.



93

CHAPTER IX

FORMULA

76. Let a;, a2 . . . a,, be any coinitial vectors. -

V70a = V (S7/3 + V70) a = V . 08)87 - V . aV7j8 = V . aS07 + V . a

= V. 0(807 +V07)=Va07.

By extending this process we obtain

V(a,a2 . . . aB)
=

q= V(a,,an _ 1
. . . a,), ... (1)

according as n is even or odd. For example,

Va/3 = -
V/fe.

Sa/3y
= S . a (Sy + V/?y) = S . aVfty = S . Vy (a)

= S (S/?y + V/?y) a = S^Sya.

By extending this process we obtain

S(a,a2 . . . a,()=S(a2a3 . . . ana,)=S(a 3a4 . . . ana 1
a2)=&C. . . (2)

Sa/3y = Sya^ = S.y (Sa + Va/3) = S . ySa + SyVa)8 J

therefore, Sa^y = SyVa)3.

And Sy/?a = SyVySa = -
SyVajff J

therefore, Sy/3a = SaySy.

By extending this process we obtain

S (a,aa . . . a) = S (c^a,,., . . . a,), . . (3)

according as n is even or odd. For example,

S/3a = Set/?.

It is unnecessary to write S . yVa/3 above, instead of

Sy Va/3 ; for, if the expression has a value different from zero,

it cannot mean Sy . Va/?, because Sy = o.

The product of any number of vectors in space is generally
.1 quaternion ;

for a/3y8
=

a/3 . y8 = q\q% = qa . If the num-
ber of vectors be odd, one of them may be treated as the

representative of a right quaternion.
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The product of any even number of coplnnar vectors is

generally a quaternion whose axis is perpendicular to their

plane.
The product of any odd number of coplanar vectors is

always a vector in the same plane.
Since cyclical permutation is permitted under the signs

S and T, it is obviously permitted under the signs SU and /_ ;

or, SU (a,a2 . . . OB)
= SU (a2a3 . . . c^a,) = &C. . . (4)

L (a.\a.<i
. . . an)

= Z. (a 2a3 . . . c^a,)
= &C. . . (5)

77. By 22, 2V/3y = fty
-

yft.

Multiplying both sides by a and taking the vectors,

2V . aVfty = V . a (fty
-

yft)
= V (afty

-
ayft),

= V (afty -ayft + ftay
-

ftay),

= V . (aft + fta) y V . (ay + ya) ft,

=
'2ySaft 2y8Sya

or, V . aVfty = ySaft
-

ySSya (1)

From a mere inspection of (1) it is evident that V . aVfty
is perpendicular to a and coplanar with ft and y. If equa-
tion (1) be given in the form

8 = ySaft
-

ftSya,

it is easy to show that a is at right angles to 8. For, multi-

plying both sides of the equation by a, and taking scalars, we

get, Sar> = SaySa/3 Sa/3Say = O.

Therefore, a and 8 are at right angles.

78. fty
= S/?7 + Vfty.

Multiplying a into this equation, and taking the vectors,

Vafty = aSySy + V . aVfty
= aSySy

-
ySSya + ySayS . . . (1)

This equation is of the form,

8 = la + mft + ny.

Vafty, therefore, is the intermediate diagonal of the parallel-

epiped of which the three coinitial edges are aSfty, ySSya ;

and ySa, Pt. I., 37.

79. V . o-VyS = 8807
-

ySSo-.

Let o- = Vay8, and

V . VaVyS = 8S (Vaft) y
-

ySSVay8.
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Introducing the null terms SySa/3 and SSSa/?,

V . Va/SVyS = 8S {(Sa) y + (Va/3)y}
-

yS (SSa/J+ 8Va/8)= 8S . (Sa + Va/3)y
-

yS . 8 (Sa/2 + Va/3)=
8Sa/?y

-
ySSa/3 ....... (1)

It is evident from inspection that V . Va/3Vy8 is coplanar
with y and 8. Further,

V . Va/?VyS = V . VSyVa/3 = /3SSya
-

aS/38y.

Therefore, V . Va/3Vy8 is also coplanar with a and /2. There-

fore, V . Va/3VyS must lie along the only line which the plane

containing a and /3 and the plane containing y and 8 have in

common their line of intersection.

80. V . o-VySy
=

ySo-yS
-

/3Sycr.

Let a- = Va/2, and

V . VaV/3y = yS . (Va/8)
-

/3S . y

But S/3Va/3 = o, because /? and Va/? are at right angles.

Therefore, V . VaySV^y = -
ySSyayS . . . . (1)

We have, therefore,

oSaySy = V . V/?aVay ; ygSa^y = V .VyV/?a ;

ySa/?y = V . VayVy/3 ..... (2)

81. V - VaySVyp = pSay - ySpa/?,- V . Va/3Vyp = V .VypVa/3 = ySSypa
-

aS/3yp.

Adding pSa^Sy = aSySy/3 + /3Syap + ySa^p, . . . (1)

a formula expressing a vector, p, in terms of three given
diplanar vectors, a, /?, y.

pSa/2y is the intermediate diagonal of the parallelepiped of

which the three coinitial edges are aS/3yp, /3Sya/>, and ySa/fy.

82. Assume,

pSa/?y = xVfiy + ?/Vya + zVa/3 ;

it is required to determine the values of x, y, z,

Multiplying a into the equation, and taking scalars,

SapSa/3y = xSaVySy + 7/SaVya +

=
a;Sa/3y.

Therefore, 33 = Spa.

Similarly, y = Sp/3 ;
z = Spy.

Therefore, pSa/3y = SpaV/3y + SpVya + SpyVa/J. .

(
1 )



96 FORMULA

83. Sa/?yS = S . (Sa/3y + Va/3y) S

= S.(Va/3y)S= S . (aS/3y
-

/3Sya + ySa/3) 8

= SaSS/Sy
-

SayS/38 + Sa/SSyS

84. S . Va/SVyS = S . (aft
-

Sa/3) (yS
-

SyS)= Sa/3yS
-

Sa/3SyS= SaSSygy
-

SayS/38 ....

(1

85. S (Va/3V/?yVya) = S {Va/3 . V (V/3yVya)}= -S(Va/3.ySa/3y),= - S (yVa . Sa/Sy)= Sya/3 .

86. By 54,

Va/8y = aS/3y
-

ySSya + ySa = (say) a' -
ft' + y .

VySya = yQSya
-

ySa^S + aS;8y = a! + ft'
-

/.

VyayS = ySa/3
-

aS/3y + /SSya = - a' + /3' + y'.

Therefore,

= S
a,

-a',

~
7

= 4Sa'/3'y'= 4S . (aS/3y . /3Sya . ySa/3)= 4Sa/3S/3ySyaSa/3y.

In expanding the determinant, the cyclical order, a', y8', y',

must be preserved.

87- L6^ a be any vector, q (=/3y) any quaternion, and let

Vq = 8. Then,

aq + qa = a(Sq + Vg>) + (85- + Vq) a = 2aSq + aV?= 2aS? + a8 + 8a = 2aS? + 2Sa8
=2 (aS? + S . aV/3y) = 2 (a$q + Sa/3y)
=2 (aSq + S/3ya)

88. aqa = a (85- + V?) a = a2
S? + aV? . a

= a2
Sg - a?Vq + a?Vq f aV? . a

=a*Kq + a(aVq + Vq .a)
+ 2aS . qa.
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89. Let OBCA be any parallelogram, and draw the
QT)

diagonals OC, AB. Let = q ; /.AOB being thus /_ q.

Then,

(T . AB)2 = (T ._OB)
2 + (T . OA)2- 2 (T . OB) (T . OA) cos /_ q,

(T . OC)
2 = (T . OB)

2 + (T . OA)
2+ 2 (T . OB) (T . OA) cos L q.

Dividing both these equations by (T . OA)
2
,

But AB _ OB - OA _ OB _
OA~ ~OA OA
OC _ OB + OA _ OB , _
OA~

~~ ~^"
Therefore, T (q

-
I)

2 = 1 2Sq + T?
2

;

T(q + 1)
2 = 1 + 2S? + T?

2
.

More generally, since T (q" + !)
= ! + 2S?" + T2

^" ;
if

q" = ,
we have

B

Therefore,

q I -q q
and T 2

(q' + q) = T2
? + 2S . q'Kq + T-y.

If q' degenerate into a scalar, x,

T2
(q + x) = T*q + 2o% + x 1

-.

T 2
(q
-

x) = T*q - 2xSq + X*.

90- Lot a be any unit- vector and t any scalar. Then
since a"'

is the conjugate of a',

Sa-'= Sa1

; S tt
-'~ l = Sa'^'ss - Sa1' 1

.

\r i T (' 1)7T ci<i
a' = a sm = a COS v- i = aba'" 1

.

Ji
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Since S . fk = o,

fk = - K .fk = - Kk . Kf = kj-
f

,

and k = fkf.

91. If q and r be any two quaternions,

For, ~^Y= qrq~
l

. qrq~
l=

Similarly, (jkj~
l

)'
= jlij-

'

,

and

92- The proofs of the following formulae are left to the

reader :

S (a + ft) (ft + y) (y -fa) = 2Sa/3y.
V (aV/9y + pVya + yVa/3) = O.

Va/?y + Vya/3 = 2ySa/?.
v (5). $ ( aVySy + /?Vya + yVa$= 13Sa,8y. )

V
.*. 0,K ,

'

(6). V2
a^ = S2

ay8
- a2

y8
2

.

(7). S . V/JyVya = y
2
Say8

-
Sy9ySya.

(8). S (Va/3Vy8 + VayYSyS + VaSVySy) = O.

If a be any unit-vector and t any scalar,

(9). a-' = Sa' - aSa'- 1
.

(10), aVa' = Sa'+1 .

(1U iVf = Vk'
; JVk* = Vt ; kVi' = V/.

(12). /V*
1 = - V/k'

; AV/
1 = - Vi (

;
iV/t ( = -

V/'.
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CHAPTER X

INTERPRETATION OF QUATERNION EXPRESSIONS

93. The symbol S . a x means that a is to be multiplied
into some given expression, and the scalar then taken.

S . x a means that some given expression is to be multiplied
into a, and the scalar then taken. And similarly for V . a x ,

<kc. What is the geometric meaning of the equation

Safty = o ?

Since Safty = o, SaVfty = o.

Therefore, Vfty J_ a.

But Vfty _L ft and Vfty _L y.

Therefore, since a, ft, y are coinitial, they are coplanar.

Conversely, if a, ft, y are coplanar, then

Safty = o.

For Safty = SaVfty.

Now, since Vfty is at right angles to ft and y, it is also at

right angles to a, the three vectors being coplanar. Therefore,

aVfty is a right quaternion, and

O = SaVfty = Safty.

94. What is the geometric meaning of the expressior
S
.i/ty if a, ft, y be diplanar, coinitial vectors ?

Let a, ft, y, fig. 27, be
th^ three vectors, and com-

plete the parallelepiped
OD. From O draw a unit-

vector, , perpendicular to

tin- plane AOB, such that

rotation round it from a to

/} is positive, and from C
1< t fall a perpendicular,
CP. on the plane AOB.
!.( t L AOB = 0',

L POC = <.

B 2
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Then,

Safty= Sya#= SyVayS= S . y (TaT/? sin 6 . e)
= TaT/3 sin 0Sye

= TaTTysin0sin< ........... (1)

But TaT/3 sin is the area of the parallelogram AOB, and

Ty sin < = OP is the altitude of the parallelepiped OD.
Therefore,

Safty = volume of the parallelepiped OD . . (2)

whose three coinitial edges are a, ft, y.

95. As a confirmation of equation (2) of 94, we may
deduce the value of Sa/3y in the form of a determinant by
making use of the trinomial form of the three vectors.

Let

a = x
L
i + yj + Zik,

Then,

Sa/?y= S . (x t
i + yj

2/2.
2 2

y.2

) (xj
-

y\ (

, y= x,

zjc] (x3i z3k)

It will be observed that the sign of this determinant is

negative, while the signs of (1) and (2). 94, are positive. To

explain this difference of signs, let OB = a, OA ---
(3 (fig. 27).

Then the axis of aft will be a unit-vector, 77
=

e, and

Su/3y = SyVa/3 = TaT/3 sin flSyr?
= TaT/3 sin 6 . Ty (

- sin
</>)

= - TaTySTy sin sin
<f>.

= volume of the parallelepiped OD.

It is clear that the change of sign is due to the change in

direction of the rotation from ft to y round a. In 94" this

rotation was negative and the volume positive. When we

change the names of a and ft, this rotation becomes positive
and the volume negative. In other words, the sign of the

volume is positive or negative according as the pyramid
OABC is positive or negative, Part I., 30 (c). We can now
see why the sign of the above determinant is negative. The
result was obtained by resolving each of the vectors, a, ft, y,

into three other vectors in the directions of i, j, k. The sign

of the volume, therefore, depended upon the sign of the

pyramid OIJK (fig. 11), and the sign of this pyramid is, and

must always be, negative by definition.
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We may, therefore, write generally,

Sa/3y = volume of parallelepiped OD )
, g ,.

= : 6 x volume of pyramid OABC )

Tn the case of Sy/?a everything is, of course, reversed,

because Sy/3a = Sa/2y.

But the rule of the pyramid holds good. Sy/3a is positive or

negative according as the pyramid OCBA is positive or

negative.
96- What is the geometric meaning of the symbol VaySy,

when a, /?, y are the successive sides of a triangle ?

Let a, /?, y repre-
sent the sides of a

vector-triangleABC,
tig. 28. Circumscribe

a circle to the tri-

angle, and let the tan-

gents at the points
A, B, C meet in T,,
T 2 ,

T3 . Let the

angles of the triangle
be A, B, C, and let

. . 28.

Ihen, since

L T
;!
BA = i_ C,

U/?a=-Uyr2 ;

UyIJ/?a = Uy/3a = - UyUyr2
= - UyUT2

= LTT2 ;

y/3a = c6aUT2 .

T.ut Sy/3a = O, 93,

therefore, y(3a
= Yy^a = Va/3y.

Therefore, YaySy := a6cUT2....... (1)

The product of the three coplanar vectors, a, /?, y, then,

represents a vector along the tangent to the circumcircle at B,
the origin of a, whose tensor is the product of the sides of the

triangle, and whoae direction represents the initial direction
<>t' motion along the circumference from B through C towards
A [the point T, is not the term of r2].

Were the direction of

rotation round the triangle negative, we should have

(since y/2a
= Vy/?a = Va/?y = a/3y),

(- 7) (- ft) (-)=- y/?
= -

a/?y = abc (- Ur2),

a vector equal in length to a/3y, but drawn from B in the

contrary direction.



102 INTERPRETATION OF QUATERNION EXPRESSIONS

Similarly,

V/3ya = lea . Ur3 ;| f
~

Vya/3 = cab . UT,. )

'

97- What is the geometric meaning of

8 = apa-
l

1

Multiplying a
~ l into the equation,

a- 1 8 = /3a-
1

;

B -^8
therefore,

- = K -.
a a

Therefore, 49 (/), a, ft, 8 are coinitial, coplanar vectors ;

a bisects the angle between B and 8
;
and T8 = T/3. See

75 (12).

98. P = ap ........ (1)

is the equation of a Point.

For, since B = Sap + Yap, if we equate the scalar and vector

parts, we have,
o = Sap ; /3

= Vap.

From the first equation, p _L a
;
from the second, /3 _1_ a, /3 J_ p.

Multiplying a- 1 into the given equation,

p=a-V3;

or, since /3 J_ a and a~ !

/3 is a right quaternion,

p = Va-'yS = - VKa-\8 = - V/Sa"
1 = - v

a

Therefore, p is a constant vector, and the locus of P is a point,

the term of V^.
a

The system

VP=v; S p-=S^, ..... (2)
a a a a

also expresses that the locus of P is a point. For

therefore, S ^ + V 5J=- = B^. = o
a a a

P = A
P = B.
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99- V p= o, or Vap = o, ...... (1)a

is the equation of the indefinite straight line OA.

K = . . (2)
a a

is another form of the equation of OA. For, if q = ,

a

o = q - Kg = 2V?, 48 (8).

Therefore, Lq = L- = o or TT.

a

u e = u . . , (3)
a a

is the equation of the indefinite straight line OB in the case

of the positive, or OB' in the case of the negative sign

(01',' = -
OB).

If y = ~OC be a third vector such that BOG = L AOB,

U 2 = U? ....... (4)
a a

is the equation of the indefinite straight line BB. For, since

a

the angle AOC is bisected by p or p, 51 (9).

V = v,or V? = o, . (5)
a a a

is the equation of an indefinite straight line drawn through
B parallel to a.

What locus is represented by

^Vap = /?? ....... (G)

From inspection, (3 _L a, ft ]_ p.

V.a-'x.

Va-'/5 = V . a^Vap = pSaa"
1 - aSpcT

1 = p - Xa,

where x is an indeterminate scalar. But since (3 _L a,

Va- l

y3
= a- 1

y8
= y = OC,

some vector perpendicular to a and
ft. Therefore,

p = y + xa,

and the locus of P is the indefinite straight line through C,
to a.
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The system of equations,

Sep = o
; Se/3 = o

; S/2p = c (constant) . . (7)

where e is a given unit-vector, expresses that the locus of P
is a straight line.

The first equation restricts p to a fixed plane through the

origin J_ e, which, by the second equation, contains
ft.

From
the third equation, if Tp = x, and T/3 = b, 6 being the variable

angle between the two vectors, we have
xb cos B = -

c,

/> c
x cos 6 = .

6

If, then, we take on ft (or ft produced) a point C such that

00.5,
the sought locus will be the straight line through C J_ ft.

If c = o,

S/3e = o
; S/3p = o

; Sep = o, . . . . (8)

expresses that the locus of P is the indefinite straight line

through O, _L ft.

100. UV- = Uv (1)
a a

is the equation of that part of the plane AOB which lies on
the same side of the indefinite straight line OA as the point B.

If OA7 = - OA,
T(p+) = T(p-a), ..... (2)

being equivalent to AP = A'P, is the equation of a plane

through O perpendicular to a.

S? = o, or Sap = o, ..... (3)
a

expresses the same locus
;
as also does

K^=-P (4)
a a

To deduce (3) from (2),

T (p + a) = T (p
-

a),

rp p -f- a _ rp p
- O.

)

T(? +
a

i)
= T(/-l),

1 + 2S? + T*0 = 1 - 2$q + T2
?, 89,
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To deduce (4) from (3),

= 2$e = s? + vP -v? + S? = P +K?.
a a a a a a a

s P = i ........ (5)
a

is the equation of a plane through A perpendicular to a.

For it is equivalent to S = o, which shows that
a

(p a) J_a.

Sap = - rt
?
,
....... (6)

which is equivalent to Sa (p a) = o, gives the same locus.

Sap = 1 ....... (7)

is the equation of a plane through A', the term of a" 1

, per-

pendicular to a" 1 or a. For it is equivalent to

= Sap - 1 = S -P- - S^ =
~' '

o
a~ a a"

This plane is consequently parallel to the plane of (5)
and (6).

S P = c (constant) ...... (8)
a

is a plane parallel to the plane of (5).

For,
c a Co.

~ Car
therefore, S''=o.

Co.

Consequently (p ca) J_ ca, or a.

Sap = c ........ (9)

gives the same locus.

S^=^ = o,or,Se=S^ . (10)

shows that p /?J_a, or BPJ.OA. The. locus of P, there-

fore, is a plane through B perpendicular to a, in some point,
A'. This may seem plainer if we write the second equation,

'hence TpSU p = TySSU ^,
a a
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or OP cos POA' = OA' = OB cos BOA'.

a), ...... (11)

being equivalent to BP = AP, expresses that the locus of P is

a plane which bisects at right angles the straight line AB.

