
An Outsider's View of Dataflow

by

Allan Gottlieb

Ultracompute Note #164
July, 1989

Ultracomputer Research Laboratory

New York University

Courant Institute of Mathematical Sciences

Division of Computer Science

251 Mercer Street, New York, NY 10012





An Outsider's View of Dataflow

by

Allan Gottlieb

Ultracompute Note #164

July, 1989

ABSTRACT
An outsider's view of the current state of dataflow research is presented. Two
related observations are made. First, the field has matured from emph.iMzing

proof of concept to pragmatic concerns needed to obtain high perfonn.mce.

Second, dataflow re.search is moving closer to mainstream parallel processing.

Several examples of dataflow research supporting these observations arc given.

They include two-stage enabling rules and other eclectic scheduling disciplines,

hardware and software throttling of parallelism, non-functional and (possibly)

non-deterministic execution semantics, traditional memoi7 managemcni, and

von Neumann compatibility.

Supported in part hy Dcpariment of Energy contract DF.-FG02-88r,R0250S3.



1. Introduction

This report ofTers an outsiders view oTthe current state of dataflow research, emphasiz-

ing material presented at the Hilat workshop. My own research, as a part of ihc New
York University Ultracomputer project, concerns more traditional von Neumann mul-

tiprocessors. Since this author is not an active member of the dataflow communiiy, the

present note cannot be viewed as an expert commentary on the subject but r;iiher as

the impression given by the workshop to an outside observer who has foUoucd the

field for many years. One (by no means surprising) observation is that the community

is enthusiastic about their subject and confident that, in the not too distant future,

datafiow machines will be among the leading supercomputers in existence. Iniiccd, as

noted at one of the panels, I felt like a card-carrying agnostic in the land of true believ-

ers (a particularly apt analogy for a workshop held in Israel).

A more serious observation is that dataflow research has matured to the extent

that, unlike the situation ten or even five years ago, the community now empli.isizes

the pragmatic considerations needed to get high performance. Occasionally, perfor-

mance gains come at the expense of some of the simplicity and elegance found in .lack

Dennis's original datafiow model. However these tradeoffs of elegance for perfomiance

have been done quite well. At the meeting, I jokingly called them contracts wiih the

devil, but quickly added that the dataflow side negotiated well. Giving up a little

elegance ofiTered significant pragmatic gains. Often the loss of elegance appears as a

more complex or eclectic design when compared with Dennis's original model.

A second observation is that dataflow research is moving closer to traditional

(parallel) computing. For example, the accumulators recently added to to Id (Arvind

et al. [78]), have enabled this dataflow language to support concurrent histogr.imming,

an important technique used in scientific programming that had previously appc.ired to

require a control-flow orientation. Other examples include various compiler techmques

pioneered by the control flow community that are being adopted by dataflow ic>.rarch-

ers, the possible emergence of "permissible non-determinism" in dataflow languages,

and traditional issues of memory management with the resulting need to throttle paral-

lelism. Perhaps the best illustration of the convergence of the fields is the emergence of

several designs for hybrid control/data-flow computers.

These two observations, that the dataflow community is striving for performance

even at a possible loss of simplicity and that dataflow researchers are studying m;my of

the same issues as their control-flow counterparts, are not independent. For cxHrnple,

hybrid designs, which are proposed in order to increase performance, have the two side

efTects of increasing complexity and introducing control-flow research quc-lions.

Indeed, a major reason that the dataflow community is studying issues that arise in

control flow is to increase performance.

1 wish to thank the organizers. Professors Lubomir Bic and Jean-Luc Gaudiot, for

their considerable en"orts that resulted in such a worthwhile workshop and for iicrmit-

ting me to attend. I also thank the other participants for their patience with an occa-

sionally sceptical non-expert. The Eilat experience was for me both intellectually

rewarding and a great pleasure.

An Outsider's View of Dataflow Page I



2. Trading Simplicity for Performance

One example of the added complexity in modern dataflow design is the two-stage ena-

bling rule for non-local data references used in a multiprocessor version of the

Argument-Fetch Dataflow Processor proposed by Dennis and Rao [SS]. In this archi-

tecture, the Dataflow Instruction Scheduling Unit (DISU) identifies instructions that

are enabled for execution, i.e. whose arguments have been evaluated, and notifies the

Pipelined Instruction Processing Unit (PIPU) when instructions are so enabled. When
the PIPU executes an instruction requiring non-local data, it initiates the fetch and

suspends execution of that instruction until the data arrives, in a sense waiting for the

instruction to be re-enabled.

In contrast to early dataflow research where a major goal was to maxinn/e the

number of enabled instructions (a goal that the dataflow model was well suited to

meeting), several of the presentations at Eilat discussed methods of limiting this

number. Unchecked parallelism can quickly consume available resources; pathological

cases were mentioned where free memory could be exhausted, thereby deadlocking the

hardware, almost as fast as the reset button could be pressed. Both software tech-

niques for controlling parallelism (k-boundcd loops, which limit the number of active

iterations) and hardware "throttles" were reported.

Two situations were discussed in which systems software for dataflow niai hines

may need to deal with the complexity of multiple assignment semantics, a complexity

the dataflow model was designed to avoid (and does avoid for applications software).

The first situation occurs in those systems that garbage collect memory, which leads to

frequently studied questions of collector/mutator concurrency. The second example

occurred in the presentation by Israel Gottlieb of a coordination scheme for (iDacro)

dataflow activities based on fetch-and-add, a read-modify-writc instruction that, when

used efliciently, leads to multiple concurrent assignments and requires care to avoid

insidious race conditions that applicative semantics so nicely avoid. (This last point

should be viewed as an advantage of applicative semantics rather than a condemnation

of fetch-and-add; in fact the author is a proponent of the latter).

Several presentations discussed macro or hybrid dataflow designs in which an indi-

vidual dataflow actor is no longer a simple (e.g., arithmetic) operator but is itisiead a

von Neumann execution thread. The goal of these eclectic designs is to utili/c the

highly efficient von Neumann program counter semantics for purely sctpicntial

straight-line execution, reserving dataflow semantics for scheduling these straight-line

pieces. Some of these designs explicitly propose separate von Neumann and dataflow

processing elements. But even if only one processor is proposed, the dual scheduling

discipline is naturally more complex than the original pure dataflow proposal.

3. Convergence of Dataflow and Control-Flow

The dataflow and control-flow research communities now study many of the same

questions. Although the term convergence may well be too strong in that the fields will

likely remain distinct, the disciplines have cross-fertilized and, I believe, have grown

considerably closer during the decade. The hybrid designs mentioned above arc clear

examples of this convergence. This section gives other examples as well.

The first example involves the accumulators recently added to Id. I remember a

dataflow presentation about five years ago at which a question concerning concurrent

An Outsider's View of Dataflow Page 2



histogramming was raised by an computational scientist experienced with von Neu-
mann multiprocessors. The situation described was a parallel program in which largely

independent tasks would each repeatedly extract a datum from a global pile ;iinl then

classify the datum into one of K types. The result required is a histogram gising the

number of data oT each type. A natural solution Tor a von Neumann multiprocessor.

is to define a shared array of counters with one entry for each type and have each task

increment the entry corresponding to the type of the datum that it has exir.ictcd.

However, this solution violates single-assignment semantics and thus is not tlirectly

expressible in a dataOow language. Although dataflow solutions were suggested, each

involved a space or time penalty and none was found completely satisfactory by the

computational scientist.' With accumulators, a deterministic dataflow solution is possi-

ble that closely mimics the multiprocessor solution but avoids the space ami time

penalties mentioned above. An (addition-based) accumulator is established for c.nch of
the K types to serve as a counter of the number of data items of that type. Accumula-
tors support an atomic operation that increments their value by a second value given

as a parameter. Thus, like "von Neumann variables", accumulators take on many
different values during their lifetime and readily yield an algorithm for concurrent iusto-

gramming. The key additional property is that only the Jinal value of the accumulator
can be read. It is this restriction that guarantees deterministic algorithms.