Squaring (11) we get as the equation of the same plane,

(p-,8)
2 =(p-a) 2 ...... (12)

101. If = -
1, ....... (1)

- was shown (51) to be a right quarternion such that
a

Tp = Ta. The locus of P, therefore, is a Circle with O as

centre and Ta as radius, the plane of the circle being perpen-
dicular to a. Or the locus of P is a great circle of a sphere
with O as centre and Ta as radius, of which circle A is one of

the poles.

= - v > o ..... (2)

give a similar locus, the radius of the circle being in this case

via.

If c be any given unit-vector,

Tp = Ta
; Stp = o ...... (3)

is the equation of a circle with O for centre and Ta for radius.

Sp (p
-

2a) = o
; UVap = e .... (4)

is the equation of a circle passing through O, with A for

centre.

The system of equations,

p = a'fi ;
Ta = 1

; Sa/3 = o . . . . (5)

represents a circle with O for centre and OB for radius, in a

plane perpendicular to OA, t being a variable scalar.

102. What locus is represented by

VapVpfi = V2
a/2 ?

Since V 2
a/3 is a scalar, Vap and Vp/3 are parallel ;

and

consequently p, a and /3 are coplanar. Therefore,

p = xa + y(3,

where x and y are scalars.

V . a X , Vap = yVa/3.

V . x p, Vp/3 = xVa/3.
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Therefore, V 2
aft
= VapVpyS = xyV*aft ;

<*y
= i

;

p=xa+-ft,
x

the equation of a Hyperbola, a and (3 being unit-vectors along
the asymptotes taken as the axes, and x and y the Cartesian

co-ordinates.

103. P = a'ft ;

To. = 1
; Saft ^ o

;

represents a plane ellipse. For,

(tlT
. . tTT\ r, n tlT

. n tlT
cos -- + a sin

9 J
ft
=

ft cos ;>
+ aft sm f)

.

Let ~ =
0, and VayS = OC"= y.

Then, taking vectors,

p = /? cos ^ + 7 sin 0,

the equation of a plane Ellipse of which O is the centre, ft the

major and y the minor semi-axis, and 6 the eccentric angle.

10 r. P
2 =-l, or, TP =1 ..... (1)

is the equation of the unit Sphere.

Tp = Ta ........ (>)

is the equation of a sphere with O for centre, which passes
throuh A.

e = i . (3)
\ /

gives the same locus
; for,

, Tp = Ta.

T(p-a) = Ta ... ... (4)

is the equation of a sphere passing through O, with A for

centre.

(P
-

a)* = (0
-

)
...... (r.)

T(p-a) = T(/3-a) ..... (6)

being equivalent to AP = AB, is the equation of a sphere
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passing through B, with A for centre. may be any point
in space.

S = 1, or, S = o, or, S5p = p . . . (7)
P P

is the equation of a sphere with OB for a diameter
;
for since

((3 p) is at right angles to p, the angle OPB is always a

right angle.

f
=K

;
; H

gives the same locus as (2). For, multiplying by -,

1 = ? B = ? K- = T2 -
; therefore, Tp = Ta.

p a p p p

105- The system of equations,

a p

expresses that the locus of P is a circle, namely, the Circle in

which the plane through A, perpendicular to a f S ^ = 1
]

intersects the sphere with OB for a diameter (s"=l).
V P

For since P must lie at the same time upon the sphere and in

the plane, its locus is necessarily the only line which the

sphere and the plane have in common the circle of inter-

section.

106. p = aV?a-<,

or, p = art

/fe-
c
',

where t and are variable, is also the equation of a Circle.

What circle 1

Comparing these equations with (9) of 75, it is clear that

p is the result of the positive conical rotation of y8 round a

through an angle = 26 = fir = 2t
( ^ ),

i.e. twice t times the

angle of a considered as a right quaternion. The locus of

therefore, is a circle upon a sphere with T/3 for radius.

107. SU B = SU
a a

is the equation of one sheet of a Cone of revolution passing

through B, with for vertex and a for axis.

,he

'
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The other sheet is represented by

both sheets by

fsu
\

108. If we multiply together the two equations of 105

we get

ss = i, ....... (i)
P a

the equation of the Cyclic Cone, discovered by Appolonius of

Perga. It is an oblique cone, and has a circular base.

Equation (J) is evidently satisfied when the two equations
of 100 are satisfied. Therefore every point of the circle re-

presented by the equations of 105 must lie upon the locus

represented by equation (1). But this equation remains

essentially unchanged when p becomes xp, x being any scalar,

positive, negative, or null. For,

s /V-p = i
s . ^P = s s e = i.

xp a x p a p a.

Equation (1) therefore represents the cone (prolonged
both ways) with for vertex which has the circle of 105 as

its base.

It becomes a cone of revolution when A (the term of a)

coincides with the point in which (3 cuts the plane of the circle.

Any plane parallel to the plane S - = 1 will obviously cut
a

cither sheet of the cone cyclically. But there is another and
a distinct series of planes which also cut the cone cyclically.

For

therefore, S ^ = -1
, S -f-.

p f 13

And S /' = Spa'
1 = Sa-'p = S -"' -**- = p'S

a
".

a p p

Therefore 1 = S S ' = \ S / ,
. pS

""' = S
rt

"'

S ''
.pap2

/?'
1

p p /3
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an equation which expresses that the locus of P is a cyclic cone
with O as vertex, whose base is the circle in which a sphere

with a" 1 for a diameter
(
S = 1

)
is cut by a plane through

\ P J

B' (the term of p~
l

), perpendicular to p~
l ( S -^ = 1

J.
r* '

109.
TV = TV

, or, TVap = TVa/3, or, V2 = V2
. . (1)

a a a a

is the equation of a Cylinder of revolution passing through B,

with a along its axis. For, if - = <, and/. - = 0,the given
a a

equations are equivalent to

. Tp sin < = T/3 sin
;

or, if D and Q be the feet of the perpendiculars let fall froi

B and P respectively upon a,

PQ = BD.



Ill

CHAPTER XI

05 THE DIFFERENTIATION OF QUATERNIONS

SECTION 1

General Principles

110- When we speak of a variable quaternion, we
menu, in general, a quaternion whose tensor, angle and plane
are variable. Hence, if q be any variable quaternion, then

T<7 and \Jq, S<? and V^, {_ q and UVq are, in general, variable

quantities.
When the plane is variable the quaternion and its differen-

tial, which is obviously a quaternion also, are diplanar.
If the plane happen to be constant, while the tensor and

angle vary, the quaternion and its differential are coplanar.
The method of the ordinary Differential Calculus, in so far

as it involves the commutative law of multiplication, is

inapplicable to vectors and quaternions. To show this, let us

xaniine some simple case of ordinary differentiation, say,

f(x) = x>.

Then, f(x + Ax) = (x + Ate)
2
,

f(x + A,r)-/(x) _ (a; + Ax)
2

a;
2
__ 2o;Aa; + (Ax)

2 ,,

A.r Ax Asc

= 2cc + Arc
j

and at the limit, when Ace = o,

.

ax

This result, it will be observed, depends upon our having,
as in (A),

(x + Ax)
2 = x2 + 2xAcc + (Aa-)

2
.
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But in the case of the equation

where q is any quaternion, in general,

(q + A?)* ^ + '2qq

because, in general, q and c?g are diplanar quaternions, and
the commutative law of multiplication is applicable to

coplanar quaternions only. In fact,

(g + A?)
2 = (q + q)(q -f Ary)

= g* + A? . g + q\q + (A?).

In consequence of this peculiarity of quaternions, it

becomes necessary to frame a definition of differentials which
shall not involve the commutative law, and which shall also

remain true for quaternions which degrade to vectors or to

scalars.

Definition. Simultaneous Differentials are the Limits

equimultiples of simultaneous and decreasing Difference

Conversely, if any simultaneous Differences, of any system
Variables, tend to vanish together (according to any la^v\ an

if any equimultiples of these decreasing Differences tend a

together to any system offinite limits, then these Limits ai

Simultaneous Differentials of the related Variables of tJ

System (Hamilton).
In symbols, let

denote any system of connected variables
;

let

denote a system of their connected (or simultaneous) differ-

ences, so that

q 4- A//, r + Ar, s + As (3)

shall be a new system of variables satisfying the same law as

the old system (1). Then, in returning gradually from the

new system to the old one, the simultaneous differences (2)

can generally be made to approach together to zero, since

evidently they may all vanish together. But if, while the

differences themselves decrease indefinitely together, we mul-

tiply them all by some common but increasing number, n.

the system of their equi multiples,

n\q, n\r, //Ax (4)

may tend to become equal to some determined system of finite

limits,

a, b, c (5)
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When this happens (as it can be generally made to do

by a suitable adjustment of the increase of n to the decrease

of A^, Ac.), the limits thus obtained are the Simultaneous
Differentials of the related variables, q, r, s . . ., and we
have

a = dq, b = dr, c = ds ........ (6)

A quaternion decreases as its tensor decreases, and it

decreases indefinitely when its tensor tends to zero (Hamilton).

111. As an algebraic illustration of the foregoing prin-

ciples, let us investigate the differential of a;'
2
,
where x is any

scalar.

Let y = x i......... (1)

Then y + Ay = (x + Axf,
and Ay = Ix^x + Aa??

;
.... (2)

where Ace2
represents (Ate)

2
. A

(a;
2
)

will be represented by
A . a:

2
; (dx)

2
by dx2

;
d (x

1

} by d . a?
2

. If n be an arbitrary

multiplier, say a positive whole number,

Conceive, now, that while the simultaneous differences A.x

and Ay tend together to zero (always, however, remaining
connected with each other and with x by equation (2)), the

number n tends to infinity, in such a manner that nAce tends

to some finite limit, a. This will be the case if we oblige A.C

to satisfy always the condition,

Aa; = ro"
1

a, or n&x = a ..... (4)
We then have

wAy = 2xa + n~ l a? = b + n~ la?
;

if b = 2xa
;

where b is finite, because x is supposed to be finite.

But as n increases indefinitely, n~'a2 decreases indefinitely,
a being given and finite

;
and the limit of n~ la? is rigorously

zero. We therefore have at the limit,

Since, then, a and b are the limits of equimultiples of

simultaneous and decreasing differences, w.e have

dx = a
; dy = b = 2xa

; ..... (ti)

or, dy = d . x* = 2a?G?a;....... (7)

It will be observed that the use of the word 'limit' has
been extended so as to include the case of constants. A
constant is here regarded as its own limit.

I
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112. As a geometric illustration of the foregoing principles,
let us investigate the differential of an area, say a rectangle.

Let ABCD, fig. 29, be any given rectangle, and let BE
G M F and DG be any arbitrary, but given

and finite, increments of its sides AB
and AD. Complete the rectangle AF,
which will thus exceed the given rect-

angle by the gnomon CBEFGDC.
Let I be a point upon the diagonal

of CF such that the line CI is an arbi-

trary but given submultiple of the line

CF
;
and through I draw HM and KL

parallel to AD and AB. These parallels intercept, on A D
and AB produced, equisubmultiples DK and BH of the two

given increments (DG and BE) of those given sides
; for,

obviously,
DK CI_ _ BH
DG CF BE

'

Let the point I gradually approach C. Then the lines BH
and DK, and the gnomon CBHIKDC, or the sum of the

rectangles CH, CI, CK, will all indefinitely decrease, and will

tend to vanish together ; remaining, however, always a system
of three simultaneous differences (or increments) of the two

given sides, AB, AD, and of the given rectangle, AC.
The increments of the sides, being constant, are their own

limits
;
and since (by construction) they are always equi-

multiples of the simultaneous and decreasing differences, BH
and DK, we are justified by the definition, 110, in taking BE
and DG as the simultaneous differentials of the sides AB
and AD

; provided that we take the limit of the equimultiple
of the gnomon CBHIKDC as the simultaneous differential of

the rectangle AC.
What is the equimultiple of this gnomon, and what is the

limit of the equimultiple ?

The equimultiple of the gnomon is evidently

- -
. CBHIKDC = BB

(CH + CI + CK) =
BE

(BC . BH + CP . CQ + DK . DC)BH BH BH

=|| (BC . BH) +
jg

(CP . CQ) + | (DK . DC)

= BC . BE + DG . DC + CP . CR
= CE + CG + CL.

Now, the limits of CE and CG are these rectangles them-

selves, since they are constant
;
while the limit of the rect-
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angle CL (i.e.
its value at the instant when the point I

becomes coincident with C) is exactly zero. Therefore the

differential of the area, or rectangle, ABCD is the sum of the

rectangles CE and CG.
These two examples show, first, that differences and

differentials must not in general be confounded together ;

secondly, that differentials are not necessarily small
; thirdly,

that the differentials of quantities which vary together

according to a law need not be homogeneous, it being sufficient

that each separately should be homogeneous with the variable

to which it corresponds, and of which it is the differential, as

line of line and area of area.

SECTION 2

Differential of a Vector

113. Let us apply the foregoing principles to the differen-

tiation of a vector.

The equation

P=/(0, (1)

where t is an independent and variable scalar, generally repre-
sents the vector of a point, P, of a curve in space (fig. 30).

If Q be another point of the same curve, we have

OP + PQ = OQ,
or, P =

p + Ap =f(t + AO, . . (2) V ^^
where Ap and A are the simul- * *^M
taneous differences of p and t.

Subtracting (1) from (2),

FIG. 30.

Let Ap, or PQ, be the nth
part

of the vector PR = <rn,
and let A< be the wth

part of a new
scalar, u

;
so that

nAp = wPQ = PR, or, Ap = w-Vn ,
... (4)

wA = u, or, A< = n~ }u ; (f>)

Then, substituting this value of AJ in (3), and multiplying
it by n,

If the scalars t and u be constant, while n is a variable

scalar, the vector p, and consequently the point P, will be

i 2
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fixed
;
but the points Q and R, the differences Ap and A<, am

the vector &, will in general vary together.
If n increases indefinitely, the simultaneous differences

Ap and A will decrease indefinitely, and will ultimately vanish

together (equations (4) and (5)). But although the chord PQ
will be thus indefinitely shortened as Q moves along the curve

towards P, yet its nih
multiple, PR, or o-n,

will generally tend
to some finite limit, depending on the supposed continuity of

the function f(t). In other words, R is always a point upon
the line passing through the points P and Q ;

and when
(at,

the limit) Q coincides with P, R will still be a point upon the

line passing through these two indefinitely close points of the

curve that is, it will be a point, T, upon the tangent to the

curve at P. If, therefore, we call the vector-tangent T, it is

clear that this vector T is the limiting value of the vector

<rn = nAp when n increases indefinitely ;
while u is the corre-

sponding limit of n\t. Therefore T and u are the differentials

of p and t, since they are the limits of equimultiples of simul-

taneous and decreasing differences. In symbols,

lim. n&t = u =dt
; lim. wAp = T = dp . . (7)

At the limit, therefore, whether P be a point upon a curve

or not, equation (6) becomes

dp = df(t)= Mm. {/( + n- 1

*) -/()} . . (8)
= oo

where t and dt are two arbitrary and independent scalars,

both generally finite
;
and dp is, in general, a new and finite

vector, depending upon those two scalars according to a law

expressed by the formula, and derived from that given law,

whereby the former vector p, or
</> (t), depends upon the single

scalar, t (Hamilton).

114 . As an illustration of these principles, let us

differentiate

p = t*a,

where a is a given and constant vecton
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Let nAtf = w, a given and constant scalar.

Then, A* = ",
n

a ( / .
,

U\'2
2 \ Ma/ t* \

and Ap = -
I t + -

)
t
l

\
1 1 + -

1-

2 ( \ nj n\ 2/t/

Hence, (4), <rn
= wA/o = wa/ + ^ j,

and at the limit T = uta.

But T = dp ;
u = dt

therefore, dp = df(t) = d . fy
2a = aidt.

SECTION 3

The Differential of a Quaternion

115. Let Q = F(9,
r . . .

),

and let dq, dr . . . be any assumed (but generally finite)

and simultaneous differentials of the variables q, r , . . .
,

whether scalars, vectors, or quaternions. Then, 110, the

simultaneous differential of their function, Q, is equal to the

following limit,

dQ = lim . n{F(q + n- l

dq,r+ n-*dr, ...)-F(q, r, . . .)} .. (1)
n= oo

where n is any whole number, or other positive scalar, which
increases indefinitely (Hamilton).

If the function Q involves only one variable q, or

then,

dQ = dfq=\im,n{f(q + n-'dq)-fq\ . . (2)
n = oo

116. As an illustration, let

Then, dQ = lim . n {(q + n^dq)* q*} ,

n = '-

= n {(q + n~ l

dq) (q + n~ l

dq) q*} ,

= . n (n~*qdq + n~ l

dq . q f n~*dq*),

= . (qdq + dq . q + n-'cfy
2
).

Therefore, d . q* = qdq + dq . q ...... (1)



118 ON THE DIFFERENTIATION OF QUATERNIONS

This expression cannot be further reduced, the quaternions
q and dq being, in general, diplanar. In the special case when

they happen to be coplanar, we have, 64,

dq . q = qdq,

and d . q
2 = 2qdq.

It will be observed that n~ ]

dq- vanishes at the limit,

because n~ l

Tdq'
2
,
or n~ l

T^dq, vanishes.

If q degenerate to a vector,

d . p
2 = pdp + dp . p = 2$pdp (22) . . . (2)

SECTION 4

Miscellaneous Examples

117. y = sin x.

dy = lim . n
\
sin f

x -\
-

J sin x }

n = V V nj J

( . dx . dx . \= . n smxcos ---h cos a; sin --- sin x .

\ n n J

i> v dx
But lim . n cos = n,

n =

T - dx jand w sin = dx.
n

Therefore, dy = cos xdx.

118. y = cos x.

dy = lim . n ( cos (
x -\

= oo I V

( dx . dr. \
=. . n cos x cos ---- sin a; sin-- cos x 1

\ n n 1\

= sin xdx.

119. y
where m is a constant scalar.

= lim . n m "

71= 30

\
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* '

1 1
Let m n= 1 -f ,

so that z =
dx

m" 1

Then, since

log

we have

dx

n dx

dx

m 1 n\m
Therefore, treating dx as a constant,

lim ' ~7^ ~~A
= h

-
m ' ] Sm + 0*

= logm

n\m
Consequently,

(
**

\
n\m

n

IJ 1
lim . = - = log m.

71 = 00 dx logm e

Therefore,

-
.

lim . n \jn
n \J= \og,,mdx ;

71 = 00

and dy = mx
log,, mdx.

120. q = *}*,

where
77

is a constant unit-vector.

f <* }
dq =: lim . n\if* n

rj

x

j,
71=00

f
**

"l= . n-rf\ri
n

IJ,

r l Trdx . irdx ,\ 000 /ox= . nrfloo*
- - + 7]

sm - 1
, 33, (2).

\ _ // _ // /

Now, lim . cos = 1
;

- 2n

. irdx . v

.sin - = (arc) .

'2n
v ' 2n
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Therefore, dp = ^ if*
l dx.

Had we taken x = c6, the result would have been some-

what simpler. Then,

Lfr*->_dJdp = lim .

n = oo

-i

= . rfnlcoa h v sin 1
)

\ n n ]

= rf'TjdO = r;'^

*"

*'dQ.

This result is identical with that above
; because, since x = cQ,

d& = - dx = --
dx,

c 2

and

We have here a case in which the plane and tensor are

constant, and the angle alone varies. It will be observed that

a unit-vector in the first power can only vary in direction,

its tensor and its angle (as a versor) being constant by
definition.