The above discussion of accumulators is adapted from the box entitled "The
Rings of Id" presented in Almasi and Gottlieb [89], which in turn is strongly influenced

by conversations with Arvind. That same box mentions another area where d;ii;iflow

edges toward control-flow semantics: the limited use of non-functional and possibly

even non-deterministic operations. The much studied I-structures do not satisfy func-

tional semantics (very roughly speaking, they are single-assignment rather th;in zero-

assignment structures) and hence dataflow languages like Id that include I-siructures

are not functional languages. As explained in "The Rings of Id" the intended use of

I-structures is to define libraries of purely functional routines, which arc then used in

application programs. With this methodology only the library developer, and not the

applications programmer, is exposed to non-functional semantics. Moreover, even if a

methodology is adopted that promotes unrestricted use of I-structures, the icsulting

execution semantics contain many of the favorable characteristic of functional

languages. In particular, determinism is maintained. Nonetheless, when compared to

dataflow languages like Val (Ackerman and Dennis (79|) that do not suj-iport I-

structures. Id has inched toward von Neumann semantics.

Notwithstanding the arguments presented for deterministic computations, there

are occasions where support for non-determinism is important. Operating systems,

programs for real-time control, and other software systems that interact with the (non-

deterministic) external environment are natural examples. For these reasons, some
members of the dataflow community are considering a weakening of the requirement

'it should be added that for interesting variations of this problem In which tasks insert as well as re-

move items from the data pile, the multiprocessor solution described is non-deterministic and tiMi<; would
not be found completely satisfactory by dataflow researchers. Indeed, deterministic computations are a

(largely achieved) goal of dataflow programming and no one challenges the assertion that stamping out

non-deterministic bugs can be very difficult.

An Outsider's View of Dataflow Page 3



that all computations he deterministic. One perhaps fanciful possihility is to permit

accumulators based on non-associative operators.

Some recent proposals for memory management on dataflow machines have advo-

cated a rather traditional frame-based approach to the subject, which has been much
studied in the context of von Neumann computers. As described in Papadopoulcis [88],

the Monsoon dataflow processor uses directly-addressed frames of memory instead of

an associative waiting-matching store and [instruction pointer, frame pointer] pairs

replace the tags found in previous tagged-token designs. Frames arc also used in the

dataflow/von Neumann hybrid architecture presented in lannucci [88].

The subject of program compilation, in particular code generation and optimiza-

tion, has long been a major area of study in computer science. It has also led to an

amusing history of debates over the quality of compiled code for applicative versus

imperative languages. Previously, the languages involved were usually an applicative

subset of Lisp and the imperative language FORTRAN. More recently, newer purely

functional languages have entered the debate (and on occasion C has replaced FOR-
TRAN as the imperative representative). Initially the dataflow community did not

emphasize compiler technology as strongly as did the control-flow community. Recall

that a primary goal of Backus's original FORTRAN group was to generate high qual-

ity machine code (see Backus [78] for a history of the group). With hindsight it is

probably fair to say that compiler technology should have received higher priority.

Only recently have high performance compilers for dataflow languages been produced.

Arvind, Culler, and Ekanadham [88] have carefully analyzed the I.ivermore "Simple"

benchmark and found that an Id implementation comes within a factor of two of FOR-

TRAN.

^

Compiler technology is of considerable interest to the dataflow community at

present. One illustration of this interest was the excitement generated when the

workshop received a new University of Colorado technical report claiming that various

programs written the the functional language Sisal (McCiraw ct al. [8.51) executed with

efficiency comparable to that obtained by equivalent programs written in FOR fRAN
and C. It was agreed that, if substantiated on a large application class, this eoinpiler

development would be extremely significant. (See also Bohm and Sargent [89] for

recent results on numerical programming in Sisal.)

Naturally, these achievements did not come easily. In fact many of the compila-

tion techniques developed for control-flow computers have been required in the

dataflow/applicative arena as well. One might expect that the absence of side effects

would make compilation of applicative language much less difficult than for impeiative

languages. However, obtaining competitive code quality has required significant

development efforts.

In addition to the von Neumann influence in modern dataflow research, one can

actually detect a measure of von Neumann compatibility. At Filat, Kai lliraki

described the most powerful dataflow machine built to date, the FTL Sigma I

^The metric used was the dynamic instruction count. This comparison was a harsh lest for the Id

compiler since the competition was the highly optimizing IBM compiler Tor the 370. The numhcr of float-

ing point operations executed was identical for the Id and FORTRAN versions.

An Outsider's View of Dataflow ' Page 4



supercomputer, containing 128 processing elements and achieving a perforni.mce in

excess of 100 M FLOPS. Although Dr. Iliraki is a strong proponent of dataflow and

dataflow programming languages, the production programming language for Sigma I is

the very traditional imperative language C. f^ataflow languages will surely be imple-

mented but Hiraki felt that the first language should be one for which there wa<; a large

collection of programmers and software already present. Iliraki noted that, although it

was fairly simple to write C programs that left 127 processors idle, good perfmnance

was obtained when the programmers followed certain guidelines that his group pro-

duced.

A second example of von Neumann compatibility in a dataflow design is the P-

RISC proposed by Nikhil and Arvind [89]. This machine is a conventional RISC
microprocessor with a small set of extensions to enable dataflow execution. The stated

purpose of extending a standard microprocessor was to obtain (upwards) comi->;itibility

and hence the ability to run conventional software without modification.

The narrowing of the differences between dataflow and control-How research is

not simply the result of dataOow adopting control-fiow ideas; each field has learned

from the other. In particular, the idea of macro-dataflow is studied by researchers

interested in von Neumann parallel processors. For example, early versions of the

Ceder design from the University of Illinois (Gajski, el al. [831) specified a "global con-

trol unit" that was a (hardware) scheduler for "compound functions'", which are the

moral equivalent of macro dataflow actors. Indeed, this version of Ceder was often

referred to as a high-level datafiow machine. A software analog of the Ceder global

control unit was suggested by Gottlieb and Schwartz for the NYl' IJltracomputci [82].

These last two papers are early examples of a currently popular style of parallel pro-

cessing where one establishes a workpile of tasks to be accomplished and schedules for

execution entries from the subpile consisting of tasks with no remaining dependencies.

A good recent example is the Schedule system of Dongarra ct al. [88j. AIth(iii;;h the

dependencies processed by Schedule are not limited to dataflow dependencies (e.g. load

balancing conditions are modeled), the system is in the spirit of large-grain datciflow.

4. Summary

When viewed from the outside, dataflow has progressed during the 1980s. A powerful

multiprocessor has been constructed that achieves supercomputer performance exceed-

ing 100 M FLOPS, the level of compiler development has increased, and in general the

field has matured from emphasizing proof of concept to pragmatic concerns needed to

obtain high performance.

In many areas of study, when a field is new the first questions are exciting and

tend to be of the form "How can we do this?". When the field matures the que<:tions

turn to "How can we do this well?" and then to "How well can we do this?". For

example, almost all recent papers in conventional computer architecture include

significant quantitative comparisons, often based on simulation studies.

A natural consequence of the progression to more quantitative studies is that the

issues involved become more detailed and often more complex. Compare the elegance

of the concept of demand paging as presented in Fotheringham's 1961 paper on Atlas,

with the detail of more modern work on the comparative performance of various

heuristics for approximating LRU page replacement. This remark is not mc?nit to

minimize the importance of the later work. Good ideas do not guarantee good

An Outsider's View of Dataflow Page 5



systems. Careful design and high quality engineering arc required as well. Although

the initial work on a subject is often the most elegant, the subsequent more pi.igmatic

and detailed development of the idea can be as important for its ultimate success.