121. Q = gr.

dQ = lim . n {(q + n~ }

dq) (r + n~ l

dr) qr]
n = ao

,,==,, . n{n~
l

dq . r + n~ l

qdr + n~"*dqdr}
= (dq . r + qdr + n~ l

dqdr).

Therefore, dQ = d . qr = dq . r + qdr.

If c be any constant quantity, evidently

d . cq = cdq ;
d . qc = dq . c.

122. q = F,
where /3 is a constant vector.

dq = d/3
x = d (TyS'UyS*) = d (6'U/?

1
)

= dbx . UyS
1 + b* . dU/3

1
, 121,

= (119 and 120) b* log, bdx . ~Uf3
z + b* .

?
U/3*

* l dx
i
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123. Q = q~
1
.

By 46, qq-
l = l-

therefore, 121, qdq~
l + dq . q~

l = o.

V
' X

, q
~ l

qdq
~ 1 + q

~ l

dq . q
~ l = o,

and d . q'
1 = q~

l

dq . q~
l
.

124. Q = q*.

Squaring, Q2 = q,

dq = Qo?Q + c?Q . Q = q*d . q* + (d .

/~* X and x K<?
}
,

q~* (dq) Ky* == (d . 9') K<7
} + q~* (d .

= + Tq . q-* (d . q
k

).

P.ut, 49 (b), (1),

Therefore,

y- (A/) K7 = (rf . gr) K? + Kq* (d . y*)

= 2S<? (rf . ,) - {(d .
<?>)
V? + Vf (rf

. 7
1

)} (1)

Again,

= 2S7> (rf . 7*) + {(d . ?*)
V? + V?* (rf

. g)} . . . (2)

Adding (1) and (2),

and . -.

125. The symbols S, V, and K are commutative with d.

For 7 = Sq + Vq.

dq = dSq + dVq.

But, since dq is a quaternion,

dq = Sefy + Vcfy.

Therefore, rfS? = Sdq ; rfVg = Vdq, 44,

Again, Ky = 87 Vg> ;

tlierefore, dKq = dSq dVq = Srfy Ndq =
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126. To find dTq and dTp.

T2
<?
= qKq ;

ITqdTq = lim . n {(q + n~ l

dq)(Kq + n~ l

dKq) qKq]
n = oo

= . (qdK.q + dq . Kg- + n~ l

dqdK.q\
= qKdg + dq . Kq,
= (62, (\))q~Kdg + K . qKdq,

Therefore,

TTJI _ ~ ~Kq . dq _ dq . ~Kq _ dq . Tq _ Q dq~~ ~~ ~- b

Tq q

Similarly, if q degrade to a vector,

dTp _ Q dp

Tp p'
127. To find dUq.

1q . d\Jq + dTq . IJq = dq ;

Tq . dUq dTq . Uq _ dq .

TqUq TqUq
=

q
'

dUq _dq_ dTq--~-~-
q

"
Tq'

Therefore, dUq = V . U?.
q

128. By the last two examples,

dq = dTq . U? + Tq . dUq,

dq dTq d\jq nx== "
;

(2)
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129. TV?UV? = Vq,

TVq . dUVq + dTVq . UV9 == dVq = Vdq, 125,

= UV? - S . UVjr, 126,

.'.... (1)

or,

Vq'

Since - = a unit vector, it follows that
UVq

and, consequently, that rfUVg'J_UVg'. Therefore the diffe-

rential of the axis lies in the plane of the quaternion.
If the plane (and consequently the axis) of the quaternion

be constant, the quaternion and its differential are coplanar,
and d\JVq vanishes. Conversely, if

o ....... (3)

the quaternion and its differential are coplanar.

Equation (3) is the condition of coplanarity of a quaternion
and its differential.
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CHAPTER XII

SCALAR AND VECTOR EQUATIONS

SECTION 1

Scalar Equations

130. If we have two given equations,

S/)a = o
; Sp/3 = o; (1)

it is evident that p, being J_ to both a and
/?,

is parallel to

VayS ; or,

P = xVa(3 (2)

It is equally evident that x, being an indeterminate scalar,

the vector p is indeterminate.

p would still be indeterminate were the given equations

Sap = m ; S/3p = n.

For, in this case,
S (no. mj3) p = o,

which shows that p is perpendicular to (no. mfi), but shows

nothing more. The conclusion is, that a vector cannot be
determined from two scalar equations ;

a conclusion that might
have been arrived at from the consideration that a vector

depends upon three scalars.

131. A vector can always be determined from three

scalar equations. For, let the three given equations be

Sap = 1; S/3/5
= m

; Syp = n (1)

Then my - n(3 = yS/fy ySSyp = V .

no. ly = V . pVya ;

lp ma=V. pVayS.

Therefore,
V . plVfiy = Imy -

nl/3,

V . pmVya = mna Imy,

V . nVa = nl mna
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and V . p (IVpy + mVya + nVap) = o.

Therefore, p || (IVpy + mVya. + nVap),
or, p = x (IVpy + mVya + nVap).

S . aX.
Sap = xSa (IVPy + mVya + nVap)

= xlS . aVpy + xmS . aVya + xnS . aVa/3

=xlSapy.

But Sap = I
;

therefore, x = -
;

Sapy

therefore, p =^I1
mV

3 4LnV^
Sapy

This value of p satisfies the three given equations, but no
other value of p will satisfy them. For, suppose the three

equations to be satisfied by p^ and p 2 . Then

Sapi = O
', Sap 2

= O
j

therefore, 8 . a (p t
. p2 )

= o.

Similarly, S . P (p { p 2 )
= o,

S y (Pi Pa) = -

Therefore the vector (p, p2 )
is at once perpendicular to

a, to P, and to y.
But no real and actual vector can be per-

pendicular at the same time to three diplanar vectors, which

a, p, y are supposed to be. Therefore (p, p2) vanishes :

therefore p,
= p2 . Therefore, the three given equations can

be satisfied by cne, and only one, value of p. The principle
that no real and actual vector can be at once perpendicular to

three diplanar vectors may be put in symbols as follows :

If Suo- = o
; S/Jo-

= o
; Syo- = o

;

then 0- = o, if Sa/3y ^ o.

Conversely, if o- be an actual and real vector
;
then

Had the three given scalar equations been of the form.

Spyp = p ; Syap = q ; Sapp = r
;

. . .
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we should have had,

pa = aS/3yp,

qfi = /3Syap,

ry ySa/3p j

pa + q(3 + ry = aS/3yp + ySSyap + ySa/2p = pSa/3y, 81,

pa + qB 4- ryand P = - ....... (4)

132- A vector, p, cannot be eliminated by fewer than four

equations.
If we are given only three equations,

Sap = h '

} S/3p = I
'

} Syp = m
',

we have, 131 (2),

SapVygy + SySpVya + SypYa^ - pSa^y = o . . (1)

an equation into which the vector p enters once. Now, suppose
we are given a fourth equation,

SSp = n.

Then, if we multiply (1) by 8 and take scalars, we get

SSVygySap + SSVyaS/3p + SSVayQSyp
-

S8pSa/3y = O,

SapS/3yS S/?pSySa + SypSSa/3 SSpSaySy = O,

AS/3yS
-

ffiy^a + mS8a^8 wSaySy = o . . . (2)

an equation into which the vector p does not enter.

SECTION 2

Linear Vector Equations

133- The general form of a linear vector equation is

defined to be

<p = 2/3Sap + V . qp* ..... (1)

where p is an unknown vector, q a known quaternion, and
a = (a, + a2 + . . an ), (3

= (@ } + fi<> + . . /?), known vectors.

The symbol <j>
stands for '

function,' and
</>p

is some vector
coinitial with p.

Similarly, if o- be any other vector,

<j><r
= SySSao- + V . q<r ..... (2)

* For proof, see Molenbroek, pp. 188-191.
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Tf we interchange a and
/?,

and introduce Kq instead of q,

we have

<'p = 2aSp + V . (Kq)p .... (3)

<f>'<T
= 2aS/3<r + V (K?) o- . . . (4)

- We have now to show that

cr =:

V = 2SpaS/3<r + S . pV . (Kq) <r

= 2SpaS/3o- + Sp (Kg) <r.

S<r<t>p
= SScrySSap + S . o-V . gp.

Sr/3Sap = SpaSy3<r.

+ S . po-V^ = S . p (Sq) o- - S . p (Vy) <r

=S.p(Kg)o-.

THerefore
'

Sa^p = 2SpaS/3o- + Sp(Ky)or = Spe^V ... (1)

Functions which, like
<f>
and

<f>', possess this property are
cjilled Conjugate Functions.

Tlie function
<f>

is said to be Self-conjugate when, for any
two vectors, p and o-,

Scr<p = Sp<o- ...... . . (2)

135. Since Sa(p + o- + . .)
= /SSap + ySSao- -f . .

,

JUH! V . q (p + a- + .
.)
= V . qp + V . pa- + . .

= (2/3Sap + V . ?p) + (2)8Sacr + Y . ft) + ... j

or, <#)(p + o- + . .
)
= <p + ^o- -h ...... (1)

Hence, if p = o- = <fcc.

= lim . n [<j>(p + n~ l

dp) <p| = lim . w0
' ^

n * / = x "

= lira . </,n
^2 = jdp ...... (3)

n - oo
ri

Sincr
</>p is a vector,

e/ . p</>p
=

p(/</>p + dp .
<f>p ..... (4)
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136. Let
<j>p
= 8 ........ (1)

where
</>
and 8 are given. Then it is defined that

P = 4>-'8 ........ (2)

<~' is a function which possesses properties corresponding to

those of
<f>.

As a matter of convenience we write :

<(</>)
=

</>

2
,
&c.

; <#-
1

(^-') = </T
2
,
&c.

^-^^p 8; <- 1

<p = <- 1 8 = p . . . (3)

According asm < n,

{jm

n

J"~
(

<"', <;!>,
<

2
, &c., are operators which may alter both the length

and direction of any vector upon which they operate. <
2

is

not to be confounded with the square of <, (<)
2

.

137. We cannot enter here into the general theory of

vector equations ;
suffice it to mention a simple method for

their solution suggested by Dr. Molenbroek (" Theorie, ifec.,"

p. 245).
Let the given vector equation be

^=8 ........ (1)
Then we have at once

S . A<p = SA.8
;
S .

fji.<f)p
=

S/j.8 ;
S . v<f>p

= SvS . . (2)

where X, /A, v are any three noncoplanar vectors.

But, by 134", we also have

S . p<'A.
= SX8

j
S .

p<f>' p.
= S/x8 ',

S . p<f>'v
= Si'8 . .

('^)

Therefore, 131 (2),

_ SX8Y . ^V^V + S/tS

S .

As an example, let

Vapfi = y.

Then, 78,

<j>p
= y VapyS = aSySp pS/?a 4- ySSap

and, 133 (3),

= /3Sap
-

pS^8a + aS/2p = <f>p.
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Since a, /?, y are any three vectors whatever, we may select

them to represent respectively the X, //.,
v of equation (2).

Hence, SAS = Say ; Sp.8 = S/3y ;
Sv8 = y

2
.

<'A = <'a = <a = Va2
/?
= a2

/? ;

<> = <'/? =<(>P = Va/3
2 =

/3
2a

;

<'v =
</>'y

= <y = VayyS.

V . <<V = 32V . aVa3

ay . a.

= a/^Sa/Jy
- a

V . </V^A = a2
V(Vay^ . /3)=a

= a2
/3

2
Vay - /?a

V . <'A<> = a2y8
2
Vy8a =

S . </>'A<V<V = S (a
2^ . ^8

2a .Vay^S) = a2
/3

2S . ySa

= a2
y8

2
S^a (ay/2

-
Say/3)

= a2 2
Sa/3Sa/3y.

Therefore, (4),

a2Sj37) Safty
- ff

2^ (SavVgy +
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CHAPTER XIII

ILLUSTRATIONS IN QUATERNIONS

SECTION 1

Plane Trigonometry

138. The simple relation between the three vector-

sides of a triangle, fig. 31,
a + ft + y = o,

conducts at once to the three funda-

mental equations of plane trigono-

metry.
For, since y = a + /3,

y
2 = a2 + ft* + 2Sa/3,

or, c2 = a2 + b- - 2ab cos C . .
(

I
)

It will be observed that ACF is

the angle between a and /?, and that

(TT
- ACF) = L C.

Operating upon y = a + /8, with.S . y x
,

-y2 =Sya+ Sy&
Hence, c2 = ca cos B -f be cos A

;

or, c = a cos B + b cos A. ..
Operating with V . ft x

,

Fio. 31.

(2)

or,

or, TVy/2 . U Vy/3 = TV/?a . UVySa = TV/3a . UVy/S ;

Therefore, TVy/3 = TV/3a ;

or, c sin A = a sin C ..... (

It will be observed that UVy =



PLANE TRIGONOMETRY 181

139. Let L C = 90. Then,

a a

Taking the scalars,

- 1 = S.^ + S r-= c
cos CBE = -- cos B :

a a a a

or, cos B = a
(1)

Taking the vectors,

o = V^ + V7 = TV^ . UV^ + TV ^
. UV?

a a a a a a

a a a a

= h - c
sin CBE = b - c sin B :

a a

or, sin B = b
-

(2)
c

140. To find the sine and cosine of the sum of two angles.
I
Let a, /?, y be three coinitial, coplanar unit-vectors, /3 lying

!
between y and a

;
and let _ AOB = 0, L BOG = </>. Then,

1L = cos (8 + <) + c sin (0 + <).
a

'- = cos
<f> + sin <.

= cos + c sin 6.
a

Hut y = y ^
a. B u

therefore,

** (8 + <) + e sin (0 H- $) = (cos <f>
+ f sin <^) (cos + sin fl)

=co4>cog0 + e (sin <f>
cos + cos sin 6) sin < nin 0.

Equating successively the vector and scalar parts,

sin (0 + <) = sin cos
</> + cos sin

</>
. . (1)

cos (0 + <) = cos cos < sin 6 sin
</>

. . (2)

To find the sine and cosine of the difference of two
K 2
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Let the angle between y and a be
if/. Then,

= cos
(\j/ &) e sin

({{/ $),

y

C = cos + sin 0,
a

= cos
\}/

sin
\j/.

y

But - = - . - .

y ay
Therefore, as above,

sin (^ 0) == sin il/ cos cos \!/ sin . . . (3)

cos
(\f/ &)

= cos ^ cos + sin
i^

sin ... (4)

SECTION 2

Spherical Trigonometry

141. Let ABC, fig. 32, be any spherical triangle, its angles

and sides being, as in the case of a plane triangle, A, B, C,

a, b, c. Let the sphere be^
a unit-sphere, with O as centre, and

let OA = a, OB = (3,
OC = y. Let L, M, N be respectively

the positive poles of AB, BC, AC
; L, M,audN corresponding

to the points P, Q, K of 75.

Let OL = X, OM *=
/x, ON = v.

We evidently have,

S^ =cos b
',
S 1 = cos a

;
S C.= cos c

;
a p a

V ^ = v sin b ; V^ = p. sin a
;

M
_ = X sine

S . V J- V ^ ^ sin c sin a cos B ;

p a

FIG. 32.
Y.V V := sin c sin a Y/.X

p a

=
/? sin c sin a sin B.

7 y /3 /i>
Since -J-= % -> I

1
/
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we have, by 60 (1),

S* = Ss + S.Vv;. . (2)
a p a. p a

or, substituting the above values of these symbols,

cos b = cos c cos a + sin c sin a cos B ; . . . (3)

one form of the ordinary fundamental equation of spherical

trigonometry.

142. Taking the vectors of equation (1) of 141,

V? = svy+S?v + V.Vv, 60(1), . (1)
a a p p a. pa

and substituting the values of these symbols given in 141,

v sin b =
fj.

cos c sin a + X. sin c cos a + (3 sin c sin a sin B . (2)

Let p = OP be any unit-vector. Dividing each term of

this equation by p, taking scalars, and rearranging the terms,

sin c sin a sin B cos PB
= sin b cos PN sin c cos a cos PL cos c sin a cos PM (A)

Let P coincide with M. Then,

cos MB = o
;
cos MN = cos C

;
cos ML = cos B

;

cos MM = 1
;
and

sin b cos C = cos c sin a sin c cos a cos B. . . (3)

143. It is evident that if A and M be joined by the arc of

a great circle, this arc will cut BCat right angles in a point P, ;

or AP, is the arcual perpendicular let fall from A upon BC.

I .ft IP2 and CP3
be respectively the arcual perpendiculars

1ft f.ill from B on CA and from C on AB. Let the point P,

equation (A), coincide with A, and we have

cos AB = cos c
;
cos AN = o

;
cos AL = o

;

cos AM = sin AP, ;

and sin AP, = sin c sin B. -\

sin c sin a . ^
Similarly, sm BP = -: sin B L (}\

sin b r

sin CP3
= sin a sin B

Since Va/? = X sin c and V/?y = p. sin a,

V . Va/3V/3y = sin c sin a VA/* = /? sin c sin a sin B.
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But, 80 (1),
V . VapVpy = -

)8Sa/2y.

Therefore, Sa/?y = sin c sin a sin B . . . (2)

It may be similarly shown, by usingV. V/3yVyaandV . VyaVayS,

that sin a sin 6 sin C = SaySy = sin b sin c sin A . . (3)

Therefore,

sin a : sin b : sin c = sin A : sin B : sin C . . (4)

The equations of (1), therefore, become

sin AP, = sin b sin C 1

sin BP2
= sin c sin A > ..... (5)

sin CP 3
= sin a sin B J

144. Let the point P, equation (A), coincide with I,

the centre of the small circle inscribed in the triangle ABC ;

and let the arcual perpendiculars let fall from I upon the

sides cut the sides, BC in P
t ,
CA in P 2 ,

AB in P3 . Let

r = !P! = IPo = IP3 . Then, bearing in mind that the arcs

(of great circles) IP 3 , IP,, and P V I, produced, pass through
L, M, N respectively, we have, from equation (A),

sin c sin a sin B cos IB

= sin b cos IN sin c cos a cos IL cos a sin c cos IM.

Since IBP3 is a right-angled triangle, we have, by equation (3)

of 141,
sin c sin a sin B = Sa/?y, (2) of 143

;

cos IB = cos r cos P3B = cos r cos (s b),

where s = \ (a + b + c) ',

cos IN = cos (* r)
= sin r

;

cos IL = cos
(| + r) = sin r

;
cos IM = sin r.

Therefore,

cos r cos (s b) Sa/3y = sin r {sin b -f sin (c + a)}

= 2 sin r sin s cos
(,s b) ;

, _ Sa/?y _ sin a sin b sin C /, v

2 sin s 2 sin s

145> If the points L, M, N, fig. 32, be connected by arcs
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of great circles, we obtain a triangle exactly corresponding to

PQR of 75. Consequently,

and

OCOBOC

Therefore,

OB OA~OA

veV**eL = - 1 ...... (2)

As a verification, multiply (2) into OA. Then

- OA = v
cVM*cL . OA = v<V

M OB = v
fN

. OC";

f> =vc(._COA) .OC = _OA.

Equation (2) may evidently be written,

-OA 00 OB
OC OB OA

146- Since equations (1) and (2) of 145 are perfectly

general, we may write for any triangle, ABC,

(JPa
6*- = y

c< c> ....... (1)

/^V* = 1 ....... (2)

the fundamental quaternion equation of Spherical Trigonometry.
As the left member of (2) reverses the direction of any vector

it operates upon, by causing it to revolve successively through
the three angles of the triangle in a certain order, it is evident

that the sum of the vector-angles of a spherical triangle, taken

in a certain order, is equivalent to TT.

If the radius of the sphere becomes infinitely long, the

triangle ABC becomes plane, and y = ft
= a. Consequently

(2) becomes

Therefore, A + B + C = TT (Dr. Odstrcil).
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147. Reverting to (1) of 146,

(cos B + ft sin B) (cos A + a sin A) = cos C + y sin C,

or,

cod A cos B + a sin A cos B + /3 cos A sin B + (3a sin A sin B
= cos C + y sin C (1)

Taking the scalars,

cos C = cos A cos B sin A sin B . S/?a

= cos A cos B + sin A sin B cos c . . (2)

another form of the fundamental equation of Spherical Trigono-

metry.

14:8. Taking the vectors of equation (1) of the last article,

y sin C = a sinA cos B + ft cos A sin B + sinA sin B . V/3a (1)

Let P be any point upon the sphere, and let T be the foot

of the arcual perpendicular let fall from P upon AB
;
PT

being considered as positive when P and C lie upon the same
side of AB, but negative otherwise. Then, dividing each term

of (1) by p = OP, and taking scalars,

sin A sin B sin c sin PT
= sin C cos PC sin A cos B cos PA cos A sin B cos PB (B)

If P coincide with B,

sin C cos a = cos A sin B + sin A cos B cos c . . (2)

149. Let Q be the centre of the small circle circumscribing

the triangle ABC ; let QA = QB = QC = R ; and let QT
be the arcual perpendicular from Q upon AB. Let the

spherical excess be E, and A + B -f C = 2S ; so that

2S = A + B + C = 7r + K
Then, if the point P, equation (B), coincide with Q, that

equation becomes

sin A sin B sin c sin QT
= sin C sin QC sin A cosB cos QA cos A sin B cos QB (1)

Since QA = QB = QC, it is easy to see that

2 / QBT = A + B - C = 2 (S
-

C), and L QBT= S - C
;

and since BTQ is a right-angled triangle, we have, by (4) of

143,
sin QT = sin R sin QBT = sin R sin (S

-
C).
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Also the right member of equation (1) is

cosR[sinC-sin(A+ B)}=cosR{-2 cos
^ *

sin (S
-

C)}

= 2 cos R sin ^E sin (S C).

Therefore equation (1) becomes

sin A sin B sin c sin R sin (S C)=2 cos R sin \ E sin (S C)

, -r, sin A sin B sin c /oxand cot R = - -

^-= (2)
2 sin E

150- Let CC' be a perpendicular from C upon the plane
AOB ;

to find y'
= OC', the orthogonal projection of y upon

that plane.

y = y CTC = y + X sin COB.

But sin COB = sin CP3
= sin a sin B, (5) of 143.

Therefore, substituting for y its value in equation (1) of 148,
we have

,_ a sin A cos B + j3 cos A sin B A sin A sin B sin c, A sin c sin a sin B
sin sin c

_ a sin A cos B + 3 cos A sin B ,...

sinO

151. The three arcual perpendiculars, AP,,BP2, CP3 ,
let

fall from the corners of a spherical triangle upon the opposite
sides are concurrent.

CP3 and AP, must intersect in some point P, OP being

consequently the line of intersection of the planes COP3 and

AOP|. Draw OP 3
= p3 and OP, = p,. Then, y', the ortho-

gonal projection of y on the plane AOB, and a', the orthogonal

projection of a on the plane BOC, lie respectively along p3
and p,. Let p3

= yy', p\
= za!

;
and let L, M, N be respec-

tively the positive poles of AB, BC, AC. Then, by 79,

X OP = V . Vyp3Vp,a.

sin \_>

11 cos A cos B / /1X= --
.

-
(/A tan B + i' tan A) . . . . (1)

sin \j

T ,7 / V/3a sin B cos C -f V-ya cos B sin C
p,a= 2Vaa = z ~

Sin A
z cos B cos C / ,

,i
=

.
- (r tan C -f A tan B) . . . (2)

sin A
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Therefore, (1) and (2),

= yz cos ^gggl.?-g 8

sm sin A
= \yz cot A sin 2B cot (o tan A + ft tan B + y tan 0) = x OP ;

V . Vvp,Vpla = yz cos ^gggl.?-g 8
(jiv tan B tan + /nX tan' B + M tan A tan B)sm sin A

, ,
. , yz cot A sin 2B cot C

or, putting p for -2 -
,

OP = p (a tan A + ft tan B + y tan C).

If the expressions for the vectors along the lines of inter-

section of the planes AOP, and BOP.,, BOP2 and COP3 ,
be

worked out, they will be found to be of the form :

~OQ = q (a tan A + /3 tan B + y tan C),

OR = r (a tanA + /2 tan B + y tan C).

Therefore,/?, q, r being scalars, OP, OQ, OR are parallel ; and,

consequently, the terms of their unit-vectors coincide. There-

fore the three altitudes, which pass through the terms of these

unit-vectors, are concurrent.

152- What is the geometric signification of the symbol
/Ja~'y, when a, (3, y are vectors drawn from the centre of a

unit-sphere to the corners of a spherical triangle, ABC ? Let
the sides, as usual, be a, b, c, and let

cos a = Sy/J"
1 = S/?y = I

;
"j

cos b = Say"
1 = Sya = m

;
> . . . . (1)

COS c = S/Ju"
1 = Sa/2 = n. J

Let it be supposed that I, m, n are each greater than zero,

or that each side of the triangle is less than a quadrant.
Let 8, e, be three vectors, such that

8 = V^a-1
y = Vya"

1

/? ~|

c = Vy/S-'a = Va/3-'y V .... (2)= Vay-'yS = V/3y-'a J
Then, 78,

= aS/3y /3Sya ySa/3, since a is unit-vector,

= m/3 + ny la
;

and similarly for Vy/3~
!a and Vay"

1

/?.

Hence,
8 = m/3+ny la, "1

e = ny + la - mfi, V (3)
=r la +m(3 ny. j
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To find the lengths of these vectors,

c
2 = T 23 = (m/? + ny la)'

2 =
(/

2 + m2 + w2
limn).

It will be found that e
2 and 2 have each the same value.

Therefore,

TS = T = T =
*/(l* + m2 + n* - 2lmn) = (say) t . . (4)

This common length, t, is less than unity. For, let

v Safiy = -
Sa-'/fy = S/3a 'y.

Then, since t = T8 = TV/Scr'y, we have

/* + v 2 = (TV/Scr'y)
2 + (S/?a-'y)

2 = (SySa-'y)
2 -

(V/Sa^y)
2

= T 2
/
3cr 1

y=l.
Now, t; is different from zero, because the three vectors

are diplanar. Therefore t < 1.

Dividing the three vectors by their tensor, t, we obtain

three unit-vectors :

OD = t~
lS = US

;
OE = t~ l

t = Ue
;
OF = r> = Uf,

whose terms are the corners of a new triangle, DEF, upon the

sphere.
We have now to inquire what relation this new triangle

bears to the original triangle, ABC.

By (3), c + = Ma
;

Therefore, l~ l
c + l~

1

^ = 2a
;

OA bisects the angle between the unit-vectors OE

and OF. Consequently, the point

A lies upon and bisects EF.

Similarly, B FD,

C ,, DE.

Fig. 33 shows the two triangles.

To establish a relation between the sides of the two tri-

angles, let

EF = 2a' ; FD = 26'
;
DE = 2^.

Then
<Ue + <U = + ^ = 2Ja = 2a COS a, (1).

Dividing across by a and taking scalars,

a J
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But

therefore,
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S - = S *, since EF is bisected in A
;

a a

2t S _ 2 cos a
;

a

or,

Similarly,

cos a = t cos a'
"j

cos b = t cos b' > ..... (5)
cos c = t cos c' J

To establish a relation between a, ft . . e, . From the

equality of the angles EOA, AOF, &c., we have at once

ae =
;
B =

8/3 ; yS=ey .... (6)

If we write the first equation as ca = a, 41, and multiply
both sides into a" 1

,
we get

e = atpT
1

;

a confirmation of 97.
Had we multiplied by a" 1

,
instead of into a"1

,

= a-^a.

From the second equation of (6), multiplied into /S"
1

,

s = ftp-
1
.

Substituting the above value of
,

8=^a-1

ea/3-
1 =

^
e

|
=^ 1 .... (7)

Consequently, 8 is generated by the conical rotation of e round
the axis of q, or ySa"

1

, through 2 ^ q, 75. A geometric illus-

tration of (7) will presently
be given.

Fig. 33 is the orthographic
projection of a sphere upon a

tangent plane at C. Conse-

quently, C is the centre of the

]L circle KL. O is not seen,
because the projection of OC
upon the tangent plane is the

point C.

Let us introduce a new
vector,

S.yX. 2SyA = Sye
-

SyS = (2)

. .(8)
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Therefore y J_ X
;
and if L be the term of the unit-vector of A,

or if OL = UX,

^ =
1
........ (9)

The point L lies to the right of EF, as shown in fig. 33,
because (by definition, (8)) 2X is the diagonal of the parallelo-

gram of which e and 8 are the coinitial sides,

X lies in the plane OAB, because, by definition, X = la mft ;

ODE, A = (-');
therefore X lies along the intersection of the planes OAB and
ODE

; or, L is the point in which the arcs BA and DE pro-
duced meet. The arcs AB and ED produced meet in L',
the point upon the sphere diametrically opposite to L ;

and
CL' is a quadrant.

To find TX :

X^ = (la
-

m/3)
2
,

T2X = P + m2

But, (5), *
2 =

; 7i
2 = S 2

a/3 = cos2c ;

therefore,

mo* cosV o cos2c sinV .9 . 9 ,T 2X = --- cos2c = = <
2 smV.

cos-c cos^c

TX = V^ 2 - w2
)
= t sin c' ....... (10)

Let P be the positive pole of BA, and let the arcs drawn
from P to D, E, F cut the great circle through B and A in

R, S, T. Then, since FD and EF are bisected respectively in

B and A, and since the angles at R, S, T are right angles,
from a comparison of the triangles BDR and BFT, TFA and
ASE, we find that

RB = BT
;
AS = TA

;

RB + AS = BA
;
RS = 2BA .... (11)

Also, DR = FT = ES ;

consequently, PD = PE - ...... (12)

Let F' be the point upon the sphere diametrically opposite
to F, and join the two points by the arc of a great circle

passing through P. Then

= PD..(13)
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We can now illustrate equation (7) geometrically. Since -

PF' = PD = PE,

P may be regarded as the interior pole of a small circle

passing through D, E, F'. Let OE revolve conically round

OP, its term moving negatively round the circumference of

this small circle. When OE becomes coincident with OD,
E will have revolved through an arc which, measured on the

great circle through B and A, is

SR = 2AB.

Or, if P' be the positive pole of AB, OD is the result of the

positive conical rotation of OE round OP', the axis of j3a~
l

,

through 2 /_ AOB = 2 L pa
~

l
. Hence,

Let the arc of a great circle passing through P and C cut RS
in Q. Then, from the equality of the triangles PDC, PCE,
the angles at C are right angles. Therefore, if PQ be pro-
duced both ways, it will meet the great circle of which C is

a pole in two points, K, K', which are respectively the nega-

tive and positive poles of DE.

Since _ DPC = L CPE, RS is bisected in Q, and

QR = iSR = AB ..... (14)

Finally, since the angles at C are right, and LC is a quadrant

(9), L is the positive pole of CQ, and

(15)

L' is the negative pole of CQ.
Let two new points, M and N, be now determined by the

conditions,

LN = CD \

Then, since LC and LQ are quadrants, ND and MR are also

quadrants. Also, since the angle at R is a right angle, M is

the pole of RD and MD is a quadrant. But DK is also a
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quadrant. Therefore D is the pole of KMN", and LNM is

a right angle. Hence, fig. 33, if

UK = OK, UX = OL, U/u = OM
;

_/Da -i_u^. _ F_* . n -v

a UX ' UK '

therefore, pa -i
y =^ '. (18)

The symbol /2a
~

l

y, therefore, represents a versor whose repre-
sentative arc is KM, whose angle is KDM, and whose axis is

OD.

Since LMDR = ? = L L'DK,
a

wehave / KDM = ^1 L'DR = ^ EDP . . (19)

We may therefore write,

/3a.-
}

y = cos EDP + OD sin EDP . . . (20)

153. To investigate an expression for the area of a

spherical triangle.
Since F and F' are diametrically opposite points, every

great circle which passes through the one passes through the

other. If, therefore, the arcs FD and FE be produced, as

shown in fig. 33, they will both pass through F'.

It has just been shown that

L L DR = / EDP = {_ DEP ;

therefore, 2I/DR = EDP + DEP (a)

I'.ut, since PD = PE = PF,

we. have L PDF' + /_ PEF' = L DF'E = _ F',

or, PDF' + PEF F' = o.

Adding this null quantity to the right member of (n),

2L'DR = (EDP + PDF) + (DEP + PEF) - F ;

or, since /. F' = L F,

2L/DR = EDF' + DEF - F

=(TT D) + (7T-E) F = 2;r-(D + E+ F).

Therefore,

l_ pa
-

l

y = EDP = L'DR = TT - i (D + E -} F).
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Now, since the radius of the sphere is unity,
Area of DBF = Spherical Excess = (D + E + F) TT = E.

[N.B. The two E's have different meanings, the first

denoting one of the angles of the triangle, the second de-

noting the spherical excess. It is with the latter only that

we deal in what follows.]

Therefore, L /?<*

-
!

y = L'DR = \TT |E,

and, (20) of 152, J3a~
!

y = sin p + US cos E . . . (1)

Now, /3a~
l

y = S/?a
~

l

y + VySa
~
'y ;

and, introducing the notation of 152,

L-!y . TJVjSa-'y = JUS, 152 (4) and (2).

Therefore, fta~
l

y = v + t^J8 (2)

Equating the scalar and vector parts of (1) and (2),

cos IE = t . . (3)
sin iE = v.

But v, or Sa/3y, is positive or negative according as rotation

from a to ft round y is negative or positive, 95. In general,

therefore,
sin |E = v= + Sa/?y .... (4)

This equation is the quaternion expression for Keogh's
theorem : The sine of half the spherical excess is the volume
of the parallelepiped, the three edges of which are the radii

drawn from the centre of the sphere to the middle points of

the sides of the triangle (DEF).
Bearing in mind that by 152 (3),

ft
= im-'( + 8), [ (5)

we have, (4),

8(f 4-
1 T^ O O K-7

\ ^ I

Sin ^Jli = bapy = -*

otmn

j /o\ IT?" 4:lmn. ,,-,

and, (3), cos iE =- : (<Umn

therefore, tan|E=-- (3]
Urnnt
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But, since m = -
Sya, (1) of 152,

= - 4nJSya= - S (2wy . 2Za) = - S (8 + e) (e + ), ty (5),

Therefore,

4-nn IT? _ _ c_ ,

q
.~

a general expression for the tangent of half the spherical

opening at O of any triangular pyramid, ODEF, whatever be

the lengths of its edges, T8, Te, T.
Applying equation (9) to the triangle ABC, we have at

once,

tanJE=
Sa^ -= *in sin ft sin C

, by (4) of 143o . . (11>
1 - S)3y

-
Sya

-
Sa/5 1 + cos a + cos & + cos c

15 4. In (20) of 1 52 we obtained a versor whose angle was
half the area of the triangle DEF, (1) of 153. To obtain a

versor whose angle is the area of this triangle, we have only
to take the negative square of equation (1) of 153. Then

-
(/3a-

1

y)
2 = -

(sin E + US COS |E)
2
,

or, ^^" = cosE - US sin E . (1)
a P 7

Articles 152, 153, 154 are almost entirely from
Hamilton.

155. The Chordal Triangle of a spherical triangle is the

plane triangle formed by joining its corners by cords of the

sphere.
Let ABC be a spherical triangle such that

L C= L A+ L B;
then the chordal triangle is right-angled at C.

For, draw an arc of a great circle from-C, cutting AB in D,

so that L DAG = L DCA.

Then, with the usual notation for a spherical triang'e, but

calling the three equal arcs, DA, DB, DC, t, we have

1 + cos It = 2 cos2
<

;

and o = sin 7
* (cos CDB + cos CDA) ;

L
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adding,

1 -f cos 2t = (cos
2 + sin 2

* cos CDB) + (cos
2
* + sin2 cos CDA)

,,
=cos a + cos b, 141, (3) ;

cos 2t + cos a f cos b = 1 = OC2 = y
2

;

Sa/3
- Soy Sya + y

2 = o
;

therefore, (chord) CA J_ (chord) CB,

and the chordal triangle is right-angled at C.

156. To find the angle at which two opposite sides of a

spherical quadrilateral meet when produced, in terms of the

sides and diagonals (Gauss).
Let ABDE, fig. 33, be the quadrilateral, and let BA and

DE produced meet in L. Let 6 be the angle between o- and T,

the axes respectively of (3a and c8
;
the angle between the planes

OAB and ODE, that is, the angle at L, being consequently
(IT
-

6). Then, 84,
S . V/?aVeS = SytfSSae

- S/3tSaS

= cos BD cos EA cos BE cos DA.

Now, V/3a = a- sin AB
;
VeS = T sin DE

;

therefore, S . V/SaVeS = sin AB sin DE . SO-T

= . cos (IT 6)= cos L.

Therefore,

T cos BD cos EA cos BE cos DA
COS 1 1 =

sin AB sin DE

SECTION 3

The Triangle

157. The sum of the angles of a plane triangle is TT.

Let be a unit-vector at C, fig. 31, J_ the plane of the triangle

ABC, such that rotation round it from Ua to U/3 is positive ;

let /_ BAD = A', z. CBE = B', /_ ACF = C'. Then

e'C'TJa = U&
<AVc'Ua = e

cA
'TJ/3 = Uy,

,rB'cA ,cC' ,c (A' + B' + C') 1 ,c 2)
i e

,

where n is an integer.
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Now, during the triple operation of version represented by
^(V + B' +

C'^ Ua has evidently made one, and only one, com-

plete revolution of a circle. Therefore n=l, and

J(A' + B' + C') ,C(2T) .
t t

,

therefore, A' + B' + C' = 2ir.

Bat (A + A') + (B + B') + (C + C') = STT.

Therefore, A + B + C = TT.

158. The square on the hypotenuse of a right-angled
triangle is the sum of the squares on the sides.

Let the hypotenuse AB = y, BC = a, CA = (3.

Then y = a + /?,

y*
=

(a + )*

= a2 + yS
2
(since Sa^ = o).

Therefore, AB2 = BC 2 + CA2
.

Given the base, the dif-

ference of the base angles, and
the rectangle under the sides,
to construct the triangle. Let

ATA, fig. 34, be the required

triangle, O being the middle

point of the given base A'A.
Draw AB, making _ OAB =
given difference of base angles,
and of such a length that
OA . AB = the given rectangle
under the sides, AT . PA. Draw
OB, OP, and let

o. 31.

OA = a, OB = /?, OP= p.

The problem resolves itself into finding p.

Since AT . PA = OA . AB,

A'P : A'O = AB : AP.
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Further, {__OA'P
= /iPAB. Therefore, the triangles OAT,

PAB are similar, and

p+ a _ ft a
i

a p a.

a /
N

(p
-

a)
=

ft a,

p 4- a p a _ ft a--

e -
1)a y

Therefore p bisects the angle between a and ft, and r2 = 06,

since p
2 = -a2

. Hence the construction. Bisect the givena

base A'A in O
;
draw AB making /. OAB = given differ-

ence of base angles, and of such a length that OA . AB =
given rectangle under the sides

;
and draw OB. Draw OP

bisecting _ AOB, and of such a length that OP2 = OA . AB.
P is the vertex of the sought triangle.