So it is with dataflow. The elegant dataflow model proposed by Dennis in the mid

70s has lead to an important line of research and development, which has incliulcd not

only other elegant suggestions but solid engineering achievements as well, such as qual-

ity compilers and supercomputer performance. These achievements have ro(|uired

attention to detail and occasional contracts with the devil; but I know of no other path

to a successful system. I end this report by asking those who joined me at lilat to

consider these last few paragraph as the long version of the (deliberately pro\ ocative)

quip I made during a panel session: "Back when dataflow didn't work so well, it

seemed a lot more elegant!".

References

William B. Ackerman and .lack B. Dennis, "VAL—A Value-Oriented Algorilhmic

Language: Preliminary Reference Manual", MIT KCS Tech. Rept. TR-2IS, .lune,

1979.

George S. Almasi and Allan Gottlieb, Highly Parallel Processing, Benjamin Cuinmings

Publishing Co.. 1989.

Arvind, Kim P. Gostelow, and W. PloufTe, "An Asynchronous Language and Comput-

ing Machine", LIniv. Calif Irvine Tech. Rept. TR114a, Dec. 1978.

Arvind, David E. Culler, and K. Lkanadham, "The Price of Asynchronous Par;illclism:

An Analysis of Dataflow Architectures" Proc. COMPAR88, Manchester, I ngland,

Nov. 1988, pp. 168-182.

John Backus, "The History of FORTRAN 1, 11, and III", ACM SICPLAN Noiircs, 13

No. 8, Aug. 1978, pp. 16.5-180. This issue contained the preprints of the papers

prepresented at the ACM SIGPLAN History of Programming Languages Confer-

ence, June 1978.

A. P. Wim Bohm and John Sargeant, "Code Optimization for Tagged-Token D.iiaflow

Machines", IEEE Trans. Comp. 38 No. 1, Jan. 89, pp. 4-14.

Jack B. Dennis and Guang R. Gao, "An Efficient Pipelined Dataflow Processor Archi-

tecture", Proc. Supercomputing Con/., Orlando FL, Nov. 1988.

Jack J. Dongarra, Danny C. Sorensen, Kathryn Connolly, and Jim Patterson, "Pro-

gramming methodology and Performance Issues for Advanced Computer Architec-

tures", Parallel Comp., Oct. 1988, pp. 41-58.

J. Fotheringham, "Dynamic Storage Allocation in the Atlas Computer including an

Automatic Use of a Backing Store", CACM 4 Oct. 1961, pp. 4.1.'>-436.

Daniel Gajski, David Kuck, Duncan Lawrie, and Ahmed Sameh, "Cedar—A Large

Scale Multiprocessor", ICPP. Aug. 1983, pp. 524-529.

An Outsider's View of Dataflow Page 6



Allan Gottlieb and Jacob T. Schwartz, "Networks and Algorithms for Very Large

Scale Parallel Computation". Computer 15 .Ian. 1982,, pp. 27-36.

Robert A. lannucci, "Toward a Dataflow / von Neumann Hybrid Architecture" Proc.

15th Ann. ISCA, IEEE Comp. Soc, Honolulu, lunc 198S, pp. 1.31-139.

James R. McGraw el ai, "SISAL: Streams and Iteration in a Single Assignment

Language—Language Reference Manual, version 1.2", Lawrence Livermmc Nat.

Lab. Tech. Rept.. Mar. 1985

Rishiyur S. Nikhil and Arvind. "Can Dataflow Subsume von Neumann Computing?".

Proc. I5ih Ann. ISCA, IEEE Comp. Soc, Honolulu, June 1988, pp. 262-272.

Gregory M. Papadopoulos, "Implementation of a General-Purpose Dataflow Multipro-

cessor", Technical Report TR-432, MIT Lab. for Comp. Sci., Aug., 1988.

An Outsider's View of Dataflow ''age 7