Since (p)2 =
y8a, there is another solution of the pro-

blem. Produce PO until OP' = OP, and P'' will be the vertex

of another triangle, AP'A', which it is easy to show fulfils the

given conditions.

The four points, A, P, B, P', are concyclic ; C, the centre of

the circle passing through them, lying upon the circumcircle

of the trianle AOB.

SECTION 4

The Circle

159. Let 6A = a, OB = ft, OC = y, be any three

vectors. Then,

therefore, K-+l= -

a p-
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a
~

~~^ (a)-f
j

a" 1 + 1
_ a-'^f 1

.

r 1
"

ft-
1

a-' 0-1 .-

r i

08 -)-
1

Y-l _|_ jg-1 y-l
Similarly,

* ~
^

- = r *
x

.... (2)

Adopting the negative signs, dividing (2) by (1), and taking
the conjugates,

a ff- _ a -3OA BC ,.
'

0-a y p-a' -y AB'CO
whatever the vectors a, /?, y may be.

Now, in Pt. I., 29, it was defined that

where 0, A, B, C are any four collinear points. Let O, A, B, C
OA BO

now beawy four points,
- ~ and- being, consequently, qua-AB CO

ternions.

Definition.

is the Anharmonic Quaternion Function of the group offour
points, O, A, B, C, or of the (plane or gauche) quadrilateral
OABC (Hamilton).

We may therefore write equation (3) as,

(5)
a

If "OA', OB', OC
7
be the reciprocals of OA, OB, OU, fig. 35,

(6)

lii the particular case when A', B', C' are collinear,

(< >A 1C) is a negative scalar.
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16O. If OA', OB' be the reciprocals of any two vectors,

OA, OB~, fig. 35, then A'B'
|| OT, the tangent at to the

circle passing through O, A and B. For, by 96,

OT = (a
-

)8) (- a) = a'p - 6 2
a.

Therefore, B'A' II OT.

If a circle be circumscribed to OA'B', the tangent to this

new circle at O will be parallel to BA.

161- If any three coinitial vectors, OA, OB, OC, be chords

of one common circle, the terms of their coinitial reciprocals,

OA', OB', OC' are collinear, fig. 35.

For it has been shown, 160, that

B'A'
|| OT, the tangent at O. And it

may similarly be shown that C'B'
||
OT.

Therefore A', B', C' are collinear.

The indefinite straight line A'B' is

evidently the locus of the terms of the

reciprocals of all the vector-chords of

the circle which have O for origin.

Conversely, if the terms of three

vectors, OA', OB', OC', are collinear,

their coinitial reciprocals, OA, OB, OC
(if not parallel), are chords of one common circle, or the points

O, A, B, C are coneyclic.

Let /.OAB = e
; L BCO = <. Then, since A', B', C'

FIG. 35.

are collinear,
-

f
is a negative scalar, t, and

Jt> A.

AO
AB OB

Therefore,

and e + <t>
=
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Therefore, the quadrilateral OABC is inscribed in a circle, or

the points O, A, B, C are concylic.
It is clear that for any circular group, O . . . C, we have

XjAO, U OC
U AB

~ U
CB

'

the upper or lower sign being taken according as the quadri-
lateral OABC is uncrossed or crossed. And conversely, if we
are given such an equation as (1), connecting a group of

points that are not collinear, we know that the group is

circular.

162. Let
"RT"

(OABC) = K~~ = - 1.
JJ A

From this equation it follows that A', B', C' are collinear
;

that O, A, B, C are concyclic ;
and that A'B' = B'C'. Con-

sequently,
+ -

1

) ..... O)

The vector ft is defined to be the Harmonic Mean between

the two vectors y and a.

Multiplying 2(3 into (1),

2 = /3(y-< + a-') ; and, ft
= ^

*

^.
Therefore,

P = 2 = __2__ = _2o_ .

y (a-
1 + y-')y a-'y + 1 7+ a'

a (a
' + y ')a 1 + y 'a y

From (2) and (3),

y + a' y + a

If E be the middle point of the chord AC, fig. 35,

y + a = 20E = 2e, (5)

and -y = ft
= V a . . . (G)

Therefore, as in algebra, the harmonic mean between any two
vectors is the fourth proportional to their semisum and
themselves.
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By (5) and (6),

=i- 2a
+

a
:=

e e
2

Therefore, =
,
and EC 2 = EO . EB, ... (7)

or, EC is the mean proportional between EO and EB.
Conversely, if any three vectors, EO, EB, EC, be in continued

proportion, and we draw EA = CE
; the points O, A, B, C

will form a Circular Harmonic Group. The points A, P, B, P',

tig. 34, are an example of such a group.
If (OABC) = -1,

and (OBAC) =

Therefore, taking tensors,

OC . BA = i (OB . CA).

Similarly, CB . AO =
Therefore the rectangles under the opposite sides of an in-

scribed quadrilateral are each equal to one half the rectangle
under its diagonals, if (OABC) = 1.

Let F be the cross of the tangents at O and B, fig. 35.

Then it is easy to prove that F lies upon AC produced. Simi-

larly, the cross of the tangents at A and C lies upon OB
produced. Therefore the diagonals, OB and AC, are Conjugate
Chords, each passes through the pole of the other.

163. If ABCD be a quadrilateral, plane or gauche,

AB CD _ AB BC CD PA _ AB . BC . CD . DA~
BC DA

"~

BC BC DADA
~

BC2
. DA2

or,

v2 (ABCD) = AB . BC . CD . DA = continued product of the

sides, ......... (1)

where i;
2 = BC 2

. DA2
is a positive scalar.
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If the quadrilateral be plane and inscribed in a circle, the

aiiharmonic function, (ABCD), 159 (4), is a scalar, in, which
is positive or negative according as the quadrilateral is crossed

or not. Hence, in this case, (1) becomes

AB . BC . CD . DA = mv*=t . . (2)

In general, the product of the successive sides of an n-gon
inscribed in a circle is a scalar if n be even, and a vector-

tangent to the circle at the initial point of the n-gon if n be

odd.

164. Some of the equations of the circle have been given
in 101. If OE = e be any given unit-vector

;
OK = K, the

vector of any given point in the plane through E J_ e
;
and

K A = a, a constant vector in that plane ;
then

(p-K) = a;Se = l ...... (1)

is the equation of a circle passing through A, with K for

centre.

If TK = e, these equations become

,,

2 -
2S/<p = c2 - a2

;
S p= 1 . . . . (2)

If O be on the circle,

P
2 -

2S/cp = o
; UV/cp = 77

..... (3)

where
r]

is some other given unit-vector.

The first equation of (3) may be written :

therefore the angle of a semicircle is i ?r.

165- Let OD = 8 be a diameter of the circle, fig. 35
;
and

l-t, DO produced cut C A' in D'. Then, 161, OD' = S" 1

;

and -since A'D'
|| OT, if T be the vector along OT,

Therefore, VrS - = Vra -
>,

or, since r8~ l
is a right quaternion,

Kr8- ' = 8- 'T = KVra- ' = _ Vra" ',

the expression for the diameter passing through O.
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168- It has been assumed that the tangent is perpendicular
to the radius drawn to the point of contact. This may be
shown by differentiating the equation,

p
2 -

2S*p = o, (3) of 164.

Then 2Spdp
- 2SKdp = o,

S(p K)dp = o.

Therefore the radius drawn to the point of contact, p K, is

perpendicular to dp, the vector-tangent.

167. Let OA = a be the vector of any point upon a circle

whose centre is O, and let p be the vector of a variable point

upon the tangent at A. Then, t] being a given unit-vector

perpendicular to the plane of the circle,

Sa (p
-

a) = O, UVap = >/,"! /, v

or, Sap = - a2
, UVap = -q,}'

are the equations of the tangent at A.
If the circle be a great circle of a sphere, equation (1) is the

equation of a tangent to the sphere at A.

Sap = - a2 .....
.

. . (2)

is the equation of the tangent plane to the sphere at A, since

it represents all the tangents that can be drawn at A.

168- From O, the centre of a given circle, draw a straight

line, cutting the circle in A, to a given external point, E ;
let

T, T' be the points in which the tangents from E touch the

circle
;
and let TT' cut OA in D. Let OA = a, OD = 8,

OE = e, and let p be the vector of a variable point in TT'. Then
D and E are inverse points with respect to the circle, and

OD . OE = OA2
;
OD =

Therefore, 8 = TSUS = -Ue = ..... (1)
e e L

But o = SS (p
-

8), or, SSp = - d2
.

Substituting in this last equation the value of 8, (1),

and Sep = a?.
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Hence, if
-rj
be a given unit-vector perpendicular to the plane

of the circle,

Sep = - a2
; UVcp = -q (2)

are the equations of the chord of contact of the two tangents
from E.

If the circle be a great circle of a sphere,

Sep = - a2
(3)

is the equation of the polar plane of E.

169. The join of the points of intersection of two circles

is perpendicular to the join of their centres.

Let the circles intersect in A and A'
;

let their centres be

K and K'
;

let KK' = y, AA' = 8. Then,

(KA -
y)

2 = JTA2 = K/A' 2 = (KA' - y)
2
,

and S (KA . y) = S (KA' . y) ;

S (KA/ - KA) y = o,

SyS = o,

Therefore, y _L 8.

SECTION 5

Conic Sections

170- To find the locus of a point such that the ratio of

its distances from a given point and a given straight line is

constant.

Let F be the given point and QR the given straight line,

fig. 36. Let P be any point, and let PQ and FR be perpcn-
dicular to QR. Let FP = p ;

FlT= p , RQ = yv ; PQ = a;/*.

This last assumption limits the locus of P to the plane con-

taining QR which passes through F. Then, if e be a scalar

representing the constant ratio,

Tp 2 _ T'p _ p
2

.

T . PQ '
e ~

Ta
. PQ *V '

p
2 = e

2
a;
2
/x

2
.

FP + PQ = FQ = FR + RQ,

p + x/j.
=

p. + yv ;

S . /x x . S/ip + xp? = ^u,

2 + yS/xv
=

^i
2
,
since S/xv = o.
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Therefore,

But

CONIC SECTIONS

therefore, )u,

2
p
2 = g2

(f-
2 ~~

S/zp)'
2

.(!)
the general focal equation of a Conic Section, which is an ellipse,

parabola, or hyperbola according as e = 1.

The point F is a focus,
and QR is the directrix.

171. To find the points
in which the conic cuts

/A,

or FR, fig. 36.

Let xft be substituted

for p in the general equa-
tion, and we get

FIG 36.

T i
'

1 + e

Therefore,

or
1 - e

1 _ e2

hence, p.
=

^
M'M =

Let T . M'M = 2m, and

T. FM =

T . FM' =

1-e2

T . M'M . Uu.

1+e
e

1 -e

T> = (1 e) m.

=
(1 + e) m.

Let C be the middle point of MM'. Then

T .OF = m -
(1
-

e) m = em.
-I O

T . OR = em + - m = .

e e_,

T.MR = -- m =
I ^^
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Collecting these results, we have, for the ellipse and hyper-
bola,

OF = em = OF'
;

CR =;
p,

FM' = (1 + e) m = F'M
;

FM = (1 -e)m = F'M';
1 *>

2

FR = L- e

-m;
e

MR= :

the positive signs being taken for the ellipse, the negative
for the hyperbola.

For the parabola, e = 1, and

x = ^ or GO.

Therefore the point M', and consequently C, is at infinity ;

and FM = ^ = MR.

172. To transform the focal equation of the ellipse and

hyperbola into their central equation.
Let the focal equation be written,

as we are about to change the origin, and thereby change the

meaning, of
/u,
and p.

Let CM = /* ;
CP = p, fig. 36. Then,

1 e2

p,
= FP = FC + CP = p ep..

Substituting these values of /x t
and p, in the general focal

(
M| nation, we get

ftV
2 -e^SVp=^(l -**); (1)

the general equation of a central conic.

This equation may be written,

i _ A*V
2 - 2^VP _ P-V
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But the quantity in brackets is of the same form as the

right-hand member of equation (1), 133. Therefore, if we put

we get, as the equation of a central conic,

Sp*p = l. ... (3)

Let p be parallel to
/x,

or xp = //,.
Then

, _ }1? <?
2 C

2
p
2

*-j?<ttf
If p _l_ fi>

or S/ip = o,

<4p= __p
'

Hence the coinitial vector <p is parallel to p when p is

parallel to either the major or minor axis of the ellipse, or

the transverse or conjugate axis of the hyperbola.

173- To find the points in which the conic cuts the line

NN' drawn through C perpendicular to MM', fig 36.

But in this particular case S/xp = o. Therefore,

f = p* (1
_ e

) (1)

Let n be the tensor of p, and we have

n"- = m2
(1 e

2
) (2)

and e
2= m ~

(3)

Obviously, n2 in (2) is positive for the ellipse and negative
for the hyperbola. Further, in this latter case, since e> 1,

n = + m <\/(l e2
)

gives an imaginary value for n
; or, the conjugate axis does

not meet the hyperbola in real points.
ON = ON' = n, the square root of n 2

, without regard to

sign ;
and NN' is_called an axis of the curve.

The vector CN will be designated by v, for both the ellipse
and the hyperbola.

174. It has been shown that, if p be the vector of a plane
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curve, dp is a vector successive to p, along the tangent at

P, 1 1 3. Differentiating the equation Sp</>p
= 1 we get

dSP<l>p
= Sd (p<f>p)

= S (dp . <p) + S (p . d<j>p)
= o.

But S (dp .
<}>!>)

= S (o .

and S (p . d<j>p)
= S (p .

therefore, &p<j>dp
= o.

Now, since dp is parallel to the tangent at P, if CD (=
tig. 36, be the vector of any point upon the tangent,

TT = p + xdp

;ind dp = -
(TT p).x

Therefore, Sp< (TT p) = o = S (TT
-

p) <p, ... (1)

or, SP<TT = STT<P = Sp<p =1. . . . (2)

Equation (2) is the general equation of the Tangent of a

central conic.

Since IT p is parallel to the tangent, equation (1) shows that

<f>p
= CV is perpendicular to the tangent, or parallel to the

normal at the point of contact, fig. 36.

175. The locus of the middle points of parallel chords of

a central conic is a straight line.

Let any number of chords be drawn parallel to any given
diameter, 2y, and let o- be the vector of the middle point of

any one of them, '2xy. Then the vectors of the extremities

of this chord,
cr + xy ;

cr xyt

are vectors of points upon the conic. Therefore,

S. (o- + .Ty)<(<r + xy)= 1,

S .
(o- Xy) (<r xy) = 1.

Equating the left-hand numbers of these two equations, and

bearing in mind that
</> (o- + xy) = </><r + x<f>y, 135 (1), (2),

S(T<y + Sy^wr = o.

But Sy<<r = Scr<y ;

therefore, S<r</>y
= o.

Now, o- lies in the plane of the conic. The locus, therefore,
is that of equation (8), 99 i.e., a straight line through the

origin (C, the centre of the conic) perpendicular to
</>y.

Therefore the locus of the middle points of all chords of a
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central conic parallel to any diameter, 2y, is another diameter,

say 2f, which is at right angles to 0y, or parallel to the

tangent through either extremity of 2y.

176. By the last article, if v, be a diameter which bisects

all chords parallel to p lt

Sv^^i = o.

But Sv^/i, = S^ t <vi = o
;
..... (1)

therefore p\ bisects all chords parallel to v\ ;
and as v, is

parallel to the tangent at the term of /AH so p^ is parallel to

the tangent at the term of v,.

Diameters which possess this property are called Conjugate
Diameters.

177. The system

p = VafV; Ta= 1
; Sa/x =^= o, . . . . (1)

represents a plane ellipse, 6 being the eccentric angle and

fj.
and Va/x (= v) the major and minor axes, 103.

p = Va**//.
= V (cos + a sin 6) //

= V
(/x cos + ap. sin 0)

=
p.

cos 6 + v sin 6 ............ (2)

Differentiating (1),

=Va^y ....... "... (3)

= Va^a'V = Va (cos 6 + a sin 0) /z

= V (a
2
//,

sin 6 + a/A cos 0) = //.
sin + v cos . . (4)

Since the value of ~ in (3) (which is parallel to the conjugate
do

of p, 176) is the value of p in (1), when 6 becomes (6 + ^ IT) ;

it follows that any two expressions for p in which differs by
TyTT, represent conjugate diameters. For example, if we sub-

stitute (6 + \ir) for in (2), we obtain (4),

178. From (2) and (4) of 177,

4TVP
d ' = 4TV (p. cos 9 + v sin 6) ( fi sin + v cos 0).
do

In words, the area of the parallelogram circumscribing an

ellipse and touching it at the extremities of conjugate
diameters is constant.
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179- Let DD' be any diameter of a central conic. Then, if

E be any point upon the conic, DE and D'E are Supplemental
Chords.

Let C be the centre of the conic
;
CE = p ;

DD' = 28.

Then,
DE = 8 + p ,

ED' = 8 - p,

and S . (8 + p) <j> (8
-

p) = S . (8 + p) (<f>8
-

fa)

But

Sp</>8
= o

;

and SS<8 Spfa = 1 1 = o.

Therefore, S . (S + p) <j> (8
-

p) = o.

Therefore, if e and be two diameters parallel respectively to

the supplemental chords (8 + p) and (8 p),

Therefore diameters parallel to supplementary chords are

conjugate.

180. From T, any point exterior to a central conic, draw

tangents touching the conic in P and R. Let C (as usual)
be the centre of the conic

;
draw PR, cutting CT in Q, and

let CT = TT. Then the equation of the tangent, 174,

is satisfied by the values of p for the points P and R. And this

equation is also the equation of a straight line, 99. It must,
therefore, be the equation of the straight line passing through
the points P and R i.e., the equation of the chord of contact.

Writing or for p (to avoid confusion with the p of the conic),
we have

So-<7r=l ....... (1)

as the equation of the chord of contact, or of the Polar of the

point T.

181. To find the locus of T, the cross of the tangents, if

the chord of contact always passes through a fixed point, A.
Let or be the vector of the point A. Then, sinceA lies on

the chord of contact,

Sox^rr = 1,

and STTO- = 1.
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Therefore, 99, the locus of T is a straight line perpendicular
to <fxr i.e., parallel to the

\j/ tangent at the point where
CA produced meets the conic.

182. The equation,

p = ta + t-ip . . (1)

represents a hyperbola, 102
;

a and /3 being unit-vectors along
the asymptotes CY and CZ
respectively, and t and t

~ '

the Cartesian co-ordinates,

fig. 37.

For the tangent at G,

or,

= dp (a

= a - . . (2)

If TT be the vector of a

variable point upon T,

If 7T = CY,

t
- 2

(t x) = o
; or, x =

t, and CY = 2ta.

If TT = CZ,

t + x = o
; or, x = -

t, and CZ = 2t
~

l

fi.

Therefore,

GY = CY -
P = ta t- l

(3
= P

- CZ = ZG . . (3)

Therefore the intercept of the tangent between the asymp-
totes is bisected in the point of contact.

Obviously, any diameter, CG produced, bisects the inter-

cept between the asymptotes of all lines drawn
||

the tangent
at its vertex ; or, UQ = QW.

183. From (2) of 182 it follows that, if any diameter, CG,
be the intermediate diagonal of a parallelogram whose coinitial
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sides, CA, CB, lie along the asymptotes, the other diagonal,

AB, is parallel to the tangent at G.

For, since CA + CB = CG = to. + t
~

'/?,

we have CA = to.
;
CB = r 1

/?,

and BA = ta - r 1

/?.

But, 182 (2), j
= a - r 2

(3
= r '

(ta
- r 1

/?)
= r 1 BA.

Therefore, BA
|| dp.

184:. It is evident that if we complete the parallelograms
CGYD and CGZD', DD' and CG will be conjugate diameters

;

or, the asymptotes have the same direction as the diagonals of

parallelograms whose adjacent sides are any pair of conjugate
diameters.

185. Any diameter of a hyperbola, CG, bisects all chords

parallel to the tangent at its vertex (G) ;
for example, RP

which is cut in Q by CG.

For, let CP = va + v~ l

(3. Then,

Therefore, t (x + y) = v = -- ,x- y

and a?
2

y
2 = 1.

Therefore, for every point, as Q, determined by x, there

are two points, R and P, determined by the two corresponding
values of y, which values are equal with opposite signs

(Hardy).
Since UQ = QW, 182, and PQ = QR, it follows that

UP= RW, or, the intercepts of the secant between the

hyperbola and its asymptotes are equal.

186. The area of the triangle formed by the asymp-
totes and any tangent is constant. For, since CY = '2ta,

CZ = 2~'/3, we have at once,

V (2ta . 2t
-

!

/3)
= 4Va/? = constant vector-area.

187- The general focal equation of the parabola is, (1) of

170, ...... (1)
M 'J
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which may also be written,

=1.

Let <>=PP
/*

and the equation of the parabola becomes

Sp fop + 2/*-')
= l ..... (3)

Operating on equation (2) with S . /A x ,

S^<p = S/xp S/jp = o (4)

Therefore </>p,
which is coinitial with p, is J_ the axis of the

parabola.

S.pX,

P-

188. Differentiating equation (3) of 187,

o = S (dp . <p) + S (p . d<j>p) + 2SfjL-
l

dp

= S (p . ^dp) + S (p . ^p) + 2Sfr I

dp

or, Sp$c?p + $ij.~
l

dp = o.

If TT be the vector of any point upon the tangent,

TT = p + ccc?p,

and dp = ---
.

x

Hence, -
(Sp< (TT p) + S/x~' (?r p)}

= o,
x

and Sp<^7T Sp<p + S/x"
1
TT Syu,"

1

p ^ o, . . (1)

the focal equation of the tangent.

Since, equation (5) of 187,

Sp<p =1 2S/x~
l

p, and Sp^>7r
=

STTC^P,

S(^> + /t-) + S/i-p = l
f
.... (2)

another form of the equation of the tangent.

Equation (1) is evidently equivalent to

S(^-p)fop+ /A

-
1)=o.

But (TT p) is a vector along the tangent. Therefore,
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is a vector along the normal ; and if o- be the vector of any
point on the normal, its equation is

189. Let PA be J_ ^ (= FR), fig. 38, and let equation

(2) of 187 be written,

p = FA+AP =
Since FP =

p, and

<t>P J_ p, (4) of 187
;

this

equation gives us

. (1)

Since TT in equation (2)
of 188 is any vector

drawn from the focus to

the tangent, it may repre-

sent FT = ay*. Substitut-

ing this value of TT in that

equation, we have

x =1 - S/x-'p-

Hence,

FIG. 38.

=
/x
-TT == FT =

MT = FT - FM =
= (by (1)) FM - FA = AF + FM ;

therefore, MT = AM.

Since FT = -x-'

we have (FT). ---.

(2)

of 187.

Therefore, FT = FP (3)

Consequently, if PD be a line parallel to the axis, meeting
the directrix in D, the tangent PT bisects the angle FPD ;

and FD is perpendicular to, and is bisected by, the tangent.
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By (3) of 188
(<f>p + fi"

1

)
is a vector along the normal.

Therefore,

+ /*->)
= PN = PA + AN

Therefore, (y + /*
2
) <f>p

= (- y + zp?)p.~
l

;

y = ^ ', y = sp? ;

z = 1"

NA_=/*j=FR

'

...... (4)

Further, since NA + AP = NP,,

NP = /* + /*V/> = FR + AP = FR + RD = l
r
D, . . (5)

and

^ (/* + /x
2^) = |FD = FB = FM + MB.

Therefore, MB^/^p, ...... (6)

and MB is parallel to and equal to half AP.
It follows from (4) that the subnormal of a parabola is

constant. The figure FDPN is evidently a rhombus.

190- To transform the focal equation of the parabola to

the equation with the vertex for origin ;
let the focal equation

be written,

as we are about to change the meaning of both
//,

and p.

Then,

Pi = FR = - 2MF = -
2/i,

Substituting these values of /A L
and p l

in equation (1) of 187,

p*_4S/v -/*-SVp = o
>

. . . . (1)

the equation of the parabola with the vertex for origin.
This equation may be written,

SP (p
-

P-~
l

Sp<p
-

fy.)
= o.

Let
tf>p
= p fj.~

l

Sfj.p, ...... (2)

and we have, for the equation of the parabola with the vertex

for origin,

8^(^-4^ = ...... (3)

As before, S//.<p =- o
;
....... (4)

but, in this case, Sp<f>p
=

(<j!y>)

2....... (5)
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The equation of the tangent will be found to be

o, //.v

or,
- '

.and the vector along the normal

*P-2M........ (7)

As a verification of equation (1) ;
let i and j be unit-

vectors along the axis and tangent at the vertex, and let

p.
= mi. Then p = xi + yj ; S/xp = mx

; and,

2/
a = 4rrc*, ....... (8)

the Cartesian equation.

191. To find the locus of the intersection of the normal
and the perpendicular upon it from the focus, FS, fig. 38.

Since FSJ.PN, if FS = o-,

Spcr=cr
2 ....... (1)

= p
-^ (+p + /*-'), by (5) of 190. . (2)

S .
p. x . S/xo-

= Spp - \^ (S^<p + 1).

But S/x<^>p
= o

\

therefore, S/xp = S/ACT + \^....... (3)

S . p x . Spo- = p
2 -

|/x
2
(Spto + S/t-'p).

Subtracting (1) from this equation,

Now, (5) of 187,

Therefore,

Multiplying this equation by yu,

2
,
and transposing,

(1) of 187,

= ^
and /t

2
o-

2 = -
i/*

2
S/*o- + Sa

/r ..... (4)
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This is the equation of a parabola with its vertex for origin,
whose axis is parallel to the axis of the given parabola ; for,

if we substitute S/A, for
/A,
we get

2

we have FR = 8FF',

= 8

and a; =- = --;S^=-2V. . - (2)
* -'P-

S . X <p.

Also, (3) of 190,

which is the same form as (1) of 190.
The focus of the given parabola is the vertex of this

parabola. For, let a- = t[i. Substituting this value of cr in

(4), we get

Therefore the curve passes through the origin of
/A,

i.e. the

focus of the given parabola.
Let F' (measured to the right of F, fig. 38) be the focus of

the new parabola ;
I' the tensor of its latus rectum

;
I the

tensor of the latus rectum of the given parabola. Then, since

or, the latus rectum of the given parabola is four times the

latus rectum of the new parabola.
The reader will remember that in the equation of the

given parabola, the focus being the origin, p. is the vector FR
drawn from the focus to the directrix. In the equation of the

new parabola, the vertex being the origin, /A,
is the vector

FF' drawn from the vertex F to the focus F' i.e. in the

opposite direction to
/A.

192. To find the locus of the intersection of the tangent
and the perpendicular upon it from the vertex, MQ, fig. 38.

Since the vector of the sought locus is always parallel to

the normal at the point of contact, we have, (7) of 190,

TT = x(<j>p-2ri....... (1)

S . tr 1 x . S/A~V = 2x,
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Substituting these values of
S///TT, S?np and S/xp in (6) of

190,

Squaring (1),
<K~

Therefore, -rr
2 = 2cc7r

2 +
Substituting the value of x from (2),

/A
2
7T

2 =
(S/A7T 7T

2
) S//.7T ;

the equation of a cissoid, as will be shown in the following
article.

SECTION 6

Various Curves

193. The Cissoid of Diocles is the locus of a point,

P, fig. 39, where the radius-vector of a circle, OR, is cut by
an ordinate so that OQ = SB.

Let C be the centre of the circle
;
OC = a

; OQ = ya
OP = p ;

OR = xp.

Then, since OR ~OC = CR,

(xp
-

a)
2 = C~R2 = - a2

,

and the equation of the circle is

ccp
2

2Sap = o . .

By similar triangles,

OQ_ OP
OS OR'

(2)

hence,

From (1),
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Substituting these values of x and y in (2), we get

2a2
p
2 = (p

2 + 2Sap) Sap ;
. . (3)

the equation of the cissoid.

The cusp of the cissoid, O, coincides with the vertex M
;

the point B coincides with R
;
and BT, the tangent to the

circle ORB, coincides with the directrix of the parabola, 192,
Consequently, the vertex being the origin,

OC= a(in the foregoing calculation)= ^MR= ^/A, in 192.

Substituting this value of a in (3), we get

/*V = -
p

the equation there deduced.

194. The Cycloid is the path described by a point on the

circumference of a circle which rolls in a fixed plane upon a

fixed straight line, called the base.

Let APR be any position of the generating circle, fig. 40,
A being the point of contact of the circle with the base, AB.
On the base take the point O, such that AO = arc AP. Then,

obviously, O is the position of the tracing point, P, when in

contact with the base. Draw OD and PQ perpendicular to

the base
;
draw the diameter

of the circle, AC, and CP, AP ;

and suppose OP to be drawn.

D /^ / ^2~-~ Let CA = c
' ^ PCA = ^

'

and let a and ft be vectors in

the directions OB, OD, such

that Ta = T(3 = c. Then,

OP = OQ + QP.

OQ = OA-QA
= (arc AP c sin 0) Ua

-Q = (cO c sin 0) Ua=
(6 sin 0) a

;

QP = (c
- c cos 0) U/?= (1
- cos 6) p.

Therefore, p = (9 sin 0) a + (I cos 0) /?, . . . (1)

the equation of the cycloid.
For the tangent at P we have

du
=

(1
- cos 0) a + sin 6. (2)
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Let PA = v. Then

v = OA -
P = Oa - (0

- sin
ff)

a - (1
- cos

ff) ft

= a sin 6 (1 cos 6) ft.

^',16
= S

(
asinfl -(l -cos

0)0} {(1
- cos 0) a + sine}

= S
{
_ c

*
Sjn g (j

_cos g) + ap gin" 0_0a (1 cos 0)
2 + c' sin (1 cog 9) }= o.

Therefore, v_|_
- or AP is normal to the cycloid at P . . (3)do

Let us assume Hamilton's formula for the vector of

curvature,

where p' and p" are the first and second derivatives of p, and
the origin of TT is the centre of curvature. Then

P"= (

l

'fg) ={(l-cose)a + /3sine}
:'= - 2c" (1

- cos 0){(l-cos0) a+/3 sin 0} ;

p" = a sin + /3 cos fl ;

yp"p' = c
2
(1 cos 6) c, where c is a unit-vector coinitial

with and J_ a and
ft,

such that rotation round it from a to ft

is positive ;

TT = - 2 {a sin 9 - (1
- cos 0)0}= - 2v. . . (4)

Therefore the length of the radius of curvature is twice the

length of the normal, PA.

195. If a vector, p, revolve round its origin in a plane, and
if equal angular motions of p correspond to equal multiplica-
tions of Tp ;

then the locus of P is a Logarithmic -Spiral, and
its equation evidently is

P = ^ft; (1)

Ta >
1

; Sa/3 = o.

For, let OB, OC, &c., fig. 41, be a number of equiangular rays,

L BOG = L COD = L DOE = &c. = 6
;

let OB = ft ; and
let a be a vector perpendicular to the plane BOE, drawn
from O towards us. Then

OB = pc = aft = ft,

OC = p,
=

af'ft
= aTft . Uac

'U/3,

OD = p 2
= a*p= a*T . Ua^U/3,

OE = p3
= aMp = aSci

Tft . Uaf('+W)
U)8 ;

and ultimately,

OP = p = aft = a'/?.
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The scalar exponent may, of course, be either positive or

negative.

FIG. 41.

Suppose, for instance, that, as in fig. 41,

t =
;
OA = 2!

;
OB = 10 mm.

Then

< = {_ QOR= Z.POQ = &c. . . =
/
/FOG

and

Tp, =00 = TcuT/? = 10 (2!)
= HW2 ;

Tp2
= OD = TaiTp, = 10v/2v/2 ;

Tp3
= OE = TaiTp2

= 10 S2J2^/2 ;
and so on.

For the points L, M, &c., we have

= (121) (log a + ^Ua) a'fidt = (log a + ^Ua) pdt, . . (2)

the vector-tangent of the spiral.

Hence, pe?p
= p

2
log a . dt + papdt ;

= p
2
log a . dt (since Spap = o) ;

Vpe?p = jc-Vpap , dt =
'-! ~' J

.

rmT 7 7TO do
TVpdp = -.
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Therefore, if /. pdp = 0,

tan e = TTp _ = 7r

_; . . (3)
Spdft 2P

*
\oga.dt 2 log a

or, the angle between the vector of any point upon the

logarithmic spiral and the tangent at that point, is constant.

It will be observed that in this expression for tan 0, a is the

tensor of a versor perpendicular to the plane of the spiral.
In the ordinary polar equation,

1
tan =

log a
a is a constant line in the plane of the spiral.

196. A Helix is the path generated by a point, P, upon the

rim of a very thin circular disc, fig. 42 (a), which revolves (like
a wheel) at a constant velocity, and at the same time moves at

a constant velocity along a very thin, straight, and fixed wire,
OA

4 ,
which passes through its centre, the plane of the disc being

B(P )

FlO. 42.

always perpendicular to the wire. The point P is supposed
to take the same time to rotate through one quadrant of the

circle that the centre of the disc takes to move in a straight
line from O to A], or A, to A 2 ,

&c. Fig. 42 (a) shows the

position of B, the term of a given vector /?, before motion has

taken place. Let a be a unit-vector in the direction OA,,

and let T . OA, = T . A^Aj = &c. = c.

Then

or,

or,

OP, = OA, + A,P,,

p, = ca + aft ',

OP2
= OA 2

= 2ca

A 2P2
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and, ultimately,

p = eta + a!p, ....... (1)

Ta = 1
; Sa/3 = o,

where t is a variable scalar.

It is evident that this is a helix upon the cylinder,

TVop = TVayS, ...... (2)

of 109. The mathematical pitch of the screw is the ratio of

the rectilinear velocity of the centre of the circle to the

angular velocity of P. The mechanical pitch is the rectilinear

distance passed through by the centre of the circle in the

time that P takes to make one complete revolution of a circle,

that is, OA4 .

Ja
(+1

/3<ft; .... (3)
a

-
ldP = ~afj3 ;

. . (4)

dp = T = b, since Ta = 1
;

, T TVa~'c?p -jrbdt irb /K >.

tan = tan</cr'o?p = ,

^ = --=-. (5)
Sa~ l

dp 2cdt 2c

The inclination of the tangent, therefore, to the axis of

the cylinder on which the helix is traced, is constant.

1^=5-0, cot ^ =
2c

...... (6)

is the expression for the constant angle at which the helix

cuts any circle traced upon the cylinder, n-b is the semi-

circumference of the cylinder ;
2c = OA 2 ,

that is, half the

interval between the two spires, B and P 4 .

If a series of vectors be drawn from O, in both directions,

parallel to a series of tangents, the locus of the vectors will

obviously be a cone of revolution whose equation is,

SUcr^p = cos B...... (7)

The normal plane is the plane perpendicular to the tangent
at the point of contact.

Let BPP', fig. 43, be a helix, and let CD be the normal
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plane at P to the tangent PT. Let the plane cut the axis

of the cylinder in Q ;
let OA = a, OQ = x, a = y, PT = r.

Since T is JL the plane CD,

S(y-p)rfp = o . . (8)
D

is the equation of the normal plane.
Since the equation of the helix is

p = eta + a'ft,

with the conditions

Ta = 1
; Saft = o

;
no.43.

p
2=

(eta + a'ft) (eta + a'/3)
= - C

2
t
z + Cta'

+ l

(3 + cta'fta + a'fta'ft,

=-&* + Cta' (a/3 + fta) +

, t
=F-e*P ............... (9)

Therefore, Spdp = cHdt,

But, (8), Spdp = Sydp = xSadp = -
xcdt, (4).

Therefore, x = ct
; y = eta

; Say = eta2
.

Also, (1), Sap = Sa (eta + a'
ft)

= ca2 + Sa' + l

ft
= Cta\ . . . (10)

Therefore, Say Sap = Sa (y p)
= o

;

y-p = PQ a....... (11)

In words, PQ is perpendicular to the axis of the cylinder,
or is a normal to the cylinder.

It follows that the locus of all the perpendiculars let fall

from the helix upon the axis of the cylinder is a screw-surface,
or helicoid, bounded by the surface of the cylinder, and con-

taining the helix itself
;

its equation being of the form,

p = eta + ua'ft, ...... (12)

where t and u are independent variables. Or, reverting to

the conception of a moving circle, we may say that u is a
function of the velocity of rotation of the circumference of

the circle, and t is a function of the velocity of translation of

its centre, the two velocities being absolutely independent.
To gain a definite idea of the shape of this surface, we

have only to imagine that the cylinder is upright, and that a
corkscrew staircase is constructed round the axis. The

(smooth) bottom surface of the staircase is a helicoid.
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SECTION 7

The Plane

197- Three given coinitial vectors, a, /?, y, terminate in a

plane ;
to find the perpendicular from the origin upon the

plane, OD = 8.

We have at once

= l; S/3S-
1 = 1

;

therefore, 131 (2),

g _~
ya

Since 8V (/3y + ya + a/3)
= a scalar, V (/3y + ya + a/3) ||

8.

198- To find the condition that four points shall be co-

planar. Let the vectors of the four points be a, (3, y, p. If the

point P lie in the plane passing through the points A, B, C,
which are supposed to be non-collinear, then

or, &Pyp ~\~ Syap + SayS/) Su/?y = o.

The geometric meaning of this equation is obvious.

As a verification, let p = xi +yj + zk
;
a x

{
i + yj + z,,

ifcc
,

ifec. Then

or,

x
, y ,

z
,

X3 J 2/3 J
2;3 >

For another solution, see Part I., 38.

199- The intersection of two planes is a straight line.
1 For

let OA = a, OB = ft lie in one plane, and OC = y, OD = 8

lie in the other. Then, 79, the intersection of the two planes
is V . Va/3Vy8, that is, a straight line.

1 As the point of intersection of two lines is called their cross, I

venture to suggest that the line of intersection of two planes might
be called their cut.
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200. The condition that three planes shall intersect in

one common straight line.

Let the equations of the three planes, P,, P2 ,
P3 ,

be

respectively,

Sap = p ; S/?p = q ; Syp = r
;

and let or be a vector along their common line of intersection.

Then, since a is perpendicular to P,, it is perpendicular to <r.

Similarly, /3 and y are perpendicular to o-.

Therefore, Sa/3y = o,

and P^Py + <?Va + rVaft = o.

This is the condition that the three planes should be parallel
to the same straight line.

201. To find the condition that four planes shall meet
in a point.

Let the equations of the given planes be

Sap = h
; S/?p = I

; Syp = m
; SSp = n.

For the point of intersection, the variables of the first three

equations must have a common value,

hV/3y + IVya + mVa/3

SaySy

But since the fourth plane passes through the same point, this

value of p must be also a value of its variable. Therefore,

substituting this value of p in the fourth equation, we get

_ hS$V(3y + ISSVya + mSSVa/?n oop
- -1

,

oa/Jy
or,

AS/2y8 ZSySa + mSSa/3

the sought condition.

SECTION 8

The Tetrahedron

202. To find the diameter of the sphere circumscribing
a given tetrahedron.

This will be given in the Section on the sphere, 211.
N
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203. If two pairs of opposite edges of a tetrahedron,
OABC, be at right angles, the third pair will be also at right

angles. Let OAJ.BC, OB_|_CA. Then

Sa(y-/J) = o,

S/3(y-a) = o.

Subtracting, Sy (a (3)
= o,

that is, OCj_AB.

2O4- To find the condition that the perpendiculars from
the corners of a tetrahedron, OABC, upon the opposite faces

shall be concurrent.

Let xVfiy and yVya, the respective perpendiculars from
A and B upon the opposite faces, intersect in P. Then, since

(P a), V/3y and Vya are coplanar, V . V/3yVya is per-

pendicular to y8 a. Therefore,

S (ft
-

a) V . V/3yVya = o,

S(/3-a)(-ySa/3y) = o,

(Sya
-

S/?y) Sa/?y = o.

Therefore, o = Sya
-

SySy = Sy (a -/?),. . . . (1)

that is, OCJ.AB.
"We get corresponding results in the other cases

; therefore

the sought condition is that the opposite edges shall be at

right angles.

2O5- If the opposite edges of a tetrahedron be at right

angles, then the sums of the squares of the opposite edges are

equal.

For, by (1) of 204, we have

S/3y=Sya,

T/3 cos BOG = Ta cos AOC,

n~ OB2 + QC2 - BC2 _ n A PC
2 + OA2 - CA2

20B.OC 20C . OA
consequently,

OB j + CA2 = OA2 + BC2
.

We get corresponding results in the other cases ; therefore,

&c., &c.

This is another form of the condition of 204.

206- The sum of the vector-areas of the faces of a tetra-

hedron, OABC, is zero.

OBC = %V/3y ;
OCA = Vya ;

OAB = |Va.
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As we have taken the positive areas of these three faces

as seen by an observer standing upon the point O, i.e. from

the outside of the tetrahedron ;
we must take the positive

area of the remaining face from a corresponding point of view

exterior to the solid. Accordingly,

ACB = iV (y a) (ft
-

a)
= - |V (fiy + ya + a/3).

Therefore,
OBC + OCA + OAB + ACB

ya + a/3)
= o.

In general, the sum of the vector-areas of the faces of any
polyhedron is zero.

Let O be any point within the polyhedron, and let it be

divided into a number of tetrahedra by planes passing through
O. Then the sum of the faces of each separate tetrahedron

is zero. Adding, the sum of the faces of all the tetrahedra is

zero, that is, the sum of the internal faces, plus the sum of the

external faces, is zero. But the internal areas, taken two and

two, cancel each other, since each two adjacent areas have the

same vector-expressions with opposite signs. Therefore the

sum of the external faces, that is, the sum of the vector-areas

of the faces of the original polyhedron, is zero.

S ECTION 9

The Sphere

207- If a quadrilateral be not inscriptible in a circle,

then, whether it be plane
or gauche, we can always cir-

cumscribe two circles, OAB,
OBC, about the two triangles
formed by drawing the diagonal

OB, fig.
44.

We then have, 96,

OA . AB . BO = OT
;

OB . BC .CO = OU
;

therefore,

OA . AB . BC . CO . = ~
QB2

where both members of the equation are quaternions.
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If the quadrilateral be plane, the axis of OA . AB . BC . CO
(or of OT . OU) is perpendicular to the plane of the two tan-

gents, TOU, and therefore to the plane OABC. If the

quadrilateral be gauche, this axis will still be perpendicular to

the plane of the two tangents, and will be consequently
normal at O to the sphere circumscribing the quadrilateral.

In both cases the direction of the axis is such that rota-

tion round it from OT to OU is positive.

The angle of the quaternion OA . AB . BC . CO is the

supplement of the angle TOU, and is consequently the angle
TOU' contained by OT and a tangent OU', the opposite of

OU
;
or the angle between the planes OAB and OCB, or

between_the arcs^OAB andjDCB (we write OCB, not OBC,
because OU' = OC . CB . BO).

208. Since"OA . AB . BC~. CCTdiffers from the anhar-

monic function (OABC) by a scalar only, 163, (1), we have

L (OABC) = L ? ^ = L (OA . AB . BC

And since /. o

we have for

or gauche,

(OA. AB.BC.CO) = z.(AB.BC.CO.OA) = &c.; . . (1)

L (OABC) = L (ABCO) = L (BCOA) = z (COAB) ;
. . (2)

and also for the four reciprocal anharmonics,

L (OCBA) = Z (AOCB) = Z (BAOC) = Z (CBAO) . . (3)

If, then, we are given four points, A, B, C, D, coplanar
or in space, fig. 45, connected by four circles,

each of which passes through three of the

points ;
we have the following equality of

angles :

For

Z C = Z (CDAB) ; z D = L (DABC) ;

and the angles of these four anharmonic

quaternions are equal by (2), (Hamilton).

Let ABCDE be any pentagon, plane or gauche,

AB CO

L *Py8 = L. /?ySa
= &c., 76 (5),

the successive sides of any quadrilateral, plane

FIG. 45.

209
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inscribed in a sphere, and let the two diagonals AC, AD be

drawn. We then have the three equations,

AB . BC . CA = AT,

AC . CD . DA = AU,
AD.DE.EA= AV,

where AT, AU, AV are three tangents to the sphere at A.

Multiplying the three equations together,

. (1)

Now, the product AT . AU . AV is some fourth coplanar
vector AW, which, being coplanar with the three tangents, is

itself a tangent at A. Therefore the product of the five suc-

cessive sides of a pentagon, plane or gauche, inscribed in a

sphere, is a tangential vector drawn from the point at which
the pentagon begins and ends.

In general, the product of the successive sides of any w-gon
inscribed in a sphere is a quaternion whose axis is normal to

the sphere at the initial point of the -gon, when n is

even
;
and is a vector tangential to the sphere at the same

point, when n is odd.

210. The last equation, 209 (1), may be written :

OA . AB . BC . CP . PO = a&

where P is a variable point upon the sphere. Hence, taking
scalars,

o = Sa((3-a)(y-p)(p-y)(-f>),
or, P

3
Sa/3y = a2

S/ty> + /3
2
Syap + y

2
Sa/3p ;

. . (1)

the equation of a sphere, O being a point upon its surface.

To verify the equation, we have only to observe that it is

satisfied by assigning to p the successive values, o, a, /?, y.

Hence, if the vector of any point in space, in terms of three

given diplanar vectors, a, /?, y, be

p xa + yfi + zy
the equation p

2 = xa2 + y/3
2 + zy

2

expresses that the vectors a, ft, y, p terminate in the surface

of a sphere which passes through 0.

Let OA, OB, OC, &c., be any chords of a sphere, and let

6i) be a diameter, fig. 35 of 161. Then, 160, a~
' - 8' 1 =

T,,
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a tangent at O
; fi~

l 8~ l = r2
,

another tangent at 0;
&c., &c. But these tangents are coplanar ;

therefore a~ l 8~ l

,

/3"
1 8~ l

, &c., are coplanar; therefore /3~
l a" 1

, y"
1 a" 1

,

&c., lie in a plane parallel to the tangent plane at O. There-

fore, if p he the vector of a variable point, P, upon the sphere,

/ \/ / \P / \ /

is the equation of a sphere passing through the five points
O, A, B, C, P. It is not difficult to transform (2) into (1).

Since S ^- = o,
P

and

are equations of the sphere.
If the origin be any point in space, K the vector of the

centre, and a any given vector radius,

T(P -K)=Ta )

(

(p-K)
2 = a2 = Cj

'

are also equations of the sphere.
If TK = c, this last equation may be written :

p
2 = 2SKp = c2 a2

(5)

211. By 82,

SSajffy
= S8aV/3y + S8/3Vya + SSyVa/?.

But, by (3) of 210,

SSa = a2
; SS/3 = y3

2
; SSy = y

2
.

Therefore,
-

/?
2Vya -

SaySy

the expression for the diameter of the sphere circumscribing
the tetrahedron OABC.

212. The equations of the tangent and tangent plane
have been given in 167

;
that of the polar plane in 168.

213- To find the equation of the curve formed by the

intersection of a plane and a sphere.
From the centre, O, of the sphere let fall a perpendicular

OD = 8 upon the given plane. Let p be the variable vector

of the sphere ;
o- a vector in the given plane drawn from D to
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meet p in the line of intersection whose equation is required.

Then, if a be the radius of the sphere,

P
fc= - 2

;

but p = 8 + <T
;

therefore, (8 + o-)
2 = a2

,

and <r
2 = -

(a
2

cP).

The locus, therefore, is the circle,

o-
a = -

(a
2 - d2

),
SSo- = o,

with D for centre and -s/a
2 d2 for radius.

214- To find the curve in which the spheres intersect.

Let the equations of the two spheres be, 210 (5),

p
2 -

2S/c,p = C
1

2 -a
l

2
,

p
2 - 2S/c2p = 2

2 -
2
2

.

For every point of the curve of intersection the variables

must have one common value. We may consequently equate
the two equations, thus obtaining

s (K,
-

K,),.
= H (,

2 -
2
2
) + (C2

2 - (V)} = c. . . (i)

Now, this is the equation of a plane _|_ (K }
K 2 ),

100 (9).

Therefore the line of intersection of the two spheres is the

common line of intersection of this plane with the two spheres.
Hut the intersection of a sphere and a plane is a circle.

Therefore the line of intersection of two spheres is a circle.

Equation (1) is the equation of the Radical Plane of the

two spheres.

215. If three spheres intersect one another, their three

planes of intersection pass through one common straight line.

If the equations of the three spheres be

p
2 -

2SK,p = C,,

p
3 2S*2p = C2 ,

p
2 2S*c3p = C3 ,

the equations of the three planes of intersection will be

S(K, -K2)p = i(C 2 -C,), orP,,
i(C3 -C 2 ), P2 ,

|(C,-C 3 ),
P3 ;

where P, _L (K,
- K2 ),

P 2 J_ (x2
- *3 ), P3 J_ (*3

- K
).

Now,
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Therefore P,, P2 ,
P3 intersect in one common straight line,

200.

216- To find the locus of a point, the sum of the squares
of whose distances from n given points is constant.

Let p be the vector of the sought point ;
a

l5 a2 . . . a^ the

vectors of the given points. Then

(p
-

a,)
2 + (p

-
2)

2 + &c. = 2 (p
-

a)
2 = - C.

But (p
-

aj)
2 = P

2 - 2SalP + ai
2
,

(p a2 )
2 = p

2 2Sa2p + a2
2
,

Therefore, 2 (P
-

a)
2 =V - 2Sp2a + 2a2 = - C,

Therefore, by (4) of 210, the locus of P is a sphere the vector of
^

whose centre is
,

its centre consequently being the mean
n

point of the n points.

SECTION 10

The Cone

217- To find the equation of a Cone of Revolution whose

vertex, 0, is the origin.
Let a be a unit-vector along the axis OA, and p the vector

of any point upon the surface of the cone. Then

Sap = T/> cos
;

6 being the angle POA.
But is constant. Therefore,

(1)

218- Had we written the equation of the plane, 105, as

Sop = a2
, ....... (1)

and the equation of the sphere as

p
2
,
....... (2)
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we should, by multiplying these two equations together, have
obtained the equation of the Cyclic Cone in the form :

oV - SopS/?p = o, ..... (3)

instead of 8^8 =1,108.
a p

This cone has for its base the circle,

Sap = a?
; S/?p

= p
2...... (4)

Let us take a vector with the direction of (3 and the tensor

of a, TaUyS = OB'. The equation of the plane through B'

perpendicular to this vector is

O = S . TaU/3(p - Tall/?) =
|S/?(p -|/J),

or, S0p = /3
2........ (5)

Again, let us take a vector with the direction of a and the

tensor of (3, T/3Ua= OA'. The equation of a sphere through
A' with OA' for a diameter is

or, Sap = -
p
2........ (6)

Multiplying (5) and (6) together we get

Therefore, (Sap = a2
; Sfy, = p

2
)

and

are two different circular sections of the same cyclic cone.

Every section of this cone by a plane parallel to the plane
Sop = a2

,
is a circle. For, letc be .any constant scalar. Then,

100, (8), Sap = ca2

is a plane \\
to Sac = a2

. Substituting this value of Sop in

(3), we get

p 2 cS/3p = o.

We therefore have for p,

Sop = c
2a

; p
2

cS/?p.
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The locus of P, therefore, is the intersection of the plane
through the term of caj_a, and the sphere with cfi for a

diameter, i.e. a circle.

Similarly, any plane parallel to the plane, S/Jp = y /3
2

,
is a

o

circle.

Therefore the sections of a cyclic cone made by planes

perpendicular to either of the Cyclic Normals, a and /?, are

circles. Both series of planes
are consequently perpendicular to

the plane OAB. If, then, AD
be the intersection of the plane,

Sop= a2
,
with OAB, and AE be the

intersection of OAB with a plane

through A parallel to S/3p = -
/3 ;

o

AD and AE are evidently anti-

parallel, fig. 46. The two series of

circles are consequently called the

antiparallel (or subcontrary) sec-

tions of the cone.

The equation of a plane through O parallel to the plane

(1) Sap = o; ........ (7)

the equation of a plane through parallel to the plane (5) is

o......... (8)

These are the equations of the Cyclic Planes.

If the cone, in the first instance, be supposed to have for

its base the circle

Sop = a2
; S/Jp = p

2
,

it is clear that the cyclic plane (8) is a tangent at the vertex

to the circumscribing sphere (2). If, in the second instance,

the cone be supposed to have for its base the circle

the cyclic plane (7) is a tangent at the vertex, to the circum-

scribing sphere (6).

Since a2p
2 = SaPSp = TapT/3pSUapSU/3p,

= T -. = constant ;
. . . (9)
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or, the product of the cosines of the inclinations of any
variable ray, p, of an oblique cyclic cone to its two cyclic
normals is constant

; or, the product of the sines of the in-

clinations of the same ray to the two cyclic planes is constant.

If a
|| /3,

then (3
= m2

a, where m is a constant scalar > 1, and
the equation of the cone becomes

which is the equation of a cone of revolution, 217 (1).

219. Of a system of three coinitial and rectangular
vectors two are confined to given planes ; to find the locus

of the third (Professor MacCullagh).
Let TT, p, or be the three rectangular vectors. Then, by

condition,

STTP = O ........ (1)

Spo- = o ........ (2)
SO-TT = o......... (3)

For the given planes we also have

SttTT = O ........ (4)

S#>= ......... (5)

It would be impossible generally to eliminate two vectors

with less than six given equations. But in the present case,

as the tensors are not involved, five are sufficient.

From (3) and (4),

Tf = xVaa-
;

(2) (5),

p =
Substituting these values of TT and p in (1),

ovz/S . Va<rVy3<7 = o,

and, 92 (7),
<7
2
Sa/3

-
SaaSySrr = o

;

the equation of a cyclic cone.

Before concluding, the reader must be reminded that it is

not by such geometric applications as the foregoing that the
merits of the quaternion method can be adequately illustrated.

It's simplicity and power can only be fully shown by physical

applications, which can find no place in this, or any other,

elementary book. For such applications the reader is referred

to the works of Sir W. R. Hamilton and Professor Tait ; to
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the '

Utility of Quaternions in Physics,' by Mr. A. McAulay ;

and to Dr. Molenbroek's paper,
' Over de Toepassing der

Quaternionen op de Mechanica en de Natuurkunde '

(Miiller,

Amsterdam). A perusal of these works will convince most
readers that quaternions are ' the natural language of metrical

geometry and of physics
'

(Clifford).
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TAYLOR, M.D., F.R.S. With numerous Woodcuts. Cr. 8vo. 12s. 6d.

COOK Physics. (Specially adapted for Indian Schools and Students.)
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Pneumatics. By J. E. TAYLOR, M.A., Hon. Inter./ B.Sc., Central

High Schools, Sheffield. With 175 Diagrams and Illustrations, and
522 Examination Questions and Answers. Crown 8vo. 2s. 6d.

THORNTON Theoretical Mechanics: Section 1. Solids; to

cover the Advanced Course of Science and Art Department. By A.
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Scientific Works published by Longmans, Gree.n, & Co. 7

"WILLIAMSON and TARLETON An Elementary Treatise
on Dynamics. Containing Applications to Thermodynamics, with
numerous Examples. By BENJAMIN WILLIAMSON, D.Sc., F.R.S., and
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F.R.SS., L. & E. With Corrections and Additions by Lord RAYLEIGH.
With 38 Illustrations. Fcp. 8vo. 4s.6d.

SMITH (J. Hamblin)-The Study of Heat. By J. HAMBLIN
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BOURNE Works by JOHN BOURNE, C.E.

A Catechism of the Steam Engine, in its Various Applica-
tions in the Arts, to which is added a chapter on Air and Gas

Engines, and another devoted to Useful Rules, Tables, and Memor-
anda. Illustrated by 212 Woodcuts. Crown 8vo. 7s. 6d.

- Recent Improvements in the Steam Engine. With 124
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some of the Gauging and Measuring Instruments, Hand-cutting Tools,

Lathes, Drilling, Planing and other Machine Tools used by Engineers.

By C. P. B. SHELLEY, M.I.C.E. With 292 Woodcuts. Fcp. 8vo.

4s. M.

UNWIN Exercises in "Wood-Working for Handicraft Classes in

Elementary and Technical Schools. By WILLIAM CAWTHORNE UNWIN,
F.R.S., M.I.C.E. 28 Plates. Fcp. folio. 4s. 6rf. in case.

MINERALOGY, METALLURGY, &c.

BAUBRMAN Works by HILARY BADERMAN, F.G.S.
- Systematic Mineralogy. With 373 Woodcuts and Diagrams.
Fcp. 8vo. 6s.

Descriptive Mineralogy. With 236 Woodcuts and Diagrams.
Fcp. 8vo.

BLOXAM and HUNTINGTON Metals : their Properties and
Treatment. P>y C. L. BLOXAM and A. K. HUNTINGTON, Professors

in King's College, London. With 130 Woodcuts. Fep. 8vo. 5s.

GORE The Art of Electro-Metallurgy, including all known
Processes of Electro-Deposition. By G. GORK, LL.l)., F.B.S. With
f)(> Woodcuts. Fcp. 8vo. 6s.

LUPTON- Mining. An Elementary Treatise on the Gelling of

Minerals. By ARNOLD LurTON, M.I.C.E., F.G.S. , etc.. Milling

Engineer, Professor of Coal Mining at the Victoria I'niversity. York-
shire College, Leeds. With r>!)0 Illiistiations. Crown 8vo. <i.s-. net.

MITCHELL A Manual of Practical Assaying. By JOHN
M iTciiKi.!,, K.( '.S. Kevised, with I lie Recent Discoveries incot porated.
By \V. CUOOKKS. F.li.S. \Vitli201111ustrations. 8vo. 31s. 6rf.

RUTLEY-The Study of Rocks; an Elementary Text-Book of

Petrology. By F. RuTLEY, F.G.S. With ft IMat.es and SS Woodcuts.

Fcp. 8vo. 4s. 6d.

VON COTTA Rocks Classified and Described : A Treatise
on Lithology. By BKRNHAKD VON COTTA. 'Uith Knglish. < li-iman,
and French Synonyms. Translated by PHILIP II KM;V I.A\\KIMI.

F.G.S., F.R.G.S. Grown Hvo. 14s.



14 Scientific Works published by Longmans, Green, &> Co.

MACHINE DRAWING AND DESIGN.

LOW AND BEVIS--A Manual of Machine Drawing and
Design. By DAVID ALLAN Low (Whitworth Scholar), M.I. Mech. E.,

Headmaster of the Technical School, People's Palace, London ;
and

ALFRED WILLIAM BEVIS (Whitworth Scholar), M.I. Mech.E., Director

of Manual Training to the Birmingham School Board. With over

700 Illustrations. 8vo. 73. 6d.

LOW Improved Drawing Scales. By DAVID ALLAN Low (Whit-
worth Scholar), Headmaster ot the Technical School, People's Palace,
London. 4rf. in case.

LOW An Introduction to Machine Drawing and Desi
By DAVID ALLAN Low, Headmaster of the Technical School, People's

Palace, London. With 97 Illustrations and Diagrams. Crown 8vo.

2s.

UNWIN The Elements of Machine Design. By W. CAW-
THORNE UNWIN, F.K.S., Professor of Engineering at the Centra"

Institute of the City and Guilds of London Institute. Part I. General

Principles, Fastenings and Transmissive Machinery. With 304 Dia-

grams, &c. Crown 8vo. 6s. Part II. Chielly on Engine Details.

With 174 Woodcuts. Crown 8vo. 4s. 6d.

ASTRONOMY AND NAVIGATION.
BALL Works by Sir ROBERT S. BALL, LL.D., F.R.S.

- Elements ofAstronomy. With 136 Figures and Diagrams
and 136 Woodcuts. Fcp. 8vo. 6s.

- A Class-Book of Astronomy. With 41 Diagrams. Fcp
8vo. Is. 6rf.

BCBDDICKEB The Milky Way. From the North Pole to 10 oi

South Declination. Drawn at the Earl of Rosse's Observatory at Bin
Castle. By OTTO BCEDDICKER. With Descriptive Letterpress.
Plates, size 18 in. by 23 in. in portfolio. 30s.

BRINKLEY - Astronomy. By F. BRINKLEY, formerly Astronomei

Royal lor Ireland. Re-edited and Revised byJ. W. STUBBS, D.D.
and F. BRUNNOW, Ph.D. With 49 Diagrams. Crown 8vo. 6s.

CLERKE The System of the Stars. By AGNES M. CLERKE
With 6 Plates and numerous Illustrations. 8vo. 21s.

HERSCHEL -Outlines of Astronomy. By Sir JOHN F. V
HERSCHEL, Bart., K.H., &c. With 9 Plates and numerous Diagram
Crown 8vo. 12s.

MARTIN Navigation and Nautical Astronomy. Compiler
by Staff-Commander W. R. MARTIN, R.N. Royal 8vo. 18s.

MERRIFIELD A Treatise on Navigation for the use of Students

By JOHN MERRIFIELD, LL.D., F.R.A.S., F.M.S. Crown 8vo. 5s.



Scientific Works published by Longmans, Green, 6 Co. 15
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Natural Phenomena, &c. 3 vols. Cr.

8vo. 5s. each.

2s. Qd. each. Supplementary Section,
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Crown 8vo. 5s. Silver Library
Edition. Crown 8vo. 3s Qd.

The Moon : Her Motions, Aspect,
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Engraving, and 2 Lunar Photographs.
Crown 8vo. 5s.
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Other Worlds than Ours: the
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of Suns. Crown 8vo. 5s.
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us. Crown 8vo. 5s.
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8vo. 5s.

New Star Atlas for the Library,
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The Star Primer : showing the Starry
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.Ma] is. Crown 4to. 2s. 6d.

Lessons in Elementary Astro-
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scopists. With 47 Woodcuts. Fop.
8vo. Is. 6d.

WEBB Celestial Objects for Common Telescopes. By the

Rev. T. W. WEBB, M.A., F.R.A.S. Fifth Ktlitimi, Revised and ^i.-atly
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ARNOLD Steel Manufacture. By J. O. ARNOLD. [In preparation.
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MORRIS and F. W. WILKINSON. [In preparation,

SHARP The Manufacture of Bicycles and Tricycles. By
ARCHIBALD SHARP. [In preparation.

TAYLOR Cotton Weaving and Designing. By JOHN J.
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"WATTS An Introductory Manual for Sugar Growers. By
FRANCIS WATTS, F.C.S., F.I.C., Assoc. Mason Coll., Birmingham,
and Government Chemist, Antigua, West Indies. With 20 Illustra-

tions. Crown 8vo. 6s.

PHYSIOGRAPHY AND GEOLOGY.
BIRD Works by CHARLES BIRD, B.A., F.G.S., Headmaster of the

Rochester Mathematical School.

Elementary Geology. With Geological Map of the British

Isles, and 247 Illustrations. Crown 8vo. 2s. 6d.

Advanced Geology. [In yyreparatwn.

GREEN Physical Geology for Students and General
Readers. With Illustrations. By A. H. GREEN, M.A., F.G.S., Pro-

fessor of Geology in the University of Oxford. 8vo. 21s.

LEWIS Papers and Notes on the Glacial Geology of
Great Britain and Ireland. By the late HENRY CARVILL LEWIS. 5i.A.,

F.G.S., Professor of Mineralogy in the Academy of Natural Sciences,

Philadelphia, and Professor of Geology in Haverford College, U.S.A.
Edited from his unpublished MSS. With an Introduction by HENRY
W. CROSSKEY, LL.D., F.G.S.

THORNTON Work by JOHN THORNTON, M.A., Headmaster, Clarence
Street Higher Grade School.

Elementary Physiography: an Introduction to the Study
of Nature. With 10 Maps and 173 Illustrations. New Edition, witli

Appendix on Astronomical Instruments and Measurements. Crown
8vo. 2s. 6d.

Advanced Physiography. With 6 Maps and 180 Illustra-
tions. Crown 8vo. 4s. 6'V.
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HEALTH AND HYGIENE.

BRODRIBB- Manual of Health and Temperance. By T. BROD-
RIBB. M.A. With Extracts from Gough's 'Temperance Orations'.

Revised and Edited by the Rev. W. RUTHVKX PYM, M.A. Crown
8vo. Is. 6rf.

BUCKTON-Health in the House; Twenty-five Lectures on Ele-

mentary Physiology in its Application to the Daily Wants of Man and
Animals. By CATHERINE M. BUCKTON. With 41 Woodcuts and

Diagrams. Crown 8vo. 2s.

CORFIELD The Laws of Health. By W. H. CORFIELD, M.A.,
M.D. Fcp. 8vo. Is. 6d.

FRANKLAND Micro-Organisms in Water, their Significance,

Identification, and Removal. Together with an Account of the

Bacteriological Methods involved in their Investigation. Specially
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Supply. By Professor PERCY FRANKLAND, Ph.D., B.Sc. (Lond.),
F.R.S., and Mrs. PERCY FRANKLAND.

POORS Essays on Rural Hygiene. By GEORGE VIVIAN POORE,
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Illustrations. Crown 8vo. 2s. 6d.

OPTICS AND PHOTOGRAPHY.
ABNEY A Treatise on Photography. By (

'aj.iain \V. DK WIVK-
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at the School of Military Engineering, Cliatlium. With Wood-
nits. Fcp. 8vo. 3s. Qd.

QLAZEBROOK -Physical Optics. By R. T. GLA^KHKOOK, AF.A.,
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Apparatus, .Sec. Fc.p. 8vo. (i>.

WRIGHT Optical Projection: a Treat i>e on the Use of the

Lantern in Exhibition and Scientific Demonstration. l!y LI-:\VIS

WRIGHT, Author of 'Light: a Course of Experimental Optics'.
With 232 Illustrations. Crown 8vo. 6s.
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ASHBY Notes on Physiology for the Use of Students
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Illustrations. Fcp. 8vo. 5s.

BARNBTT The Making of the Body: a Reading Book for

Children on Anatomy and Physiology With Illustrations and

Examples. By Mrs. S. A. BARNKTT. [7/i the press.

BIDGOOD A Course of Practical Elementary Biology.
By JOHN BIDGOOD, B.Sc., F.L.S. With 226 Illustrations. Crown
8vo. 4s. 6rf.

BRAY Physiology and the Laws of Health, in Easy Lessons
for Schools. By Mrs. CHARLES BRAY. Fcp. 8vo. Is.

FURNEAUX Human Physiology. By W. FURNEAUX, F.R.G.S.
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Zoology of the Invertebrate Animals. With 59 Dia-
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Zoology of the Vertebrate Animals. With 77 Diagrams.
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MORGAN Animal Biology: an Elementary Text-Book. By C.
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versity College, Bristol. With numerous Illustrations. Cr. 8vo. 8*-. Gd.

THORNTON- Human Physiology. By JOHN THORNTON,
M.A. With -258 Illustrations, some ot which are coloured. Crown
8vo.

METEOROLOGY, &c.

ABBOTT Elementary Theory of the Tides : the Fundamental
Theorems Demonstrated without Mathematics, and the Influence on
the Length of the Day Discussed. By T. K. ABBOTT, B.D., Fellow
and Tutor, Trinity College, Dublin. Crown 8vo. 2s.

JORDAN The Ocean : a Treatise on Ocean Currents and Tides, and
their Causes. By WILLIAM LEIGHTON JORDAN, F.R.G.S. 8vo. 21*.

SCOTT Weather Charts and Storm "Warnings. By ROBERT
H. SCOTT, M.A., F.R.S., Secretary to the Meteorological" Council.

With numerous Illustrations. Crown 8vo. 6s.



Scientific Workspublished by Longmans, Green, < Co. 19

BOTANY.

AITKEN Elementary Text-Book of Botany. For the use of

Schools. By EDITH AITKEN, late Scholar of Girton College. With
over 400 Diagrams. Crown 8vo. 4s. 6d.

BENNETT and MURRAY Handbook of Cryptogamic
Botany. By ALFRED W. BENNETT, M.A., B.Sc., F.L.S., Lecturer on

Botany at St. Thomas's Hospital ;
and GEORGE MURRAY, F.L.S.,

Senior Assistant Department of Botany, British Museum. With 378
Illustrations. 8vo. 16s.

MONDS Elementary Botany. Theoretical and Practical. By
HENRY EDMONDS, B.Sc., London. With 319 Diagrams and Woodcute.

KITCHENER A Year's Botany. Adapted to Home and School

Use. With Illustrations by the Author. By FRANCES ANNA KIT-
CHENER. Crown 8vo. 5s.

LINDLEY andMOORE The Treasury of Botany ; or, Popular
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McNAB-Class-Book of Botany. By W. R. McNAB. 2 Parts.

Morphology and Physiology. With 42 Diagrams. Fcp. 8vo. Is. 6d.

Classification of Plants. With 118 Diagrams. Fcp. 8vo. Is. 6rf.

and BENNETT Structural and Physiological
Botany. By Dr. OTTO WILHELM THOM^ and by ALFRED W. BEN-

NETT, M.A., B.Sc., F.L.S. With Coloured Map and 600 Woodcuts.

Fcp. 8vo. 6s.

WATTS A School Flora. For the use of Elementary Botanical

Classes. By W. MARSHALL WATTS, D.Sc., Lond. Cr. 8vo. 2s. 6d.

AGRICULTURE AND GARDENING.

ADDYMAN -Agricultural Analysis. A Manual of Quantitative

Analysis for Students of Agriculture. By FRANK T. ADDYMAN, B.Sc.

(Lond.), F.I.C. With 49 illustrations. Crown 8vo. 5s. n-t.

COLEMAN and ADDYMAN- Practical Agricultural Che-
mistry. For Elementary Students, adapted lor use in Agricultural
Classes and Colleges. By J. BERNARD COLEMAN, A.R.C.Sc., F.I.C.,
mid I-'KANK T. ADDVMAN, B.Sc. (Lond.), F.I.C. Crown 8vo. 1*. 6rf.

LLOYD- The Science of Agriculture. By F.J.LLOYD. 8vo. 12.
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and Measuring Instruments Hand-Cutting Tools, Lathes, Drilling,

Planing, and other Machine Tools used by Engineers. By C. P. B.

SHELLEY, M.I.C.E. With 291 Woodcuts. Fcp. 8vo. 4s. 6d.

Elements of Machine Design. By W. CAWTHORNE UNWIN, F.R.S.,
B. Sc., M.I.C.E.
Part I. General Principles, Fastenings, and Transmissive Machinery.
304 Woodcuts. 6s.

Part- II. Chiefly on Engine Details. 174 Woodcuts. Fcp. 8vo.

4s. 6d.

Structural and Physiological Botany. By Dr. OTTO WILHELM
THOME, and A. W. BENNETT, M.A., B.Sc., F.L.S. With 600 Wood-
cuts. Fcp. 8vo. 6s.

Plane and Solid Geometry. By H. W. WATSON, M.A. Fcp. 8vo
3s. 6<1

ELEMENTARY SCIENCE MANUALS.
Written specially to meet the requirements of the ELEMENTARY STAGE OF
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SCIENCE AND ART DEPARTMENT.

Practical Plane and Solid Geometry, including Graphic Arith-

metic. By I. H. MORRIS. Fully Illustrated with Drawings prepared
specially for the Book. Crown 8vo. 2s. 6d.

Geometrical Drawing for Art Students. Embracing Plane Geo-

metry and its Applications, the Use of Scales, and the Plans and
Elevations of Solids, as required in Section I. of Science Subject I.

By I. H. MORRIS. Crown 8vo. Is. 6d.

Being the First Part of Morris's Practical Plane and Solid Geometry.

Text-Book on Practical, Solid, or Descriptive Geometry
By DAVID ALLEN Low (Whitworth Scholar). Part I. Crown 8vo. 2s

"Part II. Crown 8vo. 3s.

An Introduction to Machine Drawing and Design. By DAVID
ALLEN Low (Whitworth Scholar). With 97 Illustrations a'nd Dia-

grams. Crown 8vo. 2s.

Building Construction. By EDWARD J. BURRELL, Second Master at
the Technical School of the People's Palace. London. With 308
Illustrations and Working Drawings. Crown 8vo. 2s. 6d.

An Elementary Course of Mathematics. Containing Arith-
metic ; Euclid (Book I. with Deductions and Exercises) ;

and Algebra.
Crown 8vo. 2s. 6d.

Theoretical Mechanics. Including Hydrostatics and Pneumatics
By J. E. TAYLOR, M.A., Hon. Inter. B:Sc. With numerous Example
and Answers, and 175 Diagrams and Illustrations. Crown 8vo. 2s. 60
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A Manual of Mechanics : an Elementary Text-Book for Students of

Applied Mechanics. With 138 Illustrations and Diagrams, and 188

Examples taken from the Science Department Examination Papers,
with Answers. By T. M. GOODEVE, M.A. Fcp. 8vo. 2s. 6t.

Sound, Light, and Heat. By MARK R. WRIGHT (Hon. Inter. B.Sc.

London). With 160 Diagrams and Illustrations. Crown 8vo. 2s. 6d.

Physics. Alternative Course. By MARK R. WRIGHT, Author of '

Sound,
Light, and Heat'. With 242 Illustrations. Crown 8vo. 2s. 6d.

Magnetism and Electricity. By A. W. POYSER, M.A. With 235
Illustrations. Crown 8vo. 2s. 6d.

Inorganic Chemistry, Theoretical and Practical. With an
Introduction to the Principles of Chemical Analysis. By WILLIAM
JAGO, F.C.S., F.I.C. With 49 Woodcuts and numerous Questions
and Exercises. Fcp. 8vo. 2s. 9d,

An Introduction to Practical Inorganic Chemistry. By
WILLIAM JAGO, F.C.S., F. I.C. Crown 8vo. Is. 6d.

Practical Chemistry : the Principles of Qualitive Analysis. By
WILLIAM A. TILDEN, D. Sc. Fcp. 8vo. Is. 6d.

Elementary Inorganic Chemistry. By W. S. FURNEAUX, F.R.G.S.,
Crown 8vo. -2s. 6d.

Elementary Geology. By CHARLES BIRD, B.A., F.G.S. With
Coloured (ieologic;il -Map of the British Islands, and 247 Illustrations.

Crown 8vo. 2s. 6d.

Human Physiology. By WILLIAM S. FURNEAUX, F.R.G.S. With
218 Illustrations. Crown 8vo. 2s. 6</.

Elementary Botany, Theoretical and Practical. By HENRY
EDMONDS, B.Sc., London. With 319 Woodcuts. Crown 8vo. 2s. 6d.

Steam. By WILLIAM RIPPER, Member of the Institution of Mechanical

Engineers. With 142 Illustrations. Crown 8vo. 2s. 6rf.

Elementary Physiography. By J. TH'OKXTOX, M.A. With 10

Maps and 173 Illustrations. With Appendix on Astronomical
Instruments and Measurements. Crown Nvo. 2s. (/.

Agriculture. By HENRY J. WKBII, I'h.D., Agricultural College,

Aspatria. With 34 I llu>tiatioiis. Crown Svo. '2s. 6rf.

A Course of Practical Elementary Biology. By .1. BIDGOOD,
l'..Scj. With 22(5 Illustrations. Crown Svo. 4s. (!</.



24 Scientific Works published by Longmans, Green, < Co.

ADVANCED SCIENCE MANUALS.
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By WILLIAM JAGO, F.C.S., F.I.C. With Plate of Spectra, and 78
Woodcuts. Crown 8vo. 4s. 6d.

Physiography. By JOHN THORNTON, M.A. With 6 Maps, 180 Illus-

trations, and Coloured Plate of Spectra. Crown 8vo. 4s. 6d.

Heat. By MARK R. WRIGHT, Principal of the Normal Department,
Durham College of Science, Hon. Inter. B.Sc. (Lond.). With 136
Illustrations and numerous Examples and Examination Papers. Crown
8vo. 4s. 6d.

Building Construction. By the Author of 'Rivington's Notes on

Building Construction '. With 385 Illustrations, and an Appendix,
of Examination Questions. Crown 8vo. 4s. 6d.

Geology. By CHARLES BIRD, B.A. [In preparation.
Human Physiology. By JOHN THORNTON, M.A. With 258 Illustra-

tions, some of which are coloured. Crown 8vo. 6s.

Theoretical Mechanics : Section 1., SOLIDS. By A. THORNTON, M.A.

[In preparation.

THE LONDON SCIENCE CLASS-BOOKS.
Edited by G. CAREY FOSTER, F.R.S., and by Sir PHILIP MAGNUS, B.Sc.,

B.A., of the City and Guilds of London Institute.

Astronomy. By Sir ROBERT STAWELL BALL, LL.D., F.R.S. With 41

Diagrams. Is. 6d.

Mechanics. By Sir ROBERT STAWELL BALL, LL.D., F.R.S. With 89

Diagrams. Is. Qd.

The Laws of Health. By W. H. CORFIELD, M.A., M.D., F.R.C.P.

With 22 Illustrations. Is. 6d.

Molecular Physics and Sound. By FREDERICK GUTHRIE, F.R.S.

With 91 Diagrams. Is. Gd.

Geometry, Congruent Figures. By 0. HENRICI, Ph.D., F.R.P
With 141 Diagrams. Is. 6d.

Zoology ofthe Invertebrate Animals. By ALEXANDER MCALISTEP
M.D. With 59 Diagrams. Is. Gd.

Zoology of the Vertebrate Animals. By ALEXANDER MCALISTE.I,
M.D. With 77 Diagrams. Is. Gd.

Hydrostatics and Pneumatics. By Sir PHILIP MAGNUS, B.Sc.,
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The Worked Solution of the Proble; . 2s.

Botany. Outlines of the Classification of Plants. By W. R. Mcl>-

M.D. With 118 Diagrams. Is. 6d.

Botany. Outlines of Morphology and Physiology. By W. R. Me
M.D. With 42 Diagrams. Is. Gd.
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